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As real-life applications in  geotechnical engineering have evolved rapidly over the past few dec-
ades, the need for becoming familiar with the extended concepts and methods of soil mechanics, 
as well as developing modern problem- solving skills, has become imperative for students and 
practitioners alike. Most simple problems in soil mechanics can be solved using fundamental 
principles. While these solutions may not be all-encompassing when compared with sophisticated  
computer-aided   numerical analyses, the analytical training offered via this book is not only an 
immense help but also provides, for students, a custom- made guide to essential learning require-
ments. For practitioners, the contents of the book provide a most useful and concise refresher of 
the theoretical concepts, plus a means of carrying out preliminary design tasks and interim checks 
on the calculations and results obtained from more advanced computational modeling.
The book, through its 15 chapters, covers the majority of pertinent aspects of soil mechan-

ics and geotechnical applications in a succinct manner. They include fundamental concepts 
of weight–volume relationships, effective stress principles, permeability and seepage, elastic 
stress analysis, foundations and retaining walls, slope stability analysis, critical state and yield 
criteria and unsaturated soil mechanics, plus an extended focus on applied  topics  including 
pavement engineering, excavation and tunneling, reclamation works and the use of alternative 
materials including granular wastes. A summary of concepts and their theoretical background 
is logically followed by worked-out  examples that are intended to help the reader in a “tutorial- 
style” environment. The authors are to be commended for presenting often difficult technical 
material in a concise style for optimum learning, and in this regard, the book offers both stu-
dents and practitioners a most useful quick reference and a guide to essential problem solving. 
While it is not intended to replace standard soil mechanics textbooks that are more descriptive 
with detailed background review, the array of worked- out examples and the step- by- step meth-
ods of solution to a range of geotechnical problems is an obvious highlight of this book.

There is no doubt in my mind that the manner in which the technical content is presented 
herein and the nature of practical problems described with appropriate solutions amply 
reflect the authors’ research experience in a wide array of geotechnical disciplines. I congrat-
ulate Distinguished Professor Buddhima Indraratna, Dr. Ana Heitor and Associate Professor 
Jayan S. Vinod at the Centre for Geomechanics and Railway Engineering at the University 
of Wollongong for this concise, elegant and timely contribution to geotechnical engineering 
education, and in particular for their efforts in training young professionals to adapt to the 
modern- day requirements of industry.

Prof. Harry G. Poulos
Senior Consultant, Coffey Services Australia, 
and Emeritus Professor, University of Sydney
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Principles of soil mechanics based on mathematics and fundamental physics have changed 
little over the years, but the type and nature of applications and the corresponding technical 
standards to meet modern-day demands have transformed swiftly and considerably while 
incorporating enhanced skills in computer-aided analysis, teamwork-inspired design and 
improved communication. Driven by environmental and socio-economic awareness, inevi-
table reforms have been made to foster sustainable infrastructure and cost-effective con-
struction practices along with a favorable carbon footprint in relation to materials use and 
reuse. These have made a significant impact on modern-day tertiary education. This book is 
an attempt to highlight the essential principles of geomechanics and elucidate the pathways 
from theory to practice through selected problems of field applications with practical solu-
tions, which are expected to benefit civil engineering students and practitioners alike.

This book is not intended to be duplicative of numerous textbooks in soil mechanics and 
geotechnical engineering. In preparing this book, the authors have recognized the wide array 
of textbooks already in circulation, and therefore, the theoretical and conceptual background 
is provided only succinctly at the beginning of each chapter with its stand-alone technical 
content, while the scope is distinctly attuned to the engineering solutions to the problems 
presented. In this regard, each chapter contains several selected worked-out examples, often 
representing real-life situations and demonstrating the applications of geotechnical theory 
and concepts.
At the outset, Chapter 1 offers the basics of soil properties and classification methods, fol-

lowed by fundamentals of weight–volume relationships in Chapter 2. Then the most relevant 
subject matter pertaining to soil behavior including the effective stress principle and its appli-
cations, permeability and seepage, elastic stress analysis, shear strength criteria, foundations 
and retaining walls, stability of slopes and mass movement, excavations and tunneling, as 
well as key aspects of unsaturated soil mechanics are covered in the remaining chapters in a 
logical sequence. The book also contains a few specialized chapters on pavement engineer-
ing with applications to roads and rail corridors that offer the readers practical elements of 
transport infrastructure, which is still an evolving but a demanded field that now encom-
passes the utilization of waste materials. Critical state soil mechanics and corresponding 
stress paths with applications to practical situations are discussed where warranted.
Overall, the material provided in the standalone chapters has been developed over two 

decades of undergraduate and postgraduate teaching at the University of Wollongong, Aus-
tralia. The contents have been inspired by numerous projects in which the authors have either 
been engaged as consultants or have undertaken contract research. In this regard, there are 
many colleagues and students both past and present to whom the authors are most grateful, 

Preface
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as it was indeed their encouragement to produce a book such as this that had been the para-
mount impetus.

Special acknowledgments

The authors sincerely appreciate the constructive feedback of colleagues including Prof. 
Cholachat Rujikiatkamjorn, Dr. Trung Ngo, Dr. Yujie Qi, Dr. Chamindi Jayasuriya and Dr. 
Pankaj Baral. The immense help of a number of doctoral students who have been tutors 
in several geotechnical engineering subjects at the University of Wollongong is gratefully 
appreciated. In particular, Miriam Tawk, Mandeep Singh, Pubudu Jayathilaka, Aruni Abey-
gunewardena, Subhani Medewela, Soumyaranjan Mishra, Rakesh Mallisetty, Warranga 
Habaraduwa, Chathuri Arachchige, Senura Athuraliya, Fatima Mehmood, Marlisio Junior 
and Chuhao Liu, Ramesh Gadela, and Soumyaranjan Mishra, among others, have proofread 
the contents and assisted in the final artwork where necessary.

Buddhima Indraratna, Ana Heitor and Jayan S. Vinod
October 2019
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Chapter 1

Soil properties and classification

This chapter introduces different systems for classifying soils on the basis of their particle 
size distribution (PSD) or gradation and the plasticity of the fraction smaller than 425 μm.

1.1  Composition

Soils are particulate materials (Fig. 1.1), and their particles can be grouped in different sizes.
The building blocks of soil particles are typically composed the primary rock and clay 

minerals. The primary rock minerals are the products from mechanical weathering of the 
parent rock and thus share their chemical/mineral composition. They are typically angular or 
rounded and range from gravels to sand in size.
In contrast, the clay minerals are mainly products of chemical weathering, and their par-

ticles are very small (< 2 μm). They are composed of platelets that are the result of the 
combination of silica tetrahedron and octahedrons. Clays can be distinguished on the basis 
of the arrangement of the tetrahedral and octahedral sheets into layers. The way the structure 
is arranged can also give some indication of their likelihood to exhibit adverse behavior, e.g. 
montmorillonite clay experiences substantial changes in volume resulting from the water 
ingress in the interlayer spaces. In clay materials, the way the platelets are geometrically 
arranged, or fabric, also plays an important role in the expected behavior of the material. 
Figure 1.2 illustrates the main types of fabric observed for clays. For instance, while a clay 
prepared at relatively low water contents will tend to have a predominantly flocculated fabric 
(Fig. 1.2b), for larger water contents, the fabric will be predominately dispersed (Fig. 1.2a). 
Other types of common clay structures are illustrated in Figure 1.2c–e.

Figure 1.1 � Example of grain structure (after Knappett and Craig, 2012, reproduced with 
permission from CRC Press).
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1.2  Classification

The purpose of the classification is to place a soil in one of the limited number of groups on 
the basis of its grading and plasticity. Since these characteristics are independent of the par-
ticular condition in which the soil occurs, they can assist in the diagnosis of potential adverse 
behavior of soil (e.g. excessive deformation, insufficient bearing capacity, erosion, piping, 
etc.) used as construction material.
Most systems of classification are based on the particle sizes that recognize three main 

classes (Table 1.1):

a.	 Oversize
b.	 Coarse grained
c.	 Fine grained

Oversize and coarse-grained soils are classified on the basis of the size and distribution. 
Particle-size distribution (gradation) is a descriptive term referring to the proportions by 
dry mass of a soil distributed over specified particle-size ranges that is typically determined 
via sieve analysis and/or sedimentation method. The sieve analysis is used for determining 
gradation of particles having a nominal size larger than the 74 µm sieve, whereas sedimenta-
tion or hydrometer method is used for the fraction finer than the 74 µm sieve and larger than 

Figure 1.2 � Clay structures: (a) dispersed; (b) flocculated; (c) bookhouse; (d) turbostratic; 
(e) example of a natural clay (after Knappett and Craig, 2012 reproduced with 
permission from CRC Press).

Table 1.1  Standard range of particle sizes proposed by AS 1726 (2017).

Fraction Components Subdivision Size (mm)

Oversize Boulders - >200
Cobbles - 63–200

Coarse-grained soil Gravel Course 19–63
Medium 6.7–19
Fine 2.36–6.7

Sand Course 0.6–2.36
Medium 0.21–0.6
Fine 0.075–0.21

Fine-grained soil Silt - 0.002–0.075
Clay - <0.002
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about 0.2 µm. The results are presented as the mass percent finer versus the logarithm of the 
particle diameter. Alternatively, the gradation of the fraction finer than 74 µm can also be 
determined using laser diffraction particle analysis. However, due care must be exercised as 
this method computes the percentage of particles by volume rather than by mass.
The important features of a particle size distribution may be expressed in terms of the uni-

formity coefficient (Cu) and the coefficient of curvature (Cc). Three sizes may be determined 
from the PSD curve, D10, D30 and D60, and they represent the size such that 10%, 30% and 60% 
(by weight) of the sample consists of particles having a smaller nominal diameter, respectively. 
The D10 is also termed effective size and can be used to estimate the permeability of a soil.

C
D
Du =

60

10

 � (1.1)

C
D

D Dc =
( )
×
30

2

60 10

 � (1.2)

The fine-grained soils are classified on the basis of their plasticity. This can be determined 
through consistency or Atterberg limits. Three limits distinguish the changes in state observed 
for a soil when there is a variation in water content, i.e.:

a.	 the liquid limit (LL) is the water content at which the soil passes from plastic to liquid state,
b.	 the plastic limit (PL) is the lowest water content at which the soil remains in plastic state and
c.	 the shrinkage limit (SL) is the water content at which further loss of water will not cause 

further reduction in the volume of the soil.

A number of indices may be derived from these limits, e.g. plasticity index (PI), liquidity 
index (LI) and soil activity (A).

PI LL PL= −  � (1.3)

LI w PL
PI

=
−  � (1.4)

A PI
=

<% weight of clay particles m( )2µ
 � (1.5)

1.3  Unified soil classification system

In this classification, the soils are designated by two letters, in which the first letter represents 
the main soil type and second denotes a qualifying subdivision (Table 1.2). Soils are divided 
by the percentage finer than 75 μm. For soils having more than 50% retained in the 75 μm 
sieve, the prefix letters allotted are G = Gravel, S = sand. The suffix letters are allotted on the 
basis of Cu and Cc values as follows:

Cu > 4 and 1 < Cc < 3 for gravels
Cu > 6 and 1 < Cc < 3 for sand

If the soil meets the above requirements, the suffix letter is W  = well graded, else it is 
P = poorly graded (Table 1.2). For sands having more than 12% of fines, the suffix letters are 
either C = Clay or M = silt. For soils having more than 50% passing in the 75 μm, the prefix 
letters allotted are C = clay (inorganic), M = silt, O = organic clay and Pt = Peat (Table 1.3).
The suffix letters are allotted based on LL and PI using the Casagrande plasticity chart 

(Fig. 1.3), where L = Low plasticity, I = Intermediate and H = High plasticity.
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Figure 1.3 � Modified Casagrande’s plasticity chart showing the classification based on soil 
plasticity proposed by AS 1726 (2017).

Table 1.4  Results of the sieve analysis.

Sieve size Mass retained (g)

3.35 mm 0
2.00 mm 2.8
1.18 mm 13.8
600 μm 53.6
425 μm 66
300 μm 31.5
212 μm 21.3
150 μm 11.9
75 μm 10.7

Table 1.5  Results of the sieve analysis – solution.

Sieve size Mass retained (g) Mass retained  Cumulative mass 
(% of total weight) percentage

3.35 mm 0 0.00 100.00
2.00 mm 2.8 1.31 98.69
1.18 mm 13.8 6.44 92.25
600 μm 53.6 25.02 67.23
425 μm 66 30.81 36.41
300 μm 31.5 14.71 21.71
212 μm 21.3 9.94 11.76
150 μm 11.9 5.56 6.21
75 μm 10.7 5.00 1.21
Pan 2.6 1.21 0.00
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Worked-out example 1.1: A soil sample was collected in a trial pit to determine the soil particle 
size distribution. The dry mass retained in a given sieve size aperture was recorded and is listed in 
Table 1.4. Plot the PSD curve, knowing that the total mass of sample was 214.2 g. The mass pass-
ing through the 75 microns sieve was 2.6 g. Determine the coefficient of uniformity and curvature.

Solution: Before plotting the PSD, the equivalent percentages of the differences in size 
ranges need to be calculated.
To determine the mass retained as a percentage of the total mass, the ratio between the dif-

ferent mass weights retained in the different size ranges by total mass needs to be computed,

e.g. mass retained % (2–3.35 mm) = 2.8 / 214.2 = 1.31%

Recalculating for the other size ranges, the results shown in Table 1.5 are obtained. For each of 
the size ranges, percentage of mass retained can be converted to cumulative mass, as shown in 
Table 1.5. The cumulative mass percentage or percent finer can then be plotted on the y-axis, 
whereas the corresponding size is plotted on the x-axis (logarithmic scale) as shown in Figure 1.4.
To determine the coefficient of uniformity and curvature, the diameter of the particles 

corresponding to 10, 30 and 60% of the mass retained need to be evaluated in the manner 
shown in Figure 1.4.

D10 = 0.2 mm, D30 = 0.38 mm and D60 = 0.54 mm

Then

C
D
Du = =60

10

2 7.       C
D

D Dc =
( )
×

=30

2

60 10

1 34.

Figure 1.4  Plot of the PSD analysis.
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Worked-out example 1.2: From the following gradation characteristics (Table 1.6), sketch 
the grading curves for the three soils, and identify the soil type (e.g. uniform medium sand). 
Discuss how you would identify these soils in the field by sight or touch.

Table 1.6  Gradation characteristics.

Soil D10 (mm) Cu Cc

A 0.28 1.50 0.87
B 0.088 19.9 0.80
C 0.009 167 0.12

Solution: For sketching the grading curve, we require more information about the mate-
rial, given that both Cu and Cc values are known, then D30 and D60 may be calculated as 
follows:

C
D

D Dc =
( )
×

=30

2

60 10

1 25.

Soil A: C
D
Du =

60

10

 with 1 5
0 28

60.
.

=
D

 then D60 0 42= .

similarly C
D

D Dc =
( )
×
30

2

60 10

 with 0 87
0 42 0 28

30

2

.
. .

=
( )
×

D
 then D30 0 319= .

Recalculating for Soil B and C in a similar manner, the following results are obtained 
(Table 1.7).

The grading curve is represented in Figure 1.5. Soil A is a uniform fine sand, Soil B is a 
nonuniform sand.

Table 1.7  D30 60

Soil D10 (mm) Cu Cc D30 (mm) D60 (mm)

A 0.28   1.50 0.87 0.32 0.42
B 0.088  19.9 0.80 0.35 1.75
C 0.009 167 0.12 0.04 1.50

 and D  results.
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Worked-out example 1.3: Activity of clay is useful in identifying the type of clay minerals 
as given in Table 1.8.
The water content of a soil sample is 45%, its liquid limit is 70% and plastic limit is 35%. 

It contains approximately 80% by weight of clay.

i.	 What type of clay is this sample?
ii.	 Explain the significance of its liquidity index.

Table 1.8  List of type of clay minerals and associated activity.

Clay mineral Activity

Montmorillonite > 5
Illite ≅ 0.9
Kaolinite ≅ 0.4

Solution:
i.	 To identify the likely type of the clay in terms of its activity, we need to compute the 

activity of clay based on its plasticity index (PI) and %weight of clay particles.

Figure 1.5  PSD curve based on D10, D30 and D60 sizes.
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Thus, for a soil having LL = 70 and PL = 35, then PI = LL – PL = 70–35 = 35%, then

SoilActivity,
% weight of clay particles

A PI
< 2 m

=
( )

= =
µ

0 35

0 8
0 44

.

.
.

which indicates it is most likely composed of kaolinite.

ii.	 The liquidity index can be determined based on the consistency limits and water content 
of the sample, as follows:

LI w PL
PI

=
−

=
−

=
0 45 0 35

0 35
0 29

. .

.
.  or 29%

The liquidity index is a measure that enables the evaluation of the current moisture condition 
of a soil with respect to its index limits.
A cohesive soil with a natural water content of the same order as its liquid limit (LI 

approaching 1) will be a very soft material, while with a natural water content of the same 
order as its plastic limit (LI approaching 0 or even negative) will be a stiffer material. This 
can have substantial impact in the way the soil behaves as a construction material (e.g. bear-
ing capacity for construction plant).

Worked-out example 1.4: A cohesive material was tested for liquid and plastic limits using 
standard methods. The results obtained using the cone penetrometer test apparatus are shown 
in Table 1.9, e.g. the water content and associated cone penetrations values. The plastic limit 
was 14.5%.

Describe and classify the soil.

Table 1.9  Results of a cone liquid limit test.

Water content (%) 23.5 24.5 25.1 26.0 26.8

Cone penetration (mm) 12.0 15.6 17.7 21.0 25.6

Solution: The cone liquid limit is the water content for which 20 mm penetration is 
observed. Typically, it is difficult to determine the water content for which penetration is 
exactly 20 mm. Instead, a series of water content levels are tested and their penetration 
recorded. The results presented in Table 1.9 can be represented in a graph, e.g. on the 
x-axis, the water content results are plotted for the corresponding cone penetration on 
the y-axis (Fig. 1.6).
Thus the liquid limit is approximately 25.6% and PI = 25.6–14.5 = 11.1%; the soil 

can be classified as low-plasticity clay or CL based on the plasticity chart shown in 
Figure 1.7.
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Figure 1.6  Graphical representation of the cone penetrometer test.
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Figure 1.7 � Modified Casagrande’s plasticity chart showing the classification based on soil 
plasticity proposed by AS 1726 (2017).
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Worked-out example 1.5: Based on the particle size distributions displayed in Figure 1.8, 
classify the soils A to D.

Solution: The different soils can be classified as follows:

A → Well-graded sandy gravel
B → Uniform (poorly graded) medium sand
C → Sandy silt
D → Silty clay

References
Knappett, J. & Craig, R.F. (2012) Craig’s Soil Mechanics, 8th edition. CRC Press, ISBN:9780415561266, 

p. 584.
Standards Australia (2017) Geotechnical Site Investigations. Australian Standard AS1726-2017, 
Standards Australia, Sydney.
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Chapter 2

Weight–volume relations 
and compaction

Soil is a particulate material that encloses voids or pores. It can be found in three different 
states, dry (voids filled with air), saturated (voids filled with water) or partially saturated 
(voids filled with air and water) as illustrated in Figure 2.1 and Figure 2.2.

2.1  Weight and volume relations

a.	 Void ratio (e) represents the ratio between the volume of the voids (Vv) and the volume 
occupied by the solid particles (Vs) or

e
V
V
v

s

= � (2.1)

b.	 Porosity represents the ratio between the volume of the voids and the total volume (V) or

n
V
V
v=  and n e

e
=

+1
 or e n

n
=

−1
� (2.2)

Weight

W

Volume

V

WeightVolume

Vw

Air

Water

Solid

Va

Vs

Vv

Ww

Ws

Ws = 0

V = Va + Vv +Vs
W = Wa + Wv +Ws

Figure 2.1  General weight–volume relations for a partially saturated soil element.
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(a)

WeightVolume

Vw = wGs

Air

Water

Solid

Va

Vs = 1

Vv = e
Ww = wGs�w

Ws = Gs�w

Wa = 0

(b)

WeightVolume

Vw = wGs
= e Water

SolidVs = 1

Vv = e
Ww = wGs�w

 = e�w

Ws = Gs�w

Figure 2.2  (a) Partially and (b) fully saturated soil elements (Vs = 1).

c.	 Degree of saturation (Sr) represents the ratio between the volume of water (Vw) and the 
volume of the voids or

S
V
Vr
w

v

= � (2.3)

d.	 Water content (w) represents the ratio between the weight (Ww) or mass (Mw) of the water 
in the soil and the weight (Ws) or mass of the solid particles (Ms) or

w
W
W

w
M
M

w

s

w

s

= =or  � (2.4)

e.	 Air voids content (Av) represents the ratio between the volume of air (Va) and total 
volume or

A
V
V

e S
ev

a r= =
−
+

( )1

1
 � (2.5)
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f.	 Bulk unit weight (γb) or density (ρb) represents the ratio between the total weight (W) or 
mass (M) and the total volume or

γ ρ γ ρb b b b
W
V

M
V

g= = =or and � (2.6)

(g = gravitational acceleration constant, e.g. 9.81 m/s2)

g.	 Dry unit weight (γd) or density (ρd) represents the ratio between the weight (Ws) or mass 
(Ms) of the solid particles and the total volume or

γ ρ γ ρd
s

d
s

d d
W
V

M
V

g= = =or and  � (2.7)

h.	 Specific gravity of the solid particles (Gs) represents the ratio of the mass of a given 
volume of solid particles to the mass of water for the same volume or

G
M
V

W
Vs

s

s w

s

s w

= =
1 1
ρ γ

 � (2.8)

where ρw =1 3Mg/m  and γ w = × =1 9 81 9 81 3. . kN/m  represent the density and unit weight 
of water, respectively.

i.	 Specific volume (v) is v e= +1
j.	 Common relations using the weight–volume indices:

S e wGr s=  � (2.9)
γ γ ρ ρb d b d= =(1 + ) or (1 + )w w  � (2.10)

γ γb
S r

W
W
V

G S e
e

= =
+
+1

 � (2.11)

γ γsat
S

W
M
V

G e
e

= =
+
+1

 � (2.12)

γ
γ

ρ
ρ

d
s w

d
s wG

e
G
e

=  or  =
1 1+ +

 � (2.13)

2.2  State of compaction

During construction, soil is usually compacted to meet a specified laboratory criterion based 
on the optimum values, typically established according to the dry density–water content rela-
tionship, for a given compaction energy (i.e. standard or modified compaction, Table 2.1).

The maximum dry density (γd,max) is achieved at the optimum moisture content (OMC) 
(Fig. 2.3). For a given compaction energy level, the dry unit weight increases as the moisture 
content increases to the OMC. Beyond this point (i.e. wet side of the compaction plane), the 
dry unit weight decreases with increasing water content (w). This tendency can be explained 
considering the interactions between water, air and solid phases.
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Table 2.1  Differences between Proctor standard and modified compaction tests.

Standard Modif ied
(ASTM D698) (ASTM D1557)
(AS 1289.5.1.1–2003)

Hammer weight, N (lb) 24.5 (5.5) 44.5 (10)
Height of hammer fall, mm (in.) 305 (12) 457 (18)
Number of layers 3   5
No. of blows/layer* 25  25
Mold volume,* m3 (ft3) 0.000944 (1/30)
Soil (- ) No. 4 sieve
Compaction energy (CE), kJ/m3 (lbft/ft3) 595 (12400) 2698 (56250)

* Using the 102-mm- (4-in.) diameter mold
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Figure 2.3  Compaction curve with different energy levels.

On the dry side of the compaction plane (points located below the line of optima), the suction 
that acts on the particle contacts to oppose slippage is high, and the compaction process yields 
low dry unit weights and a flocculated structure. The progressive addition of moisture reduces 
suction and facilitates particle slippage. Thus, the soil experiences higher dry unit weights until 
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it reaches its maximum at OMC, represented by the line of optimum moisture content in Fig-
ure 2.3. Beyond the OMC, the air phase becomes discontinuous, i.e. air is occluded in bubbles. 
In this condition, any applied external compaction energy is likely to be supported by the water 
phase in the soil, as compaction occurs over a relatively short period and the system is undrained.

2.2.1  Relative compaction

Relative compaction is a method of specifying the end results that are to be achieved in the 
field, where it is also known as end-product specification. The minimum relative compaction 
is governed by strategic importance of the fill and the desired project objectives (AS 3798; 
Standards Australia 2007) and requirements, between 90% and 95% relative compaction is 
typically considered acceptable.

Relative compaction (%) = × = ×
γ

γ

ρ

ρ
d field

d

d field

d

,

,max

,

,max

100 1000  � (2.14)

For instance, in Figure 2.4, a minimum of 95% relative compaction is adopted to define the 
field water content working range. However, often the water content variation is also speci-
fied in relation to the OMC, i.e. 2% ± OMC (e.g. AS 3798; Standards Australia 2007).

Figure 2.4 Compac tion curve and definition of the field working range based on the rela-
tive compaction.
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Figure 2.5 Compac tion curves for different soils (after Knappett and Craig, 2012 repro-
duced with permission from CRC Press).

2.2.2  Effect of soil type on the compaction curve

Typically, well-graded granular soils (e.g. GW) attain the highest γd and lowest 
OMC, whereas silt (ML) and organic clays (CH) attain the lowest γd and highest 
OMC (Fig. 2.5).

2.2.3 � Alternative compaction curve representation  
for waste materials

The compaction data is conventionally represented in terms of γd − w, which is directly 
computed from the laboratory standard Proctor compaction tests (e.g. AS 1289.5.1.1; 
Standards Australia 2017). The main advantage of using these two variables (i.e. γd − w) 
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lies in their simple determination based on the experimental results, that is to say, wet unit 
weight or bulk unit weight (γ) can be simply calculated considering the mass over volume 
ratio of the soil in the mold and dry unit weight can be easily obtained considering the 
water content (Eq. 2.15).

γ
γ

d w
=

+( )1
 � (2.15)

However, for mixtures involving materials having different Gs values (for instance, granular 
waste materials), the compaction data represented in the conventional γd − w reflects the 
weight percentage of the different materials rather than the compaction efficiency or degree 
of densification.
Furthermore, for different blend ratios of materials having different Gs values, several 

zero air voids (ZAV) lines (Eq. 2.16) need to be plotted, and the representation of additional 
saturation lines is cumbersome.

γ
γ

d
s w

s

r

G
wG
S

=
+1

 � (2.16)

where γw is the unit weight of the water and Sr is the degree of saturation (Sr = 1 for fully 
saturated conditions).
To avoid these limitations, the compaction data expressed in terms γd − w may be repre-

sented in terms of the equivalent variables of void ratio (e) and water ratio (ew) determined 
based on the value of Gs, as follows:

e
Gw s

d

= −
γ
γ

1  � (2.17)

e eS wGw r s= =  � (2.18)

The use of alternative representation for waste granular materials has significant advantages 
in relation to the conventional γd − w representation (Fig. 2.6), since Gs is incorporated in the 
determination of both e and ew.
Furthermore, in this representation, the different degree of saturation lines concerning dif-

ferent specific gravity values (Fig. 2.6) are now unique lines (i.e. independent of the value of 
Gs) having a gradient of 1/Sr (Eq. 2.19). This can be advantageous in locating the compaction 
states for the different blend ratios that prescribe to a given range of percentage of air voids 
(Av), for instance, shown in Eq. 2.20.

e
S
e

r
w=

1  � (2.19)

A n Sv r= −( )1  � (2.20)
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Worked-out example 2.1: Derive the following weight–volume relations:

a.	 n e
e

=
+1

b.	 S e wGr s=

c.	 γ γ ρ ρb d b d= =(1 + ) or (1 + )w w

d.	 γ γb
S r

W
W
V

G S e
e

= =
+
+1

e.	 γ γsat
S

W
M
V

G e
e

= =
+
+1

f.	 γ
γ

ρ
ρ

d
s w

d
s wG

e
G
e

=  or  =
1 1+ +

Solution:
a.	 Expanding the void ratio terms and multiplying the denominator by 

V
V
s

s

  after simplifica-
tion, we obtain the porosity relationship:

	 n e
e

V
V

V
V

V
V

V
V

V V
V

V
V V

V
V

n

v

s

v

s

s

s

v

s

v s

s

v

v s

v=
+

=
+

=
+

=
+

= =
1

b.	 We can start in either side. Expanding the Sr and e terms and rearranging, we have:

S e
V
V

V
V

V
V

V
V

V
Vr

w

v

v

s

w

s

v

v

w

s

× = × = × =

	 Including 
W
W

W
W

w

w

s

s

×  and then rearranging, we can easily obtain the expanded forms of 

the product of specify gravity and water content:

S e
V
V

W
W

W
W

W
V

V
W

W
W

W
W

G wr
w

s

w

w

s

s

s

s

w

w

w

s

s

w

w

s
S× = × × = × × = × =

γ
γ

c.	 Expanding the bulk unit weight in terms of the weight components (water and solid 
particles):

γ b
s wW

V
W
V

W
V

= = +

Including 
W
W
s

s

 in the second term and then rearranging:

γ b
s w s

s

s w

s

sW
V

W
V
W
W

W
V

W
W
W
V

= + = +
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	 Selecting the common fraction 
W
V
s  and rearranging, we can easily obtain the expanded 

form of the dry unit weight and water content as follows:

γ γb
s w

s
d

W
V

W
W

w= +








 = +( )1 1

d.	 Expanding the bulk unit weight term and rearranging, we obtain:

γ b
s w

s v

s
w

s

s
v

s

W
V

W W
V V

W W
W

V V
V

= =
+
+

=
+











+










1

1

	 Noticing that γ
γ
γ

γ γs
s

s
s

s

w
s s w

W
V

G G= = = and that   or   and recognizing w
W
W
w

s

=  and 

e
V
V
v

s

= , then we can obtain:

γ γ γb s w
s s

wG w
e

G G w
e

= ×
+
+







 =

+
+









1
1 1

	 Using the expression derived earlier S e wGr s=  then, we can obtain the following 
relationship:

γ γb
s r

w
G S e

e
=

+
+







1

e.	 From the derivation in d, we have the relationship for unsaturated soil, as follows:

	 γ γb
s r

w
G S e

e
=

+
+







1

, to calculate saturated unit weight, in which all pores are filled with 

water Sr = 1, then the expression can be simplified as follows:

γ γ γsat
S

W
S

W
G e

e
G e

e
=

+ ×
+

=
+
+

( )1

1 1

f.	 Only the derivation for dry unit weight is demonstrated. Expanding the dry unit weight 
term, we obtain:

γ d
sW
V

=

Knowing that1 1 1+ = + = + = = +e
V
V

V
V

V
V

V
V

V e Vv

s

s

s

v

s s
s thus  ( ) , then

γ d
s

s

W
e V

=
+( )1
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Noticing that γ
γ
γ

γ γs
s

s
s

s

w
s s w

W
V

G G= = = and that   or  , we can obtain:

γ
γ

d
s wG
e

=
+1

Worked-out example 2.2: The following index properties were determined for two 
soils, A and B, and are listed in Table 2.2. Which of these soils (a) has a greater void 
ratio? (b) has the greater dry density? (c) has the greater bulk or wet density? Justify 
your answer.

Table 2.2  Index properties of soil A and B.

Soil A B

Water content (%) 25.0 15.0
Specific gravity  2.67  2.7
Degree of saturation  1.0  0.85

Solution:

a.	 w
W
W

V
V G

V
V

S e
G

w

s

w w

s s w

v

v

r

s

= = =
ρ
ρ

 then

Soil A: 0 25
1

2 67
0 67.

.
.=

×
=

e e and  

Soil B: 0 15
0 85

2 7
0 48.

.

.
.=

×
=

e e and  

Hence, Soil A has the greatest void ratio.

b.	   =ρ
ρ

d
s wG
e1+

 and ρw  Mg/m=1 3 then

Soil A: ρ ρd d=  and   Mg/m
2 67 1 0

1 0 67
1 6 3. .

.
.

×
+

=

Soil B: ρ ρd d=  and   Mg/m
2 7 1 0

1 0 48
1 82 3. .

.
.

×
+

=

Hence, Soil B has the greatest dry density.
c.	 ρ ρb d=  (1 + )w , then

Soil A: ρ ρb b= =1 6 2 0 3. . (1 + 0.25) and Mg/m

Soil B: ρ ρb b= =1 82 2 1 3. .(1 + 0.15) and Mg/m

Hence, Soil B has the greatest bulk and wet density but is very similar to Soil A.
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Worked-out example 2.3: A fully saturated soil sample, collected at a field site, has a vol-
ume of 185 ml and mass of 331 g. The specific gravity of the solid particles is 2.7. Determine 
the void ratio, porosity, water content and bulk density.

Solution: As the sample is fully saturated, all the voids are occupied by water, and degree of 
saturation is 1. The bulk density can be easily determined:

ρ ρb b
M
V

= = = then g/cm
331

185
1 79 3.

We can derive the relationship for expressing bulk unit weight in terms of void ratio and spe-

cific gravity of the soil particles, considering γ
γ
γ

γ γs
s

s
s

s

w
s s w

W
V

G G= = = and that   or   and 
S e wGr s=  and Sr = 1:

  ρ
ρ

b
s w

s v

s
w

s

s
v

s

s wM
V

M M
V V

M M
M

V V
V

G w
= =

+
+

=
+











+










=
+

1

1

1

1

( )

++

=
+
+

=
+
+

=
+
+

e

G G w
e

G eS
e

G e
e

s w s w s w r w
w

sρ ρ ρ ρ
ρ

1 1 1

  

Then,
1.79 and= ×

+
+

=1
2 7

1
1 15

.
.

e
e

e  and porosity can be easily determined using n e
e

=
+1

n n n= ×
+

= =1
1 15

1 15 1
0 53 53

.

.
. %and  or 

For determining water content, we can use the relation derived earlier:

ρ
ρ

b
s wG w

e
=

+
+
( )1

1

we can then obtain

1 79
2 7 1 1

1 1 15
0 43.

. ( )

.
.=

× × +
+

= =
w wand or 43%

Worked-out example 2.4: A soil deposit to be used for construction of an embankment has 
an average dry density of 1602 kg/m3 and a moisture content of 10%. The compacted soil in 
the embankment is to have a dry density of 1842 kg/m3. During the process of compaction, 
no water is to be added to the soil.
Determine the volume of soil to be excavated from the natural soil deposit for 76,455 m3 

of the completed embankment and the wet mass of the soil to be excavated. Assume that no 
soil moisture is lost during excavation, handling and compaction.

Solution: The volume of material in loose state can be determined using the ratio between 
the compacted dry density and loose dry density (consider Ms is constant, as no mass is lost 
during compaction), as follows:

ρ

ρ
d compacted

d loose

s

compacted

loose

s
loose

M
V

V
M

V,

,

= × =then
1842

16602
76455 87909 3× = m
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Hence, the volume of soil to be excavated is 87,909 m3.
To determine the wet mass, we need to calculate the bulk density first, using the relation 

between bulk and dry density as follows:

ρ ρ ρb d bw= = + = (1 + ) then  kg/m1602 1 0 1 1762 2 3× ( . ) .

Then we can calculate wet mass considering the loose volume determined earlier.

ρ ρb b
M
V

M V

M

= =

= × =

then

 tons1762 2 87909 154913.

Hence the wet mass required is 154,913 tons.

Worked-out example 2.5: The density of a rolled earth fill was checked in the field by exca-
vating a hole in it and carefully removing the excavated material, which had a mass of 8.47 
kg and, after oven drying, 6.80 kg. The volume of the hole was determined by measuring 
the mass of loosely deposited sand required to fill it, and this was 6.2 kg. The bulk density 
of similarly deposited sand was found to be 1475 kg/m3. The specific gravity of solid con-
stituents was 2.74. What is the water content, dry density and degree of saturation of the fill?

Solution: The water content can be determined considering the humid and dry mass of the 
excavated material as follows:

w
M
M
w

s

= =
−

=
( . . )

.
. . %

8 47 6 8

6 8
0 246 24 6  or  

To determine the dry density, we must first determine the bulk density of the excavated earth 
fill. The bulk density of sand used to fill the hole is 1475 kg/m3, and the associated mass is 
6.2 kg; thus the volume of the hole can be computed as follows:

ρb
M
V V

V= ⇔ = ⇔ = × −1475 m
6 2

4 2 10 3 3.
.

