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Preface

Writing the present book has been a long time project which emerged more

than six years ago. One of the main sources of inspiration was a mini-

course which the author taught at Monopoli (University of Bari, Italy).

This course was based on the text in [Van Casteren (2002)]. The main the-

orems of the present book (Theorems 2.9 through 2.13), but phrased in the

locally compact setting, were a substantial part of that course. The title

of the conference was International Summer School on Operator Methods

for Evolution Equations and Approximation Problems, Monopoli (Bari),

September 15–22, 2002. The mini-course was entitled “Markov processes

and Feller semigroups”. Other papers which can be considered as prede-

cessors of the present book are [Van Casteren (2000a, 2001, 2008, 2009)].

In this book a Polish state space replaces the locally compact state space

in the more classical literature on the subject. A Polish space is separable

and complete metrizable. Important examples of such spaces are separable

Banach and Frechet spaces. The generators of the Markov processes or

diffusions which play a central role in the present book could be associated

with stochastic differential equations in a Banach space. In the formulation

of our results we avoid the use of the metric which turns the state space

into a complete metrizable space; see e.g. the Propositions 4.6 and 9.2. As

a rule of thumb we phrase results in terms of (open) subsets rather than

using a metric.

For locally compact spaces there is a one-to-one correspondence be-

tween Feller-Dynkin semigroups (those are semigroups which send contin-

uous functions, which vanish at infinity, to continuous ones which also are

zero at infinity) and certain (strong) Markov processes, which are Hunt pro-

cesses, and which have the Feller-Dynkin property. This leads to an interac-

tion between stochastic analysis and classical semigroup theory. However,

vii
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many interesting topological spaces are not locally compact, and in fact are

topologically speaking much larger. Nevertheless from the point of view of

(stochastic) analysis and possible applications these more general topolog-

ical spaces are also important. Examples of such spaces are Wiener space,

Loop space, Fock space. These spaces are Polish spaces or more general

Lusin spaces, which are images of Polish spaces under injective continuous

mappings. The present book endeavors to develop an analysis which en-

compasses Polish spaces. Since, as a rule stochastic differential equations

are time-dependent we will consider not only Feller-type semigroups, but

also Feller evolutions, or, what is the same, Feller propagators. Our theory

works for Feller evolutions acting on the space of bounded continuous func-

tions defined on a Polish space E. The topology of uniform convergence

which performs nicely and effectively on locally compact state spaces, is not

so appropriate here. One of the main reasons being the fact that the topo-

logical dual space of pCbpEq, }�}8q consists of bounded Radon measures on

the Stone-C̆ech compactification βE of E, which need not be concentrated

on the space E. They may have mass on the “collar” βEzE. In order to

be sure that we are in a setting where the dual space consists of genuine

measures on E we replace the unform topology by the strict topology. In

the commutative setting this leads to a precise formulation of the relation-

ships which exist between Feller evolution as exhibited in Theorems 2.9 and

2.10. We also bring in the martingale problem, and its relation with Feller

processes. The precise results are to be found in Theorems 2.11 and 2.12.

In Theorem 2.13 we discuss the problem of operators L which possess a

linear extension L0 which generate a unique Markov process (which in fact

is a time-dependent, or non-time-homogeneous, Hunt process).

Included are two chapters on backward stochastic differential equations

(BSDE’s for short) as well as a chapter on a version of the Hamilton-

Jacobi-Bellman equation. Chapter 5 deals with existence and uniqueness of

solutions to BSDE’s. Conditions on the generator fps, x, y, zq of the BSDE

are phrased in terms of a one-sided Lipschitz condition in the variable y,

and a Lipschitz type condition in z. In this condition the squared gradient

operator Γ1, or “opérateur carré du champ” in French, plays a central role.

Chapter 6 establishes a relationship between BSDE’s and viscosity solutions

to more semi-linear classical partial differential equations. It is concluded

with a short section on applications to financing (contingent claims and

self-financing portfolios). These topics (and presentations) are taken from

[El Karoui et al. (1997)] and [El Karoui and Quenez (1997)]. In Part 4 we

exhibit a number of results pertaining to the long time behavior of recurrent
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Markov processes. We present the existence and uniqueness results for

stationary (or invariant) measures, also called steady state in case we deal

with positive recurrent Markov chains. Chapter 9 also includes a discussion

on inequalities of Poincaré and Sobolev type.

Some details

Next we give some more details on the contents of the book. In Chapter

1 we discuss topics related to stochastic differential equations. Results are

presented in the finite-dimensional and the infinite-dimensional context. It

also contains some standard and not so standard results on martingales and

stopping times. This chapter serves as a motivation for the main parts of

the book: strong Markov processes, backward stochastic differential equa-

tions, long time behavior of solutions. As one of the highlights of the

book we mention Theorems 2.9 through 2.13 and everything surrounding

it. These theorems give an important relationship between the following

concepts: probability transition functions with the (strong) Feller property,

strong Markov processes, martingale problems, generators of Markov pro-

cesses, and uniqueness of Markov extensions. In this approach the classical

uniform topology is replaced by the so-called strict topology. A sequence

of bounded continuous functions converges for the strict topology if it is

uniformly bounded, and if it converges uniformly on compact subsets. It

can be described by means of a certain family of semi-norms which turns

the space of bounded continuous functions into a sequentially complete

locally convex separable vector space. Its topological dual consists of gen-

uine complex measures on the state space. This is the main reason that

the whole machinery works. The third chapter contains the proofs of the

main theorems. The original proof for the locally compact case, as exhib-

ited in e.g. [Blumenthal and Getoor (1968)], cannot just be copied. Since

we deal with a relatively large state space every single step has to be re-

proved. Many results are based on Proposition 3.1 which ensures that the

orbits of our process have the right compactness properties. If we talk

about equi-continuity, then we mean equi-continuity relative to the strict

topology: see e.g. Theorem 2.2, Definition 2.2, Theorem 2.7, Corollary

2.3, Proposition 3.3, Corollary 3.3, Corollary 3.2, equation (4.114). In §4.4

a general criterion is given in order that the sample paths of the Markov

process are almost-surely continuous. In addition this section contains a

number of results pertaining to dissipativity properties of its generator: see

e.g. Proposition 4.3. A discussion of the maximum principle is found here:
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see e.g. Lemma 4.2 and Proposition 4.6. In Section 4.3 we discuss Korovkin

properties of generators. This notion is closely related to the range prop-

erty of a generator. In Section 4.5 we discuss (measurability) properties of

hitting times. In Chapters 5 and 6 we discuss backward stochastic differ-

ential equations for diffusion processes. A highlight in Chapter 5 is a new

way to prove the existence of solutions. It is based on a homotopy argu-

ment as explained in Theorem 1 (page 87) in [Crouzeix et al. (1983)]: see

Proposition 5.7, Corollary 5.3 and Remark 5.19. The connection with the

Browder-Minty theorem is mentioned as well: see Theorem 5.10. A martin-

gale which plays an important role in Chapter 6 is depicted in formula (6.3).

Basic results are Theorems 6.1 and 6.2. These theorems compare solutions

to BSDE’s for different generating functions fps, x, y, zq. An interesting

consequence of these stopping time and martingale techniques is the fact

that the solution (candidate) to the corresponding classical semi-linear par-

tial differential equation of parabolic type is a viscosity solution; for details

see Theorem 6.3. In Chapter 7 we discuss for a time-homogeneous process

a version of the Hamilton-Jacobi-Bellmann equation. Interesting theorems

are the Noether theorems 7.5 and 7.6. In Chapters 8, 9, and 10 the long

time behavior of a recurrent time-homogeneous Markov process is investi-

gated. Chapter 8 is analytic in nature; it is inspired by the Ph.-D. thesis of

Katilova [Katilova (2004)]. Chapter 9 describes a coupling technique from

Chen and Wang [Chen and Wang (2003)]: see Theorem 9.1 and Corollary

9.1. The problem raised by Chen and Wang (see §9.5) about the bounded-

ness of the diffusion matrix can be partially solved by using a Γ2-condition

instead of condition (9.5) in Theorem 9.1 without violating the conclusion in

(9.6): see Theorem 9.18 and Example 9.1, Proposition 9.18 and the formulas

(9.269) and (9.270). For more details see Remark 9.9 and inequality (9.171)

in Remark 9.13. Furthermore Chapter 9 contains a number of results re-

lated to the existence of an invariant σ-additive measure for our recurrent

Markov process. For example in Theorem 9.2 conditions are given in order

that there exist compact recurrent subsets. This property has far-reaching

consequences: see e.g. Proposition 9.4, Theorem 9.4, and Proposition 9.6.

Results about uniqueness of invariant measures are obtained: see Corol-

lary 9.3. The results about recurrent subsets and invariant measures are

due to Seidler [Seidler (1997)]. Poincaré type inequalities are proved: see

the propositions 9.10 and 9.16, and Theorem 9.4. The results on the Γ2-

condition are taken from Bakry [Bakry (1994, 2006)], and Ledoux [Ledoux

(2000)]. For recent applications of the Γ2-condition to problems related to

the theory of transportation costs see e.g. [Gozlan (2008)]. In Chapter 10
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we prove the existence and uniqueness of a σ-finite invariant measure for an

irreducible time-homogeneous Markov process: see Theorem 10.5 and the

results in §10.1. In Theorem 10.7 we follow Kaspi and Mandelbaum [Kaspi

and Mandelbaum (1994)] to give a precise relationship between Harris re-

currence and recurrence phrased in terms of hitting times. Theorem 10.12

is the most important one for readers interested in an existence proof of

a σ-additive invariant measure which is unique up to a multiplicative con-

stant. Assertion (e) of Proposition 10.8 together with Orey’s theorem for

Markov chains (see Theorem 10.2) yields the interesting consequence that,

up to multiplicative constants, σ-finite invariant measures are unique. In

§10.3 Orey’s theorem is proved for recurrent Markov chains. In the proof

we use a version of the bivariate linked forward recurrence time chain as

explained in Lemma 10.14. We also use Nummelin’s splitting technique:

see Meyn and Tweedie [Meyn and Tweedie (1993b)], §5.1 (and §17.3.1).

The proof of Orey’s theorem is based on Theorems 10.14 and 10.17. Re-

sults in Chapter 10 go back to Meyn and Tweedie [Meyn and Tweedie

(1993b)] for time-homogeneous Markov chains and Seidler [Seidler (1997)]

for time-homogeneous Markov processes.

Interdependence

From the above discussion it is clear how the chapters in this book are

related. Chapter 2 is a prerequisite for all the others except Chapter 8.

Chapter 3 contains the proofs of the main results in Chapter 2; it can be

skipped at a first reading. Chapter 4 contains material very much related to

the contents of Chapter 2. Chapter 6 is a direct continuation of Chapter 5,

and is somewhat difficult to read and comprehend without the knowledge

of the contents of Chapter 5. Chapter 7 is more or less independent of

the other chapters in Part 3. For a big part Chapter 8 is independent of

the other chapters: most of the results are phrased and proved for a finite-

dimensional state space. The chapters 9 and 10 are very much interrelated.

Some results in Chapter 9 are based on results in Chapter 10. In particular

this is true for those results which use the existence of an invariant mea-

sure. A complete proof of existence and uniqueness is given in Chapter 10

Theorem 10.12. As a general prerequisite for understanding and appreci-

ating this book a thorough knowledge of probability theory, in particular

the concept of the Markov property, combined with a comprehensive notion

of functional analysis is very helpful. On the other hand most topics are

explained from scratch.
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Chapter 1

Introduction: Stochastic differential

equations

Some pertinent topics in the present chapter consist of a discussion on mar-

tingale theory, and a few relevant results on stochastic differential equations

in spaces of finite as well as infinite dimension. This chapter also services

as a motivation for the remaining part of the book. In particular unique

weak solutions to stochastic differential equations give rise to strong Markov

processes whose one-dimensional distributions are governed by the corre-

sponding second order parabolic type differential equation. Some attention

is paid to stochastic differential equations in infinite dimensions: see §1.2.

1.1 Weak and strong solutions to stochastic differential

equations

In this section we discuss weak and strong solutions to stochastic differen-

tial equations. Basically, the material in this section is taken from [Ikeda

and Watanabe (1998)]. We begin with a martingale characterization of

Brownian motion. First we give a definition of Brownian motion. In the

sequel p0,d pt, x, yq stands for the classical Gaussian kernel:

p0,d pt, x, yq � 1�?
2πt

�d exp

��|x� y|2
2t

�
. (1.1)

Definition 1.1. Let pΩ,F ,Pq be a probability space with filtration pFtqt¥0.

A d-dimensional Brownian motion is a P-almost surely continuous pro-

cess tBptq � pB1ptq, . . . , Bdptqq : t ¥ 0u, which is adapted to the filtrationpFtqt¥0, such that for 0   t1   t2   � � �   tn   8 and for C any Borel

3
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subset of
�
Rd

�n
the following equality holds:

P rpB pt1q �Bp0q, . . . , B ptnq �Bp0qq P Cs� » � � � »
C

p0,d ptn � tn�1, xn�1, xnq � � � p0,d pt2 � t1, x1, x2q p0,d pt1, 0, x1q
dx1 . . . dxn. (1.2)

This process is called a d-dimensional Brownian motion with initial distri-

bution µ if for 0   t1   t2   � � �   tn   8 and every Borel subset of�
Rd

�n�1
the following equality holds:

P rpBp0q, B pt1q , . . . , B ptnqq P Cs� » � � � »
C

p0,d ptn � tn�1, xn�1, xnq � � � p0,d pt2 � t1, x1, x2q p0,d pt1, x0, x1q
dµ px0q dx1 . . . dxn. (1.3)

For the definition of p0,d pt, x, yq see formula (1.1) above. By definition a

filtration pFtqt¥0 is an increasing family of σ-fields, i.e. 0 ¤ t1 ¤ t2   8
implies Ft1 � Ft2 . The process of Brownian motion tBptq : t ¥ 0u is said

to be adapted to the filtration pFtqt¥0 if for every t ¥ 0 the variable Bptq is
Ft-measurable. It is assumed that the P-negligible sets belong to F0. The

following result we owe to Lévy.

Theorem 1.1. Let pΩ,F ,Pq be a probability space with filtration (or refer-

ence system) pFtqt¥0. Suppose F is the σ-field generated by
�
t¥0 Ft aug-

mented with the P-zero stes, and suppose Ft is continuous from the right:

Ft � �
s¡t Fs for all t ¥ 0. Let tMptq � pM1ptq, . . . ,Mdptqq : t ¥ 0u be

an Rd-valued local P-almost surely continuous martingale with the property

that the quadratic covariation processes t ÞÑ 〈Mi,Mj〉 ptq satisfy
〈Mi,Mj〉 ptq � δi,jt, 1 ¤ i, j ¤ d. (1.4)

Then tMptq : t ¥ 0u is d-dimensional Brownian motion with initial distri-

bution given by µpBq � P rMp0q P Bs, B P BRd , the Borel field of Rd.

It follows that the finite-dimensional distributions of the process t ÞÑMptq
are given by:

P rM pt1q P B1, . . . ,M ptnq P Bns� » �»
B1

. . .

»
Bn

p0,d ptn � tn�1, xn�1, xnq � � � p0,d pt2 � t1, x1, x2q
p0,d pt1, x, x1q dxn � � � dx1
 dµpxq.
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Proof. [Proof of Theorem 1.1.] Let ξ P Rd be arbitrary. First we show

that it suffices to establish the equality:

E

�
e�i〈ξ,Mptq�Mpsq〉 �� Fs� � e� 1

2
|ξ|2pt�sq, t ¡ s ¥ 0. (1.5)

For suppose that (1.5) is true for all ξ P Rd. Then, by standard approxima-

tion arguments, it follows that the variable Mptq �Mpsq is P-independent
of Fs. In other words the process t ÞÑ Mptq possesses independent incre-

ments. Since the Fourier transform of the function y ÞÑ p0,d pt� s, 0, yq is
given by »

Rd

e�i〈ξ,y〉p0,d pt� s, 0, yq dy � e� 1

2
|ξ|2pt�sq

it also follows that the distribution of Mptq �Mpsq is given by

P rMptq �Mpsq P Bs � »
B

p0,d pt� s, 0, yq dy. (1.6)

Moreover, for 0   t1   � � �   tn we also have

P rMp0q P B0, M pt1q �Mp0q P B1, . . . ,M ptnq �M ptn�1q P Bns� P rMp0q P B0sP rM pt1q �Mp0q P B1s � � �P rM ptnq �M ptn�1q P Bns� »
B0

»
B1

� � � »
Bn

p0,d pt1, 0, y1q � � � p0,d ptn � tn�1, 0, ynq dµ py0q dy1 � � � dyn.
Here B0, . . . , Bn are Borel subsets of Rd. Hence, if B is a Borel subset of

Rd � � � � � Rdlooooooomooooooon
n�1times

, then it follows that

P rpMp0q,M pt1q �Mp0q, . . . ,M ptnq �M ptn�1qq P Bs� » � � � »
B

p0,d pt1, 0, y1q � � � p0,d ptn � tn�1, 0, ynq dµ py0q dy1 � � � dyn. (1.7)

Next we compute the joint distribution of pMp0q,M pt1q , . . . ,M ptnqq by

employing (1.7). Define the linear map ℓ : Rd�� � ��Rd Ñ Rd�� � ��Rd by

ℓ px0, x1, . . . , xnq � px0, x1 � x0, x2 � x1, . . . , xn � xn�1q. Let B be a Borel

subset of Rd � � � � � Rd. By (1.7) we get

P rpMp0q, . . . ,M ptnqq P Bs� P rℓ pMp0q, . . . ,M ptnqq P ℓ pBqs� P rpMp0q,M pt1q �Mp0q, . . . ,M ptnq �M ptn�1qq P ℓ pBqs� »
. . .

»
ℓpBq p0,d pt1, 0, y1q � � � p0,d ptn � tn�1, 0, ynq dµ py0q dy1 � � � dyn
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(change of variables: py0, y1, . . . , ynq � ℓ px0, x1, . . . , xnq)� » � � � »
B

p0,d pt1, x0, x1q � � � p0,d ptn � tn�1, xn�1, xnq dµ px0q dx1 � � � dxn.
(1.8)

In order to complete the proof of Theorem 1.1 from equality (1.8) it follows

that it is sufficient to establish the equality in (1.5). Therefore, fix ξ P Rd

and t ¡ s ¥ 0. An application of Itô’s lemma to the function x ÞÑ e�i〈ξ,x〉
yields

e�i〈ξ,Mptq〉 � e�i〈ξ,Mpsq〉� �i ḑ

j�1

ξj

» t
s

e�i〈ξ,Mpτq〉dMjpτq� 1

2

ḑ

j,k�1

ξjξk

» t
s

e�i〈ξ,Mpτq〉d 〈Mj,Mk〉 pτq
(formula (1.4))� �i ḑ

j�1

ξj

» t
s

e�i〈ξ,Mpτq〉dMjpτq � 1

2
|ξ|2 » t

s

e�i〈ξ,Mpτq〉 dτ. (1.9)

Hence, from (1.9) it follows that

e�i〈ξ,Mptq�Mpsq〉 � 1 (1.10)� �i ḑ

j�1

ξj

» t
s

e�i〈ξ,Mpτq�Mpsq〉dMjpτq � 1

2
|ξ|2 » t

s

e�i〈ξ,Mpτq�Mpsq〉 dτ.
Since the processes

t ÞÑ » t
s

e�i〈ξ,Mpτq�Mpsq〉dMjpsq, t ¥ s, 1 ¤ j ¤ d,

are local martingales, from (1.10) we infer by (possibly) using a stopping

time argument that

E

�
e�i〈ξ,Mptq�Mpsq〉 �� Fs� � 1� 1

2
|ξ|2 » t

s

E

�
e�i〈ξ,Mpτq�Mpsq〉 �� Fs� dτ.

(1.11)

Next, let vptq, t ¥ s, be given by

vptq � » t
s

E

�
e�i〈ξ,Mpτq�Mpsq〉 �� Fs� dτ.

Then vpsq � 0, and (1.11) implies

v1ptq � 1

2
|ξ|2 vptq � 1. (1.12)
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From (1.12) we infer

d

dt

�
e

1

2
pt�sq|ξ|2vptq	 � �

1

2
|ξ|2 vptq � v1ptq
 e 1

2
pt�sq|ξ|2� e

1

2
pt�sq|ξ|2 . (1.13)

The equality in (1.13) implies:

e
1

2
pt�sq|ξ|2vptq � vpsq � 2|ξ|2 �e 1

2
pt�sq|ξ|2 � 1

	
,

and thus we see

v1ptq � 1

2
vpsqe� 1

2
pt�sq|ξ|2 � e� 1

2
pt�sq|ξ|2 . (1.14)

Since vpsq � 0 (1.14) results in

E

�
e�i〈ξ,Mpτq�Mpsq〉 �� Fs� � v1ptq � e� 1

2
pt�sq|ξ|2 . (1.15)

The equality in (1.15) is the same as the one in (1.5). By the above argu-

ments this completes the proof of Theorem 1.1. �

As a corollary to Theorem 1.1 we get the following one-dimensional result

due to Lévy.

Corollary 1.1. Let tMptq : t ¥ 0u be an almost surely continuous local

martingale in R such that the process t ÞÑ Mptq2 � t is a local martingale

as well. Then the process tMptq : t ¥ 0u is a Brownian motion with initial

distribution given by µpBq � P rMp0q P Bs, B P BR.

Proof. SinceMptq2� t is a local martingale, it follows that the quadratic

variation process t ÞÑ 〈M,M〉 ptq satisfies 〈M,M〉 ptq � t, t ¥ 0. So the

result in Corollary 1.1 follows from Theorem 1.1. �

The following result contains a d-dimensional version of Corollary 1.1.

Theorem 1.2. Let tMptq � pM1ptq, . . . ,Md1ptqq : t ¥ 0u be a continuous

local martingale with covariation process given by

〈Mj,Mk〉 ptq � » t
0

Φj,kpsqds, 1 ¤ j, k ¤ d1. (1.16)

Let the d1 � d-matrix process tχptq : t ¥ 0u be such that χptqΦptqχptq� � I,

where I is the d � d identity matrix. Put Bptq � ³t
0
χpsq dMpsq. This

integral should be interpreted in Itô sense. Then the process t ÞÑ Bptq
is d-dimensional Brownian motion. Put Ψptq � Φptqχptq�, and suppose

that Ψptqχptq � I, the d1 � d1 identity matrix. Then Mptq � Mp0q �³t
0
Ψpsq dBpsq.
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Remark 1.1. Since

χptq pΦptqχptq�χptq � Iq � pχptqΦptqχptq� � Iqχptq � 0

we see that the second equality in Ψptqχptq � Φptqχptq�χptq � I is only

possible if we assume d � d1. Of course here we take the dimensions of the

null and range space of the matrix χptq into account.

Proof. [Proof of Theorem 1.2.] Fix 1 ¤ i, j ¤ d. We shall calculate the

quadratic covariation process

〈Bi, Bj〉 ptq � 〈

d1̧
k�1

» p�q
0

pχpsqqi,k dMkpsq, d1̧
l�1

» p�q
0

pχpsqqj,l dMlpsq〉 ptq� d1̧
k�1

d1̧
l�1

» t
0

pχpsqqi,k pχpsqqj,l Φpsqi,jds� » t
0

pχpsqΦpsqχpsq�qi,j ds � tδi,j . (1.17)

From Theorem 1.1 and (1.17) we see that the process t ÞÑ Bptq is a Brow-

nian motion. This proves the first part of Theorem 1.2. Next we calculate» t
0

Ψpsq dBpsq � » t
0

Ψpsqχpsq dMpsq � » t
0

dMpsq �Mptq �Mp0q. (1.18)

This completes the proof of Theorem 1.2. �

In the following theorem the symbols σi,j and bj , 1 ¤ i, j ¤ d, stand for real-

valued locally bounded Borel measurable functions defined on r0,8q�Rd.

The matrix pai,jps, xqqdi,j�1
is defined by

aj,kps, xq � ḑ

k�1

σi,kps, xqσj,kps, xq � pσps, xqσ�ps, xqqi,j .
For s ¥ 0, the operator Lpsq is defined on C2

�
Rd

�
with values in the space

of locally bounded Borel measurable functions:

Lpsqfpxq � 1

2

ḑ

i,j�1

ai,j ps, xqDiDjf pxq � ḑ

j�1

bjps, xqDjfpxq. (1.19)

The following theorem shows the close relationship between weak solutions

and solutions to the martingale problem.

Theorem 1.3. Let pΩ,F ,Pq be a probability space with a right-

continuous filtration pFtqt¥0. Let tXptq � pX1ptq, . . . , Xdptqq : t ¥ 0u be a

d-dimensional continuous adapted process. Then the following assertions

are equivalent:
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(i) For every f P C2
�
Rd

�
the process

t ÞÑ f pXptqq � f pXp0qq � » t
0

Lpsqf pXpsqq ds (1.20)

is a local martingale.

(ii) The processes

t ÞÑMjptq :� Xjptq�» t
0

bj ps,Xpsqq ds, t ¥ 0, 1 ¤ j ¤ d, (1.21)

are local martingales with covariation processes

t ÞÑ 〈Mi,Mj〉 ptq � » t
0

ai,j ps,Xpsqq ds, t ¥ 0, 1 ¤ i, j ¤ d.

(1.22)

(iii) On an extended probability space pΩ� Ω1,Ft b F 1
t,P� P1q there ex-

ists a Brownian motion tBptq : t ¥ 0u starting at 0 such that

Xptq � Xp0q � » t
0

b ps,Xpsqq ds� » t
0

σ ps,Xpsqq dBpsq, t ¥ 0.

(1.23)

Notice that under the conditions of Theorem 1.3 the martingale problem

need not be uniquely solvable: for some more details the reader is referred

to Remark 2.12 in Chapter 2.

The following corollary easily follows from Theorem 1.3. It establishes

a close relationship between unique weak solutions to stochastic differential

equations and unique solutions to the martingale problem.

Corollary 1.2. Let the notation and hypotheses be as in Theorem 1.3. Put

Ω � C
�r0,8q,Rd�, and Xptqpωq � ωptq, t ¥ 0, ω P Ω. Fix x P Rd. Then

the following assertions are equivalent:

(i) There exists a unique probability measure P on F such that

P rXp0q � xs � 1, and the process

f pXptqq � f pXp0qq � » t
0

Lpsqf pXpsqq ds
is a P-martingale for all C2-functions f with compact support.

(ii) The stochastic integral equation

Xptq � x� » t
0

σ ps,Xpsqq dBpsq � » t
0

b ps,Xpsqq ds
has unique weak solutions.
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Proof. [Proof of Theorem 1.3.] (i) ùñ (ii). With fj px1, . . . , xdq � xj ,

1 ¤ j ¤ d, assertion (i) implies that the process

Mjptq � Xjptq � » t
0

bj ps,Xpsqq ds � fj pXptqq � » t
0

Lpsqfj pXpsqq ds
(1.24)

is a local martingale. We will show that the processes"
MiptqMjptq � » t

0

ai,j ps,Xpsqq ds : t ¥ 0

*
, 1 ¤ i, j ¤ d,

are local martingales as well. To this end fix 1 ¤ i, j ¤ d, and define the

function fi,j : R
d Ñ R by fi,j px1, . . . , xdq � xixj . From (i) it follows that

the process"
XiptqXjptq �» t

0

pai,j ps,Xpsqq � bi ps,XpsqqXjpsq � bj ps,XpsqqXipsqq ds*
is a local martingale. For brevity we write

αi,jpsq � ai,j ps,Xpsqq , βjpsq � bj ps,Xpsqq , βipsq � bj ps,Xpsqq ,
Mipsq � Xipsq � » s

0

βipτq dτ, Mjpsq � Xipsq � » s
0

βjpτq dτ,
Mi,jpsq � XipsqXjpsq � » s

0

pβipτqXjpτq � βjpτqXipτq � αi,jpτqq dτ.
(1.25)

Then the processes Mi and Mi,j are local martingales. Moreover, we have�
Miptq � » t

0

βipsq ds
�
Mjptq � » t

0

βjpsq ds
 � XiptqXjptq� » t
0

pβipτqXjpτq � βjpτqXipτq � αi,jpτqq dτ �Mi,jptq� » t
0

pβipτq pXjpτq �Mjpτqq � βjpτq pXipτq �Mipτqq � αi,jpτqq dτ� » t
0

pβipτqMjpτq � βjpτqMipτqq dτ �Mi,jptq� » t
0

βipτq pXjpτq �Mjpτqq dτ � » t
0

βjpτq pXipτq �Mipτqq dτ� » t
0

αi,jpτq dτ � » t
0

pβipτqMjpτq � βjpτqMipτqq dτ �Mi,jptq� » t
0

βipτq » τ
0

βjpsq ds dτ � » t
0

βjpτq » τ
0

βipsq ds dτ
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0

αi,jpτq dτ � » t
0

pβipτqMjpτq � βjpτqMipτqq dτ �Mi,jptq
(in the second integral the integration over s and τ are exchanged)� » »

0 s τ tβipτqβjpsq dτ ds� » »
0 τ s tβipτqβjpsq dτ ds� » t

0

αi,jpτq dτ � » t
0

pβipτqMjpτq � βjpτqMipτqq dτ �Mi,jptq� » t
0

βipτq dτ » t
0

βjpsq ds� » t
0

αi,jpsq ds�Mi,jptq� » t
0

pβipsqMjpsq � βjpsqMipsqq ds. (1.26)

Consequently, from (1.26) we see

MiptqMjptq � » t
0

αi,jpsq ds�Mi,jptq � » t
0

pβipsq pMjptq �Mjpsqq � βjpsq pMiptq �Mipsqqq ds.
(1.27)

It is readily verified that the processes» t
0

βipsq pMjptq �Mjpsqq ds and

» t
0

βjpsq pMiptq �Mipsqq ds
are local martingales. It follows that the process"

MiptqMjptq � » t
0

αi,jpsq ds : t ¥ 0

*
is a local martingale. So that the covariation process 〈Mi,Mj〉 is given by

〈Mi,Mj〉 ptq � ³t
0
αi,jpsq ds.

(ii) ùñ (iii). This implication follows from an application of Theorem

1.2 with Φi,jptq � ai,j pt,Xptqq, and χptq � σ pt,Xptqq�1
. If the matrix

process σ pt,Xptqq is not invertible we proceed as follows. First we choose

a Brownian motion which is independent of pΩ,Ft,Pq and which lives on

the probability space pΩ1,F 1
t,P

1q. The probability spaces pΩ,Ft,Pq andpΩ1,F 1
t,P

1q are coupled by employing a standard extension of the original

probability space pΩ,Ft,Pq. This extension is denoted by
�rΩ, rFt, rP	, whererΩ � Ω � Ω1, rFt � Ft b F 1

t, and
rP � P � P1. Finally, rB1 pω, ω1q � B1 pω1q,pω, ω1q P Ω�Ω1. We have a martingale Mpsq, 0 ¤ s ¤ t, on pΩ,Ft,Pq with
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the properties of Assertion (ii). We introduce the matrix processes rψεpsq,
ε ¡ 0, ERpsq, and EN psq as followsrψεpsq � σ� ps,Xpsqq pσ ps,Xpsqqσ� ps,Xpsqq � εIq�1

ERpsq � lim
εÓ0 σ� ps,Xpsqq pσ ps,Xpsqqσ� ps,Xpsqq � εIq�1

σ ps,Xpsqq , and

EN psq � I �ERpsq.
The matrix ERpsq can be considered as an orthogonal projection on the

range of the matrix σ� ps,Xpsqqσ ps,Xpsqq, and EN psq as an orthogo-

nal projection on its null space. More precisely, ERpsqσ� ps,Xpsqq �
σ� ps,Xpsqq, and σ ps,XpsqqEN psq � 0. In terms of these processes we

define the following process:

Bpsq � lim
εÓ0 » s0 rψεpτq dMpτq � » s

0

EN pτq dB1pτq.
Next we will prove that the process s ÞÑ Bpsq is a Brownian motion, and

that Mpsq � ³s
0
σ pτ,Xpτqq dBpτq. Put
Bεpsq � » s

0

rψεpτq dMpτq � » s
0

EN pτq dB1pτq.
Then we have:

〈Bε,j1 , Bε,j2〉 psq� ḑ

k1,k2,ℓ�1

» s
0

rψε,j1,k1pτq rψε,j1,k1pτqσk1,ℓ pτ,Xpτqq σk2,ℓ pτ,Xpτqq dτ� ḑ

k�1

» s
0

rψε,j1,k1pτqEN,j2,K1
pτq d 〈Mk1 , B

1
k

〉 pτq� ḑ

k�1

» s
0

rψε,j2,k1pτqEN,j1,K1
pτq d 〈Mk1 , B

1
k

〉 pτq� ḑ

k�1

» s
0

EN,j1,kpτqEN,j2,kpτq dτ
(the processes M and B1 are rP -independent)� » s

0

�rψεpτqσ pτ,Xpτqq σ� pτ,Xpτqq rψ�ε pτq	
j1,j2

dτ� » s
0

pEN pτqE�
N pτqqj1,j2 dτ. (1.28)
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From (1.28) we infer by continuity and the definition of ERpτq that
〈Bj1 , Bj2〉 psq � lim

εÓ0 〈Bε,j1 , Bε,j2〉 psq� » s
0

pERpτqE�
Rpτqqj1,j2 dτ � » s

0

pEN pτqE�
N pτqqj1,j2 dτ� » s

0

pERpτqE�
Rpτq �EN pτqE�

N pτqqj1,j2 dτ
(the processes ERpτq and EN pτq are orthogonal projections such that

ERpτq �EN pτq � I)� δj1,j2s. (1.29)

From Lévy’s theorem 1.1 it follows that the process s ÞÑ Bpsq, 0 ¤ s ¤ t,

is a Brownian motion. In order to finish the proof of the implication (ii)ùñ (iii) we still have to prove the equality Mpsq � ³s
0
σ pτ,Xpτqq dBpτq.

For brevity we write σpτq � σ pτ,Xpτqq. Then by definition and standard

calculations with martingales we obtain:

Mpsq � » s
0

σ pτq dBεpτq�Mpsq � » s
0

σpτq rψεpτq dMpτq � » s
0

σpτqEN pτq dB1pτq� » s
0

�
I � σpτqσ�pτq pσpτqσ�pτq � εIq�1

	
dMpτq� ε

» s
0

pσpτqσ�pτq � εIq�1
dMpτq. (1.30)

From (1.30) together with the fact that covariation process of the local

martingaleMpsq is given by
³s
0
σpτqσ�pτq dτ , it follows that the covariation

matrix of the local martingale

Mpsq � » s
0

σ pτq dBεpτq
is given by

ε2
» s
0

pσpτqσ�pτq � εIq�1
σpτqσ�pτq pσpτqσ�pτq � εIq�1

dτ. (1.31)

In addition, in spectral sense we have:

0 ¤ ε2 pσpτqσ�pτq � εIq�1
σpτqσ�pτq pσpτqσ�pτq � εIq�1 ¤ ε

4
I, (1.32)

and thus in L2-sense we see

Mpsq � » s
0

σpτq dBpτq � L2- lim
εÓ �

Mpsq � » s
0

σpτqBεpτq
 � 0. (1.33)
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The equality in (1.33) completes the proof of the implication (ii) ÝÑ (iii).

(iii) ùñ (i). Let f : Rd Ñ R be a twice continuously differentiable

function. By Itô’s lemma we get

f pXptqq � f pXp0qq � » t
0

Lpsqf pXpsqq ds� » t
0

∇f pXpsqq � dXpsq � 1

2

ḑ

i,j�1

» t
0

DiDjf pXpsqq d 〈Xi, Xj〉 psq� » t
0

Lpsqf pXpsqq ds� ḑ

j�1

» t
0

bj ps,XpsqqDjf pXpsqq ds� 1

2

ḑ

i,j�1

ḑ

k�1

» t
0

σi,k ps,Xpsqqσj,k ps,XpsqqDiDjf pXpsqq ds� » t
0

∇f pXpsqqσ ps,Xpsqq dBpsq � » t
0

LpsqF pXpsqq ds� » t
0

∇f pXpsqqσ ps,Xpsqq dBpsq. (1.34)

The final expression in (1.34) is a local martingale. Hence (iii) implies (i).

This completes the proof of Theorem 1.3. �

Remark 1.2. The implication (ii) ùñ (i) in Theorem 1.2 can also be

proved directly by using Itô calculus. Let f be a C2-function defined on

Rd. Then we have:

f pXptqq � f pXp0qq � » t
0

Lpsqf pXpsqq ds� » t
0

∇f pXpsqq dXpsq � 1

2

ḑ

i,j�1

» t
0

DiDjf pXpsqq d 〈Xi, Xj〉 psq� » t
0

Lpsqf pXpsqq ds� » t
0

∇f pXpsqq dMpsq � » t
0

∇f pXpsqq b ps,Xpsqq ds� 1

2

ḑ

i,j�1

» t
0

DiDjf pXpsqq d 〈Mi,Mj〉 psq � » t
0

Lpsqf pXpsqq ds
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0

∇f pXpsqq dMpsq � » t
0

∇f pXpsqq b ps,Xpsqq ds� 1

2

ḑ

i,j�1

» t
0

DiDjf pXpsqq ai,j ps,Xpsqq ds� » t
0

Lpsqf pXpsqq ds� » t
0

∇f pXpsqq dMpsq. (1.35)

Assertion (i) is a consequence of equality (1.35).

We also want to discuss the Cameron-Martin-Girsanov transformation of

Wiener measure. Let pΩ,F ,Pq be a probability space with a filtrationpFtqt¥0. In addition, let tBptq : t ¥ 0u be a d-dimensional Brownian mo-

tion. Let bj , cj , σi,j be Borel measurable locally bounded functions onr0,8q � Rd. Suppose that the stochastic differential equation

Xptq � x� » t
0

σ ps,Xpsqq dBpsq � » t
0

b ps,Xpsqq ds (1.36)

has unique weak solutions. For more information on transformations of

measures on Wiener space see e.g. [Üstünel and Zakai (2000a)].

Definition 1.2. The equation in (1.36) is said to have unique weak solu-

tions, also called unique distributional solutions, provided that the finite-

dimensional distributions of the process Xptq which satisfy (1.36) do not

depend on the particular Brownian motion Bptq which occurs in (1.36).

This is the case if and only if for any pair of Brownian motionstpBptq : t ¥ 0q , pΩ,F ,Pqu and
 �
B1ptq : t ¥ 0

�
,
�
Ω1,F 1,P1�(

and any pair of adapted processes tXptq : t ¥ 0u and tX 1ptq : t ¥ 0u for

which

Xptq � x� » t
0

σ ps,Xpsqq dBpsq � » t
0

b ps,Xpsqq ds and

X 1ptq � x� » t
0

σ
�
s,X 1psq� dB1psq � » t

0

b
�
s,X 1psq� ds

it follows that the finite-dimensional distributions of the processtXptq : t ¥ 0u relative to P coincide with the finite-dimensional distribu-

tions of the process tX 1ptq : t ¥ 0u relative to P1.
In particular this means that if in equation (1.37) below (for the process

Y ptq) the process B1ptq is a Brownian motion relative to a probability mea-

sure P1, then the P1-distribution of the process Y ptq coincides with the
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P-distribution of the process Xptq which satisfies (1.36). Next we will elab-

orate on this item. Suppose that the process t ÞÑ Y ptq satisfies the equation:
Y ptq � x� » t

0

σ ps, Y psqq dBpsq � » t
0

pb ps, Y psqq � σ ps, Y psqq c ps, Y psqqq ds� x� » t
0

σ ps, Y psqq dB1psq � » t
0

b ps, Y psqq ds, (1.37)

where B1ptq � Bptq � ³t
0
c ps, Y psqq ds. The following proposition says that

relative to a martingale transformation P1 of the measure P (Girsanov or

Cameron-Martin transformation) the process t ÞÑ B1ptq is a P1-Brownian
motion. More precisely, we introduce the local martingale M 1ptq and the

corresponding measure P1 by
M 1ptq � exp

�� » t
0

c ps, Y psqq dBpsq � 1

2

» t
0

|c ps, Y psqq|2 ds
 , (1.38)

and

P1 rAs � E
�
M 1ptq1A� , A P Ft. (1.39)

We also need the process Z 1ptq defined by

Z 1ptq � � » t
0

c ps, Y psqq dBpsq � 1

2

» t
0

|c ps, Y psqq|2 ds. (1.40)

In addition, we have a need for a vector-valued function c1pt, yq satisfying
cpt, yq � c1pt, yqσpt, yq. We assume that such a vector function c1pt, yq
exists.

Proposition 1.1. Suppose that the process Y ptq satisfies the equation in

(1.37). Let the processes M 1ptq and Z 1ptq be defined by (1.38) and (1.40)

respectively. Then the following assertions are true:

(1) The process t ÞÑ M 1ptq is a local P-martingale. It is a martingale

provided that E rM 1ptqs � 1 for all t ¥ 0.

(2) Fix t ¡ 0. The variable M 1ptq only depends on the process s ÞÑ Y psq,
0 ¤ s ¤ t.

(3) Suppose that the process t ÞÑ M 1ptq is a P-martingale, and not just a

local P-martingale. Then P1 can be considered as a probability measure

on the σ-field generated by
�
t¡0 Ft.

(4) Suppose that the process t ÞÑM 1ptq is a P-martingale. Then the process

t ÞÑ B1ptq is a Brownian motion relative to P1.
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Proof. (1). From Itô calculus we get

M 1ptq �M 1p0q � � » t
0

M 1psqc ps, Y psqq dBpsq,
and hence Assertion (1) follows, because stochastic integrals with respect

to Brownian motion are local martingales. Next we choose a sequence of

stopping times τn which increase to 8 P-almost surely, and which are such

that the processes t ÞÑ M 1 pt^ τnq are genuine martingales. Then we see

E rM 1 pt^ τnqs � 1 for all n P N and t ¥ 0. Fix t2 ¡ t1. Since the processes

t ÞÑM 1 pt^ τnq, n P N, are P-martingales, we see that

E
�
M 1 pt2 ^ τnq �� Ft1� �M 1 pt1 ^ τnq P-almost surely. (1.41)

In (1.41) we let nÑ8, and apply Scheffé’s theorem to conclude that

E
�
M 1 pt2q �� Ft1� �M 1 pt1q P-almost surely. (1.42)

The equality in (1.42) shows that the process t ÞÑ M 1ptq is a P-martingale

provided that E rM 1ptqs � 1 for all t ¥ 0. This completes the proof of

Assertion (1).

(2). This assertion follows from the following calculation:

Z 1ptq� � » t
0

c ps, Y psqq dBpsq � 1

2

» t
0

|c ps, Y psqq|2 ds� � » t
0

c ps, Y psqq dB1psq � 1

2

» t
0

|c ps, Y psqq|2 ds
(cps, yq � c1ps, yqσps, yq)� � » t

0

c1 ps, Y psqq σ ps, Y psqq dB1psq � 1

2

» t
0

|c ps, Y psqq|2 ds� � » t
0

c1 ps, Y psqq d�» s
0

σ pτ, Y pτqq dB1pτq
 � 1

2

» t
0

|c ps, Y psqq|2 ds� � » t
0

c1 ps, Y psqq d�Y psq � » s
0

b pτ, Y pτqq dτ
 � 1

2

» t
0

|c ps, Y psqq|2 ds.
(1.43)

From (1.43), (1.38), and (1.40) it is plain that M 1ptq only depends on the

path tY psq : 0 ¤ s ¤ tu.
(3). This assertion is a consequence of Kolmogorov’s extension theo-

rem. The measure is P1 is well defined on
�
t¡0 Ft. Here we use the
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martingale property. By Kolmogorov’s extension theorem, it extends to

the σ-field generated by this union.

(4). The equality B1ptq � Bptq � ³t
0
c ps, Y psqq ds entails the following

equality for the quadratic covariation of the processes B1
i and B

1
j :

〈

B1
i, B

1
j

〉 ptq � 〈Bi, Bj〉 ptq � tδi,j . (1.44)

From Itô calculus we also infer

M 1ptqB1
iptq� » t

0

M 1psqB1
ipsq dZ 1psq � » t

0

M 1psq dB1
ipsq� 1

2

» t
0

M 1psqB1psq d 〈Z 1, Z 1〉 psq � » t
0

M 1psqd 〈Z 1, B1
i

〉 psq� � » t
0

M 1psqB1
ipsqc ps, Y psqq dBpsq � 1

2

» t
0

M 1psqB1
ipsq |c ps, Y psqq|2 ds� 1

2

» t
0

M 1psqB1
ipsq |c ps, Y psqq|2 ds� » t

0

M 1psq dBipsq� » t
0

M 1psqci ps, Y psqq ds� » t
0

M 1psqci ps, Y psqq ds� � » t
0

M 1psqB1
ipsqc ps, Y psqq dBpsq � » t

0

M 1psq dBipsq. (1.45)

Upon invoking Theorem 1.1 and employing (1.44) and (1.45) Assertion (4)

follows.

This concludes the proof of Proposition 1.1. �

Let the process Xptq solve the equation in (1.36), and put

Mptq � exp

�» t
0

c ps,Xpsqq dBpsq � 1

2

» t
0

|c ps,Xpsqq|2 ds
 , (1.46)

and assume that the process Mptq is not merely a local martingale, but a

genuine P-martingale.

Theorem 1.4. Fix T ¡ 0, and let the functions

bps, yq, σps, yq, cps, yq, and c1ps, yq, 0 ¤ s ¤ T,

be locally bounded Borel measurable vector or matrix functions such that

cps, yq � c1ps, yqσ ps, yq, 0 ¤ s ¤ T , y P Rd. Suppose that the equation in

(1.36) possesses unique weak solutions on the interval r0, T s.
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Uniqueness. If weak solutions to the stochastic differential equation in

(1.37) exist, then they are unique in the sense as explained next. In fact, let

the couple pY psq, Bpsqq, 0 ¤ s ¤ t, be a solution to the equation in (1.37)

with the property that the local martingale M 1ptq given by

M 1ptq � exp

�� » t
0

c ps, Y psqq dBpsq � 1

2

» t
0

|c ps, Y psqq|2 ds

satisfies E rM 1ptqs � 1. Then the finite-dimensional distributions of the

process Y psq, 0 ¤ s ¤ t, are given by the Girsanov or Cameron-Martin

transform:

E rf pY pt1q , . . . , Y ptnqqs � E
�
M 1ptqf pX pt1q , . . . , X ptnqq� , (1.47)

t ¥ tn ¡ � � � ¡ t1 ¥ 0, where f : Rd� � � ��Rd Ñ R is an arbitrary bounded

Borel measurable function.

Existence. Conversely, let the process s ÞÑ pXpsq, Bpsqq be a solution to

the equation in (1.36). Suppose that the local martingale s ÞÑMpsq, defined
by

Mpsq � exp

�» s
0

c pτ,Xpτqq dBpτq � 1

2

» s
0

|c pτ,Xpτqq|2 dτ
 , 0 ¤ s ¤ t,

is a martingale, i.e. E rMptqs � 1. Then there exists a couple
�rY psq, rBpsq	,

0 ¤ s ¤ t, where s ÞÑ rBpsq, 0 ¤ s ¤ t, is a Brownian motion on a

probability space
�rΩ, rF , rP	 such thatrY psq � x� » s
0

σ
�
τ, rY psq	 d rBpsq� » s

0

σ
�
τ, rY psq	 c�τ, rY pτq	 dτ � » s

0

b
�
τ, rY psq	 dτ, (1.48)

and such thatrE �
exp

�� » t
0

c
�
s, rY psq	 d rBpsq � 1

2

» t
0

���c�s, rY psq	���2 ds
� � 1.

(1.49)

Remark 1.3. The formula in (1.47) is known as the Girsanov transform or

Cameron-Martin transform of the measure P. It is a martingale measure.

Suppose that the process t ÞÑM 1ptq, as defined in (1.38) is a P-martingale.

Then the proof of Theorem 1.4 shows that the process t ÞÑMptq, as defined
in (1.46) is a P-martingale. By Assertion (1) in Proposition 1.1 the process

t ÞÑM 1ptq is a P-martingale if and only E rM 1ptqs � 1 for all T ¥ t ¥ 0, and
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a similar statement holds for the process t ÞÑMptq. If the process t ÞÑM 1ptq
is a martingale, then taking G � 1 in (1.65) shows that E rMptqs � 1, and

hence by 1 in Proposition 1.1 the process t ÞÑ Mptq is a P-martingale.

Conversely, if the process t ÞÑ Mptq is a P-martingale, then we reverse

the implications in the proof of Theorem 1.4 and take F � 1 in (1.64) to

conclude that E rM 1ptqs � 1 for all ¥ 0. But then the process t ÞÑM 1ptq is
a P-martingale.

Notice that the process t ÞÑMptq is a P-martingale provided Novikov’s

condition is satisfied, i.e. if E

�
exp

�
1

2

» t
0

|c ps,Xpsqq|2 ds
�   8. For a

precise formulation see Corollary 1.3 below. Novikov’s result is a conse-

quence of Theorem 1.6. For a closely related Novikov condition on an

exponential (local) martingale see item (5) in the beginning of §1.3.

Remark 1.4. Let s ÞÑ cpsq be a process which is adapted to a Brownian

motion pBptqqt¥0 starting at 0 in Rd, and let ρ ¡ 0 be such that Novikov’s

condition is satisfied: E

�
exp

�
1
2
ρ2

³t
0
|cpsq|2 ds	�   8. From Assertion (4)

in Proposition 1.1 and Theorem 1.4 we see that the following identity holds

for all bounded Borel measurable functions F defined on
�
Rd

�n
:

E rF pYρ pt1q , . . . , Yρ ptnqqs� E

�
exp

�
ρ

» t
0

cpsqdBpsq � 1

2
ρ2

» t
0

|cpsq|2 ds
 F pB pt1q , . . . , B ptnqq�
(1.50)

where 0 ¤ t1   � � �   tn ¤ t, and Yρpτq � Bpτq � ρ
³τ
0
cpsq ds, 0 ¤ τ ¤ t. In

particular, if n � 1 we get

E

�
F

�
Bptq � ρ

» t
0

cpsq ds
�� E

�
exp

�
ρ

» t
0

cpsqdBpsq � 1

2
ρ2

» t
0

|cpsq|2 ds
 F pB ptqq� . (1.51)

Assume that the gradient DF of the function F exists and is bounded. The

equality in (1.51) can be differentiated with respect to ρ to obtain:

E

�〈
DF

�
Bptq � ρ

» t
0

cpsq ds
 , » t
0

cpsq ds〉�� E

�
exp

�
ρ

» t
0

cpsq dBpsq � 1

2
ρ2

» t
0

|cpsq|2 ds
��» t
0

cpsq dBpsq � ρ

» t
0

|cpsq|2 ds
 F pBptqq� . (1.52)
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The bracket in the left-hand side of (1.52) indicates the inner-product in

Rd. In (1.52) we put ρ � 0 and we obtain the first order version of the

famous integration by parts formula:

E

�〈
DF pBptqq , » t

0

cpsq ds〉� � E

�» t
0

cpsq dBpsqF pBptqq� . (1.53)

We mention that the Cameron-Martin-Girsanov transformation is a cor-

nerstone for integration by parts formulas with higher derivatives than in

(1.53), which is a central issue in Malliavin calculus, also called stochas-

tic variation calculus. For details on this subject see e.g. [Nualart (1998,

2006)], [Malliavin (1978)], [Sanz-Solé (2005)], [Kusuoka and Stroock (1985,

1987, 1984)], [Stroock (1981)], and [Norris (1986)].

For a proof of Theorem 1.4 we will need the Skorohod-Dudley-Wichura

representation theorem: see Theorem 11.7.2 in [Dudley (2002)]. It will be

applied with S � C
�r0, ts,Rd� and can be formulated as follows.

Theorem 1.5. Let pS, dq be a complete separable metric space (i.e. a Polish

space), and let Pk, k P N, and P be probability measures on the Borel field

BS of S such that the weak limit w- limkÑ8 Pk � P, i.e. limkÑ8 ³
FdPk �³

FdP for all bounded continuous functions of F P CbpSq. Then there exist

a probability space
�rΩ, rF , rP	 and S-valued random variables rYk, k P N, andrY , defined on rΩ with the following properties:

(1) PkrBs � rP �rYk P B�, k P N, and P rBs � rP �rY P B�, B P BS.

(2) The sequence rYk, k P N, converges to rY rP-almost surely.

Remark 1.5. An analysis of the existence part of the proof of Theorem 1.4

shows that the invertibility of the matrix σ ps, yq is not needed. Let rNpsq,
0 ¤ s ¤ t, be a local martingale on a filtered probability space

�rΩ, rFs, rP	,
where the σ-field rFs is generated by

�rY pτq : 0 ¤ τ ¤ s
	
. Suppose that the

covariation process of rNpsq is given by

〈Nj1 , Nj2〉 psq � » s
0

�
σ
�
τ, rY pτq	 σ� �τ, rY pτq		

j1,j2
dτ, 1 ¤ j1, j2 ¤ d.

Here rY is a local martingale on
�rΩ, rF , rP	. Then by assertion (iii) in Theo-

rem 1.3 there exists a Brownian motion rBpsq, 0 ¤ s ¤ t, on this space such
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that » s
0

c1

�
τ, rY pτq	 d rNpτq � » s

0

c1

�
τ, rY pτq	 σ �τ, rY pτq	 d rBpτq� » s

0

c
�
τ, rY pτq	 d rBpτq. (1.54)

Proof. [Proof of Theorem 1.4.] Uniqueness. Let the process Y psq, 0 ¤
s ¤ t, be a solution to equation (1.37). So that

Y psq � x� » s
0

σ pτ, Y pτqq dBpτq� » s
0

pb pτ, Y pτqq � σ pτ, Y pτqq c pτ, Y pτqqq dτ� x� » s
0

σ pτ, Y pτqq dB1pτq � » s
0

b pτ, Y pτqq dτ. (1.55)

Let F
�pY psqq0¤s¤t� be a bounded random variable which depends on the

path Y psq, 0 ¤ s ¤ t. As observed in 4 of Proposition 1.1 the process B1ptq
is a P1-Brownian motion, provided E rM 1ptqs � 1. Uniqueness of weak

solutions to equation (1.36) implies that the P 1-distribution of the process

s ÞÑ Y psq, 0 ¤ s ¤ t, coincides with the P-distribution of the process

s ÞÑ Xpsq, 0 ¤ s ¤ t. In other words we have

E1 �F �pY psqq0¤s¤t��� E

�
exp

�� » t
0

c1 ps, Y psqq dNY psq � 1

2
|c ps, Y psqq|2 ds
F �pY psqq0¤s¤t��� E

�
F
�pXpsqq0¤s¤t�� , (1.56)

where

NY psq � Y psq � » s
0

σ pτ, Y pτqq c pτ, Y pτqq dτ � » s
0

b pτ, Y pτqq dτ� » s
0

σ pτ, Y pτqq dBpτq. (1.57)

With

G
�pY psqq0¤s¤t�� exp

�� » t
0

c1 ps, Y psqq dNY psq � 1

2
|c ps, Y psqq|2 ds
F �pY psqq0¤s¤t�

we have

F
�pY psqq0¤s¤t�
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�» t
0

c1 ps, Y psqq dNY psq � 1

2
|c ps, Y psqq|2 ds
G �pY psqq0¤s¤t� .

So, since

dNXpsq � dXpsq � σ ps,Xpsqq c ps,Xpsqq ds� b ps,Xpsqq ds� σ ps,Xpsqq pdBpsq � c ps,Xpsqq dsq (1.58)

it follows that

F
�pXpsqq0¤s¤t�� exp

�» t
0

c1 ps,Xpsqq dNXpsq � 1

2
|c ps,Xpsqq|2 ds
G �pXpsqq0¤s¤t�� exp

�» t
0

c ps,Xpsqq dBpsq � 1

2
|c ps,Xpsqq|2 ds
G �pXpsqq0¤s¤t� .

(1.59)

From (1.56) and (1.59) we infer:

E1 �G �pY psqq0¤s¤t��� E

�
exp

�» t
0

c ps,Xpsqq ds� 1

2

» t
0

|c ps,Xpsqq|2 ds
G �pXpsqq0¤s¤t�� .
(1.60)

By inserting G � 1 in (1.60) we see that

E

�
exp

�» t
0

c ps,Xpsqq ds� 1

2

» t
0

|c ps,Xpsqq|2 ds
� � 1

in case there is a unique solution to the equation in (1.48). This proves the

uniqueness part of Theorem 1.4.

Existence. Therefore we will approximate the solution Y by a sequence

Yk, k P N, which are solutions to equations of the form:

Ykpsq � x� » s
0

σ pτ, Ykpτqq dBpτq� » s
0

pb pτ, Ykpτqq � σ pτ, Ykpτqq ck pτ, Ykpτqqq dτ� x� » s
0

σ pτ, Ykpτqq dB1
kpτq � » s

0

b pτ, Ykpτqq dτ. (1.61)

Here B1
kpsq � Bkpsq � ³t

0
ck pτ, Ykpτqq dτ , and the coefficients ckps, yq �

c1,kps, yqσ ps, yq are chosen in such a way that they are bounded and that
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cps, yq � limkÑ8 ckps, yq for all s P r0, ts and y P Rd. By Novikov’s theorem

the corresponding local martingales M 1
k, given by

M 1
kpsq � exp

�� » s
0

ck pτ, Ykpτqq dBpτq � 1

2

» s
0

|ck pτ, Ykpτqq|2 dτ
 , k P N,

are then automatically genuine martingales: see Corollary 1.3. From the

uniqueness of weak solutions to equations in Xptq of the form (1.36) (and

thus to equations in Ykpsq of the form (1.61) we infer

E1k �F �pYkpsqq0¤s¤t�� � E
�
F
�pXpsqq0¤s¤t�� . (1.62)

In equality (1.62) the process Ykpsq, 0 ¤ s ¤ t, solves the equation in (1.61).

The equality in (1.62) can be rewritten as

E
�
M 1
kptqF �pYkpsqq0¤s¤t�� � E

�
F
�pXpsqq0¤s¤t�� . (1.63)

By (1.43) the equality in (1.63) can be rewritten as

E

�
exp

��» t
0

ck ps, Ykpsqq dBpsq � 1

2

» t
0

|ck ps, Ykpsqq|2 ds
F �pYkpsqq0¤s¤t��� E

�
exp

�� » t
0

c1,k ps, Ykpsqq d�Ykpsq � » s
0

b pτ, Ykpτqq dτ
�1

2

» t
0

|ck ps, Ykpsqq|2 ds
F �pYkpsqq0¤s¤t��� E
�
F
�pXpsqq0¤s¤t�� . (1.64)

Let G
�pYkpsqq0¤s¤t� be a (bounded) random variable which depends on

the path Ykpsq, 0 ¤ s ¤ t. From the equality in (1.64) we infer

E
�
G
�pYkpsqq0¤s¤t��� E

�
exp

�» t
0

c1,k ps,Xpsqq d�Xpsq � » s
0

b pτ,Xpτqq dτ
�1

2

» t
0

|ck ps,Xpsqq|2 ds
G �pXpsqq0¤s¤t��� E

�
exp

�» t
0

c1,k ps,Xpsqqσ ps,Xpsqq dBpsq � 1

2

» t
0

|ck ps,Xpsqq|2 ds

G
�pXpsqq0¤s¤t��� E

�
MkptqG �pXpsqq0¤s¤t�� . (1.65)

Here the martingales Mkpsq are given by

Mkpsq � exp

�» s
0

ck pτ,Xpτqq dBpτq � 1

2

» s
0

|ck pτ,Xpτqq|2 dτ
 , k P N.
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This fact together with the pointwise convergence ofMkpsq toMpsq, as k Ñ8, and invoking the hypothesis that E rMptqs � 1, shows that the right-

hand side of (1.65) converges to E
�
MptqG �pXpsqq0¤s¤t��. In other words

the distribution PYk of Yk converges weakly to the measure PM,X defined

by PM,XpAq � E rMptq, X P As, where A is a Borel subset of the space

C
�r0, ts,Rd�. By the Skorohod-Dudley-Wichura representation theorem

(Theorem 1.5) there exist a probability space
�rΩ, rF , rP	 and C

�r0, ts,Rd�-
valued random variables rYk, k P N, and rY , defined on rΩ with the following

properties:

(1) PYkrBs � rP �rYk P B�, k P N, and PM,X rBs � rP �rY P B�, B P
BCpr0,ts,Rdq.

(2) The sequence rYk, k P N, converges to rY rP-almost surely.

By taking the limit in (1.65) for k Ñ8 and using the theorem of Skorohod-

Dudley-Wichura we obtain

E

�
G

��rY psq	
0¤s¤t
� � E

�
MptqG �pXpsqq0¤s¤t�� (1.66)

where G is a bounded continuous function on C
�r0, ts,Rd�. Then we con-

sider the process rNpsq, 0 ¤ s ¤ t, defined byrNpsq � rY psq � » s
0

σ
�
τ, rY pτq	 c

�
τ, rY pτq	 dτ � » s

0

b
�
τ, rY pτq	 dτ. (1.67)

If rY psq were Y psq, then by (1.55) rNpsq would be NY psq, given by the

formula in (1.57). Hence the process s ÞÑ NY psq, s P r0, ts, is a stochastic

integral relative to Brownian motion on the space pΩ,Ft,Pq. We want to

do same for the process s ÞÑ rNpsq, 0 ¤ s ¤ t, on the probability space�rΩ, rF , rP	. Let PMptq be the probability measure on pΩ,Ftq defined by

PMptq rAs � E rMptq, As, A P Ft. Then like in item (4) of Proposition 1.1

we see that the process s ÞÑ Bpsq � ³s
0
σ pτ,Xpτqq dτ is a PMptq-Brownian

motion. In addition, from (1.66) and (1.67) we infer that the rP-distribution
of the process rNpsq, 0 ¤ s ¤ t, is given by the PMptq-distribution of the

process

s ÞÑXpsq � » s
0

σ pτ,Xpτqq c pτ,X pτqq dτ � » s
0

b pτ,Xpτqq dτ� » s
0

σ pτ,Xpτqq pdBpτq � c pτ, Y pτqq dτq
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0

σ pτ,Xpτqq dBMptqpτq, (1.68)

where BMptqpsq is a PMptq-Brownian motion: see Proposition 1.1 item (4).

It also follows that the process in (1.68) has covariation process given by

the square matrix process

s ÞÑ » s
0

σ pτ,Xpτqq σ� pτ,Xpτqq dτ, 0 ¤ s ¤ t.

Consequently, the process s ÞÑ rNpsq, 0 ¤ s ¤ t, is a local rP -martingale

with covariation process given by

s ÞÑ » s
0

σ
�
τ, rY pτq	 σ� �τ, rY pτq	 dτ, 0 ¤ s ¤ t. (1.69)

In order to prove (1.69) we must show that the process

s ÞÑ rNj1psq rNj2psq � ḑ

k�1

» s
0

σj1,k

�
τ, rY pτq	 σj2,k �τ, rY pτq	 dτ

is a local rP-martingale. The latter can be achieved by appealing to the

fact that the rP-distribution of the process s ÞÑ rY psq, 0 ¤ s ¤ t, coin-

cides with the PMptq-distribution of the process s ÞÑ Xpsq, 0 ¤ s ¤ t.

Then we choose a Brownian motion rBpsq, possibly on an extension of

the probability space
�rΩ, rF , rP	, which we call again

�rΩ, rF , rP	 such thatrNpsq � ³s
0
σ
�
τ, rY pτq	 d rBpτq. For details see the proof of the implication

(ii) ùñ (iii) of Theorem 1.3. With such a Brownian motion we obtain:rY psq � x� » s
0

σ
�
τ, rY pτq	 d rBpτq � » s

0

σ
�
τ, rY pτq	 c�τ, rY pτq	 dτ� » s

0

b
�
τ, rY pτq	 dτ. (1.70)

SincerE �
exp

�� » t
0

c
�
s, rY psq	 d rBpsq � 1

2

» t
0

���c�s, rY psq	���2 ds
� � 1 (1.71)

it follows that the process s ÞÑ rBpsq � ³s
0
c
�
τ, rY pτq	 dτ is a Brownian

motion relative to the measure

A ÞÑ rE �
exp

�� » t
0

c
�
s, rY psq	 d rBpsq � 1

2

» t
0

���c�s, rY psq	���2 ds
 , A� ,
A P rF . The equalities in (1.70) and (1.71) complete the proof of Theorem

1.4. �
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We include a proof of a result due to [Novikov (1973)]. In fact we will insert

a proof established by Krylov [Krylov (2002)]. In fact the result is somewhat

more general than the original result by Novikov; it also improves a result

which we owe to [Kazamaki (1978)]. For the significance of the covariation

process t ÞÑ 〈M,M〉 ptq see items (4) and (5) in §1.3.

Theorem 1.6. Let pΩ,F ,Pq be a complete probability space and let t ÞÑ
Mptq be a continuous local martingale on pΩ,F ,Pq relative to a filtrationpFtqt¥0 such that xM,My � xM,Myp8q :� supt¥0 〈M,M〉 ptq   8 (P-

almost surely). Define

EpMqptq � eMptq� 1

2
xM,Myptq. (1.72)

Then the following assertions are true:

(1) If lim inf
εÓ0 ε logE

�
e

1

2
p1�εqxM,Myp8q�   8, then

E

�
exppMp8q � 1

2
xM,Myp8qq� � 1. (1.73)

Consequently, the process t ÞÑ EpMqptq is a P-martingale relative to the

filtration pFtqt¥0, where Ft � σ pMpsq : 0 ¤ s ¤ tq, the σ-field gener-

ated by the variables Mpsq, 0 ¤ s ¤ t.

(2) If lim inf
εÓ0 ε log sup

t¥0

E

�
e

1

2
p1�εqMptq�   8, then again the equality in

(1.73) holds. So that the process t ÞÑ EpMqptq is a P-martingale relative

to the filtration pFtqt¥0 determined by the local martingale t ÞÑMptq.
We mention the following corollaries. Corollary 1.3 is due to [Novikov

(1973)]. Corollary 1.4 is a result by [Kazamaki (1978)]. In the corollaries

1.3 and 1.4, and in the lemmas 1.2 and 1.3 it is assumed that the process t ÞÑ
Mptq is a continuous local martingale on the probability space pΩ,F ,Pq.
Moreover, the notation is as in Theorem 1.6.

Corollary 1.3. If E

�
exp

�
1

2
〈M,M〉 p8q
�   8, then

E

�
exp

�
Mp8q � 1

2
〈M,M〉 p8q
� � 1,

and consequently the process t ÞÑ EpMqptq is a P-martingale relative to the

filtration pFtqt¥0, where Ft � σ pMpsq : 0 ¤ s ¤ tq, the σ-field generated by

the variables Mpsq, 0 ¤ s ¤ t.

Proof. If E rEpMqp8qs � 1, then EpMqptq � E
�
EpMqp8q �� Ft�, and

hence the process t ÞÑ EpMqptq is a P-martingale. �
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The same argument shows the following corollary.

Corollary 1.4. If sup
t¥0

E

�
exp

�
1

2
Mptq
�   8, then

E

�
exp

�
Mp8q � 1

2
〈M,M〉 p8q
� � 1.

Again the process t ÞÑ EpMqptq is not just a local martingale, but a P-

martingale.

The proof of Theorem 1.6 is based on Lemma 1.1 below. Doob’s martingale

inequality for moments, which is also needed, reads as follows. Let k ÞÑ Yk
be a discrete martingale on a probability space pΩ,F ,Pq. If δ ¡ 0, then

E

�
max
1¤k¤n |Yk|1�δ� ¤ �

1� δ

δ


1�δ
E

�|Yn|1�δ� , n P N. (1.74)

For details see e.g. [Cox (1984)]. If δ � 0, then the inequality in (1.74)

should be replaced with:

E

�
sup

1¤k¤n |Yk|� ¤ e

e� 1

�
1� E

�|Yn| log� |Yn|�� . (1.75)

Similar inequalities hold for right-continuous local submartingales. In par-

ticular we have

E

�
sup

0¤s¤t EpNqpsq1�δ� ¤ �
1� δ

δ


1�δ
E
�
EpNqptq1�δ� (1.76)

provided that the process t ÞÑ Nptq is a continuous local martingale. The

inequality in (1.76) follows from (1.74) by taking a discretization of the

form j ÞÑ N pj2�ntq, 1 ¤ j ¤ 2n, and then letting n tend to 8. In

addition, in general a stopping time argument (or localization argument)

is required. In such a case we replace Nptq by N pmin pt, τmqq, where τm �
inf tt ¡ 0 : |Nptq| ¡ mu. Then first we let n tend to 8, and then m.

Lemma 1.1. Let pΩ,F ,Pq be a probability space, and let t ÞÑ Nptq be a

continuous local martingale for which there exists ε0 ¡ 0 such that

E

�
exp

�
1

2
p1� ε0q2 〈N,N〉 p8q
�   8. (1.77)

Then

sup
t¥0

E

�
exp

�
1

2
p1� ε0qNptq
� ¤ E

�
exp

�
1

2
p1� ε0q2 〈N,N〉 p8q
�   8,

(1.78)

and E rEpNqp8qs � 1.
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Proof. The inequality in (1.78) follows from the Cauchy-Schwarz inequal-

ity. In fact we write

E

�
exp

�
1

2
p1� ε0qNptq
�� E

�
exp

�
1

2
p1� ε0qNptq � 1

4
p1� ε0q2 〈N,N〉 ptq
� exp

�
1

4
p1� ε0q2 〈N,N〉 ptq
�¤ E

�
exp

�p1� ε0qNptq � 1

2
p1� ε0q2 〈N,N〉 ptq
�1{2� E

�
exp

�
1

2
p1� ε0q2 〈N,N〉 ptq
�1{2� E rE pp1� ε0qNq ptqs1{2 E �

exp

�
1

2
p1� ε0q2 〈N,N〉 ptq
�1{2 . (1.79)

The process t ÞÑ Nptq is a continuous local martingale, and so is the process

t ÞÑ p1� ε0qNptq. A stopping time argument, which in fact is a localization

technique, then shows that

E rE pp1� ε0qNq ptqs ¤ 1. (1.80)

A combination of (1.79), (1.80) and (1.77) then shows

E

�
exp

�
1

2
p1� ε0qNptq
� ¤ E

�
exp

�
1

2
p1� ε0q2 〈N,N〉 p8q
�1{2   8.

(1.81)

For brevity we write

δ � ε20
1� 2ε0

, γ � 1

1� ε0
, p � 1� 2ε0, q � 1� 2ε0

2ε0
. (1.82)

Notice that
1

p
� 1

q
� 1. Then with the notation of (1.82) we have by (1.76)

the following estimates:

E

�
sup

0¤s¤t EpNqpsq�1�δ ¤ E

�
sup

0¤s¤t EpNqpsq1�δ�¤ �
1� δ

δ


1�δ
E
�
EpNqptq1�δ�� �

1� δ

δ


1�δ
E

�
exp

�
γp1� δqNptq � 1

2
p1� δq 〈N,N〉 ptq
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exp pp1� γqp1� δqNptqq�
(apply Hölder’s inequality)¤ �

1� δ

δ


1�δ �
E

�
exp

�
pγp1� δqNptq � 1

2
pp1� δq 〈N,N〉 ptq
�
1{p� pE rexp pp1� γqp1� δqqNptqqsq1{q� �

1� δ

δ


1�δ pE rE pp1� ε0qNq ptqsq1{p �E �
exp

�
1

2
p1� ε0qNptq
�
1{q

(apply (1.80))¤ �
1� δ

δ


1�δ �
E

�
exp

�
1

2
p1� ε0qNptq
�
1{q

. (1.83)

From (1.83) we infer

E

�
sup

0¤s¤t EpNqpsq� ¤ p1� ε0q2
ε20

�
E

�
exp

�
1

2
p1� ε0qNptq
�
2ε0{p1�ε0q2

,

(1.84)

and hence, since

sup
t¥0

E

�
exp

�
1

2
p1� ε0qNptq
�   8 (1.85)

from (1.84) we infer

E

�
sup

0¤s 8 EpNqpsq�   8. (1.86)

From (1.86) we obtain that the continuous local martingale t ÞÑ EpNqptq
is in fact a martingale. By writing EpNqp8q � limnÑ8 EpNq pτnq, where
τn is a sequence of stopping times which increases to 8 P-almost surely,

and which is such that E rEpNq pτnqs � 1, n P N, we obtain by dominated

convergence that E rEpNq p8qs � 1.

This completes the proof of Lemma 1.1. �

In order to prove Assertion (1) in Theorem 1.6 it will be convenient to

formulate and prove the following weaker lemma first.

Lemma 1.2. If lim inf
εÓ0 ε logE

�
e

1

2
p1�εqxM,Myp8q� � 0, then the equality in

(1.73) holds.
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Proof. By assumption there exists a sequence of positive real numberspεnqnPN with 0   εn�1   εn ¤ 1 such that limnÑ8 εn � 0, and such that

lim
nÑ8 εn logE �

exp

�
1

2
p1� εnq 〈M,M〉 p8q
� � 0. (1.87)

In particular it follows that for every n P N we have 1 � εn�1 ��
1� δ2n

� p1� εnq, for some δn ¡ 0, and

E

�
exp

�
1

2
p1� εn�1q 〈M,M〉 p8q
�   8. (1.88)

An application of Lemma 1.1 with Nptq � p1� εnqMptq and using (1.87)

yields the equality 1 � E rE pp1� εnqMq p8qs. Consequently, we see

1 � E rE pp1� εnqMq p8qs� E

�
exp

�p1� εnq�Mp8q � 1

2
〈M,M〉 p8q



exp

�
1

2
p1� εnq εn 〈M,M〉 p8q
�¤ pE rEpMqp8qsq1�εn �E �

exp

�
1

2
p1� εnq 〈M,M〉 p8q
�
εn . (1.89)

In (1.89) we let nÑ 8 to obtain 1 ¤ E rEpMqp8qs. Since the process t ÞÑ
EpMqptq is a nonnegative local martingale we also have E rEpMqp8qs ¤ 1.

As a consequence we see that E rEpMqp8qs � 1.

This completes the proof of Lemma 1.2. �

Similarly for the proof of (2) in Theorem 1.6 the following weaker lemma

turns out to be convenient.

Lemma 1.3. If lim inf
εÓ0 ε log sup

t¥0

E

�
e

1

2
p1�εqMptq� � 0, then the equality in

(1.73) holds.

Proof. By assumption there exists a sequence of positive real numberspεnqnPN with 0   εn   1 such that limnÑ8 εn � 0, and such that

lim
nÑ8 εn

2� εn
logE sup

t¥0

�
exp

�
1

2

�
1� εn

2� εn



Mptq
� � 0. (1.90)

In particular it follows that for every n P N we have

sup
t¥0

E

�
exp

�
1

2

�
1� εn

2� εn



Mptq
�   8. (1.91)
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An application of Lemma 1.1 with Nptq � p1� εnqMptq and using (1.91)

yields the equality 1 � E rE pp1� εnqMq p8qs. Consequently, we see

1 � E rE pp1� εnq pMq p8qqs� E

�
exp

�p1� εnq2�Mp8q � 1

2
〈M,M〉 p8q



exp pp1� εnq εnMp8qqs¤ pE rEpMqp8qsqp1�εnq2 �E �
exp

�
1� εn

2� εn
Mp8q
�
εnp2�εnq¤ pE rEpMqp8qsqp1�εnq2 �E �

exp

�
1

2

�
1� εn

2� εn



Mp8q
�
εnp2�εnq¤ pE rEpMqp8qsqp1�εnq2 �sup

t¥0

E

�
exp

�
1

2

�
1� εn

2� εn



Mptq
�
εnp2�εnq .

(1.92)

In the final step in (1.92) we applied Fatou’s lemma. In (1.92) we let nÑ8
to obtain 1 ¤ E rEpMqp8qs, where we used (1.90). Since the process t ÞÑ
EpNqptq is a nonnegative local martingale we also have E rEpMqp8qs ¤ 1.

As a consequence we see that E rEpMqp8qs � 1.

This completes the proof of Lemma 1.3. �

Proof. [Proof of Theorem 1.6.] Assertion (1). Let pεnqnPN � p0, 1q such
that εn Ó 0, as nÑ 8, and such that

C1 :� sup
nPN εn logE �

exp

�
1

2
p1� εnq 〈M,M〉 p8q
�   8. (1.93)

As in the proof of Lemma 1.2 we have with 0   T   8 fixed

1 � E rE pp1� εnqMq p8qs� E

�
exp

�p1� εnq�Mp8q � 1

2
〈M,M〉 p8q

� exp

�
1

2
p1� εnq εn 〈M,M〉 p8q
 , 〈M,M〉 p8q ¤ T

�� E

�
exp

�p1� εnq�Mp8q � 1

2
〈M,M〉 p8q



exp

�
1

2
p1� εnq εn 〈M,M〉 p8q
 , 〈M,M〉 p8q ¡ T

�¤ pE rEpMqp8qsq1�εn��
E

�
exp

�
1

2
p1� εnq 〈M,M〉 p8q
 , 〈M,M〉 p8q ¤ T

�
εn
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E

�
exp

�
1

2
p1� εnq 〈M,M〉 p8q
�
εn¤ pE rEpMqp8qsq1�εn exp

�
1

2
p1� εnq εnT
� pE rEpMqp8q, 〈M,M〉 p8q ¡ T sq1�εn exp pC1q . (1.94)

In (1.94) we let n tend to 8 to obtain

1 ¤ E rEpMqp8qs � E rEpMqp8q, 〈M,M〉 p8q ¡ T s exp pC1q . (1.95)

In (1.95) we let T Ñ8 and deduce

1 ¤ E rEpMqp8qs � E rEpMqp8q, 〈M,M〉 p8q � 8s exp pC1q . (1.96)

Since E rEpMqp8qs ¤ 1, and 〈M,M〉 p8q   8 P-almost surely, (1.96) im-

plies 1 � E rEpMqp8qs. This completes the proof of Assertion (1).

Assertion (2). Let pεnqnPN � p0, 1q be such that εn Ó 0, as nÑ 8, and

such that

C2 :� sup
nPN εn p2� εnq log sup

t¥0

E

�
exp

�
1� εn

2� εn
Mptq
�   8. (1.97)

As in the proof of Lemma 1.1 (see also Lemma 1.3) we have with 0   T   8
fixed

1 � E rE pp1� εnqMq p8qs� E

�
exp

�p1� εnq2�Mp8q � 1

2
〈M,M〉 p8q

� exp pp1� εnq εnMp8qq , Mp8q ¤ T s� E

�
exp

�p1� εnq2�Mp8q � 1

2
〈M,M〉 p8q



exp pp1� εnq εnMp8qq , Mp8q ¡ T s¤ pE rEpMqp8qsqp1�εnq2��
E

�
exp

�
1� εn

2� εn
Mp8q
 , Mp8q ¤ T

�
2εn�ε2n� pE rEpMqp8q, Mp8q ¡ T sqp1�εnq2��
E

�
exp

�
1� εn

2� εn
Mp8q
�
2εn�ε2n¤ pE rEpMqp8qsqp1�εnq2 exp pp1� εnq εnT q



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

34 Markov processes, Feller semigroups and evolution equations� pE rEpMqp8q, Mp8q ¡ T sqp1�εnq2 exp pC2q . (1.98)

In (1.98) we let n tend to 8 to obtain

1 ¤ E rEpMqp8qs � E rEpMqp8q, Mp8q ¡ T s exp pC2q . (1.99)

In (1.99) we let T Ñ8 and deduce

1 ¤ E rEpMqp8qs � E rEpMqp8q, Mp8q � 8s exp pC2q . (1.100)

Since E rEpMqp8qs ¤ 1, and Mp8q   8 P-almost surely, (1.100) implies

1 � E rEpMqp8qs. This completes the proof of Assertion (2).

Altogether this completes the proof of Theorem 1.6. �

In [Krylov (2002)] Krylov shows by way of an example that his results

are really stronger than those of Novikov [Novikov (1973)] and Kazamaki

[Kazamaki (1978)].

Definition 1.3. The equation in (1.36) is said to have unique pathwise

solutions, if for any Brownian motion tpBptq : t ¥ 0q , pΩ,F ,Pqu and any

pair of adapted processes tXptq : t ¥ 0u and tX 1ptq : t ¥ 0u for which
Xptq � x� » t

0

σ ps,Xpsqq dBpsq � » t
0

b ps,Xpsqq ds and (1.101)

X 1ptq � x� » t
0

σ
�
s,X 1psq� dBpsq � » t

0

b
�
s,X 1psq� ds (1.102)

it follows that Xptq � X 1ptq P-almost surely for all t ¥ 0.

Pathwise solutions are also called strong solutions. A version of the fol-

lowing result (Itô’s theorem) can be found in many books on stochastic

differential equations: see e.g. [Ikeda and Watanabe (1998); Øksendal and

Reikvam (1998); Revuz and Yor (1999)].

Theorem 1.7. Let σj,k ps, xq and bj ps, xq, 1 ¤ j, k ¤ d be continuous

functions defined on r0,8q � Rd such that for all t ¡ 0 there exists a

constant Kptq with the property that

ḑ

j,k�1

|σj,k ps, xq � σj,k ps, yq|2 � ḑ

j�1

|bj ps, xq � bj ps, yq|2 ¤ Kptq |x� y|2
(1.103)

for all 0 ¤ s ¤ t, and all x, y P Rd. Fix x P Rd, and let pΩ,F ,Pq be a

probability space with a filtration pFtqt¥0. Moreover, let tBptq : t ¥ 0u be
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a Brownian motion on the filtered probability space pΩ,Ft,Pq. Then there

exists an Rd-valued process tXptq : t ¥ 0u such that

Xptq � x� » t
0

σ ps,Xpsqq dBpsq � » t
0

b ps,Xpsqq ds, t ¥ 0.

This process is pathwise unique in the sense of Definition 1.3.

The following theorem shows that stochastic differential equations having

unique strong solutions also possess unique weak solutions.

Theorem 1.8. Let the vector and matrix functions bps, xq and σps, xq be as

in Theorem 1.4. Fix x P Rd. Suppose that the stochastic (integral) equation

Xptq � x� » t
0

σ ps,Xpsqq dBpsq � » t
0

b ps,Xpsqq ds (1.104)

possesses unique pathwise solutions. Then this equation has unique weak

solutions.

In the proof we employ a certain coupling argument. In fact weak solutions

to the equations in (1.101) and (1.102) are recast as two pathwise solutions

on the same probability space.

Proof. LettpBptq : t ¥ 0q , pΩ,F ,Pqu and
 �
B1ptq : t ¥ 0

�
,
�
Ω1,F 1,P1�(

be two Brownian motions. Let tXptq : t ¥ 0u be an adapted process which

satisfies (1.101), and let tX 1ptq : t ¥ 0u be an adapted process which satis-

fies (1.102). Suppose 0 ¤ t1   t2   � � �   tn   8, and let C1, . . . , Cn be

Borel subsets of Rd. We have to prove the equality:

P1 �X 1 pt1q P C1, . . . , X
1 ptnq P Cn� � P rX pt1q P C1, . . . , X ptnq P Cns .

(1.105)

Let Ω0 � C
�r0,8q,Rd� be the space of Rd-valued continuous functions

defined on r0,8q. This space is equipped with its standard filtration, which

originates from the coordinate mappings: ω ÞÑ ωptq, t ¥ 0, and its Borel

field. Define the Rd-valued processes Y ptq, Y 1ptq, and B0ptq on Ω�Ω1�Ω0

as follows:$''&''%Y ptq pω, ω1, ω0q � ωptq, pω, ω1, ω0q P Ω� Ω1 � Ω0;

Y 1ptq pω, ω1, ω0q � ω1ptq, pω, ω1, ω0q P Ω� Ω1 � Ω0;

B0ptq pω, ω1, ω0q � ω0ptq, pω, ω1, ω0q P Ω� Ω1 � Ω0.

(1.106)

In fact we use the notation Ω0 instead of Ω to distinguish the third com-

ponent of the space Ω � Ω1 � Ω0 from the first. The role of the first
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two components are very similar; the third component is related to the

driving Brownian motion tB0ptq : t ¥ 0u. The processes Y ptq and Y 1ptq
are going to be the pathwise solutions on the same probability space�
Ω� Ω1 � Ω0,F b F 1 b F0, rPx	: see (1.116) and (1.117) below. On Ω0 the

probability measure P0 is determined by prescribing its finite-dimensional

distributions by the equality:

P0 rpω0 pt1q , . . . , ω0 ptnqq P Ds � P rpB pt1q , . . . , B ptnqq P Ds� P1 ��B1 pt1q , . . . , B1 ptnq� P D�
. (1.107)

Here 0 ¤ t1   � � �   tn   8, and D is a Borel subset of
�
Rd

�n
. Let C

be another Borel subset of
�
Rd

�n
. On Ω � Ω0 and Ω1 � Ω0 we define the

probability measures Qx respectively Q1
x by the equalities:

Qx rpω pt1q , . . . , ω ptnqq P C, pω0 pt1q , . . . , ω0 ptnqq P Ds� P rpB pt1q , . . . , B ptnqq P D, pB pt1q , . . . , B ptnqq P Ds� P1 �pB pt1q , . . . , B ptnqq P D, �B1 pt1q , . . . , B1 ptnq� P D�
. (1.108)

Notice that P0 rA0s � 0 implies Qx rΩ�A0s � Q1
x rΩ1 �A0s � 0. Conse-

quently, by Radon-Nikodym’s theorem there are (measurable) functions

Qx, and Q
1
x : F � Ω0 Ñ r0, 1s

such that

Qx rA�A0s � »
A0

Qx pA,ω0q P0 pω0q , A P F , A0 P F0, and

Q1
x

�
A1 �A0

� � »
A0

Q1
x pA,ω0q P0 pω0q , A1 P F 1, A0 P F0. (1.109)

Here Qx pΩ, ω0q � Q1
x pΩ1, ω0q � 1 for all ω0 P Ω0. Moreover, the functions

ω0 ÞÑ Qx pA,ω0q , and ω0 ÞÑ Q1
x pA,ω0q (1.110)

are measurable relative to the P0-completion of F . Finally, we define the

measure rQx : F b F 1 b F0 Ñ r0, 1s byrQx �A�A1 �A0

� � »
A0

Qx pA,ω0qQ1
x

�
A1, ω0

�
dP0 pω0q . (1.111)

Here A, A1, and A0 belong to F , F 1, and F0 respectively. First we prove

that the process tB0ptq : t ¥ 0u is a Brownian motion with respect to the
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measure rQx. From the proof of Theorem 1.1 (Lévy’s theorem) it follows

that it suffices to show that the following equality holds:rEx �exp p�i 〈ξ, B0ptq �B0psq〉q �� Fs b F 1
s b F0

s

�� exp

��1

2
|ξ|2 pt� sq
 , t ¡ s ¥ 0, ξ P Rd. (1.112)

In order to prove (1.112) we pick A, A1, and A0 in Fs, F 1
s, and F0

s respec-

tively. Then by (1.111) we getrEx rexp p�i 〈ξ, B0ptq �B0psq〉q1A�A1�A0
s� »

A�A1�A0

exp p�i 〈ξ, B0ptq �B0psq〉q drQx� »
A0

exp p�i 〈ξ, ω0ptq � ω0psq〉qQx pA,ω0qQ1
x

�
A1, ω0

�
dP0 pω0q . (1.113)

The process pω0, tq ÞÑ ω0ptq is a Brownian motion relative to P0, and the

events A, A1, and A0 belong to Fs, F 1
s, and F0

s respectively, and hence

B0ptq �B0psq is P0-independent of A�A1 �A0. Therefore (1.113) impliesrEx rexp p�i 〈ξ, B0ptq �B0psq〉q1A�A1�A0
s� »

A0

Qx pA,ω0qQ1
x

�
A1, ω0

�
dP0 pω0q » exp p�i 〈ξ, ω0ptq � ω0psq〉q dP0 pω0q� rQx �A�A1 �A0

�
exp

��1

2
|ξ|2 pt� sq
 . (1.114)

The equality in (1.112) is a consequence of (1.114). Since, by definition (see

(1.107))

P0 rpω0 pt1q , . . . , ω0 ptnqq P Cs � P rpB pt1q , . . . , B ptnqq P Cs (1.115)

for 0 ¤ t1   � � �   tn   8, C Borel subset of
�
Rd

�n
, and since the processtBptq : t ¥ 0u is Brownian motion relative to P, the same is true for the

process pω0, tq ÞÑ ω0ptq relative to P0. Next we compute the quantity:rEx �����Y ptq � x� » t
0

σ ps, Y psqq dB0psq � » t
0

b ps, Y psqq ds������ » ����ωptq � x� » t
0

σ ps, ωpsqq dω0psq � » t
0

b ps, ωpsqq ds���� rQ �
dω, dω1, dω0

�� » ����ωptq � x� » t
0

σ ps, ωpsqq dω0psq � » t
0

b ps, ωpsqq ds���� Q pdω, dω0q� » ����Xptq � x� » t
0

σ ps,Xpsqq dBpsq � » t
0

b ps,Xpsqq ds���� dP � 0. (1.116)



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

38 Markov processes, Feller semigroups and evolution equations

Similarly we haverEx �����Y 1ptq � x� » t
0

σ
�
s, Y 1psq� dB0psq � » t

0

b
�
s, Y 1psq� ds����� � 0. (1.117)

From (1.116) and (1.117) we infer that the following equalities hold rQx-
almost surely:

Y ptq � x� » t
0

σ ps, Y psqq dB0psq � » t
0

b ps, Y psqq ds and (1.118)

Y 1ptq � x� » t
0

σ
�
s, Y 1psq� dB0psq � » t

0

b
�
s, Y 1psq� ds. (1.119)

Moreover, the process tB0ptq : t ¥ 0u is a Brownian motion relative to rQx.
From the pathwise uniqueness and the equalities (1.118) and (1.119) we see

that, rQx-almost surely,

Y ptq � Y 1ptq, t ¥ 0. (1.120)

Let 0 ¤ 0   t1   � � �   tn   8, and let C be a Borel subset of
�
Rd

�n
. From

(1.120) it follows thatrQx rpY pt1q , . . . , Y ptnqq P Cs � rQx ��Y 1 pt1q , . . . , Y 1 ptnq� P C� . (1.121)

Using (1.121) and the definition of the measure rQx show that the following

identities are self-explanatory:rQx rpY pt1q , . . . , Y ptnqq P Cs� Qx rpω pt1q , . . . , ω ptnqq P C, pω0 pt1q , . . . , ω0 ptnqq P Ω0s� P rpX pt1q , . . . , X ptnqq P Cs . (1.122)

The definition of the measure rQx is given in (1.111). Similarly we concluderQx rpY pt1q , . . . , Y ptnqq P Cs � P
��
X 1 pt1q , . . . , X 1 ptnq� P C� . (1.123)

From (1.122), (1.123), and (1.121) we obtain

P rpX pt1q , . . . , X ptnqq P Cs � P
��
X 1 pt1q , . . . , X 1 ptnq� P C� . (1.124)

The equality in (1.124) implies that the finite-dimensional distributions of

the solution in equation in (1.101) are the same as those of the solution

of equation (1.102). So that stochastic differential equations with unique

pathwise solutions also possess unique weak (or distributional) solutions.

This concludes the proof of Theorem 1.8. �
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The following result is often very useful.

Theorem 1.9. Let Mpsq, t ¤ s ¤ T , be a continuous local L2-martingale

taking values in Rk. Put M�psq � supt¤τ¤s |Mpτq|. Fix 0   p   8. The

Burkholder-Davis-Gundy inequality says that there exist universal finite and

strictly positive constants cp and Cp such that

cpE
�pM�psqq2p� ¤ E r〈Mp�q,Mp�q〉p psqs ¤ CpE

�pM�psqq2p� , t ¤ s ¤ T.

(1.125)

If p � 1, then cp � 1
4
, C1 � 1, and if p � 1

2
, then cp � 1

8

?
2, Cp � 2.

For more details and a proof using stochastic calculus see e.g. [Ikeda and

Watanabe (1998)]. A proof based on good λ-inequalities can be found in

[Rogers and Williams (2000)] or [Durrett (1984, 1996)].

Another result we need is the following one on tightness.

Theorem 1.10. Let tXnptq : t ¥ 0u be a sequence of continuous Rd-valued

processes satisfying the following the following two conditions:

(a) limNÑ8 supnPN P r|Xnp0q| ¡ N s � 0;

(b) For every T ¡ 0 and ε ¡ 0 the following equality holds:

lim
hÓ0 supnPN P � max

s,tPr0,T s. |t�s|¤h |Xnptq �Xnpsq| ¡ ε

� � 0.

Then there exist a subsequence n1   n2   � � � , a probability space
�pΩ, pF , pP	,

d-dimensional continuous stochastic processes
! pXnkptq : t ¥ 0

)
, k P N, and! pXptq : t ¥ 0

)
defined on this probability space with the following proper-

ties:

(1) The finite-dimensional pP-distributions of the process
! pXnkptq : t ¥ 0

)
coincide with the finite-dimensional P-distributions of tXnkptq : t ¥ 0u
for k � 1, 2, . . ..

(2) The sequence
! pXnkptq : t ¥ 0

)
kPN converges to the process! pXptq : t ¥ 0

)
in the sense thatpP�pω P pΩ : lim

kÑ8 d� pXnk ppωq , pX ppωq	 � 0

� � 1.

Here

d
�
w,w1� � 8̧

n�1

2�nmin

�
1, max

0¤s¤n ��wpsq � w1psq��
 , w, w1 P C �r0,8q,Rd� .
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Moreover, if every finite-dimensional distribution of the image measures

PXn converges as n Ñ 8, then there is no need to take subsequences: the

sequence nk � k will do.

The conditions in Theorem 1.10 can be verified by appealing to the results

in the following theorem.

Theorem 1.11. Let pXnqnPN be a sequence of d-dimensional processes sat-

isfying the following two conditions:

(a) There exist strictly positive finite constants M and γ such that

E r|Xnp0q|γs ¤M   8, n P N.

(b) There exist strictly positive finite constants α, β, Mk, k � 1, 2, . . . ,

such that for all n P N and for all s, t P r0, ks the inequality

E r|Xnptq �Xnpsq|αs ¤Mk |t� s|1�β
holds for k � 1, 2, . . ..

Then the sequence tXnptq : t ¥ 0unPN satisfies the conditions (a) and (b)

of Theorem 1.10.

As a corollary we have the following result.

Corollary 1.5. Let tXptq : t ¥ 0u be a family of d-dimensional random

variables such that for some finite strictly positive constants α, β, and Mk,

k � 1, 2, . . ., the following inequalities are valid:

E r|Xptq �Xpsq|αs ¤Mk |t� s|1�β , s, P r0, ks, k � 1, 2, . . . .

Then there exists a d-dimensional continuous process
! pXptq : t ¥ 0

)
such

that Xptq � pXptq P-almost surely for all t ¥ 0.

We conclude this section with a result of Skorohod [Skorokhod (1965)].

Theorem 1.12. Let σj,k ps, xq, 1 ¤ j, k ¤ d, and bjps, xq, 1 ¤ j ¤ d, be

be bounded continuous real-valued functions on r0,8q�Rd, and let x P Rd.

Then there exists a probability measure P on the Borel field of C
�r0,8q,Rd�

and a Brownian motion relative to this measure P such that the process

defined tXptq : t ¥ 0u defined by Xptqpωq � ωptq, t ¥ 0, ω P C �r0,8q,Rd�,
satisfies the equality

Xptq � x� » t
0

σ ps,Xpsqq dBpsq � » t
0

b ps,Xpsqq ds, P-almost surely.

(1.126)



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Introduction: Stochastic differential equations 41

Here σ ps, yq � pσj,k ps, yqqdj,k�1
, and bps, yq is the column vector with en-

tries bjps, yq, 1 ¤ j ¤ d.

Proof. [Outline of a proof of Theorem 1.12.] Define the differential op-

erators Lpsq, s ¥ 0, by

Lpsqfpsq � 1

2

ḑ

i,j�1

ai,j ps, xq B2fBxjBxk pxq � ḑ

i�1

bj ps, xq BfBxi pxq (1.127)

where the function f is twice continuously differentiable, and where the

coefficients ai,jps, xq are given by

ai,jps, xq � ḑ

k�1

σi,kps, xqσj,kps, xq � pσps, xqσ�ps, xqqi,j .
Fix x P Rd. From assertion (iii) in Theorem 1.3 we see that it suffices that

there exists a probability measure P on the space W � C
�r0,8q,Rd� and

a function X P W such that P rXp0q � xs � 1, and such that for every

f P C2
00

�
Rd

�
(i.e. f is twice continuously differentiable and has compact

support in Rd) the process

fpXptqq � fpXp0qq � » t
0

LpsqfpXpsqq ds
is a P-martingale. OnW we take the filtration generated by the coordinate

functions: ω ÞÑ ωptq, ω P W , t ¥ 0. Let pΩ1,F 1
t,P

1qt¥0 be a filtered

probability space, and let tB1ptq : t ¥ 0u be a Brownian motion with respect

to P1. Define for ℓ P N, the function ϕℓ : r0,8q Ñ r0,8q by
ϕℓptq � 8̧

k�0

k2�ℓ1rk2�ℓ,pk�1q2�ℓq,
and put σℓpt, yq � σ

�
ϕℓptq, y�, bℓpt, yq � b

�
ϕℓptq, y�. Define the processes

Y ℓptq, ℓ P N, by the equality:

Y ℓptq � x� 8̧
k�0

 
σ
�
k2�ℓ, Y ℓ �min

�
t, k2�ℓ��� �B1ptq �B1 �min

�
t, k2�ℓ���� b �k2�ℓ, Y ℓ �min

�
t, k2�ℓ��� �t�min

�
t, k2�ℓ��(� x� » t

0

σ
�
ϕℓpτq, Y ℓpτq� dB1pτq � » t

0

b
�
ϕℓpτq, Y ℓpτq� dτ� x� » t

0

σℓ
�
τ, Y ℓpτq� dB1pτq � » t

0

bℓ
�
τ, Y ℓpτq� dτ. (1.128)
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Notice that the equalities in (1.128) yield a genuine definition of the process

t ÞÑ Y ℓptq, t ¥ 0, because (1.128) can be considered as a recursive definition

of the process Y ℓptq, k2�ℓ ¤ t   pk � 1q2�ℓ where recursion is done with

respect to k, k � 0, 1, , . . .. In principle we want to take the limit in (1.128)

for ℓÑ8, and obtain an equality of the form:

Y ptq � x� » t
0

σ pτ, Y pτqq dB1pτq � » t
0

b pτ, Y pτqq dτ. (1.129)

However, this cannot be done directly. We need some results on mo-

ment inequalities for continuous martingales, like the Burkholder-Davis-

Gundy inequality (see Theorem 1.9), and on weak convergence of con-

tinuous adapted stochastic processes, like the Skorohod-Dudley-Wichura

representation theorem (see Theorem 1.5), which we essentially speak-

ing used in Theorem 1.10. Using moment inequalities for martingale it

is shown that the sequence
�
Y ℓ

�
ℓPN converges weakly. By an application

of the Skorohod-Dudley-Wichura representation theorem we may assume

that, possibly after changing the filtered probability space that the sequence

Y ℓ converges almost surely to some random variable Y which is defined on

C
�r0,8q,Rd�. Then Y can be considered as a weak solution to the equation

in (1.126).

From the equalities in (1.128) it follows that

Y ℓptq � Y ℓpsq � » t
s

σℓ
�
τ, Y ℓpτq� dB1pτq � » t

s

bℓ
�
τ, Y ℓpτq� dτ, 0 ¤ s ¤ t.

(1.130)

So that we have��Y ℓptq � Y ℓpsq��2m¤ 22m

�����» t
s

σℓ
�
τ, Y ℓpτq� dB1pτq����2m � ����» t

s

bℓ
�
τ, Y ℓpτq� dτ ����2m�¤ 4m

�����» t
s

σℓ
�
τ, Y ℓpτq� dB1pτq����2m � pt� sq2m }b}2m8 �

. (1.131)

From the Burkholder-Davis-Gundy inequality (1.125) in Theorem 1.9 with

p � m and (1.131) we obtain

E

���Y ℓptq � Y ℓpsq��2m�¤ 22m

�
E

�����» t
s

σℓ
�
τ, Y ℓpτq� dB1pτq����2m�� pt� sq2m�

ḑ

i�1

}bi}28�m�
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��
ḑ

i�1

» t
s

aℓi,i
�
τ, Y ℓpτq� dτ�m�� 4mpt� sq2m�

ḑ

i�1

}bi}28�m¤ 4mpt� sqm�
dm�1Cm

�
ḑ

i�1

}ai,i}8�m � pt� sqm�
ḑ

i�1

}bi}28�m� .

(1.132)

Here, of course, aℓi,jps, yq � °d
k�1 σ

ℓ
i,kps, yqσℓj,kps, yq, and the covariation

process of the martingale (or more precise the martingale after time s) ³t
s
σℓ
�
τ, Y ℓpτq� dB1pτq : t ¥ s

(
is given by the matrix process:"�» t

s

aℓi,j
�
τ, Y ℓpτq� dτ
d

i,j�1

: t ¥ s

*
.

Hence we may apply Theorem 1.11 (with α � 4, β � 1, which corre-

sponds to m � 2) to infer that the sequence
 
Y ℓptq : t ¥ 0

(
, ℓ � 1, 2, . . .

satisfies conditions (a) and (b) of Theorem 1.10. From Theorem 1.10 it fol-

lows that there exists a probability space
�pΩ, pF , pP� together with processes pY nkptq : t ¥ 0

(
, k P N, and

 pY ptq : t ¥ 0
(
defined on this probability

space with the following properties:

(1) The finite-dimensional pP-distributions of the process
 pY nkptq : t ¥

0
(
coincides with the finite-dimensional P1-distributions of the processtY nkptq : t ¥ 0u for k � 1, 2, . . ..

(2) The sequence
 pY nkptq : t ¥ 0

(
kPN converges on compact subsets ofr0,8q to the process

 pY ptq : t ¥ 0
(
in the sense thatpP �pω P pΩ : lim

kÑ8 d�pY nk ppωq , pY ppωq	 � 0

� � 1.

Next let f be a bounded C2-function on Rd, let g be bounded continuous

functions defined on
�
Rd

�n
, and let 0 ¤ s1   s2   � � �   sn ¤ s   t. Then

we havepE ��
f
�pY ptq	� f

�pY psq	� » t
s

Lpτqf �pY pτq	 dτ
 g
�pY ps1q , . . . , pY psnq	�� lim

kÑ8 pE ��
f
�pY nkptq	� f

�pY nkpsq	� » t
s

Lpnkq
τ f

�pY nkpτq	 dτ
�g �pY nk ps1q , . . . , pY nk psnq	�
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(the finite-dimensional pP-distributions of the process pY nk coincide with

finite-dimensional P1-distributions of Y nk , k � 1, 2, . . ..)� lim
kÑ8E1 ��f pY nkptqq � f pY nkpsqq � » t

s

Lpnkq
τ f pY nkpτqq dτ
�g pY nk ps1q , . . . , Y nk psnqq�� 0. (1.133)

The final step in (1.133) follows because the process
 
Y ℓptq : t ¥ 0

(
satisfies

the stochastic differential equation in (1.128). From Theorem 1.3 we then

infer that the process

t ÞÑ f
�
Y ℓptq�� f

�
Y ℓp0q�� » t

0

Lℓpτqf �Y ℓpτq� dτ, t ¥ s,

is a martingale after time s. Here the operators L
pℓq
τ , ℓ P N, τ ¥ 0, are

defined by

Lℓpτqfpsq � 1

2

ḑ

i,j�1

aℓi,j ps, xq B2fBxjBxk pxq � ḑ

i�1

bℓj ps, xq BfBxi pxq. (1.134)

As a consequence of the above observations we see that the processes"
f
�pY ptq	� f

�pY p0q	� » t
0

Lpτqf �pY pτq	 dτ : t ¥ 0

*
, f P C2

b

�
Rd

�
,

(1.135)

are local pP-martingales. Finally, we define the probability P on the space

W � C
�r0,8q,Rd� by the equality

P rpX pt1q , . . . , X ptnqq P Bs � pP ��pY pt1q , . . . , pY ptnq	 P B� , (1.136)

where B is a Borel subset of
�
Rd

�n
, and where ¤ t1   t2   � � �   tn   8.

From the properties (1.135) and (1.136) it follows that the processes"
f pXptqq � f pXp0qq � » t

0

Lpτqf pXpτqq dτ : t ¥ 0

*
, f P C2

b

�
Rd

�
,

(1.137)

are local P-martingales, and the standard filtration on W . An application

of item (iii) in Theorem 1.3 then yields the desired result.

This completes an outline of the proof of Theorem 1.12. �
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1.2 Stochastic differential equations in the infinite-

dimensional setting

In order to have a strong motivation for writing the present book we need

the Hilbert space version of §1.1. In other words we need to prove the

results of §1.1 for cylindrical Brownian motion. These stochastic differential

equations are closely related to Partial Differential Equations (PSDE’s): see

e.g. [Cerrai (2001)], Seidler [Seidler (1997)], [Maslowski and Seidler (1998)],

[Goldys and van Neerven (2003)], [Goldys and Maslowski (2001)], [Da Prato

and Zabczyk (1992a, 1996)]. In this infinite-dimensional setting we put

Qpτ, tqfpxq � Eτ,x rf pXptqqs � E rf pXτ,xptqqs (1.138)

where Xptq is a unique weak solution to the equation (compare with (1.23))

Xptq � x� » t
τ

b ps,Xpsqq ds� » t
τ

σ ps,Xpsqq dWH psq, t ¥ τ. (1.139)

If we have unique strong solutions, then we usually write Xτ,xptq, t ¥ τ ,

instead of Xptq. This means in case we have unique weak solutions the

uniqueness is reflected in the measure Pτ,x, and if the paths are unique

the uniqueness is reflected in the path, and the measure is directly related

to cylindrical Brownian motion in the real Hilbert space H . In (1.139)

the process t ÞÑ WHptq stands for cylindrical Brownian motion in a given

Hilbert space pH, }�}Hq, which is also called the Cameron-Martin Hilbert

space. This Hilbert space is supposed to have a countable orthogonal basis.

Definition 1.4. Formally a cylindrical Brownian motion is a process of the

form WHptq � °8
j�1WH,jptqej , where the sequence pejqjPN is an orthonor-

mal basis in H , and where each process t ÞÑ WH,jptq is a one-dimensional

standard Brownian motion. The processes t ÞÑWH,j1ptq and t ÞÑWH,j2ptq,
j1 � j2, are P-independent.

The following result contains a Hilbert space version of Theorem 1.2. As

indicated above Theorem 1.2 is a d-dimensional version of Corollary 1.1,

which is Lévy’s theorem. The following theorem gives a characterization of

cylindrical Brownian motion. Its proof follows that of Theorem 1.2. Let E

be a Banach space and let E� its topological dual. In the sequel E-valued

process M will be called a (local) martingale if it is a (local) martingale in

the weak sense, i.e. if for every x� P E� the process t ÞÑ 〈Mptq, x�〉 is a

(local) martingale.
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Theorem 1.13. Let H be an Hilbert space with a complete orthonormal

system pejqjPN, and let the process t ÞÑMptq be an E-valued local martingale

with covariation process given by

〈〈Mp�q, x�〉 , 〈Mp�q, y�〉〉 ptq � » t
0

〈Φpsqx�, y�〉H ds, (1.140)

where x� and y� P E�, and s ÞÑ Φpsq is an adapted process which at-

tains its values in the cone of positive linear mappings from E� to E.

Let the operator valued adapted process χpsq : E Ñ H be such that

χpsqΦpsqχpsq� � IH . Put WHptq � ³t
0
χpsq dMpsq. This integral should

be interpreted in Itô sense. Then the process t ÞÑ WHptq is cylindrical

Brownian motion. Put Ψptq � Φptqχptq�, and suppose that Ψptqχptq � IE .

Then Mptq �Mp0q � ³t
0
Ψpsq dWHpsq.

A mapping Φ : E� Ñ E is called positive if 〈Φx�, x�〉 ¥ 0 for all x� P E�.
Proof. First we calculate the covariation (process) of the processes

t ÞÑ 〈WHptq, ej〉H and t ÞÑ 〈WHptq, ek〉H .
This covariation process is given by

〈〈» �
0

χpsqdMpsq, ej〉
H

,

〈» �
0

χpsqdMpsq, ej〉
H

〉 ptq� » t
0

〈Φpsqχpsq�ej , χpsq�ek〉 ds� » t
0

〈χpsqΦpsqχpsq�ej, ek〉 ds � tδj,k. (1.141)

The finite-dimensional version of Lévy’s theorem (see Theorem 1.2) then

shows that the process t ÞÑ WH ptq is cylindrical Brownian motion. In

addition we have» t
0

Ψpsq dWHpsq � » t
0

Φpsqχpsq�χpsq dMpsq � » t
0

dMpsq �Mptq �Mp0q.
(1.142)

This completes the proof of Theorem 1.13. �

The mapping ps, xq ÞÑ σps, xq is a mapping from the Hilbert space H to the

real separable Banach space pE, }�}Eq. The function ps, xq ÞÑ bps, xq attains
its values in E. Suppose that for every t P r0, T s the function x ÞÑ fpt, xq
is twice continuously differentiable. Then we put

Lptqfpt, xq � 〈bpt, xq, Dfpt, xq〉 � 1

2
Tr

�
σ pt, xq�D2fpt, xqσ pt, xq� . (1.143)
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Definition 1.5. Let f : E Ñ C be a function. The function f is called a

C1-function, if for every x, y P E the expression 〈y,Dfpxq〉 which is given

by

〈y,Dfpxq〉 � lim
sÑ0

f px� syq � fpxq
s

, x P E, (1.144)

exists and if the mapping px, yq ÞÑ 〈y,Dfpxq〉, px, yq P E�E, is continuous.

The derivative Dfpxq can be considered as an element of E�. The function
f is called a C2-function if for every triple px, y1, y2q P E�E �E the limit

〈

y1, D
2fpxqy2〉� lim

s,tÑ0

f px� sy1 � ty2q � f px� ty2q � f px� sy1q � fpxq
st

,

(1.145)

exists, and if the mapping px, y1, y2q ÞÑ 〈

y1, D
2fpxqy2〉, px, y1, y2q P E �

E � E, is continuous. If f : E Ñ C be a C2-function, then D2fpxq can

be interpreted as a mapping from E to E�. More precisely, the equality

in (1.145) defines such a mapping. For C2-functions f it makes sense to

write σps, xq�D2fpxqσps, xq. For ps, xq P r0, T s � E fixed, and f twice

continuously differentiable (at x), this mapping is a linear operator from H

to H .

A function f : E Ñ C is called a cylindrical function if there exists a

finite number of elements px�1 , . . . , x�nq P pE�qn and a function F : Cn Ñ C

such that

fpxq � F p〈x, x�1 〉 , . . . , 〈x, x�n〉q , x P E. (1.146)

If everywhere C is replaced with R, then f is called a real cylindrical func-

tion.

The derivatives in (1.144) and (1.145) are called Gâteaux derivatives of

the function f , because the derivatives are taken in the weak sense. As

notation we use f P C1pEq for C1-functions f defined on E, and f P C2pEq
for C2-functions f defined on E.

The following proposition is left as an exercise for the reader.

Proposition 1.2. Let f be a real cylindrical function as in (1.146). If the

function F is a C1-function defined on Rn, then f is a C1-function defined

on E, and

〈y,Dfpxq〉 � ņ

j�1

DjF p〈x, x�1 〉 , . . . , 〈x, x�n〉q 〈y, x�j 〉 , x, y P E. (1.147)
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Here DjF pξq � BF pξqBξj , ξ P Rn. If the function F is a C2-function defined

on Rn, then f given (1.146) is a C2-function defined on E, and

〈

y1, D
2fpxqy2〉 � ņ

k1,k2�1

Dk1Dk2F p〈x, x�1 〉 , . . . , 〈x, x�n〉q 〈y1, x�k1〉 〈y2, x�k2〉
(1.148)

where px, y1, y2q P E �E �E.

In Theorem 1.14 below we assume that the mappings σps, xq : H Ñ E are

invertible in the sense that their null spaces are t0u or that their ranges are
dense in E. Moreover, we assume that there exists a family of operators

χps, xq : E Ñ H and a complete orthonormal system pej : j P Nq in H such

that

〈σps, xq�χps, xq�ej1 , σps, xq�χps, xq�ej2〉H � δj1,j2 , j1, j2 P N. (1.149)

In addition, suppose that χps, xqy � 0, y P E, implies y � 0. From (1.149)

we see that

χps, xqσps, xqσps, xq�χps, xq� � IH . (1.150)

From (1.150) we get

χps, xqσps, xqσps, xq�χps, xq�χps, xq � χps, xq, (1.151)

and hence

σps, xqσps, xq�χps, xq�χps, xq � IE . (1.152)

From (1.152) we see that

σps, xqσps, xq�χps, xq�χps, xqσps, xq � σps, xq. (1.153)

Since the null space of σps, xq is t0u or its range is dense in E (1.153)

implies:

σps, xq�χps, xq�χps, xqσps, xq � IE . (1.154)

Instead of the equalities in (1.149) through (1.154) the only property of the

function χps, xq which is really required is the following:

σps, xq�χps, xq�χps, xqσps, xqσps, xq� � σps, xq�. (1.155)

In fact on the range of σ ps, xq we can construct the operator χps, xq as

follows. Let ERps, xq be the orthogonal projection on the closure of the

range of the operator σ ps, xq� and define χps, xqσps, xqh � ERps, xqh, h P
H . It is believed that this construction suffices to complete the proof of
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the implication (ii) ùñ (iii) in Theorem 1.14. The following theorem is the

infinite-dimensional analog of Theorem 1.3.

Theorem 1.14. Let pΩ,F ,Pq be a probability space with a right-continuous

filtration pFtqt¥τ . Let tXptq : t ¥ τu be an E-valued continuous adapted

process. Then the following assertions are equivalent:

(i) For every cylindrical function f P C2 pEq the process

t ÞÑ f pXptqq � f pXpτqq � » t
τ

Lpsqf pXpsqq ds (1.156)

is a local P-martingale.

(ii) For every x� P E� the process

t ÞÑ 〈Mptq, x�〉 :� 〈Xptq, x�〉� » t
τ

〈b ps,Xpsqq , x�〉 ds, t ¥ τ, (1.157)

is local martingale with covariation processes

t ÞÑ 〈〈M,x�〉 , 〈M, y�〉〉 ptq � » t
τ

〈

σ ps,Xpsqq� x�, σ ps,Xpsqq� y�〉
H
ds

(1.158)

where t ¥ τ , x�, y� P E�.
(iii) There exists a cylindrical Brownian motion tWH ptq : t ¥ τu on some

extension of the probability space pΩ,F ,Pq starting at 0 at time τ such

that

Xptq � Xpτq � » t
τ

b ps,Xpsqq ds� » t
0

σ ps,Xpsqq dWHpsq, t ¥ τ.

(1.159)

Proof. We will give a proof for τ � 0; the proof for general τ ¡ 0 is

exactly the same.

(i) ùñ (ii). Let x� P E�, and put fpxq � 〈x, x�〉, x P E. Then the

function f is linear, and so D2fpxq � 0. From (i) it follows that the process

t ÞÑ 〈Xptq, x�〉� » t
0

〈b ps,Xpsqq , x�〉 ds � f pXptqq � » t
0

Lpsqf pXpsqq ds
(1.160)

is a local martingale. Let x� and y� belong to E�. We will also show that

the process�
〈Xptq, x�〉� » t

0

〈b ps,Xpsqq , x�〉 ds
�
〈Xptq, y�〉� » t

0

〈b ps,Xpsqq , y�〉 ds
� » t
0

〈

σ ps,Xpsqq� x�, σ ps,Xpsqq� y�〉 ds (1.161)
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is a local martingale. Once it is proved that the process in (1.161) is a local

martingale, then assertion (ii) follows from semi-martingale theory.

So let us prove (1.161). Put fpxq � 〈x, x�〉 〈x, y�〉. Then we have

〈y,Dfpxq〉 � 〈y, x�〉 〈x, y�〉� 〈x, x�〉 〈y, y�〉 ,
〈

y,D2fpxqz〉 � 〈z, x�〉 〈y, y�〉� 〈y, x�〉 〈z, y�〉 ,
and

Tr
�
σ ps, xq�D2fpxqσ ps, xq� � 2

〈

σ ps, xq� x�, σ ps, xq� y�〉
H
. (1.162)

From the equalities in (1.162) we obtain the equality:

〈Xptq, x�〉 〈Xptq, y�〉� » t
0

〈

σ ps,Xpsqq� x�, σ ps,Xpsqq� y�〉
H
ds� » t

0

p〈b ps,Xpsqq , x�〉 〈Xpsq, y�〉� 〈Xpsq, x�〉 〈b ps,Xpsqq , y�〉q ds� f pXptqq � » t
0

Lpsqf pXpsqq ds. (1.163)

From assertion (i) it follows that the process in the right-hand side of (1.163)

is a local martingale. As a consequence the process in the left-hand side of

(1.163) is a local martingale as well. For brevity we write

Mx�psq � 〈

Xpsq � » s
0

b pτ,Xpτqq dτ, x�〉 ,
My�psq � 〈

Xpsq � » s
0

b pτ,Xpτqq dτ, y�〉
Mx�,y�psq� 〈Xpsq, x�〉 〈Xpsq, y�〉� » s

0

p〈b pτ,Xpτqq , x�〉 〈Xpτq, y�〉� 〈Xpτq, x�〉 〈b pτ,Xpτqq , y�〉q dτ� » s
0

〈

σ pτ,Xpτqq� x�, σ pτ,Xpτqq� y�〉
H
dτ. (1.164)

Then the processesMx� ,My� andMx�,y� are local martingales: see (1.160)

and (1.163). Moreover, a calculation shows that:

Mx�ptqMy�ptq � » t
0

〈

σ ps,Xpsqq� x�, σ ps,Xpsqq� y�〉
H
ds�Mx�,y�ptq � » t

0

〈b ps,Xpsqq , x�〉 �My�ptq �My�psq� ds
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0

pMx�ptq �Mx�psqq 〈b ps,Xpsqq , y�〉 ds. (1.165)

It is readily verified that the processes» t
0

〈b ps,Xpsqq , x�〉 �My�ptq �My�psq� ds and» t
0

pMx�ptq �Mx�psqq 〈b ps,Xpsqq , y�〉 ds (1.166)

are local martingales. It follows that the process in (1.161) is a local mar-

tingale. So that the covariation process
〈

Mx� ,My�〉 is given by

〈

Mx� ,My�〉 ptq � » t
0

〈

σ ps,Xpsqq� x�, σ ps,Xpsqq� y�〉
H
ds.

(ii) ùñ (iii). Let the family of operators χ ps,Xpsqq, s P r0, T s, be such

that
〈

σ ps,Xpsqq� χ ps,Xpsqq� ej1 , σ ps,Xpsqq� χ ps,Xpsqq� ej1〉H � δj1,j2 ,

(1.167)

j1, j2 P N. Here pej : j P Nq is a complete orthonormal system in H : com-

pare with (1.149). Put

WH ptq � » t
0

σ ps,Xpsqq� χ ps,Xpsqq� χ ps,Xpsqq dMpsq (1.168)

where Mpsq � Xpsq � ³s
0
b pτ,Xpτqq dτ . Then, employing (ii), the covaria-

tion process of the processes

t ÞÑ 〈WHptq, ej1〉H � » t
0

〈

dMpsq, χ ps,Xpsqq� χ ps,Xpsqqσ ps,Xpsqq ej1〉
and

t ÞÑ 〈WHptq, ej2〉H � » t
0

〈

dMpsq, χ ps,Xpsqq� χ ps,Xpsqqσ ps,Xpsqq ej2〉
(1.169)

is given by
〈

〈WHp�q, ej1 〉H , 〈WHp�q, ej2 〉H〉 ptq� » t
0

〈

σ ps,Xpsqq� χ ps,Xpsqq� χ ps,Xpsqqσ ps,Xpsqq ej1 ,
σ ps,Xpsqq� χ ps,Xpsqq� χ ps,Xpsqqσ ps,Xpsqq ej2〉H ds� tδj1,j2 . (1.170)
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Here, as elsewhere, δj1,j2 � 1 when j1 � j2, and 0 otherwise. In the final

equality in (1.170) we employed (1.154). From Lévy’s theorem and (1.170)

it follows that the process t ÞÑWHptq is a cylindrical Brownian motion: see

Theorem 1.13. In addition, from (1.168) in combination with (1.152) we

infer:» t
0

σ ps,Xpsqq dWHpsq� » t
0

σ ps,Xpsqqσ ps,Xpsqq� χ ps,Xpsqq� χ ps,Xpsqq dMpsq� » t
0

dMpsq �Mptq �Mp0q � Xptq �Xp0q � » t
0

b ps,Xpsqq ds. (1.171)

The equality in (1.171) completes the proof of the implication (ii) ùñ (iii)

in case the identities in (1.149) through (1.154) are assumed. If χps, xq,
s ¥ τ , only satisfies the equality in (1.155), then we proceed as follows.

As in the proof of the implication (ii) ùñ (iii) of Theorem 1.3 we take the

standard extension
�pΩ, pF , pP	 of the probability space pΩ,F ,Pq. On this

extension we take a cylindrical Brownian motion tW 1
Hptq : t ¥ τu which ispP-independent of the local martingale Mptq, t ¥ τ . Then instead of the

definition of (1.168) we take

WHptq � » t
0

σ ps,Xpsqq� χ ps,Xpsqq� χ ps,Xpsqq dMpsq (1.172)� » t
0

�
I � σ ps,Xpsqq� χ ps,Xpsqq� χ ps,Xpsqqσ ps,Xpsqq� dW 1

H psq,
(1.173)

whereMpsq � Xpsq�³s
0
b pτ,Xpτqq dτ . From (1.155) we also infer by taking

adjoints that

σps, xqσps, xq�χps, xq�χps, xqσps, xq � σps, xq. (1.174)

We will show that the process tWH ptq : t ¥ 0u is a cylindrical Brownian

motion and that Mptq � ³t
0
σ ps,Xpsqq dWHpsq. For brevity we write

σpsq � σ ps,Xpsqq, χpsq � χ ps,Xpsqq, ERpsq � σ psq� χ psq� χ psqσ psq,
and EN psq � I � ERpsq. Then σpsqEN psq � 0, and ERpsqσpsq� � σpsq�.
We begin by proving that tWHptq : t ¥ 0u is a cylindrical Brownian mo-

tion. We will invoke Theorem 1.1 to establish this result. Let ej1 and ej2
be two orthogonal vectors in the Hilbert space H . Then we have
〈

〈WH p�q, ej1〉H , 〈WHp�q, ej2 〉H〉 ptq
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0

〈dMpsq, χpsq�χpsqσpsqej1 〉 , » �
0

〈dMpsq, χpsq�χpsqσpsqej2 〉〉 ptq�〈» �
0

〈dMpsq, χpsq�χpsqσpsqej1 〉 ,» �
0

〈

dW 1
Hpsq, pI � σpsq�χpsq�χpsqσpsqq ej2〉〉 ptq�〈» �

0

〈dMpsq, χpsq�χpsqσpsqej2 〉 ,» �
0

〈

dW 1
Hpsq, pI � σpsq�χpsq�χpsqσpsqq ej1〉〉 ptq�〈» �

0

〈

dW 1
Hpsq, pI � σpsq�χpsq�χpsqσpsqq ej1〉 ,» �

0

〈

dW 1
Hpsq, pI � σpsq�χpsq�χpsqσpsqq ej2〉〉 ptq

(employ the properties of M as set out in Assertion (ii); moreover, M and

WH are pP-independent)� » t
0

〈σpsq�χpsq�χpsqσpsqej1 , σpsq�χpsq�χpsqσpsqej2 〉H ds� » t
0

〈pI � σpsq�χpsq�χpsqσpsqq ej1 , pI � σpsq�χpsq�χpsqσpsqq ej2〉H ds� » t
0

〈ERpsqej1 , ERpsqej2〉H ds� » t
0

〈EN psqej1 , EN psqej2 〉H ds

(the operators ERpsq and EN psq are orthogonal projections in the Hilbert

space H)� » t
0

〈ERpsqej1 , ej2〉H ds� » t
0

〈EN psqej1 , ej2〉H ds

(the identity ERpsq �EN psq � I holds)� » t
0

〈ej1 , ej2〉H ds � tδj1,j2 . (1.175)

From Theorem 1.1 it follows that the process tWH ptq : t ¥ 0u is cylindrical
Brownian motion. In addition, we have

Mptq � » t
0

σpsq dWH psq
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0

σpsqσpsq�χpsq�χpsq dMpsq� » t
0

σpsq pI � σpsq�χpsq�χpsqσpsqq dW 1
Hpsq� » t

0

pI � σpsqσpsq�χpsq�χpsqq dMpsq. (1.176)

In order to prove that the local martingale in (1.176) is zero we calculate

its covariation process. Let x� and y� be members of E�. Then we have
〈〈» �

0

pI � σpsqσpsq�χpsq�χpsqq dMpsq, x�〉 ,
〈» �

0

pI � σpsqσpsq�χpsq�χpsqq dMpsq, y�〉〉 ptq� 〈» �
0

〈dMpsq, pI � χpsq�χpsqσpsqσpsq�qx�〉 ,» �
0

〈dMpsq, pI � χpsq�χpsqσpsqσpsq�q y�〉〉 ptq� » t
0

〈σpsq� pI � χpsq�χpsqσpsqσpsq�qx�,
σpsq� pI � χpsq�χpsqσpsqσpsq�q y�〉H ds� » t

0

〈pI � σpsq�χpsq�χpsqσpsqq σpsq�x�,pI � σpsq�χpsq�χpsqσpsqq σpsq�y�〉H ds� » t
0

〈EN psqσpsq�x�, EN psqσpsq�y�〉H ds � 0. (1.177)

In the final equality of (1.177) we used the identity

EN psqσpsq� � pI �ERpsqq σpsq� � 0.

From (1.177) we infer that the covariation of the local martingale Mptq �³t
0
σpsq dWH psq vanishes. Consequently, Mptq � ³t

0
σpsq dWH psq � 0. This

shows the implication (ii) ùñ (iii) of Theorem 1.14.

(iii) ùñ (i). Let f : E Ñ C be a C2-function. From Itô’s formula (see

equality (1.196) in Proposition 1.3 below with Cpt, τq � I and Aptq � 0),

and assertion (iii), we get

f pXptqq � f pXp0qq � » t
0

Lpsqf pXpsqq ds
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0

〈Df pXpsqq , dXpsq〉� 1

2

» t
0

Tr
�
σ ps,Xpsqq�D2f pXpsqqσ ps,Xpsqq� ds� » t

0

Lpsqf pXpsqq ds� » t
0

〈b ps,Xpsqq , Df pXpsqq〉 ds� » t
0

〈σ ps,Xpsqq dWHpsq, Df pXpsqq〉� 1

2

» t
0

Tr
�
σ ps,Xpsqq�D2f pXpsqqσ ps,Xpsqq� ds� » t

0

Lpsqf pXpsqq ds� » t
0

〈σ ps,Xpsqq dWH psq, Df pXpsqq〉 . (1.178)

The stochastic integral in (1.178) represents a local martingale. This proves

the implication (iii) ùñ (i).

All this completes the proof of Theorem 1.14. �

The following definition is the infinite-dimensional analog of Definition 1.2.

Definition 1.6. The equation in (1.180) in Corollary 1.6 is said to have

unique weak solutions, also called unique distributional solutions, provided

that the finite-dimensional distributions of the process Xptq which satisfy

(1.180) do not depend on the particular cylindrical Brownian motionWHptq
which occurs in (1.180). This is the case if and only if for any pair of

cylindrical Brownian motionstpWH ptq : t ¥ 0q , pΩ,F ,Pqu and
 pWH1ptq : t ¥ 0q , �Ω1,F 1,P1�(

and any pair of adapted processes tXptq : t ¥ 0u and tX 1ptq : t ¥ 0u for

which

Xptq � x� » t
0

σ ps,Xpsqq dWH psq � » t
0

b ps,Xpsqq ds and

X 1ptq � x� » t
0

σ
�
s,X 1psq� dWH1 psq � » t

0

b
�
s,X 1psq� ds

it follows that the finite-dimensional distributions of the processtXptq : t ¥ 0u relative to P coincide with the finite-dimensional distribu-

tions of the process tX 1ptq : t ¥ 0u relative to P1.
The following corollary easily follows from Theorem 1.14. It is an infinite-

dimensional analog of Corollary 1.2. In the infinite-dimensional setting it

establishes a close relationship between unique weak solutions to stochastic

differential equations and unique solutions to the martingale problem. The

result serves as one of the main motivations to write the present book.
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Corollary 1.6. Let the notation and hypotheses be as in Theorem 1.14.

In particular, suppose that (1.155) is satisfied. Put Ω � C pr0,8q, Eq, and
Xptqpωq � ωptq, t ¥ 0, ω P Ω. Fix x P E. Then the following assertions

are equivalent:

(i) There exists a unique probability measure P on F such that

P rXpτq � xs � 1, and the process

f pXptqq � f pXpτqq � » t
τ

Lpsqf pXpsqq ds (1.179)

is a local P-martingale for all cylindrical C2-functions f .

(ii) The stochastic integral equation

Xptq � x� » t
τ

σ ps,Xpsqq dWH psq � » t
τ

b ps,Xpsqq ds (1.180)

has unique weak solutions.

In the infinite-dimensional setting we have the following version of Gir-

sanov’s theorem. Let pE, }�}q be a Banach space, and let pH, }�}Hq be a

separable Hilbert space and let WH ptq, 0 ¤ t ¤ T , be a cylindrical Brow-

nian motion in H . Let ps, yq ÞÑ bps, yq be an E-valued weakly continuous

function on r0, T s � E, ps, yq ÞÑ cps, yq be an H-valued weakly continu-

ous function on r0, T s � E, and let ps, yq ÞÑ σ ps, yq be an L pH,Eq-valued
function which is continuous for the weak operator topology, i.e. for every

z P H , and x� P E� the function ps, yq ÞÑ 〈σ ps, yq z, x�〉 is a continuous as

a function from r0, T s�E to R. The symbol L pH,Eq denotes the space of

all continuous linear operators from H to E. The function ps, yq ÞÑ c1ps, yq
attains its values in E�, it is such that cps, yq � σ ps, yq� cps, yq, and such

that the function ps, yq ÞÑ 〈x, c1ps, yq〉 is continuous for every x P E.

Theorem 1.15. Fix T ¡ 0, and let the functions

bps, yq, σps, yq, cps, yq, and c1ps, yq, 0 ¤ s ¤ T,

be weakly continuous vector or matrix functions such that

cps, yq � σ ps, yq� c1ps, yq, 0 ¤ s ¤ T, y P E.
Suppose that the equation

Xptq � x� » t
0

σ ps,Xpsqq dWH psq � » t
0

b ps,Xpsqq ds, t P r0, T s, (1.181)

possesses unique weak solutions on the interval r0, T s: compare with (1.36).
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Uniqueness. Let weak solutions to the following stochastic differential

equation exist (compare with (1.37)):

Y ptq � x� » t
0

σ ps,Xpsqq dWHpsq � » t
0

σ ps, Y psqq c ps, Y psqq ds� » t
0

b ps,Xpsqq ds, (1.182)

t P r0, T s. Then they are unique in the sense as explained next. In fact,

let the couple pY psq,WH psqq, 0 ¤ s ¤ t, be a solution to the equation in

(1.182) with the property that the local martingale M 1ptq given by

M 1ptq � exp

�� » t
0

c ps, Y psqq dWH psq � 1

2

» t
0

}c ps, Y psqq}2H ds



. (1.183)

satisfies E rM 1ptqs � 1. Then the finite-dimensional distributions of the

process Y psq, 0 ¤ s ¤ t, are given by the Girsanov or Cameron-Martin

transform:

E rf pY pt1q , . . . , Y ptnqqs � E rMptqf pX pt1q , . . . , X ptnqqs , (1.184)

t ¥ tn ¡ � � � ¡ t1 ¥ 0, where f : En Ñ R is an arbitrary bounded Borel

measurable function. The (local) martingale Mpsq is given by

Mpsq � exp

�» s
0

c pτ,Xpτqq dWH psq � 1

2

» t
0

}c pτ,Xpτqq}2H dτ



. (1.185)

If equation (1.182) has a solution such that E rM 1ptqs � 1, then necessarily

E rMptqs � 1, and so s ÞÑMpsq is a martingale on the interval r0, ts.
Existence. Conversely, let the process s ÞÑ pXpsq,WH psqq be a solution

to the equation in (1.181). Suppose that the local martingale s ÞÑ Mpsq,
defined as in (1.185) is a martingale, i.e. suppose that E rMptqs � 1. Then

there exists a couple
�rY psq,�WH psq	, 0 ¤ s ¤ t, where s ÞÑ �WH psq, 0 ¤

s ¤ t, is a cylindrical Brownian motion on a probability space
�rΩ, rF , rP	

such thatrY psq � x� » s
0

σ
�
τ, rY psq	 d�WHpsq � » s

0

σ
�
τ, rY psq	 c�τ, rY pτq	 dτ� » s

0

b
�
τ, rY psq	 dτ, (1.186)

and such thatrE �
exp

�� » t
0

c
�
s, rY psq	 d�WH psq � 1

2

» t
0

���c�s, rY psq	���2
H
ds


� � 1.

(1.187)
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The proof of Theorem 1.15 can be patterned after the proof of Theorem

1.4; it will be left as an exercise for the reader.

The following result should be compared with the equalities in (5.55).

The definition in (1.188) is the same as the one in (1.138). The operatorrLpsq is the same as the one in (1.143).

Theorem 1.16. Suppose that equation in (1.180) possesses unique weak

solutions. Put

Qpτ, tqϕpxq � Eτ,x rϕ pXptqqs , ϕ P CbpEq, (1.188)

where the expectation Eτ,x corresponds to the measure P � Pτ,x obtained

in item (i) of Corollary 1.6. Define the operators rLpsq, s P r0, T s, as the

pointwise limitsrLpsqϕpxq � lim
tÓs Qps, tqϕpxq � ϕpxq

t� s
, s P r0, T s, x P E, (1.189)

and suppose that ϕ P CbpEq is chosen in such a way that the functionps, xq ÞÑ rLpsqϕpxq is continuous. Then the following equalities hold:BBsQps, tqϕpxq � �rLpsqQ ps, tqϕpxq, and BBtQps, tqϕpxq � Q ps, tq rLptqϕpxq.
(1.190)

In the first equality (1.190) it is assumed that the function ϕ is chosen

in such a way that the pointwise derivative with respect to s exists. In

the second equality it is assumed that the function pρ, yq ÞÑ rLpρqϕpyq is

bounded and continuous. In fact the operator rLpsq is a linear extension of

the operator Lpsq depicted in (1.143).

Proof. Suppose 0   s   t   T , and taking h ¡ 0 small enough. Using

the propagator property of the family tQps, tq : 0 ¤ s ¤ t ¤ T u yields the

equalities

Qps� h, tqϕ�Qps, tqϕ�h � Qps� h, sq � I�h Qps, tqϕ and

Qps, t� hqϕ�Qps, tqϕ
h

� Qps, tqQpt, t� hq � I

h
ϕ. (1.191)

By the assumptions on the function ϕ the equalities in (1.190) follow. Next

let ϕ be such that the process

ϕ pXptqq � ϕ pXpsqq � » t
s

Lpsqf pXpρqq dρ (1.192)

is a Ps,x-martingale. Then by taking Ps,x-expectations in (1.192) we get

Qps, tqϕpxq � ϕpxq � » t
s

Qps, ρqLpρqϕpxq dρ. (1.193)



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Introduction: Stochastic differential equations 59

From (1.193) we see that rLpsq extends Lpsq.
This completes the proof of Theorem 1.16. �

Again we can discuss solutions to E-valued stochastic differential equations:

dXptq � AptqXptq dt�σ pt,Xptqq dWHptq�b pt,Xptqq dt, Xpτq � x, t ¥ τ.

(1.194)

In (1.194) the family of operators tAptq : 0 ¤ t ¤ T u generates a forward

propagator tC pt, τq : 0 ¤ τ ¤ t ¤ T u
in the Banach space E. This means that Cpt, sqCps, τq � Cpt, τq, Cpt, tq �
I, and

Aptqx � lim
hÓ0 Cpt� h, tqx� Cpt, tqx

h
, x P DpLptqq.

Then the integrated version of (1.194) reads as follows:

Xτ,xptq � Cpt, τqx � » t
τ

C pt, ρqσ pρ,Xτ,xpρqq dWH pρq� » t
τ

Cpt, ρqb pρ,Xτ,xpρqq dρ. (1.195)

Next we formulate and prove a version of Itô’s formula in the infinite-

dimensional setting. For related notions and results see e.g. [Krylov and

Rozovskii (2007)].

Proposition 1.3. Let the function f be such that for every ps, xq P rτ, T s�
E the operator σps, xq�Cpt, sq�D2fpxqCpt, sqσps, xq is a trace class operator

for all t P rs, T s. Let the process Xτ,xptq be a solution to (1.195). Then the

following equality holds P-almost surely:

f pXτ,xptqq � fpxq� » t
τ

〈dXτ,xpρq, Df pXτ,xpρqq〉 (1.196)� 1

2

» t
τ

Tr
�
σ pρ,Xτ,xpρqq� Cpt, ρq�D2f pXτ,xpρqqCpt, ρqσ pρ,Xτ,xpρqq� dρ� » t

τ

〈ApρqXτ,xpρq � b pρ,Xτ,xpρqq , Df pXτ,xpρqq〉 dρ� » t
τ

〈σ pρ,Xτ,xpρqq dWHpρq, Df pXτ,xpρqq〉� 1

2

» t
τ

Tr
�
σ pρ,Xτ,xpρqq� Cpt, ρq�D2f pXτ,xpρqqCpt, ρqσ pρ,Xτ,xpρqq� dρ.
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Proof. By a general approximation argument it suffices to take f : E Ñ
R of the form fpxq � F p〈x, x�1 〉 , . . . , 〈x, x�n〉q, x P E, x�1 , . . . , x�n P E�. Then
we have

〈y,Dfpxq〉 � ņ

j�1

DjF p〈x, x�1 〉 , . . . , 〈x, x�n〉q 〈y, x�j 〉 , and

〈

y1, D
2fpxqy2〉 � ņ

k1,k2�1

Dk1Dk2F p〈x, x�1 〉 , . . . , 〈x, x�n〉q 〈y1, x�k1〉 〈y2, x�k2〉
(1.197)

where y, y1, y2 P E. Let pejqjPN be an orthonormal basis in H . From

(1.197) we infer:

Tr
�
σ ps, xq� Cpt, sq�D2fpxqCpt, sqσ ps, xq�� 8̧
j�1

〈

Cpt, sqσ ps, xq ej , D2fpxqCpt, sqσ ps, xq ej〉� 8̧
j�1

8̧
k1,k2�1

Dk1Dk2F p〈x, x�1 〉 , . . . , 〈x, x�n〉q� 〈

Cpt, sqσ ps, xq ej , x�k1〉 〈Cpt, sqσ ps, xq ej, x�k2〉� 8̧
k1,k2�1

Dk1Dk2F p〈x, x�1 〉 , . . . , 〈x, x�n〉q� 〈

σ ps, xq� Cpt, sq�x�k1 , σ ps, xq� Cpt, sq�x�k2〉H . (1.198)

From the finite-dimensional Itô formula we obtain:

f pXτ,xptqq � fpxq� » t
τ

ņ

j�1

d
〈

Xτ,xpρq, x�j 〉DjF p〈Xτ,xpρq, x�1 〉 , . . . , 〈Xτ,xpρq, x�n〉q� 1

2

ņ

k1,k2�1

» t
τ

Dk1Dk2F p〈Xτ,xpρq, x�1 〉 , . . . , 〈Xτ,xpρq, x�n〉q
d
〈〈

Xτ,xp�q, x�k1〉 , 〈Xτ,xp�q, x�k2〉〉 pρq� » t
τ

ņ

j�1

〈

ApρqXτ,xpρq, x�j 〉DjF p〈Xτ,xpρq, x�1 〉 , . . . , 〈Xτ,xpρq, x�n〉q dρ� » t
τ

ņ

j�1

〈

b pρ,Xτ,xpρqq , x�j 〉DjF p〈Xτ,xpρq, x�1 〉 , . . . , 〈Xτ,xpρq, x�n〉q dρ
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2

ņ

k1,k2�1

» t
τ

Dk1Dk2F p〈Xτ,xpρq, x�1 〉 , . . . , 〈Xτ,xpρq, x�n〉q
d

〈〈» �
τ

Cpt, sqσ ps,Xτ,xpsqq dWHpsq, x�k1〉 ,
〈» �

τ

Cpt, sqσ ps,Xτ,xpsqq dWH psq, x�k2〉〉 pρq� » t
τ

ņ

j�1

〈

σ pρ,Xτ,xpρqq dWH pρq, x�j 〉
DjF p〈Xτ,xpρq, x�1 〉 , . . . , 〈Xτ,xpρq, x�n〉q

(employ Assertion (ii) in Theorem 1.14)� » t
τ

ņ

j�1

〈

ApρqXτ,xpρq, x�j 〉DjF p〈Xτ,xpρq, x�1 〉 , . . . , 〈Xτ,xpρq, x�n〉q dρ� » t
τ

ņ

j�1

〈

b pρ,Xτ,xpρqq , x�j 〉DjF p〈Xτ,xpρq, x�1 〉 , . . . , 〈Xτ,xpρq, x�n〉q dρ� 1

2

ņ

k1,k2�1

» t
τ

Dk1Dk2F p〈Xτ,xpρq, x�1 〉 , . . . , 〈Xτ,xpρq, x�n〉q
〈

σ pρ,Xτ,xpρqq� Cpt, ρq�x�k1 , σ pρ,Xτ,xpρqq� Cpt, ρq�x�k2〉H dρ� » t
τ

ņ

j�1

〈

σ pρ,Xτ,xpρqq dWH pρq, x�j 〉
DjF p〈Xτ,xpρq, x�1 〉 , . . . , 〈Xτ,xpρq, x�n〉q

(apply the equalities in (1.197) and (1.198))� » t
τ

〈ApρqXτ,xpρq, Df pXτ,xpρqq〉 dρ� » t
τ

〈b pρ,Xτ,xpρqq , Df pXτ,xpρqq〉 dρ� 1

2

» t
τ

Tr
�
σ pρ,Xτ,xpρqq� Cpt, ρq�D2f pXτ,xpρqqCpt, ρqσ pρ,Xτ,xpρqq� dρ� » t

τ

〈σ pρ,Xτ,xpρqq dWHpρq, Df pXτ,xpρqq〉 . (1.199)

The equality in (1.199) coincides with (1.196) in Proposition 1.3 in case

fpxq � F p〈x, x�1 〉 , . . . , 〈x, x�n〉q, x P E, x�1 , . . . , x�n P E�. Here F is a C2-

function defined on Rn. An approximation argument then completes the

proof of Proposition 1.3. �
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Define the operators Lptq, t P r0, T s, by
Lptqfpxq � 〈bpt, xq, Dfpxq〉 � 1

2
Tr

�
σpt, xq�D2fpxqσpt, xq� , f P C2

b pEq.
(1.200)

The following result is a consequence of Proposition 1.3.

Proposition 1.4. Let the function pt, xq ÞÑ fpt, xq be such that t ÞÑ fpt, xq
is once differentiable for all x P E, and that x ÞÑ fpt, xq belongs to C2

b pEq
for all t P r0, T s. This time derivative is denoted by D1f pt, xq. Put

upt, xq � E rf pt,Xτ,xptqqs .
Then the following identity holds:

D1upt, xq � E rD1f pt,Xτ,xptqqs � E rLptqf pt,Xτ,xptqqs (1.201)� E r〈AptqXτ,xptq, Df pt,Xτ,xptqq〉s� 1

2
E
�
Tr

�
σ pt,Xτ,xptqq� Aptq�D2f pt,Xτ,xptqqσ pt,Xτ,xptqq��� 1

2
E
�
Tr

�
σ pt,Xτ,xptqq�D2f pt,Xτ,xptqqAptqσ pt,Xτ,xptqq�� .

In the following result we introduce a certain backward propagator starting

from a propagator on the Banach space E. In the finite-dimensional case a

statement like Proposition 1.5 can be found in Lemma 8.3: formula (8.116)

in Subsection 8.3.1 is the finite-dimensional analog of (1.202) below.

Proposition 1.5. Let tCpt, τq : 0 ¤ τ ¤ t ¤ T u be a forward propagator

on E. Let Spt, τq : H Ñ E, 0 ¤ τ   t ¤ T , be a family operators with the

following property

Cpt, sqSps, τqSps, τq�Cpt, sq� � Spt, sqSpt, sq� � Spt, τqSpt, τq�, (1.202)

for all 0 ¤ τ ¤ s ¤ t ¤ T . Let t ÞÑWHptq be cylindrical Brownian motion,

and put for 0 ¤ τ ¤ t ¤ T

Y pτ, tq fpxq � E rf pCpt, τqx � Spt, τqWH p1qqs , f P CbpEq. (1.203)

Then Y pτ, sqY ps, tq � Y pτ, tq for all 0 ¤ τ ¤ s ¤ t ¤ T .

Let σpρq, 0 ¤ ρ ¤ T , be a family of operators from H to E, and let the

family tS pt, τq : 0 ¤ τ ¤ t ¤ T u be such that, for 0 ¤ τ ¤ t ¤ T , and

x� P E�,
Spt, τqSpt, τq�x� � » t

τ

Cpt, ρqσpρqσpρq�Cpt, ρq�x�dρ. (1.204)
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Then the family tS pt, τq : 0 ¤ τ ¤ t ¤ T u possesses property (1.202) and

Y pτ, tqfpxq � E

�
f

�
Cpt, τqx � » t

τ

Cpt, ρqσpρqdWH pρq
� ,
and so the process t ÞÑ Cpt, τqx � ³t

τ
Cpt, ρqσpρqdWH pρq can be considered

as an E-valued Ornstein-Uhlenbeck process.

Proof. [Proof of Proposition 1.5.] Let f P CbpEq, and 0 ¤ τ ¤ s ¤ t ¤ T .

In addition let �
Ω1,F1

t ,P
1
�
,W 1

H ptq( and
 �
Ω2,F2

t ,P
2
�
,W 2

Hptq(
be independent copies of cylindrical Brownian motion. Then we have

Y pτ, sqY ps, tqfpxq� E1
�
Y ps, tqf �Cps, τqx � Sps, τqW 1

H p1q��� E1
�
E2

�
f
�
Cpt, sq �Cps, τqx � Sps, τqW 1

H p1q�� Spt, sqW 2
H p1q���� E1

�
E2

�
f
�
Cpt, sqCps, τqx � Cpt, sqSps, τqW 1

H p1q � Spt, sqW 2
Hp1q���� E1

�
E2

�
f
�
Cpt, τqx � Cpt, sqSps, τqW 1

H p1q � Spt, sqW 2
H p1q��� . (1.205)

By general arguments, like the use of (Fourier transforms of) cylindrical

measures and the separability of the space E it suffices to prove the equality

Y pτ, sqY ps, tqfpxq � E rf pCpt, τqx � Spt, τqWH p1qqs (1.206)

for functions f of the form fpxq � e�i〈x,x�〉, x� P E. For more details on

cylindrical measures on topological vector spaces see e.g. [Schwartz (1973)]

part II. For such a function f we have

Y pτ, sqY ps, tqfpxq� exp p�i 〈Cpt, τqx, x�〉q
E1

�
E2

�
exp

��i 〈Cpt, sqSps, τqW 1
H p1q, x�〉� exp ��i 〈Spt, sqW 2

Hp1q, x�〉���� exp p�i 〈Cpt, τqx, x�〉q
E1

�
exp

��i 〈Cpt, sqSps, τqW 1
H p1q, x�〉��E2

�
exp

��i 〈Spt, sqW 2
Hp1q, x�〉��� exp p�i 〈Cpt, τqx, x�〉q

exp

��1

2
}Sps, τq�Cpt, sq�x�}H
 exp

��1

2
}Spt, sq�x�}H
� exp p�i 〈Cpt, τqx, x�〉q

exp

��1

2
〈Cpt, sqSps, τqSps, τq�Cpt, sq�x�, x�〉H


exp

��1

2
〈Spt, sqSpt, sq�x�, x�〉H
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(employ (1.202))� exp p�i 〈Cpt, τqx, x�〉q exp��1

2
〈Spt, τqSpt, τq�x�, x�〉H
� exp p�i 〈Cpt, τqx, x�〉q exp��1

2
}Spt, τq�x�}2H
� exp p�i 〈Cpt, τqx, x�〉qE rexp p�i 〈Spt, τqWH p1q, x�〉qs� E rf pCpt, τqx � Spt, τqWH p1qqs � Y pτ, tq fpxq. (1.207)

This completes the proof of Proposition 1.5. �

Next, let pejqjPN be an orthonormal basis for the Hilbert space H , and ρ ÞÑ
σpρq, ρ P rτ, ts, be an LpH,Eq-valued process such that for every j P N the

mapping ρ ÞÑ σpρqej is strongly measurable and adapted to the filtration

determined by the cylindrical Brownian motion ρ ÞÑ WH pρq, τ ¤ ρ ¤ t.

In Lemma 1.4 just below the variables WH,jpρq stand for independent one-

dimensional Brownian motions; in fact WH,jpρq � 〈WHpρq, ej〉H .

Lemma 1.4. Fix 0 ¤ τ ¤ t ¤ T , and suppose that for every x� P E� the

inequality holds:

E

�» t
τ

}σpρq�Cpt, ρq�x�}2H dρ

�   8. (1.208)

Then for every x� P E� the L2-limit

L2- lim
NÑ8 Ņ

j�1

» t
τ

〈Cpt, ρqσpρqej , x�〉 dWH,jpρq� L2- lim
NÑ8 Ņ

j�1

» t
τ

〈ej , σpρq�Cpt, ρq�x�〉H dWH,jpρq (1.209)

defines an element in L2 pΩ,Fτ
t ,Pq, and P-almost surely this limit defines

an element in E��. This limit is written as
³t
τ
Cpt, ρqσpρqdWH pρq. In other

words
〈

x�, » t
τ

Cpt, ρqσpρqdWhpρq〉� L2- lim
NÑ8 Ņ

j�1

» t
τ

〈ej , σpρq�Cpt, ρq�x�〉H dWH,jpρq. (1.210)

Moreover, the mapping

x� ÞÑ E

�» t
τ

Cpt, ρqσpρqσpρq�Cpt, ρq�x�dρ� , x� P E�, (1.211)
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is a continuous linear mapping from E� to E, and the following equality

holds for all x�, y� P E�:
E

�〈
x�, » t

τ

Cpt, ρqσpρq dWH pρq〉〈

y�, » t
τ

Cpt, ρqσpρq dWH pρq〉�� E

�» t
τ

〈σpρq�Cpt, ρq�x�, σpρq�Cpt, ρq�y�〉H dρ�� 〈

E

�» t
τ

Cpt, ρqσpρqσpρq�Cpt, ρq�x�dρ� , y�〉 . (1.212)

Let F P L2 pΩ,Fτ
t ,Pq. Then the functional

x� ÞÑ E

�
F

〈

x�, » t
τ

Cpt, ρqσpρq dWH pρq〉� (1.213)

is sequentially continuous for the weak�-topology. In other words the map-

ping

A ÞÑ E

�
1A

» t
τ

Cpt, ρqσpρq dWH pρq� , A P Fτ
t , (1.214)

can be considered as an E-valued vector measure which is absolutely con-

tinuous relative to the measure P.

Some conditions which guarantee that the stochastic integral» t
τ

Cpt, ρqσpρqdWH pρq
belongs to E P-almost surely are inserted.

(a) If the Banach space E has the weak L2-Radon-Nikodym property rela-

tive to the probability space pΩ,Fτ
t ,Pq, then the stochastic integral» t

τ

Cpt, ρqσpρqdWH pρq,
which is the weak L2-Radon-Nikodym derivative of the vector measure

in (1.214), belongs to E P-almost surely.

(b) If for every x��� P E��� and every A P Fτ
t the equality

E

�
1A

〈» t
τ

Cpt, ρqσpρqdWH pρq, x���〉�� 〈

E

�
1A

» t
τ

Cpt, ρqσpρqdWH pρq� , x���〉 (1.215)

holds, then the stochastic integral
³t
τ
Cpt, ρqσpρqdWH pρq belongs to E

P-almost surely.
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(c) If the stochastic integral
³t
τ
Cpt, ρqσpρqdWH pρq is P-almost surely con-

tained in a }�}-separable subspace of E��, then it belongs E P-almost

surely.

If the stochastic integral
³t
τ
Cpt, ρqσpρqdWH pρq belongs to E P-almost

surely, and if for every vector h P H and x� P E� the function ρ ÞÑ
〈Cpt, ρqσpρqh, x�〉 is continuous, then it belongs to the }�}-closure of the

subset$&%���1A ³t
τ
Cpt, ρqσpρq dWH pρq���

PrAs 1A : A P Fτ
t , PrAs � 0

,.- . (1.216)

In the final assertion the weak operator continuity condition on the op-

erators Cpt, ρqσpρq, τ ¤ ρ ¤ t, can be relaxed. A somewhat more re-

fined argument yields the following result. Suppose that the stochas-

tic integral
³t
τ
Cpt, ρqσpρqdWH pρq belongs to a separable subspace of E,

and suppose that for every h P H and x� P E� the process ρ ÞÑ
〈Cpt, ρqσpρqh, x�〉 is predictable. Then

³t
τ
Cpt, ρqσpρqdWH pρq belongs to

the closure of the family in (1.216). This means that the variable ps, ωq ÞÑ
〈Cpt, sqσpsqh, x�〉 is measurable relative to σ-field generated by the settpa, bs �A : τ ¤ a   b ¤ t, A P Fτ

a u.
Definition 1.7. A closed, bounded and convex subset C of E is said to have

the WRNP (weak Radon-Nikodym property, or weak L1-Radon-Nikodym

property) with respect to pΩ,Fτ
t ,Pq if for every measure G : Fτ

t Ñ E such

that GpAq P PpAq �C for every A P Fτ
t , there exists a Pettis integrable and

Fτ
t -measurable function g : ΩÑ C such that

〈GpAq, x�〉 � E r1A 〈g, x�〉s (1.217)

for each A P Fτ
t and x� P E�. We say that the set C has the WRNP

if C has this property with respect to every probability space pΩ,F ,Pq.
Such a set C is called a weak Radon-Nikodym set. A Banach space E is

said to have the WRNP (resp. WRNP with respect to pΩ,Fτ
t ,Pq) if the

unit ball of E is a weak Radon-Nikodym set (resp. has the WRNP with

respect to pΩ,Fτ
t ,Pq). The space E is said to have the weak Lp-Radon-

Nikodym property, 1 ¤ p   8, with respect to pΩ,Fτ
t ,Pq if for every

measure G : Fτ
t Ñ E such that

��³
Ω
F dG

�� ¤ }F }Lp for all F P Lp pΩ,Fτ
t ,Pq

there exists a Pettis integrable and Fτ
t -measurable function g : ΩÑ E such

that

〈GpAq, x�〉 � E r1A 〈g, x�〉s (1.218)
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for each A P Fτ
t and x� P E�. Such a function g has the property that

E r|〈g, x�〉|qs ¤ }x�}q for all x� P E�. The P-almost surely E-valued func-

tion g is called the weak, or Pettis, Lp-derivative of the measure G. Here q

is the conjugate exponent of p: q�1 � p�1 � 1. If p � 2, then q � 2.

For the Radon-Nikodym theorem and related topics from a historical per-

spective see e.g. [Pietsch (2007)].

Let g : Ω Ñ C be a random variable such that for every x� P E� the

variable 〈g, x�〉 is Fτ
t -measurable. Then g is said to be Pettis-integrable

if for every A P Fτ
t there exists an element xA P E such that 〈xA, x�〉 �

E r1A 〈g, x�〉s for all x� P E�.
For more details on the weak Radon-Nikodym property see e.g. [Riddle

(1984)], [Matsuda (1985)], or [Farmaki (1995)]. For more details on Pettis

integrability see e.g. [Diestel and Uhl (1977)].

Proof. [Proof of Lemma 1.4.] First we calculate

E

������� Ņ
j�1

» t
τ

〈Cpt, ρqσpρqej , x�〉H dWH,jpρq�����2��� E

������� Ņ
j�1

» t
τ

〈ej , σpρq�Cpt, ρq�x�〉H dWH,jpρq�����2��� Ņ

j�1

E

�» t
τ

��〈ej , σpρq�Cpt, ρq�x�〉H ��2 dρ�� E

�» t
τ

Ņ

j�1

��〈ej , σpρq�Cpt, ρq�x�〉H ��2 dρ�¤ E

�» t
τ

8̧
j�1

��〈ej , σpρq�Cpt, ρq�x�〉H ��2 dρ�� E

�» t
τ

}σpρq�Cpt, ρq�x�}2H dρ� . (1.219)

Since the ultimate term in (1.212) is finite, it easily follows that the L2-limit

(1.209) exists. Next observe that x�n Ñ x� in pE�, }�}q, and
〈

x�n, » t
τ

Cpt, ρqσpρq dWH pρq〉Ñ F in L2 pΩ,Fτ
t ,Pq
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implies F � 〈

x�, ³t
τ
Cpt, ρqσpρq dWH pρq〉. Hence, by the closed graph the-

orem we see that there exists a constant c such that

E

�����〈x�, » t
τ

Cpt, ρqσpρqdWH pρq〉����2�� E

�» t
τ

}σpρq�Cpt, ρq�x�}2H dρ� ¤ c2 }x�}2 . (1.220)

The proof of (1.212) can be patterned after the proof of equality (1.219).

The fact that the mapping in (1.211) is E-valued can be proved by em-

ploying the Krein-Smulian theorem, or the Grothendieck completeness the-

orem. Fix x� P E�. By separability of the subspace of E spanned by

Cpt, ρqσpρqσpρq�Cpt, ρq�x�, τ ¤ ρ ¤ t, together with Grothendieck’s com-

pleteness theorem it suffices to prove that

lim
nÑ8〈

E

�» t
τ

Cpt, ρqσpρqσpρq�Cpt, ρq�x�dρ� , x�n〉� lim
nÑ8E

�»
τ,t

〈Cpt, ρqσpρqσpρq�Cpt, ρq�x�, x�n〉 dρ�� 0 (1.221)

whenever px�nqnPN is a sequence in the unit ball of E� which converges

weak� to the zero-functional. The conclusion in (1.221) then follows from

Lebesgue’s dominated convergence theorem.

We continue by proving (1.213). First we do this for F of the form

F � Tx� :� 〈

x�, ³t
τ
Cpt, ρqσpρq dWH pρq〉, x� P E�. Let px�nqnPN be a se-

quence in the unit ball of E� which converges weak� to the zero-functional.

Notice that by the Banach-Steinhaus theorem any sequence in E� which

converges weakly is bounded; without loss of generality we assume that

such a sequence is contained in the dual unit ball. Then we have

E

�
F

〈

x�n, » t
τ

Cpt, ρqσpρqdWH pρq〉�� E

�〈
x�, » t

τ

Cpt, ρqσpρqdWH pρq〉 〈

x�n, » t
τ

Cpt, ρqσpρqdWH pρq〉�� E

�» t
τ

〈Cpt, ρqσpρqσpρq�Cpt, ρq�x�, x�n〉 dρ� . (1.222)

By dominated convergence the expression in (1.222) converges to zero when

n tends to 8. Let F belong to L1, which by definition is the L2-closure of

the subspace"
Tx� � 〈

x�, » t
τ

Cpt, ρqσpρq dWH pρq〉 : x� P E�* .
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Then an approximation argument shows the equality in (1.213) for such

variables F . Finally, if F P L2 pΩ,Fτ
t ,Pq we decompose F � F1 � F2,

where F1 P L1, and F2 P LK1 . Then we see

lim
nÑ8E rFTx�ns � lim

nÑ8E rF1Tx
�
ns � 0.

This proves (1.213). Next we show that mapping G : Fτ
t Ñ E, defined by

GpAq � E

�
1A

³t
τ
Cpt, ρqσpρq dWH pρq� is an E-valued measure: see (1.214).

To this end we take a sequence pAnqnPN in Fτ
t which decreases to the empty

set. Then we have to prove that limnÑ8 }G pAnq} � 0. Then for x� P E�,}x�} ¤ 1, we estimate����〈E

�
1An

» t
τ

Cpt, ρqσpρq dWH pρq� , x�〉����2� ����E �
1An

〈» t
τ

Cpt, ρqσpρq dWH pρq, x�〉�����2¤ P rAnsE�����〈» t
τ

Cpt, ρqσpρq dWH pρq, x�〉����2�� P rAnsE �» t
τ

}σpρq�Cpt, ρq�x�}2H dρ� ¤ c2P rAns }x�}2 . (1.223)

In the final estimate of (1.223) we employed (1.220). By the Hahn-Banach

theorem and (1.223) we see that limnÑ8 }G pAnq} � 0, which shows that

the set function in (1.214) is an E-valued measure.

Next we prove the Assertions (a), (b) and (c).

(a). Since for every x� P E� the variable
〈³t
τ
Cpt, ρqσpρqdWH pρq, x�〉

is the Radon-Nikodym derivative of the measure A ÞÑ 〈GpAq, x�〉 the weak

L2-Radon-Nikodym property implies that the stochastic integral» t
τ

Cpt, ρqσpρqdWH pρq
belongs to E P-almost surely.

(b). We already know that the set function in (1.214) is an E-valued

measure. Pick x��� P E���. From the classical Radon-

Nikodym theorem it follows that P-almost surely the random variable
〈³t
τ
Cpt, ρqσpρqdWH pρq, x���〉 can be written as a limit of quotients of the

form

E

�
1A

〈³t
τ
Cpt, ρqσpρqdWH pρq, x���〉�

PrAs
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E

�
1A

³t
τ
Cpt, ρqσpρqdWH pρq� , x���〉

PrAs .

A P Fτ
t , P rAs � 0. From this observation we see that the stochastic integral» t

τ

Cpt, ρqσpρqdWH pρq,
which P-almost surely is a member of E��, in fact belongs P-almost surely

to the weak-closure, i.e. the σ pE��, E���q-closure, of the collection of

vectors of the form

E

�
1A

³t
τ
Cpt, ρqσpρqdWH pρq�

PrAs 1A, A P Fτ
t . (1.224)

By Mazur’s theorem in functional analysis it follows that P-almost surely

the stochastic integral » t
τ

Cpt, ρqσpρqdWH pρq
belongs to the }�}-closed convex hull of vectors of the form (1.224). Since

the vectors in (1.224) belong to E, it follows that the stochastic integral³t
τ
Cpt, ρqσpρqdWH pρq is a member of E P-almost surely.

(c). Let
�
Ω1,F 1,τ

t ,P1� be an independent copy of pΩ,Fτ
t ,Pq. Since

the stochastic integral
³t
τ
Cpt, ρqσpρqdWH pρq is P-almost surely contained

in }�}-separable subspace of E�� we can find a double sequence of

events Am,k, m, k P N, with the following properties: P rAm,ks � 0,

P
��8

m�1

�8
k�1 Am,k

� � 1, and����1Am,k
pωq » t

τ

Cpt, ρqσpρq dWH pρq pωq�1Am,k

�
ω1� » t

τ

Cpt, ρqσpρqσpρq dWH pρq �ω1����� ¤ 2�m, (1.225)

P � P1-almost surely. For brevity we temporarily employ the following

notation:

M8 � » t
τ

Cpt, ρqσpρq dWH pρq.
Then (1.225) reads as follows:��1Am,k

pωqM8pωq � 1Am,k

�
ω1�M8 �

ω1��� ¤ 2�m, P� P1-almost surely.

(1.226)
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Next we consider ω0 P �8
m�1Am,km , and write

E
�
1Am,km

M8�
P rAm,kms 1Am,km

�
ω1��M8 pω0q� E

�
1Am,km

 
1Am,km

M8 � 1Am,km
pω1qM8 pω1q(�

P rAm,km s 1Am,km

�
ω1�� 1Am,km

�
ω1�M8 �

ω1�� 1Am,km
pω0qM8 pω0q . (1.227)

From (1.226) and (1.227) we infer�����E �
1Am,km

M8�
P rAm,kms 1Am,km

�
ω1��M8 pω0q�����¤ E

�
1Am,km

��1Am,km
M8 � 1Am,km

pω1qM8 pω1q���
P rAm,km s 1Am,km

�
ω1�� ��1Am,km

�
ω1�M8 �

ω1�� 1Am,km
pω0qM8 pω0q��¤ 2�m1Am,km

�
ω1�� 2�m ¤ 2�m�1. (1.228)

Consequently, M8 P E P-almost surely.

Finally, suppose that M8 � ³t
τ
Cpt, ρqσpρq dWH pρq belongs to E P-

almost surely. Let pxkqkPN be an enumeration of random vectors of the

form 8̧
n,N�1

αn,N

2n

ℓ̧�1

Ņ

j�1

C pt, ρℓ,nq σ pρℓ,nq ej pWH,j pρℓ�1,nq �WH,j pρℓ,nqq ,
(1.229)

where ρℓ,n � τ � ℓ2�npt � τq, and the αn,N ’s are non-negative rational

numbers such that
°8
n,N�1 αn,N � 1 and such that only finitely many of

them are non-zero. From the definition of the stochastic integral M8 :�³t
τ
Cpt, ρqσpρqdWH pρq it follows that M8 belongs to the weak closure (i.e.

σ pE,E�q-closure) of the family in (1.229). But then M8 belongs to the}�}-closure of the sequence pxkqkPN. Define the events Am,k, m, k P N, by

Am,k �  }M8 � xk}   2�m�1
(
. Then P

��8
m�1

�8
k�1Am,k

� � 1. Define

the E-valued martingale Mm8 , m P N, by Mm8 � E
�
M8 �� Πm� where Πm is

the σ-field generated by tAm,k : k P Nu. As in the proof of assertion (c) of

this Lemma it follows that M8 � }�} - limmÑ8Mm8 .

All this together completes the proof of Lemma 1.4. �

Lemma 1.5. PutM8 � ³t
τ
Cpt, ρqσpρq dWH pρq Let y� be the weak� limit of

a necessarily bounded sequence py�nqnPN. Then the following equality holds:

P

�
〈M8, y�〉 ¤ lim sup

nÑ8 〈M8, y�n〉   8� � 1. (1.230)
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Proof. From (1.213) we see that the sequence t〈M8, y�n〉 : n P Nu con-

verges in the L2-weak sense to 〈M8, y�〉. From Mazur’s theorem it follows

that for an appropriate sequence of convex combinations x�n � °8
j�n αj,ny�j

we have 〈M8, y�〉 � L2- limnÑ8 〈M8, x�n〉. By passing to a subsequence we

have that 〈M8, y�〉 � limkÑ8 〈

M8, x�nk

〉

, P-almost surely. Since αj,n ¥ 0

and sum to 1 we see 〈M8, y�〉 ¤ lim supnÑ8 〈M8, y�n〉 P-almost surely.

This completes the proof of Lemma 1.5. �

Theorem 1.17. The stochastic integral
³t
τ
Cpt, ρqσpρq dWH pρq attains its

values in E P-almost surely if and only if there exists an P-almost sure

event Ω1 such that the following inequalities

0 ¤ lim sup
nÑ8 〈» t

τ

Cpt, ρqσpρq dWH pρq, y�n〉   8 (1.231)

hold on Ω1 for all sequences py�nqnPN in E� which converge in weak�-sense
to 0.

The point here is that the event Ω1 does not depend on the weak�-
convergent sequence py�nqnPN: compare with Lemma 1.5. Observe that the

arguments of the proof of Theorem 1.17, which is given below, also occur

on page 268 (Chapter 5 of Part II) in [Schwartz (1973)]. In addition, notice

that the following construction gives the corresponding cylindrical measure

µ �  
µE{F : F � E, codimpF q   8(

on E.

For a closed linear subspace F with codimpF q � n choose an in-

dependent subset consisting of n elements in E� such that F ��n
j�1

 
x P E :

〈

x, x�j 〉 � 0
(
, and define the mapping rπx�

1
,...,x�n : E{F Ñ Rn

by rπx�
1
,...,x�n px� F q � p〈x, x�1 〉 , . . . , 〈x, x�n〉q , x P E.

The measure µE{F on the Borel field of E{F is determined by

µE{F pB � F q � P

�p〈M8, x�1 〉 , . . . , 〈M8, x�1 〉q P rπx�
1
,...,x�n pB � F q� .

(1.232)

Here B � F is a Borel subset of E{F . Then it can be checked that µ is a

cylindrical measure indeed. The variable M8 is given by e.g.

M8 � » t
τ

Cpt, ρqσpρq dWH pρq.
Of course the variable M8 could be replaced with any other variable Y P
L2
weak pΩ,Fτ

t ,Pq. For the definition of this space the reader is referred to

Definition 1.8 below.
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Notice that the stochastic integral attains its values in E�� P-almost

surely if and only if there exists an P-almost sure event Ω1 such that the

following inequality

lim sup
nÑ8 〈» t

τ

Cpt, ρqσpρq dWH pρq, y�n〉   8 (1.233)

holds on Ω1 for all y� P E� and all sequences py�nqnPN in E� which converge

in weak�-sense to y�. This result is a consequence of the Banach-Alaoglu

theorem, and the separability of E.

The following theorem in functional analysis can be proved along the

same lines as Theorem 1.17. The theorem of Krein-Smulian (see Theorem

6.4 Corollary in [Schaefer (1971)]), or Grothendieck (see Corollary 2 to

Theorem 6.2 in [Schaefer (1971)]) plays a dominant role in the proof of

Theorem 1.18. By definition a sequence px�nqnPN � E� belongs to c0 pN, E�q
if limnÑ8 〈x, x�n〉 � 0 for every x P E.

Theorem 1.18. Let E be a separable Banach space, and let f : E� Ñ R

be a linear functional. Then the following assertions are equivalent:

(a) There exists x P E such that f px�q � 〈x, x�〉 for all x� P E�;
(b) For every sequence px�nqnPN P c0 pN, E�q the following inequalities hold:

0 ¤ sup
nPN f px�nq   8.

(c) For every sequence px�nqnPN P c0 pN, E�q the following inequalities hold:

0 ¤ lim sup
nÑ8 f px�nq   8.

Proof. [Proof of Theorem 1.18.] (a) ùñ (b). A sequence in c0 pN, E�q is
norm-bounded in E�; this is a consequence of e.g. the Banach-Steinhaus

theorem. It is also a consequence of a Baire-category argument applied to

the dual unit ball. Hence assertion (b) follows from (a).

(b) ùñ (c). Let px�nqnPN be any sequence in c0 pN, E�q. Thenpx�k qkPN,k¥n is a sequence in c0 pN, E�q, and so, by (b), 0 ¤ sup
k¥n f px�k q   8,

from which assertion (c) readily follows.

(c) ùñ (a). In this implication we will employ the Krein-Smulian theo-

rem, or Grothendieck’s completeness result. So suppose that (c) holds, and

let py�nqnPN be any sequence in E� which converges to in weak�-sense to

y� P E�. By (c) we see 0 ¤ lim supnÑ8 f py�n � y�q   8, and hence

f py�q ¤ lim sup
nÑ8 f py�nq   8. (1.234)
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From (1.234) it follows that for every M P N and every α P R the subsettx� P E� : }x�} ¤M, f px�q ¤ αu (1.235)

is sequentially weak�-closed. Since E is separable, and the set in (1.235)

is equi-continuous, it follows that sets of the form (1.235) are weak�-
closed, not just sequentially weak�-closed. From Krein-Smulian’s theorem

it follows that for every α P R the half-space tx� P E� : f px�q ¤ αu is

weak�-closed. It then follows that the hyper-plane tx� P E� : f px�q � 0u
is weak�-closed. Consequently, there exists a vector x P E such that

f px�q � 〈x, x�〉, x� P E�.
We can also use Grothendieck’s theorem. Then we proceed as follows.

Instead of considering a set of the form (1.235) we look at the subset HM,α

defined by

HM,α � tx� P E� : }x�} ¤M, f px�q � αu . (1.236)

Then the set in (1.236) is sequentially weak�-closed. Let px�nqnPN be a

sequence in HM,α which converges to x� P E� in weak�-sense. Then, by

(c),

f px�q ¤ lim sup
nÑ8 f px�nq � lim sup

nÑ8 α � α. (1.237)

Applying the same argument to the sequence p�x�nqnPN which converges in

weak�-sense to �x� shows f p�x�q ¤ �α. This in combination with (1.237)

yields f px�q � α, and consequently the subset HM,α is sequentially weak�-
closed. Since the space is separable and the set HM,α is equi-continuous

it follows that HM,α is weak�-closed. Grothendieck’s theorem then im-

plies that the hyper-plane tx� P E� : f px�q � αu is weak�-closed. Again

it follows that there exists x P E such that f px�q � 〈x, x�〉, x� P E�.
This completes the proof of Theorem 1.18. �

Proof. [Proof of Theorem 1.17.] Put M8 � ³t
τ
Cpt, ρqσpρq dWH pρq. If

M8 P E P-almost surely, then we have equality in (1.231) on the event

Ω1 � tM8 P Eu.
Next we prove that the stochastic integral

³s
τ
Cps, ρqσpρq dWH pρq attains

its values in E P-almost surely provided that (1.231) is satisfied. The scalar

L2-space L2 pΩ,Fτ
t ,Pq is separable, and so is its subspace L1 which by

definition is the L2-closure of tTx� : x� P E�u. So there exists a countable

family
�
x�j �jPN in the closed unit ball of E� such that the linear span of the

countable family
�
Tx�j �jPN is dense in L1. Since E is separable, and T is

sequentially continuous relative to the weak�-topology on E� and the weak
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topology in L2 pΩ,Fτ
s ,Pq, we may assume additionally that the sequence�

x�j �jPN is dense in the dual unit ball. Then by the theorems of Krein-

Smulian (see Theorem 6.4 Corollary in [Schaefer (1971)]) and Grothendieck

(see Corollary 2 to Theorem 6.2 in [Schaefer (1971)]) we obtain the following

equality of events:tM8 P Eu� ttx� P E�, }x�} ¤M, 〈M8, x�〉 ¤ αu
is sequentially weak�-closed for all M ¥ 0 and α P R

(
(1.238)� "

〈M8, y�〉 ¤ lim sup
nÑ8 〈M8, y�n〉   8 whenever y�n Ñ y� weak�*

(1.239)� "
0 ¤ lim sup

nÑ8 〈M8, y�n〉   8 whenever y�n Ñ 0 weak�* (1.240)� ttx� P E�, }x�} ¤M, 〈M8, x�〉 � αu
is sequentially weak�-closed for all M ¥ 0 and α P R

(
(1.241)� ttx� P E�, }x�} ¤M, 〈M8, x�〉 � αu

is weak�-closed for all M ¥ 0 and α P R
(
. (1.242)

The equality of the event tM8 P Eu and the one in (1.238) is a consequence

of Krein-Smulian’s theorem, and in proving the equality of the events in

(1.238) and (1.239) the fact is used that weak�-bounded subsets are norm-

bounded, and that the space E is separable. A consequence of the latter is

that the dual unit ball is a compact metric space. Therefore the inclusion

of the event in (1.238) in the one in (1.239) can be seen as follows. Letpy�nqnPN be a sequence in E� which converges in weak�-sense to y� P E�.
Fix α P R, and consider the event"

lim sup
nÑ8 〈M8, y�n〉 ¤ α

*
.

Then supnPN }y�n} ¤M   8, and on the event in (1.238) we have"
lim sup
nÑ8 〈M8, y�n〉 ¤ α

* � t〈M8, y�〉 ¤ αu . (1.243)

Since α P R is arbitrary, from (1.243) we see that

〈M8, y�〉 ¤ lim sup
nÑ8 〈M8, y�n〉   8,

and hence the event in (1.238) is contained in the one (1.239). Again

let py�nqnPN be a, necessarily bounded, sequence in E� which converges in
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weak�-sense to y� P E�. Then consider the event£
nPN t〈M8, y�n〉 � αu � £

nPN t〈M8,�y�n〉 � �αu .
On the intersection of this event and the one in (1.239) we have

〈M8, y�〉 ¤ lim sup
nÑ8 〈M8, y�n〉 � α, and also

〈M8,�y�〉 ¤ lim sup
nÑ8 〈M8,�y�n〉 � �α, (1.244)

and hence 〈M8, y�〉 � α. From (1.244) we then easily infer that the event in

(1.239) is contained in the fifth one, i.e. the event in (1.241). The equality

of the events in (1.239) and in (1.240) follows by taking y�n � y� instead

of y�n. The equalities of the events (1.241) and (1.242) is a consequence

of the separability of the space E. That the event in (1.242) is contained

in the event tM8 P Eu is a consequence of Grothendieck’s theorem. By

hypothesis we know that the event in (1.240) contains the P-almost sure

event Ω1. By the equalities of the event tM8   8u and the one in (1.240)

this shows that the event tM8 P Eu is P-almost sure.

This concludes the proof of Theorem 1.17. �

In the following theorem we give some alternative formulations for condi-

tions which guarantee that M8 P E�� P-almost surely.

Theorem 1.19. Let M8 � ³t
τ
Cpt, ρqσpρq dWH pρq be a stochastic integral:

see Theorem 1.17. Suppose that the dual space endowed with the norm

topology is separable. The following assertions are equivalent:

(i) M8 belongs to E�� P-almost surely.

(ii) For every sequence py�nqnPN in E� for which }y�n} � 1 the following

inequality holds:

sup
nPN |〈M8, y�n〉|   8, P-almost surely. (1.245)

Moreover, if (i) or (ii) is satisfied, then there exists a sequence py�nqnPN in

E� for which }y�n} � 1 such that }M8} � sup t|〈M8, y�n〉| : n P Nu P-almost

surely.

Note that in assertion (ii) the exceptional set may depend on the sequencepy�nqnPN.
Proof. The implication (i) ùñ (ii) being trivial we only need to prove

(ii) ùñ (i). Therefore, let B�� be the closed unit ball of E��, and F �
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E�� a linear subspace of E�� which is σ pE��, E�q-closed and of finite co-

dimension. The latter means that F is of the form

F �  
x�� P E�� :

〈

x�j , x��〉 � 0, 1 ¤ j ¤ n
(
.

For R ¡ 0 we consider the probability of events of the formtM8 P RB � F u. Choose a sequence
�
x�j �jPN such that8£

j�1

 
x�� P E�� :

〈

x�j , x��〉 � 0
( � t0u ,

and put Fn � �n
j�1

 
x�� P E�� :

〈

x�j , x��〉 � 0
(
. Then we have£

nPN tM8 P RB�� � Fnu � tM8 P RB��u , (1.246)

and hence

P rM8 P RB��s � inf
nPNP rM8 P RB�� � Fns� inf

nPNP��sup$&%〈

M8,°n
j�1 αjx

�
j

〉���°n
j�1 αjx

�
j

��� , αj P Q, 1 ¤ j ¤ n

,.- ¤ R

�� . (1.247)

Let py�nqnPN be an enumeration of the countable family:$&% °n
j�1 αjx

�
j���°n

j�1 αjx
�
j

��� : αj P Q, 1 ¤ j ¤ n, n P N

,.- . (1.248)

Then from (1.247) and (1.248) we infer:

P rM8 P RB��s � P

�
sup
nPN 〈M8, y�n〉 ¤ R

�
. (1.249)

Notice that the sequence py�nqnPN does not depend on the choice of R ¡ 0.

As a consequence we see that }M8} � sup t|〈M8, y�n〉| : n P Nu P-almost

surely.

This completes the proof of Theorem 1.19. �

Theorem 1.20. Suppose that the stochastic integral

M8 � » t
τ

Cpt, ρqσpρq dWH pρq
belongs to E�� P-almost surely: see Theorems 1.17 and 1.19. Suppose

that E� is separable for the norm-topology. The following assertions are

equivalent:
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(i) M8 belongs to E P-almost surely.

(ii) For every ε ¡ 0 the following equality holds:

sup
nPN inf

Λ �  
y� P E�, }y�} ¤ 1, d py�, 0q   n�1

(
Λ finite

P

�
max
y�PΛ |〈M8, y�〉|   ε

� � 1.

(1.250)

Here d denotes a metric on E� which turns the dual unit ball B� into a

compact metric space. An appropriate metric d is given by

d px�, y�q � 8̧
k�1

2�k |〈xk, x� � y�〉|
where the linear span of the sequence pxkqkPN is dense in E, and where}xk} � 1, k P N.

Proof. [Proof of Theorem 1.20.] Since the dual space is separable for the

norm-topology, and M8 P E�� P-almost surely, the equality in (1.250) can

be rewritten as:

sup
nPN P����� sup

Λ �  
y� P E�, }y�} ¤ 1, d py�, 0q   n�1

(
Λ finite

max
y�PΛ |〈M8, y�〉|   ε

������ sup
nPN P� supty�PE�, }y�}¤1, dpy�,0q n�1u |〈M8, y�〉|   ε

� � 1. (1.251)

From (1.251) we see that assertion (ii) is equivalent to the equality:

P

�
inf
nPN supty�PE�, }y�}¤1, dpy�,0q n�1u |〈M8, y�〉| � 0

� � 1. (1.252)

If assertion (i) holds, then M8 P E P-almost surely. Then the equal-

ity in (1.252) holds automatically, because a sequence py�nqnPN con-

verges for the weak�-topology to 0 if and only if limnÑ8 d py�n, 0q � 0.

For the converse implication we invoke Theorem 1.17. If py�nqnPN is

a sequence in the dual unit ball which converges to 0 for the weak�-
topology, then limnÑ8 d py�n, 0q � 0. By equality (1.252) it follows that

limnÑ8 〈M8, y�n〉 � 0 P-almost surely, where the exceptional set does not

depend on the specific sequence py�nqnPN. An appeal to Theorem 1.17 then

guarantees that M8 P E P-almost surely.

This completes the proof of Theorem 1.20. �
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For a concise formulation of some of the following results we introduce the

space L2
weak pΩ,Fτ

t ,Pq in the following definition. In such a space solutions

to stochastic differential equations of the form (1.272) ought to be found.

Definition 1.8. For s P rτ, ts the space L2
weak pΩ,Fτ

s ,Pq is defined as fol-

lows. An element Y psq belongs to the vector space L2
weak pΩ,Fτ

s ,Pq if it has
the following properties.

(i) Y psq : E� Ñ R is P-almost surely linear; we write 〈Y psq, x�〉 for this
action.

(ii) For every x� P E� the variable 〈Y psq, x�〉 is Fτ
s -measurable, and it

belongs to L2 pΩ,Fτ
s ,Pq.

(iii) The supremum}Y psq}2L2

weak

:� sup
!
E

�|〈Y psq, x�〉|2� : x� P E�, }x�} ¤ 1
)

is finite; equipped with the norm }Y psq}L2

weak

the space L2
weak pΩ,Fτ

s ,Pq
is a Banach space.

Proposition 1.6. Let Fτ,n
s , τ ¤ s ¤ t, be the σ-field generated bypWH,jpρq : τ ¤ ρ ¤ s, 1 ¤ j ¤ nq .

Let the sequence of L2
weak pΩ,Fτ

t ,Pq-valued random variables pMnqnPN be

defined by the requirement that for all x� P E� the following equality holds

P-almost surely:

〈Mn, x
�〉 � ņ

j�1

» t
τ

E
�
〈Cpt, ρqσpρqej , x�〉 �� Fτ,n

ρ

�
dWH,jpρq. (1.253)

Suppose that for all j P N and x� P E� the process s ÞÑ 〈Cpt, sqσpsqej , x�〉,
τ ¤ s ¤ t, is adapted to the filtration Fτ

s � σ pWH,jpρq : τ ¤ ρ ¤ s, j P Nq.
Then with M0 � 0 the following equality holds for all x� P E�:8̧

n�1

E

�|〈Mn �Mn�1, x
�〉|2� � E

�» t
τ

}σpρq�Cpt, ρq�x�}2H dρ� . (1.254)

From (1.254) it follows that for every x� P E� the L2-limit 〈M8, x�〉 �
L2- limnÑ8 〈Mn, x

�〉 exists, and that for every F P L2 pΩ,Fτ
t ,Pq the vector

E rFM8s can be considered as E-valued. The vector M8 P L2
weak pΩ,Fτ

t ,Pq
can be written as the stochastic integral:

M8 � » t
τ

Cpt, ρqσpρq dWH pρq � 8̧
j�1

» t
τ

Cpt, ρqσpρqej dWH,jpρq. (1.255)
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Moreover, if

sup
x�PE�, }x�}¤1

8̧
n�1

|〈Mn �Mn�1, x
�〉|2   8, P-almost surely, (1.256)

then the stochastic integral
³t
τ
Cpt, ρqσpρq dWH pρq belongs to E�� P-almost

surely. If, in addition, the conditional stochastic integrals

E

�» t
τ

Cpt, ρqσpρqej dWH,jpρq �� Fτ,n
t

�
, 1 ¤ j ¤ n, n P N, (1.257)

belong to E, then so does the stochastic integral
³t
τ
Cpt, ρqσpρq dWH pρq.

Similar results are true if the L2
weak pΩ,Fτ

t ,Pq-valued martingale n ÞÑ Mn

is replaced by L2
weak pΩ,Fτ

t ,Pq-valued process n ÞÑ �Mn where�Mn � ņ

j�1

» t
τ

Cpt, ρqσpρqej dWH,jpρq.
In particular, with �M0 � 0 the following equality holds for all x� P E�:8̧
n�1

E

����〈�Mn � �Mn�1, x
�〉���2� � E

�» t
τ

}σpρq�Cpt, ρq�x�}2H dρ� . (1.258)

The following lemma gives a sufficient condition in order that M8 P E

P-almost surely.

Lemma 1.6. Put ϕN pρq � τ � t� τ

2N

Z pρ� τq2N
t� τ

^
, and suppose that

lim
NÑ8E

������M8 � Ņ

j�1

» t
τ

C pt, ϕN pρqq σ pϕN pρqq dWH,jpρq������ � 0. (1.259)

Then the vector M8 belongs to E P-almost surely.

Proof. By a standard result from integration theory there exists a sub-

sequence such that

lim
kÑ8 �����M8 � Nķ

j�1

» t
τ

C pt, ϕNk
pρqq σ pϕNk

pρqq dWH,jpρq����� � 0, P-almost surely.

(1.260)

By definition of the functions ϕN pρq and the definition of stochastic integral,

we see that the integrals
³t
τ
C pt, ϕN pρqqσ pϕN pρqq dWH,jpρq belong to E.

The equality in (1.260) shows that M8 P E P-almost surely. �
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In fact, we conjecture that if the functional p : E� Ñ r0,8q defined by

p px�q � E

�» t
τ

}σpρq�Cpt, ρq�x�}2H dρ

�
(1.261)

is sequentially continuous when E� is endowed with the weak�-topology,
then the stochastic integral

³t
τ
Cpt, ρqσpρq dWH pρq belongs to E P-almost

surely.

Proof. [Proof of Proposition 1.6.] The equality in (1.253) is a conse-

quence of the following string of equalities, which are self-explanatory:

〈Mn, x
�〉 � ņ

j�1

» t
τ

E
�
〈Cpt, ρqσpρqej , x�〉 �� Fτ,n

ρ

�
dWH,jpρq� ņ

j�1

» t
τ

E
�
〈Cpt, ρqσpρqej , x�〉 �� Fτ,n

t

�
dWH,jpρq� ņ

j�1

» t
τ

E
�
〈Cpt, ρqσpρqej , x�〉 dWH,jpρq �� Fτ,n

t

�� 8̧
j�1

» t
τ

E
�
〈Cpt, ρqσpρqej , x�〉 dWH,jpρq �� Fτ,n

t

�� E

�〈» t
τ

Cpt, ρqσpρq dWH pρq, x�〉 �� Fτ,n
t

�
. (1.262)

By employing martingale convergence in (1.262) the equality in (1.253)

follows. The claim that for every F P L2 pΩ,Fτ
t ,Pq the vector E rFM8s can

be considered as being E-valued in Proposition 1.6 follows from Lemma 1.4

formula (1.213).

If (1.256) holds, then, uniformly on the dual unit ball, we have

〈M8, x�〉 � lim
nÑ8 〈Mn, x

�〉. From (1.256) we also see that Mn P E�� P-

almost surely for all n P N. Consequently, M8 P E�� P-almost surely.

If (1.257) is satisfied, then these arguments show that M8 P E P-almost

surely.

The assertions concerning the process n ÞÑ �Mn can be proved in more

or less the same manner; instead of a martingale argument one employs a

Hilbert space argument to prove equality (1.258).

This completes the proof of Proposition 1.6. �

In Definition 1.9 and Theorem 1.22 we assume that for every s P rτ, ts
the mapping y ÞÑ σ ps, yq, y P E, is defined on the space E, and attains its

values in L pH,Eq, i.e. the space of all bounded linear operators from the
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Hilbert space H to the Banach space E. Similarly, for every s P rτ, ts the
mapping y ÞÑ b ps, yq is defined on E, and attains its values in E.

Definition 1.9. A solution to (1.195) in E is a process s ÞÑ Xτ,xpsq, s Prτ, ts, such that for every s P rτ, ts the stochastic vector Xτ,xpsq belongs

to the space E, and the following identity holds P-almost surely for all

s P rτ, ts:
Xτ,xpsq � Cps, τqx � » s

τ

Cps, ρqσ pρ,Xτ,x pρqq dWHpρq� » s
τ

Cps, ρqb pρ,Xτ,x pρqq dρ, (1.263)

It is not so easy to work in the space E or L2
weak pΩ,Fτ

t ,Pq directly. In the

latter space we use a supremum-norm over the dual unit ball. Instead of

taking the supremum-norm we can also take a Borel measure µ on E� and

look at the following subspace of E:"
x P E : }x}2µ � » |〈x, x�〉|2 dµ px�q   8*

(1.264)

Denote by Eµ the completion of the space in (1.264) with respect to }�}µ.
Denote by L2

µ pΩ,Fτ
t ,Pq the space of stochastic Eµ-valued vectors X such

that for µ-almost all x� P E� the variable 〈X, x�〉 is Fτ
t -measurable, and

such that }X}2L2
µ
� E

�³ |〈X, x�〉|2 dµ px�q�   8.

Proposition 1.7. Suppose that

E

�» » t
τ

}σpρq�Cpt, ρq�x�}2H dρ dµ px�q�   8.
Then the stochastic integral

³t
τ
Cpt, ρqσpρq dWH pρq belongs to L2

µ pΩ,Fτ
t ,Pq.

Proof. From (1.258) we obtain8̧
n�1

»
E

����〈�Mn � �Mn�1, x
�〉���2� dµ px�q� E

�» » t
τ

}σpρq�Cpt, ρq�x�}2H dρ dµ px�q�   8 (1.265)

From (1.265) we deduce that the sequence
��Mn

	
nPN converges to M8 in

the space L2
µ pΩ,Fτ

t ,Pq. �
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In Definition 1.10 and Theorem 1.21 below we assume that for every

s P rτ, ts the mapping Y psq ÞÑ σ ps, Y psqq is defined on the space

L2
weak pΩ,Fτ

s ,Pq, and attains its values in L pH,Eq, i.e. the space of all

bounded linear operators from the Hilbert space H to the Banach space E.

Similarly, for every s P rτ, ts the mapping Y psq ÞÑ b ps, Y psqq is defined on

L2
weak pΩ,Fτ

s ,Pq, and attains its values in E.

Definition 1.10. A solution to (1.195) is a process s ÞÑ Xτ,xpsq, s P rτ, ts,
such that for every s P rτ, ts the stochastic vector Xτ,xpsq belongs to the

space L2
weak pΩ,Fτ

s ,Pq, and the following identity holds P-almost surely for

all s P rτ, ts:
Xτ,xpsq � Cps, τqx � » s

τ

Cps, ρqσ pρ,Xτ,x pρqq dWHpρq� » s
τ

Cps, ρqb pρ,Xτ,x pρqq dρ. (1.266)

Next we give an existence and uniqueness theorem for solutions to stochastic

differential equations with values in L2
weak pΩ,Fτ

s ,Pq.
Theorem 1.21. Assume that the coefficients σ ps, Y psqq, and b ps, Y psqq
satisfy the following Lipschitz conditions. There exist functions c1psq
and c2psq, s P rτ, ts, such that for all y� P E�, and all Y1psq, Y2psq P
L2
weak pΩ,Fτ

s ,Pq the following inequalities hold:

E

����σ ps, Y2psqq� � σ ps, Y1psqq�� y���2H� ¤ c1psq2 }Y2psq � Y1psq}2L2

weak

}y�}2 ,
(1.267)

and

E r|〈b ps, Y2psqq � b ps, Y1psqq , y�〉|s ¤ c2psq }Y2psq � Y1psq}L2

weak

}y�} .
(1.268)

Fix x P E and suppose that» t
τ

sup
sPrρ,ts }Cps, ρq}2 c1pρq2dρ   8, and

» t
τ

sup
sPrτ,ts }Cps, ρq}2 c2pρq2 dρ   8.

In addition, suppose that for τ ¤ s ¤ t the stochastic integral» s
τ

Cps, ρqσpρ, xq dWH pρq
belongs to L2

weak pΩ,Fτ
s ,Pq. Then the equation in (1.263) possesses a unique

solution s ÞÑ Xτ,xpsq and Xτ,xpsq belongs to L2
weak pΩ,Fτ

s ,Pq for all s P
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sequences py�nqnPN P c0 pN, E�q the inequalities

0 ¤ sup
nPN 〈Xτ,xpsq, y�n〉   8 (1.269)

holds on an almost sure event Ω1 which does not depend on the choice of

the sequence py�nqnPN P c0 pN, E�q. Then the solution s ÞÑ Xτ,xpsq belongs
to E P-almost surely. Here a sequence py�nqnPN � E� belongs to c0 pN, E�q
if limnÑ8 〈y, y�n〉 � 0 for every y P E.

Proof. We will construct a solution to the equation in (1.266). To this

end we introduce the functions ϕn : rτ, ts Ñ rτ, ts by
ϕnpρq � τ � t� τ

2n

Z pρ� τq2n
t� τ

^
. (1.270)

Notice that ϕ0pρq � τ , τ ¤ ρ   t, and

ρ� t� τ

2n
¤ ϕnpρq ¤ ρ.

By induction we define the sequence of E-valued stochastic processestXτ,x
n psq : τ ¤ s ¤ t, n P Nu (1.271)

as follows. For τ ¤ s ¤ t we write Xτ,x
0 psq � Cps, τqx, and the process

X
τ,x
1 psq is defined by

X
τ,x
1 psq � Cps, τqx � » s

τ

Cps, ρqσ pρ, xq dWH pρq � » s
τ

Cps, ρqb pρ, xq dρ� Cps, τqx � » s
τ

Cps, ρqσ pρ,Xτ,x
0 pϕ0pρqqq dWHpρq� » s

τ

Cps, ρqb pρ,Xτ,x
0 pϕ0pρqqq dρ. (1.272)

Then we define the process s ÞÑ X
τ,x
n�1psq in terms of ρ ÞÑ Xτ,x

n pϕnpρqq as
follows:

X
τ,x
n�1psq � Cps, τqx � » s

τ

Cps, ρqσ pρ,Xτ,x
n pϕnpρqqq dWH pρq� » s

τ

Cps, ρqb pρ,Xτ,x
n pϕnpρqqq dρ. (1.273)

Since for τ ¤ s1 ¤ s2 ¤ t and y P E we have» s2
s1

C ps2, ρqσpρ, yq dWH pρq� » s2
τ

C ps2, ρqσpρ, yq dWH pρq � » s1
τ

C ps2, ρqσpρ, yq dWH pρq� » s2
τ

C ps2, ρqσpρ, yq dWH pρq � C ps2, s1q » s1
τ

C ps1, ρqσpρ, yq dWH pρq
(1.274)
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it follows by induction that the processes s ÞÑ Xτ,x
n psq, s P rτ, ts, take their

values in E P-almost surely. Let x� P E�. Then from (1.273) we get:
〈

X
τ,x
n�1psq �Xτ,x

n psq, x�〉 (1.275)� 〈» s
τ

C ps, ρq �σ pρ,Xτ,x
n pϕnpρqqq � σ

�
ρ,X

τ,x
n�1 pϕn�1pρqq�� dWH pρq, x�〉�〈» s

τ

C ps, ρq �b pρ,Xτ,x
n pϕnpρqqq � b

�
ρ,X

τ,x
n�1 pϕn�1pρqq�� dρ, x�〉 ,

and hence��〈Xτ,x
n�1psq �Xτ,x

n psq, x�〉��2 (1.276)¤2

����〈» s
τ

C ps, ρq �σ pρ,Xτ,x
n pϕnpρqqq � σ

�
ρ,X

τ,x
n�1 pϕn�1pρqq�� dWH pρq, x�〉����2� 2

����〈» s
τ

C ps, ρq �b pρ,Xτ,x
n pϕnpρqqq � b

�
ρ,X

τ,x
n�1 pϕn�1pρqq�� dρ, x�〉����2 .

For brevity we write Y τ,xn pρq � Xτ,x
n pϕnpρqq. From (1.276) and (1.212) in

Lemma 1.4 we deduce

E

���〈Xτ,x
n�1psq �Xτ,x

n psq, x�〉��2�¤2E

�����〈» s
τ

C ps, ρq �σ pρ, Y τ,xn pρqq � σ
�
ρ, Y

τ,x
n�1 pρq�� dWHpρq, x�〉����2�� 2E

��» s
τ

��〈C ps, ρq �b pρ, Y τ,xn pρqq � b
�
ρ, Y

τ,x
n�1 pρq�� , x�〉�� dρ
2

��2E

�» s
τ

����σ pρ, Y τ,xn pρqq� � σ
�
ρ, Y

τ,x
n�1 pρq��	Cps, ρq�x����2

H
dρ

�� 2E

��» s
τ

��〈C ps, ρq �b pρ, Y τ,xn pρqq � b
�
ρ, Y

τ,x
n�1 pρq�� , x�〉�� dρ
2

�
.

(1.277)

Inserting the inequalities (1.267) and (1.268) into (1.277) yields:

E

���〈Xτ,x
n�1psq �Xτ,x

n psq, x�〉��2�¤ 2

» s
τ

c1pρq2 ��Xτ,x
n pϕnpρqq �X

τ,x
n�1 pϕn�1pρqq��2L2

weak

}Cps, ρq�x�}2 dρ� 2

�» s
τ

c2pρq ��Xτ,x
n pϕnpρqq �X

τ,x
n�1 pϕn�1pρqq��L2

weak

��C ps, ρq� x��� dρ
2¤ 2

» s
τ

�
c1pρq2 � ps� τqc2pρq2�
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n pϕnpρqq �X

τ,x
n�1 pϕn�1pρqq��2L2

weak

}Cps, ρq�x�}2 dρ (1.278)¤ 2

» s
τ

�
c1pρq2 � ps� τqc2pρq2� }Cps, ρq}2 }x�}2��Xτ,x
n pϕnpρqq �X

τ,x
n�1 pϕn�1pρqq��2L2

weak

dρ. (1.279)

Put

χpρq � 2
�
c1pρq2 � pt� τqc2pρq2� sup

ρ¤s¤t }Cps, ρq}2 and

Φnpρq � ��Xτ,x
n pϕnpρqq �X

τ,x
n�1 pϕn�1pρqq��2L2

weak

. (1.280)

Then from (1.279) we see:

Φn�1psq ¤ » s
τ

χpρqΦnpρq dρ, τ ¤ s ¤ t. (1.281)

By induction with respect to k, 0 ¤ k ¤ n� 2, from (1.281) we infer

Φnpsq ¤ 1

k!

» s
τ

χ pρk�1q�» s
ρk�1

χpρq dρ�k

Φn�k�1 pρk�1q dρk�1. (1.282)

With k � n� 2 we get

Φnpsq ¤ 1pn� 2q! » sτ χ �ρ1��» sρ1 χpρq dρ
n�2

Φ1

�
ρ1� dρ1. (1.283)

From (1.283) it follows that
8̧
n�2

Φnpsq8. Then from (1.280) it follows that

the limit

Xτ,xpsq � L2
weak- lim

nÑ8Xτ,x
n pϕnpρqq (1.284)

exists. The equality in (1.273) then implies that the process s ÞÑ Xτ,xpsq
satisfies the stochastic differential equation in (1.266).

Let Xτ,x
1 psq and X

τ,x
2 psq be two solutions to the equation in (1.266).

Then the above arguments applied to the equality

X
τ,x
2 psq �X

τ,x
1 psq � » s

τ

Cps, ρq pσ pρ,Xτ,x
2 pρqq � σ pρ,Xτ,x

1 pρqqq dWH pρq� » s
τ

Cps, ρq pb pρ,Xτ,x
2 pρqq � b pρ,Xτ,x

1 pρqqq dWHpρq
shows that the P-almost sure equality Xτ,x

2 psq � X
τ,x
1 psq.

If (1.269) is satisfied for all sequences py�nqnPN P c0 pN, E�q, then Theo-

rem 1.18 entails the inclusion Xτ,xpsq P E P-almost surely.

This concludes the proof of Theorem 1.21. �
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In the following theorem we prove a result similar to the one in Theorem

1.21, but in the space L2
µ pΩ,Fτ

s ,Pq instead of L2
weak pΩ,Fτ

s ,Pq.
Theorem 1.22. Assume that the coefficients σ ps, yq, and b ps, yq satisfy the

following Lipschitz conditions. There exist functions c1psq and c2psq, s Prτ, ts, such that for all y� P E, and all y1, y2 P E the following inequalities

hold: ���σ ps, y2q� � σ ps, y1q�� y���H ¤ c1psq }y2 � y1}µ }y�} , (1.285)

and |〈b ps, y2q � b ps, y1q , y�〉| ¤ c2psq }y2 � y1}µ }y�} . (1.286)

Suppose that

lim sup
δÓ0 sup

s1Prτ,ts sup
s2Prs1,ts, s2�s1 δ » s2s1 » ��C ps2, ρq� x���2 dµ px�q c1pρq2dρ   1

2
,

and

lim sup
δÓ0 sup

s1Prτ,ts sup
s2Prs1,ts, s2�s1 δ » s2s1 » ��C ps2, ρq� x���2 dµ px�q c2pρq2 dρ   8.

(1.287)

Then the equation in (1.263) possesses a unique solution s ÞÑ Xτ,xpsq and
Xτ,xpsq belongs to L2

weak pΩ,Fτ
s ,Pq for all s P rτ, ts, provided that for everyps, xq P rτ, ts � E the stochastic vector

³s
τ
Cps, ρqσpρ, xq dWH pρq belongs to

L2
µ pΩ,Fτ

s ,Pq.
The latter means that

E

�» » s
τ

}σpρ, xq�Cps, ρq�x�}2H dρ dµ px�q�   8.
Proof. The proof of Theorem 1.22 follows the same pattern

as that of Theorem 1.21. Again we construct the sequencetXτ,x
n psq : τ ¤ s ¤ t, n P Nu in (1.271) satisfying (1.272) and (1.273). In-

serting the inequalities (1.285) and (1.286) into (1.277) yields the following

inequality:

E

���〈Xτ,x
n�1psq �Xτ,x

n psq, x�〉��2�¤ 2

» s
τ

c1pρq2 ��Xτ,x
n pϕnpρqq �X

τ,x
n�1 pϕn�1pρqq��2L2

µ

}Cps, ρq�x�}2 dρ� 2

�» s
τ

c2pρq ��Xτ,x
n pϕnpρqq �X

τ,x
n�1 pϕn�1pρqq��L2

µ

��C ps, ρq� x��� dρ
2
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» s
τ

�
c1pρq2 � ps� τqc2pρq2���Xτ,x
n pϕnpρqq �X

τ,x
n�1 pϕn�1pρqq��2L2

µ

}Cps, ρq�x�}2 dρ. (1.288)

The inequality in (1.288) is the same as the one in (1.278) except that here

we write }�}L2
µ
instead of }�}L2

weak

. Instead of χpρq and Φnpρq as in (1.280)

we know introduce the functions:

χµpρ, sq � 2
�
c1pρq2 � ps� τqc2pρq2� » }Cps, ρq�x�}2 dµ px�q and

Φµ,npρq � ��Xτ,x
n pϕnpρqq �X

τ,x
n�1 pϕn�1pρqq��2L2

µ

. (1.289)

Then we choose δ ¡ 0 so small that

sup
ρPrs1,s2s » s2ρ χµpρ, sq ds ¤ 1� η   1, (1.290)

for some η ¡ 0 and for all s1, s2 P rτ, ts such that 0 ¤ s2 � s1 ¤ δ. By

the assumptions in (1.287) such a choice is possible. Integrating (1.288)

relative to dµ px�q yields:
Φµ,n�1psq ¤ » s

τ

χµpρ, sqΦµ,npρq dρ. (1.291)

Next we define the sequence of functions χµ,npρ, sq, τ ¤ ρ ¤ s ¤ t, n P N,

as follows:

χµ,1pρ, sq � χµpρ, sq, χµ,2pρ, sq � » s
ρ

χµ pρ, ρ1qχµ pρ1, sq dρ1, and

χµ,npρ, sq (1.292)� »
ρ ρn�1 ��� ρ1 s » dρn�1 . . . dρ1χµ pρ, ρn�1q n�1¹

j�2

χµ pρj, ρj�1q χµ pρ1, sq
for n ¥ 3. The function χµ,npρ, sq is kind of a generalized n-fold convolution

product of χµpρ, sq with itself. From the choice of δ ¡ 0 and η ¡ 0 we see

that » s2
s1

χµ,n ps1, sq ds ¤ p1� ηqn, for 0 ¤ s2 � s1 ¤ δ, n P N. (1.293)

Moreover, it is not difficult to show that

Φµ,n�1psq ¤ » s
τ

χµ,npρ, sqΦµ,1pρq dρ, n ¥ 1. (1.294)

From (1.293) and (1.293) we get:» τ�δ
τ

Φµ,n�1psq ds ¤ p1� ηqn » τ�δ
τ

Φµ,1psq ds. (1.295)
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From (1.295) we infer that8̧
n�1

» τ�δ
τ

Φµ,npsq ds   8. (1.296)

From (1.296) it follows that
°8
n�1 Φµ,npsq   8 for almost all s P rτ, τ �

δs. This means that for almost all s P rτ, τ � δs the process Xτ,xpsq �
L2
µ- limnÑ8Xτ,x

n pϕnpsqq exists, and that for such s the equality in (1.266)

holds; i.e.

Xτ,xpsq � Cps, τqx � » s
τ

Cps, ρqσ pρ,Xτ,x pρqq dWHpρq� » s
τ

Cps, ρqb pρ,Xτ,x pρqq dρ. (1.297)

Then we use continuity in s P rτ, τ � δs to prove that (1.297) holds for all

s P rτ, τ � δs. Once this is done we repeat the previous argument on the

interval rτ � δ, τ � 2δs with initial value Xτ,xpτ � δq instead of x. In finite

many steps we construct a (unique) solution on the interval rτ, ts.
All this completes the proof of Theorem 1.22. �

Remark 1.6. Let the operator families C1pρq, and C2pρq, ρ P rτ, ts, consist
of operators from the Hilbert space H to the Banach space E with appro-

priate measurability properties. Instead of the Lipschitz conditions (1.285)

and (1.286) we could have taken conditions of the form:���σ ps, y2q� � σ ps, y1q�� y���H ¤ }y2 � y1}µ }C1psq�y�} , (1.298)

and |〈b ps, y2q � b ps, y1q , y�〉| ¤ }y2 � y1}µ }C2psq�y�} . (1.299)

In order to get conclusions like in Theorem 1.22 the conditions in (1.287)

have to pe replaced with

lim sup
δÓ0 sup

s1Prτ,ts sup
s2Prs1,ts, s2�s1 δ » s2s1 » ��C1pρq�C ps2, ρq� x���2H dµ px�q dρ   1

2
,

and

lim sup
δÓ0 sup

s1Prτ,ts sup
s2Prs1,ts, s2�s1 δ » s2s1 » ��C2pρq�C ps2, ρq� x���2H dµ px�q dρ   8.

(1.300)

We conclude this introduction by collecting some well-known and not

so well-known results about martingales and stopping times for time-

homogeneous Markov processes.



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

90 Markov processes, Feller semigroups and evolution equations

1.3 Martingales

In this section we recall some interesting facts about martingales. This

material is taken from [Van Casteren (2002)].

(1) Let pΩ,F ,Pq be a probability space, and let pFt : t ¥ 0q be a filtra-

tion on Ω; i.e. s   t implies Fs � Ft � F . Suppose that F

is the σ-field generated by Ft, t ¥ 0. Moreover, let Y belong to

L1 pΩ,F ,Pq. Put Mptq � E
�
Y

�� Ft�. Then the process is the standard

example of a closed martingale. This martingale is closed, because

Y � L1- limtÑ8Mptq. This limit is also an P-almost sure limit.

(2) Let pΩ,F ,Pq be a probability space and let W ptq : Ω Ñ Rd be Brow-

nian motion starting at zero. Then the process W ptq, t ¥ 0, is a

martingale. The same is true for the process t ÞÑ |W ptq|2 � dt.

(3) Let pΩ,F ,Pq be a probability space and let W ptq : Ω Ñ Rd be Brow-

nian motion. Let tHptq : t ¥ 0u be a predictable process. This means

that Hptq is Ft-measurable for each t ¥ 0, and that the mappingpt, ωq ÞÑ Hpt, ωq is measurable with respect to the σ-field generated

by  
1ps,ts b 1A : A Fs-measurable, s   t

(
.

Suppose that E

�³t
0
|Hpsq|2 ds�   8 for all t ¡ 0. Then the process

t ÞÑ ³t
0
Hpsq dW psq is a martingale in L2 pΩ,F ,Pq. If we only assume

that the expression
³t
0
|Hpsq|2 ds are finite P-almost surely for all t ¡ 0,

then this process is a local martingale. A process t ÞÑ Mptq is called

a local martingale, if there exists a sequence of stopping times Tn,

n P N, which increases to 8, such that every process t ÞÑ M pt^ Tnq
is a genuine martingale. A similar notion is available for local sub-

martingales, local super-martingales, and processes which are locally

of bounded variation. A process Xptq P L1 pΩ,F ,Pq with the property

that E
�
Xptq �� Fs� ¥ Xpsq, P-almost surely for t ¡ s, is called a sub-

martingale, and a process with E
�
Xptq �� Fs� ¤ Xpsq, P-almost surely

for t ¡ s, is called a super-martingale. A process Xptq P L1 pΩ,F ,Pq is
of bounded variation on the interval r0, T s if

sup

#
N�1̧

j�0

|XpXptj�1qq �XpXptjqq| : 0 � t0   t1   � � �   tN�1   tN � T

+
is finite. Doob-Meyer’s decomposition theorem says that every local

sub-martingale Xptq of class DL (locally) can be decomposed as a sum
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Xptq � Mptq � Aptq, where Mptq is a local martingale and Aptq is

an increasing process. By definition the process t ÞÑ X pt^ T q is of

class DL if the collection tXpτq : τ ¤ T , τ stopping timeu is uniformly

integrable.

(4) Let M1ptq and M2ptq be two martingales in L2 pΩ,F ,Pq. Then

there exists a process of bounded variation 〈M1p�q,M2p�q〉 ptq, the co-

variation process of M1ptq and M2ptq such that the process t ÞÑ
M1ptqM2ptq � 〈M1p�q,M2p�q〉 ptq is an L1-martingale. A similar result

is true for local martingales. If Mjptq � ³t
0
HjpsqdW psq, j � 0, 1,

whereH1ptq andH2ptq are predictable processes for which ³t
0
|Hjpsq|2 ds

is P-almost surely finite for all t ¥ 0i, and for j � 1, 2. Then

〈M1p�q,M2p�q〉 ptq � ³t
0
H1psqH2psqds. Instead of 〈M1p�q,M2p�q〉 ptq we

often write 〈M1,M2〉 ptq; if M1ptq � M2ptq � Mptq we also write

〈M〉 ptq � 〈M,M〉 ptq.
(5) Exponential martingales. Suppose thatMptq andNptq are martingales.

Then the process

t ÞÑ Ep�Nqptq :� exp

��Nptq � 1

2
〈N,N〉 ptq


is a martingale, provided Novikov’s condition, i.e.

E

�
exp

�
1

2
〈N,N〉 ptq
�   8

is satisfied for all t ¥ 0. In addition, the process

t ÞÑ exp

��Nptq � 1

2
〈N,N〉 ptq
 pMptq � 〈N,M〉 ptqq (1.301)

is a martingale. If Mptq � Nptq, for all t ¥ 0, then the martingale in

(1.301) is the same as the second one in

t ÞÑ exp

��Mptq � 1

2
〈M,M〉 ptq
 and (1.302)

t ÞÑ exp

��Mptq � 1

2
〈M,M〉 ptq
 pMptq � 〈M,M〉 ptqq . (1.303)

The factor Ep�Nq can be considered as an risk adjustment factor,

Mptq can be interpreted as the volatility (fluctuation, diffusion part),

and 〈N,M〉 ptq is the drift or trend of the process. Define the ex-

ponential measure QN by QN rAs � E rEN pT q1As, A P FT . Let EN

denote the corresponding expectation. The process M � 〈N,M〉 is
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then a local martingale with respect to the measure QN . This fol-

lows from Itô calculus in the following manner. First notice that

dEN ptq � �ENptqdNptq, and hence, for 0 ¤ t1   t2 ¤ T we have

EN pt2q pM pt2q � 〈N,M〉 pt2qq � EN pt1q pM pt1q � 〈N,M〉 pt1qq� � » t2
t1

EN psq pM psq � 〈N,M〉 psqq dNpsq� » t2
t1

EN psq pdM psq � d 〈N,M〉 psqq � » t2
t1

EN psq d 〈N,M〉 psq� � » t2
t1

EN psq pM psq � 〈N,M〉 psqq dNpsq � » t2
t1

EN psq dM psq .
(1.304)

As a consequence of (1.304) we see that the process

t ÞÑ EN ptq pM ptq � 〈N,M〉 ptqq (1.305)

is a (local) P-martingale. Here we use the fact that stochas-

tic integrals with respect to martingales are (local) martingales.

If the expectations E

�
e

1

2
〈N,N〉pT q�, E

�
e

1

2
〈N,N〉pT q 〈N,N〉 pT q�, and

E

�
e

1

2
〈N,N〉pT q 〈M,M〉 pT q� are finite, then the stochastic integrals in

(1.304) are genuine martingales. This follows from the equalities:

EN
�
M pt2q � 〈N,M〉 pt2q �� Ft1�� pM pt1q � 〈N,M〉 pt1qq� EN
�
M pt2q � 〈N,M〉 pt2q � pM pt1q � 〈N,M〉 pt1qq �� Ft1�� E

�
EN pT q pM pt2q � 〈N,M〉 pt2qq � EN pT q pM pt1q � 〈N,M〉 pt1qq �� Ft1�

(the process ENptq is a P-martingale)� E
�
EN pt2q pM pt2q � 〈N,M〉 pt2qq � EN pt1q pM pt1q � 〈N,M〉 pt1qq �� Ft1�� 0,

where in the final step we used the martingale property of the process

in (1.305).

Corollary 1.7. Let Nptq be a martingale for which Novikov’s condition

is satisfied. Put (Radon-Nikodym derivative)

dQ

dP
� exp

��NpT q � 1

2
〈N,N〉 pT q
 .

Suppose that W ptq � Mptq is a Brownian motion with respect to P.

Then W ptq � 〈N,W 〉 ptq is a Brownian motion with respect to Q. In

particular, if Nptq � ³t
0
bpsqdW psq, then W ptq � ³t

0
bpsqds, 0 ¤ t ¤ T ,

is a Brownian motion with respect to Q.
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As a consequence we get the following result. Suppose that the pro-

cess t ÞÑ exp
�� ³t

0
bpsqdW psq � 1

2

³t
0
|bpsq|2 ds	 is a martingale, and let

Φ, Ψ : C pr0, T s,Rnq Ñ C be bounded continuous functions. Then it

follows that

E

�
Φ

�
t ÞÑW ptq � » t

0

bpsqds
 exp

�� » T
0

bpsqdW psq � 1

2

» T
0

|bpsq|2 ds��� E rΦ pt ÞÑW ptqqs , and (1.306)

E

�
Ψ

�
t ÞÑW ptq � » t

0

bpsqdW psq
�� E

�
Ψ pt ÞÑW ptqq exp�» T

0

bpsqdW psq � 1

2

» T
0

|bpsq|2 ds��
. (1.307)

Let Ψ : C pr0, T s,Rnq Ñ C be a bounded continuous function, and

put �W ptq � W ptq � ³t
0
bpsq ds. By applying (1.306) to the function Φ

defined by

Φ
�
t ÞÑ �W ptq	 � Ψ

�
t ÞÑ �W ptq	 exp

�» T
0

bpsqd�W psq � 1

2

» T
0

|bpsq|2 ds�
we see that (1.307) is a consequence of (1.306).

(6) Let Hptq be a predictable process, and let Mptq be a martingale. Sup-

pose

E

�» t
0

|Hpsq|2 d 〈M,M〉 psq�   8, t ¡ 0. (1.308)

Then the stochastic integral t ÞÑ ³t
0
HpsqdMpsq is well defined (as an

Itô integral). Moreover, it is a martingale and the equality

E

�����» t
0

HpsqdMpsq����2� � E

�» t
0

|Hpsq|2 d 〈M,M〉 psq�
is valid. If H1ptq and H2ptq are predictable processes which satisfy

(1.308), then

E

�» t
0

H1psqdMpsq � » t
0

H2psqdMpsq�� E

�» t
0

H1psq �H2psqd 〈M,M〉 psq� . (1.309)

For Hjptq � 1Aj
b 1puj,8qptq, Aj P Fuj

, j � 1, 2, the equality in

(1.309) is readily established, for linear combinations of such indicator

functions (i.e. for simple processes) the result also follows easily. A

density argument will do the rest.
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(7) Suppose that L generates a Feller semigroup with corresponding

Markov processtpΩ,F ,Pxq , pXptq : t ¥ 0q , pϑt : t ¥ 0q , pE, Equ .
Let f be a function in DpLq. Then the process

t ÞÑMf ptq :� fpXptqq � fpXp0qq � » t
0

LfpXpsqqds
is a martingale.

(8) Let L generate the semigroup etL, t ¥ 0. Suppose that the marginals

of the corresponding Markov process have a density:

etLfpxq � Ex rfpXptqqs � »
p0pt, x, yqdmpyq

for some reference measure m. Then the process s ÞÑ p0pt� s,Xpsq, yq
is a Px-martingale on the half open interval r0, tq.

(9) Let L be the second order differential operator

Lf � b �∇f � 1

2

ḑ

j,k�1

ajk
B2fBxjBxk .

Then for C2-functions f1, f2 we have

〈Mf1 ,Mf2〉 ptq � » t
0

Γ1 pf1, f2q pXpsqqds
where

Γ1 pf1, f2q pxq � ḑ

j,k�1

ajkpxqBf1pxqBxj Bf2pxqBxk .

