Engineering
Mathematics-ll

(M201)
WBUT—2015

Third Edition



About the Authors

Dr Sourav Kar is presently Assistant Professor of
Mathematics at the Siliguri Institute of Technology,
Siliguri,West Bengal. He completed his postgradua-
tion as well as PhD in Mathematics from the Univer-
sity of North Bengal, West Bengal and also obtained
a BEd degree from SRK BEd College, Darjeeling.
He has been involved in teaching and research for
more than ten years and has published 12 research
papers in various national and international journals of
repute. He has also presented several research papers
in national and international conferences.

Prof. Subrata Karmakar is presently Assistant
Professor of Mathematics at the Siliguri Institute
of Technology, Siliguri, West Bengal. He is a post-
graduate in Mathematics from Utkal University,
Bhubaneswar, and holds a BEd degree from Regional
Institute of Education (NCERT), Bhubaneswar,
Odisha. He has qualified different national-level
examinations like GATE and SLET. He has been
involved in teaching and research for more than ten
years in applied mathematics. During his service
at Siliguri Institute of Technology, as an active
academician, he has participated in different work-
shops/conferences/seminars conducted by DST,
AICTE and UGC. He is pursuing research in the
University of North Bengal.

Dr Kar and Prof. Karmakar have jointly published two other books Engineering Math-
ematics I and Engineering Mathematics III for WBUT with McGraw Hill Education
(India).



Engineering
Mathematics-ll

(M201)
WBUT—2015

Third Edition

Sourav Kar
Assistant Professor
Department of Mathematics
Siliguri Institute of Technology
Siliguri, West Bengal

Subrata Karmakar
Assistant Professor
Department of Mathematics
Siliguri Institute of Technology
Siliguri, West Bengal

Education

McGraw Hill Education (India) Private Limited
NEW DELHI

McGraw Hill Education Offices
New Delhi New York StLouis San Francisco Auckland Bogota Caracas
Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokyo Toronto




Mc

G!'Ialw

(SR \icGraw Hill Education (India) Private Limited
Published by McGraw Hill Education (India) Private Limited,

P-24, Green Park Extension, New Delhi 110 016.

Engineering Mathematics-II, 3e (WBUT-2015)

Copyright © 2015, 2013 by McGraw Hill Education (India) Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise or stored in a database
or retrieval system without the prior written permission of the publishers. The program
listing (if any) may be entered, stored and executed in a computer system, but they may
not be reproduced for publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited.

ISBN (13): 978-93-392-1908-6

ISBN (10): 93-392-1908-2

Managing Director: Kaushik Bellani

Head—Higher Education (Publishing and Marketing): Vibha Mahajan
Senior Publishing Manager (SEM & Tech. Ed.): Shalini Jha

Asst. Sponsoring Editor: Koyel Ghosh

Editorial Executive: Piyali Chatterjee

Manager—Production Systems: Satinder S Baveja

Senior Production Manager: P L Pandita

Senior Copy Editor: Kritika Lakhera

Assistant General Manager (Marketing)—Higher Education: Vijay Sarathi
Assistant Product Manager (SEM & Tech. Ed): Tina Jajoriya

General Manager—Production: Rajender P Ghansela
Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education
(India), from sources believed to be reliable. However, neither McGraw Hill Education
(India) nor its authors guarantee the accuracy or completeness of any information
published herein, and neither McGraw Hill Education (India) nor its authors shall be
responsible for any errors, omissions, or damages arising out of use of this information.
This work is published with the understanding that McGraw Hill Education (India)
and its authors are supplying information but are not attempting to render engineering
or other professional services. If such services are required, the assistance of an
appropriate professional should be sought.

Typeset at Script Makers, 19, A1-B, DDA Market, Paschim Vihar, New Delhi
110063 and printed at

Cover Printer:



Dedicated

To my teacher

Dr Sanjib Kr Datta
and

My beloved family members

- Sourav Kar

To the Holy Mother
Maa Sarada

- Subrata Karmakar






Contents

Preface Xiii
Roadmap to the Syllabus XVii

1. Fundamental Concepts of Ordinary Differential
Equations (ODE) 1.1-1.14
1.1 Introduction 1./
1.2 Ordinary Differential Equations (ODE) 1.7
1.3 Order and Degree of Ordinary Differential Equations 1.2
1.4 Linear and Nonlinear Ordinary Differential Equations 1.3
1.5 Formation of Ordinary Differential Equations 1.4
1.6 Types of Solutions of Ordinary Differential Equations 1.7

1.7 Geometrical Interpretation of Solution of Ordinary Differential
Equations (ODE) 1.9

Worked Out Examples 1.9
Short and Long Type Questions 1.11
Multiple Choice Questions 1.13

2. Ordinary Differential Equations of First Order and
First Degree 2.1-2.42
2.1 Introduction 2.7
2.2 Exact Differential Equations 2.2
2.3 Homogeneous Equations 2.19
2.4 Linear First Order Differential Equations 2.27
2.5 Bernoulli’s Equation 2.26
Worked Out Examples  2.29
Short and Long Type Questions 2.38
Multiple Choice Questions 2.40
3. Ordinary Differential Equations of First Order and
Higher Degree 3.1-3.32

3.1 Introduction 3./

3.2 Ordinary Differential Equations of First Order And
Higher Degree 3.1



viii I

33
34
35
3.6
3.7
3.8
39

Contents

Equations Solvable forp 3.2

Equations Solvable fory 3.5

Equations Solvable forx 3.8

Clairaut’s Equation 3.11

Equations not Containing x 3.16
Equations not Containingy 3.17
Equations Homogeneous inx andy 3.19
Worked Out Examples  3.20

Short and Long Type Questions 3.30
Multiple Choice Questions 3.32

4. Ordinary Differential Equations of Higher Order and
First Degree 4.1-4.58

4.1
4.2

4.3

4.4

4.5

Introduction 3./

General Linear Differential Equations with Constant
Coefficients 4.7

General Second Order Linear Differential Equations with Constant
Coefficients 4.3

Homogeneous Second Order Linear Differential Equations with
Variable Coefficients 4.28

Simultaneous Linear Differential Equations 4.35
Worked Out Examples 4.38

Short and Long Type Questions 4.59

Multiple Choice Questions 4.62

5. Basic Concepts of Graph Theory 5.1-5.38

5.1
52
53
54
55
5.6
5.7
5.8
59
5.10
5.11
5.12

Introduction 5.1

Graphs 5.2

Some Important Terms Related to a Graph 5.3
Order and Size of a Graph 5.6

Degree Sequence of a Graph 5.7

Some Special Type of Graphs 5.9

Some Important Theorems on Graphs  5.11
Subgraphs 5.13

Complement of a Graph 5.15

Walk, Trail, Path and Circuit 5.16
Connected and Disconnected Graphs 5.20
Euler Graph 5.26

Worked Out Examples 5.27



Contents I ix

Short and Long Type Questions 5.34
Multiple Choice Questions 5.37

6. Matrix Representation and Isomorphism of Graphs 6.1-6.35

6.1 Introduction 6.7
6.2 Adjacency Matrix of a Graph 6.1/
6.3 Incidence Matrix of a Graph 6.9
6.4 Circuit Matrix 6.14
6.5 Graph Isomorphism 6.16
Worked Out Examples 6.24
Short and Long Type Questions 6.29
Multiple Choice Questions 6.34

7. Tree 7.1-7.56

7.1 Introduction 7.7

7.2 Definition and Properties 7.1
7.3 Rooted and Binary Trees 7.4
7.4 Spanning Tree of a Graph 7.8

7.5 Breadth First Search (BFS) Algorithm for finding Spanning Tree
of aGraph 7.10

7.6 Depth First Search (DFS) Algorithm for finding Spanning Tree
of aGraph 7.11

7.7 Fundamental Circuits 7.13

7.8 How to Generate All Spanning Trees (cyclic interchange or
elementary tree transformation) 7.15

7.9 Minimal (or shortest) Spanning Tree 7.19

7.10 Kruskal’s Algorithm for finding Minimal (shortest)
Spanning Tree 7.19

7.11 Prim’s Algorithm for finding Minimal (shortest) Spanning Tree
7.22

7.12 Cut Set and Cut Vertices 7.25

7.13 Fundamental Cut Sets 7.27

7.14 Edge Connectivity and Vertex Connectivity 7.28
Worked Out Examples  7.30
Short and Long Type Questions 7.47
Multiple Choice Questions 7.55

8. Shortest Path and Algorithm 8.1-8.25

8.1 Introduction 8.1
8.2 Shortest Paths in Unweighted Graphs 8.2



X I Contents

8.3 Shortest Paths in Weighted Graphs 8.2

8.4 Dijkstra’s Algorithm for Finding the Shortest Path Between Two
Specified Vertices 8.4

8.5 Breadth First Search (BFS) Algorithm to Find the Shortest Path
from a Specified to Another Specified Vertex 8.9

Worked Out Examples 8.11
Short and Long Type Questions 8.20
Multiple Choice Questions 8.24

9. Improper Integrals 9.1-9.36

9.1 Introduction 9./
9.2 Definition of Improper Integrals 9.7
9.3 Types of Improper Integrals 9.2

9.4 Necessary and Sufficient Conditions for Convergence of Improper
Integrals 9.8

9.5 Gamma Function 9.12
9.6 Beta Function 9.15
9.7 Inter-relation Between Gamma Function and Beta Function 9.17

9.8 Some Standard Results using Inter-relation of Beta and Gamma
Functions 9.79

Worked Out Examples  9.25
Short and Long Type Questions 9.34
Multiple Choice Questions 9.35

10. Laplace Transform (LT) 10.1-10.53

10.1 Introduction 0.1

10.2 Definition and Existance of Laplace Transform (LT) 10.1
10.3 Linearity Property of Laplace Transform /0.3

10.4 Laplace Transform (LT) of Some Elementary Functions 70.4
10.5 First and Second Shifting Properties 10.12

10.6 Change of Scale Property 10.16

10.7 Laplace Transform of Derivatives of Functions 10.17

10.8 Laplace Transform of Integrals 710.20

10.9 Laplace Transform of Functions on Multiplication by ¢" (n is any
positive integer) 10.22

10.10 Laplace Transform of Functions on Divisionby ¢t 10.24

10.11 Laplace Transform of Unit Step Function
(Heaviside’s Unit Function) 70.26

10.12 Laplace Transform of Periodic Functions 10.29
10.13 Initial Value Theorem 70.32



Contents I xi

10.14 Final Value Theorem 10.33

10.15 Laplace Transform of Some Special Integrals 10.34
Worked Out Examples 10.38
Short and Long Type Questions 10.49
Multiple Choice Questions 10.52

11. Inverse Laplace Transform 11.1-11.38
11.1 Introduction /1.1
11.2 Definition And Uniqueness of Inverse Laplace Transform [717.7
11.3 Linearity Property of Inverse Laplace Transform /7.2
11.4 First and Second Shifting Properties 11.5
11.5 Change of Scale Property 11.9
11.6 Inverse Laplace Transform of Derivatives of Functions 71.10
11.7 Inverse Laplace Transform of Integrals 11.12

11.8 Inverse Laplace Transform of Functions on Multiplication by p™
(n is any positive integer) [11.13

11.9 Inverse Laplace Transform of Functions on Divisionby p 11.14
11.10 Convolution 11.15
Worked Out Examples 11.17
Short and Long Type Questions 11.35
Multiple Choice Questions 11.37

12. Solution of Linear ODE using Laplace Transform 12.1-12.20

12.1 Introduction 12.1
Worked Out Examples  12.2
Short and Long Type Questions 12.19

Solved 2012 WBUT Question Paper SQP1.1-SQP1.16
Solved 2013 WBUT Question Paper SQP2.1-SQP2.15
Solved 2014 WBUT Question Paper SQP3.1-SQP3.12






Preface

One reason why mathematics enjoys special esteem, above all other sciences, is
that its laws are absolutely certain and indisputable, while those of other sciences
are to some extent debatable and in constant danger of being overthrown by newly
discovered facts.

Albert Einstein (1879-1955)

Mathematics is an essential subject for any branch of engineering and technology, and
to facilitate progressive learning West Bengal University of Technology (WBUT) has
introduced a different syllabus for Mathematics for different semesters at the BTech
level. This book has been written as per the latest WBUT syllabus for first-year second-
semester BTech students. The syllabus for the second semester includes different kinds
of topics but a student can hardly find a good book in the market which covers all these
topics. The main objective of writing this book is to meet the demand of a good book
which can build the fundamental concepts as well as help the students in their semester
examination. Every topic in the book is explained in a lucid manner and is illustrated
with different types of examples. Also step-wise clarification of different methods of
solving problems is given. Though the book has been written according to the WBUT
syllabus, other university students can also use this book for their curriculum.

Salient Features

* Written according to the WBUT syllabus

* Excellent coverage of the topics like Ordinary Differential Equations, Concepts
of Graphs, Matrix Representation and Isomorphism of Graphs, Trees, Shortest
Paths and Algorithm, Laplace Transforms, Improper Integrals, Beta and Gamma
Functions

» Step-wise clarification of different methods of solving problems
* Solved 2001-2011 WBUT examination questions in each chapter
* Solved 2012 to 2014 WBUT examination papers

* Rich pedagogy:

o 280 Solved Examples
o 95 Short and Long-Answer-Type Questions
o 95 Multiple Choice Questions
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Chapter Organization

The contents of the book are divided into 12 chapters according to the latest WBUT
syllabus.

In Chapter 1 we discuss the fundamental concepts of ordinary differential
equations.

One of the most important kinds of differential equations is of first order and first
degree. Chapter 2 covers the concepts of various types of differential equations of first
order and first degree along with the methods of solving them.

Chapter 3 deals with differential equations of first order and higher degree. Among
these, Clairaut’s form is one of the important topics.

Different applications of engineering and science require linear differential
equations of higher order. In Chapter 4 we present the methods of solution of linear
differential equations of higher orders with constant coefficients. We also discuss the
methods of solution of Cauchy—Euler equations and Cauchy-Legendre equations. At
the end of the chapter, the methods of solution of simultaneous differential equations
are described.

In the past few decades, graph theory has become one of the essential subjects of
study in almost every field of science and technology. Graph theory can be applied to
represent almost every problem which has discrete arrangements of objects. Chapter S
deals with the origin and fundamentals of graph theory, such as definitions, properties,
different kinds of graphs, etc.

Though the pictorial representation is convenient for studying graphs, matrix rep-
resentation of graphs is also essential. Representation of a graph in a matrix form
means that it can be fitted to a computer; besides several results of matrix algebra
can be applied on the structural properties of graphs. Among different types of matrix
representation of graphs, adjacency matrix and incidence matrix are quite common.
Chapter 6 discusses adjacency matrix of graphs, incidence matrix of graphs and cir-
cuit matrix. One of the important applications of matrix representation of graphs is to
see whether two graphs are isomorphic or not. In this chapter we have also described
various techniques for checking isomorphism including the applications of adjacency
matrix and incidence matrix.

Chapter 7 gives basic properties of trees along with the concept of spanning trees.
We discuss how different kinds of searching algorithm are dependent on rooted trees
and binary trees. Another topic included in this chapter is representation of differ-
ent algorithms for finding minimal spanning trees, such as Krushkal’s algorithm and
Prim’s algorithm. The concept of cut-set is very important in network theory. Here we
discuss cut-set and fundamental cut-set with examples.

The most common problem is to find a path with the shortest length in different
branches of science and technology. This is also used in operation research. There are
several methods for finding shortest paths. Chapter 8 discusses Dijkstra’s algorithm
as well as BFS algorithm to find the shortest distance.

Chapter 9 deals with the different types of improper integrals and their convergence
followed by a discussion of special type of improper integrals called beta and gamma
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functions, along with their applications. Here we also give interrelations between beta
and gamma functions.

In Chapter 10 we first discuss the Laplace transform of some standard functions.
Then we give details of the various properties of Laplace transform illustrated with
different suitable examples. Here we also represent the Laplace transform of the unit
step function (Heaviside’s function) and Dirac’s Delta function. The application of
these functions makes the method particularly powerful for problems in engineering
with inputs that have discontinuities or complicated periodic functions.

Chapter 11 deals with the inverse Laplace transform. Different properties of the
inverse Laplace transform illustrated with various kinds of examples are provided.
Here we include different techniques of finding inverse Laplace transform, such as
partial fraction, convolution, etc.

In Chapter 12 we discuss the method of solving linear ordinary differential
equations with constant coefficients illustrated with different examples. To solve the
equations we require an understanding of the concepts and properties of Laplace trans-
form as well as inverse Laplace transform, which have been discussed in Chapters 10
and 11.

Various kinds of solved examples covering all the topics are given throughout the
chapters including WBUT examination questions. Adequate questions are also given
in the exercises of every chapter along with a section on multiple choice questions.
Model question papers are provided at the end of the book.
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CHAPTER

Fundamental Concepts
of Ordinary Differential
Equations (ODE)

1.1 INTRODUCTION

Ordinary Differential Equations play an important role in different branches of science
and technology. In the practical field of application problems are expressed as differen-
tial equations and the solution to these differential equations are of much importance. In
this chapter, we will discuss the fundamental concepts of ordinary differential equations
followed by chapters which deal with the various analytical methods to solve different
forms of differential equations.

1.2 ORDINARY DIFFERENTIAL EQUATIONS (ODE)

An equation involving an independent variable and a dependent variable with
its ordinary derivatives with respect to the independent variable or involving
differentials is called an ordinary differential equation.

If x is the independent variable and y is a dependent variable, then the equation
involving x, y and one or more of the following

dy &y 'y
dx’dxz’“"dx""”

is called an ordinary differential equation.




The general form of ordinary differential equations is

d"y dn—ly dy
F(dd‘dy =0

where x is the independent variable and y is a dependent variable.
Let us give some examples of ordinary differential equations,

dy
a —=a

dx

dzy dy .
b) ﬁ —554-3)7 = Sin x

c) (xy+x2)dx+ <y2+sinx)dy =0

Observation: The word ordinary states the fact that there is only one independent
variable in the equation. If there exists more than one independent variable along with
the partial derivatives in a equation, it is called a partial differential equation.

The example of a partial differential equation is

where z is the dependent variable and x, y are the independent variables.

1.3 ORDER AND DEGREE OF ORDINARY DIFFERENTIAL EQUATIONS

The order of an ordinary differential equation is the order of the highest ordered deriva-
tive involved in the equation and the degree of an ordinary differential equation is the
power of the highest ordered derivative after making the equation rational and integrable
as far as derivatives are concerned.

Example 1 _| The order and degree of the differential equation

d4y dy 3
£ 1 5(2) 13y =
dx4+ (dx) toy=e

is 4 and 1 respectively.

Example 2 | Determine the order and degree of the differential equation

dy 1
j— X
y d.x



Sol. The differential equation can be written as

A(2Y 2y
DY iy
Y dx

dy 2
or, y—}—(m) =(1+x)?

Therefore, the order of the differential equation is 1 and degree is 2.

Example 3 | Determine the order and degree of the differential equation

3
d’y\? dy
“ 7 _ 4 2
(dx2> dx Ty

Sol. The differential equation can be written as

d2y 3 dy 2
XY (22 2
<dx2) (dx Tyt )

Therefore, the order of the differential equation is 2 and degree is 3.

1.4 LINEAR AND NON—LINEAR ORDINARY DIFFERENTIAL EQUATIONS

An ordinary differential equation of first degree which contains the dependent variable
as first degree term only and no other term which is a product of the dependent variable or
its function and its derivatives or any trancendental function of the dependent variable,
will be called a linear differential equation. Otherwise the differential equation is
called a non—linear differential equation.

The general form of a linear differential equation is

dr dn—] d
A e a5+ a0y = f()

ap(x)

where ag(x),aj(x),...,a,—1(x),a,(x) and f(x) are functions of x or constants.
Here, we cite some examples of linear differential equations

d
a) x—y+6y:9
dx

d? d
b) szﬁ +3exd—y +y =cosx + logx
x x



Following are some examples of non-linear differential equations

d
a) x+y25L 4oy =t
dx
. dy . . . dy
Here, co-efficient of Tr is a function of x and y. i.e. product of y and TIr is present.
X X

d*y . (dy)’ )
b x 22 () 18y=6
)xdx2+<dx) +Oy=0xTy

d
Here, degree of d—y is more than one.
X
d
o g2 =02
dx

Here, degree of y is more than one.

Observations: An ordinary differential equation is non-linear when

a) There exist terms which is a product of the dependent variable or its function
and its derivatives.

b) There exists any trancendental function of the dependent variable.
¢) The coefficient of derivatives is a function of x and y.

d) The degree of the differential coefficient is not equal to one.

e) The degree of y is more than one.

In this context we state a very important fact that every linear differential
equations is of first degree but every first degree differential equation may not be
linear.

Example 4 | The differential equation

dzy dy

2 2 2

X°—= X —— 5 =x
dx2 dx Y

is of first degree but since y? is present, it is a non-linear differential equation.

1.5 FORMATION OF ORDINARY DIFFERENTIAL EQUATIONS

Case I: Generally differential equations are formed by eliminating the con-
stants from a relation consisting of independent variable and dependent variable.
Let us consider the most simple relation (with one constant)

y = m, aconstant



Differentiating w.r.to. x, we have

dy
Z =0
dx

which is a first order first degree differential equation.
Now, consider the relation (with one constant)

y = mx,where m is a constant

Differentiating w.r.to. x, we have

dy

= —m

dx
Eliminating m, we have

dy _y

dx X

which is a first order first degree differential equation.
Now, suppose the relation is (with two constants)

y = mx + ¢, where m and c¢ are two constants
Differentiating w.r.to. x, we have

y _
dx

Again differentiating w.r.to. x, we have

m

d?y
dx?
which is a second order first degree differential equation.

It should be noted that when we are eliminating one constant, we are getting a first
order differential equation where as elimination of two constants yields a second order
differential equation.

So, in general when we have n constants in a relation, eliminating them we get a
differential equation of order n. In other words, solution to a differential equation of
order n contains n arbitrary constants.

Example S _| Find a differential equation from the following relation

y = e*(Acosx + Bsinx)

Sol. Here we observe that the number of constants are A and B and we have to
eliminate the constants.
Now,

y =¢e*(Acosx + Bsinx) )



Differentiating (1) with respect to x, we get

dy . . .
Ir =e¢e'(Acosx + Bsinx) + e (—Asinx + Bcosx)
X
dy o .
or, d——y_e (—Asinx + Bcosx) 2)
X

Differentiating (2) with respect to x, we get

d*y dy . . .
— — — =¢"(—Asinx + Bcosx) + e (—Acosx — Bsinx)
dx? dx
d’y dy dy

or, — - = == —y—
dx?  dx dx Y

d*y dy
01",@—26{7—’-2)):0

Therefore, the required differential equation is of second order and given by

d*y dy
— —2—=—+2y=0
dx? dx 2y
Example 6 | Find a differential equation from the following relation
A
y=—-+8
X
Sol. Here we observe that the number of constants are A and B and we have to
eliminate the constants.
Now,
A
y=—+8B (D)
X

Differentiating (1) with respect to x, we get

dy A
L 2
dx x2 @
Differentiating (2) with respect to x, we get
d*y 2A
pre il G)
X X

Eliminating A from (2) and (3), we have

dy _ 2 ( ody
dx?  x3 dx



d*y 2dy

i.e., - -7
dx? x dx
. d’y  2dy
i.e., — 4+ ——=0.
dx?  xdx

Therefore, the required differential equation is of second order
d*y 2d
Yy 9 _y

dx? " xdx

Case II: Differential equations can be formed from different kinds of physical
and geometric problems.

Example 7 | Suppose a curve is defined by the condition that the sum of x

and y intercepts of its tangents is always equal to m. Express this by a differential
equation.

Sol. The equation of the tangent at any point (x, y) on the curve is given by
dy
Y—y="2(X-—
y=-X=-x

X Y

or, o = o =1
Y= Xax Y= Xay
_dy
dx

By the given condition we have

dy
Y~ Xy L AN
( dy )—l—(y xdx>_m

T dx
dy n dx
or, —x— x—y—|=m
Y dx ydy
DY ryemPyzo
or, X Ix x4y mdx y=

This is a first order second degree differential equation.

1.6 TYPES OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

1.6.1 General Solution or Complete Solution

A solution in which number of arbitary constants is equal to the order of the differential
equation is called general or complete solution.




Example 8 | The general solution of the differential equation

d*y

— 44y =0

dx? Ty
is

y = C1cos2x + Cypsin 2x

where C| and C, are arbitary constants. Here, the order is 2 and the number of
arbitary constants is also 2.

1.6.2 Particular Solution

A solution obtained from the general solution, by giving particular values to the arbitary
constants is called particular solution.

Example 9 | The general solution of the differential equation

d*y

— 4+4y=0

dx? Ty
is

y = Cicos2x + Cpsin2x

where C; and C; are arbitary constants. Here, one particular solution of the
differential equation is

y = cos2x + 2sin2x
Here,

Ci=land Cy =2

1.6.3 Singular Solutions

The general solution of any ordinary differential equation sometimes does not include
all the solutions of the differential equation. In other words, there may exist such
a solution which cannot be obtained by giving any particular values to those arbi-
trary constants of the general solution. This kind of solution is known as singular
solution.

Example 10 | The general solution of the differential equation

d
y:px+g,wherep=—y
p dx



is
a
y=cx+ —
c
where c is an arbitary constant.
The singular solution is
y2 = 4dax

This solution cannot be obtained by giving any particular value to ¢ in the general
solution.

1.7 GEOMETRICAL INTERPRETATION OF SOLUTION OF ORDINARY
DIFFERENTIAL EQUATIONS (ODE)

Once a solution to an ordinary differential equation has been found, it is possible to
exhibit its properties geometrically by plotting its graph for various specific values of
the parameters involved.

Geometrically,

1) The general solution to any ordinary differential equation is the equation of a family
of curves.

2) The particular solution is the equation of a particular curve of the family.

3) The singular solution is the envelope (when it exists) of the family of curves
representing the general solution.

WORKED OUT EXAMPLES
Example 1.1 | Find the order and degree of the following differential equations
d*y 3 dy 4
2 3
. - =0
a) x (a’x2> —i—y(dx) +y

3
d*y\*  d?
b) <1+y> =2

dx2) — dx?
d’y | dy

Sol.

a) The order and degree of the differential equation

12 3 ’ 4

2 Y b 3

X —— —}—y —_ + vy =0
(dxz) (dx)



is 2 and 3 respectively, since the highest derivative is of order 2 and the
power of highest derivative is 3.

b) The order and degree of the differential equation

3
d*y\*  d*
1+52) =22
dx?

2y\° (dy\*
or, 1+ 2r) - (42
dx? dx?

is 2 and 4 respectively, since the highest derivative is of order 2 and the
power of highest derivative is 4.

c) The order and degree of the differential equation
d’y

d
ﬁ+5£+3y=]0g)€

is 2 and 1 respectively, since the highest derivative is of order 2 and the
power of highest derivative is 1.

Example 1.2 | Form an ordinary differential equation from the relation

y=a(x — a)2
where a is a constant.
Sol. Here,

y=a(x — a)2

Differentiating both sides with respect to x, we have

dy
=9 _
I a(x —a)
o y _G-a
5 dy
ﬁ 2
2y
or, a=x—-
dx

Putting the value of a in the relation, we have



dy3 dy
, =) =4 = =2
o (@) o lE-)

which is the required differential equation.

Example 1.3| Find a differential equation from the relation.

y =logcos(x +a) +b

where a and b are constants.

Sol. Here,
y =logcos(x +a)+b
Differentiating both sides with respect to x, we have

dy sin(x + a)
—_ = —_—— = —t
dx cos(x + a) an(x +a)

Differentiating again with respect to x, we have

dzy

T2 = — secz(x +a)
d2
or, d—;;:—{l—ktanz(x—i—a)}
dzy - dy 2
or — = — —
’ dx? dx
d*y | (dy)?
, — — 1=0
or dx? + (dx) +

which is the required differential equation.

EXERCISES

Short and Long Answer Type Questions » ——

1) Determine the order and degree of the following differential equations

dy
e = O
a) I +y
[Ans: order—1,degree—1]



2)
constants

a) y?> =4ax

b) xy = ae* + be™™

¢c) y=a+bcosx

d) y=ax?+bx

e) y=(a+bx)e™

[Ans:

[Ans: order—2, degree—1]

[Ans:

order—3, degree—2]

[Ans: order—3, degree—1]

[Ans: order—2, degree—3]

Form a differential equation from the following relations by eliminating arbitary

d
[Ans: Zx—y —y=0]
dx

2

dy  dy

[AllS. Xﬁ + Za = Xy]

_d%y dy
[Ans: smxﬁ — COSX I 0]
d? 2\ d 2
Cy _(2\dy (2N _
dx? (x) dx <x2)

d? d
[Ans: ar_ Zm—y +m?y =0]

dx? dx



d2
3) Show that the equation ax + by + ¢ = 0 leads to % = 0 after the elimina-
x

tion of the constants a,b and ¢. How do you explain the equation is of second
order?

4) Obtain the differential equation of all circles, each of which touches the axis of x at
the origin.

d
[Ans: (x2 — y2)£ = 2xy]

5) Obtain the differential equation of all parabolas, each of which has a latus rectum

4a whose axes are parallel to the x axis.
dy 2 d’y
Ans: [ — 2a—= =0
[Ans (dx) + @ dx2 ]

Multiple Choice Questions

1) The differential equation representing the family of curves y = a cos(x + b) is

d?y d?y dy

Y _ ) A A
a)dx2 )dx2 dx °
d’y d?y

d? 2
2) The order and degree of the differential equation d—)zj = { y+ (y) } are
by

a) 4,2 b) 1,2 c)24 d)1,4
: . . . dy
3) The solution of the differential equation 2xd— — y = 3 represent
X
a) family of straight lines b) a circle

c¢) a family of parabola d) a parabola

4) The family of curves y = ax +a? is represented by a differential equation of degree
a)2 b) 3 o)1 d)4



. . (YN dPy L (dy)*
5) The order and degree of the differential equation | — | —3—<4+2(—) =y
dx3 dx? dx
a)3,4 b) 3,2 c)24 d) 1,4
Answers:

1.(d) 2(c) 3(d) 4(c) 5(b)



CHAPTER

Ordinary Differential Equations
of First Order and First Degree

2.1 INTRODUCTION

Many practical problems related to different branches of science and technology, when
mathematically expressed read as problems of ordinary differential equations. One of
the most important kind of differential equations are of first order and first degree. In
this chapter, we will discuss the concepts of various types of differential equations of
first order and first degree along with the methods of solutions for them.

2.1.1 First Order and First Degree Differential Equations

Any differential equation of first order and first degree is of the form

d
=y
Let,
_ M(x,y)
JEN =N

then the standard form of differential equation of first order is

\ M(x,y)dx + N(x,y)dy = 0.




Example 1_| The following equations represent the differential equations of first

order and first degree.
. dy 2, 2
() I -5t
(i) *+y)dx +(O*+x)dy=0

d
Gi) 2 4+ x%y = sinx
dx

2.1.2 Existence and Uniqueness Theorem for the Solution

If in the differential equation

dy
dr S, y) (1)
X
f(x,y) be continuous in a domain R containing the point (xg, yo), then there exist
a function y = g(x) which satisfies the equation (1) and takes the value yg for x = xo.
Rl
In addition, if the partial derivative a—f is continuous, then this solution of the

y
equation is unique.

The condition that y = g(x) has the value yg at x = x¢ is known as the initial condi-
tion of the equation.

2.1.3 Classifications

Assuming that a first order and first degree differential equation has a solution, the
equations can be classified according to the methods of solutions. Some of these types
are

(i) Exact differential equations
(ii) Homogeneous differential equations

(iii) Linear differential equations

2.2 EXACT DIFFERENTIAL EQUATIONS
2.2.1 Definition

The first order and first degree differential equation

M(x,y)dx + N(x,y)dy =0

is called an exact differential equation if there exist a function u(x, y) such that
the term M (x,y)dx + N(x,y)dy can be expressed as

du=M(x,y)dx + N(x,y)dy
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Then the equation becomes du = 0 and the solution is given by

‘ ulx,y)=c ‘
where c is an arbitrary constant.

Example2 | The equation x dx + y dy = 0 is an exact differential equation,
since we have

1
xdx+ydy=d |:2 (x* +y2)} =du (say)

where u =  (x% + »?). |
Therefore, the equation becomes du = 0 and its solution is 5 (x2 + y2) =c,

where c is an arbitrary constant.
Example3 | Prove that
Y
=~dx +logxdy =0
x
is an exact differential equation and find its general solution.
Sol. Here,
Y dx +1ogx dy = d(y logx)
X
Therefore,
Y
=—dx +logxdy =0
X
can be written as
d(ylogx) =0

Hence it is an exact differential equation.
The general solution is

(ylogx) =c¢
where c is an arbitrary constant.

Observations:
1) The total differential of the function u(x, y) is
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If we write in the form
du = M(x,y)dx + N(x,y)dy,

we see that
ou

d
— = M(x,y) and a_ N(x,y).
dx dy

2) Every exact equation can be written as

ou ou
—d —dy =0
dx X+ dy Y
or, du(x,y)] =0
or, ulx,y)=-c

where c is an arbitrary constant.

3) If M(x, y) and N(x, y) are simple enough, sometimes it is possible to say that
whether or not a function u(x, y) exists.

2.2.2 Criterion for Exactness

oM oN
Theorem 2.1: 1If oy and o are continuous in any region in space, then the
X

necessary and sufficient condition that the differential equation
M(x,y)dx + N(x,y)dy =0

is exact is

oM _on
dy  Ox

Proof:  The condition is necessary

Let us assume that the differential equation
M(x,y)dx + N(x,y)dy =0

is exact.
Therefore, there exist u(x, y) such that

M(x,y)dx + N(x,y)dy =du

Now,



Therefore,

ou u
ZM(X’)’) and — ZN(XaY)
ax ay
Now,
oM 9%u AN  d%u
— = and — =
ay 0x0y ox dyodx
Assuming,
9%u _ 9%u
dxdy  dydx
we have,
oM 0N
dy  ox
The condition is sufficient
Let us assume that
oM 0N
dy  ox
Let there exist V (x, y), such that
A%
=M
0x
or, V= / M dx treating y as constant
Now,
oM 'V 92V 9 [0V
dy  9xdy _8y8x T ax \ dy
Again
IN oM 9 (9V
ax  dy  dx \ dy
Therefore,

ENY% v
N=8—+f(y)=7+¢(y)
y dy

where f(y) is a function of y only and f(y) = ¢'(y) (say).



Therefore,

av aVv
de+Ndy:i9)Cdx+{{))) +¢/()’)} dy

av av
= _——dx+_—dy+¢'(y)dy
ax ay

=dV +¢'(y)dy
=d{V+e¢()}=du

where u =V 4+ ¢ (y).
Hence, M dx + N dy is an exact differential and

M(x,y)dx + N(x,y)dy =0

is an exact differential equation.

2.2.3 Methods of Solution
Working Procedure 1:

Step 1 Calculate [ M(x, y) dx treating y as constant.
Step 2 Calculate [ N(x,y)dy for those terms of N which do not contain x.
Step 3 Add the results of Step 1 and Step 2.

Therefore, the general solution of first order exact differential equation
M(x,y)dx + N(x,y)dy =0

is given by

/ M(x,y)dx + /(terms of N(x, y) not containing x) dy = ¢

Show that the differential equation
ydx + (x +cosy)dy =0
is an exact differential equation and find the general solution.
Sol. Here,
M(x,y) =yand N(x,y) = (x +cosy)

Now,



Therefore,
oM dN

—=—=1
ay ox

Hence, the differential equation is exact.
The general solution is,

/ M(x,y)dx + /(terms of N(x, y) not containing x) dy = ¢

/ydx+/cosydy=c

or, xy+siny =c

ie.

where c is an arbitrary constant.

Working Procedure 2:

Step 1: Calculate [ M(x, y) dx treating y as constant.
Step 2: Calculate [ N(x,y) dy treating x as constant.

Step 3: Add the results of Step 1 and Step 2 (deleting those terms which have already
occurred in Step 1) and equate to an arbitrary constant.

Example S_| Show that the differential equation
(e¥siny+e Y)dx + (e*cosy —xe Y)dy =0
is an exact differential equation and find the general solution.
Sol. Here,

M(x,y) = (e*siny +eY)and N(x,y) = (¢* cosy — xe )

Now,
oM X N ,
— =e"cosy—e Yand — =e cosy —e?
ay dx
Therefore,
M dN
— =—=¢"cosy—e”
ay ax

Hence, the differential equation is exact.
Now,

/ M(x,y)dx = /(ex siny+e Y)dx =e*siny +xe™”
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and
/ N(x,y)dy = /(ex cosy —xe Y)dy = e siny + xe™”
Therefore, the general solution is
e*siny +xe? =c¢

where c is an arbitary constant.

2.2.4 Integrating Factors for Non-exact Differential Equations to
Make It Exact

A function f(x, y) is said to be an integrating factor (I.F.) of the differential equation
M(x,y)dx + N(x,y)dy =0
when the differential equation is not exact and we can find a function u(x, y) such that
| /(. p){M(x.y)dx + N(x.y)dy} = du|

The following table represents some integrating factors which can be found by
inspection.

S.No. Expression Integrating Factors (IF) Exact Differential
1 xdy—ydx _ y
1 xdy —ydx 1y
2. xdy—ydx m W—d(tan ;)
1 xdx +ydy » »
1 dy—yd
4, xdy —ydx — rayzryax :d[log (X)]
Xy Xy X
1 dx —xd
5. ydx —xdy — yxzxyzd(x)
y y y
1 xdx +ydy » »
1 d d
7. xdx +ydy — xaxtyay = d{logxy}
Xy Xy

Observations:
1) Integrating factor is the multiplying factor by which the non-exact differential
equation can be made an exact differential equation.

2) A differential equation which is not exact may have an infinite number of
integrating factors.



Example 6 _| Solve

(x*e® — 2axy?)dx + 2ax*ydy = 0

by finding integrating factor by inspection.

Sol. Here,
M(x,y) = (x*¢* — 2axy?) and N(x,y) = 2ax’y
Now,
oM oN
— = —4axy and — = 4axy
ay ax
Since,
oM " oN
ay ax

the differential equation is not exact.
The equation can be written as

x*e dx 4+ 2a(xdy — ydx)xy =0

dy —yd
or, x*e¥dx + 2ax3y(xy72yx) =0
X
or, x*e* dx + 2ax3yd <X) =0
X
or, e* dx +2a (X> d (X) =0
X x

Integrating both sides, the general solution is
e’ + a(X)2 =c
X

where c is an arbitary constant.

Example 7 _| Solve
(*y? —y)dx + 2yt —x)dy =0

by finding integrating factor by inspection.

Sol. Here,
M(x,y) = (x*y? —y) and N(x,y) = (x*y* — x)

Now,
oM

oN
=2x*y —land — = 2xy* — 1
ay ax



Since,
oM  ON
By 7 ox
the differential equation is not exact.

The equation can be written as

x4y2dx—ydx —|—x2y4dy—xdy=()

or, x2y2(x?dx + y*dy) — (xdy + ydx) =0
d d
or, deX‘l—yzdy—W:O
x°y
d
or, x2dx 4+ y*dy — (2xyz) =0
X°y

Integrating both sides, the general solution is

x3+y3+1
P ST
3 3 xy

where c is an arbitary constant.

2.2.5 Rules for Finding Integrating Factors for Non-exact
Differential Equations

Let us consider the differential equation
M(x,y)dx + N(x,y)dy =0

which is not an exact differential equation.

oM  ON

By | ox

The equation becomes an exact differential equation when we multiply the equation by

a suitable integrating factors (IF). The following are the rules for finding integrating
factors.

Rule 1: When,

i.e.,

oM oON

ay dax

N =f

f(x) is a function of x only, then,

IF = ¢/ /0



Example 8 | Show that the differential equation
1
(xy2 — ex3> dx —x*ydy =0

is not exact. Find the integrating factor and the general solution.

Sol. Here,
2 % 2
M(x,y) = (xy — ex3) and N(x,y) = —x~y
Now,
oM ) d oN )
— = zXxyand — = —4ZX
ay Y dax Y
Since,
oM  ON
ay ax
Therefore, the differential equation is not exact.
Here,
oM ON
By ax  2xy +2xy 4
Y =" = T = f) (say)
N —X“y X

Therefore, the integrating factor is

IE — eff(x)dx _ effédx — p—4logx _

Multiplying the differential equation by IF, we get

1
<xy2 — ex3> x2y

dx — —dy =0
x4 T
2 1
15 y
or, <x3—x4€x3>dx—x2dy=0

which is an exact differential equation.
Therefore, the general solution is (using working procedure 1 of Art. 2.2.3)

¥ 1L
/()63—4ex3>dx+/0dy=c
X
, [dx 1 £ 1
or, y x—3+§ ex>d P =c



or, ﬁ geX* =cC
1
or, 2x2ex’ — 3y = 6cx?
where c is an arbitrary constant.
Rule 2: When,
oM 9N
ay ox
w 8O

g(y) is a function of y only, then,

IF = ¢~ JgMady
Example 9 | Show that the differential equation

yvlogydx + (x —logy)dy =0

is not exact. Find the integrating factor and the general solution.

Sol. Here,
M(x,y) = ylogyand N(x,y) = (x — logy)
Now,
oM oN
— =1+logyand — =1
ay ox
Since,
oM oN
ay ax
Therefore, the differential equation is not exact.
Here,
oM ON
9y ax I4+1logy—1 1
) = =~ =30 (ay)
M ylogy y

Therefore, the integrating factor is

IF = o J8Wdx _ J—ydy _ ,~logy _ 1
y



Multiplying the differential equation by IF, we get

1 —1
ylogy . o (x —logy) dy =0
y y
1
or, 10gydx+(x— ogy) dy=0
y y

which is an exact differential equation.
Therefore, the general solution is (using working procedure 1 of Art. 2.2.3)

1
/logydx—/ﬂdyzc
y

(log y)?
or, xlogy - ——— =¢
2
where c is an arbitrary constant.

Rule 3: When M (x,y) and N (x, y) are homogeneous functions of x and y of same
degree and Mx + Ny # 0, then,

1

F=——
Mx + Ny

Example 10 | Show that the differential equation

(x4+y4)dx —xy3dy =0

is not exact. Find the integrating factor and the general solution.

Sol. Here,
_ 4 4 _ 3
M(x,y) = (x"+y") and N(x,y) = —xy
Now,
oM 0
7 —4y3and = —y3
ay 0
Since,
oM 0N
ay ax

Therefore, the differential equation is not exact.
Here, M (x,y) and N (x, y) are homogrneous functions of degree 4 and M x +
Ny =x> #0.



Therefore,

1 1
F=——=—
Mx+ Ny x°
Multiplying the differential equation by IF, we get
4 4 3
W g - gy
X X
1 4 3
or, f+y— dx—y—dy:O
x  x° x4

which is an exact differential equation.
Therefore, the general solution is (using working procedure 1 of Art. 2.2.3)

1 4
J(2es) o
X X

4
or, logx — EAN c
4x4
or, 4x* logx — y4 = 4ex?

where c is an arbitrary constant.

Rule 4: When M(x,y)dx + N(x,y)dy = 0 can be expressed in the form
yo(xy)dx +x¥(xy)dy = 0and Mx — Ny # 0, then,

1
_Mx—Ny

Example 11 | Show that the differential equation

(x2y? + xy + Dydx + (x*>y? —xy + Dxdy =0

IF

is not exact. Find the integrating factor and the general solution.

Sol. Here,
Mx,y) = (xzy2 4+xy+1)yand N(x,y) = (xzy2 —xy+ Dx

Now,
— =3y x"+2xy+land — =3x"y" —2xy + 1
ay ox
Since,
oM ” oN
ay ax

Therefore, the differential equation is not exact.



The differential equation is of the form y¢ (xy) dx + xy¥(xy) dy = 0 and
Mx — Ny = 2)c2y2 #0
Therefore, the integrating factor is

1 1

IF = =
Mx — Ny  2x2y2

Multiplying the differential equation by IF, we get

U@y2+xy4—Dydx%_Ugyz—xy+—0x

2x2y2 2x2y2

y 1 1 X 1 1
, 4+ —4+—)d ———4+—5)dy=0
or (2+2x+2x2y> x+<2 Zy—i_Z)cy2 Y
which is an exact differential equation.
Therefore, the general solution is (using working procedure 1 of Art. 2.2.3)

y 1 1 /‘1
S+ —4+———)dx— | —dy=
/(2+2x+2x2y> * 2y Y=
x 1 1 1
L+

“logx — — — ~logy =
5 5 logx poe Slogy=c

dy=0

where c is an arbitrary constant.

Rule 5:  When M (x, y)dx + N(x,y)dy = 0 can be expressed in the form
x*y(my dx + nx dy) + xy¥(py dx + gx dy) = 0
where a, b, c,d, m,n, p,q are constants, then,
IF = xhyk
where / and k are constants determined by the simultaneous equations

ath+l _btk+l cthtl dtk+l
m B n P B q

Example 12 | Show that the differential equation

3ydx —2xdy + x>y~ ' (10ydx —6xdy) =0

is not exact. Find the integrating factor and the general solution.

Sol. Here the differential equation

3ydx —2xdy + x*>y~ ' (10ydx — 6xdy) =0



is of the form
x4y (my dx 4+ nx dy) + xy?(py dx + gx dy) = 0

wherea = 0,b = 0,c =2,d = —1l,m =3,n=—-2,p = 10andn = —6.
Therefore, the integrating factor is

IF = x" yk
where h and k are constants determined by the simultaneous equations

at+h+1 b+k+1 c+h+1 d+k+1
= and =

m n p q
‘We have,

0+hr+1 _ 0+k+1 and2+h+1 _ —1+k+1

3 -2 10 —6
or, 2h 4+ 3k = —5and 3h 4+ 5k = -9
or, h=2andk = -3
Therefore,
IF:)czyf3

Multiplying the differential equation by IF, we get

x2y 3 @Bydx — 2x dy) + x>y 3 {x2y 110y dx — 6x dy)} =0
or, 3)62y_2 dx — 2)c3y_3 dy + 1O)c4y_3 dx — 6)c5y_4 dy=0
or, BGx?y 2 +10x*y Hdx + (—2x3y 3 —6x’y Hdy =0

which is an exact differential equation.
Therefore, the general solution is (using working procedure 1 of Art. 2.2.3)

/(3x2y72 + 10x4y73) dx =c

or, x3y_2 + 2)65y_3 =c
where c is an arbitrary constant
Rule 6: When
1 oM  ON
——— (- ) =¢0m)
YN —xM \ dy ax
then

\ngwwmw




Example 13 | Show that the differential equation
(x4y2 —y)dx + (xzy4 —x)dy =0

is not exact. Find the integrating factor and the general solution.

Sol. Here,
M(x,y) = *y? = y) and N(x,y) = («*y* = x)
Now,
oM N
— =2x*y —land — =2xy* — 1
ay ax
Since,
oM  ON
ay dax
the differential equation is not exact.
Now,
1 oM AN\ (Qxty—1)— Qxy* 1)
yN —xM \ 0y ax ) y(2yt —x) —x(x*y2 —y)
-2
= =¢(xy) (say)
Xy
Therefore,
IF = of $00dGy) _ J a0y _ —2logtxy) _ 1
x2y2

Multiplying the differential equation by the integrating factor we get,

(x*y? —y) (x2y* —x)

X+
x2y2 x2y2

2 1 2 1
or, x°— —— ) dx+ ——)dy=0
x2y xyZ

which is an exact differential equation.
The general solution is (using working procedure 1 of Art. 2.2.3)

dy=20

or,

where c is an arbitrary constant.



Rule 7: 'When
x2 dN oM y
M+ N <8_3y> =v(3)
1= o v (2)a(3)

Example 14 | Show that the differential equation

2x2  x
—+—)dx+2xdy=0
y y

then

is not exact. Find the integrating factor and the general solution.

Sol. Here,
2x%  x
Mx,y)=|—+— ) and N(x,y) = 2x
y y
Now,
oM —2x? IN
=l ad =2
dy o2 dx
Since,
oM  oON
ay ax
the differential equation is not exact.
Now,
2x?
2(2 >
i <8N—3M>=x ( ety )
XM+ yN \ 9x ay by 2x?
Xy <2 + - + 2)
y y
! y
)0 o
y X X
Therefore,

2 PN 2 JG) ) _ ) _

X

Multiplying both sides of the equation by the integrating factor, we have

22
y<x+x> dx +2ydy =0
x\y Ty



or, 2x 4+ Ddx +2ydy=0

which is an exact differential equation.
The general solution is (using working procedure 1 of Art. 2.2.3)

/(2x+1)dx+/2ydy:c
or, x2+x+y2=c

where c is arbitrary constant.

Rule 8: When

then

2.3 HOMOGENEOQUS EQUATIONS
2.3.1 Definition

When the functions M (x, y) and N (x, y) are homogeneous functions of x and y of
same degree, then the differential equation

M(x,y)dx + N(x,y)dy =0

is called a homogeneous differential equation.

2.3.2 Method of Solution

The differential equation
M(x,y)dx + N(x,y)dy =0

can be written as

dy y )
dx f <x
Let us take the transformation
y = vx
then,
dy dv
v+ x—



d
Putting the value of d—y and y, we have
X

dv
v+ X = f)
dv dx
or, —_—=—
f) —v X
Integrating and putting,

Yy

v= =

x

we get the required general solution.

Example 15 | Solve

(x2+y2)dx + (x2 —xy)dy =0

Sol. The given differential can be written as
dy (49
dx  (xy —x2)
Let us take the transformation
y=uvx
then,

dy n dv
A
dx dx

d
Putting the value of d—y and y, we have
x

N dv 1+4°
vV x— =
dx v—1
dv 1+4°
or, x— = —v
dx v—1
-1 d
or, v dv:—x
v+ 1 X

Integrating both sides, we get
v—2log(v+ 1) =logcx
or, Y —2log (X+1) = logcx
X X

where c is an arbitary constant.



2.3.3 Equations that are both Homogeneous and Exact

Let the differential equation
M(x,y)dx + N(x,y)dy =0
is both homogeneous and exact. Then its general solution is given by
Mx+ Ny =c

provided degree of homogeneity is not equal to —1.

Example 16 | Solve the differential equation

(3 +2y%x)dx + (v} +2x2y)dy =0

Sol. Here,
M(x,y) = (x* 4+ 2y%x) and N(x, y) = (»° + 2x2y)
Now,
oM IN
— =4xy = —
dy ox

So the equation is exact.

Also the equation is homogeneous, since M(x,y) and N(x,y) both are
homogeneous functions of degree 3.

Hence, the solution is given by

Mx+ Ny =c
or, (x3 + 2y2x)x + (y3 + 2x2y)y =c
or, )c4+4xzy2—i—y4 =c

where c is an arbitrary constant.

2.4 LINEAR FIRST ORDER DIFFERENTIAL EQUATIONS
2.4.1 Definition

An ordinary differential equation which contains the dependent variable and its

derivatives as first degree terms only and no such term which is a product of

the dependent variable or its function and its derivatives, or any trancendental

function of the dependent variable, will be called a linear differential equation.

Otherwise, the differential equation is called a non-linear differential equation.
A linear differential equation of first order is of the form

dy
Ix + P(x)y = Q(x)
X
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where P(x) and Q(x) are functions of x or constants. This equation is known as
linear in y.

Following are some examples of linear differential equations of first order. (linear
iny)
a) d—y + 5y = 8x

dx

d
b) x—y + 6x%y = 9sinx
dx
Following are some examples of non-linear differential equation of first order

d
a) (x —l—y)zl + 5y =3x
dx
d
b) e + 5xy% = 3x
dx

Observations:
1) An ordinary differential equation is non-linear when,
a) There exist terms which is a product of the dependent variable or its
function and its derivatives.
b) There exists any trancendental function of the dependent variable.
¢) The degree of the dependent variable or its derivatives is more than one.
2) The coefficients of differential equation is either a function of independent
variable or constants.
3) Every linear differential equations is of first degree but every first degree
differential equation may not be linear.
For example the equation
d
@ +2xy? = 3¢~
dx

is of first degree but not linear.

2.4.2 Method of Solution

Let us assume that by multiplying the left-hand side of the equation given in
section 2.4.1 by u = u(x), we get

d dy
E(Yﬂ) = Ma + P(x)py
dy du dy
’ 'R - = 'R P
or poo Tty = (x)py
du
or, Yoo = P(x)py
X
d
or, e _ P(x)u
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d

or, e _ P(x)dx
n

or. w = ol P(x)dx

which is the integrating factor, i.e., IF is e/ P() dx
Multiplying both sides of the equation given in section 2.4.1 by the integrating
factor, we have

efP(x)del +efP(x)dxp(x)dx — efP(x)dXQ(x)
X

d
il JPxdx) _ [ P(x)dx
£z (e TOE) = 0woe

Integrating both sides, the general solution is

yel P dx :/Q(x)efP(x)dxdx+c,

or, y(F)= / O(x).(IF)dx + ¢

where c is an arbitrary constant.
Remarks:

1) The solution to the linear equation

dy

S+ Py = 0

can be put in the form

_ Q&) —fP(x)dx|: [ P(x) dx (Q) }
YT P e\ p)te

where C is an arbitary constant.
2) If u and v are two solutions of the equation

dy

Py = 0)

and if v = uz, then

9
z=14Ce/udx

Example 17 ] Solve

dx



Sol. The equation can be wrtten in the form

dy 5
=6
dx+( )y

and is a linear differential equation of first order.
5

Here, P(x) = — and Q(x) = 6.
X

Therefore,

5
IF = o PO dx _ [ Ydx _ Slogx _ |5
Hence, the solution is given by

y(IF) =/Q(x)(IF)dx+c

or, ny = /6x5 dx +c
or, yx5 = x6 +c.

where c is an arbitrary constant.

Example 18 | Solve

dy+ 4x _ 1
dx T2 1Y T @2y

Sol. The equation
dy 4x 1
T A V=3 3
dx x+1 x=+1)
is a linear differential equation of first order.
Therefore,

[ 4x
dx
IF =¢ x2 +1 210g(x +1) _ =0+x )

Multiplying both sides of the differential equation by the integrating factor, we

have
1 227 2\2 _ 2,2
(1+x%)*—=+(1 +x)(2 nY= (I+x9 G4 1)]
dy
or, 1+)c22 +4xx +1) =
(1 +x2) @+ =
or, (1 +x)%dy +4x (x> + )dx = ———dx
@2+
1
or, d{(1 +x2)2y} = ——dx

2+ 1)



Integrating both sides, the general solution is

(1 +x2)2y =tan ' x + ¢
tan~! x c

T2 T A

or, y

where c is an arbitrary constant.

2.4.3 Another Form of Linear Differential Equation of
First Order (Linear in x)

A linear differential equation of first order is also of the form

dx

7 +P()x = Q)
y

where P(y) and Q(y) are functions of y or constants. This is known as linear in x.

Consider integrating factor as
IF = ¢/ POy,

Multipling by IF, we have
di {xef PG dy} — Q(y)el POIY
y

On integration, the solution as

xefP(y)dy:/IQ(y)efP(wdy} dy+c

or, x.(IF):/Q(y).(IF)dy+c

where c is an arbitrary constant.

Note: Any differential equation of first order and first degree, not linear in y, may be
linear in x and vice versa.

Example 19 | Solve

(1+yHdx —(tan~'y —x)dy =0

Sol. The differential equation can be written as

dx
¢! —i—yz)E +x = tan~! y

dx X tan~!y

— + —
dy (1+y)  (1+y9)
which is a linear equation in x.

or,



The integrating factor is
J Lo
Fee (+)D)7 2 ganty
Multiplying both sides by the integrating factor, we get

tan~!y

d - .

7(xetdn )) — etdn y

dy (1+y?)
Integrating, we get

-1
xetan’1 y — tan Y tan~! y
(1+y%)

or, yean 'y — ptan”! Ytan~ly — 1) +¢
or, x=(tan 'y —1)+ cetan”"y

where c is an arbitary constant.

2.5 BERNOULLI'S EQUATION
2.5.1 Definition

The differential equation of first order and first degree is of the form

d
APy = 00"
X

where P (x) and Q(x) are functions of x or constants is called Bernoulli’s Equation.
This equation is not linear but by change in dependent variable, it can be
brought into the linear form.

2.5.2 Method of Solution

The equation

dy "
—+ Px)y=0x)y

dx
can be put in the form
_,dy _
Yy TP = 0W)
X
Putting,
7 = yl—n
dz _dy
e n=>
dx ( n)y dx
or, 7"d—y = I dz

dx  (1—n)dx



Therefore, the equation reduces to

1 dz p _
a _n)a +P(x)z= Q)
dz
or, —+ 0 -—nPx)z=~1-n)Q(x)
dx

Putting,

Pi(x) = (1 =n)P(x) and Q1(x) = (1 —n)Q(x)

the differential equation becomes

9 = 010
dx

which is a first order linear equation.

Example 20 | Solve

dy 2
X dx +y=xy
Sol. The equation is a Bernoullis’s equation.
The differential equation
dy 2
X dx +y=uxy
can be written as
1dy 1
?E + ; =X
Let,
1
=y
y
then,
dz  ldy
dx — y2dx
1 dy dz
or, — = =——
vZdx dx
Substituting these values in the original differential equation, we have
dz n
_ = x
dx ¢
dz
or, — —Z7=—X
dx ¢

which is a linear first order differential equation.



The integrating factor is
IF=el 4" = ¢

Multiplying both sides by the integrating factor, we have
d

e, 7= —xe

dx

or, die ™z} = —xe ¥ dx

Integrating both sides, we have

e Yz = / —xe Ydx = —x/efx dx —/.efx dx =xe*+e* +c

or, z=x+1+4ce"

where c is an arbitrary constant.
Therefore, the general solution is

1 X
—=x+1+ce
y

Example 21 | Solve

dy vy y
—= + Zlogy = (logy)?
X X

dx
Sol. The differential equation can be written as

1 dy 1 1 1

y(logy)?dx = x (logy)  x?
Putting,

1
logy =Y
we have
-1 ldy dv

(logy? ydx — dx

Therefore, the differential equation reduces to

dv 1 1

8L = 2

dx  x x2
dv 1 1
r, — ——v=——
¢ dx  x' x?2

which is a linear equation.
The integrating factor is

IF = e—l[}dx — o logx _

= |



Multiplying both sides of the equation by the integrating factor and integrating,
we get

where c is an arbitary constant.
Therefore, the general solution is

1 1

xlogy e +e
1 2
or, X = E—f—cx logy
WORKED OUT EXAMPLES
Example 2.1| Solve
x>+ y>+2x)dx +xydy =0 [WBUT-2007]
Sol. Here,
M(x,y) = (> + y* +2x) and N(x, y) = xy
Now,
oM oN
— =2yand — =y
ay ax
Since,
oM  ON
ay ax
the differential equation is not exact.
Now,
oM  ON
dy ax _y 1
N Xy x
Therefore,

1
IF = e/ ¥4 = glogr — »

Multiplying both sides by the integrating factor, we have
x(x? + y2 + 2x)dx +x2ydy =0
or, (x3+xy2+2x2)dx+x3ydy=0

which is an exact differential equation.



The general solution is
/(x3 + xy2 + 2x2) dx =c

xt x%yr 24?3
or, — — =

4 2 3
where c is an arbitrary constant.

Example 2.2 | Solve

dy tan y
= = (1 x
dx 1+ (1+x)e* secy
[WBUT-2007]
Sol. The given equation can be written as
dy sin y
—_— - =(1
oSy . T Tx =1 +x)e"
Let,
siny = v
dy dv
or, cosy— = —
dx dx

Therefore, the differential equation is written as

dv v
i = (1 x
dx 14+x (L+x)e
which is a linear equation.
The integrating factor is
IF = <1+x> dx _ —tog(1+x) _ L
14+ x

Multiplying both sides by the integrating factor and integrating, we have

v =/exdx=ex+c
14+ x

or, v=(14+x)" +0¢)

or, siny = (14+x)(* +¢)

where c is an arbitary constant.

Example 2.3 | Solve

d
x—y +y= y2 log x
dx
[WBUT-2008]



Sol. The given equation can be written as

1, logx

dy
727
Y dx + X
Putting,
1
y
—2dy _ _dz
dx dx
Therefore, the differential reduces to

=2

or,

dz z logx
+=g

dx x X

dz z log x
or, ——— ==

dx x X
which is a linear equation.

The integrating factor is

-1
IFoel 3% —ptoer 2 1

X

Multiplying by the integrating factor and integrating, we have

1
E:_/ ogzxdx
by X
1+1
or, z_Utlogn
X X
or, z=-cx+ (1 +1logx)
1
or, —=cx+ (1 +logx)
y

where c is an arbitary constant.

Example 2.4| Solve

e*sinydx + (e +1)cosydy =0
[WBUT-2005, 2006]

Sol. Here,
M(x,y) =¢*siny and N(x,y) = (¢* + 1) cos y

Now,

oM N
— =e¢*cosyand — = e cos y
ay ax



Since,

oM 0N

dy  ox
the differential equation is an exact differential equation.
The general solution is

/exsinydx+/cosydy:c

or, e*siny +siny =c¢

where c is an arbitary constant.

Example 2.5 | Solve

25iny2dx +xycosy2dy:O

Sol. Here,
M(x,y) = 2sin y2 and N(x,y) = xycos y2
Now,
M aN
— = 4ycosy2 and — = ycosy2
ay ax
Since,
oM  ON
ay ox
the differential equation is not exact.
We have
M _ AN
By T ax _3ycosy2 3
= S=2=f@) say
Xy cosy X
Therefore,

Feof fdx _ [ 3dx _ j3logx _ 3
Multiplying the equation by IF
2x3 sin y2 dx + x4y cos y2 dy=0

which is an exact differential equation.
The general solution is

/2x3 sin y2 dx =c
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or, x4 siny2 = 2¢

where c is an arbitrary constant

Example 2.6 | Solve

Bx?y* +2xy)dx + 2x>y* —x*)dy =0

Sol. Here,
M(x,y) = (3x2y4 4+ 2xy) and N(x, y) = (2x3y3 - x2)

Now,
oM aN
— =12x%y3 4+ 2x and — = 6x2y> —2x
dy dax
Since,
oM ON
A
dy ax
the differential equation is not exact.
We have
%—% oex?yP+4x 2 o) sa
M _3x2y4+2xy_y_gy Y
Therefore,

2
IF=ef 8Wdy — oo/ 54y _ p2ioey _ %
y
Multiplying the equation by IF
1 1
ﬁ(3x2y4 +2xy)dx + ﬁ(2x3y3 —x%)dy =0

2 2
or, (3x%y? + 7x)dx + 2x3y — %)dy =

|
o

which is an exact differential equation.
The general solution is

2
/(3x2y2 + l)dx
y

Il
o

X
or, x3y2+— =

where c is an arbitrary constant.

Example 2.7| Solve

I 2.33



Sol.

The given differential equation can be written as

xdy —ydx = x/x2+ y2dx

xdy —ydx  xx>+y2dx

or, =
32 32
xdy—ydx ‘/x2+y dx
or,

or, d (%)

or, = dx

Integrating, we get the gener al solution

(2
/ ) / dx
J1+ ()
or, sin~! (X> =x+c
x
or, y = xsin(x + ¢)

where c is an arbitary constant.

Example 2.8 | Solve

Sol.

(1 +y?dx = (tan"' y — x)dy

The given differential equation can be written as

dx X tan~! y

— 4+ —

dy 14+y2 1+4+y2
which is a linear equation in x.
Here,

1
IF = e/ 1+y2 dy _ etan’ly

Multiplying both sides by the integrating factor, we have

—1
etan’l ydl + etan’1 y X _ etem’l ytan y
dy 1+ y? 1+y2
—1
or 7(xetar1’l "y = etan*1 y tan "y
’ dy 1+y2
—1
or d(xe™ V) = % ytan Yy

1+y2

dy



Integrating both sides, we have

1+y2
Putting,
tan~! y=2z2
i.e. ! dy =dz
’ 1+y?
Therefore,

-1

an—1 ytan an—

/e“" Ly ya’y=/zezdz=zez—ez+c=e““ Ditanly — 1) + ¢
1+y?

Therefore, the general solution is
-1, -1 _
xe® Y = YanTly — 1) + ¢
—1
or, x=(tan" 'y —1) 4 ce @Y

where c is an arbitrary constant.

Example 2.9 Solve

d
(x—l—y—i—l)—y =1
dx

Sol. The given differential equation can be written as

dx
—=@+y+1D
dy

dx 41
or, — —x=

dy Y
which is a linear equation in x.
The integrating factor is

[F=el =4 = ¢

Multiplying both sides of the equation by the integrating factor, we have

d
_y—x—e_yx=e_y(y+1)
dy
d _, —y
or, —@xe )=+ 1D
dy

or, dxe ™) =eV(y+ Ddy



Integrating both sides, we have
xe = /efy(y + 1) dy
or, xe Y =—ye ¥ —2¢V +¢

or, x+y+2=ce

where c is an arbitry constant.

Example 2.10| Solve

d
td + —sin2y :x30052y
dx x

Sol. The differential equation can be written as

d 2 tan
sec? y—y + Y _ x3

dx x
Putting,
tany =z
5, dy dz
or, sec” y— = —
dx dx
Therefore, the differential equation becomes
dz 2,
dx  x

which is a linear equation in z.
The integrating factor is

2
IF:efxdx =6210gx =x2

Multiplying both sides of the differential equation by the integrating factor, we

have
dz
xz—z +2zx = x°
dx
a2 5
or, e (zx*) =x
or, d(zxz) =x>dx

Integrating both sides, we have

x6
zx2=/x5dx=Z+c



6
2 .x
or, X tany:z—}—c

where c is an arbitrary constant.

