

Knowledge Reuse and
Agile Processes:
Catalysts for Innovation

Amit Mitra
TCS, Global Consulting Practice, USA

Amar Gupta
University of Arizona, USA

Hershey • New York
INFORMATION SCIENCE REFERENCE

Acquisitions Editor: Kristin Klinger
Development Editor: Kristin Roth
Senior Managing Editor: Jennifer Neidig
Managing Editor: Sara Reed
Copy Editor: April Schmidt
Typesetter: Cindy Consonery
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by

Information Science Reference (an imprint of IGI Global)

3 Henrietta Street

Covent Garden

London WC2E 8LU

Tel: 44 20 7240 0856

Fax: 44 20 7379 0609

Web site: http://www.eurospanonline.com

Copyright © 2008 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by

any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Mitra, Amit, 1949-

 Knowledge reuse and agile processes : catalysts for innovation / Amit Mitra & Amar Gupta.

 p. cm.

 Summary: "This book addresses flexibility of both business and information systems through component technology at the nexus of three
seemingly unrelated disciplines: service-oriented architecture, knowledge management, and business process management. It provides

practitioners and academics with timely, compelling research on agile, adaptive processes and information systems, and will enhance the

collection of every reference library"--Provided by publisher.

 Includes bibliographical references and index.

 ISBN-13: 978-1-59904-921-2 (hardcover)

 ISBN-13: 978-1-59904-023-3 (ebook)

 1. Knowledge management. 2. Management information systems. 3. Business logistics--Data processing--Management. 4. Computer
network architectures. 5. Information theory. I. Gupta, Amar. II. Title.

 HD30.2.M58 2008

 658.4'038--dc22

 2007024489

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of
the publisher.

If a library purchased a print copy of this publication, please go to http://www.igi-global.com/reference/assets/IGR-eAccess-agreement.
pdf for information on activating the library's complimentary electronic access to this publication.

I dedicate this book to my late mother, Sevati Mitra, for her unflagging encouragement. She would have been a
proud and delighted mother had she lived to see the book in print. I also dedicate this book to my wife Snigdha
and my children, Tanya and Trishna, for their understanding and support as I spent long hours of time that were
rightfully theirs to create this book.
 Amit Mitra

I dedicate this book to my parents-in-law, Mr. Ram Roop Gupta and Mrs. Pushpa Guta, on their 50th wedding an-
niversary. They have been a tremendous source of encouragement and inspiration for me. I owe a lot to them!

Amar Gupta

Dedication

Foreword... ix
Preface..xii
Acknowledgment.. xiv

Chapter I. Introduction to This Book ... 1
Agility and the Problem of Change .. 1
Scope of This Book ... 4
The 24 Hour Knowledge Factory and the Semantic Web... 5
Service Oriented Architecture .. 6
Other Approaches... 6
Supplementary Materials and Organization of This Book ... 7

Chapter II. Introduction to Structure of Knowledge .. 9
Introduction To Knowledge .. 10
Modeling the Real World.. 12
Metaworld of Information .. 12
The Repository of Meaning .. 24
The Problem of Perspective.. 28

Chapter III. The Architecture of Knowledge ... 34
The End of Common Sense: Hidden Chaos in the Heart of Complexity.. 34
The Architecture of Knowledge .. 43

Chapter IV. The Pattern At the Root of It All .. 67
Measure of Similarity: The Proximity Metric... 68
The Ontology of Information Space ... 69
Properties of Patterns In Information Space.. 76
Domains of Meanings vs. Format .. 81
The Object and the State Machine ... 108

Chapter V. Relationships .. 121
Inverse of A Relationship.. 122
Recursion and Reflexivity ... 130
Idempotency.. 131

Table of Contents

Symmetrical, Asymmetrical, and Antisymmetrical Relationships .. 131
The Order and Degree of Relationships... 132
The Cardinality Ratio of Relationships .. 134
The Cardinality Ratios of Bijective and Surjective Relationships.. 134
Cardinality and Other Properties of Higher Order, Higher Degree Relationships 135
Mutual Inclusion and Exclusion of Relationships.. 140
The Cardinality of Subtypes ... 141
Instance Level Constraints On Cardinality .. 143
Compositions of Relationships ... 143
The Capacity For Relationships... 148
Transitivity, Atransitivity, and Intransitivity... 149
Collections of Objects and the State Space of Relationships ... 152
Slicing and Dicing Associations Between Objects ... 152

Chapter VI. Object Aggregation.. 164
Emergent Properties of Aggregate Objects .. 166
The Information Content of Aggregate Objects ... 167
The Information in Aggregation vs. the Information in Composition .. 171
Location, Containment, and Incorporation.. 173

Chapter VII. Processes, Events, and Temporal Relationships.. 178
Resources and Work Products .. 179
Cycle Time .. 181
Temporal Inverses, Reversibility, and Reversion ... 181
Temporal Recursion, Temporal Reflexivity, and Temporal Idempotency 182
Temporal Asymmetry .. 183
Temporal Mutability ... 184
Temporal Order .. 185
Temporal Degree .. 185
Temporal Cardinality: Concurrency, Repeatability, and Batch Processes 187
Efficiency and Productivity... 189
Capacity For Temporal Relationships.. 189
Governance and Nonstationarity ... 190
Events ... 191
Succession Constraints: Temporal Relationships Between Events .. 192
The Metamodel of Relationship.. 255

Chapter VIII. Crossing the Chasm: Business Process To Information Systems......................... 289
Transforming Business Processes into Effects of Events ... 290
Transforming Business Processes into Information Systems Control Processes 292
Transforms that Implement Non-Temporal Relationships.. 297
The Operation of Effects... 300
Information Input-Output Processes .. 304
When Rules are Violated... 306

Chapter IX. The Nature of Constraints .. 314
The Shaping of Objects... 314
Patterns of Perspective and the Metamodel of Constraint... 316

Chapter X The Whole Shebang: The Integrated Metamodel of Knowledge 322
What is the Model of Knowledge and Why is it Useful? .. 322
Methodology... 325
The Integrated Model of Knowledge .. 326

Appendix I. Semantics of Pattern.. 333
Appendix II. Notes .. 338
Appendix III. Suggested Reading.. 366
Appendix IV. Meanings, the Semantic Web, Ontology, OWL and RDF...................................... 392

About the Authors... 406
Index... 407

Detailed Table of Contents

Foreword... ix
Preface..xii
Acknowledgment.. xiv

Chapter I. Introduction to This Book ... 1

Chapter II. Introduction to Structure of Knowledge .. 9

This chapter defines knowledge and the need to coordinate knowledge, discusses why this is difficult
and how the concept of normalization of knowledge can help coordination and agility; introduces the

concept that knowledge has a structure and how it consists of indivisible components called “atomic

rules”; describes how business processes and services are derived from atomic rules; introduces the

modeling of behavior and the multiple perspectives related to the assembly of knowledge

Chapter III. The Architecture of Knowledge ... 34

Introduces the layered structure of knowledge and describes why chaos rides on the wings of change;

illustrates why traditional approaches risk chaos and unintended side effects when the complexity and

scope of business processes or information systems exceed a critical threshold

Chapter IV. The Pattern At the Root of It All .. 67

Defines how patterns are the basis of knowledge and measurability; introduces the concept of “informa-

tion space,” in which patterns of pure information create meanings; distinguishes meanings from their

physical representations and establishes the equivalence of objects and patterns; demonstrates how joining

and constraining meanings creates new patterns of information, which are new meanings and hence the

ability to configure meanings from other meanings; shows how this provides the basis for assembling
knowledge from components

Chapter V. Relationships .. 121

Shows how interactions between objects create new meanings; develops a model for business rules and

shows how mutability supports innovation; introduces the rules that manipulate patterns of information

to support inference and innovation

Chapter VI. Object Aggregation.. 164

Describes meanings that emerge from aggregation; shows how concepts like containment and subtyping

are configured from the concept of location

Chapter VII. Processes, Events, and Temporal Relationships.. 178

Describes business processes; shows how structured and unstructured business processes morph out

of relationships; integrates business rules, processes, and inference into a single holistic information

based ontology of meaning, tying them to business goals and agility; describes how product and pro-

cess innovation may be partially automated and how processes and goals may be engineered to support

business agility

Chapter VIII. Crossing the Chasm: Business Process To Information Systems......................... 289

Describes the information architecture that transitions business semantic into computational processes;

provides the information architecture of the interface between business semantic and automation

Chapter IX. The Nature of Constraints .. 314

Describes how inchoate information is carved into normalized meanings and properties by constraints;

describes the essential identity between a law and its outcome

Chapter X The Whole Shebang: The Integrated Metamodel of Knowledge 322

Describes how the information in this book relates to that in its companion books and summarizes the

conclusions that flow from the integrated model of knowledge. This chapter also shows, with several
examples, how the entire scheme is integrated into one unified context and overarching high level struc-

ture of information, which leads to the concept of knowledge itself

Appendix I. Semantics of Pattern.. 333
Appendix II. Notes .. 337
Appendix III. Suggested Reading.. 366
Appendix IV. Meanings, the Semantic Web, Ontology, OWL and RDF...................................... 392

About the Authors... 406
Index... 407

 ix

Foreword

New technologies, like new ideas, take time to become established. When they are first presented, they
are met with a mix of enthusiasm and skepticism. Once tried, if success is not immediate—and it hardly

ever is—those who opposed the innovation are quick to point out that they said the innovation would

never work. Later, after the idea and the culture have had time to get to know one another and the new

idea or technology is understood better, it often begins to flourish.
The idea of describing business processes as knowledge networks and sets of rules began in the

1980s with what were then called expert or knowledge systems. The first expert systems used rules to
capture the knowledge of business experts and then made that knowledge available to other experts by

putting the rules into a software system that, given information about a specific problem, could make an
expert-level recommendation. As the early expert systems got larger, it was determined that rules alone

were too clumsy. Hence, by the mid-1980s, most of the more sophisticated expert system-building tools

incorporated objects (they were called Frames in those days).

In essence, the objects in a sophisticated expert system-building tool formed a network that described

the vocabulary of problem, and rules were added to reason about the facts as they were accumulated

by the system. When one used these more sophisticated expert system-building tools, one began by ac-

cumulating knowledge from experts. Thus, if one wanted to build an expert system to assist with home

loans, one would begin by working out the vocabulary of loans. One would probably identify vocabulary

objects like Home, Payment, Credit, Interest, Calendar, and so forth. Payments would probably have

attributes like down payment and monthly payment, while Credit might have attributes like income,

credit history, and so forth. In other words, one would construct a cognitive model of all of the concepts

or words that a loan officer typically used—questions, in effect, that the loan officer would ask. Then,
one would begin to add rules that could reason with the information one had about a specific case. For
example:

If the individual’s credit history was superior, and her salary was $130,000 a year, and she could make
a down payment of $50,000, what type of loan would she qualify for?

The objects and rules formed an abstract model of the concepts and rules an expert could use to

organize knowledge about a particular subject and to reason about it to reach conclusions.
By the end of the 1980s, most companies had given up on expert systems. They concluded that expert

systems could be built but that the knowledge in the systems degraded too rapidly. One could capture

human expertise in an expert system, but the system quickly became obsolete. Real human experts are

constantly learning, reading journals, talking with colleagues about their latest experience, and attending

conferences. They are constantly updating the knowledge structures and rules they use to analyze and
solve problems. Thus, the problem with expert systems was not in the construction but in the maintenance.

x

It was easier to keep the expert, because the system that would replace him required that you keep him

anyway, to maintain the expert system.

This might have been the end of the idea that rules could be useful, but, in fact, it was only the begin-

ning. Individuals who had learned about rules while building expert systems quickly realized that they

could build systems to capture and automate more mundane human decisions—those based on well-

defined corporate policies. Policies and associated business rules were easier to capture and changed
less frequently. Thus, the interest in expert systems in the 1980s mutated into an interest in Business

Rules in the 1990s and that application of rule technology is now flourishing. Many financial companies
have large business rule groups that are responsible for defining and managing the business rules used
throughout their organizations.

At the same time that the business rules movement was showing how business rules could be used

in practical situations, others were exploring patterns, business processes, and automated software tools

that support business process modeling. Today, business rules and business processes are being integrated

in new and creative ways.

Amit Mitra and Amar Gupta propose to apply what I think of as a mixture of the expert systems ap-

proach to business process modeling and to the now popular business rules approach. In essence, they

would build object models that described the vocabulary and business rules of an area of business—say

Financial Management. If one then sought to create a business process in the area of Financial Manage-

ment, one would, in essence, create process objects that would inherit information from the more generic

Financial Management model. Mitra and Gupta refer to their high-level constructs as reusable patterns

of business knowledge. They have written three books explaining this approach. This is the third.

In the first, Agile Systems, they proposed a Universal Pattern that includes objects like Event, Fund,

Energy, Physical Object, Person or Organization, Place, and Information. They work out the basic at-

tributes of these objects and define some of the rules or constraints that apply to them. Then they start
to create submodels for more specialized business activities. They consider, for example, a shipment

and transportation cluster, a document and information cluster, a task-resource cluster, a meeting and

agreement cluster, and a buying and selling cluster.

Mitra and Gupta went on to propose that companies consider creating a knowledge machine. In es-

sence, it would be a huge expert system that had all the knowledge of all the terms used by businesses

and all the critical constraints or business rules. Anyone with a specific process problem would define
the process, determine what elements of the process inherited what vocabulary, and instantly get an

analysis of all the considerations and rules that might apply.

To provide a foundation for the knowledge machine, Mitra and Gupta have explored all the technical

problems one faces in creating this type of inheritance hierarchy. This kind of system cannot rely on the
simple inheritance one finds in simpler object-oriented languages. It requires that one object can inherit
from multiple parents and that some objects can inherit some features but not others from a given parent.

These are programming problems that bedeviled the expert systems designers in the mid-1980s, and they

still create technical and conceptual problems today. I mention this only to suggest that the first book is
not light reading. It not only offers a survey of the high-level vocabulary and concepts of business but
a survey of some very complex programming concepts as well.

The second book, Creating Agile Business Systems with Reusable Knowledge, discusses the un-

derlying ideas that form the foundation of the earlier book. This book probes the truly fundamental
concepts involved, including the nature of reality and business, the nature of objects and attributes, and

the meaning of domains.

This book, the third in the series, describes how the underlying concepts described in the first book
can be transformed into the business patterns described in the first book. Admittedly, the books were not

 xi

published in what would seem to be the logical sequence, but now that all three are available, they can

be read in whatever order the reader prefers. I found it easier to begin with the first book, which shows
how everything fits together to create a business system and then to work back into the underlying theory
once I understood why I would need it. Most, I suspect, will want to do that. Others may prefer to start

with the first and then go to this volume that provides more on knowledge patterns and the automation
of the business system.

No matter where you begin, the journey will be challenging. It will also be rewarding if you really

want to understand the potential for systematic, rule-based business systems analysis. These are ideas

whose time is about to come, and this book and the other two in the series will give you the technical

foundation and the vision to be ready when that time comes.

Paul Harmon is executive editor and founder of BPTrends. Harmon is a noted consultant, author, and analyst concerned with
applying new technologies to real-world business problems. He is the author of Business Process Change: A Manager’s Guide
to Improving, Redesigning, and Automating Processes (2003). He has previously co-authored Developing E-business Systems
and Architectures (2001), Understanding UML (1998), and Intelligent Software Systems Development (1993).

xii

Preface

This book is part of a series of three complementary books (Figure P.1). The series addresses the pivotal

issue of providing automated support for attaining business process resilience and information systems

agility with little or no recurring manual intervention.

The first two books, Agile Systems with Reusable Patterns of Business Knowledge: A Component
Based Approach and Creating Agile Business Systems with Reusable Knowledge, were published by

Artech House Press, Norwood, MA in October 2005 and Cambridge University Press, Cambridge, UK,

in January 2007, respectively. The series as a whole addresses the basic organization of knowledge and

how an integrated knowledge repository can be created from its shared components. This book, which

is the final book of the series, addresses business rules and processes.
In terms of content, Creating Agile Business Systems with Reusable Knowledge developed the seman-

tics of Pattern and the concepts of Measurability, Distinction, Rules, Value, and Constraint, which are

the basis of all knowledge. This book summarizes that foundation in Chapter IV and then builds upon it

in subsequent chapters to provide additional depth. It addresses to a greater extent the components from

which business rules and business processes are assembled and demonstrates how these components

can automate reasoning and even some kinds of innovation. Each book is self-contained and may be

read independently of the others.

Figure P.1. Reusing business knowledge: The three books

Business
Space

Solution
Space

System

R
eq

u
ir

em
en

ts

D
es

ig
n

G
en

er
at

io
n

Business

Domain

Specification

CASE tools and
Information Systems
delivery start here.

What
Reusable patterns of knowledge

Our books start here...

This book

CAPE tools and Value

Chains start here.

How

Shared
Business &
real World
Knowledge

The
structure of
Knowledge

and
Meaning

Transformation
of abstract

knowledge into
reusable
business

processes

Cambridge
University
Press book

Artech
House
book

 xiii

The patterns that will be described in the following chapters facilitate the design of resilient services,

business processes, and information systems. These patterns will also facilitate development of tools

that can automate the design of “self aware” business services and adaptive information systems. The

Semantic Web is a vision of the future, in which the World Wide Web operates on the plane of meanings.

It envisions a future in which automation processes and integrates a World Wide Web of information

based on the meanings of individual items of data. The patterns of information in this series of books

describe meanings. These patterns do not need the Web to exist. However, they can be the cornerstone

of the Semantic Web.

The purpose of the semantics of knowledge we develop in this book is to normalize business rules

and knowledge in order to reduce chaotic interactions and unintended side effects under the pressure of

continual and rapid changes in scope, objectives, perspectives, and functionality. This book focuses on

the concepts and models that integrate ontology, measurability, business rules, and business processes.

The intent of this book is to anchor this integration in a cogent, overarching, nonstochastic model of

knowledge and to demonstrate how such a model will result in agile and adaptable processes and infor-

mation systems. Human, perceptual, and organizational issues, governance, and change management

were addressed in the first book (Mitra & Gupta, 2005). This latest book discusses the risks associated
with information quality and discusses processes for managing risks associated with violation of con-

straints.

The long-term success of business is increasingly dependent on its underlying resilience and agility.

Most analysis, methodologies, and traditional business process engineering practices place emphasis on

operational efficiency and net profits at the expense of innovation and agility. However, innovation, agility,
and coordination of information in support of value, from customers’ perspectives, are paramount in the

global knowledge economy. In such an environment, research and processes that transcend departmental,

corporate, and even national boundaries drive global excellence; innovation is not only supreme but

is also made routine. This series of three books is tailored to support such an environment. The series

demonstrates how new learning may be absorbed by flexible processes and information systems, which
can be aligned automatically in lock step.

The series supports the stated intent of the Object Management Group (OMG) to drive towards se-

mantic integration of business rules, ontology, processes, and services in support of service orientation

and self-aware business processes. The OMG has published its SBVR standard for business rules and is

close to completing the BPDM model for business processes, which it eventually intends to integrate with

SBVR. The Metamodel of Knowledge, in this series of books, supports OMG’s strategy by integrating

the semantics that define business rules, business processes, reasoning, and shared knowledge.
Read on to see how this can be done and discover the inhuman patterns of machine reasoning that

will surprise you at the nexus of knowledge, process, and information.

xiv

Acknowledgment

We would like to say a very special thank you to Kristin Roth of IGI Global for her patience and guid-

ance through the publishing process. We also thank Dane Sorenson, David Branson Smith, Katie James,

Jessica Duran, Ruchika Agarwal, Julie Ovadia, and Trishna Mitra for their hard work, suggestions, and

assistance in proofing and preparing the manuscript. We acknowledge, with sincere thanks, the valuable
feedback provided by the reviewers. One of the authors (Amar Gupta) would like to thank his colleagues

at the University of Arizona and at the Massachusetts Institute of Technology (MIT) for their support

and encouragement.

 1

Chapter I
Introduction to This Book

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AGILITY AND THE PROBLEM OF
CHANGE

Change is difficult, complex, and risky because
it has unintended side effects. Effects of change

ricochet through systems via interactions between

its parts. The larger the number of components,

the more convoluted the system and the greater

the chance of unintended side effects of change:

more interactions imply a greater risk of mul-

tiple, complex impacts of change. Each impact

has many consequences, which in turn will have

many more until there is a cascading avalanche

of changes, interactions, and impacts, which are

difficult to manage, foresee, and qualify. This is
the problem of change.

The problem of change has persisted through

50 years of automation. Its solution has resisted

every technology devised by man. In the begin-

ning, our systems were small, simple, and of lim-

ited scope. However, automation opened up new

opportunities to improve and integrate processes

by coordinating ever larger numbers of elements

in previously unanticipated ways. This meant

coordination of information across continually

broadening horizons, which led to processes that

were more dependent on automated systems;

further, these processes and systems were more

complex, had even more interactions, and were

therefore even riskier to change. Paradoxically, it

also led to the information economy, which thrives

on change and innovation. We have created new

technologies and methodologies at a prodigious

rate to solve the burgeoning problem of change as

our systems have evolved, matured, and integrated

over the last 50 years. However, a solution to the

problem of change has eluded us because every

new approach has been the catalyst for the next

level of complexity, which has then required a

better, more sophisticated approach to managing

change and innovation (Figure 1.1).

Change impacts diverse business processes and

cascades through multiple layers of the legacy in-

formation systems in a rapidly growing avalanche

such that the initiator of the change is faced with

the Hobson’s choice—either to make the change

with huge overheads of cost, time, and risk, or

to abandon the potential innovation because of

the associated cost, time, and risk factors. The

Y2K problem was a classic example. It cost the

world around $600 billion (Yuen & Mitchell, n.d.)

and exhausted a considerable part of the world’s

professional resources, just to convert a two-digit

representation of the calendar year to four digits1,

which enabled automation to deal with the new

millennium.

As systems and processes became more inte-

grated and tightly coupled, it became imperative

to isolate and manage the effects of change. The

strategy was to encapsulate densely clustered

2

Introduction to This Book

interactions into components, which were coupled

loosely with other similar components to produce

requisite behaviors and outcomes. These compo-

nents became the parts of more integrated, more

modular systems across larger scopes, which were

more maintainable because the impact of change

was better managed within modules. This ap-

proach required abstraction of information. Each

step of the journey in Figure 1.1 not only made

business more agile and scalable but also led to

higher levels of abstraction. The levels before

it did not disappear; rather they hid themselves

behind more malleable constructs that became

the primary interface between man and machine

or machine and machine. This helped the system

to become more agile.

As business processes became more tightly

coupled with automation, the lack of agility in

information systems became a serious bottle-

neck to product and process innovation. Several

frameworks have attempted to solve this problem.

Most have failed, or at best, have had very limited

arguable success: Structured Programming, Reus-

able Code Libraries, Relational Databases, Expert

Systems, Object Technology, CASE2 tools, code

generators, and CAPE3 tools, to name a few. They

failed because they did not adequately address

the ripple effects of change—how business rules

and knowledge may be represented so that we

may change a rule once and send corresponding

changes rippling across all the relevant business

processes. To do this, we need ontology, a schema

of interrelated meanings, which are derived from

each other. Ontology is a study of the meanings

of things. It was a philosophical concept that be-

came concrete and computable and, in so doing,

took computation into the plane of meanings (see

Appendix IV). It is the next advancement in the

evolution of automation (see Figure 1.1).

Currently, business rules are replicated in dis-

similar formats in multiple, intermingled ways

in multiple information systems and business

processes. They must all be coordinated when any

rule is changed. It makes change and innovation

complex, perilous, and problematic to implement.

This has been the most critical problem related to

change.4 Purely technical approaches have failed

miserably. Despite some claims to the contrary,

the problem was not resolved in the 1950s when

computer professionals replaced the intertwined

programming code of machine language with

assembly languages, or in the 1960s when the

next generation of these professionals replaced

the cumbersome code of assembly languages

with that of third generation languages like

COBOL and FORTRAN. During the 1970s and

1980s, it was not solved either, when the expert

systems, relational databases, and CASE tools

Figure 1.1. The evolution of information technology

Machine
Code

Hardware
Assembler

Code
3GL

Functional
Decomposition

Data
Models

Objects
Components

BPM

1950 1960 1970 1980 1990 2000 20xx?

•Meanings are abstract patterns of information

•Can we “normalize” meanings, configuring each from others?

Services

 3

Introduction to This Book

were deployed. In addition, in the 1990s, object

technology was considered to be a panacea until

tangled object inheritance became so much of a

problem that many advocated making multiple

inheritances illegal in tools of the day. Finally, in

very recent years, as one hurtled towards business

process management (BPM) and service oriented

architecture (SOA) with their plug-and-play busi-

ness services, the problem had not been solved

either. This has happened because new and bet-

ter automation triggered more tangling of these

business rules.

Therefore, the authors asked entirely different

questions when initiating the research leading to

this book:

What is the natural structure of information

that is used to represent business knowledge

and services in a fully normalized and re-

usable form across diverse global business

environments?

What information is needed to model the

stimulus response behavior of business pro-

cesses and host organizations?

If so many approaches have failed, why would

a new one work?

The framework described in this book ad-

dresses these three issues by untangling business

rules with an ontology derived from the inherent

structure of information. By untangling business

rules, even in complex legacy models and systems,

one gains the unique capability to represent spe-

cific elements of business knowledge once, and
only once, in a knowledge repository. Using this

repository, the specific elements of knowledge
can be designed to naturally manifest themselves,

in appropriate forms, to suit the idiosyncrasies

of different business contexts. Changes made at

appropriate places will ripple through and impact

relevant places within the concerned business

systems with minimal or no human intervention.

Not surprisingly, business professionals have

long perceived that business information gained

•

•

•

in one context may be used in another situation.

However, in order to attain this objective in au-

tomation, one must specify the knowledge with

greater precision in the appropriate framework.