The operator pf1, f2q ÞÑ Γ1 pf1, f2q is called the squared gradient op-

erator, or in French, the opérateur carré du champ. The process

〈Mf1 ,Mf2〉 ptq is called the (quadratic) covariation process of the lo-

cal martingales Mf1 and Mf2 .

(10) Itô’s formula. Let

Xptq �Mptq �Aptq � pM1ptq, . . . ,Mdptqq � pA1ptq, . . . , Adptqq
be a continuous semi-martingale, where Mjptq, 1 ¤ j ¤ d, are lo-

cal martingales, and where the process Aj , 1 ¤ j ¤ d, are locally of

bounded variation. Let f : Rd Ñ C be a C2-function. Then

fpXptqq �fpXp0qq � » t
0

∇fpXpsqqdMpsq � » t
0

∇fpXpsqqdApsq� 1

2

ḑ

j,k�1

» t
0

B2fBxjBxk pXpsqq d 〈Mj ,Mk〉 psq.
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We notice that 〈Xj , Xk〉 ptq � 〈Mj ,Mk〉 ptq. Itô’s formula says that,

under the action of C2-functions local semi-martingales are preserved.

In other words, if Xptq � Mptq � Aptq is a local semi-martingale (i.e.

a sum of a local martingale and a process which is locally of bounded

variation), and if f : Rd Ñ R is a C2-function, then the process t ÞÑ
fpXptqq is a again a local semi-martingale.

1.4 Operator-valued Brownian motion and the Heston

volatility model

We insert a definition of an operator-valued Brownian motion. For matrix-

valued Brownian motion see e.g. [Biane (2009)] and the references given

therein. Perhaps this section can be phrased in terms of quantum proba-

bility: see e.g. [Franz and Schott (1999)], [Meyer (1993)], [Biane (1995)],

[Hudson and Lindsay (1998)], [Rebolledo et al. (2004)]. A main motivation

to include it in this book is that the results in Theorem 1.23 put the Heston

volatility model in an operator framework, so that, in principle the material

could also be used for stochastic volatility matrices.

Definition 1.11. Let pH, 〈�, �〉Hq be a Hilbert space, and let LpHq denote
the C�-algebra of all bounded linear operators defined on H with values

in H . Let pΩ,FT ,Eq be a probability space. An LpHq-valued processpBpτqqτPr0,T s is called a Brownian motion if for every every pair pf, gq P H�
H the process τ ÞÑ 〈Bpτqf, g〉H is a P-martingale relative to the filtration

determined by the variables Bpτq, τ P r0, T s, and if for every quadruplepf1, f2, g1, g2q P H �H �H �H the equality

〈〈Bp�qf1, f2〉H , 〈g1, Bp�qg2〉H〉 pτq � τ 〈f1, f2〉H 〈g1, g2〉H (1.310)

holds.

In other words, for every f P H with }f}H � 1 the process τ ÞÑ 〈Bpτqf, f〉H
is a Brownian motion, and if f and g are vectors in H such that 〈f, g〉H � 0,

and }g}H � }f}H � 1, then the Brownian motions τ ÞÑ 〈Bpτqf, f〉H and

τ ÞÑ 〈Bpτqg, g〉H are P-independent. It follows from Lévy’s theorem that

such processes τ ÞÑ 〈Bpτqf, f〉H , }f}H � 1, are classical Brownian motions.

Again we can introduce LpHq-valued stochastic integrals using the weak-

operator topology. Let τ ÞÑ Φ1pτq and τ ÞÑ Φ2pτq be adapted process with

property that E

�³T
0
}Φjpρqf}2H dρ

�   8 for j � 1, 2. Let peℓqℓPN be an

orthonormal basis in H , and let f , g P H . Then the stochastic integrals
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0
Φjpρq dBpρqf , j � 1, 2, have the following basic properties:

〈» τ
0

Φ1pρq dBpρqf, g〉
H

� » τ
0

» τ
0

d 〈Bp�qf,Φ1pρq�g〉H pρq� » τ
0

» τ
0

d 〈f, pdBpρq�qΦ1pρq�g〉H pρq�
ℓ̧PN » τ0 d 〈Bpρqf, eℓ〉H 〈Φ1pρqeℓ, g〉H , and

E

�〈» τ
0

Φ1pρq dBpρqf, » τ
0

Φ1pρq dBpρqg〉
H

�� E

�» τ
0

〈» τ
0

Φ1pρqf,Φ1pρqg〉
H

dρ

�
. (1.311)

It follows that the stochastic integrals τ ÞÑ ³τ
0
Φjpρq dBpρqf , j � 1, 2,

belong to that subspace of L2
weak pΩ,FT ,Pq which are H-valued L2-

martingales relative to the filtration determined by the stochastic variables

τ ÞÑ 〈Bpτqh1, h2〉H , τ P r0, T s, h1, h2 P H . For the definition of this space

the reader is referred to Definition 1.8. Itô’s formula is available in some

restricted sense. Then the following equality holds for all f , g P H :
〈» τ

0

Φ1pρq dBpρqf, » τ
0

Φ1pρq dBpρqg〉
H� » τ

0

〈

Φ1pρq dBpρqf, » ρ
0

Φ2

�
ρ1� dB �

ρ1�〉
H� » τ

0

〈» ρ
0

Φ1

�
ρ1� dB �

ρ1� f,Φ2 pρq dB pρq〉
H� » τ

0

〈Φ1pρqf,Φ2pρq〉H dρ. (1.312)

A proof of the equality in (1.312) can be based on the following argu-

ments. By density and bilinearity it suffices to prove (1.312) for Φj of

the form Φjpτq � Tj1ptj ,8qpτq where, for every f , g P H the random

variable 〈Tjf, g〉H is Ftj -measurable, j � 1, 2. Here Ft is the σ-field gen-

erated by the variables τ ÞÑ 〈Bpτqf, g〉H , 0 ¤ τ ¤ t, f , g P H . Let the

τ ÞÑ A1pτq �M1pτq and τ ÞÑ A2pτq �M2pτq be LpHq-valued local semi-

martingales, i.e. the processes τ ÞÑ 〈Ajpτqf, g〉H . j � 1, 2, are locally of

bounded variation P-almost surely, and the processes τ ÞÑ 〈Mjpτqf, g〉H ,

j � 1, 2, are local martingales for all elements f , g P H . Then for the co-

variation of the processes of the processes A1pτq�M1pτq and A2pτq�M2pτq
we write

〈pA1p�q �M1p�qq f, pA2p�q �M2p�qq g〉 pτq
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ℓ�1

〈〈pA1p�q �M1p�qq f, eℓ〉H , 〈eℓ, pA2p�q �M2p�qq g〉H〉 pτq� 8̧
ℓ�1

〈〈M1p�qf, eℓ〉H , 〈eℓ,M2p�qg〉H〉 pτq. (1.313)

The second equality in (1.313) follows because the classical covariation of

real or complex semi-martingales only depends depends on the martingale

parts of these process. Since, by the definition of operator-valued Brownian

motion,

〈〈Bp�qf, em〉H , 〈en, Bp�qg〉H〉 pτq � τ 〈f, em〉H 〈en, g〉H , τ P r0, T s, f, g P H,
we obtain the following equalities:

〈�
A1p�q � » p�q

0

Φ1pρq dBpρq� f,

�
A2p�q � » p�q

0

Φ2pρq dBpρq� g

〉 pτq� » τ
0

〈Φ1pρqf,Φ2pρqg〉H dρ, (1.314)

whenever the operator-valued processes Φ1pτq and Φ2pτq are predictable

and satisfy:

E

�» T
0

〈Φjpρqf,Φjpρqf〉H dρ

�   8, f P H, j � 1, 2.

We also observe that the process τ ÞÑ Bpτq� is a Brownian motion. In the

following (proof of) Theorem 1.23 the equalities in (8.217), (8.81), (1.312),

(1.313) and (1.314) will be freely used. Throughout the present section it

is assumed that the stochastic processes are adapted to the filtration deter-

mined by the stochastic variables t〈Bpτqf, g〉H : τ P r0, T s, f, g P Hu. Let

Fτ be the σ-field generated by t〈Bpρqf, g〉H : 0 ¤ ρ ¤ τ P r0, T s, f, g P Hu.
Moreover, it is assumed that, unless stated otherwise, all operator-valued

processes are adapted and continuous for the weak operator topology, and

that therefore they are automatically predictable. This in the sense that

the mappings pτ, ωq ÞÑ Φjpτ, ωq, j � 1, 2, are measurable with respect

to the σ-field generated by
 
1pa,bs b 1A : 0 ¤ a   b ¤ T, A P Fa

(
; compare

with item (3) in §1.3. Let τ ÞÑ Mjpτq, τ P r0, T s, j � 1, 2, be two semi-

martingales with values in the Hilbert space H . Notice that one has to

distinguish between 〈M1p�q,M2p�q〉 pτq, which the covariation process be-

tween τ ÞÑM1pτq and τ ÞÑM2pτq and 〈M1pτq,M2pτq〉H , which denotes an

inner-product.

Theorem 1.23. The following assertions are equivalent.
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(1) There exists an adapted LpHq-valued process τ ÞÑ Apτq, τ P r0, T s,
which satisfies the integral equation:

Apτq �Ap0q (1.315)� 1

2

» τ
0

��
4κη

λ2
� 1


 pApρq� �Bpρq�q�1 � κ pApρq �Bpρqq
 dρ.

(2) There exists an adapted LpHq-valued process τ ÞÑ Apτq, τ P r0, T s,
which satisfies the integral equation

2

» τ
0

pApρq� �Bpρq�q dApρq (1.316)� κ

» τ
0

pApρq �Bpρqq� pApρq �Bpρqq dρ � �
4κη

λ2
� 1



τI.

(3) There exists a pair of adapted LpHq-valued processes τ ÞÑpV pτq, Uλpτqq, τ P r0, T s, with V pτq � Uλpτq�Uλpτq, which has the

following properties.

(a) The following stochastic differential equation holds:

dV pτq � κ pηI � V pτqq dτ � λ

2
pUλpτq� dBpτq � dBpτq�Uλpτqq .

(1.317)

(b) For all f , g P H the following equality holds:

〈Uλp�qf, Uλp�qg〉 pτq � λ2

4
τ 〈f, g〉, τ P r0, T s.

(c) For all τ P r0, T s the operators
³τ
0
Uλpρq� d �Uλ � λ

2
B
� pρq are self-

adjoint P-almost surely.

(4) There exists an adapted LpHq-valued semi-martingale τ ÞÑ Upτq, τ Pr0, T s, with the following properties.

(a) The following stochastic differential equation holds:

d pUpτq�Upτqq � κ

�
4η

λ2
I � Upτq�Upτq
 dτ� pdBpτqq� Upτq � Upτq� dBpτq. (1.318)

(b) For all f , g P H the following equality holds: 〈Up�qf, Up�qg〉 pτq �
τ 〈f, g〉, τ P r0, T s.

(c) For every τ P r0, T s the operator
³τ
0
Upρq�d pU �Bq pρq is self-

adjoint P-almost surely.

(5) There exists an adapted LpHq-valued semi-martingale τ ÞÑ Upτq, τ Pr0, T s, which satisfies the following stochastic differential equation:

dUpτq � 1

2

��
4κη

λ2
� 1


 pUpτq�q�1 � κUpτq
 dτ � dBpτq. (1.319)
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(6) There exists an LpHq-valued predictable process τ ÞÑ Apτq with the

following properties:

(a) The operator-valued martingales τ ÞÑ Mjpτq, τ P r0, T s, j � 1, 2,

defined by

M1pτq �M1p0q � » τ
0

pApρq �Bpρqq dBpρq, and

M2pτq �M2p0q � » τ
0

pApρq� �Bpρq�q dBpρq, (1.320)

satisfy the following integral equality:

d

dτ
〈M1p�qf,M1p�qg〉 pτq � κ 〈M1p�qf,M1p�qg〉 pτq (1.321)� 〈Ap0qf,Ap0qg〉H � 4κητ

λ2
〈f, g〉H� 〈pM2pτq �M2p0qq f, g〉H � 〈f, pM2pτq �M2p0qq g〉H ,

for all f , g P H.

(b) The predictable process τ ÞÑ 〈Apτqf, g〉H is locally of bounded vari-

ation for all f, g P H,

(c) The operators
³τ
0
pApρq� �Bpρq�q dApρq are almost surely self-

adjoint.

(7) There exists an LpHq-valued predictable process τ ÞÑ Apτq, which sat-

isfies the conditions in (b) and (c) of item (6), possesses the follow-

ing additional property. The operator-valued martingales τ ÞÑ Mjpτq,
τ P r0, T s, j � 1, 2 defined as in (1.320) satisfy the following integral

equality:

〈M1p�qf,M1p�qg〉 pτq� 4η

κλ2

�
e�κτ � 1� τκ

�
〈f, g〉H � 1� e�κτ

κ
〈Ap0qf,Ap0qg〉H� » τ

0

e�κpτ�ρqpxpM2pρq �M2p0qqf, gyH � xf, pM2pρq �M2p0qqgyHqdρ.
(1.322)

Proof. The equivalence of (1) and (2) follows by differentiating the ex-

pressions in (1.315) and (1.316) respectively.

(2) ùñ (3). Let the process Apτq be as in (2). Put Uλpτq �
1
2
λ pApτq �Bpτqq. From (1.316) we get:» τ

0

pApρq� �Bpρq�q dApρq � » τ
0

pdApρqq� pApρq �Bpρqq
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» τ
0

pApρq �Bpρqq� pApρq �Bpρqq dρ � �
4κη

λ2
� 1



τI. (1.323)

From Itô calculus and (1.323) we obtain:

dV pτq � λ2

4
d ppApρq� �Bpρq�q pApρq �Bpρqqq� λ2

4
ppApτq� �Bpτq�q dApτq � dApτq� pApτq �Bpτqqq� λ2

4
pdBpτq� pApτq �Bpτqq � pApτq �Bpτq�qq � λ2

4
I dτ� κ pηI � V pτqq dτ � λ

2
pdBpτq�Uλpτq � Uλpτq� dBpτqq . (1.324)

The equality in (1.317) follows from (1.324). This shows (a) of Assertion (3).

The statement in (b) follows from the equality in (1.316). Finally, (c) is a

consequence of the representation Uλpτq � 1
2
λ pApτq �Bpτqq, where Apτq

is locally of differentiable P-almost surely. It follows that

〈Uλp�qf, Uλp�qg〉 pτq � λ2

4
〈Bp�qf,Bp�qg〉 pτq � λ2

4
〈f, g〉H τ. (1.325)

Then (1.325) implies (c).

The equivalence of (3) and (4) follows by the relationship λUpτq �
2Uλpτq where Uλp�q and Up�q are as in (3) and (4) respectively.

(4) ùñ (5). Let the process τ ÞÑ Upτq be as in (4). In particular it

satisfies the equation in (1.318). This together with (b) and (c) in (4) and

Itô calculus shows:

2Upτq� d pU �Bq pτq� Upτq� d pUpτq �Bpτqq � d pUpτq� �Bpτq�q Upτq� d pUpτq�Upτqq � I dτ � Upτq� dBpτq � d pBpτq�q Upτq� κ

�
4η

λ2
� Upτq�Upτq
 dτ � I dτ. (1.326)

The equation in (1.319) follows from (1.326). Consequently, (5) follows

from (4). In fact the Assertions (2) and (4) are also easy consequences of

(5), as we shall see next.

(5) ùñ (2). Let the LpHq-valued process τ ÞÑ Upτq have the properties
in (5). Put

Apτq � Upτq �Bpτq � Up0q � » τ
0

��
4κη

λ2
� 1


 pUpρq�q�1 � κUpρq
 dρ.

(1.327)
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Then from (1.319) we getpApτq� �Bpτq�q dApτq � dApτq� pApτq �Bpτqq� κ pApτq� �Bpτq�q pApτq �Bpτqq dτ� Upτq� d pU �Bq pτq � pUpτq� d pU �Bq pτqq� � κUpτq�Upτq dτ
(apply (1.319))� �

4κη

λ2
� 1



I dτ. (1.328)

Since, by (c) of (5) operators of the form» τ
0

pApρq� �Bpρq�q dApρq � » τ
0

Upρq� d pU �Bq pρq
are self-adjoint the equality in (1.316) follows. This completes the proof of

the implication (5) ùñ (2).

(2) ùñ (6). Let the process τ ÞÑ Apτq be as in (1.316), and define

the LpHq-valued martingales Mjpτq, j � 1, 2, as in (1.320). Then by Itô

calculus and by the proof of the implication (2) ùñ (3) we obtainpApτq� �Bpτq�q pApτq �Bpτqq� Ap0q�Ap0q � » τ
0

pApρq� �Bpρq�q dApρq � » τ
0

dApρq� pApρq �Bpρqq� » τ
0

pApρq� �Bpρq�q dBpρq � » τ
0

dBpρq� pApρq �Bpρqq � τI

(apply (1.323) in the proof of the implication (2) ùñ (3))� Ap0q�Ap0q � �
4κη

λ2
� 1



τI � κ

» τ
0

pApρq� �Bpρq�q pApρq �Bpρqq dρI� τI �M2pτq �M2pτq� �M2p0q �M2p0q�� Ap0q�Ap0q � 4κη

λ2
τI � κ

» τ
0

pApρq� �Bpρq�q pApρq �Bpρqq dρ�M2pτq �M2pτq� �M2p0q �M2p0q�. (1.329)

Let f , g P H . Then by (8.81) and (1.329) we see

d

dτ
〈M1p�qf,M1p�qg〉 pτq � κ 〈M1p�qf,M1p�qg〉 pτq� d

dτ

» τ
0

〈pApρq �Bpρqq f, pApρq �Bpρqq g〉H dρ



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

102 Markov processes, Feller semigroups and evolution equations� κ

» τ
0

〈pApρq �Bpρqq f, pApρq �Bpρqq g〉H dρ� d

dτ
〈M1p�qf,M1p�qg〉 pτq � κ 〈M1p�qf,M1p�qg〉 pτq� 〈pApτq� �Bpτq�q pApτq �Bpτqq f, g〉H� κ

» τ
0

〈pApρq� �Bpρq�q pApρq �Bpρqq f, g〉H dρ� 〈�
Ap0q�Ap0q � 4κη

λ2
τ �M2pτq �M2pτq� �M2p0q �M2p0q�
 f, g〉

H� 〈Ap0qf,Ap0qg〉H � 4κη

λ2
τ 〈f, g〉H� 〈pM2pτq �M2p0qq f, g〉H � 〈f, pM2pτq �M2p0qq g〉H . (1.330)

The equality in (1.195) completes the proof of the implication (2) ùñ (6).

(6) ðñ (7). The fact that the equalities in (1.321) and (1.322) are

equivalent is a simple exercise in ordinary differential equations. It follows

that the assertions (6) and (7) are equivalent.

(6) ùñ (2). The arguments in the proof of the implication (2) ùñ (6)

can be reversed. More precisely, if (6) is true, then the equality in (1.321)

holds. It follows that the equalities in (1.330) hold. An application of Itô

calculus then yields the equality:pApτq� �Bpτq�q dApτq � dApτq� pApτq �Bpτqq � I dτ� κ pApτq� �Bpτq�q pApτq �Bpτqq dτ� 4κη

λ2
I dτ � pApτq� �Bpτq�q dBpτq � dBpτq� pApτq �Bpτqq . (1.331)

(See (1.328) in the proof of the implication (5) ùñ (2).) From property (c)

in (6) we get dApτq� pApτq �Bpτqq � pApτq� �Bpτq�q dApτq, and hence

(1.331) implies

2 pApτq� �Bpτq�q dApτq � κ pApτq� �Bpτq�q pApτq �Bpτqq dτ� �
4κη

λ2
� 1



I dτ,

and so (1.316) in Assertion (2) follows.

This completes the proof of Theorem 1.23. �

As a corollary to Theorem 1.23 we have the following results.

Corollary 1.8. Theorem 1.23 is also true if throughout we assume that

the operators Apτq � Bpτq, respectively, Upτq, τ P r0, T s, are predictable
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and self-adjoint. In this case the martingales M1pτq and M2pτq in As-

sertions (6) and (7) may be taken equal. If moreover, it is assumed that

throughout Theorem 1.23 the operators Apτq � Bpτq, respectively, Upτq,
τ P r0, T s, are predictable and positive, then not only the martingales M1pτq
and M2pτq in Assertions (6) and (7) may be taken equal, but the opera-

tor process τ ÞÑ V pτq satisfies an operator version of the volatility Heston

model. This means that the equation in (1.317) can be written in the form:

dV pτq � κ pηI � V pτqq dτ � λ

2

�a
V pτq dBpτq � dBpτq�aV pτq	 . (1.332)

In the following theorem we specialize the result in Theorem 1.23 to the

case where H � R. If in (1.335) the process Uλpτq is non-negative, then this

equation corresponds to the classical Heston model for the volatility. For

more details on the Heston volatility model see e.g. [Feng et al. (2010); In ’t

Hout and Foulon (2010)] and many others. It was Heston [Heston (1993)]

who first used this stochastic volatility model. For a related stochastic

interest rate model the reader is referred to [Cox et al. (1985)].

Theorem 1.24. The following assertions are equivalent.

(1) There exists an adapted R-valued process τ ÞÑ Apτq, τ P r0, T s, which
satisfies the integral equation:

Apτq � Ap0q� 1

2

» τ
0

��
4κη

λ2
� 1



1

Apρq �Bpρq � κ pApρq �Bpρqq
 dρ.

(1.333)

(2) There exists an adapted R-valued process τ ÞÑ Apτq, τ P r0, T s, which
satisfies the integral equation

2

» τ
0

pApρq �Bpρqq dApρq � κ

» τ
0

pApρq �Bpρqq2 dρ � �
4κη

λ2
� 1



τ.

(1.334)

(3) There exists a pair of adapted R-valued processes τ ÞÑ pV pτq, Uλpτqq,
τ P r0, T s, with V pτq � Uλpτq2, such that the following stochastic dif-

ferential equation holds:

dV pτq � κ pηI � V pτqq dτ � λUλpτq dBpτq. (1.335)

(4) There exists an adapted R-valued semi-martingale τ ÞÑ Upτq, τ P r0, T s,
such that the following stochastic differential equation holds:

d
�
Upτq2� � κ

�
4η

λ2
I � Upτq2
 dτ � 2Upτq dBpτq. (1.336)
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(5) There exists an adapted R-valued semi-martingale τ ÞÑ Upτq, τ P r0, T s,
which satisfies the following stochastic differential equation:

dUpτq � 1

2

��
4κη

λ2
� 1



Upτq�1 � κUpτq
 dτ � dBpτq. (1.337)

(6) There exists an R-valued martingale τ ÞÑMpτq for which the following

integral equality is satisfied:

d

dτ
〈Mp�q,Mp�q〉 pτq � κ 〈Mp�q,Mp�q〉 pτq�Mp0q2 � 4κητ

λ2
� 2 pMpτq �Mp0qq .

(7) There exists a R-valued martingale τ ÞÑ Mpτq, which satisfies the fol-

lowing integral equality:

〈Mp�q,Mp�q〉 pτq � 4η

κλ2

�
e�κτ � 1� τκ

�� 1� e�κτ
κ

Mp0q2 � 2

» τ
0

e�κpτ�ρq pMpρq �Mp0qq .
The proof follows the same pattern as the proof of Theorem 1.23 with

the following extra arguments. From the stochastic differential equation in

(1.335) it follows that 〈Uλp�q, Uλp�q〉 pτq � 1
4
λ2τ . From the stochastic differ-

ential equation in (1.336) it follows that 〈Up�q, Up�q〉 pτq � τ . By the martin-

gale representation theorem a martingaleMpτq which is adapted to a Brow-

nian τ ÞÑ Bpτq can be written in the formMpτq �Mp0q�³τ
0
Upρq dBpρq. If

such a martingale also satisfies the integral equation in Assertion (6), then

by Itô calculus it follows that 〈Up�q, Up�q〉 pτq � τ . As a consequence it

follows that Upτq � Apτq�Bpτq where the process Apτq is predictable and
locally of bounded variation. The proof of the implication (6) ùñ (2) then

proceeds along the same lines as the proof of the corresponding implication

in Theorem 1.23.

1.5 Stopping times and time-homogeneous Markov pro-

cesses

Next we explain the strong Markov property. Let E be a Polish space (i.e.

a complete metrtizable separable Hausdorff space) with Borel field E , and

let tpΩ,F ,Pxq , pXptq : t ¥ 0q , pϑt : t ¥ 0q , pE, Equ
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be a family of probability spaces with state variables Xptq : Ω Ñ E and

time translation operators ϑs : Ω Ñ Ω such that Xptq � ϑs � Xpt � sq,
Px-almost surely for all s, t ¥ 0, x P E. Moreover, ϑs�t � ϑs � ϑt, s, t ¥ 0.

Assume that the process t ÞÑ Xptq is Px-almost surely right-continuous

for all x P E. If E is locally compact and not compact, then E△ is the

one-point-compactification of E; otherwise △ is an isolated point of the

topological space E△. Sometimes E is augmented with an extra absorption

state △: E△ � E
�

△. The σ-field Ft is generated by the state variables

Xpsq, 0 ¤ s ¤ t, and F is generated by the process t ÞÑ Xptq. Since

the sample paths t ÞÑ Xptq, t ¥ 0 are right continuous Px-almost surely

our Markov process is a strong Markov process. Let S : Ω Ñ r0,8s be
a stopping meaning that for every t ¥ 0 the event tS ¤ tu belongs to Ft.

This is the same as saying that the process t ÞÑ 1rS¤ts is adapted. Let FS
be the natural σ-field associated with the stopping time S, i.e.

FS � £
t¥0

!
A P F : A

£ tS ¤ tu P Ft
)
.

Define ϑSpωq by ϑSpωq � ϑSpωqpωq. Consider FS as the information from

the past, σ
�
XpSq� as information from the present, and

σ tXptq � ϑS : t ¥ 0u � σ tXpt� Sq : t ¥ 0u
as the information from the future. The time-homogeneous Markov prop-

erty can be expressed as follows:

Ex
�
fpXps� tqq �� Fs� � Ex

�
fpXps� tqq �� σpXpsqq� � EXpsq rfpXptqqs ,

(1.338)

Px-almost surely for all f P CbpEq and for all s and t ¥ 0. The strong

Markov property can be expressed as follows:

Ex rY � ϑS |FSs � EXpSq rY s , Px-almost surely (1.339)

on the event tS   8u, for all bounded random variables Y , for all stop-

ping times S, and for all x P E. One can prove that under the “cadlag”

property events like tXpSq P B, S   8u, B Borel, are FS-measurable. The

passage from (1.339) to (1.338) is easy: put Y � fpXptqq and Spωq � s,

ω P Ω. The other way around is much more intricate and uses the cad-

lag property of the process tXptq : t ¥ 0u. In this procedure the stopping

time S is approximated by a decreasing sequence of discrete stopping timespSn � 2�nr2nSs : n P Nq. The equality

Ex rY � ϑSn
|FSn

s � EXpSnq rY s , Px-almost surely,
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is a consequence of (2) for a fixed time. Let n tend to infinity in (1.5)

to obtain (1.339). The “strong Markov property” can be extended to the

“strong time dependent Markov property”:

Ex
�
Y pS � T � ϑS , ϑSq �� FS� pωq � E

X

�
Spωq� �ω1 ÞÑ Y

�
Spωq � T

�
ω1� , ω1�� ,
(1.340)

Px-almost surely on the event tS   8u. Here Y : r0,8q � Ω Ñ C is a

bounded random variable. The cartesian product r0,8q � Ω is supplied

with the product field Br0,8q b F ; Br0,8q is the Borel field of r0,8q and

F is (some extension of) σ pXpuq : u ¥ 0q. Important stopping times are

“hitting times”, or times related to hitting times:

TU � inf
 
s ¡ 0 : Xpsq P E△zU( , and

S � inf

"
s ¡ 0 :

» s
0

1EzU pXpuqqdu ¡ 0

*
,

where U is some open (or Borel) subset of E△. This kind of stopping times

have the extra advantage of being terminal stopping times, i.e. t�S�ϑt � S

Px-almost surely on the event tS ¡ tu. A similar statement holds for the

hitting time TU . The time S is called the penetration time of EzU . Let

p : E Ñ r0,8q be a Borel measurable function. Stopping times of the form

Sξ � inf

"
s ¡ 0 :

» s
0

p
�
Xpuq�du ¡ ξ

*
serve as a stochastic time change, because they enjoy the equality: Sξ �
Sη � ϑSξ

� Sξ�η, Px-almost surely on the event tSξ   8u. As a conse-

quence operators of the form Spξqfpxq :� Ex rf pX pSξqqs, f a bounded

Borel function, possess the semigroup property. Also notice that S0 � 0,

provided that the function p is strictly positive.
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Chapter 2

Strong Markov processes on Polish

spaces

In this chapter we describe time-dependent strong Markov processes with

a Polish space as state space. As indicated in Chapter 1 stochastic differ-

ential equations in a Banach space often give rise to Markov processes with

a separable Banach space as state space. In our theory we are mainly in-

terested in the Markovian behavior of our process. In addition we consider

the corresponding martingale problem and the problem of unique Markov

extensions. As highlights we mention the theorems 2.9 through 2.13. In

order to establish these general results a study of the strict topology is re-

quired as well as a precise knowledge of measures on Polish spaces. These

topics also are included in this chapter.

2.1 Strict topology

Throughout this book E stands for a complete metrizable separable topo-

logical space, i.e. E is a Polish space. A recent book which among

other things treats Polish spaces is [Kanovei (2008)]. The Borel field of

E is denoted by E . We write CbpEq for the space of all complex val-

ued bounded continuous functions on E. The space CbpEq is equipped

with the supremum norm: }f}8 � supxPE |fpxq|, f P CbpEq. The space

CbpEq will be endowed with a second topology which will be used to de-

scribe the continuity properties. This second topology, which is called the

strict topology, is denoted as Tβ-topology. The strict topology is gener-

ated by the semi-norms of the form pu, where u varies over HpEq, and

where pupfq � supxPE |upxqfpxq| � }uf}8, f P CbpEq. Here a function u

belongs to HpEq if u is bounded and if for every real number α ¡ 0 the

set t|u| ¥ αu � tx P E : |upxq| ¥ αu is contained in a compact subset of E.

It is noticed that Buck [Buck (1958)] was the first author who introduced

109
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the notion of strict topology (in the locally compact setting). He used the

notation β instead of Tβ .

Remark 2.1. Let H�pEq be the collection of those functions u P HpEq
with the following properties: u ¥ 0 and for every α ¡ 0 the settu ¥ αu is a compact subset of E. Then every function u P H�pEq
is bounded, and the strict topology is also generated by semi-norms

of the form tpu : u P H�pEqu. Every u P H�pEq attains its supre-

mum at some point x P E. Moreover a sequence pfnqnPN converges for

the strict topology to a function f P CbpEq if and only if it is uni-

formly bounded and if for every compact subset K of E the equality

limmÑ8 supn¥m supxPK |fnpxq � fmpxq| � 0 holds. Since Tβ-convergent

sequences are Tβ-bounded, from Proposition 2.1 below it follows that a Tβ-

convergent sequence is uniformly bounded. The same conclusion is true for

Tβ-Cauchy sequences. Moreover, a Tβ-Cauchy sequence pfnqnPN converges

to a bounded function f . Such a sequence converges uniformly on compact

subsets of the space E. Since the space E is Polish, it follows that the limit

function f is continuous. Consequently, the space pCbpEq, Tβq is sequen-

tially complete. Observe that continuity properties of functions f P CbpEq
can be formulated in terms of convergent sequences in E which are con-

tained in compact subsets of E. The topology of uniform convergence on

CbpEq is denoted by Tu. In the sixties Conway (see [Conway (1966, 1967)])

proved that the strict topology Tβ is the Mackey topology for the duality of

CbpEq and the space of bounded complex Borel measures on E. This means

that Tβ is the finest locally convex topology on CbpEq for which the dual is

given by the space MpEq, the space of bounded complex Borel measures

on MpEq; for more details see e.g. [Sentilles (1970)].

2.1.1 Theorem of Daniell-Stone

In Proposition 2.2 below we need the following theorem. It says that

an abstract integral is a concrete integral relative to a σ-additive measure.

Theorem 2.1 will be applied with S � E, H � C�
b , the collection of non-

negative functions in CbpEq, and for I : C�
b Ñ r0,8q we take the restriction

to C�
b of a non-negative linear functional defined on CbpEq which is con-

tinuous with respect to the strict topology.

Theorem 2.1 (Theorem of Daniell-Stone). Let S be any set, and let

H be a non-empty collection of functions on S with the following properties:
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(1) If f and g belong to H, then the functions f�g, f _g and f^g belong

to H as well;

(2) If f P H and α is a non-negative real number, then αf , f ^ α, andpf � αq� � pf � αq _ 0 belong to H;

(3) If f , g P H are such that f ¤ g ¤ 1, then g � f belongs to H.

Let I : H Ñ r0,8s be an abstract integral in the sense that I is a mapping

which possesses the following properties:

(4) If f and g belong to H, then I pf � gq � Ipfq � Ipgq;
(5) If f P H and α ¥ 0, then I pαfq � αIpfq;
(6) If pfnqnPN is a sequence in H which increases pointwise to f P H, then

I pfnq increases to I pfq.
Then there exists a non-negative σ-additive measure µ on the σ-field gen-

erated by H, which is denoted by σpHq, such that Ipfq � ³
fdµ, for f P H.

If there exists a countable family of functions pfnqnPN � H such that

I pfnq   8 for all n P N, and such that S � �8
n�1 tfn ¡ 0u, then the

measure µ is unique.

Proof. Define the collection H� of functions on S as follows. A function

f : S Ñ r0,8s belongs to H� provided there exists a sequence pfnqnPN � H

which increases pointwise to f . Then the subset H� has the properties (1)

and (2) with H� instead of H . Define the mapping I� : H� Ñ r0,8s by
I�pfq � lim

nÑ8 I pfnq , f P H�,
where pfnqnPN � H is a sequence which pointwise increases to f . The defini-

tion does not depend on the choice of the increasing sequence pfnqnPN � H .

In fact let pfnqnPN and pgnqnPN be sequences in H which both increase to

f P H�. Then by (6) we have

lim
nÑ8 I pfnq � sup

nPN I pfnq � sup
nPN sup

mPN I pfn ^ gmq � sup
mPN supnPN I pfn ^ gmq� sup

mPN I pgmq � lim
mÑ8 I pgmq . (2.1)

From (2.1) it follows that I� is well-defined. The functional I� : H� Ñr0,8s has the properties (4), (5), and (6) (somewhat modified) with H�
instead of H and I replaced by I�. In fact the correct version of (6) for H�
reads as follows:

(6�) Let pfnqnPN be a sequence H� which increases pointwise to a function

f . Then f P H�, and I� pfnq increases to I� pfq.
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We also have the following assertion:

(3�) Let f and g P H� be such that f ¤ g. Then I�pfq ¤ I�pgq.
We first prove (3�) if f and g belong to H and f ¤ g. From (6), (3) and

(4) we get

Ipgq � sup
mPN I pg ^mq � sup

mPN pI pg ^m� f ^mq � I pf ^mqq¥ sup
mPN I pf ^mq � I pfq . (2.2)

Here we used the fact that by (3) the functions g^m�f^m, m P N, belong

to H . Next let f and g be functions in H such that f ¤ g. Then there

exist increasing sequences pfnqnPN and pgnqnPN in H such that fn converges

pointwise to f P H� and gn to g P H�. Then
I� pfq � sup

nPN I pfnq ¤ sup
nPN I pfn _ gnq � I� pgq . (2.3)

Next we prove (6�). Let pfnqnPN be a pointwise increasing sequence in H�,
and put f � supnPN fn. Choose for every n P N an increasing sequencepfn,mqmPN � H such that supmPN fn,m � fn. Define the functions gm,

m P N, by

gm � f1,m _ f2,m _ � � � _ fm,m.

Then gm�1 ¥ gm and gm P H for all m P N. In addition, we have

sup
mPN gm � sup

mPN max
1¤n¤m fn,m � sup

nPN sup
m¥n fn,m � sup

nPN fn � f. (2.4)

Hence f P H�. For 1 ¤ n ¤ m the inequalities fn,m ¤ fn ¤ fm hold

pointwise, and hence gm ¤ fm. From (3�) we infer

I� pfq � sup
mPN I pgmq � sup

mPN I� pgmq ¤ sup
mPN I� pfmq ¤ I� pfq , (2.5)

and thus supmPN I� pfmq � I� pfq.
Next we will get closer to measure theory. Therefore we define the

collection G of subsets of S by G � tG � S : 1G P H�u, and the mapping

µ : G Ñ r0,8s by µ pGq � I� p1Gq, G P G. The mapping µ possesses the

following properties:

(11) If the subsets G1 and G2 belong to G, then the same is true for the

subsets G1

�
G2 and G1

�
G2;

(21) H P G;

(31) If the subsets G1 and G2 belong to G and if G1 � G2, then µ pG1q ¤
µ pG2q;
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(41) If the subsets G1 and G2 belong to G, then the following strong addi-

tivity holds: µ pG1

�
G2q � µ pG1

�
G2q � µ pG1q � µ pG2q;

(51) µ pHq � 0;

(61) If pGnqnPN is a sequence in G such that Gn�1 � Gn, n P N, then�
nPNGn belongs to G and µ p�nPNGnq � supnPN µ pGnq.

These properties are more or less direct consequences of the corresponding

properties of I�: (1�)–(6�).
Using the mapping µ we will define an exterior or outer measure µ�

on the collection of all subsets of S. Let A be any subset of S. Then we

put µ� pAq � 8 if for no G P G we have A � G, and we write µ� pAq �
inf tµ pGq : G P G, G � Au, if A � G0 for some G0 P G. Then µ� has the

following properties:

(i) µ�pHq � 0;

(ii) µ� pAq ¥ 0, for all subsets A of S;

(iii) µ� pAq ¤ µ� pBq, whenever A and B are subsets of S for which A � B;

(iv) µ� ��8
n�1An

� ¤ °8
n�1 µ

� pAnq for any sequence pAnqnPN of subsets of

S.

The assertions (i), (ii) and (iii) follow directly from the definition of µ�.
In order to prove (iv) we choose a sequence pAnqnPN, An � S, such that

µ� pAnq   8 for all n P N. Fix ε ¡ 0, and choose for every n P N an

subset Gn of S which belongs to G and which has the following properties:

An � Gn and µ pGnq ¤ µ� pAnq � ε2�n. By the equality
�
nPNGn ��

mPN�m
n�1Gn we see that

�
nPNGn belongs to G. From the properties of

an exterior measure we infer the following sequence of inequalities:

µ��¤
nPNAn� ¤ µ��¤

nPNGn� � µ

�¤
nPNGn� � sup

mPNµ� m¤
n�1

Gn

�� sup
mPN I� �1�m

n�1
Gn

� ¤ sup
mPN I�� m̧

n�1

1Gn

� � sup
mPN m̧

n�1

I� p1Gn
q� sup

mPN m̧

n�1

µ pGnq ¤ 8̧
n�1

�
µ� pAnq � ε2�n� � 8̧

n�1

µ� pAnq � ε. (2.6)

Since ε ¡ 0 was arbitrary we see that µ� p�nPNAnq ¤ °8
n�1 µ

� pAnq. Hence
Assertion (iv) follows.

Next we consider the σ-field D which is associated to the exterior mea-

sure µ�, and which is defined by

D � !
A � S : µ� pDq ¥ µ� �A£

D
	� µ� �Ac£D

	
for all D � S

)
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A � S : µ pDq ¥ µ� �A£

D
	� µ� �Ac£D

	
for all D P G with µpDq   8u . (2.7)

Here we wrote Ac � SzA for the complement of A in S. The reader is

invited to check the equality in (2.7). According to Caratheodory’s theorem

the exterior measure µ� restricted to the σ-field D is a σ-additive measure.

We will prove that D contains G. Therefore pick G P G, and consider for

D P G for which µpDq   8 the equality

µ��G£
D
	�µ��Gc£D

	 � µ
�
G
£
D
	�inf!µpUq : U P G, U�Gc£D

)
.

(2.8)

Choose h P H� in such that h ¥ 1Gc
�
D. For 0   α   1 we have

1Gc
�
D ¤ 1th¡αu ¤ 1

α
h.

Since 1th¡αu � supmPN 1 ^ pmph� αq�q we see that the set th ¡ αu is a

member of G. It follows that I�phq ¥ αµ pth ¡ αuq ¥ αµ� pGc�Dq, and
hence

µ� �Gc£D
	 ¤ inf

 
I�phq : h ¥ 1Gc

�
D, h P H�(¤ inf

!
I�p1U q : U � Gc

£
D, U P G

) � µ� �Gc£D
	
.

(2.9)

From (2.9) the equality

µ� �Gc£D
	 � inf

 
I�phq : h ¥ 1Gc

�
D, h P H�(

follows. Next choose the increasing sequences pfnqnPN and pgnqnPN in such

a way that the sequence fn increases to 1D and gn increases to 1G. Define

the functions hn, n P N, by

hn � 1D � fn ^ gn � sup
m¥n tpfm � fnq � pfn � fn ^ gnqu .

Since the functions fm � fn, m ¥ n, and fn � fn ^ gn belong to H we see

that hn belongs to H�. Hence we get:8 ¡ µpDq � I� p1Dq � I� phnq � I� pfn ^ gnq � I� phnq � I pfn ^ gnq .
(2.10)

In addition we have hn ¥ 1Gc
�
D. Consequently,

µ� �G£
D
	� µ� �Gc£D

	¤ µ
�
G
£
D
	� inf

nPN I� phnq
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�
G
£
D
	� µ pDq � sup

nPN I pfn ^ gnq� µ
�
G
£
D
	� µ pDq � µ

�
G
£
D
	 � µ pDq . (2.11)

The equality in (2.11) proves that the σ-field D contains the collection G,

and hence that the mapping µ, which originally was defined on G, is in fact

the restriction to G of a genuine measure defined on the σ-field generated

by H . This restriction is again called µ.

We will show the equality Ipfq � ³
fdµ for all f P H . For f P H we

have »
fdµ � » 8

0

µ tf ¡ ξu dξ � » 8
0

I� �1tf¡ξu� dξ� sup
nPN 1

2n

n2n

j̧�1

I� �1tf¡j2�nu� � sup
nPN I�� 1

2n

n2n

j̧�1

1tf¡j2�nu�� I� �x ÞÑ » 8
0

1tf¡ξupxqdξ
 � I� pfq � I pfq . (2.12)

Finally we will prove the uniqueness of the measure µ. Let µ1 and µ2 be two

measures on σpHq with the property that Ipfq � ³
fdµ1 � ³

fdµ2 for all

f P H . Under the extra condition in Theorem 2.1 that there exist countable

many functions pfnqnPN such that I pfnq   8 for all n P N and such that

S � �8
n�1 tfn ¡ 0u we shall show that µ1pBq � µ2pBq for all B P σpHq.

Therefore we fix a function f P H for which Ipfq   8. Then the collection 
B P σpHq : ³

B
fdµ1 � ³

B
fdµ2

(
is a Dynkin system containing all sets of

the form tg ¡ βu with g P H and β ¡ 0. Fix ξ ¡ 0, β ¡ 0 and g P H . Then

the functions gm,n :� min
�
m pg � βq� ^ 1, n pf � ξq� ^ 1

	
, m, n P N,

belong to H . Then we have

µ1

�tg ¡ βu£ tf ¡ ξu� � lim
mÑ8 lim

nÑ8 »
gm,ndµ1 � lim

mÑ8 lim
nÑ8 I pgm,nq� lim

mÑ8 lim
nÑ8 »

gm,ndµ2 � µ2

�tg ¡ βu£ tf ¡ ξu� . (2.13)

Integration of the extreme terms in (2.13) with respect to the Lebesgue

measure dξ shows the equality
³tg¡βu fdµ1 � ³tg¡βu fdµ2. It follows that

the collection
 
B P σpHq : ³

B
fdµ1 � ³

B
fdµ2

(
contains all sets of the formtg ¡ βu where g P H and β ¡ 0. Such collection of sets is closed under

finite intersection. Since the Dynkin system generated by a collection of

subsets which is closed under finite intersections coincides with the σ-field

generated by such a set, we infer the equality"
B P σpHq : »

B

fdµ1 � »
B

fdµ2

* � σpHq.
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Such an argument may be called a “Dynkin argument”; the Monotone

Class Theorem generalizes such an argument. See Remark 2.16 on the π-λ

theorem as well. The same argument applies with pnfq^1 replacing f . By

letting n tend to 8 this shows the equality

σpHq � !
B P σpHq : µ1

�
B
£ tf ¡ 0u� � µ2

�
B
£ tf ¡ 0u�) . (2.14)

Since the set H is closed under taking finite maxima, I pf _ gq ¤ Ipfq �
Ipgq   8 whenever Ipfq and Ipgq are finite, and S � �8

n�1 tfn ¡ 0u with

I pfnq   8, n P N, we see that

µ1pBq � lim
nÑ8 µ1

�
B
£"

max
1¤j¤n fj ¡ 0

*�� lim
nÑ8 µ2

�
B
£"

max
1¤j¤n fj ¡ 0

*� � µ2pBq (2.15)

for B P σpHq.
This finishes the proof of Theorem 2.1.

�

2.1.2 Measures on Polish spaces

Our first proposition says that the identity mapping f ÞÑ f sends Tβ-

bounded subsets of CbpEq to }�}8-bounded subsets.

Proposition 2.1. Every Tβ-bounded subset of CbpEq is }�}8-bounded. On

the other hand the identity is not a continuous operator from pCbpEq, Tβq
to pCbpEq, }�}8q, provided that E itself is not compact.

Proof. LetB � CbpEq be Tβ-bounded. If B were not uniformly bounded,

then there exist sequences pfnqnPN � B and pxnqnPN � E such that|fn pxnq| ¥ n2, n P N. Put upxq � 8̧
n�1

1

n
1xn

. Then the function u belongs

to HpEq, but sup
fPB pupfq ¥ sup

nPN pu pfnq ¥ sup
nPN u pxnq |f pxnq| ¥ sup

nPN n � 8.

The latter shows that the set B is not Tβ-bounded. By contra-position

it follows that Tβ-bounded subsets are uniformly bounded.

Next suppose that E is not compact. Let u be any function in HpEq.
Then limnÑ8 u pxnq � 0. If the imbedding pCbpEq, Tβq Ñ pCbpEq, Tuq
were continuous, then there would exist a function u P H�pEq such that}f}8 ¤ }uf}8 for all f P CbpEq. Let K be a compact subset of E such

that 0 ¤ upxq ¤ 1
2
for x R K. Since 1 ¤ }u}8 � u px0q for some x0 P E,

and since by assumption E is not compact we see that K �� E. Choose an

open neighborhood O of K, O �� E, and a function f P CbpEq such that
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1�1O ¤ f ¤ 1�1K . In particular, it follows that f � 1 outside of O, and

f � 0 on K. Then 1 � }f}8 ¤ }uf}8 ¤ supxRK |upxqfpxq| ¤ 1
2
}f}8 ¤ 1

2
.

Clearly, this is a contradiction.

This concludes the proof of Proposition 2.1. �

The following proposition shows that the dual of the space pCbpEq, Tβq
coincides with the space of all complex Borel measures on E .

Proposition 2.2.

(1) Let µ be a complex Borel measure on E. Then there exists a function

u P HpEq such that
��³ fdµ�� ¤ pupfq for all f P CbpEq.

(2) Let Λ : CbpEq Ñ C be a linear functional on CbpEq which is continuous

with respect to the strict topology. Then there exists a unique complex

measure µ on E such that Λpfq � ³
fdµ, f P CbpEq.

Proof. (1). Since on a Polish space every bounded Borel measure is inner-

regular, there exists an increasing sequence of compact subsets pKnqnPN
in E with K0 � H such that |µ| pEzKnq ¤ 2�2n�2 |µ| pEq, n P N. Fix

f P CbpEq. Then we have����» fdµ���� ¤ 8̧
j�0

�����»Kj�1zKj

fdµ

����� ¤ 8̧
j�0

»
Kj�1zKj

|f | d |µ|¤ 8̧
j�0

��1Kj�1zKj
f
��8 |µ| pKj�1zKjq¤ 8̧

j�0

��1Kj�1zKj
f
��8 |µ| pEzKjq¤ 8̧

j�0

2�2j�2
��1Kj�1zKj

f
��8 |µ| pEq¤ 8̧

j�0

2�2j�22j�1 }uf}8 ¤ }uf}8 (2.16)

where upxq �°8
j�1 2

�j1Kj
pxq |µ| pEq.

(2). We decompose the functional Λ into a combination of four positive

functionals: Λ � pℜΛq� � pℜΛq� � i pℑΛq� � i pℑΛq� where the linear

functionals pℜΛq� and pℜΛq� are determined by their action on positive

functions f P CbpEq:pℜΛq� pfq � sup tℜ pΛpgqq : 0 ¤ g ¤ f, g P CbpEqu , andpℜΛq� pfq � sup tℜ p�Λpgqq : 0 ¤ g ¤ f, g P CbpEqu .
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Similar expressions can be employed for the action of pℑΛq� and pℑΛq� on

functions f P C�
b . Since the complex linear functional Λ : CbpEq Ñ C is

Tβ-continuous there exists a function u P H�pEq such that |Λpfq| ¤ }uf}8
for all f P CbpEq. Then it easily follows that

���pℜΛq� pfq��� ¤ }uf}8 for

all real-valued functions in CbpEq, and
���pℜΛq� pfq��� ¤ ?

2 }uf}8 for all

f P CbpEq, which in general take complex values. Similar inequalities hold

for pℜΛq� pfq, pℑΛq� pfq, and pℑΛq� pfq. Let pfnqnPN be a sequence of

functions in C�
b pEq which pointwise increases to a function f P C�

b pEq.
Then limnÑ8 Λ pfnq � Λpfq. This can be seen as follows. Put gn �
f � fn, and fix ε ¡ 0. Then the sequence pgnqnPN decreases pointwise to 0.

Moreover it is dominated by f . Choose a strictly positive real number α in

such a way that α }f}8 ¤ ε. Then it follows that|Λ pgnq| ¤ }ugn}8 � max
���u1tu¥αugn��8 , ��u1tu αugn��8	¤ max

�}u}8 ��1tu¥αugn��8 , α }f}8	 ¤ ε (2.17)

where N chosen so large that }u}8 ��1tu¥αugn��8 ¤ ε for n ¥ N . By Dini’s

lemma such a choice of N is possible. An application of Theorem 2.1 then

yields the existence of measures µj , 1 ¤ j ¤ 4, defined on the Baire field

of E such that pℜΛq� pfq � ³
fdµ1, pℜΛq� pfq � ³

fdµ2, pℑΛq� pfq �³
fdµ3, and pℑΛq� pfq � ³

fdµ4 for f P CbpEq. It follows that Λpfq �³
fdµ1 � ³

fdµ2 � i
³
fdµ3 � i

³
fdµ4 � ³

fdµ for f P CbpEq. Here µ �
µ1 � µ2 � iµ3 � iµ4 and each measure µj , 1 ¤ j ¤ 4, is finite and positive.

Since the space E is Polish it follows that Baire field coincides with the

Borel field, and hence the measure µ is a complex Borel measure.

This concludes the proof of Proposition 2.2. �

The next corollary gives a sequential continuity characterization of linear

functionals which belong to the space pCbpEq, Tβq�, the topological dual

of the space CbpEq endowed with the strict topology. We say that a se-

quence pfnqnPN � CbpEq converges for the strict topology to f P CbpEq if
limnÑ8 }u pf � fnq}8 � 0 for all functions u P H�pEq. It follows that a

sequence pfnqnPN � CbpEq converges to a function f P CbpEq with respect

to the strict topology if and only if this sequence is uniformly bounded and

limnÑ8 }1K pf � fnq}8 � 0 for all compact subsets K of E.

Corollary 2.1. Let Λ : CbpEq Ñ C be a linear functional. Then the

following assertions are equivalent:

(1) The functional Λ belongs to pCbpEq, Tβq�;
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(2) limnÑ8 Λ pfnq � 0 whenever pfnqnPN is a sequence in C�
b pEq which

converges to the zero-function for the strict topology;

(3) There exists a finite constant C ¥ 0 such that |Λpfq| ¤ C }f}8 for

all f P CbpEq, and limnÑ8 Λ pgnq � 0 whenever pgnqnPN is a sequence

in C�
b pEq which is dominated by a sequence pfnqnPN in C�

b pEq which
decreases pointwise to 0;

(4) There exists a finite constant C ¥ 0 such that |Λpfq| ¤ C }f}8 for all

f P CbpEq, and limnÑ8 Λ pfnq � 0 whenever pfnqnPN is a sequence in

C�
b pEq which decreases pointwise to 0;

(5) There exists a complex Borel measure µ on E such that Λpfq � ³
fdµ

for all f P CbpEq.
In (3) we say that a sequence pgnqnPN in C�

b pEq is dominated by a sequencepfnqnPN if gn ¤ fn for all n P N. A functional Λ : CbpEq Ñ C with

the property that for every sequence pfnqnPN which decreases pointwise to

zero the inequality limnÑ8 Λ pfnq � 0 is called a σ-smooth functional in

[Varadarajan (1961, 1999)].

Proof. (1) ùñ (2). First suppose that Λ belongs to pCbpEq, Tβq�. Then
there exists a function u P H�pEq such that |Λpfq| ¤ }uf}8 for all f P
CbpEq. Hence, if the sequence pfnqnPN � C�

b pEq converges to zero for the

strict topology, then limnÑ8 }ufn}8 � 0, and so limnÑ8 Λ pfnq � 0. This

proves the implication (1) ùñ (2).

(2) ùñ (3). Let pfnqnPN be a sequence in CbpEq which converges

to 0 for the uniform topology. From (2) it follows that the sequences�pℜfnq�	
nPN, �pℜfnq�	nPN, �pℑfnq�	nPN, and �pℑfnq�	

nPN converge to

0 for the strict topology Tβ , and hence limnÑ8 Λ pfnq � 0. Consequently,

the functional Λ : CbpEq Ñ C is continuous if CbpEq is equipped with the

uniform topology, and hence there exists a finite constant C ¥ 0 such that|Λpfq| ¤ C }f}8 for all f P CbpEq. If pfnqnPN is a sequence in C�
b pEq which

decreases to 0, then by Dini’s lemma it converges uniformly on compact

subsets of E to 0. Moreover, it is uniformly bounded, and hence it con-

verges to 0 for the strict topology. If the sequence pgnqnPN � C�
b pEq is

such that gn ¤ fn. Then the sequence pgnqnPN converges to 0 for the strict

topology. Assertion (2) implies that limnÑ8 Λ pgnq � 0.

(3) ùñ (4). This implication is trivial.

(3) ùñ (5). The boundedness of the functional Λ, i.e. the inequality|Λpfq| ¤ C }f}8, f P CbpEq, enables us to write Λ in the form

Λ � Λ1 � Λ2 � iΛ3 � iΛ4
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in such a way that Λ1 � pℜΛq�, Λ2 � pℜΛq�, Λ3 � pℑΛq�, and Λ4 �pℑΛq�. From the definitions of these functionals (see the proof of Asser-

tion (2) in Proposition 2.2) Assertion (3) implies that limnÑ8 Λj pfnq � 0,

1 ¤ j ¤ 4, whenever the sequence pfnqnPN � C�
b pEq decreases to 0. From

Theorem 2.1 we infer that each functional Λj, 1 ¤ j ¤ 4, can be represented

by a Borel measure µj : Λjpfq � ³
fdµj , 1 ¤ j ¤ 4, f P CbpEq. It follows

that Λpfq � ³
fdµ, f P CbpEq, where µ � µ1 � µ2 � iµ3 � iµ4.

(4) ùñ (5). From the apparently weaker hypotheses in Assertion (4)

compared to (3) we still have to prove that the functionals Λj , 1 ¤ j ¤
4, as described in the implication (3) ùñ (5) have the property that

limnÑ8 Λj pfnq � 0 whenever the sequence pfnqnPN � C�
b pEq decreases

pointwise to 0. We will give the details for the functional Λ1 � pℜΛq�. This
suffices because Λ2 � pℜ p�Λqq�, Λ3 � pℜ p�iΛqq�, and Λ4 � pℜ piΛqq�.
So let the sequence pfnqnPN � C�

b pEq decreases pointwise to 0. Fix ε ¡ 0,

and choose 0 ¤ g1 ¤ f1, g1 P CbpEq, in such a way that

Λ1 pf1q � pℜΛq� pf1q ¤ ℜ pΛ pg1qq � 1

2
ε. (2.18)

Then we choose a sequence of functions pukqkPN � C�
b pEq such that g1 �

supnPN°n
k�1 uk �°8

k�1 uk (which is a pointwise increasing limit), and such

that uk ¤ fk � fk�1, k P N. In Lemma 2.1 below we will show that such

a decomposition is possible. Then g1 �°n
k�1 uk decreases pointwise to 0,

and hence by (4) we have

ℜΛ pg1q ¤ ℜΛ

�
ņ

k�1

uk

�� 1

2
ε, for n ¥ nε. (2.19)

From (2.18) and (2.19) we infer for n ¥ nε the inequality

Λ1 pf1q � pℜΛq� pf1q ¤ ℜ pΛ pg1qq � 1

2
ε¤ ℜΛ

�
ņ

k�1

uk

�� ε � ņ

k�1

ℜΛ pukq � ε ¤ ņ

k�1

pℜΛq� pfk � fk�1q � ε� ņ

k�1

Λ1 pfk � fk�1q � ε � Λ1 pf1q � Λ1 pfn�1q � ε. (2.20)

From (2.20) we deduce Λ1 pfnq ¤ ε for n ¥ nε � 1. Since ε ¡ 0 was

arbitrary, this shows limnÑ8 Λ1 pfnq � 0. This is true for the other linear

functionals Λ2, Λ3 and Λ4 as well. As in the proof of the implication (3) ùñ
(5) from Theorem 2.1 it follows that each functional Λj , 1 ¤ j ¤ 4, can be
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represented by a Borel measure µj : Λjpfq � ³
fdµj, 1 ¤ j ¤ 4, f P CbpEq.

It follows that Λpfq � ³
fdµ, f P CbpEq, where µ � µ1 � µ2 � iµ3 � iµ4.

(5) ùñ (1). The proof of Assertion (1) in Proposition 2.2 then shows

that the functional Λ belongs to pCbpEq, Tβq�.
This proves Corollary 2.1. �

Lemma 2.1. Let the sequence pfnqnPN � C�
b pEq decrease pointwise to 0,

and 0 ¤ g ¤ f1 be a continuous function. Then there exists a sequence of

continuous functions pukqkPN such that 0 ¤ uk ¤ fk � fk�1, k P N, and

such that g � supnPN°n
k�1 uk � °8

k�1 uk which is a pointwise monotone

increasing limit.

Proof. We write g � v1 � u1 � v2 � °n
k�1 uk � vn�1, and vn�1 �

un�1 � vn�2 where u1 � g ^ pf1 � f2q, un�1 � vn�1 ^ pfn�1 � fn�2q, and
vn�2 � vn�1 � un�1. Then 0 ¤ vn�1 ¤ vn ¤ fn. Since the sequencepfnqnPN decreases to 0, the sequence pvnqnPN also decreases to 0, and thus

g � supnPN°n
k�1 uk.

The latter shows Lemma 2.1. �

In the sequel we write MpEq for the complex vector space of all complex

Borel measures on the Polish space E. The space is supplied with the weak

topology σ pE , CbpEqq. We also write M�pEq for the convex cone of all

positive (= non-negative) Borel measures in MpEq. The notation M�
1 pEq

is employed for all probability measures in M�pEq, and M�¤1pEq stands
for all sub-probability measures in M�pEq. We identify the space MpEq
and the space pCbpEq, Tβq�.
Theorem 2.2. Let M be a subset of MpEq with the property that for every

sequence pΛnqnPN in M there exists a subsequence pΛnk
qkPN such that

lim
kÑ8 sup

0¤f¤1

ℜ
�
iℓΛnk

pfq� � sup
0¤f¤1

ℜ
�
iℓΛpfq� , 0 ¤ ℓ ¤ 3,

for some Λ P MpEq. Then M is a relatively weakly compact subset of

MpEq if and only if it is equi-continuous viewed as a subset of the dual

space of pCbpEq, Tβq�.
Proof. First suppose that M is relatively weakly compact. Since the

weak topology on MpEq restricted to compact subsets is metrizable and

separable, the weak closure of M is bounded for the variation norm. With-

out loss of generality we may and do assume that M itself is weakly com-

pact. Fix f P CbpEq, f ¥ 0. Consider the mapping Λ ÞÑ pℜΛq� pfq,
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Λ P MpEq. Here we identify Λ � Λµ P pCbpEq, Tβq� and the correspond-

ing complex Borel measure µ � µΛ given by the equality Λpgq � ³
gdµ,

g P CbpEq. The mapping Λ ÞÑ pℜΛq� pfq, Λ P MpEq, is weakly continu-

ous. This can be seen as follows. Suppose Λnpgq Ñ Λpgq for all g P CbpEq.
Then pℜΛnq� pfq ¥ ℜΛn pgq for all 0 ¤ g ¤ f , g P CbpEq, and hence

lim inf
nÑ8 pℜΛnq� pfq ¥ lim inf

nÑ8 ℜΛn pgq � pℜΛq pgq.
It follows that

lim inf
nÑ8 pℜΛnq� pfq ¥ sup

0¤g¤f pℜΛq pgq � pℜΛq� pfq.
Since limnÑ8 pℜΛnq� p1q � pℜΛq� p1q we also have

lim inf
nÑ8 pℜΛnq� p1� fq ¥ sup

0¤g¤1�f pℜΛq pgq � pℜΛq� p1� fq.
Hence we see lim supnÑ8 pℜΛnq� pfq ¤ pℜΛq� pfq, which completes the

proof of Theorem 2.2. �

In what follows we write KpEq for the collection of compact subsets of E.

Theorem 2.3 gives an alternative description of a tight family of measures:

see Definition 2.1 below as well.

Theorem 2.3. Let M be a subset of MpEq. Then the following assertions

are equivalent:

(a) For every sequence pfnqnPN � CbpEq which decreases pointwise to the

zero function the equality inf
nPN sup

µPM »
fnd |µ| � 0 holds;

(b) The equality inf
KPKpEq supµPM |µ| pEzKq � 0 holds, and sup

µPM |µ| pEq   8;

(c) There exists a function u P H�pEq such that for all f P CbpEq and for

all µ PM the inequality
��³ fdµ�� ¤ }uf}8 holds.

Moreover, if M �MpEq satisfies one of the equivalent conditions (a), (b)

or (c), then M is relatively weakly compact.

Let Λ : CbpEq Ñ C be a linear functional such that infnPN |Λ| pfnq � 0

for every sequence pfnqnPN � CbpEq which decreases pointwise to zero.

Here the linear functional |Λ| is defined in such a way that |Λ| pfq �
sup t|Λpvq| : |v| ¤ f, v P CbpEqu for all f P C�

b pEq. Then by Corollary

2.1 there exists a complex Borel measure µ such that Λpfq � ³
fdµ for all

f P CbpEq. The positive Borel measure |µ| is such that |Λ| pfq � ³
fd |µ|

for all f P CbpEq.
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Proof. (a) ùñ (b). By choosing the sequence fn � n�11 we see that

supµPM |µ| pEq   8. Next let ρ be a metric on E for which it is a Polish

space, let pxnqnPN be a dense sequence in E, and put

Bk,n �  
x P E : ρ px, xkq ¤ 2�n( .

Choose continuous functions wk,n P CbpEq such that 1Bc
k,n

¤ wk,n ¤
1Bc

k,n�1
. Put vℓ,n � min1¤k¤ℓ wk,n. Then for every n P N the sequence

ℓ ÞÑ vℓ,n decreases pointwise to zero. So for given ε ¡ 0 and for given n P N

there exists ℓnpεq such that
³
vℓnpεq,nd |µ| ¤ ε2�n for all µ P M . It follows

that |µ|��ℓnpεq
k�1 Bck,n

	 ¤ ε2�n, and hence|µ|�� 8¤
n�1

ℓnpεq£
k�1

Bck,n

�¤ ε, µ PM.

PutKpεq � �8
n�1

�ℓnpεq
k�1 Bk,n. ThenKpεq is closed, and thus complete, and

completely ρ-bounded. Hence it is compact. Moreover, |µ| pEzKpεqq ¤ ε

for all µ PM . Hence (b) follows from (a).

(b) ùñ (c). This proof follows the lines of proof of Assertion (1) of Propo-

sition 2.2. Instead of considering just one measure we now have a family of

measures M .

(c) ùñ (a). Essentially speaking this is a consequence of Dini’s lemma.

Here we use the following fact. If for some µ P MpEq the inequality��³ fdµ�� ¤ }uf}8 holds for all f P CbpEq, then we also have
��³ fd |µ|�� ¤}uf}8 for all f P CbpEq. Fix α ¡ 0. If pfnqnPN is any sequence in C�

b pEq
which decreases pointwise to zero, then for µ P M we have the following

estimate»
fnd |µ| ¤ max

���u1tu¥αufn��8 , ��u1tu αufn��8	¤ max

�}u}8 sup
xPtu¥αu fnpxq, α sup

xPE fnpxq�¤ max

�}u}8 sup
xPtu¥αu fnpxq, α sup

xPE f1pxq� . (2.21)

Because of the fact that the set tu ¥ αu is contained in a compact subset of

E from (2.21) and Dini’s lemma we deduce that infnPN supµPM ³
fnd |µ| ¤

α supxPE f1pxq for all α ¡ 0. Consequently, (a) follows.

Finally we prove that if M satisfies (c), then M is relatively weakly com-

pact. First observe that µ P M implies |µ| pEq ¤ }u}8. So the subset
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M is uniformly bounded, and since E is a Polish space, the same is true

for the ball tµ PMpEq : |µ| pEq ¤ }u}8u endowed with the weak topology.

Therefore, if pµnqnPN is a sequence inM it contains a subsequence pµnk
qkPN

such that Λpfq :� limkÑ8 ³
fdµnk

exists for all f P CbpEq. Then it follows

that |Λpfq| ¤ }uf}8 for all f P CbpEq. Consequently, the linear functional

Λ can be represented as a measure: Λpfq � ³
fdµ, f P CbpEq. It follows

that the weak closure of the set M is weakly compact.

This completes the proof of Theorem 2.3. �

The following result generalizes Theorem 2.3 to open subsets of E.

Theorem 2.4. Let M be a subset of MpEq, and let O be an open subset

of E. Then the following assertions are equivalent:

(a) For every sequence pfnqnPN � CbpEq, which decreases pointwise to zero

on the open subset O, the equality inf
nPN sup

µPM »
fnd |µ| � 0 holds;

(b) The equality inf
K�O,KPKpOq supµPM |µ| pEzKq � 0 holds, and

sup
µPM |µ| pEq   8;

(c) There exists a function u P H�pOq such that for all f P CbpEq and for

all µ PM the inequality
��³ fdµ�� ¤ }uf}8 holds.

(a1) For every sequence pfnqnPN � CbpEq which decreases pointwise to 1EzO
the equality inf

nPN sup
µPM »

fnd |µ| � 0 holds.

Moreover, if M �MpEq satisfies one of the equivalent conditions (a), (b)

or (c), then M
��
O
:�  

µ
��
O
: µ PM(

is relatively weakly compact in MpOq.
Proof. An analysis of the proof of Theorem 2.3, adapted to a genuine

open subset O instead of E will reveal this equivalence. The balls have to

be taken relative to a metric which makes O a Polish space: see the proof

of (a) ùñ (b). The constructed functions fn are identically one on EzO.
These arguments suffice to prove Theorem 2.4. �

In the terminology of Varadajan [Varadarajan (1961, 1999)] a functional Λ :

CbpEq Ñ C is called smooth if for every sequence pfnqnPN which decreases

pointwise to zero the following equality holds: limnÑ8 Λ pfnq � 0. So in

the following definition we could have said that a family of measures M

which satisfies one of the conditions in Theorem 2.4 is uniformly σ-smooth

on the open set O instead of “a tight family”.
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Definition 2.1. A family of complex measures M �MpEq is called tight

if it satisfies one of the equivalent conditions in Theorem 2.3 with O � E.

Let �M be a collection of linear functionals on CbpEq which are continuous

for the strict topology. Then each Λ P �M can be represented by a measure:

Λpfq � ³
fdµΛ, f P CbpEq. The collection �M of linear functionals is called

tight, provided the same is true for the family M � !
µΛ : Λ P �M)

.

Remark 2.2. In fact if M satisfies (a) in Theorem 2.4, then M satisfies

Dini’s condition in the sense that a sequence of functions µ ÞÑ |µ| pfnq which
decreasing pointwise to zero in fact converges uniformly on M . Assertion

(b) says that the family M is tight in the usual sense as it can be found

in the standard literature. Assertion (c) says that the family M is equi-

continuous for the strict topology.

The following corollary says that if for M in Theorem 2.3 we choose a

collection of positive measures, then the family M is tight if and only if it

is relatively weakly compact. Compare these results with Stroock [Stroock

(2000)].

Corollary 2.2. Let M be a collection of positive Borel measures. Then the

following assertions are equivalent:

(a) The collection M is relatively weakly compact.

(b) The collection M is tight in the sense that supµPM µpEq   8 and

infKPKpEq supµPM µ pEzKq � 0.

(c) There exists a function u P H�pEq such that
��³ fdµ�� ¤ }uf}8 for all

µ PM and for all f P CbpEq.
Remark 2.3. Suppose that the collection M in Corollary 2.2 consists of

probability measures and is closed with respect to the Lévy-Prohorov met-

ric. If M satisfies one of the equivalent conditions in Corollary 2.2, then

it is a weakly compact subset of P pEq, the collection of Borel probabil-

ity measures on E. For probability measures µ and ν the Lévy-Prohorov

metric dLPpµ, νq may be defined by

dLPpµ, νq � inf tε ¡ 0 : µpAq ¤ ν pAεq � εu ¤ 1. (2.22)

For a subset A � E, define the ε-neighborhood of A by

Aε :� tx P E : there exists y P A such that dpx, yq   εu � ¤
yPABpy, εq

where Bpy, εq is the open ball of radius ε centered at y. For more details

see Definition 3.2 in Chapter 3.
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Proof. Corollary 2.2 follows more or less directly from Theorem 2.3. Let

M be as in Corollary 2.2, and pfnqnPN be a sequence in CbpEq which de-

creases to the zero function. Then observe that the sequence of functions

µ ÞÑ ³
fnd |µ| � ³

fndµ, µ P M , decreases pointwise to zero. Each of these

functions is weakly continuous. Hence, if M is relatively weakly compact,

then Dini’s lemma implies that this sequence converges uniformly on M to

zero. It follows that assertion (a) in Corollary 2.2 implies assertion (a) in

Theorem 2.3. So we see that in Corollary 2.2 the following implications

are valid: (a) ùñ (b), and (b) ùñ (c). If M � M�pEq satisfies (c), then
Theorem 2.3 implies thatM is relatively weakly compact. This means that

the assertions (a), (b) and (c) in Corollary 2.2 are equivalent. �

We will also need the following theorem.

Theorem 2.5. Let pµnqnPN � MpEq be a tight sequence (see Definition

2.1) with the property that Λpfq :� limnÑ8 ³
fdµn exists for all f P CbpEq.

Let Φ � CbpEq be a family of functions which is equi-continuous and

bounded. Then Λ can be represented as a complex Borel measure µ, and

lim
nÑ8 sup

ϕPΦ ����» ϕdµn � »
ϕdµ

���� � 0.

Remark 2.4. According to the Theorem of Arzela-Ascoli an equi-

continuous and uniformly bounded family of functions restricted to a com-

pact subset K is relatively compact in CbpKq.
Proof. The fact that the linear functional Λ can be represented by a

Borel measure follows from Corollary 2.1 and Theorem 2.3. Assume to

arrive at a contradiction that

lim sup
nÑ8 sup

ϕPΦ ����» ϕdµn � »
ϕdµ

���� ¡ 0.

Then there exist ε ¡ 0, a subsequence pµnk
qkPN, and a sequence pϕkqkPN �

Φ such that ����» ϕkdµnk
� »

ϕkdµ

���� ¡ ε, k P N. (2.23)

Choose a compact subset of E in such a way that

sup
ϕPΦ }ϕ}8 � sup

nPN |µn| pEzKq ¤ ε

16
. (2.24)

By the Bolzano-Weierstrass theorem for bounded equi-continuous families

of functions, there exists a continuous function ϕK P CpKq and a subse-

quence of the sequence pϕkqkPN, which we call again pϕkqkPN, such that

lim
kÑ8 sup

xPK ��ϕkpxq � ϕKpxq�� � 0. (2.25)
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By Tietze’s extension theorem there exists a continuous function ϕ P
CbpEq such that ϕ restricted to K coincides with ϕK and such that|ϕ| ¤ 2 sup

ψPΦ }ψ}8. From (2.25) it follows there exists kε P N such that for

k ¥ kε the inequality

sup
nPN |µn| pEq }1K pϕk � ϕq}8 ¤ ε

8
. (2.26)

From (2.24)and (2.26) we obtain the following estimate:����» ϕkdµnk
� »

ϕkdµ

����¤ ����»
K

pϕk � ϕq dµnk
� »

K

pϕk � ϕq dµ����� �����»EzK pϕk � ϕq dµnk
� »

EzK pϕk � ϕq dµ������ ����» ϕdµnk
� »

ϕdµ

����¤ }1K pϕk � ϕq}8 p|µnk
| pKq � |µ| pKqq� 4 sup

ψPΦ }ψ}8 p|µnk
| pEzKq � |µ| pEzKqq � ����» ϕdµnk

� »
ϕdµ

����¤ 2 }1K pϕk � ϕq}8 sup
kPN |µnk

| pKq� 8 sup
ψPΦ }ψ}8 sup

kPN |µnk
| pEzKq � ����» ϕdµnk

� »
ϕdµ

����¤ 3

4
ε� ����» ϕdµnk

� »
ϕdµ

���� . (2.27)

Since limnÑ8 ��³ϕdµn � ³
ϕdµ

�� � 0 the equality in (2.27) implies����» ϕkdµnk
� »

ϕkdµ

����   ε (2.28)

for k large enough. The conclusion in (2.28) contradicts our assumption in

(2.23).

This proves Theorem 2.5. �

Occasionally we will need the following version of the Banach-Alaoglu the-

orem; see e.g. Theorem 8.4. We use the notation 〈f, µ〉 � ³
E
fpxq dµpxq,

f P CbpEq, µ PMpEq. For a proof of the following theorem we refer to e.g.

[Rudin (1991)]. Notice that any Tβ-equi-continuous family of measures is

contained in Bu for some u P HpEq. Here Bu is the collection defined in

(2.29) below.



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

128 Markov processes, Feller semigroups and evolution equations

Theorem 2.6. (Banach-Alaoglu) Let u be a function in HpEq, and define

the subset Bu of MpEq by
Bu � tµ PMpEq : |〈f, µ〉| ¤ }uf}8 for all f P CbpEqu . (2.29)

Then Bu is σ pMpEq, CbpEqq-compact.

Since the space pCbpEq, Tβq is separable, it follows that for every sequencepµnqnPN in Bu there exists a measure µ PMpEq and a subsequence pµnk
qkPN

such that lim
kÑ8 〈f, µnk

〉 � 〈f, µ〉 for all f P CbpEq.
Instead of “σ pMpEq, CbpEqq”-convergence we often write “weak�-con-

vergence”, which is a functional analytic term. In a probabilistic context

people usually write “weak convergence”. Another term which is in use

is “convergence relative to the Bernoulli topology”: see e.g. [Bloom and

Heyer (1995)] and [Berg and Forst (1975)].

2.1.3 Integral operators on the space of bounded continuous

functions

We insert a short digression to operator theory. Let E1 and E2 be two

Polish spaces, and let T : Cb pE1q Ñ Cb pE2q be a linear operator with the

property that its absolute value |T | : Cb pE1q Ñ Cb pE2q determined by the

equality |T | pfq � sup t|Tg| : |g| ¤ fu , f P Cb pE1q , f ¥ 0,

is well-defined and acts as a linear operator from Cb pE1q to Cb pE2q. En-

dow the spaces Cb pE1q and Cb pE2q with the strict topology, and let the

symbol L pCb pE1q , Cb pE2qq denote the space of linear operators which are

continuous for the respective strict topologies.

Definition 2.2. A family of linear operators tTα : α P Au, where every

Tα P L pCb pE1q , Cb pE2qq is called equi-continuous for the strict topology

if for every v P H pE2q there exists u P H pE1q such that the inequality}vTαf}8 ¤ }uf}8 holds for all α P A and for all f P Cb pE1q.
So the notion “equi-continuous for the strict topology” has a functional

analytic flavor.

Definition 2.3. A family of linear operators tTα : α P Au, where every Tα
belongs to L pCb pE1q , Cb pE2qq, is called tight if for every compact subsetK

of E2 the family of functionals tΛα,x : α P A, x P Ku is tight in the sense

of Definition 2.1. Here the functional Λα,x : Cb pE1q Ñ C is defined by
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Λα,xpfq � Tαfpxq, f P Cb pE1q. Its absolute value |Λα,x| has then the

property that |Λα,x| pfq � |Tα| fpxq, f P Cb pE1q.
The following theorem says that a tight family of operators tTα : α P Au is
equi-continuous for the strict topology and vice versa. Both spaces E1 and

E2 are supposed to be Polish.

Theorem 2.7. Let A be some index set, and let for every α P A the map-

ping Tα : Cb pE1q Ñ Cb pE2q be a linear operator, which is continuous for

the uniform topology. Suppose that the family tTα : α P Au is tight. Then

for every v P H pE2q there exists u P H pE1q such that}vTαf}8 ¤ }uf}8 , for every α P A and for all f P Cb pE1q. (2.30)

Conversely, if the family tTα : α P Au is equi-continuous in the sense that

for every v P H pE2q there exists u P H pE1q such that (2.30) is satisfied.

Then the family tTα : α P Au is tight.

If the family tTα : α P Au satisfies (2.30), then the family t|Tα| : α P Au
satisfies the same inequality with |Tα| instead of Tα. The argument to see

this goes in more or less the same way as we will prove the first part of

Proposition 2.7 below. Fix f P Cb pE1q, α P A, and x P E1, and let the

functions u P H pE1q and v P H pE2q be such that (2.30) is satisfied. Choose

ϑ P r�π, πs in such a way that|vpxq |Tα| pfqpxq| � |vpxq| |Tα| �ℜ �
eiϑf

�� pxq ¤ |vpxq| |Tα|�ℜ �
eiϑf

��	 pxq
(definition of |Tα|)� sup

!|vpxqTαgpxq| : |g| ¤ ℜ
�
eiϑf

��)¤ sup
!}ug}8 : |g| ¤ ℜ

�
eiϑf

��) ¤ }uf}8 . (2.31)

From (2.31) we see that the inequality in (2.30) is also satisfied for the

operators |Tα|, α P A.
Corollary 2.3. Like in Theorem 2.7 let A be some index set, and let for

every α P A the mapping Tα : Cb pE1q Ñ Cb pE2q be a positivity preserving

linear operator. Then the family tTα : α P Au is Tβ-equi-continuous if and

only if for every sequence pψmqmPN which decreases pointwise to 0, the

sequence tTα pψmfq : m P Nu decreases pointwise to 0 uniformly in α P A.



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

130 Markov processes, Feller semigroups and evolution equations

Proof. [Proof of Corollary 2.3.] Choose v P H�pEq. The proof follows

by considering the family of functionals Λα,x : CbpEq Ñ C, α P A, x P E,

defined by Λα,xfpxq � vpxqTαfpxq, f P CbpEq. If the family tTα : α P Au
is Tβ-equi-continuous, then the family tΛα,x : α P A, x P Eu is tight. For

example, it then easily follows that tΛv,α,xfm : α P A, x P Eu converges

uniformly in α P A, x P E, to 0, provided that the sequence pfmqmPN de-

creases pointwise to 0. Conversely, suppose that for any given v P H�pEq,
and for any sequence of functions pfmqmPN � CbpEq which decreases point-

wise to 0, the sequence tΛv,α,xfm : α P A, x P Eu
mPN converges uniformly

to 0. Then the family tΛα,x : α P A, x P Eu is tight: see Theorem 2.7. This

completes the proof of Corollary 2.3. �

Proof. [Proof of Theorem 2.7.] Like in Definition 2.3 the functionals

Λα,x, α P A, x P E1, are defined by Λα,xpfq � rTαf s pxq, f P Cb pE1q.
First we suppose that the family tTα : α P Au is tight. Let pfnqnPN �
C�
b pE1q be sequence of continuous functions which decreases pointwise to

zero, and let v P H pE2q be arbitrary. Since the family tTα : α P Au is tight,
it follows that, for every compact subset K the collection of functionalstΛα,x : α P A, x P Ku is tight. Then, since the sequence pfnqnPN � C�

b pE1q
decreases pointwise to zero, we have

lim
nÑ8 sup

αPA, xPK |Λα,x| pfnq � 0 for every compact subset K of E1. (2.32)

From (2.32) it follows that limnÑ8 supαPA, xPK |vpxq| |Λα,x| pfnq � 0. Hence

the family of functionals t|vpxq|Λα,x : α P A, x P E1u is tight. By Theorem

2.3 (see Definition 2.1 as well) it follows that there exists a function u P
H pE1q such that|vpxq rTαf s pxq| � |vpxqΛα,xpfq| ¤ }uf}8 (2.33)

for all f P Cb pE1q, for all x P E and for all α P A. The inequality in (2.33)

implies the equi-continuity property (2.30).

Next let the family tTα : α P Au be equi-continuous in the sense that it

satisfies inequality (2.30). Then the same inequality holds for the familyt|Tα| : α P Au; the argument was given just prior to the proof of Theorem

2.7. Let K be any compact subset of E1 and let pfnqnPN � C�
b pE1q be a

sequence which decreases to zero. Then there exists a function u P H pE1q
such that

sup
αPA, xPK r|Tα| fns pxq � }1K |Tα|fn}8 ¤ }ufn}8 . (2.34)

From (2.34) it readily follows that limnÑ8 supαPA, xPK r|Tα| fns pxq � 0. By

Definition 2.3 it follows that the family tTα : α P Au is tight.
This completes the proof of Theorem 2.7. �
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Theorem 2.8. Let E1 and E2 be two Polish spaces, and let U :

Cb pE1,Rq Ñ Cb pE2,Rq be a mapping with the following properties:

(1) If f1 and f2 P Cb pE1q are such that f1 ¤ f2, then U pf1q ¤ U pf2q. In

other words the mapping f ÞÑ Uf , f P Cb pE1,Rq is monotone.

(2) If f1 and f2 belong to Cb pE1,Rq, and if α ¥ 0, then U pf1 � f2q ¤
U pf1q � U pf2q, and U pαf1q � αU pf1q.

(3) U is unit preserving: U p1E1
q � 1E2

.

(4) If pfnqnPN � Cb pE1,Rq is a sequence which decreases pointwise to zero,

then so does the sequence pU pfnqqnPN.
Then for every v P H� pE2q there exists u P H� pE1q such that

sup
yPE2

vpyqU pℜfq pyq ¤ sup
xPE1

upxqℜfpxq, for all f P Cb pE1q and hence

sup
yPE2

vpyqU |f | pyq ¤ sup
xPE1

upxq |fpxq| , for all f P Cb pE1q. (2.35)

If the mapping U maps Cb pE1q to L8 pE,R, Eq, then the conclusion about

its continuity as described in (2.35) is still true provided it possesses the

above properties (1), (2), (3), and (4) is replaced by

(41) If pfnqnPN � Cb pE1,Rq is a sequence which decreases pointwise to zero,

then the sequence pU pfnqqnPN decreases to zero uniformly on compact

subsets of E2.

Proof. Put

Mℜ
vU � "

ν PM� pE1q : ν pE1q � sup
yPE2

vpyq, ℜ 〈g, ν〉 ¤ sup
yPE2

vpyq pUℜgq pyq
for all g P Cb pE1q* and

M
|�|
vU � "

ν PM� pE1q : ν pE1q � sup
yPE2

vpyq, |〈g, ν〉| ¤ sup
yPE2

vpyq pU |g|q pyq
for all g P Cb pE1q* . (2.36)

A combination of Theorem 2.3 and its Corollary 2.2 shows that the collec-

tionsMℜ
vU andM

|�|
vU are tight. Here we use hypothesis (4). We also observe

thatMℜ
vU �M

|�|
vU . This can be seen as follows. First suppose that ν PM |�|

vU

and choose g P Cb pE1q. Then we have

〈ℜg � }ℜg}8 , ν〉 ¤ sup
yPE2

vpyq pU |ℜg � }g}8|q pyq
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yPE2

pvpyqU pℜgq pyqq � sup
yPE2

vpyq }g}8� sup
yPE2

pvpyqU pℜgq pyqq � ν pE1q }g}8 . (2.37)

From (2.37) we deduce ℜ 〈g, ν〉 ¤ supyPE1
pvpyqU pℜgq pyqq, and hence

M
|�|
vU �Mℜ

vU . The reverse inclusion is shown by the following arguments:|〈g, ν〉| � sup
ϑPr�π,πs 〈ℜ �

eiϑg
�
, ν
〉¤ sup

ϑPr�π,πs supyPE2

vpyqU ���ℜ �
eiϑg

���� pyq¤ sup
ϑPr�π,πs supyPE2

vpyqU p|g|q pyq � sup
yPE2

vpyqU p|g|q pyq. (2.38)

From (2.38) the inclusionMℜ
vU �M

|�|
vU follows. So from now on we will write

MvU � Mℜ
vU � M

|�|
vU . There exists a function u P H�pEq such that for all

f P CbpEq and for all µ PM the inequality ℜ
³
fdµ ¤ supxPE ℜ pupxqfpxqq

holds. The result in Theorem 2.8 is a consequence of the following equalities

sup
yPE2

vpyqUℜfpyq � sup tℜ 〈f, ν〉 : ν PMvUu , and (2.39)

sup
yPE2

vpyqU |f | pyq � sup t|〈f, ν〉| : ν PMvUu . (2.40)

The equality in (2.39) follows from the Theorem of Hahn-Banach. In

the present situation it says that there exists a linear functional Λ :

Cb pE1,Rq Ñ R such that Λpfq ¤ sup
yPE2

vpyqUfpyq, for all f P Cb pE1,Rq,
and

Λ p1E1
q � sup

yPE2

vpyqU p1E1
q pyq � sup

yPE2

vpyq1E2
pyq � sup

yPE2

vpyq. (2.41)

Let f P Cb pE1,Rq, f ¤ 0. Then Λpfq ¤ sup
yPE2

vpyqUfpyq ¤ 0. Again using

Hypothesis 4 shows that Λ can be identified with a positive Borel measure

on E1, which than belongs to MvU . Consequently, the left-hand side of

(2.39) is less than or equal to its right-hand side. Since the reverse inequality

is trivial, the equality in (2.39) follows. The equality in (2.40) easily follows

from (2.39).

The assertion about a sub-additive mapping U which sends functions

in Cb pE1q to functions in L8 pE,R, Eq can easily be adopted from the first

part of the proof.

This concludes the proof of Theorem 2.8. �
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The results in Proposition 2.3 below should be compared with Definition

4.3. We describe two operators to which the results of Theorem 2.8 are

applicable. Let L be an operator with domain and range in CbpEq, with
the property that for all µ ¡ 0 and f P DpLq with µf � Lf ¥ 0 implies

f ¥ 0. There is a close connection between this positivity property (i.e.

positive resolvent property) and the maximum principle: see Definition 4.1

and inequality (4.46). In addition, suppose that the constant functions

belong to DpLq, and that L1 � 0. Fix λ ¡ 0, and define the operators

U
j
λ : CbpE,Rq Ñ L8 pE,R, Eq, j � 1, 2, by the equalities (f P Cb pE,Rq):

U1
λf � sup

KPKpEq inf
gPDpLq tg ¥ f1K : λg � Lg ¥ 0u , and (2.42)

U2
λf � inf

gPDpLq tg ¥ f : λg � Lg ¥ 0u . (2.43)

Here the symbol KpEq stands for the collection of all compact subsets of

E. Observe that, if g P DpLq is such that λg � Lg ¥ 0, then g ¥ 0. This

follows from the maximum principle.

Proposition 2.3. Let the operator L be as above, and let the operators U1
λ

and U2
λ be defined by (2.42) and (2.43) respectively. Then the following

assertions hold true:

(a) Suppose that the operator U1
λ has the additional property that for ev-

ery sequence pfnqnPN � CbpEq which decreases pointwise to zero the

sequence
�
U1
λfn

�
nPN does so uniformly on compact subsets of E. Then

for every u P H�pEq there exists a function v P H�pEq such that

sup
xPE upxqU1

λfpxq ¤ sup
xPE vpxqfpxq, and

sup
xPE upxqU1

λ |f | pxq ¤ sup
xPE vpxq |fpxq| for all f P Cb pE,Rq. (2.44)

(b) Suppose that the operator U2
λ has the additional property that for ev-

ery sequence pfnqnPN � CbpEq which decreases pointwise to zero the

sequence
�
U2
λfn

�
nPN does so uniformly on compact subsets of E. Then

for every u P H�pEq there exists a function v P H�pEq such that the

inequalities in (2.44) are satisfied with U2
λ instead of U1

λ. Moreover, for

f P D pLnq, µ ¥ 0, and n P N, the following inequalities hold:

µnf ¤ U2
λ pppλ� µq I � Lqn fq , and (2.45)

µn }uf}8 ¤ }v ppλ� µq I � Lqn f}8 . (2.46)

In (2.46) the functions u and v are the same as in (2.44) with U2
λ

replacing U1
λ.
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The inequality in (2.46) could be used to say that the operator L is Tβ-

dissipative: see inequality (4.14) in Definition 4.2. Also notice that U1
λpfq ¤

U2
λpfq, f P Cb pE,Rq. It is not clear, under what conditions U1

λpfq � U2
λpfq.

In Proposition 2.4 below we will return to this topic. The mapping U1
λ is

heavily used in the proof of (iii) ùñ (i) of Theorem 4.3. If the operator L

in Proposition 2.3 satisfies the conditions spelled out in assertion (a), then

it is called sequentially λ-dominant: see Definition 4.3.

Proof. The assertion in (a) and the first assertion in (b) is an immediate

consequence of Theorem 2.8. Let f P DpLq be real-valued. The inequality

(2.46) can be obtained by observing that

U2
λ ppλ� µq I � Lq f� inf
gPDpLq tg ¥ ppλ� µq I � Lq f : λg � Lg ¥ 0u� inf
gPDpLq tg ¥ ppλ� µq I � Lq f :pλ� µq g � Lg ¥ µg ¥ ppλ� µq I � Lq pµfqu� inf
gPDpLq tg ¥ ppλ� µq I � Lq f : λg � Lg ¥ 0, g ¥ µfu ¥ µf. (2.47)

Repeating the arguments which led to (2.47) will show the inequality in

(2.45). From (2.47) and (2.44) with U2
λ instead of U1

λ we obtain

sup
xPE upxq pµnfq pxq ¤ sup

xPEU2
λ ppλ� µq f � Lfq pxq¤ sup

xPE vpxq ppλ � µqI � Lqn fpxq, (2.48)

for µ ¥ 0 and f P D pLnq. The inequality in (2.46) is an easy consequence

of (2.48). This concludes the proof of Proposition 2.3. �

The following proposition is used to show that the semigroup generated by

the operator L is Tβ-equi-continuous: see Theorem 4.3.

Proposition 2.4. Let the operator L with domain and range in CbpEq have
the following properties:

(1) For every λ ¡ 0 the range of λI � L coincides with CbpEq, and the

inverse Rpλq :� pλI � Lq�1
exists as a positivity preserving bounded

linear operator from CbpEq to CbpEq. Moreover, 0 ¤ f ¤ 1 implies

0 ¤ λRpλqf ¤ 1.

(2) The equality lim
λÑ8 λRpλqfpxq � fpxq holds for every x P E, and f P

CbpEq.



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Strong Markov processes 135

(3) If pfnqnPN � CbpEq is any sequence which decreases pointwise to zero,

then for every λ ¡ 0 the sequence pλRpλqfnqnPN decreases to zero as

well.

Fix λ ¡ 0, and define the mappings U1
λ and U2

λ as in (2.42) and (2.43)

respectively. Then the (in-)equalities

sup
!pµR pλ� µqqk f ; µ ¡ 0, k P N

) ¤ U1
λpfq ¤ U2

λpfq (2.49)

hold for f P Cb pE,Rq. Suppose that f ¥ 0. If the function in the left

extremity of (2.49) belongs to CbpEq, then the first two terms in (2.49) are

equal. If it belongs to DpLq, then all three quantities in (2.49) are equal.

From the proof of Proposition 2.4, the following corollary is immediate: see

see (2.50) below.

Corollary 2.4. Let λ0 ¡ 0. Suppose that the family tλRpλq : λ ¥ λ0u has

the properties (2) and (3) of Proposition 2.4. Then the family of operatorstλRpλq : λ ¥ λ0u is Tβ-equi-continuous.

Proof. [Proof of Proposition 2.4.] First we observe that for everypλ, xq P p0,8q � E there exists a Borel measure B ÞÑ r pλ, x,Bq such that

λr pλ, x,Eq ¤ 1, and Rpλqfpxq � ³
E
fpyqr pλ, x, dyq, f P CbpEq. This re-

sult follows by considering the functional Λλ,x : CbpEq Ñ C, defined by

Λλ,xpfq � Rpλqfpxq. In fact

r pλ, x,Bq � sup
KPKpEq,K�B inf tRpλqfpxq : f ¥ 1Ku , B P E .

This result follows from Corollary 2.1. Often we write

Rpλq pf1Bq � »
B

fpyqr pλ, x, dyq , B P E , f P CbpEq.
Observe that the mapping B ÞÑ Rpλq pf1Bq is a positive Borel measure on

E. Moreover, by Dini’s lemma we see that

lim
nÑ8 sup

λ¥λ0

sup
xPK λRpλqfnpxq � 0, λ0 ¡ 0, (2.50)

whenever the sequence pfnqnPN � CbpEq decreases pointwise to zero, and K

is a compact subset of E. From Theorem 2.7 and its Corollary 2.3 it then

follows that the family of operators tλRpλq : λ ¥ λ0u is equi-continuous

for the strict topology Tβ , i.e. for every function u P H�pEq there exists a

function v P H�pEq such that

λ }uRpλqf}8 ¤ }vf}8 for all λ ¥ λ0 and all f P CbpEq. (2.51)
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Fix f P Cb pE,Rq and λ ¡ 0. Next we will prove the

U1
λpfq ¥ sup

"�
µ ppλ� µqI � Lq�1

	k
f : µ ¡ 0, k P N

*
. (2.52)

A version of this proof will be more or less retaken in (4.137) in the proof

of the implication (iii) ùñ (i) of Theorem 4.3 with D1 � L instead of L.

First we observe that for g P DpLq we have

λgpxq � Lgpxq � lim
µÑ8 µ pgpxq � µR pλ� µq gpxqq , x P E. (2.53)

If g P DpLq is such that λg � Lg ¥ 0, then pλ� µq g � Lg ¥ µg, and hence

g ¥ µRpλ�µqg for all µ ¡ 0. If g ¥ µRpλ�µqg, then µ pg � µRpλ� µqgq ¥
0, and by (2.53) we see λg�Lg ¥ 0. So that we have the following equality

of subsetstg P DpLq : λg � Lg ¥ 0u � tg P DpLq : g ¥ µR pλ� µq g for all µ ¡ 0u .
(2.54)

From (2.54) we infertg P DpLq : λg � Lg ¥ 0u � #
g P DpLq : g ¥ sup

µ¡0, kPN pµR pλ� µqqk g+ .
(2.55)

Let g P DpLq be such that g ¥ f1K and such that λg � Lg ¥ 0,

then (2.55) implies g ¥ sup
µ¡0, kPN pµR pλ� µqqk pf1Kq. Since the operatorspµR pλ� µqqk, µ ¡ 0, k P N, are integral operators, and bounded Borel

measures are inner-regular (with respect to compact subsets), we obtain

g ¥ sup
µ¡0, kPN pµR pλ� µqqk f,

and hence

sup
KPKpEq inf

gPDpLq tg ¥ f1K : λg � Lg ¥ 0u ¥ sup
µ¡0, kPN�µ ppλ� µq I � Lq�1

	k
f.

(2.56)

The inequality in (2.56) implies (2.52) and hence, since the inequality

U1
λpfq ¤ U2

λpfq is obvious, the inequalities in (2.49) follow. Here we employ

the fact that λg � Lg ¥ 0 implies g ¥ 0. Fix a compact subset K of E,

and f ¥ 0, f P CbpEq. If the function g � sup
µ¡0, kPN �µ ppλ� µq I � Lq�1

	k
f

belongs to CbpEq, then g ¥ f1K , and g ¥ µR pλ� µq g for all µ ¡ 0. Hence

it follows that

sup
µ¡0, kPN �µ ppλ� µq I � Lq�1

	k
f
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Next we show that τβ- lim
αÑ8αRpαqf � f . From the assumptions (2) and

(3), and from (2.51) it follows that DpLq � R
�pβI � Lq�1

	
is Tβ-dense

in CbpEq. Therefore let g be any function in DpLq, and let u P H�pEq.
Consider, for α ¡ λ0, the equalities

f � αRpαqf � f � g � αRpαq pf � gq � g � αRpαqg� f � g � αRpαq pf � gq �Rpαq pLgq , (2.58)

and the corresponding inequalities}u pf � αRpαqfq}8¤ }u pf � gq}8 � }uαRpαq pf � gq}8 � }uRpαq pLgq}8¤ }u pf � gq}8 � }v pf � gq}8 � }u}8
α

}Lg}8 . (2.59)

So that for given ε ¡ 0 we first choose g P DpLq in such a way that}u pf � gq}8 � }v pf � gq}8 ¤ 2

3
ε. (2.60)

Then we choose αε ¥ λ0 so large that
}u}8
αε

}Lg}8 ¤ 1

3
ε. From the latter,

(2.59), and (2.60) we conclude:}u pf � αRpαqfq}8 ¤ ε, for α ¥ αε. (2.61)

From (2.61) we see that Tβ- lim
αÑ8αRpαqf � f . So that the inequality in

(2.57) implies:

sup
µ¡0, kPN�µ ppλ� µq I � Lq�1

	k
f¥ inf tg ¥ f1K : g ¥ µR pλ� µq g, g P DppLqu , (2.62)

and consequently U1
λpfq ¤ fλ :� sup

µ¡0, kPN �µ ppλ� µq I � Lq�1
	k
f . It fol-

lows that fλ � U1
λpfq provided that f and fλ both belong to CbpEq. If

fλ P DpLq, then fλ � U1
λpfq and fλ ¥ µRpλ � µqfλ, and consequently

λfλ � Lfλ ¥ 0. The conclusion U2
λ pfq � fλ is then obvious.

This finishes the proof of Proposition 2.4. �

In the following proposition we see that a multiplicative Borel measure is

a point evaluation.

Proposition 2.5. Let µ be a non-zero Borel measure with the property that³
fgdµ � ³

fdµ
³
gdµ for all functions f and g P CbpEq. Then there exists

x P E such that
³
fdµ � fpxq for f P CbpEq.
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Proof. Since µ � 0 there exists f P CbpEq such that 0 � ³
fdµ �³

f1dµ � ³
fdµ

³
1dµ, and hence 0 � ³

1dµ � �³
1dµ

�2
. Consequently,³

1dµ � 1. Let f and g be functions in C�
b pEq. Then we have»

fgd |µ| � sup

"����» hdµ���� : |h| ¤ fg, h P CbpEq*� sup

"����» h1h2dµ���� : |h1| ¤ f, |h2| ¤ g, h1, h2 P CbpEq*� sup

"����» h1dµ���� : |h1| ¤ f, h1 P CbpEq*� sup

"����» h2dµ���� : |h2| ¤ g, h2 P CbpEq*� »
fd |µ| » gd |µ| . (2.63)

From (2.63) it follows that the variation measure |µ| is multiplicative as well.

Since E is a Polish space, the measure |µ| is inner-regular. So there exists a

compact subsetK of E such that |µ| pEzKq ¤ 1{2, and hence |µ| pKq ¡ 1{2.
Since |µ| is multiplicative it follows that |µ| pKq � 1 � |µ| pEq. It follows

that the multiplicative measure |µ| is concentrated on the compact subset

K, and hence it can be considered as a multiplicative measure on CpKq.
But then there exists a point x P K such that |µ| � δx, the Dirac measure

at x. So there exists a constant cx such that µ � cx |µ| � cxδx. Since

µpEq � δxpEq � 1 it follows that cx � 1. This proves Proposition 2.5. �

2.2 Strong Markov processes and Feller evolutions

In the sequel E denotes a separable complete metrizable topological Haus-

dorff space. In other wordsE is a Polish space. The space CbpEq is the space
of all complex valued bounded continuous functions. The space CbpEq is not
only equipped with the uniform norm: }f}8 :� supxPE |fpxq|, f P CbpEq,
but also with the strict topology Tβ . It is considered as a subspace of the

bounded Borel measurable functions L8pEq, also endowed with the supre-

mum norm.

Definition 2.4. A family tP ps, tq : 0 ¤ s ¤ t ¤ T u of operators defined on

L8pEq is called a Feller evolution or a Feller propagator on CbpEq if it

possesses the following properties:

(i) It leaves CbpEq invariant: P ps, tqCbpEq � CbpEq for 0 ¤ s ¤ t ¤ T ;
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(ii) It is an evolution: P pτ, tq � P pτ, sq � P ps, tq for all τ , s, t for which

0 ¤ τ ¤ s ¤ t and P pt, tq � I, t P r0, T s;
(iii) It consists of contraction operators: }P ps, tqf}8 ¤ }f}8 for all t ¥ 0

and for all f P CbpEq;
(iv) It is positivity preserving: f ¥ 0, f P CbpEq, implies P ps, tqf ¥ 0;

(v) For every f P CbpEq the function ps, t, xq ÞÑ P ps, tqfpxq is continuous on
the diagonal of the set tps, t, xq P r0, T s � r0, T s �E : 0 ¤ s ¤ t ¤ T u
in the sense that for every element pt, xq P p0, T s � E the equality

lim
sÒt,yÑx

P ps, tqfpyq � fpxq holds, and for every element ps, xq P r0, T q�
E the equality lim

tÓs,yÑx
P ps, tqfpyq � fpxq holds.

(vi) For every t P r0, T s and f P CbpEq the function ps, xq ÞÑ P ps, tqfpxq
is Borel measurable and if psn, xnqnPN is any sequence in r0, ts �
E such that sn decreases to s P r0, ts, xn converges to x P
E, and lim

nÑ8P psn, tq g pxnq exists in C for all g P CbpEq, then

lim
nÑ8P psn, tq f pxnq � P ps, tqfpxq.

(vii) For every pt, xq P p0, T s�E and f P CbpEq the following equality holds:

lim
sÒt, s¥τ P pτ, sq fpxq � P pτ, tq fpxq, τ P r0, tq.

Remark 2.5. Since the space E is Polish, the continuity as described in

(v) can also be described by sequences. So (v) is equivalent to the following

condition: for all elements pt, xq P p0, T s � E and ps, xq P r0, T q � E the

equalities

lim
nÑ8P psn, tq f pynq � fpxq and lim

nÑ8P ps, tnq f pynq � fpxq (2.64)

hold. Here psnqnPN � r0, ts is any sequence which increases to t, ptnqnPN �rs, T s is any sequence which decreases to s, and pynqnPN is any sequence in

E which converges to x P E. If for all f P CbpEq and t P r0, T s the functionps, xq ÞÑ P ps, tqfpxq, ps, xq P r0, ts�E, is continuous, then (vi) and (vii) are

satisfied. If the function ps, t, xq ÞÑ P ps, tq fpxq is continuous on the spacetps, t, xq P r0, T s � r0, T s �E : s ¤ tu, then the propagator P ps, tq possesses
properties (v) through (vii). In Proposition 2.6 we will single out a closely

related property. Its proof is part of the proof of Theorem 2.10.

Definition 2.5. Let the family tP ps, tq : 0 ¤ s ¤ t ¤ T u of operators de-

fined on L8pEq be a Feller evolution or a Feller propagator. It is called a

strong Feller evolution if for every Borel measurable function f P L8pEq,
the function pτ, t, xq ÞÑ P pτ, tq fpxq, 0 ¤ τ   t ¤ T , x P E, is continuous.
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Proposition 2.6. Let the family tP pτ, tq : 0 ¤ τ ¤ t ¤ T u possess the

properties (i) through (iv) of Definition 2.4. Suppose that for every f P
CbpEq the function pτ, t, xq ÞÑ P pτ, tq fpxq is continuous on the spacetpτ, t, xq P r0, T s � r0, T s �E : τ ¤ tu . (2.65)

Then for every f P Cb pr0, T s �Eq the function pτ, t, xq ÞÑ P pτ, tq f pt, �q pxq
is continuous on the space in (2.65).

It is noticed that assertions (iii) and (iv) together are equivalent to

(iii1) If 0 ¤ f ¤ 1, f P CbpEq, then 0 ¤ P ps, tqf ¤ 1, for 0 ¤ s ¤ t ¤ T .

In the presence of (iii), (ii) and (i), property (v) is equivalent to:

(v1) lim
tÓs }u pP ps, tqf � fq}8 � 0 and lim

sÒt }u pP ps, tqf � fq}8 � 0 for all f P
CbpEq and u P HpEq. So that a Feller evolution is in fact Tβ-strongly

continuous in the sense that, for every f P CbpEq and u P HpEq,
limps,tqÑps0,t0q

s¤s0¤t0¤t }u pP ps, tq f � P ps0, t0q fq}8 � 0, 0 ¤ s0 ¤ t0 ¤ T. (2.66)

Remark 2.6. Property (vi) is satisfied if for every t P p0, T s the functionps, xq ÞÑ P ps, x; t, Eq � P ps, tq1pxq is continuous on r0, ts � E, and if for

every sequence psn, xnqnPN � r0, ts � E for which sn decreases to s and

xn converges to x, the inequality lim supnÑ8 P psn, tq f pxnq ¥ P ps, tq fpxq
holds for all f P C�

b pEq. Since functions of the form x ÞÑ P ps, tqfpxq,
f P CbpEq, belong to CbpEq, it is also satisfied provided that for every

f P CbpEq we have

lim
nÑ8P psn, tq f � P ps, tq f, uniformly on compact subsets of E.

This follows from the inequality:|P psn, tq f pxnq � P ps, tq fpxq|¤ |P psn, tq f pxnq � P ps, tq pxnq| � |P ps, tq f pxnq � P ps, tq fpxq|
where sn Ó s, xn Ñ x as nÑ8, and f P CbpEq.
Proposition 2.7. Let tP ps, tq : 0 ¤ s ¤ t ¤ T u be a family of operators

having property (i) and (ii) of Definition 2.4. Then property (iii1) is equiv-
alent to the properties (iii) and (iv) together.

Moreover, if such a family tP ps, tq : 0 ¤ s ¤ t ¤ T u possesses property

(i), (ii) and (iii), then it possesses property (v) if and only if it possesses

(v 1).
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Proof. First suppose that the operator P ps, tq : L8pEq Ñ L8pEq has

the properties (iii) and (iv), and let f P CbpEq be such that 0 ¤ f ¤ 1.

Then by (iii) and (iv) we have 0 ¤ P ps, tqfpxq ¤ supyPE fpyq ¤ 1, and

hence (iii1) is satisfied. Conversely, let f P CbpEq and x P E. Then by (iii1)
the operator P ps, tq satisfies

ℜP ps, tqfpxq � rP ps, tqℜf s pxq ¤ sup
yPEℜfpyq ¤ }ℜf}8 . (2.67)

There exists ϑ P r�π, πs such that by (2.67) we have|P ps, tqfpxq| � ℜ
�
eiϑP ps, tqf� pxq� �

P ps, tqℜ �
eiϑf

�� pxq ¤ ��ℜ �
eiϑf

���8 ¤ }f}8 ,
from which (iii) easily follows. Property (iv) easily follows from (iii1).

Next, suppose that the family tP ps, tq : 0 ¤ s ¤ t ¤ T u possesses prop-
erty (v1). Then, by taking s0 � t0, it clearly has property (v). Fixps0, t0q P r0, T s � r0, T s in such a way that s0 ¤ t0. For the converse

implication we employ Theorem 2.7 with the families of operatorstP psm, s0q : 0 ¤ sm ¤ sm�1 ¤ s0u and tP pt0, tmq : t0 ¤ tm�1 ¤ tm ¤ T u
(2.68)

respectively. Let pfnqnPN be a sequence functions in C�
b pEq which decreases

pointwise to zero. Then by Dini’s lemma and assumption (v) we know that

lim
nÑ8 sup

mPN supxPK P psm, s0q fnpxq � lim
nÑ8 sup

mPN supxPK P pt0, tmq fnpxq � 0 (2.69)

for all compact subsets K of E. From (2.69) we see that the sequences

of operators in (2.68) are tight. By Theorem 2.7 it follows that they are

equi-continuous. If the pair ps, tq belongs to r0, s0s � rt0, T s, then we write

P ps, tq f�P ps0, t0q f � P ps, t0q pP pt0, tq � Iq f�pP ps, s0q � IqP ps0, t0q f.
(2.70)

Let u be a function in HpEq. Since the first sequence in (2.68) is equi-

continuous and by invoking (2.70) there exists a function v P HpEq such
that the following inequality holds for all m P N and all f P CbpEq:}u pP psm, tmq f � P ps0, t0q fq}8¤ }v pP pt0, tmq � Iq f}8 � }u pP psm, s0q � IqP ps0, t0q f} . (2.71)

In order to prove the equality in (2.66) it suffices to show that the right-

hand side of (2.71) tends to zero if m Ñ 8. By the properties of the

functions u and v it suffices to prove that

lim
mÑ8 }1K pP psm, s0q f � fq}8 � lim

mÑ8 }1K pP pt0, tmq f � fq}8 � 0

(2.72)
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for every compact subset K of E and for every function f P CbpEq. The

equalities in (2.72) follow from the sequential compactness of K and (v)

which imply that

lim
mÑ8P psm, s0q f pxmq � f px0q � lim

mÑ8P pt0, tmq f pxmq
whenever sm increases to s0, tm decreases to t0 and xm converges to x0.

This completes the proof of Proposition 2.7. �

2.2.1 The operators _t, ^t and ϑt

Before we introduce the definition of time-inhomogeneous Markov process

we introduce the operators_t and^t, and ϑt relative to a stochastic process
s ÞÑ Xpsq P E, s P r0, T s. These operators are called respectively maximum

time operator, minimum time operator, and time translation operator. Let

Y : s ÞÑ ps,Xpsqq be the corresponding space-time process. These are oper-

ators from the sample-path space r0, T s�Ω to itself. Their defining property

is given by Y �_tpsq � ps_ t,Xps_ tqq, Y �^tpsq � ps^ t,X ps^ tqq, and
Y � ϑtpsq � pps� tq ^ T,X pps� tq ^ T qq, s, t P r0, T s. This is perhaps

the right place to explain the compositions F � _t, F � ^t, and F � ϑt, if
F : ΩÑ C is F0

T -measurable, and if t P r0, T s. Such functions F are called

random variable. If F is of the form F � ±n
j�1 fj ptj , X ptjqq, where the

functions fj, 1 ¤ j ¤ n, are bounded Borel functions, defined on r0, T s�E,

then, by definition,

F � _t � n¹
j�1

fj ptj _ t,X ptj _ tqq , F � ^t � n¹
j�1

fj ptj ^ t,X ptj ^ tqq ,
and

F � ϑt � n¹
j�1

fj pptj � tq ^ T,X pptj � tq ^ T qq . (2.73)

If t in (2.73) is an
�
F0
s

�
sPr0,T s-stopping time, then a similar definition is

applied. By the Monotone Class Theorem, the definitions in (2.73) extend

to all F0
T measurable variables F , i.e. to all random variables. For a

discussion on the Monotone Class Theorem see Subsection 2.4.2.

Definition 2.6. Let for every pτ, xq P r0, T s � E, a probability measure

Pτ,x on Fτ
T be given. Suppose that for every bounded random variable

Y : ΩÑ R the equality

Eτ,x
�
Y � _t �� Fτ

t

� � Et,Xptq rY � _ts
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holds Pτ,x-almost surely for all pτ, xq P r0, T s � E and for all t P rτ, T s.
Then the processtpΩ,Fτ

T ,Pτ,xq , pXptq, τ ¤ t ¤ T q , p_t : τ ¤ t ¤ T q , pE, Equ (2.74)

is called aMarkov process. If the fixed time t P rτ, T smay be replaced with a

stopping time S attaining values in rτ, T s, then the process in (2.74) is called

a strong Markov process. By definition Pτ,△pAq � 1Apω△q � δω△
pAq. Here

A belongs to F , and ω△psq �△ for all s P r0, T s. IftpΩ,Fτ
T ,Pτ,xq , pXptq, τ ¤ t ¤ T q , p_t : τ ¤ t ¤ T q , pE, Equ

is a Markov process, then we write

P pτ, x; t, Bq � Pτ,xpXptq P Bq, B P E , x P E, τ ¤ t ¤ T, (2.75)

for the corresponding transition function. The operator family (of evolu-

tions, propagators) tP ps, tq : 0 ¤ s ¤ t ¤ T u
is defined byrP ps, tqf spxq � Es,x rfpXptqqs�»

fpyqP ps, x; t, dyq , f P CbpEq, s ¤ t ¤ T.

Let S : Ω Ñ rτ, T s be an pFτ
t qtPrτ,T s-stopping time. Then the σ-field Fτ

S is

defined by

Fτ
S � £

tPrτ,T s!A P Fτ
T : A

£ tS ¤ tu P Fτ
t

)
.

Of course, a random variable S : ΩÑ rτ, T s is called an pFτ
t qtPrτ,T s-stopping

time, provided that for every t P rτ, T s the event tS ¤ tu belongs to Fτ
t .

2.2.2 Generators of Markov processes and maximum prin-

ciples

We begin with the definition of of the generator of a time-dependent Feller

evolution.

Definition 2.7. A family of operators Lptq, 0 ¤ t ¤ T , is said to be

the (infinitesimal) generator of a Feller evolution tP ps, tq : 0 ¤ s ¤ t ¤ T u,
if Lpsqf � Tβ-lim

tÓs P ps, tqf � f

t� s
, 0 ¤ s ¤ T . This means that a func-

tion f belongs to D pLpsqq whenever Lpsqf :� lim
tÓs P ps, tqf � f

t� s
exists
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in CbpEq, equipped with the strict topology. It is the same as say-

ing that the function Lpsqf belongs to CbpEq, that the family of func-

tions

"
P ps, tqf � f

t� s
: t P ps, T q* is uniformly bounded and that conver-

gence takes place uniformly on compact subsets of E.

Such a family of operators is considered as an operator L with domain in

the space Cb pr0, T s �Eq. A function f P Cb pr0, T s �Eq is said to be-

long to DpLq if for every s P r0, T s the function x ÞÑ fps, xq is a mem-

ber of DpLpsqq and if the function ps, xq ÞÑ Lpsqf ps, �q pxq belongs to

Cb pr0, T s �Eq. Instead of Lpsqf ps, �q pxq we often write Lpsqf ps, xq. If

a function f P DpLq is such that the function s ÞÑ fps, xq is continuously

differentiable, then we say that f belongs to Dp1qpLq. The time derivative

operator
BBs is often written as D1. Its domain is denoted by D pD1q, and

hence Dp1qpLq � D pD1q�DpLq.
Definition 2.8. The family of operators Lpsq, 0 ¤ s ¤ T , is said to gener-

ate a time-inhomogeneous Markov processtpΩ,Fτ
T ,Pτ,xq , pXptq : T ¥ t ¥ τq , p_t : τ ¤ t ¤ T q , pE, Equ (2.76)

if for all functions u P DpLq, for all x P E, and for all pairs pτ, sq with

0 ¤ τ ¤ s ¤ T the following equality holds:

d

ds
Eτ,x ru ps,Xpsqqs � Eτ,x

�BuBs ps,Xpsqq � Lpsqu ps, �q pXpsqq� . (2.77)

Here it is assumed that the derivatives are interpreted as limits from the

right which converge uniformly on compact subsets of E, and that the

differential quotients are uniformly bounded.

So these derivatives are Tβ-derivatives.

Definition 2.9. By definition the Skorohod space D pr0, T s, Eq consists

of all functions from r0, T s to E which possess left limits in E and are

right-continuous. The Skorohod space D
�r0, T s, E△

�
consists of all func-

tions from r0, T s to E△ which possess left limits in E△ and are right-

continuous. More precisely, a path (or function) ω : r0, T s Ñ E△ belongs

to D
�r0, T s, E△

�
if it possesses the following properties:

(a) if ωptq P E, and s P r0, ts, then there exists ε ¡ 0 such that Xpρq P E
for ρPr0, t�εs, and ωpsq� lim

ρÓs ωpρq and ωps�q :� lim
ρÒs ωpρq belong to E.
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(b) if ωptq � △ and s P rt, T s, then ωpsq � △. In other words △ is an

absorbing state.

Observe that the range of ω P D pr0, T s, Eq is contained in a totally bounded

subset of E. Such sets are relatively compact. Also observe that the range

of ω P D �r0, T s, E△
�
restricted to an interval of the form r0, ts is also totally

bounded provided that ωptq P E. It follows that paths ω P D �r0, T s, E△
�

restricted to intervals of the form r0, ts have relatively compact range as long

as they have not reached the absorption state △, i.e. as long as ωptq P E.

Theorems 2.9, 2.10, 2.11, and 2.12 in §2.3 are well known in case E is

a locally compact second countable Hausdorff space. In fact the sample

space Ω should depend on τ . This is taken care of by assuming that the

measure Pτ,x is defined on the σ-field Fτ
T .

Let L be a linear operator with domain DpLq and range RpLq in CbpEq.
The following definition should be compared with Definition 4.1, and with

assertion (b) in Proposition 4.3 in Chapter 4.

Definition 2.10. Let E0 be subset of E. The operator L satisfies the

maximum principle on E0, provided

sup
xPE0

ℜ pλfpxq � Lfpxqq ¥ λ sup
xPE0

ℜfpxq, for all λ ¡ 0, and for all f P DpLq.
(2.78)

If L satisfies (2.78) on E0 � E, then the operator L satisfies the maximum

principle of Definition 4.1.

The next definition is the same as the one in Definition 4.5 in Chapter 4.

Definition 2.11. Let E0 be a subset of E. Suppose that the operator L

has the property that for every λ ¡ 0 and for every x0 P E0 the number

ℜh px0q ¥ 0, whenever h P DpLq is such that ℜ pλI � Lqh ¥ 0 on E0. Then

the operator L is said to satisfy the weak maximum principle on E0.

The following proposition says that the concepts in the definitions 2.10 and

2.11 coincide, provided 1 P DpLq and L1 � 0.

Proposition 2.8. If the operator L satisfies the maximum principle on

E0, then L satisfies the weak maximum principle on E0. Suppose that the

constant functions belong to DpLq, and that L1 � 0. If L satisfies the weak

maximum principle on E0, then it satisfies the maximum principle on E0.

Proof. First we observe that (2.78) is equivalent to

inf
xPE0

ℜ pλfpxq � Lfpxqq ¤ λ inf
xPE0

ℜfpxq, for all λ ¡ 0, and for all f P DpLq.
(2.79)



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

146 Markov processes, Feller semigroups and evolution equations

Hence, if λf � Lf ¥ 0 on E0, then (2.79) implies that ℜf px0q ¥ 0 for all

x0 P E0.

Conversely, suppose that 1 P DpLq and that L1 � 0. Let f P DpLq, put
m � inf tℜfpyq : y P E0u, and assume that

inf
xPE0

ℜ pλf � Lfq pxq ¡ λ inf
yPE0

ℜfpyq � λm. (2.80)

Then there exists ε ¡ 0 such that inf
xPE0

ℜ pλf � Lfq pxq ¥ λ pm� εq. Hence,
since L1 � 0, inf

xPEℜ pλI � Lq pf �m� εq pxq ¥ 0. Since the operator L

satisfies the weak maximum principle, we see ℜ pf �m� εq ¥ 0 on E0.

Since this is equivalent to ℜf ¥ m�ε on E0, which contradicts the definition

of m. Hence, our assumption in (2.80) is false, and consequently,

inf
xPE0

ℜ pλf � Lfq pxq ¤ λ inf
yPE0

ℜfpyq. (2.81)

Since (2.81) is equivalent to (2.78) this concludes the proof of Proposition

2.8. �

Definition 2.12. Let an operator L, with domain and range in CbpEq, sat-
isfy the maximum principle. Then L is said to possess the global Korovkin

property, if there exists λ0 ¡ 0 such that fore every x0 P E, the subspace

S pλ0, x0q, defined by

S pλ0, x0q � g P CbpEq : for every ε ¡ 0 the inequality (2.82)

sup th1px0q : pλ0I � Lqh1 ¤ ℜ g � ε, h1 P DpLqu¥ inf th2px0q : pλ0I � Lqh2 ¥ ℜ g � ε, h2 P DpLqu is valid
(
,

coincides with CbpEq.
Remark 2.7. Let D be a subspace of CbpEq with the property that for

every x0 P E the space Spx0q, defined by

S px0q � tg P CbpEq : for every ε ¡ 0 the inequality

sup th1px0q : h1 ¤ ℜ g � ε, h1 P Du¥ inf th2px0q : h2 ¥ ℜ g � ε, h2 P Du holdsu , (2.83)

coincides with CbpEq. Then such a subspace D could be called a global

Korovkin subspace of CbpEq. In fact the inequality in (2.83) is pretty much

the same as the one in (2.82) in case L � 0.

Any countable union of compact subsets of E is called σ-compact subset.

In what follows the symbol KσpEq denotes the collection of σ-compact
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subsets of E. In practical situations the set E0 in the following definition

is a member of KσpEq or a Polish (for instance an open) subset of E.

Definition 2.13. Let E0 be subset of E. Let an operator L, with domain

and range in CbpEq, satisfy the maximum principle on E0. Then L is said

to possess the Korovkin property on E0, if there exists λ0 ¡ 0 such that

for every x0 P K, the subspace Sloc pλ0, x0, E0q, defined by

Sloc pλ0, x0, E0q � !
g P CbpEq : for every ε ¡ 0 the inequality (2.84)

sup
h1PDpLq th1px0q : pλ0I � Lqh1 ¤ ℜ g � ε, on E0u¥ inf

h2PDpLq th2px0q : pλ0I � Lqh2 ¥ ℜ g � ε, on E0u),
coincides with CbpEq.
2.3 Strong Markov processes: Main results

The following theorems 2.9 through 2.13 contain the basic results about

strong Markov processes on Polish spaces, their sample paths, and their

generators. Theorem 2.9 says that a Feller evolution (or propagator) can

be considered as the one-dimensional distributions, or marginals, of a strong

Markov process. Theorem 2.10 describes the reverse situation: with certain

Markov processes we may associate Feller propagators. In Theorem 2.11 the

intimate link between unique solutions to the martingale problem and the

strong Markov property is established. Theorem 2.12 contains a converse

result: Markov processes can be considered as solutions to the martingale

problem. Finally, in Theorem 2.13 operators which possess unique linear

extensions which generate Feller evolutions, and for which the martingale

problem is uniquely solvable, are described. For such operators the martin-

gale problem is said to be well-posed. A Hunt process is a strong Markov

process which is quasi-left continuous with respect to the minimum com-

pleted admissible filtration tFτ
t uτ¤t¤T : see item (4) in Theorem 2.9 and

Definition 2.15. For Theorem 2.9 in the locally compact setting and a time-

homogeneous Feller evolution (i.e. a Feller-Dynkin semigroup) the reader

may e.g. consult [Blumenthal and Getoor (1968)]. It will be convenient

to insert some definitions before formulating the main results of Part 2 of

this book. The following definition should be compared with the definitions

given in (3.24), (3.25), (3.26), and (3.27) in §3.1.

Definition 2.14. Let tGτt : 0 ¤ τ ¤ t ¤ T u be family of σ-fields. This fam-

ily is called a double filtration if 0 ¤ τ1 ¤ τ2 ¤ t ¤ T implies Gτ2t � Gτ1t ,
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and τ ¤ t1 ¤ t2 ¤ T implies Gτt1 � Gτt2 . Unless specified otherwise a family

of the form tGτt : 0 ¤ τ ¤ t ¤ T u always denotes a double filtration. A ran-

dom variable S : ΩÑ rτ, T s is called a pGτt qtPrτ,T s-stopping time whenevertS ¤ tu P Gτt for all t P rτ, T s. The corresponding σ-field GτS is defined by

GτS � £
tPrτ,T s!A P GτT : A

£rτ, ts P Gτt

)
.

The right closure Gτt� of the σ-field Gτt is defined by Gτt� ��
sPpt,T s Gτs . If S :

ΩÑ rτ, T s is a pGτt qtPrτ,T s-stopping time, then the σ-field GτS� is defined by

GτS� � £
tPpτ,T s!A P GτT : A

£rτ, ts P Gτt�) .
A random variable S : Ω Ñ rτ, T s is called a terminal pGτt qtPrτ,T s-stopping
time provided that tt1   S ¤ t2u P Gt1t2 for all τ ¤ t1 ¤ t2 ¤ T . If S1 and

S2 : Ω Ñ rτ, T s are terminal pGτt qtPrτ,T s-stopping times such that S1 ¤ S2,

then the σ-field GS1

S2
is defined by

GS1

S2
� £

τ¤ρ T !A P GτS2
: A

£ tS1 ¡ ρu P GρS2

)� £
τ¤ρ T £

τ t¤T !A P GτS2
: A

£ tS1 ¡ ρu£ tS2 ¤ tu P Gρt

)� £
τ t¤T £

t¤ρ T !A P GτS2
: A

£ tS1 ¡ ρu£ tS2 ¤ tu P Gρt

)� £
τ t¤T !A P GτS2

: A
£ tS2 ¤ tu P GS1^t

t

)
where

GS1^t
t � £

τ¤ρ t!A P Gτt : A
£ tS1 ¡ ρu P Gρt

)
.

The right closure GS1

S2� of the σ-field GS1

S2
is defined by

GS1

S2� � £
τ¤ρ T £

τ t¤T !A P GτT : A
£ tS1 ¡ ρu£ tS2 ¤ tu P Gρt�) . (2.85)

Let
�
Ω,GτT ,

�
Gt1t2

�
τ¤t1¤t2¤T ,Pτ,x	 be a probability space with a double fil-

tration. Fix τ ¤ t1   t2 ¤ T . Then the Pτ,x-closure Gt1t2
Pτ,x

of the σ-field

Gt1t2 in GτT is defined by

Gt1t2
Pτ,x �  

A P GτT : there exist A1, A2 P Gt1t2 such that

A1 � A � A2 and Pτ,xrA2zA1s � 0
(
. (2.86)
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If in (2.86) the σ-field GτT is replaced with the power set of Ω, then we obtain

the Pτ,x-completion of the σ-field Gt1t2 . Similar conventions are employed

for Pτ,µ-closures and Pτ,µ-completions; here Pτ,µ rAs � ³
E
Pτ,x rAs dµpxq,

A P GτT . Occasionally we need the following σ-field:

GS1,_
S2

� £
0¤ρ¤T !A P GτT : _�1

ρ A P GS1

S2_ρ) .
Here the operator _ρ : Ω Ñ Ω is Gt1_ρt2_ρ -Gt1t2 -measurable, τ ¤ t1 ¤ t2 ¤ T ,

ρ P r0, T s. Suppose that Xpsq � _ρ � X ps_ ρq for all s P rτ, T s. If

the σ-fields Gt1t2 are generated by the state variables pXpsq : t1 ¤ s ¤ t2q,
τ ¤ t1 ¤ t2 ¤ T , then the maximum operators _ρ, τ ¤ ρ ¤ T , possess such

measurability properties.

In subsection 2.2.1 the reader finds some information on the operators _t,^t and ϑt, t ¥ 0. Notice that in the definition of GS1

S2
we need the fact that

the stopping times S1 and S2 are terminal and satisfy τ ¤ S1 ¤ S2 ¤ T ,

because we want to be sure that events of the form tS2 ¤ tu belong to this

σ-field. Such an event belongs to GS1

S2
provided that for every ρ, ρ1 P rτ, ts,

ρ1 ¤ ρ, the eventtS2 ¤ tu£ tS2 ¤ ρ2u£ 
S1 ¡ ρ1( �  

ρ1   S1 ¤ t^ ρ
(£ 

ρ1   S2 ¤ t^ ρ
(

belongs to Gρ
1
ρ . The latter follows from the inequality S1 ¤ S2 together

with the assumption that the stopping times S1 and S2 are terminal. Also

note that the right closure of GS1

S2� is given by

GS1

S2� � £
h¡0

GS1pS2�hq^T . (2.87)

The notion of strong Markov process relative to the minimal double filtra-

tion tFτ
t : 0 ¤ τ ¤ t ¤ T u is explained in Definition 2.6. The same defini-

tion can be used if a more general double filtration tFτ
t : 0 ¤ τ ¤ t ¤ T u

is employed. In the following definition we collect some notions related to

continuity of our Markov process.

Definition 2.15. Let!�
Ω,GτT , pGτt qtPrτ,T s ,Pτ,x	 , pXptq, τ ¤ t ¤ T q , p_t : τ ¤ t ¤ T q , pE, Eq) ,

(2.88)

be a Markov process. It is called normal if Pτ,x rXpτq � xs � 1 for allpτ, xq P r0, T s � E. It is called right-continuous if limtÓsXptq � Xpsq,
Pτ,x-almost surely for τ ¤ s ¤ T , possesses left limits in E on its life
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time (i.e. limtÒsXptq exists in E, whenever ζ ¡ s), and is quasi-left con-

tinuous (i.e. if pτn : n P Nq is an increasing sequence of
�
Fτ
t��-stopping

times, Xpτnq converges Pτ,x-almost surely to X pτ8q on the event tτ8   ζu,
where τ8 � supnPN τn). Here ζ is the life time of the process t ÞÑ Xptq:
ζ � inf ts ¡ 0 : Xpsq � △u, when Xpsq � △ for some s P r0, T s, and else-

where ζ � T . If in (2.88) the minimal σ-fields Fτ
t � σ pXpρq : τ ¤ ρ ¤ tq

are taken instead of Gτt , and if the Markov process in (2.88) has all these

properties, then it is called a Hunt process.

In the following theorem we see that with a Feller evolutiontP pτ, tq : 0 ¤ τ ¤ t ¤ T u (2.89)

a strong Markov process can be associated in such a way that the one-

dimensional distributions or marginals are determined by the operators

f ÞÑ P pτ, tq f , f P CbpEq. In fact every operator P pτ, tq can be written as

P pτ, tq fpxq � »
P pτ, x; t, dyq fpyq, f P CbpEq,

where the mappingpτ, x, t, Bq ÞÑ P pτ, x; t, Bq , pτ, x, t, Bq P r0, T s �E � r0, T s � E , τ ¤ t,

is a sub-probability transition function.

Definition 2.16. If the Feller evolution in (2.89) is strong Feller, then the

corresponding Markov process in (2.90) below is said to have the strong

Feller property, or to be strong Feller.

The proof of the following theorem can be found in Chapter 3 subsection

3.1.1.

Theorem 2.9. Let tP pτ, tq : τ ¤ t ¤ T u be a Feller evolution in CbpEq.
Then there exists a strong Markov process (in fact a Hunt process)tpΩ,Fτ

T ,Pτ,xq , pXptq, τ ¤ t ¤ T q , p_t : τ ¤ t ¤ T q , pE, Equ , (2.90)

such that rP pτ, tqf s pxq � Eτ,x rfpXptqqs , f P CbpEq, t ¥ 0. Moreover this

Markov process possesses the following properties:

(1) it is normal, i.e. Pτ,x rXpτq � xs � 1);

(2) it is right continuous, i.e. limtÓsXptq � Xpsq, Pτ,x-almost surely for

τ ¤ s ¤ T ;

(3) it possesses left limits in E on its life time, i.e. limtÒsXptq exists in

E, whenever ζ ¡ s;
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(4) it is quasi-left continuous: i.e. if pτn : n P Nq is an increasing sequence

of
�
Fτ
t��-stopping times, Xpτnq converges Pτ,x-almost surely to X pτ8q

on the event tτ8   ζu, where τ8 � supnPN τn).
Here ζ is the life time of the process t ÞÑ Xptq: ζ � inf ts ¡ 0 : Xpsq � △u,
when Xpsq � △ for some s P r0, T s, and elsewhere ζ � T . Put

Fτ
t� � £

sPpt,T sFτ
s � £

sPpt,T sσ pXpρq : τ ¤ ρ ¤ sq . (2.91)

Let F : ΩÑ C be a bounded Fs
T -measurable random variable. Then

Es,Xpsq rF s � Eτ,x
�
F
�� Fτ

s

� � Eτ,x
�
F
�� Fτ

s�� (2.92)

Pτ,x-almost surely for all τ ¤ s and x P E. Consequently, the process

defined in (2.90) is in fact a Markov process with respect to the right closed

filtrations:
�
Fτ
t��tPrτ,T s, τ P r0, T s. Moreover, the events tXptq P Eu andtXptq P E, ζ ¥ tu coincide Pτ,x-almost surely for τ ¤ t ¤ T and x P E.

Even more is true, the process defined in (2.90) is strong Markov with

respect to the filtrations
�
Fτ
t��tPrτ,T s, τ P r0, T s, in the sense that

ES,XpSq rF � _Ss � Eτ,x
�
F � _S �� Fτ

S�� (2.93)

for all bounded F0
T -measurable random variables F : Ω Ñ C and for all�

Fτ
t��tPrτ,T s-stopping times S : Ω Ñ rτ, T s. The σ-field Fτ

S� is defined in

Definition 2.14 equality (2.85): see (2.87), and (2.97) in Remark 2.8 as

well. As Ω the Skorohod space D pr0, T s, Eq, if P pτ, x : t, Eq � 1 for all

0 ¤ τ ¤ t ¤ T , or D
�r0, T s, E△

�
, otherwise, may be chosen.

The following theorem contains kind of a converse statement to Theorem

2.9. Its proof can be found in Chapter 3 subsection 3.1.2.

Theorem 2.10. Conversely, lettpΩ,Fτ
T ,Pτ,xq , pXptq, τ ¤ t ¤ T q , p_t : τ ¤ t ¤ T q , pE, Equ (2.94)

be a strong Markov process which is normal, right continuous, and possesses

left limits in E on its life time. Put, for x P E and 0 ¤ τ ¤ t ¤ T , and

f P L8 pr0, T s �E, Eq,rP pτ, tqf pt, �qs pxq � Eτ,x rf pt,Xptqqs � »
P pτ, x; t, dyq f pt, yq , (2.95)

where P pτ, x; t, Bq � Pτ,x rXptq P Bs, B P E. Suppose that the functionps, t, xq ÞÑ P ps, tqfpxq is continuous on the settps, t, xq P r0, T s � r0, T s �E : s ¤ tu
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for all functions f belonging to Cb pEq, 0 ¤ s ¤ t ¤ T . Then the familytP ps, tq : T ¥ t ¥ s ¥ 0u is a Feller evolution. Moreover, functions of the

form ps, t, xq ÞÑ P ps, tqf pt, �q pxq, f P Cb pr0, T s �Eq, are continuous on

the same space. The maximum operators _t : Ω Ñ Ω, t P rτ, T s, have the

property that for all pτ, xq P r0, T s � E the equality Xpsq � _t � X ps_ tq
holds Pτ,x-almost surely for all t P rτ, T s.
The following theorem shows that for generators of Feller evolutions the

martingale problem is uniquely solvable. Its proof is to be found in Chapter

3 subsection 3.1.3.

Theorem 2.11. Let the family L � tLpsq : 0 ¤ s ¤ T u be the generator of

a Feller evolution in CbpEq and let the process in (2.90) be the corresponding

Markov process. For every f P Dp1qpLq � D pD1q�DpLq and for everypτ, xq P r0, T s �E, the process

t ÞÑ f pt,Xptqq � fpτ,Xpτqq � » t
τ

� BBs � Lpsq
 f ps,Xpsqq ds (2.96)

is a Pτ,x-martingale for the filtration pFτ
t qT¥t¥τ , where each σ-field Fτ

t ,

T ¥ t ¥ τ ¥ 0, is the Pτ,x-completion of σ pXpuq : τ ¤ u ¤ tq. In fact

the σ-field Fτ
t may be taken as the Pτ,x-completion of the right closure

Fτ
t � �

s¡t σ pXpρq : τ ¤ ρ ¤ sq. It is also possible to complete Fτ
t with

respect to Pτ,µ, given by Pτ,µpAq � ³
Pτ,xpAqdµpxq. For Fτ

t the following

σ-field may be chosen:

Fτ
t � £

µPP pEq ¤
T¥s¡t tPτ,µ-completion of σ pXpuq : τ ¤ u ¤ squ .

The following theorem makes it clear that there is a converse to the state-

ment in Theorem 2.11. For a proof the reader may consult subsection 3.1.4

in Chapter 3.

Theorem 2.12. Conversely, let L � tLpsq : 0 ¤ s ¤ T u be a family of Tβ-

densely defined linear operators with domain DpLpsqq and range RpLpsqq
in CbpEq, such that Dp1qpLq is Tβ-dense in Cb pr0, T s �Eq. LetppΩ,Fτ

T ,Pτ,xq : pτ, xq P r0, T s �Eq
be the unique family of probability spaces with state variablespXptq : t P r0, T sq defined on the filtered space

�
Ω, pFτ

t qτ¤t¤T � with values

in the state space pE, Eq possessing the following properties: for all pairs
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0 ¤ τ ¤ t ¤ T the state variable Xptq is Fτ
t -E-measurable, for all pairspτ, xq P r0, T s�E, Pτ,x rXpτq � xs � 1, and for all f P Dp1qpLq the process

t ÞÑ f pt,Xptqq � fpτ,Xpτqq � » t
τ

� BBs � Lpsq
 f ps,Xpsqq ds
is a Pτ,x-martingale with respect to the filtration pFτ

t qτ¤t¤T . Then the

family of operators L � tLpsq : 0 ¤ s ¤ T u possesses a unique extension

L0 � tL0psq : 0 ¤ s ¤ T u ,
which generates a Feller evolution in CbpEq. It is required that the opera-

tor D1 � L is sequentially λ-dominant in the sense of Definition 4.3; i.e.

for every sequence of functions pψmqmPN � Cb pr0, T s �Eq which decreases

pointwise to zero the sequence
 
ψλn : n P N

(
, defined by

ψλn � sup
KPKpr0,T s�Eq inf tg ¥ ψn1K : g P D pD1 � Lq , pλI �D1 � Lq g ¥ 0u ,

decreases uniformly on compact subsets of r0, T s � E to zero as well.

In addition, the sample space Ω is supposed to be the Skorohod space

D
�r0, T s , E△

�
; in particular Xptq P E, τ ¤ s   t, implies Xpsq P E.

The following theorem gives Korovkin type conditions in order that a family

of operators possesses a unique extension which generates a Feller evolution.

For the proof the reader is referred to Chapter 3 subsection 3.1.5.

Theorem 2.13. (Unique Markov extensions) Suppose that the Tβ-densely

defined linear operator

D1 � L � " BBs � Lpsq : 0 ¤ s ¤ T

*
,

with domain and range in Cbpr0, T s � Eq, possesses the global Korovkin

property and satisfies the maximum principle, as exhibited in Definition

2.10. Also suppose that L assigns real functions to real functions. Then

the family L � tLpsq : 0 ¤ s ¤ T u extends to a unique generator L0 �tL0psq : 0 ¤ s ¤ T u of a Feller evolution, and the martingale problem is

well posed for the family of operators tLpsq : 0 ¤ s ¤ T u. Moreover, the

Markov process associated with tL0psq : 0 ¤ s ¤ T u solves the martingale

problem uniquely for the family L � tLpsq : 0 ¤ s ¤ T u.
Let E1

0 be a subset of E which is Polish for the relative topology. Put

E0 � r0, T s �E1
0. The same conclusion is true with E1

0 instead of E if the

operator D1 � L possesses the following properties:

(1) If f P Dp1qpLq vanishes on E0, then D1f �Lf vanishes on E0 as well.
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(2) The operator D1 � L satisfies the maximum principle on E0.

(3) The operator D1 � L is positive Tβ-dissipative on E0.

(4) The operator D1�L is sequentially λ-dominant on E0 for some λ ¡ 0.

(5) The operator D1 � L has the Korovkin property on E0.

The notion of maximum principle on E0 is explained in Definitions 2.11

and 2.10: see Proposition 2.8 as well. The concept of Korovkin prop-

erty on a subset E0 can be found in Definition 2.13 with D1 � L instead

of L. Let pD1 � Lq æE0
be the operator defined by D ppD1 � Lq æE0

q � 
fæE0

: f P Dp1qpLq(, and pD1 � Lq æE0
pfæE0

q � D1f �LfæE0
, f P DpLq.

Then the operator LæE0
possesses a unique linear extension to the generator

L0 of a Feller semigroup on Cb pE0q.
For the notion of Tβ-dissipativity the reader is referred to inequality

(4.14) in Definition 4.2, and for the notion of sequentially λ-dominant op-

erator see Definition 4.3. In Proposition 2.3, and in (4.16) of Definition 4.3

the function ψλn in Theorem 2.12 is denoted by U1
λ pψnq. The sequential

λ-dominance will guarantee that the semigroup which can be constructed

starting from the other hypotheses in Theorems 2.12 and 2.13 is a Feller

semigroup indeed: see Theorem 4.3.

Remark 2.8. Notice that in (2.93) we cannot necessarily write

ES,XpSq rF � _Ss � Eτ,x
�
F � _S �� Fτ

S

�
,

because events of the form tS ¤ tu may not be Fτ
t -measurable, and hence

the σ-field Fτ
S is not well-defined. In (2.93) the σ-field Fτ

S� is defined by

Fτ
S� � £

t¥0

!
A P Fτ

T : A
£rS ¤ ts P Fτ

t�) . (2.97)

Remark 2.9. Let d : E � E Ñ r0, 1s be a metric on E which turns E

into a complete metrizable space, and let △ be an isolated point of E△ �
E
� t△u. The metric d△ : E△ �E△ Ñ r0, 1s defined by

d△ px, yq � d px, yq1Epxq1Epyq � ��1t△upxq � 1t△upyq��
turns E△ into a complete metrizable space. Moreover, if pE, dq is separable,
then so is

�
E△, d△

�
. We also notice that the function x ÞÑ 1Epxq, x P E△,

belongs to Cb
�
E△

�
.

Remark 2.10. Let tP pτ, tq : 0 ¤ τ ¤ t ¤ T u be an evolution family on

CbpEq. Suppose that for any sequence of functions pfnqnPN which decreases

pointwise to zero limnÑ8 P pτ, tq fnpxq � 0, 0 ¤ τ ¤ t ¤ T . Then there
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exists a family of Borel measures tB ÞÑ P pτ, x; t, Bq : 0 ¤ τ ¤ t ¤ T u such
that

P pτ, tq fpxq � »
fpyqP pτ, x; t, dyq , f P CbpEq. (2.98)

This is a consequence of Corollary 2.1. In addition the familytB ÞÑ P pτ, x; t, Bq : 0 ¤ τ ¤ t ¤ T u
satisfies the equation of Chapman-Kolmogorov:»

P pτ, x; s, dzqP ps, z; t, Bq � P pτ, x; t, Bq , 0 ¤ τ ¤ s ¤ t ¤ T, B P E .

(2.99)

Next, for B P E△, and 0 ¤ τ ¤ t ¤ T we put

N pτ, x; t, Bq � P
�
τ, x; t, B

£
E
	� p1� P pτ, x; t, Eqq1Bp△q, x P E, and

N pτ,△; t, Bq � 1B p△q . (2.100)

Then the family tB ÞÑ N pτ, x; t, Bq : 0 ¤ τ ¤ t ¤ T u
satisfies the Chapman-Kolmogorov equation on E△, N

�
τ, x; t, E△

� � 1,

and N pτ,△; t, Eq � 0. So that if B ÞÑ P pτ, x; t, Bq is a sub-probability on

E , then B ÞÑ N pτ, x; t, Bq is a probability measure on E△, the Borel field

of E△.

Remark 2.11. Besides the family of (maximum) time operatorst_t : t P r0, T su we have the following more or less natural families:t^t : t P r0, T su (minimum time operators), and the time translation or

time shift operators
 
ϑTt : t P r0, T s(. Instead of ϑTt we usually write ϑt.

The operators ^t : Ω Ñ Ω have the basic properties: ^s � ^t � ^s^t,
s, t P r0, T s, and Xpsq � ^t � X ps^ tq, s, t P r0, T s. The operators

ϑt : Ω Ñ Ω, t P r0, T s, have the following basic properties: ϑs � ϑt � ϑs�t,
s, t P r0, T s, and Xpsq �ϑt � X pps� tq ^ T q � X pϑs�tp0qq. Compare with

subsection 2.2.1.

It is clear that if a diffusion process, i.e. a Pτ,x-almost surely continuous

Markov process pXptq,Ω,Fτ
t ,Pτ,xq generated by the family of operators

Lpτq, τ P r0, T s, exists, then for every pair pτ, xq P r0, T s � Rd, the mea-

sure Pτ,x solves the martingale problem πpτ, xq. Conversely, if the family

Lpτq, τ P r0, T s, is given, we can try to solve the martingale problem for

all pτ, xq P r0, T s � Rd, find the measures Pτ,x, and then try to prove that
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Xptq is a Markov process with respect to the family of measures Pτ,x. For

instance, if we know that for every pair pτ, xq P r0, T s � Rd the martin-

gale problem πpτ, xq is uniquely solvable, then the Markov property holds,

provided that there exists operators _s : Ω Ñ Ω, 0 ¤ s ¤ T such that

Xt � _s � Xt_s, Pτ,x-almost surely for τ ¤ t ¤ T , and τ ¤ s ¤ T . For

the time-homogeneous case see, e.g., [Ethier and Kurtz (1986)] or [Ikeda

and Watanabe (1998)]. The martingale problem goes back to Stroock and

Varadhan (see [Stroock and Varadhan (1979)]). It found numerous appli-

cations in various fields of Mathematics. We refer the reader to [Liggett

(2005)], [Kolokoltsov (2004b)], and [Kolokoltsov (2004a)] for more informa-

tion about and applications of the martingale problem. In [Eberle (1999)]

the reader may find singular diffusion equations which possess or which do

not possess unique solutions. Consequently, for (singular) diffusion equa-

tions without unique solutions the martingale problem is not uniquely solv-

able. Another important example is given by Nadirashvili [Nadirashvili

(1997)].

Remark 2.12. Examples of (Feller) semigroups can be manufactured by

taking a continuous function ϕ : r0,8q �E Ñ E with the property that

ϕ ps� t, xq � ϕ pt, ϕ ps, xqq ,
for all s, t ¥ 0 and x P E. Then the mappings f ÞÑ P ptqf , with P ptqfpxq �
f pϕ pt, xqq defines a semigroup. It is a Feller semigroup if limxÑ△ ϕ pt, xq �
△. An explicit example of such a function, which does not provide a Feller-

Dynkin semigroup on C0 pRq is given by ϕpt, xq � xb
1� 1

2
tx2

(example

due to V. Kolokoltsov). Put upt, xq � P ptqfpxq � f pϕpt, xqq. ThenBuBt pt, xq � �x3 BuBxpt, xq. In fact this (counter-)example shows that solu-

tions to the martingale problem do not necessarily give rise to Feller-Dynkin

semigroups. These are semigroups which preserve not only the continuity,

but also the fact that functions which tend to zero at △ are mapped to

functions with the same property. However, for Feller semigroups we only

require that continuous functions with values in r0, 1s are mapped to con-

tinuous functions with the same properties. Therefore, it is not needed to

include a hypothesis like (2.101) below in Theorem 2.12. Here (2.101) reads

as follows: for every pτ, s, t, xq P r0, T s3 �E, τ   s   t, the equality

Pτ,x rXptq P Es � Pτ,x rXptq P E, Xpsq P Es (2.101)

holds. On the other hand this hypothesis is implicitly assumed, because as

sample path space we take the Skorohod space D
�r0, T s , E△

�
. If Xptq P E,

then 0 ¤ s   t implies Xpsq P E.
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In fact the result as stated is correct, but in case E happens to be

locally compact, then the resulting semigroup need not be a Feller-Dynkin

semigroup. This means that the corresponding family of operators assigns

bounded continuous functions to functions in C0pEq, but they need not

vanish at △. This means that the main result, Theorem 2.5, as stated in

[van Casteren (1992)] is not correct. That is solutions to the martingale

problem can, after having visited △, still be alive.

Nadirashvili [Nadirashvili (1997)] constructs an elliptic operator in a

bounded open domain U � Rd with a regular boundary such that the

martingale problem is not uniquely solvable. More precisely the result

reads as follows. Consider an elliptic operator L � ḑ

j,k�1

a2j,k
B2BxjBxk , where

aj,k � aj, k are measurable functions on Rd such that

c�1 |ξ|2 ¤ ḑ

j,k�1

aj,kξjξk ¤ c |ξ|2 , ξ P Rd,

for some ellipticity constant c ¥ 1. There exists a diffusion processpXptq,Pxq corresponding to the operator L which can be defined as a solu-

tion to the martingale problem, i.e. P rXp0q � xs, and the process

t ÞÑ fpXptqq � fpXp0qq � » t
0

LfpXpsqq ds, t ¥ 0,

is a local Px-martingale for all f P C2
�
Rd

�
. For more details on diffusion

processes see the comments after Remark 2.11. Nadirashvili is interested

in nonuniqueness in the above martingale problem and in nonuniqueness

of solutions to the Dirichlet problem Lu � 0 in Ω, the unit ball in Rd,

u � g on BΩ, where Ω � Rd is a bounded domain with smooth boundary

and g P C2 pBΩq. In particular, so-called good solutions u to the Dirichlet

problem are investigated. These functions u are the limit of a subsequence

of solutions un, n P N, to Lnun � ḑ

j,k�1

anj,k
B2unBxjBxk � 0 in Ω, un � g onBΩ, where the operators Ln are elliptic with smooth coefficients anj,k and a

common ellipticity constant c such that anj,k Ñ aj,k almost everywhere in

Ω as n Ñ 8. The main result is the following theorem: There exists an

elliptic operator L of the above form defined in the unit ball B1 � Rd, d ¥ 3,

and there is a function g P C2 pBB1q such that the formulated Dirichlet

problem has at least two good solutions. An immediate consequence is

nonuniqueness in the corresponding martingale problem.
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In the case of a non-compact space the metric without the Lévy part is

not adequate enough. That is why we have added the Lévy term. The

problem is that the limits of the finite-dimensional distributions, given in

(3.108) below, on its own need not be a measure, and so there is no way of

applying Kolmogorov’s extension theorem.

For applications of the martingale problem in relation to partially ob-

served systems and hidden Markov processes see e.g. a forthcoming book

[Kurtz and Nappo (2010)], which goes back to [Kurtz and Ocone (1988)],

and to [Kurtz (1998)].

2.3.1 Some historical remarks and references

In [Dorroh and Neuberger (1993)] the authors also use the strict topol-

ogy to describe the behavior of semigroups acting on the space of bounded

continuous functions on a Polish space. In fact the author of the present

book was at least partially motivated by their work to establish a general

theory for Markov processes on Polish spaces. Another motivation is pro-

vided by results on bi-topological spaces as established by e.g. Kühnemund

in [Kühnemund (2003)]. Other authors have used this concept as well,

e.g. Es-Sarhir and Farkas in [Es-Sarhir and Farkas (2005)]. The notion of

“strict topology” plays a dominant role in Hirschfeld [Hirschfeld (1974)].

As already mentioned Buck [Buck (1958)] was the first author who intro-

duced the notion of strict topology (in the locally compact setting). He

denoted it by β in §3 of [Buck (1958)]. There are several other authors

who used it and proved convergence and approximation properties involv-

ing the strict topology: Buck [Buck (1974)], Prolla [Prolla (1993)], Pro-

lla and Navarro [Prolla and Navarro (1997)], Katsaras [Katsaras (1983)],

Ruess [Ruess (1977)], Giles [Giles (1971)], Todd [Todd (1965)], Wells [Wells

(1965)]. This list is not exhaustive: the reader is also referred to Prolla

[Prolla (1977)], and the literature cited there. The strict topology is also

called the mixed topology: see e.g. Goldys and van Neerven [Goldys and

van Neerven (2003)], Wiweger [Wiweger (1961)], Sentilles [Sentilles (1972)],

and Wheeler [Wheeler (1983)]. In [Cerrai (2001)] and [Cerrai (1994)] Cer-

rai calls the corresponding convergence the K-convergence: see Definition

B.1.1 in [Cerrai (2001)].

In [Varadhan (2007)] Varadhan describes a metric on the space

D pr0, 1s,Rq which turns it into a complete metrizable separable space; i.e.

the Skorohod topology turns D pr0, 1s,Rq into a Polish space. On the other

hand it is by no means necessary that the Skorohod topology is the most
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natural topology to be used on the space D
�r0, 1s,Rd�. For example in

[Jakubowski (1997)] Jakubowski employs a quite different topology on this

space. In [Jakubowski (2000)] Jakubowski elaborates on Skorohod’s ideas

about sequential convergence of distributions of stochastic processes. Af-

ter that the S-topology, as introduced by Jakubowski, has been used by

several others as well: see the references in [Boufoussi and van Casteren

(2004a)] as well. Definition 2.17 below also appears in [Boufoussi and van

Casteren (2004a)]. Although the definition is confined to R-valued paths,

the S-topology also extends easily to the finite dimensional Euclidean space

Rd. By V� � D pr0, T s,Rq we denote the space of nonnegative and non-

decreasing functions V : r0, T s Ñ r0,8q and V � V� � V�. We know

that any element V P V� determines a unique positive measure dV onr0, T s and V can be equipped with the topology of weak convergence of

measures; i.e. the equality limnÑ8 ³T
0
ϕpsqdVnpsq � ³T

0
ϕpsqdV psq for all

functions ϕ P C pr0, T s,Rq describes the weak convergence of the sequencepVnqnPN � V to V P V . Without loss of generality we may assume that the

functions V P V are right-continuous and possess left limits in R.

Definition 2.17. Let pY nq1¤n¤8 � D pr0, T s,Rq. The sequence pY nqnPN
is said to converges to Y 8 with respect to the S-topology, if for every

ε ¡ 0 there exist elements pV n,εq1¤n¤8 � V such that }V n,ε � Y n}8 ¤ ε,

n � 1, . . . ,8, and lim
nÑ8 » T

0

ϕpsq dV n,εpsq � » T
0

ϕpsq dV 8,εpsq, for all ϕ P
C pr0, T s,Rq.
2.4 Dini’s lemma, Scheffé’s theorem, and the monotone

class theorem

The contents of this section is taken from Appendix E in [Demuth and

van Casteren (2000)]. In this section we formulate and discuss these three

theorems.

2.4.1 Dini’s lemma and Scheffé’s theorem

The contents of this subsection is devoted to Dini’s lemma and Scheffé’s

theorem. Another proof of Dini’s lemma can be found in [Stroock (1999)],

Lemma 7.1.23, p. 146.

Lemma 2.2. (Dini) Let pfn : n P Nq be a sequence of continuous functions

on the locally compact Hausdorff space E. Suppose that fnpxq ¥ fn�1pxq ¥
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0 for all n P N and for all x P E. If limnÑ8 fnpxq � 0 for all x P E, then,

for all compact subsets K of E, limnÑ8 supxPK fnpxq � 0. If the function

f1 belongs to C0pEq, then limnÑ8 supxPE fnpxq � 0.

Proof. We only prove the second assertion. Fix η ¡ 0 and consider the

subset £
nPN tx P E : fnpxq ¥ ηu .

Since, by assumption, the function f1 belongs to C0pEq, and lim
nÑ8 fnpxq � 0,

x P E, it follows that the intersection£
nPN tx P E : fnpxq ¥ ηu

is void. As a consequence E � �
nPN tfn   ηu. Let ε ¡ 0 and put K �tf1 ¥ εu. The subset K is compact. By the preceding argument there exist

nε P N for which K � tfnε
  εu. For n ¥ nε, we have 0 ¤ fnpxq ¤ ε for all

x P E.

This completes the proof of Lemma 2.2. �

In Definition 2.18 and in Theorem 2.14 of this subsection pE, E ,mq may be

any measure space with mpBq ¥ 0 for B P E .

Definition 2.18. A collection of functions tfj : j P Ju in L1pE, E ,mq is

uniformly L1-integrable if for every ε ¡ 0 there exists g P L1pE, E , µq,
g ¥ 0, for which

sup
jPJ »t|fj |¥gu |fj| dm ¤ ε.

Remark 2.13. If the collection tfj : j P Ju is uniformly L1-integrable, and

if tgj : j P Ju is a collection for which |gj | ¤ |fj |, m-almost everywhere, for

all j P J , then the collection tgj : j P Ju is uniformly L1-integrable as well.

Remark 2.14. Cauchy sequences in L1pE, E ,mq are uniformly L1-

integrable.

Remark 2.15. Let f ¥ 0 be a function in L1 pRν ,B,mq, where m is the

Lebesgue measure. Suppose
³
fpxqdmpxq � 1 and limnÑ8 nνfpnxq � 0 for

all x �� 0. Put fnpxq � nνfpnxq, n P N. Then the sequence is not uniformly

L1-integrable. This will follow from Theorem 2.14 below.
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A version of Scheffé’s theorem reads as follows. Our proof uses the ar-

guments in the proof of Theorem 3.3.5 (Lieb’s version of Fatou’s lemma)

in Stroock [Stroock (1999)], p. 54. Another proof can be found in Bauer

[Bauer (1981)], Theorem 2.12.4, p. 103.

Theorem 2.14. (Scheffé) Let pfn : n P Nq be a sequence in L1pE, E ,mq. If

limnÑ8 fnpxq � fpxq, m-almost everywhere, then the sequence pfn : n P Nq
is uniformly L1-integrable if and and only

lim
nÑ8 » |fnpxq| dmpxq � » |fpxq| dmpxq.

Proof. Consider the m-almost everywhere pointwise inequality

0 ¤ |fn � f | � |f | � |fn| ¤ 2 |f | . (2.102)

First suppose that the sequence tfn : n P Nu is uniformly L1-integrable.

Then, by Fatou’s lemma,» |fpxq| dmpxq � »
lim inf |fnpxq| dmpxq ¤ lim inf

» |fnpxq| dmpxq
(choose g P L1pE,mq such that

³t|fn|¥gu |fnpxq| dmpxq ¤ 1)¤ lim inf

»t|fn|¥gu |fnpxq| dmpxq � »t|fn|¤gu |fnpxq| dmpxq¤ 1� »
gpxqdmpxq. (2.103)

From (2.103) we see that the function f belongs to L1pE,mq. From

Lebesgue’s dominated convergence theorem in conjunction with (2.103) we

infer

lim
nÑ8 » p|fn � f | � |f | � |fn|q dm � 0. (2.104)

Since the sequence tfn : n P Nu is uniformly L1-integrable, and since for m-

almost all x, limnÑ8 fnpxq � fpxq, we see that limnÑ8 ³ |fn � f |dm � 0.

So from (2.104) we get

lim
nÑ8 » |fn| dm � » |f | dm   8. (2.105)

Conversely, suppose (2.105) holds. Then f belongs to L1pE,mq. Again we

may invoke Lebesgue’s dominated convergence theorem to conclude (2.104)

from (2.102). Again using (2.105) implies limnÑ8 ³ |fn � f |dm � 0. An

appeal to Remark 2.14 yields the desired result in Theorem 2.14. �
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2.4.2 Monotone class theorem

Our presentation of the monotone class theorems is taken from [Blumenthal

and Getoor (1968)], pp. 5–7. For other versions of this theorem see e.g.

[Sharpe (1988)], pp. 364–366. Theorems 2.15, 2.16, and Propositions 2.9,

2.10 we give closely related versions of this theorem.

Definition 2.19. Let Ω be a set and let S be a collection of subsets of Ω.

Then S is a Dynkin system if it has the following properties:

(a) Ω P S;

(b) if A and B belong to S and if A � B, then AzB belongs to S;

(c) if pAn : n P Nq is an increasing sequence of elements of S, then the

union
�8
n�1An belongs to S.

The following result on Dynkin systems is well-known.

Theorem 2.15. Let M be a collection of subsets of of Ω, which is stable

under finite intersections. The Dynkin system generated by M coincides

with the σ-field generated by M.

Remark 2.16. A collection of subsets of Ω which is closed under finite

intersections is also called a π-system. A collection of subsets L of Ω is

called a λ-system if it has the following properties: (1) Ω P L; (2) if A

belongs to L, then its complement Ac also is a member of L; (3) if pAjqjPN
is a mutually disjoint sequence in L, then its union

�
j Aj belongs to L.

If a λ-system L is at the same time a π-system, then it is a σ-field. The

π-λ theorem says that the smallest λ-system containing a given π-system

P coincides with the σ-field generated by P . The π-λ theorem is closely

related to Theorem 2.15. For more details see e.g. Vestrup [Vestrup (2003)].

Theorem 2.16. Let Ω be a set and let M be a collection of subsets of of

Ω, which is stable (or closed) under finite intersections. Let H be a vector

space of real valued functions on Ω satisfying:

(i) The constant function 1 belongs to H and 1A belongs to H for all

A PM;

(ii) if pfn : n P Nq is an increasing sequence of non-negative functions in H

such that f � supnPN fn is finite (bounded), then f belongs to H.

Then H contains all real valued functions (bounded) functions on Ω, that

are σpMq measurable.
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Proof. Put D � tA � Ω : 1A P Hu. Then by (i) Ω belongs to D and

D � M. If A and B are in D and if B � A, then BzA belongs to D. IfpAn : n P Nq is an increasing sequence in D, then 1�An
� supn 1An

belongs

to D by (ii). Hence D is a Dynkin system, that contains M. Since M is

closed under finite intersection, it follows by Theorem 2.15 that D � σpMq.
If f ¥ 0 is measurable with respect to σpMq, then

f � sup
n

1

2n

¸n2n

j�1
1tf¥j2�nu � sup

n

1

2n
t2nmin pf, nqu . (2.106)

Since the functions 1tf¥j2�nu, j, n P N, are σpMq-measurable, we see

that f belongs to H. Here we employed the fact that σpMq � D. If f

is σpMq-measurable, then we write f as a difference of two non-negative

σpMq-measurable functions. This establishes Theorem 2.16. �

The previous theorems, i.e. Theorems 2.15 and 2.16, are used in the fol-

lowing form. Let Ω be a set and let pEi, EiqiPI be a family of measurable

spaces, indexed by an arbitrary set I. For each i P I, let Si denote a collec-

tion of subsets of of Ei, closed under finite intersection, which generates the

σ-field Ei, and let fi : ΩÑ Ei be a map from Ω to Ei. In our presentation

of the Markov property the space Ei are all the same, and the maps fi,

i P I, are the state variables Xptq, t ¥ 0. in this context the following two

propositions follow.

Proposition 2.9. Let M be the collection of all sets of the form�
iPJ f�1

i pAiq, Ai P Si, i P J , J � I, J finite. Then M is a collec-

tion of subsets of Ω which is stable under finite intersection and σpMq �
σ pfi : i P Iq.
Proposition 2.10. Let H be a vector space of real-valued functions on Ω

such that:

(i) the constant function 1 belongs to H;

(ii) if phn : n P Nq is an increasing sequence of non-negative functions in H

such that h � supn hn is finite (bounded), then h belongs to H;

(iii) H contains all products of the form
±
iPJ 1Ai

� fi, J � I, J finite, and

Ai P Si, i P J .
Under these assumptions H contains all real-valued functions (bounded)

functions in σpfi : i P Iq.
Definition 2.20. Theorems 2.15 and 2.16, and Propositions 2.9 and 2.10

are called the monotone class theorems.
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Other theorems and results on integration theory, not explained in the

book, can be found in any textbook on the subject. In particular this is

true for Fatou’s lemma and Fubini’s theorem on the interchange of the

order of integration. Proofs of these results can be found in [Bauer (1981)]

and [Stroock (1999)]. The same references contain proofs of the Radon-

Nikodym theorem. This theorem may be phrased as follows.

Theorem 2.17. (Radon-Nikodym) If a finite measure µ on some σ-finite

measure space pE, E ,mq is absolutely continuous with respect to m, then

there exists a function f P L1pE, E ,mq such that µpAq � ³
A
fpxqdmpxq for

all subsets A P E.

The measure µ is said to be absolutely continuous with respect to m if

mpAq � 0 implies µpAq � 0, and the measurem is said to be σ-finite if there

exists an increasing sequence pEn : n P Nq in E such that E � �
nPNEn and

for whichm pEnq   8, n P N. A very important application is the existence

of conditional expectations. This can be seen as follows.

Corollary 2.5. Let pΩ,F ,Pq be a probability space and let F0 be a sub-field

of F , and let Y : ΩÑ r0,8s be a F-measurable function (random variable)

in L1 pΩ,F ,Pq. Then there exists a function G P L1pE,F0,mq such that

E rY 1As � µpAq � E rG1As for all A P F0.

By convention the random variable G is written as G � E
�
Y

�� F0

�
. It is

called the conditional expectation on the σ-field F0.

Proof. Put mpAq � E rY 1As, A P F , and let µ be the restriction of

m to F0. If for some A P F0, mpAq � 0, then µpAq � 0. The Radon-

Nikodym theorem yields the existence of a function G P L1pE,F0,mq such
that E rY 1As � µpAq � E rG1As for all A P F0. �

2.4.3 Some additional information

The reader may find additional material about strong Markov process the-

ory in [Ethier and Kurtz (1986)], [Gillespie (1992)], [Sharpe (1988)]. Ma-

terial about infinite-dimensional stochastic processes and calculus can be

found in e.g. [Da Prato and Zabczyk (1992a, 1996); Cerrai (2001); Hairer

et al. (2004); Hairer (2009); Seidler (1997); Sanz-Solé (2005)]. In the follow-

ing references the reader may find topics on or related to Malliavin calculus:

[Bell (2006); Malliavin (1978); Norris (1986); Nualart (1998, 2006, 2009);

Üstünel and Zakai (2000b); Kusuoka and Stroock (1984, 1985, 1987)]. The
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following references discuss some more general stochastic processes includ-

ing a number of concrete examples: [Kallenberg (2002)], [Shanbhag and

Rao (2001)]. In the following references the authors apply Malliavin calcu-

lus to models in financial mathematics: [Di Nunno et al. (2009)], [Malliavin

and Thalmaier (2006)]. Notice that Malliavin calculus or stochastic vari-

ation calculus is “by nature” an infinite-dimensional calculus. For recent

results on stochastic partial differential equations see e.g. [Zhang (2010);

Kotelenez and Kurtz (2010); Holden et al. (2010)].
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Chapter 3

Strong Markov processes: Proof of

main results

The present chapter is completely devoted to a proof of the main results of

Part 2. Except for some results from Chapter 4 all proofs can be found in

the present chapter. Together with the results in Chapter 4 all proofs are

self-contained. Unfortunately there is quite a bit of technicality involved

in all these proofs. This technicality is due to fact that we are working in

a Polish space which is not necessarily locally compact, that the Markov

processes involved are time-dependent, may have finite life time, and may

have jumps.

3.1 Proof of the main results: Theorems 2.9 through 2.13

In the present chapter we will prove Theorems 2.9, 2.10, 2.11, 2.12 and 2.13,

which form the main results of Part 2 of this book. We will need a number

of auxiliary results which can be found in the current section or occasionally

in the sections 4.1 and 4.2. In particular the latter is true for Proposition

4.1, Proposition 4.4 and its Corollary 4.2, Corollary 4.3 to Proposition 4.5,

and Theorem 4.4. We will always give the relevant references. We need the

following definition.

Definition 3.1. Let tXptqutPr0,T s, and tY ptqutPr0,T s be stochastic pro-

cesses on
�
Ω,F0

T ,P
�
. The process tXptqutPr0,T s is a modification oftY ptqutPr0,T s if P rXptq � Y ptqs � 1 for all t P r0, T s.

3.1.1 Proof of Theorem 2.9

This subsection contains the proof of Theorem 2.9. It employs the Kol-

mogorov’s extension theorem and it uses the Polish nature of the state space

167
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E in an essential way. For more details on the Kolmogorov extension (or

existence) theorem see e.g. [Aliprantis and Border (1994)], [Bhattacharya

and Waymire (2007)], [Neveu (1965)], and [Dudley (2002)]. In subsection

3.1.7 the reader will find some information; in particular Theorem 3.1 is

essential in this aspect. One of the main difficulties is to prove that orbits

of the form
! rXpsq : τ ¤ s ¤ t, rXptq P E) are Pτ,x-almost surely contained

in (sequentially) relatively compact subsets of E: for details see Proposition

3.2 below.

Proof. [Proof of Theorem 2.9.] We begin with the proof of the existence

of a Markov process (2.90), starting from a Feller evolution: see Definition

2.4. First we assume P pτ, tq1 � 1. Remark 2.10 will be used to prove

Theorem 2.9 in case P pτ, tq1   1. Temporarily we write Ω � Er0,T s en-
dowed with the product topology, and product σ-field (also called product

σ-algebra), which is the smallest σ-field on Ω which renders all coordinate

mappings, or state variables, measurable. The state variablesXptq : ΩÑ E

are defined by Xpt, ωq � Xptqpωq � ωptq, ω P Ω, and the maximum map-

pings _s : Ω Ñ Ω, s P r0, T s, are defined by _spωqptq � ω ps_ tq. Let the

family of Borel measures ontB ÞÑ P pτ, x; t, Bq : B P E , pτ, xq P r0, T s �E, t P rτ, T su (3.1)

be determined by the equalities:

P pτ, tq fpxq � »
fpyqP pτ, x; t, dyq , f P CbpEq. (3.2)

By Kolmogorov’s extension theorem (see Theorem 3.1 below) there exists

a family of probability spacespΩ,Fτ
T ,Pτ,xq , pτ, xq P r0, T s �E,

such that

Eτ,x rf pX pt1q , . . . , X ptnqqs� »
. . .

»loomoon
n� f py1, . . . , ynqP pτ, x; t1, dy1q . . . P ptn�1, yn�1; tn, dynq (3.3)

where τ ¤ t1   � � �   tn ¤ T , and f P L8 �
En, Ebn�

. Notice that a

family of probability spaces together with a process t ÞÑ Xptq such that

(3.1), (3.2) and (3.3) are satisfied is Markov process in the sense that forpτ, xq P r0, T s � E and s P rτ, T s the following equality holds Pτ,x-almost

surely:

Eτ,x
�
f pX pt1q , . . . , X ptnqq �� Fτ

s

� � Es,Xpsq rf pX pt1q , . . . , X ptnqqs (3.4)
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for all bounded Borel measurable functions f on En, and for all finite

subsets τ ¤ s ¤ t1   � � �   tn ¤ T . In order to prove (3.4) the propagator

property, i.e. P pρ0, ρqP pρ, ρ1q � P pρ0, ρ1q, ρ0 ¤ ρ ¤ ρ1 ¤ T , is used

several times. For f P Cb pr0, T s �Eq, 0 ¤ f , and α ¡ 0 given we introduce

the following processes:

t ÞÑ αRpαqf pt,Xptqq � α

» 8
t

e�αpρ�tqP pt, ρ^ T q f pρ^ T, �q pXptqq dρ� α

» 8
t

e�αpρ�tqEt,Xptq rf pρ^ T,X pρ^ T qqs , t P r0, T s, and (3.5)

s ÞÑ P ps, tq f pt, �q pXpsqq � Es,Xpsq rf pt,Xptqqs , s P r0, ts, t P r0, T s.
(3.6)

The processes in (3.5) and (3.6) could have been more or less unified by

considering the process:ps, tq ÞÑα

» 8
t

e�αpρ�tqP ps, ρ^ T q f pρ^ T, �q pXpsqq dρ� αP ps, tqRpαqf pt, �q pXpsqq , 0 ¤ s ¤ t ¤ T. (3.7)

Observe that limαÑ8 αRpαqf pt,Xptqq � f pt,Xptqq, t P r0, T s. Here we

use the continuity of the function ρ ÞÑ P pt, ρq f pρ, �q pXptqq at ρ � t. In

addition, for pτ, xq P r0, T s�E fixed, we have that the family of functionals

f ÞÑ αRpαqf pt, �q pXptqq, α ¥ 1, t P rτ, T s, is Pτ,x-almost surely equi-

continuous for the strict topology: see Corollary 2.4.

Our first task will be to prove that for every pτ, xq P r0, T s � E the

orbit tpt,Xptqq : t P rτ, T su is a Pτ,x-almost surely sequentially compact.

Therefore we choose an infinite sequence pρn, X pρnqqnPN where ρn P rτ, T s,
n P N. This sequence contains an infinite subsequence psn, X psnqqnPN such

that sn   sn�1, n P N, or an infinite subsequence ptn, X ptnqqnPN such that

tn ¡ tn�1, n P N. In the first case we put s � supnPN sn, and in the second

case we write t � infnPN tn. In either case we shall prove that there exists

a subsequence which is Pτ,x-almost surely a Cauchy sequence in rτ, T s �E
for a compatible uniformly bounded metric. First we deal with the case

that tn decreases to t ¥ τ . Then we consider the stochastic process in

(3.6) given by ρ ÞÑ Et,Xptq rf pρ,Xpρqqs where f is an arbitrary function in

Cbpr0, T s � Eq. By hypothesis on the transition function P pτ, x; t, Bq we
have

lim
nÑ8Et,Xptq rf ptn, X ptnqqs� lim

nÑ8 »
P pt,Xptq; tn, dyq f ptn, yq � f pt,Xptqq . (3.8)
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By applying the argument in (3.8) to the process ρ ÞÑ Et,Xptqr|fpρ,Xpρqq|2s,
ρ P rt, T s, the Markov property implies

Eτ,x

���Et,Xptq rf pρ,Xpρqqs � f pρ,Xpρqq��2�� Eτ,x

�|f pρ,Xpρqq|2�� Eτ,x

���Et,Xptq rf pρ,Xpρqqs��2�� 2ℜEτ,x
�
f pρ,XpρqqEt,Xptq rf pρ,Xpρqqs�

(Markov property: Et,Xptq rf pρ,Xpρqqs � Eτ,x
�
f pρ,Xpρqq �� Fτ

t

�
Pτ,x-

almost surely)� Eτ,x

�|f pρ,Xpρqq|2�� Eτ,x

���Et,Xptq rf pρ,Xpρqqs��2�� 2ℜEτ,x
�
Et,Xptq rf pρ,XpρqqsEt,Xptq rf pρ,Xpρqqs�� Eτ,x

�|f pρ,Xpρqq|2�� Eτ,x

���Et,Xptq rf pρ,Xpρqqs��2� . (3.9)

Applying the argument in (3.8) to the process ρ ÞÑ Et,Xptq �|f pρ,Xpρqq|2�,
ρ P rt, T s, and employing (3.9) we obtain:

lim
nÑ8Eτ,x

���Et,Xptq rf ptn, X ptnqqs � f pρ,X pρqq��2� � 0. (3.10)

Again using (3.8) and invoking (3.10) we see that

lim
nÑ8 f ptn, X ptnqq � f pt,Xptqq

in the space L2 pΩ,Fτ
T ,Pτ,xq. Hence there exists a subsequence denote bypf ptnk

, X ptnk
qqqkPN which converges Pτ,x-almost surely to f pt,Xptqq. Let

d : E �E Ñ r0, 1s be a metric on E which turns it into a Polish space, and

let pxjqjPN be a countable dense sequence in E. The previous arguments

are applied to the function f : r0, T s �E Ñ R defined by

fpρ, xq � 8̧
j�1

2�j pd pxj , xq � |ρj � ρ|q , (3.11)

where the sequence pρjqjPN is a dense sequence in r0, T s. Like in the earlier

reasoning there exists a subsequence ptnk
, X ptnk

qqkPN such that

lim
kÑ8 f ptnk

, X ptnk
qq � f pt,Xptqq , Pτ,x-almost surely. (3.12)

It follows that limkÑ8 tnk
� t. From (3.12) we also infer that

lim
kÑ8 d pxj , X ptnk

qq � d pxj , Xptqq , Pτ,x-almost surely for all j P N.

(3.13)
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Since the sequence pxjqjPN is dense in E we see that

lim
kÑ8 d py,X ptnk

qq � d py,Xptqq , Pτ,x-almost surely for all y P E.

(3.14)

The substitution y � Xptq in (3.14) shows that

lim
kÑ8 ptnk

, X ptnk
qq � pt,Xptqq , Pτ,x-almost surely. (3.15)

Again let f P Cb pr0, T s �Eq be given. Next we consider the situation where

we have an infinite subsequence psn, X psnqqnPN such that sn   sn�1, n P N.

Put s � supnPN sn, and consider the process

ρ ÞÑ Eρ,Xpρq rf ps,Xpsqqs�»
P pρ,Xpρq; s, dyq fps, yq�P pρ, sq f ps, �q pXpsqq

(3.16)

which is Pτ,x-martingale with respect to the filtration pFτ
t qτ¤ρ¤s. Since the

process in (3.16) is a martingale we know that the limit

lim
nÑ8Esn,Xpsnq rf ps,Xpsqqs

exists. We also have

Eτ,x

�
lim
nÑ8Esn,Xpsnq rf ps,Xpsqqs� � lim

nÑ8Eτ,x
�
Esn,Xpsnq rf ps,Xpsqqs�� lim

nÑ8Eτ,x
�
Eτ,Xpτq �f ps,Xpsqq �� Fτ

sn

�� � Eτ,x rf ps,Xpsqqs . (3.17)

Like in (3.9) we write

Eτ,x

���Eρ,Xpρq rf ps,Xpsqqs � f pρ,Xpρqq��2�� Eτ,x

���Eρ,Xpρq rf ps,Xpsqqs��2�� Eτ,x

�|f pρ,Xpρqq|2�� 2ℜEτ,x
�
f pρ,XpρqqEρ,Xpρq rf ps,Xpsqqs� . (3.18)

The expression in (3.18) converges to 0 as ρ Ò s. Here we used the following

identity:

lim
ρÒs Eτ,x rg pρ,Xpρqqs � lim

ρÒs P pτ, ρq g pρ, �q pxq� P pτ, sq g ps, �q pxq � Eτ,x rg ps,Xpsqqs . (3.19)

Consequently, the Pτ,x-martingale
�
Esn,Xpsnq rf ps,Xpsqqs�nPN converges

Pτ,x-almost surely and in the space L2 pΩ,Fτ
T ,Pτ,xq to the random vari-

able f ps,Xpsqq. In addition, the sequence pf psn, X psnqqqnPN converges

in the space L2 pΩ,Fτ
T ,Pτ,xq to the same random variable f ps,Xpsqq.
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Then there exists a subsequence pf psnk
, X psnk

qqqnPN which converges Pτ,x-

almost surely to f ps,Xpsqq. Again we employ the function in (3.11) to

prove that

lim
kÑ8X psnk

q � Xpsq, Pτ,x-almost surely. (3.20)

The equalities (3.15) and (3.20) show that the orbit tpρ,Xpρqq : ρ P rτ, T su
is Pτ,x almost surely a sequentially compact subset of E. Since the space

E is complete metrizable we infer that this orbit is Pτ,x-almost surely a

compact subset of E. We still have to show that there exists a modification! rXpsq : s P r0, T s) of the process tXpsq : s P r0, T su which possesses left

limits, is right-continuous Pτ,x-almost surely, and is such that

P pτ, tq fpxq � Eτ,x rf pXptqqs � Eτ,x

�
f
� rXptq	� , f P CbpEq. (3.21)

For the notion of modification see Definition 3.1. In order to achieve this

we begin by using a modified version of the process in (3.5):

t ÞÑ e�αtRpαqf pt,Xptqq � » 8
t

e�αρP pt, ρ^ T q f pρ^ T, �q pXptqq dρ,
(3.22)

for t P r0, T s. The process in (3.22) is a Pτ,x-supermartingale with re-

spect to the filtration
�
Fτ
ρ

�
τ¤ρ¤T . Since the process in (3.22) is a Pτ,x-

supermartingale on the interval rτ, T s we deduce that for t varying over

countable subsets its left and right limits exist Pτ,x-almost surely. Then the

process in (3.5) shares this property as well. For a detailed argument which

substantiates this claim see the propositions 3.3 and 3.4 below. Since the

orbit tpρ,Xpρqq : ρ P rτ, T su is Pτ,x-almost surely relatively compact, and

since the function f belongs to Cb pr0, T s �Eq we infer that for sequences

the process t ÞÑ f pt,Xptqq possesses Pτ,x-almost surely left and right limits

in E. Again an appeal to the function f in (3.11) shows that the limits

limsÒt, sPDXpsq and limtÓs, tPDXptq exist Pτ,x-almost surely for t P pτ, T s
and s P rτ, T s. Here we wrote D � tk2�n : k P N, n P Nu for the collection

of non-negative dyadic numbers. A redefinition (modification) rXpρq of the
process Xpρq, ρ P r0, T s, reads as follows:rXpρq � lim

tÓρ, tPD�pρ,T s, t¡ρXptq, ρ P r0, T q, rXpT q � XpT q. (3.23)

The proof of Theorem 2.9 will be continued after inserting an important

intermediate result, which we obtained thus far. �

This intermediate important result reads as follows.
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Proposition 3.1. The process
! rXpρq : ρ P r0, T s) is continuous from the

right and has left limits in E Pτ,x-almost surely. Moreover, its Pτ,x-

distribution coincides with that of the process tXpρq : ρ P r0, T su. Fixpτ, xq P r0, T s � E and t P rτ, T s. On the event
! rXptq P E) the orbits!�

s, rXpsq	 : s P rτ, ts) are Pτ,x-almost surely relatively compact subsets ofrτ, T s �E.

Fix 0 ¤ τ ¤ t ¤ T , and let S, S1 and S2 be
� rFτ

t

	
tPrτ,T s-stopping times. In

what follows we will make use of the following σ-fields:rFτ
t � σ

� rXpρq : τ ¤ ρ ¤ t
	
;rFτ

t� � £
0 ε¤T�tσ � rXpρq : τ ¤ ρ ¤ t� ε

	 � £
0 ε¤T�t rFτ

t�ε; (3.24)rFS,_
T � σ

��
ρ_ S, rX pρ_ Sq	 : 0 ¤ ρ ¤ T

	
; (3.25)rFS1,_

S2
� £

sPr0,T s!A P rFS1,_
T : A

£ tS2 ¤ su P rF0
s

)
; (3.26)rFS1,_

S2� � £
sPr0,T s!A P rFS1,_

T : A
£ tS2   su P rF0

s

)� £
0 ε¤T £

sPr0,T�εs!A P rFS1,_
T : A

£ tS2 ¤ su P rF0
s�ε)� £

ε¡0

rFS1,_pS2�εq^T . (3.27)

The σ-field in (3.24) is called the right closure of rFτ
t , the σ-field in (3.25)

is called the σ-field after time S, the σ-field in (3.26) is called the σ-field

between time S1 and S2, and finally the one in (3.27) is called the right

closure of the one in (3.26).

Proof. [Continuation of the proof Theorem 2.9.] Our most important

aim is to prove that the process!�
Ω, rFτ

T ,Pτ,x

	
,
� rXptq, τ ¤ t ¤ T

	
, p_t : τ ¤ t ¤ T q , pE, Eq) (3.28)

is a strong Markov process. We begin by proving the following Pτ,x-almost

sure equalities:

E
s,�Xpsq rF � _ss � Eτ,x

�
F � _s �� Fτ

s

�
(3.29)� Eτ,x

�
F � _s �� Fτ

s�� � Eτ,x

�
F � _s �� rFτ

s�� . (3.30)
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First we take F of the form F � f
� rXpsq	 where f P CbpEq. By

an approximation argument it then follows that (3.29) and (3.30) also

hold for F � f
� rXpsq	 with f P L8 pE, Eq. So let f P CbpEq. Since

Ps,y

� rXpsq � y
� � 1 and f

� rXpsq	 � _s � f
� rXpsq	 we see

E
s,�Xpsq �f � rXpsq	 � _s� � E

s,�Xpsq �f � rXpsq	� � f
� rXpsq	 . (3.31)

Since the random variable f
� rXpsq	 is measurable with respect to the σ-

field Fτ
s� by (3.31) we also have the Pτ,x-almost sure equalities:

Eτ,x

�
f
� rXpsq	 � _s �� Fτ

s�� � Eτ,x

�
f
� rXpsq	 �� Fτ

s�� � f
� rXpsq	 . (3.32)

Next we calculate, while using the Markov property of the process t ÞÑ Xptq
and right-continuity of the function t ÞÑ P ps, tq fpyq, s P rτ, T s, y P E,

Eτ,x

�
f
� rXpsq	 � _s �� Fτ

s�� � Eτ,x

�
f
� rXpsq	 �� Fτ

s

�� lim
εÓ0 Eτ,x �f pXps� εqq �� Fτ

s

� � lim
εÓ0 Es,Xpsq rf pXps� εqqs� lim

εÓ0 P ps, s� εq f p�qq pXpsqq � f pXpsqq . (3.33)

In order to complete the arguments for the proof of (3.29) and (3.30) for

F of the form F � f
� rXpsq	, f P CbpEq, we have to show the equality

f
� rXpsq	 � f pXpsqq Pτ,x-almost surely. This will be accomplished by the

following identities:

Eτ,x

����f � rXpsq	� f pXpsqq���2�� lim
tÓs Eτ,x�|fpXptqq|2�� 2 lim

tÓs ℜEτ,x�fpXpsqqfpXptqq�� Eτ,x
�|fpXpsqq|2�

(Markov property for the process t ÞÑ Xptq)� lim
tÓs Eτ,x �|f pXptqq|2�� 2 lim

tÓs ℜEτ,x �f pXpsqqEs,Xpsq rf pXptqqs�� Eτ,x

�|f pXpsqq|2�
(relationship between Feller propagator and Markov property of X)� lim

tÓs P pτ, tq |fp�q|2 pxq � 2 lim
tÓs ℜ �

P pτ, sq f p�qP ps, tq fp�q� pxq� P pτ, sq |fp�q|2 pxq� P pτ, sq |fp�q|2 pxq � 2
�
P pτ, sq f p�qfp�q� pxq � P pτ, sq |fp�q|2 pxq� 0. (3.34)
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From (3.34) we infer that f
� rXpsq	 � f pXpsqq Pτ,x-almost surely. From

(3.32), (3.33), and (3.34) we deduce the equalities in (3.29) and (3.30) for

a variable F of the form F � f
� rXpsq	, f P CbpEq. An approximation

arguments then yields (3.29) and (3.30) for f P L8 pE, Eq.
In order to prove (3.29) in full generality it suffices by the Monotone

Class Theorem and an approximation argument to prove the equalities in

(3.30) for random variables F of the form F � ±n
j�0 fj

� rX psjq	, where
the functions fj, 0 ¤ j ¤ n, belong to CbpEq and where s � s0   s1   s2  � � �   sn ¤ T . Since the equality f

� rXpsq	 � f pXpsqq holds Pτ,x-almost

surely, it is easy to see that by using the equalities (3.32), (3.33), and (3.34),

it suffices to take the variable F of the form F � ±n�1

j�1 fj

� rX psjq	 where

as above the functions fj , 1 ¤ j ¤ n � 1, belong to CbpEq and where

s   s1   s2   � � �   sn   sn�1 ¤ T . For n � 0 we have Pτ,x-almost surely

Eτ,x

�
f1

� rX ps1q	 �� Fτ
s

� � lim
εÓ0 Eτ,x �f1 pX ps1 � εqq �� Fτ

s

�
(Markov property of the process X)� lim

εÓ0 Es,Xpsq rf1 pX ps1 � εqqs � lim
εÓ0 P ps, s1 � εq f pXpsqq� lim

εÓ0 P ps, s1qP ps1, s1 � εq f pXpsqq � P ps, s1q f pXpsqq� P ps, s1q f � rXpsq	 � E
s,�Xpsq �f � rX ps1q	� . (3.35)

The equalities in (3.35) imply (3.29) with F � f1

� rX ps1q	 where f1 P
CbpEq and s   s1 ¤ T . Then we apply induction with respect to n to

obtain (3.29) for F of the form F �±n�1
j�1 fj

� rX psjq	 where as above the

functions fj , 1 ¤ j ¤ n�1, belong to CbpEq and where s   s1   s2   � � �  
sn   sn�1 ¤ T . In fact using the measurability of rX psjq with respect to the

σ-field Fτ
sn�, 1 ¤ j ¤ n, and the tower property of conditional expectation

we get Pτ,x-almost surely:

Eτ,x

�
n�1¹
j�1

fj

� rX psjq	 �� Fτ
s

�� Eτ,x

�
n¹
j�1

fj

� rX psjq	Eτ,x

�
fn�1

� rX psn�1q	 �� Fτ
sn

�
Fτ
s

�
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(Markov property for n � 1)� Eτ,x

�
n¹
j�1

fj

� rX psjq	E
sn,�Xpsnq �fn�1

� rX psn�1q	�Fτ
s

�
(induction hypothesis)� E

s,�Xpsq � n¹
j�1

fj

� rX psjq	E
sn,�Xpsnq �fn�1

� rX psn�1q	��� E
s,�Xpsq � n¹

j�1

fj

� rX psjq	E
s,�Xpsq �fn�1

� rX psn�1q	 �� Fs
sn

��� E
s,�Xpsq � n¹

j�1

fj

� rX psjq	 fn�1

� rX psn�1q	�� E
s,�Xpsq �n�1¹

j�1

fj

� rX psjq	� . (3.36)

So that (3.36) proves (3.29) for F �±n�1
j�1 fj

� rX psjq	 where the functions

fj , 1 ¤ n � 1, belong to CbpEq, and s   s1   � � �   sn�1. As remarked

above from (3.32), (3.33), and (3.34) the equality in (3.29) then also follows

for all random variables of the form F �±n
j�0 fj

� rX psjq	 with fj P CbpEq
for 0 ¤ j ¤ n and 0 � s0   s1   � � �   sn ¤ T . By the Monotone Class

Theorem and approximation arguments it then follows that (3.29) is true

for all bounded Fτ
T random variables F .

Next we proceed with a proof of the equalities in (3.30). Since rFτ
s� �

Fτ
s�, and the variable E

s,�Xpsq rF � _ss is Fτ
s�-measurable, it suffices to prove

the first equality in (3.30), to wit

Eτ,x
�
F � _s �� Fτ

s�� � E
s,�Xpsq rF � _ss (3.37)

for any bounded Fτ
T -measurable random variable F . We will not prove the

equality in (3.37) directly, but we will show the following ones instead:

Eτ,x
�
F � _s �� Fτ

s�� � E
s,�Xpsq �F � _s �� Fs

s�� � E
s,�Xpsq �F � _s �� rFs

s�� ,
(3.38)

under the condition that the function ps, xq ÞÑ P ps, tqfpxq is Borel mea-

surable on rτ, ts � E for f P CbpEq, which is part of (vi) in Definition

2.4. In order to prove the equalities in (3.38) it suffices by the Mono-

tone Class Theorem to take F of the form F � ±n
j�0 fj

� rX psjq	 with
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s � s0   s1   � � �   sn ¤ T and where de functions fj , 0 ¤ j ¤ n,

are bounded Borel measurable functions. By another approximation ar-

gument we may assume that the functions fj , 0 ¤ j ¤ n, belong to

CbpEq. An induction argument shows that it suffices to prove (3.38) for

F � f0

� rX ps0q	 f1 � rX ps1q	 where s � s0   s1 ¤ T , and the functions f0

and f1 are members of CbpEq. The case f1 � 1 was taken care of in the

equalities (3.31) and (3.32). Since the variable f0

� rXpsq	 is Fs
s�-measurable

the proof of the equalities in (3.38) reduces to the case where F � f
� rXptq	

where τ   s   t ¤ T and f P CbpEq. The following equalities show the first

equality in (3.38). With s   sn�1   sn   t and limnÑ8 sn � s we have

Eτ,x

�
f
� rXptq	 �� Fτ

s�� � Eτ,x

�
Eτ,x

�
f
� rXptq	 �� Fτ

sn

��� �� Fτ
s��� Eτ,x

�
Esn,Xpsnq �f � rXptq	� �� Fτ

s��� Eτ,x

�
E
sn,�Xpsnq �f � rXptq	� �� Fτ

s��� Eτ,x

�
lim
nÑ8E

sn,�Xpsnq �f � rXptq	� �� Fτ
s��� lim

nÑ8E
sn,�Xpsnq �f � rXptq	� (3.39)� E

s,�Xpsq � lim
nÑ8E

sn,�Xpsnq �f � rXptq	� �� Fs
s��� E

s,�Xpsq �Esn,�Xpsnq �f � rXptq	� �� Fs
s��� E

s,�Xpsq �Es,�Xpsq �f � rXptq	 �� Fs
sn

� �� Fs
s��� E

s,�Xpsq �f � rXptq	 �� Fs
s�� . (3.40)

In these equalities we used the fact that the process ρ ÞÑ
E
ρ,�Xpρq �f � rXptq	�, s   ρ ¤ t is Ps,y-martingale for ps, yq P r0, tq � E.

The equality in (3.40) implies the first equality in (3.38). The second one

can be obtained by repeating the four final steps in the proof of (3.40) withrFs
s� instead of Fs

s�. Here we use that the random variable in (3.39) is

measurable with respect to the σ-field rFs
s�, which is smaller than Fs

s�.
In order to deduce (3.37) from (3.38) we will need the full strength of

property (vi) in Definition 2.4. In fact using the representation in (3.39)

and using the continuity property in (vi) shows (3.37) for F � f
� rXptq	,

f P CbpEq. By the previous arguments the full assertion in (3.30) follows. In

fact Proposition 3.3 gives a detailed proof of the equalities in (3.74) below.

The equalities in (3.39) then follow from the Monotone Class Theorem.
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Next we want to prove that the process t ÞÑ rXptq possesses the strong

Markov property. This means that for any given
� rFτ

t�	
tPrτ,T s-stopping

time S : ΩÑ rτ, T s we have to prove an equality of the form (see (2.93))

E
S,�XpSq rF � _Ss � Eτ,x

�
F � _S �� rFτ

S�� , (3.41)

and this for all bounded Fτ
T -measurable random variables F . By the Mono-

tone Class Theorem it follows that it suffices to prove (3.41) for bounded

random variables F of the form F � ±n
j�0 fj

�
sj _ S, rX psj _ Sq	 where

the functions fj, 0 ¤ j ¤ n, are bounded Borel functions on rτ, T s � E,

and τ � s0   s1   � � �   sn ¤ T . By another approximation argument it

suffices to replace the bounded Borel functions fj , 0 ¤ j ¤ n, by bounded

continuous functions on rτ, T s � E. By definition the stopping time S isrFτ
S�-measurable. Let us show that rXpSq is Fτ

S�-measurable. Therefore we

approximate the stopping time S from above by stopping times Sn, n P N,

of the form

Sn � τ � T � τ

2n

R
2n pS � τq
T � τ

V
. (3.42)

If t P rτ, T s, thentSn ¤ tu � t2n t�τ
T�τ u¤
k�0

"
k � 1

2n
pT � τq � τ   S ¤ k

2n
pT � τq � τ

*
, (3.43)

and hence Sn is
�
Fτ
t��tPrτ,T s-stopping time. Moreover, on the event"
k � 1

2n
pT � τq � τ   S ¤ k

2n
pT � τq � τ

*
the stopping time Sn takes the value Sn � tk,n, where tk,n � τ � kpT � τq

2n
.

Consequently, we have the following equality of events:"
Sn � τ � kpT � τq

2n
� tk,n

*�"
k � 1

2n
pT � τq � τ   S ¤ k

2n
pT � τq � τ

*
,

so that for k ¤ 2npt� τq
T � τ

, which is equivalent to tk,n ¤ t, the event"
Sn � τ � kpT � τq

2n

*
is rFτ

t�-measurable, and on this event the state vari-

able rX pSnq � rX ptk,nq is rFτ
tk,n�-measurable. As a consequence we see
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that on the event tSn ¤ tu the state variable rX pSnq is rFτ
t�-measurable.

Then the space-time variable
�
Sn, rX pSnq	 is measurable with respect to

the σ-field rFτ
S�. In addition, we have

S ¤ Sn�1 ¤ Sn ¤ S � T � τ

2n
, (3.44)

and hence the space-time variable
�
S, rX pSq	 is rFτ

S�-measurable as well.

This proves the equality in (3.41) in case F � f
�
τ _ S, rX pτ _ Sq	

where f P Cb prτ, T s �Eq. As a preparation for the case F �±n
j�0 fj

�
sj _ S, rX psj _ Sq	 where the functions fj, 0 ¤ j ¤ n, are

bounded Borel functions on rτ, T s � E, and τ � s0   s1   � � �   sn ¤ T ,

we first consider the case (τ   t ¤ T )

F � f
�
t_ S, rX pt_ Sq	1tS¤tu � f

�
t, rXptq	1tS¤tu (3.45)

where f P Cb prτ, T s �Eq. On the event tS ¤ tu we approximate the stop-

ping time S from above by stopping times Sn, n P N, of the form

Snptq � τ � t� τ

2n

R
2n pS � τq
t� τ

V
. (3.46)

Then on the event tS ¤ tu we have the following inclusions of σ-fields:rFτ
S�£ tS ¤ tu� rFτ

S^t�£ tS ¤ tu � rFτ
Sn�1ptq�£ tS ¤ tu � rFτ

Snptq�£ tS ¤ tu (3.47)

and 8£
n�1

rFτ
Snptq�£ tS ¤ tu � rFτ

S�£ tS ¤ tu . (3.48)

Here we wrote F
�
A0 � tA�

A0 : A P Fu when F is any σ-field on Ω and

A0 � Ω. Then we have

Eτ,x

�
f
�
t_ S, rX pt_ Sq	1tS¤tu �� rFτ

S��� Eτ,x

�
f
�
t, rX ptq	1tS¤tu �� rFτ

S��� Eτ,x

�
Eτ,x

�
f
�
t, rX ptq	1tS¤tu �� rFτ

Snptq�� �� rFτ
S��� Eτ,x

�
E
Snptq,�XpSnptqq �f �t, rX ptq	�1tS¤tu �� rFτ

S��� lim
nÑ8Eτ,x

�
E
Snptq,�XpSnptqq �f �t, rX ptq	�1tS¤tu �� rFτ

S��
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�
lim
nÑ8E

Snptq,�XpSnptqq �f �t, rX ptq	�1tS¤tu �� rFτ
S��

(employ (3.48) and the arguments leading to equality (3.38))� lim
nÑ8E

Snptq,�XpSnptqq �f �t, rX ptq	�1tS¤tu� E
S,�XpSq �f �t, rX ptq	 �� rFS,_

S� �
1tS¤tu

(appeal to (3.37) which relies on property (vi) of Definition 2.4)� E
S,�XpSq �f �t, rX ptq	�1tS¤tu. (3.49)

From (3.49) and the rFS,_
S� -measurability of the stochastic state variable�

S, rXpSq	 we infer

Eτ,x

�
f
�
t_ S, rX pt_ Sq	 �� rFτ

S��� Eτ,x

�
f
�
t_ S, rX pt_ Sq	1tS¤tu �� rFτ

S��� Eτ,x

�
f
�
t_ S, rX pt_ Sq	1tS¡tu �� rFτ

S��� Eτ,x

�
f
�
t, rX ptq	1tS¤tu �� rFτ

S��� Eτ,x

�
f
�
S, rX pSq	1tS¡tu �� rFτ

S��� E
S,�XpSq �f �t, rX ptq	1tS¤tu�� f

�
S, rX pSq	1tS¡tu� E

S,�XpSq �f �t_ S, rX pt_ Sq	� . (3.50)

Next we consider the case F � ±n�1
j�0 fj

�
sj _ S, rX psj _ Sq	 where the

functions fj , 0 ¤ j ¤ n� 1, are bounded Borel functions on rτ, T s�E, and

τ � s0   s1   � � �   sn�1 ¤ T . From (3.50) and the rFS,_
S� -measurability

of the stochastic state variable
�
S, rXpSq	 we obtain (3.41) in case F �

f0

�
τ, rXpτq	 f1 �s1, rX ps1q	, and thus

F � _S � f0

�
τ _ S, rXpτ _ Sq	 f1 �s1 _ S, rX ps1 _ Sq	 .

So that the cases n � 0 and n � 1 have been taken care of. The remaining

part of the proof uses induction. From (3.50) with the maximum operator

sn _ S replacing S together with the induction hypothesis we get

Eτ,x

�
n�1¹
j�0

fj

�
sj _ S, rX psj _ Sq	 �� Fτ

S��
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�
n¹
j�0

fj

�
sj _ S, rX psj _ Sq	� Eτ,x

�
fn�1

�
sn�1 _ S, rX psn�1 _ Sq	 �� Fτ

sn_S�� �� Fτ
S��� Eτ,x

�
n¹
j�0

fj

�
sj _ S, rX psj _ Sq	� E

sn_S,�Xpsn_Sq �fn�1

�
sn�1 _ S, rX psn�1 _ Sq	� �� Fτ

S��
(induction hypothesis)� E

S,�XpSq � n¹
j�0

fj

�
sj _ S, rX psj _ Sq	� E

sn_S,�Xpsn_Sq �fn�1

�
sn�1 _ S, rX psn�1 _ Sq	��� E

S,�XpSq � n¹
j�0

fj

�
sj _ S, rX psj _ Sq	� E

S,�XpSq �fn�1

�
sn�1 _ S, rX psn�1 _ Sq	 �� FS,_

sn_S���� E
S,�XpSq �ES,�XpSq �n�1¹

j�0

fj

�
sj _ S, rX psj _ Sq	 �� FS,_

sn_S���� E
S,�XpSq �n�1¹

j�0

fj

�
sj _ S, rX psj _ Sq	� . (3.51)

The strong Markov property of the process rX follows from (3.51), an ap-

proximation argument and the Monotone Class Theorem.

We still need to redefine our process and probability measures Pτ,x on

the Skorohod space D pr0, T s, Eq, pτ, xq P r0, T s � E in such a way that

the distribution of the process rX is preserved. This can be done replacing

(3.28) with the collection!�rΩ, rFτ
T ,

rPτ,x	 ,� rXptq, τ ¤ t ¤ T
	
, p_t : τ ¤ t ¤ T q , pE, Eq) (3.52)

where rΩ � D pr0, T s, Eq, and rPτ,x is determined by the equality rEτ,x rF s �
Eτ,x rF � πs. Here F : rΩ Ñ C is a bounded variable which is measurable
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with respect to the σ-field generated by the coordinate variables: rXptq :rω ÞÑ rωptq, t P rτ, T s, rω P rΩ. Recall that Ω � Er0,T s. Notice that the

restriction of rXptq to rΩ is evaluation of rω P rΩ at t. The mapping π : ΩÑ rΩ
is defined by πpωqptq � rXpt, ωq, t P r0, T s, ω P Ω1. Here Ω1 � Ω has the

property that for all pτ, xq P r0, T s�E its complement in Ω is Pτ,x-negligible.

We will describe the space Ω1. Let D be the collection of positive dyadic

numbers. For Ω1 we may choose the space:

Ω1 : � !
ω P Ω : t ÞÑ ωptq, t P D£r0, T s has left and right limits in E

)£!
ω PΩ : the range tωptq : t P D£r0, T su is totally bounded in E

)
.

(3.53)

Let pxjqjPN be a sequence in E which is dense, and let d be a metric on E�E
which turns E into a Polish space. Put B px, εq � ty P E : dpy, xq   εu.
Define, for any finite subset of r0, T s with an even number of members

U � tt1, . . . , t2nu say, and ε ¡ 0, the random variable HεpUq by
HεpUqpωq � ņ

j�1

1tdp�Xpt2j�1q,�Xpt2jqq¥εupωq.
We also put

Hε

�
D
£r0, T s	� sup
!
Hε pUq : U � D

£r0, T s, U contains an even number of elements
)
.

Then the subset Ω1 of Ω � Er0,T s can be described as follows:

Ω1 � 8£
n�1

!
ω P Ω : H1{n �D£r0, T s	 pωq   8)

(3.54)£ 8£
m�1

8¤
n�1

#
ω P Ω :

� rXpsqpωq	
sPD�r0,T s � n¤

j�1

B pxj , 1{mq+ .

The description in (3.54) shows that the subset Ω1 is a measurable subset of

Ω. In addition we have Pτ,x pΩ1q :� Pτ,x pΩ1
τ q � 1 for all pτ, xq P r0, T s�E.

Here

Ω1
τ � !

ω P Ω1 : ωpρq � ωpτq, ρ P D£r0, τs) , (3.55)

which may be identified with
 
ωærτ,T s : ω P Ω1( which is a measurable sub-

set of Ωτ � Erτ,T s. In order to complete the construction and the proof of

Theorem 2.9 we need to prove the quasi-left continuity of the process rX.
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So let pτnqnPN be an increasing sequence of
� rFτ

t

	
tPrτ,T s-stopping times with

values in rτ, T s. Put τ8 � supnPN τn. Let f and g be functions C�
b pEq, and

let h ¡ 0. Then by the strong Markov property we have for m ¤ n

Eτ,x

�
f
� rX pτmq	 g � rX ppτm � hq ^ T q	�� Eτ,x

�
f
� rX pτmq	E

τm,�Xpτmq �g � rX ppτm � hq ^ T q	��� Eτ,x

�
f
� rX pτmq	E

τm,�Xpτmq �g � rX ppτm � hq ^ T q	� , τm � h ¥ τ8�� Eτ,x

�
f
� rX pτmq	E

τm,�Xpτmq �g � rX ppτm � hq ^ T q	� , τm � h   τ8�
(the process ρ ÞÑ E

ρ,�Xpρq �g � rXpsq	� is a right-continuous Pτ,x-martingale

on rτ, ss)� Eτ,x

�
f
� rX pτmq	E

τm,�Xpτmq �g � rX ppτm � hq ^ T q	� , τm � h ¥ τ8�� Eτ,x

�
f
� rX pτmq	E

τm,�Xpτmq �g � rX ppτm � hq ^ T q	� , τm � h   τ8�� Eτ,x

�
f
� rX pτmq	P pτn, pτm � hq ^ T q g � rX pτnq	 , τm � h ¥ τ8�� Eτ,x

�
f
� rX pτmq	E

τm,�Xpτmq �g � rX ppτm � hq ^ T q	� , τm � h   τ8� .
(3.56)

Put L � limnÑ8 rX pτnq. Upon taking limits, as nÑ8, and employing the

fact that the propagator P pτ, tq is continuous from the left on the diagonal

in (3.56) we obtain:

Eτ,x

�
f
� rX pτmq	 g � rX ppτm � hq ^ T q	�� lim

nÑ8Eτ,x

�
f
� rX pτmq	P pτn, τ8qP pτ8, pτm � hq ^ T q g � rX pτnq	 ,

τm � h ¥ τ8�� Eτ,x

�
f
� rX pτmq	E

τm,�Xpτmq �g � rX ppτm � hq ^ T q	� , τm � h   τ8�� Eτ,x

�
f
� rX pτmq	P pτ8, pτm � hq ^ T q g pLq , τm � h ¥ τ8�� Eτ,x

�
f
� rX pτmq	E

τm,�Xpτmq �g � rX ppτm � hq ^ T q	� , τm � h   τ8� .
(3.57)

Next we let mÑ8 in (3.57) to get

Eτ,x

�
f pLq g � rX ppτ8 � hq ^ T�q	�� Eτ,x rf pLqP pτ8, pτ8 � hq ^ T q g pLqs (3.58)
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where we invoked property (vii) of Definition 2.4. Next we let h decrease

to zero in (3.58). This yields

Eτ,x

�
f pLq g � rX pτ8q	� � Eτ,x rf pLqP pτ8, τ8q g pLqs� Eτ,x rf pLq g pLqs . (3.59)

Since f and g are arbitrary in C�
b pEq, the equality in (3.59) implies that

Eτ,x

�
h
�
L, rX pτ8q	� � Eτ,x rh pL,Lqs (3.60)

for all bounded Borel measurable functions h P L8 pE �E, E b Eq. In

particular we may take a bounded continuous metric hpx, yq � dpx, yq,px, yq P E �E. From (3.60) it follows that

Eτ,x

�
d
�
L, rX pτ8q	� � Eτ,x rd pL,Lqs � 0,

and hence

L � lim
nÑ8 rX pτnq � rX pτ8q , Pτ,x-almost surely. (3.61)

Essentially speaking this proves Theorem 2.9 in case we are dealing with

conservative Feller propagators, i.e. Feller propagators with the property

that P ps, tq1 � 1, 0 ¤ s ¤ t ¤ T . In order to be correct the process, or

rather the family of probability spaces in (3.28) has to be replaced with

(3.52).

This completes the proof of Theorem 2.9 in case the Feller propagator

is phrased in terms of probabilities P pτ, x; t, Eq � 1, 0 ¤ τ ¤ t ¤ T , x P E.

�

The case P ps, tq1 ¤ 1 is treated next. It will complete the proof of Theo-

rem 2.9.

Proof. [Continuation of the proof of Theorem 2.9 in case of sub-

probabilities.] We have to modify the proof in case a point of absorption

is required. Most of the proof for the case that P pτ, x; t, Eq � 1 can be

repeated with the probability transition function N pτ, x; t, Bq, B P E△.

This function was defined in (2.100) of Remark 2.10. However, we need to

show that the E△-valued process rX does not enter the absorption state △

prior to reentering the state space E. This requires an extra argument. We

will use a stopping time argument and Doob’s optional sampling time the-

orem to achieve this: see Proposition 3.2 in which the transition function

N pτ, x; t, Bq is also employed.
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For further use we will also need a Skorohod space with a point of

absorption △. The space Ω△,1 consists of those ω P �
E△

�r0,T s
whose re-

strictions to D
�r0, T s have left and right limits in E△, and which are such

that for some t � tpωq P r0, T s the range tωpsq : s P D� r0, t1su is totally

bounded in E for all t1 P p0, tq, and such that ωpsq � △ for s P D�rtpωq, T s.
Again using a metric d△ on E△ �E△ which renders E△ Polish, it can be

shown that Ω△,1 is a measurable subset of Ω � �
E△

�r0,T s
. In fact Ω△,1 can

be written as

Ω△,1� ¤
rPD�r0,T s!ω P Ω : s ÞÑ ωpsq, s P D£r0, rs has left and right limits in E

)£ 8£
m�1

¤
r1 r2, r2�r1 1{m
r1, r2PD�r0,T s �!ω P Ω : ω

�
D
£r0, r1s	 is totally bounded in E

)£!
ω P Ω : ωpsq � △ for all s P D£rr2, T s)	 . (3.62)

From (3.62) it follows that Ω△,1 is a measurable subset of Ω � �
E△

�r0,T s
.

Again it turns out that Pτ,x
�
Ω△,1� � 1. This fact follows from Proposition

3.2 and the fact that for all t P D�r0, T s
Pτ,x

�
ω P Ω : s ÞÑ ωpsq, s P D£r0, ts
has left and right limits in E, and Xptq P Es� Pτ,x rω P Ω : ωptq P Es . (3.63)

The equality in (3.63) follows in the same way as the corresponding result

in case P pτ, x; t, Bq, B P E , but now with N pτ, x; t, Bq, B P E△. Again the

construction which led to the process in (3.52) can be performed to get a

strong Markov process of the form:!�rΩ, rFτ
T ,

rPτ,x	 ,� rXptq, τ ¤ t ¤ T
	
, p_t : τ ¤ t ¤ T q , �E△, E△

�)
, (3.64)

where rΩ is the Skorohod space D
�r0, T s, E△

�
.

Since for functions f P CbpEq we have

P pτ, tq fpxq � »
P pτ, x; t, dyq fpyq � »

N pτ, x; tdyq fpyq (3.65)

provided fp△q � 0, it follows that the process rX is quasi-left continuous

on its life time ζ; see Definition 2.15. For the definition of N pτ, x; t, Bq see
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Remark 2.10. In order to be correct the process, or rather the family of

probability spaces in (3.28) has to be replaced with (3.64).

The arguments in Proposition 3.2 below then complete the proof of

Theorem 2.9 in case the Feller propagator is phrased in terms of sub-

probabilities P pτ, x; t, Eq ¤ 1, 0 ¤ τ ¤ t ¤ T , x P E. �

In the final part of the proof of Theorem 2.9 we needed the following propo-

sition. The proposition says that an orbit s ÞÑ �
s, rXpsq	 is contained in a

compact subset of rτ, ts �E on the event
! rXptq P E).

Proposition 3.2. Suppose the transition function P pτ, x; t, Bq, which sat-

isfies the equation of Chapman-Kolmogorov, consists of sub-probability

Borel measures. Let N pτ, x; t, Bq, B P E△ be the Feller transition func-

tion as constructed in Remark 2.10, which now consists of genuine Borel

probability measures on the Borel field E△ of E△. As in (3.28) construct

the corresponding Markov process!�
Ω, rFτ

T ,Pτ,x

	
,
� rXptq, τ ¤ t ¤ T

	
, p_t : τ ¤ t ¤ T q , �E△, E△

�)
. (3.66)

Fix pτ, xq P r0, T s �E and t P rτ, T s. Then the orbit!�
s, rXpsq	 : τ ¤ s ¤ t, Xptq P E)

is Pτ,x-almost surely a relatively compact subset of rτ, ts �E.

Proof. A proof can be based on a stopping time argument and Doob’s

optional sampling theorem. Let the life time ζ : ΩÑ r0, T s be defined by

ζ � #
inf

!
s ¡ 0 : rXpsq � △

)
, if rXpsq � △ for some s ¤ T ,

T otherwise.

Then ζ is an
� rFτ

t

	
tPrτ,ts-stopping time and we have:

Pτ,x

� rXptq P E�� Eτ,x

�
P
ζ^t,�Xpζ^tq � rXptq P E��� Eτ,x

�
P
ζ^t,�Xpζ^tq � rXptq P E� , ζ ¤ t

�� Eτ,x

�
P
ζ^t,�Xpζ^tq � rXptq P E� , ζ ¡ t

�
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�
P
ζ,�Xpζq � rXptq P E� , ζ ¤ t

�� Eτ,x

�
P
t,�Xptq � rXptq P E� , ζ ¡ t

�� Eτ,x

�
Pζ,△

� rXptq P E� , ζ ¤ t
�� Pτ,x

� rXptq P E, ζ ¡ t
�

(see Remark 2.10)� Eτ,x rN pζ,△; t, Eq , ζ ¤ ts � Pτ,x

� rXptq P E, ζ ¡ t
�� Pτ,x

� rXptq P E, ζ ¡ t
�
. (3.67)

From (3.67) it follows that on the event
! rXptq P E) the orbits!�

s, rXpsq	 : s P rτ, ts)
are Pτ,x-almost surely contained in compact subsets of rτ, ts �E.

This completes the proof of Proposition 3.2. �

In the proof of Proposition 3.4 we need the following result. Notice that in

this Proposition 3.3 as well as in Proposition 3.4 the conservative property

(3.68) is employed. Proposition 3.2 contains a result which can be used

in the non-conservative situation. The possibility of non-conservativeness

plays a role in the proof of Theorem 2.12 as well: see the inequalities in

(3.122) and (3.123), and their consequences. This proposition could be

called a Pτ,x-almost sure Tβ-equi-continuity result.

Proposition 3.3. Let pτ, xq be an element in r0, T s �E, and assume

Pτ,x rXptq P Es � P pτ, tq1Epxq � P pτ, x; t, Eq � 1 (3.68)

for all t P rτ, T s. Let pfmqmPN be a sequence in C�
b prτ, T s �Eq which

decreases pointwise to zero. Denote by D the collection of positive dyadic

numbers. Then the following equality holds Pτ,x-almost surely:

inf
mPN sup

tPD�rτ,T s sup
sPD�r0,tsEs,Xpsq rfm pt,Xptqqs � 0. (3.69)

Consequently, the collection of linear functionals Λs,t : Cb prτ, T s �Eq Ñ C

defined by Λs,tpfq � Es,Xpsq rf pt,Xptqqs, f P Cb prτ, T s �Eq, τ ¤ s ¤ t ¤
T , s, t P D, is Pτ,x-almost surely equi-continuous for the strict topology Tβ.

Let psn, tnq be any sequence in rτ, T s � rτ, T s such that sn ¤ tn, n P N.

Then the collectiontΛs,t : τ ¤ s ¤ t ¤ T, s, t P D or ps, tq � psn, tnq for some n P Nu
is Pτ,x-almost surely equi-continuous as well.
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Proof. Let pfmqmPN � C�
b prτ, T s �Eq be as in Proposition 3.3. For

every m P N and t P rτ, T s we define the Pτ,x-martingale s ÞÑ Mt,mpsq,
s P rτ, T s, by Mt,mpsq � Es^t,Xps^tq rfm pt,Xptqqs. Then the process

s ÞÑ sup
tPrτ,T sEs^t,Xps^tq rfm pt,Xptqqs � sup

tPD�rτ,T sEs^t,Xps^tq rfm pt,Xptqqs
is a Pτ,x-submartingale. Fix η ¡ 0. By Doob’s submartingale inequality

we have

ηPτ,x

�
sup

tPD�rτ,T s sup
sPD�rt,T sEs,Xpsq rfm pt,Xptqqs ¥ η

�� ηPτ,x

�
sup

tPD�rτ,T s sup
sPD�rτ,T sMm,tpsq ¥ η

�� ηPτ,x

�
sup

sPD�rτ,T s sup
tPD�rτ,T sMm,tpsq ¥ η

�¤ Eτ,x

�
sup

tPD�rτ,T sMm,tpT q� � Eτ,x

�
sup

tPD�rτ,T sEt,Xptq rfm pt,Xptqqs�� Eτ,x

�
sup

tPD�rτ,T s fm pt,Xptqq� . (3.70)

Since the orbit tpt,Xptqq : t P D� rτ, T su is Pτ,x-almost surely contained

in a compact subset of E, Dini’s lemma implies that

sup
tPD�rτ,T s fm pt,Xptqq decreases to 0 Pτ,x-almost surely,

which implies

lim
mÑ8Eτ,x

�
sup

tPD�rτ,T s fm pt,Xptqq� � 0. (3.71)

A combination of (3.70) and (3.71) yields (3.69). So the first part of Propo-

sition 3.3 has been established.

The second assertion follows from (3.69) together with Theorem 2.3.

The third assertion follows from the fact that for f P C�
b prτ, T s �Eq

and τ ¤ sn ¤ tn ¤ T the inequality

Esn,Xpsnq rf ptn, X ptnqqs ¤ sup
tPD�rτ,T s sup

sPD�rτ,tsEs,Xpsq rf pt,X ptqqs
holds Pτ,x-almost surely.

This shows Proposition 3.3. �
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The next proposition was used in the proof of Theorem 2.9. This proposi-

tion contains an interesting continuity result of Feller evolutions.