Knowing the mass of soil that was excavated (8.47 kg), bulk density of the excavated mate-
rial can be determined as follows:

ρb
M
V

= =
×

=−

8 47

4 2 10
2015

3

3.

.
kg/m

Using the following relationship, dry density can then be determined:

ρ ρb d=  (1 + )w

Rearranging we obtain:

ρ
ρ

d
b= =

+
=

(1 + )
kg/m

w
2015

1 0 246
1617 2 3

( . )
.
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Using the following relationship, we can determine first the void ratio (note density of the 
water, ρw =1000 3kg/m ):

ρ
ρ

d
s wG
e e

e=
+

⇔ =
×
+

⇔ =
1

2 74 1000

1
0 691617.2

.
.

Then the degree of saturation can be computed based on the following weight–volume 
relationship:

S e wG S
wG
e

Sr s r
s

r= ⇔ = ⇔ =
×

=
0 246 2 74

0 69
0 977

. .

.
.  or 97.7%

The water content of the fill is 24.6%, the dry density is 1617.2 kg/m3 and the degree of 
saturation is 97.7%.

Worked-out example 2.6: The following data is obtained in the determination of field (com-
paction) density.

a.	 Weight of wet fill removed from test hole = 1942 g
b.	 Weight of sand used to fill the hole and cone = 2744 g
c.	 Density of sand = 1.60 g/cm3

d.	 Weight of sand to fill cone = 1289.7 g (by calibration)

Determine the in-situ wet and dry unit weights of the fill if the entire sample is oven-dried 
and has a weight of 1708.7 g.

Solution: The water content can be first determined considering the wet and dry weights of 
the excavated material as follows:

w
M
M
w

s

= =
−

=
( . )

.
. . %

1942 1708 7

1708 7
0 137 13 7 or 

The density of sand used to fill the hole is 1.6 g/cm3, and the associated mass of sand stored 
in the hole is obtained by subtracting the weight of sand used to fill the hole and cone and the 
weight of sand to fill the cone
(2744 − 1289.7 = 1454.3 g); thus the volume of the hole can be computed as follows:

ρb
M
V V

V= ⇔ = ⇔ =1.6 cm
1454 3

908 94 3.
.

Knowing the mass of soil that was excavated (1942 g), bulk density of the excavated material 
can be determined as follows:

ρ γ ρb b b
M
V

g= = = = × =
1942

908 94
2 14 20 993 3

.
. .g/cm thus kN/m

Using the following relationship, dry density can then be determined:

ρ ρb d w= (1 + )
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Rearranging, we obtain:

ρ
ρ

γ ρd
b

d dw
g= =

+
= = × =

(1 + )
g/cm , thus 18.46 kN/m

2 14

1 0 137
1 88 3.

( . )
. 33

Hence, the bulk unit weight is 20.99 kN/m3 and the dry unit weight is 18.46 kN/m3.

Worked-out example 2.7: The results of a field compaction at various moisture contents 
using a heavy roller on a particular clayey fill were as shown in Table 2.3.

Table 2.3  Compaction data.

Water content [%] Bulk density [g/cm3]

 6.8 2.07
 8.5 2.14
 9.4 2.18
10.2 2.21
11.3 2.23
12.5 2.21
13.6 2.19

Table 2.4  Compaction data, determination of dry density.

Water content [%] Bulk density [g/cm3] Dry density [g/cm3]

 6.8 2.07 1.94
 8.5 2.14 1.97
 9.4 2.18 1.99
10.2 2.21 2.01
11.3 2.23 2.00
12.5 2.21 1.96
13.6 2.19 1.93

Plot the compaction curve (dry density/water content relationship), and on the same graph, plot 
the zero air voids (ZAV) and 5% air void lines. Assume a specific gravity of 2.7 for the clayey fill.

Solution: To plot the compaction curve, the dry density corresponding to the different water 
content and bulk density pairs can be determined with the relationship ρ ρb d w= +( )1 , as 
shown in Table 2.4.

For determining zero air void line and 5% air voids, we can use the following relationships:

ρ
ρ

ρ
ρ

ρ
ρ

d
s w

d
s w

s

r

d ZAV Sr
s w

s

G
e

G
wG
S
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wG

=  =  

   

1
1

1
1

+
⇔

+

∴ =
+=( , )

A
V
V

A
V
V

V
V

V
V

V V
V

V V
V

V
V V
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a

v
a a a w s w s

v

= − = − = − =
−

=
+
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−

and ( or1 1
1

)
( )
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ρ
ρ

d
b s w

w
M

V w
M M
V w

= = =
+

(1 + ) (1 + ) (1 + )

By replacing V for the previous expression, the following expression is obtained:

ρd
s w v

w s
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V V w

=
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The values obtained using these relationships are shown in Table  2.5 and plotted in 
Figure 2.7.

Table 2.5  Data for plotting the ZAV and Av = 5% lines.

Water  Dry density  Dry density  
content [%] (ZAV) [g/cm3] (Av = 5%) [g/cm3]

 6 2.32 2.21

 7 2.27 2.16

 8 2.22 2.11

 9 2.17 2.06

10 2.13 2.02

11 2.08 1.98

12 2.04 1.94

13 2.00 1.90

14 1.96 1.86
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Worked-out example 2.8: Table 2.6 shows the results of standard compaction test on a sand/
cement mixture having G = 2.70.

a.	 Plot these results together with the zero air void line, and determine what percentage of 
air voids exists in the sample at OMC (i.e. AOMC).

Table 2.6  Compaction data.

Water content [%] 5 8 10 12.5 16 20

Dry density [Mg/m3] 1.64 1.78 1.85 1.89 1.84 1.73

b.	 The contract allows the field condition to vary as follows:

i.	 AOMC ± 2.5%;
ii.	 OMC + 3% and OMC – 4%

Determine the air void lines for the above conditions and plot them on the same graphs as in 
part a. Shade the zone in which the field product may fall.

Solution:
a.	 For plotting the ZAV, we can use the following relationship:

	
ρ

ρ
ρ

ρ

ρ
ρ

d
s w

d
s w

s

r

d ZAV Sr
s w

s

G
e

G
wG
S

G
wG

=    =  

   

1
1

1
1

+
⇔

+

∴ =
+=( , )
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Figure 2.7  Compaction curve and curves representing the ZAV and Av = 5% lines.
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Using the relationship derived earlier ρ
ρ

d
s w v

s

G A
G w

=
−
+

( )

( )

1

1
 then, for OMC, we have

ρd = 1.89 Mg/m3

w  = 12.5%

1 89
2 7 1 1

2 7 0 125 1

1 0 94 0 064

.
. ( )

( . . )

( ) . .

=
× × −
× +

− = =

A

A A A

v

v v or  or vv = 6 4. %

b.	 For the condition AOMC ± 2.5%; then Av = 3.9% and Av = 8.9% (Fig. 2.9).

Table 2.7  Data for plotting the ZAV.

Water content [%] Dry density  
(ZAV) [g/cm3]

 6 2.32
 8 2.22
10 2.13
12 2.04
14 1.96
16 1.89
18 1.82
20 1.75
22 1.69

4 6 8 10 12 14 16 18 20 22
1.6

1.7

1.8

1.9

2.0

2.1

2.2

Water  content (%)

Compaction curve

mc/g(
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yr
D

3 )

ZAV,Av=0%

Figure 2.8  Compaction curve and curves representing the ZAV.

Table 2.7 shows the results obtained using the previous relationship, and these are shown in 
Figure 2.8.
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Figure 2.9  Compaction and allowed field specifications.

Table 2.8  Compaction data of the waste materials considered.

Waste material A Waste material A and B blend Waste material B

Water  Bulk density Water  Bulk density Water  Bulk density
content [g/cm3] content [g/cm3] content [g/cm3]
[%] [%] [%]

 7 2.29  7 2.02  7 1.76
 8.5 2.43  8.5 2.10  8.5 1.81
10.5 2.56 10.5 2.19 10.5 1.87
12 2.52 12 2.16 12 1.86
14 2.44 14 2.13 14 1.86

Table 2.9  Specific gravity of the waste materials considered.

Material tested Specif ic gravity, Gs

Waste material A 3.2
Waste material A–B blend 2.7
(50% by weight)
Waste material B 2.3

Worked-out example 2.9: The compaction characteristics of two industrial granular by-
products and associated mixture (50% by weight of each component) were examined for 
evaluating their potential use in infrastructure projects. The compaction data is given in 
Table 2.8.

Plot the compaction data using the conventional (γd − w) and alternative (e − ew) repre-
sentation. The specific gravity of the granular waste materials A and B is given in Table 2.9.



32  Geotechnical Problems and Solutions

Solution: To plot the compaction data in the (γd − w), the dry density corresponding to the 
different water content and bulk density pairs can be determined with the relationship:

ρ
ρ

d
b

w
=

(1 + )

and γ ρd d g=  as shown in Table 2.10.
For plotting the different zero air void (ZAV) lines, the following relationship can be used 

(Table 2.11):

ρ
ρ

ρ
ρ

ρ
ρ

d
s w

d
s w

s
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d ZAV Sr
s w

s

G
e

G
wG
S

G
wG

=
+

⇔ =
+

∴ =
+=

1
1
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Then the results can be plotted in terms of (γd − w) as shown in Figure 2.10.

Table 2.10  Compaction data, determination of dry unit weight.

Waste material A

Water content Bulk density Dry density Dry unit weight
[%] [g/cm3] [g/cm3] [kN/m3]

 7 2.29 2.14 21
 8.5 2.43 2.24 22
10.5 2.56 2.32 22.7
12 2.52 2.25 22.1
14 2.44 2.14 21

Waste material A and B blend

Water content Bulk density Dry density Dry unit weight
[%] [g/cm3] [g/cm3] [kN/m3]

 7 2.02 1.89 18.5
 8.5 2.10 1.94 19
10.5 2.19 1.98 19.4
12 2.16 1.93 18.9
14 2.13 1.87 18.3

Waste material B

Water content Bulk density Dry density Dry unit weight
[%] [g/cm3] [g/cm3] [kN/m3]

 7 1.76 1.64 16.1
 8.5 1.81 1.67 16.4
10.5 1.87 1.69 16.6
12 1.86 1.66 16.3
14 1.86 1.63 16
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Table 2.11  Data for plotting the ZAV.

Water content [%] Dry density (ZAV, Dry density (ZAV, Dry density (ZAV, 
Gs = 3.2) [g/cm3] Gs = 2.7) [g/cm3] Gs = 2.3) [g/cm3]

 6 2.68 2.32 2.02
 7 2.61 2.27 1.98
 8 2.55 2.22 1.94
 9 2.48 2.17 1.91
10 2.42 2.13 1.87
11 2.37 2.08 1.84
12 2.31 2.04 1.80
13 2.26 2.00 1.77
14 2.21 1.96 1.74
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Figure 2.10  Compaction data plotted in terms of (γd − w).

To plot the compaction data in the (e − ew), the void ratio and water ratio corresponding to 
the different water content and dry unit weights pairs can be determined with the relationship 
(Table 2.12), and the results are illustrated in Figure 2.11.

e
Gw s

d

= −
γ
γ

1

e eS wGw r s= =
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Table 2.12  Compaction data, determination of e and ew

Waste material A

Water content ew Dry unit weight e
[%] [kN/m3]

 7 0.22 21 0.49
 8.5 0.27 22 0.43
10.5 0.34 22.7 0.38
12 0.38 22.1 0.42
14 0.45 21 0.49

Waste material A and B blend

Water content ew Dry unit weight e
[%] [kN/m3]

 7 0.19 18.5 0.43
 8.5 0.23 19 0.39
10.5 0.28 19.4 0.36
12 0.32 18.9 0.40
14 0.38 18.3 0.45

Waste material B

Water content ew Dry unit weight e
[%] [kN/m3]

 7 0.16 16.1 0.40
 8.5 0.20 16.4 0.38
10.5 0.24 16.6 0.36
12 0.28 16.3 0.38
14 0.32 16 0.41

.
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Figure 2.11  Compaction data plotted in terms of (γd−w).
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Chapter 3

Effective stress concepts

This chapter introduces the state of stress in a soil element and the effective stress concept.

3.1  State of stress in the soil element

The state of stress in the soil element can be defined based on total stress (σ), pore pressure 
(u) and effective stress (σ′).

Total stress (σ) is the stress acting on a soil element located at a certain depth and is 
defined as a function of the bulk unit weight of the materials resting above and their associ-
ated depth. For instance, for a homogeneous ground having a unit weight of 20 kN/m3, a soil 
element located 10 m deep would have a total stress of 200 kPa.

Pore pressure (u) is the pressure developed in the pores of soil that are filled with fluid, 
either water or air, or a combination of both. These fluids do not offer resistance to static 
shear forces, but they can support vertical pressures.

Effective stress (σ′) the effective stress is dependent on the total stress (σ) and on the pore 
air (ua) and pore water (uw) pressures. For instance, in stability and compressibility problems, 
changes in effective stress govern the changes in volume and shear strength.

3.2 � Effective stress in saturated soils  
(or Terzaghi effective stress)

Terzaghi (1943) demonstrated through a series of laboratory experiments that for saturated 
soils (e.g. degree of saturation of 1), effective stress can be defined using an empirical rela-
tionship, as follows:

σ σ' = −uw  � (3.1)

Where σ′ is the effective stress, σ is the total stress and uw is the pore water pressure. This is 
valid for evaluating soil compressibility and shear strength provided that the area of contact 
between particles is small and that the compressibility of the individual particles is small 
compared with that of the soil skeleton.

3.3  Effective stress in partially saturated soils

For the cases where voids are filled with air and water, surface tension occurs at the air/
water interfaces. As a result, the pressures in the water and air phase are not the same. 
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For instance, consider the capillary tube displayed in Figure 3.1. For equilibrium the fol-
lowing holds:

u r u r r Ta w    π π π α2 2 2= + sin  � (3.2)

Where T is the surface tension expressed per unit length of air/water interface. Rearranging 
we can obtain:

( )
sinu u T
ra w− =

2 α  � (3.3)

The meniscus radius depends on the pore size. For instance, for sands the pressure difference 
between air and water phases is relatively small (e.g. dozens of kPa), but for clay soils having 
smaller pore sizes u ua w−( ) can reach thousands of kPa. These concepts as well as the effec-
tive stress for unsaturated soils will be covered in more detail in Chapter 14.
In this chapter, the focus is on the Terzaghi effective stress, henceforth referred to simply 

as effective stress.

3.4  State of stress and groundwater

The pore water pressure is one of the key parameters that governs the behavior of soil. The 
evaluation of pore water pressure is critical for two main conditions, i.e. static (no flow) and 
seepage (water flow). In this chapter, the focus is on the static conditions, whereas seepage 
is covered in Chapter 4.
The pressure of pore water is measured relative to the atmospheric pressure, and the level 

at which the pressure is atmospheric (taken as 0 for simplicity) is defined as the groundwater 
table (GWT) or phreatic surface. Below the water table, the soil is typically assumed to be 
saturated (degree of saturation = 1). Immediately above the GWT, the soil remains satu-
rated with water due to capillary stresses, which hold the water below atmospheric pressure, 

Figure 3.1  Capillary tube illustration, with r being the radius of the tube.
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referred to as the capillary fringe. Above this level, there is a partially saturated zone or 
vadose zone, where water is held by surface tension and adsorption (Fig. 3.2). While level of 
GWT typically varies according to climatic conditions (e.g. rainfall), it can also vary because 
of construction operations (e.g. excavations).
There are cases in which a perched water table can occur in discrete locations, and it’s 

typically associated with an aquitard or aquiclude (water reservoirs having very low perme-
ability or impermeable), as illustrated in Figure 3.3. Artesian conditions may also occur if 
a relatively high permeability layer is confined by an aquitard or aquiclude. In these condi-
tions, the water pressure in the artesian layer is governed by a higher water table, i.e. poten-
tiometric surface (Fig. 3.4).

Consider a soil element located at a certain depth (z) and a water table at surface level. 
The total vertical stress (σv) at depth z is equal to the weight of all the material (solids and 

River or lake

Free water surface

Ground 
water table

Vadose zone
(Unsaturated)

Saturated 
zone

Capillary fringe

Figure 3.2  Illustration of a typical profile illustrating the occurrence of groundwater (modi-
fied after Whitlow, 1995).

Free water surface

Excava�on

Clay

Clay

Ground water table

Perched water table

Sand

Figure 3.3 � Illustration of a typical profile illustrating the occurrence of perched water table 
(modified after Whitlow, 1995).
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water) per unit areas above that depth, whereas the pore water pressure (u) at depth z will be 
hydrostatic, or

σ γv sat z=  � (3.4)

u zw= γ  � (3.5)

Where γ sat  is the saturated unit weight and γ w  is the unit weight of the water. Thus, the effec-
tive stress at a certain depth z can be computed as follows:

σ σ
σ γ γ
v v

v sat w

u
z

'     or

'

= −
= −( )

 � (3.6)

Worked-out example 3.1: A layer of saturated cohesive soil has a water content of 54%, and 
the specific gravity of solid particles of the soil is 2.78. Calculate the vertical effective stress 
at a depth of 15.4 m, if

a.	 the water table is at the ground surface, or
b.	 the water table is at a depth of 6 m below the ground surface and the soil above the water 

table is saturated.

Solution:
a.	 For determining the effective stress at 15.4 m, we first need to calculate the saturated 

unit weight. As the water table is at ground surface, the soil is fully saturated and

S e wG e wGr s s= =or

River or Lake

Intact bedrock

Ground water table

Poten�ometric surface

Sandstone
(Aquifer)

Clay

Artesian well

Water table well

Water table well

Flowing Artesian well

Figure 3.4  Illustration of a typical profile illustrating the occurrence of artesian conditions.
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Then the bulk (saturated) unit weight can be determined as follows:

γ γb
S r

W
W
V

G S e
e

= =
+
+1

=
+ ×
+ ×











2 78 1 0 54 2 78

1 0 54 2 78
9 81

. ( . . )

( . . )
.

γ b =16 79. kN/m3

Total vertical stress: σ γv sat z= = × =16 79 15 4 258 57. . . kPa

Pore water pressure: u zw= = × =γ 9 81 15 4 151 1. . . kPa

Effective vertical stress: σ σv v u' kPa= − = − =258 57 151 1 107 5. . .

b.	 For a water table located at a depth of 6 m depth, as the soil remains fully saturated, the 
total stress is the same, but the pore water pressure at a depth of 15.4 m is smaller, as 
there is only 9.4 m of hydrostatic pressure at that depth, or

Total vertical stress: σ γv sat z= = × =16 79 15 4 258 57. . . kPa

Pore water pressure: u zw= = × − =γ 9 81 15 4 6 92 2. ( . ) . kPa

Effective vertical stress: σ σv v u' kPa= − = − =258 57 92 2 166 4. . .

Worked-out example 3.2: For the soil profile shown in Figure 3.5,

a.	 Draw diagrams indicating the total and effective stress, and pore water pressure on the 
horizontal planes to a depth of 11 m below the ground surface. (Assume sand above 
GWT is dry.)

b.	 How do the pore water pressure and effective stress change if the sand above the GWT 
remains saturated with capillary moisture?

The saturated unit weights of sand and clay are 20 kN/m3 and 18.5 kN/m3 respectively, and 
the dry unit weight of sand is 17 kN/m3.

Sand

Clay

3m

8m

1m

Figure 3.5  Soil profile.
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Solution:
a.	 For drawing the total and effective stress, and pore water pressure profile with depth, points 

at different depths (0, 1, 3 and 11 m) are considered. Results are tabulated in Table 3.1.

As the stresses increase linearly with depth, the diagrams can be drawn as shown in 
Figure 3.6.

b.	 For the case in which sand is saturated with capillary moisture, the first meter of the pore 
water pressure profile changes and the total vertical and effective stress profiles shift by 

Table 3.1 Total and effective stress and pore water pressure results.

Depth (m) Total vertical stress Pore water pressure Effective vertical stress

 0 0 0 0
 1 σ γv d= =ry z 1 1× =7 17kPa u z= =γ w 0kPa σ σv v' = − u 

σ v ' = −17 0 1= 7kPa
 3 σ γv d= +ry z zγ sat u z= γ w σ σv v' = − u 

σ = ×17 1 2+ ×0 2 = 57kPa u = ×9 8. .1 2 =19 6kPa σ v ' .= −
v

57 19 6
σ v ' .= 37 4kPa

11 σ γv d= +ry z z( )γ γsat + ( )satz u z= γ w σ σv v' = − u 
sand clay

u = ×σ = × + × + × 9 8. .1 10 9= 8 1kPa σ v ' .= −205 98 1
v 17 1 20 2 18.5 8

σσ v = kPPa v ' .=106 9kPa205
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Figure 3.6  Total and effective stress and pore water pressure diagrams.
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Table 3.2 Total and effective stress and pore water pressure results.

Depth (m) Total vertical stress Pore water pressure Effective vertical stress 
(kPa) (kPa) (kPa)

 0   0 u z= −γ w ( )0   9.8
= −9 8. .1 1× = −9 8kPa

 1  20  0  20
 3  60 19.6  40.4
11 208 98.1 109.9

Figure 3.7  Total and effective stress and pore water pressure diagrams.

3 kPa. This corresponds to an increase in unit weight of the sand from 17 kN/m3 (dry 
condition) to 20 kN/m3 (saturated condition) over 1 m above the GWT where capillary 
moisture holds. The results can be computed similarly as shown in Table 3.2 and illus-
trated in Figure 3.7.

Where z0 represents the depth from the GWT to the point of interest.
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Worked-out example 3.3: The surface of a deposit of clay is horizontal and the water table 
is located at the surface.

a.	 Compute the pore water pressure at point A located 1.8 m below the ground surface;
b.	 Dewatering operations have commenced in the vicinity of this site, and groundwater 

table has dropped to 4 m below the ground surface. Compute the pore water pressure of 
point A, assuming that the clay above the water table remains saturated with capillary 
moisture;

c.	 Does the drop in water table change the effective and total stresses at point A, and if so, 
by how much?

Solution:
a.	 The pore water pressure at 1.8 m below the ground surface can be computed as follows:

u z
u

w=
= × =
γ
9 81 1 8 17 7. . . kPa

b.	 If the water table dropped to a deeper location and the soil remains saturated with capil-
lary moisture, then the pore water pressure at point A can be computed as follows:

u z
u

w= −
= × − − = −
γ ( )

. ( ( . )) .

0

9 81 4 1 8 21 58kPa

c.	 While the total stress remains unchanged because it depends on the saturated unit weight 
of the soil (σ γv sat z= ), the effective stress will vary because there is a variation in the 
pore water pressure, or

σ σv v u' = −  

Thus, if the GWT level is lowered to a higher depth, the pore water pressure will be smaller, 
and the effective stress will increase. The amount of this increase is directly associated with the 
magnitude of change of pore water pressure. In this exercise, the variation of pore water pres-
sure can be computed considering the initial and final pore water pressure values, as follows:

∆ ∆
∆
∆

σ v u
u
u

'

kPa

=
= − −
=

17 74 21 58

39 32

. ( . )

.

Worked-out example 3.4: A large excavation was opened in a stratum of stiff clay with a 
saturated unit weight of 17 kN/m3. When the depth of the excavation reached 4.5 m, the bot-
tom cracked and was flooded from below by a mixture of sand and water. Subsequent bor-
ings showed that the clay was underlain by a bed of sand with its surface at a depth of 12.5 m.

Compute the water head in the sand layer and the water level in a well located in sand layer 
if this had been installed before the excavation started.

Solution: As the bottom of the excavation cracked, that indicates that the pore water pressure 
(water head) in the sand layer exceeded the vertical stress at the separation between the clay 
and sand layer (Point A, Fig. 3.8), or effective stress = 0.
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Thus, considering the equilibrium conditions at point A, just before failure, then:

σ σ σ
σ
v v v

v

u
u

'  ; '

 

= − =
=

0

( . . )12 5 4 5− =γ γsat w wH  with water head = γ w wH

γ
γ
w w

w w

H
H

= ×
=

8 17

136kPa

Using the same equilibrium relationship, the water level in the well located in the sand layer 
can be computed as follows:

136 = γ w wH

H

H

w

w

=

=

136

9 81

13 7

.

. m

The water head at point A is 136 kPa, and the water level in the well located in the sand layer 
is 13.7 m.

Worked-out example 3.5: A site investigation conducted for a large excavation detected a 10-m 
thick layer of uniform clay resting on a 3-m thick layer of sand, which was underlain by bedrock. 
The water level was at ground level, and the sand had a head of 2 m above the top of the clay. The 
saturated unit weights of the clay and sand were 19.8 kN/m3 and 21 kN/m3, respectively.

a.	 Draw the profile of total and effective stress and pore water pressure to the depth of the 
bedrock (13 m deep).

b.	 Calculate the depth to which the excavation can be taken before ground heave occurs.

Sand

Clay

4.5m

8m

Hw
Excava�on

Point A

Figure 3.8  Ground profile diagram.
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Solution:
a.	 To draw the profile of stresses and pore water pressure, the magnitude of the stresses 

must be determined at different depths (Fig. 3.9), as shown in Table 3.3.

Once the values are computed, the profile of stresses and pore water pressure with depth 
can be represented as illustrated in Figure 3.10.

Sand

Clay

3m

10m

Excava�on

2m

Bedrock

Figure 3.9  Ground profile diagram.

Table 3.3 Total and effective stress and pore water pressure results.

Depth (m) Total vertical stress (kPa) Pore water pressure Effective vertical stress 
(kPa) (kPa)

 0 σ γ= = × =v satz 19.8 0 0 u z= =γ w 0 σ σv v' = − u 0=

10 σ γv s= =atz 19.8 1× =0 198 u z= =γ
(clay) w 10× 9 8. 1 σ σv v' = − u 

= 98.1 σ v ' .= −198 98 1
σ v ' .= 99 9

10 σ γv s= =atz 19.8 1× =0 198 u z= =γ w 12× 9 8. 1 σ σv v' = − u 
(sand) =117.72 σ v ' .= −198 117 72

σ v ' .= 80 3

13 σ γ= ( )z z+ ( )γ u z= =γ w ( )12 + ×3 9.81 σ σv v' = −
v sat clay sat

u 
sand

= σ = −σ v = + × 147.15198 21 3 v ' 261 147
σσ 261 v ' .=

v =
113 85
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b.	 Ground heave at a certain excavation level will occur when the effective stress in the 
clay layer drops to 0 or

σ σ σ
σ
v v v

v

u
u

'  ; '

 

= − =
=

0

( )10− =x Hsat w wγ γ  with water head sand layer = γ w wH

γ
γ
w w

w w

H
H

= ×
=

12 9 81

117 7

.

. kPa

Using the same equilibrium relationship, the depth of excavation before heave occurs can 
be computed as follows:

( ) . .10 19 8 117 7− =x

x

x

= −

=

10
117 7

19 8

4 1

.

.

. m

The ground heave will occur for an excavation level greater than 4.1 m deep.
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Figure 3.10  Total and effective stress and pore water pressure diagrams.
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Worked-out example 3.6: A construction of a new building’s basement is proposed for a site 
having a ground profile as shown in Figure 3.11. To enable the commencement of construction 
work, a dewatering system is installed on site, which is able to lower the groundwater level to 
2 m below ground level. Calculate the total and effective stress as well as pore water pressure 
profile for the ground before and after installation of the dewatering system. Draw the associ-
ated profile with depth for the two conditions. The saturated unit weights of sand and clay are 
20 kN/m3 and 18.5 kN/m3, respectively, and the dry unit weight of sand is 17 kN/m3.

Sand

Clay

3m

8m

1m
1m

Figure 3.11  Ground profile diagram.

Table 3.4 T otal and effective stress and pore water pressure results after dewatering 
system installation.

Depth (m) Total vertical stress (kPa) Pore water pressure Effective vertical stress 
(kPa) (kPa)

 0 0 0 0
 1 σ γv d= =ry z k1 1× =7 17 Pa u z= =γ w 0 kPa σ σv v' = − u 

σ v ' = −17 0 1= 7 kPa

 2 σ γv d= ry z u z= γ σ σ
w v v' = − u 

σ = ×17 2 3= 4 kPa u k= 0 Pa σ v ' = −34 0 3= 4 kPa
v

 3 σ γv d= +ry z zγ sat σ σu z= γ v v' = − u 
w

σ v = ×17 2 2+ ×0 1= 54 kPa σ v ' .= −54u k= ×9 8. .1 1= 9 89 8 Pa
σ v ' .= 44 2 kPa

11 σ γv d= +ry z z( )γ γsat + z =
sand

( )sat
u zγ w σ σv v' = − u 

clay

= × = σ = −σ v = + u k ' .54 × 9 8. .1 9 88 3 Pa18.5 8 v 202 88 3
σσ v = 202 kP v ' .=113 7 kPaa

Solution: The total, effective and pore water pressure profiles of the ground for a GWL of 
1 m depth have been computed earlier in worked-out example 3.2. For the GWL of 2 m 
depth, results are shown in Table 3.4.

The total, effective stress and pore water pressure profiles for the two cases are shown in 
Figure 3.12. Note that it was assumed that the sand above GWL is dry in both conditions.
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This chapter introduces different aspects related to the flow of water through soils. Soils are 
permeable materials that allow water to flow through their interconnected pores. The study 
of the flow through soil is vital for geotechnical applications such as excavations located at 
a depth greater than the groundwater level where dewatering is required or determines the 
yield of wells. In addition, the flow establishes a pattern of pore water pressures that may 
lead to the development of critical stability conditions or induce volume changes in soil that 
could result in settlement or ground heave.

4.1  Permeability

Permeability is a measure of the rate at which the fluid passes through a porous medium. For 
water, the apparent velocity of the flow (v) can be related to the hydraulic gradient (i) and 
permeability (k) via Darcy’s law, as follows:

v k dh
dl

ki  = =  �
� (4.1)

where dh represents the hydraulic head variation along the flow path dl.
Eq. 4.1 can be rewritten to account for the rate of flow (q) across a cross-sectional area A.

q Aki=  � (4.2)

Thus, the rate of water flow depends upon the permeability that is in turn influenced by the 
density and viscosity of the fluid, turbulence of flow, porosity of the soil, shape and arrange-
ment of soil particles, degree of saturation and thickness of adsorbed layers (fine-grained soils).

4.1.1  Permeability estimation

Kozeny (1927) and Carman (1956) proposed and demonstrated that for laminar flow in satu-
rated soils, permeability may be estimated as a function of different coefficients to consider 
the shape of the pores (k0), tortuosity (KT), particle surface area (Ss), porosity (n), unit weight 
of the water (γw) and viscosity of the water (η).

k
k k S

n
nT s

w=
−

1

10

2

3

2( )

γ
η

 � (4.3)

Chapter 4

Permeability and seepage
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Typical  values  of  permeability  for  soils  are  given  in Table  4.1. However,  these  are  only 
indicative and may vary considerably if even small quantities of fine materials are present.

4.1.2 Measurement of permeability in laboratory

There are typically two types of tests that can be adopted for the determination of the coefficient 
of permeability of soil. For coarse-grained   materials, a constant head permeameter (Fig. 4.1a) 
is used, whereas for fine-grained   materials, a falling head permeameter is selected (Fig. 4.1b).

Table 4.1 Typical values of permeability.

Permeability (m/s)

1 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

Clean gravels  
  Clean sands  

  Silt  
  Fissured clay  

  Intact clay

Figure 4.1 Schematic illustrations of permeabilit y test (a) constant head and (b) falling head 
(after Knappett and Craig, 2012 reproduced with permission from CRC Press).
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4.1.3 � Measurement of permeability in the field using 
a pumping test

Case 1: unconf ined aquifer

The hydraulic gradient can be expressed as i = dh/dr, whereas the area through which flow 
takes place is A = 2πrH (OW1 and OW2 in Fig. 4.2). Applying Darcy’s Law,

( q k i A= �� � ) 

Then q k dh
r

RH=
d

2π

Upon integration using appropriate limits (R1 and R2 and H1 and H2):

q dR
R

k hdh
R

R

H

H

1

2

1

2

2∫ ∫= π  or

q ln R
R

Hk H H2

1

2

2

1

2= −( )π

Rearranging for permeability, then

k
q ln R

R
H H

=











−( )

2

1

2

2

1

2π

 � (4.4)

Figure 4.2  Well pumping test in a unconfined aquifer.
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Case 2: conf ined aquifer

For a confined stratum of thickness H (Fig. 4.3), the area through which water flows through 
is A = 2πrH, where H is a constant (thickness of the confined layer), applying Darcy’s law 
(q k i A= �� � ), the flow can be obtained as follows:

q k dh
r

r H=
d

2π

On integrating using appropriate limits (e.g. R1 and R2 and H1 and H2),

q dR
R

Hk dh
R

R

H

H

1

2

1

2

2∫ ∫= π

q ln R
R

Hk H H2

1

2 12= −π ( )

Rearranging, then

k
q ln R

R
H H H

=











−

2

1

2 12π ( )

 � (4.5)

Sand

Clay

Impermeable

H1
H2

R1

R2

H
H0

Drawdown

Ini�al ground water level OW2OW1Well

Figure 4.3  Well pumping test in a confined aquifer.
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4.1.4  Permeability of stratified soils

When the ground profile consists of a number of different layers of soil having different 
permeability values, the overall permeability is not the same in the horizontal and vertical 
directions.

Horizontal flow

For horizontal flow (Fig. 4.4), the equivalent permeability can be computed as follows:

k q
Ai

k
q q q

A A A i i i

=

=
+ +

+ + × + +
1 2 3

1 2 3 1 2 3( ) ( )

As the q Aki= , then

k
A k i A k i A k i
A A A i i i

=
+ +

+ + × + +
1 1 1 2 2 2 3 3 3

1 2 3 1 2 3( ) ( )

As the hydraulic gradient in each layer is the same, the previous equation can be simplified 
into:

k
D k D k D k
D D DH =
+ +
+ +

1 1 2 2 3 3

1 2 3

 � (4.6)

Figure 4.4  Horizontal flow through stratified soils (modified after Whitlow, 1995).
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Vertical flow

For vertical flow (Fig. 4.5), the equivalent permeability can be computed as follows:

k q
Ai

=

The total flow is equal to the flow in each layer, whereas the total head loss is equal to the 
sum of the losses in the different soil layers.

k
q
A

l l l
h h h

k
q
A

l l l
i l i l i l

y

y

= ×
+ +
+ +

= ×
+ +
+ +

( )

( )

( )

( )

1 2 3

1 2 3

1 2 3

1 1 2 2 3 3

k
q
A

l l l
q l
A k

q l
A k

q l
A k

y= ×
+ +

+ +










( )1 2 3

1 1

1 1

2 2

2 2

3 3

3 3

Upon simplification, the following relationship can be obtained.

k
D D D

D
k

D
k

D
k

V =
+ +

+ +

1 2 3

1

1

2

2

3

3

 � (4.7)

Figure 4.5  Vertical flow through stratified soils (modified after Whitlow, 1995).
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4.2  Seepage theory

4.2.1  Two-dimensional flow

Consider a soil element of dimension dx, dy and dz in an incompressible fluid having veloci-
ties vx and vz. The quantity flowing into element equals the quantity flowing out of element 
(Fig. 4.6), as follows:

V dz V dx V
V
x
dx dz V V

z
dz dxx z x

x
z

z⋅ + ⋅ = +
∂
∂

⋅





+ +
∂
∂

⋅





 � (4.8)

For steady state condition the net inflow should be zero, thus,

∂
∂

+
∂
∂

=

∂
∂

+
∂
∂

=

v
x
dxdz v

z
dzdx

v
x

v
z

x z

x z

0

0

4.2.2  Application to groundwater flow using Darcy’s law

The two-dimensional flow solutions may be applied to problems concerning the flow of 
water through the pores of the soil. Considering Darcy’s law, the apparent velocities in the 
horizontal and vertical direction, vx and vz, respectively, can be computed as follows:

v k h
xx = ⋅
∂
∂

 � (4.9)

v k h
zz = ⋅
∂
∂

Figure 4.6  General two-dimensional flow condition (modified after Whitlow, 1995).
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Then for steady-state conditions in an incompressible fluid, we have:

0
2

2

2

2
=
∂
∂

+
∂
∂

h
x

h
z

 � (4.10)

4.2.3  Properties of flow nets

Direction of flow is represented by Flow Lines (stream lines). Variation of pressure (head) 
across the flow is represented by Equipotential Lines. Mapping of flow lines and equipoten-
tial lines together is called a Flow Net. The Flow Lines (stream lines) and equipotential Lines 
are orthogonal (Fig. 4.7), and boundaries of no flow are typically taken as flow lines, whereas 
submerged permeable boundaries are equipotential lines.