This book addresses the quest to define a fun-

damentally reusable structure of knowledge in a

language that can be understood by most business

professionals and also by machines.

These patterns of knowledge flow from theory
and are validated by practice across a spectrum

of different industries. Indeed, they had their

genesis, not in abstract theory, but in the practical

need to build the semantics of agile business for

large diversified corporations, such as AIG and
Verizon, in programs which one of the authors

(Mitra) spearheaded.

This series of three books provides a connec-

tion between the world of systems engineering

and the world of business process engineering.

It is a generalized framework that applies with

equal ease to diverse industry and business ap-

plications, ranging from transportation to defense

and agriculture to medicine. Figure 1.2 describes

the overall scheme of the framework.

The scheme in Figure 1.2 can assist in identi-

fying reusable business services and predicting

principal requirements, predicated on common

patterns of knowledge, even before users articu-

late them. This can dramatically reduce the time

needed to develop and to market new products and

services. Moreover, the strategy can be a crucial

asset in our intensely competitive business world,

which increasingly depends on putting new ideas

on the table in ever-shortening periods of time.

Industry consortiums such as the OMG and

W3C are developing standards for business rules

and business processes (like SBVR for business

rules and BPDM for business processes from

OMG and RDF for metadata from W3C). The

W3C also has a recommendation called OWL

(see Appendix IV) for a limited part of the on-

tology layer at the apex of the pyramid in Figure

1.2. However, these models are not integrated

yet and are therefore limited in their ability to

4

Introduction to This Book

represent integrated knowledge and reasoning

that flow through all aspects of business. This
book shows how this can be done and presents a

cogent integrated model of knowledge.

Corporations such as IBM are developing the

industry models at the base of the pyramid in

Figure 1.2. Some examples are the IAA model for

insurance, IBM’s health care models, Telecordia’s

TMN architecture for telecommunications, the

Supply Chain Council’s SCOR model for manu-

facturing, and others. In terms of the theme in

Figure 1.2, these industry models are integrated

neither horizontally nor vertically. This limits

their ability to orchestrate and reuse knowledge

across the diversity of business partners that form

modern extended enterprises. These are the very

enterprises that are enabled by the World Wide

Web and the global knowledge economy and have

the potential to make quantum leaps in the value

they bring to end users of products and services.

To bring true integration, agility, and coordination

to the information enabled extended enterprises

of the 21st century, the cross-industry layer of

knowledge is critical. It allows a firm to innovate
and reinvent its product markets, coordinates

across business partners, and enables the busi-

ness-on-demand concepts, enabled by the Web,

which corporations like IBM have envisioned

for the future.

Making business systems entirely maintenance

free is the ultimate vision. Systems based on soft-

ware will automatically adapt to chaos and change.

These systems will be assisted by automated

intelligent agents that will hopefully, someday,

maintain software and adapt to change even as it

occurs. They might even anticipate change, and

perhaps thrive on it, like the businesses of the

21st century, which they will support.

SCOPE OF THIS BOOK

This book and the other two books in the series

focus on normalization, encapsulation, and reuse

of business knowledge across a broad spectrum

of industries and dissimilar business functions.5

This book identifies the information that describes
normalized knowledge. It does not describe the

sequence of tasks that are required to capture this

information (how the information is captured

may vary widely). Thus, it is not a cookbook

of sequenced activities to build components of

normalized knowledge; rather it provides the

foundation for cookbooks of that kind and a basis

Figure 1.2. The business knowledge engineering framework

METAMODEL OF
BUSINESS RULES

METAMODEL
OF UPPER

ONTOLOGY

METAMODEL OF
BUSINESS
PROCESS

CROSS-INDUSTRY
BUSINESS

KNOWLEDGE

INDUSTRY BUSINESS KNOWLEDGE

M
E

T
A

M
O

D
E

L
 O

F

K
N

O
W

L
E

D
G

E

M
easu

rem
en

t
&

 R
easo

n
in

g

Agile Systems with Reusable
Patterns of Business

Knowledge from Artech
House Publishers

 5

Introduction to This Book

for evaluating how complete existing cookbooks

are in terms of the information they must collect

to model business knowledge.

Although business knowledge and technology

are considered independent entities, the knowl-

edge that is embedded within processes must

be supported by an array of technologies, both

manual and automated in nature, in order to derive

full benefits. Frequently, large organizations and
extended enterprises that are in close partnership

in a supply chain have difficulty in coordinating
their processes. This leads to waste, inefficiency,
lack of coordination, and loss of agility. Differ-

ent divisions and units of these enterprises have

different and sometimes confusing business

rules. On closer analysis, it becomes apparent

that these apparently different rules, manifested

in different procedures, implemented in different

systems, which might run on different technology

platforms, are merely different expressions and

implementations of the same generic rules. The

dissimilar implementations are driven by dif-

ferent local legacies, characterized by their own

geographical, technological, whimsical, political,

and environmental parameters.

It is possible to extract the shared business

knowledge and intent from these diverse imple-

mentations. This shared knowledge focuses on

the intent and semantics of the business. It is

platform and procedure independent. It provides

the basis for a shared “federated” business model.

The federated model can coordinate the shared

semantics of the business, which includes pro-

cesses, rules, and information in the “federation”

of businesses. If the federation wishes to reuse this

shared knowledge, it must store it in an electronic

repository. Although the federated model itself is

technology independent, in the repository, it will

be an array of information expressed explicitly on

physical media in physical formats. It is thus an

electronic artifact. We have named these artifacts

Business Knowledge Artifacts, often abbreviated

to Knowledge Artifacts, in this book.

Traditional software and hardware compo-

nents differ from these Knowledge Artifacts.

These Knowledge Artifacts are the components

from which business knowledge and its semantics

may be configured. New learning leads to adap-

tation by changing configurations of Knowledge
Artifacts. This book identifies these Knowledge
Artifacts and shows their relationship to software

components. It also shows how automating these

configurations can automate reasoning and the
creation of the right processes for a business. As

such, these Knowledge Artifacts encapsulate

business intelligence as meanings and reasoning

that can be stored as reusable components within

an electronic knowledge repository.

THE 24-HOUR KNOWLEDGE
FACTORY AND THE SEMANTIC
WEB

The purpose of the 24-Hour Knowledge Fac-

tory is to drastically reduce the time needed to

develop information systems, and to facilitate

effective knowledge-based processes. It is like

a relay race that envisions a globally distributed

work environment, in which global teams work

on projects around the clock. Each team mem-

ber works a normal workday in his or her time

zone, and at close of business passes the baton

to another member in a different time zone, who

then continues the same task6. One of the authors

(Gupta) has done extensive research on the con-

cept and has successfully tested the efficacy of
this approach in large industrial and academic

environments.

Knowledge artifacts will facilitate the opera-

tion of such a factory because they are the com-

ponents from which business knowledge and its

semantics are configured, coordinated, and used
to automate the creation of information systems

and services. New learning and other changes

lead to adaptation by changing configurations
of knowledge artifacts, and thereby changing the

6

Introduction to This Book

behavior of automated systems and services. This

kind of automation is needed to support the strin-

gent demands that the 24 Hour Knowledge Fac-

tory imposes on the business, for rapid response

and flawless coordination, across a spatially and
temporally distributed network of workers and

work centers. Ideally, such a knowledge factory

would be built on the Semantic Web (see Ap-

pendix IV).

SERVICE ORIENTED
ARCHITECTURE

Were it not for the Web, this model of knowledge

would remain an interesting academic exercise

with very limited practical application. The World

Wide Web has enabled e-commerce and the in-

formation economy by facilitating the exchange

of information within and between corporations.

This has led to the concept of service oriented

architecture. In SOA, reusable services are pub-

lished on the Web or an Enterprise Service Bus.

Other services may then invoke and reuse these

services via predetermined contracts for exchang-

ing information. Not only may these loosely

coupled services be assembled into business

processes as needed, but processes themselves

may too be constructed on demand (see the note

on the State Machine). These processes can also

provide for “business fail-overs” across a supply

chain of collaborating enterprises, in which the

user of a service has a choice of similar services

from several competing partners to choose from.

This is IBM’s concept of on-demand business in

an extended enterprise, limited only by the reach

of the Web. There is a great deal of work being

done on realizing this vision by standardizing

messaging between services with Web services

and their extensions. Web services are enabling

communication and setting the stage for the

next quantum leap in interoperability of diverse

businesses in supply and demand chains—the

standardization and expression of reusable busi-

ness knowledge and services at the semantic level.

This is a critical need.

At present, there is no way of identifying what

business semantics are reusable in what scopes,

and therefore there is no scientific method of
identifying reusable services. Thus, the defini-
tion of business services in SOA has to be an art

based on intuition and experience. The definition
of reusable business services is the fundamental

business value obtained by investing in SOA.

Thus, current engineering methodologies do not

address the very reason for the existence of SOA,

leaving this as a soft art form, fraught with risk.

The knowledge artifacts described in this series

fill this gap. They are standardized, reusable
patterns of business services. Web services have

enabled their use, and these patterns can be the

basis for standards that facilitate identification
and definition of business services in service
oriented architectures.

OTHER APPROACHES

Business agility has been traditionally addressed

from a management and organizational perspec-

tive. The focus has been on management of

people, training, communication, organization,

governance, soft skills, and change. This series

takes a different approach. It focuses on engineer-

ing the semantics of reusable services, processes,

and knowledge.

Chapter III discusses some of the business

modeling techniques commonly used today and

why they fail when we cross a critical threshold

of scope and complexity. Our businesses today

are not only complex and their boundaries often

cross not only departments and geographies, but

also entire enterprises that collaborate across the

globe. A senior manager of a Fortune 100 firm
recently asked one of us if we needed functional

decomposition to model his business. The answer

is that there are better techniques, although, for

 7

Introduction to This Book

pragmatic reasons we would permit the use of

functional decomposition, and accept the en-

gineering risks this would involve. The reason

was that process engineers and business model-

ers understand the technique, are comfortable

with it, and in a large organization, the risk of

sudden change would exceed the engineering

risks involved (Mitra & Gupta, 2005 discuss the

governance and enabling of change). However,

as history has repeatedly demonstrated, the risk

of chaotic behavior and unintended side effects

is high when we apply this technique to complex

business processes and information systems. We

manage the risk by being pragmatic: taking more

time, increasing our resource commitments, and

reducing our expectations, scope, and complexity,

trading them off against business benefits. This
often has a high cost that is not recognized: the

cost of opportunities lost.

We must substitute functional decomposition

with something else when we engineer across

large scopes because we need a method of add-

ing detail incrementally so that we can divide

and conquer complex problems in incremental

steps. In theory, we can do this with a properly

designed ontology. This book shows how we can

create executable processes even when detail is

missing. Thus, we can refine our model in steps,
adding detail and tracking moving targets as

scopes, objectives, and priorities shift in a chang-

ing business environment.

However, in practice, ontological design is a

very difficult problem and involves a great deal
of abstraction. In addition, this is not always the

best method of communicating with the business

and even professional modelers might find it dif-
ficult. This series of books presents an approach
that creates a “packaged ontology” of knowledge

to simplify and accelerate the process.

The Web Ontology Language (OWL) from

W3C takes a similar approach. This is why there

is a separate section dedicated to OWL in Ap-

pendix IV. The model in this series subsumes

and extends OWL. It starts with the engineering

premise that knowledge is based on the ability to

recognize patterns and that a pattern increases

predictability because its information content is

less than the collective information content of its

constituents. The properties of knowledge thus

emerge from the semantics of pattern. These

properties include OWL constructs. They also

provide the foundation for integrating measur-

ability, inference, rules, and processes into an

overarching model of knowledge.

SUPPLEMENTARY MATERIALS AND
ORGANIZATION OF THIS BOOK

To elaborate further on various themes, this book
makes frequent references to supplementary
chapters and notes on the Web. The Web site also
includes more elaborate examples of practical
application of the concepts in this book than we
could include in print. Readers of this book may
access this material at:

http://www.igi-global.com/mitrabook

All references to “our Web site” in this book
refer to the above URL. You will need a user ID
and password to access the material on the Web
site. The user id is “Mitra” and the password is
“Gupta”. Remember that the user ID and pass-
word are case sensitive.

The boxes in this book and the notes in Ap-

pendix II amplify technical details for the sophis-

ticated reader.

Appendix III suggests articles and books for

further reading. The process of expressing knowl-

edge in reusable, componentized form draws upon

many areas of business experience as along with

active research. Appendix III categorizes and

organizes these areas and provides brief notes

and descriptions for most publications. URLs

8

Introduction to This Book

have been provided, where possible, to enable

rapid online access to information. The Internet,

however, is constantly updating and changing, and

therefore the authors cannot guarantee that certain

sites will exist on an indefinite basis. Readers
may, however, try to access old Web sites with

the “Wayback Machine” available at http://www.

archive.org/index.php.

A serial number has been assigned to each

item in Appendix III. When we have suggested

additional reading on a discussion or argument

in this book, we have bracketed its serial number

[like this]. The companion books in the series,

Creating Agile Business Systems with Reusable

Knowledge from Cambridge University Press and

Agile Systems with Reusable Patterns of Business

Knowledge: A Component Based Approach from

Artech House publishers, are the 337th and 338th

items in Appendix III. They are referenced in the

remainder of this book as (Mitra & Gupta, 2006)

and (Mitra & Gupta, 2005), respectively.

REFERENCES

Mitra, A., & Gupta, A. (2005). Agile systems
with reusable patterns of business knowledge.
Artech House.

Mitra, A., & Gupta, A. (2006). Creating agile
business systems with reusable knowledge. Cam-

bridge University Press.

ENDNOTES

1 The Y2K problem at the end of the 20th

century addressed converting 2 digit rep-

resentations of the year into 4 digit repre-

sentations. For example, 1/1/2001 instead

of 1/1/01. Computer calculations involving

dates beyond 1999 had a very high risk of

error if the year was not expressed in terms

of 4 digits.
2 CASE is an acronym for Computer Aided

Software Engineering.
3 CAPE is an acronym for Computer Aided

Process Engineering.
4 Human and organizational comfort levels

with change are also major impediments,

and arguably the less quantifiable, but larger
risk. However, solving the engineering prob-

lems related to quality and coordination of

changing rules are the prerequisites that

create the need to address the human and

organizational dimensions of change. The

companion book from Artech House by the

same authors addresses both dimensions of

change.
5 See Appendix II on Normalization.

6 For more information on the 24 Hour

Knowledge Factory, see [343] and [344] in

Appendix III.

 9

Chapter II
Introduction to

Structure of Knowledge

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

This chapter introduces the concept of the metamodel of knowledge. The chapter:

Defines knowledge and introduces the concept of the atomic rule as the building block of knowl-
edge
Describes the need for coordinating business knowledge, the difficulty of doing so, and how normal-
ization of knowledge can facilitate its coordination and lead to the development of agile software
Introduces the concepts that show how knowledge can be normalized and assembled from com-
ponents
Introduces the concept of a business process and services as derivatives of business knowledge
Introduces the concept of modeling of behavior
Introduces the problem of multiple clashing perspectives of reality from which knowledge is as-
sembled

•

•

•

•
•
•

Figure 2.1. Knowledge is the meaning of business practices, rules, goals, guidelines, and their respec-
tive roles in the integrated whole

Organization/
People

Business
Strategy

Physical
Infrastructure

Product/Service
Offering

Polices, Legislation,
Regulation

Process and
Workflow

Information
Technology

10

Introduction to Structure of Knowledge

INTRODUCTION TO KNOWLEDGE

Knowledge involves understanding, the un-

derstanding of meanings. Business knowledge

involves understanding of goals and guidelines,

opportunities and operations, threats and con-

straints, strengths and weaknesses, policies and

practices, reasons and rationales, as well as their

interrelationships. Knowledge is also a pattern of

information that includes breach and recovery:

what must be adhered to, what can be overlooked,

and under what circumstances. In today’s fast

paced global environment, one must possess in-

timate knowledge of the rapidly evolving global

marketplace and its impact on the current and

planned set of products and services.

Knowledge represents a coordinated set of

information: rules of business, imposed by man

or nature, either explicitly stated or implied.

Knowledge must address both what one should

do and what one should not, as well as how to do

it and how not to do it. In some business schools

today, students are taught both implementation

and counter-implementation strategies; the latter

focuses on the use of knowledge to avoid getting

into painful situations.1

Knowledge consists of assertions, described by

rules, caveats, constraints, issues, and guidelines.

Knowledge possesses structure. Engineers have

long fabricated complex structures from simple

parts. Relatively small components are first as-

sembled into simple subassemblies, which in

turn serve as the building blocks for larger, more

complex, assemblies. This process is continued

until the final machine or equipment is produced.
Knowledge is similar: it is aggregated from iso-

lated facts, but unlike a machine, its components

are harder to perceive because they are abstract

patterns of information; we understand informa-

tion but cannot see, hear, taste, touch, or smell it.

However, we can understand it by abstracting the

inputs of our five senses.
Meaning and understanding are abstract, but

they are similar to the physical world in yet another

way. We learned from fundamental chemistry

that we can divide and subdivide substances until

we reach the stage of molecules without losing

information on what the substance is. However,

if we divide the molecule, we change the identity

of the substance and lose information on its be-

havior and properties. Similarly, to identify the

components of knowledge, we must distinguish

between assertions whose division will involve

no loss of information, and assertions whose

division will sacrifice meaning: if an assertion
is decomposed into smaller parts and the “lost”

information cannot be recovered by reassembling

the pieces into a “subassembly of knowledge,”

then the decomposition has gone too far. The

fundamental rules that cannot be decomposed

further without irrecoverable loss of informa-

tion are called indivisible rules, atomic rules, or

irreducible facts.2

Ambiguity, uncertainty, or a different mean-

ing imply loss of information. Consider the fol-

lowing assertion:

Frank is a man who has a daughter named Sarah

This fact consists of two simpler facts which,

when considered together, unambiguously mean

Frank is a man who has a daughter named
Sarah:

Frank is a man

Frank has a daughter named Sarah

Because the meaning, “Frank is a man who
has a daughter named Sarah,” may be recon-

stituted from simpler, shorter facts, it is not an

atomic rule (also known as an irreducible fact).

However, if we tried to break the second of the

two assertions above into smaller assertions, we

would lose information.

Now consider the assertions:

2.1. Frank has a daughter

2.2. A daughter is named Sarah

1.

2.

11

Introduction to Structure of Knowledge

The last statement asserts that somebody’s

daughter, not necessarily Frank’s, is named Sarah.

Thus, taken together, the statements above assert

that Frank has a daughter, but Sarah may or may

not be Frank’s daughter. We have lost informa-

tion because of the uncertainty we created by

attempting to break Frank has a daughter named
Sarah into smallercomponents. Therefore, Frank
has a daughter named Sarah is an irreducible

fact, which if decomposed, will result in loss of

knowledge.

Irreducible facts embody pivotal information

and constitute the root of coordinated require-

ments. These irreducible facts are woven together

to create normalized knowledge. Normalized

knowledge can then be utilized to coordinate

complex activities in transnational corporations

and intercompany supply chains. In the legacy

systems of today, the process of making a single

change opens up a Pandora’s box primarily

because irreducible facts are scattered across

systems. By finding better ways for representing
irreducible facts, one can potentially mitigate the

problem of uncontrolled chain reactions caused

by change.

Consider a situation, derived from a real

company, in which a customer orders new voice

mail services from a telephone company (called

“Flashy” Telecom). The service is added to the

customer’s record and the company subsequently

starts billing the customer. In order to activate the

service, the telephone company needs to repro-

gram some telephone switches. At this particular

company, the software instructing the switch

cannot recognize voice mail services, although

the billing system can. This causes the customer

to be unhappy at the billing commencing prior to

the start of the service, and the phone company

is spending time and effort to manually activate

the change and to correct the bill.

That voice mail is a feature of telephone service

is an irreducible fact because this assertion cannot

be broken down into simpler assertions without

losing information. The billing system properly

recognized this fact (that voice mail is a service

offering); however, the service provisioning sys-

tem was unable to do so. The root of the problem

was that knowledge was not normalized.

To show that the problem is not necessarily

confined to the telecommunications industry, let
us consider reuse of knowledge by taking a differ-

ent example, from a different industry. “Hasty”

Delivery Services used two different systems: one

for scheduling deliveries to geographic locations

over roadways and the other for scheduling the

delivery of packages to trucks through conveyor

belts, picking, packing, and staging systems. In

both systems, multiple routes could be used to

deliver their shipments, and in each system, such

routes may be filled to capacity. These facts are
atomic rules about routing masquerading as differ-

ent requirements in different systems. Indeed, the

same rule may be used in a project management

system to model the flow of tasks, resources, and
work products. If this knowledge is implemented

in computer code and stored in an electronic

repository as a knowledge artifact, it may be

reused by diverse systems. It could therefore be

considered to be a reusable service from which

business processes may be composed.

However, if Hasty and Flashy are like most

firms, it would be difficult for them to use the
software and design artifacts of one system to

incorporate appropriate changes in another.

Most of today’s technology processes and best

practices are not geared to do this. This is why

each change involves more time and more money

than it should. Systems designers may argue,

with some justification, that their systems meet
the stated requirements. However, these systems

are often not designed to meet evolving needs of

either the customer or the market.

The authors have encountered several similar

situations in their consulting experience, where

systems failed because firms were large and
their operations had evolved in a way that made

it difficult to effectively coordinate knowledge
across the diverse functions of the enterprise. In a

12

Introduction to Structure of Knowledge

number of instances, systems have failed because

knowledge was reflected in systems differently
from the manner as it was in the real world. In

order to become agile, our artifacts must reflect
real world knowledge as it is in the real world, and

thus encapsulate our understanding of how reality

governs meaning, reasoning, and information.

MODELING THE REAL WORLD

A model represents information about reality

in a limited scope and context, in a repeatable,

consistent, and accurate manner. The reliability

and accuracy of the model within its scope are

governed by the range of error, or inconsistency,

that one is willing to tolerate—tolerances defined
in terms of deviations from unbiased (accurate)

and repeatedly consistent (reliable) predictions

of target behaviors.

METAWORLD OF INFORMATION

To normalize and reflect real world knowledge in
our systems, one needs to understand and model

such knowledge as a set of more fundamental

attributes.

Box 2.1. Model for making tea

This model demonstrates:

How limited a model is compared to reality

How easily knowledge becomes denormalized in artifacts which must then be coordinated

The process of making tea can be depicted as a model that involves information about a sequence of events. The arrows

show succession from event to event. The event at the end of an arrowhead cannot occur until the event at the beginning of

that arrow has occurred. We cannot remove the tea packet unless we have boiled the water and inserted the tea packet.

Events like starting the stove, acquiring the pan to heat the water, and drinking the tea are beyond the scope of this

model. The behavior of the water, such as boiling over heat, mixing with the tea flavor and sugar, its color, and its fragrance
are also out of scope.

The content in the model could have been expressed in a different syntax. For example, instead of a set of labeled

boxes connected with arrows, the information could have been presented as a set of English sentences. The model or its

meaning would not have changed, but rather it would have changed the syntax, or technique, for expressing information.

The information and its meaning would be the same in both versions.

Although the meaning and content of the model are the same in the two syntaxes, there are now two artifacts, or

deliverables, with identical information, or meaning. To be consistent, the two must be synchronized. This is an example

of how easily the information and meaning of a single real world phenomenon can become replicated in our records. If

one changes, then the other must also change. By repeating information in two different artifacts, we have denormalized

real world knowledge about making tea and made the process of incorporating change more complex. We did not even

try. It just happened!

1.

2.

Figure A. Model for making tea

Boil
Water

Pour in
Sugar

Insert Tea
Packet

Remove Tea
Packet

13

Introduction to Structure of Knowledge

Objects, Relationships, Processes,
and Events

In the real world, every object conveys informa-

tion. The information content of physical objects

is conveyed to us via one or more of our five
senses. That is how we know the object exists and

perceive it as such. Our perception of the object is

our mental model of the information it conveys.

Objects are also impacted and influenced by each
other. For instance, a piece of glass can be hit by

a hammer and it will break. This too is informa-

tion. In Box 2.1, the water, the tea packet, the hot

stove, and the tea maker interact with each other

in order to produce a cup of tea. Objects acting

in concert with each other create the real world.

Thus, the essence of the real world is a pattern

of information.

Objects are associated with one another. While

some associations involve the passage of time

(such as making tea), other associations, such as

locations of physical objects, are relationships

that do not involve time. These relationships and

associations are natural storehouses for particular

behaviors of real world objects acting in unison.

These relationships too are objects in their own

right.

One could interrupt and stop “Make Tea”

before the cup of tea is fully prepared. Here are

other examples of how objects can be natural

repositories of behavior: A person may be born,

and later, the same person may be transformed into

an employee through an employment relationship

with an organization or a spouse by marrying

another person. In addition to behaviors com-

mon to Persons in general, such as breathing and

growing older, Employees and Spouses exhibit

special properties. For example, spouses may get

divorced and employees may be promoted. As

such, these objects are concepts, abstracted from

reality, based on shared behavior and information

content. This is also an example of how mean-

ings are created by extending shared meanings

by adding behavior, constraints, and other kinds

of additional information.

These were also examples that showed how

Processes are artifacts for expressing information
about relationships that involve the passage of
time, that is, those that involve before and after
effects. The “Make Tea” object, shown in Figure

2.2, is characterized by the information carried by

the “Make Tea” relationship. The only item that

distinguishes the process from a mere association

is the fact that the resources for making tea, which

Figure 2.2. Processes represent a special kind of relationship and possess information on “before and
after” effects related to objects.

MAKE TEA

WATER

STOVE

TEA

COOKING POT
(new)

COOKING POT
(used)

COOK

R
E
A
L

W
O
R
L
D

O
B
J
E
C
T
S

R
E
A
L

W
O
R
L
D

REAL WORLD RELATIONSHIP

BEFORE AFTER

TIME

TEA PACKET

SUGAR

14

Introduction to Structure of Knowledge

are objects, such as the water and tea bags, had

to precede tea, the work product of the process.