Proposition 3.4. Let pτ, xq P r0, T s � E, and assume the conservative

property (3.68). In addition, let f P Cb pr0, T s �Eq and let ppsn, tnqqnPN
be sequence in rτ, T s � rτ, T s such that sn ¤ tn, n P N and such that

lim
nÑ8 psn, tnq � ps, tq. Then the limit

lim
nÑ8Esn,Xpsnq rf ptn, X ptnqqs � lim

nÑ8 rP psn, tnq f ptn, �qs pX psnqq� rP ps, tq f pt, �qs pX psqq � Es,Xpsq rf pt,Xptqqs (3.72)

exists Pτ,x-almost surely. In particular if sn � tn for all n P N, then s � t

and

lim
nÑ8Etn,Xptnq rf ptn, X ptnqqs � lim

nÑ8 f ptn, X ptnqq� f pt,Xptqq , Pτ,x-almost surely. (3.73)

In addition, by taking tn � t and letting the sequence psnqnPN decrease or

increase to s P rτ, ts it follows that the process s ÞÑ Es,Xpsq rf pt,Xptqqs is
Pτ,x-almost surely a left and right continuous martingale. Moreover, the

equalities

Eτ,x
�
f pt,Xptqq �� Fτ

s�� � Es,Xpsq rf pt,Xptqqs � Eτ,x
�
f pt,Xptqq �� Fτ

s

�
(3.74)

hold Pτ,x-almost surely.

The equalities in (3.39) then follow from (3.74) together with the Monotone

Class Theorem.

Proof. In the proof of Proposition 3.4 we will employ the properties of

the process in (3.7) to its full extent. In addition we will use Proposition

3.3 which implies that continuity properties of the processps, tq ÞÑα

» 8
t

e�αpρ�tqEs,Xpsq rf pρ^ T,X pρ^ T qqs dρ� α

» 8
t

e�αpρ�tqP ps, ρ^ T q f pρ^ T, �q pXpsqq dρ� αP ps, tqRpαqf pt, �q pXpsqq� » 8
0

e�ρEs,Xpsq �f ��t� ρ

α

	^ T,X
��
t� ρ

α

	^ T
		�

dρ,

(3.75)
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0 ¤ s ¤ t ¤ T , Pτ,x-almost surely carry over to the processps, tq ÞÑP ps, tq f pt, �q pXpsqq � Es,Xpsq rf pt,Xptqqs� lim
αÑ8α » 8

t

e�αpρ�tqP ps, ρ^ T q f pρ^ T, �q pXpsqq dρ� lim
αÑ8 » 8

0

e�ρP �
s,
�
t� ρ

α

	^ T
	
f
��
t� ρ

α

	^ T, �	 pXpsqq dρ� lim
αÑ8 » 8

0

e�ρEs,Xpsq �f ��t� ρ

α

	^ T,X
��
t� ρ

α

	^ T
		�

dρ.

(3.76)

Let psn, tnqnPN be a sequence in rτ, T s � rτ, T s for which sn ¤ tn. Put

Λα,s,tf � α

» 8
t

e�αpρ�tqP ps, ρ^ T q f pρ^ T, �q pXpsqq dρ.
The equality in (3.75) in conjunction with Proposition 3.3 shows that the

collection of functionalstΛα,s,t : τ ¤ s ¤ t ¤ T, s, t P D or ps, tq � psn, tnq for some n P N, α ¥ 1u
is Pτ,x-almost surely Tβ-equi-continuous. Therefore the family of its limits

Λt,s � limαÑ8 Λα,s,t inherits the continuity properties from the familytΛα,s,t : τ ¤ s ¤ t ¤ T, s, t P D or ps, tq � psn, tnq for some n P Nu
where α P p0,8q is fixed.

We still have to prove that

lim
nÑ8Esn,Xpsnq rf ptn, X ptnqqs � Es,Xpsq rf pt,Xptqqs (3.77)

Pτ,x-almost surely, whenever f P Cb prτ, ts �Eq and the sequencepsn, tnqnPN in rτ, T s�rτ, T s is such that limnÑ8 psn, tnq � ps, tq and sn ¤ tn
for all n P N. In view of the first equality in (3.22) and the previous argu-

ments it suffices to prove this equality for processes of the formps, tq ÞÑ α

» 8
t

e�αpρ�tqEs,Xpsq rf pρ^ T,X pρ^ T qqs dρ
instead of ps, tq ÞÑ Es,Xpsq rf pt,X ptqqs .
It is easy to see that this convergence reduces to treating the case where,

for ρ P pτ, T s fixed and for sn Ñ s, s P rτ, ρs,
lim
nÑ8Esn,Xpsnq rf pρ,Xpρqqs � Es,Xpsq rf pρ,Xpρqqs . (3.78)
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Here we will distinguish two cases: sn increases to s and sn decreases

to s. In both cases we will prove the equality in (3.78). In case of an

increasing the result follows more or less directly from the martingale mar-

tingale property and from the left continuity on the diagonal. In case

of a decreasing sequence we employ the fact that a subspace of the formtP pρ, uq g : u P pρ, T s, g P CbpEqu is Tβ-dense in CbpEq. First we consider

the situation where sn increases to s P rτ, ρs. Then we have

Esn,Xpsnq rf pρ,Xpρqqs � Eτ,x
�
f pρ,Xpρqq �� Fτ

sn

�� Eτ,x
�
Eτ,x

�
f pρ,Xpρqq �� Fτ

s

� �� Fτ
sn

�� Eτ,x
�
Es,Xpsq rf pρ,Xpρqqs �� Fτ

sn

�� Esn,Xpsnq �Es,Xpsq rf pρ,Xpρqqs�� pP psn, sqEs,� rf pρ,Xpρqqsq pX psnqq . (3.79)

In (3.79) we let n Ñ 8 and use the left continuity of the propagator (see

property (v) in Definition 2.4) to conclude

lim
nÑ8Esn,Xpsnq rf pρ,Xpρqqs � Es,Xpsq rf pρ,Xpρqqs . (3.80)

The equality in (3.80) shows the Pτ,x-almost sure left continuity of the

process s ÞÑ Es,Xpsq rf pρ,Xpρqqs on the interval rτ, ρs. Next assume that

the sequence psnqnPN decreases to s P rτ, ρs. Then we get Pτ,x-almost surely

Es,Xpsq rf pρ,Xpρqqs � P ps, ρq f pρ, �q pXpρqq
(employ (vi) of Definition 2.4)� lim

nÑ8P psn, ρq f pρ, �q pX psnqq � lim
nÑ8Esn,Xpsnq rf pρ,Xpρqqs� Es,Xpsq � lim

nÑ8Esn,Xpsnq rf pρ,Xpρqqs �� Fs
s��� lim

nÑ8Es,Xpsq �Esn,Xpsnq rf pρ,Xpρqqs �� Fs
s��� lim

nÑ8Es,Xpsq �Es,Xpsq �f pρ,Xpρqq �� Fs
sn

� �� Fs
s��

(tower property of conditional expectation)� Es,Xpsq �f pρ,Xpρqq �� Fs
s��� Eτ,x

�
Es,Xpsq �f pρ,Xpρqq �� Fs

s�� �� Fτ
s��� Eτ,x

�
lim
nÑ8Esn,Xpsnq rf pρ,Xpρqqs �� Fτ

s��� lim
nÑ8Eτ,x

�
Esn,Xpsnq rf pρ,Xpρqqs �� Fτ

s��
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(Markov property)� lim
nÑ8Eτ,x

�
Eτ,x

�
f pρ,Xpρqq �� Fτ

sn

� �� Fτ
s��

(tower property of conditional expectation)� Eτ,x
�
f pρ,Xpρqq �� Fτ

s�� . (3.81)

The equality in (3.81) is the same as the first equality in (3.74). The

second equality is a consequence of the Markov property with respect to

the filtration pFτ
t qtPrτ,T s.

This completes the proof of Proposition 3.3. �

3.1.2 Proof of Theorem 2.10

Here we have to prove that Markov processes with certain continuity prop-

erties give rise to Feller evolutions.

Proof. [Proof of Theorem 2.10.] Let the operators P pτ, tq, τ ¤ t, be as

in (2.95). We have to prove that this collection is a Feller evolution. The

properties (i), (iii) and (iv) of Definition 2.4 are obvious. The propagator

property (ii) is a consequence of the Markov property of the process in

(2.94). To be precise, let f P CbpEq and 0 ¤ τ   s   t ¤ T . Then we have:

P pτ, sqP ps, tq fpxq � Es,x rP ps, tq f pXpsqqs � Eτ,x
�
Es,Xpsq rf pXptqqs�� Eτ,x

�
Eτ,x

�
f pXptqq �� Fτ

s

��� Eτ,x rf pXptqqs � P pτ, tq fpxq. (3.82)

Let f be any function in CbpEq. The continuity of the function pτ, t, xq ÞÑ
P pτ, tq fpxq, 0 ¤ τ ¤ t ¤ T , x P E, implies the properties (v) through (vii)

of Definition 2.4. Let f P Cb pr0, T s �Eq. In addition we have to prove

that the function pτ, t, xq ÞÑ P pτ, tq f pt, �q pxq is continuous. The proof of

this fact requires the following steps:

(1) The Feller evolution tP pτ, tq : 0 ¤ τ ¤ t ¤ T u is Tβ-equi-continuous.
(2) Define the operators Rpαq : Cb pr0, T s �Eq Ñ Cb pr0, T s �Eq, α ¡ 0,

as in (4.6) in Chapter 4;

Rpαqfpt, xq � » 8
t

e�αpρ�tqP pt, ρ^ T q f pρ^ T, �q pxqdρ� » 8
0

e�αρSpρqfpt, xq dρ, f P Cbpr0, T s �Eq, (3.83)
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where, by definition,

Spρqfpt, xq � P pt, pρ� tq ^ T qfppρ� tq ^ T, �qpxq, f P Cbpr0, T s �Eq.
(3.84)

Since the family of operators tSpρq : ρ ¥ 0u has the semigroup property,

i.e. S pρ1qS pρ2q � S pρ1 � ρ2q, ρ1, ρ2 ¥ 0, the family tRpαq : α ¡ 0u
has the resolvent property: see (3.85) below. Moreover, the functionspτ, t, xq ÞÑ P pτ, tq rRpαqf pt, �qs pxq, 0 ¤ τ ¤ t ¤ T , x P E, α ¡ 0, are

continuous for all f P Cb pr0, T s �Eq.
(3) The family tRpαq : α ¡ 0u is a resolvent family, and hence the range of

Rpαq does not depend on α ¡ 0. The Tβ-closure of its range coincides

with Cb pr0, T s �Eq.
From (3), (1) and (2) it then follows that functions of the form

P pτ, tq f pt, �q pxq, 0 ¤ τ ¤ t ¤ T , f P Cb pr0, T s �Eq, are continuous.

So we have to prove (1) through (3).

Let pψmqmPN be a sequence of functions in C�pEq which decreases point-

wise to zero. Since, by assumption, the functions pτ, t, xq ÞÑ P pτ, tqψmpxq,
m P N, are continuous, the sequence P pτ, tqψmpxq decreases uniformly on

compact subsets to 0. By Theorem 2.7 it follows that the Feller evolutiontP pτ, tq : 0 ¤ τ ¤ t ¤ T u is Tβ-equi-continuous. This proves (1).
Let f P Cb pr0, T s �Eq, and fix α ¡ 0. Then the function P pτ, tqRpαqf

can be written in the form

P pτ, tq rRpαqf pt, �qs pxq � » 8
t

e�αpρ�tqP pτ, ρ^ T q f pρ^ T, �q pxqdρ,
which by inspection is continuous, because for fixed ρ P r0, T s the functionpτ, xq ÞÑ P pτ, ρq f pρ, �q pxq is continuous. This proves Assertion (2).

The family tRpαq : α ¡ 0u is a resolvent family, i.e. it satisfies:

Rpβq � Rpαq � pα � βqRpαqRpβq, α, β ¡ 0. (3.85)

Consequently, the range RpαqCb pr0, T s �Eq does not depend on α ¡ 0.

Next fix f P Cb pr0, T s �Eq. Then limαÑ8 αRpαqfpt, xq � fpt, xq for allpt, xq P r0, T s �E. By dominated convergence it also follows that

lim
αÑ8 »r0,T s�E αRpαqfpt, xq dµpt, xq� lim

αÑ8 »r0,T s�E » 8
0

e�ρP�t,�t� ρ

α


^T
f��t� ρ

α


^T, �
pxqdρ dµpt, xq� »r0,T s�E f pt, xq dµpt, xq, (3.86)
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where µ is a complex Borel measure on r0, T s�E. From (3.86) and Corol-

lary 2.1 we see that the space RpαqCb pr0, T s �Eq is Tβ-weakly dense in

Cb pr0, T s �Eq. It follows that it is Tβ-dense. Let K be a compact sub-

set of E. Since the Feller evolution is Tβ-equi-continuous there exists a

bounded function u P H� pr0, T s �Eq such that

suppt,xqPr0,T s�K |P pτ, tq fpxq| ¤ }uf}8 , f P CbpEq. (3.87)

Fix ε ¡ 0. For α0 ¡ 0 and f P Cb pr0, T s �Eq fixed, there exists a function

g P Cb pr0, T s �Eq such that

sup
sPr0,T s supyPE |ups, yq pfps, yq � α0R pα0q g ps, yqq| ¤ ε. (3.88)

From (3.87) and (3.88) we infer:

sup
0¤τ¤t¤T sup

xPK |P pτ, tq rf pt, �q � α0R pα0q g pt, �qs pxq|¤ sup
0¤s¤T supyPE |upyq pfps, yq � α0R pα0q ps, yqq| ¤ ε. (3.89)

As a consequence of (3.89) the function pτ, t, xq ÞÑ P pτ, tq f pt, �q pxq inherits
its continuity properties from functions of the formpτ, t, xq ÞÑ P pτ, tqR pα0q f pt, �q pxq, 0 ¤ τ ¤ t ¤ T, x P E.
Since the latter functions are continuous, the same is true for the function

P pτ, tq f pt, �q pxq.
This concludes the proof of Theorem 2.10. �

As a corollary we mention the following: its proof follows from the argu-

ments leading to the observation that for all f P Cb pr0, T s �Eq the functionpτ, t, xq ÞÑ P pτ, tq f pt, �q pxq is continuous. It will be used in the proof of

Theorem 4.3 in Chapter 4.

Corollary 3.1. Let the family tP pτ, tq : 0 ¤ τ ¤ t ¤ T u be a Feller evolu-

tion in Cb pEq. Extend these operators to the space Cb pr0, T s �Eq by the

formula rP pτ, tq fpτ, xq � P pτ, tq f pt, �q pxq, f P Cb pr0, T s �Eq. Then the

family
! rP pτ, tq : 0 ¤ τ ¤ t ¤ T

)
is again Tβ-equi-continuous. In addition

define the Tβ-continuous semigroup tSptq : t ¥ 0u on Cb pr0, T s �Eq by
Sptqfpτ, xq � P pτ, pτ � tq ^ T q f ppτ � tq ^ T, �q pxq, f P Cb pr0, T s �Eq .

(3.90)

Then the semigroup tSptq : t ¥ 0u is Tβ-equi-continuous.
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In the sequel we will not use the notation rP pτ, tq for the extended Feller

evolution very much: we will simply ignore the difference between rP pτ, tq
and P pτ, tq. For more details on the semigroup defined in (3.90) see (4.5)

below.

Proof. [Proof of Corollary 3.1.] Let f P Cb pr0, T s �Eq. From the

proof of Theorem 2.10 (see the very end) we infer that the functionpτ, t, xq ÞÑ rP pτ, tq fpτ, xq is continuous. Let pψmqmPN be a sequence of

functions in Cb pr0, T s �Eq which decreases pointwise to 0. Let u P
H� pr0, T s � r0, T �Eq. Then the functions rP pτ, tq pψmfq pxq also de-

crease uniformly to 0. From Corollary 2.3 it follows that the fam-

ily
! rP pτ, tq : τ ¤ t ¤ T

)
is Tβ-equi-continuous. From the representation

(3.90) of the semigroup tSptq : t ¥ 0u, it is also clear that this semigroup is

Tβ-equi-continuous. This completes the proof of Corollary 3.1. �

3.1.3 Proof of Theorem 2.11

In this part and in Theorem 2.12 we will see the intimate relationship which

exists between solutions to the martingale problem and the corresponding

(strong) Markov processes.

Proof. [Proof of Theorem 2.11.] In the proof of Theorem 2.11 we will

use the fact that an operator L generates a Feller evolution if and only if it

generates the corresponding Markov process: see Proposition 4.1 below. So

we may assume that the corresponding Markov process is that of Theorem

2.9: see (2.90). Among other things this means that it is right continuous,

and has left limits in E on its life time. In addition, it is quasi-left con-

tinuous on its life time: see Definition 2.15. Let f P Cb pr0, T s �Eq belong
to the domain of D1 � L. We will show that the process in (2.96) is a

Pτ,x-martingale. Therefore, fix s P rτ, ts, and put

Mτ,f psq � f ps,Xpsqq � f pτ,Xpτqq � » s
τ

� BBρ � Lpρq
 f pρ, �q pXpρqq dρ.
Then by the Markov property we have

Eτ,x
�
Mτ,f ptq �� Fτ

s

��Mτ,f psq� Eτ,x
�
Ms,f ptq �� Fτ

s

� � Es,Xpsq rMs,f ptqs� Es,Xpsq rf pt,Xptqqs � Es,Xpsq rf ps,Xpsqqs� » t
s

Es,Xpsq �� BBρ � Lpρq
 f pρ, �q pXpρqq� dρ
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(the operator L generates the involved Markov process)� Es,Xpsq rf pt,Xptqqs � Es,Xpsq rf ps,Xpsqqs � » t
s

dEs,Xpsq rf pρ,Xpρqqs
dρ

dρ� Es,Xpsq rf pt,Xptqqs � Es,Xpsq rf ps,Xpsqqs � Es,Xpsq rf pρ,Xpρqqs ��ρ�tρ�s� 0. (3.91)

The equality in (3.91) proves the first part of Theorem 2.10. Proposition

3.5 below proves more than what is claimed in Theorem 2.10. Therefore

the proof of Theorem 2.10 is completed by Proposition 3.5. �

Proposition 3.5. Let the Markov family of probability spaces be as in The-

orem 2.9, formula (2.90). Let _t, ^t, ϑt : ΩÑ Ω, t P r0, T s, be time trans-

formations with the following respective defining properties: Xpsq � _t �
X ps_ tq, Xpsq � ^t � X ps^ tq, and Xpsq � ϑt � X pps� tq ^ T q, for

all s, t P r0, T s. Let the σ-fields F t1
t2
, 0 ¤ t1 ¤ t2 ¤ T , be defined by

F t1
t2

� σ pXpsq : t1 ¤ s ¤ t2q. Fix t P r0, T s. Then the mapping _t is

F t1_t
t2_t -F t1

t2
-measurable, the mapping ^t is F t1^t

t2^t -F t1
t2
-measurable, and ϑt is

F
pt1�tq^Tpt2�tq^Tt-F t1

t2
-measurable.

Fix τ P r0, T s, and τ ¤ t1 ¤ t2 ¤ T . Let µ be a Borel probability

measure on E, and define the probability measure Pτ,µ on Fτ
T by the formula

Pτ,µpAq � ³
E
Pτ,xpAqdµpxq, A P Fτ

T . Let
�
F t1
t2

�τ,µ
be the Pτ,µ-completion

of the σ-field F t1
t2
. Then (Pτ,µ-a.s. means Pτ,µ-almost surely)�

F t1
t2

�τ,µ � !
A P pFτ

T qτ,µ : 1A � _t1 � ^t2 � 1A, Pτ,µ-a.s.
)
, (3.92)

and�
F t1
t2��τ,µ � £

εPp0,T�t2s!A P pFτ
T qτ,µ : 1A � _t1 � ^t2�ε � 1A, Pτ,µ-a.s.

)
.

(3.93)

In addition the following equalities are Pτ,µ-almost surely valid for all

bounded random variables F which are pFτ
T qτ,µ-measurable:

Eτ,µ
�
F
�� Fτ

t�� � Eτ,µ
�
F
�� Fτ

t

�
, and (3.94)

Eτ,µ

�
F

�� �Fτ
t��τ,µ� � Eτ,µ

�
F
�� Fτ

t�� . (3.95)

If the variable F is
�
Fτ
t��τ,µ-measurable, then the equalities

F � Eτ,µ

�
F
�� �Fτ

t��τ,µ� � Eτ,µ
�
F
�� Fτ

t�� � Eτ,µ
�
F
�� Fτ

t

�
(3.96)
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hold Pτ,µ-almost surely. If the random variable F is pF t
T qτ,µ-measurable

and bounded, then Pτ,µ-almost surely

Eτ,µ

�
F
�� �Fτ

t��τ,µ� � Et,Xptq rF s . (3.97)

Finally, if F is
�
F t
t��τ,µ-measurable, then

F � Et,Xptq rF s , Pτ,µ-almost surely. (3.98)

In particular such variables are Pτ,x-almost surely functions of the space-

time variable pt,Xptqq.
Proof. Let F be a bounded Fs1

s2
-measurable variable. The measurability

properties of the time operator _t follow from the fact that F �_t is Fs1_t
s2_t -

measurable. Similar statements hold for the operators ^t and ϑt.
The equality

F t1
t2
� tA P Fτ

T : 1A � _t1 � ^t2 � 1A, Pτ,µ-a.s.u (3.99)

is clear, and so the left-hand side is included in the right-hand side of (3.92).

This can be seen as follows. Let A P F t1
t2

τ,µ

. Then there exist subsets A1

and A2 P F t1
t2

such that A1 � A � A2 and Pτ,µ rA2zA1s � 0. Then we have

1A1
� 1A2

� 1A1
� 1A2

� _t1 � ^t2¤ 1A � 1A � _t1 � ^t2 ¤ 1A2
� 1A1

� _t1 � ^t2 � 1A2
� 1A1

. (3.100)

From (3.100) we see that 1A�1A �_t1 �^t2 , Pτ,x-almost surely, and hence

the left-hand side of (3.92) is included in the right-hand side. Since by the

same argument the σ-field
!
A P pFτ

T qτ,µ : 1A � _t1 � ^t2 � 1A, Pτ,µ-a.s.
)

is Pτ,µ-complete and sincetA P Fτ
T : 1A � _t1 � ^t2 � 1A, Pτ,µ-a.s.u � F t1

t2
, (3.101)

we also obtain that the right-hand side of (3.92) is contained in the left-

hand side. The equality in (3.93) is an immediate consequence of (3.92),

and the definition of F t1
t2�.

By the Monotone Class Theorem and an approximation argument the

proof of (3.94) can be reduced to the case where F �±n
j�1 fj pX ptjqq with

τ ¤ t1   � � �   tk ¤ t   tk�1   � � �   tn ¤ T , and fj P Cb pEq, 1 ¤ j ¤ n.

Then by properties of conditional expectation and the Markov property

with respect to the filtration pFτ
t qtPrτ,T s we have

Eτ,µ
�
F
�� Fτ

t�� � Eτ,µ

�
n¹
j�1

fj pX ptjqq �� Fτ
t��
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j�1

fj pX ptjqqEτ,µ �Eτ,µ � n¹
j�k�1

fj pX ptjqq �� Fτ
tk�1

� �� Fτ
t��

(Markov property)� k¹
j�1

fj pX ptjqqEτ,µ �g pX ptk�1qq �� Fτ
t�� , (3.102)

where gpyq � fk�1pyqEtk�1,y

�±n
j�k�1 fj pX ptjqq�. Again we may suppose

that the function g belongs to CbpEq. Then we get, for t   s   tk�1,

Eτ,µ
�
g pX ptk�1qq �� Fτ

t�� � Eτ,µ
�
Eτ,µ

�
g pX ptk�1qq �� Fτ

s

� �� Fτ
t��

(Markov property) � Eτ,µ
�
Es,Xpsq rg pX ptk�1qqs �� Fτ

t��� lim
sÓt Eτ,µ �Es,Xpsq rg pX ptk�1qqs �� Fτ

t��� Eτ,µ
�
Et,Xptq rg pX ptk�1qqs �� Fτ

t��� Et,Xptq rg pX ptk�1qqs
(again Markov property) � Eτ,µ

�
g pX ptk�1qq �� Fτ

t

�
. (3.103)

Inserting the result of (3.103) into (3.102) and reverting the arguments

which led to (3.102) with Fτ
t instead of Fτ

t� shows the equality in (3.94) for

F � ±n
j�1 fj pX ptjqq where the functions fj, 1 ¤ j ¤ n, belong to CbpEq.

As mentioned earlier this suffices to obtain (3.94) for all bounded random

variables F which are pFτ
T qτ,µ-measurable. Here we use the fact that for

any σ-field F � pFτ
T qτ,µ, and any bounded pFτ

T qτ,µ-measurable random

variable F an equality of the form F � Eτ,µ
�
F
�� F�

holds Pτ,µ-almost

surely. This argument also shows that the equality in (3.95) is a consequence

of (3.94). The equalities in (3.96) follow from the definition of conditional

expectation and the equalities (3.94) and (3.95). The equality in (3.97) also

follows from (3.94) and (3.95) together with the Markov property. Finally,

the equality in (3.103) is a consequence of (3.102) and the definition of

conditional expectation.

Altogether this proves Proposition 3.5. �
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3.1.4 Proof of Theorem 2.12

In this subsection we will establish the fact that unique solutions to the

martingale problem yield strong Markov processes.

Proof. [Proof of Theorem 2.12.] The proof of this result is quite tech-

nical. The first part follows from a well-known theorem of Kolmogorov on

projective systems of measures: see Theorem 3.1. In the second part we

must show that the indicated path space has full measure, so that no in-

formation is lost. The techniques used are reminiscent the material found

in for example [Blumenthal and Getoor (1968)], Theorem 9.4. p. 46. The

result in Theorem 2.12 is a consequence of the propositions 3.6, 3.7, and

3.8 below. �

In Theorem 2.12 as anywhere else in the book L � tLpsq : 0 ¤ s ¤ T u is

considered as a linear operator with domain DpLq and range RpLq in the

space Cb pr0, T s �Eq. Suppose that the domain DpLq of L is Tβ-dense

in Cb pr0, T s �Eq. The problem we want to address is the following. Give

necessary and sufficient conditions on the operator L in order that for everypτ, xq P r0, T s�E there exists a unique probability measure Pτ,x on Fτ
T with

the following properties:

(i) For every f P DpLq, which is Cp1q-differentiable in the time variable

the process

f pt,Xptqq � f pτ,Xpτqq � » t
τ

pD1f � Lfq ps,Xpsqq ds, t P rτ, T s,
is a Pτ,x-martingale;

(ii) Pτ,x rXpτq � xs � 1.

Here we suppose Ω � D
�r0,8s, E△

�
is the Skohorod space associated with

E△, as described in Definition 2.9, and Fτ
T is the σ-field generated by the

state variables Xptq, t P rτ, T s. The probability measures Pτ,x are defined

on the σ-field Fτ
T . The following procedure extends them to F0

T . If the event

A belongs to F0
T , then we put Pτ,x rAs � Eτ,x r1A � _τ s. The composition

1A � _τ is defined in (2.73). With this convention in mind the equality in

(ii) may be replaced by

(ii)1 Pτ,x rXpsq � xs � 1 for all s P r0, τs.
Let P pΩq be the set of all probability measures on F0

T and define the subset

P 1
0 pΩq of P pΩq by
P 1
0 pΩq � ¤pτ,xqPr0,T s�E△

"
P P P pΩq : P rXpτq � xs � 1
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and for every f P DpLq�D pD1q the process

f pt,Xptqq � f pτ,Xpτqq � » t
τ

pD1 � Lq f ps,Xpsqq ds, t P rτ, T s,
is a P-martingale

*
. (3.104)

Instead of DpLq�D pD1q we often write Dp1qpLq: see the comments fol-

lowing Definition 2.7. Let pvj : j P Nq be a sequence of continuous functions

defined on r0, T s �E with the following properties:

(i) v0 � 1E, v1 � 1t△u;
(ii) }vj}8 ¤ 1, vj belongs to D

p1qpLq � DpLq�D pD1q, and vj ps,△q � 0

for j ¥ 2;

(iii) The linear span of vj , j ¥ 0, is dense in Cb
�r0, T s �E△

�
for the strict

topology Tβ .

In addition let pfk : k P Nq be a sequence in Dp1qpLq such that the linear

span of tpfk, pD1 � Lq fkq : k P Nu is Tβ dense in the graph G pD1 � Lq :�tpf, pD1 � Lq fq : f P DpLqu of the operator D1 � L. Moreover, let psj :

j P Nq be an enumeration of the set Q
�r0, T s. A subset P 1 pΩq, which is

closely related to P 1
0, may be described as follows (see (3.54) as well):

P 1 pΩq� 8£
n�1

8£
k�1

8£
m�0

£pj1,...,jm�1qPNm�1

£
0¤sj1 ... sjm�1

¤T tP P P pΩq :
P rX psjkq P E, 1 ¤ k ¤ m� 1s � P

�
X

�
sjm�1

� P E� , and» �
fk

�
sjm�1

, X
�
sjm�1

��� fk psjm , X psjmqq� m¹
k�1

vjk psjk , X psjkqq dP� » �» sjm�1

sjm

pD1 � Lq fk ps,Xpsqq ds� m¹
k�1

vjk psjk , X psjkqq dP+ .

(3.105)

Let P pΩq be the collection of probability measures on F0
T . For a concise

formulation of the relevant distance between probability measures in P pΩq
we introduce kind of Lévy numbers. Let P1 and P2 P P pΩq. Then we write,

for Λ � r0, T s, Λ finite or countable,

LΛ pP2,P1q � lim
ℓÑ8 inf

#
η ¡ 0 : P2

�pXpsqqsPΛ � ℓ¤
j�1

B
�
xj , 2

�m��
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1� η2�m�P1 rpXpsqqsPΛ � Es , for all m P N

(
(3.106)

where B px, εq is a ball in E centered at x and with radius ε ¡ 0. Perhaps a

more appropriate name for a Lévy number would be a “tightness number”.

Notice that in (3.106) limℓÑ8 may be replaced with infℓPN. In fact we

shall prove that, if for the operator L the martingale problem is solvable,

that then the set P 1 pΩq is complete metrizable and separable for the metric

dpP1,P2q given by

dLpP1,P2q�¸
Λ�N,|Λ| 8 2�|Λ|¸pℓjqjPΛ �����» ¹

jPΛ 2�j�ℓjvj �sℓj , X �
sℓj

��
d pP2 � P1q������ 8̧

k�1

2�k �LQ
�r0,sks pP2,P1q � LQ

�r0,sks pP1,P2q� . (3.107)

If a sequence of probability measures pPnqnPN converges to P with respect to

the metric in (3.107), then the first term on the right-hand side says that the

finite-dimensional distributions of Pn converge to the finite-dimensional dis-

tributions of P. The second term says, that the limit P is a measure indeed,

and that the paths of the process are P-almost surely totally bounded. The

following result should be compared to the comments in 6.7.4. of [Stroock

and Varadhan (1979)], pp. 167–168. It is noticed that in Proposition 3.6

the uniqueness of the martingale problem is used to prove the separability.

Proposition 3.6. The set P 1 pΩq supplied with the metric dL defined in

(3.107) is a separable complete metrizable Hausdorff space.

Proof. Let pPn : n P Nq be a Cauchy sequence in pP 1 pΩq , dq. Then for

every m P N, for every m-tuple pj1, . . . , jmq in Nm and for every m-tuplepsj1 , . . . , sjmq P Qm
�r0, T s the limit limℓÑ8 ³±m

k�1 vjk psjk , X psjkqq dPnℓ

exists. We shall prove that for every every m P N, for every m-tuplepj1, . . . , jmq in Nm and for every m-tuple ptj1 , . . . , tjmq P r0, T sm the limit

lim
nÑ8 » ¹m

k�1
ujk ptjk , X ptjkqq dPn (3.108)

exists for all sequences pujqjPN in Cb pr0, T s �Eq. Since, in addition,

lim
nÑ8 lim

mÑ8LQ
�r0,sks pPn,Pmq � lim

mÑ8 lim
nÑ8LQ

�r0,sks pPn,Pmq � 0, (3.109)

for all k P N, it follows that the sequence pPnqnPN is tight in the sense

that the paths tXpsq : s P Q
� r0, sksu are Pn-almost surely totally bounded
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uniformly in Pn for all n simultaneously. The latter means that for every

ε ¡ 0 there exists npεq P N and integers pℓmpεqqmPN such that

Pn2

��pXpsqqsPQ�r0,sks � ℓmpεq¤
j�1

B
�
xj , 2

�m���¥ �
1� ε2�m�Pn1

�pXpsqqsPQ�r0,sks � E
�

(3.110)

for all n2, n1 ¥ npεq, and for all m P N. By enlarging ℓmpεq we may and

do assume that

Pn

��pXpsqqsPQ�r0,sks � ℓmpεq¤
j�1

B
�
xj , 2

�m���¥ �
1� ε2�m�Pnpεq �pXpsqqsPQ�r0,sks � E

�
, (3.111)

and

Pn

��pXpsqqsPQ�r0,sks � ℓmpεq¤
j�1

B
�
xj , 2

�m���¥ �
1� ε2�m�Pn �pXpsqqsPQ�r0,sks � E

�
(3.112)

for all n P N. It follows that

Pn

��pXpsqqsPQ�r0,sks � 8£
m�1

ℓmpεq¤
j�1

B
�
xj , 2

�m���¥ p1� εqPn �pXpsqqsPQ�r0,sks � E
�
, (3.113)

for all n P N. But then there exists, by Kolmogorov’s extension theorem, a

probability measure P such that

lim
nÑ8 » ¹m

k�1
ujk ptjk , X ptjkqq dPn � » ¹m

k�1
ujk ptjk , X ptjkqq dP,

(3.114)

for all m P N, for all pj1, . . . , jmq P Nm and for all ptj1 , . . . , tjmq P r0, T sm.
From the description (3.104) of P 1 pΩq it then readily follows that P is

a member of P 1 pΩq. So the existence of the limit in (3.108) remains to

be verified, together with the following facts: the limit P is a martingale

solution, and Dpr0,8s, E△q has full P-measure. Let t be in Q
�r0, T s.

Since, for every j P N, the process

vjps,Xpsqq � vjp0, Xp0qq � » s
0

pD1 � Lq vj pσ,Xpσqq dσ, s P r0, T s,
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is a martingale for the measure Pnℓ
, we infer» » t

0

pD1 � Lq vj ps,Xpsqq dsdPnℓ� »
vj pt,Xptqq dPnℓ

� »
vj p0, Xp0qq dPnℓ

,

and hence the limit lim
ℓÑ8 » » t

0

pD1 � Lq vj ps,Xpsqq dsdPnℓ
exists. Next let

t0 be in r0, T s. Again using the martingale property we see»
vj pt0, X pt0qq d pPnℓ

� Pnk
q� » �» t

0

pD1 � Lq vj ps,Xpsqq ds
 d pPnℓ
� Pnk

q� »
vj p0, Xp0qq d pPnℓ

� Pnk
q� » �» t

t0

pD1 � Lq vj ps,Xpsqq ds
 d pPnℓ
� Pnk

q , (3.115)

where t is any number in Q
�r0, T s. From (3.115) we infer����» vj pt0, X pt0qq d pPnℓ
� Pnk

q����¤ ����» �» t
0

pD1 � Lq vj ps,Xpsqq ds
 d pPnℓ
� Pnk

q����� ����» vj p0, Xp0qq d pPnℓ
� Pnk

q����� 2 |t� t0| }pD1 � Lq vj}8 . (3.116)

If we let ℓ and k tend to infinity, we obtain

lim sup
ℓ,kÑ8 ����» vj pt0, X pt0qq d pPnℓ

� Pnk
q���� ¤ 2 |t� t0| }pD1 � Lq vj}8 .

(3.117)

Consequently for every s P r0, T s the limit limℓÑ8 ³
vj ps,Xpsqq dPnℓ

exists.

The inequality ����» vj pt,Xptqq dPnℓ
� »

vj pt0, X pt0qq dPnℓ

����� ����» » t
t0

pD1 � Lq vj ps,Xpsqq ds dPnℓ

����¤ |t� t0| }pD1 � Lq vj}8
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shows that the functions t ÞÑ limℓÑ8 ³
vj pt,Xptqq dPnℓ

, j P N, are continu-

ous. Since the linear span of pvj : j ¥ 2q is dense in Cb pr0, T s �Eq for the
strict topology, it follows that for every v P Cb pr0, T s �Eq and for every

t P r0, T s the limit

t ÞÑ lim
ℓÑ8 »

v pt,Xptqq dPnℓ
, t P r0, T s, (3.118)

exists and that this limit, as a function of t, is continuous. The following

step consists in proving that for every t0 P r0,8q the equality

lim
tÑt0

lim sup
ℓÑ8 » |vj pt,Xptqq � vj pt0, X pt0qq| dPnℓ

� 0 (3.119)

holds. For t ¡ s the following (in-)equalities are valid:�» |vj pt,Xptqq � vj ps,Xpsqq| dPnℓ


2 ¤ » |vj pt,Xptqq � vj ps,Xpsqq|2 dPnℓ� » |vj pt,Xptqq|2 dPnℓ
� » |vj ps,Xpsqq|2 dPnℓ� 2ℜ

» pvj pt,Xptqq � vj ps,Xpsqqq vj ps,XpsqqdPnℓ� » |vj pt,Xptqq|2 dPnℓ
� » |vj ps,Xpsqq|2 dPnℓ� 2ℜ

» �» t
s

pD1 � Lq vj pσ,Xpσqq dσ
 vj ps,XpsqqdPnℓ¤ » |vj pt,Xptqq|2 dPnℓ
� » |vj ps,Xpsqq|2 dPnℓ� 2pt� sq }pD1 � Lq vj}8 . (3.120)

Hence (3.118) together with (3.120) implies (3.119). By (3.119), we may

apply Kolmogorov’s extension theorem to prove that there exists a proba-

bility measure P on Ω1 :� �
E△

�r0,T s
with the property that» m¹

k�1

vjk psjk , X psjkqq dP � lim
nÑ8 » m¹

k�1

vjk psjk , X psjkqq dPn (3.121)

holds for all m P N and for all psj1 , . . . , sjmq P r0, T sm. It then follows

that the equality in (3.121) is also valid for all m-tuples f1, . . . , fm in

Cb
�r0, T s �E△

�
instead of for vj1 , . . . , vjm . This is true because the linear

span of the sequence pvjqjPN is Tβ-dense in Cb
�r0, T s �E△

�
. In addition

we conclude that the processes

f pt,Xptqq � f p0, Xp0qq � » t
0

pD1 � Lq f ps,Xpsqq ds,
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t P r0, T s, f P Dp1qpLq, are P-martingales. We still have to show that

Dpr0, T s, E△q has P-measure 1. From (3.119) it essentially follows that set

of ω P �
E△

�r0,T s
for which the left and right hand limits exist in E△ has

“full” P-measure. First let f ¥ 0 be in Cb pr0, T s �Eq. Then the processrGλf s ptq :� E

�» 8
t

e�λσf pσ ^ T,Xpσ ^ T qq dσ �� F0
t

�
is a P-supermartingale with respect to the filtration

�
F0
t

�
tPr0,T s. It follows

that the limits limtÒt0 rGλf s ptq and limtÓt0 rGλf s ptq both exist P-almost

surely for all t0 ¥ 0 and for all f P Cb pr0, T s �Eq. In particular these

limits exist P-almost surely for all f P Dp1qpLq. By the martingale property

it follows that, for f P Dp1qpLq,��f pt,Xptqq � λeλt rGλf s ptq��� ����λeλtE �» 8
t

e�λσ pf pσ ^ T,Xpσ ^ T qq � f pt,Xptqqq dσ �� F0
t

������ ����λeλtE �» 8
t

e�λσ �» σ
t

pD1 � Lq f ps,Xpsqq ds
 dσ �� F0
t

�����¤ λeλt
» 8
t

e�λσpσ � tq }pD1 � Lq f}8 dσ � λ�1 }pD1 � Lq f}8 . (3.122)

Consequently, we may conclude that, for all s, t ¥ 0,|fpt,Xptqq � fps,Xpsqq|¤ 2λ�1 }pD1 � Lq f}8 � ��λeλt rGλf s ptq � λeλs rGλf s psq�� , (3.123)

Again using (3.111), (3.112) and (3.113) it follows that the path!
Xpsq : s P Q

£r0, ts, Xptq P E)
is P-almost surely totally bounded. By separability and T τ

β -density of

Dp1qpLq it follows that the limits limtÓsXptq and limsÒtXpsq exist in E

P-almost surely for all s respectively t P r0, T s, for which Xpsq respectively
Xptq belongs to E. See the arguments which led to (3.14) and (3.15) in

the proof of Theorem 2.9. Put Zpsqpωq � limtÓs,tPQ�r0,T sXptqpωq. Then,

for P-almost all ω the mapping s ÞÑ Zpsqpωq is well-defined, possesses left

limits in t P r0, T s for those paths ω P Ω for which ωptq P E and is right

continuous. In addition we have

E rfps, Zpsqqgpsqs � E rfps,Xps�qqgps,Xpsqqs� lim
tÓs E rfpt,Xptqqgps,Xpsqqs � E rfps,Xpsqqgps,Xpsqqs ,
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for all f , g P Cb pr0, T s �Eq and for all s P r0, T s: see (3.119). But then we

may conclude that Xpsq � Zpsq P-almost surely for all s P r0, T s. Hence we
may replace X with Z and consequently (see the arguments in the proof

of Theorem 2.9, and see Theorem 9.4 in [Blumenthal and Getoor (1968)],

p. 49)

P rΩs � 1, and so P P P 1 pΩq � P 1
0 pΩq (3.124)

where Ω � D
�r0, T s �E△

�
. For the definition of D

�r0, T s �E△
�
see

Definition 2.9, and for the definition of P 1 pΩq, and P 1
0 pΩq the reader is

referred to (3.105) and (3.104).

We also have to prove the separability. Denote by Convex the collection

of all mappings

α : Pf pNq � Pf
�
Q
£r0, T s	Ñ Q

£r0, 1s,
which take only finitely many non-zero values, such that¸

Λ1PPf pNqα �Λ1,Λ� � 1, Λ P Pf
�
Q
£r0, T s	 ,

and let twΛ1 : Λ1 P Pf pNqu be a countable family of functions from

Q
�r0, T s to E△ such that for every finite subset Λ � tsj1 , . . . , sjnu P

Pf pQ�r0, T sq the collection pwΛ1 psj1q , . . . , wΛ1 psjnqq : Λ1 P Pf pNq(
is dense in

�
E△

�psj1 ,...,sjnq � �
E△

�Λ
. For example the value of wΛ1 psjℓq

could be xkℓ , 1 ¤ ℓ ¤ n, where Λ1 � pk1, . . . , knq. Here pxkqkPN is a dense

sequence in E△. The countable collection of probability measurestPα,w,Λ : α P Convex, Λ P Pf pNqu
determined by

Eα,w,Λ rF pps,XpsqqsPΛqs � ¸
Λ1PPf pNqα �Λ1,Λ�F pps, wΛ1psqqsPΛq

is dense in P pΩq endowed with the metric dL. Since P 1 pΩq is a closed

subspace of P pΩq, it is separable as well.

Finally we observe that Xptq P E, τ   s   t, implies Xpsq P E. This

follows from the assumption that the Skorohod space D
�r0, T s, E△

�
is the

sample space on which we consider the martingale problem: see Definition

2.9. In particular it is assumed that Xpsq � △, τ   s ¤ t, implies Xptq �
△, and Lpρqf pρ, �q pXpρqq � 0 for s   ρ   t. Consequently, once we have

Xpsq � △, and t P ps, T s, then Xptq � △, and by transposition Xptq P E,

s P rτ, tq implies Xpsq P E.

This completes the proof of Proposition 3.6. �
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In the following proposition we see that under the condition of λ-dominance

the function pτ, s, xq ÞÑ Eτ,x ru ps,Xpsqqs is continuous whenever the func-

tion ps, xq ÞÑ ups, xq belongs to Cb pr0, T s �Eq, and the martingale problem

is well-posed.

Proposition 3.7. Suppose that for every pτ, xq P r0, T s�E the martingale

problem is uniquely solvable. In addition, suppose that there exists λ ¡ 0

such that the operator D1 � L is sequentially λ-dominant: see Definition

4.3. Define the map F : P 2 pΩq Ñ r0, T s � E by F pPq � pτ, xq, where

P P P 2 pΩq is such that PpXpsq � xq � 1, for s P r0, τs. Then F is

a homeomorphism from the Polish space P 2 pΩq onto r0, T s � E. In fact

it follows that for every u P Cb pr0, T s �Eq and for every s P rτ, T s, the
function pτ, s, xq ÞÑ Eτ,x ru ps,Xpsqqs, 0 ¤ τ ¤ s ¤ T , x P E, is continuous.

Here P 2 pΩq :� tPτ,x : pτ, xq P r0, T s �Eu.
Proof. Since the martingale problem is uniquely solvable for everypτ, xq P r0, T s � E the map F is a one-to-one map from the Polish spacepP 2 pΩq , dLq onto r0, T s � E (see Proposition 3.6 and (3.107)). Let forpτ, xq P r0, T s � E the probability Pτ,x be the unique solution to the mar-

tingale problem:

(i) For every f P Dp1qpLq the process

fpt,Xptqq � fpτ,Xpτqq � » t
τ

pD1 � Lq fps,Xpsqqds, t P rτ, T s,
is a Pτ,µ-martingale;

(ii) The Pτ,µ-distribution of Xpτq is the measure µ. If µ � δx, then we

write Pτ,δx � Pτ,x, and Pτ,x rXpτq � xs � 1.

Then, by definition F pPτ,xq � pτ, xq, pτ, xq P r0, T s � E. Moreover, since

for every pτ, xq P r0, T s�E the martingale problem is uniquely solvable we

see P 1 pΩq � tPτ,µ : pτ, µq P r0, T s � P pEqu. Here P pEq is the collection of

Borel probability measures on E. This equality of probability spaces can be

seen as follows. If the measure Pτ,µ is a solution to the martingale problem,

then it is automatically a member of P 1 pΩq. If P is a member of P 1 pΩq
which starts at time τ , then by uniqueness of solutions we have:

P
�
A
�� σ pXpτqq� ��

Xpτq�x� Pτ,x rAs , A P Fτ
T . (3.125)

In addition, P � Pτ,µ, where µpBq � P rXpτq P Bs, B P E . Let pptℓ, xℓqqℓPN
be a sequence in r0, T s�E with the property that limℓÑ8 dL pPtℓ,xℓ

,Pτ,xq �
0 for some pτ, xq P r0, T s � E. Then for some random variable ε
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the orbit tps,Xpsqq : s P pτ � ε, τ � εqu is totally bounded Ptℓ,xℓ
-almost

surely for all tℓ and τ simultaneously. It follows that the sequencetxℓ � X ptℓq : ℓ P Nu� txu is contained in a compact subset of E. Then

limℓÑ8 |vj ptℓ, xℓq � vjpτ, xq| � 0, for all j P N, where, as above, the

span of the sequence pvjqj¥2
is Tβ-dense in C pr0, T s �Eq. It follows that

limℓÑ8 ptℓ, xℓq � pt, xq in r0, T s � E. Consequently the mapping F is con-

tinuous. Since F is a continuous bijective map from one Polish space

P 2 pΩq :� tPτ,x : pτ, xq P r0, T s � Eu (3.126)

onto another such space r0, T s�E, its inverse is continuous as well. Among

other things this implies that, for every s P Q
�r0,8q and for every j ¥ 2,

the function pτ, xq ÞÑ ³
vj ps,Xpsqq dPτ,x belongs to Cb pr0, T s �Eq. Since

the linear span of the sequence pvj : j ¥ 2q is Tβ-dense in Cb pr0, T s �Eq
it also follows that for every v P Cb pr0, T s �Eq, the function pτ, xq ÞÑ³
v ps,Xpsqq dPτ,x belongs to Cb pr0, T s �Eq. Next let s0 P r0, T s be arbi-

trary. For every j ¥ 2 and every s P Q
�r0, T s, s ¡ s0, we have by the

martingale property:

suppτ,xqPr0,s0s�E |Eτ,x pvjps,Xpsqqq � Eτ,x pvj ps0, X ps0qqq|� suppτ,xqPr0,s0s�E ����» s
s0

Eτ,x pLvj pσ,Xpσqqq dσ����¤ ps� s0q }pD1 � Lq vj}8 . (3.127)

Consequently, for every s P r0, T s, the function pτ, xq ÞÑ Eτ,x rvj ps,Xpsqqs,
j ¥ 1, belongs to Cb pr0, T s �Eq. It follows that, for every v P
Cb pr0, T s �Eq and every s P r0, T s, the function pτ, xq ÞÑ Eτ,x rv ps,Xpsqqs
belongs to Cb pr0, T s �Eq. These arguments also show that the functionpτ, s, xq ÞÑ Eτ,x rv ps,Xpsqqs, 0 ¤ τ ¤ s ¤ T , x P E, is continuous for every

v P Cb pr0, T s �Eq. The continuity in the three variables pτ, s, xq requires
the sequential λ-dominance of the operator D1 � L for some λ ¡ 0. The

arguments run as follows. Using the Markov processtpΩ,Fτ
T ,Pτ,xq , pXptq, τ ¤ t ¤ T q , p_t : τ ¤ t ¤ T q , pE, Equ (3.128)

we define the semigroup tSpρq : ρ ¥ 0u as follows
Spρqf pτ, xq � P pτ, pρ� sq ^ T q f ppρ� sq ^ T, �q pxq� Eτ,x rf ppρ� sq ^ T,X ppρ� sq ^ T qqs . (3.129)

Here pτ, xq P r0, T s � E, ρ ¥ 0, and f P Cb pr0, T s �Eq. Let λ ¡ 0

and f P Cb pr0, T s �Eq. We want to establish a relationship between the
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semigroup tSpρq : ρ ¥ 0u and the operator D1�L. Therefore we first prove
that the process

t ÞÑe�λtf pt^ T,X pt^ T qq � e�λτf pτ,Xpτqq� » t
τ

e�λρ pλI �D1 � Lq f pρ^ T,X pρ^ T qq dρ, t ¥ τ, (3.130)

is a Pτ,x-martingale with respect to the filtration pFτ
t qtPrτ,T s. Let τ ¤ s  

t ¤ T , and y P E. Then integration by parts shows:

e�λtf pt,Xptqq � e�λsf ps,Xpsqq � » t
s

e�λρ pλI �D1 � Lq f pρ,Xpρqq dρ� e�λtf pt,Xptqq � e�λsf ps,Xpsqq � λ

» t
s

e�λρf pρ,Xpρqq dρ (3.131)� e�λt » t
s

pD1�Lq f pρ,Xpρqq dρ� λ

» t
s

e�λρ pf pρ,Xpρqq � f ps,Xpsqqq dρ.
Then by the martingale property the Ps,y-expectation of the expression in

(3.131) is zero. By employing the Markov property we obtain

Eτ,x

�
e�λtf pt,Xptqq � e�λτf pτ,Xpτqq� » t

τ

e�λρ pλI �D1 � Lq f pρ,Xpρqq dρ �� Fτ
s

���
e�λsf ps,Xpsqq � e�λτf pτ,Xpτqq� » s

τ

e�λρ pλI �D1 � Lq f pρ,Xpρqq dρ
� Eτ,x

�
e�λtf pt,Xptqq � e�λsf ps,Xpsqq� » t
s

e�λρ pλI �D1 � Lq f pρ,Xpρqq dρ �� Fτ
s

�
(Markov property)� Es,Xpsq �e�λtf pt,Xptqq � e�λsf ps,Xpsqq� » t

s

e�λρ pλI �D1 � Lq f pρ,Xpρqq dρ� � 0 (3.132)

where in the final step in (3.132) we used the fact that the Ps,y-expectation,

y P E, of the expression in (3.131) vanishes. Consequently, the process in
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(3.130) is a Pτ,x-martingale. From the fact that the process in (3.130) is a

Pτ,x-martingale we infer by taking expectations that for t ¥ 0

e�λpt�τqEτ,x rf ppt� τq ^ T,X ppt� τq ^ T qqs � e�λτEτ,x rf pτ,Xpτqqs� » t�τ
τ

e�λρEτ,x rpλI �D1 � Lq f pρ^ T,X pρ^ T qqs dρ � 0. (3.133)

The equality in (3.133) is equivalent to

Eτ,x rf pτ,Xpτqqs � e�λtEτ,x rf ppt� τq ^ T,X ppt� τq ^ T qqs� » t�τ
τ

e�λpρ�τqEτ,x rpλI �D1 � Lq f pρ^ T,X pρ^ T qqs dρ � 0.

(3.134)

In terms of the semigroup tSpρq : ρ ¥ 0u the equality in (3.134) can be

rewritten as follows:

fpτ, xq�e�λtSptqf pτ, xq � » t
0

e�λρSpρq pλI �D1 � Lq f pτ, xq dρ. (3.135)
By letting tÑ8 in (3.135) we see

f pτ, xq � » 8
0

e�λρSpρq pλI �D1 � Lq f pτ, xq dρ� Rpλq pλI �D1 � Lq f pτ, xq dρ (3.136)

where the definition of Rpλq, λ ¡ 0, is self-explanatory. Define the

operator Lp1q : D
�
Lp1q� � RpλqCb pr0, T s �Eq Ñ Cb pr0, T s �Eq by

Lp1qRpλqf � λRpλqf � f , f P Cb pr0, T s �Eq. Then by definition we

see
�
λI � Lp1q�Rpλqf � f , and thus Rpλq �λI � Lp1q�Rpλqf � Rpλqf ,

f P Cb pr0, T s �Eq. Put g � �
λI � Lp1q�Rpλqf � f . Then by the

resolvent identity we see that Rpαqg � 0 for all α ¡ 0, and hence

Spρqg pτ, xq � Eτ,x rg ppρ� τq ^ T,X ppρ� τq ^ T qqs � 0 for all ρ ¡ 0. By

the right-continuity of the process ρ ÞÑ Xpρq, we see that g � 0. Conse-

quently,
�
λI � Lp1q�Rpλqf � f � 0, f P Cb pr0, T s �Eq. If f P Dp1qpLq,

then (3.136) reads f � Rpλq pλI �D1 � Lq f , and hence f P D
�
Lp1q�,

and
�
λI � Lp1q� f � pλI �D1 � Lq f , or what amounts to the same

f P D
�
Lp1q�, and Lp1qf � D1f � Lf . In other words the opera-

tor Lp1q extends D1 � L. As in (2.42) define the sub-additive mapping

U1
λ : Cb pr0, T s �E,Rq Ñ L8 pr0, T s �E,Rq by

U1
λf � sup

KPKpEq inf
gPDp1qpLq tg ¥ f1K : λg �D1g � Lg ¥ 0u . (3.137)
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Since Lp1q extends D1 � L, from (3.137) we get

U1
λf ¥ sup

KPKpEq inf
gPDpLp1qq!g ¥ f1K : λg � Lp1qg ¥ 0

)
. (3.138)

Then, as explained in Proposition 2.4, formula (2.49), we have

sup
!pµR pλ� µqqk f ; µ ¡ 0, k P N

) ¤ U1
λpfq, f P Cb pr0, T s �E,Rq .

(3.139)

As is indicated in the proof of (iii) ùñ (i) of Theorem 4.3 the following

equality also holds:

sup
!pµR pλ� µqqk f ; µ ¡ 0, k P N

) � sup
 
e�λρSpρqf : ρ ¥ 0

(
, (3.140)

where f P Cb pr0, T s �E,Rq. For this observation the reader is referred to

the formulas (4.20), (4.21) and (4.22). Next let pfnqnPN � Cb pr0, T s �Eq
be a sequence which decreases pointwise to zero. Using the sequential

λ-dominance of the operator D1 � L and using the equality in (3.139)

and the inequality in (3.140) we see that sup
ρ¥0

e�λρSpρqfnpτ, xq decreases

to zero uniformly on compact subsets of r0, T s � E: see Definition 4.3.

From Proposition 2.3 it follows that the semigroup
 
e�λρSpρq : ρ ¥ 0

(
is

Tβ-equi-continuous. In addition, by the arguments above, every operator

Spρq, ρ ¥ 0, assigns to a function f P Dp1qpLq � D pD1q�DpLq a function

Spρqf P Cb pr0, T s �Eq. By the Tβ-continuity of Spρq, and by the fact

that Dp1qpLq is Tβ-dense in Cb pr0, T s �Eq, the mapping Spρq extends to

a Tβ-continuous linear continuous operator from Cb pr0, T s �Eq to itself.

This extension is again denoted by Spρq. In addition, for v P Dp1qpLq, the
function pτ, ρ, xq ÞÑ Spρqvpτ, xq is continuous on r0, T s � r0,8q � E; see

(3.127). Fix f P Cb pr0, T s �Eq. Using the sequential λ-dominance and its

consequence of Tβ-equi-continuity of the semigroup
 
e�λρSpρq : ρ ¥ 0

(
we

see that the function pτ, s, xq ÞÑ Spρqfpτ, xq is continuous on r0, T s�r0,8q�
E, and hence the same is true for the function pτ, s, xq ÞÑ Eτ,x rf ps,Xpsqqs.
Here we again used the Tβ-density of Dp1qpLq in Cb pr0, T s �Eq.

This completes the proof of Proposition 3.7. �

Notice that in the proof of the implication (iii) ùñ (i) of Theorem 4.3 argu-

ments very similar to the ones in the final part of the proof of Proposition

3.7 will be employed.

The following corollary establishes an important relation between

unique solutions to the martingale problem and Feller semigroups.

Corollary 3.2. Suppose that the martingale problem is well posed for the

operator D1 � L, and that the operator D1 � L is sequentially λ-dominant
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for some λ ¡ 0. Let tpΩ,Fτ
T ,Pτ,xq : pτ, xq P r0, T s �Eu be the solutions to

the martingale problem starting at x at time τ . Let the process in (3.128)

be the corresponding Markov process, and let the semigroup tSpρq : ρ ¥ 0u,
as defined in (3.129), be the corresponding Feller semigroup. Then this

semigroup is Tβ-equi-continuous, and its generator extends D1 � L.

Proof. From Proposition 2.3 it follows that for some λ ¡ 0 the semigroup 
e�λρSpρq : ρ ¥ 0

(
is Tβ-equi-continuous: see the proof of Proposition 3.7.

Since Spρq � SpT q for ρ ¥ T , we see that the semigroup tSpρq : ρ ¥ 0u itself
is Tβ-equi-continuous. Moreover, it is a Feller semigroup in the sense that

it consists of Tβ-continuous linear operators, and Tβ- lim
tÑs

Sptqf � Spsqf ,
f P Cb pr0, T s �Eq. From the proof of Proposition 3.7 it follows that the

generator of the semigroup tSpρq : ρ ¥ 0u extends D1 � L.

This proves Corollary 3.2. �

The proof of the following proposition may be copied from [Ikeda and

Watanabe (1998)], Theorem 5.1. p. 205. For completeness we insert a

proof as well.

Proposition 3.8. Suppose that for every pτ, xq P r0, T s�E the martingale

problem, posed on the Skorohod space D
�r0, T s, E△

�
as follows,

(i) For every f P Dp1qpLq the process

fpt,Xptqq � fpτ,Xpτqq � » t
τ

pD1 � Lq fps,Xpsqqds, t P rτ, T s,
is a P-martingale;

(ii) PpXpτq � xq � 1,

has a unique solution P � Pτ,x.

Then the processtpΩ,Fτ
T ,Pτ,xq , pXptq, τ ¤ t ¤ T q , p_t : τ ¤ t ¤ T q , pE, Equ , (3.141)

is a strong Markov process with respect to the right-continuous filtration�
Fτ
t��tPrτ,T s.

For the definition of Fτ
S� the reader is referred to (2.97) in Remark 2.8;

also see (2.85) in Definition 2.14.

Proof. Fix pτ, xq P r0, T s�E and let S be a stopping time and choose a

realization A ÞÑ Eτ,x
�
1A � _S �� Fτ

S��, A P Fτ
T . Fix any ω P Ω for which

A ÞÑ Qs,yrAs :� Eτ,x
�
1A � _S �� Fτ

S�� pωq,
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is defined for all A P Fτ
T . Here, by definition, ps, yq � pSpωq, ωpSpωqqq.

Notice that this construction can be performed for Pτ,x-almost all ω. Let

f be in Dp1qpLq � D pD1q�DpLq and fix T ¥ t2 ¡ t1 ¥ 0. Moreover, fix

C P Fτ
t1
. Then _�1

S pCq is a member of Fτ_S
t1_S�. Put

Mf ptq � fpt,Xptqq � fpXpτqq � » t
τ

pD1 � Lq fps,Xpsqqds, t P rτ, T s.
We have

Es,y rMf pt2q1Cs � Es,y rMf pt1q1Cs . (3.142)

We also have» �
f pt2, Xpt2qq � fpτ,Xpτqq � » t2

τ

LfpXpsqqds
1CdQs,y (3.143)� Eτ,x

��
f pt2 _ S,X pt2 _ Sqq � fpS,XpSqq� » t2

τ

pD1 � Lq f ps_ S,Xps_ Sqq ds
 p1C � _Sq �� Fτ
S�� pωq� Eτ,x

��
f pt2 _ S,Xpt2 _ Sqq � fpS,XpSqq� » t2_S

S

pD1 � Lq f pXpsqq ds� p1C � _Sq �� Fτ
S�� pωq� Eτ,x

�
Eτ,x

��
f pt2 _ S,Xpt2 _ Sqq � fpS,XpSqq� » t2_S

S

pD1 � Lq f ps,Xpsqq ds� �� Fτ
t1_S��1C � _S �� Fτ

S

� pωq. (3.144)
By Doob’s optional sampling theorem, and right-continuity of paths, the

process

f pt_ S,Xpt_ Sqq � fpS,XpSqq � » t_S
S

pD1 � Lq f ps,Xpsqq ds
is a Pτ,x-martingale with respect to the filtration consisting of the σ-fields

Fτ
t_S�, t P rτ, T s. So from (3.143) we obtain:» �

fpt2, Xpt2qq � fpτ,Xpτqq � » t2
τ

LfpXpsqqds
1CdQs,y
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��
f pt1 _ S,Xpt1 _ Sqq � fpS,XpSqq (3.145)� » t1_S

S

pD1 � Lq f ps,Xpsqq ds� p1C � _Sq �� Fτ
S�� pωq� » �

f pt1, Xpt1qq � f pτ,Xpτqq � » t1
τ

pD1 � Lq fps,Xpsqqds
1CdQs,y.

It follows that, for f P DpLq, the process Mf ptq is a Ps,y- as well as a

Qs,y-martingale. Since Ps,yrXpsq � ys � 1 and since

Qs,yrXpsq � ys � Eτ,x
�
1tXpSq�yu � _S �� Fτ

S�� pωq� Eτ,x
�
1tXpSq�yu �� Fτ

S�� pωq � 1tXpSq�yupωq � 1, (3.146)

we conclude that the probabilities Ps,y and Qs,y are the same. Equality

(3.146) follows, because, by definition, y � XpSqpωq � ωpSpωqq. Since

Ps,y � Qs,y, it then follows that

PSpωq,XpSqpωqrAs � Eτ,x
�
1A � _S �� Fτ

S�� pωq, A P Fτ
T .

Or putting it differently:

PS,XpSq r1A � _Ss � Eτ,x
�
1A � _S �� Fτ

S�� , A P Fτ
T . (3.147)

However this is exactly the strong Markov property.

This concludes the proof of Proposition 3.8. �

The following proposition can be proved in the same manner as Theorem

5.1 Corollary in [Ikeda and Watanabe (1998)], p. 206.

Proposition 3.9. If an operator family L � tLpsq : 0 ¤ s ¤ T u generates

a Feller evolution tP ps, tq : 0 ¤ s ¤ t ¤ T u, then the martingale problem is

uniquely solvable for L.

Proof. Let tP pτ, tq : 0 ¤ τ ¤ t ¤ T u be a Feller evolution generated by

L and lettpΩ,Fτ
T ,Pτ,xq , pXptq, τ ¤ t ¤ T q , p_t : τ ¤ t ¤ T q , pE, Equ , (3.148)

be the associated strong Markov process (see Theorem 2.9) If f belongs to

Dp1qpLq, then the process

Mf ptq :� fpt,Xptqq � fpτ,Xpτqq � » t
τ

pD1 � Lq fps,Xpsqqds, t P rτ, T s,
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is a Pτ,x-martingale for all pτ, xq P r0, T s �E. This can be seen as follows.

Fix T ¥ t2 ¡ t1 ¥ 0. Then

Eτ,x
�
Mf pt2q �� Fτ

t1

��Mf pt1q� Eτ,x

�
f pt2, Xpt2qq � » t2

t1

pD1 � Lq fpXpsqqds �� Fτ
t1

�� fpt1, Xpt1qq
(Markov property)� Et1,Xpt1q �f pt2, Xpt2qq � » t2

t1

pD1 � Lq fps,Xpsqqds�� fpt1, Xpt1qq� Et1,Xpt1q rf pt2, Xpt2qqs � » t2
t1

Et1,Xpt1q rpD1 � Lq fps,Xpsqqs ds� fpt1, Xpt1qq
(see Proposition 4.1 in Chapter 4)� Et1,Xpt1q rf pt2, Xpt2qqs � » t2

t1

d

ds
Et1,Xpt1q rfps,Xpsqqs ds� fpt1, Xpt1qq� 0. (3.149)

Hence from (3.149) it follows that the process Mf ptq, t ¥ 0, is a Pτ,x-

martingale. Next we shall prove the uniqueness of the solutions of the

martingale problem associated to the operator L. Let P1
τ,x and P2

τ,x be

solutions “starting” in x P E at time τ . We have to show that these

probabilities coincide. Let f belong to Dp1qpLq and let S : Ω Ñ rτ, T s be
an

�
Fτ
t��tPrτ,T s-stopping time. Then, via partial integration, we infer

λ

» 8
0

e�λt#f ppt� Sq ^ T,X ppt� Sq ^ T qq� » t�S
S

pD1 � Lq f pρ^ T,X pρ^ T qq dρ� f pS,XpSqq+ dt� f pS,XpSqq� λ

» 8
0

e�λt#f ppt� Sq ^ T,X ppt� Sq ^ T qq� » t�S
S

pD1 � Lq f pρ^ T,X pρ^ T qq dρ+ dt� λ

» 8
0

e�λtf ppt� Sq ^ S,X ppt� Sq ^ T qq dt� λ

» 8
0

e�λt » t
0

pD1 � Lq f ppt� Sq ^ T,X ppρ� Sq ^ T qq dρ dt
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» 8
0

e�λtf ppt� Sq ^ T,X ppt� Sq ^ T qq dt� λ

» 8
0

�» 8
ρ

e�λtdt
 pD1 � Lq f ppρ� Sq ^ T,X ppρ� Sq ^ T qq dρ� » 8
0

e�λt rpλI �D1 � Lqf s ppt� Sq ^ T,X ppt� Sq ^ T qq dt.
(3.150)

From Doob’s optional sampling theorem together with (3.150) we obtain:» 8
0

e�λtE1
τ,x

�pλI �D1 � Lq f ppt� Sq ^ T,X ppt� T q ^ T qq �� Fτ
S�� dt� λ

» 8
0

e�λtE1
τ,x

�#
f ppt� Sq ^ T,X ppt� Sq ^ T qq� » t�S

S

pD1 � Lq f pρ^ T,X pρ^ T qq dρ� f pS,XpSqq+ ��� Fτ
S�� dt� f pS,XpSqq� f pS,XpSqq , P1

τ,x-almost surely. (3.151)

By the same token we also have P2
τ,x-almost surely

λ

» 8
0

e�λtE2
τ,x

�#
f ppt� Sq ^ T,X ppt� Sq ^ T qq� » t�S

S

pD1 � Lq f pρ^ T,X pρ^ T qq dρ� f pS,XpSqq+ ��� Fτ
S�� dt� f pS,XpSqq� » 8

0

e�λtE2
τ,x

�pλI �D1 � Lq f ppt� Sq ^ T,X ppt� Sq ^ T qq ��� Fτ
S�� dt.
(3.152)

As in (3.84), (3.129) and (4.5) in Chapter 4 we write:

Spρqfpt, xq � P pt, pρ� tq ^ T q f ppρ� tq ^ T, �q pxq, f P Cb pr0, T s �Eq ,
ρ ¥ 0, pt, xq P r0, T s�E. Then the family tSpρq : ρ ¥ 0u is a Tβ-continuous

semigroup. Its resolvent is given byrRpλqf s pτ, xq � » 8
0

e�λt rP pτ, pτ � tq ^ T q f ppτ � tq ^ T, �qs pxqdt� » 8
0

e�λtSptqfpτ, xqdt, (3.153)
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for x P E, λ ¡ 0, and f P Cb pr0, T s �Eq. Let Lp1q be its generator. Then,

as will be shown in Theorem 4.1 below, Lp1q is the Tβ-closure of D1�L, and�
λI � Lp1q	Rpλqf � f, f P Cb pr0, T s �Eq ,

Rpλq�λI � Lp1q	 f � f, f P D �
Lp1q	 . (3.154)

Since Lp1q is the Tβ-closure of D1�L, the equalities in (3.151) and (3.152)

also hold for Lp1q instead of D1 � L. Among other things we see that

R
�
λI � Lp1q	 � Cb pr0, T s �Eq , λ ¡ 0.

From (3.151) and (3.152), with Lp1q instead of D1�L, (3.153), and (3.154)

it then follows that for g P Cb pr0, T s �Eq we have» 8
0

e�λtE1
τ,x

�
g ppt� Sq ^ T,X ppt� T q ^ T qq �� Fτ

S�� dt� » 8
0

e�λtrSptqgs pS,XpSqq dt� » 8
0

e�λtE2
τ,x

�
g ppt� Sq ^ T,X ppt� T q ^ T qq �� Fτ

S�� dt. (3.155)
Here the first equality in (3.155) holds P1

τ,x-almost surely, and the second

one holds P2
τ,x-almost surely. Since Laplace transforms are unique, g be-

longs to Cb pr0, T s �Eq, and paths are right continuous, we conclude

E1
τ,x

�
g ppt� Sq ^ T,X ppt� Sq ^ T qq �� Fτ

S��� rSptqgs pS,XpSqq� E2
τ,x

�
g ppt� Sq ^ T,X ppt� Sq ^ T qq �� Fτ

S�� , (3.156)

whenever g belongs to Cb pr0, T s �Eq, t P r0,8s and S is an
�
Fτ
t��tPrτ,T s-

stopping time. The first equality in (3.156) holds P1
τ,x-almost surely and the

second P2
τ,x-almost surely. In (3.156) we take for S a fixed time s P rτ, T�ts

and we substitute ρ � t� s. Then we get

E1
τ,x

�
g ppρ,X pρqqq �� Fτ

s�� � rSpρ�sqgs ps,Xpsqq � E2
τ,x

�
g pρ,X pρqq �� Fτ

s�� .
(3.157)

For s � τ the equalities in (3.157) imply

E1
τ,x

�
g ppρ,X pρqqq �� Fτ

τ�� � rSpρ�τqgs pτ,Xpτqq � E2
τ,x

�
g pρ,X pρqq �� Fτ

τ�� ,
(3.158)

and by taking expectations in (3.158) we get

E1
τ,x rg ppρ,X pρqqqs � rSpρ� τqgs pτ, xq � E2

τ,x rg pρ,X pρqqs (3.159)
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where we used the fact that Xpτq � x P1
τ,x- and P2

τ,x-almost surely. It fol-

lows that the one-dimensional distributions of P1
τ,x and P2

τ,x coincide. By

induction with respect to n and using (3.157) several times we obtain:

E1
τ,x

�¹n

j�1
fj ptj , X ptjqq� � E2

τ,x

�¹n

j�1
fj ptj , X ptjqq� (3.160)

for n � 1, 2, . . . and for f1, . . . , fn in Cb pr0, T s �Eq. But then the proba-

bilities P1
τ,x and P2

τ,x are the same.

This proves Proposition 3.9. �

The following proposition establishes a close link between unique solutions

to the martingale problem and generators of strong Markov processes.

Proposition 3.10. Let L be a densely defined operator for which the mar-

tingale problem is uniquely solvable. Then there exists a unique closed linear

extension L0 of L, which is the generator of a Feller semigroup.

Proof. Existence. Let tPτ,x : pτ, xq P r0, T s � Eu be the solution for L.

Put rSptqf s pτ, xq � Eτ,x rf ppτ � tq ^ T,X ppτ � tq ^ T qqs ,rRpλqf s pτ, xq � » 8
0

e�λs rSpsqf s pτ, xqds,
L0 pRpλqfq :� λRpλqf � f, f P Cb pr0, T s �Eq .

Here t P r0, T s and λ ¡ 0 are fixed. Then, as follows from the proof of

Theorem 4.1 the operator L0 extends D1�L and generates a Tβ-continuous

Feller semigroup.

Uniqueness. Let L1 and L2 be closed linear extensions of L, which both

generate Feller evolutions. Let �
Ω,Fτ

T ,P
1
τ,x

�
, pXptq : t P r0, T sq, p_t : t P r0, T sq, pE, Eq(

respectively �
Ω,Fτ

T ,P
2
τ,x

�
, pXptq : t P r0, T sq, p_t : t P r0, T sq, pE, Eq(

be the corresponding Markov processes. For every f P DpLq, the process

fpt,Xptqq � fpτ,Xpτqq � » t
τ

pD1 � Lq fps,Xpsqqds, t ¥ 0,

is a martingale with respect to P1
τ,x as well as with respect to P2

τ,x. Unique-

ness implies P1
τ,x � P2

τ,x and hence L1 � L2.

So the proof of Proposition 3.10 is now complete. �
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Proof. [Proof of Theorem 2.12: conclusion.] In this final part of the

proof we mainly collect the results, which we proved in Theorem 2.9, and

Propositions 3.6, 3.7, 3.2, 3.8, 3.9, and 3.10. The main work we have to do is

to organize these matters into a proof of Theorem 2.12. More details follow.

As in (3.126) let P 2 pΩq � tPτ,x : pτ, xq P r0, T s �Eu, be the collection of

unique solutions to the martingale problem. Then the process!pΩ,Fτ
T ,Pτ,xqpτ,xqPr0,T s�E , pXptq, t P r0, T sq , p_t : t P r0, T sq , pE, Eq)

is strong Markov process, and the function P pτ, x; t, Bq defined by

P pτ, x; t, Bq � Pτ,x rXptq P Bs , 0 ¤ τ ¤ t ¤ T, x P E, B P E ,

is a Feller evolution. Here the state variables Xptq : Ω Ñ E△ are defined

by Xptq � ωptq, ω P Ω � D
�r0, T s, E△

�
. The sample path space is sup-

plied with the standard filtration pFτ
t qτ¤t¤T . The strong Markov property

follows from Proposition 3.8. The Feller property is a consequence of Propo-

sition 3.7 (which in turn is based on Proposition 3.6 where completeness and

separability of the space P 2 pΩq is heavily used). Its Tβ-continuity and Tβ-

equi-continuity is explained in Corollary 3.2 to Proposition 3.8. Define the

Feller semigroup tSpρq : ρ ¥ 0u on Cb pr0, T s �Eq as in (3.129), and let Lp1q
be its generator. From Corollary 3.2 we see that Lp1q extends the operator

D1�L. Since the martingale problem is uniquely solvable for the operator

L, it follows that the martingale problem is uniquely solvable for the opera-

tor Lp1q (but now as a time-homogeneous martingale problem). Therefore,

Proposition 3.9 implies that the operator Lp1q is the unique extension of

D1�L which generates a Feller semigroup. It follows that Lp1q�D1 is the

unique Tβ-extension of L which generates a Feller evolution. This Feller

evolution is given by the original solution to the martingale problem: this

claim follows from Theorem 2.9.

Finally, this completes the proof of Theorem 2.12. �

3.1.5 Proof of Theorem 2.13

In this subsection we will show that under certain conditions, like possessing

the Korovkin property, satisfying the maximum principle, and Tβ-equi-

continuity a Tβ-densely defined operator in CbpEq has a unique extension

which generates a (strong) Markov process.

Proof. [Proof of Theorem 2.13.] Let E0 be a subset of r0, T s � E which

is Polish for the relative topology. First suppose that the operator D1 � L

possesses the Korovkin property on E0. Also suppose that it satisfies the
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maximum principle on E0. By Proposition 4.4 and its Corollary 4.2 there

exists a family of linear operators tRpλq : λ ¡ 0u such that for all pτ0, x0q P
E0 and g P Cb pE0q the following equalities hold:

λRpλqg pτ0, x0q� inf
hPDp1qpLq maxpτ,xqPE0

"
h pτ0, x0q � �

g ��
I � 1

λ
pD1 � Lq
h� pτ, xq*� inf

hPDp1qpLq"h pτ0, x0q : �I � 1

λ
pD1 � Lq
h ¥ g on E0

*� sup
hPDp1qpLq"h pτ0, x0q : �I � 1

λ
pD1 � Lq
h ¤ g on E0

*� sup
hPDp1qpLq minpτ,xqPE0

"
h pτ0, x0q � �

g ��
I � 1

λ
pD1 � Lq
h� pτ, xq* .

(3.161)

As will be shown in Proposition 4.4 the family tRpλq : λ ¡ 0u has the re-

solvent property: Rpλq � Rpµq � pλ� µqRpµqRpλq, λ ¡ 0, µ ¡ 0. It also

follows that Rpλq pλI �D1 � Lq f � f on E0 for f P Dp1qpLq. This equality
is an easy consequence of the inequalities in (3.161): see Corollary 4.2. Fix

λ ¡ 0 and f P Cb pr0, T s �Eq. We will prove that f � Tβ- lim
αÑ8αRpαqf . If

f is of the form f � Rpλqg, g P Cb pE0q, then by the resolvent property we

have

αRpαqf � f � αRpαqRpλqg �Rpλqg � α

α� λ
Rpλqg �Rpλqg � αRpαqg

α� λ
.

(3.162)

Since }αRpαqg}8 ¤ }g}8, the equality in (3.162) yields}�}8 - lim
αÑ8αRpαqf � f � 0 for f of the form f � Rpλqg, g P Cb pE0q.

Since g � Rpλq pλI �D1 � Lq g on E0, g P Dp1qpLq, it follows that
lim
αÑ8 }αRpαqg � g}8 � 0 for g P Dp1qpLq � D pD1q£DpLq. (3.163)

As will be proved in Corollary 4.3 there exists λ0 ¡ 0 such that the familytλRpλq : λ ¥ λ0u is Tβ-equi-continuous. Hence for u P H� pE0q there exists
v P H� pE0q that for α ¥ λ0 we have}uαRpαqg}8 ¤ }vg}8 , g P Cb pE0q . (3.164)

Fix ε ¡ 0, and choose for f P Cb pE0q and u P H� pE0q given g P Dp1qpLq
in such a way that }upf � gq}8 � }vpf � gq}8 ¤ 2

3
ε. (3.165)
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Since DpLq is Tβ-dense in Cb pr0, T s �Eq such a choice of g is possible by.

The inequality (3.165) and the identity

αRpαqf � f � αRpαqpf � gq � pf � gq � αRpαqg � g yield}u pαRpαqf � fq}8¤ }u pαRpαqpf � gqq}8 � }upf � gq}8 � }uαRpαqg � g}8¤ }vpf � gq}8 � }upf � gq}8 � }uαRpαqg � g}8¤ 2

3
ε� }u pαRpαqg � gq}8 . (3.166)

From (3.163) and (3.166) we infer Tβ- lim
αÑ8αRpαqf � f , f P Cb pE0q. Of

course the same arguments apply if E0 � r0, T s�E. The detailed arguments

which prove the fact that the operatorD1�L, confined to E0, extends to the

unique generator of a Feller semigroup are found in the proof of Theorem

4.4.

Let E0 � r0, T s � E1
0 where E1

0 is a Polish subspace of E. Let E0 and

E 10 be the Borel field of E0 respectively E1
0. We still have to show that

the martingale problem for the operator L restricted to E0 is well posed.

Saying that the martingale is well posed for LæE0
is the same as saying that

the martingale problem is well posed for the operator pD1 � Lq æE0
. More

precisely, if!pΩ,Fτ
T ,Pτ,xqpτ,xqPE0

, pXptq, t P r0, T sq , �E1
0, E

1
0

�)
(3.167)

is a solution to the martingale problem associated to LæE0
, then the time-

homogeneous family"�rΩ, rF ,Pp0qτ,x	pτ,xqPE0

, pY ptq, t ¥ 0q , pE0, E0q* (3.168)

is a solution to the martingale problem associated with pD1 � Lq æE0
. HererΩ � r0, T s�Ω, Y ptqpτ, ωq � ppτ � tq ^ T,X ppτ � tq ^ T qq, pτ, ωq P r0, T s�

Ω � rΩ, and the measure P
p0q
τ,x is determined by the equality

Ep0qτ,x � n¹
j�1

fj pY ptjqq� � Eτ,x

�
n¹
j�1

fj ppτ � tjq ^ T,X ppτ � tjq ^ T qq�
(3.169)

where the functions fj, 1 ¤ j ¤ n, are bounded Borel measurable functions

on E0, and where 0 ¤ t1   � � �   tn. Conversely, if the measures P
p0q
τ,x in

(3.168) are known, then those in (3.167) are also determined by (3.169):

Eτ,x

�
n¹
j�1

fj ptj , X ptjqq� � Ep0qτ,x � n¹
j�1

fj pY ptj � τqq� (3.170)
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where the functions fj , 1 ¤ j ¤ n, are again bounded Borel measurable

functions on E0, and where τ ¤ t1   � � �   tn ¤ T . In fact in (3.170)

the functions fj , 1 ¤ j ¤ n, only need to be defined on E0. It follows

that instead of considering the time-inhomogeneous martingale problem

associated with LæE0
we may consider the time-homogeneous martingale

problem associated with pD1 � Lq æE0
. However, the martingale problem

for the time-homogeneous case is taken care of in the final part of Theorem

4.4.

So combining the above observations with Theorem 4.4 completes the

proof of Theorem 2.13. �

Remark 3.1. It is left as an exercise for the reader to prove that the

process in (3.5) is a supermartingale indeed.

Remark 3.2. Let pψmqmPN be a sequence in C�
b prτ, T s �Eq which de-

creases pointwise to the zero function. Since the orbit!�
t, rXptq	 : t P rτ, T s)

is Pτ,x-almost surely compact, or, equivalently, totally bounded, we know

that

inf
mPN sup

tPrτ,T sψm �
t, rXptq	 � 0, Pτ,x-almost surely.

3.1.6 Some historical remarks

The Lévy numbers in (3.106) are closely related to the Lévy metric, which

in turn is related to approach structures. The definition of Lévy metric

and Lévy-Prohorov metric can be found in Encyclopaedia of Mathemat-

ics, edited by Hazewinkel [Hazewinkel (2001)]. Lévy numbers could also

have called tightness numbers. In the area of convergence of measures the

Encyclopaedia contains contributions by V. M. Zolotarev. In fact special

sections are devoted to the Lévy metric, the Lévy-Prokhorov metric, and

related topics like convergence of probability measures on complete metriz-

able spaces. The Lévy metric goes back to Lévy: see [Lévy (1937)]. The

Lévy-Prohorov metric generalizes the Lévy metric, and has its origin in

Prohorov [Prohorov (1956)]. Whereas in [van Casteren (1992)] we used

only the first term in the distance dL of formula (3.107) this is not ade-

quate in the non-compact case. The reason for this is that the second term

in the right-hand side of the definition of the metric dL pP2,P1q in (3.107)

ensures us that the limiting “functionals” are probability measures indeed.
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Here we use a concept which, for distribution functions, is due to Lévy. For

probability measures on a metric space the corresponding metric originates

from Prohorov. This metric is often called the Lévy-Prohorov metric. For

completeness we insert the definition of the latter metric.

Definition 3.2. Let pE, dq be a metric space with its Borel sigma field

E . Let PpEq denote the collection of all probability measures on the mea-

surable space pE, Eq. For a subset A � E, define the ε-neighborhood of A

by

Aε :� tx P E : there exists y P A such that dpx, yq   εu � ¤
yPABpy, εq

where Bpy, εq is the open ball of radius ε centered at y. The Lévy-Prohorov

metric dLP : PpEq2 Ñ r0,�8q is defined by setting the distance between

two probability measures µ and ν as

dLPpµ, νq (3.171)� inf tε ¡ 0 : µpAq ¤ ν pAεq � ε and νpAq ¤ µ pAεq � ε for allA P Eu .
For probability measures µ and ν we clearly have

dLPpµ, νq � inf tε ¡ 0 : µpAq ¤ ν pAεq � ε, for all A P Eu ¤ 1. (3.172)

Some authors omit one of the two inequalities or choose only open or closed

subsets A; either inequality implies the other, but restricting to open or

closed sets changes the metric as defined in (3.171). The Lévy-Prohorov

metric is also called the Prohorov metric. The interested reader should com-

pare the definition of Lévy-Prohorov metric with that of approach struc-

ture as exhibited in e.g. [Lowen (1997)]. When discussing convergence of

measures and constructing appropriate metrics the reader is also referred

to [Billingsley (1999)], [Parthasarathy (2005)], [Rachev (1991)], [Zolotarev

(1983)], and others like Bickel, Klaassen, Ritov and Wellner in [Bickel et al.

(1993)], appendices A6–A9. A book which uses the notion of Korovkin set

to a great extent is [Altomare and Campiti (1994)]. For applications of

Korovkin sets to ergodic theory see e.g. [Marsden and Riemenschneider

(1974)], [Nishishiraho (1998)], [Labsker (1982)], Chapter 7 and 8 in [Don-

ner (1982)], and [Krengel (1985)]. Another book of interest is [Bergelson

et al. (1996)] edited by Bergelson, March and Rosenblatt. For the con-

vergence results we also refer to the original book by Korovkin [Korovkin

(1960)]. The reader also might want to consult (the references in) Bukhalov

[Bukhvalov (1988)]. In the terminology of test sets, or Korovkin sets, our

space Dp1q � D pD1q�D pLq in Cb pr0, T s �Eq is a Korovkin set for the
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resolvent family pλI �D1 � Lq�1
, λ ¡ 0. From the proof of Theorem 2.13

it follows that we only need the Korovkin property for some fixed λ0 ¡ 0:

see the definitions 4.4 and 2.12. In the finite-dimensional setting these Ko-

rovkin sets may be relatively small: see e.g. Özarslan and Duman [Özarslan

and Duman (2007)]. Section 5.2 in the recent book on functional analysis

by Dzung Minh Ha [Ha (2007)] carries the title “Korovkin’s theorem and

the Weierstrass approximation theorem”.

3.1.7 Kolmogorov extension theorem

In this subsection we present the Kolmogorov extension (or existence) the-

orem for Polish spaces. It reads as follows. Let tEt : t P T u be a family

of Polish spaces equipped with their Borel σ-field Et. We identify each

EF with the collection pEF of F -cylinder sets in ET � ±
tPT Et. That is,rEF consists of all sets of the form A � ±

tPT zF Et, where A belongs to

EF . By definition the product σ-field btPTEt is the σ-field generated by!pEF : F is a finite subset of T
)
. Define pPF on pEF bypPF ��A� ¹

tPT zF Et�� PF pAq, A P EF .

Regard the family of finite subsets of T as a net directed upward by in-

clusion. The family
 �
EF , EF , PF

�
: F � T finite

(
is called (Kolmogorov)

consistent if for every t0 P T and for finite every finite subset F � T

the equality PF
�tt0u rA�Et0 s � PF rAs for all Borel subsets A P EF .

Moreover, it is implicitly assumed that Ptσp1q ,...,tσpnq �Aσp1q, . . . , Aσpnq� �
Pt1,...,tn rA1, . . . , Ans, Aj P Etj , 1 ¤ j ¤ n, whenever tt1, . . . , tnu is a subset

of n elements of T , and whenever σ is a permutation on n elements. The

consistency property is equivalent to saying that the probability measurespPF and pPF 1 coincide on pEF whenever F is a subset of the finite subset F 1
of T . Consistent families of probability spaces are also called projective

systems of probability measures or cylindrical measures.

Theorem 3.1. Let tEt : t P T u be a family of Polish spaces equipped with

their Borel σ-field Et. For each finite subset F of T let PF be a Borel

probability measure on EF � ±
tPF Et with its product (Borel) σ-field EF .

Assume the distributions
! pPF : F � T, F finite

)
are Kolmogorov consis-

tent. Then there is a unique probability measure on the infinite product

σ-field ET � btPTEt that extends each measure pPF .
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A proof of this result can be found in a course text by Kim C. Border

[Border (1998)]. An important tool which is a basic ingredient of the proof

is the inner regularity of the measures Pt � Pttu, t P T . Since for every

t P T the space Et is Polish the measure Pt is inner regular in the sense

that Pt rAs � supK�A,K compact Pt rKs for all A P Et. For this result the

reader may consult [Aliprantis and Border (1994)], Theorem 11.20. In fact

Theorem 3.1 is also true if the spaces Et, t P T , are merely topological

Hausdorff spaces and the measures Pt are inner regular. In addition, the

text by Border contains an example of a situation where Kolmogorov’s

extension theorem does not hold. The example is due to Andersen and

Jessen [Andersen and Jessen (1948)]; for related topics see Dudley [Dudley

(2002)].
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Chapter 4

Space-time operators and

miscellaneous topics

In this chapter we discuss a number of issues related to time dependent

Markov processes. Topics include space-time operators, dissipative opera-

tors, continuity of sample paths, measurability properties of hitting times.

Another feature of the present chapter is the fact that to a Feller propagator

on CbpEq we can associate a Feller semigroup in the space Cb pr0, T s �Eq:
see formula (4.5).

4.1 Space-time operators

In this section we will discuss in more detail the generators of the time-space

Markov process (see (2.76):tpΩ,Fτ
T ,Pτ,xq , pXptq : T ¥ t ¥ τq , p_t : τ ¤ t ¤ T q , pE, Equ . (4.1)

In Definition 2.7 we have introduced the family of generators of the corre-

sponding Feller evolution tP pτ, tq : 0 ¤ τ ¤ t ¤ T u given by P pτ, tq fpxq �
Eτ,x rf pXptqqs, f P CbpEq. In fact for any fixed t P r0, T s we will consider

the Feller evolution as an operator from Cb pr0, T s �Eq to Cb pr0, ts �Eq.
This is done in the following manner. To a function f P Cb pr0, T s �Eq our
Feller evolution assigns the function pτ, xq ÞÑ P pτ, tq f pt, �q pxq. We will

also consider the family of operators L :� tLptq : t P r0, T qu as defined in

Definition 2.7, and which is considered as a linear operator which acts on a

subspace of Cb pr0, T s �Eq. It is called the (infinitesimal) generator of the

Feller evolution tP ps, tq : 0 ¤ s ¤ t ¤ T u, if Lpsqf � Tβ-lim
tÓs P ps, tqf � f

t� s
,

0 ¤ s ¤ T . This means that a function f belongs to D pLpsqq when-

ever Lpsqf :� lim
tÓs P ps, tqf � f

t� s
exists in CbpEq, equipped with the strict

topology. As explained earlier, such a family of operators is considered

227
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as an operator L with domain in the space Cb pr0, T s �Eq. A function

f P Cb pr0, T s �Eq is said to belong to DpLq if for every s P r0, T s
the function x ÞÑ fps, xq is a member of DpLpsqq and if the functionps, xq ÞÑ Lpsqf ps, �q pxq belongs to CbpEq. Instead of Lpsqf ps, �q pxq we

often write Lpsqf ps, xq. If a function f P DpLq is such that the function

s ÞÑ fps, xq is differentiable, then we say that f belongs to Dp1qpLq. We will

show that such a generator also generates the corresponding Markov pro-

cess in the sense of Definition 2.8. For convenience of the reader we repeat

here the defining property. A family of operators L :� tLpsq : 0 ¤ s ¤ T u,
is said to generate a time-inhomogeneous Markov process, as described in

(2.76), if for all functions u P DpLq, for all x P E, and for all pairs pτ, sq
with 0 ¤ τ ¤ s ¤ T the following equality holds:

d

ds
Eτ,x ru ps,Xpsqqs � Eτ,x

�BuBs ps, xq � Lpsqu ps, �q pXpsqq� . (4.2)

Our first result says that generators of Markov processes and the corre-

sponding Feller evolutions coincide.

Proposition 4.1. Let the Markov process in (4.1) and the Feller evolutiontP pτ, tq : 0 ¤ τ ¤ t ¤ T u be related by P pτ, tq fpxq � Eτ,x rf pXptqqs, f P
CbpEq. Let L � tLpsq : 0 ¤ s ¤ T u be a family of linear operators with

domain and range in CbpEq. If L is a generator of the Feller evolution,

then it also generates the corresponding Markov process. Conversely, if L

generates a Markov process, then it also generates the corresponding Feller

evolution.

Proof. First suppose that the Feller evolution tP pτ, tq : 0 ¤ τ ¤ t ¤ T u
is generated by the family L. Let the function f belong to the domain of

L and suppose that D1f is continuous on r0, T s �E. Then we have

Eτ,x

�BfBs ps,Xpsqq � Lpsqf ps, �q pXpsqq�� P pτ, sq BfBs ps, �q pxq � P pτ, sqLpsqf ps, �q pxq� P pτ, sq BfBs ps, �q pxq � P pτ, sq �lim
hÓ0 P ps, s� hq f ps, �q � f ps, �q

h

� pxq� P pτ, sq BfBs ps, �q pxq � lim
hÓ0 P pτ, sq �P ps, s� hq f ps, �q � f ps, �q

h

� pxq� P pτ, sq BfBs ps, �q pxq � lim
hÓ0 �P pτ, s� hq f ps, �q � P pτ, sq f ps, �q

h

� pxq
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hÓ0 P pτ, s� hq �f ps� h, �q � f ps, �q

h

� pxq� lim
hÓ0 �P pτ, s� hq f ps� h, �q � P pτ, sq f ps, �q

h

� pxq.� P pτ, sq BfBs ps, �q pxq � P pτ, sq BfBs ps, �q pxq� lim
hÓ0 Eτ,x rf ps� h,X ps� hqqs � Eτ,x rf ps,X psqqs

h� d

ds
Es,Xpsq rf ps,X psqqs . (4.3)

In (4.3) we used the fact that the function D1f is continuous and its con-

sequence that lim
hÓ0 fps� h, yq � fps, yq

h
converges uniformly for y in com-

pact subsets of E. We also used the fact that the family of operatorstP pτ, tq : t P rτ, T su is equi-continuous for the strict topology.

In the second part we have to show that a generator L of a Feller

process (4.1) also generates the corresponding Feller evolution. Therefore

we fix s P r0, T s and take f P DpLpsqq � CbpEq. Using the fact that L

generates the Markov process in (4.1) we infer for h P p0, T � sq:
lim
hÓ0 P ps, s� hqfpxq � fpxq

h
� d

dh
P ps, s� hq ��

h�0� d

dh
Es,x rf pX ps� hqqs ��

h�0
� Es,x rLpsqf pXpsqqs � Lpsqfpxq. (4.4)

This completes the proof of Proposition 4.1 �

To such a Feller evolution tP pτ, tq : 0 ¤ τ ¤ t ¤ T u we may also associate a

semigroup of operators Spρq acting on the space Cb pr0, T s �Eq and the cor-

responding resolvent family tRpαq : ℜα ¡ 0u. The semigroup tSpρq : ρ ¥ 0u
is defined by the formula:

Spρqfpt, xq � P pt, pρ� tq ^ T q f ppρ� tq ^ T, �q pxq� Et,x rf ppρ� tq ^ T,X ppρ� tq ^ T qqs , (4.5)

f P Cb pr0, T s �Eq, pt, xq P r0, T s �E. Notice that the operator Spρq does
not leave the space CbpEq invariant: i.e. a function of the form ps, yq ÞÑ
fpyq, f P CbpEq, will be mapped to function Spρqf P Cb pr0, T s �Eq which
really depends on the time variable. Then the resolvent operator Rpαq
which also acts as an operator on the space of bounded continuous functions

on space-time space Cb pr0, T s �Eq is given by

Rpαqfpt, xq � » 8
t

e�αpρ�tqP pt, ρ^ T q f pρ^ T, �q pxqdρ



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

230 Markov processes, Feller semigroups and evolution equations� » 8
0

e�αρP pt, pρ� tq ^ T q f ppρ� tq ^ T, �q pxqdρ� » 8
0

e�αρSpρqf pt, xq dρ� Et,x

�» 8
0

e�αρf ppρ� tq ^ T,X ppρ� tq ^ T qq dρ� , (4.6)

f P Cb pr0, T s �Eq, pt, xq P r0, T s � E. In order to prove that the familytRpαq : ℜα ¡ 0u is a resolvent family indeed it suffices to establish that the

family tSpρq : ρ ¥ 0u is a semigroup. Let f P Cb pr0, T s �Eq and fix 0 ¤ ρ1,

ρ2   8. Then this fact is a consequence of the following identities:

S pρ1qS pρ2q fpt, xq� P pt, pρ1 � tq ^ T q ry ÞÑ S pρ2q f ppρ1 � tq ^ T, yqs pxq� P pt, pρ1 � tq ^ T qry ÞÑ P ppρ1 � tq ^ T, pρ2 � ρ1 � tq ^ T q f ppρ2 � ρ1 � tq ^ T, yqs pxq
(use evolution property)� P pt, pρ2 � ρ1 � tq ^ T q f ppρ2 � ρ1 � tq ^ T, �q pxq� S pρ2 � ρ1q fpt, xq. (4.7)

Let D1 : C
p1q
b r0, T s Ñ Cbpr0, T sq be the time derivative operator. Then the

space-time operator D1 � L defined bypD1 � Lq fpt, xq � D1fpt, xq � Lptqf pt, �q pxq, f P D pD1 � Lq ,
turns out to be the generator of the semigroup tSpρq : ρ ¥ 0u. We also ob-

serve that once the semigroup tSpρq : ρ ¥ 0u is known, the Feller evolutiontP pτ, tq : 0 ¤ τ ¤ t ¤ T u can be recovered by the formula:

P pτ, tq fpxq � S pt� τq fpτ, xq, f P CbpEq, (4.8)

where at the right-hand side of (4.8) the function f is considered as the

function in Cb pr0, T s �Eq given by ps, yq ÞÑ fpyq. The following theorem

elaborates on these concepts.

Theorem 4.1. Let tP pτ, tq : 0 ¤ τ ¤ t ¤ T u be a Feller propagator. De-

fine the corresponding Tβ-continuous semigroup tSpρq : ρ ¥ 0u as in (4.5).

Define the resolvent family tRpαq : α ¡ 0u as in (4.6). Let Lp1q be

its generator. Then
�
αI � Lp1q�Rpαqf � f , f P Cb pr0, T s �Eq,

Rpαq �αI � Lp1q� f � f , f P D
�
Lp1q�, and Lp1q extends D1 � L. Con-

versely, if the operator Lp1q is defined by Lp1qRpαqf � αRpαqf � f ,

f P Cb pr0, T s �Eq, then Lp1q generates the semigroup tSpρq : ρ ¥ 0u, and
Lp1q extends the operator D1 � L.
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Proof. By definition we know that

Lp1qf � Tβ- lim
tÓ0 1

t
pSptq � Sp0qq f, f P D �

Lp1q	 . (4.9)

Here D
�
Lp1q� is the subspace of those f P Cb pr0, T s �Eq for which the

limit in (4.9) exists. Fix f P Cb pr0, T s �Eq, and α ¡ 0. Then�
I � e�αtSptq� » 8

0

e�αρSpρqfdρ� » 8
0

e�αρSpρqf dρ� » 8
0

e�αρe�αpt�ρqS ptqS pρq f dρ� » 8
0

e�αρSpρqf dρ� » 8
t

e�αρSpρqf dρ � » t
0

e�αρSpρqf dρ. (4.10)

From (4.10) it follows thatRpαqf P D �
Lp1q�, and that

�
αI � Lp1q�Rpαqf �

f . Conversely, let f P D �
Lp1q�. Then we have

Rpαq�αf � Lp1qf	 � RpαqTβ - lim
tÓ0 1

t

�
f � e�αtSptqf� dρ� Tβ- lim

tÓ0 1

t

�
Rpαqf �Rpαqe�αtSptqf� dρ � Tβ- lim

tÓ0 1

t

» t
0

e�αρSpρqfdρ � f.

(4.11)

The first part of Theorem 4.1 follows from (4.10) and (4.11). In order to

show that Lp1q extends D1 � L we recall the definition of generator of a

Feller evolution as given in Definition 2.7: Lpsqf � Tβ-lim
tÓs P ps, tqf � f

t� s
. So

that if f P Dp1q pLq, then f P D �
Lp1q�, and Lp1qf � D1f � Lf . Recall

that Lfps, xq � Lpsqf ps, �q pxq. Next, if the operator L0 is defined by

L0Rpαqf � αRpαqf�f , f P Cb pr0, T s �Eq. Then necessarily we have L0 �
Lp1q, and hence L0 generates the semigroup tSpρq : ρ ¥ 0u. Altogether this
proves Theorem 4.1. �

In the next theorem we establish a version of the Lumer-Phillips theorem:

see [Lumer and Phillips (1961)], and Theorem 11.22 in [Renardy and Rogers

(2004)].

Theorem 4.2. Let L be a linear operator with domain DpLq and range

RpLq in CbpEq. The following assertions are equivalent:

(i) The operator L is Tβ-closable and its Tβ-closure generates a Feller semi-

group.
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(ii) The operator L verifies the maximum principle, its domain DpLq is

Tβ-dense in CbpEq, it is Tβ-dissipative and sequentially λ-dominant for

some λ ¡ 0, and there exists λ0 ¡ 0 such that the range R pλ0I � Lq is
Tβ-dense in CbpEq.

In the definitions 4.1 – 4.3 the notions of maximum principle, dissipativity,

and sequential λ-dominance are explained. In the proof we will employ the

results of Proposition 2.4.

Definition 4.1. An operator L with domain and range in CbpEq is said to

satisfy the maximum principle, if for every f P D pLq there exists a sequencepxnqnPN � E with the following properties:

lim
nÑ8ℜf pxnq � sup

xPEℜfpxq, and lim
nÑ8ℜLf pxnq ¤ 0. (4.12)

In assertion (b) of Proposition 4.3 it will be shown that (4.12) is equivalent

to the inequality in (4.46).

Definition 4.2. An operator L with domain and range in CbpEq is called
dissipative if}λf � Lf}8 ¥ λ }f}8 , for all λ ¡ 0, and for all f P DpLq. (4.13)

An operator L with domain and range in CbpEq is called Tβ-dissipative if

there exists λ0 ¥ 0 such that for every function u P H�pEq there exists a

function v P H�pEq such that}v pλf � Lfq}8 ¥ λ }uf}8 , for all λ ¥ λ0, and all f P DpLq. (4.14)

An operator L with domain and range in CbpEq is called positive Tβ-

dissipative if there exists λ0 ¡ 0 such that for every function u P H�pEq
there exists a function v P H�pEq for which

sup
xPE vpxqℜ pλfpxq � Lfpxqq ¥ λ sup

xPE upxqℜfpxq, (4.15)

for all λ ¥ λ0, and for all f P DpLq.
The definition which follows is crucial in proving that an operator L (or its

Tβ-closure) generates a Tβ-continuous Feller semigroup. The symbol KpEq
stands for the collection of compact subsets of E. The mapping f ÞÑ U1

λpfq,
f P Cb pE,Rq, was introduced in (2.42).

Definition 4.3. Let L be an operator with domain and range in CbpEq
and fix λ ¡ 0. Let f P Cb pE,Rq, λ ¡ 0, and put

U1
λpfq � sup

KPKpEq inf
gPDpLq tg ¥ f1K : pλI � Lq g ¥ 0u . (4.16)
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The operator L is called sequentially λ-dominant if for every sequencepfnqnPN, which decreases pointwise to zero, the sequence
�
fλn � U1

λ pfnq�nPN
defined as in (4.16) possesses the following properties:

(1) The function fλn dominates fn: fn ¤ fλn , and

(2) The sequence
�
fλn

�
nPN converges to zero uniformly on compact subsets

of E: lim
nÑ8 sup

xPK fλn pxq � 0 for all K P KpEq.
The functions fλn automatically have the first property, provided that the

constant functions belong to DpLq and that L1 � 0. The real condition

is given by the second property. Some properties of the mapping U1
λ :

Cb pE,Rq Ñ L8 pE, E ,Rq were explained in Proposition 2.4.

If in Definition 4.3 U1
λ is a mapping from Cb pE,Rq to itself, then Dini’s

lemma implies that in (2) uniform convergence on compact subsets of E

may be replaced by pointwise convergence on E.

Remark 4.1. Suppose that the operator L in Definition 4.3 satisfies the

maximum principle and that pµI � LqDpLq � CbpEq, µ ¡ 0. Then the in-

verses Rpµq � pµI � Lq�1
, µ ¡ 0, exist and represent positivity preserving

operators. If a function g P DpLq is such that pλI � Lq g ¥ 0, then g ¥ 0

and ppλ� µq I � Lq g ¥ µg, µ ¥ 0. It follows that g ¥ µR pλ� µq g, µ ¥ 0.

In the literature functions g P CbpEq with the latter property are called

λ-super-median. For more details see e.g. [Sharpe (1988)]. If the operator

L generates a Feller semigroup tSptq : t ¥ 0u, then a function g P CbpEq is
called λ-super-mean valued if for every t ¥ 0 the inequality e�λtSptqg ¤ g

holds pointwise. In Lemma (9.12) in [Sharpe (1988)] it is shown that, es-

sentially speaking, these notions are equivalent. In fact the proof is not

very difficult. It uses the Hausdorff-Bernstein-Widder theorem about the

representation by Laplace transforms of positive Borel measures on r0,8q
of completely positive functions. It is also implicitly proved in the proof

of Theorem 4.3 implication (iii) ùñ (i): see (in-)equalities (4.131), (4.132),

(4.133), (4.134), and (4.140).

Proof. [Proof of Theorem 4.2.] (i) ùñ (ii). Let L be the Tβ-closure

of L, which is the Tβ-generator of the semigroup tSptq : t ¥ 0u. Then

R
�
λI � L

� � CbpEq, and the inverses of λI � L which we denote by Rpλq
exist and satisfy: Rpλqfpxq � ³8

0
e�λtSptqfpxq. It follows that

λℜ pRpλqfpxqq � λ

» 8
0

e�λt pSptqℜfq pxqdt
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» 8
0

e�λtdt sup
yPE ℜfpyq � sup

yPE ℜfpyq, (4.17)

and hence supxPE λℜ pRpλqfpxqq ¤ supyPE ℜfpyq. The substitution f �
λg � Lg yields:

λ sup
xPEℜgpxq ¤ sup

yPEℜ
�
λgpyq � Lgpyq� , g P D �

L
�
. (4.18)

In other words, the operator L satisfies the maximum principle, and so

does the operator L: see Proposition 4.3 assertion (b) below. Since the

operator L is Tβ-dissipative, the resolvent families tRpλq : λ ¥ λ0u, λ0 ¡ 0,

are Tβ-equi-continuous. Hence every operator Rpλq can be written as an

integral: Rpλqfpxq � ³
fpyqr pλ, x, dyq, f P CbpEq. For this the reader may

consider the arguments in (the proof of) Proposition 2.4. Moreover, we have

that for every λ0 ¡ 0, the family
 
e�λ0tSptq : t ¥ 0

(
is Tβ-equi-continuous,

and in addition, lim
tÓ0 Sptqfpxq � fpxq, f P CbpEq. It then follows that

lim
λÑ8 λRpλqfpxq � fpxq, f P CbpEq. As in the proof of Proposition 2.4 we

see that Tβ- lim
λÑ8 λRpλqf � f , f P CbpEq: see e.g. (2.59). Let f ¥ 0 belong

to CbpEq, and consider the function U1
λpfq defined by

U1
λpfq � sup

KPKpEq inf
gPDpLq tg ¥ f1K : λg � Lg ¥ 0u . (4.19)

In fact this definition is copied from (2.42). As was shown in Proposition

2.4, we have the following equality:

U1
λpfq � sup

!
µk

�pλ� µq I � L
��k

f : µ ¡ 0, k P N

)� sup
 
e�λtSptqf : t ¥ 0

(
. (4.20)

In fact in Proposition 2.4 the first equality in (4.20) was proved. The second

equality follows from the representations:pµR pλ� µqqk f � µkpk � 1q! » 8
0

tk�1e�µte�λtSptqfdt and (4.21)

e�λtSptqf � Tβ- lim
µÑ8 e�µt 8̧

k�0

pµtqk
k!

pµR pλ� µqqk f. (4.22)

A similar argument will be used in the proof of Theorem 4.3 (iii) ùñ (i): see

(4.133) and (4.134). The representation in (4.20) implies that the operator

L is λ-dominant. Altogether this proves the implication (i) ùñ (ii) of

Theorem 4.2.
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(ii) ùñ (i). As in Proposition 4.3 assertion (a) below, the operator L is

Tβ-closable. Let L be its Tβ-closure. Then the operator L is Tβ-dissipative,

λ-dominant, and satisfies the maximum principle. In additionR
�
λI � L

� �
CbpEq, λ ¡ 0. Consequently, the inverses Rpλq � �

λI � L
��1

, λ ¡ 0, exist.

The formulas in (4.21) and (4.22) can be used to represent the powers of the

resolvent operators, and to define the Tβ-continuous semigroup generated

by L. The λ-dominance is used in a crucial manner to prove that the

semigroup represented by (4.22) is a Tβ-equi-continuous semigroup which

consists of operators, which assign bounded continuous functions to such

functions. For details the reader is referred to the proof of Theorem 4.3

implication (iii) ùñ (i), where a very similar construction is carried for a

time space operator Lp1q which is the Tβ-closure of D1�L. In Theorem 4.3

the operator D1 is taking derivatives with respect to time, and L generates

a Feller evolution.

The proof of Theorem 4.2 is complete now. �

In the context of Tβ-continuous Feller semigroups we establish a generation

result.

Proposition 4.2. Let L be a Tβ-closed linear operator with domain and

range in CbpEq. Suppose that the operator L satisfies the maximum prin-

ciple, and is such that R pλI � Lq � CbpEq, λ ¡ 0. Then the resolvent

family
!
Rpλq � pλI � Lq�1

: λ ¡ 0
)
consists of positivity preserving oper-

ators. In addition, suppose that L possesses a Tβ-dense domain, and that

the following limits exist: for all pt, xq P r0,8q �E and for all f P CbpEq
e�λtSptqfpτ, xq � lim

µÑ8 e�µt 8̧
k�0

pµtqk
k!

pµR pλ� µqqk fpτ, xq, (4.23)

and for all f P DpLq and x P E
lim
µÑ8 µ pI � µR pλ� µqq fpxq � λfpxq � Lfpxq. (4.24)

Moreover, suppose that the operators Rpλq, λ ¡ 0, are Tβ-continuous. Fix

f PCbpEq, f¥0, and λ¡0. The following equalities and inequality hold true:

sup
KPKpEq inf

gPDpLq tg ¥ f1K : pλI � Lq g ¥ 0u (4.25)� sup
KPKpEq inf

gPCbpEq tg ¥ f1K : g ¥ µRpλ� µqg, for all µ ¡ 0u (4.26)¥ sup
!pµR pλ� µqqk f : µ ¥ 0, k P N

)
(4.27)� sup

 
e�λtSptqf : t ¥ 0

(
. (4.28)
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If the function pt, xq ÞÑ Sptqfpxq is continuous, then the function g �
sup

 
e�λtSptqf : t ¥ 0

(
is continuous, realizes the infimum in (4.26), and

the expressions (4.25) through (4.28) are all equal.

The proof of the following corollary is an immediate consequence of Propo-

sition 4.2.

Corollary 4.1. Suppose that the operator L with domain and range in

CbpEq be the Tβ-generator of a Feller semigroup tSptq : t ¥ 0u. Let f ¥ 0

belong to CbpEq. Then the quantities in (4.25) through (4.28) are equal.

Let g P DpLq. By assumption (4.24) we see that λg�Lg ¥ 0 if and only if

g ¥ µR pλ� µq g for all µ ¡ 0. Hence we have

inf
gPDpLq tg ¥ f1K : pλI � Lq g ¥ 0u� inf

gPDpLq tg ¥ f1K : g ¥ µRpλ� µqg, for all µ ¡ 0u . (4.29)

It is not so clear under what conditions we have equality of (4.29) and

(4.26). If f P DpLq is such that λf � Lf ¥ 0, then the functions in (4.25)

through (4.28) are all equal to f .

Proof. [Proof of Proposition 4.2.] The representation in (4.23) shows

that the term in (4.28) is dominated by the one in (4.27). The equalitypµR pλ� µqqk f � µkpk � 1q! » 8
0

tk�1e�pλ�µqtSptqf dt, k ¥ 1, (4.30)

shows that the expression in (4.27) is less than or equal to the one in (4.28).

Altogether this proves the equality of (4.27) and (4.28). If the function g P
DpLq is such that g ¥ f1K and pλI � Lq g ¥ 0, then ppλ� µq I � Lq g ¥ µg,

and hence

g ¥ µR pλ� µq g ¥ pµR pλ� µqqk g for all k P N.

Consequently, the term in (4.25) dominates the second one. It also follows

that the expression in (4.26) is greater than or equal to

sup
KPKpEq sup!pµR pλ� µqqk pf1Kq : µ ¡ 0, k P N

)
. (4.31)

Since the operators pµR pλ� µqqk, µ ¡ 0 and k P N, are Tβ-continuous the

expression in (4.31) is equal to the quantity in (4.27). Next we will show

that the expression in (4.26) is less than or equal to (4.25). Therefore we

chose an arbitrary compact subsetK of E. Let g P CbpEq be a function with
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the following properties: g ¥ f1K , and g ¥ µR pλ� µq g. Then for η ¡ 0

arbitrary small and α � αη ¡ 0 sufficiently large we have αRpαq pg � ηq ¥
g1K ¥ f1K . Moreover, the function gα,η :� αRpαq pg � ηq belongs to DpLq
and satisfies

gα,η ¥ µR pλ� µq gα,η for all µ ¡ 0 (4.32)

Here we employed the fact that DpLq is Tβ-dense in CbpEq. In fact

we used the fact that, uniformly on the compact subset K, g � η �
limαÑ8 αRpαq pg � ηq. From (4.32) we obtainpλI � Lq gα,η � lim

µÑ8 µ pI � µR pλ� µqq gα,η ¥ 0, (4.33)

From (4.33) we obtain the inequality:

inf
gPCbpEq tg ¥ f1K : g ¥ µR pλ� µq gu¥ inf

gPDpLq tg ¥ f1K : g ¥ µR pλ� µq gu . (4.34)

The inequality in (4.34) shows that the expression in (4.26) is less than or

equal to the one in (4.25). Thus far we showed p4.25q � p4.26q ¥ p4.27q �
4.28q. The final assertion about the fact that the (continuous) function in

(4.28) realizes the equality in (4.27) being obvious, concludes the proof of

Proposition 4.2. �

In the following theorem (Theorem 4.3) we use the following subspaces of

the space Cb pr0, T s �Eq:
C
p1q
P,b � "

f P Cb pr0, T s �Eq : all functions of the form pτ, xq ÞÑ» τ�ρ
τ

P pτ, σq f pσ, �q pxqdσ, ρ ¡ 0, belong to D pD1q* ; (4.35)

C
p1q
P,b pλq � "

f P Cb pr0, T s �Eq : the function pτ, xq ÞÑ» 8
τ

e�λσP pτ, σq f pσ, �q pxqdσ, belongs to D pD1q* . (4.36)

Here λ ¡ 0, and C
p1q
P,b is a limiting case if λ � 0. The inclusion

C
p1q
P,b � �

λ0¡0 C
p1q
P,b pλ0q follows from the representation of R pλ0q as a

Laplace transform:

R pλ0q fpτ, xq � » 8
0

e�λ0ρSpρqfpτ, xqdρ
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0

e�λ0ρP pτ, τ � ρq fpτ � ρ, xqdρ� λ0

» 8
0

e�λ0ρ

» ρ
0

P pτ, τ � σq fpτ � σ, xqdσ dρ� λ0

» 8
0

e�λ0ρ

» τ�ρ
τ

P pτ, σq fpσ, xqdσ dρ (4.37)

From (4.37) we see that if for every ρ ¡ 0 the functionpτ, xq ÞÑ » ρ
0

Spσqfpτ, xqdσ � » τ�ρ
τ

P pτ, σ ^ T q fpσ ^ T, xqdσ
belongs to D pD1q, then so does the function pτ, xq ÞÑ R pλ0q fpτ, xq, pro-
vided that the function ρ ÞÑ e�λ0ρD1

³ρ
0
Spσqfdσ is Tβ-integrable in the

space Cb pr0, T s �Eq. The other inclusion, i.e.
�
λ0¡0 C

p1q
P,b pλ0q � C

p1q
P,b

follows from the following inversion formula:» τ�ρ
τ

P pτ, σq f pσ, �q pxqdσ � » ρ
0

Spσqf pτ, xq dσ� lim
λÑ8 » ρ

0

e�σλeσλ2Rpλqf pτ, xq dσ� lim
λÑ8 8̧

k�0

1

k!

» ρ
0

pσλqk e�σλ pλRpλqqk f pτ, xq dσ� lim
λÑ8 8̧

k�0

λk�1pk � 1q! » ρ0 pσλqk�1
e�σλ pRpλqqk�1

f pτ, xq dσ� lim
λÑ8 8̧

k�0

λk�1pk � 1q!k! » ρ0 pσλqk�1
e�σλ » 8

0

ρk1e
�λρ1S pρ1q f pτ, xq dρ1 dσ� lim

λÑ8 8̧
k�0

p�1qkλk�1pk � 1q!k! » ρ
0

pσλqk�1
e�σλ BkpBλqk » 8

0

e�λρ1S pρ1q f pτ, xq dρ1 dσ� lim
λÑ8 8̧

k�0

p�1qkλk�1pk � 1q!k! » ρ
0

pσλqk�1
e�σλ BkpBλqkRpλqfpτ, xqdσ (4.38)

where the limits have to be taken in Tβ-sense. A similar limit representation

is valid for D1

³ρ
0
Spρqfdρpτ, xq, provided that the family"

λk�1

k!
D1Rpλqkf : λ ¡ 0, k P N

*
is uniformly bounded. A simpler approach might be to use a complex

inversion formula:» ρ
0

pτ � ρ� σqP pτ, pτ � σq ^ T q f ppτ � σq ^ T, �q pxqdσ
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0

» ρ1
0

Spσqfpτ, xqdσ dρ1 � 1

2πi

» ω�i8
ω�i8 eρλ

1

λ2
Rpλqfpτ, xqdλ, (4.39)

and to assume that, for ω ¡ 0, the family tλD1Rpλqf : ℜλ ¥ ωu is uni-

formly bounded. It is clear that the operator Rpλq, ℜλ ¡ 0, stands for

Rpλqf pτ, xq � » 8
0

e�λρSpρqfpτ, xqdρ (4.40)� » 8
0

e�λρP pτ, pτ � ρq ^ T q f ppτ � ρq ^ T, �q pxqdρ, f P Cb pr0, T s �Eq .
It is also clear that the family of operators in (4.38) is a once integrated

integrated semigroup, and that the family in (4.39) is a twice integrated

semigroup. In order to justify the inclusion
�
λ0¡0 C

p1q
P,b pλ0q � C

p1q
P,b in

both approaches we need to know that the functions: λ ÞÑ Rpλqf , and

λ ÞÑ D1Rpλqf are real analytic. For more details on inversion formulas for

vector-valued Laplace transforms and integrated semigroups see e.g. [Bo-

browski (1997)], [Chojnacki (1998)], [Arendt (1987)], [Arendt et al. (2001)],

and [Miana (2005)]. For vector valued Laplace transforms the reader is also

referred to [Bäumer and Neubrander (1994)].

Theorem 4.3. Let L be a linear operator with domain DpLq and range

RpLq in Cb pr0, T s �Eq. Suppose that there exists λ ¡ 0 such that the

operator D1 � L is sequentially λ-dominant in the sense of Definition 4.3.

Under such a hypothesis the following assertions are equivalent:

(i) The operator L is Tβ-closable, its Tβ-closure generates a Feller evolu-

tion, the operator D1�L is Tβ-densely defined, and there exists λ0 ¡ 0

such that the subspace C
p1q
P,b pλ0q is Tβ-dense in Cb pr0, T s �Eq.

(ii) The operator D1 � L is Tβ-closable and its Tβ-closure generates a Tβ-

continuous Feller semigroup in Cb pr0, T s �Eq.
(iii) The operator D1 � L is Tβ-densely defined, is positive Tβ-dissipative,

satisfies the maximum principle, and there exists λ0 ¡ 0 such that the

range of λ0I �D1 � L is Tβ-dense in Cb pr0, T s �Eq.
Theorem 4.3 will be proved in Section 4.2 after the proof of Proposition

4.3.

Remark 4.2. Let us call the operator D1 � L power Tβ-dissipative if for

some λ0 ¥ 0 and for every k P N there exists a Tβ-dense subspace Dk

of Cb pr0, T s �Eq such that for every u P H� pr0, T s �Eq there exists v P
H� pr0, T s �Eq for which the following inequality holds:

λk }uf}8 ¤ ���v pλI �D1 � Lqk f���8 for all f P Dk and all λ ¥ λ0. (4.41)
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If the operator D1 � L is just Tβ-dissipative, then an inequality of the

form (4.41) holds, with a function v P H� pr0, T s �Eq which depends on

k. In (4.41) the function v only depends on u (and the operator D1 � L),

but it neither depends on k, nor on f P Dk or λ ¥ 1. Let the operator

Lp1q be an extension of D1�L which generates a Tβ-continuous semigrouptS0ptq : t ¥ 0u, and suppose that D1 � L satisfies (4.41). Then this semi-

group is equi-continuous in the sense that for every u P H� pr0, T s �Eq
there exists v P H� pr0, T s �Eq for which the following inequality holds:}uS0ptqf}8 ¤ }vf}8 for all f P Cb pr0,8q�Eq and all t P r0,8q.

(4.42)

A closely related inequality is the following one���u pλRpλqqk f���8 ¤ }vf}8 , λ ¥ 1, f P Cb pr0, T s �Eq . (4.43)

Notice that (4.43) is equivalent to (4.41) provided that the operator Lp1q
is the Tβ-closure of D1 � L and the ranges of λI � Lp1q, λ ¡ 0, coincide

with Cb pr0, T s �Eq. In fact the semigroup tS0ptq : t ¥ 0u and the resolvent

family tRpλq : λ ¡ 0u are related as follows:pλR pλqqk f � λk

k!

» 8
0

tk�1e�λtS0ptqf dt, and (4.44)

S0ptqf � Tβ- lim
λÑ8 e�λt 8̧

k�0

pλtqk
k!

pλRpλqqk f. (4.45)

The integral in (4.44) has to be interpreted in Tβ-sense. From (4.44) and

(4.45) the equivalence of (4.42) and (4.43) easily follows. We also observe

that (4.43) is equivalent to the following statement. For every sequencepfnqnPN � Cb pr0, T s �Eq which decreases pointwise to zero it follows that

inf
nPN sup

λ¥1,kPN pλRpλqqk fn � 0.

4.2 Dissipative operators and maximum principle

In the following proposition we collect some of the interrelationships which

exist between the concepts of closability, dissipativeness, and maximum

principle. A reformulation of assertion (f) in Proposition 4.3 can be found

in Lemma 8.1 in Chapter 8.
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Proposition 4.3.pa1q Suppose that the operator L is dissipative and that its range is con-

tained in the closure of its domain. Then the operator L is closable.pa2q Suppose that the operator L is Tβ-dissipative and that its range is

contained in the Tβ-closure of its domain. Then the operator L is Tβ-

closable.pbq If the operator L satisfies the maximum principle, then

sup
xPEℜ pλfpxq � Lfpxqq ¥ λ sup

xPEℜfpxq, for all λ ¡ 0, and for all f P DpLq.
(4.46)

Conversely, if L satisfies (4.46), then the operator L satisfies the max-

imum principle. The inequality in (4.46) is equivalent to

inf
xPEℜ pλfpxq � Lfpxqq ¤ λ inf

xPEℜfpxq, for all λ ¡ 0, and for all f P DpLq.
(4.47)pcq If the operator L satisfies the maximum principle, then L is dissipative.pdq If the operator L satisfies the maximum principle, and if f P DpLq is

such that λf � Lf ¥ 0 for some λ ¡ 0, then f ¥ 0.peq If the operator L is dissipative, then}λf � Lf}8 ¥ ℜλ }f}8 , for all λ with ℜλ ¡ 0, and for all f P DpLq.
(4.48)pfq The operator L is dissipative if and only if for every f P DpLq there

exists a sequence pxnqnPN � E such that lim
nÑ8 |f pxnq| � }f}8, and

lim
nÑ8ℜ

�
f pxnqLf pxnq	 ¤ 0.pgq If the operator L is positive Tβ-dissipative, then it is Tβ-dissipative.

For the definition of an operator which is positive Tβ-dissipative or Tβ-

dissipative, the reader is referred to Definition 4.1. The same is true for the

other notions in Proposition 4.3.

Proof. pa1q Let pfnqnPN � DpLq be any sequence with the following

properties:

lim
nÑ8 fn � 0, and g � lim

nÑ8Lfn
exists in CbpEq. Then we consider��pλfn � gmq � λ�1L pλfn � gmq��8 ¥ }λfn � gm}8 ,
where pgmqmPN � DpLq converges to g. First we let n tend to infinity, then

λ, and finally m. This limiting procedure results in

lim
mÑ8 }gm � g}8 ¥ lim

mÑ8 }gm}8 � }g}8 .
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Hence g � 0.pa2q Let pfnqnPN � DpLq be any sequence with the following properties:

Tβ- lim
nÑ8 fn � 0, and g � Tβ- lim

nÑ8Lfn
exists in CbpEq. Let u P H�pEq be given and let the function v be as in

(4.14). Then we consider��v �pλfn � gmq � λ�1L pλfn � gmq���8 ¥ }u pλfn � gmq}8 , (4.49)

where pgmqmPN � DpLq Tβ-converges to g. First we let n tend to infinity,

then λ, and finally m. The result will be

lim
mÑ8 }vgm � vg}8 ¥ lim

mÑ8 }ugm}8 � }ug}8 ,
and hence g � 0.

(b) Let f P DpLq. Then choose a sequence pxnqnPN � E as in (4.12). Then

we have

sup
xPEℜ pλfpxq � Lfpxqq ¥ lim

nÑ8ℜ pλf pxnq � Lf pxnqq ¥ λ sup
xPEℜfpxq

which is the same as (4.46). Suppose that the operator L satisfies (4.46).

Then for every λ ¡ 0 we choose xλ P E such that

λℜf pxλq � ℜLf pxλq ¥ λ sup
xPEℜf pxq � 1

λ
. (4.50)

From (4.50) we infer:

ℜLf pxλq ¤ 1

λ
, and (4.51)

sup
xPEℜfpxq ¤ ℜf pxλq � 1

λ2
� 1

λ
ℜLf pxλq . (4.52)

From (4.51) we see that lim supλÑ8 ℜLf pxλq ¤ 0, and from (4.52) it fol-

lows that lim supλÑ8 ℜf pxλq � supxPE ℜfpxq. From these observations it

is easily seen that (4.46) implies the maximum principle.

The substitution f Ñ �f shows that (4.47) is a consequence of (4.46).

(c) Let f �� 0 belong to DpLq, choose α P R and a sequence pxnqnPN � E in

such a way that 0   }f}8 � limnÑ8 ℜeiαf pxnq � supxPE ℜeiαfpxq, and
that limnÑ8 ℜL

�
eiαf

� pxnq ¤ 0. Then}λf � Lf}8 ¥ lim
nÑ8ℜ

�
eiα pλf � Lfq pxnq�� lim

nÑ8 λℜ �
eiαf pxnq�� ℜ

�
eiαLf

� pxnq ¥ λ }f}8 . (4.53)
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The inequality in (4.53) means that L is dissipative in the sense of Definition

4.2.

(d) Let f P DpLq be such that, for some λ ¡ 0, λfpxq � Lfpxq ¥ 0 for all

x P E. From (4.47) in (b) we see that

λ inf
xPEℑfpxq � λ inf

xPEℜp�ifqpxq ¥ inf
xPEℜ pλp�ifqpxq � Lp�ifqpxqq� inf

xPEℑ pλfpxq � Lpfqpxqq � 0. (4.54)

From (4.54) we get ℑf ¥ 0. If we apply the same argument to �f instead

of f we get ℑf ¤ 0. Hence ℑf � 0, and so the function f is real-valued.

But then we have

0 ¤ inf
xPE pλfpxq � Lfpxqq ¤ λ inf

xPE fpxq,
and consequently f ¥ 0.

(e) From the proof it follows that L is dissipative if and only if for every

f P DpLq there exists an element x� in Cb pr0, T s �Eq� such that }x�} � 1,

such that 〈f, x�〉 � }f}8, and such that ℜ 〈Lf, x�〉 ¤ 0. A proof of all this

runs as follows. Let L be dissipative. Fix f in DpLq and choose for each

λ ¡ 0 an element x�λ in Cb pr0, T s �Eq� in such a way that }x�λ} ¤ 1 and}λf � Lf}8 � 〈λf �Af, x�λ〉 . (4.55)

Choose an element x� in the intersection
�
µ¡0 weak

�closure tx�λ : λ ¡ µu.
Since, by the theorem off Banach-Aloglu the dual unit ball of

Cb pr0, T s �Eq� is weak�-compact such an element x� exists. From (4.55)

it follows that

ℜ 〈Lf, x�λ〉 � λℜ 〈f, x�λ〉� }λf � Lf}8¤ λ }f}8 � }λf � Lf}8 ¤ 0, λ ¡ 0. (4.56)

Here we used the fact that the operator L is supposed to be dissipative.

From (4.55) we also obtain the equality

〈f, x�λ〉 � ��f � λ�1Lf
��8 � λ�1 〈Lf, x�λ〉 , λ ¡ 0. (4.57)

Since x� is a weak� limit point of tx�λ : λ ¡ µu for each µ ¡ 0 it follows

from (4.56) and (4.57) that

ℜ 〈Lf, x�〉 ¤ 0, and (4.58)

〈f, x�〉 � }f}8 , }x�} ¤ 1. (4.59)

Finally pick λ P C with ℜλ ¡ 0. From (4.58) and (4.59) we infer}λf � Lf}8 ¥ ℜ 〈λf � Lf, x�〉 � ℜ pλ 〈f, x�〉q � ℜ 〈Lf, x�〉
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(f) If L is dissipative and if f P DpLq, then there exists a family pxλqλ¡0 � E

such that |λf pxλq � Lf pxλq| ¥ λ }f}8 � }Lf}8
λ

. (4.61)

From (4.61) we infer

λ |f pxλq| � }Lf}8 ¥ λ }f}8 � }Lf}8
λ

, (4.62)

and

λ2 |f pxλq|2 � 2λℜ
�
f pxλqLf pxλq	� |Lf pxλq|2¥ λ2 }f}22 � 2 }f}8 }Lf}8 � }Lf}28

λ2
. (4.63)

From (4.62) and (4.63) we easily infer|f pxλq| ¥ }f}8 � }Lf}8
λ

� }Lf}8
λ2

, (4.64)

and

λ2 }f}28 � 2λℜ
�
f pxλqLf pxλq	� }Lf}28¥ λ2 }f}28 � 2 }f}8 }Lf}8 � }Lf}28

λ2
. (4.65)

From (4.65) we get

ℜ
�
f pxλqLf pxλq	 ¤ }f}8 }Lf}8

λ
� 1

2λ

�
1� 1

λ2


 }Lf}28 . (4.66)

From (4.66) we obtain lim sup
λÑ8 ℜ

�
f pxλqLf pxλq	 ¤ 0. From (4.64) we see

lim
λÑ8 |f pxλq| � }f}8. By passing to a countable sub-family we see that

there exists a sequence pxnqnPN � E such that lim
nÑ8 |f pxnq| � }f}8 and

such that the limit lim
nÑ8ℜ

�
f pxnqLf pxnq	 exists and is ¤ 0. The proof of

the converse statement is (much) easier. Let pxnqnPN � E be a sequence

such that lim
nÑ8 |f pxnq| � }f}8 and that the limit lim

nÑ8ℜ
�
f pxnqLf pxnq	

exists and is ¤ 0. Fix f P DpLq. Then we have}λf � Lf}28 ¥ λ2 |f pxnq|2 � 2λℜ
�
f pxnqLf pxnq	� |Lf pxnq|2
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�
f pxnqLf pxnq	 . (4.67)

From the properties of the sequence pxnqnPN and (4.67) we obtain the in-

equality }λf � Lf}8 ¥ λ }f}8, λ ¡ 0, f P DpLq, which is the same as

saying that L is dissipative.

(g) Let the functions u and v P H� pEq as in assertion (g), let f P DpLq,
and λ ¥ λ0. Then we have}v pλf � Lfq}8 � sup

ϑPr�π,πs supxPE vpxqℜ �
λ
�
eiϑf

� pxq � L
�
eiϑf

� pxq�
(L is positive Tβ-dissipative)¥ λ sup

ϑPr�π,πs supxPE upxqℜ �
eiϑfpxq� � λ }uf}8 . (4.68)

The inequality in (4.68) shows the dissipativity of the operator L.

Finally, this completes the proof of Proposition 4.3. �

Proof. [Proof of Theorem 4.3.] (i) ùñ (ii). Let L be the Tβ-closure of

L. Then there exists a Feller evolution tP ps, tq : 0 ¤ s ¤ t ¤ T u such that

d

dt
P pτ, tq f pt, �q pxq � P pτ, tq �D1 � Lptq� f pt, �q pxq, (4.69)

for all functions f P Dp1q �L�, 0 ¤ τ ¤ t ¤ T , x P E. The functions

f P Dp1q �L� have the property that for every ρ P r0, T s the following Tβ-

limits exist:

(a) Lpρqf pρ, �q pxq � Tβ- lim
hÓ0 P pρ, ρ� hq f pρ, �q � f pρ, �q

h
.

(b)
BBρf pρ, xq � Tβ- lim

hÑ0

f pρ� h, xq � f pρ, xq
h

.

As indicated the limits in (a) and (b) have to be interpreted in Tβ-sense.

Moreover, these functions as functions of the pair pρ, xq are supposed to

be continuous. The equality in (4.69) was introduced in Definition 2.8.

However, the reader is also referred to Proposition 4.1, and to equality

(4.2). The equality in (4.69) can also be written in integral form:

P pτ, tq f pt, �q pxq � fpτ, xq � » t
τ

P pτ, ρq� BBρ � Lpρq
 f pρ, �q pxq (4.70)

for f P Dp1q �L�, 0 ¤ τ ¤ t ¤ T , x P E. The Feller evolution is Tβ-equi-

continuous. This means that for every u P H�pEq, there exists v P H�pEq
such that for all f P CbpEq the inequality

sup
τ¤t¤T supxPE |upτ, xqP pτ, tq f p�q pxq| ¤ sup

xPE |vpxqfpxq| (4.71)



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

246 Markov processes, Feller semigroups and evolution equations

holds for all f P CbpEq. As was explained in Corollary 3.1,

the Feller evolution
! rP pτ, tq : 0 ¤ τ ¤ t ¤ T

)
, which is the same

as tP pτ, tq : 0 ¤ τ ¤ t ¤ T u considered as a family of operators on

Cb pr0, T s �Eq, is Tβ-equi-continuous as well: see Corollary 2.3. As in

(4.5) we define the semigroup Tβ-equi-continuous semigroup tSpρq : ρ ¥ 0u
by

Spρqfpt, xq � P pt, pρ� tq ^ T q f ppρ� tq ^ T, �q pxq, f P Cb pr0, T s �Eq ,
(4.72)

where ρ ¥ 0, and pt, xq P r0, T s � E. Then the semigroup in (4.72) is

Tτ -equi-continuous. In fact we have

sup
τ¤t¤T supxPE |upτ, xqSptqf pτ, xq| ¤ suppτ,xqPr0,T s�E |vpxqfpτ, xq| (4.73)

where u P H� pr0, T s �Eq and v P H�pEq are as in (4.71). Let Lp1q be its

generator, and Rpλqf � ³8
0
e�λρSpρqfdρ, f P Cb pr0, T s �Eq, its resolvent.

Then we will prove that Lp1q � D1�L, and we will also show the following

well-known equalities (compare with (3.154)):�
λI � Lp1q	Rpλqf � f, f P Cb pr0, T s �Eq ,

Rpλq�λI � Lp1q	 f � f, f P D �
Lp1q	 . (4.74)

In order to understand the relationship betweenD1�L and the Tβ-generator

of the semigroup tSpρq : ρ ¥ 0u we consider, for h ¡ 0, λ ¡ 0 the operators

L
p1q
λ,h and ϑhL

p1q
λ,h, which are defined by

L
p1q
λ,hf pτ, xq � 1

h

�
I � e�λhSphq� f pτ, xq (4.75)� 1

h

�
f pτ, xq � e�λhP pτ, pτ � hq ^ T q f ppτ � hq ^ T, �q pxq�� 1

h

�
f pτ, xq � e�λhP pτ, pτ � hq ^ T q f pτ, �q pxq�� 1

h

�
e�λhP pτ, pτ � hq ^ T q pf ppτ � hq ^ T, �q � f pτ, �qq pxq�� �

λI � Lp1q	 1

h

» h
0

e�λρSpρqfdρ pτ, xq
and

ϑhL
p1q
λ,hf pτ, xq � 1

h

�
I � e�λhSphq� f ppτ � hq ^ T _ 0, xq (4.76)� 1

h
pf ppτ � hq ^ T _ 0, xq � f pτ, xqq
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h

�
e�λhP ppτ � hq ^ T _ 0, τq f pτ, �q pxq � f pτ, xq� .

The operator ϑh : Cb pr0, T s �Eq Ñ Cb pr0, T s �Eq is defined by

ϑhf pτ, xq � f pppτ � hq ^ T q _ 0, xq , f P Cb pr0, T s �Eq . (4.77)

Since

L
p1q
λ,hRpλqf � RpλqLp1qλ,hf � 1

h

» h
0

e�λρSpρqfdρ, f P Cb pr0, T s �Eq ,
(4.78)

and Lp1q is the Tβ-generator of the semigroup tSpρq : ρ ¥ 0u, the equalities
in (4.74) follow from (4.78). Since

ϑhL
p1q
λ,hRpλqf pτ, xq � L

p1q
λ,hRpλqf ppτ � hq ^ T _ 0, xq ,

it also follows that

Tβ- lim
hÓ0 ϑhLp1qλ,hRpλqf pτ, xq � �

λI � Lp1q	Rpλqf pτ, xq . (4.79)

A consequence of (4.79) and the second equality in (4.76) is that�
λI � Lp1q	 fpτ, xq� lim
hÓ0 � 1

h
pf ppτ � hq ^ T _ 0, xq � f pτ, xqq (4.80)� 1

h

�
e�λhP ppτ � hq ^ T _ 0, τq f pτ, �q pxq � f pτ, xq�
� lim

hÓ0 � 1

h

�
f pτ, xq � e�λhP pτ, pτ � hq ^ T q f pτ, �q pxq�� 1

h
ppf ppτ � hq ^ T, �q � f pτ, �qq pxqq
 . (4.81)

These limits exist in the strict sense; i.e. in the Tβ-topology. If f P D �
Lp1q�,

and if f belongs to D pD1q, then (4.80) and (4.81) imply that f P D �
L
�
,

that

Lpfqpτ, xq � lim
hÓ0 1

h
pP pτ, τ � hq f pτ, �q pxq � fpτ, xqq� lim

hÓ0 1

h
pP pτ � h, τq f pτ, �q pxq � fpτ, xqq , (4.82)

and that

Lp1qf � Lf �D1f. (4.83)

Hence, in principle, the first term on the right-hand side in (4.80) converges

to the negative of the time-derivative of the function f and the second to
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λI � L

�
f . The following arguments make this more precise. We will

need the fact that the subspace C
p1q
P,b is Tβ-dense in Cb pr0, T s �Eq. Let

f P Cb pr0, T s �Eq. In order to prove that, under certain conditions, the

operator Lp1q is the closure of D1 � L, we consider for f P D �
Lp1q� and

0 ¤ a ¤ b ¤ T the following equality:» b
a

ϑρSpρqLp1qf pτ, xq dρ � » b
a

SpρqLp1qf ppτ � ρq _ 0, xq dρ� BBτ » b
a

ϑρS pρq fpτ, xqdρ� P ppτ � bq _ 0, τq fpτ, xq � P ppτ � aq _ 0, τq fpτ, xq. (4.84)

We first prove the equality on (4.84). Therefore we writeBBτ » b
a

ϑρS pρq fpτ, xqdρ� P ppτ � bq _ 0, τq fpτ, xq � P ppτ � aq _ 0, τq fpτ, xq� BBτ » τ�a
τ�b S pτ � ρq fpρ_ 0, xqdρ� P ppτ � bq _ 0, τq fpτ, xq � P ppτ � aq _ 0, τq fpτ, xq

(the function f belongs to D
�
Lp1q�)� » τ�a

τ�b S pτ � ρqLp1qfpρ_ 0, xqdρ� S paq f ppτ � aq _ 0, xq � S pbq f ppτ � bq _ 0, xq� P ppτ � bq _ 0, τq fpτ, xq � P ppτ � aq _ 0, τq fpτ, xq� » b
a

S pρqLp1qfppτ � ρq _ 0, xqdρ � » b
a

ϑρS pρqLp1qfpτ, xqdρ. (4.85)

The equality in (4.85) shows (4.84). In the same manner the following

equality can be proved for λ ¡ 0 and f P D �
Lp1q�:

λ

» 8
0

e�λρϑρSpρqLp1qfdρ � λD1

» 8
0

e�λρϑρSpρqfdρ� λ2
» 8
0

e�λρϑρSpρqfdρ� λf. (4.86)

As above let f P D �
Lp1q�. From (4.86) we infer that

Lp1qf � Tβ- lim
λÑ8�

λD1

» 8
0

e�λρϑρSpρqfdρ� λ2
» 8
0

e�λρϑρSpρqfdρ� λf



.

(4.87)
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If, in addition, f belongs to the domain ofD1, then it also belongs toD
�
L
�
,

and

Lf � Tβ- lim
λÑ8�

λ2
» 8
0

e�λρϑρSpρqfdρ� λf


� Tβ- lim
λÑ8�

λ2
» 8
0

e�λρSpρqϑρfdρ� λf



. (4.88)

The second equality in (4.88) follows from (4.87). So far the result is not

conclusive. To finish the proof of the implication (i) ùñ (ii) of Theorem

4.3 we will use the hypothesis that the space C
p1q
P,b pλ0q is Tβ-dense for some

λ0 ¡ 0. In addition, we will use the following identity for a function f in

the domain of the time derivative D1:

λLp1q » 8
0

e�λρSpρqϑρfdρ� λ2
» 8
0

e�λρSpρqϑρfdρ� λf � λ
�
λI � Lp1q	» 8

0

e�λρSpρq pI � ϑρq fdρ� λ2
» 8
0

e�λρSpρqϑρfdρ� λf � λ

» 8
0

e�λρSpρqϑρD1fdρ. (4.89)

However, this is not the best approach either. The following arguments

will show that the Tβ-density of C
p1q
P,b pλ0q is dense in C0 pr0, T s �Eq en-

tails that Dp1q pLq � D pLq�D pD1q is a core for the operator Lp1q.
From (4.83) it follows that Dp1q pLq � D

�
Lp1q�. From (4.87), (4.88),

and from (4.89) we also get D
�
Lp1q��D pD1q � D

�
L
��

D pD1q. Fix

λ0 ¡ 0 such that the space C
p1q
P,b pλ0q is Tβ-dense in Cb pr0, T s �Eq. Since

R
�
λ0I � Lp1q� � C

p1q
P,b pλ0q, this hypothesis has as a consequence that

the range of the operator λ0I � L � D1 is Tβ-dense in Cb pr0, T s �Eq.
The Tβ-dissipativity of the operator Lp1q then implies that the subspace

D
�
L
��

D pD1q is a core for the operator Lp1q, and consequently, the clo-

sure of the operator L � D1 coincides with Lp1q. We will show all this.

Since the operator Lp1q generates a Feller semigroup, the same is true for

the closure of L�D1. The range of λ0I�L�D1 coincides with the subspace

C
p1q
P,b pλ0q defined in (4.36). It is easy to see that

C
p1q
P,b pλ0q � "

f P Cb pr0, T s �Eq : R pλ0q f � » 8
0

e�λ0ρSpρqf dρ P D pD1q* .
(4.90)

If f P Cp1q
P,b pλ0q, then f � �

λ0I � Lp1q�R pλ0q f where

R pλ0q f P D �
Lp1q	£D pD1q � D

�
L
�£

D pD1q , (4.91)
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as was shown in (4.87) and (4.88). It follows that f P Cp1q
P,b pλ0q can be

written as

f � �
λ0I � L�D1

�
R pλ0q f. (4.92)

By (i) the range of λ0I � L � D1 is Tβ-dense in Cb pr0, T s �Eq. Let

f belong to the Tβ-closure of he range of λ0I � L � D1. Then there

exists a net pgαqαPA � C
p1q
P,b pλ0q � Cb pr0, T s �Eq such that f �

limα

�
λ0I � L�D1

�
gα. From (4.14) we infer that g � Tβ- limα gα. Since

the operator Tβ-closed linear operator Lp1q extends L�D1, it follows that

L � D1 is Tβ-closable. Let L0 be its Tβ-closure. From (4.14) it also fol-

lows that f � pλ0I � L0q g. Since the range of λ0I � L �D1 is Tβ-dense,

we see that R pλ0I � L0q � Cb pr0, T s �Eq. Next let g P D �
Lp1q�. Then

there exists g0 P D pL0q such that
�
λ0I � Lp1q� g � pλ0I � L0q g0. Since

Lp1q extends L0, and since Lp1q is dissipative (see (4.53), it follows that

g � g0 P D pL0q. In other words, the operator L0 coincides with Lp1q, and
consequently, the operator L �D1 is Tβ-closable, and its closure coincides

with Lp1q, the Tβ-generator of the semigroup tSpρq : ρ ¥ 0u. This proves

the implication (i) ùñ (ii) of Theorem 4.3.

(ii) ùñ (iii). Let Lp2q be the Tβ-closure of the operator D1 � L. From (ii)

we know that Lp2q generates a Tβ-continuous semigroup tS2pρq : ρ ¥ 0u.
Since D

�
Lp2q� is Tβ-dense, it follows that Dp1qpLq � D pD1q�DpLq is

Tβ-dense as well. Let Lp1q be the generator of a Tβ-continuous semigrouptSpρq : ρ ¥ 0u which extends D1�L, and hence it also extends Lp2q. Since
Lp2q generates a Feller semigroup, it is dissipative, and so it satisfies (4.53).

Let g P D �
Lp1q�, and choose g0 P D �

Lp2q� such that�
λ0I � Lp1q	 g � �

λ0I � Lp1q	 g0 � �
λ0I � Lp2q	 g0.

The inequality in (4.53) implies that g � g0 P D
�
Lp2q�, and hence

D
�
Lp2q� � D

�
Lp1q�. Moreover, Lp1q extends Lp2q. Therefore Lp2q �

Lp1q. It also follows that the semigroup tS2pρq : ρ ¥ 0u is the same astSpρq : ρ ¥ 0u. In addition, there exists λ0 ¡ 0 such that the range of

λ0I � D1 � L is Tβ-dense in Cb pr0, T s �Eq. In fact this is true for all

λ, ℜλ ¡ 0. Finally, we will show that the operator D1 � L is posi-

tive Tβ-dissipative. Let u P H� pr0, T s �Eq, and consider the function-

als f ÞÑ upτ, xqλRpλqfpτ, xq, λ ¥ λ0 ¡ 0, pτ, xq P r0, T s � E. Since Lp1q
generates a Tβ-continuous semigroup we know that

lim
λÑ8 }u pf � λRpλqfq}8 � 0. (4.93)
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If pfmqmPN � Cb pr0, T s �Eq decreases pointwise to 0, then the sequencepupτ, xqλRpλqfmpτ, xqqmPN also decreases to 0. By Dini’s Lemma and (4.93)

this convergence is uniform in λ ¥ λ0 and pτ, xq P r0, T s � E, because u P
H� pr0, T s �Eq. From Theorem 2.3 it follows that there exists a function

v P H� pr0, T s �Eq such that}uλRpλqf}8 ¤ }vf}8 , f P Cb pr0, T s �Eq , λ ¥ λ0. (4.94)

Since the operator Lp1q sends real functions to real functions from (4.94),

and u ¥ 0, we derive for pσ, yq P r0, T s �E

ℜ pupσ, yqλRpλqfpσ, yqq � upσ, yqλRpλq pℜfq pσ, yq¤ upσ, yqλRpλq pℜfq� pσ, yq¤ suppτ,xqPr0,T s�E vpτ, xq pℜfq� pτ, xq¤ suppτ,xqPr0,T s�E vpτ, xq pℜfq pτ, xq. (4.95)

By the substitution f � �
λI � Lp1q� g in (4.95) we obtain:

λ suppτ,xqPr0,T s�E upτ, xqℜgpτ, xq¤ suppτ,xqPr0,T s�E vpτ, xqℜ�
λgpτ, xq � Lp1qgpτ, xq	 . (4.96)

Since the operator Lp1q extends D1 � L, the inequality in (4.96) displays

the fact that the operator D1 � L is positive Tβ-dissipative.

Altogether, this shows the implication (ii) ùñ (iii) of Theorem 4.3.

(iii) ùñ (i). Suppose that we already know that the Tβ-closure of D1 � L

generates a Tβ-continuous semigroup tSpρq : ρ ¥ 0u. Then we define the

evolution tP pτ, tq : 0 ¤ τ ¤ t ¤ T u by
P pτ, tq fpxq � S pt� τq rps, yq ÞÑ fpyqs pτ, xq , f P CbpEq. (4.97)

We have to prove that the family tP pτ, tq : 0 ¤ τ ¤ t ¤ T u is a Feller evo-

lution indeed. First we show that it has the evolution property:

P pτ, t1qP pt1, tq fpxq � S pt1 � τq rps, yq ÞÑ P pt1, tq f pyqs pτ, xq� S pt1 � τq rps, yq ÞÑ S pt� t1q f ps, yqs pτ, xq� S pt1 � τqS pt� t1q rps, yq ÞÑ f ps, yqs pτ, xq� S pt� τq rps, yq ÞÑ f ps, yqs pτ, xq� P pτ, tq fpxq. (4.98)
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The equality in (4.98) exhibits the evolution property. The continuity of the

function pτ, t, xq ÞÑ P pτ, tq fpxq follows from the continuity of the functionpτ, t, xq ÞÑ S pt� τq rps, yq ÞÑ fpyqs pτ, xq: see (4.97).

Next we prove that the operator D1 � L is Tβ-closable, and that its

closure generates a Feller semigroup. Since the operator D1 � L is Tβ-

densely defined and Tβ-dissipative, it is Tβ-closable: see Proposition 4.3

assertion (a). Let Lp1q be its Tβ-closure. Since there exists λ0 ¡ 0 such

that the range of λ0I � D1 � L is Tβ-dense in Cb pr0, T s �Eq, and since

D1 � L is Tβ-dissipative, it follows that R
�
λ0I � Lp1q� � Cb pr0, T s �Eq.

Put R pλ0q � �
λ0I � Lp1q��1

, and R pλq � °8
n�0 pλ0 � λqn pR pλ0qqn�1

,|λ� λ0|   λ0. This series converges in the uniform norm. It follows that

R
�
λI � Lp1q� � Cb pr0, T s �Eq for all λ P C for which |λ� λ0|   λ0. This

procedure can be repeated to obtain: R
�
λI � Lp1q� � Cb pr0, T s �Eq for

all λ P C with ℜλ ¡ 0. Put

S0ptqf � Tβ- lim
λÑ8 e�λtetλ2Rpλqf, f P Cb pr0, T s �Eq . (4.99)

Of course we have to prove that the limit in (4.99) exists. For brevity we

write Apλq � λ2Rpλq�λI � Lp1q pλRpλqq, and notice that for f P D �
Lp1q�

we have Apλqf � λRpλqLp1qf , and that

Apλqf � λRpλqLp1qf � Rpλq�Lp1q	2

f � Lp1qf, for f P D��
Lp1q	2



.

(4.100)

Let 0   λ   µ   8. From Duhamel’s formula we get

e�λteλtpλRpλqqf � e�µteµtpµRpµqqf� etApλqf � etApµqf � » t
0

esApλq pApλq �Apµqq ept�sqApµqfds. (4.101)

If f belongs to D
�pLp1qq2�, then Apλqf�Apµqf � pRpλq �Rpµqq �Lp1q�2 f ,

and hence the equality in (4.101) can be rewritten as:

e�λteλtpλRpλqqf � e�µteµtpµRpµqqf� » t
0

esApλq pRpλq �Rpµqq ept�sqApµq �Lp1q	2

fds. (4.102)

From (4.102) we infer that for the uniform norm we have:���e�λteλtpλRpλqqf � e�µteµtpµRpµqqf���8¤ » t
0

����esApλq pRpλq �Rpµqq ept�sqApµq �Lp1q	2

f

����8 ds
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0

���esApλq��� }Rpλq � Rpµq} ���ept�sqApµq��� �����Lp1q	2

f

����8 ds¤ t

�
1

λ
� 1

µ


�����Lp1q	2

f

����8 . (4.103)

From (4.103) we infer that for f P D ��
Lp1q�2	 the limit

S0ptqfpτ, xq � lim
λÑ8 etApλqfpτ, xq (4.104)

exists uniformly in pτ, t, xq P r0, T s � r0, T s � E. The next step consists in

showing that the limit in (4.104) exists for f P D �
Lp1q�. Let f P D �

Lp1q�,
and λ ¡ µ ¡ 0. Then we have for λ0 ¡ 0 sufficiently large:���etApλqf � etApµqf���8¤ ���etApλq pf � λ0R pλ0q fq � etApµq pf � λ0R pλ0q fq���8� ���etApλq pλ0R pλ0q fq � etApµq pλ0R pλ0q fq���8¤ ����etApλq���� ���etApµq���	 ���R pλ0qLp1qf���8� ���etApλq pλ0R pλ0q fq � etApµq pλ0R pλ0q fq���8¤ 2

λ0

���Lp1qf���8 � ���etApλq pλ0R pλ0q fq � etApµq pλ0R pλ0q fq���8 . (4.105)

From (4.105) together with (4.104) it follows that (4.104) also holds for

f P D �
Lp1q�. There remains to be shown that the limit in (4.104) also

exists in Tβ-sense, but now for f P Cb pr0, T s �Eq. Since the operator

Lp1q is Tβ-dissipative, there exists, for u P H� pr0, T s �Eq, a function v P
H� pr0, T s �Eq such that for all λ ¥ λ0 ¡ 0 the inequality in (4.14) in

Definition 4.2 is satisfied, i.e.���v �λf � Lp1qf	���8 ¥ λ }uf}8 , for all λ ¥ λ0, and for all f P D �
Lp1q	.
(4.106)

From (4.106) we infer

λ }uRpλqf}8 ¤ }vf}8 , f P Cb pr0, T s �Eq . (4.107)

Let f P Cb pr0, T s �Eq. By Hausdorff-Bernstein-Widder inversion theorem

there exists a unique Borel-measurable function pτ, t, xq ÞÑ rS0ptqf pτ, xq
such that

Rpλqfpτ, xq � �
λI � Lp1q	�1

fpτ, xq � » 8
0

e�λρ rS0pρqfpτ, xqdρ, ℜλ ¡ 0.

(4.108)
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For the result in (4.108) see [Widder (1946)] Theorem 16a, page 315. The

resolvent property of the mapping λ ÞÑ Rpλq, λ ¡ 0, implies the semigroup

property of the mapping ρ ÞÑ Spρq. To be precise we have:

Rpλqf �Rpµqf � » 8
0

�
e�λρ � e�µρ� rS0pρqfdρ� pµ� λq » 8

0

» ρ
0

e�λpρ�sq�µs rS0 pρ� s� sq f ds dρ� pµ� λq » 8
0

» 8
s

e�λpρ�sq�µs rS0 pρ� s� sq f dρ ds� pµ� λq » 8
0

» 8
0

e�λρ�µs rS0 pρ� sq f dρ ds. (4.109)

On the other hand we also have

Rpλqf �Rpµqf � pµ� λqRpλqRpµqf� pµ� λq » 8
0

» 8
0

e�λρ�µs rS0 pρq rS0psqfdρ ds. (4.110)

Comparing (4.109) and (4.110) shows the equality:rS0 pρ� sq f � rS0pρqrS0psqf, ρ, s ¥ 0, f P Cb pr0, T s �Eq .
Hence the family

!rS0pρq : ρ ¥ 0
)
is a semigroup. We have to show that the

function pτ, t, xq ÞÑ rS0 ptq fpτ, xq is a bounded continuous function. This

will be done in several steps. First we will prove the following representation

for rS0ptqf , f P Cb pr0, T s �Eq,rS0ptqf � lim
λÑ8 e�λt 8̧

k�0

pλtqk
k!

pλRpλqqk f � lim
λÑ8 e�λteλtpλRpλqqf � S0ptqf,

(4.111)

provided that the limit in (4.111) exists, and where S0ptq is as in (4.100).

Let f P D �
Lp1q�. Then the function S0ptqf is the uniform limit of functions

of the form pτ, t, xq ÞÑ etApλqfpτ, xq, and such functions are continuous

in the variables pτ, t, xq: see (4.105). Consequently, the function S0ptqf
inherits this continuity property. Again let f P D �

Lp1q�. We will prove

that Rpµqf � ³8
0
e�µtS0ptqfdt, µ ¡ 0. Therefore we notice» 8

0

e�µtS0ptqfdt � » 8
0

e�µt lim
λÑ8 etApλqfdt� lim

λÑ8 » 8
0

e�µtetApλqfdt � lim
λÑ8 pµI �Apλqq�1

f
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λÑ8�

λ

λ� µ
I � 1

λ� µ
Lp1q
�

λµ

λ� µ
I � Lp1q
�1

f� �
µI � Lp1q	�1

f. (4.112)

From (4.108) and (4.112) we infer the equalityrS0ptqf � S0ptqf for f P D �
Lp1q	. (4.113)

After that we will prove that the averages of the semigroup tS0pρq : ρ ¥ 0u
is Tβ-equi-continuous. As a consequence, for f P Cb pr0, T s �Eq the func-

tion pτ, t, xq ÞÑ 1

t

» t
0

e�λρS0pρqfpτ, xq dρ,
is a bounded and continuous function, and the family of operators"

1

t

» t
0

e�λρS0pρqdρ : 0 ¤ t ¤ T

*
is Tβ-equi-continuous. (4.114)

As above we write Apλqf � λ2Rpλqf � λf . Two very relevant equalities

are:

Rpλqf � �
λI � Lp1q	�1

f � » t
0

e�λρ rS0pρqfdρ� e�λtS0ptq�λI � Lp1q	�1

f� » t
0

e�λρ rS0pρqdρ f � e�λt rS0ptq�λI � Lp1q	�1

f, (4.115)

and

f � �
λI � Lp1q	» t

0

e�λρ rS0pρqfdρ� e�λt rS0ptqf. (4.116)

Here we wrote » t
0

e�λρ rS0pρqdρ f � » t
0

e�λρ rS0pρqf dρ
to indicate that the operator f ÞÑ ³t

0
e�λρS0pρqdρ f , f P Cb pr0, T s �Eq, is

a mapping from Cb pr0, T s �Eq to itself, whereas it is not so clear what

the target space is of the mappings rS0pρq, ρ ¡ 0. In order to show that

the operators rS0ptq, t ¥ 0, are mappings from Cb pr0, T s �Eq into itself, we

need the sequential λ-dominance of the operator D1 � L for some λ ¡ 0.

Moreover, it follows from this sequential λ-dominance that the semigroup!
e�λt rS0ptq : t ¥ 0

)
is Tβ-equi-continuous. Once we know all this, then the

formula in (4.116) makes sense and is true.
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For every measure ν on the Borel field of r0, T s � E the mapping

ρ ÞÑ ³ rS0pρqfdν is a Borel measurable function on the semi-axis r0,8q.
The formula in (4.115) is correct, and poses no problem provided f P
Cb pr0, T s �Eq. In fact we have» 8

0

e�µte�λtS0ptqRpλqf dt � Rpλ� µqRpλqf � 1

µ
pRpλq �Rpλ� µqq f� » 8

0

1� e�µρ
µ

e�λρ rS0pρqf dρ � » 8
0

» ρ
0

e�µtdt e�λρ rS0pρqf dρ� » 8
0

e�µt » 8
t

e�λρ rS0pρqfdρ dt, (4.117)

and hence

e�λtS0ptq�λI � Lp1q	�1

f � e�λtS0ptqRpλqf � » 8
t

e�λρ rS0pρqfdρ.
(4.118)

From (4.118) we infer» t
0

e�λρ rS0pρqfdρ� e�λtS0ptq�λI � Lp1q	�1

f� » t
0

e�λρ rS0pρqfdρ� » 8
t

e�λρ rS0pρqf dρ� » 8
0

e�λρ rS0pρqfdρ � �
λI � Lp1q	�1

f. (4.119)

The equality in (4.115) is the same as the one in (4.119). From the equality

in (4.115) it follows that the function pτ, t, xq ÞÑ ³t
0
e�λρ rS0pρqfpτ, xqdρ is

continuous. Next let g P D �
Lp1q� and put f � �

λI � Lp1q� g. From (4.115)

we get:

g � e�λtS0ptqg � » t
0

e�λρS0pρqdρ f. (4.120)

From (4.120) we infer:��g � e�λtS0ptqg��8 � ����» t
0

e�λρS0pρqdρ f����8¤ » t
0

e�λρ ���rS0pρqf���8 dρ ¤ » t
0

e�λρdρ ���λg � Lp1qg���8 , (4.121)

and hence for λ � 0 we obtain }g � S0ptqg}8 ¤ t
��Lp1qg��8. This inequal-

ity proves the uniform boundedness of the family

"
1

t
pg � S0ptqgq : t ¡ 0

*
.

Next let us discuss its convergence. Therefore we again employ (4.115),
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and proceed as follows. Let pfnqnPN be a sequence in Cb pr0, T s �Eq
which decreases pointwise to the zero-function. Choose the sequence�
gλn
�
nPN � D

�
Lp1q� in such a way that λfn � λgλn � Lp1qgλn. Then the

sequence
�
gλn
�
nPN decreases to zero as well. For t ¡ 0 have

gλn � e�λtS0ptqgλn � λ

» t
0

e�λρS0pρqdρ fn, (4.122)

or, what is equivalent,

eλtgλn � S0ptqgλn � λ

» t
0

eλt�λρS0pρqdρ fn. (4.123)

Since the operator Lp1q is Tβ-dissipative, it follows that sup
λ, λ¥T�1

gλn decreases

pointwise to zero for all T ¡ 0. So that, with λ � t�1, the equality in (4.122)

implies

sup
t, 0 t¤T 1

t

» t
0

S0pρqdρ fn Ó 0, as nÑ8. (4.124)

Consequently, for any fixed λ P R, the family of operators"
1

t

» t
0

e�λρS0pρqdρ : T ¥ t ¡ 0

*
(4.125)

is Tβ-equi-continuous: see Corollary 2.3. Let f P Cb pr0, T s �Eq. We will

show that

Tβ- lim
tÓ0 1

t

» t
0

e�λρS0pρqdρ f � f. (4.126)

It suffices to prove (4.126) for λ ¡ 0. First assume that f � Rpλqg belongs

to the domain of Lp1q. Then we have

1

t

» t
0

e�λρS0pρqdρ f � 1

t

» t
0

e�λρS0pρq » 8
0

e�λσS0pσq dσ dρg� 1

t

» t
0

» 8
0

e�λpσ�ρqS0 pσ � ρq dσ g dρ� 1

t

» t
0

» 8
ρ

e�λσS0 pσq dσ g dρ. (4.127)

Since the function ρ ÞÑ ³8
ρ
e�λσS0pσq dσ g is continuous for the uniform

norm topology on Cb pr0, T s �Eq, (4.127) implies}�}8 - lim
tÓ0 1

t

» t
0

» 8
ρ

e�λσS0pσqdσ f � » 8
0

e�λσS0pσqdσ g � f, f P D �
Lp1q	 .
(4.128)
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Since D
�
Lp1q� is Tβ-dense in Cb pr0, T s �Eq, the equi-continuity of the

family in (4.125) implies that

Tβ- lim
tÓ0 1

t

» t
0

e�λρS0pρqdρ f � f, f P Cb pr0, T s �Eq . (4.129)

From the equality in (4.120) together with (4.129) we see that

Tβ- lim
tÓ0 g � e�λtS0ptqg

t
� f � λg � Lp1qg, g P D �

Lp1q	 . (4.130)

So far we have proved that the semigroup
!rS0ptq : t ¥ 0

)
maps the domain

of Lp1q to bounded continuous functions, and that the family in (4.129)

consists of mappings which assign to bounded continuous again bounded

continuous functions. What is not clear, is whether or not the operatorsrS0ptq, t ¥ 0, leave the space Cb pr0, T s �Eq invariant. Fix λ ¡ 0, and to

every f P Cb pr0, T s �Eq, f ¥ 0, we assign the function fλ defined by

fλ � sup
!pµR pλ� µqqk f : µ ¡ 0, k P N

)
, (4.131)

The reader is invited to compare the function fλ with (2.49) and other

results in Proposition 2.4. The arguments which follow are in line with the

proof of Proposition 2.4. The function fλ is the smallest λ-super-median

valued function which exceeds f . A closely related notion is the notion

of λ-super-mean valued function. A function g : r0, T s � E Ñ r0,8q is

called λ-super-median valued if e�λt rS0ptqg ¤ g for all t ¥ 0; it is called

λ-super-mean valued if µR pλ� µq g ¤ g for all µ ¡ 0. In Lemma (9.12)

in [Sharpe (1988)] it is shown that, essentially speaking, these notions are

equivalent. In fact the proof is not very difficult. It uses the Hausdorff-

Bernstein-Widder theorem about the representation by Laplace transforms

of positive Borel measures on r0,8q of completely positive functions. The

reader is also referred to Remark 4.1 and Definition 4.3.

Let f P Cb pr0, T s �Eq be positive. Here we use the representation

e�λt rS0ptqf � lim
µÑ8 e�µt 8̧

k�0

pµtqk
k!

pµR pλ� µqqk f ¤ fλ, (4.132)

and hence

sup
t¡0

e�λt rS0ptqf ¤ fλ. (4.133)

Since pµR pλ� µqqk f � µkpk � 1q! » 8
0

tk�1e�µte�λt rS0ptqf dt (4.134)
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we see by invoking (4.131) that the two expressions in (4.133) are the same.

In order to finish the proof of Theorem 4.3 we need the hypothesis that the

operator D1�L is sequentially λ-dominant for some λ ¡ 0. In fact, let the

sequence pfnqnPN � Cb pr0, T s �Eq converge downward to zero, and select

functions gλn P D pD1 � Lq, n P N, with the following properties:

(1) fn ¤ gλn;

(2) gλn � sup
KPKpr0,T s�Eq inf

gPDpD1�Lq tg ¥ fn1K : pλI �D1 � Lq g ¥ 0u;
(3) lim

nÑ8 gλnpτ, xq �0 for all pτ, xq P r0, T s �E.

In the terminology of (2.42) and Definition 4.3 the functions gλn are denoted

by gλn � U1
λ pfnq, n P N. Recall that K pr0, T s �Eq denotes the collection of

all compact subsets of r0, T s � E. By hypothesis, the sequence as defined

in 2 satisfies 1 and 3. Let K be any compact subset of r0, T s � E, and

g P D pD1 � Lq be such that g ¥ fn1K and pλI �D1 � Lq g ¥ 0. Then we

have �pλ� µq I � Lp1q	 g � ppλ� µq I �D1 � Lq g ¥ µg. (4.135)

From (4.135) and g ¥ fn1K we infer

g ¥ µR pλ� µq g ¥ pµR pλ� µqqk g ¥ pµR pλ� µqqk pfn1Kq , (4.136)

and hence (4.136) together with (4.131) and (4.133) (which is in fact an

equality) we see

gλn ¥ fλn � sup
KPKpr0,T s�Eq sup!e�λt rS0ptq pfn1Kq : t ¥ 0

)� sup
KPKpr0,T s�Eq sup!pµR pλ� µqqk pfn1Kq : µ ¡ 0, k P N

)� sup
!pµR pλ� µqqk fn : µ ¡ 0, k P N

)� sup
!
e�λt rS0ptqfn : t ¥ 0

)
. (4.137)

Since by hypothesis lim
nÑ8 gλn � 0 the inequality in (4.137) implies:

lim
nÑ8 fλn � 0. It follows that

lim
nÑ8 sup

!
e�λt rS0ptqfn : t ¥ 0

) � 0. (4.138)

From Corollary 2.3 it follows that the family of operators!pµR pλ� µqqk : µ ¥ 0, k P N

)
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is Tβ-equi-continuous. Hence for every function u P H� pr0, T s �Eq there
exists a function v P H� pr0, T s �Eq such that���u pµR pλ� µqqk f���8 ¤ }vf}8 , f P Cb pr0, T s �Eq , µ ¥ 0, k P N.

(4.139)

Since

sup
!
e�λt rS0ptqf : t ¥ 0

) � sup
!pµR pλ� µqqk f : µ ¥ 0, k P N

)
, f ¥ 0,

(4.140)

the inequality in (4.139) yields���ue�λt rS0ptqf���8 ¤ }vf}8 , f P Cb pr0, T s �Eq , t ¥ 0. (4.141)

Since D
�
Lp1q� is Tβ-dense, and the operators rS0ptq, t ¥ 0, are mappings

from D
�
Lp1q� to Cb pr0, T s �Eq the Tβ-equi-continuity in (4.141) shows

that the operators rS0ptq, t ¥ 0, are in fact mappings from Cb pr0, T s �Eq
to itself, and that the family

!
e�λt rS0ptq : t ¥ 0

)
is Tβ-equi-continuous.

However, all these observations conclude the proof of the implication

(iii) ùñ (i) of Theorem 4.3.

So, finally, the proof of Theorem 4.3 is complete. �

Remark 4.3. The equality in (4.115) shows that the function g :� Rpλqf ,
where f ¥ 0 and f P Cb pr0, T s �Eq is λ-super-mean valued in the sense

that an inequality of the form e�λtS0ptqg ¤ g holds. Such an inequality

is equivalent to µR pµ� λq g ¤ g. For details on such functions and on

λ-excessive functions see [Sharpe (1988)], page 17 and Lemma 9.12, page

45.

4.3 Korovkin property

The following notions and results are being used to prove Theorem 2.13.

We recall the definition of Korovkin property.

Definition 4.4. Let E0 be a subset of E The operator L is said to possess

the Korovkin property on E0 if there exists a strictly positive real number

λ0 ¡ 0 such that for every x0 P E0 the equality

inf
hPDpLq supxPE0

"
hpx0q � �

g ��
I � 1

λ0
L



h

� pxq* (4.142)� sup
hPDpLq inf

xPE0

"
hpx0q � �

g ��
I � 1

λ0
L



h

� pxq* (4.143)
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is valid for all g P CbpEq.
Let g P CbpEq and λ ¡ 0. The equalities

inf
hPDpLq"hpx0q : �I � 1

λ
L



h ¥ g on E0

*� inf
hPDpLq supxPE0

�
hpx0q � �

g ��
I � 1

λ
L



h

� pxq
� inf
Γ�DpLq
#Γ 8 sup

Φ�E0

#Φ 8min
hPΓ max

xPΦ "
hpx0q � �

g ��
I � 1

λ
L



h

� pxq* , (4.144)

show that the Korovkin property could also have been defined in terms of

any of the quantities in (4.144). In fact, if L satisfies the (global) maximum

principle on E0, i.e. if for every real-valued function f P DpLq the inequality
λ sup
xPE0

fpxq ¤ sup
xPE0

pλfpxq � Lfpxqq (4.145)

holds for all λ ¡ 0, then the Korovkin property (on E0) does not depend

on λ0 ¡ 0. In other words, if it holds for one λ0 ¡ 0, then it is true for all

λ ¡ 0. This is part of the contents of the following proposition. In fact the

maximum principle as formulated in (4.145) is not adequate in the present

context. The correct version here is the following one, which is kind of a

weak maximum principle on a subset of E.

Definition 4.5. Let E0 be a subset of E. Suppose that the operator L

has the property that for every λ ¡ 0 and for every x0 P E0 it is true that

h px0q ¥ 0, whenever h P DpLq is such that pλI � Lqh ¥ 0 on E0. Then

the operator L is said to satisfy the weak maximum principle on E0.

As we proved in Proposition 2.8 the notion of “weak maximum principle”

and “maximum principle” coincide, provided 1 P DpLq and L1 � 0.

In order to be really useful, the Korovkin property on E0 should be

accompanied by the maximum principle on E0. To be useful the global

Korovkin property (see Definition 4.6) requires the global maximum prin-

ciple (see (4.145)). In addition we need the fact that the constant functions

belong to DpLq and that L1 � 0. If we only know the global maximum

principle, in the sense of (4.145), then the global Korovkin property is re-

quired.

Definition 4.6. The operator L is said to possess the global Korovkin

property if there exists a strictly positive real number λ0 ¡ 0 such that for
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every x0 P E the equality

inf
hPDpLq supxPE"

hpx0q � �
g ��

I � 1

λ0
L



h

� pxq* (4.146)� sup
hPDpLq infxPE"hpx0q � �

g ��
I � 1

λ0
L



h

� pxq* (4.147)

is valid for all g P CbpEq.
First we treat the situation of a subset of E. The global version is obtained

from the one on E0 by replacing the subset E0 with the full state space

E. Again a resolvent family is obtained. In order to prove the equalities of

(4.166) through (4.175) the global maximum principle is used. In fact it is

used to show the equalities

inf
h P DpLq sup

x P E "
hpx0q � �

g ��
I � 1

λ
L



h

� pxq* (4.148)� inf
hPDpLq"h px0q : �I � 1

λ
L



h ¥ g on E

*
(4.149)� sup

hPDpLq"h px0q : �I � 1

λ
L



h ¤ g on E

*
(4.150)� sup

hPDpLq infxPE"hpx0q � �
g ��

I � 1

λ
L



h

� pxq* . (4.151)

In particular, if g � 0, and if L satisfies the global maximum principle, then

the expressions in (4.148) through (4.151) are all equal to 0. Put

λ0R pλ0q g px0q� inf
hPDpLq supxPE0

"
hpx0q � �

g ��
I � 1

λ0
L



h

� pxq*� sup
hPDpLq inf

xPE0

"
hpx0q � �

g ��
I � 1

λ0
L



h

� pxq* . (4.152)

Then λ0R pλ0q is a linear operator from Cb pE0q to Cb pE0q. The

following proposition shows that there exists a family of operatorstRpλq : 0   λ   2λ0u which has the resolvent property. The operator

λRpλq is obtained from (4.152) by replacing λ0 with λ. It is clear that

this procedure can be extended to the whole positive real axis. In this way

we obtain a resolvent family tRpλq : λ ¡ 0u. The operator Rpλq can be

written in the form Rpλq � pλI � L0q�1
, where L0 is a closed linear oper-

ator which extends L (in case E0 � E), and which satisfies the maximum

principle on E0, and, under certain conditions, generates a Feller semigroup



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Space-time operators 263

and a Markov process. For convenience we insert the following lemma. It

is used for E0 � E and for E0 a subset of E which is Polish with respect

to the relative metric. The condition in (4.155) is closely related to the

maximum principle.

Lemma 4.1. Suppose that the constant functions belong to DpLq, and that

L1 � 0. Fix x0 P E, λ ¡ 0, and g P Cb pE0q. Let E0 be any subset of E.

Then the following equalities hold:

inf
hPDpLq supxPE0

"
h px0q � gpxq ��

I � 1

λ
L



hpxq*� inf

hPDpLq"h px0q : �
I � 1

λ
L



h ¥ g on E0

*
, (4.153)

and

sup
hPDpLq inf

xPE0

"
h px0q � gpxq ��

I � 1

λ
L



hpxq*� sup

hPDpLq"h px0q : �
I � 1

λ
L



h ¤ g on E0

*
. (4.154)

If inf
hPDpLq"h px0q : �

I � 1

λ
L



h ¥ 0 on E0

* ¥ 0, then (4.155)

sup
xPE0

gpxq ¥ inf
hPDpLq"h px0q : �

I � 1

λ
L



h ¥ g on E0

* ¥ inf
xPE0

gpxq,
(4.156)

and also

inf
hPDpLq"h px0q : �

I � 1

λ
L



h ¥ g on E0

*¥ sup
hPDpLq"h px0q : �

I � 1

λ
L



h ¤ g on E0

*
. (4.157)

First notice that by taking h � 0 in the left-hand side of (4.153) we see

that the quantity in (4.153) is less than or equal to sup
xPE0

gpxq, and that the

quantity in (4.154) is greater than or equal to inf
xPE0

gpxq. However, it is not
excluded that (4.153) is equal to �8, and that (4.154) is equal to 8.

Proof. Upon replacing g with �g we see that the equality in (4.154) is

a consequence of (4.153). We put

αE0
� inf

hPDpLq"h px0q : �
I � 1

λ
L



h ¥ g on E0

*
and
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βE0
� inf

hPDpLq supxPE0

"
h px0q � gpxq ��

I � 1

λ
L



hpxq* . (4.158)

First assume that βE0
P R. Let ε ¡ 0. Choose hε P DpLq in such a way

that for x P E0 we have

hε px0q � gpxq ��
I � 1

λ
L



hε pxq ¤ βE0

� ε.

Then

gpxq ¤ �
I � 1

λ
L



hε pxq � βE0

� ε� hε px0q� �
I � 1

λ
L


 phε � hε px0q � βE0
� εq pxq. (4.159)

The substitution rhε � hε�hε px0q�βE0
�ε in (4.159) yields αE0

¤ rhε px0q �
βE0

� ε. Since ε ¡ 0 was arbitrary, we get αE0
¤ βE0

. The same argument

with �n instead of βE0
�ε shows αE0

� �8 if βE0
� �8. Next we assume

that αE0
P R. Again let ε ¡ 0 be arbitrary. Choose a function hε P DpLq

such that hε px0q ¤ αE0
� ε, and

�
I � 1

λ
L



hε ¥ g on E0. Then we have,

for x P E0,

hε px0q � gpxq ��
I � 1

λ
L



hεpxq ¤ hε px0q ¤ βE0

� ε,

and hence βE0
¤ αE0

� ε. Since ε ¡ 0 was arbitrary, we get βE0
¤ αE0

.

Again, the argument can be adapted if αE0
� �8: replace αE0

� ε by�n, and let n tend to 8. If condition (4.155) is satisfied, then with m �
inf
yPE0

gpyq we have

αE0
¥ inf

hPDpLq"h px0q : �
I � 1

λ
L



h ¥ inf

yPE0

gpyq on E0

*� inf
hPDpLq"h px0q : �

I � 1

λ
L


 ph�mq ¥ 0 on E0

* ¥ m. (4.160)

The inequality in (4.160) shows the lower estimate in (4.156). The upper

estimate is obtained by taking h � sup
yPE0

gpyq. Next we prove the inequality

in (4.157). Therefore we observe that the functional Λ�E0
: Cb pE,Rq Ñ R,

defined by

Λ�E0
pgq � inf

hPDpLq"h px0q : �
I � 1

λ
L



h ¥ g on E0

*
(4.161)
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is sub-additive and positive homogeneous. The latter means that

Λ�E0
pg1 � g2q ¤ Λ�E0

pg1q � Λ�E0
pg2q , and Λ�E0

pαgq � αΛ�E0
pgq

for g1, g2, g P Cb pE,Rq, and α ¥ 0. Moreover,�Λ�E0
p�gq � sup

hPDpLq"h px0q : �
I � 1

λ
L



h ¤ g on E0

*
. (4.162)

It follows that

Λ�E0
pgq � Λ�E0

p�gq ¥ Λ�E0
p0q� inf

hPDpLq"h px0q : �I � 1

λ
L



h ¥ 0 on E0

* ¥ 0. (4.163)

The inequality in (4.157) is a consequence of (4.162) and (4.163).

This completes the proof of Lemma 4.1. �

The definition of an operator L satisfying the maximum principle on a

subset E0 can be found in Definition 4.5. Proposition 4.4 contains the

basic formulas which turn the Korovkin property into a resolvent family of

operators, and ultimately a Feller semigroup.

Proposition 4.4. Let 0   λ   2λ0 and g P CbpEq and E0 a subset of E.

Suppose the operator L satisfies the maximum principle on E0. In addition,

let the domain of L contain the constant functions, and assume L1 � 0.

Let x0 P E0. Put

λRpλqgpx0q� lim inf
nÑ8 inf

h0PDpLq sup
x1PE0

inf
h1PDpLq sup

x2PE0

� � � inf
hnPDpLq sup

xn�1PE0

ņ

j�0

�
1� λ

λ0


j "
hjpxjq � λ

λ0
g pxj�1q ��

I � 1

λ0
L



hj pxj�1q* (4.164)� lim inf

nÑ8 sup
h0PDpLq inf

x1PE0

sup
h1PDpLq inf

x2PE0

� � �
sup

hnPDpLq inf
xn�1PE0

ņ

j�0

�
1� λ

λ0


j "
hjpxjq � λ

λ0
g pxj�1q ��

I � 1

λ0
L



hj pxj�1q* .

(4.165)

Then the following identities are true:

λRpλqgpx0q
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nÑ8�

λ

λ0

ņ

j�0

�
1� λ

λ0


j pλ0R pλ0qqj�1
g px0q� (4.166)� λ

λ0

8̧
j�0

�
1� λ

λ0


j pλ0R pλ0qqj�1
g px0q (4.167)� lim

nÑ8 inf

hj P DpLq,
j¥0

pλI � Lqh0 � λ
λ0

8°
j�1

�
1� λ

λ0

	j�1 pλI � Lqhj
max
xjPE0

1¤j¤n�1

ņ

j�0

�
1� λ

λ0


j "
hjpxjq � λ

λ0
gpxj�1q ��

I � 1

λ0
L



hj pxj�1q*

(4.168)� inf
h P DpLq max

x P E0

"
hpx0q � �

g ��
I � 1

λ
L



h

� pxq* (4.169)� inf
hPDpLq"h px0q : �I � 1

λ
L



h ¥ g on E0

*
(4.170)� sup

hPDpLq"h px0q : �I � 1

λ
L



h ¤ g on E0

*
(4.171)� sup

hPDpLqmin
xPE0

"
hpx0q � �

g ��
I � 1

λ
L



h

� pxq* (4.172)� lim
nÑ8 sup

hj P DpLq,
j¥0

pλI � Lqh0 � λ
λ0

8°
j�1

�
1� λ

λ0

	j�1 pλI � Lqhj
min
xjPE0

1¤j¤n�1

ņ

j�0

�
1� λ

λ0


j "
hjpxjq � λ

λ0
gpxj�1q ��

I � 1

λ0
L



hj pxj�1q*

(4.173)� lim
nÑ8 inf

hjPDpLq, 0¤j¤n max
xjPE0, 1¤j¤n�1

ņ

j�0

�
1� λ

λ0


j "
hjpxjq � λ

λ0
g pxj�1q ��

I � 1

λ0
L



hj pxj�1q* (4.174)� lim

nÑ8 sup
hjPDpLq, 0¤j¤n min

xjPE0, 1¤j¤n�1

ņ

j�0

�
1� λ

λ0


j "
hjpxjq � λ

λ0
g pxj�1q ��

I � 1

λ0
L



hj pxj�1q* .

(4.175)
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Suppose that the operator possesses the global Korovkin property, and sat-

isfies the maximum principle, as described in (4.145). Put

λRpλqg px0q� lim inf
nÑ8 inf

h0PDpLq supx1PE inf
h1PDpLq supx2PE � � � inf

hnPDpLq sup
xn�1PE

ņ

j�0

�
1� λ

λ0


j "
hjpxjq � λ

λ0
g pxj�1q ��

I � 1

λ0
L



hj pxj�1q* (4.176)� lim inf

nÑ8 sup
h0PDpLq inf

x1PE sup
h1PDpLq inf

x2PE � � � sup
hnPDpLq inf

xn�1PE
ņ

j�0

�
1� λ

λ0


j "
hjpxjq � λ

λ0
g pxj�1q ��

I � 1

λ0
L



hj pxj�1q* .

(4.177)

Then the quantities in (4.166) through (4.175) are all equal to λRpλqg px0q,
provided that the set E0 is replaced by E.

In case we deal with the (local) Korovkin property on E0, the convergence

of pλI � Lqh0 � λ

λ0

8̧
j�1

�
1� λ

λ0


j�1 pλI � Lqhj (4.178)

in (4.168) and (4.173) is supposed to be uniform on E0. In case we deal

with the global Korovkin property, and the maximum principle in (4.145),

then the convergence in (4.178) should be uniform on E.

Corollary 4.2. Suppose that the operator L possesses the Korovkin prop-

erty on E0. Then for all λ ¡ 0 the quantities in (4.169), (4.170), (4.171),

and (4.172) are equal for all x0 P E0 and all functions g P Cb pE0q. If L

possesses the global Korovkin property, then

inf
h P DpLq max

x P E "
hpx0q � �

g ��
I � 1

λ
L



h

� pxq* (4.179)� inf
hPDpLq"h px0q : �I � 1

λ
L



h ¥ g on E

*
(4.180)� sup

hPDpLq"h px0q : �I � 1

λ
L



h ¤ g on E

*
(4.181)
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hPDpLqmin

xPE "
hpx0q � �

g ��
I � 1

λ
L



h

� pxq* . (4.182)

Moreover, for λ ¡ 0 and f P DpLq, the equality Rpλq pλI � Lq f � f holds.

Proof. By repeating the result in Proposition 4.4 for all λ1 P p0, 2λ0q
instead of λ0 we get these equalities for λ in the interval p0, 4λ0q. This

procedure can be repeated once more. Induction then yields the desired

result. That for λ ¡ 0 and f P DpLq, the equality Rpλq pλI � Lq f � f

holds can be seen by the following arguments. By definition we have

λRpλq pλI � Lq f px0q� inf th px0q : pλI � Lq f ¥ h on E0, h P DpLqu ¤ f px0q . (4.183)

We also have

λRpλq pλI � Lq f px0q� sup th px0q : pλI � Lq f ¤ h on E0, h P DpLqu ¥ f px0q . (4.184)

The stated equality is a consequence of (3.161) and (4.183). It also com-

pletes the proof of Corollary 4.2. �

We continue with a proof of Proposition 4.4.

Proof. [Proof of Proposition 4.4.] The equality of each term in (4.164)

and (4.165) follows from the Korovkin property on E0 as exhibited in the

formulas (4.142) and (4.143) of Definition 4.4, provided that the limit in

(4.164) exists. The existence of this limit, and its identification are given

in (4.166) and (4.167) respectively. For this to make sense we must be sure

that the partial sums of the first n � 1 terms of the quantities in (4.164)

and (4.166) are equal. In fact a rewriting of the quantity in (4.164) before

taking the limit shows that the quantity in (4.174) is also equal to (4.164);

i.e.

inf
h0PDpLq sup

x1PE0

inf
h1PDpLq sup

x2PE0

� � � inf
hnPDpLq sup

xn�1PE0

#
ņ

j�0

� � �+� inf
hjPDpLq, 0¤j¤n max

xjPE0, 1¤j¤n�1

#
ņ

j�0

� � �+ .
In fact the same is true for the corresponding partial sums in (4.165) and

(4.175), but with inf instead of sup, and min instead of max. For 0   λ  
2λ0, we have |λ0 � λ|   λ0. Since|λ0 � λ| }R pλ0q f}8 ¤ ����λ0 � λ

λ0

���� }f}8 , f P Cb pE,Rq , (4.185)
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the sum in (4.167) converges uniformly. The equality of the sum of the first

n� 1 terms in (4.164) and (4.166) can be proved as follows. For 1 ¤ k ¤ n

we may employ the following identities:

inf
h0PDpLq sup

x1PE0

� � � inf
hnPDpLq sup

xn�1PE0

ņ

j�0

�
1� λ

λ0


j "
hj pxjq � λ

λ0
g pxj�1q ��

I � 1

λ0
L



hj pxj�1q*� inf

h0PDpLq sup
x1PE0

� � � inf
hn�kPDpLq sup

xn�k�1PE0

n�ķ
j�0

�
1� λ

λ0


j "
hj pxjq � λ

λ0
g pxj�1q ��

I � 1

λ0
L



hj pxj�1q*� λ

λ0

ņ

j�n�k�1

�
1� λ

λ0


j pλ0R pλ0qqj�pn�kq g pxn�k�1q . (4.186)

The equality in (4.186) can be proved by induction with respect to k, and by

repeatedly employing the definition of λ0R pλ0q f , f P Cb pE,Rq, together
with its linearity. Using (4.186) with k � n we get

inf
h0PDpLq sup

x1PE0

� � � inf
hnPDpLq sup

xn�1PE0

ņ

j�0

�
1� λ

λ0


j "
hj pxjq � λ

λ0
g pxj�1q ��

I � 1

λ0
L



hj pxj�1q*� inf

h0PDpLq sup
x1PE0

�"
h0 px0q � λ

λ0
g px1q ��

I � 1

λ0
L



h0 px1q*� λ

λ0

ņ

j�1

�
1� λ

λ0


j pλ0R pλ0qqj g px1q�� λ

λ0

ņ

j�0

�
1� λ

λ0


j pλ0R pλ0qqj�1
g px0q . (4.187)

From the equality of (4.164) and (4.165), together with (4.187) we infer

λRpλqg px0q � lim
nÑ8 λ

λ0

ņ

j�0

�
1� λ

λ0


j pλ0R pλ0qqj�1
g px0q . (4.188)

Notice that by (4.185) the series in (4.188) converges uniformly. Con-

sequently, the equalities of the quantities in (4.164), (4.165), (4.166),

(4.167), (4.174), and (4.175) follow, and all these expressions are equal to
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λRpλqg px0q. Next let phjqjPN � DpLq be any sequence with the following

property: pλI � Lqh0 � λ

λ0

8̧
j�1

�
1� λ

λ0


j�1 pλI � Lqhj (4.189)

where the series in (4.189) converges uniformly. Then by the maximum

principle the series
λ

λ0

8̧
j�1

�
1� λ

λ0


j�1

hj converges uniformly as well. So

it makes sense to write:

h0 � λ

λ0

n�1̧

j�1

�
1� λ

λ0


j�1

h1j where h1j � hj , 1 ¤ j ¤ n, and

h1n�1 � 8̧
j�n�1

�
1� λ

λ0


j�n�1

hj . (4.190)

Again the series in (4.190) converges uniformly. From the representation of

h0 in (4.190) we infer the equalities:

inf
hjPDpLq, 0¤j¤n max

xjPE0, 1¤j¤n�1

ņ

j�0

�
1� λ

λ0


j "
hjpxjq � λ

λ0
g pxj�1q ��

I � 1

λ0
L



hj pxj�1q* (4.191)� inf

hj P DpLq,
j¥0

pλI � Lqh0 � λ
λ0

8°
j�1

�
1� λ

λ0

	j�1 pλI � Lqhj
max
xjPE0

1¤j¤n�1

ņ

j�0

�
1� λ

λ0


j "
hjpxjq � λ

λ0
gpxj�1q ��

I � 1

λ0
L



hj pxj�1q* .

(4.192)

Hence, the equality of (4.174) and (4.168) follows. A similar argument

shows the equality of (4.175) and (4.173). Of course, here we used the

equality of (4.191) and (4.192) with “inf” instead of “sup”, and “max”

replaced with “min” and vice versa. So we have equality of the following

expressions: (4.164), (4.165), (4.166), (4.167), (4.168), (4.173), (4.174),

(4.175). The proof of the fact that these quantities are also equal to (4.169),

(4.170), (4.171), and (4.172) is still missing. Therefore we first show that

the expression in (4.168) is greater than or equal to (4.169). In a similar

manner it is shown that the expression in (4.173) is less than or equal to

(4.172): in fact by applying the inequality (4.168) ¥ (4.169) to �g instead
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of �g we obtain that (4.173) is less than or equal to (4.172). From the

(local) maximum principle it will follow that the expression in (4.169) is

greater than or equal to (4.172). As a consequence we will obtain that,

with the exception of (4.170) and (4.171), all quantities in Proposition 4.4

are equal. Proving the equality of (4.169) and (4.170), and of (4.171) and

(4.172) is a separate issue. In fact the equality of (4.169) and (4.170) follows

from Lemma 4.1 equality (4.153), and the equality of (4.171) and (4.172)

follows from the same lemma equality (4.154).

(4.168) ¥ (4.169). Fix the subset E0 of E, and let phjqjPN � DpLq
with the following property: Lh0 � lim

nÑ8 λ

λ0

ņ

j�1

�
1� λ

λ0


j�1

hj . Here the

convergence is uniform on E0. In fact each hj may chosen equal to h0. In

(4.168) we choose all xj � x P E0. Then we get
ņ

j�0

�
1� λ

λ0


j "
h pxjq � λ

λ0
g pxj�1q ��

I � 1

λ0
L



hj pxj�1q*� h0 px0q � ņ

j�1

�
1� λ

λ0


j
hj pxq � λ

λ0

ņ

j�0

�
1� λ

λ0


j
gpxq � h0pxq� ņ

j�1

�
1� λ

λ0


j
hj pxq � 1

λ
L

�
λ

λ0

ņ

j�0

�
1� λ

λ0


j
hj

� pxq� h0 px0q � λ

λ0

ņ

j�0

�
1� λ

λ0


j
gpxq ��

I � 1

λ
L



h0 pxq� 1

λ

�
1� λ

λ0


n�1

L

�
λ

λ0

8̧
j�n�1

�
1� λ

λ0


j�n�1

hj

� pxq. (4.193)

The expression in (4.193) tends to

h0 px0q � gpxq ��
I � 1

λ
L



h0pxq uniformly on E0, (4.194)

and consequently, since h0 P DpLq may be chosen arbitrarily, we see that

(4.168) ¥ (4.169).

(4.173) ¤ (4.172). The proof of this inequality follows the same lines as

the proof of (4.168) ¥ (4.169). In fact it follows from the latter inequality

by applying it to �g instead of g. The reader is invited to check the details.

(4.169) ¥ (4.172). Consider the mapping Λ� : Cb pE,Rq Ñ r�8�8q
defined by

Λ�pgq � inf
hPDpLq supxPE0

"
h px0q � gpxq ��

I � λ

λ0
L



hpxq* . (4.195)
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where g P Cb pE,Rq. From the weak maximum principle (see Definition

4.5) and Lemma 4.1, inequality (4.156) it follows that Λ� attains its values

in R. In addition, the functional Λ� is sub-additive, and the expression in

(4.172) is equal to �Λ�p�gq. It follows that
Λ�pgq � Λ�p�gq ¥ Λ�p0q� inf

hPDpLq"h px0q : �I � 1

λ
L



h ¥ 0, on E0

* ¥ 0. (4.196)

In (4.196) we used the weak maximum principle: compare with the argu-

ments in (4.163) of the proof of inequality (4.157) in Lemma 4.1.

This establishes Proposition 4.4. �

Proposition 4.5. Suppose that the operator L possesses the Korovkin prop-

erty on E0. Then for all λ ¡ 0 and f P CbpEq the quantities in (4.169),

(4.170), (4.171), and (4.172) are equal for all x0 P E. These quantities are

also equal to

sup
vPH�pEq inf

hPDpLq"h px0q : v�I � 1

λ
L



h ¥ vg

*
(4.197)� inf

vPH�pEq sup
hPDpLq"h px0q : v�I � 1

λ
L



h ¤ vg

*
. (4.198)

Recall that H�pEq stands for all functions u P HpEq, u ¥ 0, with the

property that for every α ¡ 0 the level set tu ¥ αu is a compact subset of

E. Observe that for every u P HpEq there exists a function u0 P H�pEq
such that |upxq| ¤ u0pxq for all x P E.

Corollary 4.3. Suppose that the operator L possesses the Korovkin prop-

erty on E0, and is positive Tβ-dissipative on E0. Then the familytλRpλq : λ ¥ λ0u, as defined in Proposition 4.4, is Tβ-equi-continuous (on

E0) for some λ0 ¡ 0.

Proof. We use the representation in (4.171):

λRpλqf px0q � sup
hPDpLq"h px0q : �I � 1

λ
L



h ¤ f on E0

*
. (4.199)

Let u P H�pEq and x0 P E. Since L is supposed to be positive Tβ-

dissipative on E0, there exists λ0 ¡ 0 and v P H� pE0q such that

λu px0qh px0q ¤ sup
xPE0

vpxq pλhpxq � Lhpxqq (4.200)
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for all h P DpLq which are real-valued and for all λ ¥ λ0. For the precise

definition of positive Tβ-dissipativity (on E) see (4.15) in Definition 4.2.

From (4.199) and (4.200) we infer:

u px0qλRpλqf px0q� sup
hPDpLq tu px0qh px0q : λh� Lh ¤ λf on E0u¤ sup
hPDpLq tu px0qh px0q : λh� Lh ¤ λf on E0u¤ sup
hPDpLq" 1

λ
sup
xPE vpxq pλh pxq � Lhpxqq : λh� Lh ¤ λf on E0

*¤ sup
xPE0

vpxqfpxq. (4.201)

Since by construction ℜRpλqf � Rpλqℜf , (4.201) implies:}uλRpλqf}8 ¤ }vf}8 , f P Cb pE0q , λ ¥ λ0. (4.202)

The conclusion in Corollary 4.3 is a consequence of (4.202). �

In the following theorem we wrap up more or less everything we proved

so far about an operator with the Korovkin property on a subset E0 of

E. Theorem 4.4 and the related observations were used in the proof of

Theorem 2.13.

Theorem 4.4. Let E0 be a Polish subspace of the Polish space E. Suppose

that every function f P Cb pE0q can be extended to a bounded continuous

function on E. Let L be a linear operator with domain and range in CbpEq
which assigns the zero function to a constant function. Suppose that the

operator L possesses the following properties:

(1) Its domain DpLq is Tβ-dense in CbpEq.
(2) The operator L assigns real-valued functions to real-valued functions:

ℜ pLfq � Lℜf for all f P DpLq.
(3) If f P DpLq vanishes on E0, then Lf vanishes on E0 as well.

(4) The operator L satisfies the maximum principle on E0.

(5) The operator L is positive Tβ-dissipative on E0.

(6) The operator L is sequentially λ-dominant on E0 for some λ ¡ 0.

(7) The operator L has the Korovkin property on E0.

Let LæE0
be the operator defined by D pLæE0

q � tfæE0
: f P DpLqu, and

LæE0
pfæE0

q � LfæE0
, f P DpLq. Then the operator LæE0

possesses

a unique linear extension to the generator L0 of a Feller semigrouptS0ptq : t ¥ 0u on Cb pE0q.
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In addition, the time-homogeneous Markov process associated to the

Feller semigroup tS0ptq : t ¥ 0u serves as the unique solution to the mar-

tingale problem associated with L.

Proof. Existence. First we prove that the restriction operator LæE0
is

well-defined and that it is Tβ-densely defined. The fact that it is well-

defined follows from 3. In order to prove that it is Tβ-densely defined, we

use a Hahn-Banach type argument. Let rµ be a bounded Borel measure on

E0 such that 〈fæE0
, rµ〉 � ³

E0
fdrµ � 0 for all f P DpLq. Define the measure

µ on the Borel field of E by µpBq � rµ pB�
E0q, B P E . Then 〈f, µ〉 � 0 for

all f P DpLq. Since DpLq is Tβ-dense in CbpEq, we infer 〈f, µ〉 � 0 for all

f P CbpEq. Let rf P CbpEq. Then there exists f P CbpEq such that f � rf
on E0, and hence

〈 rf, rµ〉 � 〈fæE0
, rµ〉 � 〈f, µ〉 � 0. (4.203)

From (4.203) we see that a bounded Borel measure which annihilates

D pLæE0
q also vanishes on Cb pE0q. By the theorem of Hahn-Banach in

combination with the fact that every element of the dual of pCb pE0q , Tβq
can be identified with a bounded Borel measure on E0, we see that the

subspace D pLæE0
q is Tβ-dense in Cb pE0q. Define the family of operatorstλRpλq : λ ¡ 0u as in Proposition 4.4, By the properties 4 and 7 such def-

initions make sense. Moreover, the family tRpλq : λ ¡ 0u possesses the

resolvent property: Rpλq � Rpµq � pµ� λqRpµqRpλq, λ ¡ 0, µ ¡ 0. It

also follows that Rpλq pλI �D1 � Lq f � f on E0 for f P Dp1qpLq. This

equality is an easy consequence of the inequalities in (3.161): see Corollary

4.2. Fix λ ¡ 0 and f P Cb pE0q. If f is of the form f � Rpλqg, g P Cb pE0q,
then by the resolvent property we have

αRpαqf � f � αRpαqRpλqg �Rpλqg � α

α� λ
Rpλqg �Rpλqg � αRpαqg

α� λ
.

(4.204)

Since }αRpαqg}8 ¤ }g}8, g P Cb pE0q, the equality in (4.204) yields}�}8 - lim
αÑ8αRpαqf � f � 0 for f of the form f � Rpλqg, g P Cb pKq.

Since g � Rpλq pλI �D1 � Lq g on K, g P Dp1qpLq, it follows that
lim
αÑ8 }αRpαqg � g}8 � 0 for g P Dp1qpLq � D pD1q£DpLq. (4.205)

As was proved in Corollary 4.3 there exists λ0 ¡ 0 such that the familytλRpλq : λ ¥ λ0u is Tβ-equi-continuous. Hence for u P H� pE0q there exists
v P H� pKq that for α ¥ λ0 we have}uαRpαqg}8 ¤ }vg}8 , g P Cb pE0q . (4.206)
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Fix ε ¡ 0, and choose for f P Cb pE0q and u P H� pE0q given the function

g P D pLæE0
q in such a way that}upf � gq}8 � }vpf � gq}8 ¤ 2

3
ε. (4.207)

Since D pLæE0
q is Tβ-dense in Cb pE0q such a choice of g. The inequality

(4.207) and the identity

αRpαqf � f � αRpαqpf � gq � pf � gq � αRpαqg � g yield}u pαRpαqf � fq}8¤ }u pαRpαqpf � gqq}8 � }upf � gq}8 � }u pαRpαqg � gq}8¤ }vpf � gq}8 � }upf � gq}8 � }u pαRpαqg � gq}8¤ 2

3
ε� }u pαRpαqg � gq}8 . (4.208)

From (4.205) and (4.208) we infer

Tβ- lim
αÑ8αRpαqf � f, f P Cb pE0q . (4.209)

Define the operator L0 in Cb pE0q as follows. Its domain is given by

D pL0q � RpλqCb pE0q, λ ¡ 0. By the resolvent property the space

RpλqCb pE0q does not depend on λ ¡ 0, and so D pL0q is well-defined. The
operator L0 : D pL0q Ñ Cb pE0q is defined by L0Rpλqf � λRpλqf � f , f P
Cb pE0q. Since Rpλqf1 � Rpλqf2, f1, f2 P Cb pE0q, implies Rpλq pf2 � f1q �
0. By the resolvent property we see that αRpαq pf2 � f1q � 0 for all α ¡ 0.

From (4.209) we infer f2 � f1. In other words, the operator L0 is well-

defined. Since the operators Rpλq, λ ¡ 0, are Tβ-continuous it follows that

the graph of the operator L0 is Tβ-closed. As in the proof of (iii) ùñ (i)

we have, like in (4.111),rS0ptqf � lim
λÑ8 e�λt 8̧

k�0

pλtqk
k!

pλRpλqqk f � lim
λÑ8 e�λteλtpλRpλqqf � S0ptqf

(4.210)

where the operator rS0ptq is defined by using the Hausdorff-Bernstein-

Widder Laplace inversion theorem we have (compare with (4.108))

Rpλqfpxq � pλI � L0q�1
fpxq � » 8

0

e�λρ rS0pρqfpxqdρ, ℜλ ¡ 0, x P E0.

(4.211)

For a function f belonging to the space RpλqCb pE0q the equality rS0ptqf �
S0ptqf holds: see (4.113). Here S0ptqf is defined as the uniform limit in

(4.210). Since the operator LæE0
is sequentially λ-dominant for some λ ¡ 0
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we infer that the family of operators
!pµR pλ� µqqk : µ ¥ 0, k P N

)
is Tβ-

equi-continuous: see (2.44) in Proposition 2.3. Since for f P RpαqCb pE0q
we have

sup
 
e�λtS0ptqf : t ¥ 0

( � sup
!pµR pλ� µqqk f : µ ¥ 0, k P N

)
.

(4.212)

From (4.212) combined with the Tβ-equi-continuity and the Tβ density of

D pLæE0
q we see that, each operator S0ptq has a Tβ-continuous extension to

all of Cb pE0q. One way of achieving this is by fixing f P Cb pE0q, and con-

sidering the family tαRpαqf : α ¥ λu. Then Tβ- limαÑ8 αRpαqf � f . Let

u P H� pE0q. By the Tβ-equi-continuity of the family
 
e�λtS0ptq : t ¥ 0

(
we see that

lim
α, βÑ8 sup

t¥0

��ue�λtS0ptq pβRpβqf � αRpαqfq��8 � 0. (4.213)

Since the functions pt, xq ÞÑ S0ptq pαRpαqfq pxq, α ¥ λ, are continuous

the same is true for the function pt, xq ÞÑ rS0ptqf s pxq, where S0ptqf �
Tβ- lim

αÑ8αRpαqf . Of course, for almost all t ¥ 0 we have S0ptqfpxq �rS0ptqtpxq for all x P E0. Since

Tβ- lim
tÓ 1

t

�
I � e�λtS0ptq�Rpλqf � Rpλqf, f P Cb pE0q ,

we see that the operator L0 generates the semigroup tS0ptq : t ¥ 0u. The

continuous extension of S0ptq, which was originally defined on RpλqCb pE0q,
to Cb pE0q is again denoted by S0ptq. Let f P DpLq. Moreover, since

Rpλq pλf � Lfq � f on E0,

we have D pLæE0
q � D pL0q, and

L0f � L0Rpλq pλI � Lq f � λRpλq pλI � Lq f � pλI � Lq f� λf � λf � Lf � Lf (4.214)

on E0. From (4.214) we see that the operator L0 extends the operator

LæE0
.

Uniqueness of Feller semigroups. Let L1 and L2 be two extensions of the

operator LæE0
which generate Feller semigroups. Let tR1pλq : λ ¡ 0u andtR2pλq : λ ¡ 0u be the corresponding resolvent families. Since L1 extends

LæE0
we obtain, for h P DpLq,

λ0R pλ0q�I � 1

λ0
L



h � R pλ0q pλ0I � L1q h � h. (4.215)
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Then by the maximum principle and (4.215) we infer

sup
hPDpLq inf

xPE0

�
h px0q � gpxq ��

I � 1

λ0
L



h pxq
¤ sup

hPDpLq�h px0q � λ0R pλ0q�g ��
I � 1

λ0
L



h


 px0q
� sup
hPDpLq�h px0q � λ0R1 pλ0q g px0q � λ0R1 pλ0q�I � 1

λ0
L



h px0q
� sup

hPDpLq ph px0q � λ0R1 pλ0q g px0q � h px0qq� λ0R1 pλ0q g px0q¤ inf
hPDpLq supxPE0

�
h px0q � gpxq ��

I � 1

λ0
L



hpxq
 . (4.216)

The same reasoning can be applied to the operator R2 pλ0q Since the ex-

tremities in (4.215) are equal we see that R1 pλ0q � R2 pλ0q. Hence we getpλ0 � L1q�1 � pλ0 � L2q�1, and consequently L1 � L2.

Of course the same arguments work if E0 � E.

Uniqueness of solutions to the martingale problem. Let L0 be the

(unique) extension of L, which generates a Feller semigroup tS0ptq : t ¥ 0u,
and let tpΩ,F ,Pxq , pXptq, t ¥ 0q , pϑt, t ¥ 0q , pE, Equ
be the corresponding time-homogeneous Markov process with

Ex rgpXptqs � S0ptqgpxq, g P CbpEq, x P E, t ¥ 0. Then the familytPx : x P Eu is a solution to the martingale problem associated to L. The

proof of the uniqueness part follows a pattern similar to the proof of the

uniqueness part of linear extensions of L which generate Feller semigroups.

We will show that the family of probability measures tPx : x P Eu is a so-

lution to the martingale problem associated to the operator L. Let f be

a member of DpLq and put Mf ptq � fpXptqq � fpXp0qq � ³t
0
LfpXpsqqds.

Then, for t2 ¡ t1 we have

Ex
�
Mf pt2q �� Ft1��Mf pt1q � Ex

�
Mf pt2 � t1q � ϑt1 �� Ft1�

(Markov property)� EXpt1q rMf pt2 � t1qs . (4.217)
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Since, in addition, by virtue of the fact that L0, which is an extension of

L, generates the semigroup tS0ptq : t ¥ 0u, we have

Ez rMf ptqs � S0ptqfpzq � fpzq � » t
0

S0puqLfpzqdu� S0ptqfpzq � fpzq � » t
0

BBu pS0puqfpzqq du� S0ptqfpzq � fpzq � pS0ptqfpzq � S0p0qfpzqq � 0,

the assertion about the existence of solutions to the martingale problem

follows from (4.217). Next we prove uniqueness of solutions to the mar-

tingale problem. Its proof resembles the way we proved the uniqueness

of extensions of L which generate Feller semigroups. Let
!
P
p1q
x : x P E)

and
!
P
p2q
x : x P E) be two solutions to the martingale problem for L. Let

h P DpLq, and consider

λ

» 8
0

e�λtEpjqx �
h pXpsqq ��

I � 1

λ
L



h pXpt� sqq �� Fs� dt� h pXpsqq � » 8

0

e�λtEpjqx �pλI � Lqh pXpt� sqq �� Fs� dt� h pXpsqq � λ

» 8
0

e�λtEpjqx �
h pXpt� sqq �� Fs� dt� » 8

0

e�λtEpjqx �
Lh pXpt� sqq �� Fs� dt

(integration by parts)� h pXpsqq � λ

» 8
0

e�λtEpjqx �
h pXpt� sqq �� Fs� dt� λ

» 8
0

e�λtEpjqx �» t
0

Lh pXpρ� sqq dρ �� Fs� dt� h pXpsqq � λ

» 8
0

e�λtEpjqx �
h pXpt� sqq �� Fs� dt� λ

» 8
0

e�λtEpjqx �» t�s
s

Lh pXpρqq dρ �� Fs� dt
(martingale property)� h pXpsqq � λ

» 8
0

e�λtEpjqx �
h pXpt� sqq �� Fs� dt
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» 8
0

e�λtEpjqx �
h pXpt� sqq � h pXpsqq �� Fs� dt � 0. (4.218)

Fix x0 P E, g P CbpEq, and s ¡ 0. Then, from (4.218) it follows that, for

h P DpLq,» 8
0

e�λtEpjqx0

�
g pXpt� sqq �� Fs� dt� » 8

0

e�λtEpjqx0

�
h pXpsqq � g pXpt� sqq ��

I � 1

λ
L



h pXpt� sqq �� Fs� dt,

and hence

Λ�pg,Xpsq, λq ¤ λ

» 8
0

expp�λtqEpjqx0

�
g pXpt� sqq �� Fs� dt ¤ Λ� pg,Xpsq, λq ,

(4.219)

for j � 1, 2, where

Λ� pg, x0, λq � inf
Γ�DpLq
#Γ 8 sup

Φ�E0

#Φ 8min
hPΓ max

xPΦ�t△u"hpx0q � �
g ��

I � 1

λ
L



h

� pxq*� inf
hPDpLq supxPE0

"
hpx0q � �

g ��
I � 1

λ
L



h

� pxq* , (4.220)

and

Λ� pg, x0, λq � sup
Γ�DpLq
#Γ 8 inf

Φ�E0

#Φ 8max
hPΓ min

xPΦ�t△u"hpx0q � �
g ��

I � 1

λ
L



h

� pxq*� sup
hPDpLq inf

xPE0

"
hpx0q � �

g ��
I � 1

λ
L



h

� pxq* . (4.221)

We also have

λ

» 8
0

e�λtEpjq
Xpsq �h pXp0qq ��

I � 1

λ
L



h pXptqq� dt� h pXpsqq � λ

» 8
0

e�λtEpjq
Xpsq rh pXptqqs dt� » 8

0

e�λtEpjq
Xpsq rLh pXptqqs dt

(integration by parts)� h pXpsqq � λ

» 8
0

e�λtEpjq
Xpsq rh pXptqqs dt� λ

» 8
0

e�λtEpjq
Xpsq �» t

0

Lh pXpρqq dρ� dt
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(martingale property)� h pXpsqq � λ

» 8
0

e�λtEpjq
Xpsq rh pXptqqs dt� λ

» 8
0

e�λtEpjq
Xpsq rh pXptqq � h pXp0qqs dt � 0 (4.222)

where in the first and final step we used Xp0q � z P
pjq
z -almost surely. In the

same spirit as we obtained (4.219) from (4.218), from (4.222) we now get

Λ� pg,Xpsq, λq ¤ λ

» 8
0

e�λtEpjq
Xpsq rg pXptqqs dt ¤ Λ� pg,Xpsq, λq , (4.223)

for j � 1, 2. Since, by Proposition 4.4 (formula (4.169) and (4.172)) the

identity Λ� pg, x, λq �Λ� pg, x, λq, is true for g P CbpEq, x P E, λ ¡ 0, we

obtain, by putting s � 0, E
p1q
x rgpXptqqs � E

p2q
x rgpXptqqs, t ¥ 0, g P CbpEq.

We also obtain, P
p1q
x -almost surely,

Ep1qx �
gpXpt� sqq �� Fs� � E

p1q
Xpsq rgpXptqqs ,

and, P
p2q
x -almost surely,

Ep2qx �
gpXpt� sqq �� Fs� � E

p2q
Xpsq rgpXptqqs , for t, s ¥ 0, and g P CbpEq.

It necessarily follows that P
p1q
x � P

p2q
x , x P E. Consequently, the uniqueness

of the solutions to the martingale problem for the operator L follows.

This completes the proof Theorem 4.4. �

4.4 Continuous sample paths

The following Lemma 4.2 and Proposition 4.6 give a general condition which

guarantee that the sample paths are Pτ,x-almost surely continuous on their

life time.

Lemma 4.2. Let P pτ, x; t, Bq, 0 ¤ τ ¤ t ¤ T , x P E, B P E, be a sub-

Markov transition function. Let px, yq ÞÑ dpx, yq be a continuous metric

on E � E and put Bεpxq � ty P E : dpy, xq ¤ εu. Fix t P p0, T s. Then the

following assertions are equivalent:

(a) For every compact subset K of E and for every ε ¡ 0 the following

equality holds:

lim
s1,s2Ñt, τ s1 s2¤t supxPK P ps1, x; s2, EzBεpxqq

s2 � s1
� 0. (4.224)
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(b) For every compact subset K of E and for every open subset G of E

such that G � K the following equality holds:

lim
s1,s2Ñt, τ¤s1 s2¤t supxPK P ps1, x; s2, EzGq

s2 � s1
� 0. (4.225)

Proof. (a) ùñ (b). Let G be an open subset of E and letK be a compact

subset of G. Then there exists ε ¡ 0, n P N, and xj P K, such that

G � n¤
j�1

B2ε pxjq � n¤
j�1

int pBε pxjqq � K. (4.226)

For any x P K there exists j0, 1 ¤ j0 ¤ n, such that d px, xj0 q   ε, and

hence for y P int pBεpxqq d py, xj0q ¤ d py, xq � d px, xj0 q   2ε. It follows

that Bεpxq � G. Consequently, for x P K and τ ¤ s1   s2   t we get

P ps1, x; s2, EzGq ¤ P ps1, x; s2, Bεpxqq. So (b) follows from (a).

(b) ùñ (a). Fix ε ¡ 0 and let K be any compact subset of E. Like in

the proof of the implication (a) ùñ (b) we again choose elements xj P K,

1 ¤ j ¤ n, such that K � �n
j�1 int

�
Bε{4 pxjq�. Let x P K�

Bε{4 pxjq and
y P Bε{2 pxjq. Then dpy, xq ¤ d py, xjq � d pxj , xq ¤ 1

2
ε � 1

4
ε � 3

4
ε   ε.

Suppose that x P K�
Bε{4 pxjq. For τ ¤ s1   s2   t it follows that

P ps1, x; s2, EzBεpxqq ¤ P
�
s1, x; s2, Ezint �Bε{2 pxjq�� ,

and hence

sup
xPK P ps1, x; s2, EzBεpxqq¤ max

1¤j¤n sup
xPK�

Bε{4pxjqP �
s1, x; s2, Ezint �Bε{2 pxjq�� . (4.227)

The inequality in (4.227) together with assumption in (b) easily implies (a).

This concludes the proof of Lemma 4.2. �

The following proposition clearly shows that in the presence of condition

(4.228) the sample paths are almost surely left-continuous on their life-time.

Since we may assume that they are right-continuous, the sample paths are

Pτ,x-almost surely continuous.

Proposition 4.6. Let P pτ, x; t, Bq be a sub-Markov transition function and

let the process Xptq be as in Theorem 2.9. Fix pτ, xq P r0, T s �E. Suppose

that for every t P rτ, T s, and for every compact subset K and for every open

subset G for which G � K the equality

lim
s1,s2Òt, τ¤s1 s2 t supyPK P ps1, y; s2, EzGq

s2 � s1
� 0 (4.228)
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holds. Then for every t P pτ, T s the equality

inf
ε¡0

sup
t�ε¤s¤t d pXpsq, Xptqq1rXptqPEs � 0, holds Pτ,x-almost surely.

Here d : E �E Ñ r0,8q is a continuous metric on E �E.

Proof. Put tj,n � t� ε� j2�nε, 0 ¤ j ¤ 2n. From Proposition 3.1 with

Xpsq instead of rXpsq it follows that it suffices to prove that for every η ¡ 0

the equality

inf
ε¡0

lim
nÑ8Pτ,x

�
max

1¤j¤2n
d pX ptj�1,nq , X ptj,nqq1tXptj�1,nqPKu1tXptj,nqPKu ¡ η

�� 0 (4.229)

holds for all compact subsets K of E.

Pτ,x

�
max

1¤j¤2n
d pX ptj�1,nq , X ptj,nqq1tXptj�1,nqPKu1tXptj,nqPKu ¡ η

�¤ 2n

j̧�1

Pτ,x
�
d pX ptj�1,nq , X ptj,nqq1tXptj�1,nqPKu1tXptj,nqPKu ¡ η

�
(Markov property)� 2n

j̧�1

Eτ,x
�
Ptj�1,n,Xptj�1,nq �d pX ptj�1,nq , X ptj,nqq1tXptj,nqPKu ¡ η

��1tXptj�1,nqPKu�¤ 2n

j̧�1

sup
yPK Ptj�1,n,y

�
d py,X ptj,nqq1tXptj,nqPKu ¡ η

�� 2n

j̧�1

sup
yPK P ptj�1,n, y; tj,n, KzBηpyqq . (4.230)

The result in Proposition 4.6 follows from (4.230) and Lemma 4.2. �

4.5 Measurability properties of hitting times

In this section we study how fast Markov process reaches a Borel subset B

of the state space E. The material is taken from Chapter 2, Section 2.10

in [Gulisashvili and van Casteren (2006)]. Fix τ P r0, T s. Throughout this
section we will assume that the filtrations pFτ

t qtPrτ,T s are right-continuous
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and Pτ,µ-complete. Right-continuity means that Fτ
t� � �

sPpt,T sFτ
s � Fτ

t .