4.2.4  Anisotropic flow

If kx ≠ kz, then Eq. 4.10 can be expressed in the Laplace form as follows:

k h
x

k h
zx z

∂
∂

+
∂
∂

=
2

2

2

2
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1 =  and since ∂

∂
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⋅
∂
∂

=
∂
∂

⋅
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h
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1
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∂
∂
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∂
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∂
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Figure 4.7  Graphical representation of flow (modified after Whitlow, 1995).
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From the Laplace equation:

k h
x

k
k

k h
yx

y

x
y

∂
∂

⋅








 + ⋅

∂
∂

=
2

1

2

2

2
0  or

∂
∂

+
∂
∂

=
2

1

2

2

2
0

h
x

h
y

Therefore, by making the x-axis transformed by the factor
k
k
y

x

, we can now do the flow net 

analysis as before, where k k
k
k

k kf x
y

x
x y= = ⋅ . 

4.2.5  Flowline deflection at anisotropic boundary

Darcy’s Law in Zone 1 (Fig. 4.8):

q A k i k h h1 1 1 1 1 1 1 2 1= ⋅ ⋅ = ( ) ⋅ −( ) ( )cos sinβ β

Darcy’s Law in Zone 2 (Fig. 4.8):

q A k i k h h2 2 2 2 2 2 1 2 2= ⋅ ⋅ = ( ) ⋅ −( ) ( )cos sinβ β

But along the same flow channel,

q1 = q2 (continuity of flow)

Figure 4.8 � Graphical representation of flow in anisotropic media (modified after Whitlow, 1995).
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Finally, tan

tan

β
β

1

2

1

2

=
k
k

4.2.6  Determination of seepage flow using flow nets

Considering a flow net to describe the seepage flow under a sheet pile (Fig. 4.9), the drop of 
piezometric head (e.g. height of the water in an open standpipe at the point considered) will 
be constant between successive equipotential lines.

∆h h
Nd

=

Where h represents the drop in head between the inlet and outlet and Nd is the number of drops. 
Considering a unit thickness of a flow channel abcd (Fig. 4.8), the hydraulic gradient (i),  
seepage velocity (v) and amount of flow (q) can be computed as follows:

i h
l

h
N l

v k i kh
N l

q l kh
N l

l l

d

d

d

= =
×

= × =
×

= × ×
×

=

∆

∆

1 1

1

2

1

1 21( )  as  then ∆∆q kh
Nd

=

Thus, the total seepage flow can be computed considering the number of flow channels (Nf) 
as follows:

q kh
N
N
f

d

=  � (4.11)

Figure 4.9  Flow net describing the flow under a sheet pile.
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Worked-out example 4.1: During a constant head permeameter test, a flow of 173 ml was 
measured in 5 minutes. A sample of sand having a diameter of 100 mm was tested, and a head 
difference of 0.61 m was measured between the tapping point (inlet and outlet) located 0.2 m 
apart. Calculate the permeability of the sand.

Solution: From Darcy’s law, we have q= Aki. Rearranging for permeability (k), we can 
obtain

k q
Ai

=

Using the information given:

q =
× ×

= × −173

5 60 10
5 76 10

6

7. m /s3

Note conversion to SI units (meters and seconds).

A =
×

= × −0 1

4
7 85 10

2
3 2.

.
π

m

i dh
dl

= = =
0 61

0 2
3 05

.

.
. m

Then

k = ×
× ×

−

−

5 76 10

7 85 10 3 05

7

3

.

. .
 or k = × −2 4 10 5. m/s

Worked-out example 4.2: A falling head test was conducted on a silty sand having an initial 
hydraulic head of 900 mm, final head of 400 mm, and 120 seconds was required for the water 
level in the standpipe to fall. The diameter of the standpipe is 20 mm and the sample diameter 
is 100 mm and length 180 mm. Calculate the permeability of the soil.

Solution:
From Darcy’s law, we have

q Aki=

In a falling head test (Fig. 4.1b), the hydraulic gradient will change with time due to the 
variation of the hydraulic head. Thus the flow rate (q) in the previous equation needs to be 
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integrated on the time domain to account for the drop in head in the standpipe having a cross-
sectional area of a. In the following equation, the flow rate is represented as a function of the 
cross-sectional area of the standpipe and the hydraulic head variation (dh) over a given time 
period (dt), as follows:

a dh
dt

Ak h
l

−
=

Rearranging, − =a dh
h

Ak
al
dt  on integration over the initial and final head and the time inter-

val, we obtain

− =∫ ∫
dh
h

Ak
al

dt
h

h

t

t

1

2

1

2

− = −ln ( )
h
h
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al
t t2

1

2 1  or ln ( )
h
h

Ak
al
t t1

2

2 1= −

Note: − = − −[ ] = − =ln( / ) ln( ) ln( ) ln( ) ln( ) ln( / )h h h h h h h h2 1 1 2 2 1 1 2

Rearranging for permeability, we obtain

k al h h
A t t

=
−

ln( / )

( )

1 2

2 1

Using the information given:
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= × −0 02
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Then

k al h h
A t t

=
−

=
× ×

× ×

−

−

ln( / )

( )

. . ln( . / . )

.

1 2

2 1

4

3

3 14 10 0 18 0 9 0 4

7 85 10 1220
4 87 10 5= × −. m/s

Worked-out example 4.3: A site investigation conducted for a large excavation detected a 
5-m-thick layer of clay resting on a 5-m-thick layer of sand, which was underlain by a bed of 
thick shale. In order to determine the permeability of the sand, a well was driven to the top 
of the shale and water pumped out at the rate of 10 × 10–3 m3/s. Two observation boreholes 
were driven through the clay at 15 m and 30 m from the centerline of the well. The water 
level in these two boreholes was measured, and it was found to be 2 m and 1 m below the 
ground surface for the borehole located at 15 m and 30 m away, respectively. Calculate the 
coefficient of permeability of the sand assuming Darcy’s law.

Solution: The profile described can be simplified as in Figure 4.10.

Sand

Clay

5m

5m

Shale

Excava�on

15m
30m

2m 1m

Figure 4.10  Simplified profile for worked-out example 4.3.

From Darcy’s law using the confined aquifer equation derived earlier, we have:

k
q ln R

R
H H H

=











−

2

1

2 12π ( )

Using the information given, then:

q
H
H
H
R R

=
=
= − =
= − =
= =

× −10 10

5

10 2 8

10 1 9

15 30

3
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Then:

k =
×

−( )
= ×

−

−
10 10

30

15

2 5 9 8
2 2 10

3

4

ln

m/s
π

.

Worked-out example 4.4: A sheet pile wall is driven to a depth of 2 m into a layer of 
sand having a permeability of 6 × 10–3 m/s, which extends to a depth of 3 m below ground 
level. Below, there is a layer of clay of very low permeability that may be considered 
impermeable. The wall will impound on one side 1.5 m of water above the level surface 
of the sand.

a.	 Draw the flow net assuming the soil is isotropic.
b.	 Determine the approximate seepage flow under the sheet pile wall.

Solution:
a.	 The ground profile described may be illustrated as shown in Figure 4.11.

Figure 4.11  Simplified profile for worked-out example 4.4.

The flow lines start and finish at right angles to inlet and outlet surfaces, and equipotential 
lines start and finish at right angles to impermeable surfaces. A few trial flow lines can be 
sketched, and these will be smooth curves roughly parallel to the impermeable surfaces as 
illustrated in Figure 4.12.
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1.5 m

3.0 m

Flow lines

Equipotential lines

Figure 4.12  Flow net illustration for worked-out example 4.4.

b.	 Once the flow net is draw, the seepage flow may be calculated considering the geometry 
of the flow net as follows:

q kh
N
N
f

d

=

Where

k
h
N
N
f

d

=
=
=

=

× −6 10

1 5

3

8

3 m/s

m.
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then q = × × = ×× − −6 10 101 5
3

8
3 43 3 3. . m /s

Worked-out example 4.5: Figure  4.13 shows the cross-section diagram of a concrete dam 
spillway built on a pervious soil of 23 m thickness. In flood conditions, it is expected that the 
impounded water height will reach 19 m and overflow to a height of 6 m on the downstream side.

IMPERVIOUS

23 m

9 m

Difference in head = 13 m

Isotropic pervious soil, k = 20 x 10-8 m/s

36 m

6 m
19 m

Figure 4.13  Simplified profile of a concrete dam spillway.

a.	 Draw the flow net assuming the soil is isotropic.
b.	 Calculate the rate of seepage flow under the dam and the uplift pressure on the base.

Solution:
a.	 The flow lines start and finish at right angles to inlet and outlet surfaces, and equipotential 

lines start and finish at right angles to impermeable surfaces. A few trial flow lines can be 
sketched, and these will be smooth curves roughly parallel to the impermeable surfaces.

The complete flow line may be represented as shown in Figure 4.14.

Figure 4.14  Flow net for worked-out example 4.5.
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b.	 For the flow net represented earlier, we have Nd= 16 and Nf= 4, then

q kh
N
N
f

d

= = × × = ×× − −20 10 1013
4

16
658 8 3m /s per m run of the dam.

For calculating the uplift pressure, the pressure drop throughout the length of the dam needs 
to be considered. The pressure drop between two successive equipotential lines can be com-
puted as follows:

∆h h
Nd

= = =
13

16
0 81. m

At the upstream base of the dam, the head is 19 m, thus resulting in an uplift pressure of

hw w× = × =γ 19 9 81 186 4. . kPa

As the flow moves through different equipotentials, there will be a reduction of the pressure 
directly proportional to the number of drops. The uplift points are shown in Figure 4.15, and 
associated calculations are tabulated in Table 4.2.

Figure 4.15  Flow net with uplift points.

Table 4.2 Calculation of the points noted in Figure 4.15.

Point Number of drops Water head (hw) Uplift pressure (kPa)
hw w×γ  

A  6 19-6×0.81=14.1�m 138.32
B  7 19-7×0.81=13.3�m 130.5
C  8 19-8×0.81=12.5�m 122.6
D  9 19-9×0.81=11.7�m 114.8
E 10 19-9×0.81=11.7�m 106.9
F 11 19-11×0.81=10.1�m  99.1
G 12 19 -12×0.81=9.3�m  91.2
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In the ground, any element of soil will be in equilibrium under normal and shear stresses, 
acting on three orthogonal axes, x, y and z. These equilibrium stresses will be altered when a 
load or pressure is applied from the foundation to the underlain soil layer. In most of the geo-
technical application, the vertical stress distribution with depth is important to determine the 
bearing capacity and settlement of foundation. This chapter gives a summary of the methods 
for the calculation of vertical stress and deformation using theory of elasticity.

5.1  Stresses due to a point load

Boussinesq (1885) determined the solutions to the point load (Q) applied on the surface on a 
semi-infinite, homogenous, isotropic material with linear stress strain relationship.

The vertical stress (σ z) at a point A (see Fig. 5.1) is given by:

σ z p
Q
z
I= 2  � (5.1)

The influence factor Ip depends on the radial distance (r) and depth (z).

I
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z
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Chapter 5

Elastic stress and deformation 
analysis

Figure 5.1  Stresses at point A from a point load.
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Alternately, Figure 5.2 can be used to calculate Ip.

5.2  Stresses due to line load

The vertical stress σ z( )  beneath a line load per unit length (Q/m) on the surface of the 
ground level (see Fig. 5.3) is given with respect to the depth (z) and horizontal distance (x) 
is [Fig. 5.3]:

σ
πz
Q z

x z
=

+( )














2 3

2 2
2

 � (5.3)

The lateral stress σ x( )  is given by:

σ
πx
Q x z

x z
=

+( )












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2 2

2 2 2  � (5.4)
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Figure 5.2  Variation of Ip with r/z.
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5.3  Stresses due to a uniformly loaded area

Generally, a uniformly applied load can be represented as a large number of point loads. There-
fore, integration of the Boussinesq equations will give the stress under a uniform pressure.

5.3.1  Stresses due to uniform strip load

The vertical ( )σ z  and horizontal stress ( )σ x  at point A due to uniform pressure q in terms of 
angles α and β (radians) is given by (see Fig. 5.4):

σ
π

α α α βz
q

= + +( ) ⋅sin cos 2  � (5.5)

σ
π

α α α βx
q

= − +( ) ⋅sin cos 2  � (5.6)

σz

σx

z

x

Q/m
GL

A

Figure 5.3  Stresses at point A due to line load.

σz

z

q GL

Aσx

B

α β

Figure 5.4  Stresses at point A due to uniformly loaded area.
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Lines or contours of equal vertical stresses can be plotted using these equations. The zone 
lying inside the vertical stress contour of 0.2q is considered a bulb of pressure.

5.3.2  Stresses due to triangular strip load

The vertical (σz) and horizontal stress (σx) at point A due to uniform pressure q in terms of 
angles α and β (radians)and length R1 and R2 is given by (see Fig. 5.5):

σ
π

α βz
q x
B

= −





1

2
2sin  � (5.7)
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2

2
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2
2sin  � (5.8)

5.3.3  Stresses due to uniformly loaded circular area

The vertical ( )σ z  at point A (depth z) due to uniform pressure q is given by:

σ z cqI=

The influence factor, Ic, is given in terms of radius (R) and depth (z).

I
R
z
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Figure 5.5  Stresses at point A due to uniformly loaded triangular area.
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Alternatively, Figure 5.6 can be used to calculate Ic.

5.3.4  Stresses due to uniformly loaded rectangular area

The vertical stress at a depth z under a corner of a flexible rectangular area of dimensions mz
and nz supporting a uniform pressure q is given by:

σ z qrqI=  � (5.10)

The influence factor Iqr depend on the length (L) and breadth (B) of the loaded area.  
Figure 5.7 shows the variation of Iqr with m and n.

5.4 � Vertical stress computation using 
Newmark Chart

The influence chart prepared by Newmark based on the Boussinesq solution can be used to 
calculate the vertical stress at any point beneath the loaded area of any shape. In the chart 
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Figure 5.6  Variation of Ic with R/z.
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shown in Figure 5.8, each influence value is 0.005, and each influence block represents a 
vertical stress of 0.005q.

1.	 Draw the loaded area on a tracing paper such that the length of the scale line equals the 
depth z where the stress is required.

2.	 Position the drawing on the chart such that the point at which the vertical stress required 
is at the center of the chart.

3.	 Count the number of blocks N covered by the loaded area.
4.	 The vertical stress can then be computed using the equation:

σ z N q= ⋅0 005.

Figure 5.7 � Variation of Iqr with m and n (after Knappett and Craig, 2012, reproduced with 
permission from CRC Press).
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5.5  Elastic deformations

Elastic theory can be used to predict the vertical deformation beneath an area carrying a 
uniform pressure q. It is assumed that soil mass is semi-infinite, homogenous and isotropic, 
with a linear stress–strain relationship. The vertical deformation on the surface of a flexible 
loaded area can be expressed as:

s q B
E

Ii s= −( )⋅
1 2ϑ  � (5.11)

Figure 5.8  Newmark’s influence chart (modified after Newmark, 1942).
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Where B is the least width or diameter of the foundation, E is the modulus of elasticity, ϑ is 
the Poisson’s ratio.
The influence factor, Is, is the influence factor depends on the shape of the loaded area (see 

Table 5.1).

Generally, the soil deposit will be of limited thickness and will be underlain by very stiff or 
hard stratum. For these cases, the average vertical settlement beneath a flexible area carrying 
a uniform pressure q can be computed using the Giroud (1972) and Burland (1970) equations:

s q B
Ei =
⋅

µ µ0 1  � (5.12)

Where μ0 and μ1 are coefficients depends on the depth and breadth of the foundation and also 
depends on the layer thickness; B is the least width or diameter of the foundation, E is the 
modulus of elasticity. Figure 5.9 gives the value of μ0 and μ1 for Poisson’s ratio (ϑ) of 0.5.

Table 5.1  Is

Shape of the area Is

Center Corner Average

Square 1.12 0.56 0.95
Rectangle (L/B = 2) 1.52 0.76 1.30
Rectangle (L/B = 5) 2.10 1.05 1.83
Circle 1.00 0.64 0.85

 for vertical deformation under flexible area carrying uniform pressure.

Figure 5.9 � Coefficient of vertical displacement μ0 and μ1 for Poisson’s ratio (ν = 0.5) (after 
Knappett and Craig, 2012, reproduced with permission from CRC Press).



Elastic stress and deformation analysis  77

Eq.5.12 provides an estimate of immediate settlement of foundation resting on saturated 
clays. Immediate settlement occurs mainly under undrained conditions; therefore, the appro-
priate value of ϑ is 0.5. Appropriate field or laboratory testing can be used to determine the 
modulus of elasticity (E) of the soil (e.g. pressuremeter test, triaxial test).

Worked-out example 5.1: A concentrated load of 850 kN is applied at the ground surface. 
Calculate the vertical stress (a) at a depth 4 m directly below the load (b) at a radial distance 
of 2 m for a depth of 6 m from the load.

Solution:
a.	 At a depth 4 m directly below the load (r = 0):

Q = 850 kN  
r
z

= 0

From Figure 5.2, I p = 0 48.

σ z p
Q
z
I= = × =

2 2

850

4
0 48 25 5. . kPa

b.	 r = 2 m and z = 6 m

From Figure 5.2, I p = 0 36. . 

σ z p
Q
z
I= = × =

2 2

850

6
0 36 8 5. . kPa

Worked-out example 5.2: Determine the vertical stress under the point A below a rectan-
gular area 4 m × 8 m (see Fig. 5.10) at a depth of 6 m from the ground level. This area is 
subjected to a uniform pressure of 200 kN/m2.

6 m2 m

2 m 1 2

2 m

A

3 4

Figure 5.10  Diagram for worked-out example 5.2.
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Solution:

σ z rqI=

Area 1: 2 m × 2 m

mz = 2

m = =
2

6
0 33.

nz = 2;

n = =
2

6
0 33.

From Figure 5.7, Ir = 0 045. . 

Area 2: 6 m × 2 m

mz = 2

m = =
2

6
0 33.

nz = 6;

n = =
6

6
1

From Figure 5.7, Ir = 0 085. . 

Area 3: 2 m × 2 m

mz = 2

m = =
2

6
0 33.

nz = 2;

n = =
2

6
0 33.

From Figure 5.7, Ir = 0 045. . 

Area 4: 6 m × 2 m

mz = 2

m = =
2

6
0 33.

nz = 6



Elastic stress and deformation analysis  79

n = =
6

6
1

From Figure 5.7, Ir = 0 085. . 

σ z r r r rq I I I I= + + +( ) = × × + ×( ) =
1 2 3 4

200 2 0 045 2 0 085 52. . kPa

Worked-out example 5.3: A 3 m wide strip footing with a uniform pressure of 150 kPa is 
founded on the surface of granular soil deposit. The water table is at the ground surface. 
Determine the effective vertical and lateral stresses at a point 4 m below the center of the 
footing before and after the application of the load. The saturated unit weight of the soil is 
19.5 kN/m3, and K0 = 0.5.

Solution:
After loading:
At a point 4 m below the center of the footing:

α = 





 =

−2
1 5

4
0 721tan radians

.
.

sinα = 0 657.

β = −0 36.

∆ = + +( )  = +[ ] =⋅σ
π

α α α β
πz

q
sin cos kPa2

150
0 72 0 657 66. .

∆ = − +( )  = −[ ] =⋅σ
π

α α α β
πx

q
sin cos kPa2

150
0 72 0 657 3. .

Before loading:

σ z
' . .= × =4 9 69 38 76   kPa

σ x
' . . .= × =0 5 38 76 19 38 kPa

Therefore,

σ z
' . .= + =38 76 66 104 76 kPa

σ x
' . .= + =19 38 3 22 38 kPa

Worked-out example 5.4: A pressure of 40 kPa is uniformly distributed over the area as 
shown in Figure 5.11. Determine the vertical stress at 3 m below point A using influence 
factors and Newmark’s chart.
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Solution:

Method 1: using influence factors

By dividing the footing into three regions 1, 2 and 3 (Fig. 5.11) with area 2 m × 2 m,

mz = 2

m = =
2

3
0 67.

nz = 2;

n = =
2

3
0 67.

From Figure 5.7, Ir = 0 13. . 

σ z r r rq I I I= + +( ) = × ×( ) =
1 2 3

40 3 0 13 16. kPa

Method 2: using Newmark’s Chart

As presented in Figure 5.8, draw Figure 5.11 on tracing paper to a scale line equals the depth 
(say 3 m). Position the diagram such way that the point A coincides with the center of the 
chart. Count the number of influence area covered by the diagram, N ≅ 85. Then,

σ z N q= × × = × × =0 005 0 005 85 40 17. . kPa

Worked- out example 5.5: A square foundation having dimensions 5 m ×5 m exerts a uni-
form pressure of 150 kPa on a semi- infinite saturated soil (E = 40 MPa). Determine the value 
of immediate settlement at the center of the foundation (assume ϑ  = 0.5).

2 m

4 m

4 m

1

2 3
A

Figure 5.11  Diagram for worked-out example 5.4.
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Solution:

s q B
E

Ii s= −( )⋅
1 2ϑ

From Table 5.1, Is =1 12. . 

si =
×

×
−( ) =

150 5

40 10
1 0 5 1 12 15 75

3

2. . . mm

Worked-out example 5.6: A rectangular foundation 3 m ×1.5 mis located at a depth of 2 m 
in a layer of clay of 6 m deep and underlain by a hard stratum. It carries a uniform pressure 
of 100 kPa. The clay is saturated, and the value of Eu is 40 MN/m2. Determine the average 
immediate settlement under the foundation.

Solution:

s q B
Ei =
⋅

µ µ0 1

d
B
= =

2

1 5
1 33

.
.  From Figure 5.9, µ0 0 92= .

H
B
= =

4

1 5
2 67

.
.  From Figure 5.9, µ1 0 60= .

L
B
= =

3

1 5
2

.

s q B
Ei = = × ×

×
×

=
⋅

µ µ0 1 3
0 92 0 6

100 1 5

40 10
2 1. .

.
. mm

Worked-out example 5.7: A flexible foundation 2.5 m square is to carry a uniformly dis-
tributed load of 250 kN. The foundation is founded at a depth of 3 m below the surface of 
the clay. The value of E obtained from the triaxial compression test is 18 MPa. The clay 
stratum is 10 m deep and underlain by a thick dense sandy gravel (assume clay is saturated 
and ν = 0.5).

Solution:
d
B
= =

3

2 5
1 2

.
.  From Figure 5.9, µ0 0 91= .

H
B
= =

7

2 5
2 8

.
.  From Figure 5.9, µ1 0 55= .

L
B
= =

2 5

2 5
1

.

.

s q B
Ei = = × ×

×
×

=
⋅

µ µ0 1 3
0 91 0 55

250 2 5

18 10
17 37. .

.
. mm
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Chapter 6

Consolidation settlement 
and analysis

When a saturated soil layer is subjected to an increase in load from a foundation, the soil 
layer experiences a corresponding increase in pore water pressure. The dissipation rate of 
excess pore water pressure depends on the permeability of the soils. The dissipation of pore 
water  pressure  can  be  rapid  for  coarse- grained  soil  (gravel  and  sand)  and  slow  for  fine- 
grained soils (clay and silts). The dissipation of pore pressure and associated drainage of 
water can lead to a compression of the soil layer. This time-dependent  process of volume 
reduction due to the expulsion of water from the voids is defined as consolidation. The pro-
cess describing the dissipation of excess pore water pressure and associated settlement can 
be captured using consolidation theory.
The one- dimensional consolidation theory proposed by Terzaghi (1925) is widely used for 

estimating the consolidation settlements of soils.

6.1  Consolidation settlement

One-dimensional consolidation tests (oedometer test) are generally performed to deter-
mine stress–strain behavior in confined compression (no lateral deformation) and to 
obtain associated consolidation parameters to estimate the consolidation settlement and 
time.
The volume change (∆V) can be determined using the change in height (∆H) or change in 

void ratio (∆e) (Fig. 6.1),

∆
=
∆

=
∆
+

V
V

H
H

e
e1 0

 � (6.1)

where e0 is the initial void ratio of the soil sample.
The consolidation settlement (sc) can be calculated using the change in void ratio as

s m Hc v= ∆σ '  � (6.2)

where mv is the coefficient of volume compressibility, ∆ ′σ  is the change in the effective 
stress and H is the initial soil layer thickness.
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6.2  Preconsolidation pressure

Preconsolidation pressure is defined as the maximum pressure the soil has experienced in the 
past. A careful evaluation of preconsolidation pressure is important for the computation of 
consolidation settlement. An estimate on the preconsolidation pressure can be obtained from 
the graphical procedure proposed by Casagrande (1936). The pressure can also be used as a 
limiting pressure for controlling long term settlements in overconsolidated soils.

6.3  Overconsolidation ratio

The overconsolidation ratio (OCR) is defined as the ratio of the past maximum pressure (σ '0)  
on the soil to the current pressure σ '1( ). This ratio also provides an assessment on the degree 
of overconsolidation.

OCR =σ σ' '0 1/  � (6.3)

Normally consolidated soil: If the pressure the soils was exposed to in the past is equal to 
the current pressure σ '0  =  σ '1( ), then OCR = 1. The consolidation settlement can be deter-
mined from Eq. 6.4. The value of compression index (cc) can be determined from the e-log 
σ 'v  data obtained from the laboratory experiments (see Fig. 6.2).

s
c
e
Hlogc

c=
+1 0

1

0

σ
σ
'
'

 � (6.4)

Skempton (1944) suggested an empirical relationship between compression index (Cc) 
and liquid limit (wL) :

For undisturbed clays c wc L= −( )0 009 10.  � (6.5)

For remoulded clays c wc L= −( )0 007 10.  � (6.6)

Figure 6.1  Soil sample during consolidation.
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Overconsolidated soil: If the past pressure is greater than current pressure (σ'0 >σ'1), then 
OCR > 1. The consolidation settlement in this state can be determined from Eq. 6.7. The 
value of recompression index (Cr) can be determined from the e−log σ′v data obtained from 
the laboratory experiments (see Fig. 6.3):

s c
e
Hlogc

r=
+1 0

1

0

σ
σ
'
'
 � (6.7)

6.4  Rate of consolidation settlement

The classical theory proposed by Terzaghi (1925) can be effectively used for estimating the 
rate of consolidation. Many key assumptions have been considered for the development of 
the one-dimensional consolidation theory.
The differential equation for consolidation relating to excess pore water pressure (u), 

depth (z) and time (t) can be written as:

∂
∂

=
∂
∂

u
t
c u
zv

2

2  � (6.8)

where cv is the coefficient of consolidation given by the ratio k/(γwmv ) and k is the permeabil-
ity of soil, mv is the coefficient of volume compressibility and γw is the unit weight of water.

�e

e0

e1

�'1�'0

Recompression curve

log �'v

e

Preconsolidation pressure

�'p

cc=
∆e

log
σ'1
σ'0

cc Compression index

Figure 6.2  Plot of e - log σv for normally consolidated soil.
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cr Reompression index

�ee0
e1

�'1�'0

Recompression curve

log �'v

e

Preconsolidation pressure

�'p

cr=
∆e

log
σ'1
σ'0

Figure 6.3  Plot of e−log σ′v for overconsolidated soil.

The relationship between average degree of consolidation (U) and dimensionless time 
factor (Tv) can be shown as

U
S
S M

et M T

m

m
v= = − −

=

=∞

∑1
2

2
0

2

 � (6.9)

Where U is average degree of consolidation, St is settlement at any time t, S is ultimate set-
tlement of the layer from primary consolidation, M = (π/2) (2 m + 1), and m is an integer.

T
c t
dv
v= 2  � (6.10)

Where d is the drainage depth. It represents the maximum distance water molecules have 
to travel to escape from the soil layer. For an open layer (drainage occurs at the top and 
bottom of the soil layer), d is half the thickness of the soil layer, and for a half-closed 
layer (drainage occurs at either the top or bottom of the soil layer), d is the total thickness 
of the soil layer.
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Approximate relationship between average degree of consolidation (U) and time factor 
(Tv; Fig. 6.4) can be obtained from:

For U to Tv U
= = 






0 60

4 100

2

%
%π  � (6.11a)

For U T Uv> = − −60 1 781 0 933 100% . . log( %)  � (6.11b)

The coefficient of consolidation cv is an important parameter for estimating the rate of set-
tlement. It can be determined from the consolidation test data using the curve-fitting methods 
proposed by Taylor (1942) or Casagrande and Fadum (1940).

6.5  Secondary compression of clays

Compression in soils does not cease after the complete dissipation of excess pore water 
pressure developed during loading (i.e. at the end of primary compression). However, 
it continues at a decreased rate at constant effective stress due to the soil particle read-
justment. This soil readjustment is mainly due to the viscous flow of adsorbed water 
surrounding the soil particle. The compression of soil at this stage of the consolidation 
process is referred to as secondary compression or creep (Fig. 6.5). For high-plastic clays 
and organic clays (e.g. peat), secondary compression will be significant compared to the 
primary compression.
The coefficient of secondary compression (Cα) is defined as the ratio of the change in void 

ratio (Δe) per log cycle of time (log t) scale.

C e
tα =

∆
∆ log

 � (6.12)
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Figure 6.4  Relationship between average degree of consolidation and time factor.
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Primary 
consolidation Secondary 

consolidation

Cα
1

tc

tc = time at the end of 
primary consolidation

log time 

Vo
id

 ra
tio

ec

Figure 6.5  Void ratio versus log time plot – secondary compression.

Mesri and Godlewski (1977) have suggested the ratio of 
C
Cc
α  in the range of 0.025–0.10 for 

natural soils.
The amount of secondary compression can be calculated from:

s C H log t
ts e c
c

=








α � �  � (6.13)

Where C eα  is called modified secondary compression index = +
C
ec
α

1
; Hc is the thickness of the 

clay layer at the end of primary consolidation; ec is the void ratio at the end of primary consoli-
dation (e0 can also be used without any loss of accuracy); tc is the time at the end of primary 
consolidation. Figure 6.6 shows the modified secondary compression index for natural deposits.

Worked-out example 6.1: A normally consolidated clay stratum 10 m thick is located at 
a depth 15 m below ground level. The soil is sand above the clay stratum. The water table 
is located 10 m below the ground level. The submerged unit weight of the sand ( �γ sub) is 
12 kN/m3 and the unit weight is 18 kN/m3 above the water table. The increase in pressure 
at the center of the clay stratum is 150 kN/m2 due to the weight of a building. Estimate the 
expected ultimate settlement of the structure due to primary consolidation.

Properties of the clay layer:
Natural moisture content: 45%
Liquid limit: 52%
Specific gravity: 2.77

Solution:
The ground profile is shown in Figure 6.7.
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Figure 6.6  Modified secondary compression index, Cαe (modified after Mesri, 1973).

∇

10 m

10 m
Sand

Clay

GL

15 m

γ = 18kN/m3

γ
sub

 = 12kN/m3

Figure 6.7  Profile for worked-out example 6.1.

Settlement for normally consolidated soil:

S
c
e
Hc

C=
+











1 0

1

0

log
|

|

σ
σ

c wC L= −( )0 009 10.  from Eq. 6.5
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cC = −( )0 009 52 10.

cC = 0 38.

Clay

e wG= = × =0 45 2 77 1 25. . .  γsat =
+
+









G e
e W

1
γ

γ Sat =
+

+








2 77 1 25

1 1 25
9 81

. .

.
.

γ Sat =17 52. kN/m3

At z = 20 m from GL:

Initial condition:

σ 0 10 18 12 5 17 52 9 81 5' = ×( ) + ×( ) + −( )×( ). .

σ 0 278 55' = . kPa

Considering the pressure from the weight of the building:

σ 0 10 18 12 5 17 52 9 81 5 150' = × + × + − × +( ) ( ) (( . . ) )

σ1 240 188 55' = + .

σ1 428 55' = . kPa

Sc = +
× × 








0 38

1 1 25
10

428 55

278 55

.

.
log

.

.

Sc = 0 32. m

Worked-out example 6.2: The results obtained from a consolidation testing of a fully satu-
rated clay sample are given in Table 6.1. Determine the void ratio corresponding to each 
pressure increment and plot void ratio versus log σ′v. Calculate compression index cc and 
pre-consolidation pressure (σp).

Initial thickness (H0) = 20 mm
Final moisture content = 26%
Specific gravity of clay particles = 2.76
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Solution:
Compute final void ratio:

e W G1 1= � �

e1 0 26 2 76 0 72= × =. . .

Void ratio at the start of the test:

e e e0 1= + ∆

∆ =
∆

+e eH

H0

01( )

∆ = + + ∆e e e1 4

20
1 1

.
( )

∆ = + + ∆e e1 4

20
1 0 72

.
( . )

∆ =e 0 13.

e e e0 1 0 72 0 13 0 85= + ∆ = + =. . .

∆
∆

= =
e
H

1 85

20
0 093

.
.

A detailed solution for all pressure increment is presented in Table 6.2.
Compression index (Cc) in the stress range on the linear part of the e-log σv. plot:

Compression index, c e

log
c =

∆
σ
σ
'
'
1

0

 = 0.166

Using the graphical procedure proposed by Casagrande (1936); refer to Section 6.2:
Preconsolidation pressure (σp) = 167 kPa

Table 6.1 Data for worked- out example 6.2.

Applied pressure (kPa) Thickness of 
specimen (mm)

  0 20.00
 25 19.79
 50 19.73
100 19.5
200 19.26
400 18.72
800 18.2
  0 18.6
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Worked-out example 6.3: A highway embankment is 6 m above the existing ground level. 
The ground layer is a soft clay deposit of 10 m thick. The clay soil has an mv = 0.62 m

2/MN 
and cv = 9.5 m

2/year. If the tolerable settlement is 50 mm for the road pavement, then estimate 
time for placing the pavement. (Assume bulk unit weight of embankment = 21 kN/m3.) Assume 
sand layer below the soft clay deposit.

Table 6.2 Solution of worked- out example 6.2.

Pressure (kPa) ∆σ H (mm) ∆H (mm) ∆e e

  0 20 0.85
25 –0.21 –0.02

 25 19.79 0.83
25 –0.06 –0.006

 50 19.73 0.82
50 –0.23 –0.021

100 19.5 0.80
100 –0.24 –0.022

200 19.26 0.78
200 –0.54 –0.050

400 18.72 0.73
400 –0.52 –0.048

800 18.2 0.68
 0.4 0.037

  0 18.6 0.72

0.6

0.65

0.7

0.75

0.8

0.85

10 100 1000

Vo
id

 ra
tio

, e

� 'v (kPa)
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Figure 6.8  Plot of void ratio versus log σv.
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Solution: The ground profile is illustrated in Figure 6.9. The amount of consolidation settle-
ment can be computed using Eq. 6.2:

S m HC V= ∆� � � σ

∆ = ×σ 6 21

∆ =σ 126 kPa

SC = × × ×
0 62

10
10 126 10

6

3.

SC = 0 78. m

To ensure 6-m-high embankment, the amount of fill should be (6 + Sc) m.

S SC C= +( )× × ×
0 62

10
6 10 21 10

6

3.

S SC C= +[ ]10

10
78 12 13 02

3
. .

S SC C= +0 7812 0 1302. .

0 87 0 7812. .SC =

SC = 0 90. m

Degree of consolidation during the placement of the pavement should be:

U =
−

=
900 50

900
0 94.

6 m

10 m

mV=0.62 m2/MN

CV=9.5 m2/year

Figure 6.9  Profile for worked-out example 6.3.
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From Eq. 6.11:

T UV = − −( )1 781 0 933 100. . log %

TV =1 05.

t Td
CV

=
2

t = ×1 05 5

9 5

2.

.

t = 2 76. Years

Worked-out example 6.4: A pressure of 50 kPa was applied to a clay layer of 10 m thick. The 
water table is at the ground level. Determine the excess pore water pressure at the middle of the 
clay layer after 6 months assuming the load was applied instantaneously. The cv value of clay is 
12 m2/yr. Assume impermeable stratum below the clay layer and bulk unit weight of 21 kN/m3.

Solution:
Hydrostatic pore water pressure before placing the fill = 5 × 9.81= 49.05 kPa
Effective stress (initial) = 21 × 5–5 × 9.81 = 55.95 kPa
Excess pore pressure at the middle of clay layers = 50 kPa.
After 6 months,

TV =
×
×

12 6

10 122

TV = 0 06.