Example 2.11] Solve

Sol.

d
d—y +y= y3(cosx — sin x)
x
[WBUT-2009]

The given differential equation can be written as

d
y_3—y + y_2 = (cosx — sinx)
dx
Let us take the transformation
dy dz dy 1dz
) -3 -3
=7=-2y " —=—= —_— ===
Y= Yoax Tax 7Y ax T 2dx
Therefore, the differential equation reduces to
Lde + ( in x)
- = (cosx — sinx
2dx <
dz .
or, — — 2z = 2(sinx — cos x)
dx

which is a linear equation.
The integrating factor is

IF — ef—de — 6—2)6

Multiplying the differential equation by the integrating factor and integrating,
we get

/d(e_zxz) = 2/ e 2 (sinx — cos x)

1 3
or, e Pz =21 "cosx — —sinxy +C
5 5
1 3 . 2y
or, z7=2 gcosx—gsmx + Ce

where C is arbitary constant.
Therefore, the general solution is

1 3
y~2 =2{Scosx - 5sinx} + Ce*

e S sinx | 4 c
or, — = —COSX — —-SInx e
y2 5 5



EXERCISES

——  Short and Long Answer Type Questions || —

1. Solve the following equations using method of inspection for exactness
a) (x+y)(dx — dy) = dx + dy
[Ans: x — y =log(x + y) + c]
b) x+2y—2)dx+2x—y+3)dy=0
[Ans: (x2 — y2) +2(3x — 2y + 2xy) = c]
) x+y)dy+(y—x)dx=0
[Ans: (x2 — yz) —2xy =c]

d
d) x—y +y=y’logx
dx
[Ans: 1 4+ cxy = y(1 4+ logx)]

e) 1+xy)ydx+ (1 —-xy)xdy =0
1
[Ans: x = cye*Y]

2. Show that the following equations are not exact. Find the integrating factors and the
general solution.
a) x2dy — (xy+2y>)dx =0
[Ans: x + ylogx? = c¢y]
b) (x%2y —2xy?)dx — (x3 = 3x%y)dy =0

[Ans: a —logf—i =c]
y >

¢) (X3 +y3)dx —xy?dy =0
[Ans: y? — 3x3 logx = cx?]
d) (v —2xy?)dx + 2xy? —x¥)dy =0
[Ans: x2y%(y2 — x2) = ¢]
e) y(l+xy)dx+x(1—xy)dy=0
1
[Ans: log{ - — :c]
y Xy
) y(x2y2 +2)dx +x(2 —2x2y?)dy =0
1
[ Ans: x = cyZe*’y’ ]

g) (xysinxy + cosxy)ydx + (xysinxy —cosxy)xdy =0
[Ans: d secxy =c¢ ]
y



h)

i)

R

k)

)

m)

n)

0)

(x> +y?)dx —2xydy =0
[Ans: x% — y2 =cx]
(2 +y2+ Ddx +x(x —2y)dy =0
[Ans: x(x + y) — (y2 + 1) = cx]
(% +xyhHdx +2y3dy =0
[ Ans: %y“e”2 + [x2e dx =c ]
Bx2y* +2xy)dx + 2x°y? —x?)dy =0
[Ans: x*y3 4 x? = ¢y]
4y 3 2.4,y 2.2 _
2xy“e¥ +2xy° + y)dx + (x“y"e Xy 3x)dy =0
2
X

[Ans: x2e¥ + T =
y y

cl

(xy? +y)dx +2(x*y* + x + yHdy =0
[Ans: 3x%y* + 6xy? + 2y = c]

(xy? +2x2y3dx + (x%y — x3yHdy =0

1
[Ans: —— +2logx —y =c]
Xy
(x*y? — y)dx + (x2y* —x)dy =0

[Ans: x3 + y3 + % =c]

p) xdy — ydx = (x? + y?)(x dx + y dy)

Q)

1)

)

[ Ans: y = x tan (W) ]
(> +2x2y)dx + 2x3 — xy)dy =0
[Ans: 6x%y% —x%y% =]
Bx2y* +2xy)dx + 2x3y> —x2)dy =0
[Ans: x3y3 + x2 = ¢y]
(O +2x%y)dx + 2x* —xy)dy =0

[Ans: %Zx%}y% +4x%y% =c]

t) x(3ydx +2xdy) + 8y*(ydx 4+ 3xdy) =0

[Ans: x2y3(x +4y*) = ¢]

3. Solve the following linear equations.

a)

b)

d
(x2+ 1)% +2xy = 4x?

[Ans: 3(x2 + 1)y = 4x3 4+ ¢]
d
el +xsin2y = x3cos? y
dx

[Ans: 6x2 tan y= X0+ c]



d
c) xcosxd—y + (xsinx +cosx)y =1
X

[Ans: xysecx = tanx + c]

dy 1—-2x
d — =1
) d x2
[Ans: y = x2(1 + ce%)]
d
e) x(x2 — l)d—y + (1 - 2x2)y +ax3=0
x

[Ans: y = ax + cx/1 — x2]
d
f) xlogx—y +y=2logx
dx
[Ans: ylogx = (logx)? + c]
dx
g ylogy——+x—logy =0
dy
[Ans: xlog y = 3 (logy)? + ]

dy 'y
n Dyl
)dx+x x2

1
[Ans: —

xy a2

1) yxy+e“)dx —e*dy =0
[Ans: y~le¥ + x2 = ¢]

1 d
—y+2xtan’1y=x3

D 1+ y2dx

[Ans: tan~! y = %(x2 -+ ce"‘z]

Multiple Choice Questions

2
d3
1. The order of the differential equation <d)3)> 4+ y =sinx is
X

a)4 b)3 c)2 d)1

d
2. The integrating factor of the differential equation d—y +2y =sinx is
x

a) e2* b) &3 c) e d) *

3. If the integrating factor of (2x%y — y — ax®) dx 4+ (x — x°) dy = 0 is e/ P9* then
Pis
2x2 — 1 2x2 — 1 2x2 — ax3

d

3 _ - = = "
8) 2x ! b) x(1 —x2) ¢ ax? x(1 —x2)



10.

11.

12.

1 1 1

The differential equation (y + -+ 2) dx +(x ——+ iz) dy = 0is exact
x  x%y y Xy

then the value of a is

a)2 b) 1 )0 d) -1

The integrating factor of (2xy — 3y3) dx + (4x> + 6xy2) dy =0is
a) x2y b) x2y2 c) xy2 d) )cy3

The differential equation (xe™” + 2y) dx + ye*” dy = 0 is exact, then the value
ofais

a)3 b) 1 c)2 d)0

. If x"y* is the integrating factor of the differential equation(2y dx + 3x dy) +

2xy(3y dx + 4x dy) = 0 then the values of 4 and k are
a)l,3 b)2,1 c)2,2 d)1,2

If xyk is the integrating factor of the differential equation(3x_1 + 2yMdx —
(xy3 — 3y*1) dy = 0 then the values of 4 and k are

a) =3, -3 b) =3, 3 ©)3,-3 1,2
X X

. . . . . dy .
The integrating factor of the differential equation Tx + m y = > is

a) (1 —x2)~1 b) v/1 — x2 ¢) log(1 — x?) d) none of these

dx X et~y
The integrating factor of the differential equation — = is
gratne R A I Ay g

1y, 1, !
a)tan~!y b) etan Y c) et Y d) e’

The differential equation (yzexy2 +4xdydx + (2xye”2 —3yY)dy =0is
a) linear, homogeneous and exact

b) non-linear, homogeneous and exact

¢) non-linear, non-homogeneous and exact

d) none of these

The differential equation 3+ 3y2x) dx + (y3 + 3x2y) dy =0is
a) homogeneous and exact

b) non-homogeneous and exact



¢) non-homogeneous and non-exact

d) none of these

Answers:

1(b) 2(a) 3(b) 4(b) 5(a)
9(a) 10(b) 11(c) 12(a)

6(b)

7(d)

8(a)



CHAPTER

Ordinary Differential
Equations of First Order
and Higher Degree

3.1 INTRODUCTION

This chapter deals with differential equations of first order and higher degree. In this
chapter, we will discuss the various techniques for solving them.

Clairaut’s form is one of the important topic. Each and every topic is illustrated with
different kinds of suitable examples. At the end of the chapter different solved problems
of university examinations have been included.

3.2 ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER AND
HIGHER DEGREE

3.2.1 Definition

A differential equation of the form

dy
s Ve T, :0
f(xy dx)

where the degree of the differential equation is greater than one it is known as a
differential equation of first order and higher degree.




3.2 I Engineering Mathematics-I1

d
If we write o _ p, then the general form of differential equation of first

fx,y,p)=0

We can write the equation in the form

X
order and not of first degree is

aop" +arp" M +ap"* + - +tap1pt+a, =0

where
ao(# 0),ai,az,....an—1,an

are functions of x and y or constants and r is a positive integer.

3.2.2 Method of Solution

There is no general method for solving differential equation of first order and not of
first degree, but there are certain techniques for solving such equations when these
equations are one of the following particular types :

(a) Equations solvable for p

(b) Equations solvable for y

(c) Equations solvable for x

(d) Clairaut’s equation

(e) Equations not containing x

(f) Equations not containing y

(g) Equations homogeneous in x and y

3.3 EQUATIONS SOLVABLE FOR p

3.3.1 Definition
Let,

f(x,y,p)=0

be any differential equation of first order and n’" degree, the equation is of the
form

aop" +arp" '+ axp" P+t ap1p+an =0
which can be put in the form

[P — i, I[P = f2(x, )]+ [p = falx,»)] =0

is called differential equations solvable for p.



3.3.2 Method of Solution

Let us express the differential equation in the form

[P = fie, P = f20, 0] [p = fulx, )] =0

Equating each of the factors to zero, we get n differential equations of first order and
first degree.
The equations are

_ dy _ dy _
- fl(X,)’),E - fZ(x7y)7""E - fn(xvy)

@y
dx
be

Let the solutions

‘¢1(X,y,cl) :0’¢2(~x’y762) =0’~-~,¢n(x7y’cn) ZO‘

where ¢, ¢, . . ., ¢, are arbitary constants.
The general solution of the differential equation is

9157, )P2(x, 9, ). .. (x, y,0) =0

by making ¢; = ¢» = ... = ¢; = ¢, where c is an arbitary constant since the given
differential is of first order.

Example 1_| Solve

PP—p+e)+1=0

Sol. The differential equation can be written as
plfe™ —pef+e ) +1=0
or, (p—e)p—e)=0
Therefore, either,
(p—eH=0
or, (p—e =0
When,
(p—eH=0
or, :‘% =e*
or, dy = e* dx

Integrating, the solution is

(y—e"4+c)=0



Example 2 | Solve

p3—p(x2+xy+y2)+x2y+xy2=0

Sol.

when,

or,

or,

(p—e =0
4y _ x
dx
dy =e “dx

Integrating, the solution is

(y—e ™ +c2)=0

where ¢ and c; are arbitary constants.
Therefore, the general solution is

- +ay—e +0)=0

where c is an arbitary constant.

The equation can be written as

p

— px* = pxy — py* +x*y +xy* =0

or, p(p? —x%) —xy(p—x) =y (p—x) =0

or,
or,

When,

or,

the solution is

When,

or,

the solution is

(p— P>+ px—xy—y*}=0
p—x)p—-ypP+x+y)=0

(p—x)=0
dy = xdx

(2y—x2+c1)=0

(p—y)=0
d
Y ax
y
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When,
(p+x+y)=0
dy
or, dx +y = —Xx

which is a linear equation of first order.
LF =/ 9% = ¢*
Multiplying both sides by the integrating factor, we have
de*y) = —xe*dx
Integrating, the solution is
e’y = —(x—1De”* +c;3
or, y+x—1—c3e7*) =0

where ¢ and ¢, and c3 are arbitary constants.
Therefore, the general solution is

Qy—x>+c)y—ce ™y +x—1—ce™) =0

3.4 EQUATIONS SOLVABLE FOR y

3.4.1 Definition

Let

fx,y,p)=0

be any differential equation of first order and n’" degree, the equation is of the

form

aop” +ar1p" ' +axp"t+ - +an_1pt+a, =0

which can be put in the form

|y =F(x.p)|

and is called a differential equation solvable for y.

3.4.2 Method of Solution

Let us express the differential equation as

y = F(x,p)



Differentiating w.r.t x on both sides, we get

dp
=F s e T
=i ()

which is a differential equation of first order and first degree.
Solving this equation, we have

x=¢(p,c)

where c is an arbitrary constant.
Putting the value of x in the equation y = F(x, p), we have

y=v(p,c)

Therefore, the general parametric form of solution is

X = ¢(p,C) andy = 1//(P»C)

where p is the parameter.
The general solution is obtained by eliminating p from x and y.

Note: If it is not possible to eliminate p, we may represent the general solution in
parametric form

Example 3 | Solve

y=px+p
Sol. The differential equation is solvable for y
Differentiating both sides w.r.t x, we have
dy _ » dp  dp
A +2px— + —
dx b P dx X
d
or, p= l(sz + 1)+ p?
dx
dp  p—p?
or, —_— =
dx 142px
dx 2 1
or,

T X =
dp. 1—=p  p(l—=p)
which is a linear equation.

The integrating factor is,

2
I1.F = ef_mdp — eZlog(p—l) — (p _ 1)2
Multiplying by the integrating factor and integrating, we get

x(p—1*=logp—p+c



_logp—p+ec
(p—1?
Putting the value of x in the equation, we have
v 2{10gp—p+6}

(p—1?

Therefore, the general parametric solution is

or,

logp—p+c 2f|logp—p+c
=T YTy oo (T
(p—D (p—1

where p is the parameter and c is an arbitary constant.

Example 4 | Solve

e —p'—p=0

Sol. The given differential equation can be written as
y =log(p’ + p)
Differentiating both sides with respect to x, we have

d
P Gpr+ 1L
dx

PP+ p)
or dp _ p*(p*+1)
’ dx — Gp*+1)
GBp*+1
or, a’xzﬁ
pe(p=+1)
d ( 2 +1)d
or, xX=|——+—F)dp
1+p2 p?

Integrating both sides, we get
1 1
x=2tan" p——+c¢
4

and

y =log(p* + p)

Therefore, the solution is
1
x=2tan"' p— — +cand y = log(p> + p)
p

where p is the parameter and c is an arbitary constant.
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3.5 EQUATIONS SOLVABLE FOR x

3.5.1 Definition
Let,

fx,y,p)=0

be any differential equation of of first order and n’" degree, the equation is of the
form

aop" +arp" ! +arp" P+ - +ap1p+an =0
which can be put in the form
\x = F(y,p)\

is called a differential equation solvable for x.

3.5.2 Method of Solution
Let us express the differential equation as
x=F(y.p)

Differentiating both sides w.r.t y, we get

1 dp
— = I (y,p,)
p dy

which is a differential equation of first order and first degree.
Solving this equation we have

y=¢(p.c)

where c is an arbitrary constant.
Putting the value of x in the equation x = F(y, p), we have

x=y(p.c)

Therefore, the general parametric form of solution is

|y =¢(p.c)andx = y(p.c)|

where p is the parameter.
The general solution is obtained by eliminating p from x and y.

Example5 | Solve

y =2px +y*p’



Sol.

The differential equation can be written as

y  y*p?
Xx=-—-

p 2
which is solvable for x.
Differentiating both sides w.r.t y, we have

p 2w 2wy P
1 2 —ydp<1 2)
or, —+yp =—— 7+
2p p dy \2p

1 2 ydp
or, +yp><l+ =0
<2p pdy

Therefore,
d 1
<1+yp> —0if (+yp2) £0
pdy 2p
or, pdy+ydp =0
or, d(py) =0
Integrating, we get
py=c
c
or, y=—
p

where c is an arbitary constant.
Putting the value of y in original equation, we have

c

X = ﬁ + ¢? p
Therefore, the general parametric solution is
c c 2
y= ;§ x = sz +c'p

Eliminating p, the general solution is

27y +32x3 =0

Example 6 _| Solve

Sol.

Y2 logy = xyp + p?
The differential equation can be written as

4 y

_ylogy p
= 208Y



Differentiating with respect to y, we have

dp dp
1+1 — ylog y— = _
i_p(+0gy) yogydy_ydy p
dy p? 2
1 1 1 y dp ldp p
or, —=—+—logy— Slogy— ——— + —
p p D p? dy ydy y?
1dp< 2 ) p( y?
or, —— |14+ =logy )= (1+ —=logy
ydy p? y? p?
2
y ldp p
or, 1+10gy)(—):0
< 2 ydy y?
Therefore,

or ar _r
' dy 'y
dp dy
or, —_—=
p oy

Integrating both sides, we get

logp =logy+logc

P

or, y==

c

and

ylogy p
X = - =
P y

log (2

or, x = g(C)

log p —logc
X=————c
c

or,

Eliminating p from y and x, we have the general solution
logy =cx + ?

where c is an arbitary constant.



3.6 CLAIRAUT'S EQUATION

3.6.1 Definition:

A differential equation of the form

where
_ 4y

p_dx

is known as Clairaut’s equation.

3.6.2 Method of Solution:

Differentiating the differential equation both sides w.r.t x, we have

dy dp ,,dp
dx p +xdx +f (p)dx
d d
or, p=p+xLyrpl
dx dx
d
or, Ll £ (=0
X
Case 1: When,
d
P _ o
dx
Therefore,
p=c

where c is an arbitary constant.
Therefore, the general solution is

Case 2: When,
[x+ f'(p]1=0
or, X = —f/(P)

we have,

y=px+ f(p)



Eliminating p from these two equations, we will get a solution. It is to be noted that
the solution does not include any arbitray constant. So it is not a general solution, but
a solution of the given equation and is called singular solution.

Example 7 | Find the general solution and the singular solution

a
y=px+—
4
Sol. The differential equation is of Clairaut’s form.
Differentiating both sides w.r.t x, we have
dp a dp
p=p+ dx  pldx
dp a dp
or, X—— —— =
dx p?dx
d
or, (x — az) P _
pc) dx
Either,
dp
dx
a
or, x——)=0
< p2>
When,
d
@ _
dx
or, p=c
The general solution is
y=cx+ —
Now again,
a
x——])=0
< p2>
a
0}", X = —
P2
Also, we have
a
y=px+—
4

Eliminating p, we have the singular solution

y2 = 4dax.



Example 8 | Find the general solution and the singular solution

. dy dy\ . n dy
sin | x—= Jcosy = cos | x— ] sin —
dx Y dx Y dx

Sol. The differential equation can be written as
. dy dy\ . dy
sin{x——Jcosy —cos|x—— |siny = —
dx dx dx
. dy dy
or, sinfx——y)=-—
dx Y dx
or, sin(xp —y) =p
or, xXp—y= sin”! p
or, y=xp— sin”! p

which is a Clairaut’s equation.
Differentiating both sides w.r.t x, we have
dp 1 dp

p:p-l—xE— l_pza

dp 1 dp

bt g o
xdx /1 — p2dx

or,

1 dp
or, X————=]—=0
‘/l_pz dx

When,
d
a _,
dx

or, p=c

where c is an arbitary constant, the general solution is

y =xc—sin"le

Now again,
1
x——=]=0
1—p?
xz2—1
or, p =
X
Putting this value of p in the equation, we have the singular solution as
x2=1 | xr—1
y=x————5sin ——

X X



. Vx
or, y=vVx2—1—sin! 25—

Observations:

1) In many cases, the equation

f(x’y’p) =0

is not in Clairaut’s form but by some suitable transformations it can be reduced
to Clairaut’s form.

Example 9 | Use the transformations

u=x>andv = y2
and transform the equation
xyp> = (& +y = Dp+xy =0

into Clairaut’s equation and solve.

Sol. Here,
u=x>andv = y2
So,
du =2xdx anddv =2ydy
Therefore,
ydy dv
xdx du
Let,
dy dv
—=pand — =P
ax Py
then,
“p =P
xP
or, p=—
y

Putting the value of p in the equation,
xP\? 2 2 xP
Xy 7 —(x +y—1)7+xy:0

or, PP (x> +y —1DHP+y?=0



or, uPz—(u—}—v—l)P—}—v:O

or, v=uP + ﬁ
which is of Clairaut’s form.
Therefore, the general solution is
c
c—1
c

or, y2=cx2+7
c—1

vV=uc+

where c is an arbitary constant.

Example 10 | Reduce the differential equation

xp? = 2yp+x+2y=0

to Clairaut’s equation using the transformations

x2=uandy—x=v

and solve.
Sol. Here,
2 _ _
x“=uandy—x=v
So,
d d d
=g 1=
d dx dx
Therefore,
dy !
v _ dx
du  2x
p—1
or,
2x
or, p=2xP+1
d d
where p = td and P = —v.
dx du

Therefore, the differential reduces to
x{2xP + 12 —2y(2xP + 1} +x +2y =0
or, 4x2P? —4(y —x)P +2=0
or, 4P =4uP? 42
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1
, = uP 4+ —
or v 2P
which is Clairaut’s form.

The general solution is

1
V=cu-+ —
2c

where c is an arbitary constant.

Putting,
x’=uandy—x=v
we have,
1
(y—x) = ex?+
2c
or, 2¢2x%2 =2¢(y —x)+1 =0

2) Equations of the type

y=xf(p)+g(p)

is known as Lagrange’s equation, which is an extended form of Clairaut’s
equation.

3.7 EQUATIONS NOT CONTAINING x
3.7.1 Definition

A differential equation of the form

f(.p)=0

is a differential equation not containing x.

3.7.2 Method of Solution
Case 1: If the differential equation is solvable for p, then

p = g0
dy
or, E = g(»)

and the solution is

where c is an arbitary constant.
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Case 2: If the differential equation is solvable for y, then

y =¢(p)

and the solution is obtained by solving it for y

Example 11 ] Solve

y = ptanp + logcos p
Sol. Differentiating both sides w.r.t x, we have

d
p = {pseczp—i-tanp—tanp}d—p
x

_ 2 dp
or, p = psec’ p—

dx
d
or, p(l—seczpdi) =0

T'herefore,
l—sec?p—] =0
( sec pdx)

or, dx = sec? pdp

Integrating, we have
X =tanp +c¢

where c is an arbitary constant.
Here,

y = ptanp + logcos p
Therefore, the general parametric solution is

X =tanp +c¢
y = ptanp + logcos p

where p is the parameter.

3.8 EQUATIONS NOT CONTAINING y

I 317

3.8.1 Definition

A differential equation of the form

J(x.p)=0

is a differential equation not containing y.



3.8.2 Method of Solution
Case 1: If the differential equation is solvable for p, then

p=gx)
dy
or, Ir = g(x)

and the solution is
y= / gx)dx +c
where ¢ is an arbitary constant.

Case 2: 1If the differential equation is solvable for x, then
x=¢(p).

Example 12 | Solve

tan” p=x

S 14p?
Sol. The given equation is a differential equation not containing y. It can be written as
-1
X =tan +
Py

So, this is solvable for x.
Differentiating both sides w.r.t y , we have

1 1 dp (+pH-2pdp
p  1+p>dy (1+p2)?  dy
1 2 dp
or, —_=
p  (+p?2dy
2p
or, dy=—"__4d
YA

Integrating both sides, we have

where c is an arbitary constant.
Therefore, the required solution is

x = tan”! p+

1+ p?
1

A g

where p is the parameter.



Here, we present another special type of differential equation of first order and

higher degree.

3.9 EQUATIONS HOMOGENEOUS IN X AND Y

3.9.1 Definition

Any differential equation of the form

f(p2)=0

is known as differential equations homogeneous in x and y.

3.9.2 Method of Solution
Case 1: When the differential equation is written as

r=v(;)

and the solution is obtained by methods previously discussed.

Case 2: When the differential equation is written as
Y
— =9
X

or, y=x¢(p)

and the solution is obtained by the method of solvable for y.

Example 13 | Solve

y=px+pix
Sol. The differential equation can be written as
y=x(p+p°)
y
or, = =(p+p)
X
which is in the form
y
= =9¢(p)
X

Differentiating both sides of (1) w.r.t x, we have

_ 2 dp
p=(p+p )+x(1+2p)a

ey



d
or, x(1+ 2p)—p =-p?
dx

1+2
or, Mdp = —xdx

2

P
Integrating both sides, we have

1 x2
——+2logp=——+c¢
p 2

/ 1
or, x=2[c+——2logp
p

where c is an arbitary constant.
Therefore, the general solution is

1
x=2c+——2logp

p

2 1
y=2(p+p°) c+;—210gp

where p is the parameter.

WORKED OUT EXAMPLES
Example 3.1 Solve
2 -1 dy
y=((@+p)x+p  where p= dx [WBUT-2003]
X
Sol. The differential equation is

y=@+pHx+p!

Differentiating both sides with respect to x, we have

d d 1d
p=p+p+x(Ly2pl)_ L
dx dx

p?dx
dx n 1+2p 1
or, —+x = —
dp p? p*

which is a linear equation.
The integrating factor is

1
1+2p>d __
P
IF = ef< p? = pze p




Multiplying both sides of the equation by the integrating factor and integrating,

we get
1 1 1
5 - _
pxe P =/—2e Pdp
p
_1 _1
or, pzxe P =e P +c
1
14+ cer
or, Xziz
p
Therefore,

1 1 1
y=(14+— 1+ce? |+ —
p p

Therefore, the solution is

1
1+ ce? 1 1 1
x=——>—and (1+— )| 1+ce? )+ —
p p p

where p is the parameter and c is arbitary constant.

Example 3.2| Solve

d
y = px +/a?p? + b2 where p = d—y [WBUT-2005]
x
Sol. The differential equation is a Clairaut’s equation.
Differentiating both sides w.r.t x, we have
d 2a* d

dx  2./a?p? 4 p2dx

2
d
or, x_i_L £:0
Jap? 1 b7 | dx

When,
dp _
dx
or, p=c

The general solution is
y =cx ++va%c? + b?

where ¢ is an arbitary constant.



When,

2
2P t_y
/a2 p? + b2

or, X =—

a’p

/a2 P+ b2
Putting the value of x in the diffeential equation, we have

2.2
y=—— 2P 4 Ja2p2 42
Ja2p? + b2

Eliminating p from x and y, the singular solution is

Example 3.3 | Solve
dy dy 2
Y4 dx + (dx)
Sol. The differential equation can be written as

y=xp+p*

which is a Clairaut’s equation.
Differentiating both sides w.r.t x, we have

dp dp
= Eip2
p=pT xdx + pdx
d
or, (x + 2p)—p =0
dx
When,
dp
dx
or, p=c
the general solution is
y =xc+ ¢?
where c is an arbitary constant.
When,
x+2p)=0

or, x==2p

[WBUT-2006]



we have,

y==2p"+p’=-p’

Eliminating p from x and y, we have the singular solution

or, x2+4y=0

Example 3.4| Find the general solution of
dy

p = cos(y — px) where p = Tr
X

Sol. The differential equation can be written as
y=px—+ cos~! p

which is a Clairaut’s equation.
Differentiating both sides w.r.t x, we have
d 1 d
p=p+x e b

dx _,/l—pza

1 dp
or, X————=¢-—=0
,/1-[)2 dx

When,
d
a _,
dx

or, p=c

The general solution is
y=cx+ cos” e

where c is an arbitary constant.
When,

and
y=px+ cos~! p

Eliminating p from x and y we get the general solution.

[WBUT-2007]



Example 3.5 | Solve

dy dx x 'y

L _ T _ 7 WBUT-2006
dx dy 'y «x [ ]
Sol. The differential equation can be written as
1 X oy
p——=—-—-=
p y X
where,
_ Y
p= dx
Therefore,
Pl B x2—y2
p Xy
or, p*xy —xy = px* — py’
or, pzxy —Xxy — px2 + py2 =0
or, (px+y)(py —x) =0
When,
(px+y)=0
dy dx
or, A
y X

Integrating both sides, we have

logy 4+ logx =logcy

or, (xy—c1)=0
When,

(py —x) =0
or, ydy = xdx

Integrating both sides, we have
(? =x*=2c) =0
Therefore, the general solution is
(xy —)(y* —x* —2¢) =0

where c is any arbitary constant.



Example 3.6 | Solve

Sol.

The differential equation can be written as
y=px+p’
where,
_ D
P= dx

which is a Clairaut’s equation.
Differentiating both sides with respect to x, we have

dp dp
= _— 2 _—
p=r +xdx + pdx
dp
or, —(x+2p)=0
dx
When,
d
@ _y
dx
or, p=c
The general solution is
y=cx+ 2
When,
x+2p)=0
or, x=-=2p
and
y=px+p’

Eliminating p from x and y, the singular solution is
_ —X N —x\*
Y= 2 2

or, y:_Z

Example 3.7| Solve

p2 4+ 2pycotx = y2

[WBUT-2006]



Sol. The differential equation can be written as

p2 +2pycotx = yz(cos ec’x — cot’ x)
2 2.2 2 2
or, p-+2pycotx + y“cot“x = y“cosecx
or, (p+y cotx)2 - y2 cosec’x =0

or,(p+ ycotx 4+ ycosecx)(p + ycotx —ycosecx) =0

Solving the differential equation by solvable for p , we have

either,
(p+ycotx +ycosecx) =0
or,
(p+ycotx —ycosecx) =0
When,
(p+ycotx + ycosecx) =0
d
or, & _ —(ycotx + ycosecx)
dx
d
or, & —(cotx + cosecx)dx
y
dy cosx—+1 sin x
or, _— = . X =
y sin x (1 —cosx)

Integrating, we have

—logy —logc; = log(l — cosx)

or, y(1—cosx)4+c; =0
When,
(p+ycotx —ycosecx) =0
dy
or, — = (—ycotx + ycosecx)
dx
dy (1 —cosx) sin x
or, — = - x =
y sin x (1 +cosx)

Integrating, we have

logy —logcy = —log(1 + cos x)
or, y(14+cosx)+c2=0

Therefore, the general solution is
{y(1 —cosx)+ cH{y(14+cosx)+c}=0

where c is any arbitary constant.



Example 3.8 | Solve
dy\? 2 2,4y
A I ) G _ =7
Y {(dx) } (x Y )dx

Sol. The given equation can be written as

xy(p* —1) = @* —yHp

or, (xp+y)(yp—x)=0
When,
(xp+y)=0
dy dx
or, —_— =
y X

Integrating, we have

logy = —logx + logc

or, xy—c;1 =0
When,
(yp—x)=0
or, ydy = xdx
Integrating, we have
y2 =x24 2
or, yz—xz—c2=0

Therefore, the general solution is
(xy =) —x*—c)=0

where c is any arbitary constant.

Example 3.9 | Reduce the equation

xy(y — px) =x + py
to Clairaut’s equation and solve.

Sol. Putting,

xzzuandyzzv



‘We have,

2xdx =duand 2y dy = dv

Therefore,
ydy dv
xdx du
or, Xp =P
X
xP
or, p=—
y
Where,
dy dv
p=-—and P = —
dx du

Putting the value of p in the differential equation, we have
x2 xP
xy (y— P) =x+y—
y Yy
or, (y2 —x’P)=1+P

or, v=uP +(1+ P)

which is a Clairaut’s equation.
Hence, the general solution is

v=uc+ (1+4+c)

where c is an arbitary constant.
Therefore, the general solution of the differential equation is

y2=x2c‘+(1+c)

Example 3.10 Reduce the equation

xp2—2yp+x+2y:O

to Clairaut’s form by using the substitution

x2=uandy—x=v

and then find the general solution.

Sol. Here,

xzzuandy—xzv



Then,

du dy dv
2x=—and — — 1= —
dx dx dx
Therefore,
dv % 1
du =~ 2x
-1
or, P = P
2x
or, p=2xP+1
Where,
dy dv
p=-—and P = —
dx du

Therefore, the given differential equation becomes

x{2xP 4+ 1)> = 2y{2xP + 1} +x +2y =0

or, 4x3P2—4x(y—x)P+2x=O
or, 4x’P? —4(y—x)P+2=0
Putting,

x2=uandy—x:v

the differential equation reduces to
4vP = 4uP? +2

1
N = P —_—
or v=uP + >p

which is a Clairaut’s equation.
The general solution is

1
v—uc—i—z

where ¢ is an arbitary constant.

Therefore, the general solution of the differential equation is

1
(y—x)=x"c+—
2c



EXERCISES

— | Short and Long Answer Type Questions ||—

Solve the following differential equations.

1.

10.

11.

12.

PP = p(+xy+y) +x%y+xy2 =0
[Ans: 2y —x2 —c)(y —c2e")(y +x — 1 — ce ™) = 0]
x2p? 4+ xyp —6y* =0
[Ans: (x*y — c1)(y — c2x?) = 0]

. p(pty)=x(x+y)

[Ans: (y — %x2 +c)y+x+ce ™ —1)=0]

PP 2xp? — 2 p? —2xy?p =0

[Ans: (y +x2 —c1)(y — e2)(xy + c3y + 1) = 0]

P4 0)pP+ P Hx—2xy —y)p+y —xy=0

[Ans: {y — c1(x + D}{y + x log(crx)} = 0]
y=2px—p?
c 2 2c 1
A M = — =P, = — Zp?
[nsx p2~|—3py p+3p:|

. y=psinp+4cosp

[Ans: x =sin p +¢;y = psin p 4 cos p]

. ptanp —y+logcosp =0

[Ans: x =tan p + ¢; y = ptan p + logcos p]

Cxp?=2yp4ax=0

|:Ans: 2y = cx? + a}
X

pP—dxyp+8y> =0
[Ans: y = c(c — x)z]
x=y+alogp

[Ans:x:c—i—alog ;y=c—a10g(p—1):|

p—1
6p%y* —y+3px =0
[Ans: y3 = 3cx + 6¢%]

Solve the following differential equations reducing to Clairaut’s form.

13.

x*(y — px) = p*y
[Ans: y = cx? + cz]



14.

15.

16.

17.

18.

19.

20.

xy(y — px) =x+ py
[Ans: y2 — 1 = c(x2 + 1)]
xyp? = (2 +y* = Dp—xy=0

|:Ans: y2=cx? + ¢ l]
c—

x2+y?—(p+p Hxy=¢?

2
|:Ans: y? =ax? + ¢ al]
c—

Reduce the differential equation
Yy —px) =x*p?
using the substitution
x=—andy = —
u v

into Clairaut’s equation and solve.
[Ans: ¢2xy +cy —x = 0]

Reduce the differential equation
Q2+ PP+ 2+ Y2+ 2xy+2)p+2y°+1=0
using the substitution
x+y=wuandxy—1=v

into Clairaut’s equation and solve.
[Ans: xy — 1 =c(x +y) + 2]
Reduce the differential equation

(P> + ) (px+y) = (p+ 1)°
using the substitution
xy=uandy+x=v

into Clairaut’s equation and solve.
[Ans: cxy — c2(x +y) + 1 =0]
Reduce the differential equation
xp2—2yp+x+2y=O

using the substitution

xzzuandy—xzv

into Clairaut’s equation and solve.



Multiple Choice Questions

1. The general solution of (xp 4+ 3y)(xp —2y) =0is
a) (logy +6logx +c1)(logy +2logx +¢c2) =0
3 x2 —
b) (x°y+c1) (7+c) =0
) (Fy* + e +e2y?) =0
d) @y =5 +ey) =0

2. The singular solution of y = px — % pris

1
a)y = x2 b)y:x-Z )y=0 dy=2x—1
3. The general solution of py = p?(x — b) +a is
a) y> = 4a(x — b) b)cy =c*(x —b) +a
oy=x—->b)+a d) none of these

4. The general solution of the differential equation y = px + f(p) is

)y =c’x+ f(o) b)y = cx + f(c?)
coy=cx+ f(c) d) none of these

5. The general solution of p = log(px — y) is
a)y=cx—c b)y =cx — €€
Q)y=c*x—e€ d) none of these

Answers:

1 (b) 2 (a) 3(b) 4 (c) 5(b)



CHAPTER

4

Ordinary Differential
Equations of Higher Order
and First Degree

4.1 INTRODUCTION

The importance and methods of solution of first order differential equations have been
discussed in the previous chapters.

Different applications of engineering and sciences encounter linear differential
equations of higher order with constant coefficients and coefficients as functions of x.
In Section 4.2 and Section 4.3 we discuss the methods of solution of linear differential
equations with constant coefficients. In Section 4.4 we discuss the methods of solution
of Cauchy—Euler equations and Cauchy—Legendres equations.

In Section 4.5 we discuss the methods of solution of simultaneous differential
equations.

4.2 GENERAL LINEAR DIFFERENTIAL EQUATIONS WITH
CONSTANT COEFFICIENTS

4.2.1 Definition

A differential equation of the form

dr dn—l dn—2
GOJ + ay yl + az Y

dy
12 Wy =X
dz™ dz™~ + +On—1 + any

daxmn—2 dx
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where a(# 0), a1, ..a,, are constants and X is a function of = which is a linear
differential equation of n'" order with constant coefficients.

The differential equation can be written as

@ ﬂdn_ly @dn_2y+.”+an_1@+aly: {
dx™  aogdx"l  agdzn—2 ap dxr  ag ao
dny dn—l dn—2y d
or, %—’—pld n— 1+p2d 77,—2+ +pn ld +pny:F($)
where
a a Ay a
PL= Pr= D1 = =, ag(# 0)
ao ao ao ao

4.2.2 Method of Solution

Let us consider the differential equation

dny dn—l dn—2y

+ + too A a1 Y 4 pay = F(a)
dn pldnl p2dn_2 pnld bny =
where p1,pa, . . ., p,, are constants and F'(x) is a function of z.

The general solution of the equations is composed of two parts- Complementary
Function(CF) and Particular Integral(PI).
Therefore,

y=CF+Pl=yc+uyp

where, y. is called complementary function(CF) and y, is called particular
integral(PI).

Method of Finding Complementary Functions The solution of the equation
(called reduced equation)

dny dn— ly dn—2y d

+ P2 drn—2 e Y O R dr
is called the complementary function (CF) of the differential equation.
Let,

+ppy =0

y — emw
be a trial solution of the reduced equation then
(mn +p1mn—1 +p2mn—2 4. +pn—1m +pn)emw =0

Since, €™* = (0, we have the auxilliary equation(AE)

‘ (m™ + prm"™ ! 4 pam™ 2 4 ppim 4 pp) =0 ‘

which is an algebraic equation of degree n and has n roots.
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Case 1: 'When all the roots of the auxilliary equation (AE) are real and distinct.
Let the roots of the auxilliary equation be real and distinct, say, m;, ma, . .. m,,, then
the complementary function is

CF = g = C1€™7% + Cpe™® + - - -+ Cpe™"

where, C, Co, .. .C), are arbitary constants.

Case 2: When all the roots of the auxilliary equation (AE) are real but all of
them are not distinct.

Let among the n real roots p roots are repeated, say, m (p-times), my41, . . .My, then
the complementary function is

CF = Yo = (Cl + Cox + -+ Cpxp—l)emm + Cp+lemp+1w + o Cpemn

where C1, Cy, . .. C,, are arbitary constants.

Case 3: 'When one pair of roots of the auxilliary equation(AE) are complex.
Let the two roots be complex of the form « £ i3 among the n roots. Then the
complementary function is

CF = y. = e**(C} cos Sz + Cysin fx) + Cse™* 4 - - - + Cpe™”

where C1, Cy, . .. C,, are arbitary constants.
Method of finding Particular Integrals Different methods are used to find
particular integrals are,

1) D-operator method
2) Variation of parameters method
3) Method of undetermined coefficients.

We will discuss these methods in detail in the following sections for differential
equations of second order.

4.3 GENERAL SECOND ORDER LINEAR DIFFERENTIAL
EQUATIONS WITH CONSTANT COEFFICIENTS

4.3.1 Definition

An ordinary differential equation of the form

d?y dy
“7 ., p%Y - F
gz TP, Ty (2)

where P and () are constants and F'(x) is a function of x, which is known as
second order linear ordinary differential equations with constant coefficients.
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4.3.2 Method of Solution

The general solution of the equations is composed of two parts - complementary
function (CF) and particular integral (PI).
Therefore,

y=CF+Pl=yc+uyp

where, y. is called complementary function(CF) and y, is called particular
integral(PI).

4.3.3 Method of Finding Complementary Functions
Let us consider the differential equation

dy  dy
@—FP%—FQy—F(:U)
where, P and @ are constants and F'(z) is a function of x.
The reduced equation is

Py | dy
“v ., p =0
dx? + dx +Qy

and the complimentary function is the solution of the reduced equation.
Let,

mx

y=ec

be a trial solution.
Then the auxilliary equation is

‘mg—i—Pm—i—Q:O‘

Case 1: When the two roots of auxilliary equation is real and distinct say m;
and mo, then

CF =y, = Che™7? 4 Coe™?”
| |

where C; and C are arbitary constants.

Example1 | Solve

d2y
—= 4y =0
dx? y

Sol. Let,
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be a trial solution of the equation

% —4y=0
Then, the auxilliary equation is
m?—4 =0
or, (m+2)(m—-2) =0
or, m = 2,-2

Since, the roots of the auxilliary equation are real and dictinct, the solution is
Y= C1%* + Coe™ 2"

where C and C'; are arbitary constants.

Case 2: When the two roots of auxilliary equation are real and equal, i.e. m; =
ms = m (say), then

CF = y. = (Cy + Cox)e™”

where C; and C; are arbitary constants.

Example2 | Solve

Py dy
GV 4% gy =0
dx? dx Ty
Sol. Let,
y — emw

be a trial solution of the equation
d*y  dy
— —4—=+4y=0
dax? dx +y
Then, the auxilliary equation is
m?—4dm+4 =0
or, (m—-2)% =0
or, m = 2,2
Since the roots of the auxilliary equation are real and equal, the solution is
y = (C1 + Cox)e®®

where C and C', are arbitary constants.
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Case 3: 'When the two roots are complex, say m = « = i3, then

‘ CF =y, = e**(C cos fz + Cy sin Bx) ‘

where C; and C; are arbitary constants.

Example3 | Solve

Py L dy
SV 3% i sy=0
dx? + dx oy

Sol. The differential equation can be written as

(D*+3D+5)y=0

where,
d
D=—
dzx
Let,
y — emw

be a trial solution of the equation
(D*+3D+5)y=0

Then, the auxilliary equation is

m*+3m+5 = 0
-3+ V11li -3 n V11
B Stk AL T 5 Sl
2 2 2
Since, the roots of the auxilliary equation are complex, the solution is

-3
y=e2 " <Cl cos <\/2ﬁ:v> + (5 sin <\/2ﬁ:v>>

where C and C, are arbitary constants.

or, m =

4.3.4 D-Operator Method of Finding Particular Integrals (PI)

Let us consider

D=—
dzx

which is called differential operator or D-operator.
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Properties of D-operator

D(f(x) + g(x)) = Df(x) + Dg()

D(af(z)) = aD(f(x))

- DmD" f(z) = D™ (f(x))

(D—a)(D =) f(x) = (D= BD - a)f(z) = [D* = (a+ D + af] f(2)

Let us consider the differential equation,

o

d?y dy
“7 ., p% - F
gz TP, Ty (2)

where, P and @ are constants and F'(z) is a function of z.
Then, using D-operator the differential equation can be written as

D?y+ PDy + Qy = F(x)

or,

|(D* + PD +Q)y = F(o)]

Let,
f(D) = (D*+ PD+Q)

Then, the equation can be written as

Now,

is a function of x not involving any arbitary constants, but the value of y satisfies the
differential equation.
Thus,

PI= 1y, = 5 Flo)

which is called the Particular Integral (PI) of the differential equation.
Here, we discuss different cases related to particular integral using D-operator.

Case 1: When f(D) = D, then

1 1
P~y = 55 F@) = pF(e) = /F(:v)d:v
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Case 2: When f(D) = D — m, where m is constant, then

1 1

PI:ypsz(iﬂ):D_m

F(z)=em™ /e_mmF(:v)d:v

Case 3: When f(D) = (D — mq) (D — my), where m1, mso are constant, then
1

F(py can be expressed as (using partial fraction)

1 a1 a9

fD) " D=m) " (D=mn)

and accordingly

1 aq
TR o)

= a1 e™?® /e_m””F(:v)d:C + age’™?” /e_m”F(:v)d:C

az

F@)+ s F@)

Case 4: When f(D) = (D —m)>, where m is a constant, then ﬁ can be
expressed as (using partial fraction)

1 a a2

f(D) ~ (D=m) " (D—m)

and accordingly

1 a a2

(D-m)
- Bt o mw @)
p—— / =" F(z)da + azrlm) {em / e_m””F(:v)d:v}
e feneptoe s { [ oo [omer) o)
o feneptone o | [ { [ erios) o)

Alternative Method Let,

PI:yp:

f(D) = (D =my) (D —my),

where m., ms are constants,
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then

Now, consider

d
:d—Z—mgu:F(a@)

This is a first order linear differential equation, so by solving this we have wu.

Therefore, PI becomes
1
Pl=y,= ——u
P m)

Again, choose

v
= — —mv=u
dzx

This is a first order linear differential equation, so by solving this we have v.
Hence, PI is given by

Pl =y, =wv.
Notes: (i) This method is applicable to all the cases stated above.
(ii) See Worked Out Examples 4.1, 4.2 and 4.3.

4.3.5 Shortcut Methods of Finding Particular Integrals in Some

Special Cases Using D-Operator Method
Method 1 When

where m is constant.
a) When
f(m) #0
P=0= 1) "0 = py T g I A0
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Example4 | Solve

% —by=¢€"
Sol. The differential equation can be written as
(D* = 5)y =e
where,
d
D=0
Let,
y=e""

be a trial solution of the reduced equation

(D* =5)y =0
Then, the auxilliary equation is

m?—5 =0
or, m = +V5

Therefore, the complementary function is
CF =y, = Cre V5% 4 CpeV?”

where C and C are arbitary constants.
The particular integral is

1 xr
PI:yp: me
- (12-5)
-
4

Therefore, the general solution is

y=Yety,=Cre V5 4 CheV® —

b) When
f(m) =0
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PI:yp:ﬁF(x): Logme g b ogma ) 1 eme, f'(m) #0

ExampleS | Solve

d*y dy

_ — _ 2 = &

a2l TV
Sol. The differential equation can be written as

(D* —=3D +2)y ="

where,
d
D=—
dzx
Let,
y — emw

be a trial solution of the reduced equation

(D*-3D+2)y=0
Then, the auxilliary equation is

m? —3m+2 =0
or, (m—=1)(m—-2) =0
or, m=1m=2
Therefore, the complementary function is

CF = y. = C1€* + Cre*®

where C and C', are arbitary constants.
The particular integral is

1
PL=w= (2 30 12)
1 xT
~op 3¢

= —ze”

Therefore, the general solution is

x

Y=Y+ yp =Ce" + Ce®* — ze
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_ _ L _ L mr _ 2 1 mx
PL=u= 5y PO = 5y = )
_ 2 1 mx. £/
=T f//(m)e bl f (m) #O
Method 2 Let
‘ F(z) = sinaz or cos ax ‘
a) When
f(D) = ¢(D?)
Pl=y, = LF(:zc) 1 sinax = ! sinax; ¢(—a®) # 0
D) o(D?) o(=a?)
Pl=y, = LF(:zc) -1 cosax = L cos ax; ¢(—a’) #0
D) o(D?) o(=a?)

Example 6 | Solve

Sol.

a’y
dx?

The differential equation can be written as

where,

Let,

be a trial solution

— 95y = 3sin2x + S5cos 3z

(D? — 5)y = 3sin 2z + 5 cos 3x

d
D=—
dzx
y:emw

of the reduced equation

(D* =5)y =0
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Then, the auxilliary equation is

m?—5 =0
or, m = +V5
Therefore, the complementary function is

CF =y, = Cye V% 4 CheV™

where C and C', are arbitary constants.
The particular integral is

Pl=y, = (3sin 2z + 5 cos 3x)

1
(D? = 5)

1 1
=3———sin2x+5———cos 3z

(D? —5) (D% —5)
1 . 1
= 3m Sin 2(E + 5m COS 3(E
sin 2z )
= — —cos 3z
-3 11

Therefore, the general solution is

~VBz | Cge‘/gw _sin2x 5

I 4.13

Y=Yty =Cie 3 —ﬁcos?):v
b) When
| £(D) = 6(D*. D)
Pl=y, = LF(:zc) = #sinax - sinazr; ¢(—a?, D) # 0
02 ¢(D?, D) ¢(—a?, D) ’ 7
Pl=y, = LF(:zc) = #cosax = écosax' ¢(—a2 D)#0
%) ¢(D?, D) ¢(—a?, D) ’ 7
Example7 | Solve
d? d
chz +3d—i 4+ 5y = 2cos2x + Tsinx
Sol. The differential equation can be written as

(D? 4+ 3D + 5)y = 2cos 2z + Tsinx
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where,
d
D=—
dzx
Let,
y — emw

be a trial solution of the reduced equation
(D*+3D+5)y=0
Then, the auxilliary equation is
m? +3m + 5 0

-3 E£V1lt
2

or, m =

Therefore, the complementary function is
V11 V11
CF = Ye = e—%w <Cl COS T(E + CQ sin 2(E>

where C and C; are arbitary constants.
The particular integral is

1 .

PI—yp— m(2COS2(E+7SIDI)
—2; cos2x+7;sinx
- (D2 +3D+5) (D2 + 3D +5)

1 1
=2— 2 77— si
(—22+3D +5) cos 2z + (_12+3D+5)51nx
2 7
(3D—|—1) Ccos 2x + (3D—|—4) sSin
(3D _ 1) cos 2z + 7(3D _ 4) sinx
(3D + 1)(3D ) (3D + 4)(3D — 4)
23D -1) 73D —4)
(9D2—1) S2$+7(9D2—16) sin x
2(3D — 1) 7(3D — 4) .
=-————* _cos2r+ —————"—sinz
(9(=2%) - 1) (9(=12) — 16)
23D —1 73D — 4
= %cos%c—i—%sinx

12 9 + 2 5 21 n 28
= —sin2x 4+ ——cos2x — —cosx + —sinz
37 37 25 25
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Therefore, the general solution is

Y=Yec+ Yp = e 3% <Cl cos ga@ + (5 sin \/2ﬁ:v>
+ 12 2x + 2 2z — 21 + i
375028 + 5 c0s22 — Socos T + o sing
¢) When
1 ¢(D)
f(D)  ¢(D?)
1 D) | .
Pl=y, = m () = ;/J((Dz)) sinax = —a?) sin ax
1 (D) Y(D
Pl =y, = mF(m) = o(D?) cosax = H(—a?) cos ax
d) When

1 1
PIl=y ——F(x)= sinar = x sin ax
= o) o) F(D)
1 1 1
Pl=y ——F(r) = ——cosaxr = x——— cosax
M) 7(D)
Example8 | Solve
2
4y + 4y = sin 2x 4 9 cos 2x
dx?
Sol. The differential equation can be written as

(D? 4 4)y = sin 2z + 9 cos 2

where,
d
D=—
dzx
Let,

I 4.15
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be a trial solution of the reduced equation

(D* +4)y =0
Then, the auxilliary equation is

m?4+4 =0
or, m = 21

Therefore, the complementary function is
CF = y. = Cy cos 2z + Cs sin 2x

where C and (', are arbitary constants.
The particular integral is

1
Pl =y, = m(sin2x+9cos2x)
R 1
= m51n2x+9m COS 2$

1 1
%) sin 2x + 9:10% cos 2z since (—2% 4+4) =0

9
g/sinlvd:v—i— g/cos 2xdx

—x cos 2z n 9z sin 2z
4 4

Therefore, the general solution is

xrcos2x  9xsin2x

Y =Yc+ yp = Circos2z + Cysin2z — 1 + 1
Method 3 Let,
| P(z) = Pu(x)]
where P, (z) is a polynomial of degree 7.
PI=y, = £ Fa) = 7o Pale) = [F(D)] 7 Paa)
f(D) f(D)

where [ f(D)]~! is expanded in a binomial expansion in ascending powers of D.

Example 9 | Solve

Py dy 2
W—l—%—i—y—x +x
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The differential equation can be written as
(D*+D+1)y=a*+z

where,

Let,

be a trial solution of the reduced equation
(D*+D+1)y=0
Then, the auxiliary equation is
m>+m+1 =0

—1++/3i
2

or, m =

Therefore, the complementary function is

=1 3 3
CF=y.=e2" <Clcos\2[:v+0251n\2[:v>

where C and (', are arbitary constants.
The particular integral is

1
T D2+ D +1)

= {1+ (D?>+ D)} 1 (2? +2)

PI = (2% + )

:{1—(D2+D)+(D22+!m2—---}(x2+x)
z{l—D—l;}(ﬁ—i—:v)

=a’4+zx-22—-1-1
=z —z-2

Therefore, the general solution is

2

=1 3 3
Y=Yec+yp =62 w<Clcos\2[:v+0251n\[$>+x2—x_2

I 417
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Method 4 Let,

‘ F(z)=e™V ‘
where V' is any function of x.
1 1 1
Pl=y,=—=F(x)= eV ="t —— <V
M) FD +m)
Example 10 | Solve

d? d
GV _ 5% 4 gy = p2e3 [WBUT-2009, 2010]
dz? dx

Sol. The differential equation can be written as

(D? —5D + 6)y = 2%e*”

where,
d
D=—
dzx
Let,
y — emw

be a trial solution of the reduced equation
(D* 5D +6)y =0

Then, the auxilliary equation is

m? —5m+6 = 0
or, (m—=2)(m—-3) =0
or, m=2m=3

Therefore,
the complementary function is

CF =y, = 01> + Cqe®”

where C and (', are arbitary constants.
The particular integral is

1
PI = _ 2 3z
T p2_s5pre)t ©

3z 1 $2
(D+3)2—-5(D+3)+6

=€
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1
3x 2
D21 D"
1 1
_ 6317 $2

D(D+1)

=€

1
= 6315(1 + D)_lac2

1
6315{1—D+D2—---}$2

1
3z 2
e {(E x4+ }

25
= 63””{? — 2% 4+ 22}

Therefore, the general solution is
23
Y=Y+ Yp = 01621 + 02631 +€3$ {3 — ZCQ + 2(E}
Method 5 Let,

F(z)=2V

where V' is any function of x.

Pl=y, = LF(:zc) - v {:v - f(lD)f’(D)} ﬁV

Example 11 ] Solve

(D? 4+ 1)y = zcosx

Sol. Let,

mx

y=e
be a trial solution of the reduced equation
(D*+1)y=0

Then,
the auxilliary equation is
m*>+1 =0

or, m = =+t
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Therefore, the complementary function is
CF =y.=Cicosx+ Cosinx

where Cand Cs are arbitary constants.
The particular integral is

PI = mw COS X

1 1
= - 2D
{w (D? +1) }<D2+1>“’”

1 rsinx
= - 2D
{x (D2 + 1) } 9
since#cos:v = xicosx _ sina

(D% +1) - 72D 2

_{xzsinx 1

5 (D2+1)D(:vsin:v)}

x?sinx

1
2 (D2+1)(

sinx + x cos x)

x?sinx 1

= — sinx — ————xcosx

2 (D +1) (D +1)

x?sinx

1 .
= 5 —<D2+1)51nx—PI

x?sinx  xcosz

= —PI
2 + 2 ’

since 1 . . —X CoS X
i ————sinz =r——sing=———
(D% +1) 2D 2

x?sinz  xcosz

2 + 2
z?sinz n T CoSx
4 4
Therefore, the general solution is

or, 2(PI) =

or, PI =

x?sinx  xcosz

4 + 4

Y=yc+yp=Crcosz+ Casinz +
Method 6 Let,
F(z)=2"V

where V' is any function of x.
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70" = o == @)

f(D)

Vv

Example 12 | Solve

Sol.

(D? — 1)y = 2%sinz
Let,
y=¢e""
be a trial solution of the reduced equation
(D* =1y =0
Then, the auxilliary equation is
m?>—1=0

or, m = *1

Therefore, the complementary function is
CF =y, = Che” + Coe™™

where Cand Cj are arbitary constants.
The particular integral is

1 2
Yp = WI sinx

{ 2D

PI

}2 Jsin
T
S I Ca——

:{w_w_l)}{;m_;m}

2

H

:—?sinx—gcos:v—i—m{D(:vsinx—i—cosx)}
z? x n 1 (sinz + in )
=—"—sinx — —cosx+ - {sinz +zcosx —sinx
2 2 (D2 - 1)
z? x
=——sinx — —~cosx + ——5——~TCOST

2 2 (D? — 1)

I 4.21
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x? . T n 2D 1
——sinz — — cosx T — Ccos T
2 (D

2 2 (D2 -1)
x? . T n 2D -1

= ——sinx — — CcosT T— —— COS T
2 2 (D% -1) 2
x? . T T COST 1 .

= ——sinx — —cosx — — sin
2 2 2 (D% -1)

_ x2 T :Ccos:v+sin:v

=-7 sinx 5 COS T 5 5

Therefore, the general solution is

Y="Yc+ Yp
2

T T rcosx  sinx
=Ci1e* +Coe™® — —sinx — —cosT — +
2 2 2 2

4.3.6 Method of Variation of Parameters

Let us consider the differential equation

dy  dy

_ < P—=

da? + dx
where, P and @) are constants and F'(z) is a function of x.
The reduced equation is

+Qy = F(z)

Py | dy
“y ., p =0
dx? + dx +Qy

and the complimentary function is the solution of the reduced equation.
Let the Complementary function (CF) be

‘ CF = y. = C1y1 + Coye

where y; and y9 are linearly independent solutions of the reduced equation and C and
(5 are arbitary constants.
The solution of the differential equation is

Y="YctY
Let us consider the Particular integral as
Pl =y, = C1(2)y1 + C2(x)y2 )]
where C4(z) and Co(z) are functions of z.

Note: Here C; and C5 are arbitary constants and they are replaced by two functions
C4(x) and Cy(x) respectively. Here we can consider any two arbitrary functions, such
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as u(z) and v(z) instead of C () and Ca(z). So there should not be any confusion in
the readers mind for the selection of the functions. We can choose any two functions
arbitrarily.

Variation of Parameters is the method of finding the functions C;(z) and Ca(x).
Differentiating (1) w.r.t x, we get

v, = Cl(@)yn + Co()ya + Cr(x)yh + Ca(w)yhy
C1(x) and Co(x) are so chosen that
(@) + Cy()y2 = 0 @
Therefore,
y, = C1(x)y) + Ca(z)ys 3)
Differentiating (3) w.r.t x, we have
yy = Ci(@)ys + Cal@)yy + Crl@)yy + Calw)yy @
Substituting the values of y, y'and "'in (1), we have
Cr (@) + Ca(w)ys = F(x) ©)
Solving equations (2) and (5), we have

O (z) = —%@ and C(x)

~—

_ y F(x
w

where,

W (called Wronskian) = ‘ y,l Y2 #0

Y1 ylz

The functions C4 () and Co(z) are given by
F F
Ci(x) = _/szV(iﬂ)dw and Cy(z) = /yl(x)d:v

Therefore, the Particular Integral (PI) is

Pl =y, = {_/yzgv(x)dm}yl-y {/ylllj[/(x)dm}w

Therefore, the general solution is

F(z F(z
yzyc-f—yp:Clyl—I—ngg—l—{—/yzW()d:v}yl—i—{/ylW()dm}yg
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Working Procedure 1Let us consider the differential equation

Py o dy
@—FP%—FQy—F(x)

where, P and @ are constants and F'(z) is a function of x.

Step 1: Find the complementary function of the given differential equation. Let the
Complementary function (CF) be

‘CF =y = Ciy —|—ng2‘

Step 2: Replace the constants of Complementary functions by functions of x and the
Particular Integral (PI) becomes

|PL=y, = Ca(x)yr + Cala)ye |

Step 3: Calculate the determinant (called Wronskian)

Y1 Y2
W = 0
} o |7
Step 4: Calculate C;(z) and C3(x) by
F(z F(z
Ci(x) =— yQVV( )d:v and Cs(x) :/yll/[/( )d:v

Step 5: The Particular Integral (PI) is

PI:yp:{—/ygijV(x)d:v}yl—i—{/ylgV@)dm}w

and the general solution is

F(x F(x
yzyc‘f'ypZCly1+C2y2+{—/y2VV()d£E}y1+{/ylvv( )dm}yg

Example 13 | Solve by the variation of parameters

d2
o +9y = sec3a [WBUT-2005, 2008, 2009]
x
Sol. The reduced equation is
d2
£y +9y =0

dx?
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Let,
y — emw

be a trial solution of the reduced equation, then the auxilliary equation is

m*+9 = 0
or, (m+3i)(m—3i) =0
or, m = +3i

The complementary function is
CF = y. = Ciy1 + Coyz = (C1 cos 3z + Cysin 3x)

where C and C'y are arbitary constants.
Let us consider the particular integral as

PI =y, = C1(z) cos 3z + Ca(x) sin 3z
where C4(x) and Co(z) are functions of x.

Variation of Parameters method is the method of finding the functions C (z)
and Cy(z).

Now,
|l oy | cos 3x sin3z |
W_‘ T ‘_‘ —3sin3x  3cos3x =370
Therefore,
F in3 3 1
Ci(x) = —/ y2VV(I)d$ = —/de = §logcos3:v
and

F 3 3 1
o) = ylw@dx:/m?f%fvdx:gx

Therefore, the particular integral is

Pl =y, = Ci(x)y1 + Ca(x)y2

1 1
= <9 log cos 3:6) sin 3z + <3:v) cos 3x

Therefore, the general solution is

Y =Y + yp = (Cq cos 3z + Cy sin 3z)

1 1
+ <9 log cos 3:6) sin 3x + <3:v) cos 3z
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The following method is for further reading and not included in the syllabus

4.3.7 Method of Undetermined Coefficients for Finding Particular

Integrals (PI)
Let us consider the differential equation
*y | dy
P—= =F
gz TP, Ty =)

where, P and @ are constants and F'(z) is a function of x.
The reduced equation is

Py | dy
ey, p =0
dx? + dx +Qy

and the complimentary function is the solution of the reduced equation.
Let the complementary function (CF) be

‘ CF = y. = C1y1 + Coyp

where y; andys are linearly independent solutions of the reduced equation and C; and
C, are arbitary constants.
The solution of the differential equation is

y=CF+Pl=yc+uyp

Method of undetermined coefficients give the value of particular integral using F'(x)
of the differential equation.

Case 1: When F(x) = p,(x) a polynomial of degree n.
a) If P #0,Q # 0, we assume

yp = Agx" + Az 4+ A, A,

where Ay, A1, ..., A,, are constants to be determined.
b) If P # 0,Q = 0, we assume

yp = x(Agz™ + A"t A+ A

where Ag, A4, ..., A, are constants to be determined.
¢) If P=0,Q =0, we assume

Yp = ZCQ(AQ,Tn + A" 4+ A+ Ar)

where Ag, A4, ..., A, are constants to be determined.
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Case 2: When F(z) =

a) If a is not a root of the auxilliary equation m? + Pm + @Q = 0, we assume
yp = Ae”

where A is a constant to be determined.
b) If a is a simple root of the auxilliary equation m? + Pm + Q = 0, we assume

yp = Azxe®”

where A is a constant to be determined.
¢) If a is a double root of the auxilliary equation m? 4+ Pm + @Q = 0, we assume

yp _ AwQeam
where A is a constant to be determined.

Case 3: When F(z) = C cos ax + Cs sin ax where C and C» are constants

a) If cos ax or sin ax are not present in CF, we assume
yp = Acosax + Bsinax

where, A and B are constants to be determined.

b) If cos az or sin ax are present in CF, we assume
yp = z(Acos ax + Bsinax)

where, A and B are constants to be determined.

Example 14 | Solve by the method of undetermined coefficients

d?y . dy
2467 49y =24e 3"
dz? + dz 9 €

Sol. Let,
y — emw

be a trial solution of the reduced equation

2
% + 6% +9y=0
then, the Auxilliary equation is
m?+6m+9 =0
or, (m+3)% =0

or, m = —3,-3
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Therefore, the complementary function is
CF = y. = (C} + Cyx)e 3"
Since, m = —3 is a double root of the auxilliary equation, we assume
yp = Az?e™3"

where, the constant A has to be determined by the method of undetermined

coefficients.
Therefore,
(D? +6D +9)y, = 24e™ 3"
or, (D? +6D +9)Az?e™3" = 24e3"
or, D?(Az”e™37) + 6D(Az2e ") + 9(Az%e™3%) = 24737
or, Ae 3%(2 — 12z 4+ 92%) + 6Ae 737 (22 — 32%) + 9Az%e 3" = 2437
or, 24e73% = 24737
or, A =12
Therefore,

yp = 122237
Then, the general solution is

y=yc+yp=(C1+ 021)6_3”” + 122273

4.4 HOMOGENEOUS SECOND ORDER LINEAR DIFFERENTIAL
EQUATIONS WITH VARIABLE COEFFICIENTS

4.4.1 Cauchy-Euler Differential Equations
Definition The differential equation of the form

d*y dy
=z J iz =F
gz TmE +py=F(2)
where, p1, ps are constants and F'(x) is a function of z, is a second order homogeneous
linear equation.
This differential equation is called Cauchy—Euler differential equation.

:CZ

Method of Solution The differential equation

d? d
Y e 4y =F

2
. dx? dx (z)

where, p1, p2 are constants and F(x) is a function of .
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or,

where,

D%y + preDy + poy = F(x)
(2°D* + p1aD +p2)y = F(x)
d
D=2
dx

Let us consider the transformation

Then,

or,

Let us consider

where,

Therefore,

Similarly,

or,

or,

r=¢e° or logx ==z

dy _ dyd: _1dy
dzx dzdx  xdz

dy _ dy
de ~ dz
dy

d
Y — pyand °Y = D'y
dz

d d
D=—andD = —
d:van dz

xDy = D'y

Py _d (0 _d (1dy
dz? ~ dx \dz) dz \zd=

1dy 1d%*dz

22dz  xdz?dx

1 dy 1 d%y

22dz 22 dz?