By definition the σ-field Fτ
t is Pτ,µ-complete if Pτ,µ-negligible events A

belong to Fτ
t . The σ-field F

τ

t� is the Pτ,µ-completion of a σ-field Fτ
t� if and

only if for every A P Fτ
t� there exist events A1 and A2 P Fτ

t� such that A1 �
A � A2 and Pτ,x pA2zA1q � 0. It is also assumed that we are in the context

of a backward Feller evolution (or propagator) tP ps, tq : 0 ¤ s ¤ t ¤ T u in
the sense of Definition 2.4 and the corresponding strong Markov process

with state space E:!pΩ,Fτ
T ,Pτ,xqpτ,xqPr0,T s�E , pXptq, t P r0, T sq , pE, Eq) . (4.231)

By P pEq will be denoted the collection of all Borel probability measures on

the space E. For A P Fτ
T and µ P P pEq, we put Pτ,µpAq � ³

Pτ,xpAqdµpxq.
For instance, if µ � δx is the Dirac measure concentrated at x P E, then

Pτ,δx � Pτ,x. Let ζ be the first time the process Xptq arrives at the absorp-
tion state △:

ζ � #
inf tt ¡ 0 : Xptq � △u if Xptq �△ for some t P p0, T s,
T if Xptq P E for all t P p0, T q.

Definition 4.7. Let pXptq,Pτ,xq be a Markov process on Ω with state space

E and sample path space Ω � D
�r0, T s, E△

�
, and let B be a Borel subset

of E△. Let τ P r0, T q, and suppose that S : Ω Ñ rτ, ζs is a Fτ
t -stopping

time. For the process Xptq, the entry time of the set B after time S is

defined by

DS
B � $'&'% inf tt : t ¥ S, Xptq P Bu on

¤
τ¤t T tS ¤ t, Xptq P Bu ,

ζ elsewhere.

(4.232)

The pseudo-hitting time of the set B after time S is defined byrDS
B � $&% inf tt : t ¥ S, Xptq P Bu on

¤
τ t T tS ¤ t, Xptq P Bu ,

ζ elsewhere.
(4.233)

The hitting time of the set B after time S is defined by

T SB �$'&'% inf tt : t ¡ S, Xptq P Bu on
¤

τ¤t T tS   t, Xptq P Bu ,
ζ elsewhere.

(4.234)
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Observe that on the event tS � τ, Xpτq P Bu we have DS
B � τ and rDS

B �
T SB . It is not hard to prove that¤

t:τ¤t T tS ¤ t, Xptq P Bu � ¤
t:τ¤t T tS _ t ¤ t, X pS _ tq P Bu and¤

t:τ t T tS ¤ t, Xptq P Bu � ¤
t:τ t T tS _ t ¤ t, X pS _ tq P Bu .

We also have

DS
B
�t△u � DS

B^ζ, rDS
B
�t△u � rDS

B^ζ, and T SB
�t△u � T SB^ζ. (4.235)

In addition, we have DS
B ¤ rDS

B ¤ T SB . Next we will show that the following

equalities hold:

T SB � inf
ε¡0

!
D
pε�Sq^ζ
B

) � inf
rPQ� !Dpr�Sq^ζ

B

)
. (4.236)

Indeed on
 
T SB   ζ

(
, the first equality in (4.236) can be obtained by using

the inclusion tt ¥ pε� Sq ^ ζ,Xptq P Bu � tt ¡ S, Xptq P Bu
and the fact that for every t P rτ, T q and ω P tS   t, Xptq P Bu, there exists
ε ¡ 0 depending on ω such that ωPtpε� Sq ^ ζ ¤ t,Xptq P Bu. Since T SB ¤
D
pε�Sq^ζ
B , we see that on the event

 
T SB � ζ

(
the first equality in (4.236)

also holds. The second equality in (4.236) follows from the monotonicity of

the entry time DS
B with respect to S.

Our next goal is to prove that for the Markov process in (4.231) the

entry time DS
B, the pseudo-hitting time rDS

B, and the hitting time T SB are

stopping times. Throughout the present section, the symbols KpEq and

OpEq stand for the family of all compact subsets and the family of all open

subsets of the space E, respectively.

The celebrated Choquet capacitability theorem will be used in the proof

of the fact that DS
B,

rDS
B, and T SB are stopping times. We will restrict

ourselves to positive capacities and the pavement of the space E by compact

subsets. For more general cases, we refer the reader to [Doob (2001); Meyer

(1966)].

Definition 4.8. A function I from the class PpEq of all subsets of E into

the extended real half-line R̄� is called a Choquet capacity if it possesses

the following properties:

(i) If A1 and A2 in PpEq are such that A1 � A2, then I pA1q ¤ I pA2q.
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(ii) If An P PpEq, n ¥ 1, and A P PpEq are such that An Ò A, then

I pAnq Ñ IpAq as nÑ8.

(iii) If Kn P KpEq, n ¥ 1, and K P KpEq are such that Kn Ó K, then

I pKnq Ñ IpKq as nÑ8.

Definition 4.9. A function ϕ : KpEq Ñ r0,8q is called strongly sub-

additive provided that the following conditions hold:

(i) If K1 P KpEq and K2 P KpEq are such that K1 � K2, then ϕ pK1q ¤
ϕ pK2q.

(ii) If K1 and K2 belong to KpEq, then
ϕ
�
K1

¤
K2

	� ϕ
�
K1

£
K2

	 ¤ ϕ pK1q � ϕ pK2q . (4.237)

The following construction allows us to define a Choquet capacity starting

with a strongly sub-additive function. Let ϕ be a strongly sub-additive func-

tion satisfying the following additional continuity condition, which could be

called “exterior regularity for compact subsets”:

(iii) For allK P KpEq and all ε ¡ 0, there exists G P OpEq such that K � G

and ϕ pK 1q ¤ ϕ pKq � ε for all compact subsets K 1 of G.
For any G P OpEq, put

I�pGq � sup
KPKpEq;K�GϕpKq. (4.238)

Next define a set function I : PpEq Ñ R̄� by

IpAq � inf
GPOpEq;A�G I�pGq, A P PpEq. (4.239)

It is known that the function I is a Choquet capacity. It is clear that for

any G P OpEq, IpGq � I�pGq. Moreover, it is not hard to see that for any

K P KpEq, ϕpKq � IpKq, because of our exterior regularity assumption

(iii).

Definition 4.10. Let ϕ : KpEq Ñ r0,8q be a strongly subadditive function
satisfying condition (iii), and let I be the Choquet capacity obtained from

ϕ (see formulas (4.238) and (4.239)). A subset B of E is said to be I-

capacitable if the following equality holds:

IpBq � sup tϕpKq : K � B, K P KpEqu . (4.240)
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Now we are ready to formulate the Choquet capacitability theorem (see,

e.g., [Doob (2001); Dellacherie and Meyer (1978); Meyer (1966)]). We will

also need the following version of the Choquet capacity theorem. For a

discussion on capacitable subsets see e.g. [Kiselman (2000)]; see [Choquet

(1986)], [Benzécri (1995)] and [Dellacherie and Meyer (1978)] as well. For a

general discussion on the foundations of probability theory see e.g. [Kallen-

berg (2002)].

Theorem 4.5. Let E be a Polish space, and let ϕ : KpEq Ñ r0,8q be

a strongly subadditive function satisfying condition (iii), and let I be the

Choquet capacity obtained from ϕ (see formulas (4.238) and (4.239)). Then

every analytic subset of E, and in particular, every Borel subset of E is I-

capacitable.

The definition of analytic sets can be found in [Doob (2001); Dellacherie

and Meyer (1978)]. We will only need the Choquet capacitability theorem

for Borel sets which form a sub-collection of the analytic sets.

Lemma 4.3. Let τ P r0, T s, and let tXptq : t P rτ, T su be an adapted,

right-continuous, and quasi left-continuous stochastic process on the fil-

tered probability space

�
Xptq,�Fτ

t�	
tPrτ,T s ,Pτ,x
. Suppose that S is an

F
τ

t�-stopping time such that τ ¤ S ¤ ζ. Then, for any t P rτ, T s and

µ P P pEq, the following functions are strongly sub-additive on KpEq and

satisfy condition (iii):

K ÞÑ Pτ,µ
�
DS
K ¤ t

�
, and K ÞÑ Pτ,µ

� rDS
K ¤ t

�
, K P KpEq. (4.241)

We wrote F
τ

t� to indicate that this σ-field is right continuous and Pτ,x-

complete.

Proof. We have to check conditions (i) and (ii) in Definition 4.9 and

also condition (iii) for the set functions in (4.241). Let K1 P KpEq and

K2 P KpEq be such that K1 � K2. Then D
S
K1

¥ DS
K2

, and hence

Pτ,µ
�
DS
K1

¤ t
� ¤ Pτ,µ

�
DS
K2

¤ t
�
.

This proves condition (i) for the function K ÞÑ Pτ,µ
�
DS
K ¤ t

�
. The proof

of (i) for the second mapping in (4.241) is similar.

In order to prove condition (iii) for the mapping K ÞÑ Pτ,µ
�
DS
K ¤ t

�
,

we use assertion (a) in Lemma 4.6. More precisely, let K P KpEq and

Gn P OpEq, n P N, be such as in Lemma 4.6. Then by part (a) of Lemma
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4.6 below (note that part (a) of Lemma 4.6 also holds under the restrictions

in Lemma 4.3), we get

Pτ,µ
�
DS
K ¤ t

� ¤ inf
GPOpEq:G�K sup

K1PKpEq:K1�GPτ,µ
�
DS
K1 ¤ t

�¤ inf
nPN sup

K1PKpEq:K1�Gn

Pτ,µ
�
DS
K1 ¤ t

�¤ inf
nPNPτ,µ �DS

Gn
¤ t

� � Pτ,µ
�
DS
K ¤ t

�
. (4.242)

It follows from (4.242) that

Pτ,µ
�
DS
K ¤ t

� � inf
GPOpEq:G�K sup

K1PKpEq,K1�GPτ,µ
�
DS
K1 ¤ t

�
. (4.243)

Now it is clear that the equality in (4.243) implies property (iii) for the

mapping K ÞÑ Pτ,µ
�
DS
K ¤ t

�
. The proof of (iii) for the mapping K ÞÑ

Pτ,µ

� rDS
K ¤ t

�
is similar. Here we use part (d) in Lemma 4.6 (note that

part (d) of Lemma 4.6 also holds under the restrictions in Lemma 4.3).

Next we will prove that the function K ÞÑ Pτ,µ
�
DS
K ¤ t

�
satisfies con-

dition (ii). In the proof the following simple equalities will be used: for all

Borel subsets B1 and B2 of E,

DS
B1

�
B2

� DS
B1
^DS

B2
, and (4.244)

DS
B1

�
B2

¥ DS
B1
_DS

B2
. (4.245)

By using (4.244) and (4.245) with K1 P KpEq and K2 P KpEq instead of

B1 and B2 respectively, we get:!
DS
K1

�
K2

¤ t
) z  DS

K2
¤ t

( � � 
DS
K1

¤ t
(¤ 

DS
K2

¤ t
(	 z  DS

K2
¤ t

(�  
DS
K1

¤ t
( z  DS

K2
¤ t

( �  
DS
K1

¤ t
( z� DS

K1
¤ t

(£ 
DS
K2

¤ t
(	�  

DS
K1

¤ t
( z  DS

K1
_DS

K2
¤ t

( �  
DS
K1

¤ t
( z!DS

K1

�
K2

¤ t
)
.

(4.246)

It follows from (4.246) that

Pτ,µ

�
DS
K1

�
K2

¤ t
�� Pτ,µ

�
DS
K1

�
K2

¤ t
�¤ Pτ,µ

�
DS
K1

¤ t
�� Pτ,µ

�
DS
K2

¤ t
�
. (4.247)

Now it is clear that (4.247) implies condition (ii) for the function K ÞÑ
Pτ,µ

�
DS
K ¤ t

�
. The proof of condition (ii) for the second function in Lemma

4.3 is similar.

This completes the proof of Lemma 4.3. �
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The next theorem states that under certain restrictions, the entry time DS
B,

the pseudo-hitting time rDS
B, and the hitting time T SB are stopping times.

Recall that F
τ

t� denote the completion of the σ-field

Fτ
t� � £

sPpt,T sσ pXpρq : τ ¤ ρ ¤ sq
with respect to the family of measures tPs,x : 0 ¤ s ¤ τ, x P Eu.
Theorem 4.6. Let τ P r0, T s, and tXptq : t P rτ, T su be as in Lemma 4.3:

(i) The process Xptq is right-continuous and quasi left-continuous on r0, ζq.
(ii) The σ-fields F

τ

t� are Pτ,x-complete and right-continuous for t P rτ, T s
and x P E.

Then for every τ P r0, T q and every F
τ

t�-stopping time S : Ω Ñ rτ, ζs, the
random variables DS

B,
rDS
B, and T

S
B are F

τ

t�-stopping times.

Proof. We will first prove Theorem 4.6 assuming that it holds for all

open and all compact subsets of E. The validity of Theorem 4.6 for such

sets will be established in lemmas 4.4 and 4.5 below.

Let B be a Borel subset of E, and suppose that we have already shown

that for any ε ¥ 0 the stochastic time D
pε�Sq^ζ
B is an F

τ

t�-stopping time.

Since

T SB � inf
ε¡0,εPQ�Dpε�Sq^ζ

B

(see (4.236)), we also obtain that T SB is an F
τ

t�-stopping time. Therefore,

in order to prove that T SB is an F
τ

t�-stopping time, it suffices to show that

for every Borel subset B of E, the stochastic time DS
B is an F

τ

t�-stopping
time. Since the process t ÞÑ Xptq is continuous from the right, it suffices to

prove the previous assertion with S replaced by pε� Sq ^ ζ.

Fix t P rτ, T q, µ P P pEq, and B P E . By Lemma 4.3 and the Choquet

capacitability theorem, the set B is capacitable with respect to the capacity

I associated with the strongly sub-additive function K ÞÑ Pτ,µ
�
DS
K ¤ t

�
.

Therefore, there exists an increasing sequence Kn P KpEq, n P N, and a

decreasing sequence Gn P OpEq, n P N, such that

Kn � Kn�1 � B � Gn�1 � Gn, n P N, and

sup
nPN Pτ,µ

�
DS
Kn

¤ t
� � inf

nPNPτ,µ �DS
Gn

¤ t
�
. (4.248)

The arguments in (4.248) should be compared with those in (4.263) below.

Put

Λτ,µ,S1 ptq � ¤
nPN DS

Kn
¤ t

(
and Λτ,µ,S2 ptq � £

nPN  DS
Gn

¤ t
(
. (4.249)
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Then Lemma 4.4 implies Λτ,µ,S2 ptq P F
τ

t�, and Lemma 4.5 gives Λτ,µ,S1 ptq P
F
τ

t�. Moreover, we have

Λτ,µ,S1 ptq �  
DS
B ¤ t

( � Λτ,µ,S2 ptq, (4.250)

and

Pτ,µ

�
Λτ,µ,S2 ptq� � inf

nPNPτ,µ �DS
Gn

¤ t
�� sup

nPN Pτ,µ
�
DS
Kn

¤ t
� � Pτ,µ

�
Λτ,µ,S1 ptq� . (4.251)

It follows from (4.250) and (4.251) that Pτ,µ

�
Λτ,µ,S2 ptqzΛτ,µ,S1 ptq� � 0. By

using (4.250) again, we see that the event
 
DS
B ¤ t

(
belongs to the σ-field

F
τ

t�. Therefore, the stochastic time DS
B is an F

τ

t�-stopping time. As we

have already observed, it also follows that the stochastic time T SB is an

F
τ

t�-stopping time.

A similar argument with DS
B replaced by rDS

B shows that the stochastic

times rDS
B, B P E , are F

τ

t�-stopping times.

This completes the proof of Theorem 4.6. �

Next we will prove two lemmas which have already been used in the proof

of Theorem 4.6.

Lemma 4.4. Let S : Ω Ñ rτ, ζs be an F
τ

t�-stopping time, and let G P
OpEq. Then the stochastic times DS

G,
rDS
G, and T

S
G are F

τ

t�-stopping times.

Proof. It is not hard to see that 
DS
G ¤ t   ζ

( � £
mPN"DS

G   t� 1

m

*£ tt   ζu� £
mPN ¤

τ¤ρ t� 1

m
,ρPQ� tS ¤ ρ, Xpρq P Gu . (4.252)

We also have 
DS
G ¤ t

( �  
DS
G ¤ t   ζ

(¤ tζ ¤ tu �  
DS
G ¤ t   ζ

(¤ tXptq �△u .
(4.253)

The event on the right-hand side of (4.252) belongs to F
τ

t�, and hence from

(4.252) and (4.253) the stochastic time DS
G is an F

τ

t�-stopping time. The

fact that rDS
G is an F

τ

t�-stopping time follows from! rDS
G ¤ t   ζ

) � £
mPN" rDS

G   t� 1

m

*£ tt   ζu
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mPN ¤

ρPpτ,t� 1

m
q�Q� tS ¤ ρ, Xpρq P Gu

together with ! rDS
G ¤ t

) � ! rDS
G ¤ t   ζ

)¤ tXptq �△u . (4.254)

The equality (4.236) with G instead ofB implies that T SG is an F
τ

t�-stopping
time, and completes the proof of Lemma 4.4. �

Lemma 4.5. Let S : Ω Ñ rτ, ζs be an F
τ

t�-stopping time, and let K P
K
�
E△

�
. Then the stochastic times DS

K , rDS
K and T SK are F

τ

t�-stopping
times.

Proof. First let K be a compact subset of E, and let Gn, n P N, be a

sequence of open subsets of E with the following properties: K � Gn�1 �
Gn and

�
nPNGn � K. Then every stochastic time DS

Gn
is an F

τ

t�-stopping
time (see Lemma 4.4), and for every µ P P pEq the sequence of stochastic

times DS
Gn

, n P N, increases Pτ,µ-almost surely to DS
K . This implies that

the stochastic time T SK is an F
τ

t�-stopping time. The equality (4.236) with

K instead of B then shows that T SK is an F
τ

t�-stopping time. Next we will

show the Pτ,µ-almost sure convergence of the sequence DS
Gn

, n P N. Put

DK � sup
nPNDS

Gn
. Since DS

Gn
¤ DS

Gn�1
¤ DS

K , it follows that DK ¤ DS
K . By

Lemma 4.4, the stochastic times DS
Gn

, n P N, are F
τ

t�-stopping times. It

follows from the quasi-continuity from the left of the processXptq, t P r0, ζq,
that

lim
nÑ8X �

DS
Gn

� � X pDKq Pτ,µ-a.s.

Therefore,

X pDKq P£
n

Gn � K Pτ,µ-a.s.

Since DS
K ¥ S, we haveDS

K ¤ DK Pτ,µ-almost surely, and hence DS
K � DK

Pτ,µ-almost surely. This establishes the Pτ,µ-almost sure convergence of the

sequence DS
Gn

, n P N, to DS
K .

In order to finish the proof of Lemma 4.5, we will establish that for every

µ P P pEq, the sequence of stochastic times rDS
Gn

increases Pτ,µ-almost surely

to rDS
K . Put rDK � sup

nPN rDS
Gn

. SincerDS
Gn

¤ rDS
Gn�1

¤ rDS
K ,
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it follows that rDK ¤ rDS
K . By using the fact that the processXptq, t P r0, ζq,

is quasi-continuous from the left, we get

lim
nÑ8X � rDS

Gn

	 � X
� rDK

	
Pτ,µ-a.s.

Therefore

X
� rDK

	 P£
n

Gn � K Pτ,µ-a.s.

Since rDS
K ¥ S, we have rDS

K ¤ rDK Pτ,µ-almost surely, and hence rDS
K � rDK

Pτ,µ-almost surely. This equality shows that the stochastic time rDS
K is an

F
τ

t�-stopping time.

We still have to consider the case that △ P K. For this we use the

equalities DS
K0

�t△u � DS
K0
^ ζ, and rDS

K0

�t△u � rDS
K0
^ ζ together with the

fact that a compact subset K of E△ is a compact subset of E or is of the

form K � K0

� t△u where K0 � E is compact. Observe that on the eventtζ ¥ τu ζ is an Fτ
t -stopping time.

This completes the proof of Lemma 4.5. �

Let us return to the study of standard Markov processes. It was established

in Theorem 2.9 that if P is a transition sub-probability function such that

the backward free Feller propagator tP ps, tq : 0 ¤ s ¤ t ¤ T u associated

with P is a strongly continuous (backward) Feller propagator, then there ex-

ists a standard Markov process as in (4.268) with pτ, x; t, Bq ÞÑ P pτ, x; t, Bq
as its transition function. Let τ P r0, T s, and let pXptq,Fτ

t ,Pτ,xq be

a Markov process. Suppose that S is an F
τ

t�-stopping time such that

τ ¤ S ¤ ζ. Fix a measure µ P P pEq, and denote by F
S,_
T the completion

of the σ-field FS,_
T � σ pS _ ρ,X pS _ ρq : 0 ¤ ρ ¤ T q with respect to the

measure µ. The measure µ is used throughout Lemma 4.6 below. The next

theorem provides additional examples of families of stopping times which

can be used in the formulation of the strong Markov property with respect

to families of measures.

Theorem 4.7. Let pXptq,Fτ
t ,Pτ,xq be a standard Markov process as in

(4.268), and let B P E△. Then the stopping times DS
B,

rDS
B, and T

S
B are

measurable with respect to the σ-field F
S,_
T .

Proof. Since the stopping time S attains its values in the interval rτ, ζs
we see that tζ ¤ ρu � tζ ¤ ρ_ Su � tX pρ_ Sq � △u for all ρ P rτ, T s.
This shows that ζ is measurable with respect to F

S,_
T . By (4.235) we see

DS
B
�t△u � DS

B ^ ζ, rDS
B
�t△u � rDS

B ^ ζ, and T SB
�t△u � T SB ^ ζ, and hence
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we see that it suffices to prove that the stochastic times DS
B,

rDS
B, and T

S
B

are F
S,_
T -measurable, whenever B is a Borel subset of E. �

The proof of Theorem 4.7 is based on the following lemma. The same result

with the same proof is also true with E△ instead of E.

Lemma 4.6. Let K P KpEq and τ P r0, T q. Suppose that Gn P OpEq,
n P N, is a sequence such that K � Gn�1 � Gn and

�
nPNGn � K. Then

the following assertions hold:

(a) For every µ P P pEq, the sequence of stopping times DS
Gn

increases and

tends to DS
K Pτ,µ-almost surely.

(b) For every t P rτ, T s, the events
 
DS
Gn

¤ t
(
, n P N, are FS,_

T -

measurable, and the event
 
DS
K ¤ t

(
is F

S,_
T -measurable.

(c) For every t P rτ, T s, the events  T SGn
¤ t

(
, n P N, are FS,_

T -measurable,

and the event
 
T SK ¤ t

(
is F

S,_
T -measurable.

(d) For every µ P P pEq, the sequence of stopping times rDS
Gn

increases and

tends to rDS
K Pτ,µ-almost surely.

(e) For every t P rτ, T s, the events
! rDS

Gn
¤ t

)
, n P N, are FS,_

T -

measurable, and the event
! rDS

K ¤ t
)
is F

S,_
T -measurable.

Proof. (a). Fix µ P P pEq, and let K P KpEq and Gn P OpEq, n P N, be

as in assertion (a) in the formulation of Lemma 4.6. Put DK � sup
nPNDS

Gn
.

Since S ¤ DS
Gn

¤ DS
Gn�1

¤ DS
K , we always have S ¤ DK ¤ DS

K . Moreover,

DK is a stopping time. By using the quasi-continuity from the left of the

process t ÞÑ Xptq on rτ, ζq with respect to the measure Pτ,µ, we see that

lim
nÑ8X �

DS
Gn

� � X pDKq Pτ,µ-almost surely on tDK   ζu.
Therefore,

X pDKq P £
nPNGn � K Pτ,µ-almost surely on tDK   ζu. (4.255)

Now by the definition of DS
K we have DS

K ¥ S, and (4.255) implies DS
K ¤

DK Pτ,µ-almost surely on tDK   ζu, and hence DS
K � DK Pτ,µ-almost

surely. In the final step we used the inequality DK ¤ DS
K which is always

true.

(b). Fix t P rτ, T q and n P N. By the right-continuity of paths on r0, ζq
we have 

DS
Gn

¤ t   ζ
( � £

mPN"DS
Gn

  t� 1

m

*£ tt   ζu
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mPN ¤

ρPrτ,t� 1

m
q tS ¤ ρ, Xpρq P Gnu� £

mPN ¤
ρPrτ,t� 1

m
q�Q� tS _ ρ ¤ ρ, X pS _ ρq P Gnu .

(4.256)

It follows that  
DS
Gn

¤ t   ζ
( P FS,_

T , 0 ¤ t ¤ T.

By using assertion (a), we see that the events 
DS
K ¤ t   ζ

(
and

£
nPN DS

Gn
¤ t   ζ

(
coincide Pτ,µ-almost surely. It follows that

 
DS
K ¤ t   ζ

( P F
S,_
T . It also

follows that the event
 
DS
K   ζ

(
belongs to F

S,_
T . In addition we notice

the equalities 
DS
K ¤ t

( �  
DS
K ¤ t   ζ

(¤ 
DS
K ¤ t, ζ ¤ t

(
(DS

K ¤ ζ and S ¤ ζ)�  
DS
K ¤ t   ζ

(¤ tζ ¤ S _ tu�  
DS
K ¤ t   ζ

(¤ tX pS _ tq �△u . (4.257)

From (4.257) we see that events of the form
 
DS
K ¤ t

(
, t P rτ, T s, belong

to F
S,_
T . Consequently the stopping time DS

K is F
S,_
T -measurable. This

proves assertion (b).

(c). Since the sets Gn are open and the process Xptq is right-continu-

ous, the hitting times T SGn
and the entry times DS

Gn
coincide. Hence, the

first part of assertion (c) follows from assertion (b). In order to prove the

second part of (c), we reason as follows. By assertion (b), for every r P Q�,
the stopping time D

pr�Sq^ζ
K is F

pr�Sq^ζ,_
T -measurable. Our next goal is to

prove that for every ε ¡ 0,

F
pε�Sq^ζ,_
T � FS,_

T . (4.258)

Fix ε ¡ 0, and ρ P rτ, ζs, and put S1 � ppε� Sq ^ ζq _ ρ. Observe that for

ρ, t P r0, T s, we have the following equality of events:tS1 ¤ tu � tppε� Sq ^ ζq _ ρ ¤ tu� tppε� Sq _ ρq ^ pζ _ ρq ¤ tu� tS _ pρ� εq ¤ t� ε, ρ ¤ tu¤ tζ ¤ S _ t, ρ ¤ tu
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Therefore, the stopping time S1 � ppε� Sq ^ ζq _ ρ is FS,_
T -measurable.

Since the process t ÞÑ Xptq is right-continuous, it follows from Proposition

4.7 that X pS1q is FS,_
T -measurable. This implies inclusion (4.258). Hence,

F
pε�Sq^ζ,_
T � F

S,_
T , (4.260)

and we see that the for every ε ¡ 0 the stopping time D
pε�Sq^ζ
K is F

S,_
T -

measurable. Since the family D
pε�Sq^ζ
K , ε ¡ 0, decreases to T SK , the hitting

time T SK is F
S,_
T -measurable as well.

(d). Fix µ P P pEq, and let K P KpEq and Gn P OpEq, n P N, be as in

assertion (a). Put rDK � sup
nPN rDS

Gn
. SincerDS

Gn
¤ rDS

Gn�1
¤ rDS

K ,

we have rDK ¤ rDS
K . It follows from the quasi-continuity from the left of

the process Xptq on r0, ζq that
lim
nÑ8X � rDS

Gn

	 � X
� rDK

	
Pτ,µ-almost surely on

! rDK   ζ
)
.

Therefore,

X
� rDK

	 P£
n

Gn � K Pτ,µ-almost surely on
! rDK   ζ

)
.

Now rDS
K ¥ S implies that rDS

K ¤ rDK Pτ,µ-almost surely on
! rDK   ζ

)
,

and hence rDS
K � rDK Pτ,µ-almost surely on

! rDK   ζ
)
. As in (a) we getrDS

K � rDK Pτ,µ-almost surely.

(e). Fix t P rτ, T q and n P N. By the right-continuity of paths,! rDS
Gn

¤ t   ζ
) � £

mPN"DS
Gn

  t� 1

m

*£ tt   ζu� £
mPN ¤

ρPpτ,t� 1

m
q tS ¤ ρ, Xpρq P Gnu� £

mPN ¤
ρPpτ,t� 1

m
q�Q� tS _ ρ ¤ ρ, X pS _ ρq P Gnu .

(4.261)

It follows that
! rDS

Gn
¤ t   ζ

) P FS,_
T . By using assertion (d), we see that

the events
! rDS

K ¤ t   ζ
)

and
�
nPN ! rDS

Gn
¤ t   ζ

)
coincide Pτ,µ-almost

surely. Therefore,
! rDS

K ¤ t   ζ
) P F

S,_
T . As in (4.257) we have! rDS

K ¤ t
) � ! rDS

K ¤ t   ζ
)¤! rDS

K ¤ t, ζ ¤ t
)
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K ¤ t   ζ

)¤ tX pS _ tq �△u . (4.262)

This proves assertion (e); therefore the proof of Lemma 4.6 is complete. �

Proof. [Proof of Theorem 4.7: continuation] Let us return to the proof

of Theorem 4.7. We will first prove that for any Borel set B, the entry

time DS
B is measurable with respect to the σ-field F

S,_
T . Then the same

assertion holds for the hitting time T SB . Indeed, if D
S
B is F

S,_
T -measurable

for all stopping times S, then for every ε ¡ 0, the stopping time D
pε�Sq^ζ
B

is measurable with respect to the σ-field F
pε�Sq^ζ,_
T . By using (4.260),

we obtain the F
S,_
T -measurability of D

pε�Sq^ζ
B . Now (4.236) implies the

F
S,_
T -measurability of T SB .

Fix t P rτ, T q, µ P P pEq, and B P E . By Lemma 4.3, the set B is

capacitable with respect to the capacity K ÞÑ Pτ,µ
�
DS
K ¤ t

�
. Notice that

the following argument was also employed in the proof of Theorem 4.6.

Therefore, there exists an increasing sequence Kn P KpEq, n P N, and a

decreasing sequence Gn P OpEq, n P N, such that

Kn � Kn�1 � B � Gn�1 � Gn, n P N, and

sup
nPN Pτ,µ �DS

Kn
¤ t

� � inf
nPNPτ,µ �DS

Gn
¤ t

�
. (4.263)

Next we put

Λτ,µ,S1 ptq � ¤
nPN DS

Kn
¤ t

(
and Λτ,µ,S2 ptq � £

nPN  DS
Gn

¤ t
(
. (4.264)

The equalities in (4.249) which are the same as those in (4.264) show that

the events Λτ,µ,S1 ptq and Λτ,µ,S2 ptq are FS,_
T -measurable. Moreover, we have

Λτ,µ,S1 ptq �  
DS
B ¤ t

( � Λτ,µ,S2 ptq, (4.265)

and

Pτ,µ

�
Λτ,µ,S2 ptq� � inf

nPNPτ,µ �DS
Gn

¤ t
�� sup

nPN Pτ,µ
�
DS
Kn

¤ t
� � Pτ,µ

�
Λτ,µ,S1 ptq� . (4.266)

Now (4.265) and (4.266) give Pτ,µ

�
Λτ,µ,S2 ptqzΛτ,µ,S1 ptq� � 0. By using

(4.265), we see that the event
 
DS
B ¤ t

(
is measurable with respect to the

σ-field F
S,_
T . This establishes the F

S,_
T -measurability of the entry time DS

B

and the hitting time T SB . The proof of Theorem 4.7 for the pseudo-hitting

time rDS
B is similar to that for the entry time DS

B.

The proof of Theorem 4.7 is thus completed. �
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Definition 4.11. Fix τ P r0, T s, and let S1 : ΩÑ rτ, T s be an pFτ
t qtPrτ,T s-

stopping time. A stopping time S2 : Ω Ñ rτ, T s is called terminal after S1

if S2 ¥ S1, and if S2 is F
S1,_
T -measurable.

The following corollary shows that entry and hitting times of Borel subsets

which are comparable are terminal after each other.

Corollary 4.4. Let pXptq,Fτ
t ,Pτ,xq be a standard process, and let A and

B be Borel subsets of E with B � A. Then the entry time Dτ
B is measur-

able with respect to the σ-field F
Dτ

A,_
T . Moreover, the hitting time T τB is

measurable with respect to the σ-field F
T τ
A,_
T .

Proof. By Theorem 4.7, it suffices to show that the equalities

D
Dτ

A

B � Dτ
B and rDT τ

A

B � T τB (4.267)

hold Pτ,µ-almost surely for all µ P P pEq. The first equality in (4.267)

follows from ¤
τ¤s T tDτ

A ¤ s, Xpsq P Bu � ¤
τ¤s T tXpsq P Bu ,

while the second equality in (4.267) can be obtained from¤
τ s T tT τA ¤ s, Xpsq P Bu � ¤

τ s T tXpsq P Bu .
This proves Corollary 4.4. �

It follows from Corollary 4.4 that the families tDτ
A : A P Eu andtT τA : A P Eu can be used in the definition of the strong Markov property

in the case of standard processes. The next theorem states that the strong

Markov property holds for entry times and hitting times of comparable

Borel subsets.

Theorem 4.8. Let pXptq,Fτ
t ,Pτ,xq be a standard process, and fix τ P r0, T s.

Let A and B be Borel subsets of E such that B � A, and let f : rτ, T s �
E△ Ñ R be a bounded Borel function. Then the following equalities hold

Pτ,x-almost surely:

Eτ,x

�
f pDτ

B, X pDτ
Bqq �� Fτ

Dτ
A

� � E
Dτ

A,XpDτ
Aq rf pDτ

B, X pDτ
Bqqs and

Eτ,x

�
f pT τB, X pT τBqq �� Fτ

T τ
A

� � E
T τ
A,XpT τ

Aq rf pT τB, X pT τBqqs
The first one holds Pτ,x-almost surely on

 
DS
A   ζ

(
, and the second on 

T SA   ζ
(
.



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Space-time operators 297

Proof. Theorem 4.8 follows from Corollary 4.4 and Remark 4.4. �

Definition 4.12. The quadruple"�
Ω,

�
F
τ

t�	
tPrτ,T s ,Pτ,x
 , pXptq, t P r0, T sq , p_t, t P r0, T sq , pE, Eq*

(4.268)

is called a standard Markov process if it possesses the following properties:

(1) The process Xptq is adapted to the filtration
�
F
τ

t�	
tPrτ,T s, right-

continuous and possesses left limits in E on its life time.

(2) The σ-fields F
τ

t�, t P rτ, T s, are right continuous and Pτ,x-complete.

(3) The process pXptq : t P r0, T sq is strong Markov with respect to the

measures tPτ,x : pτ, xq P r0, T s �Eu
(4) The process pXptq : t P r0, T sq is quasi left-continuous on r0, ζq.
(5) The equalities Xptq � _s � Xpt _ sq hold Pτ,x-almost surely for allpτ, xq P r0, T s �E and for s, t P rτ, T s.
If Ω � D

�r0, T s, E△
�
and Xptqpωq � ωptq, t P r0, T s, ω P Ω, then parts

of the items (1) and (2) are automatically satisfied. For brevity we often

write pXptq,Pτ,xq instead of (4.268).

The following proposition gives an alternative way to describe stopping

times which are terminal after another stopping time: see Definition 4.11.

Proposition 4.7. Let S1 : ΩÑ rτ, T s be an Fτ
t -stopping time, and let the

stopping S2 : Ω Ñ rτ, T s be such that S2 ¥ S1, and such that for every

t P rτ, T s the event tS2 ¡ tu restricted to the event tS1   tu � tS1 _ t   tu
only depends on F t

T . Then S2 is FS1,_
T -measurable. If the paths of the pro-

cess X are right-continuous, the state variable X pS2q is FS1,_
T -measurable

as well. It follows that the space-time variable pS2, X pS2qq is FS1,_
T -

measurable. Similar results are true if the σ-fields F t
T and FS1,_

T by their

Pτ,µ-completions for some probability measure µ on E.

Proof. Suppose that for every t P rτ, T s the random variable S2

is such that on tS1   tu � tS1 _ t   tu the event tS2 ¡ tu only de-

pends on F t
T . Then on tS1   tu the event tS2 ¡ tu only depends on

the σ-field generated by the state variables
 
XpρqætS1_t tu : ρ ¥ t

( � 
X pρ_ S1q ætS1_t tu : ρ ¥ t

(
. Consequently, the event tS2 ¡ t ¡ S1u is

FS1,_
T -measurable. Since S2 � S1 � ³T

τ
1tS2¡t¡S1udt, we see that S2 is

FS1,_
T -measurable. This argument can be adapted if we only know that
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for every t P rτ, T s on the event tS1   tu the event tS2 ¡ tu only de-

pends on the Pτ,µ-completion of the σ-field generated by the state variables 
XpρqætS1_t tu : ρ ¥ t

(
for some probability measure µ on E .

If the process Xptq is right-continuous, and if S2 is a stopping time

which is terminal after the stopping time S1 : Ω Ñ r0, T s, then the space-

time variable pS2, X pS2qq is F
S1,_
T -measurable. This result follows from

the equality in (3.46) with S2 instead of S:

S2,nptq � τ � t� τ

2n

R
2n pS2 � τq

t� τ

V
. (4.269)

Then notice that the stopping times S2,nptq, n P N, t P pτ, T s, are FS1,_
T -

measurable, provided that S2 has this property. Moreover, we have S2 ¤
S2,n�1ptq ¤ S2,nptq ¤ S2 � 2�npt � τq. It follows that the state variables

X pS2,nptqq, n P N, t P pτ, T s, are FS1,_
T -measurable, and that the same is

true for X pS2q � lim
nÑ8X pS2,nptqq.

This completes the proof of Proposition 4.7. �

Remark 4.4. If in Theorem 4.9 for the sample path space Ω we take the

Skorohod space Ω � D
�r0, T s, E△

�
, Xptqpωq � ωptq, ω P Ω, t P r0, T s, then

the process t ÞÑ Xptq, t P r0, T s, is right-continuous, has left limits in E on

its life time, and is quasi-left continuous on its life time as well.

Theorem 4.9. Let, like in Lemma 4.3,!�
Ω,F

τ

T ,Pτ,x

	
, pXptq, t P r0, T sq , p_t, t P rτ, T sq , pE, Eq)

be a standard Markov process with right-continuous paths, which has left

limits on its life time, and is quasi-continuous from the left on its life time.

For fixed pτ, xq P r0, T s � E, the σ-field F
S,_
T is the completion of the σ-

field FS,_
T � σ pS _ ρ,X pS _ ρq : 0 ¤ ρ ¤ T q with respect to the measure

Pτ,x. Then, if pS1, S2q is a pair of stopping times such that S2 is F
S1,_
T -

measurable and τ ¤ S1 ¤ S2 ¤ T , then for all bounded Borel functions f

on rτ, T s �E△, the equality

Eτ,x

�
f pS2, X pS2qq �� Fτ

S1

� � ES1,XpS1q rf pS2, X pS2qqs (4.270)

holds Pτ,x-almost surely on tS1   ζu.
First notice that the conditions on S1 and S2 are such that S2 is terminal

after S1: see Definition 4.11. Also observe that the Markov process in

(4.268) is quasi-continuous from the left on its life time r0, ζq: compare

with Theorem 2.9. Let A and B be Borel subsets of E such that B � A.
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In (4.270) we may put S1 � Dτ
A together with S2 � Dτ

B, or S1 � T τA and

S2 � T τB: see Theorem 4.7 and Corollary 4.4.

Proof. The result in Theorem 4.9 is a consequence of the strong Markov

property as exhibited in Theorem 2.9. �

Remark 4.5. This remark is concerned with the concept of λ-dominance.

Without the sequential λ-dominance of the operator D1 � L the second

formula, i.e. the formula in (4.116), poses a difficulty as far as it is not

clear that the function e�λt rS0ptqf belongs to Cb pr0, T s �Eq indeed. For

the moment suppose that the function f P Cb pr0, T s �Eq is such thatrS0ptqf P Cb pr0, T s �Eq. Then equality (4.115) yields:�
λI � Lp1q	�1

f � » t
0

e�λρ rS0pρqfdρ� e�λtS0ptq�λI � Lp1q	�1

f� » t
0

e�λρ rS0pρqfdρ� e�λt �λI � Lp1q	�1 rS0ptqf.
(4.271)

Consequently, the function
³t
0
e�λρ rS0pρqfdρ belongs to D

�
Lp1q� and the

equality in (4.116) follows from (4.271). For the relation between λ-

dominant operators, λ-super-mean, and λ-supermedian functions see Re-

mark 4.1.

Moreover, we have

C
p1q
P,b � £

λ0¡0

C
p1q
P,b pλ0q � £

λ0¡0

!�
λ0I � L�D1

�
g : g P D �

L
�£

D pD1q) .
(4.272)

The second equality in (4.272) follows from (4.91) and (4.92).

4.5.1 Some related remarks

In subsection 3.1.6 we already discussed to some length topics related to

Korovkin families and convergence properties of measures. Here we will

say something about the maximum principle, the martingale problem, and

stopping time arguments.

We notice that we have used the following version of the Choquet capac-

ity theorem for Borel subsets instead of analytic subsets. As is well-known

Borel subsets are analytic.

Theorem 4.10. In a Polish space every analytic set is capacitable.
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For more general versions of our Choquet capacibility theory and capac-

itable subsets see e.g. [Kiselman (2000)], and, of course, Choquet [Choquet

(1986)], Benzecri [Benzécri (1995)] and Dellacherie and Meyer [Dellacherie

and Meyer (1978)] as well. For a general discussion on the foundations of

probability theory see e.g. [Kallenberg (2002)]. In [Gulisashvili and van

Casteren (2006)] the authors also made a thorough investigation of mea-

surability properties of stopping times. However, in that case the underly-

ing state space was locally compact. In [van Casteren (1992)] the author

makes an extensive study of the maximum principle of an unbounded op-

erator with domain and range in the space of continuous functions which

vanish at infinity where the state space is locally compact. As indicated

in Chapter 1 an operator L for which the martingale problem is well-posed

need possess a unique extension which is the generator of a Dynkin-Feller

semigroup. As indicated by Kolokoltsov in [Kolokoltsov (2004b)] there exist

relatively easy counter-examples: see comments after Theorems 2.9 through

2.13 in §2.3. For the time-homogeneous case see, e.g., [Ethier and Kurtz

(1986)] or [Ikeda and Watanabe (1998)]. In fact [Ethier and Kurtz (1986)]

contains a general result on operators with domain and range in C0pEq and
which have unique linear extensions generating a Feller-Dynkin semigroup.

The martingale problem goes back to Stroock and Varadhan (see [Stroock

and Varadhan (1979)]). It found numerous applications in various fields of

mathematics. We refer the reader to [Liggett (2005)], [Kolokoltsov (2004b)],

and [Kolokoltsov (2004a)] for more information about and applications of

the martingale problem. In [Eberle (1999)] the reader may find singular

diffusion equations which possess or which do not possess unique solutions.

Consequently, for (singular) diffusion equations without unique solutions

the martingale problem is not uniquely solvable. Another valuable source

of information is [Jacob (2001, 2002, 2005)]. Other relevant references are

papers by Hoh [Hoh (1994, 1995b,a, 2000)]. Some of Hoh’s work is also

employed in Jacob’s books. In fact most of these references discuss the

relations between pseudo-differential operators (of order less than or equal

to 2), the corresponding martingale problem, and being the generator of a

Feller-Dynkin semigroup.
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Chapter 5

Feynman-Kac formulas, backward

stochastic differential equations and

Markov processes

In this chapter we explain the notion of stochastic backward differential

equations and its relationship with classical (backward) parabolic differen-

tial equations of second order. The chapter contains a mixture of stochastic

processes like Markov processes and martingale theory and semi-linear par-

tial differential equations of parabolic type. Some emphasis is put on the

fact that the whole theory generalizes Feynman-Kac formulas: see e.g. Re-

mark 5.4 and formula (5.33). A new method of proof of the existence of

solutions is given: see equality (5.83) and Proposition 5.7.

In the literature functions with the monotonicity property are also called

one-sided Lipschitz functions. In fact Theorem 5.2, with fpt, x, �, �q Lips-

chitz continuous in both variables, will be superseded by Theorem 5.4 in

the Lipschitz case and by Theorem 5.5 in case of monotonicity in the sec-

ond variable and Lipschitz continuity in the third variable. The proof of

Theorem 5.2 is part of the results in Section 5.3. Theorem 5.7 contains a

corresponding result for a Markov family of probability measures. Its proof

is omitted, it follows the same lines as the proof of Theorem 5.5.

All the existence arguments are based on rather precise quantitative

estimates.

Unless specified otherwise all (local) martingales in this chapter and in

Chapters 6 and 7 are almost surely continuous. As a consequence for such

martingales we have a standard Itô calculus and stochastic integrals relative

to local martingales are again local martingales. For details on this see e.g.

[Williams (1991)].

303
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5.1 Introduction

This introduction serves as a motivation for the present chapter and also

for Chapter 6. Backward stochastic differential equations, in short BSDE’s,

have been well studied during the last ten years or so. They were introduced

by Pardoux and Peng [Pardoux and Peng (1990)], who proved existence

and uniqueness of adapted solutions, under suitable square-integrability as-

sumptions on the coefficients and on the terminal condition. They provide

probabilistic formulas for solution of systems of semi-linear partial differ-

ential equations, both of parabolic and elliptic type. The interest for this

kind of stochastic equations has increased steadily, this is due to the strong

connections of these equations with mathematical finance and the fact that

they gave a generalization of the well known Feynman-Kac formula to semi-

linear partial differential equations. In the present chpter we will concen-

trate on the relationship between time-dependent strong Markov processes

and abstract backward stochastic differential equations. The equations are

phrased in terms of a martingale problem, rather than a stochastic differ-

ential equation. They could be called weak backward stochastic differential

equations. Emphasis is put on existence and uniqueness of solutions. The

paper [Van Casteren (2009)] deals with the same subject, but it concen-

trates on comparison theorems and viscosity solutions. The proof of the

existence result is based on a theorem which is related to a homotopy argu-

ment as pointed out by the authors of [Crouzeix et al. (1983)]. It is more di-

rect than the usual approach, which uses, among other things, regularizing

by convolution products. It also gives rather precise quantitative estimates.

In [Van Casteren (2010)] the author extends the results on BSDE’s to the

Hilbert space setting.

For examples of strong solutions which are driven by Brownian motion

the reader is referred to e.g. section 2 in [Pardoux (1998a)]. If the coef-

ficients x ÞÑ bps, xq and x ÞÑ σps, xq of the underlying (forward) stochas-

tic differential equation are linear in x, then the corresponding forward-

backward stochastic differential equation is related to option pricing in

financial mathematics. The backward stochastic differential equation may

serve as a model for a hedging strategy. For more details on this inter-

pretation see e.g. [El Karoui and Quenez (1997)], pp. 198–199. A rather

recent book on financial mathematics in terms of martingale theory is the

one by Delbaen and Schachermeyer [Delbaen and Schacher mayer (2006)].

E. Pardoux and S. Zhang [Pardoux and Zhang (1998)] use BSDE’s to give

a probabilistic formula for the solution of a system of parabolic or elliptic
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semi-linear partial differential equation with Neumann boundary condition.

For recent results on forward-backward stochastic differential equations us-

ing a martingale approach the reader is referred to [Ma et al. (2008)]. In

[Boufoussi and van Casteren (2004b)] the authors also put BSDE’s at work

to prove a result on a Neumann type boundary problem.

In this chapter we want to consider the situation where the family of

operators Lpsq, 0 ¤ s ¤ T , generates a time-inhomogeneous Markov processtpΩ,Fτ
T ,Pτ,xq , pXptq : T ¥ t ¥ 0q , pE, Equ (5.1)

in the sense that

d

ds
Eτ,x rf pXpsqqs � Eτ,x rLpsqf pXpsqqs , f P D pLpsqq , τ ¤ s ¤ T.

We consider the operators Lpsq as operators on (a subspace of) the space

of bounded continuous functions on E, i.e. on CbpEq equipped with the

supremum norm: }f}8 � supxPE |fpxq|, f P CbpEq, and the strict topology

Tβ . With the operators Lpsq we associate the squared gradient operator Γ1

defined by

Γ1 pf, gq pτ, xq� Tβ- lim
sÓτ 1

s� τ
Eτ,x rpf pXpsqq � f pXpτqqq pg pXpsqq � g pXpτqqqs , (5.2)

for f , g P D pΓ1q. Here D pΓ1q is the domain of the operator Γ1. It consists

of those functions f P CbpEq � Cb pE,Cq with the property that the strict

limit

Tβ- lim
sÓτ 1

s� τ
Eτ,x

�pf pXpsqq � f pXpτqqq�f pXpsqq � f pXpτqq	� (5.3)

exists. We will assume that D pΓ1q contains an algebra of functions in

Cb pr0, T s �Eq which is closed under complex conjugation, and which is

Tβ-dense. These squared gradient operators are also called energy opera-

tors: see e.g. Barlow, Bass and Kumagai [Barlow et al. (2005)]. We assume

that every operator Lpsq, 0 ¤ s ¤ T , generates a diffusion in the sense

of the following definition. In the sequel it is assumed that the family of

operators tLpsq : 0 ¤ s ¤ T u possesses the property that the space of func-

tions u : r0, T s � E Ñ R with the property that the function ps, xq ÞÑBuBs ps, xq � Lpsqu ps, �q pxq belongs to Cb pr0, T s �Eq :� Cb pr0, T s �E;Cq
is Tβ-dense in the space Cb pr0, T s �Eq. This subspace of functions is de-

noted by DpLq, and the operator L is defined by Lups, xq � Lpsqu ps, �q pxq,
u P DpLq. It is also assumed that the family A is a core for the oper-

ator L. We assume that the operator L, or that the family of operators
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inition. It is assumed that the constant function 1 belongs to D pLpsqq,
s P r0, T s, and that Lpsq1 � 0.

Definition 5.1. A family of operators tLpsq : 0 ¤ s ¤ T u is said to gen-

erate a diffusion if for every C8-function Φ : Rn Ñ R, and every pairps, xq P r0, T s �E the following identity is valid

Lpsq pΦ pf1, . . . , fnq ps, �qq pxq (5.4)� ņ

j�1

BΦBxj pf1ps, xq, . . . , fnps, xqqLpsqfjps, xq� 1

2

ņ

j,k�1

B2ΦBxjBxk pf1ps, xq, . . . , fnps, xqqΓ1 pfj , fkq ps, xq
for all functions f1, . . . , fn in an algebra of functions A, contained in the

domain of the operator L, which forms a core for L.

Generators of diffusions for single operators are described in Bakry’s lec-

ture notes [Bakry (1994)]. For more information on the squared gradient

operator see e.g. [Bakry and Ledoux (2006)] and [Bakry (2006)] as well.

Put Φpf, gq � fg. Then (5.4) implies

Lpsqpfgqps, �qpxq � Lpsqfps, �qpxqgps,xq � fps, xqLpsqgps, �qpxq � Γ1pf, gqps, xq,
provided that the three functions f , g and fg belong to A. Instead of using

the full strength of (5.4), i.e. with a general function Φ, we just need it for

the product pf, gq ÞÑ fg: see Proposition 5.4.

Remark 5.1. Let m be a reference measure on the Borel field E of E, and

let p P r1,8s. If we consider the operators Lpsq, 0 ¤ s ¤ T , in Lp pE, E ,mq-
space, then we also need some conditions on the algebra A of “core” type in

the space Lp pE, E ,mq. For details the reader is referred to [Bakry (1994)].

By definition the gradient of a function u P D pΓ1q in the direction of (the

gradient of) v P D pΓ1q is the function pτ, xq ÞÑ Γ1 pu, vq pτ, xq. For givenpτ, xq P r0, T s � E the functional v ÞÑ Γ1 pu, vq pτ, xq is linear: its action is

denoted by ∇L
u pτ, xq. Hence, for pτ, xq P r0, T s � E fixed, we can consider

∇L
u pτ, xq as an element in the dual of D pΓ1q. The pairpτ, xq ÞÑ �

u pτ, xq ,∇L
u pτ, xq�

may be called an element in the phase space of the family Lpsq,
0 ¤ s ¤ T , (see Jan Prüss [Prüss (2002)]), and the process s ÞÑ
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u ps,Xpsqq ,∇L

u ps,Xpsqq� will be called an element of the stochastic phase

space. Next let f : r0, T s�E�R�D pΓ1q� Ñ R be a “reasonable” function,

and consider, for 0 ¤ s1   s2 ¤ T the expression:

u ps2, X ps2qq � u ps1, X ps1qq � » s2
s1

f
�
s,Xpsq, u ps,Xpsqq ,∇L

u ps,Xpsqq� ds� ups2, Xps2qq � ups1, Xps1qq � » s2
s1

�
Lpsqups,Xpsqq � BuBs ps,Xpsqq
ds

(5.5)� ups2, Xps2qq � ups1, Xps1qq �» s2
s1

fps,Xpsq, ups,Xpsqq,∇L
u ps,Xpsqqqds�Mu ps2q �Mu ps1q , (5.6)

where

Mu ps2q �Mu ps1q� u ps2, X ps2qq � u ps1, X ps1qq � » s2
s1

�
Lpsqu ps,Xpsqq � BuBs ps,Xpsqq
 ds� » s2

s1

dMupsq. (5.7)

Details on the properties of the function f will be given in the theorems

5.2, 5.3, 5.4, 5.5, and 5.7.

The following definition also occurs in Definition 2.6, where the reader

will find more details about Definitions 5.2 and 5.3. It also explains the

relationship with transition probabilities and Feller propagators.

Definition 5.2. The processtpΩ,Fτ
T ,Pτ,xq , pXptq : T ¥ t ¥ 0q , pE, Equ (5.8)

is called a time-inhomogeneous Markov process if

Eτ,x
�
fpXptqq �� Fτ

s

� � Es,Xpsq rfpXptqqs , Pτ,x-almost surely. (5.9)

Here f is a bounded Borel measurable function defined on the state space

E and τ ¤ s ¤ t ¤ T .

Suppose that the processXptq in (5.8) has paths which are right-continuous

and have left limits in E. Then it can be shown that the Markov property

for fixed times carries over to stopping times in the sense that (5.9) may be

replaced with

Eτ,x
�
Y

�� Fτ
S

� � ES,XpSq rY s , Pτ,x-almost surely. (5.10)
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Here S : E Ñ rτ, T s is an Fτ
t -adapted stopping time and Y is a bounded

random variable which is measurable with respect to the future (or ter-

minal) σ-field after S, i.e. the one generated by tX pt_ Sq : τ ¤ t ¤ T u.
For this type of result the reader is referred to Chapter 2 in [Gulisashvili

and van Casteren (2006)] and to Theorem 2.9. Markov processes for which

(5.10) holds are called strong Markov processes. For more details on hitting

times see §4.5.

The following definition is, essentially speaking, the same as Definition

2.8. Its relationship with Feller propagators or evolutions (see Chapter 2,

Definition 2.7) is explained in Proposition 4.1 in Chapter 4. The derivatives

and the operators Lpsq, s P r0, T s, have to be taken with respect to the strict

topology: see Section 2.1.

Definition 5.3. The family of operators Lpsq, 0 ¤ s ¤ T , is said to gener-

ate a time-inhomogeneous Markov processtpΩ,Fτ
T ,Pτ,xq , pXptq : T ¥ t ¥ 0q , pE, Equ (5.11)

if for all functions u P DpLq, for all x P E, and for all pairs pτ, sq with

0 ¤ τ ¤ s ¤ T the following equality holds:

d

ds
Eτ,x ru ps,Xpsqqs � Eτ,x

�BuBs ps,Xpsqq � Lpsqu ps, �q pXpsqq� . (5.12)

Next we show that under rather general conditions the process s ÞÑMupsq�
Muptq, t ¤ s ¤ T , as defined in (5.6) is a Pt,x-martingale. In the following

proposition we write F t
s, s P rt, T s, for the σ-field generated by Xpρq,

ρ P rt, ss. The proof of the following proposition could be based on Theorem

2.11 in Chapter 2. For convenience we provide a direct proof based on the

Markov property.

Proposition 5.1. Fix t P rτ, T q. Let the function u : rt, T s � E Ñ R be

such that ps, xq ÞÑ BuBs ps, xq � Lpsqu ps, �q pxq belongs to Cb prt, T s �Eq :�
Cb prt, T s �E;Cq. Then the process s ÞÑ Mupsq �Muptq is adapted to the

filtration of σ-fields pF t
sqsPrt,T s.

Proof. Suppose that T ¥ s2 ¡ s1 ¥ t. In order to check the martingale

property of the process Mupsq �Muptq, s P rt, T s, it suffices to prove that

Et,x
�
Mu ps2q �Mu ps1q �� F t

s1

� � 0. (5.13)

In order to prove (5.13) we notice that by the time-inhomogeneous Markov

property:

Et,x
�
Mu ps2q �Mu ps1q �� F t

s1

� � Es1,Xps1q rMu ps2q �Mu ps1qs



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

BSDE’s and Markov processes 309� Es1,Xps1q �u ps2, X ps2qq � u ps1, X ps1qq� » s2
s1

�
Lpsqu ps,Xpsqq � BuBs ps,Xpsqq
 ds�� Es1,Xps1q ru ps2, X ps2qq � u ps1, X ps1qqs� » s2

s1

Es1,Xps1q ��Lpsqu ps,Xpsqq � BuBs ps,Xpsqq
� ds� Es1,Xps1qrups2, Xps2qq � ups1, Xps1qqs � » s2
s1

d

ds
Es1,Xps1qrups,Xpsqqsds� Es1,Xps1q ru ps2, X ps2qq � u ps1, X ps1qqs� Es1,Xps1q ru ps2, X ps2qq � u ps1, X ps1qqs � 0. (5.14)

The equality in (5.14) establishes the result in Proposition 5.1. �

As explained in Definition 5.1 it is assumed that the subspaceDpLq contains
an algebra of functions which forms a core for the operator L.

Proposition 5.2. Let the family of operators Lpsq, 0 ¤ s ¤ T , generate a

time-inhomogeneous Markov processtpΩ,Fτ
T ,Pτ,xq , pXptq : T ¥ t ¥ 0q , pE, Equ (5.15)

in the sense of Definition 5.3: see equality (5.12). Then the process Xptq
has a modification which is right-continuous and has left limits on its life

time.

For the definition of life time see e.g. Theorem 2.9. The life time ζ is

defined by

ζ � #
infts ¡ 0 : Xpsq �△u on the event tXpsq �△ for some s P p0, T qu,
ζ � T, if Xpsq P E for all s P p0, T q.

(5.16)

In view of Proposition 5.2 we will assume that our Markov process has

left limits on its life time and is continuous from the right. The following

proof is a correct outline of a proof of Proposition 5.2. If E is just a

Polish space it needs a considerable adaptation. Suppose that E is Polish,

and first assume that the process t ÞÑ Xptq is conservative, i.e. assume

that Pτ,x rXptq P Es � 1. Then, by an important intermediate result (see

Proposition 3.1 in Chapter 3 and the arguments leading to it) we see that

the orbits tXpρq : τ ¤ ρ ¤ T u are Pτ,x-almost surely relatively compact

in E. In case that the process t ÞÑ Xptq is not conservative, i.e. if, for
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some fixed t P rτ, T s, an inequality of the form Pτ,x rXptq P Es   1 holds,

then a similar result is still valid. In fact on the event tXptq P Eu the orbittXpρq : τ ¤ ρ ¤ tu is Pτ,x-almost surely relatively compact: see Proposition

3.2 in Chapter 3. All details can be found in the proof of Theorem 2.9: see

Subsection 3.1.1 in Chapter 3.

Proof. As indicated earlier the argument here works in case the space

E is locally compact. However, the result is true for a Polish space E: see

Theorem 2.9.

Let the function u : r0, T s � E Ñ R belong to the space DpLq. Then

the process s ÞÑ Mupsq � Muptq, t ¤ s ¤ T , is a Pt,x-martingale. Let

Dr0, T s be the set of numbers of the form k2�nT , k � 0, 1, 2, . . . , 2n. By

a classical martingale convergence theorem (see e.g. Chapter II in [Revuz

and Yor (1999)]) it follows that the following limit lim
sÒt, sPDr0,T su ps,Xpsqq

exists Pτ,x-almost surely for all 0 ¤ τ   t ¤ T and for all x P E. In the

same reference it is also shown that the limit lim
sÓt, sPDr0,T su ps,Xpsqq exists

Pτ,x-almost surely for all 0 ¤ τ ¤ t   T and for all x P E. Since the

locally compact space r0, T s � E is second countable it follows that the

exceptional sets may be chosen to be independent of pτ, xq P r0, T s �E, of

t P rτ, T s, and of the function u P DpLq. Since by hypothesis the subspace

DpLq is Tβ-dense in Cb pr0, T s �Eq it follows that the left-hand limit at

t of the process s ÞÑ Xpsq, s P Dr0, T s�rτ, ts, exists Pτ,x-almost surely

for all pt, xq P pτ, T s � E. It also follows that the right-hand limit at t of

the process s ÞÑ Xpsq, s P Dr0, T s�pt, T s, exists Pτ,x-almost surely for allpt, xq P rτ, T q � E. Then we modify Xptq by replacing it with Xpt�q �
limsÓt, sPDr0,T s�pτ,T sXpsq, t P r0, T q, and XpT�q � XpT q. It also follows

that the process t ÞÑ Xpt�q has left limits in E.

This completes the proof of Proposition 5.2. �

The hypotheses in the following Proposition 5.3 are the same as those

in Proposition 5.2. The functions u and v belong to Dp1qpLq �
D pD1q�DpLq: see Definition 2.7.

Proposition 5.3. Let the continuous function u : r0, T s � E Ñ R be such

that for every s P rt, T s the function x ÞÑ ups, xq belongs to D pLpsqq and

suppose that the function ps, xq ÞÑ rLpsqu ps, �qs pxq is bounded and contin-

uous. In addition suppose that the function s ÞÑ ups, xq is continuously

differentiable for all x P E. Then the process s ÞÑ Mupsq � Muptq is a

F t
s-martingale with respect to the probability Pt,x. If v is another such

function, then the (right) derivative of the quadratic covariation process of
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the martingales Mu and Mv is given by:

d

dt
〈Mu,Mv〉 ptq � Γ1 pu, vq pt,Xptqq .

In fact the following identity holds as well:

MuptqMvptq �Mup0qMvp0q� » t
0

MupsqdMvpsq � » t
0

MvpsqdMupsq � » t
0

Γ1 pu, vq ps,Xpsqq ds. (5.17)

Here F t
s, s P rt, T s, is the σ-field generated by the state variables Xpρq,

t ¤ ρ ¤ s. Instead of F0
s we usually write Fs, s P r0, T s. The formula in

(5.17) is known as the integration by parts formula for stochastic integrals.

Proof. We outline a proof of the equality in (5.17). So let the functions

u and v be as in Proposition 5.3. Then we have

MuptqMvptq �Mup0qMvp0q� 2n�1

ķ�0

Mu

�
k2�nt� �Mv

�pk � 1q2�nt��Mv

�
k2�nt��� 2n�1

ķ�0

�
Mu

�pk � 1q2�nt��Mu

�
k2�nt��Mv

�
k2�nt��2n�1

ķ�0

pMuppk � 1q2�ntq �Mupk2�ntqqpMvppk � 1q2�ntq �Mvpk2�ntqq.
(5.18)

The first term on the right-hand side of (5.18) converges to
³t
0
MupsqdMvpsq,

the second term converges to
³t
0
MvpsqdMupsq. Using the identity in (5.7)

for the function u and a similar identity for v we see that the third term

on the right-hand side of (5.18) converges to
³t
0
Γ1 pu, vq ps,Xpsqq ds.

The observation that for every τ P r0, T s the process

t ÞÑMuptqMvptq �MupτqMvpτq � » t
τ

Γ1 pu ps, �q , v ps, �qq pXpsqq ds, (5.19)
τ ¤ t ¤ T , is a Pτ,x-martingale relative to the filtration pFτ

t qtPrτ,T s, then
completes the proof Proposition 5.3. �

Remark 5.2. The quadratic variation process of the (local) martingale

s ÞÑ Mupsq is given by the process s ÞÑ Γ1 pu ps, �q , u ps, �qq ps,Xpsqq, and
therefore

Es1,x

�����» s2
s1

dMupsq����2� � Es1,x

�» s2
s1

Γ1 pu ps, �q , u ps, �qq pXpsqq ds�   8
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under appropriate conditions on the function u. Very informally we may

think of the following representation for the martingale difference:

Mu ps2q �Mu ps1q � » s2
s1

∇L
u ps,Xpsqq dW psq. (5.20)

Here we still have to give a meaning to the stochastic integral in the right-

hand side of (5.20). If E is an infinite-dimensional Banach space, then

W ptq should be some kind of a cylindrical Brownian motion. It is closely

related to a formula which occurs in Malliavin calculus: see [Nualart (1995)]

(Proposition 3.2.1) and [Nualart (1998)].

Remark 5.3. It is perhaps worthwhile to observe that for Brownian motionpW psq,Pxq the martingale difference Mu ps2q �Mu ps1q, s1 ¤ s2 ¤ T , is

given by a stochastic integral:

Mu ps2q �Mu ps1q � » s2
s1

∇u pτ,W pτqq dW pτq.
Its increment of the quadratic variation process is given by

〈Mu,Mu〉 ps2q � 〈Mu,Mu〉 ps1q � » s2
s1

|∇u pτ,W pτqq|2 dτ.
Next suppose that the function u solves the equation:

f
�
s, x, u ps, xq ,∇L

u ps, xq�� Lpsqu ps, xq � BBsu ps, xq � 0. (5.21)

If moreover, u pT, xq � ϕ pT, xq, x P E, is given, then we have

u pt,Xptqq � ϕ pT,XpT qq � » T
t

f
�
s,Xpsq, u ps,Xpsqq ,∇L

u ps,Xpsqq� ds� » T
t

dMupsq, (5.22)

with Mupsq as in (5.7). From (5.22) we get

u pt, xq � Et,x ru pt,Xptqqs (5.23)� Et,x rϕ pT,XpT qqs � » T
t

Et,x
�
f
�
s,Xpsq, u ps,Xpsqq ,∇L

u ps,Xpsqq�� ds.
Theorem 5.1. Let u : r0, T s � E Ñ R be a continuous function with the

property that for every pt, xq P r0, T s�E the function s ÞÑ Et,x ru ps,Xpsqqs
is differentiable and that

d

ds
Et,x ru ps,Xpsqqs � Et,x

�
Lpsqu ps,Xpsqq � BBsu ps,Xpsqq� , t   s   T.

Then the following assertions are equivalent:
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(a) The function u satisfies the following differential equation:

Lptqu pt, xq � BBtu pt, xq � f
�
t, x, u pt, xq ,∇L

u pt, xq� � 0. (5.24)

(b) The function u satisfies the following type of Feynman-Kac integral

equation:

upt, xq � Et,x

�
upT,XpT qq � » T

t

fpτ,Xpτq, upτ,Xpτqq,∇L
u pτ,Xpτqqqdτ�.

(5.25)

(c) For every t P r0, T s the process

s ÞÑ u ps,Xpsqq�u pt,Xptqq�» s
t

f
�
τ,Xpτq, u pτ,Xpτqq ,∇L

u pτ,Xpτqq� dτ
is an F t

s-martingale with respect to Pt,x on the interval rt, T s.
(d) For every s P r0, T s the process

t ÞÑ u pT,XpT qq�u pt,Xptqq�» T
t

f
�
τ,Xpτq, u pτ,Xpτqq ,∇L

u pτ,Xpτqq� dτ
is an F t

T -backward martingale with respect to Ps,x on the interval rs, T s.
Remark 5.4. Suppose that the function u is a solution to the following

terminal value problem:$&%Lpsqu ps, �q pxq � BBsu ps, xq � f
�
s, x, u ps, xq ,∇L

u ps, xq� � 0;

upT, xq � ϕpT, xq. (5.26)

Then the pair
�
u ps,Xpsqq ,∇L

u ps,Xpsqq� can be considered as a weak so-

lution to a backward stochastic differential equation. More precisely, for

every s P r0, T s the process

t ÞÑu pT,XpT qq � u pt,Xptqq � » T
t

f
�
τ,Xpτq, u pτ,Xpτqq ,∇L

u pτ,Xpτqq� dτ
is an F t

T -backward martingale relative to Ps,x on the interval rs, T s. The

symbol ∇L
uv ps, xq stands for the functional v ÞÑ ∇L

uv ps, xq � Γ1pu, vqps, xq,
where Γ1 is the squared gradient operator:

Γ1pu, vqps, xq (5.27)� Tβ- lim
tÓs 1

t� s
Es,x rpu ps,Xptqq � u ps,Xpsqqq pv ps,Xptqq � v ps,Xpsqqqs .
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Possible choices for the function f are

f
�
s, x, y,∇L

u

� � �V ps, xqy and (5.28)

f
�
s, x, y,∇L

u

� � 1

2

��∇L
u ps, xq��2 � V ps, xq � 1

2
Γ1 pu, uq ps, xq � V ps, xq.

(5.29)

The choice in (5.28) turns equation (5.26) into the following heat equation:$&% BBsu ps, xq � Lpsqu ps, �q pxq � V ps, xqups, xq � 0;

u pT, xq � ϕpT, xq. (5.30)

The function vps, xq defined by the Feynman-Kac formula

vps, xq � Es,x

�
e� ³

T
s
V pρ,Xpρqqdρϕ pT,XpT qq� (5.31)

is a candidate solution to equation (5.30).

The choice in (5.29) turns equation (5.26) into the following Hamilton-

Jacobi-Bellman equation:$&% BBsu ps, xq � Lpsqu ps,Xpsqq � 1

2
Γ1 pu, uq ps, xq � V ps, xq�0;

u pT, xq � � logϕpT, xq, (5.32)

where � logϕpT, xq replaces ϕpT, xq. The function SL defined by the gen-

uine non-linear Feynman-Kac formula

SLps, xq � � logEs,x

�
e� ³

T
s
V pρ,Xpρqqdρϕ pT,XpT qq� (5.33)

is a candidate solution to (5.32). Often these “candidate solutions” are

viscosity solutions. However, this was the main topic in [Van Casteren

(2009)] and is the main topic in Chapter 6.

Remark 5.5. Let ups, xq satisfy one of the equivalent conditions in The-

orem 5.1. Put Y pτq � u pτ,Xpτqq, and let Mpsq be the martingale deter-

mined by Mptq � Y ptq � u pt,Xptqq and by

Mpsq �Mptq � Y psq � » s
t

f
�
τ,Xpτq, Y pτq,∇L

u pτ,Xpτqq� dτ.
Then the expression ∇L

u pτ,Xpτqq only depends on the martingale part

M of the process s ÞÑ Y psq. This entitles us to write ZM pτq instead of

∇L
u pτ,Xpτqq. The interpretation of ZM pτq is then the linear functional

N ÞÑ d

dτ
〈M,N〉 pτq, where N is a Pt,x-martingale in M2 pΩ,F t

T ,Pt,xq.
Here a process N belongs to M2 pΩ,F t

T ,Pt,xq whenever N is martingale in
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L2 pΩ,F t
T ,Pt,xq which is Pt,x-almost surely continuous. In Definition 5.7

below it will be explained why these functionals exist. Their existence is

guaranteed by Lebesgue’s differentiation theorem. For a discussion on this

theorem see e.g. [Stein and Shakarchi (2005)]. Notice that the functional

ZM pτq is known as soon as the martingale M PM2 pΩ,F t
T ,Pt,xq is known.

From our definitions it also follows that

MpT q � Y pT q � » T
t

f pτ,Xpτq, Y pτq, ZM pτqq dτ, Pt,x-almost surely

provided that Y ptq �Mptq.
Remark 5.6. Let the notation be as in Remark 5.5. Then the variables

Y ptq and ZM ptq only depend on the space-time variable pt,Xptqq, and as

a consequence the martingale increments M pt2q �M pt1q, 0 ¤ t1   t2 ¤
T , only depend on F t1

t2
� σ pXpsq : t1 ¤ s ¤ t2q. In Section 5.2 we give

Lipschitz type conditions on the function f in order that the BSDE

Y ptq � Y pT q � » T
t

f ps,Xpsq, Y psq, ZM psqq ds�Mptq �MpT q, τ ¤ t ¤ T,

(5.34)

possesses a unique pair of solutionspY,Mq P L2 pΩ,Fτ
T ,Pτ,xq �M2 pΩ,Fτ

T ,Pτ,xq .
Here M2 pΩ,F t

T ,Pt,xq stands for the space of all Pt,x-almost sure contin-

uous pF t
sqsPrt,T s-martingales in L2 pΩ,F t

T ,Pt,xq. Of course instead of writ-

ing “BSDE” it would be better to write “BSIE” for Backward Stochastic

Integral Equation. However, since in the literature on backward stochas-

tic differential equations people write “BSDE” even if they mean integral

equations we also stick to this terminology. Suppose that the σ pXpT qq-
measurable variable Y pT q P L2 pΩ,Fτ

T ,Pτ,xq is given. In fact we will prove

that the solution pY,Mq of the equation in (5.34) belongs to the space

S2
�
Ω,F t

T ,Pt,x;R
k
� �M2

�
Ω,F t

T ,Pt,x;R
k
�
. For more details see the defi-

nitions 5.4 and 5.8, and Theorem 5.7.

Remark 5.7. Let M and N be two martingales in M2 r0, T s. Then, for

0 ¤ s   t ¤ T ,|〈M,N〉 ptq � 〈M,N〉 psq|2¤ p〈M,M〉 ptq � 〈M,M〉 psqq p〈N,N〉 ptq � 〈N,N〉 psqq ,
and consequently���� dds 〈M,N〉 psq����2 ¤ d

ds
〈M,M〉 psq d

ds
〈N,N〉 psq.
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Hence, the inequality» T
0

���� dds 〈M,N〉 psq���� ds ¤ » T
0

�
d

ds
〈M,M〉 psq
1{2�

d

ds
〈N,N〉 psq
1{2

ds

(5.35)

follows. The inequality in (5.35) says that the quantity» T
0

���� dds 〈M,N〉 psq���� ds is dominated by the Hellinger integral H pM,Nq de-
fined by the right-hand side of (5.35).

Remark 5.8. BSDEs, which can be of quadratic order, are also used in the

context of concave utility functions (and their Legendre-Fenchel transforms,

which are the so-called cost functions): see e.g. [Delbaen et al. (2009)]. Such

functions are used in the theory of risk management. For more results on

quadratic BSDEs see [Reveillac (2009)], and [Imkeller et al. (2009)]. In

the latter paper the authors also describe the role of Malliavin calculus in

the representations for solutions to BSDEs. Suppose that the underlying

filter space is standard d-dimensional Brownian motion. Then the Malliavin

derivative of the solutions represents the integrand of the martingale part

of the solution (written as a Skorohod integrals, which turns out to be an

Itô integral).

For a proof of Theorem 5.1 we refer the reader to [Van Casteren (2009)].

We insert a proof here as well.

Proof. [Proof of Theorem 5.1.] For brevity, and only in this proof, we

write

F pτ,Xpτqq � f
�
τ,X pτq , u pτ,X pτqq ,∇L

u pτ,X pτqq� .
(a) ùñ (b). The equality in (b) is the same as the one in (5.23) which is a

consequence of (5.21).

(b) ùñ (a). We calculate the expressionBBsEt,x �u ps,Xpsqq � » s
t

f
�
τ,X pτq , u pτ,X pτqq ,∇L

u pτ,X pτqq� dτ� .
First of all it is equal to

Et,x

� BBsu ps,Xpsqq � Lpsqu ps,Xpsqq � F ps,Xpsqq� . (5.36)

Next we also have by (5.25) in (b):BBsEt,x �u ps,Xpsqq � » s
t

f
�
τ,X pτq , u pτ,X pτqq ,∇L

u pτ,X pτqq� dτ�
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s

F pτ,Xpτqq dτ�� » s
t

F pτ,Xpτqq dτ�
(Markov property)� BBsEt,x �Et,x �u pT,XpT qq �» T

s

F pτ,Xpτqq dτ �� F t
s

��» s
t

F pτ,Xpτqq dτ�� BBsEt,x �Et,x �u pT,XpT qq � » T
t

F pτ,Xpτqq dτ �� F t
s

��� BBsEt,x �u pT,XpT qq � » T
t

F pτ,Xpτqq dτ� � 0. (5.37)

From (5.37) and (5.36) we get

Et,x

� BBsups,Xpsqq � Lpsqups,Xpsqq�fps,Xpsq, ups,Xpsqq,∇L
ups,Xpsqqq�� 0, s ¡ t. (5.38)

Passing to the limit for s Ó t in (5.38) we obtain:

Et,x

� BBtu pt,Xptqq � Lptqu pt,Xptqq � f
�
t,X ptq , u pt,X ptqq ,∇L

u pt,X ptqq��� 0. (5.39)

Since Xptq � x Pt,x-almost surely, from (5.39) we obtain equality (5.24) in

assertion (a).

(a) ùñ (c). If the function u satisfies the differential equation in (a), then

from the equality in (5.5) we see that

0 � u ps,X psqq � u pt,X ptqq � » s
t

f
�
τ,Xpτq, u pτ,Xpτqq ,∇L

u pτ,Xpτqq� dτ� u ps,X psqq � u pt,X ptqq � » s
t

�
Lpτqu pτ,Xpτqq � BuBτ pτ,Xpτqq
 dτ

(5.40)� u ps,X psqq � u pt,X ptqq �» s
t

f
�
τ,Xpτq, u pτ,Xpτqq ,∇L

u pτ,Xpτqq� dτ�Mu psq �Mu ptq , (5.41)

where, as in (5.7),

Mu psq �Mu ptq
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t

�
Lpτqu pτ,Xpτqq � BuBτ pτ,Xpτqq
 dτ� » s

t

dMupτq. (5.42)

Since the expression in (5.41) vanishes (by assumption (a)) we see that the

process in (c) is the same as the martingale s ÞÑ Mu psq �Mu ptq, s ¥ t.

This proves the implication (a) ùñ (c).

The implication (c) ùñ (b) is a direct consequence of assertion (c) and the

fact that Xptq � x Pt,x-almost surely.

The equivalence of the assertions (a) and (d) is proved in the same

manner as the equivalence of (a) and (c). Here we employ the fact that the

process t ÞÑMupT q �Muptq is an F t
T -backward martingale on the intervalrs, T s with respect to the probability Ps,x.

This completes the proof of Theorem 5.1 �

Remark 5.9. Instead of considering ∇L
u ps, xq we will also consider the

bilinear mapping Zpsq which associates with a pair of local semi-martingalespY1, Y2q a process which is to be considered as the right derivative of the

covariation process: 〈Y1, Y2〉 psq. We write

ZY1
psq pY2q � Zpsq pY1, Y2q � d

ds
〈Y1, Y2〉 psq.

The function f (i.e. the generator of the backward differential equation)

will then be of the form: f ps,Xpsq, Y psq, ZY psqq; the deterministic phase�
ups, xq,∇L

u ps, xq� is replaced with the stochastic phase pY psq, ZY psqq. We

should find an appropriate stochastic phase s ÞÑ pY psq, ZY psqq, which we

identify with the process s ÞÑ pY psq,MY psqq in the stochastic phase space

S2 �M2, such that

Y ptq � Y pT q � » T
t

f ps,Xpsq, Y psq, ZY psqq ds� » T
t

dMY psq, (5.43)

where the quadratic variation of the martingale MY psq is given by

d 〈MY ,MY 〉 psq � ZY psq pY q ds � Zpsq pY, Y q ds � d 〈Y, Y 〉 psq.
This stochastic phase space S2�M2 plays a role in stochastic analysis very

similar to the role played by the first Sobolev space H1,2 in the theory of

deterministic partial differential equations. For a formal definition of the

functional ZM psq the reader is referred to Definition 5.7.
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Remark 5.10. In case we deal with strong solutions driven by standard

Brownian motion the martingale difference MY ps2q�MY ps1q can be writ-

ten as
³s2
s1
ZY psqdW psq, provided that the martingaleMY psq belongs to the

space M2
�
Ω,G0

T ,P
�
. Here G0

T is the σ-field generated by W psq, 0 ¤ s ¤ T .

If Y psq � u ps,Xpsqq, then this stochastic integral satisfies:» s2
s1

ZY psqdW psq � u ps2, X ps2qq � u ps1, X ps1qq� » s2
s1

�
Lpsq � BBs
u ps,X psqq ds. (5.44)

Such stochastic integrals are for example defined if the process Xptq is a

solution to a stochastic differential equation (in Itô sense):

Xpsq � Xptq � » s
t

b pτ,Xpτqq dτ � » s
t

σ pτ,Xpτqq dW pτq, t ¤ s ¤ T.

(5.45)

Here the matrix pσjk pτ, xqqdj,k�1
is chosen in such a way that

ajkpτ, xq � ḑ

ℓ�1

σjℓ pτ, xqσkℓ pτ, xq � pσpτ, xqσ�pτ, xqqjk .
The process W pτq is Brownian motion or Wiener process. It is assumed

that operator Lpτq has the form

Lpτqupxq � b pτ, xq �∇upxq � 1

2

ḑ

j,k�1

ajk pτ, xq B2Bxjxk upxq. (5.46)

Then from Itô’s formula together with (5.44), (5.45) and (5.46)

it follows that the process ZY psq has to be identified with

σ ps,Xpsqq�∇u ps, �q pXpsqq. For more details see e.g. [Pardoux and Peng

(1990)] and [Pardoux (1998a)]. The equality in (5.44) is a consequence of a

martingale representation theorem: see e.g. Proposition 3.2 in [Revuz and

Yor (1999)].

Remark 5.11. Backward doubly stochastic differential equations (BDS-

DEs) could have been included in the present chapter: see Boufoussi,

Mrhardy and Van Casteren [Boufoussi et al. (2007)]. In our notation a

BDSDE may be written in the form:

Y ptq � Y pT q � » T
t

f

�
s,Xpsq, Y psq, N ÞÑ d

ds
〈M,N〉 psq
 ds� » T

t

g

�
s,Xpsq, Y psq, N ÞÑ d

ds
〈M,N〉 psq
 d�ÝB psq



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

320 Markov processes, Feller semigroups and evolution equations�Mptq �MpT q. (5.47)

Here the expression» T
t

g

�
s,Xpsq, Y psq, N ÞÑ d

ds
〈M,N〉 psq
 d�ÝB psq

represents a backward Itô integral. The symbol 〈M,N〉 stands for the

quadratic covariation process of the (local) martingales M and N ; it is

assumed that this process is absolutely continuous with respect to Lebesgue

measure. Moreover,tpΩ,Fτ
T ,Pτ,xq , pXptq : T ¥ t ¥ 0q , pE, Equ

is a Markov process generated by a family of operators Lpsq, 0 ¤ s ¤ T , and

Fτ
t � σ tXpsq : τ ¤ s ¤ tu. The process Xptq could be the (unique) weak

or strong solution to a (forward) stochastic differential equation (SDE):

Xptq � x� » t
τ

b ps,Xpsqq ds� » t
τ

σ ps,Xpsqq dW psq. (5.48)

Here the coefficients b and σ have certain continuity or measurability prop-

erties, and Pτ,x is the distribution of the process Xptq defined as being the

unique weak solution to the equation in (5.48). We want to find a pairpY,Mq P S2 pΩ,Fτ
t ,Pτ,xq �M2 pΩ,Fτ

t ,Pτ,xq which satisfies (5.47). For ap-

plications of BDSDEs to viscosity solutions of stochastic partial differential

equations the reader is referred to e.g. [Buckdahn and Ma (2001a,b); N’zi

and Owo (2009); Pardoux and Peng (1994)].

Next we give some definitions. Fix pτ, xq P r0, T s � E. In the definitions

5.4 and 5.5 the probability measure Pτ,x is defined on the σ-field Fτ
T . In

Definition 5.8 we return to these notions. The following definition and

implicit results described therein show that, under certain conditions, by

enlarging the sample space a family of processes may be reduced to just

one process without losing the S2-property.

Definition 5.4. Fix pτ, xq P r0, T s � E. An Rk-valued process Y is said

to belong to the space S2
�
Ω,Fτ

T ,Pτ,x;R
k
�
if Y ptq is Fτ

t -measurable (τ ¤
t ¤ T ) and if Eτ,x

�
sup
τ¤t¤T |Y ptq|2�   8. It is assumed that Y psq � Y pτq,

Pτ,x-almost surely, for s P r0, τs. The process Y psq, s P r0, T s, is said to

belong to the space S2
unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
if

suppτ,xqPr0,T s�EEτ,x

�
sup

τ¤t¤T |Y ptq|2�   8,
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and it belongs to S2
loc,unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
provided that

suppτ,xqPr0,T s�KEτ,x

�
sup

τ¤t¤T |Y ptq|2�   8
for all compact subsets K of E.

If the σ-field Fτ
t and Pτ,x are clear from the context we write S2

�r0, T s,Rk�
or sometimes just S2.

Definition 5.5. Let the process M be such that the process t ÞÑ Mptq �
Mpτq, t P rτ, T s, is a Pτ,x-almost surely continuous martingale with the

property that the random variableMpT q�Mpτq belongs to L2 pΩ,Fτ
T ,Pτ,xq.

Then M is said to belong to the space M2
�
Ω,Fτ

T ,Pτ,x;R
k
�
. By the

Burkholder-Davis-Gundy inequality (see inequality (5.89) below) it follows

that

Eτ,x

�
sup
τ¤t¤T |Mptq �Mpτq|2�

is finite if and only if MpT q �Mpτq belongs to the space L2 pΩ,Fτ
T ,Pτ,xq.

Here an Fτ
t -adapted process Mp�q � Mpτq is called a Pτ,x-martingale

provided that Eτ,x r|Mptq �Mpτq|s   8 and Eτ,x
�
Mptq �Mpτq �� Fτ

s

� �
Mpsq �Mpτq, Pτ,x-almost surely, for T ¥ t ¥ s ¥ τ . The Pτ,x-almost sure

continuous martingale difference s ÞÑ Mpsq �Mpτq, s P rτ, T s, is said to

belong to the space M2
unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
if

suppτ,xqPr0,T s�EEτ,x

�
sup

τ¤t¤T |Mptq �Mpτq|2�   8,
and it belongs to M2

loc,unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
provided that

suppτ,xqPr0,T s�K Eτ,x

�
sup
τ¤t¤T |Mptq �Mpτq|2�   8

for all compact subsets K of E.

There is also need for a localized notion.

Definition 5.6. Let M P M2
�
Ω,Fτ

T ,Pτ,x;R
k
�
. Then M is said to be

absolutely continuous if the deterministic function t ÞÑ Eτ,x

�|Mptq|2�
is absolutely continuous. The attribute AC is used to indicate that a

martingale M P M2
�
Ω,Fτ

T ,Pτ,x;R
k
�

is absolutely continuous: M P
M2

AC

�
Ω,Fτ

T ,Pτ,x;R
k
�
. For the other spaces a similar notation is used:

M2
AC,unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
.
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From the Burkholder-Davis-Gundy inequality (see inequality (5.89) below)

it follows that the process Mpsq�Mp0q belongs to M2
unif

�
Ω,Fτ

T ,Pτ,x;R
k
�

if and only if

suppτ,xqPr0,T s�EEτ,x

�|MpT q �Mpτq|2�� suppτ,xqPr0,T s�EEτ,x r〈M,M〉 pT q � 〈M,M〉 pτqs   8.
Here 〈M,M〉 stands for the quadratic variation process of the process t ÞÑ
Mptq �Mp0q.

The notions in the definitions 5.4 and 5.5 will exclusively be used in

case the family of measures tPτ,x : pτ, xq P r0, T s �Eu constitute the distri-
butions of a Markov process which was defined in Definition 5.2.

In order to formalize our theory we insert a definition of the fiber spaces

M2,s
AC pΩ,Fτ

T ,Pτ,xq, τ ¤ s ¤ T . As mentioned in Definition 5.5 the space

M2 pΩ,Fτ
T ,Pτ,xq consists of those L2-martingales which are Pτ,x-almost

surely continuous.

Definition 5.7. By definition the space M2 pΩ,Fτ
T ,Pτ,xq consists of those

continuous martingales M with values in the space Rk which belong to

L2
�
Ω,Fτ

T ,Pτ,x;R
k
�
. The symbol M2,s

AC pΩ,Fτ
T ,Pτ,xq consists of those func-

tionals

Zpsq : M2 pΩ,Fτ
T ,Pτ,xq Ñ R

for which there exists a martingale M P M2
AC pΩ,Fτ

T ,Pτ,xq such that for

all N PM2
AC pΩ,Fτ

T ,Pτ,xq the equality

ZpsqpNq � d

dt
〈M,N〉 ptq ��

t�s� � lim
hÓ0 〈M,N〉 ps� hq � 〈M,N〉 psq

h
(5.49)

holds. Usually the notation
d

ds
〈M,N〉 psq is employed for the right-

derivative as indicated in (5.49). The notation Zpsq � ZM psq is used and

the M2,s
AC-norm of ZM psq is defined by}ZM psq}M2,s

AC

� �
Eτ,x

�
d

ds
〈M,M〉 psq�
1{2

.

Elements of the space M2,s
AC pΩ,Fτ

T ,Pτ,xq are denoted by ZM psq, where the
martingale M belongs to M2 pΩ,Fτ

T ,Pτ,xq. From the Kunita-Watanabe

inequality (see [Ikeda and Watanabe (1998)]) it follows that���� dds 〈M,N〉 psq����2 ¤ ���� dds 〈M,M〉 psq���� ���� dds 〈N,N〉 psq���� ,
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where M, N P M2
AC pΩ,Fτ

T ,Pτ,xq, and so it makes sense to define the

following inner-product on the space M2,s
AC pΩ,Fτ

T ,Pτ,xq:
〈ZM psq, ZN psq〉M2,s

AC

� Eτ,x

�
d

ds
〈M,N〉 psq� , M, N PM2

AC pΩ,Fτ
T ,Pτ,xq ,

(5.50)

and the M2,s
AC-norm of ZM psq is defined by}ZM psq}M2,s

AC

� �
Eτ,x

�
d

ds
〈M,M〉 psq�
1{2

.

Relative to this inner-product and norm the space M2,s
AC pΩ,Fτ

T ,Pτ,xq is a
pre-Hilbert space. Completion turns it into a Hilbert space.

Lemma 5.1 below gives some more information on these fiber spaces.

Example 5.1. Again let the Markov process, with right-continuous sample

paths and with left limits,tpΩ,Fτ
T ,Pτ,xq , pXptq : T ¥ t ¥ 0q , pE, Equ (5.51)

be generated by the family of operators tLpsq : 0 ¤ s ¤ tu: see definitions

5.2, equality (5.9), and 5.3, equality (5.11). Suppose that the squared

gradient operators Γ1psq, 0 ¤ s ¤ T , exist: see equality (5.2). Let the

function u P Cb pr0, T s �Eq belong to the domain of the operator L � Lpsq,
0 ¤ s ¤ T . Put

Mu,τ psq � u ps,Xpsqq � u pτ,Xpτqq � » t
τ

�
d

dρ
� Lpρq
u pρ,Xpρqq dρ.

Then the process s ÞÑMu,τ psq is a Pτ,x-martingale and, since

〈Mu,τ ,Mu,τ 〉 psq � 〈Mu,τ ,Mu,τ 〉 pτq � » s
τ

Γ1 pu, uq pρ,Xpρqq dρ
the martingale Mu.τ belongs to the space M2

AC pΩ,Fτ
T ,Pτ,x;Rq.

Next we define the family of operators tQ pt1, t2q : 0 ¤ t1 ¤ t2 ¤ T u by
Q pt1, t2q fpxq � Et1,x rf pX pt2qqs , f P Cb pEq , 0 ¤ t1 ¤ t2 ¤ T. (5.52)

Fix ϕ P DpLq. Since the process t ÞÑ Mϕptq � Mϕpsq, t P rs, T s, is a

Ps,x-martingale with respect to the filtration pFs
t qtPrs,T s, and Xptq � x

Pt,x-almost surely, the following equality follows:» t
s

Es,x rLpρqϕ pρ, �q pXpρqqs dρ� Et,x rϕ pt,Xptqqs � Es,x rϕ pt,Xptqqs
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s

Es,x

�BϕBρ pρ,Xpρqq� dρ. (5.53)

The fact that a process of the form t ÞÑ Mϕptq � Mϕpsq, t P rs, T s, is

a Ps,x-martingale follows from Proposition 5.1. In terms of the family of

operators tQ pt1, t2q : 0 ¤ t1 ¤ t2 ¤ T u
the equality in (5.53) can be rewritten as» t

s

Q ps, ρqLpρqϕ pρ, �q pxq dρ�Qpt, tqϕ pt, �q pxq �Qps, tqϕ pt, �q pxq� ϕpt, xq � ϕps, xq � » t
s

Q ps, ρq BϕBρ pρ, �q pxqdρ. (5.54)

From (5.54) we infer that

Lpsqϕps, �qpxq � � lim
tÓs Qpt, tqϕ pt, �q pxq �Qps, tqϕ pt, �q pxq

t� s

and that

Lptqϕpt, �qpxq � lim
sÒt Qpt, tqϕ pt, �q pxq �Qps, tqϕ pt, �q pxq

t� s
. (5.55)

Equality (5.54) also yields the following result. If ϕ P DpLq is such that

Lpρqϕ pρ, �q pyq � �BϕBρ pρ, yq,
then

ϕ ps, xq � Q pρ, tqϕ pt, �q pxq � Es,x rϕ pt,Xptqqs . (5.56)

Since 0 ¤ s ¤ t ¤ T are arbitrary from (5.56) we see

Q
�
s, t1�ϕ �t1, �� pxq � Q ps, tqQ �

t, t1�ϕ �t1, �� pxq 0 ¤ s ¤ t ¤ t1 ¤ T, x P E.
(5.57)

If in (5.57) we (may) choose the function ϕ pt1, yq arbitrarily, then the family

Qps, tq, 0 ¤ s ¤ t ¤ T , is automatically a propagator in the space CbpEq in
the sense that Q ps, tqQ pt, t1q � Q ps, t1q, 0 ¤ s ¤ t ¤ t1 ¤ T . For details on

propagators or evolution families see [Gulisashvili and van Casteren (2006)].

Remark 5.12. In the sequel we want to discuss solutions to equations of

the form:BBtu pt, xq � Lptqu pt, �q pxq � f
�
t, x, u pt, xq ,∇L

u pt, xq� � 0. (5.58)
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For a preliminary discussion on this topic see Theorem 5.1. Under certain

hypotheses on the function f we will give existence and uniqueness results.

Let m be (equivalent to) the Lebesgue measure in Rd. In a concrete situa-

tion where every operator Lptq is a genuine diffusion operator in L2
�
Rd,m

�
we consider the following Backward Stochastic Differential equation

u ps,Xpsqq � Y pT,XpT qq � » T
s

f
�
ρ,Xpρq, u pρ,Xpρqq ,∇L

u pρ,Xpρqq� dρ� » T
s

∇L
u pρ,Xpρqq dW pρq . (5.59)

Here we suppose that the process t ÞÑ Xptq is a solution to a genuine

stochastic differential equation driven by Brownian motion and with one-

dimensional distribution upt, xq satisfying Lptqu pt, �q pxq � BuBt pt, xq. In fact

in that case we will not consider the equation in (5.59), but we will try to

find an ordered pair pY, Zq such that

Y psq � Y pT q � » T
s

f pρ,Xpρq, Y pρq , Z pρqq dρ� » T
s

〈Z pρq , dW pρq〉 .
(5.60)

If the pair pY, Zq satisfies (5.60), then u ps, xq � Es,x rY psqs satisfies (5.58).
Moreover Zpsq � ∇L

u ps,Xpsqq � ∇L
u ps, xq, Ps,x-almost surely. For more

details see section 2 in [Pardoux (1998a)].

Remark 5.13. Some remarks follow:

(a) In section 5.2 weak solutions to BSDEs are studied.

(b) In section 7 of [Van Casteren (2009)] and in section 2 of [Pardoux

(1998a)] strong solutions to BSDEs are discussed: these results are due

to Pardoux and collaborators.

(c) BSDEs go back to Nelson [Nelson (1967)]. In this context Bismut is

also mentioned see e.g. [Bismut (1973, 1981b)].

(d) If Lpsqups, xq � 1

2

ḑ

j,k�1

aj,kps, xq B2uBxjxk ps, xq � ḑ

j�1

bjps, xq BuBxj ps, xq,
then

Γ1 pu, vq ps, xq � ḑ

j,k�1

aj,kps, xq BuBxj ps, xq BvBxk ps, xq.
As a corollary to theorems 5.1 and 5.5 we have the following result.
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Corollary 5.1. Suppose that the function u solves the following$&% BuBs ps, yq � Lpsqups, �q pyq � f
�
s, y, ups, yq,∇L

u ps, yq� � 0;

u pT,XpT qq � ξ P L2 pΩ,Fτ
T ,Pτ,xq . (5.61)

Let the pair pY,Mq be a solution to

Y ptq � ξ � » T
t

f ps,Xpsq, Y psq, ZM psqq ds�Mptq �MpT q, (5.62)

with Mpτq � 0. ThenpY ptq,Mptqq � pu pt,Xptqq ,Muptqq ,
where

Muptq � upt,Xptqq�upτ,Xpτqq�» t
τ

Lpsqups, �qpXpsqqds�» t
τ

BuBs ps,Xpsqqds.
Notice that the processes s ÞÑ ∇L

u ps,Xpsqq and s ÞÑ ZMu
psq may be iden-

tified and that ZMu
psq only depends on ps,Xpsqq. The decomposition

u pt,Xptqq � u pτ,Xpτqq � » t
τ

�BuBs ps,Xpsqq � Lpsqu ps, �q pXpsqq
 ds�Muptq �Mupτq (5.63)

splits the process t ÞÑ u pt,Xptqq�u pτ,Xpτqq into a part which is bounded

variation (i.e. the part which is absolutely continuous with respect to

Lebesgue measure on rτ, T s) and a Pτ,x-martingale part Muptq � Mupτq
(which in fact is a martingale difference part).

If Lpsq � 1
2
∆, then Xpsq �W psq (standard Wiener process or Brownian

motion) and (5.63) can be rewritten as

u pt,W ptqq � u pτ,W pτqq � » t
τ

�BuBs ps,W psqq � 1

2
∆u ps, �q pW psqq
 ds� » t

τ

∇u ps, �q pW psqq dW psq (5.64)

where
³t
τ
∇u ps, �q pW psqq dW psq is to be interpreted as an Itô integral.

Remark 5.14. Suggestions for further research:

(a) Find “explicit solutions” to BSDEs with a linear drift part. This should

be a type of Cameron-Martin formula or Girsanov transformation.

(b) Treat weak (and strong) solutions BDSDEs in a manner similar to what

is presented here for BSDEs.
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(c) Treat weak (strong) solutions to BSDEs generated by a function f

which is not necessarily of linear growth but for example of quadratic

growth in one or both of its entries Y ptq and ZM ptq.
(d) Can anything be done if f depends not only on s, x, ups, xq, ∇u ps, xq,

but also on Lpsqu ps, �q pxq?
In the following proposition it is assumed that the operator L generates a

strong Markov process in the sense of the definitions 2.7 and 2.8.

Proposition 5.4. Let the functions f , g P DpLq be such that their product

fg also belongs to DpLq. Then Γ1 pf, gq is well defined and for ps, xq Pr0, T s �E the following equality holds:

Lpsq pfgq ps, �q pxq � fps, xqLpsqg ps, �q pxq � Lpsqf ps, �q pxqgps, xq� Γ1 pf, gq ps, xq. (5.65)

Proof. Let the functions f and g be as in Proposition 5.4. For h ¡ 0 we

have:pf pXps� hqq � f pXpsqqq pg pXps� hqq � g pXpsqqq� f pXps� hqq g pXps� hqq � f pXpsqq g pXpsqq (5.66)� fpXpsqqpgpXps� hqq � gpXpsqqq � pfpXps� hqq � fpXpsqqqgpXpsqq.
Then we take expectations with respect to Es,x, divide by h ¡ 0, and pass

to the Tβ-limit as h Ó 0 to obtain equality (5.65) in Proposition 5.4. �

5.2 A probabilistic approach: Weak solutions

In this section and also in sections 5.3 we will study BSDE’s on a single

probability space. In Section 5.4 and Chapter 6 we will consider Markov

families of probability spaces. In the present section we write P instead of

P0,x, and similarly for the expectations E and E0,x. Here we work on the

interval r0, T s. Since we are discussing the martingale problem and basically

only the distributions of the process t ÞÑ Xptq, t P r0, T s, the solutions we

obtain are of weak type. In case we consider strong solutions we apply

a martingale representation theorem (in terms of Brownian Motion). In

Section 5.4 we will also use this result for probability measures of the form

Pτ,x on the interval rτ, T s. In this section we consider a pair of Ft � F0
t -

adapted processes pY,Mq P L2
�
Ω,FT ,P;Rk

��L2
�
Ω,FT ,P : Rk

�
such that

Y p0q �Mp0q and such that

Y ptq � Y pT q � » T
t

f ps,Xpsq, Y psq, ZM psqq ds�Mptq �MpT q (5.67)
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where M is a P-martingale with respect to the filtration Ft �
σ pXpsq : s ¤ tq. In [Van Casteren (2009)] we will employ the results of

the present section with P � Pτ,x, where pτ, xq P r0, T s � E. For more

details see §5.4 below.

Proposition 5.5. Let the pair pY,Mq be as in (5.67), and suppose that

Y p0q �Mp0q. Then

Y ptq �Mptq � » t
0

f ps,Xpsq, Y psq, ZM psqq ds, and (5.68)

Y ptq � E

�
Y pT q � » T

t

f ps,Xpsq, Y psq, ZM psqq ds �� Ft� ; (5.69)

Mptq � E

�
Y pT q � » T

0

f ps,Xpsq, Y psq, ZM psqq ds �� Ft� . (5.70)

The equality in (5.68) shows that the process M is the martingale part of

the semi-martingale Y .

Proof. The equality in (5.69) follows from (5.67) and from the fact that

M is a martingale. Next we calculate

E

�
Y pT q � » T

0

f ps,Xpsq, Y psq, ZM psqq ds �� Ft�� E

�
Y pT q � » T

t

f ps,Xpsq, Y psq, ZM psqq ds �� Ft�� » t
0

f ps,Xpsq, Y psq, ZM psqq ds� Y ptq � » t
0

f ps,Xpsq, Y psq, ZM psqq ds
(employ (5.67))� Y pT q � » T

t

f ps,Xpsq, Y psq, ZM psqq ds�Mptq �MpT q� » t
0

f ps,Xpsq, Y psq, ZM psqq ds� Y pT q � » T
0

f ps,Xpsq, Y psq, ZM psqq ds�Mptq �MpT q�MpT q �Mptq �MpT q �Mptq. (5.71)
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The equality in (5.71) shows (5.70). Since

MpT q � Y pT q � » T
0

f ps,Xpsq, Y psq, ZM psqq ds
the equality in (5.68) follows. �

In the following theorem we write z � ZM psq � ZM1,...,Mkpsq and

y belongs to Rk. The process M is a k-dimensional martingale in

M2
�
Ω,Fτ

T ,Pτ,x;R
k
�
. (see Definition 5.5) with the property that every

function t ÞÑ Eτ,x

���M jptq��2� is absolutely continuous. From Lemma 5.1

below it follows that it makes sense to write
d

dt

〈

M j ,M j
〉 ptq. The expres-

sion
d

dt
〈M,M〉 ptq, M �M2 �M1, is shorthand for

d

dt
〈M,M〉 ptq � ķ

j�1

d

dt

〈

M j ,M j
〉 ptq.

The notation M PM2
AC

�
Ω,Fτ

T ,Pτ,x;R
k
�
will be used: see Definition 5.6.

Theorem 5.2. Fix pτ, xq P r0, T s �E. Suppose that there exist finite con-

stants C1 and C2 such that
〈

y2 � y1, f
�
s, x1, y2, z�� f

�
s, x1, y1, z�〉 ¤ C1 |y2 � y1|2 ; (5.72)��f �s, x1, y, ZM2

psq�� f
�
s, x1, y, ZM1

psq���2 ¤ C2
2

d

ds
〈M2 �M1,M2 �M1〉 psq

(5.73)

for all s P rτ, T s, x1 P E, y P Rk, z � ZM psq P M2,s
AC pΩ,Fτ

T ,Pτ,xq. Then

there exists a unique pair of adapted processes pY,Mq P S2 pΩ,Fτ
T ,Pτ,xq �

M2 pΩ,Fτ
T ,Pτ,xq such that Y pτq � Mpτq and such that the process M is

the martingale part of the semi-martingale Y :

Y ptq �Mptq �MpT q � Y pT q � » T
t

f ps,Xpsq, Y psq, ZM psqq ds�Mptq � » t
τ

f ps,Xpsq, Y psq, ZM psqq ds, Pτ,x-almost surely, (5.74)

for all t P rτ, T s
For the definition of the space M2,s

AC pΩ,Fτ
T ,Pτ,xq see Definition 5.7 above.

The symbols ZM psq stand for the functionals:

ZM psqpNq � ķ

j�1

d

ds

〈

M j , N j
〉 psq.
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HereM and N are k-dimensional martingales in M2
�
Ω,Fτ

T ,Pτ,x;R
k
�
with

the property that the functions t ÞÑ Eτ,x

�|Mptq|2� and t ÞÑ Eτ,x

�|Nptq|2�
are absolutely continuous it the follows that the function t ÞÑ 〈M,N〉 ptq �°k
j�1

〈

M j, N j
〉 ptq is also Pτ,x-almost surely absolutely continuous. Then

the Borel measure determined by such a function are Pτ,x-surely continuous

relative to the Lebesgue measure on rτ, T s. As a consequence we see that

〈M,N〉 ptq�〈M,N〉 pτq � » t
τ

d

dρ
〈M,N〉 pρq dρ, Pτ,x-almost surely. (5.75)

The equality in (5.75) also determines the domain of the function f which

generates the BSDE in (5.74) in Theorem 5.2. It is defined on the space!�
s, x1, y, ZMpsq� : s P rτ, T s, x1 P E, y P Rk, ZM psq PM2,s

AC pΩ,Fτ
T ,Pτ,xq) ,

and is continuous on this space. For the notation M2
AC pΩ,Fτ

T ,Pτ,xq see

Definition 5.6. LetM be a member ofM2
AC pΩ,Fτ

T ,Pτ,xq. Then the process

of functionals (see Definition 5.7 above)

t ÞÑ tN ÞÑ 〈M,N〉 ptq � 〈Mpτq, N〉 pτqu , N PM2
AC pΩ,Fτ

T ,Pτ,xq ,
can be written as an element of the Hilbert-integral» t

τ

M2,s pΩ,Fτ
T ,Pτ,xq p�q ds.

More precisely 〈M,N〉 ptq � 〈M,N〉 pτq � » t
τ

d

ds
〈M,N〉 psq ds, or briefly

〈M, �〉 ptq � 〈M, �〉 pτq � » t
τ

d

ds
〈M, �〉 psq ds � » t

τ

ZM psq ds,
where ZM psq P M2,s

AC pΩ,Fτ
T ,Pτ,xq. The functionals ZM psq can be consid-

ered as the reproducing kernel of the quadratic covariation process deter-

mined by the martingale M P M2 pΩ,Fτ
T ,Pτ,xq. Lemma 5.1 below gives

some formal arguments concerning the existence of these derivatives. For

more details on direct Hilbert integrals and reproducing kernel techniques

see e.g. [Thomas (1979, 1994)] and Berlinet and Thomas-Agnan [Berlinet

and Thomas-Agnan (2004)].

5.2.1 Some more explanation

Suppose that the family of operators Lpsq, 0 ¤ s ¤ T , generates the strong

Markov process tpΩ,F ,Ps,xq , pXptq, 0 ¤ t ¤ T q , pE, Equ .
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Consider the operators Lpsq, 0 ¤ s ¤ T , as an operator with domain

and range in Cb pr0, T s �Eq. Let Fs
t be the σ-field generated by Xpρq,

s ¤ ρ ¤ t. Let u P DpLq. Then the process

Mu,τ : t ÞÑ upt,Xptqq � upτ,Xpτqq � » t
τ

� BBρ � Lpρq
u pρ, �q pXpρqq dρ,
t P rτ, T s, is a Pτ,x-martingale. In addition, suppose that the squared

gradient operators Γ1psq, 0 ¤ s ¤ T , exist. Let v be another function

in DpLq. To the function v there also corresponds a Pτ,x-martingale t ÞÑ
Mv,τ ptq, t P rτ, T s. Then the covariation process t ÞÑ 〈Mu,τ ,Mv,τ 〉 ptq is

given by

〈Mu,τ ,Mv,τ 〉 ptq � » t
τ

Γ1 pu, vq ps,Xpsqq ds, t P rτ, T s.
In other words the covariation process t ÞÑ 〈Mu,τ ,Mv,τ 〉 ptq is absolutely

continuous with respect to the Lebesgue measure. So for such martingales

it makes sense to write
d

dt
〈Mu,τ ,Mv,τ 〉 ptq � lim

hÓ0 〈Mu,τ ,Mv,τ 〉 pt� hq � 〈Mu,τ ,Mv,τ〉 ptq
h

, Pτ,x-a.s..

More generally we will consider martingalesM PM2
�
Ω,Fτ

T ,Pτ,x;R
k
�
with

the property that the function t ÞÑ Eτ,x

�|Mptq|2� is absolutely continu-

ous with respect to the Lebesgue measure: for more details on the space

M2
�
Ω,Fτ

T ,Pτ,x;R
k
�
see Remark 5.5. If M is such a martingale, then the

variation process t ÞÑ 〈M,M〉 ptq is Ps,x-almost surely absolutely continu-

ous. The latter is explained in Lemma 5.1 below. It is assumed that the

σ-field Fτ
τ contains the Pτ,x-negligible sets, and the filtration pFτ

t qtPrτ,T s is
continuous from the right.

Lemma 5.1. Let λ be the Lebesgue measure on the interval rτ, T s, and

let M and N be martingales M2
�
Ω,Fτ

T ,Pτ,x;R
k
�
, which by hypothesis are

Pτ,x-almost surely continuous. Then the measure

A ÞÑ Eτ,x

�» T
τ

1A pω, sq d 〈M,N〉 psq� , A P Fτ
T b Brτ,T s, (5.76)

splits into two positive measures, one of which is absolutely continuous rel-

ative to the product measure Pτ,x � λ, and another one which is singular

relative to Pτ,x � λ. Consequently, by the Lebesgue decomposition theorem

there exists an adapted process ρ ÞÑ hM,Npρq and a random measure νM,N

such that

〈M,M〉 ptq � 〈M,M〉 pτq � » t
τ

hM pρq dρ� νM,N pτ, ts.
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By Lebesgue’s differentiation theorem it follows that

〈M,N〉 ptq � 〈M,N〉 pτq � » t
τ

d

dρ
〈M,N〉 pρq dρ � » t

τ

hM,N pρq dρ,
where the derivatives are in fact right derivatives.

We use the notation

ZM psqpNq � hM,N psq � d

ds
〈M,N〉 psq Pτ,x � λ-almost everywhere.

By definition functionals of the form ZM psq, M P M2
�
Ω,Fτ

T ,Pτ,x;R
k
�

belong to the space M2,s
AC

�
Ω,Fτ

T ,Pτ,x;R
k
�
. Often we use the shorthand

notation: M2,s
AC.

Proof. By the Lebesgue decomposition theorem there exists a process

ρ ÞÑ hM,Npρq, ρ P rτ, T s, and a measure νM,N which is singular relative to

the measure Pτ,x � λ such that for A P Fτ
T b Brτ,T s we have

Eτ,x

�» T
τ

1A pω, ρq d 〈M,M〉 pρq�� Eτ,x

�» T
τ

1A pω, ρqhM,Npρq dρ�� νM,N pAq . (5.77)

In (5.77) we take A of the form A � C � rτ, ts, C P Fτ
T , t P rτ, T s. Then we

see

〈M,M〉 ptq � 〈M,M〉 pτq � » t
τ

hM,Npρq dρ� νM,N ppτ, tsq (5.78)

Pτ,x-almost surely. Since t P rτ, T s is arbitrary, an application of Lebesgue’s

differentiation theorem yields the equality hpρq � d

dρ
〈M,M〉 pρq, Pτ,x � λ-

almost everywhere (derivative from the right).

This completes the proof of Lemma 5.1. �

From Lemma 5.1 it follows that for L2-martingales it makes sense to write
d

dt
〈M,M〉 ptq, Pτ,x � λ-almost everywhere (derivatives from the right).

In the situation that t ÞÑMptq is a k-dimensional martingale relative to

a filtration determined by d-dimensional Brownian motion the martingale

t ÞÑMptq � �
M1ptq, . . . ,Mkptq� can be written in the form

M jptq � Eτ,x
�
M jpτq� � ḑ

k�1

» t
τ

σj,kpρq dWkpρq, 1 ¤ j ¤ k, (5.79)
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where we employed a martingale representation theorem: see e.g. [Prot-

ter (2005)] Theorem 43 in Chapter IV. Then the covariation pro-

cess of the martingales M j1 and M j2 is given by
〈

M j1 ,M j2
〉 ptq �°d

k�1

³t
0
σj1,kpsqσj2,kpsq ds. It follows that the functional ZM ptq can be iden-

tified with the matrix process pσj,kptqq1¤j¤k, 1¤k¤d. Moreover, the estimate

in (5.73) is a classical Lipschitz condition:|f ps, x, y, ZM2
psqq � f ps, x, y, ZM1

psqq|2 ¤ C2
2

ķ

j�1

ḑ

k�1

��σ2
j,kpsq � σ1

j,kpsq��2 .
(5.80)

Here M j
1 ptq � Eτ,x

�
M

j
1 pτq� � °d

k�1

³t
τ
σ1
j,kpρq dWkpρq, 1 ¤ j ¤ k, and a

similar expression for M j
2 ptq. In other words our setup encompasses the

classical theory of Pardoux and others.

Next suppose that the Markov process pΩ,F ,Ps,xq , pXptq, 0 ¤ t ¤ T q , �Rd,BRd

�(
is generated by a second-order differential operator of the form

Lpsq � 1

2

ḑ

k,ℓ�1

ak,ℓpsq B2BxkBxℓ � 1

2

ņ

j�1

ḑ

k,ℓ�1

σk,jpsqσℓ,jpsq B2BxkBxℓ .
Then the corresponding squared gradient operators Γ1psq, 0 ¤ s ¤ T , are

given by

Γ1pu, vq ps,Xpsqq � ḑ

k,ℓ�1

ak,ℓ ps,Xpsqq Bu ps,XpsqqBxk Bv ps,XpsqqBxℓ .

Consider the operator L as an operator in Cb
�r0, T s � Rd

�
, and let u and

v be a functions in DpLq. Let Mu,τ be the martingale given by

Mu,τ ptq � u pt,Xptqq � u pτ,Xpτqq � » t
τ

� BBs � Lpsq
u ps,Xpsqq ds,
and we use a similar notation for Mv,τ ptq. Then the covariation process of

the martingales Mu,τ and Mv,τ is given by

〈Mu,τ ,Mv,τ 〉 ptq � » t
τ

Γ1 pu, vq ps,Xpsqq ds (5.81)� ḑ

k,ℓ�1

» t
τ

ak,ℓ ps,Xpsqq Bu ps,XpsqqBxk Bv ps,XpsqqBxℓ ds.
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From (5.81) we infer

ZMu,τ
psq pMv,τ q � ḑ

k,ℓ�1

ak,ℓ ps,Xpsqq Bu ps,XpsqqBxk Bv ps,XpsqqBxℓ .

The author is convinced that the present setup of BSDEs is also very con-

venient for Brownian motion on a Riemannian manifold, where we have

a Laplace-Beltrami operator, and a squared gradient operator. For more

information on Brownian motion on manifolds see e.g. [Elworthy (1982)],

and [Hsu (2002)]. The book by Hsu also contains results on logarithmic

Sobolev inequalities, and on spectral gap theory. These items will also be

discussed in Chapter 9.

The following proof contains just an outline of the proof of Theorem

5.2. Complete and rigorous arguments are found in the proof of Theorem

5.4: see Theorem 5.7 as well.

Proof. [Outline of a proof of Theorem 5.2.] The uniqueness follows from

Corollary 5.2 to Theorem 5.3 below. In the existence part of the proof of

Theorem 5.2 we will approximate the function f by Lipschitz continuous

functions fδ, 0   δ   p2C1q�1, where each function fδ has Lipschitz con-

stant δ�1, but at the same time inequality (5.73) remains valid for fixed

second variable (in an appropriate sense). It follows that for the functions

fδ (5.73) remains valid and that (5.72) is replaced with|fδ ps, x, y2, zq � fδ ps, x, y1, zq| ¤ 1

δ
|y2 � y1| . (5.82)

In the uniqueness part of the proof it suffices to assume that (5.72) holds.

In Theorem 5.5 we will see that the monotonicity condition (5.72) also

suffices to prove the existence. For details the reader is referred to the

propositions 5.6 and 5.7, Corollary 5.3, and to Proposition 5.8. In fact for

M P M2 fixed, and the function y ÞÑ f ps, x, y, ZM psqq satisfying (5.72)

the function y ÞÑ y � δf ps, x, y, ZM psqq, ZM psq P M2,s
AC is surjective as

a mapping from Rk to Rk and its inverse exists and is Lipschitz contin-

uous with constant 2, for δ ¡ 0 small enough. The Lipschitz continuity

is proved in Proposition 5.7. The surjectivity of this mapping is a conse-

quence of Theorem 1 in [Crouzeix et al. (1983)]. As pointed out by Crouzeix

et al. the result follows from a non-trivial homotopy argument. A relatively

elementary proof of Theorem 1 in [Crouzeix et al. (1983)] can be found for

a continuously differentiable function in Hairer and Wanner [Hairer and

Wanner (1991)]: see Theorem 14.2 in Chapter IV. In fact the result also

is a consequence of the Browder-Minty theorem applied to the mapping
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y ÞÑ y � δf ps, x, y, ZM psqq where δ ¡ 0 is such that δC1   1; see Theorem

5.10 in Subsection 5.4.1. For a few more details see remarks 5.19 and

Remark 5.20. Let fs,x,M be the mapping y ÞÑ f ps, x, y, ZM psqq, and put

fδ ps, x, y, ZM psqq � f
�
s, x, pI � δfs,x,M q�1

y, ZM psq	 . (5.83)

Then the functions fδ, 0   δ   p2C1q�1
, are Lipschitz continuous with

constant δ�1. Proposition 5.8 treats the transition from solutions of BSDE’s

with generator fδ with fixed martingale M P M2 to solutions of BSDE’s

driven by f with the same fixed martingale M . Proposition 5.6 contains

the passage from solutions pY,Nq P S2 �M2 to BSDE’s with generators

of the form ps, yq ÞÑ f ps, y, ZM psqq for any fixed martingale M P M2 to

solutions for BSDE’s of the form (5.74) where the pair pY,Mq belongs to

S2 � M2. By hypothesis the process s ÞÑ f ps, x, Y psq, ZM psqq satisfies

(5.72) and (5.73). Essentially speaking a combination of these observations

show the result in Theorem 5.2. �

Remark 5.15. In the literature functions with the monotonicity property

are also called one-sided Lipschitz functions. In fact Theorem 5.2, with

fpt, x, �, �q Lipschitz continuous in both variables, will be superseded by The-

orem 5.4 in the Lipschitz case and by Theorem 5.5 in case of monotonicity

in the second variable and Lipschitz continuity in the third variable. The

proof of Theorem 5.2 is part of the results in Section 5.3. Theorem 5.7 con-

tains a corresponding result for a Markov family of probability measures.

Its proof is omitted, it follows the same lines as the proof of Theorem 5.5.

5.3 Existence and uniqueness of solutions to BSDE’s

The equation in (5.58) can be phrased in a semi-linear setting as follows.

Find a function u pt, xq which satisfies the following partial differential equa-

tion:$&% BuBs ps, xq � Lpsqu ps, xq � f
�
s, x, ups, xq,∇L

u ps, xq� � 0;

upT, xq � ϕ pT, xq , x P E. (5.84)

Here ∇L
f2
ps, xq is the linear functional f1 ÞÑ Γ1 pf1, f2q ps, xq for smooth

enough functions f1 and f2. For s P r0, T s fixed the symbol ∇L
f2

stands

for the linear mapping f1 ÞÑ Γ1 pf1, f2q ps, �q. One way to treat this kind

of equation is considering the following backward problem. Find a pair of
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adapted processes pY, ZY q, satisfying
Y ptq � Y pT q � » T

t

f ps,Xpsq, Y psq, Zpsq p�, Y qq ds �Mptq �MpT q, (5.85)
where Mpsq, t0   t ¤ s ¤ T , is a forward local Pt,x-martingale (for every

T ¡ t ¡ t0). The symbol ZY1
, Y1 P S2

�r0, T s,Rk�, stands for the functional
ZY1

pY2q psq � Zpsq pY1p�q, Y2p�qq � d

ds
〈Y1p�q, Y2p�q〉 psq, Y2 P S2

�r0, T s,Rk� .
(5.86)

If the pair pY, ZY q satisfies (5.85), then ZY � ZM . For a precise defini-

tion of the functional ZM psq see Definition 5.7 above. Instead of trying to

find the pair pY, ZY q we will try to find a pair pY,Mq P S2
�r0, T s,Rk� �

M2
�r0, T s,Rk� such that

Y ptq � Y pT q � » T
t

f ps,Xpsq, Y psq, ZM psqq ds�Mptq �MpT q.
Next we define the spaces S2

�r0, T s,Rk� and M2
�r0, T s,Rk�: compare

with the definitions 5.4 and 5.5.

Definition 5.8. Let pΩ,F ,Pq be a probability space, and let Ft, t P r0, T s,
be a filtration on F . Let t ÞÑ Y ptq be an stochastic process with values

in Rk which is adapted to the filtration Ft and which is P-almost surely

continuous. Then Y is said to belong to the space S2
�r0, T s,Rk� provided

that

E

�
sup
tPr0,T s |Y ptq|2�   8.

Definition 5.9. The space of P-almost surely continuous Rk-valued mar-

tingales in L2
�
Ω,F ,P;Rk

�
is denoted by M2

�r0, T s,Rk�. So that a con-

tinuous martingale t ÞÑMptq �Mp0q belongs to M2
�r0, T s,Rk� if

E

�|MpT q �Mp0q|2�   8. (5.87)

Since the process t ÞÑ |Mptq|2 � |Mp0q|2 � 〈M,M〉 ptq � 〈M,M〉 p0q is a

martingale difference we see that

E

�|MpT q �Mp0q|2� � E r〈M,M〉 pT q � 〈M,M〉 p0qs , (5.88)

and hence a martingale difference t ÞÑ Mptq � Mp0q in L2
�
Ω,F ,P;Rk

�
belongs to M2

�r0, T s,Rk� if and only if E r〈M,M〉 pT q � 〈M,M〉 p0qs is

finite. By the Burkholder-Davis-Gundy inequality this is the case if and

only if

E

�
sup

0 t T |Mptq �Mp0q|2�   8.
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To be precise, let Mpsq, t ¤ s ¤ T , be a continuous local L2-martingale

taking values in Rk. Put M�psq � supt¤τ¤s |Mpτq|. Fix 0   p   8. The

Burkholder-Davis-Gundy inequality says that there exist universal finite

and strictly positive constants cp and Cp such that

cpE
�pM�psqq2p� ¤ E r〈Mp�q,Mp�q〉p psqs ¤ CpE

�pM�psqq2p� , t ¤ s ¤ T.

(5.89)

If p � 1, then cp � 1
4
, and if p � 1

2
, then cp � 1

8

?
2. For more details

and a proof see e.g. [Ikeda and Watanabe (1998)]. A version for càdlàg

martingales, and p ¥ 1, can be found as Theorem 48 in [Protter (2005)]. For

the original, and more general result with convex functions, see [Burkholder

et al. (1972)].

As in Definition 5.6 there is a need for martingales with an absolutely

continuous variation process. That is why we insert the following defini-

tions. We also need a precise notion of the functionals ZM psq, where M is

a continuous martingale in the space M2
�r0, T s,Rk�. Compare Definition

5.10 with Definition 5.7 above.

Definition 5.10. Let M be a (P-almost surely continuous) martingale

in M2
�r0, T s,Rk�. Then M is said to be absolutely continuous if the

function t ÞÑ E

�|Mptq|2� is absolutely continuous. The subspace of

M2
�r0, T s,Rk� consisting of the absolutely continuous martingales is de-

noted by M2
AC

�r0, T s,Rk�. Let M P M2
�r0, T s,Rk�. As in the proof of

Lemma 5.1 it follows that for every N PM2
�r0, T s,Rk� the right derivative

s ÞÑ d

ds
〈M,N〉 psq � lim

hÓ0 〈M,N〉 ps� hq � 〈M,N〉 psq
h

exists P � λ-almost

everywhere. Here λ is the Lebesgue measure on r0, T s. So for s P r0, T q
fixed it makes sense to introduce the spacesM2,s

AC

�r0, T s,P;Rk�, 0 ¤ s   T .

A functional Zpsq belongs to the space M2,s
AC

�r0, T s,P;Rk� if there exists a

martingale M P M2
�r0, T s,Rk� such that for all N P M2

�r0, T s,Rk� the

limit

Zpsq pNq � lim
hÓ0 〈M,N〉 ps� hq � 〈M,N〉 psq

h

exists P-almost surely. In order to indicate that the functional Zpsq orig-
inates from the martingale M the notation Zpsq � ZM psq is used. As

in formula (5.50) of Definition 5.7 the space M2,s
AC

�r0, T s,P;Rk� will be

supplied with the inner-product:

〈ZM psq, ZN psq〉M2,s
AC

� E

�
d

ds
〈M,N〉 psq� , M, N PM2

AC

�r0, T s,P;Rk� ,
(5.90)
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and the M2,s
AC-norm of ZM psq is defined by}ZM psq}M2,s

AC

� �
E

�
d

ds
〈M,M〉 psq�
1{2

.

In the notation we often suppress the dependence on P: M2,s
AC

�r0, T s,P;Rk�
is often replaced with M2,s

AC

�r0, T s;Rk� or even M2,s
AC. Let the process M

be a k-dimensional martingale in M2
�r0, T s,P;Rk� (see Definition 5.9).

From the proof of Lemma 5.1 it follows that it makes sense to write
d

dt

〈

M j ,M j
〉 ptq. The expression

d

dt
〈M,M〉 ptq, is shorthand for

d

dt
〈M,M〉 ptq � ķ

j�1

d

dt

〈

M j ,M j
〉 ptq.

The following theorem will be employed to prove continuity of solutions to

BSDE’s. It also implies that BSDE’s as considered by us possess at most

unique solutions. The variables pY,Mq and pY 1,M 1q attain their values in

Rk � Rk endowed with its Euclidean inner-product 〈y1, y〉 � °k
j�1 y

1
jyj , y

1,
y P Rk. Processes of the form s ÞÑ f ps, Y psq, ZM psqq are progressively mea-

surable processes whenever the pair pY,Mq belongs to the space mentioned

in (5.91) of the next theorem.

Theorem 5.3. Let the pairs pY,Mq and pY 1,M 1q, which belong to the space

L2
�r0, T s � Ω,F0

T , dt� P
��M2

�
Ω,F0

T ,P
�
, (5.91)

and are P-almost surely continuous, be solutions to the following BSDE’s:

Y ptq � Y pT q � » T
t

f ps, Y psq, ZM psqq ds�Mptq �MpT q, and (5.92)

Y 1ptq � Y 1pT q � » T
t

f 1 �s, Y 1psq, ZM 1psq� ds�M 1ptq �M 1pT q (5.93)

for 0 ¤ t ¤ T . In particular this means that the processes pY,Mq andpY 1,M 1q are progressively measurable and are square integrable. Suppose

that the coefficient f 1 satisfies the following monotonicity and Lipschitz

condition. There exist some positive and finite constants C 1
1 and C 1

2 such

that the following inequalities hold for all 0 ¤ t ¤ T :
〈

Y 1ptq � Y ptq, f 1 �t, Y 1ptq, ZM 1ptq�� f 1 pt, Y ptq, ZM 1ptqq〉¤ �
C 1

1

�2 ��Y 1ptq � Y ptq��2 , and (5.94)��f 1 pt, Y ptq, ZM 1ptqq � f 1 pt, Y ptq, ZM ptqq��2
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C 1

2

�2 d

dt

〈

M 1 �M,M 1 �M
〉 ptq. (5.95)

Then the pair pY 1 � Y,M 1 �Mq belongs to

S2
�
Ω,F0

T ,P;R
k
��M2

�
Ω,F0

T ,P;R
k
�
,

and there exists a constant C 1 which depends on C 1
1, C

1
2 and T such that

E

�
sup

0 t T ��Y 1ptq � Y ptq��2 � 〈

M 1 �M,M 1 �M
〉 pT q�¤ C 1E���Y 1pT q � Y pT q��2� » T

0

��f 1 ps, Y psq, ZM psqq � f ps, Y psq, ZM psqq��2 ds� . (5.96)

The functionals ZM ptq and ZM 1ptq belong to the space

M2,t
AC

�r0, T s,P;Rk� �M2,t
AC

�r0, T s;Rk� , 0 ¤ t ¤ T.

Remark 5.16. From the proof it follows that for C 1 we may choose C 1 �
260eγT , where γ � 1� 2 pC 1

1q2 � 2 pC 1
2q2.

By taking Y pT q � Y 1pT q and f ps, Y psq, ZM psqq � f 1 ps, Y psq, ZM psqq it

also implies that BSDE’s as considered by us possess at most unique solu-

tions. A precise formulation reads as follows.

Corollary 5.2. Suppose that the coefficient f satisfies the mono-

tonicity condition (5.94) and the Lipschitz condition (5.95). Then

there exists at most one P-almost surely continuous pair pY,Mq P
L2

�r0, T s � Ω,F0
T , dt� P

� � M2
�
Ω,F0

T ,P
�
which satisfies the backward

stochastic differential equation in (5.92).

Proof. [Proof of Theorem 5.3.] Put Y � Y 1 � Y and M � M 1 �M .

From Itô’s formula it follows that��Y ptq��2 � 〈

M,M
〉 pT q � 〈

M,M
〉 ptq� ��Y pT q��2 � 2

» T
t

〈

Y psq, f 1 �s, Y 1psq, ZM 1psq�� f 1 ps, Y psq, ZM 1psqq〉 ds� 2

» T
t

〈

Y psq, f 1 ps, Y psq, ZM 1psqq � f 1 ps, Y psq, ZM psqq〉 ds� 2

» T
t

〈

Y psq, f 1 ps, Y psq, ZM psqq � f ps, Y psq, ZM psqq〉 ds
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» T
t

〈

Y psq, dMpsq〉 . (5.97)

(Notice that in the left-hand side of (5.97) the brackets 〈�, �〉 denote the in-

crement of the variation process of the P-almost sure continuous martingale

M P M2
�r0, T s;Rk�, and that in the right-hand side the brackets denote

an inner-product in Rk.) Inserting the inequalities (5.94) and (5.95) into

(5.97) shows:��Y ptq��2 � 〈

M,M
〉 pT q � 〈

M,M
〉 ptq¤ ��Y pT q��2 � 2

�
C 1

1

�2 » T
t

��Y psq��2 ds� 2C 1
2

» T
t

��Y psq�� � d

ds

〈

M,M
〉 psq
1{2

ds� 2

» T
t

��Y psq�� ��f 1 ps, Y psq, ZM psqq � f ps, Y psq, ZM psqq�� ds� 2

» T
t

〈

Y psq, dMpsq〉 . (5.98)

The elementary inequalities 2ab ¤ 2C 1
2a

2 � b2

2C 1
2

and 2ab ¤ a2 � b2, 0 ¤ a,

b P R, apply to the effect that��Y ptq��2 � 1

2

�〈
M,M

〉 pT q � 〈

M,M
〉 ptq�¤ ��Y pT q��2 � �

1� 2
�
C 1

1

�2 � 2
�
C 1

2

�2	» T
t

��Y psq��2 ds� » T
t

��f 1 ps, Y psq, ZM psqq � f ps, Y psq, ZM psqq��2 ds� 2

» T
0

〈

Y psq, dM psq〉� 2

» t
0

〈

Y psq, dMpsq〉 . (5.99)

For a concise formulation of the relevant inequalities we introduce the fol-

lowing functions and the constant γ:

AY ptq � E

���Y ptq��2� ,
AM ptq � E

�〈
M,M

〉 pT q � 〈

M,M
〉 ptq� ,

Cpsq � E

���f 1 ps, Y psq, ZM psqq � f ps, Y psq, ZM psqq��2� ,
Bptq � AY pT q � » T

t

Cpsqds � BpT q � » T
t

Cpsqds, and

γ � 1� 2
�
C 1

1

�2 � 2
�
C 1

2

�2
. (5.100)
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Using the quantities in (5.100) and remembering the fact that the final

term in (5.99) represents a martingale difference, the inequality in (5.99)

implies:

AY ptq � 1

2
AM ptq ¤ Bptq � γ

» T
t

AY psqds. (5.101)

Using (5.101) and employing induction with respect to n yields:

AY ptq � 1

2
AM ptq (5.102)¤ Bptq � » T
t

ņ

k�0

γk�1pT � sqk
k!

Bpsqds� » T
t

γn�2pT � sqn�1pn� 1q! AY psqds.
Passing to the limit for nÑ8 in (5.102) results in:

AY ptq � 1

2
AM ptq ¤ Bptq � γ

» T
t

eγpT�sqBpsqds. (5.103)

Since Bptq � AY pT q � ³T
t
Cpsqds from (5.103) we infer:

AY ptq � 1

2
AM ptq ¤ eγpT�tq�AY pT q � » T

t

Cpsqds� . (5.104)

By first taking the supremum over 0   t   T and then taking expectations

in (5.99) gives:

E

�
sup

0 t T ��Y ptq��2�¤ E

���Y pT q��2�� �
1� 2

�
C 1

1

�2 � 2
�
C 1

2

�2	» T
0

E

���Y psq��2� ds� » T
0

E

���f 1 ps, Y psq, ZM psqq � f ps, Y psq, ZM psqq��2� ds� 2E

�
sup

0 t T » t0 〈

Y psq, dMpsq〉� . (5.105)

The quadratic variation process of the martingale t ÞÑ ³t
0

〈

Y psq, dMpsq〉 is

given by the increasing process t ÞÑ ķ

j1�1

ķ

j2�1

» t
0

Yj1psqYj2 psq d 〈Mj1 ,Mj2〉 psq
which is dominated by the process t ÞÑ ³t

0

��Y psq��2 d 〈M,M
〉 psq. The in-

equality
ķ

j1�1

ķ

j2�1

» t
0

Yj1psqYj2 psq d 〈Mj1 ,Mj2〉 psq ¤ » t
0

|Y psq|2 d 〈M,M〉 psq
follows from inequalities of the form (1 ¤ j1, j2 ¤ k)

2

» t
0

Yj1psqYj2 psqd 〈Mj1 ,Mj2〉 psq
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0

|Yj1 psq|2 d 〈Mj2 ,Mj2〉 psq � » t
0

|Yj2psq|2 d 〈Mj1 ,Mj1〉 psq. (5.106)

Here Y � pY1, . . . , Ykq, M � pM1, . . . ,Mkq, |Y |2 � °k
j�1 |Yj |2, and by

definition 〈M,M〉 ptq � °k
j�1 〈Mj ,Mj〉 ptq. From the Burkholder-Davis-

Gundy inequality (5.89) we know that

E

�
sup

0 t T » t0 〈

Y psq, dMpsq〉� ¤ 4
?
2E

���» T
0

��Y psq��2 d 〈M,M
〉 psq�1{2�� .

(5.107)

(For more details on the Burkholder-Davis-Gundy inequality, see e.g. [Ikeda

and Watanabe (1998)].) Again we use an elementary inequality 4
?
2ab ¤

1
4
a2 � 32b2 and plug it into (5.107) to obtain

E

�
sup

0 t T » t0 〈

Y psq, dMpsq〉�¤ 4
?
2E

�� sup
0 t T ��Y ptq���» T

0

d
〈

M,M
〉 psq�1{2��¤ 1

4
E

�
sup

0 t T ��Y ptq��2�� 32E
�〈
M,M

〉 pT q� . (5.108)

From (5.104) we also infer

γ

» T
0

AY psqds ¤ γ

» T
0

eγpT�sq�AY pT q � » T
s

Cpρqdρ� ds� �
eγT � 1

�
AY pT q � » T

0

�
eγT � eγρ

�
Cpρqdρ. (5.109)

Inserting the inequalities (5.108) and (5.109) into (5.105) yields:

E

�
sup

0 t T ��Y ptq��2� ¤ eγTE
���Y pT q��2�� eγT

» T
0

Cpsqds � 1

2
E

�
sup

0 t T ��Y ptq��2�� 64E
�〈
M,M

〉 pT q� . (5.110)

From (5.104) we also get

E
�〈
M,M

〉 pT q� � AM p0q (5.111)¤ 2eγT

�
AY pT q � » T

0

Cpsqds� � 2eγT

�
E

���Y pT q��2�� » T
0

Cpsqds� .
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A combination of (5.111) and (5.110) results in

E

�
sup

0 t T ��Y ptq��2� ¤ 258eγT

�
E

���Y pT q��2�� » T
0

Cpsqds� . (5.112)

Adding the right- and left-hand sides of (5.110) and (5.111) proves Theorem

5.3 with the constant C 1 given by C 1 � 260eγT , where γ � 1 � 2 pC 1
1q2 �

2 pC 1
2q2.
This completes the proof of Theorem 5.3. �

In the definitions 5.8 and 5.9 the spaces S2
�r0, T s,Rk� and M2

�r0, T s,Rk�
are defined.

In Theorem 5.5 we will replace the Lipschitz condition (5.113) in Theo-

rem 5.4 for the function Y psq ÞÑ f ps, Y psq, ZM psqq with the (weaker) mono-

tonicity condition (5.137). Here we write y for the variable Y psq and z for

ZM psq. It is noticed that we consider a probability space pΩ,F ,Pq with a

filtration pFtqtPr0,T s � �
F0
t

�
tPr0,T s where FT � F . In Theorem 5.4 for every

fixed s P r0, T s the function f ps, �, �q is defined on Rk�M2,s
AC

�r0, T s,P;Rk�:
see Definition 5.10. Instead of M2,s

AC

�r0, T s,P;Rk� we write M2,s
AC.

Theorem 5.4. Let fpsq : Rk �M2,s
AC Ñ Rk, 0 ¤ s ¤ T , be a Lipschitz

continuous in the sense that there exists finite constants C1 and C2 such

that for any two pairs of processes pY,Mq and pU,Nq P S2
�r0, T s,Rk� �

M2
�r0, T s,Rk� the following inequalities hold for all 0 ¤ s ¤ T :|f ps, Y psq, ZM psqq � f ps, Upsq, ZM psqq| ¤ C1 |Y psq � Upsq| , and (5.113)|fps, Y psq, ZM psqq�fps, Y psq, ZN psqq| ¤ C2

�
d

ds
〈M�N,M�N〉 psq
1{2.

(5.114)

Suppose that E

�³T
0
|fps, 0, 0q|2 ds�   8. Then there exists a unique pairpY,Mq P S2

�r0, T s,Rk��M2
�r0, T s,Rk� such that

Y ptq � ξ � » T
t

f ps, Y psq, ZM psqq ds�Mptq �MpT q, (5.115)

where Y pT q � ξ P L2
�
Ω,FT ,Rk

�
is given and Y p0q �Mp0q.

For brevity we write

S2 �M2 � S2
�r0, T s,Rk��M2

�r0, T s,Rk�� S2
�
Ω,F0

T ,P;R
k
��M2

�
Ω,F0

T ,P;R
k
�
.
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In fact we employ this theorem with the function f replaced by fδ, 0   δ  p2C1q�1
, defined by

fδ ps, y, ZM psqq � f
�
s, pI � δfs,M q�1

y, ZM psq	 . (5.116)

Here fs,M pyq � f ps, y, ZM psqq. If the function f is monotone (or one-sided

Lipschitz) in the second variable with constant C1, and Lipschitz in the

third variable with constant C2, then the function fδ is Lipschitz in y with

Lipschitz constant δ�1.

Proof. The proof of the uniqueness part follows from Corollary 5.2.

In order to prove existence we proceed as follows. By induction we

define a sequence pYn,Mnq in the space S2 �M2 as follows. PutrYn�1ptq � E

�
ξ � » T

t

f ps, Ynpsq, ZMn
psqq ds �� Ft� , and (5.117)�Mn�1ptq � E

�
ξ � » T

0

f ps, Ynpsq, ZMn
psqq ds �� Ft� . (5.118)

The processes t ÞÑ rYn�1ptq and t ÞÑ �Mn�1ptq need not be continuous. It is

easy to see that the jumps of the processes t ÞÑ rYn�1ptq and t ÞÑ �Mn�1ptq
coincide. Moreover, if we subtract the jumps from Mn�1ptq we still have a

martingale, i.e. the process

t ÞÑMn�1ptq :� �Mn�1ptq �
ş¤t��Mn�1psq � �Mn�1ps�q	 (5.119)

is still a martingale which belongs to M2. In particular it is continuous.

In the same manner we introduce the process Yn�1ptq:
t ÞÑ Yn�1ptq :� rYn�1ptq �

ş¤t��Mn�1psq � �Mn�1ps�q	� rYn�1ptq �
ş¤t�rYn�1psq � rYn�1ps�q	 . (5.120)

By construction the processesMn�1 and Yn�1 are continuous. Since by as-

sumption the variable ξ�³T
0
f ps, Ynpsq, ZMn

psqq ds belongs to L2 pΩ,FT ,Pq
it follows that the martingaleMn�1 belongs to L

2 pΩ,FT ,Pq. Moreover, us-

ing the fact that the process s ÞÑ f ps, Ynpsq,Mnpsqq is adapted we have:

ξ � » T
t

f ps, Ynpsq, ZMn
psqq ds� �Mn�1ptq � �Mn�1pT q� ξ � » T

t

f ps, Ynpsq, ZMn
psqq ds� E

�
ξ � » T

0

f ps, Ynpsq, ZMn
psqq ds �� Ft�
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�
ξ � » T

0

f ps, Ynpsq, ZMn
psqq ds �� FT�� ξ � » T

t

f ps, Ynpsq, ZMn
psqq ds� E

�
ξ � » T

0

f ps, Ynpsq, ZMn
psqq ds �� Ft�� ξ � » T

0

f ps, Ynpsq, ZMn
psqq ds� E

�
ξ � » T

0

f ps, Ynpsq, ZMn
psqq ds �� Ft�� » t

0

f ps, Ynpsq, ZMn
psqq ds� E

�
ξ � » T

t

f ps, Ynpsq, ZMn
psqq ds �� Ft� � rYn�1ptq. (5.121)

Since ξ � Yn�1pT q (5.121) implies that the jump parts of the process Yn�1

occur at the same time instances as those ofMn�1. As a consequence these

jump parts cancel each other. So without loss of generality we assume

that the processes Yn�1 and Mn�1 are P-almost surely continuous, and

that (5.121) is satisfied with Yn�1ptq and Mn�1ptq instead of rYn�1ptq and�Mn�1ptq respectively.
Suppose that the pair pYn,Mnq belongs S2 �M2. We first prove that

the pair pYn�1,Mn�1q is a member of S2 �M2. As explained above we

may and do assume that the pair of precesses t ÞÑ pYn�1ptq,Mn�1ptqq is

continuous P-almost surely. Therefore we fix α � 1 � C2
1 � C2

2 P R where

C1 and C2 are as in (5.113) and (5.114) respectively. From Itô’s formula

we get:

e2αt |Yn�1ptq|2 � 2α

» T
t

e2αs |Yn�1psq|2 ds� » T
t

e2αsd 〈Mn�1,Mn�1〉 psq� e2αT |Yn�1pT q|2� 2

» T
t

e2αs 〈Yn�1psq, f ps, Ynpsq, ZMn
psqq � f ps, Ynpsq, 0q〉 ds� 2

» T
t

e2αs 〈Yn�1psq, f ps, Ynpsq, 0q � f ps, 0, 0q〉 ds� 2

» T
t

e2αs 〈Yn�1psq, f ps, 0, 0q〉 ds� 2

» T
t

e2αs 〈Yn�1psq, dMn�1psq〉 .
(5.122)

(Notice that the bracket in the left-hand side of (5.122) denotes the varia-

tion process of the k-dimensional martingale M , and that the brackets in
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the right-hand side denote inner-products in Rk.) We employ (5.113) and

(5.114) to obtain from (5.122):

e2αt |Yn�1ptq|2 � 2α

» T
t

e2αs |Yn�1psq|2 ds� » T
t

e2αsd 〈Mn�1,Mn�1〉 psq¤ e2αT |Yn�1pT q|2 � 2C2

» T
t

e2αs |Yn�1psq|� d

ds
〈Mn,Mn〉 psq
1{2

ds� 2C1

» T
t

e2αs |Yn�1psq| |Ynpsq| ds� 2

» T
t

e2αs |Yn�1psq| |f ps, 0, 0q| ds� 2

» T
t

e2αs 〈Yn�1psq, dMn�1psq〉 .
(5.123)

The elementary inequalities 2ab ¤ 2Cja
2 � b2

2Cj
, a, b P R, j � 0, 1, 2, with

C0 � 1, in combination with (5.123) yield

e2αt |Yn�1ptq|2 � 2α

» T
t

e2αs |Yn�1psq|2 ds� » T
t

e2αsd 〈Mn�1,Mn�1〉 psq¤ e2αT |Yn�1pT q|2 � 2C2
2

» T
t

e2αs |Yn�1psq|2 ds� 1

2

» T
t

e2αsd 〈Mn,Mn〉 psq� 2C2
1

» T
t

e2αs |Yn�1psq|2 ds� 1

2

» T
t

e2αs |Ynpsq|2 ds� » T
t

e2αs |Yn�1psq|2 ds� » T
t

e2αs |f ps, 0, 0q|2 ds� 2

» T
t

e2αs 〈Yn�1psq, dMn�1psq〉 , (5.124)

and hence by the choice of α from (5.124) we infer:

e2αt |Yn�1ptq|2 � » T
t

e2αs |Yn�1psq|2 ds� » T
t

e2αsd 〈Mn�1,Mn�1〉 psq� 2

» T
0

e2αs 〈Yn�1psq, dMn�1psq〉¤ e2αT |Yn�1pT q|2 � 1

2

» T
t

e2αsd 〈Mn,Mn〉 psq � 1

2

» T
t

e2αs |Ynpsq|2 ds� » T
t

e2αs |f ps, 0, 0q|2 ds� 2

» t
0

e2αs 〈Yn�1psq, dMn�1psq〉 . (5.125)

The following steps can be justified by observing that the process Yn�1 be-

longs to the space L2
�
Ω,F0

T ,P
�
, and that sup0¤t¤T |Yn�1ptq|   8 P-almost
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surely. By stopping the process Yn�1ptq at the stopping time τN being the

first time t ¤ T that |Yn�1ptq| exceeds N . In inequality (5.125) we then re-

place t by t^τN , T by τN , and proceed as below with the stopped processes

instead of the processes itself. Then we use the monotone convergence the-

orem to obtain inequality (5.128). By the same approximation argument

we may assume that E

�³T
t
e2αs 〈Yn�1psq, dMn�1psq〉� � 0. Hence (5.125)

implies that

E

�
e2αt |Yn�1ptq|2 � » T

t

e2αs |Yn�1psq|2 ds� » T
t

e2αsd 〈Mn�1,Mn�1〉 psq�¤ e2αTE
�|Yn�1pT q|2�� 1

2
E

�» T
t

e2αsd 〈Mn,Mn〉 psq�� 1

2
E

�» T
t

e2αs |Ynpsq|2 ds�� E

�» T
t

e2αs |f ps, 0, 0q|2 ds�   8. (5.126)

Invoking the Burkholder-Davis-Gundy inequality with p � 1
2
(see inequality

(5.89)) and applying the inequality (see inequality (5.106))

〈» �
0

e2αs 〈Yn�1psq, dMn�1psq〉 , » �
0

e2αs 〈Yn�1psq, dMn�1psq〉〉 ptq¤ » t
0

e4αs |Yn�1psq|2 d 〈Mn�1,Mn�1〉 psq
to (5.125) yields:

E

�
sup

0 t T e2αt |Yn�1ptq|2�¤ e2αTE
�|Yn�1pT q|2�� 1

2
E

�» T
0

e2αsd 〈Mn,Mn〉 psq�� 1

2
E

�» T
0

e2αs |Ynpsq|2 ds�� E

�» T
0

e2αs |f ps, 0, 0q|2 ds�� 2E

�» T
0

e2αs 〈Yn�1psq, dMn�1psq〉�� 8
?
2E

���» T
0

e4αs |Yn�1psq|2 d 〈Mn�1,Mn�1〉 psq�1{2��
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(without loss of generality assume that E
�³T

0
e2αs 〈Yn�1psq, dMn�1psq〉� �

0; this can be achieved by localization)¤ e2αTE
�|Yn�1pT q|2�� 1

2
E

�» T
0

e2αsd 〈Mn,Mn〉 psq�� 1

2
E

�» T
0

e2αs |Ynpsq|2 ds�� E

�» T
0

e2αs |f ps, 0, 0q|2 ds�� 8
?
2E

�� sup
0 t T eαt |Yn�1ptq|�» T

0

e2αsd 〈Mn�1,Mn�1〉 psq�1{2��
(8
?
2ab ¤ a2

2
� 64b2, a, b P R)¤ e2αTE

�|Yn�1pT q|2�� 1

2
E

�» T
0

e2αsd 〈Mn,Mn〉 psq�� 1

2
E

�» T
0

e2αs |Ynpsq|2 ds�� E

�» T
0

e2αs |f ps, 0, 0q|2 ds�� 1

2
E

�
sup

0 t T e2αt |Yn�1ptq|2�� 64E

�» T
0

e2αsd 〈Mn�1,Mn�1〉 psq�
(apply (5.126))¤ 65e2αTE

�|Yn�1pT q|2�� 65

2
E

�» T
0

e2αsd 〈Mn,Mn〉 psq�� 65

2
E

�» T
0

e2αs |Ynpsq|2 ds�� 65E

�» T
0

e2αs |f ps, 0, 0q|2 ds�� 1

2
E

�
sup

0 t T e2αt |Yn�1ptq|2� . (5.127)

From (5.127) it follows that

E

�
sup

0 t T e2αt |Yn�1ptq|2�¤ 130e2αTE
�|Yn�1pT q|2�� 130E

�» T
0

e2αs |f ps, 0, 0q|2 ds� (5.128)
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�» T
0

e2αsd 〈Mn,Mn〉 psq�� 65E

�» T
0

e2αs |Ynpsq|2 ds�   8.
From (5.126) and (5.128) it follows that the pair pYn�1,Mn�1q belongs to
S2 �M2.

Another application of Itô’s formula shows:

e2αt |Yn�1ptq � Ynptq|2 � 2α

» T
t

e2αs |Yn�1psq � Ynpsq|2 ds� » T
t

e2αsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq� e2αT |Yn�1pT q � YnpT q|2� 2

» T
t

e2αs
〈

△Ynpsq, f ps, Ynpsq, ZMn
psqq � f

�
s, Ynpsq, ZMn�1

psq�〉 ds� 2

» T
t

e2αs
〈

△Ynpsq, fps, Ynpsq, ZMn�1
psqq � fps, Yn�1psq, ZMn�1

psqq〉 ds� 2

» T
t

e2αs 〈Yn�1psq � Ynpsq, dMn�1psq � dMnpsq〉 , (5.129)

where for brevity we wrote △Ynpsq � Yn�1psq � Ynpsq. From (5.113),

(5.114), and (5.129) we infer

e2αt |Yn�1ptq � Ynptq|2 � 2α

» T
t

e2αs |Yn�1psq � Ynpsq|2 ds� » T
t

e2αsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq¤ e2αT |Yn�1pT q � YnpT q|2� 2C2

» T
t

e2αs |Yn�1psq � Ynpsq|� d

ds
〈Mn �Mn�1,Mn �Mn�1〉 psq
1{2ds� 2C1

» T
t

e2αs |Yn�1psq � Ynpsq| |Ynpsq � Yn�1psq| ds� 2

» T
t

e2αs 〈Yn�1psq � Ynpsq, dMn�1psq � dMnpsq〉¤ e2αT |Yn�1pT q � YnpT q|2 � 2C2
2

» T
t

e2αs |Yn�1psq � Ynpsq|2 ds� 1

2

» T
t

e2αsd 〈Mn �Mn�1,Mn �Mn�1〉 psq� 2C2
1

» T
t

e2αs |Yn�1psq � Ynpsq|2 ds� 1

2

» T
t

e2αs |Ynpsq � Yn�1psq|2 ds
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» T
t

e2αs 〈Yn�1psq � Ynpsq, dMn�1psq � dMnpsq〉 . (5.130)

Since α � 1� C2
1 � C2

2 the inequality in (5.130) implies:

e2αt |Yn�1ptq � Ynptq|2 � 2

» T
t

e2αs |Yn�1psq � Ynpsq|2 ds� » T
t

e2αsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq¤ e2αT |Yn�1pT q � YnpT q|2� 1

2

» T
t

e2αsd 〈Mn �Mn�1,Mn �Mn�1〉 psq� 1

2

» T
t

e2αs |Ynpsq � Yn�1psq|2 ds� 2

» T
0

e2αs 〈Yn�1psq � Ynpsq, dMn�1psq � dMnpsq〉� 2

» t
0

e2αs 〈Yn�1psq � Ynpsq, dMn�1psq � dMnpsq〉 . (5.131)

Upon taking expectations in (5.131) we see

e2αtE
�|Yn�1ptq � Ynptq|2�� 2E

�» T
t

e2αs |Yn�1psq � Ynpsq|2 ds�� E

�» T
t

e2αsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq�¤ e2αTE
�|Yn�1pT q � YnpT q|2�� 1

2
E

�» T
t

e2αsd 〈Mn �Mn�1,Mn �Mn�1〉 psq�� 1

2
E

�» T
t

e2αs |Ynpsq � Yn�1psq|2 ds� . (5.132)

In particular it follows that

2E

�» T
t

e2αs |Yn�1psq � Ynpsq|2 ds�� E

�» T
t

e2αsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq�
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2
E

�» T
t

e2αs |Ynpsq � Yn�1psq|2 ds�� 1

2
E

�» T
t

e2αsd 〈Mn �Mn�1,Mn �Mn�1〉 psq� ,
provided that Yn�1pT q � YnpT q. As a consequence we see that the sequencepYn,Mnq converges with respect to the norm }�}α defined by�����YM
����2

α

� E

�» T
0

e2αs |Y psq|2 ds� » T
0

e2αsd 〈M,M〉 psq� .
Employing a similar reasoning as the one we used to obtain (5.127) and

(5.128) from (5.131) we also obtain:

sup
0¤t¤T e2αt |Yn�1ptq � Ynptq|2¤ e2αT |Yn�1pT q � YnpT q|2� 1

2

» T
0

e2αsd 〈Mn �Mn�1,Mn �Mn�1〉 psq� 1

2

» T
0

e2αs |Ynpsq � Yn�1psq|2 ds� 2

» T
0

e2αs 〈Yn�1psq � Ynpsq, dMn�1psq � dMnpsq〉� 2 sup
0¤t¤T » t0 e2αs 〈Yn�1psq � Ynpsq, dMn�1psq � dMnpsq〉 . (5.133)

By taking expectations in (5.133), and invoking the Burkholder-Davis-

Gundy inequality (5.89) for p � 1
2
we obtain:

E

�
sup

0¤t¤T e2αt |Yn�1ptq � Ynptq|2�¤ e2αTE
�|Yn�1pT q � YnpT q|2�� 1

2
E

�» T
0

e2αsd 〈Mn �Mn�1,Mn �Mn�1〉 psq�� 1

2
E

�» T
0

e2αs |Ynpsq � Yn�1psq|2 ds�� 2E

�
sup

0¤t¤T » t0 e2αs 〈Yn�1psq � Ynpsq, dMn�1psq � dMnpsq〉�
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�|Yn�1pT q � YnpT q|2�� 1

2
E

�» T
0

e2αsd 〈Mn �Mn�1,Mn �Mn�1〉 psq�� 1

2
E

�» T
0

e2αs |Ynpsq � Yn�1psq|2 ds�� 8
?
2E

��» T
0

e4αs |Yn�1psq � Ynpsq|2 d 〈Mn�1 �Mn,Mn�1 �Mn〉 psq
1{2�
(insert the definition of }�}α)¤ e2αTE

�|Yn�1pT q � YnpT q|2�� 1

2

����� Yn � Yn�1

Mn �Mn�1


����2
α� 8

?
2E

�� sup
0¤s¤T eαs |Yn�1psq � Ynpsq|��» T

0

e2αsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq�1{2��
(8
?
2ab ¤ 1

2
a2 � 64b2, a, b P R)¤ e2αTE

�|Yn�1pT q � YnpT q|2�� 1

2

����� Yn � Yn�1

Mn �Mn�1


����2
α� 1

2
E

�
sup

0¤s¤T e2αs |Yn�1psq � Ynpsq|2�� 64E

�» T
0

e2αsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq� . (5.134)

Employing inequality (5.132) (with t � 0) together with (5.134), and the

definition of the norm }�}α yields the inequality

E

�
sup

0¤t¤T e2αt |Yn�1ptq � Ynptq|2�� 129E

�» T
0

e2αs |Yn�1psq � Ynpsq|2 ds�� 1

2
E

�» T
0

e2αsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq�
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2
e2αTE

�|Yn�1pT q � YnpT q|2�� 131

4

����� Yn � Yn�1

Mn �Mn�1


����2
α� 1

2
E

�
sup

0¤s¤T e2αs |Yn�1psq � Ynpsq|2� . (5.135)

(In order to justify the transition from (5.133) to (5.135) like in passing from

inequality (5.125) to (5.128) a stopping time argument might be required.

This time an appropriate stopping time τN would be the first time t ¤ T the

process |Yn�1ptq � Ynptq| exceeds N . The time T should then be replaced

with τN .) Consequently, from (5.135) we get

E

�
sup

0¤t¤T e2αt |Yn�1ptq � Ynptq|2�� E

�» T
0

e2αsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq�¤ 131e2αTE
�|Yn�1pT q � YnpT q|2�� 131

2

����� Yn � Yn�1

Mn �Mn�1


����2
α

. (5.136)

Since by definition YnpT q � E
�
ξ
�� FT

T

�
for all n P N, this sequence also

converges with respect to the norm }�}S2�M2 defined by�����YM
����2
S2�M2

� E

�
sup

0 s T |Y psq|2�� E r〈M,M〉 pT q � 〈M,M〉 p0qs ,
because

Yn�1p0q �Mn�1p0q � E

�
ξ � » T

0

fn ps, Ynpsq, ZMn
psqq ds �� F0

0

�
, n P N.

This concludes the proof of Theorem 5.4. �

In the following Theorem 5.5 we replace the Lipschitz condition (5.113) in

Theorem 5.4 for the function Y psq ÞÑ f ps, Y psq, ZM psqq with the (weaker)

monotonicity condition (5.137). Here we write y for the variable Y psq
and z for ZM psq. As in Theorem 5.4 for every s P r0, T s the function

fpsq � fps, �, �q is defined on Rk�M2,s
AC and by hypothesis it is continuous.

Theorem 5.5. Let the function fpsq : Rk �M2,s
AC Ñ Rk be monotone in

the variable y and Lipschitz in z. More precisely, suppose that there exist

finite constants C1 and C2 such that for any two pairs of processes pY,Mq
and pU,Nq P S2

�r0, T s,Rk��M2
�r0, T s,Rk� the following inequalities hold

for all 0 ¤ s ¤ T :

〈Y psq � Upsq, f ps, Y psq, ZM psqq � f ps, Upsq, ZM psqq〉 ¤ C1 |Y psq � Upsq|2 ,
(5.137)
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�
d

ds
〈M �N,M �N〉 psq
1{2,

(5.138)

and |f ps, Y psq, 0q| ¤ fpsq �K |Y psq| . (5.139)

If E
�³T

0

��fpsq��2 ds�   8, then there exists a unique pairpY,Mq P S2
�r0, T s,Rk��M2

�r0, T s,Rk�
such that

Y ptq � ξ � » T
t

f ps, Y psq, ZM psqq ds�Mptq �MpT q, (5.140)

where Y pT q � ξ P L2
�
Ω,FT ,Rk

�
is given and where Y p0q �Mp0q.

In order to prove Theorem 5.5 we need the following proposition, the proof

of which uses the monotonicity condition (5.137) in an explicit manner.

Proposition 5.6. Suppose that for every ξ P L2
�
Ω,F0

T ,P
�
and M P M2

there exists a pair pY,Nq P S2 �M2 such that

Y ptq � ξ � » T
t

f ps, Y psq, ZM psqq ds�Nptq �NpT q. (5.141)

Then for every ξ P L2
�
Ω,F0

T ,P
�
there exists a unique pair pY,Mq P S2 �

M2 which satisfies (5.140).

The following proposition can be viewed as a consequence of Theorem 12.4

in [Hairer and Wanner (1991)]. The result is due to Burrage and Butcher

[Burrage and Butcher (1979)] and Crouzeix [Crouzeix (1979)]. The con-

stants obtained by these authors are somewhat different from ours.

Proposition 5.7. Fix a martingale M P M2, and choose δ ¡ 0 in such

a way that δC1   1. Here C1 is the constant which occurs in inequal-

ity (5.137). Choose, for given y P Rk, the random variable rY ptq P Rk

in such a way that y � rY ptq � δf
�
t, rY ptq, ZM ptq	. Then the map-

ping y ÞÑ f
�
t, rY ptq, ZM ptq	 is Lipschitz continuous with a Lipschitz

constant which is equal to
1

δ
max

�
1,

δC1

1� δC1



. Moreover, the mapping

y ÞÑ I � δf pt, y, ZM ptqq is surjective and has a Lipschitz continuous in-

verse with Lipschitz constant
1

1� δC1

.
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Proof. [Proof of Proposition 5.7.] Let the pair py1, y2q P Rk � Rk and

the pair of Rk�Rk-valued random variables
�rY1ptq, rY2ptq	 be such that the

following equalities are satisfied:

y1 � rY1ptq � δf �t, rY1ptq, ZM ptq	 and y2 � rY2ptq � δf �t, rY2ptq, ZM ptq	 .
(5.142)

We have to show that there exists a constant Cpδq such that���f �t, rY2ptq, ZM ptq	� f
�
t, rY1ptq, ZM ptq	��� ¤ Cpδq |y2 � y1| . (5.143)

In order to achieve this we will exploit the inequality:
〈rY2ptq � rY1ptq, f �t, rY2ptq, ZM ptq	� f

�
t, rY1ptq, ZM ptq	〉¤ C1

���rY2ptq � rY1ptq���2 . (5.144)

Inserting the equalities in (5.142) into (5.144) results in
〈

y2 � y1, f
�
t, rY2ptq, ZM ptq	� f

�
t, rY1ptq, ZM ptq	〉� δ

���f �t, rY2ptq, ZM ptq	� f
�
t, rY1ptq, ZM ptq	���2¤ C1 |y2 � y1|2 � 2δC1

〈

y2 � y1, f
�
t, rY2ptq, ZM ptq	� f

�
t, rY1ptq, ZM ptq	〉� C1δ

2
���f �t, rY2ptq, ZM ptq	� f

�
t, rY1ptq, ZM ptq	���2 . (5.145)

Notice that (5.145) is equivalent to:

δ
���f �t, rY2ptq, ZM ptq	� f

�
t, rY1ptq, ZM ptq	���2¤ C1 |y2 � y1|2� 2

�
δC1 � 1

2



〈

y2 � y1, f
�
t, rY2ptq, ZM ptq	� f

�
t, rY1ptq, ZM ptq	〉� C1δ

2
���f �t, rY2ptq, ZM ptq	� f

�
t, rY1ptq, ZM ptq	���2 . (5.146)

Put α � 1� |1� 2δC1|
2δC1

. Notice that, since 1 � δC1 ¡ 0, the constant α is

positive as well, α � 1 provided 2δC1   1. Since δC1   1 and

2
���〈y2 � y1, f

�
t, rY2ptq, ZM ptq	� f

�
t, rY1ptq, ZM ptq	〉���¤ 1

αδ
|y2 � y1|2 � αδ

���f �t, rY2ptq, ZM ptq	� f
�
t, rY1ptq, ZM ptq	���2 , (5.147)
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the inequality in (5.146) implies

δ
���f �t, rY2ptq, ZM ptq	� f

�
t, rY1ptq, ZM ptq	��� ¤ max

�
1,

δC1

1� δC1


 |y2 � y1| .
(5.148)

The Lipschitz constant is given by Cpδq � 1

δ
max

�
1,

δC1

1� δC1



: compare

(5.148) and (5.143). The surjectivity of the mapping y ÞÑ y�δf pt, y, ZM ptqq
is a consequence of Theorem 1 in Croezeix et al [Crouzeix et al. (1983)].

Denote the mapping y ÞÑ t pt, y, ZM ptqq by ft,M . Then for 0   2δC1   1

the mapping I � δft,M is invertible. SincepI � δft,M q�1 � I � δf
�
t, pI � δft,M q�1

, ZM ptq	 ,
and since by (5.148) the mapping y ÞÑ f

�
t, pI � δft,M q�1

y, ZM ptq	 is Lip-

schitz continuous with Lipschitz constant
1

δ
max

�
1,

δC1

1� δC1



we see that

the mapping y ÞÑ pI � δft,M q�1
y is Lipschitz continuous with constant

max

�
2,

1

1� δC1



. A somewhat better constant is obtained by again us-

ing (5.144), and replacing

f
�
t, rY2ptq, ZM ptq	� f

�
t, rY1ptq, ZM ptq	

with δ�1 pry2 � ry1 � y2 � y1q. Then we see:|ry2 � ry1|2 � 〈ry2 � ry1, y2 � y1〉 ¤ δC1 |ry2 � ry1|2 , (5.149)

and hencep1� δC1q |ry2 � ry1|2 ¤ 〈ry2 � ry1, y2 � y1〉 ¤ |ry2 � ry1| |y2 � y1| . (5.150)

Altogether this proves Proposition 5.7. �

In Corollary 5.3 the process t ÞÑ Mptq, t P r0, T s, is a martingale in the

space of Rk-valued martingales in L2
�
Ω,F ,P;Rk

�
which is denoted by

M2
�r0, T s,Rk�: see Definition 5.9.

Corollary 5.3. For δ ¡ 0 such that 2δC1   1 there exist processes Yδ andrYδ P S2 and a martingale Mδ P M2 such that the following equalities are

satisfied:

Yδptq � rYδptq � δf
�
t, rYδptq, ZM ptq	� YδpT q � » T

t

f
�
s, rYδpsq, ZM psq	 ds�Mδptq �MδpT q� YδpT q � » T

t

fδ ps, Yδpsq, ZM psqq ds�Mδptq �MδpT q. (5.151)
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Proof. From Theorem 1 (page 87) in [Crouzeix et al. (1983)] it follows

that the mapping y ÞÑ y � δf pt, y, ZM ptqq is a surjective map from Rk

onto itself, provided 0   δC1   1. If y2 and y1 in Rk are such that

y2 � δf pt, y2, ZM ptqq � y1 � δf pt, y1, ZM ptqq. Then|y2 � y1|2 � 〈y2 � y1, δf pt, y2, ZM ptqq � δf pt, y1, ZM ptqq〉 ¤ δC1 |y2 � y1|2 ,
and hence y2 � y1. It follows that the continuous mapping y ÞÑ
y � δf pt, y, ZM ptqq has a continuous inverse. Denote this inverse bypI � δft,M q�1

. Moreover, for 0   2δC1   1, the mapping y ÞÑ
f
�
t, pI � δft,M q�1

, Zmptq	 is Lipschitz continuous with Lipschitz constant

δ�1, which follows from Proposition 5.7. The remaining assertions in Corol-

lary 5.3 are consequences of Theorem 5.4 where the Lipschitz condition in

(5.113) was used with δ�1 instead of C1.

This establishes the proof of Corollary 5.3. �

Remark 5.17. For more information on the surjectivity of the mapping

y ÞÑ y � δf ps, y, zq the reader is referred to Remark 5.19 in Subsection

5.4.1.

Proof. [Proof of Proposition 5.6.] The proof of the uniqueness part fol-

lows from Corollary 5.2.

Fix ξ P L2
�
Ω,F0

T ,P
�
, and let the martingale Mn�1 P M2 be given.

Then by hypothesis there exists a pair pYn,Mnq P S2�M2 which satisfies:

Ynptq � ξ � » T
t

f
�
s, Ynpsq, ZMn�1

psq� ds�Mnptq �MnpT q. (5.152)

Another use of this hypothesis yields the existence of a pair pYn�1,Mn�1q P
S2�M2 which again satisfies (5.152) with n�1 instead of n. We will prove

that the sequence pYn,Mnq is a Cauchy sequence in the space S2 �M2.

Put γ � 1� 2C1 � 2C2
2 . We apply Itô’s formula to obtain

eγT |Yn�1pT q � YnpT q|2 � eγt |Yn�1ptq � Ynptq|2� γ

» T
t

eγs |Yn�1psq � Ynpsq|2 ds� 2

» T
t

eγs 〈Yn�1psq � Ynpsq, d pYn�1psq � Ynpsqq〉� » T
t

eγsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq� γ

» T
t

eγs |Yn�1psq � Ynpsq|2 ds



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

358 Markov processes, Feller semigroups and evolution equations� 2

» T
t

eγs 〈Yn�1psq � Ynpsq, d pMn�1psq �Mnpsqq〉� 2

» T
t

eγs 〈Yn�1psq � Ynpsq, fps, Yn�1psq, ZMn
psqq � fps, Ynpsq, ZMn

psqq〉 ds� 2

» T
t

eγs
〈

Yn�1psq � Ynpsq, fps, Ynpsq, ZMn
psqq � fps, Ynpsq, ZMn�1

psqq〉 ds� » T
t

eγsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq
(employ (5.137) and (5.138))¥ γ

» T
t

eγs |Yn�1psq � Ynpsq|2 ds� 2

» T
t

eγs 〈Yn�1psq � Ynpsq, d pMn�1psq �Mnpsqq〉� 2C1

» T
t

eγs |Yn�1psq � Ynpsq|2 ds� 2C2

» T
t

eγs |Yn�1psq � Ynpsq|� d

ds
〈Mn �Mn�1,Mn �Mn�1〉 psq
1{2ds� » T

t

eγsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq
(employ the elementary inequality 2ab ¤ 2a2 � 1

2
b2)¥ �

γ � 2C1 � 2C2
2

� » T
t

eγs |Yn�1psq � Ynpsq|2 ds� 1

2

» T
t

eγsd 〈Mn �Mn�1,Mn �Mn�1〉 psq� » T
t

eγsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq� 2

» T
t

eγs 〈Yn�1psq � Ynpsq, d pMn�1psq �Mnpsqq〉 . (5.153)

From (5.153) we infer the inequality�
γ � 2C1 � 2C2

2

� » T
t

eγs |Yn�1psq � Ynpsq|2 ds� » T
t

eγsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq
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» T
t

eγs 〈Yn�1psq � Ynpsq, dpMn�1psq �Mnpsqq〉¤ eγT |Yn�1pT q � YnpT q|2 � 1

2

» T
t

eγsd 〈Mn �Mn�1,Mn �Mn�1〉 psq.
(5.154)

By taking expectations in (5.154) we get, since γ � 1� 2C1 � 2C2
2 ,

E

�» T
t

eγs |Yn�1psq � Ynpsq|2 ds�� E

�» T
t

eγsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq�� eγtE
�|Yn�1ptq � Ynptq|2�¤ eγTE

�|Yn�1pT q � YnpT q|2�� 1

2
E

�» T
t

eγsd 〈Mn �Mn�1,Mn �Mn�1〉 psq� . (5.155)

Iterating (5.155) yields:

E

�» T
t

eγs |Yn�1psq � Ynpsq|2 ds�� E

� » T
t

eγsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq��eγtE�|Yn�1ptq � Ynptq|2 �¤ ņ

k�1

1

2n�k eγTE �|Yk�1pT q � YkpT q|2�� 1

2n
E

�» T
t

eγsd 〈M1 �M0,M1 �M0〉 psq�� 1

2n
E

�» T
t

eγsd 〈M1 �M0,M1 �M0〉 psq� (5.156)

where in the last line we used the equalities YkpT q � ξ, k P N. From

the Burkholder-Davis-Gundy inequality with p � 1
2
(see inequality (5.89))

together with (5.156) it follows that

E

�
max
0¤t¤T » t0 eγs 〈Yn�1psq � Ynpsq, d pMn�1 �Mnq psq〉�¤ 4
?
2E

��» T
0

e2γs |Yn�1psq � Ynpsq|2 d 〈Mn�1 �Mn,Mn�1 �Mn〉 psq
1{2�
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?
2E

�� sup
0¤s¤T e 1

2
γs |Yn�1psq � Ynpsq|��» T

0

eγsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq�1{2��
(use the elementary inequality 4

?
2ab ¤ 1

4
a2 � 32b2)¤ 1

4
E

�
sup

0¤s¤T eγs |Yn�1psq � Ynpsq|2�� 32E

�» T
0

eγsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq�¤ 1

4
E

�
sup

0¤s¤T eγs |Yn�1psq � Ynpsq|2�� 1

2n�5
E

�» T
0

eγsd 〈M1 �M0,M1 �M0〉 psq� . (5.157)

(In the first step of (5.157) we employed inequality (5.106) once more.)

From (5.154) and (5.157) we obtain

sup
0¤t¤T eγt |Yn�1ptq � Ynptq|2� 2

» T
0

eγs 〈Yn�1psq � Ynpsq, d pMn�1psq �Mnpsqq〉¤ eγT |Yn�1pT q � YnpT q|2 � 1

2

» T
0

eγsd 〈Mn �Mn�1,Mn �Mn�1〉 psq� 2 sup
0¤t¤T » t0 eγs 〈Yn�1psq � Ynpsq, d pMn�1psq �Mnpsqq〉 . (5.158)

From (5.156) (for n� 1 instead of n), (5.157), and the fact that Yn�1pT q �
YnpT q � ξ from (5.156) we infer the inequalities:

E

�
sup

0¤t¤T eγt |Yn�1ptq � Ynptq|2�¤ 1

2
E

�» T
0

eγsd 〈Mn �Mn�1,Mn �Mn�1〉 psq�� 2E

�
sup

0¤t¤T » t0 eγs 〈Yn�1psq � Ynpsq, d pMn�1psq �Mnpsqq〉�
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2
E

�» T
0

eγsd 〈Mn �Mn�1,Mn �Mn�1〉 psq�� 1

2
E

�
sup

0¤s¤T eγs |Yn�1psq � Ynpsq|2�� 64E

�» T
0

eγsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq�¤ 1

2
E

�
sup

0¤s¤T eγs |Yn�1psq � Ynpsq|2�� 65

2n
E

�» T
0

eγsd 〈M1 �M0,M1 �M0〉 psq� . (5.159)

From (5.159) we infer the inequality

E

�
sup

0¤t¤T eγt |Yn�1ptq � Ynptq|2� ¤ 65

2n
E

�» T
0

eγsd 〈M1 �M0,M1 �M0〉 psq� .
(5.160)

(In order to justify the passage from (5.154) to (5.160) like in passing from

inequality (5.125) to (5.128) a stopping time argument might be required.)

From (5.156) and (5.160) it follows that the sequence pYn,Mnq converges in
the space S2 �M2, and that its limit pY,Mq satisfies (5.140) in Theorem

5.5. This completes the proof of Proposition 5.6. �

Proposition 5.8. Let the notation and hypotheses be as in Theorem 5.5.

Let for δ ¡ 0 with 2δC1   1 the processes Yδ, rYδ P S2 and the martingale

Mδ PM2 be such that the equalities of (5.151) in Corollary 5.3 are satisfied.

Then the family "pYδ,Mδq : 0   δ   1

2C1

*
converges in the space S2�M2 if δ decreases to 0, provided that the terminal

value ξ � YδpT q is given.

Let pY,Mq be the limit in the space S2 �M2. In fact from the proof of

Proposition 5.8 it follows that����� Yδ � Y

Mδ �M


����
S2�M2

� Opδq (5.161)

as δ Ó 0, provided that }Yδ2pT q � Yδ1pT q}L2pΩ,F0

T
,Pq � O p|δ2 � δ1|q.
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Proof. [Proof of Proposition 5.8.] Let C1 be the constant which occurs

in inequality (5.137) in Theorem 5.5, and fix 0   δ2   δ1   p2C1q�1
. Our

estimates give quantitative bounds in case we restrict the parameters δ,

δ1 and δ2 to the interval
�
0, p4C1 � 4q�1

	
. An appropriate choice for the

constant γ in the present proof turns out to be γ � 6� 4C1 (see e.g. the

inequalities (5.163), (5.175), (5.176), and (5.177) below). An appropriate

choice for the positive number a, which may be a function of the parameters

δ1 and δ2, in (5.174), (5.175) and subsequent inequalities below is given by

a � pδ1 � δ2q�1
. For convenience we introduce the following notation:

△Y psq � Yδ2psq � Yδ1psq, △Mpsq � Mδ2psq �Mδ1psq, △rY psq � rYδ2psq �rYδ1psq, and △ rfpsq � rfδ2psq � rfδ1psq where rfδpsq � f
�
s, rYδpsq, ZM psq	.

From the equalities in (5.151) we infer

Yδptq � rYδptq � δ rfδptq � YδpT q � » T
t

rfδpsqds�Mδptq �MδpT q. (5.162)

First we prove that the family
!pYδ,Mδq : 0   δ   p4C1 � 4q�1

)
is bounded

in the space S2 �M2. Therefore we fix γ ¡ 0 and apply Itô’s formula to

the process t ÞÑ eγt |Yδptq|2 to obtain:

eγT |YδpT q|2 � eγt |Yδptq|2� γ

» T
t

eγs |Yδpsq|2 ds� 2

» T
t

eγs 〈Yδpsq, dYδpsq〉� » T
t

eγsd 〈Mδ,Mδ〉 psq� γ

» T
t

eγs
���rYδpsq � δ rfδpsq���2 ds� 2

» T
t

eγs
〈rYδpsq, rfδpsq〉 ds� 2

» T
t

eγs
〈

Yδpsq � rYδpsq, rfδpsq〉 ds� » T
t

eγsd 〈Mδ,Mδ〉 psq� 2

» T
t

eγs 〈Yδpsq, dMδpsq〉� γ

» T
t

eγs
���rYδpsq���2 ds� γ

» T
t

eγs
���δ rfδpsq���2 ds� 2 p1� γδq » T

t

eγs
〈rYδpsq, rfδpsq � f ps, 0, ZM psqq〉 ds� 2

» T
t

eγs
〈

δ rfδpsq, rfδpsq〉 ds� 2 p1� γδq » T
t

eγs
〈rYδpsq, f ps, 0, ZMpsqq〉 ds� » T

t

eγsd 〈Mδ,Mδ〉 psq � 2

» T
t

eγs 〈Yδpsq, dMδpsq〉
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» T
t

eγs
���rYδpsq���2 ds� �

γδ2 � 2δ
� » T

t

eγs
��� rfδpsq���2 ds� 2 p1� γδq » T

t

eγs
〈rYδpsq, rfδpsq � f ps, 0, ZM psqq〉 ds� 2 p1� γδq » T

t

eγs
〈rYδpsq, f ps, 0, ZM psqq � f ps, 0, 0q〉 ds� 2 p1� γδq » T

t

eγs
〈rYδpsq, f ps, 0, 0q〉 ds� » T

t

eγsd 〈Mδ,Mδ〉 psq � 2

» T
t

eγs 〈Yδpsq, dMδpsq〉
(employ the inequalities (5.137), (5.138), and (5.139) of Theorem 5.5)¥ γ

» T
t

eγs
���rYδpsq���2 ds� �

γδ2 � 2δ
� » T

t

eγs
��� rfδpsq���2 ds� 2C1 p1� γδq » T

t

eγs
���rYδpsq���2 ds� 2C2 p1� γδq » T

t

eγs
���rYδpsq��� � d

ds
〈M,M〉 psq
1{2

ds� 2 p1� γδq » T
t

eγs
���rYδpsq��� |f ps, 0, 0q| ds� » T

t

eγsd 〈Mδ,Mδ〉 psq � 2

» T
t

eγs 〈Yδpsq, dMδpsq〉¥ pγ � 2 pC1 � 1q p1� γδqq » T
t

eγs
���rYδpsq���2 ds� �

γδ2 � 2δ
� » T

t

eγs
��� rfδpsq���2 ds� C2

2 p1� γδq » T
t

eγsd 〈M,M〉 psq � p1� γδq » T
t

eγs |f ps, 0, 0q|2 ds� » T
t

eγsd 〈Mδ,Mδ〉 psq � 2

» T
t

eγs 〈Yδpsq, dMδpsq〉 . (5.163)

From (5.163) we infer the inequality:pγ � 2 pC1 � 1q p1� γδqq » T
t

eγs
���rYδpsq���2 ds� �

γδ2 � 2δ
� » T

t

eγs
��� rfδpsq���2 ds� » T

t

eγsd 〈Mδ,Mδ〉 psq � 2

» T
t

eγs 〈Yδpsq, dMδpsq〉 � eγt |Yδptq|2¤eγT |YδpT q|2 � p1� γδq�C2
2

» T
t

eγsd 〈M,M〉 psq � » T
t

eγs |f ps, 0, 0q|2 ds� .

(5.164)
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From (5.164) we deducepγ � 2 pC1 � 1q p1� γδqqE�» T
t

eγs
���rYδpsq���2 ds�� �

γδ2 � 2δ
�
E

�» T
t

eγs
��� rfδpsq���2 ds�� eγtE

�|Yδptq|2�¤ eγTE
�|YδpT q|2� (5.165)� p1� γδq�C2

2E

�» T
t

eγsd 〈M,M〉 psq�� E

�» T
t

eγs |f ps, 0, 0q|2 ds�� .

In particular from (5.165) we see

E

�» T
t

eγs
���rYδpsq���2 ds�¤ 1

γ � 2 pC1 � 1q p1� γδqeγTE �|YδpT q|2�� 1� γδ

γ � 2 pC1 � 1q p1� γδqC2
2E

�» T
t

eγsd 〈M,M〉 psq�� 1� γδ

γ � 2 pC1 � 1q p1� γδqE�» T
t

eγs
��f psq��2 ds� . (5.166)

In addition, from (5.164) we obtain the following inequalities

2

» T
0

eγs 〈Yδpsq, dMδpsq〉 � 2 sup
0 t T eγt |Yδptq|¤ eγT |YδpT q|2 � 2 sup

0 t T » t0 eγs 〈Yδpsq, dMδpsq〉� p1� γδq�C2
2

» T
t

eγsd 〈M,M〉 psq � » T
t

eγs |f ps, 0, 0q|2 ds� , (5.167)

and hence by using the Burkholder-Davis-Gundy inequality (5.89) for p � 1
2

in combination with inequality (5.106) we get:

E

�
sup

0 t T eγt |Yδptq|�¤ eγTE
�|YδpT q|2�� E

�
sup

0 t T » t0 eγs 〈Yδpsq, dMδpsq〉�� p1� γδq�C2
2E

�» T
t

eγsd 〈M,M〉 psq�� E

�» T
t

eγs |f ps, 0, 0q|2 ds��
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�|YδpT q|2�� 8

?
2E

���» T
0

e2γs |Yδpsq|2 d 〈Mδ,Mδ〉 psq�1{2��� p1� γδq�C2
2E

�» T
t

eγsd 〈M,M〉 psq�� E

�» T
t

eγs |f ps, 0, 0q|2 ds��¤ eγTE
�|YδpT q|2�� 1

2
E

�
sup

0 t T eγt |Yδptq|�� 64E

�» T
0

eγs |Yδpsq|2 d 〈Mδ,Mδ〉 psq�� p1� γδq�C2
2E

�» T
t

eγsd 〈M,M〉 psq�� E

�» T
t

eγs |f ps, 0, 0q|2 ds�� .

(5.168)

(In the second step in (5.168) inequality (5.106) has been used again.) From

(5.165) and (5.168) we obtain

E

�
sup

0 t T eγt |Yδptq|�¤ 130eγTE
�|YδpT q|2� (5.169)� 130 p1� γδq�C2

2E

�» T
t

eγsd 〈M,M〉 psq�� E

�» T
t

eγs |f ps, 0, 0q|2 ds�� .

(In order to justify the passage from (5.167) to (5.169) like in passing from

inequality (5.125) to (5.128) a stopping time argument might be required.

(An appropriate stopping time τN would be the first time t ¤ T the process|Yδptq| exceeds N . The time T should then be replaced with τN .) Next we

notice that��� rfδpsq���2 ¤ 2
��fpsq��2 � 2K2

���rYδpsq���2 � 2C2
2

d

ds
〈M,M〉 psq, (5.170)

and hence

2
〈

δ2 rfδ2psq � δ1 rfδ1psq,△ rfpsq〉 ¥ �2 |δ2 � δ1|���� rfδ2psq���2 � ��� rfδ1psq���2
¥ �4 |δ2 � δ1| ���fpsq��2 �K2
���rYδ2psq���2 �K2

���rYδ1psq���2 � C2
2

d

ds
〈M,M〉 psq
 .

(5.171)
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In a similar manner we also get���δ2 rfδ2psq � δ1 rfδ1psq���2 (5.172)¤ 4
�
δ22 � δ21

����fpsq��2 �K2
���rYδ2psq���2 �K2

���rYδ1psq���2 � C2
2

d

ds
〈M,M〉 psq
 .

Fix γ ¡ 0, and apply Itô’s lemma to the process t ÞÑ eγt |△Y ptq|2 to obtain

eγT |△Y pT q|2 � eγt |△Y ptq|2� γ

» T
t

eγs |△Y psq|2 ds� 2

» T
t

eγs 〈△Y psq, d△Y psq〉� » T
t

eγsd 〈△M,△M〉 psq� γ

» T
t

eγs
���△rY psq � δ2 rfδ2psq � δ1 rfδ1psq���2 ds� 2

» T
t

eγs
〈

△rY psq,△ rfpsq〉 ds� 2

» T
t

eγs
〈

△Y psq �△rY psq,△ rfpsq〉 ds� » T
t

eγsd 〈△M,△M〉 psq� 2

» T
t

eγs 〈△Y psq, d△Mpsq〉� γ

» T
t

eγs
���△rY psq���2 ds� γ

» T
t

eγs
���δ2 rfδ2psq � δ1 rfδ1psq���2 ds� 2

» T
t

eγs
〈

△rY psq,△ rfpsq〉 ds� 2γ

» T
t

eγs
〈

δ2 rfδ2psq � δ1 rfδ1psq,△rY psq〉 ds� 2

» T
t

eγs
〈

δ2 rfδ2psq � δ1 rfδ1psq,△ rfpsq〉 ds� » T
t

eγsd 〈△M,△M〉 psq � 2

» T
t

eγs 〈△Y psq, d△Mpsq〉 . (5.173)

Employing the inequalities (5.137), (5.171), (5.172) and an elementary one

like

2 |〈y1, y2〉| ¤ pa� 1q |y1|2 � pa� 1q�1 |y2|2 , y1, y2 P Rk, a ¡ 0, (5.174)

together with (5.173) we obtain

eγT |△Y pT q|2 � eγt |△Y ptq|2¥ �
γ � 2C1 � γ

a� 1


» T
t

eγs
���△rY psq���2 ds
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» T
t

eγs
���δ2 rfδ2psq � δ1 rfδ1psq���2 ds� 8γ |δ2 � δ1| �» T

t

eγs
��fpsq��2 ds� C2

2

» T
t

eγsd 〈M,M〉 psq�� 8γK2 |δ2 � δ1| �» T
t

eγs
����rYδ1psq���2 � ���rYδ2psq���2
 ds�� » T

t

eγsd 〈△M,△M〉 psq � 2

» T
t

eγs 〈△Y psq, d△Mpsq〉¥ �
γ � 2C1 � γ

a� 1


» T
t

eγs
���△rY psq���2 ds� 4γ

�
2 |δ2 � δ1| � a

�
δ21 � δ22

����» T
t

eγs
��fpsq��2 ds� C2

2

» T
t

eγsd 〈M,M〉 psq�� 4γK2
�
2 |δ2 � δ1| � a

�
δ21 � δ22

���» T
t

eγs
����rYδ1psq���2 � ���rYδ2psq���2
 ds�� » T

t

eγsd 〈△M,△M〉 psq � 2

» T
t

eγs 〈△Y psq, d△Mpsq〉 . (5.175)

From (5.175) we obtain�
γa

a� 1
� 2C1


» T
t

eγs
���△rY psq���2 ds� eγt |△Y ptq|2� » T

t

eγsd 〈△M,△M〉 psq � 2

» T
t

eγs 〈△Y psq, d△Mpsq〉¤ eγT |△Y pT q|2� 4γ
�
2 |δ2 � δ1| � a

�
δ21 � δ22

����» T
t

eγs
��fpsq��2 ds� C2

2

» T
t

eγsd 〈M,M〉 psq�� 4γK2
�
2 |δ2 � δ1| � a

�
δ21 � δ22

���» T
t

eγs
����rYδ1psq���2 � ���rYδ2psq���2
 ds� .

(5.176)

From (5.166) and (5.176) we infer�
γa

a� 1
� 2C1



E

�» T
t

eγs
���△rY psq���2 ds�� eγtE

�|△Y ptq|2�
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�» T
t

eγsd 〈△M,△M〉 psq�¤ eγTE
�|△Y pT q|2�� γ1 pδ1, δ2q eγTE �|Yδ1pT q|2�� γ1 pδ2, δ1q eγTE �|Yδ2pT q|2� (5.177)� γ2 pδ1, δ2q�E

�» T
t

eγs
��fpsq��2 ds�� C2

2E

�» T
t

eγsd 〈M,M〉 psq��
where

γ1 pδ1, δ2q � 4γK2
�
2 |δ2 � δ1| � a

�
δ21 � δ22

�� 1

γ � 2 pC1 � 1q p1� γδ1q ;
γ2 pδ1, δ2q � 4γ

�
2 |δ2 � δ1| � a

�
δ21 � δ22

��
(5.178)��

1� K2 p1� γδ1q
γ � 2 pC1 � 1q p1� γδ1q � K2 p1� γδ2q

γ � 2 pC1 � 1q p1� γδ2q
 .
From (5.176) we also get:

sup
0 t T �eγt |△Y ptq|2	� 2

» T
0

eγs 〈△Y psq, d△Mpsq〉¤ eγT |△Y pT q|2� 4γ
�
2 |δ2 � δ1| � a

�
δ21 � δ22

����» T
0

eγs
��fpsq��2 ds� C2

2

» T
0

eγsd 〈M,M〉 psq�� 4γK2
�
2 |δ2 � δ1| � a

�
δ21 � δ22

���» T
0

eγs
����rYδ1psq���2 � ���rYδ2psq���2
 ds�� 2 sup

0 t T » t0 eγs 〈△Y psq, d△Mpsq〉 . (5.179)

In what follows a stopping time argument might be required. This time

an appropriate stopping time τN would be the first time t ¤ T the process|△Yn| � |Yn�1ptq � Ynptq| exceeds N . The time T should then be replaced

with τN . From (5.179), (5.166), the inequality of Burkholder-Davis-Gundy

(5.89) for p � 1
2
and (5.177) with t � 0 we obtain:

E

�
sup

0 t T �eγt |△Y ptq|2	�¤ eγTE
�|△Y pT q|2�� 4γ
�
2 |δ2 � δ1| � a

�
δ21 � δ22

��
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E

�» T
0

eγs
��fpsq��2 ds�� C2

2E

�» T
0

eγsd 〈M,M〉 psq��� 4γK2
�
2 |δ2 � δ1| � a

�
δ21 � δ22

����
E

�» T
0

eγs
����rYδ1psq���2 � ���rYδ2psq���2
 ds��� 2E

�
sup

0 t T » t0 eγs 〈△Y psq, d△Mpsq〉�¤ eγTE
�|△Y pT q|2�� γ1 pδ1, δ2q eγTE �|Yδ1pT q|2�� γ1 pδ2, δ1q eγTE �|Yδ2pT q|2�� γ2 pδ1, δ2q�C2

2E

�» T
t

eγsd 〈M,M〉 psq�� E

�» T
t

eγs
��f psq ds��2��� 8

?
2E

�� sup
0 t T eγt |△Y ptq| �» T0 eγsd 〈△M,△M〉 psq�1{2��¤ eγTE

�|△Y pT q|2�� γ1 pδ1, δ2q eγTE �|Yδ1pT q|2�� γ1 pδ2, δ1q eγTE �|Yδ2pT q|2�� γ2 pδ1, δ2q�C2
2E

�» T
t

eγsd 〈M,M〉 psq�� E

�» T
t

eγs
��f psq ds��2��� 1

2
E

�
sup

0 t T eγt |△Y ptq|2�� 64E

�» T
0

eγsd 〈△M,△M〉 psq� . (5.180)

Consequently, from (5.177) and (5.180) we deduce, like in the proof of

inequality (5.169),

E

�
sup

0 t T eγt |△Y ptq|2�¤ 130 eγTE
�|△Y pT q|2�� 130

�
γ1 pδ1, δ2q eγTE �|Yδ1pT q|2�� γ1 pδ2, δ1q eγTE �|Yδ2pT q|2�	� 130γ2 pδ1, δ2q�C2

2E

�» T
0

eγsd 〈M,M〉 psq�� E

�» T
0

eγs
��f psq ds��2�� .

(5.181)
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(Again it is noticed that the passage from (5.179) to (5.181) is justified by a

stopping time argument. The same argument was used several times. The

first time we used it in passing from inequality (5.125) to (5.128).) Another

appeal to (5.177) and (5.181) shows:�
γa

a� 1
� 2C1



E

�» T
t

eγs
���△rY psq���2 ds�� E

�
sup

0 t T eγt |△Y ptq|2�� E

�» T
0

eγsd 〈△M,△M〉 psq�¤ 131 eγTE
�|△Y pT q|2�� 131

�
γ1 pδ1, δ2q eγTE �|Yδ1pT q|2�� γ1 pδ2, δ1q eγTE �|Yδ2pT q|2�	� 131γ2 pδ1, δ2q�C2

2E

�» T
0

eγsd 〈M,M〉 psq�� E

�» T
0

eγs
��f psq ds��2�� .

(5.182)

The result in Proposition 5.8 now follows from (5.182) and the continuity

of the functions y ÞÑ f ps, y, ZM psqq, y P Rk. The fact that the convergence

of the family pYδ,Mδq, 0   δ ¤ p4C1 � 4q�1 is of order δ, as δ Ó 0, follows

by the choice of our parameters: γ � 4C1 � 4 and a � pδ1 � δ2q�1. �

Proof. [Proof of Theorem 5.5.] The proof of the uniqueness part fol-

lows from Corollary 5.2. The existence is a consequence of Theorem 5.4,

Proposition 5.8 and Corollary 5.3. �

The following result shows that in the monotonicity condition we may al-

ways assume that the constant C1 can be chosen as we like provided we

replace the equation in (5.115) by (5.183) and adapt its solution.

Theorem 5.6. Let the pair pY,Mq belong to S2
�r0, T s,Rk� �

M2
�r0, T s,Rk�. Fix λ P R, and putpYλptq,Mλptqq � �

eλtY ptq, Y p0q � » t
0

eλsdMpsq
 .
Then the pair pYλ,Mλq belongs to S2 �M2. Moreover, the following as-

sertions are equivalent:

(i) The pair pY,Mq P S2 �M2 satisfies Y p0q �Mp0q and
Y ptq � Y pT q � » T

t

f ps, Y psq, ZM psqq ds�Mptq �MpT q.
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(ii) The pair pYλ,Mλq satisfies Yλp0q �Mλp0q and
Yλptq � YλpT q � » T

t

eλsf
�
s, e�λsYλpsq, e�λsZMλ

psq� ds� λ

» T
t

Yλpsqds�Mλptq �MλpT q. (5.183)

Remark 5.18. Put fλps, y, zq � eλsf
�
s, e�λsy, e�λsz� � λy. If the func-

tion y ÞÑ f ps, y, zq has monotonicity constant C1, then the function

y ÞÑ fλ ps, y, zq has monotonicity constant C1 � λ. It follows that by re-

formulating the problem one always may assume that the monotonicity

constant is 0.

Proof. [Proof of Theorem 5.6.] First notice the equality e�λsZMλ
psq �

ZM psq: see Remark 5.5. The equivalence of (i) and (ii) follows by consid-

ering the equalities in (i) and (ii) in differential form. �

5.4 Backward stochastic differential equations and Markov

processes

In this section the coefficient fpsq � f ps, �, �, �q, s P r0, T s, of our BSDE

is a mapping from E � Rk �M2,s
AC to Rk. For the definition of the space

M2,s
AC �M2,s

AC pΩ,Fτ
T ,Pτ,xq see Definition 5.7.

Theorem 5.7 below is the analogue of Theorem 5.5 with a Markov family

of measures tPτ,x : pτ, xq P r0, T s �Eu instead of a single measure. Put

fnpsq � f ps,Xpsq, Ynpsq, ZMn
psqq ,

and suppose that the processes Ynpsq and ZMn
psq only depend of the state-

time variable ps,Xpsqq. Put Y pτ, tq gpxq � Eτ,x rg pXptqqs, g P CbpEq, and
suppose that for every g P CbpEq the function pτ, x, tq ÞÑ Y pτ, tqfpxq is

continuous on the set tpτ, x, tq P r0, T s �E � r0, T s : 0 ¤ τ ¤ T u. Then it

can be proved that the Markov processtpΩ,Fτ
T ,Pτ,xq , pXptq : T ¥ t ¥ 0q , pE, Equ (5.184)

has left limits and is right-continuous: see e.g. Theorem 2.9. Theorem

2.22 in [Gulisashvili and van Casteren (2006)] contains a similar result

in case the state space E is locally compact and second countable. Sup-

pose that the Pτ,x-martingale t ÞÑ Nptq �Npτq, t P rτ, T s, belongs to the

space M2
�rτ, T s,Pτ,x,Rk� (see Definition 5.5). It follows that the quan-

tity ZM psqpNq is measurable with respect to σ
�
Fs
s�, Nps�q�: see equalities
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(5.188), (5.189) and (5.190) below. The following iteration formulas play

an important role:

Yn�1ptq � Et,Xptq rξs � » T
t

Et,Xptq rfnpsqs ds,
Mn�1ptq � Et,Xptq rξs � » t

0

fnpsqds� » T
t

Et,Xptq rfnpsqs ds.
Then the processes Yn�1 and Mn�1 are related as follows:

Yn�1pT q � » T
t

fnpsqds�Mn�1ptq �Mn�1pT q � Yn�1ptq.
Moreover, by the Markov property, the process

t ÞÑMn�1ptq �Mn�1pτq� Eτ,Xpτq �ξ �� Fτ
t

�� Eτ,Xpτq rξs � Eτ,Xpτq �» T
τ

fnpsqds �� Fτ
t

�� Eτ,Xpτq �» T
τ

fnpsqds�� Eτ,Xpτq �ξ � » T
τ

fnpsqds �� Fτ
t

�� Eτ,Xpτq �ξ � » T
τ

fnpsqds�
is a Pτ,x-martingale on the interval rτ, T s for every pτ, xq P r0, T s �E.

In Theorem 5.7 below we replace the Lipschitz condition (5.113)

in Theorem 5.4 for the function Y psq ÞÑ f ps, Y psq, ZM psqq with

the (weaker) monotonicity condition (5.193) for the function Y psq ÞÑ
f ps,Xpsq, Y psq, ZM psqq. Sometimes we write y for the variable Y psq
and z for ZM psq. Notice that the functional ZMn

ptq only depends on

F t
t� :� �

h:T¥t�h¡t σ pXpt� hqq and that this σ-field belongs to the Pt,x-

completion of σ pXptqq for every x P E. This is the case, because by as-

sumption the process s ÞÑ Xpsq is right-continuous at s � t: see Proposition

5.3. In order to show this we have to prove equalities of the following type:

Es,x
�
Y

�� Fs
t�� � Et,Xptq rY s , Ps,x-almost surely, (5.185)

for all bounded random variables which are F t
T -measurable. By the mono-

tone class theorem and density arguments the proof of (5.185) reduces to

showing these equalities for Y � ±n
j�1 fj ptj, X ptjqq, where t � t1   t2  � � �   tn ¤ T , and the functions x ÞÑ fj ptj , xq, 1 ¤ j ¤ n, belong to the

space CbpEq. So we consider

Es,x

�
n¹
j�1

fj ptj , X ptjqq �� Fs
t��



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

BSDE’s and Markov processes 373� f1 pt,X ptqqEt,Xptq � n¹
j�2

fj ptj , X ptjqq �� Fs
t��� f1 pt,X ptqq lim

hÓ0,0 h t2�tEs,x �Es,x � n¹
j�2

fj ptj , X ptjqq �� Fs
t�h� �� Fs

t��� f1 pt,X ptqq lim
hÓ0,0 h t2�tEs,x �Et�h,Xpt�hq � n¹

j�2

fj ptj , X ptjqq� �� Fs
t��

(the function ρ ÞÑ Eρ,Xpρq �±n
j�2 fj ptj, X ptjqq� is right-continuous)� f1 pt,X ptqqEs,x �Et,Xptq � n¹
j�2

fj ptj , X ptjqq� �� Fs
t��� f1 pt,X ptqqEt,Xptq � n¹

j�2

fj ptj , X ptjqq�� Et,Xptq � n¹
j�1

fj ptj , X ptjqq� , Ps,x-almost surely. (5.186)

Next suppose that the bounded random variable Y is measurable with

respect to F t
t�. From (5.185) with s � t it follows that Y � Et,Xptq rY s,

Pt,x-almost surely. Hence such a variable Y only depends on the space-

time variable pt,Xptqq. Since Xptq � x Pt,x-almost surely it follows that

the variable Et,x
�
Y

�� F t
t�� is Pt,x-almost equal to the deterministic constant

Et,x rY s. A similar argument shows the following result. Let 0 ¤ s   t ¤
T , and let Y be a bounded Fs

T -measurable random variable. Then the

following equality holds Ps,x-almost surely:

Es,x
�
Y

�� Fs
t�� � Es,x

�
Y

�� Fs
t

�
. (5.187)

In particular it follows that an Fs
t�-measurable bounded random variable

coincides with the Fs
t -measurable variable Es,x

�
Y

�� Fs
t

�
Ps,x-almost surely

for all x P E. Hence (5.187) implies that the σ-field Fs
t� is contained in the

Ps,x-completion of the σ-field Fs
t .

In addition, notice that the functional ZM psq is defined by

ZM psqpNq � lim
tÓs 〈M,N〉 ptq � 〈M,N〉 psq

t� s
(5.188)

where

〈M,N〉 ptq � 〈M,N〉 psq
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j̧�0

pM ptj�1,nq �M ptj,nqq pN ptj�1,nq �N ptj,nqq . (5.189)

For this the reader is referred to the remarks 5.5, 5.6, 5.9, and to formula

(5.86). The symbol tj,n represents the real number tj,n � s� j2�npt� sq.
The limit in (5.189) exists Pτ,x-almost surely for all τ P r0, ss. As a con-

sequence the process ZM psq is Fτ
s�-measurable for all τ P r0, ss. It fol-

lows that the process N ÞÑ ZM psqpNq is Pτ,x-almost surely equal to the

functional N ÞÑ Eτ,x
�
ZM psqpNq �� σ pFτ

s , Npsqq� provided that ZM psqpNq
is σ

�
Fτ
s�, Nps�q�-measurable. If the martingale M is of the form Mpsq �

u ps,Xpsqq � ³s
0
fpρqdρ, then the functional ZM psqpNq is automatically

σ
�
Fs
s�, Nps�q�-measurable. It follows that, for every τ P r0, ss, the fol-

lowing equality holds Pτ,x-almost surely:

Eτ,x
�
ZM psqpNq �� σ �Fτ

s�, Nps�q�� � Eτ,x
�
ZM psqpNq �� σ pFτ

s , Nps�qq� .
(5.190)

Moreover, in the next Theorem 5.7 the filtered probability measure�
Ω,F ,

�
F0
t

�
tPr0,T s ,P	

is replaced with a Markov family of measures�
Ω,Fτ

T , pFτ
t qτ¤t¤T ,Pτ,x� , pτ, xq P r0, T s �E.

Its proof follows the lines of the proof of Theorem 5.5: it will not be re-

peated here. Relevant equalities which play a dominant role are the follow-

ing ones: (5.128), (5.136), (5.169), and (5.182). In these inequalities the

measure Pτ,x replaces P and the coefficient f ps, Y psq, ZM psqq is replaced

with f ps,Xpsq, Y psq, ZM psqq. Then (5.191), which is the same as (5.128),

is satisfied and with α � 1 � C2
1 � C2

2 the following inequalities play a

dominant role for the sequence pYn,Mnq:
Eτ,x

�
sup

τ t T e2αt |Yn�1ptq|2�¤ 130e2αTEτ,x

�|Yn�1pT q|2�� 130Eτ,x

�» T
τ

e2αs |f ps, 0, 0q|2 ds�� 65Eτ,x

�» T
τ

e2αsd 〈Mn,Mn〉 psq�� 65Eτ,x

�» T
τ

e2αs |Ynpsq|2 ds�   8,
(5.191)

and

Eτ,x

�
sup

τ¤t¤T e2αt |Yn�1ptq � Ynptq|2�
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�» T
τ

e2αsd 〈Mn�1 �Mn,Mn�1 �Mn〉 psq�¤ 131e2αTEτ,x

�|Yn�1pT q � YnpT q|2�� 131

2

����� Yn � Yn�1

Mn �Mn�1


����2
τ,x,α

.

(5.192)

Compare these inequalities with (5.128) and (5.192). The inequality in

(5.192) plays only a direct role in case we are dealing with a Lipschitz

continuous generator f . In case the generator f is only monotone (or one-

sided Lipschitz) in the variable y, then we need the propositions 5.6, 5.7,

5.8, and Corollary 5.3.

The norm

�����YM
����
τ,x,α

is defined by:�����YM
����2
τ,x,α

� Eτ,x

�» T
τ

e2αs |Y psq|2 ds� » T
τ

e2αsd 〈M,M〉 psq� .
A proof of these inequalities can be found in [Van Casteren (2008)] and in

the proof of Theorem 5.4 in the present Chapter 5. The following theorem

contains the most important results of the present section 5.4.

Theorem 5.7. Let for every s P r0, T s the function fpsq � f ps, �, �, �q be a

function from E � Rk �M2,s
AC to Rk which is monotone in the variable y

and Lipschitz in z. More precisely, suppose that there exist finite constants

C1 and C2 such that for any two pairs of processes pY,Mq and pU,Nq P
S2

�r0, T s,Rk��M2
�r0, T s,Rk� the following inequalities hold for all 0 ¤

s ¤ T :

〈Y psq � Upsq, f ps,Xpsq, Y psq, ZM psqq � f ps,Xpsq, Upsq, ZM psqq〉¤ C1 |Y psq � Upsq|2 , (5.193)|f ps,Xpsq, Y psq, ZM psqq � f ps,Xpsq, Y psq, ZN psqq|¤ C2

�
d

ds
〈M �N,M �N〉 psq
1{2

, (5.194)

and |f ps,Xpsq, Y psq, 0q| ¤ f ps,Xpsqq �K |Y psq| . (5.195)

Fix pτ, xq P r0, T s � E and let Y pT q � ξ P L2
�
Ω,Fτ

T ,Pτ,x;R
k
�
be given.

In addition, suppose Eτ,x

�³T
τ

��f ps,Xpsqq��2 ds�   8. Then there exists a

unique pairpY,Mq P S2
�rτ, T s,Pτ,x,Rk��M2

�rτ, T s,Pτ,x,Rk�
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with Y pτq �Mpτq such that

Y ptq � ξ � » T
t

f ps,Xpsq, Y psq, ZM psqq ds�Mptq �MpT q. (5.196)

Next let ξ � ET,XpT q rξs P �pτ,xqPr0,T s�E L2 pΩ,Fτ
T ,Pτ,xq be given.

Suppose that the functions pτ, xq ÞÑ Eτ,x

�|ξ|2� and pτ, xq ÞÑ
Eτ,x

�³T
τ

��f ps,Xpsqq��2 ds� are locally bounded. Then there exists a unique

pair pY,Mq P S2
loc,unif

�rτ, T s,Rk��M2
loc,unif

�rτ, T s,Rk�
with Y p0q �Mp0q such that equation (5.196) is satisfied.

Again let ξ � ET,XpT q rξs P �pτ,xqPr0,T s�E L2 pΩ,Fτ
T ,Pτ,xq be given.

Suppose that the functionspτ, xq ÞÑ Eτ,x

�|ξ|2� and pτ, xq ÞÑ Eτ,x

�» T
τ

��f ps,Xpsqq��2 ds�
are uniformly bounded. Then there exists a unique pairpY,Mq P S2

unif

�rτ, T s,Rk��M2
unif

�rτ, T s,Rk�
with Y p0q �Mp0q such that equation (5.196) is satisfied.

The notations

S2
�rτ, T s,Pτ,x,Rk� � S2

�
Ω,Fτ

T ,Pτ,x;R
k
�

and

M2
�rτ, T s,Pτ,x,Rk� �M2

�
Ω,Fτ

T ,Pτ,x;R
k
�

are explained in the definitions 5.4 and 5.5 respectively. The same is true

for the notions

S2
loc,unif

�r0, T s,Rk� � S2
loc,unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
,

M2
loc,unif

�r0, T s,Rk� �M2
loc,unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
,

S2
unif

�r0, T s,Rk� � S2
unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
, and

M2
unif

�r0, T s,Rk� �M2
unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
.

In addition, the spaceM2,s
AC �M2,s

AC

�
Ω,Fτ

T ,Pτ,x;R
k
�
is explained in Defini-

tion 5.7 (see Lemma 5.1 as well). The probability measure Pτ,x is defined on

the σ-field Fτ
T . Since the existence properties of the solutions to backward

stochastic equations are based on explicit inequalities, the proofs carry over

to Markov families of measures. Ultimately these inequalities imply that

boundedness and continuity properties of the function pτ, xq ÞÑ Eτ,x rY ptqs,
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0 ¤ τ ¤ t ¤ T , depend on the continuity of the function x ÞÑ ET,x rξs, where
ξ is a terminal value function which is supposed to be σ pXpT qq-measurable.

In addition, in order to be sure that the function pτ, xq ÞÑ Eτ,x rY ptqs is con-
tinuous, functions of the form pτ, xq ÞÑ Eτ,x rf pt, u pt,Xptqq , ZM ptqqs have
to be continuous, whenever the following mappingspτ, xq ÞÑ Eτ,x

�» T
τ

|ups,Xpsqq|2 ds� and pτ, xq ÞÑ Eτ,xr〈M,M〉 pT q�〈M,M〉s
represent finite and continuous functions.

In the next example we see how the classical Feynman-Kac formula is

related to backward stochastic differential equations.

Example 5.2. Suppose that the coefficient f has the special form:

fpt, x, r, zq � cpt, xqr � hpt, xq
and that the process s ÞÑ Xx,tpsq is a solution to a stochastic differential

equation:$'''&'''%Xt,xpsq �Xt,xptq � » s
t

b
�
τ,Xt,xpτq� dτ � » s

t

σ
�
τ,Xt,xpτq� dW pτq,

t ¤ s ¤ T ;

Xt,xpsq � x, 0 ¤ s ¤ t.

In that case, the BSDE is linear,

Y t,xpsq � gpXt,xpT qq � » T
s

rcpr,Xt,xprqqY t,xpsq � hpr,Xt,xprqqs dr� » T
s

Zt,xprq dW prq,
and hence it has an explicit solution. From an extension of the classi-

cal “variation of constants formula” (see the argument in the proof of the

comparison theorem 1.6 in [Pardoux (1998a)]) or by direct verification we

get:

Y t,xpsq � g
�
Xt,xpT q� e³Ts cpr,Xt,xprqq dr� » T

s

h
�
r,Xt,xprq� e³rs cpα,Xt,xpαqq dα dr� » T

s

e
³
r
s
cpα,Xt,xpαqqdαZt,xprq dW prq.
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Now we have Y t,xptq � E rY t,xptqs, so that

Y t,xptq� E

�
gpXt,xpT qqe³Tt cps,Xt,xpsqq ds � » T

t

h
�
s,Xt,xpsq� e³st cpr,Xt,xprqq drds� ,

which is the well-known Feynman-Kac formula. Clearly, solutions to

stochastic backward stochastic differential equations can be used to rep-

resent solutions to classical differential equations of parabolic type, and as

such they can be considered as a nonlinear extension of the Feynman-Kac

formula.

Example 5.3. In this example the family of operators Lpsq, 0 ¤ s ¤ T ,

generates a Markov process in the sense of Definition 5.3: see (5.11). For a

“smooth” function v we introduce the martingales:

Mv,tpsq � v ps,Xpsqq � v pt,Xptqq � » s
t

� BBρ � Lpρq
 v pρ,Xpρqq dρ.
(5.197)

Its quadratic variation part 〈Mv,t〉 psq :� 〈Mv,t,Mv,t〉 psq is given by

〈Mv,t〉 psq � » s
t

Γ1 pv, vq pρ,Xpρqq dρ.
In this example we will mainly be concerned with the Hamilton-Jacobi-

Bellman equation as exhibited in (5.198). We have the following result

for generators of diffusions: it refines Theorem 2.4 in [Zambrini (1998a)].

Observe that P
Mv,t

t,x stands for a Girsanov transformation of the measure

Pt,x.

Theorem 5.8. Suppose that the operator L � Lpsq does not depend on

s P r0, T s. Let χ : pτ, T s � E Ñ r0,8s be a function such that for all

τ   t ¤ T and for sufficiently many functions v

E
Mv,t

t,x r|logχ pT,XpT qq|s   8.
Let SL be a (classical) solution to the following Riccati type equation. For

τ   s ¤ T and x P E the following identity is true:$&% BSLBs ps, xq � 1

2
Γ1 pSL, SLq ps, xq � LpsqSLps, xq � V ps, xq�0;

SLpT, xq � � logχpT, xq, x P E. (5.198)

Then for any nice real valued vps, xq the following inequality is valid:

SLpt, xq ¤ E
Mv,t

t,x

�» T
t

�
1

2
Γ1 pv, vq � V


 pτ,Xpτqqdτ�
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Mv,t

t,x rlogχ pT,XpT qqs ,
and equality is attained for the “Lagrangian action” v � SL:

SLpt, xq � � logEt,x

�
exp

�� » T
t

V pσ,Xpσqq dσ�χ pT,XpT qq� . (5.199)

The probability P
Mv,t

t,x is determined by following equality (5.200). For

all finite n-tuples t1, . . . , tn in pt, T s and all bounded Borel functions fj :rt, T s �E Ñ R, 1 ¤ j ¤ n, we have:

E
Mv,t

t,x

�
n¹
j�1

fj ptj , X ptjqq� (5.200)� Et,x

�
exp

��1

2

» T
t

Γ1 pv, vq pτ,Xpτqq dτ �Mv,tpT q� n¹
j�1

fj ptj , X ptjqq� .
Proof. This result is proved in Chapter 7: see Theorem 7.1. There is only

a notational difference: here we write Lpsq instead of �K0psq in Theorem

7.1. �

It is just mentioned that Theorem 5.8 is fully proved with Lpsq � L time-

independent in [Van Casteren (2003)]. In Theorem 5.8 the operator familytLpsq : s P r0, T su should be the generator of a diffusion process in the sense

as in Definition 5.1. In addition, it should generate a Feller evolution in

the sense of Theorem 2.11. Moreover, the squared gradient operator should

exist in Tβ-sense, i.e. in the sense of (5.2).

5.4.1 Remarks on the Runge-Kutta method and on mono-

tone operators

We conclude this chapter with an explanation of the relation which exists

between surjectivity of the mapping y ÞÑ y � δf pt, y, zq, y P Rk, and the

Runge-Kutta method. Here t is a time variable, δ ¡ 0 is a (small) constant,

and z is a functional which plays no role here. In the text which follows

the z-dependence is suppressed, and h plays the role of δ.

Remark 5.19. The surjectivity of the mapping y ÞÑ y � δf ps, y, ZM psqq
from Rk onto itself follows from Theorem 1 in [Crouzeix et al. (1983)]. The

authors use a homotopy argument to prove this theorem for C1 � 0. Upon

replacing f pt, y, ZM ptqq with f pt, y, ZMptqq �C1y, where C1 is as in (5.72)

the result follows in our version, and the conditions in [Crouzeix et al.
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(1983)] are satisfied. An elementary proof of Theorem 1 in [Crouzeix et al.

(1983)] can be found for a continuously differentiable function in [Hairer and

Wanner (1991)]: see Theorem 14.2 in Chapter IV. The author is grateful

to Karel in’t Hout (University of Antwerp) for pointing out closely related

Runge-Kutta type results and these references. In [Hairer and Wanner

(1991)] and also in the newer version [Hairer and Wanner (1996)] (Theorem

14.2) the authors study the existence of a Runge-Kutta solution pgjq1¤j¤s,
gj P Rk, which is implicitly defined by an equation of the form

gi � y0 � h

ş

j�1

aijf pt0 � cjh, gjq , i � 1, . . . , s,

y1 � y0 � h

ş

j�1

bjf pt0 � cjh, gjq . (5.201)

Here cj and bj are given constants which depend on the precise numerical

method under discussion, and the same is true for the constants aij , 1 ¤
i, j ¤ s. The equations in (5.201) are motivated by a numerical treatment

of ordinary differential equations of the form
ByptqBt � f pt, yptqq, yp0q � y0.

