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Preface

Machine learning is exploding, both in research and industrial applications. Although
much of the machine learning ideas have been around for many years, the latest break-
throughs are based on several advances. One is the availability of large datasets with
labeled data. Another is the availability of fast specialized processors such as graphics
processing units (GPUs). In addition, progress is fueled by a deeper understanding of
building models and learning from data, as well as some new techniques that brought
everything together.

There are now a variety of wonderful books and online resources available on
machine learning. So why another book? There are several reasons why I felt compelled
to offer my contribution here. Many recent books focus on specific aspects of machine
learning, in particular deep learning on the one hand and Bayesian methods on the
other. In this book I try to develop a bridge or mutual understanding of what often
seems to be viewed as two opposite ends of machine learning. I would like to argue that
both approaches are important, have specific strengths in specific application areas, and
that a combined view of machine learning and scientific modeling is useful. While this
book places some focus on general machine learning methods, I believe that the insight
and rigor of probabilistic modeling approaches aid to the general understanding, which
in turn offers help in applying machine learning techniques more efficiently.

Another reason that I hope this book is appreciated is that I like to keep explanations
brief while still providing some ideas about the deeper reasoning about the methods.
It is important to keep this style of the book in mind as treatments and examples
are deliberately minimal by design. Also, most explanations are deliberately brief in
contrast to more traditional teaching books. My hope is to motivate and guide the
reader sufficiently enough to consult further resources for advanced studies. I find
this particularly important in an age where there are wonderful resources available on
the Internet. I do not claim to cover all details of machine learning, but my hope is
to provide the fundamentals for a good understanding that can help to guide further
studies.

This book tries to strive a balance between the rigor of mathematical arguments
and general outlining principle ideas. In this book, I use mathematical notation mainly
as descriptors to keep presentations brief and to show the general form of some
equations. For the most part, this book does not include rigorous mathematical proofs
or derivations, but I hope to give enough details to see how results can be derived. I
know that some readers might tend to avoid mathematical notations, but I would like
to encourage these individuals to see them as providing a short form of a story. by
contrast, other readers might find my simplifications debatable in a strict mathematical
context. However, I think mathematical tools are useful at the level intended here to
communicate ideas.

This book includes a brief overview of some older machine learning techniques
such as support vector machines and decision trees. While these approaches might
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be considered shallow or old-fashioned with respect to deep learning, they have still
important practical applications as they might provide solutions to applications that
do not require the increased complexity of deep models. We will not dwell for very
long into the theory of these traditional methods even though some of the stated
formulas seem complex. However, I hope that mentioning some of these ideas, such
as kernel methods or Lagrange methods for optimizations with constraints, will add to
the foundation of studying more theoretical aspects that are often assumed in modern
research papers. This is particularly the case for support vector machines for which
there is a rich theory.

Since I have a personal interest in how the brain works, I did include some com-
ments on the relations of machine learning and the brain. The brain is often quoted
as inspiration for machine learning methods like neural networks. On the other hand,
machine learning is also inspirational for neuroscience by giving us some ideas of
possible information processing principles that could be at work in the brain, or at
highlighting differences.

In the first chapter we will tour the main ideas of machine learning in order to see
where this journey will take us. The next three chapters are designed to apply some
machine learning methods. I decided to begin with applications before going through
the more rigorous background since applying machine learning methods is not difficult
with high-level programming to implement and use a variety of models. These chapters
are intended to get you started to run some experiments on your own, and to gain some
experience of what we want to achieve with machine learning. Chapter 2 is a brief
outline of programming with Python of the kind we need in this book, and Chapters 3
and 4 show how to use sklearn and Keras to implement some of the methods.

The second part of the book comprising the following four chapters is intended to
take a deeper look into the foundations of machine learning and scientific modeling in
general. This includes a formalization of regression and gradient descent optimization,
and discussions of the probabilistic aspects in modeling. The final section of the book
comprises the last three chapters which are dedicated to three important and hopefully
interesting advanced aspects of machine learning. The first is recurrent neural networks,
which capture temporal aspects in modeling; the second is reinforcement learning,
which captures learning of agents and is hence a much more general setting of learning
machines; and the last chapter consists of some brief thoughts on the impact of machine
learning on our society.



1 Introduction

This chapter provides a high-level overview of machine learning, in particular of
how it is related to building models from data. We start with a basic idea in the
historical context and phrase the learning problem in a simple mathematical term
as function approximation as well as in a probabilistic context. In contrast to more
traditional models we can characterize machine learning as nonlinear regression in
high-dimensional spaces. This chapter seeks to point out how diverse sub-areas such
as deep learning and Bayesian networks fit into the scheme of things and aims to
motivate the further study with some examples of recent progress.

1.1 The basic idea and history of machine learning

Machine learning is literally about building machines, often in software, that can
learn to perform specific tasks. Examples of common tasks for machine learning is
recognizing objects from digital pictures or predicting the location of a robot or a self-
driving car from a variety of sensor measurements. These techniques have contributed
largely to a new wave of technologies that are commonly associated with artificial
intelligence (AI). This books is dedicated to introducing the fundamentals of this
discipline.

The recent importance of machine learning and its rapid development with new
industrial applications has been breath taking, and it is beyond the scope of this book
to anticipate the multitude of developments that will occur. However, the knowledge
of basic ideas behind machine learning, many of which have been around for some
time, and their formalization for building probabilistic models to describe data are
now important basic skills. Machine learning is about modeling data. Describing data
and uncertainty has been the traditional domain of Bayesian statistics and probability
theory. In contrast, it seems that many exciting recent techniques come from an area
now called deep learning. The specific contribution of this book is its attempt to
highlight the relationship between these areas.

We often simply say that we learn from data, but it is useful to realize that data can
mean several things. In its most fundamental form, data usual consist of measurements
such as intensity of light in a digital camera, the measurement of electric potentials in
Electroencephalography (EEG), or the recording of stock-market data. However, what
we need for learning is a teacher who provides us with information about what these
data should predict. Such information can take many different forms. For example, we
might have a form of data that we call labels, such as the identity of objects in a digital
photograph. This is exactly the kind of information we need to learn optical object
recognition. The teacher provides examples of the desired answers that the student
(learner) should learn to predict for novel inputs.

Fundamentals of Machine Learning, Thomas P. Trappenberg, Oxford University Press (2020).
c© Oxford University Press. DOI: 10.1093/oso/9780198828044.001.0001
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Learning will always involve optimizing an objective function, and we will see that
the objective function can easily be formulated with specific examples of the desired
answers for a learner. This kind of guidance in a learning algorithms is traditionally
called "supervised learning." At the other extreme, we might not have any labels, which
has traditionally been called unsupervised learning. However, a teacher still needs to
provide some guidance in form of an objective, such as ordering data with certain
rules. An example of this is clustering, such as when a teacher specifies a distance
measure like the Euclidean distance between feature vectors. We will see that such
methods are important for representational learning. Finally, a much more general
form of learning is a setting where the teacher provides some guidance but the learner,
in addition, has to explore possible actions to find novel solutions. Such learning is
formalized in reinforcement learning where the objective functions is a slightly more
general form compared to the simpler supervised learning. While we will encounter
all these different types of learning in this book, most of the fundamentals of learning
theory and building models can be demonstrated in the simplest setting of supervised
learning.

In machine learning, we are trying to solve problems with computers without
explicitly programming them for a specific tasks. We will still need to program the
learning machine, and we often have to make some adjustments of such programs for
a specific task. However, such an approach is somewhat more general than coding a
specific logic for a specific problem. Programming general learning machines instead
of specific solutions to a problem is desirable specifically for tasks that would be
difficult to program in an explicit rule-based system. A classic example that we will
discuss in some length is that of character recognition, as illustrated in Fig. 1.1; writing
a program that can translate a visual representation of a character, say the letter A to
the computer-interpretable meaning of this character such as representing this letter
as the ASCII string 01000001 which is not easy when considering all the shapes and
styles that this character can take.
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Fig. 1.1 Illustration of a letter-recognition tasks which takes a digital iamge, translates the pixel

values into a large vector, and then transform it into a vector that represents the meaning of the

letter.

Machine learning might sound like a niche area of science and you might wonder
why there is now so much interest in this discipline, both academically and in industry.
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The reason is that machine learning is really about modeling data. Modeling is the
basis for advanced object recognition, data mining, and, ultimately, intelligent systems.
Machine learning is the analytic engine in areas such as data science, big data, data
analytics, and, to some extend, to science in general in the sense of building quantitative
models.

Machine learning has a long history with traces far back in time (see Fig. 1.2).
The first genuine public recognition and accompanying widespread excitement among
scientists about learning machines came in the late 1950s and early 1960s with work
like Arthur Samuel’s self-learning checkers program. Samuel devised a program with
reinforcement learning that ultimately learned to outperform its creator. Around this
time, Richard Bellman established much of the mathematical foundation of reinforce-
ment learning. One of the first general learning machines that are now considered to
be neural networks was invented by Karl Steinbuch in Germany. Frank Rosenblatt
invented much of the systematic foundation of neural networks and started to build
neural network computers together with Charles Wightman, such as the Mark I Per-
ceptron. Neural networks were popularized again in the 1980s, influenced by David
Rumelhart and Geoffrey Hinton, and Terry Sejnowski studied their connection to the
brain. Of course, there are many many more inspiring researchers such as Yoshua
Bengio, Yann LeCun, and Jürgen Schmidthuber, to name but a few.

We are now in an era of "deep learning", with important recent developments that
are responsible for the popularity of machine learning today. This has a great deal to
do with the availability of appropriate data and the availability of faster computers, but
also to smart techniques that make it possible to scale models to much larger domains.
A great example of the recent progress in deep reinforcement learning is the ability of
a computer to learn to play video games. Video games from the old Atari platform have
become a useful paradigm for a new class of benchmarks that go beyond the classical
data sets for machine learning from the University of California Irvine UCI machine
learning repository that have dominated the benchmarks in the past. Atari games are
somewhat simplified worlds while still presenting more learning in environments that
humans have to figure out. In these benchmarks only visual input is given, made up of
the computer frames of the video game, and feedback is only provided with how well
the player performed in the game.

While these above examples have been widely popularized as the new forefront
in AI, much of the scientific progress in machine learning is related to its embedding
with probabilistic methods and statistical learning theories. Some pioneers in this
domain are Vladislaw Vapnik and Judea Pearl. The development of statistical machine
learning and Bayesian networks has influenced the field strongly in the last twenty
years, and the domain of Bayesian reasoning is essential for the deeper understanding
of machine learning. Some scientists are now working on more general probabilistic
programming methods that to some extent go beyond the recent standard in machine
learning applications. The aim of this book is to introduce machine learning at a more
practical level so that it can be applied immediately by practitioners, at least in its basic
form, and then to discuss the foundations in more general terms to help practitioners
to learn more about the general theoretical underpinning of machine learning.

In the next three chapters we learn how to apply machine learning with the help
of Python-based programming frameworks based on Python libraries such as Sklearn
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Fig. 1.2 Some pioneers of machine learning. From top-left to bottom-right: Arthur Samuel playing

checkers; Richard Bellman, who formalized reinforcement learning; Karl Steinbuch, who invented

the ’learn matrix’; Frank Rosenblatt and Charles Wightman; who implemented a neural computer;

Terry Sejnowski and Geoffrey Hinton discussing the Boltzmann machine circa 1983 (Courtesy of

Geoffrey Hinton); and David Rummelhardt.

and keras. The next several chapters explore the principle behind supervised learning
in the form of regression and classifications. We thereby switch frequently between
a functional and a probabilistic framework. A refresher on the basic probability for-
malism is included in this discussion. In the last few chapters we will discuss some
more advanced machine learning issues and methods, including recurrent networks
and reinforcement learning.
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1.2 Mathematical formulation of the basic learning problem

Much of what is currently most associated with the success of machine learning
is supervised learning, sometimes also called predictive learning. The basic task of
supervised learning is that of taking a collection of input data x, such as the pixel
values of an image, measured medical data, or robotic sensor data, and predicting an
output value y such as the name of an object in an image, the state of a patient’s health,
or the location of obstacles. It is common that each input has many components, such
as many millions of pixel values in an image, and it is useful to collect these values in
a mathematical structure such as a vectors (1-dimensional), a matrix (2-dimensional),
or a tensor that is the generalization of such structures to higher dimensions. We often
refer to machine learning problems as high-dimensional which refers, in this context,
to the large number of components in the input structure and not to the dimension of
the input tensor.

We use the mathematical terms vector, matrix, and tensor mainly to signify a
data structure. In a programming context these are more commonly described as 1-
dimensional, 2-dimensional, or higher-dimensional arrays. The difference between
arrays and tensors (a vector and matrix are special forms of a tensor) is, however,
that the mathematical definitions also include rules on how to calculate with these data
structures. This book is not a course on mathematics; we are only users of mathematical
notations and methods, and mathematical notation help us to keep the text short while
being precise. We follow here a common notation of denoting a vector, matrix, or
tensor with bold-faced letters, whereas we use regular fonts for scalars. We usually
call the input vector a feature vector as the components of this are typically a set
feature values of an object. The output could also be a multi-dimensional object such
as a vector or tensor itself. Mathematically, we can denote the relations between the
input and the output as a function

y = f(x). (1.1)

We consider the function above as a description of the true underlying world, and
our task in science or engineering is to find this relation. In the above formula we
considered a single output value and several input values for illustration purposes,
although we see later that we can extend this readily to multiple output values.

Before proceeding, it is useful to clarify our use of the term "feature." Features
represent components that describe the inputs to our learning systems. Feature values
are often measured data in machine learning. Sometime the word "attributes" is used
instead. In the most part, we use these terms interchangeably. However, sometimes
researchers make a small distinction betwen the terms, using attributes to denote unique
content while using feature as a derived value, such as the square of an attribute. This
strict distinction is usually not crucial for the understanding of the context so our use
of the term feature includes attributes.

Returning to the world model in equation 1.1, the challenge for machine learning is
to find this function, or at least to approximate it sufficiently. Machine learning offers
several approaches to deal with this. One approach that we will predominantly follow
is to define a general parameterized function

ŷ = f̂(x;w). (1.2)
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This formula describes how we make a parameterized hypothesis in which we specify
a function f̂ that depends on parameters w to approximate the desired input-output
relation. This function is called a model:

A model is an approximation of a system to study specific aspects of the system
and to predict behavior

This often means that not all of the underlying world has to be captured in depth.
For example, a building engineer might make a model of a bridge to tests its static
without including the aesthetic aspects that an architect might emphasize in a model.
In our context the word model is synonymous with approximation. We have indicated
in the formula that this model is an approximation of the desired relation by using a
hat symbol above the y and the f . However, we frequently drop the hat symbol when
the relation is clear from the context. Also, in the context of machine learning, a model
typically includes parameters so that their presence in the notation is synonymous with
a model.

Coming up with the right parameterized approximation function is the hard prob-

lem in machine learning, and we will later discuss several choices. There are methods
to develop the approximation function from the data systematically, generally called
non-parametric methods. At this point we assume that we have a parameterized ap-
proximation function.

We often specify the set of parameters as a vector w behind a semi-colon in
the function arguments. A more appropriate mathematical statement would be that
equation 1.2 defines a set of functions in the parameter space. Learning is the challenge
of finding the values for these parameters that best describe the data, and even better,
predicting future outputs y from inputs x. So, the parameters are estimated from
data w = w(x, y). Searching for these parameters is done with a learning algorithm. A
common way of realizing such a learning algorithm is to define a function that describes
the goal of learning, such as minimizing the number of wrong classifications. We call
this function the loss function L, although other terms are sometimes used in the
literature such as objective function, error function, or risk. A common algorithm to
minimize such a loss function for a set of given data is to use an algorithm called
gradient descent, which is an iterative method over the training data that changes the
parameters along the negative gradient ∇wL of the loss function,

wi ← wi − α∇wL (1.3)

where α is called the learning rate and

∇w =

⎛
⎜⎜⎜⎜⎝

∂
∂w1

.

.

.
∂

∂wn

⎞
⎟⎟⎟⎟⎠ . (1.4)

is the Nabla operator which signifies the gradient. This is a typical learning algorithm to
find the parameters of a model based on example data. We elaborate on this algorithm
later.

While the gradient descent can find parameters to minimize the loss of the training
data, our real goal is to find the values of w that best predicts data that have not been
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seen before. Just describing the training data acts somewhat more like a memory, but
being able to generalize is the main goal of machine learning. A good solution of the
machine (model) learning problem is represented by a point in the parameter space
that approximates best the true underlying world. However, since we usually don’t
know the true underlying world, we estimate how good this model is by evaluating
how good new predictions are.

In some applications of supervised learning we want to predict a continuous output
variable. For example, we might want to predict the price of a house from the size
information. This is called regression. In contrast, sometimes we want to predict
discrete values such as the categories of object in a picture. This is called classification.
The output variable y in classification is called a label. It is now common to refer
generally refer to the output of the supervised learner as label, even in the case of
regression where we have a continuous "label." We will see later that regression and
classification are closely related; for example, binary classification can be seen as a
regression problems with a discrete function f(x) such as a sign function which would
give us two labels, positive and negative.

An important part of our treatment of machine learning is to consider cases with
uncertainty. For example, we might not be able to predict an exact label or output
value, and we would be best-served if we consider the probability that a certain value
will occur. This is very important for several reasons. For example, it is quite common
that the process under investigation includes random (stochastic) factors or hidden
(latent) factors that create variations in results even for the same sensory states. Thus,
we pose that the true underlying world model we seek to describe is better described
by a probability density function

p(Y = y|x). (1.5)

This function gives the probability density, or probability mass in the case of categorical
data, of the labelY having a value y given that we have an input vectorx. The arguments
of density functions are provided after the vertical bar, and we write random variables
as upper-case letters and we specify specific values with lower-case letters.

Formulating machine learning in a probabilistic (stochastic) context has been most
useful and provides us with the formalization that created many insights. In the prob-
abilistic framework we are then modeling a density function

p̂(Y = y|x;w). (1.6)

Density function approximation is in some sense a special case of function approxi-
mation as the density function is still a function, albeit with some constraints such as
a normalization

∫
p(y)dy = 1. However, modeling density functions is also the more

general case for modeling functions in the sense that they proivide the probabilistic
information of how likely label values are given a certain input.

A probabilistic framework can be used for a more general formulation of learning.
Given a parameterized model as written in equation 1.6, we want to know for all
possible parameters how likely they are to describe the data well. This is not necessarily
a single solution, and ideally we would like to know the probability density function
of the parameters given by the data,

p(w|y,x). (1.7)
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This general approach of using probabilistic models and data to estimate model pa-
rameters, and in turn make predictions, is the essence of Bayesian modeling. We will
introduce this more general learning paradigm. However, many of the current machine
learning algorithms use a learning principle where learning only uses the most likely
parameters given the data,

w∗ = argmaxwp(w|y,x). (1.8)

Such a maximum a posteriori choice, or some point estimates derived from related
principles such as the maximum likelihood estimate, are currently the dominant forms
of machine learning. While limited in a Bayesian sense, these approximations have
been very useful to build practical applications of machine learning. Of course, at this
point we still need to find the specific form of the probability function p(w|y,x), which
in itself is a subject of a hypothesis in the Bayesian framework. The point here is to
suggest how useful a probabilistic formalism is in machine learning. We will discuss
these thoughts more later in this book.

Formulating specific probabilistic models for problems with many stochastic fac-
tors is demanding. An important and useful way to formulate multivariate probabilistic
models is the area of causal models. Such models provide specific probabilistic mod-
els of the components that provide the necessary foundations of the inference engine.
Inference here means that the system can be used to "argue" about a solution in a
probabilistic sense or to derive predictions. Such systems are the domain of Bayesian
networks, and we will include an introduction to this important domain in this book as
it provides an important aspect of machine learning. To some extent we will argue that
probabilistic models and deep neural networks represent somewhat a diverse spectrum
of machine learning models, but we will also argue that they can be viewed in a unified
way. Fig. 1.3 shows a famous example form Judea Pearl, one of the inventors of this
important modeling framework.

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

Fig. 1.3 An example of a graphical representation of a causal model.

In Bayesian networks we model entities that build the causal structure of the
problem. It hence has a much stronger theoretical predictive strength and explanatory
ability than many other machine learning models. However, in practice we rarely
know about the generative elements, and machine learning models that are more
general such as neural networks represent an often more practical method. Nature
might have combined such strategies in the brain, where sensory input is transformed
into a semantic space in which some approximation of Bayesian reasoning can be
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implemented. Learning about those different aspects of modeling and machine learning
is hence a useful approach in this dynamic area.

1.3 Non-linear regression in high-dimensions

The simplest example of supervised machine learning is linear regression. In linear
regression we assume a linear model such as the function,

y = w0 + w1x. (1.9)

This is a low-dimensional example with only a single feature, value x, and a scalar
label, value y. Most of us learned in high school to use mean square regression. In this
method we choose as values for the offset parameter w0 and the slope parameter w1

the values that minimize the summed squared difference between the regressed and
the data points. This is illustrated in Fig. 1.4A. We will later explain this procedure in
more detail. This is an example where data are used to determine the parameters of
a parameterized model, and this model with the fitted parameters can then be used to
predict y values for new x values. This is in essence supervised learning.

Fig. 1.4 Data points and possible models to fit these data. (A) Linear regression, (B) a non-linear

function, and (C) another non-linear function that might overfit the data.

What makes modern machine learning go beyond this type of modeling is that
we are now usually describing data in high dimensions (many features) and to use
non-linear functions. This seems straight forward, but there are several problems in
practice going down this route. For example, Fig. 1.4B shows a non-linear function that
seems somewhat to describe the pattern of the data much better than the linear model
in Fig. 1.4A. However, the non-linear model shown in Fig. 1.4C is also a solution. It
even goes through all the training points. This is a particularly difficult problem. If we
are allowed to increase the model complexity arbitrarily, then we can always find a
model which goes through all the data points. However, the data points might have a
simple relation, such as the linear one of Fig. 1.4A, and the variation only represents
noise. Fitting the data point with this noise as in Fig. 1.4C does therefore mean that
we are overfitting the data.

So a major problem when fitting data with fairly general non-linear functions is the
complexity of the function in terms of the number of parameters, such as the order of
the polynomial or the number of nodes in neural networks, as discussed further later in
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this chapter. We will later discuss methods to prevent overfitting in more detail, but at
this point it is already useful to consider some systematics. For example, in the linear
model we have some systematic bias of the data in that all but the first data point lay
above the model curve, and this trend we would also expect to show in new data points
if the correct model is the one shown in Fig. 1.4B. In contrast new data points when
evaluating with the model on the right would have large variations as the line clearly
overshoots in order to hit the training points. This increase of variance in the test data
is one indication of overfitting. It is hence instructive to study the difference between
the error of the training set and the test set as shown in Fig.1.5.

Fig. 1.5 Illustration of bias-variance trade-off. Overfitting shows when the error of the test set is

increasing, relative to the training error.

The need to find the right balance between these two effects is called the bias-

variance trade-off. When the models are too low-dimensional we expect that both
errors are high but that both curves stay close to each other. In contrast, when we have
plenty of parameters it is possible to make the training error small, while this leads
to overfitting and hence an increase in the test error. This bias-variance trade-off is
quite important in practical applications of machine learning to guide the developer to
the appropriate model choice. There are important techniques under the umbrella term
regularization with the aim of helping to make the data more regular with respect to
the model and hence preventing overfitting.

Building nonlinear models is a challenge in itself as the choices are infinite. We
could consider a polynomial of order n, that can be written as

y = w0 + w1x+ w2x
2 + ...+ wnx

n. (1.10)

The above function is a function in one dimension. If we have more feature values we
could end up with functions that depend on a combination of the feature values such
as

y = w0 + w1x1 + w2x2 + w3x1x2 + w4x
2
1x2, ... (1.11)

Also, using a polynomial as a non-linear function is only one possible choice of many.
We could add trigonometric functions, or some functions which we just make up. We
will later consider mainly functions that have been termed artificial neural networks.
These functions can be represented graphically, as shown in Fig.1.6. Each node in
such a graph is also called a neuron as it resembles somewhat the conjectured basic
functionality of a biological neuron in the brain. Such an artificial neuron weights
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Fig. 1.6 Basic elements of an artificial neural network (ANN). Each node represents an operation

of summing weighted inputs and applying an non-linear transfer functions to this net input. The

output of each node can become the input of another node or represent the output of the networks.

each individual input with an adjustable parameter, sums this weighted input, and then
applies a non-linear function such as a tanh function on this summed input. The output
of each node is hence,

yj = tanh(
∑
i

wjixi). (1.12)

This output can be the input to another node, and we can in such a way build elaborate
functions with graphs of such nodes as shown in Fig.1.6B. We will later elaborate on
specific network architectures that represent specific classes of non-linear functions
that will be useful for specific applications. We will specifically explore how networks
with many layers of neurons have advanced the capabilities of learning machines
considerably, which is now known as deep learning.

An example of a network type called a convolutional neural network is illustrated
in Fig.1.6C. It is now common that such networks have tens and even hundreds of
layers. Deep neural networks are hence a form of high-dimensional non-linear fitting
function, and preventing overfitting is therefore a very important component in deep
learning. Deep networks have many free parameters, and large data sets (big data) have
therefore been important for the recent progress in this area, in combination with other
techniques to prevent overfitting such as a technique called dropout that we will discuss
later. In general, one can think about techniques to prevent overfitting by restricting
the possible range of the parameters. While relying on big data is one simple solution,
making complex systems work with a limited amount of training data is the much
more interesting challenge.

In the next section we will see that basic implementation of machine learning meth-
ods is not difficult when using application programs that implement these techniques.
This is good news. However, a deeper understanding of the methods is necessary to
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make these applications and their conclusion appropriate. The machine learning algo-
rithms will come up with some predictions, and evaluating whether these predictions
are sensible is an important part of machine learning. Machine learning education
needs therefore to go beyond learning how to run an application program. This book
aims to find a balance between practical applications and their theoretical foundation.

1.4 Recent advances
Many advances have been made in recent years based on machine learning, in particular
with deep learning methods for image processing, natural language processing, and
more general data analytics. Many companies are now enthusiastic about data analytics,
using data in a wider sense to gain insights into customer profiles or other data mining
tasks. Machine learning is an important part of a data analytics engine. Data analytics
often require additional care such as data security to ensure privacy, the ability to
acquire and maintain large data collections, and also to make results available in a
form useful for humans. We will not delve into many of these aspects but concentrate
instead on the data modeling aspects.

One of the most visible impacts of deep learning has been made in computer vision
through convolutional neural networks. The basic applications in this area are mostly
based on recognition networks and methods for semantic segmentation. However,
such methods have now also advanced object localization, object tracking, and scene
understanding, to name but a few. Some examples from my own projects are shown
in Fig. 1.7. The left-hand image shows semantic segmentation to identify and localize
crop and weed for a robotic farming application. The right-hand image shows an
application of fish tracking for aquaculture applications.

A) Crop and weed detection B) Fish detection and tracking

Fig. 1.7 Some examples in computer vision using deep networks. A) Detection of crop (green)

and weed (red) to enable automated weeding for farm robotics. The crop is onion in an early

growing stage (Courtesy of Nexus Robotics Inc.). B) Recognition, localization, and tracking of fish

for fish health monitoring in aquaculture (Courtesy of ReelData Inc.).

Another area that has seen a huge improvement is the area of natural language
processing (NLP). It has long been an important tasks to build programs that understand
natural languages for applications such as translation, sentiment analysis, or to enable
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some form of formal analysis of technical reports. Various methods for sequence
modeling have contributed greatly to this area, in particular recurrent neural networks,
discussed later in this book.

A developing area in machine learning are generative models. Generative models
are models that can make examples of instances of a class. For example, a generative
models can learn about cars from examples and then generate images of new cars by
itself. Such networks could then be used in some creative way. Examples of systems
that can learn generative models are variational autoencoders (VAEs) and generative
adversarial networks (GANs). These methods demonstrate an important advance: the
ability to capture the probabilistic structure of objects which in turn can be exploited
in various ways.

Machine learning methods have shown that it can produce solutions to problems
that have previously been intractable. For example, computer programs to play the
Chinese board game "Go" have been mostly available only at an advance novice
level until a few years ago. However, in 2016, a machine learning program called
"Alpha-Go" that combined cleverly supervised and reinforcement learning was able
to beat a player, Mr. Lee Sedol, who is considered one of the best players of the last
decade and had previously won sixteen world titles. Go was considered to be a real
challenge for AI systems as it was considered to rely a lot on "gut feelings" rather than
quantifiable strategies. It was therefore a huge success when computers, which had
only reached levels of an advanced beginner a few years prior, could win against such
an accomplished player.

Finally, AI has always been strongly associated with the understanding of the hu-
man mind. While the subject of this book is far from explaining human intelligence,
the advances in machine learning have shed light on some aspects of human cognitive
and brain processes. For example, generative models with sparseness constraints are
able to reproduce the form of representations that brain scientists have measured in the
early visual cortex, and there is a lot of evidence, by comparing brain imaging data to
deep learning vision systems, that there are some aspects covered by such networks.
Bayesian reasoning and reinforcement learning are areas that are now inspiring new
approaches in psychiatry. The brain has many aspects that are not captured by cur-
rent machine learning models, but these models capture some aspects of application
domains that have long been difficult to program with traditional computers.

1.5 No free lunch, but worth the bite

Neural networks and other models, such as support vector machines and decision trees,
are fairly general models in contrast to Bayesian models that are usually much better
at specifying a causal structure of interpretable entities. More specific models should
outperform more general model as long as they faithfully represent the underlying
structure of the world model. This fact is captured by David Wolpert’s "No free lunch"
theorem, which states that there is not a single algorithms that covers all applications
better than some other algorithms. The best model is, of course, the real world model,
as discussed earlier, which we generally do not know. Applying machine learning
algorithms is therefore somewhat of an art and requires experience and knowledge
of the constraints of the algorithms. Discussions of what is an appropriate model are
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sometimes cumbersome and can distract us from making good use of them. We take
a more practical approach, letting a user define what an appropriate contribution is
for a machine learning model. For example, the best accuracy of a prediction might
not always be the goal, and other considerations such as the speed of processing,
the number of required training data, or the ability to interpret data can be important
factors. We will therefore include brief discussions of some classic machine learning
algorithms even if they do not represent the latest research in this area.

An interesting remark that often cops up in discussions of some machine learning
algorithms and, in particular, neural networks is that these methods are commonly
described, and somewhat criticized, as being black box methods. By "back box"
we usually mean that the internal structure is not known. However, the machine
learning models usually live in a computer where we can inspect all the components;
these methods are hence known as white box methods. A better way to describe the
difficulties with the ability human have in interpreting machine learning models is
due to the fact that trained deep learning models are commonly complex models that
implement complex decision rules. While some application might have as a goal the
learning of human interpretable decision rules, other might rather be interested in
achieving better prediction performance, which often requires more fine-grained rules.

We will see in Chapter 3 that writing a program to apply machine learning algo-
rithms to data is often not very difficult. New algorithms will often find their way to
graphical data mining tools, which makes them available to an even larger application
community. However, applying such algorithms correctly in different application do-
mains can be challenging and it is well known that some experience is required. We
therefore concentrate in the following on explaining what is behind these algorithms
and how different theoretical concepts are explored by them. Some understanding of
the algorithms is absolutely necessary to avoid pitfalls in their application.

The basic first step for the application of ML methods is how to represent the
data. We mentioned already some different data structures of inputs such as vectors
or tensors. However, there are usually many different possible ways to represent a
problem numerically. In the past it has been crucial to work out an appropriate high-
level data representation such as summary statistics to keep the dimensionality of the
model low. However, the recent progress in deep learning made it possible to treat this
representation itself as part of the learning problem. Representational learning has thus
become an important part of machine learning.

Once the problem has been defined by representing the data and possible goals in
an appropriate way, and once the appropriate ML algorithm has been chosen, it is then
the main challenge to choose good parameters of the algorithms, such as the number of
neurons or layers of neurons in neural networks, which kernel to use in support vector
machines, how many training steps to take in gradient descent learning, or how many
data to use for learning versus validation. We call these parameters of the algorithms the
hyperparameters. Choosing the right hyperparameters is commonly a major question,
and to make it clear from the start, there is no simple answer. Thinking about how to
approach this question with appropriate experiments and to understand the options and
possible approaches is thus a major part of machine learning applications. The point
I want to raise here is that learning about the algorithms rather than simply applying
them is a direction worth taking.



2 Scientific programming with Python

This chapter is a brief introduction to scientific programming with Python with an em-
phasis on some mathematical operations that will form the basis of many algorithms.
This will specifically include working with matrices and convolutions. Python is a
high-level programming language similar to Matlab and R that has gained increasing
popularity in the machine learning community. The main reason we use Python in this
book is that it is freely available and now provides considerable support for machine
learning, with packages such as sklearn and keras that we will discuss and utilize in
this book. We assume some familiarity with programming concepts and concentrate
on a quick introduction to the specific environment and supporting libraries used in
this book as well as some basic operations such as convolutions that will be impor-
tant in later algorithms. The programs in this book are based on Python 3, and we
assume that all relevant packages are installed. At this point we need the NumPy and
the Matplotlib libraries as well as the Jupyter programming environments. Com-
prehensive documentation and tutorials for Python and related tools are available at
<https://www.python.org>.

2.1 Programming environment

We will be using a programming environment called Jupyter. Specifically, we will
be using the Jupyter notebook that allows us to write code with a simple editor and
display comments and outputs in the same file. Jupyter is accessed through the browser
and contains form fields in which code and comments can be added. These fields can
then be executed and the feedback from print commands or figure plots are displayed
after each block within the same document. This makes it very useful in documenting
brief code and small exercises. An example program is shown in Fig. 2.1. All example
programs in this book are available as Jupyter files on the web.

The Jupyter notebook has an interface to launch the Python interpreter and to run
individual sections or all the code. The header with comments is produced by executing
a text cell. This is useful to produce some documentations. Also, the notebook can be
distributed with the output that can facilitate communications about code. The numbers
on the left shows a consecutive number of calls to the interpreter. In the shown example,
the first program cell was run first to load the libraries, and then the second cell was run
twice; this is why a [3] is displayed in front of this cell. When the program is running,
an [∗] is displayed. The second cell produces the output 4, which is displayed after the
cell.

A more advanced environment for bigger programs with more traditional program-
ming support is Spyder. This tool includes an editor, a command window, and further
programming support such as displays of variables and debugging support. This pro-

Fundamentals of Machine Learning, Thomas P. Trappenberg, Oxford University Press (2020).
c© Oxford University Press. DOI: 10.1093/oso/9780198828044.001.0001
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Fig. 2.1 An example of a Python program within the Jupyter notebook. The example code is

discussed further later in the chapter.

gram mimics more traditional programming environment such as the ones found in
Matlab and R. An example view of Spyder is shown in Fig. 2.2. On the left is the
editor window that contains a syntax-sensitive display to write the programs, and on
the right is the console to launch line commands such as executing and interpreting the
code. As Python is an interpreted language, it is possible to work with the programs
in an interactive way, such as running a simulation and than plotting results in various
ways. The Spyder development environment is recommended for bigger projects.

Fig. 2.2 The Spyder programming environment for Python.
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2.2 Basic language elements

2.2.1 Basic data types and arrays

As a general purpose programming language, Python contains basic programing con-
cepts such as basic data types, loops, conditional statements, and subroutines. We
will briefly review the associated syntax with examples that are provided in file
FirstProgram.ipynb. In addition to such basic programming constructs, all major
programming languages such as Python are supported by a large number of libraries
that enable a wide array of programming styles and specialized functions. We are here
mainly interested in basic scientific computing, in contrast to system programming,
and for this we need multidimensional arrays. We therefore base almost all programs
in this book on the NumPy library. NumPy provides basic support of common sci-
entific constructs and functions such as trigonometric functions and random number
generators. Most importantly, it provides support for N-dimensional arrays. NumPy
has become the standard in scientific computing with Python. We will use this well-
established constructs to implement vectors, matrices and higher dimensional arrays.
While there is a separate matrix class, this construct is limited to a two dimensional
structure and has not gained widespread acceptance.

An established way to import the NumPy library in our programs is to map them
to the name space "np" with the command import numpy as np. In this way, the
specific methods or functions of NumPy are accessed with the prefix np.. In addition
to importing NumPy, we always import a plotting library as plotting results will be
very useful and a common way to communicate results. We specifically use the popular
PyPlot package of the Matploitlib library. Hence, we nearly always start our program
with the two lines

Listing 2.1 FirstProgram.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

In the following, we walk through a program in the Jupyter environment called
FirstProgram. These lines of code are intended to show the syntax of the basic
programming constructs that we need in this book. We start by demonstrating the
basic data types that we will be using frequently. We are mainly concerned with
numerical data, of which a scalar is the simplest example,

Listing 2.2 FirstProgram.ipynb (part 2) with output

# b a s i c da ta t y p e s
a S c a l a r =4
p r i n t ( a S c a l a r )

4

We here show the code as well as the response of running the program with the
print() function. Comment lines can be included with the hash-tag symbol #. The
type of the variables are dynamically assigned in Python. That is, a variable name and
corresponding memory space is allocated the first time a variable with this name is
used on the left hand side of an assignment operator "=". In this case it is an interger
value, but we could also assign a real-valued variable with textttaScalar=4.0.
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Most of the time we will be working on a large collection of data so that we need
a concept to access the data collection. In Python, there are several forms of lists. For
example, a basic 1-dimensional list is given in the basic Python stack by enclosing a
semi-colon-separated list in square brackets such as

Listing 2.3 FirstProgram.ipynb (part 3) with output

a L i s t = [ 1 , 2 , 3 ]
p r i n t ( a L i s t )

[ 1 , 2 , 3 ]

Such lists are useful for collecting data. However, since we need to perform well-
defined mathematical operations on lists of data, it is useful to introduce a more
versatile construct of such data collections in forms of a NumPy array.

Before proceeding, it might be good to review some of the naming conventions. A
basic data structure for a collection of data is called an "array" in computer science. In
contrast to these simple data structure concepts, the mathematical concepts of a vector
or matrix are different in that they include well defined mathematical operations on
these data structures. Thus, the mathematical concept of a vector is a 1-dimensional
array on which some operations are defined, such as adding two vectors with the
same dimension by adding their components, or multiplying a vector with a scalar
by multiplying each component of the vector with a scalar. Similar, a matrix is a 2-
dimensional construct with correspondingly defined operation. We can even generalize
this to higher dimensions, and such mathematical constructs are called tensors. It is
convenient to view a vector or matrix operation just as a special case of the general
tensor operations.

To create a NumPy array we use the NumPy function array(). For example, a
1-dimensional Python list can be turned into a NumPy vector like,

Listing 2.4 FirstProgram.ipynb (part 4) with output

a V e c t o r =np . a r r a y ( [ 1 , 2 , 3 ] )
p r i n t ( a V e c t o r )
p r i n t ( a V e c t o r [ 0 ] , a V e c t o r [ −1])
p r i n t ( a V e c t o r [ 1 : 3 ] )

[1 2 3]
1 3
[2 3 ]

As shown in the second print statement, we can access an element of the array with
indices in square brackets. The first element in an array has the index 0. Hence, the
print command returns the value 1. It is useful to think about this index as the offset
from the first element. The index −1 accesses the last element in the vector. The third
print command shows how to access a range of indices. Unfortunately, there is no
distinction between a row vector and a column vector in NumPy, so this needs some
more careful considerations when a distinction is necessary. We return to this point in
a moment.

Similar to defining a vector with NumPy, a 2-dimensional array with the appropriate
definition of mathematical operations is called a matrix and can be defined and accessed
with NumPy like,
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Listing 2.5 FirstProgram.ipynb (part 5) with output

a M a t r i x =np . a r r a y ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] ] )
p r i n t ( a M a t r i x )
p r i n t ( a M a t r i x [ 1 , 2 ] )

[ [ 1 2 3]
[4 5 6 ] ]
6

The notation indicates that a 2-dimensional array is considered in the Python syntax
as a 1-dimensional list of a 1-dimensional list. Note how individual array elements
are accessed; the first index specifies the position in the column, and the second index
specifies the position in the row. This is equivalent to the common mathematical
notation for matrices. With this we can revise the notation for the vectors above by
defining a row vector as

Listing 2.6 FirstProgram.ipynb (part 6)

a V e c t o r =np . a r r a y ( [ [ 1 , 2 , 3 ] ] )

This can then be converted into a column vector with the help of the transpose operation

Listing 2.7 FirstProgram.ipynb (part 7) with output

p r i n t ( a V e c t o r . T )

[ [ 1 ]
[ 2 ]
[ 3 ] ]

After defining such NumPy arrays we can apply mathematical function on these
NumPy arrays. For example, some element-wise operations on matrices are

Listing 2.8 FirstProgram.ipynb (part 8) with output

m a t r i x 2 =np . a r r a y ( [ [ 5 , 5 , 6 ] , [ 7 , 8 , 9 ] ] )
r e s u l t 1 = a M a t r i x ∗ m a t r i x 2 # e lemen t−wise
r e s u l t 2 = a M a t r i x ∗∗ 3 # e lemen t−wise e x p o n e n t i a t i o n :
r e s u l t 3 = a M a t r i x > 3 # f i n d t h e i n d i c e s where ( m a t r i x > 3)
p r i n t ( r e s u l t 1 , r e s u l t 2 , r e s u l t 3 )

[ [ 5 10 18]
[28 40 5 4 ] ]

[ [ 1 8 27]
[ 64 125 2 1 6 ] ]

[ [ F a l s e F a l s e F a l s e ]
[ True True True ] ]

A basic matrix multiplication, also called a dot product or inner product, is implemented
as function np.dot(a,b) and in Python 3 also as operator @,

Listing 2.9 FirstProgram.ipynb (part 9) with output

r e s u l t = a M a t r i x @ m a t r i x 2 . T
p r i n t ( r e s u l t )

[ [ 33 50]
[ 81 1 2 2 ] ]
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We have thereby included the transpose operation through the operator specification
".T". Such operator specification are common in object-oriented programming con-
structs.

We are often in need of accessing subsets of data in arrays and also merging arrays.
To access a subset of an array we can first generate an index vector called idx below,
which specifies the indices we want to process such as the first and second element in
the second row of the matrix, called aMatrix, defined earlier

Listing 2.10 FirstProgram.ipynb (part 10) with output

i d x = [ [ 1 ] , [ 0 , 2 ] ]
p r i n t ( a M a t r i x [ i d x ] )

[4 6 ]

Another useful example is to make a vector with a list,

Listing 2.11 FirstProgram.ipynb (part 11)

x=np . a r a n g e ( 1 0 )

which is the same as array(range(10)), and to extract every second element of a
vector,

Listing 2.12 FirstProgram.ipynb (part 12) with output

p r i n t ( x [ : : 2 ] )

[0 2 4 6 8]

The array indexing is the same as x[0:-1:2] because the default boundaries for the
first and second limits is the first and last element. Merging two arrays is done with
the NumPy concatenate() method,

Listing 2.13 FirstProgram.ipynb (part 13) with output

r e s u l t =np . c o n c a t e n a t e ( ( aMat r ix , m a t r i x 2 ) , a x i s =0)
p r i n t ( r e s u l t )

[ [ 1 2 3]
[4 5 6]
[5 5 6]
[7 8 9 ] ]

A useful command to check the size and orientation of a matrix is

Listing 2.14 FirstProgram.ipynb (part 14) with output

r e s u l t . shape

( 4 , 3 )

As already mentioned, the first index specifies the row going downwards and the
second index specifies the column going to the right. We sometimes want to reorder
the elements of an array which can be done with a reshape function,
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Listing 2.15 FirstProgram.ipynb (part 15) with output

p r i n t ( r e s u l t . r e s h a p e ( 2 , 6 ) )

[ [ 1 2 3 4 5 6]
[5 5 6 7 8 9 ] ]

So far, we have discussed the basic numerical data types that we need. Besides
these numerical data types, there are of course, others such as characters. Text data a
simply enclosed in parenthesis like.

Listing 2.16 FirstProgram.ipynb (part 16) with output

t e x t = ’ H e l l o World ! ’
p r i n t ( t e x t )

H e l l o World !

2.2.2 Control flow

In the following, we show three fundamental programming constructs, that of loops,
conditional statements, and functions. To loop through some code, one can use the
following construct,

Listing 2.17 FirstProgram.ipynb (part 17) with output

f o r i in range ( 4 ) :
p r i n t ( i )

0
1
2
3

which starts at i=0 and goes in steps of one until i=3. Note that Python is sensitive to
the code position; the indented code represents the block of statements executed inside
the loop. A conditional statement takes the form

Listing 2.18 FirstProgram.ipynb (part 18)

i f s c a l a r <1:
p r i n t ( " t r u e " )

e l s e :
p r i n t ( " f a l s e " )

f a l s e

Again note the indentation to specify the block of code for each condition.

2.2.3 Functions

This book tries to use minimal examples that do not require advanced code structur-
ing techniques such as object oriented-programming, although those techniques are
available in Python. The basic code reuse technique is of course the definition of a
function. In Python this can be done with the following template. To structure code
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better, specifically to define some code that can be reused, we have the option to define
functions like

Listing 2.19 FirstProgram.ipynb (part 19)

def func ( arg1 , a rg2 =10) :
a r g = a rg1 + a rg2
re turn a r g ;

a=1
p r i n t ( func ( 2 ) , f unc ( a , 2 ) )

12 3

Simple variables are passed by value in Python, but more complex objects might be
referred by reference. It is therefore wise to be careful when changing the content of
calling variables in the functions. The function can be called with an argument, and
we showed in the example how to provide a default argument.

It is also useful to define an inline version of a function, such as defining logistic
sigmoid function

Listing 2.20 FirstProgram.ipynb (part 20)

l s i g = lambda x : 1 / (1 + exp(−x ) )

We will use this inline function below to plot it.

2.2.4 Plotting

Plotting graphs for data is a useful scientific tool, and we will be using the the popular
scientific plotting library Matplotlib <http://matplotlib.org/>, specifically the
pyplot package that provides a slightly simpler interface within the matplotlib package.
We imported this library already at the beginning of the code. Using this library, an
example of a basic line plot is given in the following code.

Listing 2.21 FirstProgram.ipynb (part 21)

# p l o t t i n g
x= a r a n g e ( 1 0 0 ) #same as a r r a y ( range ( 1 0 0 ) )
y=np . s i n ( 0 . 1∗ x )
p l t . p l o t ( x , y )

When you summit plots in an assignment or paper, you always need axis labels to
know what is plotted. This can be done with

Listing 2.22 FirstProgram.ipynb (part 22)

p l t . x l a b e l ( " x " )
p l t . y l a b e l ( " y " )

If we want to plot the above inline function, we need to generate an array of
arguments x. Below we provide three possible versions for this.
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Fig. 2.3 Examples of a plot for the sigmoid function f(x) = 1

1+e−x with the Matplotlib library.

Listing 2.23 FirstProgram.ipynb (part 23)

x=np . a r r a y ( [ ] )
f o r i in range ( 2 1 ) :

x=np . append ( x , ( i −10) )

x = np . a r r a y ( [ i −10 f o r i in range ( 2 1 ) ] )
x = np . l i n s p a c e ( −10 ,10 ,21)

Plotting this function is simply achieved with the following commands

Listing 2.24 FirstProgram.ipynb (part 24)

p l t . p l o t ( x , l s i g ( x ) )
p l t . r cPa rams . u p d a t e ({ ’ f o n t . s i z e ’ : 20} )
p l t . x l a b e l ( ’ x ’ ) ; p l t . y l a b e l ( ’ y ’ )
p l t . s a v e f i g ( ’ tmp . pdf ’ , format= ’ pdf ’ )

The plot(x,y) is enough to plot the basic graph in the Jupyter environment, though
iPython might need a plt.show() to trigger the display. The resulting plot is shown
in Fig. 2.3. The example code shows how to change the font size of the axis labels, is
often useful when including graphs in documents. The final command shows how to
save the figure into a pdf file.

2.2.5 Timing the program

Some of the programs might need some time to run, and it might be necessary to
estimate the time of running with some smaller examples and measuring the time. This
can be done in the following way.

Listing 2.25 FirstProgram.ipynb (part 25) with output

import t ime
t i c = t ime . c l o c k ( )
t o c = t ime . c l o c k ( )
p r i n t ( t o c − t i c )

2 .2214871933101676 e−05
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2.3 Code efficiency and vectorization

Machine learning is about working with large collections of data. Such data are kept
in data bases, spreadsheets, or simply in text files, but to work with them we load them
into arrays. Since we define operations on such arrays, it is better to treat these arrays
as vectors, matrices, or generally as tensors. Traditional programming languages such
as C and Fortran require us to write code that loops over all the indices in order to
specify operations that are defined on all the data. For example, as provided in the
program MatrixMultiplication.ipynb, let us define two random n× n matrices
with the NumPy random number generator for uniformly distributed numbers,

Listing 2.26 MatrixMultiplication.ipynb (fragment)

a=np . random . rand ( n , n )
b=np . random . rand ( n , n )

and a matrix of zeros with the same size,

Listing 2.27 MatrixMultiplication.ipynb (fragment)

c=np . z e r o s ( ( n , n ) )

We can than write the code of adding two numbers with an explicit loop over all indices
as

Listing 2.28 MatrixMultiplication.ipynb (fragment)

f o r i in range ( n ) :
f o r j in range ( n ) :

c [ i ] [ j ]= a [ i ] [ j ]+ b [ i ] [ j ]

In high-level programming languages like Python, Matlab, and R, it is common to
write such operations in a compact form like

Listing 2.29 MatrixMultiplication.ipynb (fragment)

c=a+b

It is now common to call this style of programming a vectorized code. Such a vectorized
code is not only much easier to read, but it is also essential to write efficient code.
The reason for this is that the system programmers can implement such routines very
efficiently, and this is difficult to match with the more general but inefficient explicit
index operation.

To demonstrate the efficiency issue, let us measure the time of operations for
a matrix multiplication. We start as usual by importing the standard NumPy and
Matplotlib libraries, and we also import a timer routine with

Listing 2.30 MatrixMultiplication.ipynb (fragment)

import t ime

We then define a method called matmulslow that implements a matrix multiplication
with an explicit iteration over the indices,
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Listing 2.31 MatrixMultiplication.ipynb (fragment)

def matmulslow ( a , b ) :
m = a . shape [ 1 ]
c=np . z e r o s ( (m,m) )
f o r i in range (m) :

f o r j in range (m) :
f o r k in range (m) :

c [ i , j ]= c [ i , j ]+ a [ i , k ]∗ b [ k , j ]
re turn c ;

and a fast version of this operation in the method matmulfast which call the NumPy
method dot,

Listing 2.32 MatrixMultiplication.ipynb (fragment)

def m a t m u l f a s t ( a , b ) :
re turn np . d o t ( a , b ) ;

Ti
m
e[
se
c]

Array size

Fig. 2.4 Execution time of a matrix multiplication for different sizes of the matrices. The red line

show the execution times for a element-wise implementation, whereas the blue line shows the

execution times of the vectorized version with the build-in function. Using build-in functions is much

more efficient than component-wise programming of this matrix multiplication.

We then evaluate the time these routines take with the following test code,

Listing 2.33 MatrixMultiplication.ipynb (fragment)

s i z e =np . a r r a y ( [ ] )
t ime1 =np . a r r a y ( [ ] )
t ime2 =np . a r r a y ( [ ] )
f o r n in range ( 1 0 , 1 3 0 , 1 0 ) :

s i z e =np . append ( s i z e , n )
a=np . random . rand ( n , n )
b=np . random . rand ( n , n )
c=np . z e r o s ( ( n , n ) )

t i m e s t a r t = t ime . c l o c k ( )
c = matmulslow ( a , b )
t ime1 = np . append ( t ime1 , t ime . c l o c k ( )− t i m e s t a r t )

t i m e s t a r t = t ime . c l o c k ( )
c = m a t m u l f a s t ( a , b )
t ime2 = np . append ( t ime2 , t ime . c l o c k ( )− t i m e s t a r t )
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The resulting time graph is shown in Fig. 2.4. This not only shows that the time
difference can be substantial for larger arrays, but that the scaling is very different.
Some concern that interpreted computer languages are slow comes from the inefficient
implementations of programmers not used to this style of programming. It is often
the most challenging part for experienced programmers of C-like languages to adopt
to this vectorized code, but such a programming style is essential to produce efficient
code.

2.4 Data handling

In this section we will be using some famous data sets to practice handling of data. We
start with the iris dataset that has been a benchmark for many traditional statistics and
machine learning methods. We than briefly explore the MNIST data of handwritten
digits and some basic image-handling routines.

2.4.1 Basic plots of iris data

Since machine learning requires data, we are commonly faced with importing data
from files. There are a variety of tools to handle specific file formats. The most basic
one is to reading data from text files. We can then manipulate the data and plot them in
a form which can help us to gain insights into the information we want to get from the
data. We will discuss some classical machine learning examples. These data are now
often included in the libraries so that it will save us some time. However, preparing
data to be used in machine learning is a large part of applying machine learning in
practice. The following examples are provided in the program HouseMNIST.ipynb.

We start here with the example of the well-known classification problem of iris
flowers. The iris dataset was collected from a field on the same day at the Gaspé
region of eastern Quebec in Canada. These data were first used by the famous British
statistician Ronald Fisher in a 1936 paper. The data consist of 150 samples, 50 samples
of each of 3 species of the iris flower called iris Setosa (0), iris Versicolour (1), and
iris Virginica (2). For our purpose, we usually simply give each class a label such as a
number, as shown in the bracket after the flower names in this example.

The dataset is given on the book’s web page with three text files, namediris.data,
feature names.txt, and target names.txt, to start practising data handling.
These are basic text files and their contents can be inspected by loading them into
an editor. We are now exploring these data with with the program iris.ipynb. The
data file contains both the feature values and the class label, and we can load these data
into a NumPy array with the NumPy functions loadtxt. Printing out the shape of the
array reveals that there are 150 lines of data, 1 for each sample, and 5 columns. The
first four values are the measured length and width of septals and pedals of the flowers.
The last number is the class label. The following code separates this data array into
feature matrix and a target vector for all the samples. We also show how text can be
handled with the NumPy function genfromtxt.
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Listing 2.34 ExampleIris1.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

i r i s d a t a = np . l o a d t x t ( ’ i r i s . d a t a ’ , d e l i m i t e r = ’ , ’ )
p r i n t ( i r i s d a t a . shape )

f e a t u r e s = i r i s d a t a [ : , 0 : 4 ]
t a r g e t = i r i s d a t a [ : , 4 ]

f e a t u r e n a m e s = np . g e n f r o m t x t ( ’ f e a t u r e n a m e s . t x t ’ , d e l i m i t e r = ’ , ’ ,
d t y p e = ’ s t r ’ )

f e a t u r e n a m e s = np . d e l e t e ( f e a t u r e n a m e s ,−1)
t a r g e t n a m e s = np . g e n f r o m t x t ( ’ t a r g e t n a m e s . t x t ’ , d e l i m i t e r = ’ , ’ , d t y p e

= ’ s t r ’ )

With the data in the form of NumPy arrays, it is then easy to apply functions on
these arrays to calculate properties of interest. For example, we can calculate the sum
of all the septal width and the pedal width, the second and fourth column respectively,
with the command

Listing 2.35 ExampleIris1.ipynb (part 2)

p r i n t ( f e a t u r e s [ : , [ 1 , 3 ] ] . sum ( a x i s =0) )

It is also useful to make plots, such as plotting the average of the feature values across
the samples in a bar graph where we also indicated the standard deviation with error
bars.

Listing 2.36 ExampleIris1.ipynb (part 3)

p l t . b a r ( np . a r a n g e ( 1 , 5 ) , f e a t u r e s . mean ( a x i s =0) )
p l t . e r r o r b a r ( np . a r a n g e ( 1 , 5 ) , f e a t u r e s . mean ( a x i s =0) , f e a t u r e s . s t d ( a x i s

=0) , l i n e s t y l e = ’ None ’ , marker = ’ o ’ , c= ’ r ’ )
p l t . show ( )

Fig. 2.5 Summary statistics (left) and scatter plot (right) of Fisher’s iris data.

While using such summary statistics is a common way of characterizing data, in
the age of advanced computer graphics it is often useful to try and plot the data. For
example, a scatter plot of the data points where we would characterize the flowers only
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by the pedal length and width can be generated according to the following code. Both
of these plots are shown in Fig. 2.7

Listing 2.37 ExampleIris1.ipynb (part 4)

p l t . s c a t t e r ( f e a t u r e s [ : 5 0 , 0 ] , f e a t u r e s [ : 5 0 , 1 ] , s =10 , c= ’ r ’ , l a b e l =
t a r g e t n a m e s [ 0 ] )

p l t . s c a t t e r ( f e a t u r e s [ 5 0 : 1 0 0 , 0 ] , f e a t u r e s [ 5 0 : 1 0 0 , 1 ] , s =10 , c= ’ g ’ , l a b e l
= t a r g e t n a m e s [ 1 ] )

p l t . s c a t t e r ( f e a t u r e s [ 1 0 0 : , 0 ] , f e a t u r e s [ 1 0 0 : , 1 ] , s =10 , c= ’ b ’ , l a b e l =
t a r g e t n a m e s [ 2 ] )

p l t . l e g e n d ( l o c = ’ uppe r r i g h t ’ )
p l t . x l a b e l ( f e a t u r e n a m e s [ 0 ] )
p l t . y l a b e l ( f e a t u r e n a m e s [ 1 ] )
p l t . show ( )

2.4.2 House data, NMIST, and Panda

Fig. 2.6 Examples of web sites with many data that can be used to develop machine learning

solutions.

There are now many collections of data that contain common benchmark data. A
classic collection maintained by the University of California at Irvine, called the UCI
machine learning repository, has been instrumental in the development of machine
learning methods. Today there are several more rich collections such as Kaggle or
OpenML (see Fig. 2.6). A Kaggle collection is provided at <https://www.kaggle.com>.
This site does not only provide data but is also well known for facilitating competitions
on data science. Often, data are provided in spreadsheets such as the .csv file format
or can be written into this format form a data base. And example is the file house.csv
which originates in Kaggle and is also provided on this book’s webpage that contains
over 200,000 entries of basic information regarding house sales in King County. A
very convenient way to read and explore these data is with the Panda library. Panda is a
data analysis library that contains tools for reading plotting and doing some basic data
analysis. Using the following lines, we can read the house data and provide a summary
statistics:
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Listing 2.38 HouseMNIST.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
import pandas as pd

df = pd . r e a d c s v ( ’ h o u s e s . c sv ’ )
d f . d e s c r i b e ( i n c l u d e = ’ a l l ’ )

The variable df is a data frame which is a construct in Panda that contains the values
and further information. We will be using mainly NumPy arrays that allow us simpler
vector and matrix operations. We can take some data from the Panda data frame and
read them into an array. The following program does this and also plots the first ten
data points for the house price against the living area in square feet.

Listing 2.39 HouseMNIST.ipynb (part 2)

Y = df [ ’ p r i c e ( g r a n d s ) ’ ] . v a l u e s
X = df [ ’ s q f t l i v i n g ’ ] . v a l u e s
p l t . p l o t (X[ : 1 0 ] ,Y[ : 1 0 ] , ’ x ’ )

Fig. 2.7 House price versus size of living area for houses sold in King County.

Another famous data set that we will use later is the MNIST dataset originally given
from the website <http://yann.lecun.com/exdb/mnist> in a compressed form. These
data are often included in machine learning packages, though here we should point out
another great collection of data which is provided by <https://www.openml.org>. The
MNIST data set contains hand-written numbers first collected by the National Institute
for Standrads (NIST) and modified (hence the M) be centered in 28× 28 images. The
specific data set is called mnist 784 as it has 784 attributes (28 × 28 pixels) and is
available at <https://www.openml.org/d/554>.