2@ PPy dy

T da dz?2 dz
D% = D'(D' — 1)y

Substituting the values of Dy, 2 D%y we get,

D'(D' = 1)y +p D'y + pay = ¢(2)

which is a linear equation with constant coefficients.

I 4.29
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The solution is found by the methods of solving linear equation with constant
coefficients.

Example 15 | Solve

2 d%y dy .
x°—2 —x—= 4 4y = zsin(log z) [WBUT-2005, 2011]
da? dx
Sol. The differential equation can be written as

22D%*y — xDy + 4y = xsin(log x)

where,

d
D=—
dzx

Let us consider the transformation

r=¢" or logx ==z

Then,
dy _ dydz _1dy
de ~ dzdx xdz
or x@ = @
’ de ~ dz

Let us consider

dy dy /
=D =D
dx y dz

where,
d d
D=—andD = —
dzx an dz
Therefore,
xDy = D'y
Similarly,

Py _d () _d (1dy
de?  dx \dx) dx \zdz

1dy 1d?ydz

22dz  xdz?dx

1 dy 1 d%y

22dz 2?2 dz?
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28y _ Py dy
da? dz?  dz

or, w?D?* = D'(D' — 1)y

Substituting the values of Dy, 2 D%y, we get

D'(D'—1)y—D'y+4y = e*sinz

or,

or, (D'? —2D' +4)y = e*sinz
which is a linear equation.
Let,

y — emz

be a trial solution of the reduced equation
(D? —2D +4)y=0

then, the auxiliary equation is
m?—2m+4 =0
or, m = 1+3i

Therefore, the complementary function is
CF =y, = €*(C} cos V3z 4+ Cy sin \/gz)

where, C'7 and (', are arbitary constants.
The particular integral is

1
= (D op v a)
_ez 1
(D' 112 —2(D + 1)+ 4)
z 1 .
=€ 5 . SInz

(D2 + 3)

e”sin z

PI =

sin z

Therefore, the general solution is

e*sinz

2

Y=y +yp = €*(C1 cos V3z + Oy sinV/32) +

Putting z = log z, the general solution becomes

y==x [Cl oS (\/glogx) + Cssin (\/glog:v)} + w

I 4.31
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4.4.2 Cauchy-Legendre Differential Equations
Definition The differential equation of the form

&y

dy
Tpz T pi(az +b) -+ poy = F(x)

(az + b)? e

where, p1, p2, a,b are constants and F'(x) is a function of 2 which is a homoge-
neous linear equation of order 2.
This differential equation is called Cauchy-Legendre differential equation.

Method of Solution The differential equation

2 0%

dy
Joa T oz )+ poy = F(x)

b
(ax +b) e

where, p1, pe, a, b are constants and F'(z) is a function of « can be written as,
(az +b)?>D?*y + p1(ax + b) Dy + pay = F ()

where,

Let us consider the transformation

(ax 4+ b) = e or log(ax + b) = 2z

Then,
dy _dydz o dy
de  dzdr (ax+0b)dz
dy dy
b= = a—-=
or, (ax +b) e a 7
Let us consider
dy dy /
—~ =D d-Z=D
dzx yan dz Y
where,
d d
D=—andD = —
dzx an dz
Therefore,
(ax +b)Dy = aD'y
Similarly,

(ax +b)?D*y = a®>D' (D' — 1)y
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Substituting the values of (azx + b) Dy , (ax + b)? D%y, we get
a*D'(D' — 1)y +p1aD'y + pay = ¢(2)

which is a linear equation with constant coefficients.
The solution is found by the methods of solving linear equations with constant
coefficients.
2

Example 16 ] Solve
d%y

d
(3:10-1—2)2@+5(3x+2)d—‘z—3y:x2+w+1

Sol. The differential equation can be written as
(3z +2)2D?*y + 53z +2)Dy -3y =2 +x+1

where,

d
D= —
dzx

Let us consider the transformation

(3x +2) =¢€* or log(3xz+2) ==z

Then,
dy _dydz 3y
de  dzdr (3z+2)dz
dy dy
3 2)— = 3—
" (32 + )d:v dz

Let us consider

d d
d—i = Dy and d—i’ =Dy
where,
D= e and D' = diz
Therefore,
(3z+2)Dy =3D'y
Similarly,

(3z +2)2D%y =32D'(D’' — 1)y
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Substituting the values of (3x + 2) Dy , (3z + 2)2D?y, we get
er —2 2+ e*—2 1
3 3
e —e* + 7
9

3°D'(D' — 1)y + 15D"y — 3y

or, (9D + 6D’ —3)y =
Let,
y=e"
be a trial solution of the reduced equation
(9D +6D' —3)y =0
then, the auxiliary equation is
Im* 4+ 6m—3 =

or, m= —-,—1

Wl @

—
w

Therefore, the Complementary function
CF=y.= Cle%z + Che™ %

where C and C are arbitary constants.
The particular integral is

Pl — o — 1 e —e* + 7
~ T D2 16D - 3) 9

1[e?* €7 1

== ——+ (=)@ —-2D -3D*) X7
9{45 12+<3)( M
_Lfer e T

9145 12 3

Therefore, the general solution is

e e 7
y=yc+yp=Cle§z+Cze‘z+{ ——}

Putting
log(3z +2) =2
the general solution is,

Y=ye+yp=Ci1(3x+2)5 + Ca(32 4+ 2)7}
1[(Bz+2)? (Bz+2) 7

9 45 12 3
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4.5 SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS

We have discussed how to solve differential equations which consist of two variables
only, of which one is independent and the other is a dependent variable. Now, we
will discuss how to solve differential equations in which the number of independent
variable is one, but the number of dependent variables is more than one.

4.5.1 Definition

If x and y are two dependent variables and ¢ be any independent variable, then
simultaneous linear differential equations are of the form

dx dy
e F(t,x,y) and = G(t,z,y)
4.5.2 Method of Solution
Let,
d
D= —
dt
then, the simultaneous linear differential equation is
dx dy
e F(t,x,y) and e G(t,z,y)
can be written as
Dx = F(t,z,y) (D
Dy = G(t,,y) ()

Substituting the value of y from equation (1) in equation (2), we get a second order
linear differential equation with constant coefficients where the dependent variable is
x and the independent variable is ¢.

Solving the second order differential equation by the known methods we get the
value of x.

Putting the value of x in one of the equations gives the value of y.

The method is illustrated in the following examples.

Example 17 ] Solve

dx dy
o Tx +y = 0; a 2r -5y =0 [WBUT-2007]
Sol. The given equation can be written as

(D—Tx+y=0 (M)
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and
—2zx+(D-5)y=0 2)
where,
d
D= —
dt

Operating (D — 5) on (1) and subtracting by (2), we get
(D=5)(D-7)+2]z =0

or, (D* - 12D +37) = 0

Let,

y=e

be a trial solution of the equation, then the auxilliary equation is
m? —12m+37 = 0

or, m = 6=+t1

Therefore,

x = e5%(C} cost 4+ Cysint) 3)

where, C and Cj are arbitary constants.
Differentiating (3) with respect to ¢, we have

dx

i 6e%(C cost + Cosint) + €% (—Cy sint + Cy cost)

From (1) we have,
y = Tx — Dx

or, y = 7e8(C cost + Cysint) — 6e5(Cy cost + Cysint)
—e%(—Cy sint + Cy cost)

or, y = %{(Cy — Cy)cost + (Cy + Cy)sint}

Therefore, the general solution is
x = €% (C} cost 4+ Cosint)
and
y = e {(Cy — Cy)cost + (Cy + Ca)sint}

where C and (', are arbitary constants.
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Example 18 | Solve

Sol.

dx . dy ¢
— =e5— —xr= WBUT-2003
atV= iy e [ ]
The simultaneous differential equations are
dx ‘
i - 1
g Tu=e 1
and
d
dfgt/ —zx=et 2)
From (1) we have,
dx
t
=e — — 3
y=¢ -4 3)
Therefore, from (2) and (3) we have
d [, dx R
% <€ — dt) —Tr = €
d*x t_ -t
or, az +x =e —e
Let,
r=e™

be a trial solution of the reduced equation

ZQT;E +z=0
then, the auxilliary equation is
m>+1 =0
or, m = =+t

Therefore, the complementary function is
CF =z, =Cqcost+ Cysint
where C and C'y are arbitary constants.
The particular integral is
PI = xp = 71 (et — e_t)
(D% +1)

(e —e™)
2
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Therefore,
t_ -t
T=Tc+xTp = Clcost—l—Cgsint—i—(ei;)
Now,
d t —t
dff = —Cysint + Cycost + Lze)
From (1),
dzx
_ ot ar
YO T
t —t
or, y = et—{—Clsint—f—Czcost_F(e—;e)
: Loy —t
or, y = Clslnt—Cgcost+§(e —e )
Therefore, the solution is
t_ -t
x = C1cost+ Cosint + w

and

1
y=Cisint — Cycost + i(et —e™h)

where C and C'; are arbitary constants.

Exampled4.1| Solve

Py dy 2

29 27 4y =

dz? x toy=z
Sol. The differential equation can be written as

(D* —5D +6)y = 22
d
where D = —. Let
dx
y — emw
be a trial solution of the reduced equation

(D* —=5D+6)y =0

WORKED OUT EXAMPLES

|
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then the auxilliary equation is

(m* —5m+6) =0
or, (m=3)(m—-2)=0

or, m=3,2

Therefore the complementary function is
C.F =y, = 013 + Cre**
where C and C', are arbitary constants.

The particular integral is
1 2

Pl=yy=
= (D2 5D +6)"

= e? e —2w Qdm} using Case 2 of Section 4.3.4
_ b e /
- (0=-3)
- 1 r o $26—21 —21
“(0-3) |° 2 2 1
B 2’ +ax+ !
2(D-3) 4

1
—5631/6_ * {:v +x+ 4} dz, using Case 2 of Section 4.3.4

_ L 02 D
T 6 3 18]

Therefore the general solution is

1 50 19
=Y, = 13" + Che®® + = oy
Y + Yp 1€77 + Coe™ + 6 { + 3 + 18}
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Alternatively (using Case 3 of Section 4.3.4) we can also compute P.I. as
the following: The particular integral is

1 22
(D? —5D +6)
1 e
(D—-3)(D-2)
Using partial fraction we have
1 B 1 B 1
(D-3)(D-2) |(D-3) (D-2)

So we can write

Pl =y,=

_ |:e3w/e—3wx2d$:| _ |: 21/6—21$2d$:|

P P S PN
-3 3 9] 2
—1 $2+5£+B
6 3 18]
Exampled4.2 | Solve
d?y
W—l—ély:seclv

Sol.  The differential equation can be written as
(D? 4 4)y = sec2x
d
where D = —. Let
dx
y — emm
be a trial solution of the reduced equation
(D? +4)y =0
then the auxilliary equation is

(m? +4) = 0= (m+2i) (m —2i) = m = +2i
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Therefore, the complementary function is
C.F=y.=Cicos2x+ Cysin2x

where C and (', are arbitary constants.
The particular integral is

1
P.I:yp:msec2$

1
T (D+2)(D -2 2

Using partial fraction, we have

1 1

1 1
(D +2i) (D —2i) 4 {(D—%) a (D—|—2z')}

So we can write

1 1 1
Pl=vy,=— — 2
=y {(D —2) (D+ 21)} sec st
= i #seclv — #seclv
 4i |[(D - 2i) (D + 2i)
Now

(1)712,) sec 2z = 2® /6_2” sec 2zdx
— 21

: cos2x — i sin 2x
6211 e T dx
cos 2x

= 2@ {x + % log (cos 2$):|

= [cos 2z + isin 2z :v—l—zlog cos 2z
2

1 1
= {:v cos 2z — 3 sin 2z log (cos 2$):| +i {:v sin 2x + 5 cos 2z log (cos 2$):|

Similarly,

1
—————sec2x

(D +2i) e~ 2w /62” sec 2zdx

1 1
= {:v cos 2z — 3 sin 2z log (cos 2$):| —i {:v sin 2x + 5 cos 2z log (cos 2$):|
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Putting the above values we have the particular integral as

1 1
sec 2 — ———sec 2x

1
[ R

_ wsin2z | cos 2z log(cos 2x)
2 4
Therefore the general solution is

xsin2z  cos 2z log (cos 2x)

y =Y.+ yp, =Cicos2z + Cysin2zx +

2 4
Solve
%—i—%—%zxe‘zm
Sol. The differential equation can be written as

(D*+ D —2)y = ze™*
where D = i Let
dx
y=em

be a trial solution of the reduced equation

(D*+D—-2)y=0
then the auxilliary equation is

(m?>+m—-2)=0=(m-1)(m+2)=m=1,-2
Therefore, the complementary function is
C.F=y.=C1e" + Che 2*

where C and C), are arbitary constants.
The particular integral is

1
PI=y,= 2
T (p2yp_2)"°
_ 1 xe—Qm
(D—1)(D +2)

ey



Ordinary Differential Equations of Higher Order and First Degree

Now consider

d
= U oy = g
dx

I 443

This is a first order linear differential equation, so by solving this we have

u as

u. (e**) = /we‘zw.ezwda@, since LF. is e/ 29% = ¢27,

2

2\ __ ‘Ti
or, U. (e ) =3
1
or, u =z’ "
2
Now from Eq. (1), we have the P.I. as
1
PIlI=y,=
P -n"

- o5 ()

Again consider

(@)

This is a first order linear differential equation, so by solving this, we have

v as

1
v. (e7%) = /ix%_%.e—wda@, since LF. is e/ ("Ddz — o=

1 1 2 2
or,v. (e_””) =3 /:v2e_3””d:v = —— {:102 + il + } e 3"

or, v=—= {:102—1——1—} e 2
Hence from Eq. (2) we have the PI. as

1 20 2| _o,
P.I:yp:v:—g |:£C2+3+9:|€ 2
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Therefore, the general solution is

1 2 2
y:Yc_przCle””—i—Cge_%—g |:(E2+?;T+9:| 6_21
2z

1
= Che® + Cqe 2" — Z |22+ =2
167 + Cze 3{@4'3

Exampled4.4| Solve

2
} e %% where C3 = Cy — 77 another constant.

d? d
GY 5% 6y =e"cosa [WBUT-2002, 2011]
dz? dx

Sol. The differential equation can be written as

(D* = 5D +6)y = e* cosx

where,
d
D= —
dzx
Let,
y — emw

be a trial solution of the reduced equation

(D* = 5D+ 6)y =0
then, the auxilliary equation is

m?* —5m+6 = 0

or, (m—=2)(m—-3) =0
or, m=2m=3
Therefore, the complementary function is

Yo = C1€*" + Ce

where C and C are arbitary constants.
The particular integral is

* 1

T IDr12 5D +1)+6) T
z 1

=€ ——F————COST

(D2 — 3D +2)
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,(cosz — 3sinx)
10

Therefore, the general solution is

Y="Yet+yp= C1e*" 4 Cye®® +eww

I 445

10
Example 4.5 | Solve
d? d
289 YW y = log x sin(log x) [WBUT-2002]
dz? dx
Sol. The differential equation can be written as

22D?y + 2Dy + y = log z sin(log z)

where,

d
D=—
dzx

Let us consider the transformation

r=¢e° or logx ==z

Then,
dy _dydz _ 1dy
de  dzdx xdz
or x@ = @
’ de ~ dz
Let us consider
dy dy /
—~ =D d-Z=D
dzx yan dz Y
where,
d
_ ¢ r_ @
D= d and D &
Therefore,
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Similarly,
By _ A () _d (1
da? de \dz )~ dz \zdz
_ _ldy 1dydz _ 1dy
T 22dz  xdz?2dr T 22dz
o 2Ty _ Py dy
’ dz? dz? dz
or, *D*y = D'(D' — 1)y

Substituting the values of Dy, 22 Dy, we get
D'(D'-1)y+D'y+y = zsinz
or, (D? 4+ 1)y = zsinz

which is a linear differential equation with constant coefficients.
Let,

y=e
be a trial solution of the reduced equation
(D?+1)y=0

then, the auxilliary equation is

m>+1 =0
or, m = =+t
Therefore, the complementary function is

Yo = Crcosz 4+ Cosinz
The particular integral is

1
Yp = D/2+1)zsmz

1
7 .

{ D’2—|—1 2D } D2+ 1) sin z

1

—

{ D’2+1 }Zzpf
= {z— #2D’ 2C08 2
B 2 (D2 +1)

1
= 7 {2’2 COS z — m2D/2COS Z}

sin z

—_

1 d%y

z2 dz?
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-1 1
3 {22 cosz — m%cosz — zsinz)}

1 .
= 722COSZ+ 5 -~ COSZ— ——o5—ZSInz

(D2 +1) (D2 +1)

= 72260524—2

57y COS% U

= —2%cosz+ zsinz —y,

2

or, 2y, = ——2z"cosz+ zsinz
—z%cosz  zsinz
or, Yp = 1 + 9

Therefore, the complete solution is

z2cosz  zsinz

Yy=Yc+yp=Cicosz+ Cysinz — 1 + 5
1 2 cosl 1 inl
= Cycoslogz + Cysinlogz — (log ) :OS 08T ogws;n 08T

Example 4.6 | Solve by the method of variation of parameters
d?y
— + 4y = 4tan2zx [WBUT-2002]
dz?

Sol. The differential equation can be written as

(D? 4+ 4)y = 4tan 2z

where,

Let,

be a trial solution of the reduced equation
(D?+4)y =0
then, the auxilliary equation is
m?>+4 =0
or, m = 21

Therefore, the complementary function is
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ye = Cry1 + Cays = Cq cos 2z 4+ Cs sin 2x

where C and (' are arbitary constants.
Let the particular integral be

yp = C1(x) cos 2z + Co(z) sin 2z

where Cy(x) and Co(z) are arbitary constants.
Variation of Parameters method is the method of finding the functions C(z)

and Ca(z).
Now,
|l oy | cos 2x sin2x |
W= ' Yl b ' - ' —2sin2x  2cos2x =2#0
Therefore,
F in2x.4tan2
Cilr) = = [ 1By = [m2nltnie,,
= —2/sin2 2z sec 2x dx = sin 22 — log(sec 2x + tan 2x)
and
F 2z.4tan2
Co(x) = ylvv(x)dx = /w&n = 2/sin2:vd:v = —cos2zx

Therefore, the particular integral is

yp = {sin2z — log(sec 2z + tan 2z)} cos 2x — (cos 2x) sin 2z
= {log(sec 2z + tan 2x)} cos 2z

Thus, the complete solution is

Y = Ye + yp = C1cos 2z + Cy sin 2z + {log(sec 2z + tan 2z)} cos 2z

Exampled4.7 | Solve

d? d
chZ +4d—i + 4y = 2% + 3e** + 4sinx
Sol. The differential equation can be written as

(D? 44D +4)y = 2 + 3¢** + 4sinz

where,



PI:yp:
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Let,
y — emm
be a trial solution of the reduced equation
(D* +4D +4)y =0

then, the auxilliary equation is

m>+4m+4 =0
or, (m+2)? =0
or, m = —2,m= -2
Therefore, the complementary function is

CF =y, = (Cy + Cyz)e™ "
The particular integral is

1
(D? + 4D + 4)
1

1 , 1 , ,
= 3 - w4 -
prap+ 4t PPorrap+ 9t TtoErap o)

D2+4D)

(2% + 3¢ + 4sinzx)

—~

-1

1
z2+3

1
R N P — 1

(22 + 8 +4) (—12+ 4D + 4)

NH

3 1
224+ e 44— _ging

1-
16 (4D + 3)

NH

D2+4D+ D2 +4D\?
4

16 (4D + 3)(4D — 3)

3 4D -3) .
2 21
il 470
v } T16¢ Traepz—9) M7

3 5, (4D—3)
166 +4 —on sin

<
{1 }:v f 2wy, @D-Y
-
{

x2—2:v—|—}—|—

— plk\)—l plk\)—' rlk\)—'

20+ 2L 1 32 L 3hing— deost)
(E T 9 16 25 SinxT COS ™

Ny

Therefore, the general solution is

1 15
y:yc+yp:(cl+c2$)€_2m+4{$ —2$+2}

3 4
+ Ee% + %(?winx —4cosx)
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Example4.8 | Solve by the method of variation of parameters

d? d
CY 3% | 9y = 9ge [WBUT-2004]
dx? dx

Sol. The differential equation can be written as

(D* —3D +2)y = 9¢”

where,

Let,

be a trial solution of the reduced equation
(D*-3D+2)y=0
then, the auxilliary equation is
m? —3m+2 =0
or, (m—=1)(m—-2) =0
or, m=1m=2
Therefore, the complementary function is

ye = C1e® + Cre®®
Let the particular integral be
yp = C1(x)e” + Co(z)e®®

where C1(x) and Co(z) are arbitary constants.
Variation of Parameters method is the method of finding the functions C(z)

and Cs(z).
Now,
x 2x
Y1 Y2 | _| € € _ 3z
W_'yi y/2'_ et 2621 =€ 750
Therefore,
F(x e2%9¢”
and

F *9e”
Co(z) = /le(x)d:vz/eé: dx = /9e_wd:v: —9e™"
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Therefore, the particular integral is

Yp = (—=97)e” + (—9e%)e*™ = —9ze” — 9e”
Thus, the complete solution is
Y=y +1yp = Cr(x)e” + Oy(x)e*™ — 9ze” — 9e”
Example 4.9 | Solve
22 d*y dy
T +zx T Y= sin(log z) + x cos(log x) [WBUT-2004]
Sol. The differential equation can be written as
22D%*y + Dy — y = sin(log x) + x cos(log )
where,
d
D=—
dx
Let us consider the transformation
r=¢° or logx ==z
Then,
@ _ dy dz 1 dy
dv ~ dzdx  zdz
or dy _ W
’ Yiz T dz
Let us consider
dy _ dy _
o —Dyanddz =Dy
where,
D= a and D' =
dx dz
Therefore,
xDy = D'y
Similarly,
Py _d (@) _d (a\_ 1dy 1dyd
dz2 ~ dx \dz) dr\zdz) 22d:  zd2dx
__ldy 1%y
z2dz  22d2?
2y dPy dy
or, — = — - =
dx? dz? dz
or, x*D*y = D'(D' 1)y

I 4.51
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Substituting the values of Dy, 22 D%y we get
D'(D'-1)y+Dy—y = sinz+e”cosz
or, (D? —1)y = sinz+ e cosz

which is a linear differential equation with constant coefficients.
Let,

y — emz
be a trial solution of the reduced equation
(D?=1)y=0
then, the auxilliary equation is
m?>—1=10
or, m = *1
Therefore, the complementary function is

Ye = Cre® + Cre™ "

The particular integral is

1
Yp = m(sinz + ¢® cos z)

sinz 1
= +e (D/+1)2_1cosz
sinz 1
= 9 +e D2+ D Cos z
sinz , 1
=5 te gy o8z
s /
= Sfl; +eé* ((DD/2—E11)) Cos 2
: /
= Sfl; +e* (D_—; D Ccos z
_sinz | (cosz—sinz)
I —2

Therefore, the complete solution is

sin z o (cos z — sin z)
-2 -2
Cy sinlogx  z(coslogz — sinlog x)

—C C2 _
wt 2 2

Y=Y+ Yp = Cre® + Che™* +
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Example 4.10] Solve(D” — 4)y = cos®z

Sol. Let,
y — emw

be a trial solution of the reduced equation

(D* = 4)y =0
then, the auxilliary equation is

m?—4 =0
or, m = +2

Therefore, the complementary function is
CF = y. = C1e™ 2" 4 Cge®®

where C and C'y are arbitary constants.
The particular integral is

1
PI:yp:mCOSQ$
B 1 (1 4 cos2x)
_(D2—4) 2
1 1 1
= — 1 2
2 (D2 —4) T2 (D2 —4)
~1 D2\"' 1
=—(1-— 1+ = 2
3 < 4) +2(_22 )cos x
-1 D?
28{1+4}1—COS2$
It SN S
=3 16cos x

Therefore, the general solution is

1 1
Y=ye+yp=Cre 2"+ Ce® — ~ — — cos2x

8 16
Example 4.11]  Solve by the variation of parameters
d*y 2
—= + 4y = 4sec” 2z [WBUT-2006]
dz?
Sol. The differential equation can be written as

(D? 4+ 4)y = 4sec? 2z
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where,
d
D=—
dzx
Let,
y — emw

be a trial solution of the reduced equation

(D? +4)y =0
then, the auxilliary equation is

m*+4=0
or, m = 21

Therefore, the complementary function is
Yo = C1 cos 2z + Cy sin 2z

where C and C'y are arbitary constants.
Let the particular integral be

yp = C1(x) cos 2z + Ca(z) sin 2z

where C4(z) and Co(z) are functions of .
Variation of Parameters method is the method of finding the functions C(z)

and Ca(z).
Now,
oyt oy | cos 2z sin2z |
W_‘ (T ‘_‘ —2sin2z  2cos2z =270
Therefore,
F in 2z.4 sec? 2
Cr(x) = — y2W<$>dx:_/m2secde
= —2/sec 2x tan 2xdx = — sec 2x
and
F 2.4 sec? 2
Calw) = y1W<fC>dx:/COH;%wdx

=2 / sec 2zdx = log(sec 2x + tan 2x)

Therefore, the particular integral is
yp = (—sec 2z) . cos 2z + log(sec 2z + tan 2z). sin 2z
= —1 + sin 22 log(sec 2z + tan 2x).
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The general solution is
y = Cpcos2x + Cysin 2z — 1 + sin 2z log(sec 22 + tan 2x)

where C and C'y are arbitary constants.

Example 4.12] Solve by the variation of parameters

d2
d—xz +y = sec® ztanx [WBUT-2007]

Sol. The differential equation can be written as
(D? + 1)y = sec® ztan

where,
d
D=—
dzx
Let,
y — emw

be a trial solution of the reduced equation

(D*+1)y=0
then, the auxilliary equation is

m?+1 =0
or, m = =+t

The complementary function is

Yo = Crcosx + Casinx

Let the particular integral be

yp = C1(z) cosx + Co(z) sinz

where C4(x) and Co(z) are functions of x.

Variation of Parameters method is the method of finding the functions C (z)

and Cy(z).
Now,
W:‘ y/l ylg ‘:‘ cosz  sinx 140
T —sinx  cosx
Therefore,
F
Ci(z) = —/WT@d:E = —/sinxsec3xtanxd:v
tan3
= /taunz:zcsec2 xdr = ar;) x
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and
F
Co(x) = s V[/(x)dx = /cos:v sec® x tan zdxdx
tan2
= /taun:zcsec2 xdr = ar; x

Therefore, the particular integral is

tan® x tan®x\ .
Yp = 3 cosx + 9 sin x

Thus, the complete solution is

. tan® tan2 .
Yy=Yc+yp =Cicosz+ Cysinz + 3 cosz + 5 sin x

Example 4.13] Solve

(D? +4)y = zsin’z [WBUT-2008, 2010]
Sol. Let,
y — emm

be a trial solution of the reduced equation

(D? +4)y =0
then, the auxilliary equation is

m*+4=0
or, m = +2i

Therefore, the complementary function is
CF = y. = Cy cos 2z 4+ Cs sin 2x

where C and C'; are arbitary constants.
The particular integral is

1 .
PI:yp:mxsmzx
B 1 x(1—cos2x)
- (D2 +44) 2
IS :
2(D2+4):v 2(D2+4):vcos T
1 D? 1 2D 1
= _(1+=" ) le—-_-la— 2
s+ ) e 2{ (D2+4)}(D2+4)COS v
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Now,
TCOS2x =T — 2D cos 2x
(D% +4) - (D?2+44) ) (D?+4)
=<x— L :10L cos 2x
B (D% +4) )" 2D
I 2D T sin 2x
B (D? + 4) 4
_ x? sin 2z _ 2D  xsin2z
4 (D% +4) 4
25in 2 1 1
- % -5 {M(SiDZCE + 2:vcos2:v)}
= 2*sin 2 — 1 1 sin 2x — #,TCOSZT
4 2 (D% +14) (D? +4)
= M — lxi sin 2x — #x cos 2x
! 2" 2D (D2 4 4)
_ x? sin 2z n T Ccos 2T _ 1 o8 21
! 4 (D2 +4)
1 op — x251n2x+xcos2x
or, 7(D2+4)$COS T = 3 3

Therefore, the particular integral is

1 1+ D2\ ! 1 /x?sin 2z n T cos 2
== - r— =
g 4 P 8 8
_z 1 x? sin 2z n T Ccos 2x
8 2 8 8

Thus, the general solution is

. x 1 [/z%sin2zx xcos2x
y:yc-l-yp:Clcos2:10—|—Cgsm2ac—|—g—5 3 + <

where C and C'y are arbitary constants.

Example 4.14]  Solve by the variation of parameters

dzy 2
dn2 + a“y = sec ax [WBUT-2010]
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Sol. The reduced equation is
d*y 2
oz TY=0
Let,
y — emw

be a trial solution of the reduced equation, then the auxilliary equation is
m?+a®> =0
or, (m+ai)(m—ai) = 0
or, m = tat
The complementary function is
CF = y. = C1y1 + Caya = (C1 cos ax + Cysinax)

where C and C'y are arbitary constants.
Let us consider the particular integral as

PI =y, = Ci(z) cos azx + Ca(x) sin ax

where C4(x) and Co(z) are functions of .
Variation of Parameters method is the method of finding the functions C(z)

and Ca(z).
Now,
W:}y/l y/z}:} cos ax sin ax a0
1 Yo —asinax acosax
Therefore,
F i 1
Ci(z) = —/ y2VV($)d:C = —/de =2 log cos ax
and

a

F(zx 1
() _/yl /cosa;vsecax o1,

Therefore, the particular integral is

1
PI =y, = Ci(z)y1 + Ca(x < logcosax) sin ax + <a:v) cos ax

Thus, the general solution is,

Y =Ye + yp = (Cycosax + Cysinax)

1 1
+ <2 log cos ax) sinax + <:v) Cos ax
a a
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EXERCISES

Short and Long Answer Type Questions

1. Solve the following differential equations:

d? d
a)d—g—éld—i—i—él e 4+ 2 + cos 2z

1 1 1
Ans: y = (C} + Cox)e®™ + 5:6262”” + §(2:v3 + 62% 4 92 + 6) — 3 sin 2£C:|

2y d
by SY 0% e

da2 In *sin 2z

1
{Ans: y=(C1 4 Cax)e” — Ee_%(cos 2z + 2sin 2$):|

d?y dy 2

) proi %—l—ély—e cos” x
1 1
Ans: y = C1e® cos(V3z + Cy) + 661 - 561 cos 2x

d2

d) In ‘Z + 4y = z?sin’z
1 1 1 2 1 3

{Ans y=0C4 cos2x+0251n2:v+{8(:v - 5) -5 {fG cos 2x + 1 <z - Z) }”

d*y dy 2
e) ar? —2% +3y=2a"+coszx

{Ans y = €*(C cos V2 +sin v/2z)+ 4(cosx—sm:v)+z1)) <:v2 + é:v—i— 2)}

a2y
f) —|—y = sin 3x cos 2x

1
{Ans:y =Cjcosx + Cysinx + &(

—sin bz — 12z cos :v)}

dy
) +3d—+2y—xe Teinx

1
{Ans: y=Cre ™ +Coe ™ + e —g(cos:v +sinz) +sinz — 5 cos £C:|:|
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Py dy
h) —2 —9-% + 20y = 20>
) dx? d:v+ 4 v
9z 61
.0 — 4x S5x 2
Ans: y = Cie*® 4+ Coe® + +f10 + 200

2. Solve the following differential equations by variation of parameter method:

d2
a) d—i—i—yzcosecw
T
[Ans: y = C; cosx + Cysinx — x cos x + sin x log sin x]
d2
b) d—i—l—y:se(}xtanx
T
[Ans: y = C cosx + Cysinx + x cos © + sin x logsec x — sin ]
d?y .
C) @ _4y:€2
Ans C 21+C —2m+ T oy 6_21
ry =Che e —e*t —
Y 1 2 A 16
Py dy e
d) @—2%+2y—e tan x
[Ans: y = *(Cy cosx + Casinz) + e” cos x log(sec x + tan x)]
d2
e) d—z+4y:4se622x
T

[Ans: y = Cy cos 2x + Cysin 2z — 1 + sin 2x log sec 22 + tan 2x]

3. Solve the following homogeneous linear equations with variable coefficients:

d? d
a) xzd—xz — 3xd—i + 4y = 222

[Ans: y = (C; + Cylog z)z? + 2% (log x)?]

d*y dy
b) 2°— 2 +dx—" 4+ 2y ="
)xd12+xd:§+y ¢
c, C g
{Ans:yzl—f—22 %
x x? |
’y  dy
207y AY o 2
c):vdx2 xd:v 3y =xz"logx
C 1 |
{Ans: y=— + Cya® — §x2(310gx +2)
x
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dy
LA y = log z sin(log x)

d d2 dz

Ans: y = C; cos(log z) + Cysin(logz) — i(log x)? cos(log :v)}

2 d
o) (22 + 5)2d—$z —6(2z + 5)d—y + 8y = 8(2z + 5)2

[Ans: y = Cy (22 4 5)°V2 4+ Co (22 + 5)27V2 — (22 + 5)?]

, d?y d
f)(:v+1)d2+( —l—l)dfi—i—y:élcoslog(l—i—:v)
[Ans: y = C; coslog(1+ ) + Cosinlog(1 + x) +21og(1 + z) sinlog(1 + x)]
dy  dy
27 g -
2 x da? d:C — 3y =a’logx [WBUT-2008]

4. Solve the following simultaneous differential equations:

_ =0
i y+x

[Ans: z = —2C €3 + Cy(1 + 2t)e 3%y = C1e3 — Coe™]

dx dy
— —bx —4y=0;—
a) - hr—dy=0;

dy
b) —+2x—3y—t ——|—2y 3z = e?t

dt
3 2 13
Ans: z = Cre % + Chel + Ze?' — Zt — .y = —C1e® + Oyl
7 5 25
4, 3 12
_ — 7t N,
A 25}
dx dy
— 4 drx+3y=t;— +2x+5y=¢
c)dt—i—:v—i—y ,dt—i—:v—i—ye
31 5 1 2
{Ans: x=Cle 2 4 Che™ ™ — 106 + ﬂt - get; Y= gCle_Qt + Coe™ ™
LA VIR
98 7 24

Multiple Choice Questions

d? d
1. The differential equation xzd—z + Gxd—y + 6y = xlogz is solved by the
T T
transformation
a)logxr =z b)x =z c)e’ =z d) none of these

2. The particular integral of (D? + 2)y = % is
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a)1(12—1) b)1(1—x2) c)w—z d) 1+ 22
2 2 2
3. The particular integral of (D? + 4)y = sin 3z is
sin 3z sin 3z sin 3z sin 3z
b d
1 )73 R )75
y L dy
4. The particular integral of ——> —4-~ + 4y = 23** is
daz? dx
a) 621,@4 b) ewx5 C) 621,@5 d) 621x4
20 20 20 60
d? d
5. The complementary function of &y + 3% + 2y =sinx is
dz? dx
a) Cre % + Cre 27 b)e T 4+ e 2%
c) e " (Cy + Cax) d) none of these
) ) ) ) ) o d?y
6. Using the transformation x = e* the differential equation x 2 5y = logx
reduces to
d*y | dy d*y dy
29 5y = b) -2 — 2 5y =
2 dz? + dz: V77 ) d2  dz YVTF
d? d
c) d—zg - 2d—gz/ —by==z d) none of these
7. The complementary function of the equation :CZ@ — 2:6@ = 3xis
' P Y 4 dz? dr
a)Ciz + 02631 b) Cie® + 02631
) Cq + Cqe?® d) none of these
) ) . od%y dy )
8. The particular integral of the equation x“—= + x—= = coslogz is
dz? dx
a) —cosw b) cosz c) —cos(logz) d) cos(logx)

d d
9. From the system of differential equations d—j +5r+y=e’; dfgt/ —x 43y =
the differential equation of x and ¢ is

d*z dx ot d*z  dx ¢ ot

P’z dx
c) e + at + 162 =0 d) none of these
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d d
10. From the pair of equations d—j = 4x — 2y; Y _ + y we get

dt
a) x = C1e?t + Cohett b) z = C1e? + Cyedt
o)z = Ciet + Core?t d) z = C1ed + Cre?t
Answers:
1(c) 2 (a) 3(0) 4 (0 5(a) 6 (a) 7(c)

9 (a) 10 (b)

I 4.63

8 (c)



CHAPTER

Basic Concepts of
Graph Theory

5.1 INTRODUCTION

Graph Theory originated from finding the solution of a long standing problem known
as Konigsberg Bridge Problem solved by Leonard Euler in 1736. Two islands C
and D formed by river Pregel in Konigsberg (capital of East Prussia), now renamed
as Kaliningrad in West Soviet Russia are connected to each other and to the banks A
and B with seven bridges. The problem was to start from any of the four lands A, B, C,
D, one has to walk over each of the seven bridges exactly once and come back to the
starting point. The problem is represented in the following figure.

Figure 5.1 Konigsberg Bridge Problem

The problem was solved by Leonard Euler by means of a graph. This was the first
result written by Euler ever in the graph theory. Euler represented the problem in the
form of following graph:
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A L
c 5
Figure 5.2

where each of the dots (vertices) in the graph represent the lands and the connecting
lines or curves (edges) represent the seven bridges.

Euler proved that a solution for this problem does not exist, i.e., it is not possible to
walk over each of the seven bridges exactly once and return to the starting point.

After the solution of Konigsberg Bridge Problem in 1736, Kirchhoff developed
some results related to graph theory for their applications in the network theory.
Then a lot of mathematicians (scientists, engineers) have contributed some remarkable
theories in this field. Some of them are Caley, Mobious, Konig and so on.

For the last few decades, graph theory has become one of the essential subjects in
almost every field of science and technology. Graph theory can be applied to represent
almost every problem which has a discrete arrangement of objects.

In this chapter basically, we deal with the fundamentals of graph theory such as
definitions, properties, different kinds of graphs, etc.

5.2 GRAPHS

A graph is a collection of some points (or dots) and some lines or curves joining some
or all of the points. These points are known as vertices and the lines or curves are
known as the edges in a graph. For example, in a city the electricity poles are the points
(or vertices) and the joining wires are the edges. Here we give the formal definition of
a graph.

Definition A graph G is a pair of sets (V, E'), where V is a set of vertices and F
is the set of edges. Formally, a graph GG consists a finite non empty set of vertices
V and a set F of 2-element subsets of V' called edges.

The sets V' and F are the vertex set and edge set of G. Sometimes we write G as

G(V,E).
Let V = {v1,v2,...,v,} and E = {ey,ea,...,em}, then each of vy, va,..., v,
represent a vertex in the graph whereas each of ej, e, . . ., e, represent an edge in the

graph. Here, each edge is associated with a pair of vertices, i.e., edges are formed by
joining two vertices.

Example 1_| In the following figure A, B, C, D are the vertices and joining A and

B we have the edge AB, similarly we have the edges AD, BC, etc. Also note in the
figure that there may be more than one joining (edge) between two dots (vertices) such
as joining between A and D.
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A

c

Figure 5.3

A directed graph or digraph G is a graph in which each edge e = (v; v;) has a
direction from its initial vertex v; to its terminal vertex v;.
In a digraph G(V, E), each edge e is associated with an ordered pair of vertices.

Example2 | Here in the following graph each edge is with some direction. In the
edge AB, there is a direction from A to B, i.e., A is the initial or starting vertex and B
is the terminal vertex or end vertex,.

A £ B
£ & 5
D £ c

Figure 5.4

A graph having no directions is often called an undirected graph.

5.3 SOME IMPORTANT TERMS RELATED TO A GRAPH

Let us consider the following graph G:

Figure 5.5

1) Self Loop
An edge which has the same vertex as the begining and end vertex is called a self
loop.
From the above figure we can see that the graph G at vertex B has a self loop.
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2) Parallel Edges
Two or more edges having the same pair of vertices are called parallel edges.
From the above figure we can see that the graph G has parallel edges joining the
vertices A and D.

Observations

(a) For an undirected graph, a parallel edge is given by two distinct edges
connecting the same two vertices.

(b) For a digraph, a parallel edge is given by two distinct directed edges from
one vertex to another. The direction of parallel edges will be the same.

3) Simple Graph
A graph G with no self-loops and parallel edges is called a simple graph.

Example3 | The following graph represents a simple graph with 4 vertices and

4 edges.

Figure 5.6

4) Multigraph
A graph G with parallel edges is called a multigraph.

Example4 | The following represents a multigraph.

D b
A c
Figure 5.7

5) Pseudograph
A graph G with self-loops and parallel edges is called a pseudograph.

ExampleS | The following represents a pseudograph.

B A

c
Figure 5.8
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6) Adjacent vertices
Two vertices are said to be adjacent if they are the end vertices of the same edge.
Two adjacent vertices are known as neighbours of each other. In the above figure
A and C are adjacent, whereas B and D are not adjacent.

7) Incidence
If a vertex is an end vertex of an edge, then the vertex and the edge are called
incident to each other. In the above figure the vertex A and the edge AC are incident
to each other.

8) Degree of a vertex
The degree of a vertex in an undirected graph G is the number of edges incident to
it, with the exception that a loop at a vertex contributes twice to the degree of that
vertex. The degree of a vertex is denoted by d(v).

Outdegree and Indegree of a Vertex of a Digraph

The outdegree of a vertex in a digraph is the number of edges leaving the vertex. The
indegree of a vertex in a digraph is the number of edges entering the vertex.

Example 6 | Find the degree of the vertices in the following graph.

A

B E

Figure 5.9

We see from the graph in the figure, the degrees of the vertices A, B,C, D, E, F’
and G are respectively 5,4,4,4, 2,4 and 1 respectively.
Therefore, we write

5,d(B) =4,d(C)=4,d(D)=4
2,d(F)=4andd(G) =1
9) Pendant Vertex
A vertex whose degree is one is called pendant vertex, i.e., only one edge is incident
on pendant vertex.
We see from the graph in the above figure, d(G) = 1. Therefore, the vertex G is
a pendant vertex.

10) Isolated Vertex
A vertex whose degree is zero is called isolated vertex, i.e, no edge is incident on
isolated vertex.

11) Null Graph or Discrete Graph
A graph with no edges is called a null graph or discrete graph.
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Example 7 | The following graph is an example of a null graph or discrete graph

since there are no edges between A, B and C.
A
[ )
o5

[

c
Figure 5.10

Here all the vertices A, B and C are islolated vertices since no edge is incident on
them.

5.4 ORDER AND SIZE OF A GRAPH

Ina graph G(V, E), V(G) and E(G) denote the set of vertices and edges, respectively.
Ordinarily, V(G) is assumed to be a finite set, in which case E(G) must also be finite,
and we say that G is finite. If G is finite, |V (G)| denotes the number of vertices in G
and is called the order of the graph G. Similarly, if G is finite, | E(G)| denotes the
number of edges in GG, and is called the size of the graph G.

Example 8 | From the following graph we see that the order of the graph is 6 and

the size of the graph is 7.

c
Figure 5.11

Definition The minimum degree of the graph G is the minimum degree among
the vertices of G and is denoted by 6(G) and the maximum degree of the graph G is
the maximum degree among the vertices of G and is denoted by A(G).

Result 1In a graph G of order n, for a vertex v, we have
0<4(G)<dw) <A(G)<n-1
Theorem 5.1 (Handshaking Theorem) The sum of degrees of all vertices in

a graph G is twice the number of edges in the graph, i.e, the sum of degrees of all
vertices in a graph G is always even.
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Symbolically, in a graph G(V, E) with |E| = e number of edges, we have

Z d(v) = 2e

veV

This theorem is also called the first theorem of graph theory.

Proof We prove the result by induction on e, the number of edges in G.

For e = 1, the result is obvious.

Now let G(V, E) be a graph of size e (i.e., with the e number of edges) and the
theorem is true for any graph of size < e.

Let uv be an edge in G and let G'(V’, E’) be the graph obtained by deleting the
edge uv from G. So, G'(V', E’) is a graph of size < e.

Therefore, by induction hypothesis

Z d(v) =2¢', wheree = |E'|=¢—1.
veV’

Now if we add the edge uv to G’, then the sum of the degrees of the vertices is
increased by 2, so that

dodw) =Y dw)+2=2¢ +2=2(c' +1) = 2e.
veV veV’
Hence, the result is proved.
Theorem 5.2 The number of odd degree vertices in a graph is always even.
[WBUT-2003,2008,2011]

Proof Let Vand W be the set of vertices of odd degree and even degree respectively.
Then by handshaking theorem the sum of degrees of odd degree vertices and even
degree vertices of a graph G is equal to twice the number of edges of the graph, i.e.,

Z d(v;) + Z d(v;) = 2e

v, €V v, €W
or, Z d(v;) = 2e— Z d(v;)
v, €V v, €W

Since, > d(v;) is even , therefore, > d(v;) is also even, i.e, the number of odd
v, €W v, €V
degree vertices in a graph is always even.

5.5 DEGREE SEQUENCE OF A GRAPH

If the degrees of the vertices of a graph G are listed in a sequence s , then s is called a
degree sequence of G.
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A degree sequence
S {d17d27d3, .. ,dn}(n > 2)

is called graphical if there is some simple nondirected graph with degree sequence s.

Theorem 5.3 (Havel-Hakimi Theorem) There exists a simple graph with
degree sequence

s:{dy,da,ds,...,d,}(n>2)
where
di<dpy <... <d,
if and only if there exists one with degree sequence
{di,d}.d},....dy_ 1}
where

dpfork=1,2,..n—d, —1

Sy
T
|

dp —1fork=n—d,,...,n—1
Proof is beyond the scope of the book.

Another form of Havel-Hakimi theorem

Theorem 5.4 A non-increasing sequence
s:{dy,da,ds,...,d,}(n>2)
of nonnegative integers, where d; > 1 is graphical if and only if the sequence
s1:{dy—1,ds—1,...,dg,,, —1,dq,,,,....dp}
is graphical.
Proof is beyond the scope of the book.
Working Procedure Let
s:{dy,da,ds,...,d,}(n>2)
be a degree sequence.

Step 1 Delete d; from s and subtract 1 from the next d; terms and we obtain a degree
sequence

S1 ¢ {dg—l,d3—1,...,dd]+1—1,dd]+2,...,dn}
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Step 2 Reorder the sequence s so that a non-increasing sequence results.
Step 3 Apply Stepl and get another degree sequence and reorder it.
Step 4 Apply Step 1 repeatedly so that we get a degree sequence of a simple graph.

Example9 | Examine whether the degree sequence {5,4,3,3,2,2,2,1,1,1}is

graphical or not.

Sol. Here, in the degree sequence {5, 4, 3,3,2,2,2,1,1, 1} the number of vertices
is 10 and the number of odd degree vertices are 6 which is even.
Since, a graph has even number of odd degree vertices, therefore, the degree
sequence may be graphical.
Now, let us apply Havel-Hakimi theorem on the degree sequence

{5,4,3,3,2,2,2,1,1,1}

Deleting 5 from the degree sequence and subtracting 1 from the next 5
terms the resulting degree sequence is

{3,2,2,1,1,2,1,1,1}
Reordering the degree sequence, we have the degree sequence
{3,2,2,2,1,1,1,1,1}

Deleting 3 from the degree sequence and subtracting 1 from the next 3
terms the resulting degree sequence is

{1,1,1,1,1,1,1,1}

Since, the resulting degree sequence is a degree sequence of a simple graph,
therefore, the degree sequence {5,4,3,3,2,2,2,1,1,1}is graphical.

5.6 SOME SPECIAL TYPE OF GRAPHS

1) Complete Graph
A simple graph in which there is exactly one edge between each pair of distinct
vertices, is called a complete graph. A complete graph on n vertices is denoted
by K.

Example 10 | The following Graph G represents K5 since there is exactly one

edge between each pair of distinct vertices, where the number of vertices are 5.
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A

D C

Figure 5.12

2) Regular Graph
A simple graph whose every vertex has same degree is called a regular graph.
If every vertex in a regular graph has degree n then the graph is called n-
regular.

Example 11 | The followingrepresents a 2-regular graph, since every vertex has

the same degree 2.

Figure 5.13

3) Bipartite Graph
If the vertex set 1/ of a simple graph G is partioned into two subsets 1, and
V5 such that every edge of GG connects a vertex in 7 and a vertex in 15 so that
no edge in GG connects either two vertices in V7 or two vertices in 15, then G is
called Bipartite graph.

Example 12 | The following represents a Bipartite graph.

A B C

D E F

Figure 5.14

Here if we choose Vi = {A, B,C} and Vo = {D, E, F'}, then the graph satisfies
the definition to be Bipartite graph.



Basic Concepts of Graph Theory I 5.11

4) Complete Bipartite Graph
In a bipartite graph if every vertex of 17 is connected with every vertex of 15
by an edge then G is called a completely bipartite graph.
A complete bipartite graph is denoted by K, ,,, where the set V; and V;
contains m and n number of vertices respectively.

Example 13 | The following represents a complete bipartite graph.

A B C
D E F
Figure 5.15

Here if we choose Vi = {A, B,C} and Vo = {D, E, F'}, then the graph satisfies
the definition to be complete bipartite graph.
The graph is denoted by K3 3 since V5 and V5 both have the three vertices.

5.7 SOME IMPORTANT THEOREMS ON GRAPHS

Theorem 5.5 The maximum number of edges in a simple graph with n vertices
-1
is % [WBUT-2004, 2005, 2006]
Proof Let GG be a simple graph having n number of vertices and e number of edges.
A simple graph G has no self-loops and parallel edges.
Then, by handshaking lemma

n

Z d(v;) = 2e

i=1
or, d(v1) +d(ve) + -+ -+ d(vy) = 2e

We know that the maximum degree of each vertex in the graph G is (n — 1).
Therefore,

A1) = d(2) = - = d(v,) = (n ~ 1)
and
(n—1)+(n—1)+---+(n—1) (adding n — times) = 2e
or, n(n—1) = 2e
or, e = M=)
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n(n—1)

Therefore, maximum number of edges in a simple graph with n vertices is 5

Theorem 5.6 The number of edges connected with a vertex of a simple graph
of n vertices cannot exceed n — 1.

Proof Let GG be a simple graph. A simple graph G has no self-loops and parallel
edges.

Let v be any vertex of the graph G. Since, G is simple there is no self-loops and
parallel edges.

The number of vertices of the graph G is n, so v can be adjacent to at most all the
remaining (n — 1) vertices of G.

Therefore, maximum of edges connected with v is(n — 1), i.e, the number of edges
of a simple graph of n vertices cannot exceed n — 1.

(n—1)

Theorem 5.7 A complete graph with n vertices consists of n number of
edges. [WBUT-2008]

Proof A simple graph in which there is exactly one edge between each pair of distinct
vertices is called a complete graph.

Let G be a complete graph with n vertices and e edges. Since the complete graph
has no loop and no parallel edges, the number of adjacent vertices of every vertex is
n — 1. Hence, the degree of each vertex is (n — 1).

Therefore, the total degree of the vertices is

m=1)+(n—-1)+... +(n —1) (adding n — times) = n(n — 1)

By handshaking theorem, the sum of degrees of all vertices in a graph G is twice the
number of edges in the graph, i.e,

2¢ = n(n—1)

or, e =

(n—1)
2

Therefore, a complete graph with n vertices consists of number of edges.

2
Theorem 5.8 A bipartite graph with n vertices has at most <Z) edges.

Proof In a bipartite graph the vertex set V is partitioned into two vertex sets V}
and V5.

Let V7 consists of m vertices then, V5 consists of (n — m) vertices. The largest
number of edges of the graph can be obtained, when each of the m vertices in V; is
connected to each of the (n — m) vertices in V5.

Therefore, the total no. of edges is

m(n —m) = f(m)(say)
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Now,
f'(m)=n—2mand f'(m) = -2
when,

f’(m):n—2m:O:>m:gandf”(g):—2<0

Therefore, f(m) is maximum , when m = 7.
Thus, the maximum number of edges of a bipartite graph is

1G)=a(=3) =7

5.8 SUBGRAPHS

5.8.1 Definition

Let us assume G and H are graphs. Then, H is called a subgraph of G if and only if
the vertex set of H ,V(H) is a subset of the vertex set of G, V(G) and the edge set of
H, E(H) is a subset of the edge set of G, E(G).

Therefore H is a subgraph of G, then

(a) All the vertices of H are in G.
(b) All the edges of H are in G.
(c) Every edge of H has the same end points in H as in G.

5.8.2 Different Types of Subgraphs
Let us consider the graph G(V, E).

B

Figure 5.16

1) Vertex deleted subgraph
A subgraph H of a graph G is called a vertex deleted subgraph of G if H is
obtained from G by the deletion of one or more vertices and the corresponding
edges incident on them.
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Example 14 | Let us delete the vertex E from the graph G, then the edges AE

and E'F are deleted and we get the subgraph H as the following:

B A

Figure 5.17

2) Edge deleted subgraph
A subgraph H of a graph G is called a edge deleted subgraph of G if H is obtained
from G by the deletion of one or more edges not the corresponding vertices in
which they are incident.

Example 15 | Let us delete the edges C'F" and DF from the graph G then we

get the edge deleted subgraph H as the following:

B A E

Figure 5.18

3) Underlying simple subgraph
A subgraph H of a graph G is called an underlying simple subgraph if H is
obtained from GG by deleting all loops and more than one parallel edges.

Example 16 | Deleting all parallel edges and self-loops from G we have the

simple subgraph H as the following:

B A /=

Figure 5.19

4) Spanning subgraph
A subgraph H of G is called a spanning subgraph of G if and only if V(H) =
V(G).
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Example 17 | The following represents a spanning subgraph H of G, since

V(H) = V(G). Here, it is to be noted that the number edges of H are fewer
than that of G.

A E

Figure 5.20

5) Induced subgraph of a graph
Let W is any subset of V(G), then the subgraph induced by W is the subgraph H
of G obtained by taking V' (H) + W and E(H) to be those edges of G that join the
pair of vertices in W.

5.9 COMPLEMENT OF A GRAPH

The complement G of a graph G is the graph whose vertex set is V/ (G) and such that
for each pair of vertices (u, v) of G, uv is an edge of G if and only if uv is not an edge
of G.

Example 18 | Draw the complement of the following graph. [WBUT-2004]

Y Vs
Y s
Vs Vs
Figure 5.21

Sol. The complement of the given graph is

Figure 5.22
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5.10 WALK, TRAIL, PATH AND CIRCUIT
5.10.1 Walk

A u— v walk W in a graph G is a sequence of vertices in GG, beginning with « and
ending at v, such that consecutive vertices in the sequence are adjacent.
We express W as

W iu =vp,01,02,...,0, =0
where k£ > 0 and v; and v;4; are adjacent fori =0,1,...,k—1
Let us consider the following graph:

B 4 E
o G
C F
Figure 5.23

Different walks can be found from the graph, viz.
Wi:u=AB,C,F,G=v
We:u=D F,E,A,D,F=v

and so on.

Observations

(1) A finite sequence of vertices and edges beginning and ending with vertices,
such that each edge is incident to its preceeding and following vertices is called
a walk.

(2) The origin and terminal vertex of a walk may be same.
From the graph in the figure, we see that

u=D,F,E,A,D=wv

is a u — v walk with the origin and terminal vertex as D.

(3) A vertex may appear twice or more in a walk.
From the graph in the figure, we see that

uw=DF,E,A D, F=v

is a u — v walk where the vertex D appear twice.
(4) An edge may appear twice or more in a walk.
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(5) A self-loop can be included in a walk.
From the graph in the figure, we see that

u=A,B,B,C,D=v
is a u — v walk where a self loop is included at the vertex B.

(6) A walk IV is said to be closed if v = v while W is open if u # v.

(7) The number of edges encountered in a walk including multiple occurances of
an edge is called length of the walk.

(8) A walk of length 0 is called a trivial walk.

(9) If au—v walk in a graph is followed by a v —w walk, then a v —w walk results.

5.10.2 Trail

A u—w trail in a graph G is defined to be a u —v walk in which no edge is traversed
more than once.

5.10.3 Path

A u — v path in a graph G is defined to be a u — v walk in which no vertices are
repeated.

Example 20 | Let us consider the following graph:

A E
B

Figure 5.24

We see that
W:u=AB,C,F,G=v

is a u — v walk. Since no edge is traversed more than once, the walk W is also a u — v
trail.
Since no vertices are repeated, the walk W is also a u — v path.

Observations
(1) Although the definition of a trial stipulates that no edge can be repeated, no
such condition is placed on vertices.

(2) If no vertex in a walk is repeated then no edge is repeated either. Hence every
path is a trial.
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(3) A u — v path followed by a v — w path is a © — w walk W, but not necessarily
a u — w path, as vertices in 1/ may be repeated.

(4) While not every walk is a path, if a graph contains a © — v walk then it must
also contain u — v path.

(5) A path does not intersect itself.

(6) A single edge having two adjacent vertices which is not a self-loop is a path of
length 1.

(7) A self-loop is a walk but not a path. Even a self-loop cannot be included in a
path.

(8) Considering a path as a subgraph, the terminal vertices of a path are of degree
one and the intermediate vertices are of degree two.

5.10.4 Circuit

A circuit in a graph G is a closed trial of length 3 or more. Therefore, a circuit
begins and ends at the same vertex but repeats no edges.

Example 21 | Let us consider the following graph:

B A E

Figure 5.25

The closed u — v trail
u=AD F,E,A=v

which is a trail of length 4 is a circuit.

Observations

(1) A circuit can be described by choosing any of its vertices as a beginning and
ending vertex, provided the vertices are listed in the same cyclic order.

(2) A circuit that repeats no vertex, except for the first and last is called a cycle.
(3) A k-cycleis a cycle of length k.

(4) A cycle of odd length is called an odd cycle and a cycle of even length is called
an even cycle.

(5) A graph that is a path of order n is denoted by P,,, while a graph that is a
cycle of order n > 3 is denoted by C,,.
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5.10.5 Theorems on Walks, Paths and Circuits

Theorem 5.9 1If a graph G contains a © — v walk of length [, then G contains a
u — v path of length at most /.

Proof Let G be a graph and among all v — v walks in G, let
P:u=ug,ui,us,...,up =0

be a u — v walk of smallest length k.
Therefore,
k<l

We claim that P is a u — v path.

Let us assume that P is not a u — v path, then some vertex of G must be repeated
in P, say u; = u; forsome ¢ and j with0 <7 < j < k. If we

then delete the vertices i1, Ui42, . . ., u; from P we arrive at the u —v walk whose
length is less than &, which is impossible.

Therefore, as claimed, P is a u — v path of length £ < [.

Theorem 5.10 1If a graph has exactly two vertices of odd degree there must be
a path joining these two vertices.

Proof Let G be a graph with all even degree vertices except the vertices v; and v;
which are odd degree vertices. If G is a connected graph then there exists a path joining
v; and v;, and the theorem is proved.

If G is not connected, then suppose GG1and G2 are two components such that v; €
G1 and v; € G2. Then Giis a graph having only one vertex of odd degree, but the
number of odd degree vertices of a graph is even. So it is not possible. Therefore v;
and v; must belong to ;. Since,G is connected there is a path joining v; and v;.

Theorem 5.11 Every vertex, except the terminal vertices of a u —v walk, whose
all edges are distinct is an even degree vertex.

Alternatively, every vertex, except the terminal vertices of a © — v trail, is an
even degree vertex.

Proof Let us consider a u — v walk. Let vi be a vertex of this walk such that vy #
u and vy # wv. If vy occurs only once in the walk then there must exist one edge
preceeding v and one edge succeeding vy. Therefore, v, becomes a vertex of degree
two.

Let us suppose vy, occurs more than once in the walk, say p-times. Since no edge
repeats in a walk, at each time of occurance v gets degree two, and therefore, the
degree of vy, is 2p.

Therefore, every vertex is an even degree vertex.

Theorem 5.12 Every u — v trail contains a u — v path.

Proof Inaw— v trail, u is the origin and v is the terminus. Both u and v are of degree
one. We know that every vertex, except v and v is of even degree in a u — v trail. So,
u — v trail contains only two odd vertices.
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Since, in a graph having exactly two vertices of odd degree, there is a path joining
these two vertices, therefore, u — v trail contains a u — v path.

5.11 CONNECTED AND DISCONNECTED GRAPHS

A path in a graph G is a finite alternating sequence of vertices and edges beginning
and ending with vertices, such that each edge is incident on the vertices preceding and
following it.

A graph G is said to be a connected graph if there is some path from any vertex
to any other vertex otherwise, the graph is called disconnected.

Note: By saying the vertices u and v is connected in the graph GG only means that there
is some u — v path in G; it does not imply that v and v are joined by an edge. It is
obvious that w is joined to v, then w is connected to v as well.

1. Minimally connected graph
A graph G is said to be minimally connected graph if

(i) G is connected.
(ii) Deletion of any edge from G leaves the graph disconnected.

5.11.1 Components of a Graph

A connected subgraph of a graph G is called the component of G, if it is not
contained in any bigger subgraph of G which is connected.

A disconnected graph consists of two or more connected subgraphs. Each of these
connected subgraphs is known as component.

Sometimes components of a graph are also called connected components.

Example 22 | Find the connected components of the graph:

[

Vs
A 6

Figure 5.26
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Sol.  The number of connected components of the graph is 2. The connected
components are

%
v Vs
Figure 5.27
Vs e » s
Vi
Figure 5.28

5.11.2 Distance and Diameter of a Connected Graph

Let GG be a connected graph.

The distance between two vertices u and v is the shortest path between v and
v and is denoted by d(u, v).

The diameter of the connected graph G is the maximum distance between any
two vertices of G and is denoted by diam(G).

5.11.3 Theorems on Connected Graphs

Theorem 5.13 The minimum number of edges in a connected graph with n
vertices is n — 1. [WBUT-2005,2006]

Proof Let us prove the theorem by mathematical induction.
Let m = number of edges of the connected graph.
We have to show

m>n—1

When m = 0, clearly n = 1, that is, the graph is an isolated vertex.

When m = 1, clearly n = 2, that is, an edge is formed by two connecting vertices.

Let the result be true for m = k. We shall show that the result is true for m = k4 1.

Let G be a graph with k£ + 1 number of edges and e be any edge of GG. Deleting the
edge e, let G — e be a subgraph of G. The graph G — e has k edges and n vertices.
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Case 1: 1If G — e is also connected, then by our hypothesis
k>n-1

or, k+1 >n—-14+1=n>n-1

Case 2: If G — e becomes disconnected then it has two connected components.
Let the components have k; and ke number of edges and nj, ny number of vertices
respectively, where n = (ny + na).
So, by our hypothesis
klznl—landean—l

Therefore,
ererore. k1+k22n1_1+n2_1:(n1—|—n2)—2:n—2

or, k+1>n-1

Therefore, the result is true form = k£ + 1.
Thus, by mathematical induction the minimum number of edges in a connected
graph with n vertices isn — 1.

Note: The minimum number of edges in a simple graph (not necessarily con-
nected) with n vertices is n — k, where k is the number of components of the
graph.

Theorem 5.14 The maximum number of edges a simple graph with n number

—k —k+1
of vertices and £ components can be (n )(n + ) [WBUT-2008, 2007,

2
2002]
Proof Let GG be a simple graph, i.e, G does not have self-loops and parallel edges. Let
the number of vertices in each of the k components of the graph G be n1,na, ..., ng.
Therefore,

ni+ng+---+nr = nwheren > 1

k
or, E n; =n
i=1

Now,
(m—1)4+Mnme—1)4+---+(np—1) = (n—k)

or, Z(nl -1) = (n—k)

I
—~
S
I
N
~—

no

or, {Z(nl - 1)}

k k
or, Z(n 12433 (i D0y — 1) = n® — 20k + &2
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k k
since, (nl—l) >0;(nj—1)>0:> Z Z(ni—l)(nj—l) >0
i=1j=1

we have,

or,

or,

or,

or,

or,

or,

Since, the maximum number of edges in a simple graph with n vertices is ———.

Therefore, the maximum number of edges in the i*” component of the graph G is
n; (nl — 1)

2

k
> —2ni+1)
z:l
Z(nf —2n;) + k
k - k
an — 2Zni +k
i=1 i=1
k

gz

< n?®—2nk+ k2

< n?—2nk+ k2

< n?®—2nk+ k2

< n?®—2nk+ k2

< n?—2nk+ k2

IN

IN

n? — (k—1)(2n — k)

Thus, the maximum number of edges in G is

or,

or,

or,

k
nl(nl — 1)
2

k
nl(nl — 1)
2

k
nl(nl — 1)
2
nl(nl — 1)

-

@
Il
A

2

1 k k
= — n: — n;
{20
o n

1

=1

=1

k

St
n; —zn

4 to2

=1

N N

IN

n?—2nk+k® +2n—k

1, 1
i{n —k-102n—-Fk)} - on
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or Xk:w < Y- n@n—k) —n)
’ 2 -2
=1
k
ni(ni —1) Ly o 2
N ) _ _ _
or, Z 5 < 2{n + k% —2nk—k+2n—n}
=1
k
nl(nl—l) 1 2
N ) _ _
S < -1+ - )
=1
k
nl(nl—l) 1
AN Gl PP _
or, Z 5 < 2(n E)Yn—k+1)

Theorem 5.15 If a graph has exactly two vertices of odd degree, then there is a
path joining these two vertices.