The function f satisfies a one-sided Lipschitz condition of the form

〈f pt, y2q � f pt, y1q , y2 � y1〉 ¤ C |y2 � y1|2 (5.202)

for all t in an open interval of R and for all y1, y2 P Rk. Here the symbol

y with or without subscript is a vector in Rk. The Runge-Kutta matrix

A � paijqsi,j�1
is supposed to be an invertible s� s matrix. The vector y1

is the new initial condition. Put

α0

�
A�1

� � sup
D

inf
uPRk, u�0

〈

u,DA�1u
〉

〈u,Du〉

where the supremum is taken over all diagonal matrices D with strictly

positive entries. If A is the identity matrix, then α0

�
A�1

� � 1. In terms

of the matrix A and the mapping

F : pg1, . . . , gsq ÞÑ pf pt0 � c1h, g1q , . . . , f pt0 � csh, gsqq
the solvability of the Runge-Kutta equation (5.201) for all initial values

y0 P Rk is equivalent to the surjectivity of the mapping g ÞÑ g � hAF pgq,
g P Rk.

Theorem 5.9. Let h ¡ 0 be such that hC   α0

�
A�1

�
, where C is as in

(5.202). Then the equation in (5.201) has a solution.
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Under the extra assumption of continuously differentiability of the function

f the authors of [Hairer and Wanner (1991)] base their proof on a study of

the homotopy properties of the mapping:

gi � y0�h ş

j�1

aijf pt0 � cjh, gjq� pτ � 1qh ş

j�1

aijf pt0 � cjh, y0q . (5.203)
The equation in (5.203) has a solution gj � y0 for τ � 0, and for τ � 1 it

reduces to the equation in (5.201).

Remark 5.20. Finally we notice that in [Ramm (2007)] the author treats

one-sided Lipschitz and monotone operators in the context of Hilbert and

Banach spaces. He uses the so-called Dynamical System Method. We also

mention that for Hilbert spaces the problem of surjectivity of the operator

I � δF is closely related to the fact that the operator �F is m-accretive in

the sense that F is one-sided monotone with monotonicity constant 0, and

that I � δF is surjective for some, and by Minty’s theorem, for all δ ¡ 0:

for details see [Showalter (1997)]. For a closely related result, called the

Browder-Minty theorem, see Theorem 9.45 in [Renardy and Rogers (2004)]

or Theorem 2.2 in [Showalter (1997)].

Theorem 5.10. The Browder-Minty theorem states that a bounded, demi-

continuous, coercive and monotone function T from a real, reflexive Banach

space X into its continuous dual space X� is automatically surjective. That

is, for each continuous linear functional g P X�, there exists a solution

u P X of the equation T puq � g.

The (non-linear) operator T is called coercive if the equality lim|y|Ñ8 〈y, T y〉|y| �8 holds, and monotonicity means that 〈y2 � y1, T y2 � Ty1〉 ¥ 0 for all

y1, y2 P X . The operator T is said to be demi-continuous if un Ñ u in X

implies 〈x, Tun � Tu〉Ñ 0 for all x P X . It is bounded if it sends bounded

sets to bounded sets. The operator T is said to be hemi-continuous if the

function t ÞÑ 〈x, T px� tuq〉 Ñ 0 is continuous for all x, u P X . The result

in Theorem 5.10 was proved independently by Minty [Minty (1963)] and

Browder [Browder (1963)]: see [Browder (1967)] as well. By a result due

to Browder and Rockafellar for monotone operators hemi-continuity and

demi-continuity are equivalent: see [Rockafellar (1997)] and [Rockafellar

(1969)]. It is noticed that in order to pass from the finite-dimensional to

the infinite-dimensional setting authors use a Galerkin method. In view of

Theorem 5.10 it is quite well possible that the results in this chapter can
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also be formulated and proved in the Hilbert space context, i.e. when the

variables Y ptq andMptq take their values in a Hilbert or (reflexive) Banach

space instead of Rk: see [Browder et al. (1970)]. Theorem 2.25 in [Phelps

(1993)] states that the multi-valued sub-differential of a continuous convex

function which is everywhere defined in a Banach space is a maximal mono-

tone operator. For set valued monotone operators the reader is referred to

[Tarafdar and Chowdhury (2008)].

To conclude this chapter we insert a sample result in the Hilbert space set-

ting: for details see Van [Van Casteren (2010)]. In what follows the sym-

bol H stands for a Hilbert space, and the family tCpt, sq : 0 ¤ t ¤ s ¤ T u
stands for a strongly continuous family of linear operators on H which is

a forward evolution family, i.e. C pt1, sqC ps, t2q � C pt1, t2q, 0 ¤ t1 ¤ s ¤
t2 ¤ T , and Cpt, tq � I. In addition we write Aptqh � lim

sÓ0 Cpt, t� sqh� h

s
,

h P D pAptqq. Let E be a Polish space, andtpΩ,Fτ
T ,Pτ,xq , pXptq, τ ¤ t ¤ T q , pE, Equ (5.204)

an E-valued strong time-dependent Markov process with continuous paths,

H a Hilbert space, and u : r0, T s � E Ñ H a function with the property

that the limit

lim
ρÓt Et,x ru pρ,Xpρqqs � upt, xq

ρ� t
� � BBt � Lptq
u pt, xq (5.205)

exists for all pt, xq P r0, T s � E. By hypothesis it is assumed that this

convergence takes place in the Hilbert space H and is uniformly on com-

pact subsets of r0, T s � E. Observe that the operators Lpsq, 0 ¤ s ¤ T ,

are defined on a subspace of the space of continuous H-valued functions.

The equality in (5.206) below should be compared with equality (2.77) in

Definition 2.8.

Theorem 5.11. Let H be a real Hilbert space. Let u : r0, T s�E Ñ H be a

continuous function with the property that for every pt, xq P r0, T s � E the

function s ÞÑ Et,x ru ps,Xpsqqs is differentiable and that for the derivatives

from the right
d

ds
Et,x ru ps,Xpsqqs � Et,x

�
Lpsqu ps,Xpsqq � BBsu ps,Xpsqq� , t ¤ s   T.

(5.206)

Then the following assertions are equivalent:

(a) The function u satisfies the following differential equation:

Lptqu pt, xq �Aptqupt, xq � BBtu pt, xq � f
�
t, x, u pt, xq ,∇L

u pt, xq� � 0.
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(b) The function u satisfies the following type of Feynman-Kac integral

equation:

u pt, xq � Et,x rCpt, T qu pT,XpT qqs� Et,x

�» T
t

Cpt, τqf �τ,Xpτq, u pτ,Xpτqq ,∇L
u pτ,Xpτqq� dτ� .

(c) For every t P r0, T s there exists a Pt,x-martingale Mtpsq on the intervalrt, T s such that for t ¤ s ¤ T

upt,Xptqq � Cpt, squ ps,Xpsqq� » s
t

Cpt, τqf �τ,Xpτq, u pτ,Xpτqq ,∇L
u pτ,Xpτqq� dτ� » s

t

Cpt, τq dMtpτq.
The result in Theorem 5.11 should be compared with Theorem 5.1. In

[Van Casteren (2010)] conditions are given in order that an equation of the

form

Y ptq � C pt, T q ξ�» T
t

C pt, sq f ps,Xpsq, Y psq, ZM psqq ds�» T
t

Cpt, sq dMpsq.
admits solutions in an appropriate stochastic phase space S2 � M2: cf.

equality (5.196) in Theorem 5.7. Again, as in the remaining part of this

chapter the pair of H-valued processes pY ptq,Mptqq is adapted to the un-

derlying (strong) Markov process (5.204). Again one-sided Lipschitz condi-

tions play a role (in the variable Y ) and a two-sided Lipschitz condition is

required in the variable ZM . Instead of the identity operator I as in The-

orem 5.7 we now have a propagator tCps, tq : 0 ¤ s ¤ t ¤ T u. It generator
t ÞÑ Aptq is supposed to be bounded from above: there exists a constant

C0 such that 〈y,Apsqy〉H ¤ C0 〈y, y〉H, 0 ¤ s ¤ T , y P DpApsqq.
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Chapter 6

Viscosity solutions, backward

stochastic differential equations and

Markov processes

In this chapter we explain the notion of stochastic backward differential

equations and its relationship with classical (backward) parabolic differ-

ential equations of second order. The chapter contains a combination of

stochastic processes like Markov processes and martingale theory and semi-

linear partial differential equations of parabolic type. Emphasis is put on

the fact that the solutions to BSDE’s obtained by stochastic methods to

BSDE’s are often viscosity solutions.

The notations

S2
�rτ, T s,Pτ,x,Rk� � S2

�
Ω,Fτ

T ,Pτ,x;R
k
�

and

M2
�rτ, T s,Pτ,x,Rk� �M2

�
Ω,Fτ

T ,Pτ,x;R
k
�

were explained in the definitions 5.4 and 5.5 respectively. The same is true

for the notions

S2
loc,unif

�r0, T s,Rk� � S2
loc,unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
,

M2
loc,unif

�r0, T s,Rk� �M2
loc,unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
,

S2
unif

�r0, T s,Rk� � S2
unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
, and

M2
unif

�r0, T s,Rk� �M2
unif

�
Ω,Fτ

T ,Pτ,x;R
k
�
.

The space M2,s
AC � M2,s

AC

�
Ω,Fτ

T ,Pτ,x;R
k
�
is explained in Definition 5.7

(see Lemma 5.1 as well). The probability measure Pτ,x is defined on the

σ-field Fτ
T . Since the existence properties of the solutions to backward

stochastic equations are based on explicit inequalities, the proofs carry over

to Markov families of measures. Ultimately these inequalities imply that

boundedness and continuity properties of the function pτ, xq ÞÑ Eτ,x rY ptqs,
0 ¤ τ ¤ t ¤ T , depend on the continuity of the function x ÞÑ ET,x rξs, where
ξ is a terminal value function which is supposed to be σ pXpT qq-measurable.

In addition, in order to be sure that the function pτ, xq ÞÑ Eτ,x rY ptqs is
385
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continuous, functions of the form pτ, xq ÞÑ Eτ,x rf pt, u pt,Xptqq , ZM ptqqs
have to be continuous, whenever the following mappingspτ, xq ÞÑ Eτ,x

�» T
τ

|ups,Xpsqq|2 ds� andpτ, xq ÞÑ Eτ,x r〈M,M〉 pT q � 〈M,M〉s (6.1)

represent finite and continuous functions. Comparison theorems enable us

to compare solutions if these solutions can be compared at their endpoints.

In the proof of these comparison theorems we introduced a new martingale:

see formula (6.3). They also serve to prove that solutions to BSDE’s often

are viscosity solutions: see e.g. Theorem 6.3.

6.1 Comparison theorems

As an introduction to the present section we insert a comparison theorem.

This theorem will also be used to establish the fact that solutions to semi-

linear BSDE’s are in fact viscosity solutions. In the following theorem the

measure P could be one of the probability measures P0,x, x P E. If the

interval rτ, T s is taken instead of r0, T s then P could also be one of the

measures Pτ,x, and, of course, FT should be replaced with Fτ
T . Recall that

the space M2,t
AC is explained in Definition 5.7.

Theorem 6.1. Suppose that Y pT q � ξ ¤ ξ1 � Y 1pT q P-a.s., and

fpt, x, y, zq ¤ f 1pt, x, y, zq almost everywhere. Then Y ptq ¤ Y 1ptq, 0 ¤
t ¤ T , P-a.s., provided that there exists a martingale Nptq such that the

quadratic covariation process t ÞÑ 〈N,M 1 �M〉 ptq satisfies
f 1 pt,Xptq, Y ptq, ZM 1ptqq � f 1 pt,Xptq, Y ptq, ZM ptqq � d

dt

〈

N,M 1 �M
〉 ptq.
(6.2)

If moreover Y p0q � Y 1p0q, then Y ptq � Y 1ptq, 0 ¤ t ¤ T , P-a.s. Moreover,

if either P pξ   ξ1q ¡ 0 or f pt, y, ZM ptqq   f 1 pt, y, ZM ptqq, py, ZM ptqq P
R�M2,t

AC, on a set of positive dt� dP measure, then Y p0q   Y 1p0q.
In fact for the martingale Nptq in (6.2) we may choose:

Nptq � » t
0

f 1 ps,Xpsq, Y psq, ZM 1psqq � f 1 ps,Xpsq, Y psq, ZM psqq
d

ds

〈

M 1 �M,M 1 �M
〉 psq�

dM 1psq � dMpsq� , (6.3)
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where the derivative
d

ds

〈

M 1 �M,M 1 �M
〉 psq

stands for the Radon-Nikodym derivative of the quadratic variation process

t ÞÑ 〈M 1 �M,M 1 �M〉 ptq at t � s (relative to the Lebesgue measure).

For more explanation see Definition 5.7 and Lemma 5.1. In the following

proposition we collect some properties of the martingale t ÞÑ Nptq. Among

other things it says that the process t ÞÑ Nptq is well-defined and continuous

provided the martingale t ÞÑM 1ptq�Mptq is continuous. It is assumed that

there exists a constant C 1 such that��f 1 ps,Xpsq, Y psq, ZM 1psqq � f 1 ps,Xpsq, Y psq, ZM psqq��2¤ �
C 1�2 d

ds

〈

M 1 �M,M 1 �M
〉 psq, 0 ¤ s ¤ T. (6.4)

Proposition 6.1. Suppose that the processes Xpsq, Y psq, M 1psq, andMpsq
are such that (6.4) is satisfied for the constant C 1. In addition suppose that

the process M 1 �M is a martingale belonging to M2 pr0, T s,Pq with the

property that the quadratic variation process s ÞÑ 〈M 1 �M,M 1 �M〉 psq
is absolutely continuous with respect to the Lebesgue measure. Then the

process t ÞÑ Nptq is a martingale which is well-defined, and also belongs to

M2 pr0, T s,Pq. The following inequality is satisfied:

〈N,N〉 ptq � 〈N,N〉 psq ¤ �
C 1�2 pt� sq. (6.5)

The quadratic variation process t ÞÑ 〈N,N〉 ptq is absolutely continuous rel-

ative to the Lebesgue measure. Its Radon-Nikodym derivative
d

ds
〈N,N〉 psq

satisfies

d

ds
〈N,N〉 psq � |f 1 ps,Xpsq, Y psq, ZM 1psqq � f 1 ps,Xpsq, Y psq, ZM psqq|2

d

ds

〈

M 1 �M,M 1 �M
〉 psq .

(6.6)

In the notation of Definition 5.6 the martingale M 1 �M belongs to the

space M2
AC pΩ,FT ,P;Rq �M2

AC pr0, T s,Pq.
Let s ÞÑ M1psq and s ÞÑ M2psq be two martingales with quadratic

variation processes 〈M1,M1〉 and 〈M2,M2〉 respectively. Let the Doléans

measures Qj : F0
T b Br0,T s Ñ r0,8s, j � 1, 2 be determined by

QjpA� pa, bsq � E r1A p〈Mj ,Mj〉 pbq � 〈Mj ,Mj〉 paqqs , (6.7)

with A P F0
T , 0 ¤ a ¤ b ¤ T, j � 1, 2. In addition, let s ÞÑ f1psq and

s ÞÑ f2psq be predictable process which belong to L2
�
Ω,F0

T b Br0,T s, Q1

�
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and L2
�
Ω,F0

T b Br0,T s, Q2

�
respectively. In the proof of Proposition 6.1 we

need the following equality:
〈» p�q

0

f1psqdM1psq, » p�q
0

f2psqdM2psq〉 ptq � » t
0

f1psqf2psqd 〈M1,M2〉 psq
(6.8)

where t P r0, T s. A definition of Doléans measure like (6.7), and an equality

like (6.8) are given in books on martingale theory, like [Williams (1991)].

Proof. [Proof of Proposition 6.1.] Equality (6.8) in Proposition 6.1 yields

〈N,N〉 ptq� » t
0

|f 1 ps,Xpsq, Y psq, ZM 1psqq � f 1 ps,Xpsq, Y psq, ZM psqq|2�
d

ds

〈

M 1 �M,M 1 �M
〉 psq
2

d
〈

M 1 �M,M 1 �M
〉 psq� » t

0

|f 1 ps,Xpsq, Y psq, ZM 1psqq � f 1 ps,Xpsq, Y psq, ZM psqq|2�
d

ds

〈

M 1 �M,M 1 �M
〉 psq
2

d

ds

〈

M 1 �M,M 1 �M
〉 psq ds� » t

0

|f 1 ps,Xpsq, Y psq, ZM 1psqq � f 1 ps,Xpsq, Y psq, ZM psqq|2
d

ds

〈

M 1 �M,M 1 �M
〉 psq ds. (6.9)

The equality in (6.5) follows from (6.9). Combining the equality in (6.4)

and (6.9) results in the inequality in (6.5). The inequality in (6.6) follows

from (6.5).

If the martingale s ÞÑ pM 1psq �Mpsqq is continuous, then so is the

martingale s ÞÑ Npsq which is obtained as a stochastic integral relative to

d pM 1 �Mq psq. This assertion also follows from Itô calculus for martin-

gales: see e.g. [Williams (1991)].

This completes the proof of Proposition 6.1. �

Proof. [Proof of Theorem 6.1.] Following [Pardoux (1998a)] we introduce

the process αptq, 0 ¤ t ¤ T , by αptq � 0 if Y ptq � Y 1ptq, and
αptq (6.10)� �

Y 1ptq � Y ptq��1 �
f 1 �t,Xptq, Y 1ptq, ZM 1ptq�� f 1 pt,Xptq, Y ptq, ZM 1ptqq�

if Y ptq �� Y 1ptq. Then αptq ¤ C1 P-almost surely. We also introduce the

following processes:

Uptq � f 1 pt,Xptq, Y ptq, ZM ptqq � f pt,Xptq, Y ptq, ZM ptqq ; (6.11)
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Y ptq � Y 1ptq � Y ptq; (6.12)

Mptq �M 1ptq �Mptq; (6.13)

ξ � Y pT q � Y 1pT q � Y pT q � ξ1 � ξ. (6.14)

In terms of αptq, ξ, Uptq, and the martingales Nptq and Mptq the adapted

process Y ptq satisfies the following backward integral equation:

Y ptq � ξ (6.15)� » T
t

αpsqY psqds� » T
t

Upsqds�MpT q �Mptq � 〈

N,M
〉 pT q � 〈

N,M
〉 ptq.

From Itô calculus and (6.15) it then follows that

Y ptq � Y pT qe³Tt αpτqdτ�1

2
〈N,N〉pT q� 1

2
〈N,N〉ptq�NpT q�Nptq (6.16)�» T

t

e
³
s

t
αpτqdτ� 1

2
xN,Nypsq�1

2
xN,Nyptq�Npsq�NptqpUpsqds�dMpsq�Y psqdNpsqq.

Since the process Y ptq is adapted and since Itô integrals with respect to

martingales with bounded integrands are martingales the equality in (6.16)

implies:

Y ptq � E

�
Y pT qe³Tt αpτqdτ�1

2
〈N,N〉pT q� 1

2
〈N,N〉ptq�NpT q�Nptq (6.17)� » T

t

e
³
s
t
αpτqdτ�1

2
〈N,N〉pT q� 1

2
〈N,N〉ptq�Npsq�NptqUpsqds �� Ft� .

Since by hypothesis Y pT q ¥ 0 and Upsq ¥ 0 for all s P r0, T s, the equality

in (6.17) implies Y ptq ¥ 0. The other assertions also follow from represen-

tation (6.17). This completes the proof of Theorem 6.1. �

The following result can be proved along the same lines as Theorem 6.1. It

will be used in the proof of Theorem 6.3 with

V psq � 9ϕps,Xpsqq � Lpsqϕps, �qpXpsqq,
with Y psq � u ps,Xpsqq and Y 1psq � ϕ ps,Xpsqq. In fact the arguments

in the proof of Theorem 2.4 of [Pardoux (1998a)] inspired our proof of the

following theorem.

Theorem 6.2. Fix pt, xq P r0, T q � E and fix a stopping time τ such that

t   τ ¤ T . Let V psq be a progressively measurable process such that

Et,x
�³τ
t
|V psq| ds�   8. Let pY,Mq and pY 1,M 1q P S2 prt, T s,Pt,x,Rq �
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M2 prt, T s,Pt,x,Rq satisfy the following type of backward stochastic integral

equations:

Y psq � Y pτq � » τ
s

f pρ,Xpρq, Y pρq, ZM pρqq dρ�Mpsq �Mpτq and

Y 1psq � Y 1pτq � » τ
s

V pρqdρ�M 1psq �M 1pτq
for t ¤ s   τ . Suppose that Y pτq ¤ Y 1pτq and

f
�
s,Xpsq, Y 1psq, ZM 1psq� ¤ V psq, t ¤ s ¤ τ.

Then Y psq ¤ Y 1psq, t ¤ s ¤ T . If

f
�
s,Xpsq, Y 1psq, ZM 1psq�   V psq

on a subset of rt, τq�Ω of strictly positive ds�P-measure, then Y ptq   Y 1ptq.
Proof. Define the stochastic process f 1 ps,Xpsq, y, zq by
f 1 ps,Xpsq, y, zq � f ps,Xpsq, y, zq � V psq � f

�
s,Xpsq, Y 1psq, ZM 1psq� .

The arguments for the proof of Theorem 6.1 now apply with the martingale

Npsq, t ¤ s ¤ T , given by

Npsq � » s^τ
t

f pρ,Xpρq, Y pρq, ZM 1pρqq � f pρ,Xpρq, Y pρq, ZM pρqq
d

dρ

〈

M 1 �M,M 1 �M
〉 pρq�

dM 1pρq � dMpρq� , (6.18)

and the process αpsq, t ¤ s ¤ T , defined by αpsq � 0 if Y psq � Y 1psq, and
αpsq (6.19)� �

Y 1ptq � Y ptq��1 �
f
�
s,Xpsq, Y 1psq, ZM 1psq�� f ps,Xpsq, Y psq, ZM 1psqq�

if Y ptq �� Y 1ptq. The other relevant processes are:

Upsq � V psq � f 1 �s,Xpsq, Y 1psq, ZM 1psq� ; (6.20)

Y psq � Y 1psq � Y psq; (6.21)

Mpsq �M 1psq �Mpsq; (6.22)

ξ � Y pτq � Y 1pτq � Y pτq � ξ1 � ξ. (6.23)

The remaining reasoning follows the lines of the proof of Theorem 6.1.

This completes the proof of Theorem 6.2. �
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Remark 6.1. If Y psq � u ps,Xpsqq, u is “smooth”, and upt, xq satisfies

(5.84), which is the same as (6.36) below, then Y psq satisfies (5.85), and

vice versa. If f ps, x, y, zq only depends on y P R, then, by the occupation

formula, » T
t

g pY psqqZpsq pY, Y q ds � » T
t

g pY psqq d 〈Y p�q, Y p�q〉 psq� »
R

pLyT pY q � L
y
t pY qq gpyqdy,

where dy is the Lebesgue measure, and Lyt pY q is the (density of the) local

time of the process Y ptq. If g � 1 and Y psq � u ps,Xpsqq, then (5.85) is

also equivalent to the following assertion: the process

exp

�
Y psq � Y pT q �» T

s

�
f pτ,Xpτq, Y pτq, Zpτq p�, Y qq � 1

2
〈Y, Y 〉 pτq
 dτ� ,

t0   t ¤ s ¤ T , is a local backward (exponential) Pt,x-martingale (for every

T ¡ t ¡ t0). The function f depends on x P E, s P pt0, T s, y P R, and on

the square gradient operator pf1, f2q ÞÑ Γ1 pf1, f2q, or, more generally, on

the covariance mapping pY1, Y2q ÞÑ 〈Y1, Y2〉 psq of the local semi-martingales

Y1psq and Y2psq. In order to introduce boundary conditions it is required

to insert in equation (5.85) a term of the form» T
t

h pXpsq, s, Y psq, Zpsq p�, Y qq dApsq,
where Apsq is a process which is locally of bounded variation, and which

only increases when e.g. Xpsq hits the boundary. To be more precise the

equality in (5.85) should be replaced with:

Y ptq � Y pT q � » T
t

f ps,Xpsq, Y psq, Zpsq p�, Y qq ds� » T
t

h pXpsq, s, Y psq, Zpsq p�, Y qq dApsq �Mptq �MpT q. (6.24)

We hope to come back on this and similar problems in future work. In

order to be sure about uniqueness and existence of solutions we probably

will need some Lipschitz and linear growth conditions on the function f and

some boundedness condition on ϕ. For more details on backward stochastic

differential equations see e.g. [Pardoux and Peng (1990)] and [Pardoux

(1998a)].
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6.2 Viscosity solutions

The main result in this section is Theorem 6.3. We begin with some formal

definitions.

Definition 6.1. Fix t0 P r0, T s, and let

F :C prt0, T s �E,Rq � C prt0, T s �E,Rq � C prt0, T s �E,Rq� L
�
Cp0,1q prt0, T s �E,Rq , C prt0, T s �E,Rq	Ñ C prt0, T s �E,Rq

be a function with the following property. If pt, xq is any point in rt0, T s�E,

then for all functions ϕ and ψ belonging to C prt0, T s �E,Rq, for which the

4 functions ps, yq ÞÑ 9ϕ ps, yq , ps, yq ÞÑ Lpsqϕ ps, �q pyq, (6.25)ps, yq ÞÑ 9ψ ps, yq , and ps, yq ÞÑ Lpsqψ ps, �q pyq (6.26)

belong to Cb prt0, T s �E,Rq, for which the operators g ÞÑ ∇L
ϕpgq and g ÞÑ

∇L
ψpgq are Tβ-continuous mappings from D pΓ1q to Cb prt0, T s �Eq, and

which are such that in case9ϕpt, xq � 9ψpt, xq, Γ1pϕ�ψ, ϕ�ψqpt, xq � 0, Lptqϕpt, xq ¤ Lptqψpt, xq, and
ϕpt, xq � ψpt, xq (6.27)

it follows that

F
� 9ϕ,Lϕ, ϕ,∇L

ϕ

� pt, xq ¤ F
� 9ψ,Lψ, ψ,∇L

ψ

	 pt, xq.
Here we wrote9ϕ � BϕBt , Lϕpt, xq � rLptqϕpt, �qs pxq, and ∇L

ϕg pt, xq � Γ1 pϕ, gq pt, xq .
Of course, similarly notions are in vogue for the function ψ. It is noticed

that

Γ1 pϕ� ψ, ϕ� ψq pt, xq � 0

if and only if the equality

∇L
ϕfpt, xq � ∇L

ψfpt, xq holds for all f P Cp0,1q pr0, T s �E,Rq. (6.28)

The proof of this assertion uses the inequality|Γ1 pϕ� ψ, fq pt, xq|2 ¤ Γ1 pϕ� ψ, ϕ� ψq pt, xqΓ1 pf, fq pt, xq (6.29)
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together with the identity ∇L
ϕ�ψ pfq pt, xq � Γ1 pϕ� ψ, fq pt, xq. If f �

ϕ� ψ we have equality in (6.29). An example of such a function F is:

F pϕ1, ϕ2, ϕ3, χq pt, xq � ϕ1 pt, xq � ϕ2 pt, xq � f pt, x, ϕ3 pt, xq , χ pt, xqq ,
(6.30)

where χ pt, xq is the linear functional g ÞÑ χpgq pt, xq. A viscosity sub-

solution for the equation

F
� 9w,Lw,w,∇L

w

� pt, xq � 0, wpT, xq � gpxq (6.31)

is a continuous function w with the following properties. First of all

wpT, xq ¤ gpxq, and if ϕ : rt0, T s � E Ñ R is any “smooth function”

(i.e. all three functions 9ϕ, Lϕ, ϕ are continuous and the linear mapping

ψ ÞÑ ∇L
ϕψ � Γ1 pψ, ϕq is continuous as well) Γ1 pϕ, ϕq, Lpsqϕ belong to

C prt0, T s �E,Rq), and if pt, xq is any point in rt0, T q �E where the func-

tion w � ϕ vanishes and attains a (local) maximum, then

F
� 9ϕ,Lϕ,w,∇L

ϕ

� pt, xq ¥ 0. (6.32)

The function w is a super-solution for equation (6.31) if wpT, xq ¥ gpxq, and
if for any “smooth” function ϕ with the property that the function w � ϕ

vanishes and attains a (local) minimum at any point pt, xq P rt0, T q � E,

then

F
� 9ϕ,Lϕ,w,∇L

ϕ

� pt, xq ¤ 0. (6.33)

If a function w satisfies (6.32) as well as (6.33) then w is called a viscosity

solution to equation (6.31).

The definition of the space D pΓ1q was given in 5.3. The following re-

sult says essentially speaking that solutions to BSDE’s in (6.35) and vis-

cosity solutions to equation (5.84), which is the same as (6.36) below,

are intimately related in the sense that upt, xq � Et,x rY ptqs, and con-

versely Y ptq � u pt,Xptqq. As in Section 5.1 the family of operators Lpsq,
0 ¤ s ¤ T , generates a Markov process:tpΩ,Fτ

T ,Pτ,xq , pXptq : T ¥ t ¥ 0q , p_t, T ¥ t ¥ 0q , pE, Equ . (6.34)

Theorem 6.3. Let the ordered pair

�
Y ptq
Mptq
 � �

upt,Xptqq
Mptq 


be a solution

to the BSDE:

Y psq � Y pT q � » T
s

f pρ,Xpρq, Y pρq, ZM pρqq dρ�Mpsq �MpT q. (6.35)
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Then the function upt, xq defined by upt, xq � Et,x rY ptqs is a viscosity so-

lution to the following equation$&% BuBs ps, xq � Lpsqu ps, xq � f
�
s, x, ups, xq,∇L

u ps, xq� � 0;

upT, xq � ϕ pT, xq , x P E, (6.36)

provided that the function upt, xq is continuous.

Notice that the equation in (6.36) is the same as the one in (5.84): see

Remark 6.1.

Proof. Let the function ϕps, yq be “smooth” and suppose that pt, xq is

point in r0, T q � E where the function u � ϕ vanishes and attains a local

maximum. This means that there exists a subset of the form rt, t� εs �U ,

where U is an open neighborhood of x such that

supps,yqPrt,t�εs�U pups, yq � ϕps, yqq � upt, xq � ϕpt, xq � 0.

We have to show thatBBtϕ pt, xq � Lptqϕ pt, �q pxq � f
�
t, x, u pt, xq ,∇L

ϕpt, xq� ¥ 0, (6.37)

where in (6.32) we have chosen

F
� 9ϕ,Lϕ, u,∇L

ϕ

� pt, xq � 9ϕpt, xq � Lptqϕpt, �qpxq � f
�
t, x, upt, xq,∇L

ϕpt, xq� .
(6.38)

Assume to arrive at a contradiction that the expression in (6.37) is strictly

less than zero:BBtϕ pt, xq � Lptqϕ pt, �q pxq � f
�
t, x, u pt, xq ,∇L

ϕpt, xq�   0. (6.39)

Upon shrinking ε ¡ 0 and the open subset U we may and do assume that

for all ps, yq P rt, t� εs � U the inequalityBBsϕ ps, yq � Lpsqϕ ps, �q pyq � f
�
s, y, u ps, yq ,∇L

ϕps, yq�   0 (6.40)

holds. Define the stopping τ by τ � inf ts ¥ t : Xpsq R Uu ^ pt� εq. From
(5.84) we have:

upt,Xptqq � u pτ,Xpτqq � » τ
t

f pρ,Xpρq, u pρ,Xpρqq , ZM pρqq dρ�Mptq �Mpτq. (6.41)

LetMϕpsq be the martingale associated to the function ϕ as in Proposition

5.3. Then

ϕ pt,X ptqq � ϕ pτ,X pτqq
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t

� BBsϕ ps,Xpsqq � Lpsqϕ ps, �q pXpsqq
 ds�Mϕ ptq �Mϕ pτq .
From the definition of the stopping time τ it follows that u pτ,X pτqq ¤
ϕ pτ,X pτqq. An application of Theorem 6.2 with

V psq � 9ϕps,Xpsqq � Lpsqϕps, �qpXpsqq,
with Y psq � u ps,Xpsqq and Y 1psq � ϕ ps,Xpsqq then shows u pt,Xptqq  
ϕ pt,Xptqq Pt,x-almost surely. Since

upt, xq � Et,x ru pt,Xptqqs and also ϕpt, xq � Et,x rϕ pt,Xptqqs
this leads to a contradiction. This means that our assumption (6.39) is

false, and hence the function upt, xq is a viscosity sub-solution to equation

(5.84) which is the same as (6.36). In the same manner one shows that

upt, xq is also a viscosity super-solution to (5.84).

Altogether this completes the proof of Theorem 6.3. �

The following proposition says that solutions to the equation (5.84), which

is the same as (6.36), are automatically continuous provided that the un-

derlying Markov process is strong Feller: see the equalities in (6.42) below.

For the notion of the strong Feller property see e.g. Definitions 2.5 and

2.16.

Proposition 6.2. Let the pair pY,Mq be a solution to equation (6.35) in

Theorem 6.3. Suppose that the pair pY,Mq belongs to the space

S2
loc,unif pΩ,Fτ

T ,Pτ,x;Rq �M2
loc,unif pΩ,Fτ

T ,Pτ,x;Rq
(see Definitions 5.4 and 5.5). In addition, suppose that the Markov process

in (6.34) is strong Feller. Then the function pt, xq ÞÑ upt, xq :� Et,x rY ptqs
is continuous on r0, T s � E. This is a consequence of the strong Feller

property and the following equalities:

upt, xq � Et,xrupT,XpT qqs � » T
t

Et,xrfps,Xpsq, Y psq, ZM psqqsds (6.42)� Et,xrupT,XpT qqs � » T
t

Et,x
�
Es,Xpsqrfps,Xpsq, Y psq, ZM psqqs�ds.

Definition 6.2. Let tY ptq : t P rτ, T su be a process in L1 pΩ,F ,Pτ,xq
which is adapted relative to a filtration pFτ

t qτ¤t¤T . Then the processtY ptq : t P rτ, T su is said to be of class (DL) if the collectiontY pSq : τ ¤ S ¤ T, S stopping timeu
is uniformly integrable.
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Notice that an increasing process in L1 pΩ,F ,Pq is automatically of class

(DL), and that the same is true for a martingale. In addition, notice that

that in our case the process Y ptq, 0 ¤ t ¤ T , which satisfies

Y ptq � Y pT q � » T
t

f ps,Xpsq, Y psq, ZM psqq ds�Mptq �MpT q, (6.43)

where the pair pY,Mq belongs to S2�M2 pΩ,Fτ
T ,Pτ,xq is automatically of

class (DL) in the space L1 pΩ,Fτ
T ,Pτ,xq. The reason being that a martingale

is automatically of class (DL), and the same is true for a process of the form

t ÞÑ ³t
τ
f ps,Xpsq, Y psq, ZM psqq ds, τ ¤ t ¤ T .

In the proof we will employ a technique which is also used in the proof

of the Doob-Meyer decomposition theorem. It states that a local right-

continuous sub-martingale rY ptq of class (DL) can be written in the formrY ptq �Mptq �Aptq
where t ÞÑ Mptq is a right-continuous local martingale, and t ÞÑ Aptq is a

predictable increasing process. For details see e.g. [Protter (2005)] theo-

rems 12 and 13 in Chapter 3. For another account see [Karatzas and Shreve

(1991b)] Theorem 4.10. Another proof can be found in [Rao (1969)]. In

[van Neerven (2004)] Van Neerven gives a detailed account of the corre-

sponding result in [Karatzas and Shreve (1991b)]. In addition, in the proof

of the Doob-Meyer decomposition theorem Van Neerven uses the following

version of the Dunford-Pettis theorem.

Theorem 6.4 (Dunford-Pettis). If pYnqnPN is uniformly integrable se-

quence of random variables, then there exists an integrable random variable

Y and a subsequence pYnk
qkPN such that weak-limkÑ8 Ynk

� Y , i.e., for

all bounded random variables ξ the following equality holds:

lim
kÑ8E rξYnk

s � E rξY s .
For a proof of this version of the Dunford-Pettis theorem the reader is re-

ferred to [Kallenberg (2002)]. From general arguments in integration theory

and functional analysis, it then follows that the variable Y can be written

as the P-almost sure limit of appropriately chosen convex combinations of

the sequence tYnk
: k ¥ ℓu, and this for all ℓ P N. In other words there

exists a sequence rYℓ � Nℓ̧

k�ℓαℓ,kYnk
, ℓ P N, in L1 pΩ,F ,Pq with αℓ,k ¥ 0, and

for which
°Nℓ

k�ℓ αℓ,k � 1, L1- lim
ℓÑ8 rYℓ � Y , and lim

ℓÑ8 rYℓ � Y P-almost surely.
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Proof. Proof of Proposition 6.2 By the strong Feller property it suffices

to show that the process ρ ÞÑ f pρ,Xpρq, u pρ,Xpρqq , ZM pρqq only depends

on the pair pρ,Xpρqq. In other words we have to show that the functional

ZM pρq only depends on pρ,Xpρqq. We will verify this claim. Therefore we

introduce the processes

Yjptq � Et,Xptq �Y �P
2jt

T
2j

^ T

��
and

Ajptq � ¸
0¤k 2j t

Ek2�j ,Xpk2�jq �Y �
k � 1

2j
^ T


� Y

�
k

2j
^ T


�
, (6.44)

j P N, t P r0, T s. Fix 0 ¤ t1   t2 ¤ T . From (6.44) we see that the

increment Aj pt2q � Aj pt1q is measurable relative to the σ-field generated

by X
�
k2�j�, t1 ¤ k2�j   t2, k P N. Next, let pτ, xq P r0, T q � E. Since

Y psq � u ps,Xpsqq, 0 ¤ s ¤ T , we are eligible to apply the Markov property

to infer that Pτ,x-almost surely

Yjptq � Eτ,x

�
Y

�P
2jt

T
2j

^ T

� �� Fτ
t

�
and

Ajptq � Ajpτq � ¸
2jτ¤k 2jt

Eτ,x

�
Y

�
k � 1

2j
^ T


� Y

�
k

2j
^ T


 �� Fτ
k2�j

�
.

(6.45)

Next we show that the process t ÞÑ Yjptq�Ajptq�Ajpτq is a Pτ,x-martingale.

Let 0 ¤ t1   t2 ¤ T , and notice that the variables Yj pt1q and Aj pt1q�Ajpτq
are Fτ

t1
-measurable. We employ (6.44) and (6.45) to obtain

Eτ,x
�
Yj pt2q �Aj pt2q �Ajpτq �� Fτ

t1

�� Yj pt1q �Aj pt1q �Ajpτq� Eτ,x
�
Yj pt2q � Yj pt1q �Aj pt2q �Aj pt1q �� Fτ

t1

�� Eτ,x

�
Eτ,x

�
Y

�P
2jt2

T
2j

^ T

� �� Fτ
t2

�� Eτ,x

�
Y

�P
2jt1

T
2j

^ T

� �� Fτ
t1

�� ¸
2jt1¤k 2jt2

Eτ,x

�
Y

�
k � 1

2j
^ T


� Y

�
k

2j
^ T


 �� Fτ
k2�j

� �� Fτ
t1

�
(tower property of conditional expectations)� Eτ,x

�
Y

�P
2jt2

T
2j

^ T

�� Y

�P
2jt1

T
2j

^ T

�� ¸
2jt1¤k 2jt2

�
Y

�
k � 1

2j
^ T


� Y

�
k

2j
^ T


� �� Fτ
t1

�
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�
0
�� Fτ

t1

� � 0. (6.46)

From (6.46) it follows that for every pair pτ, xq P r0, T q � E the processes

t ÞÑ Yjptq � Ajptq � Ajpτq, j P N, are Pτ,x-martingales relative to the

filtration pFτ
t qtPrτ,T s. Put Mjptq � Yjptq � Ajptq. Then the process t ÞÑ

Mjptq �Mjpτq, t P rτ, T s, is a Pτ,x-martingale, and

Yjptq � Yjpτq � Ajptq �Ajpτq �Mjptq �Mjpτq. (6.47)

In (6.47) we let j tend to 8, and if necessary, we pass to a subsequence, to

obtain

Y ptq � Y pτq � » t
τ

f ps,Xpsq, Y psq, ZM psqq ds�Mptq �Mpτq, (6.48)

where in L1 pΩ,Fτ
t ,Pτ,xq and Pτ,x-almost surely the following equalities

hold» t
τ

f ps,Xpsq, Y psq, ZM psqq ds � lim
nÑ8 Nņ

k�nαn,k pAjk ptq �Ajk pτqq , and

Mptq �Mpτq � lim
nÑ8 Nņ

k�nαn,k pMjkptq �Mjkpτqq , (6.49)

for certain real numbers αn,k ¥ 0 which satisfy
°Nn

k�n αn,k � 1. For all this

see the comments following Theorem 6.4. It follows that Pτ,x-almost surely,

the variables» t2
t1

f ps,Xpsq, Y psq, ZM psqq ds, τ ¤ t1   t2 ¤ T, (6.50)

are F t1
t2
-measurable. Consequently, for almost every s P rτ, T s, the vari-

able f ps,Xpsq, Y psq, ZM psqq is almost surely Pτ,x-measurable relative to

σ ps,Xpsqq. Since the paths of the process X are continuous from the right

it follows that for almost all s P r0, T s the variable f ps,Xpsq, Y psq, ZM psqq
is F t

s�-measurable for all 0 ¤ t   s. If 0 ¤ t   s ¤ T by the strong Markov

property relative to the filtration
�
F t
s��sPrt,T s (see Theorem 2.9) we then

have

Et,x
�
Es,Xpsq rf ps,Xpsq, Y psq, ZM psqqs�� Et,x
�
Et,x

�
f ps,Xpsq, Y psq, ZM psqq �� F t

s���� Et,x rf ps,Xpsq, Y psq, ZM psqqs , (6.51)

and

Es,Xpsq rf ps,Xpsq, Y psq, ZM psqqs
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�
f ps,Xpsq, Y psq, ZM psqq �� F t

s

�� Et,x
�
f ps,Xpsq, Y psq, ZM psqq �� F t

s��� f ps,Xpsq, Y psq, ZM psqq , Pt,x-almost surely. (6.52)

From (6.35) and (6.52) we infer

Y ptq � Y pT q � » T
t

Es,Xpsq rf ps,Xpsq, Y psq, ZM psqqs ds�Mptq �MpT q, (6.53)

and hence by (6.51) from (6.53) we get

upt, xq � Et,x rY ptqs � Et,x ru pT,XpT qqs� » T
t

Et,x
�
Es,Xpsq rf ps,Xpsq, Y psq, ZM psqqs� ds. (6.54)

As a consequence, the strong Feller property implies that the functionpt, xq ÞÑ Et,x
�
Es,Xpsq rf ps,Xpsq, Y psq, ZM psqqs� , (6.55)

0 ¤ t ¤ s ¤ T , x P E, is continuous. As a consequence, from (6.54) and

(6.55) we infer that the function pt, xq ÞÑ upt, xq is continuous.
This conclusion completes the proof of Proposition 6.2. �

6.3 Backward stochastic differential equations in finance

In [Crandall et al. (1984)] the authors M.G. Crandall, L.C. Evans, and P.L.

Lions study properties of viscosity solutions of Hamilton-Jacobi equations.

In [Pardoux (1998b)] E. Pardoux uses viscosity solutions in the study of

backward stochastic differential equations and semi-linear parabolic equa-

tions. In [El Karoui et al. (1997)] and in [El Karoui and Quenez (1997)]

the authors employ backward stochastic equations to study American op-

tion pricing. We like to give an introduction to this kind of stochastic

differential equations and the corresponding parabolic partial differential

equations. As a rule the operator L generates a d-dimensional diffusion.

For instance, if L � 1
2
∆, then the corresponding diffusion is Brownian mo-

tion. To some extent a solution to a BSDE corresponding to a semilinear

parabolic partial differential equation generalizes the (classical) Feynman-

Kac formula. We also mention that Nelson [Nelson (1967)] was perhaps

the first to consider backward stochastic differential equations. In the lin-

ear case Bismut [Bismut (1973, 1978)] also considered backward stochastic

differential equations. Most of the material presented in this section is
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taken from [El Karoui and Quenez (1997)] and [El Karoui et al. (1997)].

See the papers in [El Karoui and Mazliak (1997)] as well. First we describe

a model of assets and hedging strategies. There is a non-risky asset (the

money market or bond) S0ptq, and there are n risky assets Sjptq, 1 ¤ j ¤ n.

The process S0ptq satisfies the differential equation

dS0ptq � S0ptqrptqdt, where rptq is the short time interest rate.

The other assets satisfy a linear stochastic differential equation (SDE) of

the form

dSjptq � Sjptq�bjptqdt� ņ

k�1

σjkptqdW kptq� ,
which is driven by a standardWiener processW ptq � �

W 1ptq, . . . ,Wnptq��,
defined on a filtered space

�
Ω, pFtq0¤t¤T ,P�. It is assumed that pFtq0¤t¤T

is generated by the Wiener process. Generally speaking the coefficients rptq,
bjptq, σjkptq are supposed to be bounded predictable processes with values

in R. We also write σjptq � pσjkptqqnk�1
. The matrix rσjkptqsnj,k�1

is called

the volatility matrix. To ensure the absence of arbitrage opportunities

in the market, it is assumed that there exists an n-dimensional bounded

predictable vector process ϑptq such that

bptq � rptq1 � σptqϑptq, dtb P-almost surely.

The vector 1 is the column vector, which is constant 1, and ϑptq is called the

risk premium vector. It is assumed that σptq has full rank. Consider a small

investor, whose actions do not affect the market prices, and who can decide

at time t P r0, T s what amount of the wealth V ptq to invest in the j-th stock,

1 ¤ j ¤ n. Of course his decisions are only based on the current information

Ft; i.e. πptq � �
π1ptq, . . . , πnptq��, and π0ptq � V ptq � °n

j�1 π
jptq are

predictable processes. The process πptq is called the portfolio process. The

existence of such a risk process ϑptq guarantees that the model is arbitrage

free. Let us make this precise by beginning with some definitions.

Definition 6.3.

(a) A progressively measurable Rn-valued process

π �  pπ1ptq, . . . , πnptqq� : 0 ¤ t ¤ T
(

with the property» t
0

|π�ptqσptq|2 dt� » T
0

|π�ptq pbptq � rptq1q| dt   8, P-almost surely

is called a portfolio process.
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(b) Put γptq � exp
�� ³t

0
rpτqdτ	, and define for a given portfolio πptq the

process Mπptq by
Mπptq � » t

0

γpsqπ�psq rσpsqdW psq � pbpsq � rpsq1q dss , 0 ¤ t ¤ T.

The process Mπptq is called the discounted gains process. A portfolio

πptq is called tame if there exists a real constant qπ such that P-almost

surely Mπptq ¥ qπ, 0 ¤ t ¤ T .

(c) A tame portfolio πptq that satisfies
P rMπpT q ¥ 0s � 1, and P rMπpT q ¡ 0s ¡ 0,

is called an arbitrage opportunity (or “free lunch”). A market M is

called arbitrage free if no such portfolios exist in it.

The following theorem shows the relevance of the existence of a risk process

ϑptq.
Theorem 6.5.

(i) If the market M is arbitrage-free, then there exists a progressively mea-

surable process ϑ : r0, T s � ΩÑ Rn, called the market price or price of

risk (or price of relative risk) process, such that

bptq � rptq1 � σptqϑptq, 0 ¤ t ¤ T, P-almost surely.

(ii) Conversely, if such a price of risk process exists and satisfies, in addi-

tion to the above requirements,» T
0

|ϑptq|2 dt   8, P-almost surely, and (6.56)

E

�
exp

�� » T
0

ϑ�ptqdW ptq � 1

2

» T
0

|ϑptq|2 dt�� � 1, (6.57)

then M is arbitrage free.

From Novikov’s condition (see Proposition 3.5.12 in [Karatzas and Shreve

(1991a)]), it follows that conditions (6.56) and (6.57) are satisfied if

E

�
exp

�
1

2

» T
0

|ϑptq|2 dt��   8;

in particular this is the case if |ϑptq| is uniformly bounded in pt, ωq Pr0, T s � Ω. For Novikov’s condition see Theorem 1.6 and its Corollary

1.3 in Chapter 1. It is noticed that under the condition (6.57) the process
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W ptq � ³t
0
ϑ�psq1ds is a Brownian motion with respect to the martingale

measure Q which has Radon-Nikodym derivative

dQ

dP
:� exp

�� » T
0

ϑ�ptqdW ptq � 1

2

» T
0

|ϑptq|2 dt� .

For more details the reader is referred to [Karatzas (1997)], and to [Karatzas

and Shreve (1998)]. Another valuable source of information is Kleinert

[Kleinert (2003)], Chapter 20. Following Harrison and Pliska [Harrison and

Pliska (1981)] a strategy pV ptq, πptqq is called self-financing if the wealth

process V ptq � °n
j�0 π

jptq obeys the equality

V ptq � V p0q � » t
0

ņ

j�1

πjpsqdSjpsq
Sjpsq ,

or, equivalently, if it satisfies the linear stochastic differential equation

dV ptq � rptqV ptqdt� π�ptq pbptq � rptq1q dt� π�ptqσptqdW ptq� rptqV ptqdt� π�ptqσptq rdW ptq � ϑptqdts . (6.58)

Often the left side of (6.58) contains a term dKptq, where the process Kptq
is, adapted, increasing and right-continuous, with Kp0q � 0, KpT q   8, P-

almost surely. The process is called the cumulative consumption process. A

pair pV ptq, πptqq satisfying (6.58) is called a self-financing trading strategy.

There exists a one to one correspondence between the pairs px, πptqq and

pairs pV ptq, πptqq with V p0q � x and which satisfy (6.58).

Definition 6.4. A hedging strategy against a contingent claim ξ P L2 is a

self-financing strategy pV ptq, πptqq such that V pT q � ξ with

E

�» T
0

|σ�ptqπptq|2 dt�   8.
Theorem 6.6. An attainable square integrable contingent claim ξ is repli-

cated by a unique hedging strategy pV ptq, πptqq; i.e. there exists a unique

solution pV ptq, πptqq to equation (6.58) such that V pT q � ξ.

The following theorem elaborates on this statement.

Theorem 6.7. Any square integrable contingent claim is attainable;

i.e. the market is complete. In other words, for every square inte-

grable random variable ξ there exists a unique pair pXptq, πptqq such that

E

�³T
0
|σ�ptqπptq|2 dt�   8, and such that

dXptq � rptqXptqdt � π�ptqσptq pϑptq dt� dW ptqq , XpT q � ξ. (6.59)
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The process Xptq represents the price of the claim at time t, given by the

closed formula Xptq � E
�
HtpT qξ �� Ft�, where Htpsq, t ¤ s ¤ T , is the

deflator process, starting at time t such that

dHtpsq � �Htpsq rrpsqds � ϑ�psqdW psqs ; Htptq � 1. (6.60)

Remark 6.2. Suppose that the process t ÞÑ Xptq satisfies equation (6.59).

By Itô’s calculus it follows that the process
 
H0ptqXptq : 0 ¤ t ¤ T

(
is a

stochastic integral such that

d
�
H0p�qXp�q� ptq � H0ptq tπ�ptq �Xptqϑ�ptqu dW ptq.

Classical results about solutions to the linear SDE (6.60) with bounded

coefficients yield the (uniform) boundedness of the martingale H0ptq in L2;

moreover the process
�
H0ptqXptq : 0 ¤ t ¤ T

�
is uniformly integrable. It

follows that

H0ptqXptq � E
�
H0pT qξ �� Ft� , or, equivalently, Xptq � E

�
HtpT qξ �� Ft� .

The closed form of the deflator process,

Htpsq � exp

��"» s
t

rpτqdτ � » s
t

ϑ�pτqdW pτq � 1

2

» s
t

|ϑpτq|2 dτ*
 ,
leads to a more classical formulation of the contingent claim:

Xptq� E

�
exp

��#» T
t

rpτqdτ � » T
t

ϑ�pτqdW pτq � 1

2

» T
t

|ϑpτq|2 dτ+� ξ
�� Ft�� EQ

�
exp

�� » T
t

rpτqdτ� ξ
�� Ft� , (6.61)

where exp

�� » T
t

rpτqdτ� is the discounted factor over the time intervalr0, T s and the measure Q is the risk-adjusted probability measure defined

by the Radon-Nikodym derivative with respect to P:

dQ

dP
� exp

��#» T
0

ϑ�pτqdW pτq � 1

2

» T
0

|ϑpτq|2 dτ+� .

Proof. [Proof of Theorem 6.7.] First we prove uniqueness. Let the pairpXptq, πptqq, where Xptq is adapted and πptq is predictable, satisfy equation

(6.59). Let the process H0ptq satisfy the differential equation as exhibited

in (6.60). Then

d
�
H0p�qXp�q� ptq � H0ptq tπ�ptq �Xptqϑ�ptqu dW ptq.
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As explained in the previous Remark 6.2, it follows that

Xptq � EQ

�
exp

�� » T
t

rpτqdτ� ξ
�� Ft� .

This shows that that the process Xptq is uniquely determined. But once

Xptq is uniquely determined, then the same is true for the process πptq.
Corollary 1.7 in Chapter 10 implies that the process W ptq � ³t

0
ϑ�psqds is

Brownian motion with respect to the measure Q. Moreover, the process

Xptq � ³t
0
r pτqXpτqdτ � ³t

0
π�psqσpsq pdW psq � ϑpsqdsq, where the process

t ÞÑ W ptq � ³t
0
ϑpsqds is a Brownian motion with respect to the measure

Q. Let pX1ptq, π1ptqq and pX2ptq, π2ptqq be two solutions to the equation in

(6.59). Then

X1pT q �X1ptq � » T
t

rpτqX1pτqdτ � X2pT q �X2ptq � » T
t

rpτqX2pτqdτ� ξ � EQ

�
exp

�� » T
t

rpτqdτ� ξ
�� Ft�� » T

t

rpτqEQ

�
exp

�� » T
τ

rpsqds� ξ
�� Ft� dτ� ξ � » T

t

π�1 psqσpsq pdW psq � ϑpsqdsq� ξ � » T
t

π�2 psqσpsq pdW psq � ϑpsqdsq .
Hence,» T

t

pπ�1 psqσpsq � π�2 psqq pdW psq � ϑpsqdsq � 0, 0 ¤ t ¤ T. (6.62)

Thus EQ

�³T
t
|π1pτq � π2pτq|2 dτ� � 0, and consequently the equality

π1ptq � π2ptq holds λ�Q-almost surely. Here we wrote λ for the Lebesgue

measure on R. Since the Q-negligible sets coincide with P-negligible sets,

we get π1ptq � π2ptq for λ� P-almost all pt, ωq P r0, T s � Ω.

Next we prove the existence. Define the process Y ptq, 0 ¤ t ¤ T , by

Y ptq � EQ

�
exp

�� » T
0

r pτq dτ� ξ
�� Ft� .

The process t ÞÑ Y ptq is a PQ-martingale, and since the processes t ÞÑ
W ptq � ³t

0
ϑpsqds is a PQ-Brownian motion, there exists by a martingale

representation theorem a predictable process rπptq such that

Y pT q � Y ptq � » T
t

rπ�psq pdW psq � ϑpsqdsq . (6.63)
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From (6.63) we easily infer that

dY ptq � rπ�ptq pdW ptq � ϑptqdtq .
Next, put

π�ptq � exp

�» t
0

rpτqdτ
 rπ�ptqσptq�1 and Xptq � exp

�» t
0

rpτqdτ
 Y ptq.
Then we have XpT q � ξ, and

dY ptq � exp

�� » t
0

rpτqdτ
 π�ptqσptq pdW ptq � ϑptqdtq ,
and hence

dXptq � rptqXptqdt � exp

�» t
0

rpτqdτ
 dY ptq� rptqXptqdt� exp

�» t
0

rpτqdτ
 exp

�� » t
0

rpτqdτ
 π�ptqσptq pdW ptq � ϑptqdtq� rptqXptqdt � π�ptqσptq pdW ptq � ϑptqdtq . (6.64)

This proves the existence of a solution to equation (6.59).

Altogether this completes the proof of Theorem 6.7. �

For more information on the martingale representation theorem in relation

to hedging strategies in financial mathematics see e.g. [Shreve (2004)]. For

a proof of the martingale representation theorem see e.g. [Protter (2005)].

6.4 Some related remarks

In this section we will explain the relevance of backward stochastic differ-

ential equations (BSDEs). We will also mention that Bismut was the first

to discuss BSDEs [Bismut (1978)], and [Bismut (1981b)]. Of course BS-

DEs were popularized by Pardoux and coworkers; see e.g. [Pardoux and

Peng (1990); Pardoux and Zhang (1998); Pardoux (1998a, 1999)]. The first

paper in which a solution to a BSDE is linked to a non-linear Feynman-

Kac formula is [Peng (1991)]. The BSDEs discussed in Chapters 5 and 6

have as input a Markov process which could be a solution to a Stochas-

tic Differential Equation, and therefore these BSDEs could be considered

as generalizations of forward-backward stochastic differential equations. In

the more classical context such equations are treated in the book by Ma-

Yong [Ma and Yong (1999)]. Other relevant work is done by Lejay [Lejay
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(2002, 2004)]. There is also a link with control theory: see e.g. Yong and

Zhou [Yong and Zhou (1999)]. For the close connection between BSDEs

and hedging strategies in financial mathematics the reader is referred to

e.g. [El Karoui et al. (1997)], and [El Karoui and Quenez (1997)]. Another

paper related to obstacles, and therefore also to hedging strategies, is the

reference [Karoui et al. (1997)]. For some more explanation the reader is

also referred to §6 in [Van Casteren (2002)]. An important area of mathe-

matics and its applications where backward problems play a central role is

control theory: see e.g. [Soner (1997)]. In the finite-dimensional setting the

paper [Crandall et al. (1992a)] is very relevant for understanding the notion

of viscosity solutions. Classical results on viscosity solutions can also be

found in [Jensen (1989)]. Not necessary continuous viscosity solutions also

play a central role in applied fields like dislocation theory, see e.g. [Barles

et al. (2008)] and [Barles (1993)]. As remarked in Chapter 5 for a recent

paper in which the martingale approach is used to treat forward-backward

stochastic differential equations we refer the reader to [Ma et al. (2008)].
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Chapter 7

The Hamilton-Jacobi-Bellman

equation and the stochastic Noether

theorem

In this chapter we prove that the Lagrangian action, which may be phrased

in terms of a non-linear Feynman-Kac formula, coincides under rather gen-

erous hypotheses with the unique viscosity solution to the Hamilton-Jacobi-

Bellman equation: see Theorem 7.1. The method of proof is based on mar-

tingale theory and Jensen inequality. A version of the stochastic Noether

theorem is proved, as well as its complex companion: see Theorems 7.5 and

7.6 further on this chapter. The proofs of these Noether theorems are cum-

bersome and require a dextrous calculation. Whereas in the other chapters

of the book we use the notation Lpsq, 0 ¤ s ¤ T , or Lpsq, 0 ¤ s ¤ T , to

indicate the generator of a diffusion or a Markov process, in the present

chapter we will use the family of operators �K0psq, 0 ¤ s ¤ T , to in-

dicate such a family. In physical terms such an operator family K0psq,
0 ¤ s ¤ T , is in notation closer to a Hamiltonian than the operator family

Lpsq, s P r0, T s.
7.1 Introduction

We start this chapter by pointing out that Zambrini and coworkers [Albev-

erio et al. (2006a,b); Chung and Zambrini (2001); Thieullen and Zambrini

(1997a,c,b,d); Zambrini (1998b,a)] have kind of a transition scheme to go

from classical stochastic calculus (with non-reversible processes) to physical

real time (reversible) quantum mechanics and vice versa. An important tool

in this connection is the so-called Noether theorem. In fact, in Zambrini’s

words, reference [Zambrini (1998a)] contains the first concrete application

of this theorem. In [Zambrini (1998a)] the author formulates a theorem

like Theorem 7.1 below, he also uses so-called “Bernstein diffusions” (see

e.g. [Cruzeiro and Zambrini (1991)]) for the “Euclidean Born interpreta-

407
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tion” of quantum mechanics. The Bernstein diffusions are related to so-

lutions of

� BBt � �
K0 9�V �
 ηpt, xq � 0, and of

� BBt �K0 9�V 
 η�pt, xq � 0.

In the present paper we prove a version of the stochastic Noether theorem

in terms of the carré du champ operator and ideas from stochastic control:

see Theorem 7.5, which should be compared with Theorem 2.4 in [Zambrini

(1998a)]. The operator K0 generates a diffusion in the following sense: for

every C8-function Φ : Rν Ñ R, with Φp0, . . . , 0q � 0, the following identity

is valid:

K0 pΦpf1, . . . , fnqq (7.1)� ņ

j�1

BΦBxj pf1, . . . , fnqK0fj � 1

2

ņ

j,k�1

B2ΦBxjBxk pf1, . . . , fnqΓ1pfj , fkq
for all functions f1, . . . , fn in a rich enough algebra of functions A, contained

in the domain of the generator K0, as described below. The condition

Φ p0, . . . , 0q � 0 will be omitted in case the function 1 belongs to the domain

of the operator K0. Throughout this chapter we will assume that the

operator K0 � K0ptq, t P r0, T s, is a space-time operator. Compare all this

with Definition 5.1 and the comments following it.

7.1.0.1 Hypotheses on the generator and the algebra A

We will assume that the constant functions belong to D pK0q, and that

K01 � 0. The algebra A has to be “large” enough. To be specific, we

assume that the operator K0 is a space-time operator with domain in

Cb pr0, T s �Eq, and that A is a core for the operator K0, which means

that the Tβ-closure of its graph tpϕ,K0ϕq : ϕ P Au is again the graph of

Tβ-closed operator, which we keep denoting by K0. In addition, it is as-

sumed that A is stable under composition with C8-functions of several

variables, that vanish at the origin. Moreover, in order to obtain some

nice results a rather technical condition is required: whenever pfn : n P Nq
is a sequence in A that converges to f with respect to the Tβ-topology

in Cb pr0, T s �Eq � Cb pr0, T s �Eq and whenever Φ : R Ñ R is a C8-
function with bounded derivatives of all orders (including the order 0), then

one may extract a subsequence pΦ pfnk
q : k P Nq that converges to Φpfq

in Cb pr0, T s �Eq, whereas the sequence pK0Φ pfnk
q : k P Nq converges in

Cb pr0, T s �Eq. In fact it would be no restriction to assume that Φp0q � 0,

because we assume that the constant functions belongD pK0q andK01 � 0.

So we can always replace Φ by Φ � Φp0q. Notice that all functions of the
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form e�ψf , ψ, f P A, belong to A. Also notice that the required properties

of A depend on the generator K0. In fact we will assume that the algebra

A is also large enough for all operators of the form f ÞÑ eψK0

�
e�ψf�,

where ψ belongs to A. In addition, we assume that 1 P D pK0q, and that

K01 � 0. The operator K0 is supposed to be Tβ-closed when viewed as an

operator acting on functions in Cb pr0, T s �Eq.
Remark 7.1. Let ds be the Lebesgue measure on r0, T s. If there exists

a reference measure m on the Borel field E of E, and if we want to work

in the Lp-spaces Lp pr0, T s �E, ds�mq, 1 ¤ p   8, then it is assumed

that K0 has dense domain in Lp pr0, T s �E, ds�mq, for each 1 ¤ p  8. In addition, it is assumed that A is a subalgebra of D pK0q which

possesses the following properties (cf. [Bakry (1994)]). Its is dense in

Lp pr0, T s �E, ds�mq for all 1 ¤ p   8 and it is a core for K0, provided

K0 is considered as a densely defined operator in such a space. The latter

means that the algebra A consists of functions in D pK0q viewed as an

operator in Lp pr0, T s �E, ds�mq.
The same is true for the space Cb pr0, T s �Eq � Cb pr0, T s �E,Cq, but

then relative to the strict topology. In addition, it is assumed that A is sta-

ble under composition with C8-functions of several variables, that do not

necessarily vanish at the origin. Moreover, as indicated above in order to

obtain some nice results a more technical condition is required. Wheneverpfn : n P Nq is a sequence in A that converges to f with respect to the graph

norm of K0 (in L2 pr0, T s �E, ds�mq) and whenever Φ : RÑ R is a C8-
function, vanishing at 0, with bounded derivatives of all orders (including

the order 0), then there exists a subsequence pΦ pfnk
q : k P Nq that con-

verges to Φpfq in Cb pr0, T s �Eq, whereas the sequence pK0Φ pfnk
q : k P Nq

converges in Cb pr0, T s �Eq and also in L1pE,mq to K0Φpfq.
7.1.0.2 Some additional comments

From (7.1) we see that�eψK0

�
e�ψf� � �

K0ψ � 1

2
Γ1 pψ, ψq
 f �K0f � Γ1 pψ, fq , and (7.2)

K0 pϕψq � pK0ϕqψ � ϕ pK0ψq � Γ1 pϕ, ψq (7.3)

for ϕ, ψ P A, and f P D pK0q. For the notion of the squared gradient oper-

ator (carré du champ opérateur) see equality (7.7). The operator K0 acts

on the space and time variable, and the squared gradient operator Γ1 only

acts on the space variable; its action depends on the time-coordinate. The
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symbol D1 stands for the operator D1 � BBt . Fix T ¡ t0 ¥ 0. In the re-

mainder of the present chapter we work in a continuous function spaces like

Cb ppt0, T s �Eq and sometimes in C ppt0, T s �Eq. If we write D pD1 �K0q
for the domain of the operator D1 � K0, then the corresponding space

should be specified. In fact the space Cb ppt0, T s �Eq is endowed with the

strict topology Tβ , and also with that of uniform convergence. The opera-

tor D1 �K0 is considered as the generator of the semigroup tSpρq : ρ ¥ 0u
defined by

Spρqf pτ, xq � P pτ, pρ� sq ^ T q f ppρ� sq ^ T, �q pxq� Eτ,x rf ppρ� sq ^ T,X ppρ� sq ^ T qqs . (7.4)

Here tP ps, tq : 0 ¤ s ¤ t ¤ T u is the Feller propagator generated by the

operator �K0: see Definition 2.8 and also Definition 2.7. The formula in

(7.4) is the same as (3.90) in Chapter 3. Then it follows that for t� ρ ¤ T

we have

SpρqP pτ � ρ, t� ρq fpτ, xq � P pτ, t� ρq f pt� ρ, �q pxq � Spt� ρqfpτ, xq
(7.5)

where f P CbpEq. Notice that in (7.5) the operator Spρq acts on the functionps, yq ÞÑ P pτ � ρ, t� ρq fps, �qpyq and that Spt � ρq acts on the functionps, yq ÞÑ fpyq. The processtpΩ,Fτ
T ,Pτ,xq , pXptq : T ¥ t ¥ 0q , p_t : T ¥ t ¥ 0q , pE, Equ (7.6)

is the strong Markov process generated by �K0; it is supposed to have

continuous paths. In the space C pEq the operator K0 is considered as a

local operator in the sense that a function f P CpEq belongs to its domain

if there exists a function g P C ppτ, T q �Eq such that for every open subset

U of E together with every compact subset K of U we have

lim
hÓ0 suppτ,xqPr0,T�hs�K ����gpτ, xq�fpτ, xq�Eτ,xrfpτ�h,Xpτ�hqq : τU ¡ τ�hs

h

����� 0.

Here τU is the first exit time from U : τU � inf tt ¡ 0 : Xptq P EzUu. We

write g � �K0f . From Proposition 1.6 in [Demuth and van Casteren

(2000)] page 9 it follows that the constant function 1 belongs to the domain

of K0 and that K01 � 0, provided K0 is time-independent.

Remark 7.2. In a more classical context in e.g. Lp-spaces the operator

K0 can often be considered as a differential operator in “distributional”
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sense. In a physical context the operators K0psq, s P r0, T s, are considered

as self-adjoint operators in L2 pE,mq. It is noticed that there exists a close

relationship between the viscous Burgers’ equation (in an open subset of

Rd) �BUBt � U �∇U � 1

2
∆U � ∇V,

and the Hamilton-Jacobi-Bellman equation. If we write the vector field U

in the form U � ∇ϕ, then the function ϕ satisfies�BϕBt � 1

2
∇ϕ �∇ϕ� 1

2
∆ϕ � V � constant.

7.2 The Hamilton-Jacobi-Bellman equation and its solution

In this section we will mainly be concerned with the Hamilton-Jacobi-

Bellman equation as exhibited in equation (7.12) below. We have the

following result for generators of diffusions: it refines Theorem 2.4 in [Zam-

brini (1998a)]. Its proof is contained in the proof of Theorem 7.3. We begin

by inserting a definition.

Definition 7.1. Fix a function v : pt0, T s�E Ñ R in D pD1 �K0q, where,
as above, D1 � BBt is differentiation with respect to t. Let the process pΩ,F ,Pt,xq , ppqvptq, tq : t ¥ 0q , p_t : t ¥ 0q , �R� �E,BR� b E

�(
be the Markov process generated by the operator �Kv �D1, where Kv is

defined by Kvpfqpt, xq � K0fpt, xq �Γ1 pv, fq pt, xq. Here, BR� denotes the

Borel field of R�, and by Γ1pv, fqpt, xq we mean

Γ1pv, fqpt, xq (7.7)� lim
sÓt 1

s� t
Et,x rpvps,Xpsqq � vpt,Xptqqq pfpXpsq, sq � fpt,Xptqqqs .

It is also believed that the following version of the Cameron-Martin formula

is true. For all finite n-tuples t1, . . . , tn in p0,8q the identity (7.9) is valid:

E
Mv,t

t,x

�
n¹
j�1

fj ptj � t,X ptj � tqq� (7.8)� Et,x

�
exp

��1

2

» T
t

Γ1 pv, vq pτ,Xpτqq dτ �Mv,t pT q�
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j�1

fj ptj � t,X ptj � tqq�� Et,x

�
n¹
j�1

fj ptj � t, qv ptj � tqq� (7.9)

where the Et,x-martingale Mv,tpsq, s ¥ t, is given by

Mv,tpsq � v ps,Xpsqq�v pt,Xptqq�» s
t

�� BBτ �K0



v pτ,Xpτqq dτ. (7.10)

Its quadratic variation part 〈Mv,t〉 psq :� 〈Mv,t,Mv,t〉 psq is given by

〈Mv,t〉 psq � » s
t

Γ1 pv, vq pτ,Xpτqq dτ. (7.11)

The equality in (7.8) serves as a definition of the measure P
Mv,t

t,x p�q, and the

equality in (7.9) is a statement.

The formula in (7.11) is explained in (the proof of) Proposition 5.3. Next

we formulate a theorem in which we use the notation introduced in Defini-

tion 7.1. The next theorem is the same as Theorem 5.8 with K0psq instead
of �Lpsq.
Theorem 7.1. Let χ : pt0, T s �E Ñ r0,8s be a function such that

E
Mv,t

t,x r|logχ pT,XpT qq|s , v P D pD1 �K0q
is finite for t0   t ¤ T . Here T ¡ t0 ¥ 0 are fixed times andtpΩ,Fτ

T ,Pτ,xq , pXptq : T ¥ t ¥ 0q , p_t : T ¥ t ¥ 0q , pE, Equ
is the strong Markov process generated by the operator family �K0psq, 0 ¤
s ¤ T . Let SL be a solution to the following Riccati type equation. This

equation is called the Hamilton-Jacobi-Bellman equation. For t0   s ¤ T

and x P E the following identity is true:$&%�BSLBs ps, xq � 1

2
Γ1 pSL, SLq ps, xq �K0psqSLps, xq � V ps, xq � 0;

SLpT, xq � � logχpT, xq, x P E.
(7.12)

Then for any real valued v P D pD1 �K0q the following inequality is valid:

SLpt, xq¤E
Mv,t

t,x

�» T
t

�
1

2
Γ1pv, vq�V 
pτ,Xpτqqdτ��E

Mv,t

t,x rlogχpT,XpT qqs,
(7.13)

and equality is attained for the “Lagrangian action” v � SL.
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By definition Et,x rY s is the expectation, conditioned at Xptq � x, of the

random variable Y which is measurable with respect to the information

from the future: i.e. with respect to σ tXpsq : s ¥ tu. The measure P
Mv,t

t,x

is defined in equality (7.8) below. Put ηχpt, xq � exp p�SLpt, xqq, where SL
satisfies (7.12). From (7.1) it follows that

� BBt � �
K0 9�V �
 ηχpt, xq � 0,

provided that K01pt, xq � 0 for all pt, xq P r0, T s�E. The proof of Theorem

7.1 can be found in [Van Casteren (2001)]; Theorem 7.1 is superseded by

the second inequality in assertion (i) of Theorem 7.3.

Next, let χ : rt, T s �E Ñ r0,8s be as in Theorem 7.1. In what follows

we write D1 � BBt . We also write D1ϕ � 9φ. What is the relationship

between the following expressions?

sup
ΦPDpD1�K0q"Φpt, xq : � 9Φ�K0Φ� 1

2
Γ1pΦ,Φq ¤ V, ΦpT, �q ¤ � logχpT, �q*;

(7.14)� logEt,x

�
exp

�� » T
t

V pσ,Xpσqq dσ�χ pT,XpT qq� ; (7.15)

inf
ΦPDpD1�K0q#E

Mv,t

t,x

�» T
t

�
1

2
Γ1 pv, vq � V


 pτ,Xpτqqdτ�� E
Mv,t

t,x rlogχ pT,XpT qqs+ ; (7.16)

inf
ΦPDpD1�K0q"Φpt, xq : � 9Φ�K0Φ� 1

2
Γ1pΦ,Φq ¥ V, ΦpT, �q ¥ � logχpT, �q*.

(7.17)

In order that everything works appropriately we need the following defini-

tion and lemma.

Definition 7.2. The potential V : r0, T s � E Ñ R satisfies the Myadera

perturbation condition, provided that

lim sup
sÓ0 suppτ,xqPr0,T�ss�EEτ,x

�» s�τ
τ

V� pρ,Xpρqq dρ�� lim sup
sÓ0 suppτ,xqPr0,T�ss�E » τ�sτ

P pτ, ρqV� pρ, �q pxqdρ   1. (7.18)

For more information on Myadera perturbations the reader is referred to

e.g. Räbiger, et al. [Räbiger et al. (1996, 2000)].
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Lemma 7.1. Suppose that

α :� lim sup
sÓ0 suppτ,xqPr0,T�ss�E » τ�sτ

P pτ, ρqV� pρ, �q pxqdρ   1. (7.19)

Then

suppτ,xqPr0,T s�EEτ,x

�
exp

�» T
τ

V� pρ,Xpρqq dρ��   8. (7.20)

Proof. Choose n P N so large that

αn :� suppτ,xqPr0,T s�E » pnτ�T q{pn�1q
τ

P pτ, ρqV� pρ, �q pxqdρ   1. (7.21)

By (7.18) such a choice is possible. For τ P r0, T s fixed we choose a subdi-

vision of the interval rτ, T s in such a way that

τ � τ0   τ1   � � �   τn   τn�1 � T, where τj � n� 1� j

n� 1
τ � j

n� 1
T.

Notice that τk�1 � τk � pT � τq{pn� 1q ¤ T {pn� 1q. Then by the Markov

property we have

Eτ,x

�
exp

�» T
τ

V� pρ,Xpρqq dρ��� Eτ,x

�
n¹
j�0

exp

�» τj�1

τj

V� pρ,Xpρqq dρ��� Eτ,x

�
n�1¹
j�0

exp

�» τj�1

τj

V� pρ,Xpρqq dρ��Eτn,Xpτnq �exp�» τn�1

τn

V� pρ,Xpρqq dρ
��
(by induction)¤ n¹

k�0

sup
yPE Eτk,y

�
exp

�» τk�1

τk

V� pρ,Xpρqq dρ
� . (7.22)

We also have

Eτk,y

�
exp

�» τk�1

τk

V� pρ,Xpρqq dρ
�� 1� 8̧
ℓ�1

1

ℓ!
Eτk,y

��» τk�1

τk

V� pρ,Xpρqq dρ
ℓ�
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ℓ�1

Eτk,y

�»
τk ρ1 ��� ρℓ τk�1

» ℓ¹
j�1

V� pρj , X pρjqq dρℓ . . . dρ1�
(again Markov property)� 1� 8̧

ℓ�1

Eτk,y

�»
τk ρ1 ��� ρℓ�1

» ℓ�1¹
j�1

V� pρj , X pρjqq
Eρℓ�1,Xpρℓ�1q �» τk�1

ρℓ�1

V� pρℓ, X pρℓqq dρℓ� dρℓ�1 . . . dρ1

�¤ 8̧
ℓ�0

�
suppρ,zqPrτk,τk�1s�EEρ,z

�» τk�1

ρ

V� ps,Xpsqq ds��ℓ

(notice the inequality τn�1 ¤ ρ� pT � τq{pn� 1q)¤ 8̧
ℓ�0

αℓn � 1

1� αn
, (7.23)

where in the final step of (7.23) we used (7.21). From (7.22) and (7.23) we

obtain (7.20).

This completes the proof of Lemma 7.1. �

We also have to insert the standard Feynman-Kac formula, and its proper-

ties related to the strict topology. In addition, we have to discuss matters

like stability and consistency of families of Kato-type or Myadera poten-

tials. More precisely, let pVkqkPN be a sequence of potentials which satisfies,

uniformly in k, a condition like (7.19). Under what consistency (or conver-

gence) conditions are we sure that the corresponding perturbed evolutionstPVk
ps, tq : 0 ¤ s ¤ t ¤ T u, k P N, converges to an evolution of the formtPV ps, tq : 0 ¤ s ¤ t ¤ T u. In addition, we want this convergence to be-

have in such a way that the operators PV ps, tq, 0 ¤ s ¤ t ¤ T , assign

bounded continuous functions to bounded continuous functions, provided

the same is true for each of the operators PVk
ps, tq, k P N, 0 ¤ s ¤ t ¤ T .

Theorem 7.2. Let the Feller evolution tP ps, tq : τ ¤ s ¤ t ¤ T u be the

transition probabilities of the Markov process in (7.6). Let V : r0, T s�E Ñ
R be a Myadera type potential function with the following properties:

(i) Its negative part satisfies (7.19).
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(ii) For every k, ℓ P N, and f P Cb pr0, T s �Eq, the functionpτ, x, tq ÞÑ Eτ,x

�» pτ�tq^T
τ

Vk,ℓ pρ,Xpρqq f pρ,Xpρqq dρ�
is continuous. Here Vk,ℓ � pV ^ ℓq _ p�kq.

(iii) The following equalities hold for all compact subsets K of E:

lim
ℓÑ8 suppτ,xqPr0,T s�K Eτ,x

�» T
τ

0_ pV � ℓq pρ,X pρqq dρ� � 0, and

lim
kÑ8 suppτ,xqPr0,T s�K Eτ,x

�» T
τ

0_ p�V � kq pρ,X pρqq dρ� � 0. (7.24)

(iv) The function V satisfies

suppτ,xqPr0,T s�EEτ,x

�» T
τ

|V pρ,X pρqq| dρ�   8.
Then the functionspτ, x, tq ÞÑ Eτ,x

�
exp

�� » pτ�tq^T
τ

V pρ,Xpρqq dρ� f pXptqq� , f P CbpEq,
(7.25)

are bounded continuous functions.

Remark 7.3. Suppose that the functions in (7.24) are continuous; i.e.

suppose that for every k P N the functionspτ, xq ÞÑ Eτ,x

�» T
τ

0_ pV � kq pρ,X pρqq dρ� andpτ, xq ÞÑ Eτ,x

�» T
τ

0_ p�V � kq pρ,X pρqq dρ�
are continuous. Then (iii) is a consequence of (iv). From (iv) it follows that

the pointwise limits in (7.24) are zero. By Dini’s lemma this convergence

occurs uniformly on compact subsets of r0, T s � E. Also observe that the

limits in (7.24) decrease monotonically with increasing ℓ and k respectively.

Proof. [Proof of Theorem 7.2.] Let f P CbpEq be such that }f}8 ¤ 1.

First we notice that �V� ¤ Vk,ℓ ¤ V�, and hence |V � Vk,ℓ| ¤ |V |. It

follows that

Eτ,x

�
exp

�� » pτ�tq^T
τ

V pρ,Xpρqq dρ� f pX ppτ � tq ^ T qq�
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�
exp

�� » pτ�tq^T
τ

Vk,ℓ pρ,Xpρqq dρ� f pX ppτ � tq ^ T qq�� » 1

0

Eτ,x

�
exp

�� » pτ�tq^T
τ

tp1� sqV pρ,Xpρqq � sVk,ℓ pρ,Xpρqqu dρ�» pτ�tq^T
τ

pV � Vk,ℓq pρ,Xpρqq dρf pX ppτ � tq ^ T qq� ds,
and hence�����Eτ,x �exp�� » pτ�tq^T

τ

V pρ,Xpρqq dρ� f pX ppτ � tq ^ T qq��Eτ,x �exp�� » pτ�tq^T
τ

Vk,ℓ pρ,Xpρqq dρ� f pX ppτ � tq ^ T qq������¤ » 1

0

Eτ,x

�
exp

�� » pτ�tq^T
τ

tp1� sqV pρ,Xpρqq � sVk,ℓ pρ,Xpρqqu dρ������» pτ�tq^T
τ

pV � Vk,ℓq pρ,Xpρqq dρ������ ds }f}8¤ Eτ,x

�
exp

�» pτ�tq^T
τ

V� pρ,Xpρqq dρ������» pτ�tq^T
τ

pV � Vk,ℓq pρ,Xpρqq dρ������¤ �
Eτ,x

�
exp

�
2m� 2

2m� 1

» pτ�tq^T
τ

V� pρ,Xpρqq dρ���p2m�1q{p2m�2q��Eτ,x

�������» pτ�tq^T
τ

pV � Vk,ℓq pρ,Xpρqq dρ�����2m�2
���1{p2m�2q

. (7.26)

In (7.26) we choose m so large that

supps,yqPr0,T s�EEs,y

�
exp

�
2m� 2

2m� 1

» pτ�tq^T
τ

V� pρ,Xpρqq dρ��   8. (7.27)

From Lemma 7.1 it follows that such a choice of m is possible: see (7.19)

and (7.21). From the Markov property we infer

1p2m� 2q!Eτ,x�������» pτ�tq^T
τ

pV � Vk,ℓq pρ,Xpρqq dρ�����2m�2
��
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τ

|pV � Vk,ℓq pρ,Xpρqq|2m�2
dρ

�� Eτ,x

��� » »
τ ρ1 ��� ρ2m�2 pτ�tq^T2m�2¹

j�1

|pV � Vk,ℓqpρj , Xpρjqq| dρ2m�2 . . . dρ1

���� Eτ,x

�»
τ ρ1 ��� ρ2m�1 pτ�tq^T » 2m�1¹

j�1

|pV � Vk,ℓq pρj, X pρjqq|� Eρ2m�1,Xpρ2m�1q �» pτ�tq^T
ρ2m�1

|pV � Vk,ℓq pρ2m�2, X pρ2m�2qq| dρ2m�2

�
dρ2m�1 . . . dρ1

�¤ Eτ,x

��� » »
τ ρ1 ��� ρ2m�1 pτ�tq^T2m�1¹

j�1

|pV � Vk,ℓqpρj , Xpρjqq| dρ2m�1 . . . dρ1

���
supps,yqPrτ,pτ�tq^T s�EEs,y

�» pτ�tq^T
s

|pV � Vk,ℓq pρ,X pρqq| dρ�
(use induction)¤ Eτ,x

�» pτ�tq^T
τ

|pV � Vk,ℓq pρ1, X pρ1qq| dρ1�
supps,yqPrτ,pτ�tq^T s�E�Es,y

�» pτ�tq^T
s

|pV � Vk,ℓq pρ,X pρqq| dρ��2m�1¤ Eτ,x

�» pτ�tq^T
τ

|pV � Vk,ℓq pρ1, X pρ1qq| dρ1�
supps,yqPrτ,pτ�tq^T s�E�Es,y

�» pτ�tq^T
s

|V pρ,X pρqq| dρ��2m�1¤ �
Eτ,x

�» pτ�tq^T
τ

0_ pV � ℓq pρ1, X pρ1qq dρ1�� Eτ,x

�» pτ�tq^T
τ

0_ p�V � kq pρ1, X pρ1qq dρ1��
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�» pτ�tq^T
s

|V pρ,X pρqq| dρ��2m�1

. (7.28)

From (7.26), (7.27), (7.28), assumptions (iii) and (iv) it follows that, uni-

formly on compact subsets of r0, T s �E, the following equality holds:

Eτ,x

�
exp

�� » pτ�tq^T
τ

V pρ,Xpρqq dρ� f pX ppτ � tq ^ T qq�� lim
kÑ8 lim

ℓÑ8Eτ,x

�
exp

�� » pτ�tq^T
τ

Vk,ℓ pρ,Xpρqq dρ� f pX ppτ � tq ^ T qq� .
(7.29)

In order to finish the proof of Theorem 7.2 we need to establish the conti-

nuity of the functionpτ, x, tq ÞÑ Eτ,x

�
exp

�� » pτ�tq^T
τ

Vk,ℓ pρ,Xpρqq dρ� f pX ppτ � tq ^ T qq� .
(7.30)

By expanding the exponential in (7.30), using the Markov property together

with assumption (ii) the continuity of the function in (7.30) follows. More

precisely, we have

Eτ,x

�
exp

�� » pτ�tq^T
τ

Vk,ℓ pρ,Xpρqq dρ� f pX ppτ � tq ^ T qq�� 8̧
n�0

p�1qn
n!

Eτ,x

��» pτ�tq^T
0

Vk,ℓ pρ,Xpρqq dρ�n

f pXpτ � t^ T qq�� Eτ,x rf pXpτ � t^ T qqs� 8̧
n�1

p�1qn »
τ ρ1 ��� ρn pτ�tq^T »

Eτ,x

�
n¹
j�1

Vk,ℓ pρj, X pρjqq f pXpτ � t^ T qq� dρn . . . dρ1
(Markov property)� Eτ,x rf pXpτ � t^ T qqs� 8̧

n�1

p�1qk »
τ ρ1 ��� ρn�1 pτ�tq^T » Eτ,x

�
n�1¹
j�1

Vk,ℓ pρj , X pρjqq
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Eρn�1,Xpρn�1q �» pτ�tq^T
ρn�1

Vk,ℓ pρn, X pρnqq dρn f pXpτ � tq ^ T q��
dρn�1 . . . dρ1. (7.31)

Notice that by assumption (ii) the functionpρ, t, yq ÞÑ Eρ,y

�» pτ�tq^T
ρn�1

Vk,ℓ pρn, X pρnqq dρn f pX ppτ � tq ^ T qq�
(7.32)� Eρ,y

�» pτ�tq^T
ρn�1

Vk,ℓ pρn, X pρnqqEρn,Xpρnq rf pX ppτ � tq ^ T qqs dρn� .
By induction with respect to n it follows that each term in the right-hand

side of (7.31) is continuous. The series in (7.31) being uniformly convergent

yields the continuity of the functions in (7.25).

This concludes the proof of Theorem 7.2. �

7.3 The Hamilton-Jacobi-Bellman equation and viscosity

solutions

A result which is somewhat more general than Theorem 7.1 reads as follows.

As above, we work in the space Cb ppt0, T s �Eq, where T ¡ t0 ¥ 0 is fixed.

The fact that the non-linear Feynman-Kac formula (7.33) yields a viscosity

solution to the HJB-equation in (7.12) is proved by analytic means: see

the proof of assertion (iii) below. In the semi-linear case this kind result

was established by means of a stopping time argument: see the proof of

Theorem 6.3 in Chapter 6. In fact using a stopping time argument yields

a more refined result; one gets local rather than global inequalities.

Theorem 7.3.

(i) The following inequalities are valid:

sup
ΦPDpD1�K0q"Φpt, xq : � 9Φ�K0Φ� 1

2
Γ1 pΦ,Φq ¤ V,

ΦpT, �q ¤ � logχ pT, �q*¤ � logEt,x

�
exp

�� » T
t

V pσ,Xpσqq dσ�χ pT,XpT qq�



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Hamilton-Jacobi-Bellman equation 421¤ inf
vPDpD1�K0q#E

Mv,t

t,x

�» T
t

�
1

2
Γ1 pv, vq � V


 pτ,Xpτqqdτ�� E
Mv,t

t,x rlogχ pT,XpT qqs+¤ inf
ΦPDpD1�K0q"Φpt, xq : � 9Φ�K0Φ� 1

2
Γ1 pΦ,Φq ¥ V,

ΦpT, �q ¥ � logχ pT, �q* .
(ii) If the function SL defined by the non-linear Feynman-Kac formula

SLpt, xq � � logEt,x

�
exp

�� » T
t

V pσ,Xpσqq dσ�χ pT,XpT qq�
(7.33)

belongs to D pD1 �K0q, then the above 4 quantities are equal. Moreover

the function SL satisfies the Hamilton-Jacobi-Bellman equation (7.12).

The same is true if the expressions in (7.14) and in (7.17) are equal.

(iii) In general the function in (7.33) is a viscosity solution of the

Hamilton-Jacobi-Bellman equation (7.12). This means that if pt, xq Ppt0, T s �E is given and if ϕ P D pD1 �K0q has the property thatrSL � ϕs pt, xq � sup trSL � ϕs ps, yq : ps, yq P rt, T s �Eu ,
then r� 9ϕ�K0ϕs pt, xq � 1

2
Γ1 pϕ, ϕq pt, xq ¤ V pt, xq. (7.34)

It also means that if pt, xq belongs to pt0, T s�E and if ϕ P D pD1 �K0q
has the property thatrSL � ϕs pt, xq � inf trSL � ϕs ps, yq : ps, yq P rt, T s �Eu ,
then r� 9ϕ�K0ϕs pt, xq � 1

2
Γ1 pϕ, ϕq pt, xq ¥ V pt, xq. (7.35)

(iv) If for all pt, xq P pt0, T s �E the expression

Et,x

�
exp

�� » T
t

V pσ,Xpσqq dσ�χ pT,XpT qq� ,
is strictly positive, then the following equality is valid:� logEt,x

�
exp

�� » T
t

V pσ,Xpσqq dσ�χ pT,XpT qq� (7.36)
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vPDpD1�K0q#E

Mv,t

t,x

�» T
t

�
1

2
Γ1 pv, vq � V


 pτ,Xpτqqdτ�� E
Mv,t

t,x rlogχ pT,XpT qqs+ . (7.37)

(v) Let S be a viscosity solution to p7.12q. Suppose that for every pt, xq Ppt0, T s �E there exist functions ϕ1 and ϕ2 P D pK0q such thatpS � ϕ1q pt, xq � sup
yPE,T¡s¡t pS � ϕ1q ps, yq, and (7.38)pS � ϕ2q pt, xq � inf
yPE,T¡s¡t pS � ϕ2q ps, yq. (7.39)

Then S � SL. More precisely, in the presence of p7.39q and p7.38q the
4 quantities in assertion piq are equal.

Notice that the formula in (7.33) is the same as formula (5.33) in Chapter

5. The main difference is notational: in Chapter 5 and the other chapters

we write Lpsq instead of �K0psq. The notation K0 � tK0psq : 0 ¤ s ¤ T u
refers to a self-adjoint unperturbed (or free) Hamiltonian, which is often

written as H0, which usually is given by H0 � � ~2

2m
∆. The Schrödinger

equation is then given by pH0 � V qψ � i~
BψBt . Here V stands for a poten-

tial function, which belongs to a certain Kato type class. In mathematics

Planck’s normalized constant ~ and the particle mass m are often set equal

to 1.

Remark 7.4. It would be nice to have explicit, and easy to check, condi-

tions on the function V which guarantee the strict positivity of the expres-

sion

Et,x

�
exp

�� » T
t

V pσ,Xpσqq dσ� , X pT q P B� ,
where B is any compact subset of E. Another problem which poses itself

is the following. What can be done if in equation (7.12) the expression

Γ1 pSL, SLq is replaced with pΓ1 pSL, SLqqp, p ¡ 0. If 0   p   1, then the

equation probably can be treated by the use of branching processes: see

e.g. [Etheridge (2000)] or [Dawson and Perkins (1999)].

Remark 7.5. Another point of concern is the Novikov condition which is

required to be sure that processes of the form

t ÞÑ exp

��Mptq � 1

2
〈M,M〉 ptq
 and (7.40)
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t ÞÑ exp

��Mptq � 1

2
〈M,M〉 ptq
 pMptq � 〈M.M〉 ptqq (7.41)

are martingales. The Novikov condition reads as follows. Let Mptq be a

martingale, and suppose that E
�
exp

�
1
2
〈M,M〉 ptq�� is finite for all t ¥ 0.

Then the process in (7.40) is a martingale. So, strictly speaking, we have

to assume in the sequel that the Novikov condition is satisfied: i.e. all the

expectations (x P E, t0 ¤ t   s ¤ T )

Et,x

�
exp

�
1

2

» s
t

Γ1pϕ, ϕq�τ,Xpτq�dτ
�
are supposed to be finite; otherwise we will only get local martingales. For

more details on the Novikov condition see e.g. [Revuz and Yor (1999)],

Corollary 1.16, page 309. Novikov’s condition is also treated in Theorem

1.6 and its Corollary 1.3 in Chapter 1.

Remark 7.6. Another problem is about the uniqueness of the viscosity

solution of equation (7.12). In order to address this problem we use a

technique, which is related to the methods used in [Dynkin and Kuznetsov

(1996b)] p. 26 ff, and [Dynkin and Kuznetsov (1996a)], p. 1969 ff. Among

other things we tried the method of “doubling the number of variables”

as advertised in [Evans (1998)] page 547, but it did not work out so far.

We also tried (without success) the jet bundle technique in [Crandall et al.

(1992b)]. To be precise we use a martingale technique combined with sub-

and super-solutions: see assertion (v) of Theorem 7.3.

First we insert the following proposition.

Proposition 7.1.

(i) The operator D1 � K0 � V extends to a generator of a semigroup

exp ps pD1 �K0 � V qq, s ¥ 0, given by

exp ps pD1 �K0 � V qqΦpt, xq� Et,x

�
exp

�� » s�t
t

V pτ,Xpτqq dτ
Φ ps� t,Xps� tqq� . (7.42)

(ii) Let the function SLpt, xq be given by

SLpt, xq � � logEt,x

�
exp

�� » T
t

V pτ,Xpτqq dτ�χ pT,XpT qq� .
Then the following identity is validrexp ps pD1 �K0 � V qq exp p�SLqs pt, xq � exp p�SLpt, xqq . (7.43)
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(iii) Let Ψ : pt0, T s �E Ñ R be a function belonging to D pD1 �K0q, and
let V0 : pt0, T s �E Ñ R be a function for which pps, yq P pt0, ts �Eq

Ψps, yq � � logEs,y

�
exp

�� » t
s

V0
�
τ,Xpτq�dτ �Ψ

�
t,Xptq�
� .

(7.44)

Then �D1Ψ�K0Ψ� 1
2
Γ1 pΨ,Ψq � V0 on pt0, ts �E.

(iv) Conversely, let Ψ : pt0, T s � E Ñ R be a function belonging to the

space D pD1 �K0q, and put V0 � �D1Ψ � K0Ψ � 1
2
Γ1 pΨ,Ψq. Then

the equality in (7.44) holds.

Remark 7.7. Suppose that the Feller propagator tP ps, tq : 0 ¤ s ¤ t ¤ T u
has an integral kernel p0ps, x; t, yq, which is continuous ontpτ, x; t, yq P r0, T s �E � r0, T s �E : 0 ¤ τ   t ¤ T u , (7.45)

and hence, for f : E Ñ r0,8q any bounded Borel measurable function, we

have P pτ, tq fpxq � ³
E
p0pτ, x; t, yqfpyqdmpyq, where m is a non-negative

Radon measure on E. Instead of dmpyq we write dy most of the time.

Define the measures µt,yτ,x on the σ-field generated by Xpτq, τ   t ¤ T by

µt,yτ,xpAq � Eτ,x rp0 ps,Xpsq; t, yq1As ,
where A belongs to the σ-field generated by Xpρq, τ ¤ ρ   s, with s P pτ, tq
fixed. By the Pτ,x-martingale property of the process s ÞÑ p0 ps,Xpsq; t, yq,
τ ¤ s   t, the measure µt,yτ,x is well defined and can be extended to the

σ-field generated by Xpsq, τ ¤ s   t. The latter can be done via the

classical Kolmogorov extension theorem: see §3.1.7. The integral kernel of

the operator exp ps pD1 �K0 � V qq is given by the Feynman-Kac formula:

exp ps pD1 �K0 � V qq px; t, yq� »
exp

�� » s�t
t

V pρ,Xpρqqdρ
 dµs�t,yt,x (7.46)� lim
t1Òt Et,x �exp�� » s�t1

t

V pρ,Xpρqqdρ� p
�
s� t1, X �

s� t1� ; s� t, y
��
.

The following argument shows this claim. Let f ¥ 0 be a bounded Borel

measurable function. Then we have for t1   t:»
E

Et,x

�
exp

�� » s�t1
t

V pρ,Xpρqqdρ
pps� t1, Xps� t1q; s� t, yq�fpyq dy�Et,x

�
exp

�� » s�t1
t

V pρ,Xpρqqdρ
»
E

pps� t1, Xps� t1q; s� t, yqfpyqdy�
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�
exp

�� » s�t1
t

V pρ,Xpρqqdρ�Es�t1,Xps�t1q rf pXps� tqqs�
(Markov property)� Et,x

�
exp

�� » s�t1
t

V pρ,Xpρqqdρ� f pXps� tqq� . (7.47)

By taking limits as t1 Ò t in the first and last term in (7.47) our claim follows.

Under appropriate conditions on V , the integral kernel of the operator

exp ps pD1 �K0 � V qq
is again continuous on the space mentioned in (7.45). In fact if the func-

tion V is bounded we obtain by expanding the exponential and using the

martingale property of the process ρ ÞÑ p pρ,Xpρq; t, yq, 0 ¤ ρ   t:

exp ps pD1 �K0 � V qq px; t, yq (7.48)� p pt, x; s� t, yq � 8̧
k�1

p�1qk »
t ρ1 ��� ρk s�t » »

E

. . .

»
E

k¹
j�1

p pρj�1, yj�1; ρj , yjq V pρj, yjq p pρk, yk; s� t, yq dyk . . . dy1dρk . . . dρ1.
In (7.48) we wrote ρ0 � t and y0 � x. Suppose that the function ps, t, xq ÞÑ
p pt, x; s� t, yq, 0 ¤ t   s � t   T , x, y P E, is continuous. From the

representation in (7.48) we see that each term in the right-hand side of

(7.48) is continuous. Uniform convergence on compact subsets then yields

the continuity of the left-hand side in (7.48). The proof of the following

theorem is left as an exercise for the reader.

Theorem 7.4. Suppose that function ps, t, xq ÞÑ p pt, x; s� t, yq, 0 ¤ t  
s� t   T , x, y P E, is continuous. In addition, suppose that

lim
hÓ0 sup

0¤τ¤T�h sup
x,yPE » tτ p pτ, x; ρ, zq |V pρ, zq|p pρ, z; τ � h, yq dz � 0. (7.49)

Then the integral kernel ps, t, x, yq ÞÑ exp ps pD1 �K0 � V qq px; t, yq, s ¡ 0,

t P r0, T s, x, y P E, is continuous.

Details for time-independent functions V and time-homogenous Markov

processes on second countable locally compact spaces can be found in e.g.

[Demuth and van Casteren (2000)].
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Remark 7.8. Let Φpt, xq be a bounded continuous function which satisfies

the following conditions:

(1) The function pt, xq ÞÑ V pt, xqΦpt, xq is continuous;
(2) The function pt, xq ÞÑ K0Φpt, xq � K0ptqΦpt, �qpxq is continuous;
(3) The function t ÞÑ Φpt, xq is continuously differentiable for every x P E.

Then the process

s ÞÑ exp

�� » s�t
t

V pτ,Xpτqq dτ
Φ ps� t,Xps� tqq � Φ pt,Xptqq� » s�t
t

exp

�� » τ�t
t

V pρ,Xpρqq dρ
��
K0pτq � V pτ,Xpτqq � BBτ 
Φ pτ,Xpτqq dτ (7.50)

is a Pt,x-martingale relative to the filtration
 
F t
s�t : 0 ¤ s ¤ T � t

(
. This

assertion is a consequence of the fact that the operator family �K0pτq,
0 ¤ τ ¤ T , generates the Markov process in (7.55), and the fact that the

operator D1 �K0 � V extends to a generator of the semigroup defined by

(7.42).

Proof. [Proof of Proposition 7.1.] (i) Let s1 and s2 be positive real

numbers, and let Φ be a non-negative Borel measurable function defined

on r0,8q �E. Then we have:rexp ps1 pD1 �K0 � V qq exp ps2 pD1 �K0 � V qqΦs pt, xq� Et,x

�
exp

�� » s1�t
t

V pτ,Xpτqq dτ
texp ps2 pD1 �K0 � V qqΦ ps1 � t,X ps1 � tqqu�� Et,x

�
exp

�� » s1�t
t

V pτ,Xpτqq dτ
Es1�t,Xps1�tq"
exp

�� » s2�s1�t
s1�t V pτ,Xpτqq dτ
Φ ps2 � s1 � t,X ps2 � s1 � tqq*�

(Markov property)� Et,x

�
exp

�� » s1�t
t

V pτ,Xpτqq dτ

exp

�� » s2�s1�t
s1�t V pτ,Xpτqq dτ
Φ pXps2 � s1 � tq, s2 � s1 � tq�
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�
exp

�� » s2�s1�t
t

V pτ,Xpτqq dτ
Φ pXps2 � s1 � tq, s2 � s1 � tq�� rexp pps1 � s2q pD1 �K0 � V qqΦs pt, xq. (7.51)

Next we show that the generator of the semigroup given by the formula in

(7.42) extends the operator D1�K0�V . More precisely we will prove that

that

lim
sÓ0 1

s

"
Et,x

�
exp

�� » s�t
t

V pτ,Xpτqq dτ
Φ pXps� tq, s� tq�� Φpt, xq*� � BBt �K0ptq � V pt, xq
Φpt, xq. (7.52)

Here Φ is a function which belongs to the intersections of the domains

of D1 (i.e. the time derivative), K0 (i.e. for each t P r0, T s the func-

tion x ÞÑ Φpt, xq belongs to the domain of K0ptq, and the functionpt, xq ÞÑ K0ptqΦpt, xq is continuous), and the function pt, xq ÞÑ V pt, xqΦpt, xq
is continuous as well. The expression

Et,x

�
exp

�� » s�t
t

V pτ,Xpτqq dτ
Φ pXps� tq, s� tq�� Φpt, xq (7.53)

can be rewritten as follows:

Et,x

�
exp

�� » s�t
t

V pτ,Xpτqq dτ
Φ pXps� tq, s� tq�� Φpt, xq� Et,x

��
exp

�� » s�t
t

V pτ,Xpτqq dτ
 � 1



Φ pXps� tq, s� tq�� Et,x rΦ pXps� tq, s� tqs � Φpt, xq. (7.54)

Since the operator family�K0pτq, 0 ¤ τ ¤ T , generates the Markov process

(see (7.6))tpΩ,Fτ
T ,Pτ,xq , pXptq : T ¥ t ¥ 0q , p_t : T ¥ t ¥ 0q , pE, Equ (7.55)

we know that

Et,x rΦ pXps� tq, s� tqs�Φpt, xq � » s
0

Et,x rpD1 �K0qΦ pτ � t,Xpτ � tqqs dτ. (7.56)

From (7.54) and (7.56) we infer the equality in (7.52).

Next we prove assertion (ii):rexp ps pD1 �K0 � V qq exp p�SLqs pt, xq
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�
exp

�� » s�t
t

V pτ,Xpτqq dτ
 exp p�SL ps� t,Xps� tqqq�� Et,x

�
exp

�� » s�t
t

V pτ,Xpτqq dτ

Es�t,Xps�tq#exp

�� » T
s�t V pτ,Xpτqq dτ�χ pT,XpT qq+�

(Markov property)� Et,x

�
exp

�� » s�t
t

V pτ,Xpτqq dτ

exp

�� » T
s�t V pτ,Xpτqq dτ�χ pT,XpT qq�� Et,x

�
exp

�� » s�t
t

V pτ,Xpτqq dτ

exp

�� » T
s�t V pτ,Xpτqq dτ�χ pT,XpT qq�� Et,x

�
exp

�� » T
t

V pτ,Xpτqq dτ�χ pT,XpT qq�� exp p�SLpt, xqq . (7.57)

This proves assertion (ii).

(iii) From (7.1) and the proof of assertion (ii) of Proposition 7.1 it follows

that �D1Ψ�K0Ψ� 1

2
Γ1 pΨ,Ψq � eΨ pD1 �K0q e�Ψ� eψ pD1 �K0 � V0q e�Ψ � V0� eΨ lim

sÓs 1

s
pexp ps pD1 �K0 � V0qq � Iq e�Ψ � V0� V0, (7.58)

where we used the invariance exp ps pD1 �K0 � V0qq e�Ψpτ, xq � e�Ψpτ, xq,
0   s   t� τ . This proves assertion (iii).

(iv) We write

exp ps pD1 �K0 � V0qq e�Ψ � e�Ψ� » s
0

pρ pD1 �K0 � V0qq pD1 �K0 � V0q e�Ψ dρ
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0

exp pρ pD1 �K0 � V0qq e�ΨeΨ pD1 �K0 � V0q e�Ψ dρ� » s
0

exp pρ pD1 �K0 � V0qq e�Ψ
�
eΨ pD1 �K0q e�Ψ � V0

�
dρ� » s

0

exp pρ pD1 �K0 � V0qq e�Ψ pV0 � V0q dρ � 0. (7.59)

The equality in (7.44) is a consequence of (7.59).

Altogether this shows assertion (iv) and completes the proof of Propo-

sition 7.1. �

Proof. [Proof of Theorem 7.3.] (i) The first and the final inequality in

(i) follow from the non-linear Feynman-Kac formula. For Φ P D pD1 �K0q
we have with VΦ � � 9Φ�K0Φ� 1

2
Γ1 pΦ,Φq:

Φpt, xq � � logEt,x

�
exp

�� » T
t

VΦ pτ,Xpτqq dτ�Φ pT,XpT qq� .
The second inequality of (i) is a consequence of Jensen inequality, and

should be compared with the arguments in [Zambrini (1998a)], who used

ideas from Fleming and Soner: see Chapter VI in [Fleming and Soner

(1993)]. Another relatively recent source of information is Chapter 8 in

[Bressan and Piccoli (2007)]. The reader is also referred to [Sheu (1984)] and

to [Van Casteren (2001)]. The inequality we have in mind is the following

one: � logE
Mv,t

t,x rexp p�ϕqs ¤ E
Mv,t

t,x rϕs , (7.60)

with equality only if ϕ is constant Pt,x-almost surely. We apply (7.60) to

the random variable ϕ � ϕv, given by

ϕv � � » T
t

�
1

2
Γ1 pv, vq � V

� pτ,Xpτqq dτ�Mv,t pT q�logχ pX pT qq . (7.61)
We also notice that the following processes are Pt,x-martingales on the

interval rt, T s:
exp

��1

2
〈Mv,t〉 psq �Mv,tpsq
 and (7.62)

exp

��1

2
〈Mv,t〉 psq �Mv,tpsq
 p〈Mv,t〉 psq �Mv,tpsqq . (7.63)

By the Jensen inequality we have

E
Mv,t

t,x

�
1

2
〈Mv,t〉 pT q � » T

t

V pτ,Xpτqq dτ � logχ pT,XpT qq�
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(the process in (7.63) is a P
Mv,t

t,x -martingale)

E
Mv,t

t,x

��1

2
〈Mv,t〉 pT q �Mv,t pT q � » T

t

V pτ,Xpτqq dτ � logχ pT,XpT qq�
(here we apply Jensen inequality)¥� logE

Mv,t

t,x

�
e

1

2
〈Mv,t〉pT q�Mv,tpT q�³Tt V pτ,Xpτqqdτ�logχpT,XpT qq�

(definition of the probability measure E
Mv,t

t,x )� � logEt,x

�
exp

�� » T
t

V pτ,Xpτqq dτ � logχ pT,XpT qq��
.

(ii) The assertion in (ii) immediately follows from (i).

(iii) Let pt, xq belong to pt0, T s�E, and let ϕ be as in (7.34). Then we haver� 9ϕ�K0ϕ� V s pt, xq � 1

2
Γ1 pϕ, ϕq pt, xq� eϕpt,xq �pD1 �K0 � V q e�ϕ� pt, xq� exp pϕpt, xqq lim

sÓ0 1

s
rpexp psD1 � sK0 � sV q � Iq exp p�ϕqs pt, xq� eϕpt,xq lim inf

sÓ0 1

s

� �
exp psD1 � sK0 � sV q  eSL�ϕ( e�SL

� pt, xq� eSLpt,xq�ϕpt,xqe�SLpt,xq	� eϕpt,xq lim inf
sÓ0 1

s

��
exp psD1 � sK0 � sV q  eSL�ϕ( e�SL

� pt, xq�#
suppσ,yqPrt,T s�E eSLps,yq�ϕps,yq+ e�SLpt,xq�¤ eϕpt,xq lim inf

sÓ0 1

s��
exp psD1 � sK0 � sV q# suppσ,yqPrt,T s�E  eSL�ϕ( pσ, yq+ e�SL

� pt, xq�#
suppσ,yqPrt,T s�E eSLpσ,yq�ϕpσ,yq+ e�SLpt,xq�
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eSL�ϕ( pσ, yq : pσ, yq P rt, T s �E

(
exp pϕpt, xqq

lim inf
sÓ0 1

s

��
exp psD1 � sK0 � sV q e�SL

� pt, xq � e�SLpt,xq	� eSLpt,xq�ϕpt,xqeϕpt,xq � 0 � 0. (7.64)

The latter equality follows because, for s ¡ 0 the equalityrexp psD1 � sK0 � sV q exp p�SLqs pt, xq � exp p�SLpt, xqq
is valid: see Proposition 7.1, assertion (ii).

The reverse inequality (7.35) follows in a similar manner.

(iv) In view of assertion (i) we only have to prove that the expression in

(7.37) is less than equal to the one in (7.36). To this end we consider

(v P D pD1 �K0q)
E
Mv,t

t,x

�
1

2

» T
t

Γ1 pv, vq pτ,Xpτqq dτ � » T
t

V pτ,Xpτqq dτ � logχ pT,XpT qq�� E
Mv,t

t,x

�
1

2
〈Mv,t〉 pT q � » T

t

V pτ,Xpτqq dτ � logχ pT,XpT qq�
(the process in (7.63) is a martingale)� E

Mv,t

t,x

��1

2
〈Mv,t〉 pT q �Mv,t pT q � » T

t

V pτ,Xpτqq dτ � logχ pT,XpT qq�
(definition of the martingale s ÞÑMv,tpsq)� E

Mv,t

t,x

��1

2

» T
t

Γ1 pv, vq pτ,Xpτqq dτ � v pT,XpT qq � v pt,Xptqq� » T
t

p�D1 �K0q v pτ,Xpτqq dτ � » T
t

V pτ,Xpτqq dτ � logχ pT,XpT qq�� E
Mv,t

t,x

�» T
t

"pD1 �K0q v pτ,Xpτqq � 1

2
Γ1 pv, vq pτ,Xpτqq* dτ� » T

t

V pτ,Xpτqq dτ � v pt,Xptqq � v pT,XpT qq � logχ pT,XpT qq�
(pt,Xptqq � pt, xq, Pt,x-almost surely)� vpt, xq � E

Mv,t

t,x

�» T
t

"pD1 �K0q v � 1

2
Γ1 pv, vq pτ,Xpτqq* dτ
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t

V pτ,Xpτqq dτ � v pT,XpT qq � logχ pT,XpT qq�� vpt, xq� E
Mv,t

t,x

�» T
t

exp pv pτ,Xpτqqq rp�D1 �K0 � V q expp�vqs pτ,Xpτqq dτ� v pT,XpT qq � logχ pT,XpT qq�� vpt, xq � Et,x

�
exp

��1

2
〈Mv,t〉 pT q �Mv,t pT q � » T

t

V pτ,Xpτqq dτ�
exp

�� » T
t

V pτ,Xpτqq dτ�» T
t

exp pv pτ,Xpτqqq rp�D1 �K0 � V q expp�vqs pτ,Xpτqq dτ� v pT,XpT qq � logχ pT,XpT qq�
(apply the equality in (7.2) with f � 1)� vpt, xq� Et,x

�
exp

�» T
t

exp pv pτ,Xpτqqq rp�D1 �K0 � V q exp p�vqs pτ,Xpτqq dτ�
exp pv pt,Xptqq � v pT,XpT qqq exp�� » T

t

V pτ,Xpτqq dτ�» T
t

exp pv pτ,Xpτqqq rp�D1 �K0 � V q expp�vqs pτ,Xpτqq dτ� v pT,XpT qq � logχ pT,XpT qq�. (7.65)

Choose w P D pD1 �K0q and define for s ¡ 0 the function vs by

exp p�vsq � 1

s

» s
0

exp pσ pD1 �K0 � V qq expp�wq dσ.
Then

exppvsqp�D1 �K0 � V q expp�vsq � pI � exppspD1 �K0 � V qqq expp�wq³s
0
exppσpD1 �K0 � V qq expp�wqdσ .
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So from (7.65) we obtain for w in the domain of D1 �K0 and s ¡ 0 the

equality

E
Mvs,t

t,x

�
1

2

» T
t

Γ1 pvs, vsq pτ,Xpτqq dτ � » T
t

V pτ,Xpτqq dτ � logχ pT,XpT qq�� vspt, xq� Et,x

�
exp

�» T
t

rpI � exp ps pD1 �K0 � V qqq expp�wqs pτ,Xpτqq³s
0
rexp pσ pD1 �K0 � V qq expp�wqs pτ,Xpτqq dσ dτ�

exp pvs pt,Xptqq � vs pT,XpT qqq exp�� » T
t

V pτ,Xpτqq dτ�» T
t

rpI � exp ps pD1 �K0 � V qqq expp�wqs pτ,Xpτqq³s
0
rexp pσ pD1 �K0 � V qq expp�wqs pτ,Xpτqq dσ dτ� vs pT,XpT qq � logχ pT,XpT qq�. (7.66)

Upon letting w P D pD1 �K0q tend to the function SL in an appropriate

manner, we obtain by invoking Proposition 7.1 the inequality

inf

#
E
Mv,t

t,x

�
1

2

» T
t

Γ1 pτ,Xpτqq dτ � » T
t

V pτ,Xpτqq dτ � logχ pT,XpT qq� :

v P D pD1 �K0q+ ¤ SLpt, xq.
This proves assertion (iv). The “appropriate manner” should be such that

wn Ñ SL implies that

Tβ- lim
nÑ8 espD1�K0�V qe�wn � espD1�K0�V qe�SL � e�SL . (7.67)

In order that this procedure works, the semigroup
!
espD1�pK0

9�V qq : s ¥ 0
)

should be continuous for the strict topology. This is true provided the un-

perturbed semigroup
 
espD1�K0q : s ¥ 0

(
is continuous for the strict topol-

ogy, and the potential function satisfies a Myadera type boundedness con-

dition, as explained in Definition 7.2 and the corresponding Khas’minski

lemma 7.1.

(v). Let S be a viscosity solution to p7.12q. Here we use a martingale

approach together with the idea of germs of a function. We will prove the

following inequalities:

Spt, xq ¤ sup tϕ1pt, xq : Vϕ1
¤ V, ϕ1pT, �q ¤ SLpT, �qu (7.68)
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¥ V, ϕ2pT, �q ¥ SLpT, �qu ¤ Spt, xq, (7.69)

where Vϕ � � 9ϕ�K0ϕ� 1

2
Γ1 pϕ, ϕq. In view of assertion (i) in Theorem

7.3 we then infer S � SL. Fix pt, xq P pt0, T s � E. Let ϕ1 P D pD1 �K0q
be such thatpS � ϕ1qpt, xq � sup tpS � ϕ1qps, yq : y P E, T ¥ s ¥ tu .
We notice that the processes Mϕ,t and MSL,t, defined by respectively

Mϕ,tpsq � exp

�� » s
t

Vϕ pτ,Xpτqq dτ � ϕ ps,Xpsqq � ϕ pt,Xptqq
 , and
MSL,tpsq � exp

�� » s
t

V pτ,Xpτqq dτ � SL ps,Xpsqq � SL pt,Xptqq
 ,
t ¤ s ¤ T , are Pt,x-martingales. The latter assertion follows from the

Markov property together with the Feynman-Kac formula: see (7.43), which

is also true for Vϕ instead of V and ϕ replacing SL. Let P
Mϕ,t

t,x denote the

probability measure defined by P
Mϕ,t

t,x pAq � Et,x rMϕ,tps2q1As, s2 ¥ s1,

where A is F t
s1
-measurable. Since S is a viscosity sub-solution we see that

Vϕ1
pt, xq ¤ V pt, xq. Fix ε ¡ 0 and choose δ ¡ 0 in such a way that, for

some neighborhood U of x in E, the inequality Vϕ1
ps, yq ¤ V ps, yq � 1

2
ε

is valid for ps, yq P U � rt, t� δs. Here we use the continuity of V ps, yq in
y � x and its right continuity in s � t. Then we choose a family of germs

of “smooth” functions pUα, ϕαq, α P A, with the following properties:

(a)
�
Uα � rt, T s � E, i.e. the family Uα, α P A, forms an open cover of

the set rt, T s �E;

(b) For every α, β P A, ϕα � ϕβ on Uα
�
Uβ ;

(c) For every α P A there exists ptα, xαq P Uα such that pS � ϕαq ps, yq ¤pS � ϕαq ptα, xαq, for ps, yq P Uα and sα ¤ s;

(d) For every α P A, the inequality Vϕα
¤ V � 1

2
ε is valid on Uα;

(e) If pt, xq belongs to Uα, then pS � ϕαq pt, xq ¤ 0;

(f) If pT, yq belongs to Uα, then
ϕα pT, yq ¤ S pT, yq � 1

2
εpT � tq � SL pT, yq � 1

2
εpT � tq.

Since S is a viscosity sub-solution property (d) is in fact a consequence of

(c); we will need (d). Then we define the function ψ1 : rt, T s � E Ñ R

as follows ψ1ps, yq � ϕαps, yq, for ps, yq P Uα. Then, on Uα, Vψ1
� Vϕα

¤
V � 1

2
ε. We write

V1 � Vψ1
� �D1ψ1 �K0ψ1 � 1

2
Γ1 pψ1, ψ1q .
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By assertion (iii) and (iv) of Proposition 7.1 we have

Ψε1ps, yq :� ψ1ps, yq � 1

2
εpT � sq � 1

2
εpT � tq (7.70)�� logEs,y

�
exp

�� » T
s

�
V1
�
τ,Xpτq�� 1

2
ε



dτ

�� exp

���
ψ1

�
T,XpT q�� 1

2
εpT � tq

�� � logEs,y

�
exp

�� » T
t

VΨε
1

�
τ,Xpτq�dτ �Ψε1

�
T,XpT q���

.

Then

Ψε1ps, yq ¤ � logEs,y

�
exp

�� » T
s

V
�
τ,Xpτq�dτ � SL

�
T,XpT q���� SLps, yq,

and hence ψ1pt, xq ¤ SLpt, xq � εpT � tq. By construction we also have

Spt, xq ¤ ψ1pt, xq. Consequently Spt, xq ¤ SLpt, xq � εpT � tq. Since ε ¡ 0

is arbitrary we see Spt, xq ¤ SLpt, xq. In fact, since VΨε
1
¤ V , and since

Ψε1pT, yq ¤ SLpT, yq, we see that

Spt, xq ¤ sup tϕ1pt, xq : Vϕ1
¤ V, ϕ1pT, �q ¤ SLpT, �qu .

A similar argument shows the inequality

Spt, xq ¥ inf tϕ2pt, xq : Vϕ2
¥ V, ϕ2pT, �q ¥ SLpT, �qu .

To be precise, again we fix ε ¡ 0, and let ϕ2 P D pD1 �K0q be a func-

tion such that pS � ϕ2q pt, xq � inf tpS � ϕ2q ps, yq : ps, yq P rt, T s �Eu. We

choose δ ¡ 0 and a neighborhood U of x in such a way that Vϕ2
ps, yq ¥

V ps, yq � 1
2
ε for ps, yq P U � rt, t� δs. Then we choose a family of germs of

”smooth” functions pUα, ϕαq, α P A, with the following properties:

(a)
�
Uα � rt, T s � E, i.e. the family Uα forms an open cover of the setrt, T s �E;

(b) α, β P A implies ϕα � ϕβ on Uα
�
Uβ;

(c) For every α P A there exists ptα, xαq P Uα such that pS � ϕαq ps, yq ¥pS � ϕαq ptα, xαq, for ps, yq P Uα and sα ¤ s;

(d) For every α P A, the inequality Vϕα
¥ V � 1

2
ε is valid on Uα;

(e) If pt, xq belongs to Uα, then pS � ϕαq pt, xq ¥ 0;
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(f) If pT, yq belongs to Uα, then
ϕα pT, yq ¥ S pT, yq � 1

2
εpT � tq � SL pT, yq � 1

2
εpT � tq.

Since S is a viscosity super-solution property (d) is in fact a consequence of

(c). Then we define the function ψ2 : rt, T s � E Ñ R as follows ψ2ps, yq �
ϕαps, yq, for ps, yq P Uα. In addition, we write as above

V2 � Vψ2
� �D1ψ2 �K0ψ1 � 1

2
Γ1 pψ2, ψ2q .

Then, on Uα, Vψ2
� Vϕα

¤ V � 1
2
ε. As above, assertions (iii) and (iv) of

Proposition 7.1 imply

Ψε2ps, yq :� ψ2ps, yq � 1

2
εpT � sq � 1

2
εpT � tq ¥ SLps, yq. (7.71)

By construction we have Spt, xq ¥ ψ2pt, xq, and hence

SLpt, xq ¤ Ψε2pt, xq ¤ ψ2pt, xq � εpT � tq ¤ Spt, xq � εpT � tq.
Since ε ¡ 0 is arbitrary we infer SLpt, xq ¤ Spt, xq. In fact, since VΨε

2
¥ V ,

and since Ψε2pT, yq ¥ SLpT, yq, we see that

Spt, xq ¥ sup tϕ1pt, xq : Vϕ1
¤ V, ϕ1pT, �q ¤ SLpT, �qu .

In the mean time we also proved that the 4 quantities in assertion (i) are

equal.

This concludes the proof of Theorem 7.3. �

7.4 A stochastic Noether theorem

The following theorem may be called the stochastic Noether theorem: cf.

[Zambrini (1998a)] Proposition 2.3 and Theorem 2.4. For a discussion and

formulation of the classical (deterministic) Noether theorem, which in fact

can be considered as the second constant of motion for a mechanical system,

the reader is referred to [Thieullen and Zambrini (1997b)], pages 300–302,

and [Thieullen and Zambrini (1997d)] page 423. In §7.4.1 we also give a

short formulation of this theory.

Theorem 7.5. Let T be a differentiable function which only depends on

time. As above the operator D1 stands for D1 � BBt . Suppose that the

functions ϕ, w, and T satisfy the following identities.
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(a) K0f
dT

dt
� K0Γ1pf, wq � Γ1 pK0f, wq � Γ1

�
f,
BwBt � ϕ



for all func-

tions f P D pK0 �D1q for which Γ1 pK0f, wq exists as well.

(b)
BϕBt �K0ϕ � Γ1 pV,wq � BpTV qBt .

Put

Hpfq � BfBt � �
K0 9�V � f, N pfq � Γ1 pf, wq � T

BfBt � ϕf, and

Dpfq � BfBt � Γ1 pσL, fq �K0f. (7.72)

Suppose that the function σL satisfies:

(c)

�
Dε� BVBt 
T � Γ1

�BσLBt � ε, w



,

where ε � �K0σL � 1

2
Γ1 pσL, σLq � V .

Write n :� �Γ1 pσL, wq � εT � ϕ. The following assertions hold true.

(i) If Hpfq � 0, then H pN pfqq � 0 as well. More generally: H pN0pfqq �
N0 pHpfqq for appropriately chosen functions f . So the operators H

and N0 commute. For the definition of N0 see (7.74) below.

(ii) Dn � 0.

(iii) The process t ÞÑ n pt,Xptqq is a martingale with respect to the proba-

bility measures

A ÞÑ Et,x0

�
exp

��MσL,t0ptq � 1

2

» t
t0

Γ1 pσL, σLq ps,Xpsqqds
 1A

�
,

where as in (7.10) Mf,t0ptq is given by

Mf,t0ptq � fpt,Xptqq � fpt0, X pt0qq � » t
t0

pK0 �D1q fps,Xpsqqds.
(7.73)

Remark 7.9. The operator N0 is defined by

N0pfq � Γ1 pf, wq � T
�
K0 9�V � f � ϕf. (7.74)

The proof of assertion (i) shows that the operators H and N0 commute:

H pN0fq � N0 pHfq, f P D pHq�D pN0q, Hf P D pN0q, and N0f P D pHq.
The following proposition shows a situation where (c) is satisfied.

Proposition 7.2. Suppose SL, the minimal Lagrangian action, belongs to

the domain of D1 � K0. Here D1 � BBt . Set σL � SL in Theorem 7.5.

Then (c) is satisfied; more precisely, Dε � D1V and D1σL � ε � 0.
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Proof. [Proof of Proposition 7.2.] Notice that

ε � �K0SL � 1

2
Γ1 pSL, SLq � V � �D1SL, (7.75)

and hence

Dε � �D pD1SLq � �B2SLBt2 � Γ1

�
SL,

BSLBt 
�K0

�BSLBt 
� �B2SLBt2 � 1

2

BBtΓ1 pSL, SLq � BBtK0 pSLq� BBt ��BSLBt � 1

2
Γ1 pSL, SLq �K0SL


 � BVBt . (7.76)

Proposition 7.2 easily follows from (7.75) and (7.76). �

The equality in (7.77) below will be used in the proof Theorem 7.5.

Lemma 7.2. For all appropriate functions f , w, T , and ϕ the following

identity is true:� 1

2
Γ1 pf, fq BTBt � 1

2
Γ1 pΓ1 pf, fq , wq � Γ1 pf,Γ1 pf, wqq� 1

2

�
K0

�
f2
� BTBt � Γ1

�
K0

�
f2
�
, w

��K0Γ1

�
f2, w

�� Γ1

�
f2,

BwBt � ϕ



� f

�
K0 pfq BTBt � Γ1 pK0 pfq , wq �K0Γ1 pf, wq � Γ1

�
f,
BwBt � ϕ




.

(7.77)

Proof. [Proof of Lemma 7.2.] The equality�1

2
Γ1 pf, fq � 1

2
K0

�
f2
�� fK0f

together with

Γ1 pfK0f, wq � fΓ1 pK0f, wq �K0fΓ1 pf, wq
yields� 1

2
Γ1 pf, fq BTBt � 1

2
Γ1 pΓ1 pf, fq , wq � Γ1 pf,Γ1 pf, wqq� 1

2

"
K0

�
f2
� BTBt � Γ1

�
K0

�
f2
�
, w

��K0Γ1

�
f2, w

�*� f

"
K0f

BTBt � Γ1 pK0f, wq �K0Γ1 pf, wq*� 1

2
K0Γ1

�
f2, w

�� fK0Γ1 pf, wq � pK0fqΓ1 pf, wq � Γ1 pf,Γ1 pf, wqq



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Hamilton-Jacobi-Bellman equation 439

(1
2
K0Γ1

�
f2, w

� � K0 pfΓ1 pf, wqq � pK0fqΓ1 pf, wq � Γ1 pf,Γ1 pf, wqq �
fK0Γ1 pf, wq)� 1

2

"
K0

�
f2
� BTBt � Γ1

�
K0

�
f2
�
, w

��K0Γ1

�
f2, w

�*� f

"
K0f

BTBt � Γ1 pK0f, wq �K0Γ1 pf, wq* . (7.78)

Since Γ1

�
f2, ψ

� � 2fΓ1 pf, ψq, equality (7.77) in Lemma 7.2 follows from

(7.78). �

Proof. [Proof of Theorem 7.5.] (i). We calculate:

H pNfq �N pHfq� H pΓ1pω, fqq �H

�
T
BfBt 
�H pϕfq � Γ1 pHf, wq � T

BBt pHfq � ϕHf� BBt pΓ1 pf, wqq � �
K0 9�V �Γ1 pf, wqBBt �T BfBt � ϕf


� �
K0 9�V ��T BfBt 
� �

K0 9�V � pϕfq� Γ1

�BfBt , w
� Γ1 pK0f, wq � Γ1 pV f, wq� T

�B2fBt2 � BBt ��K0 9�V � f�
� ϕ
BfBt � ϕ

�
K0 9�V � f� Γ1

�
f,
BwBt � ϕ


�K0Γ1 pf, wq � Γ1 pK0f, wq��BTBt �K0T


 BfBt � Γ1

�
T,
BfBt 
���BϕBt �K0ϕ� Γ1 pV,wq � T
BVBt 
 f� Γ1

�BwBt � ϕ, f


�K0Γ1 pf, wq � Γ1 pK0f, wq (7.79)� pK0fq BTBt � pK0T qK0f � Γ1 pT,K0fq � Γ1 pT, V fq���BϕBt �K0ϕ� Γ1 pV,wq � T
BVBt � BTBt V
 f

(T only depends on t)� Γ1

�BwBt � ϕ, f


�K0Γ1 pf, wq � Γ1 pK0f, wq � pK0fq BTBt
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BVBt � BTBt V
 f � 0, (7.80)

where in (7.79) we employed the identity
BfBt � �

K0 9�V � f . The equality in

(7.80) follows by our assumptions (a) and (b).

(ii). We compute

Dpnq � BnBt � Γ1 pσL, nq �K0n�� BBt pΓ1 pσL, wqq � BBt pεT q � BBtϕ� Γ1 pσL,Γ1 pσL, wqq � Γ1 pσL, εT q � Γ1 pσL, ϕq�K0 pΓ1 pσL, wqq �K0 pεT q �K0ϕ�� Γ1

�BσLBt , w
� Γ1

�
σL,

BwBt 
� ε
BTBt � BεBt T � BϕBt� Γ1 pσL,Γ1 pσL, wqq � Γ1 pσL, εqT � Γ1 pσL, ϕq�K0 pΓ1 pσL, wqq �K0 pεqT �K0ϕ�� Γ1

�BσLBt � V,w


� Γ1

�
σL,

BwBt � ϕ


� ε
BTBt � BεBt T � BϕBt� Γ1 pσL,Γ1 pσL, wqq � Γ1 pσL, εqT�K0 pΓ1 pσL, wqq �K0 pεqT �K0ϕ� Γ1 pV,wq� � Γ1

�BσLBt � V,w


� Γ1

�
σL,

BwBt � ϕ


� V
BTBt��

K0σL � 1

2
Γ1 pσL, σLq
 BTBt � BεBt T � BϕBt� Γ1 pσL,Γ1 pσL, wqq � Γ1 pσL, εqT�K0 pΓ1 pσL, wqq �K0 pεqT �K0ϕ� Γ1 pV,wq� � Γ1

�BσLBt � V,w


� Γ1

�
σL,

BBtw � ϕ


� BpV T qBt��
K0σL � 1

2
Γ1 pσL, σLq
 BTBt � B pε� V qBt T � BϕBt� Γ1 pσL,Γ1 pσL, wqq � Γ1 pσL, εqT�K0 pΓ1 pσL, wqq �K0 pεqT �K0ϕ� Γ1 pV,wq� � Γ1

�BσLBt � ε, w


��
Dpεq � BVBt 
T � Γ1

�
σL,

BwBt � ϕ


� BϕBt �K0ϕ� Γ1 pV,wq � BpV T qBt
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K0σL � 1

2
Γ1 pσL, σLq
 BTBt � Γ1

�
K0σL � 1

2
Γ1 pσL, σLq , w
� Γ1 pσL,Γ1 pσL, wqq �K0 pΓ1 pσL, wqq� � Γ1

�BσLBt � ε, w


��
Dpεq � BVBt 
T� pK0σLq BTBt � Γ1 pK0σL, wq �K0Γ1 pσL, wq � Γ1

�
σL,

BwBt � ϕ


� BϕBt �K0ϕ� Γ1 pV,wq � BpV T qBt� 1

2
Γ1 pσL, σLq BTBt � 1

2
Γ1 pΓ1 pσL, σLq , wq � Γ1 pσL,Γ1 pσL, wqq

(employ Lemma 7.2 with f � σL)�� Γ1

�BσLBt � ε, w


��
Dpεq � BVBt 
T (7.81)� pK0σLq BTBt � Γ1 pK0σL, wq �K0Γ1 pσL, wq � Γ1

�
σL,

BwBt � ϕ


� BϕBt �K0ϕ� Γ1 pV,wq � BpV T qBt� 1

2

�
K0

�
σ2
L

� BTBt � Γ1

�
K0

�
σ2
L

�
, w

��K0Γ1

�
σ2
L, w

�� Γ1

�
σ2
L,
BwBt � ϕ



� σL

�
K0 pσLq BTBt � Γ1 pK0 pσLq , wq �K0Γ1 pσL, wq � Γ1

�
σL,

BwBt � ϕ




.

Substituting the equalities (a), (b) and (c) in (7.81) shows (ii), i.e. Dpnq �
0.

(iii) Let f be a function in the domain of K0 �D1. As in equation (7.10)

of §7.1 the Et,x0
-martingale Mf,t0ptq, t ¥ t0, is given by the equality in

(7.73). Let f and g be two functions in D pK0 �D1q. Then the quadratic

covariation 〈Mf,t0 ,Mg,t0〉 ptq of Mf,t0ptq and Mg,t0ptq is given by

〈Mf,t0 ,Mg,t0〉 ptq � » t
t0

Γ1 pf, gq pτ,Xpτqq dτ. (7.82)

By (ii) Dpnq � 0, and hence pK0 �D1qn � �Γ1 pσL, nq. It follows that
n pt,Xptqq � n pt0, X pt0qq �Mn,t0ptq � » t

t0

pK0 �D1qn pτ,Xpτqq dτ�Mn,t0ptq � » t
t0

Γ1 pσL, nq pτ,Xpτqq dτ. (7.83)
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Let f be a function in D pK0 �D1q. From Itô’s formula we obtain:

exp

�
Mf,t0ptq � 1

2
〈Mf,t0 ,Mf,t0〉 ptq
n pt,Xptqq � n pt0, X pt0qq� » t

t0

exp

�
Mf,t0psq � 1

2
〈Mf,t0 ,Mf,t0〉 psq
n ps,Xpsqq dMf,t0psq� 1

2

» t
t0

exp

�
Mf,t0psq � 1

2
〈Mf,t0 ,Mf,t0〉 psq
nps,Xpsqqd 〈Mf,t0 ,Mf,t0〉 psq� 1

2

» t
t0

exp

�
Mf,t0psq � 1

2
〈Mf,t0 ,Mf,t0〉 psq
nps,Xpsqqd 〈Mf,t0 ,Mf,t0〉 psq� » t

t0

exp

�
Mf,t0psq � 1

2
〈Mf,t0 ,Mf,t0〉 psq
 dMn,t0psq� » t

t0

exp

�
Mf,t0psq � 1

2
〈Mf,t0 ,Mf,t0〉 psq
 pK0 �D1qn ps,Xpsqq ds� » t

t0

exp

�
Mf,t0psq � 1

2
〈Mf,t0 ,Mf,t0〉 psq
Γ1 pf, nq ps,Xpsqq ds

(employ (7.83))� Et,x0
-martingale (7.84)� » t

t0

exp

�
Mf,t0psq � 1

2
〈Mf,t0〉 psq
 pΓ1 pf, nq � Γ1 pσL, nqq ps,Xpsqq ds,

where we wrote 〈Mf,t0〉 psq � 〈Mf,t0 ,Mf,t0〉 psq. Suppose Γ1 pf � σL, wq �
0. From (7.84) it follows that the process

t ÞÑ exp

�
Mf,t0ptq � 1

2
〈Mf,t0 ,Mf,t0〉 ptq
� exp

�
Mf,t0ptq � 1

2

» t
t0

Γ1 pf, fq ps,Xpsqq ds
n pt,Xptqq
is a Et0,x-martingale. So, with f � �σL, assertion (iii) of Theorem 7.5

follows, and completes the proof of Theorem 7.5. �

The following theorem can be considered as a complex version of the

Noether theorem: see Theorem 7.5 above and Theorem 3.1 in [Zambrini

(1998a)]. It has a physical interpretation: N ptq, defined by

N ptqf � iΓ1pf, wq � T ptq �K0 9�V � f � ϕf,

is called a Noether observable.

Theorem 7.6. Let the functions T , w, and ϕ be related as in (a1) and (b1)
below:
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(a1) K0f
dT

dt
� K0Γ1pf, wq � Γ1 pK0f, wq � iΓ1

�
f,
BwBt � ϕ



for all func-

tions f belonging to D pK0 �D1q for which Γ1 pK0f, wq makes sense

as well.

(b1) BϕBt � iK0ϕ � �Γ1 pV,wq � BpTV qBt .

Then the operators N ptq and B
iBt � �

K0 9�V � commute.

Suppose
³
K0fdm � 0, f P D pK0q�L1 pE,mq. Then the adjoint N ptq� is

given by

N ptq�f � iΓ1 pf, wq � 2i pK0wq f � T ptq �K0 9�V � f � ϕf.

Hence the self-adjoint operator
B
iBt � �

K0 9�V � also commutes with the op-

erators N ptq �N ptq� and N ptq �N ptq�.
Proof. Let f be a “smooth enough” function. Then a calculation yields:

N ptq� B
iBt � �

K0 9�V �
 f �� B
iBt � �

K0 9�V �
N ptqf� iΓ1

� Bf
iBt � �

K0 9�V � f, w
� T ptq �K0 9�V �� Bf
iBt � �

K0 9�V � f
� ϕ

� Bf
iBt � �

K0 9�V � f
�� B
iBt � �

K0 9�V �
�iΓ1 pf, wq � T ptq �K0 9�V � f � ϕf
�� Γ1

�BfBt , w
 � iΓ1 pK0f, wq � iΓ1 pV f, wq � 1

i
T ptqK0

�BfBt 
� 1

i
T ptqV BfBt � T ptq �K0 9�V �2 f � 1

i
ϕ
BfBt � ϕK0f � ϕV f� BBtΓ1 pf, wq � 1

i

BBt �T ptq �K0 9�V � f�� 1

i

B pϕfqBt� i
�
K0 9�V �Γ1 pf, wq � T ptq �K0 9�V �2 f �K0 pϕfq � ϕV f� Γ1

�BfBt , w
 � iΓ1 pK0f, wq � iV Γ1 pf, wq � ifΓ1 pV,wq� 1

i
T ptqK0

�BfBt 
� 1

i
T ptqV BfBt � 1

i
ϕ
BfBt � ϕK0f� Γ1

�BfBt , w
� Γ1

�
f,
BwBt 
� 1

i

BT ptqBt K0f � 1

i

BT ptqBt V f



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

444 Markov processes, Feller semigroups and evolution equations� 1

i
T ptqBVBt f � 1

i
T ptqK0

�BfBt 
� 1

i
T ptqV BfBt� 1

i

BϕBt f � 1

i
ϕ
BfBt � iK0Γ1 pf, wq � iV Γ1 pf, wq� pK0ϕq f � Γ1 pf, ϕq � ϕK0f� �iΓ1 pK0f, wq � ifΓ1 pV,wq � Γ1

�
f,
BwBt � ϕ


� 1

i

BT ptqBt K0f� 1

i

B pT ptqV qBt f � 1

i

BϕBt f � iK0Γ1 pf, wq � pK0ϕq f� 1

i

BT ptqBt pK0fq � 1

i
K0Γ1 pf, wq � 1

i
Γ1 pK0f, wq � Γ1

�
f,
BwBt � ϕ


� 1

i
f

"
Γ1 pV,wq � B pT ptqV qBt � BϕBt � 1

i
K0ϕ

*
. (7.85)

The result in Theorem 7.6 follows from the assumptions (a1) and (b1). �

Corollary 7.1. Suppose that the functions w, T (which only depends on

t), and ψ (which only depends on the space variable, not on the time t)

possess the following properties:

(a1) The set of functions f for which the equality

K0f
dT

dt
� K0Γ1 pf, wq � Γ1 pK0f, wq � Γ1 pf,K0w � ψq

makes sense and is valid is dense in the space L2 pE � rt0, T s, dm� dtq.
(b1) The following equality is valid:� B2Bt2 �K2

0



w �K0ψ � �Γ1 pV,wq � B pTV qBt .

Put

N ptqf � iΓ1 pf, wq � T ptq �K0 9�V � f ��� BBt � iK0



w � iψ



f,

where f P D �
K0 9�V �. Then N ptq commutes with

B
iBt � �

K0 9�V �.
Proof. Set ϕ � BwBt � iK0w � iψ in Theorem 7.6. Then

K0Γ1 pf, wq � Γ1 pK0f, wq � iΓ1

�
f,
BwBt � ϕ


� K0Γ1 pf, wq � Γ1 pK0f, wq � Γ1 pf,K0w � ψq � K0f
dT

dt
. (7.86)

This shows (a1) of Theorem 7.6. Since
BψBt � 0, we see that (b1) of Theorem

7.6 is satisfied as well. This proves Corollary 7.1. �
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The following proposition isolates the properties of the function w.

Proposition 7.3. Suppose that the function w has property (a) of Theorem

7.5, or (a1) of Theorem 7.6, or (a1) of its Corollary 7.1. Then, for all

functions f , g P D pD1 �K0q, the following identity is true:

Γ1pf, gqdT
dt

� Γ1 pΓ1pf, gq, wq � Γ1 pΓ1pf, wq, gq � Γ1 pf,Γ1pg, wqq . (7.87)

Remark 7.10. Let χ be a smooth enough function. From the proof of

Proposition 7.3 it follows that the mapping

f ÞÑ pK0fq dT
dt

�K0 pΓ1pf, wqq � Γ1 pK0f, wq � Γ1 pf, χq
is a derivation if and only if (7.87) is satisfied for all functions f and g in a

“large enough” algebra of functions belonging to D pD1 �K0q.
Proof. [Proof of Proposition 7.3.] Let f and g be functions in

D pD1 �K0q with the property that its product fg also belongs to

D pD1 �K0q. We write

χ � BwBt � ϕ, χ � 1

i

�BwBt � ϕ



, or χ � �K0w � ψ,

as the case may be. Then

K0 pfgq dT
dt

�K0Γ1 pfg, wq � Γ1 pK0 pfgq , wq � Γ1 pfg, χq� ppK0fq g � Γ1 pf, gq � f pK0gqq dT
dt

�K0 pΓ1 pf, wq g � fΓ1 pg, wqq� Γ1 ppK0fq g � Γ1 pf, gq � f pK0gq , wq � fΓ1 pg, ξq � Γ1 pf, χq g� ppK0fq g � Γ1 pf, gq � f pK0gqq dT
dt� pK0Γ1 pf, wqq g � Γ1 pΓ1 pf, wq , gq � Γ1 pf, wq pK0gq� pK0fqΓ1 pg, wq � Γ1 pf,Γ1 pg, wqq � f pK0Γ1 pg, wqq� Γ1 pK0f, wq g � pK0fqΓ1 pg, wq � Γ1 pΓ1 pf, gq , wq� Γ1 pf, wqK0g � fΓ1 pK0g, wq � fΓ1 pg, χq � Γ1 pf, χq g� �pK0fq dT

dt
�K0Γ1 pf, wq � Γ1 pK0f, wq � Γ1 pf, χq
 g� f

�pK0gq dT
dt

�K0Γ1 pg, wq � Γ1 pK0g, wq � Γ1 pg, χq
� Γ1 pf, gq dT
dt

� Γ1 pΓ1 pf, wq , gq � Γ1 pf,Γ1 pg, wqq � Γ1 pΓ1 pf, gq , wq .
(7.88)
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An application of either (a) of Theorem 7.5 or (a1) of Theorem 7.6 or of

Corollary 7.1 then yields (7.87) in Proposition 7.3. �

Remark 7.11. Let the functions T , w and ψ satisfy (a1) and (b1) of Corol-
lary 7.1. Put χ � K0w � ψ. Then the triple pT,w, χq satisfies:
(a) K0f

dT

dt
� K0Γ1 pf, wq � Γ1 pK0f, wq � Γ1 pf, χq (for f in a dense sub-

space of L2 pE,mq);
(b)

B2wBt2 �K0χ � �Γ1 pV,wq � B pTV qBt ;

(c)
B pχ�K0wqBt � 0.

In order to find Noether observables the equations (a), (b) and (c) have to

be integrated simultaneously. Proposition 7.3 simplifies this somewhat in

the sense that one first tries to find w, then χ. The couple pw, χq also has to

satisfy (b). Notice that in case E � Rd and K0f � �1

2

ḑ

j,k�1

BBxj aj,k BBxk f ,
then Γ1pf, gq � ḑ

j,k�1

aj,k
BfBxj BgBxk . Upon choosing linear functions f and g

we see that w has to satisfy:

aj,k
dT

dt
� ḑ

ℓ,m�1

aℓ,m
Baj,kBxm BwBxℓ� 2

ḑ

ℓ,m�1

aj,ℓak,m
B2wBxℓBxm � ḑ

ℓ,m�1

aj,m
Bak,ℓBxm BwBxℓ � ḑ

ℓ,m�1

Baj,ℓBxm ak,m
BwBxℓ .

It follows that the matrix with entries
B2wBxlBxm is, up to a first order per-

turbation,
1

2

dT

dt
� the inverse of the matrix paℓ,mqdℓ,m�1

.

7.4.1 Classical Noether theorem

Let Q p� Eq be the configuration manifold of a classical dynamical system.

The paths are C2-maps q : t ÞÑ qptq, t P I :� rt0, T s. The Lagrangian

is written as pq, 9q, tq ÞÑ Lpq, 9q, tq: 9q P TQ, the tangent bundle of Q. For

simplicity we assume here Q � R3. Then TQ may be identified with Q.

We assume an external force of the form F � �∇V , where V is a scalar

potential. Then L � 1
2
| 9q|2 � V pq, tq. The action functional S, defined on a
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a domain DpSq � C2 prt0, T s, Qq, is given by

Spqp�q; t0, uq � » u
t0

Lpqpsq, 9qpsq, sqds.
Hamilton’s least action principle says that among all regular trajectories

between two fixed configurations qpt0q � q0 and qpT q � q1, the physi-

cal motion q is a critical point of the action S, i.e. its variational (� its

Gâteaux) derivative in any smooth direction δq cancels: δSpqqpδqq � 0.

Equivalently q solves the Euler-Lagrange equations in Q:

d

dt

�BLB 9q 
 � BLBq .
For the Hamilton-Jacobi theory one adds an initial or final boundary con-

dition: Spq0q � S0pq0q or SpT q � ST pq1q. Noether’s theorem is the

second most important theorem of classical Lagrangian mechanics. Let

Uα : Q � I Ñ Q � I be given a given one-parameter group (α P R) local

group of transformations of the pq, tq-space: pq, tq ÞÑ pQpq, t;αq, τpq, t;αqq.
The functions Q and τ are supposed to be C2 in their variables, and

Qpq, t; 0q � q, τpq, t; 0q � t. Therefore

Q pq, t;αq � q � αXpq, tq � opαq;
τ pq, t;αq � t� αT pq, tq � opαq. (7.89)

The pair pXpq, tq, T pq, tqq is called the tangent vector field of the familytUαu, and pT,Xq its infinitesimal generator. The action S is said to be

divergence invariant if there exists a C2-function Φ, such that for all α ¡ 0

but small enough, the equality

S
�
qp�q; t10, t11� � S

�
Qp�q; τ 10, τ 11�� α

» t1
1

t1
0

dΦ

dt
pqptq, tqdt� opαq, (7.90)

for any C2-trajectory qp�q inDpSq and for any time interval rt10, t11s in rt0, T s.
Noether’s theorem says that for a divergence invariant Lagrangian action

the expression ��BLB 9q 
X ��
L� BLB 9q 9q
T � Φ

� pqptq, tq
is constant. The first factor p � BLB 9q defines the momentum observable,

and the second one the energy �H � L� BLB 9q 9q. According to E. Cartan

the Noether constant can be considered as the central geometrical object

of classical Hamiltonian mechanics.
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7.4.2 Some problems

We want to mention some problems which are related to this and earlier

chapters. As we proved in Chapter 3 Theorems 2.9 through 2.13 are true

if the space E is a Polish space, and if CbpEq is the space of all bounded

continuous functions on E. Instead of the topology of uniform convergence

we consider the strict topology. This topology is generated by semi-norms

of the form: f ÞÑ supxPE |upxqfpxq|, f P CbpEq. The functions u ¥ 0 have

the property that for every α ¡ 0 the set tu ¥ αu is compact (or is contained

in a compact subset of E). The functions u need not be continuous.

Problem 7.1. Is there a relationship with work done by Eberle [Eberle

(1995, 1996, 1999)]?

In [Altomare and Attalienti (2002a)] the authors Altomare and Attaliente

take a somewhat different point of view. Their state space is still second

countable and locally compact. They take a bounded continuous function

w : E Ñ p0,8q and the consider the space Cw0 pEq as being the collection

of those function f P CpEq with the property that the function wf belongs

to C0pEq. The space Cw0 pEq is supplied with the norm }f}w � }wf}8,

f P Cw0 pEq. They study the semigroup Pwptqf :� w�1P ptqpwfq, where

P ptq, t ¥ 0, is a Feller semigroup. Properties of P ptq are transferred to ones

of Pwptq and vice versa. Using these weighted continuous function spaces

the authors prove some new results on the well-posedness of the Black-

Scholes equation in a weighted continuous function space; see [Altomare

and Attalienti (2002b)]; see Chapter 5 for more on this in the usual case.

In [Mininni and Romanelli (2003)] Mininni and Romanelli estimate the

trend coefficient in the Black-Scholes equation. The paper is somewhat

complementary to what we do in Chapter 5.

Problem 7.2. Is it possible to rephrase Theorems 2.9 through 2.13 for

reciprocal Markov processes and diffusions?

Martingales should then replaced with differences of forward and backward

martingales. A stochastic process pMptq : t ¥ 0q on a probability spacepΩ,F ,Pq is called a backward martingale if E
�
Mptq �� Fs

� �Mpsq, P-almost

surely, where t   s, and Fs is the σ-field generated by the information from

the future: Fs � σ pXpuq : u ¥ su. Of course we assume thatMptq belongs
to L1 pΩ,F ,Pq, t ¥ 0.

Let pΩ,F ,Pq be a probability space. An E-valued process pXptq :
0 ¤ t ¤ 1q is called reciprocal if for any 0 ¤ s   t ¤ 1 and every pair of
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events A P σ pXpτq : τ P ps, tqq, B P σ pXpτq : τ P r0, ss�rt, 1sq the equality

P

�
A
£
B

�� Xpsq, Xptq� � P
�
A
�� Xpsq, Xptq�P �B �� Xpsq, Xptq� (7.91)

is valid. By D we denote the set

D � tps, x, t, B, u, zq : px, zq P E �E, 0 ¤ s   t   u ¤ 1, B P Eu . (7.92)

A function P : D Ñ r0,8q is called a reciprocal probability distribution or

a Bernstein probability if the following conditions are satisfied:

(i) the mapping B ÞÑ P ps, x, t, B, u, zq is a probability measure on E for

any px, zq P E �E and for any 0 ¤ s   t   u ¤ 1;

(ii) the function px, zq ÞÑ P ps, x, t, B, u, zq is E b E-measurable for any

0 ¤ s   t   u ¤ 1;

(iii) For every pair pC,Dq P E b E, px, yq P E � E, and for all 0 ¤ s   t  
u ¤ 1 the following equality is valid:»

D

P ps, x, u, dξ, v, yqP ps, x, t, C, u, ξq� »
C

P ps, x, t, dη, v, yqP pt, η, u,D, v, yq .
Then the following theorem is valid for E � Rν (see [Jamison (1974)]).

Theorem 7.7. Let P ps, x, t, B, u, yq be a reciprocal transition probability

function and let µ be a probability measure on E b E. Then there exists a

unique probability measure Pµ on F with the following properties:

(1) With respect to Pµ the process pXptq : 0 ¤ t ¤ 1q is reciprocal;

(2) For all pA,Bq P E bE the equality Pµ rX0 P A, X1 P Bs � µ pA�Bq is
valid;

(3) For every 0 ¤ s   t   u ¤ 1 and for every A P E the equality

Pµ
�
Xptq P A �� Xpsq, Xpuq� � P ps,Xpsq, t, A, u,Xpuqq is valid.

For more details see [Thieullen (1993)] and [Thieullen (1998)]. An example

of a reciprocal Markov probability can be constructed as follows; it is kind

of a pinned Markov process. LettpΩ,F ,Pxq, pXptq : t ¥ 0q, pϑt : t ¥ 0q, pE, Equ
be a (strong) time-homogeneous Markov process, and suppose that for ev-

ery t ¡ 0 and every x P E, the probability measure B ÞÑ P rXptq P Bs has a
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Radon-Nikodym derivative p0 pt, x, yq with respect to some reference mea-

sure dy. Also suppose that p0 pt, x, yq is strictly positive and continuous onp0,8q �E �E. Put

p ps, x, u, ξ, v, yq � p0 pu� s, x, ξq p0 pv � u, ξ, yq
p0 pv � s, x, yq , 0 ¤ s   u   v.

Put P ps, x, u,B, v, yq � ³
B
p ps, x, u, ξ, v, yq dξ. Then P is a reciprocal

Markov probability.

7.4.2.1 Conclusion

This chapter is a reworked version of [Van Casteren (2003)]. One of the

main results is contained in Theorem 7.3. The method of proof is based on

martingale methods. For more information on viscosity solutions the reader

is referred to [Crandall et al. (1992b)]. Another feature of the present chap-

ter is the statement and proof of a generalized Noether theorem (Theorem

7.5) and its complex companion (Theorem 7.6). The proofs are of a compu-

tational character; they only depend on the properties of the generator of

the diffusion and the corresponding carré du champ operator. They imitate

and improve results obtained by Zambrini in [Zambrini (1998a)]. Moreover

the results solve problems posed in [Van Casteren (2001)] (Problem 4, The-

orem 16, pp. 257-258) and in §2 of [Van Casteren (2000a)]. In particular

see Problem 4 and the question prior and related to the suggested Theo-

rem 6 on pp. 48–50 of [Van Casteren (2000a)]. The present chapter is a

substantial extension of [Van Casteren (2000b)].
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Chapter 8

On non-stationary Markov processes

and Dunford projections

The aim of this chapter is to present some criteria for checking ergodic-

ity of time-continuous finite or infinite Markov chains in the sense that9µptq � Kptqµptq, where every Kptq, t P R, is a weak�-closed linear Kol-

mogorov operator on the space of complex Borel measuresMpEq on a com-

plete metrizable separable Hausdorff space E, and so E is a Polish space.

The obtained results are valid in the non-stationary case and can be used as

reliable and valuable tools to establish ergodicity. Some theoretical approx-

imation results are given as well. The present chapter was initiated by some

results in the Ph.D. thesis of Katilova [Katilova (2004)]: see [Van Casteren

(2005a)] as well. What in the present chapter is called σ pMpEq, CbpEqq-
convergence, or σ pMpEq, CbpEqq-topology, in the probability literature is

often referred to as weak convergence, or weak topology. In functional an-

alytic terms these notions should be called weak�-convergence, or weak�-
topology. Here “weak�” refers to the pre-dual space of MpEq which is the

space CbpEq endowed with the strict topology. In order to avoid misunder-

standings we sometimes write “σ pMpEq, CbpEqq” instead of “weak” (prob-

abilistic notion) or “weak�” (functional analytic notion). Nevertheless, we

will employ the notation “weak�” and “σ pMpEq, CbpEqq” interchangeably;

we will write e.g. “weak�-continuous semigroup” where, strictly speaking,

we mean “σ pMpEq, CbpEqq-continuous semigroup”. For applications of the

use of invariant measures for time-dependent problems the reader may want

to consult [Geissert et al. (2009)] and [Hieber et al. (2009)].

8.1 Introduction

Let E be a complete metrizable topological space which is separable with

Borel field E : in other words E is a Polish space. By MpEq we denote the

453
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vector space of all complex Borel measures on E, supplied with the total

variation norm:

Varpµq � sup

#
ņ

j�1

|µ pBjq| : Bj is a partition of E

+
. (8.1)

In view of inequality (3) in Theorem 8.1 in Section 8.2 (except in Example

8.4) we will not use the total variation norm, but the following equivalent

one: }µ} � sup t|µpBq| : B P Eu , µ PMpEq. (8.2)

In fact we have }µ} ¤ Varpµq ¤ 4 }µ}. In the other sections and in Example

8.4 the symbol Var pµq, µ PMpEq, stands for the total variation norm of the

measure µ. Let f be a bounded Borel function and µ a measure in MpEq.
Instead of

³
E
fdµ we often write 〈f, µ〉. By hypothesis the family Kptq,

t P R, is a family of linear operators with domain and range in MpEq which
are σ pMpEq, CbpEqq-closed. This means that if pµnqnPN is a sequence in

D pKptqq, the domain of Kptq, for which there exists Borel measures µ and

ν P MpEq such that, for all f P CbpEq, limnÑ8 〈f, µn〉 � 〈f, µ〉 and such

that limnÑ8 〈f,Kptqµn〉 � 〈f, ν〉, that then µ belongs to D pKptqq and

Kptqµ � ν. Instead of σ pMpEq, CbpEqq-closed we usually write weak�-
closed. An important example of a weak�-closed linear operator is the

adjoint of an operator with domain and range in CbpEq. We consider a

continuous system of the form:9µptq � Kptqµptq, �8   t   8, (8.3)

where each Kptq is a weak�-closed linear operator on MpEq.
Definition 8.1. Let K be a weak�-closed linear operator on MpEq.
(a) An eigenvalue µ of K is called dominant if limtÑ8 ��etK pI � P q�� �

0. Here P is the Dunford projection on the generalized eigenspace

corresponding to µ; i.e. P � 1

2πi

»
γ

pλI �Kq�1
dλ, where γ is a

(small) positively oriented circle around µ. The disc centered at µ and

with circumference γ does not contain other eigenvalues.

(b) An eigenvalue µ of K is called critical if it is dominant and the zero

space of K � µI is one-dimensional.

We consider the simplex P pEq � MpEq consisting of all Borel probability

measures on E:

P pEq � tµ PMpEq : µpEq � 1 and µpBq ¥ 0 for all Borel subsets of Eu ,
(8.4)
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and the subspace M0pEq of co-dimension one in MpEq:
M0pEq � tµ PMpEq : µpEq � 0u . (8.5)

8.2 Kolmogorov operators and weak�-continuous semi-

groups

Under appropriate conditions on the family Kptq, t ¥ t0, a solution to the

equation in (8.3), i.e. a solution to

d

dt
〈f, µptq〉 � 〈f,Kptqµptq〉 , t0 ¤ t   8, f P CbpEq, (8.6)

where µ pt0q P P pEq is given, can be written in the form:

µptq � X pt, t0qµpt0q, t0 ¤ t   8; (8.7)

the operator-valued function X pt, t0q satisfies the following differential

equation in weak�-sense:BBtX pt, t0q � KptqX pt, t0q . (8.8)

It is an evolution family in the sense that X pt, t2qX pt2, t1q � X pt, t1q, t ¥
t2 ¥ t1 ¥ t0, Xpt, tq � I. We also assume that weakast- limtÓsX pt, sqµ �
µ, i.e.

lim
tÓs 〈f,X pt, sqµ〉 � 〈f, µ〉 for all f P CbpEq and µ PM0pEq.

Suppose now that for every t the operator Kptq is Kolmogorov or, what is

the same, has the Kolomogorov property. This in the meaning that for the

operator Kptq the following formulas are valid:

ℜKptqµpEq � ℜ 〈1, Kptqµ〉 � 0 for all µ P P pEq and (8.9)

ℜ 〈f,Kptqµ〉 ¥ 0 for all pf, µq P C�
b pEq � P pEq for which

supppfq£ supppℜµq � H. (8.10)

Here C�
b pEq is the convex cone of all nonnegative functions in CbpEq. Un-

fortunately this notion is too weak for our purposes. In fact for our purposes

we need a modification of the notion of (sub-)Kolmogorov operator which

we label as sectorial sub-Kolmogorov operator. It is somewhat stronger

than (8.10).

Definition 8.2. Let K be a linear operator with domain and range

in MpEq. Suppose that its graph GpKq :� tpµ,Kµq : µ P DpKqu is
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closed in the product space pMpEq, }�}q � pMpEq, σ pMpEq, CbpEqqq. Here
σ pMpEq, CbpEqq stands for weak�-topology whichMpEq gets from its pre-

dual space CbpEq. The operator K is called a sub-Kolmogorov operator if

for every µ P DpKq the equality

sup tℜ 〈f, µ〉 : 0 ¤ f ¤ 1, f P CbpEqu� inf
ε¡0

sup tℜ 〈f, µ〉 : 0 ¤ f ¤ 1, ℜ 〈f,Kµ〉 ¤ ε, f P CbpEqu . (8.11)

holds.

The sub-Kolmogorov operator K is called sectorial if it is a sub-

Kolmogorov operator with the property that there exists a finite constant

C such that the inequality|λ| sup t|〈f, µ〉| : |f | ¤ 1, f P CbpEqu¤ C sup t|〈f, λµ�Kµ〉| : |f | ¤ 1, f P CbpEqu (8.12)

holds for all µ P DpKq and for all λ P C with ℜλ ¡ 0.

The following definition should be compared with the corresponding defini-

tion in Definition 4.2: see (4.13). In fact these two notions are equivalent:

this is a consequence of assertion (f) in Proposition 4.3. Lemma 8.1 is in

fact a rewording of assertion (f) in the latter proposition.

Lemma 8.1. Let L be a linear operator with domain and range in CbpEq.
The following assertions are equivalent:

(i) For every λ ¡ 0 and for every f P DpLq the following inequality holds:

λ }f}8 ¤ }λf � Lf}8 ; (8.13)

(ii) For every ε ¡ 0 the following inequality holds for all f P DpLq:
sup t|fpxq| : x P Eu ¤ sup

!|fpxq| : ℜ�
fpxqLfpxq	 ¤ ε

)
. (8.14)

Definition 8.3. An operator L with domain and range in CbpEq is said to

be dissipative, if for every f P DpLq and every ε ¡ 0 the following identity

holds:

sup t|fpxq| : x P Eu � sup
!|fpxq| : ℜ�

fpxqLfpxq	 ¤ ε, x P E) . (8.15)

An operator L with domain and range in CbpEq which satisfies the maxi-

mum principle is called sectorial if there exists a constant C such that for

all λ P C with ℜλ ¡ 0 the inequality|λ| }f}8 ¤ C }pλI � Lq f}8 , holds for all f P DpLq. (8.16)
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Notice that the notion of dissipativeness is equivalent to the following one:

for every f P DpLq there exists a sequence pxnqnPN � E such that

lim
nÑ8 |f pxnq| � }f}8 and lim

nÑ8ℜ
�
f pxnqLf pxnq	 ¤ 0. (8.17)

From (8.17) it follows that the present notion of “being dissipative” coin-

cides with the notion in Chapter 4: see §4.2. In particular, the reader is

referred to (4.13) in Definition 4.2, and to assertion (f) in Proposition 4.3.

Apparently, the conditions in Remarks 8.1 and 8.2 below are not verifiable

(or they might not be satisfied in interesting cases, where the operators K

respectively L generate analytic semigroups). In §8.6 we give a new charac-

terization of operators which generate an analytic (or holomorphic) semi-

group. It also contains a triviality result in the sense that it characterizes

an operator L as being the zero operator if only appropriate boundedness

conditions are imposed on the absolute values of the expressions
〈Lx, x�〉
〈x, x�〉 ,

x P X , x� P X�, 〈x, x�〉 � 0, where X is a Banach space with dual Xast:

see Proposition 8.9.

Remark 8.1. Suppose that there exists 0   γ   1
2
π such that for every

µ P DpKq and every ε ¡ 0 there exists a function f P CbpEq, 0 ¤ |f | ¤ 1,

such that Varpµq ¤ |〈f, µ〉|�ε and such that there exists ϑpµq P R satisfying

π ¥ |ϑpµq| ¥ γ� 1
2
π and

〈f,Kµ〉

〈f, µ〉
� |〈f,Kµ〉||〈f, µ〉| eiϑpµq. Then (8.12) is satisfied

with C satisfying C sin γ � 1.

Remark 8.2. Similarly, let L be an operator with domain and range in

CbpEq. Suppose that there exists 0   γ   1
2
π such that for every f P CbpEq

and every ε ¡ 0 there exists x P E, 0 ¤ |f | ¤ 1, such that }f}8 � |fpxq|
and such that there exists ϑpxq P R satisfying π ¥ |ϑpxq| ¥ γ � 1

2
π and

Lfpxq
fpxq � |Lfpxq||fpxq| eiϑpxq. Then the operator L is sectorial in the sense that}λf � Lf}8 ¥ sin γ |λ| }f}8 , f P DpLq.

How to check a condition like the one in (8.11) or (8.12)? Therefore

we first analyze the right-hand side of (8.11). Let E � E�
ℜµ

�
E�

ℜµ be the

Hahn-decomposition ofE corresponding to the Jordan-decomposition of the

measure ℜµ. Then E�
ℜµ

�
E�

ℜµ � H, pℜµq� �
E�

ℜµ

	 � pℜµq� �
E�

ℜµ

	 � 0,

and if B P E is a subset of E�
ℜµ, then pℜµq pBq ¥ 0. In other words the

signed measure ℜµ is positive on E�
ℜµ. Similarly the signed measure �ℜµ

is positive on E�
ℜµ. In addition we have

sup tℜ 〈f, µ〉 : 0 ¤ f ¤ 1, f P CbpEqu
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�
E�

ℜµ

	 � sup
!
ℜµpCq : C � E�

ℜµ, C compact
)
. (8.18)

Let Cn, n P N, be a sequence of compact subsets of E�
ℜµ and let On, n P N,

be a sequence of open subsets of E such that Cn � E�
ℜµ � On, and such

that

lim
nÑ8ℜ 〈1Cn

, Kµ〉 � lim
nÑ8ℜ 〈1On

, Kµ〉 � ℜ
〈

1E�
ℜµ
, Kµ

〉

. (8.19)

In addition suppose that

lim
nÑ8 〈1On

� 1Cn
, |ℜµ|〉 � lim

nÑ8 〈1On
� 1Cn

, |ℜKµ|〉 � 0. (8.20)

Here the measures |ℜµ| and |ℜKµ| stand for the variation measures of ℜµ

and ℜKµ respectively. Suppose that ℜ
〈

1E�
ℜµ
, Kµ

〉 ¤ 0. Let fn, n P N, be

a sequence of functions in CbpEq with the property that 1Cn
¤ fn ¤ 1On

.

Then from (8.19) and (8.20) it follows that

ℜµ
�
E�

ℜµ

	 � ℜ
〈

1E�
ℜµ
, µ

〉 � lim
nÑ8ℜ 〈fn, µ〉 and (8.21)

0 ¥ ℜ
〈

1E�
ℜµ
, Kµ

〉 � lim
nÑ8ℜ 〈fn, Kµ〉 . (8.22)

Suppose that the inequality ℜ
〈

1E�
ℜµ
, Kµ

〉 ¤ 0 holds. Then the

(in-)equalities in (8.18), (8.21), and (8.22) show that the left-hand side of

(8.11) is less than or equal to its right-hand side. The converse inequality

being trivial shows that equality (8.11) holds.

In order to establish an equality like the one in (8.12) it suffices to exhibit

a Borel measurable function g : E Ñ C with the following properties:|g| � 1, the expression 〈g, µ〉 〈g,Kµ〉 is a negative real number, and

Varpµq � sup t|〈f, µ〉| : |f | ¤ 1, f P CbpEqu � 〈g, µ〉 .

Next let K � L�, where L is a closed linear operator with domain and

range in CbpEq. Suppose that ℜLf ¤ 0 on C whenever C is a compact

subset of E and f P DpLq is such that 1C ¤ f ¤ 1. Then the operator K

satisfies (8.11).

Next let µ P DpKq be such that ℜ 〈1, Kµ〉 ¤ 0, and suppose

sup tℜ 〈f, µ〉 : 0 ¤ f ¤ 1, f P CbpEqu� inf
ε¡0

sup tℜ 〈f, µ〉 : 0 ¤ f ¤ 1, ℜ 〈1� f,Kµ〉 ¥ �ε, f P CbpEqu . (8.23)

Then the inequality in (8.11) follows from (8.23).

Suppose that for every positive measure µ P DpKq the following inequal-
ities are satisfied: KµpEq ¤ 0 and µpBq � 0 implies KµpBq ¥ 0. Then,
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for every measure µ P DpKq there exists a Borel subset E� of E such that

Kµ pE�q ¤ 0, provided that in the Jordan-decomposition µ � µ� � µ�
the measure µ� belongs to DpKq. This fact follows from the next obser-

vation. Let E � E��
E� be the Hahn-decomposition of E correspond-

ing to the Jordan-decomposition of the measure µ. Then E��
E� � H,

µ� pE�q � µ� pE�q � 0 and hence, by the new hypotheses,

Kµ
�
E�� � Kµ� pEq �Kµ� �

E���Kµ� �
E�� ¤ 0.

For more details on Hahn-Jordan decompositions see e.g. Chapter 14 in

[Zaanen (1997)]. The following theorem is the main motivation to introduce

(sub-)Kolmogorov operators K.

Theorem 8.1. Let K be an sub-Kolmogorov operator as in Definition 8.2.

Then, for every λ ¡ 0 and µ P DpKq, the following inequalities hold:

λ sup
BPE ℜµpBq ¤ sup

BPE ℜ pλI �KqµpBq; (8.24)

λ inf
BPE ℜµpBq ¥ inf

BPE ℜ pλI �KqµpBq; (8.25)

λ sup
BPE |µpBq| ¤ sup

BPE |pλI �KqµpBq| . (8.26)

Proof. [Proof of Theorem 8.1.] First we notice the equality:

sup
BPE ℜµpBq � sup tℜ 〈f, µ〉 : 0 ¤ f ¤ 1, f P CbpEqu .

Assertion (8.25) is a consequence of (8.24): apply (8.24) with �µ replacing

µ. Assertion (8.26) also follows from (8.24) by noticing that|〈f, µ〉| � sup
ϑPr�π,πsℜ 〈

f, eiϑµ
〉

,

and then applying (8.24) to the measures eiϑµ and ϑ P r�π, πs. The in-

equality in (8.24) remains to be shown. Fix µ P MpEq and f P CbpEq,
0 ¤ f ¤ 1. Then we have

λℜ 〈f, µ〉 � ℜ 〈f, pλI �Kqµ〉� ℜ 〈f,Kµ〉 . (8.27)

From (8.27) we get

λ sup tℜ 〈f, µ〉 : 0 ¤ f ¤ 1, f P CbpEq, ℜ 〈f,Kµ〉 ¤ εu¤ sup tℜ 〈f, pλI �Kqµ〉 : 0 ¤ f ¤ 1, f P CbpEq, ℜ 〈f,Kµ〉 ¤ εu � ε¤ sup tℜ 〈f, pλI �Kqµ〉 : 0 ¤ f ¤ 1, f P CbpEqu � ε. (8.28)

Employing equality (8.11) in Definition 8.2 and (8.28) we get

λ sup tℜ 〈f, µ〉 : f P CbpEq, 0 ¤ f ¤ 1u� inf
ε¡0

sup tℜ 〈f, µ〉 : 0 ¤ f ¤ 1, ℜ 〈f,Kµ〉 ¤ ε, f P CbpEqu¤ sup tℜ 〈f, pλI �Kqµ〉 : 0 ¤ f ¤ 1, f P CbpEqu . (8.29)

Inequality (8.24) follows from (8.29). This concludes the proof of Theo-

rem 8.1. �
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8.3 Kolmogorov operators and analytic semigroups

In the present section we recall some properties of weak�-continuous
bounded analytic semigroups acting on MpEq. These results have their

counterparts for strongly continuous bounded analytic semigroups.

Theorem 8.2. Suppose, in addition to the fact that K is a sectorial sub-

Kolmogorov operator, that there exists λ0 ¡ 0 such that pλ0I �KqDpKq �
MpEq. Then for every real-valued function f P CbpEq and every µ P DpKq
with values in R the expression 〈f,Kµ〉 is real. Assume that the graph of

the operator K is σ pMpEq, CbpEqq-closed, and that the same is true for

all operators µ ÞÑ 1CKµ, µ P DpKq, where C is any compact subset of E.

Here the measure 1CKµ is defined by the equality 〈f,1CKµ〉 � ³
C
fdKµ,

f P CbpEq. Moreover, there exists a finite constant C such that for every

λ P C with ℜλ ¡ 0 the following assertions hold:

(1) pλI �KqDpKq �MpEq.
(2) Let µ P DpKq be a real-valued measure on E. Then|λ| sup t|〈f, µ〉| : 0 ¤ f ¤ 1, f P CbpEqu¤ sup t|〈f, pλI �Kqµ〉| : 0 ¤ f ¤ 1, f P CbpEqu . (8.30)

(3) The inequality|λ| sup t|〈f, µ〉| : |f | ¤ 1, f P CbpEqu¤ C sup t|〈f, pλI �Kqµ〉| : |f | ¤ 1, f P CbpEqu (8.31)

holds for all measures µ P DpKq.
(4) Suppose that the function x ÞÑ pλI �Kq�1

δx, x P E, is Borel mea-

surable. Let µ be a bounded Borel measure on E. Then the following

equality holds:»
λ pλI �Kq�1

δx dµpxq � λ pλI �Kq�1
µ. (8.32)

Proof. [Proof of Theorem 8.2.] First we will show the following assertion.

If a function f P CbpEq and a measure µ P DpKq are real-valued, then the

expression 〈f,Kµ〉 belongs to R. For this purpose we choose measures νλ P
MpEq, λ ¡ 0, such that λµ � pλI �Kq νλ. Then λ piµq � pλI �Kq piνλq.
By (8.24) in Theorem 8.1 we have for B P E�λℑνλpBq � λℜpiνλpBqq ¥ inf

BPE ℜpλI �KqpiνλqpBq � inf
BPE λℜpiµpBqq � 0.

(8.33)
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From (8.33) it follows that ℑνλpBq ¤ 0 for all B P E . By the same proce-

dure with �µ instead of µ we see ℑνλpBq ¥ 0 for all B P E . Hence

we get ℑνλpBq � 0 for all B P E , or, what is the same, the measures

νλ � λRpλqµ, λ ¡ 0, take their values in the reals. From (8.26) it follows

that }1CλRpλqKµ} ¤ }Kµ}, λ ¡ 0, C compact subset of E. Let pCkqkPN be

increasing sequence of compact subsets of E such that limkÑ8 |Kµ| pCkq �|Kµ| pEq. By the theorem of Banach-Alaoglu, which states the closed dual

unit ball in a dual Banach space is weak�-compact, it follows that there

exists a double sequence tλk,n : k , n P Nu such that for every fixed k λk,n
tends to 8 as nÑ8, and measures νk PMpEq such that

lim
nÑ8 〈f,1Ck

K pλk,nR pλk,nqµq〉 � lim
nÑ8 〈f,1Ck

λk,nR pλk,nqKµ〉 � 〈f, νk〉 ,

(8.34)

f P CbpEq. Since λk,nR pλk,nqµ�µ � R pλk,nqKµ inequality (8.26) implies

λk,n }λk,nR pλk,nq µ� µ} ¤ }Kµ} ,
we see that

lim
nÑ8 }λk,nR pλk,nqµ� µ} � 0. (8.35)

From (8.34) and (8.35) it follows that the pair pµ, νkq belongs to the closure

of G p1Ck
Kq in the space pMpEq, }�}q � pMpEq, σ pMpEq, CbpEqqq. Since

by assumption the subspace G p1Ck
Kq is closed for this topology we see

that νk � 1Ck
Kµ, and hence 1Ck

Kµ being the σ pMpEq, CbpEqq-limit of a

sequence of real measures is itself a real-valued measure. Since 〈f,Kµ〉 �
limkÑ8 〈f,1Ck

Kµ〉 we see that Kµ is a real measure.

(1). As a second step we prove assertion (1), i.e. we show that for every

λ P C with ℜλ ¡ 0 the equality pλI �KqDpKq �MpEq holds. Therefore

we put

R pλ0q � pλ0I �Kq�1
, and Rpλq � 8̧

k�0

pλ0 � λqk R pλ0qk�1
.

By the inequality (8.26) this series converges for λ in the open disctλ P C : C |λ� λ0|   λ0u .
Moreover, for such λ we have pλI �KqRpλq � I (and R pλq pλI �Kq is

the identity on DpKq). Next, consider the subset of C defined bytλ P C : ℜλ ¡ 0, pλI �KqDpKq �MpEqu . (8.36)

Then the set in (8.36) is open and closed in the half plane tλ P C : ℜλ ¡ 0u.
Hence it coincides with the half-plane tλ P C : ℜλ ¡ 0u. It follows that
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there exists a family of bounded linear operators Rpλq, ℜλ ¡ 0, such

that Rpλq � pλI �Kq�1
. Note that in this construction we equipped the

space MpEq with the norm }µ} � sup t|〈f, µ〉| : 0 ¤ f ¤ 1u. Altogether

this proves (1).

(2). We fix 0 ¤ f ¤ 1, f P CbpEq, and µ P DpKq, µpBq P R, B P E .

Then 〈f,Kµ〉 belongs to R, and for an appropriate choice of ϑ P r�π{2, π{2s
we have|λ| 〈f, µ〉 � ℜ

〈

f, λeiϑµ
〉 � ℜ

〈

f, pλI �Kq eiϑµ〉� ℜ
〈

f,K
�
eiϑµ

�〉� ℜ
〈

f, pλI �Kq eiϑµ〉� cosϑ 〈f,Kµ〉 . (8.37)

From (8.37) and equality (8.11) in Definition 8.2 we infer:|λ| sup t〈f, µ〉 : 0 ¤ f ¤ 1, f P CbpEqu� |λ| inf
ε¡0

sup t〈f, µ〉 : 0 ¤ f ¤ 1, 〈f,Kµ〉 ¤ ε, f P CbpEqu¤ inf
ε¡0

sup
 
ℜ
〈

f, pλI �Kq �eiϑµ�〉� cosϑ 〈f,Kµ〉 : 0 ¤ f ¤ 1,

〈f,Kµ〉 ¤ ε, f P CbpEqu¤ inf
ε¡0

psup t|〈f, pλI �Kqµ〉| : 0 ¤ f ¤ 1, f P CbpEqu � εq . (8.38)

From (8.38) we infer|λ| sup t〈f, µ〉 : 0 ¤ f ¤ 1, f P CbpEqu¤ sup t|〈f, pλI �Kqµ〉| : 0 ¤ f ¤ 1, f P CbpEqu . (8.39)

The conclusion in (8.30) of item (2) of Theorem 8.2 now follows by applying

(8.39) to the real measures µ and �µ.
(3) The inequality in (8.31) is the same as (8.12) in Definition 8.2.

(4) Let µ be a bounded Borel measure on E, and let λ ¡ 0. Then we

want to show the equality in (8.32). Therefore we put νx � λ pλI �Kq�1
δx,

x P E. So that νx P DpKq and pλI �Kq νx � λδx. Then since the operator

K is σ pCbpEq,MpEqq-closed we see

λµ � λ

»
δx dµpxq � » pλI �Kq νx dµpxq � pλI �Kq » νx dµpxq, (8.40)

and consequently,

λ pλI �Kq�1
µ � »

νx dµpxq � »
λ pλI �Kq�1

δx dµpxq. (8.41)

The equality in (8.41) is the same as the one in (8.32). The final step in

(8.40) can be justified as follows. We choose double sequencestxj,n : n P N, 1 ¤ j ¤ Nnu � E and tCj,n : n P N, 1 ¤ j ¤ Nnu � E



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

On non-stationary Markov processes and Dunford projections 463

such that

〈f, µ〉 � lim
nÑ8 〈f, µn〉 and

〈

f,

»
νx dµpxq〉 � lim

nÑ8 〈f, νn〉 , f P CbpEq,
(8.42)

where 〈f, µn〉 � Nņ

j�1

µ pCj,nq f pxj,nq, and 〈f, νn〉 � Nņ

j�1

µ pCj,nq » f dνxj,n
.

Here we employ the Borel measurability of the function x ÞÑ pλI �Kq�1
δx.

As a consequence of (8.42) we infer that

σ pMpEq, CbpEqq - lim
nÑ8 νn � »

νx dµpxq and (8.43)

σ pMpEq, CbpEqq - lim
nÑ8 pλI �Kq νn � λσ pMpEq, CbpEqq - lim

nÑ8 µn � λµ.

Since the graph of the operator K is σ pMpEq, CbpEqq-closed, the equalities
in (8.43) imply that the measure B ÞÑ ³

νxpBq dµpxq, B P E , belongs to

DpKq and that
³ pλI �Kq νx dµpxq � pλI �Kq �³ νx dµpxq�, which is the

same as (8.40).

This completes the proof of assertion (4), and also of Theorem 8.2 �

Corollary 8.1. Let the sectorial sub-Kolmogorov operator K in Theorem

8.1 have the additional property that for some λ0 P C, with λ0 ¡ 0, the

range of λ0I�K coincides with MpEq. Then for all λ P C with ℜλ ¡ 0 the

operator pλI �Kq�1
exists as a bounded linear operator which is defined

on all of MpEq, and which satisfies|λ|Var�pλI �Kq�1
µ
	 ¤ CVar pµq , ℜλ ¡ 0, µ PMpEq. (8.44)

Here Var pµq stands for the total variation norm of the measure µ; it satis-

fies

Var pµq � sup t|〈f, µ〉| : |f | ¤ 1u .
Proof. [Proof of Corollary 8.1.] From assertion (1) and (2) in Theorem

8.2 it follows that the inverse operators pλI �Kq�1, ℜλ ¡ 0, exist as

continuous linear operators. Then the inequality in (8.31) implies that|λ|Var pµq ¤ CVar ppλI �Kqµq , ℜλ ¡ 0, µ PMpEq. (8.45)

The inequality in (8.44) follows from the inequality in (8.45). The repre-

sentation of the operator etK given in (8.47) is explained in (the proof of)

Theorem 8.8 (see equality (8.287)). �
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Proposition 8.1. Operators K which have weak�-dense domain and which

satisfy (8.44) generate weak�-continuous analytic semigroups 
etK : |arg t| ¤ α

(
, for some 0   α   π

2
.

The operators tℓ�1etK and p�tqℓKℓetK, t ¡ 0, ℓ P N, have the representa-

tions

tℓ�1pℓ� 1q!etK � 1

2πi

» ω�i8
ω�i8 �

etλ � e�tλ � 2
� pλI �Kq�ℓ�2

dλ, (8.46)

and p�tqℓpℓ� 1q!KℓetK (8.47)� 1

π

» 8�8 sin2 ξ

ξ2

!
I � 2iξ p2iξI � tKq�1

)ℓ �
2iξ p2iξI � tKq�1

	2

dξ,

respectively. Consequently, with Cp0q � sup
!|λ| ���pλI �Kq�1

��� : ℜλ ¡ 0
)

and with C1p0q � sup
!���I � λ pλI �Kq�1

��� : ℜλ ¡ 0
)
, the following in-

equality holds:��tℓKℓetK
��

ℓ!
¤ pℓ� 1qCp0q2C1p0qℓ, t ¥ 0, ℓ P N. (8.48)

For ℓ � 0 formula (8.46) can be rewritten as:

etK � 1

π

» 8�8 sin2 ξ

ξ2

�
2iξ p2iξI � tKq�1

	2

dξ. (8.49)

The formula in (8.49) can be used to define the semigroup etK, t ¥ 0. For

ℓ � 1 formula (8.47) reduces to�tKetK� 2

π

» 8�8 sin2 ξ

ξ2

!�
2iξp2iξI � tKq�1

�2 � �
2iξp2iξI � tKq�1

�3)
dξ.

(8.50)

Proof. From Cauchy’s theorem it follows that the right-hand side of

(8.46) multiplied by
pℓ� 1q!
tℓ�1

is equal topℓ� 1q!
2πitℓ�1

» ω�i8
ω�i8 etλ pλI �Kq�ℓ�2

dλ � pℓ� 1q!
2πi

» ω�i8
ω�i8 eλ pλI � tKq�ℓ�2

dλ.

(8.51)

Integration by parts shows that the right-hand side of (8.51) does not de-

pend ℓ P N, and hencepℓ� 1q!
2πi

» ω�i8
ω�i8 eλ pλI � tKq�ℓ�2

dλ � 1

2πi

» ω�i8
ω�i8 eλ pλI � tKq�2

dλ.

(8.52)



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

On non-stationary Markov processes and Dunford projections 465

The right-hand side of (8.52) is the inverse Laplace transform at s � 1 of

the function s ÞÑ sestK and thus it is equal to etK . This shows (8.46). Since

I � λ pλI �Kq�1 � �K pλI �Kq�1
the equality in (8.46) entails:p�tqℓpℓ� 1q!KℓetK� 1

2πit

» ω�i8
ω�i8 etλ � e�tλ � 2

λ2

�
I � λ pλI �Kq�1

	ℓ
λ2 pλI �Kq�2

dλ� 1

2πi

» ω�i8
ω�i8 eλ � e�λ � 2

λ2

�
I � λ pλI � tKq�1

	ℓ
λ2 pλI � tKq�2

dλ,

(8.53)

and hence (8.47) follows. The inequality in (8.48) follows immediately from

(8.47). The equalities in (8.49) and (8.50) are easy consequences of (8.46)

and (8.47) respectively.

Altogether this proves Proposition 8.1. �

Lemma 8.2. Suppose that for ℜλ ¡ 0 the operator λI �K has a bounded

inverse defined on MpEq. Suppose that Cp0q defined by

Cp0q :� sup
!���λ pλI �Kq�1

��� : ℜλ ¡ 0
)

(8.54)

is finite. Let 0   α   1
2
π be such that 2Cp0q sin � 1

2
α
�   1. Then for λ P C

with the property that |argpλq|   1
2
π�α the operator λI�K has a bounded

inverse with the property that|λ| ���pλI �Kq�1
��� ¤ Cpαq, |argpλq| ¤ 1

2
π � α,

where

Cpαq :� sup

"���λ pλI �Kq�1
��� : |argpλq| ¤ 1

2
π � α

*
. (8.55)

If 0 ¤ 2 sin
�
1
2
α
�
Cp0q   1, then Cpαq   8, and

Cpαq ¤ Cp0q
1� 2 sin

�
1
2
α
�
Cp0q . (8.56)

In addition, the analytic semigroup esK , |argpsq| ¤ α, can be defined by the

same formula as employed in (8.49):

esKµ � 1

π

» 8�8 sin2 ξ

ξ2
p2iξq2 p2iξI � sKq�2

µ dξ, µ PMpEq, |argpsq| ¤ α,

(8.57)

and hence��esK�� ¤ Cpαq2 ¤ Cp0q2�
1� 2

��sin 1
2
α
��Cp0q�2 , |argpsq| ¤ α. (8.58)
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Proof. Fix λ P C with ℜλ ¡ 0, and observe the equality

λ
�
λI � e�iαK��1 � eiαλ pλI �Kq�1

�
I � �

1� eiα
�
λ pλI �Kq�1

	�1� eiαλ pλI �Kq�1
8̧
j�0

�
1� eiα

�j �
λ pλI �Kq�1

	j
.

(8.59)

The inequality in (8.56) then follows from (8.59). The equality in (8.57)

follows from (8.49) and the fact that the vector-valued functions in the

right-hand side and the left-hand side of (8.57) are holomorphic in s on an

open neighborhood of the indicated sector in C.

This proves Lemma 8.2. �

Proposition 8.2. The powers of the resolvent operators pλI �Kq�j�1

have the representation

λj�1 pλI �Kq�j�1
µ � �

λe�iα�j�1

j!

» 8
0

sje�se�iαλese
�iαKµ ds, j P N,

(8.60)

where 0   α   1
2
π if ℑλ ¥ 0 and ℜλ ¡ 0, and 0 ¡ α ¡ � 1

2
π if ℑλ ¤ 0

and ℜλ ¡ 0. Next choose 0 ¤ α1   α   1
2
π in such a way that 0 ¤

2 sin
�
1
2
α
�
Cp0q   1. In addition the following estimate holds for all j P N

and for all λ P C with |argpλq| ¤ 1
2
π � α1   1

2
π � α:|λ|j�1

���pλI �Kq�j�1
��� ¤ 1pcos p|argλ| � αqqj�1

Cp0q2�
1� 2 sin

�
1
2
α
�
Cp0q�2¤ 1psin pα� α1qqj�1

Cp0q2�
1� 2 sin

�
1
2
α
�
Cp0q�2 . (8.61)

Proof. Let Cpαq be as in (8.55) and suppose Cpαq   8. Then the

measure ese
�iαKµ has the representation:

ese
�iαKµ � 1

π

» 8�8 sin2 ξ

ξ2

�
2eiαiξ

�2 �
2eiαiξI � sK

��2
µ dξ. (8.62)

From (8.62) and (8.57) the following estimate is obtained:���ese�iαK
��� ¤ Cpαq2 ¤ Cp0q2�

1� 2Cp0q ��sin 1
2
α
���2 , s ¡ 0, (8.63)

where Cp0q is defined in (8.55). From (8.63) and (8.60) we see that the

following estimate holds for all j P N and for all λ P C with |argpλq| ¤
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1
2
π � α1   1

2
π � α:|λ|j�1

���pλI �Kq�j�1
��� ¤ 1pcos p|argλ| � αqqj�1

Cp0q2�
1� 2 sin

�
1
2
α
�
Cp0q�2 .

(8.64)

It is clear that (8.64) implies (8.61).

This completes the proof of Proposition 8.2. �

Proposition 8.3. Let the constants C0 and C1 be such that C1 ¥ 1 and��tℓKℓetK
�� ¤ pℓ� 1q!C2

0C
ℓ
1, t ¥ 0, ℓ P N. (8.65)

Then the following inequality is valid:|λ| ���pλI �Kq�1
��� ¤ 27

4

6?
35
C2

0C1, ℜλ ¡ 0. (8.66)

Proof. Suppose that |argpsq| ¤ α where α satisfies 0 ¤ 2C1 sin
�
1
2
α
�   1.

Then the measure esKµ can be written as

esKµ � eps�|s|qKe|s|Kµ � 8̧
ℓ�0

�
s|s| � 1

	ℓ
ℓ!

p|s|Kqℓ e|s|Kµ, (8.67)

and the representation (8.67) together with (8.65) implies the inequality:��esK�� ¤ C2
0�

1� 2C1 sin
�
1
2
α
��2 , |argpsq| ¤ α, (8.68)

provided 0   2C1 sin
�
1
2
α
�   1. Again the representation in (8.60) ia

available. The inequality in (8.61) is replaced with|λ|j�1
���pλI �Kq�j�1

��� ¤ 1pcos p|argλ| � αqqj�1

C2
0�

1� 2 sin
�
1
2
α
�
C1

�2¤ 1psin pα� α1qqj�1

C2
0�

1� 2 sin
�
1
2
α
�
C1

�2 , (8.69)

provided |argpλq| ¤ 1
2
π � α1   1

2
π � α. Since 2pj � 3qC1 ¡ j � 1, the angle

α can be chosen in such a way that 2pj � 3qC1 sin
�
1
2
α
� � j � 1 to obtain

the estimate (note that C1 ¥ 1 and take α1 � 0):|λ|j�1
���pλI �Kq�j�1

���¤ 1

4

pj � 3qj�3pj � 1qj�1

2j�1C
j�1
1 pj � 3qj�1�

4C2
1 pj � 3q2 � pj � 1q2	pj�1q{2C2

0C
j�1
1¤ 1

4

pj � 3qj�3pj � 1qj�1

2j�1pj � 3qj�1�
4 pj � 3q2 � pj � 1q2	pj�1q{2C2

0C
j�1
1 (8.70)

for ℜλ¡0. If j�0 (8.70) reduces to (8.66). This shows Proposition 8.3. �
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Remark 8.3. The assumption that C1 ¥ 1 in the inequalities in (8.65)

is not too surprising. In fact from (8.65) it follows that C1 ¥ 1 (by the

spectral mapping theorem).

Corollary 8.2. Let the operator L be the generator of a Tβ-continuous

Feller semigroup in CbpEq. Suppose that L is sectorial. Then its adjoint

K � L� is a sectorial sub-Kolmogorov operator like in Definition 8.2. More-

over, the graph of the operator K is weakÆ-closed and K generates a weak�-
continuous bounded analytic semigroup on MpEq.
Proof. As in Theorem 8.1 K has the additional property that for some

λ0 P C, with λ0 ¡ 0, the range of λ0I �K coincides with MpEq. Then for

all λ P C with ℜλ ¡ 0 the operator pλI �Kq�1
exists as a bounded linear

operator which is defined on all ofMpEq. Since L is sectorial it follows that

for the operator L the following inequality holds for all λ P C with ℜλ ¥ 0

and for all f P DpLq: |λ| }f}8 ¤ C }pλI � Lq f}8 . (8.71)

Of course, from (8.71) we see:|λ| �� pλI � Lq�1
f
��8 ¤ C }f}8 , f P CbpEq, ℜλ ¡ 0. (8.72)

From (8.72) we obtain, by duality,|λ|Var� pλI �Kq�1
µ
� ¤ CVar pµq , µ PMpEq, ℜλ ¡ 0. (8.73)

We still have to prove that the operator K is a sub-Kolmogorov operator.

This can be achieved as follows. Let ℜµ be the real part of the measure

µ P DpKq. Then there exists a Borel subset E�
ℜµ on which ℜµ is a positive

measure and which has the property that

sup tℜ 〈f, µ〉 : 0 ¤ f ¤ 1u � ℜµ
�
E�

ℜµ

	
. (8.74)

Choose compact subsets Cn and open subsets On of E such that Cn �
E�

ℜµ � On, and such that lim
nÑ8 |ℜµ| pOnzCnq � 0. Since µ P DpKq we get

ℜµ
�
E�

ℜµ

	 � ℜ
〈

1E�
ℜµ
, µ

〉 � lim
λÑ8ℜ

〈

1E�
ℜµ
, λ pλI �Kq�1

µ
〉� lim

λÑ8 lim
nÑ8ℜ

〈

fn, λ pλI �Kq�1
µ
〉� lim

λÑ8 lim
nÑ8ℜ

〈

λ pλI � Lq�1
fn, µ

〉

, (8.75)

where 1Cn
¤ fn ¤ 1On

, fn P CbpEq. Fix λ ¡ 0 and consider the function

gλ,n :� λ pλI � Lq�1
fn, which satisfies 0 ¤ gλ,n ¤ 1. Moreover, we have

ℜ
〈

λ pλI � Lq�1
fn, Kµ

〉 � ℜ
〈

λL pλI � Lq�1
fn, µ

〉
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〈

λ2 pλI � Lq�1
fn � λfn, µ

〉� ℜ
〈

1EzOn
λ2pλI � Lq�1fn, µ

〉� ℜ
〈

1OnzCn
pλ2pλI � Lq�1fn � λfnq, µ〉� ℜ

〈

1Cn

�
λ2 pλI � Lq�1

fn � λfn

	
, µ

〉

. (8.76)

Since the measure ℜµ is positive on EzOn and the function gλ,n is nonneg-

ative the first term on the right-hand side of (8.76) is less than or equal to

zero. The function gλ,n satisfies gλ,n ¤ 1 and the measure ℜµ is positive

on Cn, and hence the third term in (8.76) is less than or equal to zero as

well. Here we also used the fact that fn � 1 on Cn. The middle term in

the right-hand side of (8.76) is dominated by

2λ
〈

1OnzCn
gλ,n, |ℜµ|〉 ¤ 2λ |ℜµ| pOnzCnq . (8.77)

Inserting (8.77) in (8.76) and using the fact that the first and the third term

of the right-hand side of (8.76) are dominated by 0 shows the inequality:

ℜ
〈

λ pλI � Lq�1
fn, Kµ

〉 ¤ 2λ |ℜµ| pOnzCnq . (8.78)

Since limnÑ8 |ℜµ| pOnzCnq � 0, from (8.74), (8.75), and (8.78) we infer

that the operator K is a sub-Kolmogorov operator: see Definition 8.2.

The proof of Corollary 8.2 is now complete. �

Remark 8.4. In fact in Section 8.2 we will need an inequality of the form|λ|Var pµq ¤ CVar ppλI �Kqµq , ℜλ ¡ 0, µ PMpEq. (8.79)

In the presence of (8.79) the operator K generates a bounded analytic

semigroup; see Theorem 8.8 below. This is the case if K � L�, where L is

an operator with domain and range in CbpEq with the property that|λ| }f}8 ¤ C }pλI � Lq f}8 , ℜλ ¡ 0, f P DpLq.
The following theorem is related to a similar result for continuous function

spaces rather than for measures by Cerrai (see [Cerrai (1994)] and Appendix

B in [Cerrai (2001)]). In Kühnemund (see [Kühnemund (2003)]) the reader

may find a generalization of such a result in the context of so-called bi-

continuous semigroups. The notion of strongly continuous semigroup is

replaced with bi-continuity in the sense that the convergence of semigroups

is always assumed with respect to the topology Tβ , whereas the boundedness

is always meant in the norm sense. The notion of (infinitesimal) generator

is also adapted: for Tβ-generators convergence is considered in the Tβ-

sense, and boundedness is phrased in terms of the norm. In the present

situation the Banach space is the space of all bounded signed measures
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on E endowed with the variation norm and the topology Tβ is the weak�-
topology. A related paper is [Dorroh and Neuberger (1993)]. A result

which includes Theorem 8.3 below is formulated in [Bratteli and Robinson

(1987)] as Theorem 3.1.10 page 171. The strict topology is also called

mixed topology, or K-topology: see the references given in Subsection 2.3.1

of Chapter 2.

Theorem 8.3. Let K be a weak�-closed linear operator with weak�-dense
domain in MpEq. Suppose that K possesses the sub-Kolmogorov property

in the sense of Definition 8.2. Fix λ0 ¡ 0 and suppose that for every x P E
there exists a measure µλ0

x such that

λ0δx � pλ0I �Kqµλ0

x . (8.80)

Then there exists a weak�-continuous semigroup Sptq :� etK, t ¥ 0, such

that

lim
tÓ0 〈

f,
�
etK � I

�
µ
〉

t
� 〈f,Kµ〉 , for all f P CbpEq and µ P DpKq.

From Theorem 8.1 it follows that the measures µλ0

1,x :� µλ0

x , x P E, are sub-

probability measures. If 〈1, Kµ〉 � 0, then these measures are probability

measures.

Proof. We will show that our assumptions imply the conditions set forth

in Theorem 3.1.10 of [Bratteli and Robinson (1987)]. Assertion (3) of The-

orem 8.1 implies

λ }µ} ¤ }pλI �Kqµ} , λ ¡ 0, µ P DpKq, (8.81)

where }µ} denotes the norm of µ as defined in (8.2). The inequality in

(8.81) is the first condition which is required to apply Theorem 3.1.10. Let

µ be a measure in MpEq. Then by (8.80) we have

λ0µ � »
E

λ0δydµpyq � »
E

pλ0I �Kqµλ0

y dµpyq � pλ0I �Kq »
E

µλ0

y dµpyq,
and so the range of λ0I � K coincides with MpEq. Hence, the result

in Theorem 8.3 follows from Theorem 3.1.10 in [Bratteli and Robinson

(1987)]. �

Since the operators Kptq, t ¥ t0, in equation (8.6) are supposed to have the

Kolmogorov property, the evolution family X pt, sq, t ¥ s ¥ t0, consists of

Markov operators in the sense that 〈f,X pt, t0qµ〉 ¥ 0 whenever f P CbpEq
is non-negative and µ belongs P pEq; in addition, 〈1, X pt, t0qµ〉 � 1 for
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µ P P pEq. Since all operators Kptq are Kolmogorov it follows that X pt, t0q
is Markov for all t ¥ t0. This can be seen by the following approximation

argument. Fix t0   T and put

Knptq � K

�
t0 � pT � t0q 2�n Z t� t0

T � t0
2n
^
 � K pϕnptqq , (8.82)

where

ϕnptq � t0 � pT � t0q 2�n Z t� t0

T � t0
2n
^
.

Then Knptq � K pt0 � pT � t0q j2�nq for
t0 � pT � t0q j

2n
¤ t   t0 � pT � t0q j � 1

2n
.

Solutions to the system 9µptq � Kptqµptq, t0 ¤ t ¤ T , are approximated by

solutions to the equation:9µnptq � Knptqµnptq, t0 ¤ t ¤ T. (8.83)

A solution to (8.83) can be written in the form µnptq � Xn pt, t0qµn pt0q,
with

Xn pt, sq � ept�tℓ,nqKptℓ,nq ℓ�1¹
j�k�1

eptj�1,n�tj,nqKptj,nqeptk�1,n�sqKptk,nq,
(8.84)

where t0 ¤ s ¤ t ¤ T , tj,n � t0 � pT � t0q j
2n

, 0 ¤ j ¤ 2n, tk,n ¤ s  
tk�1,n, and tℓ,n ¤ t   tℓ�1,n. We also need Duhamel’s formula:pXn pt, t0q �Xm pt, t0qqµ � » t

t0

Xn pt, sq pKnpsq �KmpsqqXm ps, t0qµ ds.
(8.85)

In (8.85) we let mÑ8 and use weak�-convergence to obtain:pXn pt, t0q �X pt, t0qqµ � » t
t0

Xn pt, sq pKnpsq �KpsqqX ps, t0qµ ds.
(8.86)

Of course, we assume that the sequences» t
t0

Xn pt, sqKnpsqXm ps, t0qµ ds and

» t
t0

Xn pt, sqKmpsqXm ps, t0qµ ds
converge in weak�-sense to» t

t0

Xn pt, sqKnpsqX ps, t0qµ ds and

» t
t0

Xn pt, sqKpsqX ps, t0qµ ds
respectively as mÑ8.
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Theorem 8.4. Let the sequences tKnptq : n P Nu and tXn pt, t0q : n P Nu
be as in (8.82) and in (8.84). Suppose that for all m P N and all t0 ¤ t1 ¤
t2 ¤ T the measure Xm pt2, t0q µ belongs to D pK pt1qq for all measures

µ P MpEq. Also suppose that for every probability measure µ P MpEq the
family of measures tKn ptqXm pt, t0qµ : t0 ¤ t ¤ T, 1 ¤ n ¤ mu is Tβ-equi-
continuous, i.e. there exists a function u P HpEq such that

sup
t0¤t¤T sup

n¤m |〈f,Kn ptqXm pt, t0qµ〉| ¤ }uf}8 , f P CbpEq. (8.87)

(a) Then X pt, t0qµ :� }�} - limnÑ8Xn pt, t0qµ exists and µptq :�
X pt, t0qµ satisfies: 9µptq � Kptqµptq, provided that for all t0   s ¤ T

lim
tÒs }pKptq �Kpsqqµ} � 0 (8.88)

for all measures µ P �s�h t sD pK ptqq for some h ¡ 0.

(b) Suppose that for every s, t P rt0, T s, s ¤ t, the sequencetXn pt, sq : n P Nu is uniformly weak�-continuous, and that for all mea-

sures

µ P £
s�h t sD pK ptqq

the following equality holds

weak�- lim
tÒs Kptqµ � Kpsqµ. (8.89)

Then X pt, t0qµ :� weak�- lim
nÑ8Xn pt, t0qµ, µ P MpEq, exists and

µptq :� X pt, t0q µ satisfies: 9µptq � Kptqµptq.
For more details on Tβ-equi-continuous families of measures see Theorem

2.3. The sequence tXn pt, sq : n P Nu is called uniformly weak�-continuous,
if for every function f P CbpEq and every measure µ PMpEq the sequence

of continuous functions ps, tq ÞÑ 〈f,Xn pt, sqµ〉, t0 ¤ s ¤ T , n P N, is

uniformly continuous. See Remark 2.4 as well.

Let u ¥ 0 be a function in HpEq; i.e. for every α ¡ 0 the set tu ¥ αu
is contained in a compact subset of E. In the proof we apply the Banach-

Alaoglu theorem to the effect that the collection of measures

Bu � £
fPCbpEq tµ PMpEq : |〈f, µ〉| ¤ }uf}8u (8.90)

is σ pMpEq, CbpEqq-compact: see Theorem 2.6. As a consequence, we

see that every sequence in the collection Bu defined in (8.90) has a

σ pMpEq, CbpEqq-convergent subsequence. Here we use the fact that the
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space CbpEq endowed with the strict topology is separable; i.e. CbpEq con-
tains a Tβ-dense countable subset.

Proof. [Proof of Theorem 8.4.] By hypothesis (8.87) both terms in the

right-hand side of in Duhamel’s formula (8.85) are Tβ-equi-continuous. So

there exists a function u P HpEq such that

sup
t0¤t¤T sup

n¤m ����〈f, » t
t0

Xn pt, sqKnpsqXm ps, t0q µ ds〉���� ¤ }uf}8 and

(8.91)

sup
t0¤t¤T sup

n¤m ����〈f, » t
t0

Xn pt, sqKmpsqXm ps, t0qµ ds〉���� ¤ }uf} (8.92)

for all f P CbpEq. By the Banach-Alaoglu theorem we may assume that

through a subsequence pmjq the weak� limit in the right-hand side of (8.85)

exists for all t0 ¤ t ¤ T , and that therefore the weak� limit of the sequence

Xmj
pt, t0qµ exists as well for all t0 ¤ t ¤ T . Again employing the Tβ-equi-

continuity condition in (8.87) we may assume that, for every n P N, the

weak� limit weak�- limjÑ8Kn psqXmj
ps, t0qµ exists. Since, in addition,

the operatorsXn pt, sq are continuous for the weak�-topology, we letmÑ8
along an appropriate subsequence and use weak�-convergence to obtain:pXnpt, t0q �Xpt, t0qqµ � » t

t0

Xnpt, sqpKnpsq �KpsqqXps, t0qµ ds. (8.93)

Our extra hypothesis (8.88) then completes the proof of assertion (a) of

Theorem 8.4. The assumption that for every s, t P rt0, T s, s ¤ t, the

sequence tXn pt, sq : n P Nu is uniformly weak�-continuous together with

weak�- limtÒsKptqµ � Kpsqµ completes the proof of assertion (b) of Theo-

rem 8.4 as well. �

Remark 8.5. Under Tβ-equi-continuity conditions the sequences

Xm ps, t0q µ and KmpsqXm ps, t0q µ
possess subsequences which converge in weak�-sense for all t0 ¤ s ¤ T . The

Kolmogorov property of the operator function Kptq entails that solutions

µnptq of (8.83) are non-negative, i.e. 〈f, µnptq〉 ¥ 0 for f ¥ 0, f P CbpEq,
and take their values in the simplex P pEq for each initial condition µpt0q P
P pEq. The latter is true because if 〈1, µnpt0q〉 � 1, then 〈1, µnptq〉 � 1

for all T ¥ t ¥ t0. Consequently, the mappings µn pt0q ÞÑ µnptq, t ¥ t0,

leave the simplex P pEq invariant, provided that µptq is a solution to (8.83).

Passing to the limit in (8.83) yields the desired result. This passage can be

justified under certain conditions. If the function µnptq satisfies (8.83), then
µnptq � µn pt0q � » t

t0

Knpsqµnpsqds.
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Example 8.1. Let K be a weak�-closed Kolmogorov operator with weak�-
dense domain, and let ppt, xq be a Borel measurable strictly positive func-

tion defined on rt0, T s � E with the property that for every x P E the

function t ÞÑ p pt, xq is continuous. Define the families of operators K1ptq
and K2ptq, t P rt0, T s by
K1 ptq µpBq � »

B

p pt, xq pKµq pdxq and K2 ptqµpBq � »
B

K pppt, �qµq pdxq
Suppose that K has the following property, which is somewhat stronger

than the standard Kolmogorov property of Definition 8.2. For every µ ¥ 0,

µ P DpKq, and every B P E for which µpBq � 0 we have KµpBq ¥ 0. Then

the operators K1ptq and K2ptq share this stronger Kolmogorov property.

Fix λ0 ¡ 0 and suppose that for every x P E there exists a measure µt,λ0

x

such that λ0δx � pλ0 � p pt, �qKqµt,λ0

x . Then the operator K1ptq gener-

ates a weak�-continuous semigroup: see Theorem 8.3. If for every x P E
there exists a measure νt,λ0

x such that λ0p pt, �q δx � pλ0 � p pt, �qKq νt,λ0

x .

Then the measure µt,λ0

x defined by the equality νt,λ0

x � p pt, �qµt,λ0

x sat-

isfies: λ0δx � pλ0 �Kp pt, �qqµt,λ0

x . Hence, by Theorem 8.3 the operator

K2ptq generates a weak�-continuous semigroup in MpEq. If the functionpt, xq ÞÑ ppt, xq is uniformly bounded, then the results of (a) in Theorem

8.4 are applicable for the family K1ptq. If the domains of the operators

K2ptq do not depend on t P rt0, T s, then the results of (b) in Theorem 8.4

are applicable for the family K2ptq.
Example 8.2. A better example is a family of operators Kptq, t ¥ 0,

which are adjoint of operators Lptq with domain and range in CbpEq, i.e.
Kptq � Lptq�, which generate a time-dependent strong Markov processtpΩ,Fτ

t ,Pτ,xq , pXptq : t ¥ τq , pE, Equ
such thatBBtEτ,xrfpt,Xptqqs � Eτ,xrpD1 � Lptqqfpt,Xptqqs, f P DpD1q£DpLptqq,
where 0 ¤ τ   t ¤ 8. The operator D1 stands for the derivative with

respect to time: see Definition 2.8. We put Y pτ, tq fpxq � Eτ,x rf pXptqqs,
f P Cb pEq, and X pt, τq µ � Y pτ, tq� µ, µ P MpEq. This means that

〈Y pτ, tq f, µ〉 � 〈f,X pt, τq µ〉, f P CbpEq, µ P MpEq. Put P pτ, x; t, Bq �
Pτ,x rXptq P Bs, 0 ¤ τ ¤ t   8, B P E . Then

Y pτ, tq fpxq � »
fpyqP pτ, x; t, dyq , f P CbpEq, 0 ¤ τ ¤ t   8. (8.94)
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Hence,

〈f,X pt, τq µ〉 � »
fpyq » P pτ, x; t, dyq dµpxq, f P CbpEq, 0 ¤ τ ¤ t   8.

(8.95)

It is assumed that for every t ¥ 0 the operator Lptq generates a bounded

analytic Feller semigroup esLptq, |arg s| ¤ αptq. In addition, assume that

the operator Kptq � Lptq� has a spectral gap of width 2ωptq, and that|λ| ���pλI � Lptqq�1
��� ¤ cptq for ℜλ ¥ �ωptq, λ � 0. It follows that the

operators Lptq generate analytic semigroups esLptq where s P C belong to a

sector with angle opening. Then it follows that there exist a constant cptq
and an angle 1

2
π   βptq   π such that|λ| ���pλI � Lptqq�1

��� ¤ cptq, for all λ P C with |argpλq| ¤ βptq. (8.96)

For a proof see Theorem 8.8 and its corollaries 8.4 and 8.5. Let esLptq, s ¥ 0,

be the (analytic) semigroup generated by the operator Lptq. Then the

(unbounded) inverse of the operator �Lptq is given by the strong integral

f ÞÑ ³8
0
esLptqf ds. From (8.228) it follows that for µ PM0 pEq and ℜλ ¡ 0

the inequality|λ| ���〈g, �λI|M0pEq � Lptq�|M0pEq��1
µ
〉��� ¤ }g}8Var pµq , (8.97)

holds whenever the function g is of the form g � λf � Lptqf , with f P
D pLptqq. Here M0pEq is the space of all complex Borel measures µ on E

with the property that µpEq � 0: see (8.5). Suppose that Var
�
esLptq�µ	 ¤

cptqe�2ωptqsVar pµq for all µ P M0 pEq and s ¥ 0. Then for ℜλ ¥ ωptq,
g P C0 pEq and µ PM0pEq we havepλ� 2ωptqq〈g, �pλ� 2ωptqq I|M0pEq � Lptq�|M0pEq��1

µ
〉� pλ� 2ωptqq » 8

0

〈

g, e�sppλ�2ωptqqI|M0pEq�Lptq�|M0pEqqµ〉 ds, (8.98)

and hence, if |λ� 2ωptq| ¤ 2ωptq we have|λ� 2ωptq| ���〈g, �pλ� 2ωptqq I|M0pEq � Lptq�|M0pEq��1
µ
〉
���¤ |λ� 2ωptq| » 8

0

���〈g, e�sppλ�2ωptqqI|M0pEq�Lptq�|M0pEqqµ〉��� ds¤ |λ� 2ωptq| » 8
0

e�spℜλ�2ωptqqVar�esLptq�|M0pEqµ	 ds }g}8¤ cptq |λ� 2ωptq|» 8
0

e�spℜλ�2ωptqqe�2sωptqdsVar pµq }g}8
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ℜλ

}g}8 Var pµq ¤ 2cptq }g}8 Var pµq . (8.99)

In view of (8.96), (8.97) and (8.99) it makes sense to consider the largest

ωptq with the property that for all functions g P C0 pEq, and all Borel

measures µ PM0 pEq the complex-valued function

λ ÞÑ λ
〈

g,
�
λI|M0pEq � Lptq�|M0pEq��1

µ
〉

extends to a bounded holomorphic function on all half-planes of the form 
λ P C : ℜλ ¡ �2ω1ptq(

with ω1ptq   ωptq. In follows that there exists a constant cptq such that for

all functions g P CbpEq and µ PM0 pEq the following inequality holds:|λ| ���〈g, �λI|M0pEq � Lptq�|M0pEq��1
µ
〉��� ¤ cptq }g}8Var pµq , ℜλ ¥ �ωptq.

The following definition is to be compared with the definitions 8.5 and 9.14

(in Chapter 9).

Definition 8.4. The number 2ωptq is called the MpEq-spectral gap of the

operator Lptq�. It is also called the uniform or L8-spectral gap of the

operator Lptq.
Next let P pτ, x; t, Bq be the transition probability function of the processtpΩ,Fτ

t ,Pτ,xq , pXptq : t ¥ τq , pE,Bqu
generated by the operators Lptq. Suppose that, for every τ P p0,8q and
every Borel probability measure on E, the following condition is satisfied:

lim
tÑ8 cptq

ωptq »E Var

� BBtP pτ, x; t, �q
 dµpxq � 0.

Let µ be any Borel probability measure on E. Put µptq � Y pτ, tq� µ, where
Y pτ, tqfpxq � Eτ,x rf pXptqqs , f P CbpEq.

Then 9µptq � Lptq�µptq. Moreover,

lim
tÑ8 cptq

ωptqVar p 9µptqq � 0.

We will show this. With the above notation we have:

Var p 9µptqq� sup

"���� ddt 〈f, µptq〉���� : f P CbpEq, }f}8 � 1

*
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"���� BBt 〈Y pτ, tq f, µ〉���� : f P CbpEq, }f}8 � 1

*� sup

"���� BBt »E »
E

fpyqP pτ, x; t, dyq dµpxq���� : f P CbpEq, }f}8 � 1

*� sup

"����»
E

fpyq BBt »E P pτ, x; t, dyq dµpxq���� : f P CbpEq, }f}8 � 1

*� Var

� BBt »E P pτ, x; t, �q dµpxq
 ¤ »
E

Var

� BBtP pτ, x; t, �q
 dµpxq.
(8.100)

If the probability measure B ÞÑ P pτ, x; t, Bq has density p pτ, x; t, yq, then
the total variation of the measure B ÞÑ BBtP pτ, x; t, Bq is given by

Var

� BBtP pτ, x; t, �q
 � »
E

���� BBtp pτ, x; t, yq����dy. (8.101)

If there exists a unique P pEq-valued function t ÞÑ πptq such that

Lptq�πptq � 0, then the system Lptq�µptq � 9µptq is ergodic. This asser-

tion follows from Theorem 8.5 below.

Observe that versions of the Bismut-Elworthy formula with higher order

derivatives can be used to prove that certain Feller type semigroups are

analytic: see e.g. [Cerrai (2001)] Chapter 3 and Chapter 6. Section 8.7 is

devoted to a discussion on this formula.

8.3.1 Ornstein-Uhlenbeck process

The simplest example of this kind of the process is the following one.

Example 8.3. In this example we consider the generator L :� 1
2
∆�x�∇ of

the so-called Ornstein-Uhlenbeck process in Cb
�
Rd

�
: see Theorem 1.19 as-

sertion (d), in section E of [Demuth and van Casteren (2000)]. There exists

a probability space pΩ,F ,Pq together with a Rd-valued Gaussian processtXpsq : s ¥ 0u, called Ornstein-Uhlenbeck process, such that EpXpsqq � 0

and such that

E pXjps1qXkps2qq � 1

2
exp

��ps1 � s2q� �exp�2minps1, s2q�� 1
�
δj,k

(8.102)� 1

2

�
exp p� |s1 � s2|q � exp

��ps1 � s2q�� δj,k, (8.103)
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for all s1, s2 ¥ 0, and for 1 ¤ j, k ¤ d. Put Xxptq � expp�tqx � Xptq.
Then the process tXxptq : t ¥ 0u is theOrnstein-Uhlenbeck process of initial

velocity x. Let f : Rd Ñ C be a bounded Borel measurable function. Then

E rfpXxptqqs is given by

E rf pXxptqqs � »
f
�
e�tx�a

1� e�2ty
	 exp

�� |y|2	p?πqd dy.

Moreover, the Ornstein-Uhlenbeck process is a strong Markov process. This

is also true for Brownian motion and for the oscillator process. Its integral

kernel p0pt, x, yq is given by

p0pt, x, yq � 1p1� e�2tqd{2 exp

��e�2t |x|2 � e�2t |y|2 � 2e�t 〈x, y〉
1� e�2t

�
.

The semigroup in Cb
�
Rd

�
is given byrexpptLqf s pxq � »
p0pt, x, yqfpyq exp�� |y|2	 dyp?πqd� 1p?πqd » f �expp�tqx�a

1� expp�2tqy	 exp
�� |y|2	 dy.

Its invariant measure is determined by taking the limit:

lim
tÑ8 rexpptLqf s pxq � 1

πd{2 » fpyqe�|y|2dy.
For more details the reader is referred to e.g. [Simon (1979)]. The joint

distributions of the processes (see Theorem 1.19.(d) of [Demuth and van

Casteren (2000)])tXptq : t ¥ 0u and
 
e�tB ��

e2t � 1
�{2� : t ¥ 0

(
coincide. The process tXptq : t ¥ 0u also possesses the same law (i.e. joint

distribution) as the process
!³t

0
exp p�pt� sqq dBpsq : t ¥ 0

)
.