Thus, the process is not only an association, but

also an association that describes a causative

temporal sequence and passage of time.

Make Tea relates eight objects in the model:

Water, Stove, Cooking Pot (new and used), Cook,

Tea Packet, Sugar, and the Tea; it also sequences
them. The object “Make Tea” specifies that the
objects to the left in Figure 2.2, namely the Water,

the Stove, a New Cooking Pan, the Tea Packet,

the Sugar, and the Cook must exist before those

objects on the right happen. Make Tea is a process

because it facilitates the transfer of information

through a sequence based on the passage of time.

Thus, a process, besides being an object in its own
right, is a special kind of association because
it contains a sequence of information. This is

also how the meaning of causality is born: the

resources and the process that create the product

are its causes.

Objects respond to events,3 with their response

being a certain kind of behavior.4 Glass is hit by

a hammer and broken; the hammer strike is an

event. The process of making tea may have been

initiated by the chef asking the cook to do so. The

chef’s request would then have been the trigger.

Triggers are events too. Events are occurrences

in time such as the occurrence of a condition

(e.g., the value of an order exceeding a threshold

that calls for special scrutiny), a trigger such as

the beginning or end of another process, or the

occurrence of a time of day (e.g., close of busi-

ness), the passage of a certain duration of time

(e.g., a three day waiting period before a contract

becomes binding on both parties), or some other

occurrence in time.

An event could also be an occurrence in time

that transforms nothing. This distinguishes Event
from Process. Unlike a full-blown process, an

event is not a causal relationship and does not

need to result in products or link resources to

products. An event only conveys information

about the passage of time. Events, when joined

with relationships between objects, create causal-

ity and process by infusing temporal informa-

tion about before and after into the relationship.

Causality is information about which objects in

the relationship (causes) precede which successor

objects in a cause and effect relationship. Similarly

in a process, resources come before products. As

such, a process can be considered a special kind

of causal relationship—one that uses resources

to create products or services. This is how the

meanings of Causality and Process are created

from Event and Relationship.

A process always makes a change or seeks

information.5 Business process engineers often

use the term cycle time to describe the time inter-

val from the beginning of a process to its end. A

process, like the event it is derived from, can even

be instantaneous or may continue indefinitely.
The deep space probe Pioneer will travel into

deeper interstellar space for an indefinite period
of time, whereas the cook may trigger the baking

process for a batch of cookies instantaneously by

pressing a button. The trigger for bake cookie

is an event with negligible duration, whereas

the journey of the Pioneer is a process with no

known end. Processes that do not end, or have no

known end, are called Sagas. Thus, a process is

a relationship, and also an event, which may be

of finite, negligible, or endless duration.
Events are important because they also act

as triggers for actions, processes, and behaviors.

The cook may turn the stove off and interrupt

the Make Tea process in Box 2.1. Turning the

stove off would then be the event that leads to the

suspension of the Make Tea process. Processes

are special kinds of objects with special kinds of

behavior. Turning the stove off is an event that

triggers specific behavior of the Make Tea object.

The start of a process is an event that is implicit in

every process, but as we have seen, the end of the

process is implied for many, not all, processes.

15

Introduction to Structure of Knowledge

Perception and Information Naturally
Speaking: Meaning, Measurability,
and Format

In order to normalize knowledge, we must sepa-

rate meaning from its expression, as described

in Box 2.1. This may be done by augmenting

our metamodel to represent entities of pure in-

formation that exist beyond physical objects and

relationships. This section will introduce three of

these objects: Domain, Unit of Measure (UOM),
and Format.

Just as matter and energy exist in the real

world, so too does information; the only differ-

ence between these items are the rules governing

each. In terms of tangibility, matter is the easi-

est to grasp both physically and mentally. The

debate over energy being equally real is old. It

took over a thousand years for our ancestors to

settle this debate,6 and it took humankind even

longer to observe that energy and matter could

neither be created nor destroyed. Information is

no less real than matter or energy, but it is even

more abstract and its laws harder to grasp than

those for matter and energy. Although information

cannot be touched or felt, it is manifested through

the behavior of real objects and physical energy

and therefore must be understood.

Unlike the situation with matter and energy,

a meaning is not located at a particular place in

space and time; only its expression is.7 All physi-

cal objects or energy manifested at a particular

place at a point in time convey information, and

in the example of Box 2.1, we saw how they may

convey the same information: the same meaning

occurred in two different artifacts that had no

spatial or temporal relationship with each other.

They only shared meaning, that is, information

content.8 This was their only relationship. Al-

though meaning in its true sense (and hence the

information it conveys) does not occupy space and

is immutable in time, it is ironic that one can only

know the meaning from information expressed
and observed in the physical world framed by

space, time, and real world objects.

A single meaning may be characterized by

multiple expressions.9 The same piece of informa-

tion may be stored (and disseminated) in multiple

forms and places: on the printed envelope sent to

a customer and on a company’s Web site; in the

French and English versions of a new computer

owner’s manual; and in the Chinese president’s

Figure 2.3. How is information naturally manifested in the real world?

Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Business Knowledge, Norwood,
MA: Artech House, Inc., 2005. ©

“I am the Fragrance of the
E arth, and I am the heat
of F ire. I am the Life of all
that lives and I am
penance of all. . .”

- Trans lated from the Bhagvat G ita, the holy
book of Hinduism by Swami P rabhupada

"As a man is , so he sees .
As the eye is formed,
such are its powers ."

- William B lake

16

Introduction to Structure of Knowledge

speech and its English translation distributed at

the meeting of the United Nations General as-

sembly.10 Indeed, an item composed of matter or

energy will always convey information, even if

it is only information about itself. Accordingly,

matter and energy may be considered to hold a

constrained form of information: information con-

strained to a single physical location at a moment

in time or a pattern in information space shaped

by a constraint. It is here that the fundamental

difference between Information vs. Matter and

Energy is displayed. Unlike a specific material
object or a packet of energy that is bound to only a

single location at a single point in time,11 identical

information can exist at many different places at

several different times.

Our observation of information is mediated

by matter and/or energy; we can only observe
the behavior of reality as it is manifested in the
behavior of objects located in space and time.

Whereas specific physical objects are local; that

is, their existence corresponds to a particular

place at any given moment in time, informa-

tion carried by meaning is nonlocal; that is, it

is completely independent of space and time.

The need to understand the underlying natural

structures that connect information to its physical

expression(s) is inherent in the effort to normalize

business rules.

Information mediation and expression within

the real world is achieved by two metaobjects.

One is intangible; it emerges from the concept

of measurability and deals with the amount of

information12 that is inherent in the meaning being

conveyed. The other is tangible; it deals with the

format—or physical form—of expression. The

format is easier to recognize, and many tools and

techniques provide the ability to do so explicitly.

It is much harder to recognize the domain of mea-
surability (called domain in this book).13 If we are

careless and club domain with format,14 like some

of the older modeling tools did, this information

will return to plague us through inflexible software
and replicated business rules.

Measurability and Information
Content

Through the behavior, or properties, of objects we

observe, the information content of reality mani-

fests itself to us. People have anniversaries; they

gain or lose weight, prefer some fruit more than

others, have genetic traits that determine eye color

and other physical attributes, and so forth. Let us

consider two completely different objects, say, a

bottle of juice, and you, a person. The amount of

juice in the bottle can be measured, just as it is

possible to weigh yourself. The volume of juice in

the jug as well as your weight can both be quanti-

fied with numbers that express their individual
(and inherently different) magnitudes.

You are able to realize that these two values—

the volume of juice in the jug and your weight—are

quite dissimilar qualities of inherently dissimilar

objects (a person’s weight and the volume of juice).

Despite this difference, both values are drawn

from a domain of information that contains some

common behavior. This common behavior—that

each value can be quantitatively measured—is

inherent in the information being conveyed by

the measurement of these values, but not in the

objects themselves. Date is another example of a

shared quality of these disparate objects that can

be applied to each of them. We can measure the

date of three separate events: when the bottle was

made, when the juice was produced, and when

the person was born. The kind of information that

domains naturally normalize can be understood by

comparing the amount of information intrinsically
conveyed by each of these qualities of people and

the bottles of juice, as we will see next.

Nominal Domains

Let us start with domains that only distinguish

one kind of object from another, for example,

living objects from nonliving objects. We know

that the living/nonliving classification conveys
that living things are different from nonliving

17

Introduction to Structure of Knowledge

things. However, the classification has no infor-
mation on how living and nonliving objects can

be arranged in any natural sequence; nor does

the classification include any quantitative infor-
mation regarding the differences between living

and nonliving things.

If this information is stored on a physical

medium, “living things” could be arbitrarily rep-

resented with a numeric code 1, and “nonliving

things” with 2. If we claimed that living things

precede nonliving things because the number 1

precedes 2,15 we would come to the conclusion that

this assertion is nonsensical because the domain

conveys no natural sequencing information for

this classification scheme (meaningless assertions
are considered to be “null,” a special value that

we will examine further on in this book16).

This fact will always assert itself regardless

of how the information is coded or physically
expressed: it is also without meaning to subtract

1 from 2 in an attempt to quantify the difference

between living and nonliving things, just as it

is meaningless to divide 1 by 2 to find the ratio
by which the meaning of “living” exceeds or is

a fraction of the meaning of “nonliving.” That
information is just not carried in the domain. It
is immaterial how the information is physically

expressed.

The term nominally scaled domains (nominal
domains, in short) denotes domains that contain

just enough information needed to classify objects

based on their properties or relationships.

Ordinal Domains

Next, consider a person’s preference for fruit.

Jane is a woman who likes blueberries more

than grapes and apples and, above all, loathes

oranges. She really has no preference between

grapes and apples.

Box 2.2. Formats, objects, and domains

Domains convey meaning and information content. For example, the age domain conveys information on the time lapse

between the moment of creation and a later point in time. Objects frame the context of the meaning that is conveyed by

domains. The intersection (relationship) between the age domain and a person conveys that the age of a person is the

meaning we wish to convey. Thus, the combination of Objects and Domains conveys meaning. Formats on the other hand,

specify the manner in which information is physically presented or transmitted to a person, a system, or an instrument.17

For instance, the age might be displayed in decimal numbers on a screen for a human observer, or sent in binary format

as electromagnetic pulses to a computer.

Consider, another example, in which we convey nominal meanings about living vs. nonliving objects: we could use

a numeric code of “1” for “living” and “2” for “nonliving,” or “L” for “Living” and “N” for “Nonliving”; or we could use

icons or pictures to convey the information. These symbols would all be different physical representations of the same

meaning; they cannot change the meaning assigned to them. They are all examples of format. The meaning is a fact—that

living objects breathe, whereas nonliving objects do not. Thus, this domain normalizes the common meaning and behavior

of living and nonliving things. A living object can place this behavior into context, thereby giving it a context-specific
meaning. For example, how a plant breathes may be very different from how a man breathes.

The domain conveys the fact that the property “living,” related to a class of objects, maps to the life/nonlife domain,

subject to the condition that only a living or nonliving classification is permitted for an instance of this object. The fact
that an object must be either living or not is an irreducible fact.

At times, more than one property of an object can map to the same domain. Each property represents an irreducible fact

related to the real world. The length, the breadth, and the height of a building all map to the length domain. The domain

normalizes the facts that these three properties of building are characterized by the same units of measure, with identical

conversion factors. Accordingly, this information does not need to be repeated for each property. The same reasoning holds

when different properties of various kinds of objects are mapped to the same domain, such as a person’s height and the

length of a bridge both mapping to the length domain. The length domain provides a common basis for units of measure

and also for conversion rules between various units of length. (Also, see the note in Appendix II on gender.)

18

Introduction to Structure of Knowledge

Jane can easily rank the four fruits in order of

preference: blueberries, followed by apples and

grapes as equal, and finally oranges at the end.
However, if someone asks Jane to quantify the

amount of her liking for each fruit by assigning a

number to each, a problem arises. She would not

know how to respond to the demand. She would

know that she should give blueberries the highest

score, followed by an equal score for grapes and

apples, and a lower score for oranges, but would

not know what these scores should be because

the information does not exist.

The domain on which Jane classifies her pref-
erence for fruit contains sequencing (ranking)

information but no information about quantitative
magnitude. If the person asking Jane insists that

she enumerate her preference of fruit, some nu-

merical values may be assigned, but regardless of

how these preferences are recorded—whether with

numbers, letters, colors, or graphic icons—these

numbers will convey no information beyond

Jane’s ranking of fruit preferences.18 Domains
like this, that have no quantitative information,
but do convey enough information to arrange
objects in some sequence or order, are called
ordinal domains.19

Because Jane is able to rank different fruits

in order of her preference, she can automatically
arrange fruits into separate groups (e.g., grapes

and apples would be grouped together, and both

oranges and blueberries would constitute their

own separate groups—the criterion is her fruit

preference). However, if she simply groups, rather
than ranks, the fruit in order of her preference, in-
formation is withheld regarding her preferences.
Thus, we come to the conclusion that ordinal
domains intrinsically carry more information
than nominal domains.20 Ordinal domains carry

sequencing information and classification infor-
mation, the latter by implication.

Now let us suppose that Jane’s questioner has

become frustrated by her inability to quantify

her preferences and demands that she assign

some order of numbers to her preferences—say,

for the sake of argument, the rank Jane assigned

to each fruit is 1 to blueberries, 2 to apples and

grapes, and 3 to oranges. We know that it would

be entirely wrong to conclude on this basis that

Jane likes blueberries 3 times as much as she likes

oranges. Nor can it be concluded that the gap, or

difference, in Jane’s preference between blueber-

ries and apples is equal to the gap between her

preferences for apples and oranges. The domain

simply does not have this information.

Difference Scaled Domains

Let us consider birthdays. Say another individual,

Jim, was born on January 1, 1965 whereas Jane

was born on January 1, 1975. It is meaningless

to divide the date on which Jim was born by the

date on which Jane was born. The ratio has no

meaning. On the other hand, one can say Jim is 10

years older than Jane. In other words, one could
meaningfully subtract one date from the other to

obtain their quantitative difference. Domains of

this type are called difference scaled domains.

They contain adequate information to include all

operations such as comparison and ranking that

apply to ordinal domains and also the information

that permits meaningful subtraction of values

in the domain, but they carry no information in

terms of ratios. Note that it is also meaningless

to mutually add or multiply dates. Addition and

multiplication are meaningless in difference

scaled domains. Note also that the date (time)

domain is distinct from the age (elapsed time or

time difference) domain, in which ratios, addition,

and multiplication are meaningful operations.

Ratio Scaled Domains

Ratios are meaningful in ratio scaled domains

because, in addition to the information in differ-

ence scaled domains like the time domain, they

carry information about a natural nil magnitude.

Suppose it is now January 1, 2000, and Jane has a

daughter named Jenny who was born on January

19

Introduction to Structure of Knowledge

1, 1995. We can meaningfully say that Jane is five
times older than her daughter because Jane is 25

years old, whereas her daughter is 5 years old. This

is because the age (i.e., elapsed time) domain has

a natural nil value. All operations that apply to

nominal, ordinal, and difference scaled domains,

along with addition, division, and multiplication,

and indeed all arithmetic, are also valid in the

case of ratio scaled domains.

Physical Expression of Domains

Domains convey the concepts of measurability and

existence. They are a key constituent of knowl-

edge.21 There are four fundamental domains that

we will consider in this book; two of them convey

qualitative information and the other two convey

quantitative information, as follows:

• Qualitative domains:
{ Nominal domains convey no infor-

mation on sequencing, distances, or

ratios. They convey only distinctions,

distinguishing one object from another

or a class from another (a class is also

an object).

{ Ordinal domains not only convey

distinctions between objects but also

information on arranging its members

in a sequence (a value is also an object,

hence the concept of magnitude may

be deemed to start here). However,

ordinal domains posses no information

regarding the magnitudes of gaps or

ratios between objects (values).

• Quantitative domains:
{ Difference scaled domains not only

express all the information that qualita-

tive domains convey, but also convey

magnitudes of difference; they allow

for measurement of the magnitude

of point-to-point differences in a se-

quence. However, they cannot convey

any information about ratios between

objects because the domain does not

contain a value in it that one can call

nil or zero.

{ Ratio scaled domains perform three

functions: assist in the classifica-

tion and arrangement of objects in a

natural sequence, able to measure the

magnitude of differences in properties

of objects, and take the ratios of these

different properties. Ratio scaled do-

mains always contain a natural zero.

In order to give information a physical ex-

pression, it must be physically formatted and

recorded on some sort of medium. A single piece

of information must be recorded on at least one

medium and may be recorded in many different

formats. For example, different types of equines

may be coded as a number (say, 1 for Horse and

2 for Zebra), or as a letter (say, H for Horse and

Z for Zebra) or as a picture of a brown equine

for Horse and a striped equine for Zebra. This

information could also be spoken aloud or written

as a hexadecimal code on floppy disk that only
computers can read. This physical representation

of information is its Format. A Format is an item

of information, which may be attached to a mean-

ing but is a distinct component of information

that should be distinguished from the abstract

meaning it is attached to.

A symbol is sufficient to physically represent
the information conveyed by nominal and ordinal

domains. Of course, ordinal domains also carry

sequencing information, and it would make sense

to map ordinal values to a naturally sequenced

set of symbols like digits or letters. (If there is no

limit to the number of values in an ordinal domain,

obviously the set of 26 letters in the alphabet will

not suffice, but numeric digits would, provided
that we understand that quantitative differences

between numbers are meaningless.)

Unlike qualitative domains, quantitative do-

mains need both symbols and units of measure

20

Introduction to Structure of Knowledge

to physically express the information they carry.

This is because they are dense domains; that is,

given a pair of values, regardless of how close they

are to each other, it is always possible to find a
value in between them. A discrete set of symbols

cannot therefore convey all the information in

a quantitative domain. However, numbers have

this characteristic of being dense. Therefore, it is

possible to map values in a dense domain to an

arbitrary set of numbers without losing informa-

tion. These numbers may then be represented by

physical symbols such as decimal digits, roman

numerals, or binary or octal numbers. There may

be many different mappings between values and

numbers. For example, age may be expressed in

months, years, or days; a person’s age will be the

same regardless of the number used. To show that

different numbers may express the same meaning,

we need a Unit of Measure (UOM). The UOM

is the name of the specific map used to express

that meaning. Age in years, days, months, and

hours are all different UOMs for the elapsed

time domain.

Both the number and UOM must be physically

represented by a symbol to physically format the

information in a quantitative domain. Indeed, a

UOM may be represented by several different

symbols. The UOM “Dollars,” for the money

domain, may be represented by the symbol “$” or

the text “USD.” In general, a dense domain needs

a pair of symbols to fully represent the informa-

tion in it: a symbol for the UOM and a symbol

for the number mapped to a value. We will call

this pair the full format of the domain.

Domains, UOMs, and Formats are all objects

that structure meaning. For this reason, we call

them Metaobjects in Figure 2.4. They are some

of the components from which the very concept

of knowledge is assembled. The Metamodel of

Knowledge is a model of the meaning of knowl-

Domain

Qualitative
Domain

Quantitative
Domain

Nominal
Domains

Ordinal
Domains

Difference
Scaled

Domains

Ratio Scaled
Domains

Increasing Information Content

Qualitative
Domain

Quantitative
Domain

Unit of
Measure

Format

is expressed by 1 or many is expressed by 1 or many

is expressed by 1 or many

convert to 0 or 1 convert to 0 or 1

Map of Knowledge
– Domains of Information -

Figure 2.4. (Partial) metamodel of domain

21

Introduction to Structure of Knowledge

edge built from abstract components. We will

describe more of these components later in this

book. Our model will describe the mutual interac-

tion between these components that creates the

patterns of information we call “knowledge.”

These interactions are semantic relationships be-

tween objects. These patterns may be considered

to be equivalent to the engineering blueprints

that describe physical structures. Figure 2.4 is an

example of the technique we will use.

Metaobjects in Figure 2.4 are represented by

rectangles, and their relationships are arrows. We

caution readers who are used to input and output

diagrams commonly used in information systems

and process engineering that Figure 2.4 is differ-

ent. The arrows in Figure 2.4 do not represent the

flow of information from one place to another.

However, they do show how objects interact.
Figure 2.4 is a semantic model. To understand

the rules, you must read along the arrows and

form a sentence.

Starting with “Quantitative Domain,” for

example, the sentence reads “(A) Quantitative

Domain is expressed by 1 or many Unit(s) of

Measure.” The lower limit (1) on the occurrence

of Unit of Measure highlights the fact that each

quantitative domain must possess at least one unit

of measure. This is because the unit of measure is

not optional. A quantitative value cannot be ex-

pressed unless a unit of measure can characterize

it. The arrow that starts from, and loops back to,

Unit of Measure reads “Unit of Measure converts
to none or at most 1 Unit of Measure.” Conversion

rules, such as those for currency conversion or

distance conversion, reside in the Metamodel of

Knowledge. This relationship provides another

example of a metaobject (since relationships are

objects too) and demonstrates how a metaobject

can facilitate the storage of the full set of conver-

sion rules in a single place.

The conversion rule is restricted to conver-

sion from one UOM to only one other UOM; this

constraint is necessary to avoid redundancy and

to normalize information. A single conversion

rule enables navigation from one UOM to any

other arbitrary UOM by following a daisy chain

of conversion rules. If you needed to convert

yards to inches, and you had only the conversion

factor to feet, you could convert yards to feet by

multiplying by 3 and then to inches by multiplying

by 12. The upper bound of one on the conversion

relationship in the metamodel also implies that

if you add a new UOM to a domain, you have to

add only a single conversion rule to convert to

any of the other UOMs, and that such information

will suffice to enable conversion to every UOM
defined for that domain.

METAOBJECTS, SUBTYPES, AND
INHERITANCE

Metaobjects help to normalize real world behavior

by normalizing the irreducible facts we discussed

earlier.22 The metaobjects that we have discussed

so far are object (a pattern, the fundamental metao-

bject described Chapter IV)23; property; relation-

ship; process; event; domain; unit of measure; and

format. The kind of atomic rules normalized by

each type of metaobject are summarized in Figure

2.5. Although they are simple in of themselves,

they are extremely important because they serve

as the building blocks of knowledge.

The ontology in Figure 2.5 organizes objects in

a hierarchy of meaning. Lower level objects in the

ontology are derived from objects at higher levels

by adding information. Figure 2.5 tells us that the

meaning of Process is configured by combining
the meanings of Relationship, an interaction be-

tween objects, with the meaning of Event, the flow
of time.24 This kind of relationship is special. It is

called a subtyping relationship and forms the basis

of the ontology. Subtyping relationships convey

information from higher levels to lower levels of an

ontology. The lower level object becomes a special

kind of higher-level object. Figure 2.5 shows that

Ratio Scaled Domain is a special kind of Domain
because of the chain of subtyping relationships

22

Introduction to Structure of Knowledge

In any Difference Scaled domain or Ratio Scaled domain, a value can be transformed from one Unit of Measure to an-

other by simply multiplying the particular value by a specific conversion factor. If one or more UOMs with corresponding
conversion factors exist in a particular domain and a new UOM is introduced, only one new conversion ratio needs to be

added in order to transform a value to enable us to revise measurements expressed in the new UOM to all the other UOMs.

More specifically, individual ratios will not be needed for making conversions from the new UOM to all of the old UOMs.
Indeed, knowledge would be denormalized if every conversion ratio was individually specialized. This is because a single

conversion ratio between the new and any one of the older UOMs can deduce each ratio.

The following exemplifies the real world facts. By basing it on the weight domain, the example remains simple.
However, the same arguments will always apply to UOMs, no matter whether it is the ratio-scaled domain or the differ-

ence-scaled domain.

Assume that governments of different nations decide that they want to conduct a survey to find the average weight of
persons in their respective countries. Just after the project was started, however, they realize their scales of measurement

are all different. This means that to succeed, all participating governments will have to compromise on a single unit of

measure. The basic conversion rules between pounds, grams, and kilograms include, (see Figure A).

To convert kilograms to pounds using the table, find “kilograms” beneath the “From” column on the extreme left, and

then follow the “Kilogram” row until you find the “Pounds” column. The cell specifies “x 2.2”; this means that to convert
kilograms to pounds, simply multiply by 2.2 (therefore, 5 kilograms = 5 x 2.2 = 11 pounds). Along the same lines, the

rule to convert kilograms to grams is “multiply by 1,000.” Since it is common knowledge that division is the inverse of

multiplication, the table actually contains three atomic rules.

Only these three rules are necessary to convert between any units of measure represented in the table. The table does

not hold any explicit rule for converting pounds to kilograms, but by knowing that division and multiplication are inverses

of each other, we can derive the rule to convert pounds to kilograms; this is: divide by 2.2 in order to convert pounds to

kilograms. Moreover, we can derive the rule to convert grams to kilograms using the table’s information, even though no

definitive rule is stated for it. Grams to kilograms can be converted by dividing by 1,000. It would have been redundant
to include the conversion ratio for explicitly converting grams to kilogram in the table; further, knowledge would then be

denormalized. (Note: all diagonal cells of the table are all blank.)

Note that there would be no need to convert if all nations had standardized the same units. In such a world, conversion

rules would not be needed at all. However, in some nations, surveyors were uncomfortable with UOMs because they were

unfamiliar with grams, pounds, or kilograms. If the governments opt to add ounces to the list of UOMs for weight, the

conversion rule table will have change as follows, (see Figure B).

Note how only one conversion rule must be added to the table: “multiply by 0.035 to convert from grams to ounces.”

This single new rule will ensure that ounces can be converted to any of the other units presented in the table. Thus, even

though there is no definitive rule in the table to convert ounces from kilograms, there is an implied rule, which may be
inferred (derived): we could multiply kilograms by 1,000 to convert to grams and then multiply the result by 0.035 to further

convert to ounces. Thus, inference flows from the normalization of the information content of business rules.