The Openml web site provides a variety of formats to download their data. Since
we can download these data also in the csv format, we can use a similar code as in the
house example. This version shows how to read several columns into a data matrix.
Since each image is written into a line, we have to reshape each input vector into a
matrix before plotting it. An example is shown in Fig. 2.8A.
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Listing 2.40 HouseMNIST.ipynb (part 3)

df = pd . r e a d c s v ( ’ m n i s t 7 8 4 . csv ’ )
x = df . i l o c [ : , 0 : 7 8 4 ] . v a l u e s
y = df . i l o c [ : , 7 8 4 ] . v a l u e s

img=x . r e s h a p e ( 7 0 0 0 0 , 2 8 , 2 8 )
p l t . imshow ( img [ 5 ] , cmap= ’ b i n a r y ’ )

Fig. 2.8 (A) Example of an MNIST image. (B) Photograph of the author’s motorbike.

2.5 Image processing and convolutional filters

This section dives into some image processing concepts and reviews convolution
operations that become important later in this book. It is therefore important to review
this section well. Also, the discussion gives us the opportunity to practice Python
programing a bit more.

We have already displayed gray-scale images that were given by 2-dimensional
matrices where each component stands for a gray level of one pixel. In order to represent
color images we just need now three channels that each stands for one primary colors,
red (R), green (G), and blue (B). Such RGB images are represented in a tensor of
M × N × 3, where M and N are the size of horizontal and vertical resolutions in
pixels. Reading and displaying an image file is incorporated in the Matplotlib library,
though there are also a variety of other packages that can be used. For example, given
a test image such as motorbike.jpg from the book’s web page as shown in Fig. 2.8B, a
program to read this image into an array and to plot it is

Listing 2.41 CV1.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

img= p l t . imread ( ’ m o t o r b i k e . j p g ’ ) ;
p l t . imshow ( img )
img . shape

The shape function reveals that this image has a resolution of 600 × 800 pixels with
three color channels.

A main application of machine learning is object recognition, and we will now
give an example of how we could accomplish this with a filter that highlights specific
features in an image. Let’s assume we are looking for a red spot of a certain size in
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a photograph. Lets say we are given a picture as an RGB image like that is shown in
Fig.2.9A. The corresponding program to read this image into an array and to plot it is

Listing 2.42 CV1.ipynb (part 2)

img= p l t . imread ( ’ r e d d o t s m a l l . png ’ ) ; img=img [ : , : , : 3 ]
p l t . imshow ( img )
img . shape

This is a very small image of size (8,8,3). We had to strip off the fourth channel of
the loaded png array as this picture format includes a channel in which a transparency
color can be specified. We can modify this image by changing pixels. For example, the
code

Listing 2.43 CV1.ipynb (part 3)

img [ 6 , 5 , 1 ] = 0 ; img [ 6 , 5 , 2 ] = 0
p l t . imshow ( img )

creates a new red pixel resulting in the image shown in Fig. 2.9B. We use this image
for the following discussion.

The red spot that we want to detect with the following program is the structure in
the upper left and not the red pixel with coordinate (6,5) that we just added by hand
above. We added this red pixel to discuss how we can distinguish between the main red
object we are looking for and other red objects in the picture. It is interesting to look
at the red, green, and blue channels separately, as shown in Fig. 2.9C. Each of these
plots can be produced with a code as in the following example for the red channel.

Listing 2.44 CV1.ipynb (part 4)

img r =np . z e r o s ( ( 8 , 8 , 3 ) )
img r [ : , : , 0 ] = img [ : , : , 0 ]
p l t . imshow ( im g r )

Interestingly, when looking at the color channels, one can see that there is a lot of red
in the figure, as well as green and blue. The reason that we perceive the red blobs in
the original figure is that there is less green and less blue in these areas.

We can use this fact to handcraft a filter that looks for red pixels. In particular,
since a red pixel is characterized by a large value in the red channel and small values
in the other channels, we can define a red index by

Listing 2.45 CV1.ipynb (part 5)

r e d i d x =2∗ img [ : , : , 0 ] − img [ : , : , 1 ] − img [ : , : , 2 ]

The value of the variable red idx is only large if the red channel has a large value and
if the green and blue channels have small values. This red index is shown in Fig. 2.9D.
By taking the maximum of this resulting map we find the index (6,5) which is the pixel
with the highest red index.

Listing 2.46 CV1.ipynb (part 6)

p l t . imshow ( r e d i d x , cmap= ’ g ray ’ )
max idx=np . argmax ( r e d i d x )
m a x p o s i t i o n =np . u n r a v e l i n d e x ( max idx , ( 8 , 8 ) )
p r i n t ( m a x p o s i t i o n )
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Fig. 2.9 (A) An original image of a red dot and (B) the modified image that is used for the

discussion. (C) Display of the content of the three color channels. (D) Illustration of a color index

for a single pixel from the three color channels and (D) result of a convolution.

In order to look for the larger 2 × 2 red patch in the image, we can define a 2 × 2
matrix which we call a filter. This filter swept over the image in the following way:
we place the 2× 2 matrix in the upper-left corner of the image and multiply the filter
element with the corresponding image elements and then sum all the products. For
the red patch recognition we define three filters, one for each color channel, which we
then add together.

Listing 2.47 CV1.ipynb (part 7)

# 2 x2 c o n v o l u t i o n
f1 =np . a r r a y ( [ [ 2 , 2 ] , [ 2 , 2 ] ] )
f2 =np . a r r a y ([[ −1 , −1] ,[ −1 , −1]])
f3 =np . a r r a y ([[ −1 , −1] ,[ −1 , −1]])
y=np . z e r o s ( ( 7 , 7 ) )
f o r i in range ( 7 ) :

f o r j in range ( 7 ) :
y [ j , i ]= np . sum ( f1∗ img [ j : j +2 , i : i +2 ,0]+ f2∗ img [ j : j +2 , i : i +2 ,1]+ f3∗

img [ j : j +2 , i : i + 2 , 1 ] )
p l t . imshow ( y , cmap= ’ g ray ’ )
max idx=np . argmax ( y )
m a x p o s i t i o n =np . u n r a v e l i n d e x ( max idx , ( 7 , 7 ) )
p r i n t ( m a x p o s i t i o n )

The maximum of the resulting map is now at the location of the larger red patch as
shown in Fig. 2.9E.

The operation that we have just implemented–that of element-wise multiplication
of two matrices, adding up the resulting values and repeating this for all positions of
the filter–is an operation called convolution. Thus the operation above represents a
2-dimensional convolution over each channel with possibly different filters, and then
an addition of all the channels. We will now discuss in more detail a single convolution,
but it is good to keep in mind that the real operations we need in deep neural networks
are convolutions over channels and adding channels.
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For a 1-dimensional discrete signal, a convolution is defined mathematically as

(f ∗ x)(t) =
T∑

t′=0

f(t′)x(t+ t′). (2.1)

We used here the notation of t for the running variable as this is often applied to time
series. Of course, this is only a notation and we could chose any symbol we like.
A convolution for a continuous signals that spans an infinite time in the form of its
mathematically formula is

(f ∗ x)(t) =
∫ ∞

−∞
f(t′)x(t− t′)dt′. (2.2)

In this notation, which has been historically more common in engineering, the filter
is reversed (flipped) compared to the discrete definition above. In machine learning
circles, the plus sign seems now to be the dominant way of formulating the convolution,
and because we will learn this value of the filter, this part of the definition does not
influence the results. A function like the filter appearing in an integral as above is
mathematically called a kernel function.

It is straight forward to generalize a convolution to n-dimensional data. Mathemat-
ically, a complete n-dimensional convolution can be written as

(f ∗ g)(x1, ..., xn) =

∫ ∞

−∞
...

∫ ∞

−∞
f(x′

1, ..., x
′
n)g(x1 − x′

1, ..., xn − x′
n)dx

′
1...dx

′
n,

(2.3)
where we used the letter g for the signal. g is here an n-dimensional array. Such an
n-dimensional structure with the corresponding rules of operations is mathematically
called a tensor. For example, a 3-dimensional tensor would be a cube, and convoluting
them with another 3-dimensional tensor (cube) would result in another 3-dimensional
tensor (cube). The discrete 2-dimensional case can be written as

(f ∗ g)(u, v) =
U∑

u′=0

V∑
v′=0

f(u′, v′)g(u+ u′, v + v′). (2.4)

We used here the nomenclature u and v for the coordinates of the signal. These letters
are often used for the pixel space in digital cameras.

It is now common that software packages have already function implementations
for convolution operations. However, it might be useful to note that most implementa-
tions are based on the convolution theorem which states the convolution of two tensors
becomes a point-wise multiplication in Fourier space. Hence, one first applies an FFT
(Fast Fourier Transform) to the tensors, multiplies the results pointwise, and then uses
an inverse FFT to get the corresponding convolution.

The 2-dimensional convolution brings us back to our red spot example. In this
case, we did a 2-dimensional convolution in each color channel and then added (or
subtracted) the color channels with corresponding coefficients:

(f ∗ g)(u, v) =
U∑

u′=0

V∑
v′=0

∑
c

f(u′, v′, c)g(u+ u′, v + v′, c). (2.5)
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Hence, this operation to find the red spot is really a convolution over space and addition
over channel (convadd). This operation is illustrated in Fig. 2.10. This operation has
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Fig. 2.10 Illustration of 2 dimensional convolutions with adding of channels. In this example

different 2 × 2 filters are placed over the color channel and the corresponding elements are

multiplied and then added up. The filter is then moved by an amount of pixels specified by the

stride parameter until all the image was covered.

become the workhorse in computer vision with convolutional neural networks that we
explore later in this book.

It is useful to mention that applications of convolutions are sometimes modified
slightly to accommodate the preservation of the signal size. We have seen that the output
of a convolution has a reduced size that depends on the size of the filter. Sometimes
we want the output image to be the same size. We can achieve this by simply adding
appropriate columns and rows to the input image. This is called padding, and padding
with zeros is a common choice. Of course, this method can introduce some artifacts
that might not be desirable.

Finally, it is interesting to note that edge detectors are an important part of computer
vision systems. For example, we can apply to an image a 2 × 2 filter with 1s on the
left column and −1s on the right column,(−1 1

−1 1

)

For example, if we have an image with two color like⎛
⎜⎜⎝

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1

⎞
⎟⎟⎠

then the filtered image would be ⎛
⎝0 0 2 0 0

0 0 2 0 0
0 0 2 0 0

⎞
⎠
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which highlights an horizontal edge. An example of applying this filter to the image
on the left-hand image of Fig. 2.11 results in the right-hand image in the same figure.

Fig. 2.11 An example of simple edge detector on the first component of a JPG image.

Of course, our filter is very small and only shows edges with significant changes
between two consecutive edges. There are therefore better designs of edge detectors,
such as the Canny edge detector. These techniques combine such gradient filters with
Gaussian smoothing and removal of some spurious cases. Also, a continuous version
of edge filters is, for example, described by Gabor functions such as the ones shown in
Fig. 2.12a and b. A Gabor function is described by a sinusoidally-modulated Gaussian,

f(u, v) = e−
u2+γv2

2∗σ2 cos(
2π

λ
u+ ϕ). (2.6)

The example of a 642 pixel filter with parameters γ = 0.5, σ = 10, λ = 32, and
ϕ = π/2 is shown in Fig. 2.12a. This filter can be rotated with a rotation matrix(

x
y

)
←

(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)(
x
y

)
(2.7)

as shown in Fig. 2.12b for ϕ = π. Interestingly, such functions describe some of the
neurons in the primary visual cortex of primates. Detecting edges seems therefore a
good first step to process images, a fact that we will encounter again in later discussion.

Fig. 2.12 Example of Gabor functions for (a) vertical and (b) horizontal edge detection.

A. Gabor function with \phi = \pi/2 B. Rotated version of A



3 Machine learning with sklearn

The open-source series of libraries called scikit build on the NumPy and SciPy libraries
for more domain-specific support. In this chapter we briefly introducing the scikit-learn
library, or sklearn for short. This library started as a Google Summer of Code project
by David Cournapeau and developed into an open source library which now provides
a variety of well-established machine learning algorithms. These algorithms together
with excellent documentation are available at <http://scikit-learn.org>.

The goal of this chapter is to show how to apply machine learning algorithms
in a general setting using some classic methods. In particular, we will show how to
apply three important machine learning algorithms, a support vector classifier (SVC),
a random forest classifier (RFC), and a multilayer perceptron (MLP). While many
of the methods studied later in this book go beyond these now classic methods, this
does not mean that these methods are obsolete. Quite the contrary; many applications
have limited amounts of data where some more data-hungry techniques such as deep
learning might not work. Also, the algorithms discussed here are providing some form
of baseline to discuss advanced methods like probabilistic reasoning and deep learning.
Our aim here is to demonstrate that applying machine learning methods based on such
machine learning libraries is not very difficult. It also provides us with an opportunity
to discuss evaluation techniques that are very important in practice.

Fig. 3.1 Illustration of sklearn components and a typical workflow for different data and machine

learning goals.

Fundamentals of Machine Learning, Thomas P. Trappenberg, Oxford University Press (2020).
c© Oxford University Press. DOI: 10.1093/oso/9780198828044.001.0001
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An outline of the algorithms and a typical work flow provided by scikit-learn, or
sklearn for short, is shown in Fig. 3.1. The machine learning methods are thereby
divided into classification, regression, clustering, and dimensionality reduction. We
will later discuss the ideas behind the corresponding algorithms, specifically in the
second half of this chapter, though we start by treating the methods first as a black-
box. We specifically outline in this chapter a typical machine learning setting for
classification. In some applications it is possible to achieve sufficient performance
without much need of knowing exactly what these algorithms do, although we will
later show that applying machine learning to more challenging cases and avoiding
pitfalls requires some deeper understanding of the algorithms. Our aim for the later
part of this book is therefore to look much deeper into the principles behind machine
learning including probabilistic and deep learning methods.

3.1 Classification with support vector machines, random
forests, and multilayer perceptrons

We will show here how to apply three different types of machine learning classifiers
using sklearn implementations, that of a support vector classifier (SVC), a random
forest classifier (RFC), and a multilayer perceptron (MLP). We therefore concentrate
on the mechanisms and will discuss what is behind these classifiers using the clas-
sical example of the iris flowers dataset that we discussed in the previous chapter to
demonstrate how to read data into NumPy arrays. We will start with the SVC, which
is support vector machine (SVM)1. The sklearn implementation is actually a wrapper
for the SVMLIB implementation by Chih-Chung Chang and Chih-Jen Lin that has
been very popular for classification applications. Later in this chapter describe more
of the math and tricks behind this method, but for now we use it to demonstrate the
mechanics of applying this method.

To apply this machine learning technique of a classifier to the iris data-set in
the program IrisClassificationSklearn.ipynb. The program starts as usual by
importing the necessary libraries. We then import the data similar to the program
discussed in the previous chapter. We choose here to split the data into a training set
and a test set by using every second data point as training point and every other as a
test point. This is accomplished with the index specifications 0:-1:2 which is a list
that starts at index "0", iterates until the end specified by index "−1" and uses a step
of "2." Since the data are ordered and well balanced in the original data file, this will
leave us also with a balanced dataset. Balance here means here that we have the same,
or nearly the same, number data in the training set for each class. It turns out that this
is often important for the good performance of the models. Also, instead of using the
names features and target, we decided to shorten the notation by denoting the input
features as x and the targets as y values.

1SVM was the original common name for this technique as it originated for classification problems.
Later, the techniques were generalized to support vector regression, and we follow here the abbreviation
used in sklearn.
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Listing 3.1 IrisClassificationSklearn.ipynb (part 1) with output

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

i r i s d a t a = np . l o a d t x t ( ’ i r i s . d a t a ’ , d e l i m i t e r = ’ , ’ )
x t r a i n = i r i s d a t a [ 0 : −1 : 2 , 0 : 4 ]
y t r a i n = np . i n t 3 2 ( i r i s d a t a [ 0 : −1 : 2 , 4 ] )
x t e s t = i r i s d a t a [ 1 : −1 : 2 , 0 : 4 ]
y t e s t = np . i n t 3 2 ( i r i s d a t a [ 1 : −1 : 2 , 4 ] )
p r i n t ( x t r a i n . shape )

( 7 4 , 4 )

The next section of code encapsulates a basic machine learning session. In the
first step we specify the model, which is here a support vector classifier (SVC) from
the SVM methods of sklearn. We then apply a training algorithm provided in the
fit function that requires the training data, both feature values and labels, as this
is supervised learning. After the model is trained, we can use the trained model to
predict new data. We use the prediction method on the feature values of the test data
to predict the corresponding labels. Finally, we evaluate how good the predictions
are by comparing the predicted labels with the test labels. In this case we simply
count the percentage of correct labels, which is called the accuracy. The accuracy
for this evaluation is around 0.97 percent, which corresponds to only two incorrect
classifications.

Listing 3.2 IrisClassificationSklearn.ipynb (part 2) with output

from s k l e a r n import svm
# model
model = svm . SVC( k e r n e l = ’ l i n e a r ’ )
# t r a i n
model . f i t ( x t r a i n , y t r a i n )
# p r e d i c t i o n
y p r e d i c t e d =model . p r e d i c t ( x t e s t )
# e v a l u a t i o n
p r i n t ( ’ P e r c e n t a g e c o r r e c t ( a c c u r a c y ) o f SVM : ’ , np . mean ( y t e s t ==

y p r e d i c t e d ) )

P e r c e n t a g e c o r r e c t ( a c c u r a c y ) o f SVM : 0.972972972972973

Before we move on to discuss evaluations in some more detail, let us apply another
model, that of the popular random forest classifier. The corresponding code is:

Listing 3.3 IrisClassificationSklearn.ipynb (part 3) with output

from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r
# model
model = R a n d o m F o r e s t C l a s s i f i e r ( n e s t i m a t o r s =10)
# t r a i n
model . f i t ( x t r a i n , y t r a i n )
# p r e d i c t i o n
y p r e d i c t e d =model . p r e d i c t ( x t e s t )
# e v a l u a t i o n
p r i n t ( ’ P e r c e n t a g e c o r r e c t ( a c c u r a c y ) o f RFC : ’ , np . mean ( y t e s t ==

y p r e d i c t e d ) )

P e r c e n t a g e c o r r e c t ( a c c u r a c y ) o f RFC : 0.9459459459459459
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The result of this classifier is round 95 percent, equating to four misclassifications.
This accuracy is slightly less than the previous results with the SVM classifier, which
seems to indicate that the SVM method is superior to RFs. However, this conclusion
should not be made as argued further later in this chapter. Here, we simply want to
show that the framework of applying different models and to show that the results here
are similar.

Finally, we show an example implementation of a basic neural network called an
MLP in sklearn. In the next chapter, we will elaborate on this technique as neural
networks have been a major contributor to deep learning that have been behind much
of the recent machine learning success and which will be an important part of our later
discussions. The main point here is to show that neural networks can also be framed
using the basic model definition, trained by fitting the mode parameters to the training
data and making predictions on test data.

Listing 3.4 IrisClassificationSklearn.ipynb (part 4) with output

from s k l e a r n . n e u r a l n e t w o r k import M L P C l a s s i f i e r
# model
model= M L P C l a s s i f i e r ( h i d d e n l a y e r s i z e s =(10 , 20 , 10) )
# t r a i n
model . f i t ( x t r a i n , y t r a i n )
# p r e d i c t i o n
y p r e d i c t e d =model . p r e d i c t ( x t e s t )
# e v a l u a t i o n
p r i n t ( ’ P e r c e n t a g e c o r r e c t ( a c c u r a c y ) o f MLP : ’ , np . mean ( y t e s t ==

y p r e d i c t e d ) )

P e r c e n t a g e c o r r e c t ( a c c u r a c y ) o f MLP : 0 . 9 6

Running this code repeatedly will give different performances values in every run.
Most often, these values will be smaller than the ones achieved with SVM and RF,
but some are even larger. This demonstrates that more careful consideration of such
methods is important.

3.2 Performance measures and evaluations

We used the percentage of misclassification as an objective function to evaluate the
performance of the model. This is a common choice and often a good start in our
examples, but there are other commonly used evaluation measures that we should
understand. Let us consider first a binary classification case where it is common to call
one class "positive" and the other the "negative" class. This nomenclature comes from
diagnostics such as trying to decide if a person has a disease based on some clinical
tests. We can then define the following four performance indicators,
• True Positive (TP): Number of correctly predicted positive samples
• True Negative (TN): Number of correctly predicted negative samples
• False Positive (FP): Number of incorrectly predicted positive samples
• False Negative (FN): Number of incorrectly predicted negative samples

These numbers are often summarized in a confusion matrix, and such a matrix layout
is shown in Fig. 3.2A.
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If we have more than two classes we could generalize this to measures of True
Class 1, True Class 2, True Class 3, False Class 1, etc. It is convenient to summarize
these numbers in a matrix which lists the true class down the columns and the predicted
label along the rows. An example of a confusion matrix for the iris dataset that has
three classes is shown in Fig. 3.2B. The plot is produced with the following code.

Listing 3.5 IrisClassificationSklearn.ipynb (part 5)

from s k l e a r n import m e t r i c s , m o d e l s e l e c t i o n
# C o n f u s i o n M a t r i x
cm = m e t r i c s . c o n f u s i o n m a t r i x ( y t e s t , y p r e d i c t e d )
p l t . matshow ( cm )
p l t . c o l o r b a r ( )
p l t . y l a b e l ( ’ True l a b e l ’ )
p l t . x l a b e l ( ’ P r e d i c t e d l a b e l ’ )
p l t . show ( )

We used a sklearn function to calculate the confusion matrix, although it is easy and
recommended as an exercise to reproduce the sklearn function in your own implemen-
tation by simply using the model.predict() function and comparing the predictions
directly with the test labels.

Fig. 3.2 (A) Outline of confusion matrix with two classes. (B) Example of a confusion matrix for

the iris dataset when classified using an SVM.

Many different measures have been proposed in the literature which can be related
to this basic measurements. For example, if we want to know the ratio (percentage)
of correct classification regardless of the class, then we can look at the accuracy, as
previously used. This can be written as

Accuracy =
TP + TN

TP+TN+FP+FN
. (3.1)

The denominator is therefore of course the set of all data. The true positive rate (TPR)
is defined as the number of TP relative to all positive predictions, some of which might
be false,

True Positive Rate (TPR) =
TP

TP+FN
. (3.2)

This measure is also called recall, in the computer science arena of information re-
trieval, or sensitivity, as this tells how discriminatory our classifier is. Of course, this
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becomes 100% when simply recalling all samples as positive. It is thus important to
balance this with the false positive rate (FPR),

False Positive Rate =
FP

FP+TN
, (3.3)

which we want to make small. This measure is also called fall out and is the com-
plement to specificity: 1-specificity. In many cases we have the option of trading off
TPR and FPR by changing some parameters in the algorithm. The resulting trade-off is
commonly visualized as an ROC curve. ROC stands for receiver operating character-
istics, which comes from their historical use in evaluating communication equipment.
Some examples of ROC curves are shown in Fig. 3.3. Ideally, we want the TPR to
be one and the FPR to be zero, which corresponds to a point in the upper-left corner.
While this is not typically the case in practice, we want this curve at least to come as
close as possible to this point. Or in other words, we want the area under the curve to
be close to 1. In contrast, a random binary classification corresponds to the diagonal
curve in this plot, which has a value of 0.5, as the area under this curve. Hence, when
comparing two algorithm, we generally prefer an algorithm that has a larger area under
the ROC curve, or an area that is close to 1. For many applications we have curves that
are somewhere in between the two.

False Positive Rate
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Fig. 3.3 Example of an ROC curve. The ideal classifier is in the upper-left corner.

While we have already mentioned several measures, there are many more defini-
tions floating around in the literature. For example, the precision is defined as

Precision =
TP

TP+FP
, (3.4)

and the recall is defined as
Recall =

TP
TP+FN

. (3.5)

A popular way to summarize the precision and recall is to take their harmonic mean

F1 = 2 · precision · recall
precision + recall

. (3.6)
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This measure has the index 1 because it is the balanced choice of the more general
definition that weights the two terms differently:

Fβ = (1 + β2) · precision · recall
β2 · precision + recall

. (3.7)

These measures can also be generalized to more than two classes by treating the
positive class as the one under investigation and lumping the others into the negative
class. There are many routines in sklearn to calculate these values from the test set. For
example, the values mentioned above can be calculated for the iris example, as shown
in the following code.

Listing 3.6 IrisClassificationSklearn.ipynb (part 6) with output

# Model E v a l u a t i o n
p r i n t ( ’\n The main c l a s s i f i c a t i o n m e t r i c s f o r i r i s d a t a :\ n\n ’ , m e t r i c s

. c l a s s i f i c a t i o n r e p o r t ( y t e s t , y p r e d i c t e d ) )

The main c l a s s i f i c a t i o n m e t r i c s f o r i r i s d a t a :

p r e c i s i o n r e c a l l f1−s c o r e s u p p o r t

0 1 . 0 0 1 . 0 0 1 . 0 0 25
1 0 . 8 0 0 . 9 6 0 . 8 7 25
2 0 . 9 5 0 . 7 5 0 . 8 4 24

avg / t o t a l 0 . 9 2 0 . 9 1 0 . 9 0 74

There are many more definitions and even different terms for the same measures.
While this can be confusing it is easy to look up the specific definition. What is more
important to realize is that the appropriateness of these measures are not give a priori
but depend on what the user is seeking. That is, a good measure should encapsulate the
importance that a user places onto specific characteristics. This is similar to discussing
which of a range of cars is better. Some might find that greater horsepower is good,
while others want a car to consume as little petrol as possible. Hence, there is no
simple, best measure.

3.3 Data handling

3.3.1 Cross-validation

The performance of a model on the training data can always be improved and even
made perfect on the training data when making the model more complex. This is
the essence of overfitting. Basically, we can always write a model that can memorize
a finite dataset. However, machine learning is about generalization that can only be
measured with data points that have not been used during training. This is why in the
examples earlier we split our data into a training set and into a test set.

Just splitting the data into these two sets is sufficient if we have enough. In practice,
having enough labeled data for supervised training is often a problem. We therefore
now introduce a method that is much better in using the data to their full potential. The
method is called k-fold cross-validation for evaluating a model’s performance. This
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method is based on the premise that all the data are used at some time for training and
testing (validation) at some point throughout the evaluation procedure. For this, we
partition our data into k partitions as shown in Fig. 3.4 for k = 4. In this example we
assumed to have a dataset with twenty samples, so that each partition would have five
samples. In every step of the cross-validation procedure we are leaving one partition
out for validating (testing) the trained model and use the other k − 1 partitions for
training. Hence, we get k values for our evaluation measure, such as accuracy. We
could then simply use the average as a final measure for the accuracy of the model’s
fit. However, since we have several measures, we now have the opportunity to look at
the distribution itself for more insights. For example, we could also report the variance
if we assume a Gaussian distribution of the performance of the different models that
result from training with different training sets.

Of course, the next question is then what should the value of k be? As always
in machine learning, the answer is not as simple as merely stating a number. If we
have only a small number of data, then it would be wise to use as many data as
possible for training. Hence, an N -fold cross-validation, where N is the number of
samples, would likely be useful. This is also called leave-one-out cross-validation
(LOOCV). However, this procedure also requires N training sessions and evaluations
which might be computationally too expensive with larger datasets. The choice of k is
hence important to balance computational realities. We of course assume here that all
samples are ‘nicely’ distributed in the sense that their order in the dataset is not biased.
For example, cross-validation would be biased if we have data points from one class
in the first part of the dataset and the other in the second part. A random resampling
of the dataset is a quick way of avoiding most of these errors. Sklearn has of course a
good way of implementing this. A corresponding code is given below.

Listing 3.7 IrisClassificationSklearn.ipynb (part 7)

# c r o s s−v a l i d a t i o n
x = i r i s d a t a [ : , 0 : 4 ]
y = i r i s d a t a [ : , 4 ]
CV=10
s c o r e s = m o d e l s e l e c t i o n . c r o s s v a l s c o r e ( svm . SVC( k e r n e l = ’ l i n e a r ’ ) , x ,

y , cv=CV)

p r i n t ( " Accuracy on i r i s d a t a : %0.4 f (+/− %0.4 f ) " , ( s c o r e s . mean ( ) ,
s c o r e s . s t d ( ) ) )

In all these procedures it is of utmost importance to ensure that predictions are
made on data that have never been seen in the training set before. Using test cases that
have been contaminated by training data is called information or data leakage. Data
leakage is a common problem as errors can easily creep into our code, for example
by providing false indices to our data arrays. Testing on data that have not even been
entered on the computer during training is a good way to ensure this data integrity.

We have here discussed the cross-validation procedure for testing a model, so a
better name would probably be cross-testing. We will later see that this technique
is often used in validation to tune hyperparameters as discussed further later in this
chapter, but it is good to realize that cross-validation is foremost and iterative evaluation
procedure that can be used beyond hyperparameter learning.
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Fig. 3.4 Illustration of four-fold cross-validation on a dataset with twenty samples. In each fold,

another partition of the data is taken out for testing the results of training the model on the rest of

the data.

As stressed earlier, cross-validation is really an evaluation procedure for a model
with a given labeled dataset. In the end, which model should we choose? In practice,
it is common to use cross-validation mainly for hyperparameter tuning and to report
performances in scientific papers. However, it is also common to retrain the model
with all given data as training points for application purposes because it is assumed
that a model with most training data will perform best in generalization.

3.3.2 Bagging and data augmentation

Having enough training data is often a struggle for machine learning practitioners. The
problems of not having enough training data are endless. For one, this might reinforce
the problem with overfitting or even prevent using a model of sufficient complexity
at the start. Support vector machines are fairly simple (shallow) models that have the
advantage of needing less data than deep learning methods. Nevertheless, even for
these methods we might only have a limited amount of data to train the model.

A popular workaround has been a method called bagging, which stands for "boot-
strap aggregating." The idea is therefore to use the original dataset to create several
more training datasets by sampling from the original dataset with replacement. Sam-
pling with replacement, which is also called boostrapping, means that we could have
several copies of the same training data in the dataset. The question then is what good
they can do. The answer is that if we are training several models on these different
datasets we can propose a final model as the model with the averaged parameters.
Such a regularized model can help with overfitting or challenges of shallow minima in
the learning algorithm. We will discuss this point further when discussing the learning
algorithms in more detail later.

While bagging is an interesting method with some practical benefits, the field of
data augmentation now often uses more general ideas. For example, we could just
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add some noise in the duplicate data of the bootstrapped training sets which will give
the training algorithms some more information on possible variations of the data. We
will later see that other transformation of data, such as rotations or some other form
of systematic distortions for image data is now a common way to train deep neural
networks for computer vision. Even using some form of other models to transfom the
data can be helpful, such as generating training data synthetically from physics-based
simulations. There are a lot of possibilities that we can not all discuss in this book, but
we want to make sure that such techniques are kept in mind for practical applications.

3.3.3 Balancing data

We have already mentioned balancing data, but it is worthwhile pausing again to look
at this briefly. A common problem for many machine learning algorithms is a situation
in which we have much more data for one class than another. For example, say we
have data from 100 people with a decease and data from 100,000 healthy controls.
Such ratios of positive and negative class are not uncommon in many applications. A
trivial classifier that always predicts the majority class would then get 99.9 per cent
correct. In mathematical terms, this is just the prior probability of finding the class,
which sets the baseline somewhat for better classifications. The problem is that many
learning methods that are guided by simple loss measures such as this accuracy will
mostly find this trivial solution. There have been many methods proposed to prevent
such trivial solutions of which we will only mention a few here.

One of the simplest methods to counter imbalance of data is simply to use as many
data from the positive class as the negative class in the training set. This systematic
under-sampling of the majority class is a valid procedure as long as the sub-sampled
data still represent sufficiently the important features of this class. However, it also
means that we lose some information that is available to us and the machine. In the
example above this means that we would only utilize 100 of the healthy controls in the
training data. Another way is then to somehow enlarge the minority class by repeating
some examples. This seems to be a bad idea as repeating examples does not seem to
add any information. Indeed, it has been shown that this technique does not usually
improve the performance of the classifier or prevent the majority overfitting problem.
The only reason that this might sometimes work is that it can at least make sure the
learning algorithms is incremented the same number of times for the majority and the
minority class.

Another method is to apply different weights or learning rates to learn examples
with different sizes to the training set. One problem with this is to find the right scaling
of increase or decrease in the training weight, but this technique has been applied
successfully in many case, including deep learning.

In practice it has been shown that a combination of both strategies under-sampling
the majority class and over-sampling the minority class can be most beneficial, in
particular when augmenting the over-sampling with some form of augmentation of the
data. This is formalized in a method called SMOTE: synthetic minority over-sampling
technique. The idea is therefore to change some characteristics of the over-sampled
data such as adding noise. In this way there is at least a benefit of showing the learner
variations that can guide the learning process. This is very similar to the bagging and
data augmentation idea discussed earlier.



Machine learning with sklearn48 |

3.3.4 Validation for hyperparameter learning

Thus far we have mainly assumed that we have one training set, which we use to learn
the parameters of the parameterized hypothesis function (model), and a test set, to
evaluate the performance of the resulting model. In practice, there is an important step
in applying machine learning methods which have to do with tuning hyperparameters.
Hyperparameters are algorithmic parameters beyond the parameters of the hypothesis
functions. Such parameters include, for example, the number of neurons in a neural
network, or which split criteria to use in decision trees, discussed later. SVMs also
have several parameters such as one to tune the softness of the classifier, usually called
C, or the width of the Gaussian kernel γ. We can even specify the number of iterations
of some training algorithms. We will later shed more light on these parameters, but
for now it is important only to know that there are many parameters of the algorithms
itself beyond the parameters of the parameterized hypothesis function (model), which
can be tunes. To some extent we could think of all these parameters as those of the final
model, but it is common to make the distinction between the main model parameters
and the hyperparaemeters of the algorithms.

The question is then how we tune the hyperparameters. This in itself is a learning
problem for which we need a special learning set that we will call a validation set. The
name indicates that it is used for some form of validation, although it is most often used
to test a specific hyperparameters setting that can be used to compare different settings
and to choose the better one. Choosing the hyperparameters itself is therefore a type
of learning problem, and some form of learning algorithms have been proposed. A
simple learning algorithm for hyperparameters would be a grid search where we vary
the parameters in constant increments over some ranges of values. Other algorithms,
like simulated annealing or genetic algorithms, have also been used. A dominant mode
that is itself often effective when used by experienced machine learners is the hand-
tuning of parameters. Whatever method we choose, we need a way to evaluate our
choice with some of our data.

Therefore, we have to split our training data again into a set for training the main
model parameters and a set for training the hyperparameters. The former we still
call the training set, but the second is commonly called the validation set. Thus, the
question arises again how to split the original training data into a training set for
model parameters and the validation set for the hyperparameter tuning. Now, we can
of course use the cross-validation procedure as explained earlier for this. Indeed, it
is very common to use cross-validation for hyperparameter tuning, and somehow the
name of the cross-validation coincides with the name of the validation step. But notice
that the cross-validation procedure is a method to split data and that this can be used
for both hyperparameter tuning and evaluating the predicted performance of our final
model.

Once more, it is important to stress that the validation error should not be reported
as our estimate of the final performance of our model. Using the validation data is a type
of learning itself, and the model is thus tuned to these specific values. Such an error can
be made arbitrarily small with some form of overfitting. Thus, we need a test set which
has not been used in any way during the training and model selection, so neither in
the training of the primary model parameters nor in the selection of hyper-partameters
to estimate a generalization error. Using any of the test data in training, or even any
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derived information of test data in training, can lead to a drastic underestimation of
the generalization error. We called this above already data or information leakage,
and such information contamination can completely invalidate the prediction of the
model performance on unseen data. Therefore, we must set aside another part of the
data that has never been used in training or hyperparameter tuning. We call this set
the test set. We could again then use a cross-validation scheme itself for the combined
training/validation and test set. This nested use of cross-validation does add some
complexity but is highly recommended when the dataset is small.

3.4 Dimensionality reduction, feature selection, and t-SNE

Before we dive deeper into the theory of machine learning, it is good to realize that
we have only scratched the surface of machine learning tools in the sklearn toolbox.
Besides classification, there is of course regression, where the label is a continuous
variable instead of a categorical. We will later see that we can formulate most supervised
machine learning techniques as regression and that classification is only a special case
of regression. Sklearn also includes several techniques for clustering which are often
unsupervised learning techniques to discover relations in data. Popular examples are
k-means and Gaussian mixture models (GMM). We will discuss such techniques and
unsupervised learning more generally in later chapters. Here we will end this section
by discussing some dimensionality reduction methods.

As stressed earlier, machine learning is inherently aimed at high-dimensional
feature spaces and corresponding large sets of model parameters, and interpreting
machine learning results is often not easy. Several machine learning methods such as
neural networks or SVMs are frequently called a blackbox method. However, there is
nothing hidden from the user; we could inspect all portions of machine learning models
such as the weights in support vector machines. However, since the models are complex,
the human interpretability of results is challenging. An important aspect of machine
learning is therefore the use of complementary techniques such as visualization and
dimensionality reduction. We have seen in the examples with the iris data that even
plotting the data in a subspace of the 4-dimensional feature space is useful, and we
could ask which subspace is best to visualize. Also, a common technique to keep
the model complexity low in order to help with the overfitting problem and with
computational demands was to select input features carefully. Such feature selection
is hence closely related to dimensionality reduction.

Today we have more powerful computers, typically more training data, as well
as better regularization techniques so that input variable selection and standalone
dimensionality reduction techniques seems less important. With the advent of deep
learning we now often speak about end-to-end solutions that starts with basic features
without the need for pre-processing to find solutions. Indeed, it can be viewed as
problematic to potential information. However, there are still many practical reasons
why dimensionality reduction can be useful, such as the limited availability of training
data and computational constraints. Also, displaying results in human readable formats
such as 2-dimensional maps can be very useful for human-computer interaction (HCI).

A traditional method that is still used frequently for dimensionality reduction is
principle component analysis (PCA). PCA attempts to find a new coordinate system
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of the feature representation which orders the dimensions according to how spread the
data are along these dimensions. The reasoning behind this is that dimensions with a
large spread of data would offer the most sensitivity for distinguishing data. This is
illustrated in Fig. 3.5. The direction of the largest variance of the data in this figure
is called the first principal component. The variance in the perpendicular direction,
which is called the second principal component, is less. In higher dimensions, the next
principal components are in further perpendicular directions with decreasing variance
along the directions. If one were allowed to use only one quantity to describe the
data, then one can choose values along the first principal component, since this would
capture an important distinction between the individual data points. Of course, we
lose some information about the data, and a better description of the data can be
given by including values along the directions of higher-order principal components.
Describing the data with all principal components is equivalent to a transformation of
the coordinate system and thus equivalent to the original description of the data.

Fig. 3.5 Example of feature pairs (x1, x2) values drawn from a 2-dimensional probability distri-

bution with mean zero. It also shows a new coordinate system with the first principle component

x′
1 and the perpendicular direction along the second pronciple component x′

2.

There are several extensions to PCA that are worth considering in the machine
learning context. In particular, independent component analysis (ICA) seeks to find
new coordinates that minimize the statistical dependence between the new features.
Let s be independent source signals, and consider that the features that we usually
measure for a system are linear combinations of these source signals,

x = Ws (3.8)

where W is a mixing matrix. A typical application is that of the so-called cocktail
party problem where say n speakers are talking (which would be the source signal) and
we have n microphones in the room (which would be the measured signal). If we want
to derive the source signal from the measured signal, we have to find the inverse of this
mixing matrix. In this situation we don’t even know the mixing matrix, so the question
is how we find the inverse of a matrix that we do not know. A solution is that we make
certain assumptions, such as the fact that the speaker should speak independently and
hence that the signals are statistically independent. In this way we can formulate the
demixing problem as a minimization problem, that of finding the demiximg matrix that
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would minimize a measure of dependency such as the Kullback–Leibler divergence.
We will talk about such statistical measures in more detail later. While this type of ICA
does not directly reduce the dimension of the problem, having an feature space spanned
by independent features helps to investigate some meaningful independent subspaces.
A generalization of these ideas is captured in non-negative matrix factorization.

Finally, another popular method for dimensionality reduction and a common tech-
nique to visualize high-dimensional data in 2-dimensional spaces is a technique called
t-distributed stochastic neighbor embedding (t-SNE). This technique tries to minimize
distance between the similarities of data points in the high-dimensional feature space
with the distance of their low-dimensional representation. Such techniques are imple-
mented in sklearn. The code following shows the application of PCA and t-SNE for
the iris dataset. The resulting scatter plot in Fig. 3.6 demonstrate that the iris Setosa
flowers are easily distinquishable from the other two classes, but that there are a few
examples of overlap between iris Versicolour and iris Virginica. Such techniques are
important when considering machine learning as the analytics engine for data mining
and data science.

Fig. 3.6 Example of first two principle components of the iris data (left) and the corresponding

t-SNE representation (right).

Listing 3.8 IrisTSNE.ipynb

# adap ted from A l e x a n d e r F ab i sch
import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
from s k l e a r n . d a t a s e t s import l o a d i r i s
from s k l e a r n . d e c o m p o s i t i o n import PCA
from s k l e a r n . m a n i f o l d import TSNE

i r i s = l o a d i r i s ( )
X t s n e = TSNE( l e a r n i n g r a t e =100) . f i t t r a n s f o r m ( i r i s . d a t a )
X pca = PCA ( ) . f i t t r a n s f o r m ( i r i s . d a t a )

p l t . f i g u r e ( f i g s i z e =(10 , 5 ) )
p l t . s u b p l o t ( 1 2 1 )
p l t . s c a t t e r ( X t s n e [ : , 0 ] , X t s n e [ : , 1 ] , c= i r i s . t a r g e t )
p l t . s u b p l o t ( 1 2 2 )
p l t . s c a t t e r ( X pca [ : , 0 ] , X pca [ : , 1 ] , c= i r i s . t a r g e t )
p l t . show ( )
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3.5 Decision trees and random forests

As stressed at the beginning of this chapter, our main aim here was to show that applying
machine learning methods is made fairly easy with application packages like sklearn,
although one still needs to know how to use techniques like hyperparameter tuning
and balancing data to make effective use of them. In the next two sections we want
to explain some of the ideas behind the specific models implemented by the random
forrest classifier (RPF) and the support vector machine (SVM). This is followed in the
next chapter by discussions of neural networks. The next two section are optional in
the sense that following the theory behind them really require knowledge of additional
mathematical concepts that are beyond our brief introductory treatment in this book.
Instead, the main focus here is to give a glimpse of the deep thoughts behind those
algorithms and to encourage the interested reader to engage with further studies. The
asterisk in section headings indicates that these sections are not necessary reading to
follow the rest of this book.

We have already used a random forrest classifier (RFC), and this method is a
popular choice where deep learning has not yet made an impact. It is worthwhile to
outline the concepts behind it briefly since it is also an example of a non-parametric
machine learning method. The reason is that the structure of the model is defined by the
training data and not conjectured at the beginning by the investigator. This fact alone
helps the ease of use of this method and might explain some of its popularity, although
there are additional factors that make it competitive such as the ability to build in
feature selection. We will briefly outline what is behind this method. A random forest
is actually an ensemble method of decision trees, so we will start by explaining what
a decision tree is.

Fig. 3.7 Example data of two classes with black and white discs and a corresponding decision

tree for classification on the right.

Let us consider the training data

Dtrain = {(x(i), y)}, (3.9)

where the attribute vector has Nf components. For example, the data on the left in
Fig. 3.7 have two attributes called x1 and x2. The algorithm calculates how to split
the data iteratively by considering which attribute could classify the training data best
at this level of a decision function. If we first split the data along the vertical dashed
line, then we can already classify a large number of data correctly. We can split the
remaining data further using the second attribute.
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The question in practice then is which attribute and corresponding attribute value
we use to split the data. A popular choices to make this decision is a measure called
"information gain" or a related measure called "Gini impurity." For the information
gain we calculate the entropy of the data before and after the split. The entropy H
describes how uniform the data are, with larger values of the entropy indicating more
homogeneous data. Thus, for our classification purpose, we look for splits that separate
the data well and hence lead to a lower entropy in each partition. The Shannon entropy
is formally calculated as

H = −
∑
y

p(y)log2p(y), (3.10)

where p(y) is the probability of a label. Thus in our example Fig. 3.7 the en-
tropy before the split is H = −4/15 log2(4/15) − 11/15 log2(11/15) ≈ 0.84. The
weighted average entropy of the indicated vertical split isH = 6/15(−4/6 log2(4/6)−
2/6 log2(2/6))− 9/15 ∗ 0 ≈ 0.37. This is an information gain of around 0.47. When
we split the data as proposed with the dashed horizontal line, then the weighted entropy
is H = 10/15 ∗ (−4/10 ∗ log2(4/10)− 6/10 ∗ log2(6/10)) ≈ 0.45 which leads only
to a information gain of 0.39. All the other possible splits have lower information gain
than the first choice. As mentioned earlier, some decision trees use the Gini impurity
instead of the entropy to measure how diverse the data are in a set, which is defined as

G = 1−
∑
y

p2(y). (3.11)

The results are very similar, but the Gini impurity is numerically less demanding. A
nice features of decision trees is that the algorithm does a form of feature (attribute)
selection based on some information theoretic measures. A downside is that it does
not usually consider combinatorial features.

The decision tree for the iris data can be calculated with sklearn as demonstrated
with the code in Listing 3.9. In this code we add in the data as previously shown at the
beginning of this chapter and define and train a tree model provided in sklearn. This
model gets about 95 per cent correct. Sklearn also provides an interface to a graphing
software called graphviz that can plot a graph of the decision trees. The resulting graph
for the iris dataset is shown in Fig. 3.8. This tree nicely represents rules on individual
features. For example, the first node says to look at the third feature, the petal length,
and if this feature is less or equal to 0.7 then this is an example of the first class, the
iris Setosa. The graph also shows the Gini impurity value for each subset of the data
under the selection condition. The Gini impurity is zero if all examples are from one
class.

A common problem with decision trees is that they tend to overfit decisions along
the way that are made from individual features. This is where the random forest idea
comes into play. A random forest is a ensemble method which makes decisions based
on an ensemble of decision trees. The different decision trees are created by creating
different training sets for each of them by randomly sampling. This has already been
discussed as bagging. Since a decision tree is a non-parametric method, this can be
particularly effective way to create a variety of trees where a vote of all the trees in the
end can make better decisions as it prevents some form of overfitting. This is why it is
common in practice to use random forests instead of a single decision tree.
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Fig. 3.8 Example of a decision tree trained on the iris dataset.

Listing 3.9 IrisDecisionTree.ipynb

import numpy as np
from s k l e a r n import t r e e

i r i s d a t a = np . l o a d t x t ( ’ i r i s . d a t a ’ , d e l i m i t e r = ’ , ’ )

x t r a i n = i r i s d a t a [ 0 : −1 : 2 , 0 : 4 ]
y t r a i n = np . i n t 3 2 ( i r i s d a t a [ 0 : −1 : 2 , 4 ] )
x t e s t = i r i s d a t a [ 1 : −1 : 2 , 0 : 4 ]
y t e s t = np . i n t 3 2 ( i r i s d a t a [ 1 : −1 : 2 , 4 ] )

# model
model = t r e e . D e c i s i o n T r e e C l a s s i f i e r ( )
# t r a i n
model . f i t ( x t r a i n , y t r a i n )
# p r e d i c t i o n
y p r e d i c t e d =model . p r e d i c t ( x t e s t )
# e v a l u a t i o n
p r i n t ( ’ P e r c e n t a g e c o r r e c t ( a c c u r a c y ) o f DTC : ’ , np . mean ( y t e s t ==

y p r e d i c t e d ) )

import g r a p h v i z
d o t d a t a = t r e e . e x p o r t g r a p h v i z ( model , o u t f i l e =None )
g raph = g r a p h v i z . Source ( d o t d a t a )
g raph
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3.6 Support vector machines (SVM)

3.6.1 Linear classifiers with large margins

In this section we outline the basic idea behind support vector machines (SVM) that
have been instrumental in a first wave of industrial applications due to their robustness
and ease of use. A warning: SVMs have some intense mathematical underpinning,
although our goal here is to outline only some of the mathematical ideas behind this
method. It is not strictly necessary to read this section in order to follow the rest of
the book, but it does provide a summary of concepts that have been instrumental in
previous progress and are likely to influence the development of further methods and
research. This includes some examples of advanced optimization techniques and the
idea of kernel methods. While we mention some formulae in what follows, we do not
derive all the steps and will only use them to outline the form to understand why we
can apply a kernel trick. Our purpose here is mainly to provide some intuitions.

SVMs, and the underlying statistical learning theory, was largely invented by
Vladimir Vapnik in the early 1960s, but some further breakthroughs were made in the
late 1990s with collaborators such as Corinna Cortes, Chris Burges, Alex Smola, and
Bernhard Schölkopf, to name but a few. The basic SVMs are concerned with binary
classification. Fig. 3.9 shows an example of two classes, depicted by different symbols,
in a 2-dimensional attribute space. We distinguish here attributes from features as
follows. Attributes are the raw measurements, whereas features can be made up by
combining attributes. For example, the attributes x1 and x2 could be combined in a
feature vector (x1, x1x2, x2, x

2
1, x

2
2)

T . This will become important later. Our training
set consists of m data with attribute values x(i) and labels y(i). We put the superscript
index i in brackets so it is not mistaken as a power. For this discussion we chose the
binary labels of the two classes as represented with y ∈ {−1, 1}. This will simplify
some equations.

x

xx
x

x

x
x

x

x

x

x

X1

X2 w x+b=0

w

T

Fig. 3.9 Illustration of linear support vector classification.

The two classes in the Fig. 3.9 can be separated by a line, which can be parame-
terized as

w1x1 + w2x2 − b = 0 (3.12)
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wTx− b = 0. (3.13)

While the first line shows the equation with its components in two dimensions, the
next expression in a matrix notation is the same in any dimension. Of course, in three
dimensions we would talk about a plane. In general, we will talk about a hyperplane in
any dimensions. The particular hyperplane is the dividing or separating hyperplane be-
tween the two classes. We also introduce what the margin γ, which is the perpendicular
distance between the dividing hyperplane and the closest point.

The main point to realize now is that the dividing hyperplane that maximizes
the margin is most likely to be a good choice. Why is that? We should assume
that the training data, shown in the figure, are some unbiased examples of the true
underlying density function describing the distribution of points within each class and
thus representative of the most likely data. It is then likely that new data points, which
we want to classify, are close to the already existing data points. Thus, if we make
the separating hyperplane as far as possible from each point, then we probably won’t
make mistaken classification on future data points. Or, in other words, a separating
hyperplane like the one shown as dashed line in the figure, is likely to offer poorer
generalization than the maximum margin hyperplane. Thus, the maximum margin
hyperplane can be considered the best choice if we assume that both classes have the
same expected variation from the training data. Such a maximum margin classifier can
hence be expected to be a good choice.

Let us formalize the maximization of the margin a bit more mathematically. Learn-
ing a linear maximum margin classifier on labeled data means finding the parameters
w and b that maximizes the margin. For this we could computer the distances of each
point from the hyperplane, which is simply a geometric exercise,

γ(i) = y(i)
(
(

w

||w|| )
Tx(i) +

b

||w||
)
. (3.14)

The vector w/||w|| is the normal vector of the hyperplane, a vector of unit length
perpendicular to the hyperplane. The norm ||w|| is the Euclidean length of the vector
w. The margin we want to maximize is the distance to the closest point,

γ = min
i

γ(i). (3.15)

We can formulate the maximum margin calculation by realizing from Egn 3.14 that
maximizing γ is equivalent to minimizing ||w||, or, equivalently, of minimizing

min
w,b

1

2
||w||2. (3.16)

Of course, we want to maximize this margin under the constraint that no training data
should lay within the margin. Since we have the freedom to chose a scale, we can
defines this distance as 1, so that the decision boundaries become

wTx(i) + b ≥ 1 for y(i) = 1 (3.17)
wTx(i) + b ≤ −1 for y(i) = −1. (3.18)

These equations can be combined into one equation when we use labels for the set
y = {−1, 1}, namely



| 57Support vector machines (SVM)

−(y(i)(wTx+ b)− 1) ≥ 0. (3.19)

So, to summarize, we have a quadratic minimization problem (Eq. 3.16) with the linear
inequalities Eeg.3.19) as constraint. Optimization with constraints can be formalized
with the Lagrange formalism. For this, we simply add the constraints to the main
objective or loss function with some parameters αi that are generally called Lagrange
multipliers,

LP (w, b, αi) =
1

2
||w||2 −

m∑
i=1

αi[y
(i)(wTx+ b)− 1]. (3.20)

Lagrange multipliers determine how well the constraints are observed. In the case of
αi = 0, the constraints do not matter. In order to conserve the constraints, we should
thus make these values as large as we can. Finding the maximum margin classifier is
hence given by the so-called primal problem

p∗ = min
w,b

max
αi

LP (w, b, αi) (3.21)

However, Vapnik went a step further by realizing that the margin can also be maximized
by maximizing the so-called dual Lagrangian

d∗ max
αi

min
w,b
LD(w, b, αi), (3.22)

since one can show that
p∗ ≤ d∗. (3.23)

Note that in these formulae we interchange the minimum and maximum operations.
While we will not derive this dual problem, the reason for this step is the following.
While it is straightforward to solve the primal optimization problem, solving the dual
problem leads to a formulation in which we can use a kernel trick, discussed later
to generalize the method to non-linear cases. Moreover, the equality holds when the
optimization function and the constraints are convex.2 So, if we minimizeL by looking
for solutions of the derivatives ∂L

∂w and ∂L
∂b , we get

w =
m∑
i=1

αiy
(i)x(i) (3.24)

0 =
m∑
i=1

αiy
(i) (3.25)

Substituting this into the optimization problem, we get the final form of our optimiza-
tion problem,

max
αi

∑
i

αi − 1

2

∑
i,j

y(i)y(j)αiαjx
(i)Tx(j), (3.26)

subject to the constraints

αi ≥ 0 (3.27)

2Under these assumptions, there are other conditions that hold, called the Karush–Kuhn–Tucker condi-
tions, that are useful in providing proof of the convergence of the methods outlined here.
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m∑
i=1

αiy
(i) = 0. (3.28)

From this optimization problem it turns out that the αis of only a few examples,
those ones that are lying on the margin, are the only ones which have αi 	= 0. The
corresponding training examples are called support vectors. The actual optimization
can be done with several algorithms. John Platt developed the sequential minimal
optimization (SMO) algorithm that is very efficient for this optimization problem.
Please note that the optimization problem is convex and can thus be solved very
efficiently without the danger of getting stuck in local minima.

Once we find the support vectors with corresponding αis, we can calculate w from
Egn 3.24 and b from a similar equation. Then, if we are given a new input vector to be
classified, this can then be calculated with the hyperplane Egn 3.13 as

y =

{
1 if

∑m
i=1 αiy

(i)x(i)Tx > 0
−1 otherwise

, (3.29)

Since this is only a sum over the support vectors, which should be only a few data
points from the training set, classification becomes very efficient after training.

3.6.2 Soft margin classifier

Thus far we have only discussed the linear separable case, but how about the case when
there are overlapping classes? It is possible to extend the optimization problem by
allowing some data points to be in the margin while penalizing these points somewhat.
We therefore include some slag variables ξi that reduce the effective margin for each
data point, but we add a penalty term to the optimization that penalizes if the sum of
these slag variables are large,

min
w,b

1

2
||w||2 + C

∑
i

ξi, (3.30)

subject to the constraints

y(i)(wTx+ b) ≥ 1− ξi (3.31)
ξi ≥ 0 (3.32)

. The constant C is a free parameter in this algorithm. Making this constant large
means allowing fewer points to be in the margin. This parameter must be tuned and it
is advisable at least to try to vary this parameter in order to verify that the results do
not dramatically depend on an initial choice.

3.6.3 Non-linear support vector machines

We have treated the case of overlapping classes while assuming that the best we can
do is a linear separation. However, what if the underlying problem is separable with
a function that might be more complex? An example is shown in Fig. 3.10. Non-
linear separation and regression models are of course much more common in machine
learning, and we will now look into the non-linear generalization of the SVM.
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Fig. 3.10 Example of a non-linear separation between two classes.

Let us illustrate the basic idea with an example in two-dimensions. A linear function
with two attributes that span the 2-dimensional feature space is given by

y = w0 + w1x1 + w2x2 = wTx, (3.33)

with

x =

⎛
⎝ 1

x1

x2

⎞
⎠ (3.34)

and weight vector
wT = (w0, w1, w2). (3.35)

Let us say that we cannot separate the data with this linear function but that we could
separate it with a polynomial that include second-order terms like

y = w̃0 + w̃1x1 + w̃2x2 + w̃3x1x2 + w̃4x
2
1 + w̃5x

2
2 = w̃φ(x). (3.36)

We can view the second equation as a linear separation on a feature vector

x→ φ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
x1

x2

x1x2

x2
1

x2
2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.37)

This can be seen as mapping the attribute space (1, x1, x2) to a higher-dimensional
space with the mapping function φ(x). We call this mapping a feature map. The
separating hyperplane is then linear in this higher-dimensional space. Thus, we can
use the above linear maximum margin classification method in non-linear cases if we
replace all occurrences of the attribute vector x with the mapped feature vector φ(x).

There are only three problems remaining. One is that we don’t know what the
mapping function should be. The somewhat ad-hoc solution to this problem will be
that we try out some functions and see which one works best. We will discuss this further
later in this chapter. The second problem is that we have the problem of overfitting
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as we might use too many feature dimensions and corresponding free parameters wi.
In the next section, we provide a glimpse of an argument why SVMs might address
this problem. The third problem is that with an increased number of dimensions the
evaluation of the equations becomes more computational intensive. However, there is
a useful trick to alleviate the last problem in the case when the calculations always
contain only dot products between feature vectors. An example of this is the solution
of the minimization problem of the dual problem in the earlier discussions of the linear
SVM. The function to be minimized in this formulation, Egn 3.26 with the feature
maps, only depends on the dot products between a vector x(i) of one example and
another example x(j). Also, when predicting the class for a new input vector x from
Egn 3.24 when adding the feature maps, we only need the resulting values for the
dot products φ(x(i))Tφ(x). We now discuss that such dot products can sometimes be
represented with functions called kernel functions,

K(x, z) = φ(x)Tφ(z). (3.38)

Instead of actually specifying a feature map, which is often a guess to start with, we
could actually specify a kernel function. For example, let us consider a quadratic kernel
function between two vectors x and z,

K(x, z) = (xT z+ 1)2. (3.39)

We can then try to write this in the form of Egn 3.38 to find the corresponding feature
map. That is,

K(x, z) = (xT z)2 + 2xT z+ 1 (3.40)
= (x1z1 + x2z2)

2 + 2(x1z1 + x2z2) + 1 (3.41)
= x2

1z
2
1 + x2

2z
2
2 + 2x1z1x2z2 + 2x1z1 + 2x2z2 + 1 (3.42)

= φ(x)Tφ(z), (3.43)

with

φ(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2x1√
2x2√

2x1x2

x2
1

x2
2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.44)

Except for the factors of
√
2 that do not matter as these can be absorbed into the

definition of the weight parameters, this is the same as the mapping function we as-
sumed earlier. Thus, instead of calculating a dot product in the 6-dimensional mapped
space, we can calculate a dot product in the original 3-dimensional space and simply
square the result. Also, savings of computational complexity become even more pro-
nounced with higher-order polynomials where we can replace calculation of O(n2)
with a fixed calculation in the original attribute space. There is an impressive saving
of computations with this kernel trick.