The semigroup generated by L is not a bounded analytic one. This can

be seen by rewriting the expression for λRpλq � λ pλI � Lq�1
, ℜλ ¡ 0. For

convenience we write:

q ps, x, yq � 1p1� s2qd{2 exp

��s2 |x|2 � |y|2 � 2s 〈x, y〉

1� s2

�� 1p1� s2qd{2 exp

��|y � sx|2
1� s2

�
. (8.104)
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Then we have lim
tÑ8 q pe�t, x, yq � exp

�� |y|2	, and also

p0 pt, x, yq e�|y|2 � q
�
e�t, x, y� , t ¡ 0,BByj q ps, x, yq � �2 pyj � sxjq
1� s2

q ps, x, yq andB2pByjq2 q ps, x, yq � � 2

1� s2
q ps, x, yq � 4 pyj � sxjq2p1� s2q2 q ps, x, yq . (8.105)

From the equalities in (8.105) we get:

1

2
∆yq ps, x, yq � dq ps, x, yq � 〈y,∇yq ps, x, yq〉� �d s2

1� s2
qps, x, yq � 2sp1� s2q2!s |x|2 � s |y|2 � p1� s2q 〈y, x〉)qps, x, yq� �s BBsq ps, x, yq � BBtq �e�t, x, y� ��e�t�s. (8.106)

Let f P DpLq, and let µ0 be the Borel measure on Rd which has density

π�d{2 exp�� |y|2	 with respect to the Lebesgue measure. Then integration

by parts yields:

λ

» 8
0

e�λtetLfpxqdt� �
1� e�λt� etLfpxq��t�8

t�0
� » 8

0

�
1� e�λt� etLLfpxqdt� 〈f, µ0〉� » 8

0

�
1� e�λt� »

Rd

q
�
e�t, x, y�Lfpyq dy

πd{2 dt� 〈f, µ0〉� » 8
0

�
1� e�λt� »

Rd

q
�
e�t, x, y��1

2
∆fpyq � 〈y,∇fpyq〉
 dy

πd{2 dt
(apply again integration by parts)� 〈f, µ0〉� » 8

0

�
1� e�λt�»

Rd

�
1

2
∆yq

�
e�t, x, y�� dq

�
e�t, x, y�� 〈

y,∇yq
�
e�t, x, y�〉
 fpyq dy

πd{2 dt�〈f, µ0〉�» 8
0

p1� e�λtq»
Rd

� �d
e2t � 1

� 2e2tt|x|2�|y|2�pet�e�tq 〈y, x〉upe2t � 1q2 

qpe�t, x, yqfpyq dy

πd{2 dt
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Rd

» 8
0

�
1� e�λt��� �d

e2t � 1
� 2e2t

!|x|2 � |y|2 � pet � e�tq 〈y, x〉)pe2t � 1q2 �q �e�t, x, y� dtfpyq dy
πd{2

(make the substitution y � e�tx�?
1� e�2ty1)� 〈f, µ0〉� »

Rd

» 8
0

1� e�λt
e2t � 1

��d� 2
!��y1��2 �a

e2t � 1
〈

y1, x〉)	� exp
�� ��y1��2	 f �e�tx�a

1� e�2ty1	 dt dy1
πd{2 . (8.107)

By the same token we get

λ

» 8
0

e�λtetLfpxqdt� fpxq � lim
ηÓ0 »Rd

» 8
η

e�λt
e2t � 1

��d� 2
!��y1��2 �a

e2t � 1
〈

y1, x〉)	� exp
�� ��y1��2	 f �e�tx�a

1� e�2ty1	 dt dy1
πd{2 . (8.108)

From (8.107) we infer����λ » 8
0

e�λtetLfpxqdt� 〈f, µ0〉

����¤ »
Rd

������» 8
0

�
1� e�λt��� �d

e2t � 1
� 2e2t

!|x|2 � |y|2 � pet � e�tq 〈y, x〉)pe2t � 1q2 �
q
�
e�t, x, y� dt���� dyπd{2 }f}8¤ »

Rd

» 8
0

��1� e�λt�� ������ �d
e2t � 1

� 2e2t
!|x|2 � |y|2 � pet � e�tq 〈y, x〉)pe2t � 1q2 ������

q
�
e�t, x, y� dt dy

πd{2 }f}8
(make the substitution y � e�tx�?

1� e�2ty1)� »
Rd

» 8
0

��1� e�λt�� ������ �d
e2t � 1

� 2
!|y1|2 �?

e2t � 1 〈y1, x〉)
e2t � 1

������
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exp
�� ��y1��2	 dt dy1

πd{2 }f}8� »
Rd

» 8
0

��1� e�λt��
e2t � 1

����d� 2
!��y1��2 �a

e2t � 1
〈

y1, x〉)���
exp

�� ��y1��2	 dt dy1
πd{2 }f}8� »

Rd

» 8
0

��1� e�λt��
e2t � 1

����d� !|y|2 �a
2 pe2t � 1q 〈y, x〉)���

exp

��1

2
|y|2
 dt

dyp2πqd{2 }f}8¤ »
Rd

» 8
0

��1� e�λt��
e2t � 1

����d� |y|2��� exp��1

2
|y|2
 dt

dyp2πqd{2 }f}8� »
Rd

» 8
0

?
2
��1� e�λt��?
e2t � 1

|〈y, x〉| exp��1

2
|y|2
 dt

dyp2πqd{2 }f}8¤ 2d

» 8
0

��1� e�λt��
e2t � 1

dt }f}8 � 2?
π

» 8
0

��1� e�λt��?
e2t � 1

dt |x| }f}8 . (8.109)

We will also estimate the absolute value of the quantity:»
q p0, x, yq fpyq dy

πd{2 � »
q
�
e�t, x, y� fpyq dy

πd{2� » » 8
t

��d� 2e2s

e2s � 1

!|x|2 � |y|2 � �
es � e�s� 〈y, x〉)
� 1

e2s � 1
q
�
e�s, x, y� ds fpyq dy

πd{2� » » 8
t

!�d� 2
!��y1��2 �a

e2s � 1
〈

y1, x〉)) 1

e2s � 1
exp

�� ��y1��2	
f
�
e�sx�a

1� e�2sy1	 ds dy1
πd{2� » » 8

t

#�d�#|y|2 �
e2s � 1

2
〈y, x〉

++
1

e2s � 1
exp

��1

2
|y|2


f

�
e�sx�

1� e�2s

2
y

�
ds

dyp2πqd{2 . (8.110)

Here we used the equality in (8.106):��d� 2e2s

e2s � 1

!|x|2 � |y|2 � �
es � e�s� 〈y, x〉)
 1

e2s � 1
q
�
e�s, x, y�� BBsq �e�s, x, y� . (8.111)
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From (8.110) we obtain the following estimate in the same manner as we

got the inequality in (8.109):����» q p0, x, yq fpyq dyπd{2 � »
q
�
e�t, x, y� fpyq dy

πd{2 ����¤ 2d

» 8
t

1

e2s � 1
ds }f}8 � 1?

π

» 8
t

1?
e2s � 1

ds |x| }f}8 . (8.112)

Suppose y �� x. In addition, the substitution s � e�t shows the equality:

λ

» 8
0

e�λtp0 pt, x, yq e�|y|2dt � λ

» 1

0

sλ�1q ps, x, yq ds� d

» 1

0

�
1� sλ

�
s

1� s2
q ps, x, yq ds� » 1

0

2
�
1� sλ

�
1� s2

q ps, x, yq s |x|2 � s |y|2 � �
1� s2

�
〈x, y〉

1� s2
ds. (8.113)

From (8.113) we infer

λ

» 8
0

»
fpyqe�λtp0 pt, x, yq e�|y|2 dy

πd{2 dt� d

» 1

0

�
1� sλ

�
s

1� s2

»
fpyqq ps, x, yq dy

πd{2 ds� » 1

0

2
�
1� sλ

�
1� s2

»
fpyqq ps, x, yq s |x|2 � s |y|2 � �

1� s2
�
〈x, y〉

1� s2
dy

πd{2 ds
(make the substitution y � sx�?

1� s2y1)� d

» 1

0

�
1� sλ

�
s

1� s2

»
f
�
sx�a

1� s2y1	 e�|y1|2 dy1
πd{2 ds� » 1

0

2
�
1� sλ

�
1� s2

»
f
�
sx�a

1� s2y1	�s ��y1��2 �a
1� s2

〈

x, y1〉	� e�|y1|2 dy1
πd{2 ds� » 1

0

s
�
1� sλ

�
1� s2

»
f
�
sx�a

1� s2y1	 e�|y1|2 �d� 2
��y1��2	 dy1

πd{2 ds� » 1

0

2
�
1� sλ

�?
1� s2

»
f
�
sx�a

1� s2y1	 〈

x, y1〉 e�|y1|2 dy1
πd{2 ds. (8.114)

Let C pt, sq, t ¥ s, t, S P R, be a family of d� d matrices with real entries,

with the following properties:
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(a) Cpt, tq � I, t P R, (I stands for the identity matrix).

(b) The following identity holds: Cpt, sqCps, τq � Cpt, τq holds for all real
numbers t, s, τ for which t ¥ s ¥ τ .

(c) The matrix valued function pt, s, xq ÞÑ Cpt, sqx is continuous as a func-

tion from the set
 pt, sq P Rd � Rd : t ¥ s

(� Rd to Rd.

Define the backward propagator YC on Cb
�
Rd

�
by YCps, tqfpxq �

f pCpt, sqxq, x P Rd, and f P Cb �Rd�. Then YC is a backward propagator

on the space Cb
�
Rd

�
, which is σ

�
Cb

�
Rd

�
,M

�
Rd

��
-continuous. Here the

symbols M
�
Rd

�
stand for the vector space of all signed measures on Rd.

Let W ptq be standard m-dimensional Brownian motion on pΩ,Ft,Pq
and let σpρq be a deterministic continuous function which takes its values

in the space of d�m-matrices. Put Qpρq � σpρqσpρq�. Another interesting
example is the following:

YC,Q ps, tq fpxq� 1p2πqd{2 » e� 1

2
|y|2f �Cpt, sqx ��» t

s

Cpt, ρqQpρqCpt, ρq�dρ
1{2
y

�
dy� E

�
f

�
Cpt, sqx� » t

s

Cpt, ρqσpρqdW pρq
� , (8.115)

where A is an arbitrary d � d matrix, and where Qpρq � σpρqσpρq� is a

positive-definite d � d matrix. Then the propagators YC,Q and YC,S are

backward propagators on Cb
�
Rd

�
. We will prove this.

Next suppose that the forward propagator C on Rd consists of contrac-

tive operators, i.e. Cpt, sqCpt, sq� ¤ I (this inequality is to be taken in

matrix sense). Choose a family S pt, sq of square d � d-matrices such that

Cpt, sqCpt, sq� � S pt, sqS pt, sq� � I, and put

YC,S ps, tq fpxq � 1p2πqd{2 » e� 1

2
|y|2f pCpt, sqx � Spt, sqyq dy. (8.116)

In fact the example in (8.116) is a special case of the example in (8.115)

provided Qpρq is given by the following limit:

Qpρq � lim
hÓ0 I � C pρ� hqC pρ� hq�

h
. (8.117)

If Qpρq is as in (8.117), then

S pt, sqS pt, sq� � I � C pt, sqC pt, sq� � » t
s

C pt, ρqQpρqC pt, ρq� dρ.
The following auxiliary lemma will be useful. It is the finite-dimensional

analog of Proposition 1.5 in Chapter 1. Condition (8.118) is satisfied if
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the three pairs pC1, S1q, pC2, S2q, and pC3, S3q satisfy: C1C
�
1 � S1S

�
1 �

C2C
�
2 � S2S

�
2 � C3C

�
3 � S3S

�
3 � I. It also holds if C2 � C pt2, t1q, and

SjS
�
j � » tj

tj�1

C ptj , ρqσpρqσpρq�C ptj , ρq� dρ, j � 1, 2, and

S3S
�
3 � » t2

t0

C pt2, ρqσpρqσpρq�C pt2, ρq� dρ.
Lemma 8.3. Let C1, S1, C2, S2, and C3, S3 be d � d-matrices with the

following properties:

C3 � C2C1, and C2S1S
�
1C

�
2 � S2S

�
2 � S3S

�
3 . (8.118)

Let f P Cb �Rd�, and put

Y1,2fpxq � 1p2πqd{2 » e� 1

2
|y|2f pC1x� S1yq dy; (8.119)

Y2,3fpxq � 1p2πqd{2 » e� 1

2
|y|2f pC2x� S2yq dy; (8.120)

Y1,3fpxq � 1p2πqd{2 » e� 1

2
|y|2f pC3x� S3yq dy. (8.121)

Then Y1,2Y2,3 � Y1,3.

Proof. Let the matrices Cj and Sj , 1 ¤ j ¤ 3, be as in (8.118). Let

f P Cb �Rd�. First we assume that the matrices S1 and C2 are invertible,

and we put A3 � S�1
1 C�1

2 S3, and A2 � S�1
1 C�1

2 S2. Then, using the

equalities in (8.118) we see A3A
�
3 � I�A2A

�
2 . We choose a d�d-matrix A

such that A�A � I �A�
2A2, and we put D � �

A�1
��
A�

2A3. Then we have

A�
3A3 � I �D�D. Let f P Cb �Rd�. Let the vectors py1, y2q P Rd�Rd andpy, zq P Rd � Rd be such that�

y1
y2


 � �
A3 �A2A

�1

0 A�1


�
y

z



. (8.122)

Since

A2A
�
2 pI �A2A

�
2 q�1 � A2 pI �A�

2A2q�1
A�

2 ,

we obtain

det pI �A2A
�
2 q � det pI �A�

2A2q .
Hence, the absolute value of the determinant of the matrix in the right-hand

side of (8.122) can be rewritten as:����det�A3 �A2A
�1

0 A�1


����2 � ���detA3 pdetAq�1
���2
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�
3 q

det pA�Aq � det pI �A2A
�
2 q

det pI �A�
2A2q � 1. (8.123)

From (8.122) and (8.123) it follows that the corresponding volume elements

satisfy: dy1 dy2 � dy dz. We also have|y1|2 � |y2|2 � |y|2 � |z �Dy|2 . (8.124)

Employing the substitution (8.122) together with the equalities dy1 dy2 �
dy dz and (8.124) and applying Fubini’s theorem we obtain:

Y1,2Y2,3fpxq � 1p2πqd ¼ e� 1

2 p|y1|2�|y2|2qf pC2C1x� C2S1y1 � S2y2q dy1dy2� 1p2πqd ¼ e� 1

2 p|y|2�|z�Dy|2qf pC3x� S3yq dy dz� 1p2πqd » e� 1

2
|y|2f pC3x� S3yq dy � Y1,3fpxq (8.125)

for all f P Cb �Rd�. If the matrices S1 and C2 are not invertible, then we

replace the C1 with C1,ε � e�εC1 and S1,ε satisfying C1,εC
�
1,ǫ�S1,εS

�
1,ε � I,

and limεÓ0 S1,ε � S1. We take S2,ε � e�εS2 instead of S2. In addition, we

choose the matrices C2,ε, ε ¡ 0, in such a way that C2,εC
�
2,ǫ�S2,εS

�
2,ε � I,

and limεÓ0 C2,ε � C2.

This completes the proof of Lemma 8.3. �

Proposition 8.4. Put Xτ,xptq � C pt, τq x � ³t
τ
C pt, ρqσpρqdW pρq. Then

the process Xτ,xptq is Gaussian. Its expectation is given by E rXτ,xptqs �
C pt, τq x, and its covariance matrix has entries

P-cov
�
X
τ,x
j psq, Xτ,x

k ptq� � �» t
s

C pt, ρqQpρqC pt, ρq� dρ

j,k

. (8.126)

Let
 pΩ,F ,Pτ,xq , pXptq, t ¥ 0q , �Rd,Bd�( be the corresponding time-in-

homogeneous Markov process. Then this process is generated by the family

operators Lptq, t ¥ 0, where

Lptqfpxq � 1

2

ḑ

j,k�1

Qj,kptqDjDkfpxq � 〈∇fpxq, Aptqx〉 . (8.127)

Here the matrix-valued function Aptq is given by Aptq � lim
hÓ0 Cpt� h, tq � I

h
.

The semigroup esLptq, s ¥ 0, is given by

esLptqfpxq
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�
f

�
esAptqx� » s

0

eps�ρqAptqσptqdW pρq
�� 1p2πqd{2 » e� 1

2
|y|2f �esAptqx��» s

0

eρAptqQptqeρAptq�dρ
1{2
y

�
dy� »

p ps, x, y; tq fpyqdy (8.128)

where, with QAptqpsq � » s
0

eρAptqQptqeρAptq�dρ, the integral kernel

p ps, x, y; tq is given by

p ps, x, y; tq� 1p2πqd{2bdetQAptqpsqe�� 1

2

〈pQAptqpsqq�1py�esAptqxq,y�esAptqx〉	
.

If all eigenvalues of the matrix Aptq have strictly negative real part, then

the measure

B ÞÑ 1p2πqd{2 » e� 1

2
|y|21B �» 8

0

eρAptqQptqeρAptq�dρy
 dy
defines an invariant measure for the semigroup esLptq, s ¥ 0.

From Remark 8.7 below it follows that our theory is not directly appli-

cable to the Ornstein-Uhlenbeck process as exhibited in Proposition 8.4.

Therefore we will modify the example in the next proposition.

Proposition 8.5. Let the Rd-valued process Xptq be a solution to the fol-

lowing stochastic differential equation:

Xptq�C pt, τqXpτq�» t
τ

C pt, ρqF pρ,Xpρqq dρ�» t
τ

C pt, ρqσ pρ,Xpρqq dW pρq.
(8.129)

Under appropriate conditions on the functions F and σ the equation in

(8.129) has a unique weak solution. More precisely, it is assumed that x ÞÑ
σ pt, xq is Lipschitz continuous with a constant which depends continuously

on t, and that for some strictly positive continuous functions k1ptq, k2ptq
and k3ptq, and strictly positive finite constants ε ¡ 0, α ¡ 0, the following

inequality holds for all y, z P Rd:
〈

F pt, y � zq , y|y|〉 ¤ �k1ptq |y|1�ε � k2ptq |z|α � k3ptq. (8.130)
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It is also assumed that the functions y ÞÑ F pt, yq and y ÞÑ σ pt, yq are locally
Lipschitz, i.e., for every compact subset K of Rd there exists a continuous

function t ÞÑ CKptq such that for all y1 and y2 P K the inequalities|F pt, y2q � F pt, y1q| ¤ CKptq |y2 � y1| , and|σ pt, y2q � σ pt, y1q| ¤ CKptq |y2 � y1| , (8.131)

hold. The corresponding Markov process �
Ω,F t

τ ,Pτ,x
�
, pXptq, t ¥ 0q , �Rd,Bd�(

is generated by the time-dependent linear differential operators Lptq, given
by

Lptqfpxq � 〈∇fpxq, Aptqx � F pt, xq〉� 1

2

ḑ

j,k�1

DjDkfpxqaj,kpt, xq, (8.132)
where

Aptq � lim
hÓ0 C pt� h, tq � C pt, tq

h
, and

aj,kpt, xq � ḑ

ℓ�1

σj,ℓ pt, xqσk,ℓ pt, xq .
It is assumed that the operator Aptq satisfies 〈Aptqy, y〉 ¤ 0, y P Rd. More-

over, let Xτ,xptq, t ¥ τ , be a solution to (8.129) with Xpτq � x. Then

Eτ,x

�
n¹
j�1

fj pX ptjqq� � E

�
n¹
j�1

fj pXτ,x ptjqq� ,
where E is the expectation with respect to the distribution of Brownian mo-

tion. In addition, BBtEτ,x rf pXptqqs � Eτ,x rLptqf pXptqqs .
Proof. Fix a C1-function ϕ : Rd Ñ r0,8q such that

³
Rd ϕpyqdy � 1, and

supp pϕq � t|y| ¤ 1u. Moreover, assume that ϕpyq is symmetric in the sense

that ϕpyq � ϕp�yq, y P Rd. This property implies e.g.
³
Rd yϕpyqdy � 0. In

addition, let εn, n P N, be a sequence of positive real numbers such that

0   εn�1 ¤ εn ¤ 1, n P N, and such that limnÑ8 εn � 0. Let the process

t ÞÑ Y ptq be such that E
�
supτ¤t¤T |Y ptq|�   8, and define the processes

s ÞÑ Fn ps, Y psqq, n P N, by

Fn ps, Y psqq � »
Rd

F ps, Y psq � εnyqϕpyqdy
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Rd

F ps, yqϕ�Y psq � y

εn



dy

εkn
.

Then the functions Fn have properties similar to F , and for each fixed n,

the functional Y p�q ÞÑ Fn pt, Y ptqq is globally Lipschitz continuous. Instead

of looking at the equation in (8.129) we consider the sequence of equations

(n P N):

Xnptq � C pt, τqXnpτq � » t
τ

C pt, ρqFn pρ,Xnpρqq dρ� » t
τ

C pt, ρqσ pρ,Xnpρqq dW pρq. (8.133)

Assuming that the equation in (8.133) has a solution Xnptq, then we write

Znptq � » t
τ

C pt, ρqσ pρ,Xnpρqq dW pρq and Ynptq � Xnptq � Znptq.
(8.134)

In terms of Ynptq and Znptq the equation in (8.133) reads as follows (notice

that Znpτq � 0):

Ynptq � C pt, τq Ynpτq � » t
τ

C pt, ρqFn pρ, Ynpρq � Znpρqq dρ. (8.135)

Moreover, from (8.130) it follows that
〈

Fn pt, Ynptq � Znptqq , Ynptq|Ynptq|〉¤ �k1ptq |Ynptq|1�ε � k2ptq |Znptq|α � k3ptq � εn. (8.136)

From our hypotheses it follows that

d

dt
|Ynptq| � 〈

d

dt
Ynptq, Ynptq|Ynptq|〉� 〈

AptqYnptq, Ynptq|Ynptq|〉�〈

Fn pt, Ynptq � Znptqq , Ynptq|Ynptq|〉¤ �k1ptq |Ynptq|1�ε � k2ptq |Znptq|α � k3ptq � εn. (8.137)

From (8.134) we also see:

Znptq � » t
τ

C pt, ρqσ pρ, Ynpρq � Znpρqq dW pρq. (8.138)

Applying Hölder’s inequality to (8.137) shows

d

dt
Eτ,x r|Ynptq|s ¤ �k1ptq pEτ,x r|Ynptq|sq1�ε�k2ptqEτ,x r|Znptq|αs�k3ptq�εn.

(8.139)
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Next put y1,nptq � Eτ,x r|Ynptq|s, and let y2,nptq be any continuously differ-

entiable positive function with the following properties: y2,npτq ¥ y1,npτq �|x|, and9y2,nptq ¥ �k1ptqy2,nptq1�ε � k2ptqEτ,x r|Znptq|αs � k3ptq � εn. (8.140)

Then from (8.137), (8.139), and Lemma 8.4 below we obtain y2,nptq ¥
y1,nptq, t ¥ τ .

A martingale solution to equation (8.129) can be found as follows. First

find a (weak) solution X0ptq, t ¥ τ ¥ 0, to the equation

X0ptq � C pt, τqX0pτq � » t
τ

C pt, ρqσ pρ,X0pρqq dW pρq. (8.141)

Then choose F0 pt, yq in such a way that F pt, yq � σ pt, yqF0 pt, yq. After

that we define the finite-dimensional distributions of the process XF ptq as
follows. First we introduce the process ζ pt, τq, t ¥ τ :

ζ pt, τq � » t
τ

F0 pρ,X0pρqq dW pρq � 1

2

» t
τ

|F0 pρ,X0pρqq|2 dρ. (8.142)

Then the process t ÞÑ eζpt,τq, t ¥ τ , is a local martingale with respect to

the filtration FW,τ
t :� σ pW pρq : τ ¤ ρ ¤ tq, t ¥ τ , generated by Brownian

motion, and which is such that X0pτq � x, P-almost surely. This means

that if E
�
eζpt,τq �� X0pτq � x

� � 1, then the process t ÞÑ eζpt,τq, t ¥ τ , is a

martingale with respect to the measure A ÞÑ P
�
A
�� Xpτq � x

�
, A P FW,τ

t .

The finite-dimensional distributions of the process XF ptq, t ¥ τ , are given

by the Girsanov formula:

Eτ,x rf pXF pt1q , . . . , XF ptnqqs� E

�
eζpt,τqf pX0 pt1q , . . . , X0 ptnqq �� X0pτq � x

�
. (8.143)

Here we assume that the function f : Rd � � � � � Rdlooooooomooooooon
n times

Ñ R is a bounded

Borel function, and τ ¤ t1   � � �   tn ¤ t. In order to prove that equality

(8.143) determines the distribution of the process XF ptq, t ¥ τ , we have to

show that the martingale problem for the family of operators Lptq, t ¥ τ ,

in (8.127) is well-posed. Therefore, we apply Itô’s formula to obtain:

eζpt,τqf pX0ptqq � eζpτ,τqf pX0pτqq� » t
τ

eζpρ,τqf pX0pρqq 〈F0 pρ,Xpρqq , dW pρq〉� » t
τ

eζpρ,τq 〈∇f pX0pρqq , σ pρ,Xpρqq dW pρq〉
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τ

eζpρ,τq 〈∇f pX0pρqq , ApρqX0pρq〉 dρ� » t
τ

eζpρ,τq 〈∇f pX0pρqq , σ pρ,X0pρqqF0 pρ,X0pρqq〉 dρ� 1

2

ḑ

j,k�1

» t
τ

eζpρ,τq �σ pρ,X0pρqq σ pρ,X0pρqq��j,kDjDkf pX0pρqq dρ� » t
τ

eζpρ,τqf pX0pρqq 〈F0 pρ,Xpρqq , dW pρq〉� » t
τ

eζpρ,τq 〈∇f pX0pρqq , σ pρ,Xpρqq dW pρq〉� » t
τ

eζpρ,τqLpρqf pX0pρqq dρ. (8.144)

It follows that that the process

t ÞÑ eζpt,τqf pX0ptqq � f pX0pτqq � » t
τ

eζpρ,τqLpρqf pX0pρqq dρ
is a martingale with respect to the measure A ÞÑ P

�
A
�� Xpτq � x

�
, A P

FW,τ
t , provided that E

�
eζpt,τq �� Xpτq � x

� � 1. Hence under the latter

condition it follows that the process t ÞÑ XF ptq is a Pτ,x-martingale. Es-

sentially speaking this proves that the martingale problem for the operators

Lptq, t ¥ τ , possesses solutions. In order to establish the Markov property

we need the uniqueness of solutions. The uniqueness of solutions can be

achieved as follows. Let t ÞÑ X1ptq and X2ptq, t ¥ τ , be solutions to equa-

tion (8.129). Put Zjptq � ³t
τ
σ
�
ρ,Xjpρq� dW pρq, and Y jptq � Xjptq�Zjptq.

Then Zjptq � ³t
τ
σ
�
ρ, Y jpρq � Zjpρq� dW pρq, and

Y jptq � C pt, τq Y jpτq � » t
τ

F
�
ρ, Y jpρq � Zjpρq� dρ. (8.145)

Let K be a compact subset of rτ,8q � Rd, and define the stopping times

τ
j
K , j � 1, 2, and τK by

τ
j
K � inf

 
t ¡ τ :

�
t,Xjptq� P �rτ,8q � Rd

� zK(
and τK � min

�
τ1K , τ

2
K

�
.

Then on the event tτK ¡ tu by the local Lipschitz property of the function

F and σ we have (see (8.131))

d

dt

��Y 2ptq � Y 1ptq�� � 〈

d

dt

�
Y 2ptq � Y 1ptq� , Y 2ptq � Y 1ptq|Y 2ptq � Y 1ptq|〉� 〈

Aptq �Y 2ptq � Y 1ptq� , Y 2ptq � Y 1ptq|Y 2ptq � Y 1ptq|〉
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F
�
t, Y 2ptq � Z2ptq�� F

�
t, Y 1ptq � Z1ptq� , Y 2ptq � Y 1ptq|Y 2ptq � Y 1ptq|〉¤ CKptq ���Y 2ptq � Y 1ptq��� ��Z2ptq � Z1ptq���� CKptq���Y 2ptq � Y 1ptq��� ����» t

τ

�
σ
�
ρ,X2pρq�� σ

�
ρ,X1pρq��W pρq����
 .

(8.146)

From the Gronwall inequality (8.189) in Lemma 8.6 and (8.146) we infer:��Y 2ptq � Y 1ptq�� ¤ ��Y 2pτq � Y 1pτq�� e³tτ CKpρqdρ� » t
τ

e
³
t
ρ
CKpρ1qdρ1CKpρq |Z2pρq � Z1pρq| dρ. (8.147)

Inequality (8.147) on the event tτK ¡ tu entails:��Y 2 ptq � Y 1 ptq��1tτK¡tu¤ ��Y 2pτq � Y 1pτq��1tτK¡tue³tτ CKpρqdρ� » t
τ

e
³
t
ρ
CKpρ1qdρ1CKpρq |Z2pρq � Z1pρq|1tτK¡tudρ� ��Y 2pτq � Y 1pτq��1tτK¡tue³tτ CKpρqdρ� » t

τ

e
³
t
ρ
CKpρ1qdρ1CKpρq ����» ρ

τ

�
σ
�
ρ1, X2

�
ρ1��� σ

�
ρ1, X1

�
ρ1��� dW �

ρ1������ 1tτK¡tudρ� ��Y 2pτq � Y 1pτq��1tτK¡tue³tτ CKpρqdρ� » t
τ

e
³
t
ρ
CKpρ1qdρ1CKpρq� ����» ρ^τK

τ

�
σ
�
ρ1, X2

�
ρ1��� σ

�
ρ1, X1

�
ρ1���1tτK¡ρ1udW �

ρ1����� 1tτK¡tudρ¤ ��Y 2pτq � Y 1pτq��1tτK¡τue³tτ CKpρqdρ� » t
τ

e
³
t

ρ
CKpρ1qdρ1CKpρq� ����» ρ^τK

τ

�
σ
�
ρ1, X2

�
ρ1��� σ

�
ρ1, X1

�
ρ1���1tτK¡ρ1udW �

ρ1����� 1tτK¡τudρ.
(8.148)

It follows that

sup
τ¤s¤t ��Y 2 psq � Y 1 psq��1tτK¡su
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τ

e
³
t

ρ
CKpρ1qdρ1CKpρq� ����» ρ^τK

τ

�
σ
�
ρ1, X2

�
ρ1��� σ

�
ρ1, X1

�
ρ1���1tτK¡ρ1udW �

ρ1������ 1tτK¡τudρ, (8.149)

and hence by the elementary inequalities 2ab ¤ a2 � b2 and pa� bq2 ¤
2a2 � 2b2, a, b P R,

sup
τ¤s¤t ��Y 2 psq � Y 1 psq��2 1tτK¡su¤ 2

��Y 2pτq � Y 1pτq��2 1tτK¡τue2 ³tτ CKpρqdρ� 2

» t
τ

» t
τ

e
³
t
ρ1
CKpρ1qdρ1CK pρ1q e³tρ2 CKpρ1qdρ1CK pρ2q� ����» ρ1^τK

τ

�
σ
�
ρ1, X2

�
ρ1��� σ

�
ρ1, X1

�
ρ1���1tτK¡ρ1udW �

ρ1������ ����» ρ2^τK
τ

�
σ
�
ρ1, X2

�
ρ1��� σ

�
ρ1, X1

�
ρ1���1tτK¡ρ1udW �

ρ1������ 1tτK¡τudρ1 dρ2¤ 2
��Y 2pτq � Y 1pτq��2 1tτK¡τue2 ³tτ CKpρqdρ� » t
τ

» t
τ

e
³
t

ρ1
CKpρ1qdρ1CK pρ1q e³tρ2 CKpρ1qdρ1CK pρ2q������» ρ1^τK

τ

�
σ
�
ρ1, X2

�
ρ1��� σ

�
ρ1, X1

�
ρ1���1tτK¡ρ1udW �

ρ1�����2� ����» ρ2^τK
τ

�
σ
�
ρ1, X2

�
ρ1��� σ

�
ρ1, X1

�
ρ1���1tτK¡ρ1udW �

ρ1�����2�� 1tτK¡τudρ1 dρ2¤ 2
��Y 2pτq � Y 1pτq��2 1tτK¡τue2 ³tτ CKpρqdρ� 2

» t
τ

e
³
t
ρ
CKpρ1qdρ1CK pρq�e³tτ CKpρ1qdρ1 � 1

	� ����» ρ^τK
τ

�
σ
�
ρ1, X2

�
ρ1��� σ

�
ρ1, X1

�
ρ1���1tτK¡ρ1udW �

ρ1�����2 1tτK¡τudρ,
(8.150)
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The fact that the process

ρ ÞÑ » ρ^τK
τ

�
σ
�
ρ1, X2

�
ρ1��� σ

�
ρ1, X1

�
ρ1���1tτK¡ρ1udW �

ρ1�
is a martingale with respect to Brownian motion entails the equality

E

�����» ρ^τK
τ

�
σ
�
ρ1, X2

�
ρ1��� σ

�
ρ1, X1

�
ρ1���1tτK¡ρ1udW �

ρ1�����2 1tτK¡τu�� E

�����» ρ^τK
τ

��σ �ρ1, X2
�
ρ1��� σ

�
ρ1, X1

�
ρ1����2 1tτK¡ρ1udρ1����2 1tτK¡τu� .

(8.151)

By taking expectations in (8.150) and using (8.151) we get

E

�
sup
τ¤s¤t ��Y 2 psq � Y 1 psq��2 1tτK¡su�¤ 2E

���Y 2pτq � Y 1pτq��2 1tτK¡τu� e2 ³tτ CKpρqdρ� 2

» t
τ

e
³
t
ρ
CKpρ1qdρ1CK pρq�e³tτ CKpρ1qdρ1 � 1

	� E

� ����» ρ^τK
τ

pσpρ1, X2pρ1qq � σpρ1, X1pρ1qq�1tτK¡ρ1udW pρ1q����21tτK¡τu�dρ¤ 2E
���Y 2pτq � Y 1pτq��2 1tτK¡τu� e2 ³tτ CKpρqdρ� 2

» t
τ

e
³
t
ρ
CKpρ1qdρ1CK pρq�e³tτ CKpρ1qdρ1 � 1

	� E

�» ρ^τK
τ

���σ �ρ1, X2
�
ρ1��� σ

�
ρ1, X1

�
ρ1�����2 1tτK¡ρ1udρ1� dρ

(employ the local Lipschitz property of the function x ÞÑ σ pρ, xq with

Lipschitz constant rCKpρq)¤ 2E
���Y 2pτq � Y 1pτq��2 1tτK¡τu� e2 ³tτ CKpρqdρ� 2

» t
τ

e
³
t
ρ
CKpρ1qdρ1CK pρq�e³tτ CKpρ1qdρ1 � 1

	� E

�» ρ^τK
τ

rC2
K

�
ρ1� ��X2

�
ρ1��X1

�
ρ1���2 1tτK¡ρ1udρ1� dρ¤ 2E

���Y 2pτq � Y 1pτq��2 1tτK¡τu� e2 ³tτ CKpρqdρ
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�
e
³
t

τ
CKpρqdρ � 1

	2

E

�» t^τK
τ

rC2
K pρq ��X2 pρq �X1 pρq��2 1tτK¡ρudρ� .

(8.152)

From the Burkholder-Davis-Gundy inequality for p � 2 we obtain;

E

�
sup
τ¤s¤t ��Z2psq � Z1psq��2 1tτK¡su�� E

�
sup
τ¤s¤t ����» s^τKτ

�
σ
�
ρ,X2pρq�� σ

�
ρ,X1pρq��1τK¡ρdW pρq����2 1tτK¡su�¤ 4E

�» t^τK
τ

���σ �ρ,X2pρq�� σ
�
ρ,X1pρq��1τK¡ρ��2 dρ1tτK¡τu�¤ 4E

�» t^τK
τ

rC2
Kpρq ��X2pρq �X1pρq��2 1tτK¡ρudρ1tτK¡τu� . (8.153)

Next we estimate the expectation of maxτ¤s¤t ��XKpsq��2 where

XKptq � �
Y 2ptq � Y 1ptq � Z2ptq � Z1ptq� 1tτK¡tu � Y Kptq � ZKptq.

(8.154)

Here the notations Y Kptq and ZKptq are self-explanatory. Put

uKpsq � E

�
sup
τ¤ρ¤s ��X2pρq �X1pρq��2 1tτK¡ρu� .

From (8.152) and (8.153) we then obtain:

uKptq ¤ 4E
���Y 2pτq � Y 1pτq��2 1tτK¡τu� e2 ³tτ CKpρqdρ� 2

�
2
�
e
³
t
τ
CKpρqdρ � 1

	2 � 1


» t
τ

rC2
K pρquKpρqdρ� ψptq � χptq » t

τ

c1pρquKpρqdρ (8.155)

where

ψptq � 4E
���Y 2pτq � Y 1pτq��2 1tτK¡τu� e2 ³tτ CKpρqdρ,

χptq � 2

�
2
�
e
³
t
τ
CKpρqdρ � 1

	2 � 1



, and c1ptq � rC2

K ptq .
From the Gronwall inequality (8.188) in Lemma 8.6 below and (8.155) we

then obtain:

uKptq ¤ ψptq � χptq » t
τ

e
³
t

ρ
χpρ1qc1pρ1qdρ1c1pρqψpρqdρ. (8.156)
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Since the functions t ÞÑ c1ptq and t ÞÑ ψptq are increasing from (8.156) we

infer

uKptq ¤ ψptqeχptq ³tτ c1pρqdρ� 4E
���Y 2pτq � Y 1pτq��2 1tτK¡τu� e2 ³tτ CKpρqdρeχptq ³tτ c1pρqdρ� 4E
���X2pτq �X1pτq��2 1tτK¡τu� e2 ³tτ CKpρqdρ�χptq ³t

τ
c1pρqdρ. (8.157)

If X2pτq � X1pτq P-almost surely, then (8.157) implies X2ptq � X1ptq on
the event tτK ¡ tu. Since K is an arbitrary compact subset of rτ,8q �
Rd the latter proves that the stochastic differential equation (8.129) in

Proposition 8.5 is uniquely solvable in the space S2
loc � S2

loc

�
Rd

�
consisting

of continuous semi-martingalesX withe property that E
�
supτ¤s¤t |Xpsq|2�

is finite. Of course all this is true provided that solutions to the stochastic

differential equation (8.129) belong to the space S2
loc. But this follows from

general arguments: see e.g. [Ikeda and Watanabe (1998)] or [Øksendal and

Reikvam (1998)].

This completes the proof of Proposition 8.5. �

The following lemma and also Lemma 8.6 were employed in the proof of

Proposition 8.5. Lemma 8.5 is included because it shows how, in case

gpt, yq � kptqyptq1�ε, solutions to equations of the form 9yptq � �g pt, yptqq�
Cptq behave themselves for large t.

Lemma 8.4. Fix τ ¤ T , and let g : rτ, T s � R Ñ R be a continuous

function, which is continuously differentiable in the second variable. In

addition, let C : rτ, T s Ñ R be a measurable function. Let the R-valued

continuous functions t ÞÑ y2ptq and t ÞÑ y1ptq, τ ¤ t ¤ T , satisfy the

following differential inequalities:9y1ptq ¤ �g pt, y1ptqq � Cptq, τ ¤ t ¤ T, and (8.158)9y2ptq ¥ �g pt, y2ptqq � Cptq, τ ¤ t ¤ T. (8.159)

If y2pτq ¥ y1pτq, then y2ptq ¥ y1ptq, τ ¤ t ¤ T .

Proof. Put Φptq � y2ptq � y1ptq, and
Ψptq � exp

�» t
τ

» 1

0

D2g pρ, p1� sqy1pρq � sy2pρqq ds dρ
 .
Then Ψptq ¡ 0, and

d

dt
pΦptqΨptqq
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0

D2g pρ, p1� sqy1pρq � sy2pρqq ds dρ

� � 9Φptq � Φptq » 1

0

D2g pt, p1� sqy1ptq � sy2ptqq ds
Ψptq� � 9y2ptq � 9y1ptq � py2ptq � y1ptqq » 1

0

D2g pt, p1� sqy1ptq � sy2ptqq ds
Ψptq� p 9y2ptq � g pt, y2ptqq � 9y1ptq � g pt, y1ptqqqΨptq ¥ 0, (8.160)

where in inequality (8.160) we used (8.158) and (8.159). Hence we get

ΦptqΨptq ¥ ΦpτqΨpτq � Φpτq � y2pτq � y1pτq ¥ 0, (8.161)

and thus y2ptq � y1ptq � Φptq ¥ 0, which completes the proof of Lemma

8.4. �

Lemma 8.5. Let y : rτ,8q Ñ r0,8q be a solution to the following ordinary

differential equation 9yptq � Cptq � kptqyptq1�ε, t ¥ τ. (8.162)

It is assumed that the functions Cptq and kptq are strictly positive and

continuous, that ε ¡ 0, and that the quotient γ :� γptq � Cptq
kptq does not

depend on t. Then supt¥τ yptq   8. In addition, the following inequality

holds for t ¡ τ :���yptq � γ1{p1�εq��� ¤ �
ε

» t
τ

kpρqdρ
�1{ε
, t ¡ τ. (8.163)

Moreover, with η � 1

1� ε
the following assertions are true:

(1) If
³8
τ
kpρqdρ � 8, then limtÑ8 yptq � γ1{p1�εq.

(2) If ypτq � γη, then yptq � γη.

(3) If
³8
τ
kpρq dρ   8 and ypτq ¡ γη, then the limit limtÑ8 yptq ¡ γη.

(4) If
³8
τ
kpρq dρ   8 and ypτq   γη, then the limit limtÑ8 yptq   γη.

The importance of inequality (8.163) lies in the fact that in this inequality

there is no reference to the initial value ypτq of the solution t ÞÑ yptq. It

seems that the inequality in (8.163) is somewhat nicer and stronger than

the inequality in (2.15) of [Goldys and Maslowski (2001)].

Remark 8.6. As in the proof of Lemma 8.5 put η � 1

1� ε
. From (8.169)

in the proof of Lemma 8.5 we see that ypτq ¡ γη implies ypτq ¡ yptq ¡ γη,



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

On non-stationary Markov processes and Dunford projections 497

and that yptq decreases to its limit. We also see that ypτq   γη entails

ypτq   yptq   γη, and that yptq increases to its limit. If the integral» 1

0

» t
τ

kpρqη pp1� sqCpρqη � skpρqηypρqqε dρ ds (8.164)

increases to 8 with t, then limtÑ8 yptq � γη. Notice that the integrals in

(8.164) tend to 8 whenever the function kptq and Cptq are constant. In

order that the limit lim
tÑ8 yptq � γ1{p1�εq one needs the fact that the integral» 8

τ

kpρq 1

1�εCpρq ε
1�ε dρ � γ

ε
1�ε

» 8
τ

kpρqdρ
diverges. If it converges, then the limit limtÑ8 yptq still exists, but it is not
equal to γη. Moreover, the limit depends on the initial value. If ypτq   γη,

then equality (8.169) implies ypτq   yptq   γη for all t ¥ τ . Moreover, yptq
increases to γη. If ypτq � γη, then yptq � γη, t ¥ τ .

Proof. [Proof of Lemma 8.5.] For brevity we write η � 1

1� ε
. We

introduce the function ϕptq, t ¥ τ , defined by

ϕptq � pγηptq � yptqq ep1�εq ³10 ³tτ kpρqηpp1�sqCpρqη�skpρqηypρqqεdρ ds. (8.165)

We differentiate the function in (8.165) to obtain9ϕptq � d
dt
pγptqη � yptqq
γptqη � yptq ϕptq� ϕptqp1� εqkptqη » 1

0

pp1� sqCptqη � skptqηyptqqε ds, (8.166)

and hencepγptqη � yptqq 9ϕptq� �
d

dt
pγptqη � yptqq
ϕptq� ϕptqp1 � εq pCptqη � kptqηyptqq » 1

0

pp1� sqCptqη � skptqηyptqqε ds� �
d

dt
pγptqη � yptqq
ϕptq� ϕptq » 1

0

BBs pp1� sqCptqη � skptqηyptqq1�ε ds� �
d

dt
pγptqη � yptqq
ϕptq � ϕptq �kptqyptq1�ε � Cptq� (8.167)
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(yptq satisfies equation (8.162))� �
d

dt
pγptqη � yptqq
ϕptq � ϕptq 9yptq� �

d

dt
pγptqηq
ϕptq � 0 (8.168)

where we used the fact that γptq does not depend on t ¥ τ . Consequently,

from (8.168) it follows that the function ϕptq does not depend on t ¥ τ .

From the definition of ϕ (see (8.165)) we see that

yptq � γη (8.169)� pypτq � γηqexp��p1� εq » 1

0

» t
τ

kpρqηpp1� sqCpρqη � skpρqηypρqqεdρ ds
� pypτq � γηq exp��p1� εq » 1

0

» t
τ

kpρqpp1� sqγη � s ypρqqε dρ ds
 .
Suppose τ   t. From (8.169) we see that ypτq ¡ γη implies ypτq ¡ yptq ¡
γη, and that yptq decreases to its limit. We also see that ypτq   γη entails

ypτq   yptq   γη, and that yptq increases to its limit. If ypτq ¤ γη, then

equality (8.169) implies yptq ¤ γη for all t ¥ τ . Even more is true:

0 ¤ γη � yptq (8.170)� pγη � ypτqqexp��p1� εq » 1

0

» t
τ

kpρqηpp1� sqCpρqη � skpρqηypρqqεdρ ds
¤ γη exp

��p1� εq » 1

0

» t
τ

kpρq pp1� sqγη � sypρqqε dρ ds
¤ γη exp

��p1� εq » 1

0

» t
τ

kpρqp1� sqεγεη dρ ds
� γη exp

��γεη » t
τ

kpρqdρ
 .
Next we put

Φε pτ, ρq � p1� εq » 1

0

» ρ
τ

k
�
ρ1� �p1� sqγη � sy

�
ρ1��ε dρ1ds. (8.171)

If the function yptq solves equation (8.162), then (8.169) impliespypρq � γηq eΦεpτ,ρq � ypτq � γη, (8.172)

and consequently we get

eεΦεpτ,tq � 1 � » t
τ

BBρeεΦεpτ,ρqdρ
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τ

» 1

0

kpρq pp1� sqγη � sypρqqε eεΦεpτ,ρqds dρ� ε p1� εq » 1

0

» t
τ

kpρq�γηeΦεpτ,ρq � s pypτq � γηq	ε dρ ds. (8.173)

If ypτq ¡ γη, then (8.173) implies

eεΦεpτ,tq � 1� ε p1� εq » 1

0

» t
τ

kpρq�γηeΦεpτ,ρq � s pypτq � γηq	ε dρ ds¥ 1� ε

» t
τ

kpρqdρ pypτq � γηqε . (8.174)

From (8.174) we infer

eΦεpτ,tq ¥ �
1� ε

» t
τ

kpρqdρ pypτq � γηqε
1{ε¥ �
ε

» t
τ

kpρqdρ
1{ε pypτq � γηq . (8.175)

From (8.172) with ρ � t together with (8.175) we see that

0 ¤ yptq � γη ¤ �
ε

» t
τ

kpρqdρ
�1{ε
. (8.176)

From (8.176) we see that (8.163) holds provided that ypτq ¡ γη.

If 0 ¤ ypτq   γη we proceed as follows. Again we use (8.173) to obtain

eεΦεpτ,tq � 1� ε p1� εq » 1

0

» t
τ

kpρq�γηeΦεpτ,ρq � s pγη � ypτqq	ε dρ ds¥ 1� ε p1� εq » t
τ

kpρq » 1

0

pp1� sq pγη � ypτqqqε ds dρ� 1� ε

» t
τ

kpρqdρ pγη � ypτqqε . (8.177)

Hence we see

eΦεpτ,tq ¥ �
1� ε

» t
τ

kpρqdρ pγη � ypτqqε
1{ε¥ �
ε

» t
τ

kpρqdρ
1{ε pγη � ypτqq . (8.178)

From (8.169) with γη ¡ ypτq together with (8.178) we then get

γη � yptq � pγη � ypτqq e�Φεpτ,tq ¤ �
ε

» t
τ

kpρqdρ
�1{ε
. (8.179)
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Inequality (8.163) in Lemma 8.5 now follows from (8.176) and (8.179). The

monotonicity properties of the function t ÞÑ yptq follow from the equality

in (8.169).

Proof of assertion (1). If
³8
τ
kpρq dρ � 8, then from inequality (8.163)

we get limtÑ8 yptq � γη.

Proof of (2). This assertion is a direct consequence of (8.169).

Proof of assertion (3). The following arguments show that

limtÑ8 yptq   γη. Here the function t ÞÑ yptq is a solution to the equation

in equation (8.162).

The estimates in (8.182) and (8.186) below are particularly useful³8
τ
kpρq dρ   8.

If ypτq ¡ γη, then (8.169) with ρ instead of t implies ypρq   ypτq, ρ ¡ τ ,

and

yptq � γη (8.180)� pypτq � γηq exp��p1� εq » 1

0

» t
τ

kpρqη pp1� sqCpρqη � skpρqηypρqqε dρ ds
� pypτq � γηq exp��p1� εq » 1

0

» t
τ

kpρq pp1� sqγη � sypρqqε dρ ds
¥ pypτq � γηq exp��p1� εq » 1

0

» t
τ

kpρq pp1� sqypρq � sypρqqε dρ ds
� pypτq � γηq exp��p1� εq » t
τ

kpρqypρqε dρ
 (8.181)¥ pypτq � γηq exp��p1� εq ypηqε » t
τ

kpρq dρ
 . (8.182)

Hence from (8.180) we obtain, with ρ instead of t,

ypρq ¥ γη � pypτq � γηq exp��p1� εq » ρ
τ

k
�
ρ1� y �ρ1�ε dρ1
 , (8.183)

and thereforep1� sqγη� sypρq ¥ γη� s pypτq � γηq exp��p1� εq » ρ
τ

k
�
ρ1� y �ρ1�ε dρ1
 ,

(8.184)

Again using (8.180) and (8.184) we then obtain:

0 ¤ yptq � γη (8.185)� pypτq � γηqexp��p1� εq » 1

0

» t
τ

kpρqηpp1� sqCpρqη � skpρqηypρqqεdρ ds
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0

» t
τ

kpρq pp1� sqγη � sypρqqε dρ ds
¤ pypτq � γηq
exp

"�p1� εq » 1

0

» t
τ

kpρq�
γη � s pypτq � γηq exp��p1� εq » ρ

τ

k
�
ρ1� y �ρ1�ε dρ1

ε dρ ds*

(use the elementary inequality pγη�aqε ¥ 2pε�1q^0 pγηε � aεq, a ¡ 0, ε ¡ 0)¤ pypτq � γηq exp��p1� εq2pε�1q^0γηε
» 1

0

» t
τ

kpρqdρ ds

exp

��p1� εq2pε�1q^0

» 1

0

» t
τ

kpρqsε pypτq � γηqε
exp

��ε p1� εq » ρ
τ

k
�
ρ1� y �ρ1�ε dρ1
 dρ ds
� pypτq � γηq exp��p1� εq2pε�1q^0γηε

» t
τ

kpρqdρ

exp

!�pypτq � γηqε 2pε�1q^0» t
τ

kpρq exp��ε p1� εq » ρ
τ

k
�
ρ1� y �ρ1�ε dρ1
 dρ*¤ pypτq � γηq exp��p1� εq2pε�1q^0γηε

» t
τ

kpρqdρ

exp

��2pε�1q^0pypτq � γηqε » t
τ

kpρq exp��εp1� εqypτqε » ρ
τ

kpρ1qdρ1
dρ
� pypτq � γηq exp��p1� εq2pε�1q^0γηε
» t
τ

kpρqdρ

exp

"�2pε�1q^0

εp1� εq�ypτq � γη

ypτq 
ε�
1� exp

��εp1� εqypτqε » t
τ

kpρ1qdρ1

*
(use the elementary equality 1� e�a � ³1

0
ae�sads, a ¥ 0)� pypτq � γηq exp��p1� εq2pε�1q^0γηε

» t
τ

kpρqdρ

exp

"�2pε�1q^0 pypτq � γηqε » t
τ

k
�
ρ1� dρ1
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0

exp

��ε p1� εq sypτqε » t
τ

k
�
ρ1� dρ1
 ds* . (8.186)

From the inequalities in (8.181) and (8.186) the assertion in (3) follows.

The proof of assertion (4) is similar, and therefore omitted. This completes

the proof Lemma 8.5. �

The following lemma contains versions of the Gronwall inequality. It was

used in the proof of Proposition 8.5.

Lemma 8.6. Let ϕptq, c1ptq, χptq and ψptq be nonnegative continuous func-
tions on the interval rτ,8q such that ϕptq ¤ ψptq � χptq ³t

τ
c1pρqϕpρqdρ,

t ¥ τ . Then

ϕptq ¤ ψptq � χptq » t
τ

n�1̧

j�0

�³t
ρ
χ pρ1q c1 pρ1q dρ1	j

j!
c1pρqψpρqdρ� χptq » t

τ

�³t
ρ
χ pρ1q c1 pρ1q dρ1	n

n!
c1pρqϕpρqdρ. (8.187)

From (8.187) it follows that:

ϕptq ¤ ψptq � χptq » t
τ

8̧
j�0

�³t
ρ
χ pρ1q c1 pρ1q dρ1	j

j!
c1pρqψpρqdρ� ψptq � χptq » t

τ

e
³
t
ρ
χpρ1qc1pρ1qdρ1c1pρqψpρqdρ. (8.188)

If ψptq � χptqϕpτq � χptq ³t
τ
zpρqdρ, then (8.188) implies:

ϕptq ¤ χptqϕpτq � χptq » t
τ

zpρqdρ� χptq » t
τ

e
³
t

ρ
χpρ1qc1pρ1qdρ1χpρqc1pρq�ϕpτq � » ρ

τ

z
�
ρ2� dρ2
 dρ� χptqϕpτqe³tτ χpρqc1pρqdρ � χptq » t

τ

e
³
t
ρ
χpρ1qc1pρ1qdρ1zpρqdρ. (8.189)

Remark 8.7. If the matrix Aptq � 0, then the operator Lptq does not

generate an analytic semigroup. This means that our theory is not directly

applicable to the example in Proposition 8.4. We could make C pt, τq state-
dependent and Aptq also. One way of doing this is by taking a unique

solution to a stochastic differential equation:

dXptq � b pt,Xptqq dt� σ pt,Xptqq dW ptq, t ¥ τ ¥ 0 (8.190)
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and then defining the family C pt, τ,Xpτqq by Xptq � C pt, τ,Xpτqq. The

functional C pt, τ,Xpτqq then depends on the σ-field generated by Xpτq and
Fτ
t � σ pW pρq : τ ¤ ρ ¤ tq. The evolution Y pτ, tq is then defined by

Y pτ, tq fpxq � E
�
f pXptqq �� Xpτq � x

� � Eτ,x rf pC pt, τ,Xpτqqqs , t ¥ τ.

In this general setup we do not have explicit formulas anymore. Moreover,

this choice of C pt, τ, xq does not give any Aptq, because the function t ÞÑ
Xptq � C pt, τ,Xpτqq is not differentiable in a classical sense. Of course it

satisfies (8.190).

8.3.2 Some stochastic differential equations

We want to study the processes t ÞÑ Xptq, s ÞÑ Xt,Aptqpsq and t ÞÑ
X
τ,Apτq
0 ptq, which are solutions to the following stochastic integral equa-

tions, and their inter-relationships:

Xptq � Cpt, τqXpτq � » t
τ

C pt, ρqσ pρ,Xpρqq dW pρq,
Xt,Aptqpsq � esAptqXt,Aptqp0q � » s

0

eps�ρqAptqσ �t,Xt,Aptqpρq	 dW pρq, and

X
τ,Apτq
0 ptq � ept�τqApτqXτ,Apτq

0 pτq � » t
τ

epρ�τqApτqσ �τ,Xτ,Apτq
0 pρq	 dW pρq.

(8.191)

For t ¥ s ¥ τ the matrix family C pt, τq satisfies C pt, τq � C pt, sqC ps, τq,
and the matrix family Apτq is defined by Apτq � lim

hÓ0 C pτ � h, τq � I

h
. In

differential form the stochastic integral equations in (8.191) read as follows:

dXptq � AptqXptqdt� σ pt,Xptqq dW ptq; (8.192)

dXt,Aptqpsq � AptqXt,Aptqpsqds� σ
�
t,Xt,Aptqpsq	 dW psq, and (8.193)

dX
τ,Apτq
0 ptq � Apτq�Xτ,Apτq

0 ptq � » t
τ

epρ�τqApτqσ�τ,Xτ,Apτq
0 pρq	dW pρq
dt� ept�τqApτqσ �τ,Xτ,Apτq

0 ptq	 dW ptq. (8.194)

We will consider the following exponential martingale

Eτ ptq � exp

�� » t
τ

b pρ,Xpρqq dW pρq � 1

2

» t
τ

|b pρ,Xpρqq|2 dρ
 , (8.195)

and its companions

Et,Aptqpsq (8.196)
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�� » s
0

b
�
t,Xt,Aptqpρq	 dW pρq � 1

2

» s
0

���b�t,Xt,Aptqpρq	���2 dρ
 ,
and

E
τ,Apτq
0 ptq (8.197)� exp

�� » t
τ

b
�
τ,X

τ,Apτq
0 pρq	 dW pρq � 1

2

» t
τ

���b�τ,Xτ,Apτq
0 pρq	���2 dρ
 .

Instead of E0ptq we write Eptq. Put
M τ ptq � » t

τ

bpρ,XpρqqdW pρq, M t,Aptqpsq � » s
0

b
�
t,Xt,Aptqpρq	dW pρq,

and

M
τ,Apτq
0 ptq � » t

τ

b
�
τ,X

τ,Apτq
0 pρq	 dW pρq. (8.198)

Then by Itô calculus we have:

dEτ ptq � �Eτ ptqdM τ ptq, dEt,Aptqpsq � �Et,AptqpsqdM t,Aptqpsq,
dE

τ,Apτq
0 ptq � �Eτ,Apτq0 ptqdM τ,Apτq

0 ptq. (8.199)

Let f : Rd Ñ C be a C2-function. Again employing Itô calculus shows:

df pXptqq� ḑ

k�1

Dkf pXptqq dXkptq � 1

2

ḑ

j,k�1

Qj,k pt,XptqqDjDkf pXptqq dt� �
〈∇f pXptqq , AptqXptq〉� 1

2

ḑ

j,k�1

Qj,k pt,XptqqDjDkf pXptqq� dt� 〈∇f pXptqq , σ pt,Xptqq dW ptq〉 . (8.200)

By the same token we get

df
�
Xt,Aptqpsq	 � ḑ

k�1

Dkf
�
Xt,Aptqpsq	 dXt,Aptq

k psq� 1

2

ḑ

j,k�1

Qj,k

�
t,Xt,Aptqpsq	DjDkf

�
Xt,Aptqpsq	 ds� �

〈

∇f
�
Xt,Aptqpsq	 , AptqXt,Aptqpsq〉
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2

ḑ

j,k�1

Qj,k

�
t,Xt,Aptqpsq	DjDkf

�
Xt,Aptqpsq	� ds� 〈

∇f
�
Xt,Aptqpsq	 , σ �t,Xt,Aptqpsq	 dW psq〉 . (8.201)

In addition we have, again by Itô calculus,

df
�
X
τ,Apτq
0 ptq	� ḑ

k�1

Dkf
�
X
τ,Apτq
0 ptq	 dXτ,Apτq

0,k ptq� 1

2

ḑ

j,k�1

Qj,k

�
τ,X

τ,Apτq
0 pτqDjDkf

�
X
τ,Apτq
0 ptq		 dt� �

〈

∇f
�
X
τ,Apτq
0 ptq	 , ApτqXτ,Apτq

0 ptq〉�1

2

ḑ

j,k�1

Qj,k

�
τ,X

τ,Apτq
0 ptq	DjDkf

�
X
τ,Apτq
0 ptq	� dt� 〈

∇f
�
X
τ,Apτq
0 ptq	 , σ �τ,Xτ,Apτq

0 ptq	 dW ptq〉�〈

∇f
�
X
τ,Apτq
0 ptq	 , Apτq » t

τ

epρ�τqApτqσ �τ,Xτ,Apτq
0 pρq	 dW pρq〉 dt.

(8.202)

We also need the covariation processes:

〈Ep�q, f pXp�qq〉 ptq, 〈

Et,Aptqp�q, f �Xt,Aptqp�q	〉 psq, and
〈

E
τ,Apτq
0 p�q, f �Xτ,Apτq

0 p�q	〉 ptq. (8.203)

The covariation process 〈Ep�q, f pXp�qq〉 ptq is determined by

d 〈Ep�q, f pXp�qq〉 ptq � �Eptq 〈∇f pXptqq , σ pt,Xptqq b pt,Xptqq〉 dt. (8.204)

The covariation process
〈

Et,Aptqp�q, f �Xt,Aptqp�q�〉 psq is determined by

d
〈

Et,Aptqp�q, f �Xt,Aptqp�q	〉 psq (8.205)� �Et,Aptqpsq〈∇f �Xt,Aptqpsq	 , σ �t,Xt,Aptqpsq	 b�t,Xt,Aptqpsq	〉 ds.
Likewise the covariation process

〈

E
τ,Apτq
0 p�q, f �Xτ,Apτq

0 p�q	〉 ptq is deter-

mined by

d
〈

E
τ,Apτq
0 p�q, f �Xτ,Apτq

0 p�q	〉 ptq (8.206)
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0 ptq	 , σ �τ,Xτ,Apτq

0 ptq	 b�τ,Xτ,Apτq
0 ptq	〉 dt.

Next we calculate the stochastic differential of the processes

Eptqf pXptqq , Et,Aptqpsqf �Xt,Aptqpsq	 and E
τ,Apτq
0 ptqf �Xτ,Apτq

0 ptq	 .
Using Itô calculus, the equality in (8.195), and the first equality in (8.198)

and in (8.199), in conjunction with (8.200) and (8.204) shows

d pEptqf pXptqqq� pdEptqq f pXptqq � Eptqdf pXptqq � d 〈Ep�q, f pXp�qq〉 ptq� �Eptqf pXptqq b pt,Xptqq dW ptq� Eptq�〈∇f pXptqq , AptqXptq〉� 1

2

ḑ

j,k�1

Qj,k pt,XptqqDjDkf pXptqq� dt� Eptq 〈∇f pXptqq , σ pt,Xptqq dW ptq〉� Eptq 〈∇f pXptqq , σ pt,Xptqq b pt,Xptqq〉 dt� �Eptqf pXptqq b pt,Xptqq dW ptq � Eptq 〈∇f pXptqq , σ pt,Xptqq dW ptq〉� EptqLbptqf pXptqq dt (8.207)

where with Qpt, xq � σpt, xqσpt, xq� we wrote

Lbptqfpxq � 〈∇f pxq , Aptqx � σ pt, xq b pt, xq〉�1

2

ḑ

j,k�1

Qj,k pt, xqDjDkf pxq .
(8.208)

Put

Qt,Aptqpsq � » s
0

eρAptqσpt, xqσpt, xq�eρAptq�dρ � » s
0

eρAptqQ pt, xq eρAptq�dρ,
and

Y pτ, tq fpxq � E
�
Eτ ptqf pXptqq �� Xpτq � x

�
. (8.209)

Then

Y pτ, sqY ps, tq fpxq � Y pτ, tq fpxq, f P CbpEq, x P E, τ ¤ s ¤ t.

(8.210)

Next we will calculate the stochastic derivative of the process

s ÞÑ Et,Aptqpsqf �Xt,Aptqpsq	 .
More precisely, upon employing Itô calculus, the martingale in (8.196), and

the second martingale in (8.198) and in (8.199), in conjunction with (8.201)

and (8.205) we obtain

d
�
Et,Aptqpsqf �Xt,Aptqpsq		
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dEt,Aptqpsq	 f �Xt,Aptqpsq	� Et,Aptqpsqdf �Xt,Aptqpsq	� d
〈

Et,Aptqp�q, f �Xt,Aptqp�q	〉 psq� �Et,Aptqpsqf �Xt,Aptqpsq	 b�τ,Xt,Aptqpsq	 dW psq� Et,Aptqpsq�〈

∇f
�
Xt,Aptqpsq	 , ApτqXt,Aptqpsq〉�1

2

ḑ

j,k�1

Qj,k

�
τ,Xt,Aptqpsq	DjDkf

�
Xt,Aptqpsq	� ds� Et,Aptqpsq〈∇f �Xt,Aptqpsq	 , σ �τ,Xt,Aptqpsq	 dW psq〉� Et,Aptqpsq〈∇f �Xt,Aptqpsq	 , σ �τ,Xt,Aptqpsq	 b�τ,Xt,Aptqpsq	〉 ds� �Et,Aptqpsqf �Xt,Aptqpsq	 b�τ,Xt,Aptqpsq	 dW psq� Et,Aptqpsq〈∇f �Xt,Aptqpsq	 , σ �τ,Xt,Aptqpsq	 dW psq〉� Et,AptqpsqLb ptq f �Xt,Aptqpsq	 ds (8.211)

where Lbptq is as in (8.208).

In a quite similar manner we obtain the stochastic differential of the

process

t ÞÑ E
τ,Apτq
0 ptqf �Xτ,Apτq

0 ptq	 .
Upon employing Itô calculus, the equality in (8.197), and the third martin-

gale in (8.198) and in (8.199), in conjunction with (8.202) and (8.206) we

get

d
�
E
τ,Apτq
0 ptqf �Xτ,Apτq

0 ptq		� �
dE

τ,Apτq
0 ptq	 f �Xτ,Apτq

0 ptq	� E
τ,Apτq
0 ptqdf �Xτ,Apτq

0 ptq	� d
〈

E
τ,Apτq
0 p�q, f �Xτ,Apτq

0 p�q	〉 ptq� �Eτ,Apτq0 ptqf �Xτ,Apτq
0 ptq	 b�τ,Xτ,Apτq

0 ptq	 dW ptq� E
τ,Apτq
0 ptq�〈

∇f
�
X
τ,Apτq
0 ptq	 , ApτqXτ,Apτq

0 ptq〉�1

2

ḑ

j,k�1

Qj,k

�
τ,X

τ,Apτq
0 ptq	DjDkf

�
X
τ,Apτq
0 ptq	� dt



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

508 Markov processes, Feller semigroups and evolution equations� E
τ,Apτq
0 ptq〈∇f �Xτ,Apτq

0 ptq	 , σ �τ,Xτ,Apτq
0 ptq	 dW ptq〉� E

τ,Apτq
0 ptq〈∇f �Xτ,Apτq

0 ptq	 ,
Apτq » t

τ

epρ�τqApτqσ �τ,Xτ,Apτq
0 pρq	 dW pρq〉 dt� E

τ,Apτq
0 ptq〈∇f �Xτ,Apτq

0 ptq	 , σ �τ,Xτ,Apτq
0 ptq	 b�τ,Xτ,Apτq

0 ptq	〉 dt� �Eτ,Apτq0 ptqf �Xτ,Apτq
0 ptq	 b�τ,Xτ,Apτq

0 ptq	 dW ptq� E
τ,Apτq
0 ptq〈∇f �Xτ,Apτq

0 ptq	 , σ �τ,Xτ,Apτq
0 ptq	 dW ptq〉� E

τ,Apτq
0 ptq〈∇f �Xτ,Apτq

0 ptq	 ,
Apτq » t

τ

epρ�τqApτqσ �τ,Xτ,Apτq
0 pρq	 dW pρq〉 dt� E

τ,Apτq
0 ptqLb pτq f �Xτ,Apτq

0 ptq	 dt (8.212)

where Lbpτq is as in (8.208):

Lbpτqfpxq � 〈∇f pxq , Apτqx � σ pτ, xq b pτ, xq〉� 1

2

ḑ

j,k�1

Qj,k pτ, xqDjDkf pxq . (8.213)

Next let s ÞÑ Xt,Aptqpsq be the solution to the stochastic integral equation:

Xt,Aptqpsq � esAptqXt,Aptqp0q � » s
0

eps�ρqAptqσ �t,Xt,Aptqpρq	 dW pρq,
(8.214)

which is equivalent to

dXt,Aptqpsq � AptqXt,Aptqpsqds� σ
�
t,Xt,Aptqpsq	 dW psq, (8.215)

which is the same as the second in (8.191) and which in differential form

is given in (8.193). In terms of the exponential martingale s ÞÑ Et,Aptqpsq
defined in (8.196) the semigroup esLbptq, s ¥ 0, is given by:

esLbptqfpxq � E

�
Et,Aptqpsqf �Xt,Aptqpsq	 �� Xt,Aptqp0q � x

�
. (8.216)

We also want give conditions in order that for every µ PM �
Rd

�
the limit

lim
tÑ8Var

�
Lbptq�Y pτ, tq� µ� � 0. (8.217)
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We suppose that the coefficients bpt, xq � bptq and σpt, xq � σptq only

depend on time. Then the (formal) adjoint of the operator Lbptq can be

written as follows:

Lbptq�fpxq (8.218)� � 〈∇fpxq, Aptqx � σptqbptq〉 � tr pAptqq fpxq � 1

2

ḑ

j,k�1

Qj,kptqDjDkfpxq.
Put QC pτ, tq � ³t

τ
Cpt, ρqσpρqσpρq�Cpt, ρq�dρ. Then for the evolution fam-

ily Y pτ, tq we have:

Y pτ, tq fpxq� 1p2πqd{2 » e� 1

2
|y|2f �Cpt, τqx �» t

τ

Cpt, ρqσpρqbpρqdρ � pQC pτ, tqq1{2 y
 dy� 1p2πqd{2 det pQC pτ, tqq1{2 (8.219)»
exp

��1

2

����QC pτ, tq�1{2�
Cpt, τqx �» t

τ

Cpt, ρqσpρqbpρqdρ � y


����2� fpyqdy.
Next suppose that the coefficients bptq � bpt, xq and σptq � σpt, xq only

depend on the time t, and put

gspxq � 1p2πqd{2 det �Qt,Aptqpsq�1{2 exp

��1

2

〈

Qt,Aptqpsq�1x, x
〉



.

Then pgspξq � exp

��1

2

〈

Qt,Aptqpsqξ, ξ〉
 ,
and hence by the Fourier inverse formula

esLbptqfpxq� »
E

�
exp

�� 〈bptq,W psq〉� 1

2
|bptq|2 s
�f �esAptqx� » s

0

eps�ρqAptqσptqdW pρq
�� 1p2πqd » E

�
exp

�� 〈bptq,W psq〉 � 1

2
|bptq|2 s


exp

�
i

〈

ξ, esAptqx� » s
0

eps�ρqAptqσptqdW pρq〉
� pfpξqdξ� 1p2πqd » exp

�
i

〈

ξ, esAptqx� » s
0

eps�ρqAptqdρ σptqbptq〉
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exp

��1

2

〈» s
0

eps�ρqAptqσptqσptq�eps�ρqAptq�dρ ξ, ξ〉
 pfpξqdξ� 1p2πqd » exp

�
i

〈

ξ, esAptqx� » s
0

eρAptqdρ σptqbptq〉

exp

��1

2

〈» s
0

eρAptqσptqσptq�eρAptq�dρ ξ, ξ〉
 pfpξqdξ� 1p2πqd » exp

�
i

〈

ξ, esAptqx� » s
0

eρAptqdρ σptqbptq〉
{gs � fpξqdξ� gs � f �esAptqx� » s
0

eρAptqdρ
� 1p2πqd{2 �detQt,Aptqpsq�1{2»
exp

��1

2

����Qt,Aptqpsq�1{2 �esAptqx� » s
0

eρAptqσptqbptqdρ � y


����2� f pyq dy� 1p2πqd{2 » e� 1

2
|y|2f �esAptqx� » s

0

eρAptqσptqbptqdρ � �
Qt,Aptqpsq�1{2 y
 dy.

(8.220)

From the representation in (8.220) it follows that the operator Lbptq does
not generate a bounded analytic semigroup. In fact if f P Cb �Rd� is such

that its first and second derivative is also continuous and bounded, then we

have

LbptqesLbptqfpxq� esLbptqLbptqfpxq � Lbptq�gs � f �esAptqx� » s
0

eρAptqdρ
� »
Lbptq�gs�esAptqx� » s

0

eρAptqσptqbptqdρ � �
 pyqf pyq dy� � ḑ

j�1,k�1

» BgsByj �esAptqx� » s
0

eρAptqσptqbptqdρ � y


�Aj,kptq�yk � ḑ

ℓ�1

σk,ℓptqbℓptq� f pyq dy� tr pAptqq » gs�esAptqx� » s
0

eρAptqσptqbptqdρ � y



f pyq dy� 1

2

ḑ

j,k�1

Qj,kptq » B2gsByjByk �esAptqx� » s
0

eρAptqσptqbptqdρ � y



f pyq dy
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j�1,k�1

» Bgs pyqByj �
Aptq�esAptqx�» s

0

eρAptqσptqbptqdρ � y � σptqbptq


j� f

�
esAptqx� » s

0

eρAptqσptqbptqdρ� y



dy� tr pAptqq » gs pyq f �esAptqx� » s

0

eρAptqσptqbptqdρ� y



dy� 1

2

ḑ

j,k�1

Qj,kptq » B2gs pyqByjByk f �esAptqx� » s
0

eρAptqσptqbptqdρ � y



dy.

(8.221)

All terms in (8.221) are uniformly bounded in x except the very first one,

which grows like a constant times |x|. In order that the operator Lbptq
generates a bounded analytic semigroup it is necessary and sufficient that

sups¡0

��sLbptqesLbptq��   8 and sups¡0

��esLbptq��   8: see e.g. [Engel and

Nagel (2000)].

Suppose that the real parts of the eigenvalues of the matrix Aptq are

strictly negative. From (8.220) it follows that the measure

B ÞÑ
1p2πqd{2 » e� 1

2
|y|21B �� lim

sÑ8 » s
0

eρAptqσptqbptqdρ� lim
sÑ8 �

Qt,Aptqpsq�1{2 y
 dy
serves as an invariant measure for the semigroup esLbptq, s ¥ 0. Using the

processes Xptq, Xτ,Apτqptq, and Xτ,Apτq
0 ptq, t ¥ τ , we introduce the filtered

probability spaces pΩ,Fτ
t ,Pτ,xq and

�
Ω,Fτ

t ,P
p0q
τ,x

	
. Here the σ-field Fτ

t ,

τ ¤ t, is generated by the variables W pρq, τ ¤ ρ ¤ t. Let the variable F

be Fτ
t -measurable. Then we put

Eτ,x rF s � E
�
Eτ ptqF �� Xpτq � x

�
. (8.222)

On the other hand the definition of P
p0q
τ,x is more of a challenge. First

we take F which is measurable with respect to Fτ
t of the form F �±n

j�1 fj
�
Xτ,Apτq ptjq�. Then we put

Ep0qτ,x rF s � E

�
Eτ,Apτqptq n¹

j�1

fj

�
Xτ,Apτq ptjq	 �� Xpτq � x

�� E

�
E
τ,Apτq
0 ptq n¹

j�1

fj

�
X
τ,Apτq
0 ptjq	 �� Xpτq � x

�
. (8.223)
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Example 8.4. Another not too artificial example is the adjoint of the form

Lptq � 1

2

ḑ

j,k�1

aj,k pt, xq B2Bxjxk � ḑ

j�1

bjpt, xq BBxj ,
defined on a dense subspace of the space C0

�
Rd

�
, i.e. the space of all

bounded continuous functions with zero boundary conditions. The least

that is required for the square matrix paj,k pt, xqqdj,k�1
is that it is in-

vertible, symmetric and positive-definite. We also observe that, for such

a choice of the coefficients aj,kpt, xq the operator Lptq satisfies the fol-

lowing maximum principle. For any function f P C0

�
Rd

�
belonging

to the domain D pLptqq there exists a point px0, y0q P Rd � Rd such

that sup
 |fpxq � fpyq| ; px, yq P Rd � Rd

( � |f px0q � f py0q|, such that the

next inequality holds:

ℜ
!�
f px0q � f py0q	 pLptqf px0q � Lptqf py0qq) ¤ 0. (8.224)

Since the function px, yq ÞÑ |fpxq � fpyq| attains its maximum at px0, y0q it
follows that ∇f px0q � ∇f py0q � 0. It also follows that the function x ÞÑ
ℜ
��
f px0q � f py0q	 pfpxq � f py0qq	 attains it maximum at x0. Hence, by

inequality (8.232) below we see that

ℜ
�
f px0q � f py0q	Lptqf px0q� ℜ
�
Lptq�f px0q � f py0q	 pfp�q � f py0qq	 px0q ¤ 0, (8.225)

where the functions by the same token we also have:�ℜ�
f px0q � f py0q	Lptqf py0q ¤ 0. (8.226)

From (8.224) we infer for α P C, λ ¥ 0, and f P D pLptqq the string of

inequalities:

4 }λ pf � α1q � Lptqf}28¥ suppx,yqPRd�Rd

|λ pfpxq � fpyqq � Lptqfpxq � Lptqfpyq|2� suppx,yqPRd�Rd

!|λ|2 |fpxq � fpyq|2� 2λℜ
!�
fpxq � fpyq	pLptqfpxq � Lptqfpyqq)� |Lptqfpxq � Lptqfpyq|2 )¥ |λ|2 |fpx0q � fpy0q|2 � 2λℜ

!�
fpx0q � fpy0q	pLptqfpx0q � Lptqfpy0qq)� |Lptqf px0q � Lptqf py0q|2
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|f pxq � f pyq|2¥ |λ|2 inf
αPC }f � α1}28 . (8.227)

From the inequalities in (8.227) we obtain for ℜλ ¥ 0 and f P D pLptqq:
2 inf
αPC }λf � Lptqf � α1}8 ¥ λ inf

αPC }f � α1}8 . (8.228)

A similar argument shows that for λ ¥ 0 and f P D pLptqq we also have:}λf � Lptqf}8 ¥ λ }f}8 , (8.229)

provided that for every function f P C0

�
Rd

�
belonging to the domain

D pLptqq there exists a point x0 P Rd such that sup
 |fpxq| ; x P Rd

( �|f px0q|, and such that ℜ
!
f px0qLptqf px0q) ¤ 0. In fact the operators

Lptq satisfy the maximum principle in the sense that ℜ pLptqf px0qq ¤ 0

whenever f P DpLptqq and x0 P Rd is such that ℜf px0q � supxPRd ℜfpxq.
One way of seeing this directly runs as follows. Let f P D pLptqq. If x0 P Rd

is such that ℜf px0q � supxPRd ℜfpxq. Then ℜ 〈x� x0,∇f px0q〉 � 0, and

thus, for all x P Rd,

ℜfpxq � ℜf px0q � 〈x� x0,∇ℜf px0q〉� » 1

0

p1� sq ḑ

j,k�1

pxj � x0,jq pxk � x0,kq B2ℜfBxjBxk pp1� sqx0 � sxq ds� ℜf px0q � » 1

0

p1� sq ḑ

j,k�1

pxj � x0,jq pxk � x0,kq� B2ℜfBxjBxk pp1� sqx0 � sxq ds. (8.230)

From (8.230) and the fact that the function ℜf attains its maximum at x0
we see that

ℜ

» 1

0

p1� sq ḑ

j,k�1

pxj � x0,jq pxk � x0,kq B2BxjBxk f pp1� sqx0 � sxq ds ¤ 0.

(8.231)

From the inequality in (8.231) it easily follows that the Hessian D2ℜf px0q
which is the matrix with entries

B2BxjBxkℜf px0q is negative-definite: i.e.

it is symmetric and its eigenvalues are less than or equal to 0. Since the

matrix a pt, x0q :� paj,k pt, x0qqdj,k�1
is positive-definite (i.e. its eigenvalues
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are nonnegative and the matrix is symmetric) and the functions bjpt, xq,
1 ¤ j ¤ d, are real-valued, we infer that

ℜLptqf px0q � ḑ

j,k�1

aj,k pt, x0q B2BxjBxkℜf px0q � ḑ

j�1

bj pt, x0q BBxjℜf px0q� Tr
�
a pt, x0qD2ℜf px0q�� Tr
�a

a pt, x0qD2ℜf px0qaa pt, x0q	 ¤ 0. (8.232)

(This notation was also used in formula (1.143) in Chapter 1.) The matrixa
a pt, x0q is a positive-definite matrix with its square equal to a pt, x0q. In

addition, we used the fact that in (8.232) the identity

ḑ

j,k�1

aj,k pt, x0q B2BxjBxkℜf px0q
can be interpreted as Tr

�
a pt, x0qD2ℜf px0q�. It follows that the operators

Lptq generate analytic semigroups esLptq where s P C belongs to a sector

with angle opening, which may be chosen independently of t provided that

sup
t¡0

sup
s¡0

sup
xPRd

s

���� BBsPLptq ps, x, �q���� �Rd�   8.
Here the Markov transition function PLptq ps, x,Bq, ps, xq P r0,8q � Rd,

B P BRd , t ¥ 0, is determined by the equality

esLptqfpxq � »
Rd

fpyqPLptq ps, x, dyq , f P Cb �Rd� .
For the reason why, see the inequality in (8.100) and the equality in (8.101).

Then it follows that there exist a constant C and an angle 1
2
π   β   π

again independent of t such that|λ| ���pλI � Lptqq�1
��� ¤ C, for all λ P C with |argpλq| ¤ β. (8.233)

For a proof see Theorem 8.8 and its corollaries 8.4 and 8.5. Let esLptq, s ¥ 0,

be the (analytic) semigroup generated by the operator Lptq. Then the

(unbounded) inverse of the operator �Lptq is given by the strong integral

f ÞÑ ³8
0
esLptqf ds. From (8.228) it follows that for µ PM0

�
Rd

�
and λ ¡ 0

the inequality

λ
���〈g, �λI|M0pRdq � Lptq�|M0pRdq��1

µ
〉��� ¤ }g}8Var pµq , (8.234)

holds whenever the function g is of the form g � λf � Lptqf , with f P
D pLptqq. Here M0pRdq is the space of all complex Borel measures µ on
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Rd with the property that µpRdq � 0. Suppose that Var
�
esLptq�µ	 ¤

cptqe�2ωptqsVar pµq for all µ P M0

�
Rd

�
and s ¥ 0. Then for ℜλ ¥ ωptq,

g P C0

�
Rd

�
and µ PM0pRdq we havepλ� 2ωptqq〈g, �pλ� 2ωptqq I|M0pRdq � Lptq�|M0pRdq��1

µ
〉� pλ� 2ωptqq » 8

0

〈

g, e
�s�pλ�2ωptqqI|

M0pRdq�Lptq�|M0pRdq	µ〉 ds, (8.235)

and hence, if |λ� 2ωptq| ¤ 2ωptq we have|λ� 2ωptq| ���〈g, �pλ� 2ωptqq I|M0pRdq � Lptq�|M0pRdq��1
µ
〉���¤ |λ� 2ωptq| » 8

0

����〈g, e�s�pλ�2ωptqqI|
M0pRdq�Lptq�|M0pRdq	µ〉���� ds¤ |λ� 2ωptq| » 8

0

e�spℜλ�2ωptqqVar�esLptq�|M0pRdqµ	 ds }g}8¤ cptq |λ� 2ωptq|» 8
0

e�spℜλ�2ωptqqe�2sωptqdsVar pµq }g}8� cptq |λ� 2ωptq|
ℜλ

}g}8 Var pµq ¤ 2cptq }g}8 Var pµq . (8.236)

In view of (8.233), (8.234) and (8.236) it makes sense to consider the largest

ωptq with the property that for all functions g P C0

�
Rd

�
, and all Borel

measures µ PM0

�
Rd

�
the complex-valued function

λ ÞÑ λ
〈

g,
�
λI|M0pRdq � Lptq�|M0pRdq��1

µ
〉

extends to a bounded holomorphic function on all half-planes of the form 
λ P C : ℜλ ¡ �2ω1ptq(

with ω1ptq   ωptq. In follows that there exists a constant cptq such that for

all functions g P CbpEq and µ PM0

�
Rd

�
the following inequality holds:|λ| ���〈g, �λI|M0pRdq � Lptq�|M0pRdq��1

µ
〉
��� ¤ cptq }g}8Var pµq , ℜλ ¥ �ωptq.

The following definition is to be compared with the definitions 8.4 and 9.14

in Chapter 9.

Definition 8.5. The number 2ωptq is called the MpEq-spectral gap of the

operator Lptq�.
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Next let P pτ, x; t, Bq be the transition probability function of the process pΩ,Fτ
t ,Pτ,xq , pXptq : t ¥ τq , �Rd,B�(

generated by the operators Lptq. Suppose that, for every τ P p0,8q and
every Borel probability measure on Rd, the following condition is satisfied:

lim
tÑ8 cptq

ωptq »Rd

Var

� BBtP pτ, x; t, �q
 dµpxq � 0.

Let µ be any Borel probability measure on Rd. Put µptq � Y pτ, tq� µ,
where Y pτ, tqfpxq � Eτ,x rf pXptqqs, f P C0pRdq. Then 9µptq � Lptq�µptq.
Moreover,

lim
tÑ8 cptq

ωptqVar p 9µptqq � 0.

We will show this. With the above notation we have:

Var p 9µptqq� sup

"���� ddt 〈f, µptq〉���� : f P C0pRdq, }f}8 � 1

*� sup

"���� BBt 〈Y pτ, tq f, µ〉���� : f P C0pRdq, }f}8 � 1

*� sup

"���� BBt »Rd

»
Rd

fpyqP pτ, x; t, dyq dµpxq���� : f P C0pRdq, }f}8 � 1

*� sup

"����»
Rd

fpyq BBt »Rd

P pτ, x; t, dyq dµpxq���� : f P C0pRdq, }f}8 � 1

*� Var

� BBt »Rd

P pτ, x; t, �q dµpxq
 ¤ »
Rd

Var

� BBtP pτ, x; t, �q
 dµpxq.
(8.237)

If the probability measure B ÞÑ P pτ, x; t, Bq has density p pτ, x; t, yq, then
the total variation of the measure B ÞÑ BBtP pτ, x; t, �q is given by

Var

� BBtP pτ, x; t, �q
 � »
Rd

���� BBtp pτ, x; t, yq���� dy.
If there exists a unique P pEq-valued function t ÞÑ πptq such that

Lptq�πptq � 0, then the system Lptq�µptq � 9µptq is ergodic. This asser-

tion follows from Theorem 8.5 below.

In order to perform some explicit computations we next assume that

d � 1. It is assumed that the coefficient apt, xq is strictly positive on R.

Moreover, by hypothesis we assume that there exists a function Bpt, xq
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such that bpt, xq � apt, xq BBxBpt, xq and such that

» 8�8 e�2Bpt,ηqdη   8.

The adjoint Kptq of Lptq acts on a subspace of the dual space of C0pRdq
which may be identified with the space of all complex Borel measures on

Rd. Formally, Kptqµ is given by

Kptqµ � 1

2

B2Bx2 papt, �qµq � BBx pbpt, �qµq .
Let the time-dependent measure µptq have the property that Kptqµptq � 0.

Then the family of measures µptq has density ϕpt, xq given by

ϕpt, xq � C1ptqe2Bpt,xq
apt, xq � C2ptq » x

a

e2Bpt,xq�2Bpt,ηq
apt, xq dη, (8.238)

where t ÞÑ Cjptq, j � 1, 2, are some functions which only depend on time.

In order to be sure that for every t the measure µptq belongs to M pRq and
is non-trivial we make additional hypotheses on the coefficients. If both

integrals» 88 e2Bpt,xq
apt, xq dx and

» 8�8 » x
a

e2Bpt,xq�2Bpt,ηq
apt, xq dη dx (8.239)

are finite, then the function x ÞÑ ϕpt, xq belongs to L1 pRq no matter how the

constants C1ptq and C2ptq are chosen. The requirement
³8�8 ϕpt, xqdx � 1

does not make them unique. We have uniqueness of solutions in MpRq to
the eigenvalue problem Kptqµptq � 0 and µ pt,Rq � 1 provided either one

of the following conditions is satisfied:» 8�8 e2Bpt,xq
apt, xq dx   8 and

» 8�8 » x
a

e2Bpt,xq�2Bpt,ηq
apt, xq dη dx � 8, or

(8.240)» 8�8 e2Bpt,xq
apt, xq dx � 8 and

» 8�8 » x
a

e2Bpt,xq�2Bpt,ηq
apt, xq dη dx   8. (8.241)

In the cases (8.240) and (8.241) we have respectively

µpt, Bq � C1ptq »
B

e2Bpt,xq
apt, xq dx and

µpt, Bq � C2ptq »
B

» x
a

e2Bpt,xq�2Bpt,ηq
apt, xq dη dx,

where the constants C1ptq and C2ptq are chosen in such a way that the total

mass µpt,Rq � 1. The operators Lptq generate a diffusion in the sense that

there exists a time-inhomogeneous Markov processtpΩ,Fτ
t ,Pτ,xq , pXptq : t ¥ τq , pR,Bqu
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such that BBsEτ,x rf pXpsqqs � Eτ,x rLpsqf pXpsqqs , f P DpLpsqq,
where 0 ¤ τ   s ¤ 8. We put Y pτ, tq fpxq � Eτ,x rf pXptqqs, f P Cb pRq.
Then, under appropriate conditions on the coefficients apt, xq and bpt, xq
the operators Y pτ, tq leave the space C0 pRq invariant, and hence the ad-

joint operators Y pτ, tq� are mappings from M pRq to M pRq. For a given

probability measure µpτq the measure-valued function µptq :� Y pτ, tq� µpτq
satisfiesBBt 〈f, µptq〉 � BBt 〈f, Y pτ, tq� µpτq〉 � BBt 〈Y pτ, tq f, µpτq〉� BBt » Y pτ, tq fpxqµpτ, dxq � BBt » Eτ,x rf pXptqqsµpτ, dxq� »

Eτ,x rLptqf pXptqqsµpτ, dxq� 〈Y pτ, tqLptqf, µpτq〉 � 〈f, Lptq�µptq〉 .
Let f P D pLptqq. From (8.228) it follows that for all λ P C with ℜλ ¥ 0

the following inequality holds

inf
αPC |λ| }f � α1}8 ¤ 2 inf

αPC }pλI � Lptqq f � α1}8 . (8.242)

If lim
tÑ8 cptq

ωptqVar pLptq�µptqq � 0, then the equation Lptq�µptq � 9µptq
is ergodic, provided that Var

�
esLptq�µ	 ¤ cptqe�2sωptqVar pµq for all

µ P M0pEq. This assertion follows from Theorem 8.5 below, by observ-

ing that the dual of the space C0 pRq endowed with the quotient norm}f} :� inf
αPC }f � α1}8 is the space M0 pRq.

For explicit formulas for invariant measures for (certain) Ornstein-

Uhlenbeck semigroups we refer the reader to [Da Prato and Zabczyk

(1992b)] Theorems 11.7 and 11.11, and to [Metafune et al. (2002b)]. For

some recent regularity and smoothing results see [Bogachev et al. (2006)].

8.4 Ergodicity in the non-stationary case

We begin with a relevant definition.

Definition 8.6. The system (8.6) is called ergodic, if there exists a unique

solution πptq to the equation Kptqπptq � 0, with πptq P P pEq, such that

lim
tÑ8Var pµptq � πptqq � 0 (8.243)
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for all solutions µptq P P pEq to the equation 9µptq � Kptqµptq.
Remark 8.8. Fix t P R and let Kptq be a Kolmogorov operator with 0

as an isolated point in its spectrum. Then 0 is a dominant eigenvalue of

Kptq, and let P ptq : MpEq Ñ MpEq be the Dunford projection on the

generalized eigen-space corresponding to the eigenvalue 0 with eigen-vector

πptq P P pEq. If the eigenvalue 0 has multiplicity 1, then P ptq projects

the space MpEq onto the one-dimensional subspace Cπptq. Since 0 is a

dominant eigenvalue of Kptq, a key spectral estimate of the following form

is valid:���〈f, esKptq pI � P ptqq µ〉��� ¤ cptqe�2ωptqs }f}8 Var pµq , f P CbpEq, µ PMpEq,
(8.244)

where ωptq is strictly positive, }f}8 is the supremum-norm of f P CbpEq,
Var pµq is the total variation norm of µ P MpEq, and where cptq is some

finite constant.

A P pEq-valued function πptq for whichKptqπptq � 0 is called a stationary or

invariant P pEq-valued function of the system in (8.6). In addition to (8.6)

we assume that the continuous function πptq with values in P pEq satisfies
Kptqπptq � 0, and we suppose that this function is uniquely determined.

Theorem 8.5. Let the function t ÞÑ µptq satisfy (8.6); i.e. 9µptq �
Kptqµptq, t ¡ t0, or more precisely

d

dt
〈f, µptq〉 � 〈f,Kptqµptq〉, f P CbpEq.

In addition, suppose that there exist strictly positive functions t ÞÑ ωptq and
t ÞÑ cptq possessing the following properties:

(i) For every t ¥ t0 there exists a real number with ℜλ ¡ �ωptq such thatpλI �Kptqq pD pKptqqq �MpEq; (8.245)

(ii) The following identity holds true:

lim
tÑ8 cptq

ωptqVar p 9µptqq � lim
tÑ8 cptq

ωptqVar pKptqµptqq � 0; (8.246)

(iii) The inequality |λ|Var pµq ¤ cptqVar pλµ�Kptqµq , (8.247)

holds for all µ P D pKptqq and all λ P C with ℜλ ¡ �ωptq.
Then there exists a P pEq-valued function t ÞÑ πptq such that

lim
tÑ8Var pµptq � πptqq � 0,

and such that Kptqπptq � 0; i.e. the system in (8.6) is ergodic.
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Remark 8.9. The inequality in (8.247) is only required on the union of the

right half-plane tλ P C : ℜλ ¡ 0u and the circular disc tλ P C : |λ| ¤ ωptqu.
This will follow from the proof of Theorem 8.5.

Remark 8.10. Let g P CbpEq be such that���〈g, ��Kptq|M0pEq��1
µ
〉��� ¤ cptq

ωptq }g}8 Var pµq , µ PM0pEq, (8.248)

where the constants cptq and ωptq satisfy (8.246). Then

lim
tÑ8 〈g, µptq � πptq〉 � 0. (8.249)

If the collection of functions g satisfying (8.248) for an appropriate choice

of cptq and ωptq satisfying (8.246) is dense in CbpEq, then (8.249) holds for

g P CbpEq.
The following proposition has some independent interest; it says that

an operator which has the properties (i) and (iii) of Theorem 8.5 gen-

erates a bounded analytic weak�-continuous semigroup in M0pEq with

exponential decay. For ω ¡ 0 we define the open subset rΠω of C byrΠω � tλ P C : ℜλ ¡ 0u� tλ P C : |λ|   ωu.
Proposition 8.6. Let K be a sectorial sub-Kolmogorov operator for which

there exist constants ω and c such that pλI �KqDpKq � MpEq for some

λ P rΠω and such that |λ|Var pµq ¤ cVar pλµ�Kµq (8.250)

for all λ P rΠω and for all µ P DpKq. Then the operator K generates a

weak�-continuous bounded analytic semigroup
 
etK : |argptq| ¤ α

(
. On the

range of the operator K this analytic semigroup has exponential decay as

tÑ8.

Proof. [Proof of Proposition 8.6.] We consider the subset Πω of rΠω
defined by

Πω � !
λ P rΠω : λ � 0, pλI �KqDpKq �MpEq) . (8.251)

First suppose that λ0 belongs to Πω. Put R pλ0q � pλ0I �Kq�1,

and define the operators Rpλq, |λ� λ0|   c�1 |λ0|, by Rpλq �°8
j�0 pλ0 � λqj R pλ0qj�1

. From (8.250) it follows that the operators Rpλq
are well defined and that pλI �KqRpλq � I for λ P C such that|λ� λ0|   c�1 |λ0|. Hence the set Πω is an open subset of the punctured

subset rΠωzt0u. Next let λn, n P N, be a sequence in Πω with limit λ0 in the
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punctured open subset rΠωzt0u. For n P N so large that |λ0 � λn|   c�1 |λn|
we have pλ0I �Kq 8̧

j�0

pλn � λ0qj R pλnqj�1 � I,

where we wrote R pλnq � pλnI �Kq�1
. It follows that the punctured set

Πωzt0u is open and closed in the connected punctured open set rΠωzt0u.
Since the latter is topologically connected and since by assumption Πω is

non-empty it follows that for every λ P rΠω , λ � 0, the range of the operator

λI �K coincides with MpEq. As above we put Rpλq � pλI �Kq�1
, λ PrΠω. Inequality (8.250) implies that

���pλI �Kq�1
��� ¤ c, λ P rΠω. From

the arguments in the proofs of Theorem 8.7 and Corollary 8.3 it follows

that the resolvent Rpλq extends to a sectorial region of the form Πω,β :�rΠω� tλ P C : |argpλq| ¤ βu, where 1
2
π   β   π, and the norm of the of

the resolvent Rpλq satisfies an estimate of the form:|λ| }Rpλq} ¤ c1, λ P Πω,β . (8.252)

Put

P � 1

2πi

»|λ|�ω pλI �Kq�1
dλ and A � � 1

2πi

»|λ|�ω 1

λ
pλI �Kq�1

dλ.

(8.253)

Then we have

KP � 1

2πi

»|λ|�ω pλI � pλI �Kqq pλI �Kq�1
dλ� 1

2πi

»|λ|�ω λpλI �Kq�1dλ� 1

2πi

»|λ|�ωpλI �KqpλI �Kq�1dλ � 0,

and

KA � 1

2πi

»|λ|�ω 1

λ
pλI �K � λIq pλI �Kq�1

dλ� 1

2πi

»|λ|�ω 1

λ
dλI � 1

2πi

»|λ|�ω pλI �Kq�1
dλ � I � P. (8.254)

It follows that RpKq, the range of K, is weak�-closed and that I � P

is a continuous linear projection from MpEq onto RpKq with null space

RpP q � NpKq. From Theorem 8.3 it follows that K generates a weak�-
continuous sub-Kolmogorov semigroup

 
etK : t ¥ 0

(
in MpEq. By (8.252)

we see that this semigroup is analytic. Since the set Πω,β contains a half-

plane of the form tλ P C : ℜλ ¥ �ω0u where ω ¡ ω0 ¡ 0 the representation
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in (8.258) with ω1 � �ω0 and ℓ � 1 can be used to show the exponential

decay of the semigroup
 
etK : t ¥ 0

(
on the range of K.

This completes the proof of Proposition 8.6. �

Suppose that |λ|Varpµq ¤ cVar pλµ�Kµq for ℜλ ¥ �ω, µ P DpKq. Then

the operator I � P can be written as

I � P � K
1

2πi

» �ω�i8�ω�i8 1

λ
pλI �Kq�1

dλ � �K » 8
0

esKds. (8.255)

On the range of K (which coincides with the range of I � P ) the operator

A has the representation:

A � 1

2πi

» �ω�i8�ω�i8 1

λ
pλI �Kq�1

dλ � � » 8
0

esK pI � P q ds. (8.256)

On the space MpEq the operator etK can be represented by

tℓ

ℓ!
etK � 1

2πi

» ω1�i8
ω1�i8 etλ pλI �Kq�ℓ�1

dλ, ω1 ¡ 0, ℓ ¥ 1. (8.257)

On the range of K the operator etK has the representation:

tℓ

ℓ!
etK � 1

2πi

» ω1�i8
ω1�i8 etλ pλI �Kq�ℓ�1

dλ, ω1 ¡ �ω, ℓ ¥ 1. (8.258)

Notice that by (8.254) the operatorK has a bounded inverse on its range. It

follows that the function λ ÞÑ pλI �Kq�1
restricted toRpKq is holomorphic

in a neighborhood of λ � 0.

Remark 8.11. We may say that the condition supt¡0

��tLetL��   8 is

kind of an analytic maximum principle.analytic maximum principle. In

this remark only, suppose that E is locally compact and second count-

able. Let L be the generator of a Feller-Dynkin semigroup. Fix t ¡ 0

and choose x P E in such a way that
��etLfpxq�� � ��etLf��8. Then we have

ℜ
�
etLfpxqtLetLfpxq	 ¤ 0. Next assume that the operator L is such that

the corresponding Feller-Dynkin semigroup has an integral ppt, x, yq with

respect to a reference measure dmpyq. This means that the semigroup etL

is given by etLfpxq � ³
p pt, x, yq fpyqdmpyq. Then L generates a bounded

analytic semigroup if and only if

sup
t¡0

sup
xPE »

E

���� tBp pt, x, yqBt ���� dmpyq � sup
t¡0

sup
xPE »

E

|tL p pt, �, yq pxq| dmpyq   8.
This is the case if and only if for some α P �0, 1

2
π
�
an inequality of the form

sup
tPC:|argptq|¤α supxPE » |p pt, x, yq| dmpyq   8

holds.
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For the moment we only suppose that the operator K generates a bounded

analytic weak�-continuous semigroup on MpEq. Let γr :
�� 1

2
π, 1

2
π
�
, 0  

r   8, be a parametrization of the semi-circle γrpϑq � reiϑ, � 1
2
π ¤ ϑ ¤

1
2
π. Then by Cauchy’s theorem the following equality of sums of integrals

holds for 0   r   R   8:

1

πi

» �ir�iR 1

λ
pλI �Kq�1

dλ� 1

πi

»
γr

1

λ
pλI �Kq�1

dλ� 1

πi

» iR
ir

1

λ
pλI �Kq�1

dλ� 1

πi

»
γR

1

λ
pλI �Kq�1

dλ. (8.259)

By using the parameterizations ξ ÞÑ �iξ, R ¡ ξ ¡ r, and ξ ÞÑ �iξ,
r   ξ   R and letting R tend to 8 we obtain:

2

π

» 8
r

�
ξ2I �K2

��1
dξ � 1

πi

»
γr

1

λ
pλI �Kq�1

dλ. (8.260)

It follows that

2

π
p�Kq » 8

r

�
ξ2I �K2

��1
dξ � 2

π

» 8
r

p�Kq �ξ2I �K2
��1

dξ� 1

πi

»
γr

1

λ
pλI �K � λIq pλI �Kq�1

dλ� 1

πi

»
γr

1

λ
dλI � 1

πi

»
γr

pλI �Kq�1
dλ� I � 1

πi

»
γr

pλI �Kq�1
dλ. (8.261)

From (8.261) we also obtain:

K

�
2

π

» 8
r

p�Kq �ξ2I �K2
��1

dξ � I


� 1

πi

»
γr

1dλ I � 1

πi

»
γr

λ pλI �Kq�1
dλ� 2r

π
I � 1

πi

»
γr

λ pλI �Kq�1
dλ. (8.262)

We formulate these results in the form of a proposition.

Proposition 8.7. Put

Qr � 2

π
p�Kq » 8

r

�
ξ2I �K2

��1
dξ and Pr � 1

πi

»
γr

pλI �Kq�1
dλ.

(8.263)
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Then I � Qr � Pr, R pPrq � DpKq, and
K

�
I � 2

π

» 8
r

p�Kq �ξ2I �K2
��1

dξ


� KPr � 1

πi

»
γr

λ pλI �Kq�1
dλ� 2r

π
I. (8.264)

Moreover, the following inequality is valid:}KPr} ¤ r sup
ϑPr� 1

2
π, 1

2
πs ���reiϑ �reiϑI �K

��1
���� 2r

π
. (8.265)

Definition 8.7. A linear operator Q : MpEq Ñ MpEq is called sequen-

tially weak�-closed if its graph tpµ,Qµq : µ PMpEqu is sequentially weak�
closed in MpEq � MpEq. This means that for any sequence pµnqnPN
which itself converges to µ for the σ pMpEq, CbpEqq-topology, and for

which the sequence pQµnqnPN converges to ν P MpEq with respect to the

σ pMpEq, CbpEqq-topology the equality ν � Qµ follows.

In the following proposition we collect a number of alternative ways to

represent the operators Q and P . Recall that the projection operator P is

called a Dunford projection.

Proposition 8.8. Let K be a sub-Kolmogorov operator which gener-

ates a weak�-continuous semigroup
 
esK : s ¥ 0

(
in MpEq. Put Rpλq �pλI �Kq�1, ℜλ ¡ 0. The following assertions are true:

(1) Suppose that the weak�-limit

Qµ � σ pMpEq, CbpEqq - lim
λÓ0 p�KqRpλqµ

exists for all µ P MpEq. In addition, suppose that the operator Q is

sequentially weak�-closed. Then Q is a projection from MpEq onto the

weak�-sequential closure of the space RpKq. Its zero space is NpKq,
and the projection P � I �Q on NpKq is given by

Pµ � σ pMpEq, CbpEqq - lim
λÓ0 λRpλqµ.

(2) Suppose that the weak�-limit

Qµ � σ pMpEq, CbpEqq - lim
tÒ8 p�Kq » t0 esKµds

exists for all µ P MpEq. In addition, suppose that the operator Q is

sequentially weak�-closed. Then Q is a projection from MpEq onto the
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weak�-sequential closure of the space RpKq. Its zero space is NpKq,
and the projection P � I �Q on NpKq is given by

Pµ � σ pMpEq, CbpEqq - lim
tÑ8 etKµ,

provided that σ pMpEq, CbpEqq - limtÑ8KetKµ � 0 for all µ P DpKq.
(3) Suppose that the semigroup generated by K is bounded and analytic. In

addition, assume that the weak�-limit

Qµ � σ pMpEq, CbpEqq - lim
rÓ0 2

π
p�Kq » 8

r

�
ξ2I �K2

��1
µdξ

exists for all µ P MpEq, and suppose that the operator Q is sequen-

tially weak�-closed. Then Q is a projection from MpEq onto the weak�-
sequential closure of the space RpKq. Its zero space is NpKq, and the

projection P � I �Q on NpKq is given by

Pµ � σ pMpEq, CbpEqq - lim
rÓ0 1

πi

»
γr

pλI �Kq�1
µ dλ, µ PMpEq.

Here γr is the curve γrpϑq � reiϑ, � 1
2
π ¤ ϑ ¤ 1

2
π.

(4) Suppose that 0 is an isolated point of the spectrum of K and that in a

neighborhood of 0 the following inequality holds for a finite constant C,

for all µ P DpKq and for all λ P C in a (small) disc around 0:|λ|Varpµq ¤ CVar pλµ�Kµq . (8.266)

Then the range of K is weak�-closed, and MpEq � RpKq � NpKq.
More precisely, put

Qµ � 1

2πi
p�Kq »rγr 1

λ
pλI �Kq�1

µ dλ, and

Pµ � 1

2πi

»rγr pλI �Kq�1
µ dλ

where µ P MpEq. Here rγr stands for the full circle: rγrpϑq � reiϑ,�π ¤ ϑ ¤ π, and for |λ| ¤ r the inequality in (8.266) holds. Then Q

is a weak�-continuous projection mapping from MpEq onto RpKq, and
P � I � Q is weak�-continuous projection mapping from MpEq onto

NpKq. Moreover, I � Q� P .

Remark 8.12. If the operator K is the weak�-generator of a bounded

analytic semigroup
 
etK : t ¥ 0

(
. Then the families

 
etK : t ¥ 0

(
and 

tKetK : t ¥ 0
(
are uniformly bounded. It follows that lim

tÑ8Var
�
KetKµ

� �
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0, and hence the assumptions of assertion (3) entail those of (2). The iden-

tity

λR pλqµ � λ

» 8
0

e�λtetKµ dt � » 8
0

e�teλ�1tKµ dt

shows that assertion (1) is a consequence of (2). Finally, by residue-calculus

and the hypothesis in assertion (4) we also have

1

2πi

»rγr pλI �Kq�1
µ dλ � σ pMpEq, CbpEqq - lim

λÓ0 λRpλqµ.
It follows that the conditions in assertion (4) imply those of (1).

Remark 8.13. Let pµ, νq P MpEq � MpEq be such that there exists a

sequence pµnqnPN �MpEq together with a sequence pλnqnPN � p0,8q which
decreases to 0 if n tends to 8 such thatpµ, νq � σ pMpEq, CbpEqq - lim

nÑ8 pµn, µn � λRpλqµnq .
Then it is assumed that the graph of the operator Q contains the pairpµ, νq. Let the sequence pµn, µn � λnR pλnqµnq tend to pµ, νq for the

weak�-topology. First we show that Qν � Qµ. By assumption we know

that

σ pMpEq, CbpEqq - lim
nÑ8 pµ� λnR pλnqµnq� σ pMpEq, CbpEqq - lim

nÑ8 p�KR pλnq µnq � Qµ. (8.267)

We also have:

σ pMpEq, CbpEqq - lim
nÑ8 pµn � µ� λnR pλnq pµn � µqq � ν �Qµ. (8.268)

Since µn converges to µ in the weak� sense the equality in (8.268) implies:

σ pMpEq, CbpEqq - lim
nÑ8 p�λnR pλnq pµn � µqq � ν �Qµ. (8.269)

In addition, we have

lim
nÑ8Var pKλnR pλnq pµn � µqq � lim

nÑ8Var
��
λ2nR pλnq � λn

� pµn � µq� � 0

(8.270)

and hence, since the operator K is sequentially weak� closed we infer

K pν �Qµq � 0.

But we also have NpKq � NpQq and thus Q pν �Qµq � 0. Since Q2 � Q

we see Qν � Qµ. Fix N P N. Using the equalities λnR pλnq pν �Qνq �
ν �Qν and Qν � Qµ we obtain the identities:

1

N � 1

�
µn � µ� pλnR pλnqqN�1 pµn � µq	� pν �Qνq
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N � 1

Ņ

j�0

pλnR pλnqqj tpI � λnR pλnqq pµn � µq � pν �Qνqu� 1

N � 1

Ņ

j�0

pλnR pλnqqj tpI � λnR pλnqq pµn � µq � pν �Qµqu .
Hence, if we assume from the start that

σ pMpEq, CbpEqq - lim
nÑ8 pλnR pλnq pµnqq � 0

whenever λn Ó 0 and σ pMpEq, CbpEqq - limnÑ8 µn � 0, then RpQq is the

weak�-closure of RpKq.
Proof. [Proof of Proposition 8.8.] Proof of assertion (1). Let µ PMpEq.
First we notice the equalities µ � KRpλqµ � λRpλqµ P DpKq, and

lim
λÓ0K pλRpλqµq � lim

λÓ0 �λ2Rpλqµ� λµ
� � 0. The latter limit is taken

with respect to the variation norm. In addition, we see that Pµ :�
σ pMpEq, CbpEqq-lim

λÓ0 λRpλqµ exists. Since the graph of K is sequentially

weak�-closed, it follows that Pµ belongs to DpKq and KPµ. Hence, we see
that the measure µ�Qµ belongs to NpKq then. Consequently, if Qµ � 0,

then µ � µ�Qµ P NpKq. If Kµ � 0, then

Qµ � lim
λÓ0 p�Kq pλR pλqµq � � lim

λÓ0 pλR pλqKµq � 0.

The previous arguments show the equalities of spaces: pI �QqMpEq �
NpKq � NpQq. It follows that Q pI �Qq � 0, and thus Q � Q2. From

the definition of Q it follows that RpQq, the range of Q, is contained in the

sequential weak�-closure of RpKq. Conversely, let ν � σ pMpEq, CbpEqq-
limnÑ8Kµn, where pµnqnPN is a sequence in DpKq. Then Q pKµn � νq �
Q pKµnq�ν�ν�Qν � Kµn�ν�ν�Qν, which converges for the weak�-
topology to ν � Qν. It follows that the pair p0, ν �Qνq belongs to the

sequential weak�-closure of the graph of Q, and consequently ν � Qν.

Proof of assertion (2). In the proof of this assertion we use the identity

µ�K
³t
0
esKµds � etKµ instead of µ �KR pλqµ � λR pλq µ. Then we let

t tend to 8.

Proof of assertion (3). In the proof of this assertion we employ the

identity

µ�K

» 8
r

�
ξ2I �K2

��1
µ dξ � 1

πi

»
γr

pλI �Kq�1
µ dλ.

Then we let r ¡ 0 tend to 0.
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Proof of assertion (4). Here we have the identity:

µ� 1

2πi
K

»rγr 1

λ
pλI �Kq�1

µ dλ � 1

2πi

»rγr pλI �Kq�1
µ dλ.

Hence, here we have

Qµ � 1

2πi
p�Kq »rγr 1

λ
pλI �Kq�1

µ dλ, and Pµ � 1

2πi

»rγr pλI �Kq�1
µ dλ.

Essentially speaking this proves assertion (4).

This completes the proof of Proposition 8.8. �

In all these cases we prove that pI �QqMpEq � NpKq � NpQq, and

Q pKµq � K pQµq � Kµ for µ P DpKq. Consequently, Q2 � Q. If Qµ � 0,

then µ � µ � Qµ P NpKq, and hence NpQq � NpKq. Conversely, if

µ P DpKq is such that Kµ � 0, then the definition of Q implies Qµ � 0.

Theorem 8.6. Suppose that the operator K generates a bounded analytic

weak�-continuous semigroup on MpEq, and that for every f P CbpEq and
µ PMpEq the integral

2

π

» 8
0

〈

f, p�Kq �ξ2I �K2
��1

µ
〉

dξ (8.271)

exists as an improper Riemann integral. Suppose that for every µ PMpEq,
the family of measures

!
λ pλI �Kq�1

µ : ℜλ ¡ 0
)

is Tβ-equi-continuous.

Then for every µ PMpEq, the functional

f ÞÑ » 8
0

〈

f, p�Kq �ξ2I �K2
��1

µ
〉

dξ, f P CbpEq (8.272)

is continuous on pCbpEq, Tβq, and hence it can be identified with a measure.

In addition, it is assumed that for every f P CbpEq the equality

lim
nÑ8 » 8

0

〈

f, p�Kq �ξ2I �K2
��1

µn

〉

dξ � » 8
0

〈

f, p�Kq �ξ2I �K2
��1

µ
〉

dξ

holds whenever pµn : n P Nq is a sequence in MpEq which converges with

respect to the σ pMpEq, CbpEqq-topology to a measure µ PMpEq, i.e.
lim
nÑ8 〈g, µn〉 � 〈g, µ〉 for all g P CbpEq.

For µ PMpEq let Qµ denote the measure corresponding to the functional:

f ÞÑ 2

π

» 8
0

〈

f, p�Kq �ξ2I �K2
��1

µ
〉

dξ � 〈f,Qµ〉 .

Then for every µ P MpEq the measure µ � Qµ belongs to DpKq and

K pµ�Qµq � 0. Moreover, RpQq is the weak� sequential closure of RpKq,
and Q2 � Q. In addition I � Q sends positive measures to positive mea-

sures, and R pQq�NpQq � t0u. If 〈1, Kµ〉 � 0 for all µ P DpKq, then

I �Q sends the convex set of probability measures on E to itself.
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Proof. [Proof of Theorem 8.6.] As in Proposition 8.7 we introduce the

operators

Qr � 2

π
p�Kq » 8

r

�
ξ2I �K2

��1
dξ and Pr � 1

πi

»
γr

pλI �Kq�1
dλ.

(8.273)

Then I � Qr � Pr. Notice that, for given µ P MpEq, the collection!
λ pλI �Kq�1

µ : ℜλ ¡ 0
)

is Tβ-equi-continuous. As a consequence we

see that the functional in (8.272) belongs to MpEq. The proof of Theorem

8.6 can be completed as the proof of Proposition 8.8. �

Proof. [Proof of Theorem 8.5.] Let µptq be as in (8.6), and let πptq satisfy
Kptqπptq � 0. It follows that 9µptq � Kptqµptq belongs to M0pEq. Since the

spectrum of the operator Kptq|M0pEq is contained in the complement of a

circle sector of the formtλ P C : ℜλ ¥ �ωptq : |arg pλ� ωptqq| ¤ βu
with 1

2
π   β   π, we have:pI � P ptqqµptq� 1

2πi
Kptq » �ωptq�i8�ωptq�i8 1

λ
pλI �Kptqq�1

dλµptq� 1

2π

» 8�8 1�ωptq � iξ

�p�ωptq � iξq I|M0pEq �Kptq|M0pEq��1�
Kptq|M0pEq� pµptq � πptqq dξ (8.274)� �

Kptq|M0pEq��1 �
Kptq|M0pEq� pµptq � πptqq� µptq � πptq. (8.275)

From (8.275) we see that P ptqµptq � πptq and hence KptqP ptqµptq � 0.

Using (8.247) and (8.274) as a norm estimate we obtain the following one:

Var ppI � P ptqq µptqq¤ 1

2π

» 8�8 1|�ωptq � iξ|Var��p�ωptq � iξq I|M0pEq �Kptq|M0pEq��1�
Kptq|M0pEq� pµptq � πptqq	 dξ¤ cptq

2π

» 8�8 1|�ωptq � iξ|2 dξVar ��Kptq|M0pEq� pµptq � πptqq�� cptq
2ωptqVar pKptqµptqq � cptq

2ωptqVar p 9µptqq . (8.276)
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The estimate in (8.276) and (8.246) entails the following result

lim
tÑ8Var ppI � P ptqqµptqq � lim

tÑ8Var pµptq � πptqq � 0.

This essentially proves Theorem 8.5. �

Remark 8.14. In this remark we give an alternative representation of the

operator P ptq. Since the measure Kptqµptq belongs to M0pEq, from (8.247)

it follows that

1

2πi
Kptq » ωptq�i8

ωptq�i8 pλI �Kptqq�1 1

λ
dλµptq � 0, (8.277)

and hence, by Cauchy’s theorem,pI � P ptqqµptq� 1

2πi
Kptq » �ωptq�i8�ωptq�i8 pλI �Kptqq�1 1

λ
dλµptq� 1

2πi
Kptq » ωptq�i8

ωptq�i8 pλI �Kptqq�1 1

λ
dλµptq� � 1

2πi

»t|λ|�ωptquKptq pλI �Kptqq�1 1

λ
dλµptq� 1

2πi

»t|λ|�ωptqu 1λdλµptq � 1

2πi

»t|λ|�ωptqu pλI �Kptqq�1
dλµptq� µptq � 1

2πi

»t|λ|�ωptqu pλI �Kptqq�1
dλµptq,

and consequently,

P ptqµptq � 1

2πi

»t|λ|�ωptqu pλI �Kptqq�1
dλµptq. (8.278)

From residue calculus it follows that P ptqµptq � lim
λÓ0 λ pλI �Kptqq�1

µptq.
Since the operatorKptq has the Kolmogorov property, we see that for λ ¡ 0

the operator λ pλI �Kptqq�1 sends positive measures to positive measures,

and hence P ptqµptq is a positive Borel measure. By the same argument

〈1, P ptqµptq〉 � 1.

The following corollary is applicable if Kptq � Lptq�, where the operators

satisfy the analytic maximum principle. The latter means that

sup
s¡0

sup
t¡0

���sKptqesKptq���   8,
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and that the operators Lptq satisfy the maximum principle. Such densely

defined operators in CbpEq generate bounded analytic semigroups esLptq
where s belongs to a sector with angle opening independent of t. It follows

that the operators λI � Lptq are invertible for all λ P C with |pargλq| ¤ β

with 1
2
π   β   π, and where for some constant C (independent of t) the

inequality |λ| ���pλI � Lptqq�1
��� ¤ C holds for λ P C with |pλq| ¤ β.

Corollary 8.3. Let the family Kptq, t ¥ 0, be a family of generators of

weak�-continuous semigroups in MpEq with the property that the operators

esKptq, s ¥ 0, t ¥ 0, map positive measures to positive measures and each

operator Kptq has the property that|λ|Var pµq ¤ CVar pλµ�Kptqµq , ℜλ ¡ 0, µ P D pKptqq , (8.279)

where C is a constant which does not depend t. Suppose that the constants

ωptq and cptq are such that one of the following conditions

Var
�
esKptqµ	 ¤ cptqe�2ωptqsVar pµq , for s ¡ 0 or (8.280)|λ|Var pµq ¤ cptqVar pλµ�Kptqµq , for all λ P C such that |λ| ¤ ωptq

(8.281)

is satisfied for all µ PM0pEq�D pKptqq. Let t ÞÑ µptq be a solution to the

equation 9µptq � Kptqµptq, t ¥ 0, with µptq P P pEq. If (8.246) is satisfied,

then the system 9µptq � Kptqµptq is ergodic, provided that there exists a

unique function πptq P P pEq such that Kptqπptq � 0.

Proof. There exists 1
2
π   β   π such that |λ| ���pλI �Kptqq�1

��� ¤ C for

λ P C with |pλq| ¤ β, with C independent of t: see Theorem 8.7 and the

corollaries and 8.4 and 8.5. For µptq � πptq P M0pEq�D pKptqq such that

Kptq pµptq � πptqq � 9µptq and λ P C such that |λ� 2ωptq| ¤ ωptq
2cptq , and such

that ℜλ ¥ ωptq, and for µ PM0pEq we have

µptq � πptq � » 8
0

e�spλI�2ωptqI�Kptqq ppλ� 2ωptqq pµptq � πptqq � 9µptqq ds,
and hence for such λ

Var pµptq � πptqq ¤ cptq |λ� 2ωptq|
ℜλ

¤ 1

2
Var pµptq � πptqq � cptq

ωptqVar p 9µptqq .
(8.282)

An easy application of Theorem 8.5 then completes the proof of Corollary

8.3. �
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Families of semigroups
 
esKptq : s ¥ 0

(
t¥t0 which satisfy (b) of the following

theorem are called uniformly bounded and uniformly holomorphic families

of operator semigroups: cf. [Blunck (2002)]. The next result will be used

with Aptq � 2ωI
��
M0pEq �Kptq ��M0pEq: see Corollary 8.6 below.

Theorem 8.7. Let Aptq, t ¥ t0, be a family of closed linear operators, each

of which has a dense domain in a Banach space pX, }�}q. Suppose that, for

every t ¥ t0, and for every λ P C with ℜλ ¡ 0, the inverses pλI �Aptqq�1

exist and are bounded. Then the following assertions are equivalent:

(a) sup
t¥t0 sup

ℜλ¡0

|λ| ���pλI �Aptqq�1
���   8;

(b) sup
s¡0

sup
t¥t0 ���sAptqesAptq���   8 and sup

s¡0

sup
t¥t0 ���esAptq���   8.

Proof. Most standard proofs for one generator A can be adapted to in-

clude a family of operators Aptq, t ¥ t0: (see e.g. [Van Casteren (1985)],

page 84, or [Pazy (1983a)] Theorem 5.2 and formula (5.16)). Another thor-

ough discussion can be found in Chapter II section 4 of [Engel and Nagel

(2000)]. �

It is also a consequence of the following theorem. For convenience, and

because we need to keep track of the constants an outline of the proof is

included.

Theorem 8.8. Let K be the generator of a strongly continuous semigroup

with the property that for λ P C with ℜλ ¡ 0 the inverse pλI �Kq�1
exists

as a bounded linear operator. Then the following assertions are true:

(i) If, for some finite constant C, the inequality|λ| ���pλI �Kq�1
��� ¤ C holds for all λ P C with ℜλ ¡ 0, (8.283)

then��etK�� ¤ e

2
C2 and

��tKetK�� ¤ eC2 p1� Cq for all t ¡ 0. (8.284)

(ii) If there exist finite constants C1 and C2 such that��etK�� ¤ C1 and
��tKetK�� ¤ C2, for all t ¡ 0, (8.285)

then |λ| ���pλI �Kq�1
��� ¤ C holds for all λ P C with ℜλ ¡ 0. (8.286)

Here the constant C is given by C � 2 pC2e� 1q�C1 � e?
2π
C2



.
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Representations as in (8.287) and (8.288) below can be found in [Blunck

(2001)], [Eisner (2005)], and [Eisner and Zwart (2007)].

Proof. Assertion (i) follows from the representations:

tetK � 1

2πi

» ω�i8
ω�i8 λ2etλ pλI �Kq�2 1

λ2
dλ; (8.287)

1

2
t2KetK � 1

2πi

» ω�i8
ω�i8 λ3etλ pλI �Kq�3 1

λ2
dλ� 1

2πi

» ω�i8
ω�i8 λ2etλ pλI �Kq�2 1

λ2
dλ, (8.288)

together with the choice ω � 1

t
.

The proof of assertion (ii) is somewhat more delicate. At first we fix

t0 ¡ 0 and we consider t ¡ 0 with the property that|t� t0| ¤ t0

C2e� 1
. (8.289)

We notice the inequality

t ¥ t0
C2e

C2e� 1
, (8.290)

whenever t satisfies (8.289). Moreover, for n ¥ 0 we have the representation

etK � ņ

ℓ�0

pt� t0qℓ
ℓ!

Kℓet0K � 1

n!

» t
t0

pt� sqnKn�1esKds. (8.291)

The remainder term in (8.291) can be estimated as follows:���� 1n! » tt0pt� sqnKn�1esKds

����¤ 1

n!

�������» tt0pt� sqn pn� 1qn�1

sn�1

��������� sK

n� 1
e

sK

n� 1

�n�1
������� ds�������¤ pn� 1qn�1Cn�1

2

n!

�����» tt0 pt� sqnpmin pt, t0qqn�1
ds

�����¤ pn� 1qn�1Cn�1
2pn� 1q! |t� t0|n�1pmin pt, t0qqn�1

(employ (8.289) and (8.290))¤ pn� 1qn�1pn� 1q! 1

Cn�1
2 en�1

Cn�1
2
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(use Stirling’s formula: pn� 1q! ¥a
2πpn� 1qe�n�1pn� 1qn�1)¤ 1a

2πpn� 1q . (8.292)

This inequality clearly shows that the remainder term converges to 0 uni-

formly for t and t0 satisfying: |t� t0| ¤ t0

C2e� 1
. From (8.291) we see that

for t P C chosen in such a way that |t� t0| ¤ t0

C2e� 1
the semigroup etK

can be represented as:

etK � et0K � 8̧
ℓ�1

pt� t0qℓ
ℓ!

Kℓet0K . (8.293)

From (8.293) it follows that��etK � et0K
�� ¤ 8̧

ℓ�1

|t� t0|ℓ
ℓ!

��Kℓet0K
��� 8̧

ℓ�1

�
1

C2e� 1


ℓ
ℓℓ

ℓ!

��������� t0K

ℓ
e

t0K

ℓ

�ℓ������� ¤ 8̧
ℓ�1

1pC2e� 1qℓ ℓℓℓ!Cℓ2
(again we employ Stirling’s formula ℓ! ¥ ?

2πℓe�ℓℓℓ)¤ 8̧
ℓ�1

pC2eqℓpC2e� 1qℓ 1?
2πℓ

¤ 8̧
ℓ�1

pC2eqℓpC2e� 1qℓ 1?
2π

� e?
2π
C2.

(8.294)

Consequently, by our assumption
��et0K�� ¤ C1, for all t0 ¡ 0, we get��etK�� ¤ C1 � e?

2π
C2, (8.295)

whenever t P C is chosen in such a way that (8.289) is satisfied for some

t0 ¡ 0. If we choose 1
3
π ¡ α ¡ 0 in such a way that

1

2C2e� 2
� sin

�
1

2
α



,

and if |argptq| ¤ α, then t satisfies: |t� t0| ¤ t0

C2e� 1
, with t0 � |t|. Hence,

the norm of etK satisfies (8.295). For λ P C such that � 1
2
π� 1

2
α   argpλq  

1
2
π � 1

2
α we have:pλI �Kq�1 � e� i

2
α

» 8
0

exp
��λe� i

2
αsI � e� i

2
αsK

	
ds, (8.296)



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

On non-stationary Markov processes and Dunford projections 535

and hence|λ| ���pλI �Kq�1
���¤ » 8

0

���exp��λe� i
2
αs
	��� ds ���exp�e� i

2
αsK

	��� ds¤ |λ| » 8
0

exp

�� |λ| cos�argpλq � 1

2
α



s



ds

�
C1 � e?

2π
C2


� 1

cos
�
argpλq � 1

2
α
� �C1 � e?

2π
C2



. (8.297)

By the same token we also get, for λ P C such that � 1
2
π � 1

2
α   argpλq  

1
2
π � 1

2
α,pλI �Kq�1 � e

i
2
α

» 8
0

exp
��λe i

2
αsI � e

i
2
αsK

	
ds, (8.298)

and hence|λ| ���pλI �Kq�1
���¤ » 8

0

���exp��λe i
2
αs
	��� ds ���exp�e i

2
αsK

	��� ds¤ |λ| » 8
0

exp

�� |λ| cos�argpλq � 1

2
α



s



ds

�
C1 � e?

2π
C2


� 1

cos
�
argpλq � 1

2
α
� �C1 � e?

2π
C2



. (8.299)

From (8.297) and (8.299) we infer:|λ| ���pλI �Kq�1
��� ¤ 1

cos
�|argpλq| � 1

2
α
� �C1 � e?

2π
C2



, (8.300)

for � 1
2
π � 1

2
α   argpλq   1

2
π � 1

2
α. Inequality (8.286) in Theorem 8.8

follows from (8.300) with λ P C such that |argpλq|   1
2
π.

This completes the proof of Theorem 8.8. �

An inspection of the proof of assertion (ii) in Theorem 8.8, in particular

inequality (8.300), yields the following result, which says that the resolvent

family of a bounded analytic semigroup is bounded in a sector with an

opening which is larger than the open right half-plane.

Corollary 8.4. Let the hypotheses and notation be as in Theorem 8.8.

Choose the angle 1
3
π ¡ α ¡ 0 in such a way that sin

�
1
2
α
� � 1

2C2e� 2
.

Choose 0 ¤ β   1
2
α. Then|λ| ���pλI �Kq�1
��� ¤ 1

sin
�
1
2
α� β

� �C1 � e?
2π
C2



, |argλ| ¤ 1

2
π � β.

(8.301)
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The result in Corollary 8.4 extends to uniformly bounded and uniformly

analytic semigroups. Notice that (8.303) is equivalent to an inequality of

the form (t ¥ t0):|λ| ���pλI �Aptqq�1
��� ¤ C, for λ P C with ℜλ ¡ 0, (8.302)

where the constants C and C1, C2 are related in an explicit manner: see

Theorem 8.8.

Corollary 8.5. Let Aptq, t ¥ t0, be a family of closed densely defined linear

operators. Suppose there exist finite constants C1 and C2 such that���esAptq��� ¤ C1 and
���sAptqesAptq��� ¤ C2, for all s ¡ 0 and for all t ¥ t0.

(8.303)

Choose 0   α   1
3
π in such a way that sin

�
1
2
α
� � 1

2C2e� 2
. Fix 0 ¤ β  

1
2
α. Then, for all t ¥ t0, the inequality|λ| ���pλI �Aptqq�1

��� ¤ Cpβq (8.304)

is true for all λ P C with |argλ| ¤ 1
2
π�β. Here the constant Cpβq is given

by Cpβq � 1

sin
�
1
2
α� β

� �C1 � e?
2π
C2



.

In the following corollary we use Theorem 8.7 and Corollary 8.5 with Aptq �
2ωI

��
M0pEq �Kptq ��M0pEq.

Corollary 8.6. Let the function t ÞÑ µptq solve the equation:9µptq � Kptqµptq, µptq P P pEq.
Suppose that lim

tÑ8Var p 9µptqq � 0, and that there exists ω ¡ 0 such that

c :� sup
s,t¡0

���s p2ωI �Kptqq esp2ωI�Kptqq ��
M0pEq���   8. (8.305)

If, in addition, there exists only one continuous function t ÞÑ πptq with

values in P pEq such that Kptqπptq � 0, then limtÑ8 Var pµptq � πptqq � 0.

Notice that the operator p2ωI �Kptqq esp2ωI�Kptqq is a mapping from

M0pEq to M0pEq.
Proof. An appeal to Corollary 8.5 together with the hypothesis in in-

equality (8.305) shows that there exists a finite constant c1 such that|λ| �����λI ��M0pEq �p2ωI �Kptqq ��
M0pEq	�1

���� ¤ c1 for all λ with ℜλ ¡ 0.

(8.306)
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The latter result follows in fact from the theory of families of uniform

holomorphic semigroups (the inequality (8.306) is uniform in t ¡ t0). Con-

sequently, we obtain:|λ� 2ω| �����λI ��M0pEq �p2ωI �Kptqq ��
M0pEq	�1

���� ¤ 3c1

for all λ with ℜλ ¥ ω.

The result in Corollary 8.6 then follows from Theorem 8.5. �

Examples of operators L which generate analytic Feller semigroups can be

found in [Taira (1997)]. Other valuable sources of information are [Metafune

et al. (2002a)] and [Taira (1992)].

8.5 Conclusions

In this chapter we discussed some properties of the fundamental operator

of the non-stationary, or time-dependent continuous system (8.6). More-

over, in some particular cases, when we deal with a family of Kolmogorov

operators Kptq, we introduce and prove some efficient criteria for checking

ergodicity (Theorem 8.5). This is done by using the Dunford projection on

the eigenspace corresponding to the critical eigenvalue 0 of Kptq.
The properties of the families of semigroups

 
esKptq : s ¥ 0

(
t¥t0 are ex-

amined in detail in Theorem 8.7 and Theorem 8.8 as well as in Corollary

8.4 and Corollary 8.5. The obtained results allow us to present Corollary

8.6 providing the ergodicity of non-stationary system in terms of bounded

analytic semigroups. In addition, in §9.4 we discuss a rather general sit-

uation in which we have a spectral gap: see e.g. Proposition 9.16. Some

of this work was based on ideas and concepts of Katilova [Katilova (2008,

2004, 2005)]. What follows next can be found in [Van Casteren (2005a)].

Theorem 8.9 is inspired by ideas in Nagy and Zemanek: see [Nagy and

Zemánek (1999)]. The result can also be found in the Ph.-D. thesis of

Katilova: see [Katilova (2004)], Theorem 8.9.

Theorem 8.9. Let M be a bounded linear operator in a Banach space X.

By definition the sub-space X0 of X is the }�}-closure of the vector sum

of the range and zero-space of I �M : X0 � R pI �Mq �N pI �Mq}�}.
Suppose that the spectrum of M is contained in the open unit disc uniont1u. The following assertions are equivalent:

(i) sup|λ| 1

���p1� λq pI � λMq�1
x
���   8 for every x P X0;
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(ii) supnPN }Mnx}   8 and supnPNpn�1q }Mn pI �Mqx}   8 for every

x P X0;

(iii) supt¡0

��etpM�Iqx��   8 and supt¡0

��t pM � Iq etpM�Iqx��   8 for �x P
X0;

(iv) There exists 1
2
π   α   π such that for all x P X0:

sup
!|λ| ���pλI � pM � Iqq�1

x
��� : �α   argpλq   α

)   8;

(v) There exists 1
2
π   α   π such that for all x P X0:

sup
!���pI �Mq ppλ� 1q I �Mq�1

x
��� : �α   argpλq   α

)   8;

(vi) For every x P X0 the following limits exist

Px :� lim
nÑ8Mnx and pI � P qx � lim

reiϑÑ1

0 r 1

pI �Mq �I � reiϑM
��1

x;

(vii) For every x P X0 the following limit existspI � P qx :� lim
reiϑÑ1

0 r 1

pI �Mq �I � reiϑM
��1

x.

Moreover, if M satisfies one of the conditions (i) through (vii), then

X0 � R pI �Mq}�} �N pI �Mq .
Remark 8.15. The Banach-Steinhaus theorem implies that in (i) through

(v) in Theorem 8.9 the vector norms may be replaced with the operator

norm restricted to X0; i.e. the operatorM must be restricted to X0. These

assertions (i) through (v) are also equivalent if X0 is replaced with the space

X . This fact will be used in Definition 8.8.

Conditions (a) and (b) of the following corollary from [Arendt et al. (2001)]

are satisfied, if the space X is reflexive. The closed range condition in

(c) has been used by Lin in [Lin (1974)] and in [Lin (1975)]; in the latter

reference he also tied it up with Doeblin’s ergodicity condition. For a precise

formulation of Doeblin’s ergodicity condition see item (ii) in Definition 10.8.

Corollary 8.7. Let M be a bounded linear operator in a Banach

space pX, }�}q. As in Theorem 8.9 let X0 be the closure in X of

the sub-space R pI �Mq � N pI �Mq. Suppose that, for 0   λ  
1, the inverse operators pI � λMq�1

exist and are bounded, and that

sup
0 λ 1

p1� λq ���pI � λMq�1
���   8. If one of the following conditions:
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(a) the zero space of the operator pI �Mq��, which is a sub-space of the

bidual space X�� is in fact a subspace of X;

(b) the σ pX�, Xq-closure of R ppI �Mq�q coincides with its }�}-closure;
(c) the range of I �M is closed in X;

is satisfied, then the space X0 coincides with X, and hence all assertions

in Theorem 8.9 are equivalent with X replacing X0.

Remark 8.16. If sup
nPN }Mn}   8, then sup

0 λ 1

p1� λq ���pI � λMq�1
���   8.

Definition 8.8. An operator M which satisfies the equivalent conditions

(i) – (v) of Theorem 8.9 with the space X replacing X0 is called an analytic

operator.

Proof. [Proof of Corollary 8.7.] If the range of I �M is closed, then by

the closed range theorem, the range of I �M is weak�-closed and hence

(c) implies (b). We will prove that (a) as well as (b) implies X0 � X . First

we assume (a) to be satisfied. Pick x P X , and consider

x � pI �Mq pI � λMq�1
x� p1� λqM pI � λMq�1

x � x� xλ � xλ,

(8.307)

where xλ � p1� λqM pI � λMq�1
x. Then sup0 λ 1 }xλ}   8, and conse-

quently the family xλ, 0   λ   1, has a point of adherence x�� in X��; i.e.
x�� belongs to the σ pX��, X�q-closure of the subset txλ : 1� η   λ   1u,
and this for every 0   η   1. Fix x� P X�. Then���〈p1� λqM pI � λMq�1

x, pI �Mq� x�〉���� ���〈p1� λq pI �Mq pI � λMq�1
x,M�x�〉���¤ p1� λq ���pI �Mq pI � λMq�1
x
��� }M�x�} . (8.308)

Since sup0 λ 1 p1� λq ���pI � λMq�1
���   8, the identitypI �Mq pI � λMq�1 � 1

λ

�
I � p1� λq pI � λMq�1

	
yields that sup0 λ 1

���pI �Mq pI � λMq�1
���   8. Consequently, (8.308)

implies
〈

x��, pI �Mq� x�〉 � lim
λÒ1 〈xλ, pI �Mq� x�〉� lim

λÒ1 p1� λq〈pI �Mq pI � λMq�1
x,M�x�〉 � 0.
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Hence x�� annihilates R
�pI �Mq�� and so it belongs to the zero space

of the operator pI �Mq��. By assumption this zero space is a subspace

of X . We infer that the vector x can be written as x � x � x1 � x1,

where x1 is a member of N pI �Mq, and where x � x1 belongs to the

weak closure of the range of I � M . However this weak closure is the

same as the norm-closure of R pI �Mq. Altogether this shows X � X0 �}�}-closure of R pI �Mq �N pI �Mq.
Next we assume that (b) is satisfied. Let x�0 be an element of X�

which annihilates X0; i.e. which has the property that 〈x, x�0 〉 � 0 for all

x P X0. Then x�0 annihilates R pI �Mq, and hence it belongs to zero-

space of pI �Mq�. Since x�0 also annihilates the zero-space of I �M , it

belongs to the weak�-closure of R
�pI �Mq��. By assumption (b), we see

that x�0 is a member of its norm-closure; i.e. x�0 belongs to the intersection

N
�pI �Mq���R

�pI �Mq��}�}. We will show that x�0 � 0. By the Hahn-

Banach theorem [Hahn (1958)] it then follows that X0 � X . Since x�0
belongs to the }�}-closure of R

�pI �Mq��, it follows that
x�0 � }�} - lim

λÒ1 pI �Mq� �pI � λMq���1
x�0 . (8.309)

To see this we first suppose that x�0 � pI �Mq� x�1 . ThenpI �Mq� x�1 � pI �Mq� �pI � λMq���1 pI �Mq� x�1� p1� λqM� �pI � λMq���1 pI �Mq� x�1 . (8.310)

Since the family M� �pI � λMq���1 pI �Mq� x�1 , 0   λ   1, is bounded,

we see that (8.309) is a consequence of (8.310) provided x�0 belongs

to the range of pI �Mq�. By the uniform boundedness of the familypI �Mq� �pI � λMq���1
, 0   λ   1, the same conclusion is true if x�0

belongs to the closure of the range of pI �Mq�. Since, in addition, x�0 is

a member of N
�pI �Mq��, it follows that x�0 � 0. This proves Corollary

8.7.

This completes the proof of Corollary 8.7. �

Proof. [Proof of Theorem 8.9.] (i) ùñ (ii). Fix 0   r   1. The following

representations from Lyubich [Lyubich (1999)] are being used:pn� 1qMn � 1

2πi

»|λ|�rp1� λq2 pI � λMq�2 dλ

λn�1p1� λq2 ; (8.311)

1

2
pn� 1qpn� 2qMnpI �Mq
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2πi

»|λ|�rp1� λq2 pI �Mq pI � λMq�3 dλ

λn�1p1� λq2� 1

2πi

»|λ|�r p1� λq2 pI � λMq�2 1

λn�2 p1� λq2 dλ� 1

2πi

»|λ|�r p1� λq3 pI � λMq�3 1

λn�2 p1� λq2 dλ. (8.312)

Put C :� sup
!���p1� λq pI � λMq�1 |X0

��� : |λ|   1
)
. From (8.311) we inferpn� 1q }Mn} ¤ C2

rn
1

2π

» π�π 1|1� reiϑ|2 dϑ � C2

rn
1

1� r2
. (8.313)

The choice r2 � n

n� 2
yields}Mn|X0} ¤ 2

3
eC2. (8.314)

In the same spirit from (8.312) we obtain

1

2
pn� 1qpn� 2q }Mn pM � Iq |X0} ¤ �

C2 � C3
� 1

rn�1

1

1� r2
.

The choice r2 � n� 1

n� 3
yields the inequality:pn� 1q }Mn pM � Iq |X0} ¤ 4e

3

�
C2 � C3

�
.

This proves the implication (i) ùñ (ii).

(ii) ùñ (iii). The representations (see [Nagy and Zemánek (1999)])

etpM�Iq � e�t 8̧
k�0

tk

k!
Mk and tpM � IqetpM�Iq � e�t 8̧

k�0

tk�1

k!
MkpM � Iq

show that (iii) is a consequence of (ii).

(iii) ùñ (iv). This is a (standard) result in analytic operator semigroup

theory: see e.g. [Van Casteren (1985)], Chapter 5, Theorem 5.1.

(iv) ùñ (v). The equalitypI �Mq ppλ� 1q I �Mq�1 � I � λ pλI � pM � Iqq�1

shows the equivalence of (iv) and (v).

(v) ùñ (i). Fix x P X0. The choice

λ � �1� e�iϑ � �2i sin�1

2
ϑ



e� 1

2
iϑ, |ϑ| ¤ 2α,
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yields the boundedness of the function

ϑ ÞÑ pI �Mq �I � eiϑM
��1

x

on the interval r�α, αs. Since, for |λ| � 1, λ �� 1, the function

λ ÞÑ pI �Mq pI � λMq�1
x

is continuous, it follows that this function is bounded on the unit circle.

The maximum modulus theorem shows that this function is bounded on

the unit disc, which is assertion (i).

(i) ùñ (vi). Fix x P X0. For 0   r   1 and ϑ P R we also have�
I � P

�
reiϑ

�� pI �Mqx� 1

2π

» π�π 1� r2

1� 2r cos pϑ� tq � r2
pI �Mq �I � eitM

��1 pI �Mqx dt� pI �Mq �I � reiϑM
��1 pI �Mqx. (8.315)

In (8.315) we use the continuity of the boundary function

eit ÞÑ pI �Mq �I � eitM
��1 pI �Mqx (8.316)

to show that

lim
reiϑÑ1, 0¤r 1

�
I � P

�
reiϑ

�� pI �Mqx � pI � P q pI �Mqx � pI �Mqx
(8.317)

exists, and that I � P is a bounded projection on X0. From (i) it follows

that the function λ ÞÑ pI �Mq pI � λMq�1
x is uniformly bounded on the

unit disc, and hence that the limit in (8.317) exists for all y in the closure

of RpI �Mq. In addition, for such vectors y we have pI � P q y � y. The

limit in (8.317) trivially exists for x P X such that Mx � x, and hence we

conclude that the limit in (i) exists for all x P X0, because x � pI�P qx�Px,
where pI � P qx belongs to the closure of the range of I �M and where

Px � x� pI � P qx � x� lim
λÒ1 pI �Mq pI � λMq�1

x� lim
λÒ1 p1� λqM pI � λMq�1

x. (8.318)

From (8.318) it follows that pI �MqPx � 0. In addition, from (ii), which

is equivalent to (i), we see that limnÑ8Mny � 0 for all y in the range of

I �M ; here we use the boundedness of the sequence pn� 1qMn pI �Mq,
n P N. The boundedness of the sequence Mn, n P N, then yields

limnÑ8Mny � 0 for y P RpI � P q, because the range of I � M is

dense in the range of I � P . An arbitrary x P X0 can be written
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as x � pI � P qx � Px. From the previous arguments it follows that

limnÑ8Mnx � Px. Fix x P X0. Altogether this shows the implication

(v) ùñ (vi), provided we show the continuity of the function in (8.316) in

the sense that limtÑ0 pI �Mq �I � eitM
��1 pI �Mqx � pI �Mqx. How-

ever, this follows from the identitypI �Mq �I � eitM
��1 pI �Mqx� pI �Mqx� �

eit � 1
� pI �Mq �I � eitM

��1
Mx,

together with the uniform boundedness (in 0   |t| ¤ π) of the family of

operators: pI �Mq �I � eitM
��1

.

In the latter we use the implication (v) ùñ (i).

The implication (vi) ùñ (vii) being trivial there remains to be shown

that (vii) implies (i). For this purpose we fix x P X0 and we consider the

continuous function on the closed unit disc, defined by

F pλqx :�$'&'% pI �Mq pI � λMq�1
x for |λ| ¤ 1, λ �� 1,pI � P qx � lim

λÑ1|λ| 1

pI �Mq pI � λMq�1
x for λ � 1.

From (vii) it follows that the function F pλqx is well-defined and continuous.

Hence it is bounded. The theorem of Banach-Steinhaus then implies (i)

completing the proof of Theorem 8.9. �

For more recent results about stability and asymptotic behavior of linear

semigroups the reader is referred to [van Neerven (1996)] or to [Eisner

(2010)]. Books on operator semigroups are e.g. [Pazy (1983b)], [Gold-

stein (1985)], [Engel and Nagel (2000)], [Balakrishnan (2000)], [Kantorovitz

(2010)].

8.6 Another characterization of generators of analytic semi-

groups

Let L be a closed linear operator with domain DpLq and RpLq in a Banach

space pX, }�}q with topological dual pX�, }�}q. Suppose that DpLq is dense
and that there exists λ P C, ℜλ ¡ 0 such that pλI � Lq � X . We want to

give a characterization of generators of bounded analytic semigroups purely

in terms of dual elements and arguments of complex numbers of the form
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〈Lx, x�〉
〈x, x�〉 , x P DpLq, x� P X�, 〈x, x�〉 � 0. For a concise notation we

introduce the following subsets and quantities. Fix 0   η   1. Put

S1 px, ηq � tx� P X� : }x�} ¤ 1, |〈x, x�〉| ¥ η }x}u , x P X. (8.319)

For brevity write, for x P DpLq, 〈x, x�〉 � 0,

fL px, x�q � 〈Lx, x�〉
〈x, x�〉 , and qLpx, ηq � inf

x�PS1px,ηq |fL px, x�q|
sup

x�PS1px,ηq |fL px, x�q| . (8.320)

If L � 0, then by definition qLpx, ηq � 0. In addition, the following quanti-

ties are introduced (x P DpLq):
α1 px, ηq � inf

x�PS1px,ηq arg fL px, x�q , α2 px, ηq � sup
x�PS1px,ηq arg fL px, x�q ,

and

βL px, ηq � max

�
1

2
pα2 px, ηq � α1 px, ηqq , α2 px, ηq � π

2
,�α1 px, ηq � π

2



.

(8.321)

The following result follows from Lemma 8.9 below and standard results on

generation of bounded analytic semigroups.

Theorem 8.10. Let L be a closed linear operator with dense domain DpLq
in a Banach space pX, }�}q with dual pX�, }�}q. Fix η P p0, 1q, and let

S1 px, ηq, x P X, be as in (8.319), and define the quantities qLpx, ηq and

βLpx, ηq, x P DpLq, as in (8.320) and (8.321) respectively. Suppose that

there exists λ P C, ℜλ ¡ 0, such that R pλI � Lq � X. Then the following

assertions are equivalent:

(i) The operator L generates a bounded analytic semigroup;

(ii) There exists a δpηq ¡ 0 such that for all x P DpLq the inequality in

(8.337) holds:

max

�
1� qLpx, ηq
1� qLpx, ηq , sin 1

2
βL px, ηq
 ¥ δpηq; (8.322)

(iii) The following inequality holds:

inf
xPX, }x}�1

inf
ℜλ¡0

sup
x�PS1px,ηq ����1� 〈λLx, x�〉

〈x, x�〉 ���� ¡ 0. (8.323)
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(iv) There exists a strictly finite constant C such that the following inequal-

ity holds for all x P DpLq and all λ P C, ℜλ ¥ 0:|λ| }x} ¤ C }λx � Lx} . (8.324)

We need some elementary results for complex numbers and functions.

Lemma 8.7. Let w � 0 be a complex number. Then the following inequal-

ities hold:

max

���1� |w|��, 1
2

����1� w|w| ����
 ¤ |1� w| ¤ ��1� |w|��� ����1� w|w| ����¤ 2max

���1� |w|��, ����1� w|w| ����
 . (8.325)

Proof. Put w � |w| eiϑ, �π ¤ ϑ ¤ π. Then����1� w|w| ���� � 2

����sin 1

2
ϑ

���� . (8.326)

By writing |1� w|2 � 1 � 2 |w| cos 1
2
ϑ � |w|2 the first inequality follows

by squaring both sides and using (8.326). The second inequality from the

equality |1� w| � ����2i sin 1

2
ϑ� p1� |w|q ei 12ϑ���� ,

which can be checked easily. The third inequality in (8.325) being trivial

this completes the proof of Lemma 8.7. �

Lemma 8.8. Let α1 and α2 be real numbers such that �π ¤ α1 ¤ α2 ¤ π.

Put β � max

�
1

2
pα2 � α1q , α2 � 1

2
π,�α1 � 1

2
π



. Then

inf
ϑPr� 1

2
π, 1

2
πs sup
tPrα1,α2s sin 1

2
|t� ϑ| � inf

ϑPr� 1

2
π, 1

2
πs sup
tPtα1,α2u sin 1

2
|t� ϑ| � sin

1

2
β.

(8.327)

Proof. First we write

M : � inf
ϑPr� 1

2
π, 1

2
πs sup
tPrα1,α2s sin 1

2
|t� ϑ|� inf

ϑPr� 1

2
π, 1

2
πsmax

�
sup

tPrα1,α2s sin 1

2
pt� ϑq , sup

tPrα1,α2s sin 1

2
pϑ� tq� .

(8.328)
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From (8.328) we deduce

M ¥ inf
ϑPr� 1

2
π, 1

2
πsmax

�
sin

1

2
pα2 � ϑq , sin 1

2
pϑ� α1q
 . (8.329)

Then we distinguish cases: α1 � α2 ¤ �π, �π ¤ α1 � α2 ¤ π, and

π ¤ α1 � α2. If �2π ¤ α1 � α2 ¤ �π, then from (8.329) we get

M ¥ sin 1
2

��α1 � 1
2
π
�

with ϑ � � 1
2
π, if �π ¤ α1 � α2 ¤ π then

M ¥ sin 1
4
pα2 � α1q with ϑ � 1

2
pα1 � α2q, and finally, if π ¤ α1�α2 ¤ 2π,

then it turns out that M ¥ sin 1
2

�
α2 � 1

2
π
�
with ϑ � 1

2
π. This shows

M ¥ sin 1
2
β. In order to obtain an upper bound we write:

M1 : � max

�
sup

tPrα1,α2s sin 1

2

�
t� 1

2
π



, sup
tPrα1,α2s sin 1

2

�
1

2
π � t


�
;

M2 : � max

�
sup

tPrα1,α2s sin 1

2

�
t� 1

2
pα1 � α2q
 ,

sup
tPrα1,α2s sin 1

2

�
1

2
pα1 � α2q � t


�
;

M3 : � max

�
sup

tPrα1,α2s sin 1

2

�
t� 1

2
π



, sup
tPrα1,α2s sin 1

2

��1

2
π � t


�
,

(8.330)

and notice that M1 � sin 1
2

�
α2 � 1

2
π
�
if α1�α2 ¥ π, M2 � sin 1

4
pα2 � α1q

if �π ¤ α1 � α2 ¤ π, and M3 � sin 1
2

��α1 � 1
2
π
�
if α1 � α2 ¤ �π. It

follows that M ¤ max pM1,M2,M3q. This concludes the proof of Lemma

8.8. �

Lemma 8.9. Put S1 px, ηq � tx� P X� : }x�} ¤ 1, |〈x, x�〉| ¥ η }x}u, 0  
η ¤ 1, x P X. The notation as in (8.319), (8.320), and (8.321) is in use.

Let pxnqnPN be a sequence in DpLq. Then limnÑ8 βL pxn, ηq � 0 if and

only if �π
2
¤ lim inf

nÑ8 α1 pxn, ηq � lim sup
nÑ8 α2 pxn, ηq ¤ π

2
. (8.331)

Finally, put

δLpηq � inf
ℜλ¡0

inf
xPDpLq, }x}�1

sup
x�PS1px,ηqmax

�|1� |λfL px, x�q|| ,
sin

1

2
|arg pλfL px, x�qq|
 . (8.332)
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Then

inf
ℜλ¡0

sup
x�PS1px,ηq |1� |λfL px, x�q|| � 1� qLpx, ηq

1� qLpx, ηq , and (8.333)

inf
ℜλ¡0

sup
x�PS1px,ηq sin 1

2
|arg pλfL px, x�qq|� inf

ϑPr� 1

2
π, 1

2
πs sup
x�PS1px,ηq sin 1

2
|ϑ� arg pfL px, x�qq| � sin

1

2
βL px, ηq .

(8.334)

Moreover,

δLpηq � inf
xPDpLq, }x}�1

max

�
1� qLpx, ηq
1� qLpx, ηq ,

inf
ϑPr� 1

2
π, 1

2
πs sup
x�PS1px,ηq sin 1

2
|ϑ� arg pfL px, x�qq|�� inf

xPDpLq, }x}�1
max

�
1� qLpx, ηq
1� qLpx, ηq , sin 1

2
βL px, ηq
 , (8.335)

and the following inequalities hold for all x P DpLq and for λ P C, ℜλ ¥ 0:

1

2
p1� ηq δLpηqη }x} ¤ 1

2
p1� ηq }x� λLx}¤ sup

x�PS1px,ηq |〈x� λLx, x�〉| ¤ }x� λLx} . (8.336)

In addition, δLpηq ¡ 0 if and only if there exists δ ¡ 0 such that for all

x P DpLq the following inequality holds:

max

�
1� qLpx, ηq
1� qLpx, ηq , sin 1

2
βL px, ηq
 ¥ δ. (8.337)

Proof. The (in-)equalities in (8.331) are easy consequences of (8.321).

The equality in (8.333) is an exercise on inequalities, and so is the first

equality in (8.334). The second equality in (8.334) follows from (8.327)

in Lemma 8.8. The equalities (8.333) and (8.334) yield the equalities in

(8.335).

Next let x P DpLq and λ P C be such that ℜλ ¥ 0. The second inequality

in (8.336) is trivial and so is the first one when η � 1. So assume that

0   η   1. Choose x�0 P X� in such a way that |〈x, x�0 〉| � 1
2
p1� ηq }x} and}x�0 } � 1

2
p1� ηq. By the Hahn-Banach theorem such a linear functional

exists. If y� P X� is such that }y�} ¤ 1
2
p1� ηq, then for ϑ P r�π, πs we

have ��eiϑx�0 � y��� ¤ }x�0 } � }y�} ¤ 1

2
p1� ηq � 1

2
p1� ηq � 1. (8.338)
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In addition, again for ϑ P r�π, πs and y� P X� with }y�} ¤ 1
2
p1� ηq, we

have��〈x, eiϑx�0 � y�〉�� ¥ |〈x, x�0 〉|�|〈x, y�〉| ¥ 1

2
p1� ηq }x}�1

2
p1� ηq }x} � η }x} .

(8.339)

From (8.338) and (8.339) it follows that all vectors of the form eiϑx0 � y�,
ϑ P r�π, πs, }y�} ¤ 1

2
p1� ηq, belong to the set S1 px, ηLq. Then we have

sup
x�PS1p1,ηq |〈x� λLx, x�〉|¥ sup

ϑPr�π,πs sup}y�}¤ 1

2
p1�ηqℜ 〈

x� λLx, eiϑx�0 � y�〉
(by the right choice of ϑ)¥ sup}y�}¤ 1

2
p1�ηqℜ 〈x� λLx, y�〉 � 1

2
p1� ηq }x� λLx} . (8.340)

The inequality in (8.340) completes the proof of (8.336). Since the assertion

in (8.337) is trivial this completes the proof of Lemma 8.9. �

Proof. [Proof of Theorem 8.10.] The equivalence of the assertions (i)

and (iv) is a standard result in the theory of analytic semigroups: see e.g.

[Van Casteren (1985)], page 84, or [Pazy (1983a)] Theorem 5.2 and formula

(5.16). Another thorough discussion can be found in Chapter II section 4

of [Engel and Nagel (2000)]. The equivalence of the assertions (ii) and (iii)

is a consequence of the inequalities (8.325) in Lemma 8.7. The implication

(ii) ùñ (iii) is follows from inequality (8.335) in Lemma 8.9.

Finally, the proof of Theorem 8.10 is completed by showing the impli-

cation (iii) ùñ (iv). To this end put

δ � inf
xPDpLq inf

ℜλ¡0
sup

x�PS1px,x�q ����1� λ 〈Lx, x�〉
〈x, x�〉 ���� .

Then by (8.323) in (iv) δ ¡ 0, and from the first inequality in (8.336) in

Lemma 8.9 it follows that

δη }x} ¤ }x� λLx} , x P DpLq, ℜλ ¡ 0. (8.341)

The inequality in (8.341) is equivalent to (8.324) with C � 1

δη
and

1

λ
instead of λ. Therefore the proof of Theorem 8.10 is now complete. �

In the following proposition we prove a triviality result. The following

characterization of the zero operator does not seem to be known.
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Proposition 8.9. Let L be a closed linear operator with dense domain

DpLq in a Banach space pX, }�}q with dual pX�, }�}q. Put

S1 px, ηq � tx� P X�, }x�} ¤ 1, |〈x, x�〉| ¥ η }x}u , x P X, 0   η   1.

(8.342)

Then the following assertions are equivalent:

(i) The operator L is trivial: L � 0;

(ii) There exists η in the open interval p0, 1q such that the following in-

equality holds:

inf
xPDpLq, }x}�1

inf
λ¥0

sup
x�PS1px,ηq ����1� |〈λLx, x�〉||〈x, x�〉| ���� ¡ 0, (8.343)

and there exists λ P C, λ � 0 such that R pλI � Lq � X.

From the proof of Lemma 8.9 it follows that (8.343) is equivalent to (see

(8.337)):

inf
xPDpLq 1� qLpx, ηq

1� qLpx, ηq ¡ 0. (8.344)

Proof. The implication (i) ùñ (ii) being trivial, we only con-

sider the implication (ii) ùñ (i). Consider the subset Λ :�tλ P Czt0u : pλI � LqDpLq � Xu. By assumption the set Λ � H. Let

δ ¡ 0 be a strictly positive lower bound of the expression in (8.343). Then

for λ P C, x P DpLq, there exists x� P S1 px, ηq such that we have:}x� λLx} ¥ |〈x, x�〉� 〈λLx, x�〉| � ����1� 〈λLx, x�〉
〈x, x�〉 ���� |〈x, x�〉|¥ ����1� |〈λLx, x�〉||〈x, x�〉| ���� |〈x, x�〉| ¥ δη }x} . (8.345)

From (8.345) it follows that}λx� Lx} ¥ |λ| ηδ }x} , for all x P DpLq and all λ P C. (8.346)

Let λ0 � 0 be such that pλ0I � LqDpLq � X , and define the operator

R pλ0q : X Ñ X by R pλ0q pλ0I � Lqx � x, x P DpLq. Then by (8.346) for

λ � λ0 we see |λ0| }R pλ0q} ¤ 1

δη
. For λ P C such that |λ� λ0|   |λ0| ηδ

we define the operator Rpλq : X Ñ X by

Rpλqx � 8̧
k�0

pλ0 � λqk R pλ0qk�1
x.

Then pλI � LqRpλqx � x for all x P X , and Rpλq pλI � Lqx � x for all

x P DpLq. In other words: Rpλq � pλI � Lq�1
. It follows that Λ is an open
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subset of Czt0u. Next let pλnqnPN be a sequence in Λ which converges to

λ P Λ. Then for large enough n we have |λn � λ|   |λn| δη. Since λn P Λ,

the above argument with λn instead of λ0 shows that R pλI � Lq � X . It

follows that Λ is closed in Czt0u as well. Consequently, Λ � Czt0u. So

that for every λ P C, λ � 0, we have pλI � LqDpLq � X . From (8.346)

it follows that the family of operators
!pI � λLq�1

: λ P Czt0u) is uni-

formly bounded:
���pI � λLq�1

��� ¤ 1

δη
. Next fix x P X and x� P X�. As

a consequence the function fx,x� : λ ÞÑ 〈pI � λLq�1
x, x�〉 is a bounded

holomorphic function on Czt0u. By the classical theory about holomorphic

functions it follows that the function fx,x� extends to a bounded holomor-

phic function on C. By Liouville’s theorem this function is constant. All

this means that:

fx,x�pλq � 〈pI � λLq�1
x, x�〉 � lim

λÑ0

〈pI � λLq�1
x, x�〉 , λ P C.

(8.347)

Next we identify the limit in (8.347). To this end we first assume that

x P DpLq. Then we have���pI � λLq�1
x� x

��� ¤ |λ| ���pI � λLq�1
Lx

��� ¤ |λ| ���pI � λLq�1
��� }Lx}¤ |λ|

ηδ
}Lx} , (8.348)

so that limλÑ0 fx,x�pλq � 〈x, x�〉, x P DpLq, x� P X�. Since
lim
λÑ0

〈pI � λLq�1
x, x�〉 � 〈x, x�〉 for all x P DpLq,

and the family operators
!pI � λLq�1 : λ P Czt0u) is uniformly bounded

(or equi-continuous), it follows that for every x in the closure of DpLq
and every x� P X� the function λ ÞÑ 〈pI � λLq�1

x, x�〉 equals the

constant 〈x, x�〉. So, since by assumption DpLq is dense in X we infer
〈pI � λLq�1

x, x�〉 � 〈x, x�〉 for all λ P C, x P X , and x� P X�. As a conse-
quence we see that pI � λLq�1 � I for all λ P C. Then Lx � 0 for x P DpLq.
Since L is closed with dense domain it necessarily follows that L � 0.

This concludes the proof of Proposition 8.9. �

8.7 A version of the Bismut-Elworthy formula

In this section we want to present a version of the Bismut-Elworthy formula

for derivatives of Feller propagators applied to a bounded continuous func-
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tion. In the infinite-dimensional setting we introduce the following Feller

propagator (compare with (1.138)):

Qpτ, tqfpxq � Eτ,x rf pXptqqs � E rf pXτ,xptqqs (8.349)

where Xptq � Xτ,xptq is a unique weak solution to the equation (compare

with (1.23) and with (1.139))

Xptq � x� » t
τ

b ps,Xpsqq ds� » t
τ

σ ps,Xpsqq dWH psq, t ¥ τ. (8.350)

where Xptq � Xτ,xptq is a unique weak solution to the equation (compare

with (1.23) and with (1.139)). Like in Chapter 1 we assume that the process

t ÞÑ WH ptq is a cylindrical Brownian motion, that σps, xq : H Ñ E is a

family of linear operator from the Hilbert H to the Banach space, and that

bps, xq takes its values in the Banach space E. In addition to the stochastic

differential equation satisfied by the E-valued process t ÞÑ Xτ,xptq, t ¥ τ ,

we consider the corresponding flow F : pt, xq ÞÑ Xτ,xptq, t ¥ τ , and the

corresponding velocity process t ÞÑ V τ,vptq, t ¥ τ , defined by V τ,vptq �
〈v,DF pt, �q〉, v P E, and t ¥ τ . The velocity process satisfies the following

stochastic integral equation:

V τ,vptq � v � » t
τ

Dσ ps, �q pXτ,xpsqq pV τ,vpsqq dWHpsq� » t
τ

Db ps, �q pXτ,xpsqq pV τ,vpsqq ds, (8.351)

where t ¥ τ , v P E, and x P E. We also introduce the propagator δQ pτ, tq,
0 ¤ τ ¤ t ¤ T , by

〈v, δQ pτ, tqϕpxq〉 � E r〈V τ,vptq, ϕ pXτ,xptqq〉s . (8.352)

Indeed, uniqueness of solutions to equation (8.350) and (8.351) implies the

propagator property of the family δQ pτ, tq, 0 ¤ τ ¤ t ¤ T . More precisely,

for ρ ¤ ρ1 ¤ s we have:
〈

v, δQ
�
ρ, ρ1� δQ �

ρ1, s�ϕpxq〉� E
�〈
V ρ,v

�
ρ1� , δQ �

ρ1, s�ϕ �Xρ,v
�
ρ1��〉�� E

�
E

�〈
V ρ

1,V ρ,vpρ1q psq , ϕ�Xρ1,Xρ,vpρ1q psq	〉��
(uniqueness of solutions)� E rE r〈V ρ,v psq , ϕ pXρ,v psqq〉ss
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In addition, for 0 ¤ ρ ¤ s ¤ T , x, v P E, we have

〈v,DQ pρ, sqϕpxq〉 � 〈v, δQ pρ, sqDϕpxq〉 . (8.354)

For this equality we refer to the literature: see [Li (1994)]. Next we apply

Itô’s lemma to the process s ÞÑ Q ps, tqϕ pXτ,xpsqq�Q pτ, tqϕpxq to obtain:

Q ps, tqϕ pXτ,xpsqq �Q pτ, tqϕpxq� Q ps, tqϕ pXτ,xpsqq �Q pτ, tqϕ pXτ,xpτqq� � » s
τ

LpρqQ pρ, tqϕ pXτ,xpρqq dρ� » s
τ

〈dXτ,xpρq, DQ pρ, tq pXτ,xpρqq〉� 1

2

» s
τ

Tr
�
σ pρ,Xτ,xpρqq�D2Q pρ, tqϕσ pρ,Xτ,xpρqq� dρ� » s

τ

〈σ pρ,Xτ,xpρqq dWHpρq, DQ pρ, tqϕ pXτ,xpρqq〉 . (8.355)

Notice that the equalityBBsQps, tqϕpxq � �LpsqQps, tqfpxq (8.356)

is a consequence of the Theorem 1.16. The reader should compare the

equality in (8.356) with the equalities in (5.55). Here the operator Lpsq is
the same as the one in (1.143), i.e.

Lpsqfps, xq � 〈bpt, xq, Dfpt, xq〉� 1

2
Tr

�
σ ps, xq�D2fps, xqσ ps, xq� .

(8.357)

Let s Ò t in both sides of (8.355) to obtain:

ϕ pXτ,xptqq �Q pτ, tqϕpxq� » t
τ

〈σ pρ,Xτ,xpρqq dWHpρq, DQ pρ, tqϕ pXτ,xpρqq〉 . (8.358)

Next we assume that the stochastic integral in the right-hand side of (8.358)

is a martingale. Then we calculate:

E

�
ϕ pXτ,xptqq » t

τ

〈

dWH pρq, σ pρ,Xτ,xpρqq�1
V τ,vpρq〉

H

�� E

�pϕ pXτ,xptqq �Q pτ, tqϕpxqq » t
τ

〈

dWHpρq, σ pρ,Xτ,xpρqq�1
V τ,vpρq〉

H

�
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�» t
τ

〈σ pρ,Xτ,xpρqq dWH pρq, DQ pρ, tqϕ pXτ,xpρqq〉� » t
τ

〈

dWH pρq, σ pρ,Xτ,xpρqq�1
V τ,vpρq〉

H

�� E

�» t
τ

〈

σ pρ,Xτ,xpρqq�1
V τ,vpρq, σ pρ,Xτ,xpρqq�DQ pρ, tqϕ pXτ,xpρqq〉

H

�� E

�» t
τ

〈V τ,vpρq, DQ pρ, tqϕ pXτ,xpρqq〉 dρ� . (8.359)

From (8.354) it follows that the expression in (8.359) can be rewritten as

E

�» t
τ

〈V τ,vpρq, DQ pρ, tqϕ pXτ,xpρqq〉 dρ�� E

�» t
τ

〈V τ,vpρq, δQ pρ, tqDϕ pXτ,xpρqq〉 dρ�
(definition of the operator δQpτ, ρq together with Fubini’s theorem)� » t

τ

〈v, δQ pτ, ρq δQ pρ, tqDϕpxq〉 dρ
(propagator property (8.353))� » t

τ

〈v, δQ pτ, tqDϕpxq〉 dρ� pt� τq 〈v,DQ pτ, tqϕpxq〉 . (8.360)

In the final equality in (8.360) we again made an appeal to (8.354). From

(8.359) and (8.360) we deduce:

E

�
ϕ pXτ,xptqq » t

τ

〈

dWH pρq, σ pρ,Xτ,xpρqq�1
V τ,vpρq〉

H

�� pt� τq 〈v,DQ pτ, tqϕpxq〉 . (8.361)

Although the derivation of the formula in (8.361) was not rigorous, we

presented it because of its importance. The invertibility of the operators

σps, xq can be relaxed. The real requirement is that the velocity process

t ÞÑ V τ,vptq is such that it belongs to the range of σ pt,Xτ,xptqq: V τ,vptq �
σ pt,Xτ,xptqq rV τ,vptq where t ÞÑ rV τ,vptq is an adapted H-valued process

such that

» t
τ

E

����rV τ,vpsq���2
H

�
ds   8.
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Definition 8.9. The equality in (8.361) is known as the Bismut-Elworthy

formula.

The Bismut-Elworthy formula has many applications. There are also ver-

sions in the context of Brownian motion on a manifold. Versions of the

Bismut-Elworthy formula with higher order derivatives exist and can be

used to prove that certain Feller type semigroups are analytic: see e.g.

[Cerrai (2001)] Chapter 3 and Chapter 6. For a formulation and and a

proof in the infinite-dimensional context the reader is referred to [Da Prato

et al. (1995)]. Proofs for the finite-dimensional case can be found in [Bismut

(1981a, 1984)] and in [Elworthy and Li (1994)]. The reader is also referred

to [Li (1994)]. For an application of the Bismut-Elworthy formula to Back-

ward Stochastic Differential Equations in control theory see e.g. [Fuhrman

and Tessitore (2002, 2004)].
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Chapter 9

Coupling methods and Sobolev type

inequalities

In this chapter we begin with a discussion of a coupling method by Chen and

Wang. We want to establish a spectral gap related to solutions of stochastic

differential equations: see Theorem 9.1. In addition we want to include

results which do not depend on the matrix σpt, xq (diffusion coefficient)

which is such that the matrix apt, xq � σpt, xqσpt, xq� is positive-definite.

We have a Poincaré inequality in mind: see Proposition 9.10, and Definition

9.15. Related inequalities are (tight) logarithmic Sobolev inequalities: see

Definition 9.17, and Proposition 9.11. Another feature of this chapter is

the use of the first iterated squared gradient operator, and the abstract

Hessian: see the equalities in (9.224), (9.235), and (9.236). In Theorem

9.20 a relationship is established between a spectral gap and an iterated

squared gradient inequality of the form (9.226).

9.1 Coupling methods

In this section we want to apply a coupling method to prove the following

theorem, which is due to Chen and Wang: see [Chen and Wang (1997)]

Theorem 4.13. The operator L � pLptqqt¥0 is of the form:

Lptqfpxq � 1

2

ḑ

i,j�1

ai,jpt, xq B2fpxqBxiBxj � ḑ

i�1

bipt, xqBfpxqBxi . (9.1)

The matrix apt, xq � pai,jpt, xqqdi,j�1
is supposed to be positive definite,

The functions x ÞÑ ai,jpt, xq, t ¥ 0, belong to C2
�
Rd

�
, and the functionspt, xq ÞÑ ai,jpt, xq are continuous. In addition, bpt, xq is of the form

bipt, xq � 1

2

ḑ

j�1

�
ai,jpt, xqBV pt, xqBxj � Bai,jpt, xqBxj 


. (9.2)

555
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Here for every t ¥ 0 the function x ÞÑ V pt, xq is a member of C2
�
Rd

�
and has the property that Zptq :� ³

eV pt,xqdx   8; moreover, the functionpt, xq ÞÑ V pt, xq is continuous on r0,8q�Rd. Let µt be the probability mea-

sure with density Zptq�1eV pt,xq with respect to the d-dimensional Lebesgue

measure. Then µt is an invariant measure for Lptq and the semigroup esLptq
generated by Lptq, provided such a semigroup exists. Let us check this. Let

Lptq� be the (formal) adjoint of Lptq. We notice

2Lptq�fpxq� ḑ

i,j�1

B2BxiBxj pai,jpt, xqfpxqq � 2
ḑ

i�1

BBxi pbipt, xqfipxqq� ḑ

i,j�1

ai,jpt, xq B2fpxqBxiBxj � 2

�
ḑ

i,j�1

Bai,jpt, xqBxi BfpxqBxj � ḑ

i�1

bipt, xqBfpxqBxi ���
ḑ

i,j�1

B2ai,jpt, xqBxiBxj � 2
ḑ

i�1

Bbipt, xqBxi �
fpxq,

and hence

2Lptq� �eV pt,xq	� eV pt,xq ḑ

i,j�1

ai,jpt, xqB2V pt, xqBxiBxj � eV pxq ḑ

i,j�1

ai,jpt, xqBV pt, xqBxi BV pt, xqBxj� 2eV pt,xq� ḑ

i,j�1

Bai,jpt, xqBxi BV pt, xqBxj � ḑ

i�1

bipxqBV pt, xqBxi �� eV pt,xq� ḑ

i,j�1

B2ai,jpt, xqBxiBxj � 2
ḑ

i�1

Bbipt, xqBxi �
. (9.3)

From (9.3) in conjunction with (9.2) we see Lptq� �eV pt, �� � 0, and conse-

quently,

Zptq » Lptqf dµ � » pLptqfpxqq eV pt,xqdx � »
fpxqL�eV pt,�qpxqdx � 0.

Note that we used the symmetry of the matrix apt, xq � pai,jpt, xqqdi,j�1
.

In the following theorem 9.1 we consider the time-homogeneous case,

i.e. the operator L does not depend on the time t. It is not clear how to get

such a result in the time-dependent case. It is assumed that the coefficients

apxq and bpxq are such that the martingale problem is uniquely solvable for

for L, and that the corresponding Markov process is irreducible in the sense
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that the transition probability measures B ÞÑ P pt, x, Bq, B P BRd , t ¡ 0,

x P Rd, are equivalent, i.e. all of them have the same null-sets. In fact this

is a stronger notion than the standard notion of irreducibility. However, if

all functions of the form pt, xq ÞÑ P pt, x, Bq, B P E , are continuous, then

these two notions coincide: see Lemma 9.1 below.

Definition 9.1. A time-homogeneous Markov process with state space

E and probability transition function P pt, x, �q is called irreducible if

P pt, x, Uq ¡ 0 for all pt, xq P p0,8q�E and all non-empty open subsets U

of E.

Lemma 9.1. Let pt, x, Bq ÞÑ P pt, x, Bq be a transition probability func-

tion with the property that for every pt, Bq P p0,8q � E the function

x ÞÑ P pt, x, Bq is lower semi-continuous. Then all measures P pt, x, �q,pt, xq P p0,8q � E, are equivalent if and only if, for every non-void open

subset U and every pt, xq P p0,8q �E, P pt, x, Uq ¡ 0.

Proof. First suppose that for every non-void open subset U the quan-

tity P pt, x, Uq is strictly positive for all pairs pt, xq P p0,8q � E. Letpt0, x0, Bq P p0,8q � E � E be such that P pt0, x0, Bq � 0. Fix s P p0, t0q.
Then 0 � P pt0, x0, Bq � ³

P ps, y, BqP pt0 � s, x, dyq, and hence the func-

tion y ÞÑ P ps, y, Bq is P pt0 � s, x, �q-almost everywhere zero. Assume that

there exists y0 P E and ε ¡ 0 such that P ps, y0, Bq ¡ ε ¡ 0, and put

Uε � ty P E : P ps, y, Bq ¡ εu. Then Uε is a non-void open subset of E.

Moreover,

0 � P pt0, x0, Bq � »
P ps, y, BqP pt0 � s, x0, dyq¥ »

Uε

P ps, y, BqP pt0 � s, x0, dyq ¥ εP pt0 � s, x0, Uεq ¡ 0 (9.4)

where in the final step of (9.4) we used our initial hypothesis. Anyway, our

assumption that P pt0, x0, Bq � 0 leads to a contradiction with the assertion

that all transition probabilities of the form P pt, x, Uq, pt, xq P p0,8q � E,

U open, U � H, are strictly positive.

Next assume that all measures P pt, x, �q, pt, xq P p0,8q�E, are equiva-

lent, and assume that for some non-empty open subset U of E the quantity

P pt, x, Uq � 0. Then, by our assumption we may and will assume that

x P U , and that we may choose t ¡ 0 as close to zero as we please. By

the normality we have 1 � limtÓ0 P pt, x, Uq � 0. Again we end up with a

contradiction.

This completes the proof of Lemma 9.1. �
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Let pXptq,Pxq be a Markov process with the Feller property. Among other

things this implies that limtÓ0 Px rXptq P U s � 1 for all open subsets U

of E, and for all x P U . If all probability measures B ÞÑ P pt, x, Bq �
Px rXptq P Bs, B P E , have the same null-sets, then the corresponding time-

homogeneous Markov process (with the Feller property) is irreducible in the

sense of Definition 9.1. To this end, assume that there exists a non-void

open subset U of E such that P pt, x, Uq � 0. Since all measures P pt, x, �q,pt, xq P p0,8q�E have the same negligible sets, we may and will assume that

x P U and t is as close to zero as we please. Since limtÓ0 Px rXptq P U s � 1,

this leads to a contradiction, and hence our Markov process is irreducible,

provided all transition probability measures P pt, x, �q have the same null-

sets. The proof of the following theorem will be given at the end of §9.3.

Theorem 9.1. Suppose that there exists a ¡ 0 such that 〈apxqξ, ξ〉 ¤ a |ξ|2
for all x, ξ P Rd. Let apxq � σpxqσpxq� and put�γ � sup

x�yPRd

Tr pσpxq � σpyqq pσpxq � σpyqq� � 2 〈bpxq � bpyq, x� y〉|x� y|2 .

(9.5)

(Here as elsewhere TrpAq stands for the trace of the matrix or trace class

operator A.) Then the following inequality holds for all globally Lipschitz

functions f : Rd Ñ R, all x P Rd, and all t ¥ 0:

etL |f |2 pxq � ��etLfpxq��2 ¤ a p1� e�γtq
γ

etL |∇f |2 pxq. (9.6)

If γ � 0, then
1� e�γt

γ
is to be interpreted as t.

In the next corollary we write:

λminpaq � inf
 
〈apxqξ, ξ〉 : px, ξq P Rd � Rd, |ξ| � 1

(
. (9.7)

Corollary 9.1. In addition to the hypotheses in Theorem 9.1 suppose that

γ ¡ 0. Then the diffusion generated by L is mixing in the sense that

limtÑ8 ³ ��etLf ��2 dµ � ��³ fdµ��2, and the spectral gap of L satisfies

gap pLq ¥ γ
λminpaq

a
. (9.8)

Proof. [Proof of Corollary 9.1.] Let µ be the invariant probability mea-

sure corresponding to the generator L. The fact that the diffusion generated

by L is ergodic follows from results in [Chen and Wang (2003)]: see The-

orem 9.2 below. The mixing property is a consequence of assertion (ii) in
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Theorem 9.2. Since

etL |f |2 � ��etLf ��2 � » t
0

ept�sqLΓ1

�
esLf, esLf

�
ds, (9.9)

we see that» |f |2 dµ� » ��etLf ��2 dµ � » t
0

»
Γ1

�
esLf, esLf

�
dµ ds (9.10)

where we used the L-invariance of the measure µ several times. From (9.9)

it follows that limtÑ8 ³ ��etLf ��2 dµ exists. It is not clear that this limit is

equal to
��³ fdµ��2. The equality in (9.9) is an immediate consequence of

equality (9.158) in the proof of Theorem 9.1 below. We wrote

Γ1 pf, gq � 〈a∇f,∇g〉 � ḑ

i,j�1

ai,j
BfBxi BgBxj . (9.11)

By taking the limit as tÑ8 in (9.9) we obtain» |f |2 dµ� ����» f dµ����2 � » 8
0

»
Γ1

�
esLf, esLf

�
dµ ds. (9.12)

The result in Corollary 9.1 is a consequence of (9.6), (9.7), (9.11), and

(9.12). �

In the proof of Corollary 9.1 we used a result on ergodicity. The following

result can be found as Theorem 4 in [Maslowski and Seidler (1998)]. It is

applicable in our situation. For its proof we refer the reader to [Stettner

(1994)] and [Seidler (1997)]. A general discussion about this kind of prop-

erties can be found in [Maslowski and Seidler (1998)]. For convenience we

insert an outline of a proof. We need the following definition: compare with

property (a) in Proposition 9.1 below.

Definition 9.2. Let D be a subspace of CbpEq. It is said that D almost

separates compact and closed sets, if for every compact subsetK and closed

subset F such that K
�
F � H there exist a constant α ¡ 0 and a function

u P D such that α ¤ upxq � upyq for all x P K and all y P F .
Remark 9.1. If the linear subspace D contains the constant functions, and

is closed under taking finite maxima, then D almost separates compact and

closed subsets if and only for every closed subset F of E, and every x P EzF
there exists a function u P D such that upxq ¡ supyPD upyq. Let F be closed

subset of E. First suppose that D almost separates compact subsets not

intersecting F . Since a set consisting of one singleton x P EzF is compact,



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

560 Markov processes, Feller semigroups and evolution equations

there exists a function u and a constant α ¡ 0 such that α   upxq�upyq, for
all y P F . Then upxq ¡ α � supyPF upyq ¡ supyPF upyq. Conversely, let K

and F be compact and closed subset of E which do not intersect. Suppose

that for every x P K there exists a function ux P D such that uxpxq ¡
supyPF uxpyq. Then by subtracting the constant αx � supyPF uxpyq we see

that vx :� ux � αx satisfies vxpxq ¡ 0 ¥ supyPF vxpyq. By compactness

there exist finitely many functions vj :� vxj
, 1 ¤ j ¤ N , such that

max
1¤j¤N vjpxq ¥ α ¡ 0 ¥ sup

yPF max
1¤j¤N vjpyq, x P K, (9.13)

where α � infxPK max1¤j¤N vjpxq, which is strictly positive real number.

It follows that 0   α ¤ max1¤j¤N vjpxq �max1¤j¤N vjpyq, x P K, y P F .
Definition 9.3. Consider the Markov process in (9.14) below. Let the

family of time-translation operators have the property that Xpsq � ϑt �
Xps� tq Px-almost surely for all x, and are such that ϑs�t � ϑs �ϑt for all
s, t P r0,8q. Its tail or asymptotic σ-field T is defined by T � �

t¡0 ϑ
�1
t F .

In fact an event A belongs to T if and only if for every t ¡ 0 there exists

an event At P F such that A � ϑ�1
t At, or what amounts to the same

1A � 1At
� ϑt.

Remark 9.2. In fact we may assume that At P T . The reason being

that A � ϑ�1
s�tAs�t � ϑ�1

t

�
ϑ�1
s As�t�, and hence for At we may choose

At ��
s¡0 ϑ

�1
s As�t.

For more details on the notion of strong Feller property see Definitions 2.5

and 2.16.

Theorem 9.2. LettpΩ,F ,PxqxPE , pXptq, t ¥ 0q , pE, Equ (9.14)

be a time-homogeneous Markov process on a Polish space E with a transition

probability function P pt, x, �q, t ¥ 0, x P E, which is conservative in the

sense that P pt, x, Eq � 1 for all t ¥ 0 and x P E. Assume that the

process Xptq is strong Feller in the sense that for all Borel subsets B of E

the function pt, xq ÞÑ P pt, x, Bq is continuous on p0,8q � E. In addition,

suppose that all measures B ÞÑ P pt, x, Bq, B P E, t ¡ 0, x P E, are

equivalent, and that the process has an invariant probability measure µ. In

addition suppose that the domain of the generator L of the Markov process

almost separates compact and closed subsets. Then the following assertions

are true:
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(i) For every f P L1pE, µq and every x P E the equality

lim
tÑ8 1

t

» t
0

f pXpsqq ds � »
E

fdµ (9.15)

holds Px-almost surely;

(ii) For every x P E the following equality holds:

lim
tÑ8Var pP pt, x, �q � µq � 0. (9.16)

In particular, both assertion (i) and (ii) imply that the invariant measure

µ is unique.

Remark 9.3. In Theorem 10.12 in Chapter 10 it will be shown that the

Markov process (9.14) admits a σ-finite invariant measure provided that this

process satisfies the conditions of Theorem 9.2, and that it is topologically

recurrent. The Markov process (9.14) is called topologically recurrent if

every non-empty open subset is recurrent. In addition, in Corollary 10.5 a

condition will be formulated which implies that this invariant measure is in

fact finite, and hence may be taken to be a probability measure.

The equality in (9.15) is known as the strong law of large numbers or the

pointwise ergodic theorem of Birkhoff. In (9.16) Varpνq stands for the

variation norm of the measure ν. The property in (ii) is stronger than the

weak and strong mixing property. If the process in (9.14) has property (ii),

then it is said to be ergodic. There exist stronger notions of ergodicity: see

e.g. [Chen (2005)]. The property in (ii) is closely related to the fact that in

the present situation the tail σ-field is trivial. Mixing properties are heavily

used in ergodic theory: see e.g. [Meyn and Tweedie (1993b)]. Suppose

that there exists a (reference) measure m on E and a measurable functionpt, x, yq ÞÑ ppt, x, yq, pt, x, yq P p0,8q � E � E, which is strictly positive

such that for every pt, x, Bq P p0,8q � E � E the equality P pt, x, Bq �³
ppt, x, yqdmpyq holds. Then P pt, x, Aq � 0 if and only if mpAq � 0, and so

all measures P pt, x, �q have the same null-sets. For a proof of Theorem 9.2

the reader is referred to the cited literature. We will also include a proof,

which is based on work by Seidler [Seidler (1997)]: see Theorem 10.12.

Lemma 9.2 says that property (ii) in Theorem 9.2 is stronger than the

strong mixing property, which can be phrased as follows: for every f and

g P L2 pE, µq we have

lim
tÑ8Eµ rf pXptqq g pXp0qqs � lim

tÑ8 »
E

�
etLf

� pxqgpxqdµpxq � »
E

fdµ

»
E

gdµ.

(9.17)
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Here Eµ rF s � ³
E
Ex rF s dµpxq, F P L8 pΩ,Fq. Notice that by Cauchy-

Schwarz’ inequality and by the L-invariance of the probability measure µ

we have:�» ��etLfpxqgpxq�� dµpxq
2 ¤ » ��etLfpxq��2 dµpxq � » |gpxq|2 dµpxq¤ »
etL |f |2 dµ � » |g|2 dµ � » |f |2 dµ � » |g|2 dµ   8

whenever f , g P L2 pE, µq.
Lemma 9.2. Suppose that µ is an L-invariant probability measure which,

for each x P E, satisfies (9.16) in Theorem 9.2. Then

lim
tÑ8 etLfpxqetLgpxq � »

f dµ � » gdµ and

lim
tÑ8 »

etLfpxq � etLgpxqdµpxq � »
fpxq dµpxq » gpxq dµpxq (9.18)

for all f and g P CbpEq.
Proof. Let the functions f and g belong to CbpEq. The second equality

in (9.18) is a consequence of the first one and the dominated convergence

theorem of Lebesgue. The first equality is a consequence of the following

equalities and (9.16) in Theorem 9.2:����etLfpxq � etLgpxq � »
fpyq dµpyq � » gpyqdµpyq����¤ ����etLfpxq � »

fpyqdµpyq���� � ��etLgpxq��� ����» fpyqdµpyq���� � ����etLgpxq � »
gpyqdµpyq����� ����» fpyqP pt, x, dyq � »

fpyqdµpyq���� � ��etLgpxq��� ����» fpyqdµpyq���� � ����» gpyqP pt, x, dyq � »
gpyqdµpyq����¤ 2 }f |8 }g}8 Var pP pt, x, �q � µq . (9.19)

The right-hand side of (9.19) together with (9.16) completes the proof of

Lemma 9.2. �

In case the Markov process in Theorem 9.2 originates from a Feller-Dynkin

semigroup with a locally compact state space, then the following proposi-

tion is automatically true. In case we are dealing with a Polish state space,
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we need the extra condition that the domain of the generator has the prop-

erty described in property (a) in Proposition 9.1 below. This property says

that, up to any ε ¡ 0, the domain of L separates disjoint compact and closed

sets. In the locally compact and a strong Markov process originating from

a Dynkin-Feller semigroup, it is only required that C0pEq has this property,
which is automatically the case. Since by assumption P pt, x, Eq � 1 there

is no need to consider E△: see final assertion in Theorem 2.9.

Proposition 9.1. Let K be a compact subset of E and let U be an open

subset of E such that K � U . Let τUc be the hitting time of EzU : τUc �
inf ts ¡ 0 : Xpsq P EzUu. Assume that the generator L has the following

separation property:

(a) For every x P K there exist a function u � ux P DpLq such that

upxq ¡ supyPUc upyq.
Then

lim
tÓ0 sup

xPK Px rτUc ¤ ts � 0. (9.20)

In Proposition 9.2 below we will give alternative formulations for (9.20).

Proof. Since K, and since the domain of L contains the constant func-

tions there exist finitely many functions uj P DpLq, 1 ¤ j ¤ N , and a

constant α ¡ 0 such that

0   α ¤ inf
xPK max

1¤j¤N ujpxq � sup
yPUc

max
1¤j¤N ujpyq. (9.21)

To see this the reader is referred to the arguments leading to (9.13). Choose

the constant α ¡ 0 and the functions uj P DpLq, 1 ¤ j ¤ N , satisfying

(9.21). Then for x P K and 1 ¤ j ¤ N we have�
ujpxq � sup

yPUc

ujpyq
Px rτUc ¤ ts¤ Ex ruj pXp0qq � uj pX pτUcqq , τUc ¤ ts� Ex ruj pXptqq � uj pX pτUcqq , τUc ¤ ts� Ex ruj pXp0qq � uj pXptqq , τUc ¤ ts (9.22)� Ex

�
uj pXptqq � uj pX pτUc ^ tqq � » t

τUc^t Luj pXpsqq ds, τUc ^ t   t

�� Ex

�» t
τUc

Luj pXpsqq ds, τUc ¤ t

�� Ex ru pXp0qq � u pXptqq , τUc ¤ ts
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�
Ex

�
uj pXptqq � uj pX pτUc ^ tqq � » t

τUc^t Luj pXpsqq ds �� FτUc^t� ,
τUc ^ t   t

�� Ex

�» t
τUc

Luj pXpsqq ds, τUc ¤ t

�� Ex ruj pXp0qq � uj pXptqq , τUc ¤ ts
(Doob’s optional sampling theorem)� Ex

�» t
τUc

Luj pXpsqq ds, τUc ¤ t

�� Ex ruj pXp0qq � uj pXptqq , τUc ¤ ts¤ t sup
yPE Lujpyq � Ex r|ujpXp0qq � ujpXptqq|s . (9.23)

The choice of α ¡ 0 together with (9.23) shows:

α sup
xPK Px rτUc ¤ ts¤ t max

1¤j¤N sup
yPE Lujpyq � max

1¤j¤N sup
xPK Ex r|ujpXp0qq � ujpXptqq|s . (9.24)

We also notice the inequalities (1 ¤ j ¤ N):pEx r|ujpXp0qq � ujpXptqq|sq2¤ Ex

�|ujpXp0qq � ujpXptqq|2�� 2ujpxq pujpxq � Ex ruj pXptqqsq � Ex

�
uj pXptqq2�� ujpxq2� 2ujpxq �ujpxq � etLujpxq� � etL |uj|2 pxq � ujpxq2. (9.25)

Since the semigroup
 
etL : t ¥ 0

(
is Tβ-continuous from (9.25) and (9.24)

we infer that

lim
tÓ0 sup

xPK Ex r|uj pXp0qq � uj pXptqq|s � 0, 1 ¤ j ¤ N. (9.26)

From (9.23) and (9.26) it follows that

lim sup
tÓ0 sup

xPK Px rτUc ¤ ts ¤ ε. (9.27)

Hence, since in (9.27) ε ¡ 0 is arbitrary, this concludes the proof of Propo-

sition 9.1. �

Remark 9.4. Suppose that in Proposition 9.1 the state space E is second

countable and locally compact. In this case there exists a function u P
C0pEq such that 1K ¤ u ¤ 1U . Then we use the time-homogeneous strong

Markov property to rewrite (9.22) as follows:

Px rτUc ¤ ts � Ex ru pXptqq , τUc ¤ ts � Ex r1� u pXptqq , τUc ¤ ts
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�
EXpτUc q ru pX pt� τUcqq � u pX p0qqs , τUc ¤ t

�� Ex r1� u pXptqq , τUc ¤ ts¤ sup
yRU sup

sPr0,tsEy ru pXpsqq � upXp0qqs � Ex r|u pXp0qq � u pXptqq|s¤ sup
sPr0,ts supyPE �

esLupyq � upyq�� etL |upxq � u| pxq. (9.28)

Since, uniformly on E, etLu � u converges to zero when t Ó 0, the proof of

Proposition 9.1 can be finished as in the non-locally compact case.

Remark 9.4 shows that assertion (i) in Proposition (9.2) automatically holds

when the state space E is second countable and locally compact. It also

holds when the domain of the generator almost separates points and closed

sets (see (a) in Proposition 9.1), and when the functions x ÞÑ Px rτUc s are
continuous on the open subset U : see also item (i) in Proposition 9.3.

Proposition 9.2. Let d be a metric on E which is compatible with its

Polish topology. Then the following assertions are equivalent:

(i) For every compact subset K and every open subset U of E such that

K � U the equality in (9.20) holds, i.e. lim
tÓ8 sup

xPK Px rτUc ¤ ts � 0 where

τUc stands for the first hitting time of the complement of U , which is

also called the first exit time from U .

(ii) For every compact subset K of E and every η ¡ 0 the following

equality holds:

lim
tÓ0 sup

xPK Px

�
sup

0 s¤t d pXpsq, xq ¥ η

� � 0. (9.29)

(iii) For every compact subset K and every open subset U of E such that

K � U , and every sequence ptnqnPN � p0,8q which decreases to 0, there

exists a sequence of open subsets pUnqnPN such that Un � K, n P N,

and which has the property that

lim
nÑ8 sup

xPUn

Px rτUc ¤ tns � 0. (9.30)

(iv) For every compact subset K of E and every η ¡ 0 and every sequenceptnqnPN � p0,8q which decreases to 0 there exists a sequence of open

subsets pUnqnPN such that Un � K, n P N, and with the property that:

lim
nÑ8 sup

xPUn

Px

�
sup

0 s¤tn d pXpsq, xq ¥ η

� � 0. (9.31)
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The result in Proposition 9.2 resembles the result in Proposition 4.6: see

the proof of Lemma 4.2. In [Seidler (1997)] Seidler employs assumption

(9.29) to a great extent. Assertions (iii) and (iv) of Proposition 9.2 show

that in [Seidler (1997)] hypothesis (A5) is in fact a consequence of (A4).

Proposition 2.4 in [Seidler (1997)] then shows that there exists a compact

recurrent subset whenever there exists a point x0 P E with the property

that every open subset containing x0 is recurrent. For a precise formulation

and a proof the reader is referred to Proposition 9.4 and its proof below.

See formula (9.20) in Proposition 9.1 how the almost separation property of

the generator L of the Markov process in (9.14) implies that the equivalent

conditions in Proposition 9.2 are satisfied.

Proof. As already indicated the proof is in the spirit of the proof of

Lemma 4.2. Also note that, since Un � K, the implications (iii) ùñ (i)

and (iv) ùñ (ii) are trivially true.

(i) ùñ (ii). Let K be a compact subset of E. Fix η ¡ 0, and consider

the open subset U defined by U � ¤
xPK ty P E : dpy, xq   ηu. Then K � U ,

and U c � EzU � £
xPK ty : dpy, xq ¥ ηu. It follows that the event tτUc   tu

is contained in the event

"
sup

0 s t d pXpsq, xq ¥ η

*
for all x P K. Then for

x P K we have

Px rτUc   ts ¤ Px

�
sup

0 s t d pXpsq, xq ¥ η

�
. (9.32)

Then (ii) follows from (i) and (9.32).

(ii) ùñ (i). Let the compact K and the open subset of E be such

that K � U . Then by compactness there exist points x1, . . . , xn in K and

strictly positive numbers η1, . . . , ηn such that

K � n¤
j�1

ty P E : d py, xjq   ηju � n¤
j�1

ty P E : d py, xjq   2ηju � U.

(9.33)

Put V ��n
j�1 ty P E : d py, xjq   2ηju. Then

U c � V c � n£
j�1

ty P E : d py, xjq ¥ 2ηju . (9.34)

Let y P V c and x P K be arbitrary. Then by (9.33) there exists jx Pt1, . . . , nu such that d px, xjxq   ηjx . It follows that

2ηjx ¤ d py, xjxq ¤ d py, xq � d px, xjxq   d py, xq � ηjx ,
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and hence dpy, xq ¡ ηjx . Put η � min1¤j¤n ηj . Consequently, from (9.34)

we infer U c � �
xPK ty P E : dpy, xq ¡ ηu, and hence for all x P K the

event tτUc   tu is contained in tsup0 s t d pXpsq, xq ¡ ηu. Putting these

observations together shows

sup
xPK Px rτUc   ts ¤ sup

xPK Px

�
sup

0 s t d pXpsq, xq ¡ η

�
, (9.35)

and hence by (9.35) assertion (i) follows from (ii).

Fix η ¡ 0, and put Un � tx P E : d px,Kq   2�nηu. In the proofs of

the implications (i) ùñ (iii) and (ii) ùñ (iv) we take the sequence pUnqnPN.
(i) ùñ (iii). Let ptnqnPN be a sequence which decreases to 0. Since K

is a compact subset of U , it follows that Un � U for n sufficiently large.

Assuming that the limit in (9.30) does not vanish, then there exists δ ¡ 0

and a subsequence ptnk
qkPN together with a sequence pxkqkPN, xk P Unk

,

such that

Pxk
rτUc ¤ tnk

s ¡ δ. (9.36)

Since xk P Unk
there exists x1k P K such that d pxk, x1kq   2�nkη. By

compactness of K (and metrizability) there exists a subsequence
�
x1kℓ�ℓPN

which converges to x1 P K. Then by the triangle inequality

d
�
xkℓ , x

1� ¤ d
�
xkℓ , x

1
kℓ

�� d
�
x1kℓ , x1� ¤ 2�nkℓη � d

�
x1kℓ , x1� . (9.37)

From (9.37) it follows that the set K 1 :� tx1u�!
xnkℓ

: ℓ P N

)
is compact.

From (9.36) we see that

δ   sup
xPK1 Px �τUc ¤ tnkℓ

�
. (9.38)

From assertion (i) it follows that the right-hand side of (9.38) converges to

0, when ℓ Ñ 8. Since the latter is a contradiction we see that assertion

(iii) is a consequence of (i).

The proof of the implication (ii) ùñ (iv) follows the same lines: details

are left to the reader.

This completes the proof of Proposition 9.2. �

Proposition 9.3. Let the notation and hypotheses be as in Proposition 9.1.

In particular τUc is the first hitting time of the complement of the open set

U , and K is a compact subset of U . Let g P L8 �r0,8q�E,Br0,8q b E
�

and t ¡ 0 be fixed. Then the following assertions are true:
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(i) The following functions are continuous on U :

x ÞÑ Ex rg pt,Xptqq , τUc ¡ ts and x ÞÑ Ex rg pτUc , X pτUcqqs .
(ii) Let K be a compact subset of U . Then the family of measurestB ÞÑ Px rpτUc , X pτUcqq P Bs : x P Ku

is tight. Here B varies over the Borel subsets of r0,8q �E.

(iii) The function x ÞÑ Px rτUc   8s is lower semi-continuous.

In assertion (iii) the subset U may be an arbitrary Borel subset. In the

proof we use the fact that s � τUc � ϑs decreases to τUc Px-almost surely

when s decreases to 0.

Remark 9.5. A proof similar to the proof of (i) shows that the function

x ÞÑ Px rτUc � 8s is continuous on U as well.

Proof. For brevity we write τ � τUc . Let s P p0, tq be arbitrary (small)

and x P K where K is a fixed compact subset of U .

(i) Then we have

Ex
�
EXpsq rg pt,Xpt� sqq , τ ¡ t� ss�� Ex rg pt,Xptqq , τ ¡ ts� Ex rg pt,Xpt� sqq � ϑs, τ � ϑs ¡ t� ss � Ex rg pt,Xptqq , τ ¡ ts� Ex rg pt,Xpt� sqq � ϑs, τ � ϑs ¡ t� s, τ ¡ ss� Ex rg pt,Xpt� sqq � ϑs, τ � ϑs ¡ t� s, τ ¤ ss� Ex rg pt,Xptqq , τ ¡ ts

(on the event tτ ¡ su the equality s� τ � ϑs � τ holds Px-almost surely)� Ex rg pt,Xpt� sqq � ϑs, τ � ϑs ¡ t� s, τ ¤ ss . (9.39)

From (9.39) and the Markov property we infer:��Ex �EXpsq rg pt,Xpt� sqq , τ ¡ t� ss�� Ex rg pt,Xptqq , τ ¡ ts��¤ }g pt, �q}8 Px rτ ¤ ss . (9.40)

By Proposition 9.1 the right-hand side of (9.40) converges to zero uniformly

on compact subsets of U . Since, by the strong Feller property, the functions

x ÞÑ Ex
�
EXpsq rg pt,Xpt� sqq , τ ¡ t� ss�, s P p0, tq, are continuous, we

infer that the function x ÞÑ Ex rg pt,Xptqq : τ ¡ ts is continuous as well.
Let h P L8 pE, Eq. We will use the continuity on U of functions

of the form x ÞÑ Ex rh pXptqq , τ ¡ ts to prove that the function x ÞÑ
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Ex rg pτUc , X pτUcqqs is continuous on U . To this end let x P K. We consider

the following difference:

Ex rg pτ,Xpτqq , τ   8s � Ex
�
EXpsq rg ps� τ,Xpτqq , τ   8s�� Ex rg pτ,Xpτqq , τ   8s � Ex
�
EXpsq rg ps� τ,Xpτqq , τ   8s , τ ¡ s

�� Ex
�
EXpsq rg ps� τ,Xpτqq , τ   8s , τ ¤ s

�
(Markov property)� Ex rg pτ,Xpτqq , τ   8s � Ex rg ps� τ,Xpτqq � ϑs, τ � ϑs   8, τ ¡ ss� Ex

�
EXpsq rg ps� τ,Xpτqq , τ   8s , τ ¤ s

�� Ex rg pτ,Xpτqq , τ   8s� Ex rg ps� τ � ϑs, Xps� τ � ϑsqq , s� τ � ϑs   8, τ ¡ ss� Ex
�
EXpsq rg ps� τ,Xpτqq , τ   8s , τ ¤ s

�
(on the event tτ ¡ su the equality s� τ � ϑs � τ holds Px-almost surely)� Ex rg pτ,Xpτqq , τ ¤ ss� Ex

�
EXpsq rg ps� τ,Xpτqq , τ   8s , τ ¤ s

�
. (9.41)

By the strong Feller property the functions

x ÞÑ Ex
�
EXpsq rg ps� τ,Xpτqq , τ   8s� , s ¡ 0,

are continuous. From (9.20) in Proposition 9.1 together with (9.41) we see

that, uniformly on the compact subset K, the functions

x ÞÑ Ex
�
EXpsq rg ps� τ,Xpτqq , τ   8s� , s ¡ 0,

converge to x ÞÑ Ex rg pτ,Xpτqq , τ   8s whenever s Ó 0. Consequently,

since K is an arbitrary compact subset of U we see that the function x ÞÑ
Ex rg pτ,Xpτqq , τ   8s is continuous on U .

(ii). Let K be a compact subset of the open subset U , and let τ �
τUc the hitting of U c, the complement of U . In order to prove that the

family of Px-distributions, x P K, of the space-time variable pτ,X pτqq, is
tight, by assertion (a) of Theorem 2.3 it suffices to prove that for every

sequence of bounded continuous functions pfn : n P Nq � Cb pr0,8q �Eq
which decreases pointwise to zero we have:

lim
nÑ8 sup

xPK Ex rfn pτ,Xpτqq , τ   8s � 0. (9.42)

By Dini’s lemma and by assertion (i), the equality in (9.42) follows from

the pointwise equality:

lim
nÑ8Ex rfn pτ,Xpτqq , τ   8s � 0. (9.43)
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The equality in (9.43) follows from Lebesgue’s dominated convergence the-

orem.

(iii) By the Markov property we have the equalities

Px rτ   8s � sup
s¡0

Px rs� τ � ϑs   8s � sup
s¡0

Ex
�
PXpsq rτ   8s� . (9.44)

Functions of the form x ÞÑ Ex rgpXpsqqs, where g is a bounded Borel func-

tion, are continuous, and hence by (9.44) the function x ÞÑ Px rτ   8s is
lower semi-continuous. The same argument works in case τ is the hitting

time of a Borel subset of E.

This completes the proof of Proposition 9.3. �

Under the hypotheses of the equivalent properties in Proposition 9.2 it will

be shown that there exists a compact recurrent subset, provided all open

subsets are recurrent. More precisely we have the following result.

Proposition 9.4. Suppose that there exists a point x0 P E such that ev-

ery open neighborhood of x0 is recurrent, and suppose that the equivalent

properties in Proposition 9.2 are satisfied. In addition, suppose that all

probability measures B ÞÑ P pt, x, Bq, pt, xq P p0,8q � E, are equivalent.

Then there exists a compact recurrent subset. In fact, the following asser-

tion is true. Fix t0 ¡ 0, and let K be a compact subset of E with the

property that P pt0, x0, Kq ¡ 0, and x0 R K. Then K is recurrent.

Since the equivalent properties in Proposition 9.2 are satisfied whenever the

domain of the generator L almost separates points and closed subsets and

if it contains the constant functions, the following corollary is an immediate

consequence of Proposition 9.4.

Corollary 9.2. Suppose that there exists a point x0 P E such that every

open neighborhood of x0 is recurrent, and suppose that the domain of the

generator L almost separates points and closed subsets, and contains the

constant functions. In addition, suppose that all probability measures B ÞÑ
P pt, x, Bq, pt, xq P p0,8q �E, are equivalent. Then there exists a compact

recurrent subset. More precisely, the following statement is true. Fix t0 ¡ 0,

and let K be a compact subset of E with the property that P pt0, x0, Kq ¡ 0,

and x0 R K. Then K is recurrent.

Proof. Let x0 be as in Proposition 9.4. Fix t0 ¡ 0, and let K be a

compact subset of E with the property that P pt0, x0, Kq ¡ 0, and x0 R K.

By inner-regularity of the measure B ÞÑ P pt0, x0, Bq such compact subset

K exists, We shall prove that K is recurrent. Let τK be the first hitting
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time of K and let pUℓqℓPN be sequence of open neighborhoods of x0 with

respective first hitting times τ pℓq, ℓ P N. We suppose that this sequence

forms a neighborhood base of x0, and that U ℓ�1 � Uℓ where U ℓ�1 stand

for the closure of Uℓ�1. We assume that Uℓ
�
K � H. For every ℓ P N we

define the following sequence of stopping times: τ
pℓq
1 � τ pℓq, and

τ
pℓq
n�1 � inf

!
s ¡ τ pℓqn � 2t0 : Xpsq P Uℓ) . (9.45)

Since the open subset Uℓ is recurrent, the hitting times τ
pℓq
n are finite Px-

almost surely for all x P E, and for all n P N. As in the proof of Lemma

9.3 below we introduce the following sequence of events:

Aℓn � !
τ pℓqn ¤ τ pℓqn � τK � ϑ

τ
pℓq
n

¤ τ pℓqn � t0

) � !
τK � ϑ

τ
pℓq
n

¤ t0

)
, (9.46)

ℓ, n P N. Then A
pℓq
n P F

τ
pℓq
n�1

, and we have

Px

�
Apℓq
n

�� F
τ
pℓq
n

� � Ex
�
PXpτℓ

nq rτK ¤ t0s� ¥ inf
yPUℓ

Py rτK ¤ t0s . (9.47)

By assertion (i) in Proposition 9.3 we see that the function y ÞÑ
Py rτK ¤ t0s � 1 � P rτK ¡ t0s is continuous at y � x0. From (9.47) it

then follows that

Px

�
Apℓq
n

�� F
τ
pℓq
n

� ¥ 1

2
Px0

rτK ¤ t0s ¥ 1

2
Px0

rX pt0q P Ks� 1

2
P pt0, x0, Kq ¡ 0 (9.48)

for ℓ ¥ ℓ0. From the generalized Borel-Cantelli lemma (or the Borel-

Cantelli-Lévy lemma) it then follows that Px

�°8
n�1 1Apℓqn

� 8� � 1, ℓ ¥ ℓ0,

and hence the compact subset K is recurrent. For a precise formulation of

the Borel-Cantelli-Lévy lemma the reader is referred to [Shiryayev (1984)]

Corollary 2 page 486 or to Theorem 9.3 below.

This completes the proof of Proposition 9.4. �

A precise formulation of the generalized Borel-Cantelli lemma reads as fol-

lows: see e.g. (the proof of) Corollary 5.29 in [Breiman (1992)].

Theorem 9.3. Let pΩ,G,Pq be a probability space and let pGnqnPN be filtra-

tion in G. Let pAnqnPN be a sequence of events such that An P Gn�1, n P N.

Then the following equality of events holds P-almost surely:tω P Ω : ω P An infinitely oftenu � #
ω P Ω :

8̧
n�1

P
�
An

�� Gn� pωq � 8+
.

(9.49)
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The following result shows that Proposition 9.4 also holds for Markov

chains.

Proposition 9.5. LettpΩ,F ,Pxq , pXpnq, n P Nq , pϑn, n P Nq , pE,N qu (9.50)

be a Markov chain with the property that all Borel measures B ÞÑ
P p1, x, Bq � Px rXp1q P Bs, x P E, are equivalent. In addition suppose

that for every Borel subset B the function x ÞÑ P p1, x, Bq is continuous.

Let there exist a point x0 P E such that every open neighborhood of x0 is

recurrent. Then there exists a compact recurrent subset. In fact, the fol-

lowing assertion is true. Let K be a compact subset of Ez tx0u with the

property that P p1, x0, Kq ¡ 0. Then K is recurrent, i.e. Px
�
τ1K   8� � 1

for all x P E.

Here τ1K � inf tk ¥ 1 : k P N, Xpkq P Ku.
Proof. The proof can be copied from the proof of Proposition 9.4 with

t0 � 1, τK � τ1K . A similar convention is used for the hitting times of the

open neighborhoods Uℓ of x0. Also notice that
 
τ1K ¤ 1

( � tXp1q � Ku,
and that the function x ÞÑ P p1, x,Kq is continuous.

These arguments suffice to complete the proof of Proposition 9.5. �

Next we collect some of the results proved so far. The existence of a compact

recurrent subset will also be used when we prove the existence of a σ-finite

invariant Radon measure: see Theorem 10.12. For the notion of strong

Feller property see Definitions 2.5 and 2.16.

Theorem 9.4. As in Theorem 9.2 lettpΩ,F ,PxqxPE , pXptq, t ¥ 0q , pE, Equ (9.51)

be a time-homogeneous Markov process on a Polish space E with a tran-

sition probability function P pt, x, �q, t ¥ 0, x P E, which is conservative

in the sense that P pt, x, Eq � 1 for all t ¥ 0 and x P E. Assume that

the process Xptq is strong Feller in the sense that for all Borel subsets B

of E the function pt, xq ÞÑ P pt, x, Bq is continuous on p0,8q � E. In ad-

dition, suppose that all measures B ÞÑ P pt, x, Bq, B P E, t ¡ 0, x P E,

are equivalent. Suppose that there exists x0 P E with the property that all

open neighborhoods of x0 are recurrent. In addition assume that the gener-

ator of the process almost separate points and closed subsets, in the sense

that for every x P U with U open there exists a function v P DpLq such

that vpxq ¡ supyPEzU vpyq. Then there exists a compact subset A which is
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recurrent. Moreover, every Borel subset B for which P pt0, x0, Bq ¡ 0 for

some pt0, x0q P p0,8q is recurrent.

Theorem 10.8 and its companion Theorem 10.9 show that under the hy-

potheses of Theorem 9.4 a Borel subset is recurrent if and only if it is Harris

recurrent. For the notion of the almost separation property the reader may

want to see Remark 9.1 following Definition 9.2: see Proposition 9.1 as well.

Proof. In assertion (i) of Proposition 9.1 it is shown that the almost

separation implies the very relevant property (9.20) which is somewhat

strengthened in Proposition 9.2. Using this property we see that the func-

tion x ÞÑ Px rτA ¤ ts is continuous on EzA where A is compact. From the

proof of Proposition 9.4 it follows that there exists a recurrent compact

subset. From Lemma 9.3 below we see that all Borel subsets B for which

P pt0, x0, Bq ¡ 0 for some pt0, x0q P p0,8q �E are recurrent.

This completes the proof of Theorem 9.4. �

Again we consider the time-homogeneous Markov process (9.14) in The-

orem 9.2. Theorem 10.8 and its companion Theorem 10.9 show that in

the context of a strong Markov process with the strong Feller property the

collection of recurrent Borel subsets coincides with the collection of Har-

ris recurrent subsets provided that all measures B ÞÑ P pt, x, Bq, B P E ,pt, xq P p0,8q �E, are equivalent.

Definition 9.4. Let A be a Borel subset of E, and τA its first hitting time:

τA � inf ts ¡ 0 : Xpsq P Au. The subset A is called recurrent if

Px rτA   8s � 1 for all x P E.
The subset A is called Harris recurrent provided

Px

�» 8
0

1A pXpsqq ds � 8� � 1 for all x P E. (9.52)

Definition 9.5. Let µ be an invariant measure for the Markov process

in (9.14). Then the Markov process is µ-Harris recurrent provided every

Borel subset A for which µpAq ¡ 0 is Harris recurrent. Suppose that all

measures B ÞÑ P pt, x, Bq, B P E , pt, xq P p0,8q � E, are equivalent. Then

the corresponding Markov process is called Harris recurrent if every Borel

subset for which P p1, x0, Bq ¡ 0 for some x0 P E is Harris recurrent.

The following theorem says among other things that, if the Markov process

possesses a finite invariant measure µ, then there exists a compact recur-

rent subset K of E such that µpKq ¡ 0. It is closely related to Theorem
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2.1 in [Seidler (1997)]. An adapted version will be employed in the proof

of Theorem 10.12 in Chapter 10: see (10.221)–(10.238). In particular the

σ-finiteness will be at stake: see the arguments after the (in-)equalities

(10.205) and (10.220). Another variant can be found in Theorem 9.11 be-

low. For more details on the notion of strong Feller property see Definitions

2.5 and 2.16.

Theorem 9.5. Let the Markov process have right-continuous sample paths,

be strong Feller, and irreducible. Let K � E be a compact subset which is

non-recurrent. Then

sup
xPE » 8

0

P pt, x,Kq dt   8, and µpKq � 0 (9.53)

for all finite invariant measures µ. If, in addition, P p1, x0, Kq ¡ 0 for

some x0 P E, then

Px
�
sup

 
t ¥ 0, Xptq P K 1(   8� � 1, and lim

tÑ8P �
t, x,K 1� � 0 (9.54)

for all x P E and all compact subsets K 1.
Proof. Let K be a non-recurrent compact subset of E. We begin by

showing that

sup
xPE » 8

0

P pt, x,Kq dt   8. (9.55)

The proof of (9.55) follows the same pattern as the corresponding proof

by Seidler in [Seidler (1997)], who in turn follows Khasminskii [Has1minskĭı

(1960)]. Let τ be the first hitting time of K. Since K is non-recurrent there

exists y0 R K such that

Py0 rτ � 8s � Py0 rXptq R K for all t ¥ 0s ¡ 0.

By Remark 9.5 which follows Proposition 9.3 the function x ÞÑ Px rτ � 8s
is continuous on EzK. Hence there exists an open neighborhood V of y0
such that

α :� inf
xPV Px rτ � 8s ¡ 0. (9.56)

Fix t0 ¡ 0 arbitrary, and choose y P K. Then by the Markov property we

have

Py

�» 8
0

1K pXptqq dt   t0

�� Ey

�
ω ÞÑ PXpt0qpωq �» t0

0

1K pXptqpωqq dt� » 8
0

1K pXptqq dt   t0

��
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�
ω ÞÑ PXpt0qpωq �» t0

0

1K pXptqpωqq dt   t0, Xptq R K for all t ¥ 0

��¥ Py

�» t0
0

1K pXptqq dt   t0, Xptq R K for all t ¥ t0

�¥ Py

�» t0
0

1K pXptqq dt   t0, X pt0q P V, Xptq R K for all t ¥ t0

�¥ Ey
�
PXpt0q rτ � 8s , X pt0q P V �

(apply (9.56), the definition of α)¥ αP pt0, y, V q ¥ α inf
xPK P pt0, x, V q �: q ¡ 0, (9.57)

where we used the irreducibility of our Markov process, and the continuity

of the function x ÞÑ P pt0, x, V q. Hence we infer

sup
yPK Py

�» 8
0

1K pXptqq dt ¥ t0

� ¤ 1� q. (9.58)

Put

κ � inf

"
t ¡ 0 :

» t
0

1K pXpsqq ds ¥ t0

* � inf

"
t ¡ 0 :

» t
0

1K pXpsqq ds � t0

*
.