Box 2.3. Transformation between multiple units of measure

Figure A. Conversion table

Grams

Pounds

x 1,000x 2.2Kilograms

GramsPoundsKilograms

TOFROM

Grams

Pounds

x 1,000x 2.2Kilograms

GramsPoundsKilograms

TOFROM

23

Introduction to Structure of Knowledge

Box 2.3. continued

Figure 2.5. Basic metaobject inventory: Kinds of rules each metaobject normalizes

Object

Relationship
Object

Property Domain Format
Unit of

Measure
(UOM)

Dynamic
Relationship

(Process)

Static
Relationship

Qualitative
Domain

Ratio
Scaled
Domian

Difference
Scaled
Domain

Ordinal
Domain

Nominal
Domain

Quantitative
Domain

Isolated
Irreducible fact
about a single

object

Irreducible facts
about units of
measurement

Irreducible facts
about

magnitudes of
differences

between objects

Irreducible facts
about magnitudes
of ratios between

objects

Irreducible facts
about order or

ranking of
objects

Irreducible facts
about

classification
only

Irreducible facts
about timing or

sequence

Time independent
irreducible fact

Event
(Occurrence

in time)

Irreducible fact
involving two or
more objects or
the same object
at different times

Irreducible fact
about formats for
presenting object

properties to
observers
(human or

mechanical)

Irreducible
Fact

about
timing

of triggers
for

behaviors

Assertions about
measurement and

classification of
object behavior

common to
multiple properties

of objects

Note that none of these metarelationships represent processes because they do not involve time; in the real world, there
is no data flow or conversion process. Everything is just Knowledge. Later we will see how these ideas can be mapped
to computer-based implementation and continue to stay normalized.

Figure B. Conversion table

Ounces

x 0.035Grams

Pounds

x 1,000x 2.2Kilograms

OuncesGramsPoundsKilograms

TOFROM

Ounces

x 0.035Grams

Pounds

x 1,000x 2.2Kilograms

OuncesGramsPoundsKilograms

TOFROM

24

Introduction to Structure of Knowledge

that lead from Domain to Ratio Scaled Domain
via Quantitative Domain.

We now introduce two new metaobjects:

the subtyping relationship and its corollary, the

Subtype. They serve as containers for encapsulat-

ing and normalizing knowledge and as conduits

for sharing this knowledge with other objects.

Shared behavior is normalized in the supertype

object and automatically shared with subtypes

by implication through the subtyping relation-

ship. For example, aging, birthdays, gender,

credit rating, names, ring size, social security

numbers, and telephone numbers are common to

all persons. People can be customers, employees,

or both. The object class “Person” will normalize

information common to people, such as social

security number and birthday, without regard to

the person being an employee, customer, or both.

Subtypes will add specific information that gives
the object special, more specific meanings, which
are distinct and more restrictive than the mean-

ings of their supertypes. For instance, Customer
and Employee are subtypes of Person. Employee
adds the employment relationship with another

person or organization, while Customer has the

same effect for the purchasing relationship. This

is the information that Employee and Customer
normalize and add to the information conveyed by

Person. They create new meanings by extending

the meaning of Person. This example demonstrates

why subtypes, the subtyping relationship, and

inheritance are all needed to normalize informa-

tion, and are therefore critical to the discussion

in this book.25

Note also that the subtyping hierarchy between

qualitative and quantitative domains, specifi-

cally from nominal, ordinal, difference to ratio

scaled domains, has been ignored in Figure 2.5.

They are subtypes because, as we have seen,

each adds information and hence behavior as

we descend down the hierarchy from nominal

domain to ratio scaled domain through ordinal

and difference scaled domains. The information

we lose when we ignore a subtyping hierarchy is

information we might have reused. For example,

the irreducible fact that ratio scaled values may

be arranged in order of magnitude was inherited

from ordinal domains. If we ignore this hierarchy

in our electronic knowledge repository, we will

need to replicate the comparison operators of the

ordinal domain in ratio scaled domains. With the

hierarchy, they will be automatically inherited.

Indeed, integrating the concept of ontology into

the repository of knowledge gives it the power

of reason. As we will see later, this will enable

automated support for innovation.26 Box 2.4 shows

different kinds of information that subtypes may

add to their parent objects.

The next section shows, with an example, how

knowledge may be configured from components
and how inheritance can automate the process of

reuse of knowledge.

THE REPOSITORY OF MEANING

The atomic rule is not only the most basic build-

ing block of knowledge; it is also the ultimate

repository of information. It is a rule that cannot

be broken into smaller, simpler parts without losing

some of its meaning. The metaobjects of Figure

2.5 are the natural repositories of knowledge.

They provide the basis of real world meaning.

The intent of this section is to create an intuitive

understanding of the principles involved with a

simple example. Creating Agile Business Systems
with Reusable Knowledge provides more cover-

age of this topic.

Just as molecules react with molecules in

chemical reactions to produce molecules of new

substances with different properties from the

original reagents, atomic rules may be built from

other atomic rules. As we continually polish our

business positions with product and process in-

novation, some atomic rules are reused. These

rules are perfect examples of those that can act

as reusable components of knowledge. In order

to build specialized domains of knowledge, entire

25

Introduction to Structure of Knowledge

structures and configurations may be reused.
This is similar to manufacturers creating reusable

subassemblies to build machines from ordinary

parts. The end product may incorporate many

versions and modifications of these reusable sub-

assemblies. The structure of metaobjects sparks

reusability. The following example will show how

the spark of innovation starts within metaobjects

when these objects are normalized repositories

of atomic rules.

Consider the example in Box 2.1. Each process

in Box 2.1 is an object. They are strung in a chain

that shows which process must lead which others.

These links are relationships, and, as was stated

previously, these relationships are also objects

in their own right. These relationships transfer

irreducible facts about mutual dependencies

among the processes that they connect. This chain

of processes forms a structure assembled from

By changing their state, object instances can react to events. A change of state has the power to either make the instance

a member or take it out of the subclass. For instance, a company will hire a person to make him or her an employee. Em-

ployee is a subtype of Person (see the discussion above). Likewise, an employee who is fired is no longer an instance of the
Employee, a subclass of Person. This is an example of how individual objects, in response to certain events, leap in and

out of subclasses. Basically, their roles change. Morphism is the ability to have shape and form. When something appears

in numerous different forms, it is referred to as polymorphism. For that reason, subtypes may be called polymorphisms of

their supertypes. Thus, in the example about living things in Box 2.2, “Breathing” assumed different forms in different life

forms. Each form of breathing was a polymorphism of the generic feature called “breathing.” This notion is the foundation

for many key concepts presented in this book. (Appendix II discusses polymorphism under the theory of categories.)

A guard condition is a rule that determines whether a certain object will be affected by an event. For example, one

cannot modify the terms of a sealed agreement. Consequently, the agreement is a guard condition because of the sealed

state. Guard conditions present another opportunity for constraining and thereby subtyping objects (all constraints are

features of objects as we will discuss later in this book; constraints convey information, and increased information content

is the basis for subtyping). Agreements could have been divided into two categories: those that are sealed and those under

negotiation. The modification effect would only be a property (behavior) of Open Agreements (in the generic agreement,
the existence or not of the modification effect is “unknown”). A separate guard condition on the parent object to verify its

state would not be compulsory, if the Agreement object were designed in this manner. Indeed, if the request to renegotiate

an agreement occurs, and its state is not known, this framework would imply that the software automatically query the

state before updating the agreement. Note how the framework implicitly defines some of the key services that are required
by the concept of “Agreement” ([338] in Appendix III has more information on reusable business services).

Box 2.4. Subtyping criteria

Figure A. Effects of events on subtypes

SUBTYPING
CRITERIA

Attributes EffectsRelationships Constraints

Constraints
on Attribute

Values

Constraints
on

Relationships

Guard
Conditions

Constraints
on Initial

Conditions

Initial
Conditions

(Default State)

Constraints
on History

26

Introduction to Structure of Knowledge

atomic rules. It is a very simple arrangement of

atomic rules.

Look at Figure 2.6 to understand how atomic

rules can be created from other atomic rules, and

to comprehend how subassemblies of rules may

be reused: Figure 2.6 is an example of a simple

atomic rule which is common to many businesses:

that of Organization Ships Product.
The shipment between organization and prod-

uct is a relationship; it is also an object in its own

right (like all relationships). Figure 2.6 shows a

diagram of the Organization Ships Product rule.27

Read it just as you would the diagram of Figure

2.4; only remember that the arrows (that is, rela-

tionships) are objects in their own right as well.

Figure 2.6 illustrates two atomic rules:

Many shipments may be made by an orga-

nization, and

Each separate shipment can have multiple

products.

This is an example of a simple configuration
of knowledge. There are two atomic rules, and

they are not mutually linked in any structure.

Each rule stands on its own.

Watch how the rules are reconfigured in the
following scenario:

Assume that a flat rate per shipment had been
negotiated, but this contract has expired. In the

1.

2.

Figure 2.6. A rule, Organization Ships Product, assembled from Objects

Organization ProductShips

(Shipment)

Shipments

Products

new contract, shipping cost will depend on the
total volume of the shipment. The scope of the
shipping model must be enhanced to include the
total volume.

Assume also that the firm has, at its disposal, com-
ponents of knowledge as a part of an inventory of
knowledge artifacts that have already been built
and stored by its process-reengineering depart-
ment. The relevant knowledge in the repository
must first be found.

We locate the volume domain in the repository.
This is a ratio scaled domain. We understand (from
Figure 2.4 and Box 2.3) that it must be associated
with some particular UOM. The conversion rules
between units of measure are shown in Figure
2.4. We also know that volume must be a positive
number. It is a constraint (and an atomic rule)
associated with the domain (constraints are also
objects, and may be features of objects28). As such,
there exists a natural structure of irreducible facts
that is correlated with this volume domain. Let us
assume that the artifact in the repository reflects
this. This natural structure may then be considered
to be a subassembly of knowledge stored in the
repository. This is the second structure from the
left in Figure 2.7.

When we assemble Shipment with volume,

Shipment Volume, a new meaning derived from

27

Introduction to Structure of Knowledge

Volume and Shipment, inherits the information

associated with the volume domain, including

units of measure of volume, rules for converting

between units of measure and the fact that the

shipment volume cannot be negative. These are

irreducible facts that flow into the subassembly
of knowledge automatically and are examples of

how knowledge can be reused.

If the unit volume of the product were needed

as well, the volume domain would be reused

again. The same structures and rules would be

inherited, and we would then assemble the ob-

ject with the volume domain. These constraints,

UOMs, and conversion rules, would not have to

be separately redefined for shipment volume and
product volume separately. If a conversion rule

had been changed or a new unit of measure added

to the volume domain, the availability to both the

shipment volume and product volume would occur

automatically due to the fact that knowledge in

the volume domain is normalized.

Let us see how the reuse of irreducible facts

can assist in building other irreducible facts.

Assume that a new contract with the shipping

company stipulates that all products be shipped

as cargo (by boat). The atomic rule will then read:

Organization Ships Product by boat.
First, this rule must be tested to ensure its

validity as an atomic rule. It is an atomic rule if

we lose information when we break the rule into

the following parts:

Organization ships product

Organization ships by boat

The two assertions taken together do not nec-

essarily mean that the product will be shipped by

boat. For example, the organization could ship

products by air and other items by boat without

violating either rule. Therefore, information has

been lost by dividing Organization Ships Product
by boat into the two separate assertions above.

Therefore, Organization Ships Product by boat
is an atomic rule. We obtained this atomic rule

by changing Shipment from a two-way relation-

ship involving Organization and Product, into

a three-way relationship between Organization,

Product, and Boat. We have created one atomic

rule from another by adding information to it to

1.

2.

Figure 2.7. Adding components to assemble configurations of rules

Reproduced by permission from Mitra, A., & Gupta, A. , Agile Systems with Reusable Patterns of Business Knowledge, Nor-
wood, MA: Artech House, Inc., 2005. ©

shipship ship PRODUCT

BOAT

Ship on
shipORGANIZATION PRODUCT

Volume
Domain+

BOAT

= + =
Volume

(SHIPMENT)

Unit of Measure
Conversion Rules

Measurement
Unit of

0

Cannot be less than

8,000 Cubic
Feet

ORGANIZATION
Volume

Unit of Measure
Conversion Rules

Cannot
be less
than 0

Unit of Measure
Conversion Rules

Cannot
be less
than 0

INHERITED FROM
VOLUME DOMAIN

INHERITED FROM
VOLUME DOMAIN

NEW CONSTRAINT

Cu Ft
Liters

Gallons

Must be
less than

8,000 Cubic
Feet

Must be
less than

Cu Ft
Liters

Gallons

Units of Measure
Units of Measure

Cu Ft
Liters

Gallons

Units of Measure

ship PRODUCT

BOAT

Ship on
shipORGANIZATION PRODUCT

Volume
Domain+

BOAT

= + =
Volume

(SHIPMENT)

Unit of Measure
Conversion Rules

Measurement
Unit of

0

Cannot be less than

8,000 Cubic
Feet

ORGANIZATION
Volume

Unit of Measure
Conversion Rules

Cannot
be less
than 0

Unit of Measure
Conversion Rules

Cannot
be less
than 0

INHERITED FROM
VOLUME DOMAIN

INHERITED FROM
VOLUME DOMAIN

NEW CONSTRAINTNEW CONSTRAINT

Cu Ft
Liters

Gallons

Cu Ft
Liters

Gallons

Must be
less than

8,000 Cubic
Feet

Must be
less than

8,000 Cubic
Feet

Must be
less than

Cu Ft
Liters

Gallons

Cu Ft
Liters

Gallons

Units of Measure
Units of Measure

Cu Ft
Liters

Gallons

Cu Ft
Liters

Gallons

Units of Measure

28

Introduction to Structure of Knowledge

make a general rule more specific. It shows how
generic rules may be made specific by adding
information.29 The assembly of this structure of

information from knowledge artifacts is shown

in Figure 2.7.

Now we have another requirement: we find that
boats cannot carry more than 8,000 cubic feet, i.e.,

the total volume of each shipment by boat must

be no more than 8,000 cubic feet. This too is an

irreducible fact. This does not act as a generic

constraint attached to the volume domain; rather it

is specific to shipments made by boat. Therefore,
the constraint is attached to Shipment Volume, a

property of Shipment, instead of the generic vol-

ume domain (see Figure 2.5). Accordingly, this

constraint will not be automatically inherited by

volumes of all items (e.g., Product Volume).

The effect of attaching this constraint of 8,000

cubic feet to Shipment Volume implies that two

separate constraints now apply to the property

of Shipment:

Inherited automatically from the Volume

domain that no volume may be negative.

Specific to Shipment volume, that no shipment
may exceed 8,000 cubic feet.

The combined effect of both of these con-

straints is to restrict Shipment volume from zero

to 8,000 cubic feet. The structure on the far right

of Figure 2.7 shows how these rules have been

organized to reflect knowledge about product
shipments.

If the process to ship by air as well as boat

was reengineered, we would use the structure

Organization Ships Product in Figure 2.7 again

but Airplane would substitute Boat in the struc-

ture on the far righthand side of Figure 2.7. This

is another example of how subassemblies of

knowledge can be reused.

On an airplane, the volume limitations might

be different. All units of measure and conversion

rules will again be automatically inherited from

the volume domain, and in our example, this can

1.

2.

enable interoperability between U.S. and Euro-

pean operations.

The patterns in this book and its companions

provide the most generic and widely reused ir-

reducible facts, along with templates for analyz-

ing and identifying more specific irreducible
facts. The Semantic Web of the future would be

the ultimate repository of these components of

knowledge (see Appendix IV).

THE PROBLEM OF PERSPECTIVE

We understand the world around us by experi-

encing its behavior and then forming concepts
by differentiating and classifying objects (re-

lationships between concepts are also objects)

based on behaviors that are mutually shared and

contrasting those that are not. These concepts are

generalizations that have filtered out information
we consider irrelevant to our estimation of how

our world behaves. Our perspective is a subjec-

tive model of reality, valid within the scope of

our perception or problem space. Differences in

scope, experience, and individuals’ thinking lead

to different models, in which generalizations of

what is shared and what is unique may be dif-

ferent. The graphic in Box 2.5 may be perceived

very differently, depending on which color we

think of as representing empty space. This is the

problem of perspective.

The example in Box 2.5 also demonstrates

that communication can be difficult between in-

dividuals when their concepts do not match, and

consequently, their models of reality are different.

This happens because objects and relationships are

sets of properties that are based on classification
of common behavior, and classes are based on

individual judgments, experience, and percep-

tions. This is a fundamental problem on which

many modeling projects have foundered.30

As scopes shift, new behavior is recognized,

old constraints end, and the same individual
may change the way he or she classifies common

29

Introduction to Structure of Knowledge

Figure A. The problem of Perspective

What do you see in the picture above? Is it a chalice or two people conversing in private? How you perceive the picture is

dependent upon on how you classify the black and white spaces—which color is solid and which color is empty? This picture

is a perfect demonstration of the fact that Perspective is a point of view and a model. A Perspective is the composite of inter-

connected objects that anchor knowledge. Thus, the structure that we label knowledge or, more explicitly, our perspective of

knowledge, is a blend of classes, constraints, aggregations, domains, state spaces, and all the other metaobjects mentioned in

this book. It is an aggregate object with a structure. We have called it “composition” in this book. Each individual person’s

outlook is an instance of a model. If, in response to a new insight of information, the model changes, the model has changed

its state and created a novel perspective.31

The changes are often small—a new relationship, an additional effect, a new attribute, or an additional subtype. Yet,

sometimes the change can be fundamental and may cause classification schemes to change, possibly both in the relationship
and the object.

Concepts and things that have propertier are referred to as object instances. While some properties are shared with one

set of things, other properties are shared with different sets. When looking from different perspectives, it may seem that the

same object belongs to different object classes. A change in perspectives has the power to eliminate entire relationships and

to replace them with others.

Consider the transformation that will occur when classification schemes change. Object classes are classification schemes
generated from similar properties of object instances—all properties of instances in a class do not match in all cases. While

matching properties are shared, others are not. Shared properties are controlled with the concept of superclass (supertype)

and unshared properties are controlled with the concept of subclass (subtype). A subclass will only survive within a super-

class. If a superclass disappears, the subclasses will cease to exist too. Further, if entire objects start disappearing, then all

their relationships, constraints, and subclasses will be taken down as well. This will, in turn destroy the relationships and

constraints of those subclasses, as well.

A domino effect may collapse the whole model if these classification schemes (i.e., taxonomies/ontologies) change. Entire
subclasses and myriads of relationships will be annihilated. Partitions, constraints, and all other structures that relate objects

and subclasses into a cogent configuration of knowledge will be destroyed. New structures will have to replace the old ones.
The appearance of the new and the disappearance of the old will impact yet other structures, which will lead to other changes.

Accordingly, change will start at the top and percolate down through the structure of knowledge until it settles into a fresh

arrangement. This will be referred to as a paradigm shift—a radically different model of the universe or a perspective that

has completely changed its state. For example, the change from Newton’s to Einstein’s perspective of the physical world was

an example of a paradigm shift.

This is why the Universal Perspective is necessary, along with its universal object classes and specific relationships that
identify ideas about reality and business that are well known. The secret of universal objects32 that anchor the knowledge

of all possible perspectives is not hidden within some covert and abstract detail; rather, it is explicitly specified within the
sweeping generalizations that can withstand the persistence of continual change and the vast diversity of creative thought and

innovation. The makeup of the Universal Perspective includes structures and objects that are masked as objects in different

perspectives. These disguised objects are actually different compositions, states, and roles of universal objects. Therefore,

Box 2.5. Perspective is an object

continued on following page

30

Introduction to Structure of Knowledge

behavior, that is, his or her perspective changes.

Did you just experience that in Box 2.5? Under

the pressure of change, object classes can become

chimerical, and object models can become chime-

ras that descend rapidly into chaos, as waves of

change overtake each other in rapid succession.

The broader and more complex the reality we try

to model, the greater the risk of this happening.

Almost all data, process, and object modelers have

experienced it, and many managers consider build-

ing large scope, enterprise level models to be risk

prone for this very reason. This is also a critical

bottleneck in designing resilient business pro-

cesses and agile information systems, which will

support adaptation, innovation, and change, all of

which are required by corporations to thrive in

the turbulence of the global information economy.

This highlights the need for a Standard Universal

Perspective; it will allow us to rapidly leverage

and automate shared understanding, so that we

may focus on adding those special components to

this common understanding that will differentiate

our products, systems, services, and processes to

enable us to gain the competitive edge.

Does a Universal Perspective Exist?

We know we communicate and can understand

each other. The Universal Perspective models

these widely shared ideas. This series captures the

semantics of this shared reality, which is rooted

in the natural ontology of information described

in Chapter 4.34

Our perspectives can converge rapidly when

we model simple situations because of these shared

ideas. This convergence does not need a formal

model in simple situations, but it becomes harder

when our models are broader in scope and more

complex in detail. The value of a formal semantic

model of shared concepts increases as models

span complex corporations and cross corporate

boundaries into the world of intercompany alli-

ances and supply chains. Such a model becomes

almost indispensable when we consider concepts

of “Business on Demand.” In today’s world, orga-

nizations require extreme agility and innovative

business models: such agility can be facilitated

with patterns of service based on a Standard

Universal Perspective. They can do this because

the Universal Perspective resolves individual

perspectives and facilitates automated commu-

nication through shared understanding even as

it allows the free play of diversity in support of

creativity, individuality, and innovation.

The Standard Universal Perspective, like the

foundation of a building, is a component that

binds both standard and custom parts of indi-

vidual understanding to make the whole work.

The standard parts are the universal object classes

and patterns highlighted in this book and its two

companion books. These objects normalize shared

ideas. Custom components will inherit these

concepts and will add to the special behavior,

constraints, and creative ideas that today’s in-

novative companies need. The universal pattern

of shared ideas in our “foundation” will therefore

integrate special behavior automatically with the

standard concepts needed to communicate with

systems and stakeholders within and beyond

the enterprise. These standard concepts may be

understanding the Universal Perspective and universal objects help to pinpoint the fundamental nature of universal reality

and the unity of all perspectives. All perspectives are states of the Universal Perspective, which paradoxically, is changeless

because it underpins change. The Universal Perspective is the integrated model described in this book and the two companion

books of this series.33

Box 2.5. continued

31

Introduction to Structure of Knowledge

considered “stock themes,” which are the pat-

terns and objects described in this series (Mitra

& Gupta, 2006).35

The intent of this introductory chapter was to

present a “feel” for the Metamodel of Knowledge

and its capabilities. The next chapter will describe

the layered architecture of knowledge and how

it may be leveraged to mitigate the problem of

chaos under the pressure of rapid, successive

waves of change.

REFERENCES

Mitra, A., & Gupta, A. (2006). Creating Agile
Business Systems with Reusable Knowledge.
Cambridge University Press.

Siegrist, K. (1997-2001). Sets and Events in Vir-
tual Laboratories in Probability and Statistics.
Retrieved September 27, 2007, from http://www.

ds.unifi.it/VL/VL_EN/prob/prob2.html & http://
www.ds.unifi.it/VL/VL_EN/ index.html

ENDNOTES

1 Many approaches to knowledge engineer-

ing discuss asserting what should go with

what. Few discuss what must not happen.

We will discuss both: patterns of inclusion

and patterns of exclusion when we discuss

patterns—the source of all knowledge and

meaning.
2 These rules are called atomic rules or irre-

ducible facts as they cannot be decomposed

further without loss of information. Atomic

rules: Ross, R. G. (1997). The Business Rule
Book: Classifying, Defining and Modeling
Rules. Database Research Group Inc. ([294]

in Appendix III) Irreducible Facts: Nijssen,

G. M., & Halpin, T.A. (1989). Conceptual
Schema and Relational Database Design:

A Fact Oriented Approach. Prentice Hall

([297] in Appendix III). [252] in Appendix

III (Krifka, M. (WS 2000-2001). A Paper on

Semantics. HU Berlin, Germany) provides

an advanced discussion on coordination of

rules.
3 How events are related to object behavior

is described in [166] Appendix III (Siegrist,

1997-2001).
4 Objects may sometimes exhibit spontaneous

behavior. This type of spontaneous behavior

is not triggered by any obvious external

event. For example, stock prices may move at

random each second. Spontaneous changes

are also events.
5 Information Technology professionals call

processes that are reused “services.” Service

Oriented Architecture is an information

architecture in which business processes

are configured from these reusable services
that are loosely coupled (see the note on the

State Machine in Appendix II). The central

problem in SOA is the identification of reus-

able services. The patterns of information

described in the three books of this series

address that problem. [338] in Appendix III

identifies the reusable elements that may be
composed into business services. SOA also

assumes a service level agreement (SLA)

for each service. The SLA is a “contract”

a service presents to other services that

seek to use it. The SLA describes, among

other items like availability and timing, the

information it expects, its format and accu-

racy, and the information it will produce, its

format, and accuracy. This book separates

meanings from how they are rendered and

focuses on the assembly of these meanings

from components. Thus, it addresses the

central problem of service identification and
assembly from more granular services, but

not the all components of the SLA, such as

formats and the precision of data.

32

Introduction to Structure of Knowledge

6 Appendix II describes how the concepts of

matter and energy were developed.
7 Appendix II describes Shannon’s Informa-

tion Theory, which measures the quantum
of information. Meanings structure infor-

mation. The two concepts complement each

other.
8 Physical phenomena may share informa-

tion that just is, as opposed to obtaining

information that is transmitted spatially

and temporally by messages. The Aspect

Experiments in Appendix II, under the note

on messages between objects, validate this

concept.
9 In our metamodel, meaning, expression,

and the quantum of information are separate

objects.
10 Refer to Appendix II on how information

relates to physical objects.
11 Appendix II on the locale of matter and en-

ergy has more information: pure information

is a concept, meaning, or knowledge. Unlike

matter and energy, pure information is not

restricted to be in one and only one place

at a time. Adding this constraint expresses

information in the form of matter or energy.