Proof

Case 1: Let us suppose the graph G is connected.
Let v1 and vy be the only vertices of G which are of odd degree. Since the number
of odd degree vertices in a graph is even, clearly there is a path connecting v; and vs.

Case 2: Let us suppose the graph G is disconnected.
Since G is disconnected, the components of G are connected. Hence, v; and v
should belong to the same component of G and there is a path connecting v; and vs.

Theorem 5.16 A connected graph having at least two vertices has a pendant
vertex if the number of edges is less than the number of vertices.

Proof Let us assume, if possible, the graph G has no pendant vertex.

Since G is connected it has no vertex of degree 0. So degree of every vertex is
greater and equal to 2.

Let us assume G has n vertices and e edges and d(v;) is the degree of the vertex

(U
Therefore,
Zd(vi) = 2e
i=1
or, 2e > 22 since d(v;) > 2
i=1
or, 2e > 2n
or, e>n

This contradicts the hypothesis that the number of edges is less than n.
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Theorem 5.17 1If G is a disconnected graph, then G is a connected graph.

Proof ~ Since G is a disconnected graph, GG contains two or more components. -
Let v and v be two vertices of G. We have to show that u and v are connected in G.

Case 1: If u and v belong to different components of G, then u and v are not
adjacent in G and so u and v are adjacent in G. Hence G contains a u — v path of
length 1.

Case 2: Let u and v belong to the same component of G. Let w be a vertex of G
that belongs to a different component of G. Then the edge v — w ¢ E(G), implying

that, the edges u — w,v — w € E(G) and sou — w —visau — v path of G.

Theorem 5.18 Let G be a graph of order n. If

du)+dw) >n—1
for every two non-adjacent vertices v and v of G, then GG is connected and
diam(G) < 2.

Proof Letu,v € V(G). Ifuv € E(G), then u — v is a path and v and v are certainly
connected. Hence, we may assume that uv ¢ E(G).
Therefore,

du)+dv) >n—1

implies that there must be a vertex w that is adjacent to both u and v. Therefore,
u—w — v is apathin G and G is connected and diam(G) < 2.

(n—1)
2

Note: If G is a graph of order n, such that d(v) >
v of G, G must be connected.

, then for every vertex

5.11.4 Strongly and Weakly Connected Digraphs

A digraph G is called a strongly connected digraph if there exists at least one
directed path from every vertex to every other vertex.

Example 23 | The following graph is a strongly connected graph:

A 5
[

A 4

D c

Figure 5.29
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since, there is a path from each of the possible pair of vertices, (A4, B), (4, C), (4, D),
(B,C), (B, D) and (C, D).

A digraph G is called a weakly connected digraph if its corresponding
undirected graph is connected, but G is not strongly connected.

5.11.5 Unilaterally Connected Digraph

A directed graph is called a unilaterally connected digraph if between every pair
of adjacent vertices there exists only one directed path.

Example 24 | The following graph is unilaterally connected c, since there is no path

from C' to the other vertices but C' can be reached from them.

A B

E
D

Figure 5.30

Observation: In a directed graph,
Sum of out degrees of all vertices = sum of in degrees of all vertices = number
of edges in the directed graph.

5.12 EULER GRAPH

5.12.1 Definition

If some closed walk in a graph contains all the edges of the graph, then the walk
is called an Euler line and the graph is called Euler Graph.
Euler graphs do not have any isolated vertices and are therefore connected.

Example 25 | The following two graphs represent Euler graphs:

Figure 5.31
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5.12.2 Theorems on Euler Graphs

Theorem 5.19 A connected graph G is an Euler graph if and only if all the
vertices of GG are of even degree. [WBUT-2002]

Proof Let G be a Euler graph. G therefore contains an Euler line which is a closed
walk. In tracing this walk we observe that every time the walk meets a vertex v it
goes through two new edges incident on v- with one we entered v and with the other
exited. This is true not only of the intermediate vertices of the walk but also of the
terminal vertex, because we entered the same vertex at the beginning and end of the
walk, respectively. Therefore, if GG is an Euler graph, the degree of every vertex is even.

Theorem 5.20 A connected graph is Eulerian if and only if it can be decom-
posed into cycles.

Proof Let G be a graph which can be decomposed into cycles, that is, GG is a union
of edge disjoint cycles. Since the degree of every vertex in a cycle is two, the degree
of every vertex in G is even. Hence, G is an Euler graph.

Conversely, let G be an Euler graph. Consider a vertex v;. There are at least two
edges incident at v;. Let one of these edges be between v; and vs. Since the vertex
vg is also of even degree, it must have at least another edge, say between vy and vs.
Proceeding in this way we arrive at a vertex that has previously been traversed, thus
forming a cycle. Let us remove the cycle from G. All vertices in the remaining graph
not necessarily connected must also be of even degree. From the remaining graph
remove another cycle in exactly as we removed the previous cycle from GG. Continuing
this process we are left with no edges, hence the theorem.

WORKED OUT EXAMPLES

ExampleS.1| Suppose G is a non directed graph with 12 edges. If G has 6
vertices each of degree 3 and the rest have degree less than 3, find the minimum

number of vertices GG can have. [WBUT-2008, 2007, 2006]
Sol. Let us assume G has n vertices of degree less than 3.
By handshaking theorem

2e = Z d(v;)

or, 63+ dv;) = 2x12
=1

or, Zd(vi) =6

or, d(vy) +d(va) + ... +d(vp) = 6
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or, 6 <343+...+3=3n

or, n > 2

The minimum value of n is 3.
Therefore, the graph G has 6 + 3 = 9 vertices.

ExampleS5.2 | Define complement of a graph. Find the complement of the

graph.
v
Vo Ve
A Vs
V,
Figure 5.32
[WBUT-2007]
Sol. The complement of the graph is
v,
v Vs
[Z2
’ %
A
Figure 5.33
ExampleS.3 | A graph G is given below
(a) Find the distance between V; and V.
(b) Find the diam(G).
(¢) Find one circuit which includes V;. [WBUT-2006]

Sol. (a) Distance between V; and Vj is the length of the shortest path between 1
and Vj. The shortest path is

Vi—-Vo—-V3 -V,
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4 4 Vs
%6 Vs Va
Figure 5.34

and the distance is 3.

(b) The diameter of G is the maximum distance any two vertices, the
diam(G) = 4.

(¢) One circuit which includes V is

< 4
% 6
Figure 5.35

Example 54| If a simple regular graph has n vertices and 24 edges, find all
possible values of n. [WBUT-2006]

Since the graph is a regular graph, let k be the degree of every vertex.
Therefore, the sum of the degrees of all vertices is nk.

i.e,
nk=2x24
48
i 1
or, n= (1)
We know that the maximum number of edges in a simple graph with n vertices
is n(n—1)
—
Therefore,
n(n —1)
—— > 24
5 2
or, n(n—1) > 48 2)

Now £ is a positive integer and from (1), we have
k=1=n=148

which satisfies 2.
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For,
k=2=>n=24

which satisfies 2.
For,

k=3=>n=16

which satisfies 2.
For,

k=4=n=12

which satisfies 2.
For,

k =5 = nis not a integer

which does not satisfy 2.
For,

which satisfies 2.
For,

k =7 = nis not a integer

which does not satisfy 2.
For,

k=8=n=26

which satisfies 2.
Therefore, the possible values of n are 48,24, 16,12, 8.

ExampleS.5| Draw a graph (if exists) having the following properties or
explain why no such graph exists: A graph with 4 edges, 4 vertices with degree
sequence 1, 2, 3, 4. [WBUT-2004]

Sol. Here, in the degree sequence {4, 3,2, 1} the number of vertices is 4 and the
number of odd degree vertices are 2 which is even.
Since, a graph has even number of odd degree vertices, therefore, the degree
sequence may be graphical.
Now, let us apply Havel-Hakimi theorem on the degree sequence

{4,3,2,1}
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Deleting 4 from the degree sequence and subtracting 1 from the next 3 terms
the resulting degree sequence is

{2,1,0}

Since, the resulting degree sequence is not a degree squence of a simple graph,
therefore, the degree sequence {4, 3,2, 1} is not graphical.

Therefore, a graph with 4 edges, 4 vertices with degree sequence 1, 2, 3, 4
does not exist.

Example 5.6 | A graph G has order 14 and size 27. The degree of each vertex
of GG is 3, 4 and 5. There are 6 vertices of degree 4. How many vertices of G has

degree 3 and how many have degree 5?

Sol. Let x be the number of vertices of G having degree 3. Since the order of G is
14 and 6 vertices have degree 4, eight vertices have degree 3 or 5.
Therefore, there are 8 — x vertices of degree 5.
Summing the degrees of the vertices and applying handshaking theorem we

have,

3x+4.6+5.(8—1x) = 2.27
or, 3r+24+40—-5x = 54
or, —2z = —10
or, T =95

Therefore, the graph has 5 vertices of degree 3 and 3 vertices of degree 5.

Example 5.7| Prove that a finite graph with at least one edge and without any
circuit has at least two vertices of degree 1.

Sol. Since the graph has no, circuit, we must have a vertex, say v; at which only
one edge is incident, i.e, d(vy) = 1.

Let e; be this edge which is incident at v;. Since the graph has no circuit
so other end of e; is not v;. Let it be vy. If there exists no other edge which is
incident to vo then d(v2) = 1 otherwise, let e5 be the edge which is incident
at va.

Arguing in the similar way and preceeding in this way we get a vertex vy,
having degree one and vy, # v1.

Example 5.8 | Let G be a graph with 15 vertices and 4 components. Show that
7 has at least one component having at least 4 vertices. Find the largest number

of vertices that a component of G can have.

Sol. Let us consider the 4 components contain n1,ng,n3 and ny number of
vertices.
Then,

ni+ng+ng+ng =15 (1)
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If each of nq, no, ng and ny < 3, then
n1+ne+nsg+ng <12

which contradicts (1).

If one component has 4 vertices then the other three components has 11
vertices. So, component among the remaining three must contain at least 4
vertices.

If one component of these three contains exactly 4 vertices then the
remaining two components contain 7 vertices.

Now, these two components may have the following combination of
vertices viz., (1,6), (2,5), (3,4), (4,3),(5,1) and (6, 1).

Therefore, the maximum number of vertices in a component is 6.

ExampleS.9 | Find the minimum and the maximum number of edges of a
simple graph with 12 vertices and 5 components.

Sol. The maximum number of edges a simple graph with n number of vertices and
—k)(n—k+1
k components can be (n )(7; +1) , and the minimum number of edges

a simple graph with n number of vertices and & components can be (n — k).
Therefore, the minimum and the maximum number of edges of a sim-
ple graph with 12 vertices and 5 components is (12 — 5) = 7 and
(12-5)(12—-5+1)
2

Example 5.10 Let G be a graph with n vertices and e edges, then prove that G

has a vertex of degree k such that & > —e.
n

= 28 respectively.

Sol. By handshaking theorem

2e = Z d(v;)
i=1
or, 2¢e = d(vy) +d(ve) + -+ -+ d(vy)
or, 2¢e < k+k+---+k
or, 2e < nk
n
k> —
o - 2
Example 5.11]  Let G be a graph with n vertices and (n — 1) edges, then prove
that G either has a pendant vertex or an isolated vertex.
Sol. If possible, let us assume G has no pendant vertex or isolated vertex. Then G

does not contain any vertices of degree 1 or 0.
Hence, d(v;) > 2 for any vertex v; of G,i =1,2,...,n.
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By handshaking theorem
2e = Zd(vi)
i=1
or, d(v) +d(v2) + - -+ d(vy) = 2(n—1)
or, 2ln—1) > 242+---+2=2n
or, 2n—2 > 2n
or, -2 >0

which is a contradiction.
Hence, our assumption is wrong and GG contains either a pendant vertex or
isolated vertex.

Example 5.12] Let G be a bipartite graph of order 22 with partite sets U and IV,
where |U| = 12. Suppose that every vertex in U has degree 3; while every vertex

of W has degree 2 or 4. How many vertices of G have degree 2?

Sol. The size of the graph G is
3|U=3x%x12=36

The vertex set W has 22 — 12 = 10 vertices.
Let x be the number of vertices of degree 2, then (10 — ) is the number of
vertices of degree 4. Therefore,

2xx4+4x(10—-2) = 36
or, —2r = —4
or, T =2
Therefore, the number of vertices of degree 2 is 2.
Example 5.13] The degree of every vertex of a graph G of order 25 and size 62 is

3,4,5 and 6. There are two vertices of degree 4 and 11 vertices of degree 6. How
many vertices of G have degree 5?

Sol. Let = be the number of vertices of degree 5. Therefore, by handshaking
theorem, we have

2e = Z d(v;)

or, (12—2)x3+2x4+5xx+6x11 = 2x62
or, 20 = 14
or, x =171

Therefore, the number of vertices of degree 5 is 7.
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Example 5.1 Decide whether the sequence {7,7,4,3,3,3,2,1}is graphical.

Sol. Deleting the first term 7 from the non-increasing sequence {7,7,4, 3,3,3,2,1}
and subtracting 1 from the next seven terms, we have, the sequence

{6,3,2,2,2,1,0}

Deleting the first term 6 and subtracting 1 from the next six terms of the
sequence {6, 3,2,2,2,1,0}, we have the sequence

{2,1,1,1,0,—1}

Since, the degree sequence contains the negative number —1 and no vertex can
have a negative degree, therefore the graph is not graphical.

EXERCISES

Short and Long Answer Type Questions

1) From the following graph:

4 4 Vs
% Vs Va
Figure 5.36

a) all the paths between vy and vy.
b) all trails between v1 and vy.
¢) distance between vy and vy4.

d) all circuits.

[Ans: a) {’Ul, V2, U3, ’1}4}, {’Ul, Vg, Us, ’1}4}, {’Ul, Vg, Us, U3, ’1}4},

{v1,v6, v2, vs5, va}, {v1,v2, U3, U5, v4}, {V1, V2, U5, V4 }

b) {v1,v2,v3, v4}, {v1, V6, U5, va}, {V1, V6, U5, V3, V4},
{v1,v6, v2, v, va}, {v1, V2, U3, V5, V4 }, {V1, V2, U5, V4 },
{1, v6, vs, v3, v2, V5, v4}, {v1, V6, Us, V2, V3, Vs, V4 }

¢) distance between vy and vy is 3

d) {v2,vs,vs,v2}, {v1, v2, vs, V6, V1 }, {V1, V2, U3, V5, V6,01 },
{2, v3, v4, 05, v2}, {v3, V4, V5, v3}, {v1, V2, U3, V4, V5, VG, V1 }

2) Prove that there exists no simple graph with five vertices having degrees 4, 4, 4, 2, 2.
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3) Find the number of edges of a graph with five vertices of degree 0, 2, 2, 3 and 9.
[Ans: 8]
4) Find the number of connected components of the graph:

Ve i Vs
5 A 6

v,

Figure 5.37
[Ans:

Z
Figure 5.38

% 7

V,
Figure 5.39

5) Find all the connected subgraphs from the following graph by deleting each vertex.
List out the simple paths from A to F' in each of the subgraph.

A B c

F E D

Figure 5.40
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[Ans: The subgraphs are

p

F E D
Figure 5.40 (a)

In figure (a) there is no path between A and F'.

A c

F E D
Figure 5.40 (b)
In figure (b) the paths are A-F

A B

J

F E )
Figure 5.40 (c)

In figure (c) the paths are A-F, A-B-E-F

A B

» O

F E
Figure 5.40 (d)

In figure (d) the paths are A-F', A-B-E-F, A-B-C-E-F
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|

In figure (e) the paths are A-F

B

e—oQ

Figure 5.40 (e)

A B c

E D
Figure 5.40 (f)

In figure (f) there is no path between A and F'.

7) Draw a graph with 5 vertices A, B, C, D, E such that d(A) = 3, B is an odd vertex,
d(C) =2 and D and F are adjacent.

8) Draw the complete graph K5 with vertices A, B, C, D, E. Draw all the subgraphs
of K5 with 4 vertices.

9) Using Havel-Hakimi theorem determine which of the following sequences are
graphical. For each of those that are graphical, construct a graph.
a) {5,3,3,3,3,2,2,2,1}
b) {6,3,3,3,3,2,2,2,2,1,1}
c) {7,5,4,4,4,3,2,1}
10) For which integer (0 < z < 7) the sequence {x,7,7,5,5,4,3,2} is graphical?
[Ans: z = 5 and x = 3]
11) Prove that a simple graph with n (> 2) vertices has at least two vertices of same
degree. [WBUT-2004]

12) Find the maximum number of vertices in a connected graph having 17 edges.
[WBUT-2008]

13) Find the minimum number of edges in a connected graph having 21 vertices.
[WBUT-2008]

Multiple Choice Questions

1) An edge whose two end vertices coincide is called
a) ring b) adjacent edge c) loop d) none of these
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2) The number of edges between any two vertices may be

a)one b) two c) three d) any number of edges
3) A simple graph has

a) no parallel edges b) no self-loops

¢) no parallel edges and self-loops  d) no isolated vertex
4) The degree of an isolated vertex is

a)0 b) 1 c)?2 d)3
5) A pendant vertex is of degree
a)0 b) 1 c)2 d)3

6) A complete graph must be a
a) circuit b) regular graph  c) nonsimple graph d) null graph
7) The vertex set of a spanning subgraph of a graph G
a) is a proper subset of the vertex set of G
b) may not be a proper subset of the vertex set of G
¢) identical with the vertex set of G
d) none of these
8) Which of the statement is correct?
a) Every walk is a path
b) Every circuit is a path.
c¢) Every loop is a circuit.
d) The origin and terminus of a walk are always distinct.
9) Which of the statement is correct?
a) Path is an open walk.
b) Every walk is a trail.
c) Every trail is a path.
d) Every vertex cannot appear twice in a walk.
10) A self-loop cannot be included in a

a) walk b) circuit ¢) trail d) path
Answers:
1(c) 2@ 3() 4 (a) 5(b) 6 (b) 7(c) 8 (c)

9 (a) 10 (d)



CHAPTER

Matrix Representation and
Isomorphism of Graphs

6.1 INTRODUCTION

Matrix representation of graph is very essential although, the pictorial representation is
more convenient for studying graphs. Representing a graph in a matrix form lies in the
fact that it can be fitted to the computer, besides this many results of matrix algebra can
be applied on the structural properties of graphs. There are different types of matrix
representation of graphs among which adjacency matrix and incidence matrix are com-
mon. In this chapter we have discussed adjacency matrix of graphs, incidence matrix
of graphs and circuit matrix. One of the important application of matrix representation
of graphs is to see whether two graphs are isomorphic or not. In this chapter also, we
have included various techniques for checking isomorphism, and the applications of
the adjacency matrix and incidence matrix.

6.2 ADJACENCY MATRIX OF A GRAPH

6.2.1 Adjacency Matrix Representation of Simple
Connected Graph

Let G be a simple graph (i.e., having no parallel edges and self-loops) with n vertices
V1, V2, . . ., Up, then the adjacency matrix of G is given by a n X n matrix

A(G) = (aij)nxn
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where,

1; when v;v; is an edge of G
Qij = . .
! 0; if there is no edge between v; and v

Observations: The following are the properties of adjacency matrix:

1) The order of the adjacency matrix is n X n, where n is the number of vertices.

2) A simple graph has no self-loops, each diagonal entry of A(G) i.e, a;; = 0 for
1=1,2,3,...,n

3) The adjacency matrix of a simple graph is symmetrical, i.e, a;; = a;; for all ¢
and j.

4) Given any symmetric matrix A with zero-one entries and which contains 0s on
its diagonal, there exists a simple graph G whose adjacency matrix is A.

5) The number of 1s in a row or column of the adjacency matrix A(G) is equal
to the degree of the corresponding vertex.

Example1 | Find the adjacency matrix of the following simple graph.

z b

5

%

v v
G

Figure 6.1
Sol. Here, the graph G is a simple graph. The adjacency matrix of G is
A(G) = (@ij)nxn
where,

1; when v;v; is an edge of G
Aij = . .
! 0; if there is no edge between v; and v;

Here, the number of vertices n = 6. The adjacency matrix is

U1 V2 U3 V4 Us Vg

v J01 01 00
v |10 1 00 1
w3 |01 0100
AG= 101010
vs 100 01 0 1
v6[010010J
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6.2.2 Adjacency Matrix Representation of any Connected Graph

Let G be a Connected Graph with n-vertices v1, v, . . ., v, having no parallel edges
(but may be with the self-loops), then the adjacency matrix of G is given by an x n
matrix

A(G) = (aij)nxn

where,

1; when v;v; is an edge of G
aij = : .
! 0; if there is no edge between v; and v;

A self loop at the vertex v; corresponds to a;; = 1

Example2 | Find the adjacency matrix of the following connected graph.

z v

5

%

v v
G

Figure 6.2
Sol. The Adjacency matrix of G is
A(G) = (aij)nxn
where,

1; when v;v; is an edge of G
Aij = . .
! 0; if there is no edge between v; and v

A self loop at the vertex v; corresponds to a;; = 1
Here, n = 6 and the vertex v3 has self loop so agz = 1
Therefore, the adjacency matrix is

V1 V2 U3 V4 Us Vg

v [O 10100
v |10 10 0 1
w01 1100

AG =y l1 0101 0
vs |00 0 1 0 1
w6 |01 00 10
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Theorem 6.1 Let G be a graph with vertex set V(G) = {v1,v2,v3,...,0,}
and the adjacency matrix is A(G) = (a;;)nxn. Then the entry al(;-c) in row ¢ and
coloumn j of A*(%) is the number of distinct v; — v; walks of length & in G.

6.2.3 Adjacency Matrix of a Digraph

Let GG be a digraph with n-vertices v1, vs, . . ., v, and having no parallel edges (but
may be with the self loops), then the adjacency matrix of (7 is given by a n x n matrix

A(G) = (aij)nxn

where,

{ 1; when there is an edge directed from v; to v, }
A5 =

0; if there is no edge between v; and v;

A self-loop at the vertex v; corresponds to a;; =1

Observations:

1) If an adjacency matrix is not symmetric then it corresponds to a digraph.

2) The number of 1 in each row is the out-degree of the corresponding vertex and
the number of 1 in each column is the in-degree of the corresponding vertex.

3) If A be the adjacency matrix for a digraph G, then A”, transpose of A repre-
sents the adjacency matrix for digraph G, obtained by reversing the direction
of every edge in G.

Example 3 | Find the adjacency matrix of the following digraph.

A 5

Figure 6.3

Sol. The adjacency matrix of a digraph is
A(G) = (@ij)nxn
where,

{ 1; when there is an edge directed from v; to v, }
Q5 =

0; if there is no edge between v; and v
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Here, n = 4. Therefore, the adjacency matrix is

AG)

It is obvious that the matrix is not symmetric.

TQwe

o O O

OO ==

ABCD

o= OO

6.2.4 Adjacency Matrix of a Pseudograph

I 6.5

Let G be a Pseudograph with parallel edges and self loops with n-vertices

V1, V2, . . ., Up, then the adjacency matrix of G is given by a n X n matrix

where,

A(G) = (aij)nxn

{ number of edges that are incident on both v; and v;
Q5 =

0; if there is no edge between v; and v;

A self loop at the vertex v; corresponds to a;; = 1
The adjacency matrix of a pseudograph is a symmetric matrix.

Example4 | Find the adjacency matrix of the following pseudograph.

[

Sol. The Adjacency matrix of a pseudograph is

A(G) = (aij)nxn

where,

{ number of edges that are incident on both v; and v;
Q5 =

0; if there is no edge between v; and v;

A self-loop at the vertex v; corresponds to a;; = 1

5

%6

Vs

Figure 6.4

13

G
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Here, n = 6 and there is a self-loop at the vertex vs. So aszs =1
V1 V2 V3 Vg Us Vg

vy [0 10200
v |10 20 0 1
w3 |02 11 00
AG = l20101 0
vs |0 00 1 0 1

v |01 00 10

6.2.5 Adjacency Matrix of a Disconnected Graph

Let & be a disconnected graph having two components (G; and G». Then the adjacency
matrix of G is given by a block diagonal form as

AG) O

AO=1"0" a@c)

where A(G1) and A(G3) are adjacency matrices of G; and G5 and O is the null
matrix.

Example 5 | Find the adjacency matrix of the following disconnected graph.

"
if ::::;’;q s
'/2
3
%

Figure 6.5 [WBUT-2006]

Sol. Here, the graph G has two components (; containing the vertices
v1, U2, U3, U4 and G5 containing the vertices vs, v.
Therefore, the adjacency matrix of GG is given by a block diagonal form as

A(G) O

AD=1"0" A

where A(G1) and A(G3) are adjacency matrices of G; and G2 and O is the
null matrix.
Now,

U1 U2 U3 U4

V1 01 11

w1110
A(Gl)_v3 110 1
vy |10 1 0
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and
Vs Vg
v 0 1
A= 15
Therefore,
_ | AG) O
A0 =1"0 A(Gz)}

U1 U2 U3 U4 Us Vg

vy [0 1 1100
v |11 100 0
w1101 00
T o 10100 0
vs |0 0 0 0 0 1
v |00 0 0 10

6.2.6 Construction of Graph from a given Adjacency Matrix

Step 1 The order of the adjacency matrix is the number of vertices of the graph.

Step 2 If the adjacency matrix is in block diagonal form then the graph is a
disconnected graph.

Step 3 If the matrix or the blocks are not symmetric then the graph is a digraph.
Step 4 For a connected graph if

1; when v;v; is an edge of G
aij = : :
! 0; if there is no edge between v; and v

A self loop at the vertex v; corresponds to a;; = 1.
Step 5 For a digraph

1; when there is an edge directed from v; to v,
aij =
Y 0; if there is no edge between v; and v;

A self-loop at the vertex v; corresponds to a;; = 1
Step 6 For a disconnected graph
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where A(G1) and A(G5) are adjacency matrices of G; and G5 and O is the
null matrix.

Example 6 | Construct a graph whose adjacency matrix is given by

01 0 0 0O
1 110 0 O
01 0 0 0O
0 00 0 11
0 00 1 01
000 1 10
Sol. Here, the order of the matrix is 6. Therefore, the number of vertices is 6.

Let the vertices be A, B,C, D, E and F respectively. After labelling the
vertices the matrix becomes

T QW
coocor~O N
OOO)—‘)—I)—Im
coocor~o Q
)—IHOOOOU
—OoO R OoOOO
O = F=F OOO

Here, the graph is a disconnected graph since the adjacency matrix can be
represented as

_ | AGy) O
AD=1"0" a@c)
where,
ABC DEF
Ao 10 Do 1 1
AG)= B |1 1 1 | andAGa)= E |1 0 1
clo1 o Fl110

We also see that each block diagonal is symmetric, so the graph is undirected.
Now we notice that in A(G1), ass = 1 (i.e., at the position 2°¢ row 274
column value is 1), so there is a self-loop at the vertex B.
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Therefore, the graph is represented as

F

Figure 6.6

6.3 INCIDENCE MATRIX OF A GRAPH

6.3.1 Incidence Matrix Representation of Simple
Connected Graph

Let GG be a simple graph (i.e., having no parallel edges and self-loops) with n-vertices
V1, V2, . . ., Uy, and m edges eq, s, . . ., €, then the incidence matrix of G is given by
amn X m matrix

I(G) = (aij)nxm

where,

1; when edge e; is incident on v;
Aij = . . .
“ 0; if there is no edge e; incident on v;

Observations: The following are the properties of incidence matrix:

1) The order of the incidence matrix /(G) is n x m where n is the number of
vertices and m is the number of edges.

2) Each column of I(G) has exactly two unit entries.

3) A row with all zeros corresponds to an isolated vertex.

4) A row with a single unit entry corresponds to a pendant vertex.

5) Degree of a vertex is equal to the number of 1s in the row of the vertex.
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6) The permutation of any two rows or columns on an incidence matrix of a
graph G corresponds to re-labelling the vertices and edges of G.

Example 7 | Find the incidence matrix of the following graph

Figure 6.7

Sol. Here we have 5 vertices and 6 edges, so the incidence matrix is of order 5 x 6
and is given by

El Eg E3 E4 E5 EG

A1 110 0 0
B |1 00 10 0
I(Gy=C |0 1 0 0 1 0
Do o0 1 1 1 1
E[O 00 0 0 OJ

6.3.2 Incidence Matrix Representation of any Connected Graph

Let GG be a connected graph having no self-loops (but may be with the parallel edges)
and with n-vertices vy, ve,...,v,, and m edges e, es,..., e, then the incidence
matrix of G is given by an X m matrix

I(G) = (aij)nxm

where,

1; when edge e¢; is incident on v;
Qij = . . .
“ 0; if there is no edge ¢; incident on v;
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Example8 | Find the incidence matrix of the following graph.

Figure 6.8
Sol. Here we have 5 vertices and 7 edges, so the incidence matrix is of order 5 x 7
and is given by
E, By E3 Ey Es Eg Ey
A 1 1.1 0 0 0 O
B 1 0 01 0 0 O
IG)= C 0 1 0 0 1 1 0
D o 0 1 1 1 1 1
FE 0O 0 00 0 0 1

6.3.3 Incidence Matrix Representation of a Connected Digraph

Let GG be a Connected Digraph with no self-loops (but may be with the parallel edges)

with n-vertices vy, va, . .., vy, and m edges ej, e, .

of G is given by a n X m matrix

I(G) = (aij)nxm

where,

.., &y then the incidence matrix

a;; = § —1; when edge e; is incident into v;

1; when edge ¢; is incident out of v;

0; if there is no edge ¢; incident out of or into v;
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Example 9 | Find the incidence matrix of the following Digraph

£
A B
£y & 5
D £ c
Figure 6.9
Sol. Here we have 4 vertices and 5 edges, so the incidence matrix is of order 4 x 5

and is given by

Ey Ey Es3 E4 Es

1 0 0 -1 1
-1 1 0 0 0
0 -1 1 0 -1
0 0 -1 1 0

TQWe

6.3.4 Incidence Matrix of a Disconnected Graph

Let G be a disconnected graph having two components G; and G2. Then the incidence
matrix of G is given by a block diagonal form as

1= "G 1@y |

where I(G1) and I(G2) are incidence matrices of G and G5 and O is the null matrix.

Example 10 | Find the incidence matrix of the following Disconnected Graph.

45
Vo £
54'/3/
%

Figure 6.10

Sol. Here, the graph G has two components (G; containing the vertices
v1, U2, V3, U4 and G5 containing the vertices vs, v.
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Incidence matrix for G is

E, Ey B3 By Es
V1 1 1 0 0 1

Hay= g 9 1 10
o 0o 1 1 0 O
Incidence matrix for Go is
Eg
I(G2) = Zz {i}

Hence, incidence matrix for G is

Ey By E3s E4 E5 Eg

vw [1 1.0 0 1 0
v, |10 0 1 0 0

[1G) o0 1 w0 0 1 1 1 0
I(G)_{ O IGy) |~ ws |O 1 1 0 0 0
vs |0 0 0 0 0 1

v |0 0 0 0 0 1

6.3.5 Construction of Graph/Digraph from Incidence Matrix

The following steps are to be followed to construct a graph from a given incidence
matrix

Step 1 The number of rows and columns correspond to number of vertices and edges
of the graph/digraph.

Step 2 1f the entries are zeros and one then it represents an undirected graph and if
the entries are 0, 1 and —1 then it represents digraph.
Step 3 Take the first column which corresponds to the edge e; and see from the
entries in rows which are 1 are the vertices which form the edge e; .
For an edge of a digraph take the first column which corresponds to the

edge e; and see from the entries in rows which are 1 and —1 are the vertices
which form the edge e;

Step 4 Draw the edge e; and its connecting vertices.

Step 5 Repeat the steps 3 and 4 for rest of the columns and draw the corresponding
edges.

Step 6 The resulting figure is the required undirected graph or digraph.
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Example 11 | Draw the graph whose incidence matrix is given by

0 0 1 -1 1
-1 1 0 0 0

o o 0 0 o

1 0 0 0 -1

0o -1 0 0 O

0 0 -1 1 0 [WBUT-2006]
Sol. The entries of the matrix are 0, 1, —1. Therefore the graph corresponding to

the matrix is a digraph.

Since the number of rows and columns of the matrix are equal to the num-
ber of vertices and edges of the digraph, therefore, the number of vertices are
6 and the number of edges are 5.

Let us suppose, the vertices are vy, ve, U3, V4, Vs, Vg and the edges are
€1, €2, €3, €4, €5.

After labelling the vertices the matrix becomes

€1 €2 €3 €4 €5

vi [ 0 0 1 -1 1]
vo | =1 1 0 0 0
vs 0 0 0 0 O
Vs 1 0 0 0 -1
vs 0 -1 0 0 0
v | 0 0 -1 1 0]

Here the third row, i.e., the row corresponding to the vertex vs contains only
zeros, so no edge is incident on the vertex vs. Therefore, vs is an isolated

vertex.
Hence, the digraph is given by
2
]4
]
& .
&
V
% K ¢
Figure 6.11

6.4 CIRCUIT MATRIX
6.4.1 Definition

Let GG be a Graph containing n circuits and m edges then the circuit matrix of G is

C(G) = (aij)nxm
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where,

1; when ¢-th circuit contains j-th edge
a;j = ) .
0; otherwise

Observations: The following are the properties of Circuit Matrix

(1) Each row of a circuit matrix is a circuit.
(2) All vertex in a coloumn of a circuit matrix correspond to a non circuit edges.

(3) The number of edges in a circuit is equal to number of 1s in a row of circuit
matrix.

(4) A circuit matrix is capable of representing a loop.

Example 12 | Find the circuit matrix of the following graph

a

&

3

a &

(WX J
Q)

Figure 6.12

Sol. The graph has three circuits, viz., A = (a, b, ¢), B = (a,c¢,d) and C = (a, b,
¢, d) and 6 edges.
The circuit matrix of the graph is
C(G) = (aij)nxm
where,
1; when ith circuit contains jth edge
aij = .
g 0; otherwise

Therefore, the circuit matrix of the graph is

€1 €2 €3 €4 €5 C€g

1

1 11
0 01
1 1 0

== O
== O
o O O
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6.5 GRAPHISOMORPHISM

6.5.1 Definition

Two graphs G; and G are isomorphic if there is a function [ : V(G;) — V(G2)
from the vertices of GG; to the vertices of G5 such that

(a) f is one to one
(b) fis onto, and
(c) for each pair of vertices u and v of G, {u,v} € E(G;) if and only if

{f(u), f(v)} € E(G2).
[WBUT-2009]

Observations:

1) The condition that for each pair of vertices v and v of G1, {u,v} € E(Gy) if
and only if {f(u), f(v)} € E(G2) says that vertices u and v are adjacent in
G, if and only if f(u) and f(v) are adjacent in G2. Therefore, the function f
preserves adjacency.

2) If G; and G5 are isomorphic and f is an isomorphism of G; to G- then the
isomorphism f is by no means unique, there may be several isomorphisms
from G to Gs.

3) If an isomorphism f exists, then

(@) [V(G1)| = [V(G2)|
(b) [E(G1)| = |E(G2)]
(c) If v € V(G1), then dg, (v) = dg,(f(v)) and thus, the degree sequence

of (G; and G5 are the same. (In other words, the number of same degree
vertices are always same.)

(d) If {v, v} is aloop in G; then {f(v), f(v)} is a loop in G>.
(e) If two graphs are isomorphic, they will contain circuits of same length &
where £ > 2.

6.5.2 Isomorphism Problem

The problem of determining whether or not two graphs are isomorphic is known as an
isomorphism problem.

Theoretically, it is always possible to determine whether or not two graphs G; and
G+ are isomorphic by keeping the order of vertices of G fixed and reordering the
vertices of Ga to check the mapping f : V(G1) — V(G2) for isomorphism. But
if G; and G5 are two graphs with the same number of vertices, say n, then there
are n! such one-to-one, onto maps f : V(G1) — V(G2), so to check all such n!
mappings for isomorphism, specially for large n is too laborious and sometimes it is
quite impossible. Therefore, it serves no practical purpose.
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6.5.3 Working Procedure to find Whether Two Graphs G; and G,
are Isomorphic or Not

Working Procedure 1

Step 1 Check whether the two graphs G; and G have the same number of vertices.
Step 2 Check whether the two graphs G; and G5 have the same number of edges.
Step 3 Find the incidence matrices for both the graphs I(G1) and I(G5).

Step 4 Check whether, the two graphs G; and G2 have the same degree sequence. In
other words, check whether the number of same degree vertices are same for
the two graphs G and Gb.

Step 5 Two graphs G, and G5 are isomorphic, if and only if, the incidence matrix
of G; is obtained from the permutation of rows and columns of the incidence
matrix of G5 and vice-versa.

Example 13 | Examine if the two graphs are isomorphic.

%
5
As
1525384 v A Ay v Ay vy Ay v
6 G

G,

Figure 6.13
[WBUT-2006]

Sol. Both the graphs (G; and GG have 6 vertices and 5 edges.
In both the graphs G; and G, there are three vertices of degree 1, two
vertices of degree 2, one vertex is of degree 3.
So, the number of same degree vertices are same, for the two graphs G
and G.
The incidence matrix of the graph G is

E, Ey E3s Ey Es

11 0 0 0 0
211 1 0 0 0
310 1 1 0 0
1(Gy) = 4 1o o0 1 1 1
510 0 0 1 0
6 |0 0 0 0 1
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and the incidence matrix of the graph G is

Ay Ay A3 A4 As

vy T1 0 0 0 07

v |11 0 0 0

rGy - 01 1 0 1
T oo oo 110
vs |0 0 0 1 0

w L0 0 0 0 1]

We have, two graphs GG; and G2 are isomorphic if and only if the inci-
dence matrix of (7 is obtained by the permutation of rows and columns in the
incidence matrix of Gs.

Here we see that first four columns are identical in I(G1) and I(G2),
but the 5th column is still different. Therefore I(G) cannot be obtained by
the permutation of rows and columns of I(G5). Hence G and G2 are not
isomorphic.

Working Procedure 2

Step 1 Check whether the two graphs G; and G have the same number of vertices.
Step 2 Check whether the two graphs G and G have the same number of edges.

Step 3 Check whether the two graphs G and G5 have the same degree sequence. In
other words, check whether the number of same degree vertices are same for
the two graphs G; and Go.

Step 4 Write the adjacency matrices A(G1) and A(G2) of G and G5 respectively. If
the adjacency matrices are same, then the graphs G; and G2 are isomorphic.

Step 5 If the adjacency matrices A(G1) and A(G3) of G and G2 are not same, then
to establish isomorphism between (G; and G2, we have to find a permutation
matrix P such that

PA(G1)P" = A(Gy)

Step 6 Since A(G1)and A(Gs) are n'" order matrices, P is a n'" order matrix
obtained by permuting the rows of the unit matrix I,,.

Step 7 1If there exists a permutation matrix P such that
PA(G1)PT = A(G»)

then the two graphs are isomorphic, otherwise not.
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Example 14 | Examine whether the following two graphs are isomorphic

Sol.

V.
1 w,

Wy W2

w3
V3
Gy

Figure 6.14

[WBUT-2007]

Both the graphs (G; and G5 have 4 vertices and 5 edges.

Also, in the graphs GG; and G there are 2 vertices of degree 3 and 2 vertices
of degree 2.

Hence, the necessary condition of isomorphism are satisfied.

The adjacency matrices of the two graphs are

VU1 Vg VU3 U4 w1 W2 W3 W4q
U1 0 1 0 1 w1 0 1 0 1
) 1 0 1 1 Wa 1 0 1 1
A(Gy) = and A(Gs) =
V3 0 1 0 1 w3 0 1 0 1
o 1 1 1 0 Wy 1 1 1 0
Since,

A(Gh) = A(G2)

Therefore, the two graphs G; and G2 are isomorphic.
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Example 15 | Show that the graphs G; and G, are isomorphic.

Sol.

| B ,&
b c H G

Figure 6.15

The two graphs G; and G5 have 4 vertices each, 5 edges each and 2 vertices
of degree 2 and 2 vertices of degree 3.
The adjacency matrices of G; and G are

ABCD EFGH
ATo 111 E[o111
B|l1o0 01 Fl1010
AG)= ¢ |1 g o 1 |MAG)= || | o1
Dl1110 H|1010

The matrices A(G1) and A(G2) of G; and G2 are not same.
To establish isomorphism between GG; and G2, we have to find a permuta-
tion matrix P such that

PA(G1)PT = A(Gy)

Since A(G1) and A(G2) are fourth order matrices, P is also a fourth order
matrix obtained by permuting the rows of the unit matrix .

There are 4! = 24 different forms for P. It is difficult to find the appropriate
P from among the 24 matrices by trial that will satisfy

PA(G1)PT = A(Gy)

Using the degree of the vertices of GG; and G2 we find the permutation
matrix P.

In the adjacency matrix A(G1), the degree of the vertex A, d(A4) = 3 and
in the adjacency matrix A(Gz2), the degree of the vertex E d(E) = 3, that is,
the first vertex of G; corresponds to the first vertex of Gs.

Hence, the first row of I, can be taken as the first row of P.

Now, in the adjacency matrix A(G), the degree of the vertex D, d(D) = 3
and in the adjacency matrix A(G3), the degree of the vertex G, d(G) = 3, that
is, the fourth vertex of GGy corresponds to the third vertex of G.

Hence, the fourth row of I, is taken as the third row of P.

Now, in the adjacency matrix A(G1), the degree of the vertex B, d(B) = 2
and in the adjacency matrix A(Gs), the degree of the vertex F, d(F') = 2, that
is, the second vertex of G; corresponds to the second vertex of G.
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Hence, the second row of I, is taken as the second row of P.

Now, in the adjacency matrix A(G1), the degree of the vertex C, d(C) = 2
and in the adjacency matrix A(G2), the degree of the vertex H, d(H) = 2,
that is, the third vertex of GGy corresponds to the fourth vertex of G.

Hence, the third row of I, is taken as the fourth row of P.

Therefore,
100 0
010 0
P=10 001
0010
Now,
1 00 0]J[0 1 1 171 000
r 0100 100 1 0100
PA(Gl)P_0001 100 1 0 0 0 1
001 0]|1110][00T10
0 1 0 0][1 0 0 0]
1001 0100
“lo0o 110 00 0 1
100 1][0 0 1 0]
[0 1 1 17
101 0
=111 0 1 |=AG)
101 0]

Therefore, the two graphs G; and G2 are isomorphic.

Working Procedure 3

Step 1 Check whether the two graphs G1 and G have the same number of vertices.
Step 2 Check whether the two graphs G and G5 have the same number of edges.

Step 3 Check whether the two graphs G and G have the same degree sequence. (In
other words check whether the number of same degree vertices are same.for
the two graphs G; and G)

Step 4 Check whether the two graphs G; and G contain circuits of the same length
k, where k > 2.

In both the circuits, if the degrees of the ordered vertices are same, then
their adjacency matrices are also same and the two graphs G; and G4 are
isomorphic.

Step 5 In both the circuits, if the degrees of the ordered vertices are not same then
their adjacency matrices also are not same and the two graphs G; and G are
not isomorphic.
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Example 16 | Show that the graphs G and G’ are isomorphic.

Sol.

z v

w,
W
W 3
5

%

v v W W,

Figure 6.16
[WBUT-2006]

The two graphs G and G have 6 vertices and 7 edges each.

They both have four vertices of degree 2 and two vertices of degree 3.

So, the number of same degree vertices are same for the two graphs G
and Go.

The graphs will be isomorphic if they contain circuits of the same length &,
where k > 2.

We see that G has a circuit of length 5 which pass through vy — v1 — vy —
vg — v5 — vq and G’ has a circuit of length 5 which pass through ws — wg —
w3 — W2 — W1 — Ws.

The degrees of the ordered vertices in both the circuits are 3, 2, 3, 2, 2.

The adjacency matrix of the two graphs (according to the sequence of
vertices in the circuits in the respective graphs) are given by

Vg4 V1 V2 Vg Vs V3 w5 W W3 W2 W1 W4
va O 1 0 0 1 1 ws [O 1 0 0 1 1
vw |1 0 1 0 0 0 wg |1 0 1 0 0 0
voa |0 1 0 1 0 1 and AG) = 3 01 0 1 0 1
v |0 0 1 0 1 0 wy |0 0 1 0 1 0
vs |1 0 0 1 0 0 w |1 0 0 1 0 0
vs |1 0 1 0 0 0 wy |1 0 1 0 0 0

Here, the adjacency matrix are same, therefore the two graphs G and G’ are
isomorphic.

6.5.4 Another Important Result on Isomorphism of Two Graphs

Two graphs G and H are isomorphic, if and only if, their complements G and H
are isomorphic.

We can also apply this technique for checking isomorphism which will be illustrated
in the next example.
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Example 17 | Examine if the two graphs are isomorphic

z 2 Y, Uy U
. Vs
s
U Us v/
v v 6 5 4
Figure 6.17

Sol. Let us consider the complements, H; = G and Hy = G5. The graphs GG and
G are isomorphic, if and only if, the complements H; and H are isomorphic.

v, 2 UG U
U
W
Ve
U,
U U
'/4 3 5
Vs

H1 %

Figure 6.18

The graphs H; and Hs both have 6 vertices and 6 edges.

Also, in both the graphs all the vertices is of degree 2. So, the number of
same degree vertices are same for the graphs H; and Ho.

Since all the vertices are of same degree, let us consider three vertices
V1, Vs and V3 of H; that map into the three vertices Uy, Us and Us of Hy
and three vertices Vy, V5 and V5 of H; that map into the three vertices Uy, Us
and Ug of Ho.

Uy, U, and Us of Hy are pairwise adjacent and form a triangle. Similarly,
Uy, Us and Ug of Hy are pairwise adjacent and form a triangle, but H; does

not contain a triangle.
Therefore, Hy, and H, are not isomorphic and consequently (G; and G2 are

not isomorphic.
Note: Here in the problem for checking isomorphism, we can also apply directly any

one of the above stated working procedures.
Theorem 6.2 Let G and H are isomorphic graphs. Then

a) G is bipartite, if and only if, H is bipartite, and
b) G is connected, if and only if, H is connected.
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Proof Beyond the scope of the book.

WORKED OUT EXAMPLES

Example 6.1 | Draw the graph whose incidence matrix is given by

0 1 0 0 1 1
1 0 1 0 0 O
1 0 0 0 0 1
0 1 1 1 1 0
0 001 0 O
[WBUT-2007]
Sol. Here in the matrix we have 5 rows and 6 columns. So the number of vertices

in the graph is 5 and the number of edges in the graph is 6.

Since all the entries in the matrix are 0 or 1, the graph is an undirected
graph.

Let the vertices be V1, Vo, V3, Vy, Vi and theedges be F1, Es, Es, By, E5, Eg.
So, with the labels the matrix becomes

El Eg E3 E4 E5 EG

|4 01 0 0 1 1
Vs 1 0 1.0 0 O
Vs 1 0 0 0 0 1
Vi 0 1 1 1 1 O
Vs 0 001 0 O

Therefore, the graph is given by

Figure 6.19

Example 6.2 | Determine the adjacency matrix and incidence matrix of the
following graph.
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]

¢ & V46
3

(= =3

& s &
&

Z % %
Figure 6.20
[WBUT-2002, 2011]

Sol. Here we have six vertices and eight edges.
Therefore, the order of the adjacency matrix is 6 x 6 and is given by

V1 V2 V3 V4 VU5 Vg
V1 01 0011
V2 10 01 10
w3 |0 0 0100
A(G) = V4 01 0011
Vs 1101 00
Vg 10 01 0O

Thus, the order of the incidence matrix is 6 x 8 and is given by

€1 €2 €3 €4 €5 €6 €7 €8

U1 1100 01 00
va 10 01 00 01
3 001 00 O0O0OO
He) = U4 001 11010
Us 01 001001
Vg 000 0O0OT1T10
Example 6.3 | Examine whether the following two graphs G and G " are isomorphic.
a
a e
o
a
c 74
c
G G ¢
Figure 6.21

[WBUT-2008, 2005]
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Sol. The two graphs G and G’ have 5 vertices each, 5 edges each and they both
have 3 vertices of degree 2 and 2 vertices of degree 3.
The adjacency matrices of G and G’ are

a b cde a b d e
a 01 1 1 0 a’ 0 1 1 0 1
b 1 0 0 0 1 v 1 01 1 0
AG)= ¢ |1 0001 |andAG)=¢ |1 100 0
d 1 0 0 0 1 d’ 01 0 0 1
e 01 1 1 0 e 1 0 01 0

The matrices A(G) and A(G’) of G and G’ are not same.
To establish isomorphism between G and G’, we have to find a permutation
matrix P such that

PA(G)PT = A(@)

Since A(G) and A(G") are fifth order matrices, P is also a fifth order matrix
got by permuting the rows of the unit matrix /5.

There are 5! = 120 different forms for P. It is difficult to find the
appropriate P from among the 120 matrices by trial that will satisfy

PA(G)PT = A(@)

Using the degree of the vertices of G and G’ we find the permutation
matrix P.

In the adjacency matrix A(G), the degree of the vertex a, d(a) = 3 and in
the adjacency matrix A(G’), the degree of the vertex a’, d(a’) = 3, that s, the
first vertex of G corresponds to the first vertex of G'.

Hence, the first row of I5 can be taken as the first row of P.

Now, in the adjacency matrix A(G), the degree of the vertex b, d(b) =
and in the adjacency matrix A(G’), the degree of the vertex ¢/, d(c’) = 2, h
is, the second vertex of G corresponds to the third vertex of G’ .

Hence, the second row of I5 is taken as the third row of P.

Now, in the adjacency matrix A(G), the degree of the vertex ¢, d
and in the adjacency matrix A(G’), the degree of the vertex d’, d(d’)
is, the third vertex of G corresponds to the fourth vertex of G”.

Hence, the third row of I5 is taken as the fourth row of P.

Now, in the adjacency matrix A(G), the degree of the vertex d, d(d)
and in the adjacency matrix A(G"), the degree of the vertex €', d(e’) = 2, that
is, the fourth vertex of G corresponds to the fifth vertex of G'.

Hence, the fourth row of I5 is taken as the fifth row of P.

Now, in the adjacency matrix A(G), the degree of the vertex d, d(e) =
and in the adjacency matrix A(G"), the degree of the vertex b’, d(b') = 3, h
is, the fifth vertex of G corresponds to the second vertex of G”.

Hence, the fifth row of I5 is taken as the second row of P.

Sn

¢)
2,t
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Therefore,

Now,

PA(G)PT =

H R, OO R EHEREFOO OO OoOOoO

H R OO OO0, MFEH OO OOo

OO R H—H OO —HMHEH O, OOCOO

Therefore, the graphs G and G’ are not isomorphic.

Example 6.4 | Examine whether the following graphs G and G’ are isomorphic.
Give reasons.

Sol.

U1

Uy

Us

23

10 0 00
0 0 0 01
01 0 0O
0 01 0O
0 0010
0 0]J[O 1 1 10 1 0 0O
0 1 1 00 01 0 010
0 0 1 0 0 01 0 0 01
0 0 1 0 0 01 0 0 0O
1 o0ojJp0 1110 01 00
1 011 00 0O
1 0 0 01 0O
0 1 0 00 10
0 1 0 0 0 01
0110 1T 000
1 0]
11
0 0 | #AG)
0 0
0 0 |
e 2 s
th
v s

L]

G
Figure 6.22

[WBUT-2009]

Both the graphs G and G’ have 6 vertices and 7 edges.
Also, in the graphs Gand G’ there are 2 vertices of degree 3 and 4 vertices

of degree 2.

I 6.27

o= O O O
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Hence, the necessary condition of isomorphism are satisfied.

Now, there is only one circuit of length 5 from usg to us, viz, us — ug —
U5 — Uug — U1 — ug in G and there is only one circuit of length 5 from v5 to vs
in G'viz, vy — vy — V1 — V4 — Vg — VUs.

The adjacency matrices of the two graphs (according to the sequence of
vertices in the circuits in the respective graphs) are given by

U2 U U Ug U1 U3 Us V2 U1 V4 Vg U3

w [0 1 0 0 1 1 vs TO 1 0 0 1

w |1 01 0 0 0 v |10 100

L us |01 0 1 0 0 W v |01 010
A(G)_u4 001011 andA(G)_v4 00101
w |10 010 0 v |10 010

us |10 0 1 0 0 vs |10 01 0

Therefore, the two graphs G and G’ are isomorphic.

Example 6.5 | Using circuits show the the graphs are not isomorphic.

a b A b
e P E F
p 7 H G
D C
Y = - O =
Figure 6.23

Sol. Both the graphs (G; and G5 have 8 vertices and 11 edges.

Also in both the graphs G; and G, there are 4 vertices of degree 3, 3
vertices of degree 2 and 1 vertex of degree 4.

Hence, the necessary condition of isomorphism are satisfied.

Now, there is only one circuit of length 4 from a to a ,viz,a—b—c—d—a
in the graph (G; and there are two circuits of length 4 from A to A in the graph
GovizzA—B—-C—-D—-AandA-B—-F—-FE— A

Since for two isomorphic graphs, they must contain the same number of
circuits of same length.

Therefore, the two graphs G; and G are not isomorphic.

SO = OO -
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EXERCISES

I 6.29

Short and Long Answer Type Questions

1) Find the adjacency matrix of the following graphs:

a) A B
E C
D
Figure 6.24
ABCDE
A 01 0 0
B 1 0 1 0
Ans: AG)=C |0 1 0 0
D 0 0 1 0
E 1 1 1 1
b) p
£ 5
C
V=
D
Figure 6.25
i ABCDEF
A 01 0 1 0
B 1 01 0 1
C 01 0 1 0
Ans: AG)= || g1 0 1
E 01 0 1 0
I Fl10101

O = =

O = O = O
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c)

Figure 6.26

ABCDVEF

}

S O O

S O OO

001 00O
1 0 0 O
01 00
1 0 0 O
00 00 O0O0

0 0 00

TRORR KN

Ans:

2) Draw the graphs of the following adjacency matrices:

Q Q
q >
~
N
e}
e
=
.20
&9
< Q
»
=
<
—
—\ O — O
wllol
BlOlO
AOlll
TR OA
<

BCDE

b)

—
— - O O O
— - O O O
— - O O O
SO —H — —~
OO —H —~ —~
TAROAR
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— 4 5 _
Ans:
C
D £
L Figure 6.28 _
c) ABCDEF
A 001 00O
B 10 0 0 0 O
c 01 0 00O
D 10 0 0 0O
E 0 000 01
F 100000 0]
A e D
Ans: . o
E F
B » C
Figure 6.29
3) Find the incidence matrix of the following graphs:
a)
V £ 4
& £
Vs .
3 3 Vi
Figure 6.30
E, Ey Es By
i 1 0 0 1
W 110 0
Ans: Vs 01 1 1
Vi 0 010
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b)

¢
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E, By E3 Ey Es Eg

Figure 6.31
Vi 1
Va 1
Ans: Vs 0
Vi 0
_ v Lo
A £ B
£
[
D £3 C
Figure 6.32
E,
A 1
B -1
Ans: C 0
D 0

4) Draw the graphs of the following incidence matrices:

a)

TQWe

E, Ey Es Ey Es Eg

1

1
0
0

O = = O

= =0 O

= o O

O = O =

0

—_ O

1

S O = O

0

OO ==
O == OO
= =0 OO
O R OO
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A )= B
Es
Ans: £ 5
£
D 2] c
B Figure 6.33
b) Ey By E3 Ey Es Eg Ey
Vi 1 0o o0 0 -1 0 -1
Va -1 1 0 0 1 0 O
Vs 0 -1 -1 0o o 0 1
Vi 0 o0 1 1 0 -1 0
Vs 0 0 0 -1 1 0 O
N % g, v
Ans: 5 =
£
=
2
'/1 3
& 5
Z
L Figure 6.34 B
5. Examine the isomorphism of the following graphs:
a) v
Y
Vg
v 5
2 U2 Uss
v A e * Ui
G G
Figure 6.35

[Ans: not isomorphic]
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b
) 7 % e .l
U
U, 3
V,
% & G
Figure 6.36
[Ans: isomorphic]
C) U
iz Vo
% 23
s 7 Uy
Gy G
Figure 6.37

[Ans: isomorphic]

Multiple Choice Questions

1. The columns of an incidence matrix of a graph corresponds to
a) vertices b) edges c) regions d) none of these

2. If the number of vertices and edges excluding self loops is same then the incidence
matrix of the graph is

a) symmetric b) identical ) square d) null
3. Incidence matrix of a graph is called a binary matrix since

a) it corresponds two vertex and edges

b) it contains only two elements 0 and 1

¢) it has only two rows

d) none of these
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4. If the inncidence matrix of a graph (3 is obtained from that of G2 by permutation
of rows and columns, then GG; and G5 are

a) isomorphic b) may be non-isomorphic
¢) dual of each other d) complement of each other
5. If the incidence matrix of a graph has four zero row vectors, then the graph has
a) four parallel edges b) four loops
c) four pendant vertices d) four isolated vertices
6. For an adjacency matrix which one of the following is false
a) is a square matrix b) is a symmetric matrix
¢) it may be nonsingular d) it must be nonsingular
7. Adacency matrix of a graph is
a) symmetric b) skew symmetric
¢) singular d) none of these

8. For a simple graph with 7 vertices and 8 edges if the 3rd row contains four 1 then

a) degree of v3 =4 b) degree of v; =4
c) degree of v3 = 3 d) degree of v3 =1
Answers:

1 (b) 2(0) 3(b) 4 (a) 5(d) 6 (d) 7(d) 8(a)






CHAPTER

Tree

7.1 INTRODUCTION

Tree is a very important topic in the graph theory, specially spanning trees. There is a
huge application in the different branches of science and technology, specially in the
field of computer science, Communication Engineering, circuit theory and network,
etc. In this chapter we give basic properties of trees along with the concept of spanning
trees. Different kinds of searching algorithm are dependent on rooted trees and binary
trees. It is also included in the chapter. Here also we represent different algorithms for
finding minimal spanning trees such as Krushkal Algorithm, Prim’s Algorithm. The
concept of Cut set is very much important in the network theory. Here we will discuss
cut set, Fundamental cut set illustrated with examples.

7.2 DEFINITION AND PROPERTIES
7.2.1 Definition

A graph is called an acyclic graph if it has no cycle or circuit.

A connected acyclic graph is called a tree.

In a tree pendent vertices are also known as leaves. A nonpendent vertex in a tree
is called an internal vertex.

A collection of some trees is known as forest.
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Example1_| Here the following figure represents a tree with 6 vertices.

E

c

Figure 7.1

Here A, C, E, I are the pendent vertices (leaves) of the tree and B, D are the
internal vertices of the tree.

Theorem 7.1 A graph G is a tree if any two vertices of G are connected by a
unique path.

Alternative Statement Prove that if there is one and only one path between every
pair of vertices in a graph G then G is a tree. [WBUT 2004]

Proof First let us consider that the graph G be a tree, then by definition G is con-
nected and so any two vertices of G are connected by a path. The path must be unique
for otherwise, if two vertices are connected by two different paths, then the union of
these paths contains a cycle, which is a contradiction. So the path must be unique.
Conversely let GG be a connected graph such that any two vertices are connected by
a unique path. To prove that GG is a tree, we have to show there is no cycle in G. Let,
if possible, G contain a cycle and « and v are the two vertices of the cycle. Then there
are two paths connecting u and v, which contradicts the hypothesis. Hence G is a tree.

Theorem 7.2 Prove that a tree with n vertices has (n — 1) edges.
[WBUT 2003, 2006, 2011]

Proof Let us consider a tree T'(V, E) with n number of vertices, i.e., |V| = n. Here
we have to prove |E| =n — 1.

We prove the theorem by the method of induction on the number of vertices. It is
obvious that the result is true when n = 1, 2. Let the result be true when the no. of
vertices is < n.

Let e = wv be an edge of T'. Deleting the edge e from 7', disconnects the graph
and T — {e} consists of 2 components, each of which is a tree. Let the components be
Tl (Vl, El) and Tg(‘/g, Eg) where |V1| =N and |‘/2| = Na.

Therefore,

T — {e} = Ty (V1, E1) U Tz (Va, Es),
where

Vi1 UVa =V and Vi NV, = ¢ together imply ny + ng = n.
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Since n; < n and n2 < n, by hypothesis the result is true for 77(V;, E1) and
T (Va, Es).

z'.e., |E1| =Ni — 1 and |E2| :ng—l.
Again, since E = F1 U E5 U {e}, we have

|E| = |E1| + |Es| + 1
=n1—14+ny—1+1

=ni1+ny,—1=n-—1.

This proves the theorem.

Theorem 7.3 Prove that a connected graph with n vertices and (n — 1) edges
is a tree. [WBUT 2005]

Proof Let GG be a connected graph with n vertices and n — 1 edges. Let us suppose,
if possible, G is not a tree, then G must contain at least one cycle. Let e be any edge of
the any one of the cycles. Now deleting the edge e from G yields a subgraph G — {e},
which is also connected.

Now G — {e} has n — 2 edges, but it is not possible, because any connected
graph having n vertices must have at least n — 1 number of edges. This leads to a
contradiction. Hence, G is a tree.

Theorem 7.4 A graph G(V, E) is a tree if it is acyclicand |E| = |V| — 1.

Alternative Statement A graph G(V, E) with n vertices is a tree if it is acyclic
and |[E| =n —1].

Proof Let G(V, E) be an acyclic graph with n vertices and (n—1) edges, i.e., |V| =n
and |[E|=|V]|-1=n-1.

To show that G is a tree, we have to prove that GG is connected.

Let us suppose, if possible, G(V, E) is disconnected and consists of k (> 2)
components. Suppose the components are G;(V;, E;) (i = 1,2, ...n.). Then,

k k

V=Y _IVil and |E| = |Eil.

=1 =1

Since G is acyclic, each of the components G;(V;, E;) must be acyclic and correspond-
ingly they are all trees.
Therefore, |E;| = |V;| — 1.
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Now,

k k
Bl =Y |E|=>_(Vil-1)

=1

i=1
k

= Wil-k=[V] -k
i=1

= |E| < |V|-1.

But this leads to a contradiction to the hypothesis that |E| = [V| — 1.
Hence G is connected and correspondingly G is a tree.

Theorem 7.5 A graph is a tree if and only if it is minimally connected.

Proof  First let us consider that 7" be a tree. Then by definition it is connected. Let
e = uv be an edge of T'. Since there is an unique path between any pair of vertices, the
edge e = wv is the only path connecting v and v. So by deletion of the path leaves the
graph disconnected. Hence 7" is minimally connected.

Conversely let G be a minimally connected graph. To show that G is a tree, we are
to prove that G is acyclic.

If possible, let us assume, G contains a cycle and let e = uwv be an edge of the cycle.
If we delete ¢ = wv from the graph G, then for every path containing the edge e, there
must be a path in G containing the other path in the cycle connecting v and v. So, G
fails to be minimally connected. This leads to a contradiction to the hypothesis. Hence,
G must be acyclic and correspondingly G is a tree.

Theorem 7.6 Any tree (with more than one vertex) must have atleast two
pendent vertices.

Proof Let T(V, E) be a tree with n(> 2) vertices. Then, |E| =n — 1.
Againwe have > d(v)=2.|E|=2(n—1)=2n—2.
veV
Since each of the n vertices is of degree > 1, then the problem becomes distributing

2n — 2 degrees into n vertices. It is clear that there must be at least two vertices of
degree 1. Therefore, there exists at least two pendent vertices.

7.3 ROOTED AND BINARY TREES
7.3.1 Rooted Trees

Let T" be a tree. We choose a vertex of 7" arbitrarily and fix it, which is called root of
the tree. Now the tree is drawn by assigning levels 0, 1, 2, . . ., k at each of the vertices.
The root is of level 0. All adjacent vertices differ by exactly one level and each vertex
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at level 7+ 1 is adjacent to exactly one vertex at level <. Such a tree is called the rooted
tree. The number £ is called the height (or depth) of the rooted tree.

In a rooted tree all the vertices adjacent to any vertex v and of a level below u are
called children of w.

The following figure shows the rooted trees of level 4, i.e., of height 4.

Level 0 Level 0

Level 1 Level 1
Level 2

Level 3 Level 3

Level 4 Level 4

Figure 7.2 Rooted Trees

In a rooted tree always, root can be distinguished from all other vertices. For this
reason sometimes the root is marked distinctly. Generally the term tree means tree
without any root.

7.3.2 Binary Trees

Binary trees are special kind of rooted trees of which every vertex has either no child
or exactly 2 children.

In other words, a binary tree is a such kind of tree in which there is exactly one
vertex of degree two and each of the remaining vertices are either of degree one or
degree three.

The vertex of degree two is distinguishable from the other vertices. Basically this is
the root. Since binary tree is a rooted tree, here also root will be at the level 0.

The following figure shows a binary tree of height 3:

Level 0

Level 2

Level 3

Figure 7.3 Binary Tree

It is to be noticed in the above figure that there exist leaves (pendent vertices) at the
level 2 and level 3.
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Balanced (or complete) binary tree Let T be a binary tree of height h. If the
leaves are at level h only, then it is called balanced or complete binary tree.

In the figure below, a balanced binary tree of height 3 is presented and it is clear
that leaves are only at level 3.

Level 0

Level 2

Level 3

Figure 7.4 Balanced Binary Tree

Theorem 7.7 The number of vertices in a binary tree is always odd.

Proof Let us consider a binary tree with n number of vertices. By definition we know
that in a binary tree one vertex is, of degree 2 and other vertices are either of degree 1
or degree 3. Therefore, number of odd degree vertices is » — 1. Again we have a result
that in a graph, the number of odd degree vertices is always even, So n — 1 must be an
even integer and correspondingly n is odd. Hence, the number of vertices in a binary
tree is odd.