(9.59)

Then κ is a stopping time relative to the filtration pFtqt¥0, because Xpsq
is Ft-measurable for all 0 ¤ s ¤ t. Moreover, by right-continuity of the

process t ÞÑ Xptq it follows that Xpκq P K on the event tτ   8u. Let

y P E. By induction we shall prove that

Py

�» 8
0

1K pXptqq dt ¡ kt0

� ¤ p1� qqk�1, k P N, k ¥ 1. (9.60)

To this end we put

αk � sup
xPK Ex

�» 8
0

1K pXpsqq ds ¥ kt0

�
. (9.61)

If x belongs to K, then by the Markov property we have:

Px

�» 8
0

1K pXpsqq ds ¡ pk � 1qt0� � Px

�» 8
κ

1K pXpsqq ds ¡ kt0, κ   8�� Ex

�
PXpκq �» 8

0

1K pXpsqq ds ¡ kt0

�
, κ   8�� Ex

�
PXpκq �» 8

0

1K pXpsqq ds ¡ kt0

�
,

» 8
0

1K pXpsqq ds ¥ t0

�¤ α1αk. (9.62)
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From (9.62) and induction we infer

sup
xPK Px

�» 8
0

1K pXpsqq ds ¥ kt0

�¤ αk1 � �
sup
xPK �» 8

0

1K pXpsqq ds ¥ t0

�
k ¤ p1� qqk, (9.63)

where in the final step of (9.63) we employed (9.58). If y P E is arbitrary,

then we proceed as follows:

Py

�» 8
0

1K pXpsqq ds ¡ pk � 1qt0�� Py

�» 8
κ

1K pXpsqq ds ¡ kt0, κ   8�� Ey

�
PXpκq �» 8

0

1K pXpsqq ds ¡ kt0

�
, κ   8�¤ p1� qqkPy rκ   8s ¤ p1� qqk. (9.64)

The inequality in (9.64) implies the inequality in (9.60). To show the first

part of (9.53) we observe that for x P E we have» 8
0

P pt, x,Kq dt � Ex

�» 8
0

1K pXpsqq ds�¤ 8̧
k�1

kt0Px

�pk � 1qt0   » 8
0

1K pXpsqq ds ¤ kt0

�¤ t0 � 8̧
k�2

Px

�» 8
0

1K pXpsqq ds ¡ pk � 1qt0�¤ t0 � t0

8̧
k�2

kp1� qqk�2 � t0

�
1� 1

q
� 1

q2


   8.
(9.65)

The first part of (9.53) is a consequence of (9.65) indeed.

In fact from (9.65) we also obtain µpKq � 0 for any finite invariant

measure µ. Let µ be an invariant probability measure. That µpKq � 0 can

be seen by the following (standard) arguments:

µpKq � 1

T

» T
0

µpKq dt � 1

T

» T
0

»
E

P pt, y,Kq dµpyqdt� »
E

�
1

T

» T
0

P pt, y,Kq dt� dµpyq ¤ 1

T
sup
xPE » 8

0

P pt, x,Kq dt
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T

�
1� 1

q
� 1

q2



. (9.66)

Since T ¡ 0 is arbitrary (9.66) implies µpKq � 0.

Next assume that the compact subset K has the additional property

that P p1, x0, Kq ¡ 0. Let K 1 be an arbitrary compact subset. We want to

prove that

Px
�
sup

 
t ¥ 0 : Xptq P K 1(   8� � 1. (9.67)

Put hpxq � ³8
0
P pt, x,Kq dt. Then by (9.65) the function h P L8 pE, Eq.

The function hpxq is also lower semi-continuous, because the functions x ÞÑ
P pt, x,Kq, t ¡ 0, are continuous. Moreover, it is strictly positive, by the

fact that for all t ¡ 0 and all x P E, P pt, x,Kq ¡ 0. Put Hn �  
h ¡ n�1

(
.

Then there exists m P N such that K 1 � Hm. Fix x P E, denote by σ the

first hitting time of K 1, and let σpkq be the first hitting time of K 1 after
time k, i.e. σpkq � k�σ�ϑk. Taking into account that X pσpkqq P K 1 � Hm

Px-almost surely on the event tσpkq   8u we obtain:

1

m
Px rσpkq   8s ¤ Ex rh pX pσpkqqq , σpkq   8s� Ex

�» 8
0

P ps,X pσpkqq , Kq ds, σpkq   8�� » 8
0

Ex
�
PXpσpkqq rXpsq P Ks , σpkq   8�

ds� » 8
0

Ex
�
Px

�
X ps� σpkqq P K �� Fσpkq� , σpkq   8�

ds� » 8
0

Ex r1K pX ps� σpkqqq , σpkq   8s ds� Ex

�» 8
σpkq 1K pX psqq ds, σpkq   8�

(σpkq ¥ k on the event tσpkq   8u)¤ Ex

�» 8
k

1K pXpsqq ds, σpkq   8�¤ » 8
k

P ps, x,Kq ds. (9.68)

The sequence of events tσpkq   8u, k P N, decreases. From (9.68) it follows

that its intersection has Px-measure zero. It follows that its complement

has full Px-measure. This means that for Px-almost all ω there exists k P N
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such that σpkqpωq � 8, and, consequently, (9.67) holds. From (9.67) we

also readily infer limtÑ8 P pt, x,K 1q � 0, because after the process Xptq
has visited K 1 it only returns there finitely many times Px-almost surely.

This completes the proof of Theorem 9.5. �

A stopping time of the form inf
!
t ¡ 0 :

³t
0
1K pXpsqq ds ¡ 0

)
is called the

penetration time of K: compare with (9.59).

Lemma 9.3. Let the hypotheses and notations be as in Theorem 9.2.

Suppose that there exists a compact subset K which is recurrent. Then

all Borel subsets B with the property that P pt0, x0, Bq ¡ 0 for some

pair pt0, x0q P p0,8q � E (or, equivalently, P pt, x, Bq ¡ 0 for all pairspt, xq P p0,8q �E) are recurrent.

Proof. Let B P E be such that P pt, x, Bq ¡ 0 for some (all) pairspt, xq P p0,8q � E. Let τB be the (first) hitting time of B: τB �
inf tt ¡ 0 : Xptq P Bu. We need to show that Px rτB   8s � 1 for all x P E.

By our assumptions we have

inf
xPK Px rτB ¤ 1s ¥ inf

xPK Px rXp1q P Bs � inf
xPK P p1, x, Bq �: q ¡ 0. (9.69)

Let τ be the first hitting time of K, and define a sequence of hitting times

of K as follows:

τ1 � τ, and τn�1 � inf tt ¡ τn � 2 : Xptq P Ku � τn � 2� τ � ϑτn�2.

(9.70)

Then, for any n P N, τn   8 and X pτnq P K Px-almost surely for all x P E.

Put

An � tτn ¤ τn � τB � ϑτn ¤ τn � 1u � tτB � ϑτn ¤ 1, τn   8u . (9.71)

The events in (9.71) should be compared with similar ones in (9.46). Then

An P Fτn�1 � Fτn�1
, and we have with q as in (9.69)8̧

n�1

Px
�
An

�� Fτn� � 8̧
n�1

Px
�tτB � ϑτn ¤ 1u �� Fτn�� 8̧

k�1

PXpτnq rτB ¤ 1s ¥ 8̧
k�1

inf
yPK Py rτB ¤ 1s¥ 8̧

k�1

q � 8, Px-almost surely (9.72)

for all x P E. Therefore by the generalized Borel-Cantelli lemma (see e.g.

[Shiryayev (1984)] Corollary VII 5.2, or see equality (9.49) in Theorem 9.3)
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Px-almost all ω belong to An for infinitely many n P N. However, if ω P An,
then τBpωq ¤ τn � 1   8.

This concludes the proof of Lemma 9.3. �

The following result is a reformulation of Lemma 9.3 for Markov chains

with values in E. Its proof can be copied from the proof of Lemma 9.3.

Lemma 9.4. Let the notation and hypotheses be as in Proposition 9.5.

Suppose that there exists a compact subset K which is recurrent. Then

all Borel subsets B with the property that P pt0, x0, Bq ¡ 0 for some pairpt0, x0q P p0,8q � E (or, equivalently, P pt, x, Bq ¡ 0 for all pairs pt, xq Pp0,8q �E) are recurrent.

For the notion of a Harris recurrent subset, the reader is referred to Defini-

tion 9.4. The following result follows merely from the recurrence properties

of our Markov process. These recurrence properties were established in

Lemma 9.3. The existence of a finite invariant probability measure is not

required.

Proposition 9.6. Let the hypotheses and notation be as in Theorem 9.2

except that the existence of an invariant probability measure is required.

Assume that there exists a compact recurrent subset. Then every non-empty

open subset U of E is Harris recurrent.

Proof. Let U be any open subset of E. Suppose H � U � E. Since

our Markov process is recurrent, there exists a pair pt0, x0q P p0,8q �
E such that P pt0, x0, Uq ¡ 0. Let the compact subset K of U be such

that P pt0, x0, Kq ¥ 1
2
P pt0, x0, Uq ¡ 0. From Lemma 9.3 we infer that

the compact subset K is recurrent. Let τUc be the hitting time of EzU .

From (9.20) in Proposition 9.1 we see that there exists q ¡ 0 such that

sup
yPK Py rτUc ¤ qs   1

2
. Then we see inf

yPK Py rτUc ¡ qs ¥ 1

2
. Let τ � τK be

the first hitting time of K. Then by recurrence Px rτ   8s � 1, x P E.

Instead of τUc we write σ. We define the double sequence of hitting times

of K and EzU :

τ1 � τ, σn � τn � σ � ϑτn , τn�1 � σn � τ � ϑσn
. (9.73)

In addition we introduce the events: Qn � tσn � τn ¡ qu. For every y P E
we have:8̧

n�1

Py
�
Qn

�� Fτn� � 8̧
n�1

Py
�
σ � ϑτn ¡ q

�� Fτn�
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n�1

PXpτnq rσ ¡ τ s ¥ 8̧
n�1

inf
xPK Px rσ ¡ ηs¥ 8̧

n�1

1

2
� 8, Py-almost surely. (9.74)

From (9.74) and the generalized Borel-Cantelli lemma (again see e.g.

[Shiryayev (1984)] Corollary VII 5.2 or the equality in (9.49) in Theorem

9.3) we infer

Py

�
lim sup
nÑ8 Qn

� � 1, y P E. (9.75)

Since 1U pXptqq � 1 on the event tτn ¤ t   σnu, (9.75) implies

Py

�» 8
0

1U pXptqq dt � 8� � 1, y P E.
In other words the open subset U is Harris recurrent.

This completes the proof of Proposition 9.6. �

Definition 9.6. Let
 
F t1
t2

: 0 ¤ t1 ¤ t2   8(
be a collection of σ-fields

on Ω such that, for every t1 P r0,8q fixed, the collection
�
F t1
t2

�
t2¥t1 is

a filtration, and such that for every t2 P p0,8q the collection
�
F t1
t2

�
t1¤t2

is also a filtration. A family of random variables A pt1, t2q : Ω Ñ R,

0 ¤ t1 ¤ t2   8, is called an additive process relative to the collection 
F t1
t2

: 0 ¤ t1 ¤ t2   8(
if it possesses the following properties:

(1) the equality A pt1, t2q�A pt2, t3q � A pt1, t3q holds for all 0 ¤ t1 ¤ t2 ¤
t3;

(2) for every 0 ¤ t1 ¤ t2 the random variable A pt1, t2q is F t1
t2
-measurable.

In case of a time-homogeneous Markov process, like in Theorem 9.2 an

additive process A ptq : Ω Ñ R, 0 ¤ t   8, is called a time-homogeneous

additive process relative to the collection tFt : 0 ¤ t   8u if it possesses

the following properties:

(1) the equality A psq �A pt� sq �ϑs � A ptq holds Px-almost surely for all

0 ¤ s ¤ t;

(2) for every t ¥ 0 the random variable A ptq is Ft-measurable.

If in the above definitions the plus signs are replaced with multiplication

signs, then the corresponding processes are called multiplicative and time-

homogeneous multiplicative respectively.



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Coupling and Sobolev inequalities 581

Instead of time-homogeneous additive process we usually just say addi-

tive process; a similar convention is adopted in case of multiplicative

processes.

If A pt1, t2q is an additive process, then exp pApt1, t2q is a multiplicative

process.

In fact there is a relationship between these two notions. Let t ÞÑ Aptq
be an additive process in the time-homogeneous case. Then it can also be

considered as an additive process of two variables by writing A pt1, t2q �
A pt2 � t1q � ϑt1 , 0 ¤ t1 ¤ t2   8.

Let f : r0,8q �E Ñ R be a Borel measurable function with the prop-

erty that
³t
0
|f ps,Xpsqq| ds   8, Px-almost surely for all x P E. Then

the process pt1, t2q ÞÑ Af pt1, t2q � ³t2
t1
f pρ,Xpρqq dρ is an additive process.

In the time-homogenous case, and if the function f only depends on the

state variable, then the process t ÞÑ Af ptq :� ³t
0
f pXpρqq dρ is a (time-

homogenous) additive process. Let τ : Ω Ñ r0,8s be a terminal stopping

time in the sense that for every pair pt1, t2q, 0 ¤ t1   t2   8, the eventtt1   τ ¤ t2u is F t1
t2
-measurable. Then the process pt1, t2q ÞÑ M pt1, t2q,

0 ¤ t1 ¤ t2   8, defined by M pt1, t2q � 1 � 1tt1 τ¤t2u is a multiplica-

tive process. If τ is a time-homogeneous terminal stopping time, then the

process t ÞÑ 1tτ¡tu is a multiplicative process. This fact from the observa-

tion that s � τ � ϑs � τ Px-almost surely on the event tτ ¡ su: the latter

is just the notion of (time-homogeneous) terminal stopping time. Exam-

ples of terminal stopping times are first entry and first hitting times of

Borel subsets; penetration times are terminal stopping times. If a Markov

process like (9.14) in Theorem 9.2 is present, then for F t1
t2

we may take

the universal completion of the right closure of σ pXpsq : t1 ¤ s ¤ t2q. An

important property which is used here is the fact that the corresponding

Markov process has right-continuous paths (or orbits).

Let µ be a Radon measure on E which is σ-finite. In the following

proposition we write Eµ rF s � ³
E
Ex rF s dµpxq for any random variable

F : ΩÑ R for which Eµ r|F |s dµpxq   8, or F ¥ 0.

The existence of a σ-finite Radon measure under the recurrence hy-

potheses of Theorem 10.12 will be proved in Chapter 10.

Proposition 9.7. Let the hypotheses and notation be as in Theorem 9.2,

except that the invariant measure µ is not necessarily finite, but is allowed

to be a σ-finite Radon measure. Let pAptqqt¥0 and pBptqqt¥0 be additive

processes such that Eµ r|Ap1q|s   8, and 0   Eµ rBp1qs   8. Then the
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equality

Px

�
lim
tÑ8 Aptq

Bptq � Eµ rAp1qs
Eµ rBp1qs� � 1 (9.76)

holds for µ-almost all x P E. Moreover, the equality

lim
tÑ8 Ex rAptqs

Ex rBptqs � Eµ rAp1qs
Eµ rBp1qs (9.77)

holds for µ-almost all x P E.

Remark 9.6. Let t ÞÑ Aptq be an additive process, and let µ be an invariant

measure. Then the function t ÞÑ Eµ rAptqs is linear in t, and so there exists

a constant k pAp�qq such that Eµ rAptqs � tk pAp�qq. In other words, the

equality in (9.77) implies:

lim
tÑ8 Ex rAptqs

Ex rBptqs � Eµ rA1s
Eµ rB1s � k pAp�qq

k pBp�qq . (9.78)

Below the proof of Proposition 9.7 is copied from the proof of Proposition

5.5 in [Seidler (1997)]. Some of the techniques are borrowed from Azema

et al [Azéma et al. (1967)] section II.2, and the Chacon-Ornstein theorem

as exhibited in Krengel [Krengel (1985)]: see Theorem 9.9. In the proof of

Proposition 9.7 we need some definitions and terminology which we collect

next.

Definition 9.7. Let µ be a σ-finite Borel measure on E. An operator

S : L1 pE, µq Ñ L1 pE, µq is called a positive operator or positivity pre-

serving operator if f ¥ 0 µ-almost everywhere implies Sf ¥ 0 µ-almost

everywhere. It is called a contraction operator if
³
E
|Sf | dµ ¤ ³

E
|f | dµ

for all f P L1 pE, µq. The operator S� : L8 pE, µq Ñ L8 pE, µq is defined

by the equality
³
E
pSfq g dµ � ³

E
f pS�gq dµ for all f P L1 pE, µq and all

g P L8 pE, µq. Since the measure µ is σ-finite the dual space of L1 pE, µq
is identified with L8 pE, µq. Notice that S�gn decreases to 0, whenever

gn decreases pointwise to 0. A function (or better a class of functions)

h P L8 pE, µq is called harmonic if S�h � h. A harmonic function is also

called an S�-invariant function or just invariant function: see Definition

9.9. A non-negative function h for which h ¥ S�h is called superhar-

monic. A superharmonic function h is called strictly superharmonic on

a subset A of E provided h ¡ S�h on A. A subset B P E is called S-

absorbing if Sf P L1 pB, µq for all f P L1 pB, µq. The system ppE, E , µq , Sq
is called a dynamical system if

³
Sf dµ � ³

fdµ for all f P L1pE, µq. In

the same manner the system ppΩ,F ,Pµq , Sq is called a dynamical system

if
³
SZ dPµ � ³

Z dPµ for Z P L1 pΩ,F ,Pµq.
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The definition of dynamical system will be used for invariant measures for

Markov processes with state space E and sample path space Ω: i.e. the

process tpΩ,F ,PxqxPE , pXptq, t ¥ 0q , pE, Equ
as exhibited in (9.51) in Theorem 9.4 and in Theorem 9.2. In this case Pµ

is defined by Pµ rAs � ³
Px rAs dµpxq, A P F .

The following decomposition theorems, 9.6, 9.7, and 9.8 can be found

in [Krengel (1985)] theorems 1.3, 1.5, and 1.6 in Chapter 3. The decompo-

sition of E into a conservative part C and its complement D a dissipative

part is called the Hopf decomposition. The results are also applicable for

the measure space pΩ,F ,Pµq instead of pE, E , µq where µ is a σ-invariant

Radon measure on E . Since µpCq � Pµ rXp0q P Cs, C P E , the measure

µ is σ-finite if and only if Pµ is so. These theorems will be applied with

Sfpxq � Pafpxq � eaLfpxq � Ex rfpXpaqqs with f P L1 pE, µq where µ is

an invariant measure for the operator Pa,
³
Paf dµ � ³

fdµ, f P L1pE, µq,
and the operator SZ � Z � ϑa, Z P L1 pΩ,F ,Pµq. In both cases a ¡ 0.

Since our underlying Markov process is recurrent it follows that the conser-

vative subset C coincides with E µ-almost everywhere. For the recurrence

properties of our Markov process see Theorem 10.16 and Theorem 10.9 in

Chapter 10.

Theorem 9.6. Let S be a positive contraction on L1 pE, µq. Then there

exists a decomposition of E into disjoint sets C and D which are determined

uniquely modulo µ by:

(C1) If h is superharmonic, then h � S�h on C;

(D1) There exists a bounded superharmonic function h0 which is strictly su-

perharmonic on D.

The function h0 may be constructed in such a way that limnÑ8 pS�qn h0 � 0

on D, and h0 � 0 on C.

Theorem 9.7. Let S be a positive contraction on L1 pE, µq. Let C and D

be the subsets as described in Theorem 9.6. Then the decomposition of E

into the disjoint sets C and D is also determined uniquely modulo µ by:

(C2) For all h ¥ 0 h P L8 pE, µq the sum
°8
n�0 pS�qn h � 8 on the subset

C
� °8

n�0 pS�qn h ¡ 0
(
;

(D2) There exists a function hD P L8 pE, µq, hD ¥ 0, for which thD ¡ 0u �
D, and

°8
n�0 pS�qn h ¤ 1.
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Theorem 9.8. Let S be a positive contraction on L1 pE, µq. Let C and D

be the subsets as described in Theorem 9.6. Then the decomposition of E

into the disjoint sets C and D is also determined uniquely modulo µ by:

(C3) For all functions f ¥ 0, f P L1 pE, µq, the sum
°8
n�0 S

nf � 8 on the

subset C
� °8

n�0 S
nf ¡ 0

(
;

(D3) For all functions f ¥ 0, f P L1 pE, µq, °8
n�0 S

nf   8 on D.

Definition 9.8. Let S : L1 pE, µq Ñ L1 pE, µq be a positive contraction.

The decomposition of E into the disjoint union of C and D � EzD as

determined by one of the theorems 9.6, 9.7 or 9.8 is called the Hopf de-

composition of E relative to S. The subset C is called the conservative

part of S, and D is called the dissipative part. The operator S is called

conservative if µ pEzCq � 0.

The following theorem is a version of the Chacon-Ornstein theorem. For

more details see e.g. [Petersen (1989)], [Krengel (1985)], [Foguel (1980)],

and [Neveu (1979)]. Let B be a Borel subset of E and put HBf �
IB

°8
j�0

�
SIEzB�j f , where IBf � 1Bf and f P L1pE, µq. If B � E,

then HBf � f , f P L1pE, µq.
Theorem 9.9. Let S be a positive contraction on L1 pE, µq. Let 0 ¤ f, g

be functions in L1pE, µq. Then the limit lim
nÑ8 °n

k�0 S
kf°n

k�0 S
kg

converges to a

finite µ-almost everywhere on the set
 
x P E :

°8
k�0 S

kgpxq ¡ 0
(
. On the

conservative part C the limit can be identified with a quotient of the form
Qf

Qg
where Qf is the µ-conditional expectation on the σ-field of S�-invariant

subsets of HCf . On the dissipative part D the limit of this quotient can be

identified as a quotient of fixed numbers.

Let J be the σ-field of S�-invariant subsets. Fix f P L1pE, µq. In Theorem

9.9 the function Qf can be identified with the Radon-Nikodym derivative

of the measure HCfµ restricted to I with respect to the measure µ also

confined to J : Qf � d
�
HCfµ

�� J �
d
�
µ
�� J � . Here HCfµ is the measure which has

density HCf relative to µ. This Radon-Nikodym derivative is often called

the µ-conditional expectation of HCf on J .

The following result can be found in Skorohod: see Theorem 5 and its

corollary in Chapter 1, §1, of [Skorokhod (1989)].

Theorem 9.10. Let µ be a non-zero invariant σ-finite measure on E, and
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put Pµ rAs � ³
Px rAs dµpxq, A P F . Then Pµ is a σ-finite measure on

F . Put I �  
R P F : Pµ

�
ϑ�1
1 R△R

� � 0
(
. Assume that all probability

measures of the form B ÞÑ P p1, x, Bq, x P E, are equivalent. Then the

following assertions are true:

(a) If B P E is such that P p1, x, Bq � 1 for µ-almost all x P B, then either

µpBq � 0 or µ pEzBq � 0.

(b) Suppose that the random variable Y P L1 pΩ,F , µq possesses the follow-

ing property: Y � Y �ϑ1 Pµ-almost everywhere. Then for all n P N the

equality

EXpnq rY s � Ex
�
Y

�� Fn� (9.79)

holds Px-almost surely for µ-almost all x P E. The equality Ex rY s �
Ex

�
EXpnq rY s� holds µ-almost everywhere for all n P N, including n �

0. Moreover, the equality Y � EXp0q rY s holds Pµ-almost everywhere.

(c) Events in I are Pµ-trivial in the sense that either Pµ rRs � 0 or

Pµ rΩzRs � 0.

(d) Let Y P L1 pΩ,F , µq be a random variable with the property that Y �
Y � ϑ1 Pµ-almost everywhere. Then Y is zero Pµ-almost everywhere if

µpEq � 8, and constant Pµ-almost everywhere if µ is finite.

Remark 9.7. Assertion (b) of Theorem 9.10 only uses the invariance of

the σ-finite measure µ. The others also use the fact that all measures of

the form B ÞÑ P p1, x, Bq, B P E , x P E, are equivalent.

Proof. Let pAnqnPN be an increasing sequence in E such that µ pAnq   8
for all n P N and E ��

nPNAn. Put Ωn � tXp0q P Anu. Then Ωn � Ωn�1,

Ω � �
nPN Ωn, and Pµ rΩns � µ pAnq. This shows that the measure Pµ is

σ-finite.

(a). Let B P E be such that P p1, x, Bq � 1 for µ-almost all x P B, and

assume that µpBq ¡ 0. Then P p1, x, EzBq � 0 for µ-almost all x P B.

Since µpBq ¡ 0, there exists at least one x0 P B such that P p1, x0, EzBq �
0. Since all measures of the form C ÞÑ P p1, x, Cq, x P E, are equivalent,

it follows that P p1, y, EzBq � 0 for µ-almost all y P E. Consequently,

Pµ rEzBs � 0. This proves Assertion (a).

(b). First observe that by the Markov property, and by the invariance

of the measure µ we have

Eµ r|Y � ϑn � Y � ϑn�1|s � Eµ
�
EXpnq r|Y � Y � ϑ1|s�� Eµ

�
EXpn�1q r|Y � Y � ϑ1|s� � Eµ

�
EXp0q r|Y � Y � ϑ1|s�
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From (9.80) we infer by induction that Y � Y � ϑn Pµ-almost everywhere

for all n P N. Let A P Fn, and consider the (in-)equalities:

0 � Eµ r|Y � Y � ϑn|s � »
E

Ex r|Y � Y � ϑn|s dµpxq¥ »
E

|Ex rpY � Y � ϑnq1As| dµpxq� »
E

��Ex rY 1As � Ex
�
Ex

�
Y � ϑn �� Fn�1A��� dµpxq

(Markov property)� »
E

��Ex rY 1As � Ex
�
EXpnq rY s1A��� dµpxq� »

E

��Ex ��Y � EXpnq rY s�1A��� dµpxq. (9.81)

From (9.81) we see that Ex
�
Y

�� Fn� � EXpnq rY s Px-almost surely for µ-

almost all x P E, and n P N, n ¥ 1. The latter is the same as saying the

for µ-almost all x P E the process n ÞÑ EXpnq rY s is a Px-martingale. It

also proves (9.79) in Assertion (b) for n P N, n ¥ 1. By putting A � Ω

in (9.81) we infer Ex rY s � Ex
�
EXpnq rY s� µ-almost everywhere on E. In

order to complete the proof of Assertion (b) we need to show the equality

Y � EXp0q rY s Pµ-almost everywhere. Since the process n ÞÑ EXpnq rY s is a
Px-martingale we see that its limit exists Px-almost surely for µ-almost all

x P E. Moreover this limit is Pµ-almost surely equal to Y . We shall prove

that this limit is also equal to EXp0q rY s Pµ-almost everywhere. Therefore

we consider for �8   α   β   8 the quantity

Pµ rα   Y   βs � lim
nÑ8Pµ

�
α   EXpnq rY s   β

�
(employ the invariance of µ) � lim

nÑ8Pµ
�
α   EXp0q rY s   β

�� Pµ
�
α   EXp0q rY s   β

�
. (9.82)

Since �8   α   β   8 are arbitrary, the equalities in (9.82) yield Y �
EXp0q rY s Pµ-almost everywhere. This completes the proof of assertion (b).

(c). Let R be a member of I. Then 1R � 1R � ϑ1 Pµ-almost every-

where. Since µ is an invariant measure we also get 1R � 1R �ϑn Pµ-almost

everywhere for all n P N. In addition, an application of assertion (b) yields

1R � EXp0q r1Rs � PXp0q rRs Pµ-almost everywhere. (9.83)
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Put B � tx P E : Px rRs � 1u. From (9.83) we see R � tXp0q P Bu, and
hence 1R � 1B pXp0qq, Pµ-almost everywhere. We also see that ΩzR �tXp0q P EzBu. It follows that µpBq � Pµ rRs and µ pEzBq � Pµ rΩzRs.
Assume Pµ rRs � µpBq ¡ 0. Let x0 P B be any point for which 1R�ϑ1 � 1R
Px0

-almost surely. Since R belongs to I, and µpBq ¡ 0, the latter equality

holds for µ-almost all x0 P B. Then

P p1, x0, Bq � P p1, x0, tx P E : Px rRs � 1uq� Px0

�
PXp1q rRs � 1

� � Px0

�
PXp0q rRs � ϑ1 � 1

�� Px0
r1R � ϑ1 � 1s � Px0

r1R � 1s � Px0
rRs � 1 (9.84)

where in the final equality of (9.84) we used the fact that x0 P B. It follows

that for µ-almost all x0 P B we have P p1, x0, Bq � 1. From assertion

(a) we then infer that µ pEzBq � 0. But then Pµ rΩzRs � 0. This shows

Assertion (c).

(d). Let Y P L1 pΩ,F , µq be such that Y � Y �ϑ1 Pµ-almost everywhere.

Since Y ^0 � pY � ϑ1q^0 � pY ^ 0q�ϑ1 Pµ-almost everywhere we assume

without loss of generality that Y ¥ 0. Let m be the µ-essential supremum

of Y . If m � 8, then we consider the Pµ-invariant event tY ¡ nu. Observe

that Pµ rY ¡ ns ¡ 0, and so by (c) its complement has Pµ-measure zero.

In other words Y ¡ n Pµ-almost everywhere. Since this is true for all

n P N we see Y � 8, Pµ-almost everywhere. Since µ is non-zero and

Y P L1 pΩ,F ,Pµq this is a contradiction. So we assume that m   8. If

ξ   m we have Pµ rY ¡ ξs ¡ 0, and hence by (c) and Pµ-invariance of

the event tY ¡ ξu it follows that Pµ rY ¤ ξs � 0. Thus we see Y ¥ ξ

Pµ-almost everywhere on Ω. Since ξ   m is arbitrary we obtain Y ¥ m

Pµ-almost everywhere on Ω. By definition we have m ¥ Y Pµ-almost

everywhere on Ω. Consequently Y � m Pµ-almost everywhere on Ω. If

µpEq � Pµ rXp0q P Es � Pµ rΩs � 8, then necessarily Y � m � 0 Pµ-

almost everywhere. If µpBq   8 we see that Y � m Pµ-almost everywhere,

where m is a finite constant.

This completes the proof of Theorem 9.10. �

Definition 9.9. Subsets B P E with the property that P pt, x, Bq � 1 for

µ-almost all x P B are called µ-invariant subsets. Subsets B P E with the

property that P pt, x, Bq � 1 for all x P B are called invariant subsets.

Events A P F with the property that R � ϑ�1
t R are called invariant events;

events with the property that Pµ
�
ϑ�1
t R△R

� � 0 for all t ¡ 0 are called Pµ-

invariant events. For the notion of tail σ-fields in F the reader is referred

to Definition 9.3.
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Notice that a subset B is µ-invariant if and only if P pt, x, A�
Bq �

P pt, x, Aq for µ-almost all x P B. If Pt denotes the operator Pthpxq �³
P pt, x, dyqhpyq, h P L1pE, µq, then B is µ-invariant if and only if

P�
t 1Bpxq � 1, x P B. Moreover, a function h P L8 pE, µq, h ¥ 0 µ-

almost everywhere is harmonic or invariant if P�
t h � h on th ¡ 0u for all

t ¡ 0: compare with Definition 9.7.

Proof. [Proof of Proposition 9.7.] We begin by putting

M � # 8̧
j�1

Bp1q � ϑj � 8+
,

and note that M is obviously ϑ1-invariant, so either

Pµ rM s � 0, or Pµ rΩzM s � 0.

This fact follows from Theorem 9.10 assertion (c). But Eµ rBp1qs ¡ 0

implies

Eµ

� 8̧
j�1

Bp1q � ϑj� � Eµ

� 8̧
j�1

Bp1q� � 8,
(the measure Pµ is ϑ1-invariant), so the possibility Pµ rM s � 0 is excluded.

Define a positive contraction T : L1 pPµq Ñ L1 pPµq, by u ÞÑ u � ϑ1. Let V
be a Borel subset such that µpV q   8 and which satisfies

Px

�» 8
0

1V pXpsqq ds � 8� � 1 for all x P E, (9.85)

and set v � ³1
0
1V pXpsqq ds. The existence of such a set V is guaranteed by

Proposition 9.6 and the fact that the measure µ is a regular Radon measure.

Then v P L1 pPµq because
Eµ rvs � »

vdPµ � » 1

0

»
E

P ps, y, V q dµpyqds � µpV q   8,
and hence we have8̧

j�0

T jv � » 8
0

1V pXpsqq ds � 8, Pµ-almost everywhere. (9.86)

This means that the operator T is conservative (cf. [Krengel (1985)], Theo-

rem 1.6 Chapter 3: see Theorem 9.8 and Definition 9.8) and by the Chacon-

Ornstein theorem (see Theorem 9.9) and the Neveu-Chacon identification
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theorem (see e.g. [Krengel (1985)], theorems 2.7 and 3.4 Chapter 3) we

obtain that

lim
nÑ8 °n

j�0 T
jAp1q°n

j�0 T
jBp1q � lim

nÑ8 Apnq
Bpnq � Eµ rAp1qs

Eµ rBp1qs Pµ-almost everywhere.

(9.87)

Now, exactly the same procedure as in [Azéma et al. (1967)] applies, and

hence we see that the discrete time result (9.87) implies that Pµ rΩzCs � 0,

where

C � "
lim
tÑ8 Aptq

Bptq � Eµ rAp1qs
Eµ rBp1qs* . (9.88)

For details the reader is referred to Proposition 9.9 in section 9.2. So there

exists N P E , µpNq � 0 and Px rCs � 1 for all x R N . Let y P E be

arbitrary, then

PyrCs � Ey r1C � ϑ1s � Ey
�
EXp1q r1Cs� � »

E

PzrCsP p1, y, dzq� »
EzN PzrCsP p1, y, dzq � 1,

since P p1, y,Nq � 0 by the fact that all measures B ÞÑ P pt, y, Bq, B P E ,pt, yq P p0,8q �E, are equivalent, and
³
E
P p1, z,Nq dµpzq � µpNq � 0.

This proves equality (9.76) in Proposition 9.7.

In order to prove equality (9.77) we introduce a positivity preserv-

ing contraction mapping S : L1 pE, µq Ñ L1 pE, µq by setting Sfpxq �³
E
fpzqP p1, x, dzq, f P L1 pE, µq. As in the proof of equality (9.76) let V

be a Borel subset of E such that µpV q   8 and such that (9.85) is satisfied.

Put hpxq � Ex rvs � ³1
0
P ps, x, V q ds. Then h P L1 pE, µq and8̧

n�0

Snhpxq � » 8
0

P ps, x, V q ds � 8, x P E. (9.89)

Hence the contraction mapping S is conservative. Let A be the σ-field of

S-absorbing subsets: see Definition 9.7 (cf. [Krengel (1985)], Definition

1.7 Chapter 3). The equivalence of transition probabilities of our Markov

process in (9.14) implies easily that µ is trivial on A: i.e. µpAq � 0 or

µ pEzAq � 0 for all A P A. Define the functions f and g by fpxq �
Ex rAp1qs, and gpxq � Ex rBp1qs. Then f , g P L1 pE, µq, g ¥ 0, and hence

again by the Chacon-Ornstein theorem (see Theorem 9.9) we have

lim
NÑ8 °N

n�0 S
nf°N

n�0 S
ng

� ³
E
f dµ³

E
g dµ

� Eµ rAp1qs
Eµ rBp1qs
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µ-almost everywhere on

#
x P E :

8̧
n�0

Sngpxq ¡ 0

+
. (9.90)

Notice that

Sfpxq � »
E

Ez rA1sP p1, x, dzq � Ex
�
EXp1q rAp1qs� � Ex rAp1q � ϑ1s .

(9.91)

We know that Pµ

� 8̧
j�0

Bp1q � ϑj   8� � 0, and thus we also have

Px

� 8̧
j�0

Bp1q � ϑj   8� � 0 for µ-almost all x P E.

Therefore 8̧
j�0

Sjgpxq � 8̧
j�0

Ex rBp1q � ϑjs � 8 (9.92)

for µ-almost all x P E, and hence (9.90) yields that the equality

lim
nÑ8 Ex rApnqs

Ex rBpnqs � Eµ rAp1qs
Eµ rBp1qs

holds for µ-almost all x P E. Again, the proof can be completed as in

[Azéma et al. (1967)]. For details see Proposition 9.9 in section 9.2.

Altogether this completes the proof of Proposition 9.7. �

In Corollary 9.3 we establish the uniqueness of σ-finite invariant measures.

However, notice that, up to a multiplicative constant, the equality in (9.77)

is a consequence of the uniqueness of σ-finite invariant measures: see the

proof of Lemma 9.7.

Corollary 9.3. Let the assumptions and notation be as in Proposition 9.7.

Let µ1 and µ2 be two σ-finite non-trivial invariant measures. Then up to a

finite strictly positive constant these two measures coincide.

Proof. Let pBptqqt¥0 be an additive process such that 0   Eµ1
rBp1qs  8 and 0   Eµ2

rBp1qs   8. Let f P L1 pE, µ1q�L1 pE, µ2q. From Propo-

sition 9.7 we infer that ³
E
f dµ1

Eµ1
rBp1qs � ³

E
f dµ2

Eµ2
rBp1qs

and hence »
E

f dµ2 � Eµ2
rBp1qs

Eµ1
rBp1qs »E f dµ1. (9.93)

The asserted uniqueness follows from (9.93) and the density of

L1 pE, µ1q�L1 pE, µ2q in either L1 pE, µ1q or L1 pE, µ2q. The proof of

Corollary 9.3 is now complete. �



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Coupling and Sobolev inequalities 591

Corollary 9.4. Let the assumptions and notation be as in Proposition 9.7.

Then the following assertions are valid:

(a) The Markov process in (9.14) is µ-Harris recurrent, that is the equality

Px
�³8

0
1A pXpsqq ds � 8� � 1 holds for all x P E and for all A P E for

which µpAq ¡ 0.

(b) Suppose µpEq � 8. Then lim
tÑ8 1

t

» t
0

f pXpsqq ds � 0 Px-almost surely

for all x P E and all f P L1 pE, µq.
(c) Suppose µpEq   8. Then lim

tÑ8 1

t

» t
0

f pXpsqq ds � ³
E
f dµ

µpEq Px-almost

surely for all x P E and all f P L1 pE, µq.
Proof. (a). Assume that there exists z P E and A P E with µpAq ¡ 0

such that
³8
0
1A pXpsqq ds   8 on an event Ω1 with Pz pΩ1q ¡ 0. We will

arrive at a contradiction. Let V P E be such that µpV q   8 and (9.85) are

satisfied. Then by assumption

lim
tÑ8 ³t

0
1A pXpsqq ds³t

0
1V pXpsqq ds � 0 Px-almost surely on Ω1. (9.94)

However, according to (9.76) in Proposition 9.7 the limit in (9.94) should

be

Eµ

�³1
0
1A pXpsqq ds�

Eµ

�³1
0
1V pXpsqq ds� � ³1

0

³
E
Ex r1A pXpsqqs dµpxq ds³1

0

³
E
Ex r1V pXpsqqs dµpxq ds� ³1

0

³
E
P ps, x, Aq dµpxq ds³1

0

³
E
P ps, x, V q dµpxq ds � µpAq

µpV q . (9.95)

Since µpAq ¡ 0 and µpV q   8 the equality in (9.95) leads to a contradic-

tion. Hence assertion (a) follows.

(b). Fix ε ¡ 0, x P E, and f P L1 pE, µq, f ¥ 0. Since µpEq � 8
and µ is σ-finite there exists a subset B P E such that µpBq   8, and³
E
f dµ

µpBq   ε

2
. By (9.76) of Proposition 9.7 there exists a random variable

tε which is Px-almost surely finite such that³t
0
f pXpsqq ds³t

0
1B pXpsqq ds ¤ ³

E
f dµ

µpBq � ε

2
¤ ε

2
� ε for all t ¥ tε. (9.96)

Since ³t
0
f pXpsqq ds

t
¤ ³t

0
f pXpsqq ds³t

0
1B pXpsqq ds
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Assertion (b) follows from (9.96).

(c). This assertion is an immediate consequence of Proposition 9.7.

Altogether this completes the proof of Corollary 9.4. �

In the proof of Proposition 9.8 below we need Theorem 10.2 of Chapter

10. It is taken from Jamison and Orey [Jamison et al. (1965)] Theorem

1, and Lemma 3. A result like Lemma 3 can also be found in Meyn and

Tweedie [Meyn and Tweedie (1993b)] Theorem 18.1.2. The result is called

Orey’s convergence theorem. Let ν be a measure on E . The measures

P ptq�ν, t ¥ 0, are defined by B ÞÑ ³
E
P pt, x, Bq dνpxq. The following

proposition should be compared with Theorem 10.2. For the notion of

“Harris recurrence” of Markov chains see Definition 10.2 in Chapter 10.

The definitions 9.4 and 9.5 contain the corresponding notions for continuous

time Markov processes.

Proposition 9.8. Let the hypotheses and notation be as in Proposition

9.7. Let µ be a σ-finite invariant measure. Then the Markov chainpXpnq : n P Nq is µ-Harris recurrent, and

lim
tÑ8Var pP ptq�µ2 � P ptq�µ1q � 0 (9.97)

for all probability measures µ1 and µ2 on E.

Remark 9.8. The proof of Proposition 9.8 yields a slightly stronger result

than (9.97). In fact by (9.113) we have

lim
tÑ8 ¼

E�E Var pP pt, x, �q � P pt, y, �qq dµ1pxq dµ2pyq � 0. (9.98)

It is clear that the result in (9.98) is stronger than (9.97). Moreover, the

function t ÞÑ ´
E�E Var pP pt, x, �q � P pt, y, �qq dµ1pxq dµ2pyq decreases, so

that (9.98) follows once we know it for any sequence ptn : n P Nq which

increases to 8. PutpαRpαqqn 1Bpxq � α

» 8
0

pαtqn�1pn� 1q!e�αtP pt, x, Bq dt � Px b π0 rX pTnq P Bs
where α ¡ 0, n P N, and x P E. Here the process pTn : n P Nq consists of

the jump process of a Poisson process pΛ,G, πtqt¥0 , pNptq, t ¥ 0q , �ϑPt : t ¥ 0
�
, r0,8q(

which has intensity α0, and which is independent of the strong Markov

process tpΩ,F ,PxqxPE , pXptq, t ¥ 0q , pϑt, t ¥ 0q , pE, Equ .
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For more details see (10.140), (10.143), and Lemma (10.42) in Chapter 10.

Again let µ1 and µ2 probability measures on E . Fix α0 ¡ 0. Then, under

the conditions of Proposition 9.8 we have

lim
αÓ0 ¼

E�E Var
�
αRpαq1p�qpxq � αRpαq1p�qpyq� dµ1pxq dµ2pyq� lim

nÑ8 ¼
E�E Var

�pα0R pα0qqn 1p�qpxq � pα0R pα0qqn 1p�qpyq� dµ1pxq dµ2pyq� 0. (9.99)

Proof. [Proof of Proposition 9.8.] The proof follows the lines of Duflo et

al [Duflo and Revuz (1969)], which reduces the proof to the corresponding

result for discrete time Markov chains: see Jamison and Orey [Jamison and

Orey (1967)]. In the formal sense in [Duflo and Revuz (1969)] the authors

only consider a locally compact state space, but changing to a Polish space

does not affect their proof. Nevertheless we will repeat the arguments.

First notice that the process pXpnq : n P Nq is a Markov chain with

transition probability function px,Bq ÞÑ P p1, x, Bq, px,Bq P E � E . Since

all these measures are equivalent the chain pXpnq : n P Nq is aperiodic: see
Proposition 10.1 in Chapter 10 and the comments preceding it. We will

check that it is Harris recurrent. Let µ be the invariant measure, and

choose an arbitrary B P E for which 0   µpBq   8, and put

R � # 8̧
n�1

1B pXpnqq � 8+
. (9.100)

Then ϑ�1
1 R � R, i.e. the event R is ϑ1-invariant. Hence we either have

Pµ rRs � 0 or Pµ rΩzRs � 0: see Theorem 9.10 assertion (c). Then the

mapping T : L1 pΩ,F ,Pµq Ñ L1 pΩ,F ,Pµq defined by Tu � u � ϑ1 is a

conservative positive contraction, and 1B pXp1qq P L1 pΩ,F ,Pµq. Hence8̧
n�0

T n1B pXp1qq � 8̧
n�1

1B pXpnqq P t0,8u Pµ-almost everywhere.

(9.101)

If Pµ rRs � 0, then

0 � Eµ

� 8̧
n�1

1B pXpnqq� � 8̧
n�1

»
E

P pn, x,Bq dµpxq � 8̧
n�1

µpBq. (9.102)

Since µpBq ¡ 0 the equality in (9.102) is a contradiction. It follows that

Pµ rΩzRs � 0, and hence there exists a subset N P E such that µpNq � 0
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and Py rΩzRs � 0 for all y P EzN . So that for y P EzN we have Py rRs �
1. Since µpNq � 0, and µ is invariant we see that

³
E
P p1, z,Nq dµpzq �

µpNq � 0, and hence p1, z,Nq � 0 for µ-almost all z P E. Since µ is non-

trivial, this implies that P p1, z,Nq � 0 for at least one z P E. Since all the

measures B ÞÑ P p1, z, Bq, z P E, are equivalent, we see that P p1, z,Nq � 0

for all z P E. So that furthermore, for x P E arbitrary, we infer

Px rRs � Ex r1R � ϑ1s � Ex
�
Ex

�
1R � ϑ1 �� F1

��
(Markov property)� Ex

�
EXp1q r1Rs� � »

E

Py rRsP p1, x, dyq
(employ P p1, x,Nq � 0)� »

EzN Py rRsP p1, x, dyq
(for y P EzN the equality Py rRs � 1 holds)� »

EzN P p1, x, dyq � P p1, x, EzNq � P p1, x, Eq � 1. (9.103)

From (9.103) we get Px rRs � 1 for all x P E. Consequently, the Markov

chain pXpnq : n P Nq is Harris recurrent and aperiodic: see Definition 10.2

and Proposition 10.1 in Chapter 10 and the comments preceding it. From

Theorem 10.2, which is Orey’s convergence theorem, we obtain

lim
nÑ8Var pP pn, x, �q � P pn, y, �qq � 0 for all x, y P E. (9.104)

Next our aim is to establish the triviality of the tail σ-field of the Markov

process pXptq : t ¥ 0q. For the notion of tail σ field see Definition 9.3. Let

A P I, the tail σ-field. Then for every t ¥ 0 there exists a tail event At P I

such that 1A � 1At
� ϑt (see Definition 9.3). So for x P E we have

Px rAs � Ex r1As � Ex r1At
� ϑts � Ex

�
Ex

�
1At

� ϑt �� Ft��� Ex
�
EXptq r1At

� ϑts� � »
E

Pz rAtsP pt, x, dzq . (9.105)

By taking t � nÑ8 in (9.104) and employing (9.105) we see that Px rAs �
Py rAs, x, y P E, and A P I. Since At P I we see that the function

x ÞÑ Px rAts is constant. From (9.105) it follows that this constant equals

the constant function x ÞÑ Px rAs. By the martingale convergence theorem

we see

Px rAs � PXpnq rAs � Px
�
A
�� Fn� nÑ8ÝÑ 1A Px-almost surely. (9.106)



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Coupling and Sobolev inequalities 595

Equality (9.106) implies that either Px rAs � 1 for all x P E or that

Px rAs � 0 for all x P E. This proves the triviality of the tail σ-field

I. In order to complete the proof of Proposition 9.8 we proceed as in the

proof of Theorem II.4 of [Duflo and Revuz (1969)], who follow Blackwell

and Freedman [Blackwell and Freedman (1964)] Theorem 2.

Put F t � ϑ�1F . Then the arguments of Duflo and Revuz read as

follows. First, let B P F and m a probability measure on E . Then we have

Pm

�
A
£
B
�� Pm rAsPm rBs � »

A

p1B � Pm rBsq dPm� »
A

�
Pm

�
1B

�� F t
�� Pm rBs� dPm,

and hence

sup
APFt

���Pm �
A
£
B
�� Pm rAsPm rBs��� ¤ sup

APFt

»
A

��Pm �
B

�� F t
�� Pm rBs�� dPm� »

Ω

��Pm �
B

�� F t
�� Pm rBs�� dPm. (9.107)

By the backward martingale convergence theorem (see e.g. [Doob (1953)]

Theorem 4.2) the limit

lim
nÑ8Pm

�
B

�� F tn
� � lim

nÑ8 »
E

Px
�
B

�� F tn
�
dmpxq (9.108)

exists Pm-almost surely and in L1 pΩ,F ,Pmq for all sequences ptnqnPN
which increase to 8. The limit in (9.108) is measurable relative to the

tail σ-field I. Since the tail σ-field is trivial, this means that the limit

limtÑ8 Pm
�
B

�� F t
� � Pm rBs, Pm-almost surely. From (9.107) we see that

lim
tÑ8 sup

APFt

���Pm �
A
£
B
�� Pm rAsPm rBs��� � 0. (9.109)

Let px, yq P E � E, and A0 P E . We apply (9.109) with m � 1
2
pδx � δyq,

A � tXptq P A0u, and B � tXp0q � xu or B � tXp0q � yu. Then we

obtain

lim
tÑ8 sup

A0PE |P pt, x, A0q � P pt, y, A0q| � 0. (9.110)

Since

Var pP pt, x, �q � P pt, y, �qq ¤ 2 sup
APE |P pt, x, Aq � P pt, y, Aq| (9.111)

equality (9.110) implies

lim
tÑ8Var pP pt, x, �q � P pt, y, �qq � 0. (9.112)
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Next let µ1 and µ2 be two probability measures on E. Then

Var

�»
E

P pt, x, �q dµ1pxq � »
E

P pt, y, �q dµ2pxq
� Var

�� ¼
E�E pP pt, x, �q � P pt, y, �qq dµ1pxq dµ2pyq�¤ ¼

E�E Var pP pt, x, �q � P pt, y, �qq dµ1pxq dµ2pyq, (9.113)

and hence by equality (9.110) and inequality (9.113) we obtain

lim
tÑ8Var

�»
E

P pt, x, �q dµ1pxq � »
E

P pt, y, �q dµ2pxq
 � 0. (9.114)

Since equality (9.114) is equivalent to (9.97) this completes the proof of

Proposition 9.8. �

The following theorem is another version of Theorem 9.5.

Theorem 9.11. Let the Markov process have right-continuous sample

paths, be strong Feller, and irreducible. Let A be a recurrent compact subset

of the state space E, and K � E any compact subset. Then there exists an

closed neighborhood Kε with K in its interior such that for h ¡ 0

sup
xPE » 8

0

Px rXptq P Kε, h� τA � ϑh ¡ ts dt   8. (9.115)

For the notion of strong Feller property see Definitions 2.5 and 2.16.

Proof. Without loss of generality may and shall assume that K � A.

Otherwise replace K by K
�
A. From the arguments following (10.222) in

the proof of Theorem 10.12 we see that there exists ε ¡ 0 such that

sup
yPE Ey

�» h�τA�ϑh

0

1Kε
pXpρqq dρ�   8 (9.116)

where Kε is an ε-neighborhood of K. This completes the proof of Theorem

9.11. �

By definition we have

RAp0qfpxq � » 8
0

Ex rF pXpρqq , τA ¡ ρs dρ � Ex

�» τA
0

f pXpρqq dρ�
(9.117)
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for those Borel measurable function f for which the integrals in (9.117)

exist. As a corollary to 9.11 we have the following result. The proof follows

by observing that τA ¤ h�τA�ϑh and the definition of RAp0qf : see (9.117).
Corollary 9.5. Let the hypotheses and notation be as in Theorem 9.11. In

addition, let K be a compact subset of E and h ¡ 0. Then there exists a

bounded function f P CbpEq, 1K ¤ f ¤ 1, such that

sup
yPERAp0qfpyq � sup

yPE Ey

�» τA
0

f pXpρqq dρ�¤ sup
yPE Ey

�» h�τA�ϑh

0

f pXpρqq dρ�   8. (9.118)

Let f be as in (9.118). Then there exists a constant Cf such that for all

g P CbpEq the following inequality holds:

sup
yPERAp0q p|g| fq pyq ¤ Cf }g}8 . (9.119)

Proof. Let Kε be as in Theorem 9.11 and choose f P CbpEq in such a

way that 1K ¤ f ¤ 1Kε
. Then f satisfies (9.118), and (9.119) is satisfied

with Cf given by the right-hand side of (9.118). Altogether this completes

the proof of Corollary 9.5. �

9.2 Some ergodic theorems

In this section we prove some results which are relevant to finish the argu-

ments in the proof of Proposition 9.7. In particular we want to prove that

Pµ rΩzCs � 0, where the invariant subset C is given in (9.88), i.e.

C � "
lim
tÑ8 Aptq

Bptq � Eµ rAp1qs
Eµ rBp1qs* . (9.120)

We also want to prove that

lim
tÑ8 Ex rAptqs

Ex rBptqs � Eµ rAp1qs
Eµ rBp1qs (9.121)

holds for µ-almost all x P E. Both proofs can be found in [Azéma et al.

(1967)]. However, since we want to make the present book elf-contained we

will give an independent proof. The proofs will be based on the theorem of

Chacon-Ornstein for discrete dynamical systems: see Theorem 9.9.

Lemma 9.5. Let µ be a σ-finite invariant measure, and let Z : Ω Ñ R be

a bounded random variable such that Z � ϑa � Z Pµ-almost surely for all

a ¡ 0. Then the variable Z is constant Pµ-almost surely.
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Proof. Let ν be a probability measure which is equivalent with µ. Then

the process

EXptq rZs � Eν
�
Z � ϑt �� Ft� � Eν

�
Z
�� Ft� (9.122)

is a martingale with Z � limtÑ8 Eν
�
Z
�� Ft� � limtÑ8 EXptq rZs. Then we

introduce for given k P R the subset Fk � ty P E : EyrZs ¥ ku. Then there

are two possibilities either ν pFkq ¡ 0 or ν pEzFkq � 1. If ν pFkq ¡ 0, then

we have Pν
�³8

0
1Fk

pXpsqq ds � 8� � 1, and hence lim suptÑ8 EXptq rZs ¥
k Pν-almost surely. Consequently, Z � limtÑ8 EXptqrZs ¥ k Pν-almost

surely. In the other case, ν pEzFkq � 1, we will get Z ¤ k. It follows that

Z is a constant Pµ-almost surely.

This completes the proof of Lemma 9.5. �

Lemma 9.6. Let the hypotheses and notation be as in Proposition 9.7. Let

C be as in (9.120). Suppose that the limit lim
tÑ8 Aptq

Bptq exists Pµ-almost surely.

Then Px rCs � 1 for µ-almost all x P E.

Proof. We consider the dynamical systemtpΩ,F ,Pµq : pXptq, t ¥ 0qu
together with the countable dynamical subsystems (skeletons)tpΩ,F ,Pµq : pXpnaq, n P Nqu , a ¡ 0.

By assumption, the limit Z :� lim
tÑ8 Aptq

Bptq exists Pµ-almost surely. Then we

have Z � ϑa � Z Pµ-almost surely for all a ¡ 0. By Lemma 9.5 we see that

Z � C Pµ-almost surely, where C is a real constant. Denote Ia the σ-field

invariant corresponding to the operator Ta : Z ÞÑ Z �ϑa, Z P L1 pΩ,F ,Pµq.
Then by the Chacon-Ornstein theorem (Theorem 9.9) we know that

CA,B � lim
tÑ8 Aptq

Bptq � lim
nÑ8 Apnaq

Bpnaq � Eµ
�
Apaq �� Ia�

Eµ
�
Bpaq �� Ia� (9.123)

where Eµ
�
Apaq �� Ia� denotes conditional expectation on the σ-field Ia rel-

ative to the measure Pµ which is not necessarily a probability measure.

Nevertheless the notion “conditional expectation” relative to such measures

also makes sense. From (9.123) we deduce:

Eµ
�
Apaq �� Ia� � CA,BEµ

�
Bpaq �� Ia� . (9.124)

For the Chacon-Ornstein theorem and the Neveu-Chacon identification the-

orem see e.g. [Krengel (1985)], theorems 2.7 and 3.4 in Chapter 3, [Petersen
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(1989)] Theorem 8.1, [Foguel (1980)] §1.3, and [Neveu (1979)]. So that by

integrating the left-hand side and the right-hand side of (9.124) relative to

the measure Pµ we obtain:

Eµ rApaqs � CA,BEµ rBpaqs . (9.125)

Since the expression in the right-hand side of (9.125) does not depend on

a we get Eµ rAp1qs � CA,BEµ rBp1qs. Let C be the event in (9.120). Then

1C � ϑa � 1C Pµ-almost surely for all a ¡ 0. By Lemma 9.5 it follows that

1C � 1 Pµ-almost surely. Since, for a ¥ 0,» p1� Ey r1C � ϑasq dµ � Eµ r1� 1C � ϑas � Eµ r1� 1Cs � 0, (9.126)

we get PyrCs � 1 for µ-almost all y P E.

This completes the proof of Lemma 9.6. �

Let a ¡ 0. In the proof of the following lemma and of equality (9.121) we

need the following invariant σ-field on E:

Ja � !
B P E : P

�
a, x,A

£
B
	 � P pa, x,Aq 1Bpxq

for all A P E and for µ-almost all x P Eu� tB P E : P pa, x,Bq � 1Bpxq, for µ-almost all x P Eu . (9.127)

The definition of Ja should be compared with the notion of µ-invariant

subset in Definition 9.9. An application of the Chacon-Ornstein theo-

rem to the dynamical system tppE, E , µq , Paqu, with Pafpxq � eaLfpxq �
Ex rf pXpaqqs � ³

fpyqP pa, x, dyq, f P L1pE, µq, is that for all a ¡ 0

lim
nÑ8 Ex rApnaqs

Ex rBpnaqs � QaEp�q rApaqs pxq
QaEp�q rBpaqs pxq (9.128)

for µ-almost all x P E. For the Chacon-Ornstein theorem and the Neveu-

Chacon identification theorem see e.g. [Krengel (1985)], theorems 2.7 and

3.4 in Chapter 3. Here Qa is the µ-conditioning operator on the σ-field

Ja. In other words: if h P L1pE, µq, then Qah is Ja-measurable and³
Qahpxqfpxq dµpxq � ³

hpxqfpxq dµpxq for all bounded functions f which

are Ja measurable. Of course, the measure µ is the invariant measure for

the semigroup
 
etL : t ¥ 0

(
. The operator Qa has the following invariance

property:»
PafpxqQahpxq dµpxq � »

fpxqQahpxq dµpxq, h P L1pE, µq, f P L8pE, µq.
(9.129)



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

600 Markov processes, Feller semigroups and evolution equations

Here Pafpxq � eaLfpxq � ³
P pa, x, dyqfpyq, f P L8pE, µq. The equal-

ity in (9.129) can also be written as P�
a Qah � Qah, h P L1 pE, µq. It

follows that if Qahpxq � hpxq on the subset th � 0u, then the measure

B ÞÑ ³
B
hpxqdµpxq is a Pa-invariant measure.

Lemma 9.7. Let the hypotheses and notation be as in Proposition 9.7.

Suppose that the limit lim
tÑ8 Ex rAptqs

Ex rBptqs exists for µ-almost all x P E. Then

lim
tÑ8 Ex rAptqs

Ex rBptqs � Eµ rAp1qs
Eµ rBp1qs for µ-almost all x P E.

Proof. Let h ¥ 0 be a function which is bounded and which is measurable

with respect to Ja for all a ¡ 0. Then for f P L1 pE, µq we have by

invariance of the function h»
eaLfpxqhpxq dµpxq � »

eaL pfhq pxq dµpxq � »
fpxqhpxq dµpxq. (9.130)

Since the equality in (9.130) holds for all a ¡ 0 and all f P L1 pE, µq we
infer that the measure hµ is also an invariant measure. By uniqueness it

follows that the function h is a constant µ-almost everywhere. Since for all

a ¡ 0 we have equality of the following limits

HA,Bpxq :� lim
tÑ8 Ex rAptqs

Ex rBptqs � lim
nÑ8 Ex rApnaqs

Ex rBpnaqs (9.131)

the Chacon-Ornstein theorem implies that the function x ÞÑ HA,Bpxq in

(9.131) is Ja-measurable for all a ¡ 0: see e.g. [Krengel (1985)], theorems

2.7 and 3.4 in Chapter 3. Since such functions are µ-almost everywhere

constant, we infer that the function HA,B is µ-almost everywhere a constant

CA,B. So we see

QaEp�q rApaqs pxq � CA,BQaEp�q rBpaqs pxq, for µ-almost all x P E.
(9.132)

Since the constant function 1 is Ja-measurable the equality in (9.132)

yields:»
Ex rApaqs dµpxq � »

QaEp�q rApaqs pxq dµpxq� CA,B

»
QaEp�q rBpaqs pxq dµpxq � CA,B

»
Ex rBpaqs pxq dµpxq. (9.133)

Since the quotient

³
Ex rApaqs dµpxq³
Ex rBpaqs dµpxq does not depend on a ¡ 0 we obtain

HA,B � CA,B � ³
Ex rAp1qs dµpxq³
Ex rBp1qs dµpxq . (9.134)

The equality in (9.134) completes the proof of Lemma 9.7. �
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Proposition 9.9. Let the hypotheses and notation be as in Proposition 9.7.

Let C be the event in (9.120). Then the event PxrCs � 1 for µ-almost all

x P E. The equality in (9.121) holds for µ-almost all x P E.

Proof. Since we already proved the lemmas 9.5, 9.6 and 9.7 we only need

to show that the following limits exist:

(1) in order to see that PxrCs � 1 for µ-almost all x P E, with C as in

(9.120) it is required that the limit lim
tÑ8 Aptq

Bptq exists Pµ-almost surely.

(2) in order that the equality in (9.121) holds we need the existence of the

limit: lim
tÑ8 Ex rAptqs

Ex rBptqs for µ-almost all x P E.

Let the additive process Bptq ¥ 0 be such that 0   Pµ rBpaqs   8. Then

Ex rBp8qs � 8̧
n�0

Ex rB ppn� 1qaq �Bpnaqs� 8̧
n�0

Ex rB paq � ϑnas � 8̧
n�0

enaLEp�q rB paqs pxq, (9.135)

and hence»
Ex rBp8qs dµpxq � 8̧

n�0

»
Ex rB paqs dµpxq � 8. (9.136)

From the recurrence property of the process X , the hypothesis that all

measures of the form B ÞÑ P pt, x, Bq are equivalent, and the equality in

(9.136) we infer that Bp8q � 8 Px-almost surely for µ-almost all x P E,

and that Bp8q � 8 Pµ-almost surely: see the proof of Proposition 9.7,

and see Theorem 9.8. Since Bp8q � 8 Px-almost surely for µ-almost

all x P E and Pµ-almost surely, in both cases it is easy to see that the

existence of these limits is guaranteed as soon as we know the existence

of these limits by taking Bptq of the form Bptq � ³t
0
1F pXpsqq ds where

F is a Borel subset with 0   µpF q   8. Let a ¡ 0 and x P E, and

put Pafpxq � eaLfpxq � Ex rfpXpaqqs � eaLfpxq � ³
fpyqP pa, x, dyq, f

bounded and Borel measurable. In addition put TaZ � Z �ϑa, where Z is a

random variable which is F -measurable. We write Za � ³a
0
1F pXpsqq ds and

fapxq � Ex
�³a

0
1F pXpsqq ds� � Ex rZas. Since the process X is recurrent

we know that (see the proof of Proposition 9.7)8̧
n�0

T na Za � » 8
0

1F pXpsqq ds � 8, Pµ-almost surely, and (9.137)
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n�0

Pna fapxq � Ex

�» 8
0

1F pXpsqq ds� � 8 for µ-almost all x P E.
(9.138)

From the Chacon-Ornstein theorem it then follows that the limits in (1)

and (2) above exist as long as we take t � na, a ¡ 0, and let n P N tend to8. But then these limits also exist when we let t tend to 8.

These observations complete the proof of Proposition 9.9. �

9.3 Spectral gap

Next we return to problems and results concerning spectral gaps and related

topics. This section is concluded with a proof of Theorem 9.1. We start

with an introductory remark.

Remark 9.9. Of course, the estimate in (9.8) in Corollary 9.1 gives an

interesting lower bound for gappLq only in case λminpaq ¡ 0; we always

have λminpaq ¥ 0. Condition (9.5) and the finiteness of a in Theorem

9.1 can be replaced by a Γ2-condition, without violating the conclusion in

(9.6). In fact a condition of the form Γ2

�
f, f

� ¥ γΓ1

�
f, f

�
, f P A, yields

a stronger result: see Theorem 9.18 and Example 9.1, Proposition 9.18 and

the formulas (9.269) and (9.270). It is also noticed that in the presence of

an operator L as described in (9.1), and the corresponding squared gradient

operator

Γ1 pf, gq pxq � 1

2

ḑ

i,j�1

ai,jpxq B2fpxqBxiBxj (9.139)

the standard Euclidean distance is not the necessarily the “natural” dis-

tance for problems related to the presence of a spectral gap. In fact the

more adapted distance dL or dΓ1
is probably given by the following formula:

dLpx, yq � sup
 |fpxq � fpyq| : Γ1

�
f, f

� ¤ 1, f P D pΓ1q( . (9.140)

One of the tools used in estimates related to coupling methods is finding

the correct metric on Rd�Rd which serves as a “prototype” estimate. The

reader should compare this observation with comments and techniques used

by Chen and Wang in e.g. [Chen and Wang (1997, 2000, 2003)]. In Lemma

9.8 below the standard Euclidean distance is used (like in [Chen and Wang

(1997)]). In fact, it could be that it would be more appropriate to use the

distance presented in (9.140). As remarked earlier, this technique might

lead to geometric considerations related to Γ2-calculus.
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Remark 9.10. As noticed in the preface of this book recent applications

of the Γ2-condition to problems related to transportation costs can be

found in recent work by [Gozlan (2008)], which in turn is related to [Go-

zlan (2007)] and [Gozlan and Léonard (2007)]. Gozlan also introduces so-

called local logarithmic Sobolev inequalities. In addition he establishes a

link with the large deviation principle; more particularly, he expresses the

rate function in terms of the relative entropy or the mutual information

H
�
µ
�� ν� � �»

E

dµ log
dµ

dν
, also called the conditional Shannon informa-

tion in the discrete setting, between probability measures µ and ν on E.

Another name for this quantity is Kullback-Leibler distance; for more prop-

erties of this “distance” see e.g. [Kullback (1997)]. For a general theory

concerning optimal transport see [Villani (2003, 2009)]. A new variational

method of finding the rate function for the large deviation principle is used

in [Budhiraja et al. (2008)].

The proof of Theorem 9.1 will be based on coupling arguments. In the

present situation we will consider unique week solutions to the following

stochastic differential equation in Rd � Rd:�
Xptq
Y ptq
 � �

Xpsq
Y psq
� » t

0

�
σ ps,Xpsqq
σ pρ, Y pρqq
 dW pρq � » t

s

�
b pρ,Xpρqq
b pρ, Y pρqq
 dρ.

(9.141)

Of course this equation is a natural analog of an equation of the form

Xptq � Xpsq � » t
s

σ pρ,Xpρqq dW pρq � » t
0

b pρ,Xpρqq dρ. (9.142)

In equation (9.141) we assume that the column vector

�
Xpsq
Y psq
 can be

prescribed, and in (9.142) we may prescribe Xpsq. Let us introduce the

coupling operator rL as follows:rLsf px, yq � 1

2

ḑ

i,j�1

ai,jps, x, xqB2fpx, yqBxiBxj � 1

2

ḑ

i,j�1

ai,jps, x, yqB2fpx, yqBxiByj� 1

2

ḑ

i,j�1

ai,jps, y, xqB2fpx, yqByiBxj � 1

2

ḑ

i,j�1

ai,jps, y, yqB2fpx, yqByiByj� ḑ

i�1

bips, xqBfpx, yqBxi � ḑ

i�1

bips, yqBfpx, yqByi . (9.143)
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Here the matrix aps, x, yq � pai,jps, x, yqqdi,j�1
is given by

ai,jps, x, yq � pσps, xqσps, yq�qi,j � ḑ

k�1

σi,kps, xqσj,kps, yq.
It follows that the diffusion matrix raps, x, yq of the operator rLs and the

drift vector rbps, x, yq are given by respectively:raps, x, yq � �
σps, xqσps, xq� σps, xqσps, yq�
σps, yqσps, xq� σps, yqσps, yq�
� �
σps, xq 0

0 σps, yq
�
Id Id
Id Id


�
σps, xq� 0

0 σps, yq�
 , (9.144)

and rbps, x, yq � �
bps, xq
bps, yq
 . (9.145)

Here Id is the d� d identity matrix. Notice that�
Id Id
Id Id


 � �
α β

α β


�
α� α�
β� β�
,

where the d�d matrices α and β are chosen in such a way that αα��ββ� �
Id. The stochastic differential equation in (9.141) corresponds to the choice

α � Id (and β � 0). We also assume that the corresponding martingale

problem is well-posed. In the present context the corresponding martingale

problem reads as follows. For every pair px, yq P Rd � Rd, and s ¥ 0, find

a probability measure Ps,x,y on Cb
�
Rd � Rd

�
which makes the process

f pt,Xptq, Y ptqq � f ps,Xpsq, Y psqq � » t
s

rLf pρ,Xpρq, Y pρqq dρ (9.146)

a Ps,x,y-martingale with respect to the filtration determined by Brownian

motion tW psq : s ¥ 0u. Moreover, we want the probability measure Ps,x,y

to be such that Ps,x,y rXpsq � x, Y psq � ys � 1. For more details on the

martingale problem the reader is referred to e.g. Theorems 2.11 and 2.12.

Saying that the martingale problem is well posed for the operator is equiva-

lent to saying that the stochastic differential equation in (9.141) has unique

weak solutions. If the coefficients σps, xq and bps, xq are such that the equa-

tion in (9.141) has unique strong solutions, then it possesses unique weak

solutions, and hence the martingale problem is well-posed for rL. For more

details the reader is referred to §1.1 in Chapter 10. Let the pair

�
Xptq
Y ptq
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be a unique weak solution solution to the coupled stochastic differential

equation (9.141) starting at time s in

�
Xpsq
Y psq
 � �

x

y



in Rd � Rd. Then

we define the stopping time τ by

τ � inf tt ¡ 0 : Xptq � Y ptqu ,
if there exists t P p0,8q such that Xptq � Y ptq. If no such finite t exists,

then we write τ � 8. The following theorem can be found in [Chen and

Wang (1997)] as Theorem 3.1. Their proof uses an approximation argu-

ment. As Chen and Wang indicate, it is also a consequence of theorems

6.1.3, 8.1.3 (and 10.1.1) in [Stroock and Varadhan (2006)]. The reader

should compare the result in Theorem 9.12 with Theorem 1.3.

Theorem 9.12. Suppose that the martingale is well posed for the operator

L, or what is equivalent, suppose that the pair pσps, xq, bps, xqq possesses

unique weak solutions. Let Ps,x,y be the unique solution to the martingale

problem staring at the pair px, yq. Then Xptq � Y ptq Ps,x,y-almost surely

on the event tτ ¤ tu.
The proof Theorem 9.12 will be given after Remark 9.11 below.

The following definition is taken from [Stroock and Varadhan (2006)]

Chapter 8. The connection with the well-posedness of the martingale

problem will be explained in §1.1 in Chapter 10. In particular we have

that the martingale problem is well-posed for the operator L if the pairpσpt, yq, bpt, yqq, t ¥ 0, y P Rd, satisfies Itô’s uniqueness condition from any

point ps, xq P r0,8q � Ed. In fact this is the theorem of Watanabe and

Yamada [Watanabe and Yamada (1971)].

Definition 9.10. Let ps, xq P r0,8q�Rd. The pair pσpt, yq, bpt, yqq, t ¥ s,

y P Rd, is said to possess at most one weak solution from ps, xq, if and

only if for every probability space pΩ,F ,Pq, every non-decreasing familytFt : t ¥ 0u of sub-σ-fields of F , and every triple β : r0,8q � Ω Ñ Rd,

ξ : r0,8q�ΩÑ Rd, and η : r0,8q�ΩÑ Rd such that pΩ,Ft,P;βptqq is a
d-dimensional Brownian motion, and the equations

ξptq � x� » s_t
s

σ pρ, ξpρqq dβpρq � » s_t
s

b pρ, ξpρqq dρ, t ¥ 0,

and

ηptq � x� » s_t
s

σ pρ, ηpρqq dβpρq � » s_t
s

b pρ, ηpρqq dρ, t ¥ 0,
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hold P-almost surely, then ξptq � ηptq P-almost surely. Instead of possessing

a “unique weak solution from ps, xq”, it is also customary to say that for the

pair pσps, xq, bps, xqq the Itô’s uniqueness condition is satisfied from ps, xq
or after s starting from x.

The following definition specializes Theorem 2.11 and 2.12 to the case of

the differential operator L � pLptq; t ¥ 0u as exhibited in (9.1).

Definition 9.11. Let the operator L be given by (9.1), and let

Ω � �
Rd

�r0,8q
, and Xptqpωq � Xpt, ωq � ωptq, ω P Ω, t ¥ 0.

Put Fs
t � σ pXpρq : s ¤ ρ ¤ tq, 0 ¤ s ¤ t   8, and F � σ pXpsq : s ¥ 0q.

The martingale problem is said to be well-posed for the operator L starting

from ps, xq P r0,8q � Rd if there exists a unique probability measure P on

P with the following properties:

(a) P rXptq � x : 0 ¤ t ¤ ss � 1.

(b) For every f P�s¡0D pLpsqq�C0

�
Rd

�
the process

t ÞÑ fpXptqq � fpXpsqq � » t
s

Lpsqf pXpsqq ds
is a P martingale with respect to the filtration pFs

t qt¥s.
Let pΩ,Fs

t ,Pqt¥s be a filtered probability space, and let pt, ωq ÞÑ Xpt, ωq
be a progressively measurable process. There are several equivalent for-

mulations for the process X possessing properties (a) and (b) on some

probability space. The reader is referred to e.g. Theorem 4.2.1 in [Stroock

and Varadhan (2006)]. We begin by defining a progressively measurable

process.

Definition 9.12. Let pΩ,Fs
t qt¥s be a filtered space, and let pE, Eq be a

measurable space. Let X : rs,8q � Ω Ñ E be a processes (or just a

function). The process X is called progressively measurable if for every t1,

t2, with s ¤ t1   t2   8, the function X : rt1, t2s�ΩÑ E is Brt1,t2s�Ft2-

E-measurable. The symbol Brt1,t2s stand for the Borel field of the intervalrt1, t2s. If E is a topological space with Borel field E , and if X is right-

continuous, then X is progressively measurable relative to the filtration�
Ω,Fs

t��t¥s. Here Fs
t� � �

ρ¡t Fs
ρ .

Definition 9.13. Let pΩ,Fs
t ,Pqt¥s be a filtered probability space and let

the progressively measurable process Xptq have the properties in (a) and

(b) of Definition 9.11 relative to the present filtered probability space. Then
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Xptq is called an Itô process on pΩ,Fs
t ,Pqt¥s with covariance matrix apt, xq

and drift vector bpt, xq, pt, xq P r0,8q� Rd.

In fact the same definition can be used if the coefficients aptq and bptq are
processes which are progressively measurable.

The following theorem says that an Itô process after a stopping time

is again an Itô process. It is the same as Theorem 6.1.3 in [Stroock and

Varadhan (2006)]: Sd stands for the symmetric d � d matrices with real

entries.

Theorem 9.13. Let pΩ,Fs
t ,Pq be a filtered probability space, and let a :rs,8q � Ω Ñ Sd, and brs,8q Ñ Rd be bounded progressively measurable

functions. Moreover, let X : rs,8q � Ω Ñ Rd be an Itô process with

covariance a and drift b, and let τ : ΩÑ rs,8q be an pFs
t qt¥s-stopping time.

Suppose that the process t ÞÑ Xptq is right-continuous and P-almost surely

continuous. Let ω ÞÑ Qω be regular conditional probability distribution

corresponding to the conditional probability: A ÞÑ P
�
A
�� Fs

τ

�
. Then there

exists a P-null N set such that t ÞÑ Xptq is an Itô process on rτpωq,8q
relative to Qω, ω R N .

For a proof of Theorem 9.13 we refer the reader to [Stroock and Varadhan

(2006)]. The function pω,Aq ÞÑ QωpAq, ω P Ω, A P Fs � σ pXpρq : ρ ¥ sq,
possesses the following properties:

(a) For every B P Fs the function ω ÞÑ Qω rBs is Fs
τ -measurable;

(b) For every A P Fs
τ and B P Fs the following equality holds:

P

�
A
£
B
� � »

A

QωrBs dPpωq; (9.147)

(c) There exists a P-negligible event N such that Qω rApωqs � 1 for all for

ω R N .

In item (c) we write Apωq � � tA : A Q ω, A P Fs
τ u, ω P Ω. Property (c)

expresses the regularity of the conditional probability Qω. Property (b) is

a quantitative property pertaining to the definition of conditional expecta-

tion, and (a) is a qualitative property defining conditional expectation.

The following theorem appears as Theorem 8.1.3 in [Stroock and Varad-

han (2006)].

Theorem 9.14. Let a and b be bounded Borel measurable functions with

attain values in Sd and Rd respectively. Define the matrix functions ra andrb as in (9.144) and (9.145). Then the coefficients σ and b satisfy Itô’s
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uniqueness conditions starting from ps, yq if and only if any solution rP
to the martingale problem relative to the operator rL from ps, y, yq has the

property that rP rXptq � Y ptq, t ¥ ss � 1. Here, the processes Xptq and

Y ptq attain their values in Rd and are such that for all f P C2
0

�
Rd � Rd

�
the process

t ÞÑ f pXptq, Y ptqq � f pXpsq, Y psqq � » t
s

Lpρqf pXpρq, Y pρqq dρ, t ¥ s,

is a rP -martingale after s relative to filtration determined by the σ-fields

Fs
t � σ ppxpρq, Xpρqq : ρ P rs, tsq.

Remark 9.11. In both theorems 9.13 and 9.14 the bounded progressively

measurable processes t ÞÑ aptq and t ÞÑ bptq may be replaced with locally

bounded Borel measurable functions from r0,8q�Rd to Sd and Rd respec-

tively. Of course the processes aptq and bptq have to read as a pt,Xptqq and
b pt,Xptqq respectively. This is a consequence of Theorem 10.1.1 in [Stroock

and Varadhan (2006)].

Proof. [Proof of Theorem 9.12.] The result in Theorem 9.12 is a conse-

quence of Theorem 9.13 in conjunction with Theorem 9.14. In fact Theorem

9.13 reduces the stopping time τ to a fixed time of the form τpωq, where
ω P Ω is fixed. Since at time τpωq, Xpτpωqq � Y pτpωqq Theorem 9.14

shows that the coupling is successful (i.e. Xptqpωq � Y ptqpτq Qω-almost

surely for Ps,x,y-almost all ω) in case the pair pσpt, xq, bpt, xqq consists of

bounded functions and admits unique weak solutions. It then follows that

Xptq � Y ptq Ps,x,y-almost surely on the event tτ ¤ tu. In formulas the

arguments read as follows. From Theorem 9.13 we have

P
�
Xptq � Y ptq �� Fs

τ

�
1tτ¤t,Xpsq�x, Y psq�yu� Pτ,Xpτq,Y pτq rXptq � Y ptqs1tτ¤t,Xpsq�x, Y psq�yu. (9.148)

From Theorem 9.14 and (9.148) we get

Ps,x,y rXptq � Y ptq, τ ¤ ts� P rXptq � Y ptq, Xpsq � x, Y psq � y, τ ¤ ts� E
�
P
�
Xptq � Y ptq �� Fs

τ

�
, Xpsq � x, Y psq � y, τ ¤ t

�� E
�
Pτ,Xpτq,Y pτq rXptq � Y ptqs , Xpsq � x, Y psq � y, τ ¤ t

�� E r1, Xpsq � x, Y psq � y, τ ¤ ts � P rXpsq � x, Y psq � y, τ ¤ ts� Ps,x,y rτ ¤ ts . (9.149)
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From (9.149) we infer that Xptq � Y ptq Ps,x,y-almost surely on the eventtτ ¤ tu.
Remark 9.11 takes care of locally bounded coefficients. This finishes the

proof of Theorem 9.12. �

In the following lemma we suppose that the operator L is time-

independent.

Lemma 9.8. Let the process

�
Xptq
Y ptq
 be a coupling of the L-diffusion pro-

cess. If there exists γ P R such that

Ex,y

�|Xptq � Y ptq|2� ¤ |x� y|2 e�γt (9.150)

for all t ¥ 0 and all px, yq P Rd � Rd, then��∇etLf ��2 ¤ e�γtetL |∇f |2 , (9.151)

for all functions f P C1
�
Rd

�
with a bounded gradient which is uniformly

continuous.

Proof. Let τ be the coupling time of the processes Xptq and Y ptq solving
the coupled stochastic differential equation (9.141), and let f P Cb

�
Rd

�
have a uniformly bounded gradient ∇f . Then by inequality (9.150) we

have��etLfpxq � etLfpyq��2|x� y|2 � ����Ex,y �fpXptqq � fpY ptqq|Xptq � Y ptq| |Xptq � Y ptq||x� y| , τ ¡ t

�����2¤ Ex,y

� |fpXptqq � fpY ptqq|2|Xptq � Y ptq|2 , τ ¡ t

�
Ex,y

� |Xptq � Y ptq|2|x� y|2 , τ ¡ t

�¤ e�γtEx,y � |fpXptqq � fpY ptqq|2|Xptq � Y ptq|2 , τ ¡ t

�� e�γtEx,y �����» 1

0

〈

∇f pp1� sqY ptq � sXptqq , Xptq � Y ptq|Xptq � Y ptq|〉 ds����2 , τ ¡ t

�¤ e�γtEx,y �» 1

0

|∇f pp1� sqY ptq � sXptqq|2 ds, τ ¡ t

�
. (9.152)

Next fix ε ¡ 0, and choose δ ¡ 0 in such a way that |y � z| ¤ δ implies|∇fpyq|2 ¤ |∇fpzq|2 � ε2. Then from (9.152) we obtain:��etLfpxq � etLfpyq��2|x� y|2
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0

|∇f pp1� sqY ptq � sXptqq|2 ds, |Y ptq �Xptq| ¤ δ

�� e�γtEx,y �» 1

0

|∇f pp1� sqY ptq � sXptqq|2 ds, |Y ptq �Xptq| ¡ δ

�¤ e�γtEx,y �|∇f pXptqq|2 , |Y ptq �Xptq| ¤ δ
�� e�γt }∇f}28 Px,y r|Y ptq �Xptq| ¡ δs � e�γtε2¤ e�γtEx,y �|∇f pXptqq|2 , |Y ptq �Xptq| ¤ δ
�� e�γt 1

δ2
}∇f}28 Ex,y

�|Y ptq �Xptq|2�� e�γtε2
(use (9.150))¤ e�γtEx,y �|∇f pXptqq|2�� e�2γt 1

δ2
}∇f}28 |y � x|2 � e�γtε2. (9.153)

In (9.153) we let y tend to x to obtain:��∇etLf ��2 pxq ¤ e�γtEx,x �|∇f pXptqq|2�� e�2γtε2. (9.154)

Since Ex,x rg pXptqqs � e�tLgpxq, g P Cb �Rd�, and ε ¡ 0 is arbitrary the

conclusion in Lemma 9.8 follows from (9.154). �

We conclude this section with a proof of Theorem 9.1.

Proof. [Proof of Theorem 9.1.] Put hpx, yq � |x� y|2. From the repre-

sentation in (9.143) of the operator rL, which now does not depend on t, we

see thatrLhpx, yq � Tr pσpxq � σpyqq pσpxq � σpyqq� � 2 〈bpxq � bpyq, x� y〉 .

(9.155)

From Itô’s formula and (9.141) we get|Xptq � Y ptq|2 � |Xp0q � Y p0q|2� ḑ

k,ℓ�1

» t
0

pXkpsq � Ykpsqq pσk,ℓ pXpsqq � σk,ℓ pY psqqq dWkpsq� 2
ḑ

k�1

» t
0

pXkpsq � Ykpsqq pbk pXpsqq � bk pY psqqq ds� ḑ

i�1

ḑ

k�1

» t
0

pσi,k pXpsqq � σi,k pY psqqq pσi,k pXpsqq � σj,k pY psqqq ds� |Xp0q � Y p0q|2
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k,ℓ�1

» t
0

pXkpsq � Ykpsqq pσk,ℓ pXpsqq � σk,ℓ pY psqqq dWkpsq� 2
ḑ

k�1

» t
0

〈Xpsq � Y psq, b pXpsqq � b pY psqq〉 ds� » t
0

Tr
�pσ pXpsqq � σ pY psqqq pσ pXpsqq � σ pY psqqq�� ds. (9.156)

Put ϕptq � Ex,y

�|Xptq � Y ptq|2�. Then (9.156) and the definition of γ in

(9.5) we see that ϕ1ptq ¤ �γϕptq. It follows that ϕptq ¤ ϕp0qe�γt. From

Lemma 9.8, in particular from (9.151) we see that��∇etLf ��2 ¤ e�γtetL |∇f |2 , (9.157)

for all functions f P Cb �Rd� with bounded uniformly continuous gradient.

Let f P Cb �Rd� be such a function. Then from (9.157) we infer

etL |f | f2 � ��etLf ��2 � » t
0

BBsesL ���ept�sqLf ���2 ds� » t
0

BBsesL 〈

a∇ept�sqLf,∇ept�sqLf〉 ds (9.158)¤ a

» t
0

BBsesL 〈

∇ept�sqLf,∇ept�sqLf〉 ds� a

» t
0

BBsesL ���∇ept�sqLf,∇���2 ds¤ a

» t
0

e�pt�sqγesLept�sqL |∇f |2 ds� a
1� e�γt

γ
etL |∇f |2 . (9.159)

The inequality in (9.159) completes the proof of Theorem 9.1. �

9.4 Some related stability results

Let L be the generator of a Tβ-diffusion which, by definition, is a time-

homogeneous Markov process �
Ω,F0

t ,Px
�
, pXptq, t ¥ 0q , pϑt, t ¥ 0q , pE, Eq( .

Let Γ1 be the corresponding squared gradient operator. With f P DpLq we
associate the martingale t ÞÑMf ptq defined by

Mf ptq � f pXptqq � f pXp0qq � » t
0

Lf pXpsqq ds.
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For more details on the squared gradient operators see e.g. [Bakry (1994)]

and [Bakry (2006)]. Then for f , g P DpLq we have

〈Mf ,Mg〉 ptq � » t
0

Γ1 pf, gq pXpsqq ds. (9.160)

Denote by
 
etL : t ¥ 0

(
the semigroup generated by L.

Theorem 9.15. Let f P D �
L2

�
. Then the following identities hold for ρ,

t ¥ 0 and x P E:

f pXpρ� tqq � EXpρq rf pXptqqs (9.161)�Mf pρ� tq �Mf pρq � » ρ�t
ρ

 
Mepρ�t�σqLLf pσq �Mepρ�t�σqLLf pρq( dσ�Mf pρ� tq �Mf pρq � » t

0

 
Mept�σqLLf pρ� σq �Mept�σqLLf pρq( dσ,

and

Ex

���f pXpρ� tqq � EXpρq rf pXptqqs��2�� Ex

�|f pXpρ� tqq|2�� |Ex rf pXpρ� tqqs|2� epρ�tqL |f |2 pxq � eρL
��etLfpxq��2� Ex

�» t
0

Γ1

�
ept�σqLf, ept�σqLf	 pXpρ� σqq dσ�� » t

0

epρ�σqLΓ1

�
ept�σqLf, ept�σqLf	 pxq dσ. (9.162)

Remark 9.12. In (9.161) we need the fact that f P D �
L2

�
. In (9.162) the

hypotheses f P DpLq suffices.

Proof. First we prove the equality in (9.161). Therefore we write:

Mf pρ� tq �Mf pρq � » ρ�t
ρ

 
Mepρ�t�σqLLf pσq �Mepρ�t�σqLLf pρq( dσ�Mf pρ� tq �Mf pρq� » ρ�t

ρ

"
epρ�t�σqLLf pXpσqq � epρ�t�σqLLf pXpρqq� » σ

ρ

epρ�t�σqLL2f pX pσ1qq dσ1* dσ�Mf pρ� tq �Mf pρq � » ρ�t
ρ

epρ�t�σqLLf pXpσqq dσ
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epρ�t�σqLLf pXpρqq dσ� » ρ�t
ρ

» ρ�t
σ1

epρ�t�σqLL2f pX pσ1qq dσ dσ1�Mf pρ� tq �Mf pρq � » ρ�t
ρ

epρ�t�σqLLf pXpσqq dσ� » ρ�t
ρ

BBσepρ�t�σqLf pXpρqq dσ� » ρ�t
ρ

» ρ�t
σ1

BBσepρ�t�σqLLf pX pσ1qq dσ dσ1�Mf pρ� tq �Mf pρq � » ρ�t
ρ

epρ�t�σqLLf pXpσqq dσ� f pXpρqq � etLf pXpρqq� » ρ�t
ρ

�
Lf pX pσ1qq � epρ�t�σ1qLLf pX pσ1qq	 dσ1� f pXpρ� tq � f pXpρqq � » ρ�t

ρ

Lf pXpsqq ds� » ρ�t
ρ

epρ�t�σqLLf pXpσqq dσ � f pXpρqq � EXpρq rf pXptqqs� » ρ�t
ρ

�
Lf pX pσ1qq � epρ�t�σ1qLLf pX pσ1qq	 dσ1� f pXpρ� tqq � EXpρq rf pXptqqs . (9.163)

The equality in (9.161) is the same as the one in (9.163). The proof of

(9.162) is much more difficult. We will employ the equalities in (9.160) and

(9.161) to obtain it. From (9.161) we get��f pXpρ� tqq � EXpρq rf pXptqqs��2� ����Mf pρ� tq �Mf pρq �» t
0

 
Mept�σqLLf pρ� σq �Mept�σqLLf pρq( dσ����2� |Mf pρ� tq �Mf pρq|2� 2ℜ

�
Mf pρ� tq �Mf pρq » t

0

 
Mept�σqLLf pρ� σq �Mept�σqLLf pρq( dσ
� ����» t

0

 
Mept�σqLLf pρ� σq �Mept�σqLLf pρq( dσ����2 . (9.164)



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

614 Markov processes, Feller semigroups and evolution equations

For brevity we write

△ρMgpσq �Mg pρ� σq �Mgpρq, g P DpLq. (9.165)

Next we use the fact that processes of the form σ ÞÑ △ρMgpσq, g P DpLq,
are Px-martingales with respect to the filtration

 
Fρ
ρ�σ : σ ¡ 0

(
. From this

together with (9.160) and (9.164) we obtain, using the notation in (9.165):

Ex

���f pXpρ� tqq � EXpρq rf pXptqqs��2�� Ex

�|△ρMf ptq|2�� 2ℜEx

�» t
0

△ρMf ptq  △ρMept�σqLLf pσq( dσ�� Ex

�» t
0

» t
0

△ρMept�ρ1qLLf pρ1q  △ρMept�ρ2qLLf pρ2q( dρ1 dρ2�� Ex

�|△ρMf ptq|2�� 2ℜ

�
Ex

�» t
0

△ρMf pσq△ρMept�σqLLf pσq dσ�
� Ex

�» t
0

» t
0

△ρMept�ρ1qLLf pρ1 ^ ρ2q△ρMept�ρ2qLLf pρ1 ^ ρ2q dρ1 dρ2�
(employ (9.160) several times)� Ex

�» t
0

Γ1

�
f, f

� pXpρ� σqq dσ�� 2ℜ

�
Ex

�» t
0

» σ
0

Γ1

�
f, ept�σqLLf	 pX pρ� σ1qq dσ1 dσ�
� Ex

�» t
0

» t
0

» ρ1^ρ2
0

Γ1

�
ept�ρ1qLLf, ept�ρ2qLLf	 pX pρ� σqq dσ dρ1 dρ2�� Ex

�» t
0

Γ1

�
f, f

� pXpρ� σqq dσ�� 2ℜ

�
Ex

�» t
0

» t
σ1

Γ1

�
f, ept�σqLLf	 pX pρ� σ1qq dσ dσ1�
� Ex

�» t
0

» t
σ

» t
σ

Γ1

�
ept�ρ1qLLf, ept�ρ2qLLf	 pX pρ� σqq dρ1 dρ2 dσ�

(the operator Γ1 is bilinear)� Ex

�» t
0

Γ1

�
f, f

� pXpρ� σqq dσ�� 2ℜ

�
Ex

�» t
0

Γ1

�
f,

» t
σ1

ept�σqLLf dσ
 pX pρ� σ1qq dσ1�
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�» t
0

Γ1

�» t
σ

ept�ρ1qLLf dρ1, » t
σ

ept�ρ2qLLf dρ2� pX pρ� σqq dσ�� Ex

�» t
0

Γ1

�
f, f

� pXpρ� σqq dσ�� 2ℜ

�
Ex

�» t
0

Γ1

�
f, ept�σ1qLf � f

	 pX pρ� σ1qq dσ1�
� Ex

�» t
0

Γ1

�
ept�σqLf � f, ept�σqLf � f

	 pX pρ� σqq dσ�� Ex

�» t
0

Γ1

�
ept�σqLf, ept�σqLf	 pXpρ� σqq dσ� . (9.166)

The equality in (9.166) yields (9.162) for f P D
�
L2

�
. Since D

�
L2

�
is

Tβ-dense in DpLq we infer (9.162) for f P DpLq.
An easier proof of equality (9.162) reads as follows. We calculate:BBσ "

epρ�σqL ���ept�σqLf ���2*� epρ�σqLL ���ept�σqLf ���2� epρ�σqL !Lept�σqLfept�σqLf � ept�σqLfLept�σqLf)� epρ�σqLΓ1

�
ept�σqLf, ept�σqLf	 . (9.167)

In (9.167) we used the identity

L
�
fg

� � Lfg � fLg � Γ1

�
f, g

�
. (9.168)

The equality in (9.168) is true for f , g P DpLq such that fg P DpLq. From
(9.167) we obtain:» t

0

epρ�σqLΓ1

�
ept�σqLf, ept�σqLf	 dσ � » t

0

BBσ "
epρ�σqL ���ept�σqLf ���2* dσ� epρ�tqL |f |2 � eρL

��etLf ��2 . (9.169)

The equality in (9.169) implies (9.162), and completes the proof of Theorem

9.12. �

Remark 9.13. Suppose that there exist constants c ¡ 0 and γ P R such

that

Γ1

�
eρLf, eρLf

� ¤ ce�γρeρLΓ1

�
f, f

�
. (9.170)
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From (9.169) and (9.170) with ρ � 0 we obtain:

etL |f |2 � ��etLf ��2 � » t
0

eρLΓ1

�
ept�ρqLf, ept�ρqLf	 dρ¤ » t

0

eρL
!
cept�ρqγept�ρqLΓ1

�
f, f

�)
dρ� c

γ

�
1� e�tγ� etLΓ1

�
f, f

�
. (9.171)

The inequality in (9.171) is the same as inequality (4.14) in Theorem 4.13

in [Chen and Wang (1997)]. If µ is an invariant probability for the operator

L, then (9.171) implies

lim
tÑ8 »

etL
��f � etLfpxq��2 pxqdµpxq� » |f |2 dµ� lim

tÑ8 » ��etLf ��2 dµ ¤ c

γ

»
Γ1

�
f, f

�
dµ, (9.172)

provided γ ¡ 0. From (9.172) it follows that the L2-spectral gap of L is

bounded from below by γ{c. The inequality in (9.172) can be considered as

a spectral gap or Poincaré inequality: compare with Definition 9.15 below.

The following definition is to be compared with the Definitions 8.4 and

8.5. This definition is also closely related to Fang’s spectral gap theorem in

[Fang (1993)]: see Theorem 5.4 in [Driver (1995; Last revised: January 29,

2003)] as well. The latter reference also contains some results on the rela-

tionship between Fang’s spectral gap theorem and the logarithmic Sobolev

inequality: see Section 5.4 in [Driver (1995)].

Definition 9.14. Let µ be the unique invariant measure of the generator

of a diffusion L with associated squared gradient operator Γ1. Then the

L2pµq-spectral gap of the operator L is defined by the equality

2gap pLq � inf

"»
Γ1

�
f, f

�
dµ : f P DpLq, » fdµ � 0,

» |f |2 dµ � 1

*
.

(9.173)

Proposition 9.10. Let the measure µ and gappLq ¡ 0 be as in Definition

9.14. Then γ P p0,8q satisfies γ ¤ 2� gappLq if and only if the following

inequality holds for all t ¡ 0 and for all f P CbpEq:» ��etLf ��2 dµ� ����» etLfdµ����2 ¤ e�tγ �» |f |2 dµ� ����» fdµ����2� . (9.174)
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The inequality in (9.174) holds for all t ¡ 0 and f P CbpEq if and if the

inequality »
Γ1

�
f, f

�
dµ ¥ γ

�» |f |2 dµ� ����» fdµ����2� (9.175)

holds for all f P DpLq.
Definition 9.15. An inequality of the form (9.175) is called a Poincaré or

a spectral gap inequality of L2 pE, µq-type.
Notice that by invariance of the measure µ we have

³
etLfdµ � ³

fdµ,

and
³
Lfdµ � 0, f P DpLq. Also notice that, since µ is a probability

measure, the decomposition f � f � ³
fdµ � ³

fdµ splits the function f

in two orthogonal functions (one of them being the constant
³
fdµ) in the

space L2 pE, µq. Hence we have

inf
αPC » |f � α|2 dµ � » ����f � »

fdµ

����2 dµ � » |f |2 dµ� ����» fdµ����2� 1

2

¼ |fpxq � fpyq|2 dµpxq dµpyq. (9.176)

Remark 9.14. If the probability measure µ is invariant under the semi-

group generated by L, then»
Γ1

�
f, g

�
dµ � »

L
�
fg

�
dµ� » �

Lf
�
g dµ� »

f pLgq dµ� � » �
Lf

�
g dµ� »

f pLgq dµ � � » pL� L�q f � g dµ (9.177)

where L� is the adjoint of the operator L in the space L2 pE, µq. From

(9.177) we infer

2gappLq � inf

"»
Γ1

�
f, f

�
dµ :

»
fdµ � 0,

» |f |2 dµ � 1

*� inf

"� » �pL� L�q f� � f dµ :

»
fdµ � 0,

» |f |2 dµ � 1

*
,

and hence the number 2gappLq is the bottom of the spectrum of the op-

erator �pL� L�q in the space
 
f � ³

fdµ : f P L2 pE, µq( which is the or-

thogonal complement of the subspace consisting of the constant functions in

L2 pE, µq. In particular, if L � L�, then gappLq is the gap in the spectrum

of �L between 0 and rgappLq,8q�σµpLq. Here σµpLq denotes the spec-

trum of L as an operator in the space L2 pE, µq. In fact it would have been

better to write gap pL� L�q instead of 2gappLq. Of course 0 is an eigen-

value of L and the constant functions are the corresponding eigenvectors.
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Proof. [Proof of Proposition 9.10.] If γ ¡ 0 is such that (9.174) is satis-

fied for all t ¡ 0 and for all f P CbpEq. Then we subtract
³ |f |2 dµ� ��³ fdµ��2

from both sides of (9.174) and divide by t ¡ 0 to obtain:

1

t

�» ��etLf ��2 dµ� » |f |2 dµ
 ¤ e�γt � 1

t

�» |f |2 dµ� ����» fdµ����2� .

(9.178)

In (9.178) we let t Ó 0 to obtain:» �
Lf � f � f � Lf�dµ ¤ �γ�» |f |2 dµ� ����» fdµ����2� , (9.179)

or what amounts to the same:» �
L |f |2 � Γ1

�
f, f

�	
dµ ¤ �γ�» |f |2 dµ� ����» fdµ����2� . (9.180)

Since by invariance
³
L |f |2 dµ � 0 from (9.180) we infer (9.175) and hence

γ ¤ gappLq.
For the converse statement we consider, for f P DpLq and γ ¡ 0 such

that γ ¤ gappLq, the function

ϕptq � » ����etLf � »
etLfdµ

����2 dµ � » ��etLf ��2 dµ� ����» etLfdµ����2� » ��etLf ��2 dµ� ����» fdµ����2 . (9.181)

Then from (9.175) we infer

ϕ1ptq � » �
L
�
etLf

�
etLf � �

etLf
�
LetLf

�
dµ� »

L
���etLf ��2	 dµ� »

Γ1

�
etLf, etLf

	
dµ� � »

Γ1

�
etLf, etLf

	
dµ¤ �γ�» ��etLf ��2 dµ� ����» etLfdµ����2� � �γϕptq, (9.182)

and hence ϕptq ¤ e�γtϕp0q, which is the same as (9.174).

Since, it is easy to see that γ ¤ gap pLq if and only if inequality (9.175)

holds for all f P DpLq, this proves Proposition 9.10. �
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Definition 9.16. Let µ be an invariant probability measure and let f ¥ 0

be a Borel measurable function which is not µ-almost everywhere zero.

Then the entropy of f with respect to µ is defined by

Entpfq � »
f log f dµ� »

fdµ log

»
fdµ � »

f log
f³
fdµ

dµ. (9.183)

Definition 9.17. Let µ be an probability measure. A logarithmic Sobolev

inequality takes the form

Ent
�|f |2	 ¤ A

» |f |2 dµ� 1

λ

»
Γ1

�
f, f

�
dµ (9.184)

for all f in a large enough subalgebra A of CbpEq. Here A ¥ 0 and λ ¡ 0

are constants. If the constant A can be chosen to be A � 0, then (9.184) is

called a tight logarithmic Sobolev inequality.

Here Ent
�|f |2	 is defined in Definition 9.16. The following proposition

gives a relationship between tight logarithmic Sobolev inequalities and the

Poincaré inequality: see Definition 9.15 and inequality (9.175).

Proposition 9.11. Suppose that L satisfies a logarithmic Sobolev inequal-

ity with constants A and λ ¡ 0, and suppose that L satisfies a Poincaré

inequality with a constant γ ¡ 0. Then L satisfies a tight logarithmic

Sobolev inequality.

In the proof we use an inequality which we owe to Rothaus. It is given in

Proposition 9.19 below as inequality (9.274).

Proof. Let f P A and put pf � f � ³
fdµ. A combination of inequality

(9.274) and Poincaré’s inequality yields:

Ent
�|f |2	 ¤ 2

» ��� pf ���2 dµ� Ent

���� pf ���2
¤ p2�Aq » ��� pf ���2 dµ� 1

λ

»
Γ1

�
f, f

�
dµ

(invoke Poincaré’s inequality with constant γ ¡ 0)¤ �
2�A

γ
� 1

λ


» ��� pf ���2 dµ. (9.185)

The inequality in (9.185) is a tight logarithmic Sobolev inequality. This

proves Proposition 9.11. �



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

620 Markov processes, Feller semigroups and evolution equations

Definition 9.18. Let µ be an probability measure. A Sobolev inequality

of order p ¡ 2 has the form�» |f |p dµ
2{p ¤ A

» |f |2 dµ� 1

λ

»
Γ1

�
f, f

�
dµ (9.186)

for all f in a large enough subalgebra A of CbpEq. Here, as in Definition

9.17, A ¥ 0 and λ ¡ 0 are constants.

In the following proposition we see that a tight logarithmic Sobolev inequal-

ity implies the Poincaré inequality.

Proposition 9.12. Suppose that in (9.184) the constant A � 0. Then the

inequality in (9.175) is satisfied with γ � 2λ, and hence λ ¤ gappLq.
Proof. Insert f � 1 � εg, ε ¡ 0, g P Cb pE,Rq, into (9.184), and divide

by ε2, to obtain

0 ¥ λ

» p1� εgq2
ε2

log
p1� εgq2³p1� εgq2dµdµ� »

Γ1 pg, gq dµ� λ

» p1� εgq2
ε2

log
1� 2εg � ε2g2

1� 2ε
³
gdµ� ε2

³
g2dµ

dµ� »
Γ1 pg, gq dµ

(log p1� xq � x� 1
2
x2 �O

�
x3
�
for xÑ 0)� λ

» p1� εgq2
ε

#
2g � εg2 � ε

2

�
2g � εg2

�2 � 2

»
g dµ� ε

»
g2dµ�ε

2

�
2

»
g dµ� ε

»
g2dµ


2
+
dµ� »

Γ1 pg, gq dµ�O pεq� 2λ

�»
g2dµ��»

g dµ


2
�� »

Γ1 pg, gq dµ�Opεq. (9.187)

From (9.187) we infer

2λ

�»
g2dµ��»

g dµ


2
� ¤ »

Γ1 pg, gq dµ. (9.188)

From (9.188) and the bi-linearity of Γ1 it follows that

2λ

�» |g|2 dµ� ����» g dµ����2� ¤ »
Γ1 pg, gq dµ, (9.189)

for g P DpLq which take complex values.

By employing Proposition 9.10 this proves Proposition 9.12. �
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A combination of the propositions 9.11 and 9.12 yields the following corol-

lary.

Corollary 9.6. Suppose that the operator L satisfies a logarithmic Sobolev

inequality. Then L satisfies a tight logarithmic Sobolev inequality if and

only if it satisfies a Poincaré inequality.

In the following proposition we see that a Sobolev inequality combined with

a Poincaré inequality yields a Sobolev inequality with a constant A � 1. In

the proof we employ inequality (9.273) in Proposition 9.19 below.

Proposition 9.13. Suppose that the operator L (or in fact the correspond-

ing squared gradient operator Γ1) satisfies a Sobolev inequality of order

p ¡ 2 with constants A and λ: see inequality (9.186) in Definition 9.18. In

addition suppose that L satisfies a Poincaré inequality of the form (9.175)

with constant γ ¡ 0. Then L satisfies a Sobolev inequality of order p ¡ 2

with constants A � 1 and λ0 satisfying
1

λ0
� pp� 1q�A

γ
� 1

λ



.

Proof. Let f P A. An appeal to inequality (9.273) in Proposition 9.19

yields the following inequalities:�» |f |p dµ
2{p ¤ ����» f dµ����2 � pp� 1q�» ����f � »
fdµ

����p dµ
2{p¤ ����» f dµ����2 � pp� 1qA » ����f � »
fdµ

����2 dµ� p� 1

λ

»
Γ1

�
f � »

fdµ, f � »
fdµ



dµ¤ ����» f dµ����2 � pp� 1q�A

γ
� 1

λ


»
Γ1

�
f, f

�
dµ. (9.190)

The claim in Proposition 9.13 follows from (9.190). �

The following theorem says that the entropy defined in terms of an invariant

probability measure has exponential decay for t Ñ 8 provided that L

satisfies a tight logarithmic Sobolev inequality.

Theorem 9.16. Let λ ¡ 0. The following assertions are equivalent.

(i) For all functions f P A the following inequality holds:

λEnt
�|f |2	 ¤ »

Γ1

�
f, f

�
dµ. (9.191)
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(ii) For all functions f P A the following inequality holds:

Ent
�
etL |f |2	 ¤ e�2λtEnt

�|f |2	 . (9.192)

The proof is based on the equalities (see (9.196) below):

d

dt
Ent

�
etL |f |2	 � �1

2

» Γ1

�
etL |f |2 , etL |f |2	
etL |f |2 dµ� �2 » Γ1

��
etL |f |2	1{2

,
�
etL |f |2	1{2


dµ.

Proof. [Proof of Theorem 9.16.] Let f P A. We calculate

d

dt
Ent

�
etL |f |2	 � d

dt

�»
etL |f |2 log� etL |f |2³

etL |f |2 dµ� dµ

�
(µ is L-invariant) � d

dt

�»
etL |f |2 log�etL |f |2	 dµ
� » �

LetL |f |2	 log
�
etL |f |2	 dµ� »

LetL |f |2 dµ� » �
LetL |f |2	 log

�
etL |f |2	 dµ. (9.193)

Put h � etL |f |2. We will rewrite the expression in (9.193 as follows. First

we notice the equality:pLf1q f2 � L pf1f2q � f1Lf2 � Γ1 pf1, f2q (9.194)

for appropriately chosen f1 and f2. Hence, by L-invariance of µ we have» pLf1q f2dµ � � »
f1Lf2dµ� »

Γ1 pf1, f2q dµ. (9.195)

From (9.193) and (9.195) with f1 � etL |f |2 � h, and f2 � log
�
etL |f |2	 �

log h we get, by using transformation properties of the squared gradient

operator Γ1,

d

dt
Ent

�
etL |f |2	 � � »

hL log h dµ� »
Γ1 ph, log hq dµ� � »

h
Lh

h
dµ� 1

2

»
h
Γ1 ph, hq
h2

dµ� »
Γ1 ph, hq

h
dµ� �1

2

»
Γ1 ph, hq

h
dµ � �2 » Γ1

�
h1{2, h1{2	 dµ
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��
etL |f |2	1{2

,
�
etL |f |2	1{2


dµ. (9.196)

If assertion (i) is true, then (9.196) implies:

d

dt
Ent

�
etL |f |2	 ¤ �2λEnt�etL |f |2	 ,

and consequently Ent
�
etL |f |2	 ¤ e�2λtEnt

�|f |2	 which is assertion (ii).

Conversely, if (ii) holds true, then we have

Ent
�
etL |f |2	� Ent

�|f |2	
t

¤ e�2λt � 1

t
Ent

�|f |2	 . (9.197)

In (9.197) we let t Ó 0 and we use (9.196) to obtain

λEnt
�|f |2	 ¤ »

Γ1 p|f | , |f |q dµ ¤ »
Γ1

�
f, f

�
dµ. (9.198)

The proof of the inequality Γ1 p|f | , |f |q ¤ Γ1

�
f, f

�
is given in the proof of

Lemma 9.11: see (9.248), (9.249), and (9.250). From (9.198) assertion (i)

follows.

This completes the proof of Theorem 9.16. �

Proposition 9.14. Fix A ¥ 0 and λ ¡ 0, and let µ be an invariant proba-

bility measure. The following assertions are equivalent:

(i) For all f P A the logarithmic Sobolev inequality in (9.184) holds.

(ii) There exists p P p1,8q such that

Ent pfpq ¤ A

»
fpdµ� p2

4λ

»
fp�2Γ1 pf, fq dµ� A

»
fpdµ� p2

4λpp� 1q » fp�1Lf dµ (9.199)

for f P A, f ¥ 0.

(iii) For all p P p1,8q the inequality

Ent pfpq ¤ A

»
fpdµ� p2

4λ

»
fp�2Γ1 pf, fq dµ� A

»
fpdµ� p2

4λpp� 1q » fp�1Lf dµ (9.200)

holds for f P A, f ¥ 0.
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Proof. The proof follows by observing that Γ1 pϕpfq, ϕpfqq �pϕ1pfqq2 Γ1 pf, fq for all C1-functions ϕ and for all f P A. The choice

ϕpfq � fp{2 shows that (i) implies (ii). The choice ϕpfq � f q{p shows

(ii) implies (iii) with q instead of p. Finally, the choice p � 2 shows the

implication (iii) ùñ (i), and completes the proof of Proposition 9.14. �

The following result is taken from [Bakry (2006)].

Theorem 9.17. Let A ¥ 0 and λ ¡ 0 be two constants, and let p P p0,8q.
Let the functions pptq and mptq be determined by the equalities:

pptq � 1

p� 1
� e4λt, and mptq � A

�
1

t
� 1

pptq
 . (9.201)

Then the following assertions are equivalent:

(i) The logarithmic Sobolev inequality (9.184) is satisfied with constants A

and λ;

(ii) For all t ¡ 0 and f P Lp pE, µq the following inequality holds��etLf��
pptq ¤ emptq }f}p . (9.202)

Notice that for A � 0 we have
��etLf��

pptq ¤ }f}p, and hence the mapping

f ÞÑ etLf is contractive form Lp pE, µq to Lpptq pE, µq.
Proof. (i) ùñ (ii). Fix t0 P p0,8q. Without loss of generality we may

and do assume that��etLf��pptq
pptq � » �

etLf
�pptq

dµ ¤ 1, 0 ¤ t ¤ t0. (9.203)

Otherwise we divide f ¥ 0 by sup
!��etLf��

pptq : t P r0, t0s). Define the

function gptq, t ¡ 0, by

gptq � exp

��A�
1

p
� 1

pptq

�» �
etLf

�pptq
dµ


1{pptq
. (9.204)

Then a calculation shows the equality:

g1ptq exp�A�
1

p
� 1

pptq

�» �
etLf

�pptq
dµ


1�1{pptq� �A p1ptq
pptq2 » �

etLf
�pptq

dµ� p1ptq
pptq2 "Ent��etLf�pptq	� » �

etLf
�pptq

log

�» �
etLf

�pptq
dµ



dµ

*
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etLf

�pptq�1
LetLf dµ. (9.205)

From assertion (iii) in Proposition 9.14 with pptq instead of p we see

Ent
��
etLf

�pptq	 ¤ A

» �
etLf

�pptq
dµ� 1

4λ

pptq2
pptq � 1

» �
etLf

�pptq�1
LetLf dµ,� A

» �
etLf

�pptq
dµ� pptq2

p1ptq » �
etLf

�pptq�1
LetLf dµ.

(9.206)

Then (9.206) together with (9.205) shows:

g1ptq exp�A�
1

p
� 1

pptq

�» �
etLf

�pptq
dµ


1�1{pptq¤ �A p1ptq
pptq2 » �

etLf
�pptq

dµ� p1ptq
pptq2 "A » �

etLf
�pptq

dµ� pptq2
p1ptq » �

etLf
�pptq�1

LetLf dµ� » �
etLf

�pptq
log

�» �
etLf

�pptq
dµ



dµ

*� » �
etLf

�pptq�1
LetLf dµ� p1ptq

pptq2 » �
etLf

�pptq
log

�» �
etLf

�pptq
dµ



dµ ¤ 0 (9.207)

where we used (9.203). From (9.207) it follows that g1ptq ¤ 0, t P r0, t0s, and
hence gptq ¤ gp0q, which shows inequality (9.202) in assertion (ii). Since

t0 P p0,8q is arbitrary assertion (ii) follows from (i).

(ii) ùñ (i). It suffices to prove assertion (i) in case
³
fpdµ � 1. Again

let the function g be defined in (9.204). Now we use g1p0q to show that

(i) is a consequence of (ii). In fact from assertion (ii) we get gptq ¤ gp0q,
t ¥ 0, and hence g1p0q ¤ 0. From (9.205) for t � 0 and the fact that³
fpdµ � 1 we see that inequality (9.199) in assertion (ii) of Proposition 9.14

follows. �

Proposition 9.15. Suppose that there exist constants c ¡ 0 and γ P R,

such that

0 ¤ etL
��eρLf ��2 � ���epρ�tqLf ���2 ¤ ce�ργeρL !etL |f |2 � ��etLf ��2) (9.208)

for all f P CbpEq, ρ, t ¥ 0. Then the inequality

Γ1

�
eρLf, eρLf

� ¤ ce�ργeρLΓ1

�
f, f

�
(9.209)
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holds for all ρ ¥ 0 and all f P CbpEq. Consequently, the inequality in

(9.171) holds. Conversely, if (9.209) holds, then the inequality in (9.208)

holds as well. Consequently, if (9.208) or (9.209) is valid, then the inequal-

ity in (9.171) holds.

Proof. Let ρ ¥ 0, and 0 ¤ t ¤ s. Then by (9.208) with eps�tqLf instead

of f we get

etL
���epρ�s�tqLf ���2 � ���epρ�sqLf ���2¤ ce�γρepρ�tqL ���eps�tqLf ���2 � ce�γρeρL ��esLf ��2� ce�γρeρL �etL ���eps�tqLf ���2 � ���epρ�sqLf ���2
 . (9.210)

We divide the terms in (9.210) by t ¡ 0 and let t tend to zero to obtain:

Γ1

�
eps�ρqLf, eps�ρqLf	� L
���eps�ρqLf ���2 � Lepρ�sqLf epρ�sqLf � epρ�sqLf Lepρ�sqLf¤ ce�γρeρL �L ��esLf ��2 � LesLf esLf � esLf LesLf

	� ce�γρeρLΓ1

�
esLf, esLf

�
. (9.211)

In order to obtain (9.211) we again employed (9.168). In (9.211) we let s

tend to zero to get:

Γ1

�
eρLf, eρLf

� � L
��eρLf ��2 � LeρLf eρLf � f LeρLf¤ ce�γρeρL �L |f |2 � Lf f � f Lf

	� ce�γρeρLΓ1

�
f, f

�
. (9.212)

Notice that (9.212) coincides with the inequality in (9.209). As in Remark

9.13 we see that (9.212) yields

etL |f |2 � ��etLf ��2 � » t
0

eρLΓ1

�
ept�ρqLf, ept�ρqLf	 dρ¤ » t

0

eρL
!
ce�pt�ρqγept�ρqLΓ1

�
f, f

�)
dρ� c

γ

�
1� e�tγ� etLΓ1

�
f, f

�
. (9.213)

Notice that (9.213) is the same as (9.171).
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Next suppose that (9.209) holds. Then by (9.162) with ept�σqLf instead

of f we obtain

etL
��eρLf ��2 � ��etLeρLf ��2� » t
0

eσLΓ1

�
ept�σqLeρLf, ept�σqLeρLf	 dσ¤ » t

0

ce�γρeρLeσLΓ1

�
ept�σqLf, ept�σqLf	 dσ� ce�γρeρL » t

0

eσLΓ1

�
ept�σqLf, ept�σqLf	 dσ� ce�γρeρL �etL |f |2 � ��etLf ��2	 . (9.214)

The inequality in (9.214) is the same as the one in (9.208).

Altogether this proves Proposition 9.15. �

In the following lemma we want to establish conditions in order that the

inequality (9.208) or the equivalent one (9.209) is satisfied.

Lemma 9.9. Let f P CbpEq, fix t ¡ 0, and put for ρ ¥ 0

upρq � e�γρeρLvp0q � e�γρeρL �etL |f |2 � ��etLf ��2	 , (9.215)

vpρq � etL
��eρLf ��2 � ���epρ�tqLf ���2 , and

wpρq � etLΓ1

�
eρLf, eρLf

	� Γ1

�
epρ�tqLf, epρ�tqLf	 . (9.216)

Suppose wpρq ¥ γvpρq, ρ ¥ 0. Then upρq ¥ vpρq, ρ ¥ 0.

Proof. A calculation shows:

u1pρq � v1pρq � Lupρq � Lvpρq � wpρq � γupρq, ρ ¥ 0. (9.217)

Inserting the inequality wpρq ¥ γvpρq in (9.217) shows:

u1pρq � v1pρq ¥ Lupρq � Lvpρq � γ pupρq � vpρqq , ρ ¥ 0. (9.218)

From (9.218) we see

u1pρq � v1pρq � Lupρq � Lvpρq � γ pupρq � vpρqq � ppρq, ρ ¥ 0, (9.219)

where ppρq ¥ 0. Then we have

upρq � vpρq � e�γρeρL pup0q � vp0qq � » ρ
0

e�γpρ�σqepρ�σqLppσqdσ ¥ 0.

(9.220)

This proves Lemma 9.9. �
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We observe that wpρq ¥ γvpρq for all ρ ¥ 0 if and only if

etLΓ1 pg, gq � Γ1

�
etLg, etLg

	 ¥ γ
�
etL |g|2 � ��etLg��2	 (9.221)

for all functions g of the form g � eρLf , ρ ¥ 0. The following lemma gives

conditions in order that the inequality (9.221) is satisfied.

Lemma 9.10. Suppose that

LΓ1 pg, gq � 2ℜ
�
Γ1

�
Lg, g

�� ¥ γΓ1 pg, gq (9.222)

for all functions g of the form g � eρLf , ρ ¥ 0. Then the inequality in

(9.221) is satisfied for such functions.

Proof. [Proof of Lemma 9.10.] We write

etLΓ1 pg, gq � Γ1

�
etLg, etLg

	�» t
0

eρL
�
LΓ1

�
ept�ρqLg, ept�ρqLg	� 2ℜ

�
Γ1

�
Lept�ρqLg, ept�ρqLg			 dρ¥ γ

» t
0

eρLΓ1

�
ept�ρqLg, ept�ρqLg	 dρ � γ

�
etL |g|2 � ��etLg��2	 . (9.223)

The inequality in (9.223) proves Lemma 9.10. �

The bilinear mapping pf, gq ÞÑ Γ2 pf, gq, f , g P A, where

Γ2 pf, gq � LΓ1 pf, gq � Γ1 pLf, gq � Γ1 pf, Lgq (9.224)

is called the first iterated square gradient operator. The inequality in

(9.222) says that

Γ2 pg, gq ¥ γΓ1 pg, gq , g P A. (9.225)

The following result can also be found as Lemma 1.2 and Lemma 1.3 in

[Ledoux (2000)]: proofs go back to [Bakry (1985a,b)]. It shows that there

is a close connection between semigroup inequalities and the Γ2-condition

as exhibited in (9.226).

Theorem 9.18. Let γ P R. The following assertions are equivalent:

(i) The following inequality holds for all f P A:

Γ2

�
f, f

�� γΓ1

�
f, f

� ¥ 0. (9.226)

(ii) For every t ¥ 0 and f P A the following inequality holds:

Γ1

�
etLf, etLf

� ¤ e�γtetLΓ1

�
f, f

�
. (9.227)
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(iii) For every t ¥ 0 and f P A the following inequality holds:�
Γ1

�
etLf, etLf

��1{2 ¤ e� 1

2
γtetL

�
Γ1

�
f, f

�1{2	
. (9.228)

(iv) The following inequality holds for all f P A:

Γ2

�
f, f

�� γΓ1

�
f, f

� ¥ Γ1

�
Γ1

�
f, f

�
,Γ1

�
f, f

��
4Γ1

�
f, f

�� Γ1

�
Γ1

�
f, f

�1{2
,Γ1

�
f, f

�1{2	
. (9.229)

Notice that the inequality in (9.226) is the same as the one in (9.225).

For more details on the iterated square gradient operators see e.g. [Bakry

(1985a,b, 1994, 2006, 1991)], [Bakry and Ledoux (2006)], [Ledoux (2000,

2004)], and [Rothaus (1981b,a, 1986)].

Remark 9.15. Let Ψ1, Ψ2 : Rn Ñ R be smooth, i.e. Cp2q-functions, and
F � pf1, . . . , fnq a vector in An. In the proof we employ the following

equality:

Γ1 pΨ1pF q,Ψ2pF qq � ņ

i,j�1

X
p1q
i X

p2q
j Γ1 pfi, fjq (9.230)

where X
pkq
i � BΨkBxi pF q, 1 ¤ i ¤ n, k � 1, 2. With Ψ1pgq � Ψ2pgq � g2, g �

Γ1

�
f, f

�1{2
, this shows the equality-sign in (9.229). Compare (9.230) and

(9.237) below. In the implication (i) ùñ (iv) we also need the Hessian of a

function f . The HessianHpfq of f is the bilinear mapping defined in (9.235)

below. Its main transformation property is given in (9.236). The equality

in (9.230) is a consequence of the equality Γ1 pf, gq � Lpfgq�pLfqg�fpLgq
for appropriately chosen functions f and g together with the transformation

property of the operator L: see equality (9.168) and (7.1) with L instead of�K0. In Bakry’s terminology the operator L is the generator of a diffusion.

Proof. The implication (iii) ùñ (ii) follows from the Cauchy-Schwarz

inequality in conjunction with (9.228). In fact��etL pghq��2 ¤ etL |g|2 � etL |h|2 ¤ }g}28 etL |h|2
applied with g � 1 and h � Γ1

�
f, f

�1{2
shows that (iii) ùñ (ii).

(ii) ùñ (i). Subtracting the left-hand side from the right-hand side of

(9.227) and dividing by t ¡ 0 and letting t Ó 0 yields:pL� γqΓ1

�
f, f

�� Γ1

�
Lf, f

�� Γ1

�
f, Lf

� ¥ 0. (9.231)



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

630 Markov processes, Feller semigroups and evolution equations

However, the inequality in (9.231) is equivalent to (9.226).

(iv) ùñ (iii). We fix f P A and t ¡ 0, and we define the function Φpsq,
s P r0, ts, by

Φpsq � e� 1

2
γsesL

"�
Γ1

�
ept�sqLf, ept�sqLf		1{2*

. (9.232)

Then we want to show Φptq ¥ Φp0q. Since Φptq � Φp0q � ³t
0
Φ1psqds, it

suffices to prove that Φ1psq ¥ 0. Therefore we calculate:

Φ1psq� e� 1

2
γs�sL �L� 1

2
γ


��
Γ1

�
ept�sqLf, ept�sqLf		1{2�� e� 1

2
γs�sL � BBs �Γ1

�
ept�sqLf, ept�sqLf		1{2�� e� 1

2
γs�sL �L� 1

2
γ


��
Γ1

�
ept�sqLf, ept�sqLf		1{2�� 1

2
e� 1

2
γs�sL�� 1�

Γ1

�
ept�sqLf, ept�sqLf��1{2�

Γ1

�
Lept�sqLf, ept�sqLf	� Γ1

�
ept�sqLf, Lept�sqLf		��� e� 1

2
γs�sL �L� 1

2
γ


��
Γ1

�
ept�sqLf, ept�sqLf		1{2�� 1

2
e� 1

2
γs�sL�� 1�

Γ1

�
ept�sqLf, ept�sqLf��1{2�

LΓ1

�
ept�sqLf, ept�sqLf	� Γ2

�
ept�sqLf, ept�sqLf		��� e� 1

2
γs�sL �L� 1

2
γ


��
Γ1

�
ept�sqLf, ept�sqLf		1{2�� 1

2
e� 1

2
γs�sL�� LΓ1

�
ept�sqLf, ept�sqLf��

Γ1

�
ept�sqLf, ept�sqLf��1{2��� 1

2
e� 1

2
γs�sL�� Γ2

�
ept�sqLf, ept�sqLf��

Γ1

�
ept�sqLf, ept�sqLf��1{2��
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(L
�
g2
� � 2gLg � Γ1 pg, gq with g � �

Γ1

�
ept�sqLf, ept�sqLf��1{2)� e� 1

2
γs�sL �L� 1

2
γ


��
Γ1

�
ept�sqLf, ept�sqLf		1{2�� 1

2
e� 1

2
γs�sL �2L�

Γ1

�
ept�sqLf, ept�sqLf		1{2�� 1

2
e� 1

2
γs�sL��Γ1

�
Γ1

�
ept�sqLf, ept�sqLf�1{2,Γ1

�
ept�sqLf, ept�sqLf�1{2	�

Γ1

�
ept�sqLf, ept�sqLf��1{2 ��� 1

2
e� 1

2
γs�sL�� Γ2

�
ept�sqLf, ept�sqLf��

Γ1

�
ept�sqLf, ept�sqLf��1{2��

(Γ1

�
g2, g2

� � 4g2Γ1 pg, gq with g � �
Γ1

�
ept�sqLf, ept�sqLf��1{2)��1

2
e� 1

2
γs�sL��Γ1

�
Γ1

�
ept�sqLf, ept�sqLf� ,Γ1

�
ept�sqLf, ept�sqLf��

4
�
Γ1

�
ept�sqLf, ept�sqLf��3{2 ��� 1

2
e� 1

2
γs�sL��Γ2

�
ept�sqLf, ept�sqLf�� γΓ1

�
ept�sqLf, ept�sqLf��

Γ1

�
ept�sqLf, ept�sqLf��1{2 �� .

(9.233)

Put g � ept�sqLf . In order that the expression in (9.233) is positive it

suffices to prove the inequality:

Γ1 pg, gq pΓ2 pg, gq � γΓ1 pg, gqq ¥ 1

4
Γ1 pΓ1 pg, gq ,Γ1 pg, gqq . (9.234)

The inequality in (9.234) is a consequence of assertion (iv).

The implication (i) ùñ (iv) remains to be shown. Here we use the fact

that L generates a diffusion. We will start from (9.226), i.e. from

Γ2

�
f, f

�� γΓ1

�
f, f

� ¥ 0

for all f P A. Without loss of generality we assume that the function f is

real-valued. For a given function f P A we introduce its Hessian Hpfq as
the bilinear form:

Hpfq pg, hq � 1

2
rΓ1 pΓ1 pf, gq , hq � Γ1 pΓ1 pf, hq , gq � Γ1 pf,Γ1 pg, hqqs ,

(9.235)

g, h P A. Let Ψ1, Ψ2 : Rn Ñ R be smooth functions, and let

F � pf1, . . . , fnq be a vector in An. Put X
p1q
i � BΨ1Bxi pF q and
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X
p1q
i,j � B2Ψ1BxiBxj pF q, 1 ¤ i, j ¤ n. A similar convention is used for Ψ2

with p2q instead of p1q. A cumbersome calculation shows that the first

iterated square gradient operator Γ2 satisfies:

Γ2 pΨ1pF q,Ψ2pF qq � ņ

i,j�1

X
p1q
i X

p2q
j Γ2 pfi, fjq� ņ

i,j,k�1

�
X
p2q
i X

p1q
j,k �X

p1q
i X

p2q
j,k

	
H pfiq pfj , fkq� ņ

i,j,k,ℓ�1

X
p1q
i,j X

p2q
k,ℓΓ1 pfi, fkqΓ1 pfj , fℓq . (9.236)

For the definition of the iterated squared gradient operator Γ2 see (9.224).

In the calculation to obtain (9.236) a similar but much simpler formula is

used:

Γ1 pΨ1pF q,Ψ2pF qq � ņ

i,j�1

X
p1q
i X

p2q
j Γ1 pfi, fjq . (9.237)

In Remark 9.15 it was shown how the formula in (9.237) can be obtained.

Again, let Ψ : Rn Ñ R be a “smooth” function. If the function F ÞÑ
ΨpF q varies among all real polynomials of second order, then the function�
X1, . . . , Xn; pXi,jqni,j�1

	 ÞÑ Γ2 pΨpF q,ΨpF qq�γΓ1 pΨpF q,ΨpF qq (9.238)

is a positive polynomial. We may apply this for n � 2, f1 � f , f2 � g,

and the function Ψpf, gq chosen in such a way that X2 � X1,1 � X2,2 � 0.

Then from (9.236), (9.237) and (9.238) we get:

X2
1 pΓ2 pf, fq � γΓ1 pf, fqq � 4X1X1,2Hpfq pf, gq� 2X2

1,2

�
Γ1 pf, gq2 � Γ1 pf, fqΓ1 pg, gq	 ¥ 0 (9.239)

for all X1 and X1,2 P Rzt0u. Then we choose Ψpf, gq in such a way that

X1 pΓ2 pf, fq � γΓ1 pf, fqq � �2X1,2Hpfq pf, gq. From (9.239) we then in-

fer:

4 pHpfq pf, gqq2 ¤ 2 pΓ2 pf, fq � γΓ1 pf, fqq�Γ1 pf, gq2 � Γ1 pf, fqΓ1 pg, gq	 .
(9.240)

Since 2Hpfq pf, gq � Γ1 pΓ1 pf, fq , gq, (9.240) impliespΓ1 pΓ1 pf, fq , gqq2¤ 2 pΓ2 pf, fq � γΓ1 pf, fqq�Γ1 pf, gq2 � Γ1 pf, fqΓ1 pg, gq	
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(use the inequality Γ1 pf, gq2 ¤ Γ1 pf, fqΓ1 pg, gq)¤ 4 pΓ2 pf, fq � γΓ1 pf, fqqΓ1 pf, fqΓ1 pg, gq . (9.241)

Choosing g � Γ1 pf, fq, and employing (9.241) entails (9.229) with the real

function f instead of a complex function f P A. By splitting a complex

function in its real and imaginary part we see that (9.229) follows for all

f P A.

This completes the proof of the implication (i) ùñ (iv), and concludes

the proof of Theorem 9.18. �

Proposition 9.16. Suppose that (9.222) is satisfied for all functions g P
DpLq. Then the equivalent inequalities (9.208) and (9.209) in Proposition

9.15 are satisfied with c � 1. If γ ¡ 0, then the operator L has a spectral

gap ¥ γ.

Proof. [Proof of Proposition 9.16.] If (9.222) is satisfied for all functions

g P DpLq, then by Lemma 9.10 the inequality (9.221) is satisfied for all

functions g P DpLq. Lemma 9.9 implies that

e�γρeρL �etL |f |2 � ��etLf ��2	 ¥ etL
��eρLf ��2 � ���epρ�tqLf ���2 . (9.242)

Proposition 9.15 and (9.242) show that the equivalent inequalities (9.208)

and (9.209) in Proposition 9.15 are satisfied with c � 1. Hence we obtain

the inequality in (9.171) with c � 1:

etL |f |2 � ��etLf ��2 � » t
0

eρLΓ1

�
ept�ρqLf, ept�ρqLf	 dρ¤ » t

0

eρL
!
ept�ρqγept�ρqLΓ1

�
f, f

�)
dρ� 1

γ

�
1� e�tγ� etLΓ1

�
f, f

�
. (9.243)

Let µ be an invariant probability measure such that limtÑ8 etLfpxq � ³
fdµ

for all f P CbpEq and x P E. The existence and uniqueness of such an

invariant probability measure is guaranteed by Orey’s convergence theorem:

see Theorem 10.2, and also (9.104). It is required that the Markov process

is Harris recurrent. The monotonicity property in Lemma 10.15 of Chapter

10 implies that this limit exists by letting t ¡ 0 tend to 8 instead of n P N.

Then by integrating (9.243) against µ and taking the limit as t Ñ 8, we

find

γ

�» |f |2 dµ� ����» fdµ����2� ¤ »
Γ1

�
f, f

�
dµ. (9.244)
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From (9.244) and Definition 9.14 the claim in Proposition 9.16 readily fol-

lows. �

The inequality (9.252) below is a consequence of equality (9.162) in The-

orem 9.15. For convenience we insert a (short) proof here as well. The

inequality in (9.253) employs the full power of Theorem 9.18. The proof of

Theorem 9.19 requires the following lemma.

Lemma 9.11. Suppose that the constant γ satisfies the inequality in

(9.251) in Theorem 9.19 below. Let f P A, and s ¥ 0. Then the following

inequality holds:

Γ1

�
esL |f |2 , esL |f |2	
esL |f |2 ¤ e�γsesL$&%Γ1

�|f |2 , |f |2	|f |2 ,.- . (9.245)

In addition, the following inequality holds:

Γ1

�|f |2 , |f |2	|f |2 ¤ 4Γ1

�
f, f

�
. (9.246)

If in (9.246) the function f is real-valued, then this inequality is in fact an

equality.

Proof. From inequality (9.228) in assertion (iii) of Theorem 9.18 we infer

Γ1

�
esL |f |2 , esL |f |2	1{2 ¤ e� 1

2
γsesL

�
Γ1

�|f |2 , |f |2	1{2
� e� 1

2
γsesL

$'&'%|f |��Γ1

�|f |2 , |f |2	|f |2 �1{2,/./-
(Cauchy-Schwarz inequality)¤ e� 1

2
γs
�
esL |f |2	1{2��esL$&%Γ1

�|f |2 , |f |2	|f |2 ,.-�1{2
. (9.247)

The inequality in (9.245) easily follows from (9.247). The equality in (9.246)

follows from the transformation rules of the squared gradient operator Γ1.

More precisely, with f � u� iv, u, v real and imaginary part of f , we have

Γ1

�|f |2 , |f |2	 � 4u2Γ1 pu, uq � 8uvΓ1 pu, vq � 4v2Γ1 pv, vq , (9.248)
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and

4 |f |2 Γ1

�
f, f

� � 4
�
u2 � v2

� pΓ1 pu, uq � Γ1 pu, uqq . (9.249)

Since

2uvΓ1 pu, vq ¤ 2
���uaΓ1 pv, vq��� � ���vaΓ1 pu, uq��� ¤ u2Γ1 pv, vq � v2Γ1 pu, uq ,

(9.250)

the inequality in (9.246) readily follows from (9.248), (9.249) and (9.250).

This completes the proof of Lemma 9.11. �

Theorem 9.19. Suppose that the constant γ P R satisfies one of the equiv-

alent conditions in Theorem 9.18 for the operator L: i.e.

Γ2

�
f, f

� ¥ γΓ1

�
f, f

�
for all f P A. (9.251)

Then the following inequalities hold for f P A and t ¥ 0:

etL
�|f |2	� ��etLf ��2 ¤ 1� e�γt

γ
etL

�
Γ1

�
f, f

��
, and (9.252)

etL
�|f |2 log |f |2	� etL

�|f |2	 log
�
etL

�|f |2		 ¤ 4
1� e�γt

γ
etL

�
Γ1

�
f, f

��
.

(9.253)

The inequality in (9.252) can be called a pointwise Poincaré inequality. It

is a consequence of assertion (ii) of Theorem 9.18. The inequality in (9.253)

may be called a logarithmic Sobolev inequality. Its proof is based on the

assertion (iii) in Theorem 9.18, which is a consequence of assertion (iv).

It is clear that assertion (iv) is an improvement of our basic assumption

(9.251).

Proof. Let f P A and t ¡ 0. Then we have

etL |f |2 � ��etLf ��2 � » t
0

BBs �esL ���ept�sqLf ���2
 ds� » t
0

esL
!
L
���ept�sqLf ���2 � �

Lept�sqLf	ept�sqLf � ept�sqLf�Lept�sqLf	)ds� » t
0

esLΓ1

�
ept�sqLf, ept�sqLf	 ds. (9.254)

We employ (9.227) in assertion (ii) of Theorem 9.18 and use the identity in

(9.254) to obtain:

etL |f |2 � ��etLf ��2 ¤ » t
0

e�γpt�sqesLept�sqLΓ1

�
f, f

�
ds
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γ

etLΓ1

�
f, f

�
. (9.255)

The inequality in (9.255) is the same as the one in (9.252).

The proof of inequality (9.253) is similar, be it (much) more sophisti-

cated. In fact we write:

etL
�|f |2 log |f |2	� etL

�|f |2	 log
�
etL

�|f |2		� » t
0

BBs !esL ��ept�sqL |f |2	 log
�
ept�sqL |f |2		) ds� » t

0

esL
!
L
��
ept�sqL |f |2	 log

�
ept�sqL |f |2		�L�

ept�sqL |f |2	 log
�
ept�sqL |f |2	��

ept�sqL |f |2	L log
�
ept�sqL |f |2	) ds� » t

0

esL
!
Γ1

�
ept�sqL |f |2 , log�ept�sqL |f |2		) ds� » t

0

esL

$&%Γ1

�
ept�sqL |f |2 , ept�sqL |f |2	

ept�sqL |f |2 ,.- ds. (9.256)

An appeal to inequality (9.245) in Lemma 9.11 and employing the equality

in (9.256) yields:

etL
�|f |2 log |f |2	� etL

�|f |2	 log
�
etL

�|f |2		¤ » t
0

e�γpt�sqesLept�sqL$&%Γ1

�|f |2 , |f |2	|f |2 ,.- ds� 1� e�γt
γ

etL

$&%Γ1

�|f |2 , |f |2	|f |2 ,.-¤ 4
1� e�γt

γ
etL

�
Γ1

�
f, f

��
. (9.257)

The inequality (9.257) shows (9.253) and completes the proof of Theorem

9.19. �

The following theorem contains some sufficient conditions in order that an

operator L possesses a spectral gap in L2 pE, µq, where µ is an invariant

probability measure on the Borel field E of E.
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Theorem 9.20. Let L be the generator of a diffusion process with transi-

tion probability function P pt, x, �q, t ¥ 0, x P E. Suppose that the following

conditions are satisfied:

(a) Γ2

�
f, f

� ¥ γΓ1

�
f, f

�
for all f P A.

(b) All probability measures B ÞÑ P pt, x, Bq, B P E, with pt, xq P p0,8q�E
are equivalent, in the sense that they have the same null-sets.

(c) The operator L has an invariant probability measure µ.

If in (a) γ ¡ 0, then the spectral gap of L, gappLq, in L2 pE, µq satisfies:
gappLq ¥ γ.

Proof. By invoking (9.252) in Theorem 9.19 we have

etL
�|f |2	� ��etLf ��2 ¤ 1� e�γt

γ
etL

�
Γ1

�
f, f

��
, f P A. (9.258)

From (9.258), and the invariance of the measure µ we get» �|f |2	 dµ� » ��etLf ��2 dµ ¤ 1� e�γt
γ

» �
Γ1

�
f, f

��
dµ, f P A. (9.259)

Suppose that γ ¡ 0. The recurrence of the underlying Markov process in

conjunction with Orey’s convergence theorem (see the arguments in the

proof of Proposition 9.16) shows the following inequality by letting t tend

to 8 in (9.259):» �|f |2	 dµ� ����» f dµ����2 ¤ 1

γ

» �
Γ1

�
f, f

��
dµ, f P A. (9.260)

The assertion in Theorem 9.20 then follows from (9.260) and the definition

of L2-spectral gap. �

Example 9.1. Next let E � Rd, and L be the differential operator:

Lf � 1

2

ḑ

j,k�1

aj,kBjBkf � ḑ

j�1

bjBjf, f P Cp2q
b

�
Rd

�
, (9.261)

where Bjf � BfBxj , 1 ¤ j ¤ d. It is assumed that the coefficients aj,k, and

bj , 1 ¤ j ¤ d, 1 ¤ k ¤ d, are space dependent and twice continuously

differentiable. Then the corresponding square gradient operator is given by

Γ1 pf, gq � ḑ

j,k�1

aj,kBjf � Bkg. (9.262)
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Let f and g be functions in Cp3q �Rd�. We want to simplify an expression

of the form

LΓ1 pf, gq � Γ1 pLf, gq � Γ1 pf, Lgq . (9.263)

Notice that if f � g, then (9.263) is the same as (9.222). In order to rewrite

(9.263) we need the following proposition. This proposition is also valid for

general diffusion operators L.

Proposition 9.17. Let the functions f , g and h belong to Cp3q �Rd�. Then
the following identities hold:

L pfghq � pLfq gh� f pLgqh� fg pLhq� Γ1 pf, gqh� fΓ1 pg, hq � gΓ1 pf, hq , and

Γ1 pfg, hq � Γ1 pf, gqh� gΓ1 pf, hq . (9.264)

Proposition 9.18. Let the functions f and g belong to Cp3q �Rd�. Then

LΓ1 pf, gq � Γ1 pLf, gq � Γ1 pf, Lgq� ḑ

j,k�1

#
Laj,k � ḑ

n�1

an,kBnbj � ḑ

n�1

an,jBnbk+ BjfBkg. (9.265)

Proof. [Proof of Proposition 9.18.] First we rewrite

LΓ1 pf, gq � ḑ

j,k�1

L paj,kBjf � Bkgq� ḑ

j,k�1

tpLaj,kq Bjf � Bkg � aj,k pLBjfq Bkg � aj,kBjf pLBkgq�Γ1 paj,k, Bjfq Bkg � Γ1 paj,k, Bkgq Bjf � aj,kΓ1 pBjf, Bkgqu� ḑ

j,k�1

pLaj,kq Bjf � Bkg � ḑ

j,k�1

aj,k pLBjfq Bkg � ḑ

j,k�1

aj,kBjf pLBkgq� ḑ

j,k�1

Γ1 paj,k, Bjfq Bkg � ḑ

j,k�1

Γ1 paj,k, Bkgq Bjf� ḑ

j,k�1

aj,kΓ1 pBjf, Bkgq� ḑ

j,k�1

pLaj,kq Bjf � Bkg
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j,k�1

ḑ

n,m�1

aj,kan,mBnBmBjf � Bkg � ḑ

j,k�1

ḑ

n�1

aj,kbnBnBjf � Bkg� ḑ

j,k�1

ḑ

n,m�1

aj,kan,mBjf � BnBmBkg � ḑ

j,k�1

ḑ

n�1

aj,kbnBjf � BnBkg� ḑ

j,k�1

ḑ

n,m�1

an,mBnaj,k � BmBjf � Bkg� ḑ

j,k�1

ḑ

n,m�1

an,mBnaj,k � BmBkg � Bjf� ḑ

j,k�1

ḑ

n,m�1

aj,kan,mBnBjf � BmBkg. (9.266)

We also rewrite

Γ1 pLf, gq � Γ1

�
ḑ

j,k�1

aj,kBjBkf � ḑ

j�1

bjBjf, g�� ḑ

j,k�1

Γ1 paj,kBjBkf, gq � ḑ

j�1

Γ1 pbjBjf, gq� ḑ

j,k�1

aj,kΓ1 pBjBkf, gq � ḑ

j,k�1

Γ1 paj,k, gq BjBkf� ḑ

j�1

bjΓ1 pBjf, gq � ḑ

j�1

Γ1 pbj , gq Bjf� ḑ

j,k�1

ḑ

n,m�1

aj,kan,mBnBjBkf � Bmg� ḑ

j,k�1

ḑ

n,m�1

an,mBnaj,k � BjBkf � Bmg� ḑ

j�1

bj

ḑ

n,m�1

an,mBnBjf � Bmg� ḑ

j�1

ḑ

n,m�1

an,mBnbj � Bjf � Bmg. (9.267)
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By the same token we have

Γ1 pf, Lgq � Γ1

�
f,

ḑ

j,k�1

aj,kBjBkg � ḑ

j�1

bjBjg�� ḑ

j,k�1

aj,kΓ1 pf, BjBkgq � ḑ

j,k�1

Γ1 paj,k, fq BjBkg� ḑ

j�1

bjΓ1 pf, Bjgq � ḑ

j�1

Γ1 pbj , fq Bjg� ḑ

j,k�1

ḑ

n,m�1

aj,kan,mBnf � BmBjBkg� ḑ

j,k�1

ḑ

n,m�1

an,mBnaj,kBmf � BjBkg� ḑ

j�1

bj

ḑ

n,m�1

an,mBnf � BmBjg� ḑ

j�1

ḑ

n,m�1

an,mBnbj � Bmf � Bjg. (9.268)

From (9.266), (9.267) and (9.268) we infer:

LΓ1 pf, gq � Γ1 pLf, gq � Γ1 pf, Lgq� ḑ

j,k�1

pLaj,kq BjfBkg � ḑ

j�1

ḑ

n,k�1

an,kBnbj tBjfBkg � BkfBjgu� ḑ

j,k�1

#
Laj,k � ḑ

n�1

an,kBnbj � ḑ

n�1

an,jBnbk+ BjfBkg� ḑ

j,k�1

Lb pAqj,k BjfBkg (9.269)

where Lb pCq is a matrix with entries:

Lb pCqj,k � Lcj,k � ḑ

n�1

cn,kBnbj � ḑ

n�1

cn,jBnbk. (9.270)

Here C is the matrix with entries cj,k and b stands for the column vector

with components bj. The symbol Lb can be considered as a mapping which

assigns to a square matrix consisting of functions again a square matrix
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consisting of functions. The operator L is the original differential operator

given in (8.132).

The proof of Proposition 9.18 is now complete. �

If we want to check an inequality like (9.208) or, what is equivalent, (9.209),

then it is probably better to consider the corresponding stochastic differ-

ential equations.

Corollary 9.7. Fix γ P R. Suppose that the inequality
ḑ

j,k�1

#
Laj,k � ḑ

n�1

an,kBnbj � ḑ

n�1

an,jBnbk+λjλk ¥ γ

ḑ

j,k�1

aj,kλjλk

(9.271)

holds for all complex vectors pλ1, . . . , λdq P Cd. Then

Γ1

�
eρLf, eρLf

� ¤ e�ργeρLΓ1

�
f, f

�
(9.272)

for all f P DpLq and ρ ¥ 0.

Remark 9.16. The inequality in (9.271) says that in matrix sense the

following inequalities hold: LbpAq ¥ γA. Here we used the notation as in

(9.270), and A is the symmetric matrix with entries aj,k, 1 ¤ j, k ¤ d.

For some of our applications we will need the following somewhat technical

proposition. The result is due to Rothaus (see [Rothaus (1986)]) and the

inequality in (9.274) is named after him. A proof of the inequality (9.274)

can be found in [Deuschel and Stroock (1989)]. Another proof can be found

in [Bakry (1994)]; for completeness we insert an outline of a proof.

Proposition 9.19. Let µ be a probability measure on the Borel field of E

and let f P CbpEq. Fix p ¥ 2. Then the following inequalities hold:�» |f |p dµ
2{p ¤ ����» f dµ����2 � pp� 1q�» ����f � »
f dµ

����p dµ
2{p
, (9.273)

and

Ent
�|f |2	 ¤ 2

» ����f � »
fdµ

����2 dµ� Ent

�����f � »
f dµ

����2� . (9.274)

Proof. Put pf � f� ³
fdµ. By homogeneity we assume that f is the form

f � 1� tg where the function g is such that ℜ
³
g dµ � 0 and

³ |g|2 dµ � 1,

and where t ¥ 0. Then f � ³
f dµ � tg, and

³ |1� tg|2 dµ � 1� t2. Put

F1ptq � �» |1� tg|p dµ
2{p � pp� 1qt2�» |g|p dµ
2{p
, and (9.275)
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F2ptq � » |1� tg|2 log |1� tg|2 dµ� �
1� t2

�
log

�
1� t2

�� t2
» |g|2 log |g|2 dµ. (9.276)

We will show F1ptq ¤ 1 and F2ptq ¤ 2t2, t ¥ 0. The inequality in (9.273) is

a consequence of F1ptq ¤ 1, and similarly (9.276) follows from F2ptq ¤ 2t2.

We will use the following representations:

Fkptq � Fkp0q � tF 1
kp0q � » t

0

pt� sqF 2
k psqds, k � 1, 2. (9.277)

Then

F 1
1ptq � 2

�» |1� tg|p dµ
 2

p
�1 » |1� tg|p�2

�
ℜg � t |g|2	 dµ� 2pp� 1qt�» |g|p dµ
 2

p

. (9.278)

From (9.278) we infer:

F 2
1 ptq � 2

�
2

p
� 1


�» |1� tg|p dµ
 2

p
�2�» |1� tg|p�2

�
ℜg � t |g|2	 dµ
2� 2

�» |1� tg|p dµ
 2

p
�1 » |1� tg|p�2 |g|2 dµ� 2pp� 2q�» |1� tg|p dµ
 2

p
�1 » |1� tg|p�4

�
ℜg � t |g|2	2

dµ� 2pp� 1q�» |g|p dµ
 2

p¤ 2

�
2

p
� 1


�» |1� tg|p dµ
 2

p
�2�» |1� tg|p�2

�
ℜg � t |g|2	 dµ
2� 2pp� 1q�» |1� tg|p dµ
 2

p
�1 » |1� tg|p�2 |g|2 dµ� 2pp� 1q�» |g|p dµ
 2

p

. (9.279)

In (9.279) we apply Hölder’s inequality to obtain:» |1� tg|p�2 |g|2 dµ ¤ �» |1� tg|p
1� 2

p
�» |g|p dµ
 2

p

. (9.280)
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As conjugate exponents we used
p

p� 2
and

p

2
. From (9.280) and (9.279) we

then infer F 2
1 ptq ¤ 0. Since F 1

1p0q � 0 equality (9.277) with k � 1 implies

F1ptq ¤ F1p0q � 1.

Next we calculate the first and second derivative of t ÞÑ F2ptq:
F 1
2ptq � 2

» �
ℜg � t |g|2	 log

�
1� 2tℜg � t2 |g|2	 dµ� 2

» �
ℜg � t |g|2	 dµ� 2t log

�
1� t2

�� 2t� 2t

» |g|2 log |g|2 dµ� 2

» �
ℜg � t |g|2	 log

�
1� 2tℜg � t2 |g|2	 dµ� 2t log

�
1� t2

�� 2t

» |g|2 log |g|2 dµ. (9.281)

Its second derivative is given by

F 2
2 ptq � 2

» |g|2 log 1� 2tℜg � t2 |g|2|g|2 dµ� 4

» �
ℜg � t |g|2	2|1� tg|2 dµ� 2 log

�
1� t2

�� 4t2

1� t2¤ 2

» |g|2 log 1� 2tℜg � t2 |g|2|g|2 dµ� 4

» |g|2 dµ� 2 log
�
1� t2

�� 4t2

1� t2� 2

» |g|2 log 1� 2tℜg � t2 |g|2|g|2 dµ� 4

1� t2
� 2 log

�
1� t2

�
.

(9.282)

Since the function x ÞÑ log x, x ¡ 0, is concave, and the mea-

sure B ÞÑ ³
B
|g|2 dµ is a probability measure, Jensen inequality im-

plies
³ |g|2 log h dµ ¤ log

�³ |g|2 h dµ	. Applying this inequality to h �|1� tg|2 � 1� 2tℜg � t2 |g|2 in (9.282) shows

F 2
2 ptq ¤ 2 log

» �
1� 2tℜg � t2 |g|2	 dµ� 4

1� t2
� 2 log

�
1� t2

� � 4

1� t2
.

(9.283)

Since F2p0q � 0 � F 1
2p0q it follows from the representation in (9.277) that

F2ptq ¤ » t
0

pt� sq 4

1� s2
ds ¤ 2t2. (9.284)

From (9.283) the inequality in (9.274) follows. This concludes the proof of

Proposition 9.19. �
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9.5 Notes

The result in Theorem 9.1 is taken from [Chen and Wang (1997)] Theorem

4.13. In [Chen and Wang (1997)] the authors wonder whether the condition

that there exists a constant a ¡ 0 such that 〈apxqξ, ξ〉 ¤ a |ξ|2 for all x,

ξ P Rd is really necessary to arrive at a Poincaré inequality. This problem is

not solved in Theorem 9.19. However, inequality (9.226) gives a condition in

terms of the iterated squared gradient operator Γ2 and Γ1 which guarantees

a pointwise Poincaré type inequality: see inequality (9.252) in Theorem

9.19.

As mentioned earlier in [Bakry (1994)] and [Bakry (2006)] Bakry gives

much more information on (iterates) of squared gradient operators. The

squared gradient operator was introduced by Roth in [Roth (1976)] as a

tool to study Markov processes. For that matter this is still an important

tool: see e.g. Carlen and Stroock [Carlen and Stroock (1986)], Qian [Qian

(1998)], Aida [Aida (1998)], Mazet [Mazet (2002)], Barlow, Bass and Ku-

magai [Barlow et al. (2005)], and Wang [Wang (2005)]. Of course the main

inspirators for promoting and studying the subject of (iterated) squared

gradient operators were and still are Émery and Bakry: see e.g. [Bakry

(1985a,b, 1991, 1994, 2006); Bakry and Émery (1985)]. For a link with

isoperimetric inequalities the reader is referred to [Chavel and Feldman

(1991)], and to [Chavel (2001, 2005)]. More information about Sobolev

inequalities and log-Sobolev inequalities can be found in [Carlen et al.

(1987)], and [Davies (1990)] where a connection with heat kernel diagonal

bounds is established. Another relevant paper is [Varopoulos (1985)], and

the book by Varopoulos et al [Varopoulos et al. (1992)]. The latter book

contains a wealth of information related to Sobolev inequalities, Poincaré in-

equalities, isoperimetric inequalities, and Nash inequalities, and their inter-

relations.

In the abstract of [Ledoux (1992)] Ledoux writes “In the line of investi-

gation of the works by D. Bakry and M. Emery ([Bakry and Émery (1985)])

and O. S. Rothaus ([Rothaus (1981a, 1986)]) we study an integral inequality

behind the “Γ2” criterion of D. Bakry and M. Emery (see previous refer-

ence) and its applications to hypercontractivity of diffusion semigroups.

With, in particular, a short proof of the hypercontractivity property of the

Ornstein-Uhlenbeck semigroup, our exposition unifies in a simple way sev-

eral previous results, interpolating smoothly from the spectral gap inequal-

ities to logarithmic Sobolev inequalities and even true Sobolev inequalities.

We examine simultaneously the extremal functions for hypercontractivity
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and logarithmic Sobolev inequalities of the Ornstein-Uhlenbeck semigroup

and heat semigroup on spheres.”

It seems that these phrases are still in place. In fact the techniques of

(iterated) squared gradient operators can also be applied in the infinite-

dimensional setting: see e.g. [Wang (2005)].

Examples and other results about invariant measures in the infinite-

dimensional context can be found in the books by Da Prato and Zabczyk

[Da Prato and Zabczyk (1996)], and by Cerrai [Cerrai (2001)], and pa-

pers by Seidler [Seidler (1997)], Eckmann and Hairer [Eckmann and Hairer

(2001)], Goldys and van Neerven [Goldys and van Neerven (2003)], Goldys

and Maslowski [Goldys and Maslowski (2006b)], and Es-Sarhir and Stannat

[Es-Sarhir and Stannat (2007)]. In our abstract setting we followed for a

great part the paper by Seidler [Seidler (1997)]. In the following Chapter 10

we also employ techniques from Markov chain theory as exhibited by Meyn

and Tweedie [Meyn and Tweedie (1993b)]. Of course the general Chacon-

Ornstein theorem goes back to Chacon and Ornstein [Chacon and Orn-

stein (1960)]. Other relevant literature can be found in [Petersen (1989)],

[Krengel (1985)], [Foguel (1980)], and [Neveu (1979)]. It is also mentioned

that Azema et al [Azéma et al. (1967)] made the Chacon-Ornstein theo-

rem corresponding to continuous time Markov processes available to the

mathematical public.

A novelty in the present chapter is the fact that the almost separa-

tion property of the generator of the Markov process in (9.14) together

with a topological irreducibility condition implies that the process admits

a compact recurrent subset. This observation follows from a combination of

Propositions 9.1, 9.2, and 9.4: in particular see Corollary 9.2 and Theorem

9.4.
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Chapter 10

Invariant measure

In this final chapter we prove the existence and uniqueness of invariant mea-

sures for recurrent time-homogeneous Markov processes. Our uniqueness

result relies on Orey’s theorem for Markov chains: see Theorem 10.2. The

proof of Orey’s convergence theorem is based on renewal theory: see Lemma

10.14, and the bivariate linked forward recurrence time chain employed in

its proof. Orey’s theorem is combined with the presence of a compact re-

current subset to obtain, up to a multiplicative constant, a unique invariant

measure; see Theorem 10.12. The equalities in (10.205) and (10.206) play

a central role. Proposition 10.8 contains the technical relevant details. In

particular the identity in (10.272) is a crucial equality. Under certain con-

ditions this invariant measure is finite: see Corollary 10.5. In Theorem 10.9

we see that for certain conservative strong Feller processes the notions of

recurrent and Harris recurrent coincide.

10.1 Markov Chains: Invariant measure

Some of what follows is taken from [Chib (2004)] and [Meyn and Tweedie

(1993b)]. One of the motivations to study time-homogeneous Markov chains

is the fact that Monte Carlo methods sample a given multivariate distribu-

tion π by constructing a suitable Markov chain with the property that its

limiting, invariant distribution, is the target distribution π. In most prob-

lems of interest, the distribution π is absolutely continuous and, as a result,

the theory of MCMC (Markov Chain Monte Carlo) methods is based on

that of Markov chains on continuous state spaces outlined, for example, in

[Meyn and Tweedie (1993b)] and [Nummelin (1984)]. Reference [Tierney

(1994)] is the fundamental reference for drawing the connections between

this elaborate Markov chain theory and MCMC methods. Basically, the

647
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goal of the analysis is to specify conditions under which the constructed

Markov chain converges to the invariant distribution, and conditions un-

der which sample path averages based on the output of the Markov chain

satisfy a law of large numbers and a central limit theorem.

10.1.1 Some definitions and results

A Markov chain is a sequence of random variables (or state variables) X �tXpiq : i P Nu together with a transition probability function px,Bq ÞÑ
P px,Bq, x P E, B P E . The evolution of the Markov chain on a space E is

governed by the transition kernel

P px,Bq � P
�
Xpi� 1q P B �� Xpiq � x,Fi�1

�� P
�
Xpi� 1q P B �� Xpiq � x

�
, px,Bq P E � E , (10.1)

where the second line embodies the time-homogeneous Markov property

that the distribution of each succeeding state in the sequence, given the cur-

rent and the past states, depends only on the current state. Note that Fi�1

represents the σ-field generated by the variables tXpjq : 0 ¤ j ¤ i� 1u. In
fact, a complete description of a time-homogeneous Markov chain is given

by: tpΩ,F ,Pxq , pXpiq, i P Nq , pϑi, i P Nq , pE, Equ (10.2)

where

Px rXp1q P Bs � P
�
Xp1q P B �� Xp0q � x

� � P
�
Xpi� 1q P B �� Xpiq � x

�� P px,Bq � P p1, x, Bq . (10.3)

The operators ϑi, i P N, are time shift operators: ϑi � ϑj � ϑi�j , i, j P N.

Moreover, Xpiq � ϑj � Xpi � jq Px-almost surely for all x P E and all i,

j P N. A convenient way to express the Markov property goes as follows:

Px
�
Xpi� 1q P B �� Fi� � PXpiq rXp1q P Bs , px,Bq P E � E , i P N.

If in (9.14) we confine the time r0,8q to the discrete time N, then we get a

Markov chain with a not necessarily discrete state space. The Markov chain

obtained from (9.14) is called a skeleton of the time-homogeneous Markov

process in continuous time. The transition kernel is thus the distribution

of Xpi � 1q given that Xpiq � x. The nth step ahead transition kernel is

given by

P pn, x,Bq � Pnpx,Bq � »
E

P px, dyqP pn�1qpy,Bq, (10.4)
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where

B ÞÑ P p1qpx,Bq � P px,Bq � P p1, x, Bq , B P E , (10.5)

is a probability measure on E , the Borel field of the state space E. In fact

the Markov property of the time-discrete process in (10.2) is equivalent to

the following Chapman-Kolmogorov equation:

P pn�m,x,Bq � Pn�mpx,Bq � »
E

Pnpx, dyqPmpy,Bq, n, m P N, x P E.
(10.6)

Instead of the skeleton tXpiq : i P Nu we could have taken a skeleton of the

form tX pδiq : i P Nu , δ ¡ 0. (10.7)

Again we get a Markov chain, and the results of Meyn and Tweedie can

be used. However, note that hitting times phrased in terms of a skeleton

in general are larger than the original hitting times. On the other hand, in

our setup the paths of the Markov process are continuous from the right,

and so in principle our Markov process can be approximated by skeletons

of the form (10.7).

The goal is to find conditions under which the nth iterate of the transi-

tion kernel converges to the invariant measure or distribution π as nÑ8.

The invariant distribution is one that satisfies

πpBq � »
E

P px,Bqdπpxq. (10.8)

The invariance condition states that if Xpiq is distributed according to π,

then all subsequent elements of the chain are also distributed as π. Markov

chain samplers are invariant by construction and therefore the existence of

the invariant distribution does not have to be checked.

A Markov chain is reversible, or satisfies the detailed balance condition,

if there exists a reference measure m on E such that the transition function

P px,Bq can be written as P px,Bq � ³
E
ppx, yqdmpyq, where the integral

kernel ppx, yq satisfies
fpxqppx, yq � fpyqppy, xq, (10.9)

for a Borel measurable function fp�q which is the Radon-Nikodym derivative

of some Borel measure B ÞÑ πpBq, B P E . If this condition holds, it can be

shown that π is an invariant measure: see e.g. [Tierney (1994)]. To verify

this we evaluate the right hand side of (10.8):»
P px,Bq dπpxq � » "»

B

p px, yq dmpyq* fpxq dmpxq
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"»
fpxqppx, yqdmpxq* dmpyq� »

B

"»
ppy, xqfpyqdmpxq* dmpyq� »

B

fpyqdmpyq � πpBq.
A minimal requirement on the Markov chain for it to satisfy a law of large

numbers is the requirement of π-irreducibility. This means that the chain

is able to visit all sets with strictly positive probability under π from any

starting point in E. Formally, a Markov chain is said to be π-irreducible if

for every x P E,

πpAq ¡ 0ñ P
�
Xpiq P A �� Xp0q � x

� ¡ 0, for some i ¥ 1. (10.10)

The property in (10.10) can also be phrased in terms of the hitting time of A:

τ1A � min tm ¥ 1 : Xpmq P Au. If Xpmq R A for all m P N, m ¥ 1, then we

put τ1A � 8. An equivalent way to write (10.10) goes as follows: if A P A P
E is such that πpAq ¡ 0, then Px

�
τ1A   8� ¡ 0 for all x P E. If the space

E is connected and the function ppx, yq is positive and continuous, then

the Markov chain with transition probability function given by P px,Bq �³
B
ppx, yqdmpyq and the invariant probability measure π is π-irreducible.

In our case another important property of the Markov chain is its aperi-

odicity, which ensures that the chain does not cycle through a finite number

of sets. For topics related to 10.1 see Definitions 10.6 and 10.7.

Definition 10.1. A Markov chain is aperiodic if there exists no partition

of E � pD0, D1, . . . , Dp�1q for some p ¥ 2 such that for all i P N

P
�
Xpiq P Dimod ppq|Xp0q P D0

� � »
D0

Px
�
Xpiq P Dimod ppq� dµ0pxq � 1,

(10.11)

for some initial probability distribution µ0.

If the probability µ0 and the partition pD0, . . . , Dp�1q did have the property

spelled out in (10.11), then there exists a state x0 P D0 such that

P
�
i, x0, Dimod ppq� � Px0

�
Xpiq P Dimod ppq� � 1, for all i P N. (10.12)

It follows that not all probability measures B ÞÑ P pi, x0, Bq, i P N, i ¥ 1,

have the same null-sets. So we have the following result.

Proposition 10.1. Let the time-homogeneous Markov chain in (10.2) have

a transition probability function P pi, x, Bq, i P N, x P E, B P E, where
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P px,Bq � P p1, x, Bq, and P p0, x, Bq � 1Bpxq. Suppose that all probability

measures B ÞÑ P pi, x, Bq, i ¥ 1, i P N, x P E, have the same negligible

sets. Then the Markov chain in (10.2) is aperiodic.

These definitions allow us to state the following results from [Tierney

(1994)] which form the basis for Markov chain Monte Carlo methods, and

other asymptotic results. The first of these results gives conditions under

which a strong law of large numbers holds and the second gives conditions

under which the probability density of the nth iterate of the Markov chain

converges to its unique, invariant density.

Theorem 10.1. Suppose tXpiq,PxuxPE is a π-irreducible time-

homogeneous Markov chain with transition kernel P px,Bq � P p1, x, Bq
and invariant probability distribution π. Then π is the unique invariant

distribution of P px,Bq and for all π-integrable real-valued functions h,

1

n

ņ

i�1

h pXpiqq Ñ »
hpxqdπpxq as nÑ8, Px-almost surely. (10.13)

If the invariant measure is σ-finite and not finite, then the limit in (10.13)

is zero. That is why irreducible Markov chains with a (unique) σ-finite

invariant measure, which is not finite, are called Markov chains which are

null-recurrent. For ergodicity results in null recurrent Markov chains, like

the theorem of Chacon-Ornstein for quotients of time averages as in (10.13),

the reader is referred to [Krengel (1985)]: see Theorem 9.9. Recurrent

Markov chains with a finite invariant measure are called positive recurrent.

There is a close relationship between expectations of (first) return times and

invariant measures. In the discrete state space setting we have the following.

Put Ty � inf tm ¥ 1 : Xpmq � yu, y P E, and write µx,y � Ex rTys. Then

the following equality holds:

πpyq � lim
nÑ8Pn px, tyuq � 1

µy,y
. (10.14)

The result in (10.14) is called Kac’s theorem: see Theorem 10.2.2 in [Meyn

and Tweedie (1993b)]. For more details the reader is referred to the litera-

ture: [Norris (1998)] and [Karlin and Taylor (1975)]. Some older work can

be found in [Orey (1964)], [Kingman and Orey (1964)], and [Jamison et al.

(1965)]. The following Theorem of Orey, or Orey’s convergence theorem can

be found in Meyn and Tweedie [Meyn and Tweedie (1993b)] theorem 13.3.3

and 18.1.2. For the claim in (10.15) the positivity of the recurrent Markov

chain is not required. It suffices to have a σ-finite invariant measure, which
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is guaranteed by a result due to Foguel [Foguel (1966)] for irreducible chains

with a recurrent compact subset: see Theorem 2.2 in [Seidler (1997)]. The

existence of a σ-finite Borel measure is also proved in Chapter 10 of the new

version of the book [Meyn and Tweedie (1993b)]. The assertion as written

is proved in Duflo and Revuz [Duflo and Revuz (1969)], who use a method

developed by Blackwell and Freedman [Blackwell and Freedman (1964)],

who in turn rely on a result by Orey [Orey (1959)] which states a result like

(10.15) for point measures µi � δxi
, i � 1, 2. The following theorem was

used in the proof of Proposition 9.8. In [Kaspi and Mandelbaum (1994)]

Theorem 1 and Lemma 1 the authors establish a close relationship between

recurrence and Harris recurrence. A similar result for the fine topology was

found by Azema et al in [Azéma et al. (1965/1966)] Proposition IV 4.

Theorem 10.2. Suppose that tXpnq,PxuxPE is an irreducible time-

homogeneous aperiodic Markov chain with a transition kernel, denoted by

P px,Bq � P p1, x, Bq, which is Harris recurrent. Then for all probability

measures µ1 and µ2 on E

lim
nÑ8¼

Var pPn px, �q � Pn py, �qq dµ1pxq dµ2pyq � 0, (10.15)

where Var denotes the total variation norm. If the Markov chain is positive

Harris recurrent, then for µ2 the invariant probability measure π may be

chosen. This existence follows from positive recurrence. Then the following

equality holds for all probability measures µ1 on E:

lim
nÑ8Var

�»
Pnpx, �qdµ1pxq � πp�q
 � 0. (10.16)

Let B P E . The proof of Theorem 10.2 is based on among other things the

decomposition of the event tXpnq P Bu over the times of the first and the

last entrance time, or entry time to A prior to the time n:

Px rXpnq P Bs � Px
�
Xpnq P B, τ1A ¥ n

�� n�1̧

j�1

j̧

k�1

Ex
�
EXpkq �PXpj�kq �Xpn� jq P B, τ1A ¥ n� j

�
, Xpj � kq P A� ,

τ1A ¥ k, Xpkq P A�� Px
�
Xpnq P B, τ1A ¥ n

�� n�1̧

j�1

j̧

k�1

Ex
�
EXpkq �PXpj�kq �Xpn� jq P B, τ1A ¥ n� j

�
, Xpj � kq P A� ,

τ1A � k
�
, (10.17)
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where in the final step of (10.17) we used the following equality of events: 
τ1A ¥ k, Xpkq P A( �  

τ1A � k
(
, k P N, k ¥ 1. The formula in (10.17) can

be found in [Meyn and Tweedie (1993b)] formula (13.39). Its proof is an

easy consequence of the Markov property. The entrance time τ1A � τ
1,1
A is

defined in (10.25) of Theorem 10.4: τ1A � inf tn ¥ 1 : Xpnq P Au. In terms

of functions the equality in (10.17) reads:

Ex rf pXpnqqs � Ex
�
f pXpnqq , τ1A ¥ n

�� n�1̧

j�1

j̧

k�1

Ex
�
EXpkq �EXpj�kq �f pXpn� jqq , τ1A ¥ n� j

�
, Xpj � kq P A� ,

τ1A � k
�
, f P CbpEq. (10.18)

In §10.3 we provide a proof of Orey’s convergence theorem.

Definition 10.2. The Markov chain pXpnq : n P Nq in (10.2) is called pos-

itive Harris recurrent if there exists an invariant probability measure on E

relative to X , and if px,Bq P E � E satisfies P px,Bq ¡ 0, then

Px

� 8̧
n�1

1B pXpnqq � 8� � 1.

A further strengthening of the conditions is required to obtain a central

limit theorem for sample-path averages. A key requirement is that of an

ergodic chain, i.e., a chain that is irreducible, aperiodic and positive Harris-

recurrent: for a definition of the latter, see [Tierney (1994)] and [Meyn and

Tweedie (1993b)]. In addition, one needs the notion of geometric ergodicity.

An ergodic Markov chain with invariant distribution π is geometrically er-

godic if there exists a non-negative real-valued Borel function x ÞÑ Cpxq and
a positive constant r   1 such that Var pPnpx, �q � πp�qq ¤ Cpxqrn for all

n P N, and such that
³
Cpxqdπpxq   8. The authors of [Chan and Ledolter

(1995)] show that if the Markov chain is ergodic, has invariant probability

distribution π, and is geometrically ergodic, then for all L2 pE, πq-integrable
measurable real-valued functions h, and any initial distribution, the distri-

bution of
?
n
�phn � ³

hpxqdx	 converges weakly to a normal distribution

with mean zero and variance σ2
h ¥ 0 as n Ñ 8. Here phn � 1

n

ņ

i�1

h pXpiqq,
and σ2

h � Varh pXp0qq � 2
8̧
k�1

Cov rth pXp0qq , h pXpkqqus. The following

theorem discusses the problem of the existence of an invariant measure. It
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is taken from [Meyn and Tweedie (1993b)] Theorem 10.0.1. It is supposed

that all measures B ÞÑ P p1, x, Bq, B P E , x P E, have the same null-sets.

Put E� � tA P E : P p1, x0, Aq ¡ 0u. Irreducibility is meant in the sense

that Px rτA   8s ¡ 0 for all x P E, and all subsets A P E�. In our setting

we may assume that irreducibility can be phrased in terms of reachability of

any open subset with positive probability from any starting point and in as

short time as we please: see Lemma 9.1. It is not clear what the exact ana-

log is of (10.22) below in case we are working with continuous time processes

like the one in (9.14). It is quite well possible that in that case Dynkin’s for-

mula plays a central role. Let tpΩ,F ,Pxq , pXptq, t ¥ 0q , pϑt, t ¥ 0q , pE, Equ
be a time-homogeneous strong Markov process, and let A be a Borel subset

of E with hitting time τA: τA � inf ts ¡ 0 : Xpsq P Au. For λ ¡ 0 we have

Dynkin’s formula:» 8
0

e�λsEx rf pXpsqqs ds� » 8
0

e�λsEx rf pXpsqq , τA ¡ ss ds� Ex

�
e�λτAEXpτAq �» 8

0

e�λsf pXpsqq ds�� . (10.19)

If we use the resolvent notation:

Rpλqfpxq � » 8
0

e�λsesLfpxqds, and RApλqfpxq � » 8
0

e�λsesLAfpxqds,
(10.20)

then the equality in (10.19) can be rewritten as:

Rpλqfpxq �RApλqfpxq � Ex
�
e�λτARpλqf pX pτAqq� . (10.21)

The semigroup
 
esLA : s ¥ 0

(
is defined by

esLAfpxq � Ex rfpXpsqq : τA ¡ ss , f P L8 pE, Eq , s ¥ 0, x P E.
This semigroup need not be strongly continuous. It lives on Ac � EzA. It
is quite well possible that equality (10.272) below in Proposition 10.8 is the

correct analog of (10.22). The following result appears as Theorem 10.0.1

in [Meyn and Tweedie (1993b)]: see Theorem 10.4.4 and Theorem l0.4.9

l.c. as well. The result refines Theorem 1 in [Harris (1956)].

Theorem 10.3. Let the time-homogeneous Markov chain X with a Polish

state space E be m-irreducible in the sense that for all A P E for which

mpAq ¡ 0 and all x P E there exists n P N such that Px rXpnq P As ¡ 0.

Suppose that the process X be recurrent relative to the measure m. Then it

admits, up to multiplicative constants, a unique σ-finite invariant measure
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π. Let A P E be such that Px rτA   8s � 1 for π-almost all x P E. The

measure π satisfies:

πpBq � »
A

Ex

�� τ1

A̧

i�1

1B pXpiqq�� dπpxq� »
A

Ex

��τ1

A�1

i̧�0

1B pXpiqq�� dπpxq, B P E . (10.22)

This measure π is such that πrBs � 0 if and only if mpBq � 0. The

invariant measure is finite (rather than merely σ-finite), if there exists a

compact subset C such that sup
xPC Ex

�
τ1C

�   8. Moreover,

πpEq � »
A

Ex
�
τ0A

�
dπpxq � »

C

Ex
�
τ1C

�
dπpxq.

In (10.22) τ1A stands for the first hitting time of the Borel subset A:

τ1A � min tm ¥ 1 : Xpmq P Au � 1� τ0A � ϑ1
where another stopping time τ0A also plays a relevant role:

τ0A � min tm ¥ 0 : Xpmq P A, m non-negative integeru .
In [Meyn and Tweedie (1993b)] Meyn and Tweedie discuss “petite” and

“small” sets. Theorem 10.3 follows from a combination of the following

theorems and propositions in [Meyn and Tweedie (1993b)]: Theorem 10.0.1

(in which ψ-irreducibility and “petite sets” play a crucial role), a rephrasing

of assertion (i) of Proposition 5.2.4 in terms of petite sets, which is in

fact the same as assertion (i) of Proposition 5.5.4, and assertion (ii) in

Theorem 6.2.5 (which states that in a topological Markov chain all compact

subsets are “petite”). Meyn and Tweedie use the following terminology. Let

B ÞÑ ϕpBq be a finite measure on E . A Markov chain is called ϕ-irreducible,

if every set A P E for which ϕpAq ¡ 0 the quantity Px
�
τ0A   8� ¡ 0

for all x P E. In our case we may take ψpAq � ϕpAq � P p1, x0, Aq,
A P E . The assumption that all measures of the form A ÞÑ P pt0, x0, Aq
are equivalent, makes the choice of x0 P E irrelevant. Let a :� pakqkPN
be a sequence of non-negative real numbers which add up to one. Then

we define the function px,Aq ÞÑ Ka px,Aq, px,Aq P E � E , by Ka px,Aq �°8
k�0 akP

n px,Aq. Note that P px,Aq � P p1, x, Aq. Denote by P pNq the

collection of positive sequences which add up to 1. A subset A P E is called

“petite” if there exists a sequence a P P pNq and a non-trivial measure
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νa such that Ka px,Bq ¥ νapBq for all B P E and all x P A. If we can

find a of the form ak � δnpkq, k P N, and a corresponding non-trivial

measure νn, for some n P N, then A is called “small”; this means that

Pnpx,Bq � Kδnpx,Bq ¥ νnpBq, B P E , and νn a non-trivial measure.

It says that for Markov chains which are ψ-irreducible and aperiodic the

collection of “small sets” coincides the collection of “petite sets”. The

Markov chain X is called topological, or a Markov T -chain, if the space E is

a complete metrizable (locally compact) Hausdorff space, and the function

x ÞÑ P px,Bq � P p1, x, Bq is lower semi-continuous for every B P E . In

fact the authors assume that for every B P E the function x ÞÑ P px,Bq
dominates a strictly positive lower semi-continuous function, whenever it

itself is strictly positive. Observe that by the Markov property

Px
�
τ1A   8� � Px

� 8¤
n�1

tXpnq P Au� � Ex

�
PXp1q � 8¤

n�1

tXpn� 1q P Au�� ,
and hence, by the strong Feller property, the function x ÞÑ Px

�
τ1A   8�

is

in fact continuous. For the notion of strong Feller property see Definitions

2.5 and 2.16. In the results, which we mention above and which will follow,

the local compactness does not play a role.

As a corollary to (the proof of) Theorem 10.3 we have the following

result.

Corollary 10.1. Let the notation and assumptions be as in Theorem 10.3.

Then the following equality holds for f P L1 pE, πq:
lim
nÑ8 »

EzA Ex
�
f pXpnqq , τ0A ¥ n

�
dπ � 0. (10.23)

A result, corresponding to Theorem 10.3 in the continuous time setting,

reads as follows.

Theorem 10.4. Let tpΩ,F ,Pxq , pXptq, t ¥ 0q , pϑt, t ¥ 0q , pE, Equ be a

strong Markov process with right-continuous paths. Fix h ¡ 0. Let π be

a σ-finite invariant measure for this Markov process. Then the following

equality holds for all f P L1 pE, πq, and for all Borel subsets A with the

property that πpAq   8 and Px

�
τ
0,h
A   8� � 1 for π-almost all x P E:»

A

Ex

��τ1,h
A {h
ķ�1

f pX pkhqq�� dπpxq � »
fpxqdπpxq. (10.24)
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In (10.24) the stopping times τ1,hA , h ¡ 0, are defined by

τ
1,h
A � inf tℓh : ℓ P N, ℓ ¥ 1, Xpℓhq P Au � h� τ

0,h
A � ϑh (10.25)

where τ0,hA � inf tℓh : ℓ P N, ℓ ¥ 0, Xpℓhq P Au. If there exists A P E with

the property that
³
A
Ex

�
τ
1,h
A

�
dπpxq   8 for some h ¡ 0, then the invariant

measure π is finite, and h� πpEq � ³
A
Ex

�
τ
1,h
A

�
dπpxq.

If h � 1 we write τ1A instead of τ1,1A : see formula (10.17) above. The

proof of Theorem 10.4 is completely analogous to that of Theorem 10.3.

Instead of the operator T , given by Tfpxq � Ex rfpXp1qqs � ³
fpyqP px, dyq,

we now introduce the operators Th, h ¡ 0, Thfpxq � Ex rf pXphqqs �³
fpyqP ph, x, dyq, where P pt, x, Bq is the probability transition function.

We also need the operator TA,h defined by

TA,hfpxq � Ex

�
f pXphqq , τ0,hA ¥ h

� � »
fpyqPAph, x, dyq,

where PAph, x,Bq � Px

�
Xphq P B, τ0,hA ¥ h

�
. Again the proof yields the

following corollary.

Corollary 10.2. Let the notation and assumptions be as in Theorem 10.4.

Then the following equality holds for f P L1 pE, πq:
lim
nÑ8 »

EzA Ex

�
f pXpnhqq , τ0,hA ¥ nh

�
dπpxq � 0. (10.26)

Proof. [Proof of Theorem 10.3.] Let A P E be as in Theorem 10.3. We

introduce two operators T and TA, defined by respectively

Tfpxq � Ex rf pXp1qqs , and TAfpxq � Ex
�
f pXp1qq , τ0A ¥ 1

�
, f P Cb pEq .

(10.27)

Notice that TAf � Tf �1ATf � 1EzATf , so that TAf � 0 on A. Then by

induction with respect to n we see

ņ

k�1

1ATT
k�1
A f � 1EzAT nAf � f � ņ

k�1

pT � IqT k�1
A f, f P CbpEq. (10.28)

Hence, since π is an invariant measure the equality in (10.28) implies

ņ

k�1

»
A

TT k�1
A fpxq dπpxq � »

EzA T nAfpxq dπpxq � »
E

fpxq dπpxq (10.29)
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for f P L1pE, πq. Let f P L8 pE, Eq�L1 pE, πq, f ¥ 0. By the assumption

that Px
�
τ0A   8� � 1, for π-almost all x P E, we have f � lim

nÑ8 pf � T nAfq,
π-almost everywhere, and hence we obtain»

E

fdπ � »
E

lim
nÑ8 pf � T nAfq dπ � »

E

lim inf
nÑ8 pf � T nAfq dπ

(Fatou’s lemma)¤ lim inf
nÑ8 »

E

pI � T nAq f dπ � lim inf
nÑ8 »

E

pI � TAq ņ

k�1

T k�1
A f dπ

(employ the identity TA � T � 1AT )� lim inf
nÑ8 »

E

pI � T � 1AT q ņ

k�1

T k�1
A f dπ

(the measure π is T -invariant)� lim inf
nÑ8 »

A

T

ņ

k�1

T k�1
A f dπ � 8̧

k�1

»
A

TT k�1
A f dπ� »

A

Ex

�� τ1

A̧

k�1

f pXpkqq�� dπpxq. (10.30)

The inequality in (10.30) shows that»
E

f dπ ¤ »
A

Ex

�� τ1

A̧

k�1

f pXpkqq�� dπpxq. (10.31)

Of course, in (10.31) we assumed Px
�
τ0A   8� � 1, x P E. On the other

hand the equality in (10.28) yields:
ņ

k�1

»
A

TT k�1
A f dπ¤ ņ

k�1

»
A

TT k�1
A f dπ � »

EzA T nAf dπ � »
E

f dπ � »
E

ņ

k�1

pT � IqT k�1
A f dπ� »

E

f dπ. (10.32)

From (10.32) we get, by letting n Ñ 8 and using the Markov property

several times »
A

Ex

�� τ1

A̧

k�1

f pXpkqq�� dπpxq ¤ »
E

f dπ. (10.33)
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Combining (10.33) and (10.31) shows the equality:»
A

Ex

�� τ1

A̧

k�1

f pXpkqq�� dπpxq � »
E

f dπ. (10.34)

The equality in (10.34) completes the proof of Theorem 10.3. �

Remark 10.1. If in Theorem 10.3 we only assume π to be sub-invariant

in the sense that
³
E
Tfpxqdπpxq ¤ ³

E
fpxqdπpxq, f P L1 pE, πq, f ¥ 0, then

for such functions we have
ņ

k�1

»
A

TT k�1
A fpxq dπ � »

EzA T nAfpxq dπpxq ¤ »
E

fpxq dπpxq. (10.35)

Proof. [Proof of Corollary 10.1.] The equality in (10.29) can be rewritten

as follows:»
A

Ex

��τ1

A^n
ķ�1

f pXpkqq�� dπpxq � »
EzA Ex

�
f pXpnqq , τ0A ¥ n

�
dπpxq� »

E

fpxqdπpxq. (10.36)

The equality in (10.34) together with (10.36) yields the result in Corollary

10.1. To establish we need once more the fact that Px
�
τ0A   8� � 1 for

π-almost all x P E.

This completes the proof of Corollary 10.1. �

In the following corollary we give a result similar to the one in Theorem

10.3, but here we do not necessarily assume that Px
�
τ0A   8� � 1 for π-

almost all x P E.

Corollary 10.3. Define the measures π1 and π8 by the equalities:»
E

fpxq dπ1pxq � inf
ℓPN supnPN »A Ex

��τ1

A^n
ķ�1

T ℓf pXpkqq�� dπpxq� inf
ℓPN supnPN »A Ex

��τ1

A^n
ķ�1

f pXpk � ℓqq�� dπpxq, and (10.37)»
E

fpxq dπ8pxq � sup
ℓPN inf

nPN »EzA Ex
�
T ℓf pXpnqq , τ0A ¥ n

�
dπpxq� sup

ℓPN inf
nPN »EzA Ex

�
f pXpn� ℓqq , τ0A ¥ n

�
dπpxq, (10.38)
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where the function f ¥ 0 belongs to L1 pE, πq. Then the measures π1 and

π8 are T -invariant, and they split the measure π:»
E

f dπ � »
E

f dπ1 � »
E

f dπ8, f P L1 pE, πq . (10.39)

If, Px
�
τ0A   8� � 1 for π-almost all x P E, then π8 � 0 and π1 � π.

Since f ¥ 0, the infima and suprema in (10.37) and (10.38) are in fact limits.

This observation follows from the equality in (10.40) and the invariance of

the measure π.

Proof. From (10.36) we get:»
A

Ex

��τ1

A^n
ķ�1

f pXpk � ℓqq�� dπpxq � »
EzA Ex rf pXpn� ℓqq , τA ¥ ns dπpxq� »

A

Ex

��τ1

A^n
ķ�1

T ℓf pXpkqq�� dπpxq � »
EzA Ex

�
T ℓf pXpnqq , τ0A ¥ n

�
dπpxq� »

E

T ℓfpxqdπpxq � »
E

fpxq dπpxq. (10.40)

The splitting in (10.39) follows from (10.40). If Px
�
τ0A   8� � 1 for π-

almost all x P E, then Corollary 10.1 yields π8 � 0, and hence π1 � π.

This completes the proof of Corollary 10.3. �

10.2 Markov processes and invariant measures

In what follows we establish in the continuous time setting an analog to

Theorem 10.3. The semigroup
 
esLA : s ¥ 0

(
which we will use is defined

by:

esLAfpxq � Ex rf pXpsqq : τA ¡ ss , f P CbpEq. (10.41)

Its generator LA is pointwise defined by

LAfpxq � lim
tÓ0 etLAfpxq � fpxq1EzAr pxq

t
(10.42)

for all functions f P CbpEq for which these limits exist for all x P E. Note

that etLAfpxq � LAfpxq � 0 for x P Ar. The semigroup esLA lives on

EzAr. Let g P CbpEq. Then the function Lg is defined to the extent to

which the pointwise limit Lgpxq � lim
hÓ0 ehLgpxq � gpxq

h
, x P E, exists. In
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Theorem 10.13, which is a consequence of Theorem 10.12 it will be shown

under what conditions there exists, up to a multiplicative constant, a unique

σ-finite invariant measure which is finite on compact subsets. The result

should be compared with (10.24) in Theorem 10.4.

Theorem 10.5. Suppose that the state space E of the irreducible time-

homogeneous Markov process X is Polish. Let A P E be such that

Px rτA   8s � 1 for π-almost all x P E. Let π be a σ-finite invariant mea-

sure, and let f P L1pE, πq, f ¥ 0. So it is assumed that the Borel measure

π is such that for every compact subset K the following (in-)equalities hold:

0 ¤ ³
E
PxrXphq P Ksdπpxq � πpKq   8. It then follows that

³
E
ehLf dπ �³

E
f dπ, for all f P L1pE, E , πq. Then the following equalities hold:�
ehL � ehLA

� » t
0

esLAf ds� » h
0

eρLAetLAf dρ� » h
0

eρLAf dρ� �
ehL � I

� » t
0

esLAf ds, (10.43)�
ehL � ehLA

� » 8
0

esLAf ds � » h
0

eρLAf dρ� �
ehL � I

� » 8
0

esLAf ds,

(10.44)»
E

�
ehL � ehLA

� » t
0

esLAf ds dπ � »
E

» h
0

eρLAetLAf dρ dπ� »
E

» h
0

eρLAf dρ dπ, (10.45)

lim
hÓ0 »E ehL � ehLA

h

» t
0

esLAf ds dπ � »
Ar

f dπ � »
E

etLAf dπ � »
E

f dπ,

(10.46)»
E

�
ehL � ehLA

� » 8
0

esLAf ds dπ � »
EzAr

» h
0

eρLAf dρ dπ, (10.47)

lim
hÓ0 »E ehL � ehLA

h

» 8
0

esLAf ds dπ � »
Ar

f dπ � »
E

f dπ, and (10.48)

lim
tÑ8 »

E

etLAf dπ � 0. (10.49)

Suppose that the subset A possesses the additional properties that π rArs  8, and

lim inf
hÓ0 1

h

»
E

Ex
�
EXphq rτAs , τA ¤ h

�
dπpxq   8. (10.50)
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Then the measure π is finite and

πrEs � π rArs � lim
hÓ0 1

h

»
E

Ex
�
EXphq rτAs , τA ¤ h

�
dπpxq. (10.51)

The discrete analog of formula (10.43) is the formula in (10.28). The finite-

ness result in (10.50) and hypothesis in Theorem 10.5 should be compared

with the result in Corollary 10.5 under the assumption in (10.292). Here

Ar stands for the collection of regular points of A:

Ar � tx P A : Px rτA � 0s � 1u .
From Blumenthal’s zero-one law we know that Px rτA � 0s � 0 or 1. Since

the paths are right-continuous it follows that Ar � A, where A is the

(topological) closure of A.

Remark 10.2. Suppose that for any function g ¥ 0 which is such

that the function
�
ehL � I

�
g belongs to L1 pE, E , πq, and is such that³ �

ehL � I
�
g dπ ¤ 0, then, by hypothesis,

³ �
ehL � I

�
g dπ � 0. The proof

of Theorem 10.5 then shows that the equality in (10.49) holds: see equality

(10.56) and the inequalities (10.64) and (10.65) below. However, such a

hypothesis does not seem to be realistic. The present proof uses (10.256)

in Proposition 10.7 below: see inequality (10.270).

Proof. [Proof of Theorem 10.5.] The equality in (10.43) is a consequence

of �
I � ehLA

� » t
0

esLAf ds � » h
0

eρLAf dρ
�
f � etLA

�
f.

Notice that all terms in (10.43), except the last one, are non-negative pro-

vided that f ¥ 0. The equality in (10.45) follows by integrating the left-

hand and right-hand side of (10.43) with respect to the invariant measure π

whereby the fact has been used that functions of the form
³t
0
esLAf ds belong

to L1 pE, E , πq for t P p0,8q. Let B P E , and let g P L1 pE, E , πq. Since
lim
hÓ0 »B ³h

0
eρLA dρ

h
g dπ � »

B
�pEzArq g dπ (10.52)

the equality in (10.46) follows from (10.45). Since, by assumption, A is

recurrent, in (10.43) we can let t tend to 8 to obtain (10.44). Moreover,

from (10.45) we deduce»
E

ehL � ehLA

h

» t
0

esLAf ds dπ ¤ »
E

³h
0
eρLA dρ

h

�
1EzArf

�
dπ¤ »

E

³h
0
eρL dρ

h

�
1EzArf

�
dπ � »

EzAr

f dπ. (10.53)
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Letting t Ò 8 in (10.53) and invoking monotone convergence we see»
E

ehL � ehLA

h

» 8
0

esLAf ds dπ ¤ »
EzAr

f dπ. (10.54)

Next we show that
³
E

�
ehL � I

� ³8
0
esLAf ds dπ � 0. For this purpose we

write:»
E

�
ehL � ehLA

� » 8
0

esLAf ds dπ � lim
tÑ8 »

E

�
ehL � ehLA

� » t
0

esLAf ds dπ

(the measure π is invariant)� lim
tÑ8 »

E

�
I � ehLA

� » t
0

esLAf ds dπ � lim
tÑ8 »

E

» h
0

eρLA dρ
�
I � etLA

�
f dπ� »

E

» h
0

eρLAf dρ dπ � lim
tÑ8 »

E

» h
0

eρLAetLAf dρ dπ. (10.55)

From (10.55) we obtain:»
E

�
ehL � I

� » 8
0

esLAf ds dπ� »
E

�
ehL � ehLA

� » 8
0

esLAf ds dπ � »
E

�
I � ehLA

� » 8
0

esLAf ds dπ� »
E

» h
0

eρLAf dρ dπ � lim
tÑ8 »

E

» h
0

eρLAetLAf dρ dπ � »
E

» h
0

eρLAf dρ dπ� � lim
tÑ8 »

E

» h
0

epρ�tqLA
�
1EzArf

�
dρ dπ. (10.56)

From (10.56) we see that for f ¥ 0, f P L1 pE, E , πq, the inequality»
E

�
ehL � I

� » 8
0

esLAf ds dπ ¤ 0 (10.57)

holds. In order to prove the reverse inequality we proceed as follows. Let

g P D pLAq�L1 pE, E , πq be arbitrary. Then we have»
E

» h
0

eρLAetLA
�
1EzArf

�
dρ dπ� »

E

» h
0

epρ�tqLA
�
1EzAr pf � LAgq� dρ dπ � »

E

» h
0

epρ�tqLALAg dρ dπ¤ »
E

» h
0

epρ�tqLA
��1EzArf � LAg

�� dρ dπ � »
E

eph�tqLAg dπ � »
E

etLAg dπ
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E

» h
0

epρ�tqL ��1EzArf � LAg
�� dρ dπ � »

E

eph�tqLAg dπ � »
E

etLAg dπ� h

»
E

��1EzArf � LAg
�� dπ � »

E

eph�tqLAg dπ � »
E

etLAg dπ. (10.58)

From (10.56) and (10.58) we obtain»
E

�
ehL � I

� » 8
0

esLAf ds dπ (10.59)¥ �h »
E

��1EzArf � LAg
�� dπ � lim inf

tÑ8 �»
E

etLAg dπ � »
E

eph�tqLAg dπ



.

From the equality in (10.45) it follows that the limit limtÑ8 ³
E
etLAg dπ

exists and is finite for g P L1 pE, E , πq. Consequently, the inequality in

(10.59) entails»
E

�
ehL � I

� » 8
0

esLAf ds dπ ¥ �h »
E

��1EzArf � LAg
�� dπ (10.60)

for all g P D pLAq�L1 pE, E , πq. Fix α ¡ 0 but small, and put gα �� ³8
0
e�αsesLAf ds. Then the function gα belongs to L1 pE, E , πq; in fact�α ³
E
gα dπ ¤ ³

EzAr fdπ. In addition, we have

1EzArf � LAgα� 1EzArf � pαI � LAq » 8
0

e�αsesLAf ds� α

» 8
0

e�αsesLAf ds� 1EzArf � 1EzArf � α

» 8
0

e�αsesLAf ds � α

» 8
0

e�αsesLAf ds. (10.61)

By (10.256) in Proposition 10.7 below we see that

lim
αÓ0 α »E » 8

0

e�αsesLAf ds dπ � 0. (10.62)

Observe that the proof of Proposition 10.7 does not depend on Theorem

10.5: see inequality (10.270). From (10.57), (10.60), (10.61) and (10.62) we

infer

lim
hÓ0 »E �

ehL � I
� » 8

0

esLAf ds dπ � 0. (10.63)

Using this fact, and integrating the equality in (10.44) results in equality

(10.47). Dividing the terms in (10.47) by h ¡ 0, letting h Ó 0, and employing

(10.52) leads to the equality in (10.48).
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The proof of the equality in (10.49) follows from the arguments leading

to (10.58). More precisely, let h ¡ 0 be arbitrary. Then we have»
E

etLAf dπ � »
E

etLA

�
f � ³h

0
eρLA dρ

h
f

�
dπ � »

E

etLA

³h
0
eρLA dρ

h
f dπ¤ »

E

etL

�����1EzArf � ³h
0
eρLA dρ

h
f

����� dπ � »
E

etLA

³h
0
eρLA dρ

h
f dπ� »

E

�����1EzArf � ³h
0
eρLA dρ

h
f

����� dπ � »
E

etLA

³h
0
eρLA dρ

h
f dπ.

(10.64)

Then (10.45), the inequalities in (10.58) together with (10.61) and (10.62)

applied to (10.64) implies

lim
tÑ8 »

E

etLAf dπ ¤ »
E

�����1EzArf � ³h
0
eρLA dρ

h
f

����� dπ, h ¡ 0. (10.65)

Since the right-hand side of (10.65) tends to 0 when h Ó 0 the equality in

(10.49) follows.

The equality in (10.51) follows from (10.48) by putting f � 1. Notice

the equality» t
0

esLAfpxq ds � Ex

�» t^τA
0

f pXpsqq ds� , f ¥ 0, t ¡ 0.

This completes the proof of Theorem 10.5. �

The following corollary is similar to Corollary 10.1 which in turn followed

from the proof of Theorem 10.3. It is a direct consequence of (10.49).

Corollary 10.4. Let the notation and assumptions be as in Theorem 10.5.

Then the following equality holds for all f P L1 pE, E , πq:
lim
tÑ8 »

EzAr

Ex rf pXptqq , τA ¡ ts dπpxq � 0. (10.66)

10.2.1 Some additional relevant results

Theorem 10.6 is the most important result of the present subsec-

tion. We will assume that the squared gradient operator Γ1 exists

for functions in the domain of the generator of our Markov processtpΩ,F ,Pxq , pXptq, t ¥ 0q , pϑt, t ¥ 0q , pE, Equ. For the definition of squared

gradient operator the reader is referred to the formulas (5.2) and (5.3) in
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Chapter 5 or formula (7.7) in Chapter 7. Let v be a function in DpLq and
define the martingale Mvptq by Mvptq � v pXptqq�v pXp0qq� ³t

0
Lv pXpsqq.

A consequence of Proposition 5.3 is the following equality:

Ex

�����v pXptqq � v pXp0qq � » t
0

Lv pXpsqq����2 ds�� Ex r〈Mv,Mv〉 ptqs � » t
0

Ex rΓ1pv, vq pXpsqqs ds. (10.67)

Moreover, the separation property (a) in Proposition 9.1 has to be strength-

ened to inequality (10.68) in (a1):
(a1) For every x P EzAr and every ε ¡ 0 there exists a function v P DpLq

such that the following inequality holds for all y P A:pΓ1 pv, vq pxqq1{2   ε pvpxq � vpyqq . (10.68)

The following remark serves to support the idea that in Theorem 10.5 it is

not so obvious to take limits for h Ó 0.
Remark 10.3. It is tempting to take the limit for h Ó 0 in equality (10.53)

of Theorem 10.5. This limit would bepL� LAq » t
0

esLAf ds� etLAf � 1EzArf � L

» t
0

esLAf ds. (10.69)

However, it is not so clear how to define pL� LAq ³t0 esLAf dspxq for x P Ar.
Under the condition (a1) we will show that

lim
hÓ0 ehL � ehLA

h

» t
0

esLAf dspxq � 0, x P EzAr. (10.70)

Sometimes it is convenient to know circumstances under which an equality

of the form Lf � LAf � 1ArLf , f P DpLq, holds. Such an equality is a

consequence of hypothesis (a1). In addition we have

LA

» t
0

esLAf ds � etLAf � f, on EzAr, (10.71)

an equality which was also employed in the proof of Theorem 10.5. We will

need the following lemma: it resembles Proposition 9.1. A somewhat more

sophisticated version will show that the limit in (10.42) is in fact a strict

limit on EzAr provided that EzAr is an open subset of E. The latter is

the case if A � Ar is a closed subset of E, in other words, if all points of

the closed set A are regular for the Markov process.
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Lemma 10.1. Let x P EzAr, and suppose that (a1) is satisfied. Then the

following equalities hold:

lim
tÓ0 Px rτA ¤ ts

t
� 0, and (10.72)pL� LAq fpxq � 0 for f P DpLq. (10.73)

In addition: pL� LAq f � 1ArLf , and consequently LAf � 1EzArLf for

f P DpLq.
If A is closed, then the limit in (10.42) and (10.72) can be taken uni-

formly on compact subsets of the open subset EzA, so that for f P DpLq the
limit in (10.42) is in fact a limit in terms of the strict topology on EzA.
Remark 10.4. Suppose that the subset A is closed. Then the

convergence in (10.72) is uniformly for x in compact subsets of

EzA. Since we have the following inclusion of events tXpsq P Au �tτA ¤ su, s ¡ 0, it follows that the paths of the Markov pro-

cess tpΩ,F ,Pxq , pXptq, t ¥ 0q , pϑt, t ¥ 0q , pE, Equ are necessarily Px-almost

surely continuous. For this result see Proposition 4.6 in §4.4.

Proof. [Proof of Lemma 10.1.] Fix x P EzAr and let ε ¡ 0. Then by

assumption (a1) there exists a function v P DpLq such that on the eventtτA ¤ tu the following inequality holds Px-almost surely:�
vpxq � sup

yPAr

vpyq � t inf
yPEzAr

min pLvpyq, 0q
1tτA¤tu¤ �
v pXp0qq � v pX pτAqq � » τA

0

Lv pXpsqq ds
1tτA¤tu. (10.74)

In (10.74) we write Mvptq � v pXptqq � v pXp0qq � ³t
0
Lv pXpsqq ds, and

we take expectations to obtain by the martingale property of the process

t ÞÑMvptq:�
vpxq � sup

yPAr

vpyq � t inf
yPEzAr

min pLvpyq, 0q
Px rτA ¤ ts¤ Ex r�Mv pτAq , τA ¤ ts � Ex r�Mv ptq , τA ¤ ts . (10.75)

Applying the Cauchy-Schwarz’ inequality to the right-hand side of (10.75)

and employing the equality in (10.67) yields�
vpxq � sup

yPAr

vpyq � t inf
yPEzAr

min pLvpyq, 0q
Px rτA ¤ ts¤ �
Ex

�|Mvptq|2�	1{2 pPx rτA ¤ tsq1{2� �
Ex

�» t
0

Γ1pv, vq pXpsqq ds�
1{2 pPx rτA ¤ tsq1{2 . (10.76)
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By continuity of the function y ÞÑ Γ1 pv, vq pyq, y P E, and using assumption

(a1) from (10.76) we obtain for 0   t ¤ tε:�
vpxq � sup

yPAr

vpyq � t inf
yPEzAr

min pLvpyq, 0q
 pPx rτA ¤ tsq1{2¤ εt1{2�vpxq � sup
yPAr

vpyq � t inf
yPEzAr

min pLvpyq, 0q
 , (10.77)

and hence Px rτA ¤ ts ¤ ε2t for 0   t ¤ tε. This proves equality (10.72) in

Lemma 10.1. We use the equality in (10.72) to prove that pL� LAq fpxq �
0. Therefore we write��etLfpxq � etLAfpxq�� � |Ex rfpXptqqs � Ex rfpXptqq, τA ¡ ts|� |Ex rfpXptqq, τA ¤ ts| ¤ }f}8 Px rτA ¤ ts . (10.78)

The equality in (10.73) follows from (10.72) and (10.78). Finally let f P
DpLq. Equality (10.73) shows that pL� LAq fpyq � 0 for y P EzAr. If

y P Ar, then LAfpyq � 0. Consequently pL� LAq f � 1ArLf .

In order to finish the proof of Lemma 10.1 we have to prove that the

indicated limits are uniform on compact subsets of EzA when A is a closed

subset of E. So from now on A is a closed subset of E. First we do this for

the limit in (10.72). Let K be a compact subset of EzA, and let ε ¡ 0 be

arbitrary. Then there exist functions vj P DpLq, 1 ¤ j ¤ N , such that

K � N¤
j�1

#
x P EzA : pΓ1 pvj , vjq pxqq1{2   ε

�
vjpxq � sup

yPEzA vjpyq�+
.

(10.79)

By uniform continuity of the functions pt, yq ÞÑ ³t
0
Ey rΓ1 pvj , vjq pXpsqqs ds

t
,

1 ¤ j ¤ N , on the compact subset r0, t0s � K, for t0 ¡ 0, the inclusion

in (10.79) entails that there exists a strictly real number tε ¡ 0 such that

K ��N
j�1Kj where x P K belongs to Kj if and only if the inequality�

Ex

�» t
0

Γ1 pvj , vjq pXpsqq ds�
1{2  εt1{2�vjpxq � sup
yPA vjpyq � t inf

yPEzAmin pLvpyq, 0q
 (10.80)

holds for 0   t ¤ tε. Here, of course,

³t
0
Ey rΓ1 pvj , vjq pXpsqqs ds

t
is in-

terpreted as Γ1 pvj , vjq pyq when t � 0. Let x P Kj . As in the proof of

(10.72) we obtain Px rτA ¤ ts ¤ ε2t for 0   t ¤ tε: see the inequalities in
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(10.76) and (10.77). It follows that for 0   t ¤ tε and x P K we have

Px rτA ¤ ts ¤ ε2t. As a consequence we see that the limit in (10.72) is

uniform for x P K, where K is an arbitrary compact subset of EzA, i.e.
lim
tÓ0 sup

xPK Px rτA ¤ ts
t

� 0, for all compact subsets K of EzA. (10.81)

The equality in (10.81) together with the inequality in (10.78) shows that

the convergence in (10.42) is uniform for x in compact subsets of EzA.
This concludes the proof of Lemma 10.1. �

The following lemma shows that equality (10.71) holds.

Lemma 10.2. The equality in (10.71) holds for f P CbpEq.
Proof. The proof follows a standard procedure. We write

ehLA

» t
0

esLAf dspxq � » t
0

esLAfpxq ds� » t
0

eps�hqLAfpxq ds� » t
0

esLAfpxq ds� » t�h
h

esLAfpxqds� » t
0

esLAfpxq ds� » t�h
t

esLAfpxqds� » h
0

esLAfpxq ds. (10.82)

Upon dividing (10.82) by h and sending h to zero we obtain the equality in

(10.71).

This completes the proof of Lemma 10.2. �

The following lemma shows that equality (10.70) holds.

Lemma 10.3. The limit in (10.70) converges uniformly on compact subsets

of EzAr.
Proof. Without loss of generality we assume that f ¥ 0, f P CbpEq. In

order to prove (10.70) we write

0 ¤ ehL � ehLA

h

» t
0

esLAf dspxq � 1

h
Ex

�» t
0

esLAf pXphqq ds, 0 ¤ τA ¤ h

�¤ t }f}8 Px rτA ¤ hs
h

. (10.83)

The equality in (10.70) follows from Lemma 10.1 and (10.83).

This shows the claim in Lemma 10.3. �
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The following theorem transfers properties of the invariant measure to prop-

erties onEzAr provided that certain conditions are satisfied. As in Theorem

10.5 the result should be compared with (10.24) in Theorem 10.4.

Theorem 10.6. Let the hypotheses in Theorem 10.5 be strengthened with

hypothesis (a1). It is understood that the measure π is L-invariant with

properties as described in Theorem 10.5. Then the following equality holds

for f P L1 pE, E , πq:
lim

hÓ0, h¡0

1

h

»
Ar

ehL
» 8
0

esLAf ds dπ � »
Ar

f dπ � »
E

f dπ. (10.84)

Notice that 1Arg � 0 π-almost everywhere whenever g belongs the L1-

domain of LA. This fact is used in (10.86) below.

Proof. Let f ¥ 0 belong to L1 pE, E , πq. From equality (10.47) in The-

orem 10.5 it follows that, in order to obtain (10.84), it suffices to prove

that

lim
hÓ0 »EzAr

ehL � ehLA

h

» 8
0

esLAf ds dπ � 0. (10.85)

To achieve the equality in (10.85) we choose g P DpLq�D pDAq arbitrarily,
and notice

ehL � ehLA

h

» 8
0

esLAf ds� ehL � ehLA

h

�» 8
0

esLA pf � LAgq ds� » 8
0

esLALAg ds


� ehL � ehLA

h

» 8
0

esLA pf � LAgq ds� ehL � ehLA

h

�
1EzArg

�� ehL � ehLA

h

» 8
0

esLA pf � LAgq ds� ehL � I

h
g � ehLA � I

h
g. (10.86)

Next we integrate (10.86) with respect to π and invoke (10.47) to obtain»
EzAr

ehL � ehLA

h

» 8
0

esLAf ds dπ� »
EzAr

ehL � I

h
g dπ � »

EzAr

ehLA � I

h
g dπ� »

EzAr

ehL � ehLA

h

» 8
0

esLA pf � LAgq ds dπ
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E

³h
0
eρLA dρ

h

��1EzArf � LAg
�� dπ ¤ »

E

³h
0
eρL dρ

h

��1EzArf � LAg
�� dπ� »

EzAr

|f � LAg| dπ. (10.87)

In (10.87) we let h Ó 0 and deduce, for g P DpLq�D pLAq arbitrary,
lim sup
hÓ0 »

EzAr

ehL � ehLA

h

» 8
0

esLAf ds dπ � »
EzAr

Lg dπ � »
EzAr

LAg dπ¤ »
EzAr

|f � LAg| dπ. (10.88)

By taking g of the form g � gα � � ³8
0
e�αsesLAf ds, and applying (10.256)

in Proposition 10.7 below we get that the right-hand side of (10.88) is as

small as we please: see (10.61) in the proof of Theorem 10.5. Using the

arguments in Lemma 10.1, which depends directly on the hypothesis in (a1),
we see that Lgα � LAgα on EzAr. The inequality in (10.88) then entails

the equality in (10.85), which completes the proof of Theorem 10.6. �

10.2.2 An attempt to construct an invariant measure

In this subsection we will try to give a construction of an, up to a multiplica-

tive constant, unique σ-finite measure provided the hypotheses of Theorem

10.5 are fulfilled. We will use Dynkin’s formula, and we will employ re-

solvent techniques: see (10.21). We will begin with establishing a number

of relevant formulas, which we collect in Proposition 10.5 below. In what

follows we employ the following notation:

Rpλqfpxq � pλI � Lq�1
fpxq � » 8

0

e�λsesLfpxq ds� » 8
0

e�λsEx rf pXpsqqs ds, (10.89)

RApλqfpxq � pλI � LAq�1
fpxq� Ex

�» τA
0

e�λsf pX psqq ds�� » 8
0

e�λsEx rf pXpsqq : τA ¡ ss ds� » 8
0

e�λsesLAfpxqds, (10.90)

PApλq � pL� λIqRApλq � I � 1Ar ppL� λIqRApλq � Iq� pλI � LqHApλqRpλq � 1Ar pλI � LqHApλqRpλq, (10.91)
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where

HApλqfpxq � #
Ex

�
e�λτAf pX pτAqq� , x P EzAr,

fpxq, x P Ar. (10.92)

The equalities in (10.91) follow from equality (10.130) in Proposition 10.4.

Lemma 10.4. Let f P DpLq be such that HApλqf P DpLq. Then the

equalities in (10.91) yield

PApλq pL� λIq f � pL� λIqHApλqf and (10.93)

λRpλq#�e�λ1hehL � I
	
RA

�
λ1�� » h

0

e�λ1sesLds+�
L� λ1I� f (10.94)� λRpλq�e�λ1hehL � I

	
HA

�
λ1� f (10.95)� λpλRpλq � Iq » h

0

e�λ1sesLdsHApλ1qf � λ1λRpλq » h
0

e�λ1sesLdsHApλ1qf,
for h ¡ 0, λ1 ¡ 0, and λ ¡ 0.

Proof. The equality in (10.93) is an immediate consequence of (10.91).

The equality in (10.94) is a consequence of the following identities:

RA
�
λ1� �L� λ1I� f � f � HA

�
λ1� f and (10.96)» h

0

e�λ1sesL �L� λ1I� fds � e�λ1hehLf � f. (10.97)

The equalities in (10.96) and (10.97) hold for f P DpLq, λ1 ¡ 0, and h ¡ 0.

The equality in (10.95) is closely related to (10.93). This can be seen as

follows:

λRpλq#�e�λ1hehL � I
	
RA

�
λ1�� » h

0

e�λ1sesLds+�
L� λ1I� f� λRpλq#�L� λ1I� » h

0

e�λ1sesLdsRA �
λ1�� » h

0

e�λ1sesLds+�
L� λ1I� f� λ

�
L� λ1I�Rpλq » h

0

e�λ1sesLds  RA �
λ1� �L� λ1I�� I

(
f� λ

�
L� λ1I�Rpλq » h

0

e�λ1sesLdsHA

�
λ1� f. (10.98)

Since LRpλq � λRpλq � I, equality (10.94) is a consequence of (10.98). In

order to obtain (10.98) we also used the identity�
L� λ1I� » h

0

e�λ1sesLf ds � e�λ1hehLf � f, f P CbpEq.
This completes the proof of Lemma 10.4. �
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Next, fix h ¡ 0, λ ¡ 0, µ P M pAq, and f P CbpEq. Here M pAq is the

space of those (complex) measures µ P E which are concentrated on A; i.e.|µ| pEzAq � 0 (see notation introduced prior to Theorem 2.2). We will also

need the following stopping times, operators, and functionals:

τ
0,h
A � inf tkh : k ¥ 0, k P N, Xpkhq P Au , (10.99)

τ
1,h
A � inf tkh : k ¥ 1, k P N, Xpkhq P Au � h� τ

0,h
A � ϑh,

(10.100)

Lhpλqfpxq � 1

h

�
e�λhehL � I

�
fpxq � 1

h

�
e�λhEx rf pXphqqs � fpxq�� 1

h

�
Ex

�
e�λhf pXphqq � f pXp0qq�� , (10.101)

Hh
Apλqfpxq � Ex

�
e�λτ0,h

A f
�
X

�
τ
0,h
A

		�
, (10.102)

RhApλqfpxq � hEx

��τ0,h
A {h�1

ķ�0

e�λkhf pXpkhqq , τ0,hA ¥ h

��� h

8̧
k�0

Ex

�
e�λkhf pXpkhqq , τ0,hA ¥ pk � 1qh� , (10.103)

P hApλqpfq � LhpλqHh
ApλqLhpλq�1f � LhpλqRhApλqf � f. (10.104)

ΛhA,µpλqpfq � »
LhpλqHh

ApλqLhpλq�1fpxq dµpxq. (10.105)

The second equality in (10.104) follows from equality (10.106) in Proposi-

tion 10.2 below.

Instead of ΛhA,δx0

pλq we write ΛhA,x0
pλq, when µ � δx0

is the Dirac

measure at x0. Instead of Lhp0q we write Lh. For the definition of the

stopping times τ0,hA and τ1,hA see (10.25) in Theorem 10.4. Put

τA � inf ts ¡ 0 : Xpsq P Au � inf
h¡0

τ
1,h
A � lim

hÓ0 τ1,hA .

Proposition 10.2. The following identity holds:

Hh
Apλq � I �RhApλqLhpλq, h ¡ 0, λ ¡ 0. (10.106)

Moreover, the equality in (10.106) is equivalent to equality (10.120) be-

low. In addition, Hh
ApλqRhApλq � 0, and hence Hh

Apλq2 � Hh
Apλq. If

Px

�
τ
0,h
A   8� � 1 for all x P E, then equality (10.106) holds for λ � 0.

If A is recurrent in the sense that Px rτA   8s � 1 for all x P E,

then HAp0q � I � RAp0qL, and HAp0q2 � HAp0q, where HAp0qfpxq �
Ex rf pX pτAqq , τA   8s.
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Proof. Let us check the equality in (10.106). To this end we consider:

RhApλqLhpλqfpxq� h

8̧
k�0

Ex

�
e�λkhLhpλqf pXpkhqq , τ0,hA ¥ pk � 1qh�� 8̧

k�0

Ex

�
e�λkh  e�λhEXpkhq rf pXphqqs � f pXpkhqq( , τ0,hA ¥ pk � 1qh�� 8̧

k�0

e�λpk�1qhEx �EXpkhq �f pXphqq , τ0,hA ¥ pk � 1qh��� 8̧
k�0

e�λkhEx �f pXpkhqq , τ0,hA ¥ pk � 1qh�
(observe that the event

!
τ
0,h
A ¥ pk � 1qh) is Fkh-measurable) and employ

the strong Markov property� 8̧
k�0

e�λpk�1qhEx �f pX ppk � 1qhqq , τ0,hA ¥ pk � 1qh�� 8̧
k�0

e�λkhEx �f pXpkhqq , τ0,hA ¥ pk � 1qh�� 8̧
k�0

e�λkhEx �f pX pkhqq , τ0,hA ¥ kh
�� fpxq� 8̧

k�0

e�λkhEx �f pXpkhqq , τ0,hA ¥ pk � 1qh�� 8̧
k�0

e�λkhEx �f pX pkhqq , τ0,hA � kh
�� fpxq� Ex

�
e�λτ0,h

A f
�
X

�
τ
0,h
A

		�� fpxq � Hh
Apλqfpxq � fpxq. (10.107)

The equality in (10.107) is the same as (10.106).

If x P A, then Px

�
τ
0,h
A � 0

� � 1 and so RhApλqfpxq � 0. Since

X
�
τ
0,h
A

	 P A it follows that, for λ ¡ 0,

Hh
ApλqRhApλqfpxq � Ex

�
e�λτ0,h

A RhAf
�
X

�
τ
0,h
A

		� � 0. (10.108)

The assertions for h � λ � 0 follow by taking limits with respect to λ Ó 0

and h Ó 0 in the corresponding equality (10.106).

This completes the proof of Proposition 10.2. �
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Proposition 10.3. The following equalities hold for f P CbpEq, λ ¥ 0,

and h ¡ 0:

LhpλqRhApλqfpxq � fpxq� Ex

��h�1τ
1,h
A �1

ķ�0

e�λkhf pXpkhqq , τ0,hA � 0

��� Ex

��h�1τ
1,h
A �1

ķ�0

e�λkhf pXpkhqq , τ0,hA � 0

��Px

�
τ
0,h
A � 0

�� Ex

��h�1τ
1,h
A �1

ķ�0

e�λkhf pXpkhqq��Px

�
τ
0,h
A � 0

�� e�λhehLEp�q��h�1τ
0,h
A �1

ķ�0

e�λkhf pXpkhqq , τ0,hA ¥ h

�� pxq � Px �τ0,hA � 0
�� fpxq � Px �τ0,hA � 0

�� �
1

h
e�λhehLRhApλqfpxq � fpxq
Px

�
τ
0,h
A � 0

�� �
LhpλqRhApλqfpxq � fpxq�Px �τ0,hA � 0

�� lim
nÑ8 ņ

k�0

e�λpk�1qhehLEp�q�fpXpkhqq, τ0,hA ¥ pk � 1qh�pxq � Px�τ0,hA � 0
�� fpxq � Px �τ0,hA � 0

�
. (10.109)

In addition, the following assertions are true:

(a) The following formula holds:�
LhpλqRhApλq � I

�2 � 1A
�
LhpλqRhApλq � I

�
. (10.110)

This formula is also valid with λ � 0 provided that A is h-recurrent in

the sense that Px

�
τ
0,h
A   8� � 1 for all x P E. If A is recurrent, i.e. if

Px rτA   8s � 1 for all x P E, then the operator PAp0q � LRAp0�q� I
is a projection operator.