While we have derived the corresponding feature map for a specific kernel function,
this task is not always easy and not all functions are valid kernel functions. We must
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also be careful that the kernel functions still lead to convex optimization problems. In
practice, only a small number of kernel functions are used. Besides the polynomial
kernel mention so far, one of the most popular is the Gaussian kernel, also called radial
basis function (RPF) kernel,

K(x, z) = exp−||x− z||2
2γ2

. (3.45)

It is common to represent the width of this Gaussian with the parameter γ, which is
a prominent hyperparameter of the SVM with an RBF kernel. It is interesting to note
that this kernal function corresponds to a feature map that is formally infinitely large.

As mentioned earlier, a large feature space corresponds to a complex model with
many parameters and hence has the potential to overfit easily. We must therefore finally
look into this problem. The key insight here is that we are already minimizing the sum
of the components of the parameters, or more precisely the square of the norm ||w||2.
This term can be viewed as regularization which favours a smooth decision hyperplane.
Moreover, we have discussed two extremes in classifying complicated data: one was
to use kernel functions to create high-dimensional non-linear mappings and hence
have a high-dimensional separating hyperplane; the other method was to consider a
low-dimensional separating hyperplane and interpret the data as overlapping. The last
method includes a parameter C that can be used to tune the number of data points
that we allow to sit within the margin. Thus, we can combine these two approaches to
classify non-linear data with overlaps where the soft margins will in addition allow us
to favour more smooth dividing hyperplanes.

In practice, we have to consider several free parameters when applying support
vector machines and one of the first that must be chosen is which kernel function to use.
Most packages have a number of choices implemented. In the following example we
used the Gaussian kernel function with width parameter γ. Setting a small value for γ
and allowing for a large number of support vectors (smallC), corresponds to a complex
model. In contrast, larger width values and regularization of constant C will increase
the stiffness of the model and lower the complexity. In practice, we have to tune these
parameters to get good results. To do this we need to use some form of validation set,
and k-times cross-validation is often implemented in the related software packages.

An example of the SVM performance (accuracy) on some examples (iris dataset
from the UCI repository; from Broadman and Trappenberg, 2006) is shown in Fig. 3.11
for several values of γ and C. It is often typical that there is a large area where the
SVM works well and has only little variations in terms of performance. This robustness
has helped to make SVMs practical methods that often outperform other methods.
However, there is often also an abrupt onset of the region where the SVM fails, and
some parameter tuning is hence required. While just trying a few settings might be
sufficient, some more systematic methods such as grid search or simulated annealing
are recommended.

3.6.4 Statistical learning theory and VC dimension

SVMs are good and practical classification algorithms for several reasons. In particular,
they are formulated as a convex optimization problem that has many good theoretical
properties and that can be solved with quadratic programming. They are formulated to
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Fig. 3.11 Illustration of SVM accuracy for different values of parameters C abd γ.

take advantage of the kernel trick, they have a compact representation of the decision
hyperplane with support vectors, and turn out to be fairly robust with respect to the
hyper parameters. However, in order to act as a good learner, they need to moderate the
overfitting problem discussed earlier. A great theoretical contributions of Vapnik and
colleagues was the embedding of supervised learning into statistical learning theory
and to derive some bounds that make statements on the average ability to learn form
data. We briefly outline here the ideas and state some of the results without too much
details, and we discuss this issue here entirely in the context of binary classification.
However, similar observations can be made in the case of multiclass classification and
regression. This section uses language from probability theory that we only introduce
in more detail later. Therefore, this section might be best viewed at a later stage. Again,
the main reason in placing this section is to outline the deeper reasoning for specific
models.

As can’t be stressed enough, our objective in supervised machine learning is to
find a good model which minimizes the generalization error. To state this differently
by using nomenclature common in these discussions, we call the error function here
the risk function R; in particular, the expected risk. In the case of binary classification,
this is the probability of missclassification,

R(h) = P (h(x) 	= y). (3.46)

Of course, we generally do not know this density function. We assume here that the
samples are iid (independent and identical distributed) data, and we can then estimate
what is called the empirical risk with the help of the test data,

R̂(h) =
1

m

m∑
i=1

11(h(x(i); θ) = y(i)). (3.47)

The function 11 is 1 if the argument is true and 0 otherwise. We use here m as the
number of examples, but note that here this is the number of examples in the test
(or validation) set, which is the number of all training data minus the ones used for
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training. Also, we will discuss this empirical risk further, but note that it is better to
use the regularized version that incorporates a smoothness constraint such as

R̂rmreg(h) =
1

m

∑
i

11(h(x(i); θ) = y(i))− Λ||w||2 (3.48)

in the case of SVM, where Λ is a regularization constant. Thus, wherever R̂(h) is used
in the following, we can replace this with R̂reg(h). Empirical risk minimization is the
process of finding the hypothesis ĥ that minimizes the empirical risk,

ĥ = argmin
h

R̂(h). (3.49)

As a side note, we will later talk about the maximum likelihood estimate (MLE), and
the empirical risk is the MLE of the mean of a Bernoulli-distributed random variable
with true mean R(h). Thus, the empirical risk is itself a random variable for each
possible hypothesis h. Let us first assume that we have k possible hypothesis hi. We
now draw on a theorem called the Hoeffding inequality that provides and upper bound
for the sum of random numbers to its mean,

P (|R(hi)− R̂(hi)| > γ) > 2 exp(−2γ2m). (3.50)

This formula states that there is a certain probability that we make an error larger than
γ for each hypothesis of the empirical risk compared to the expected risk, although
the good news is that this probability is bounded, and that the bound itself becomes
exponentially smaller with the number of validation examples. This is already an
interesting results, but we now want to know the probability that some, out of all
possible hypotheses, are less than γ. Using the fact that the probability of the union of
several events is always less or equal to the sum of the probabilities, one can show that
with probability 1− δ the error of a hypothesis is bounded by

|R(h)− R̂(h)| >
√

1

2m
log

2k

δ
. (3.51)

This is a great results since it shows how the error of using an estimate for the risk, the
empirical risk that we can evaluate from the test (or validation) data, becomes smaller
with training examples and with the number of possible hypotheses.

x

x

x

Fig. 3.12 Illustration of VC dimensions for the class of linear functions in two dimensions.

While the error scales only with the log of the number of possible hypotheses,
the values still extend to infinite when the number of possible hypotheses extends
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to infinite, which more closely resembles the situation when we have parameterized
hypotheses. However, Vapnik was able to show the following generalization in the
infinite case. Given a hypotheses space with Vapnic–Chervonencis dimension VC(h),
then, with probability 1 − δ, the error of the empirical risk compared to the expected
risk (true generalization error) is

|R(h)− R̂(h)| > O

(√
V C

m
log

m

V C
+

1

m
log

1

δ

)
. (3.52)

The VC dimensions is thereby a measure of how many points can be divided by a
member of the hypothesis set for all possible label combinations of the point. For
example, consider three arbitrary points in two dimensions as shown in Fig. 3.12, and
let us consider the hypothesis class of all possible lines in two dimensions. We can
always divide the three points under any class membership condition, of which two
examples are also shown in the figure. By contrast, it is easy to find examples with
four points that can not be divided by a line in two dimensions. The VC dimension of
lines in two dimensions is thus V C = 3.3

3.6.5 Support vector regression

While we have mainly discussed classification in the last few sections, it is time to
consider the more general case of regression and to connect these methods to the
general principle of maximum likelihood estimation outlined in the previous chapter.
It is again easy to illustrate the method for the linear case before generalizing it to the
non-linear case similar to the strategy followed for SVMs.

x

x

x

x

x

x
x

x

x

x

x

X1

X2 |x|

 x

Fig. 3.13 Illustration of support vector regression and the ε-insensitive cost function.

The idea in support vector regression is that data points close to a regression line are
expected to fluctuate but that we should not take outliers too much into account. This
can be achieved with an error function which does not count deviations of data from
the hypothesis that are less than ε form the hypothesis. Such an error function is often
called an ε-insensitive error function and is illustrated in Fig. 3.13. The corresponding
optimization problem is

3Three points of different classes can not be separated by a single line, but these are singular points that
are not effective in the definition of VC dimension.
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min
w,b

1

2
||w||2 + C

∑
i

(ξi + ξ∗), (3.53)

subject to the constraints

y(i) −wTx− b ≥ ξi (3.54)
y(i) −wTx− b ≥ ξ∗i (3.55)

ξi, ξ
∗
i ≥ 0. (3.56)

The dual formulations again only depend on scalar products between the training
examples, and the regression line can be also be expressed by a scalar product between
the support vectors and the prediction vector,

h(x;αi, α
∗
i ) =

m∑
i=1

(αi − α∗
i )x

T
i x. (3.57)

Thus, we can again use kernels to generalize the method to non-linear cases. In practice
it has been more challenging to get SVR models to learn effectively and they are now
mostly replaced by neural networks.



4 Neural networks and Keras

In this chapter we discuss the basic operation of an artificial neural network which is
the major paradigm of deep learning. The name derives using an analogy to a biological
brain. We start this introduction by outlining the basic operations of neurons in the
brain and how these operations are abstracted by simple neuron models. We then build
networks of artificial neurons that constitute much of the recent success of AI. We
will concentrate in this chapter on using such techniques and will later come back to
discussing their theoretical embedding.

4.1 Neurons and the threshold perceptron

The brain is composed of specialized cells. These cells include neurons, which are
thought to be the main information-processing units, and glia, which have a variety of
supporting roles. A schematic example of a neuron is shown in Fig. 4.1a. Neurons are
specialized in electrical and chemical information processing. They have an extensions
called an axon to send signals, and receiving extensions called dendrites. The contact
zone between the neurons is called a synapse. A sending neuron is often referred to
as the presynaptic neuron and the receiving cell is a postsynaptic neuron. When an
neuron becomes active it sends a spike down the axon where it can release chemicals
called neurotransmitters. The neurotransmitters can then bind to receiving receptors
on the dendrite that trigger the opening of ion channels. Ion channels are specialized
proteins that form gates in the cell membrane. In this way, electrically charged ions can
enter or leave the neuron and accordingly change the voltage (membrane potential) of
the neuron. The dendrite and cell body acts like a cable and a capacitor that integrates
(sums) the potentials of all synapses. When the combined voltage at the axon reaches
a certain threshold, a spike is generated. The spike can then travel down the axon and
affect further neurons downstream.

This outline of the functionality of a neuron is, of course, a major simplification. For
example, we ignored the description of the specific time course of opening and closing
of ion channels and hence some of the more detailed dynamics of neural activity. Also,
we ignored the description of the transmission of the electric signals within the neuron;
this is why such a model is called a point-neuron. Despite these simplifications, this
model captures some important aspects of a neuron functionality. Such a model suffices
for us at this point to build simplified models that demonstrate some of the information-
processing capabilities of such a simplified neuron or a network of simplified neurons.
We will now describe this model in mathematical terms so that we can then simulate
such model neurons with the help of a computer.

Warren McCulloch and Walter Pitts were among the first to propose such a simple
model of a neuron in 1943 which they called the threshold logical unit. It is now often

Fundamentals of Machine Learning, Thomas P. Trappenberg, Oxford University Press (2020).
c© Oxford University Press. DOI: 10.1093/oso/9780198828044.001.0001
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Dendrites
Axon

Postsynaptic neurons

Synaptic cleft

Soma

A. Schematic neuron B. Schematic synapse

Nucleus

Presynaptic neurons

Fig. 4.1 A. Outline of the components of a neuron and its connectivity to other neurons in the brain

that make up the neuronal network. B. Outline of a synaptic terminal where neurotransmitters are

released that can trigger the opening of ion channels in the receiving neuron, which in turn triggers

the change of the electric state of the neuron.

referred to as the McCulloch–Pitts neuron. Such a unit is shown in Fig. 4.2A with
three input channels, although neurons have typically a much larger number of input
channels. Input values are labeled by x with a subscript for each channel. Each channel
has an associated weight parameter, wi, representing the "strength" of a synapse.

The McCulloch–Pitts neuron operates in the following way. Each input value is
multiplied with the corresponding weight value, and these weighted values are then
summed together, mimicking the superposition of electric charges. Finally, if the
weighted summed input is larger than a certain threshold value, w0, then the output is
set to 1, and 0 otherwise. Mathematically this can be written as

y(x;w) =

{
1 if

∑n
i wixi = wTx > w0

0 otherwise . (4.1)

This simple neuron model can be written in a more generic form that we will call
the perceptron. In this more general model, we calculate the output of a neuron by
applying an gain function g to the weighted summed input,

y(x;w) = g(wTx), (4.2)

wherew are parameters that need to be set to specific values or, in other words, they are
the parameters of our parameterized model for supervised learning. We will come back
to this point later regarding how precisely to chose them. The original McCulloch–Pits
neuron is in these terms a threshold perceptron with a threshold gain function,

g(x) =

{
1 if x > 0
0 otherwise . (4.3)

This threshold gain function is a first example of a non-linear function that transforms
the sum of the weighted inputs. The gain function is sometimes called the activation
function, the transfer function, or the output function in the neural network literature.
Non-linear gain functions are an important part of artificial neural networks as further
discussed in later chapters.
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Fig. 4.2 Representation of the boolean OR function with a McCulloch–Pitts neuron, also called

threshold linear unit.

The argument that McCulloch and Pitts brought forward with this model is that
neurons can implement logic functions. This is illustrated in Fig. 4.2 for the Boolean
OR function. This function output the true value (represented numerically as 1) if
either of the inputs is on 1, and false (represented numerically as 0) otherwise. The
truth table of this function is shown on the left in Fig. 4.2, and the threshold perceptron
with two inputs is shown beside it. If either of the inputs x1 and x2 has a value of
1, then the output of the neuron should be y = 1, representing TRUE. Only if both
inputs are 0 is the output value 0, representing FALSE. In terms of machine learning,
the truth table represents all possible data points of the problem, and representing this
function is thus akin memorizing all possible data points. We discussed earlier that the
interesting part of machine learning is when only a limited amount of data is available
at the learning phase and it has to generalize to unseen examples. However, the Boolean
function is the smallest case of an interesting function representation problem that is
worth discussing.

The decision line (or hyperplane in higher dimensions) of the threshold perceptron
as a classifier is illustrated on the right side of Fig. 4.2 in the parameters space spanned
by w1 and w2. This line is mathematically given by

w1x1 + w2x2 = θ. (4.4)

As can be seen from the graph, there are many solutions to this equation that can
separate the data. In the last chapter, we discussed how the solution with the largest
margin is expected to generalize well. The linear SVM can hence be thought of as a
special case of a perceptron. While SVMs went on to find a way to generalize these
methods to non-linear problems with the kernel trick, the following sections will take
these perceptrons on a different path. Specifically, while SVMs tried to preserve a
convex optimization problem with specific predefined transformations of the feature
space, deep learning aims at learning appropriate transformations as discussed further
below.

4.2 Multilayer perceptron (MLP) and Keras

To represent more complex functions with perceptron-like elements we are now build-
ing networks of artificial neurons. We will start with a multilayer perceptron (MLP) as
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shown in Fig.4.3. This network is called a two-layer network as it basically has two
processing layers. The input layer simply represents the feature vector of a sensory
input, while the next two layers are composed of the perceptron-like elements that
sum up the input from previous layers with their associate weighs of the connection
channels and apply a non-linear gain function σ(x) to this sum,

yi = σ(
∑
j

wijxj). (4.5)

We used here the common notation with variables x representing input and y rep-
resenting the output. The synaptic weights are written as wij . The above equation
corresponds to a single-layer perceptron in the case of a single output node. Of course,
with more layers, we need to distinguish the different neurons and weights, for example
with superscipts for the weights as in Fig.4.3. The output of this network is calculated
as

yi = σ(wo
ijσ(

∑
k

wh
jkxk)). (4.6)

where we used the superscript "o" for the output weights and the superscript "h" for the
hidden weights. These formulae represent a parameterized function that is the model
in the machine learning context.

Fig. 4.3 A multilayer perceptron is a standard architecture of a neural network in which input

is passed through hidden layers to the output layer. The weight values of the hidden layer is

summarized in the weight matrix wh. The output values of the nodes in the hidden layer become

the input to the output layer, which are scaled by the values of the connection strength as specified

by the elements in the weight matrix wo.

The MLP model is included in the sklearn library. We have used this already in the
last chapter, and we will implement them here again with Keras that is another library.
The reason to switch to this library is that it is build on top of routines that can run
the code on graphic processor units (GPUs). This is essential for deep learning as the
size of the models will increase as we go along and the models have commonly be
applied to large data sets. GPUs are processors that are optimized for array operations.
Such operations are common in generating graphics. Most of our operations around
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neural networks can take advantage of these specilized processors as neural networks
are based on matrix or tensor operations, including additions, multiplications, and
convolution operations. Support for deep learning has specifically been developed by
NVIDIA, so GPUs by this company are the main workhorses of deep learning.

There are several implementations that realize the basic array operations on GPUs.
This includes Theano, a Python toolbox for multi-dimensional array operations, the
Microsoft Cognitive Toolkit (CNTK) for deep-learning with support of Python, C#,
C++, and Java, and Tensorflow, which is Google’s support for deep learning. The
implementation can be written directly with the help of these toolboxes. Keras is a
general layer on top of these applications that is ideal to outline the computational
principles and support fast prototyping. We will use Keras in this book. A popular
recent alternative is PyTorch that is recommended for further studies.

Let us discuss our first deep neural network with a new example, that of hand-
written character cecognition, specifically the MNIST dataset. This dataset has domi-
nated much of the early DNN developments and must be considered a classic by now.
The data set consists of digitized examples of hand written numbers from 0 to 9. Each
image consist of 28 × 28 pixels. An examples is shown as input in Fig. 4.4. We have
already mentioned this data set in Chapter 2, but briefly, this benchmark dataset has
60,000 training examples and 10,000 test examples, and a developer is of course free
to choose any portion of the 60,000 training images as the validation set.

0
1
2
3
4
5
6
7
8
9

Fig. 4.4 A (relatively) deep neural network for the MNIST hand written character recognition

benchmark.

A network with six layers is outlined in Fig. 4.4, and the corresponding program
is included below. The first part of the program is concerned with the preparation of
the data in the appropriate format such as gathering all the pixels in the image into
a large vector of size 784 (=28 × 28) and rescaling it to a range of [0, 1]. Will later
discuss why such a normalization is useful. Also, we change the labels into a 1-hot
representation, which is a vector of length equal to the number of classes with 0s in
all components except the position that indicates the label of this class. For example,
with three classes we could have 1→ [1, 0, 0], 2→ [0, 1, 0], 3→ [0, 0, 1]. We can use
the Keras function to categorical() for this purpose.
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Listing 4.1 MNIST MLP.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
from k e r a s import models , l a y e r s , o p t i m i z e r s , d a t a s e t s , u t i l s

( x t r a i n , y t r a i n ) , ( x t e s t , y t e s t ) = d a t a s e t s . m n i s t . l o a d d a t a ( )

x t r a i n = x t r a i n . r e s h a p e (60000 , 784) / 255
x t e s t = x t e s t . r e s h a p e (10 000 , 784) /25 5
y t r a i n = u t i l s . t o c a t e g o r i c a l ( y t r a i n , 10)
y t e s t = u t i l s . t o c a t e g o r i c a l ( y t e s t , 10)

We will later reuse this part of the program to test other models.
Similar to sklearn, we will now define a model, use a fit function to train the model,

and evaluate it on the test data. The interesting part here is how the neural network
can be specified in Keras. Keras provides two principle ways to specify models: one
called sequential model which is limited to purely sequential models with single inputs
and outputs, and the more general functional model which can be used to assemble
more complex models. The functional model notation is not much more difficult and
even slightly more sensible so that we will use this mode right away. A functional
model in Keras is specified by specifying a general input, then specifying functions for
layers and connecting them by specifying their individual inputs, and finally to collect
a single model by calling a function Model() in which we specify the input and output
of the entire model. Note that a function with two bracket pairs like the Dense function
in this example means that the function returns a function, which is then called with
the second argument list.

Listing 4.2 MNIST MLP.ipynb (part 2)

i n p u t s = l a y e r s . I n p u t ( shape = ( 7 8 4 , ) )
x = l a y e r s . Dense ( 1 2 8 , a c t i v a t i o n = ’ r e l u ’ ) ( i n p u t s )
x = l a y e r s . Dense ( 1 2 8 , a c t i v a t i o n = ’ r e l u ’ ) ( x )
x = l a y e r s . Dense ( 1 2 8 , a c t i v a t i o n = ’ r e l u ’ ) ( x )
x = l a y e r s . Dense ( 1 2 8 , a c t i v a t i o n = ’ r e l u ’ ) ( x )
x = l a y e r s . Dense ( 1 2 8 , a c t i v a t i o n = ’ r e l u ’ ) ( x )
o u t p u t s = l a y e r s . Dense ( 1 0 , a c t i v a t i o n = ’ so f tmax ’ ) ( x )

model = models . Model ( i n p u t s = i n p u t s , o u t p u t s = o u t p u t s )

The MLP is characterized by a fully connected layer where each neuron of the previous
layer is connected to every neuron in the receiving layer. Such layers are now commonly
called dense layers. We have to specify the activation function for each layer if it is
not linear, which is here the rectified linear function (relu)

g(xi) =

{
xi if xi > 0
0 otherwise, (4.7)

except the last layer for which the activation function is a softmax function

g(xi) =
e−xi∑
j e

−xj
. (4.8)

The model has to be compiled. This is different from sklearn and the reason is that
at this step the model is prepared for execution on GPUs if available. Most of the
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examples in this book are prepared to be small enough so that a GPU is not required.
In the compilation step we specify which loss function to use, which optimizer we will
use, and also which metric we use to evaluate the results. Of course, we have to discuss
these choices in more detail, but for now we want to show that such networks with
these popular choices can do remarkable well. It is common that this simple model
results in a test accuracy of around 98 per cent on the MNIST dataset. In contrast, a
comparable SVM achieves around 91 per cent on the MNIST dataset.

Listing 4.3 MNIST MLP.ipynb (part 3) (with output)

model . compi le ( l o s s = ’ c a t e g o r i c a l c r o s s e n t r o p y ’ , o p t i m i z e r = ’Nadam ’ ,
m e t r i c s =[ ’ a c c u r a c y ’ ] )

h i s t o r y = model . f i t ( x t r a i n , y t r a i n , b a t c h s i z e =128 ,
epochs =10 , v a l i d a t i o n d a t a =( x t e s t , y t e s t ) )

s c o r e = model . e v a l u a t e ( x t e s t , y t e s t )
p r i n t ( ’ T e s t l o s s : ’ , s c o r e [ 0 ] , ’ T e s t a c c u r a c y : ’ , s c o r e [ 1 ] )

T e s t l o s s : 0 .09899666948468402 T e s t a c c u r a c y : 0 .9759

The performance of the model after learning is of course of utmost importance for
us. However, it is also very instructive and important for the development of the models
to monitor the performance of the model during learning. We call such graphs learning

curves. We can draw different type of curves, either evaluated on the training set or
evaluated on the validation set. It is easy to plot such curves in Keras as the fit function
already includes a history of evaluations as a callback function, and Keras provides the
framework to code your own callback function. Other deep learning frameworks also
commonly include a way to visualize the progress during learning. In the code above
we assigned the returned pointer of the fit function to dictionary list variable history.
The key() function lists the key names for the included values,

Listing 4.4 MNIST MLP.ipynb (part 4)

p r i n t ( h i s t o r y . h i s t o r y . keys ( ) )

which returns

Listing 4.5 MNIST MLP.ipynb (part 5)

d i c t k e y s ( [ ’ v a l l o s s ’ , ’ v a l a c c ’ , ’ l o s s ’ , ’ acc ’ ] )

Let us plot the accuracy learning curves

Listing 4.6 MNIST MLP.ipynb (part 6)

# P l o t t i n g l e a r n i n g c u r v e s
p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ acc ’ ] , ’−−’ )
p l t . p l o t ( h i s t o r y . h i s t o r y [ ’ v a l a c c ’ ] )
p l t . y l a b e l ( ’ a c c u r a c y ’ )
p l t . x l a b e l ( ’ epoch ’ )
p l t . l e g e n d ( [ ’ t r a i n ’ , ’ t e s t ’ ] , l o c = ’ lower r i g h t ’ )
p l t . show ( )

which results in the graph shown in Fig. 4.5. We can see that the validation accuracy, is
fairly consistent around 0.975, while the training accuracy is increasing, which might
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be a sign of overfitting. The behaviour of such curves is quite useful observe when
developing the model. It can provide some diagnostic values when the model is not
learning properly.
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Fig. 4.5 Example of the learning curves. The blue dotted line corresponds to the accuracy over

the training data, while the red solid line corresponds to the accuracy over the validation data.

4.3 Representational learning

Here, we are discussing feedforward neural networks which can be seen as imple-
menting transformations or mapping functions from an input space to a latent space,
and from there on to an output space. The latent space is spanned by the neurons in
between the input nodes and the output nodes, which are sometime called the hidden
neurons. We can of course always observe the activity of the nodes in our programs
so that these are not really hidden. All the weights are learned from the data so that
the transformations that are implemented by the neural network are learned from ex-
amples. However, we can guide these transformations with the architecture. The latent
representations should be learned so that the final classification in the last layer is much
easier than from the raw sensory space. Also, the network and hence the representation
it represents should make generalizations to previously unseen examples easy and
robust. It is useful to pause for a while here and discuss representations.

4.3.1 Signal decomposition and sparse features

To illustrate again the re-representation of a signal with filters, consider basic signal
analysis. Let us consider time-varying signals that are represented with floating point
values for each time step. Say we are sampling a EEG signal that is recorded from
electric electrodes attached to the head with 500HZ. That is, we have one data point
every 0.002 second. If we assume that a floating point is typically represented by
computer word of 64 bits, then a 10-minute length would take over 2 MB of storage.

An example signal x(t) is illustrate at the top in Fig. 4.6. While this is a relatively
complicated signal, we have created this signal from two template signals that we call
the basis functions. With these basis functions we can reconstruct the signal as

x(t) = a1y1(t) + a2y2(t) (4.9)
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Representing the original signal with these basis functions has a big advantage. For
example, if we store a set of basis functions in several computers, then we can transmit
the signal with only two numbers for the coefficients a1 and a2. Of course, we can
not expect real signals to be made up of only these two basis functions. So in practice,
we want to create a long list of "appropriate" basis functions. A common example for
basis functions are sine waves which are usually good choices for periodic signals.
A composition of a signal into such sine of cosine functions is called a Fourier
transformation

x(t) =

∫ ∞

0

a(λ) sin(2πλt) + b(λ) cos(2πλt)dλ (4.10)

Another common choice for more localized functions are functions somewhat similar
to y1 in the figure. Such functions are called wavelets and the corresponding decompo-
sition is a wavelet transform. These functions are usually chosen by hand and have been
designed specifically for certain applications. The filters in deep neural networks can
be seen as representing a from of basis functions for a specific feature decomposition.
The interesting part of neural networks is that these functions are learned from data so
that we do not need to design basis functions by hand.

Fig. 4.6 Illustration of signal representation with templates.

Since we can take a large or even infinite number of basis functions into account, it
is possible to represent any function with appropriate basis functions. However, having
arbitrary basis function is also not the best choice. That is, if we have a long list of
basis functions, then we might still need a large number of coefficients. Indeed, if we
make the basis function a value at each time step, then we would just end up with the
same representation as before for a signal for which we just store the value at each
time point. An important insight to make efficient use of resources while extracting the
"essence of signals" is to try and find sparse representations. A sparse representation

is a representation where we might have a large number of basis functions in our
dictionary (nodes in a deep network) but are only using a relatively small number of
active nodes to represent each example. In our example this might correspond to

y(t) = a1x1(t) + a2x2(t) + a3x3(t) + a4x4(t) + a5x5(t) + a6x6(t) + ... (4.11)

with a coefficient vector
a = (1, 3, 0, 0, 0, 0, 0, ...). (4.12)
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Sparse representations lead to considerable compressions such as being able to repre-
sent a continuous signal with only two numbers in our example. Sparse compression
can be an important factor in machines to gain some "semantic knowledge" of the
world. For example, there are many instantiations of objects such as cars, but my
ability to characterize them with one word is equivalent to semantic knowledge and a
form of sparse representation.

4.3.2 De-noising autoencoders and semantic compression

If compressed (or sparse) representations are so useful, can we force such representa-
tions in our neural networks? There are different techniques that will indeed force some
compressed representations, including an architecture called an autoencoder outlined
here as well some regularization methods discussed earlier.

A simple example of an autoencoder is shown in Fig. 4.7. In this network we
start with an input layer that is connected to a smaller hidden layer and then to an
output layer that is the same size as the input layer. The reason for choosing an output
layer that has the same size as the input layer is that we want to build a mapping
function that maps inputs to the same output. This is an example of unsupervised or
self-supervised learning, as we do not require labels for this learning task, just raw
data such as pictures.

Fig. 4.7 Examples of autoencoders with the basic idea at the top, the deep autoencoder that kicked

off deep learning and some comparisons of auto encoders to PCA. From Science, 313 (5786),

G. E. Hinton, R. R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks,

pp. 504-507, DOI: 10.1126/science.1127647, Copyright c© 2006, American Association for the

Advancement of Science. Reprinted with permission from AAAS.
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Why would we want to build such functions and isn’t this simply the identity
function? The main point is that the mapping function represented by this neural
network is channeled through a small hidden layer that forces some compression. In
this sense we try to extract useful filters. Sometimes this is described as semantic
hashing as this compressed space might represent higher knowledge. Most of the
actual implementation of such networks use a version where the inputs are somewhat
corrupted by noise and the labels are the noiseless pattern. Such an architecture is
called a de-noising autoencoder. Noise does actually help in this circumstance to
force the solution away from a simple identity function and to generalize better to
new unseen examples. The figure includes an example of t-SNE plots that show
feature representation learned from the MNIST data set by an autoencoder compared
to PCA (principal component analysis) that we mentioned earlier. The classes of the
autoencoder are much better clustered which shows a useful organization of the latent
space. We will come back to a more modern implementation of such strategies with
variational autoencoders.

4.4 Convolutional neural Networks (CNNs)

4.4.1 Filters and convolutions

We mentioned earlier that an SVM is like an improved perceptron in that it takes regu-
larization and some form of feature transformation into account. We should therefore
ask ourselves why the MLP is then outperforming an SVM on the MNIST data which
achieves only around 94 per cent with the sklearn implementation. The main difference
is that here we used more layers with adjustable parameters compared to the SVM
which we can view as a one-layer (smart) perceptron with an additional preprocessing
step of transforming inputs into a high-dimensional representation of the feature space
defined by the kernel. The use of additional layers with learned parameters allows for
the learning of hierarchical features. We will illustrate this point in more detail later,
but for now it is sufficient to say that deep learning enables the learning of hierarchical
representations that are difficult to match with shallow (less sequential) operations.
Increasing the number of layers has allowed successful applications of neural networks
to more complex problems. Models with tens or even hundreds of layers are now not
uncommon.

The question is then how we can make the neural networks scalable, as it not
only takes more computer time to process the models, but also increases the demand
on training examples to learn the increased number of parameters of more complex
models. The answer is that we can build-in some assumptions into our network archi-
tecture. We will see this strategy several times. Here we discuss a particular important
case, that of position invariance of features.

It is useful to realize that neurons represent detectors or filters for specific features,
meaning that neurons become maximally activated for specific input patterns. This is
easily understood in vision applications. We demonstrated this already in Chapter 2
when discussing convolutions. While we demonstrated convolutions there with pre-
defined filters, we are now taking this a step further buy building networks based on
convolutional operations in which the parameters of the filters are learned.
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4.4.2 CNN and MNIST

The idea of designing position-invariant feature detectors in neural networks was
first described by Fukushima in 1980. Back then, Fukushima worked for NHK, the
Japanese public broadcaster, together with physiologists, as NHK was interested to
understand the mechanisms of human vision. It was well known since the early 1960s
from experiments by Hubel and Wiesel showing some neurons in the primary visual
cortex, the first stage of visual processing in the cortex, are edge detectors, and that
such features detectors must be combined in a way so that object recognition becomes
invariant to the location in space.

Edge detectors are the workhorse of traditional computer vision, and we discussed
in Chapter 2 how such filters are implemented with convolutions. The neural networks
that we discussed then had to learn individual weights for each pixel location. Even
if this network could learn to represent an edge detector, separate detectors have to
be learned for each location in an image since edges can appear in all locations.
Another way of thinking about convolution is that a neuron (specific filter) is applied
to every possible location in the image. This leads us to the idea of weight sharing and
convolutional neural networks (CNNs).

To discuss the implementation of this network type with Keras we go back to
the MNIST benchmark example. The basic idea of a convolutional network is to re-
place the dense connections of regular networks, that are implemented with a matrix
multiplication h = wx, with that of a convolution h = w ∗ x. Thus, the network
looks a lot like the one shown in Fig. 4.4. While such a convolutional network has far
fewer parameters than a dense network, implementing the convolution and running it
efficiently on a computer is challenging. It is therefore that we need to use graphics
processing units (GPUs). GPUs are special purpose processors that are designed for
efficient matrix operations, and these processors have been very helpful in deep learn-
ing. In particular, NVIDIA has added specific support for deep learning operations,
and it is such lower-level support on which we rely in the following. While there are
specific frameworks that even support directly the programming with GPUs, such as
Tensorflow or Theano, we chose here to apply Keras that is itself utilizing backends
like Tensorflow and Theano, as well as other support on GPUs, to implement the op-
erations we need in deep learning. Hence, as long as your programming environment
is implemented to take advantage of GPUs, we can ignore the details and work on a
higher level with system architectures. If you do not have a GPU than I recommend
running the following MNIST examples on a smaller traning set.

The Keras program to apply a CNN to the MNIST data is shown in the following.
The program starts by linking the required libraries and reading the data as we did
earlier for the dense network (MLP). The only difference is that we now reshape the
input data into a 2-dimensional array instead of the 1-dimensional feature vector for
each example. Actually, the data is already in the form of 28× 28 for each sample, but
since Keras expects the number of channels we have still to reshape it into the form
28× 28× 1.
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Listing 4.7 MNIST CNN.ipynb (part 1)

import k e r a s
import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
from k e r a s import models , l a y e r s , o p t i m i z e r s , d a t a s e t s , u t i l s

( x t r a i n , y t r a i n ) , ( x t e s t , y t e s t ) = d a t a s e t s . m n i s t . l o a d d a t a ( )
x t r a i n = x t r a i n . r e s h a p e (60000 , 28 , 28 , 1 ) /255
x t e s t = x t e s t . r e s h a p e (10 000 , 28 , 28 , 1 ) /25 5
y t r a i n = u t i l s . t o c a t e g o r i c a l ( y t r a i n , 10)
y t e s t = u t i l s . t o c a t e g o r i c a l ( y t e s t , 10)

The model is then defined by the following code.

Listing 4.8 MNIST CNN.ipynb (part 2)

i n p u t s = l a y e r s . I n p u t ( shape =(28 , 28 , 1 , ) )
x= l a y e r s . Conv2D ( 3 2 , k e r n e l s i z e = (3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ ) ( i n p u t s )
x= l a y e r s . Conv2D ( 6 4 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ ) ( x )
x= l a y e r s . MaxPooling2D ( p o o l s i z e = (2 , 2 ) ) ( x )
x= l a y e r s . Dropout ( 0 . 2 5 ) ( x )
x= l a y e r s . F l a t t e n ( ) ( x )
x= l a y e r s . Dense ( 1 2 8 , a c t i v a t i o n = ’ r e l u ’ ) ( x )
x= l a y e r s . Dropout ( 0 . 5 ) ( x )
o u t p u t s = l a y e r s . Dense ( 1 0 , a c t i v a t i o n = ’ so f tmax ’ ) ( x )

model = models . Model ( i n p u t s = i n p u t s , o u t p u t s = o u t p u t s )

The model starts with a convolutional layer that produces filtered images with thirty-
two channels where each channel is the result of filtering with a separate filter. The
size of the filter is specified with the kernel size parameter. We used a rectified
linear (RELU) activation functions that is common for deep networks. We then add
another convolution layer. Since the output size is defined by the previous we don’t
have to include the input size. In this layer we expand the representation to sixty-four
channels.

The next layer is a new type of layer that is produced by a fixed kernel type
defining an operation that is called max pooling. Max pooling takes a consecutive
patch of pixels, in this case a pooling size of (2,2), and replaces this with one pixel
of the maximum of this patch. This will shrink the image size, in this example case
by a half in each direction. Shrinking the image is important as we eventually want to
get away from details of a picture to a higher-level (semantic) description of the input.
Replacing some image patch with only the max value of its pixels seems to be a rather
drastic way of doing this, and some other proposals have been offered. For example,
we could take the average of the pixels. Such an average pooling is in practice not so
much different than the max pooling operation. To reduce the signal size we could also
shift the filter by more than one pixel every time it is applied. The number of pixels for
which the filter is moved every time during a convolution operation is called a stride.
More advanced techniques have been proposed, such as capsule networks, but these
are beyond our discussion at this point.

The next layer we add is a dropout layer. This is actually not really a new layer but
a post-processing of the current layer which turns off some of the nodes randomly. The
probability of a neuron to be turned off is set to 25 per cent in our example. Dropout is
a common technique to prevent overfitting. Overfitting in neural networks can happen
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when individual neurons become very sensitive to specific training examples, and
turning neurons off randomly during training forces a more distributed representation.
This can be seen as a type of data augmentation as the next layer has to learn noisy
versions of the patterns and hence cannot specialize on single sharp features. Dropout
is only turned on during training as we want all the neurons active during predictive
recalls. Since dropout affects the training accuracy it is possible that the training
accuracy is lower than the accuracy of the test set.

At the end, we feed this new representation of the image into a classification
network which is an MLP in itself. The function layers.Flatten() does flatten
the features into a 1-dimensional vector that is the input to the MLP. The rest of the
code specifies how to train this network and how to evaluate it as with our previous
examples.

Listing 4.9 MNIST CNN.ipynb (part 3)

model . compi le ( l o s s = k e r a s . l o s s e s . c a t e g o r i c a l c r o s s e n t r o p y ,
o p t i m i z e r = k e r a s . o p t i m i z e r s . A d a d e l t a ( ) ,
m e t r i c s =[ ’ a c c u r a c y ’ ] )

model . f i t ( x t r a i n , y t r a i n ,
b a t c h s i z e =128 ,
epochs =12 ,
v e r b o s e =1 ,
v a l i d a t i o n d a t a =( x t e s t , y t e s t ) )
s c o r e = model . e v a l u a t e ( x t e s t , y t e s t , v e r b o s e =0)
p r i n t ( ’ T e s t l o s s : ’ , s c o r e [ 0 ] )
p r i n t ( ’ T e s t a c c u r a c y : ’ , s c o r e [ 1 ] )

CNNs improve the MNIST recognition even further and are now at the point where
they can recognize most examples in the test set. Running this network in a reasonable
time requires a GPU, but it is easy to get accuracies above 99 per cent. Indeed, we are
getting to a point where the few mistakes of the network may even be queried as to
real mistakes. For example, an interesting variant of such networks has been studied
by Jürgen Schmitdhuber’s lab using a design with several parallel CNN streams that
resemble an ensemble method similar to classification forests discussed in Chapter 3.
They showed that such a network is able to recognizes all but thirty-two examples.
These examples are shown in Fig. 4.8 together with their "correct" label shown in the
upper right-hand corner, and the first and second choice produced by the network at
the bottom of each image. I leave it to the reader to judge for themselves if these labels
are sensible.

4.4.3 More examples of deep networks

We have demonstrated the CNN on the classic MNIST dataset, but it is interesting to
note that these networks gained wide recognition in another dataset called ImageNet.
ImageNet is a collection of over 1 million pictures from the Internet that have been
labeled for over 1,000 classes. This dataset has been used for a competition where
some traditional machine learning methods such as SVMs have gained some success.
However, the traditional methods stagnated with accuracies remaining in the 80 per
cent range. Alex Krizhevsky and colleagues applied CNNs to the problem and won a
competition in 2012, starting a trend of improving the performance of models in object
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Fig. 4.8 The examples of the MNIST test set that were misclassified in the networks. From Dan

Ciresan, Ueli Meier, and Jurgen Schmidhuber, Multi-column Deep Neural Networks for Image

Classifcation: Technical Report Number IDSIA, 04–12, p. 4, Figure 2b, c© The Authors, 2012.

recognition even further. The so-called AlexNet shown in Fig. 4.9 was trained on
ImageNet. This network takes 3-dimensional images (e.g. RGB values of pixels) and
applies a layer of filters to them. This specific network divided the pathways through
the network into a stream in order to facilitate the computation with two GPUs, but
at this point it is only necessary to look at one stream. In this example, the inputs are
of size 224 × 224 with three channels (RGB). This input is fed into a convolution
layer. The first-level filters are of size 11 × 11, so that the resulting image is of size
55× 55. This layer also consists of forty-eight different filters so that we end up with
forty-eight filters. At this stage, the RELU activation function is applied, followed
by a max pooling layer. The steps of convolution, applying a gain function, and max
pooling are repeated to build a deep convolutional network. At the end, some dense
layers are used to gather all the information and make the final classification based on
the features extracted by the network.

Fig. 4.9 A famous implementation of a convolutional neural network for image classification called

AlexNet which won the ImageNet competition in 2012 (Krizhevsky, Sutskever, Hinton (2017),

ImageNet classification with deep convolutional neural networks, Communications of the ACM.

60 (6): 84-{90.) The network was distributed among two GPUs, hence the two pathways with only

one interaction before the dense layers to minimize communication overhead.

Convolutional neural networks have become a driving technique behind a lot of
progress in computer visions. It is therefore useful to dig a bit deeper into this area in
the rest of this chapter. We discussed how CNNs are implementing translation-invariant
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feature detection, although they are now sometimes used on representations that are
not strictly translation invariant. In the detection network above, we switch from a
convolutional to a fully connected layer at a specific point, and we could ask ourselves
how many convolutional layers we should have before switching to dense layers. In
this context, it is good to view a dense network with N nodes as a convolutional layer
with N channels and an i × j kernel (receptive field), where i and j are the width
and height of the previous layer that is assumed here to be 2-dimensional besides the
channel dimension. So, a dense network is like a convolutional network with large
receptive fields added to the previous layer. A more common convolution with small
filter sizes can be seen more as a local operation. Such a node can still access a lot
of relevant information through the hierarchy of previous representations, and it is
possible that during training, the features in previous layers are organized so that they
can be accessed locally. Thus, convolutions with small kernels still make sense in a
deep network.

Fig. 4.10 (A) Test image of canoe laying on a dock. (B) Illustration of the network that was

implemented by the Oxford Visual Geometry Group called VGG16 which achieved a 92.7 per

cent top-five test accuracy in ImageNet for the 2014 VisNet competition (K. Simonyan and A.

Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014). (C)

Module of a ResNet network with skip connections (From Kaiming He, Xianguy Zhang, Shaoquing

Ren, and Jian Sun, Deep Residual Learning for Image Recognition, p. 2, Figure 2 c© The Authors,

2015.)

The main focus of many computer vision applications in object recognition which
can be seen as a mapping from a high-dimensional sensor space, representing the
physical consequences of the appearance of an object, to a lower-dimensional semantic
space representing meaning. By using pooling operations it is then common to end
up with pyramidal architectures like the one shown in Fig. 4.10A. This architecture
from the Oxford Visual Geometry Group (VGG16) was an entry in the ImageNet
competition in 2014 and had sixteen layers, hence the name VGG16. It was viewed
as a very deep network at this time, although today there are networks in use that
have may more layers, even running to the hundreds. Implementing VGG16 is a great
exercise. An outline of the architecture is given below. We show here the architecture
for the sequential model mode in Keras where we simply add a layer with each add
command. The input is thereby inferred from the output of the previous layer. The
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summary() function at the end prints out a summary of the architecture.

Listing 4.10 VGG16Architecture.ipynb

from k e r a s import models , S e q u e n t i a l , l a y e r s

model = models . S e q u e n t i a l ( [
l a y e r s . Conv2D ( 6 4 , ( 3 , 3 ) , i n p u t s h a p e =(224 , 224 , 3 ) ,

padd ing = ’ same ’ , a c t i v a t i o n = ’ r e l u ’ ) ,
l a y e r s . Conv2D ( 6 4 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ ) ,
l a y e r s . MaxPooling2D ( p o o l s i z e = (2 , 2 ) , s t r i d e s = (2 , 2 ) ) ,
l a y e r s . Conv2D ( 1 2 8 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ ) ,
l a y e r s . Conv2D ( 1 2 8 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ , ) ,
l a y e r s . MaxPooling2D ( p o o l s i z e = (2 , 2 ) , s t r i d e s = (2 , 2 ) ) ,
l a y e r s . Conv2D ( 2 5 6 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ , ) ,
l a y e r s . Conv2D ( 2 5 6 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ , ) ,
l a y e r s . Conv2D ( 2 5 6 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ , ) ,
l a y e r s . MaxPooling2D ( p o o l s i z e = (2 , 2 ) , s t r i d e s = (2 , 2 ) ) ,
l a y e r s . Conv2D ( 5 1 2 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ , ) ,
l a y e r s . Conv2D ( 5 1 2 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ , ) ,
l a y e r s . Conv2D ( 5 1 2 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ , ) ,
l a y e r s . MaxPooling2D ( p o o l s i z e = (2 , 2 ) , s t r i d e s = (2 , 2 ) ) ,
l a y e r s . Conv2D ( 5 1 2 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ , ) ,
l a y e r s . Conv2D ( 5 1 2 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ , ) ,
l a y e r s . Conv2D ( 5 1 2 , ( 3 , 3 ) , a c t i v a t i o n = ’ r e l u ’ , padd ing = ’ same ’ , ) ,
l a y e r s . MaxPooling2D ( p o o l s i z e = (2 , 2 ) , s t r i d e s = (2 , 2 ) ) ,
l a y e r s . F l a t t e n ( ) ,
l a y e r s . Dense ( 4 0 9 6 , a c t i v a t i o n = ’ r e l u ’ ) ,
l a y e r s . Dense ( 4 0 9 6 , a c t i v a t i o n = ’ r e l u ’ ) ,
l a y e r s . Dense ( 1 0 0 0 , a c t i v a t i o n = ’ so f tmax ’ )
] )

model . summary ( )

Training such a network takes time, in this case several weeks on multiple powerful
GPUs. However, there are many architectures with published weights. Such pre-trained
networks can be used in many ways. Of course they could be used right out of the
box on data similar to the data used during training. More importantly, we assume
that such systems learn basic filters such as edge detectors and color maps that are
useful in other vision system. Using fixed pre-trained layers in other tasks for early
layers would make sense for early representations, and training could then concentrate
on the higher layers specific to the classes of the new task. This is often advisable as
learning more shallow parts of the new network is much more efficient. In Keras there
are several pre-trained networks available. As an example, applying the pre-trained
VGG16 network on the image of a canoe laying on a dock as shown in Fig. 4.10A is
given in the code at Listing 4.11. This codes imports the network that is pre-trained
on the ImageNet dataset. It then uses the Keras function to load the test image as this
function scales it to the right size by interpolation. Since these networks usually expect
batches of figures, we have to add a dimension for the batch size. In our case with one
test image, size=1. It also uses the function preprocess input() that normalizes
the image to the format that is expected by the network. The results of applying this
specific test image with the pretrained network is predicting a boathouse with 28 per
cent confidence, a dock with 11 per cent confidence, and an ashcan with less than 6
per cent confidence.
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Listing 4.11 Recognize.ipynb (part 1) with output

from k e r a s . a p p l i c a t i o n s . vgg16 import VGG16 , p r e p r o c e s s i n p u t ,
d e c o d e p r e d i c t i o n s

from k e r a s . p r e p r o c e s s i n g import image
import numpy as np

model = VGG16( w e i g h t s = ’ i m a g e n e t ’ )
img = image . l o a d i m g ( ’ canoe . j p g ’ , t a r g e t s i z e =(224 , 224) )
p l t . imshow ( img )
x = image . i m g t o a r r a y ( img )
x = np . expand d ims ( x , a x i s =0)
x = p r e p r o c e s s i n p u t ( x )
y = model . p r e d i c t ( x )
p r i n t ( ’ P r e d i c t e d : ’ , d e c o d e p r e d i c t i o n s ( y , t o p =3) [ 0 ] )

P r e d i c t e d : [ ( ’ n02859443 ’ , ’ b o a t h o u s e ’ , 0 . 2 7 7 4 2 1 6 ) ,
( ’ n03216828 ’ , ’ dock ’ , 0 . 1 1 5 7 8 3 4 7 ) ,
( ’ n02747177 ’ , ’ a s h c a n ’ , 0 . 055925433) ]

We have briefly outlined the basic convolutional network types, specifically that of
AlexNet and VGG16, and it is useful to mention at least two more well-known example
architectures. The first one is ResNet. The important feature introduced by ResNet is to
use skip connections where the output of some layers is fed into layers of later stages in
additions to the output of the intermediate layers. An example is shown in Fig. 4.11A.
The idea behind the improvement in this network is that deep networks are difficult
to train. Part of this is the problem of vanishing gradients where the training signal
gets smaller and smaller when propagating back the error through the layers to earlier
layers. We will later discuss training in more detail. At this point it suffice to mention
that shallow networks are easier to train but that such networks usually do not have
the representational complexity to describe more detailed features. Skip connections
can help in that the shallower network can learn a basic recognition system while the
deeper components can learn to represent the residuals, hence the name ResNet. There
is a pre-trained ResNet with fifty layers available in Keras, and since this network
takes the same input as VGG16, we can simply use the code in Listing 4.12 to try
ResNet50 if we ran VGG16 earlier. Applying the picture in Fig. 4.10A to it, ResNet50
guesses labels of canoe with 78 per cent confidence, and much lower confidence level
with around 4 per cent confidence for both mailbox and boathouse. Of course, such
networks will further evolve. For example, at the time of writing there has been some
significant improvements made to ResNet with an architecture called DenseNet. Of
course, a book such as this can not provide the latest developments in this area, but the
above mentioned architectures have contributed much to the development of CNNs.
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Listing 4.12 Recognize.ipynb (part 2) with output)

from k e r a s . a p p l i c a t i o n s . r e s n e t 5 0 import ResNet50

model = ResNet50 ( w e i g h t s = ’ i m a g e n e t ’ )
y = model . p r e d i c t ( x )
p r i n t ( ’ P r e d i c t e d : ’ , d e c o d e p r e d i c t i o n s ( y , t o p =3) [ 0 ] )

P r e d i c t e d : [ ( ’ n02951358 ’ , ’ canoe ’ , 0 . 7 8 3 7 9 2 5 6 ) ,
( ’ n03710193 ’ , ’ mai lbox ’ , 0 . 046462867) ,
( ’ n02859443 ’ , ’ b o a t h o u s e ’ , 0 . 041660763) ]

Fig. 4.11 Example of an Inception network that combines filters with different dimensions. From

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich, Going Deeper with Convolutions, p.

5., Figure 2 and p. 7, Figure 3, c© The Authors, 2014.

Finally, another major architecture idea of deep convolutional networks is the
so called GooLeNet, also called an inception network. The idea behind an inception
network is the realization that the sizes of objects in pictures can vary quite considerably
so that the size of the filters matter. Of course, even with small filter sizes we can cover
larger receptive fields (the area covered by a neuron) in later layers in a hierarchical
network. However, this brings with it the challenges of training deeper networks. A
major component of the inception network is to combine filters with different kernel
sizes. For example, 1 × 1, 3 × 3, and 5 × 5 kernels, as shown in Fig. 4.11A. The
outcomes of these filters are then concatenated to represent the input for the next
layer. The larger the filter the more computationally expensive it is. Therefore, later
versions of the inception networks factorize n × n convolution into a 1 × N and a
N × 1 convolution. This is computationally much more efficient. Note that pooling
is included as a parallel stream in the inception layer that gets concatenated with the
output of the other filters.

Another feature of an inception network shown in Fig. 4.11B is to use a layer of c
filters to compress the channels. Note that when we talk about an n × n convolution
we mean the convolution operation in each channel and that we then add together
the results of all the channels. Keeping the number of channels small also helps
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with the computational efficiency of the networks. Finally, the architecture shown in
Fig. 4.11C shows another interesting feature, that of using intermediate outputs for
training purposes. The idea is to help layers during training to get feedback so that
the learning of such deep networks becomes more efficient early during the learning
phase. While this last feature has not been as useful in practice as expected, there
are several other tricks in later versions of the inception network that help to build
even deeper versions. Keras includes the version 3 of the inception networks called
InceptionV3, as well as a version that combines these ideas with skip connections
called InceptionResNetV2. Since the inception network takes a different size input,
we need to load the picture for our test case again as shown below. The InceptionV3
network predicts a dock with 10 per cent confidence, a barrow with 5 per cent and a
canoe with 4 per cent.

Listing 4.13 Recognize.ipynb (part 3) with output)

from k e r a s . a p p l i c a t i o n s . i n c e p t i o n v 3 import I n c e p t i o n V 3

model = I n c e p t i o n V 3 ( w e i g h t s = ’ i m a g e n e t ’ )
img = image . l o a d i m g ( ’ canoe . j p g ’ , t a r g e t s i z e =(299 , 299) )
p l t . imshow ( img )

x = image . i m g t o a r r a y ( img )
x = np . expand d ims ( x , a x i s =0)
x = p r e p r o c e s s i n p u t ( x )
y = model . p r e d i c t ( x )

p r i n t ( ’ P r e d i c t e d : ’ , d e c o d e p r e d i c t i o n s ( y , t o p =3) [ 0 ] )

4.5 What and where
We have so far only discussed object recognition. In many applications, we want to go
further and also tell where the objects are in the picture. For example, for self-driving
cars, we want to know where pedestrians are or where the road is. One way of doing
this is to place bounding boxes around the objects, as shown in Fig.4.12. A popular
architecture for this is called YOLO (You Only Look Once). The idea is thereby to
train a network not only on single labels, but also on the location (x, y), the size (w, h)
of a bounding box, and its confidence. The network does this by dividing an image
into an array of grid cells of size S × S, where S was set to S = 7 in the original
example. The network makes B predictions of the five numbers mentioned earlier
(x, y, w, h, conf) for each bounding box (B = 2 in the original example), so that we
need S × S × (B ∗ 5 + C) output nodes. C is here the number of classes, which was
C = 20 in the dataset in the original paper, hence the output shape of 7×t×30. Training
this network then requires a loss function with multiple components, weighting the
contribution of classification accuracy, location accuracy, and confidence. There are
several other variants of YOLO in the literature, but there are of course also other
architectures to estimate bounding boxes.

While such "what-and-where" networks have many applications already, some-
times we need even more precision in the localization of objects. An example is the
important area of segmentation, which seeks to outline objects in pictures. An example
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Fig. 4.12 A network called YOLO (You Only Look Once) that predicts bounding boxes for objects

and labels them. From Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi, You

Only Look Once: Unified, Real-Time Object Detection, p. 2., Figure 2 and p. 3, Figure 3, c© The

Authors, 2016.

is shown in Fig.4.13. This is important when removing objects from pictures or to plan
specific manipulations such as a robot grabbing an object. One possible solution to
this is classifying each pixel. This seems to be a daunting task, but we will see that
there are elegant solutions available with fully convolutional networks. To discuss this
further, we go back to the VGG16 network discussed at the end of the last section.
We can strip off the top (dense) layers and then add another layer that up-samples
the last convolutional layer of the VGG16. This up-sampling can be some form of
interpolation, although the filters can also be learned. It is best to think about this
up-sampling as the inverse of pooling. In this way we can recover the size of the
original image. We can then use a segmented version as a fine-grained label for each
pixel and train on the corresponding loss. It is thereby common to drop some of the
connections so that only specific regions contribute to training in each iterations. This
procedure mimics some form of training on individual objects. We can then combine
this coarse semantic information with more fine-grained information from the original
input, or also from early layers convolutional layers. This resembles somewhat the skip
connections discussed earlier. Needless to say, there are now a variety of new versions
of such segmentation networks discussed in the literature.

4.6 More tricks of the trade

We mentioned several networks that have considerably enhanced computer vision ca-
pabilities and have thereby enabled a flurry of new applications. Such networks are
now in use in commercial applications, and these commercial networks are sometimes
even larger than the ones discussed here. Getting these large networks to work appro-
priately requires a lot of training and, sometimes, additional tricks. Here we mention
a few common techniques that are used frequently. It is worthwhile to study these
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Fig. 4.13 A fully convolutional network (FCN) which consists of layers for recognition as in VGG16

and then uses up-sampling and skip connections to classify each pixel in the image. From Jonathan

Long, Evan Shelhamer, and Trevor Darrell, Fully Convolutional Networks for Semantic Segmen-

tation, p. 1, Figure 1 c© The Authors, 2015.

further and we will mainly outline some of those techniques here and will have more
discussions on some details in later chapters.

Learning appropriately is a major task to make the networks work in applications,
and the training algorithms are therefore important to study. We have thus far not
talked much about this central aspect of machine learning and we will go into more
details later, but most learning algorithms for neural networks are gradient based,
which brings with it some challenges. While later we will go through some of the
calculations of the gradients in small examples, modern packages include automatic
differentiation routines that make the application of gradient learning much simpler.
We have used some popular choices earlier, such as the Adam optimizer, which is an
adaptive learning rate method.

While learning algorithms have received a lot of attention, a big factor for the suc-
cess of training a network is the number of training examples we need. Unfortunately,
there is no simple rule for how many training examples are necessary. Efficient training
depends on many factors such as the training algorithm itself, the right regularization,
and, of course, ultimately on the complexity of the problem itself. The only fact that
is clear is that a more complex model generally needs more training data. While "big
data" has been a buzzword in certain circles, many applications do not have an infinite
number of labeled examples, and making deep learning work with limited data is
hence a very interesting and quite relevant area in practice. Indeed, it can be argued
that the brain is a model that must be able to capture a complex world from limited
experience (data) in contrast to some of the AI applications that often target a very
narrow application domain with data that are usually out of the reach of individual
humans during development. Thus, training with limited data is a major challenge in
machine learning. We will later discuss techniques such as unsupervised learning that
can help us with pre-training networks to a stage where smaller labeled data can be
used. Transfer learning is another hot topic in machine learning that seeks to utilize
trained knowledge of similar tasks to learn new tricks quickly. In a hierarchical vision
system it is clear that we do not have to learn all layers all over again for new problems.
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Learning feature representations in early layers should be to some extent independent
of the higher-level tasks. It is therefore common to utilize pre-trained networks in
vision and other domains such as natural language processing.

We have already seen and used pre-trained networks in Keras in the last section,
where we used a VGG16 network pre-trained on ImageNet. The next step is to use
some part of the network, such as the layers before the dense network, as pre-trained
feature encoders. We can then build on top of this encoder of the learned latent space
of image representations a new network for a new classification task. If we treat the
feature encoder as a preprocessing step, then the new network on top of this is just
another network that has to be trained. It is also possible to view the whole architecture
as a new network and train all of the layers. This can still be beneficial, in contrast to
training from scratch, as the initial weight conditions are already contributing to the
solution and fine-tuning them to a new application might be beneficial. Using parts of
a pre-trained network is easy in Keras as it includes a parameter in the call to the model
function to disregard the top layers. The Keras documentation includes example code
under Applications to show how to fine-tune pre-trained networks.