For instance, information on this printed

page is represented by material particles of

printing ink, information riding on a beam of

light, or radio waves is expressed in radiant

energy, and information in an individual’s

mind is expressed by the material processes

in that individual’s brain.
12 Appendix II, under Shannon’s Information

Theory, discusses the measure of informa-

tion.
13 Several mathematical and engineering texts,

including [308], [232], [233], [234], and [235]

(all found in Appendix III) describe sets,

domains, and functions.
14 Many CASE tools and professional publica-

tions join domain with format and call the

composition “domain.” In this book, we will

distinguish between the two.

15 This is called “coercive polymorphism.” It

is described in Appendix II, under Poly-

morphism, in the Mathematical Theory of

Categories.
16 Null values, which denote the lack of mean-

ing, are different from nil values, which

denote the absence of magnitude, and both

are different from “unknown.” [337] in

Appendix III examines these differences

in more detail.
17 Termed actor in the parlance of Object

technology or observer in the language of

physics. For more information about ac-

tors, please refer to books on UML and the

resources listed in Appendix III. Universal

Modeling Language has become the de-facto

standard. The Object Management Group is

a strong proponent of UML concepts. See

http://www.omg.org.
18 Appendix II, under the Theory of Categories,

has more information on coercive polymor-

phism.
19 [211] in Appendix III describes the math-

ematical theory that supports the ordinal

domain described in this book (Davies,

2000).
20 Appendix II, under Shannon’s Information

Theory, describes the mathematical measure

of information.
21 [337] in Appendix II discusses domains in

detail.
22 Metaobjects provide normalized containers

for shared irreducible facts, discussed in

detail in [297] of Appendix III, which are

also Ross’ atomic rules discussed in detail

in [294] of Appendix III.
23 The semantics of Pattern are the foundation

of the Metamodel of Knowledge. They are

described in detail in [337] in Appendix

III.
24 As discussed earlier in the chapter, process

is a before-and-after interaction. Resources

are used to create the products of a process.

33

Introduction to Structure of Knowledge

The resources come before and the products

after.
25 A relationship mutually connects several

objects. The subtyping relationship is a

special kind of relationship and a subtype

may have multiple parents, a fact inherited

from Relationship. See Process in Figure

2.5 for an example of this concept.
26 [337] in Appendix III shows how domains

emerge from the semantics of Pattern and

describes the integration of Ontology into the

Metamodel of Knowledge. Both this book

and [337] describes how this will support

innovation, but each deals with different

aspects of innovation and absorption of new

learning.
27 In order to keep the diagrams simple,

cardinality and other constraints familiar

to advanced business modelers have been

deliberately omitted. The intent of this chap-

ter is not to be technically comprehensive,

but rather to convey the essential concepts.

Please refer to [337] in Appendix III for

more information.
28 Constraints on values are discussed in detail

in [337] of Appendix III. The generic concept

of a constraint and how features of objects

spring from this concept are described

further on in this book.
29 The Universal Perspective and the Metamod-

el of Knowledge have the most frequently

used, generalized rules, a starting point for

reusable components.
30 Some analysts have proposed that we do not

try to classify objects intuitively. Instead,

they recommend that we mathematically

analyze similarities between objects in terms

of their properties in order to group them into

object classes and subtypes [283]. While this

approach may be useful, it will not guarantee

stable object classes. If the scope of the pro-

cess changes in a way that some properties

under consideration change, so might the

classification scheme. Inclusion or exclusion
of behavior may change affinities between
object instances, which in turn can change

the taxonomy of objects and relationships.

We did not address the root problem; we

only automated it. Facet modeling is another

approach in which aspects of an object might

be reused. This concept is described in Ap-

pendix II, under Multiperspective Modeling.

For more information, see [15], [53], [13],

[21], and [23] in Appendix III.
31 This book and [337] focus on the components

from which all perspectives of knowledge

are configured, whereas [338] focuses on
the components and patterns from which

all perspectives of business knowledge are

created.
32 Note that relationships are objects too.
33 [338] in Appendix III describes the Universal

Perspective for business applications.
34 Item [338] of Appendix III captures shared

patterns of business knowledge and the

shared ontology of business concepts,

which, in turn, are derived from the shared

semantics of the Metamodel of Knowledge

described in this book and [337]. Thus,

together the three books capture the seman-

tics of shared reality, which is rooted in the

natural ontology of information.
35 The themes in items [337] and [338] in Ap-

pendix III describe how context sensitive

meanings and names are all parts of the

Metamodel of Knowledge, as is changing

of perspective in step with new learning.

The stock themes of collaboration, conflict,
and processes that may resolve or intensify

them or even turn one into the other emerge

from these themes. Item [338] in Appendix

III describes these Topoi (stock themes) in

detail. They too are components of knowl-

edge.

34

Chapter III
The Architecture of Knowledge

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

This chapter introduces the layered structure of knowledge and describes why chaos rides wings of
change and adaptation. It tells us how traditional analytical approaches, like functional decomposition,
can lead to chaos when the size and complexity of business processes and information systems exceed
a critical threshold.

THE END OF COMMON SENSE:
HIDDEN CHAOS IN THE HEART OF
COMPLEXITY

Why has change been so hard on information

systems? What methods worked in a smaller,

simpler age and why have they started failing?

Why does the impact of change ricochet through

our systems explosively and chaotically, and above

all, why is it so hard to manage?

We must have these answers to understand root

causes. Only then can we fashion solutions that

will fit the age of knowledge with its unceasing,
pitiless, and ravenous appetite for rapid change

driven by the race of survival in a shifting land-

scape of high stake, chimerical, and short-lived

opportunities. Therefore, let us digress briefly to
understand lessons learned and the reasons why

older methods are failing.

Systems analysis and design methodologies

had their conceptual beginning in two basic

techniques for building abstract models. Both

approaches had their genesis in the behavior of

physical and engineering, not business, systems.1

Many of our problems with managing change and

reusing knowledge stem from the intrinsic limi-

tations we inherited from these two techniques.

They cannot scale up to satisfy our current needs

for far more complex and vastly larger business
systems. Most analysis and design techniques in

use today were derived from one of two funda-

mental techniques, and, unaware, we still carry

their hidden legacy of limitations. The two fun-

damental techniques are:

Black box process decomposition technique

Node branch technique

Variations of these two themes were later

extended to modeling business systems. These

early models of physical and engineering systems

involved fewer objects and relatively simple be-

1.

2.

35

The Architecture of Knowledge

haviors compared to modern, industrial-strength

business systems.

To understand why neither method can scale

up to satisfy the demands of 21st century business,

we must understand the two approaches and their

limitations. Only then can we chart a new course

away from the pitfalls of the old.

Black Box Process Decomposition:
Why it Failed

The black box approach2 was a simple stimulus-

response model consisting of inputs, outputs,

and a set of rules, called a transform or transfer
function,3 relating outputs to inputs. Inputs and

outputs were called variables.

Implicit in the model was the assumption

that values of output variables would respond

to changes in values of input variables (possibly

with a time delay) as described by rules within a

box linking inputs to outputs. The box was called

a black box because it was opaque or dark: the

mechanisms inside the box, those that created or

manifested their external behavior in the rules,

were unknown and irrelevant to the model. Only

the rules themselves were of interest. Figure 3.1

illustrates the concept.

There are four inputs and three output variables

in Figure 3.1. Variables 1-7 are each represented

by labels v1 through v7. V1 through v4 are input

variables, represented by arrows pointing into

the black box, whereas v5 through v7 are output

variables, represented by arrows emerging from,

and pointing away from, the black box.

The graph on the left shows how values of

input variables change over time, whereas the

graph on the right shows how values of output

variables change over time in response to changes

in values of input variables.

Reproduced by permission from Mitra, A., & Gupta, A. , Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

Figure 3.1. The black box perspective of behavior

RULES & FORMULAE

Operations on values of v1..v4
to derive values of v5 thru v7

at various points in TIME

V1

V2

V5

V6

INPUTS OUTPUTS

V7

(BEFORE) (AFTER)

time

v
a
l
u
e

v1

v2

v3

v4

v
a
l
u
e

time

v6
v7

v5

(INPUTS CHANGE) (OUTPUTS RESPOND)

Examples :
•Oven Temperature
•Ingredient Quantities

Examples :
•No. of cookies
•Crispness of cookies
•Weight of each cookie

BLACK BOX
(TRANSFORM)

V3

V4

Example : Transform for baking a cookie

36

The Architecture of Knowledge

The black box does not explicitly recognize

that it is the behavior of real world objects we are

interested in. Rather, the technique focuses on an

amorphous mass of information. It only classifies
information into inputs, or causes, and outputs, or

effects and an amorphous set of causal rules, which

do not have to be, and are usually not, irreducible

facts. In any case, these rules are usually unknown

when we create the black box. The black box is

an amorphous, intuitive, and ungoverned classi-

fication scheme for yet-to-be-discovered business
rules intended to impose order on complex real

world problems, where large numbers of objects

are in constant flux—behaving, interacting, and
changing in complex ways. The black box cannot

scale up because it is too simplistic.

The black box approach worked when systems

were simple; their scope was small, and rules

were few. Then every variable and every response

could be determined up front, before designing the

automated information system. In the real world,

causes not only have effects, but these effects, in

turn, may be causes of yet other effects, some of

which might loop back through complex causal

chains to impact the original causes themselves.

When variables are many, and the rules complex,

small differences in rules, timing of responses,

and values of variables can lead to unpredictable,

unmanageable, and chaotic effects that cascade

through the system.4 It becomes hard to foresee

every exception and every contingency. Qual-

ity assurance, development, deployment, and

modification of information systems can become
a daunting task: resource intensive, time consum-

ing, and fraught with risk. This happens because

the black box technique recognizes neither the

natural structure of knowledge, nor the inherently

reusable components of knowledge, which are the

irreducible facts that facilitate flexible, scalable,
and adaptive business behavior.

There is another more serious problem. It is

the problem of business requirements. In large

business systems, rarely are all rules known and

available readily. Rather, a general sense of what

the system must do is stated, and analysts must

then fill in the rules through a time consuming
process of discovery. Neither is there any assur-

ance that the discovery is complete and accurate

at the end, nor is there any guarantee that rules

they have discovered will stay the same when the

system is ready for deployment.

To manage complexity and scale, analysts try

to classify rules and isolate the impact of change

within the black box (even before they really know
what these rules are!) into hierarchies (with little
help from any objective classification scheme) of

component black boxes (little wonder that these
are rarely reusable components!). It is a tribute

Reproduced by permission from Mitra, A., & Gupta, A. , Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

Figure 3.2. Process decomposition

V1

V2

V3

V4

V5

V6

INPUT VARIABLES OUTPUT VARIABLES

V7

RULE 1

RULE 2

BEFORE
(CAUSE)

AFTER
(EFFECT)

RULE 3

RULE 4

BLACK BOX

37

The Architecture of Knowledge

to the skills and perceptive power of the analysis

community that these black boxes were useful at

all and that this technique, process decomposi-
tion, was considered the solution to the problems

of complexity and size for decades.

Process decomposition is a rule-centered ap-

proach, but it does not recognize the special char-

acter of atomic rules. It tries to arrive at detailed

rules by trying to classify the-not-quite-known-

yet-rule in the black box into component rules,

that is, create black boxes within black boxes, as

illustrated in Figure 3.2.5 Process decomposition

met with only limited success when systems were

small and simple. It was doomed to fail when scale,

complexity, and scope of systems expanded in

support of integrated, cross-functional, business

knowledge.

Process decomposition was doomed because

there are almost unlimited ways in which black

boxes may be divided. There is little guidance or

clarity about what divisions will yield reusable

black boxes that contain reusable components of

knowledge. If rules change, a few schemes for

dividing the black box may isolate the change or

reduce the number and complexity of its impact,

but most schemes will not. Finding the right

process decomposition is a question of luck that,

at best, depends on the subjective judgments of

seasoned analysts.

For example, when analyzing the business of a

firm, analysts may subdivide the firm into a “hu-

man resources process,” a “production process,”

a marketing process,” and so on. The Human

Resources Process may be further subdivided

into a Payroll Process, an Appraisals Process,

a Training Process, a Promotions Process, a

Recruitment and Terminations Process, and so

on. Until the bitter end, no one really knew what

inputs, outputs, and rules these transformations

represented.

Subdividing a black box is a skilled art more

than an objective science. It works in a limited

way, in a limited context, but mostly not. Indeed,

by its very nature, process decomposition creates

hierarchies that make it harder to identify reusable

business components. The hierarchical scheme

in the preceding example will try to allocate a

subprocess to one of several mutually exclusive

hierarchies, say the Human Resources Hierarchy

or the Production Hierarchy or the Marketing

Hierarchy. Common behavior such as ageing a

transaction or changing an address (be it the ad-

dress of an employee or customer, for example, to

include both international and domestic addresses)

will be fragmented and replicated across hierar-

chies. When common rules change or the scope

of the model grows to include a new envelope of

behavior, it will have many impacts. These will

be complex, often chaotic, and hard to manage.

For these reasons, systems were usually brittle

and difficult to change. It became harder and harder
to manage the cascading and chaotic domino ef-

fect of change as business systems became more

sophisticated. Requirements grew more complex,

the need to take an integrated view of business

operations became more urgent, and the amount

of information as well as the numbers of objects

involved kept increasing. Business systems rapidly

outstripped the envelope of size and complexity

that this technique could handle.

The root causes were:

Too much detail was needed up front: Business

systems have many variables and complex

rules, too few of which are known up front.

Requirements flow from business knowledge
and this technique was not synchronized with

the natural structure of knowledge. (The natu-

ral structure of knowledge was introduced in

Chapter II. Its architecture will be analyzed

in this chapter and those that follow.)

Consequently, there were no precise criteria

for classifying information or finding a firm
foundation of common rules to build on.

Therefore, reusable components of knowledge

were hard to recognize and even harder to

come by.

•

•

•

•

38

The Architecture of Knowledge

The domino effect of change was difficult to
manage because rules were fragmented and

replicated randomly, with little control.

The Node-Branch Method and Why it
Failed

This technique grew out of the need to model

behavior when large numbers of variables and

many mutual interactions were involved. It took

a more holistic perspective than the black box

method.

Variables were considered to be components

of a causal network, rather than data strung to-

gether in a linear cause-and-effect chain. Each

variable was a node in this causal network. (See

the example in Figure 3.3, and Object and Data

Modelers, and note the resemblance with Entity

Relationship Diagrams.6) The arrows between

nodes showed what changes would impact which

variables. In Figure 3.3, the two arrows from v
1
and

• v
2
 converging on v

6
 indicate that a change in either

v
1
or v

2
 (or both) would cause a change in the value

of v
6
. The state of the system7 was considered, by

definition, to be the set of values of all variables
in the model at any given instant.

In some ways, this holistic view was better

suited for building semirealistic models of systems

with large numbers of variables. Causal loops

in which values of variables would respond to

mutual changes in a continuing cycle of change

were easier to model.8 The loop between v
4
 and

v
5
 in Figure 3.3 is an example of one such causal

loop.9 (The black box approach handled this with

a feedbackmechanism, where the output variables

were linked to input variables through another,

feedback black box. The black box labeled “Rule

3” in Figure 3.2 is an example of this.)

Sometimes, in real life, a value of a variable

will depend on its past values. The growth of the

principal in a money market account depends on

the quantum of investment, which changes each

Reproduced by permission from Mitra, A., & Gupta, A. , Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

Figure 3.3. Node-branch representation

RULE

V1

V2

V3

V4

V5

V6

V7

The future of v1

depends on its
past values

RULE

RULE

RULE

RULE

RULE

RULE

RULE

RULE

The two lines converging on v6 represent the
individual effects of v1 and v2 on v6.

More complex behavior might involve cross
effects, i.e., the effect of v2 on v7 might depend
on the value of v3, as well as v2.

To represent the effect of this interaction
between v2 & v3 on v7, we must create a more
complex grammar.

39

The Architecture of Knowledge

time interest earned is credited to the account and

added to the principal amount. This kind of rule

would be shown with an arrow looping back on

a single node as with v
1
 in Figure 3.3. (The black

box approach handled this by considering the

past value to be an input variable and the future

value to be the output variable. As such, the output

of the black box would become the input of the

feedback black box. The output of the feedback

black box then looped back as the input of the

original black box.)

However, we run into many of the same prob-

lems we had with the black box method when

we try to scale up. Too much detail is needed

up front:

If all variables are not modeled up front

when rules are complex and variables many,

the chaotic behavior described for black box

models will prevail, and the state of the system

predicted by the model may be very different

from the reality it is trying to represent.

Only in the simplest business systems are all

variables known upfront. As such, this can-

not be a tool for modeling modern industrial

strength complex systems of the 21st century

that span entire enterprises and supply chains

consisting of many corporations. Too much

detail is needed up front, and there is no pre-

scription for starting with broad categories

of information and gradually adding detail

in successive steps. Neither is the need for

atomic rules, nor is the natural structure of

knowledge explicitly recognized. This is why

this technique cannot scale up.

There is also another problem: Although it is

easy to show the existence of mutual influ-

ences between variables in the causal network

and to represent rules with arrows when the

effect of each variable can be isolated from

others in the causal net, real life rules may be

more complex and not easily represented by

arrows between pairs of variables. Complex

behavior can involve cross effects, i.e., the

•

•

•

effect of v
2
on v

7
might depend not only on

the value of v
2
, but also the value of v

3
and

other variables in the causal net. This cannot

be easily shown in a diagram of the kind in

Figure 3.3.

For example, the purchase price of an air ticket

(v
7
) may depend on both the number of tickets

purchased together (v
2
), as well as how much in

advance the flight reservations were made (v
3
).

If tickets are bought the day before flying, there
may be no discount on price regardless of how

many tickets were bought; if reservations for

100 tickets were made up to 30 days in advance,

the price might be discounted 75%, whereas 50

tickets bought up to 15 days in advance might be

discounted only 40%.

To represent the effect of this interaction

between v
2
 and v

3
 on v

7
, we must create a more

complex grammar.10 This is often done by aug-

menting the simple node branch syntax with

special kinds of nodes and arrows that describe

formulae and mathematical operators (such as

addition, subtraction, multiplication, division,

time delays, and sequences). Atomic rules can be

expressed in this syntax, but the technique does

not explicitly seek atomic rules, or try to arrive at

detail from broader categories of information, as

we did in the example under The Repository of

Meaning heading in Chapter II. Unless all rules

are included up front (an impossible task for any

large business application development project)

the model can be woefully inadequate.

There is no emphasis on categorizing rules or

variables with an eye on reuse. The same rule may

be repeated in many places of the causal net. The

rule used to calculate the age of a customer order

might be the same as the rule used to calculate the

age of a purchase order, the age of an employee,

and the age of a manufactured batch of items,11

but the node branch method will repeat the rule

each time it is needed. It cannot normalize and

reuse knowledge. As such, it cannot manage the

40

The Architecture of Knowledge

explosive and chaotic impact of change on large

and complex business systems.

The Node Branch technique could not scale

up for the same reasons the Black Box technique

could not. The root causes were:

Too much detail was needed up front: Business

systems have many variables and complex

rules, too few of which are known up front.

Requirements flow from business knowledge
and this technique was not synchronized with

the natural structure of knowledge.

There were no precise criteria for classifying

information or finding a firm foundation of
common rules to build on.

Reusable components of knowledge were hard

to recognize and even harder to come by.

The domino effect of change was difficult
to manage because rules were fragmented

and replicated randomly, with little or no

control.

Service Oriented Architecture (SOA)

Service Oriented Architecture was described

in Chapter I. It is a variation of the Black Box

theme, in which reusable services are black boxes

that call (use) each other. The calling service

provides the inputs to the service it calls, and

the called service responds by returning its out-

puts to the service that called it. Neither service

needs information about how the other service

produces its outputs or transmits its inputs.

These services are also “stateless,” in that the

called service retains no information about prior

calls or results. Retention of that information is

the responsibility of the calling service. For this

reason, services are said to be “loosely coupled”

(as opposed to “tightly coupled”). For instance,

a billing service may call a currency conversion

service to invoice overseas customers in foreign

currency. The currency conversion service will

not preserve information on the history of inputs

received from, or outputs provided to, the billing

1.

2.

3.

4.

5.

service. If this is needed, the billing service will

retain the information. Moreover, each service

presents a common “contract” to services that

call it. This “contract” describes the inputs the

service requires, their formats and precision,

and the outputs it will provide, their formats and

precision. Thus, SOA overcomes the problem of

vaguely defined, ambiguous functions endemic
in the typical functional decomposition described

earlier.

The emphasis in service-oriented architecture

is on communication, making services “visible” on

the network, service discovery and orchestration

(sequencing of services in a business process).

Although the intent of SOA is to identify reus-

able services and configure them into business
processes, SOA does not actually address how

these reusable services will be identified.
The concept of normalization lies at the heart

of reuse. Reusable services can be identified only
if we can normalize knowledge, so that the same

behavior and information is not replicated in an

uncontrolled manner in multiple services. Only

then will the impact of change be isolated, and not

ricochet chaotically through the components of

systems. SOA does have constructs that support

normalization. For instance, a service called “As-

semble” may assemble items from their parts. The

service can be designed so that it accepts the kind

of item it must assemble as an input parameter,

and if the parameter passed to it is “boat,” it will

execute the steps required to assemble a boat from

boat parts, whereas if the parameter is “car,” it

will assemble a car from car parts. This behavior

is called polymorphism, and the example shows

how the meaning of “Assemble” may be gener-

alized to support service agility. Although SOA

provides mechanisms to support agility, the state

of the SOA art does not provide a clear method

of identifying what these services are and or how

they may be generalized. The patterns in this book

and its companions fill this gap. The patterns and
objects in this book and its companions normalize

41

The Architecture of Knowledge

knowledge, and may be used to identify reusable

services as well as data.12

Moreover, although SOA advocates focusing

on business services, it does not have a formal

set of criteria that clearly distinguishes a busi-

ness semantic from data transfer or interfacing

services. A single business rule, as we will see

further on in this chapter, may be implemented

in several ways. Therefore, if we cannot clearly

and consistently distinguish the business se-

mantic from its implementation, knowledge will

not always be normalized, and chaos will not be

reliably controlled. In this series, we delineate

how business rules may be distinguished from

rules of automation.

The Structure of Knowledge and
First Principles of Reuse

The heart of our problem with both the black

box and the node branch techniques was our

inability to create cogent and stable classes of

reusable behavior. Both methods failed to scale

because:

In the absence of consistent classes of known

behavior, both needed too much detail up

front.

Large complex systems need to understand the

“big picture” and take a top-down approach

where detail is filled in successive steps.
This requires a stable method of categoriz-

ing information and generalizing business

rules. Neither technique had robust criteria

for classifying variables and rules to facilitate

this. Both focused on detail at the expense

of “the big picture.” (Process decomposition

attempted to look at “the big picture,” but it

was subjective, imprecise, and by its very

nature, not suited to discovery of common

behavior.)

Reusability requires generalizing and cat-

egorizing rules into reusable groups. Neither

technique focused on reusability or common

•

•

•

behavior of real world objects. Consequently,

the domino effect of chaotic change was dif-

ficult to isolate and control.

To circumvent these pitfalls, we must find a
method of grouping rules that:

Recognizes atomic rules are the basic build-

ing blocks of knowledge. Atomic rules are

precise and will help us avoid chaos even as

they address complexity. Reusability will

flow from reuse of atomic rules.
Recognizes that knowledge is a configuration
of atomic rules. Precision of meaning will

flow from the structure of configurations.
Reusability will flow from reuse of common
configurations (see the example in The Re-

pository of Meaning section in Chapter II).

Recognizes reusable behavior so that we can

recognize reusable rules and configurations.
Object classes identify common behavior. We

will recognize reusable behavior by:

{ First, classifying rules to reflect the
natural relationship between business

meaning and its implementation. This

is the natural architecture of knowledge

described in the next section. It helps

us isolate variables relevant to business

rules, and thus reduce the number of

variables we must address to build the

business model.

{ Then, applying the theory of sets13 to

fine-tune our classification scheme.
We will focus on meaning to identify

and classify the basis of common real-

world business behavior. Thus, we will

normalize the semantics of business

rules and business processes.

We do this by describing an ontology

of meanings and their interrelation-

ships based on the natural structure

of information (described in Chapter

IV) that becomes progressively more

complex, because meanings at the

1.

2.

3.

42

The Architecture of Knowledge

lower levels of the ontology inherit

information and behavior from higher

levels, while progressively adding in-

formation in terms of new behaviors,

relationships and constraints (the on-

tology in this book and its companion,

Creating Agile Business Systems with
Reusable Knowledge, from Cambridge

University Press, describe the ontology

from which concepts such as Pattern,

Rule, Perspective, Process, Constraint,
Behavior, and Knowledge are created

{ Finally, identifying the most frequently

reused and normalized business rules

at the heart of business knowledge.

This business ontology is described in

a companion book, Agile Systems with
Reusable Patterns of Business Knowl-
edge: A Component Based Approach,
from Artech House publishers, but is

derived by adding information and ap-

plying the principles described by the

ontology of knowledge in this book.

The companion book also contains a

practical model for implementing the

technology in a business organiza-

tion.

{ To minimize the chaotic effects of

change in large scale complex systems,

we apply the Principle of Parsimony,
described in Chapter IV and also Ap-

pendix II of this book. The Principle

of Parsimony admonishes us to apply

only the bare minimum of information

to unambiguously describe a given

business rule.

Thus, as we discover new information

on the behavior of a complex, large-

scale business system iterative steps,

we start with the generalized semantic

patterns in this series, and use them

as-is (with perhaps only cosmetic name

changes and synonyms to fit the busi-
ness domain). We add information only

when we must add new constraints,

data, relationships, and behavior not

represented in the generalized models

within this series. We do this by adding

new, deeper, information rich layers

to the ontology in this series of three

books.