(b) For f ¥ 0 the function P hApλqf is non-negative, and the function λ ÞÑ
P hApλqfpxq increases when λ decreases. In addition, by the fifth equality

in (10.109) it follows that with h � hn � 2�nh1 the sequence n ÞÑ
P 2�nh1
A pλq increases where h1 ¡ 0 and λ ¥ 0 are fixed.



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

676 Markov processes, Feller semigroups and evolution equations

The equalities in (10.109) are the same as those in (10.119). They will be

employed to prove that the invariant measure we will introduce is σ-finite.

Proof. We use the definitions of the operators Lhpλq and RhApλq to obtain
LhpλqRhApλqfpxq � fpxq� 8̧

k�0

e�λkh �e�λhehL � I
�
Ep�q �f pXpkhqq , τ0,hA ¥ pk � 1qh� pxq � fpxq� 8̧

k�0

e�λpk�1qhehLEp�q �f pXpkhqq , τ0,hA ¥ pk � 1qh� pxq� 8̧
k�0

e�λkhEx �f pXpkhqq , τ0,hA ¥ pk � 1qh�� fpxq� 8̧
k�0

e�λpk�1qhEx �EXphq �f pXpkhqq , τ0,hA ¥ pk � 1qh��� 8̧
k�0

e�λkhEx �f pXpkhqq , τ0,hA ¥ pk � 1qh�� fpxq
(Markov property)� 8̧

k�0

e�λpk�1qhEx �f pX pk � 1qhq , τ0,hA � ϑh ¥ pk � 1qh�� 8̧
k�0

e�λkhEx �f pXpkhqq , τ0,hA ¥ pk � 1qh�� fpxq� 8̧
k�1

e�λkhEx �f pX pkhqq , h� τ
0,h
A � ϑh ¥ pk � 1qh�� 8̧

k�0

e�λkhEx �f pXpkhqq , τ0,hA ¥ pk � 1qh�� fpxq� 8̧
k�1

e�λkhEx �f pX pkhqq , τ1,hA ¥ pk � 1qh�� 8̧
k�1

e�λkhEx �f pXpkhqq , τ0,hA ¥ pk � 1qh�� fpxqPx �τ0,hA � 0
�

(a sum of the form
°k2
k�k1 αk is interpreted as 0 if k2   k1)� Ex

��� h�1τ
1,h
A �1¸

k�ph�1τ
0,h
A q_1

e�λkhf pXpkhqq���� fpxqPx �τ0,hA � 0
�
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��� h�1τ
1,h
A

�1¸
k�ph�1τ

0,h
A q_1

e�λkhf pXpkhqq , τ0,hA � 0

���� fpxqPx �τ0,hA � 0
�� Ex

��� h�1τ
1,h
A �1¸

k�ph�1τ
0,h
A q_1

e�λkhf pXpkhqq , τ0,hA ¥ h

���
(on the event

!
τ
0,h
A ¥ h

)
the equality τ1,hA � τ

0,h
A holds Px-almost surely)� Ex

��h�1τ
1,h
A

�1

ķ�1

e�λkhf pXpkhqq , τ0,hA � 0

��� fpxqPx �τ0,hA � 0
�

� Ex

��h�1τ
1,h
A �1

ķ�0

e�λkhf pXpkhqq , τ0,hA � 0

�� . (10.111)

The equality in (10.111) shows the first equality in (10.109). The second

and third equality follow from the equality Px

�
τ
0,h
A � 0

� � 1 which is true

if and only if x P A. The fourth equality in (10.109) is a consequence

of the Markov property in conjunction with the third equality. The fifth

equality just follows from the definition of the operator RhApλq. The sixth

equality follows from Lebesgue’s dominated convergence theorem, or from

the monotone convergence theorem if f ¥ 0.

(a). In order to prove assertion (a) in Proposition 10.3 we consider�
LhpλqRhApλq � I

�2 � �
LhpλqRhApλq � I

�
LhpλqRhApλq � LhpλqRhApλq � I� Lhpλq �RhApλqLhpλq � I

�
RhApλq � LhpλqRhApλq � I

(apply the equality in (10.106) and the final assertion in Proposition 10.2)� LhpλqHh
ApλqRhApλq � LhpλqRhApλq � I� LhpλqRhApλq � I. (10.112)

By taking limits as λ Ó 0, and h Ó 0 in�
LhpλqRhApλq � I

�2 � LhpλqRhApλq � I

the final conclusion in assertion (a) of Proposition 10.3 follows. Since

1Apxq � Px

�
τ
0,h
A � 0

�
the final equality in (10.110) follows from (10.109).



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

678 Markov processes, Feller semigroups and evolution equations

(b). Observe that by the equalities in (10.109) and the definition of the

operator RhApλq we have

LhpλqRhApλq � I � 1A
�
LhpλqRhApλq � I

� � 1A

�
e�λhehL � I

h
RhApλq � I


� 1

h
1A

�
e�λhehLRhApλq � I

�
. (10.113)

From (10.113) it follows that for f ¥ 0 the function P hApλqf is non-negative,

and that the function λ ÞÑ P hApλqfpxq increases when λ decreases. In

addition, by the fifth equality in (10.109) it follows that for h � 2�nh1 the
sequence n ÞÑ P 2�nh1

A pλq where h1 ¡ 0 and λ ¥ 0 are fixed. The equality

in (10.112) and the latter observations complete the proof of Proposition

10.3. �

Fix µ P PpEq. An attempt to define an invariant measure π goes as follows.

It is determined by the functional

ΛA,µ : f ÞÑ lim
hÓ0 limλÓ0 » �

λI � Lhpλq�Hh
Apλq �λI � Lhpλq��1

f pxq dµpxq� lim
hÓ0 limλÓ0 » Lhpλq �Hh

Apλq � I
�
Lhpλq�1f pxq dµpxq � »

fpxq dµpxq� lim
hÓ0 limλÓ0 » LhpλqRhApλqfpxq dµpxq � »

fpxq dµpxq� lim
hÓ0 » LhRhAp0qf pxq dµpxq � »

fpxq dµpxq. (10.114)

In (10.114) we employed equality (10.106). Let us try to check the L-

invariance of the functional in (10.114). To this end we fix f P DpLq. Then
Lf � Tβ- lim

hÓ0 limλÓ0 Lhpλqf � Lf, and

ΛA,µLf � lim
hÓ0 limλÓ0 ΛhA,µpλq �Lhpλqf� � lim

hÓ0 limλÓ0 » LhpλqHh
Apλqf dµ� lim

hÓ0 limλÓ0 1

h

»
A

�
Ex

�
e�λhHh

Apλqf pXphqq��Hh
Apλqf pxq� dµpxq� lim

hÓ0 limλÓ0 1

h

»
A

�
Ex

�
e�λτ1,h

A f
�
X

�
τ
1,h
A

		��Ex �e�λτ0,h
A f

�
X

�
τ
0,h
A

		�	
dµpxq

(for x P EzA the equality τ1,hA � τ
0,h
A holds Px-almost surely)� lim

hÓ0 limλÓ0 1

h

»
E

�
Ex

�
e�λτ1,h

A f
�
X

�
τ
1,h
A

		�
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A f

�
X

�
τ
0,h
A

		�	
dµpxq� lim

hÓ0 limλÓ0 1

h

»
E

�
Ex

�
e�λτ1,h

A f
�
X

�
τ
0,h
A

		 � ϑh��Ex �e�λτ0,h
A f

�
X

�
τ
0,h
A

		�	
dµpxq� lim

hÓ0 limλÓ0 e�λhh »
E

�
Ex

�
e�λτh

A�ϑhf
�
X

�
τ
0,h
A

		 � ϑh��Ex �e�λτ0,h
A f

�
X

�
τ
0,h
A

		�	
dµpxq� lim

hÓ0 limλÓ0 e�λhh »
E

�
Ex

�
EXphq �e�λτh

Af
�
X

�
τ
0,h
A

		���Ex �e�λτ0,h
A f

�
X

�
τ
0,h
A

		�	
dµpxq� lim

hÓ0 1

h

»
E

�
Ex

�
EXphq �f �X �

τ
0,h
A

		���Ex �e�λτ0,h
A f

�
X

�
τ
0,h
A

		�	
dµpxq� lim

hÓ0 1

h

»
E

�
ehL � I

�
Hh
Afpxq dµpxq. (10.115)

Hence, if µ were an invariant Borel measure, then the expression in (10.115)

would vanish. So the expression for ΛA,µ does not automatically lead to

an invariant measure. So that there is a problem with the invariance,

although (10.114) yields a measure. In order to take care of that problem

we will assume that for every f P CbpEq there exists a sequence of strictly

positive real numbers pλnqnPN, which decreases to zero, and is such that

Pf :� Tβ- lim
nÑ8 λnR pλnq f exists for all f P CbpEq. Notice RpP q � NpLq

and that, by the resolvent identity P 2 � P , i.e. P is a projection on the

zero-space of the operator L. Fix x0 P Ar. Then, in general, the formula

f ÞÑ lim
nÑ8 λn pλnI � LqHA pλnqR pλnq2 f px0q� lim

nÑ8�
λn pλnI � Lq pHA pλnq � IqR pλnq2 f px0q � λnR pλnq f px0q	� lim

nÑ8 pL� λnqRA pλnq pλnR pλnq fq px0q � lim
nÑ8λnR pλnq f px0q� LRAp0�qPf px0q � Pf px0q (10.116)

does not provide an invariant measure either. Suppose e.g. that NpLq
consists of the constant functions. Then by taking f � 1 in (10.118) below

we have

LRAp0�q1pxq � 1pxq � lim
hÓ0 limλÓ0 LhpλqHh

ApλqLhpλq�11pxq
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hÓ0 limλÓ0 LhpλqHh

ApλqLhpλq�11pxq� lim
hÓ0 limλÓ0 1

1� e�λh �
I � e�λhehL�Hh

Apλq1pxq� lim
hÓ0 limλÓ0 1

1� e�λh �
Ex

�
e�λτ0,h

A � e�λτ1,h
A

�	� lim
hÓ0 limλÓ0 λ

1� e�λh Ex

�
e�λτ0,h

A � e�λτ1,h
A , τ

1,h
A ¡ τ

0,h
A

�
λ� lim

hÓ0 1

h

�
Ex

�
τ
1,h
A � τ

0,h
A , τ

1,h
A ¡ τ

0,h
A

�	
(Ex

�
τ
0,h
A

� � 0 for x P A, and Px

�
τ
1,h
A � τ

0,h
A

� � 1 for x P EzA)� lim
hÓ0 1

h
1Apxq�Ex �τ1,hA �	� lim

hÓ0 1

h
1Apxq �Ex �h� τhA � ϑh��

(Markov property) � lim
hÓ0 1

h
1ApxqehLEp�q �τ0,hA � pxq � 1� 1ApxqLEp�q rτAs pxq � 1 (10.117)

where τA � inf
!
τ
0,h
A : h ¡ 0

)
. If possible choose x0 P A in such a way that

LEp�q rτAs px0q � 8. Then LRAp0�q1 px0q�1 px0q � 8. It follows that for

f P CbpEq, f ¥ 0, the expression LRAp0�qPf px0q � Pf px0q is either 8,

in case Pf �� 0, or 0, in case Pf � 0. Observe that, under the hypothesis

“the space NpLq consists of the constant functions”, Pf is a constant ¥ 0.

The reader is cautioned that the symbol LRAp0�qfpxq�fpxq is a short-

hand notation for the following limit:

LRAp0�qfpxq � fpxq � lim
hÓ0 limλÓ0 LhpλqRhApλqfpxq � fpxq� lim
hÓ0 limλÓ0 Lhpλq �Hh

Apλq � I
�
Lhpλq�1fpxq � fpxq� lim

hÓ0 limλÓ0 LhpλqHh
ApλqLhpλq�1fpxq. (10.118)

The symbols Lhpλq, RhApλq, and Hh
Apλq are explained in (10.105). Since

PLf � 0 it follows that the “measure” determined by (10.116) is L-

invariant, but not necessarily σ-finite; the expression in (10.118) is either 0
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or8. In case the measure π is σ-finite, then there exist functions f P CbpEq,
f ¥ 0, such that 0   ³

f dπ   8.

Suppose that for every sequence pfn : n P Nq which decreases point-

wise to zero the sequence psup0 λ 1 λRpλqfn : n P Nq decreases to

the zero-function uniformly on compact subsets. Then the familytλRpλq : 0   λ   1u is Tβ-equi-continuous, and Tβ- limλÓ0 λRpλqf � Pf

exists for all f P CbpEq, provided that the vector sum RpLq � NpLq is

Tβ-dense in CbpEq. Some of the formulas we need are the following ones:

LhpλqRhApλqfpxq � fpxq� Ex

��h�1τ
1,h
A

�1

ķ�0

e�λkhf pXpkhqq�� � Px �τ0,hA � 0
�� e�λhehLEp�q��h�1τ

0,h
A

�1

ķ�0

e�λkhf pXpkhqq , τ0,hA ¥ h

�� pxq � Px �τ0,hA � 0
�� fpxqPx �τ0,hA � 0

�
, (10.119)�

Hh
Apλq � I

�
Lhpλq�1 � RhApλq, (10.120)�RhApλqLhpλq � I � e�λhehLHh

Apλq, Hh
Apλq � �

Hh
Apλq�2 , and

(10.121)

lim
hÓ0 LhRhAp0qLhf px0q � Lhf px0q � lim

hÓ0 LhHh
Ap0qf px0q � 0, x0 P EzAr.

(10.122)

We also write P hApλq � LhpλqRhApλq � I. Then

P hApλqLhpλq � Lhpλq �RApλqLhpλq � I
� � LhpλqHh

Apλq. (10.123)

Observe that the equalities in (10.119) are proved in Proposition 10.3: see

(10.109). Notice that (10.106) is equivalent to (10.120), and that the equal-

ities in (10.107) prove this equality. The second equality in (10.123) is a

consequence of (10.120). Put

PAp0qf � LRAp0�qf � f � lim
hÓ0 limλÓ0 LhpλqRhApλqf � f.

Then from (10.123) we infer informally that PAp0qLf � LHAp0qf , f P
DpLq. More precisely, for f P DpLq, and λ ¡ 0 we have

λRpλqPAp0qLf � λLRpλqHAp0qf � λ pλRpλq � IqHAp0qf. (10.124)

The expression in (10.124) is uniformly bounded in λ ¡ 0, and converges

uniformly to zero when λ Ó 0. Some other ideas will be proposed next. Let
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µ ¥ 0 be any positive measure on E . Then we define the measure π via the

functional:

f ÞÑ lim
λÓ0 λ » RpλqPAp0qf dµ, f ¥ 0, f P CbpEq. (10.125)

Then for f P DpLq and µ a bounded Borel measure we have

lim
λÓ0 λ » RpλqPAp0qLf dµ � lim

λÓ0 λ » RpλqLHAp0qf dµ� lim
λÓ0 λ » pλRpλq � IqHAp0qf dµ � 0. (10.126)

If µ is a probability measure which is concentrated on Ar � A, then the

expression in (10.125) can be employed to define a non-trivial invariant

measure π. So that »
f dπ � lim

λÓ0 λ » RpλqPAp0qf dµ.
The invariance follows from (10.126). The existence follows from the as-

sumption that the subspace RpLq �NpLq is Tβ-dense in CbpEq. The non-

triviality follows from the fact that
³
1dπ ¥ ³

1dµ � 1: compare with

(10.117). The σ-finiteness follows from the assumption that the subset A

is recurrent, i.e. Px rτA   8s � 1 for all x P E together with (10.118).

Suppose x P Ar. Then the limits in (10.118) are in fact suprema, provided

the numbers h are taken of the form 2�nh1, h1 ¡ 0 fixed, and n Ñ 8.

Moreover, the expression in (10.118) vanishes for x P A. In addition, we

need the fact that

τA � inf
h1¡0

lim
nÑ8 τ1,2�nh1

A � inf
h1¡0

inf
nPN τ1,2�nh1

A � inf ts ¡ 0 : Xpsq P Au .
(10.127)

If A is an open subset, then in (10.127) we may fix h1; e.g. h1 � 1 will

do. As throughout this book we assume that the paths are Px-almost

surely right-continuous. In order to finish the arguments we need Choquet’s

capacity theorem, which states that for x P Ar the stopping time τA can

be approximated from above by hitting times of compact subsets K of A,

and form below by hitting times of open subsets:

inf
K�A,K compact

τK � τA � sup
U�A, U open

τU , Pµ-almost surely. (10.128)

For more details see §4.5. In particular, see the proof of Theorem 4.6; the

equality in (4.248) is quite relevant.

In the remaining part of this subsection the operators L and LA have

to be interpreted in the pointwise sense. For x P E we have

Lfpxq � lim
tÓ0 etLfpxq � fpxq

t
� lim

tÓ0 1

t
pEx rfpXptqq � fpXp0qqsq ,
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and

LAfpxq � lim
tÓ0 etLAfpxq � fpxq1EzAr pxq

t� lim
tÓ0 1

t
pEx rfpXptqq, τA ¡ ts � Ex rfpXp0qq, τA ¡ 0sq . (10.129)

As a consequence LAfpxq � 0 for x P Ar.
Proposition 10.4. For λ ¡ 0 and x P E the equalitypλI � LqHApλqfpxq � 1Arpxq pλI � LqHApλqfpxq (10.130)

holds for f P CbpEq with the property that HApλqf belongs to the pointwise

domain of L. Moreover, the function RApλqf belongs to the (pointwise)

domain of L if and only if the same is true for the function HApλqRpλqf .
Proof. On EzAr the equality in (10.130) follows from Lemma 10.1 equal-

ity (10.72): see Proposition 10.11 below as well. More precisely, for

x P EzAr, λ ¡ 0 and h ¡ 0 we have�
I � e�λhehL�HApλqfpxq� Ex

�
e�λτAf pX pτAqq�� e�λhEx �EXphq �e�λτAf pX pτAqq��

(Markov property)� Ex
�
e�λτAf pX pτAqq�� Ex

�
e�λh�λτA�ϑhf pX ph� τA � ϑhqq�

(on the event tτA ¡ hu the equality h�τA�ϑh � τA holds Px-almost surely)� Ex
�
e�λτAf pX pτAqq � e�λh�λτA�ϑhf pX ph� τA � ϑhqq , τA ¤ h

�
.

(10.131)

The equality in (10.130) now follows from Lemma 10.1 equality (10.72).

From the strong Markov property the Dynkin’s formula follows:

Rpλqfpxq �RApλqfpxq � HApλqRpλqfpxq, f P CbpEq, x P E, (10.132)

or equivalently,

f � pλI � Lq pRApλqf �HApλqRpλqfq . (10.133)

Let f P CbpEq. Hence, from (10.133) it follows that the function RApλqf
belongs to the (pointwise) domain of L if and only if the same is true for

the function HApλqRpλqf .
This completes the proof of Proposition 10.4. �
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If A P E , then τA denotes its first hitting time: τA � inf ts ¡ 0 : Xpsq P Au.
Proposition 10.5. Suppose that the Borel subset A is such that it possesses

the almost separation property as defined in Definition 9.2 with D � DpLq.
The following identity holds for all λ ¡ 0 and f P CbpEq:

Rpλqf �RApλqf � Rpλq pL� LAqRApλq �Rpλq p1Arfq . (10.134)

Let f P CbpEq and λ ¡ 0 be such that the function

x ÞÑ RApλqfpxq � pλI � LAq�1
fpxq � Ex

�» τA
0

e�λsf pX psq dsq�
(10.135)

belongs to the pointwise domain of the operator L. Then the following

equality holds:pL� LAqEp�q �» τA
0

e�λsf pXpsqq ds� pxq� pλI � LqEp�q �e�λτA pλI � Lq�1
f pX pτAqq� pxq � 1Arpxqfpxq.

(10.136)

Proof. The equality in (10.136) is just a rewriting of (10.134). The equal-

ity in (10.134) can be obtained by noticing thatpλI � LAqRApλqf � 1EzArf. (10.137)

The equality in (10.137) follows from the following identities:

RApλqfpxq � e�λδeδLARApλqfpxq� » 8
0

e�λsesLAfpxq ds� » 8
δ

e�λsesLAfpxq ds � » δ
0

e�λsesLAfpxq ds.
(10.138)

After dividing by δ ¡ 0 and letting δ tend to 0 we see that (10.137) follows.

The equality in (10.134) then follows from L�LA � pλI � LAq � pλI � Lq
together with Dynkin’s formula (10.132).

This completes the proof of Proposition 10.5. �

10.2.3 Auxiliary results

Theorem 10.12 below yields the existence of an invariant σ-finite Borel

measure provided that there exists a compact recurrent subset A. Originally

it was assumed that the set Ar, i.e. the set of regular points of A coincides



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Invariant measure 685

with A. Instead of the operator QA, as defined in (10.210), the operator

HA : Cb pr0,8q �Eq Ñ CbpEq defined by

HAgpxq � Ex rg pτA, X pτAqqs � Ex rg pτA, X pτAqq , τA   8s , (10.139)

was employed. Only in case Ar � A one can be sure that the function HAg

is continuous whenever g is a bounded continuous function on r0,8q � E.

For some of the consequences of the assumption A � Ar see Lemma 10.12

below: notice that the equality in (10.139) is the same as (10.280) in Lemma

10.12. The operator QA assigns bounded continuous functions to bounded

continuous functions automatically. Recall that a Markov process with

transition function P pt, x, Bq is strong Feller whenever every function x ÞÑ
P pt, x, Bq, pt, Bq P p0,8q � E, is continuous: see Definitions 2.5 and 2.16

as well.

The following result reduces the existence of an invariant measure for

the Markov process given by (9.14) to that of a Markov chain. In fact

our approach is inspired by results due to Azema, Kaplan-Duflo and Revuz

[Azéma et al. (1966, 1965/1966, 1967)]. Basically, the process t ÞÑ Xptq
is replaced by the chain pn, ω, λq ÞÑ X pTnpλq, ωq, pn, ω, λq P N � Ω � Λ,

where the process pn, λq ÞÑ Tnpλq, pn, λq P N�Λ, are the jump times of an

independent Poisson process of intensity λ0 ¡ 0 pΛ,G, πtqt¥0 , pNptq, t ¥ 0q , �ϑPt : t ¥ 0
�
, r0,8q( . (10.140)

This means that Tn � inf tt ¡ 0 : Nptq ¥ nu, n P N. The process n ÞÑ Tn
can be realized as a random walk: Tn � °n

k�1 Zk. Here the sequencepZk : k P N, k ¥ 1q is a sequence of independent variables each exponen-

tially distributed with parameter α0. This technique is also described in

Chapter 20 of [Meyn and Tweedie (1993b)] second version. Employing

probabilistic techniques, e.g. Poisson variables, in order to approximate

semigroups and represent resolvent operators also occurs in [Chung (1962)].

Lemma 10.5. The process given by pΩ� Λ,F b G,Px b π0q , pX pTnpλq, ωq , n P Nq , �ϑPn pλq, n P N
�
, pE, Eq(
(10.141)

is a Markov chain. Its transition kernel is given by

Px b π0 rX pT1q P Bs � α0

» 8
0

e�α0tP pt, x, Bq dt (10.142)

provided that T1 is exponentially distributed with parameter α0.
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The Px b π0-distribution of the state variable X pTnq can be expressed in

terms of the Px-distribution of the process Xptq:
Px b π0 rX pTnq P Bs � α0

» 8
0

pα0tqn�1pn� 1q! e�α0tP pt, x, Bq dt� α0

» 8
0

pα0tqn�1pn� 1q! e�α0tPx rXptq P Bs dt � pα0R pα0qqn 1B pxq . (10.143)

In (10.141) we have X ptq�ϑPm pω, λq � X pt� Tmpλq, ωq, n, m P N, pω, λq P
Ω� Λ. The time translation operators ϑPmpλq satisfy

Xptq � ϑPmpω, λq � X pt� Tmpλq, ωq , pω, λq P Ω� Λ.

Relative to π0 the variables Tn� Tm and Tn�m� T0 � Tn�m, n ¡ m, have

the same distributions, and the measure πt is the measure π0 translated

over time t, i.e.»
Λ

F pT1 � T0, . . . , Tn � Tn�1q dπt� »
Λ

F pT1 � T0 � t, . . . , Tn � Tn�1 � tq dπ0,
where F : r0,8qn Ñ R is any bounded Borel measurable function. It follows

that the probability measures
�
πTmpλq : m P N, λ P Λ

�
satisfy (n ¡ m):»

Λ

f pTn � Tmq dπTm
pλq � »

Λ

f
�pTn � Tmq �λ1�� Tm pλq� dπ0 �λ1�� »

Λ

f
�
Tn�m �

λ1�� Tm pλq� dπ0 �λ1� . (10.144)

Proof. [Proof of Lemma 10.5.] For brevity we write rPx � Px b π0. Put

Yk � X pTkq, k P N, and let fj : E Ñ R, 1 ¤ j ¤ n� 1, be bounded Borel

measurable functions. In order to show that the process in (10.141) is a

Markov chain we have to prove the equality:rEx �n�1¹
j�1

fj pYjq� � rEx � n¹
j�1

fj pYjq rEYn
rfn�1 pY1qs� . (10.145)

Employing Fubini’s theorem shows that the right-hand side of (10.145) can

be rewritten asrEx � n¹
j�1

fj pYjq rEYn
rfn�1 pY1qs��»

Λ

dπ0pλq »
Λ

dπ0pλ1qEx� n¹
j�1

fjpXpTjpλqqqEXpTnpλqq�fn�1pXpT1pλ1qqq��
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(the process in (9.14) is a Markov process)� »
Λ

dπ0pλq »
Λ

dπ0
�
λ1�Ex � n¹

j�1

fj pX pTjpλqqq fn�1

�
X

�
Tnpλq � T1

�
λ1����

(the variables Tn�1 � Tn and T1 have the same π0-distribution)� »
Λ

dπ0pλq »
Λ

dπ0
�
λ1�

Ex

�
n¹
j�1

fj pX pTjpλqqq fn�1

�
X

�
Tnpλq � Tn�1

�
λ1�� Tn

�
λ1����

(the variables Tn�1 � Tn and Tj, 1 ¤ j ¤ n, are π0-independent)� »
Λ

dπ0pλqEx � n¹
j�1

fj pX pTjpλqqq fn�1 pX pTnpλq � Tn�1 pλq � Tn pλqqq�� »
Λ

dπ0pλqEx � n¹
j�1

fj pX pTjpλqqq fn�1 pX pTn�1 pλqqq�� rEx �n�1¹
j�1

fj pYjq� . (10.146)

The equality in (10.146) proves the Markov chain property of the process

in (10.141).

Next we will show equality (10.142). Therefore we write

Pxbπ0 rX pT1q P Bs � »
Λ

P pT1pλq, x, Bq dπ0pλq � α0

» 8
0

e�α0tP pt, x, Bq dt.
(10.147)

In the final step in (10.147) we used the exponential distribution of the

variable T1 with parameter α0 ¡ 0.

The equalities in (10.146) and (10.147) complete the proof of Lemma

10.5. �

Lemma 10.6. Put

Npt, λq � 8̧
n�0

n1rTnpλq,Tn�1pλqqptq � # tk ¥ 1 : Tkpλq ¤ tu� max tk ¥ 0 : Tkpλq ¤ tu . (10.148)

Suppose that the variables Tk�1�Tk, k P N, are π0-independent and identi-

cally exponentially distributed random variables with parameter α0 attaining

their values in r0,8q. Then with respect to π0 the process Nptq, t ¥ 0, is a

Poisson process of intensity α0 and with jumping times Tn.
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Proof. Fix k P N and t ¡ 0. Then we have:

π0 rNptq � ks � π0 rTk ¤ t   Tk�1s � π0 r0 ¤ t� Tk   Tk�1 � Tks� »
Λ

dπ0

» 8
t�Tk

α0e
�α0sds1tTk tu� »

Λ

dπ0e
�α0pt�Tkq1tTk¤tu � pα0tqk

k!
e�α0t. (10.149)

By writing Tk �°k
j�1 pTj � Tj�1q, and using the independence of the incre-

ments Tj�Tj�1, 1 ¤ j ¤ k, the ultimate equality in (10.149) can be proved

by induction with respect to k and using the exponential distribution of

Tj � Tj�1. This completes the proof of Lemma 10.6 �

Lemma 10.7. Let the process pTk : k P Nq be the process of jump times of

a Poisson processtpΛ,G, πnqnPN : pNptq, t ¥ 0q , pϑt : t ¥ 0q ,Nu .
Let the initial measure π0 be exponentially distributed with parameter α0 ¡
0. Let B be a Borel subset of r0,8q of Lebesgue measure 8. Then

π0

�£
nPN ¤

m¥n tTm P Bu� � 1. (10.150)

Proof. Put Bn � B
� pn, n� 1s, and En � �8

k�1 tTk P Bnu. Let Ht be

the σ-field generated by pNpsq : s ¤ tq. Since the event

En � tthere is a jump in Bnu
contains the eventtn� T1 � ϑn P Bnu � tthe first jump after n occurs in Bnu ,
we have

π0
�
En

�� Hn

� ¥ π0
�
n� T1 � ϑn P Bn �� Hn

�
(Markov property of the process Nptq)� πNpnq rn� T1 P Bns � π0 rBn � ns , (10.151)

where in the ultimate equality in (10.151) we used that fact that the dis-

tribution of the first jumping time of a Poisson process does not depend on

the initial position. From (10.151) it follows that

π0
�
En

�� Hn

� ¥ π0 rT1 P Bn � ns � α0

»
Bn�n e�α0tdt
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�α0

»
Bn�n 1dt � α0e

�α0m pBnq (10.152)

where m pBnq is the Lebesgue measure of Bn. Since the variables Tk
are stopping times relative to the process t ÞÑ Nptq, the events En
are Hn�1-measurable, and hence an application of the generalized Borel-

Cantelli theorem yields π0
��

n

�
m¥nEn� � 1. Since

�
n

�
m¥nEn ��

n

�
m¥n tTn P Bu the equality in (10.150) follows. For a precise formu-

lation of the generalized Borel-Cantelli lemma see e.g. [Shiryayev (1984)]

Corollary VII 5.2 or the equality in (9.49) in Theorem 9.3.

This completes the proof of Lemma 10.7. �

The following theorem appears as Theorem 1 in [Kaspi and Mandelbaum

(1994)]. For the notion of strong Feller property see Definitions 2.5 and

2.16.

Theorem 10.7. Let the strong Markov process be as in (9.14) of Theorem

9.2. Suppose that this time-homogeneous Markov process on the Polish

space E has transition probability function P pt, x, �q, t ¥ 0, x P E, which

is conservative in the sense that P pt, x, Eq � 1 for all t ¥ 0 and x P E. In

addition, assume that the process Xptq is strong Feller. Then the following

assertions are equivalent:

(a) There exists a non-zero σ-finite Borel measure µ such that for all B P E,

µpBq ¡ 0 implies Px
�³8

0
1B pXptqq dt � 8� � 1 for all x P E.

(b) There exists a non-zero σ-finite Borel measure ν such that for all B P E,

νpBq ¡ 0 implies Px rτB   8s � 1 for all x P E.

Here τB � inf tt ¡ 0 : Xptq P Bu is the first hitting time of B. Moreover,tτB   8u � �
t¡0 tXptq P Bu. The measure µ in assertion (a) could be

called a Harris recurrence measure, and the measure ν in assertion (b)

could be called a recurrence measure. In the proof of Theorem 10.7 we

need Lemma 10.8 below.

Remark 10.5. In (10.171) below we will see that the measure

µpBq � »
E

Ex

�» 8
0

e�t1B pXptqq dt� dνpxq (10.153)

conforms to assertion (a), provided ν conforms to (b). If µ is given by

µpBq � P pt0, x0, Bq, B P E , for some fixed pt0, x0q P p0,8q�E. Then ν is

given by νpBq � et0
³8
t0
e�sP ps, x0, Bq ds.
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Remark 10.6. If all measures B ÞÑ P ps, x,Bq, B P E , ps, xq P p0,8q�E,

are equivalent, and if any (all) of these measures serves as a recurrence

measure, then for ν we may also choose one of these transition probabilities.

Fix pt0, x0q P p0,8q � E. In fact, if all such measures are equivalent, and

νpBq � P pt0, x0, Bq, B P E , then the measure µ in (10.153) is given by

µpBq � » 8
0

e�t »
E

Ey r1B pXptqqsP pt0, x0, dyq dt� » 8
0

e�tEx0

�
EXpt0q r1B pXptqqs� dt

(Markov property)� » 8
0

e�tEx0
r1B pX pt� t0qqs dt� et0

» 8
t0

e�tEx0
r1B pX ptqqs dt. (10.154)

From (10.154) it easily follows that µ is also equivalent to the measure B ÞÑ
P pt0, x0, Bq, B P E . Therefore, let B P E be such that µpBq � 0. Then

there exists pt, xq P p0,8q�E such that P pt, x, Bq � 0. By equivalence we

see P pt0, x0, Bq � 0.

Let α ¥ 0. We also have a need for α-excessive functions.

Definition 10.3. A non-negative function f : E Ñ r0,8q is called α-

excessive if t ÞÑ Ex re�αtf pXptqqs increases to fpxq for all x P E whenever

t Ó 0. If α � 0, then f is called excessive.

Let f : E Ñ r0,8q be an α-excessive function, and let 0 ¤ t1   t2   8.

The (in-)equalities

Ex
�
e�αt2f pX pt2qq �� Ft1�� e�αt1f pX pt1qq� e�αt2EXpt1q rf pX pt2 � t1qqs � e�αt1f pX pt1qq� e�αt1 �e�αpt2�t1qEXpt1q rf pX pt2 � t1qqs � f pX pt1qq	 ¤ 0 (10.155)

show that the process t ÞÑ e�αtf pXptqq is a Px-super-martingale relative to

the filtration pFtqt¥0. From the (super-)martingale convergence theorem it

then follows that limtÑ8 e�αtf pXptqq exists Px-almost surely for all x P E.

Let τ : Ω Ñ r0,8s be any stopping time such that Px rτ   8s � 1. Then

it also follows that

Ex

�
lim
tÑ8 e�αtf pXptqq� ¤ lim

tÑ8Ex
�
e�αtf pXptqq�
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tÑ8Ex

�
e�αtf pXptqq , τ ¤ t

�� lim
tÑ8Ex

�
Ex

�
e�αtf pXptqq �� Fτ^t� , τ ¤ t

�
(Doob’s optional sampling theorem for super-martinagales)¤ lim

tÑ8Ex

�
e�αpτ^tqf pXpτ ^ tqq , τ ¤ t

�� Ex
�
e�ατf pXpτqq , τ   8�

. (10.156)

If τA denotes the first hitting time of A P E , and α ¡ 0, then the func-

tion x ÞÑ Ex re�ατAs is α-excessive, and the function x ÞÑ Px rτA   8s
is excessive. These assertions follow from the Markov property, and the

fact that t � τA � ϑt decreases to τA when t Ó 0. Recall that τA �
inf ts ¡ 0 : Xpsq P Au which is the first hitting time of A.

Lemma 10.8. Let ν be a recurrence measure for the Markov process in

(9.14) of Theorem 9.2, and let L ¥ 0 be an increasing right-continuous

additive process on Ω such that Lp0�q � Lp0q � 0. Then either Lp8q :�
limtÑ8 Lptq � 8 Px-almost surely for all x P E, or Lp8q � 0 Pν-almost

surely. These assertions are mutually exclusive.

The defining property of an adapted additive process t ÞÑ Lptq is the equal-
ity Lpsq � Lptq � ϑs � Lps� tq, which should hold Px-almost surely for all

x P E and for all s, t ¥ 0. For more details on the notion of additive pro-

cesses see Definition 9.6. For our purpose relevant additive processes are

given by Lptq � ³t
0
1B pXpsqq ds with B P E . Let t ÞÑ Lptq be an increasing

positive additive process, and fix ε ¡ 0. Suppose that Lp0�q � 0, and

define the stopping time τε by

τε � inf tt ¡ 0 : Lptq ¡ εu . (10.157)

Then the function x ÞÑ Px rτε   8s is excessive. This can be seen as follows.

First observe that

t� τε � ϑt � inf tt� s : s ¡ 0, Lpsq � ϑt ¡ εu� inf tt� s : s ¡ 0, Lptq � Lpsq � ϑt ¡ ε� Lptqu� inf tt� s : s ¡ 0, Lpt� sq ¡ ε� Lptqu� inf ts ¡ t, Lpsq ¡ ε� Lptqu , (10.158)

which decreases to

inf ts ¡ 0 : Lpsq ¡ ε� L p0�qu � inf ts ¡ 0 : Lpsq ¡ εu � τε. (10.159)
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From (10.158) together with (10.159) and the Markov property it follows

that

Ex
�
PXptq rτε   8s� � Px rt� τε � ϑt   8s Ò Px rτε   8s (10.160)

when t Ó 0. From (10.160) we see that the function x ÞÑ Px rτε   8s is
excessive.

Proof. [Proof of Lemma 10.8.] Fix ε ¡ 0 and define τε as in (10.157).

By the right-continuity of the process s ÞÑ Lpsq we obtain

lim
tÓs Ex �PXptq rτε   8s� � lim

tÓs Ex rt� τε � ϑt   8s� Ex rs� τε � ϑs   8s � Ex
�
PXpsq rτε   8s� . (10.161)

From (10.161) it follows that we may, and shall, assume that the super-

martingale t ÞÑ PXptq rτǫ   8s is right-continuous. We have the Px-almost

sure equality of events:tt   τε   8u � tτε ¡ t, τε � ϑt   8u . (10.162)

Conditioning (10.162) on Ft and employing the Markov property yields:

Px
�
t   τε   8 �� Ft� � 1tτε¡tuPx �τε � ϑt   8 �� Ft�� 1tτε¡tuPXptq rτε   8s . (10.163)

Next we let t Ò 8 in (10.163) to obtain:

0 � 1tτε�8u lim
tÑ8PXptq rτε   8s , Px-almost surely. (10.164)

Consider the sets

Fε � tx P E : Px rτε   8s � 0u , and

Gε,δ � tx P E : Px rτε   8s ¡ δu , δ ¡ 0.

First assume ν pEzFεq ¡ 0. Then ν pGε,δq ¡ 0 for some δ ¡ 0. Since

ν is a recurrence measure, it follows that lim suptÑ8 1Gε,δ
pXptqq � 1 Px-

almost surely, and hence limtÑ8 PXptq rτε   8s ¥ δ Px-almost surely. Thus

(10.164) implies Px rτ � 8s � 0, which is equivalent to Px rτ   8s � 1.

Consequently,

ν pEzFεq ¡ 0 ùñ τε   8 Px-almost surely for all x P E. (10.165)

Next assume that ν pFεq ¡ 0. Let τFε
be the (first) hitting time of Fε:

τFε
� inf ts ¡ 0 : Xpsq P Fεu. Then, since ν is a recurrence measure, we

have Px rτFε
  8s � 1. From (10.156) with τ � τFε

, α � 0, and fpxq �
Px rτε   8s we see that limtÑ8 PXptq rτε   8s � 0 Px-almost surely for all

x P E, and so τε � 8 Px-almost surely for all x P E. We repeat the latter

conclusion:

ν pFεq ¡ 0 ùñ τε � 8 Px-almost surely for all x P E. (10.166)

There are two mutually exclusive possibilities:
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(i) either there exists ε ¡ 0 such that ν pEzFεq ¡ 0, and (10.165) holds for

some ε ¡ 0,

(ii) or for every ε ¡ 0 ν pFεq ¡ 0, and (10.166) holds for all ε ¡ 0.

If (10.165) holds for some ε ¡ 0, then for such ε ¡ 0 the equality

Px rτε   8s � 1 holds for all x P E. Then we proceed as follows. By

induction we introduce the following sequence of stopping times:

η0 � 0, η1 � τε, and for n ¥ 1

ηn � ηn�1 � τε � ϑηn�1
� inf ts ¡ ηn�1 : Lpsq ¡ ε� ηn�1u . (10.167)

From (10.167) it follows that tηn   8u � tLp8q ¡ nεu, and hence for all

n ¥ 1 and x P E we have

Px rηn   8s ¤ Px rLp8q ¡ nεs . (10.168)

In addition, by the strong Markov property we have

Px rηn   8s � Px
�
ηn�1   8, τε � ϑηn�1

  8�� Ex
�
ηn�1   8, PXpηn�1q rτε   8s� . (10.169)

Since Py rτε   8s � 1 for all y P E by induction with respect to n P N

(10.169) yields Px rηn   8s � 1 for all x P E and all n P N. From (10.168)

we then infer Px rLp8q � 8s � 1 for all x P E. This is the first alternative

in Lemma 10.8. If, on the other hand, (10.166) holds for all ε ¡ 0, then we

have

Pν rLp8q � 0s � lim
εÓ0 Pν rLp8q   εs � lim

εÓ0 Pν rτε � 8s � 1. (10.170)

The equality (10.170) yields the second alternative of Lemma 10.8.

Altogether this completes the proof of Lemma 10.8. �

Now we are ready to prove Theorem 10.7.

Proof. [Proof of Theorem 10.7.] The implication (a) ùñ (b) follows with

ν � µ. Let ν be such that assertion (b) holds with the measure ν. Then

we will prove that (a) holds with

µpBq � Eν

�» 8
0

e�t1B pXptqq dt� � »
E

Ex

�» 8
0

e�t1B pXptqq dt� dνpxq.
(10.171)

Let B P E be such that µpBq ¡ 0, where µ is as in (10.171). Put Lptq �³t
0
1B pXpsqq ds. Then Lp8q � 0 cannot be true Pν-almost everywhere.

From Lemma 10.8 it follows that Lp8q � 8 Px-almost surely for all x P E.

This completes the proof of Theorem 10.7. �
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The following theorem is the Markov chain analogue of Theorem 10.7. Its

proof can be adapted from the proof of Theorem 10.7, and the required

Lemma 10.8 with Lpkq � °k
j�1 1tXpjqPBu where B P E . The time τε is

replaced by τ1 � inf tk ¥ 1 : Lpkq ¥ 1u. The equalities in (10.171) are

replaced with e.g.

µpBq � p1� rq 8̧
k�1

rkEν

� 8̧
k�1

1B pXpkqq�� p1� rq 8̧
k�1

rk�1

»
E

Ex r1B pXpkqqs dνpxq, (10.172)

for some 0   r   1. A version of the following theorem was first proved by

Meyn and Tweedie in [Meyn and Tweedie (1993a)] Theorem 1.1. In fact

Theorem 10.8 is a consequence of Proposition 9.1.1 in [Meyn and Tweedie

(1993b)], which reads as follows.

Proposition 10.6. Suppose some subset B P E has the following property.

For every x P B the equality Px
�
τ1B   8� � 1 holds. Then

Px

� 8̧
k�1

1B pXpkqq � 8� � Px
�
τ1B   8�

, for all x P E. (10.173)

Proof. Put τ0B � inf tn ¥ 0 : Xpnq P Bu,
τ1B � 1� τ0B � ϑ1 � inf

 
n ¡ τ0B : Xpnq P B( and

τkB � inf
 
n ¡ τk�1

B : Xpnq P B( , k ¥ 2.

Then τkB � τk�1
B � τ1B � ϑτk�1

B
, and hence by the strong Markov property

and our assumption on τ1B we have

Px

� 8̧
ℓ�1

1B pXpℓqq ¥ k � 1

� � Px
�
τk�1
B   8�� Px

�
τ1B � ϑτk

B
  8, τkB   8�� Ex

�
P
Xpτk

Bq �τ1B   8�
, τkB   8�

. (10.174)

Assuming that Py
�
τ1B   8� � 1, y P B, then (10.174) implies

Px

� 8̧
ℓ�1

1B pXpℓqq ¥ k � 1

� � Px
�
τk�1
B   8� � Px

�
τkB   8�

. (10.175)

By induction with respect to k we see that (10.175) implies

Px

� 8̧
ℓ�1

1B pXpℓqq ¥ k

� � Ex
�
τ1B   8�

, for all x P E. (10.176)
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Let k tend to 8 to obtain (10.173) from (10.176), which completes the

proof of Proposition 10.6. �

Theorem 10.8. LettpΩ,F ,PxqxPE , pXpkq, k P Nq , pϑk, k P Nq , pE, Equ (10.177)

be a Markov chain with probability transition function P px,Bq which is

conservative in the sense that P px,Eq � 1 for all x P E. Then the following

assertions are equivalent:

(a) There exists a non-zero σ-finite Borel measure µ on E such that for all

B P E, µpBq ¡ 0 implies Px
�°8

k�1 1B pXpkqq � 8� � 1 for all x P E.

(b) There exists a non-zero σ-finite Borel measure ν such that for all B P E,

νpBq ¡ 0 implies Px
�
τ1B   8� � 1 for all x P E.

Here τ1B � inf tk ¥ 1 : Xpkq P Bu.
Proof. Again the implication (a) ùñ (b) is evident with ν � µ. Fix

0   r   1. Repeating the arguments in the proof of Theorem 10.7 the

reverse implication can be proved with µ given by e.g.

µpBq � p1� rq 8̧
k�1

rk�1

»
Px rXpkq P Bs dνpxq, B P E , (10.178)

provided that ν is a measure which accommodates assertion (b). However,

using Proposition 10.6 we see that implication (a) follows from (b) with

µ � ν where ν conforms assertion (b).

This completes the proof of Theorem 10.8. �

Remark 10.7. If all probability measures B ÞÑ Px rXp1q P Bs � P px,Bq,
x P E, are equivalent, and if (b) is satisfied with B ÞÑ P px0, Bq,
then (a) holds with the same measure. To see this, consider νpBq �
Px0

rXp1q P Bs � P px0, Bq. Then by the Markov property µ in (10.178) is

given by

µpBq � p1� rq 8̧
k�1

rk�1

»
Px rXpkq P Bs dµpxq� p1� rq 8̧

k�1

rk�1

»
Ex0

�
PXp1q rXpkq P Bs�� p1� rq 8̧

k�1

rk�1

»
Px0

rXpk � 1q P Bs , (10.179)
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and hence, if µpBq � 0, then Ex0

�
PXp1q rXp1q P Bs� � Px0

rXp2q P Bs � 0.

Thus, we see that PXp1q rXp1q P Bs � 0, Px0
-almost surely. Therefore there

exists at least one x P E such that P px,Bq � Px rXp1q P Bs � 0. Since, by

assumption, all measures B ÞÑ P py P Bq, y P E, are equivalent in follows

that P px0, Bq � 0.

The following theorem reduces (Harris) recurrence problems for time-

continuous Markov processes with the Feller property and sample space

Ω to Markov chains on a larger sample space Ω� Λ where the continuous

time is replaced with the time jump process pΛ,G, π0q , pTn, n P Nq , �ϑPn , n P N
�(

of a Poisson process. Here the variable Tn has π0-distribution function

t ÞÑ π0 rTn ¤ ts � π0 rNptq ¥ ns � 8̧
k�n pα0tqk

k!
e�α0t.

In the following theorem we see that for certain conservative strong Feller

processes the notions of recurrent and Harris recurrent coincide.

Theorem 10.9. Let the processtpΩ,F ,Pxq , pX ptq , t ¥ 0q , pϑt, t ¥ 0q , pE, Equ (10.180)

be a Markov process with the strong Feller property, and with a conservative

probability transition function P pt, x, Bq, pt, x, Bq P r0,8q�E�E. Suppose

that all Borel measures B ÞÑ P pt, x, Bq, pt, xq P p0,8q � E, are equivalent

i.e. have the same negligible sets. Let the Markov chain pΩ� Λ,F b G,Px b π0q , pX pTnpλq, ωq , n P Nq , �ϑPn pλq, n P N
�
, pE, Eq(
(10.181)

be as in (10.141) of Lemma 10.5. Then the following assertions are equiv-

alent:

(a) The Markov process in (10.180) is Harris recurrent in the sense that

for any Borel subset B for which P pt0, x0, Bq ¡ 0 for some pt0, x0q Pp0,8q �E the equality

Px

�» 8
0

1tXptqPBudt � 8� � 1 (10.182)

holds for all x P E.
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(b) The Markov process in (10.180) is recurrent in the sense that for any

Borel subset B for which P pt0, x0, Bq ¡ 0 for some pt0, x0q P p0,8q�E
the equality

Px rτB   8s � 1 (10.183)

holds for all x P E.

(c) The Markov chain in (10.181) is Harris recurrent in the sense that

for any Borel subset B for which P pt0, x0, Bq ¡ 0 for some pt0, x0q Pp0,8q �E the equality

Px b π0

� 8̧
k�0

1tXpTkqPBu � 8� � 1 (10.184)

holds for all x P E.

(d) The Markov chain in (10.181) is recurrent in the sense that for any

Borel subset B for which P pt0, x0, Bq ¡ 0 for some pt0, x0q P p0,8q�E
the equality

Px b π0
�
τ1B   8� � 1 (10.185)

holds for all x P E.

Here τB � inf tt ¡ 0 : Xptq P Bu, and τ1B � inf tn ¥ 1 : X pTnq P Bu.
For the notion of strong Feller property the reader is referred to Definitions

2.5 and 2.16.

Proof. First we observe that the measures B ÞÑ Px b π0 rX pTnq P Bs,
n P N, n ¥ 1, and x P E, are equivalent to the measures B ÞÑ P pt, x, Bq �
Px rXptq P Bs, pt, xq P p0,8q � E. The reason for this equivalence is the

following equality:

Px b π0 rX pTnq P Bs � α0

» 8
0

pα0tqn�1pn� 1q! e�α0tP pt, x, Bq dt (10.186)

which can be found in (10.143). Now we are ready to prove Theorem 10.9.

(a) ðñ (b). This equivalence is a consequence of Theorem 10.7 with

µpBq � νpBq � P pt0, x0, Bq, B P B.

(c) ðñ (d). This equivalence is a consequence of Theorem 10.8 with

νpBq � Px b π0 rX pT1 P Bqs, and µ � ν, or

µpBq � p1� rq 8̧
k�1

rk�1Px b π0 rX pTk�1q P Bs



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

698 Markov processes, Feller semigroups and evolution equations� p1� rq
ķ�1

pα0R pα0qqk�1
1Bpxq. (10.187)

For this result the reader is referred to the equalities (10.143) and (10.179),

and to Theorem 10.8. Since the measures ν and µ in (10.187) are equivalent

to the measure B ÞÑ P pt0, x0, Bq assertions (c) and (d) are equivalent with

the measure B ÞÑ P pt0, x0, Bq.
(d) ùñ (b). From the definitions of the stopping times τB and τ1B it

follows the following Px0
b π0-sure inclusion of events:tτB   8u � !

Tτ1

B
  8) �  

τ1B   8(
, (10.188)

and hence

Px0
rτB   8s � Px0

b π0 rτB   8s ¥ Px0
b π0

�
τ1B   8� � 1. (10.189)

Assertion (b) is a consequence of (10.189).

(a) ùñ (c). Let A P E be such that pα0R pα0qqn 1A px0q ¡ 0, for some

n P N, n ¥ 1, which by assumption is equivalent to Px0
rpX pt0qq P As �

P pt0, x0, Aq ¡ 0. Let ω P Ω and put Bω � tt ¥ 0 : Xpt, ωq P Au. By

assumption (a) we know that Px
�³8

0
1A pXptqq dt � 8� � 1 for all x P E.

Hence it follows that the Lebesgue measure of Bω is 8 for Px-almost all

ω P Ω and for all x P A. An application of equality (10.150) in Lemma 10.7

in the penultimate equality in (10.190) below yields:

Px b π0

�£
n

¤
m¥n tX pTmq P Au�� »

Ω

dPxpωq »
Λ

dπ0pλq lim sup
nÑ8 1tXpTnpλqqPAupωq� »

Ω

dPxpωq »
Λ

dπ0pλq lim sup
nÑ8 1tTnPBωupλq� »

Ω

dPxpωq »
Λ

dπ0pλq1 � 1. (10.190)

From (10.190) assertion (c) follows.

This completes the proof of Theorem 10.9 �

Lemma 10.9. Let the notation and hypotheses be as in Theorem 10.7.

Suppose that all measures B ÞÑ P pt, x, Bq, pt, xq P p0,8q�E are equivalent,

and that B is recurrent whenever P pt, x, Bq ¡ 0 for some pair pt, xq Pp0,8q � E. Then all Borel subsets B for which P pt, x, Bq ¡ 0 for some

pair pt, xq P p0,8q �E are recurrent for the chain described in (10.141) of

Lemma 10.5.
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Proof. From equality (10.142) it follows that all transition probability

measures B ÞÑ Px b π0 rX pT1q P Bs, x P E, are equivalent. �

Lemma 10.10. Let
�
etL : t ¥ 0

�
be the semigroup associated to the Markov

process in (9.14). Put for α ¡ 0 and f P CbpEq
Rpαqfpxq � » 8

0

e�αtetLfpxqdt � » 8
0

e�αtEx rf pXptqqs dt, (10.191)

and fix α0 ¡ 0. Let µ be σ-finite Radon measure on the Borel filed of E.

Then the following assertions are equivalent:

(1) The measure µ is L-invariant, i.e.
³
Lf dµ � 0 for all f P DpLq which

belong to L1 pE, µq;
(2) There exists α0 ¡ 0 such that α0

³
R pα0q f dµ � ³

f dµ for all f ¥ 0

which are Borel measurable;

(3) For all α ¡ 0 and for all Borel measurable functions f ¥ 0 the equality

αR pαq f dµ � ³
f dµ;

(4) The measure µ is invariant for the semigroup
 
etL : t ¥ 0

(
, i.e.³

etLfdµ � ³
f dµ for all f ¥ 0 which are Borel measurable and for

all t ¥ 0.

Proof. (1) ùñ (2). Let the positive σ-finite Radon measure µ be such

that
³
Lf dµ � 0 for f P DpLq�L1 pE, µq, and fix α0 ¡ 0. Then we have

for f P L1 pE, µq»
α0R pα0q f dµ� »

f dµ � »
LR pα0q f dµ � 0. (10.192)

From (10.192) we infer
³
α0R pα0q f dµ � ³

f dµ, f P L1pE, µq. This proves
the implication (1) ùñ (2).

(2) ùñ (3). Let f ¥ 0 belong to L1 pE, µq, and α0 as in (2). By the resolvent

equation, we have

α0R pαq � α0 pα� α0qR pα0qRpαq � α0R pα0q ,
an so for α ¡ α0

α0

»
Rpαqf dµ� α0 pα� α0q » R pα0qRpαqf dµ � α0

»
R pα0q f dµ,

and hence by assertion (2)

α0

»
Rpαqf dµ� pα� α0q » Rpαqf dµ � »

f dµ. (10.193)
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From the equality in (10.193) we see that α
³
Rpαqf dµ � ³

f dµ, f P
L1 pE, µq, and α ¡ α0. This shows the implication (2) ùñ (3) for α ¡ 0

and large.

(3) ùñ (4). Under the restriction that we know (3) for all large α we will

show that (4) holds. Let f ¥ 0 be a member of L1 pE, µq. For all α ¡ 0

large (3) entails

α

» 8
0

e�αρ » eρLetLf dµ dρ � α

»
RpαqetLf dµ� »

etLf dµ � α

» 8
0

e�αρ » etLf dµ dρ (10.194)

for all t ¥ 0. By uniqueness of Laplace transforms the equality in (10.195)

implies
³
eρLetLf dµ � ³

etLf dµ for almost all ρ ¡ 0. Here the “almost all”

depends on t ¥ 0. Next fix t ¡ 0. Then by what is proved above we get» 8
0

e�αρ » eρLetLf dµ dρ � » 8
0

e�αρ » etLfd dµ dρ. (10.195)

From (10.195) we infer» 8
0

e�αpρ�tq » epρ�tqLf dµ dρ � » 8
0

e�αpρ�tq » etLfd dµ dρ, (10.196)

or, what amounts to the same, from (10.195) we infer» 8
t

e�αρ » eρLf dµ dρ � » 8
t

e�αρ » etLfd dµ dρ. (10.197)

As a consequence of (10.197) together with the fact that for almost all ρ ¡ 0

the equality
³
eρLfdµ � ³

f dµ holds we obtain» 8
0

e�αρ » f dµ dρ � » 8
0

e�αρ » eρLf dµ dρ � » 8
0

e�αρ » ept^ρqLf dµ dρ.
(10.198)

Again by uniqueness of Laplace transforms the equality in (10.198) implies

that for almost all ρ ¡ 0 we get
³
ept^ρqLf dµ � ³

f dµ. Upon choosing

ρ ¡ t we get
³
etLf dµ � ³

f dµ. Since t ¡ 0 is arbitrary assertion (4) is a

consequence of the latter equality.

The implications (4) ùñ (3) ùñ (2) are easy. The implication (2) ùñ (1)

can be obtained by noting that DpLq is the range of the operator R pα0q,
and writing LR pα0q f � α0R pα0q f � f , f P CbpEq.

This completes the proof of Lemma 10.10. �
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The proof of the following theorem will be based on the Markov chain

constructed in Theorem 10.9 and on the corresponding result for recur-

rent Markov chains as exhibited by e.g. Meyn and Tweedie in [Meyn and

Tweedie (1993b)]. In fact for Markov chains the result goes back to Har-

ris [Harris (1956)]. Our proof will follow the arguments for the proof of

Theorem I.3 in [Azéma et al. (1967)]. In case the invariant measures are

finite He and Ying [He and Ying (2009)] have a relatively short argument

to prove uniqueness.

Theorem 10.10. Let the Markov process in (10.180) be recurrent in the

sense of Theorem 10.9. Moreover, suppose that the hypotheses of Theorem

10.9 are satisfied. Then the process in (10.180) admits an invariant σ-finite

measure which is unique op to a multiplicative constant. This measure µ

has the property that µpBq ¡ 0 if and only if P pt0, x0, Bq ¡ 0 for some

(all) pt0, x0q P p0,8q �E.

The following theorem can be found in [Harris (1956)]. It is a consequence

of Theorem 10.3.

Theorem 10.11. Suppose that for the time-homogenous Markov chaintpΩ,F ,Pxq , pXpiq, i P Nq , pϑi, i P Nq , pE, Equ (10.199)

there exists a σ-finite measure m such that mpBq ¡ 0 implies

Px

� 8̧
k�0

1B pXpkqq � 8� � 1 for all x P E.

In other words the Markov chain in (10.199) is m-recurrent. Then there

exists a σ-finite invariant measure µ which is unique up to a multiplicative

constant, and which is such that µ is absolutely continuous with respect to

µ, i.e. µpAq � 0 implies µpAq � 0, A P E.

For much more explanation about Markov chains see e.g. [Meyn and

Tweedie (1993b)]. We will take Theorem 10.11 for granted as we did with

Theorem 10.3.

Proof. [Proof of Theorem 10.10.] Fix pt0, x0q P p0,8q � E, and put

mpBq � P pt0, x0, Bq, B P E . From Theorem 10.9 it follows that the Markov

chain in (10.181) ism-recurrent if and only if the Markov process in (10.180)

is m-recurrent. So by Theorem 10.11 the Markov chain in (10.181), i.e. pΩ� Λ,F b G,Px b π0q , pX pTnpλq, ωq , n P Nq , �ϑPn pλq, n P N
�
, pE, Eq(
(10.200)
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admits a σ-finite invariant measure µ which is equivalent to the measure

m. By Lemma 10.10 the measure µ is also invariant for the Markov process

in (10.180) of Theorem 10.9, i.e. fortpΩ,F ,Pxq , pX ptq , t ¥ 0q , pϑt, t ¥ 0q , pE, Equ . (10.201)

Since the σ-finite invariant measures for the processes in (10.200) are unique

up to multiplicative constants, the same is true for the σ-finite invariant

measures for the Markov process in (10.201). Moreover, by Theorem 10.11

these invariant measures are equivalent with the measure m. Altogether

this proves Theorem 10.10. �

10.2.4 Actual construction of an invariant measure

Theorem 9.4, which is one of the most important results in Chapter 9, gives

sufficient conditions in order that the Markov process in (10.180) possesses

a compact recurrent subset. This assumption of the existence of such a

compact subset is made in the following theorem.

Theorem 10.12. Suppose that there exists a compact recurrent subset A,

and suppose that the Markov process in (10.180) is irreducible and strong

Feller. In addition, suppose that all measures B ÞÑ P pt, x, Bq, x P E, t ¡ 0,

are equivalent. Then there exists a non-trivial σ-finite invariant measure π,

and the vector sum RpLq �NpLq is dense in CbpEq for the strict topology.

In fact the measure π has the property that f P CbpEq, f ¥ 0, f � 0,

implies
³
f dπ ¡ 0. Moreover, πpBq � 0 if and only if P pt, x, Bq � 0 for all

pairs (some pair) pt, xq P p0,8q � E. Moreover, the measure π is unique

up to a multiplicative constant.

For the notion of strong Feller property see Definitions 2.5 and 2.16. A

combination of Theorem 10.12 and Theorem 9.4 in Chapter 9 yields the

following result.

Theorem 10.13. Let L be the generator of a strong Markov process

which almost separate points and closed subsets, in the sense that for

every x P U with U open there exists a function v P DpLq such that

vpxq ¡ supyPEzU vpyq. Suppose that every non-empty open subset is re-

current, and that all measures of the form B ÞÑ P pt, x, Bq, B P E,pt, xq P p0,8q � E, are equivalent probability measures. Then there ex-

ists a non-trivial σ-finite invariant measure π, provided that all functions

of the form pt, xq ÞÑ P pt, x, Bq, pt, xq P p0,8q � E, B P E, are continuous.

Moreover, the invariant measure π is unique up to a multiplicative constant.



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Invariant measure 703

In addition, suppose that there exists a recurrent subset A such that

sup
xPAEx rh� τA � ϑhs   8 for some h ¡ 0. Then the invariant measure is

finite, and may be chosen to be a probability measure.

Proof. Under the hypotheses of Theorem 10.13 there exists a compact re-

current subset by Theorem 9.4. Theorem 10.12 yields the desired conclusion

in the first statement of Theorem 10.13. The second one is a consequence

of Corollary 10.5 below because our extra assumption is the same as the

finiteness assumption in (10.292). �

Remark 10.8. From the proof of Theorem 10.12 it follows that for every

compact subsetK there exists an open subsetKε � K, and hence a function

fK P CbpEq such that

1K ¤ fK ¤ 1Kε
, and

»
fK dπ   8 (10.202)

where π is the invariant measure. It also follows that

E � ¤
K,Kcompact

tfK ¡ 0u .
Since the space E is second countable, the family tfK : K compactu
in (10.202) may be chosen countable, while still satisfying E ��
nPN tfKn

¡ 0u. This can be seen as follows. The second countability

implies that there exists a sequence of open subsets pUnqnPN such that for

every compact subsetK of E there a countable subset pUK,kqkPN � pUnqnPN
such that tfK ¡ 0u � �

kPN UK,k. For every n P N we choose a compact

subset Kn such that Un � tfKn
¡ 0u. We only take into account those

open subsets Un for which such fKn
exists. Then the sequence pfKn

qnPN
will be such that E � �

nPN tfαn
¡ 0u.

Here, the space CbpEq is supplied with the strict topology. A sequencepfnqnPN converges with respect to the strict topology if it is uniformly

bounded and if it converges to a function f P CbpEq uniformly on com-

pact subsets of the space E. The symbol RpLq stands for the range of L,

and NpLq stands for the null space of L.

Proof. [Proof of Theorem 10.12.] We sketch a proof. Fix h ¡ 0, λ ¡ 0,

µ P M pAq, and f P CbpEq. Here M pAq is the space of those (complex)

measures µ P E which are concentrated on A; i.e. |µ| pEzAq � 0. We will

also need the following stopping times:

τhA � inf ts ¡ h : Xpsq P Au � h� τA � ϑh where τA is the hitting time

τA � inf tt ¡ 0 : Xptq P Au . (10.203)
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Therefore we will rewrite the equality:» h
0

e�λ1sesL ds  �L� λ1I�RA �
λ1�� I

(
f pxq� #�

e�λ1hehL � I
	
RA

�
λ1�� » h

0

e�λ1sesL ds+ f pxq . (10.204)

The expression in (10.204) is equal to�
e�hλ1ehL � I

	
RA

�
λ1� fpxq � » h

0

e�λ1sesLfpxq ds� e�hλ1Ex �RA �
λ1� f pXphqq��RA

�
λ1� fpxq � » h

0

e�λ1sesLfpxq ds� e�hλ1Ex �EXphq �» τA
0

e�λ1ρf pXpρqq dρ��� Ex

�» τA
0

e�λ1ρf pXpρqq dρ�� Ex

�» h
0

e�λ1sf pXpsqq ds�
(Markov property)� Ex

�» τA�ϑh

0

e�λ1ph�ρqf pXph� ρqq dρ�� Ex

�» τA
0

e�λ1ρf pXpρqq dρ�� Ex

�» h
0

e�λ1sf pXpsqq ds�� Ex

�» h�τA�ϑh

h

e�λ1ρf pXpρqq dρ�� Ex

�» τA
0

e�λ1ρf pXpρqq dρ�� Ex

�» h
0

e�λ1sf pXpsqq ds�
(τA is a terminal stopping time: on tτA ¡ hu the equality h� τA � ϑh � τA
holds Px-almost surely)� Ex

�» h�τA�ϑh

h

e�λ1ρf pXpρqq dρ, τA ¤ h

�� Ex

�» τA
h

e�λ1ρf pXpρqq dρ, τA ¡ h

�� Ex

�» τA
0

e�λ1ρf pXpρqq dρ�� Ex

�» h
0

e�λ1sf pXpsqq ds, τA ¤ h

�� Ex

�» h
0

e�λ1sf pXpsqq ds, τA ¡ h

�
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�» h�τA�ϑh

τA

e�λ1ρf pXpρqq dρ, τA ¤ h

�� Ex

�
e�λ1τA » h�τA�τA�ϑh�τA

�ϑτA

0

e�λ1ρf pX pρ� τAqq dρ, τA ¤ h

�
(strong Markov property)� Ex

�
e�λ1τAEXpτAq �» h�τA�τA�ϑh�τA

0

e�λ1ρf pX pρqq dρ� , τA ¤ h

�
(10.205)� Ex

�
e�λ1hEXpτAq �» τA�ϑh�τA

0

e�λ1ρf pX pρ� h� τAqq dρ� , τA ¤ h

�� Ex

�
e�λ1τAEXpτAq �» h�τA

0

e�λ1ρf pX pρqq dρ� , τA ¤ h

�
(Markov property once more)� Ex

�
e�λ1hEXpτAq �EXph�τAq �» τA

0

e�λ1ρf pX pρqq dρ�� , τA ¤ h

�� Ex

�
e�λ1τAEXpτAq �» h�τA

0

e�λ1ρf pX pρqq dρ� , τA ¤ h

�
. (10.206)

It is perhaps useful to explain the way the expectations in (10.206) have to

be understood. The second term should be read as follows:

Ex

�
e�λ1τAEXpτAq �» h�τA

0

e�λ1ρf pX pρqq dρ� , τA ¤ h

�� Ex

�
ω ÞÑ e�λ1τApωqEXpτAqpωq �» h�τApωq

0

e�λ1ρf pX pρqq dρ�1tτA¤hupωq�
where X pτAq pωq � X pτApωqq pωq � X pτApωq, ωq. The first term in

(10.206) has to be interpreted in the following manner:

Ex

�
e�λ1hEXpτAq �EXph�τAq �» τA

0

e�λ1ρf pX pρqq dρ�� , τA ¤ h

�� Ex

�
ω ÞÑ e�λ1hEXpτApωq,ωq�ω1 ÞÑ EXph�τApωq,ω1q �» τA

0

e�λ1ρf pX pρqq dρ��
1tτA¤hupωq� .
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The equality of the expressions in (10.205) and (10.206) will be used to

prove the existence and uniqueness (up to scalar multiples) of an invariant

measure. A crucial role will be played by Proposition 10.8.

The equality in (10.204) will also be used to prove that the invariant

measure π is strictly positive in the sense that
³
f dπ ¡ 0 whenever f P

CbpEq is such that f ¥ 0 and f � 0. This claim follows from the first

equality in (10.255) in Proposition 10.7 together with the first inequality in

(10.241) in Lemma 10.11 below. Here we also need the irreducibility of the

Markov process X . So let f ¥ 0, f � 0, f P CbpEq�L1 pE, E , πq. Then,

from the first equality in (10.255) we see:

h

»
E

fpxq dπpxq� »
E

Ex

�
EXpτAq �» h�τA�τA�ϑh�τA

0

f pXpρqq dρ� , τA ¤ h

�
dπpxq¥ »

E

Ex

�
EXpτAq �» 1

2
h

0

f pXpρqq dρ� , τA ¤ 1

2
h

�
dπpxq¥ inf

yPAEy

�» 1

2
h

0

f pXpρqq dρ� »
E

Ex

�
τA ¤ 1

2
h

�
dπpxq� Ey0

�» 1

2
h

0

f pXpρqq dρ�»
E

Ex

�
τA ¤ 1

2
h

�
dπpxq (10.207)

for some y0 P A. By irreducibility we have

Ey0

�» 1

2
h

0

f pXpρqq dρ� ¡ 0. (10.208)

The combination of the first inequality in (10.241) in Lemma 10.11 and

(10.207) shows that
³
E
fpxq dπpxq ¡ 0, where f ¥ 0, f � 0, f P

CbpEq�L1 pE, E , πq: see (10.207). As a consequence we have that the

corresponding measure π is strictly positive in the sense that πpOq ¡ 0 for

every non-empty open subset O of E. In addition, we have πpBq � 0, B P E ,

if and only if P pt, x, Bq � 0 for some pt, xq P p0,8q�E. If P pt0, x0, Bq � 0

for some pt0, x0q P p0,8q�E, then P pt, x, Bq � 0 for all pt, xq P p0,8q�E,

and hence πpBq � ³
P pt, x, Bq dπpxq � πpBq � 0. Conversely, suppose

B P E is such that πpBq � 0. Then
³
P pt0, x, Bq dπpxq � 0 (by invari-

ance). Since, by the strong Feller property the function x ÞÑ P pt0, x, Bq
is continuous it follows by the strict positiveness of the measure π that

P pt0, x, Bq � 0 for some x P E. Since all the measures B ÞÑ P pt0, x, Bq,
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x P E, are equivalent it follows that P pt0, x0, Bq � 0. For the notion of

strong Feller property see Definitions 2.5 and 2.16 as well.

First let us embark on the existence of the invariant measure π. We will

use a Hahn-Banach argument to obtain such a measure. Recall that

τhA � inf ts ¡ h : Xpsq P Au � h� τA � ϑh
where τA � inf ts ¡ 0 : Xpsq P Au. Since the compact subset A is recurrent

we see that

Px
�
τhA   8� � Px rτA � ϑh   8s � Ex

�
PXphq rτA   8s� � Ex r1s � 1,

(10.209)

and hence the stopping time τhA is finite Px-almost surely for all x P E.

Define the operator QA : CpAq Ñ CpAq by
QAfpxq � Ex

�
f
�
X

�
τhA

��� � Ex
�
EXphq rf pX pτAqqs� , f P CpAq.

(10.210)

By the strong Feller property of the Markov process Xptq it follows that

the operator QA in (10.210) is a positivity preserving linear mapping from

CpAq to CpAq. For the notion of strong Feller property see Definitions 2.5

and 2.16. Moreover, QA1 � 1. Fix x0 P E. By the Hahn-Banach extension

theorem there exists a positive linear functional Λx0
: CpAq Ñ R such that

for f P CpAq, f ¥ 0,

lim inf
rÒ1 p1� rq 8̧

k�0

rkQkAf px0q ¤ Λx0
pfq ¤ lim sup

rÒ1 p1� rq 8̧
k�0

rkQkAf px0q .
(10.211)

To obtain Λ, apply the analytic version of the Theorem of Hahn-Banach to

the functional:

f ÞÑ inf
gPCpAq,g¥0

lim sup
rÒ1 p1� rq 8̧

k�0

rk
�
QkA pf � gq px0q �QkAg px0q� .

(10.212)

From (10.211) it follows that Λx0
p1Aq � 1. From Hahn-Banach’s theorem

it also follows that the second inequality in (10.211) holds for all f P CpAq.
Consequently, we have

Λx0
pf �QAfq ¤ lim sup

rÒ1 p1� rq 8̧
k�0

rkQkA pI �QAq f px0q� lim sup
rÒ1 �p1� rqf px0q � p1� rq2 8̧

k�0

rkQkAf px0q� � 0. (10.213)
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From (10.213) we infer Λx0
pf �QAfq ¤ 0. The latter inequality is also true

for �f instead of f , and hence the functional Λx0
is QA-invariant. Since the

subset A is compact, by the Riesz representation theorem the functional

Λx0
can be represented by a measure πx0

: Λx0
pfq � ³

A
fpxqd dπx0

pxq, f P
CpAq. In order to see the uniqueness we use Orey’s theorem 10.2. First we

introduce the sequence of stopping times: τk�1,h
A � τ

k,h
A �τ1,hA �ϑ

τ
k,h
A

, where

τ
1,h
A � τhA, the stopping time defined in (10.203) and not the time defined in

(10.100). We will employ the reference measure B ÞÑ Px

�
X

�
τ
1,h
A

	 P B�.
We need the fact that all measures of the form

Px

�
X

�
τ
k�1,h
A

	 P B� � Ex

�
P
Xpτk,h

A q �X �
τ
1,h
A

	 P B��� Ex

�
E
Xpτk,h

A q �PXphq rX pτAq P Bs�� , k P N, (10.214)

are equivalent. Suppose thatB is such that the very first member in (10.214)

vanishes. Then there exists y � X
�
τ
k,h
A

	 P A such that

Ey
�
PXphq rX pτAq P Bs� � 0. (10.215)

Since all measures of the form B ÞÑ P ph, y, Bq, y P E, are equivalent,

(10.215) implies that the quantity in (10.215) vanishes for all y P E. It

follows that

P
Xpτℓ,h

A q �X �
τ
1,h
A

	 P B� � 0 (10.216)

for all ℓ P N. As a consequence we see that the process k ÞÑ X
�
τ
k,h
A

	
is Harris recurrent relative to the measure B ÞÑ Py

�
X
�
τ
k,h
A

	 P B�, B P
E . Then Orey’s theorem yields that for all pairs of probability measurespµ1, µ2q on the Borel field of A the following limit vanishes (see (10.15) in

Theorem 10.2):

lim
nÑ8¼

Var pQnA px, �q �QnA py, �qq dµ1pxq dµ2pyq � 0. (10.217)

Consequently, we see that QA-invariant probability measures on the Borel

field of A are unique. We call such an invariant measure πA. The existence

was established using the Hahn-Banach theorem. It then follows that for

all f P CpAq and uniformly for x P A
lim
rÒ1p1� rq 8̧

k�0

rkQkAfpxq � »
A

f dπA1A � 0. (10.218)

Assertions (b), (c), (d), and (e) in Proposition 10.8 below then show the

existence and uniqueness (up to scalar multiplications of etL-invariant mea-

sures) on the Borel field of E.
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Next we prove that the invariant measure π on E, the existence of

which is established by Proposition 10.8, is in fact a σ-finite, and strictly

positive invariant Radon measure which is equivalent to the measures B ÞÑ
P pt, x, Bq. This will be the subject of the remaining part of the proof.

The σ-finiteness of the measure π follows from Lemma 10.11. More

precisely, put

Am,n � "
x P E : Px rτA ¤ ms ¡ 1

n

*
, m, n P N. (10.219)

Then E � �
n,mPNAm,n. Since by Lemma 10.11

³
E
Px rτA ¤ ms dπpxq  8, it follows that π pAm,nq   8 for all m, n P Nz t0u.

From (10.273) in assertion (f) of Proposition 10.8 and (10.205) it follows

that for f P CbpEq, f ¥ 0,

h

»
E

fpxqdπpxq ¤ sup
yPAEy

�» h�τA�ϑh

0

f pXpρqq dρ� »
E

Px rτA ¤ hs dπpxq.
(10.220)

From (10.205) and (10.220) we will infer that the measure π is σ-finite, and

that it is a Radon measure. In the proof of this result we will adapt the

proof of Theorem 9.5 in Chapter 9. In particular the inequality in (9.53) is

relevant. The precise arguments run as follows. Let K be a compact subset

of E such that A � K. Then there exists ε0 ¡ 0 with the property that

sup
yPA Py rXptq R Kε for all t P rh, h� τA � ϑhqs ¡ 0, (10.221)

for all 0   ε   ε0. Below we will show that under the hypotheses of Theorem

10.12 the inequality in (10.221) is satisfied indeed: see (10.238). Here

Kε :� tx P E : d px,Kq ¤ εu stands for an ε-neighborhood of K: d denotes

a compatible metric on the Polish space E. We are going to show that

sup
yPE Ey

�» h�τA�ϑh

0

1Kε
pXpρqq dρ�   8 (10.222)

for some ε ¡ 0. Let τε be the first hitting time of Kε. From (10.221) it

follows that for every ε P p0, ε0q there exists yε P A such that

Pyε rτε � ϑh ¥ τA � ϑhs � Pyε rXptq R Kε for all t P rh, h� τA � ϑhqs ¡ 0.

(10.223)

The function y ÞÑ Py rτε � ϑh ¥ τA � ϑhs � Ey
�
PXphq rτε ¥ τAs� is continu-

ous, and so there exists a neighborhood Vε of yε such that

αε :� inf
xPVε

Px rτε � ϑh ¥ τA � ϑhs ¡ 0. (10.224)
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and such that

inf
xPKε

P pt0, x, Vεq ¡ 0 (10.225)

for some fixed but arbitrary t0 ¡ h. In (10.225) we used the irreducibility

of the Markov process and the continuity of the function x ÞÑ P pt0, x, Vεq
for ε ¡ 0. If necessary we choose a smaller neighborhood Vε of yε and a

smaller ε, which we are entitled to do, because (10.223) holds for every

ε P p0, ε0q. Choose y P Kε. Then by the Markov property we have

Py

�» h�τA�ϑh

0

1Kε
pXptqq dt   t0

�¥ Py

�» h�τA�ϑh

0

1Kε
pXptqq dt   t0, t0   h� τA � ϑh�� Ey

�
ω ÞÑ PXpt0qpωq �» t0

0

1Kε
pXptqpωqq dt� » h�τA�ϑhpωq�t0

0

1Kε
pXptqq dt   t0

�
1tt0 h�τA�ϑhupωq�¥ Ey

�
ω ÞÑ PXpt0qpωq �» t0

0

1Kε
pXptqpωqq dt   t0,

Xptq R Kε for all t P r0, h� τA � ϑhpωq � t0q�1tt0 h�τA�ϑhupωq�¥ Py

�» t0
0

1Kε
pXptqq dt   t0,

Xptq R Kε for all t P rt0, h� τA � ϑhq, h� τA � ϑh ¡ t0

�¥ Py

�» t0
0

1Kε
pXptqq dt   t0,

X pt0q P Vε, Xptq R Kε for all t P rt0, h� τA � ϑhq, h� τA � ϑh ¡ t0

�¥ Ey
�
PXpt0q rτε � ϑh ¥ τA � ϑhs , X pt0q P Vε�

(apply (10.224), the definition of αε)¥ αεP pt0, y, Vεq ¥ αε inf
xPKε

P pt0, x, Vεq �: q ¡ 0, (10.226)

where we used the irreducibility of our Markov process, and the continuity

of the function x ÞÑ P pt0, x, Vεq. Hence we infer

sup
yPKε

Py

�» h�τh�ϑh

0

1Kε
pXptqq dt ¥ t0

� ¤ 1� q. (10.227)
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Put

κε � inf

"
t ¡ h :

» t
0

1Kε
pXpsqq ds ¥ t0

*� inf

"
t ¡ h :

» t
0

1Kε
pXpsqq ds � t0

*
. (10.228)

Then κε is a stopping time relative to the filtration pFtqt¥0, because Xpsq
is Ft-measurable for all 0 ¤ s ¤ t. Moreover, by right-continuity of the

process t ÞÑ Xptq it follows that X pκεq P Kε on the event tτε   8u. Let

y P A. By induction we shall prove that

Py

�» h�τA�ϑh

0

1Kε
pXptqq dt ¡ kt0

� ¤ p1� qqk�1, k P N, k ¥ 1. (10.229)

To this end we put

αk � sup
xPKε

Ex

�» h�τA�ϑh

0

1Kε
pXpsqq ds ¥ kt0

�
. (10.230)

If x belongs to Kε, then by the Markov property we have:

Px

�» h�τA�ϑh

0

1Kε
pXpsqq ds ¡ pk � 1qt0�� Px

�» h�τA�h
κε

1Kε
pXpsqq ds ¡ kt0, κε ¤ h� τA � ϑh�� Ex

�
PXpκεq �» 8

0

1Kε
pXpsqq ds ¡ kt0

�
, κε ¤ h� τA � ϑh�� Ex

�
PXpκεq �» h�τA�ϑh

0

1Kε
pXpsqq ds ¡ kt0

�
,» h�τA�ϑh

0

1Kε
pXpsqq ds ¥ t0

�¤ α1αk. (10.231)

From (10.231) and induction we infer

sup
xPKε

Px

�» h�τA�ϑh

0

1Kε
pXpsqq ds ¥ kt0

�¤ αk1 � �
sup
xPKε

�» h�τA�ϑh

0

1Kε
pXpsqq ds ¥ t0

��k ¤ p1� qqk, (10.232)
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where in the final step of (10.232) we employed (9.58). If y P E is arbitrary,

then we proceed as follows:

Py

�» h�τA�ϑh

0

1Kε
pXpsqq ds ¡ pk � 1qt0�� Py

�» h�τA�ϑh

κε

1Kε
pXpsqq ds ¡ kt0, κε ¤ h� τA � ϑh�� Ey

�
PXpκεq �» h�τA�ϑh

0

1Kε
pXpsqq ds ¡ kt0

�
, κε ¤ h� τA � ϑh�¤ p1� qqkPy rκε ¤ h� τA � ϑhs ¤ p1� qqk. (10.233)

The inequality in (10.233) implies the one in (10.229). To show the first

part of (10.222) with f � 1Kε
, for ε ¡ 0 small enough, we observe that for

x P E we have

Ex

�» h�τA�ϑh

0

1Kε
pXpsqq ds�¤ 8̧

k�1

kt0Px

�pk � 1qt0   » h�τA�ϑh

0

1Kε
pXpsqq ds ¤ kt0

�¤ t0 � 8̧
k�2

Px

�» h�τA�ϑh

0

1Kε
pXpsqq ds ¡ pk � 1qt0�¤ t0 � t0

8̧
k�2

kp1� qqk�2 � t0

�
1� 1

q
� 1

q2


   8. (10.234)

The inequality in (10.222) is a consequence of (10.234) indeed with f �
1Kε

. In other words for every compact subset K of E there exists an ε-

neighborhood Kε � K such that (10.222) is satisfied. It follows that the

functional f ÞÑ ³
f dπ, f P CbpEq, f ¥ 0, can be represented as a Radon

measure. Since E is a Polish space, it also follows that the measure π is

σ-finite.

In order to complete the proof of (10.220) we have to verify the inequal-

ity in (10.221). By assuming that

sup
yPA Py rXptq R Kε for all t P rh, h� τA � ϑhqs� sup

yPA Py rτε � ϑh ¥ τA � ϑhs � 0 (10.235)

we will arrive at a contradiction. If (10.235) holds, then for all y P A we

have

0 � Py rτε � ϑh ¥ τA � ϑhs � Ey
�
PXphq rτε ¥ τAs� , (10.236)
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and hence since all measure B ÞÑ P ph1, y, Bq, B P E , h1 ¡ 0, are equivalent

we infer from (10.236) that

Py
�
h1 � τε � ϑh1 ¥ h1 � τA � ϑh1� � 0 (10.237)

for all h1 ¡ 0. In (10.237) we let h1 Ó 0 to obtain

Py rτε ¥ τAs � 0 (10.238)

for all y P A. Choose y P Ar: since X pτAq P Ar Px-almost surely ontτA   8u and A is recurrent such points y exist. Then τA � 0 Py-almost

surely. From (10.238) we get Py rτε � 0s � 0 which is manifestly a contra-

diction, because y is an interior point of Kε.

The proof of (10.222) follows the same pattern as the correspond-

ing proof by Seidler in [Seidler (1997)], who in turn follows Khasminskii

[Has1minskĭı (1960)]. Let τ be the first hitting time of K. Since K is

non-recurrent there exists y0 R K such that

Py0 rτ � 8s � Py0 rXptq R K for all t ¥ 0s ¡ 0.

There is one other issue to be settled, i.e. is the subspace RpLq � R1 Tβ-

dense in CbpEq? Therefore we consider a Tβ-continuous linear functional

Λ : CbpEq Ñ R which annihilates the subspaces RpLq � R1. Suppose

that Λ � 0. Then Λ can be represented as a measure on E , and since

Λ p1q � 0 by scaling we may and will assume that Λpfq can be written

as Λpfq � ³
fdµ1 � ³

fdµ2, f P CbpEq, where µ1 and µ2 are probability

measures on E . Then, since
³
Lf dµ1 � ³

Lf dµ2 � 0, it follows that»
E

fpxq dµ1pxq � »
E

fpxq dµ2pxq � »
E

enLfpxq dµ1pxq � »
E

enLfpxq dµ2pxq� ¼
E�E �

enLfpxq � enLfpyq� dµ1pxq dµ2pxq, n P N, f P CbpEq. (10.239)

In (10.239) we let n Ñ 8, and we use Orey’s theorem to conclude that³
E
fpxq dµ1pxq � ³

E
fpxq dµ2pxq � 0, f P CbpEq. It follows that Λpfq � 0,

f P CbpEq. Consequently, by the Hahn-Banach theorem we infer that the

subspace RpLq � R1 is Tβ-dense in CbpEq.
By construction and (10.222) it follows that for every compact subset

K of E there exists a function fK P CbpEq such that 1K ¤ fK ¤ 1Kε
and³

fKdπ   8. Hence, the open subset tfα ¡ 0u has σ-finite π-measure. Let

the sequence of open subsets pUnqnPN be as in Remark 10.8. Consequently,

each open subset Un for which there exists a compact subset Kn with

Un � tfKn
¡ 0u has σ-finite π-measure. Since by Remark 10.8 such open
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subsets cover E, it follows that the measure π is σ-finite. This is another

argument to show that the invariant etL-measure π is σ-finite. A previous

argument was based on Lemma 10.11.

Altogether this completes the proof of Theorem 10.12. �

In the proof of Proposition 10.8 below we need the following lemma. The

proof requires the equalities in (10.272) which are the same as those in

(10.205) and (10.206).

Lemma 10.11. Let A be a compact subset which is recurrent with first

hitting time τA. Let πE be any non-negative invariant Radon measure on

E. Then
³
E
Px rτA ¤ ms dπEpxq   8 for every m P R. Put

C

�
h

2
, πE


 � 2

h

»
E

Px

�
τA ¤ h

2

�
dπEpxq. (10.240)

Moreover, for 0   m   8, and α ¡ 0 the following inequalities hold:

0   »
E

Px rτA ¤ ms dπEpxq ¤ pm� hqC �
h

2
, πE



, and (10.241)

α

»
E

Ex
�
e�ατA� dπEpxq ¤ pαh� 1qC �

h

2
, πE



. (10.242)

Proof. Since A is compact and πE is a Radon measure there exists a

bounded continuous function f such that 1A ¤ f ¤ 1, and such that³
E
f dπE   8. The first equality in (10.272) yields:�
e�hλ1ehL � I

	
RA

�
λ1� fpxq � » h

0

e�λ1sesLfpxq ds (10.243)� Ex

�
e�λ1τAEXpτAq �» h�τA�τA�ϑh�τA

0

e�λ1ρf pX pρqq dρ� , τA ¤ h

�
,

and so we get by invariance of the measure πE :» h
0

e�λ1sds »
E

fpxq dπEpxq � » h
0

e�λ1s »
E

esLfpxq dπEpxq ds� »
E

�
I � e�hλ1ehL	RA �

λ1� fpxq dπEpxq� »
E

Ex

�
e�λ1τAEXpτAq �» τ0,h

A

0

e�λ1ρf pX pρqq dρ� , τA ¤ h

�
dπEpxq� �

1� e�λ1h	 »
E

RA
�
λ1� fpxq dπEpxq
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E

Ex

�
e�λ1τAEXpτAq �» τ0,h

A

0

e�λ1ρf pX pρqq dρ� , τA ¤ h

�
dπEpxq¥ »

E

Ex

�
e�λ1τAEXpτAq �» 1

2
h

0

e�λ1ρf pX pρqq dρ� , τA ¤ 1

2
h

�
dπEpxq

(10.244)

where for brevity we wrote

τ
0,h
A

�
ω, ω1� � h� τApωq � τA � ϑh�τApωq �ω1� (10.245)

which indicates the first time of hitting A strictly after h� τApωq. Notice

that on the event
 
τA ¤ 1

2
h
(
the inequalities τ0,hA ¥ 1

2
h � τA � ϑ 1

2
h ¥ 1

2
h

hold. In (10.244) we let λ Ò 0 to get:

h

»
E

fpxq dπEpxq ¥ »
E

Ex

�
EXpτAq �» 1

2
h

0

f pX pρqq dρ� , τA ¤ 1

2
h

�
dπEpxq¥ inf

yPAEy

�» 1

2
h

0

f pX pρqq dρ� � »
E

Px

�
τA ¤ 1

2
h

�
dπEpxq.
(10.246)

Assuming that infyPA Ey

�³ 1

2
h

0
f pX pρqq dρ� � 0 leads to a contradiction, as

we shall see momentarily. Since the function y ÞÑ Ey

�³ 1

2
h

0
f pX pρqq dρ� and

A is compact is continuous our assumption implies that for some y0 P A
the following inequality holds for all 0   h1   1

2
h:

Ey0

�» h1
0

f pX pρqq dρ� � » h1
0

eρLf py0q dρ � 0. (10.247)

Dividing all members of (10.247) by h1 ¡ 0, letting h1 to 0, we obtain

f py0q � 0. Here we employ the Tβ-continuity of the function t ÞÑ etLf py0q
which follows from the Tβ-continuity of the semigroup t ÞÑ etL. Since

1A ¤ f ¤ 1 and y0 P A we have a contradiction. Thus we have

infyPA Ey

�³ 1

2
h

0
f pX pρqq dρ� ¡ 0. In combination with (10.246) this yields

that
³
E
Px

�
τA ¤ 1

2
h
�   8. By induction with respect to k it follows that»

E

Px

�
0   τA ¤ 1

2
kh

�
dπEpxq ¤ k

»
E

Px

�
0   τA ¤ 1

2
h

�
dπEpxq,

(10.248)

and hence»
E

Px

�
τA ¤ 1

2
kh

�
dπEpxq ¤ pk � 1q »

E

Px

�
τA ¤ 1

2
h

�
dπEpxq   8.

(10.249)
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Let us show (10.248). Since on events of the form tτA ¡ su we have s�τ �ϑs
Px-almost surely, we have

Px

�
0   τA ¤ 1

2
pk � 1qh�� Px

�
0   τA ¤ 1

2
kh

�� Px

�
1

2
kh   τA ¤ 1

2
pk � 1qh�� Px

�
0   τA ¤ 1

2
kh

�� Px

�
0   τA � ϑ 1

2
kh ¤ 1

2
h,

1

2
kh   τA

�
(Markov property)� Px

�
0   τA ¤ 1

2
kh

�� Ex

�
P
Xp 1

2
khq �0   τA ¤ 1

2
h

�
,
1

2
kh   τA

�¤ Px

�
0   τA ¤ 1

2
kh

�� Ex

�
PXp 1

2
khq �0   τA ¤ 1

2
h

��
. (10.250)

Since the positive measure πE is etL-invariant from (10.250) we deduce»
E

Px

�
0   τA ¤ 1

2
pk � 1qh� dπEpxq¤ »

E

Px

�
0   τA ¤ 1

2
kh

�
dπEpxq � »

E

Ex

�
PXp 1

2
khq �0   τA ¤ 1

2
h

��
dπEpxq� »

E

Px

�
0   τA ¤ 1

2
kh

�
dπEpxq � »

E

e
1

2
khLPp�q �0   τA ¤ 1

2
h

� pxq dπEpxq
(etL-invariance for t � 1

2
kh)� »

E

Px

�
0   τA ¤ 1

2
kh

�
dπEpxq � »

E

Px

�
0   τA ¤ 1

2
h

�
dπEpxq.

(10.251)

Thus (10.248) follows by induction from (10.251). The inequality in

(10.241) follows from (10.249). Since

Ex
�
e�ατA� � α

» 8
0

Px rτA ¤ ss e�αsds
the equality in (10.242) follows from (10.241). Suppose that the invariant

measure πE is non-trivial. Then there remains to show that the quantity³
E
Px rτA ¤ ms dπEpxq is strictly positive for 0   m   8. For m Ò 8 the

quantity
³
E
Px rτA ¤ ms dπEpxq increases to»

E

Px rτA ¤ ms dπEpxq Ò »
E

Px rτA ¤ 8s dπEpxq � »
E

1 dπE ¡ 0.

(10.252)
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Assume, to arrive at a contradiction that, for some m P p0,8q the integral³
E
Px rτA ¤ ms dπEpxq vanishes. Then by invariance we have»

E

Px rm   τA ¤ 2ms dπEpxq� »
E

Px rm� τA � ϑm ¤ 2m, τA ¡ ms dπEpxq� »
E

Ex rτA � ϑm ¤ m, τA ¡ ms dπEpxq¤ »
E

Ex
�
PXpmq rτA � ϑm ¤ ms� dπEpxq

(the measure πE is emL-invariant)� »
E

Px rτA � ϑm ¤ ms dπEpxq � 0. (10.253)

Repeating the arguments in (10.253) then shows the equality»
E

Px rτA   8s dπEpxq (10.254)¤ »
E

Px rτA ¤ ms dπEpxq � 8̧
k�0

»
E

Px rkm   τA ¤ pk � 1qms dπEpxq � 0,

which contradicts the non-triviality of the measure πE . Finally, the con-

clusion in (10.249) completes the proof of Lemma 10.11. �

Proposition 10.7. Let πE be an invariant Radon measure. If the function

f ¥ 0 belongs to f P L1 pE, E , πEq, then
h

»
E

fpxq dπEpxq� »
E

Ex

�
EXpτAq �» h�τA�τA�ϑh�τA

0

f pXpρqq dρ� , τA ¤ h

�
dπEpxq� »

E

Ex

�» h�τA�ϑh

τA

f pXpρqq dρ, τA ¤ h

�
dπEpxq, (10.255)

and

lim
λ1Ó0λ1 »E RA �

λ1� fpxq dπEpxq � inf
λ1¡0

λ1 »
E

RA
�
λ1� fpxq dπEpxq � 0.

(10.256)
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First assume that the function f is such that the function RAp0qf is uni-

formly bounded. Since the Markov process is irreducible this is true when-

ever f is replaced by a function of the form f1U whenever U is an ap-

propriate open neighborhood of a given compact subset: see (9.119) in

Corollary 9.5.

Proof. Let f P L1 pE, E , πEq�CbpEq, and let πE be an etL-invariant

Radon measure. For the proof we need the equality in (10.272). From that

equality in conjunction with the invariance property of the measure πE we

obtain:�
e�hλ1 � 1

	»
E

RA
�
λ1� fpxq dπEpxq � 1� e�λ1h

λ1 »
E

fpxq dπEpxq� »
E

Ex

�
e�λ1τAEXpτAq �» τ0,h

A

0

e�λ1ρf pX pρqq dρ� , τA ¤ h

�
dπEpxq� »

E

Ex

�» h�τA�ϑh

τA

e�λ1ρf pX pρqq dρ, τA ¤ h

�
dπApxq, (10.257)

where τ0,hA � h� τA � τA � ϑh�τA : see (10.245). Upon letting λ1 Ó 0 we get

h

»
E

fpxq dπEpxq� h lim
λ1Ó0λ1 »E RA �

λ1� fpxq dπEpxq� »
E

Ex

�
EXpτAq �» τ0,h

A

0

f pX pρqq dρ� , τA ¤ h

�
dπEpxq� h lim

λ1Ó0λ1 »E RA �
λ1� fpxq dπEpxq� »

E

Ex

�» h�τA�ϑh

τA

f pX pρqq dρ, τA ¤ h

�
dπApxq. (10.258)

Next in (10.272) we let λ1 tend to zero to obtain the pointwise equality:�
ehL � I

�
RA p0q fpxq � » h

0

esLfpxq ds� Ex

�
EXpτAq �» h�τA�τA�ϑh�τA

0

f pX pρqq dρ� , τA ¤ h

�� Ex

�» h�τA�ϑh

τA

f pX pρqq dρ, τA ¤ h

�
. (10.259)
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From (10.258) and (10.259) we see that the function
�
I � ehL

�
RAp0qf be-

longs to L1 pE, E , πEq, and that»
E

�
I � ehL

�
RAp0qfpxq dπEpxq � lim

λ1Ó0λ1 »E RA �
λ1� dπEpxq� inf

λ1¡0
λ1 »

E

RA
�
λ1� dπEpxq. (10.260)

The fact that in (10.256) and in (10.260) we may replace the limit by an

infimum is due to the fact that the function λ1 ÞÑ λ1 ³
E
RA pλ1q dπEpxq is

decreasing. This claim follows from the resolvent property of the familytRA pλq : λ ¡ 0u and the invariance of the measure πE . The arguments

read as follows. Let λ1 ¡ λ2 ¡ 0. Then by the resolvent equation we have:

λ1RA �
λ1�� λ2RA �

λ2� � �
λ1 � λ2� �I � λ1RA �

λ1��RA �
λ2� . (10.261)

For g P L1 pE, E , πEq, g ¥ 0, we also have

λ1 »
E

RA
�
λ1� gpxq dπEpxq ¤ λ1 »

E

R
�
λ1� gpxq dπEpxq � »

E

gpxq dπEpxq.
(10.262)

From (10.261) and (10.262) the monotonicity of the function

λ1 ÞÑ λ1 »
E

RA
�
λ1� dπEpxq

easily follows. We shall prove that this limit vanishes, and consequently

the result in (10.256) follows. Therefore, for m ¡ 0 arbitrary, we consider

the following decomposition of the function λRApλqfpxq:
λRApλqfpxq � λEx

�» τA
0

e�λρf pXpρqq dρ� (10.263)� λEx

�» pτA�mq_0

0

e�λρf pXpρqq dρ�� λEx

�» τApτA�mq_0

e�λρf pXpρqq dρ� .
From the Markov property we infer

λEx

�» pτA�mq_0

0

e�λρf pXpρqq dρ�� λEx

�» pτA�mq_0

0

e�λρf pXpρqqPXpρq rτA ¡ ms dρ� . (10.264)

We also infer, again using the Markov property,

λEx

�» τApτA�mq_0

e�λρf pXpρqq dρ�



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

720 Markov processes, Feller semigroups and evolution equations� λEx

�» τApτA�mq_0

e�λρf pXpρqqPXpρq rτA ¤ ms dρ� . (10.265)

In both equalities (10.264) and (10.265) we used the Px-almost sure equality

ρ � τA � ϑρ � τA on the event tτA ¡ ρu. Next we estimate the expression

in (10.264):

λEx

�» pτA�mq_0

0

e�λρf pXpρqqPXpρq rτA ¡ ms dρ�� λ

» 8
0

e�λρEx �f pXpρqqPXpρq rτA ¡ ms , τA ¡ m
�
dρ¤ λ

» 8
0

e�λρEx �f pXpρqqPXpρq rτA ¡ ms dρ�� λRpλq �fp�qPp�q rτA ¡ ms� pxq. (10.266)

The expression in (10.265) can be rewritten and estimated as follows:

λEx

�» τApτA�mq_0

e�λρf pXpρqqPXpρq rτA ¤ ms dρ�� λ

» 8
0

e�λρEx �1rpτA�mq_0,τAqpρqf pXpρqqPXpρq rτA ¤ ms� dρ
(Markov property and ρ� τA � ϑρ � τA on tτA ¡ ρu Px-almost surely)� λ

» 8
0

e�λρEx�EXpρq�1rpτA�mq_0,τAqpρq�fpXpρqqPXpρqrτA ¤ ms, τA ¡ ρ
�

dρ¤ λ

» 8
0

e�λρEx �EXpρq �1rpτA�mq_0,τAqpρq� f pXpρqqPXpρq rτA ¤ ms� dρ.
(10.267)

Employing the invariance of the measure πE in the inequality in (10.266)

shows

λ

»
E

Ex

�» pτA�mq_0

0

e�λρf pXpρqqPXpρq rτA ¡ ms dρ� dπEpxq� λ

»
E

Rpλq �fp�qPp�q rτA ¡ ms� pxq dπEpxq� »
E

fpxqPx rτA ¡ ms dπEpxq. (10.268)
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A similar estimate for the term in (10.265) is somewhat more involved, but

it really uses the recurrence of the set A. Again using the invariance of the

measure πE for the expression in (10.267) yields:

λ

»
E

Ex

�» τApτA�mq_0

e�λρf pXpρqqPXpρq rτA ¤ ms dρ� dπEpxq¤ λ

» 8
0

e�λρ »
E

Ex
�
EXpρq �1rpτA�mq_0,τAqpρq� f pXpρqqPXpρq rτA ¤ ms�

dπEpxq dρ� λ

» 8
0

e�λρ »
E

Ex
�
1rpτA�mq_0,τAqpρq� f pxqPx rτA ¤ ms dπEpxq dρ� »

E

λ

» 8
0

e�λρEx �1rpτA�mq_0,τAqpρq� dρf pxqPx rτA ¤ ms dπEpxq¤ �
1� e�λm� »

E

f pxqPx rτA ¤ ms dπEpxq. (10.269)

In the final step of (10.269) we used the fact that τA   8 Px-almost surely

for all x P E. As a consequence of this we have

λ

» 8
0

e�λρEx �1rpτA�mq_0,τAqpρq� dρ� Ex

�
λ

» τApτA�mq_0

e�λρdρ� ¤ 1� e�λm
showing the final step in (10.269). From (10.263), (10.268), and (10.269)

we deduce:

λ

»
E

RApλqfpxq dπEpxq (10.270)¤ »
E

fpxqPx rτA ¡ ms dπEpxq � �
1� e�λm� »

E

f pxqPx rτA ¤ ms dπEpxq.
Here m ¡ 0 is arbitrary. Let ε ¡ 0 be arbitrary. First we choose m ¡ 0 so

large that the first term in the right-hand side of (10.270) is ¤ 1
2
ε. Then

we choose λ ¡ 0 so small that the second term in (10.270) is ¤ 1
2
ε as

well. As a consequence we see that (10.256) in Proposition 10.7 follows.

Together with (10.258), (10.259), and (10.259) this completes the proof of

Proposition 10.7. �

In the following crucial proposition we establish a strong link between QA-

invariant measures on A, and etL-invariant measures on E. In particular it

follows that invariant measures on E are unique whenever this is the case

on A.
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Proposition 10.8. Let the Borel probability measure πA on A and the

measure πE on E be related as follows. For all functions f P L1 pE, E , πEq
the equality»

A

Ex

�» τh
A

0

f pXpρqq dρ� dπApxq � h

»
E

f dπE (10.271)

holds. Then the following assertions are true:

(a) Let f P CbpEq, and λ1 ¥ 0. The following equalities hold (see (10.205)):�
e�hλ1ehL � I

	
RA

�
λ1� fpxq � » h

0

e�λ1sesLfpxq ds� Ex

�
e�λ1τAEXpτAq �» h�τA�τA�ϑh�τA

0

e�λ1ρf pX pρqq dρ� , τA ¤ h

�� Ex

�» h�τA�ϑh

τA

e�λ1ρf pX pρqq dρ, τA ¤ h

�
. (10.272)

(b) The measure πA is QA-invariant if and only if πE is etL-invariant for

all t ¥ 0.

(c) If the QA-invariant measure πA on the Borel field of A is given, then

(10.271) can be used to define the invariant measure πE on E.

(d) If the etL-invariant measure πE on the Borel field of E is given, then

(10.272) together with the equality (10.255) of Proposition 10.7 can be

used to define the invariant measure πA on the Borel field of A.

(e) If there exists only one QA-invariant probability measure πA, then the

etL-invariant measure πE is unique up to multiplicative constants.

(f) If πE is an invariant measure on E, and f belongs to L1 pE, E , πEq,
then the following inequality holds:

h

����»
E

fdπE

���� ¤ sup
yPAEy

�» h�τA�ϑh

0

|f pXpρqq| dρ�»
E

Px rτA ¤ hs dπEpxq.
(10.273)

Let πE be a etL-invariant measure. Notice that, with λ1 � 0, the equalities

in (10.272) together with (10.271) entail the equality:»
A

Ex

�» τ1,h
A

0

f pXpρqq dρ� dπApxq� »
E

Ex

�» τ1,h
A

τA

f pX pρqq dρ, τA ¤ h

�
dπEpxq � h

»
E

f dπE . (10.274)
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If f ¥ 0 belongs to CbpEq, and if πE is a positive measure on E , then we

use the first equality in (10.274) to associate to πE a Borel measure πA on

A. Since the invariant probability measures on A are unique, it follows that

the invariant measures on E are unique as well.

Proof. [Proof of Proposition 10.8.] (a). The equalities in (10.272) follow

from the equalities in (10.205) and (10.206).

(b). Let the measures πA on A and πE be related as in (10.271). Then

for t ¥ 0, and f P L1 pE, E , πEq we have

h

»
E

etLf dπE � »
A

Ex

�» τh
A

0

etLf pXpρqq dρ� dπApxq� »
A

Ex

�» τh
A

0

EXpρq rf pXptqqs dρ� dπApxq
(Markov property) � »

A

Ex

�» τh
A

0

f pXpρ� tqq dρ� dπApxq� »
A

Ex

�» t�τh
A

t

f pXpρqq dρ� dπApxq. (10.275)

We differentiate both sides of (10.275) to obtain

h

»
E

etLLf dπE� »
A

Ex
�
f
�
X

�
t� τhA

���
dπApxq � »

A

Ex rf pX ptqqs dπApxq� »
A

QAe
tLfpxq dπApxq � »

A

etLfpxq dπApxq. (10.276)

By setting t � 0 in (10.276) we see that πA is QA-invariant if and only if

πE is etL-invariant (or L-invariant). This proves assertion (a).

(c). Let πA be a (finite) Borel measure on A, and define the measure

πE on E by the equality in (10.271). If πA is an invariant measure on A,

then by assertion (b) πE is etL-invariant. This proves assertion (c).

(d). Let ME pλ1q be the space of all continuous functions g on E for

which there exists a function f P CbpEq such that gpxq, x P E, can be

written as in (10.272). Let MA pλ1q be the subspace of CpAq consisting

of functions g P ME pλ1q restricted to A. Let πE be a Borel measure on
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E which is a positive Radon measure with the property that for some fi-

nite constant C the inequality
³
E
gpxq dπEpxq ¤ C supxPA gpxq holds for all

g PMEp0q. Notice that in case a function g PMAp0q has two extensions g1
and g2 in MEp0q, then ³

E
g1pxq dπEpxq � ³

E
g2pxq dπEpxq. Define the func-

tional rΛA : MAp0q Ñ R by rΛApgq � ³
E
gpxq dπEpxq. Then by assumptionrΛApgq ¤ C supxPA gpxq, g P MEp0q, and hence by the observation aboverΛA is well-defined. By the Hahn-Banach extension theorem in combination

with the Riesz representation theorem there exists a measure πA on the

Borel field of A such that
³
A
gpxq dπApxq � ³

E
gpxq dπEpxq, g PMAp0q, and³

A
gpxq dπApxq ¤ C supxPA gpxq for all g P CpAq. Next, let πE be any non-

negative etL-invariant Radon measure on E. Then Lemma 10.11 implies³
E
Px rτA ¤ hs dπEpxq   8.

(e). Let π
p1q
E and π

p2q
E be two Radon measures on E which are etL-

invariant. Then the construction in (d) gives finite measures π
p1q
A and π

p2q
A

on the Borel field of A such that the equality»
A

Ex

�» τh
A

0

f pXpρqq dρ� dπpjqA pxq � h

»
E

f dπ
pjq
E (10.277)

is satisfied for all functions f P L1
�
E, E , π

pjq
E

	
, j � 1, 2: see (10.271).

Then (10.277) implies that the measures π
p1q
A and π

p2q
A are QA-invariant.

By uniqueness, they are constant multiples of each other. It follows that

the measures π
p1q
E and π

p2q
E are scalar multiples of each other.

This completes the proof of item (e).

(f). The inequality in (10.273) is a consequence of the first equality in

(10.262) in Proposition 10.7, and the fact that XpτAq P A Px-almost surely.

Altogether this completes the proof of Proposition 10.8. �

Let πE be an invariant Borel measure on E , let f ¥ 0 be a function in

CbpEq, and introduce the functions fα, α ¡ 0, by fαpxq � fpxqEx re�ατAs.
In the following proposition we show that the functions RApαqfα are very

appropriate to approximate functions of the form RAp0qf . In many aspects

they can be used to play the role of RApαqf for α ¡ 0 small. If f belongs

to CbpEq, RApαqfα is a member of L1 pE, E , πEq where πE is an invariant

measure. This result follows from Lemma 10.11; in particular see (10.259).

Proposition 10.9. In several aspects the functions RApαqfα, α ¡ 0, f P
CbpEq, have properties which are similar to those of the form RApαqf , f P
CbpEq, but with functions fα P L1 pE, E , πEq�CbpEq if f P CbpEq. If f P
L1 pE, E , πEq, then the family tαRApαqfα : α ¡ 0u is uniformly integrable.
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Proof. Let the functions fα, α ¡ 0, be as above: fαpxq � fpxqEx re�ατAs.
Observe that

RApαqfαpxq � Ex

�» τA
0

f pXpρqq e�αρEXpρq �e�ατA� dρ�� » 8
0

Ex
�
f pXpρqq e�αρEXpρq �e�ατA� , τA ¡ ρ

�
dρ

(Markov property)� » 8
0

Ex
�
f pXpρqq e�αρ�ατA�ϑρ , τA ¡ ρ

�
dρ

(τA is a terminal stopping time: ρ� τA � ϑρ � τA on the event tτA ¡ ρu)� Ex

�» τA
0

f pXpρqq dρ e�ατA� , (10.278)

and consequently limαÓ0RApαqfαpxq � RAp0qfpxq. Here we employed the

recurrence of the set A. By Lemma 10.11 we also see that the functions

Rαfα are members of L1 pE, E , πEq:
α

»
E

RApαqfαpxq dπEpxq ¤ α

»
E

Rpαqfαpxq dπEpxq� »
E

fαpxq dπEpxq   8. (10.279)

Next suppose that f P L1 pE, E , πEq. In order to prove that the fam-

ily tαRApαqfα : α ¡ 0u is uniformly integrable, it suffices to take f ¥ 0,

and f P CbpEq. Then the result follows from (10.256) in Proposition

10.7, because for such functions f the function α ÞÑ α
³
E
RApαqf dπE is

monotone increasing. Moreover, the following pointwise limits are valid:

limαÓ0 α ³E RApαqf � 0, limαÑ8 α ³E RApαqf � 1EzArf . In addition, by

(10.256) in Proposition 10.7 we have

lim
αÓ0 α »E RApαqf dπ � 0, and lim

αÑ8α »E RApαqf dπ � »
EzAr

f dπ.

From Scheffé’s theorem it then follows that the family tαRApαqf : α ¡ 0u
is uniformly integrable. Since 0 ¤ fα ¤ f , it also follows that the familytαRApαqfα : α ¡ 0u is uniformly πE -integrable.

This completes the proof of Proposition 10.9. �

In an earlier version of the present work the following lemma was used in

the proof of Theorem 10.12 which establishes the existence of an invariant

measure.
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Lemma 10.12. Let A be a compact recurrent subset of E such that Ar � A,

i.e. the collection of its regular points coincides with A itself. Put

HAgpxq � Ex rg pτA, X pτAqqs � Ex rg pτA, X pτAqq , τA   8s . (10.280)

Here g : r0,8q � E Ñ R is any bounded continuous function. Then the

following assertions hold true:

(a) Suppose that for every such function g the limit lim
λÓ0 λRpλqHAgpxq

exists uniformly on compact subsets of E. Then the familytλRpλqHA : λ ¡ 0u is Tβ-equi-continuous. In particular, it follows

that for every compact subset K in E there exists a function v P
H pr0,8q�Eq such that

sup
xPK sup

λ¡0

|λRpλqHAgpxq| ¤ supps,xqPr0,8q�E |vps, xqgps, xq| . (10.281)

(b) Suppose that for every compact subset K of E the following equality

holds:

inf
uPNpLq,vPDpLq supxPK sup

λ¡0

|λRpλq pHAg � u� Lvq pxq| � 0. (10.282)

Let g be any function in Cb pr0,8q�Eq. Then the limit

PHAgpyq � lim
λÓ0 λRpλqHAgpyq (10.283)

exists uniformly on compact subsets of E, and PHAg belongs to NpLq.
Consequently HAg � PHAg � pI � P qHAg decomposes the function

HAg into two functions PHAg P NpLq and pI � P qHAg which belongs

to Tβ-closure of RpLq.
(c) Suppose that for every function g P Cb pr0,8q �Eq the limit

PHAgpxq � lim
λÓ0 λRpλqHAgpxq exists uniformly on compact subsets of E.

(10.284)

If x0 P E and h ¡ 0, then limλÑ8 λRpλqPp�q rτA ¤ hs px0q ¡ 0.

Recall that a function v belongs to H pr0,8q� Eq provided that for ev-

ery α ¡ 0 the subset tps, xq P r0,8q�E : vps, xq ¥ αu is contained in a

compact subset of r0,8q�. In particular it follows that uniformly on any

compact subset of E we have limtÑ8 vpt, xq � 0.

Proof. (a). Let pgn : n P Nq be any sequence of functions in

Cb pr0,8q�Eq which decreases to zero pointwise on r0,8q�E. ThenHAgn
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decreases pointwise to 0 on E. By Dini’s lemma it decreases to zero uni-

formly on compact subsets of E. Define the functions Gn : r0,8s�E Ñ R

by

Gnpλ, xq �$'''&'''%λRpλqHApxq, 0   λ   8, x P E;

lim
αÓ0 αRpαqHAgnpxq, λ � 0, x P E;

lim
αÑ8αRpαqHAgnpxq � HAgnpxq, λ � 8, x P E.

(10.285)

Then the sequence pGn : n P Nq defined in (10.285) consists of continuous

functions which converges pointwise on r0,8s�E to zero. By Dini’s lemma

this convergence occurs uniformly on r0,8s �K where K is any compact

subset of E. It follows that for all compact subsets K of E

sup
xPK sup

λ¡0

λRpλqHAgnpxq decreases to 0 as n tends to 8.

By Corollary 2.3 in Chapter 2 it follows that such a family is Tβ-equi-

continuous. The inequality in (10.281) is a consequence of this equi-

continuity. For more details see §2.1.

(b). For u P NpLq and λ ¡ 0 we have λRpλqu � u, and for v P DpLq we
have λRpλqLv � λ pλRpλq � Iq v. It follows that limλÓ0 λRpλq pu� Lvq � u

uniformly on E. By assumption (10.282) we see that limλÓ0 λRpλqHAgpxq
exists uniformly on compact subsets of E. This shows assertion (b).

(c). Let K be a compact subset of E. By Assertion (a) there exists a

function v P H pr0,8q �Eq such that (10.281) is satisfied. In particular it

follows that

sup
xPK sup

λ¡0

|λRpλqHAgpxq| ¤ supps,xqPr0,8q�E |vps, xqgpsq| (10.286)

for all functions g P Cb pr0,8qq. We may choose continuous functions gm
satisfying 1rm,8q ¤ gm ¤ 1rm�1,8q. Then by (10.286) we have for x P K
and λ ¡ 0

λRpλqPp�q rτA ¡ ms pxq ¤ λRpλqEp�q rgm pτAqs pxq¤ supps,yqPr0,8q�E |v ps, yq gmpsq| . (10.287)

From the properties of the functions v and gm it follows that

inf
mPN sup

xPK sup
λ¡0

λRpλqPp�q rτA ¡ ms pxq � 0. (10.288)

As in (c) assume that for some h ¡ 0 limλÓ0 λRpλqPp�q rτA ¤ hs pxq � 0.

Then by the Markov property we also have

λRpλqPp�q rh   τA ¤ 2hs pxq
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» 8
0

e�λsesLPp�q rτA � ϑh ¤ h, τA ¡ hs pxq ds� λ

» 8
0

e�λsEx �EXpsq �PXphq rτA ¤ hs , τA ¡ h
��
ds¤ λ

» 8
0

e�λsEx �EXpsq �PXphq rτA ¤ hs�� ds� λ

» 8
0

e�λsEx �EXps�hq rτA ¤ hs� ds� λeλh
» 8
h

e�λsEx �EXpsq rτA ¤ hs� ds. (10.289)

Hence by (10.289) and by assumption we see that

lim
λÓ0 λRpλqPp�q rh   τA ¤ 2hs pxq � 0.

Consequently, we obtain

lim
λÓ0 λRpλqPp�q rτA ¤ ms pxq � 0 for all m ¡ 0. (10.290)

Since the set A is recurrent we have for m ¡ 0, m P N,

1 � λRpλqPp�q rτA   8s pxq� λRpλqPp�q rτA ¤ ms pxq � λRpλqPp�q r8 ¡ τA ¡ ms pxq. (10.291)

The second term in the right-hand side of (10.291) converges to 0 uniformly

in λ ¡ 0 when m Ñ 8. For every fixed m the first term in the right-

hind side of (10.291) converges to 0 when λ Ó 0: see (10.290). These two

observations contradict the equality in (10.291). It follows that for every

x P E and every h ¡ 0 the limit limλÓ0 λRpλqPp�q rτA ¤ hs pxq ¡ 0.

Altogether this completes the proof of Lemma 10.12. �

Corollary 10.5. Let the hypotheses and notation be as in Theorem 10.12.

Suppose that there exists a recurrent subset A subset such that

sup
xPAEx rh� τA � ϑhs   8 for some h ¡ 0. (10.292)

Then the invariant measure constructed in the proof of Theorem 10.12 is

finite. Here τA is the first hitting time of the subset A.

Proof. Corollary 10.5 follows from inequality (10.220) with f � 1 and

the inequalities (10.207) and (10.208) with 2h instead of h in the proof of

Theorem 10.12: see Definition 9.4 as well. �
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Suppose that x P Ar. Then the limits in (10.118) are in fact suprema,

provided the numbers h are taken of the form 2�nh1, h1 ¡ 0 fixed, and

n Ñ 8. Moreover, the expression in (10.118) vanishes for x P A. Notice

that the Tβ-equi-continuity of the family tλRpλq : 0   λ   1u is a conse-

quence of the Tβ-equi-continuity of the family
!
t�1

³t
0
eρLdρ : t ¡ 0

)
. The

latter is stronger than the standard condition in order that the Krylov-

Bogoliubov theorem holds. More precisely, if there exists a probability

measure ν such that some sequence t�1
n

³tn
0

�
eρL

��
ν dρ weakly converges to

a probability measure π, then π is L-invariant. For more details on the

Krylov-Bogoliubov theorem see e.g. Theorem 2.1.1 in [Cerrai (2001)]; the

reader might want to consult [Da Prato and Zabczyk (1996)] as well.

Proposition 10.10. Let the (embedded) Markov chain pXpnq : n P Nq be

Harris recurrent. Then the strict closure, i.e. the Tβ-closure, of RpLq�R1

coincides with CbpEq. If, in addition, the family tλRpλq : λ ¡ 0u is Tβ-

equi-continuous, then the chain pXpnq : n P Nq is positive Harris recurrent.

Proof. Let µ � µ2 � µ1 be a difference of positive Borel measures such

that
³
Lf dµ � 0 for all f P DpLq, and such that

³
1 dµ � 0. Then

³
1 dµ1 �³

1 dµ2, and since the chain pXpnq : n P Nq is Harris recurrent we know that

lim
λÓ0 �» λRpλqf dµ2 � »

λRpλqf dµ1


 � 0. (10.293)

This is a consequence of Orey’s theorem: see Theorem 10.2. Since
³
Lg dµ �

0 for all g P DpLq, we have»
f dµ � »

f dµ2 � »
f dµ1� lim

λÑ0

�»
λRpλqf dµ2 � »

λRpλqfdµ1


 � 0. (10.294)

From (10.294) we conclude that µ � 0. From the Hahn-Banach theorem it

then follows that RpLq � R1 is Tβ-dense in CbpEq.
If, in addition, the family tλRpλq : λ ¡ 0u is Tβ-equi-continuous, then

we define the invariant measure π by»
f dπ � lim

λÓ0 λRpλqf px0q . (10.295)

The limit in (10.295) exists for f P LDpLq � R1, and for f P RpLq it

vanishes. Since the chain pXpnq : n P Nq is Harris recurrent we know that

the limit in (10.295) does not depend on the choice of x0. Since the family
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f in the CbpEq which is the Tβ-closure of RpLq�R1. In addition this limit

is a probability measure on E, again by this Tβ-equi-continuity. So the

proof of Proposition 10.10 follows. �

Proposition 10.11. Let the hypotheses and notation be as in Proposition

10.5. Let f belong to the domain of L, and suppose that

Lfpxq � LEp�q rf pX pτAqqs pxq, x P Ar. (10.296)

Then the function x ÞÑ Ex
�
e�λτAf pτAq� belongs to the pointwise domain

of L, and the following equalities hold:pλI � LqEp�q �e�λτAf pX pτAqq� pxq � 0, x P EzAr, and (10.297)

lim
λÓ0  pλI � LqEp�q �e�λτAf pX pτAqq� pxq � pλI � Lq fpxq( � 0, x P Ar.

(10.298)

Note: neither equality (10.296) nor (10.298) is automatically satisfied. In

fact condition (10.296) is in fact kind of Wentzell type boundary condition.

Let f P CbpEq be such that (10.296) is satisfied. Then the function x ÞÑ
HAp0qfpxq � Ex rf pX pτAqqs is a function which is L-harmonic on EzAr,
it coincides with f on Ar, and in addition the functions Lf and LHAp0qf
coincide on the same set. We introduce the Wentzell subspace D

�
LW
A

�
of

DpLq by:
D
�
LW
A

� � tf P DpLq : f satisfies equality (10.296)u . (10.299)

Proof. [Proof of Proposition 10.11.] First we observe that for x P EzAr
and g in the pointwise domain of L we havepL� LAq gpxq � lim

tÓ0 "Ex rg pXptqqs � gpxq
t

� Ex rg pXptqq , τA ¡ ts � gpxq
t

*� lim
tÓ0 Ex rg pXptqq , τA ¤ ts

t
� 0, (10.300)

where in the final step of (10.300) we employed Lemma 10.1. We also havepλI � LAqHApλqfpxq � pλI � LAqEp�q �e�λτAf pX pτAqq� pxq� lim
δÓ0 Ex

�
e�λτAf pX pτAqq�� Ex

�
e�δλEXpδq �e�λτAf pX pτAqq� , τA ¡ δ

�
δ

(employ the Markov property)� lim
δÓ0 Ex

�
e�λτAf pX pτAqq�� Ex

�
e�δλ�λτA�ϑδf pX pδ � τA � ϑδqq , τA ¡ δ

�
δ
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(on the event tτA ¡ δu the equality δ � τA � ϑδ � τA holds)� lim
δÓ0 Ex

�
e�λτAf pX pτAqq , τA ¤ δ

�
δ

� 0, for x P EzAr. (10.301)

In the final step of (10.301) we again used Lemma 10.1. An application of

(10.300) and (10.301) to the function gpxq � HApλqfpxq shows the validity

of (10.297) for x P EzAr.
Next we treat the (important) case that x P Ar. Since the process

t ÞÑ e�λtf pXptqq � f pXp0qq � ³t
0
e�λsf pXpsqq ds is Px-martingale, we get

Ex
�
e�λτAf pX pτAqq�� fpxq� Ex
�
e�λτAf pX pτAqq � f pXp0qq�� �Ex �» τA

0

e�λs pλI � Lq f pXpsqq ds�� � » 8
0

e�λsEx rpλI � Lq f pXpsqq , τA ¡ ss ds� �RApλq pλI � Lq fpxq. (10.302)

We also have:pλI � LqEp�q �e�λτAf pX pτAqq � f pXp0qq� pxq� �
Lfpxq � LEp�q �e�λτAf pX pτAqq� pxq�Px rτA � 0s . (10.303)

In (10.303) we let λ tend to zero to obtain:

lim
λÓ0 pλI � LqEp�q �e�λτAf pX pτAqq � f pXp0qq� pxq� �

Lfpxq � LEp�q rf pX pτAqqs pxq�Px rτA � 0s . (10.304)

Here we use the fact that the subset A is recurrent, i.e. Px rτA   8s � 1,

x P E. So the following equality remains to be shown:

Lfpxq � LEp�q rf pX pτAqqs pxq, x P Ar.
However, this is assumption (10.296), which completes the proof of Propo-

sition 10.11. �

10.3 A proof of Orey’s theorem

In this section we will prove Orey’s convergence theorem as formulated in

Theorem 10.2. We will employ the formulas (10.17) and (10.18). First we

will define an accessible atom.
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Definition 10.4. LettpΩ,F ,Pq , pXpnq, n P Nq , pϑn, n P Nq , pE, Equ
be a time-homogeneous Markov process with a Polish state space E. Letpx,Bq ÞÑ P px,Bq be the corresponding probability transition function. A

Borel subset A is called an atom if x ÞÑ P px,Aq, x P A, does not depend on

x P A. It is called an accessible atom, if it is an atom such that P px,Aq ¡ 0,

x P A.
Lemma 10.13. Let A be an accessible atom and let x1 and x2 belong to

A. Then the measures Px1
and Px2

coincide.

Proof. Let Fn be a random variable of the form Fn � ±n
j�1 fj pXpjqq

where the functions fj : E Ñ R, 1 ¤ j ¤ n, are bounded non-negative

Borel functions. By the monotone class theorem it suffices to prove the

equality Ex1
rFns � Ex2

rFns. We will prove this equality by induction with

respect to n. For n � 1, the equality Ex1
rF1s � Ex2

rF1s follows from the

definition of atom:

Ex1
rF1s � » 8

0

P px1, tf1 ¥ ξuq dξ � » 8
0

P px2, tf1 ¥ ξuq dξ � Ex2
rF1s .
(10.305)

Next we consider

Ex1
rFn�1s � Ex1

�
FnEx1

�
fn�1 pXpn� 1qq �� Fn��

(Markov property) � Ex1

�
FnEXpnq rfn�1 pXp1qqs�

(induction hypothesis) � Ex2

�
FnEXpnq rfn�1 pXp1qqs�

(once again Markov property)� Ex2
rFn�1s . (10.306)

So from (10.305) and (10.306) the statement in Lemma 10.13 follows. �

Let A be an atom. Then we write EA rF s � Ex rF s, x P A. A similar

notation is in vogue for PA. From (10.18) together with Lemma 10.13 we

deduce the equality (x P E, f P L8 pE, Eq)
Ex rf pXpnqqs
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�
f pXpnqq , τ1A ¥ n

�
(10.307)� n�1̧

j�1

j̧

k�1

Px
�
τ1A � k

�
PA rXpj � kq P AsEA �

f pXpn� jqq , τ1A ¥ n� j
�
.

In addition we have
n�1̧

j�1

PA rXpjq P AsEA �
f pXpn� jqq , τ1A ¥ n� j

�� n�1̧

j�1

EA
�
EA

�
f pXpn� jqq , τ1A ¥ n� j

�
, Xpjq P A�� n�1̧

j�1

EA
�
EXpjq �f pXpn� jqq , τ1A ¥ n� j

�
, Xpjq P A�

(Markov property)� n�1̧

j�1

EA
�
f pXpnqq , j � τ1A � ϑj ¥ n, Xpjq P A�� EA rf pXpnqqs . (10.308)

Put

axpkq � Px
�
τ1A � k

�
, uApkq � PA rXpkq P As ,

pA,f pkq � EA
�
f pXpkqq , τ1A � k

�
, and

pA,f pkq � EA
�
f pXpkqq , τ1A ¥ k

�
. (10.309)

From (10.307), (10.308), and (10.309) we infer

Ex rf pXpnqqs � EA rf pXpnqqs� Ex
�
f pXpnqq , τ1A ¥ n

�� pax � uA � uAq � pA,f pn� 1q. (10.310)

Definition 10.5. Let n ÞÑ ppnq be a probability distribution on Nzt0u.
Define the function u : N

�t�1u Ñ r0, 1s as in (10.322) in Theorem 10.14

below. Then the function u is called the renewal function of the distribution

p.

The following proposition says that the function uA is the renewal function

corresponding to the distribution pA,1.

Proposition 10.12. Let the functions n ÞÑ pA,1pnq and n ÞÑ uApnq be

defined as in 10.309). Then the function uA is the renewal function corre-

sponding to the distribution pA,1.
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Proof. To see this we introduce the hitting times τkA, k positive integer

as follows: τk�1
A � inf

 
ℓ ¡ τkA : Xpℓq P A(, with τ0A � 0. Then it is easy

to show that τk1�k2A � τk1A � τk2A � ϑτk1 . Moreover, by the strong Markov

property the variables τk�1
A � τkA � τ1A � ϑkA are identically PA-distributed,

and PA-independent. Then the following identities hold:

uApnq � PA rXpnq P As � 8̧
k�1

PA
�
τkA � n

�� 8̧
k�1

PA

�
ķ

j�1

�
τ
j�1
A � τ

j
A

	 � n

� � 8̧
k�1

PA

�
ķ

j�1

τ1A � ϑτ j
A
� n

�� 8̧
k�1

p�kA,1. (10.311)

From (10.311) we see that the sequences pA,1pnq and uApnq are related as

the sequences ppnq and upnq in (10.322) of Theorem 10.14 below.

This completes the proof of Proposition 10.12. �

Then under appropriate conditions we will prove that every term in the

right-hand side of (10.310) tends to 0 when n Ñ 8. In order to obtain

such a result we will use some renewal theory together with a coupling

argument. Suppose that the atom A is recurrent and that the distribution

ppnq � pA,1pnq � PA
�
τ1A � k

�
is aperiodic, i.e. it satisfies (10.312). Then

the right-hand side of (10.310) converges to zero when nÑ8. This result

is a consequence of Theorem 10.14 below.

We need the following lemma.

Lemma 10.14. Let a, b and p be probability distributions on N. Suppose

that pp0q � 0 and p is aperiodic, i.e. suppose

g.c.d. tn ¥ 1, n P N, ppnq ¡ 0u � 1. (10.312)

Let tS0, S1, S2, . . .u and tS10, S11, S12, . . .u be sequences of positive integer val-

ued processes with the following properties:

(a). Each random variable Sj, and S1j, j ¥ 1, has the same distribution

ppkq.
(b). The variables S0 and S10 are independent: S0 has distribution apkq, and

S10 has distribution bpkq.
(c). The variables tS0, S1, S2, . . .u are mutually independent, and the same

is true for the sequence tS10, S11, S12, . . .u.
(d). The variables Sj and S1k are independent for all j and k P N.
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Let Gn be the σ-field generated by the couples tpS0, S
1
0q , . . . , pSn, S1nqu, and

let T pnq be the Gn-stopping time defined

T pnq � inf

#
m ¥ 0 :

m̧

j�0

Sj ¥ n� 1 and
m̧

j�0

S1j ¥ n� 1

+
. (10.313)

Let n ÞÑ V �pnq � �
V �
a pnq, V �

b pnq� be the bivariate linked forward recur-

rence time chain which links the processes n ÞÑ V �
a pnq �°T pnq

j�0 Sj � n and

n ÞÑ V �
b pnq � °T pnq

j�0 Sj � n. Then the process n ÞÑ V �pnq satisfies:
V �pn� 1q�$&%V �pnq � p1, 1q, on

 
V �
a pnq ¥ 2

(£ 
V �
b pnq ¥ 2

(
,

V �n� �
S1�T pnq � 1, S11�T pnq � 1

	
, on

 
V �
a pnq � 1

(¤ 
V �
b pnq � 1

(
.

(10.314)

Let P ppi, jq, pk, ℓqq, ppi, jq, pk, ℓqq P pNzt0uq2 � pNzt0uq2 be the probability

transition function of the process n ÞÑ V �pnq. Then P ppi, jq, pk, ℓqq is given
by

P ppi, jq, pi� 1, j � 1qq � 1, i ¡ 1, j ¡ 1;

P pp1, jq, pk, j � 1qq � ppkq, k ¥ 1, j ¡ 1;

P ppi, 1q, pi� 1, kqq � ppkq, i ¡ 1, k ¥ 1;

P pp1, 1q, pi, jqq � ppiqppjq, i ¡ 1, j ¡ 1,

(10.315)

and the other transitions vanish. Put

τ1,1 � inf
 
n P N : V �pnq � p1, 1q( . (10.316)

Then P rτ1,1   8s � 1, and the following coupling equalities holds:

T pτ1,1q
j̧�0

Sj � T pτ1,1q
j̧�0

S1j � τ1,1 � 1. (10.317)

As a consequence we have the following proposition.

Proposition 10.13. Put X�pnq � °n
j�0 Sj � °n

j�0 S
1
j. The equality in

(10.317) says that the process n ÞÑ X�pnq returns to zero in a finite time

τ� � T pτ1,1q with P-probability 1, no matter what its initial distribution is.

In other words the process n ÞÑ X�pnq is recurrent.
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Proof. [Proof of Lemma 10.14.] Fix pi, jq P pNzt0uq�pNzt0uq, and choose

M P N so large that

g.c.d. tM ¥ n ¥ 1, n P N, ppnq ¡ 0u � 1. (10.318)

A numberM for which (10.318) holds can be found using Bézout’s identity.

Suppose that the distribution n ÞÑ ppnq has period d. Then there exist

positive integers sj ¥ 1, 1 ¤ j ¤ N , such that p psjq ¡ 0, and such

that g.c.d. ps1, . . . , sNq � d. Then for certain integers kj , 1 ¤ j ¤ N ,

we have
°N
j�1 kjsj � d. By renumbering we may assume that kj ¥ 1

for 1 ¤ j ¤ N1, and kj ¤ �1 for N1 � 1 ¤ j ¤ N . Then we choose

M ¥ °N1

j�1 sj . In fact one may consider the smallest integer k ¥ 1 such

that k � °N
j�1 kjsj , where N P N, kj P Z, and p psjq ¡ 0. Then one

proves k � d, by using the fact that Z is a Euclidean domain. More

precisely, let k ¥ 1 be the smallest positive integer which can be written as

k � °N
j�1 kjsj . Then we write sj � qjk � rj with 0 ¤ rj   k and qj ¥ 0.

Then rj � sj � qjk P R � !°N
ℓ�1 ℓjsj : ℓj P Z

)
. Since 0 ¤ rj   k we infer

rj � 0. It follows that k is a divisor of sj , 1 ¤ j ¤ N . Since d P R, d
divides k. Since, in addition, g.c.d. ps1, . . . , sNq � d we infer k � d. So

we obtain Bézout’s identity: d � °N
j�1 kjsj for certain positive integers sj

with p psjq ¡ 0 and certain integers kj , 1 ¤ j ¤ N .

If the sequence tsj : p psjq ¡ 0u is aperiodic, then we choose d � 1 in

the above remarks.

Fix pi0, j0q P pNzt0uq � pNzt0uq, and choose M so large that pi0, j0q be-
longs to the square t1, . . . ,Mu � t1, . . . ,Mu, and that M ¥ °N1

j�1 kjsj

where 1 � °N1

j�1 kjsj � °N
j�N1�1 p�kjq sj with kj ¥ 1, 1 ¤ j ¤ N1,

and �kj ¥ 1, N1 � 1 ¤ j ¤ N , in Bézout’s identity. Then all paths

in the square t1, . . . ,Mu � t1, . . . ,Mu along which each one-time tran-

sition is strictly positive, i.e. either 1 (along a diagonal from north-

east to south-west) or ppkq ¡ 0 from a point on one of the “edges”tp1, jq : 1 ¤ j ¤Mu or tpi, 1q : 1 ¤ i ¤Mu of the square to the horizontal

line tpk, j � 1q : 1 ¤ k ¤Mu or the vertical line tpi� 1, kq : 1 ¤ k ¤Mu
respectively. Let τ1,1 be defined as is (10.316) with S0 with distribution δi
and S10 with distribution j. By (10.318) P-almost all paths pass throughp1, 1q after a finite time passage, and consequently we obtain

lim
nÑ8 lim

N 1Ñ8P

�
n¤
k�1

 
V �pkq � p1, 1q( �� Sj ¤M, S1j ¤M, 0 ¤ j ¤ N 1�
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nÑ8 lim

N 1Ñ8P

�
n¤
k�1

tτ1,1 � ku �� Sj ¤M, S1j ¤M, 0 ¤ j ¤ N 1� � 1.

(10.319)

Notice that the limit in (10.319), as N 1 tends to 8, can be interpreted as

the construction of the measure P conditioned on the event8£
j�0

 
Sj ¤M, S1j ¤M

(
.

The existence of this “conditional probability” follows from Kolmogorov’s

extension theorem in conjunction with the assumption that for each 0 ¤
j1   j2, pj1, j2q P N � N, the pairs

�
Sj1 , S

1
j1

�
and

�
Sj2 , S

1
j2

�
are P-

independent.

The collection of bounded paths along which the process V �pnq moves

with strictly positive probability and which miss the diagonal throughout

their life time eventually dy out, i.e. this event is negligible. The reason

for this is that at each time step the transition probability of such a path

is either 1 or else one of the quantities p psjq, 1 ¤ j ¤ N , where N is

the number occurring in Bézout’s identity, and that the non-one transition

probability occur infinitely many often. The P-negligibility then follows

from the theorem of dominated convergence. The other paths end up inp1, 1q in finite time. In (10.319) we letM tend to8 to obtain P rτ1,1   8s �
1. But then we see

Pi0,j0

� 8¤
n�1

 
V �pnq � p1, 1q(� � 1 (10.320)

where Pi0,j0 rAs � P
�
A
�� pS0, S

1
0q � pi0, j0q�, A P F . Since the pair pi0, j0q PpNzt0uq � pNzt0uq is arbitrary from (10.320) we get

i̧,j

apiqbpjqPi,j � 8¤
n�1

 
V �pnq � p1, 1q(� � 1. (10.321)

If now τ1,1 is defined as in (10.316), then (10.321) implies P rτ1,1   8s � 1.

This completes the proof of Lemma 10.14. �

Remark 10.9. For the equality in (10.319) see the argument in §10.3.1 of

[Meyn and Tweedie (1993b)] as well. For Bézout’s identity the reader is

referred to e.g. [Tignol (2001)] or to Lemma D.7.3 in [Meyn and Tweedie

(1993b)].
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The following result appears as Theorem 18.1.1 in [Meyn and Tweedie

(1993b)].

Theorem 10.14. Let a, b and p be probability distributions on N, and let

u : N
� t�1u Ñ r0,8s be the renewal function corresponding to n ÞÑ ppnq,

defined by up�1q � 0, up0q � 1, and for n ¥ 1

upnq � 8̧
j�0

pj�pnq � δ0pnq�ppnq� 8̧
j�2

¸
k1,...,kj ;0¤ki¤n;°j

i�1
ki�n p pk1q � � � p pkjq .

(10.322)

Suppose that p is aperiodic, i.e. suppose

g.c.d. tn ¥ 1, n P N, ppnq ¡ 0u � 1. (10.323)

Then

lim
nÑ8 |a � upnq � b � upnq| � 0, and (10.324)

lim
nÑ8 |a � upnq � b � upnq| � ppnq � 0, (10.325)

where ppnq �°
k¥n�1 ppkq.

In the proof of Theorem 10.2 the result in Theorem 10.14 will be applied

with apkq � Px
�
τ1A � k

�
, ppkq � pA,1pkq � PA

�
τ1A � k

�
, bpkq � δ0pkq, and,

consequently, upkq � PA rXpkq P As � uApkq. Notice that k ÞÑ uApkq is

the renewal function of the distribution pA,1pkq.
We follow the proof Theorem 18.1.1 in [Meyn and Tweedie (1993b)].

Proof. Let tS0, S1, S2, . . .u and tS10, S11, S12, . . .u be sequences of positive

integer valued processes with the properties (a), (b), (c) and (d) of Lemma

10.14:

(a). Each random variable Sj , and S1j , j ¥ 1, has the same distribution

ppkq.
(b). The variables S0 and S

1
0 are independent: S0 has distribution apkq, and

S10 has distribution bpkq.
(c). The variables tS0, S1, S2, . . .u are mutually independent, and the same

is true for the sequence tS10, S11, S12, . . .u.
(d). The variables Sj and S

1
k are P-independent for all pairs pj, kq P N�N.

We put Wj � Sj � S1j , and X�pnq � °n
j�0

�
Sj � S1j�. Notice that the

variables Wj and �Wj , j P N, j ¥ 1, have the same distributions. The

distribution of W0 � S0�S10 is determined by the distributions a of S0 and
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b of S10, and the fact that S0 and S10 are independent. We also introduce

the indicator variables Zapnq and Zbpnq, n P N:

Zapnq � $''&''% 1 if

j̧

i�0

Si � n for some j ¥ 0;

0 elsewhere.

(10.326)

Hence Zapnq � 1�8
j�0t°j

i�0
Si�nu. The indicator process Zbpnq is defined

similarly, but with S1j instead of Sj . Then P rZapnq � 1s � a � upnq, and
P rZbpnq � 1s � b � upnq. The coupling time of the renewal processes is

defined by

Ta,b � min

#
n � j̧

i�0

Si � j̧

i�0

S1i P N : n ¥ 1, for some j P N

+
. (10.327)

We also have

Ta,b � min

#
j̧

i�0

Si : j ¥ 1, X�pjq � 0

+
. (10.328)

Let T �a,b be defined by T �a,b � inf tj ¥ 1 : X�pjq � 0u. Then Ta,b �°T�
a,b

j�0 Sj � °T�
a,b

j�0 S
1
j . From Proposition 10.13 it follows that the coupling

time Ta,b is finite P-almost surely. Based on this property we will prove the

equalities in (10.324) and (10.325). Therefore we put

Za,bpnq � #
Zapnq, if n   Ta,b;

Zbpnq, if n ¥ Ta,b.
(10.329)

Then we have|a � upnq � b � upnq|� |P rZapnq � 1s � P rZbpnq � 1s|� |P rZa,bpnq � 1s � P rZbpnq � 1s|� |P rZa,bpnq � 1, Ta,b ¡ ns � P rZa,bpnq � 1, Ta,b ¤ ns�P rZbpnq � 1, Ta,b ¡ ns � P rZbpnq � 1, Ta,b ¤ ns|� |P rZapnq � 1, Ta,b ¡ ns � P rZbpnq � 1, Ta,b ¤ ns�P rZbpnq � 1, Ta,b ¡ ns � P rZbpnq � 1, Ta,b ¤ ns|¤ max pP rZapnq � 1, Ta,b ¡ ns ,P rZbpnq � 1, Ta,b ¡ nsq¤ P rTa,b ¡ ns . (10.330)

Since P rTa,b   8s � 1, the inequality in (10.330) yields the equality in

(10.324). Next we consider the backward recurrence chains V �
a pnq and
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V �
b pnq for the renewal processes of the sequences tS0, S1, S2, . . .u andtS10, S11, S12, . . .u defined by respectively:

V �
a pnq � min

#
n� ķ

j�0

Sj :
ķ

j�0

Sj ¤ n

+� min

#
n� ķ

j�0

Sj :
ķ

j�0

Sj ¤ n   k�1̧

j�0

Sj

+
,

and

V �
b pnq � min

#
n� ķ

j�0

S1j : ķ

j�0

S1j ¤ n

+� min

#
n� ķ

j�0

S1j : ķ

j�0

S1j ¤ n   k�1̧

j�0

S1j+ . (10.331)

It follows that there exists a random non-negative integer Kapnq which

satisfies
°Kapnq
j�0 Sj ¤ n   n � 1 ¤ °Kapnq�1

j�0 Sj , and hence V �
a pnq �

n � °Kapnq
j�0 Sj . For the moment fix 0 ¤ m ¤ n. Since the variablestS0, S1, S2, . . .u are mutually independent, S0 has distribution apkq, and

the others have distribution ppkq we have

P
�
V �
a pnq � m

� � 8̧
k�0

P

�
n� ķ

j�0

Sj � m,

k�1̧

j�0

Sj ¥ n� 1

�� 8̧
k�0

P

�
ķ

j�0

Sj � n�m, Sk�1 ¥ m� 1

�� 8̧
k�0

P

�
ķ

j�0

Sj � n�m

�
P rSk�1 ¥ m� 1s� 8̧

k�0

a � p�kpn�mqppmq (10.332)

where, with a notation we employed earlier, ppmq � °8
j�m�1 ppjq. Of

course, for the process V �
b pnq we have a similar distribution with b instead

of a. From (10.332) and a similar expression for P
�
V �
b pnq � m

�
we also

infer

sup
A�N

��P �V �
a pnq P A�� P

�
V �
a pnq P A���� 1

2

8̧
m�0

��P �V �
a pnq � m

�� P
�
V �
a pnq � m

���
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2

ņ

m�0

|a � upn�mqppmq � b � upn�mqppmq|� 1

2
|a � u� b � u| � ppnq. (10.333)

It also follows that on the event Aa,bpnq defined by

Aa,bpnq � $&%Ta,b � T�
a,b

j̧�0

Sj ¤ n

,.-
the P-distributions of V �

a pnq and V �
b pnq coincide. This is a consequence of

the strong Markov property of the process
!�°j

i�0 Sj ,
°j
i�0 S

1
j

	
: j P N

)
:

P
�
V �
a pnq P A, Aa,bpnq�� 8̧
k�0

P

��n� T�
a,b

�k
j̧�0

Sj P A, Ta,b�k
j̧�0

Sj ¤ n   T�
a,b

�k�1

j̧�0

Sj

��� 8̧
k�0

E

���P���n� T�
a,b

�k
j̧�0

Sj P A, T�a,b
�k

j̧�0

Sj ¤ n   T
|ast

a,b
�k�1

j̧�0

Sj
�� GTa,b

������
(strong Markov property together with the definition of Ta,b � °T�

a,b

i�0 Sj ,

and the fact that the variables Sj and S
1
j, j ¥ 1, heve the same distribution)� 8̧

k�0

E

��P��n� T�
a,b

�k
j̧�0

S1j P A, T�a,b
�k

j̧�0

S1j ¤ n   T�
a,b

�k�1

j̧�0

S1j �� GT�
a,b

����� 8̧
k�0

P

��n� T�
a,b

�k
j̧�0

S1j P A, Ta,b�k
j̧�0

S1j ¤ n   T�
a,b

�k�1

j̧�0

S1j��� 8̧
k�0

P

��n� ķ

j�0

S1j P A, ķ

j�0

S1j ¤ n   k�1̧

j�0

S1j , T�a,b

j̧�0

S1j ¤ n

��� P
�
V �
b pnq P A, Aa,bpnq� . (10.334)

Here we wrote Gn � σ
��
Sj , S

1
j

�
: 0 ¤ j ¤ n

�
, and

GT�
a,b

� 8£
n�0

!
A P G : A

£ 
T �a,b ¤ n

( P Gn
)
.
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From (10.334) we infer��P �V �
a pnq P A�� P

�
V �
b pnq P A���� ��P �V �

a pnq P A,Aa,bpnq�� P
�
V �
a pnq P A,ΩzAa,bpnq��P �V �

b pnq P A,Aa,bpnq�� P
�
V �
b pnq P A,ΩzAa,bpnq���� ��P �V �

a pnq P A,ΩzAa,bpnq�� P
�
V �
b pnq P A,ΩzAa,bpnq���¤ P rΩzAa,bpnqs �¤ P

��T�a,b

j̧�0

Sj ¥ n

�� . (10.335)

From (10.333), (10.334) and (10.335) we deduce|a � u� b � u| � ppnq ¤ 2P

��T�a,b

j̧�0

Sj ¥ n

�� . (10.336)

Since by Proposition 10.13 the process X�pnq is recurrent, and hence

P

��Ta,b � T�
a,b

j̧�0

Sj   8�� � 1,

it follows from (10.336) that limnÑ8 |a � u� b � u| � ppnq � 0. However,

this is the same as equality (10.325).

This completes the proof of Theorem 10.14 �

Before we complete the proof of 10.2 we insert some definitions which are

taken from [Meyn and Tweedie (1993b)]. Let pXpnq,PxPEq be a Markov

chain with the property that all measures B ÞÑ P p1, x, Bq � Px rXpnq P Bs,
x P E, are equivalent. Fix x0 P E. We say that the Markov chain is recur-

rent, if for all subsets B P E with P p1, x0, Bq ¡ 0 we have Px
�
τ1B   8� ¡ 0.

Definition 10.6. A subset C P E is called small if there exists m P N,

m ¥ 1, and a non-trivial positive Borel measure νm such that the inequality

P pm,x,Bq ¥ νmpBq (10.337)

holds for x P C and all B P E .

The following definition also occurs in formula (10.11) in Definition 10.1.

Definition 10.7. A Markov chain tXpnq,PxunPN,xPE is called aperiodic if

there exists no partition of E � pD0, D1, . . . , Dp�1q for some p ¥ 2 such

that for all i P N

P
�
Xpiq P Dimod ppq|Xp0q P D0

� � »
D0

Px
�
Xpiq P Dimod ppq� dµ0pxq � 1,

(10.338)
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for some initial probability distribution µ0.

A Markov chain tXpnq,PxunPN,xPE having initial distribution µ0 is called

periodic if there exists p ¥ 2 and a partition E � pD0, D1, . . . , Dp�1q such
that (10.338) holds. The largest d for which (10.338) holds is called the

period of the Markov chain.

Let tXpnq,PxunPN,xPE be an aperiodic P pp1, x0, �q-irreducible Markov chain.

If there exists a ν1-small set A with ν1pAq ¡ 0, then the Markov chaintXpnq,PxPEunPN,xPE is called strongly aperiodic.

The following theorem is proved in [Meyn and Tweedie (1993b)]: see theo-

rems 5.2.1 and 5.2.2.

Theorem 10.15. Let tXpnq,PxunPN,xPE be a P p1, x0, �q-irreducible
Markov chain. Then for any A P E with P p1, x0, Aq ¡ 0 there exists

m P N, m ¥ 1, together with a νm-small set C � A with P p1, x0, Cq ¡ 0

such that νmpCq ¡ 0.

Remark 10.10. Suppose that all measures B ÞÑ P p1, x, Bq, B P E , x P E,

are equivalent, then analyzing the proof of Theorem 5.2.1 in [Meyn and

Tweedie (1993b)] shows that in Theorem 10.15 we may choose m � 3.

The following corollary is an immediate consequence of Definition 10.7 and

Theorem 10.15.

Corollary 10.6. Let tXpnq,PxunPN,xPE be a P p1, x0, �q-irreducible aperi-

odic Markov chain. Then there exists m P N such that the skeleton chaintXpmnq,PxunPN,xPE is strongly aperiodic, and P p1, x0, �q-irreducible.
Remark 10.11. In fact the skeleton chain tXpmnq,PxunPN,xPE is

P pm,x0, �q-irreducible, provided that the chain tXpnq,PxunPN,xPE is also

P p1, x0, �q-irreducible, and all measures of the form B ÞÑ P p1, x0, Bq � 0

are equivalent, i.e. have the same negligible sets. Suppose that B P E is

such that P pm,x0, Bq � 0. Then

0 � P pm,x0, Bq � »
P pm� 1, x0, dyqP p1, y, Bq . (10.339)

From (10.339) we see that P p1, y, Bq � 0 for P pm� 1, x0, �q-almost all

y P E. Since P pm� 1, x0, Eq � 1, it follows that P p1, y, Bq � 0 for at

least one y P E. But then P p1, x0, Bq � 0 because all measures of the form

B ÞÑ P p1, x0, Bq � 0 are equivalent.
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The following theorem is a consequence of Proposition 9.5, Lemma 9.4, and

Theorem 10.15.

Theorem 10.16. LettpΩ,F ,Pxq , pXpnq, n P Nq , pϑn, n P Nq , pE,N qu (10.340)

be a Markov chain with the property that all Borel measures B ÞÑ
P p1, x, Bq � Px rXp1q P Bs, x P E, are equivalent. In addition suppose that

for every Borel subset B the function x ÞÑ P p1, x, Bq is continuous. Let

there exist a point x0 P E such that every open neighborhood of x0 is recur-

rent. Then there exists a compact recurrent subset, and all Borel subsets B

for which P p1, x0, Bq ¡ 0 are recurrent in the sense that Px
�
τ1B   8� � 1

for all x P B. If, moreover, the Markov chain in (10.340) is aperiodic,

then there exists an integer m P N, m ¥ 1, and a compact m-small set

A such that νmpAq ¡ 0 which is compact. Here the measure νm satisfies

P pm,x,Bq ¥ νmpBq for all B P B and all x P A.
Proof. The first two assertions are consequences of respectively Propo-

sition 9.5 and Lemma 9.4. The final assertion is a consequence of Theo-

rem 10.15, and the fact that Borel measures on a Polish space are inner-

regular. �

Among other things the following lemma reduces the proof of Orey’s theo-

rem for arbitrary irreducible aperiodic Markov chains to that for arbitrary

irreducible strongly aperiodic Markov chains.

Lemma 10.15. Let µ1 and µ2 be probability measures on E. Then the

sequence n ÞÑ ´
Var pP pn, x, �q � P pn, y, �qq dµ1pxqdµ2pyq is monotone de-

creasing.

Proof. Fix px, yq P E �E. The expression

Var pP pn� 1, x, �q � P pn� 1, y, �qq
can be rewritten as follows

Var pP pn� 1, x, �q � P pn� 1, y, �qq� sup

"����» pP pn� 1, x, dzq � P pn� 1, y, dzqq fpzq dz���� : }f}8 ¤ 1

*� sup

"����» pP pn, x, dwq � P pn, y, dwqq » P p1, w, dzqfpzq dz���� : }f}8 ¤ 1

*
(notice that

��³ P p1, w, dzqfpzq�� ¤ }f}8, w P E)¤ Var pP pn, x, �q � P pn, y, �qq . (10.341)

The inequality in (10.341) yields Lemma 10.15. �
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We will also use the Nummelin splitting of general (Harris) recurrent chains.

This splitting technique is taken from [Meyn and Tweedie (1993b)], §5.1

and §17.3.1. With a strongly aperiodic irreducible chain it associates a split

chain with an accessible atom.

Let the Markov chain (10.340) have the properties described in Theorem

10.16. Then the Markov tXpnq,PxunPN,xPE is aperiodic: see Proposition

10.1. From Corollary 10.6 it follows that there exists m P N, m ¥ 1, such

that the skeleton Markov chain tXpmnq,PxunPN,xPE is strongly aperiodic.

Definition 10.7 yields the existence of a compact recurrent subset C such

that P p1, x0, Cq ¡ 0 together with a probability measure ν on E such that

ν pCq � 1, and such that the following minorization condition is satisfied:

P pm,x,Bq ¥ δ1CpxqνpBq, for all x P X , and all B P E . (10.342)

In the presence of a subset C and a constantm P N such that (10.342) holds

for some probability measure ν with νpCq � 1 we will construct a split chain! qXpnq � pXpmnq, Y pnqq , qPx,ε)
nPN,xPE, ε�0 or 1

. The m-step Markov chaintXpmnq,PxunPN,xPE is strongly aperiodic, and it may be split to form a

new chain with an accessible atom C � t1u. Momentarily we will explain

how the construction of this splitting can be performed.

In order to distinguish the new split Markov chain and the old skeleton

chain we will introduce some new notation. We let the sequences of ran-

dom variables pY pnq, n P Nq attain the values zero and one. The value of

Y pnq indicates the level of the split m-skeleton at time mn. The split chain! qXpnq � pXpmnq, Y pnqq , qPx,ε)
nPN,xPE, ε�0 or 1

can be described in the fol-

lowing manner. Following Meyn and Tweedie [Meyn and Tweedie (1993b)]

we write
! qXpnq � xi

) � tXpnq � x, Y pnq � iu, x P E, i � 0 or i � 1. The

new state space qE is given by qE � E�t0, 1u; qE is the Borel field of qE. The

σ-field qFk stands forqFk,ℓ � σ pX pj1q , Y pj2q : 0 ¤ j1 ¤ k, 0 ¤ j2 ¤ ℓq .
Let λ be any Borel measure on E , then λ is split as a measure λ� on qE in

the following fashion. Let A P E and put A0 � A�t0u, and A1 � A� t1u.
Then the marginal measures of λ� are given by

λ� pA0q � p1� δqλ�A£
C
	� λ

�
A
£ pEzCq	 ,

λ� pA1q � δλ
�
A
£
C
	
.

,/./- (10.343)
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Notice the equality λ� pA0

�
A1q � λpAq, and λ� pA0q � λpAq when A

is a subset of EzC. In other words only subsets of C are split by this

construction.

The splitting of the skeleton tXpnmq,PxunPN,xPE is carried out as fol-

lows. Define the split kernel qP pm,xi, Aq, xi P qE, A P qE byqP pm,x0, �q � P pm,x, �q� , x0 P E0zC0;qP pm,x0, �q � P pm,x, �q� � δν�p�q
1� δ

, x0 P C0;qP pm,x1, �q � δν�p�q, x1 P E1.

,///.///- (10.344)

On E1 � E � t1u the distribution of the split chain is also determined by

prescribing the following conditional expectations:qE�
m¹
j�1

fj pXpnm� jqq , Y pnq � 1
�� qFnm,n�1; Xpnmq � x

�� qE�
m¹
j�1

fj pXpjqq , Y p0q � 1
�� Xp0q � x

�� δEx

�
m¹
j�1

fj pXpjqq r px,Xpmqq� , (10.345)

where the Borel measurable function px, yq ÞÑ rpx, yq is the Radon-Nikodym
derivative:

rpx, yq � 1Cpxq νpdyq
P pm,x, dyq . (10.346)

By putting fj � 1, 1 ¤ j ¤ m� 1, in (10.346) we see thatqE �
fm pX ppn� 1qmqq , Y pnq � 1

�� qFnm,n�1; Xpnmq � x
�� δEx rfm pXpmqq r px,Xpmqqs � δ1Cpxq » fmpyqdνpyq. (10.347)

By taking fm � 1 in (10.347) we getqP �Y pnq � 1
�� qFnm,n�1;Xpnmq � x

� � δ1Cpxq. (10.348)

By Bayes rule applied to (10.347) and (10.348) we obtainqE �
f pX ppn� 1qmqq �� qFnm,n;Xpnmq � x, Y pnq � 1

� � »
fpyqdνpyq.

(10.349)
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Let fj, 0 ¤ j ¤ N , be bounded Borel functions on E, and let the numbers

εj , 0 ¤ j ¤ N , be equal to 0 or 1. From the tower property of conditional

expectations, the Markov property of the process"�qΩ, qF , qPpx,iq	px,iqPE�t0,1u ,� qXpnq, n ¥ 0
	
,
� qE, qE	* , (10.350)

and (10.349) we infer, with

Fn�1 � N¹
j�0

fj pXppn� 1qm� jqq δεj pY pj � n� 1qq ,
thatqEx,1 �Fn�1

�� qFnm,n�� qE �
Fn�1

�� qFnm,n;Xpnmq � x, Y pnq � 1
�� qE �qE �

Fn�1

�� qFpn�1qm,n�1

� �� qFnm,n;Xpnmq � x, Y pnq � 1
�� qE�qE�Fn�1

�� σpXppn� 1qmq, Y pn� 1qq� �� qFnm,n;Xpnmq � x, Y pnq � 1
�� » qE �

Fn�1

�� σ pY pn� 1qq ;Xppn� 1qmq � y
�
dνpyq (10.351)� » qEy,ε0 � N¹

j�0

fj pXpjqq δεj pY pjqq� dνpyq. (10.352)

The equality in (10.351) yields the qPx,1-independence of the following two

σ-fields,

given that Y pnq � 1: qFnm,n � σ pXpiq, Y pjq : 0 ¤ i ¤ nm, 0 ¤ j ¤ nq andqF pn�1qm,n�1 � σ pXpiq, Y pjq : i ¥ pn� 1qm, j ¥ n� 1q.
From (10.351) it also follows that for f ¥ 0 and Borel measurable, k P N,

k ¥ 1, and ε � 0 or 1,qEx,1 �f pX ppn� 1qm� kqq δε pY ppn� 1qm� kqq �� qFnm,n�� qE �
f pX ppn� 1qm� kqq δε pY ppn� 1qm� kqq ��qFnm,n;Xpnmq � x, Y pnq � 1

� � »
Ey rf pXpkqqs dνpyq. (10.353)

From (10.353) we infer by taking expectation with respect to qEx,1 thatqEx,1 rf pX ppn� 1qm� kqq δε pY ppn� 1qm� kqqs � »
Ey rf pXpkqqs dνpyq,
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and consequently, the subset C�t1u serves as an atom for the split Markov

chain !pXpmnq, Y pnqq , qPx,ε)px,εqPE�t0,1u . (10.354)

It is assumed that the process in (10.354) is a time-homogeneous Markov

chain with transition function qP pnm, xi, Aq, n P N, xi � px, iq P E�t0, 1u.
Here the “first-step” transition function P pm,xi, Aq is given by (10.344).

By the Markov property it then follows that the transition function

P pnm, xi, Aq satisfies the Chapman-Kolmogorov equation, i.e. the equality» qE qP pjm, xi, dyjq qP pkm, yj , Aq � qP ppj � kqm,xi, Aq (10.355)

holds for all xi P qE and A P qE and j, k P N. Compare all this with the

Markov chain in (10.350).

The following theorem appears as Theorem 5.1.3 in Meyn and Tweedie.

Theorem 10.17. Let δ ¡ 0, the probability measure ν, and m P N. m ¥ 1

be as in (10.342). Let ϕ be a σ-finite measure on E. Suppose that the func-

tion P pnm, xi, Aq serves as a transition function for the Markov process

in (10.354). In particular the Chapman-Kolmogorov identity (10.355) is

satisfied. Then the following assertions hold:

(a) The chain tXpnmq, PxunPN,xPE is the marginal chain of! qXpnmq � pXpnmq, Y pnqq , qPx,i)
nPN,px,iqPE�t0,1u , (10.356)

in the sense that the equality»
E

P pkm, x,Aq dλpxq � » qE qP �
km, yi, A0

¤
A1

	
dλ� pyiq (10.357)

holds for all Borel measures λ, all A P E and all k P N.

(b) If the Markov chain in (10.356) is ϕ�-irreducible, then the Markov

chain tXpnmq, Pxu is ϕ-irreducible.

(c) If the chain tXpnmq, PxunPN,xPE is ϕ-irreducible with ϕpCq ¡ 0, then

the split chain in (10.356) is ν�-irreducible, and C�t1u is an accessible

atom for the split chain (10.356).

For the definition of accessible atom the reader is referred to Definition

10.4.

Proof. (a). It suffices to prove (10.357) with λ � δx, the Dirac measure

at x P E. We will employ induction with respect to k. First assume that
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k � 1. By (10.343), (10.344) and the equality ν pEzCq � 0 for x P EzC we

have» qE dδ�x pyiq qP�m, yi, A0

¤
A1

	 � qP�m,x0, A0

¤
A1

	� qP�m,x1, A0

¤
A1

	� P pm,x, �q��A0

¤
A1

	� ν��A0

¤
A1

	 � P pm,x,Aq � ν
�
A
£pEzCq	� P pm,x,Aq . (10.358)

Next let x P C. Again by employing (10.343) and (10.344) we infer» qE dδ�x pyiq qP �
m, yi, A0

¤
A1

	� »
E�t0u dδ�x pyiq qP �

m, yi, A0

¤
A1

	� »
E�t1u dδ�x pyiq qP �

m, yi, A0

¤
A1

	� p1� δq qP �
m,x0, A0

¤
A1

	� δ qP �
m,x1, A0

¤
A1

	� p1� δqP pm,x, �q� pA0

�
A1q � δν� pA0

�
A1q

1� δ
� δν� �A0

¤
A1

	� P pm,x, �q� �A0

¤
A1

	 � P pm,x,Aq . (10.359)

The equalities (10.358) (for x P EzC) and (10.359) (for x P C) yield asser-

tion (a) for n � 1 and λ � δx. From Fubini’s theorem assertions (a) is then

also true for any bounded measure λ.

Next we assume that the equality in (10.357) holds for 1 ¤ k ¤ n. First

we notice that» qE λ� pdxiq qP pm,xi, �q � �»
E

λpdxqP pm,x, �q
�
. (10.360)

Using the Chapman-Kolmogorov equation for the probability transition

function qP pkm, xi, Aq in combination with (10.360) and induction then

shows » qE λ� pdxiq qP pnm, xi, �q � �»
E

λpdxqP pnm, x, �q
�
. (10.361)

Here we need the Chapman-Kolmogorov identity (10.355) for A of the form

B0

�
B1 with B P E . For k � n� 1 we then have»
E

λpdxqP ppn� 1qm,x,Aq � »
E

λpdxqP pnm, x, dyq P pm, y,Aq� » qE �»
E

λpdxqP pnm, x, �q
� pdyjq qP �
m, yj, A0

¤
A1
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E

λpdxqP pnm, x, �q
� pdyjq qP �
m, yj, A0

¤
A1

	
(apply equality (10.361))� » qE λ� pdxiq » qE qP pnm, xi, dyjq qP �

m, yj , A0

¤
A1

	
(Chapman-Kolomogorov (10.355))� » qE λ� pdxiq qP �pn� 1qm,xi, A0

¤
A1

	
. (10.362)

The assertion in (a) follows from (10.362). Assertion (b) follows from (a)

with ϕ instead of λ. In order to prove (c) we observe that C�t1u is an atom

for the Markov chain in (10.356), which is a consequence of the ultimate

equality in (10.344). If ϕpCq ¡ 0, then from the minorization property in

(10.342) it follows that the split chain (10.356) is ν�-irreducible, and that

C � t1u is an accessible atom.

Altogether this completes the proof of Theorem 10.17. �

Next we prove Orey’s theorem, i.e. we prove Theorem 10.2.

Proof. [Proof of Theorem 10.2.] We distinguish three cases:

(i) The irreducible recurrent chain tXpnq,PxuxPE contains an accessible

atom.

(ii) The irreducible recurrent chain is strongly aperiodic.

(iii) The irreducible recurrent chain is aperiodic.

In case the irreducible recurrent chain contains an accessible atom A we

use formula (10.310) to obtain:|Ex rf pXpnqqs � EA rf pXpnqqs|¤ }f}8 �
Px

�
τ1A ¥ n

�� pax � uA � uAq � pA,1pn� 1q� . (10.363)

Here f P CbpEq is arbitrary, and the sequences are axpnq � Px
�
τ1A � n

�
,

uApnq � PA rXpnq P As, and pA,f pnq are chosen as in (10.309). In fact

pA,f pkq � EA
�
f pXpkqq , τ1A � k

�
, and

pA,f pkq � EA
�
f pXpkqq , τ1A ¥ k

�
. (10.364)

Let n tend to 8 in (10.363). Since Px rτA   8s � 1 the first term in

the right-hand side of (10.363) tends to zero uniformly in f provided that}f}8 ¤ 1. The equality (10.325) in Theorem 10.14 yield that the second
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term in the right-hand side of (10.363) tends to zero, again uniformly in f

provided }f}8 ¤ 1. As a consequence we see that

lim
nÑ8Var pP pn, x, �q � P pn,A, �qq� lim

nÑ8 sup t|Ex rf pXpnqqs � EA rf pXpnqqs| : }f}8 ¤ 1u � 0. (10.365)

By the triangle inequality and the dominated convergence theorem the

equality in (10.15) in Theorem 10.2 is a consequence of (10.365). This

proves assertion (i) in the beginning of this proof.

Next we will prove (10.15) in Theorem 10.2 in case the recurrent Markov

chain tXpnq,PxuxPE is strongly aperiodic. This will be a consequence of

Nummelin’s splitting technique, and the fact that for Markov chains with an

accessible atom Orey’s theorem holds: see the arguments following equality

(10.365). If the chain tXpnq,PxunPN,xPE is strongly aperiodic, then we

know that inequality (10.342) holds with m � 1 for some recurrent subset

C, and a probability measure ν on E with νpCq � 1 (and P p1, x0, Cq ¡ 0).

Using this subset C and this measure ν we may construct the split chain in

(10.356) with marginal chain tXpnq,PxunPN,xPE (i.e. (10.357) is satisfied),

and for which C � t1u is an accessible atom. These claims follow from

assertion (b) and (c) in Theorem 10.17. Since the subset C � t1u is an

accessible atom for the split chain in (10.356), we know that Orey’s theorem

holds for the split chain. The latter is a consequence of assertion (i), which

in turn is a consequence of (10.365). Let x and y P E. Then we infer

Var pP pn, x, �q � P pn, y, �qq¤ 2 sup
APE |P pn, x,Aq � P pn, y, Aq|� 2 sup
APE ������� ¼qE� qE � qP �

n, xi, A0

¤
A1

	� P
�
n, yj, A0

¤
A1

		
dδ�x pxiq dδ�y pyjq�������¤ 2

¼qE� qE sup
APE ��� qP �

n, xi, A0

¤
A1

	� P
�
n, yj , A0

¤
A1

	��� dδ�x pxiq dδ�y pyjq¤ 2

¼qE� qE Var
� qP pn, xi, �q � P pn, yj, �q	 dδ�x pxiq dδ�y pyjq . (10.366)

By assertion (i), applied to the split chain in (10.356) (with m � 1) the

final term in (10.366) converges to zero. By dominated convergence and

(10.366) we see that

lim
nÑ8 ¼

E�E Var pP pn, x, �q � P pn, y, �qq dλ1pxqdλ2pyq � 0. (10.367)
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The equality in (10.367) shows that Orey’s theorem holds for strongly ape-

riodic recurrent Markov chains.

To finish the proof of Theorem 10.2 we suppose that tXpnq,PxunPN,xPE
is an aperiodic recurrent chain. By assertion (ii), which has been proved

now, for irreducible recurrent strongly aperiodic chains Orey’s theorem

holds. By Corollary 10.6 there exists m P N such that the skeletontpXpmnq,Pxq : n P N, x P Eu
is strongly aperiodic. Since Orey’s theorem holds for such chains, an appli-

cation of Lemma 10.15 yields the result that Orey’s theorem holds for all

irreducible, recurrent aperiodic Markov chains.

This completes the proof of Theorem 10.2. �

10.4 About invariant (or stationary) measures

In this section we collect some references to work related to the existence of

invariant or stationary measures for Markov processes. In this context we

have to mention Harris [Harris (1956)] who proved the existence of a σ-finite

invariant measure for recurrent irreducible Markov chains. Let P px,Bq be
a probability transition function which preserves the bounded continuous

functions on a Polish space E. Suppose that P is irreducible (i.e. for every

x P E, and for every non-void open subset O, Pnpx,Oq ¡ 0 for some n P N,

n ¥ 1), and topologically recurrent (i.e. for every x P E and every open

neighborhood O of x the equality Px r�n�1 tXpnq P Ous � 1 holds). HeretpΩ,F ,PxqxPE , pXpnq, n P Nq , pϑk, k P Nq , pE, Equ
is the Markov chain with transition function px,Bq ÞÑ P px,Bq px,Bq P
E�E . Harris proved that for a discrete state space E there exists a σ-finite

invariant measure, and Orey [Orey (1959, 1962, 1964)] was the first to prove

that in the presence of a finite invariant limnÑ8 ³
E
fpyqPnpx, dyq dµpxq � 0

for all finite real Borel measures µ on E such that µpEq � 0. The original

result by Harris and Orey for discrete positive recurrent chains were im-

proved and generalized by Jamison and Orey [Jamison and Orey (1967)],

and Kingman and Orey [Kingman and Orey (1964)] to Markov chains with

a more general state space, and for null-recurrent chains. In [Nummelin

and Tuominen (1982, 1983)] Nummelin and Tuominen discuss geometric

ergodicity properties, and so do Tuominen and Tweedie in [Tuominen and

Tweedie (1994)]. This is also the case in Baxendale [Baxendale (2005)]. For

a general discussion on Markov chains and their limit theorems see e.g. the



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Invariant measure 753

books by Nummelin [Nummelin (1984)], Revuz [Revuz (1975)], and Orey

[Orey (1971)]. The new version of Meyn and Tweedie [Meyn and Tweedie

(1993b)] also contains a wealth of information. It explains splitting (due to

Nummelin [Nummelin (1978)]) and (dependent) coupling techniques (due to

Ornstein [Ornstein (1969)]), and several limit properties as well as asymp-

totic behavior of Markov chains. In addition, it discusses geometric ergodic

chains, certain functional central limit theorems, and laws of large numbers.

All these topics are explained for discrete time Markov processes with an

arbitrary state space. Moreover, each of the 19 chapters of [Meyn and

Tweedie (1993b)] is concluded with a section, entitled Commentary, which

contains bibliographic notes and relevant observations. Azema, Duflo and

Revuz apply skeleton techniques to pass from discrete time limit theorems

to continuous time limits: see e.g. [Azéma et al. (1965/1966, 1966, 1967)].

In the proof of Proposition 9.7 we applied the same methods. Our approach

uses the techniques of Seidler [Seidler (1997)] (propositions 5.7 and 5.9) in

combination with Orey’s theorem for Markov chains on a compact space.

For more details the reader is referred to the comments following Theorem

10.1, and to the Notes, pp. 319–320, in Supplement, Harris processes, Spe-

cial functions, Zero-two law, written by Antoine Brunel in [Krengel (1985)].

Orey’s convergence theorem is based on renewal theory which uses a linked

forward recurrence time chain, which also plays a central role in the book by

Meyn and Tweedie [Meyn and Tweedie (1993b)]. For more historical and

bibliographical notes the reader is also referred to Kallenberg [Kallenberg

(2002)], pp 569–593. On the other hand the author likes to mention the

following papers and books explicitly: Doeblin [Doeblin (1937, 1940)], Kol-

mogorov [Kolmogorov (1956, 1991, 1993)], Doob [Doob (1953)] Chapter V,

§5, and Dobrushin [Dobrushin (1956a,b)]. For a historical survey of the life

and the mathematical work by Doeblin see e.g. Lindvall [Lindvall (1991)],

Bru and Yor [Bru and Yor (2002)], and Mazliak [Mazliak (2007)]. For a mar-

tingale approach of Dobrushin’s theorem on Markov chains see [Sethuraman

and Varadhan (2005)]. The history and uses of the Markov-Dobrushin co-

efficient of ergodicity are explained by Seneta in [Seneta (1993)], and also

in [Seneta (1981)]. They are used to give the speed of convergence, which

for application is quite important. For a result on mixing properties and

the central limit theorem see e.g. Bolthausen [Bolthausen (1982)]. For a

general account of ergodic theory we also refer to Chen [Chen (1999)]. For

more details on Markov chains the reader should also consult Nummelin

[Nummelin (1984)] and Meyn and Tweedie [Meyn and Tweedie (1993b)].

For a more operator theoretic approach to ergodic theory see e.g. Foguel



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

754 Markov processes, Feller semigroups and evolution equations

[Foguel (1969)] and Meyn [Meyn (2008)]. Remarks about Kolmogorov’s

example, and extensions of Kolmogorov’s work on Markov chains can be

found in Reuter [Reuter (1969)], and in earlier work by Kendall and Reuter

[Kendall and Reuter (1956)], and Doob [Doob (1945)]. It is noticed that

Kendall and Reuter apply semigroup methods to treat path regularity prop-

erties of the underlying Markov process. In [Stroock and Zegarliński (1992)]

Stroock and Zegarlinski explain the relationship between the logarithmic

Sobolev inequality and Dobrushin’s mixing condition for ergodicity.

10.4.1 Possible applications

The material presented in this book finds its applications in several branches

of the scientific world. Markov theory is relevant in mathematical models

from economics (equilibrium in markets), finance (backward equations in

hedging strategies), equilibrium states in statistical mechanics, mathemat-

ical physics (Feynman-Kac type formulas), biology (equilibrium states). In

the context of population dynamics we mention two standard textbooks

[Allen (2003)], [Allen (2007)]. The book [Bharucha-Reid (1997)] contains

several interesting models and applications. The textbook [Mikosch (1998)]

contains a rather elementary introduction to stochastic (i.e. Itô) calculus

with applications in relatively simple models for trading strategies.

10.4.2 Conclusion

A great part of this chapter was devoted to the proof of the existence

and uniqueness of σ-finite invariant Borel measures: see Theorem 10.12.

The relevant conditions are presented (like irreducibility, and existence of

recurrent compact subset, which is a consequence of the almost separability

property of the generator L of the Markov process (9.14)). For these results

the reader is referred to Definition 9.2, and Propositions 9.1, 9.2, and 9.4

in Chapter 9. Another feature of the present chapter is a discussion and

proof of Orey’s convergence theorem: see §10.3.

To conclude this section we insert some well-known results related to

ergodicity properties of Markov chains. Let P � ppi,jqI,jPS be a row-

stochastic matrix with real entries which serves as a transition matrix for

a Markov chain pXpnq, Pjq. We say that P is row-stochastic if pi,j ¥ 0 for

every i, P S and
°
jPS pi,j � 1 for every i P S. Set

αpP q � min
i�j

ķPSmin ppi,k, pj,kq , rαpP q � 1� αpP q. (10.368)
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The number αpP q is known today as the Dobrushin coefficient of ergodicity:

see Cohen [Cohen et al. (1993)], Dobrushin [Dobrushin (1956a,b)]. The

following result can be found in Zaharopol and Zbaganu [Zaharopol and

Zbaganu (1999)]: see Zaharopol [Zaharopol (2005)] and [Del Moral et al.

(2003)] as well. Another source of information is Stachurski [Stachurski

(2009)], in which Doobrushin’s coefficients play a dominant role. One of

the standard results reads as follows.

Theorem 10.18. Let the Markov transition function P have Dobrushin’s

coefficient αpP q. Then the following inequality holds for all probability dis-

tributions ϕ and ψ on S:}ϕP � ψP }1 ¤ p1� αpP qq }ϕ� ψ}1 .
A similar result is also true for transition densities and integrals instead of

sums: see e.g. Chapter 8 in [Stachurski (2009)].

We begin with a classical theorem in which Doeblin’s condition plays a

central role.

Theorem 10.19. Let pXpnq,PjqnPN,jPS be a Markov chain in a countable

state space S with transition probabilities pi,j such that: There exists a state

a P S and ε ¡ 0, with the property: pi,a ¥ ε ¡ 0, for all i P S. Then there

is a unique stationary (or invariant) distribution π such that

j̧PS ��PXp0q rXpnq � js � πpjq�� ¤ 2 p1� εqn , (10.369)

regardless of the initial state Xp0q.
An “analytic” proof runs as follows. Think in terms of of the one-step

transition matrix P � ppi,jq as a linear operator acting on RS . Equip RS

with the norm }x} :�°
jPS |xj |. Stroock [Stroock (2000)], pg. 28–29, proves

that, for any ρ P RS , such that
°
jPS ρj � 0, we have }ρP } ¤ p1�εq }ρ}. He

then claims that this implies that }ρPn} ¤ p1�εqn |ρ}, n P N, and uses this

to show that, for any µ P RS with, µi ¥ 0 for all i P S, and °
iPS µi � 1, it

holds that }µPn � µPm} ¤ 2p1� εqm, for m ¥ n.

A “probabilistic” proof runs as follows. Consider the following experi-

ment. Suppose the current state is i. Toss a coin with Ppheadsq � ε. If

heads show up then move to state a. If tails show up, then move to state j

with probability rpi,j � pi,j � εδa,j

1� ε
. (That this is a valid probability indeed

is a consequence of the assumption!) In this manner, we obtain a process

that has precisely transition probabilities pi,j . Note that state a will be
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visited either because of heads in a coin toss or because it was chosen so

by the alternative transition probability. So state a will be visited at least

as many times as the number of heads in a coin toss. This means that

state a is positive recurrent. And so a stationary probability π exists. We

will show that this π is unique and that the distribution of the chain con-

verges to it. To do this, consider two chains X , X, both with transition

probabilities pi,j , and realize them as follows. The first one starts with

Xp0q distributed according to an arbitrary law µ. The second one starts

with Xp0q distributed according to π. Now do this: Use the same coin

for both. So, if heads show up then move both chains to a. If tails show

up then realize each one according to rp, independently. Repeat this at the
next step, by tossing a new coin, independently of the past. Thus, as long

as heads have not come up yet, the chains are moving independently. Of

course, sooner or later, heads will show up and the chains will be the same

thereafter. Let T be the first time at which heads show up. We have:

P rXpnq P Bs � P rXpnq P B, T ¡ ns � P rXpnq P B, T ¤ ns� P rXpnq P B, T ¡ ns � P rXpnq P B, T ¤ ns¤ P rT ¡ ns � P rXpnq P Bs � P rT ¡ ns � πpBq.
Similarly,

πpBq � P
�
Xpnq P B� � P

�
Xpnq P B, T ¡ n

�� P rXpnq P B, T ¤ ns� P rXpnq P B, T ¡ ns � P
�
Xpnq P B, T ¤ n

�¤ P rT ¡ ns � P rXpnq P Bs .
Hence |P rXpnq P Bs � πpBq| ¤ P rT ¡ ns � p1� εqn. Finally, check that

sup
B�S |P rXpnq P Bs � πpBq| � 1

2
i̧PS |P rXpnq � is � πpiq| .

The following theorem of Kolmogorov on mean recurrence times is taken

from [Kallenberg (2002)] Theorem 7.22.

Theorem 10.20. For a Markov chain with state space S and for states i,

j P S with j aperiodic, the following equality holds:

lim
nÑ8 pnij � Pi rτj   8s

Ej rτjs ,

where τj is the first time visiting j: τj � inf tm ¥ 1 : Xpmq � ju.
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In [Foss and Konstantopoulos (2004)] the authors describe a generalization

of this result by introducing what is called an inverse Palm construction and

using Palm stationarity. For more information on Palm distributions see

e.g. Chapter 8 and 9 in [Thorisson (2000)], [Etheridge (2000)], [Kallenberg

(2008)], and [Dawson and Perkins (1999); Dawson (1993)]. For a concise

formulation of a result concerning recurrent Markov chains, which in a

discrete state space dates back to Doeblin we insert a definition.

Definition 10.8. Let pXpnq,Pxq be a Markov chain with a Polish state

space E, and transition function B ÞÑ P px,Bq, B P E , the Borel field of E.

(i) The chain pXpnq,Pxq is called uniformly ergodic provided there exists

an invariant measure π on E such that lim
nÑ8 sup

xPE }Pnpx, �q � πp�q}Var � 0.

(ii) The chain is said to satisfy Doeblin’s condition if there exist a probabil-

ity measure ϕ on E and strictly positive numbers δ and ε and a strictly

positive integer m such that ϕpAq ¡ ε implies inf
xPX Pm px,Aq ¥ δ.

(iii) The chain pXpnq,Pxq has uniform geometric speed (or rate) of conver-

gence if there exist an invariant probability π on E and constants R

and 0   r   1 such that }Pn px, �q � π p�q}Var ¤ Rrn for all n P N and

x P E.

(iv) The chain pXpnq,Pxq is uniformly positive recurrent if there exists a

compact subset K such supxPK Ex rτKs   8.

In (iv) τK is the hitting time ofK: τK � inf tm ¥ 1 : Xpmq P Ku. If such a

compact subset K exists, then for all subsets A P E for which ϕpAq ¡ 0 the

inequality sup
xPAEx rτAs   8 holds. Here ϕ is as in item (ii) of Definition 10.8:

the existence of such a probability measure ϕ is guaranteed by item (iii)

in Theorem 10.21 below. Theorem 16.0.2 in [Meyn and Tweedie (1993b)],

which is more general then Theorem 10.21, says among other things that a

Markov chain is uniformly ergodic if and only if it is aperiodic and satisfies

Doeblin’s condition. For the notion of aperiodicity and related topics see

Definitions 10.1, 10.6 and 10.7.

Theorem 10.21. Let pXpnq,Pxq be a Markov chain with a Polish state

space E, and transition function B ÞÑ P px,Bq, B P E. Then the following

assertions are equivalent:

(i) The Markov chain pXpnq,Pxq is uniformly ergodic;

(ii) The Markov chain pXpnq,Pxq has uniform geometric speed of conver-

gence.



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

758 Markov processes, Feller semigroups and evolution equations

(iii) The Markov chain pXpnq,Pxq is aperiodic and satisfies Doeblin’s con-

dition.

(iv) The Markov chain pXpnq,Pxq is aperiodic and uniformly positive re-

current.

With this nice theorem we conclude this chapter and this book. For more

information and related results in the time discrete case the reader is re-

ferred to Meyn and Tweedie [Meyn and Tweedie (1993b)]. For recent work

on ergodicity of Markov chains see e.g. Hairer and Mattingly [Hairer and

Mattingly (2008b)]. Application of ergodicity properties of Markov pro-

cesses can be found in the theory of stochastic partial differential equations

by Hairer and co-authors, see e.g. [Hairer et al. (2004); Hairer and Mat-

tingly (2008a,b); Hairer (2009)]. For the use of the Foster-Lyapunov crite-

rion in the study of the stability of Markov chains the reader is referred to

e.g. Meyn and Tweedie [Meyn and Tweedie (1993b)], and also to a recent

paper by Connor and Fort [Connor and Fort (2009)]. It is possible that

this Foster-Lyapunov criterion is linked to the separation property of the

domain of the generator of the underlying Markov property as mentioned in

Corollary 9.2 and Theorem 9.4. A consequence of this separation hypothesis

is that the existence of a recurrent compact subset is guaranteed provided

that all open subsets are recurrent, and that all measures B ÞÑ P pt, x, Bq,
B P E , pt, xq P p0,8q �E, are equivalent.
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groupes, in Lectures on probability theory (Saint-Flour, 1992), Lecture Notes
in Math., Vol. 1581 (Springer, Berlin), pp. 1–114, doi:10.1007/BFb0073872,
URL http://dx.doi.org/10.1007/BFb0073872.

Bakry, D. (2006). Functional inequalities for Markov semigroups, in Probability
measures on groups: recent directions and trends (Tata Inst. Fund. Res.,
Mumbai), pp. 91–147.
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Cohen, J. E., Iwasa, Y., Răuţu, G., Ruskai, M. B., Seneta, E. and Zbăganu,
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Math. 32, 1, pp. 75–82.

Crouzeix, M., Hundsdorfer, W. H. and Spijker, M. N. (1983). On the existence of
solutions to the algebraic equations in implicit Runge-Kutta methods, BIT
23, 1, pp. 84–91.

Cruzeiro, A. B. and Zambrini, J.-C. (1991). Malliavin calculus and Euclidean
quantum mechanics. I. Functional calculus, J. Funct. Anal. 96, 1, pp. 62–95.

Da Prato, G., Elworthy, K. D. and Zabczyk, J. (1995). Strong Feller property for
stochastic semilinear equations, Stochastic Anal. Appl. 13, 1, pp. 35–45.

Da Prato, G. and Zabczyk, J. (1992a). Stochastic equations in infinite dimensions,
Encyclopedia of Mathematics and its Applications, Vol. 44 (Cambridge Uni-
versity Press, Cambridge), ISBN 0-521-38529-6.

Da Prato, G. and Zabczyk, J. (1992b). Stochastic equations in infinite dimensions,
Encyclopedia of Mathematics and its Applications, Vol. 44 (Cambridge Uni-
versity Press, Cambridge), ISBN 0-521-38529-6.

Da Prato, G. and Zabczyk, J. (1996). Ergodicity for infinite-dimensional systems,
London Mathematical Society Lecture Note Series, Vol. 229 (Cambridge
University Press, Cambridge), ISBN 0-521-57900-7.

Davies, E. B. (1990). Heat kernels and spectral theory, Cambridge Tracts in Math-
ematics, Vol. 92 (Cambridge University Press, Cambridge), ISBN 0-521-
40997-7.

Dawson, D. A. (1993). Measure-valued Markov processes, in École d’Été de
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Sect. B (N.S.) 10, pp. 155–166.

Hsu, E. P. (2002). Stochastic analysis on manifolds, Graduate Studies in Math-
ematics, Vol. 38 (American Mathematical Society, Providence, RI), ISBN
0-8218-0802-8.

Hudson, R. L. and Lindsay, J. M. (eds.) (1998). Quantum probability communi-
cations, QP-PQ, X (World Scientific Publishing Co. Inc., River Edge, NJ),
ISBN 981-02-3541-0.

Hwang, C.-R., Hwang-Ma, S.-Y. and Sheu, S.-J. (2005). Accelerating Diffusions,
Annals of Appl. Prob. 15, 2, pp. 1433–1444.

Ikeda, N. and Watanabe, S. (1998). Stochastic differential equations and diffusion
processes, North-Holland Mathematical Library, Vol. 24, 2nd edn. (North-
Holland, Amsterdam).

Imkeller, P., Reveillac, A. and Richter, A. (2009). Differentiability of quadratic
bsde generated by continuous martingales and hedging in incomplete
markets, URL http://www.citebase.org/abstract?id=oai:arXiv.org:

0907.0941.
In ’t Hout, K. J. and Foulon, S. (2010). ADI finite difference schemes for option

pricing in the Heston model with correlation, Int. J. Numer. Anal. Model.
7, 2, pp. 303–320.



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

Bibliography 773

Jacob, N. (2001). Pseudo differential operators and Markov processes. Vol. I (Im-
perial College Press, London), ISBN 1-86094-293-8, fourier analysis and
semigroups.

Jacob, N. (2002). Pseudo differential operators and Markov processes. Vol. II
(Imperial College Press, London), markov processes.

Jacob, N. (2005). Pseudo differential operators and Markov processes. Vol. III
(Imperial College Press, London), ISBN 1-86094-568-6, markov processes
and applications.

Jakubowski, A. (1997). A non-Skorohod topology on the Skorohod space, Elec-
tron. J. Probab. 2, pp. no. 4, 21 pp. (electronic).

Jakubowski, A. (2000). Skorokhod’s Ideas in Probability Theory, chap. From
convergence of functions to convergence of stochastic processes. On Sko-
rokhod’s sequential approach to convergence in distribution (Insitute of
Mathematics, National Academy of Sciences of Ukraine, Kiev), pp. 179–194.

Jamison, B. (1974). Reciprocal processes, Z. Wahrscheinlichkeitstheor. Verw. Ge-
biete 30, pp. 65–86.

Jamison, B. and Orey, S. (1967). Markov chains recurrent in the sense of Harris,
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 8, 1, pp. 41–48.

Jamison, B., Orey, S. and Pruitt, W. (1965). Convergence of weighted averages
of independent random variables, Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete 4, pp. 40–44.

Jensen, R. (1989). Uniqueness criteria for viscosity solutions of fully nonlinear
elliptic partial differential equations, Indiana Univ. Math. J. 38, 3, pp.
629–667.

Kallenberg, O. (2002). Foundations of modern probability, 2nd edn., Probabil-
ity and its Applications (New York) (Springer-Verlag, New York), ISBN
0-387-95313-2.

Kallenberg, O. (2008). Some local approximations of Dawson-Watanabe super-
processes, Ann. Probab. 36, 6, pp. 2176–2214, doi:10.1214/07-AOP386,
URL http://dx.doi.org/10.1214/07-AOP386.

Kanovei, V. (2008). Borel Equivalence Relations: Structure and Classification,
University Lecture Series (American Mathematical Society, Providence,
RI), ISBN 10 0821844539, 13 978-0821844533.

Kantorovitz, S. (2010). Topics in Operator Semigroups, Progress in Mathematics,
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Stannat, W. (2005). On the Poincaré inequality for infinitely divisible measures,
Potential Anal. 23, 3, pp. 279–301.

Stannat, W. (2006). Stability of the optimal filter via pointwise gradient esti-
mates, in Stochastic partial differential equations and applications—VII,
Lect. Notes Pure Appl. Math., Vol. 245 (Chapman & Hall/CRC, Boca Ra-
ton, FL), pp. 281–293.

Stein, E. M. and Shakarchi, R. (2005). Real analysis, Princeton Lectures in Anal-
ysis, III (Princeton University Press, Princeton, NJ), ISBN 0-691-11386-6,
measure theory, integration, and Hilbert spaces.

Stettner, L. (1986). On the existence and uniqueness of invariant measure for
continuous time Markov processes, Technical report lcds #86-18, Brown
University, Lefeschetz Center for Dynamical Systems, Providence, RI.



October 7, 2010 9:50 World Scientific Book - 9in x 6in MarkovProcesses

784 Markov processes, Feller semigroups and evolution equations

The paper attempts to find fairly general conditions under which the ex-
istence and uniqueness of invariant measure is guaranteed. The obtained
results are new or generalize at least slightly known theorems. The author
introduces a terminology: weak, strong Harris, strong recurrence. Two Sec-
tions concern general standard processes. The other section restricts it to
Feller or strong Feller standard processes. Three examples are considered to
illustrate possible unpleasant situations one can meet in the general theory.

Stettner,  L. (1994). Remarks on ergodic conditions for Markov processes on Polish
spaces, Bull. Polish Acad. Sci. Math. 42, 2, pp. 103–114.

Stroock, D. and Varadhan, S. S. (1979). Multidimensional diffusion processes,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
of Mathematical Sciences], Vol. 233 (Springer-Verlag).

Stroock, D. W. (1981). The Malliavin calculus, a functional analytic approach,
J. Funct. Anal. 44, 2, pp. 212–257.

Stroock, D. W. (1999). A concise introduction to the theory of integration, 3rd
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Tβ-dual of CbpEq, 121
Tβ-dual space of CbpEq, 117
Tβ-equi-continuity, 211
Tβ-equi-continuous, 187, 190,

192–195, 211, 212, 219, 220, 229,
472

Tβ-equi-continuous evolution, 246
Tβ-equi-continuous family, 169, 272,

274, 276, 528, 529, 681, 726, 727,
729, 730

Tβ-equi-continuous family of
measures, 127, 472

Tβ-equi-continuous family of
operators, 135

Tβ-equi-continuous semigroup, 234,
235, 246

Tβ-generator, 246
Tβ-generator of a Feller semigroup,

236
Tβ-limit, 305
Tβ-sequentially complete, 110
Tβ-strongly continuous, 140
µ-invariant subset, 587

∇
L
uv ps, xq, 313

∇
L
u pτ, xq, 306

π-λ theorem, 116, 162
π-irreducible Markov chain, 650

σ-field
right closed, 173

σ-field after a stopping time, 173
σ-field associated with stopping time,

105
σ-field between stopping times, 173

σ-field corresponding to stopping
time, 148

σ-finite invariant measure, 581, 583,
651, 655, 671, 684

unique, 590
σ-finite measure, 164

σ-smooth functional, 124
σ pMpEq, CbpEqq”-convergence, 128

τk
B, 694

τh
A, 707
ϕ-irreducible Markov chain, 655

ϑ1-invariant subset, 593
ζ, 309

ζ = life time, 283, 291
ζ: life time of process, 150

dLp, xq, 602
dΓ1

px, yq, 602

m-step Markov chain, 745

(infinitesimal) generator of Feller
evolution, 143

absolutely continuous function, 330
absolutely continuous martingale, 321

absolutely continuous measure, 164

absorbing subset, 582
accessible atom, 731, 732, 745, 748,

750, 751

additive measure, 581

additive process, 580, 581, 691
time-homogeneous, 580, 581

adjoint evolution family, 518
adjoint of operator

formal, 509
almost separating generator, 572, 702

almost separating subspace, 559, 560,
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563, 573, 684
almost separation property, 566
analytic maximum principle, 522, 530
analytic operator, 539
analytic semigroup, 457, 464, 465,

514, 541, 543
bounded, 460
generator of, 514, 543
weak�-continuous bounded, 460

aperiodic distribution function, 738
aperiodic Markov chain, 650, 651,

742, 756, 757
aperiodic probability distribution, 734
approach structure, 223
approximating sequence of stopping

times, 178, 179
arbitrage free, 400, 401
arbitrage free portfolio process, 401
arbitrage opportunity, 401
Arzela-Ascoli theorem, 126
asset, 400

non-risky, 400
risky, 400

asymptotic σ-field, 560
atom, 732, 748

accessible, 745, 748
atom for Markov chain, 750

Bézout’s identity, 736, 737
backward doubly stochastic

differential equation, 319
backward Itô integral, 320
backward martingale, 313, 448
backward martingale convergence

theorem, 595
backward propagator, 62, 483
backward recurrence chain, 739
Backward Stochastic Differential

Equation, 303
Backward Stochastic Differential

Equations, 383
Baire category argument, 73
Baire field versus Borel field, 118
Banach-Alaoglo

Theorem of, 461
Banach-Steinhaus

theorem of, 543
Banach-Steinhaus theorem, 68
Bayes rule, 746
BDSDE, 319
Bernoulli topology, 128
Bernstein diffusion, 407
Bernstein probability, 449
bi-continuous semigroup, 469
bi-topological space, 158
bilinear mapping Zptq, 318
Bismut-Elworthy formula, 477, 551,

554
bivariate linked forward recurrence

time chain, 735
Black-Scholes equation, 448
Blumenthal’s zero-one law, 662
Bolzano-Weierstrass theorem, 126
Borel measure, 121
Borel probability measure, 121
Borel-Cantelli lemma

generalized, 571, 578, 580, 689
Borel-Cantelli-Lévy lemma, 571, 578
bottom of spectrum, 617
bounded analytic semigroup, 510,

511, 537
weak�-continuous, 468

bounded continuous function space,
109

bounded from above, 383
bounded relative to the variation

norm, 121
Browder-Minty theorem, 381
Brownian motion, 3, 4, 22, 36, 37, 45,

90, 92, 312, 326, 327, 399, 402, 404,
483, 487, 489, 493
cylindrical, 45
operator-valued, 95

BSDE, 303, 304, 315, 325, 327, 335,
338, 339, 371, 377, 385, 386, 389,
390, 393, 399, 405
Hilbert space valued, 383
linear, 377
strong solution to, 325
weak, 304
weak solution to, 313, 325

BSDE with drift, 326
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Buck, 110, 158
Burgers’ equation, 411
Burkholder-Davis-Gundy inequality,

39, 321, 322, 336, 337, 342, 347,
351, 359, 364, 368, 494

Cameron-Martin formula, 411
Cameron-Martin Girsanov formula,

15, 16
Cameron-Martin Hilbert space, 45
Cameron-Martin transformation, 19,

57
Capacitability theorem of Choquet,

284, 286, 299
capacitable subset, 295, 300
Caratheodory’s theorem, 114
carré du champ operateur

See squared gradient operator, 408
carré du champ operator, 450
carré du champ opérateur: See

squared gradient operator, 409
central limit theorem, 648, 653
Chacon-Ornstein theorem, 588, 589,

598–600
Chapman-Kolmogorov equation, 155,

186, 649, 748, 749
Choquet capacitability theorem, 284,

286, 288, 299
Choquet capacity, 284, 285
Choquet’s capacity theorem, 682
classical Noether theorem, 436
closable operator, 240
compact orbit

almost sure, 173
compact recurrent subset, 684, 744,

745
compact subset

relatively weakly compact, 123
comparison theorem, 304, 386
completeness theorem of

Grothendieck, 68
complex Noether theorem, 450
complex version of Noether theorem,

442
concave function, 643
conditional expectation, 198, 584

conditional probability, 607
conservative Feller propagator, 184
conservative part, 583, 584
conservative process, 309
conservative propagator, 187
consistent family, 224
consistent system, 224
consumption process, 402
contingent claim, 402, 403
contingent strategy, 402
continuous orbit, 280
continuous sample path, 280
continuous sample paths, 667
contraction operator, 582, 624

conservative, 589
convergence for the strict topology

versus uniform convergence, 119
convergence of measures

weak, 159
convolution product, 304
coupled stochastic differential

equation, 605
coupling argument, 35, 734, 735
coupling method, 555, 602
coupling of diffusion processes, 609
coupling operator, 603
coupling time, 739
coupling time of renewal process, 739
covariance mapping, 391
covariance matrix, 485, 607
covariation of operator-valued

processes, 96
covariation process, 26, 27, 54, 94,

310, 320, 331, 505
quadratic, 94, 320, 386, 441
right derivative of, 318

critical eigenvalue, 454
cylindrical Brownian motion, 45, 46,

52, 53, 55, 62–64, 312
cylindrical function, 47, 56
cylindrical measure, 63, 72, 224

Daniell-Stone
Theorem of, 110

deflator process, 403
demi-continuous map, 381
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derivative of quadratic variation
process, 387

deterministic Noether theorem, 436
differentiation theorem

Lebesgue’s, 332
diffusion, 305

generator of, 306
diffusion matrix, 604
diffusion part, 91
diffusion process, 155, 157
diffusion with mixing property, 558
Dini’s lemma, 118, 119, 123, 126, 135,

141, 159, 188, 233, 416, 569, 727
Dirac measure, 138
discounted gains process, 401
dissipative operator, 232, 240, 241,

243–245, 456, 457
dissipative part, 583, 584
dissipative relative to Tβ , 154
distribution

finite dimensional, 489
distributional solution to SDE, 55
divergence free action, 447
Dobrushin’s ergodicity coefficient, 755
Doeblin’s condition, 538, 755
Doeblin’s ergodicity condition, 757
Doléans measure, 387
dominant eigenvalue, 519
dominant eigenvector, 454
dominated sequence, 118, 119
Doob’s martingale inequality for

moments, 28
Doob’s optional sampling theorem,

184, 186, 213, 216, 564, 691
Doob’s submartingale inequality, 188
Doob’s theorem, 184
Doob-Meyer decomposiiton theorem,

396
Doob-Meyer decomposition theorem,

90, 396
double filtration, 147, 148
drift part, 91
drift vector, 604, 607
Duhamel’s formula, 471, 473
Dunford projection, 454, 519, 524,

537

Dunford-Pettis theorem, 396

dynamical system, 582, 597–599

Dynkin argument, 116

Dynkin system, 115, 162, 163
Dynkin’s formula, 654, 671, 683, 684

eigenvalue problem, 517

energy, 447
energy operator, 305

entrance time, 652, 653

entropy of function, 619, 621

entry time, 283, 288, 293, 295, 581,
652

equi-continuous family

for the strict topology, 125

equi-continuous family of operators,
141

equi-continuous for the strict
topology, 128

equi-continuous versus weakly
compact subset, 121

equivalent measure, 743, 744

ergodic diffusion, 558

ergodic Markov chain, 653

ergodic Markov process, 453

ergodic process, 561
ergodic system, 477, 516, 518, 519,

531, 537

ergodic theory, 223

ergodicity results, 651
Euler-Lagrange equation, 447

event, 178

evolution, 143, 503

Feller, 138, 139

evolution family, 154, 455, 470, 509,
518

adjoint, 518

excessive function, 690–692

exponential decay, 520

exponential martingale, 91, 503, 508

exponentially distributed variable,
685, 687, 688

exterior measure, 113

σ-field to, 113

exterior regularity, 285
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family of functionals
tight, 125

family of measures
tight, 122, 125

Fatou’s lemma, 164
Feller evolution, 138, 139, 147, 152,

153, 168, 176, 189, 192, 194, 214,
219, 227–230, 245, 283, 308, 379,
415
generator of, 143, 239

Feller propagator, 138, 139, 147, 174,
184, 186, 230, 283, 307, 308, 410,
424
conseravative, 184

Feller semigroup, 154, 156, 218, 219,
221, 229, 230, 249, 273, 277, 410,
699
Tβ-continuous, 232

Feller-Dynkin semigroup, 156, 157,
300, 562

Feynma-Kac integral equation, 313,
383

Feynman-Kac formula, 303, 314, 377,
378, 399, 407, 415, 424, 434
non-linear, 314, 429

filtration, 8, 49, 153
right closed, 151

final value problem, 313
finite-dimensional dimensional

distribution, 489
first derivative as a functionals, 47
first hitting time, 684, 691
fluctuation, 91
formula

Girsanov, 489
forward propagator, 62, 483
forward recurrence time chain

bivariate linked, 735
forward SDE, 304, 320
forward stochastic differential

equation, 304, 320
Fourier inverse formula, 509
Fourier transform, 5
Fubini’s theorem, 164, 485
function

α-excessive, 690, 691

excessive, 691

renewal, 733

transtion, 143

function space

bounded continuous, 109

functional and measure, 121

Gâteaux derivative, 47

Gaussian process, 485

generalized Borel-Cantelli lemma,
571, 578, 580, 689

generator

almost separating, 572, 702

generator of d-dimensional diffusion,
399

generator of a Feller-Dynkin
semigroup, 522

generator of a Markov process, 379

generator of analytic semigroup, 475,
502, 514

generator of bounded analytic
semigroup, 469, 520, 525, 531

generator of bounded analytic
weak�-continuous semigroup, 528

generator of BSDE, 318, 335, 339

generator of diffusion, 306, 408, 409,
411, 616, 629, 631, 637

generator of diffusion process, 638

generator of Feller evolution, 153,
227, 231, 235, 239

generator of Feller
evolution:infinitesimal, 227

generator of Feller semigroup, 94,
239, 475, 478

generator of Feller-Dynkin semigroup,
300

generator of Markov process, 309,
320, 323, 378, 393, 485, 487, 516,
563

generator of semigroup, 230, 276, 612

generator of space-time process, 227

generator of strong Markov process,
147

generator of time-dependent Markov
process, 474, 476
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generator of time-homogeneous
Markov process, 611

generator of time-inhomogeneous
Markov process, 144, 228

generator of weak�-continuous
analytic semigroup, 521

generator of weak�-continuous
bounded analytic semigroup, 520

generator of weak�-continuous
semigroup, 474, 523, 524, 531

geometrically ergodic Markov chain,
653

germ of function, 433, 434
Girsanov formula, 489
Girsanov transformation, 19, 57, 326,

378
Girsanov’s transformation, 56
global Korovkin property, 146, 153,

267
global Korovkin subspace, 146
global maximum principle, 262
Gronwall inequality, 491, 494, 502
Gâteaux derivative, 447

Hölder’s inequality, 488
Hahn decomposition, 457, 459
Hahn-Banach theorem, 132, 540, 707,

724, 729
Hahn-Jordan decomposition, 459
Hamilton’s least action principle, 447
Hamilton-Jacobi theory, 447
Hamilton-Jacobi-Bellman equation,

314, 378, 407, 411
harmonic function, 582, 588
Harris recurrence measure, 689
Harris recurrent

positive, 729
Harris recurrent Markov chain, 652,

729
Harris recurrent Markov process, 573
Harris recurrent process, 708
Harris recurrent subset, 573, 579, 580
Hausdorff-Bernstein-Widder inversion

theorem, 253, 258
Hausdorff-Bernstein-Widder Lapalce

inversion theorem, 275

Hausdorff-Bernstein-Widder theorem,
233, 275

hedging strategy, 304, 402, 406
Hellinger integral, 316
hemi-continuous map, 381
Hessian, 513, 629, 631
Heston volatility model, 95, 103
hitting time, 106, 283, 284, 288,

293–295, 567, 571, 573, 577–579,
581, 649, 650, 654, 655, 682, 684,
689, 691, 692, 709, 713, 714, 734

homeomorphism, 207
homotopy argument, 304, 334, 379
Hopf decomposition, 583, 584
Hunt process, 147, 150
hypercontractivity, 644

implicit Runge-Kutta method, 380
increasing process

predictable, 396
independent variables, 738
inequality of

Burkholder-Davis-Gundy, 42
infinitesimal generator of Feller

evolution, 143, 227
information

Shannon, 603
inner regular measure, 225
inner-regular, 570
inner-regular measure, 117, 136, 744
integral operators, 136
integrated semigroups, 239
integration by parts formula, 21, 311
invariant density, 651
invariant distribution, 648, 649, 651
invariant event, 587
invariant function, 519, 582
invariant measure, 478, 486, 511, 536,

556, 558, 559, 561, 562, 573, 574,
576, 581, 585, 586, 592–594, 616,
617, 619, 623, 633, 636, 637,
647–653, 657, 660, 670, 678, 679,
682, 685, 699, 702, 703, 706, 708,
709, 714, 716–725, 729, 752
σ-finite, 561, 572, 581, 583, 584,

651, 655, 656, 661, 671, 676,
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684, 714

finite, 655, 722

strictly positive, 709

unique σ-finite, 590

invariant measure and expectation of
return times, 651

invariant mesure

σ-finite, 651

invariant probability measure, 560

invariant subset, 587

inverse Laplace transform, 465

irreducible aperiodic Markov chain,
744

irreducible Markov chain, 650, 743,
748, 750

aperiodic, 750

strongly aperiodic, 750

irreducible Markov chain with
compact recurrent subset, 652

irreducible Markov process, 556, 557,
574, 575, 654, 706, 710, 718, 754

irreducible split Markov chain, 750

irreducible strongly aperiodic Markov
chain, 744

irreducible time-homogeneous
aperiodic Markov chain, 652

Itô calculus, 17, 18

Itô integral, 93, 326

Itô process, 607

Itô’s formula, 54, 59, 92, 95, 96, 339,
345, 349, 362, 442, 489, 610

Itô’s lemma, 14, 366, 389, 403,
504–507

Itô’s theorem, 34, 59

Itô’s uniqueness condition, 605, 606,
608

iterated squared gradient operator,
602, 628, 632

iterated squared gradient operator
Γ2, 628, 629, 644

Jensen inequality, 407, 429, 643

joint distribution, 478

Jordan decomposition, 457, 459

jump process of Poisson process, 592

Kac’s theorem, 651
Kato condition, 415
Kazamaki

result by, 27
Kazamaki condition, 28
Khas’minski lemma, 433
Kolmogorov extension theorem, 224
Kolmogorov extension theoren, 225
Kolmogorov operator, 453, 455, 459,

470, 471, 473, 474, 519, 530, 537
Kolmogorov’s extension theorem, 158,

167, 168, 199, 202, 204, 424, 737
Kolmogorv existence theorem, 224
Korovkin family, 299
Korovkin property, 147, 154, 219, 267

global, 146, 153, 267
local, 267

Korovkin property on subset, 154,
219

Korovkin set, 223, 224
Korovkin subspace

global, 146
Kullback-Leibler distance, 603

Lévy, 222
Lévy number, 200, 222
Lévy’s theorem, 52, 95
Lévy-Prohorov metric, 125, 222, 223
Lagrangian action, 379, 437
Lagranian, 446
Laplace transform, 217, 233, 237

vector valued, 239
large deviations, 603
law, 478
law of large numbers, 650
Lebesgue’s decomposition theorem,

331
Lebesgue’s differentiation theorem,

315, 332
Lemma

Dini’s, 118, 135, 141
Khasminski, 433

level of split m-skeleton, 745
life time, 186, 195, 283, 291, 298, 309
life time of process, 150, 151
linear SDE, 402
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Lipschitz condition, 315
Lipschitz constant, 354, 356, 357
Lipschitz continuous function, 486
Lipschitz function, 334, 335, 338, 339,

343, 354, 356, 357, 372, 375, 487,
488, 490, 558
locally, 487
one-sided, 335

local exponential martingale, 391
local Korovkin property, 267, 268,

272, 273
local martingale, 6, 9–11, 14, 17, 18,

39, 49, 51, 90, 92, 94, 336, 337, 489
backward, 391
right-continuous, 396
weak, 45

local maximum principle, 271, 273
local semi-martingale, 95, 318, 391
local time

density of, 391
localization argument, 28, 29
logarithmic Sobolev inequality, 555,

619, 621, 623, 624, 635, 644, 754
tight, 555, 619

lwa of large numbers, 648
Lyubisch representation, 540

Mackey topology, 110
Malliavin calculus, 165
marginal Markov chain, 748, 751
marginal measure, 745
marginal of Markov process, 94
marginal of strong Markov process,

147
Markov T -chain, 656
Markov chain, 572, 579, 593, 648–650,

685–687, 695, 696, 744, 748
µ-Harris recurrent, 592
π-irreducible, 650
ϕ-irreducible, 655
m-step, 745
aperiodic, 593, 594, 650, 651, 742,

744, 757
atom for, 750
Harris recurrent, 593, 594, 652, 729
irreducible, 743, 748

marginal, 748
null-recurrent, 651
periodic, 743
positive recurrent, 651, 653
recurrent, 651
split, 745
strongly aperiodic, 743, 745, 751
strongly aperiodic irreducible, 745
time-homogeneous, 648, 650, 651
topological, 656
topologically recurrent, 752
uniform ergodic, 757
uniform positive recurrent, 757

Markov chain sampler, 649
Markov chain satisfying Doeblin’s

ergodicity condition, 757
Markov chain satisfying the detailed

balance condition, 649
Markov chain with recurrent compact

subset
irreducible, 652

Markov chain with uniform geometric
speed of convergence, 757

Markov operator, 470
Markov process, 94, 143, 153, 156,

158, 168, 185, 186, 208, 212, 214,
218, 219, 228, 229, 274, 277, 283,
284, 291, 303–305, 307–309, 320,
322, 327, 371, 372, 374, 376, 382,
385, 395, 415, 434, 487, 490, 556,
644, 732
µ-Harris recurrent, 573
generator of, 378, 382
Harris recurrent, 573, 633, 696, 697
irreducible, 556
irreducible strong Feller, 596
life time of, 150
normal, 150
normal strong, 151
pinned, 449
quasi-left continuous, 150, 151
reciprocal, 448
recurrent, 697
standard, 296, 297
strong, 143, 147, 173, 178
strong Feller, 395, 560, 685, 689
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strong Markov, 147
time-homogeneous, 307, 572
with the strong Feller property, 150

markov process, 307, 335
Markov process with Feller property,

558
Markov process with left limits, 149,

150
Markov property, 156, 163, 170, 174,

183, 192, 195, 197, 198, 209, 214,
308, 397, 414, 568, 648, 649, 656,
658, 677, 692, 694, 695, 710, 711,
719, 747
strong, 181

Markov transition function, 514
martingale, 3, 19, 57, 89–91, 93, 94,

152, 153, 171, 177, 188, 191, 203,
205, 209, 210, 213, 299, 303, 308,
310, 313, 315, 318, 328, 329, 331,
341, 354, 356, 361, 371, 374, 378,
385–389, 398, 403, 404, 407, 424,
429, 433, 434, 437, 442, 448, 489,
490, 493, 506, 507, 586, 604, 611,
614, 731
absolutely continuous, 321
backward, 313
exponential, 503
local, 90
weak, 45

martingale convergence theorem, 594
backward, 595

martingale inequality
Doob’s, 28

martingale measure, 19
martingale problem, 8, 9, 49, 55, 147,

153, 155–157, 195, 201, 207, 211,
212, 218, 219, 221, 274, 277, 278,
300, 304, 327, 489, 490, 556, 604,
608
time-inhomogeneous, 222
well-posed, 147, 605, 606

martingale property, 205, 208
martingale representation theorem,

319, 333, 404
martingale solution, 489
maximum mapping, 168

maximum operator, 152, 180
maximum principle, 133, 145, 146,

153, 154, 219, 232–235, 239–242,
262, 267, 270, 277, 299, 300, 512,
513, 531
analytic, 522, 530
weak, 145

maximum principle on a subset, 265
maximum principle on subset, 154,

220
maximum time operator, 142, 155
Mazur’s theorem, 72
mean recurrence time, 756
measure

T -invariant, 660
σ-finite, 164
absolutely continuous, 164
cylindrical, 72
exterior, 113
inner-regular, 117, 136
invariant, 486
outer, 113
recurrence, 691
strictly positive, 706

measure theory, 112
metric

Lévy-Prohorov, 125
metric on E, 154
metric on E△, 154
minimum time operator, 142, 155
minorization condition, 745
minorization property, 750
mixed topology, 158
mixing property, 561
modification, 167, 172, 309, 310

right-continuous with left limits,
172

modified version, 172
momentum observable, 447
Monotone Class Theorem, 116, 142
monotone class theorem, 162, 163,

175–178, 181, 189, 197, 372, 732
monotone function, 303, 335, 338,

339, 343, 344, 353, 370, 372, 375
monotone mapping, 131
monotonicity condition, 334
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monotonicity constant, 371
multiplicative Borel measure, 137
multiplicative process, 580

time-homogeneous, 580
Myadera perturbation condition, 413
Myadera potential, 413, 415

negative-definite matrix, 513
Neumann boundary condition, 305
Nevue-Chacon identification theorem,

589, 598, 599
no-arbitrage, 400
Noether constant, 447
Noether observable, 442, 446
Noether theorem, 407, 450

complex version of, 442
deterministic, 436, 447
stochastic, 407, 436

non-conservative process, 309
non-linear Feynman-Kac formula,

314, 429
non-risky asset, 400
normal Markov process, 150
normal strong Markov process, 151
Novikov condition, 20, 27, 91, 92,

401, 423
null-recurrent Markov chain, 651
Nummelin splitting, 745, 751

occupation formula, 391
once integrated semigroup, 239
one-dimensional distribution of strong

Markov process, 147
one-sided Lipschitz function, 303,

334, 335, 344, 375
operator

(sub-)Kolmogorov, 459
analytic, 539
positivity preserving, 134
sequentially weak� closed, 524
time derivative, 144

operator-valued Brownian motion, 95
operators with unique Markov

extensions, 147
option pricing, 304
opérateur carré du champ, 94

orbit, 168, 169, 172, 173, 188, 222,
309, 310
sequentially compact, 168, 172

Orey’s convergence theorem, 592,
594, 633, 637, 708, 731, 750–752

Orey’s theorem, 594, 652, 708, 713,
729

Ornstein-Uhlenbeck process, 63, 477,
478, 486

Ornstein-Uhlenbeck semigroup, 518
oscillator process, 478
outer measure, 113

Palm distribution, 757
parabolic differential equation, 303
partial differential equations of

parabolic type, 385
particle mass, 422
pathwise solutions to SDE, 34–36

unique, 38
pavement, 284
penetration time, 106, 578, 581
periodic Markov chain, 743
petite subset, 655
Pettis derivative, 67
Pettis integrable function, 66
phase, 318

stochastic, 318
phase space, 306

stochastic, 307
pinned Markov process, 449
Planck’s constant, 422
Poincaré inequality, 555, 616, 617,

619–621, 644
pointwise, 635

point evaluation, 137
pointwise convergence, 111, 112, 120
pointwise defined operator, 682
pointwise ergodic theorem of

Birkhoff, 561
pointwise generator of semigroup, 660
pointwise limit, 118, 121
pointwise Poincaré inequality, 635
Poisson process, 592, 687, 688, 696

jump process of, 592
jumping time of, 688
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Polish space, 104, 109, 117, 124, 128,
138, 139, 158, 168, 170, 185, 207,
273, 453

portfolio process, 400

arbitrage free, 401

tame, 401

positive Tβ-dissipative, 272, 273

positive Tβ-dissipative operator, 154,
232, 239, 241, 273

positive capacity, 284

positive contraction operator, 583,
584, 588, 589, 593

positive Harris recurrent, 729

positive homogeneous functional, 265
positive linear operator, 707

positive mapping, 46

positive operator, 582

positive recurrent Markov chain,
651–653

positive resolvent property, 133

positive-definite matrix, 483, 512, 555

positive-definitive matrix, 513, 514
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