In addition to using pretrained networks, preventing overfitting in large networks is
often necessary and is a bit of an art. Methods for preventing overfitting are commonly
referred to as regularization techniques. The name comes from the fact that overfitting
usually manifests itself by high variance in generalization, and making such new
predictions more "regular" is our aim. The main idea behind regularization is to
introduce sensible restrictions so that the effective model is less complex. For example,
in overfitting it can happen that some of the weight values are overly large, and a
common method is therefore to encourage the optimizer to find solutions in which
all parameters are as small as possible. Since the model parameters are now weights,
such a procedure is often called weight decay. Rather than minimizing each single
weight, it is common to restrict only the sum of the weights or the square of the vector
norm to be minimized. The latter we have already seen in support vector machine
where minimizing the squared norm of the weight vector corresponds to maximizing
the margin in classification. Another popular method for deep learning is dropout.
Dropouts randomly sets the activation of some neurons in a layer to 0 so that this neuron
does not contribute to the prediction of the output during learning. This prevents the
specialization of single neurons (often called grandmother cells) as then there must be
other neurons that also can perform the tasks in conjunction with others. During the
employment of the model, this dropout is removed to guarantee maximal performance.
We will see later that we can summarize many regularization methods by describing
them as priors in our model assumptions.

Finally, important techniques that often helps enormously to find good solutions
in the model space is input normalization and batch normalization. We commonly
normalize the input by subtracting the mean of the data, either over all the available
data, or more commonly over each new batch of the input data, and dividing this by
the standard deviation of the data.

μ =
1

nB

nB∑
i=1

xi (4.13)
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σ2 =
1

nB

nB∑
i=1

(xi − μ)2 (4.14)

xi ← xi − μ√
σ2

(4.15)

Sometimes there is a small number added to σ2 to prevent the fraction in the last
equation becoming too large when σ2 is close to 0. Input normalization will often help
the speed of learning, and we will later discuss why this is. If normalization of input
data helps, then why not apply it to each layer in the network? This is now common
and called batch normalization. One problem with this procedure is that by changing
the overall scaling and a possible shift of the data in each batch, then the following
network has to unlearn the specific weights. This seems rather counterproductive.
Batch normalization therefore includes two separate trainable parameters to absorb
the overall effect of the shift and scale,

xi ← γxi + β. (4.16)

With these trainable parameters, the training algorithm itself can adjust the right rate
of changes.

There are many other tricks and techniques to make deep neural networks work for
some applications, and working with such techniques is not always easy. For example,
it is not always the case that batch normalization helps and sometimes it could even
worsen the training early in the training process. The same holds for dropout and the
choice of the learning rule. As we stressed already several times, at the end it depends
on the structure of the problem itself whether the specific model proposed through
deep learning is appropriate for this application. This is another reason to understand
the principles behind such methods, such as regularization in general, which we will
consider in the following chapter.





5 Regression and optimization

We have seen that writing machine learning programs is easy with high-level computer
languages and with the help of good machine learning libraries. However, applying such
algorithms with superior performance appropriately requires considerable experience
and a deeper knowledge of the underlying ideas and algorithms. We will now take a step
back to consider basic regression in more detail, which in turn will be the foundation
for discussing probabilistic models in the next chapters. This chapter includes the
discussion of the basis of the learning algorithm though gradient descent.

5.1 Linear regression and gradient descent

Linear regression is usually taught in high school, but my hope is that this book will
provide a new appreciation for this subject and associated methods. It is the simplest
form of machine learning, and while linear regression seems limited in scope, linear
methods still have some practical relevance since many problems are at least locally
approximately linear. Furthermore, we use them here to formalize machine learning
methods and specifically to introduce some methods that we can generalize later to
non-linear situation. Supervised machine learning is essentially regression, although
the recent success of machine learning compared to previous approaches to modeling
and regression is their applicability to high-dimensional data with non-linear relations,
and the ability to scale these methods to complex models. Linear regression can be
solved analytically. However, the non-linear extensions will usually not be analytically
solvable. Hence, we will here introduce the formalization of iterative training methods
that underly much of supervised learning.
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Fig. 5.1 Some example data of house prices and the corresponding size of each house.

Fundamentals of Machine Learning, Thomas P. Trappenberg, Oxford University Press (2020).
c© Oxford University Press. DOI: 10.1093/oso/9780198828044.001.0001



Regression and optimization94 |

To undertake discuss linear regression, we will follow an example of describing
house prices. The table on the left in Figure 5.1 lists the size in square feet and the
corresponding asking prices of some houses. These data points are plotted in the graph
on the right in Figure 5.1. The question is, can we predict from these data the likely
asking price for houses with different sizes?

To do this prediction we make the assumption that the house price depend essen-
tially on the size of the house in a linear way. That is, a house twice the size should cost
twice the money. Of course, this linear model clearly does not capture all the dimen-
sions of the problem. Some houses are old, others might be new. Some houses might
need repair and other houses might have some special features. Of course, as everyone
in the real estate business knows, it is also location that is very important. Thus, we
should keep in mind that there might be unobserved, so-called latent dimensions in
the data that might be important in explaining the relations. However, we ignore such
hidden causes at this point and just use the linear model over size as our hypothesis.

The linear model of the relation between the house size and the asking price can
be made mathematically explicit with the linear equation

y(x;w1, w2) = w1x+ w2, (5.1)

where y is the asking price, x is the size of the house, and w1 and w2 are model
parameters. Note that y is a function of x, and here we follow a notation where the
parameters of a function are included after a semi-colon. If the parameters are given,
then this function can be used to predict the price of a house for any size. This is the
general theme of supervised learning; we assume a specific function with parameters
that we can use to predict new data.

The remaining question is what values these parameters should have? For this we
need example data, or training data. Also, to evaluate how good some choices of the
values for the model parameters are, we must define how we undertake the evaluation
of these values. This evaluation is specified in a loss function L. We will start here by
using a traditional choice of the mean square error (MSE) function,

L(w1, w2;x
(i), y(i)) =

1

2N

∑
i

(w1x
(i) + w2 − y(i))2, (5.2)

and we will later discuss when this is a good choice. The superscript i labels the
different training examples and we put this into brackets so it is not confused with
an exponent. This function considers the square distance between the predicted price
values (the linear function) and the actually asking prices. Note that we view this
function as a function of the model parameters w1 and w2 (the unknowns), and the
training data x(i) and y(i) are the parameters of this function that are given. The
loss function is central in machine learning and designing the right loss function is an
important discussion we need to have. We will see later that this is best archieved using
a probabilistic view of machine learning, and we will hence continue here describing
the use of a loss function.

We use the loss function to determine the model parameters. More specifically, the
values of the model parameters that minimize the loss are considered to result in the
best predictor for new data points. To find these values we have to minimize the loss
function as functions of the parameters. Since the loss function here is a sum of square
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Fig. 5.2 Example of regressing data with a linear model. The data points shown as stars specify

some house prices together with the size of the house. The different lines show how a gradient

descent with an appropriate choice of parameters would result in a linear regression lines for

different numbers of iterations

functions, this can be calculated analytically. We will however use this opportunity to
introduce a method called gradient descent that is a dominant technique in machine
learning. The idea is to start with a random value for each parameter and improve the
loss in consecutive steps by changing the values along the negative gradient,

(
w1

w2

)
←

(
w1

w2

)
− α∇L(w1, w2;x

(i), y(i)). (5.3)

The hyperparameterα is called the learning rate, and the Nabla operator∇ represents
the gradient.

∇L(w1, w2;x
(i), y(i)) =

( ∂
∂w1
∂

∂w2

)
L(w1, w2;x

(i), y(i)). (5.4)

Minimizing the loss function with gradient descent is an important part of machine
learning and the basic principle to derive the learning rule for specific models. In our
case, calculating the derivative for MSE loss function (5.2) with the linear prediction
function (5.1) gives the following learning rules for the two parameters

w1 ← w1 − α
1

N

∑
i

(w1x
(i) + w2 − y(i))x(i) (5.5)

and

w2 ← w2 − α
1

N

∑
i

(w1x
(i) + w2 − y(i)). (5.6)

The results of the regression for different numbers of iterations, together with some
further consideration discussed next, is shown in Fig. 5.1. We will now go through
some details that will hopefully shed some light on some of the subtleties of this
algorithm.
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5.2 Error surface and challenges for gradient descent

It is instructive to look at the precise numerical results and details when implementing
the whole procedure. We first link our common NumPy and plot routines and then
define the data given in the table in Fig. 5.1. This figure also shows a plot of these data.

Listing 5.1 LinearRegression.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

h s i z e =np . a r r a y ( [ 9 3 7 , 1 1 5 0 , 1 1 7 0 , 1 2 9 0 , 1 2 7 5 , 1 4 1 0 , 1 5 5 0 , 1 7 3 0 , 1 9 1 0 ] )
p r i c e =np . a r r a y ( [ 1 8 7 , 222 , 330 , 310 , 290 , 440 , 600 , 550 , 6 0 0 ] )

p l t . p l o t ( h s i z e , p r i c e , ’∗ ’ )
p l t . x l a b e l ( ’ S i z e ( S q f t ) ’ )
p l t . y l a b e l ( ’ P r i c e ( $ ) ’ )
p l t . show ( )

1000 1200 1400 1600 1800
Size (Sqft )

2.5

2.0

1.5

1.0

0.5

0.0

Pr
ic
e
($
)

1e53

1 2 3 4 6
Iterat ions

1015
1028
1041
1054
1067
1080
1093
10106

Lo
ss

A

B

C

Fig. 5.3 (First attempt to implement a gradient descent learning rule for linear regression.

We now write the regression code as shown in Listing 5.2. First we set the starting
values for the parameters w1 and w2, and we initialize an empty array to store the
values of the loss function L in each iteration. We also set the update (learning) rate
α to a small value. We then perform ten iterations to update the parameters w1 and
w2 with the gradient descent rule. Note that an index of an array with the value −1
indicates the last element in an Python array. The result of this program is shown in
Fig. 5.2. The fit of the function shown in Fig. 5.2A does not look right at all. To see
what is occurring it is good to plot the values of the loss function as shown in Fig. 5.2B.
As can be seen, the loss function gets bigger, not smaller as we would have expected,
and the values itself are extremely large.
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Listing 5.2 LinearRegression.ipynb (part 2)

w1=np . a r r a y ( [ −1] ) ; w2=np . a r r a y ( [ −1] ) ; L=np . a r r a y ( [ ] )
a l p h a =0 .1

f o r i t e r in range (10−1) :
y=w1[−1]∗ h s i z e +w2[−1]
w1=np . append ( w1 , w1[−1]− a l p h a ∗sum ( ( y−p r i c e ) ∗ h s i z e ) )
w2=np . append ( w2 , w2[−1]− a l p h a ∗sum ( y−p r i c e ) )
L=np . append ( L , sum ( ( y−p r i c e ) ∗∗2) )

p l t . p l o t ( h s i z e , p r i c e , ’∗ ’ )
p l t . p l o t ( h s i z e , y )
p l t . x l a b e l ( ’ S i z e ( S q f t ) ’ ) ; p l t . y l a b e l ( ’ P r i c e ( $ ) ’ )
p l t . show ( )
p l t . l o g l o g ( L )
p l t . x l a b e l ( ’ I t e r a t i o n s ’ ) ; p l t . y l a b e l ( ’ Loss ’ )
p l t . show ( )

The rising loss value is a hint that the learning rate is too large. The reason that
this can happen is illustrated in Fig. 5.2C. This graph is a cartoon of a quadratic loss
surface. When the update term is too large, the gradient can overshoot the minimum
value. In such a case, the loss of the next step can be even larger since the slope at this
point is also higher. In this way, every step can increase the loss value and the values
will soon exceed the values representable in a computer.

So, let’s try it again with a much smaller learning rate of alpha=0.00000001

which was chosen after several trials to get what look like the best result. The results
shown in Fig. 5.2 look certainly much better although also not quite right. The fitted
curve does not seem to balance the data points well, and while the loss values decrease
at first rapidly, they seem to get stuck at a small value.

To look more closely at what is going on we can plot the loss function for several
values around our expected values of the variable. This is shown in Fig. 5.2C. This
reveals that the change of the loss function with respect to the parameter w2 is large,
but that changing the parameter w1 on the same scale has little influence on the
loss value. To fix this problem we would have to change the learning rate for each
parameter, which is not practical in higher-dimensional models. There are much more
sophisticated solutions such as Amari’s Natural Gradient, but a quick fix for many
applications is to normalize the data so that the ranges are between 0 and 1. Thus, by
adding the code

Listing 5.3 LinearRegression.ipynb (part 3)

h s i z e =( h s i z e−min ( h s i z e ) ) / ( max ( h s i z e )−min ( h s i z e ) )
p r i c e =( p r i c e−min ( p r i c e ) ) / ( max ( p r i c e )−min ( p r i c e ) )

and setting the learning rate to alpha=0.04, we get the solution shown in Fig. 5.2.
The solution is much better, although the learning path is still not optimal. However,
this is a solution that is sufficient most of the time.
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Fig. 5.4 Second attempt to implement a gradient descent learning rule for linear regression with

a much smaller learning rate and more iterations.

5.3 Advanced gradient optimization (learning)
Learning in machine learning means finding parameters of the model w that minimize
the loss function. There are many methods to minimize a function, and each one would
constitute a learning algorithm. However, the workhorse in machine learning is usual
some form of a gradient descent algorithm that we encountered earlier. Formally,
the basic gradient descent minimizes the sum of the loss values over all training
examples, which is called a batch algorithm as all training examples build the batch
for minimization. Let us assume we havem training data, then gradient descent iterates
the equation

wi ← wi +Δwi (5.7)

with

Δwi = − α

N

N∑
k=1

∂L(y(i),x(i)|w)

∂wi
, (5.8)

where N is the number of training samples. We can also write this compactly for all
parameters using vector notation and the Nabla operator ∇ as

Δw = − α

N

N∑
i=1

∇L(i) (5.9)

with
L(y(i),x(i)|w) (5.10)

With a sufficiently small learning rate α, this will result in a strictly monotonically
decreasing learning curve. However, with many training data, a large number of training
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Fig. 5.5 Third attempt which leads to a much better solution by simply normalizing the range of

the data to a unitary regime.

examples have to be kept in memory. Also, batch learning seems unrealistic biologically
or in situations where training examples only arrive over a period of time. So-called
online algorithms that use the training data when they arrive are therefore often
desirable. The online gradient descent would consider only one training example at a
time,

Δw = −α∇L(i), (5.11)
and then use another training example for another update. If the training examples
appear randomly in such an example-wise training, then the training examples provide
a random walk around the true gradient descent. This algorithms is hence called the
stochastic gradient descent (SGD). It can be seen as an approximation of the basic
gradient descent algorithm, and the randomness has some positive effects on the search
path such as avoiding oscillations or getting stuck in local minima. In practice it is now
common to use something in between, using so-called mini-batches of the training data
to iterate using them. This is formally still a stochastic gradient descent, but it combines
the advantages of a batch algorithm with the reality of limited memory capacities.

Gradient descent is known as a very efficient local optimizer. It can often be
observed that such an algorithm leads to a steep decline of the loss values before
learning seems to slow down. One problem with the algorithm is that it can, strictly
speaking, only find local minima as illustrated in Fig. 5.6A. An analogy would be
to think about a ball rolling downhill on the loss surface. With the basic gradient
descent we are always strictly going downhill. However, with a real ball we would
have momentum so that the ball could overcome a small hill if the momentum is great
enough. To incorporate momentum into the gradient descent algorithm, we can modify
the update so that we take some percentage of the previous step into account,

Δw(t) = −α∇L(t) +mΔw(t− 1). (5.12)
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Fig. 5.6 Illustration of gradient descent with a local minima (A) and a saddle point (B).

A momentum term of m = 0.9 is a common starting value, but such hyperparameters
of the algorithms are of course problem-dependent and need to be evaluated on a
case-by-case basis.

Local minima have often been stated as a main difficulty for gradient descent,
although true local minima are increasingly difficult to realize in higher dimensions.
To be a true local minimum, it is necessary that all changes and all combination of
changes of all directions of the parameters lead to larger loss values. It is clear that
with increasing dimensions there is therefore an increasing chance to find an "escape
route". However, even so, it is now known that true local minima are not likely to be
the problem with most high-dimensional learning scenarios, saddle points, or at least
shallow areas of the loss functions seem to present a problem in many applications. A
momentum term is a common way to help with such shallow areas.

There are additional techniques in common use today. For example, we can change
the learning rate based on the history of the learning performance, and such adaptive
learning rates are now commonly used. For example, a very popular algorithm is the
ADAM optimizer. ADAM stands for adaptive moment estimation which is a slight
modification of the momentum method. Instead of strictly using the last entry of the
gradient as the momentum, the ADAM method uses a sliding average of the gradient

m← α1m+ (1− α1)∇L(i), (5.13)

as well as the variance of the gradient

v← α2v + (1− α2)(∇L(i))2 (5.14)

to modulate the update with the gradient. The model parameters are thereby updated
according to

w← w − α
m/(1− α1)√
v/(1− α2) + ε

, (5.15)

where the small factor ε is added to prevent possible divisions by 0.
There are more advanced variations of gradient descent methods in use. For ex-

ample, it is possible to take into account higher-order gradient terms that describe the
curvature of the loss functions. While this requires the calculation of the higher deriva-
tives or, in general, the Hessian, it will allow much larger learning rate parameters
that will speed up learning. One of the best variations of these methods is the natural
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gradient that tries to keep the improvement in the loss value for each iteration constant
by describing the curvature in the weight-loss function spanned by the weight values.

While we are not discussing these advanced methods here in more detail, I would
like to close this section by pointing out that gradient methods are of course not the
only minimization method that can be applied to machine learning. As an example, let
us consider a simple version of a genetic algorithm. For this we treat the vector of all
model parameters as the "genome" of an individual model, and we consider a pool of
such models. Each candidate model is then evaluated by the loss function, and a certain
percentage of the best performers are copied into the new pool of individuals in the
next generation. These parent individuals are also allowed to reproduce by taking two
of these individuals and swapping parts of their genes at a certain transition point, and
by changing some of the entries randomly. The first operation is called a crossover,
while the second operation is commonly called a mutation. In this way we produce
new candidate models that can then be evaluated with the loss function. Such directed
search methods have been shown to find solutions, although the cost of such methods
are commonly prohibitive.

5.4 Regularization: ridge regression and LASSO

We discussed earlier a linear problem with a one dimensional inputx. Machine learning
problems often consist of high-dimension problems in the sense that the input is a vector
with many dimensions. For example, if we want to undertake image processing, we
would represent a gray-scale image as a list of many gray-level values, one for each
pixel. Within linear regression this means that we should introduce one parameter for
each input dimension. Such a linear model would look like

y = w0 + w1x1 + w2x2 + ... = wTx. (5.16)

This shows how useful vector notation are in order to summarize all the components.
Also, we made a common trick to augment the feature vector with a constant x0 = 1
so that we do not have to treat the y-intercept differently to the other parameters. It is
sometimes customary to make the input vector even larger by supplying combinations
of input features and higher-order moments of the feature values, such as taken squares
and higher powers of the values. The reason for this is to help modeling non-linear
relations. The point here is that feature dimensions in the order of thousand or millions
are not uncommon in machine learning, and machine learning models have therefore
a large number of parameters.

We have discussed earlier that a large amount of parameters relative to the number of
data can lead to overfitting, and methods to restrict the parameters to prevent overfitting
have played a very important role in machine learning. A common consideration is to
include a term in the objective function that keeps the parameters small. For example,
we can include a penalty term proportional to the absolute value of the parameters
or even the sum of the square values to even more penalize larger weight values. A
penalty on the size of the parameter value should keep these values small or even 0 in
case they do not contribute sufficiently to the model. To be concrete, we define the Lp

norm as
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||w||p =

(∑
i

|wi|p
) 1

p

, (5.17)

such as the quadratic form of the L2 norm

||w||2 = w2
1 + w2

2 + ..., (5.18)

or the Euclidean distance which is the L1 norm,

||w|| =
√
w2

1 + w2
2 + ... . (5.19)

We can then add this penalty term on the parameters to an unregularized loss function

L̃(w;x, y) = L(w;x, y) + γ||w||pp. (5.20)

The loss L(w,x, y) is our regular loss function. For example, the previously used MSE
objective function can be modified as

L̃(w;x(i), y(i)) =
1

2N

∑
i

(wTx(i) − y(i))2 + γ||w||2. (5.21)

The hyperparameter γ allows us to vary how strongly we should take this constraint
into account. The gradient descent of this regularized loss function with a quadratic
penalty term is

Δw = −αdL(w,x, y)

dw
− 2γw. (5.22)

which we can also write in the form

w← (1− 2αγ)w − α
dL(w,x, y)

dw
. (5.23)

This corresponds to an exponential decay of the weights when the gradient is 0. In
other words, this puts pressure on the weights to decay unless they are reinforced by
the gradient. This type of regularization is therefore often called weight decay. The
specific case of this quadratic penalty term is also called ridge regression or Tikhonov

regularization.
Using the L1 norm,

L̃(w,x, y) = L(w,x, y)− γ||w||, (5.24)

is related to a technique called LASSO (least absolute shrinkage and selection op-
erator), in the case of linear regression with a quadratic loss function. This form of
regularization leads to a constant weight decay,

Δw = −2γsign(w)− α
dL(w,x, y)

dw
. (5.25)

There is some argument that L2 regularization leads to a more sparse representation
than ridge regression. For example, it can be shown that such regularization works
very well in situations where a few relevant features are embedded in a large and noisy
vector with irrelevant features.
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It is useful to implement such methods directly from scratch, although we leave this
as a useful exercise for the reader to undertake. In the following, we use the routines
from sklearn to look at an instructive example. Here, we chose points from the linear
model

y = 0.5x1 + 0.5x2 (5.26)

and add some noise in the feature values. Our training points are hence (x1, x2, y) =
{(0, 0, 0), (1, 0.9, 1), (2, 2.1, 2)}. The code for test different versions of regularization
is given here.

Listing 5.4 RidgeLasso.ipynb (with output)

import numpy as np
from s k l e a r n import l i n e a r m o d e l
from m p l t o o l k i t s . mplot3d import Axes3D

f i g = p l t . f i g u r e ( ) ; ax = f i g . gca ( p r o j e c t i o n = ’ 3d ’ )

x = np . a r r a y ( [ [ 0 , 0 ] , [ 1 , . 9 ] , [ 2 . 1 , 2 ] ] ) ; y= np . a r r a y ( [ 0 , 1 , 2 ] )
ax . p l o t ( x [ : , 0 ] , x [ : , 1 ] , y , ’∗ ’ ) ;

r e g = l i n e a r m o d e l . L i n e a r R e g r e s s i o n ( ) ; r e g . f i t ( x , y )
p r i n t ( r e g . c o e f )
ax . p l o t ( [ 0 , 2 ] , [ 0 , 2 ] , [ 0 , np . d o t ( r e g . c o e f , [ 2 , 2 ] ) ] ) ;

r e g = l i n e a r m o d e l . Ridge ( a l p h a = . 5 ) ; r e g . f i t ( x , y )
p r i n t ( r e g . c o e f )
ax . p l o t ( [ 0 , 2 ] , [ 0 , 2 ] , [ 0 , np . d o t ( r e g . c o e f , [ 2 , 2 ] ) ] ) ;

r e g = l i n e a r m o d e l . Lasso ( a l p h a = 0 . 1 ) ; r e g . f i t ( x , y )
p r i n t ( r e g . c o e f )
ax . p l o t ( [ 0 , 2 ] , [ 0 , 2 ] , [ 0 , np . d o t ( r e g . c o e f , [ 2 , 2 ] ) ] ) ;

This program incidentally shows how to make 3-dimensional plots. The regression
lines in this 3-dimensional plot are show in Fig. 5.4. The resulting lines look very
similar, but it is instructive to look at the coefficients, which are

{w1, w2} reg = {1.82,−0.91} (5.27)
{w1, w2} ridge = {0.45, 0.42} (5.28)
{w1, w2} lasso = {0.82, 0}. (5.29)

The values of the linear regression without normalization are interesting as the large
value for the first parameter is compensated by the large negative value of the second
parameter. While this works for the specific training points, generalization with other
examples might not work so well. Ridge regression finds much closer values similar
to our original model. However, LASSO is also interesting as it finds a much smaller
model where it can explain the data with only one parameter. This might be valuable
in practical applications.

Regression is an important topic in machine learning, and there are other methods
that are actively used. For example, we have already mentioned dropout which includes
a certain probability that some of the parameters are set to 0 during the generation of
an output during training. This is particularly used in deep neural networks where it
is thought to resembles some biological processes as neurons sometimes do not fire
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Fig. 5.7 (linear regression without regularization and with regularization using Ridge regression

and Lasso.

even with the same stimulus that would activate them at other times. In this way, it is
necessary that the model is able to represent specific data points with a combination of
other parameters. This prevents that specific parts of the model specialize to specific
sample data.

Another solution to the problem is to use lots of data compared to the number
of parameters, that will constrain the parameters sufficiently. For the most part we
can loosely equate the number of parameters with the complexity of the model. Of
course, the specific architecture, such as a hierarchical versus flat representations, is
of course also part of the complexity equation; we are thinking here more about a
given architecture and ask how we can sufficiently constrain the parameters. Large
data collections such as ImageNet have therefore been essential in demonstrating the
abilities of deep networks. However, more often than not, we tend not to have enough
training data, and data augmentation is a common and essential technique even in
face of large data sets like ImageNet. Images are actually a good example to see where
certain transformations are good candidates for sound data augmentation. Shifting
an image should not alter its content, and rotation and some form of stretching does
also not alter essential features for classifying the content of the figure. Indeed, even
changing individual pixels in a high-resolution image does not have a drastic impact on
recognition abilities. Thus, generating more training images with these transformations
from the labeled training set is a good way to increase the training data set. Injecting
noise either at an input level or at an output level is another example of such data
transformations for data augmentation. The data augmentation technique is a good
example where we use some expert knowledge to augment the training data set in
defining which transformations should not alter the content. However, some caution
is in order as such transformations are not necessarily suitable in every situation. To
some extent we must already know the data distribution required to generate proper
examples, which is of course what we want to model. Thus, this can be a chicken-and-
egg situation.
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We mentioned bagging (bootstrap aggregating) in Chapter 3 as an ensemble
method to prevent overfitting. Another basic technique used in neural networks is
early stopping. In this technique, we simply monitor the difference between the train-
ing and validation error and stop training when they diverge. There are many other
techniques with the effect of guiding the search in a specific subspace of the parameter
space. Unsupervised pre-training or semi-supervised methods can be placed in this
category. A good discussion of advanced methods can be found in Deep Learning by
Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

5.5 Non-linear regression

Linear regression is often applied because many relations in practical application can
be at least approximately linear. It is also simple and offers a good starting point forF
experimenting with new algorithms. Linear models are therefore still important and
should be considered a good first step in modeling data. However, going beyond linear
models is one of the gifts of modern machine learning. Allowing non-linear relations
in a model opens the modeling space to an infinite number of possible models and
hence the possibility of an unbounded number of parameters. Overfitting is thus often
an even more pronounced problem in high-dimensional non-linear models. Solving, or
at least mediating this problem is therefore strongly tied to the success of the models,
such as deep learning.

As a start point for discussing such cases, let us first consider a polynomial of order
n;

y = w0 + w1x
1 + w2x

2 + ...+ wnx
n =

n∑
i=0

wix
i. (5.30)

We can fit this function to our house data with a gradient descent rule, noting that the
derivative (we only have 1-dimension at the moment) is

dy

dwi
= xi. (5.31)

Hence, the learning rule is
wi ← wi − αxi. (5.32)

A fit of the house data with a polynomial of order 12 is shown in Fig. 5.5A, and
the corresponding loss values at the end of training in Fig. 5.5B. The loss becomes
a little bit better over time, and it might be possible to reduce this further with some
more training iterations. The resulting regression curve seems to capture some of the
curvature of the data, although it seems unreasonable to assume that larger houses
become cheaper after they reach a certain size.

While this polynomial model function is certainly non-linear, it is interesting to
note that we can cast the regression problem again into a linear framework. That is,
we can create a new feature vector x with components xi = xi. We can then rewrite
the model as

y = wTx, (5.33)
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Fig. 5.8 (A) Polynomial regression of the house data with polynomial of order 12. (B) Loss after

learning for polynomial models of different order.

which again is a linear model. In other words, we have first applied a non-linear
transformation from the feature space of x into a new feature space of xnew,

xnew = φ(x). (5.34)

After this transformation we were able to use a linear model in this transformed
space. The transformed space was here larger than the original space, but in this
transformed space we were able to use a linear regression model. This is sometimes
called generalized linear regression. Finding the right transformation function φ is
not easy and we somewhat transformed the problem into the problem of finding the
appropriate non-linear transformation. Deep learning can be seen as learning this
transformation from the data.

It is worthwhile to consider another non-linear example function to our house data.
For this we choose a series of Gaussian functions,

y =
∑
i

w1,ie
−(w2,i−x)2/w3,i . (5.35)

We have three sets of parameters in this model, and the corresponding learning rules
are

w1,i ← w1,i − α(y − ŷ)e−(w2,i−x)2/w3,i (5.36)

w2,i ← w2,i + α(y − ŷ)2w1,ie
−(w2,i−x)2/w3,i

−(w2,i − x)2

w3,i
(5.37)

w3,i ← w3,i − α(y − ŷ)w1,ie
−(w2,i−x)2/w3,i

−(w2,i − x)2

w2
3,i

(5.38)

A fit of the data with a single Gaussian is shown in Fig. 5.5A, which looks somewhat
similar to the fit with the 12-order polynomial, albeit with only three parameters.
However, the reason to bring up this function is to realize that with an increasing
number of parameters and hence complexity of the function, we can easily overfit. For
example, if we take the number of Gaussians to be equal to the number of training
points, we can produce a curve that goes through almost all the training points as
shown in Fig. 5.5B. It is clear that this function would only act to generalize as we do
not expect that houses outside these training examples cost nothing as predicted by the
model. This is a clear demonstration of overfitting.
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Fig. 5.9 non-linear regression with a sum of Gaussians. On the left is the fit of a single Gaussian,

on the right is a fit with many Gaussians equal to the number of points and small variance. The

model on the right is clearly overfitting.

5.6 Backpropagation

5.6.1 The sigmoidal perceptron and the delta learning rule

We are now ready to look at applying gradient descent to neural network models.
We will start with a simple sigmoidal neuron and then generalize our approach to the
multilayer perceptron.

As usual, we have to start with a parameterized model and define an appropriate
loss function. In Chapter 4 we started with the threshold perceptron. However, the
threshold function is not differentiable and hence this model can not be solved by
gradient descent. However, we can instead use a differentiable approximation for the
gain function in form of a sigmoid function called the logistic function,

g(x;β) =
1

1 + e−βx
. (5.39)

This is a differentiable approximation of the threshold function in the sense that when
the parameter β that describes the slope of the function around x = 0 goes to infinity,
then the threshold function is recovered. While we argued for this gain function in terms
of approximating a threshold function, the logistic perceptron is a specific model or
parameterized hypothesis functions in its own right, and we will later see that we can
give this gain function a probabilistic interpretation.

The net input to this perceptron is the weighted sum over the input channels

h(x;w) =
∑
i

wixi = wTx, (5.40)

and the output is then calculated with the gain function,

y(x;w) = g(h(x;w)) (5.41)

=
1

1 + e−wTx
, (5.42)

where we have absorbed the parameter β as a scaling factor in the parameters w. A
graphical representation of this model is shown in Fig. 5.10A. The logistic perceptron
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logistic regression problem with two input features.

was introduced in the late 1950s by Frank Rosenblatt, biologically inspired learning
model, and he later wrote one of the first comprehensive books about perceptrons.

The next step is to find the appropriate parameters from example data. At this point
we already know that one solution to the learning problem is a gradient descent on
a loss function. We will choose a common function in traditional neural networks by
using the mean square error function,

E(w) =
1

2N

∑
i

(
y(i) − y(x(i);w)

)2

. (5.43)

Using the 1/2 in this formula is simple convention. We will later discuss which loss
functions are appropriate, arguing that the loss function should be chosen carefully
from a probabilistic interpretation. However, at this point it can be seen as a simple
example.

To find this minimum we again use gradient descent, and go through these steps as
a reviewing exercise. In the gradient descent learning rule, weight values are updated
according to

wj ← wj − α
∂E

∂wj
, (5.44)

where α is a learning rate parameter. We can now calculate the gradient in order to
provide a formula that can be implemented with Python. For this we have to recall two
rules from calculus, namely that the derivative of an exponent function is

d

dx
xn = nxn−1. (5.45)

The derivative of the Euler function is

d

dx
ex = ex, (5.46)

which is an interesting fact in its own right as this means that this function is equal to
its slope at every point. This is not coincidental as the functions is actually defined as
such. Finally, we need the chain rule

d

dx
f(g(x)) =

df

dg

dg

dx
. (5.47)
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With these rules we get

∂E

∂wj
=

1

N

∑
i

(
(y(i) − y(x(i);w))(−1) ∂y

∂wj

)
. (5.48)

The derivative of our model with respect to the parameters is

∂y

∂wj
=

∂

∂wj

1

1 + e−
∑

i wixi
=

e−
∑

i wixi

(1 + e−
∑

i wixi)2
∂
∑

i wixi

∂wj
. (5.49)

In the remaining derivative over the sum, only the term survives that contains the wj .
Hence this derivative is xj . Also, we can write some portion of this equation in terms
of the original function to simplify the expression, namely

e−
∑

i wixi

(1 + e−
∑

i wixi)2
= y(1− y), (5.50)

and hence
∂y

∂wj
= y(1− y)xj . (5.51)

We can now collect all the pieces and write the whole update rule for the weight values
as

wj ← wj − α
1

N

∑
i

(
(y(i) − y(x(i);w))y(x(i);w)(1− y(x(i);w))x(i)j

)
(5.52)

The first factor within the body of the sum is called the delta term in the following,

δ(x(i);w) = (y(i) − y(x(i);w))y(x(i);w)(1− y(x(i);w)), (5.53)

or, if we write this without the arguments to see the structure clearly, this is

δ = (y(i) − y)y(1− y). (5.54)

We can thus write the learning rule in a generic form

wj ← wj + α
1

N

∑
i

(
δ(x(i);w)x

(i)
j

)
. (5.55)

The program implementation of the simple perceptron in Python is shown in Listing
5.5. The program starts with defining the training problem (the training dataset) in
feature arrays X and desired label vector Y. The columns of the matrix X correspond to
the feature vector of each sample, and the columns therefore represent all the training
samples. We then introduce and initialize some variables, specifically the number of
input nodes Ni and output nodes No, the weight matrix to the output nodes wo is
initialized randomly, dwo are the changes (gradients) of the weights, and do is the delta
term of the output node.
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Listing 5.5 PerceptronOr.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

X=np . a r r a y ( [ [ 0 , 0 , 1 , 1 ] ,
[ 0 , 1 , 0 , 1 ] ,
[ 1 , 1 , 1 , 1 ] ] )

Y=np . a r r a y ( [ [ 0 , 1 , 1 , 1 ] ] )

# model s p e c i f i c a t i o n s
Ni =3; No=1;

# parame te r and a r r a y i n i t i a l i z a t i o n
N t r i a l s =100
wo=np . random . randn ( No , Ni ) ; dwo=np . z e r o s ( wo . shape )
e r r o r 1 =np . a r r a y ( [ ] )
e r r o r 2 =np . a r r a y ( [ ] )

f o r t r i a l in range ( N t r i a l s ) :
y =1 / (1+ np . exp(−wo@X) ) # o u t p u t f o r a l l p a t t e r n
do=y∗(1−y ) ∗ (Y−y ) # d e l t a o u t p u t
# u pd a t e w e i g h t s w i t h momentum
dwo =0.9∗dwo+do@X . T
wo=wo+0.5∗dwo
e r r o r 1 =np . append ( e r r o r 1 , np . sum ( ( Y−y ) ∗∗2) )
e r r o r 2 =np . append ( e r r o r 2 , np . sum(1−( abs (Y−y ) <0.1) ) )

An example learning curve where we show the absolute difference between the
desired output and the actual output of the network is shown on the left in Fig. 5.11 by
the blue line. Overall, the error is getting smaller, indicating that some learning takes
place. The error does not, however, reach 0. This comes from the fact that we use a
sigmoid function which approaches a value of 1 only asymptotically. However, we can
introduce another post-processing step in which we apply a threshold function. This
corresponds to the error that we calculate in the above program. The corresponding
learning curve is shown on in orange on the left graph in Fig. 5.11. This demonstrates
that this perceptron can solve the Boolean OR function with this post-processing step.
The error function such as the loss used for training is somewhat useful as it shows that
there is continuous progress during learning even when the thresholded value stays
constant, although the values themselves do not tell the whole story. The thresholded
values give us some indication of how many patterns are recognized, but it would
be better to check every pattern separately, something which we omitted to keep the
program short. It is very useful to always calculate error numbers that can be interpreted
in terms of the performance that a user is looking for, which is not necessarily the loss
function used for the gradient descent.

We have already discussed batch versus online learning in the linear case and
it might be good to review this again for backpropagation. We have derived here
the learning rule based on the mean square error over all the training points. This
corresponds to applying all the training examples and calculating the average gradient
before updating the weight values based on this average. This is batch training, since
we use the whole batch of training examples for each weight update step. In contrast,
we use one training example at a time, (x(i), y(i), and calculate the gradient for this
point, and use this gradient to update the weight value after the application of each
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Fig. 5.11 Learning curve of sigmoid perceptron trained on the Boolean OR function. The graph

of on the left-hand side shows the learning curve for batch learning. The blue curve shows the

absolute difference between the desired output and the sigmoidal activation of the output node.

The orange line shows the thresholded difference. The right-hand graph compares the batch

learning curve (blue) from the left graph to the SGD learning curve (red).

data point. This is an online learning method since the point is to use each incoming
data point for one update and there is no need to store anything. Of course, in reality
we want to perform several iterations so that we must keep each training point. In
the implementation below, we chose a random sample from the training pattern. If
the training patterns are random, then this method is the stochastic gradient descent

(SGD). An example of such a learning curve is shown as red line in the right-hand
graph of Fig.5.11.

Listing 5.6 PerceptronOr.ipynb (part 2)

# parame te r and a r r a y i n i t i a l i z a t i o n
N t r i a l s =400
wo=np . random . randn ( No , Ni ) ; dwo=np . z e r o s ( wo . shape )
e r r o r =np . a r r a y ( [ ] )

f o r t r i a l in range ( N t r i a l s ) :
i =np . random . r a n d i n t ( 0 , 4 )
y =1 / (1+ np . exp(−wo@X[ : , i ] ) ) # o u t p u t f o r one p a t t e r n
do=y∗(1−y ) ∗ (Y [ : , i ]−y ) # d e l t a o u t p u t
# u pd a t e w e i g h t s w i t h momentum
dwo =0.9∗dwo+np . o u t e r ( do ,X [ : , i ] )
wo=wo+0.5∗dwo
e r r o r =np . append ( e r r o r , np . sum ( ( Y−1/(1+ np . exp(−wo@X) ) ) ∗∗2) )

What is the advantage or disadvantage of the different methods? The batch algo-
rithm guarantees that the average training error decreases. So if we plot this curve
and see that the training error is increasing we know that there must be something
wrong. By contrast, when we change the weights based on the last training example
it is expected that the performance of the other training points get worse and we need
to reduce the pace of the learning rate. Note that here we showed performance curves
in the training set. We must, of course, study the generalization, which is difficult to
show in this sized example.

As usual in machine learning, different methods will perform differently in different
situations. However, it is now common to have large data sets where an online approach
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is more appropriate. Also, there are benefits of SGD in that this approach produces
stochastic paths through the weight space which might help avoid local minima or
shallow areas. This is even more important in the non-linear case as the linear case
corresponds to a convex optimization problem with no local minima. Again, it is now
common with large datasets to use mini batches. This will help in the processing for
keeping a smaller dataset in memory before loading new mini batches. Within each
mini batch we can still learn in a batch or SGD way.

5.6.2 Multilayer perceptron (MLP)

Let us now consider the XOR function which is y = 1 if both arguments are the
same and 0 otherwise. It is interesting to try and learn this case using the perceptron
program as this does not seem to work. Indeed, this function can not be learned by the
perceptron as the XOR function is not linearly separable. This has lead to the demise
of perceptrons in the 1970s although it was clear that more elaborate perceptrons
with multiple layers could solve this problem. Frank Rosenblatt started to build such
networks out of the simple neuron models and wrote a book about them. He even
started to build neural computers based on such perceptrons and trained them similar
to the algorithm shown below. It seems that due to Rosenblatt’s early death and Marvin
Minsky’s strong opposition to perceptrons that the public realized that learning was
problematic with these more elaborate structures. Thus, multilayer perceptrons became
popular again only when effective training was rediscovered and made popular in 1986s
by Rummelhardt, Hinton, and Williams.

Fig. 5.12 The standard architecture of a feedforward multilayer network with one hidden layer, in

which input values are distributed to all hidden nodes with weighting factors summarized in the

weight matrix wh. The output values of the nodes of the hidden layer are passed to the output

layer, again scaled by the values of the connection strength as specified by the elements in the

weight matrix wo.

We will now consider networks of simple sigmoidal neurons to build up what are
commonly called artificial neural networks since the perceptron is basically just one
neuron. We will first consider a network structure as shown in Fig. 5.12. The network
has a layer of m input nodes, a layer of h hidden nodes, and a layer of n output nodes.
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The input layer merely represent the input values, while the hidden and output layer
perform active calculations specified earlier with the sigmoidal neuron (Egn 5.41).
The term hidden nodes comes from the fact that these nodes do not have connections
to the external world such as input and output nodes. The network is a graphical
representation of a non-linear function of the form

y = g(wog(whx)). (5.56)

It is easy to include more hidden layers in this formula. For example, the activation
rule for the output of a four-layer network with three hidden layers and one output
layer can be written as

y = g(wog(wh3g(wh2g(wh1x)))), (5.57)

where each layer uses the same activation function. Let us discuss a special case of
a multilayer mapping network where all the nodes in all hidden layers have linear
activation functions (g(x) = x). Eqn 5.57 then simplifies to

y = wowh3wh2wh1x

= w̃x. (5.58)

In the last step we have used the fact that the multiplication of a series of matrices simply
yields another matrix, which we labelled w̃. Eqn 5.58 represents a single-layer network
as discussed earlier. It is therefore essential to include non-linear activation functions,
at least in the hidden layers, to take advantage of the computational advantages of
hidden layers that we are about to discuss. Note that it is also possible to build more
diverse networks, such as by including connections between different hidden layers,
not just between consecutive layers as shown in Fig. 5.12. However, the basic layered
structure is sufficient for the following discussions and we will come back to this point
later in the book.

Since the perceptron was not able to represent some Boolean functions, we should
now ask which functions can be approximated by multilayer perceptrons. The an-
swer is, in principle, any. A multilayer feedforward network is a universal function

approximator. This means that, given enough hidden nodes, any mapping functions
can be approximated with arbitrary precision by these networks. While this can be
proven formally, it is also easy to comprehend why this is the case. Each hidden nodes
adds another factor with its own free parameters to the function that is represented
by the network. For example, with the combination of two sigmoidal nodes that have
the opposite weights and different offsets, one can build a local function like the one
shown on the left in Fig. 5.13. With such local functions, that can be tunes in size
and location of the bump, one can build up arbitrary non-linear functions in as much
precision as one wants.

The remaining problems involve knowing how many hidden nodes we need, and
finding the right weight values. Also, the general approximator characteristics does not
tell us if it is better to use more hidden layers or just to increase the number of nodes in
one hidden layer. These are important concerns for practical engineering applications
of those networks. These questions are related to the bias-variance trade-off since more
nodes will increase the complexity of the model and can hence increase the potential
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Fig. 5.13 Left: A basis function in form of a sigmoid function. The right-hand function is made up

of the basis function by simply adding scaled, shifted, and reflected copies of the basis function.

for high variance (overfitting), while too few terms have the potential to introduce a
bias (underfitting).

To train these networks, we consider again minimizing MSE which would be
appropriate for Gaussian noisy data around the mean described by the model. The
learning rule is then given by a gradient descent on this error function,

wl
j ← wl

j − α
∂E

∂wl
j

, (5.59)

with l ∈ {h, o}.
Specifically, the gradient of the MSE error function with respect to the output

weights is given by

∂E

∂wo
ij

=
1

2

∂

∂wo
ij

∑
k

(y(k) − y)2

=
1

2

∂

∂wo
ij

∑
k

(
y(k) − g(wog(whx(k))

)2

(5.60)

Let’s call the activation of the hidden nodes yh,

yh = g(whx)). (5.61)

Then we can continue with our derivative as,

∂E

∂wo
ij

=
1

2

∂

∂wo
ij

∑
k

(
y(k) − g(woyh)

)2

= −
∑
k

g′(whx(k))(y
(k)
i − yi)y

h
j

= δoi y
h
j , (5.62)

Eqn 5.62 is just the delta rule as presented earlier because we have only considered the
output layer. The calculation of the gradients with respect to the weights of the hidden
layer again requires the chain rule as they are more embedded in the error function.
Thus we have to calculate the derivative

∂E

∂wh
ij

=
1

2

∂

∂wh
ij

∑
k

(y(k) − y)2
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Table 5.1 Summary of error-back-propagation algorithm

Initialize weights arbitrarily

Repeat until error is sufficiently small

Apply a sample pattern to all input nodes: xi

Propagate input through the network by calculating the rates of

nodes in successive layers l: yli = g(
∑

j w
l
ijy

l−1
j )

Compute the delta term for the output layer:

δoi = g′(yo−1
i )(ydesiredi − yoi )

Back-propagate delta terms through the network:

δl−1
i = g′(yl−1

i )
∑

j w
l
jiδ

l
j

Update weight matrix by adding the term: Δwl
ij = αδliy

l−1
j

=
1

2

∂

∂wh
ij

∑
k

(
y(k) − g(wog(whx(k))

)2

. (5.63)

After some battle with indices (which can easily be avoided with analytical calculation
programs such as MAPLE or MATHEMATICA), we can write the derivative in a form
similar to that of the derivative of the output layer, namely

∂E

∂wh
ij

= δhi xj , (5.64)

when we define the delta term of the hidden term as

δhi = gh′(hin
i )

∑
k

wo
ikδ

o
k. (5.65)

The error term δhi is calculated from the error term of the output layer with a formula
that looks similar to the general update formula of the network, except that a signal
is propagating from the output layer to the previous layer. This is the reason that the
algorithm is called the error-backpropagation algorithm.

In this derivation we used the MSE over all the training patterns. Since all the
training patterns are used at once, this algorithm is again a batch algorithm. Using a
batch algorithm is generally a good idea, but it also takes up a lot of memory with large
training sets and we have mentioned that an online version when new data points arise
in a random order can help with avoiding local minima. The online version of this
algorithm is summarized in Table 5.1. Of course, this algorithm is commonly applied
to mini batches at a time.

Let us illustrate a basic multilayer perceptron implementation in Python on the
XOR problem. As already discussed in the simple perceptron implementation before,
the program starts by defining the training problem (the training dataset) in feature
arrays X and desired label vector Y. We then introduce and initialize some variables
which now include the activation of the hidden nodes h and the weights to the hidden
nodes wh, as well as the corresponding gradient dwh and delta term dh.
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Listing 5.7 MLPxor.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

X=np . a r r a y ( [ [ 0 , 0 , 1 , 1 ] ,
[ 0 , 1 , 0 , 1 ] ,
[ 1 , 1 , 1 , 1 ] ] )
Y=np . a r r a y ( [ [ 1 , 0 , 0 , 1 ] ] )

# model s p e c i f i c a t i o n s
Ni =3; Nh=4; No=1;
# parame te r and a r r a y i n i t i a l i z a t i o n
N t r i a l s =1000
wh=np . random . randn ( Nh , Ni ) ; dwh=np . z e r o s ( wh . shape )
wo=np . random . randn ( No , Nh ) ; dwo=np . z e r o s ( wo . shape )
e r r o r =np . a r r a y ( [ ] )

f o r t r i a l in range ( N t r i a l s ) :
h =1 / (1+ np . exp(−wh@X) ) # h id de n a c t i v a t i o n f o r a l l p a t t e r n
y =1 / (1+ np . exp(−wo@h) ) # o u t p u t f o r a l l p a t t e r n
do=y∗(1−y ) ∗ (Y−y ) # d e l t a o u t p u t
dh=h∗(1−h ) ∗ (wo . t r a n s p o s e ( ) @do) # d e l t a b a c k p r o p a g a t e d

# u pd a t e w e i g h t s w i t h momentum
dwo =0.9∗dwo+do@h . T
wo=wo+0.1∗dwo
dwh =0.9∗dwh+dh@X . T
wh=wh+0.1∗dwh
e r r o r =np . append ( e r r o r , np . sum ( abs (Y−y ) ) )

p l o t ( e r r o r )

We then iterate over trials. We implemented here the batch version where we
propagate forward all samples from the training set and update the weights. This code
is very compact, using matrix notations. In general, is it useful to think about the layers
of the neural network for performing operations such as building the dot product
between the input vector and the weight matrix. This compact formulation helps a
great deal with building complex models. However, to clarify the vector notation with
a component-wise formulation, we offer and example here for calculating the network
output for all patterns.

Listing 5.8 MLPxor.ipynb (part 2)

# t e s t a l l p a t t e r n
f o r p a t in range ( 4 ) :

x=X [ : , p a t ]
# c a l c u l a t e p r e d i c t i o n
f o r i h in range ( Nh ) : # f o r each h i d d e n node

sumInput =0
f o r i i in range ( Ni ) : # loop over i n p u t f e a t u r e s

sumInput = sumInput +wh [ ih , i i ]∗ x [ i i ]
h [ i h ] = 1 / ( 1 + exp(− sumInput ) )

f o r i o in range ( No ) : # f o r each o u t p u t node
sumInput =0
f o r i h in range ( Nh ) : # loop over i n p u t s from h id de n

sumInput = sumInput +wo [ io , i h ]∗ h [ i h ]
y [ i o ] = 1 / ( 1 + exp(− sumInput ) )
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An example learning curve where we show the absolute difference between the
desired output and the actual output of the network appears on the left of Fig. 5.14,
while on the right is shown the error when using a threshold post-processing as we
did with the perceptron. This demonstrates that the MLP can solve the Boolean XOR
function.

>0
.1

Fig. 5.14 Learning curve of an MLP trained on the Boolean XOR function. The graph on the

left-hand side shows the learning curve of the absolute difference between the desired output

and the sigmoidal activation of the output node. The graph on the right shows an example of the

performance when we use the rounded value of the output node as prediction.

Before leaving this area, it is useful to point out some general observations. Arti-
ficial neural networks have certainly been one of the first successful methods for non-
linear regression, implementing non-linear hypotheses of the formh(x;w) = g(wTx).

The corresponding mean square loss function,

L ∝ (
y − g(wTx)

)2
(5.66)

is then also a general non-linear function of the parameters. Minimizing such a function
is generally difficult. However, we could consider instead hypotheses that are linear in
the parameters, h(x;w) = wTφ(x), so that the MSE loss function is quadratic in the
parameters,

L ∝ (
y −wTφ(x)

)2
. (5.67)

The corresponding quadratic optimization problem can be solved much more effi-
ciently. This line of thinking has been further developed in support vector machines
that we reviewed earlier. I point this out here to stress that basic neural networks are
not always optimal in the way they are commonly implemented and that variations
are possible. Also, an interesting and central further issue is how to choose the non-
linear function φ. This brings us back to non-linear support vector machines and deep
learning.

5.7 Automatic differentiation

Calculating the gradients for a multilayer perceptron of simple sigmoid units has
already shown to be a bit cumbersome, so we might be worried about how more
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elaborate networks could be implemented. Fortunately, programing derivatives can be
highly automated and such techniques are now commonly used in machine learning
toolboxes. We will here briefly outline the idea behind such techniques.

There are four principle methods. One is to work out the algebraic expression of a
derivative by hand and then code the result. For example, let’s assume we want to find
the gradient of the function

f(x, y) = sin(x) + x ∗ y + ln(y) (5.68)

which we can find by applying the analytic differentiation rules to be(
∂f(x,y)

∂x
∂f(x,y)

∂x

)
=

(
cos(x) + y
x+ 1

y

)
. (5.69)

The expressions on the right can also be found with symbolic mathematical manipu-
lations such as implemented in symbolic math tools like Mathematica or Maple. We
can then use these expressions to write code for calculating the values of the gradients
at specific points x0 and y0. For example, the partial derivative of the function in
x-direction at x = 0 and y = 1 is ∂f(x,y)

∂x |(0,1) = 2.
While such methods are exact save manual mistakes, another possibility is to use

numeric approximations based on finite difference quotients for the partial derivatives
like

∂f(x, y)

∂x
=

f(x+Δx, y)− f(x, y)

Δx
(5.70)

Such an approximation is easy to implement but introduces numerical errors. For
example, with a step width of Δx = 0.1 we get a value of ∂f(x,y)

∂x |(0,1) ≈ 1.998 for
our example. While this seems acceptable, in practice such errors can result in such
large variations for complex non-linear functions that they are rarely used in machine
learning.

The more common way of implementing gradient calculations in machine learning
is to represent complicated functions as graphs of basic functions and then use a chain
rule to represent their derivatives as a graph of basic derivatives. Backpropagation
itself is actually an example of such a strategy. Let us first explain the basic idea with
a forward mode for automatic differentiation. We can represent the example function
above with the primal graph shown in Fig. 5.15 where

v1 = x (= 0)

v2 = y (= 1)

v3 = sin(v1) (= 0)

v4 = ln(v2) (= 0)

v5 = v1 ∗ v2 (= 0)

v6 = v3 + v4 + v5 (= 0).

This is like a neural network with weights always set to 1 but where every node can
have a different gain function. This underlines the fact again that a neural network
is mostly a graphical representation of a complex function. In brackets, we show the
evaluation of this functions with input x = 0 and y = 1.
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Fig. 5.15 A computational graph for the function f(x, y) = sin(x) + x ∗ y + ln(y) .

If we want to take the derivative of the function with respect to the inputs, we can
apply the chain rule. To simplify the notation, we can write the partial derivative as an
operator D. Then we have the derivative graph similar to the primal graph with

Dv1 = Dx (= 1)

Dv2 = Dy (= 0)

Dv3 = cos(v1) ∗Dv1 (= 1)

Dv4 =
Dv2
v2

(= 0)

Dv5 = Dv1 ∗ v2 + v1 ∗Dv2 (= 1)

Dv6 = Dv3 +Dv4 +Dv5 (= 2).

These are again elementary functions nodes that form a graph for the derivative analog
to the primary function graph. At this point it is wise to note that such functions are
already implemented as code so that this graph represents existing code that can be
used to calculate the values of the derivatives at specific points. For example, if we
want to calculate the partial derivative with respect to x, then Dv1 = 1 and Dv2 = 0.
All other variables are then given or computed by the expressions. We included the
corresponding numbers for the example of the derivative in the x-direction at points
x = 0 and y = 1 in brackets in the above equations. This illustrates the basic idea
behind automatic differentiations.

While the forward mode of automatic differentiation is easy to implement, there
are other algorithms that can be more suited for the gradients we have to calculate in
neural networks and show how the backpropagation algorithm is a form of automatic
differentiation. The reverse mode algorithm starts with a forward pass though the
network. We also define an adjoint variable

v̄i =
∂f

∂vi
(5.71)

which specifies how much the variable vi contributes to the change in the output value.
With these notations we can unravel the chain rule in reverse order

v̄6 (= 1)

v̄5 = v̄6
∂v6
∂v5

= v̄6 ∗ 1 (= 1)

v̄4 = v̄6
∂v6
∂v4

= v̄6 ∗ 1 (= 1)
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v̄3 = v̄6
∂v6
∂v3

= v̄6 (= 1)

v̄2 = v̄5
∂v5
∂v2

+ v̄4
∂v4
∂v2

= v̄5v1 + v̄4 ∗ 1

v2
(= 1)

v̄1 = v̄5
∂v5
∂v1

+ v̄3
∂v3
∂v1

= v̄5V2 + v̄3cos(v1) (= 2)

and we recover the directional derivatives of the above example as noted in the brackets.
Notice that we calculated here the full gradient with the direction derivative in both
directions, though we used here a forward pass and a reverse pass. In the forward
mode, we would have to do two forward passes through the derivative network. In
machine learning the output of the network for training is a cost function, and error-
backpropagation then corresponds to automatic differentiation with the reverse mode.
Most machine learning packages have implemented such strategies so that in practice,
we do not have to undertake the differentiation but simply raise an optimizer on a
specific model and cost function.



6 Basic probability theory

Probably the biggest challenge in using data to build models is the nature of uncertainty.
This includes the limited knowledge about the world, such as relying on noisy or
unreliable sensors. Even just knowing if a sample sets is appropriate to cover the
dependencies we want to uncover presents some uncertainty in machine learning. The
mathematical description of uncertainty is covered in probability theory, and it should
thus not be a surprise that using this language has helped enormously to formalize the
areas of machine learning for a deeper understanding.

This chapter provides a refresher in probability theory, in particular with respect
to the formulations that build the theoretical language of modern machine learning.
Probability theory is the formalization of random numbers, and we outline what these
are and how they are characterized by probability density or probability mass functions.
We discuss how such functions have traditionally been characterized and provide a
review of how to work with such mathematical objects such as transforming density
functions and how to measure differences between density function. We then review
definitions and basic operations with multiple random variables, including the Bayes
law, and end with an outline of some important approximation techniques of so-called
Monte Carlo methods.

We are here mainly interested in the language of probability theory rather than
statistics that we take here as meaning specific methods for hypothesis testing and
related procedures. While machine learning methods can be viewed as a range of
advanced statistical methods, our concern here is to learn about the language and tools
of probability theory as means for developing machine learning methods.

6.1 Random numbers and their probability (density)
function

The main instrument for describing uncertainty and hence the subject of probability
theory is random numbers and their associated variables. While a regular number
has only one specific value, a random number will have different values every time we
"look" at it (draw a sample from the distributions). For example, let’s think about some
data that we acquired using a light sensor. We might think that an ideal light sensor
will give us only one reading while holding it to a specific surface. However, the char-
acteristics of the internal electronic circuit might change due to changing temperatures
or fatigue in the sensor itself, or since we may move the sensor unintentionally away
from the surface. It is hence likely that we get different readings over time. While some
people might argue that such causes are mainly unknown (latent) factors, it is of no
importance to us why we have uncertainty but rather that we have uncertainty. Consider
image recognition; we have a lighter in the shape of a gun so that the functionality of

Fundamentals of Machine Learning, Thomas P. Trappenberg, Oxford University Press (2020).
c© Oxford University Press. DOI: 10.1093/oso/9780198828044.001.0001
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the object is uncertain from its shape. Acknowledging uncertainty instead of denying
it or simply trying to avoid it is an important paradigm shift in machine learning.

A common misconception about randomness is that one cannot predict anything
about a random variables. While we might not be able to predict a specific value,
it is often the case that some values might be more likely than others. Indeed, we
might be able to say something about how often a certain number will appear when
drawing many examples. We might even be able to state how confident we are with this
number, or, in other words, how variable these predictions are. Complete knowledge
of a random variable, that is, how likely each value is for a random variable x, is
captured by the probability density function pdf(x) in the continuous case and by
the probability mass function P (x) in the discrete case. We discuss some specific
examples of such functions in the following. In these examples, we assume that such
probability functions are know a priori, but in many practical applications we must
estimate this function. Indeed, estimation of probability functions is in some sense
the essence of machine learning. If we would know the "world probability density
function", the probability function of all possible events in the world, then we could
predict as much as possible in and about this world.