Using Eq.6.10: �T UV =
π
4

2  

 U = 0.28
Excess pore water pressure dissipated �= 50 × 0.28 

= 14 kPa
Excess pore water pressure remaining �= 50 × 0.72 

= 36 kPa
Pore pressure in the middle of the clay at this time �= 49.05  +  36  

= 85.05 kPa

Worked-out example 6.5: In a consolidation test, a fully saturated clay specimen of 20 mm 
thick reaches 50% degree of consolidation in 18 min. How long would it take an 8-m thick 
layer of clay to reach the same degree of consolidation? Assume the same stress and bound-
ary condition.
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Solution: Consolidation tests are generally conducted with two-way drainage and thus drain-
age path in the consolidation test:

d =
× −20 10

2

3

d = 10 × 10−3 m

c
T d
tV
v=

2

T d
t

T d
t

lab lab

lab

f f

f

2

= � � �

10 10

18

4
3

2 2×( )
=
( )−

t f

t f =
×( )

×( )−

16 18

10 10 3
2

t f = 2880000minutes

t f = 5 5. years

Worked-out example 6.6: Determine the magnitude of secondary compression of an 
embankment constructed on soft high plastic clay for a period of 10 years. The secondary 
compression index (C eα ) = 1.6%. The high-plastic clay layer is 9 m thick. Assume tc is 1 year 
and negligible primary compression settlement.

Solution:
H’ = 9.0 m assuming negligible primary consolidation

s C H log t
ts e c
c

=








α �

s logs = × × 





0 016 9

10

1
.

ss = 144 mm

Worked-out example 6.7: An embankment is planned to be constructed on organic clay 
having a thickness of 5 m. The initial void ratio and compression index of the clay is 0.75 and 
0.6, respectively. Estimated time for completing the primary consolidation is 1.3 years. Cal-
culate the total settlement of the clay 7 years after the completion of primary consolidation. 
The average effective pressure on the clay layer (σ′0) = 100 kPa and ∆σ′ = 25 kPa. Assume 
secondary compression index (C eα ) =1.6%.
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Solution:
The void ratio at the end of primary compression ec:

e e ec c= − ∆0

∆ =
+ ∆







 = ×

+




=′

′
e C log logc

o

o

σ σ
σ

'

' 0 6
100 25

100
0 058. .

Therefore,

e e ec c= − ∆ = − =0 0 75 0 058 0 7. . .

The amount of primary compression:

s e H
ec =

∆
+

=
×

+
=

1

0 058 5

1 0 75
0 17

0

.

.
. m

H H sc c= − = − =5 0 17 4 83. . m

The amount of secondary compression:

s C H log t
t

logs e c
c

=








 = × × 






 =α 0 016 4 83

7

1
0 063. . . m

The total consolidation settlement = 0.17  +  0.056 = 0.226 m.
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Chapter 7

Shear strength, stress paths 
and failure

This chapter focuses on the evaluation of shear strength parameters from results of tests and 
their relationship between the shear stress parameter for different drainage conditions.

7.1  Mohr-Coulomb model

The strength of a soil depends on its resistance to shearing stresses that is provided by the 
friction at the particle contacts and cohesive resistance for clay soil under certain conditions. 
In general, the state of stress in an element of soil can be defined in terms of normal and shear 
stresses applied at the boundaries, which can be represented in a Mohr circle (Fig. 7.1). The 
circle can be used to capture all possible stress states in the soil element. At point P where 
the circle intersects the failure envelope indicates that the soil has reached failure. Typically 
the failure envelope can be represented by a straight line, as follows:

τ σ φ= +c tan  � (7.1)

where c and ϕ are the shear strength parameters, i.e. cohesion intercept and angle of shearing 
resistance, respectively. As illustrated in Figure 7.1, there is a relationship between the plane 
defined by 2θ = 90° + ϕ in the diagram and the plane θ in the soil element.

The coordinates of point P or the stresses on Failure Plane AB can be defined using trigo-
nometry as follows:

σ
σ σ σ σ

θn =
+

+
−1 3 1 3

2 2
2cos  � (7.2)

τ
σ σ

θs =
−1 3

2
2sin  � (7.3)

and

2 90θ φ= +  � (7.4)
θ φ= +45 2 /  � (7.5)

Additional relationships can be established based on Figure 7.1 as follows:

sin
/

/ cot
φ

σ σ
σ σ φ

=
+

=
−( )

+( ) +
CP

CN NM c
1 3

1 3

2

2
 � (7.6)
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σ σ σ σ φ φ1 3 1 3 2− = +( ) +sin cosc  � (7.7)

Eq. 7.7 can be further rearranged as follows:

σ σ
φ
φ

φ
φ1 3

1

1
2

1
=

+
−









 + −

sin

sin

cos

sin
c  � (7.8)

Eq. 7.8 is often referred to as the Mohr-Coulomb failure criterion, and it defines the rela-
tionship between the principal stresses at failure for given shear strength parameters (e.g. 
c and ϕ).

In addition, given the stress state, the Mohr circles for total and effective stress have the 
same diameter but their centers are separated by the corresponding pore water pressure (u) 
magnitude. The effective principal stress can be calculated in accordance with effective stress 
relationship (σ σ' = −u).

7.2 � Laboratory tests for determining shear  
strength parameters

There are two main types of drainage conditions that can be adopted to determine the shear 
strength parameters, i.e. drained and undrained conditions. When using the results of these 
laboratory tests to analyze the behavior of geomaterials applied in construction, the main 
consideration is the ratio between the rate at which the changes in total stress and dissipation 
of pore water pressure occur. Typically, undrained conditions represent short-term analysis 
(e.g. days and a few weeks during construction), whereas drained conditions correspond to 
long-term (e.g. years and decades, during service life) analysis.

Figure 7.1 � Mohr circle representation.
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7.2.2  Triaxial test

In the triaxial test, the drainage can be controlled, and if undrained conditions are adopted, 
the test is accompanied by pore water pressure measurement. The specimens can be tested 
for different all around confining pressures, and shearing is induced by gradually increasing 
the axial load (Fig. 7.3). Both triaxial compression and extension loading modes are possible, 
albeit compression is more widely tested.

Triaxial test data may be presented in terms of Mohr circles at failure but can also be 
represented in terms of stress invariants, such that a given set of effective stress condi-
tions can be represented by a single point instead of a circle. For 3D cases, the commonly 
adopted stress invariants are mean stress invariant or p and deviatoric stress invariant or q, 
as follows:

p =
+ +σ σ σ1 2 3

3
 � (7.9)

q = −( ) + −( ) + −( )





1

2
1 2

2

2 3

2

3 1

2
1

2σ σ σ σ σ σ  � (7.10)

σ 3 σn σ1 σ

τ s

τ

φ
B

A

σ1

σ3

c

Shear box specimen

Figure 7.2 � Representation of the direct shear tests results in the τ-σ plane.

7.2.1  Direct shear tests

In this test, a number of soil specimens (minimum 3) is tested, each under different vertical 
stress (σ v), and the value of the shear stress at failure (τ f ) is plotted against the normal effect 
stress (σ ' f ) as illustrated in Figure 7.2. As there is no control on the drainage conditions, the 
specimens must be sheared using a small enough shear rate to ensure fully drained conditions 
are achieved. Only an approximation of the state of pure shear is produced in the specimens 
during these tests, and as the cross-sectional area varies during shearing, the vertical stress 
does not remain constant.
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The results of triaxial tests can be plotted either in the τ-σ, where the confining pressures 
and shearing load at failure are represented by the equivalent principal stress σ3 and σ1 Mohr 
circles, or in terms of p and q (Fig. 7.4).

Figure 7.4 � Shear strength enveloped plotted in the (a) τ-σ plane and (b) q-p plane.

Figure 7.3 �� Strains and stresses in the triaxial test: (a) principal strains, (b) cell pressure 
only and (c) principal stresses at shear failure (modified after Whitlow, 1995).

For triaxial states, Eqs. 7.9 and 7.10 can be simplified due to the axial symmetry, or σ σ2 3= , 
so that previous equations can be simplified as follows:

p =
+σ σ1 32

3
 or p '

' '
=

+σ σ1 32

3
 � (7.11)

q = −σ σ1 3  or q = −σ σ' '1 3  � (7.12)
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7.2.3  Pore pressure coefficients A and B

For undrained conditions, it is convenient to represent the variation of pore water pressure 
(Δu) associated with a change in the principal stresses (Δσ1 and Δσ3) using two pore pressure 
coefficients A and B as follows (Skempton, 1954):

∆ ∆ ∆ ∆u B A= + −( ) σ σ σ3 1 3  � (7.13)

These coefficients can be measured experimentally in an undrained triaxial test, and the vari-
ation of Δσ1 and Δσ3 adopted typically depends on the problem under consideration. Typical 
values for coefficient A is shown in Table 7.1.

The increase in effective stress that results from an increase Δσ3 for a test in partially satu-
rated soil can be represented as follows:

∆ ∆ ∆σ σ' = −3 u  � (7.14)

Considering the compressibility of the soil skeleton (Ce) and compressibility of the fluid (Cf) 
in the voids (air and water), we can express the associated volume change of the specimen 
(∆ ∆V Ve v=) and volume change of the void space (∆ ∆V Ve v= ) as:

∆ ∆ ∆V C V ue e= − −( )σ 3  � (7.15)

∆ ∆V C nV uv f= −  � (7.16)

where V is the initial volume and n represents the porosity. For undrained conditions, these 
two changes in volume are identical (∆ ∆V Ve v= ) ; hence:

− − = −C V u C nV ue f( )∆ ∆ ∆σ 3  � (7.17)

Rearranging, we can obtain:

∆
∆
u B

nC
C

f

e

σ 3

1

1

= =
+

 � (7.18)

Table 7.1 T ypical A values for different soils.

Soil type  A value

Very loose, fine sand  2–3
Sensitive clay  1.5–2.5
Normally consolidated clay  0.7–1.3
Lightly overconsolidated clay  0.3–0.7
Heavily overconsolidated clay −0.5–0.0
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For saturated soil, the compressibility of the water is very small compared to the compress-
ibility of the soil skeleton, C Cf e/  ≈ 0, and B = 1 when the degree of saturation is 1. In con-
trast for dry soil, the compressibility of the air is much larger than the compressibility of the 
soil skeleton, then C Cf e/  ≈ ∞ and B = 0.

7.3 Undrained shear strength

The undrained shear strength of a soil is typically assessed using undisturbed specimens 
tested under unconsolidated and undrained conditions. Undisturbed specimens often have 
degree of saturation (S) less than 100% (unsaturated), which indicates pore water pressure is 
negative (i.e. suction) and total stresses are zero. With an increase in confining pressure, the 
pore water pressure in the specimen is increased, and the specimen becomes fully saturated. 
At this point, any increase in confining pressure will result in an equal increase in pore water 
pressure. Therefore, the Mohr circles corresponding to multiple specimens would have the 
same size, i.e. the principal stress difference is the same (Fig. 7.5). The results are plotted in 
total stresses, and the failure envelope is typically horizontal, in which the undrained shear 
strength (Cu) is given as follows:

q
C = f

u   (7.19)
2

where q f  is the principal stress difference at failure.

7.4 Stress paths

A stress path represents the locus of points representing the change of stress state of a soil, 
and it is typically represented in the p′–q plane (analogous to s′–t plane in 2D conditions). 
The total stress path (TSP) represents the conditions of the triaxial drained tests, whereas the 
effective stress path (ESP) represents the triaxial undrained tests with pore water pressure

q = ( )σ σ' '

1 3− = −( )σ σ1 3   (7.20)

p u' /= +( )σ σ' '

1 32 3( )σ σ1 3+ 2 3/ − = p u−   (7.21)

Figure 7.5 Unconsolidated undrained tests conduc  ted for different confining pressures 
(after Knappett and Craig, 2012, reproduced with permission from CRC Press).
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a.	 Determine the apparent cohesion and the angle of friction (shearing resistance).
b.	 If another specimen is subjected to an undrained shear box test with vertical stress of 

250 kPa, what would be the shear stress for which failure is expected?
c.	 If another specimen of this soil is subjected to an undrained triaxial test with confin-

ing pressure of 150 kPa, determine the total axial stress at which the failure would be 
expected.

Solution:
a.	 The problem may be solved either analytically or graphically.

Both methods are illustrated.
Graphic method (Fig. 7.7):
Measure the angle and cohesion intercept.

Cohesion intercept: 28 kPa
Angle of friction 18.5 degrees

Table 7.2 Test results.

σv (kPa) 200 300 400
τs (kPa) 95 130 162

 �

p`

q`

U = TSP - ESP

failu
re envelope

Normally 

consolidated 

soil
C

B

A

Uf

Uf = pore pressure at failure

E
S
P

T
S
P

Figure 7.6 � Total and effective stress paths plotted in the q–p plane.

Worked-out example 7.1: A series of direct shear box tests was conducted in an undis-
turbed clay specimen under three different vertical stresses. The results obtained at failure 
are shown in Table 7.2.

measurement, in which p′ and q are adopted instead as follows and depicted in Figure 7.6.
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Analytically,
Determine the slope of the failure line.

m =
−
−

=

= °−

( )

( )
.

tan ( . ) .

162 95

400 200
0 335

0 335 18 51

Whereas the cohesion intercept can be found using equation of a line (e.g. y = mx + b):

τ σ= + ×c m

95 0 335 200= + ×c .

c = 28kPa

b.	 For a vertical stress of 250 kPa, then

τ
τ
= + ×
=

28 0 335 250

111 75

.

. kPa

c.	 From the relationship of the Mohr circle geometry, we have

σ σ
φ
φ

φ
φ1 3

1

1
2

1
=

+
−









 + −

sin

sin

cos

sin
c
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τ
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Pa
)

Figure 7.7 � Test results of worked-out example 7.1.
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Worked-out example 7.2: A drained triaxial compression test carried out on three specimens 
of the same soil yielded the results displayed in Table 7.3. Draw the shear strength envelope 
and determine the shear strength parameters, assuming that the pore pressure remains con-
stant during the axial loading stage.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

45-φ/2

σ' (kPa)

τ
(k

Pa
)

45+φ/2

Figure 7.8 � Graphical representation of worked-out example 7.1.

If kPa co   and thenσ φ
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= = =

=
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−

, .
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





 + ×

−
=2 28

18 5

1 18 5
367 2

cos .

sin .
. kPa

The graphical solution is shown in Figure 7.8.

Table 7.3 Drained tria xial compression test results.

Test no. 1 2 3

Cell pressure (kN/m2) 100 200 300
Ultimate deviator stress (kN/m2) 210 438 644

Solution: The ultimate principal stresses are obtained as follows:

Minor principal stress, σ3 = cell pressure
Major principal stress, σ1 = cell pressure + deviator stress
Since Uf = 0, σ1ʹ = σ1 and σ3ʹ = σ3
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Worked-out example 7.3: The following results were obtained from consolidated undrained 
tests on specimens of saturated normally consolidated clay (Table 7.4). Determine

a.	 the effective stress parameters c′ and ϕ′ and
b.	 the apparent undrained strength parameters c and ϕ.

Test no. 1 2 3

σ3ʹ = cell pressure (kPa) 100 200 300 Total stress = effec�ve stress

Because ∆U=0
σ1ʹ (axial stress) = Δσ + σ3ʹ 310 638 944

Graphically, results are shown in Figure 7.9.

σ1- σ3

σ3σ3

100 200 300 400 500 600 700 800 900

100

200

300

400

500

31°

σ'n

τf

c = 0

φ ’ = 31o

Figure 7.9 � Consolidated drained test-shear strength envelope.
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Solution:
a.	 Using the Mohr circle approach, three circles in terms of total stresses can be drawn. 

Calculations are shown in Table 7.5.

The coordinates for the center of the Mohr circle can be obtained (σʹ1 – σʹ3)/2 + σʹ3 whereas 
the circle radius can be obtained considering (σʹ1 – σʹ3)/2

As this is an undrained test, three circles may be represented in terms of effective stresses, 
considering Table 7.6.

σ1ʹ = σ1 – Uf
σ3ʹ = σ3 – Uf

Graphical results are shown in Figure 7.10.

a.	 cʹ = 5 kPa, ϕʹ = 18.3° (effective stress strength envelope)
b.	 c = 15 kPa, ϕ = 10.2° (total stress strength envelope)

Table 7.4 Undrained tria xial compression test results.

Cell pressure (kN/m2) 75 150 300
Axial stress (kN/m2) 142 250 465
Excess pore pressure (kN/m2) 22 55 135

Table 7.5 Dat a obtained from tests results of worked-out example 7.3.

Confining pressure Axial stress Center of circle Center of circle Circle radius
(σ3) (kPa) (σ1) (kPa) (x direction) (y direction)

75 142 108.5 0 33.5
150 250 200 0 50
300 465 382.5 0 82.5

Table 7.6 Dat a obtained from tests results of worked-out example 7.3.

Effective conf ining Effective axial stress Center of circle Center of circle Circle radius
pressure (σʹ3) (kPa) (σʹ1) (kPa) (x direction) (y direction)

53 120 86.5 0 33.5
95 195 145 0 50

165 330 247.5 0 82.5

Note that the radii of the circles are the same as those of total stresses because σ1ʹ– σ3ʹ = σ1– σ3.
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Worked-out example 7.4: In a consolidated-undrained triaxial test on a specimen of clay 
normally consolidated at a cell pressure of 130 kPa, the deviator stress and pore pressure 
at failure were recorded to be 250 kPa and 75 kPa, respectively. Determine the other cor-
responding shear strength parameters when:

a.	 ϕu = 0, and
b.	 cʹ = 0

Solution: As per the information given,

σ3 = 130 kPa, Uf = 75 kPa, then
σ3ʹ = (130 – 75) = 55 kPa
σ1ʹ = 55 + 250 = 305 kPa

a.	 When ϕu = 0, the envelope is parallel to the σn axis. The value of undrained cohesion can 
be found considering the radius of the Mohr circle, or ( ′ − ′σ σ1 3)/2 = (305–55)/2 = 125 kPa,  
thus τf = cu = 125 kPa.

b.	 At failure ′σ 3 = 55 kPa and as cʹ = 0, the envelope passes through the origin. A simple trig-
onometric relationship can be used to determine the effective friction angle as follows:

sin ϕʹ = 125/180 or
ϕʹ = 44°

Worked-out example 7.5: The preliminary site investigation for an excavation of tunnel 
reveals the presence of a porous sandstone with an unconfined compressive strength of  

0 50 100 150 200 250 300 350 400 450 500
0

50

100
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200

250
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τ
(k

Pa
)

σ' (kPa)

Figure 7.10 � Mohr circles representation for worked-out example 7.3.
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85 MPa. Triaxial compression tests conducted on the sandstone specimens collected indicate 
that its shear behavior can be modeled by a Mohr-Coulomb failure envelope, and a friction 
angle of 45° is obtained.

a.	 Determine the axial stress required to fail the sample in shear for a confining cell pres-

sure of 5 MPa considering σ σ φ φ1 3 2= +N c N  and Nφ = +
−

1

1

sin 45

sin 45

o

o

b.	 If during the triaxial compression test the rubber jacket membrane is punctured and the 

pore pressure within the sample rises to the value of the cell pressure, what axial pres-
sure is now required to cause failure?

Solution:
a.	 Given: σc = 85 MPa; ϕ = 45°; σ3 = 5 MPa

For ϕ = 45°, Nφ =
+ °
− °

=
1 sin 45

1 sin 45
5 83.

Nφ = 2 414.

for unconfined conditions, σ3 = 0 MPa, σc = σ1f = 85 MPa, then

σ σ φ φ1 3 2= +N c N  can be simplified as follows:

σ1f = 2c Nφ  or

σc = 85 MPa = 2c Nφ

Thus, σ3 = 5 MPa; then using the general expression

σ1f = 5 × 5.83 + 85 = 114.2 MPa
σ1f = 114.2 MPa

b.	 For uw = σ3 = 5 MPa  ′σ 3 = σ 3 − uw = 0 MPa

Effective stress  σ σ φ φ1 3 2' '= +N c N
Assume that for rock ϕʹ = 45° (no change)  ′σ1 = 85 MPa
′ = −σ σ1 1 uw

σ1  = 85 + 5 = 90 MPa

Worked-out example 7.6: A specimen was tested under consolidated drained conditions. At 
failure, the values shown in Table 7.7 were recorded. Determine the shear strength param-
eters of the soil tested.

Table 7.7 Undrained tria xial compression test results.

Cell pressure (kPa) 100 200  400
Axial stress (kPa) 310 578 1156
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Solution: 
Using the Mohr circle approach, three circles can be drawn (Table 7.8).

The coordinates for the center of the Mohr circle can be obtained by ( ′σ1 – ′σ 3 )/2 + ′σ 3 , 
whereas the circle radius can be obtained considering ( ′σ1 – ′σ 3 )/2.

The circles can be drawn as shown in Figure 7.11. From the figure, it is clear that cʹ = 0, 
and friction angle can be easily calculated considering the sin trigonometric relationship 
between the center of the Mohr circle and its radius, for instance for the circle defined by 
400 kPa confining pressure.

sinφ

φ

=

=

378

778

29o

Worked-out example 7.7: A reconstituted clay specimen (76 mm long and 38 mm diameter) 
is saturated and then allowed to consolidate under a cell pressure of 150 kPa. The drainage 
valve is then closed, and on increasing cell pressure to 300 kPa, the pore water pressure rises 

0 250 500 750 1000 1250 1500
0
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1000
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σ ' (kPa)

Figure 7.11 � Mohr circle representation for the test data of worked-out example 7.6.

Table 7.8 Calculations f or worked-out example 7.6.

Confining pressure Axial stress Center of circle Center of circle Circle radius
(kPa) (kPa) (x direction) (y direction)

100 310 205 0 105
200 578 389 0 189
400 1156 778 0 378
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a.	 Plot the deviator stress and excess pore water pressure against axial strain.
b.	 Determine the value of pore pressure parameter A for the different axial strain levels recorded.
c.	 Plot the total and effective stress paths for this test.

Solution:
a.	 Axial strain can be computed considering the initial height of the specimen (i.e. 

h0 = 76 mm) as follows:

εa
h
h

=
∆

0

Deviator stress can be calculated as follows:

σ σ σ σ' '1 3 1 3−( ) = −( )

Table 7.9 Undrained tria xial compression test results.

Axial displacement (mm) Axial stress (kPa) Pore water pressure (kPa)

0 300 148
2 532 242
4 591 244
6 609 228
8 610 215

to 148 kPa. Determine the value of pore pressure parameter B and comment on whether the 
specimen has reached full saturation.

Solution:

∆ ∆ ∆ ∆

∆
∆ ∆ ∆

u B A

or

B u
A

= + −( ) 

=
+ −( )

σ σ σ

σ σ σ

3 1 3

3 1 3

Based on the data given, there is an increase in pore water pressure of 148 for a variation 
in cell pressure of (300–150 = 150 kPa). As there is no additional axial stress applied to the 
specimen, the variation of σ1 is the same as the variation of σ3. Thus ∆ ∆σ σ1 3 0−( ) = .

Using the previous relationship, we have

B
A

=
+ ( )

=
148

150 0
0 987.

Typically values above B = 0.95 indicate that the specimen is fully saturated.

Worked-out example 7.8: The clay specimen (diameter 38  mm and height of 76  mm) 
described in worked-out example 7.7 is then subjected to triaxial compression, and the 
results obtained are given in Table 7.9.
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Table 7.10 Calculations f or worked-out example 7.8a.

Axial strain (%) Deviator stress (kPa) Excess pore water pressure

( ) ( ) ∆u u= − u∆h σ σ' '− = −
εa =

1 3 σ σ 0 (kPa)
1 3

h0

 0.0   0  0
 2.6 232 94
 5.3 291 96
 7.9 309 80
10.5 310 67
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Figure 7.12 � Representation of the test data of worked-out example 7.8.

And excess pore water pressures can be computed considering the current pore water pres-
sure (u) and initial pore water pressure (u0):

∆u u u= − 0

Then the data in Table 7.10 can be expressed in terms of axial strain, deviator stress and 
excess pore water pressure as follows, and graphical representation is shown in Figure 7.12.
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Table 7.11 Calculations f or worked-out example 7.8b.

∆u
Axial strain (%) Pore pressure parameter A = ( )  

σ σ1 3−

0.0 0
2.6 0.4
5.3 0.33
7.9 0.26

10.5 0.22

b.	 The pore pressure parameter A can be computed for every level of axial strain consider-
ing the variation of the principal stresses (Table 7.11) as follows:

Table 7.12 Calculations f or worked-out example 7.8c.

p (kPa) p′ (kPa) q (kPa)

300.0 300.0   0
377.4 283.3 232
397.0 301.0 291
403.0 323.0 309
403.4 336.3 310

∆ ∆ ∆ ∆u B A= + −( ) σ σ σ3 1 3

	 Since the all-round confining pressure produces a pore pressure u B= ×σ 3 , and since we 
are considering the condition after shearing begins, the excess pore pressure is consid-
ered, then:

A

u
B=

∆
−∆

∆ −∆

σ

σ σ

3

1 3( )

A u
=

−( )
∆

σ σ1 3

c.	 The data given in Table 7.7 can be represented in terms of p and q as follows (Table 7.12, 
Fig. 7.13):
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q = −( ) = −( )σ σ σ σ1 3 1 3' '

p p u u' = − =
+( )

−∆ ∆
σ σ1 32

3
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Figure 7.13 � Representation of the stress paths of worked-out example 7.8c.



This chapter focuses on the stress paths and critical state soil theory for different drainage 
conditions.

8.1  Stress paths and principal stresses

Where principal stresses act on horizontal and vertical planes (Fig. 8.1), s v h´=
+σ σ' '

2
 and 

t v h=
−σ σ' '

2
. 

In Figure 8.2, AB is a line representing the locus of maximum shear stress (i.e. top of 
all the Mohr circles) until failure. Along AB, all points can be defined by coordinates (s, t) 

or
σ σ σ σ1 3 1 3

2 2

+ −





, . 

For triaxial stress states, it is also convenient to plot the p–q plane, where the y-axis is 
represented by deviatoric stress (as shown in Fig. 8.3) (q = −σ σ1 3 or q' ' '= −σ σ1 3) and the 

x-axis is the mean stress: p =
+σ σ1 32

3
 or ′ =

′ + ′
p

σ σ1 32

3
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Figure 8.1 � Illustration of principal stresses.
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Figure 8.2 � Illustration of Mohr-Coulomb plane and increase in principal stresses.
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8.1.1  Field loading conditions

8.1.1.1  Formation/deposition of soil layer

At K0 condition, the lateral earth pressure coefficient can be computed as K h

v
0 =

σ
σ

. 

Initial condition σ1 = σ3 = 0, during deposition: σh = K0(σv), if K0 = 1: isotropic compression 

(no shear stress) then = q
p

K
K

=
−
+

3 1

1 2

0

0

( )
. This is illustrated in Figure 8.4.

8.1.1.2  Compression and extension

In other field applications, the change in stress state typically involves compression and 
extension, as illustrated in Figure 8.5 and Figure 8.6 and in the q–p plane in Figure 8.7.

8.1.1.3  Other examples

There may be cases in which the initial state follows the isotopically consolidated stage 
(Δσv = Δσh or Δ σ1 = Δ σ3), as shown in Figure 8.8.

C�n �n

�

�1 increases

�

A

B

�3
constant

c

    p

q

�
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B
a

c = a/cos�
� = sin-1 (tan�)

Figure 8.3 � Stress path to failure.
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q

�

K0-loading

K<1

K=1
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Figure 8.4 � Illustration of different K0 conditions.
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Figure 8.7  Illustration of main stress path combinations considering compression or exten-
sion and loading or unloading.
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��3 > 0
��1 > ��3 if K0 < 1
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Figure 8.5 � Illustration of principal stresses in (a) embankment and (b) slopes.

a.	 Embankment	 b.  Slope

��1 < 0
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if K0 < 1

��1

��3   

��1 = 0
��3 > 0
if K0 < 1

Figure 8.6 � Illustration of principal stresses in (a) excavation and (b) retaining walls.

a.	 Excavation	 b.  Retaining wall
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8.2  Critical state theory

Critical state theory is an effective stress framework describing mechanical soil response 
under different loading conditions. It aims to describe the behavior of a saturated soil sub-
jected to axisymmetric stress system using mathematical concepts. The basis of the theory is 
that if a soil is continuously distorted, it will attain a final failure state referred to as critical 
state, where its stress state and void ratio remains unchanged. This state is defined by two 
main equations, as follows:

q Mpf = '  � (8.1)

ν λ= −Γ ln p'  �  (8.2)

Where q f  is the deviatoric stress at failure (critical state), ν  is the specific volume (ν = +1 e), 
Γ, λ is the slope of the critical state line and M is shear stress ratio (q/pʹ at critical state).

The value of critical stress ratio (M) can be evaluated based on the final friction angle (ϕcs) 
measured by a conventional triaxial compression test, as shown in Figure 8.9.

M cs

cs

=
−

6

3

sin

sin

φ
φ

 � (8.3)

Eqs. 8.1 and 8.2 imply that critical state is achieved at a specific q/pʹ ratio and specific 
volume; thus a soil looser than critical will tend to contract before yielding if allowed to drain 

Figure 8.8 Illustration   of main stress path combinations considering compression (loading) 
or extension (unloading) for specimens departing from the isotropic compres-
sion line (top) and from a certain (q, p) state.
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(pore pressure increases if undrained), whereas a soil denser than critical will tend to dilate if 
allowed to drain (pore pressure decreases if undrained). For a normally consolidated speci-
men, the initial consolidation stage can be illustrated in stress path OA (Fig. 8.10).

q=Mp’

p’

q

Critical state Line (CSL)

Figure 8.9 � Illustration of the critical state line.
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Figure 8.10   Illustration of main stress path combinations considering compression (load-
ing) or extension (unloading)(modified after Sutton, 1993).
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The points defined by different values of mean effective stress applied during a normally 
consolidated specimen define the isotropic compression line (ICL).

ν λ0 = −N pln '  �  (8.4)

Where ν 0 is the specific volume at the initial consolidation pressure, N is the value of specific 
volume at pʹ = 1 kPa and λ is the slope of the isotropic compression line (typically the same 
as that of the critical state line).

For undrained and drained shearing, the stress path will continue to B and to C, respectively. 
If the specimen has been overconsolidated to A and then subsequently unloaded to D, then under 
undrained shearing, the stress path would continue to E and then F, whereas for drained shearing, 
it would continue to G, and as soil expands, it falls onto H on the critical state line (CSL).

Similar observations of these paths and associated volumetric changes can be made if the 
same stress paths are plotted in terms of ν ν− −p p' ln ' and  space (Fig. 8.10).

In addition, soil states above and below the CSL are often referred to as being on the “wet” 
side and “dry” side, respectively.

Worked-out example 8.1: A specimen was collected and then subjected to isotropic con-
solidation (i.e. all-around cell pressure). The cell pressure level adopted was 40 kPa. The 
specimen was then subjected to additional load of 100 kPa.

a.	 Determine the deviatoric stress and mean effective stress during the consolidation stage.
b.	 Draw the stress path for this specimen.

Solution:

a.	 Using s =
+σ σ1 3

2
 and t =

σ σ1 3−
2

, 

at the initial stage with all-around cell pressure of 40 kPa (σ1  = σ 3  = 40 kPa), then

s = +
=

40 40
40

2
 = 40 and t = =

4
0

0 40

2

−

Point A (s, t) = A (40, 0) (kPa).

b.	 With the loading, there is an increase σ1 to 100 kPa, while σ3  =  40 is kept constant  
(i.e. cell pressure, then the soil state moves to point B (s, t) = B (70,30) (Fig. 8.11).

s

t

B(70,30)

A(40,0)

Figure 8.11 � Illustration of stress path for worked-out problem 8.1.
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Worked-out example 8.2: A specimen was collected in a site-investigation campaign, and the 
in-situ stresses (vertical and horizontal) measured were σv = 80 kPa, σh= 60 kPa. A foundation 
structure was constructed; subsequently, the in-situ stresses measured σv = 120 kPa, σh = 70 
kPa. Draw the stress path for this condition. If there a stress relief and vertical and horizontal 
stresses are reduced to 100 kPa and 65 kPa, respectively, plot the change in stress path.

Solution:
While in most triaxial tests, stress paths start from the horizontal axis, in the field σ1 ≠ σ3, 
hence, t = 0 condition does not exist. For this problem, the in-situ condition is σv = 80 kPa, 
σh = 60 kPa.

Then, using s v h=
+σ σ
2

 and t v h=
−σ σ
2

, the coordinates of point A  representing the 

initial condition are as follows:

A(s, t) = A(70, 10)

Due to foundation loading: σv = 120 kPa, σ h  = 70 kPa

 B(s, t) = B(95, 25)

With stress relief (unloading): σv = 100 kPa and σh = 65 kPa.
then C(s, t) = C(82.5, 17.5). The stress path changes (Fig. 8.12).

s

t

s

t
B(95,25)

B(95,25)
C (82.5,17.5)

A(70,10) A(70,10)

Figure 8.12 � Illustration of stress path for worked-out problem 8.2.

Worked-out example 8.3: A  new road embankment is proposed. To evaluate the shear 
strength of the soil, a sample is consolidated in a triaxial cell, adopting a confining stress of 
200 kPa to mimic field conditions. Determine the mean effective stress, the effective major 
principal stress and the void ratio at failure when shearing is carried out under drained condi-
tions simulating long-term analysis. The critical state soil parameters for this soil determined 
in an additional set of tests are Γ = 2.2, λ = 0.1, M = 0.77 and N = 2.5.

Solution: 
For drained conditions, the specific volume at the end of consolidation can be found by

ν λ0 = −N pln '  or
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ν 0 2 5 0 1 200 1 97= − =. . .ln

and

ν 0 0

0

1

0 97

= +
=

e
e .

Since the confining stress is constant, the stress path will have a slope of 3:1 until it reaches 
the critical state line (q = 0.77pʹ). Then,

q Mpf = '

q pf f= 0 77. '

p f
' .= 269 06 kPa

and q pf f= =0 77 207 18. .' kPa

If q = −σ σ1 3

' '  and ′ =
+

p
σ σ1 32

3

' '

, then

p f
f f'

' '( )
.=

+
=

σ σ1 32

3
269 06 kPa

q f f f
' ' '( ) .= − =σ σ1 3 207 18 kPa

Then, solving for σ1 f
' , we can obtain

σ1 407 17f
' .= kPa

To determine the void ratio at failure, the relationship that describes the CSL can be used 
as follows:

ν λ
ν
ν

= −
= −
=
=

Γ ln '

. . ln .

.

.

p

e

2 2 0 1 270 3

1 64

0 64

Worked-out example 8.4: For the site conditions outlined in worked-out problem 8.3 and 
considering short term stability (undrained conditions), determine the deviatoric stress, mean 
effective stress and the void ratio at critical state (i.e. failure).

Solution: 
In undrained shearing, no volume change takes place during shearing, then the initial void 
ratio is the same as the final void ratio at failure, as follows:

ν λ0 = −N pln '  or

ν 0 2 5 0 1 200 1 97= − =. . ln .
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and

ν 0 0

0

1

0 97

= +
=

e
e .

To determine the mean effective stress at failure, the CSL relationship may be used as follows:

ν λf f

f

f

p

p

p

= −

= −

=

Γ ln

. . . ln

.

'

'

'

1 97 2 2 0 1

9 97 kPa

And q Mpf f= '

q pf f= = × =0 77 0 77 9 97 7 6. . . .' kPa

Worked-out example 8.5: An excavation is planned in a sand deposit. The critical friction 
angle of the sand was determined via triaxial compression tests to be 32°. Determine the 
value of the critical shear ratio M and the final failure strength of the sand if the mean effec-
tive stress at failure is 100 kPa.

Solution: 
The value of the critical shear ratio M can be computed based on the critical friction angle 
as follows:

M cs

cs

=
−

6

3

sin

sin

φ
φ

M =
−

=
6 32

3 32
1 29

sin

sin
.