For example, if we wish to assert that

the terms of sale in a master agreement

may be selectively overridden by rid-

ers in individual sale agreements, we

inherit this rule from the generalized

“agreement” pattern, and do not as-

sert this in the more specific “sales
agreement” pattern at a lower level

of the ontology of business meanings.

The “sale agreement” pattern would

add more specific information, such
as sale price. (Both these patterns are

described in Agile Systems with Reus-
able Patterns of Business Knowledge:
A Component Based Approach from

Artech House publishers, which drives

the ontology of knowledge down to

business levels.)

{ Liskov’s Principle, described in Chapter

V, is another tool we use to foster agility.

Liskov’s principle asserts that objects,

concepts, and rules that add informa-

tion to those derived by the Principle

of Parsimony can replace each other

in business rules and processes and

preserve the business semantic. In other

words, these will be mutually mutable

objects in business rules and mutable

resources in business processes, and

may replace one another, depending

on their availability (see the examples

in chapters V and VII).

Together, these principles will address the

problem of scale and complexity. In concert,

they will solve the problem of classifying rules

and understanding the big picture before filling

43

The Architecture of Knowledge

in detail. They will provide robust and stable

criteria for grouping rules and variables, the key

to common behavior and shared components.

The first principle of reuse is the Architecture of
Knowledge, described in the next section.

THE ARCHITECTURE OF
KNOWLEDGE

The bedrock of knowledge in a business system

is requirements: Information Systems are built

only to satisfy business requirements.14 Business

requirements can be automated in many ways

and supported by a wide choice of technological

resources. Each choice imposes its own require-

ments that flow from the capabilities of chosen
technologies and processes. Requirements are not

only the key, but also the foundation of informa-

tion systems, and they can be reused.

Although requirements are the most critical

component of any information system, to this

day, almost half a century after business process

automation first appeared, “Requirement” has

remained a nebulous concept in the industry.

There is no common understanding, let alone

agreement, on what requirements really mean.

Poorly formulated and ill-managed requirements

are at the heart of the vast majority of problems

information systems projects currently face. Our

first task is to understand the meaning and struc-

ture of requirements. Only then will we know

how we can reuse them.

Requirements flow from knowledge. Knowl-
edge is formal, informal, common sense, and

intuitive wisdom encapsulated in configurations
of atomic rules.15 Knowledge of information

systems involves configurations of (atomic) rules
of business as well as technology. Nature has

provided a simple and elegant structure to inte-

grate business and technology knowledge. This

structure naturally facilitates business process

innovation, knowledge reuse, and design of flex-

ible and scalable business operations supported

by technology.

The structure is not only the conceptual

underpinning of reusable information systems

components, but also the first principle of the

Figure 3.4. The architecture of knowledge

Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New York:
Cambridge University Press, 2006.©

BUSINESS
PROCESS

AUTOMATION

BUSINESS

TECHNOLOGY

PLATFORM

OPERATION
TECHNOLOGY RULES

INTERFACE RULES
(HUMAN & AUTOMATION)

INFORMATION

LOGISTICS

BUSINESS

RULES

V
isi

on

Pro
ce

ss
Eve

nt
s

V
al

ue

Pol
ic

y/
Stra

te
gy

Exc
ep

tio
ns

Rule Maintenance

Business Opportunity

or

Environmental Change

44

The Architecture of Knowledge

metamodel of business knowledge. Let us call this

natural structure of knowledge the Architecture
of Knowledge. To understand the metamodel,

we must first understand the Architecture of
Knowledge.

The basic premises of the Architecture of

Knowledge are simple:

Knowledge is a configuration of atomic
rules.

Atomic rules of business are different from

atomic rules of technology.

Rules of business are related to rules of infor-

mation technology through Business Process

Automation.

Each atomic rule must be implemented in

information systems by one or more infor-

mation flows. Each information flow must
be supported by one or more interfaces.

Each interface must be supported by one or

more information technology platforms (see

Box 3.1).16

An information system is a configuration of

atomic rules of business, information flow,
interfaces, and technology platforms.

Rules of business, technology, and process

automation, naturally normalized in the real
world, must be reflected in systems as they are
in the real world.17

The architecture of knowledge requires that

we:

Recognize atomic rules to configure reusable
components of knowledge.

Separate atomic business rules from atomic

rules of technology.

There are few practitioners who would debate

the need to separate business rules from rules

of technology. The problem is that there are few

guidelines and even less agreement on the criteria
for distinguishing business rules from rules of

technology. Many practitioners try to separate

•

•

•

•

•

•

•

business rules from rules of technology intuitively

because the distinction is often clear. However,

the distinction is not always clear. It is this lack of

consistent clarity and separation criteria that has

resulted in a great deal of confusion in the industry

about where to draw the line between business

rules and technology (or “systems”) rules.

This problem is compounded in complex

supply chains and large firms, particularly the
larger global corporations and organizations

built through acquisitions and mergers. These

firms (and supply chains) operate in complex
and diverse environments, and different parts of

these organizations often have different legacies

and standards of technology.

These legacies have either been bequeathed by

the different histories of individual organizational

units or have resulted from their efforts to tailor

their technology to match local environments,

skills, and infrastructure. In such firms, similar
business rules often have to be implemented in

different technological environments. To reuse

and coordinate business knowledge in these

environments, it becomes even more important

to distinguish business rules from rules of tech-

nology.

Unless we draw the line between business rules

and rules of technology correctly, we will not re-

alize the benefits of nimble or scalable processes
supported by nimble and scalable systems. On the

other hand, if we do distinguish rules of business

rooted in reality from those rooted in technology,

we can reuse and coordinate business rules across

complex corporations and supply chains, which

will help make our businesses nimble and more

cost-effective. With this thought in mind, let us

first understand what business and technology
rules are, and why it is sometimes difficult to
separate the two.

Rules of business are expressions of pure busi-

ness meaning. They assert business intentions,

strategy, and procedure that flow from constraints,
risks, opportunities, threats, strengths, and weak-

nesses of the real world, that is, the physical,

45

The Architecture of Knowledge

competitive, regulatory, personal, and cultural

environment in which businesses must flourish. A
policy that asserts that all prices must be negotiated

in U.S. dollars is clearly a business rule.

Rules of automation are those that are the basis

for systems performance-, reliability-, security-,

or technology-imposed constraints. They are usu-

ally easy to identify. A policy that asserts that all
new development will be on UNIX platforms is

clearly a technology rule. Similarly the assertion:

“If a SQL query accesses over 1/3 of the rows of a
DB2 table, a tablespace scan will be faster than
an index scan” is definitely a technology rule,
not a business rule.

The confusion between business and technol-

ogy rules stems from the fact that some atomic

rules are rules of technology and business. They

link the business and technology when business

leverages technology. Workflow then depends
on capabilities and features of automation. For

example, this happens when a librarian uses a

laser pen to scan information about a book being

returned by a customer, from the bar code on the

book. Should this be a technology or business rule?

Is the requirement for 24x7 customer information

systems availability (the system must be avail-

able 24 hours a day, 7 days a week) a business

or technology rule? The answer is that these are

neither pure rules of business, nor pure rules of

technology; rather, they are rules of Business

Process Automation.18

The ever-tightening embrace between business

and technology means that business and automa-

tion will increasingly and inextricably become

enmeshed with business process and business

opportunity. That is why the line between business

and technology has blurred, and will continue to
blur even more. Indeed, not only will business

innovation spring from reengineering pure rules

of business to position firms at a competitive ad-

vantage, but Business Process Automation will

increasingly be a vibrant area of opportunity in

our age of technological innovation. This is why

normalizing not only business behavior, but also

the transforms that link business behavior to

business process automation are critical to the

reuse of knowledge.

Driven by market diversity and environmental

constraints, businesses must support different

scales of operations in different technology en-

vironments in various geographical footprints.

Different kinds of business process automation

are appropriate in support of different technolo-

gies and scales of operation. The key question

is where do we draw the line between the world

of business and the world of technology in order

to normalize knowledge, reuse it, and make our

business operation both flexible and scalable? The
answer is that there is not one, but actually four

lines we must draw: A business rules layer for

“pure” business rules, Business Process Automa-

tion layers consisting of Information (Data) Flow

and information storage rules, collectively called

Information Logistics,20 Interface rules layers, and

finally the Technology rules layer for “pure” tech-

nology rules that optimize or constrain platform

performance. That is shown in Figure 3.4. We can

reuse rules in each layer to build configurations
of knowledge. The four layers of Figure 3.4 are

examined in the following paragraphs.

The Business Rules Layer

The Business rules layer in Figure 3.4 contains

rules rooted in the world of business mean-

ing or physical reality. These are generic rules

independent of any technology or mechanism

used to implement them, or involve mechanisms
that do not directly capture, process, or present
information.

Business rules do not care about the logis-

tics of information storage, transportation, and

transformation. These rules are usually assertions

about the firm’s position, opportunities, threats,
and resources; products, services, and markets;

strengths, weaknesses, and goals; regulations,

46

The Architecture of Knowledge

BUSINESS
RULE

INFORMATION
LOGISTICS

INTERFACE RULES
(Human &Automation)

TECHNOLOGY
RULES

A single business rule
may be implemented by one
or more information flows

Each information flow may
support one or more interfaces
(human or automation)

Each interface may be
realized by one or more
platforms/technologies

BUSINESS PROCESS AUTOMATION

Figure A. Business process automation

Reproduced by permission from Mitra, A., & Gupta, A. , Creating Agile Business Systems with Reusable Knowledge,
New York, NY: Cambridge University Press, 2006.©

In the natural world, a single rule of business may be implemented in different ways with different kinds of automation.

This gives business an enormous amount of flexibility and opportunity for innovation, and the opportunity to reuse knowl-
edge resident in every layer of Figure 3.4. To understand how this can happen, let us start with a pure rule of business,

for example, “take order.” Each business rule can be implemented in different ways. Let us look at the two different data

flows that can implement the single business rule “take order.”
Let us start by considering two diametrically opposite business environments:

A small new market where customers are new and few. In this market, orders are usually taken during sales calls to

customers’ offices. Both order values and volumes are small. Consequently, orders are keyed into salespersons’ laptop
computers during sales calls and consolidated in a desktop PC at the branch office at close of business every day. No
customer validation is required against a customer master file (as most customers are new, and customer information must
be recorded during order entry). Orders are consolidated once a week and e-mailed to the head office.

A well-established market, where high value, high volume, repeat orders are the rule, and customers are many. The

firm is well known and has a good reputation. Most customers like to place orders on the telephone. Orders are keyed
into PCs located in a call center. It is a client-server system. Orders are validated against customers’ S&P rating on a

master file, and checked against availability of items on the inventory file. Inventory is reserved for the customer on the
inventory master file; if items are not available off the shelf, the salesperson at the call center gives the customer a date
when the order can be filled and asks if the customer would like to place a back order. Only then is the order stored on the
order master file and an order confirmation notice is mailed to the customer. All orders that were declined are placed in
a Declined Orders file. Management reviews reports are generated from this file once a month to determine opportunity
cost of, and reasons for, lost orders.

Two very different data flows to cater to two very different scales of business in two very different kinds of markets,
but both reuse the same root business rule “take order.” This is how business can scale up or down and be innovative in

different environments without needing to change the core rule of business meaning.

Now let us see how each data flow might be supported by several interface rules and how that can be the basis for
innovation.

The firm decides to supplement its call centers with a Web-based ordering system. The firm can reuse the data flow
already deployed for its client-server system. Data entry, however, is pushed out to customers, and new screens added

to make it easy for customers to confirm back orders. Now there are two kinds of interfaces, a Web interface and a call
center interface, to support the same data flow. The single business rule, “take order,” may be supported by an even larger
multiplicity of configurations, consisting of data flow and presentation options, which makes room for an enormous amount
of flexibility, innovation, and scalability.

Next, let us consider only the client-server call center system, and how many technology platforms can support it.

The number of possible choices of data flow-interface-technology configurations that the firm can deploy can be much
more than the choices available if only data flow-interface configurations are considered. This increases the flexibility
and scalability of “take order” even more. In the U.S., the inventory files may be physically on an IBM mainframe under

Box 3.1. The architecture of knowledge reuse can help make information systems flexible and scal-
able.

continued on following page

47

The Architecture of Knowledge

ethics, and public opinion; strategy, tactics, and

business practices.

The following atomic rules are examples of

“pure, abstract” business rules that do not involve

implementation mechanisms:

“New employees must be oriented.”

“New employees must be oriented within one

month of joining the firm.”
“New employees will be allowed two working

days to get oriented.”

“A physical object must be located in a single

geographical place at any given moment in

time.”

“All products will be considered untested

when they are first acquired” (a rule about an
initial condition of a business object.)

“Each product will be considered saleable

only after it has been tested.”

“Send shipment.”

“Take customer order.”

“The surface area of a sphere.” (This is a

real world concept; the actual procedure for

calculating the area, that is, the algorithm

that describes the sequence of mathematical

operations that cubes the radius of the sphere

and multiplies the result with the appropriate

number to yield a measure of the surface area,

is a transform that links the meaning to the

information logistics layer.)

•

•

•

•

•

•

•

•

•

The following examples are atomic business

rules that do involve implementation mechanisms

but do not directly involve information technol-
ogy:

“Send shipment on a boat.” The boat, a mecha-

nism for implementing “Send Shipment,” does

not directly involve information. Shipment
is a real world business concept and Boat,
a real world object; hence, “Send shipment

on a boat” is a business rule, not a business

process automation rule.21

“Bake Cookie in Oven.” The oven, a mecha-

nism for implementing the real world abstract

process “Bake Cookie,” does not directly in-

volve information. Cookie, Oven, and “Bake

Cookie” are all real world objects, hence

“Bake Cookie in Oven” is a business rule.

The following are examples of rules that are

not business rules:

“YYY Database management systems will

assign a default zero value to all numeric

fields.” This is a rule about an initial condi-
tion, but not a business rule because it is a

rule imposed by a technology platform (the

database management system) and not the

real world of business.
“Accumulate telephone call records in the

message file” is not a business rule because

•

•

•

•

MVS as a part of a legacy ERP systems based on DB2, whereas in India, inventory files may be smaller and the firm
may have ready access to Microsoft skills and support. Consequently, management may use an IBM PC server that runs

Windows NT and Microsoft access for database management in that country. In Europe, on the other hand, the scale of

operation may be larger than in India, and local management may have a special deal that gives them a large discount

on purchases of SQL server Database Management Software. Therefore, they may prefer to use SQL server databases to

optimize platform performance at minimal cost.

In the above manner, the implementation of the single business rule becomes even more scalable, and the opportunity

for innovation increases further when the technology rules layer19 is considered with the two Business Process Automa-

tion layers and the Business Rules layer.

Box 3.1. continued

48

The Architecture of Knowledge

it involves information movement from the

telephone switch to a file.
“Key customer order into the order entry

screen” is a business process automation,

not business, rule because it is an assertion

about the information capturing mechanism
for implementing a business rule. Let us take

this example to understand how business rules

are different from rules in other layers.

“Take customer order” is a pure business rule.

It does not assert any mechanism for taking the

order, whereas “key customer order into the order

entry screen” is a Business Process Automation

rule because it mixes the mechanism for taking

orders with the pure rule that a business must take

customer orders. The architecture in Figure 3.4

mandates that this mixed rule must be reduced to

a pure atomic business assertion and an atomic

assertion about the data entry interface. We will

•

then be at liberty to standardize and reuse (or not)

the rules of business divorced from the rules of

Business Process Automation and technology.

Are all atomic rules that include the imple-

mentation mechanisms disqualified from the
Business Rule layer? The answer is no. Only

atomic rules that involve automation do not be-

long to the Business Rule layer. To understand

this answer, we must first understand that there
are many mechanisms, technologies, and tools,

including manual methods that might implement

a “pure” technology independent rule of business

like “Take Order” or “Send Shipment,” and not

all will directly involve information. “Send Ship-

ment” might be implemented with a Boat (making

Boat the implementation mechanism), and the

atomic implementation rule would read “Send

Shipment by Boat.” This is a business rule. The

truck has nothing to do with information capture,

presentation, or processing. On the other hand,

Reproduced by permission from Mitra, A., & Gupta, A. , Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

Figure 3.5. Business process automation is only one of several mechanisms that implement abstract
business rules in the physical world.

49

The Architecture of Knowledge

the primary purpose of other kinds of implemen-

tation mechanisms, such as bar code scanners,

keyboards, screens, voice synthesizers, sensors,

robots, and biometric devices, is to capture, pres-

ent, or process information. Business implementa-

tions that involve rules about these mechanisms

are rules of business process automation.22 These

examples demonstrate that automation is only one
of several kinds of mechanisms that might be used
to implement “pure” technology independent of
business rules.

The natural fact is that there is usually a wide

choice of implementation methods for abstract

business concepts.23 Some might involve automa-

tion whereas others might involve other kinds of

tools and technologies. This behavior of the real

world gives us room to innovate, be flexible, and
be able to design business processes that scale

appropriately. However, not all mechanisms are

components of knowledge. Our objective is to

understand how to build reusable components of

business knowledge, not physical piece parts. Our

goal is to make our information systems robust

under the continual and intense pressure of change.

It is for this reason we focus on business process

automation and separate atomic rules that link

business to information technology from those

that link abstract business concepts to other kinds

of implementation technologies.

Rules that link business concepts to implemen-

tation mechanisms belong to the Business Process
Automation layers only if these mechanisms cap-
ture, present, or process information. Otherwise,

they belong to the business rules layer because they

involve real world objects like boats and ovens.

Therefore, “Send Shipment by Boat” belongs to

the business rules layer, whereas “Key Customer

Order into the Order Entry Screen” belongs to the

Business Process Automation layers.

Rules of Business Process Automation in-

volve information flow, storage, exchange, and
calculation procedures. They may be different in

different parts of the complex and diverse empire

that characterize most large organizations and

supply chains. The Business Process Automation

layers recognize these variations for what they

really are: different means for implementing the

same business concepts (i.e., rules) with differ-

ent kinds of information technology in different

environments.

In the natural world, a single rule of business

may be implemented in different ways with dif-

ferent kinds of automation. This provides busi-

ness with an enormous amount of flexibility and
opportunity for process innovation by leveraging

automation. It is also an opportunity for reusing

business rules. Box 3.1 shows how scalable and

flexible systems can flow from business rule reuse
framed by the knowledge architecture shown in

Figure 3.4.24

Business Process Automation
Layers

Business process automation links pure business

meaning and intent to its physical implementation

in information systems. Atomic rules in these

layers must involve both business meaning and

features of information technology platforms.
Confusion about which atomic rules belong

here and which belong to the Technology rules

layer often stems from confusion over which

features of technology directly impact business

functionality and which do not. Is a limitation

on the size of e-mail attachments that users may

send via an email service a Business Process

Automation rule or a technology rule? In order to

determine this, it is important to remember that

it is the applications program that links the real

world to the technology platform. Consequently,

any rules that link business meaning to technol-

ogy concepts (objects) visible either to users or
to applications programmers must be considered

to be rules of Business Process Automation. A

Functional Feature of an information system is

a special kind of business process automation

rule: it is a rule of business process automa-
tion that is visible to both users and application

50

The Architecture of Knowledge

An example of how a functional feature became a technology rule in step with advancing automation

Figure A. Punch Card

In the 1960s, business information was keyed into punch cards. Each card was divided into 80 columns along its length,

and each column held one character (the pattern of holes punched into rows under a column was a code that represented

the character keyed into the column). As such, each card could accommodate only 80 characters. After all business trans-

actions were keyed in, the deck of cards was loaded into the hopper of a card reader that would read the information into

memory. Cards were read in the sequence they were arranged in the deck. The application program usually assumed that

each item of information (called a field) in a transaction would reside between specific columns of the card.
When information in a business transaction exceeded 80 characters, it had to be continued on multiple cards. The

user was responsible for keying in a code (usually at the beginning of the card) to tell the program what information to

expect on the card. Depending on the code, the program would determine what fields to expect in which card columns. It
was the responsibility of the user to arrange cards in the right sequence. Cards for each transaction were grouped together

and arranged in the right sequence in the deck before the deck was loaded into the card reader. Mistakes could lead to

incorrect results and other errors.

The current use of terminals and screens to enter data has taken that responsibility away from users. It is the platform

that now determines, based on the screen, which inputs belong to which transactions, and where the transaction ends and

the sequence in which inputs will be accepted. This is one example of how advancing technology has turned a functional

feature of business process automation into a technology rule to the user’s advantage.

An example of how a non-functional rule of business process automation became a technology rule

In the early 1960s, applications programmers had to worry about blocking and deblocking data records stored on files
to access or store individual records of business information. These rules were relationships between business information,

their organization inside software programs, and the physical storage media. Since these rules were relationships between

business information and items inside the technology platform and they were about information access, they belonged to

the Interface Rules layer of Figure 3.4.

Modern file management software has hidden the need for grouping data records into blocks of data on the physical
storage medium. Physical organization of business data into contiguous blocks of information still happens, but now it

is done automatically. It is now a relationship between the database (or file) management software, the operating system,
and the physical storage device, all of which are internal to the technology platform. These rules have become rules of

technology that reside in the Technology Rules layer of Figure 3.4. This is how rules about blocking and deblocking data

records in computers have moved from the Interface Rules layer to the Technology Rules layer.

Box 3.2. How rules shift between business process automation and technology layers

51

The Architecture of Knowledge

programmers. The constraint on the size of the

e-mail attachment is visible to both users and

programmers who created the e-mail application.

Therefore, it is a functional feature and a busi-

ness process automation rule. (Box 3.2 provides

more examples.)

Functional Features are important because

they provide the interface that the business user

sees. It is the business end of business process

automation so deeply wedded to technology that

it is dependent on capabilities and features of

the technology platform for its very existence.

For example, you cannot have a graphic with

links to Web pages without a browser and a GUI

display device.

This criterion (visibility to users or to ap-

plications programmers) for business process

automation does have one disadvantage: some

technology platforms are more automated than

others are. Different choices of technology may

make some features visible and hide others from

applications programmers or users. This may

mean that the same rule can change the layer

it belongs to, depending on choice of technol-

ogy. Our contention is that this shifting of rules

between layers is a natural, albeit inconvenient,

consequence of technological progress.

Progress implies that information technology

platforms (hardware, software, operating systems,

networks, etc.) will continue to become more

automated and that constraints of technology will

be progressively handled internally by platforms

and hidden from users and applications program-

mers. This is one reason why rules of business

process automation are (and should be) different

for different technology implementations. It is

these differences that provide businesses the op-

portunity to steal a march on competition by le-

veraging information technology to make business

processes and workflow innovative, automatic,
flexible, scalable, and economical.

In the midst of this arcane discussion of

technology’s shifting goal posts, it is important

to keep the objective in mind: Whatever scheme

we use must lend itself to the ability to config-

ure components that will facilitate innovation,

flexibility, and scalability under the pressure
of change. We get the space to do this from the

multiplicity of choices that flow from the one-to-

many relationships in Box 3.1. Later in the book,

we will examine how objects and relationships in

the metamodel of business knowledge naturally
support this capability.

To obtain this flexibility, we must understand
that there are two distinct kinds of atomic rules

that belong to two different layers of Business

Process Automation. These are discussed in the

following subsections.

Information Logistics Layer

Information Logistics are the rules of (business)

information flow and availability. They are the
platform independent logistics of information

sourcing and distribution visible to application

developers or users. These rules will include data

flow, such as rules about the source and destina-

tion of business data, data distribution in terms

of (intermediate and final) destinations of data,
storage in terms of physical files and logical data
stores, as well as queuing and (business) informa-

tion staging. Information Logistics include rules

about where and for how long business informa-

tion will be available in which staging areas. This

layer has all rules and requirements that involve

movement or storage of business information

in terms of location, but not format, accuracy,
presentation, or timing.

Irreducible facts that involve the following

kinds of information belong to this layer:

Source of information: Files, records, and

data elements.

Destination of information: Files, records,

and data elements.

Records and data elements transported,

stored, or staged.

Retention periods, storage media, volumes,

growth, and security of information stored

or staged.

•

•

•

•

52

The Architecture of Knowledge

Initial condition of any or all of these items.

(Initial conditions apply to objects in all lay-

ers of Figure 3.4.)

Relationships between any of the following:

data flows, data stores, initial conditions of
these items, retention periods, storage media,

volumes, growth, and security of information

stored or staged.

The following illustrative rules all belong to

the information logistics layer:

“Store orders in order file,” and “Store
unmatched customers’ telephone usage in

exception file” are rules about where to store
information.

“Match customer on order entry screen with

customer in customer file” and “Obtain cus-

tomer credit rating from S&P” are rules about

data flow/sourcing.

“Store customer telephone call records file
on disk” and “Store customer telephone call

records that are between 4 and 10 years old

in tape files” are rules about storage media
that belongs to this layer.

“Preserve customer telephone call for 10

years” is a rule about availability of data that

belongs to this layer.

“YYY Database management systems will

assign a default zero value to all numeric

fields” is a rule about an initial condition
of stored business information that maps to

quantitative domains25 imposed by choice of
a technology platform (the database manage-

ment system), not the real world. It relates real

world business information to the technology

platform. Hence, it is a rule of Business Pro-

cess Automation. It belongs to the information

logistics layer because it is a rule about the

initial condition of business data.

“An employee’s security clearance in the

personnel file must match that in the depart-
mental security clearance file” is a relation-
ship between data stores.

•

•

•

•

•

•

•

•

Rules in this layer involve business information

flow visible to users or applications programmers.
There may be other kinds of information flows
related to the internal working of technology

platforms. These do not belong here. Rather, they

belong to the technology layer. The following il-

lustrative rules involve information flow, but do
not belong to this layer:

“If memory overflows, dump its contents to
disk.” Both computer memory and disk are

parts of the technology platform. The rule does

not refer to any business information. Rather,

it deals with the flow of information related
to technology objects internal to the platform

that executes software. Therefore, it is not a

rule of Business Process Automation.