Probability theory is the theory of random numbers. We denote such numbers
by capital letters to distinguish them from regular numbers written in lower case. A
random variable, X , is a quantity that can have different values each time the variable
is inspected, such as in measurements in experiments. This is fundamentally different
to a regular variable, x, which does not change its value once it is assigned. A random
number is thus a new mathematical concept, not included in the regular mathematics of
numbers. A specific value of a random number is still meaningful as it might influence
specific processes in a deterministic way. For example, a restaurant owner might be
uncertain about how many people will come into the restaurant, but once people are in
he should serve this number of people.

Since the value of a random number can change every time it is inspected, it is
useful to describe more general properties when drawing samples many times. This
frequency is captured by the mathematical construct of a probability. Note that there
is often a debate whether random numbers should be defined solely on the basis of a
frequency measurement, or if they should be treated as a special kind of object with this
inherent property. This philosophical debate between "Frequentists" and "Bayesians"
is of minor importance for our applications. We do not ask where the uncertainty is
coming from, we simply use the probability construct as a tool to describe uncertainty,
and it is of minor importance to us if this is a inherent limitation or simply a lack of
knowledge.

We can formalize the idea of expressing probabilities of drawing specific values for
random variable with some compact notations. For these notations we sometimes need
to distinguish discrete random numbers and continuous random numbers. There is, in
principle, not much difference between these two kinds of random variables except
that the mathematical formulation has to be slightly different to be mathematically
correct. For example, the probability mass function for discrete random numbers,

P (x) = P (X = x) (6.1)

describes the frequency with which each possible value x of a discrete variable X
occurs. Note that x is a regular variable, not a random variable. The value of P (x)
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predicts the fraction of times we get a value x for the random variable X if we
draw many examples of the random variable. Probabilities are sometimes written as
a percentage, but here we will stick to the fractional notation. From this definition it
follows that the frequency of having any of the possible values is equal to 1, which is
an important normalization condition for a probability function,

∑
x

P (x) = 1. (6.2)

In the case of continuous random numbers, we have an infinite number of possible
values x so that the fraction for each number becomes formally infinitesimally small.
It is thus necessary to write the probability distribution function as P (x) = p(x)dx,
where p(x) is the probability density function (pdf). Note that we have used upper-
case and lower-case letters. The sum in Egn 6.2 then becomes an integral, and the
normalization condition for a continuous random variable is∫

x

p(x)dx = 1. (6.3)

A finite probability value makes then only sense for a certain range of numbers such
as

P (a < x < b) =

∫ b

x=a

p(x)dx. (6.4)

We will formulate the rest of this section in terms of continuous random variables.
The corresponding formulae for discrete random variables can easily be deduced by
replacing the integrals over the pdf with sums over the probability function. It is also
possible to use the delta-function to write discrete random processes in a continuous
form. The delta-function delta(x) is a very convenient notation, which is formally a
functional since it is only defined within an integral or the limiting case of a function
series. One can think of it as a density function that is 0 except for its arguments for
which it is infinite, so that ∫ ∞

−∞
δ(x1)f(x)dx = f(x1). (6.5)

The delta function is useful for writing discrete events in a continuous form. For
example, we could write the discrete density function for throwing a dice

P (x) =
1

6
for x = {1, 2, ..., 6}, (6.6)

as a density function

p(x) =
1

6
δ(x = xi) with xi = {1, 2, ..., 6}. (6.7)

Note that we are here only playing with notations in order to introduce a concise
language for our purposes.
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6.2 Moments: mean, variance, etc.

In the following, we only consider independent random values that are drawn from
identical pdfs, often labeled as iid (independent and identically distributed) data. That
is, we do not consider cases with different probabilities when given a specific value
of a random variable in a previous trial. We assume, mainly for simplicity, that this
static probability density function describes all we can know about the corresponding
random variable.

Let us consider the arbitrary pdf, p(x), with the following graph:

μ x

p(x)

Any curve like this which is strictly positive and where the area under the curve is
bounded to one (see Egn 6.3) is a possible probability density function. The specific
curve shown can be characterized as multimodal because it has several peaks. It would
be useful to have this function parameterized in an analytical format, and we will list
some common parameterized density function below. Since we often don’t know the
probability density function of the quantities of interest in a machine learning setting,
we will have to estimate pdfs. This approximation is the learning process in machine
learning, and we will later outline specific methods to do this.

Communicating the form of a pdf is difficult, and traditionally it is common to
describe random variables with a small set of numbers that are meant to capture some
properties of the probability density function. For example, we might ask what the
most frequent value is when drawing many examples. This number is given by the
largest peak value of the distribution.

pmax = argmaxxp(x). (6.8)

Even more common is to ask about the average value of the random sample when
drawing many examples. A common quantity to know is thus the expected arithmetic
average of those numbers, which is called the mean, expected value, or expectation
value of the distribution. This is defined as

μ =

∫ ∞

−∞
xp(x)dx. (6.9)

This formula formalizes the calculation of adding all the different numbers together
with their corresponding frequencies.

A careful reader might have noticed a little oddity in our discussion. On the one
hand, we are saying that we want to characterize random variables through some simple
measurements because we do not know the pdf, yet the last formula seems to assume
that we know the pdf p(x). To solve this apparent oddity, we need to be more careful
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and talk about the true underlying functions and the estimation of such functions. If
we know the pdf that governs the random variable X , then Egn 6.9 is the definition of
the mean. However, in most applications we do not know the pdf, but we can define
an approximation of the mean from measurements. For example, if we measure the
frequency pi of values in certain intervals around values xi, then we can estimate the
true mean μ by

μ̂ =
1

N

N∑
i=1

xipi. (6.10)

It is a common practice to denote an estimate of a quantity by adding a hat symbol to
the quantity’s symbol. Also, note that here we have used a discretization procedure to
approximate random variables that can be continuous in the most general case.

We could enter again the philosophical debate as we have treated the pdf as
fundamental and described the arithmetic average like an estimation of the mean. This
should hence be viewed as Bayesian. However, we could also be pragmatic and say
that we only have a collection of measurements so that the numbers are the "real" thing,
and that pdfs are only a mathematical construct. We will continue with a Bayesian
description but note that this makes no difference in the end when using the formalism
in specific applications.

The mean of a distribution is not the only interesting quantity that characterizes a
distribution. For example, we might want to ask what the median value is. The median
value is the value for the random variable for which it is equally likely to find a value
lower or larger than this value,

∫ median(x)

−∞
p(x)dx =

∫ −∞

median(x)

p(x)dx. (6.11)

The median is equal to the mean in cases of symmetric distribution. However, the
median can sometimes be more informative than the mean in cases of asymmetric
distributions. For example, the average household income in a nation can be very high
if there is a small percentage of very rich people. However, it is usually more telling
to know the value for the household income on which half the population has to live
on. In extension, we could ask about the numbers in the bottom quarter, and the next
quarter, etc. Most telling is, of course, to see the whole distribution of income. The
summary statistics like the mean and the median are only a crude approximation of
the picture provided by the distribution.

Let’s get back to other measurements to characterize the distribution of a random
variable. The spread of the pdf around the mean is also very revealing as it gives us
a sense of how distributed the values are. This spread is often characterized by the
standard deviation (std), or its square, which is called variance, σ2, and is defined as

σ2 =

∫ ∞

−∞
(x− μ)2f(x)dx. (6.12)

This is mathematically called a second moment of the distribution whereas the mean
is the first moment. These two moments are generally not enough to characterize
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the probability function uniquely; this is only possible if we know all moments of a
distribution, where the nth moment about the mean is defined as

mn =

∫ ∞

−∞
(x− μ)nf(x)dx. (6.13)

Higher moments specify further characteristics of distributions such as terms with
third-order exponents (related to the quantity called skewness) or fourth-order (such
as a quantity called kurtosis). Knowing all moments of a distribution is equivalent
to knowing the distribution precisely, and knowing a pdf is equivalent to knowing
everything we could know about a random variable.

In case the distribution function is not given, moments have to be estimated from
data. For example, the mean can be estimated from a sample of measurements by the
sample mean,

x̄ =
1

n

n∑
i=1

xi, (6.14)

and the variance from the sample variance,

s21 =
1

n

n∑
i=1

(x̄− xi)
2. (6.15)

We discuss later how these estimates are the appropriate maximum likelihood estimates
of these parameters. Note that the sample mean is an unbiased estimate while the sample
variance of the naive estimate E(X2) is biased. A statistic is said to be biased if the
mean of the sampling distribution is not equal to the parameter that is intended to be
estimated. Also, the estimation of the variance is not optimal for small samples. It is
therefore common to adjust the estimate with the so-called Bessel’s correction for the
unbiased sample variance,

s22 =
1

n− 1

n∑
i=1

(x̄− xi)
2. (6.16)

The difference is small for large sample sizes.
As mentioned earlier, knowing all moments uniquely specifies a pdf. This also

implies that an incomplete list of moments does not uniquely define a pdf. Just ex-
tracting a list of estimated moments is thus of limited use for generalization without
an explicit hypothesis of the underlying density function. While it is common to report
the mean and variance of samples, this is specifically useful in case of an assumed
Gaussian distributions as all higher moments are 0 for this specific distribution. Thus,
in practice it is mostly assumed, often without explicit mention, that the data are Gaus-
sian distributed when reporting mean and variance. In the age of computers with good
plotting programs it is easy to a least make some checks about this assumption. For
example, plotting a histogram and seeing if this resembles somewhat a bell-shaped
function is easy to do. Also, since we can now plot easily many data such as point
clouds, the way of summarizing distributions with moments should be seen as a more
old-fashioned option. In the same general sense, machine learning can even be seen as
a new approach to statistics that is currently making its way into many scientific areas
as a data analytics method.
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6.3 Examples of probability (density) functions

There is an infinite number of possible pdfs. However, some specific forms have been
very useful for describing some specific processes and have thus been given names.
The following is a small list of examples with some discrete and several continuous
distributions. The list is intended to give an overview of distributions that are often
mentioned in scientific work, and some of them will be discussed again in a later
chapters. Most examples are discussed as 1-dimensional distributions except the last
example, which is a higher-dimensional distribution. Again, we need to keep in mind
that machine learning is mostly concerned with high-dimensional cases so that these
distributions act merely as a starting point for illustrating some ideas.

6.3.1 Bernoulli distribution

A Bernoulli random variable is a variable from an experiment that has two possible
outcomes: success with probability p; or failure, with probability (1− p).

Probability function:
P (success) = p ⇒ P (failure) = 1− p

mean: p
variance: p(1− p).

6.3.2 Multinomial distribution

This is the distribution of outcomes in n trials that have k possible outcomes. The
probability of each outcome is thereby pi.

Probability function:
P (xi) = n!

∏k
i=1(p

xi
i /xi!)

mean: npi
variance: npi(1− pi).

An important example is the binomial distribution (k = 2), which describes the the
number of successes in n Bernoulli trials with probability of success p. Note that the
binomial coefficient is defined as

(
n
x

)
=

n!

x!(n− x)!
(6.17)

and is given by the Python function itertools.permutations.

x

P(x)

np

Probability function:

P (x) =

(
n
x

)
px(1− p)n−x

mean: np
variance: np(1− p).
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6.3.3 Uniform distribution

Equally distributed random numbers in the interval a ≤ x ≤ b. Pseudo-random
variables with this distribution are often generated by routines in many programming
languages.

x

p(x) Probability density function:

p(x) =

{
1

b−a for a ≤ x ≤ b,

0 otherwise.
mean: (a+ b)/2
variance: (b− a)2/12.

6.3.4 Normal (Gaussian) distribution

The limit of the binomial distribution for a large number of trials depends on two
parameters, the mean μ and the standard deviation σ. The importance of the normal
distribution stems from the central limit theorem outlined below.

μ

σ

x

p(x)
Probability density function:

p(x) = 1
σ
√
2π

e
−(x−μ)2

2σ2

mean: μ
variance: σ2.

6.3.5 Chi-square distribution

The sum of the squares of normally distributed random numbers is chi-square dis-
tributed and depends on a parameter ν that is equal to the mean. Γ is the gamma
function included in Python as scipy.stats.gamma.

ν x

p(x)

Probability density function:
p(x) = x(ν−2)/2e−x/2

2ν/2Γ(ν/2)
mean: ν
variance: 2ν.

6.3.6 Multivariate normal distribution

We will later consider density functions of a several random variables, x1, ..., xn. Such
density functions are called multivariate. An important example is the multivariate
Normal distribution (scipy.stats.multivariate normal in Python) given by

p(x1, ..., xn) = p(x) =
1√

2π
n√|Σ| exp(−

1

2
(x− μ)TΣ−1(x− μ)). (6.18)

This is a straight-forward generalization of the 1-dimensional Gaussian distribution
mentioned earlier where the mean is now a vector μ, and the variance generalizes to
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a covariance matrix Σ = [Cov[Xi, Xj ]]i=1,2,...,k;j=1,2,...,k which must be symmetric
and positive semidefinite. An example with mean μ = (1 2)T and covariance Σ =
(1 0.5; 0.5 1) is shown in Fig. 6.1.

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

Fig. 6.1 Multivariate Gaussian with mean μ = (1 2)T and covariance Σ = (1 0.5; 0.5 1).

6.4 Some advanced concepts

6.4.1 Cumulative probability (density) function and the Gaussian error
function

We have mainly discussed probabilities of single values as specified by the probability
(density) functions. However, in many cases we need to know the probabilities of
having values within a certain range. The probability of a specific valuer of a continuous
random variable is actually infinitesimally small (nearly zero), and only the probability
of a range of values is finite and has a useful meaning of a probability. This integrated
version of a probability density function is the probability of having a value x for the
random variable X in the range of x1 ≤ x ≤ x2 and is given by

P (x1 ≤ X ≤ x2) =

∫ x2

x1

p(x)dx. (6.19)

A common quantity that we often need to calculate is the probability that a normally
(Gaussian) distributed variable has values between x1 = 0 and x2 = y. The probability
of Egn 6.19 then becomes a function of y. This defines the Gaussian error function

1√
2πσ

∫ y

0

e−
(x−μ)2

2σ2 dx =
1

2
erf(

y − μ√
2σ

). (6.20)

The name of this function comes from the fact that this integral occurs when cal-
culating confidence intervals with Gaussian noise and is often abbreviated as erf .
This Gaussian error function for normally distributed variables (Gaussian distribu-
tion with mean μ = 0 and variance σ = 1) is commonly tabulated in books on
statistics. Mathematical programming libraries usually include routines that return
the values for specific arguments. In Python, this is implemented by the routine
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scipy.special.erf, and values for the inverse of the error function are returned
by the routine scipy.special.erfinv.

Another important general case of Egn 6.19 is when x1 in the equation is equal to
the lowest possible value of the random variable (usually −∞). The integral in Egn
6.19 then corresponds to the probability that a random variable has a value smaller than
a certain value, say y. This function of y is called the cumulative density function

(cdf),4

P cum(x < y) =

∫ y

−∞
p(x)dx, (6.21)

which we will utilize further below.

6.4.2 Functions of random variables and the central limit theorem

A function of a random variable X ,

Y = f(X), (6.22)

is also a random variable, Y , and we often need to know the pdf of this new random
variable. Calculating with functions of random variables is a bit different to calculating
with regular functions, something to which we need pay attention. Let us illustrate how
to do this with an example. Say we have an equally distributed random variable X , as
commonly approximated with pseudo-random number generators on a computer. The
probability density function of this variable is given by

p(x) =

{
1 for 0 ≤ x ≤ 1,
0 otherwise. (6.23)

We are seeking the probability density function pY (y) of the random variable

Y = e−X2

. (6.24)

The random number Y is not Gaussian distributed as we might naı̈vely think. To cal-
culate the probability density function we can employ the cumulative density function
of Egn 6.21 by noting that

P (Y ≤ y) = P (e−X2 ≤ y) = P (X ≥
√
− ln y). (6.25)

Thus, the cumulative probability function of Y can be calculated from the cumulative
probability function of X ,

P (X ≥
√
− ln y) =

{∫ 1√− ln y
p(x)dy = 1−√− ln y for e−1 ≤ y ≤ 1,

0 otherwise.
(6.26)

The probability density function of Y is the the derivative of this function,

pY (y) =

{
1−√− ln y for e−1 ≤ y ≤ 1,
0 otherwise. (6.27)

The probability density functions of X and Y are shown below.

4Note that this is a probability function, not a density function.
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A special function of random variables, which is of particular interest as it can
approximate many processes in nature, is the sum of many random variables. Sums of
random variables often occur, for example when calculating averages from measured
quantities,

X̄ =
1

n

n∑
i=1

Xi, (6.28)

and we are interested in the probability density function of the random variables that
represents the mean. This function depends, of course, on the specific density function
of the random variables Xi. However, there is an important observation summarized in
the central limit theorem. This theorem states that the average (normalized sum) of
n random variables that are drawn from any distribution with mean μ and variance σ
is approximately normally distributed with mean μ and variance σ/n for a sufficiently
large sample size n. The approximation is, in practice, even good for relatively small
numbers of added variable. For example, the normalized sum of only seven uniformly
distributed pseudo-random numbers is shown in Fig. 6.2 that was produced with the
code in Listing 6.1.

Fig. 6.2 Histogram of 1,000 samples of a random number that is the sum of seven uniformly

distributed random numbers.

Listing 6.1 CentralLimit.ipynb

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

x=sum ( np . random . r and ( 7 , 1 0 0 0 ) )
p l t . h i s t ( x )
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6.4.3 Measuring the difference between distributions

An important practical consideration is how to measure the similarity or difference
between two density functions, say the density function p and the density function
q. Note that such a measure is a matter of definition, similar to distance measures
of real numbers or functions where we can come up with a variety of definitions.
However, there are some basic properties that we expect from a distance measure
d(a, b) between two items, a and b. For example, a distance measure should be 0 if
the items to be compared are the same, that is d(a, a) = 0. Also, the value should be
positive otherwise, d(a, b) > 0 for a 	= b, and a distance measure should be symmetric,
meaning that d(a, b) = d(b, a).

To measure the difference between to distributions we could just plot them on
top of each other and measure the difference in area. However, as we will see later,
we can define the information content in form of a logarithm of the probability, and
the difference of logarithms is equal to the logarithm of the quotient. As common in
probability theory, this measure should be weighted itself with the probability of the
densities. A popular measure of similarity between two density functions is hence the
so-called Kulbach–Leibler (KL) divergence that is given by

dKL(p, q) =

∫
p(x) log(

p(x)

q(x)
)dx (6.29)

=

∫
p(x) log(p(x))dx−

∫
p(x) log(q(x))dx. (6.30)

This measure is 0 if p = q and always larger than 0 if p 	= q. However, this measure is
not symmetric and is therefore called a divergence instead of a distance. KL is related
to the information gain or relative entropy in information theory.

6.5 Density functions of multiple random variables

So far, we have discussed mainly probability (density) functions of single random
variables. As mentioned earlier, we use random variables to describe data such as
sensor readings in robots, of which there are many. Thus, in many applications we
consider multiple random variables. The quantities described by the random variables
might be independent, but in many cases they are also related. Indeed, we will later talk
about how to describe various types of relations. Thus, in order to discuss situations
with multiple random variables, or multivariate statistics, it is useful to know the basic
rules.

6.5.1 Basic definitions

Stochastic machine learning models usually contain many random variables In the
following we introduce the multivariate concepts for two variables, although these
concepts readily generalize directly to an arbitrary number of variables. We start with
some essential definitions. The total knowledge about the co-occurrence of specific
values for two random variables X and Y is captured by the

joint distribution: p(x, y) = p(X = x, Y = y). (6.31)
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This is a 2-dimensional functions. The 2 dimensions refers here to the number of
variables, although a plot of this function would be a 3-dimensional plot. An example
is shown in Fig. 6.3. All the information we can have about a stochastic system is
encapsulated in the joint pdf. The slice of this function, given the value of one variable,
say y, is the

conditional distribution: p(x|y) = p(X = x|Y = y). (6.32)

A conditional pdf is also illustrated in Fig. 6.3. If we sum over all realizations of y we
get the

marginal distribution: p(x) =

∫
p(x, y)dy. (6.33)

Fig. 6.3 Example of a two-dimensional probability density function (pdf) and some examples of

conditional pdfs.

If we know some functional form of the density function or have a parameterized
hypothesis of this function, than we can use methods such a maximum likelihood
estimation, introduced later, to estimate the parameters as in the 1-dimensional cases.
This will be the essence of supervised learning in the probabilistic context and will be
discussed in more detail later. If we do not have a parameterized hypothesis function
we need to use other methods, such as treating the problem as discrete, and building
histograms to describe the density function of the system. This would be a non-
parametric approach. Approximating a density function with histograms is a parameter-
free method, although the bin size is a hyperparameter of the method. The problem
with this method is that it becomes very challenging, or "data hungry", with increasing
dimensions. That is, if we use a histogram method to estimate the joined density
function where we discretize the space along every dimension into n bins, this will
createn2 bins for a 2-dimensional histogram, andnd for a d-dimensional problem. This
exponential scaling is a major challenge in practice since we also need considerable
data in each bin to sufficiently estimate the probability of each bin. This problem has
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been termed the "curse of dimensionality" by Richard Bellman. We will later discuss
that building appropriate models can address this curse.

6.5.2 The chain rule

If we know the joint distribution of some random variables we can make the most
predictions of these variables. However, in practice, we often have to estimate these
functions, and we can often only estimate conditional density functions. A very useful
rule to know is therefore how a joint distribution can be decomposed into the product
of a conditional and a marginal distribution,

p(x, y) = p(x|y)p(y) = p(y|x)p(x), (6.34)

which is an example of a chain rule. Note the two different ways in which we can
decompose the joint distribution. This is easily generalized to n random variables by

p(x1, x2, ..., xn) = p(xn|x1, ...xn−1)p(x1, ..., xn−1) (6.35)
= p(xn|x1, ..., xn−1) ∗ ... ∗ p(x2|x1) ∗ p(x1) (6.36)
= Πn

i=1p(xi|xi−1, ...x1), (6.37)

but note that there are also different decompositions possible. We will learn more about
this and useful graphical representations in the next chapter.

Estimations of processes are greatly simplified when random variables are inde-
pendent. A random variable X is independent of Y if

p(x|y) = p(x). (6.38)

Using the chain rule Eqn 6.34, we can write this also as

p(x, y) = p(x)p(y); (6.39)

that is, the joint distribution of two independent random variables is the product of
their marginal distributions. Similarly, we can also define conditional independence.
For example, two random variables,X and Y , are conditionally independent of random
variable Z if

p(x, y|z) = p(x|z)p(y|z). (6.40)

Note that total independence does generally not imply conditionally independence,
and visa versa, although this might hold true for some examples.

6.6 How to combine prior knowledge with new evidence

6.6.1 Bayes rule

One of the most common tasks we will encounter in the following is the integration of
prior knowledge with new evidence. For example, we might have a robot that estimates
its current position at certain values and then get new (noisy) sensory data that adds
some suggestions for different positions. This is also a common task in fusion of data
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from different sensors. In general, we assume that we already have a model that we
built from previous data, and now we want to refine this model with new data. The
general question we have to solve is how to weight the different evidence in light
of the reliability of this information. Solving this problem is easy in a probabilistic
framework and is one of the main reasons that so much progress has been made with
the application of probabilistic machine learning.

How prior knowledge should be combined with prior knowledge is an important
question. Luckily, we already know how to do it best in a probabilistic sense. Namely,
if we divide the chain rule (Eqn 6.34) by p(y), which is possible as long as p(y) > 0,
we get the identity

p(x|y) = p(y|x)p(x)
p(y)

, (6.41)

which is called Bayes rule after the inventor Thomas Bayes. This theorem is important
because it tells us how to combine prior knowledge over a random variable we want
to estimate, p(x), with the likelihood p(y|x) of data y given x. The likelihood can
often be measured in some way, for example by measuring some sensors reading y
when controlling the state x. The posterior distribution, p(x|y), which is the new
knowledge of the distribution with the new data, can then be calculated by multiplying
the likelihood with the prior for x and normalizing this properly by the marginal
distribution of having such data, p(y), also called evidence. We will see that, in
practice, knowing the marginal of the data is difficult, but we will also see that the non-
normalized version is useful in some applications such as classification, as discussed
later.

Bayes rule in conjunction with the chain rule and the rule of total probability are
basically all the rules you need to do probabilistic inference. Probabilistic inference
is to use these rules together with the known or estimated density functions to derive
probabilistic statements. For example, let us calculate how likely it is to rain if a
meteorologist is predicting rain,

p(X = r|Y = r) =?. (6.42)

The random variable X stands for the "actual condition," and r means rain, and the
random variable Y stands for "predicted condition." Let us assume we know the
following factors that we can measure easily. Let us assume that it rains in 30 per cent
of the days,

p(X = r) = 0.3, (6.43)

which we just calculated from past data by taking the ratio of days on which it rained.
Since there are only two choices, it follows that the probability of no rain, which we
write as 	 r, is

p(X = 	 r) = 1− p(X = r) = 0.7. (6.44)

Furthermore, from past predictions we know that the meteorologist predicts correctly
that it is raining 90 per cent.

p(Y = r|X = r) = 0.9. (6.45)

This number is again derived from previous data. From this we might conclude that
it should be raining with a 90 per cent probability, but we also need to take the prior
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knowledge into account which should bias our prediction downwards because it is less
likely to rain than not to rain. To apply Bayes rule, we also need to know how the
meteorologist performs predicting no rain, and let’s assume that she is slightly better
at predicting when it is not raining as she gets this right 95 per cent of the times. That
is

p(Y = 	 r|X = 	 r) = 0.95. (6.46)

The last equations also implies that she predicts rain in 5 per cent of the cases when it
does not rain,

p(Y = r|X = 	 r) = 0.05. (6.47)

We now have all the components we need to find a solution to the above question using
Bayes theorem, namely

p(X = r|Y = r) =
p(Y = r|X = r)p(X = r)

p(Y = r|X = r)p(X = r) + p(Y = r|X = 	 r)p(X = 	 r)
=

0.9 ∗ 0.3
0.9 ∗ 0.3 + 0.1 ∗ 0.7 (6.48)

≈ 0.8.

Thus, we see that the actual probability that it is not raining if the meteorologist predicts
it is less than we might have thought.

Taking the prior into account is an essential part in Bayesian reasoning. This will
become clear in classification. For example, if we have a binary classification problem
in which the positive is highly unlikely, say 99 per cent, then always predicting
the positive outcome would give us an accuracy of 0.99. Even though that seems
good, a real success of a prediction system should considerable outperform this naı̈ve
prediction.

This is already an example of Bayesian modeling. We actually made a model of
two Bernoulli random variables

P (X = r) = pxr and P (Y = r) = pyr. (6.49)

and the conditional distributions

P (X = r|Y = r) = pxryr and P (X = r|Y = 	 r) = pxry �r. (6.50)

and estimated the parameters pxr, pyr, pxryr, and pxry �r from data. Estimating the
parameters for data is the learning part, and we will derive the procedure of using the
ratio of previous events that is appropriate for this model. We then used this model with
the rules of probability theory, specifically Bayes rule and the rule of total probability,
to make predictions. This last step is sometimes called making a statistical inference.
We will formalize the process of how to learn the parameters of the model in the next
chapter, and we will discuss the process of Bayesian modeling with associated tools
in Chapter 8.

Let us discuss a second example that should help us to appreciate the usefulness
and difficulty with Bayes rule. Let us assume we have a robot for which we want to
estimate the distance to a wall from sensor readings. For example, we might know
from the integration of our previous path that we are a distance of x̂ away from a wall
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with a probability that is Gaussian with variance σ1 around this estimated point. That
is, our prior knowledge is

p(x) = N (x̂, σ1). (6.51)

We then invoke a distance sensor. We have tested this sensor before and derived form
it the likelihood that we get a reading y if the sensor is a distance x from the wall. Let
us assume that this is also Gaussian around x with variance σ2

2 ,

p(y|x) = N (x, σ2). (6.52)

The question now is: if we get a sensor reading of y, what is the estimate of the distance
x to the wall given a sensor reading of y, the posterior p(x|y)? Note that this is not
only one answer but gives is the probability for each possible distance. We might then
choose the point estimate with the highest probability, but the advantage in having a
full probabilistic view enables advanced probabilistic reasoning.

We are lucky here, since both the prior and the likelihood are Gaussian distributed,
and one can show that the product of two Gaussian distributions is again Gaussian
distributed where the mean and variance is a weighted sum over the contributing
Gaussians, namely

μ =
σ2
2x̂+ σ2

1x

σ2
1 + σ2

2

(6.53)

and

σ =
σ2
1σ

2
2

σ2
1 + σ2

2

(6.54)

Furthermore, and most importantly, since we know that the resulting distribution is
a Gaussian, we also know how to normalize this distribution so that we do not have
to calculate the denominator p(y) which depends on movements of the robot and all
corresponding sensor measurements that we do not know. Therefore, in this situation
we can calculate the posterior analytically, which is given by

p(x|y) = N (μ, σ). (6.55)

We wanted to show here that the posterior of a Gaussian likelihood with a Gaussian
prior is tractable. Unfortunately, for most other distributions, we can not calculate the
denominator analytically, which is a major problem for applying Bayesian inference
analytically. The next section introduces a numerical sampling method that can be
used in a general cases to estimate posteriors. The next section introduces a method
that can be used in general cases to sample posteriors.

6.6.2 Markov chain Monte Carlo (MCMC)

A techniques that is commonly mentioned and used in machine learning papers is
Markov chain Monte Carlo (MCMC). We will introduce here the idea behind this
technique with an example of generating random variables from an arbitrary density
function.

While many computer programs include methods to generate random numbers
from a handful of well-defined density functions, we sometimes need a way to sample
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from density functions that are not already defined in a computer library. Let’s say we
have a density function of the form

p(x) =

{
x for 0 ≤ x ≤ 2,
0 otherwise, (6.56)

as illustrated in Fig. 6.6.2a which was generated with the code.

Listing 6.2 MCMC.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

x=np . a r a n g e ( 0 , 2 . 1 , 0 . 1 ) ; y=x / 2
x=np . append ( x , 2 ) ; y=np . append ( y , 0 )
p l t . p l o t ( x , y )
p l t . a x i s ( [ −1 , 3 , 0 , 1 . 1 ] )
p l t . show ( )

To generate random numbers from this distribution we can just chose some random
sample points and then chose with the probability specified by our function to accept
or reject this this sample. The histogram of 1000 proposal samples produced with the
code

Listing 6.3 MCMC.ipynb (part 2)

sample =np . a r r a y ( [ ] )
nsample =1000
x=2∗np . random . r and ( nsample )
y=np . random . rand ( nsample )
f o r i in range ( nsample ) :

i f y [ i ] < x [ i ] / 2 :
sample =np . append ( sample , x [ i ] )

p l t . h i s t ( sample )
sample . shape

is shown in the middle pannel of Fig. 6.6.2. While this works, we have only produced
around 500 true samples as we had to reject many of them. This is a fairly good ratio
with this chosen uniform distribution for potential sample points since we build in not
to produce sample proposals outside the range 0 < x < 2. This method is clearly
wasteful in areas with low probability.

A better methods is to use more samples in areas of high probability. This is called
importance sampling, and there are useful ways to do this called Markov chain Monte
Carlo (MCMC) method. For these, we produce a chain of proposal points by taking a
step from a current position. For example, we can just add a symmetric random step
to the current position. We then accept or reject this proposal according to the ratio of
the current position and the proposed position. This is implemented in the following
code.
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Fig. 6.4 Example of probability function (left) and corresponding uniform samples (middle) and

MCMC samples (right).

Listing 6.4 MCMC.ipynb (part 3)

c u r r e n t = 1
sample =np . a r r a y ( [ ] )

f o r i in range ( nsample ) :
f l a g = 1
whi le f l a g == 1 :

p r o p o s a l = c u r r e n t + 0 .4∗ np . random . r and ( ) −0.2
i f ( p r o p o s a l > 0 and p r o p o s a l < 2) : f l a g =0

i f np . random . r and ( ) < p r o p o s a l / c u r r e n t :
c u r r e n t = p r o p o s a l
sample =np . append ( sample , p r o p o s a l )

p l t . h i s t ( sample )
sample . shape

We choose thereby arbitrarily the first current position at x = 1. We then produce a
proposal position by taking a random step. This formally builds a Markov chain as the
new position only depends on the current position. We chose in this example a uniform
distribution between −0.2 and 0.2 for the step. We could have taken other steps. For
example, the Metropolis algorithm that we describe here traditionally takes a Gaussian
distributed step, and some modern algorithms consider even better choices for specific
problem classes. The important next step of the algorithm is to accept the proposal if
a uniform random number is smaller than the ratio of the probability of the proposal
versus the probability of the current position, namely

p(accept) =
p(proposal)
p(current)

. (6.57)

If the probability of the proposal is larger than the probability of the current sample,
then we will always accept the proposal. This in itself is a hill-climbing algorithm.
However, we also sometimes need to take the other direction, and this ratio guarantees
that for long chains this random walk converges to the target distribution. In this
example, we also restricted the proposal values to the range between 0 and 2 in order
to compare the results directly with the previous case, although this method would
rarely produce proposals far outside this range. This method produced around 950
valid samples. In practice, one should always run this algorithm for a while first so that
the dependence on the initial conditions is minimized. Furthermore, the step width and



Basic probability theory140 |

samples should be chosen so that they are independent. For this, it is a good practice
to study the correlation coefficient between samples in the chain.

We have introduced the MCMC method with a simple example of generating
random variables. This method is very important as it can be used to calculate general
posteriors. More specifically, the MCMC is a method to calculate posterior distributions
without the need to evaluate the denominator, also called the partition function, which
is usually intractable. That is,

p(x|y) ∼
p(xproposal|y)
p(xcurrent|y)

(6.58)

=

p(y|xproposal)p(xproposal)
p(y)

p(y|xcurrent)p(xcurrent)
p(y)

(6.59)

=
p(y|xproposal)p(xproposal)

p(y|xcurrent)p(xcurrent)
. (6.60)

Thus, the intractable denominator cancels out in this ratio. The only problem with this
method is that it can take considerable computational resources so that other methods
might be considered such as building generative models as discussed later in this book.



7 Probabilistic regression and Bayes
nets

We discussed a linear model and linear regression in Chapter 5, and we will now revise
this method to include a description of uncertainty in the data. This will show us how
modern probabilistic machine learning can be formulated. We follow first a simple
stochastic generalization of the linear regression example to introduce the formalism.
This leads to the important maximum likelihood principle on which we will base
learning. We later generalize this idea to non-linear problems in higher dimensions
and relate this to Bayes nets. After this, we will discuss how such a probabilistic
approach is related to deep learning.

7.1 Probabilistic models

We again consider supervised learning where examples of input–output relations are
given and our goal is to make a model that can make predictions of previously unseen
data. The main difference is that we do not only want to make a prediction of a value,
but we would also like to know how probable different values are. Let us consider
an example from robotics where we want to model how far a terrestrial robot is
moving when the wheels are turning for a given number of seconds after activating
the corresponding motors with a certain power. Figure 7.1A shows a Lego Mindstorm
robot that has two motorized wheels and an ultrasonic distance motor attached to it.
We want to model (or predict) how far this robot moves when both motors are driven
for a certain amount of time.

The i-th training data are denoted by the pairs (x(i), y(i)), where the feature inputs
x(i) is the time in seconds we let both motors run, and the outputs or labels y is the
distance that the robot traveled. The true distance traveled has to be provided by the
teacher, most likely in the form of measurements such as from using a ruler or as
sensor that measures distance such as a laser range-finder or an ultrasonic sensor. To
automate the collection of data we use an ultrasonic sensor to measure the distance to
a wall while driving the robot for different amounts of times forward and backward.
The ultrasonic data are now the teacher feedback, and the teacher’s data are considered
the ground truth and will not be questioned here. The point is that later we do not need
the teacher (ultrasonic sensor) to predict how far the robot travels.

Figure 7.1B shows several measurements of the distance traveled for different times
the motors are activated. The data clearly reveal some systematic relation between the
time of running the motor and the distance traveled, the general trend being that the
traveled distance increases with increasing running time of the motors. While there
seems to be some noise in the data, the outliers and the noise cannot hide a linear trend

Fundamentals of Machine Learning, Thomas P. Trappenberg, Oxford University Press (2020).
c© Oxford University Press. DOI: 10.1093/oso/9780198828044.001.0001
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Fig. 7.1 (A) A terrestrial robot build with Lego Mindstorm with an ultrasonic sensor at the front.

(B) Measurements of distance travelled by a robot when running the motor for different numbers

of milliseconds with a given power. (C) Corresponding histogram of differences between data and

a line that is fitted by minimizing the the mean square error between the data points and the line.

for most of the data. Let us therefore run a linear regression as discussed in Chapter 5
with the model,

ŷ(x;w) = w0 + w1x. (7.1)

We only considered one input variable x above, but we can easily generalize this
to higher-dimensional problems where more input attributes are given. For example,
another factor that influences the distance traveled is the power setting of the motor.
Of course, the distance traveled within a certain time does depend on the power and
it is not just an independent additive effect on the travelled distance. Results of the
experiment for different power settings and different travel times are show in Fig. 7.2.
Fig. 7.2A also includes a fit to Eqn 7.2. However, these data are better described by a
bi-linear hypothesis,

ŷ(x;w) = w0 + w1x1x2. (7.2)

The corresponding fit of the data is also shown in Figure 7.2A. Sometimes we do not
know all the factors. For example, we might not be given the power settings of the
motors in this experiment so that the data look as shown in Figure 7.2C. These data look
more noisy than the previous data, although we know that this is not really noise but,
rather, unknown factors. The point of including this example is basically that it does not
really matter if this randomness may come from an irreducible indeterminacy; that
is, true randomness in the world that can not be penetrated by further knowledge, or
this noise might represent epistemological limitations such as the lack of knowledge
of hidden processes or limitations in observing states directly. The only important
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fact for us is that we have to live with these limitations. The inclusion of describing
uncertainty has helped to make large progress in machine learning.
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Fig. 7.2 (A) Measurements of distance travelled by the robot when running the motor for different

number of milliseconds and various power settings. Fit according to Eqn 7.2 (B) Histogram of

differences between data and hypothesis. (C) The same data as shown in (A) when collapsed

across the power setting. The corresponding distribution shown in (D) is much wider than the

histogram shown in Fig. 7.1.

We have so far basically ignored the fluctuations in the data with the functional
regression procedure, and we now investigate more the fluctuations around this trend.
Fig. 7.1C, 7.2B, and 7.2D are plots of the histogram of the differences between
the actual data and the (linear) functional hypothesis of the above regressions. The
histograms look a lot like a Gaussian distribution. This is not so surprising since
according to the central limit theorem, a Gaussian can be expected as a result result of
a variety of independent noise sources and this distribution is hence often observed in
nature.

In the following, we will assume that the input values x are given and hence
that they are not random variables. However, all the following derivations are easily
modified if we treat these variables also at random. In this case we would use for the
data the density function

p(ŷ,x|w) = p(ŷ|x;w)p(x). (7.3)

In this example, we have actually chosen the x-values from a uniform distribution so
that the factor p(x) would be a constant or 0 so that it would not matter anyhow. It
therefore does not really matter in the following example. We only mention this fact
here as many textbooks on Bayesian statistics consider density functions of data given
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parameters, p(D|w), and we just want to highlight that we will maintain consistent
notation although we use the more common model in machine learning where we only
consider the predicted value as random.

Of course, as with the deterministic case, we have to come up with a specific
parameterized function, a density function with parameters w. Let us do this for this
robot example. Guided by the form of the "noise" in the above robot example, we
assume here that the mean of the data follow our previous deterministic model ŷ(x;w)
with additive Gaussian noise, or with other words, that the data in Fig. 7.1C are
Gaussian distributed with a mean μ = ŷ(x) that depends linearly on the value of x,

p(ŷ|x;w, σ) = N(μ = wTx, σ) (7.4)

=
1√
2πσ

exp

(
− (ŷ −wTx)2

2σ2

)
. (7.5)

This functions specifies the likelihood (probability) of values for ŷ, given an input x
and the model with parameters w and σ. In the following, we keep the parameter σ at
a specific value so that we only consider the variables w as free. This simply helps to
keep the formulae manageable for illustration purposes, though including a possible
variable variance it is also possible.

Specifying a model with a density function is an important step in modern mod-
elling and machine learning. In this type of thinking, we treat data from the outset as
fundamentally stochastic. That is, data can be different even in situations that we have
identical inputs. We have just specified a specific probabilistic model for the example
robot data.

7.2 Learning in probabilistic models: Maximum likelihood
estimate

We will now turn to the important principle that will guide our learning process.
Learning means, of course, determining the parameters of the model from example
data. Here we introduce the important maximum likelihood principle. This principle
states that we choose the parameters in a probabilistic model in the following way:

Given a parameterize hypothesis function p(y,x|w), we will chose as parameters
the values which make the training data {y,x} most likely under the assumption
of the model.

The MLE principle is stated here again in its most general form for all random data. In
our case, we start with a model of the form p(y|x;w) which specifies a probabilistic
regression model for given input data. This is why the input data appear on the right
side of the horizontal bar. However, we will see shortly that in MLE we replace all
the data at some point with the training data so that we end up with a function (the
likelihood function) that is a function of the parameters. Hence, in this case it does not
matter if we treat the input data as given or as random variables themselves.

Let us illustrate this on the Gaussian example above with the parameterized model
(Eqn 7.5). We are considering the 1-dimensional case with one feature value, x. Given
parameters w0, w1, and assuming that σ = 1 to simplify the discussions, and the
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feature value for the first data point x(1), then the prediction of the probability of the
corresponding label is

p(Y1 = y(1)|x(1);w0, w1) =
1√
2π

exp

(
− (y(1) − w0 − w1x

(1))2

2

)
. (7.6)

Now we invoke the maximum likelihood principle and ask which parameters we
should choose so that the observed data would be most likely under the model with
these parameters. That is, we can maximize the probability so that y = y(1). This can
be achieved by choosing values

w1 = arbitrary (7.7)
w0 = y(1) − w1x

(1). (7.8)

This is our first maximum likelihood estimate (MLE) of the parameters w0 and w1.
Of course, since we have more parameters than data points there is a whole manifold
of solutions and it is clear that we need more than one data point to make better
predictions. In order to do this, we need to know the probability of a combination of
data points. For example, let’s say we have two data points (x(1), y(1)) and (x(2), y(2)).
We then need to know the joint distribution of having the values for two labels with
specific values. We have not specified a model for this until now. We can do this by
making the assumption that the data points are conditionally independent; that is

p(Y1 = y(1), Y2 = y(2)|x(1), x(2);w0, w1) =

p(Y1 = y(1) |x(1), x(2);w0, w1)p(Y2 = y(2)|x(1), x(2);w0, w1). (7.9)

In general, if we have m samples, and if we assume that the observation are all
conditionally independent, the joint probability of several observations is the product
of the individual probabilities,

p(Y1 = y(1), Y2 = y(2), ...., Ym = y(m)|x1,x2, ...,xm;w) = Πm
i p(yi|xi;w).

(7.10)
We have written this formula again for a general case where all the parameters are
collected in the vector w, and yi is a short form of Yi = y(i). We can now insert
the specific observations (training data) into the resulting function. We then arrive at
a function that is a function of the parameters, no longer a probability function for
random variables. This function is equivalent to the functional form Eqn 7.6, but this
is now a function of the parameters that estimates the probability from the data. This
function is called the likelihood function

L(w) = Πm
i p(w; y(i),x(i)). (7.11)

Since this function it is not a probability density function, we replaced the notation of
the vertical bar "|” with the semi-colon ";".

We are nearly done. Instead of evaluating this large product, it is common to use
the logarithm of the likelihood function, so that we can use the sum over the training
examples,

l(w) = logL(w) =
m∑
i

log(p(w; y(i),x(i))). (7.12)
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The logarithmic function increases monotonically. Hence, the maximum of L is also
the maximum of l. The maximum (log-)likelihood can thus be calculated from the
training data as

wMLE = argmaxwl(w;x(1), ..., x(m)). (7.13)

Of course, we still have to find the maximum in practice. We might be able to calculate
this analytically or use one of the search algorithms to find a maximum from this
function like a gradient ascent.

Let us apply this to the Gaussian model of the robot example. The log-likelihood
function of our hypothesis function for this example is

l(w) = logΠm
i=1

1√
2π

exp

(
− (y(i) −wTx(i))2

2

)
(7.14)

=
m∑
i=1

(
log

1√
2π
− (y(i) −wTx(i))2

2

)
(7.15)

or

l(w) = −m

2
log 2π −

m∑
i=1

(y(i) −wTx(i))2

2
. (7.16)

Here you can see why the log is a good choice as we can look at a sum instead having
a long product of potentially very small numbers. Since the first term in the expression
in Eqn 7.16,−m

2 log 2π, is independent of w, maximizing the log-likelihood function
is equivalent to minimizing (because of the minus sign) a quadratic error term

E =
1

2
(y − h(x;w))2 ⇐⇒ p(y|x;w) =

1√
2π

exp(− (y − h(x;w))2

2
). (7.17)

This is the square-error loss function, or least mean square (LMS) error if we consider
a batch algorithm and divide the value by the number of examples in the batch. This
loss function has long been the choice for linear regression. It has also been dominant
in machine learning approaches such as multilayer perceptrons for a long time. In
terms of our probabilistic view, the LMS regression is equivalent to MLE for Gaussian
data with linear dependence of the mean and a constant variance.

However, these assumptions may or may not hold in different applications. The
data themselves might not be Gaussian, and even if they are, than the variance might
be different for different feature inputs. In this case we would need to minimize Eqn
7.16 with a sigma in the denominator instead. Also, the mean itself might vary in a
non-linear way with the parameters. Thus, the point here is the following: a Gaussian
model of noise is clearly a good general choice due to the central limit theorem.
However, it is possible that there are better choices for specific applications that can
result in superior predictions.

We have discussed Gaussian distributed data in most of this section, but one can
similarly find corresponding loss functions for other distributions. For example, a
polynomial loss function correspond more generally to a density model of the form

E =
1

p
||y− h(x;w)||p ⇐⇒ p(y|x;w) =

1

2Γ(1/p)
exp(−||y− h(x;w)||p). (7.18)
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As mention in the discussion of support vector regression, there it is common to use
the ε-insensitive loss function, where errors less than a constant ε do not contribute
to the error measure, only errors above this value. The corresponding probabilistic
models in this case is

E = ||y − h(x;w||ε ⇐⇒ p(y|x;w) =
p

2(1− ε)
exp(−||y − h(x;w)||ε). (7.19)

We only mention these examples to show that probabilistic regression can be seen as
regressing a deterministic model with an appropriate loss function that depends on the
nature of the noise.

7.3 Probabilistic classification

We have already encountered classification methods such as support vector machines
and decision trees. We now argue that classification can be seen as an important special
case of probabilistic regression. In classification, features are mapped to a finite number
of possible categories. We now discuss binary classification again, which is the case of
only two target classes where the target function (y-values) might have two possible
values such as 0 and 1. Later, we can easily generalize the ideas to more classes. We
start here by describing a binary random variable.

7.3.1 MLE of the Bernoulli model

An important probabilistic model of a binary random variable is the Bernoulli model.
In this model, a random number which takes the value of 1 with probability φ, and the
value 0 with probability 1 − φ (the probability of being either of the two choices has
to be 1.). That can be nicely combined in the formula,

p(y) = φy(1− φ)1−y. (7.20)

Such a random variable is called Bernoulli distribution. A Bernoulli distribution is
hence characterized by one parameter, φ. Tossing a coin is a good example of a
Bernoulli process (a process of generating such random numbers). We can use maxi-
mum likelihood estimation, MLE, to estimate the parameter φ from such trials. That
is, let us consider m tosses in which h heads have been found. The log-likelihood of
such m trials is

l(φ) = log
∏
i

φy(i)

(1− φ)1−y(i)

(7.21)

= log(φh(1− φ)m−h) (7.22)
= h log(φ) + (m− h) log(1− φ). (7.23)

To find the maximum with respect to φ we set the derivative of l with repect to the
parameters φ to 0,

dl

dφ
=

h

φ
− m− h

1− φ
(7.24)
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= 0 (7.25)

→ φ =
h

m
. (7.26)

As one might have expected, the maximum likelihood estimate of the parameter φ is
the fraction of heads in m trials.

7.3.2 Logistic regression

In machine learning we usually consider the case of classification when the parameter
φ, depends on an attribute x. We can thus write down a probability model like

p(y = 1|x;w) = f(x;w) (7.27)
p(y = 0|x;w) = 1− f(x;w), (7.28)

where f(x;w is a specific hypothesis function that we need to specify further. We can
combine the probabilities into one expression,

p(y|x;w) = (f(x;w))y(1− f(x;w))1−y (7.29)

The corresponding log-likelihood function is

l(w) =
m∑
i=1

y(i) log(f(x;w)) + (1− y(i)) log(1− f(x;w)). (7.30)

To find the corresponding maximum we can use the gradient ascent algorithm, which
is like the gradient descent algorithm with a changed sign,

w← w + α∇wl(w). (7.31)

To calculate the gradient we can calculate the partial derivative of the log-likelihood
function with respect to each parameters,

∂l(w)

∂wj
=

(
y
1

f
− (1− y)

1

1− f

)
∂f(w)

∂wj
(7.32)

where we dropped indices for better readability.
Let us apply this to logistic regression. An example of 100 sample points of two

classes (crosses and stars) are shown in Fig. 7.3. The data suggest that it is far more
likely that the class is y = 0 for small values of x and that the class is y = 1 for
large values of x, and the probabilities are more similar in between. Thus, we put
forward the hypothesis that the transition between the low and high probability region
is smooth and qualify this hypothesis as parameterized density function known as a
logistic function or sigmoid function

f(x;w) =
1

1 + exp(−wTx)
. (7.33)

As before, we can treat this density function as function of the parameters w for the
given data values (likelihood function), and use maximum likelihood estimation to
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Fig. 7.3 Binary random numbers (stars) drawn from the density p(y = 1) = 1
1+exp(−w1x−w0)

(solid line).

estimate values for the parameters so that the data are most likely. The density function
with sigmoidal offset w0 = 2 and slope w1 = 4 is plotted as solid line in Fig. 7.3.

We can now calculate the derivative of the hypothesis function f with respect to
the parameters for the specific choice of the logistic functions. This is given by

∂f

∂w
=

∂

∂w

1

1 + e−wx
(7.34)

=
1

(1 + e−wx)2
e−wx(−x) (7.35)

=
1

(1 + e−wx)
(1− 1

(1 + e−wx)
)(−x) (7.36)

= −f(1− f)x (7.37)

Using this in Eqn 7.32 and inserting it into Eqn 7.31 with the identity

(
y
1

f
− (1− y)

1

1− f

)
f(1− f) = y(1− f)− (1− y)f (7.38)

= y − yf − f + yf (7.39)
= y − f (7.40)

gives the learning rule

wj ← wj + α
(
y(i) − f(x(i);w)

)
x
(i)
j (7.41)

This is an interesting result since this learning rule for logistic regression is similar
to the learning rule for linear regression on Gaussian data. Also, logistic regression is
equivalent to a simple neural network called a perceptron for which this learning rule
was proposed on heuristic grounds in the 1950s, and it is usually called the perceptron
learning rule. Our derivation shows that this old heuristic learning rule relates to
assumptions of a probabilistic model.

How can we use the knowledge (estimate) of the density function with parameters
given after learning to do classification? The obvious choice is to predict the class with
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the higher probability, given the input attribute. This Bayesian decision point, xt, or
dividing hyperplane in higher dimensions, is given by

p(y = 1|xt) = p(y = 0|xt) = 0.5→ xtwTxt = 0. (7.42)

We have here considered binary classification with linear decision boundaries as lo-
gistic regression, and we can also generalize this method to problems with non-linear
decision boundaries by considering hypothesis functions with different functional
forms. As already stressed earlier, neural networks are a common way to specify more
complex hypothesis functions.

7.4 Maximum a posteriori (MAP) and regularization with
priors

Before moving to more complex multivariate models,this is a good opportunity to
discuss regularization again within a Bayesian framework. Maximum likelihood es-
timation is the workhorse of probabilistic supervised learning, though it is useful to
put this even into a wider context of probabilistic modeling. In the probabilistic sense,
choosing parameters values, given data, should be based on a model of the parameters
themselves,

p(w|x, y). (7.43)

Let us assume we can know this conditional distribution. For example, let us assume
it looks like the 1-dimensional example shown in Fig. 7.4. If we know this distribution
we can pick a parameter value that we like. For example, we could pick the value w1,
which is the most probable value given the specific data. This is called the maximum

a posteriori (MAP)

wMAP = argmaxwp(w|x, y). (7.44)

P(w|x,y)

www 12

Fig. 7.4 Example of a possible probability distribution of a parameter w given some data.

The main difficulty with MAP or using another procedure based on the distribution
p(w|x, y) is that we usually do not know this distribution a priori. Instead, our approach
has been to formulate a probabilistic model in the form of a parameterized density
function like

p(y|x;w). (7.45)

We will now discuss the relation of these density functions. To start with, in the
probabilistic model of Eqn 7.45, we assumed that the feature data are magically given,
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but we could also consider how we select data values in a randomized fashion so that
we can again consider the more general case

p(y,x|w) = p(y|x;w)p(x|w) (7.46)

Again, if we pick the training data uniformly, so that the marginal distribution over the
features is just a constant, then

p(y,x|w) ∝ p(y|x;w). (7.47)

Next, we can use Bayes theorem to relate the posterior p(w|x, y) to the data model,
namely

p(w|x, y) = p(y,x|w)p(w)∫
w′∈W

p(x, y|w′)p(w′)dw′ , (7.48)

where W is the domain of the possible parameter values.
This expression can be used to estimate the most likely values for the parameters.

For this we should notice that the denominator, which is called the partition function,
does not depend on the parameters w as we are integrating (summing) over all possible
values. The most likely values for the parameters can thus be calculated without this
term and are given by the maximum a posteriori (MAP) estimate,

wMAP = argmaxwp(x, y|w)p(w). (7.49)

The name of the method comes from the fact that we modify our prior knowledge
of parameters, which is summarized as prior distribution p(w) by combining this
to measurements (x, y) from specific realizations of the parameters, which is given
by the likelihood function p(x, y|w). The resulting posterior distribution should then
be a better estimate of the probability of values for the parameters. The function
argmaxx(f(x)) picks the argument x for which the function f(x) is maximal. The
argument of the function is the set of parameters that is, in a Bayesian sense, the
most likely value for the parameters, where, of course, we now treat the probability
function as a function of the parameters (e.g., a likelihood function). For a uniform
prior, p(w) = const, we get

wMAP = wMLE. (7.50)

While a uniform prior of the parameters has been an easy first choice, we can
think of other priors. Indeed, this can give us a great insight into regularization from a
probabilistic perspective. In section 5.4 we introducedLp regularization by introducing
a bias in the parameters. In the probabilistic models we can do this very elegantly by
providing a prior for the parameters that encapsulate the bias in the choice of parameter
as argued previously. For example, let us assume that the values of the parameters
should more likely be small than large. More specifically, let’s assume that we think
they should be normal distributed around 0. Then we can write the MAP estimate (Eqn
7.49) as

wMAP = argmaxwp(x, y|w)N (0, σ2) . (7.51)

As usual, we maximize the logarithm of the corresponding likelihood functions instead,
which leads to
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Uniform

Laplace

Gauss

Uniform: MAP = MLE

Gauss: MAP = MLE + L

Laplace : MAP = MLE + L

2

1

Fig. 7.5 Three distribution commonly used as priors for the parameters when learning together

with a maximum likelihood estimate.

wMAP = argmaxw log(p(x, y|w)) + α||w||2, (7.52)

with
α = log

1

2σ2
. (7.53)

Thus, our previously discussed L2 regularization corresponds to a Gaussian prior on
the weights. Similarly, L1 regularization correspond to a prior of a isotropic Laplace
distribution

p(w) =
1

2 b
exp

(
−|w|

b

)
, (7.54)

which is more peaked towards 0 as can be seen by a comparison of these distributions
in Fig. 7.5. Hence the L1 regularization forces more weights towards 0 compared to the
L2 regularization. This is another example showing how a probabilistic interpretation
sheds some light on techniques that have been originally introduced more heuristically.
A simple summary of the three priors and their resulting equivalence between MLE
and MAP is shown in the table on the right of the figure.

Finally, while we have discussed the common quantities of MAP and MLE in
machine learning, it is good to realize that both learning methods only give us a point

estimate, a single answer for the most likely values of the parameters given a specific
data set from which this likelihood has to be estimated. A point estimate is commonly
used to make decisions about which actions to take. However, it is possible that other
sets of parameter values might only have a little smaller likelihood value, and the
situation could quickly change with a few more data points. It is therefore much more
prudent to consider also other values. For example, looking again at the example in
Fig. 7.4, another strategy might be to pick a weight value in a range where variations
in this value would not change the probability considerably in some range, such as
values around w2.

Moreover, in a Bayesian sense, all other choices should be taken into account
with their corresponding likelihood. This is particularly true when estimating our
confidence for an estimation. In a Bayesian sense, we need to combine all possible
estimates with their likelihood. Thus, a limit of the maximum estimation methods
discussed earlier, which are dominating much of the current practices in machine
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learning applications, is that they do not take distribution of answers into account.
Some people thus distinguish machine learning from more advanced probabilistic
programming. While such advanced probabilistic modeling techniques can give us
answer to much deeper questions, the machine learning methods discussed in this book
with point estimates are commonly easier to apply to high-dimensional problems.

7.5 Bayes nets: multivariate causal modeling

7.5.1 Causal models

In the previously discussed probabilistic regression examples, we mainly considered
models for one random variable, or at most two. We now consider more complex models
with many more factors described by random variables. Probability theory nicely
generalizes to multiple random variables. Multivariate cases are simply described by
a joint probability as outlined in the review of probability theory.

Fig. 7.6 Example of a causal model to diagnose car starting problems (adapted from Sebastian

Thrun, MOOC on AI, 2011). While the joint density function of this model has 16,383 parameters,

the corresponding causal model has only 45 parameters.

An example adapted from Sebastian Thrun of a model to diagnose when a car is
not starting is shown in Fig. 7.6. This example is reasonably sized, although real-world
problems would probably be even larger than this. This model considered fourteen
random numbers to determine possible causes if the car does not start (the variable
"car does not start" is not a random number as we are using this model when we already
know that the car is not starting). The random numbers themselves could have two
possible outcomes (such as if there is gas in the tank), or even multiple possible values
(such as the age of the battery). Now time let us simplify the model by only considering
binary values. That is, the age of the battery would only be specified as new or old. The
joined probability table for the 14 variables would then have 214− 1 = 16383 entries.
These parameters have to be estimated (learned) from examples using MAP or MLE.
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In addition to the sheer explosion of parameters with increasing model complexity,
there is another reason why the joined probability function is not exactly what we need
to know. The joint density functions of multiple variables describe the co-occurrence
of specific values of the random variables. For example, the joint probability function
p(X,Y ) is symmetric in its arguments,

p(X,Y ) = p(Y,X). (7.55)

What we really want to do is to a model to reason about the world, or specifically, to
reason about possible events. For this, we want to add knowledge or hypotheses about
causal relations. For example, a fire alarm should be triggered by a fire, although
there is some small chance that the alarm will not sound when the unit is defective.
However, it is (hopefully) unlikely that the sound of a fire alarm will trigger a fire. It
is useful to illustrate such casual relations with graphs such as

F A
.