As q Mpf f= '  then

q pf f=1 29. '

q f = × =1 29 100 129. kPa

Reference
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UK, p. 267, ISBN-10: 0582089719.
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Foundations are part of civil infrastructure that facilitate transfer of both static and dynamic 
loads from the superstructure safely to the underlying ground. Shallow foundations are con-
sidered when geological material at the ground surface has ample strength to withstand this 
applied load. Deep foundations are usually required when the soil below the structure has 
a relatively poor load-bearing capacity; thus, the loads must then be carried to deeper soil 
layers using piles (driven or bored), granular columns or caissons. In general, the bearing 
capacity can be defined as the largest intensity of applied pressure by a structural member to 
the soil, which supports it without causing excessive settlement or shear failure. In view of 
design, the ultimate and allowable bearing capacities play an important role.

Ultimate bearing capacity (qult): the maximum pressure a foundation soil can withstand 
without causing shear failure in soil.

Allowable bearing pressure (qa): the maximum allowable net loading pressure at which 
the soil neither fails in shear nor exhibit excessive settlement.

9.1  Bearing capacity equations

A foundation can be considered shallow when the depth of the foundation is less than its 
width (D < B).

The theory proposed by Terzaghi (1943) is commonly used for determining the bear-
ing capacity of a foundation. It was originally developed for a strip footing considering the 
roughness of the foundation and its self-weight below the base, hence:

q cN DN B Nult c q= + +γ γ γ0 5.  � (9.1)

Where Nc, Nq and Nγ are non-dimensionless bearing capacity factors that depend only on the 
angle of internal friction (ϕ). γ is the unit-weight of the soil, c is the cohesion of the soil, D is 
the depth of the foundation and B is the width of the foundation.

Terzaghi (1943) bearing-capacity factors are given by:

N Nc q= −( )1 cotφ  � (9.2)

N a

a
q =

°+







2

2 45
2

cos
φ

 where a e=
−






0 75

2
. π φ φtan

 � (9.3)
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N
Kp

γ
γφ
φ

= −










tan

cos2
1

2
 � (9.4)

Where Kpγ is the passive earth pressure coefficient and angles are given in degrees.
Figure  9.1 shows the variation of Terzaghi’s bearing capacity factors with the friction 

angle.
The general form of bearing-capacity equation proposed by Meyerhof (1963) is:

q cN i d s DN i d s B N i d sult c c c c q q q q= + +γ γ γ γ γ γ0 5.  � (9.5)

Where i, d and s are load inclination, depth and shape factors, respectively. The bearing 
capacity factors for Nc, Nq and Nγ for Meyerhof (1963) and Hansen (1970) and Vesic (1973) 
are shown in Figure 9.2, and their algebraic forms are given by:

N Nc q= −( )1 cotφ  � (9.6)

N eq = +





tan tan2 45
2

φ π φ  � (9.7)
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Figure 9.1 � Terzaghi’s bearing-capacity factors for shallow foundations (modified after 
Terzaghi and Peck, 1967).
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Figure 9.2 � Bearing capacity factors (modified after Knappett and Craig, 2012).

The various expressions for Nγ  can be obtained from:

Meyerhof tan (1963 1 1 4( ) = −( ): . )N NM qγ φ  � (9.8)

Hansen tan1970 1 5 1( ) = −: . ( )N NH qγ φ  � (9.9)

Vesic tan1973 2 1( ) = +: ( )N NV qγ φ  � (9.10)

The shape, depth and load inclination factors for Terzaghi, Hansen and Meyerhof are tabu-
lated in Table 9.1.

9.1.1  Effect of water table on bearing capacity

If the water table is at the base of the footing,

q cN DN B Nult c q= + + ′γ γ γ0 5.  � (9.11)

′γ  = effective unit weight of the soil within the failure zone
If the water table is at the ground surface, then:

q cN DN B Nult c q= + +′ ′γ γ γ0 5.  � (9.12)
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Table 9.1 Shape,  depth and inclination factors for Terzaghi (1943), Hansen (1970), Meyer-
hof (1963) and Vesic (1973, 1975).

Shape factor Depth factor Inclination factor

Terzaghi Sc = 1.0 (strip); 1.3 (round); – –
(1943) 1.3 (square)

Sγ = 1.0(strip); 0.6 (round); 
0.8 (square)

Nq �B' D D H
Hansen S = + � = +

c 1 d
Nc L'

c 1 0. f4 1or ≤ i = −1
B B c 2cB′ ′L(1970)

B B′ ′ D= − 2 2e Lx y����� = −L e dc = =0 4. for φ 0°
B

B'
Sc = =0 2. for φ 0° 

L . t 1  D D
' dc = +1 0 4 1an−

  for ≥
 B  B

B B′ ′= − 2 2e Lx y����� = −L e

B' ( )2 D H
Sq = +1 � sin �φ dq = +1 2 tanφ φ1 1− sin fD �or ≤ i

L' B� B q = −1 1.5
V

B B′ ′= − 2 2e Lx y����� = −L e D
dq = +1 2 tan �φ φ( )1− sin f

2 D �or ≤1B� B

B′ d =1 for all�φ i i= 2
Sγ = −1 0. �4 0����≥ .6 γ γ q

L′

B B′ ′= − 2 2e Lx y����� = −L e

B D  θ 
2

Meyerhof S kc p= +1 0. �2 d k i ic q 1


 Any φL c p= +1 0. �2 �Any φ = = −B(1963)  90 
2  φ   φ

ta 2 
kp = °n 45 +  k = °tan 45 + 

 2 
p

 2 

B D  θ 
2

S Sq p= =� .γ 1 0+ ≥1 1k φ 0° d dq p= =� .γ 1 0+ ≥1 1k � φ 0° iy = −1 0 φ >L B  φ° 
S Sq = =� γ 1 0������φ = d dq = =� γ 1 0������������φ = iy = >0 0θ φ = 0

N �
= + q B mH

Vesic Sc 1 1� � f= or stip Same as Hansen ic = −1 fi or φ = 0
Nc L� A Cf aN(1973, c

1975) B 1− i
Sq = +1 � tan �φ i i q

L c q= − for 0φ >
Nq −1

B
Sγ = −1 0. �4 0� .≥ 6 

m
H 

L iq = −1 i 
V A+ f aC cot φ 


m 1

H 
+

i 1 i
γ = − 

 V A+ f ac cot φ 

( )2 + B L/
m m= =B ( )1+ B L/

( )2 + L B/
m m= =L ( )1+ L B/  
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If the water table is well below the foundation level (e.g. D > 1.5B), the bulk unit weight can 
be used for determining qult.

9.1.2  Net ultimate bearing capacity (qnet) and factor of safety (F)

q q Dnet ult= −γ  � (9.13)

Factor of safety (F) with respect to shear failure is defined as:

F
q D
q D
ult=
−
−
γ
γ

 � (9.14)

where V and H are the vertical and horizontal components of the resultant load, respectively.
θ  = Angle of resultant measured from vertical without a sign.

9.2  Standard penetration tests

Standard in-situ penetration test is widely used to determine an approximate value for the 
allowable bearing pressure. The standard penetration number (N) is the blow count required 
to drive the standard split barrel sampler over a depth of 300 mm into the ground. The details 
of the penetration test can be found in BS 1377 (part 9). Terzaghi and Peck (1967) developed 
an empirical chart corroborating the allowable bearing pressure, the standard penetration 
number (N) and the foundation width for a limiting maximum settlement to 25 mm (Fig. 9.3).

Figure 9.3 � Design chart for allowable bearing pressure (modified after Terzaghi and Peck, 
1967).
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9.2.1  Overburden correction

In addition to density index, standard penetration resistance depends on the effective stress 
at the depth of the measurement, and it can be approximated by the effective overburden 
pressure (Fig. 9.4).

9.2.2  Dilatancy correction

If N value is greater than 15, for fine sand and silty sand below the water table, this should 
be corrected for the resistance due to negative excess pore pressure during in-situ testing.

′ = + −( )N N15 0 5 15.  � (9.15)

9.2.3  Correction for water table

If the water table is at the ground level, estimated qa should be reduced by 50%.
If the water table depth (Dw) is ≥ to the width (B) below the foundation level, no reduction 

is required.
If the water table depth (Dw) is between ground level and width (B) below the foundation 

depth, then the value of qa should be multiplied by the correction factor, Cw:

C
D
D Bw

w= +
+

0 5 0 5. .  � (9.16)

0

50

100

150

200

250

300

350

400

450

500

0.00 0.50 1.00 1.50 2.00

Ef
fe

ct
iv

e 
ov

er
bu

rd
en

 P
re

ss
ur

e,
 kP

a

Correction Factor, CN

Figure 9.4  Correction for overburden pressure (modified after Peck, Hanson and Thorn-
burn, 1974).
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Where Dw is the depth of water table below the ground surface.
Meyerhof (1965) suggested the following equations for calculating the allowable bearing 

pressure considering the measured value of N.

q S N for Ba
L= <

1 9
1 25

.
. m  � (9.17a)

q S N B
B

for Ba
L=

+





 >

2 84

0 33
1 25

2

.

.
. m  � (9.17b)

Where SL is the permitted settlement limit (mm); N = average N value between z = D and 
z = D + B and B = width of the foundation.

9.3  Pile foundations

There are two basic types of pile foundation: (1) end bearing piles and (2) friction piles.
End bearing piles transmit load through weak layers of deposit to a firm stratum which is 

capable of carrying the load.
Friction piles mainly derive the support from the frictional resistance developed between 

the pile and soil.
The ultimate bearing resistance (Qu) of a single pile is the sum of ultimate base resistance 

(Qb) and ultimate skin friction (Qs).

Q Q Qu b s= +  � (9.18)

Q A q A qu b b s s= +  � (9.19)

Where qp is the ultimate bearing capacity of soil at the base of the pile; Ap is the base area of 
the pile; qs is the ultimate shearing resistance between soil and pile; and As is the perimeter 
area of the shaft.

9.3.1  qp and qs for sand

q Nb q= σ 0
'  (neglect term Nγ due to the small B compared to D)� (9.20)

q ks s= σ δ0

' tan  � (9.21)

ks is the average coefficient of earth pressure along the embedded length; σ 0

'  is the average 
effective overburden pressure along the embedded length; δ is the angle of friction between 
pile and sand.

9.3.2  qp and qs for clay

q c Nb u c=  � (9.22)

Nc is the bearing capacity factor, and equal to 9 is widely accepted for design.
cu is the undrained shear strength of undisturbed clay at the base of the pile.
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q cs u=α  � (9.23)

α is the adhesion factor depending on the type of clay, pile material and method of installa-
tion. The values range from 0.3 to 1.0. cu is the average undisturbed undrained shear strength 
of clay adjoining the pile.

9.3.3  qp and qs from in-situ method (Meyerhof, 1976)

Driven piles in sand and gravel:

q N
D
B

Nb
b= ≤ ( )40 400 kPa  � (9.24)

Driven piles in non-plastic silts:

q N
D
B

Nb
b= ≤ ( )40 300 kPa  � (9.25)

Bored piles in granular soil:

q N
D
Bb
b= ( )14 kPa  � (9.26)

Where N is the average value of uncorrected N value in the vicinity of pile base; B is the 
width of the pile; Db is the length of the pile embedment in the soil.

Driven piles (large diameter) q Ns = 2  � (9.27)

Driven piles (average diameter) q Ns =  � (9.28)

Bored piles q Ns = 0 67.  � (9.29)

Where N  is the average of the uncorrected N value over the embedded length of the pile.

9.4  Pile groups

A pile foundation is generally constructed as a group of piles and connected to the top to a 
pilecap. The structural load is applied to the pile cap. The ultimate load-carrying capacity of 
a pile group cannot be always the summation of the individual carrying capacities of indi-
vidual piles due to a phenomenon called group action. Failure of the group pile may be due 
to failure of the individual pile or to failure of the overall block supporting the group.

Efficiency: The ratio of the average load in a pile group to the ultimate single-pile load is 
referred to as the efficiency (E) of the group.

E =
ultimate group load

N × ultimate individual pile load
 � (9.30)
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for driven pile in sand E = 1 and for bored piles in sand E < 0.6.

9.4.1  Block failure

The block failure is an important characteristic of pile groups in clayey soils.

Q A q A cu b b s s= +  � (9.31)

Where Ab is the base area of the group; As is the perimeter area of the group; cs is the average 
value of shearing resistance/unit area along the sides of the pile; qb is the ultimate bearing 
resistance at the base of the pile.

9.4.2  Settlement of pile group

Due to the effect of group action, the total settlements (both immediate and consolidation) of 
the group will be greater than for a single pile.

End bearing piles: The total foundation load is assumed to act at the base of the piles on a 
virtual foundation of the same size as the plan of the pile foundation.

Friction piles: It is assumed that the structural load is effectively transferred to a depth of 2/3 
of the penetration depth. It is further assumed that there is a distribution of the structural load of 
1H:4V. The settlement of this equivalent foundation can be considered the settlement of the group.

Worked-out example 9.1: A square foundation is 2 m wide and is placed at a depth of 2.8 m 
in a soil having c′ = 10 kPa; ϕ′ = 20° and γ = 19 kN/m3. Determine the ultimate bearing 
capacity using the

i.	 Terzaghi,
ii.	 Meyerhof and
iii.	 Hansen approaches

Solution:
i.	 Terzaghi approach:

q cN DN B Nult c q= + +γ γ γ0 5.

From Table :9 1 1 3 1 0 0 8. . ; . ; .s s sc q= = =γ

From Figure :9 1 17 7 7 4 5 0. . ; . ; .N N Nc q= = =γ

qult = × × + × × + × × × =1 3 10 17 7 19 2 8 7 4 0 4 2 19 5 700. . . . . kpa

ii.	 Meyerhof (1963) approach:

q cN d s DN d s B N d sult c c c q q q= + +γ γ γ γ γ0 5.

From Figure :9 2 14 8 6 4 2 9. . ; . ; .N N Nc q= = =γ

Shape factors:

From Table 9.1: s s sc q= = =1 41 1 2 1 2. ; . ; .γ
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Depth factors:

From Table 9.1: d d dc q= = =1 40 1 2 1 2. ; . ; .γ

qult = × × × + × × × × + × × ×( . . . ) ( . . . . ) ( . .10 14 8 1 40 1 41 19 2 8 6 4 1 2 1 2 0 5 2 19 2 99 1 2 1 2× ×. . )

q = 861 79. kPa

iii.	 Hansen approach:

q cN d s DN d s B N d sult c c c q q q= + +γ γ γ γ γ0 5.

From Figure :9 2 14 8 6 4 2 9. . ; . ; .N N Nc q= = =γ

Shape factors:

From Table :9 1 1 43 1 34 0 6. . ; . ; .s s sc q= = =γ

Depth factors:

From Table :9 1 1 38 1 3 1 0. . ; . ; .d d dc q= = =γ

qult = × × × + × × × × + × × ×( . . . ) ( . . . . ) ( .10 14 8 1 38 1 43 19 2 8 6 4 1 3 1 34 0 5 2 19 2.. . )9 1 0 6× ×

qult = 918 2. kPa

Worked-out example 9.2: A square footing (2 m × 2 m) is to be founded on a sandy soil 
(ϕ = 30) at a depth of 1.5 m. The unit weights of sand above and below the water table are 
18 kN/m3 and 19 kN/m3, respectively. Determine the ultimate bearing capacity of the footing 
when the water table is (a) at the ground surface and (b) at the base of the foundation.

Solution:
From Figure : Meyerhof s facto9 2 30 30 1 18 4 15 7. : . ; . ; .φ γ= ° = = = ′N N Nc q rr( )

a.	 At ground level:

q cN d s DN d s B N d sult c c c q q q= + +′ ′γ γ γ γ γ0 5.

qult = + −( )× × × × + × × × −( )×0 19 9 81 1 5 18 4 1 13 1 3 0 5 2 15 7 19 9 81 1. . . . . . . . .113 1 3× .

qult = 585 kPa

b.	 At the base of the foundation:

q cN d s D DN d s B N d sult c c c q q q= + + ′γ γ γ γ γ γ0 5.

qult = + × × × × + × × × −( )× ×0 18 1 5 18 4 1 13 1 3 0 5 2 15 7 19 9 81 1 13 1 3. . . . . . . . .

qult = 942 kPa

Worked-out example 9.3: A  square footing (2.5  m × 2.5  m) is 2  m below the ground 
surface. The water table is far below the base level. The vertical (V) and horizontal (H) 
components of the base reaction are 300 and 100 kN/m, respectively. The eccentricity of 
the base reaction is 0.2 m. The unit weight of the soil is 17.5 kN/m3, and the effective shear 
strength parameters are c′ = 0 and φ  = 32. Determine the ultimate bearing capacity of the 
foundation.
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Solution:
From Figure Hansen s factor9 2 32 35 5 23 2 20 8. : : . ; . ; .φ γ= ° = = = ( ′N N Nc q ))
′ = − = − × =B B e2 2 5 2 0 2 2 1. . . m

Shape factors: Assuming the eccentricity was in the direction of B:

From Table 9 1 1 45 0 66. : . ; .s sq = =γ

Depth factors:

From Table 9 11 1 22 1 0. : . ; .d dq = =γ

Inclination factors:

From Table 9 1 0 5 0 25. : . ; .i iq = =γ

q DN d i s B N d i sult q q q q= + ′γ γ γ γ γ γ0 5.

qult = × × × × × + × × × × × ×17 5 2 23 2 1 22 0 5 1 45 0 5 2 1 17 5 20 8 1 0 25 0. . . . . . . . . . .666  

qult = 781 3. kPa

Worked-out example 9.4: A strip footing founded at a depth of 1 m is designed to support 
a load of 600 kN/m to dense sand layer having the following properties: cʹ = 0, ϕ = 36° and 
γsat = 20.5 kN/m3.

Assuming that the water table may rise to the ground surface and adopting a factor of 
safety of 3.0, determine the breadth of footing (neglect shape and depth factors).

Solution:
q DN B Nult q= +′ ′γ γ γ0 5.

From Figure : Hansen's factor9 2 36 50 5 37 7 40 0. : . ; . ; .φ γ= ° = = = (N N Nc q ))
q B Bult = −( )× × + × × −( )× = +20 5 9 81 1 37 7 0 5 20 5 9 81 40 403 214. . . . . .

= =
−
−

=
+ −

−
=3

403 214 10 69

600
10 69

3F
q D
q D

B

B

ult γ
γ

.

.

214 424 38 1800 02B B+ − =.

B = 2.07 m

Worked-out example 9.5: A square footing of 2.5 m × 2.5 m is placed 2 m deep within a 
sand deposit. The water table is 2 m below the ground surface. The measured standard pen-
etration resistance N is recorded below. Determine the allowable bearing capacity for a limit-
ing settlement of 25 mm based on (a) Terzaghi and Peck (1943) and (b) Meyerhof (1965) 
approaches (assume γ = 19 kN/m3 and γsat = 21 kN/m3).
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Depth (m) Nvalue σ′v (kPa) CN (from Fig. 9.4) N (corr.) = (N × CN)

1.5 8 - - -
2.5 9 43.6 1.28 12
3.5 14 54.8 1.2 17
4.5 15 66 1.14 17
5.5 23 77.17 1.09 25
6.5 28 88.36 1.04 29
7.5 32 - -
8.5 32 - -

Depth (m) 1.5 2.5   3.5   4.5   5.5   6.5   7.5   8.5
N value 8 9 14 15 23 28 32 32

Solution:
a.	 Terzaghi and Peck (1967) suggested considering N values from the base of the founda-

tion to a depth equal to B below the square foundation (see table below).

The average value of N interpolated between depths 2.5 m and 6.5 m is 20. The provisional 
value of allowable bearing capacity is 210 kPa (from Fig. 9.3), which should then be multi-
plied by Cw to correct for the effect of the water table. Thus:

C
D
D Bw

w= +
+

0 5 0 5. .

       = 0.5 + 0.5 2

2 2 5
0 72

+
=

.
.

Therefore, the allowable bearing pressure is given by qa = 0.72 ×  210 = 151 kPa.

b.	 Meyerhof (1965) approach:

The average value of measured N between z = D and D + B is 15. Hence:

qa =
× +






 =

25 15

2 84

2 5 0 33

2 5
169

2

.

. .

.
kPa

This example shows that the Terzaghi and Peck method yields more conservative values of 
qa compared to the Meyerhof approach.

Worked-out example 9.6: A  single pile of diameter 500  mm and length 10  m is to be 
installed into a deep clay deposit. The undrained shear strength of 150 kPa was determined 
at a depth of 10 m, and an average undrained shear strength of 110 kPa was recorded for 0 to 
10 m. Assuming α = 0.6, determine the ultimate bearing capacity of the pile.
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Solution:
Q A q A qu b b s s= +

q c Nb u c= = × =150 9 1350 kPa

Ab = × =
π
4

0 5 0 1962 2. . m

q cs u= = × =α 0 6 110 66. kPa

As = × × =π 0 5 10 15 7 2. . m

Qu = × + × =0 196 1350 15 7 66 1301. . kN

Worked-out example 9.7: A 6-m-thick layer of sand overlies a deep deposit of dense gravel. 
A series of standard penetration tests on sand has shown an average N value of 21. A precast 
pile of square section 0.25 m × 0.25 m is driven through sand. Adopting a factor of safety of 
3.0, determine the allowable bearing capacity of the pile.

Solution:
Q A q A qu b b s s= +

q N
D
B

Nb
b= ≤40 400

q Nb = = × =400 400 21 8400 kPa

A qb b = ( ) × =0 25 8400 525
2

. kN

q Ns = = 21

A qs s = × × × =6 0 25 4 21 126. kN

Qu = + =525 126 651 kN

Q
Q
FoSallowable

u= = =
651

3
217 kN

Worked-out example 9.8: A single pile with 450 mm diameter has been driven 15 m into a 
soft clay, which has an undrained cohesion of 20 kN/m2 and a unit weight of 18 kN/m3. The 
groundwater table is found to be at the surface of the clay. Determine the ultimate pile load 
capacity (assume α = 0.95 and Nc = 9).

Solution:
Q A q A qu b b s s= +

Ab = =
π
4

0 45 0 162 2. . m

As = × × =π 0 45 15 21 2 2. . m

q c Nb u c= = × =20 9 180 kPa
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q cs u= = × =α 0 95 20 19. kPa

Qu = × + × =0 16 180 21 2 19 432. . kN
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Instability of road and rail cuttings, sliding of rock on jointed surfaces such as bedding planes 
and fault lines, soil and rock movement in open-cut mines, coastal slope instability caused 
by bottom erosion (loss of passive support) and opening of rock fractures, large-scale flow 
of saturated soil (debris flows) and other forms of soil and rock mass movements define vari-
ous geometries of ground instability. These movements can be classified as finite and infinite 
slope movements that can be further subdivided with respect to circular, noncircular, transla-
tional and complex geometry of the moving mass. This chapter introduces different aspects 
related to the stability of such slopes and the analytical methods for determining the factor of 
safety (FOS). If the computed FOS is greater than unity, the slope is considered safe, and if 
FOS is less than unity, the slope is considered to be unsafe.

10.1 � Rotational or circular slips –total stress 
analysis (undrained)

The analysis in terms of total stresses (no pore water pressures considered) or immediate 
undrained conditions aim to simulate site conditions where fully saturated clay is subjected 
to short-term instability (e.g. immediately after construction). In total stress analysis, the 
moment equilibrium across a circular arc segment is conveniently considered (Fig. 10.1), 
and here the potential instability is driven mainly by the self-weight of the soil mass (W), and 
the resistance to failure is predominantly a function of the shear force mobilized on the cir-
cular slip surface (Smob), where Cu is the undrained cohesion acting along the arc length (AB).

The factor of safety may be computed considering the moment equilibrium about the point 
of rotation O, as follows:

Factor of safety (F) = (Σ mobilized resisting moments)/(Σ disturbing moments)� (10.1)

where

Σ mobilized resisting moments = Smob × R = Cu× AB × R� (10.2)
Σ Disturbing moments =W x � (10.3)

Then,

F = Cu× AB × R = W x  or F
C R
W x
u=

2θ � (10.4)

Note that at failure, F = 1.

Chapter 10

Mass movement and slope 
stability analysis
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10.1.1  Effect of the tension crack

If there is a tension crack (B-D-C) filled with water located on the top of the slope, then the 
area ABC is deducted from total weight of wedge, and the water level in the crack contrib-
utes to a disturbing moment (Fig. 10.2).

Σ mobilized resisting moments = Smob × R= Cu× AB × R� (10.5)

Σ Disturbing moments =W x P yw+  � (10.6)

The factor of safety, F, is now given by:

F
W x P y
C AB Ru

w

=
+

× ×  � (10.7)

In general, a water-filled tension crack reduces the FOS. In practice, the cracks formed due 
to soil movement need to be sealed or covered to protect water infiltration and thereby cause 
slope instability.

W1
̅ 1

R

A

B

O

Figure 10.1 � Forces acting on a circular slip slope.
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̅
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O

Pw

C

D

–

Figure 10.2 � Forces acting on a circular slip slope.
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10.1.2  Effect of submergence

If only a section of the slope is submerged, then the water level can be extended, and the 
submerged unit weight (γ γ γsub s w= − ) is used instead to compute the weight force for the 
area of the slope below the water table (Figure 10.3).

Σ Mobilized resisting moments = Smob × R=Cu × AB × R� (10.8)

Σ Disturbing moments =W x W x1 1 2 2× + ×  � (10.9)

10.1.3  Taylor’s stability chart

The factor of safety can also be related to the slope (geometrical) properties, i.e. H (height of 
the slope) and β (inclination angle of the slope) and the distinct characteristics related to the 
slip surface geometry (R and θ). Taylor (1937) published design stability charts for the cases in 
which Cu is uniform with depth, and a rigid boundary is imposed at a given depth (Fig. 10.4). 
Gibson and Morgenstern (1962) published charts that incorporate a linear variation of Cu with 
depth. In either of these methods, no external loads or the effect of tension cracks or pore 
water pressure are considered. The stability factor (N) can be defined by Eq. 10.10, where the 
numerator represents the shearing resistance while the denominator represents the driving or 
disturbing force related to slope geometric factors, where F is the factor of safety.

N
c
F H

u=
γ

 � (10.10)

10.2 � Rotational or circular slips – effective  
stress analysis (drained)

In this analysis, the slope is divided into different slices of width b and height hi (measured 
at the center of slice), and the base of the slice is assumed to be straight, having li length 
(Fig. 10.5). The net forces on vertical boundaries (En– En+1) and (Xn– Xn+1) shown in Fig-
ure 10.5 exist for any particular slice, and the problem is statically indeterminate.

W1

̅ 1

R

A

B

O

W2
2
–

Figure 10.3 � Forces acting on a partially submerged circular slip slope.
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Figure 10.4 � Taylor’s stability chart (modified after Whitlow, 1993).
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Figure 10.5 � Forces acting on a circular slip slope.
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10.2.1 � Method of slices – Swedish (conventional) 
method (Fellenius, 1936)

This method assumes that the result of net force on vertical boundaries (En– En+1) and 
(Xn– Xn+1) is zero. The factor of safety is based on the moment equilibrium about point O 
considering the disturbing and resisting forces normal to the base of ith slice, as follows:

Factor of safety (F) = (Σmobilized resisting moments)/(Σ disturbing moments)� (10.11)

or

F
T r

W r
or F

T
W

i i

i i i

i

i i

= =∑
∑

∑
∑sin sinα α

 � (10.12)

where Ti = τ li and τ represents the shear strength along the length li, which for drained condi-
tions is given by effective stresses (i.e. τ =c′ + ′σ i  tanϕ′), then

F
c l
W

i i

i i

=
+( )′ ′ ′∑

∑
σ φ

α
tan

sin
 � (10.13)

or

F
c b W r

W
i i i u i i

i i

=
+ −( )′

∑
sec cos sec tan '

sin

,α α α φ

α
 � (10.14)

Where li = b secα, W = γ b hi and ru,i is the ratio of the pore pressure to the overburden pres-
sure at the base of the slice.

For many problems, this method is sufficiently accurate, but for deep-seated circles it has 
been shown to underestimate the factor of safety with errors up to 20% owing to the assump-
tions. Hence caution must be exercised when using it in practice.

10.3  Method of slices – Bishop’s simplified method

Considering the balance of forces in the vertical direction (Fig. 10.5), we have:

W X X N u l N u l
F

u l

i n n i i i i i i i i

i i i

+ −( ) = −( ) + −( )

+

+1 cos
'
sin

cos

α
φ

α

α

tan

−−
′c
F isinα

 � (10.15)

Solving for (N – ui li), then,

N u l
W X X u l c

F

F

i i

i n n i i i i

i i

−( ) =
+ −( ) − +

+

′
+1 cos sin

cos
'
sin

α α

α φ αtan
 � (10.16)
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As σ′i = N – ui li then replacing in Eq. 10.11,

F

c
W X X u l c

F

F

i n n i i i i

i i

=

+
+ −( ) − +

+









′

′
+1 cos sin

cos
tan '

sin

α α

α φ α

























′∑

∑

tan

sin

φ

α

l

W

i

i i

 � (10.17)

In Eq. 10.17, there is no assumption made in relation to (En – En+1), as this term does 
not influence the forces vertically. Hence, Bishop (1955) proposed a method to consider 
nonzero term (Xn – Xn+1); however, this refinement only provides marginal effect on the 
factor of safety where thin slices are considered. Rearranging Eq. 10.17 and considering 
(Xn – Xn+1) = 0 for a typically thin slice and li = b secα, W = γ b hi and ru,i = ui × secα/W, 
we obtain:

F

c b W r

F
W

i u i
i

i

i

=

+ −( ) 
+

















′ ′
′∑

∑

1

1
, tan

sec

tan
tan

s

φ
α
φ α

iinαi
 � (10.18)

As the factor of safety appears on both sides of Eq. 10.18, it must be determined via iteration, 
i.e. a trial value of F is chosen and then successively improved. The factor of safety deter-
mined by this method tends to be underestimated, but the error is unlikely to exceed about 
7% and in most cases is less than 2%. Moreover, the method assumes that the values of F for 
both cohesion and frictional resistance are the same.

10.4  Bishop and Morgenstern charts

Based on Eq. 10.19, Bishop and Morgenstern (1960) proposed dimensionless stability coef-
ficients (m and n) for homogenous slopes, and it was shown that the factor of safety varies 
linearly with ru as follows:

F m nru= −  � (10.19)

Where m and n can be computed based on the slope angle and soil properties (Fig. 10.6).

10.5 � Finite planar slope analysis – sliding 
block analogy

Figure 10.7 shows an example profile. Consider 1 m length along AB plane where C′ = c′ × 
AB (per unit length), e.g. bedding planes are often filled with clay and silt.

C c l
Fmob' '

=  � (10.20)
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Figure 10.6 � Bishop and Morgenstern’s dimensionless stability coefficients (modified after 
Bishop and Morgenstern, 1960).
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Figure 10.6  (Continued)
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Figure 10.7 � Forces acting on finite plane slope.
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Figure 10.6  (Continued)

Resolving forces in the direction parallel to the AB plane gives:

W Q C Rw mob mobsin cos ' 'sin 'α α φ+ = +  � (10.21)

Resolving of forces in the direction perpendicular to the AB plane gives:

W Q P Rw w mobcos sin 'cos 'α α φ− = +  � (10.22)
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R′ may be eliminated considering tan '
tan '

φ
φ

mob F
= . 

Then the factor of safety for this finite planar slope can be computed based on the limit 
equilibrium between the resisting and disturbing forces, where:

F = (Σ resisting forces)/(Σ disturbing forces), hence:

F
c l W Q P

W Q
w w

w

=
+ − −( )

+
' cos sin tan '

sin cos

α α φ
α α

 � (10.23)

For cases where the joints (plane AB) are filled with granular material such as sand  
(i.e. u = 0, c′ = 0), then the previous equation can be simplified as a simple sliding block:

F = tan ϕ′/tan α � (10.24)

10.6  Infinite slope analysis

In this type of analysis, it is assumed that the failure surface is parallel to the surface of the 
slope and that the sliding mass thickness is considerably smaller compared to the length of 
the slope. Thus the slope can be considered to have an infinite length (Fig. 10.8).

The shear strength mobilized at the base of the slope:

τ = c′ + σ′n tan ϕ′ where σ′n = N′/l� (10.25)

Resolving forces in the direction parallel to the slip surface gives:

W S l
Fsin β τ= = ⋅  � (10.26)

Considering W = b z γ = l z γ cos β, then:

∴ =
+ ( )

F
c N l
z

' ' tan '

sin cos

φ
γ β β

 � (10.27)
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Figure 10.8 � Forces acting on infinite plane slope.
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Resolving forces in the direction perpendicular to the slip surface gives:

N = N′ + U = W cos β � (10.28)
∴ = −( )N l z u' cosγ β2

Combining Eq. 10.27 and Eq. 10.28 yields:

F
c z u

z
=

+ −( )' cos tan '

sin cos

γ β φ

γ β β

2

 � (10.29)

In terms of total stresses, τ = cu; ϕu = 0

∴ = =
⋅

F S
W

c l
zb
u

sin sinβ γ β
         F

c
zb

u=
γ β βsin cos

 � (10.30)

10.6.1  Selected special cases

i.	 c′ = 0 (e.g. sliding on existing shear surface)

F u
z

u= −








1

2γ β
φ
βcos

tan '

tan
 � (10.31)

ii.	 c′ = 0, u = 0 (sliding block)

F = tan ϕ′/tan β� (10.32)

iii.	 Horizontal flow lines (Fig. 10.9): In this case, replace u by:

u = z γw or ru = γw/γ� (10.33)

where ru = u/γ z

G.L.

z

pervious
Slip surface

Figure 10.9 � Horizontal flow lines on an infinite plane slope.
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iv.	 Flow lines parallel to ground surface (Fig. 10.10): AB is an equipotential line drawn 
perpendicular to flow lines.

u mz

F
m

w

w

= ⋅

∴ = −










γ β

γ
γ

φ
β

cos

tan '

tan

2

1
 � (10.34)

If m = 1, groundwater level (GWL) and ground level (GL) coincide; thus u = γw z cos2β.

Worked-out example 10.1: The bank of a canal has the profile shown in Figure 10.11. The 
material is a homogenous clay with a unit weight of 20 kN/m3, undrained cohesion of 30 kPa, 
and it is fully undrained; hence, assume ϕu = 0. For the trial slip circle shown, the area ABCD 
is 150 m2 and the centroid is at W1. A tension crack (CD) of 2.5 m deep was also observed. 
Calculate the FOS for two different scenarios shown in Figure 10.11 and Table 10.1.

G.W.L.

impervious

Slip surfacez mz

β

G.L.

A

B C
AB = m z cosβ

AC = AB cosβ

= mzcos2β

Figure 10.10 � Flow lines parallel to the infinite plane.

W1̅ 1=2.5

A

B
80

O

C

2.5m
7.5m

(a)

(b)

D

5.5m

Figure 10.11 � Circular slip slope.
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Solution:

a.	 When the canal is full, the soil can be considered to be submerged, and the submerged 
unit weight is then used to determine the factor of safety. For this condition, the water 
pressure in the tension crack is balanced by the water pressure of the water in the canal. 
Considering 1 m run of the bank and taking moments about Point O:

Factor of safety (FOS) = (Σ mobilized resisting moments)/(Σ disturbing moments)

where
Σ Disturbing moments = W x
Σ Disturbing moments = (20–9.81) × 150 × 2.5 = 3821.25 kN/m
Σ mobilized resisting moments = Cu× AD × R

∑ = × ×
×

× =mobilised resisting moments kN m30 14
80

180
14 8210 03

π
. .

Then

Factor of safety F( ) = =
8210 03

3821 25
2 15

.

.
.

b.	 When the canal is empty, the saturated unit weight is used instead. In addition, the water 
pressure in the tension crack adds to the disturbing moment component; thus:

Σ Disturbing moments = W x P yw+

Σ Disturbing moments = 20 ×150 × 2.5 + 9 81
2 5

2
5 5

2

3
2 5

2

.
.

. .× × + ×







= 7500 + 219.70 = 7719.7 kN.m

The mobilized resisting moments remain the same as follows:

Σ mobilized resisting moments = Cu × AD × R

Σ mobilised resisting moments kN m= × ×
×

× =30 14
80

180
14 8210 03

π
. .  

Then

Factor of safety F( ) = =
8210 03

7719 7
1 06

.

.
.