“Store the last three orders in the screen

buffer area.” Although orders are business

information, the Screen Buffer Area is inter-

nal to the technology platform. If movement

to and from, and storage of information in,

buffer areas is transparent to application

programmers, this rule will belong to the

technology layer. (If this is not transparent to

application programmers, it will belong to the

Business Process Automation layer, but not
be a functional feature of data flow because,
presumably, programmers would hide this

technical complexity from users.)26

Assume a nationally distributed radar net-

work is tracking air traffic. An “airplane”
business object in the system reflects each
airplane in the air. The information system

is physically distributed across nodes of a

computing network that runs the application

on computers located at each major airport

and dynamically optimizes resource use by

moving processes and data between nodes.

The rule “move the business object that rep-

resents an airplane in the information system

to the node that is nearest to the physical

airplane at any given time” is an instance of

this kind of optimization. The rule involves

•

•

•

53

The Architecture of Knowledge

flow of business information between nodes.
Nodes are information technology objects.

So why have we said that this is not a rule of

Business Process Automation?

Although “airplane” in the system carries

business information, moving “airplane”

between computers in the network will not

be a rule of business process automation if

we assume that the movement and storage

of information between these nodes is the

responsibility of the network communications

software, transparent to business applications

programmers and users. Instead, it will be

a technology rule because the rule involves

movement of information between nodes that

are internal to the technology platform, and

information movement or storage between

these nodes is transparent to applications

programmers and users.

Interface Rules Layer

Interface Rules are rules of information exchange

between information systems and people, other

information systems or instruments, such as

sensors, effectors, or robots. These rules usually

involve workflow.
When information flows between an infor-

mation system and people, instruments, other

information systems or files that store and stage
information, it must pass through an interface.

This interface may be thought of as a conceptual

contract that determines how entities exchanging

information will present information to each other.

Since we are dealing only with business informa-

tion flows, this layer will exclude interfaces that
involve exchange of purely technical information
internal to technology platforms, or exchange of
any information between concepts or parts that
are internal to the functioning of the technology
platform.

Interface rules are rules for presenting infor-

mation, such as sequencing, access and security,

formats and format conversions, accuracy require-

•

ments, availability and timing of the interface,

timing of batch runs or mass updates, and data

transformation (such as truncation and rounding).

Irreducible facts that involve the following kinds

of information belong to this layer:

Interface schedule, batch timing, schedule

for refreshing information business being

presented at the interface (update cycles),

exception and other events, availability of

the interface and time-outs.

Responsibility/approvals for the interface and

its operation.

Interfacing file layout, Interfacing Record
layout, Interfacing data element, correspond-

ing formats and units of measure (if any), and

encryption.

Access permission or denial rules; there could

be several kinds of permission—permission

to know an item exists, permission to see

its contents, and permission to update its

contents.

Presentation of information to a human or

automated actor, such as Accuracy, Format

(including size limitations), Units of measure,

Sort sequences, screens, and reports.

Terminal devices/special equipment speci-

fications.
File audit and control specifications, such as
record balancing or check digit processing.

File or information transfer methods.

Relationships between any of these.

The following rules are all examples of in-

terface rules:

“Key orders into order entry screen” and

“Scan item with wand” are interface rules

because they describe mechanisms for cap-

turing business information.

“Display service location on a map” and

“Show stock prices in fractional format” are

interface rules because they are rules about

business data presentation and formatting at

the system’s human interfaces.

•

•

•

•

•

•

•

•

•

•

•

54

The Architecture of Knowledge

“Highlight all data entry errors in red” and

“The twenty fifth line of the screen will be
reserved for error messages” are interface

rules because they are rules about human

interface standards (screens and data pre-

sentation formats).

“Report revenues to the nearest $1000” is an

interface rule because it is a rule about the ac-
curacy with which business information must

be presented to an actor (human or not).

“Allow only subscribers access to stock

prices” is an interface rule because data ac-
cess rules are rules about an actor’s (human or

not) interface to business information stored

in the system.

“Update customers’ S&P credit ratings at

Close of Business every day” is an interface

rule because it is a rule about timing of an
interface to an S&P business data source.

 “Present order data in customer number

sequence” is an interface rule because it is a

rule about presenting business information
to a human or automated actor.27

 “Present the Welcome Screen at the Start of

Business every day” and “Generate report

at Close of Business” are interface rules

because they are rules about the timing of
human interfaces.
 “The system must be continuously avail-

able 24 hours a day, 7 days a week” is also

an interface rule because it is a rule about

the timing of the interface from an actor’s

perspective.

Assume that a depository markets a software

product for buying and selling financial instru-

ments it holds in trust. Customers who install

the software must be activated to allow them

to access information on financial instru-

ments held by the depository. In this system

“Activate New Customer” is an interface rule

of Business Process Automation because it

is a rule about enabling, that is, setting the
condition of a human interface to make it

available to customers.

•

•

•

•

•

•

•

•

“Scan barcode” is an interface rule because

it is a rule about the format for presenting

business information to the application.

Convert barcode to EBCDIC characters is an

interface rule because it is a rule about format
conversion of business information.

“Commit information when the user hits the

enter button” and “Commit the record on

confirmation that the transmission is com-

plete” are interface rules because they involve

business information transfer methods.
“Alphanumeric fields in XXX database

management systems cannot be larger than

1024 characters” is not only a rule about the

(storage) format of business information, but

also a rule imposed by choice of a technology

platform: the database management system

in this case. It links business information to

a specific implementation technology. The
rule is also visible to users and application
programmers; therefore, it is a rule of Busi-

ness Process Automation that belongs to the

Interface Rules layer.

SMS is a data transfer technology for cellular

telephones and wireless hand held devices.

The rule “SMS messages cannot exceed 160

characters” is a (business process automation)

interface rule because it is visible to both us-
ers and applications programmers of devices

that support SMS.

“Send batched transactions in compressed

format” is an interface rule because it is a rule

about the format in which business informa-
tion must be presented to another system and

is visible to application programmers.

If the platform that executed each system had

a feature that automatically and transparently (to

applications programmers and users) compressed

and decompressed information being sent, then

this rule would have been internal to the platform

and would have belonged to the Technology

Rules layer.

•

•

•

•

•

•

55

The Architecture of Knowledge

On the other hand, if applications program-

mers wrote programs to make this compression

and decompression automatic and transparent to
users, then this would remain a rule of Business

Process Automation in the interface layer, but will

not be a functional feature of the system.

Yet, another variation might be that application

programs automatically compress and decompress

the data and flash the information to a screen to
make users aware of the activity. Although no

action is required from users, they are involved

with the interface—even if it means they are pas-

sively involved. Because users are aware, this rule
will be a functional feature as well as a rule of

the business process automation interface under

these conditions.28

Some kinds of interfaces are excluded from

Business Process Automation layers because they

are interfaces between concepts and components

that are strictly internal to technology platforms.

These rules usually (but not always, as we will

see further on) involve:

Communications software

Modem requirements

Transmission rates

File blocking factors and other technology

dependent rules transparent to application

programmers and users

Line characteristics and protocols

Communications protocols

Examples of interface rules that are not Busi-

ness Process Automation rules are:

“Disallow access to memory addresses 1 to

5000.” Memory addresses are internal to the

working of the technology platform.

GSM is a standard for sending data in wire-

less telephony. “Accept information in GSM

format” is an interface rule because it is a rule

about the format in which data must be pre-

sented to the wireless device that belongs to the

technology layer. It belongs to the technology

•

•

•

•

•

•

•

•

layer because it relates to a communication
protocol internal to the design of the technol-

ogy platform: the wireless device.

CDMA and GSM are two different standards

for wireless telephony. “Convert the signal from

CDMA to GSM format” is a rule about format

conversion that belongs to the technology layer be-

cause it is internal to the technology platform.

Technology Rules and Constraints
Layer

These are rules that only involve performance

optimization and constraints of technology

platforms. They too are requirements, but re-

quirements imposed by choice of technology. In

many ways, they have parallels in the universe

of business that we have covered in the other

layers. The universe of technology, like the uni-

verse of business, has objects, relationships, data

movement, and interfaces. However, unlike the

business universe, these items involve concepts

and parts that are internal to the working of the

technology platform. Some earlier examples are

consolidated and repeated here for the reader’s

convenience:

“If memory overflows, dump its contents to
disk” is rule of information movement that

belongs to the technology layer because it

refers to technology, not business concepts,

that are internal to the functioning of the

platform for executing software.

“Disallow access to memory addresses 1 to

5000” is a technology rule because it is an

information movement (access) rule about

concepts internal to the technology platform

for executing application software.

“Model ZZZ computers will physically ex-

ecute only one thread at a time” is a technology

rule because it is a rule about processes that

are internal to the working of the technology

platform.

•

•

•

56

The Architecture of Knowledge

“The platform must have at least 256 MB of

RAM to run the trading system” and “The

trading system must be run on Windows 98

operating system” are technology rules be-

cause they are relationships between objects

that are internal to the working of the technol-

ogy platform: RAM is computer hardware,

and both Windows 98 and Trading System

are computer software.

On the other hand, even though the following

rules involve modems, communications lines,

and software, they are not pure technology rules

resident in the bottom most layer of Figure 3.4.

Instead, they are rules of business process au-

tomation because at least one business object is

involved in each rule:

To download stock prices in real time, you

must have a DSL modem. Stock price is

business information. This rule describes an

interface mechanism required to access Stock

Price, hence it is an interface rule.

To watch the concert in real time, you must

install streaming media software and a T1

communications line. Concert is business

information. This rule describes an interface

mechanism required to access Concert, hence

it is an interface rule.

How Businesses Can Use the
Architecture of Knowledge

What kinds of opportunity for innovation and

improvement does each layer present and what

kinds of changes will each layer normalize?

The business layer helps us assemble compo-

nents of knowledge into business concepts, such as

products, services, markets, regulations, and busi-

ness practices. It caters to change and innovation

in the universe of business meaning. It supports

businesspersons striving to adapt, excel, and in-

novate in order to position their firms, products,
and services at an advantage by “thinking out of

•

•

•

the box.” It caters to changing fundamental rules

of business (see Figure 3.5).

For example, a telephone services provider

may integrate cable TV and entertainment media

into its business. These changes in the Business

Rules layer will impact business functions and

systems functionality (which can have a domino

effect on the layers below it), whereas changes to

process automation layers alone will impact only

availability, timeliness, accuracy, reliability, and

presentation of information. Changes in business

process automation, in turn, can impose new

requirements for performance, reliability, and

accuracy on technology platforms, which will

impact the technology layer.

Business Process Automation is usually

changed to leverage information technology or to

focus on those processes that create most value

while eliminating those of little value.29 It can

make business processes more reliable, accurate,

or less resource intensive. It can impact business

process activity cost, cycle times, workflow,
resource requirements, and process ownership.

Changes in this layer seldom impact the funda-

mental business of the firm. For example, the firm
could deploy its ordering process on the Web, but

not make any fundamental change in the nature

of its products, services, or markets.

The technology layer is changed primarily to

improve computer performance in terms of speed,

cost, reliability, availability or alignment, and

support for Business Process Automation.

An Example: Separating Business
Rules from Implementation
Technology

Let us analyze an example from the telephone

industry in some detail to understand this con-

cept. This example is about procedures that are

intimately connected with the kind of automation

used to record telephone customers’ use of tele-

phone services for billing purposes. Telephone

customers’ call data are first downloaded from

57

The Architecture of Knowledge

the telephone switch to magnetic tape at the

telephone exchange. Once a day, these tapes are

shipped to the data center and copied to disk files.
These data are then validated and used to update

the “Message” Customer Records Information

System (MCRIS) file. The MCRIS file is input
to the customer billing system.

Business Layer

At the business layer, we would only have an

assertion that Subscriber may use Telephone
Service to call another Subscriber. Phone Call a

three-way relationship between two Subscribers
and Telephone Service that would be a reposi-

tory of real world information such as call start

time, end time, call duration, and geographical

locations.

Example of Policies That Reside in the
Business Layer

Not only products and services, but also business

policy springs from this layer. For example, the

following policies reside in this layer:

The firm will penetrate untapped markets.
The firm will develop wholesale business.
The firm will obtain the necessary market
freedoms to effectively compete.

The firm will purchase or lease competitors’
fixed assets.
The firm will create unbranded and cobranded
wholesale products.

The firm will creatively match products to
market segments.

The firm will provide seamless telephone
voice conversation service to all telephone

subscribers in any geography; such a policy

may have domino effects on information

logistics, interface, and technology layers

such as requiring data movement between,

interfaces to, and interconnectivity with other

telephone company networks.

1.

2.

3.

4.

5.

6.

7.

Example of a Change in the Business
Layer

The original business rule reads, “Subscriber may

use Telephone Service to callanotherSubscriber.”

If the telephone company introduces a new prod-

uct, such as a party line or telephone conferencing

facilities, it will have to add a calling relationship

to read “Subscriber may use Telephone Service to

conference with one or more Subscribers.” The

change would make Phone Call a relationship

between two or more Subscribers and Telephone

Service, instead of a relationship between only

two subscribers and Telephone Service.

Business Process Automation Layers

Rules related to transporting and presenting the

information would belong to the Business Process
Automation layers, not the pure business layer.

Figure 3.4 shows how Business Process Auto-

mation consists of two layers. The Information

Logistics layer is the repository for rules related

to the logistics of moving and storing informa-
tion in files, and the Interface layer is concerned
with how this information is presented to human

operators or other automation as follows:

Business Process Automation:
Information Logistics Layer

Moving data from the switch to magnetic tape is

a pure technology rule because it involves only

objects internal to the technology platform (the

switch, the tape drive, and tape), but where does

transporting the tape to the data center fit in? Is it
a business rule, since it involves real world objects

such as transportation vehicles, or does it belong

to the Information Logistics layer of Figure 3.4

because it involves moving information?

Transporting the tape to the data center with a

courier service involves the source and destination

of information about calls made from subscribers’

58

The Architecture of Knowledge

telephones. It is this business information that is

being moved. Transportation of these tapes also

involves information on how and where this busi-
ness information is staged (for example, the load-

ing dock and transport vehicle). These rules fulfill
all the criteria needed to call them Information

Logistics rules; hence, that is what they are.

Example of a Policy That Resides in
the Information Logistics Layer

Apart from operational detail, strategic and policy

rules could reside in each layer of Figure 3.4. A

policy that asserts that MCRIS will be the central
data resource to support and authenticate all
commercial call information is an Information

Logistics rule that belongs to this layer. It is an

Information Logistics rule because it is a rule

about information storage. It is worth noting that

this information storage policy can be changed

without having to change the business rule it sup-

ports: “Subscriber may use Telephone Service to
call another Subscriber.”

Example of a Change in the Information
Logistics Layer

A key premise of the natural architecture of

knowledge was that a single business rule might

be implemented by several kinds of process au-

tomation. For example, the information framed

by the single business rule—Subscriber may

use Telephone Service to call one other Sub-
scriber—may be recorded in different ways, with

different mechanisms. It could be done either by

recording, manually shipping and copying from

magnetic tape, as described earlier, or by sending

the call information directly over the network

to programs that will validate, summarize, and

store it in MCRIS.

If the network is used, the rules of data stag-

ing and transportation interfaces will change,

whereas other rules such as the source of data

and the final destination in MCRIS files are data

flow components that will not change and may
be reused.

Both methods may co-exist. Some switches

may be polled over a network and call data

downloaded at predetermined intervals over the

network to MCRIS files, whereas other switches
might record information on magnetic tapes,

which may be sent by courier to data centers for

consolidation on the MCRIS file. Both are mecha-

nisms for capturing information about telephone

calls that are instances of the single business rule,

“Subscriber may use Telephone Service to call
another Subscriber.” This business rule remains

unchanged, and is a common component in the

knowledge configurations that represents each of
these two systems.

Business Process Automation:
Interface Layer

If we ship tapes manually by courier and no

automation is involved, why do we call it an

interface rule? Transporting the tape to the data

center via a courier service is a file transfer rule,
albeit an unusual one, because the file transfer
method involves manual transportation instead of

an electronic file transfer. Rules that involve file
transfer methods are interface rules. This is why

this manual method of shipping telephone call

information must also be an interface rule.

This rule also satisfies other criteria that inter-
face rules must transfer schedule, responsibility,

and approval for the operation of the interface

(someone in the firm must have responsibility and
ownership of the transfer process) and provide

audit and controls (assuming validation proce-

dures are built in to ensure accurate, reliable, and

timely transportation).

This manual file transfer method is a relation-

ship between business data and the mechanism

for moving it; hence, it is Business Process Au-

tomation. Like any other file transfer method,
certain protocols must support this movement

of information.

59

The Architecture of Knowledge

Electronic file transfer protocols are confined
to components of technology inside the informa-

tion technology platform and belong to the Tech-

nology Rules layer of Figure 3.4. Unlike electronic

transfers, this manual file transfer method must
be supported by protocols that involve real world

mechanisms, unrelated to information technol-

ogy, such as couriers, trucks, and lock boxes,

and is visible to staff. Therefore, these protocols,

which, if automated, would have involved only

the technology layer, will now involve business

process automation because they are manual

procedures: the manual file transfer protocol will
be a business system in its own right, supported

by automation of its own.

For example, the manual operation of passing

the tape to the courier, getting an acknowledge-

ment or receipt from him, tracking the movement,

the way-bill, the receipt, and validation of the

tape at its destination are part of the file transfer
protocol and may be supported by automated

tracking systems and procedures.

If the firm switched to sending all call records
from switches to the MCRIS file over the network,
these business process automation components

could be deleted from the knowledge base without

risking explosive and chaotic impact on the bill-

ing system because knowledge of the interface
was normalized and isolated in this tracking

system.

The interface rules layer will also contain other,

more commonly expected kinds of components,

such as formatting rules, screens, and terminal

devices. Assume that human customer service

operators require access to subscribers’ call in-

formation on a screen; then the screen layouts and

standards, as well as presentation components,

would belong to the interface layer.

To summarize, for each set of rules related to

the logistics of transporting and storing data in

specific files (either the system of manual transport
of magnetic tapes or the system for supporting

electronic data shipment over the network), there

may be several kinds of interfaces. For example,

there could be one set of standards for a Graphical

User Interface (GUI), for those who have access to

networked PCs and another for those stuck with

legacy IBM3270 line terminals without graphics

capabilities. These will be separate irreducible

facts, divorced from rules of where and when

data are stored or transported.

Example of a Policy That Resides in
the Interface Layer

Not all interface rules will be operational rules.

Some may be statements of policy or strategy as

well. For example, a policy might state that all

GUI screens will follow Microsoft’s Inductive

User Interface standards (Microsoft Inductive

User Interface Guidelines, n.d.).30

Example of a Change in the Interface
Layer

Interface rules may not always be related to

human interfaces. Sometimes they will involve

interfacing with automation. For example, let us

assume that other telephone firms lease the net-
work to provide telephone services independently

to customers. The firm that owns the network is
obliged to provide telephone call information to

firms that have leased their network. The timing
and format for presenting usage data to the lessee’s

systems may change independently of what file
the data is sourced from. Indeed, even if there is

a single source of data, different timings, update

frequencies, and formats may be needed to satisfy

lessees with different needs.

Technology Rules Layer

Like the other layers in Figure 3.4, the Technology

Rules layer may involve both operational and stra-

tegic (atomic) rules. For example, the architect for

billing systems may decree that call volumes are

so heavy that the firm will optimize performance

60

The Architecture of Knowledge

of its computer systems by storing call records

on flat files rather than any relational database
management software; then, this is a policy that

will reside in the Technology Rules layer.

The firm might decide that it wishes to reduce
its technology risk by standardizing on a single

reputed vendor for all their hardware and systems

software. This will be a strategy rule that will re-

side in the technology layer. Changing these rules

might impact software code as well as interfaces

between software and hardware components in-

ternal to the platform, all of which reside in the

bottom layer of Figure 3.4, but business process

automation (data flow and interface rules) will
not be impacted.31

Of course, at more operational levels, the

Technology layer may also have rules about data

transfer, records, fields, formats, and transforma-

tions between technology objects internal to the

platform or network, such as “Bit value 0, of bit

zero of an IP address means it is an Internet class

A address” (a rule about a field in an IP address
used internally by Internet software).32

An Example of Process
Improvement by Leveraging New
Technology

Automated instruments or other automated infor-

mation systems may also set formatting and file
requirements. To illustrate this, let us consider

the operation of a warehouse. Inventories of items

stored in a warehouse are validated periodically

by physically counting them. When inventories

are physically counted, employees tally inventory

items by keying the physical inventory into por-

table palm top devices equipped with a keyboard.

The data are downloaded from the palm top de-

vices and consolidated in an inventory file.
The firm decides to make the process faster and

more efficient by replacing the palm top devices
with bar code reading wands. The wands scan

a bar code to tally items. These counts are then

down loaded to the same inventory file as before.
Wands may present data to the inventory system

in one format and palm top recorders in another.

These rules involve format and hence belong to

the interface layer.

Thus, the logistics of storing and transporting

data stay the same, but formatting requirements

might depend on the technological environment. If

new kinds of devices become available, or should

the firm change its standards (for example, its bar
coding standards), only the interface components

will change.33 Components related to pure business

rules and the logistics of data movement would

remain the same and may be configured with
the new interface and technology components to

improve the business process.

Below the business process automation layer

lie the rules of pure technology—those required

to optimize performance, stability, and reliability

of chosen platforms.

Configuring Rules to Build
Components

We examined examples of how knowledge can

be assembled from knowledge artifacts under

The Repository of Meaning in Chapter II. The

rules we assembled there were not executable

software or even the technical specifications for
executable software. Instead, they were business

requirements from which designs and technical

specifications would flow.
An example of reusable components of busi-

ness information appears in the uppermost layer

of Figure 3.6.34 These reusable components are

business requirements for applications software

(and specifications for business processes as well).
Reusable business specifications (i.e., require-

ments), not executable components, flow from
the metamodel at this level.

To turn these business specifications into
executable software, we must round out this

metamodel of business knowledge with imple-

61

The Architecture of Knowledge

mentation components. These active executable

components will then consist of business seman-

tics of the kind we had assembled into subas-

semblies of pure business process knowledge in

The Repository of Meaning section in Chapter II,

assembled with information logistics and interface

components. Such structures will be reusable

subassemblies of executable code and hence

reusable components in their own right. These

executable components may then be assembled

into proof-of-concept prototype systems, even if

they are not performance optimized. When execut-

able components are performance optimized for

specific platforms, they may be assembled into
production systems (see Figure 3.6).

Scope of the Metamodel of Core
Business Knowledge

(Note that each of the layers in Figure 3.7 may

have a vision component supported by policies,

strategies, tactics, operations, events, exceptions,

and standards. Each of these must ideally be

aligned with the corresponding component in

the layer immediately above it, so that the firm’s
information systems can be in harmony with the

business that it serves.)

The objective is to normalize real-world busi-

ness behavior; the purpose is to facilitate business

agility with Knowledge Artifacts. This business

focus will provide the maximal return. Therefore,

this book focuses on the core—the metamodel

Figure 3.6. The architecture of reusable knowledge components

Reproduced by permission from Mitra, A., & Gupta, A. , Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

62

The Architecture of Knowledge

of pure business rules and meanings—not the

logistics of data flow or the complexities of per-
formance optimization. The framework of Figure

3.4 provides a tool for filtering irreducible facts
so that we can focus on pure business behavior

independently of mechanisms that implement or

reflect these requirements in information systems
that are prone to change in step with technology.

This will facilitate business knowledge reuse and

coordination, make our automation flexible, our
businesses more agile and innovative, and above

all, help reduce time to market new products,

services, and systems.

There are several GUIs and other interface and

information exchange components and standards

readily available in the marketplace, as are those

that focus on platform technology and perfor-

mance. The metamodel of business behavior
does not care about how it is implemented in

information systems. It is reusable and flexible.
It can be manifested in many different and in-

novative ways. Indeed, once we understand the

metamodel of business knowledge, it is relatively

simple to incorporate the other three layers of

Figure 3.4 to build an integrated metamodel of

systems knowledge.

The rest of this book describes the metaob-

jects that normalize atomic business rules found

in the uppermost (Business Rules) layer of the

architecture of knowledge. In this book, we

will learn the behavior of metaobjects that flow
naturally from the layer of pure business rules

and understand transforms that turn these rules

of business into rules of information exchange

and transportation.

ENDNOTES

1 Techniques of systems analysis and design

were borrowed from cybernetics and the

theory of finite state automation, which

Reproduced by permission from Mitra, A., & Gupta, A. , Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

Figure 3.7. The scope of the metamodel of knowledge in this book is confined to pure business rules.

BUSINESS

TECHNOLOGY RULES

INTERFACE RULES
(HUMAN & AUTOMATION)

INFORMATION

LOGISTICS

BUSINESS

RULES

V
isi

on

Pro
ce

ss
Eve

nt
s

V
al

ue

Po
lic

y/
St

ra
te

gy

Exc
ep

tio
ns

Business Rules

Business Opportunity

or

Environmental Change
Usually specific to an
organization

Well entrenched
industry standards
available, to which
organizations often
add custom rules

Well entrenched
industry & vendor
specific standards

Encapsulate and normalize

common business patterns

in Knowledge artifacts

B
U

S
IN

E
S

S
P

R
O

C
E

S
S

A
U

T
O

M
A

T
IO

N

63

The Architecture of Knowledge

was the origin of both the “Black Box” and

“Node Branch” method. See Appendix II

on State Machines. [325] also describes the

concept. The figure on page 84 of [325] in
Appendix III captures it succinctly.

2 See the chapter on black boxes in [325]

in Appendix III and Appendix II on State

Machines.
3 The Transfer function may depend on the

state of the black box. See Appendix II on

State Machines.
4 The chaotic behavior of complex systems is

a specialized topic. See [323] in Appendix

III.
5 Interactions between the subprocesses inside

a black box are through inputs and outputs

of subprocesses inside the black box, which

are invisible at its interface. Figure 3.2

shows these “hidden” variables with arrows

confined entirely inside the perimeter of the
original black box. The need to introduce

these additional variables increased the

complexity of the model and made it even

more difficult to obtain reuse and manage
the domino effects of change.