Theorem 7.8 The number of leaves (pendent vertices) in a binary tree with n
1
vertices is given by 3 (n+1).
Proof Suppose n, be the number of pendent vertices in a binary tree 1" with n
vertices. So, number of one degree vertices is 7,.
Here in the tree we have one vertex of degree 2 and rest of the vertices are of

degree 3, i.e., (n — n, — 1) number of vertices are of degree 3.
Therefore, sum of the degrees of n vertices in 71" is

mpXx1+2x1+(n—m—1)x3=3n-2n,—1

Again, we have that sum of the degrees of vertices in a graph is 2 X (number of edges).
Since 7' is a tree with n vertices, it has n — 1 number of edges.
Therefore,

3n—2np—1:2><(n—l):>np=%(n+1).

Hence, the theorem is proved.

Theorem 7.9 The number of internal vertices (non-pendent vertices) in a
binary tree is one less than the number of pendent vertices.

Proof Let T be a binary tree with n vertices. Also, let n; and 7, be the number of
internal vertices and pendent vertices respectively.
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1
Then, n = n; + n,. Now, by the last theorem we have n, = 5 (n+1).
Therefore,

ni=n—-m=n—-n+1)==-(n-1)

Now,

Hence, the result is proved.

Theorem 7.10 If T be a binary of height / with n vertices, then n < 2"+1 — 1,

Proof  Since the height of the binary tree is i, we have levels 0,1,2,... h.
Now there is only one vertex at the level 0, which is root.
Number of vertices that can be at the level 1 is at most 2! (= 2).
Number of vertices that can be at the level 2 is at most 22 (= 4).
Similarly, number of vertices that can be at the level h is at most oh,
Since the number of vertices in the given binary tree is n, we have

n<l4+2' 422 4. 420
2h+l _
=—2_71 (Sum of the geometric progression.)
i.e., n <2kt 1.

Hence, the result is proved.

Theorem 7.11 The minimum height of a binary tree with n vertices is
[ loga(n + 1)] — 1, where [z] denotes the least integer greater than or equal to
([«] is known as ceiling of x).

In other words, & > [ loga(n + 1)] — 1, where h is the height of the binary tree.

Proof From the last theorem, for a binary tree 7" of height h with n vertices, we have
n<ohtl 1okl >4
or, log, (2"1) > log, (n+1)

or, h+1 > logy(n+1).
Since h + 1 is an integer, we get

h+1 > [logy(n +1)]
or, h > [logy(n+1)] — 1.

Hence, the theorem is proved.
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Remark For a balanced binary tree h = [logy(n + 1)] — 1.

7.4 SPANNING TREE OF A GRAPH

A spanning subgraph of a graph G(V, E) is a subgraph of G whose vertex set is the
same as the vertex set V of G.
A spanning tree of a graph G is a spanning subgraph of GG which is a tree.
[WBUT 2002]

Example 2 | Construct spanning trees from the following graph.

o o/
a c d
b
e
Figure 7.5
[WBUT 2006]
Sol. The spanning trees are given by the following:
®
. o/
a c d
b
e
Figure 7.6
(i)
o/

Figure 7.7
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(iii)

a c d
b
e
Figure 7.8
@iv)
» °/
a c d
b
e
Figure 7.9

Theorem 7.12 A graph G has a spanning tree if G is connected. [WBUT 2005]

Proof At first we suppose that G has a spanning tree 7'. Since 7 is connected and has
all the vertices of G, it follows that G is also connected.

Conversely let us suppose G is connected, we are to prove that it has a spanning
tree. If G has no circuits, then G becomes a spanning tree of itself. Otherwise we
consider a connected spanning subgraph H of GG with the minimum number of edges.
Now H cannot have any circuit. Let, if possible, C' be a circuit in H. Then removal of
the edges of C' leaves another connected spanning subgraph of G with the fewer edges
than H. But it leads to a contradiction that A has the minimum number of edges. Thus
H has no circuits. Since H is also connected, H is a spanning tree.

Theorem 7.12 Caley’s Theorem
The complete graph K,,, has n"~? different spanning trees

Proof Beyond the scope of the book.

Example3 | The complete graph K3 has 3372 = 3! = 3 different spanning trees,

as shown in the following figure:

—_— 3
Three
spanning 1 1
5 trees 2 A

Figure 7.10
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7.5 BREADTH FIRST SEARCH (BFS) ALGORITHM FOR FINDING
SPANNING TREE OF A GRAPH

Input A connected graph.

At first discard the parallel edges and self-loops of the graph if they exist.

The algorithm is based on stage by stage labelling the vertices.

Select any vertex u of the graph and label it as 0.

Next, label the other vertices in every stage based on the following rule:

Traverse all the unlabelled vertices in G which are adjacent to the vertices of label
k and label all of them as k 4 1. Then join the vertices of label k 4+ 1 with their
corresponding adjacent k labelled vertices in such a manner that no circuit is formed.

Continue the process of stage to stage labelling the vertices and joining until all the
vertices are labelled and joined.

Output A spanning tree of the given graph.

Example4 | Find a spanning tree of the following graph by BFS algorithm.

a

Figure 7.11

Sol. First we discard the loop and parallel edges.

Next, we select the vertex g and is labelled by O.

Its adjacent unlabelled vertices are h, f and e. They are labelled by 0+ 1 =
1. The labels are shown in the figure. Then we join each of them with g by the
edges (g,h), (g,e) and (g, f) , since joining of the edges does not result any
cycle.

Next we see that the unlabelled adjacent vertices of h are b and 7. We label
each of them by 1 4 1 = 2. Also, unlabelled adjacent vertex of e is only d. We
label it by 1 4+ 1 = 2. But there is no adjacent vertex of f which is unlabelled.
Now we join the vertices b and i to h by the edges (h, b) and (h, ) respectively.
Also, we join d with e by the edge (e, d). It is to be noted, that no cycle has
been formed by the above joinings.
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Figure 7.12

Now, the unlabelled adjacent vertices of b are a and c. We label each of
them by 2 + 1 = 3. We join the vertices a and c¢ to b by the edges (b, a) and
(b, ¢) respectively. Here also it is to be noted that no cycle has been formed.

We stop the process since no unlabelled vertices are left in the graph. Now
the required spanning tree can be found by drawing the joining edges (g, h),
(g,€), (g, ), (h,b), (h,i), (e,d), (b,a) and (b, c) successively which shown
in the following figure:

Figure 7.13

7.6 DEPTH FIRST SEARCH (DFS) ALGORITHM FOR FINDING
SPANNING TREE OF A GRAPH

Input A connected graph.

At first discard the parallel edges and self loops of the graph if exists.

Select any vertex u of the graph. Find out a path in the graph as long as possible,
starting from the vertex u by successively connecting the other vertices.
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Let the path be P; : uv — v, which is starting from « and ending at v. Now we
backtrack starting from the vertex v along the path P; and suppose a be the first vertex
(in the path Py), from which another path P, (as long as possible) can be started
containing no other vertices of P; except the starting vertex a.

Next suppose that b be the next vertex on the way of backtracking, from which
another path Ps (as long as possible) can be started containing no other vertices of P;
and P, except the starting vertex b.

Continue this process of constructing above said paths until all the vertices are
traversed by any one of the paths.

All the paths together represent a spanning tree.

Output A spanning tree of the given graph.

Example 5 | Find a spanning tree by the DFS Algorithm.

Figure 7.14

Sol. First we discard the parallel edge and self-loop.
Next we select the vertex B arbitrarily. Now we find a path starting from B
as long as possible. The path is given by
P:B-C-D—-I-F—-H-G

which is shown in the follwing figure by bold face lines:
/ H

Figure 7.15

Next we start backtracking starting from G. First we backtrack from G to
H. There is no path starting from H containing vertices other than vertices of
path P;. Now we backtrack from H to F'. Here we get a path starting from F
and the path is P» : F' — E, not containing the vertices of P;. The path P is
shown by the single dotted line in the following figure:
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Figure 7.16

Again we start re-tracking from F' through the vertices of P; and let C be
the first vertex in that way from where a path starts not containing the vertices
of P; and Ps. The path is P3 : C'— J — A, which is shown by double dotted
lines in the following figure:

Figure 7.17

Now we stop the process because all the vertices are traversed by any one
of the paths. The required spanning tree is formed by the combination of the
three paths P;, P> and Ps, which is shown in the following figure:

Figure 7.18

7.7 FUNDAMENTAL CIRCUITS

Let T be any spanning tree of a graph G(V, E) with n vertices and e number of edges.
An edge in T is called the branch of the tree 7. So the number of branches (w.r.t
the spanning tree T) is n — 1.
An edge of G that is not an edge of 7" is known as chord (or Tie) w.r.t. 7. So the
number of chords (w.r.t. the spanning tree T) ise — (n — 1), i.e., e —n + 1.
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Co-tree (or chord set or tie set)

Co-tree of a spanning tree 7" in a connected graph G is the collection of all chords of

G w.rt T. Tt is denoted by 7. This is also known as complement of a spanning tree.
The number of branches of any spanning tree of a graph is called its rank, where

as the number of chords is known as the nullity of the graph.

Example 6 _| Consider the folowing graph shown in the figure.

b b,— branches
¢~ chords

Figure 7.19

Here in the graph, the spanning tree 7' is shown by the bold face lines. The 5
branches are by, bo, b3, by, bs. The 3 chords are ¢y, ¢, c3.

Here in the graph n = 6 and e = 8. So the number of chords are e — n + 1 =
8—6+1=23.

Here the co-tree of the spanning tree 7' (or complement of T') is given by

¢— chords

Figure 7.20
Here in this example rank is 5 and nullity is 3.

Theorem 7.13 If ¢ be a chord of a connected graph G w.r.t one of its spanning tree
T, then T + {c} contains a unique cycle.

Proof Let ¢ = uwv be a chord of G w.r.t the spanning tree 7T'. Then c is not an edge
of T'. Again u and v both are vertices of 7', so they are connected by an unique path.
Now if we consider T + {c}, then w and v will be connected by an additional path and
union of these two paths result a unique cycle.



Tree I 7.15

It is obvious from the above theorem that addition of a chord to 7" in GG creates
a cycle. Such a cycle which contains only one chord is called fundamental cycle or
circuit.

Also from above we know that there are e — n + 1 number of chords in G w.r.t T,
so G has e — n + 1 number of fundamental circuits w.r.t the spanning tree 7.

Example7 | Consider the last example. Here the number of chords are 3.

Therefore the number of fundamental circuits are also 3.
The fundamental cycles are {by,ba, by, ca} , {b2,b3,b5,c1} and {by, b3, b5, 5}
which are shown in the following figure:

Figure 7.21

Though {b1, b, b3, bs, c3, c2} also forms a cycle, but it is not a fundamental cycle
since it contains two chords which is shown in the following figure:

b
b1 bs
o b
G
Figure 7.22

7.8 HOW TO GENERATE ALL SPANNING TREES (CYCLIC
INTERCHANGE OR ELEMENTARY TREE
TRANSFORMATION)

The method of generating a spanning tree from another spanning tree by addition of a

chord and deletion of a branch is known as Cyclic interchange or Elementary tree
transformation.
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In this method first we select any arbitrary spanning tree from the given graph and
then we have branches and chords with respect to the selected spanning tree. Now
addition of a chord results a fundamental cycle, then delete a branch from the cycle
which results another spanning tree. Continue this process until we get all the spanning
trees.

An example of application of cyclic interchange is given below:

Example 8 | Find all the spanning trees in the following graph.

F

m

Figure 7.23
[WBUT 2007]

Sol. Let the given graph be . Here we will apply the method of elimentary tree
transformstion or cyclic interchange to get all the spanning trees.
Removing loops from G first we consider the following spanning tree

Sp tree 1.
A
\ )
Be
/D
c

Figure 7.24

Now we will find other spanning trees starting from Sp tree 1. Here we see
that F'H and F'G are the chords of G w.r.t Sp tree 1.

Adding the chord F'H to Sp tree 1, we have the cycle EFGHE. Now
removing the branch F'E from the cycle EFGHE we have the following
spanning tree.
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F
A
E
Be . A
D
c G
Figure 7.25

Next removing the branch FG from the cycle EFGHE we have the
following spanning tree:

F
A
£
Be ¢ A
D
c G
Figure 7.26

Also removing the branch GH from the cycle EFGHE we have the
following spanning tree:

AN h
/

M

Figure 7.27

Adding the chord F'G to Sp tree 1 we have the cycle EF'G E. Now remov-
ing the branch EF from the cycle FFGE we have the following spanning
tree:
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F
A [
E
Be . A
D
c G
Figure 7.28

Next removing the branch EG from the cycle EFGFE we have the
following spanning tree:

F
A b
E
Be ¢ A
D
L
c G
Figure 7.29

Adding the chord F'G to Sp tree 2 and removing the branch G H, we have
the following spanning tree:

F
A e
E
Be . A
D
c G
Figure 7.30

Adding the chord F'G to Sp tree 3 and removing the branch G H, we have
the following spanning tree:
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oM

D

})
9)

Figure 7.31

So the above 8 spanning trees are all the spanning trees.

7.9 MINIMAL (OR SHORTEST) SPANNING TREE

Let G(V, E) be a connected graph. If a nonnegative real number is assigned to every
edge of the graph, then the graph is called an edge weighted graph or weighted graph.
The number that is assigned to the edge may be the distance between the two cities (or
vertices) or it may be the cost of building the road between the cities etc.

Let T be a spanning tree of GG. The sum of the weights of the edges of T is known
as the weight of T'. A spanning tree having the minimum weight (or shortest length )
is called the shortest spanning tree or minimal spanning tree.

Note: A graph may have more than one minimal spanning tree which is known as
alternative minimal spanning tree.

7.10 KRUSKALS ALGORITHM FOR FINDING MINIMAL
(SHORTEST) SPANNING TREE

Input A connected weighted graph with n vertices.

Step I Arrange all the edges of G, except the loops in the order of non-decreasing
weights.

Step Il Select the first edge of the list.

Step Ill Add the next edge of smallest weight to the previous one which does result
any cycle.

Step IV Repeat Step IIT until n — 1 edges have been selected.

Output A minimal (shortest) spanning tree with n — 1 edges.

Example9 | Using Kruskal’s Algorithm find the minimal spanning tree of the

following graph.
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Figure 7.32

Sol. First we arrange all the edges of (G, except the loops in the order of non-
decreasing weights and write it in the following form:

Edges AE BD AC BF DF CE CF AD AF BE
Weights 3 4 5 5 6 7 7 7 8 9

Step 1 Select the first edge AFE from the list, since it has the minimum weight.
A
SJ
E
Figure 7.33

Step 2 The next edge of smallest weight is BD. We can add it to the previous one
because it does not form any cycle.

A B
‘\
3 L
E
Figure 7.34

Step 3 The next edge of smallest weight is AC. We can add it to the previous one
because it does not form any cycle.
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A B

. \
c 3 c

Figure 7.35

Step 4 The next edge of smallest weight is BF. We can add it to the previous one
because it does not form any cycle.

A B

Figure 7.36

Step 5 The next edge of smallest weight is DF. We discard it because it results in a
cycle. Also we discard C'E due to the same reason.

Step 6 Next we add the edge C'F to the previous one because it does not form any
cycle.

Figure 7.37

Since the number of vertices in the given graph is 6 and the tree in the last
step contains 5 (= 6 — 1) edges, the required minimal spanning tree is given
by the Step 6.

Weight of the minimal spanning tree =3 +4 + 5+ 5+ 7 = 24.
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7.11 PRIM’'S ALGORITHM FOR FINDING MINIMAL (SHORTEST)
SPANNING TREE

Input A connected weighted graph G with n number of vertices

First we remove all the self-loops if they exist. Also remove all the parallel edges
except the edge with the minimum weight for any pair of vertices.

Next label the n vertices by Vi, Vs, ..., V,,. Weights of the edges are tabulated in
ann x n table, of which the 5" element w;; is given by the following rule

weight of the edge between V; and V.

Wi

w;; = oo, if there is no direct edge between V; and V.

In n x n table, we replace the diagonal values and put ‘—’ and it is to be noted that
the entries in the table are symmetric w.r.t its diagonal.

Now start from the vertex V. Connect it to the nearest adjacent vertex, i.e., the
vertex for which there is the smallest entry in the row 1 of the table. Suppose the
vertex is V;. Now consider the edge connecting V; and V; as one subgraph and connect
this subgraph to its nearest neighbour, i.e., the vertex other than V; and V; for which
there is the smallest entry in the row 1 and row ¢ of the table. Suppose the vertex is V.
Next consider the tree with the vertices V; , V; and V}; as one subgraph and continue
the process of connecting until all the n vertices are connected by n — 1 edges. If there
is a tie for selecting the smallest entry in any row then we choose arbitrarily.

Output A minimal (shortest) spanning tree with n — 1 edges.

Example 10 | Using Prim’s Algorithm find the minimal spanning tree of the

following graph:

Figure 7.38

Here we have 6 vertices. So, the minimal spanning tree will be withthe 6 — 1 =5
edges.
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First we make the weight table in the following manner:

Vi Vo V3 Vi V5 Vs
wl- 6 5 5 7 9
Vol 6 — 2 o0 oo oo
3|5 2 — 3 oo 4
Vsl 5 oo 3 — 6 5
Vs| 7 o0 0o 6 — 3
Vel 9 oo 4 3 -

Step 1 We start from the vertex V; and smallest entry in the row 1 is 5 for both
(V1,V3) and (V1,Vy). We select (Vi,V3) arbitrarily which results in the
following subgraph:

Vs

Figure 7.39

Step 2 Then the smallest entry in the row 1 and row 3 is 2 for (V3, V). We connect
it to the above subgraph which results in the following:

4

Figure 7.40

Step 3 Then the smallest entry in the row 1, row 3 and row 2 is 3 for (V3, V). We
connect it to the above subgraph which results in the following:
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Figure 7.41

Step 4 Then the smallest entry in the row 1, row 3, row 2 and row 4 is 4 for (V3, V;).
We connect it to the above subgraph which results in the following:

Figure 7.42

Step 5 Then the smallest entry in the row 1, row 3, row 2, row 4 and row 6 is 3 for
(Vs, V5). We connect it to the above subgraph which results in the following:

Figure 7.43

Since the number of vertices in the given graph is 6 and the subgraph in
the last step contains 5 (= 6 — 1) edges, the required minimal spanning tree
is given by the Step 5.

Weight of the minimal spanning tree =5+ 2+3+4+3 =17.



Tree I 7.25

7.12 CUT SET AND CUT VERTICES

7.12.1 Cut Set

Let G(V, E) be a connected graph. A cut set for G is defined to be the smallest set
of edges such that removal of the set disconnects the graph but removal of any proper
subset of this set leaves a connected subgraph of G.

Example 11 | Let us find out some of the cut sets in the following graph:

f

¥ 3
e

Vv a

1 W

g
b '/7 a
h /

22

% z Vs

Figure 7.44

Here some of the cut sets are {a, b}, {f}, {e, f},{a, g,d}, {a, g,1,c}, etc.
Here {a, g,1,d} is not a cut set, though if we remove the edges the graph becomes
disconnected. Because one of its proper subset {a, g, d} is a cut set.

7.12.2 Cut point or Cut vertices

Let G(V, E) be any connected graph. A cut vertex for G is a vertex v such that G —{v}
has more components than G or becomes disconnected.

The subgraph G — {v} is obtained by deleting the vertex v along with the edges
incident to it.

Example 12 | Find out all the cut vertices from the following graph:

a
g
e °/
Figure 7.45
Sol. The vertex d is a cut vertex, since removal of d yields more than one

components as shown in the following:
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ce °/

Figure 7.46

Also the vertex b is a cut vertex, since removal of b yields more than one
components as shown in the following:

ae

Je

ee °/

Figure 7.47

Apart from above the vertex e is also a cut vertex, since removal of e yields
more than one component as shown in the following:

o/

Figure 7.48

Theorem 7.14 1In aconnected graph GG, any minimal set of edges containing at least
one branch of every spanning tree of G is a cut set.

Proof Let H be a minimal set of edges containing at least one branch of every span-
ning tree of G. Therefore G — H, the subgraph that remains after removing the edges
of H from G, does not contain any spanning tree of GG. For this reason G — H is dis-
connected (one component of which may consist of an isolated vertex only). Again,
since H is the minimal set of edges with the given property, if any edge e of H is
returned to the subgraph G — H, then it will create at least one spanning tree. Thus,
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G — H + {e} will be a connected graph. Therefore, H is such a minimal set of edges
whose removal from G disconnects the graph G whereas removal of any proper subset
of H leaves the graph connected. Hence, by definition H is a cut set.

Theorem 7.15 A cut set and any spanning tree must have at least one edge in
common.

Proof Let, if possible, H be a cut set that has no common edge with a spanning tree,
then removal of the cut set H does not affect the spanning tree. Therefore removal
of the cut set H does not separate the graph into more than one component. This
contradicts the definition of the cut set. Hence, H must have at least one common edge
with the spanning tree.

Theorem 7.16  Every circuit has an even number of edges common with every
cut set.

Proof By definition corresponding to every cut set H, the vertex set V' of the graph
G(V, E) is divided into two disjoint subsets V4 and V5 which are the vertex sets of the
two components, when the edges of the cut set are removed from the graph. Consider
a curcuit C'.

Now, first we consider the case that all the vertices of C' are entirely within the set
V1 or V5, then the number of edges C' common with the cut set H is zero.

Secondly, we consider the case when some of the vertices of C' are in V; and rest of
the vertices are in V5. Then to traverse the circuit we traverse back and forth between
the sets V7 and V5. Since the circuit is a closed path, the number of edges that we tra-
verse between the vertex sets V7 and V5 is even. Again, the connecting edges between
V1 and V5, are nothing but parts of the cut set H. Therefore, the number of edges
common to C and H is even.

7.13 FUNDAMENTAL CUT SETS

Let us consider any spanning tree 7" in any connected graph G. Also let {b} be any
branch in 7. Since every branch of any spanning tree is a cut set in that tree, {b} is a
cut set in 7" and so it creates two partitions of the vertices of 7" as the two disjoint sets
(one at each end of {b}). Now if we consider any cut set H (in the graph G), removal
of which creates the same partition of vertices of GG, done by the branch {b}, then the
cut set H will contain only one branch {b} of T" and the rest of the edges (if exists)
of H are chords with respect to 7'. Such a kind of cut set which contains exactly
one branch of a spanning tree T is called fundamental cut set or basic cut set with
respect to T'.

Example 13 | Here we will show all the fundamental cut sets with respect to a

spanning tree 7'. The spanning tree 7" is shown in the heavy lines in the figure.
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'/6 \\\ f \\\ | '/5
a \\ \\ N e
\ N -~
— \ N N — -
Vo) AN h
16 b \ AN/ V
7/
-7 \| AN (4
- e ! N\
/ ™ : \\\
/ v ] N
Pk c o Vs
Figure 7.49

It is clear from the figure that {a} is a cut set and it consists of only one branch {a}
of T. So, {a} is a fundamental cut set with respect to spanning tree 7.

Also {b, ¢} is a fundamental cut set with respect to spanning tree T, since the cut
set {b, ¢} contains ony one branch {b} of T'.

Similarly {f, g, ¢}, {f, h,d} and {f, h, e} are all fundamental cut sets with respect
to spanning tree 7',

In the figure, the fundamental cut sets are shown by the dotted lines cutting through
the cut sets.

7.14 EDGE CONNECTIVITY AND VERTEX CONNECTIVITY
7.14.1 Edge Connectivity

Let G be a connected graph. Then, the edge connectivity is defined as the number of
edges in the smallest cut set (cut set having least number of edges) of the graph G.

In other words, the edge connectivity of a connected graph G is the minimum
number of edges which disconnect the graph when removed.

Observations:

(1) If the graph G is disconnected, i.e., G has more than one component, then edge
connectivity of GG is the minimum number of edges removed, which increases
the number of components of .

(2) The edge connectivity for a tree is always one.

Example 14 | In the following graph the edge connectivity is 3, since removal of

minimum 3 edges disconnects the graph.

a
[ ]
e
B —
b d  |Deletion of a
f a band e
c c

Figure 7.50
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7.14.2 Vertex Connectivity

Let G be a connected graph. Then the vertex connectivity is defined as the minimum
number of vertices, when removed (along with the edges incident to it) will disconnect
the graph G.

Observations:

(1) If the graph G is disconnected, i.e., G has more than one component, then
vertex connectivity of G is the minimum number of vertices removal of which
(along with the edges incident to it) increases the number of components of G.

(2) The vertex connectivity for a tree is always one.

(3) According to the above definition vertex connectivity is only meaningful for
those graphs having three or more vertices or for the graphs which are not
complete.

Example 15 | In the following graph the vertex connectivity is 2, since removal of

minimum 2 vertices disconnects the graph.

A E

D

D Deletion of /2
Band £

Figure 7.51

7.14.3 Some Results of Edge Connectivity and Vertex
Connectivity

Result 1 The edge connectivity of a graph cannot exceed the degree of the smallest
degree vertex.

Result 2 The vertex connectivity of any graph cannot exceed the edge connectivity
of that graph.

Result 3 The maximum vertex connectivity of any graph with n vertices and e edges
(e >n—1)is ﬁfJ, where ﬁjJ is defined as the integral part of the number 2—:
(la] is known as floor of a).

7.14.4 Separable Graph

A connected graph is said to be separable if the vertex connectivity of the graph is one.
Otherwise it is known as non-separable graph.
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Observations:

1) A tree is always a separable graph.
2) Every cut set in a nonseparable graph with more than two vertices contains
at least two edges.

Example 16 | Here in the following graph the vertex connectivity is 1, since

removal of minimum number of 1 vertex disconnects the graph. Hence, this is a
separable graph.

A B

A
c D
c o)
Figure 7.52
WORKED OUT EXAMPLES

Example7.1| Obtain a minimum spanning tree of the following graph using
Krushkal’s Algorithm.

6 15 5
13 1 16 4 13
14 12 12 14
2 16 3 14
14
7 15 8
Figure 7.53

[WBUT 2002]
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Sol. First we arrange all the edges of graph, in the order of non-decreasing weights
and write in the following form:

Edges {12} {3,4} {1,6} {4,5} {6,7} {2,7} {3,8} {538}
Weights 12 12 13 13 14 14 14 14

Edges {6.5) {7.8} {L4} {2.3}
Weights 15 15 16 16

Step 1 Select the first edge {1,2} from the list, since it is of minimum
weight.

Step 2 The next edge of smallest weight is {3,4}. We can add it to the
previous one because it does not form any cycle.

Step 3 The next edge of smallest weight is {1,6}. We can add it to the
previous one because it does not form any cycle.

Step 4 The next edge of smallest weight is {4,5}. We can add it to the
previous one because it does not form any cycle.

Step 5 The next edge of smallest weight is {6,7}. We can add it to the
previous one because it does not form any cycle.

Step 6 The next edge of smallest weight is {2, 7}. We discard it because it
results in a cycle.

Step 7 Next we add the edge {3, 8} to the previous one because it does not
form any cycle.

Step 8 The next edge of smallest weight is {5, 8}. We discard it because it
results in a cycle.

Step 9 Next we add the edge {6, 5} to the previous one because it does not
form any cycle.

In this step the tree becomes

6 15 5

14 12 12

Figure 7.54
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Since the number of vertices in the given graph is 8 and the tree in the last
step contains 7 (= 8 — 1) edges, the required minimal spanning tree is given
by the Step 9.

Weight of the minimal spanning tree = 124-124+13+13+14+14+15 = 93.

Example7.2 | Obtain a minimum spanning tree of the following graph using

Krushkal’s Algorithm.
h 15 e
13 a 16 a, /13
14 12 12 14
b 16 c\ 14
14
g 15 f
Figure 7.55
[WBUT 2003]
Sol. The given graph is similar to the graph in Example 7.1 except for the names of

the vertices. So, to get the minimal spanning tree, proceed in a manner similar
to Example 7.1.

Example 7.3 | Obtain a minimum spanning tree of the following graph using
Krushkal’s Algorithm.

Figure 7.56

[WBUT 2003]
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Sol. First we arrange all the edges of the graph, in the order of non-decreasing
weights and write in the following form:

Edges ViVa WiVs WiVs VsVi VaVs ViVs WiV VsVao VsVs
Weights 2 2 3 4 5 7 8 8 12

Step 1 Select the first edge V4Va from the list since it is of minimum
weight.

Step 2 The next edge of smallest weight is V4 V5. We can add it to the
previous one because it does not form any cycle.

Step 3 The next edge of smallest weight is V4 V5. We can add it to the
previous one because it does not form any cycle.

Step 4 The next edge of smallest weight is V5V,. We can add it to the
previous one because it does not form any cycle.

Step 5 The next edge of smallest weight is V3V;. We discard it because it
results in a cycle.

Step 6 The next edge of smallest weight is V4Vs. We can add it to the
previous one because it does not form any cycle.

In this step the tree becomes

Figure 7.57

Since the number of vertices in the given graph is 6 and the tree in the last
step contains 5 (= 6 — 1) edges, the required minimal spanning tree is given
by the Step 6.

Weight of the minimal spanning tree = 2 +2+ 3+ 4+ 7 = 18.
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Example7.4 | Obtain a minimum spanning tree of the following graph using
Krushkal’s Algorithm.

Figure 7.58

[WBUT 2005]

Sol. First we arrange all the edges of the graph except the loops in the order of
non-decreasing weights and write it in the following form:

Edges AB AD BC CD AF AE FE ED BE AC FD
Weights 1 1 2 2 3 3 3 4 4 4 5

Step 1 Select the first edge AB from the list since it is of minimum weight.

Step 2 The next edge of smallest weightis AD. We can add it to the previous
one because it does not form any cycle.

Step 3 The next edge of smallest weightis BC'. We can add it to the previous
one because it does not form any cycle.

Step 4 The next edge of smallest weight is C'D. We discard it because it
results in a cycle.

Step 5 The next edge of smallest weightis AF. We can add it to the previous
one because it does not form any cycle.

Step 6 The next edge of smallest weight is AE. We can add it to the previous
one because it does not form any cycle.

In this step the tree becomes
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D
Figure 7.59

Since the number of vertices in the given graph is 6 and the tree in the last
step contains 5 (= 6 — 1) edges, the required minimal spanning tree is given
by the Step 6.

Weight of the minimal spanning tree =1+ 1+ 2+ 3 + 3 = 10.

Example 7.5 Find by Prim’s Algorithm a minimum spanning tree of the

following grah.
Figure 7.60
[WBUT 2004, 2007]
Sol. Here we have 5 vertices. So, the minimal spanning tree will be withthe 5—1 =
4 edges.
First we make the 5 x 5 weight table, of which ij*® element w;; is given
by the following rule:

w;; = weight of the edge between V; and V;

w;; = oo, if there is no direct edge between V; and V
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We leave the diagonal empty by putting ‘—’. So, the table is

Vi Vo V3 Vi Vs
Vi[= 4 3 3 3
Bl4 - 2 ~ 3
B3 2 - 3
Vi|3 o 3 - 2
3 3 « 2 -

Step 1 We start from the vertex V; and smallest entry in the row 1 is 3 for
(V1,V3), (V4, V) and (V4, Vy). We select (V3, V3) arbitrarily which
results the following subgraph

W

Figure 7.61

Step 2 Next the smallest entry in the row 1 and row 3 is 2 for (V3, V3). We
connect it to the above subgraph which results the following:

4
Z
3
2
Va
Figure 7.62

Step 3 Next the smallest entry in the row 1, row 3 and row 2 is 3 for
(V1, Vi) V1, Vs) (Va, V) (V3, V). We select (V1, Vy) arbitrarily and
connect it to the above subgraph which results the following:
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Figure 7.63

Step 4 Next the smallest entry in the row 1, row 3, row 2 and row 4 is 2
for (V4, V). We connect it to the above subgraph which results the
following:

Figure 7.64

Since the number of vertices in the given graph is 5 and the
subgraph in the last step contains 4 (=5 — 1) edges, the required
minimal spanning tree is given by the Step 4.

Weight of the minimal spanning tree = 3 +2 + 3 + 2 = 10.

Example 7.6 | Find by Prim’s Algorithm the minimum spanning tree of the

following graph.
" 14 v
11 5
18
17 6 A
2
6 13
30
10
3 16 7

Figure 7.65 [WBUT 2005, 2006, 2011]
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Sol. Here we have 6 vertices. So, the minimal spanning tree will be withthe 6—1 =
5 edges.
First, we make the 6 x 6 weight table, of which z’j“‘ element w;; is given
by the following rule:

w;; = weight of the edge between V; and V;

w;; = oo, if there is no direct edge between V; and V;

We leave the diagonal empty (put ‘—’). So, the table is

Vi Vo V3 Vi V5 Vs
Vi|]— 14 oo oo 17 18
\%} | 14 — 5 6 oo 11
V3 | © 5 — 10 o oo
Voo 6 10 — 16 13
Vs |17 oo oo 16 — 30
Vs | 18 11 o 13 30 -—

Step 1 We start from the vertex V; and smallest entry in the row 1 is
14 for (V1, Va). We select (V1, V2) which results in the following
subgraph

4 14

LIS

Figure 7.66

Step 2 Next the smallest entry in the row 1 and row 2 is 5 for

(Va, V3). We connect it to the above subgraph which results in the
following:

7 14 W

Vs

Figure 7.67

Step 3 Next the smallest entry in the row 1, row 2 and row 3 is 6 for

(Va, V4). We connect it to the above subgraph which results in the
following:



Tree

14

<<

Figure 7.68

I 7.39

Step 4 Next the smallest entry in the row 1, row 2, row 3 and row 4 is 10
for (V3, V). We cannot connect it to the above subgraph because it

results in a cycle.

Step 5 Next the smallest entry in the row 1, row 2, row 3 and row 4 is 11
for (V2, V). We connect it to the above subgraph which results in the

following:
Vi 14 Y
11
Ve 13
[ J
A
Figure 7.69

Step 6 Next the smallest entry in the row 1, row 2, row 3, row 4 and row 6 is
13 for (V4, V). We cannot connect it to the above subgraph because

it results in a cycle.

Step 7 Next the smallest entry in the row 1, row 2, row 3, row 4 and row 6
is 16 for (V4, Vi). We connect it to the above subgraph which results

in the following:
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& 14 Ve
5
11
6 Vs

s
-~ 16
@ Va

Figure 7.70

Since the number of vertices in the given graph is 6 and the
subgraph in the last step contains 5 (= 6 — 1) edges, the required
minimal spanning tree is given by the Step 7.

Weight of the minimal spanning tree = 14+5+4+6+11+16 = 52.

Example7.7 | Find by Prim’s Algorithm the minimum spanning tree of the
following graph.

Figure 7.71

[WBUT 2005]

Sol. Here we have 6 vertices. So, the minimal spanning tree will be withthe 6—1 =

5 edges.
First we make the 6 x 6 weight table, of which ij'" element w;; is given

by the following rule

w;; = weight of the edge between V; and V;

w;; = oo, if there is no direct edge between V; and V
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We leave the diagonal empty by putting ‘—’. So, the table is

Vi Vo Vs Vi Vs Vg

il— 10 oo 30 45 o
V|10 — 50 oo 40 99
V3loo 50 — oo 35 15
Vil30 co oo — oo 20
Vs [45 40 35 oo — 99
Ve loo 99 15 20 99 -—

Step 1 We start from the vertex V; and smallest entry in the row 1 is 10 for
(V1, V). We select (V1, V) which results in the following subgraph:

Figure 7.72

Step 2 Next the smallest entry in the row 1 and row 2 is 30 for (V1, V,). We
connect it to the above subgraph which results in the following:

Figure 7.73

Step 3 Next the smallest entry in the row 1, row 2 and row 4 is 20 for
(Vi, Vs). We connect it to the above subgraph which results in the
following:
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Figure 7.74

Step 4 Next the smallest entry in the row 1, row 2, row 4 and row 6 is 15
for (Vs, V3). We connect it to the above subgraph which results in the

following:
Vs
v
10
4

30

Va 20 15
4

Figure 7.75

Step 5 Next the smallest entry in the row 1, row 2, row 3, row 4 and row 6
is 35 for (V3, V). We connect it to the above subgraph which results
in the following:

Figure 7.76



Example 7.8
following graph.

Tree I 7.43

Since the number of vertices in the given graph is 6 and the
subgraph in the last step contains 5 (= 6 — 1) edges, the required
minimal spanning tree is given by the Step 5.

Weight of the minimal spanning tree = 10+ 30420+ 15+ 35 =
110.

Find by Prim’s Algorithm the minimum spanning tree of the
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Figure 7.77

[WBUT 2004]

Sol. Here we have 6 vertices. So, the minimal spanning tree will be withthe 6—1 =
5 edges.
First we make the 6 x 6 weight table, of which ij'" element w;; is given
by the following rule:

w;; = weight of the edge between V; and V;

w;; = oo, if there is no direct edge between V; and V;

We leave the diagonal empty by putting ‘—’. So, the table is

A B C D E F
A|— 1 4 1 3 3
B|1 - 2 oo 4
C|4 2 — 2 oo o©
D|1 © 2 - 4 5
E|3 4 oo 4 - 3
F|3 o0 o 5 3 -

Step 1 We start from the vertex A and smallest entry in the row 1 is 1 for (A, B) and
(A, D). We select (A, B) arbitrarily which results the following subgraph:

A

Figure 7.78
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Step 2 Next the smallest entry in the row 1 and row 2 is 1 for (A4, D). We connect it
to the above subgraph which results the following:

A

D
Figure 7.79
Step 3 Next the smallest entry in the row 1, row 2 and row 4 is 2 for (B, C').and

(D, C). We select (B, C) arbitrarily and connect it to the above subgraph
which results in the following:

A
1
B
1 2
c
D
Figure 7.80

Step 4 Next the smallest entry in the row 1, row 2, row 3 and row 4 is 2 for (D, C).
We cannot connect it to the above subgraph because it results in a cycle.

Step 5 Next the smallest entry in the row 1, row 2, row 3 and row 4 is 3 for (A, E)
and (A, F'). We select (A, E) arbitrarily and connect it to the above subgraph
which results in the following:
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A
1
B
3
1 2
E c
D
Figure 7.81

Step 6 Next the smallest entry in the row 1, row 2, row 3, row 4 and row 5 is 3 for
(A, F)and (E, F). We select (A, F') arbitrarily and connect it to the above
subgraph which results in the following:

D

Figure 7.82

Since the number of vertices in the given graph is 6 and the subgraph in
the last step contains 5 (= 6 — 1) edges, the required minimal spanning tree
is given by the Step 5.

Weight of the minimal spanning tree =1+ 1+ 24 3+ 3 = 10.
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Example 7.9 | If G be a connected graph with n vertices and e edges, then show
that it has a unique circuit if and only if n = e.

Sol. First we consider that the graph G with n vertices and e edges contains a
unique circuit, say C. If we delete an edge e; from C, the graph remains
connected and also becomes acyclic. This means G — {e; } becomes a tree
with n vertices. Therefore, G — {e; } must have n — 1 edges. Since only one
edge is deleted from G, the total number of edges of Gis (n — 1) +1 =n
which implies the fact that e = n.

Conversely let G be a connected graph with n vertices and e edges such
that e = n. We are to prove that it contains a unique circuit.

Since G is connected and the number of edges are not equal ton — 1, G is
not a tree. Therefore, it is not acyclic and must contain at least one circuit. If
possible let it contain 2 circuits, say C7 and Cs. Now if we delete two edges
ey and eq respectively from C; and C, the the graph remains connected and
also becomes acyclic. Therefore, G — {e; Ues} is a tree with n vertices and
so it has n — 1 edges. Since two edges are deleted from G, total number of
edges of Gis (n—1)+2 =n+1,i.e., e = n+ 1. This leads to a contradiction
to our hypothesis that e = n. So, GG cannot have two circuits.

In a similar manner it can be proved that G' cannot have more than two
circuits. Therefore, G contains unique circuit.

Example 7.10 If G be a graph having no cycles, n vertices and £ components,
then prove that G has (n — k) edges.

Sol. Let n; be the number of vertices of the i*" componentwheret = 1,2,3,..., k.
Therefore, total number of vertices in G is

k
n:nl—i—ng—l—---—i—nk:Zni
i=1

Since G has no cycles, any one of the components cannot contain any cycle.
Again since by definition each component is connected, all are trees.

So, the number of edges in the i*" component is (n; — 1).

So, the total number of edges in G is

k

k k
Z(ni—l):Zni—len—k.

i=1 =1
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EXERCISES

Short and Long Answer Type Questions

1) Find the spanning trees of the following graphs:

a)
%
Vi
Vo é » 3
Figure 7.83
I Y
Ans:
Vy
Z Vs

i Figure 7.84

b)
Y 4 Vs
A

Vs

Figure 7.85




c)

Tree

N

Ans:

e

Figure 7.86

N2

Figure 7.87

Ans:

Vs

Figure 7.88

Vs

I 749
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2) Find a minimal spanning tree by Kruskal’s algorithm and find the corresponding
minimum weight

a)
Figure 7.89
[ Ans: Minimum weight = 21
L Figure 7.90 ]
b) b 0 o
18 28
a ® 14 10 !
15 36
c 7 e
Figure 7.91
[ Ans: Minimum weight = 65 b 9 d 1
‘&
a 6 Y
15 _
c 7 e
L Figure 7.92 |
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Tree
©)
b s ¢
1 2 4 3
g 3 d
a
1 12 7
5
€
f 10
Figure 7.93
[Ans: Minimum weight = 21 3 c
3
a
7
€
L Figure 7.94 ]

3) Find a minimal spanning tree by Prim’s algorithm and find the corresponding

minimum weight.

a)
a 14 b
18 5
11
17| 30 6 c
f
6 10
e 16 a
Figure 7.95
Ans: Minimum weight=52 & 14 b |
5
11
6 c
f
e 16 a
i Figure 7.96 }
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b)

Figure 7.97

[Ans: Minimum weight = 7

c)

Figure 7.99

_Ans: Minimum weight = 38

Figure 7.100



Tree

4) Use BFS algorithm to find a spanning tree of the following graphs:

a)

b)

a

Figure 7.101

LAY

Ans: 4
c
f
a
c

Figure 7.103

Ans:

Figure 7.102

c

Figure 7.104

I 7.53
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c)
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a
Figure 7.105

Ans:

a

Figure 7.106

5) Use DFS algorithm to find a spanning tree of the following graphs:

a)

c

Figure 7.107

_Ans: The path is a-e-b-c-d

c

Figure 7.108
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b)

)
~

a
Figure 7.109

Ans: The path is a-b-c-d-e-f

)
~

a

Figure 7.110

6) Find a spanning tree 7" of the following graph G. Find all the fundamental circuits
of G with respect to 7.

b f
a a
c e
Figure 7.111
[ Ans: One of the spanning tree T" of the graph G is
f
b
a
r
c e
Figure 7.112
i and the fundamental circuitsareb —c—a—b,c—e—a—c, f —e—d — f.
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Multiple Choice Questions

1) A treeis alwaysa
a) self-complement graph b) Euler graph
c¢) simple graph d) Hamiltonian graph

2) Tree is a connected graph without any
a) pendant vertex b) circuit ¢) odd vertex d) even vertex

3) A minimally connected graph cannot have a
a) circuit b) component ) even vertex d) pendant vertex

4) A binary tree has exactly
a) two vertices of degree two b) one vertices of degree two
c) one vertex of degree one d) one vertices of degree three

5) Sum of the degrees of all vertices of a binary tree is even if the tree has
a) odd number of vertices b) even number of vertices
c) four vertices d) none of these

6) A binary tree has exactly

a) one root b) two root ¢) three root d) none of these

7) Addition of an edge between any two vertices of a tree creates
a) Euler line b) circuit c) longest path d) regular graph

8) The minimum number of pendant vertices in a tree with five vertices is
a) 1 b) 2 c)3 d)4
9) If T be a spanning tree in a graph G then the cotree of T' contains

a) all the chords of T’ b) all the vertices of G which are not of T’
c) all the edges of G d) none of these

10) A fundamental circuit is obtained from
a) any tree b) a spanning tree c) a binary tree d) longest path

11) A cut set always splits the graph into
a) three b) more than three c) two d) none of these

12) Cut set is defined for
a) digraph only b) connected graph only
c) arbitrary graph d) weighted graph
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13) A tree having no cut vertex is a graph of
a) three vertices b) two vertices c) two edges d) none of these

14) The vertex connnectivity of a tree is
a)0 b) 1 c)?2 d) more than 2

15) The edge connnectivity of a tree is
a)0 b) 1 c)?2 d) more than 2

Answers:
1(c) 2 (b) 3(a) 4 (b) 5(a) 6 (a) 7 (b)

8 (b) 9 (a) 10 (b) 11 (c) 12 (¢) 13 (b) 14 (b)
15 (b)



CHAPTER

Shortest Path and
Algorithm

8.1 INTRODUCTION

Suppose a, b, ¢, ... are some cities (or communication centers or electronic chips in
a circuit board etc.) connected by highways (or telephone lines or electric wires etc).

In the graph, cities and connecting highways are represented by vertices and edges
respectively.

Figure 8.1

There is a path (union of edges) between every pair of vertices. But the most com-
mon problem is to find the path having shortest length in different branches of science
and technology. It is also used in operation research.

There are several methods for finding shortest paths. Here, we represent Dijk-
stra’s algorithm as well as BFS algorithm to find the shortest distance. University
examination problems are solved at the end of the chapter.
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8.2 SHORTEST PATHS IN UNWEIGHTED GRAPHS

Let G(V, E) be a connected graph and u, v are two vertices of the graph. Now u and
v can be connected by more than one path. Among all the paths possible between the
vertices u and v, the path containing minimum number of edges is called the shortest
path between u and v.

In the following graph, let us consider the two vertices A and Z.

c

F
E

Figure 8.2

Now, the possible paths between A and Z are

(1) A— B — C — Z containing three edges.
(2) A — B — Z containing two edges.
(3) A — D — Z containing two edges.
(4) A— E — F — Z containing three edges.

Then the shortest path between these two vertices is given by the path containing two
edges, since it is minimum. So, the paths are given by (2) and (3).

It should be noted that there may be more than one shortest path between any two
vertices.

8.3 SHORTEST PATHS IN WEIGHTED GRAPHS

Let G(V, E,w) be a connected weighted graph, where w is a function from F to the
set of positive real numbers. Let us consider V' as a set of cities and E as a set of
highways connecting these cities. The weight of an edge {7, j}, denoted by w;; is
usually referred to as the length of the edge {i, j}. It has an obvious interpretation as
the distance between the cities ¢ and j, although other interpretations such as yearly
cost to maintain the highways etc can exist.

The length of a path in G is defined as the sum of the weights of the edges in the
path. Our interest is to determine a shortest path (path of minmum weight) from one
vertex to another vertex in G.
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In the following weighted graph, let us consider the two vertices A and Z.

Figure 8.3

Now, the possible paths between A and Z are

(1) A— B — C — Z containing three edges AB, BC, C'Z and sum of the weights of
the edges is 1 + 2 4+ 3 = 6. So, the length of the path is 6.

(2) A — B — Z containing two edges. AB, BZ and sum of the weights of the edges
is 1 + 7 = 8. So, the length of the path is 8.

(3) A — D — Z containing two edges. AD, DZ and sum of the weights of the edges
is4 + 2 = 6. So, the length of the path is 6.

(4) A— E — F — Z containing three edges. AE, EF, F'Z and sum of the weights of
the edges is 2 + 3 + 5 = 10. So, the length of the path is 10.

Then, the shortest path between these two vertices is given by the path of length 6,
since it is minimum. So, the paths are given by (1) and (3).

It should be noted that there may be more than one shortest path between any two
vertices.

There are different kinds of shortest path problems:

(1) Shortest path between two specified vertices.
(2) Shortest path from a specified vertex to all others.
(3) Shortest path between all pairs of vertices.

Sometimes type (1) becomes identical to type (2) because in the process of finding
the shortest path from a specified vertex to another specified vertex, we may have to
determine the shortest path to all other vertices.

There are several methods of finding the shortest paths. One effective method is
described by EW Dijkstra. Here, we present Dijkstra’s Algoritham for finding the
shortest path between two specified vertices.
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8.4 DIJKSTRA’'S ALGORITHAM FOR FINDING THE SHORTEST
PATH BETWEEN TWO SPECIFIED VERTICES

A simple weighted graph G(V, E, w) with n vertices is described by an n x n matrix
W = (wij),,,,» Where

w;; = weight (or distance or cost) of the edge from vertex ito j

wii:O

w;; = 0o, if there is no edge from vertex 7 to 7.

If the graph is not simple, i.e., if the graph G contains any self loop, then discard it.
Also if G contains parallel edges between any two vertices, discard all except the edge
having the least weight.

Let us consider that we are to find out the shortest path from a specified vertex s to
another specified vertex ¢.

At each stage in the algorithm some vertices have permanent labels and others have
temporary labels. Label of a vertex v is denoted by L(v).

Assign first, the permanent label 0 to the starting vertex s, i.e., L(s) = 0 and a
temporary label co to the remaining vertices. Subsequently in each iteration another
vertex gets a permanent label.

Step I Every vertex j thatis not yet permanently labelled gets a new temporary label
whose value is given by

| L(j) = min {old L(j), (old L(i) + wi;)} |

where ¢ is the latest vertex permanently labelled in the last iteration and w;;;
is the direct distance between the vertices ¢ and j. If ¢ and j are not joined by
an edge, then w;; = oo.

Step Il The smallest value among all the temporary labels is marked and this is the
permanent label of the corresponding vertex. In case of a tie, select any one
for permanent labelling.

Step Il Step I and Step IT are repeated alternately until the destination vertex ¢ gets a
permanent label.

Every stage of lebelling will be displayed in the table. In the table permanent label of
every vertices will be shown enclosed in a square (0J).

Here, the shortest distance of the destination vertex ¢ is found by its value of the
permanent label. The shortest path will be found by the backtraking technique from
the table.

Backtracking technique for finding the shortest path Starting from the per-
manent label of the destination vertex ¢, we proceed (towards the upward direction in
the computation table) through the previously assigned temporary labels of ¢ until we
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get a change in the label. Check the vertices that have got a permanent label at this
stage. Move to that vertex. Now, apply the similar backtracking technique until we
reach at the permanent label of the source vertex s.

Observations:

(1) The above algorithm can be applied for a directed graph as well as undirected
graph. In case of a Di-graph w;; #w,; whereas for a undirected graph
Wij = Wyg-

(2) The algorithm can be used for unweighted graphs. In this case, construct the

table W = (w;),, .., for a graph with n vertices as follows, where

w;; = 1, if there is an edge from vertex i to j
wi; =0

w;; = oo, if there is no edge from vertex ¢ to j

Then proceed as stated above in the algorithm.

(3) There may exist more than one shortest path between two specified vertices.
This kind of situation arises when we have a tie for selecting permanent label
among the temporary labels at any stage in the table.

Example1 | Find the shortest path and shortest distance from A to £ using

Dijkstra’s Algorithm.

B 3 E

4 1

A 3 ? < 1 4
3 2
2 5
c 3 F
Figure 8.4

The given graph is not simple weighted. So, we make it simple.

First we delete the edge CD of weight 5, because 3 is the minimum weight. We
also delete the edge EF of weight 4, because 1 is the minimum weight. Then the
graph becomes simple and is given by
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B 3 E

4 1

2 D

A 3 1

3 2

2
c 3 F
Figure 8.5

The weight table W = (w;; ), 4 is formed on the basis

w;; = weight (or distance or cost) of the edge from vertex ito j

wii:O

w;; = 0o, if there is no edge from vertex 7 to j

and is given by the following

A B C D E F
Al 0 4 2 oo o ™
Bloo 0 3 2 o o©
Cloo o 0 3 oo 3
D|loo o0 0o 0 1 o©
EFloo 3 o© oo 0 1
Floo o0 0o 2 oo 0

Here, we are to find the shortest path from the vertex A to the vertex E. So we start
our computation by assigning permanent label 0 to the vertex A4, i.e., L(A) = 0 and
temporary label co to all others. Permanent label is shown by enclosing in a square (L)
in the computation table. Now, at the every stage we compute temporary labels for all
the vertices except those that already have permanent labels, and only some of them
will get permanent labels. We continue this process until the destination vertex E gets
a permanent label.
Temporary label of vertex j, which is not yet permanently labelled is given by

L(j) = min{old L(j), (old L(7) + w;;)}

where i is the latest vertex permanently labelled in the last stage and w;; is the direct
distance between the vertices ¢ and j.
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The computation is shown in the following table:

A B
st.1|[o]
st.2|[o] 4
st.3|[o] 4
st.4|[o] 4
st.5 | [o] [4]
st.6 | [0] [4]
st7 | [o] [4]
st.8 | [0] [4]
st.9 | [o] [4]
st.10| [o] [4]
st.11| 0] [4]

C

(2] [r]

] [

]
(]
8

[\

| ]

[\

[\

D FE
0o 00
0o 00
0o 00
5 o0
5 o0
5 o0

5] 6
5] 6
5] 6
5] [6]

F

oo

| [«

(@31

(@31

. A has got the permanent label 0 and
* all others have temporary label oco.

. Calculation of temporary labels
* and 2 is the minimum among all.

. C has got the permanent label.

. Calculation of temporary labels
* and 4 is the minimum among all.

. B has got the permanent label.

. Calculation of temporary labels
* and 5 is the minimum among all.

. There is a tie, so we select D arbitrarily.
* D has got the permanent label.

. Calculation of temporary labels
* and 5 is the minimum among all.

. F has got the permanent label.

. Calculation of temporary label
* and 6 is the only label.

. Destination vertex E has
* got the permanent label.

For better clarification of the table the computations are shown as follows:

|Calculation of temporary labels in stage 2:] Here A is the latest permanently

labelled vertex.

= min {old L(B), (old L(A) +wap)}
min {oo, (0+4)} =4.
min {old L(C), (old L(A) + wac)}

=min{oo, (0+2)} =2.

L(D) = min{old L(D), (old L(A) +wap)}
= min{oo, (04 c0)} =0

L(E) = min{old L(E), (old L(A) + wag)}

= min{oo, (0+00)} = 0.
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L(F) = min {old L(F), (old L(A) +war)}

= min{oo, (0+ 00)} = 0.

|Calculation of temporary labels in stage 4] Here C is the latest permanently
labelled vertex.

L(B) = min{old L(B), (old L(C) +wcp)}
=min{4, (2+00)} =4.

L(D) = min{old L(D), (old L(C) +wep)}
=min{oo, (2+3)} =5

L(E) = min{old L(E), (old L(C) + wck)}

= min{oco, (24 00)} = 0.
L(F) = min{old L(F), (old L(C) +wcF)}
=min{oo, (2+3)} =5.

|Calculation of temporary labels in stage 6:] Here B is the latest permanently
labelled vertex.

L(D) = min{old L(D), (old L(B) +wgp)}
=min{5, 4+2)}=5

L(E) = min{old L(E), (old L(B) + wgg)}
= min{oo, (44 c0)} = c0.

min {old L(F), (old L(B) + wgr)}

=min{5, (4+00)} =5.

=
3
I

|Calculation of temporary labels in stage 8:] Here D is the latest permanently
labelled vertex.

L(E) = min{old L(E), (old L(D) +wpg)}
=min{oo, (5+1)} =6.

min {old L(F), (old L(D) +wpr)}

=min{5, (5+00)} =5.

L(F)

|Calculation of temporary labels in stage 10:| Here F is the latest permanently
labelled vertex.

L(E) = min{old L(E), (old L(F) + wrg)}
=min {6, (5+ oc0)} =6.
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In the final stage 11 of the table, the destination vertex E has permanent label and its
value is 6. So the required shortest distance is 6.

Now we apply backtrack technique for finding shortest path. Starting from the per-
manent label of E (from stage 11) we traverse back and see that in stage 7, it is changed
and at that stage D has got the permanent label. So we move to D. Repeating the same
thing we see that in stage 3, the label of D is changed and at that stage C has got
the permanent label. So we move to C. Now if we apply the same technique, then
in Stage 1 the label of C' is changed and at that stage source vertex A has got the
permanent label. So we reach at the source vertex and stop the process.

Hence, the shortest path is given by

A—-C—D—E.

8.5 BREADTH FIRST SEARCH (BFS) ALGORITHM TO FIND THE
SHORTEST PATH FROM A SPECIFIED TO ANOTHER
SPECIFIED VERTEX

This method is applicable to the unweighted graph.

Let G be any unweighted graph and suppose we are to find the shortest path between
the vertices v and v.

The algorithm is based on stage by stage labelling the vertices.

Select the starting vertex u of the graph and label it as 0.

Then label the other vertices in every stage based on the rule given below.

Traverse all the unlabelled vertices in G which are adjacent to the vertices of label
k and label all of them as k£ + 1. If no such vertex exists, then there exists no path
starting from the vertex of label k.

Continue the process of stage to stage labelling of the vertices until the destination
vertex v gets labelled.

The value of the label asigned to the vertex v is the shortest distance from u to v.

Apply the following back tracking method to find the shortest path from u to v:

Suppose the destination vertex v is labelled as r. Then find an adjacent vertex whose
label is » — 1. If there is a tie, select any one and let the selected adjacent vertex be
w. Then move to the vertex w and apply the same technique.

Continue the process of back tracking until the starting vertex u is reached. The
path through the vertices which are traversed on the way of backtracking gives the
shortest path.

Observation: There may exist more than one shortest path between two spec-
ified vertices. This kind of situation arises when there is a tie for selecting vertices
on the way of backtracking.
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Example 2 | Find by BFS algorithm the shortest path from the vertex v> to vg
in the following graph. [WBUT 2005]

Figure 8.6

Sol. First we select the starting vertex v and label it as 0.
Its adjacent unlabelled vertices are vs and v;. They are labelled as 0+1 = 1.
The labels are shown in the figure.

Figure 8.7

Then we see that the unlabelled adjacent vertices of vs are v4 and vg. We
label each of them as 1 + 1 = 2. The only unlabelled adjacent vertex of v; is
v7. We label itas 1 +1 = 2.

Now the unlabelled adjacent vertices of v4 are vs and vg. We label each of
themas2 + 1 = 3.

We stop the process of labelling since the destination vertex vg gets labelled
and the value of the label is 3. Therefore, the shortest distance between the
vertices vo and vg is 3.
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To get the shortest path between the vertices vy and vg we apply the
backtracking method starting from destination vertex vg, whose label is 3.

Now the vertices, v4 and v7 are adjacent to vg and labelled as 3 — 1 = 2.
There is a tie between the two vertices. We select vy arbitrarily and move to
V4.

Next the vertex vs is adjacent to vy and labelled as 2 — 1 = 1. So we move
to vs.

Again the vertex adjacent to vs and labelled as 1 — 1 = 0, is the starting
vertex vy. So we stop the process, since the starting vertex is reached.

Hence, the required shortest path is

Vg — V3 — Vg4 — VUg.

WORKED OUT EXAMPLES

Example 8.1 | Using Dijkstra’s Algorithm find the length of the shortest path
from q to z in the following graph:

b 5 a
4 6
8
a 1 2 z
2 3
c 10 e
Figure 8.8

[WBUT 2003, 2007]

Sol. The given graph is a simple weighted connected graph. The weight table W =
(wij) g i formed on the basis

w;; = weight (or distance or cost) of the edge from vertex ito j
Wi = 0

w;; = oo, if there is no edge from vertex ¢ to j

and is given by the following

v oA o9

38 8w~ ol
38 o~ ol
35 0o ~ro
oo oty
wormS ¥ Yo
cwoy Y R|w
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Here, we are to find the shortest path from the vertex a to the vertex z. So
we start our computation by assigning the permanent label 0 to the vertex a,
i.e., L(a) = 0 and temporary label oo to all other vertices. Permanent label
is shown by enclosing in a square ([J) in the computation table. Now at every
stage we compute temporary labels for all the vertices except those that already
have permanent labels and only some of them will get permanent labels. We
continue this process until the destination vertex z gets the permanent label.

Temporary label of vertex j, which is not yet permanently labelled is
given by

|L(j) = min{old L(j), (old L(i) + w”)}|

where ¢ is the latest vertex permanently labelled in the last stage and wj; is the
direct distance between the vertices ¢ and j.
The computation is shown in the following table:

a b ¢ d e z

. a has got the permanent label 0 and
St.1| [0l 0o 00 00 0o oo all others have temporary label oco.

. Calculation of temporary labels
St.2 |0 4 2 oo oo oo and 2 is the minimum among all.
St.3 |00 4 [2] oo oo oo |:chasgotthe permanent label.

. Calculation of temporary labels
St.4 | [0l 3 [21 10 12 oo | and 3 is the minimum among all.
St.5 |00 B8] [2I 10 12 oo |: b has gotthe permanent label.

. Calculation of temporary labels
St.6 | [0l B 2 8 12 oo | and 8 is the minimum among all.
St7 [[0] [B] [21 [8] 12 oo |:d has gotthe permanent label.

. Calculation of temporary labels
st.8 [0l [3 I [ 10 14 ] and 10 is the minimum among all.
St.9 | 101 [38] [2] [8] [10] 14 |: e has got the permanent label.

. Calculation of temporary labels

St.10| [0 31 [2/ [8 [10f 13 |: and 13 is the only label.

. Destination vertex z has

St.11| [0l (8] [ (8 [10] [13] ) got the permanent label.

In the final stage 11 of the table, the destination vertex z has permanent label
and its value is 13. So the required shortest distance is 13.

Now we apply backtrack technique for finding shortest path. Starting from
permanent label of z (from stage 11) we traverse back and see that in stage
9, it is changed and at that stage e has got the permanent label. So we move
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to e. Repeating the same thing we see that in stage 7, the label of e is changed
and at that stage d has got the permanent label. So we move to d. Now if we
apply similar technique, then in Stage 5 the label of d is changed and at that
stage b has got the permanent label. So we move to b. Now if we apply similar
technique, then in Stage 3 the label of b is changed and at that stage c has got
the permanent label. Now if we apply similar technique, then in Stage 1 the
label of c is changed and at that stage source vertex a has got the permanent
label. So we reach at the source vertex and stop the process.
Hence, the shortest path is given by

a—c—b—od—oe— z.

Example 8.2 | Apply Dijkstra’s Algorithm to determine a shortest path from a
to z in the following graph:

b
2
a ] ‘
4
a 4 f
Figure 8.9

[WBUT 2005]

Sol. The given graph is a simple weighted connected graph. The weight table
W = (wij),,, is formed on the basis

w;; = weight (or distance or cost) of the edge from vertex ito j
Wi = 0

w;; = oo, if there is no edge from vertex ¢ to j

and is given by the following

a b ¢ d e f =z
al 0 2 1 4 o© o0 o0
b2 0 2 o 3 o o©
cl1 2 0 2 5 7 o
d|l 4 oo 2 0 oo 4
eloo 3 5 oo 0 oo 1
floo o 7 4 o~ 0 3
z|loo o0 oo o0 1 3 0

Here, we are to find the shortest path from the vertex a to the vertex z. So
we start our computation by assigning the permanent label 0 to the vertex a,
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i.e., L(a) = 0 and temporary label co to all others. Permanent label is shown
by enclosing in a square (LJ) in the computation table. Now at every stage we
compute temporary labels for all the vertices except those that already have
permanent labels and only some of them will get the permanent label. We
continue this process until the destination vertex z gets the permanent label.

Temporary label of vertex j, which is not yet permanently labelled is
given by

|L(j) = min{old L(j), (old L(i) + w”)}|

where ¢ is the latest vertex permanently labelled in the last stage and wj; is the
direct distance between the vertices ¢ and j.
The computation is shown in the following table:

a b ¢ d e f =z
St1|[0 oo 00 oo oo 0o oo | a has got the permanent label 0 and
all others have temporary label co.
st2|0 2 1 4 oo oo ool Calcul.atlon of te?,mporary labels
and 1 is the minimum among all.
St.3 |00 2 [ 4 oo oo oo |- chas gotthe permanent label.
st4al[0 2 M 3 6 8 ol Calcul.atlon of te?,mporary labels
and 2 is the minimum among all.
St.5 |00 21 [ 3 6 8 oo |-bhas gotthe permanent label.
st6|l0 2 M 3 5 8 ool Calcul.atlon of te?,mporary labels
and 3 is the minimum among all.
St7 |0 [21 [ [ 5 8 oo |:d hasgotthe permanent label.
st$|0 @ @M B 5 7 ool Calcul.atlon of te?mporary labels
and 5 is the minimum among all.
St.9 |00 [21 [ (38 [B1 7 oo |.ehasgotthe permanent label.
st10l0 @ @ B B 7 6| Calcul.atlon of te?,mporary labels
and 6 is the minimum among all.
sl 2 @ B B 7 @6l Destination vertex z has
got the permanent label.

In stage 11 of the table, the destination vertex z has permanent label and its
value is 6. So the required shortest distance is 6.

Now we apply backtrack technique for finding the shortest path. Starting
from permanent label of z (from stage 11) we traverse back and see that in
stage 9, it is changed and at that stage e has got the permanent label. So we
move to e. Repeating the same thing we see that in stage 5, the label of e is
changed and at that stage b has got the permanent label. So we move to b.
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Now if we apply similar technique, then in Stage 1 the label of b is changed
and at that stage source vertex a has got the permanent label. So we reach at
the source vertex and stop the process.

Hence, the shortest path is given by

a—b—oe—z.