Worked-out example 10.2: For the previous exercise regarding a canal bank, consider the 
canal is one third full (Fig. 10.12). Compute the factor of safety for this condition, considering 

Table 10.1 Scenarios

Scenario Water level in the canal Depth of the water level inside the tension crack (m)

(a) Full – 7.5 m Full – 2.5 m
(b) Empty Full – 2.5 m

 �
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that the area below the water level is 90 m2 and the area above the water level is 60 m2. The 
tension crack is assumed to be filled with water.

Solution: 
When the canal is partially full to one-third, there are two components of the weight forces 
above (saturated unit weight) and below (submerged unit weight) the water level. Consider-
ing 1 m run of the bank and taking moments about Point O, we obtain:

Factor of safety (F) = (Σ mobilized resisting moments)/(Σ disturbing moments)

where
Σ Disturbing moments = W x W x1 1 2 2× + ×
Σ Disturbing moments = (20–9.81) × 90 × 2.0 + 20 × 60 × 3.5 = 6034.2 kN.m
Σ mobilized resisting moments = Cu × AE × R

Σ mobilised resisting moments kN m= × ×
×

× = ⋅30 14
80

180
14 8210 03

π
.  

Then,

Factor of safety F( ) = =
8210 03

6034 2
1 36

.

.
.

Worked-out example 10.3: A vertical road cutting is proposed on a site that consists of a 
saturated clay with a saturated unit weight of 17.2 kN/m3 and an average undrained shear 
strength cu of 33 kN/m2.

Determine the maximum height for which the cutting may be temporarily unsupported.

Figure 10.12 � Circular slip slope.
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Solution:
In this problem, Taylor’s stability charts can be used to determine the maximum unsupported 
height. For the condition of failure, the factor of safety is 1.0.

From the chart (Fig. 10.13) for β  =  90° (vertical cut) and ϕ  =  0 (saturated clay), then 
N = 0.25.

Then the maximum unsupported height can be computed considering Taylor’s stability 
factor as follows:

N
c
F H

u=
γ

 rearranging for H gives

H
C
F N

u=
γ

H =
× ×

=
33

1 17 2 0 25
7 67

. .
. m

Worked-out example 10.4: A new cutting for a road having a height of 5.5 m is proposed on 
a site having 11.1-m-thick saturated clay, followed by intact shale as bedrock. The saturated 
unit weight of the clay is 19.5 kN/m3, and the undrained shear strength is 28 kPa.

a.	 Determine the maximum side slope angle against failure for a factor of safety of 1.5.
b.	 Determine the factor of safety if both during and subsequent to excavation, the cutting 

is kept flooded with fresh water (i.e. to original ground level).

Figure 10.13 � Taylor’s stability chart (modified after Whitlow, 1993).
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Solution: The problem can be illustrated as shown in Figure 10.14.

a.	 Using Taylor’s stability charts,

H = 5.5 and D = =
11 1

5 5
2

.

.

N
c
F H

u= =
× ×

=
γ

28

1 5 19 5 5 5
0 174

. . .
.

Considering D = 2 curve, for N = 0.174, a maximum angle of the slope of 24° is obtained.

b.	 For fully flooded conditions, use γsub = γsat - γw. Then

N
c
F H F F

u= =
× − ×

=
γ

28

19 5 9 81 5 5

0 525

( . . ) .

.

Considering β = 24o and D = 2.0, N is the same as the in (a) or N = 0.174.
Then F = 0.525 / 0.174 = 3.02.
A greater factor safety is obtained for fully flooded conditions.

Worked-out example 10.5: A cutting 20 m deep at a 3:1 slope is proposed on a site com-
posed of an over consolidated clay. Laboratory drained triaxial tests results revealed that 
this soil has c′ = 14 kPa, F m n ru= − = − ( ) = =1 8 1 65 0 15 1 55 25. . . . φ' o, and it has a bulk unit 
weight of 19.2 kN/m3 and a pore pressure ratio, ru = 0.15. Determine the factor of safety of 
the cutting using the Bishop and Morgenstern (1960) stability coefficient charts.

Solution: The problem can be illustrated as shown in Figure 10.15.

The angle of the slope = 3:1 or β = 





 = °−tan 1 1

3
18 4. . 

c
H
'

γ
=

×
=

14

19 2 20
0 036

.
.

β

5.5 m

5.6 m

Intact shale

Saturated clay

(b)

Figure 10.14 � Worked-out example 10.4 diagram illustration.
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From the Bishop and Morgenstern (1960) method, as there is no chart for c
H
'

γ
= 0 036. , the 

factor of safety must be interpolated between two available values.

So consider the nearest values of c
H
'

γ
= 0 05.  and c

H
'

γ
= 0 025. . As the depth of the circle is 

not known, the values of rue in the charts can be used to determine its position.

For c
H

Df
'

γ
= =0 05 1. and  chart (see Fig. 10.6), considering β φ= = °3 1 25: and ' . 

Then r rue u= <0 , which indicates that the critical circle passes below this level.

For c
H

Df
'

γ
= =0 05 1 25. .and  chart (see Figure 10.6), considering β φ= = °3 1 25: and ' . 

Then r rue u= > =0 85 0 15. . , which indicates that the critical circle is at this depth.
Reading from the relevant charts, we obtain m = 2.4 and n = 1.8.

F m n ru= − = − ( ) =2 4 1 8 0 15 2 13. . . .

As there are no broken lines for c
H

Df
'

γ
= =0 025 1 25. .and  chart, then the critical cir-

cle is not at this level; so considering a lower value of Df =1 0.  chart and consider-
ing β φ= = °3 1 25: and ' , we can obtain r rue u= > =0 7 0 15. . , which indicates that the critical 
circle is at this depth.

Reading from the relevant charts, we obtain m = 1.8 and n = 1.65. Hence:

F m nru= − = − ( ) =1 8 1 65 0 15 1 55. . . .

Interpolate between the two values to give (Fig. 10.16):

2 13

2 13 1 55

0 05 0 036

0 05 0 025

.

. .

. .

. .

−
−

=
−
−

F

F = 1.81

� = 3:1

20m

Figure 10.15 � Worked-out example 10.5 diagram illustration.
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Worked-out example 10.6: Figure 10.17 indicates the potential instability of a rigid block 
of rock of weight W under the influence of a water-filled tension crack generating a force V. 
The base of the block is also subjected to a hydraulic uplift force of U due to water flow 
through the bedding plane. The base area of the block is A, the cohesion of the infill material 
of the bedding plane is c and the friction angle is ϕ.

a.	 Determine the factor of safety of the block.
b.	 In order to stabilize the block, a prestressed rock anchor is grouted at an inclination α to 

the slope. What is the minimum anchor force T required to prevent the block from slid-
ing down?

Solution:
a.	 The factor of safety can be computed considering the ratio between the resisting and 

disturbing forces along the direction parallel to the bedding plane, as follows:

F

′

1.73

1.55

0.050.025 0.036

?

Figure 10.16 � Interpolation of FOS.

W

S

V

U

�

Rockbolt

�

Figure 10.17 � Rigid block of rock (modified after Hoek and Bray, 1974).
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F = (Σ resisting forces)/(Σ disturbing forces) or

F
cA W U

W V
=

+ −( )
+

cosψ φ
ψ

tan

sin

b.	 If there is a rock bolt, the factor of safety can be given by increasing the numerator; thus:

F
cA W U T

W V
=

+ −( ) +
+

cosψ φ α
ψ

tan sin

sin

Rearranging for T and assuming conditions before failure (F > 1),

T
W V cA W U

>
+ − − −( )sin tan

sin

ψ ψ φ
α

cos

Worked-out example 10.7: A vertical cut 3.66 m high is excavated in saturated intact clay. 
The clay is isotropic and has an undrained shear strength (Cu) of 28.7 kN/m2 and a saturated 
unit weight of 18.8 kN/m3. Assuming that a vertical, air-filled tension crack forms behind the 
slope crest to a depth of 1.53 m, then determine the factor of safety of the cut slope, in terms 
of shear strength, under short-term (end-of-construction) conditions.

Solution: The problem can be illustrated as shown in Figure 10.18.
Considering the equilibrium between the resisting and disturbing forces of a finite planar 

slope, we have:

F
c l W Q P

W Q
w w

w

=
+ − −( )

+
' cos sin tan '

sin cos

α α φ
α α

	 As the tension crack is air filled, then Qw = 0.

Considering no water pressure acting on the slope, i.e. Pw = 0.
For short-term analysis, we have undrained conditions, hence ϕu = 0.

�

S

N’=N-u

W
1.53m

3.66m

L

A

B

Figure 10.18 � Worked-out example 10.7 diagram illustration.
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Then the factor of safety can be computed as follows:

F
C AB
W
u=
× ( )

sinα

where

W L L=
+

× × =
( . . )

. .
3 66 1 53

2
18 8 48 79

AB = L / cosα

Then F
C AB
W

L
L

u=
×

=
×

=
( )

sin

. / cos

. sin

.

sin cosα
α
α α α

28 7

48 79

0 588

As sin cos2 2α α α= sin  then

F =
1 176

2

.

sin α

As 0 2 1< <sin α  then F formin = =1 176 45. α o

Worked-out example 10.8: An infinite slope exists at an angle β to the horizontal in clay soil 
having a bulk unit weight of γ and effective strength parameters of c′ and ϕ′.

a.	 Derive the expression of factor of safety against failure along the shallow slip plane 
parallel to the ground surface.

b.	 Using the relationship derived, compute the factor of safety for a slope having c′ = 0, 
ϕ′ = 15°, γ = 17.5 kN/m3 and z = 1.5, β =15o, and assume the water level to be at the 
ground surface.

Solution:
a.	 Considering the diagram in Figure 10.19, the shear strength mobilized at the base of the 

slope is

τ = c′ + σ′n tan ϕ′;	 σ′n = N′/l

A
B

C
D

b

z

W

S

�

l
Ei+1

Xi+1

Ei

Xi

N = N’ +U

Slip sur

(c’ �’)

Figure 10.19 � Diagram for worked-out problem 10.8.
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Resolving forces in the direction parallel to the slip surface gives:

W S l
Fsin β τ= = ⋅

Considering W = b z γ =l z γ cos β,

∴ =
+ ( )

F
c N l
z

' ' tan '

sin cos

φ
γ β β

Resolving forces in the direction perpendicular to the slip surface gives:

N = N ′ + U = W cos β

∴ = −( )N l z u' cosγ β2

Combining the relationships for directions parallel and perpendicular to the slope, we obtain

F
c z u

z
=

+ −( )' cos tan '

sin cos

γ β φ

γ β β

2

b.	 Substituting the values given in the previous derived relationship, we obtain:

F =
× × − × °

× × ° °
( . . . . ) tan

. . sin cos

17 5 1 5 15 1 5 9 81 15

17 5 1 5 15 15

2cos

F =
2 62

6 56

.

.

F = 0.4
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Determination of lateral earth pressure is essential for the design of retaining structures and 
dams. The lateral earth pressure acting on a retaining structure is traditionally determined 
using either the Rankine’s or Coulomb’s theory of earth pressure. Rankine’s theory (1857) 
considers the stress state in the soil when the shear failure propagates across the entire soil 
mass. In contrast, Coulomb’s theory (1776) considers the stability of the soil wedge between 
the retaining structure and the potential (trial) failure surface.

11.1  Earth pressure at rest

This is the horizontal soil pressure when the wall is rigid and does not yield; thus the soil 
is assumed to be in elastic equilibrium. Then the effective horizontal stress is given by: 
σ σh vK' '= 0 , in which K0 is the coefficient of earth pressure at rest and σ v

' =( )γz  is the effective 
vertical stress (Fig. 11.1). Typical values of K0 are given in Table 11.1.

Jaky (1944) proposed the following equation for a normally consolidated and coarse-
grained soil:

K0 1= − ′sin φ  � (11.1)

where ϕ′ is the drained friction angle of the soil.

Chapter 11

Retaining walls and dams

Figure 11.1  Vertical and lateral stress at a point.

Table 11.1 Typical values of K0 (adapted from Whitlow, 2001).

Soil K0

Dense sand 0.45–0.6
Loose sand 0.3–0.5
Normally consolidated clay 0.5–0.7
Overconsolidated clay 1.0–4.0
Compacted clay 0.7–20
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11.2  Active earth pressure

Horizontal soil pressure when the wall structure is made to move away from the soil  
(Fig. 11.2).

11.3  Passive earth pressure

Horizontal soil pressure when the wall structure is moved towards the soil (Fig. 11.2).

11.4  Rankine’s theory of earth pressure

This theory considers the ratio of major and minor principal stress when the soil is on the 
verge of failure throughout its mass, often referred to as plastic equilibrium.

Active pressure for cohesionless soil at any depth z is given by:

p K za a= γ  � (11.2)

Where pa is the active pressure, Ka is the active pressure coefficient Ka =
−
+











1

1

sin

sin

φ
φ
'
'

, and  
γ is the unit weight of the soil.

The total active thrust (per m length of wall) is given by:

P K zdz K Ha

H

a a= =∫
0

21

2
γ γ  � (11.3)

The line of action of Pa passes through the center of the area at a height of 1/3H above the 
base (Figure.11.3).

Figure 11.2  Conditions of active and passive earth pressure.

Figure 11.3  Pressure distribution for cohesionless soil (not to scale).
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Active pressure for cohesive soil at any depth z is given by:

p K z c Ka a a= −γ 2 '  � (11.4)

Where pa is active pressure, Ka is the active pressure coefficient, c′ is the cohesion and γ is 
the unit weight of the soil.

For values of c′ > 0, the value pa = 0 at a particular depth zc is referred to as the tension 
crack depth. Substituting pa = 0 in Eq.11.4 gives:

Depth of tension crack z c
Kc
a

=
2 '
'γ

 � (11.5)

In undrained condition (ϕ = 0)

z
c

c
u=

2
γ

 � (11.6)

The total active thrust per unit length of the wall is then given by:

P p dz K H za
z

H

a a c

c

= = −( )∫
1

2

2γ  � (11.7)

The force Pa acts at a distance of 1/3 (H zc− ) above the base (Fig. 11.4).
Passive earth pressure (pp) for cohesionless soil at any depth z is given by:

� p K zp p= γ  � (11.8)

Where pp is passive pressure, Kp is the passive pressure coefficient Kp =
+
−











1

1

sin

sin

φ
φ
'
'

, γ is the 
unit weight of the soil and z is the depth.

The total passive resistance (per m length of wall) is given by:

P K zdz K Hp p

H

p= =∫ γ γ
0

21

2
 � (11.9)

Figure 11.4  Pressure distribution for cohesive soil (not to scale).
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The line of action of �Pp passes through the center of the area at a height of 1/3H above the 
base (Fig. 11.5).

Passive pressure for cohesive soil at any depth z is given by:

p K z c Kp p p= +γ 2 '  � (11.10)

where �Pp  is passive pressure, Kp is the passive pressure coefficient, c′ is the cohesion and γ is 
the unit weight of the soil.

The total passive resistance (per m length of wall) is given by:

P K z c K dz K H c K Hp

H

p p p p= +( ) = +∫
0

22
1

2
2γ γ' '  � (11.11)

The two components of Pp act a distance of 1/3 H and 1/2 H, respectively, from the base 
(Fig. 11.6).

11.4.1  Effect of water table

For fully drained conditions, the effective unit weight of the soil (γ′) and effective stress 
parameters (c′ and ϕ′) should be considered for computing active and passive earth 
pressures.

Figure 11.5  Passive pressure distribution for cohesionless soil (not to scale).

Figure 11.6  Passive pressure distribution for cohesive soil (not to scale).
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If the water table is at the surface, then the hydrostatic pressure, γwz, due to the water in the 
soil pores, must also be considered in addition to the active and passive pressure.

For undrained conditions φu =( )0  in saturated clay, the undrained shear strength (cu) and 
the total unit weight (γ sat) should be considered for computing active and passive pressures 
to check for the immediate stability.

11.4.2  Effect of surcharge load

A retaining wall carrying a uniform surcharge load intensity (q) on top of the backfill may 
be assumed to cause an equal increase in effective vertical stress along the depth of the wall 
(Fig. 11.7).

At any depth, z, the additional active earth pressure due to surcharge load is Ka q.
At any depth, z, the additional passive earth pressure due to surcharge load is Kp q.

11.4.3  Effect of sloping backfill

The active earth pressure is given by:

p K za a= γ βcos  (acts parallel to the slope)� (11.12)

where β is the angle of sloping surface (measured upward) with respect to the horizontal; 
hence:

Ka =
− −

+ −

cos cos cos

cos cos cos

β β φ

β β φ

2 2

2 2
� (11.13)

The passive earth pressure is given by: p K zp p= γ βcos  (acts parallel to the slope)

Kp =
+ −

− −

cos cos cos

cos cos cos

β β φ

β β φ

2 2

2 2
 � (11.14)

Figure 11.7  Active and passive pressure distribution for surcharge loading (not to scale).
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11.5  Coulomb’s theory of earth pressure

Coulomb’s solution is based on the limit equilibrium consideration of soil wedge between 
the retaining wall and trial planar failure surface. The force between the wedge and the wall 
surface can be computed considering the equilibrium forces acting on the soil wedge when 
it is actively sliding up or down the trial failure surface (Figs. 11.8 and 11.9). Basic theory 
considers the friction (δ) that had developed between the soil and the retaining wall, thus 
making the actual failure surface become curved close to the bottom the wall for both active 
and passive cases. However, the simplified theory assumes a planar failure surface for both 
active and passive conditions. This assumption has a significant effect on the passive state, 
especially forφ δ= / 3. 

Active pressure for cohesionless soil at any depth z is given by:

 � p K za a= γ � (11.15)

Figure 11.8  Active earth pressure (Coulomb’s theory).

Figure 11.9  Passive earth pressure (Coulomb’s theory).
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In Eq. 11.15,

 Ka =
−( )

+( ) + +( ) −( )
−( )











⋅

(sin )

sin

α φ α

α δ
φ δ φ β

α β

/sin

sin
sin

sin























2

 � (11.16)

where δ is the wall friction, α is the inclination of the wall surface with horizontal, β is the 
inclination of the soil surface with horizontal and ϕ is the friction angle of the soil.

The total active thrust (per m length of wall) is given by:

P K z K Hp

H

a a= =∫
0

21

2
γ γ  � (11.17)

Active pressure for cohesive soil at any depth z is given by:

� � �p K z cKa a ac= −γ  � (11.18)

where K K
c
cac a
w= +






2 1  and cw is the wall adhesion parameter.

The depth of tension crack (when pa = 0) can be computed using Eq.11.18.

K z cKa acγ − = 0  � (11.19)

For undrained condition (ϕ = 0)

z
c c

c
c

u
w

u=

+








2 1

γ
 � (11.20)

Passive earth pressure (pp) for cohesionless soil at any depth z is given by:

� p K zp p= γ  � (11.21)

In Eq. 11.21,

Kp =
+( )

−( ) − +( ) +( )
−( )











⋅

(sin / )

sin

α φ α

α δ
φ δ φ β

α β

sin

sin
sin

sin























2

 � (11.22)

The total passive resistance (per m length of wall) is given by:

P K z K Hp

H

p p= =∫
0

21

2
γ γ  � (11.23)
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Passive pressure for cohesive soil at any depth z is given by:

� � �p K z cKp p pc= +γ  � (11.24)

where K K
c
cpc p
w= +






2 1 . 

In the passive case, it is important to consider the curvature of the failure surface to mini-
mize the error, i.e. to avoid overestimating the passive earth pressure. Therefore, it is sug-
gested to use the modified coefficients (Kp) reported by Sokolovski (1965; Fig. 11.10) to 
determine the passive resistance.

11.6  Stability of gravity walls

Stability of gravity wall is directly related to its self-weight. Sometimes the passive resist-
ance developed in front of the toe of the retaining wall may provide additional stability. In 
general, design must follow a series of limit state conditions, as follows:

1.	 Overturning of the wall: the resultant thrust in this case must be within the middle third 
of the base.
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Sokolovski, (1960)

Figure 11.10  Values of Kp (modified after Sokolovski, 1965).
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2. The pressure at the base must not exceed the ultimate bearing capacity of the supporting 
soil. The overturning moment caused by the lateral earth pressure may generate high 
bearing pressure at the toe of the wall. The maximum and minimum base pressures can 
then be calculated using:

V  ep 6 = ±1 B  B 

 where V is the vertical force component; e is the eccentricity and B is width of the base. 
The eccentricity (e) should not exceed 1/6B to ensure the base pressure to remain com-
pressive over the entire base width.

3. Wall sliding: for the sliding limit state, S V= tanδ  and S H≥ , where S is the sliding 
resistance, H is the horizontal component for force and δ is the friction angle between 
the base and the underlying soil.

4. Slip surface covers the structure as a whole.
5. Excessive deformation of ground and wall, which may lead to limit state condition.
6. Consideration of seepage, internal erosion and adequacy of drainage system.
7. Failure of structural elements of the wall or combined failure due to faulty design.

Worked- out example 11.1: Determine the total active thrust and passive earth resist-
ance on a vertical smooth retaining wall of height 5 m. The soil properties are: 
'= °32 and kγ =17 N/m3. The water table is well below the base of the retaining wall. 
(Assume the wall can move towards and away from the retaining wall).

Solution:

1− sinφ' 1 3−K sin 2
a = = = 0 3. 1

1+ sinφ' 1 3+ sin 2

P K1
a a= =H 2 21

γ × ×0 3. .1 17 5× = 65 9 kN/m
2 2

K 1+ sinφ' 1 3+ sin 2
p = = = 3 2.

1− sinφ' 1 3− sin 2

P K1
p p= =H 2 21

γ × ×3 2. k17× =5 680 N/m
2 2

This is illustrated graphically in Figure 11.11.
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Worked- out example 11.2: A vertical retaining wall supports 10 m of a granular backfill 
having the following properties: φ′ = °28  and γ =18 kN/m3 (Fig. 11.12). The water table 
is at a depth of 3 m from the horizontal backfill. The saturated unit weight below the water 
table is γ 3

sat =19. k5 N/m . Determine the total active earth thrust and its point of application.

Solution:
Consider active pressure distribution:

− − °K 1 sinφ' 1 2sin 8
a = = = 0 3. 6

1+ sinφ' 1 2+ °sin 8

Figure 11.11 Earth pressure diagram of worked- out problem 11.1.

= 18 kN/m3 �'
=28°

γsat=19.5 kN/m3

3m

10m

Figure 11.12 Worked- out example 11.2.
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At z = 0

p Ka a= =γ z 0

At z = 3 m,

p Ka a= =γ z 0 3. .6 1× ×8 3 =19 44 kN/m2

At z = 10 m,

p Ka a= =γ z 0 3. .6 1× −( )9 5 9 8. .1 1× =0 34 9 kN/m2

Water pressure distribution:

At z = 3 m

p zw w= =γ 0

At z = 10 m

p zw w= =γ 9 8. .1 7× = 68 67 kN/m2

Total active earth thrust is the sum of the active and water pressure distribution diagrams 
(see Fig.11.13).

Pa = ×0 5. .19 44 3 1× + 9 4. .4 7× + 0 5× ×24. .46 7 0+ ×5 68 6. .7 7× = 491 2 kN/m

× + × + × + ×z 29. .1 8 136 1 3. .5 85 61 2. .3 240 34 2 3.
= = 2 9. m6

491.2

19.4 kN/ 3m

10m

43.9 kN/ 68.67 kN/

Active pressure 

distribution
Water pressure 

distribution   

Figure 11.13 Diagram of pressures of worked- out example 11.2.
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Worked- out example 11.3: A retaining wall having a smooth vertical back supports a soil as 
shown in Figure 11.14. Determine the total active thrust acting on the wall.

Solution:

−K 1 sinφ' 1 2− °sin 0
a = = = 0 5.

1+ sinφ' 1 2+ °sin 0

c′z 2 2×8
c = = =1 2. m6

γ Ka 18× 0 5.

Considering active pressure distribution (see Fig.11.15):

γ = 18 kN/m3

c'=8 kPa �′ =20°6 m

Figure 11.14 Worked- out example 11.3.

Figure 11.15 Diagram for worked- out example 11.3.

At z = 0

p Ka a= −γ ' 'z c2 0Ka = − 2 8× × 0 5. .= −11 3 kN/m2

At z = 6 m

p Ka a= −γ z c2 0′ Ka = −. .5 6×18× 11 3 6= −( )1 2. 6 kN/m
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Pa = ×1 2 − −×( )2
/ (6 1.26) 54 11.3  = 101.2 kN/m

z = 1.58 m

Worked- out example 11.4: The properties of the soil retained behind a smooth retaining 
wall are shown in Figure 11.16. Determine the total active earth thrust acting on the back of 
the wall using a pressure distribution diagram.

Solution:

−K 1 sinφ' 1 2− °sin 8
a = = = 0 3. 6

1+ sinφ' 1 2+ °sin 8

At z = 0

p Ka a= =γ z 0

At z = 5 m

p Ka a= =γ z 0 3. .6 1× ×8 5 = 32 4 kN/m2

At z = 5 m

p Ka a= −γ z c2 0' Ka = ×. .36 18× −5 2× ×8 0 36 = 22. k8 N/m2

At z = 12 m

p Ka a= −γ z c2 0' Ka = ×. .36( )18 5 7+ ×19 5 2− ×8 0× =. .36 71 94 kN/m2

Total active thrust (see Fig. 11.17):

P 1 1
a = ×32. .4 5× + 22 8 7× + × ×49. .14 7 = 412 6 kN/m

2 2

γ = 18 kN/m
3

�'
=28°

γ = 19.5 kN/m
3

c'= 8 kPa

5m

1
2
m

Figure 11.16 Worked- out example 11.4.
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Worked- out example 11.5: Determine the total active earth thrust on a vertical retaining 
wall of height 6 m (Fig.11.18). A uniform surcharge of 50 kPa is place on the surface of the 
horizontal backfill. The soil properties are: φ′ = °30 , γ =18 kN/m3 and c′ = 0. 

Solution:

− ' − °K 1 sinφ 1 3sin 0
a = = =1 3/

1+ sinφ' 1 3+ °sin 0

At z = 6 m

p K 1 2

a a= =γ z × ×18 6 3= 6 kN/m
3

Active thrust due to surcharge load (Fig.11.18) is determined by:

p K q 1
. k 2

a a= = × =50 16 67 N/m
3

Total active thrust is now given by:

P 1
a = ×36× +6 16 6. k7 6× = 208 N/m

2

× + ×z 108 2 100 3
= = 2 5. m

208

Figure 11.18 Diagram for worked- out example 11.5.

Figure 11.17 Diagram for worked- out example 11.4.
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Worked- out example 11.6: Check the design of the gravity retaining wall shown in Fig-
ure 11.19. The bearing pressure of the foundation soil should not exceed 450 kPa. Assume 
unit weight of the wall = 23.5 kN/m3.

Solution: Coulomb’s theory is used to compute the active earth pressure considering the wall 
friction and the inclination of wall and soil surfaces (see Section 11.5).

Ka =
−( )

+( ) + +( ) −( )
−( )











⋅

(sin / )

sin

α φ α

α δ
φ δ φ β

α β

sin

sin
sin

sin























=

2

0 6.

From Eq.11.17:

P K1
a a= =γH 2 21

× ×0 6. .18× =6 5 228. k15 N/m2  and it acts at 40° above the horizontal.
2 2

Table 11.2 shows the moment of all forces about the toe of the gravity wall.

Table 11.2 Calculations for worked- out example 11.6.

Pressures (/m) Force (kN) Lever arm (m) Moment (kNm)

Wall 1 0.6  41.25
× ×0 9. .6 5× =  23.5

2 1.4 214.2
2.2 151.2568.75

1 6× ×. .5 23 5 =153
1
× ×0 9. .6 5× =23.5

2  
68.75

Pa sin40° 147 2.2 323.4
V = 438 Mv = 730

Pa cos40° 175 2.2 385
H = 175 MH = 385

Σ M = Mv – MH = 345

105�

18�

2.8 m

6
.5

 m
�' =30�
� =18 kN/m3

� = 25�

1.0 m

Assume unit weight of the wall, = 23.5 kN/m3

Figure 11.19 Worked- out example 11.6.
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Lever arm of base resultant: ∑M 345
= = 0 8. m

V 438

Check for overturning

The restoring moment (Mv) is greater than the disturbing moment (MH). Hence this satisfies 
the overturning limit state.

Check for bearing pressure

Eccentricity of base reaction, e 2 8.
= − 0 8. .= 0 6m

2

V  e   ×p 6 438 6 0.6 
max = +1  = +1  = 357. k5 N/m2

B  B  2 8.  2 8. 

The maximum bearing pressure is less than the allowable bearing pressure of the foundation 
soil, i.e. 450 kPa. This satisfies the bearing pressure limit state.

Check for sliding

The restoring force:

V tan tδ = ×438 an 25° = 204.2 kN

The disturbing force:

H = 185 kN.

Hence this satisfies the sliding limit state.
Therefore, the design of the gravity wall is satisfactory.
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This chapter introduces different approaches for estimating the extent of ground movement 
and the degree of stability of vertical cuttings, trenches and tunnels as essential in the devel-
opment of civil infrastructure.

12.1  Vertical cuttings and trenches

For the excavation of trial pits and trenches, undrained stability analysis considering total 
stresses is often considered in traditional design approaches. Limit equilibrium can be con-
veniently adopted to assess the stability of a vertical cut.

Considering the soil wedge shown in Figure 12.1 of a vertical cutting, the equilibrium of 
forces in the horizontal and vertical directions can be resolved as follows:

S Ncos sinβ β− = 0  � (12.1a)

W S N− − =sin cosβ β 0  � (12.1b)

The weight of the wedge (W) and shear force (S) acting on the translational failure plane 
(dashed line) can be derived by limit equilibrium condition, thus:

W H
=

γ
β

2

2 tan
 � (12.2)

S
c Hu=
sin β

 � (12.3)

In Eq. 12.2, γ  is the unit weight of the soil and cu is the undrained shear strength. Note that 
H / sin β  corresponds to the area of the slip plane per meter length.

Rearranging the terms in Eq. 12.1a gives:

N S= cos

sin

β
β

 � (12.4)

Substituting W, S and N into Eq. 12.1b and rearranging for H gives:

H
cu=

2

γ β βsin cos
 � (12.5)

Chapter 12

Excavations and tunnels
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The value of H computed in Eq.12.5 is the maximum height of the vertical cut such that limit 
equilibrium is maintained; H is an upper bound given the maximum undrained shear strength 
(cu), which in practice is not always fully mobilized. As in Chapter 10, the consideration of 
the factor of safety in evaluating stability of the vertical cutting and excavations is necessary 
in design practice.

Also noteworthy, there are drained conditions to be considered where appropriate. In such 
cases, the steps of analysis remain the same, but the shear resistance (S) term needs to be 
modified to capture the effective (drained) stresses as follows:

S c H N U=








 + −( )' '

sin
tan

β
φ  � (12.6)

where c′ and ϕ′ are the effective shear strength parameters, cohesion and friction angle, 
respectively, and U is the hydraulic uplift force acting on the plane of sliding, thus:

U hw w=
1

2
γ β2cosec  � (12.7)

Where hw is the height of the groundwater table measured from the bottom of excavation 
level and γw is the unit weight of the water.

12.2  Tunnels

The method of tunnel construction depends on several factors such as the ground profile, the 
groundwater level, the depth and dimensions of the tunnel, and the final geometric shape of 
the tunnel (oval, horseshoe or circular). There are three main groups of tunnels: (i) cut-and-
cover, (ii) bored and (iii) immersed tunnels.

Cut-and-cover tunnels are usually constructed in a shallow trench, and the stability 
requirements follow typically those of open excavations. For bored tunnels, there are 
two main types of construction methods generally adopted, which include open-face tun-
neling that is optimal for noncircular sections and flexible construction sequencing and 
closed-face tunneling methods which typically involve the use of a tunnel-boring machine 
(TBM).

�

W

N

HS

Figure 12.1  Vertical cutting diagram.
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12.2.1 Bored tunnels

12.2.1.1 Stability, ground movement and tunnel linings

The assessment of tunnel face stability is critical in urban environments mainly because of 
possible catastrophic consequences (e.g. sinkholes appearing in the Brightwater Conveyance 
tunnel in the U.S. or caving in the Cologne metro tunnel in Germany). The stability of the 
opening prior to the installation of the tunnel lining, hydraulic pressures and permeability 
of the surrounding ground, rate of excavation (e.g. unsupported face length, P), size of the 
tunnel (e.g. diameter, D) and tunnel depth (C) are the most important factors considered in 
analysis (Fig. 12.2).

In soft- ground tunneling, based on force equilibrium at the tunnel heading, the stability 
factor N takes into consideration the total applied stress in relation to the undrained shear 
strength of the excavated soil. Adopting the concept introduced by Broms and Bennermark 
(1967), the stability ratio N is then defined by:

σ γ+ −z σ
N = s T0   (12.8)

cu

where γ = unit weight of the soil (kN/m3), z0 = depth of the tunnel axis (C + D/2), σs = surface 
surcharge pressure, σT = tunnel support pressure and cu = undrained shear strength at the tun-
nel axis level.

Field observations (Peck, 1969) have shown that the value of N between 5 and 7 
may indicate instability at the tunnel face. More recently, based on centrifuge testing, 

Figure 12.2 ( a) Tunnel heading in soft ground and (b) two dimensional idealization (after 
Mair and Taylor, 1997, reproduced with permission from CRC Press).
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a range of N values has been established as follows (ITA-AITES WG ‘Research’, 
2007):

•	 N ≤ 3 implies that the stability of the tunnel face is ensured
•	 3 < N ≤ 6 suggests that surface settlement may be significant, as excessive ground losses 

are expected for N > 5
•	 N > 6 implies that the tunnel face is unstable and the ground losses at the face are 

unacceptable

A critical stability ratio or Nc may be considered to evaluate the short-term stability of tun-
nels. Nc can be inferred from Figures 12.3a and b. Note that if N<Nc, then the tunnel is stable.

In relation to Figure  12.3a, for P/D  =  0, the stability chart can be further extended 
(Fig. 12.3b). This approach may also be used to estimate the risk of “blowout,” which can 
occur if the tunnel face pressure is too high particularly in soft soils.

The relationship between surface settlement and tunnel depth is neither simple nor linear. 
In reality, ground movements depend on a number of factors including (i) geological, hydro-
geological and geotechnical conditions, (ii) tunnel geometry and depth, (iii) excavation meth-
ods and (iv) the quality of workmanship and management. It is, however, clear that a shallow 
tunnel will tend to have a greater effect on surface structures than a relatively deep one.

The surface and subsurface movements are directly related to the ground loss, which is the 
volume of soil that exceeded the theoretical volume of excavation, normally expressed as a 
percentage of the tunnel area per meter length. The main components of ground loss can be 
categorized into five quantifiable entities as follows (Fig. 12.4):

1.	 Face and heading effect, Sf  and Sh: deformation of the ground towards the opening 
resulting from stress relief.

2.	 Over-cut shield loss, Ss: The presence of an overcutting edge (bead) combined with any 
tendency of the machine to plough or yaw will lead to radial ground movements.

3.	 Tail loss (soil lining), St: The existence of a gap between the skin of the shield and the 
lining in the tail section will cause some radial ground movements.

4.	 Deformation of the lining due to earth pressure, Sl: deflection of the lining as the ground 
loading develops.

Figure 12.3 � Dependence of the critical stability ratio on tunnel heading geometry (after 
Mair and Taylor, 1997, reproduced with permission from CRC Press).
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For excavations without a shield, components 2 and 3 are not accounted. Besides the ground 
loss, a fifth component must be considered for predicting total ground movements:

5.	 Soil volumetric change, Sc: Consolidation associated with the long-term dissipa-
tion of pore water pressures and dilation/contraction due to tunneling-induced shear 
stresses.

The total volume loss (VL) is the sum of all five components (Fig. 12.4):

V S S S S S SL f h s t l c= + + + + +  � (12.9)

The vertical subsidence caused by the total volume loss can be represented by a transverse 
settlement profile, which is based on field observations, and can be described by a Gaussian 
distribution curve as suggested by Peck (1969) as follows:

S y S y
iv max( ) = −









exp

2

22
 � (12.10)

Where Sv(y) = settlement at any given y, i = trough width parameter, Smax = maximum vertical 
settlement and y = distance from the tunnel centerline.

Marshall et al. (2012) compared the performance of different empirical equations of trans-
verse settlement, and Eq. 12.10 could predict the observed behavior reasonably well; how-
ever, models with greater number of degrees of freedom (e.g. Vorster et al., 2005) showed 
superior performance for settlement prediction in tunnels in sand.