In such graphical models, the nodes represent random variables, and the links be-
tween them represent causal relations with conditional probabilities, p(A|F ). Since
we use arrows on the links, we discuss here directed graphs, and we also restrict
our discussions here to graphs that have no loops, so called acyclic graphs. Directed

acyclic graphs are also called DAGs.

Fig. 7.7 Example of causal model.

Graphical causal models have been advanced largely by Judea Pearl, and the
following example is taken from his book.5. The model is shown in Fig. 7.7 Each of
the five nodes stands for a random binary variable (Burglary B={yes,no}, Earthquake
E={yes,no}, Alarm A={yes,no}, John calls J={yes,no}, Mary calls M={yes,no}) The
figure also include conditional probability tables (CPTs) that specify the conditional
probabilities represented by the links between the nodes.

5Judea Pearl, Causality: Models, Reasoning and Inference, Cambridge University Press 2000, 2009.
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The joint distribution of the five variables can be factored in various ways following
the chain rule mentioned earlier (Eqn 6.35), for example as

p(B,E,A, J,M) = P (B|E,A, J,M)P (E|A, J,M)P (A|J,M)P (J |M)P (M).
(7.56)

However, the causal model represents a specific factorization of the joint probability
functions, namely

p(B,E,A, J,M) = P (B)P (E)P (A|B,E)P (J |A)P (M |A), (7.57)

which is much easier to handle. For example, if we do not know the conditional
probability functions, we need to run many more experiments to estimate the various
conditions (24 + 23 + 22 + 21 + 20 = 31) instead of the reduced conditions in the
causal model (1 + 1 + 22 + 2 + 2 = 10). It is also easy to use the casual model to
undertake inference (drawing conclusions), for specific questions. For example, say
we want to know the probability that there was no earthquake or burglary when the
alarm rings and both John and Mary call. This is given by

P (B = f,E = f,A = t, J = t,M = t)

= P (B = f)P (E = f, )P (A = t|B = f,E = f)P (J = t|A = t)P (M = t|A = t)

= 0.998 ∗ 0.999 ∗ 0.001 ∗ 0.7 ∗ 0.9
≈ 0.00062.

Although we have a casual model where parent variables influence the outcome of
child variables, we can also use child evidence to infer some possible values of parent
variables. For example, let us calculate the probability that the alarm rings, given that
John calls, P (A = t|J = t). For this, we should first calculate the probability that the
alarm rings as we need this later. This is given by

P (A = t) = P (A = t|B = t,E = t)P (B = t)P (E = t) + ...

P (A = t|B = t, E = f)P (B = t)P (E = f) + ...

P (A = t|B = f,E = t)P (B = f)P (E = t) + ...

P (A = t|B = f,E = f)P (B = f)P (E = f)

= 0.95 ∗ 0.001 ∗ 0.002 + 0.94 ∗ 0.001 ∗ 0.998 + ...

0.29 ∗ 0.999 ∗ 0.002 + 0.001 ∗ 0.999 ∗ 0.998
= 0.002516442.

We can then use Bayes rule to calculate the required probability,

P (A = t|J = t) =
P (J = t|A = t)P (A = t)

P (J = t|A = t)P (A = t) + P (J = t|A = f)P (A = f)

≈ 0.9 ∗ 0.0025
0.9 ∗ 0.0025 + 0.05 ∗ 0.9975

≈ 0.0434.

We can similarly apply the rules of probability theory to calculate other quantities, but
these calculations can get cumbersome with larger graphs. It is therefore useful to use
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numerical tools to perform such inference. A Python toolbox for Bayesian networks
is introduced in the next section.

While inference is an important application of causal models, inferring causality
from data is another area where causal models revolutionize scientific investigations.
Many traditional methods evaluate co-occurrences of events to determine dependen-
cies, such as a correlation analysis. However, such a correlation analysis is usually not
a good indication of causality. Consider the example in Fig. 7.7. When the alarm rings,
it is likely that John and Mary call, but the event that John calls is mutually independent
of the event that Mary calls. Yet, when John calls it is also statistically more likely to
observe the event that Mary calls. Sometimes we might just be interested in knowing
about the likelihood of co-occurrence, for which a correlation analysis can be a good
start, but if we are interested in describing the causes of the observations, then we need
another approach. Some algorithms have been proposed for structural learning, such
as an algorithm called inferred causation (IC), which deduces what the most likely
causal structure behind given data is.

7.5.2 Discrete probabilistic modeling in Python using LEA

There are several tools for working with probabilistic models and Bayesian graph-
ical models. A very prominent general probabilistic programming toolbox is Stan
(<http://mc-stan.org>), but we will here give an example using the LEA3
(<http://bitbucket.org/piedenis/lea>) which is a simpler tool for working with discrete
probabilities in Python. In particular, LEA has direct support for Bayesian models.
This brief section is not meant to be a thorough introduction to this tool but merely to
give an example in order to demonstrate the usefulnnes of such tools. We will show an
example program for the burglary/earthquake example.

The main part of the program is to define the graph structure and the associated
conditional probability tables. The corresponding code is fairly self-explanatory.

Listing 7.1 LeaExample.ipynb (part 1)

import l e a

b u r g l a r y = l e a . e v e n t ( 0 . 0 0 1 )
e a r t h q u a k e = l e a . e v e n t ( 0 . 0 0 2 )
a l a rm = l e a . j o i n t ( b u r g l a r y , e a r t h q u a k e ) . s w i t c h ({ ( True , True ) : l e a .

e v e n t ( 0 . 9 5 0 ) ,
( True , F a l s e ) : l e a . e v e n t ( 0 . 9 4 0 ) ,
( F a l s e , True ) : l e a . e v e n t ( 0 . 2 9 0 ) ,
( F a l s e , F a l s e ) : l e a . e v e n t ( 0 . 0 0 1 ) } )

j o h n C a l l s = a la rm . s w i t c h ({ True : l e a . e v e n t ( 0 . 9 0 ) ,
F a l s e : l e a . e v e n t ( 0 . 0 5 ) } )

m a r y C a l l s = a la rm . s w i t c h ({ True : l e a . e v e n t ( 0 . 7 0 ) ,
F a l s e : l e a . e v e n t ( 0 . 0 1 ) } )

This notation includes the specification of the discrete probabiity tables, and it contains
the relations between the variables so that there is no need for a separate specification
of the network graph.

Once the graph is specified it is possible to use some inference engines that build
the heart of such tools. We have seen earlier that the continuous application of Bayes
rule for variable elimination leads to the analytic answer for specific queries. Such
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exact computations for variable elimination can be implemented so that inference
can be achieved by simple function calls. For example, if we want to know what the
probability is that Mary calls given that there is an alarm, we ca write in LEA

Listing 7.2 LeaExample.ipynb (part 2)

P ( m a r y C a l l s . g i v e n ( a l a rm ) )

The answer is 0.7, which can, of course, be directly read off the conditional probability
table. A less obvious example is the probability of an alarm when John calls,

Listing 7.3 LeaExample.ipynb (part 3)

P ( a la rm . g i v e n ( j o h n C a l l s ) )

which recovers the 4 per cent that we calculated analytically in the last section. An
even more advanced query of a joint probability is

Listing 7.4 LeaExample.ipynb (part 4)

P ( ˜ b u r g l a r y & ˜ e a r t h q u a k e & ala rm & j o h n C a l l s & m a r y C a l l s )

which is only a small probability of around 0.6 percent.
While exact methods for Bayesian inference are possible, a known factor is that

these methods are slow and scale very badly for larger Bayesian networks. There are
therefore various approximate inference techniques such as believe propagation, which
is based on some message between the nodes in the graph and a minimization of the
consistency of the samples. This discussion is, however, beyond the scope of this book.

7.6 Probabilistic and stochastic neural networks

7.6.1 Neural networks as probabilistic regression

As argued earlier, coming up with a parameterized model is often the hard part in
machine learning. Up until this point we have tried to specify causal models with
and explicit analytic expression for its components to specify a multinomial density
function. In Chapter 4 we saw how we can use neural networks as a tool to specify
complex functional models. The question now is how we can reconcile neural networks
with the probabilistic view of modeling. We will here touch on three aspects of this
discussion: that of generalistic versus specific models, that of representing probability
functions, and that of stochastic models.

Let us start with the first issue: that of building specific functional descriptions
for a specific problem that we want to model versus using neural networks that seem
to offer a generic solution. We already discussed Wolpert’s "No free lunch" theorem,
and it is clear that we should not expect that high-dimensional machines are optimal
compared to models that are close to the true underlying world model. However, in
practice there is the problem of finding this specific model, and building a very general
machine is one way of moving forward. Our strategy is thereby to use data and good
regularizations based on useful priors to restrict the model from data. The recent
success of deep learning is a testimony that this strategy can work in conjunction with
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"big data." However, the challenge of using this approach is greater in situations where
there is a limited supply of data. Bayesian models and neural networks are often seen
as extreme poles in a modeling apporach; here we try to reconcile these views.

Let us now move to the second important subject: how neural networks compare
with our desire to build probabilistic models. This connection can be made easily when
viewing a perceptron as an implementation of a logistic regression, as outlined in this
chapter. The essence there was that a logistic function describes the probability that a
data point belongs to one class versus another. In the same way, we are now treating
the neural network itself as a function that calculates for each output node a value that
represents the probability p(class = true|x;w). For this we need to adapt a one-hot
representation of training data in a multiclass problems where each class is represented
by a single output node. The value of each output node of the neural network is then
assumed to represent the probability that the input is from the corresponding class.
We argue that the computational layers leading up to this output layer represent a
transformations of features that is necessary to lead to the probabilistic function on
which we can base our decision of class membership in classification.

In order to train the network we have already introduced the log-likelihood prin-
ciple. We are now taking the opportunity to show an alternative way of deriving the
learning rule of a neural network which is equivalent to maximum likelihood estima-
tion but which is a more common derivation in the neural network community. Indeed,
we will take this opportunity to relate this to several common formulations: that of
minimizing the log-likelihood, maximizing the cross-entropy, and of minimizing the
Kulback–Leibler divergence.

We start by assuming that the true nature of data is governed by the unknown
density function

True data distribution: q(y|x). (7.58)

The neural network model represents the probability

Model distribution: p(y|x;w), (7.59)

which we hope to be a good approximation of q(y|x). The negative log-probability of
the given label under the current model is then given by

H(p, q) = −
∑
y

p(y) log q(y), (7.60)

where we omitted writing some arguments to see the structure more clearly. This
quantity is called the cross-entropy. The term p log q is in essence the same as the
log-likelihood estimate, which we want to maximize. That is, we want to maximize
the log probability of the data given the labels. Since the cross-entropy is the negative
of this, maximizing the log-probability of the data given the labels is equivalent of
minimizing the cross-entropy. Furthermore, since

p log(q) = p log
q

p
+ p log p (7.61)

and p log q
p is the Kullback–Leibler (KL) divergence, we can relate this the cross-

entropy to the entropy of the distribution p an the KL divergence,
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H(p, q) = H(p) +KL(p||q). (7.62)

KL(p||q) =
∫

p(x) log
p(x)

q(x)
dx. (7.63)

Since changing model parameters does not effect the true data, minimizing the cross-
entropy is equivalent to minimizing the KL divergence. This has an interesting in-
terpretation as we can see the learning principle as looking for the parameters that
minimize the distribution give by the data and the distribution given by the model.
There are therefore many ways to derive the learning rule in neural network, and we
hope it became apparent that they are equivalent and that these are closely related to
the maximum (log-) likelihood principle.

Let us apply this to a binary classification model which is described by Bernoulli
variables that take the value 0 or 1. For this density function, the cross-entropy is given
by

H(p, q) = −p(y = 0|x;w) log q(y = 0|x)− p(y = 1|x;w) log q(y = 1|x) (7.64)

or
H(p, q) = −p log q − (1− p) log (1− q) (7.65)

for short, if we consider that p stands for p(y = 0|x;w). We now assume again
a sigmoidal function for the probability of the class membership around a decision
point,

p(ŷ = 0|x;w) =
1

1 + e−xw
(7.66)

1− p(ŷ = 0|x;w) =
1 + e−xw − 1

1 + e−xw
=

1

1 + exw
. (7.67)

Hence, minimizing the cross-entropy between the network output p(ŷ) and the given
labels y is given by minimizing the Loss function

L = −y log p(ŷ)− (1− y) log(1− p(ŷ)) (7.68)
= y log(1 + e−xw) + (1− y) log(1 + exw). (7.69)

The derivative of the function is

dL

d(xw)
= y

−e−xw

1 + e−xw
+ (1− y)

exw

1 + exw
(7.70)

= −y 1

1 + exw
+ (1− y)

1

1 + e−xw
(7.71)

= −y(1− p(ŷ)) + (1− y)p(ŷ) (7.72)
= −y + yp(ŷ) + p(ŷ)− yp(ŷ) (7.73)
= p(ŷ)− y, (7.74)

from which we can derive the gradient we need for the learning rule

dL

d(w)
=

dL

d(xw)

dxw

d(w)
= (p(ŷ)− y)x. (7.75)

This expression has again the now familiar form of the perceptron learning rule.
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For multi-class problems, the equivalent of the sigmoid is the softmax function

p(ŷ = i|x;w) =
exWi∑N
j=1 e

xWj

, (7.76)

where N is the number of classes. You can easily see the equivalence to the sigmoid
in the case of having two classes where one of them has input 0,

p(ŷ = 0) =
e0

e0 + exw
=

1

1 + exw
= 1− 1

1 + e−xw

p(ŷ = 1) =
exw

e0 + exw
=

exw

1 + exw
=

1

1 + e−xw

The derivation of the gradient for this multi-class case works out the same as the binary
classification,

dL

d(xW)
= p(ŷ)− y (7.77)

dL

dx
= (p(ŷ)− y)WT (7.78)

dL

dW
= xT (p(ŷ)− y) (7.79)

Thus, in summary. A neural network, regardless of having many or few layers, is in this
case an implementation of a probabilistic model for classification or logistic regression
when the output layer is chosen to be a softmax function and the loss function is the
negative cross-entropy. This concludes the discussion of our second point, how neural
networks are related to probabilistic regression.

7.6.2 Stochastic and Bayesian neural networks

We have outlined how we can use a neural network as parameterized function ap-
proximator y = f(x;w). We have used this to approximate a probability function
p(y|x;w) where we determined the parameters from a learning rule such as maximum
likelihood estimation. In a Bayesian inference we usually want to go a step further
where we want not just to use a point estimate of the parameters but know the posterior
probability of all kind of values of the parameters that could have generated the training
data, p(w|x;y). With this function we could make true estimates of the probability of
predictions of the label y0 for a new data point x0,

p(y0|x0;w) =

∫
p(y|x0;w)p(w|x;y)dw (7.80)

Unfortunately, the posterior p(w|x;y) is usually not tractable, and approximate tech-
niques like variational inference have to be used. While a detailed discussion is beyond
the scope of this book, we recommend work by David McKay, Radford Neal, and
Zoubin Ghahramani for further studies.
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Another way of looking into this is to consider the neurons themselves as stochastic
so that the neural network forms a Bayesian network itself. For example, we could
change the gain function of the artificial neuron to a stochastic rule, like

p(y = 1|x;w) =
1

1 + e−xw
. (7.81)

While this looks equivalent to Eqn 7.66, the difference now is that the output of the
neuron is y = 1 only with a certain probability and y = 0 with the complementary
probability. Hence, this neuron is a binary neuron with only binary states, on and off.
This seems better to resemble the spiking nature of real neurons.

Networks of probabilistic neurons have been studied briefly earlier, in particular
within bi-directional recurrent neural networks that we will review in Chapter 9. If the
neurons are stochastic nodes in a network, then we can view this network itself as an
undirected Bayesian network where the weights represent some form of conditional
probability to influence the firing of the receiving neuron. We will get back to this
point in Chapter 9.

There is strong evidence that real neurons are stochastic in nature, and there is also
a lot of evidence of the stochastic nature of synapses. While it is sometimes argued that
noise in synaptic processes should be expected as this is a biological system, Enoki
and Fine showed that the probabilities of neurotransmitter releases can be modulated
with classical synaptic plasticity experiments. This area is still largely unexplored.



8 Generative models

This chapter is an introduction to the important topic of building generative models.
These are models that are aimed at understanding the variety of a class such as cars
or trees. A generative mode should be able to generate feature vectors for instances of
the class they represent, and such models should thus be able to characterize the class
with all its variations. We discuss this subject both in a Bayesian and in a deep learning
context, and also within a supervised and unsupervised context. This area is related
to important algorithms such as k-means clustering, expectation maximization (EM),
naı̈ve Bayes, generative adversarial networks (GANs), and variational autoencoders
(VAE) that are discussed in this chapter.

8.1 Modeling classes

In the previous sections we introduced the idea that understanding the world should be
based on a probabilistic model of the world. For example, building a good recognition
system means estimating a large density function about the probability of labels of
objects given sensory data. What we have done so far is to use classification models
as a discriminative recognition model that take feature values x and make a prediction
of an output (label) y. In the probabilistic formulation, the models were formulated as
parameterized functions that represent the conditional probability p(y|x; θ). A model
that discriminates between classes based on the feature values is called a discriminative

model. Building a discriminative model directly from example data can be a daunting
task as we have to learn how each item is distinguished from every other possible item.
It worked on some examples earlier because we have mainly used simple models in
low dimensions to illustrate the ideas. However, many real-world problems have much
larger dimensions.

We will now outline a different strategy: that of learning first about the nature of
specific classes and then using this knowledge to infer a classification prediction. We
therefore first have to learn a generative models,

p(x|y; θ), (8.1)

and then use an inference mechanism to use this knowledge for decision-making. Such
a learning strategy seems to resemble human learning closely. Generative models can
be used to "generate" examples of class objects. The generative models can be used
with an inference engine to solve diverse tasks such as classification. For example, we
might first learn about chairs, and independently about tables, and when we are shown
pictures with different furnitures we can draw on this knowledge to classify them.

Let’s talk briefly about the inference engine. In order to use probabilistic genera-
tive models as in Eqn 8.1 for classification, we need to ask how we can combine the

Fundamentals of Machine Learning, Thomas P. Trappenberg, Oxford University Press (2020).
c© Oxford University Press. DOI: 10.1093/oso/9780198828044.001.0001
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knowledge about different classes to undertake classification. Of course, the answer is
provided by Bayes’ theorem, so that in this case we can use the rules of probability
theory as inference engine. This is the ideal situation in a probabilistic setting. In the
following, we show some examples where we can use Bayes rule. In practice, there
are situations where undertaking inference analytically with Bayes rule is difficult.
Complete or approximate numerical implementations of Bayes rules is thus an impor-
tant topic. There are good examples where scientists have shown that humans make
Bayesian decisions in specific experiments, although there is of course no evidence
that such humans use direct calculations based on Bayes theorem.

In order to make a discriminative model from the generative models using Bayes
theorem, we need to know the class priors, such as what the relative frequencies of
the classes is. We can then calculate the probability that an item with features x belong
to a class y as

p(y|x; θ) = p(x|y; θ)p(y)
p(x)

. (8.2)

A decision can be made directly based on this conditional probability. The Bayesian
decision criterion of predicting the class with the largest posterior probability is

argmax
y

p(y|x; θ) = argmax
y

p(x|y; θ)p(y)
p(x)

(8.3)

= argmax
y

p(x|y; θ)p(y), (8.4)

where we have used the fact that the denominator does not depend on y and can thus
be ignored. In the case of binary classification, this reads:

argmax
y

p(y|x; θ) = argmax
y

(p(x|y = 0; θ)p(y = 0), p(x|y = 1; θ)p(y = 1).

(8.5)
While using generative models for classification seem to be much more elaborate, we
will see later that there are several arguments which make generative models attractive
for machine learning. To start with, it seems much easier and efficient to learn to
generalize from similar objects than to learn from possibly difficult discrimination
examples.

8.2 Supervised generative models

8.2.1 1D Gaussian example

Classification with generative models have been used for some time. We will be
discussing an example here which is related to a method called linear discriminant

analysis that goes back to a paper by Fisher in 1936. This is the same Fisher who
collected the iris dataset that we discussed in Chapter 2. We will start by outlining the
idea in a 1-dimensional Gaussian model before deriving the more general case with
more attributes and more classes in the next subsection.

An example of the distribution of an attribute x for two classes is shown in Fig. 8.1.
As can be seen, these classes are not fully discriminated by this attribute value as the
attribute values are overlapping. Thus, a good lesson to learn is that 100 per cent
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classification is not always possible. However, we can still predict with some high
confidence in some cases. A good choice, and indeed the best possible choice, is to
predict the blue class on the left for attribute values less than 1 and the red class on the
right for attribute values above 1.

2.5 0.0 2.5 5.0
x

0.0

0.1

0.2

0.3

0.4

p(
c|
x)

Fig. 8.1 Two overlapping classes with Gaussian distributions of the attribute values x.

Let us formalize this for the specific example of two Gaussian distributions as
shown in Fig. 8.1 that were generated with the following distribution function.

p(x|y = c1) =
1√
2πσ

e−
x2

2σ2 (8.6)

p(x|y = c2) =
1√
2πσ

e−
(x−μ)2

2σ2 (8.7)

In the particular example of the figure, we used the parameters μ = 2 and σ = 1. The
Bayesian decision point as outlined earlier is given by the point where the posteriors
are equal, namely

e−
x2
D

2σ2 p(c1) = e−
(xD−μ)2

2σ2 p(c2), (8.8)

where p(c1) and p(c2) the marginal class probabilities. This equation is easily be
solved by

xD = −1

2
μ+

σ2

μ
log

(
p(c2)

p(c1)

)
. (8.9)

While this decision point is optimal, we will make some error that we can calculate
for this example. To do this we need to calculate the area under the curve for the class
with the wrong classification. For example, we predict class c1 wrongly for x > xD

in the following fraction of cases,

ec1 =
1√
2πσ

∫ ∞

xD

e−
x2

2σ2 dx p(c1). (8.10)

The integral over a Gaussian is provided by the error function, so that we can write
this as

ec1 =

(
1/2− 1/2 erf(

xD√
2σ

)

)
p(c1). (8.11)

Similar, the error for x < xD is
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ec2 =

(
1/2− 1/2 erf(

xD√
2σ

)

)
p(c2). (8.12)

Thus, in the case illustrated in Fig. 8.1 with equivalent priors p(c1) = p(c2) = 1/2,
unit variance σ2 = 1, and a separation of μ = 2, the best achievable accuracy is

Acc = (1− erf(
1√
2
))/2 ≈ 0.84. (8.13)

As can be seen, the maximal possible accuracy of a classifier is not always 100 per
cent.

8.2.2 Linear discriminant analysis

We now carry the same idea to the more general case of k classes, and we assume that
each class has members which are Gaussian distribution over n attribute values. An
example for n = 2 is shown in Fig. 8.2A. The following is a direct generalization of
the 1-dimensional case.

A. Two Gaussians classes B. Gaussian and a non Gaussian class

Fig. 8.2 Linear discriminant analysis on a two-class problem with different class distributions.

Each of the classes has a certain class prior

p(y = k) = φk, (8.14)

and each class itself is multivariate Gaussian distributed, generally with different
means, μk, and variances, Σk,

p(x|y = k) =
1√

2π
n√|Σ0|

e−
1
2 (x−μk)

TΣ−1
k (x−μk). (8.15)

(8.16)

Since we have supervised data with examples for each class, we can use maxi-
mum likelihood estimation to estimate the most likely values for the parameters



Generative models166 |

θ = (φk, μk,Σk). For the class priors, this is simply the relative frequency of the
training data,

φk =
|K|
m

, (8.17)

where K is the set of examples of class k and |K| is the number of examples is this set.
Thus we estimated the parameter φk with the maximum likelihood for this Bernoulli
random variable, and we omitted the "hat" to indicate that it is an estimate since
this should now be clear from the context. The estimates of the means and variances
within each class are given by the corresponding maximum likelihood estimates for
the Gaussian parameters,

μk =
1

|K|
∑
i∈K

x(i) (8.18)

Σk =
1

|K|
∑
i∈K

(x(i) − μy(i))(x(i) − μy(i))T . (8.19)

With these estimates, we can calculate the optimal (in a Bayesian sense) decision rule,
G(x; θ), as a function of x with parameters θ, namely

G(x) = argmax
k

p(y = k|x) (8.20)

= argmax
k

[p(x|y = k; θ)p(y = k)] (8.21)

= argmax
k

[log(p(x|y = k; θ)p(y = k))] (8.22)

= argmax
k

[
−log(

√
2π

n√|Σ0|)− 1

2
(x− μk)

TΣ−1
k (x− μk)

+log(φk)] (8.23)

= argmax
k

[−1

2
xTΣ−1

k x− 1

2
μT
kΣ

−1
k μk + xTΣ−1

k μk + log(φk)], (8.24)

as the first term in Eqn 8.23 does not depend on k and we can multiply out the other
terms. With the maximum likelihood estimates of the parameters, we have all we need
to make this decision.

In order to calculate the decision boundary between classes l and k, we make
the common additional assumption that the covariance matrices of the classes are the
same,

Σk =: Σ. (8.25)

The decision point between the two classes with equal class priors is then given by the
point where the probabilities for the two classes (Eqn 8.24) is the same. This gives

log(
φk

φl
)− 1

2
(μk − μl)

TΣ−1(μk + μl) + xΣ−1(μk − μl) = 0. (8.26)

The first two terms do not depend on x and can be summarized as constant a. We can
also introduce the vector

w = Σ−1(μk − μl). (8.27)

With these simplifying notations is it easy to see that this decision boundary is a linear,



| 167Naı̈ve Bayes

a+wx = 0. (8.28)

As this is a linear equation, this method with the Gaussian class distributions with equal
variances is called linear discriminant analysis (LDA). The vectorw is perpendicular
to the decision surface. Examples are shown in Fig. 8.2. If we do not make the
assumption of equal variances of the classes, then we have a quadratic equation for the
decision boundary, and the method is then called quadratic discriminant analysis

(QDA). With the assumptions of LDA, we can calculate the contrastive model directly
using Bayes rule.

p(y = k|x; θ) = (8.29)

φk
1√

2π
n
√

|Σ|e
− 1

2 (x−μk)
TΣ−1

k (x−μk)

φk
1√

2π
n
√

|Σ|e
− 1

2 (x−μk)TΣ−1
k (x−μk) + φl

1√
2π

n
√

|Σ|e
− 1

2 (x−μl)TΣ−1
l (x−μl)

=
1

1 + φl

φk
e−θT x

, (8.30)

where θ is an appropriate function of the parametersμk,μl, andΣ. Thus, the contrastive
model is equivalent to logistic regression discussed in the previous chapter, although
we use different parameterizations and the two methods will therefore usually give
different results on specific datasets. So, which method should be used? In LDA we
made the assumption that each class is Gaussian distributed. If this is the case, then
LDA is the best method we can use. Discriminant analysis is also popular since it is
easy to apply and often works well even when the classes are not strictly Gaussian.
However, as can be seen in Fig. 8.2B, it can produce quite poor results if the data are
multimodal distributed. Logistic regression is somewhat more general since it does
not make the assumption that the class distributions are Gaussian. However, as ;long
as we consider only linear models, logistic regression would have also problems with
the data shown in Fig. 8.2B.

Finally, we should note that Fisher’s original method was slightly more general than
the examples discussed here since he did not assume Gaussian distributions. Instead
considered within-class variances compared to between-class variances, something
which resembles a signal-to-noise ratio. In Fisher discriminant analysis (FDA), the
separating hyperplane is defined as

w = (Σk +Σl)
−1(μk − μl), (8.31)

which is the same as in LDA in the case of equal covariance matrices.

8.3 Naı̈ve Bayes

In the previous example, we used 2-dimensional feature vectors to illustrate the classi-
fication problems with 2-dimensional plots. However, most machine learning applica-
tions work with high-dimensional feature vectors. We will now discuss an important
method with generative models which is called naı̈ive Bayes that is often used with
high-dimensional data. We will discuss this method with an example of text processing,
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following an example from Andrew Ng of making a spam filter that classifies email
messages as either spam (y = 1) or non-spam (y = 0) emails. To do this, we first need
a method to represent the problem in a suitable way. We choose here to represent a
text (email in this situation) as a vocabulary vector. A vocabulary is simply the list of
all possible words that we consider. A text can be represented by a vector with entries
1 if the word can be found in the text or an entry 0 if not, for example:

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
.
.
.
1
.
.
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a
aardvark
aardwolf

.

.

.
buy
.
.

zygmurgy

(8.32)

We are here only considering values 0 and 1 instead of, for example, counting how
often the corresponding word appears. The later is usually called a "bag of words". The
difference of our simplified example to a bag of words is that each entry is a binomial
random variable instead of a multinomial in the bag of words. We chose the simpler
case here for illustration purposes, although the methods generalizes directly to the
other case. In any case, this is a lossy representation where we loose the positions of the
words in the text which might be considered essential in text comprehension. Natural
language processing has recently made much progress with models such as recurrent
neural networks that we will discuss in Chapter 9, but for the basic task discussed in
the following it turns out that naı̈ve Bayes yield fairly good results. An interesting part
of this example is that we are now considering a very high-dimensional feature vector.

Let us consider here that our vocabulary has 50,000 word, which is a typical size
of common languages even though most language have many more words. We now
want to build a discriminative model from some training examples. That is, we want
to model

p(x|y) = p(x1, x2, ..., x50000|y). (8.33)

This is a very high-dimensional density function which has 250,000 − 1 parameters
(the −1 comes from the normalization condition). We can factorize this conditional
density function with the chain rule

p(x1, x2, ..., x50000|y) = p(x1|y)p(x2|y, x1)...p(x50000|y, x1, ...., x49999). (8.34)

While the right-hand side has only 50, 000 factors, there are still 250,000−1 parameters
we have to learn. We now make a strong assumption, namely that all the words are
conditionally independent in each text; that is,

p(x1|y)p(x2|y, x1)...p(x50000|y, x1, ...., x49999) = p(x1|y)p(x2|y)...p(x50000|y).
(8.35)

This is conditional independent, giving the class y, p(x1, x2|y) = p(x1|y)p(x2|y),
which is different from independence like p(x1, x2) = p(x1)p(x2). The conditional
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independence in this probabilistic model is called the the naı̈ive Bayes (NB) assump-

tion. The corresponding Bayesian network is shown in Fig. 8.3. With the naı̈ve Bayes
assumption, we can write the conditional probability as a factor of terms with 50, 000
parameters

p(x|y) =
50000∏
j=1

p(xj |y). (8.36)

To estimate these parameters we can apply maximum likelihood estimation, which
gives

φj,y=1 =
1

|{y = 1}|
∑

i∈{y=1}
x
(i)
j (8.37)

φj,y=0 =
1

|{y = 0}|
∑

i∈{y=0}
x
(i)
j (8.38)

φy =
|{y = 1}|

m
. (8.39)

The first equation is the probability that the word j appears in a spam text, the second
equation is that the word j appears in a non-spam text, and the third equation specifies
the frequency of spam examples in the data set.

...

class

1x 2x 3x 4x 5x 6x Nx

Fig. 8.3 The graphical representation of a naı̈ve Bayes classifier.

With these parameters we can now calculate the probability that email x is spam
as

p(y = 1|x) =
∏50.000

j=1 φj,y=1φy=1∏50.000
j=1 φj,y=1φy=1 +

∏50.000
j=1 φj,y=0φy=0

. (8.40)

This big advantage of this naı̈ve Bayes model is that the number of parameters are fairly
small compared to more complex causal models. There are many examples where the
naı̈ve Bayes model works quite well which are, of course, cases where the naı̈ve Bayes
assumption is appropriate. Of course, words in a text should be highly correlated, but
the gist here is that the pure frequency of words has some correlates with the type of
text.

Before we leave this model it is important to note that in practice there is often a
slight problem. If some of the words, say word x100, are not part of the training set
we have a 0 count that produces a problem as we would divide by 0, φ100,y=1 = 0
and φ100,y=0 = 0, and hence p(y = 1|x) = 0

0 . A common trick, called Laplace
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smoothing is to add one occurrence of this word in every case, which will insert a
small probability proportional to the number of training examples to the estimates,

φj,y=1 =

∑m
i=1 1{x(i)

j = 1 ∧ y(i) = 1}+ 1∑m
i=1 1{y(i) = 1}+ 2

(8.41)

φj,y=0 =

∑m
i=1 1{x(i)

j = 1 ∧ y(i) = 0}+ 1∑m
i=1 1{y(i) = 0}+ 2

. (8.42)

It is interesting to compare the naı̈ve Bayes classification with other classification
methods. This would be a recommended exercise.

8.4 Self-supervised generative models

8.4.1 k-means clustering

In the previous learning problems we had training examples with feature vectors x and
labels y. We now discuss an example of unsupervised learning in which no labels are
given. Such data are widespread. For example, it is easy to take pictures with a digital
camera and hence get huge numbers of pictures. What usually takes time is to label
the pictures, as in the ImageNet dataset, or even to segment particular objects in the
picture. We can thus not use the supervised training methods we have discussed so far.

However, samples of unlabeled collections still have interesting information em-
bedded in them, and self-supervised learning has important applications. In particular,
we can glean some structure from the data which can help in representational learning
and hence speed up supervised learning. Self-supervised or unsupervised does not
mean that the learning is not guided at all; the learning follows specific principles that
are used to guide the organization of the data itself.

We start here by discussing a widespread use of such methods for data clustering.
In this problem domain, we are given unlabeled data described by a set of features
and asked to put them into k categories. In the first example of such clustering, we
categorize the data by proximity to a mean value. That is, we assume a model that
specifies a mean feature value of the data and classifies the data based on the proximity
to the mean value. Of course, we do not know this mean value for each class. The idea
of the following algorithm is that we start with a guess for this mean value and label
the data accordingly. We then use the labeled data from this hypothesis to improve the
model by calculating a new mean value, and repeat these steps until convergence is
reached. Such an algorithm usually converges quickly to a stable solution.

More formally, let us consider a training set of data points {x(1), x(2), ..., x(m)}
and a hypothesis of the number of clusters, k, for the k-means clustering algorithm.
The algorithm starts by just choosing random initial means for each of the k classes.
The next two steps are then iterated. Given the means, we can choose the class label
of each data points according to the class label of the closest mean. Then, giving these
calculated labels we can now update the mean according to these data. These steps are
iterated until convergence. This algorithm is summarized in Table 8.1. An example of
the initial state and two iterations of this algorithm is shown in Fig. 8.4. The figure was
produced with the following program.
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A Unlabeled data B Data with initial centroids C 1st classification

D 2nd classification E 3rd classification F 1st classification

Fig. 8.4 Example of k-means clustering with two clusters.

Listing 8.1 kmeans.ipynb

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

# Choose 100 Gauss ian da ta w i t h means w i t h mean ( 1 , 1 ) and ( 5 , 5 )
n =100; x = np . random . randn (2∗n , 2 ) ; x [ : n , : ] + = 1 ; x [ n : , : ] + = 5
p l t . p l o t ( x [ : , 0 ] , x [ : , 1 ] , ’ ko ’ ) # p l o t p o i n t s
mu1 = [ 5 , 1 ] ; mu2 = [ 1 , 5 ] # i n i t i a l c e n t e r s ( a r b i t r a r y )

p l t . p l o t ( mu1 [ 0 ] , mu1 [ 1 ] , ’ rx ’ , m a r k e r s i z e =12)
p l t . p l o t ( mu2 [ 0 ] , mu2 [ 1 ] , ’ bx ’ , m a r k e r s i z e =12)
p l t . show ( )

# r e p e a t t h i s b l o c k
y = ( ( x−mu1 ) ∗∗2) . sum ( 1 ) < ( ( x−mu2 ) ∗∗2) . sum ( 1 ) # e x p e c t a t i o n
x1=x [ y >0 . 5 ] ; x2=x [ y <0 . 5 ] ;
p l t . p l o t ( x1 [ : , 0 ] , x1 [ : , 1 ] , ’ r s ’ ) ;
p l t . p l o t ( x2 [ : , 0 ] , x2 [ : , 1 ] , ’ b∗ ’ ) ;
mu1=x1 . mean ( 0 ) ; mu2=x2 . mean ( 0 ) ; # m a x i m i z a t i o n
p l t . p l o t ( mu1 [ 0 ] , mu1 [ 1 ] , ’ kx ’ , m a r k e r s i z e =12)
p l t . p l o t ( mu2 [ 0 ] , mu2 [ 1 ] , ’ kx ’ , m a r k e r s i z e =12)
p l t . show ( )

In the listing above we did not really start the means randomly but chose a particular
difficult start in order to see the effect of the algorithm better. It is a good idea to
play around with different configuration of this program such as changing the initial
conditions to a random start or the shape of the data distribution.
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Table 8.1 k-means clustering algorithm

1. Initialize the means μ1, ...μk randomly.
2. Repeat until convergence: {

Model prediction:

For each data point i, classify data to class with closest mean
c(i) = argminj ||x(i) − μj ||

Model refinement:

Calculate new means for each class

μj =
1 1(c(i)=j)x(i)

1 1(c(i)=j)

} convergence.

8.4.2 Mixture of Gaussian and the EM algorithm

We can now extend the idea ofk-means clustering to the more rigorous case of assuming
a specific generative model for each class. We will again use Gaussian models here as
the example, but it should be clear that we can use any form of model for the in-class
distribution. Here we assume that we have k Gaussian classes, where each class is
chosen randomly from a multinomial distribution,

p(z(i) = j) ∝ multinomial(Φj) (8.43)

p(x(i)|z(i) = j) ∝ N(μj ,Σj). (8.44)

This is called a Gaussian mixture model. The corresponding log-likelihood function
is

l(Φ, μ, σ) =

m∑
i=1

log

k∑
z(i)=1

p(x(i)|z(i);μ,Σ)p(z(i); Φ). (8.45)

Since here we consider unsupervised learning, we are given input data x without
labels. We therefore use now as labels the symbol z for the labels that we assume to be
latent random variables z(i). Not knowing the labels makes the problem harder than
the supervised Gaussian model discussed earlier. If were given the class membership,
than the log-likelihood would be

l(Φ, μ, σ) =
m∑
i=1

log p(x(i); z(i), μ,Σ), (8.46)

which we could use to calculate the maximum likelihood estimates of the parameter
(see Eqns 8.17–8.19),

φk =
1

m

m∑
i=1

11(z(i) = j) (8.47)

μk =

∑m
i=1 11(z

(i) = j)x(i)∑m
i=1 11(z

(i) = j)
(8.48)

Σk =

∑m
i=1 11(z

(i) = j)(x(i) − μj)(x
(i) − μj)

T∑m
i=1 11(y

(i) = k)
. (8.49)
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The indicator function 11(x = y) is simply 1 if x = y and zero otherwise. Therefore,
when put into a sum it simply counts the number of cases in which condition is true.

While we do not know the class labels, we can follow a similar strategy to the
k-means clustering algorithm and just propose some labels and use them to estimate
the parameters. We can then use the new estimate of the distributions to find better
labels for the data, and repeat this procedure until a stable configuration is reached. In
general, this strategy is called the EM algorithm for expectation-maximization. The
algorithm is outlined in Fig. 8.5. In this version we do not hard-classify the data into
one or another class, but we take a more soft classification approach that considers the
probability estimate of a data point belonging to each class.

1. Initialize parameters φ, μ,Σ randomly.
2. Repeat until convergence: {

E step:

For each data point i and class j (soft-)classify data as
w

(i)
j = p(z(i) = j|x(i);φ, μ,Σ)

M step:

Update the parameters according to
φj =

1
m

∑m
i=1 w

(i)
j

μj =
∑m

i=1 w
(i)
j x(i)

∑m
i=1 w

(i)
j

Σk =
∑m

i=1 w
(i)
j (x(i)−μj)(x

(i)−μj)
T

∑m
i=1 w

(i)
j

.

} convergence.

Fig. 8.5 EM algorithm with weighted membership.

An example is shown in Fig. 8.6. In this simple world, data are generated with
equal likelihood from two Gaussian distributions, one with meanμ1 = −1 and standard
deviation σ1 = 2, the other with mean μ2 = 4 and standard deviation σ2 = 0.5. These
two distributions are illustrated in Fig. 8.6A with dashed lines. Let us assume that we
know that the world consists only of data from two Gaussian distributions with equal
likelihood, but that we do not know the specific realizations (parameters) of these
distributions. The pre-knowledge of two Gaussian distributions encodes a specific
hypothesis which makes up this heuristic model. In this simple example, we have
chosen the heuristics to match the actual data-generating system (world); that is, we
have explicitly used some knowledge of the world.

Learning the parameters of the two Gaussians would be easy if we had access
to the information about which data point was produced by which Gaussian; that is,
which cause produced the specific examples. Unfortunately, we can only observe the
data without a teacher label that could supervise the learning. We therefore choose a
self-supervised strategy, which repeats the following two steps until convergence:

E-step: we make assumptions of training labels from the current model (expectation
step).

M-step: use this hypothesis to update the parameters of the model to maximize the
probability of the observations (maximization step).
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A.  Initial condition B.  After 3 updates C.  After 9 updates

xx x

p(x) p(x)p(x)

Fig. 8.6 Example of the expectation maximization (EM) algorithm for a world model with two

Gaussian distributions. The Gaussian distributions of the world data (input data) are shown with

dashed lines. (A) The generative model, shown with solid lines, is initialized with arbitrary param-

eters. In the EM algorithm, the unlabelled input data are labelled with a recognition model, which

is, in this example, the inverse of the generative model. These labelled data are then used for

parameter estimation of the generative model. The results of learning are shown in (B) after three

iterations, and in (C) after nine iterations .

Since we do not know appropriate parameters yet, we just choose some arbitrary values
as the starting point. In the example shown in Fig. 8.6A we used μ1 = 2, μ2 = −2,
σ1 = σ2 = 1. These distributions are shown with solid lines. Comparing the generated
data with the environmental data corresponds to hypothesis testing.

The results are not yet very satisfactory, but we can use the generative model to
express our expectation of the data. Specifically, we can assign each data point to the
class which produces the larger probability within the current world model. Thus, we
are using our specific hypothesis here as a recognition model. In the example we can
use Bayes’ rule to invert the generative model into a recognition model as detailed in
the simulation section below. If this inversion is not possible, then we can introduce
a separate recognition model, Q, to approximate the inverse of the generative model.
Such a recognition model can be learned with similar methods and interleaved with
the generative model. Of course, the recognition with the recognition model early
in learning is not expected to be exact, but estimation of new parameters from the
recognized data in the M-step to maximize the expectation can be expected to be better
than the model with the initial arbitrary values. The new model can then be compared to
the data again and, when necessary, be used to generate new expectations from which
the model is refined. The distributions after three and nine such iterations, where we
have chosen new data points in each iteration, are shown in Figs 8.6B and C.

8.5 Generative neural networks

8.5.1 Generative adversarial network (GAN)

We have so far assumed specific functional forms of generative models to discuss
generative models in the Bayesian context. We are now going back to deep neural
networks which are useful to learn more complex models from data when specific
causal models are not known. There are several approaches to building generative
models of which we want to mention two, namely generative adverserial networks and
the variational autoencoders. The basic idea behind generative adversarial networks
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(GANs) is to train a generator neural network model so that the generated examples
are able to fool a discriminator network which is itself trained to discriminate between
network-generated examples and real example. The overall architecture is outlined in
Fig. 8.7. The basic components are a generator network and a discriminator network,
but the main idea is how to use them. The discriminator network is typically a deep
recognition network such as the convolutional networks we used for MNIST or Ima-
geNet. It is either fed a real input or a fake input. So this network is like an forgery
expert that needs to distinguish real from fake, a simple binary decision. This discrim-
inator network is trained on a combination of real and fake images where the fake
images are generated by the generator network. This is done by providing a random
input to this network which can be viewed as a random example from a latent space
of the objects that should be generated.
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Fig. 8.7 Outline of a generative adversarial network (GAN).

At the beginning the generated objects are certainly not very good, but neither is
the discriminator. Once the discriminator gets better we can then use the information
learned by the discriminator to make the generator better. This is done by combining
the generator and discriminator network with a large adversarial network where the
weights of the discriminator part are fixed and the weights of the generator are adjusted
with the label of "real" to make the generator output more similar to inputs that would
be categorized as real by the discriminator network. The use of the network is hence a
bit different to regular deep networks in that the target function moves. The better the
generator gets, the more the discriminator has to adjust, and this information in turn
drives necessary changes in the generator. In practice, it is not so easy to implement
these networks, and many tricks are commonly used. In particular, it is recommended
to use both tanh or leaky linear units (LLU), to adjust carefully the learning rates, and
to monitor the progress of each network. However, it has been shown that good results
can be achieved with such networks after learning.

8.5.2 Variational autoencoder (VA)

We have already discussed the autoencoder in section 4.7 which can be seen as an
encoder into a latent space and a decoder from this latent space back into the feature
space. Previously we also labelled this latent space as semantic as we assume that this
lower-dimensional space represents some meaning. If we vary the latent activation we
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could generate outputs with the decoder so that such autoencoders could be seen as
generative models. However, the question is how to generate this variation in a way
in order to generate novel examples which still represent the expected distribution of
a target class. We usually do not know much about the structure of the latent space
which prevents us from making systematic variations.

z X

Generator
Network

Encoder
Network

Loss:
KL(P( , )| (0,1))

Loss:
Reconstruction

error

X sam
ple

Fig. 8.8 Outline of the idea behind a variational autoencoder (VAE). However, the sampling step

in the middle is not a discrete operation through which we cannot backpropagate.

Variational autoencoders have recently addressed these problems in a systematic
way. The basic idea is to impose a distribution of latent variables, which is commonly
assumed to be a normal distribution

P (z) = N (0, 1). (8.50)

From this the decoder can generate targets X with the target distribution P (X). This is
shown on the right in Fig. 8.8. In order to generate the encoding we use a deep network
which generates outputs for the mean and variance. We will then sample a point
from a Gaussian with the corresponding mean and variance that becomes the input
to the decoder. Overall, we train this network as autoencoder while minimizing the
Kulback–Leibler distance between the encoder and the assumed normal distribution.

A remaining problem is, however, that the sampling in the middle of this network
is a discrete function that cannot be differentiated. Hence, this step would prevent
us from backpropagating the reconstruction error to the encoder. However, we can
implement the sampling in the following way. We chose a random number

ε ∼ N (0, 1), (8.51)

which we then multiply with the variance and add the mean from the encoder output.
These operations are differentiable. This implementation is illustrated in Fig. 8.9.
Hence, this network is basically still an autoencoder with some immediate input and
which is trained not only on the reconstruction error, but also on the minimization of
the Kulback–Leibler distance between the encoder output and a normal distribution.
The latter part of the loss function can also be seen as a regularizer for the latent space
which enforces a desirable latent representation.

In the following, we show a minimal MNIST example implementation with Keras
following basically the excellent implementation of Francois Chollet. This version is
an attempt to minimize the example so that it can be run without GPU. However,
implementing deeper networks and training on more example, will give even better
results.
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Fig. 8.9 Implementation of a variational autoencoder (VAE) with an additional small random input

that approximates the sampling so that the network is fully differentiable.

After importing the necessary libraries, we start by defining the encoder model.
We use here three convolution layers with 3× 3 kernels. In the second layer we use a
stride that eliminates the need for the max pooling that we used in Chapter 4. We save
the shape of the output after the convolutional layers as we need this later to up-sample
in the inverse way. We then flatten the output so that we can feed into a dense layer
with thirty-two nodes and finally to two output layers, one representing the mean and
the other the variance of an n-dimensional Gaussian. The dimensions n is here the
dimension of the latent space, set to 2 in this example as this will be a useful dimension
to visualize later.

Listing 8.2 VAE.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
from k e r a s import models , l a y e r s , o p t i m i z e r s , d a t a s e t s , u t i l s , l o s s e s

, m e t r i c s
from k e r a s import backend as K

# encoder model
i n p u t i m g = l a y e r s . I n p u t ( shape =(28 , 28 , 1 , ) )
l a t e n t d i m = 2
x = l a y e r s . Conv2D ( 3 2 , 3 , padd ing = ’ same ’ , a c t i v a t i o n = ’ r e l u ’ ) ( i n p u t i m g )
x = l a y e r s . Conv2D ( 6 4 , 3 , padd ing = ’ same ’ , a c t i v a t i o n = ’ r e l u ’ , s t r i d e s = ( 2 , 2 )

) ( x )
x = l a y e r s . Conv2D ( 6 4 , 3 , padd ing = ’ same ’ , a c t i v a t i o n = ’ r e l u ’ ) ( x )

s h a p e b e f o r e f l a t t e n i n g = K. i n t s h a p e ( x )
x = l a y e r s . F l a t t e n ( ) ( x )
x = l a y e r s . Dense ( 3 2 , a c t i v a t i o n = ’ r e l u ’ ) ( x )

z mean = l a y e r s . Dense ( l a t e n t d i m ) ( x )
z l o g v a r = l a y e r s . Dense ( l a t e n t d i m ) ( x )

We then implement the sampling from the Gaussian that is specified by the output
of the decoder. Since every operation in Keras has to be implemented as a layer, we
need to show here a useful technique. As a simple way to implement an arbitrary
expression as Keras layer is to use the layer wrapper called Lambda. We can define
a functions which we then pass to this wrapper layer so that the output of this layer
becomes the sample which we need as input to the decoder. The decoder then simply
uses reshaping and transpose convolutions to generate images with the original image
size.



Generative models178 |

Listing 8.3 VAE.ipynb (part 2)

def s a m p l i n g ( a r g s ) :
z mean , z l o g v a r = a r g s
e p s i l o n = K. random normal ( shape =(K. shape ( z mean ) [ 0 ] , l a t e n t d i m ) ,

mean = 0 . , s t d d e v = 1 . )
re turn z mean + K. exp ( z l o g v a r ) ∗ e p s i l o n

# g e n e r a t e i n p u t f o r decoder
z = l a y e r s . Lambda ( s a m p l i n g ) ( [ z mean , z l o g v a r ] )

# Decoder model
d e c o d e r i n p u t = l a y e r s . I n p u t (K. i n t s h a p e ( z ) [ 1 : ] )
x = l a y e r s . Dense ( np . prod ( s h a p e b e f o r e f l a t t e n i n g [ 1 : ] ) , a c t i v a t i o n = ’

r e l u ’ ) ( d e c o d e r i n p u t )
x = l a y e r s . Reshape ( s h a p e b e f o r e f l a t t e n i n g [ 1 : ] ) ( x )
x = l a y e r s . Conv2DTranspose ( 3 2 , 3 , padd ing = ’ same ’ , a c t i v a t i o n = ’ r e l u ’ ,

s t r i d e s = ( 2 , 2 ) ) ( x )
x = l a y e r s . Conv2D ( 1 , 3 , padd ing = ’ same ’ , a c t i v a t i o n = ’ s igmoid ’ ) ( x )
d e c o d e r = models . Model ( d e c o d e r i n p u t , x )
o u t p u t i m g = d e c o d e r ( z )

Training this architecture requires combining a loss function for the autodecoder,
for example, the reconstruction error in terms of the cross-entropy of each pixel, with
the Kulback–Leibler distance of the output of the decoder from the desired normal
distribution of the latent space. The following code shoes how this can be achieved.

Listing 8.4 VAE.ipynb (part 3)

c l a s s CustomLossLayer ( l a y e r s . Layer ) :

def c a l l ( s e l f , i n p u t s ) :
x = K. f l a t t e n ( i n p u t s [ 0 ] )
y = K. f l a t t e n ( i n p u t s [ 1 ] )
x e n t l o s s = m e t r i c s . b i n a r y c r o s s e n t r o p y ( x , y )
k l l o s s = −5e−4 ∗ K. mean (1 + z l o g v a r − K. s q u a r e ( z mean ) − K. exp (

z l o g v a r ) , a x i s =−1)
l o s s =K. mean ( x e n t l o s s + k l l o s s )
s e l f . a d d l o s s ( l o s s , i n p u t s = i n p u t s )
re turn x # r e t u r n v a l u e n o t used

o u t p u t = CustomLossLayer ( ) ( [ i n p u t i m g , o u t p u t i m g ] )

We are now ready to apply this model to the MNIST data as shown in Listing 8.5.
We load the MINST data set with Keras as we have previously done in Chapter 4. If
you are running this program without GPU acceleration, then we recommend that you
try the program first on a smaller data set such as just using 10 per cent of the data as
indicated in the commented lines.

Finally, we want to visualize the learned latent space of the VAE. We do this by
initializing the decoder with values on a grid in the latent space and then show the
generated images with corresponding positions in Fig. 8.10. The intriguing result is
that the space has some continuous structure relating the objects. For example, the
first line in this example shows how a 9 can be transformed to become a 8 and then
a 1. Going downward on the left, the rightmost column shows examples that seem to
interpolate smoothly between examples of classes 1, 8 5, 6, and maybe 0. It is possible
to see the emergence of this behaviors with less training examples such as only training
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on 1000 training data and testing on 500 test images. However, the examples might
look a bit more fuzzy.

Listing 8.5 VAE.ipynb (part 4)

from k e r a s . d a t a s e t s import m n i s t

( x t r a i n , ) , ( x t e s t , ) = d a t a s e t s . m n i s t . l o a d d a t a ( )
x t r a i n = x t r a i n . r e s h a p e (60000 , 28 , 28 , 1 ) /255
# x t r a i n = x t r a i n [ : 6 0 0 0 , : , : , : ]
x t e s t = x t e s t . r e s h a p e (10 000 , 28 , 28 , 1 ) /25 5
# x t e s t = x t e s t [ : 1 0 0 0 , : , : , : ]

vae = models . Model ( i n p u t i m g , o u t p u t )
vae . compi le ( o p t i m i z e r = ’ rmsprop ’ , l o s s =None )
vae . summary ( )

vae . f i t ( x= x t r a i n , y=None , s h u f f l e =True , epochs =10 , b a t c h s i z e =16 ,
v a l i d a t i o n d a t a =( x t e s t , None ) )

Fig. 8.10 Results of the variational autoencoder on MNIST data. The figure illustrates the structure

of the latent space by showing the results of initializing the decoder with values in a grid of the

latent space.





9 Cyclic models and recurrent neural
networks

We have discussed several directed models with a simple directed consecutive flow of
information, including feed-forward neural networks and directed acyclic graphs for
Bayesian networks. A more general form of models can include cyclic dependencies
where model components that receive information can influence model components
from such sending nodes. There are two principle architectures we will discuss in turn
in this chapter.

The first principle architecture of cyclic graphs is shown on the left in Fig. 9.1.
These types of models are directed graphs similar to the Bayesian networks discussed
in Chapter 7, except that we now consider possible loops in the directed graph. We will
discuss such models in the context of recurrent neural networks where the network
nodes are model neurons as commonly used in neural networks but which now allow
feedback connections. We consider such recurrent neural networks in their common
setting with deterministic neurons, although it is possible to generalize the architectures
to the stochastic case. However, even with deterministic neurons, such architectures
can change neuron activations in an ongoing way even with constant input. Formally,
such networks represent dynamical systems in the wider context and do therefore
represent some form of temporal modeling. The topic of temporal modeling will thus
be at the center of the following discussions. Note that the shown network has two
input neurons and two output neurons. Such neurons are commonly called visible. In
contrast, the neurons that are not connected to the outside worls are called the hidden
neurons.

A. Network with feedback connections B. Network with bidiretinal connections

Fig. 9.1 Illustration of two principle cyclic networks with (A) directed graphs and (B) graphs with

bi-directional links.

The second type of models that we discuss in this chapter is of the form shown
in Fig. 9.1B. The connections between the neurons in such networks are thereby
bi-directional. Examples of such neural networks are architectures with lateral con-
nections in the context of layered neural networks and bi-directional connections

Fundamentals of Machine Learning, Thomas P. Trappenberg, Oxford University Press (2020).
c© Oxford University Press. DOI: 10.1093/oso/9780198828044.001.0001
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between layers in layered neural networks. These types of networks will be discussed
in the context of stochastic units in the second half of this chapter. Undirected models
of stochastic variables are often called Markov random fields (MRF). The example
shown in Fig. 9.1B has input and outputs. If the input represent features x and the
output represents probabilities of labels y, then this graph represents the conditional
distribution p(y|x). This special form of a MRF is commonly called a conditional
random field (CRF). This is a very interesting area of modeling with probabilistic
models who technical details are somewhat beyond the scope of this book. However,
we will specifically discuss some basic bi-directional neural networks that have been
instrumental in the development of this area, even getting deep learning off the ground.

9.1 Sequence processing

Our examples of neural network applications have focused on a tasks where an out-
put (label) should be predicted from one input vector. Another common application
domain that we will discuss now is that of processing sequences. There are many
types of sequence task such as forecasting the stock market or the weather from past
observations, or the modeling of progress of patients improvements due to medical
interventions. While it is common to have naturally sequential data, there are even
reasons to process static data in a sequential form such as searching large images in
patches to look for specific objects. Doing this is more memory efficient. Even the
human visual system uses sequence processing as scenes are commonly explored by
a series of eye movements called saccades. We will start discussing such sequence
processing with the basic tasks of temporal predictions where a value of a sequence at
position t is to be predicted from previous data points,

x(t) = f(x(t− 1), x(t− 2), ....). (9.1)

In general, we should talk about a sequence position, though we commonly view a
sequence as a time series. It is hence common to use the symbol t for the index of a
sequence position.

t-4 t-3 t-2 tt-1

Fig. 9.2 Example of a tabbed delay line to represent temporal sequences to a neural network.

We will now consider several architectures of systems for such temporal processing.
The first one we should consider is to use a regular feed-forward network to do sequence
prediction from a finite number of previous sequence data. For example, we can place
sequence values of n previous values of the sequence into an input vector
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x =

⎛
⎝ x(t− 1)

...
x(t− 1− n)

⎞
⎠ , (9.2)

and then do a one-step-ahead prediction of the value s(t) as the output,

y = x(t). (9.3)

In Fig. 9.2, we visualized the generation of the input vector by tabbing the input
sequence with delay lines of different lengths. Representing a finite portion of a
sequence in this spatial way is thus sometimes called a tabbed delay line. With such a
representation of a time sequence we can immediately apply a deep neural networks
for the sequence forecasting. An example of such a simple network with one hidden
layer is also shown in Fig. 9.2.

For the following discussion, let’s simplify this network with only one hidden
node as shown in Fig. 9.3A. We can generalize this easily again to more hidden nodes
and many layers of hidden nodes; we have just choosen this simple version for the
illustration purposes. With this reduced figure it becomes clear that we assume that the
values of the inputs at different times can have different influences on the sequence
prediction as we allow the weights to the hidden node to have different values that
of course must be learned. This is the most general case, at least for a fixed length
of the input sequence. However, if we are looking for a specific pattern in the input
sequence which could occur at any position, then we can again use a convolution
over the input vector to search for this pattern. For example, in text processing of the
sentence "You should take an umbrella because it is raining," the word "umbrella"
is highly predictive of the word "raining", although the relative position is variable.
Convolutional neural networks have smaller filters compared to dense networks. This
will save us parameters as we already discussed for position invariant feature detection
in images. The 1-dimensional convolutional solution is illustrated in Fig. 9.3B. A
model with fewer parameters will usually require less training examples to learn, and
convolution makes sense in many cases.