Example 8.3 | Apply Dijkstra’s Algorithm to determine a shortest path from a
to f in the following graph:

Figure 8.10
[WBUT 2004, 2008]

Sol. The given graph is not simple. We first discard the parallel edge ac with weight
4, because 3 is the minimum weight. We also delete the self loop at the vertex
d. The we have the following simple weighted connected graph:

Figure 8.11

The weight table W = (w;;) ¢ is formed on the basis

6%

w;; = weight (or distance or cost) of the edge from vertex ito j

’wii:O

w;; = oo, if there is no edge from vertex 7 to j
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and is given by the following

a b c d e f
al|l 0 2 3 oo oo oo
bl 2 0 25 o 1.7 o
c|l3 25 0 15 6 o
d|loo oo 1.5 0 3 23
eloo 1.7 6 3 0 3.3
floo o0 o0 23 33 0

Here, we are to find the shortest path from the vertex a to the vertex f. So
we start our computation by assigning the permanent lebel O to the vertex a,
i.e., L(a) = 0 and temporary label co to all others. Permanent label is shown
by enclosing in a square (LJ) in the computation table. Now at every stage we
compute temporary labels for all the vertices except those that already have
permanent labels and only some of them will get the permanent label. We
continue this process until the destination vertex f gets the permanent label.

Temporary label of vertex j, which is not yet permanently labelled is
given by

|L(j) = min{old L(j), (old L(i) + w”)}|

where ¢ is the latest vertex permanently labelled in the last stage and wj; is the
direct distance between the vertices ¢ and j.
The computation is shown in the following table:

b ¢ d e f

. a has got permanent label 0 and
St.1) [0l oo oo oo o0 oo | all others have temporary label oo.

. Calculation of temporary labels
$t.2\ [0l 2 3 oo o0 oo and 2 is the minimum among all.
St.3| 0] [2] 3 oo oo oo |-bhas gotthe permanent label.

. Calculation of temporary labels
St.4\ [0 2] 3 oo 37 oo and 3 is the minimum among all.
St.5|[0] [2] [3] oo 3.7 oo |- chas gotthe permanent label.

. Calculation of temporary labels
St.6\ [0 2] [31 45 3.7 oo | and 3.7 is the minimum among all.
St.7 [ [0] 21 [8] 4.5 [3.7 oo |: e has got the permanent label.

. Calculation of temporary labels
st.8 (0] & B 45 37 7 | and 4.5 is the minimum among all.
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St.9 | [0l (2] [3] [45 [3.7 7 |:dhasgotthe permanent label.
. Calculation of temporary labels
St.101 [0 [2] (3] [4.5 [3.7 ‘ * and 6.8 is the only label.
se11|0 @ B @5 37 63 |: Destination vertex f has
got the permanent label.

In the final stage 11 of the table, the destination vertex f has a permanent label
and its value is 6.8. So the required shortest distance is 6.8.

Now we apply backtrack technique for finding shortest path. Starting from
permanent label of f (from stage 11) we traverse back and see that in stage 9,
itis changed and at that stage d has got the permanent label. So we move to d.
Repeating the same thing we see that in stage 5, the label of d is changed and
at that stage c has got the permanent label. So we move to c. Now if we apply
similar technique, then in Stage 1 the label of c is changed and at that stage
source vertex a has got the permanent label. So we reach at the source vertex
and stop the process.

Hence, the shortest path is given by

a—c—d— f.

Example 8.4 | Apply Dijkstra’s Algorithm to determine a shortest path from s
to z in the following graph:

Figure 8.12

[WBUT 2009]

Sol. The given graph is simple weighted connected graph. The weight table
W = (wij),,, is formed on the basis

w;; = weight (or distance or cost) of the edge from vertex ito j

’wii:O

w;; = oo, if there is no edge from vertex ¢ to j
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and is given by the following

s a b ¢ d e =z
s 0 16 8 22 oo o0 o™
all6 0 10 20 3 4 10
bl 8 10 0 o0 6 o0 o0
cl|22 20 co O 7 2 2
dlooc 3 6 7 0 oo 9
elooc 4 oo 2 oo 0 4
z|loo 10 co 2 9 4 0

Here, we are to find the shortest path from the vertex s to the vertex z. So
we start our computation by assigning the permanent lebel 0 to the vertex s
i.e., L(s) = 0 and temporary label oo to all others. Permanent label is shown
by enclosing in a square (LJ) in the computation table. Now at every stage we
compute temporary labels for all the vertices except those that already have
permanent labels and only some of them will get the permanent label. We
continue this process until the destination vertex z gets the permananent label.

Temporary label of vertex j, which is not yet permanently labelled is
given by

|L(j) = min{old L(j), (old L(i) + w”)}|

where ¢ is the latest vertex permanently labelled in the last stage and wj; is the
direct distance between the vertices ¢ and j.
The computation is shown in the following table:

s a b ¢ d e =z
St.1| [0 oo 0o o0 oo oo oo | s has got the permanent label 0 and
all others have temporary label co.
st.2|[0 16 8 22 oo oo ool Calcul.atlon of te?,mporary labels
and 8 is the minimum among all.
St.3|[0] 16 [8] 22 oo oo oo |.bhas gotthe permanent label.
st.4|[0 16 [8 22 14 oo ool Calcula.tlon of t.elpporary labels
and 14 is the minimum among all.
St.5|[0] 16 [8] 22 [14] oo oo |- dhas gotthe permanent label.
st6| [ 16 [8 21 M4 oo 23| Calcula.tlon of t.elpporary labels
and 16 is the minimum among all.
St7 [ [0] [16] [8] 21 [14] oo 23 |. a has got the permanent label.
st.8| [0 M8 | 21 @ 20 23| Calcula.tlon of t.elpporary labels
and 20 is the minimum among all.
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St.9 | [0 [16] [8] 21 [14] [20] 23 |: e has got the permanent label.
st.10| [0 16 8 21 [ 20 23 |: Calcula.tlon of t.elpporary labels
and 21 is the minimum among all.
St. 11| [0] [16] [8] [21] [14] [201 23 |- c has got the permanent label.
st.12| [0 16 8 U [@ 20 23 |: Calcula.tlon of temporary labels
and 23 is the only label.
st.13| [0 (6 8 20 [14 [P0 [23 |: Destination vertex z has
got the permanent label.

In the stage 13 of the table, the destination vertex z has the permanent label
and its value is 23. So the required shortest distance is 23.

Now we apply backtrack technique for finding shortest path. Starting from
the permanent label of z (from stage 13) we traverse back and see that in stage
5, itis changed and at that stage d has got the permanent label. So we move to
d. Repeating the same thing we see that in stage 3, the label of d is changed
and at that stage b has got the permanent label. So we move to b. Now if we
apply similar technique, then in Stage 1 the label of b is changed and at that
stage source vertex s has got the permanent label. So we reach at the source
vertex and stop the process.

Hence, the shortest path is given by

s—b—d— 2.

Example 8.5 | Apply Dijkstra’s Algorithm to determine a shortest path from
to z in the following graph:

b 5 a
6
4
a 1 8 2 z
2 3
10
c e
12
Figure 8.13
[WBUT 2006, 2011]
Sol. The given graph is not a simple one. To make it simple first we discard the self

loop on the vertex e. Then delete the edge {c, e} of weight 12, because 10 is
the minimum weight. Then the graph becomes simple and is given by
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b 5 a
6
4
8
a 1 2 z

2 3

c 10 e

Figure 8.14

Now we apply Dijkstra’s Algorithm to determine a shortest path from a to z,
which is same as Example 8.1.

EXERCISES

Short and Long Answer Type Questions

1) Apply BES Algorithm to determine a shortest path from vy to vg in the following

graph:

Y5

<]

)

6
Figure 8.15

[Ans: vo — v3 — v7 — Vg OI, V3 — V1 — U7 — Ug. Shortest distance 3.]
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2) Apply Dijkstra’s Algorithm to determine a shortest path from s to z in the
following graph:

Figure 8.16

[Ans: s — b — d — z. Shortest distance 23.]

3) Apply Dijkstra’s Algorithm to determine a shortest path from a to b in the
following graph:

Figure 8.17

[Ans: ¢« — ¢ — d — b. Shortest distance 8.4.]

4) Apply Dijkstra’s Algorithm to determine a shortest path from A to F in the
following graph:

B E

Figure 8.18
[Ans: A—- B —D — F — For, A— C — F — E. Shortest distance 10.]
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5) Apply Dijkstra’s Algorithm to determine a shortest path from A to F' in the
following graph:

D 2 E

Figure 8.19
[Ans: A — C — D — E — F. Shortest distance 14.]

6) Apply Dijkstra’s Algorithm to determine a shortest path from A to E in the
following graph:

Figure 8.20
[Ans: A —- B — D — C — I' — E. Shortest distance 10.]

7) Apply Dijkstra’s Algorithm to determine a shortest path from A to G in the
following graph:

Figure 8.21
[Ans: A — C — D — E — F — G. Shortest distance 11.]
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8) Apply BFS Algorithm to determine a shortest path from E to H in the following
graph:

G
Figure 8.22

[Ans: E — B — A — H. Shortest distance 3.]

9) Apply Dijkstra’s Algorithm to determine a shortest path from A to G in the
following graph:

G

Figure 8.23

[Ans: A — B — E — D — F — @G. Shortest distance 18.]
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10) Apply BFS Algorithm to determine a shortest path from G to L in the following
graph:

A
B c
M L
/ J S D
He /\ °E
G F
Figure 8.24

[Ans: G - H—I—J—-M—Lo,G—H—I1I—J— K — Lor,
G —F—F — D — K — L. Shortest distance 5.]

Multiple Choice Questions

1) To find a shortest path between two vertices in a graph we apply
a) Krushkal Algorithm b) Prims Algorithm
c) Dijkstra’s Algorithm d) None of these

2) The length of shortest path between two vertices in an unweighted graph is
a) number of the edges in the path
b) number of the vertices in the path
¢) total number of the vertices and edges in the path

d) none of these

3) The length of shortest path between two vertices in a weighted graph is
a) sum of weights of the edges in the path
b) number of the edges in the path
¢) total number of the vertices and edges in the path

d) none of these
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4) The shortest distance between two vertices in a weighted graph in Dijkstra’s
Algorithm is given by
a) value of permanent label of destination vertex
b) value of permanent label of starting vertex
c) addition of values of permanent labels of all vertices in the shortest path
d) none of these

5) The number of shortest paths between two vertices in a graph

a) is always only one b) may be more than one
c) is always at least one d) none of these
Answers:

Dec 2)a 3)a 4)a 5)b






CHAPTER

Improper Integrals

9.1 INTRODUCTION

When dealing with different problems of science and technology we have to face dif-
ferent definite integrations where either the limits a and b are infinite or the integrand
f(z) is unbounded in a < = < b. These type of integrals are called improper integrals.
In this chapter, we will discuss different types of improper integrals and their conver-
gence followed by a discussion on special type of improper integrals called beta and
gamma functions with their applications. Here also we give inter-relations between
beta and gamma functions.

9.2 DEFINITION OF IMPROPER INTEGRALS

b
A definite integral [ f(x) dx is called a proper integral when

i) the limits @ and b are finite and
ii) the integrand f(z) is bounded and integrable in a < z < b.
Improper Integral 1f either
i) alimit is infinite or both, i.e., (a = —oo or b = 0o or both) or
ii) the integrand f(x) becomes infinite in @ < x < b. Then, the integral jb f(x)dxis
called an improper integral. ‘
Some examples of improper integrals are

3 00

/%dm,/ r=1) )dm,/%dm

1 —o0
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9.3 TYPES OF IMPROPER INTEGRALS

Improper integrals are of three types.

Type | The interval increases without limit (integrals with unbounded ranges)
Type Il The integrand has a finite number of infinite discontinuities.
Type lll Combination of Type I and Type II

Integrand has a finite number of infinite discontinuities and integrals with unbounded
ranges.

9.3.1 Type | : Integrals with Unbounded Ranges

There are three kinds of unbounded ranges over which integrals may be taken.

Case 1: Let f(x) be bounded and integrable in a < x < B for every B > a. Then,

the improper integral
/ f(z)dx

is said to exist or converge if

B—oo

B
lim /f(:v)d:v

exists finitely and we write

]Of(:v)dw — Jin /B f(a)do

Example1 | Verify whether the improper integral

70 dzx
1422
0

exists or not?
Sol. Here,

1

@) =15

which is bounded and integrable in 0 < < B for every B > 0.
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Now,

B

B
. . dx
dm [ sorde = g [
0 0

1, 1B

= lim [tan™" ],

B—oo

= lim [tan™! B —tan~' 0]

B—oo

. _ T
= lim tan " 'B= =
B—oo

/ dzx
1+ 22
0

Therefore,

. . s
exists and is equal to 5

Case 2: Let f(x) be bounded and integrable in A < x < b for every A < b. Then,
the improper integral

b
/ f(z)dx

is said to exist or converge if

A——o00

b
lim f(z)dx
/

exists finitely and we write

b b

/ fz)dx = Al_i)rfl f(z)dx

A

Case 3: Let f(z) be bounded and integrable in A < 2 < a for every A < a and in
a <z < Bforevery B > a and

A——o00

lim f(z)dx
/



and

lim
B—oo

exists finitely, and we write
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/Bf(:v) dx

7f(x)d:v:/af(:v)d:v+7of(:v)d:v

a B
Al_l)rgoo f(z)dz + Bh—>H;o / flx)dz
A a

Example 2 | Evaluate

oo

2
/ ze ' dx

— 00
if it converges.

Sol. We know,

[WBUT-2011]

7f(x)d:v:/af(:v)d:v+7of(:v)dm

a

A

B

Alim f(ac)dac—i—Blim fl@)de; A<z <a,a<z<B

a

Considering the integral is convergent, we have

o) 0 o)
2 2 2
/:Ce_”” dr = /:Ce_”” d:C—l—/:ve_”” dx
—o0 —0o0 0
0 B
= lim /:ve‘””z dr + lim /:ve‘””z dx
A——oc0 B—oo
A 0
, 1.1 1 _.]"
= lim ——e " + lim | — =e™®
A——oc0 2 A B—oo 2 0
1 1 1 1
= [ ] [
1 1
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9.3.2 Type Il : Integrand has a Finite Number of Infinite
Discontinuities

Case 1: Let us suppose f(x) has an infinite discontinuity only at the left-hand
point a, then

b

b
/f(ac)d:v: h%l+ flx)dz,0<e<b—a
a a-+te

where the limit exists and is finite.

Example3 | Verify whether the improper integral

1
1
/ —dx
x
0
exists or not and find the value of the integral.

Sol. Here,

1
flx) = =
which has an infinite discontinuity at the left end point x = 0.
Therefore,

1

1
1
/fd:v: lim /ldm
x e—0+ x
0 O+e

— 1 1
= 61_1)%1+[10g x,

61_1)%1+[10g 1 —loge]
= —00

Therefore, the improper integral

11
/fd:n
T

0

does not exist.
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Case 2: Let us suppose f(x) has an infinite discontinuity only at the right-hand
point b, then

b —e€
/f(:v)d:v: li%1+/f(:v)d:v,0<e<b—a

where the limit exists and is finite.

Example4 | Verify whether the improper integral

1
0/ V1—z22
exists or not and find the value of the integral.
Sol. Here,
1
) = ——
o=

which has an infinite discontinuity at = 1.
Therefore,

/ dzx ~ lim / dzx
) V1—22 €—>0+0 V1—22

= lim [sin~ ' 2]§ ™

e—0+
= lim sin™ (1 —¢)
e—0+

=sin"'1= il
2

Therefore, the improper integral

1
I

. . LT
exists and its value is 5"
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Case 3: Let us suppose f(x) has an infinite discontinuity at the point z =c,
a < ¢ < b, then

b c—e b
/f(:v) dx = el—i>%1+ / flx)dx + 51—i>%1+ / flx)dz

c+o

where the limits exists and is finite.

Observations:

1) When, f(x) has an infinite discontinuity at the pointz = ¢, a < ¢ < b, then taking
€ = §, we have

b c—e b
[ t@ydo= tim [ f@ydo+ tim [ fe)do
a a c+te
c—e b
:€Ii%1+ /f(:v) dx + / flx)dz
a c+te

is called Cauchy principal value of integral.

2) In Case 3, sometimes the Cauchy principal value of the integral exists when
according to the general definition, the integral does not exist.

ExampleS | Prove that
/ 1
-1

exists in cauchy principal value sense but not general sense.
Sol. Here, x = 0 is a point of infinite discontinuity. So
1 —e 1
1 21 )

I
’i_-
o
32

—
[\
8
V)
[I—
-
>
|
o
+
|
N
%
V)
[I—
> —

-1
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. . 1 . 1 . . .
Since, lim — and lim —— do not exist, the integral does not exist in
e—0+ 62 d—0+ 262

general sense.
But if we put € = J, then

1 —€ 1
1 . 1 1
;dm—g_l)%ar /;dm—i—/;dw
-1

-1 €

RV S T SO S TR Y
TS0+ [\2 262 2 22 )| 7

Therefore, the integral exists as cauchy principal value sense.

9.3.3 Type lll Combination of Type | and Type Il

Integrand has a finite number of infinite discontinuities and integrals with unbounded

ranges.
oo

For example, the integral [ is an improper integral of Type III. Since the
0

dx
(1—a)?

integral has an unbounded range and z = 1 is a point of infinite discontinuity.

9.4 NECESSARY AND SUFFICIENT CONDITIONS FOR
CONVERGENCE OF IMPROPER INTEGRALS

9.4.1 Convergence of Type | Improper Integral

Definition The improper integral [ f(z)dx is said to converge absolutely, when

J |f(x)| dx is convergent and f(z) is bounded and integrable in the arbitrary interval
gg x < B forevery B > a.

The improper integral [ f(x)dz is said to be conditionally convergent, when

3

PR,

" f(z) da is convergent but [ |f(z)| dx is not convergent.

Theorem 9.1 If [ f(x)dx is an absolutely convergent integral, then [ f(z)dx is

a
convergent.

Proof Beyond the scope of the book.

b b
Theorem 9.2 If [ f(x)dx is an absolutely convergent integral, then [ f(z)dx

is convergent.
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Proof Beyond the scope of the book.
Note: The converse of the above theorems are not true.

Theorem 9.3 Test of Convergence (Limit Test)
Let, f(x) and g(x) be integrable functions when 2 > a and g(z) is positive. If,

lim @ =A#£0
M g(a)

then, the integrals [ f(z) dx and | g(x) dz converge absolutely or both diverge.

Proof Beyond the scope of the book.

Corollary 1 Tf,
f(z)

lim —= — 0
z—co0 g(z)

and [ g(x)dx converges, then [ f(z) dx converges absolutely.

Corollary 2 Tf,
f(z)

lim ——~ — #+o0
z—00 g(z)

and [ g(x)dx diverges, then [ f(z)dz diverges.

Theorem 9.4 (Comparison Integral)
> d
The improper integral [ —:j(a > 0) exists if x> 1 and does not exist if p < 1.
Py

Proof Beyond the scope of the book.

Theorem 9.5 Let f(x) be an integrable function, then [ f(x)dxz (a > 0)

a

a) converges absolutely if,

lim z* f(z) = A(finite); u > 1

r— 00

b) diverges if,

lim z*f(z) = AM#£0)or £oo;u<1

r—00

Proof Beyond the scope of the book.
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Example 6 | Examine the convergence of the improper integral

/ dzx
/ V1 + 22
Sol. Here,
1
r)= ——
/(@) V1 + 22
Now, taking =2 > 1
lim 2" f(z) = lim 2?f(z) = lim :102#
T—00 T—00 T—00 V1 + 22
1
= lim lim =1

Therefore, the integral

/ dx
xvV/1 + 22
1
converges absolutely and hence is convergent.

9.4.2 Convergence of Type Il improper integral

b
Definition The improper integral | f(x)dx is said to converge absolutely where

b
z = a is the point of infinite discontinuity, when [ |f(z)| dx is convergent and f(z)

is bounded and integrable in the interval a + € <z < bwhere 0 < e < b—a

b
The improper integral [ f(z)dz is said to be conditionally convergent, when

b b
[ f(z) dz is convergent but [ | f(x)| dx is not convergent where x = a is the point of

a
infinite discontinuity.

b b
Theorem 9.6 1f [ f(x)dx is an absolutely convergent integal, then [ f(z)dx is

a a
convergent where x = a is the point of infinite discontinuity.

Proof Beyond the scope of the book.
Note: The converse of the above theorem is not true.
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Theorem 9.7 Test of convergence (Limit Test)
Let f(x) and g(x) be integrable functions where a < x < b and g(x) are positive.
If,

o 1@ _
R ) 7O

b b
then the integrals [ f(x) dz and [ g(z) dz converge absolutely or both diverge.
Proof Beyond the scope of the book.

Corollary 1 Tf,
f(z)

lim 5 — 0
a—at g(x)

b b
and [ g(x) dzx converges, then [ f(x) dx converge absolutely.

Corollary 2 Tf,
f(z)

lim —/—% — +c0
z—at g(z)

b b
and [ g(z) dz diverges, then [ f(x) dx diverges.

bod
Theorem 9.8 (Comparison Integral) The improper integral | (ac—ixﬂ exists if

a)

1 < 1 and does not exists if ;1 > 1, where = a is the point of infinite discontinuity.

Theorem 9.9 Let f(x) be an integrable functionina < z < b, i.e., (a+¢, b) where
b

0<e<b—a,then [ f(z)dxis

a) absolutely convergent if,

lim (z—a)!f(z)=XA;0<pu<1

r—a+
b) divergent if,

lim (x —a)"f(x) = AX(#0)or oo, pu>1

r—a+

where x = a is the point of infinite discontinuity.
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1

. + am—1
Example7 | Discuss the convergence of [ %~ dx
0

1 ,.m—1
Sol. The integral [ f—i— dx is a proper integral when m > 1 but is an improper
0 x
integral when m < 1.
Now,
1 xm—l
li —0)* =1 - =1; where uy =1 —
Jim (@ —0)"f(w) = lim 27— where p1 m
1) m—1
Therefore, the integral j dx is convergent when,
o 1+=x
0<p<l
or, 0<l-m<1
or, 0<m<l1

9.4.3 Absolute Convergence and Convergence of Type Il
Improper Integral

Improper integrals of Type III can be expressed in terms of improper integrals of Type I
and Type II, hence the convergence is dealt by using the results already established.

9.5 GAMMA FUNCTION
9.5.1 Definition

The improper integral

I'(n) = /e‘””:v"‘l dx forn > 0
0

is called Gamma Function or Second Eulerian Integral.

9.5.2 Properties of Gamma Functions
Property 1: For anya >0

oo

/e“”x"—l dr = L(n) forn >0

a’ﬂ

0
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Proof Let,
d
ax =y = adr =dy = dm:;y
Therefore,
/e_‘”x"_ldw = /e_y (y) il
a a
0 0
1 o0
:—/e Yyr—tdy = ( for,n >0
a’ﬂ
0
Property 2:

‘I‘(n+1):n1"(n)forn>0‘

Proof We have,

oo

I'(n) = /e_””x"_ld:v

0

Integrating by parts taking e~ as first function and 2™~ 'as second function, we have

00
(&

I'(n)

/_””:v"_ld:v
oo frra] = [ (e [t}
SRR

n
1 . —

=0+ —T(n+1); sincee™> =0
n

3=

1
= T 1
T+ 1)

or, I'n+1) = nl'(n)

Property 3:
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Proof By direct computation,

oo

/e zpl= 1d:v—/e_””dac
0

0

eI

-
[1 )

sincee” > =0
Property 4: 'When n is a positive integer
I'(n+1)=n!
Proof We know,
I'(n+1)=nT(n)forn >0
When n is a positive integer,

F'n)=(Mnm-1)T(n-1)

Similarly,
'n—1)=n-2T(n-2)
I'2)=1r(@1)
Therefore,
I'(n+1) =nl(n)

=nn—1)IT(n-1)
=n(n—1)(n—2)I'(n—2)
=n(n—1)(n—2)...2T(2)
=n(n—1)(n—2)...2.1T(1)
=nn—1)(n—2)...2.1since T'(1) =
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9.6 BETA FUNCTION
9.6.1 Definition

The improper integral

1
/:vm 11—:10" Ydx; myn >0
0

is called beta function or first Eulerian integral.

9.6.2 Properties of Beta Function
Property 1:

‘B(m, n) = B(n,m); m,n >0

Proof Putting

r=1—y= doe=—dy

we have,
1
B(m,n):/xm "1 —a)"tdx
0
1-5
= lim lim ™1 —2) " dx
€0+ 50+
5
1 : . ym—=1,n—-1/
= lim lim [ (1-y)" g (~dy)
1—e¢
1
= [y a=pm "t dy = Bm)
0
Property 2:

(1+z)m+n (1+z)m*n

7 xm—l 7 xn—l
B(m,n):/7dm:/7d$:B(n,m);m,n>O
0 0
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Proof Putting

we have,

1
B(m,n) = /:vm_l(l —z)" de
0

lim lim ™ (1 —2) " da
e—04 5§—0+

= li lim -1 d
0+ 504 / (I+y)mt(1+yrt ( )(1 +y2
1
it n—1
Y
= | ———d
/ (1 +yymte ¥
0
® n—1
x
= | ———d
/ (1+zymen
0
Similarly,
i m—1
x
0
Since,
B(m,n) = B(n,m)
Therefore,
/ T+ aymen ¥ / 1+ g)mtn dz = B(n,m); m,n >0
0 0
Property 3:

B(m,n) =2

O\w\:!

sin®™ =1 @ cos®" "1 0dl; m,n >0
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Proof Putting
z =sin’6 = dzr = 2sin6 cos 0d0

Therefore,

1
B(m,n) = /wm_l(l —z)" tdx
0

1-5
= lim lim ™1 —2) " da
e—04 6—0+
€
sin~! /19
I P : s 2m—2 2n—2 :
= lim lim sin 6 cos 6(2 sin 0 cos Hd6)
e—0+5—0+
sin—! /e

%
=2 / sin?™ 71 0 cos®™ 1 0do
0

Property 4:

Proof We have,

B(m,n) =2 [ sin®"! 0 cos*> 1 0dO; m,n > 0

o\w\:!

Puttingm =n = %, we have

9.7 INTER-RELATION BETWEEN GAMMA FUNCTION AND
BETA FUNCTION

B(m,n) = 7;”); m,n > 0 [WBUT-2011]
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Proof We know,

/e el forn > 0
0

Putting
T =az = dr = adz
we have,
oo oo
= /e_“z(az)"_ladz =a" / e 2" ldy
0 0

Writing x for z and z for a, we get

I(n) = 2" /e_”:v"_l dx
0

oo
= /e_”:v"_lzn dz
0

Therefore,
[(n)e 22" = /e_z(1+””)zm+"_1:v"_ld:v
0

Integrating both sides w.r.t z between the limits 0 to co, we have

/6 z,m— 1dZ _ /:Cn—l /e—z(l-l-w)zm-i-n—ldz dr
0 0
Putting 2l+z)=y= (14+x)dz=

1 x ym+n1
— [ v dy| d
[ | [ |
LO

0
o [
= [ap | [t @
0 0
© =
= [ et [
0 0
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or, I'(n)L'(m) = T(m+n / 1+ 2) g @
0
or, I'(n)I'(m) = T'(m + n)B(m,n) ; since B(m,n) / 1+ 2) o @
0
I'(n)T
or Bm,n) — L)L)
I(m+mn)

9.8 SOME STANDARD RESULTS USING INTER-RELATION OF
BETA AND GAMMA FUNCTIONS

Result 1

Proof We have,

N[

Puttingm =n = 3,

Now,
11
B <2, 2) ™
Therefore,
2
1
r()f --
1
or, r <2) =7
Result 2




9.20 I

Proof Here,

Taking

Engineering Mathematics-11

7 2
/e_”” dx
0
d d
P =z=%dr=dz = dw:—zz—z
2r 2y/z
_, dz
fr— e _
2V
0
17
zf/e_z 2 dz
2
0
17 1
25/6_22’2_1d2
0

r <1) = %\/E, since I’ <;) =./r

Result 3 Duplication Formula

22m=IT(m)T <m + ;) = /7l(2m);m >0

Proof We have,

Again,

Therefore,

B(m,n) =2 [ sin®™ "1 §cos® 1 0dh; m,n > 0

o\w\:!

3
B(m,n) = Lm)(n) = 2/sin2m_1 6 cos®" 1 0dh
’ T'(m+n)
0
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Putting m = n, we have

%
B(m,m) = ———~ = 2/sin2m_1 6 cos®™ 1 0dh
0

1
= Semei /sinzm_l wdo
0
taking 20 = ¢
2 2 ; 1
or, B(m,m) = 53m=1 /sinzm_1 wdp = 53m=1 /sinzm_19d9 M
0 0

1
Putting n = 3

@
N
3
—_
N———
|
=
2
—
N
N | =
N———
Il
(]
\ |
&,
=]
[ V]
3
L
>
U
>

= \“/ 2)
I‘<m+1) 0

or, 2>™71T(m)I <m+ ) = /al(2m);m >0
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Result 4

—1,g> -1

() ()
/sinPHCosq 0do = ;
0

_ ip >
<p+q+2) p
r 2

Proof Here,

P
2

%
/smp 6 cos? db (sin” 0) 2 (cos? 9)% de
0

P
2

(sin? )2 (1 — sin? 9)%d9

O\M\:\ O\M\:\

Taking sin?f = 2 = 2sinf cosfdh = dx = db
dx dx
" 2sinfcosf 215(1 —x)%

When f=0,r=0and f =




Improper Integrals
Result 5
T(m)I(1—m)=———0<m<1
sin mm
Proof We have,
I'(m)l
B(m,n) = (m)I( sm,n >0
I'(m+n)
and
iy m—1
x
B =
(m7 TL) /(1+x)m+n
0
Therefore,
T(m)C(n) [ 2™t
B(m, = = dx;m,n >0
(1) = T+ ) /(1+:v)m+" T
0
Putting
n—1-m0<m<l1
we have,
L'(m)I'(1 -
B(m,1—m) = (m)r((l)m) — T(m)T(1 = m)
iy xm—l
/(1+$) x since T'(1)
0
1 00
xm—l y xm—l y
B(m,1 — =I'(mIQ1 - =
or Blmd=m) =Tr—m) = [ & et [ F e
0 1
Putting
= -
Y
we have,
3 1 ’ 1
™" ™"
der = li d
/(1+:v) T ar ™
1

I 9.23

1

2
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Therefore from 1 and 2, for0 < m < 1

1
or, L(m)T'(1 —m) = /(;Cm—l +27™) <1 -1 j_ x) dx
01 1
0 0
Now,

™ xl—m 1
(@™ 4 a7 de = lim [ (2" 4+ 27" de = lim {m + }

1
/ e—0+ e—0+ 1—-m
0 €
1
1 1
or, /(:Cm_l +z M) de=— 4+ —— 4)
m 1—m
0
Again

™+ z! m
14z

d:C

(2™ + 2™ -z +2? — 23+ ..00) da

e[
-/

1
m—1 —m X _ 1 1 _ 1 _ 1
/(:v Tt )1+xd$_m+1+2—m m+ 2 3—m+”'OO ©)
0
Therefore from 3, 4 and 5, we have

1 1 1 1 1

—i—l—m—’—m—l—l—’—2—m_m—|—2_3—m+.”OO

1 1
_1\k
0( b <k+m+k+1—m)

™

I
Mz ==

b
i

or, T(m)['(1 —m) = wcosec mm = —
sin mm
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WORKED OUT EXAMPLES

Example 9.1 Evaluate
5
/sin6 x cos® z dx
0

using beta and gamma functions.

Sol. We have,

() ()
/sinp9(:osq 0do =
0

1ﬂ<p+q+2)
2
Here p =6,9=5
Therefore,
7 1T (3)T(3)
/sinchos5xd:v: Z 2 3
) 2 T (%)
1 D(HrE)
=- ,since I'(n 4+ 1) = nT'(n)
245530 (3)
1)
T 911 9 7
2553
1 2!
T o911 9 7
2553
__ 8 _ 8
11-9-7 693

Example 9.2 | Prove that

I‘<n+ 1) CT@n+ 1)y

2) " 222T(n+1)
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Sol.

:2n—1F 2n—1
2 2
:2n—1F 2n—3 1
2 2
_2n—12n-3 2n—3
2 2 2
_2n—12n—-32n-5 §§11_‘ 1
2 2 2 222 \2
_@n-1)@n-3)2n-5)5-3-1
277,
Multiplying the numerator and denominator by 2n(2n — 2)(2n — 4)---4 - 2,
we have
1\ 2n@2n—1)(2n—2)2n—13)---5-4-3-2-1
]_—‘ — =
<”+2) 2m2n(2n — 2)(2n — 4) -4 - 2 v
B '2n+1)
-~ 2n2np(n—1)(n—2) - ﬁ
r'2n+1)
_22"1"(n+1)ﬁ

Example 9.3 | Evaluate
t
/$a+k_l(t _ x)ﬁ-"-k_l de
0
. 1
and find its value when o = 3 = 5

Sol. Putting

r=ty= dr=tdy

When r=0,y=0andz=t,y=1
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Therefore,
t
I= /:CO‘Jrk_l(t — )Pl dy
0
1

_ ta+ﬁ+2k—lya+k—l(1 _ y)ﬁ-i-k—l dy

0

1
_ jatBt2h—1 /ya-i-k—l(l _ y)ﬁ-i-k—l dy

0
_ potBt2k—1 D(a+k)(B+k)

T(a+ (3 + 2k)

1
Whena:ﬁzi

r<1+k)r<1+k)
[— 2k A2 2
I'(1 + 2k)
T(2k +1) T2k +1)
_ e 2T (k+ 1) ﬁz%r(k +1) VT
B I'(1+ 2k)
_ e TEE+1)
T 2R(D(k+1))2
T'(2k +1)
_ 42k
= a2 T

Example 9.4 | Show that for [ > 0,m > 0

b
/(:v — @) (b — o)™ da = (b— @) B, m)

Sol. Putting
r=(b-a)y+a

such that when x = a,y =0 and whenz = b,y = 1.
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Therefore,

/b(:v —a) "t b—2)" da

[(b—a)y+a—a b~ (b-a)y—a™ ' (b-a)dy

(b _ a)l—l+1+m—1yl—l(1 _ y)m—l dy

(b _ a)l-i—m—lyl—l(l _ y)m—l dy

I
S O O—__

1

_ (b— a)l-‘:—m—l /yl_l(l _ y)m—l dy
0

= (b—a)*™ 1B(l,m)

Example 9.5 | Show that

1
1 2 1 21
/:C—3(1—:v)_3(1+2:v)_1d:v:lB<,)
17133
0 93

Sol. Putting

x at
l—z 1-—t
where « is a constant.
Therefore,
at
Tr =
1—(1—a)t
or, dr = adt
[1-(1—a)?

whenz =0,t =0
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Therefore,

B 0/ L - (Cllt— a)t} - L —1(1_—t a)t} 5 {11—_;1713;;} h [1— (Clld—t a)t]?
_ / agt_ili[l(l—_t(tl); sa) "

1
Choosing, a = 3’ the integral becomes

1 2
3
J e (i)
93 \3 3
0

Example 9.6 | Evaluate the integrals

oo

/ e~ ™ cosbr dx

0
oo

/ e~ ™ Lgin bx dx
0

Hence, or otherwise, show that

/:vm_l cosbx dx = m cos (m)
bm 2
0
and
/:vm_l sinbz dz = L(m) sin (m)
bm 2
0
Sol. We know,
[ tomot, _ T(m)
kx, m—1
doe = —~
/e T T o

0
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Taking,
k=a—ib k| >0
we have,
/e—(a—ib)wxm—l dr = M
(a —ib)™
0
or, /e_ameibmxm_l dr = P(m)(a ha Zb).
(a —ib)™(a + ib)™
0
o0 1—\ 'b m
or, /e_‘”(cos b +isinbx)z™ tdx = (ZQ)(_T_ z—z)zm)
0
Writing

a +ib = r(cosf + isin )

and separating the real and imaginary parts, we have

oo

/e“”xm_l cosbx dx =

0
oo

/e“”xm_l sinbx dx =
0

I'(m) cos mb
(a2 +02)%

T'(m) sin m@
(a2 +02)%

where
b
6 =tan"' -
a

Taking a = 0 and 6 = g

oo

_ '(m) mm
m—1 _
/:v cosbx dx = Ty Cos ( 5 )

0

and

oo

1. L'(m) . /mm
m—1
/:v sinbzx dxr = o sm( 5 )

0



Improper Integrals I 9.31

Example 9.7 Evaluate

Vsinz
Sol.
2 . 2 2 2
/\/S;EE X /\/sin:vdx:/sin_%xcosoxd:v X/sm%:vcosoxd:v
0 0 0 0
_1r@ri) 1r@re)
2 I (3} 2 I(})
1 T(3)
=-7
4740 (3)
=
3
/\/tan:vd:v
0

Sol.
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9.32 I

Prove that

Example 9.9

Putting

Sol.

we have,

7 N\
— |

~~—
()F)

— |
7 N\

— o<

N——
—

— <t
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Example 9.10) Using

.7 ., 2 37 . (a=1D)rm a
sin — sin — sin — - - - sin =

a a a a 2n—1
where a is a positive integer >1, prove that

! FCL) F<z)r<2) "'F<a;1) _ {(22“-1}5
0 (o) (6)r () () =5

Sol.

i) We have,

. T . 2 . 37 . (a=1D)rm a
sin — sin — sin — - - -sin =
a a

a a on—1

() () () ()
OO (-0 )

T 27 (a—1)m
= T COSEC — X T COSeC — X -+ X T COSeC —————
a a

a—1
a—12

a

=T

Therefore,

() ()

ii) Putting a = 9 in the expression

[N

() ()7

we have,

r <;) g <§) g <S) T <§) _ i(%ég_l };
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EXERCISES

Short and Long Answer Type Questions

1) Prove that B
) Prov < ) 0/\/i1+t

t n
2) Prove that/ <1 — n) t" Yt =n"B(z,n+1);n=1,2,3,...

3) Prove that B(z + 1,y) = %_’_yB(:v, )

1 1
4) Prove that T’ <2) I'(2z) = 2%~ ()l <:E + 2)
5) Show that

T 1
577 dx =
©) / * 2\/10g5ﬁ

6) Find the value of the following improper integrals:

us
2

a) / sin’ x
0

128
|:AnS 315:|
%
b) /cos4xd:v
0
3
Ans: —
[ s 16}

jus
2
c) /sin4 z cos® z dx
0
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Ans: i
315
%
d) /sin4xcos4:vdx
0
3
|:AnS. 256:|
1
7) Prove that/ vrl (%)
f Ve T ()

8) Prove that Prd R
) \Y /sm:v T X /sm rdr = 2p+1)
0
T
9) Prove that e x [ e
’ / / 8v2

oo

1
x? dz T

10 X =
)0/ 1—:104% / 1—1—:104% 42

0

Multiple Choice Questions

oo

1) The value of / e dp = g is

a)ﬁ b) v c)g a1

2 4
2) The value of T'(m)I'(1 — m) is

2T ™ 3T d mm

sinmm sinmm ¢ sin mm sin mm
1
3) The value of " <2) =1is

a) /7 b) “7% ¢)

4)B<1 1)
272

NG
T d)ﬂ'
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a) g b) o

I

Engineering Mathematics-11

s
d =
)8

3
5) The value of 2 / sin®™ 71 0 cos®™ 1 0dO; m,n > 0is
0

a) B(m,m) b) B(n ,n) ¢) B(m,n)
3
6) The value of / sin® z cos* x dz is
0
2 T by O o
256 256 256
7) T(1) =
a)0 b) 2 c) —1
8) I'(n +1) = where n is a positive integer
a) n! b)n ¢) (n+1)!
%
9) /COS4 rdx
0
5w NS T
Y 16 R 916
10) /e_””:v% dx =
0
DIV bSVT O vE
AV 5V AV
Answers:
I (a) 2 (b) 3(a) 4 (c) 5(c)

9 (d) 10 (a)

d) none of these

o U7
256
d) 1

dn+1

3T
16

5
d) 1\/%

6 (a) 7(d)

8(a)



CHAPTER

10

Laplace Transform (LT)

10.1 INTRODUCTION

Pierre Simon Marquis de Laplace (1749-1827), great French mathematician, was a
professor in Paris. He developed the foundation of potential theory and was also one of
the important contributors to special functions, probability theory and astronomy. But
his powerful techniques of practical Laplace transform were developed over a century
later by the English electrical engineer Oliver Heaviside (1850-1925) and for that
reason it is also often called Heaviside calculus.

In this chapter, first we discuss the Laplace transform of some standard functions.
Next we give details of the various properties of Laplace transform illustrated with
different suitable examples. Here we also represent the Laplace transform of the unit
step function (Heaviside’s function) and Dirac delta function because the use of these
functions make the method particularly powerful for problems in engineering with
inputs that have discontinuities or complicated periodic functions.

10.2 DEFINITION AND EXISTANCE OF LAPLACE TRANSFORM (LT)

10.2.1 Definition

Let f(¢) be a function defined for ¢ > 0. Then Laplace transform of f(¢) is denoted by
L{f(t)} or F(p) and is defined as

e ¢]

L{f()} = F(p) = /e_”’f(t)dt

0

where p (> 0) is the transform parameter and e’ is called the kernel of the transform.
[WBUT 2003]



Note:

(1) The Laplace transform exists if the above improper integral exists, otherwise
we say Laplace transform does not exist.

(2) In some of the books one may get the Laplace transform with the parameter
s and also the transformed function may be denoted by f(p) or f(s) or by
any other function. So there should not be any confusion in the readers mind.
Basically we take two different functions to distinguish between the function
under transformation and the function that we get after transform.

10.2.2 Piecewise Continuous Functions

A function f(¢) is called piecewise continuous in a closed interval if the interval can
be divided into a finite number of sub-intervals such that in each of which the function
is continuous and it has finite left and right-hand limits.

10.2.3 Functions of Exponential Order

A function f(¢) is of exponential order o as t — oo if o, k(> 0) and #o(> 0) can be
found such that

le™ " f()| <k, i.e | f(t)] < ke fort > 1o

For example, Let /(1) = 2. Then,
lf@® = ‘tz) < 1. forr>0

So, f(t) = t%is of exponential order 3.
Note: Bounded functions like sin 7, cos 7, etc., are always of some exponential order.

10.2.4 Sufficient Condition for Existance of Laplace
transform

Theorem 10.1 1If a function f(z) defined for ¢+ > 0 satisfies the following
conditions

(i) f () is of exponential order o as r — oo and

(ii) f(¢) is piecewise continuous over every finite interval r > 0, then its Laplace
transform L{f(¢)} exists for p > o.

Proof 1t is given that f(¢) is of some exponential order o as t — oo, then we have
constants k(> 0) and #o(> 0) such that

()] < ke®" fort >ty (1)



By definition, we have

[e¢] fo (ee]
L{f@)) = /e"”f(t) dt = /e‘p’f(t) dt+fe"”f(t) dt
0 0 )
=11 + I, (Say) 2

Since f(t) is piecewise continuous on every finite interval 0 <t < 1y, I exists.
Again,

o0 o
il =|[ e pa i < [ | g
) 0]
o0 o0
= /efpt | f(0)| dt < /efpt.ke‘” dt (by (1))
10 10
S i 00
=kfe_(”“’>’ gr=p| "
(p—o)
1) fo
T A ¢ R R (L

k =k
s S e S

since e~ P79 — Qast — oo for p > 0.
So, |I>] exists for p > o.
Hence from (2) we conclude that L{ f (¢)} exists for p > o.
This proves the theorem.

Note:

(1) The conditions of the above theorem are only sufficient for the existance of
Laplace transform, by no means they are necessary. In other words if the
conditions are not satisfied by the function then Laplace transform may or
may not exist.

(2) Uniqueness: If the Laplace transform of a given function exists, it is always
unique.

10.3 LINEARITY PROPERTY OF LAPLACE TRANSFORM

Let f1(¢) and f>(¢) be functions of ¢, whose Laplace transform exists, then

‘ Licifit) £ o)} =caL{fi®O} L 2L {f2(1)} ‘

where c1, ¢y are arbitrary constants.



10.4 LAPLACE TRANSFORM (LT) OF SOME ELEMENTARY FUNCTIONS

10.4.1 L{f(?)} or F(p) for the function f(f) = 1

Lif@) = [ e pwar
0
ie., L{1} :/e_’”.ldt :fe_p’dt
0 0
— 1 —pt]%>° _
=7 [e™"" ]y p>0

10.4.2 L{f(1)} or F(p) for the function f(f) =t

LifO)= [ e f(t)dt

00 00
1 o 1

i.e., L{t} = /e_"’ tdt = |:—e_'” . t] _ / (_e—m) dt
p o D

t o0
Again lim — is of the form [—] So using L’Hospital’s rule we have
t—o0 ePlt o0

d
.t a0 . 1
lim — = lim dd’ = lim ;=
t—o00 eP t—00 & (gpt) t—00 p,eP

Hence,

1
LUfW) = —, p>0
)4



10.4.3 L{f(f)} or F(p) for the function f(f) = t" (nis a positive
integer)
Lifw) = [ fw ar

0

]

ie. L{t"} = /e—l”.t" dt = I, (say) (1)

Therefore,

1 .t n ot el
={—|lim —+— | . "dt, p>0 2)
p t—o0 ePlt p
0

n

t
Again lim — is of the form [f] So using L’ Hospital’s rule we have
t—o00 eP!t o0

N L X G BN R o0
lim — = lim — = lim [Form —]
t—o00 eP? t—00 & (ePh) t—o00 p-eP! 00
Proceeding similarly (n — 1) times more we get,
n

lim — = lim
t—o0 P!t t—o00 p't . eP!

n!

So from (2), we have

o0
I, = f/eﬂ” g 3)
P 0

So from (1) and (3)

) “)



Therefore,

1,1:5(”_1)
p P

) (5)

Again, replacing n by (n — 1) in (4) and putting in (5) we have

L_n =D -2
"Tp b p

I3

Proceeding in a similar manner, we get

=[G ) -GG e e

By (1), we have

i 1
I()=/e_’”dt=—,p>0
5 p

So, putting the value of Iy in (6), we get

=[G ) -GG

] L
i.e., L{t }_p" p_pn+],p>0.

10.4.4 L{f(1)} or F(p) for the function f(f) = t" (n > -1)

[WBUT 2002]
First we recall the following terms from the last chapter:

oo
L(n) = fe_x x"Vdx, n>0 and T'(n+ 1) =nl(n) =n!
0

Now,
o
L{f(®)} = /e_ptf(l) dr
0
o
ie., L{it"} = /efpt 1" dt (consider pt = x, then p - dt = dx)

0



(e.¢] [e )
o e (x\'dx 1 _
= e . ; ?_ 1 e

0 0

o0
1 . - T(n+1)
(n+1)—1 _
+1/e x dx = i
0

forn+1>0ie,n > —1

10.4.5 L{f()} or F(p) for the function f(f)=e*

L{f ()} =/e_”’f(t) dt
0

ie. L{e"} = /e_"” e dt
0
o0 o0
—t(p—a)t
:/e_(p_“)’dtz[e i| , p>a
0 P=a do
1
= , p>a
p—a

10.4.6 L{f(1)} or F(p) for the function f(f) = sin(at)

L{f(O}= [ e P f(1)dt

ie., L{sin (at)} =/ ~Pt . sin (at) dt

0
|:€ Pr(— psm(at)—acos(at))i|
, p>0
0

p? +a?

s >0
p2+a2 P

Alternative Method We have from section 10.4.5

1
L") =—— p>a
p—a



So,

. 1 : 1
LY} = —— and L{e "} = ——
p—la p+ia
Again,
iat __ e—iat

f(t) =sinat = %

So,

L{f()} = L{sinat} =L {e’“’;le“’l}

1

=5 [L [ei“’] -L {eii‘”}] (By the linearity property)
i

_1 1 1 _1 2ia
T 2i|p—ia pH4ial 2| (p—ia)(p+ia)
a

= —=-7F, >O
p*+a? p

10.4.7 L{f(1)} or F(p) for the function f(f) = cos(ai)

L{f(Oy= [ e P f(1)dt

L{cos (at)} = /e_’” - cos (at) dt

0
e P! (—pcos (at) + asin (at)) 1>
= . p>0
p2+a2 0
)4
=——— p>0
p? +a? p

Alternative Method We have from section 10.4.5
at 1
L{e"} = — p>a
p—a
So,

, 1 ; 1
L{e'"} = —— and L{e7"“"} = ——
p—1ia pt+ia



Again,

So,

eial +e—iat
f(t) =cosat = ——

iat —iat
LuvnzuwwnzLer}

1 . .
=3 [L [e"”} + L lef"”” (By the linearity property)
RS IR SR U 2p
" 2|lp—ia pH4ial 2| (p—ia)(p+ia)
p
=2 0
72t a P =

10.4.8 L{f(1)} or F(p) for the function f(f) = sinh (at)

We have from section 10.4.5

So,

Again,

So,

1
Lie")= —— p>a
p—a

L{e ™} = p>a

p+ta

at _ ,—at

f(t) =sinh (at) = 5

L{f®)} = L{sinhat} =L {et_;_t}

[L{e"} = L{e™®}] (By the linearity property)

N = N =

e v =2l a el
p—a p+a] 2[(p—a)(p+a)



10.4.9 L{f(1)} or F(p) for the function f(f) = cosh(ai)

We have from section 10.4.5

1
L{e"y=—— p>a
p—a

So,
L= 1 psa
p+a
Again,
eal _ e—ut
f(t) = cosh (at) = >
So,
at —at
L{f(t)} = L{coshat} =L {e—;e}

=~ [L{e"}+ L{e}] (By the linearity property)

et el =2 o mworal
p—a p+a] 2|l(p—a)(p+a)

= m , p>lal
All the results of the above are represented in the following tabular form for ready

reference.

10.4.10 Table Showing Laplace Transform

f@ L{f (®)} or F(p)
1
1 —p>0
P
1
t ?a P> O
!
t" (n is a positive integer) L, p>0
pn+]
, 'h+1)
t"(n > —1) P ,p>0
1
e —\p>a
p—a




. a
Sln(at) m, p > 0
COS(at) m, p > 0
. a
sinh(at) m, p > la
p
cosh(at) pemn il lal
Example 1 _| Applying definition find L {k}, k being a nonzero constant.
[WBUT 2004]
Sol. By definition, we have
o0
L) = [ s dr
0
o0 o
So, L{k} = / ek d = k/e_’” dr
0 0
—pi% 1 k
=k-|:e ] =k-[0+} — = since p > 0.
=P Jo p p
Example 2 | Find L { f(¢)}, where
I, f0<t<?2
f(t):{z, itr>2 }
[WBUT 2002]

Sol. By definition, we have

00 2 0
L{f(t)}=fe‘p’f(t) dt:/e_’”-ldt+/e_l”.2dt
0 0 5

e 1 e 2 .
4+ —|4+2-{0+—],since p >0
p p




Example 3 | Find L { f(¢)}, where

e, if0<tr<l1
f(’):{o, ift> 1 }

[WBUT 2003]
Sol. By definition, we have
00 1 00
L{f()} = /e"”f(t) dt =/e_’" e dt+/e‘1” -0dt
0 0
’ —(p-1r 7!
e[z
—-(-D]p
0
e~ (=1 1 1 —e—(P—D
= + =
-p—-D p-1 p—1

Example 4 | Find L {ar + b} [WBUT 2005]

Sol. By linearity property of Laplace transform

Li{at+b}=L{at+b-1}=aL{t} +bL {1}

1 1
a-— + b — (Using results of Art. 10.4.1 and Art. 10.4.2)
p p

a+bp
p*

10.5 FIRST AND SECOND SHIFTING PROPERTIES
10.5.1 First Shifting (or Translation) Theorem

If f(¢) be piecewise continuous for all + > 0 and of some exponential order o as
t — oo such that the Laplace transform of f(7) exists and is F'(p) then the Laplace
transform of ¢’ f(¢) is given by F(p — a).

In other words, if

L{f(®) = F(p),then L{e" f(1)} = F(p —a)

Proof From the definition, we have

LUF()) = F(p) = / P f (1) di
0



Now,

o oo
F(p—a)= / PO £ (1) dp = / e P e £ (1)) dt
0 0
=L{e" f ()
This proves the theorem.
Example 5 | Find L{e’ sint cos} [WBUT 2006].
1

Sol. Let f(¢r) = sintcost = > sin 2¢.

Then,
1 . 1 .
L{if(n)}=L 5sm2t = EL{sm2t}
1 21
2 p244 prid
Now, by the first shifting theorem
L{/f)}=Fp-1)
1
(p—1)*+4

= F(p) (By Art. 10.4.6)

or, L{e'sintcost} =

Example 6 | Find L{(1 +te™")?}.

Sol. Here,
L {(1 +te—’)2} =L {1 +2te! +t2e—2f}
= L{}+2L{te"} + L {r2e—2’}
Now,

1 1
L{ty=— = L{re™"} e (by first shifting theorem)
p

T (p+D
and
2 2 2~ 2 s
L {; } === L [z e ] =— (by first shifting theorem)
p (p+2)

Therefore,
L {(1 n te—’)z} =L{l}+2L{te"} + L {tze—2’}
1 4 2

+ 5+ 3
p (p+1 (p+2)




10.5.2 The Unit Step Function (or Heaviside’s unit function)
The function H (¢t — a) which is defined as

0, ift <a

H(t—a):{ I ifr>a } wherea > 0

is called the unit step function (or Heaviside’s unit function).

Note: Properties of the unit step function and Laplace transform of the function
will be discussed in the later sections elaborately.

10.5.3 Second Shifting Theorem
If

ft—a),t>a
0,

t<a

L{f@®)} = F(p)and g(t) = {

then,

(Lig))=e " F(p).|

Alternative Statement (using unit step function) It L{f(t)} = F(p),
then

(L{ift—a) Ht—a)}=eF(p).]

Proof By definition, we have

[e¢]

L{g(t)} = /e_’”g(t) dt
0

a [o)0]
= /e_’”g(t) dt—l—/e_ptg(t) dt
0 a

a o

=/e—l”.0dt+/e—l”f(t—a)dt

a

0
o0

= /e_p(”+“)f(u) du (putting t —a = u, dt = du)
0

=e P / e P* f(u) du
0



So,

Lig)}y =e™ % / e P! f(t) dt (Replacing u by t)
0
=e PF(p).

Example 7 | Find L {g(t)} where

i T
cos(t——), > —
3 3
gt) = 7
0, < —
3
Sol. Let f(t) = cost.
So,
L p
{f®)} = L{cost} = 2l F(p)
Also
(W
3/ 3
g(t) = .
0, t < —
3
Then by second shifting theorem
Ligt)) =e 3F ~5r._P
N} = = . )
g)y=e (p)=e e

Example 8 | Find L {g(¢)} where
el 3t >3
g(’)_{ 0, z<3}

Sol. Let f(z) = ¢€'.
So,

1
L{f(t)}ZL{et}ZﬁZF(p)

Also

wo=|f059121)

Then by second shifting theorem

L{g))=ePF(p)=e¢P. o .
p—1 p-1



10.6 CHANGE OF SCALE PROPERTY
IfL{f(t)} = F(p), then

1
L{f(at)}=—-" F (E) for non zero constant a.
a a

Proof By definition, we have

o0

L{f(an) = / P f(at) dt

(=}

o0
1 _(u
= f/e p(a)f(u) du (putting at = u, a -dt = du)

Q

0
o
Lo —(5) .
=— [ e \a/ f(t)dt (replacing u by t)
a
0

2
— 1
Example9 | IfL{f(t)} = M, apply change of scale property to

show that Cp+Dp =1
2
p-—2p+4
Lifony = —P*%
V= S 20—
[WBUT 2002]
2
Sol.  Here L{ft)=—L =Pl _ pop

C@p+D2p-1
By change of scale property, we have

_ 4 _ p?—2p+4
— - 2 _ :




Example 10 | Given that

[WBUT 2007]

Find L {smat}

int
Sol.  Let f(1) = %

So,

{sint} _1<1> _1(1>
L{—} =tan — = L{f(®)}=F(p) =tan —
t p p

Now by change of scale property, we have

Lif@n) = (7)

a
sin at 1 1 1

me )

4
a
sin at 1 _1 <a)
-L = — -tan —
p
' sin at 1 (a)
i.e. L = tan —
t p

10.7 LAPLACE TRANSFORM OF DERIVATIVES OF FUNCTIONS

10.7.1 Laplace transform of First Order Derivative of a
Function

Theorem 10.2 1If

i.e., L

i.e.,

Q| =
~
S

(i) f(¢) be continuous for all 7 > 0 and of exponential order o as 1 — oo and

(i) f'(¢) be piecewise continuous for all 7 > 0 and of some exponential order as
t — oo, then L { f/(1)} exists for p > o and is given by

L{f'®}=pL{f®)— f(O)=p-F(p)— f(0).

where L {f(¢)} = F(p).



Proof First we prove the result when f'(¢) is continuous for all > 0.
By the definition of Laplace transform, we have

o0

L{f' ()} = /e"”f’(t) dt

0
= [e*f”‘f(t)]go dt — /(—p)ef”’f(t) dt
0

= lim e "' () = f(O) + p- L{f (1))

= lim e f(1) = fO) +p- F(p) (1)
Since f(¢) is of exponential order o, we can find k(> 0) such that

[f(®)] <k-e” fort >0
So,
le P )| =e P If@] <e ke

=k-e P79 5 0ast — oo, forp > o

Therefore,

lim e ” f(t) =0for p > 0.
1—00

Hence from (1), we see that L { f/(¢)} exists for p > o and is given by

L{f'®}=p-F(p)— f0)

Now, let us suppose f'(t) is piecewise continuous for all # > 0.
Then, we have

Lf (@) = / P F () di
0

Now we break up the RHS of the above as the sum of the integrals such that f'(¢) is
continuous in each of these sub-intervals.
Then using the earlier concept, we have

L{f'®}=p-F(p)— f(0).
Note:

(1) Suppose f(¢) is not continuous at + = 0, but right-hand limit /(0 + 0) exists,
then

L{f'®}=p F(p)— f(0+0)




(2) Suppose f(¢) is not continuous at 1 = a 0 < a < oo, but right-hand limit
f(a + 0) and left-hand limit f(a — 0) exist, then

L{fO}=p Fp)— fO)—e P[f(a+0)— fla—0)]

10.7.2 Laplace transform of Second Order Derivative of
a Function

Theorem 10.3 1If

(i) both f(¢) and f'(¢) be continuous for all 1 > 0 and of exponential order o as
t — oo and

(i) f”(¢) be piecewise continuous for all 1 > 0 and of some exponential order as
t —> o0,
then L { f (t)} exists for p > o and is given by

L{f"®} = p*L{f®} — pf(©0) — £'(0) = p*F(p) — pf(0) — £'(0).

where L {f (1)} = F(p).
Proof Let us consider g(t) = f'(z). Then we have,
g @) = f"@t) and g(0) = f'(0).

Now by the Theorem 10.2 we get,
L{g'®} =pL{g®)}—g(0).
Therefore,
L{f"®}=pL{f ®} - f©0

=plp-L{f®O} = F(O1— £ (0)

= p2L{f(®)} — pf(©0) — £'(0)

= p?F(p) — pf(0) — £'(0)
This proves the theorem.

10.7.3 Laplace transform of »" Order Derivative of a
Function (Generalised Form)

Theorem 10.4 1t

a fo, fo; fo,..., £@=D(t) be continuous for all 7 > 0 and of exponential
o order as t+ — oo and



(i) £ (r) be piecewise continuous for all # > 0 and of some exponential order as
t — oo, then L { £ (1)} exists for p > o and is given by

L@y =p"L{f 0} = p"~ £(0) = p"=2f/(0) = -+ — £"=D(0)
=p"F(p) — p" "' f(0) = p" 2 f(0) — -+ — fD(0).

where L {f ()} = F(p).

Proof Beyond the scope of the book.

Example 11 | Using the Laplace transform of derivative of function show that

p
pr+1

L{cost} =

d
Sol. We know cost = E(sin t). Let, f(¢) =sint.

Then, we get
L t)} = L{sint} = =F

(fO) = Lisint) = —— 5 = F(p)
Now by Theorem 10.2, we have

L{f'O}=p-F(p)— f(0)

1 14

.e., L ty=p: ————-0= .
ie {cost}=p e 2

10.8 LAPLACE TRANSFORM OF INTEGRALS
Theorem 10.5 If L{f(t)} = F(p), then

t
L[/f(x>dx]=fw
0 V4

Proof Let
t
g(t)=/f(x) dx
0

then g’(t) = f(¢) and g(0) =0



L{g®} =p-Ligt)}—g0)
ie., L{f®}=p-L{g®)}

LUf®) _ F(p)
.

i.e., L{g} =

Hence, we have

t
L ff(x)dx =@
J 14

This proves the theorem.

t
Example 12| Find L{ [ costdt}
0

Sol. Let f(¢) = cost, then

P
p*+1

L{f@®)} = L{cost} = = F(p)

Now by Theorem 10.5, we have

t
L /f(t)dt =M
; p

t
= L /costdt =
0

t
Find L{ [ ¢ - 2d1)
0

2
Sol. Let, f(t) = e* - t2. We know L {tz} =—.
p
Then, by first shifting property
Lifey=L{e 2= = = F(p)
(r—2

Now by Theorem 10.5 we have

t

L /ezz-tzdt _ )

p
0



; 1 2 2
= L /costdt = —- 7= 3
r (p—=2) pp—2)

0

10.9 LAPLACE TRANSFORM OF FUNCTIONS ON MULTIPLICATION BY "
(nis any positive integer)

Theorem 10.6 If L{f(t)} = F(p), then

d
Lir- f(n}= “dp {F(p}=—F(p)

Proof Ttis giventhat L {f(t)} = F(p), so we have

F(p) =/e*‘”f(t) dt ey
0

Applying Leibnitz’s rule for differentiation under the sign of integration, differentiating
(1) w.r.t. p we obtain

d d T
% {(F(p)} = % {/e_plf(f) dt}
0

or, 4 F(pyy = / O e f (1)) di = / (—0)e P £(t) di
dp op
0
d ot
or, AFp) = —/e (t-f@O) di =Lt F0))
0

Therefore,
d !
{r-f} = -0 {F(p)} =—-F(p)
p
This proves the result.

Theorem 10.7 (Generalised Form):
If L{f(t)} = F(p), then

n

d
L{t" f®} = (=" —{F(p)} = (=1)" F™(p)

dn

for positive integer 7. [WBUT 2005]



Proof We apply the principle of mathematical induction to prove the following

n

L{"- f0O} = 1" ——

{F(p)} = (=1)" F™(p) 4))
Forn =1, (1) becomes
d i
Lit-f(O}= 7 {F(p)}=—-F(p)
p

which is true by Theorem 10.6.
Let us assume that (1) is true for n = k, we are to prove forn = k + 1
From (1) we have,

k

Lt o) = ot e F)

or, / e |k fo) di= - 1)k {F(p)} @
0

Applying Leibnitz’s rule for differentiation under the sign of integration, differentiating
(2) w.r.t. p we obtain

- f_,,,{ f@0)} de {( bt {F(p)}}
0
or, f %Vﬂ f(t)}dt—( 1k ddk,:l {F(p)}
0
or, f (—ne P - i* e f ) di = (=DF jk:l{ F(p))
0
or, 76‘ prL gkt (l‘)} |:( D ddk,:_ll {F(P)}]
0

Therefore,

k+1

d
L pof = 0 R )

So, (1) is true for n = k + 1 when it is true for n = k.
Hence the result (1) is true forn = 1,2,3,..., i.e., for all positive integers n.



Example 14 | Find L {f cos 2t}

Sol. Let f(t) = cos2¢t, then

)4

L{f(t)} = L{cos2t} = !

= F(p)

Now by Theorem 10.6, we have

d
Lit- f(0}= ~dp {F(p)}

d
ie., L{tcos2t}=_{

p } (P2 +4)-1—p-Q2p)
dp

P24l (p? +4)°
p*—4
(P +4)°

Example 15 | Find L {1"¢*'}

Sol. Let f(t) = ¢“, then

at 1
L{f(f)}=L{€ }=E=F(P)

Now by Theorem 10.7, we have

dl’l
dp {F(p)}

a1
e, L{t"e) = (=1)"
et =cr )

| .
— 1 {(_1),1 ) ”~} ( by successive )

(p—a)yt! differentiation

L{t"-f} ="

n!

= (p _a)n—l-l'

10.10 LAPLACE TRANSFORM OF FUNCTIONS ON DIVISION BY ¢

Theorem 10.8 If L{f(t)} = F(p), then

L{T”}=/F@Mp

p

provided the integral exists.



Proof 1Itis given that L { f ()} = F(p), so by definition we have

oo

F(p)Z/e_p’f(t) dt ey

0

Integrating both sides of (1) w.r.t. p, ranging from p to co we obtain

/ F(p) = / / e p@yde - dp %)
p P 0

Since p and ¢ are independent variables, we can interchange the order of integration of
RHS and performing that, we have

oo oo f oo

/F(p)zf /e_”’-dp f@) de

p 0 P
o0 ooefpt
] f@ dt:/ f@)dt
P 0

[l t
0
= [ {f(”} dt:L{f(‘)}
t t
0

Hence the theorem is proved.

int
Example 16 | Find L {51?} [WBUT 2003]

Sol. Let f(¢) = sint. Then by Art. 10.4.6 we have,

e P!
t

L{f®}=L{sint} = = F(p)

pr+1
Now by above Theorem 10.8

L{ff”}=/F<p>dp
p

. OO 1
sint [ee)
SO, L{i—} = d =[tam*1 ]
{ t } /P2+1 b 1,
P
T
2




1 — t
Example 17| Find L{ te } [WBUT 2004]

Sol. Let f(r) = 1 — ¢'. Then,

L{fy=L{1-¢}=L{1}-L{}

1 1
= — = —— = F(p) (byArt104.1and Art.104.5)
p p-

Now by above Theorem 10.8

L{ff)}=/F<p>dp

p

1—eé' r 1 1 00
so, L . =/ ~ T 1 dp=[10gp—10g(p—1)]p,p>1
P

P pP—

P \]°_ . p p
= [log{ —— = lim log{ —— ) —log| ——
p—1 » p—>00 p—1 p—1

1
= lim log — log P =0—log .
p—>00 l_l p—l p—l

p

-1
=log<p>,p>l
p

10.11 LAPLACE TRANSFORM OF UNIT STEP FUNCTION
(HEAVISIDE'S UNIT FUNCTION)

First we recall the definition of unit step function (or Heaviside’s unit function) from
the section 10.5.2

10.11.1 Definition
The function H (¢t — a) which is defined as

H(t—a):{(l)’ ift <a

. }wherea>0
, ift >a

is called the unit step function (or Heaviside’s unit function). The graph of the function
is given by the following Figure 10.1.