The volume of surface settlement, Vs (per meter length of tunnel), can be evaluated by 
integrating Eq. 12.10 to give:

V i Ss max= 2π � �  � (12.11)

The trough width parameter (i) may be estimated by adopting empirical relationships avail-
able from previous studies. Table 12.1 summarizes the relationships proposed in past studies 
based on field observations and limited centrifuge data.

Typically, the volume of surface settlement (VS) can be related to the total volume loss 
(VL), according to the type of material and ground conditions:

Vs = f (VL)� (12.12)

Figure 12.4 Primar y components of ground movement (after Mair and Taylor, 1997, repro-
duced with permission from CRC Press).
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As a general guide (Atkinson and Potts 1979):

•	 Vs = 0 (very deep tunnels)
•	 VL > Vs for dense sands (drained conditions) because of dilation
•	 VL ≈ Vs for undrained saturated clay, because typically in undrained conditions ground 

movement will occur under constant volume
•	 VL < Vs for loose sands because they exhibit mainly contractive behavior

Knowing the equivalent excavated tunnel volume in soil unit of volume or V0, the total vol-
ume can be computed based on an empirical relationship proposed by Dimmock and Mair 
(2007):

V
V

eL LF

0

4 80 23= ×. (%).  � (12.13)

where V0 = equivalent excavated tunnel soil unit of volume and LF is the ratio between N
and Nc.

12.2.1.2 � Stresses at the tunnel level: Terzaghi’s arching theory 
(Terzaghi, 1943)

Terzaghi (1943) proposed a theoretical approach considering soil arching under plane strain 
conditions. Figure 12.5a shows a section through a bed of sand in which a tunnel is to be con-
structed between the horizontal surface of the bed and the water table. Due to the imperfect 
fit of the support connections and the compressibility of its footings, the support deformation 
is usually sufficient to reduce the stress in the sand (i.e. ground pressure acting onto the tun-
nel lining) almost to the value corresponding to the shear failure state. This is similar to the 
stress state in a mass of sand above a yielding strip. The sand adjoining the sides of the tunnel 
also subsides due to the deformation of its lateral supports.

Table 12.1 Empirical relationships proposed for the estimation of i.

Width through parameter (i) value relationship Reference

Atkinson and Potts (1979)i z= +0 2. (5 0 R) ; loose sand
i z= +0 2. (51. .5 00 5R) ; dense sand/ovverconsolidated clay

i z= +0 4. .3 10 1  ; cohesive soil O’Reilly and New (1982)
i z= −0 2. .8 00 1  ; granular soil

i z= 0 5. 0 Mair et al. (1996)
Clough and Schmidt (1981)

i  z0 
n

= α α  ;  = =1 0and n .8
R  2R 

Note: z0 is the depth of the tunnel axis below ground level (i.e. at the springline) and R is the tunnel radius.
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Based on traditional earth pressure theory, the inclined boundaries of the zone of subsidence 
rise at an angle of about 45° − ϕ/2 (Fig. 12.5a). Therefore, at the level of the tunnel roof, the 
width of the yielding strip is approximately equal to:

2 2 45
2

1 0B B H= + +















tan

φ  � (12.14)

If a tunnel is located at a greater depth below the surface, the arching effect does not extend 
beyond a certain elevation D1 above the tunnel roof. The soil located above this elevation, 
from the surface of the ground down to a depth D2 (Fig. 12.5b), acts on the zone of arching 
like a simple surcharge with an intensity γD2 per unit area. In this case, the pressure on the 
tunnel roof is determined by Eq.12.15.

σ
γ

φ
γ

φ φ

v

k D
B k D

BB
k

e D e= −








 +

−( ) −( )1

0

21
0

1

1
0

1

1

tan

tan tan
    

 � (12.15)

If the roof of a deep tunnel yields, the height D1 of the zone of arching increases while 
the height D2 decreases. The first term of Eq. 12.15 is smaller than γB1/K0 tan ϕ for all values 
of D1. Hence, the pressure per unit of area of a deep tunnel through soil does not exceed an 
upper limiting value, as given by:

σ
γ

φv
B

k,0

1

0

=
tan

 � (12.16)

Figure 12.5 � (a) Flow of soil toward a shallow tunnel when yielding happened in the soil 
body and (b) vertical stress profile in the soil located above the tunnel for a 
deep tunnel (modified after Terzaghi, 1943).
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Considering force equilibrium, at the transport stage:

W W
Vc w

tunnel, concrete water, displaced

tunnel, concrete

=

× =γ γ ××Vtunnel, outline

 � (12.17)

where γ c  is the concrete unit weight and γ w  is the water unit weight.
In the final phase, when the tunnel is sunk into position, a counter flotation margin (fm) 

should apply; hence:

W W W f
V

m

c

tunnel, concrete ballast water, displaced

tunnel,

+ = ×

×γ   concrete ballast tunnel, outline+ × = × ×γ γb w mV V f
 � (12.18)

where γb is the ballast unit weight.
Considering these concepts, theories and summary notes, the following worked-out exam-

ples are now presented.

Worked-out example 12.1: A vertical cutting in a clay deposit having an undrained shear 
strength cu of 20 kPa is proposed for a road project (Fig. 12.7).

a.	 Derive the relationship for the maximum height of the cutting based on force equilibrium.
b.	 Calculate the maximum height for a vertical cutting on undrained clay having cu of 

25 kPa and unit weight of 17 kN/m3.

12.3  Immersed tube tunnels

Immersed tube tunnels are sunk into a body of water and sit on or are buried just under its bed. 
Two main conditions need to be analyzed while considering immersed tunnels (Fig. 12.6), 
during transport (flotation) and sinking into position.

Vent

Duct
Ballast1 Ballast2

Concrete

Concrete

Figure 12.6 Schematic illustration of the dif ferent elements contributing to the weight bal-
ance during transport and installation of an immersed tunnel.

�

W

N

HS

Figure 12.7  Vertical cutting diagram for workout example 12.1.
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Solution:
c

a. Derive 
2

H = u  based on force equilibrium for a soil wedge considered in 
γ βsin cosβ

Figure 12.7.

The force equilibrium in the vertical and horizontal directions are as follows:

S Ncos sβ β− =in 0

W S− −sin cβ βN os = 0

where

γH 2

W =
2 tan β

S c= u H /sin β

N S cosβ
=  (force equilibrium in horizontal direction)

sin β

Substituting W, S and N into Eq. 12.1b, then

γH 2 H H co βcu uβ c s
− −sin cosβ = 0

2tan sβ βin sinβ sinβ

γH 2 H
− −c c

β u uH 0
2tan tan2

=
β

γH c
− −c u

u tanβ = 0
2 tanβ

 H c1 2
= + tanβ  u
 tanβ  γ

H c1 2
= +( )sin c2 2β βos u

sin cβ βos γ

2c
H = u

γ βsin cosβ

b. The cutting will fail when H is minimum. The value of β at which the minimum H 
occurs (wedge failure) may be found by solving dH/dβ = 0 or β = π/4 = 45° and then 
substituting in the expression for H.

2c
H = u × or H 2 25

= = 5 8. 8m
γ βsin cosβ 17×sin c45 os 45
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Thus, the height that can be excavated for this cutting should not exceed 5.88 m for stability.

Worked- out example 12.2: A trench for installing a stormwater pipe is proposed in a satu-
rated clay site having cu of 25 kPa and unit weight of 17 kN/m3. The unit weight of the benton-
ite slurry employed to assist in supporting the excavation cutting has 11.5 kN/m3 (Fig. 12.8).

a. Derive the relationship for the maximum height of the trench based on force equilibrium 
considering undrained conditions (e.g. short-term analysis). 

b. Calculate the maximum height of the trench if the trench is filled with slurry to depth of 
80% of the total height of the excavation (i.e. x = 0.8).

Solution:
a. Considering force equilibrium for a soil wedge shown in Figure 12.8:

P S+ −cos sβ βN in = 0

W S− −sin cβ βN os = 0

where

γH 2

W =
2 tan β

c H
S = u

sin β

βN S cos
=  (force equilibrium in horizontal direction, empty trench)

sin β

0 9H γ xH
P z= =s dz s ( )2.

∫ γ   (hydrostatic pressure distribution in the trench derived from 
0

2

the slurry)

P S+
As P S+ −cos sβ βN in = 0, then N cos β

=
sin β

�

W

N

HSx H

Figure 12.8 Diagram illustrating a slurry-suppor ted trench in undrained soil.
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Substituting W, S and N into Eq. 12.1b,

γH 2 H P + S co βc s
− −u sin β cosβ = 0  or

2 tan sβ βin sin β

γH
22  γ s ( )xH c Hu cosβ  β

− −c Hu  +  cos
= 0

2 2tan β  sin β  β  sin

γH 2 γ ( )xH 2

H
− −c s

β uH − =cu 0
2 2tan tan β tan2β

Multiplying all terms by tan β , then
H

γH γ x H2 c
− −cu β s utan − = 0

2 2 tan β

( )γ γ− x2 c
H s = +u Cu tan β

2 tan β

c  2
H = u  1

sin cβ βos ( )


γ γ− 2

s x 

or

 
 

2c
H = u  1 

γ βsin cosβ   γ
− 

s  
1  x2


  γ  

Note that: 1 1 ( ) 1
 + tan sβ β = +in2 2cos β =
 tan β  sin cβ βos sin cβ βos

b. Substituting the values for the problem and assuming near-failure  conditions for which 
β approaches 45°, then

 
 

2c
H = u  1   or

γ βsin cosβ   γ  
 s1−   x2


  γ  

 
 ×H 2 25

=  1  = 5 8. 8×× =1 7. .6 10 35m
17sin c45o oos 45  11.5 

1−  0 8)2 
 ( .   17  
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The maximum depth of the trench is 10.35 m.
The consideration of slurry support enables the excavation depth to be increased by 

approximately 76% without compromising stability.

Worked-out example 12.3: A new cut-and-cover tunnel is proposed for a new subway line. 
The tunnel is to be constructed in precast concrete with an average depth of cover of 3 m. The 
preliminary site investigation and laboratory testing indicated the presence of a clay deposit 
(γsat = 18.5 kN/m3, cu = 30 kPa, K0 = 0.8) and detected the groundwater level at 1 m depth. 
Assuming the ground profile is relatively homogeneous, calculate the stresses acting on the 
tunnel during service for a design surcharge of 35 kPa.

Solution: During construction, the water level may be lowered, and the stability of the exca-
vation may be assessed using the vertical cutting theory.

For long-term assessments, the groundwater level is restored to its original position, and 
the stresses acting on the precast concrete box are illustrated as shown in Figure 12.9.

Assuming that the material used to fill the trench has the same properties of the original 
clay, the stresses acting on the top of the tunnel can be calculated considering the overburden 
and surcharge pressures and the restored groundwater level, thus:

σv = 3 × 18.5 + 35 = 90.5 kPa
Pw = 2 × 9.81 = 19.62 kPa
σ′v = 90.5 – 19.62 = 70.88 kPa
σ'h = 0.8 × 70.88 = 62.37 kPa

Worked-out example 12.4: A tunnel having a diameter of 5 m is to be constructed with 10 m 
cover in a clay deposit. Site investigations revealed that the groundwater level was located at 
the surface and the clay deposit has γsat = 20 kN/m3, cu = 25 kPa, E = 20 MPa, K0= 0.5,υ = 0.3.

a.	 Determine the minimum tunnel support pressure to ensure stability (fully supported face),
b.	 the maximum settlement at surface caused by the excavation of the tunnel and
c.	 transverse surface settlement profile.

Solution: The profile of the ground can be represented by Figure 12.10.

GWL

Concrete box Horizontal pressure= vertical effective 

stress +  water pressures

Vertical pressure = surcharge 

+ overburden

Figure 12.9  Schematic diagram of the stresses acting on a precast concrete tunnel con-
structed using cut- cover method.
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a. To ensure stability conditions N ≤ 3, then from Eq. 12.8:

σ γ z −N = s T+ −σ + × σor 0 20 12 5. T ≤ 3
Cu 25

σT ≥175kPa

b. As it is a circular tunnel, the volume occupied per unit meter length of the tunnel is given by:

V r= ×π π2 21 2= × . .5 1× =19 63m3

0

To calculate the total volume loss (VL), we may use Dimmock and Mair’s (2007) approach 
for overconsolidated clays; hence,

VL = e4 8×LF0 2. 3 .  and LF = N N/
V c

0

To ensure stability at the face, N ≤ 3 and Nc may be obtained considering Figure 12.11, rep-
resented as follows:

For C/D = 2 and P/D = 0, Nc is 8, then LF ≥ 3/8 or LF ≥ 0.375.

V e4 8 LF
L . . ×0 23
=

V0 100

VL 0 2. 3e4 8. .×0 375

=
19.63 100

V = 0 27 3

L . m  lenghh of tunnel

For undrained clay, assuming short-term  analysis during tunnel excavation, V VL s≅ ,  we 
obtain:

V
V is = =S S s2π max mor ax

2 5. i

D=5m

Z0=12.5m

Clay deposit

Figure 12.10 Ground profile of worked- out example 12.4.
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Thus, to calculate the maximum surface settlement, we need to compute the trough width 
parameter i as follows:

•	 Atkinson and Potts (1979): i = 0.25(1.5z0+ 0.5R) or i = 0.25(18.75 + 1.25) = 5.00
•	 O’Reilly and New (1982): i z= +0 43 1 10. .  = 0.43×12.5 + 1.1 = 6.48

•	 Clough and Schmidt (1981): i D z
D

= 












 =

2
5 20

0 8.

.

The maximum surface settlement caused by the tunnel excavation ranges from 8.64 to 21.6 mm.

c.	 For illustrating the transverse surface settlement profile, the relationship proposed by 
Peck (1969) may be adopted using the Gaussian distribution:

S y S y
iv max( ) = −









exp

2

22

Then the profile can be evaluated between ± 2.5i.
Table 12.2 shows the values computed for the different trough width parameter, and for the 

values determined earlier we obtain the following (Table 12.3, Fig. 12.12):

Figure 12.11 � Dependence of the critical stability ratio on tunnel heading geometry (after 
Mair and Taylor, 1997, reproduced with permission from CRC Press).

Table 12.2 Maximum surface settlement for different values of i.

V
S s
max =

2 5. i

21.6 mm Atkinson and Potts (1979)
16.7 mm O’Reilly and New (1982)
20.8 mm Clough and Schmidt (1981)
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Table 12.3 Values computed for the transverse surface settlement profile.

Y S(y), i = 5 S(y), i = 6.48 S(y), i = 5.2

–30 3.29E-10 3.68E-07 1.23E-09
–27 1.01E-08 2.82E-06 2.91E-08
–24 2.14E-07 1.74E-05 4.93E-07
–21 3.19E-06 8.70E-05 5.98E-06
–18 3.31E-05 3.50E-04 5.20E-05
–15 2.40E-04 1.14E-03 3.24E-04
–12 1.21E-03 2.99E-03 1.45E-03

–9 4.27E-03 6.33E-03 4.65E-03
–6 1.05E-02 1.08E-02 1.07E-02
–3 1.80E-02 1.49E-02 1.76E-02
0 2.16E-02 1.66E-02 2.08E-02
3 1.80E-02 1.49E-02 1.76E-02
6 1.05E-02 1.08E-02 1.07E-02
9 4.27E-03 6.33E-03 4.65E-03

12 1.21E-03 2.99E-03 1.45E-03
15 2.40E-04 1.14E-03 3.24E-04
18 3.31E-05 3.50E-04 5.20E-05
21 3.19E-06 8.70E-05 5.98E-06
24 2.14E-07 1.74E-05 4.93E-07
27 1.01E-08 2.82E-06 2.91E-08
30 3.29E-10 3.68E-07 1.23E-09

Figure 12.12 Transversal surface settlement profile of worked- out example 12.4.

Worked- out example 12.5: For the tunnel considered in worked-out example 12.4, 

a. calculate the tunnel face pressure to ensure that surface settlement of 10 mm is not 
excessed, and

b. if there is a surface surcharge of approximately 75 kPa (e.g. buildings).
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Solution:
a. For this case, adopt the most conservative estimate for surface settlement, i.e. the esti-

mation of i provided by Atkinson and Potts (1979), then:

V
Smax = =s or V Ss max ×2 5. i

2 5. i

V 0.125m3

s = ×0 0. .1 2 5 5× =
m

Substituting the relevant values,

V 4 8. ×LF
L 0 2. 3e
=

V0 100

×LF0.125 0 2. 3e4 8.

=
19.63 100

LF = 0 2. 1

As Nc is 8, then N = LF × 8 = 1.68.
Then,

σ γ z
N s T+ −σ 0 2+ ×0 12 5. −σ
= Tor =1 6. 8

cu 25

σT = 208 kPa

b. For a surface surcharge load of 75 kPa while maintaining the same settlement require-
ments, then,

σ γs T+ −z σ 75+ ×20 12.5−σN = Tor =1 6. 8
cu 25

σT = 283 kPa

Worked- out example 12.6: For the tunnel considered in worked-out  example 12.4, cal-
culate the transversal surface settlement profile if another tunnel having the same dimen-
sions is excavated at the same depth but 10 m away from the centerline of the first tunnel.

Solution: Using the superposition method, the surface transversal surface settlement can be 
found for tunnel A (worked- out example 12.4 tunnel) and B. For simplicity, only the most 
conservative values of Smax of 21.6 mm and i = 5 obtained using Atkinson and Potts (1979)
are considered for this problem.

Note that past studies (e.g. Suwansawat and Einstein, 2007) have reported that the surface 
settlements induced when the second tunnel is excavated are smaller than those estimated 
in Table 12.4. Thus, the transversal settlement profile computed is usually conservative 
(Fig. 12.13).
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Table 12.4 Values computed for the transverse surface settlement profile.

Y Tunnel A Tunnel B Both tunnels

–30 3.29E-10 2.74E-16 3.29E-10
–27 1.01E-08 2.78E-14 1.01E-08
–24 2.14E-07 1.97E-12 2.14E-07
–21 3.19E-06 9.71E-11 3.19E-06
–18 3.31E-05 3.35E-09 3.31E-05
–15 2.40E-04 8.05E-08 2.40E-04
–12 1.21E-03 1.35E-06 1.21E-03

–9 4.27E-03 1.58E-05 4.29E-03
–6 1.05E-02 1.29E-04 1.06E-02
–3 1.80E-02 7.35E-04 1.88E-02
0 2.16E-02 2.92E-03 2.45E-02
3 1.80E-02 8.11E-03 2.61E-02
6 1.05E-02 1.57E-02 2.62E-02
9 4.27E-03 2.12E-02 2.54E-02

10 2.92E-03 2.16E-02 2.45E-02
12 1.21E-03 1.99E-02 2.12E-02
15 2.40E-04 1.31E-02 1.33E-02
18 3.31E-05 6.01E-03 6.04E-03
21 3.19E-06 1.92E-03 1.92E-03
24 2.14E-07 4.29E-04 4.29E-04
27 1.01E-08 6.67E-05 6.67E-05
30 3.29E-10 7.25E-06 7.25E-06
33 7.51E-12 5.49E-07 5.49E-07
36 1.20E-13 2.90E-08 2.90E-08

Figure 12.13 Transversal surface settlement profiles of worked- out example 12.5.
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Worked- out example 12.7: A tunnel for a new subway line 5 m in diameter is proposed to 
be excavated at a depth of 15 m in a silty sand deposit (γ  = 21 kN/m3

sat , E = 25 MPa, k0 = 0.5, 
c′ = 0 kPa, ϕ = 35°).

a. Derive the Terzaghi (1943) general relationship for computing vertical stresses on a tun-
nel considering arching theory applied to tunnels in sands.

γ B  ( )  D ( )D−k φ φ −k   

σ v = −
1

0 n t
1 e D

ta an


B
 + γ

1
0 B

1 1 e 1

k0 tanφ  
2

b. Compute the vertical stress at the tunnel crown considering

i. Arching extends to the surface and
ii. Arching extends only to 5 m above the tunnel crown.

Solution:
a. Terzaghi made the following assumptions based on experimental observations:

• Sliding surfaces are assumed to be vertical (sections ae and bf of Fig. 12.14).
• Pressure on the yielding strip is equal to the difference between the weight of the 

sand located above the strip and at the section (ab) and the shear resistance along 
the vertical sliding surfaces.

Figure 12.14 shows a section through the space between two vertical surfaces of sliding. 
The shearing resistance of the soil is determined as follows:

τ σ= +c ' tanφ '

Figure 12.14 Y ielding in soil caused by downward movement of a long narrow section (ab) 
at the base, lines ae and bf are assumed sliding surfaces and (b) free body diagram for a slice 
of soil in the yielding zone (modified after Terzaghi, 1943).
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The unit weight of the soil is γsat, and the surface of the soil carries a uniform surcharge q per 
unit of area. The vertical stress on a horizontal section at any depth z below the surface is σv, 
and the corresponding horizontal stress (σh)is

σ σh v= ×K0

where K0 is the earth pressure coefficient.
The weight of the slice with a thickness dz at a depth z below the surface is 2B γdz per 

unit of length perpendicular to the plane of the drawing. The slice is acted upon by the forces 
indicated in Figure 12.14. The sum of the vertical components that act on the slice must be 
equal to zero for equilibrium as follows:

2 2B d γ σz B= +( )v vd Bσ σ− +2 2v vc d' tz K+ ×2 0σ φdz× an '

or

dσ v c ' tK anφ '
= −  γ σ−

dz B 0 v B

Considering σ v = =q zfor 0  and solving this equation, we can obtain

B c( 'γ − / )B  ( )z  ( )σ v = 1− e q−K tan 'φ φ  
B  + e −K   ztan ' B

K tan 'φ  

Substituting B= B1, q= γD2 and z = D1 for application to square tunnels in sand (c′ = 0) 
(Fig. 12.5) gives:

B c( 'γ − / )B  ( )σ
k φ φz k z

v =
−  ( )−

 − B n '
1 e q0 0tan '

 + e ta B

k0tanφ '  

This relationship can be simplified further for different cases, considering c′ = 0 and q = 0 
as follows:

B c B ( )D−k
c q ( 'γ − / )  φ   

' > =0 0 and  : σ v =  −
n 1

1 1 1 e 0 ta B1 k0 tanφ '  

B γ  ( )  D−k tan ' 1 D
0 φ  ( )−k tanφ   

c q= > = −1  e qB
 +

0

' 0 0 and  : σ v 1 1 ee
1

B1

k0 tanφ '  

Bγ  ( )−k φ   D

c q= = = −
0

 and  : σ 1

v e
tan ' 11

B 
' 0 0 1 k0 tanφ '  

b. The relationship derived may be adopted to compute the vertical stress at the tunnel 
crown (c′ = 0):

γ B  ( )D−k φ φ   D
0 tan ' '1 (−k   

= − e
1

1 B )σ  +
B

v 1 e D 0
1 γ

tan
1
)

k φ 
2

0 tan ' 
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Making a reasonable assumption of a square geometry for the tunnel, then,

  φ 
2 2B B1 0= + H tan 45+ 

  2 

 B 35 
1 = +2 5. .2 5 tan m45+  =  7 3.

  2 

i. arching extends to the surface, then D2 = 0 and

γ B  ( )D−k
σ

tanφ   

= − e
1

1 
0 B

1 1


v   then
k0 tanφ  

21×7 3.  ( )σ =  − e −   150 5. tan 35
1 7 3. 

v  = 224.6 kPa
0 5. tan 35  

ii. if aching extends only to 5 m above the tunnel crown, then D1 = 5 m and D2 = 10 m.

γ B  ( )D−k tanφ φ  1
0 ' ' ( D−k   

σ = − e DB + γ e
tan 1

1 
B

1 1 
0

1
))

v k 2  then
0 tanφ '  

21×7 3.  ( )− ( )σ =  − e e
  50 5. tan 35 

 + × ×
−   50 5. tan 335

1 27 3.
v 1 10 7 3.

0 5. tan 35  
σ v = +91. .95 165 27 = 257.22 kPa

Worked- out example 12.8: For the tunnel considered in worked-out  example 12.4 (depth 
10 m and diameter of 5 m) excavated in a clayey sand (γ 3

sat = 22 kN/m , K0= 0.5, υ = 0.3), cal-
culate the vertical pressure on the tunnel supports considering arching extends to the surface 
and long- term conditions where c′ = 5 kPa and ϕ′ = 15°.

Solution: If arching extends to the surface, then D2 = 0 and c′ ≠ 0, then

B cγ − B  ( )D( '/ ) −K φ   
σ v = −

1

1 1 
0 B

1 e
tan

1 K0 tanφ '  

Making a reasonable assumption of a square geometry for the tunnel, then,

  φ 
2 2B B1 0= + H tan 45+ 

  2 

Alternatively,

 B 15 
1 = +2 5 2 5 n m45+ . . ta  = 5 7. 6

  2 
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Then,

5 7. (6 22 5− /5 7. )6  ( )σ = − e −   100 5 
v 

. tan 15
1 5 7. 6  = 188.5kPa compared to the σv = γz = 220 kPa

0 5. tan15  

Worked- out example 12.9: For an immersed tunnel with the cross-section  displayed in 
what follows, determine the total weight and volume required in ballast to counter the uplift 
during sinking of the different elements into position (Fig. 12.15).

You may assume unit weight of reinforced concrete = 24.13 kN/m3, ballast = 22.1 kN/m3 
and a flotation margin of 5%.

Solution: Dimensions of the tunnel: height = 9.25 m and width = 35.05 m.
Then the volume of water displaced = 9.25 × 35.05 ×1 = 324.21 m3 (per meter length of 

segment).

W Vwater, displaced = ×γ w tunnel, outline = ×9 8. .1 324 21= 3180.5kN

Simplifying the openings of the tunnel into rectangles, volume of the tunnel is computed as:

Cross- sectional area of the openings =  (8.575 + 4 + 8.575 + 4.6 + 4.6)  
× 7.25 = 220.04 m2

Vtunnel = (324.21–220.04) × 1 = 104.2 m3

Wtunnel = 104.2 × 24.13 = 2514.35 kN

Then

W Wtunnel, concrete + =ballast W fwater, displaced × m

2514.35+Wballlast = ×3180. .5 1 05

Wballast = 825.2 kN

W Vballast = ×γ b ballast

Vballast = =825. /2 22 1. .37 3 m3

1m

7.25m

1m

1.2m
4.6m4.6m

0.5m0.6m
8.575m

0.6m

4m
0.6m

8.575m
1.2m

Rail

Duct

Rail

Duct

Road

Duct
Vent

Duct

Road

Duct

Figure 12.15 Diagram of an immersed tunnel.
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This chapter introduces different approaches for designing typical pavements applied to 
roads and rail infrastructure. Pavements are engineered structures used for the transporta-
tion of people and goods in our daily lives. The important function of the pavements is to 
withstand and distribute the loads from the traffic (vehicles or trains) to underlying subgrade 
soil. Pavement design is a process of selecting appropriate materials for pavement and sur-
face to ensure that it performs satisfactorily and requires only minimum maintenance under 
the expected vehicle loads for the required design life. The design of pavements depends on 
many factors such as vehicle wheel load, configuration of vehicle wheel, volume of traffic 
and subgrade soil strength.

13.1  Design of pavements

The pavements can be classified as either flexible or rigid based on their structural perfor-
mance. Flexible pavements consist of granular pavement materials with bituminous surfac-
ing, and rigid pavements are generally concrete pavements (see Fig.13.1).

The design of flexible pavements is generally based on California Bearing Ratio (CBR) 
tests results. The CBR value is determined by penetration tests and is defined as the rate of 
the force per unit area required to penetrate a soil mass with a standard circular solid steel 
plunger of 50 mm diameter at rate of 1 mm/min to that required for the penetration of stand-
ard material. The standard material is usually confined crushed rock (i.e. CBR of 100%). 
The standards load for 2.5 mm and 5 mm penetration are generally 13.2 kN and 20.0 kN, 
respectively.

The stiffness or elastic modulus of the subgrade can be determined from CBR value using 
the empirical relationship proposed by Powell et al. (1984):

E = ( )17 6
0 64

. %
.

CBR MPa  � (13.1)

Flexible pavements may be designed using laboratory-soaked CBR, field CBR or CBR 
from undisturbed samples. However, laboratory-soaked CBR is generally used for 
designing the thickness of the flexible pavements. Figure 13.2 shows the thickness of 
material required over the in-situ subgrade as function of Equivalent Standard Axles 
(ESA).

Chapter 13

Pavement infrastructure 
(roads and rails)



200  Geotechnical Problems and Solutions

13.2  Rail track modulus and settlement

The current worldwide trend toward increased axle loads and faster trains has resulted in an 
increased damage to heavy-haul tracks. The ability to accurately assess the structural condi-
tion of the track has become very important. One important parameter for characterizing the 
condition of the track substructure is the track modulus.

A number of theoretical models have been proposed for the calculation of track modulus 
based on load versus deflection relationships, yet there is no consensus on the best or most 
accurate method. The most commonly known method assumes the rail track assembly to 
be a beam on an elastic foundation (i.e. the Winkler model), as illustrated in Figure 13.3. 
A vertical force (P) applied by a wheel produces a vertical rail deflection (w). Therefore, 

Figure 13.2 � Design chart for granular pavement with thin bituminous surfacing (modified 
after Austroads, 2017).

Figure 13.1  Cross section of road pavement.
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the track stiffness (k), taken at a point as the wheel passes directly overhead, is defined as 
follows:

k P
w

=  � (13.2)

where k = track stiffness; P = vertical force applied by a wheel; and w = measured deflection 
of the rail.

From this, the track modulus (u) can be determined as:

u k
EI

=
4 3

4 364

/

/( )
 � (13.3)

where E is the Young’s modulus of the rail and I is the rail’s moment of inertia.
Another approach to determine the overall track modulus employs the use of the equiva-

lent method in which the modulus of granular layer (E ) of the whole track (Fig. 13.4) sub-
structure can be estimated as follows:

E
H H H

H
E

H
E

H
E

b c f

b

b

c

c

f

f

=
+ +

+ +










 � (13.4)

Figure 13.3  Typical rail-in-track subjected to a wheel load.

Figure 13.4  Schematic diagram of granular layers representing the elastic modulus of each layer.
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The standard load for 2.5 mm and 5 mm penetration is 13.2 kN and 20.0 kN, respectively.

Solution: The standard penetration curve is shown in Figure 13.5. From Figure 13.5, the 
load corresponding to 2.5 mm and 5 mm penetration is 10.5 kN and 13.4 mm, respectively.

The CBR value for 2.5 mm penetration = 10.5/13.2 = 79.5%.
The CBR value of 5 mm penetration = 13.4/20.0  =  67%.
The higher value is considered as CBR for the subgrade = 79.5%.

Worked-out example 13.2: A new transport link is proposed. The traffic forecast indicated 
that a new road is expected to operate for a traffic of 6×106 ESA. During the site investiga-
tion campaign, samples were collected from trial pits, and a number of CBR tests were con-
ducted. The CBR test results indicate the subgrade has a CBR of 10%.

where Eb, Ec and Ef are the elastic modulus of the ballast, capping and structural fill, respec-
tively. Hb, Hc and Hf are the thicknesses of the ballast, capping, and structural fill, respectively.

Worked-out example 13.1: The following results are obtained from a standard CBR test for 
the subgrade soil. Determine the CBR value of the subgrade soil.

Penetration (mm) 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4 6

Load kN 3.9 6.5 8.5 10.3 11.2 11.8 12.6 13.1 13.8 14.3
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Figure 13.5  CBR results: load versus penetration.
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Determine the minimum thickness of the base course and subbase course layers of the new 
road pavement. Assume a CBR>30% for base course.

Solution:
Design CBR = 10%
Design traffic: 6×106 ESA

From Figure 13.1, the total thickness of the material over subgrade is 300 mm. It is suggested 
to have a CBR>30% for base course materials. From Figure 13.2, corresponding to a CBR 
of 30%, the thickness of the base course is 175 mm.

Therefore, the total thickness of the subbase course is 300–175  =  125 mm.

Worked- out example 13.3: Determine overall track modulus for a given track structure and 
settlement with the following information:

Ballast layer: thickness, Hb = 350 mm; modulus of ballast: Eb= 210 MPa
Capping: thickness, Hc = 150 mm; modulus of capping: Eb= 110 MPa
Structure fill: thickness, Hf = 700 mm; modulus of structural fill: Eb= 40 MPa

Solution:
Calculation procedure:

Equivalent modulus of granular layer (E ) is calculated as:
H H+ + H

E = b c f

 Hb Hc H
 + + f 
 E 

b Ec E f 

where Eb, Ec and Ef are the elastic modulus of the ballast, capping and structural fill. Hb, Hc 
and Hf are the thicknesses of ballast, capping and structural fill, respectively.

+ +E 0 3. . .5 0 15 0 7
= = 58. M45 Pa

0 3. . .5 0 15 0 7
+ +

210 110 40

Assume the equivalent dynamic stress at the sleeper/ballast is 550 kPa (Indraratna and Ngo 
2018). The average strain (εave) of the equivalent granular medium is calculated as the stress 
at sleeper/ballast interface divided by the equivalent modulus (E ), determined as:

σ
ε dyn 550

ave = = × =100 0. %941
E 58.45×103

The elastic settlement of granular medium is then predicted using the total height (H = 1.2 m) 
and determined as:

Stotal = εave  × H = 0.941/100 ×1.2 = 0.01129 (m) = 11.29 mm

Worked- out example 13.4: A new track extension is proposed to be built on a homogeneous 
and uniform clay subgrade. The track is subjected to regular heavy wheel loads whose details 
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are summarized in Table 13.1. Determine a thickness of granular layer for track foundation. 
(Note: this example is similar to the one presented by Li and Selig, 1998a.)

Table 13.1 Input parameters f or determining the thickness of the granular layer based on 
the performance of the subgrade (Li and Selig, 1998b).

Design parameters Values

Design criteria Allowable subgrade plastic strain for the design period, εpa = 2%
Allowable settlement of subgrade in design period, ρa = 25 mm
Minimum granular layer height = 0.45 m
Impact factor method = AREA (1974)
Subgrade capacity method = Li and Selig (1998b)

Rail and sleeper Not needed
properties

Traffic conditions Static wheel load, Ps = 173 kN
Velocity, V = 64 km/h
Design tonnage, T = 64 MGT
Wheel diameter, D = 0.97 m

Granular material Resilient modulus, Eb = Ec = Es = 276 MPa
characteristics

Subgrade soil Soil type, CH (fat clay)
characteristics Soil compressive strength, σs = 90 kPa

Subgrade modulus, Es = 14 MPa
Thickness = 1.5 m

Solution:
Step 1: Dynamic amplification factor (IF) calculation based on AREA (1974) method.

The American Railroad Engineering Association (AREA, 1974) introduced a simple math-
ematical expression to calculate the value of IF based on the results of in-situ measurements  
of dynamic wheel loads from train cars with known static wheel loads. All the measurements 
were undertaken on standard-gauge  tracks (1435 mm) in the U.S. The value of IF is set to be 
a function of vehicle speed V (km/h) and wheel diameter D (mm).

VIF = +1 5.21
D

VIF = 64
1 5+ .21  = 1 5+ .21  = 1.34

D 970

Step 2: Dynamic wheel load (Pd) calculation:

Pd = 1.34 × 173 = 231.82 kN
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Step 3: Number of load cycle (N) calculation:

T ( )60×106 ×9 8. 1
N =  =  = 425,289

8Ps 8×173

Step 4: Select the values of a, m and b for CH soil from Table 13.2:

a = 1.2; m = 2.4; b = 0.18

Table 13.2 V alues of soil parameters a, b and m for calculating the plastic shear strain of 
subgrade for four types of soil (Li and Selig, 1998a).

Soil type a b m

CH (fat clay) 1.20 0.18 2.40
CL (lean clay) 1.10 0.16 2.00
MH (elastic silt) 0.84 0.13 2.00
ML (silt) 0.64 0.10 1.70

Step 5: Calculation for the first design procedure (preventing local shear failure of 
subgrade):

Step 5.1: Calculate allowable deviator stress on subgrade (σ da) using

 ( )
 ε 

1/m 
σ σda = s 

pa
 

 aN b
  

εp= 2% and σs = 90 kPa is used from the input parameters.