We can reduce the network complexity even further if we assume that the previous
time steps only influence the current time point in a transient or diminishing way. This
is often a good assumption. For example, it is well known that the probability of a
sunny day is higher following a sunny day than a rainy day. We can describe a situation
where the current value influences future time points at t+ uδt of the activation of the
hidden nodes with

h(t) = vx(t) + uvx(t− 1) + u2vx(t− 2) + ..., (9.4)

where u are weights with value less then 1. We can then simplify this network with
the architecture shown in Fig. 9.3C where we represent the exponentially decaying
memory of the input by a delayed input to the hidden node of its previous value.
Mathematically, we are only replacing a diminishing sum with a recursive form,

h(t) = vx(t) + u (vx(t− 1) + uvx(t− 2) + ....) (9.5)
= vx(t) + uh(t− 1), (9.6)

which is illustrated in Fig. 9.3C. Since this includes the re-entry of the information
through the backward connections, this is called a recurrent neural network (RNN).
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Fig. 9.3 Different ways of sequence processing with neural networks. The illustrations just show

one example hidden note, but these networks should be considered with multiple nodes and

commonly more layers. (A) A standard feed-forward network (MLP) where the input represents

a vector of previous sequence data. (B) A "temporal" convolutional neural network (CNN). (C) A

basic recurrent neural network (RNN). (D) A gated recurrent neural network (gRNN) with explicit

memory.

In this way we are not longer restricted in building networks for a finite sequence
with the tabbed delay line approach. Compared to separate weights for inputs at
different times, we introduced here a form of weight sharing in the sense that only the
relative times of the sequence is important. This assumption is similar to the position
invariance assumption in convolutional networks, and building in this assumption in
our architecture will reduce parameters.

The assumption of a diminishing influence from previous time steps has the form of
an exponential decay, which is not always appropriate. For example in natural language
processing it is common that a given word has relations to other distant words. We
can overcome this problem with explicit memory, as illustrated in Fig. 9.3D. We will
shortly explore how we can implement such a memory in neural networks, for example
with gated networks.

To finalize this simplest form of a recurrent neural network, we include a non-
linearity in the layer. For example, the equations for a recurrent layer with a tanh(x)
activation function is,

h(t) = tanh (w{x(t),h(t− 1)}) . (9.7)

We have thereby used a concatenation notation in the second line, {x,h} for the
vectors x and h, and we have also concatenated the weight vectors v and u into the
vector w.

A useful way to visualize this simple RNN is shown in Fig. 9.4, which is an
adaptation from the popular blog by Chris Olah. This way of representing the recurrent
network will help us to discuss some advanced forms of RNNs later. The illustration
shows the computational graph for three time steps, so it shows the unrolling the
network in time. This solves a big question you might have about how to train such
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Fig. 9.4 Illustration of a basic RNN unrolled in time (adapted from Chris Olah’s blog).

networks, given that the values of the activation of nodes depend on the activations
at previous time steps. With the unfolding in time for a certain number of time steps
we see that the networks is basically equivalent to a deep feed-forward network,
albeit with shared weights in the different (time)-layers. It is therefore possible to
use backpropagation learning on these networks, which is called backpropagation-

through-time.
So, by the end, what have we gained? We simplified the graph of a feed-forward

network and replaced it with a recursive version, only to unfold it in time again in
order to train it. However, note that we have to do the unrolling only during training
(which is not optimal). We also have also a form of weight sharing that makes sense
similar to convolutional layers when we look for similar operations at different times
in a sequence. Models with shared weights are somewhat easier to train than the ones
with more independent weights and do not tend to overfit as easily. The exponential
form of the memory limits the usefulness of such networks. The next section addresses
this issue.

9.2 Basic sequence processing with multilayer
perceptrons and recurrent neural networks in Keras

In the following we demonstrate the implementation of sequence processing with a
very simple example. The sequence data are thereby generated from a sine wave at ten
discrete equidistant time points within one period

x(t) = sin(
2π

10
t) for t = 0, ..., 9. (9.8)

These data points are shown in Fig. 9.5A with crosses that have been generated using
the following program.

Listing 9.1 sinSequence.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
from k e r a s import models , l a y e r s , o p t i m i z e r s , d a t a s e t s , u t i l s , l o s s e s

# S i n e da ta w i t h 10 s t e p s / c y c l e
seq = np . a r r a y ( [ np . s i n (2∗ np . p i ∗ i / 1 0 ) f o r i in range ( 1 0 ) ] )
p r i n t ( seq )

We then prepare a data set for the specific learning tasks. The first learning tasks
will be the one to predict the values of y = x(t + 1) from the value at the previous
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Fig. 9.5 Results of sequence predictions from a sequence that is produced by a sine function. (A)

Prediction of the consecutive value in the sequence. The blue crosses show the true value and

the orange dots show the results of a simple MLP. The dashed line shows the average of data

points with the same value of the preceding data point. (B) Prediction of the consecutive value

in the sequence from the two previous values where the predictions are from a simple MLP. (C)

Same as (B) except that the predictions are made by a simple RNN.

time step, x(t). Thus, the training set is created by choosing a random example of the
sequence points as feature value for the input and uses the next point in the sequence
as the target.

Listing 9.2 sinSequence.ipynb (part 2)

Num sequences =200
x t r a i n =np . a r r a y ( [ ] )
y t r a i n =np . a r r a y ( [ ] )
f o r i in range ( Num sequences ) :

r a n =np . random . r a n d i n t ( 1 0 )
x t r a i n = np . append ( x t r a i n , seq [ r a n ] )
y t r a i n = np . append ( y t r a i n , seq [ np . mod ( r a n +1 ,10) ] )

x t e s t =np . a r r a y ( seq )
y t e s t =np . a r r a y ( np . r o l l ( seq ,−1) )

Here we used the modulo function to code the periodic conditions of this time series.
We then set up a MLP as we did in Chapter 4 to predict the labels after training.

Listing 9.3 sinSequence.ipynb (part 3)

#MLP1
i n p u t s = l a y e r s . I n p u t ( shape = ( 1 , ) )
h = l a y e r s . Dense ( 1 0 , a c t i v a t i o n = ’ r e l u ’ ) ( i n p u t s )
o u t p u t s = l a y e r s . Dense ( 1 , a c t i v a t i o n = ’ t a n h ’ ) ( h )
model = models . Model ( i n p u t s , o u t p u t s )

model . compi le ( l o s s = ’ m e a n s q u a r e d e r r o r ’ , o p t i m i z e r = ’ adam ’ )
p r i n t ( model . summary ( ) )
model . f i t ( x t r a i n , y t r a i n , epochs =1000 , b a t c h s i z e =100 , v e r b o s e =0)

# e v a l u a t e
y p r e d = model . p r e d i c t ( x t e s t , b a t c h s i z e =10 , v e r b o s e =1)
p l t . p l o t ( y t e s t , ’ x ’ )
p l t . p l o t ( y p red , ’ o ’ )
a = np . a r r a y ( [ i f o r i in range ( 1 0 ) ] )
b = np . r o l l ( np . f l i p ( a , 0 ) ,−4)
p l t . p l o t ( ( ( y t e s t [ a ]+ y t e s t [ b ] ) / 2 ) , ’−−’ )
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Here we used a single hidden layer with ten nodes. The plot is shown in Fig. 9.5A.
This function to be learned is of course ill-defined as there are always two places in
one period with the same function values that are either followed by a larger or a
smaller value. This is reflected in the results of this experiment. For example, take
the first point for which the input is x = 0. The correct next value in the sequence
should be around y ≈ 0.6. The next time the input value is around 0, at the sixth point
in the sequence, the corresponding next value in the sequence is around y ≈ −0.6.
Hence, the network seems to learn to average over these responses and comes up with
a predicted response around 0. The predictions of the other points can also be derived
from the average. The average is shown in Fig. 9.5A with a dashed line which shows
that this is indeed what the network seems to learn.

Of course, the prediction of consecutive the y value can be made with the knowledge
of the previous two points in a sequence. We can set this up in a similar way as earlier
and test an MLP for the prediction.

Listing 9.4 sinSequence.ipynb (part 4)

#MLP2
i n p u t s = l a y e r s . I n p u t ( shape = ( 2 , ) )
h = l a y e r s . Dense ( 2 , a c t i v a t i o n = ’ r e l u ’ ) ( i n p u t s )
o u t p u t s = l a y e r s . Dense ( 1 , a c t i v a t i o n = ’ t a n h ’ ) ( h )
model = models . Model ( i n p u t s , o u t p u t s )

model . compi le ( l o s s = ’ m e a n s q u a r e d e r r o r ’ , o p t i m i z e r = ’ adam ’ )
p r i n t ( model . summary ( ) )
model . f i t ( x t r a i n , y t r a i n , epochs =1000 , b a t c h s i z e =100 , v e r b o s e =0)

# e v a l u a t e
y p r e d = model . p r e d i c t ( x t e s t , b a t c h s i z e =10 , v e r b o s e =1)
p l t . p l o t ( y t e s t , ’ x ’ )
p l t . p l o t ( y p red , ’ o ’ )

The results are much better and the predictions are quite good and can even be
made better with more training. The main points that deviate from the correct results
are the ones close to values y = 1 and y = −1. These values are a bit harder to
reach, given that we used a sigmoidal tanh function where these values represent the
extremes. Note that we only used two hidden neurons to keep the model even smaller
than the previous one. While we used 10 hidden neurons for a total of 31 parameters
in the previous experiment, here we are only using a model with 9 parameters.

Finally, we can implement this sequence prediction with a simple recurrent net-
work. This is achieved with the Keras code in Listing 9.5.

Key to using the Keras RNN layer is that the input shape is expected to have the
form

(batch size, sequence length, feature dimension).

We thus included the reshaping at the beginning of this code. We are only using one
node for the simple RNN node, and this model therefore has only five parameters (a
weight and bias for the input connection, a weight and bias of the recurrent connection,
and a weight for the output). Again, we can make the fit even better with more nodes
or with more training, but the purpose here is to demonstrate the ability of the minimal
networks. We could even remove the output node and use the output of the recurrent
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node as the prediction of the sequence with reasonable results. Such a model has only
three parameters.

Listing 9.5 sinSequence.ipynb (part 5)

# RNN
x t r a i n =np . r e s h a p e ( x t r a i n , ( 2 0 0 , 2 , 1 ) )
x t e s t =np . r e s h a p e ( x t e s t , ( 1 0 , 2 , 1 ) )

i n p u t s = l a y e r s . I n p u t ( b a t c h s h a p e =( None , 2 , 1 ) )
x = l a y e r s . SimpleRNN ( 1 , a c t i v a t i o n = ’ t a n h ’ ) ( i n p u t s )
o u t p u t s = l a y e r s . Dense ( 1 , a c t i v a t i o n = ’ t a n h ’ ) ( x )
model = models . Model ( i n p u t s , o u t p u t s )

model . compi le ( l o s s = ’ m e a n s q u a r e d e r r o r ’ , o p t i m i z e r = ’ adam ’ )
p r i n t ( model . summary ( ) )

model . f i t ( x t r a i n , y t r a i n , epochs =1000 , b a t c h s i z e =100 , v e r b o s e =0)
# e v a l u a t e
y p r e d = model . p r e d i c t ( x t e s t , b a t c h s i z e =10 , v e r b o s e =1)
p l t . p l o t ( y t e s t , ’ x ’ )
p l t . p l o t ( y p red , ’ o ’ )

9.3 Gated recurrent neural networks, natural language
processing, and attention

As outlined earlier, the basic recurrent network has the form of a memory that takes
earlier states into account. However, the influence of these states fades exponentially
when the weight values are smaller than 1, which they have to be as otherwise the
recurrent influence would exponentially overwhelm the input. The basic RNN is hence
a form of short-term memory. Such a short-term memory is usually not sufficient
for many applications. For example, in natural language processing it is necessary to
take some context into account that might be remote relative to words at the current
sequence position. Hence, some memories should only "kick in" at some appropriate
time which itself might be triggered by another word. It is thus important to gate some
of these memories until they are useful at a later state of processing.

9.3.1 Long short term memory (LSTM) and sentiment analysis

The first network which has taken longer-term memory into consideration is called
LSTM which stands for "long short-term memory". This network is illustrated in
Fig. 9.6.

This gated network introduces another cell state c(t) which represents an intrinsic
memory state. Its value is forwarded to the next time step and can be modified in each
time step with two separate operations, a forgetting gate ft and a input (write) gate it,

c(t) = f(t) c(t− 1) + i(t) c̃(t). (9.9)

The new memory addition depends on the new input and is calculated as

c̃(t) = tanh(wc{x(t),h(t− 1)}+ bc) (9.10)
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Fig. 9.6 Long Short Term Memory (LSTM; adapted from colah’s blog) .

As a reminder, the curly brackets signify here a concatenation operation. This is like a
usual hidden layer equation used in the basic RNN. The gating functions themselves are
learned with corresponding weight values and a sigmoid gain function of the logistic
variety to scale these terms to the range between 0 (total forgetting, no memory update)
and 1 (keep memory state, add new input fully),

f(t) = σ(wf{x(t),h(t− 1)}+ bf ) (9.11)
i(t) = σ(wi{x(t),h(t− 1)}+ bi). (9.12)

Finally, we produce an output for the recurrent node from this new memory state

h(t) = o(t) tanh(c(t)) (9.13)

which itself is gated by the learned influences of the inputs, namely

o(t) = σ(wo{x(t),h(t− 1)}+ bo). (9.14)

In order to demonstrate an LSTM in Keras we follow the common example of a
sentiment analysis. Sentiment analysis is here just another example of classification in
the context of giving documents some labels representing sentiments like good or bad.
We use here the Large Movie Review Dataset (IMDB), which contains 50,000 movie
reviews which are either positive or negative. The task is to use half the documents for
training and test the other half if the sentiment of the test reviews can be predicted. Such
a program is included in the Keras examples of which we provide here a simplified
version.

This example gives us the opportunity to revisit text representations. In Chapter 8
we mentioned the bag of words representation. This representation consists of a large
vector the size of the vocabulary with each component of this vector indicating the
number of times this word occurs in the text. We now want to represent the text itself as a
sequence of words, which is a much better way to approach natural language processing
(NLP). With a one-hot representation of a vocabulary letter, we would then have a high-
dimensional yet very sparse representation. A sequence would then be a sequence of
such high-dimensional sparse vectors. Another way of word representations would
be to give every word a unique integer. While this helps with the dimensionality of
the representation, this representation does not capture relations between words. A
common first step in NLP is therefore to learn an embedding. An embedding, more
specifically a word embedding here, transforms an arbitrary representation to a dense
vector space representation in which words that are commonly related within a task
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are close in embedding space. In Keras, we can realize this with an embedding layer.
Keras datasets include the IMBD data set as a list of unique words as integers. The
following code reads in the data, restricts the vocabulary size to 20,000 unique words,
and then represents each document as a string of 8 unique words (maxlen = 8) to reduce
the size of this example so we can execute it on a simple laptop. If the document has
less than eight words, then the Keras function .pad sequences() would using some
0 padding to make sure each document is of length maxlen here.

Listing 9.6 LSTM.ipynb (part 1)

from k e r a s . p r e p r o c e s s i n g import s e q u e n c e
from k e r a s import models , l a y e r s , o p t i m i z e r s , d a t a s e t s , u t i l s , l o s s e s

v o c a b u l a r y s i z e = 20000
maxlen = 8
b a t c h s i z e = 32

( x t r a i n , y t r a i n ) , ( x t e s t , y t e s t ) = d a t a s e t s . imdb . l o a d d a t a (
num words= v o c a b u l a r y s i z e )

x t r a i n = s e q u e n c e . p a d s e q u e n c e s ( x t r a i n , maxlen )
x t e s t = s e q u e n c e . p a d s e q u e n c e s ( x t e s t , maxlen )

We can then define the model, where the input is immediately funneled into the
embedding layer so that this layer can be trained within the task. The embedding
representation is then used in the LSTM layer, and finally we use a single sigmoid
node for the classification of the sentiment. We also added dropout to the output of the
recurrent layer for some regularization to prevent overfitting. Adding dropout to the
recurrent layer is a bit trickier as small perturbations errors can stack up in the recurrent
network dynamics and hence lead to problems of correct recall. An excellent treatment
of this issue is given by Gal and Ghahramani in an NIPS paper called "A theoretical
grounded application of dropout in recurrent neural networks." The recurrent layers in
Keras therefore have parameters which include dropout in these layers that are strongly
recommended. In this example, we used a high dropout rate.

Listing 9.7 LSTM.ipynb (part 2)

i n p u t s = l a y e r s . I n p u t ( shape =( maxlen , ) )
e= l a y e r s . Embedding ( m a x f e a t u r e s , 128) ( i n p u t s )
h= l a y e r s .LSTM( 1 2 8 , d r o p o u t = 0 . 8 , r e c u r r e n t d r o p o u t = 0 . 8 ) ( e )
h= l a y e r s . Dropout ( 0 . 7 ) ( h )
o u t p u t s = l a y e r s . Dense ( 1 , a c t i v a t i o n = ’ s igmoid ’ ) ( h )
model = models . Model ( i n p u t s , o u t p u t s )

This model is then compiled and trained on the binary cross-entropy as shown in
Listing 9.8.

The evaluation accuracy is around 70 per cent after this short training. However,
this is only a small example of a simple language processing task. In general, it is
good to learn vector embeddings on better tasks such as a language model that aims to
predict the next word in a sequence. Good word embeddings have been achieved with
large data sets. Two popular ones are called Word2Vec and GloVe, and it is possible
to download these to use for a pre-trained embedding. Using recurrent models with
sophisticated word embeddings are among the best current language models.
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Listing 9.8 LSTM.ipynb (part 3) with output

model . compi le ( l o s s = ’ b i n a r y c r o s s e n t r o p y ’ ,
o p t i m i z e r = ’ adam ’ ,
m e t r i c s =[ ’ a c c u r a c y ’ ] )

model . f i t ( x t r a i n , y t r a i n ,
b a t c h s i z e = b a t c h s i z e ,
epochs =4 ,
v a l i d a t i o n d a t a =( x t e s t , y t e s t ) )
s c o r e , acc = model . e v a l u a t e ( x t e s t , y t e s t ,
b a t c h s i z e = b a t c h s i z e )
p r i n t ( ’ T e s t a c c u r a c y : ’ , acc )

T r a i n on 25000 samples , v a l i d a t e on 25000 samples
Epoch 1 / 4
25000/25000 [==============================] − 69 s 3ms / s t e p −
l o s s : 0 .6255 − acc : 0 .6346 − v a l l o s s : 0 .5540 − v a l a c c : 0 .7084
Epoch 2 / 4
25000/25000 [==============================] − 65 s 3ms / s t e p −
l o s s : 0 .5342 − acc : 0 .7339 − v a l l o s s : 0 .5421 − v a l a c c : 0 .7140
Epoch 3 / 4
25000/25000 [==============================] − 66 s 3ms / s t e p −
l o s s : 0 .4938 − acc : 0 .7592 − v a l l o s s : 0 .5411 − v a l a c c : 0 .7148
Epoch 4 / 4
25000/25000 [==============================] − 65 s 3ms / s t e p −
l o s s : 0 .4633 − acc : 0 .7801 − v a l l o s s : 0 .5611 − v a l a c c : 0 .7159
25000/25000 [==============================] − 4 s 160 us / s t e p
T e s t a c c u r a c y : 0 .71588

9.3.2 Other gated architectures and attention

A popular slightly simplified variant of LSTM is the gated recurrent unit (GRU)

shown in Fig. 9.7A. This model is defined by the following equations

z(t) = σ(wf{x(t),h(t− 1)}) (9.15)
r(t) = σ(wr{x(t),h(t− 1)}) (9.16)
h̃(t) = tanh(w{x(t), rth(t− 1)}) (9.17)
h(t) = (1− zt)h(t− 1) + zth̃t. (9.18)

This model has still a read gate r and a write gate z, but it uses the hidden state itself
as the memory state. It is therefore a slightly more compact version of the LSTM with
fewer parameters. Both the GRU and LSTM usually exhibit similar performance.

There are also a variety of other extensions of the basic gated recurrent units
discussed above. A major additional step is to take the idea further in form of an
external memory. The first version of such a model was called the neural Turing
machine (NTM). The basic idea is to use a separate external memory with reading
and writing gates. The memory itself is thereby a combination of an location-based
memory and a content-addressable memory. It is also important that all such operations
are differentiable in order to train such recurrent models with backpropagation through
time. The advanced version of NTM is therefore called the differentiable neural

computer (DNC). Such an architecture is outlined in Fig. 9.7B.
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A) B)

Fig. 9.7 (A) Gated recurrent unit (GRU; see Chris Olah’s blog). (B) Differentiable neural computer

(DNC; see <https://deepmind.com/blog/differentiable-neural-computers>.)

Instead of going into the details of variations of gated recurrent networks, it is
useful to mention one more ingredient in recent models that seems to be crucial in
boosting performance: attention. Attention has been considered an important part of
human information processing since the release of William James’ seminal book The
Principles of Psychology in 1890. At its heart, attention captures the ability of humans
to orient towards important information, or to weight certain information as greater
than others and to inhibit others. Different forms of attention have been identified in the
brain. One well-known fact is the ability of some networks in the early visual system
to emphasize salient features such of having letter "A" in a sea of letters "C". This
leads to the common effect that we perceive salient objects as "popping out," which
greatly narrows down the search time for such objects.

This feature-based bottom-up attention is not the only effect. Indeed, our ability to
direct attention, either to spatial locations or to objects, shows some form of top-down
attention. Some consequences of attention on neuronal firings have been recorded.
For example, Fig.9.8A shows experimental responses of neurons that are sensitive to
objects moving in a certain direction in the visual scene. Response curves of neurons
are called "tuning curves" in neuroscience. The squares show when the subject attends
a "fixation point" and hence not attending the motion, while the circles show the
effect of attending to motion. Interestingly, the modulation of the neuron activity is
not additive but better described by multiplication. This is demonstrated in Fig. 9.8B
with the program below. We draw a Gaussian which curves down slightly (blue curve).
When adding a constant we get shifted dashed blue curve, whereas if we multiply the
original curve with 1.5 we get the red curve that represents the experimental results in
Fig. 9.8A.

Listing 9.9 attention.ipynb

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

f = lambda x : np . exp(−x∗∗2) −0.2
x = np . l i n s p a c e ( −2 ,2 ,21)

p l t . p l o t ( x , f ( x ) )
p l t . p l o t ( x , f ( x ) + . 1 5 , ’b−−’ )
p l t . p l o t ( x , f ( x ) ∗1 . 5 , ’ r ’ )
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Fig. 9.8 Illustration of the effect of attention on the activation of neurons. (A) Example experi-

mental results. Reprinted from Current Biology, 14 (9), Julio C Martinez-Trujillo and Stefan Treue,

Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual

Cortex, pp. 744-51, Figure 4a, doi.org/10.1016/j.cub.2004.04.028, Copyright c© 2004 Cell Press.

Published by Elsevier Ltd. All rights reserved). (B) Illustration of the additive and multiplicative

effect on a tuning curve.

Including information processing principles of attention has been an important
factor in machine learning. For example, attention has strongly influenced sequence-to-
sequence processing such as in language translation. Gated memory networks already
represent some form of attention since the the release of information that is triggered by
some context can be seen as attention. In general, attention can be seen mathematically
as some form of non-linear processing. The simplest form is thereby a multiplicative
gating as shown earlier. For example, we can take the output of a regular layer f(Wx)
and multiply this with new parameters V as in

y = V ∗ f(Wx). (9.19)

The attention parameters V can then be learned from supervised learning. It is
now common to include such attention modules in modeling sequence-to-sequence
processes. A good introductory tutorial of this subject is given by Jason Brown-
lee at <https://machinelearningmastery.com/encoder-decoder-attention-sequence-to-
sequence-prediction-keras/>.

9.4 Models with symmetric lateral connections

9.4.1 Markov (conditional) random field

In the first part of this chapter we discussed a form of recurrent neural networks with
re-entry connections. We now consider a special form of recurrent neural networks:
those with symmetric connections

wij = wji. (9.20)

Such networks have been an important part of the development of neural networks. Be-
fore going into more specific examples, let us first outline their relations to probabilistic
graphical models.
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In terms of probabilistic models, we can represent such bilateral neural networks as
undirected Bayesian networks of random variables. The random variables are as usual
illustrated as nodes in such networks. We illustrated non-directed networks earlier in
Fig. 9.1. Here we want to show the usefulness of such models with a segmentation
example. In Chapter 4, we discussed fully convolutional networks which we illustrate
again in Fig. 9.9. The segmentation is based on the prediction of the class probability
for every pixel of the image.

p(y|x) =
∏
i

p(yi|x) (9.21)

=
1

Z(x)
e
∑

i f(x;w), (9.22)

where x are the input and y are the class labels. We used the output of the convolutional
network f(x;w) with a softmax function to convert this to probabilities, where Z(x)
is the normalization constant or partition function.

Fig. 9.9 Segmentation using a fully convolutional network with a Conditional Random Field layer

as output layer.

We indicate here that we consider the class labels as independent from each other
so that we could write the joined distribution as a product. However, there is a lot
of information in the relations between the pixels, because we are looking for some
objects in contiguous space. Therefore, there is a high probability that a pixel has the
same label as a neighboring pixel. We could add such dependencies in our models with
parameters v,

p(y|x) 1

Z(x)
e
∑

i f(x;w)+
∑

i

∑
nn vi,i+nn , (9.23)

where nn stands for the next neighbors. Of course, we could consider other interaction
patterns beyond the nearest pixels. In the next section, we outline an example where
all the output labels interact.

Training such networks, and Markov (conditional) random fields in general, re-
quires algorithms like believe propagation to calculate the partition function efficiently.
We will not discuss this area further but will instead discuss an interesting example
that has historically attracted a lot of attention.
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9.4.2 The Hopfield model

Steven Grossberg pioneered much of the field of recurrent neural networks and their
relation to cognitive neuroscience in the early 1970s. We will discuss a specific example
that has been popularized by John Hopfield. In the Hopfield model, each node receives
an input and can communicate its activity to all other neurons. Hence, this is a special
form of a conditional random field where all the output neurons interact. Such a network
is illustrated on the left-side in Fig. 9.10. All the neurons in the network receive input
and communicate the output. Thus, all the neurons in this network are visible nodes.
In the next section we discuss the more general case with hidden nodes.
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Fig. 9.10 A recurrent network with only visible nodes and symmetric lateral connections.

This type of networks has received a great deal of attention in neuroscience. It has
been known for some time that an area of the archicortex called the hippocampus in
humans is important for some form of memory, in particular episodic memory, the
memory of specific events. This area has some interesting structures, including an area
called CA3 which has a lot of collateral connections. In 1971, David Marr proposed an
explanation for such networks, suggesting that they could facilitate associative memory,
the type of memory recall that could be triggered by partial cues. The Hopfield model
is a good abstraction of this kind of memory.

To demonstrate associative memory, we run a small experiment with binary neu-
rons. We choose to represent these two states as −1 and 1. We can easily transform
the network to other state representations, but it turns out that this representation helps
with the compactness of the following program. We use hard threshold units in this
example with the "update rule"

s(t+ 1) = sign(ws(t− 1)). (9.24)

The sign function returns −1 if the argument is less than and otherwise 1. This is just
another version of a threshold perceptron. We now want to store some patterns xμ in
this network. The new part is now how we train this network. We use here the

Hebb rule: w =
∑
μ

xx′ (9.25)

This rule has a long history. It was verbally suggested by Donald O. Hebb in the 1940s
and formalized by Eduardo R. Caianiello in 1961. This rule basically specifies that
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the connection between two neurons increases if both neurons are active (s=1) and
decreases otherwise. A simulation of a network with 500 nodes that stores 10 random
patterns is shown here.

Listing 9.10 hopfield.ipynb

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

p a t =2∗np . random . r a n d i n t ( 2 , s i z e = ( 5 0 0 , 1 0 ) )−1#Rand b i n a r y p a t t e r n
w=pat@pat . T # Hebbian l e a r n i n g
s = p a t +10∗np . random . randn ( 5 0 0 , 1 0 ) # I n i t i a l i z e ne twork
f o r t in range ( 1 0 ) :

s [ : , t ]= np . s i g n (w@s [ : , t −1]) # Update ne twork
p l t . p l o t ( s . T@pat / 5 0 0 ) # p l o t o v e r l a p s

In the right-hand graph of Fig. 9.10 we show the results of this simulation by
showing the overlap between the network states and the vectors representing the ten
random patterns. The value of this overlap is 1 if the two vectors are the same, it is−1
if all the features are inverted, and 0 on average for random relations. After training,
we start the network on a random version of one of the patterns. While the overlap
between the network and the stored pattern is therefore not good initially, we can see
that one patterns gets perfectly recalled (overlap = 1). It can be shown that the stored
patterns are fix-points under the network dynamics. Interestingly, sometimes we can
see that the overlap to one pattern goes to −1, so that the inverse of the pattern is also
a fix-point under the network dynamics.

Before leaving the Hopfield model, it should be mentioned that there has been a
theoretical results derived for this type of model, including its stochastic counterpart.
We mentioned earlier that this network represents a dynamical system which has point
attractors seen as the stationary states in the above simulations. This is a consequence
of the symmetric weights as well as the monotonicity of the gain function used here.
Braking such symmetries with associative learning rules or random asymmetries can
brings us back to richer dynamics. The symmetric version of the stochastic model
trained with Hebbian learning is related to spin models and, in particular, models
called spin glasses. The phase structure of possible solutions in such states has been
quite well characterized and can form the basis of a much deeper understanding of the
possible behavior of such models.

9.4.3 The Boltzmann machine

A much more general form of such a network was introduced by Geoffrey Hinton
and Terrance Sejnowski in the mid-1980s which they called the Boltzmann machine.
These recurrent networks incorporate two more important aspects. One is that they
considered hidden notes that are not connected to the outside world directly. As with
perceptrons, hidden nodes allow an unlimited internal structure that allows in principle
an unbounded complexity of internal computations. The second advancements over
the basic Hopfield network is that the Boltzmann machine considers stochastic nodes
and therefore represents a general probabilistic model.

Such a stochastic dynamic network, a recurrent system with hidden nodes, together
with the adjustable connections, provide the system with enough degrees of freedom
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to approximate any dynamical system. While this has been recognized for a long
time, finding practical training rules for such systems has been a major challenge
for which there was only recently major progress. These machines use unsupervised
learning to learn hierarchical representations based on the statistics of the world. Such
representations are key to more advanced applications of machine learning and to
human abilities.

The basic building block is a single-layer network with one visible layer and one
hidden layer. An example of such a network is shown in Fig. 9.11. The nodes represent a

Hidden
nodes

Visible
nodes

Fig. 9.11 A Boltzmann machine with one visible and one hidden layer.

random variable similar to the Bayesian networks discussed earlier. We will specifically
consider binary nodes that mimic neuronal states which are either firing or not. The
connections between the weights wij specify how much they influence the on-state of
connected nodes. Such systems can be described by an energy function. The energy
between two nodes that are symmetrically connected with strength wij is

Hnm = −1

2

∑
ij

wijs
n
i s

m
j . (9.26)

The state variables, s, have superscripts n ormwhich can have values v or h to indicate
visible and hidden nodes. We consider the probabilistic update rule,

p(sni = +1) =
1

1 + exp(−β∑
j wijsnj )

, (9.27)

with inverse temperature, β, which is called the Glauber dynamics in physics, and
describes the competitive interaction between minimizing the energy and the ran-
domizing thermal force. The probability distribution for such a stochastic system is
called the Boltzmann–Gibbs distribution. Following this distribution, the distribution
of visible states, in thermal equilibrium, is given by

p(sv;w) =
1

Z

∑
m∈h

exp(−βHvm), (9.28)

where we summed over all hidden states. In other words, this function describes
the distribution of visible states of a Boltzmann machine with specific parame-
ters, w, representing the weights of the recurrent network. The normalization term,
Z =

∑
n,m exp(−βHnm), is again the partition function, which provides the correct

normalization so that the sum of the probabilities of all states sums to 1.
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Let us consider the case where we have chosen enough hidden nodes so that the
system can, given the right weight values, implement a generative model of a given
world. Thus, by choosing the right weight values, we want this dynamical system to
approximate the probability function, p(sv), of the sensory states (states of visible
nodes) caused by the environment. To derive a learning rule, we need to define an
objective function. In this case, we want to minimize the difference between two
density functions. A common measure for the difference between two probabilistic
distributions is the Kulbach–Leibler divergence,

KL(p(sv), p(sv;w))=

v∑
s

p(sv) log
p(sv)

p(sv;w)
(9.29)

=
v∑
s

p(sv) log p(sv)−
v∑
s

p(sv) log p(sv;w). (9.30)

To minimize this divergence with a gradient method, we need to calculate the
derivative of this "distance measure" with respect to the weights. The first term in the
difference in Eqn 9.30 is the entropy of sensory states, which does not depend on the
weights of the Boltzmann machine. Minimizing the Kulbach–Leibler divergence is
therefore equivalent to maximizing the average log-likelihood function,

l(w) =

v∑
s

p(sv) log p(sv;w) = 〈log p(sv;w)〉. (9.31)

Oc course, we have seen the argument for maximizing the log-likelihood function
several times before, although we now put this into the context of a recurrent model. In
other words, we treat the probability distribution produced by the Boltzmann machine
used as a generative model as a function of the parameters, wij , and choose the
parameters which maximize the likelihood of the training data (the actual world states).
Therefore, the averages of the model are evaluated over actual visible states generated
by the environment. The log-likelihood of the model increases the better the model
approximates the world. A standard method of maximizing this function is gradient
ascent, for which we need to calculate the derivative of l(w)with respect to the weights.
We omit the detailed derivation here, but we note that the resulting learning rule can
be written in the form

Δwij = η
∂l

∂wij
= η

β

2
(〈sisj〉clamped − 〈sisj〉free) . (9.32)

The meaning of the terms on the right-hand side is as follows. The term labelled
"clamped" is the thermal average of the correlation between two nodes when the states
of the visible nodes are fixed. The termed labelled "free" is the thermal average when
the recurrent system is running freely. The Boltzmann machine can thus be trained,
in principle, to represent any arbitrary density functions, given that the network has a
sufficient number of hidden nodes.

This result is encouraging as it gives as an exact algorithm to train general recurrent
networks to approximate arbitrary density functions. The learning rule looks interesting
since the clamped phase could be associated with a sensory-driven agent during an
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Fig. 9.12 Restricted Boltzmann machine in which recurrences within each layer are removed.

awake state, whereas the freely running state could be associated with a sleep phase.
Unfortunately, it turns out that this learning rule is too demanding in practice. The
reason for this is that the averages, indicated by the angular brackets in Eqn 9.32, have
to be evaluated at thermal equilibrium. Thus, after applying each sensory state, the
system has to run for a long time to minimize the initial transient response of the system.
The same has to be done for the freely running phase. Even when the system reaches
equilibrium, it has to be sampled for a long time to allow sufficient accuracy of the
averages so that the difference of the two terms is meaningful. Further, the applicability
of the gradient method can be questioned since such methods are even problematic
in recurrent systems without hidden states since small changes of system parameters
(weights) can trigger large changes in the dynamics of the dynamical systems. These
problems prevented, until recently, more practical progress in this area. Hinton and
colleagues developed more practical systems which are described next.

9.4.4 The restricted Boltzmann machine and contrastive Hebbian
learning

Training of the Boltzmann machine with the above rule is challenging because the
states of the nodes are always changing. Even with the visible states clamped, the
states of the hidden nodes are continuously changing for two reasons. First, the update
rule is probabilistic, which means that even with constant activity of the visible nodes,
hidden nodes receive variable input. Second, the recurrent connections between hidden
nodes can change the states of the hidden nodes rapidly and generate rich dynamics in
the system. We certainly want to keep the probabilistic update rule since we need to
generate different responses of the system in response to sensory data. However, we can
simplify the system by eliminating recurrent connections within each layer, although
connections between the layers are still bi-directional. While the simplification of
omitting collateral connections is potentially severe, any of the abilities of general
recurrent networks with hidden nodes can be recovered through the use of many
layers, which bring back indirect recurrencies. A restricted Boltzmann machine

(RBM) is shown in Fig. 9.12.
When applying the learning rule of Eqn 9.32 to one layer of an RBM, we can

expect faster convergence of the rule due to the restricted dynamics in the hidden
layer. We can also write the learning rule in a slightly different form by using the
following procedure. A sensory input state is applied to the input layer, which triggers
some probabilistic recognition in the hidden layer. The states of the visible and hidden
nodes can then be used to update the expectation value of the correlation between these
nodes, 〈svi shj 〉0, at the initial time step. The pattern in the hidden layer can then be
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used to reconstruct approximately the pattern of visible nodes. This alternating Gibbs

sampling is illustrated in Fig. 9.13 for a connection between one visible node and one
hidden node, although this learning can be done in parallel for all connections. The
learning rule can then be written in the form,

Δwij ∝ 〈svi shj 〉0 − 〈svi shj 〉∞. (9.33)

t=1 t=2 t=3 t= 8

Fig. 9.13 Alternating Gibbs sampling.

Alternating Gibbs sampling becomes equivalent to the Boltzmann machine learning
rule (Eqn 9.32) when repeating this procedure for an infinite number of time steps, at
which point it produces pure fantasies. However, this procedure still requires averaging
over long sequences of simulated network activities, and sufficient evaluations of
thermal averages can still take a long time. Also, the learning rule of Eqn 9.33 does
not seem to correspond to biological learning. While developmental learning also
takes some time, it does not seems reasonable that the brain produces and evaluates
long sequences of responses to individual sensory stimulations. Instead, it seems more
reasonable to allow some finite number of alternations between hidden responses and
the reconstruction of sensory states. While this does not formally correspond to the
mathematically derived gradient leaning rule, it is an important step in solving the
learning problem for practical problems, which is a form of contrastive divergence

introduced by Geoffrey Hinton. It is heuristically clear that such a restricted training
procedure can work. In each step we create only a rough approximation of ideal
average fantasies, but the system learns the environment from many examples, so that
it continuously improves its expectations. While it might be reasonable to use initially
longer sequences, as infants might do, Hinton and colleagues showed that learning with
only a few reconstructions is able to self-organize the system. The self-organization,
which is based on input from the environment, is able to form internal representations
that can be used to generate reasonable sensory expectations and which can also be
used to recognize learned and novel sensory patterns.

The basic Bolzmann machine with a visible and hidden layer can easily be com-
bined into hierarchical networks by using the activities of hidden nodes in one layer
as inputs to the next layer. Hinton and colleagues have demonstrated the power of
restricted Boltzmann machines for a number of examples. For example, they ap-
plied layered RBMs as auto-encoders where restricted alternating Gibbs sampling was
used as pre-training to find appropriate initial internal representations that could be
fine-tuned with backpropagation techniques to yield results surpassing support vector
machines. This work was mentioned in Chapter 4 and shown in Fig. 4.7. A stacked
RBM was thereby used as unsupervised Boltzmann
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Example of basic RMB on MNIST data

While the principles behind RBMs are mathematically advanced, their implementation
is straight forward. We can illustrate the principle with a simplified one layer model
and training this on some examples from the MNIST data set. For this we load the
MNIST dataset again from Keras, although we do not need Keras for the network in
this program. The network consists of 784 = 28 × 28 nodes as this is the size of the
input. We chose 100 hidden nodes. We then selected single examples for each number
from the training set.

Listing 9.11 RBM.ipynb (part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
from k e r a s . d a t a s e t s import m n i s t

n d a t a =10; nh idden =100; n v i s i b l e =28∗28; nepochs =200; e = 0 . 0 1 ; n o i s e
= .05 n g i b b s =5; T = 1 . / 4

w= 0 .1∗ np . random . randn ( n v i s i b l e , nh idden )
v b i a s = np . z e r o s ( n v i s i b l e ) ; h b i a s = np . z e r o s ( nh idden )

( x t r a i n , ) , ( , ) = m n i s t . l o a d d a t a ( )
x t r a i n = x t r a i n . r e s h a p e (60000 ,28∗28) /255
x t r a i n = np . a r r a y ( [ x t r a i n [ 3 4 , : ] , x t r a i n [ 8 , : ] , x t r a i n [ 5 , : ] , x t r a i n

[ 7 , : ] , x t r a i n [ 9 , : ] , x t r a i n [ 0 , : ] , x t r a i n [ 3 2 , : ] , x t r a i n [ 1 5 , : ] ,
x t r a i n [ 1 7 , : ] , x t r a i n [ 2 2 , : ] ] )

Fig. 9.14 Reconstruction error during training of MNIST examples.

We then train the network by applying a pattern, calculating the hidden activation
that represents the probability, sampling the activation of the hidden state with this
probability, using this activation to calculate the reconstruction activity for the input
nodes, and then using the corresponding terms to modify the weight values.
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Listing 9.12 RBM.ipynb (part 2)

s i g = lambda x : 1 / (1 + np . exp(−x ) ) # s i g m o i d a c t i v a t i o n f c n

e r r = np . z e r o s ( nepochs )
f o r epoch in range ( nepochs ) : # t r a i n RBM

f o r v in x t r a i n :
h = s i g ( v @ w + h b i a s )
# sample h id de n s t a t e
hsample = h > np . random . r an d ( nh idden )
v re co n = s i g (w @ hsample + v b i a s )
h r e co n = s i g ( v r e co n @ w + h b i a s )
# u p d a t e p a r a m e t e r s
w += e ∗ ( np . o u t e r ( v , h ) − np . o u t e r ( vrecon , h r e co n ) )
h b i a s += e ∗ ( h−h re co n ) ; v b i a s += e ∗ ( v−v r e c o n )

e r r [ epoch ] = ( ( v−v r e c o n ) ∗∗2) . sum ( )

p l t . f i g u r e ( )
p l t . p l o t ( e r r , ’ . ’ ) ; p l t . x l a b e l ( ’ epoch ’ ) ; p l t . y l a b e l ( ’ e r r o r ’ )

Fig. 9.15 Reconstruction of noisy version of the learned patterns. Each row is one iteration of

Gibbs sampling.

For the reconstruction, we initialize the visible nodes with a noisy version of the
image by flipping a certain percentage of pixels. The results shown in Fig. 9.14 show
that most of the noise is easily removed in basically one iteration of recall through
reconstruction. In the example shown, the only error was made in for the last digit. Of
course, results will change with different noise examples.
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Listing 9.13 RBM.ipynb (part 3)

r = np . random . r and ( nda ta , n v i s i b l e ) < n o i s e
f l i p p e d = (1− r ) ∗ x t r a i n + r ∗(1.− x t r a i n ) # f l i p random b i t s

f o r g in range ( n g i b b s ) :
f o r i in range ( 1 0 ) :

p l t . s u b p l o t ( ng ibbs , 1 0 , g∗10+ i +1) ; p l t . a x i s ( ’ o f f ’ )
p l t . imshow ( f l i p p e d [ i ] . r e s h a p e ( 2 8 , 2 8 ) , ’ g r ay ’ )
h = s i g ( 1 . / T∗ ( f l i p p e d [ i ] @ w+ h b i a s ) ) > np . random . r and ( nh idden )
f l i p p e d [ i ] = s i g ( 1 . / T∗ (w @ h + v b i a s ) ) > np . random . r and (

n v i s i b l e )

A simplified version of the RBM trained on some letters is included in folder
RBM example on the web resource page. The overage reconstruction error and some
examples of reconstructions after training are shown in Fig. 9.15.



10 Reinforcement learning

In supervised learning we assumed that a teacher supplies detailed information on the
desired response of a learner. This was particularly suited to object recognition where
we had a large number of labeled examples. A much more common learning condition
is when an agent, such as a human or a robot, has to learn to make decisions in the
environment. The agent in what follows is a machine learner that we implement in
software, but it is useful to think about the agent as a system that can act in the world,
like a robot or a human.

A good example of such a learning tasks for an agent is that of learning to play
tennis. In this case the agent might try out moves and get rewarded by points the
agent scores rather than a teacher who specifies every muscle movement we need to
follow. Or, in the case of a robot, an engineer who designs every sequence of motor
activations. One approach that resembles supervised learning is that of a trainer which
demonstrates the correct moves. This type of supervised learning a called imitation

learning in this context. Much of imitation learning follows the previous discussion so
we will concentrate in this chapter on an important learning scenario where the agent
only gets simple feedback after periods of actions in the form of reward or punishment
without detailing which of the actions has contributed to the outcome. This type of
learning scenario is called reinforcement learning (RL).

We first formalize the learning problem in a Markov decision process and then
discuss a variety of related algorithms for tabular functions. The second part of this
chapter will use function approximators with neural networks which have made recent
progress as deep RL.

10.1 Formalization of the problem setting

10.1.1 The reinforcement learning problem

Learning with reward signals has been studied by psychologists for many years under
the term conditioning. This includes instrumental conditioning in which an action must
be taken and hence a decision has to be made in order to find positive reward such as
illustrated in Fig. 10.1.1A. In the illustrated experiment, a rodent is placed in a T-maze
with food of different sizes at the different end of each horizontal arm of the T-maze.
The rodent might wander around until it finds some reward. In the following trials it
could then exploit this knowledge. In contrast, the classical conditioning illustrated in
Fig. 10.1.1B are experimental setups in which the agent only observes the environment
to learns reward associations.

It is useful to formalize such learning scenarios further with discrete states. We
consider an agent that at time t is in a specific state st. A state describes thereby the
environment such as a location at which the agent could be. Furthermore, we assume

Fundamentals of Machine Learning, Thomas P. Trappenberg, Oxford University Press (2020).
c© Oxford University Press. DOI: 10.1093/oso/9780198828044.001.0001
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Fig. 10.1 (A) A rodent has to learn to transverse the maze and make a decision at the junction

about which direction to go. Such a decision problem, which necessitates the action of an actor, is

called instrumental conditioning in the animal learning literature. The corresponding Markov chain

is shown in (D). (B) Experimental setting of classical conditioning. Such experiments do not require

an action to be taken by the animal (agent). (C) The controller represents the implementation of a

policy that provides the action to be taken given a specific state.

that the agent can take an action at from each state. In the context of a mobile agent,
the action at is commonly provided by a motor command from a control program, but
we can also think about these actions on a higher level such as turning right or left in
the maze. The aim of reinforcement learning is to train a controller, the brain of the
agent, to make the decision of which action to take from each state. This function is
called the (control) policy in reinforcement learning

Policy:
at = π(st) deterministic
π(at|st) stochastic. (10.1)

We have thereby provided two formulations: a deterministic one with a regular function
and a stochastic one by specifying a probability function. In general, it is useful to
consider probabilistic settings. For example, even though the controller that executes
the policy has the intention to move a vehicle forward, a malfunction in the program
executes a tune routine. Hence, in this case, the policy specifies the probability that an
action is taken, π(at|ss). We will outline most of the discussions in the deterministic
setting for simplicity and to minimize notations. We use the probabilistic setting in
later sections where appropriate and will continue outlining the formulations of the
problem in both settings.

10.1.2 The environmental setting of a Markov decision process

There are two more functions we need to introduce that describe the environment in
which the controller has to function. The first one is the
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Transition function:
st+1 = τ(st, at) deterministic
τ(st+1|st, at) stochastic. (10.2)

which simply specifies the resulting state when an agent takes action at from state st.
Again, it is useful to consider a probabilistic setting since the actual state of an agent
could be different than intended due to external factors which are not under the control
of the agent. For example, even if the controller executes the forward function for a
certain distance, a slope in the road might lead to an overshoot of the desired position.
In such a probabilistic setting the transition function specifies a transition probability
τ(st+1|st, at) of ending up in state st+1, when taking action at from state st.

We restrict the discussion here to the common assumption that the transition func-
tion depends only on the previous state and the intended action from the corresponding
state. This is called the Markov condition. The series of states with transition probabil-
ities is a Markov chain, and the one for the T-maze example is shown in Fig. 10.1.1D.
A non-Markovian condition would be the case in which the next state depends on a
series of previous states and actions, and our agent would then need a memory to make
optimal decisions. The situation described by the Markov condition is quite natural
as many decisions processes only depend on the current state. The Markov condition
is therefore a good scenario and not a real limitation of the reinforcement learning
methods we discuss later, but it will simplify some of the notations and discussions.

The second important environmental function encapsulates the assumption that the
environment or a teacher provides reward according to the

Reward function:
rt+1 = ρ(st, at) deterministic
ρ(rt+1|st, at) stochastic. (10.3)

This reward functions returns the value of reward when the agent is entering state st+1

by taking action at from state st. In most cases, the reward only depends on the state
it enters, but therefore it depends on the previous state and the action taken from this
state. In the probabilistic setting the reward ρ(st+1|st, at) is a probability of receiving
reward in the state st+1 when taking action at from state st.

The environmental functions τ and ρ, together with the specifications of the set of
states S and actions A, define the environment in which we want to make decisions.
Since we restricted our discussion to Markov chains, the corresponding decision pro-
cess is called a Markov decision process (MDP). Note that we assume in our notation
that the agent knows in which state it is in. While we will see that this is easy in
simulations as shown later, this is a major problem in practice when the state needs to
be derived from observations. For example, this is a common occurrence in robotics
where we have sensors such as cameras or gyroscopes from which we want to estimate
the pose of a robot. Moreover, we have to infer the states usually from limited observa-
tions. This general setting is commonly referred to as the partially observable Markov
decision process (POMDP). We discuss the basic ideas first in the MDP setting, then
later discuss DeepRL that can be applied directly to a POMDP setting.

RL faces several challenges. One is called the credit assignment problem. This
includes which action (spatial credit assignment) and at which time (temporal credit
assignment) of the system should be given credit for the achievement of reward.
Another important aspect that is new in contrast to supervised learning is that the
agent must search for solutions by trying different actions. The agent must therefore
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generally play an active role in exploring options. Even if the agent finds a solution
that give it some reward, the question might remain if this is a good solution or if the
agent should search for a better solution or stick to the known rewards. This problem
is commonly stated as "exploration versus exploitation trade-off." Let us assume
that the rodent (agent) found the smaller food reward at the end of the left arm of the
T-maze. It is then likely that the rodent will turn left in subsequent trials to receive food
reward. Thus the agent learned that the action of taking a left turn and going to the
end of the arm is associated with food reward. Of course, in this case the rodent could
also receive larger reward when exploring the right arm of the maze, which illustrates
again the exploration–exploitation trade-off in such learning settings.

Many of the applications of reinforcement learning now apply deep networks as
a learner. However, we will start formalizing the discussion of RL with the more
traditional tabular representation of functions which will give us the opportunity of
discussing exact examples without function approximation. We will later return to the
use of function approximators.

 State x:          0            1           2            3            4

s     s l      r l      r l      r s     s
Q*(x,u):

(x):

1   0   0   0   0   0   0   0   0   0
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0   0   0   0   0   1   0   0   0   0
0   0   1   0   0   0   0   0   0   0
0   0   0   0   0   0   0   1   0   0
0   0   0   0   0   1   0   0   0   0
0   0   0   0   0   0   0   0   0   1
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0   0   0   0   0   0   0   0   0   1

   0
    1
   2
   3
   4
   5
   6
   7
   8
   9

 

 s
 s
 l
 r
 l
 r
 l
 r
 s
 s

0

2

1

4

3

 0    1    2    3    4     5    6    7    8    9 

s    s    l     r     l    r    l    r    s    s

0 21 43State
Action

Index

(x):  1            0           0            0            2

Fr
om

To

0     0 1    0.5 0.5    1 0.5   2 0     0

Fig. 10.2 Example experiment with the simplified T-maze where we concentrate on the more inter-

esting horizontal portion of the maze (linear maze). The right hand side shows the corresponding

transition matrix for the optimal policy.

To illustrate the different reinforcement learning schemes discussed in this chapter,
we will apply these algorithms to a simplified version of the T-maze example mentioned
above. To keep the programs minimal and clean, we concentrate on the upper linear
part for the maze as illustrated in Fig. 10.2. States s of the maze are labeled 0 to 4. A
reward of value 1 is provided in state 0 and a reward of 2 is provided in state 4. The
discrete Q-function has 10 values corresponding to each possible action in each state.
In states 1, 2, and 3 these are the actions move left or move right. The states with the
reward, states 0 and 4, are terminal states and the agent would stay in these states if
unprompted to move. We coded this with action labeled as 0 in the figure.

In order to start coding these examples, we will define some simple functions as
shown below. The first two functions are the environmental functions of the transition
function τ(s, a) and the reward function ρ(s). Note that these functions are usually not
known by the agent, but we will come back to this point. In addition, we provide several
helper functions, one which calculates the policy from a value function as discussed
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shortly, and a function idx(a) to transforms the action representation a ∈ {−1, 1} to
the corresponding indices idx ∈ {0, 1}, which we need for the specific implementation
of the actions in this example.

Listing 10.1 RL.ipynb (Part 1)

## R e i n f o r c e m e n t l e a r n i n g i n 1d maze
import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

def t a u ( s , a ) :
i f s ==0 or s ==4: re turn ( s )
e l s e : re turn ( s+a )

def rho ( s , a ) :
re turn ( s ==1 and a==−1)+2∗( s ==3 and a == 1)

def c a l c p o l i c y (Q) :
p o l i c y =np . z e r o s ( 5 )
f o r s in range ( 0 , 5 ) :

a c t i o n i d x =np . argmax (Q[ s , : ] )
p o l i c y [ s ]=2∗ a c t i o n i d x −1
p o l i c y [ 0 ] = p o l i c y [ 4 ] = 0

re turn p o l i c y . a s t y p e ( i n t )
def i d x ( a ) :

re turn ( i n t ( ( a +1) / 2 ) )

10.1.3 Return and value functions

The goal of the agent is to maximize the total expected reward in the future from every
initial state. This quantity is called return in economics. Of course, if we assume that
this goes on forever, then this return should be infinite, and we have henceforth to be
a bit more careful. One common choice is to define the return as the average reward
in a finite time interval, also called the finite horizon case. Another common form to
keep the return finite is to use a discounted return in which an agent values immediate
reward more than a reward to be obtained far in the future. To capture this we define a
discount factor 0 < γ < 1. In the example program we will use a value of γ = 0.5,

Listing 10.2 RL.ipynb (Part 2)

## d i s c o u n t f a c t o r
gamma = 0 . 5 ;

although values much closer to 1 such as γ = 0.99, are common. For this case we now
define a state-action value function. This function gives us a numerical value of the
return (all future discounted reward) when the agent is in state s and takes action a and
then follows the policy for the following actions,

Value function (state-action): Qπ(s, a) = ρ(s, a) +

∞∑
t=1

γtρ(st, π(st)). (10.4)

In other words, this functions tells us how good action a is in state s, and the knowledge
of this value function should thus guide the actions of an agent. The aim of value-
based reinforcement learning is to estimate this function. Here, we consider first the
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deterministic case and return to another formulation in the stochastic case for finite
horizon cases later.

Sometimes we are only interested in the value function even when we follow the
policy for the first step in the action sequence from state s. Then, this value function
does then not depend explicitly on the action, only indirectly of course on the policy,
and is defined as the total discounted return from state s = s0 following policy π,

Value function (state): V π(s) = Qπ(s, π(s)). (10.5)

The goal of RL is to find the policy which maximized the return. If the agents knows
the

Optimal value function: V ∗(s) = max
a

Q∗(s, a), (10.6)

then the optimal policy is simply given by taking the action that leads to the biggest
expected return, namely

Optimal policy: π∗(s) = argmax
a

Q∗(s, a). (10.7)

This function is implemented here with the python code for calc policy.
The optimal value function and the optimal policy are closely related. We will

discuss in the following several methods to calculate or estimate the value function
from which the policy can be derived. These methods can be put under the heading
of value-search. Corresponding agents, or part of the corresponding RL algorithms,
are commonly called critic. There are also methods to learn the policy directly. Such
methods are called policy-search and the corresponding agents are called an actor.
At the end we will argue that combining these approaches in actor–critic scheme has
attractive features, and such schemes are increasingly used in practical applications
with the help of neural networks as function approximators. We will work our way
towards this exciting area.

10.2 Model-based reinforcement learning

In this section we assume that the agent has a model of the environment, which includes
both, the knowledge of reward states ρ(s, a) and the transfer functions τ(s, a). The
knowledge of these functions, or a model thereof, is required for model-based RL. The
basic challenge in practical applications is to learn these functions from examples of
the agent acting in the environment. Here we are more concerned with showing how
to calculate optimal policies if we know these functions.

10.2.1 The basic Bellman equation

The key to learning the value functions is the realization that the right-hand side of
Eqn 10.4 can be written in terms of the Q-function itself, namely

Qπ(s, a) = ρ(s, a) + γ

∞∑
t=1

γt−1ρ(st, π(st))
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= ρ(s, a) + γ

[
ρ(τ(s, a), π(τ(s, a))) + γ

∞∑
t=2

γt−2ρ(st, π(st))

]
.

The term in the square bracket is equal to the value function of the state that is reached
after the transition τ(s, a)

Qπ(τ(s, a), π(τ(s, a))) = V π(τ(s, a)). (10.8)

The Q-function and the V -function are here equivalent since we are following the
policy in these steps. Using this fact in the equation above, we get the

π Bellman equation: Qπ(s, a) = ρ(s, a) + γQπ(τ(s, a), π(τ(s, a))). (10.9)

If we combine this with known dynamic equations in the continuous time domain,
then this becomes the Hamilton–Jacobi–Bellman equation. often encountered in engi-
neering.

As stated earlier, we here assume that the reward function ρ(s, a) and the transition
functions τ(s, a) are known. At this point the agent follows a specified policy π(s).
Let us further assume that we have ns states and na possible actions in each state. We
have thus ns × na unknown quantities Qπ(s, a) which are governed by the Bellman
equation. More precisely, the Bellman Eqn 10.9 are ns × na coupled linear equations
of the unknowns Qπ(s, a). It is then convenient to write this equation system with
vectors

Qπ = R+ γTπQπ (10.10)

whereTπ is an appropriate transition matrix which depends on the policy. This equation
can also be written as

R = (11− γTπ)Qπ, (10.11)

where 11 is the identity matrix. This equation has the solution

Qπ = (11− γTπ)−1R (10.12)

if the inverse exists. In other words, as long as the agent knows the reward function and
the transition function, it can calculate the value function for a specific policy without
taking even a single step. This is an example of a deliberative system where the agent
can use the models of reward and the environment to calculate optimal decisions, hence
the designation as model-based RL.