H(t- a)

1 !
!
0 ‘ t
t=a
Figure 10.1

Theorem 10.9 Laplace Transform of unit step function H(r — a) is given

—ap
by ¢ .
p
In other words,
e P
L{H(t —a)} =
Proof By definition, we have
o0
L{H(t—a)}= /e_pt -H(t —a) dt
0
a o
:/e‘”’-Odt+/e‘p’-1dt
0 a

—_ x —
e ”’i| e

P la p

Hence the theorem is proved.

Theorem 10.10 Let f(¢) be a function defined as

| A®, ift<a
f(’)‘{fz(r), iftza}

Then f () can be expressed involving unit step function H (¢ — a) as the following
form

[fO=HO+1HLO - HO)-HE—a)]

Proof By the definition of the unit step function, we get

0, ift<a} )

H(t_“)z{l, itr>a



Now, we consider the expression

f@) = fi@) +{f2() = fi@®)} - H@ — a)
Using (1) we have from above

£(t) = {fl(f) +{fr() = A} -0, ift < a}
H@o)+{f0 - fio}-1, ift>a

_JA®, ift <a
T L0, ift>a

Hence the result is proved.

Theorem 10.11 Let f(¢) be a function defined as

fi(@®), ift <a
f@)=1L0, fa <t <a
f3(0), ift = a>

Then f () can be expressed involving unit step function H (¢t — a) as the following
form

‘ f@) = i) +{2() — fi(O}- HE —a) +{f30) — ()} - H{ — ay).

Proof The proof can be done in the line of Theorem 10.10.
In the next theorem we state the generalised form of the above two theorems.

Theorem 10.12 Let f(¢) be a function defined as

fi@®), ift < a;
@), ifa <t <a

fo=14 ... ... ...

fn(@), ift = ap—

Then f (¢) can be expressed involving unit step function H (¢t — a) as the following
form:

(FO = HO+{HLO = AO) He—a) + ... + (o) = i1} HE —a, 1)

Example 18 | Express the following function in terms of unit step function

t—1, 1<t <?2
f(t)_{3—t,2<t<3}

and find its Laplace transform. [WBUT 2002]



Sol. It is given that

—t,2<t<3

f(t):{g—l,l<t<2}

Then f(¢) can be expressed in terms of unit step function as the following form
(see Theorem 10.10)

f@® =A@+ {200 - O} HE —2)

where f1(t) =t — 1, f2(t) =3 — t and H(¢t — 2) is the unit step function.
Therefore,

fO=¢-D+{B—-t)—t—-D}-Ht-2)
=(t—-1D+2Q—1)-H({t-2).

Now,

L{fO}=L{t-1D+2-2—1)-H( —2)}
=L{t—1}+2-L{2—-1t)-H(@ —2)}
=L{t}—-L{1}—2-L{(t—2)-H( —2)} €))

Again by second shifting theorem (See Alternative statement of Art. 10.5.3),
we have
L{t—2)-Ht—2}=e PL{t} = 2" iz )
p

Using (2) in (1), we obtain

L{f(;)}:%_l_z.e—Zp.i
p-p

p2
=(1—2.e—zﬂ)%—l.
Pr o

10.12 LAPLACE TRANSFORM OF PERIODIC FUNCTIONS

Definition of Periodic Function A function f(t) is called periodic function if

| ft4nk) = f(@)forn=1,23,... ]

where k(> 0) is called the period of the function

For example sin x, cos x are the periodic functions.



Theorem 10.13 Let f(¢) be a periodic function of period k and is piecewise
continuous for 0 < ¢ < k. Then Laplace transform of f(¢) is given by

k
1
L{f(H}= mfe_pt'f(t) dt
0

Proof By the definition,

@]

L) = / P f ) di
0
k 2k 3k
=/e_’”-f(t)dt—l—/e"”~f(t)dt+/e_p’-f(t)dt+...oo
0 k 2k
s (n+1)k
=> / e Pl f(t) dt
n=0 .

Putt = x + nk, so, dt = dx. Therefore, we have from above

00 k
Lf@) =Y [0 i nk) da

n=0 0

ie,L{f()}= Z/e‘p(’+"k) - f(t +nk) dt = Z/e_””k-e_pl - f(t + nk) dt.
n:()o

n=0 0

Since f(t) is periodic with period k i.e., f(t + nk) = f(t), we have

00 k
L{f) =) |e P / e P f(1) dt
n=0 0

Since the integration is independent of n, the order of summation and integration can
be interchanged and we get

o0

e P f(ryde- Yy e

k

E)/ n=0
k

0

L{f(n}=

e P f(t)dt- (1 + e Pk 4 g2k 4 o3Pk -i—...oo)



k
= /efpl < f@)dt- |:1 +e Pk 4 (efpk>2 + (efpk)3 +... ooi|

0

Since,

2 3 1
1 —pk ( fpk> ( fpk> Y —pky-1 _ L
|: +e + (e + (e +...00 (I+e 7% gy
we have from above

k

/ef’” - f(t) dt

0

L{f(t)}=1

— e~ Pk

This proves the theorem.

Example 19 | Find the Laplace transform of a periodic function f(¢) with the

period 2c given by
t, O<t<c
fo) = {2c—t,c<t <2c}
[WBUT 2003]
Sol. Here, let f(¢) be a periodic function of period 2c.
Then Laplace transform of f(¢) is given by
2c
L{f(t)} = ——— / e P'. f(t) dt (by Th.10.13)
1 —e2pc
0
| c 2c
- -t , -pr _
=1 e /e tdt—i—/e 2c —1t) dt @))
0 c
Now, by integration of parts
- —pt¢ - —pt
e e
/e‘f”-tdtz[z« }—/1« dt
=P Jo -P
0 0
e ¢ e Pt e
5[]
-P P~ lo
c-e P empC 1

2

p p p



and also
2c

e~ P! 2c % e~ P!
/e_’”-(2c—t)dt=|:(2c—t)- } —/(—1)- dt
iy 2 P J -p

c
e pe e~Pi
]
p JZ P

c-ePc e—2pc e~ PC
+ 2
4 P
Using (2) and (3) in (1), we get

2

p

e

3)

pc

1 —e~2pre

.e pe —pc Lepc —2pe
L) = 1 {(_ce _ez+12>+<ce +e2 B

p p p p p

1

1—(6—170)2 p?
1 1 —pe\2

— (1= e P

T (e r)(1—ere) p? (=€)

B (1 —erc)

Cp2(1+empe)

. (l —2e¢ P 4 672”")

10.13 INITIAL VALUE THEOREM

p

2

)

If

(i) f(¢) is continuous for all 1 > 0 and of some exponential order as r — oo,

(i) f'(¢r) be piecewise continuous for all 1 > 0 and of some exponential order as

t — oo and
(iii) L{f(t)} = F(p), then

lim f(r) = lim p-L{f(t)}= lim p-F(p)
t—0 p—>00 p—>00

Proof By Theorem 10.2 we have,
L{f'®} = p-F(p)— f(0)

or, /e_p'-f/(t)dt p-F(p)—f(0)
0

or, lim [[e7? - f' ()] dt = pan;o [p-F(p)— f(0)]

p—>0o0

0

ey



Since f'(r) is piecewise continuous for all 1 > 0 and of some exponential order as
t — 00, we get

o0

lim [ [e - f'()] / lim f'®)] ar 2)
0

p—>00 p—>0o0

0

Using (2) in (1), we obtain
0= lim [p- F(p) = f(O)]
or, OES pIme p-F(p)

Since f(t) is continuous, lir% f@® = f(0)
t—
Therefore,

lim f(t) = lim p- F(p)
t—0 p—>00

This proves the theorem.
Note: Suppose f (¢) is not continuous at t = 0, but lir% f(¢) exists, then the theorem
t—

is still true using Note (1) of Theorem 10.2.

10.14 FINAL VALUE THEOREM
If

(i) f () be continuous for all 7 > 0 and of some exponential order as t — oo,

(i) f’(¢+) be piecewise continuous for all 1 > 0 and of some exponential order as
t — oo and

@iii) L{f(®)} = F(p), then

lim f(t) = lim p-L{f (1)} = lim p- F(p)
t— 00 p—0 p—0

Proof By Theorem 10.2 we have,
L{f'®O}=p-F(p) - f(0)

or. / e P fi(t)ydt = p- F(p) — f(0)

or. lim / CFW] de = lim (p- F(p) — FO))
p—



or, / lim [e™?" - f'(t)] dt = lim [p - F(p) — f(0)]
p—0 p—0
0

]

or, / f't)ydi = lim p - F(p) = £(0)
P~
0
or, L OF = lim p- F(p) = f0)
or., Jim f(0) = £O) = lim p- F(p) = £(0)

Therefore,
lim f(¢) = lim p- F(p).
t— 00 p—0

This proves the theorem.

Note: Suppose f(¢) is not continuous at r = 0 but liII(l) f(¢) exists, then the theorem
t—

is still true using Note (1) of Theorem 10.2.

10.15 LAPLACE TRANSFORM OF SOME SPECIAL INTEGRALS

10.15.1 The Sine Integral
The sine integral, denoted by S; (), is defined as

t
sin u
Si(t) = f du
u

0

and its Laplace transform is given by

1 1 (1)
L{S;(t)} = —tan —
p p

Proof By definition, we have




z[u

Now,

t
M3 + MS I/t7 +
-t — ——+...0
3.3 550 77! 0
3 s ¢’

33 Tss 7™

330 550 17!

{ £3 £5 ¢’ }
sy =cli- S 4+ L

3 I ¢’

This proves the result.

I 3 I 5 7

330 ph T551 6 gm 8 T
(LTS S SN S B
—_— — —_— — —— ¢ —— .. w
3 pr 5 po¢ 7 pd
) G )
p p P
3 s 7 TS

10.15.2 The Cosine Integral
The Cosine integral, denoted by C;(¢), is defined as

o]

Ci(t) = / COSU
u

t

and its Laplace transform is given by

1
L{Ci(t)) = gloguaz +1)

Proof Let us consider,

o0 t

f(t):C,(t):/COSMdu:—/cosudu

u
t [e¢]

u



t

or, [0 =/(—°°:”) du

o0

such that
fl@) = _cotist =1 f'(t) = —cost
Therefore,
L{t- f'()} = —L{cos1}
d P
or, —EL{f(t)}_ PO
d
or, p- F(p) = (O] = —"—.where L{f (1)} = F(p)
14 241
d P
or, %[P'F(P)]—pz_’_l
Therefore,

1
p-F(p) = / # dp = > log(p? + 1) + ¢(constant)

Again by final value theorem,

lim p- F(p) = lim f(t)
p—)O t—00

. 1 2 . cosu
or, lim | - log(p=+ 1)+ c| = lim u
p—0 2 1—0o0
1
or, O+c=0=c=0.

So from (1) we obtain,
1 2
p-F(p) = Elog(p +1)
1 2
or, F(p) = 7 log(p™+ 1)

or, L{f(n}= IOg(p +1D

This proves the result.

ey



10.15.3 The Exponential Integral
The exponential integral, denoted by E; (¢), is defined as

e @]

P
Ei(t) = / —du

t

and its Laplace transform is given by

1
L{Ei(1)} = » log(p + 1)

Proof Let us consider
o0 t

(1) = Ei(t) = / " = —/ "

u u
t e}

t

E—Ll
or, f(t):/(— ” ) du

such that
et
fO=-———=1-f=—-"
Therefore,
L{t-f 0} =-L{e"}
d , _ 1
or, —%L{f(t)}_ 7p+1
d 1
or, I [p-F(p)— f(0)]=——, where L{f(t)} = F(p)
14 p+1
L
or, dp[l?' p]_p+1
Therefore,

1
P'F(P)=/7dp=10g(p+1)+c(constant)
p+1

Again by final value theorem,
lim p- F(p) = lim f(¢)
p;)() —>00
oo

—u

du

or, lim [log(p + 1) +c] = lim
p—0 t—00 u
t

or, O+c=0=c=0.

€]



So from (1) we obtain,
p-F(p)=log(p+1)

1
or, F(p) = » log(p +1)

1
or, L{f(n}= ;10g(p +1)

This proves the result.

WORKED OUT EXAMPLES

Example 10.1] Find L {f(¢)} where

0, 0<t<l1
f)y=3¢t, 1<t<2
0, t>2
[WBUT 2005]

Sol. By definition, we have

o0

L{f()} = /e_p’f(t) dt

0
1 [ee)
:/e‘f”~0dt+/e pt tdt+/e -0dt
0 2

2

2
—pl
:/ef” tdt = |:t ] fl
1 1
_2[; pt2
=t Hez]
—pP p 1

p p p

I
N
N =

+
"U‘_.

(3]
N—"

)

=

|
/N
<N

+
"c‘_‘

0o
N———"
[

N

=

Example 10.2] Find L { f(z)} where
1, If t > a}

S = {O: Ift <«
[WBUT 2006]



Sol. By definition, we have

o0
L) = [ s ar
0
o o0 e—pt 00
=/ept~0dt+/e’"~ldt=0+|: ]
—-p 1,
0 o
e P
=0-— , since p > 0
R
p
Example 10.3/ Find Laplace transform of
sint, O <t <m
fo) = { ot 0= }
[WBUT 2008]
Sol. By definition, we have
o
L{f(t)}=/€_’”f(l) dt
0
s o0 b4
:fe_pl~sintdt+/e_pt-0dt:/e_pl~sintdt (1)
0 7 0
From integral calculas we know,
eat
/e‘” .sin (bt) dt = e [a sin bt — b cos bt] )

Using (2) in (1) we obtain

L{f@®)} :/e Pl .sint dt

0
T
= (— psint—cost)i|
[( p>2+12 0
i ()
_p +1 p2+1
1
V= (67””4—1).




Example 10.4] Find L {f(¢)}, where

Sol.

Let g(t) = sint, then

Also,

. b4 b4
sm(t——),ft>—
f = ( 3) 7
0, t < —
3
b/ T
t—=),t>—=
f = (-3) =
) Z‘Si
3
L{g(t)} = L{isint} = 2l G(p), say.

Now by second shifting theorem,

Lif())=e3 "G (p)

Example 10.5] Find the Laplace transform of

Sol.

]

sin ¢
/ L
t

0

sin at

T
3

[WBUT 2004]

. Hence show that

[WBUT 2005, 2007]

Let f(t) = sinat. Then by Art. 10.4.6 we know

. a
L {f(t)} =L {smat} = m

Again by Theorem 10.8, we have

SO,

i.e.,

L{fit) =/F(p)

sin at
L
t

5 =F(p)

. 00 1
sin at a
L{ :/ﬁdpzcrf[tan_lg
t p-+a a a
)4
T
2



Putting a = 1, we have

I sin ¢ T tan~"!
—— ¢ = — —tan
t 2 P

Therefore, using definition we can write

00 .
sint b
/e"” : () dt == —tan"!p
t 2
0

Taking limit as p — 0, we have

o0

sin ¢
/ LI
t

0

Example 10.6/ (Dirac Delta function)

Let a function §,(7) be defined as

(SR

0,t<0
1
b:)=1{-,0<t<e¢
I3

0,t>¢

and
lim 8:(t) = 8(¢).
e—0

Prove that L {§(¢)} = 1.

Sol. By definition, we have

oo

L{5: (1)} = / P S.(r) dt

o0
1
:/efptofdt—i—/e*pt-Odt
e
&

0 pe

Therefore,

[ . e
/e*P’ Sty dt = ———

pé
0



Now taking ¢ — 0, we have

e¢]

1 —eP¢
lim fe_p[ -8e(t) dt | = lim ()
e—0 =0 pe
0

o0
1 1 —e¢P®
ie. fe—f" - (lim ss(z)> dt = — lim (e)
e—0 p e—0 &£
0

0
[Indeterminate form of O]

So, applying L’Hospital’s rule on RHS, we obtain

o0 1 _pe
/e_p’~8(t)dt=—lim (p-e )
p e—>0 1
0
. 1
ie., L{s)y=—-p=1.
p

Example 10.7 Express the following function

e, 0<t<?2
Fo) = {O, t>2 }
in terms of unit step function and hence find L {F(¢)}. [WBUT 2004]

Sol. It is given that

T 0<t<?2
F(t):{eo > }

Then F'(¢) can be expressed in terms of unit step function as the following form
(see Theorem 10.10).

F() = Fi(t) +{F2(t) - Fi(0)} - H(t - 2)
where Fi (1) = ¢!, F>(t) = O and H (1 —2) is the unit step function. Therefore,
Fity=e'+{0—e'} - Ht—2)
—e'—e H(1-2).
Now,
L{FOy=L{e" —e™" - H(t—2)}
=L{e "} —L{e™" H(t-2)] (D



Again,

—2p

and by Theorem 10.9 we have L {H(t — 2)} = ¢ f(p) (say).
p

Then by first shifting theorem,

e—2(p+D)

~ o _
L{e™" - H(t 2)}—f(p+l)_7p+l

Using (2) and (3) in (1), we obtain

20D | =2p+D)

(@)

(€)

L{F()}= — =
o) p+1 p+1 p+1
Example 10.8) Evaluate
L{sin«/f]
Sol. By Taylor’s series expansion, we know that
V) W) W)
sinv/t = v/ — + - + .00
3! 5! 7!
Therefore,
(x/?)5 (vo)’
smf =L \/f 5 T +---00
3 1 5 1 7
=L{ﬁ]—L{(ﬁ)}+s.L{(ﬁ J- b { ()} o
5
rii+1n 13+ 1F<§+1) 1r(Z+1)
= 1 Y] 3 +*, 5 T 7 +
pztl 3 pitl 5 pitl 7! +1
1 (1 3 (3 3 (i) T (7
_ZF(E)_izr(i)Jrl?F 2 _lir(z)Jr” o
3 3t 3 51,3 3
p2 p2 pZ p2
11 3111 531 (1 75311 (1
a3 1337 () +iiizr(§) 133357 (3) 4.
- 3 3 H 5! I 7! 2
p2 . p2 p2 p2



Example 10.9] Evaluate

Sol. Here,

1 1
= EL{I} + EL{cosh4t}

Example 10.10] Prove that if

then

L

Sol. Let,

LIF(t) =

L{cosh? 21}

L{cosh? 21}

1 2
EL{cosh 2t}

1
EL{l + cosh 4t}

11 1 p
2p 2p?2—-16
1 p? — 16 + p?
2 p(p?—16)
(p* —8)
p(p? —16)

1 _1

L{F(t)= —e P
p

3

—2 41
(e FGny = <"
p

+1

e

| =
<=

= f(p)



By change of scale property, we have

13 .3 1.3
liﬂﬁﬂ—ff()—f— P=—¢ P
3p P
By first shifting theorem, we have
1 -3
L{e7'F(31)} = e ptl
p+1
t
Example 10.11] Show that f e’ l? dt = %
Sol. We know,
L{sint} = ———
{sint} e

By division by ¢ property, we have if L { ()} = F(p), then

L{TW:/F@@
14

Therefore,
(e.¢]
smt / 1 t _ ]OO
an
21 Pl
)4
—tan'oo—tan~! p = = — tan~!
=tan" oo — tan p—2 tan” " p @))

By definition of Laplace transform, we have

o0
sin ¢ ,sint
L{—} = ;) )
t 1t
0

Therefore, from 1 and 2 we have

o0

sin t b4

P gt =— —tan!
/ t 2 p
0

Putting p = 1, we have

o0

sin ¢ b4
/e*’—dt == —tan'1=
t 2

0



Example 10.12] Using Laplace transform prove that

o]

cos 6t — cos 4t 4
[ og (6)
0

Sol. We know,

L{cos6t — cos4t} = L{cos 6t} — L{cos4t}
p p

T 02436 pr+16
By division by ¢ property, we have if L { f(¢)} = F(p), then

L{ff”}=fF<p>dp

p

Therefore,

L cos6t—cos4t p dp
p*+36 p2+16

7
p
[o0) o
f p dp — / )4

p*+36 p2+16
p P
1 P2 +361%
=3lg| e

2 +16],

1 p>+367 1 p>+36
=5 lim log|— — 5 log| =

2 p—oo p~+16 2 p-+16
_ 110 p?+36
T2 % 2516

1 p>+16
= —log

2 p*+36

6t — cos 4t 1 2416
L cos cos — Llog p-+ )
t 2 p*+36

By definition of Laplace transform, we have

8]

L{cos6t—cos4t}:/e p’smtdt )
t t
0



Therefore, from 1 and 2 we have

oo
/e—poOS6t —Cos4tdt _ 1 log p2 + 16
t 2 p*+36

0
Putting p = 0, we have

o0
/cos6t—cos4tdl 1l 16 | 4
e Tt = —log| — | = log —
‘ 2% 36 €6

0

Example 10.13] Express the following function in terms of unit step function

f@)=0,t <0
=@t-1,1<t<?2
=0B-1,2<t<3
=0,t>3
and find its Laplace transform.

Sol. Here

f@®=fit)=0,t <0
=pHLB)=—-1),1<t<?2
=f3t)=0GB—-1),2<t<3
= fa(t) =0, >3
In terms of unit step function,
F = A0 +{HO = AOIHE =D+ (f30) = LOVH(E —2)
+{fa(@) — f3(O}H(t — 3)

=04+ {t—1—-O0HGt—D)+{3—t—t+1}H(t —2)
+{0—3+1t}H( —3)

=t—-—DHG@E—-1) -2 —-2)H@t —2)+ (t —3)H(t —3)
Therefore,
L{ift)) =L{¢t—1)H@E —1) =2t —2)H(t —2)+ (t —3)H(t — 3)}

= L{(t = DH(@{ — 1)} = 2L{(t = 2)H(t — 2)}
+ L{(t — 3 H(t — 3)}



=e PL{t} —2¢ *PL{t} + e P L{1},
since, L{f(t —a)H({t —a) = e “PL{f (1)}
=(e7P —2e7?P 4+ ¢73P)L{1}

(e P —2e 2P 4 ¢731)

- 2

p
Example 10.14] Evaluate
t
L{cosht/e’C cosh xdx}
0
Sol. We have,
t ' . .
/ex coshxdx = [ex(e—zie)dx
0 0
t
= 1 (€ + 1)dx
2
0
e bl
2\ 2 2
Therefore,

t
. 1 e 1
L{cosht | ¢*coshxdx}=L{—-cosht|—+1t— =
2 2 2
0

1 1
L {62’ cosht} + EL{t cosht} — ZL{cosht}

(p—2) 1 d p 1 p
p-22-1 "2V (pz—l) _4<p2—1)

_ 2
(p2)+p+1 1<p)

1
TA4p—4p+3  2p2—-12 4\pr-—1

Example 10.15] If Lf (1) = F(p) then prove that

1
a) L{f(¢t)sinat} = E{F(p —ai)— F(p+ai)}

Bl— b=




b) L{f(t)cosat} = %{F(p —ai)+ F(p + ai)}

Sol.
a) We know,

sinat = zii(eail _ e—ait)
Therefore,
L{f(t)sinat} = L{f(t)%(euit . eﬂm)}
1 ) ‘
= E[L{eall‘f(t)} _ L{e—altf(t)}]
1
= 5 AF(p—ai) + Fp +ab)
b) We know
cosat = %(eait + e—ait)
Therefore,
L{f(t)cosat} = L{f(t)%(e‘”" + efait)}
1 . _
= E[L{e‘”tf(t)} + L{eialtf(t)}]
= l{F(p —ai) + F(p +ai)}

2

EXERCISES

Short and Long Answer Type Questions # ———

1) From definition find the Laplace transform of the following functions:

a) F(t)=sint,0 <t <m

=0,t>m

4
Ans: & T 1
s2+1



2)

b) Ft1)=0,0<t <1
=t,1<tr<2
=0,t>2

c) Fi)=¢€,0<t <5
=3,t>5

d FO)=@t—-1D%t>1
=0,0<t <1

Evaluate

a) Lisin(at + b)}

b) L{e* —1)%}

¢) L{r3e™3")

d) L{e "sin?¢)

e) L{e * cosh2t}

f) L{r%e 2 cost}

3 1 — e 3=
Ans: e + S
5 p—1

D¢~ P
|:Ans: 63 i|
p

acosb+ psinb|
Ans: — >
p-+a

1 2 1
|:Ans: -t —
p—4 p—2 p]

[A“S‘ <3

, _
Ans:
[‘“(p—nuﬂ—2p+$_

p+4

|:Ans: 3 e 115
P2 +8p+12]

[ 2(p3 +10p> +25p +22)
Ans:
(p2 +4p+5)3



3)

4)

g) L{te™"cosht}

2
Pmp+%+ﬂ
(p*+2p)?

cosat — cos bt
h)y L ——M—

|:Ans p +a? ]

_7[10 ( 2+b2)

[Ans: cot™!(p + 1)]

j) L{( +te )3}

1 3 6 6
|:Ans: — + ]
p

Gt T T e

Express the following functions in terms of unit step function and obtain their
Laplace transforms

a) F(t) =cost,0 <t <m
=cos2t,m <t <2mw

=cos3t,t > 2w

Ans: p N pefnp N pefnp N p672np B pe7271p
ns: -5 1 244 211 249 244
P+ P+ P+ p-+ p-+

b) F(t) =4,0<t <1
=-21<t<3
=5t>3

Using Laplace transforms evaluate the following improper integrals

o
a) [te”* sintdt
0
3
Ans: —
5]

[Ans: 0]

oo
b) [ te' cotsdt
0



o _,sint

4
[Ans: Z]
Multiple Choice Questions
1) L{sin3tsin2t} =
2 )4 b) 12p
(p? + D(p* +25) (P> + D(p* +25)
) 1271) d) none of these
RETEENTE
2) L{cos’t} =
(P*+5) (P2 +5)
) ————————
(P2 + D(p?+9) 2(p2 + D(p*+9)
2
c plp”+5) d) none of these
2(p2 + D(p2 +9)
3) L{f@) =
a) ?Oeptf(t)dt b) ?e*l”f(t)dt
0 0
c) 70 eP! f(t)dt d) 70 e Pl f(t)dt
4) L{3t+5) =
3 3 5 6
= +5 b+ = - d) —
Y2 2ty 9 e
5) If L{f(t)} = F(p) then L{e" f (1)} =
a) e’ F(p) b) pF(p) ¢) F(p+a) d) F(p—a)
6) L{e 3 sin4t} =
S S Y S | Y
pr+6p—17 p2+6p—17 pr+6p—17 p?2+6p+25




7 IfL{ } ( ) thenL{Sintat}z
1 1
a)tan™ (12> b) tan~! (p) ¢)tan~! <ap> d) ;tan_l (g)

Answers:

1 (b) 2(c) 3(b) 4 (b) 5(d) 6(d) 7 (b)






CHAPTER

11

Inverse Laplace Transform

11.1 INTRODUCTION

In this chapter we deal with the Inverse Laplace Transform. We give different properties
of the Inverse Laplace Transform illustrated with various kinds of examples. Here
we include different techniques of finding Inverse Laplace Transform such as partial
fraction, convolution, etc. At the end of the chapter, solutions of university examination
problems have been included.

11.2 DEFINITION AND UNIQUENESS OF INVERSE LAPLACE TRANSFORM

11.2.1 Definition

If L{f()} = F(p), then f(¢) is called the Inverse Laplace Transform of F(p) and
denoted by

f) =L Y {F(p)}

11.2.2 Null Function

Null function N (¢) is such a function which satisfies the condition

t
/N(t)dt —Oforallf > 0
0




11.2.3 Lerch’s Theorem on Uniqueness
If L{f1(t)} = L{f2(t)}, then the functions

AW = A0 =N®)|

where N (¢) is null function for all > 0

Remark: In other words the above theorem states, that Inverse Laplace
Transform is always unique.

11.3 LINEARITY PROPERTY OF INVERSE LAPLACE TRANSFORM

If Fi(p) and F»>(p) are the Laplace Transforms of fi(¢) and f>(¢) i.e.,if L{f1(¢)} =
Fi(p) and L{f>(1)} = Fa(p) then

L™ Ye1Fi(p) £ 2P (p)y = el LT {Fi(p)} £ 2L {Fa(p)} = c1 f1(1) £ 2 fo(0)

where c1, ¢y are arbitrary constants.
11.3.1 Table of Inverse Laplace Transform

=l
M) Lil=—=L"'1-1=1
p P

" n! | " 1 1 t"
(Z)L{t}ZWjL pn+l =t"=1L pn+1 =0

where n is a positive integer.

3) L{ln} — % = L—I{W} =" = L—l{ 1 } _ t" ’

n>—1

1
() L{e"} =
=

a
) Li{sinat} = 55— = L1 { -

. _1 1 sin at
3 =sinat = L
p-+a

pPrat|

(6) L{cosat} = % = L} {p} = cosat
p*+a a

a a 1
7) L{sinhat} = —— = L'l —— 1 — ginhat = L '{——— 1 =
(7) L{ at} pz_az {pz—QZ} a {pZ_QZ}
sinh at

a



__ P -1 14 _
(8) L{coshat} = 7 —a? =L {pz — } = cosh at
4 2+3
Example 1 | Find L~! — + +op
= p 2p—1  4p2 41
Sol.
3 4 2+3
L7 5+ bl
p> 2p—1 4p2+41

t 1,
=35 +2:e2' 42
312 1]
= 42.¢20 4 .
) + e +2

3+4
Example 2 | Find L' +tap
> 9p% —4
Sol.
L_l 3+4p
9p2 —4




2p+3 ,

Example3 | Evaluate L~!{ —— —~
- {(p—1>(p2+1)

Sol. Here, we apply the method of partial fraction to compute the given inverse
Laplace transform.

Suppose
2p+3 A Bp+C

P01 G-D D)
_A(PP+ 1)+ Bp+O(p—1)
(p—D(p*+1)
_A+B)pP?+(-B+O)p+A-C
B (p—1D(p2+1)

Equating the coefficients of like powers of p in the numerator of both the sides,

we get
A+B=0, —B+C=2,A-C=3
Now,
A+B=0
>A+C=2
e
A+C=2 5 —1
éAzf,Czi
|:A—C:3:| 2 2
Putting,
A=2inA+B=0 (B=
= —in =0, weget B = —.
2 g 2
So,
5 -5 —1
2p+3 B (z) +(7>P+(7)
(p=D((P*+1) @-D (P2 +1)
Therefore,

—1 2[J+3
(p=D(p2+1)




5 (&) @
2t {(p—l)}+L [(p2+1)+(172+1)=

(f) Nota) G )

1
cost + —sint
2

QN
+

11.4 FIRST AND SECOND SHIFTING PROPERTIES

11.4.1 First Shifting (or Translation) Theorem
Theorem 11.1 If L=' {F(p)} = f(t) then

L —a) =" f() = L (F(p))

Proof From the definition we have,

F(p)=L{f()} = /e_plf(t) dt
0

Now,
F(p—a)= fe—@—“)ff(;)dr = /e—l” e f()}dt = L{e" f(1)}
0 0
ie., L™ F(p—a) =" f(t) =" L™ {F(p)}

This proves the theorem.

1
Example 4 | Evaluate L™t __p+l
(p2 +4p + 13)
Sol.
-1 p+1
2
(p +4p+ 13)

=L_l{ (p+2)—1 }
(p+2)°*+3?

—1
=e 2! {pz + 32 } , since L™ {F(p —a)} = "' L™ {F(p)}



2t | 7 =1 p -1 1
= L Y Sl (-
¢ [ {p2+32} {p2+32”

—e X |:cos 3t — 511133t]

Example S _| Evaluate L~! _r

3
(p+D2
Sol.

p

L} — 3

(p—1)2

(p—1+1
5

=11

,1 P+1

2
z]

since L' {F(p —a)} = e L™ {F(p)}

N\Ul




11.4.2 Second Shifting Theorem
Theorem 11.2 If L' {F(p)} = f(¢) then,

L™ e F(p)) = g(1). where (1) = {fét -, Za}

Alternative statement (using Unit Step Function)

If L~'{F(p)} = f (1) then,

LM e F(p)) = f(t—a)- H(t —a)

where H (¢ — a) is unit step function.

Proof By definition, we have

o0

F(p) = /e"”f(t) dt

0
00

ie. e P F(p) = / e PUFD £(1) dt
0
Putting, t + a = x, dt = dx we obtain from above,

e ¢]

e PF(p) = /e_pr(x —a)dx

a

a o0
:fe_px-de+/e_pr(x—a)dx

0 a

a o

= /e_p’ -0dt —i—/e_p’f(t — a) dt (Replacing x by t)

0 a
_ / e Ple(r) di = L {g(1))
0

Therefore,

L™ e P F(p)} = g(r), where g(r) = {f(t —a), > a}

0, t<a

1)e2r
Example 6_| Evaluate L] {(p—l—)e}

pPP+p+1



Sol. First we find,

Ll{ p+1 }
pP+p+1

» 1
ez 1] P jg S 1 since L™ {F(p — )} = e’ L™ {F(p)}
P2+(7
:e%lt -1 p _l -1

By second shifting theorem, we have

L™ e F(p)} = f(t —a)- H(t — a)

Therefore,
1
L} {e—2p . 72(]”_ ) }
pr+p+1
LoV 1 3
=e?2 [coS——t— —=sin——t
2 V3 2
=1 3 1
=e¢2 72 | cos £(z‘—2) — ——sin £(t—2) -H(t —2)
2 NE]
where,



11.5 CHANGE OF SCALE PROPERTY
Theorem 11.3 If L~ {F(p)} = f(¢) then,

1 t
L~} {F(ap)} = . f <a) for non zero constant a.

[WBUT 2002]
Proof By the definition we have,

F(p) = LUf (1)) = f P F (1) di
0

e ¢]

So, F(ap) = /e_“’"f(t) dt

0
o0

= /e_“p’f(t) dt (putting at = u, a - dt = du)
0

Il
Q| =
0\80
m‘
=
~
N
Q| ~
v
X
-~
~~
=
[¢)
se)
=
N
o
o.
=
[0)°]
<
(on
<
~
N

Hence,

S ra 2t
L= {F@ap)}=—-f
a

a

Alternative Proof Since, L~! {F(p)} = f(¢), we have F(p) = L {f (1)}

[ R R

Using Change of scale property of LT (see Art. 10.6 of Ch. 10), we obtain

L{f(;-t)}=}~F<lf)=a~F(ap)



Therefore, from (1) we have

1 t 1
L{f()}— a- F(ap) = F (ap)

a a a

1

a

i.e., {F(ap)} = f (;)

Example 7 | Using change of scale find L~! { (L }

4p% +1)

Sol. We know,

- P = cost
L {(p2+1)}_

p

(P> +1)

By change of scale property, we have

1
LHFCp) = 5 f<;>

Here, F(p) = and f(t) = cost

11.6 INVERSE LAPLACE TRANSFORM OF DERIVATIVES OF FUNCTIONS

11.6.1 Inverse Laplace Transform of first order derivative of
a function

Theorem 11.4 If L~' {F(p)} = f(¢) then,

d

L*{deﬁz—rb*wwn
p

ie, L~V {F'(p)}=—t- f(t)




Proof Since L™ {F(p)} = f(1), we have F(p) = L {f (1)}
Now by Theorem. 10.6 of Ch. 10, we have

d
L{t-f®)}= T {F(p)} =—F'(p)
4
or, F'(p)=—L{t- f®)} =L{-t- f(1)}
=L {F(p}=—1-f0.

Hence, the result is proved.

11.6.2 Inverse Laplace Transform of »™ Order Derivative of a
Function (Generalised Form)

Theorem 11.5 If L= {F(p)} = f(¢) then,

dn
L {d nF(p)} =(=D"-1"- L7 {F(p)}
P

fen L {FW(p)} = (=" 1" f (1)

Proof Since L™! {F(p)} = f(@),wehave F(p) = L{f()}.
Now by Theorem. 10.7 of Ch. 10, we have

dn
L{ - f@ = 1" L F@ = DY)

or,

FO(p)y=(D"L{" fO)) =L{=D"1"- f)}

= LHFOm) = e po.

This proves the result.

Example 8 | Find L~! { ( P }

Sol.




r .
= —sint.

2
5
Example 9 | Find L~ {log p+}
i p+4
Sol. Let
+35
F(p) =log (p) =log(p+35) —log(p+3)
p+4
Therefore,
F'(p) = ; L
pr= p+5 p+3
So,
1 1
L71 {F/(p)}:Ll{ }_Ll{ }zesl‘_e:’)f
p+5 p+3
Since,
1] d -1
L dfF(p) =—t-L7 {F(p)}
p
‘We have,
—t LTF(p)y=e — e
—3t —5t
_ el —e
or, L™ {F(p)} =
Hence,
5 -3t _ -5t
L_l{logp+ }:e ¢
p+4 t

11.7 INVERSE LAPLACE TRANSFORM OF INTEGRALS

Theorem 11.6 If L~' {F(p)} = f(¢) then,

L~} [/F(p) dp} = @

p




Proof Since L™! {F(p)} = f(),wehave F(p) = L{f()}.
Now by Theorem. 10.8 of Ch. 10, we have

e ¢]

L{ff)}=fF(p>dp

p

=L} [/F(p)dp} :@

p

Hence, the result is proved.

11.8 INVERSE LAPLACE TRANSFORM OF FUNCTIONS ON
MULTIPLICATION BY p” (nis any positive integer)

11.8.1 Multiplication by p
Theorem 11.7 If L=' {F(p)} = f(t) and f(0) = O then

L™ {p-F(p)t=f()

Proof Since L~ {F(p)} = f(t), we have F(p) = L {f (1)}
Now by Theorem 10.2 of Ch. 10, we have

L{f'®O} = pL{fn}~ f(©O)
=p-F(p)— fO)
=p- F(p), since f(0) =0

Therefore,

L' {p - F(p)t=f ()

11.8.2 Multiplication by p" (Generalized Form)

Theorem 11.8 If L~ {F(p)} = f(r) and f(0) = f/(0) = f"(0) = ---

f@=D(0) = 0 then,

L™ p" F(p)} =™

Proof Since, L~ {F(p)} = f(t), we have F(p) = L {f(1)}



Now by Theorem 10.4 of Ch. 10, we have

L0} =p"Fe) = O = p" 2 == £ D0
= p" - F(p), since f(0) = f'(0) = f"(0) =--- = f""(0) =0

Therefore,

L~ p" - F(p)) = ™)

11.9 INVERSE LAPLACE TRANSFORM OF FUNCTIONS ON DIVISION BY p
Theorem 11.9 If L' {F(p)} = f(¢) then,

t
L~! {F(”)} = f f(x)dx
P 0

Proof Since L™ {F(p)} = f(t), we have F(p) = L {f(1)}
Now by Theorem 10.5 of Ch. 10, we have

{/f( s } F(p)
=>L_1{F;p)}=ff(X)dx
0

Theorem 11.10 (Generalized Form): If L~! {F(p)} = f(¢) then,

t t t
F
L_l{ (p)}://.../f(t)dt”
pl’l
0 0 0
Proof Beyond the scope of the book.

1
Example 10 | Find L! { ST }
= » (

p2+1)

1
Sol. We know that L~! { 5 } =sint
p-+1

Here, F(p) = and f(¢) = sint

p2+1



Now by division rule, we have

t
L~! {F(")} =/f(x)dx
P 0

Therefore,

t
1
-1 {(2-’_1)} =/sinxdx=l—COSl‘
p\p 0

Similarly, applying division rule to the above result we obtain

t
1
L~} {] :/(1—cosx) dx =t —sint
2 2
+1
P2 (P2 +1) )

11.10 CONVOLUTION
11.10.1 Definition

Let fi(r) and f,(¢) be two continuous functions for all + > 0 and of some expo-
nential order as r — o0, then their convolution is denoted by f| * f> and is
defined as

t

fix o= [ filx)- falt — x)dx

0

Note: RHS is sometimes called convolution integral.
Properties:

(1) Commutative property

|fixfo=Fx fi]

(2) Associative property

Lfix(fax ) = (f1 % f) % fo. |

(3) Distributive property w.r.t addition

fix(f2+ f3) = (fix o)+ (f1* f3)
and (fi+ f2)* f3=(f1* f3)+ (fa* f3)




11.10.2 Convolution Theorem

Let f1(¢) and f>(¢) be two continuous functions for all 7 > 0 such that their Laplace
transform exists and also let

L™ {Fi(p)} = fi(t) and L™ {F2(p)} = fo(0),

then, convolution theorem states that

t
L {Fi(p) - Fa(p)) = / A - folt = 0)dx = fi % fo.
0

In other words,

[L1AW® * O} = Fi(p) - Fa(p) = LIAW®} - L{AH0)}]

Again, since f| * f>» = f» % f1, convolution theorem can also be stated as,

1
L~ (Fi(p) - Fa(p)} = / Si(t = x) - fa(x)dx = fi1* fa.
0

[WBUT 2006]

Proof Beyond the scope of the book.
Note: According to our requirement we choose any one of the above forms.

Example 11 | Use convolution theorem to find
1
L .
!(p—2)(p2+1)}

[WBUT 2004]

Sol. Here, we have to find

= 1 _ (S
(r—2) (p*+1) (r—2 (p2+1)
=L Y{Fi(p)- F2(p)}
Where,

Fi(p) = = L{f1(1)} (say)

1
(p—2)

_r—1 1 2t
»a0=1 o ) =




and

F(p) = = L{f2()} (say)

o
(P*+1)

1
= fZ(t) = L_1 {W-}-l)} =sint.

By convolution theorem, we have

t
L™ {Fi(p)- F2(p)} = / fit —x) - fa(x)dx
0

t t
1
jie, L7V — — =/e2(t*x)~sinx dx :e%fe*zx -sinx dx
(p—2)(p*>+1) J J

2 |:e2" - (=2sinx — cosx)}t
=
(=2 + 12 0

B 2,[6_2’-(—25int—cost) —1i|

5 5

WORKED OUT EXAMPLES

Example 11.1] Evaluate

L‘l{ 4p+5 }
P-H*(p+3)

[WBUT 2003]
Sol. Here, we apply the method of partial fraction to compute the given inverse
Laplace transform. Suppose
4p+5 A B C

P-4 (p+3) (P-4 " (p—4)2+(p+3)
_ A(p—H(P+3)+B(p+3)+C(p—4)?
B P—H(p+3)
_(A+C)p*+(-A+B—8C)p+ (—12A+ 3B + 16C)
- (P—H*(p+3)




Equating the the coefficients of like powers of p in the numerator of both hand
sides, we get

A+C=0, —A4+B—-8C=4, —12A4+3B+16C =5

Now,
—~A+B—-8C =4
= 9A —40C =7
—12A+3B +16C =35 |
A+C=0 ] | _1
=2=A=-,C=—
9A —40C =1 | 7 7
. 1 -1,
Puttmg,A=7,C=71n—A+B—8C=4,WegetB=3.
So,
4p +5 1 1 1 1 1
(p=H"(p+3 71 (p—94 (p—4" 7 (p+3)
Therefore,

Ll{ 4p+5 }
(P—H*(p+3)
=L1{1- ! +3. ! _l. ! }
7 (p—4 (p-4H> T (p+3)

RSO e RO 7
(=92 7 (p+3)

1 1 Applying first shiftin
4t 4 -1 ) 01 -3 pplying g
R { 2 } ¢ ( Th. on the 2™ term. )

I
) -
|
e,
~
=
|
B~
~

7

| =

I
|
[N
~
by
+
(O8]
o
~
X
~
[N

3p2+4
Example 11.2] Find L' Gr* +4)
g (P*+1)-(p?+4)

Sol. Here, we apply the method of partial fraction to compute the inverse Laplace
transform and let us consider,

(3p* +4) A B A(PP+4)+Bp*+ 1D

P AD- (244 D (2 +4) (P>+1)-(p*+4)
(3p* +4) _(A+B)p*+(@4A+B)

TN @D (P44




Equating the coefficients of like powers of p in the numerator of both hand
sides, we get

A4+ B=3and 4A+ B =4

1 8
Solving, we obtain A = 3 and B = 3
Therefore,
5 1 8
-1 (p* +6) -1 3, 3
P>+ (P*+4) (P*+ 1D (p?+4)

_ L {1}+4L1 2
3 Pr*+nf 3 (p* +4)

. 4 .
—sint — — sin 2t
3 3

1
3 (sint — 4sin2t)

Example 11.3/ Find L~! { 5 (p+3) }
pr(p=3(p-D

Sol. Now, we apply the method of partial fraction to compute the inverse laplace
transform and let us consider,

+3 A B c D
(p+3) B .

Po-3p-1 p 2 p-3 p-1
{Ap(p—3>(p—1>+B<p—3)(p—1)}

L (p+3) |+t - D+ Dp(p - 3)

T pPp-3 (-1 pr(p=3)(p-1)

Equating the numerators from both hand sides, we have

p+3=Ap(p-3)(p—-D+B(p-3)(p—-1
+Cp*(p— 1)+ Dp*(p —3)

Putting, p = 0, 1, 2, 3 successively, we get

1
B=1,D=-2, —2A—B+4C—4D=5andC=§

1
:>A:—,B:l,C:§andD:2.



Therefore,
(p+6) —-191 1 1 1 5 1

23 p-3 o

2r-3p-1_ 3 p"

Hence,
1! { (p+6) }
pPPp-3p-1

_ - —191+1+1 1 42 1
- 3 p pr 3 p-3 p—1

T [ T S [t SCSYS
3 p p? 3 p—3 p—1

—19 1
:T+t+§'e3t+2'el

Example 11.4] Find L™} {(p} by Convolution theorem. [WBUT 2005]

p+1)°

Sol. Here, we have to find

-1 p . p . 1
- {@LHV}_L hﬁ+0 @HJJ

= L™ (Fi(p) - F2(p)}

where,
p

m = L{f1(t)}(say)

Fi(p) =

= fi)=L"" {(pﬂil)} = cost
and

F(p) = = L{f2(0)}(say)

L

(P2 +1)
1

= fZ(I) = L_l {w} =sint

By convolution theorem, we have

t
UWH@%&@H=/ﬁ@%ﬁU—mw
0



1
i.e., Lt {w} /cosx-sin(t —Xx) dx
p-+1

0

t

= l/{sint —sin (2x — 1)} dx

2
0
1 , cos@x -7 1 .
= —|xsint+ ———= | = —tsint
2 2 0
Example 11.5] Apply convolution theorem to prove that
t
t
/sinx -cos(t —x)dx = 2 sin ¢
0
[WBUT 2007]
Sol. Let,
t
f@ = / sinx - cos(f — x) dx (1)
0
t
= / f1(x) - folt —x) dx = fi(t) * f2(1)
0
where,

fi1(®) =sint and fo(f) = cost
Then by convolution theorem,

L{f(Oy=L{fit)*x L)} =L{fiO)} L{f2(0)}

— 1 . = : p
= L {sint} L{COS’}—p2+1 pr+1
‘ p
ie., Liyor=-——r""y
(P2 +1)°

= fo =L L }
! {(PZH)2



11.22 I Engineering Mathematics-I1

R R 1 N e
=t { 2 dp((p2+1>)}‘ 2t {dp((p2+1>

LI R !
=—5CDha-L {(p2+1)},(byTh.11.5)

t .
= — -sint
2
Therefore,

) = % sint

From (1) and (2) we have the required result as
t
t
/ sinx -cos(t — x) dx = 2 sint
0

Example 11.6/ Apply convolution theorem to prove that

_I'm)-T(mn)
B(m,n) = m, m,

n>0
Sol. We know from definition
t
B(m,n) = /xm_l (1=x)"Vdx, m,n>0
0

Let,
f@y= [ 2" —x)" ! dx
/
:/fl(x)-fz(t —x)dx = fi(t) * fo(t)
0
where,

fi@) =™ and fo(r) = 1"

)

2



Inverse Laplace Transform I 11.23

Now, by convolution theorem

Lif(O) = L{fi@)* f2(0)) = L{A©O)- L1200}

- L {Zm_l}-L {Zn—l} _ I'(m) . I'(n) _ I'(m).I'(n)

pm pn pm+n
Hence,
ft)y=1L"" {W} =T(m)-T(n)- L™ { m1+n}
p p
= F(m) . F(l’l) . ﬁ . Zm+n_1

Therefore,

/ eyt g = RO L)
0

I'(m + n)
Putting, = 1, we have
/)Cm_l . (1 —)C)n_l dx = Flfiz/ln?l Ifl’;) . (1)m+n_1
0
r -
= B(m,n) = Im

This proves the result.

Example 11.7) Evaluate

L™ Ytan Y (p +2)}

Sol. Let,
F(p) =tan Y (p +2)
Differentiating w.r.t p, we have

1

=

Now,

—1 ’ _ —1 1
LY F(p) =L {(p+2)2+1}

— e—2tL—1 1
p*+1

= e % sint



L~ YF' (p)} = e *sint
By the derivative property, if L~ {F(p)} = f(t) then,
L™F'(p)} = —1- L7 {F(p)}

Therefore,
L~! {1} = —tL M {tan"'(p +2)}
(p+2)2+1
or L_l{tan_l(p~|—2)}=—lL_l {1}
’ t (p+2)2+1
1
= ——¢ Hgint
t

Example 11.8) Evaluate

L7! !plogp + cot™! p}

Vil

Sol. Let,
P 1

F(p) = plog————=+cot” p
VPl
1 2 -1
=p logp—ilog(p + 1)t +cot™ " p

Differentiating w.r.t p, we have

F'( )—{lo 110(2+1)}+ {1 P } !
p) = jlogp — > log(p pp PP+ D P
1 2
=10gp—§10g(p +1)
Again,
1 P
F'(p)=—— —5—
p (P+D
Now,

1
L=V (F" — 1! { _ p }
(F™(p)} b T 2D

el )
P (P +1

=1—cost

ey



By the derivative property, if L~! {F(p)} = f(¢) then,

L=HF"(p} =

(—1)? - LY F(p)}

Therefore,
1 p _ p
1 2,27 -1
- - = (—D*t°L log ———
{p (P?+1D {p RV
- P i o1 p
or, L ! plo +cot” pr=—= {—
{ S 12 p PP+
—1 p 1 1
or, L plog +cot™ ppr = (1 —cosr)
p2 _I_l t
Example 11.9] Prove that
t
1|1 1 1 —cosu
L —logl+ %)t =2 ———du
p p u
0
Sol. Let,
1
F(p) =log (1 + 2)
p
Therefore,
Fl(p) = ———
p(p*+1)
and
L™ YF'(p)y = —2L7" {1}
p(p?>+1)
1
-2 () ()]
p pe+1
= —2(1 —cost)

By the derivative property, if L~1{F( p)} = f(¢) then,
LHF'(p)}=—1- L7 {F(p)

Therefore,

—2(1 —cost) = —tL™! {log (1 + 12)}
p

-1 {log (1 n plz> _ 2(1 —tcost) }

+ cot™! p}



By division by p property, we have the following,
If L='{F(p)} = f(1) then,

t
L~} {F(”)} = /f(u)du
b 0

Therefore,

Example 11.10] Evaluate
1
-1
el
p’(p+1

Sol. We know,

L1 { ! } =e !
(p+1

By division by p property, we have the following,
If L' (F(p)} = f (1) then,

t
L! {F(p)} = /f(u)du
P 0

Therefore,

t
1
L_l {(-}-1)} :/e_udu:1—e_t
pp 5

Again, applying division by p property, we have

t
1
] = [
0

=t+e -1



Again, applying division by p property, we have

L_l{il
pp+1)

‘
}:/(u—i—e_“—l)du
0

2

=——e¢'—t+1

2

the following change has been made.

IMPORTANT NOTE: The following problems are solved with the transform
parameter s because some university examination problems involve param-
eter s. Though throughout the chapter we have discussed the topic using the
parameter p, but to keep the originality of the examination paper problems,

Example 11.11] Find
L! {

Sol.

s+1
s24s5+1

!

[WBUT 2003]

(Applying first shifting Th.)
1
+L7! 2[ 5
3
(9
V3 }
sin —t
2




Example 11.12] Find

1

L1
(25 a?) (2 + )
[WBUT 2006]
Sol.

1

L™ { (s> +a2) (s> +b?) }
e ()

B 1 -1 1 — :
= 5 (s2+b2)  (s2+a?)

L F{ +,,}L{ul)”

1 sinbt  sinat
az = b2

Example 11.13] Find

[ {Sz}
(s + 1)

[WBUT 2006]
Sol.

L_liﬁ}:L_l G+1-1?
s+ 1) (417

_ i1 )= 1?
=e 'L (by first shifting theorem)
s3

_effol {S2—2s+1}




2.
2! 31 4l

e’ 2 3, .4
= [1222 — s r]
24[ +

Example 11.14] Apply Convolution theorem to evaluate

[WBUT 2006]

Sol. See solved Example 11.4.

Example 11.15] Apply convolution theorem to find the inverse Laplace trans-

form of
o
(s2 + 1) (s2 + 9)
[WBUT 2002]
Sol. Here, we have to find
= 1 _ - 1 . 1
(s2+1) (s2+9) (s2—|—1) (s2+9)
= L™ {Fi(s) - F2(s))
where,
1
Fi(s) = 2+ 1) = L{f1(2)} (say)
_ 1 .
= fi(t)=L7! {(S2+1)} =sint
and
1
F(s) = (2 +9) = L {f2(t)} (say)
= f() = L] 1 _ sin 3¢
(s2 + 9) 3



By convolution theorem, we have

t
L~ {Fi(s) - Fas)) =/f1(t—X)~fz(X)dx
0

t
1 sin 3x

_l s _ . _ .
-k {(s2+1)(s2+9)}_0/5m(t Xy dx

i.e.

13
1 . . .
= gf(smt -cosx — sinx - cost) - sin3x dx

0
t t
=% sint/sin3xocosxdx—cost/sin3x~sinx dx
0 0
. t t
=% SITnt/(sin4x+sin2x) dx—&zst/(cosbc—cos%c) dx
0 0

1. |:cos4x cost]l [sian sin4x}’}
= —{sint|— — —cost —

6 4 2 2 2 |,

11(. cos4t  cos2t 1 1 sin2¢t  sin4t
= — st |— ———+ -+ < | —cost —

6 4 2 4 2 2 2

1
= ﬁ(3 sint — sin 3t)

Example 11.16] Apply Convolution theorem to find
A L E—
(s2+9)
[WBUT 2007]

Sol. Here, we have to find

{<+9>} - [<szs+9> | <s21+9>}

= L7 {Fi(5) - Fa(s))




where,

Fi(s) = = L {f1(1)} (say)

(s2 j— 9)

= fit)=L"" { (szj-9)} = cos 3t

and

Fa(s) = = L{f2(t)} (say)

1

= f) =L : 1 } _ sin 3t'

(s2 + 9) 3

By convolution theorem, we have

t
L! {F1(s) - Fa(8)} = / f1(x) - fa(t —x)dx
0

t
in3( —
i.e. L~} % =/cos3x~udx
(s2+9) 3

0

t
1 1
= §~5/{sin3t—sin(6x—3t)} dx
0

1
=6|:xsin3t+ 6

Example 11.17] Apply Convolution theorem to evaluate

Sol.

ey
(s2+2s+ 5)2

Here, we have to find

cos (6x — 3t)

}

t

0

1

= —tsin 3¢.
6

1

[WBUT 2008]

. 1 -1 1
- {(s2+2s+5)2} " {(ﬂ+2s+5) ' (s2+2s+5)}

=L {F(s)- F(s)}



Where,

F(s) = = L{f(®)} (say)

(s2+2s +5)

4 1 I 1
= o=t {(s2+25+5)}_L {(s+l)2+22}

1
—et. ] { S } by first shifting property
A

_; sin2t 1 _
. = e
2 2

= e t

- sin 2¢

By convolution theorem, we have

t
L™ YF(s)-F(s)} = f fx) - f@t —x)dx
0

t
1 1 1
ie, L7} {(2)2} = / (Ze" . sin2x> . <2e(’x) -sin2 (¢ —x)) dx
s<+2s+5

0
1 t
= Ze"/sian -sin2 (t — x) dx
0

t

1 1

= Ze" 5 / [cos(4x — 2t) — cos2t] dx
0

1, |:sin(4x—2t) !
—_— 7e . e ——

8 4 0
1 in 2t in (—2¢
L (81020 o SI(Z2D)
8 4 4

— X Cos 2ti|

1
= —e " . [sin2t — 2t cos 2t]
16

Example 11.18] Evaluate



Sol. Here, we have to find

e Rl P
-1 —-2°% s-1% (s-2)°
= L7 {Fi(5) - Fa(s))

where,

1
Fi(s) = ( = L{f1(n)}(say)

s—1)2_

=>f1(t)=L_1{( 11)2}=e’~L“{s12}:ef.t
5 _

and

1
F(s) = m = L{f2(2)} (say)

_ -1 1 o ] 2t.ﬁ
= fo(t)=L {(S_2)3}—e L { }_e R

By convolution theorem, we have

t
L™ Fi(s) - Fa(s)} = / f1t = x) - fa(x) dx
0

1 2
i.e., L_l {23} :/e(t_x)-([—x).ezx.idx
s—D"(—-2) ; 2

—%el/(t—)c)x2 e’ dx
0
t t
:el{tfx2~exdx—fx3-exdx} 1
0 0

t
:t3-et—3/x2~exdx 2)
0



Using (2) in (1), we have

o Pl
(s —D*(s—2)°
] ' t
=§et t/xz-exdx— t3-et—3/x2-exdx
0 0

t
1
=§e’ (t+3)fx2-exdx—t3-e’ 3)
0

Again, by integration of parts, we have

=t2~et—2t~et+2[ex]g

2

=t*.e =2t +2e' =2 “4)

Using (4) in (3), we obtain

o P
(s—D*(s—2)°

e farn (e 2 p2d —2) )

N =

e i (2 42" =2) +3 (2 21 e 42 —2) )

| =

1 1
= Eef(r2 el — 4t et +6e') — Ee’(zt +6)

1
= E(t2 — 4t +6)e* — (t +3)e



EXERCISES

Short and Long Answer Type Questions » ———

1) Find the inverse Laplace transform of the following functions:

2) F(p) = 6 3+4p 6p —8
P = 237902216 9+ 16p2
3 1 44 4 4 2 3t 3 3t
[Ans:3e2 —4sinh3—9cosh3+3sin4—gcos4:|
3p—14
b) F(p) =~
p-—4p+8
[Ans: ¢% (3 cos 2t — 4sin2t)]
3p—2
F(p)=—1+ -
P = 0
[Ans: ¢ (3 cos 4t + sin41)]
2
14
d) F =
) F(p) b+ 2
[Ans: e~ (1 — 4t + 2%)]
—2p
e
e) F(p)= 5
p

[Ans: t —2,¢t > 2;0,t < 2]

2
2) Evaluate L~ {log P+t }

p+1

—t -2t
e —e
|:Ans: f

-2
3) Evaluate L~ {tan1 (1)3)}

1
|:Ans: —;ez’ sin 3¢

1
4) Evaluate L™ {32}
p’(pr+1)

2
[Ans: 5 +cost — 1

]
]

]



2
5) Evaluate L~! {2172}
(p=+4)

1
|:Ans: 1 (sin 2t + 2t cos t)i|

1 2
6) Evaluate L ™! {logp—i_}
p p+1
2t 1 1
Ans: = 4+ — — —¢=¥
39 9
241
7) Evaluate L™ {log p2 + }
p-+p

1
[Ans: ;(1 + e —2cos t)j|

8) Findtheinverse Laplace transform of the following functions using partial fraction:

p—1
F =
V=t
4 —t
Ans: e 3 4 & (4cost — 3sint)
5 5
b) Fp) — 6p> +22p + 18
P+ Do+ +3)
[Ans: e 4272 4 3¢73]
2p+1
¢) F(p) b

T (p+22p—1)?

|:Ans: %t (¢" + e‘2’)j|

9) Find the inverse Laplace transform of the following functions using convolution
theorem:

1

VIO G her e
[Ans: é(ezt —2sint — cost)]
b) F(p) = p—1
D=+ 20 +2G+p)

1
|:Ans: ge_’(4 cost —3 sint)i|



c) F(p)=

1
+1)

Pi(p
)
|:Ans: 1—t+ > —e"]
3(p>+2p +3)
& F(p)= — P TP
(P> +2p+2)(p>+2p+5)
[Ans: e~ 'sint 4 e sin 2¢]
) F(p) !
e p=——"—"7F—"-—
(p—=2*p+3)
2 3 6 6
Ans: & BP—Z - —
30 5 25 125
Multiple Choice Questions
YAl SN
pr—7 p*+7]
4sinh7t  2sin7t b) 4cos7t  2sin7t
7 7 7 7
o dcos~/Tt  2sin/Tt 4 sinh /7t N 2 sin /7t
7 7 V7 V7
_ p 1
2) L7t =
) {p2 5 - 4}
inh 2¢ inh 2¢
a) cos 5t + s b) cos V5t + s
inh ¢
¢) cos /5t + s d) none of these
3) L7} { 24 }—
(p—1)°
2413 2414 21 4
a) o b) o c) — d) o
—ap
IEE
p-+1
a)sintH(t —a) b)sintH(t + a) ¢)H(t —a) d) —sintH(t —a)



. p _
R {(p+3)2+4}

a) cos 2t — % sin 2t b) e~ (cos 2t — % sin 2t )

c)e d) none of these

6) L™ {log(s +3)} =
e—3t 6—31 e3t

—3t b
a)e ) ; ;

7) If L-YF(p)} = f(@t), then L! |:7f(u)du] =
p

oL F G o) JO g FW
p \a p t u

Answers:

L (d) 2(b) 3(d) 4 (d) 5(b) 6 (c)

7 (c)



CHAPTER

12

Solution of Linear ODE using
Laplace Transform

12.1 INTRODUCTION

The Laplace transform is a very important tool for solving differential equations.
Basically, solving an ODE is to reduce to an algebraic problem (plus transformations
applied to it). This switching from calculus to algebra is known as operational calculus.
The Laplace transform method is the most important operational method because it
has two main advantages over the usual methods. Here, problems can be solved more
directly, like, solving initial value problems without first determining a general solution,
and for non-homogeneous ODE without first solving the corresponding homogeneous
ODE. In this chapter, we discuss the method of solving linear ordinary differential
equations with constant coefficients illustrated with various kinds of examples. To solve
the equations, we require the concepts and properties of Laplace transform as well as
inverse Laplace transform, which have been already discussed in Chapter 10 and 11.

12.1.1 Solution of Ordinary Differential Equations with
Constant Coefficients

For the sake of convenience, let us consider a second order linear ordinary differential
equation with constant coefficients

d? d
y—i—Cll

2 g, Teay=r0 ey




where ¢1 and c; are constants and f(¢) is a function of ¢. Also the given initial conditions
are

y(0) = Aand y'(0) = B 2)

To find the solution y(7) the following steps are to be followed:

Step 1 Take the Laplace transform of both hand sides of (1).
Step 2 Put the conditions (2).

Step 3 Form the algebraic equation which involves L {y(t)} and p, where p is the
transform parameter.

Step 4 Express L {y(¢)} as a function of p, say L {y(t)} = F(p).
Step 5 Take the inverse Laplace transform, such that, y(r) = L~ {F(p)}.

Note: Similar steps should be followed for any order of linear ordinary differential
equation with constant coefficients.