 ( )
 ε 

1/m   ( )1 2/ .4  σ da  = σ s 
p
   =

 b  2
90  0 1. 8    = 42.1 kPa

 aN    ×     1 2. 425289 

σ A
Step 5.2: Calculate the strain influence factor (Iε) from Iε =

d

Pd

×Iε = 42. .1 0 645  = 0.117
232.47

Step 5.3: Determine the (H/L) from Figure 13.6 corresponding to the granular material 
modulus Es = 276 MPa and subgrade modulus 14 MPa:

H/L = 5.07
H = 5.07 × 0.152 = 0.771 m
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Figure 13.6 � Granular layer thickness design chart for preventing progressive shear failure: 
(a) Eb = 550 MPa, (b) Eb = 280 MPa and (c) Eb = 140 MPa (modified after Li and 
Selig 1998a).
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This chapter introduces a number of different problems related to applied topics in unsatu-
rated soil mechanics.

14.1  Quantities describing water content

The amount of water in soil can be expressed in terms of mass, known as the gravimetric 
water content, or in terms of volume, known as the volumetric water content. The gravimet-
ric water content, typically referred to simply as water content, is expressed by the mass ratio 
of water and solid particles in any unit soil volume (see Chapter 2):

w
m
m
w

s

=  � (14.1)

whereas the volumetric water content (θw) is defined by the volume ratio of water and total 
volume of soil:

θw
wV
V

=  � (14.2)

In unsaturated soil, the amount of water in the soil is often represented by the degree of 
saturation (Sr), expressed by the ratio of the volume of water and volume of the voids (see 
Chapter 2):

S
V
Vr
w

v

=  � (14.3)

The different quantities can be interrelated by:

θw r
snS

wG
e

= =
+1

 � (14.4)

where n represents porosity, Gs is the specific gravity of solids, and e is the void ratio. Note 
that the amount of water stored in the voids can also be represented by the water ratio (ew), 
and it is defined as the ratio of the volume of water and volume of the solids, or

e
V
Vw
w

s

=  � (14.5)
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14.2  Soil water retention behavior

14.2.1  Suction potential

Suction potential is the potential energy of water relative to pure water in a reference state. 
It quantifies the tendency of water to move from one area to another due to osmosis, gravity, 
mechanical pressure or capillary action. From a thermodynamic standpoint, total suction (s)
can be quantitatively described by Kelvin’s equation, given in Eq. 14.6:

s RT
v

u
uv v

v

v

= −










0 0ω
ln  � (14.6)

where s is the total suction (kPa), R is the universal gas constant (J/(mol·K)), T is the abso-
lute temperature (K), vw0 is the specific volume of water (m3/kg), ωv is the molecular mass 
of water vapor (g/mol), uv is the partial pore-water vapor (kPa) and uv0 is the saturated pres-
sure of water vapor over a flat surface of pure water at the same temperature (kPa). The 
term (uv/uv0) is called relative humidity, or RH (%). Two components can influence the total 
suction: they are the pressure or capillary potential (ua−uw) and the osmotic potential (π), as 
shown in Eq. 14.7:

s u ua w= −( ) +π  � (14.7)

14.2.1.1  Capillary potential or matric suction

While the water pressure in saturated soil (i.e. below the water table) is positive and the 
liquid phase is in compression, in unsaturated soil (i.e. above the water table), the hydro-
static water pressure is negative, and therefore the liquid phase is in tension. This tension, 
designated as matric suction, is a result of the interaction of three phases (i.e. soil grains, 
water and air), and it represents the difference in pressure between the soil water and the air, 
as in Eq. 14.8:

s u ua w= −( )  � (14.8)

Where ua and uw are the air and water pressure, respectively.
The matric suction represents the combined effect of adsorption between the soil and 

water molecules and capillary action within the soil matrix. While the adsorbed water is 
tightly bonded to the soil particles and could be considered part of a solid skeleton, capillary 
action is a result of liquid surface tension. The difference between water and air pressures is 
related to the curvature of the interface of air and water phases (radii r1 and r2) and the surface 
tension Ts (Fig. 14.1), or

s u u T
r ra w s= −( ) = +










1 1

1 2

 � (14.9)

The force derived by the capillary action acting on the grain contacts can easily be quantified 
using a simple two-spheres model (Fig. 14.1).
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14.2.1.2  Osmotic potential or osmotic suction

The osmotic potential of water is linked to the dissolved solutes (i.e. salts) in soil water. Pure 
water is usually defined as having a solute potential of zero that increases in a negative order 
for increasingly higher concentrations of solute in the pore fluid. Because osmotic suction 
can only be observed if the soil water comes in contact with pure water through a perfect 
semipermeable membrane that should only allow water to pass through and not the solutes, 
it is not usually measured in soils.

The matric suction is widely accepted to be the governing component of suction in 
describing the mechanical behavior of unsaturated soils, and it has been used to formulate 
the mechanical constitutive models for these materials. In the following sections, the term 
“suction” refers to matric suction unless stated otherwise.

14.2.2  Soil water retention curve

To adequately describe the hydraulic properties and understand the volumetric behavior of 
unsaturated soil, it is necessary to establish a relationship between suction and the amount of 
water in the soil, which can be expressed in terms of either water content (mass), volumetric 
water content or degree of saturation (volume).

This relationship is often referred to as the soil-water retention curve or SWRC. The desatu-
ration process expressed by the SWRC can be divided into three main ranges, that is, the bound-
ary effect zone, the transition zone and the residual zone (Fig. 14.2a). The first transition point 
represents the air-entry value (AEV) whereas the second represents the onset of residual zone.

The shape and location of transition points is strongly dependent on the type of soil, par-
ticle size distribution and its structure. For instance, the SWRC curves of soils that are com-
posed predominantly of sand show smaller AEV values (in the order of 10 kPa), sharper 

Figure 14.1 � Schematic illustration of micro-scale models for unsaturated spherical particles  
(Mancuso et al., 2002, reproduced with permission from Canadian Geotechnical Journal).
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Figure 14.2 SWR C of a silty sand using (a) semi- logarithm scale and (b) double logarithm 
scale (modified after Heitor, 2013).

slope curves with limited transition zones, whereas soils composed of clay show larger AEV 
and smoother curves with larger transition ranges.

14.2.2.1 Influence of bimodal porosity

Compacted soils, particularly those compacted at the dry side of optimum moisture content, 
often exhibit different pore size sets. This is usually referred to as double or bimodal poros-
ity. The SWRC of soils that show bimodal porosity features are notorious because they show 
two different air entry values, associated to the macropore and micropore ranges (Fig. 14.3).
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While in the low suction range, the hydraulic behavior is mainly controlled by the macr-
oporosity (inter-aggregate porosity) for suction values exceeding the micropore air entry 
(Sm(ae)) the microporosity (intra-aggregate porosity) governs.

14.2.2.2  Models

There have been different empirical models proposed to model the behavior of SWRC. The 
most commonly use are those proposed by Fredlund and Xing (1994), represented by 
Eq. 14.10, and van Genutchen (1980,) represented by Eqs. 14.11 and 14.12.
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e s

=
+ ( )



{ }

( )

ln
 withC

s
r

r

( )

ln

ln

ψ
ψ

ψ

= −
+











+










1

1

1
106
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 withm

n
= −1 1  � (14.11)
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−

θ θ
θ θ

θ
θ θ

 � (14.12)

where Sre represents the effective degree of saturation (macropores) that can be expressed in 
terms of porosity (n), residual volumetric water content (θr) and saturation volumetric water 
content (θs); α, n and m are fitting parameters; ψr corresponds to suction value at residual 
water content; and s is the suction.

To describe the shape of a bimodal SWRC, the unimodal models may be extended to 
include the macroporosity (fitting parameters αM, nM and mM) and microporosity (fitting 
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Figure 14.3  Bimodal SWRC of a silty sand (modified after Heitor, 2013).
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parameters αm, nm and mm) ranges as represented in Eq. 14.11. For instance, the van Genutchen 
(1980) model was extended as follows (Zhang and Chen, 2005):

S p
s

p
s

re M

M
n m m

m
n m

M M m m
=

+ ( )





+
+ ( )





1

1

1

1α α  � (14.13)

where parameters pM and pm represent the relative percentage of the components with the 
large-pore series and the small-pore series in the soil mass.

Gallipoli et al. (2003) proposed another extension of the van Genutchen (1980) model and 
included the void ratio and two more empirical parameters (ϕ, ψ) in the function α (α =φ ψ�e ) 
and Eq. 14.11 was modified as follows:

S
e s

re n m=
+ ( )





1

1 φ ψ  � (14.14)

Where e represents the void ratio and ϕ, ψ, m and n are material parameters obtained using 
best-fit methods, such as the least-squares method.

14.3  Shear strength

Changes in suction can substantially influence the shear strength of soil. There is a 
general agreement that an increase of suction under post compaction conditions results 
in an increase in the shear strength. Furthermore, Vanapalli et al. (1996) suggested that 
the magnitude of this increase in shear strength is associated with different ranges of the 
soil water retention curve. By considering the independent stress variables approach, 
the shear strength equation for unsaturated soil can be formulated as a linear combi-
nation of the two independent stress state variables (Fredlund et  al., 2012) shown in 
Eq.14.15:

τ σ φ φ= + −( ) +c u sf a
b' tan ' tan  � (14.15)

where c′ and ϕ′ are the cohesion and friction angle for the soil in a saturated state and ϕb is the 
friction angle that reflects the increase in strength caused by an increase in suction.

Subsequent studies demonstrated that ϕb was not constant, as initially anticipated. Indeed, 
ϕb was found to be equivalent to ϕ′ before AEV, and beyond that it decreased with increasing 
suction. A new equation was proposed by Vanapalli et al. (1996) and then Fredlund et al. 
(1996) to incorporate this change in the term tan ϕb in Eq. 14.15 as follows:

tan tanφ
θ θ
θ θ

φb r

s r

=
−
−

′  � (14.16)

where θs, θr and θw are the saturated, residual and current volumetric water content, 
respectively.

Eq.14.15 implicitly assumes that the friction angle ϕ′ (commonly taken as the saturated 
friction angle) is independent of suction. Past experimental data reported by Delage and 
Graham (1995) demonstrated that this assumption was not entirely correct, i.e. cohesion and 
friction angle increased with suction. On the other hand, considering Bishop’s effective stress 
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concept for unsaturated soil (Bishop, 1959), the shear stress criterion expressed in Eq. 14.15 
can be rewritten as follows:

 btanφ 
τ σ= +c u' ( )f − a + s tan 'φ   (14.17)

 tan 'φ 

where the original Bishop’s parameter χ is now given by tan ϕb/tan ϕ′.

Worked- out example 14.1: An undisturbed sample of silty sand was collected on site, and 
the soil water retention behavior was determined in the laboratory using a pressure plate 
apparatus and filter paper tests. The results obtained are shown in Table 14.1.

Draw the soil water retention curve and determine the air entry and residual values.

Solution: Figure 14.4 shows the values obtained for the SWRC plotted in a semi-logscale.  
The air entry and residual values can be read from Figure 14.4 and are as follows:

Air entry value = 0.55 kPa
Residual suction value = 420 kPa

Table 14.1 SWRC results obtained for the clay.

Water content (%) Matric suction (kPa)

4.9 1702
5.3 1019
6.1 522
8.0 141

10.9 32.2
13.4 10.2
15.8 3.2
18.0 1.1
19.5 0.3
19.5 0.1
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Figure 14.4 SWRC for the sandy silt undisturbed specimen semi-log scale. 



214 Geotechnical Problems and Solutions

Worked- out example 14.2: A new dam is proposed to be built using a local available mate-
rial, i.e. silty sand. A sample of the soil is compacted to suit the required end-product speci -
fications, and the water retention behavior is determined subsequently using pressure plate 
tests. The results obtained are shown in Table 14.2. Plot the SWRC and determine the empiri-
cal parameters to fit a suitable model.

Table 14.2 SWRC results obtained for the clay.

Suction (kPa) Degree of 
saturation (%)

0.1 100
20 75.70796
50 43.25604

100 39.65467
310 35.30136
510 32.01659
620 29.12758
730 28.13819
900 27.46541

Solution: The results can be plotted as follows (Fig. 14.5):

The results seem to indicate that a bimodal model may be more suitable to fit the data.
Consider the model proposed by Zhang and Chen (2005):

1 1S pre = M m + pm


m
1+ ( )α αM s n MM  1+ ms n

   ( )  mm


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Figure 14.5 SWRC for the sandy silt compacted specimen in semilog scale.
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Given that the degree of uncertainty is similar for all the unknown parameters, the unweighted 
least-square  method is appropriate. The experimental values may be listed in a Microsoft Excel 
spreadsheet (Table 14.3), and the vertical deviation of the ith point from the smooth curve is

vertical deviation = −y yi i− −observed calculated

According to the least-square criterion,  the square sum of the n-points  deviations should be 
minimal. For every ith point, the square difference between the measured yi and the calculated 
yi-m values can be computed (Table 14.3) by:

  
2

( )
n

2 ∑  1 y y y p 1 
i i− −m = −i M +  m pm m 

i=1   1+ ( )α αM s n MM  1+ ( )s nm  m

m 
      

To perform the least- square method in a Microsoft Excel spreadsheet, we need to choose 
“data analysis” in the Data tab and then select the option for Solver (Fig. 14.6). The target cell 

Table 14.3 Summary of the measured and calculated values.

X yi yi-m (yi – y i-m)2

0.1 100.000 99.840 0.026
20 75.708 66.576 83.394
50 43.256 53.563 106.234

100 39.655 44.998 28.553
310 35.301 33.645 2.743
510 32.017 29.576 5.956
620 29.128 28.116 1.024
730 28.138 26.950 1.413
900 27.465 25.525 3.767

Figure 14.6 Screenshot of the Microsoft Excel solver plugin.
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represents the sum of the square differences, and the changing cells represent the parameters 
α, m and n. Once the appropriate cells in the spreadsheet are selected by clicking “solve,” the 
solver tool looks up in a matter of seconds the best combination of the selected parameters 
and updates their values in the spreadsheet.

The fitted model with parameters determined can then be plotted together with the SWRC 
data, as in Figure 14.7.
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Figure 14.7 SWRC for the sandy silt compacted specimen and bimodal model fit.

Worked- out example 14.3: A series of static compaction tests was conducted using a clay 
soil. For each specimen, degree of saturation, void ratio and suction were recorded. The 
different experimental points were then fitted with the Gallipoli et al. (2003) model, and the 
empirical parameters obtained are shown in Table 14.4. Determine the suction level obtained 

Table 14.4 Summar y of Gallipoli et al. (2003)  
model parameters

Parameters Value

ϕ 0.004736
ψ 2.992
M 0.197
N 1.64
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for a specimen prepared at a water content of 0.27 and compacted with two vertical stress 
levels to achieve a void ratio of 1.6 and 1.2. Assume specific gravity of 2.7.

1Sre =
 n 

m

1+ φ
 ( )e sψ

 

Solution: The problem describes a typical mechanical wetting path, for which there is a 
reduction in void ratio for larger static stress. As compaction takes place under constant 
water content, the degree of saturation can be determined using the basic weight–volume 
relationship, as follows:

eSr s= wG  or

wG
S s

r = , hence
e

S 0 2. .7 2× 7
r e( .=1 6) = = 0.456

1 6.

S 0 2. .7 2× 7
r e( .=1 2) = = 0.608

1 2.

Using the Gallipoli et al. (2003) model, then graphically (Fig. 14.8):

s(e = 1.6) = 570 kPa
s(e = 1.2) = 550 kPa
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Figure 14.8 SWRC for the compacted specimens for void ratios of 1.2 and 1.6.
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Worked- out example 14.4: A series of constant suction triaxial tests was conducted for a 
clay at a net stress of 100 kPa using an apparatus adopting axis translation technique. Deter-
mine the shear strength of the soil at a suction level of 250 kPa, knowing that the volumetric 
water content at failure was 0.29 and the saturated shear strength parameters, c′ and ϕ′, were 
25 kPa and 10°, respectively.

The soil water retention behavior was determined separately using pressure a plate appa-
ratus and a filter paper method, and the volumetric water content corresponding to saturated 
(θs) and residual state (θr) were 0.35 and 0.24, respectively.

Solution: As the water retention behavior data is available, then Vanapalli et al. (1996) can 
be used as follows:

τ σ= +c u' t( )f − anφ φ b
a ' t+ s an

where

θ θ
tan tφ b −

= r anφ′
θ θs r−

9 0
φ b 0 2. .− 24

tan = tan .10 = 0 08
0 3. .5 0− 24

Thus, for a net stress of 100 kPa and suction level of 250 kPa,

τ σ= +c u' ( )f a− +tan 'φ φs btan

τ = +25 ( )100 tan (10+ ×250 0 0. )8 6= 2 7. kPa
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This chapter focuses on aspects related to reclamation and marine works.

15.1  Dewatering

For application in reclamation and marine works, typically a number of dewatering meth-
ods can be used to control the groundwater level. The selection of the most appropriate 
method typically depends on the expected drawdown level and the permeability of the 
ground (Fig. 15.1).

For an optimal design of dewatering systems, three main aspects must be considered, i.e. 
area to be dewatered or equivalent circle, radius of influence of each well and capacity of 
the pumps.

The radius of influence of each well can be determined using Sichardt’s formula (1928) 
as follows:

R C H k0 = ⋅ ⋅  � (15.1)

where R0 is the distance of influence (m), H is the expected drawdown (m), k is ground per-
meability (m/s) and C is an empirical factor, generally taken as 1500–2000 (m/s)–1/2 for plane 
flow and 3000 (m/s)–1/2 for wellpoints.

In addition, the spacing and location must be carefully investigated to ensure the water 
level remains at the expected depth. To compute the rate of water flow arriving at each well, 
the formulation derived in Chapter 4 for well pumping can be used. For instance, Eq. 15.2 
represents an unconfined aquifer, whereas Eq. 15.3 represents a confined aquifer ground 
conditions (see Chapter 4).
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Chapter 15

Dewatering, radial drainage  
and vacuum consolidation
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15.2  Consolidation using vertical drains

Vertical drains can be used to accelerate consolidation of low-lying and reclaimed land, e.g. 
artificial islands for airports and extension of existing port infrastructure. By creating arti-
ficial drainage paths which contribute to a reduction of the length of the drainage path, the 
drains accelerate the dissipation of the pore water pressure and hence consolidation. There 
are four types of vertical drains: sand drains, sand compaction/gravel piles, fabric encased 
sand drains and prefabricated vertical drains (PVDs).

15.2.1  Radial consolidation theory

The three-dimensional consolidation of radial drainage in ideal drains is given by:

∂
∂

=
∂
∂








 +

∂
∂

+
∂
∂











u
t

C u
z

C u
r r

u
rv h

2

2

2

2

1  � (15.4)

where
u  excess pore water pressure at radius r and at the depth z
t  time elapsed after the loading applied
Cv  coefficient of vertical consolidation
Ch  coefficient of horizontal consolidation

Figure 15.1 � Range of application of dewatering techniques (after Powrie, 2014, reproduced 
with permission from CRC Press).
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The equation for radial drainage only is:
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The overall degree of consolidation U is given by:

1 1 1−( ) = −( ) −( )U U Uv r  � (15.6)

where Uv  is the average degree of vertical consolidation, related to the time factor Tv , and 
Ur  is average degree of radial consolidation, related to the time factor Tr . 

The relationship between Uv and the time factor Tv can be represented graphically, as illus-
trated in Figure 15.2. The time factor Tv and Tr are given by:

T
C
H
tv

v= 2  � (15.7)

 T
C
r
tr

h

e

= 2  � (15.8)

with H   =  drainage path and re   =  radius of influence of the drain (smallest drainage 
path).

Figure 15.2 � Relationship between the average degree of consolidation and time factor 
(modified after Knappett and Craig, 2012).
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15.2.2  Installation pattern

Drains can be installed in square or triangular patterns, as illustrated in Figure 15.3.
If the drain radius is rw, then

n
r
r
e

w

=  � (15.9)

The spacing between two consecutive drains can be determined using the Barron curves 
(Fig.15.4).

Square pattern
De=1.128S , re=0.565S

S
De

Square pattern
De=1.05S , re=0.535S

De

S

Drains

Figure 15.3 � Typical drain installation patterns and equivalent diameters (modified after 
Indraratna et al., 2005); S = drain spacing.
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The equivalent radius of a band drain is given by:

r a b
w =

+
4

 � (15.10)

and a and b are the width and thickness of the drain, respectively.

15.2.3 � Drain spacing (Rujikiatkamjorn and Indraratna, 
2007, method)

The drain spacing is typically computed using dimensionless horizontal time factor-
consolidation curves (Tr vs. Ur) charts (Fig. 15.4) as a function of n (i.e. Barron, 1948). 
Usually, the spacing is obtained via an iterative process to evaluate the required parameters 
such as n. As the manufacturer limits the availability of the size of PVDs, the appropriate 
design charts should be re-established using the equivalent drain diameter (Dw=2 rw) as a 
known variable in order to determine the drain spacing (S). This method can also capture 
the effect of the smear zone, and that is incorporated in the determination of parameter ξ 
as follows:

ξ =




















k
k

D
D

h

s

s

w

ln  � (15.11)

Where kh is the coefficient of horizontal permeability, ks is the coefficient of horizon-
tal permeability in the smear zone, Ds is the diameter of the smear zone and Dw is the 
equivalent drain diameter.

In addition, Rujikiatkamjorn and Indraratna (2007) proposed empirical relationships for n
based on the value of the parameter ξ as follows:

n = +

= − × +

= +

−

exp ( ln )

. . .

.

. .

α γ β

α ξ ξ

β

0 3938 9 505 10 0 03714

0 4203 1

4 1 5 0 5

.. .

'

ln
( )

*

.456 10 0 5233

8

1

3 2 0 5× −

=
−

− ξ ξ

γ
T
U
u

h

 � (15.12)

Where T′h is the modified time factor to account for drain diameter (= ch t/Dw
2). This is rep-

resented graphically in Figures 15.5 and 15.6.
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Figure 15.6 � Design chart for the determination of the parameter ξ (after Rujikiatkamjorn 
and Indraratna, 2007, reproduced with permission from Canadian Geotechnical Journal).

Figure 15.5  Average excess pore pressure due to vertical loading versus time factor Tv 
(Rujikiatkamjorn and Indraratna, 2007, reproduced with permission from Cana-
dian Geotechnical Journal).
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Worked- out example 15.1: A basement of a building requires a 60 × 60 m excavation 2 m 
deep in a bed of sand 25 m thick. The minimum drawdown expected at the center of the 
excavation is 3 m, and permeability of sand is ksand = 4.8 × 10–4 m/s. Prior to the dewatering 
system being installed, the groundwater level (GWL) was found to be at ground surface. The 
proposed dewatering system is to be set back from the excavation 5 m, with each well having 
a nominal diameter of 200 mm and pump operating capacity of 3000 L/min.

a. Determine the drawdown level expected at the wells.
b. Select the most appropriate well system.
c. Determine the number of wells and spacing (assume C = 2,000 (m/s)–1/2).

Solution:
a. The profile of the ground is shown in Figure 15.7.

For an unconfined aquifer, we have:

k Hπ ( )2 −H 2

q = 2 1

 R 
ln 2 
 R1 

To calculate the expected drawdown at the wells, we can use the previous relationship, con-
sidering R1 = 0.1 m (radius of the well) and R2 = 35 m (center of the excavation) and h2 = (25–3) = 
22 m (center of excavation) and pump capacity of 3000 L/min or 0.05 m3/s.

−4 8. × −10 4 2π ( )22 H 2

1
0 0. 5 =

 35 
ln  
 0 1. 

H m1 = 17.01

Therefore, expected drawdown at the wells is 25–17.02 = 7.98 m.

k=4.8 ×10-4m/s

Clay2m

Shale

60 m

2m
Sand 1m minimum

35 m35 m

Excava�on

25m

Figure 15.7 Ground profile for worked- out example 15.1.
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Using Figure 15.1 (reproduced as Fig. 15.8), based on the expected drawdown and ground 
permeability, the most suitable dewatering system is the use of two stage well-points or deep  
wells.

For the design of the dewatering system (no. of wells and spacing), the total amount of 
water flow that needs to be pumped out from the excavation has to be computed.

For this, we can consider the excavation as a single well with an equivalent radius: 
×B L× = πR2 B L

w  or Rw = π

For this excavation (60 × 60 m) with wells set back 5 m away, then:

×R 70 70
w = = 39. m5

π

For an unconfined aquifer we have:

k Hπ ( )2 −H 2

q = 2 1

 R 
ln 2 
 R1 

Figure 15.8 Range of application of dewatering techniques ( after Powrie, 2014, reproduced 
with permission from CRC Press).
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In this problem, we can use the previous relationship, considering Rw = R1 and radius of influ-
ence of the pumped zone = R2 and H1 = (25–3) = 22 m (center of excavation) and H2 = 25 m 
(GWL at ground surface).

To compute the radius of influence of the pumped zone, Sichardt’s formula can be used 
(minimum drawdown (H) at the center of the excavation = 3 m).

R C0 = ×H k× = 2000× ×3 4.8 1× −0 4  = 131.5 m

Then, substituting R0 = R2, the total amount of water flow can be computed as follows:

4 8. × −−10 4 2π ( )25 222

q = = 0.177 m /3 s
ln 131.5 
 
 39.5 

The principle of superposition can be used to calculate the combined drawdown of multiple wells.
If each well pump has an operating capacity of 3000 L/min or 0.05 m3/s, then the required 

number of wells can be calculated as follows:

No. of wells = 0.177 / 0.05 = 3.54 wells
The number of wells required is 4.

Well location on the excavation perimeter is 70 × 4 = 280 m, then well spacing is approxi-
mately 280/4 = 70 m.

Worked- out example 15.2: A new extension for a port infrastructure is proposed. To reclaim 
the land for the new extension, a 2.5 m thick layer of hydraulic fill (γ 3

sat = 15 kN/m ) is placed 
over a 6 m thick deposit of normally consolidated clay, resting on impermeable shale (Fig. 
15.9). To accelerate drainage and consolidation of the clay layer, it is proposed to install a 
series of radial sand drains in sufficient number so that the time needed for 90% overall con-
solidation to occur is reduced to just 2 years. The sand drains to be installed are 200 mm in 
diameter and will be inserted throughout the clay layer using the triangular pattern. Labora-
tory tests revealed that the clay has a coefficient for vertical and horizontal consolidation of 
cv = 2.2 m2/year and c 2

h = 3 m /year, respectively.
Calculate the spacing between two consecutive drains needed to achieve the stated objective.

Figure 15.9 Profile for worked- out example 15.2.
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Solution: Calculate the time factor for vertical drainage only.

C
T v ×

v = =t 2 2. 2
= 0.122

H 2 26

Then calculate the degree of consolidation due to vertical drainage only for the 2- year period 
using the Terzaghi chart (Fig. 15.3) reproduced from Uv versus Tv (Fig. 15.10).

From the graph:

Uv ≈ 0.40

As the required overall degree of consolidation for 2 years is U = 90%:

( )1 1−U U= −( )v r( )1−U

Therefore, in order to have an overall consolidation of 90%, the required radial degree of 
consolidation Ur for 2 years is:

( )1 0− . .9 1= −( )0 4 ( )1−Ur

Ur = 0 8. 3

The sand drain must be designed so that the system reaches a minimum of 0.83 degrees of 
consolidation due to radial drainage.

Figure 15.10 R elationship between the average degree of consolidation and time factor 
(modified after Knappett and Craig, 2012).
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To determine the drain spacing required for reaching the degree of consolidation of 
0.83, an iterative process between an initial assumed n compared to an obtained n must 
be used.

Use Barron charts (Fig. 15.4, reproduced in Fig. 15.11) for radial consolidation.
Iteration 1: For Ur = 0.83 and n1 = 10, from the graph (Fig. 15.4, reproduced in Fig. 15.11, 

noting the relevant Ur), Tr ≈ 0.34 (as drain diameter is 200 mm, rw = 0.1 m).

C  C 
1 2/


1 2/

T 3 
r = h t solving for r  we have r h

e =  t = × = 2 2 .1
r e

4 2

e 4Tr  4 0× .34 

For this calculated re, a new value of n = n2 can be found:

r  C 
1 2/

n e 1 h 2 1.
2 = =  t = = 21

r rw w 4Tr  0 1.

n1 = 10 ≠ n2 = 21

Iteration 2: A new n is assumed, n3 = 15 can be considered.
Using the Barron chart for Ur = 0.83 and n3 = 15, then Tr ≈ 0.43.
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Figure 15.11 Relationship between Ur and Tr (modified after Vinod et al., 2010).
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A n value of n4 is:

r C 
1 2/

n e h 
1

1 
4 = = t 1 3  2

  = × 2 1= 8 7.
r rw w 4Tr  0 1. .4 0× 43 

n3 ≠ n4 (i.e. different is too high)

Iteration 3:  A new n is assumed, n5 = 17 can be considered.
Using the Barron chart for Ur = 0.83 and n5 = 17, then Tr ≈ 0.46.
A new n value of n6 is:

r  C 
1 2/

n 1  3 
1

1 2

6 = =e


h t = × 2 1= 8
r rw w 4Tr  0 1. .4 0× 46 

n6 ≈ n5 

Since the drains are installed in a triangular pattern, then:

r
n = e

6 = 18
rw

re = ×18 0 1. .=1 8m

R r= =e 1 8. .= ×0 525 S
S = 3 4. m

For improved efficiency and added reliability, keep the spacing of sand drains at 3 m.

Worked- out example 15.3: A road embankment is planned to be constructed over a layer 
of saturated clay of 8 m thick. To increase the rate of consolidation, it is advised to install 
350 mm diameter sand drains at 3 m spacing in a square pattern. The degree of consolidation, 
within the time due for operation, was estimated to be 30% without the drains. Calculate the 
degree of consolidation of the clay for the same time after the installation of drains. Consider 
an impermeable layer below the clay and cv = 4.0 m2/yr and ch = 6.9 m2/yr. Ignore the stiff-
ness of the sand drains.

Solution:
Without any sand drains:

UV = 0 3.

From Fig. 15.2: Tv = 0.071

T d 2

t = =v 0.071×82

or t =1 1. 4 years
cv 4
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After the installation of the drains (square pattern):

r se = ×0. .564 = ×0 564 3 1= . m69

r
n e 1 6. 9

= = = 10
rd 0.175

c
T h

r t 6 9. .×1 14
= = = 0 7.

4r 2 2
×

e 4 1× .69

From Fig. 15.4: Ur = 0.97

( )1 1−U U= −( )v v( )1−U

U = −1 1( )− 0 3. .( )1 0− 97

U = 98%

Worked- out example 15.4: An embankment is to be constructed as a foundation of a road-
way, on top of the 8.0 m thick layer of firm clay, sandwiched between silty sand at the top 
and dense sand at the bottom.

To accelerate drainage, it is proposed to install a series of prefabricated vertical drains 
(PVDs) in sufficient number so that the time needed for 95% overall consolidation to occur 
is reduced to just 1 year. The PVDs to be installed have an equivalent diameter of 50 mm 
(based on Eq. 15.10) and will be inserted throughout the clay layer using the triangular 
pattern. The coefficients of horizontal and vertical consolidation are ch= 0.288 m2/month, 
cv = 0.187 m2/month.

A preliminary drain installation trial to evaluate the effect of smear caused by the mandrel 
during the installation of the PVDs revealed that the ratio of horizontal permeability in the smear 
zone (kh/ks) is 5, whereas the diameter of the smear zone smear zone (Ds) is found to be 0.15 m.

Calculate the spacing between two consecutive drains needed to achieve the stated 
objective.

Solution: As the Rujikiatkamjorn and Indraratna (2007) method (Fig. 15.12) has a provision 
for considering the effect of smear, this method is preferred.

Considering the permeability ratio and the diameter of the smear zone given, we have:

 k  
ξ = − h D

1 5  s   0 1. 5 
ln  = −( )1 ln   = 4 4.

 ks   Dw   0 0. 5 

For ξ = 4 4. :
then:

α ξ= −. . × +−0 3938 9 505 10 4 1. .5 00. .03714ξ 5 = 0 463

β = + −0. .4203 1 456× −10 3 2ξ ξ− =0. .5233 0 5. −0 649
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The average excess pore pressure due to vertical loading (u*) can be computed using 
Figure 15.12 and considering Tv = 0.14 (from the equation that follows).

C ×T 0
= =v

v t .187 12
= 0 1. 4

H 2 24

Then, u* = 0.56 (Fig. 15.12, grey arrows).
Using the data given,

c t
T h 0.288×12

'h = = =
( )

1382.4
D 2 2

w 0 0. 5

8T ' 8×1382.4
γ = − h = − = 4577.65

1−U  1 0− .95 
ln   ln  
 u*   0 5. 6 

And

n = +exp(α γln β ) e= −xp(0. l463 n(4577. )65 0. )649 = 25.8

Figure 15.12 A verage excess pore pressure due to vertical loading versus time factor Tv 
(Rujikiatkamjorn and Indraratna, 2007, reproduced with permission from 
Canadian Geotechnical Journal).
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D
Then, n = e , or De = 25.8 × 0.05 = 1.29 m.

Dw

For a triangular pattern, De = 1.05 S, thus drain spacing (S) is:

S = 1.29/1.05 = = 1.22 ≈ 1.2 m.

Worked- out example 15.5: A 3 m embankment (γ = 20 kN/m3) is to be constructed as a 
foundation of a roadway, on top of the 8.0 m thick layer of firm clay, sandwiched between a 
silty sand at the top and an impermeable rock layer at the bottom.

To accelerate drainage, it is proposed to install a series of prefabricated vertical drains 
(PVDs)in sufficient number with a vacuum preloading of 60 kPa so that the time needed for 
95% overall consolidation to occur is reduced to just 6 months. The PVDs (100 mm wide 
band drains) to be installed have an equivalent diameter of 50 mm (see Eq. 15.10) and will be 
inserted throughout the clay layer using the triangular pattern. The coefficients of horizontal 
and vertical consolidation are·ch = 0.288 m2/month, cv = 0.187 m2/month

A preliminary drain installation trial to evaluate the effect of smear caused by the mandrel 
during the installation of the PVDs revealed that the ratio of horizontal permeability in the smear 
zone (kh/ks) is 5, whereas the diameter of the smear zone smear zone (Ds) is found to be 0.15 m.

Calculate the spacing between two consecutive drains needed to achieve the stated objective.

Solution: Based on Example 15.4, the following parameters can be obtained:

ξ = 44
α = 0.463
β = – 0.649

The average excess pore pressure due to vertical loading (u*) can be computed using 
Fig.15.12 and considering Tv = 0.02 (from the calculation below).

C t
T v 0.187×6

v = = = 0 0. 2
H 2 28

Then, u* = 0.83 (Fig. 15.12).
For vacuum pressure and surcharge preloading, the general equation for γ is modified as 

follows:

8T '
γ = − h

1−Ut v, ac 
ln  
 u*



where Ut v, ac is the equivalent degree of consolidation incorporating the combined effect of 
vacuum pressure (uvac ) and the vertical surcharge load (u0 ). 

The vertical surcharge load can be computed considering the unit weight of the embank-
ment fill as follows:

u0 = ×20 3 6= 0 kPa
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Then,

U u
U t × 0 9. 5 6× 0

t v, ac =
0 = = 0 4. 8

u u0 + vac 60+ 60

The numerator of the previous equation assumes that the maximum pore pressure for this case 
will be obtained by multiplying the expected degree of consolidation and maximum surcharge 
load. Furthermore, in this approach, it is assumed the surcharge pressure is applied all at once, 
which does not reflect construction practice where surcharge load is increased incrementally.

Then,

c t
T ′ 0

h = =h .288×6
691.2

D 2 2
=

w ( .0 05)

8T '
γ = − h 8×691.2

= − =11825.57.
1−Ut v  1 0− 48 


, ac  .
ln  ln 
 u* 

  0 8. 3 

and

n = +exp(α γln β ) e= −xp(0. l463 n(11825. )57 0. )649 = 40

D
Then, n = e , or De = 40 × 0.05 = 2 m.

Dw

For a triangular pattern, De = 1.05 S, thus drain spacing (S) is:

S = 2/1.05 = 1.92 ≈ 1.9 m

The value for drain spacing obtained considering vacuum pressure is larger compared with 
the case considering surcharge only, which clarifies the role of suction effecting consolidation.

In practical situations, considering possible vacuum loss in the ground, the drain spacing 
can then be adjusted to 1.5 m.
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