To demonstrate how to solve the Bellman equation with linear algebra tools, we
need to define the corresponding vectors and matrices as used in Eqn 10.12. We
therefore order quantities such as ρ and Q with 10 indices. The first corresponds to
(s = 0, u = −1), the second to (s = 0, u = 1), the third to (s = 1, u = −1), etc. The
reward vector can thus be coded as:

Listing 10.3 RL.ipynb (Part 3)

p r i n t ( ’−−> A n a l y t i c s o l u t i o n f o r o p t i m a l p o l i c y ’ )

# D e f i n i n g reward v e c t o r R
i =0 ; R=np . z e r o s ( 1 0 )
f o r s in range ( 0 , 5 ) :

f o r a in range ( −1 ,2 ,2) :
R[ i ]= rho ( s , a )
i += 1
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The transition matrix depends on the policy, so we need to choose one. We chose the
one specified on the left in Fig. 10.2 where the agent would move to the left in state
s = 1 and to the right in states s = 2 and s = 3. This happens to be the optimal
solution, as we will show later, so that this will also give us a solution for the optimal
value function. We use this policy to construct the transition matrix by hand as shown
on the right in Fig. 10.2. For example, if we are in state s = 4 and move to the left,
a = −1, corresponding to the from-index = 7, then we end up in state s = 3, from
which the policy says go right, a = 1. This correspond to the to-index=9. Thus, the
transition matrix should have an entry T (7, 9) = 1. Going through all the cases results
in

Listing 10.4 RL.ipynb (Part 4)

# D e f i n i n g t r a n s i t i o n m a t r i x
T=np . z e r o s ( [ 1 0 , 1 0 ] ) ;
T [ 0 , 0 ] = 1 ; T [ 1 , 1 ] = 1 ; T [ 2 , 0 ] = 1 ; T [ 3 , 5 ] = 1 ; T [ 4 , 2 ] = 1
T [ 5 , 7 ] = 1 ; T [ 6 , 5 ] = 1 ; T [ 7 , 9 ] = 1 ; T [ 8 , 8 ] = 1 ; T [ 9 , 9 ] = 1

With this we can solve this linear matrix equations with the inv() function in the
linear algebra package of NumPy,

Listing 10.5 RL.ipynb (Part 5)

# C a l c u l a t e Q−f u n c t i o n
Q=np . l i n a l g . i n v ( np . eye ( 1 0 )−gamma∗T ) @ np . t r a n s p o s e (R)
Q=np . r e s h a p e (Q, [ 5 , 2 ] )

We reshaped the resulting Q-function so that the first row shows the values for left
movements in each state and the second row shows the values for a right movement in
each state. From this we can calculate which movement to take in each state, namely
just the action corresponding to the maximum value in each column,

Listing 10.6 RL.ipynb (Part 6)

p o l i c y = c a l c p o l i c y (Q)

Finally we print the results with

Listing 10.7 RL.ipynb (Part 7)

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )

which gives

Listing 10.8 RL.ipynb (Part 8)

−−> A n a l y t i c s o l u t i o n f o r o p t i m a l p o l i c y
Q v a l u e s :
[ [ 0 . 1 . 0 . 5 0 . 5 1 . ]

[ 0 . 0 . 5 1 . 2 . 0 . ] ]
p o l i c y :
[ 0 −1 1 1 0]

The agent is moving left in state 1 as this would lead to an immediate reward of 1 and
moving right in the other states as this would result in a larger reward, even when taking
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the discounting for more steps into account. Of course, at this point our argument is
circular as we started with the assumption that we use the optimal policy as specified
in the transition matrix at the start. We will soon see how to start with an arbitrary
policy an improve this to find the optimal strategy. Also note that the transition matrix
was perfect in the sense that the intended move always leads to the intended end state.
A probabilistic extension of this transition matrix is quite useful in describing more
realistic situations.

In the code we save the optimal Q-values for the optimal policy

Listing 10.9 RL.ipynb (Part 9)

Qana=Q

so that we can later plot the differences to the other solution methods.
The Bellman equations are a set of n coupled linear equations for n unknown

Q-values, and we have solved these here with linear algebra function to find an inverse
of a matrix. Finding the inverse of a function can be implemented with different
algorithms such as Gauss elimination. However, it is much more common to use an
iterative procedure to solve the Bellman equation. For this iterative algorithm we starts
with an estimation of the Q-function, let’s call this Qπ

i , and improve it by calculating
the right-hand side of the Bellman equation,

Dynamic programming: Qπ
i+1(s, a)← ρ(s, a) + γQπ

i (τ(s, a), π(τ(s, a))).
(10.13)

The fixed-point of this equation, that is, the values that does not change with these
iterations, are the desired values of Qπ . Another way of thinking about this algorithm
is that the Bellman equality is only true for the correct Qπ values. For our guess, the
difference between the left- and right-hand side is not 0, but we are minimizing this
with the iterative procedure above. The corresponding code is

Listing 10.10 RL.ipynb (Part 10)

p r i n t ( ’−−> Dynamic Programing ’ )

Q=np . z e r o s ( [ 5 , 2 ] )
f o r i t e r in range ( 3 ) :

f o r s in range ( 0 , 5 ) :
f o r a in range ( −1 ,2 ,2) :

a c t = np . i n t ( p o l i c y [ t a u ( s , a ) ] )
Q[ s , i d x ( a ) ]= rho ( s , a ) +gamma∗Q[ t a u ( s , a ) , i d x ( a c t ) ]

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )

−−> Dynamic Programming :
Q v a l u e s :
[ [ 0 . 1 . 0 . 5 0 . 5 0 . ]

[ 0 . 0 . 5 1 . 2 . 0 . ] ]
p o l i c y :
[ 0 −1 1 1 0]

which is, of course, the same correct solution as found with the explicit matrix inversion.
This iterative method is a much more common implementation and it does not require
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the explicit coding of the transition matrix. Iterative approaches will be used in all
further methods discussed later. Note that we have only used three iterations to converge
on the correct solution. While here we set the number of iterations by hand, in practice
we iterate until the changes in the values are sufficiently small.

10.2.2 Policy iteration

The goal of RL is of course to find the policy which maximizes the return. So far
we have only discussed a method to calculate the value for a given policy. However,
we can start with an arbitrary policy and can use the corresponding value function to
improve the policy by defining a new policy which is given by taken the actions from
each state that gives us the best next return value,

Policy iteration:π(s)← argmax
a

Qπ(s, a). (10.14)

For the new policy, we can then calculate the corresponding Q-function and then use
this Q-function to improve the policy again. Iterating over the policy gives us the

Optimal policy: π∗(s). (10.15)

The corresponding value function is Q∗. In the maze example we can see that the
maximum in each column of the Q-matrix is the policy we started with. This is the
optimal policy, as we stated earlier.

The corresponding code for our maze example is

Listing 10.11 RL.ipynb (Part 11)

p r i n t ( ’−−> P o l i c y i t e r a t i o n ’ )

Q=np . z e r o s ( [ 5 , 2 ] )
p o l i c y = c a l c p o l i c y (Q)
f o r i t e r in range ( 3 ) :

f o r s in range ( 0 , 5 ) :
f o r a in range ( −1 ,2 ,2) :

a c t = np . i n t ( p o l i c y [ t a u ( s , a ) ] )
Q[ s , i d x ( a ) ]= rho ( s , a ) +gamma∗Q[ t a u ( s , a ) , i d x ( a c t ) ]

p o l i c y = c a l c p o l i c y (Q)

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )

−−> P o l i c y i t e r a t i o n
Q v a l u e s :
[ [ 0 . 1 . 0 . 5 0 . 5 0 . ]

[ 0 . 0 . 5 1 . 2 . 0 . ] ]
p o l i c y :
[ 0 −1 1 1 0]

again leading to the correct result. Note that in this example we again iterated only
three times over the policies. In principle, we could and should iterate several times
for each policy in order to converge to a stable estimate for this Qπ . However, the
improvements will lead very quickly to a stable state, at least in this simple example.
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10.2.3 Bellman function for optimal policy and value (Q) iteration

Since we are primarily interested in the optimal policy, we could try to solve the
Bellman equation immediately for this policy,

Q∗(s, a) = ρ(s, a) + γQ∗(τ(s, a), π∗(τ(s, a))). (10.16)

The problem is that this equation now depends on the unknown π∗. However, we can
check in each state all the actions and take the one which gives us the best return. This
should be equivalent to the equation above in the optimal case. Hence we propose the

Optimal Bellman equation: Q∗(s, a) = ρ(s, a)+ γmax
a′

Q∗(τ(s, a), a′). (10.17)

We can solve this equation again with the iterative method when the transfer function
and the reward functions are known,

Q-iteration: Q∗
i+1(s, a)← ρ(s, a) + γmax

a′
Q∗(τ(s, a), a′). (10.18)

The corresponding code for our maze example is

Listing 10.12 RL.ipynb (Part 12)

p r i n t ( ’−−> Q− i t e r a t i o n ’ )

Q new=np . z e r o s ( [ 5 , 2 ] )
Q=np . z e r o s ( [ 5 , 2 ] )
p o l i c y = np . z e r o s ( 5 )
f o r i t e r in range ( 3 ) :

f o r s in range ( 0 , 5 ) :
f o r a in range ( −1 ,2 ,2) :

maxValue = np . maximum (Q[ t a u ( s , a ) , 0 ] ,Q[ t a u ( s , a ) , 1 ] )
Q new [ s , i d x ( a ) ]= rho ( s , a ) +gamma∗maxValue

Q=np . copy ( Q new )

p o l i c y = c a l c p o l i c y (Q)
p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )

−−> Q− i t e r a t i o n
Q v a l u e s :
[ [ 0 . 1 . 0 . 5 0 . 5 0 . ]

[ 0 . 0 . 5 1 . 2 . 0 . ] ]
p o l i c y :
[ 0 −1 1 1 0]

In this example we again used only three iterations which are sufficient to reach the
correct values. In practice, we can terminate the program if the changes are sufficiently
small, which we did not implement here to keep the code short.

There is an interesting difference between this value iteration method and the
previous policy iteration method. In the policy iteration method we followed the
policy to calculate the updated value function. We call such a method on-policy. In
contrast, in the value (Q) iteration, we check out all possible actions from this state for
the update of the value function. Such a procedure is called off-policy.
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10.3 Model-free reinforcement learning

10.3.1 Temporal difference method for value iteration

Above we assumed a model of the environment by an explicit knowledge of the
functions τ(s, a) and ρ(s, a). While the Bellman equations have been known since the
1950s, their usefulness has been limited due to the fact that finding the environmental
functions can be difficult. This is one of the reasons that such RL techniques have not
gained more applications at that point. We could use modeling techniques and some
sampling strategies to learn these functions with machine learning techniques and then
use model-based RL as described above to find the optimal policy. For example, we
can use demonstrations of actions by a teacher as a form of supervised learning for the
models. As mentioned earlier, such supervised learning is commonly called imitation
learning in the context of robotics and RL. We are not following this line of thought
here but will instead combine here the sampling directly with reinforcement learning
by exploring the environment. This approach has helped to apply RL to many more
applications. Since we do not need to know the environmental functions, this approach
is called model-free.

We will start again with a version for a specific policy by choosing a policy and
estimate the Q-function for this policy. As in the iterative methods earlier, we want to
minimize the difference between the left- and right-hand sides of the Bellman equation.
But we can not calculate the right-hand side since we do not know the transition
function and the reward function. However, we can just take a step according to our
policy u = π(s) and observe a reward ri+1 and the next state si+1. Now, since this is
only one sample, we should use this as update of the value function only with a small
learning rate α. The corresponding algorithm is

SARSA: Qi+1(si, ai) = Qi(si, ai) + α [(ri+1 + γQi(si+1, ai+1)−Qi(si, ui)] .
(10.19)

The name comes from the fact that we are in a state from which we take an action and
observe an reward and then go to the next state and take action:

s→ a→ r → s→ a.

The term in the square brackets on the right-hand side of Eqn 10.19 is called the
temporal difference since it is the difference between the expected value earlier at
some point and the new estimate from the actual reward and the following estimate
at the next temporal evaluation point. Note that we are following the policy, and the
methods is therefore again an on-policy method.

The next step is to use the estimate of the Q-function to improve policy. However,
since we are mainly interested in the optimal policy, we should improve the policy by
taking the steps that maximizes the reward. However, one problem in this scheme is
that we have to estimate the Q-values by sampling so that we have to make sure we
trade off exploitation with exploration. A common way to choose the policy in this
scheme is the

ε-greedy policy: p
(
argmax

a
Q(s, a)

)
= 1− ε. (10.20)

So, we are really evaluating the optimal policy that requires us to make the exploration
0 at the end, ε→ 0.
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The corresponding code for the SARSA is:

Listing 10.13 RL.ipynb (Part 13)

p r i n t ( ’−−> SARSA ’ )

Q=np . z e r o s ( [ 5 , 2 ] )
e r r o r = [ ]
a l p h a =1;
f o r t r i a l in range ( 2 0 0 ) :

p o l i c y = c a l c p o l i c y (Q)
s =2
f o r t in range ( 0 , 5 ) :

a= p o l i c y [ s ]
i f np . random . r and ( ) <0.1: a=−a # e p s i l o n gr ee d y
a2= i d x ( p o l i c y [ t a u ( s , a ) ] )
TD= rho ( s , a ) +gamma∗Q[ t a u ( s , a ) , a2]−Q[ s , i d x ( a ) ]
Q[ s , i d x ( a ) ]=Q[ s , i d x ( a ) ]+ a l p h a ∗TD
s= t a u ( s , a )

e r r o r . append ( np . sum ( np . sum ( np . abs ( np . s u b t r a c t (Q, Qana ) ) ) ) )

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )
p l t . f i g u r e ( ) ; p l t . p l o t ( e r r o r )
p l t . x l a b e l ( ’ i t e r a t i o n ’ ) ; p l t . y l a b e l ( ’ e r r o r ’ )

−−> SARSA
Q v a l u e s :
[ [ 0 . 1 . 0 . 5 0 . 5 0 . ]

[ 0 . 0 . 5 1 . 2 . 0 . ] ]
p o l i c y :
[ 0 −1 1 1 0]

Fig. 10.3 shows that the difference between the Q-value of this algorithm and the
Q-value of the analytic solution goes to 0 and hence converges to the correct solution.
Sometimes this can take more iterations because exploring off-policy states is not
frequent. Of course, this also depends on the exploration strategy.
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Fig. 10.3 Example learning curve of the SARSA algorithm. The error is the absolute difference

between the Q-value of this algorithm and the Q-value calculated analytically above.

Note that we have set the learning rate α = 1 for this example, which makes the
update rule look similar to the iterative method of the model-based case
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Qi+1(si, ai) = (ri+1 + γQi(si+1, ai+1). (10.21)

However, there is a major difference. Previously we iterated over all possible states
with the knowledge of the transition function and the reward function; thus an agent
does not really have to explore the environment and can just "sit there" and calculate
what the optimal action is. This is the benefit of model-based reinforcement learning.
In contrast, here we discuss the case where we do not know the transition function and
the reward function and hence have to explore the environment by acting in it. As this
is usually associated with a physical movement, this takes times and hence limits the
exploration we can do. Thus, it is common that an agent can not explore all possible
states in large environments. Also, a learning rate of α = 1 is not always advisable
since a more common setting is that reward itself is probabilistic. A smaller value of α
then represents a form of taking a sliding average and hence estimating the expected
value of the reward.
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Fig. 10.4 Example of the "back-propagation" of the reward (not to be confused with the back-

propagation algorithm in supervised learning). In this example, an episode always starts in the

left-most state and the policy is to always to go right. A reward is received in the right-most state.

It is useful to go through some iterations of the SARSA algorithm by hand for a
linear-maze example. In the example shown in Fig. 10.4, we changed the situation to a
linear maze in which the state always starts at the left-most state and a reward of r = 1
is received in the right-most state. The policy is to always go right, which is also the
optimal policy in this situation. At the first time step of the first episode we are in the
left-most state and evaluate the value of going right. In the corresponding state to the
right there is no reward given, and the value function is also 0. So the value function
of this state-action is 0. The same is true for every step until we are in the state before
the reward state. At this point the value is updated to the reward of the next state. In
the second episode the value of the first and second state remains 0, but the third state
is updated to γ ∗ 1 since the value of the next state following the policy is given by 1,
and we discount this by γ. Going through more episodes it can be seen that the value
"back-propagates" by one step in each episode. Note that this back-propagation of the
value is not to be confused with the backpropagation algorithm in supervised learning.
Also, notice that the values for the Q-function for going left are not updated as we
only followed optimal policy deterministically. Some exploration steps will eventually
update these values, although it might take a long time until these values propagate
through the system.

There is one important additional basic algorithm that we need to mention in this
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section on temporal difference learning. This final algorithm is to use an alternative
way to estimate the value function using an off-policy approach for the estimation step
from each visited state. That is, we check all possible actions from the state that we
evaluate state and update the value function with the maximal expected return,

Q-learning: Qi+1(si, ai) = Qi(si, ai)+α
[
(ri+1 + γmax

a′
Qi(si+1, a

′)−Qi(si, ai)
]

(10.22)
We still have to explore the environment which usually follows the optimal estimated
policy, with some allowance for exploration such as ε-greedy or a softmax exploration
strategy. The corresponding code for the Q-learning is

Listing 10.14 RL.ipynb (Part 14)

p r i n t ( ’−−> Q−L e a r n i n g : ’ )

Q=np . z e r o s ( [ 5 , 2 ] )
a l p h a =1
e r r o r = [ ]
f o r t r i a l in range ( 2 0 0 ) :

p o l i c y = c a l c p o l i c y (Q)
s =2
f o r t in range ( 0 , 5 ) :

a= p o l i c y [ s ]
i f np . random . r and ( ) <0.1: a=−a # e p s i l o n gr ee d y
TD= rho ( s , a ) +gamma∗np . maximum (Q[ t a u ( s , a ) , 0 ] ,Q[ t a u ( s , a ) , 1 ] )−Q[ s ,

i d x ( a ) ]
Q[ s , i d x ( a ) ]=Q[ s , i d x ( a ) ]+ a l p h a ∗TD
Q[ 0 ] = 0 ;Q[ 4 ] = 0 ;
s= t a u ( s , a )

e r r o r . append ( np . sum ( np . sum ( np . abs ( np . s u b t r a c t (Q, Qana ) ) ) ) )

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )
p l t . p l o t ( e r r o r , ’ r ’ ) ;
p l t . x l a b e l ( ’ i t e r a t i o n ’ ) ; p l t . y l a b e l ( ’ e r r o r ’ )

−−> Q−L e a r n i n g :
Q v a l u e s :
[ [ 0 . 1 . 0 . 5 0 . 5 0 . ]

[ 0 . 0 . 5 1 . 2 . 0 . ] ]
p o l i c y :
[ 0 −1 1 1 0]

10.3.2 TD(λ)

The example of the linear maze in the previous section has shown that the expectation of
reward propagates backwards in each episode which thus requires multiple repetitions
of the episodes in order to evaluate the value function. The reason for this is that we
only give credit for making a step to a valuable state to the previous step and hence
only update the corresponding value function. A different approach is to keep track of
which states have led to the reward and assign the credit to each step that was visited.
However, because we discount the reward proportional to the time it takes to get to the
rewarded state, we need to also take this into account.
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Fig. 10.5 Example of the "back-propagation" of the reward in the TD(1) algorithm. Compared to

the slow back-propagation in the TD(0) algorithm, as shown in Fig. 10.4, the added memory allows

for the credit assignment in the whole episode.

To realize this we introduce an eligibility trace that we call e(s, a). At the beginning,
this eligibility trace is set to 0 for all the states. For each visited state we set the eligibility
state to 1 for this current state, and we discount the eligibility for all the other states
by γ. This is demonstrated in Fig. 10.5. In the figure we indicate the eligibility trace at
every time step. Note how the eligibility trace is building up during one episode until
reaching the rewarded state, at which time the values of all the states are updated in
the right proportion. This algorithm does therefore only need one optimal episode to
find the correct value function, at least in this case with a learning rate of α = 1. Thus
to change a TD algorithm to a TD(1), we change the build up the eligibility trace in
each step

e(s, a)← e(s, a)γ for all s,a (10.23)

and update all Q-values proportional to the TD error of this step multiplied by the
eligibility trace,

Q(s, a)← Q(s, a) + αTD ∗ e(s, a). (10.24)

While this algorithms requires some memory, we see that we only need to store an
eligibility trace which indirectly specifies the sequence the agent took. It is also easy
to extend this algorithm to a more general form called TD(λ) where we can interpolate
between the original TD algorithm with no eligibility trace, called TD(0), with the
perfect memory trace of TD(1). An exponential decay of an eligibility trace can be
implemented simply by including a factor λ in Eqn 10.23,

e(s, a)← e(s, a)γλ for all s,a. (10.25)

This algorithm is implemented for the Q-learning version of temporal difference
learning in the code shown in Listing 10.15.
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Listing 10.15 RL.ipynb (Part 15)

p r i n t ( ’−−> TD( lambda ) f o r Q−l e a r n i n g : ’ )

Q=np . z e r o s ( [ 5 , 2 ] )
a l p h a =1
e r r o r = [ ]
e l i g i b i l i t y =np . z e r o s ( [ 5 , 2 ] )
lam =0.7

f o r t r i a l in range ( 2 0 0 ) :
p o l i c y = c a l c p o l i c y (Q)
s =2

f o r t in range ( 0 , 5 ) :
a= p o l i c y [ s ]
i f np . random . r and ( ) <0.1: a=−a # e p s i l o n gr ee d y
TD= rho ( s , a ) +gamma∗np . maximum (Q[ t a u ( s , a ) , 0 ] ,Q[ t a u ( s , a ) , 1 ] )−Q[ s ,

i d x ( a ) ]
e l i g i b i l i t y ∗=gamma∗ lam
e l i g i b i l i t y [ s , i d x ( a ) ]=1
f o r s i in range ( 1 , 4 ) :

f o r a i in range ( 2 ) :
Q[ s i , a i ]=Q[ s i , a i ]+ a l p h a ∗TD∗ e l i g i b i l i t y [ s i , a i ]

Q[ 0 ] = 0 ;Q[ 4 ] = 0 ;
s= t a u ( s , a )
e r r o r . append ( np . sum ( np . sum ( np . abs ( np . s u b t r a c t (Q, Qana ) ) ) ) )

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )
p l t . p l o t ( e r r o r , ’ r ’ ) ;
p l t . x l a b e l ( ’ i t e r a t i o n ’ ) ; p l t . y l a b e l ( ’ e r r o r ’ )

−−> TD( lambda ) f o r Q−l e a r n i n g
Q v a l u e s :
[ [ 0 . 0 .99999999 0 .49999994 0 .49998045 0 . ]

[ 0 . 0 . 2 5 1 . 2 . 0 . ] ]
p o l i c y :
[ 0 −1 1 1 0]

TD(λ) made famous by Gerald Tesauro in the early 1990s for achieving human level
performance in playing backgammon. In addition, Tesauro’s solution used neural
networks as a function approximator which is important for capturing the high-
dimensional state-action space. This will be discussed in the next section.

10.4 Deep reinforcement learning

10.4.1 Value-function approximation with ANN

Up to this point we have outlined the basic ideas behind reinforcement learning
algorithms. We will now move on to an important topic to scale these ideas to real-world
applications. The previous method we used tabulated the values for the functions. For
example, the value function in the above programs were look-up tables or arrays in
programming terms that specified the value function for each discrete state and action.
Correspondingly, this lead to tables for the policy. Such algorithms are now commonly
referred to as tabular RL algorithms. The problem with this approach is that these
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tables can be very big for large state and action dimensionality. Indeed, the increased
computational demand of calculating these quantities in many real-world applications
is often prohibitive, in particular in a stochastic setting where we have to sample in the
state-action space.

To illustrate this point with a popular example, let us think how tabular RL would
look if we implement learning to play a computer game. Let us discuss the example
of Atari 2600 games that have been implemented in an arcade learning environment
by Michael Bowling and colleagues at the University of Alberta. This environment
simulates video input of 210 × 160 RGB video at 60Hz. An example of these video
screens is shown in Fig. 10.6. The state space of these games is equivalent to a state
input vector of length 100,800 every 1/60 of a second. Even if each pixel is only
allowed to have, say, 8 bit representations, equivalent to 28 = 256 possible values, and
all the pixel values are independent, there would be 256100800 possible states. Clearly
this is impossible to implement with the tabular methods cited earlier. Bellman noticed
this practical limitations and coined the phrase "curse of dimensionality." The principle
idea for overcoming the curse of dimensionality is to use function approximators to
represent the functions, and it comes at no surprise that we will specifically use deep
neural networks for these function approximations.

Fig. 10.6 Examples of video screens of the Atari 2600 game simulator.

Several types of function approximators have been used in the past. Linear function
approximation (linear regression) is often discussed in engineering books as this pro-
vides some good baseline and is somewhat tractable analytically. However, many real
world applications are highly non-linear, and it is the reason we have discussed neural
networks. Neural networks have been applied to RL for some time. A nice example
of the success of TD(λ) was mentioned above for playing backgammon. We will now
show how to implement such basic networks for reinforcement learning.

To illustrate the basic idea of using neural networks with RL, we return to our
maze example. The basic form of the implementation of the Q-function with a neural
network is to make a neural network that receives as input a state and an action, and
which then outputs the Q-values as shown in Fig. 10.7 with network A. In order to train
this network with supervised learning we would need examples of the value function,
which we of course don’t have. However, we discussed how we can estimate such
values with temporal differences while exploring the trajectories in the environment.
For example, we can start with an arbitrary Q-function, use SARSA to estimate an
improved version of Q, and then use this as a desired state in a mean square loss
function. That is, we can define the following error term (loss function)

E(st, at) = (rt+1 + γQ(st+1, ut+1;w)−Q(st, at;w))
2 (10.26)
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and use back propagation to train the weights of the network that represent the Q-
function.
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Fig. 10.7 Different ways to implement a function approximator for the value function.

While the neural network approach to SARSA can be applied immediately to a
continuous state and action space, many applications have a finite and relatively small
set of possible actions, and it is more common to use a Q-leaning (off-policy) strategy
in this case. Here we have to compare the Q-values of all the possible actions from a
specific state. While we could just iterate over the previous network, we can also learn
a network that provides the Q-values for all the possible actions. This approach has
been taken by Riedmiller in 2005 with the neurally fitted Q-iteration (NFQ) algorithm.
The basic idea is shown in Fig. 10.7 with network B. In this case we can train the
network with the following loss-function

E(st, at) = (rt+1 + γmax
a

Q(st+1, a;w)−Q(st, at;w))
2 (10.27)

which corresponds to training the connections to the winning node as well as all the
connections feeding into it through backpropagation. To apply this strategy to the
maze example, we will here represent the state vector as a 1-hot vector. For example,
if the agent is in state 2 then we can write the 1-hot input vector to the network as
s=np.array([0,0,1,0,0]). Such a network is illustrated in Fig. 10.7C. We then
have to modify our helper functions slightly to calculate the next state, and we also
need a small function to identify if the state is a final state.

Listing 10.16 RLmlp.ipynb (Part 1)

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t
from k e r a s import models , l a y e r s , o p t i m i z e r s

def t a u ( s , a ) :
i f ( s [ 0 ] and s [ 4 ] ) == 0 : s=np . r o l l ( s , a )
re turn s

def rho ( s ) :
re turn ( ( s [ 0 ] = = 1 ) +2∗( s [ 4 ] = = 1 ) )

def t e r m i n a l s t a t e ( s ) :
re turn ( s [0 ]==1 or s [ 4 ] = = 1 )

gamma =0.5
invT = 1

The variable invT represents the inverse temperature for the exploration. It is set very
high at the beginning, but we will later decay this value. So there is a lot of exploration
at the beginning but much less later.
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We then define a small dense network with five inputs for the state vector, ten
hidden nodes, and two output nodes, each representing the Q-value for each possible
action, that of going left or right.

Listing 10.17 RLmlp.ipynb (Part 2)

# t h e ne twork
i n p u t s = l a y e r s . I n p u t ( shape = ( 5 , ) )
h = l a y e r s . Dense ( 1 0 , a c t i v a t i o n = ’ r e l u ’ ) ( i n p u t s )
o u t p u t s = l a y e r s . Dense ( 2 , a c t i v a t i o n = ’ l i n e a r ’ ) ( h )

model = models . Model ( i n p u t s = i n p u t s , o u t p u t s = o u t p u t s )
RMSprop = o p t i m i z e r s . RMSprop ( l r = 0 . 0 1 )
model . compi le ( l o s s = ’ mse ’ , o p t i m i z e r =RMSprop )

To train the network we repeat several trials where we start the agent in state 2 and
proceed for maximal 5 time steps. We include in this example a decay of the exploration
rate (invT) as already mentioned so that the final estimates are closer to the analytical
values. From the current state we use the network to predict the corresponding Q-
value and then move one step ahead to calculate the target for the gradient learning as
r +Q(next s). The network is then updated right away.

Listing 10.18 RLmlp.ipynb (Part 3)

f o r t r i a l in range ( 4 0 0 ) :
s= np . a r r a y ( [ 0 , 0 , 1 , 0 , 0 ] )
f o r t in range ( 0 , 5 ) :

i f t e r m i n a l s t a t e ( s ) : break

i f t r i a l > 30 and invT > 0 . 1 : invT −= 0 .001
p r e d i c t i o n =model . p r e d i c t ( s . r e s h a p e ( 1 , 5 ) , s t e p s =1 , v e r b o s e =0)
a i d x =np . argmax ( p r e d i c t i o n )
i f np . random . r and ( ) < invT : a i d x=1−a i d x
a =2∗ a idx−1
n e x t s = t a u ( s , a )
i f t e r m i n a l s t a t e ( n e x t s ) :

y = rho ( n e x t s )
e l s e :

y = gamma∗np . max ( model . p r e d i c t ( n e x t s . r e s h a p e ( 1 , 5 ) , s t e p s =1 ,
v e r b o s e =0) )

p r e d i c t i o n [ 0 , a i d x ]= y
model . f i t ( s . r e s h a p e ( 1 , 5 ) , p r e d i c t i o n , epochs =1 , v e r b o s e =0)
s = np . copy ( n e x t s )

After the exploration we can evaluate the final policy and value functions.

Listing 10.19 RLmlp.ipynb (Part 4)

p o l i c y = np . z e r o s ( 5 )
Q= [ ]
s = np . a r r a y ( [ 1 , 0 , 0 , 0 , 0 ] )
f o r i in range ( 0 , 5 ) :

Qs=model . p r e d i c t ( s . r e s h a p e ( 1 , 5 ) , s t e p s =1)
Q. append ( Qs )
a i d x =np . argmax ( Qs )
p o l i c y [ i ]=2∗ a idx−1
s = np . r o l l ( s , 1 )

p r i n t ( np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : ’ , np . t r a n s p o s e ( p o l i c y ) )
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The resulting values should reflect the right solution. While this program seems to
be overkill in this simple case, RL with function approximation opens up a whole
new world of possibilities. In particular, it gets us away from tabular methods which
somewhat alleviate the curse of dimensionality as we can now deal with a finite set of
parameters even in an infinite (continuous) state space. Also, while we use a simple
model here, we can now combine this with the advancements in deep learning.

10.4.2 Deep Q-learning

At the time of TD-Gammon, the MLP with one hidden layer has been the state of the art,
more elaborate models with more hidden layers have been difficult to train. However,
deep learning has now made major progress based on several factors, including faster
computers with specialized processors such as GPUs, larger databases with lots of
training example, the rediscovery of convolutional networks, and better regularization
techniques. The combination of deep learning with reinforcement learning has recently
made mayor breakthroughs in AI. These breakthroughs have been demonstrated nicely
by learning to play Atari games and and winning the Chinese board game Go against
a grandmaster by the deep RL learning system called AlphaGo by Google DeepMind.
The Atari games are a great example of learning directly from sensory data in an
environment that is much more complex than typical low-dimensional environments
to which RL systems have been applied before. Mastering the game Go is relevant as
it has been considered one of the most challenging examples for AI and was thought
to require deep intuition by the players. Before AlphaGo, computer versions of Go
players have only been able to play on an advanced novice level.

Fig. 10.8 Outline of the DQN network used to learn playing Atari games. Adapted from Nature, 518

(7540), Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.

Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,

Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,

Shane Legg, and Demis Hassabis, Human-level control through deep reinforcement learning, pp.

529{533, Figure 1, doi.org/10.1038/nature14236, Copyright c© 2015, Springer Nature.

DQN (deep Q-learning network) is the basic network that has been used by Mnih
(2014/15) to learn to play Atari games from the Arcade Games Console benchmark
environment. The network is basically a convolutional network as shown in Fig. 10.8
which takes video frames as input and outputs Q-values for the possible joystick
actions. While we have already outlined the basic strategy of using the TD error with
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back propagation to train such networks in such an RL task, which basically represents
the NFQ approach, Mnih et al. have made several important additions that achieve these
results. In particular, an important factor in the original DQN network was the use of
experience replay. Experience replay is now a common technique for the following
reason. It is common that the learning rate has to be fairly small during learning to
prevent single instances from dominating. This means that specific episodes only have
a very small contribution and one would need a large amount of episodes. In replay,
we memorize a chosen action and use mini-batches of random samples for training.

Another common problem regarding why we would need small learning rates is
that we need some time to propagate Q-values and values can fluctuate a lot. A second
important factor in the practical use of such networks is the use of a target Q-network.
In this technique, we freeze the parameters of the Q-network for the estimation of the
future reward. Let us call these weights w′. We then calculate the temporal difference
as

E = (r + γmaxQ(s′, a′, w′)−Q(s, a, w))2 (10.28)

→ ∂E

∂w
= (r + γmaxQ(s′, a′, w′)−Q(s, a, w))

∂Q

∂w
. (10.29)

The weights of this target network are updated only periodically.
There are a variety of other techniques that are used in conjunction with the basic

models. For example, clipping rewards or some form of normalizing the network

can help to prevent an extreme buildup of Q-values. There are other techniques to
keep the network somewhat stable since small changes in rewards can cause large
fluctuations in policies. Another important aspects of even larger applications is to find
a good starting position to generate valuable responses. That is, if one starts playing
the games with random weights it is unlikely to get to a point were sensible learning
can take place. Indeed, AlphaGo used supervised learning on expert data to train the
system initially, while the RL procedures could then continue and advance the system
to the point where it could outperform human players. A combination of RL with
supervised learning in form of imitation learning is therefore a common techniques,
in particular in robotics applications. However, instead of looking further into these
techniques here, there are two more major techniques that are important and discussed
next.

10.5 Actors and actor-critics

10.5.1 Policy search

So far we have focused on finding a value function and we derived from this the greedy
policy as the action that leads to the state with the largest return. The value function
can be seen as a critic to adapt the policy. Another approach, especially when using
function approximators, is to consider a parameterized policy directly and to search
for good parameters of the policy. Such an approach is called an actor. We need to
find parameters that maximize the payoff. We illustrated such a setting in Fig. 10.1.1C.
It is now time to think about the implementation of this actor as deep neural network
which takes observations such as pictures from a camera and produces outputs such
as motor commands for a mobile robot.
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Fig. 10.9 Illustration of an actor that is implemented with a deep neural network.

We will discuss this approach in a stochastic setting with finite horizon episodes
that is commonly used for the policy search discussed in the following. In a stochastic
setting, the reward is stochastic so that we need to sample over trajectories. A trajectory
in the list of all state and action taken in an episode,

x = {s0, a0, s1, a1, ..., sT , aT }. (10.30)

Since the policy and the transitions are also probabilistic, we can write the probability
if a trajectory p(x) = p(s0, a0, s1, a1, ..., sT , aT ) as

p(x|;w) = p(s0)
T∏

t=0

τ(st+1|st, at)π(at|st;w). (10.31)

We indicated here which of the probabilities depend on the parameters of the model as
it is these we want to learn. In the stochastic case, the reward is stochastic and we need
to sample over trajectories. Since we use here the finite horizon case we do not need
discounting, and the objective function can simply be written as the average value of
the reward over repeated episodes.

Actor value function: J(w) = E[
T∑

t=0

ρ(st, π(at|st;w))]x∼p(x|w). (10.32)

This is an expected value so that we need to sample to find an approximation of this
value

J(w) ≈ 1

Nx

∑
x=1

Nx

T∑
t=0

ρ(st, π(at|st;w)), (10.33)

where Nx are the number of trials in the sample. To find the parameters that maximize
this objective function we follow a gradient, as usual. Thus, we have to find the gradient
of the expectation value over trajectories,

∇wJ =

∫
x

∇wp(x|w)ρ(x)dx. (10.34)

Since p(x|w) is the product of several terms, it is useful to take consider the logarithm
of this term
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∇w log p(x|w) =
1

p(x|w)
∇wp(x|w), (10.35)

so that we can replace the gradient term in Eqn 10.37,

∇wJ =

∫
x

p(x|w)∇w log p(x|w)ρ(x)dx. (10.36)

If we now expand the log-probability of a trajectory

∇w log p(x|w) = ∇w log(s0) +∇w log π(a|s;w) +∇w log τ(s′|s, a) (10.37)

and the probability of the first state and the transition probability do not depend the
model parameters, ∇w log(s0) = 0 and ∇w log τ(s′|s, a) = 0, we see that we do not
need a model to evaluate the gradient. Also, we can now write the gradient of loss
function again as an expected value,

∇wJ = E[∇w log π(a|s;w)ρ(x)]x∼π(a|s;w) (10.38)

This nice result for model-free learning of the actor is called the policy gradient
theorem. With this theorem we see that we can estimate the gradient by sampling the
log-probabilities of the policies and multiplying this with the sample rewards of the
trajectories,

∇wJ ≈ 1

Nx

∑
x=1

Nx

T∑
t=0

log π(at|st;w)[

T∑
t=0

ρ(st, π(at|st;w))]. (10.39)

This concludes the principle idea of training an actor model. This algorithm is called

REINFORCE: wt+1 ← wt − α〈∇wlog(π)R〉, (10.40)

where R stands for the accumulated reward of a trajectory. Unfortunately, in practice
it turns out that the samples for the gradient of the log-policies usually have very high
variance so that the sampling becomes prohibitive. One trick to make this variance
smaller is to only take the change of R with each sample from the average of some
batch or samples R̄ into account. This baseline version is given by

REINFORCE with baseline: wt+1 ← wt − α〈∇wlog(π)(R− R̄)〉, (10.41)

and there have been a variety of other tricks introduced in the literature. However, an
important other method is introduced in the next section.

10.5.2 Actor-critic schemes

It is now easy to introduce an important architecture for reinforcement learning, that
of the actor-critic architecture. The principle idea is to replace the estimate of the
accumulated reward of a trajectory with a better estimate of the values of the visited
states. We have discussed the estimation of the Q-function at length in the previous
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sections and we can now combine the two approaches. We simply replace R with Q
in the REINFORCE algorithm

Actor-critic: wt+1 ← wt − α〈∇wlog(π)Q〉. (10.42)

The Q-function itself can be learned with a temporal difference method,

wt+1 ← wt − α(rt − V (st+1)− V (st))∇wlog(π). (10.43)

Such actor-critic architectures are now the common implementations of reinforce-
ment learning with function approximation. Implementations of many recent deep Rl
algorithms is provided by Matthias Plappert at <https://github.com/keras-rl/keras-rl>.

As already suggested, training a neural network while exploiting it to suggest ac-
tions is dangerous and usually leads to oscillations and instabilities. One reason is that
when Q-values are close to each other, then small changes in the Q-values can lead
to drastic changes in response actions that can cause problems and inconsistencies in
learning. In this respect, actor-based reinforcement learning seems to have some advan-
tages, but building a appropriate parameterization of actions has it’s own challenges.
However, combining actors and critics has been shown to build much more robust
systems. The basic scheme is illustrated in Fig.10.10 on the left, and in the context of
using neural networks on the right. Another implementation is DDAC (deterministic
deep actor-critic) as shown in Fig. 10.12.

Fig. 10.10 Outline of the actor-critic approach (Sutton-Barto; 1998) on the left and the neurally

fitted Q-learning actor-critic (NFQAC) network (Rückstiess, 2010) on the right.

10.6 Reinforcement learning in the brain

Throughout this book we briefly mentioned some relations of some aspects of machine
learning and the brain. This included the basic filters of Gabor-like functions in the
visual system, some ability of human of leveraging Bayesian decision-making in taking
priors into account, the layered structure of neural networks, and the implementation
of associative memory with recurrent networks. While these are important components
to consider in neuroscience, one of the most amazing stories of the interaction between
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Fig. 10.11 Deep Deterministic Actor-Critic (DDAC) network (from Lillicrap, 2015).

learning theory, behavioural cognitive science, and system neuroscience is related to
reinforcement learning. This brief section presents a brief outlook into this fascinating
area.

We started this chapter by alluding to classical animal learning experiments of
conditioning. One of the most famous of these is the experiment by Ivan Pavlov at
the turn of the 20th century showing a conditioned flex of salvation in dogs following
predictive tones. Such conditioning behaviour was then modeled by Robert A. Rescorla
and Allan R. Wagner in 1972. The basic form of the Rescorla–Wagner model has a
form of

ΔV = αβ(λ− V ), (10.44)

where what is described here is the associative strength between a stimulus and a
reward prediction: α describes the salience of a stimulus, β is some learning rate.
The most interesting part is the expression in brackets that represents the difference
between the real reward and the expectation of reward. This model is hence a form of
temporal difference model. Relating reinforcement learning to models of behavioral
conditioning is already an interesting step. However, an even bigger step was made
when Wolfram Schulz, Peter Dayan, and Read Montague related the neural signals
found by Wolfram Schulz in dopaminergic neurons in some specific areas of the
midbrain.

The upper panel in Fig. 10.12 shows that these neurons become active if an
unexpected reward is given. The lower example shows the activation of the same
neurons when a predictor of a reward is given later in the trial. The experiment
demonstrates the backpropagation of the reward prediction, and the experiments have
been decribed successfully with TD learning. The midbrain collection of nuclei called
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Fig. 10.12 Recordings of the activity of Dopamineric neurons in the basal ganglia. (from Schulz,

Dayan, Montegeu, 1997).

the basal ganglia has since been implicated in habitual decision-making that is akin to
the model-free reinforcement learning decribed by the TD mechanisms.

However, human have not only a habitual decision system but we are also com-
monly able to initiate deliberative goal directed behavior. Such model-based decision-
making must hence also be present in the brain.



11 Artificial intelligence, the brain, and
our society

Machine learning is now basically equated with artificial intelligence (AI), and AI is
aving an increasing impact on our society. This brief final chapter outlines the relation
between machine learning and AI, the brain, and our society. We want to clarify
some possible misconceptions, and to highlight some legitimate concerns as well as
opportunities and unavoidable shifts in our society.

I hope that this book has given a sense of the amazing achievements in the machine
learning community that will facilitate a new chapter in automation. Machine learning
has already gained a considerable foothold in several industries, and it seems we have
only just scratched the surface. Current applications are based primarily on the ability
to learn to detect complex patterns in high-dimensional data. While this can help
with many applications, such as computer vision and speech recognition, it also runs
the risk of compromising privacy or misinterpreting data in data mining. In addition,
automation on a large scale will have considerable influence on our economy and how
wealth is created. It is therefore important to evaluate the impact of new technologies
for our society.

The popular notion of equating machine learning with AI is clearly based on the
progress with applications that have been difficult to tackle with traditional computer
systems in te past and which seems to mimic more human abilities. A typical example
is a computer vision system based on deep learning that can outperform humans, or
machine assistants based on recurrent networks that respond to natural language. While
it is good that these technologies have come to a wider attention in our society, the
labeling itself might include the risk of mistinterpretation of what this technology can
or cannot do.

In this context, it is interesting and appropriate to study the relations of machine
learning with human abilities. We can even start to compare machine learning methods
directly with possible analogies in brain processing. We will start this brief exploration
by outlining the relation of machine learning and the brain before discussing the
relations of machine learning and AI in more general terms. We will then close with
some thoughts on the impact of machine learning onto our society.

11.1 Different levels of modeling and the brain

What stands out from the studies of machine learning is a new way of approaching
modeling. In the introductory chapter, we outlined that the meaning of modeling
is to describe a system in a simplified way which allows us to make predictions
and thus encapsulates in some sense the essence of our knowledge. In this sense,
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machine learning goes beyond simply providing convenient algorithms to solve some
automation problems. Learning to represent or extract meaningful entities might not
be equivalent to meaning itself, but it is certainly related.

To illuminate further what we mean here, let us discuss different types of describing
a system by looking at an example of modeling a natural phenomenon, that of a falling
leaf from a tree. In order to understand and describe such a situation we might think
back to our physics lessons and digest the situation with a description embedded in
physical laws. If we begin with an apple for convenience, we can start with gravity and
understand that the apple falls straight down. Treating the apple as a point mass, we
can even quantitatively predict the timing of the trajectory with high precision. Going
back to the leaf, it gets a bit more complicated. We now need to take the airflow into
account, which turns out to be a much more complex endeavor, requiring the study of
flow dynamics. Analytically solving this problem is extremely complicated and maybe
impossible in some practical applications. However, going back to the first principles
of physics is still an excellent way to go about describing the situation of a falling leaf
when using approximations to make numerical predictions with a computer.

Let us now bring a human perspective into the picture. A human is observing the
scene and wants to catch the falling leaf. What must the human do to do achieve
this? In essence, we need to decode sensory information, mostly from the eyes in this
situation, to get information about the dimensions of the object and combine this with
prior knowledge about typical falling patterns of leaves. Also, it might be important to
take other information into account such as the amount of wind from tactile sensors in
the face. In other words, we have a situation as discussed in this book where we want to
make predictions from high-dimensional sensory data based on previous observations
from which we learn. Thus, the point here is that there is a role for different type of
modeling, either from physical principles, modeling with considering stochastic factor
as in Bayesian networks, or building predictive models with deep neural networks.
Physical modeling will provide us with the best accuracy of predictions if we get
everything right, although the solution is highly specific to this particular situation.
Humans are able to catch a leaf even though we are not using physical modeling
every time we do so. There is some evidence that humans are able to provide some
optimal reasoning in the Bayesian sense by taking appropriate factors into account such
as priors of the probabilities of common outcomes. However, the fact that Bayesian
models have been successful in describing some human behavior in cognitive science
does not necessarily mean that Bayesian mathematics is implemented in our brains
verbatim. Given that neural networks are general function approximators and have the
ability to approximate a lot of theoretical models, it is interesting to ask how such
Bayesian functions can be approximated and implemented in neural tissues.

What does seem clear is that the brain is set up perfectly for the type of modeling
that is captured by deep learning. The brain is a deep neural network in the sense
that it is a structure of processing elements with several stages of processing that
form a layered hierarchical structure. In addition, the brain has the ability to change
network parameters such as synaptic efficacies. Also, it has been shown recently that
representational learning seems to capture some of the representational organization
found in the brain. A good example was mentioned in Chapter 2, that of the existence
of receptive fields that can be approximated by Gabor functions in the early visual
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system. It has by now been shown many times that such filters emerge in early layers of
neural networks when trained on natural images, at least when taking some additional
constrains into account such as encouraging a sparse representation. There is now
even more evidence that deep CNNs can capture a lot of the statistics in functional
brain imaging data deeper in the visual system. Even without direct experimental
evidence, it is clear that there is the need, in human information processing, to transform
high-dimensional sensory spaces into higher-level descriptors and possibly a semantic
latent space that can be used for advanced reasoning. The ability to implement such
capabilities with networks of simple elements and the ability of the brain to learn such
parameters alone offers sound evidence that studying machine learning in neuroscience
is a good idea.

In addition, neural networks in the brain are not only feed-forward. It is well
established that there are many recurrencies in the brain. This starts in the peripheral
nervous system such as the retina in our eyes. The retina itself not only comprises
of sensory cells such as rods and cones but it also has several neural processing
layers that include collateral connections. Most sensory signals then pass through
a midbrain structure called the thalamus that includes some regions with inhibitory
collateral connections. It is also known that information goes back and forth between
the thalamus and the neocortex. There are many other examples of system wide
recurrencies in the brain. We outlined in Chapter 9 how recurrent neural networks can
be used for advanced temporal processing. Thus, there is plenty of evidence that the
brain exhibits factors of deep learning.

Fig. 11.1 Outline of the human brain that shows some of the structures. The neocortex that is

often identified as the brain wraps around many nuclei in the center of the brain and the upper

brain stem.

However, it is also useful to recognize that there are many elements and structures
in the brain that go beyond the descriptions of neural networks as machine learning
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algorithms. To start with, the brain has advanced structures that seems to go beyond
the architectures typically discussed in machine learning. Let us just point to some
of the structure in the brain as illustrated in Fig. 11.1. A prominent part of the brain
is the neocortex which is the wrinkly layer of tissue that covers most of the brain.
Even in this fairly homogeneous-looking tissue there is a lot of structure. There are
anatomical differences such as the ratio of different neuron types or the thickness of
layers in different parts of the neocortex. The neocortex itself is made up of layers and
sublayers, and the thickness of these layers varies in different parts of the neocortex.

There are also a number of parts of the brain. For example, the cerebellum is a very
different structure compared to the neocortex and contains actually the largest number
of neurons in the brain. The midbrain is surrounded by the neocortex. This brain area
has many distinguishable clusters called nuclei, a collection of which form the basal
ganglia. We mentioned this structures in conjunction with evidence of temporal differ-
ence learning in Chapter 10. Clearly, there seems to be some functional organization
in the brain that have not thus far been paralleled by deep networks.

Moreover, it is unclear if the mode of electrical activation of neurons is the
only information-processing machinery. There are many other aspects of potential
information-processing abilities in the brain that have been identified. For example,
neurons are not the only cells in the brain. There are others such as glia, that can form
networks in which information can be processed. Also, there are extensive chemical
networks within neurons. Some of these networks can be identified via their role in
forming memories, but there are potential other consequences. Research about the
role of information transmission in the dendrites is evolving beyond the traditional
view of them acting only as passive conductors. There are indications of how more
intricate subthreshold computations, backpropagating action potentials, and calcium
waves could have important roles in human information processing. The point here is
simply that there is a large source of complexity in the brain that we do not see at this
point replicated in machine learning systems.

In summary, deep learning helps us to understand the potential of information
processing in neuronal networks. However, we can not claim that we understand all
the building blocks of minds; "real intelligence" can, at this point, not simply be
reduced to deep learning.

11.2 Machine learning and artificial intelligence

AI is now discussed frequently in the media. Many of these reports seem to focus
largely on concerns about and potential dangers of this technology, or the imagined
technologies. It is important for any scientific discipline to discuss the relationship new
technologies and sciences may have with our society. New technologies have always
forced us to reflect on this, and it is not limited to AI. Inventions such as explosives,
genetic interventions, and computers, have profound consequences for our society and
environment. Discussion of the impact of technology should cover as broad a social
span as possible.

It might be timely now to point out that this new discussion of AI seems mainly to
be fueled by the advancements in machine learning. It is this aspect of AI that I want to
discuss here. While AI is certainly the more recognized term in the broader public, it
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Fig. 11.2 The thinker robot. Human shape and pose can be deceiving.

might lead to some overestimation of what we achieved with machine learning. There
are now many concerns that AI might lead to the development of machines that evolve
to harm human deliberately. I would like to argue that there is already a substantial
danger in machines and technologies used by humans now, but the concerns are largely
overstates when it comes to machine learning.

AI is a diverse field of study. Most of it is about strategies and technologies to
enable applications that require advanced control. AI is sometimes divided into two
principle approaches, that of symbolic AI and that of sub-symbolic AI. Symbolic
approaches are concerned with reasoning systems based on pre-defined knowledge
representations that are encapsulated in symbols, hence symbolic AI. Such symbolic
systems can use some form of an explicit logic method for inference to derive some
conclusions. This type of AI has dominated much of the AI field at least since the
1970s, and is now often called "Good Old-Fashioned AI," or GOFAI for short.

In contrast to GOFAI, machine learning is a main area of sub-symbolic AI that
underlies most of the recent advancements that have brought AI to public attention.
More specifically, machine learning focuses on methods to use data to built models
that can then classify or forecast data that have not been seen before. This is a form of
anticipation. These forecasts are based on the generalizations which the models learned
form the training data and some form of regularization, including the assumptions build
into the structure of the model. We have argued that building models in this way has
advanced considerably to the point where it is thought that we can even learn meaning
or semantic knowledge from data that would help to build the symbolic knowledge
that underlies symbolic AI. Hence, there is the possibility that the traditional distinct
area of AI will become linked to each other through machine learning, although this
part of AI is still in its infancy.

An important implication of intelligence is that there is some form of reasoning
involved. There might be some form of looking at processed data that can be viewed as
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some form of reasoning, but for the most part, the machinery used in today’s machine
learning lacks reasoning capabilities. There is often an attempt to make sense of the
learned representation of a specific instance of machine learning or to extract some
rules that summarize the functions in human-readable forms. Such descriptions might
sound like human reasoning, though one needs to be careful in distinguishing here
human post-hoc analysis from the abilities of machines to use reasoning capabilities to
form new solutions. Reasoning is until now practically absent from machine learning,
at least in the large areas of applications that are commonly discussed in machine
learning. There are now examples of machines that produce visual art and music, an
area that is now termed creative machine learning. Recurrent networks and stochastic
sampling from latent spaces are behind much of these achievements. Exploring the
consequences of machine learning in such creative ways is very inspiring and could lead
to new developments. However, such creations should not be mistaken for representing
logical reasoning systems. At least, this is not part of the mainstream machine learning.

An important discussion when it comes to defining advanced human abilities is
the question of consciousness. Consciousness is certainly an important factor that
underlines many of our deepest questions. It has been discussed at length in some
philosophical and scientific circles. From these discussions, it is clear that a difficult
question is about the "hard problem," that of understanding how consciousness feels
to others. However, on the more mechanistic side it seems that some form of self-
awareness is an integral part, or even a prerequisite of consciousness. It has been
argued that some form of recurrency or "re-entry" can facilitate self-awareness, so
that we might already have some machinery for this within recurrent neural networks.
However, at this point it seems that most deep learners are reflective systems that
basically learn to represent density functions of world states but have little machinery
for reasoning based on their own reflection.

In summary, while a discussion of AI and the potential of learning machines is
important, there seems to be some misconception of the abilities of machine learning
when it comes to using reasoning for their own advancement. We do not know at this
point how such systems could work, and while this alone can raise some concern, the
more outlandish depictions of the thread posed to society by AI are clearly unfounded.

11.3 The impact of machine learning technology on
society

While these thoughts delve deep into philosophical questions about the machineries of
the mind, it might be good to end this chapter with a brief discussion about the more
direct impact that machine learning currently has on our society and what it could have
in the near future.

There can be no doubt that there is already a strong influence of machine learning
on our society which is reflected by a wave of new start-ups. Speech recognition and
natural language processing has advanced to a level where we now have electronic
personal assistants. While such electronic personal assistants might merely be fancy
toys or minor conveniences for some people, they can dramatically improve the quality
of life for others. Of course, there are many potential problems included in this technol-
ogy, such as the potential for providing unintentional access to personal information
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via sending speech thought the Internet and processing it remotely. Thus, while the
machine learning components are important enablers of such technology, it is difficult
to reconcile the fact that some of the worries attributed to AI are instead related to
web technology. Indeed, machine learning might be part of the solution here, as the
speech recognition and natural language processing aspect could be run locally instead
of using a backend that requires that information is send into the cloud.

Even the discussion regarding which part of technology is to blame seems to
be missing the point. What is needed is a more frank discussions and evaluation of
what role technologies play within our society. To this end, we need to recognize that
technology in general already enacts a strong influence on our society. Modern humans
would barely be able to survive without the aid of technology for staying warm and
getting food. Furthermore, certain technologies now have a much deeper impact on
our society and our personal interactions through technologies such as social media.
There is an increasing realization that our innate sensitivities in communications can be
negatively affected by communications through social media. Also, while technology
is often developed to help with mundane tasks, this automation has not led to a decrease
of working hours as was originally thought. Instead, it has largely shifted the balance in
the workforce; safer working environments fall on the positive side of this shift, falling
employment in many parts of the workforce on the negative. New technologies can
have drastic and immediate consequences. There is an increase in fatal car accidents
caused by texting while driving, and even the risk of being exposed to new man-made
pollutants can in part be attributed to new technologies. Thus, there is a real need to
consider the impacts of technologies on our society.

With regards to machine learning specifically, there are new capabilities that can
be used to solve problems as well as potential applications that create new concerns.
A real problem is that machine learning methods can be used to aggregate information
in a way that can be compromising for individuals. Traditionally, data are anonymized
by simply removing personal identifiers such as names or social insurance numbers.
However, machine learning has the capability to link data that are in isolation not
informative enough to be linked to individuals. For example, data collected from what
seems to be simple daily tasks such as shopping can now be used to target individuals
via advertising. While such individualization of services can be helpful for some, it
generally brings the danger of reinforcing prejudice in categorizations of common
targets.

Another area of concern is that machine learning methods often have problems with
reproducibility and a clear understanding of their generalization abilities to previously
unexplored areas of their state space. These difficulties are a direct consequence of
building high-dimensional non-linear models. It is now well recognized that reproduc-
ing results of machine learners can be difficult. While such systems are robust in many
ways, it seems difficult to develop a full understanding of the impact of all hyperpa-
rameters in a model and all the consequences of a specific training set. Furthermore,
it is difficult at this time to understand what the networks have learned and how to
evaluate their performance, say, in different domains that have not been covered by the
training data. Understanding the robustness of machine learners is now an emergent
research topic in machine learning.

While there are certainly many areas of concern, we should not forget that machine
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learning can help to solve many problems. Progress in autonomous systems can help
operations of robots in danger zones like deep oceans or disaster zones. Or, while
surveillance cameras can be useful in reducing crime, there is a legitimate concern
about privacy when human operators watch the footage. Machine learning models can
be trained to recognize behaviours with safety implications, often even more reliable
than human operators. Such systems remove the need of human operators in such
safety systems, and this alone may be enough to alleviate would remove some privacy
concerns.

Another interesting discussion is with regard to self-driving cars. A lot of the
progress in autonomous systems and robotics has been made due to the advancements
in machine learning, with the increased abilities in computer vision and localization
techniques. Cars can be built with many cameras covering all directions and additional
sensors that outperform human sensors. Machine learning gives us the capabilities to
integrate such sensor information for advance recognition systems that will ultimately
increase the safety on our streets. Of course, the evaluation of the robustness of
these systems and how their operation fits in with the current legal system regarding
culpability if things go wrong are important factors that will need more deliberation.
Thus, the problem does not lie in the technology per se but rather how we as a society
decide to use it. For example, we could build redundant systems that surpass human
abilities in pedestrian recognition, though the added cost of building them might
prevent its implementation. The popularity of AI and machine learning in recent years
has now opened this discussion, an important one to have.

While we focused here on safety concerns, it is important to consider the impact
that new technology will bring to our economy and therefore our society as a whole.
Automation has been an essential part in the development of our economy and hence
society at least since the Industrial Revolution, although we could argue that tech-
nologies such as farming equipment had significant impacts much further back into
the past. Automation has contributed to globalization though the economy of scales;
large factories with cheap labor could produce goods that would otherwise be cost-
prohibitive. Unfortunately, such globalization and scales of production also lead to a
huge impact on our environment. Building sustainable and resilient communities is
now increasingly viewed as important for the future of humankind. This is where the
automation and individualization capabilities enabled though machine learning and
other technological advancements bring new opportunities of a more refined economy
that caters to local needs with local productions.

For example, 3-dimensional printers are able to produce some parts locally that
were once produced using only specialized machines and often be shipped half way
around the world. This availability of specific, local solutions to local economies, such
as sustainable farming in different climates, is to be greatly welcomed. Technological
advancements in farming have always led the way in advancements in technology.
While the trend has been to use larger machines and flooding of chemicals to foster
high yields from small areas, precision agriculture now seeks to optimize operations.
For example, recognizing weeds and enabling spot spraying reduces the amount of
herbicides use. Ideally, with physical weeding, we could eliminate the need for chem-
ical solutions. Moreover, such forms of automation allow the farming of areas that
have been too costly to farm in the past; enabling low-density farming or mixed crop
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Fig. 11.3 Some author with a prototype of a weeding robot developed by Nexus Robotics.

operations.
Machine learning is advancing rapidly. There are areas that use learned models to

extrapolate to predict domains that have not been covered by the training examples.
Such uses of machine learning can be viewed as providing "artificial creativity". The
results of such applications of machine learning can inspire, as demonstrated by some
interesting applications of machine learning to art.

Preventing misguided use of machine learning and AI, as with any other technology,
is a strong responsibility placed on our society. It is clear and widely accepted that we
must devote more time as a society to reflect on the path we wish to take. In order
to do so, we need education in this area, and possibly legislation and technology that
can prevent some misuse. However, I believe that the greatest challenge comes from
the changes in our economies and society brought forward by increased automation.
Labor that has dominated wealth creation in the pre-industrial and industrial age will
be replaced by automation where labor is replaced by energy. The challenge we face
as a society is how to distribute created wealth within the society. Such shifts in our
society are unavoidable, and it is up to us and our chosen societal structure as to how
to use technology for the common good. These are issues that go far beyond machine
learning in itself.
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policy 207
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