WORKED-OUT EXAMPLES

Example 12.1] Solve

y' (1) + y(t) = sin(20),
v(0) = 0 and y’(0) = 1, with the help of Laplace transform. [WBUT 2003]
Sol. The given equation is

y'(1) + y(r) = sin(21). (D

Taking Laplace transform on both hand sides of (1), we have

L{y"®} + L{y®)} = L{sin(21)}

=[P LOO) -y =Y O]+ L1y0) =

pr+4

Putting the conditions y(0) = 0 and y’(0) = 1, we get

2 _

[P L= po-1]+Lpmi=
. 2 ) 2 _ (p2+ )
ie, (p 4+ 1D -L{y@®)} = p2+4+1_7(p2+4)
2+6

ie., L{y(} = (p ) = F(p), (say)

P2+ 1 - (p*+4)



Therefore,

@

2
y<z>=L—1{F(p)}=L—l{ (" +9) }

P>+ - (p*+4)

Now, we apply the method of partial fraction to compute the inverse and let us
consider

(PP+6) A B _A@P+H+BE LD
P2+ D (p2+4) PP+ (pPP+4) PP+ D (pP+4)
) (p* +6) (A+ B)p® + (4A + B)
vL.e., =
(P> +1)-(p?+4) (P> +1)-(p?+4)

Equating the coefficients of like powers of p in the numerator of both hand
sides, we get

A+B=1and 4A+ B =6 3)
. . 5 2
Solving (3) we obtain A = 3 and B = -3
Hence from (2),
) 5 2
+6 2 Y
y(t) =L~ { (p ) } — 7! 3 3

(P> + 1) - (p? +4)

_5L—1{1}_1L—1 2
30 L@+ n) 3 |[(PP+9)

5. 1. 1 . .
= —sint — = sin2t = — (5sint — sin2¢) .
3 3 3

1
So, the required solution is y(¢) = 3 (5sint —sin2t).

Example 12.2] Solve by Laplace transform the equation

vy’ (t) + y(t) = 8cost

given y(0) = 1 and y'(0) = —1 [WBUT 2005]

The given equation is

y'(t) + y(t) = 8cost )



Taking Laplace transform on both hand sides of (1), we have
L{y"®)}+L{y@®)}=8"L{cost}

8p
pr+1

= [P LO) = p -y =y O]+ L{yn) =

Putting the conditions y(0) = 1 and y’(0) = —1, we get

8p
p2+1

[P LO)=p 1= D]+ L) =

8p
. 2

.e., +1)-L{iy@t)} = +p—1
ie (p ) L{y®)} 21 tP

8p p—

1
ie., L{iy@®)}= + = F(p)
(P +1)°

pr+1

Therefore,

_ _ 8p p—1
=L YF =L! +

8 1
e R P P
(p2+1) p-+1 p-+1

=8~L_1{(2pz}+cost—sint 2)

1 1
= <_) (—t)- L7! { - } by Th. 11.4 of Ch. 11
2 p-+1
t
—sint. 3
> sin 3)
Using (3) in (2), we get
t
y()=28- Esint—kcost —sint =4tsint + cost — sint.
So, the required solution is y(¢#) = 4 sint 4+ cost — sint.

Example 12.3| Solve the differential equation using Laplace transform

y// _ 3)7/“1‘2)7 — 4 +e3t
where y(0) = 1 and y'(0) = —1 [WBUT 2002]



Sol.

The given equation is
y' =3y 42y =41 4 ¥ (1

Taking Laplace transform on both hand sides of (1), we have
L{y' 0} =3L{y O} +2L (o) = L {4 + ]
= [P L0 = p v O =Y O] =31p LIO) - yO)1+2L ()
—4L{t)+ L {e3l}
Putting the conditions y(0) = 1 and y’(0) = —1, we get

4 1
[pz.L{y(t)}—n 1 —(—1)] =3[p-Liy®)}— 1]+2L{y(t)}=?+—

p—3
. 2 4 1
ie., (p"=3p+2)- L{y®O}=—5+—x+p—4
p: p—3
. _4p— 12+ p?
(p—2)(p+6)
L A AT
p>(p—3) Tp
. (p+6) p—4
€., L = :F
e O = S - T o-ap-n W
Therefore,
o (Fp)) 2o-Hp-D  »p-2p-1D
_ (p+6) } 1{ p—4 }
=L [l N S 2
{p2<p—3>(p—1) M (7R T @

Now, we apply the method of partial fraction to compute the inverse and let us
consider

(p+6 A B C D
pPp-3p-1H p p* p-3 p-1I
{Ap(p—3>(p—1>+B(p—3><p—1)}
, (p+6) +Cp*(p — 1) + Dp*(p — 3)
-3 (p-1 P (p—3)(p—1)




Equating the numerators from both hand sides, we have
p+6=Ap(p=3)(p—1D+B(p—3)(p—1)+Cp’(p—1)+Dp*(p-3)

Putting p = 0, 1, 2, 3 successively, we get

B =2, D:—%, —2A—B+4C—4D=8andC=%
= A=3, B=2, C:landDz—z
2 2
Therefore,
(p+6) 3 2 1 1 7 1

= — 4 —. ——. 3
pPPp-3p-1) p p> 2 p=-3 2 p-1 )
Again, suppose

p-4 _ E__F _(p-DE+@-DF
p=-p-D (»-2 ((@-D =2 —-D

Equating the numerators from both hand sides, we have

p—4=(pP-DE+(p-DF
Putting p = 1, 2 successively, we get
F=3and E = -2
Therefore,
p—4 _ -2 n 3
p=2p=-D (=2 (@E-D
Using (3) and (4) in (2), we obtain

“)

3 2 1 1

n=r""424+ 2 4+
y(@) {p+pf+2p_3
(1 e 1 (1 1
Y St i G5 Sl S ST A iy GRS Sty SR
p p?) 2 p—3 p—1

1 1
—2L‘{}-+3L1{}
p—2 p—1



So, the required solution is

1
- -e3l.

y(z)=3+2r—1-e’—2e2f+
2 2

Example 12.4] Solve the following differential equation by Laplace transform

(D*> = 1)y = acos h(nt)
where y(0) =0 and y'(0) =2 [WBUT 2006]
Sol. The given equation is
(D2 — 1)y =« cos h(nt)
i.e., y"(t) — y(t) = a cos h(nt) (1)
Taking Laplace transform on both hand sides of (1), we have
L{y"(0} = L{y()} = a- L{cos h(nt)}

= [P LOO) = p O =Y O] - L) =a T
p-—n

Putting the conditions y(0) = 0 and y’(0) = 2, we get

[P Lo -p0-2] - Lo =
ie. (P> =D -L{y(0) = 52— +2
pc—n
. _ ap 2 .
Therefore,
R R ap 2
y)y =L {F(p)} =L {(pz_ D (=) gl 1)}
_ 71 14 71 1
sot {(pz—n(pz—nz)}+2 - {(p2—1)} @
Suppose,
p _ Ap+ B Cp+D
(p2=D(p>2—n?) P*=1) (p*—n?)
i P _(Ap+B) (P’ —n*)+(Cp+ D) (P> - 1)

(p? =1 (p* —n?) (p* =1 (p* —n?)



_(A+0Op’ + B+ D)p*+ (-n*A—C)p+ (-n’B — D)
(p? = 1) (p? —n?)

Equating the coefficients of like powers of p in the numerator of both hand
sides, we get
[A+C=0=C=-4A 1 |

1 A= = —
—n2A—C=1=-n?A+A=1=A= 5 = l—nz’C 1—n2

1—n
[B+D=0=D=-B
| —n’B—D=0=-n*B+B=0=(1-n*)B=0

:|:>B=0, D=0

Therefore,

p __ v v
(p2_1)(p2_n2) 1 —n? (p2_1) 1 —n2 (pz_nz)

3

Using (3) in (2), we get

_ 7l 1 ) p _ 1 ) p
y#)=a-L {1—112 P2—1) 1-n? (pz_nz)}

+2.L—1{1}
(-1
IR B 2 DN AR B
B R Pl Bl ()

4+2.17! {1}
(-1

¢ ht
= - COS —
1 —n? 1 —n?

-cos h(nt) + 2sinht

So, the required solution is

- cos h(nt) 4+ 2sin ht.

o a
y(t):1 z-cosht—1 5

Example 12.5] Solve the following differential equation by Laplace transform

d*y _dy
— = 42— 45y =¢"tsint
dt? dt y=e

where y(0) = 0 and y’(0) = 1. [WBUT 2008]



Sol. The given equation is

d?y _dy
—— 42—~ 4+5y=e¢""sint
dt? dt y=e
ie., y' +2y +5y=e'sint )

Taking Laplace transform on both hand sides of (1), we have

L{y"®}+2L{y'®)} +5L{y(t)} = L{e " sint}

= [p2 L{y®}—p-y©0) — y’(O)] +2[p-L{y®}—yO)]+5L{y®)}

=L {e_’ sint}

1

1
Since L {sint} = ———, by first shifting theorem L{e 'sint}=—5—
pr+1 { } (p+1)7+1

Putting the conditions y(0) = 0 and y'(0) = 1, we get

1

2 0 — . - =
[P L@y =p-0=1]+2[p- LIy} = 01+ 5L {yn)) PRI

2 . =———+1
ie., (p”+2p+5)-L{y@)} (p2+2p+2)+

1 1
+ —F
T2 P 2t Rrapts L@

ie,L{y@®)}=
Therefore,

y(t) = L™ {F(p)}

1 1
=L"! 2
{<p2+2p+2>(p2+2p+5>+<p2+2p+5)} @

Again, it is obvious that

1 L [(PP+2p+5) - (PP +2p+2)

(p2+2p+2)(p2+2p+5)_3{ (P*+2p+2)(p*+2p+5) }
1 1 1 1

T3(pr+2p+2) 3(p2+2p+5)




So, from (2) we obtain

1 1 1 1 1 }

Hn=L"11- - = +
y) {3(p2+2p+2) 3(p2+2p+5)  (p2+2p+5)

11 1 2 1
=L 202 +3 2
3(p=+2p+2) 3(p +2p+5)

h

e e
(P2 +2p+2) 3 (P2 +2p+5)

1

3

1 1 2 1
SRRV S I N
3 (p+D°+1) 3 (p+D"+4

1 1 1 2
7.e_t.L_1 +7.e_l.L_l P
3 p2+1 3 p2+22
(by first shifting theorem)

t

-sin2t = — - e~ ' (sint + sin2¢)

W | =

-t sint—l—1 -
.e . —ce
3

W | =

So, the required solution is

y(t) = = - e (sint 4 sin 2¢) .

W =

Example 12.6/ Solve the following differential equation by Laplace transform

d*y
e + y =1tcost
where y(0) = 0 and y'(0) =0
Sol. The given equation is
d2
Tt;} +4y =tcost
ie., y" 4+ 4y =tcost ()

Taking Laplace transform on both hand sides of (1), we have

L{y" ()} +4L {y(t)} = L {rcost}

= [P LUO) = p - 3O = O] +4L {y(0)) = L {r cos1}



p

Since L {cost} =

p*+1
2 . p—
L{tcost}:(—l)d{ 21’ }:_(P +1)-1 217(219)
dp | p~+1 (p?+1)
_@-n _@+n-2_ 1 2
P2+ (pr41) L (pr4a)
2
(2)

i.e., L{tcost}= —
pr+1 (P> + 1)2

Putting the conditions y(0) = 0 and y’(0) = 0, we get
[P L) —p-0-0] 4Ly} = 2
P+l (p241)

2
] 2 . — —
ie., (p°+4 - L{y®n} o (p2+1)2

1 2

j.e., L{y(t)} = - = F(p),
ie,L{y@)} PO+ (i) (2 + 1)2 (p), (say)

Therefore,

1 2
N = L_l F — L—l _
YO =LTHEP) {(p2+4) (P +1) (2 +4) (p2 + 1)2}

1 2
=L"! —L! 3
{(p2+4)(p2+1)} {(p2~|—4)(p2—|—1)2} )

Now, we apply the method of partial fraction to compute the inverse and let us

consider
A B C

2
= +
Pr+d (1)’ PP HH (PP +1)  (p2 )
) 2 AP ) B (PP D)+ CPE
T (2 +1)? (P2 +4) (p2 +1)°

_(A+B)p*+ QA+5B+C) p> + (A+4B +4C)
(P2 +4) (p2+1)°
Equating the coefficients of like powers of p in the numerator of both hand

sides, we get
A+B=0,2A4+5B+C=0, A+4B+4C =2



2A+5B+C =0
=TA+16B = -2
A+4B+4C =2

|

TA+16B = -2

Putting A =

Therefore,

2
?1n2A+SB+C_O WehaveC_g

o \

2

2 1 2 1 2 1
s == -, z — 4)
P44 (p2+1)7 0 @D 9 (PPH1) 3 (p24)
Again,
1 1P+ - (PPt
P2+ (P2 +1) 3| PP+ (PP +1)
3PP+ PP+

Using (4) and (5) in (3), we have

=z
=3 (PP+1) P*+49

I ERR T S B
9 (P*+4 9 (p2+1) 3 (p2+1)2
_boa _1.L—1{1} 2L—1{1}
3 P+ 3 I (P2 +4
—|—%'L*1 o _%.Lfl -
9 (P?+1)) 3 (p +1

_5 1 5., 1 2 4 1
9 {(p2+1)}_9' {<p +4>} 3 {(p2+1)2}




By (2), we have

tcost = L7} { ! } — ! _2
= 2 2
p-+1 (P2 +1)

ie, L™ # =L! ! —1tcost =sint —tcost
o ( 2+1)2 = p2+1 N
p

Therefore, the required solution is

o S.ISSin2t 1('tt 9
= —sint — — - — — . (sint —
y 9 S 9 5 3 S cos
. 5 . 1
= —sint — — sin2t + -t cost.
9 18 3
Example 12.7] Solve by method of Laplace transform
d’y _dy .
ﬁ"'ZE —3y=SIHX
given y(0) = 0 and y'(0) = 0. [WBUT 2004]
Sol. The given equation is
d’y | dy .
W—FZE —3y = Sin x
ie. vy (x) +2y'(x) — 3y(x) = sinx. D

Taking Laplace transform on both hand sides of (1), we have

L{Y'@}+2L{y'(0)} =3L{y(x)} = L {sinx)

= [P LYW= p 3O = YO | +20p LIy} = y(O)] = 3L {y(x)} =

pr+1
Putting the conditions y(0) = 0 and y’(0) = 0, we get
2 —
[P L0@) =P 0= 0] +2[p - L1y} =01 = 3L W) =
[ 2 — . [ —
ie., (p=+2p—3)-L{y(x)} (p2+ 1)
1
i.e., L{iy(x)} =

(P +2p—3)(p?+1)
_ 1
S (p=DP+3(Pr+1)

= F(p)




Therefore,

y(x) = L™ {F(p))

1
=L 2
{(p— 1)(p+3)(p2+1)}
Now, we apply the method of partial fraction to compute the inverse and let us
consider
1 A N B n Cp+ D
(P—Dp+3(P2+1) (-1 (p+3)  (p*+1)
{A<p?+g(p+3)+Bur-n(p?+Q}
+(Cp+D)(p—D(p+3)
(p—D(p+3)(p?+1)

Equating the numerators from both hand sides, we have

1=AP*+D(p+3)+B(p—D@P*+ 1)+ (Cp+D)(p—D(p+3)

Putting p = 1, —3,0, —1 successively we get
1 -1

A:§,B:E, 3A— B—-3D=1and4A —4B+4C —4D =1
A=t p="t =t po Tl
8 40 10 5
Therefore,
1 11 1 1
P-Dp+3)(p2+1) 8 (p—1 40 (p+3)
1 p 1 1

. _ . 3
0 (P11 5 (P4 )

Using (3) in (2), we obtain
R
Y=3 p—1] 40 (p+3)

LR Cal R )

1 1 1 1
=—¢" — *x——cosx—gsinx

—e
8 40 10
Hence, the required solution is

yx) = -e* — ie_x — —COSXx — —sinx
8 40 10 5 '




Example 12.8) Solve the following differential equation by Laplace transform

dZ
T; + 4x = sin 3t
where x(0) = 0 and x’(0) =0 [WBUT 2007]
Sol. The given equation is
d2
d—; + 4x = sin 3t
or, x"(t) + 4x(t) = sin 3¢ (1)

Taking Laplace transform on both hand sides of (1), we have

L{x"®)} +4L (x(0)} = L {sin 31}

= [P L) = p-2(0) = X' O] + 4L (x(0) =

pP+9
Putting the conditions x(0) = 0 and x'(0) = 0, we get
[pz-L{x(t)} —p~0—0] FALW) = g
ie. (P>+4) - Lix(n)}) = R
i.e., L{x(t} = (p2+9) 1 = F(p)
Therefore,
-1 -1 3
x(t)=L " {F(p)}=L {(p2+9)(p2+4)} 2)
Again,
3 3| (p249) = (p*+4)
P+ (P2 +4 5| (P+9) (P2 +4)

_3 ! — ! 3)
TS5 @A (219



Using (3) in (2), we get

|

N B L
U (P2 +4)  (sp2+9)

el [t

3 |:sin2t sin 3¢

51 2 3

1
= — [3sin 2t — 2 sin 3¢]
10
So, the required solution is

1
x(t) = T [3sin2¢ — 2sin 3¢].

Example 12.9] Solve the following differential equation by Laplace transform

d°y
— 4+9y =1
az Y
T
where y(0) = 0 and y (5) -1 [WBUT 2008]
Sol. The given equation is
d?y
— 4+9y =1
az Y
or, Y'(®) +9y(t) =1 ey

Taking Laplace transform on both hand sides of (1), we have
L{y"®} +9L{y()} = L{1}

1
=[P L@ =Py O YO 9L ) =

Suppose y’(0) = k (constant).
Putting the conditions y(0) = 1 and y’(0) = k, we get

1
[P L) = p 1 k] oL o) =

ie., (p2+9)-L{y(t)}=;+p+k

p

=F
P29 T e T T W

ie, L{y(t)}=



Therefore,

=1t ren =it Py
p(p*+9)  (P*+9)  P*+9)

1 k
{mﬁ+%}+ T R TS @
Again,

-1 { 1 } _sin(31)
Pr*+9] 3

t

1 in (3
So, L7 {(2+9)} :/Sm; ) 4x. by Th. 119 of Ch. 11
p(p J

[ cos(Bx)] 11
= |:— 9 :|0 =379 cos(3t) 3)
Using (3) in (2), we get
1 B 1 . sin (31)
y(t) = 59 cos(3t) + cos(3t) + k 3

—1+8 (3t) +k
=g tgcos

sin (31)
3 “4)

Using y (%) = —1in (4), we obtain

3
1 8 (-1)
€., —1l=—4+—--04+k - —
e 9 o VT3
10
or, k= —.
3
Hence from (4), we get the required solution as
1 8 10 sin (37)
H=—-+- 3+ —-
(1) = g + 5 cosGn) + )

1
= 5(1 + 8cos 3t 4+ 10sin 3¢) .

Example 12.10] Solve the following differential equation by Laplace Transform

dzy
2 +k*y = f(0)

and express the general solution in terms of constant k and f(z).



Sol.

Here first we consider the initial conditions as y(0) = A and y’(0) = B. The
given equation is
d2
— 4Ky = f@
g2 Thy= @)
or, Y6 + K y(0) = f() e))

Taking Laplace transform on both hand sides of (1), we have
L{y'O} +kL{y®} = L{f®)

= [P LOY = p 3O =Y O + L0} = F(p).

where L { £ (1)} = F(p), say.
Putting the conditions y(0) = A and y’(0) = B, we get

[P LO@)=p- A= B]+ELHOY=T(p)

(P> + k) - L{y(®)}=pA+B+ f(p)-
Ap B f(p) _
Therefore,
. -1 Ap B ?(P)

_ —1 p —1 1 -1 f(p)
—Ar {<p2+k2>}+BL {<p2+k2>}“ {(p2+k2)}

_ sin kt 1 f(p
= Acoskt + B——+L {(p2+k2)} 2

Again, by convolution theorem

-1 ?(P) S| 1
t {(p2+k2>}_L {<2 ) f(p)}
sin kt
- (B5) o

t .
— / 75“”‘(; =9 fx) dx 3)
0




Using (3) in (2), we get the solution as

t

sin kt sink (t — x
+

)
X X - f(x)dx.

y(t) = Acoskt + B

0

EXERCISES

Short and Long Answer type Questions |

Solve the following differential equations by Laplace transform:

3)

4)

5)

7

d
1) d—f—y:lwherey(()):Z
[Ans: y =1+ e7]
dy
2) E—y:O where y(0) = A
[Ans: y = Ae™]
d’y dy ,
ﬁ—Zz—i-Zy_O where y(0) = 1 and y'(0) =1
[Ans: y = e’ cost]
dzy
2 +y =1t where y(0) = 1 and y'(0) = —2
[Ans: y =1t 4 cost — 3sint]
d? d
Tzi - 3(% 42y = 4¢2 where y(0) = —3 and y'(0) = 5
[Ans: y = —7e' + 4e? + 4te*]
d*y | dy
—1 o3 /
6) 3 +2 - + 5y = sint where y(0) = O and y'(0) = | [WBUT 2008]
] ;
|:Ans: y=3 e (sint + sin 2t)
d? d ]
Tti + 66% 49y =sint where y(0) = 1 and y'(0) = 0
| i
[Ans: y = %(53 + 155t)e™3 — 3cost + 4sint
d*y _dy !
_ _ 100 —
8) - 25 — 3y =rcost where y(0) =0and y'(0) =0 [WBUT 2010]
-3 1 1 1 T
|:Ans: y = 37631 - 3—26" + Ztcost + g <o t_




9)

10)

1)

12)

13)

14)

15)

16)

17)

18)

d?y dy
ﬁ—(a—i—b)g—abyzo,a;éb

[Ans: y = c1e? + cre? where ¢y, ¢ are arbitrary constants.]

d2
ditg + y = 6cos2r where y(0) = 3and y'(0) = 1

[Ans: y = 5cost — 2 cos 2t + sin¢]

d2
il +k%y = acosmt where y(0) = 0 and y’(0) = 0

dr?
|:Ans: y = szimz (—coskt + cos mt)}
d? d
d—ti —2d—§+y — 0 where y(0) = 0 and y(1) = 2
[Ans: y = 2re' 1]
y"(t) + y(t) = 8cost given y(0) = land y'(0) = —1 [WBUT 2005]
[Ans: y = 4¢sint + cost — sint]
dy d
Tg + di)t) = ¢% where y(0) =0, y’(0) = 0 and y”(0) = 0
1 1 1 2
|:Ans: y=-3 + 1—062’ ~3 sint + 5costi|
d’y dy
—= 42—~ —3y =sinx given y(0) =0 and y’'(0) =0 [WBUT 2004]
dx? dx
1 1 _ 1 1.
Ans:y = —¢¥ — —e™ — —cosx — —sinx
8 40 10 5
Ly + @ _ 12 + 2t given y(0) = 4 and y'(0) = 2
dr?  dt
1
|:Ans: y=2+ §t3 + 2e"i|
d*>y dy .
T + i 2y =2(1 41t — t*)given y(0) = 0 and y'(0) = 3
[Ans: y = 12 — ™2 4 ¢]
d*y
I +4y = H(t — 2) where H(t — 2) is a unit step function and y(0) = 0 and

y'(0) =1
1
|:Ans: y= 2 sin 2ti|



SOLUTIONS OF UNIVERSITY QUESTIONS (W.B.U.T)

B. TECH SEM-II (NEW) 2012
MATHEMATICS - II (M 201)
Time Alloted : 3 Hours Full Marks : 70

Group A (Multiple Choice Questions)

1. Choose the correct alternative from any ten of the following: (10 x 1=10)

(i) The integrating factor of
(2xy — 3y°)dx + (42 + 62y*)dy = 0

a) 2y b) 2242 c) 2> d) zy3.
Solution: No alternative is correct.

(ii) The substitution x = e* transforms the differential equation

d?y
2 _
x@—5y—logex
to

Py | dy Py dy

CY LW _sy—r iYL 5,
a)d22+dz y=z )d22 dz+y *
*y dy Py dy

CY W igy—0 LYY 5=
©) dz? dz+ y )d22 dz y=z

Solution: The correct alternative is @
(iii) If the differential equation

1 1 1 A

is exact, then the value of A is

a) 2 b) 1 c) —1 d) 0
Solution: The correct alternative is @

(iv) The value of/e_””:v%dm is
0

3 5 3 1
a)z\/% b) 1\/5 c) gﬁ d) 1\/%
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Solution: The correct alternative is @
(v) The value of T'(6) is

a) 720 b) 5 c) 6 d) 120
Solution: The correct alternative is M
(vi) The Laplace transform of e~3 sin 4t is
4 s 1 s
T ) d
Vares—7 P 2r6s-7 9 wres-7 Y 2restm

Solution: No alternative is correct.

(vii) The maximum number of edges in a connected graph of 7 vertices is
a) 6 b) 7 c) 21 d) 14
Solution: The correct alternative is | c|

(viii) The maximum degree of any vertex in a simple graph with 10 vertices is
a) 10 b) 5 )20 d)9
Solution: The correct alternative is @

(ix) Tree is a connected graph without any

a) odd vertex b) even vertex
¢) circuit d) pendant vertex

Solution: The correct alternative is | c|
1

d
(x) The improper integral / m converges for
0
an<l1 byn>1 con=1 d) none of these
Solution: The correct alternative is @
(xi) The particular integral of (D? — 4D + 4)y = x3e* is
621x4 621x5 621,@4 ewx4
b d
20 T ©) 60 ) 50
Solution: The correct alternative is M

a)

(xii) The inverse Laplace transform of <324—7 + 322—1—7) is
a) % {4 cos(VTt) — 2sin(V/7t)}
b) % {4 cos(7t) + 2sin(7t)}
1
c) — 14sin(v/7t) + 2sinh(/ 7t
) 7 {4sin(v7) (VT7t)}

d) % {4sinh(7¢) — 2sin(7t)}

Solution: No alternative is correct.
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(xiii) The general solution of p = log, (pz — y) is
a)y=cxr—c b)y =cx —e”
c)y = c?

Solution: The correct alternative is @

x—e” d) none of these

Group B (Short Answer Type Questions)

Answer any three of the following. 3x5=15
2. Solve
d’y  dy
2 _ .
=3 + T + y = log, x sin(log, x)

Solution: See Example 4.2 on Page 4.39

-1 s+4
s(s—1)(s% +4)
Solution: Let,

(v a) =5 e n @

3. Evaluate

ST T2+

or < s+4 ) _ A(s—1)(s> +4) + Bs(s> +4) + (Cs + D)s(s — 1)
"\s(s —1)(s2 +4) s(s —1)(s2 +4)

or,s+4 = A(s —1)(s* +4) + Bs(s> +4) + (Cs + D)s(s — 1)

Putting s = 0,
A=-1
Putting s = 1,
B=1
Putting s = —1,
C-D=1
Putting s = 2
2C+D = -2
Therefore,
4
C=—-—-andD=—-
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Therefore,

e e R G

5 (@)

1 2
= —1+et—§cos2t— gsin2t

4. Use Beta and Gamma function to evaluate

I

|

~

L
7N\
®w | =

%
/ Vtan xdx
0

Solution: See Example 9.8 on Page 9.31
5. Determine adjacency matrix of the following graph:

V3

Vo e4 V4

€3

€1 Vs er

€7

V4 €6 Ve

Solution: See Example 6.2 on Page 6.24
6. Solve
d d
d—f—i—?):v—i—y:et,d—i —x4y=¢*

Solution:The simultaneous differential equation are

d
iC—I—?);lc—i—y:et

dt
and
d
di; R
From Eq. (1) we have
d
y=ce" —3z— a

dt

ey

(@)

3)



Solutions of University Questions (W.B.U.T)

Therefore from Egs. (2) and (3), we have

d d d
a(et—?):v—d—f)—:v—i—et—?)x—d—f:ezt
dv d*z dzx
t_37_7_ t_3 _ 2t
or, gt a2 xr+e x gt e
d? d
or, ﬁ§+4d—j+4x:2et—e2t
Let,
z=e™

be a trial solution of the reduced equation
d’x dx

W+4E+4x20

then the auxilliary equation is
m?+4m+4=0

or, m=—-2,m= -2

Therefore the complementary function is

CF=zx,= (Clt + Cg)e_%

where C and C; are arbitary constants.
The particular integral is

1
Pl=g,=———— (2" —¢*
= pryap+a) e ~¢)
=2 ! el — ! e?t
(D% 44D + 4) (D% 44D + 4)
_ 2, 1
9 16
Therefore,
ot 2
T =x.+xp = (Cit + C)e —|—§e -
Now,
d
y:et—?)ac——x

dt

I SQP1.5
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2 1
or,y=¢e' -3 (Cit+ C2) _2t+9et—1662t}

d 2 1
— { Clt + Cg + et — €2t}

dt 9 16
or,y =e"—3 (Cit+ C2) _Qt—i—get—ie%
9 16
—2t 2,1 9
—Cy(e7 = 2te™) £ 2097 — Zef + e

9 8

1 5
or,y = _Cl(l + t)e_zt — 026—215 + §€t + Eth

Therefore the solution is

2 1
= (Cit + Co)e ™ + Zef — —e*
x = (Cit+ Co)e —|—9e 166

and

1 )
y=—C1(1+t)e 2 — Che™? + §et + Eezt

where C and C'y are arbitary constants.

GROUP C (Long Answer Type Questions)

Answer any three of the following. 3 x15=45
7. a) Solve the following differential equation using Laplace transform
(D? 42D +5)y = e 'sint,y(0) = 0,/(0) = 1
Solution:See Example 12.5 on Page 12.8
b) Apply the variation of parameters to solve
d?y
da?
Solution: See Example 4.9 on Page 4.50
¢) Show that

+y =sec® ztanz

oo

3
—4x
de — =
/ whde = Sovr
0

Solution: We know

i r
\/\e—awxn—ldm _ (n)

a™
0
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therefore,

oo

/e‘“xgd:v = /e_4mx%_1d:v
0
I(

0

43 25
31
_ 530(3)
= 55
= 193 7 since =V
0O 0o 1 -1 1
-1 1 0 0 0
o .. 0 0 O 0 0
. a) Draw the graph whose incidence matrix is 1 0 0 0 -1
0 1 0 0 0
0o 1 -1 1 0

Solution: The graph is not possible

b) By Dijkstra’s procedure, find the shortest path and the length of the shortest
path from the vertex vy to vs in the following graph:

5

Ve Vi
3
1
Vs Vs
2 3 2
10 7
Vw Vs

12

Solution: The given graph is not simple. We first discard the parallel edges having
maximum weight and retaining the edge with minimum weight . We also delete
the self-loop. Then we have the following.simple weighted connected graph:

The weight table W = (w;;).... formed on the basis of

w;; = weight (or distance or cost) of the edge from vertex i to j,
wi; = 0,
w;; = oo, if there is no edge from vertex 7 to j.
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and is given by the following:

i Vo V3 Vi Vs Vo Vi
Vil0O 1 3 o oo 3 4
Vol 1 0 7 o0 o0 o0 o0
Va3 7 0 8 oo oo 2
Viloo oo 8 0 2 10 3
Vs|oo 0o co 2 0 7 2
Ve| 3 o©o oo 10 7 0 4
Veld oo 2 3 2 4 0

Here we are to find the shortest path from the vertex V5 to the vertex V5. So we start
our computation by assigning permanent label 0 to the vertex V3 i.e., L(V3) = 0
and temporary label co to all others. Permanent label is shown by enclosing in a
square (D) in the computation table. Now at every stage, we compute temporary
labels for all the vertices except those which have already permanent labels and
minimum of them will get permanent label. We continue this process until the
destination vertex V5 gets the permanent label.

Temporary label of vertex j, which is not yet permanently labelled is given by

| L(j) = min {old L(j), (old L(i) + wi;)} |

where ¢ is the latest vertex permanently labelled in the last stage and w;; is the
direct distance between the vertices ¢ and j.
The computation is shown in the following table:

i o V3 Vi Vs Vo Vi
St.1| oo

. V5 has got permanent label 0 and
* all others have temporary label oco.

o

[© CRENC OANG CINC CHNG O]

. Calculation of temporary labels

St.2 1 1 * and 1 is the minimum among all.

=]
.
8
8
8
8

st.3|[1]

=]
.
8
8
8

-V1 has got permanent label
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St. 4 m m A 4 5| Calculation of temporary labels
B R * and 4 is the minimum among all.

St. 5 E @ E oo oo 4 b - V3 has got permanent label
1 (Al [ . Calculation of temporary labels

St. 6 m M m 12 00 00 6. and 6 is the minimum among all.

St. 7 E @ E 12 o0 o @ V7 has got permanent label
1 (A1 [ r=1| - Calculation of temporary labels

St.8 m M m 9 8 10 @ * and 8 is the minimum among all.

. Destination vertex V5 has
St.9 @ @ @ 9 @ 10 @ * got permanent label.

In the final stage 9 of the table the destination vertex V5 has permanent label
and its value is 8. So the required shortest distance is 8.

Now we apply backtrack technique for finding shortest path. Starting from per-
manent label of V5 (from Stage 9) we traverse back and see that in Stage 7, it is
changed and at that Stage V7 has got permanent label. So we move to V7. Again
doing the similar thing we see that in Stage 5, the label of V7 is changed and at that
Stage V3 has got a permanent label. So we move to V3. Now if we apply similar
technique, then in Stage 3 the label of V3 is changed and at that stage V) has got
permanent label. So we we move to V;. Now if we apply similar technique, then
in Stage 1 the label of V] is changed and at that stage V5 has got permanent label
which is the starting vertex. So we stop the process.

Hence, the shortest path is given by

Vo= Vi—=Vs—=Vr— Vs

¢) Solve

y = 2px — p°.

Solution: Differentiating w.r.t x, we have

dp dp
=2 20— — 2p—
p P+ xd:v pd:v

dp
T)— =7p

dr_, 2

or, =
dp P

dz 2w
dp p

which is a linear equation.
The integrating factor is

or, =2
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10.

2
I.F = el 2% = ¢2logp =p?

Muliplying the I.F. with the differential equation it reduces to

d 2 2
il =9
dp(p r) =2p

Integrating we have
2 3

2, — =2
p:v—gp +c

2 -2
or, T = gp—i—cp

where c is an arbitrary constant.
Therefore,

9 1
y=2p(3p+ p?) —p*= gpg +2¢p?

a) Examine whether the differential equation
(:1cy2 — ez%) dr — zydy =0

is exact or not and then solve it.
Solution: See Example 8§ on Page 2.11

(n—1)
2

b) Prove that a complete graph of n vertices has n

Solution: See Theorem 5.7 on Page 5.12
¢) Apply convolution theorem to evaluate

1
e T —
<(32 + 25+ 5)2)
Solution: See Example 11.17 on Page 11.31

a) By Kruskal’s algorithm, find a minimal (or shortest) spanning tree and the
corresponding weight of the spanning tree of the following graph:

number of edges.
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Solution: First we arrange all the edges of (G, except the loops in the order of
non-decreasing weights and write in the following form:

Edges AC DC DE BC BF EF DA DF AB AE AF

Weights 7 7T 95 10 10 10 12 16 17 19.5 20

Step 1: Select the first edge AC from the list, since it has the minimum weight.

A

C

Step 2: The next edge of smallest weight is DC. We can add it to the previous one
because it does not form any cycle.

7
C

Step 3: The next edge of smallest weight is DE. We can add it to the previous one
because it does not form any cycle.

E

Step 4: The next edge of smallest weight is BC. We can add it to the previous one
because it does not form any cycle.
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Step 5: The next edge of smallest weight is BF. We can add it to the previous one
because it does not form any cycle.

F

Since the number of vertices in the given graph is 6 and the tree in the last step
contains 5 (= 6 — 1) edges, the required minimal spanning tree is given by the
Step 5.

Weight of the minimal spanning tree = 7 + 7 + 9.5 4+ 10 + 10 = 43.5.

b) Find using BFS algorithm a spanning tree in the following graph:

. .

Vi
Vo °
Vs
Vi
Vs °
Solution: First we discard the loop and parallel edges.
Vs
Vi
Ve
Vo Va
Vs Vs

Next we select the vertex V) and is labelled by O.
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Its adjacent unlabelled vertices are V5 and Vg. They are labelled by 0 + 1 = 1.
The labels are shown in the figure. Then we join each of them with V; by the edges
(V1,V2) and (V4, V) since joining of the edges does not result any cycle.

Vs(1)

Ve(2)
Va(1)

V5(3
V) 5(3)

Next we see that the unlabelled adjacent vertices of V5 are V3 and V. We label
each of them by 1 + 1 = 2. Also unlabelled adjacent vertex of Vg is Vs only. we
label it by 1 + 1 = 2. Now we join the vertices V3 and V, to V5 by the edges
(Va, V3) and (Va, V) respectively. Also we join Vg with Vg by the edge (Vz, Vs).
It is to be noted that no cycle has been formed by the above joinnings.

Now the unlabelled adjacent vertices of 1 are V5 and V7. We label each of them
by 2+ 1 = 3. Now we join the vertices V5 and V7 to Vj by the edges (Vy, V) and
(Vi, V) respectively. Here also it to be noted that no cycle has been formed.

We stop the process since no unlabelled vertices are left in the graph. Now
the required spanning tree can be found by drawing the joining edges (V1, V),
V1, V), (Va,Vs), (Va, Vi), (Vs,Vs), (Va, Vs)and (Vy, V7) successively which
shown in the following figure:

c¢) Examine the convergence of the improper integral

0/ :10(:1cdi 2)

Solution: Here, z = 0, 2 are the points of infinite discontinuity.
Now,

2 1 2
/ dr / dx n / dx
v(x—2) ) x(x—2) x(x —2)
0 0 1
1 2-6
= lim _dr + lim _dv
=0+ ) (2 —2)  s—0- ) z(x-2)
€ 1

1
1/1 1 1/1 1
li — — d li — | — d
e—l>%1+ 2<x+2—x) $+5—1>%1— 2<$+2—$) o
1

€
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o1 1 1 2-6
= lim 5 [log|e| —log[2 — &[]} + Jim _ [log|a| —log 2 — 2]}
= 1 lim |[—1lo ¢ —|—1 lim 27_6
Toeor | B Toston| s

Since,

. € . 2—946
s o] e [

does not exist,therefore the given improper integral is not convergent.
11. a) Define complement of a graph. Find the complement of the graph:

Vi

Ve

V5 V3

Vs

Solution: The complement G of a graph G is the graph whose vertex set is V' (G)
and such that for each pair of vertices (u,v) of G, uv is an edge of G if and only
if uv is not an edge of G.

V4

Vo

V4
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b) Solve
?y , dy
2% J “J _ T
x da? +4Id:v +2y=e
Solution:The differential equation can be written as
22D*y + 4z Dy + 2y = €*
where,

d
D=—
dzx

Let us consider the transformation

r=¢€ or logoz ==z

Then,
dy _dyd: _1dy
de  dzdr xdz
dy _ dy
" Vi ~ dz
Let us consider
dy dy
= Dy and = D'y
where
d
_ ¢ r_ @
D= d and D &
Therefore,
xDy = D'y
Similarly,
Py _ddyd 1dy
de?  dxdx’  dx xdz
__ldy  1dydz
T 22dz  xdz?dx
__ldy 1d%y
T x2dz  x2dz?
APy Py dy
or, = =2 - =

dx?  dz? dz

or, ?D*y = D'(D' = 1)y

I SQP1.15
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(©

Substituting the values of Dy, 22 Dy, we get
D'(D' —1)y+4D'y+2y = 2

or, (D? 43D +2)y = 2

which is a linear equation.
Let

y — emz
be a trial solution of the reduced equation
(D?+3D +2)y=0

then the auxiliary equation is

m? +3m—+2=0

orrm=—1,m= -2
Therefore, the complementary function is
C.F =y.=Cre * 4 Che %

where C and (', are arbitary constants.
The particular integral is

1
P'I = =
Yp (D2 +3D' + 2)Z

Therefore, the general solution is
1 3
Y=Yc+Yp= Cie " + 026—2z + 52 - E

Putting z = log z,the general solution becomes

———l———i—llo :v—§
v 2 BTy

Prove that in a binary tree with n vertices, the number of internal vertices is one
less than the number of pendant vertices.

Solution: See Theorem 7.9 on Page 7.6



SOLUTIONS OF UNIVERSITY QUESTIONS (W.B.U.T)

B. TECH SEM-II (NEW) 2013
MATHEMATICS - II (M 201)
Time Alloted : 3 Hours Full Marks : 70

Group A (Multiple Choice Questions)

1. Choose the correct alternatives for any ten of the following: (10 x 1 =10)

i) The general solution of

y = pr —logp
a)y = cx —logc b)y=1+logx
oy=1+logz+c d) none of these..

Solution: The correct alternative is | a |

ii) The particular integral of
d2

d—mz +1Yy =cosx
1 1
a) —sinx b) —cosx
2 2
1 1
c) —xsinx d) —x cosx
2 2

Solution: The correct alternative is | |

x? is equal to

iii)

D-1
a) 2 + 2z + 2 b) — (22 + 2z +2)
¢) 2z — 2 d) —(2:6—:62)

Solution: The correct alternative is @
iv) The general solution of
2
S Hy=0
is
a) Ae®” + Be™® b) (A+ Bx)e”
¢) (A+ Bzx)cosx d) Acosz + Bsinx
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v)

vi)

vii)

viii)

X)

xi)

Solution: The correct alternative is @

A simple graph can have

a) no pendent vertex b) no isolated vertex

¢) no circuit d) none of these.
Solution: The correct alternative is @

A simple graph with 20 vertices and 5 components has at least
a) 15 edges b) 10 edges

c) 190 edges d) 120 edges.

Solution: The correct alternative is | a |

Which of the following is incorrect about a tree 7" with n vertices ?
a) There exist multiple paths between every pair of vertices in T’
b) T is minimally connected

¢) T is connected and curcuitless

d) T has (n — 1) edges.

Solution: The correct alternative is | a |

If the incidence matrix of a graph has five identical columns, then G has
a) five loops b) five isolated vertices
c) five parallel edges d) five edges in series.

Solution: The correct alternative is | ¢ |

-1 s _

) -
a) sinat b) sinh at
¢) cos at d) cosh at

Solution: The correct alternative is @
L{H(t — a)}, H being Hevisides unit step function, is

a) e %8 b) se” %8
c) € d) none of these.
s
Solution: The correct alternative is | ¢ |
in 2t
Laplace transform of S s
2
a) cot™! s b) cot™!1 =
2 s
2 2
—_— d
©) s2+4 ) 52 —4

Solution: The correct alternative is | a |
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2 3T

NG RN

i iy
© V3 b V2

Solution: The correct alternative is|a |

o0
a2
Xiii) xe dr =
— 00

a) —1 b) 0
o)1

Solution: The correct alternative is M

d) none of these

GROUP B (Short Answer Type Questions)
Answer any three of the following:

2. Solve:

(3 x5=15)

(ZCQy — 2:Cy2) dx + (3:102y — :103) dy=20

Solution: Here,

M(z,y) = (z*y — 22y*) and N(z,y) = (32%y — 2?)

Now,
oM ON 9
By =z* — 4xy and o = 6xy — 3z
Since,
oM ON
Jy Or

Therefore, the differential equation is not exact.
Here,M (z,y) and N(z,y) are both homogeneous function of degree 3 and
Mz + Ny = 2%y* # 0.

When M (z,y) and N(z,y) are homogeneous functions of z and y of same
degree and Mx + Ny # 0, then,

1

I F=—"
Mx+ Ny

Therefore, here
1 1

LF = =
Mx+ Ny x2y?
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Multiplying the diffferential equation by L.F, we get

(:ng — 2:Cy2) (3:62y — :103)
222 dx + 222

1 2 3
or,<—)dm+<—xg)dy:0
y vy oy

which is an exact differential equation.
Therefore, the general solution is (Using Working Procedure 1 of Art. 2.2.3)

dy=20

/M(:v, y)dx + / (terms of N (z,y) not containing z) dy = ¢

1 2 3
or, /<—)dm—|—/dy:c
y =z Yy

or, r —2logx 4+ 3logy = c¢
Y
3
or, E—|—logy—2:c
Y x

where c is an arbitrary constant.
3. Solve the following simultaneous ODE:

dx dy
-7 =0, — — 2z — 5y =0.
dt Ty T

Solution: See Example 17 on Page 4.35
(n—1)

4. Prove that the number of edges in a simple graph cannot exceed n 5

Solution: See Theorem 5.5 on Page 5.11

5. Prove that a graph is a tree if and only if it is minimally connected.
Solution: See Theorem 7.5 on Page 7.4

6. Define gamma function. Show that I'(n + 1) = nI'(n).
Solution: See Property 2 of Section 9.5 on Page 9.13

GROUP C (Long Answer Type Questions)

Answer any three of the following: 3 x5=15)

7. a) Apply Dijkstra’s algorithm to find shortest path between the vertices a and h in
the following graph:



Solutions of University Questions (W.B.U.T) I SQP2.5

b 2 c
1
2 2 4 3 (o]
a d 4 e h
1 3 5 6
7

Solution: See Section 8.4 and Example 1 on page 8.5. The shortest path is
given by

a—b—c—h.

b) Solve:

Solution: The differential equation can be written as

(D? —2D + 1)y = ze”

where o i
T dx

Let
y — emw

be a trial solution of the reduced equation
(D* 2D+ 1)y =0
then the Auxilliary equation is
m?>—2m+1=0 = m=1,1
Therefore the complementary function is
Yo = (C1 + Cox)e”

where C and C, are arbitary constants.
The Particular integral is

1 . 1
> —2p+1) )=

* 1
e 7(1)—’—1_1)2!@—@ ﬁx

1 2 3
emﬁ/:vd:v:em/%d:v:em%

Yp =
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Therefore the general solution is
1
Y=Y+ yp = (C1+ Caz) e” + 6:1036””

c¢) Construct a digraph from the following incidence matrix:

0 1 0 0 1 0 1
1 -1 0 1 -1 0 0
0 0 -1 0 0 1 -1
-1 0 0 0 0 -1 0
0 0 1 -1 0 0 0

Solution: The entries of the matrix are 0, 1, —1, therefore the graph corresponding
to the matrix is a digraph.

Since the number of rows and columns of the matrix are respectively equal to
the number of vertices and edges of the digraph, therefore the number of vertices
are 5 and the number of edges are 7.

Let the vertices be vy, va, v3, v4, vs and the edges are ej, ea, e3, ey, €5, €6, €7

After labelling the vertices and edges the matrix becomes

€1 €2 €3 €4 €5 €6 €7

U1 o 1 0 O 1 0 1
vg 1 -1 0 1 -1 0 0
U3 0o 0 -1 0 0 1 -1
U4 -1 0 0 0 0 -1 0
Us 0o 0o 1 -1 0 0 O
Hence the required digraph is given by
V4 ey Vg

A €

€7

8. a) Prove that a tree with n vertices has (n — 1) edges.
Solution: See Theorem 7.2 on Page 7.2
b) Solve the following by the method of variation of parameters:
d2
chZ +y =tanx

Solution: The differential equation can be written as

(D? 4+ 1)y = tanx
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where,
d
D=—
dzx
Let
y — emw

be a trial solution of the reduced equation
(D*+1)y=0
then the auxilliary equation is
m?*+1=0 = m=d=i
Therefore the complementary function is
ye = Cryr + Coyo = Crcosz + Cosinx

where C and C'y are arbitary constants.
Let the particular integral is

yp = u(z) cosz + v(z)sinx

where u(z) and v(x) are arbitary functions.
Variation of Parameters method is the method of finding the functions u(x) and
v(x). Now, wronskians

—sinx cosx =1#0

W:‘ Y1 yg
Y1 Y2

_‘ cosxr sinx

Here, u(x) and v(x) are given respectively by

_ [P, _/sin:v.tan:v B _/sinQ:C
u(z) = /7W dx = T dx = sz dx

(1—6052:6)
—/7d:v:—/(sec:v—cos:v)d:v

COS T

—log(sec x + tanz) + sinx

and

F .t
v(x)Z/MT@dxz/de:/sinxdx:—cosx

Therefore the particular integral is
yp = u(z) cosz + v(z)sinz = — cos x log(sec = + tan x)
+coszsinz — coszsinw

= —cos z log(sec x + tan )
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Therefore the general solution is
Y =Yc+yp = Crcosz + Cysinz — cosx log(sec x + tanx)
c¢) Solve the following differential equation by Laplace Transform:
(D* +6D +9)y = 0,y(0) = 4/(0) = 1.
Solution: The given equation is
d?y

dy
ﬁ+65+9y20

i.e., y' +6y +9y = 0.
Taking Laplace Transform on both hand sides of (1), we have
L{y"(t)} +6L{y' (1)} + 9L {y(t)} =0
= [P*.L{y®)} —py(0) =y (0)] + 6 [p-L{y(t)} —»(0)] +9L{y(t)} =0
Putting the conditions y(0) = ¢/ (0) = 1, we get

[P L{y(t)} —p1—1]+6[p.L{yt)} —1]+9L{y(t)} =0

ie., (P> 4+ 6p+9).L{y{t)} —p—7=0

L{y(®)} = @fi;;lg) — F(p), (say)
Therefore

y(t) = Lt {F(p)} = L {W—Ii—g]ii—%}

:L_l{(p(;f)i%;él} :L_l{(p}ri%) i (pf3)2}

) )

1
= e 3 f4e Lt {2} (by first shifting theorem)
p

= e 3 p 47t = (1 +4t)e ™.

So, the required solution is

y(t) = (1 + 4t)e 3.
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9. a) i) Define Euler circuit. Write the necessary and sufficient condition for a graph
to contain an Euler curcuit.

ii) Find, if possible, an Euler curcuit in the following graph:

a

N

Solution: i) See Section 5.12.1 on Page 5.26 and see Theorem 5.19 on page 5.27.

ii) {a,b, e, f,b, ¢, f,d, c,d, e, a}is a curcuit containing all the edges. Hence this is
an Eulerian curcuit.

b) Using convolution theorem prove that

Lt s _ tsinat [WBUT-2011]
(s2 + a2)? 2a

Solution:
Here we are to find

Nitar = (i )

= L7 {Fi(s).Fa(s)}

where
Fi(s) = (2 +a?) = L{fi(t)} (say)
= f1(t) = Lt {(32 —T—az)} = cos at
and
1
Fy(s) = Etad) L{f(t)} (say)

_ 1 sin at
ifg(t):Ll{(sz—i—az)}: a
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10.

By convolution theorem, we have

t
L~ {Fl / f2 t — :v)dac
0

. f
cos ax.w dzx
a

<
[
|
i
—N
—
VA
S
tlw
S
)
~—
[
——
I
o—__

11
o3 / {sinat — sin (2ax — at)} dx
a

1 ) cos (2ax — at)]*  tsinat
— |xsinat + = .
2a 0 2a
¢) Prove that

/e_mzd:v = \/7%

0
Solution: See Result 2 of Section 9.8 on Page 9.19.
a) By Kruskal’s algorithm, find a minimal spanning tree in the following graph:

d 5 c f

a b (¢}

Solution: First we arrange all the edges of the graph in the order of non-decreasing
weights and write them in the following form

Edges fg fe ab ec ad dc be ac bc eg

Weights [ 2 3 3 4 4 5 6 6 8 8

Step 1: Select the first edge fg from the list, since it has the minimum weight.
f



Solutions of University Questions (W.B.U.T) I SQP2.11

Step 2: The next edge of smallest weight is fe. We can add it to the previous one
because it does not form any cycle.

Step 3: The next edge of smallest weight is ab. We can add it to the previous one
because it does not form any cycle.

f
3
- >, 2
a b e
g

Step 4: The next edge of smallest weight is ec. We can add it to the previous one
because it does not form any cycle.

c f
4 3
2
e
60—30[)
g

Step 5: The next edge of smallest weight is ad. We can add it to the previous one
because it does not form any cycle.

d

Step 6: The next edge of smallest weight is de. We can add it to the previous one
because it does not form any cycle.
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Since the number of vertices in the given graph is 7 and the tree in the last step
contains 6 (= 7 — 1) edges, the required minimal spanning tree is given by the
Step 6.

Weight of the minimal spanning tree =2 +3+3+4+4+5=21..

b) Find the Laplace transform of f(¢) defined as:

f(t):{ ]i,when0<t<k}

1, whent > k

Solution: By definition we have

00 k 00
L{f(t)}:/ Pt f(1) /e 3 fdt—i—/ 1 d
0 0
e pt k K e—pt —pt
s
k -p 0 ) -p - k
1 —pk —pt1k —pk
L _[62} +e , since p >0
k —p P° 1o P
—pk 1 —pk
e e R RO Ve
P kp P
1 —pk
“gp )
¢) Solve:
d?y dy
22 @y _
dn2 — 3z e + 4y = 222

Solution: The differential equation can be written as
(:102D2 —3xD + 4) y = 22>

where,

D= —
dzx

Let us consider the transformation

r=¢" or logx ==z
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Then,
dy _dydz _1dy
dzx dzdz  xzdz
or ;v@ = @
’ de ~ dz
Let us consider
dy dy /
—~ =D d-~>=D
dzx yan dz Y
where
d
D= —andD = —
dz " dz
Therefore,
xDy = D'y
Similarly,
2y _ d (dy\ _ d
de?  dx \dz) dz
_ldy  1d%
22dz 22 dz?
or 28y _ Ty dy
’ dz? dz? dz
212, _ 1/ !
or, x*D?y=D'(D —1)y

Substituting the values of Dy, 22 D%y we get

{D’(D’ 1) —3D' + 4} y = 2%
or, (D"? —4D' 4 4)y = 2¢**

or, (D' —2)%y = 2¢%

I SQP2.13

1d?y dz

x dz? dx

which is a linear differential equations with constant coefficients. Let

y:emz

be a trial solution of the reduced equation

(D' =2’y =0

then the auxilliary equation is

(m—2°=0 = m=2,2
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11.

Therefore the complementary function is
ye = (C1 + Cyz2) **
The particular integral is

1 1
_ 2 2z _ 2z 2
T D22 T (Dy2-2)2

1 1
= ezzm2 = ezzﬁ /2dz =% /2zdz = 2%
Therefore the complete solution is

Y =yc+yp = (C1+ Caz) e2% 4 22?2

= (Cy + Calogz) 22 + (logz)? x

a) Evaluate:

2
1 S

(s +a?) (s> +b?) [WBUT-2011]
Solution: Here we apply the method of partial fraction to compute the given
inverse laplace transform. Consider

s2 A B

Era) @102 (2t ad) (2402
_A(s? +b%) + B(s* +a?)
(2 + a2)(s2 + 02)
_ (A+B)s* + (Ab’ + B.a?)
(2 + a2)(s2 + 02)

Equating the the coefficients of like powers of s in the numerator of both hand
sides, we get

A+B=1, AV’ +B.ad®>=0

Solving we have

a® —b?
A:T—b? and B = prp—~
Therefore, using these values we get
52 a® 1 b2 1

(s2+a2)(s2+b2) a2 —b2(s2 +a2) a2 — b2 (s2 +b2)

1 a? _ b?
a2 =02 | (s24a?)  (s2+1D?)
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Therefore,

Havatimim)ator (e @)

1 N 1
o [ e )

s {ot )

1 gsinat  4sinbt
a2—b2{a a -0 b}

pERE [asin at — bsin bt]
a2 —

b) Examine whether the following graphs are isomorphic or not:

Solution: First we label the graphs as the following
o

b G e B G, E

Here it is clear that in the first graph G, there are four vertices of degree 3 which
are a, b, d, e, but in the second graph (G; there are all five vertices of degree 3
which are A, B, C, D, E. So the graphs are not isomorphic as they are violating
the necessary condition that the number of same degree vertices must be same for
the graphs.

¢) Solve:

y = pr + /a?p? 4 b?

Solution: See Example 3.2 on Page 3.21
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B. TECH SEM-II (NEW) 2014
MATHEMATICS - II (M 201)
Time Alloted : 3 Hours Full Marks : 70

Group A (Multiple Choice Questions)

1. Choose the correct alternatives for any ten of the following: (10 x1=10)

i) The general solution of the ordinary differential equation

2
% +4y =20
where A and B are arbitary constants is
a) Ae?® + Be™2® b) (A + B)e*®
¢) Acos 2z + Bsin2x d) (A + Bx)cos2zx

Solution: The correct alternative is E
ii) If the differential equation

1 1 1 A
<y++2)dm+<w++2)dy20

is exact, then the value of A is
a)2 b) 1
c) —1 d)o
Solution: The correct alternative is @
iii) The number of edges in a tree with n vertices is
an by n—1
c)n+1 d) none of these
Solution: The correct alternative is @
iv) A binary tree has exactly
a) two vertices of degree two

b) one vertex of degree two
c) one vertex of degree one
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d) none of these

Solution: The correct alternative is @

N )

a)l+et b) 1 —¢f
c) 1+et d)1—et

Solution: The correct alternative is M

vi) The value of ' <;)
a)T b) 7
1 1
c) - d) \/—%

Solution: The correct alternative is E
vii) The general solution of the differential equation y = px + f(p) is

a)y =’z + f(c)
b) y = cx + f(c?)

) y=cx+ f(c)
d) none of these

Solution: The correct alternative is | ¢ |
1

viii) The improper integral / (biix)n converges for
0
ayn >1 byn <1
on>1 d) none of these

Solution: The correct alternative is @

ix) The sum of the degrees of all vertices of a graph is 40, the number of edges
is

a) 20 b) 25
c) 40 d) none of these

Solution: The correct alternative is | a |

1
D3

a) xe3®  b) 337

631
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c) 223 d) none of these.

Solution: The correct alternative is | a |

xi) The value of " <;) r <;) is

V&S 3
33— b) -
a) 1 ) 27T
3
c) 17T d) none of these
Solution: The correct alternative is E
xii) L(t cost) =
s s+1
b
Voary 2o
2s $2—-1
c) 3 d) 5
SH+1 0 (s241)

Solution: The correct alternative is @
xiii) The integrating factor of the differential equation

dz x e~ tan"'y

dy T1rye T 1ty

is
a)tan"ly b) etan 'y
Q) et Y d)eY

Solution: The correct alternative is M

GROUP B (Long Answer Type Questions)

Answer any three of the following: (3 X15=45)
2. Solve
(322y* + 22y)dx + (223y® — 2%)dy = 0
Solution: See Example 2.6 on Page 2.33
3. Solve

d? d
xngcZ — xd—z — 3y =2%logx

Solution: The differential equation can be written as

22Dy — 2Dy — 3y = 2% logx
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where,

Let us consider the

Engineering Mathematics-I1

transformation

r=¢e° or logx ==z

Then,
dy _dyd: _ 1dy
de  dzdr xdz
or x@ = @
"Vdx T dz
Let us consider
d
YW _ pyand Y = D'y
dzx
where
d d
D= —andD = —
dzx an dz
Therefore,
xDy = D'y
Similarly,
#y _ddy_d Ldy,
de?  dxdx’  dx xzdz
__ldy 1dydz
T 22dz  xdz?dx
__ldy, 1d%y
T 22dz a2 d2?
o 28 _ Py dy
U dx? d2?2 dz

or,2’D*y = D'(D' — 1)y
Substituting the values of Dy, 22 D%y we get
D' (D' —1)y—D'y—3y = e*z

or,(D? —2D' —3)y = ¢**z
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which is a linear equation.
Let
y — emz
be a trial solution of the reduced equation
(D? —2D" —3)y =0
then the Auxxiliary equation is

m2—2m—-3=0

or,m=3,—1
Therefore, the complementary function is
C.F =y, = (C1€>* + Cye™7)

where C and C'y are arbitary constants.
The Particular integral is

1 2z
Pl=y,= —(D’2—2D’—3)e z

2z 1
(D'+2)2—2(D'+2)—3)°

2z 1 -
(D2 +2D' — 3)

- 1
-3 3

622 r D/2 + 2D/:| -1
- z

622 r D/2+2D/

= 14—+ ...
3 + 3 + }z
e2* [ +2

= A —
31" "3

Therefore the general solution is

622
Y="YctYp = (Cle3z+026_z)_ |:Z+ 5

3

Putting z = log z, the general solution becomes

2 2
y=Ca® + Cox™ ! — % {log:v + }

3

I SQP3.5
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1
1
4. Show that / —5 exists in the Cauchy principle value sense but not in the general
x
-1

sense.
Solution: See Example 5 on Page 9.7

5. Prove that the maximum number of edges in a graph with n vertices and k
. (n—k)n—-k+1)
components is 5 .

Solution: See Theorem 5.14 on Page 5.22

6. State the Convolution theorem for Laplace transform.Use this theorem to find

L‘l{ (s — 2)182 + 1>}

Solution: For the statement of Convolution theorem see Article 11.10.2 on
Page 11.16.For the problem see Examplell on Page 11.16.

GROUP C (Long Answer Type Questions)

Answer any three of the following: 3 x 15=45)
7. a) Solve
(:Cy2 — ez%“’) dr — zydy =0

Solution: See Example 8 on Page 2.11

b) Prove that
I'(m)I'(n)
T'(m+n)
Solution: See Article 9.7 on Pages 9.17 and 9.18
¢) Show that

B(m,n) =

tan zdx = T
[,

Solution: See Example 9.8 on Page 9.31
8. a) Solve the following simultaneous equation:
dx o dy T
gt +3x+y=¢€", gt r+y=e
Solution: The simultaneous differential equation are

d
d—f+3x+y=et )
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and
d
%_w+y:ezt
From (1) we have
dx
=et —3p— =~
y=e x 7

Therefore from (2) and (3) we have

d d
a(et—?)x—d—j)—:v—i—et—?)x—d—f:ezt
dx d’z dx
t ar a'xr t o, OT o
or,e" — 3 gt a2 r+e —3z gt
ordz—x—l—éld—x—l—élx—%t—ezt
" dt? dt B
Let
T =™

be a trial solution of the reduced equation

d%x dx
T 4y =0
az T T

then the auxilliary equation is

m24+4m+4=0

or,m=—2,m= —2
Therefore the complementary function is
CF=zx,= (Clt + Cg)€_2t

where C and C, are arbitary constants.
The particular integral is

1
Pl=wx,= (2" —¢*
= pryap+a) e ~¢)
=2 ! el — ! et
(D2 +4D +4) (D2 44D +4)
_ 201

9 16

I SQP3.7

(@)

3)
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Therefore,
ot | 24 I oo
T =2+ xp, = (Cit + Cy)e +§e—ﬁe
Now,
dzx
t
= — 3 _
y=e x 7

2 1
_ Lt —2t 4t -2t
or,y=-e 3{(Clt+02)€ —|—9e 16¢ }

i —2t 2 t i 2t
dt {(Clt+ Cg)e + 96 166

1 5
or,y = _Cl(l + t)€_2t — 026—215 -+ §€t + EeZt

Therefore the solution is

2 1
x = (Cyt + Cy)e 2 + §et - Ee%

and

1 5)
y=—C1(1+t)e? — Che™? + §et + Ee%

where C and C'; are arbitary constants.
b) Find the inverse Laplace transform of

$24+s—2
s(s+3)(s—2)
Solution: Let
s24+5—2 A B C

+3)5-2) s (543 T -2

2 +5—2 A(s+3)(s—2)+ Bs(s—2)+ Cs(s+3)

or =

"s(s+3)(s—2) s(s+3)(s—2)

or,s°+5—2=A(s+3)(s—2) + Bs(s — 2) + Cs(s + 3)
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Putiing,s =0
-2 =-6A
A=—
or, 3
Putting, s = 2
4 =10C
2
C=-
or, :

Putting, s = —3

4 =158
or,B:i
15
Therefore,
s°+5—2 1 o401 21
s(s+3)(s—2) 3s 15(s+3) 5(s—2)
and
! ﬁ ZEL—l 1 +iL—1 1 +2L—1 1
s(s+3)(s—2) 3 s 15 (s+3) 5 (s —2)
_l 4 a2y
BERE

c¢) Find the incidence matrix for the graph given below:

Solution: The Incidence matrix of GG is given by a n X m matrix

I(G) = (aij)nxm
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where

1; when edge e¢; is incident out of v;

Q5 = —1; when edge ¢; is incident into v;

0; if there is no edge ¢; incident out of or into v;

Here we have 5 vertices and 8 edges, so the incidence matrix is of order 5 x 8
and is given by
€1 €2 €3 €4 €5 €6 €r €8

01 1 0 0 0 -1 1 0 1
v, | -1 1 0 0 0 0 -1 0
I(G) = vs 0 -1 -1 0 1 0 0 0
V4 o 0 1 1 0 -1 1 0
vs 0o 0 0 -1 0 0 0 -1

9. a) Prove that the number of vertices in a binary tree is always odd.
Solution: See Theorem 7.7 on Page 7.6

b) Solve )
d%y dy _ .23z
s 5dm+6y—:v e
Solution: See Example 10 on Page 4.18
c¢) Use Laplace transform to find the integral / e Ysintdt
0

Solution: We know

. 1
L{sint} = e
r —st 2 1
or, e “sintdt = ——
14 52
0
Putting, s = 4 both sides we have
T 1
tdt = —
/e sin 1

0

10. a) Determine the adjacency matrix of the given graph

Vo E, 8 Vy E, 5 Vs
E,
E,
Vs Eg
E, E3

E; Ve
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Solution: The graph is a simple graph. The adjacency matrix is

A(G) = (aij)nxn
where

- 1; when v;v; in an edge of G
7771 0;when v;v; in not an edge of G

Here, the number of vertices is 6. The adjacency matrix is
ViV Va3V Vs Vg

i 01 1 0 0 1
Va 1 01 1 00
7! 1 101 00
A(G)_V4 01 1 010
Vs 0 001 00
Ve 1 001 00
b) Evaluate
-1 {loge (s+ 2)}
(s+1)
Solution: Let
2
F(5) =log, ("3 —log(s-+2) ~ o (s + 1)
Therefore,
1 1
F'(s) = -
(s+2) (s+1)
So,

=2 g o et

Since,
L™HF'(s)} = —tL™" {F(s)}

we have,

—tL Y F(s)} =e 2 —¢7!
or, L7 {F(s)} =

Hence,

1 (s+2)] ef—e?
L {loge (s+1)) t

c¢) Solve the following differential equation using Laplace transform method.
(D? —3D +2)y = 4t + €3*; where y(0) = 0,%/(0) = —1
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Solution: See Example 12.3 on Page 12.4
11. a) Discuss the convergence of the improper integral:

[y

Solution:The problem is incorrect.
b) Solve

sin? x cos® xdx = —
315

O\NH

Solution: We have

/ o) ()

sin? z cos? zdx = =
2 <p+q+2)
0 r T

Here, p = 4 and ¢ = 5, therefore

r(3)(3)

5 _
T Cos :vd:v—2 1—\<4+5+2)

ip>—1,g>—1

4

sin

O\NH

0):

T
1 \2)
2975 5
2220 <2)

8 8
9.7.5 315
c) Examine whether the following two graphs are isomorphic or not:

A B Vi V2
D C Vg V3

Solution: Since the number of edges of the two graphs are not same, therefore the
two graphs are not isomorphic.
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