6 Entity relationship diagrams are based on the

node branch technique: entities are groups

of variables, and relationships are their time

agnostic associations.
7 See the State Machine in Appendix II.
8 The Logical Unit of Work is a fundamental

concept in analysis of business systems. It

assumes the system is in stable condition

(equilibrium) and is returned to equilibrium

after each change caused by business activ-

ity. For example, a business’ customer list

will be stable until the activity of acquiring a

new customer occurs. After it is completed,

the result will be a new, stable customer list.

Equilibrium is fundamental to the concept

of Logical Unit of Work, but causal loops in

the real world do not guarantee equilibrium.

Logical Unit of Work assumes that change

occurs in discrete steps, which result in

equilibrium at the end of each step. If we

take a limited view of the causal network,

this could happen. If we consider only one of

the two arrows in the loop between v
4
 and v

5

of Figure 3.2, we may assume a temporary

equilibrium in the hiatus between succes-

sive changes. The Logical Unit of Work is

valid only under conditions of discrete, not

continuous, change.
9 For example, v

4
 might represent the number

of products and v5 the number of customers.

A larger product portfolio might increase

market penetration, which might be reason

to increase product diversity even more to

satisfy this larger customer base. This could

then be the reason for acquiring even more

customers. The cycle would keep repeating

until market saturation.
10 The Arms Race Model on page 281 of [326]

and section 1.4.9, Determining Events and

Variables in [327] of Appendix III describes

how the simple node branch representation

may be enhanced to model complex interac-

tions.
11 The note on polymorphism under the Math-

ematical Theory of Categories, in Appendix

II, explains how categorization can support

rule reuse with mathematical precision.
12 The patterns in [338] in Appendix III focus

on business services, which are polymor-

phisms of components and models described

in this book. The components and patterns

in this book and [337] in Appendix III may

be used to describe the generic services that

describe knowledge and inference.
13 The theory of sets is fundamental to clas-

sification.
14 Lest we give the wrong impression, we will

point out that Information Systems projects

are not always undertaken to add or alter

business functionality. Sometimes they are

undertaken to implement purely technical

changes. Case in point, the recent Year 2000

projects, which collectively vost the world

64

The Architecture of Knowledge

more than $600 billion. Many of us have

come across projects where the sole purpose

was to update technology or to conform to

technical standards and platforms. However,

there should always be cogent business justi-

fication even for projects like these, and their
software is always wrapped around business

rules. Even pure technology projects can-

not ignore business rules. For Information

Systems projects, they are neither respite

from reality nor from business rules.
15 Atomic Rules were described in Chapter

II.
16 This multiplicity of choice in how each busi-

ness rule can be implemented is the basis for

building scalable and flexible information
systems with reusable components.

17 Rules may be reflected in systems as they
are in the real world if they are stored in an

electronic repository where they are con-

ceptually normalized, although they may

be physically replicated purely to optimize

computer performance. If these rules are
replicated, they must be replicated in a

closely controlled and well-managed way in

order to manage the impact of change and

avoid the problem of explosive and chaotic

change.
18 This particular requirement is not a pure

business rule because it is not an asser-

tion about any new business functionality

required of the system. A pure business

rule exists regardless of the availability of

systems. Its existence does not depend on

whether the information system can record

its operation or not. These “pure” business

rules are the kinds of rules that reside in the

business rule layer of Figure 3.4.
19 In the Technology Rules layer, we find many

parallels with the business layers, including

the existence of objects, initial conditions,

relationships, processes, information move-

ment, information stores, and interfaces,

except that these involve platform specific

technology objects rather than business

objects. Although the metamodel in this

book focuses on the business rules layer,

and analysis of links between business pro-

cess automation and technology platforms

is not in the scope of this metamodel, the

metamodel of technology will have many

parallels with the metamodel of business,

and indeed, will be an extension of the core

model developed in this book.
20 Ed Peters of Index Technology developed

the science of Information Logistics.
21 Section 5 of Chapter II describes how a

similar atomic rule, Organization ships
Product by Boat, may be assembled from

reusable components.
22 Automation in this context means actors that

produce, capture, or process information.
23 Process improvement programs focus on

execution of business concepts through

redefinition of business processes, not re-

definition of the business itself. See Figure
3.5.

24 The metamodel of business knowledge,

developed in this book, helps to normalize

business rules. Normalized business rules

will be the reusable business components of

Figure 3.6. The Universal Perspective has

the rules reused most frequently by busi-

nesses.
25 Domains will be discussed in Chapter IV.
26 Just as there are rules that link “pure” busi-

ness rules to Business Process Automation,

there are rules that link Business Process

Automation to technology platforms. This is

one example of this kind of rule. However, the

focus of this book is the Business Rules layer

in the architecture of knowledge, and rules

related to technology platforms are beyond

the scope of this book. [296] in Appendix

III discusses technology platform issues

related to building reusable components in

more detail.

65

The Architecture of Knowledge

27 A person, system, or instrument that accesses

or processes (i.e., acts on) information is

called an actor.
28 Some readers might ask how we might clas-

sify this rule if it had mentioned what the

source and destination(s) of the compressed

data were. The architecture of knowledge

in Figure 3.4 mandates that had the rule

included either the source or the destination

of data, it would have had to be broken into

a source-destination, or data flow rule, and
an interface, or formatting rule.

29 Business Process Automation only refers to

process innovation and change that lever-

ages information technology. Other kinds

of technological innovations that have little

to do with information technology, but a lot

to do with how business rules are physi-

cally realized in the real world, may also

be leveraged for similar reasons and have

similar effects. A glue maker may add a

new specialty chemical to her formula to

reduce the time it takes to cook the mix of

raw materials to glue, or a shipper who has

traditionally used trucking to ship goods

might add air shipment to his repertoire.

These implementations of “pure” business

rules (“make glue” and “ship items,” respec-

tively) have little to do with automation, but

they can, and do, impact workflow, cycle
times, activity cost, resource requirements,

process ownership, and other items just as

Business Process Automation does.
30 The Microsoft inductive user interface is

an example of policies that reside in the

interface layer. Further reading on this topic

is available at [154] in Appendix III.
31 Some readers might argue that standardizing

on a single vendor may impact terminal de-

vices and that, in turn, might impact business

process automation (at the interface layer).

However, it is not the manufacturer, but the

functionality of the terminal device visible

to business information that is in question

in this layer. Only if the new manufacturer’s

equipment does not support all interface

requirements of the terminal, such as graph-

ics, keyboard characteristics, multimedia, or

biometric capabilities, will business process

automation be impacted. If this happens, we

must understand that it is not the business

process automation that has moved; rather

it is a new technology constraint that must

be incorporated at the interface between

technology and interface layers. The firm
must then make an informed trade-off be-

tween the requirement of business process

automation and the technology constraint.

The purpose of the knowledge artifact is

served: to minimize the uncontrolled and

chaotic impact of change. This will have

been achieved by representing the system as

a configuration of normalized atomic rules
organized into the layers shown in Figure

3.4 so that each layer can be considered in

terms of its interaction with the other layers

in the architecture of knowledge.
32 Internet Protocols are described in Chapter

49 of [334] in Appendix III. This book is an

excellent introduction to networking, data

transfer, and telecommunications technol-

ogy. Policy changes in the technology layer

will impact technology rules such as those

that involve communications software,

line characteristics, and so forth. These are

objects internal to the technology platform

and are not considered business objects.
33 Technology rules such as those that involve

communications software and line char-

acteristics may also be impacted, but they

only involve objects internal to the technol-

ogy platform, which is not the focus of this

book.
34 It was also an example of how this busi-

ness information may be assembled from

reusable business knowledge components

66

The Architecture of Knowledge

into full-blown business requirements for

an application system. These assembled

requirements, too, are structures of business

logic that live in the Business Rules layer of

Figure 3.6.

67

Chapter IV
The Pattern at the Root of It All

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

This chapter describes the concept of a Pattern, and describes why patterns are the basis of knowledge. It
establishes the semantics of Pattern, and describes the concept of “information space,” an abstract arena
in which patterns of information create meanings. It shows how the concept of measurability is the basis
of all meaning and how meanings are structured by patterns in information space. It also distinguishes
a meaning from its physical representation and establishes the identity between objects and patterns. It
shows how joining and constraining meanings creates new patterns of information, which lead to new
meanings and hence the ability to configure meanings from other meanings. This is the basis on which
components of knowledge are derived in this book and also in its companions in the series.

The concept of Pattern and Information Space is

where our journey begins. Meanings are abstract

patterns of information. We conceive of these

patterns of information as patterns in an abstract

place called Information Space. We cannot physi-

cally see, hear, touch, or sense information space

or the abstract meanings that swirl and twist

though Information Space. This makes it difficult
for most of us to visualize these patterns and to

understand how they are assembled from other

patterns, which may also be meanings and are

always components of meanings.

Pattern is the fundamental object from which

all meanings are born. The metamodel of Pattern is

also the metamodel of Object1. In this chapter, we

summarize the key characteristics of Pattern.

A pattern is a pattern of objects. A pattern

cannot be a pattern unless the arrangement of its

constituent objects follows some kind of law. In

order to be considered a pattern, the information

conveyed by the law cannot exceed the information

The world came out of a single spark, the creator is in the creation and the creation is in the creator
- Kabir Das, a 15th-century poet-philosopher from India

68

The Pattern at the Root of It All

conveyed by the ensemble of objects that constitute

the pattern in the absence of the law (that is, the

law must not make things more unpredictable; see

Appendix II on Shannon’s information theory).

A pattern exists in state space. State Space is

also a pattern of information. Fundamental to

the concept of a pattern are the criteria that its

constituents must satisfy to be considered parts of

the pattern. These criteria compose the law that

defines the identity and shape of the pattern. Since
it is a pattern in state space, its constituents are

located in state space. For this reason, we consider

that its Law of Location defines a pattern.
The following example will illustrate this

concept. Cars have properties such as weight and

color. Its weight and color contain information

about the car; hence, the pattern of information

that defines the car includes the dimensions of
weight and color. The physical location of a car

at a particular time is also information about the

car, and hence an aspect of its state. Its physical

location is therefore also a property of the car.

Physical space and time may also be facets of

the state space of cars. State space extends and

subsumes the concept of physical space by extend-

ing physical space into additional dimensions to

account for the all the information conveyed by

an object. This leads to the concept of informa-

tion space.

Concepts and meanings need not have a

physical presence. They could be abstractions.

For instance, the concept of enumeration is an

abstraction. Information content of objects like

these, which are actually meanings, may not

involve physical space, time, or properties like

color and texture related to our senses. These ob-

jects exist in information space as pure concepts,

which are abstract patterns of information. As

stated earlier, information space can extend into

physical space to accommodate physical objects

with physical and temporal locations. Hence,

the concept of information space subsumes and

extends the physical concepts of space, time, and

physical properties of objects.

Information space contains all the information

conveyed by an object, which could be a physical

object or an abstract concept. Indeed, it may be

argued that objects that convey exactly the same

information in every way are mutually indistin-

guishable and are therefore identical to each other

because they possess exactly the same footprint

in information space. The concept of object class

conveys information that is common to all object

instances in the class. Reusable information flows
from the concept of Class. On the other hand, the

instance identifier of an object is a symbol for all
the unshared information in information space

that makes an individual object different from the

other individuals in its class, and thereby lends

the object instance its very identity. To create a

pattern, we must have a measure of similarity,

which will serve as the basis for the arrangement

of objects in the pattern: i.e., concepts of similarity

and contrast are at the heart of every pattern.

MEASURE OF SIMILARITY: THE
PROXIMITY METRIC

Similarity and contrast between the constituents

of a pattern are the basis for including or exclud-

ing an item from the pattern. The proximity of

items in state space is a measure of their mutual

similarity. The closer they are, the greater their

similarity. For this reason, we call a measure of

similarity between a pair of objects a Proximity
Metric. The Proximity Metric is an integral part

of the Law of Location and is derived from it.

Other things being the same, two blue cars will

be considered closer in information space than

a blue and red car. Similarly, other things being

the same, if two cars are physically close to each

other, their states are considered to be closer, and

in that aspect, they are considered more similar

than a pair of cars separated by a larger physical

distance. Any measure may be considered to be

a proximity metric, provided it satisfies the fol-
lowing common-sense criteria:

69

The Pattern at the Root of It All

The proximity between a pair of dissimilar

objects cannot be nil or less;

The proximity of an object to itself must be

nil;

The proximity between a pair of objects must

be the same in both directions; and

The proximity of a pair of objects cannot ex-

ceed the summation of proximities of objects

over any trajectory that connects the pair.

Physical distance satisfies all of the criteria
above and is therefore an example of a proximity

metric, or a measure of closeness and similarity

between objects. See Appendix II, on general-

izing measures of distance, for a more complete

discussion of the proximity metric.2

•

•

•

•

THE ONTOLOGY OF INFORMATION
SPACE

A pattern conveys information. The quantum

of information in a message is “the degree of

surprise” in its contents; the more unexpected

an item of information is, the more information

it is considered to convey (see Appendix II on the

measure of information). Therefore, it is some-

what paradoxical that the concept of “everything”

conveys no information. The broader and more

general a concept, the less is its information

content and the larger its scope. When a concept

is broad enough to cover everything, so that it

distinguishes nothing, it conveys nothing.

Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

Figure 4.1A: The ontology of pattern

Subtype of

Subtype of

Subtype of

NOMINAL
DOMAIN

ORDINAL
DOMAIN

UNKNOWN
DOMAIN

DOMAINS
WITH NIL

VALUES

RATIO SCALED DOMAIN

Subtype of

Subtype
of

Subtype of

DIFFERENCE
SCALED DOMAIN

Subtype of

ALL/NOTHING

DOMAINS
WITH LOWER

BOUNDS

DOMAINS
WITH UPPER

BOUNDS

Subtype of Subtype of

Comparison, discrimination and equality start here

Sequence, magnitude start here

Quantitative difference starts here

Multiplication & division start here

Neutrality starts here

The concept of Range
starts here

The concept of connection/neighborhood & structure start here

The concept of existence starts here

DENSE
DOMAINS

The concept of property
(attributes, relationships,
effects) starts here

Effect creates relationship between a value and a temporal object instance

Effect switches relationships between temporal object instances and values

Subtype of

Eg: Physical Space

Eg: Time

Sequenced, dense
domain

Domains with

open bounds

Domains with

closed bounds

Effect can move temporal object instances further or closer to each other

Subtype ofEffects can change sequences/sort temporal objects

DOMAINS WITH
BOUNDS

70

The Pattern at the Root of It All

To this kind of information space, add only the

fact that distinctions exist. Classification schemes
may now exist in this space so that we can make

distinctions between instances of objects, such as

one vehicle being distinct from another, and with a

little more information between classes of objects

being distinct, like the class of cars being distinct

from the class of horses. Patterns of distinction

can exist in this space, but they will convey little

information on the quantum of distinction between

objects in it. The Nominal domain of Chapter II

emerges in this manner.

The information space may consist of col-

lections of domains like these, as well the other

domains that we describe in this chapter. Each

domain could be considered to be a dimension

of information space. This concept is explained

using Candu Compoot’s Story.

Candu Compoot’s Story: The Tale of
Higher Dimensional Arrays

Candu Compoot’s Story describes four and higher
dimensional arrays in a parable with a business
example. It shows how arrays need not always
be patterns of concrete symbols but could also be
patterns of meanings. It demonstrates how lower
dimensional slices of higher dimensional arrays
may also be formatted as arrays:

Count Albeans, the Chief of the accounting

firm of Creative Accounting Inc. is concerned
about the firm’s ability to attract creative, bright
young employees. Count Albeans asks his old

school friend, Canut Compoot, now a corporate

image consultant, to find the kind of image his
firm should project to attract bright and creative
young employees.

Canut Compoot conducts a survey of young

accounting professionals to determine the kind of

reputation they prefer in prospective employers. In

the survey, Canut classifies respondents in terms
of their creativity and intelligence on an ordinal

five-point scale. The lowest position on the scale
is “terrible,” followed by “poor.” “Average” is

in the middle, “Good” follows “Average,” and

“Superb” is highest. He also measures respon-

dents’ willingness to be employed by firms on an
ordinal five-point scale. The lowest position on
the scale is “never work for the firm,” the highest
on the scale is “love to work for the firm,” and
the middle is anchored at “perhaps work for the

firm.” Every respondent is asked to rate his or her
willingness to work for five firms on this scale,
and his or her willingness to work for each is

recorded. The firms are presented to respondents
not by name but in terms of their reputation. The

reputation consists of six parameters: pay, ethics,

conventionality, financial stability, growth, and
concern for work-life balance. Each parameter

is rated on a three-point scale. The lowest posi-

tion on the scale is “poor,” the highest position is

“good,” and the middle is “average.” Canut must

now find what images make creative and bright
respondents like a prospective employer in terms

of these parameters.

Candu Compoot, Canut’s brother, suggests

Canut build a multidimensional array and analyze

the pattern. Respondents’ creativity rating, their

intelligence rating, their willingness to work for

the firm, as well as the firms’ six image parameters
will each be a dimension of this array. In all, the

array will have nine dimensions:

Respondents creativity (“Terrible,” “Poor,”
“Average,” “Good,” “Superb”)

Respondents intelligence (“Terrible,” “Poor,”
“Average,” “Good,” “Superb”)

Attractiveness of firm as employer (“Never,”
“Perhaps,” “Love to” work for firm)
Firm’s reputation as paymaster (“Poor,” “Av-
erage,” “Good”)

Firm’s reputation in terms of ethical behavior

(“Poor,” “Average,” “Good”)

Firm’s reputation in terms of conventional or

unconventional culture (“Poor,” “Average,”
“Good”)

Firm’s reputation for financial stability

(“Poor,” “Average,” “Good”)

•

•

•

•

•

•

•

71

The Pattern at the Root of It All

Firm’s growth prospects (“Poor,” “Average,”
“Good”)

Firm’s reputation in terms of concern for work-

life balance (“Poor,” “Average,” “Good”)

Each cell of the array would map to a position

on each of the nine dimensions above. Thus, there

would be a cell for superbly creative respondents

of average intelligence who would love to work

for a conventional firm of average ethics, good
financial stability, average growth and good
concern for employees’ work-life balance, but

poor pay. Similarly there would be another cell

for individuals with good creativity and superb

intelligence who would never work for a firm of
questionable ethics and financial stability, which is
unconcerned about employees’ work-life balance

and has a reputation for being unconventional,

even if the firm offers good pay and has good
growth prospects.

The cells of the array, suggests Candu, should

contain the percentages of respondents that match

the parameters of each cell. Then, Candu tells him,

Canut can compare the incidence of respondents

of each kind with the kind of image that bright

and creative respondents prefer.

Canut has trouble visualizing a nine dimen-

sional array, but Candu asks him not to worry.

He says Canut can always print two-dimensional

slices, one at a time to look for patterns. For

example, says Candu, if he looks at the data for

only those who were rated Superb on creativ-

ity and intelligence, and would love to join an

unconventional employer that pays well, has

good ethics, is financially stable, then Canut can
compare employers’ reputations, among this

group only, in terms of their growth prospects

vs. concern for work-life balance in the follow-

ing two-dimensional table. The table, explained

Candu, will be a two-dimensional slice of this nine

dimensional array because values the other seven

dimensions have been fixed. This is equivalent to
slicing through them.

•

•

Canut does this and meticulously fills in per-
centages of respondents in each cell. He finds
responses of only 39% of candidates fit this profile,
and they are distributed into the various cells of

the two-dimensional table as follows:

Growth Prospect

Concern for Work-Life Balance

Poor Average Good
Poor 0% 1% 5%

Average 1% 2% 10%

Good 2% 3% 15%

A two dimensional slice of Candu’s nine dimensional ar-

ray

“There you are!” exclaims Candu, “Look at

the pattern in the table! It clearly tells you that

the employer’s concern for work-life balance is

very important. True, the firm’s growth prospects
are important too, but only if the employer is

concerned about employees’ work-life balance.

The two parameters interact with each other very

significantly.”
Canut is quite pleased and calls Count Albeans

to schedule a meeting in which he will present

his recommendations. Count Albeans invites Dr.

Candy Beanstalk, his Vice President of Public Re-

lations, Mr. Candid Beanstalk, his Vice President

of Human Resources, and Mesher Creatively, his

Vice President of Marketing, to the meeting.

When the results are presented, everyone

but Mesher seems satisfied. “I have a concern,”
says Mesher. “Sometimes prospective clients

put a premium on creative accounting. If we

only consider potential employees who insist

on the highest ethical standards, we may crimp

our growth prospects. Instead, we must look

at preferences of bright, creative young people

who would be willing to work for employers of

average ethics.”

Count Albeans looks concerned at this. After

a thoughtful pause, he chimes in: “Yes, Mr. Cre-

atively, you are right. We may miss the big picture

if we consider only two patterns at a time.” He

turns to Candu and asks, “Is there some way we

can look at more dimensions simultaneously?”

72

The Pattern at the Root of It All

“No problem,” says Candu. “I have brought

this latest laptop computer with a three-dimen-

sional display from Gizmos Unlimited, our corner

electronics store. It has the latest display tech-

nology. It has a very special screen that projects

three-dimensional holographic images into the

air above it. Let us look at a three dimensional

slice of our nine dimensional array. As we did

in the two dimensional slice in the table above,

we will consider preferences of respondents of

superb intelligence and creativity, who would

love to work for an unconventional employer

that pays well and is financially stable, but now,
with this three-dimensional display, we will also

look for patterns of ethics, in conjunction with the

parameters we already have in this table.”

He types furiously into his new laptop and

a three dimensional projection springs into the

air above it:

“Excellent, my friend!” exclaims a beaming

Count Albeans as he turns from the pattern in

the air to Candu. “I knew you and Canut were

just the team for this job!”

However, Dr. Beanstalk is still not satisfied. “It
might be even better if we can search for patterns

in all nine dimensions together,” he says.

Candu is rarely at a loss. This is one of those

rare occasions. “Dr. Beanstalk, how on earth

would you do that?” asks Candu. “We exist in

only three dimensions, how could we ever display

nine, even with the best technology that mankind

can ever create, today or in future?”

“I apologize,” says Dr. Beanstalk. I did not

mean to be critical. You have really done a superb

job. All I was thinking was that we could perhaps

use pattern recognition software to look for pat-

terns in nine dimensions. That way we will not

have to actually display the nine-dimensional

array.”

Figure 4.1B. Candu Compoot’s three-dimensional array

Reproduced by permission from Mitra, A., & Gupta, A. , Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

73

The Pattern at the Root of It All

Candid suddenly looked very interested. “I

have just bought a package to do just that!” he

exclaims. I intend to use it to look for patterns in

our employees’ demographic information, and

this might be an excellent opportunity to put it

to good use.”

And that is just what they did. Of course,

because they bypassed the human element to

find these patterns, they did not have to format
the information in arrays that people could see.

After all, Dr. Beanstalk explained, “The arrays

we could see were merely symbols that repre-
sented abstract information. They were symbols

that made it easier for humans to see patterns in

discrete, multidimensional state spaces. Arrays

are formats when they are symbols imbued with
meaning. If they remain concepts, like Candu’s

nine-dimensional array, which we cannot sense

with any of our senses, they are still arrays, but

they are not formats. They are arrays of meaning.

We can still analyze patterns in these arrays, even

if we cannot physically see their contents arranged

in nine dimensions.”

The Array in Figure I.2 in Appendix I subsumes

both roles of arrays. It can be a symbol or an array

of meaning. Arrays that are formats are visual

symbols like the table above, or Candu’s three-

dimensional projections in physical space. These

symbols are subtypes with two parents—Pattern
in Physical Space and Array—both of which are

present in Figure I.2 in Appendix I. The latter

figure incorporates the framework to support both
arrays of abstract meaning as well as formatting

arrays that are symbols we can see.

To simplify our discussion, we will begin

our argument by considering only a single di-

mensional, nominally scaled information space.

The proximity metric in a space like this may

only assert whether a pair of objects is distinct

or not. The concept of the Unknown Domain

and the Unknown Value also emerge from this

proximity metric: those items do differ, but the

quantum of difference is unknown. The Unknown

Domain emerges from the Domain of Nothing,

and the nominally scaled domain emerges from

the Unknown Domain.

Add a little more information to information

space so that it is possible to rank similarities

between objects in it. In such a space, we can

assert that an object is closer to one object than

to another and that the mutual distance between

the two neighbors is larger, smaller, or equal to

the distance of the first object from either neigh-

bor. However, we have no information about the

actual magnitudes of the distances involved.

The concept of Neighborhood implies that there

is an association between objects and that some

objects may be closer than others. The concept of

sequence, or order, also emerges from the ability

to rank objects relative to other objects. As such,

association leads to the concept of neighborhood

and ranking. The Ordinal Domain of Chapter II

emerges in this manner.

For example, we could say that the rank of a

sergeant in the military is located between the

ranks of a private and the major and that military

ranks may be arranged in ascending order. How-

ever, we have no quantitative information on the

magnitude of a sergeant compared to the mag-

nitudes of a private or major. On the other hand,

we may know that a sergeant is two ranks above

a private and that a major is three ranks above

the sergeant. We have quantitative information on

differences between ranks, even though we have

no quantitative information on the magnitudes of

individual ranks. However, the pattern has room

for only discrete differences. Unlike physical

space, continuously varying quantitative differ-

ence may not be available in this space.

Consider a space with a Neighborhood again.

Take any pair of points in this space. We could

insert an object into the gap between a pair of

neighboring objects so that the inserted object is

closer to the objects at the two ends of the gap

than they are to each other. We could then repeat

this procedure, inserting another object into the

gap between the inserted object and one of the

ends of the original gap, and continue repeating

74

The Pattern at the Root of It All

the procedure ad-infinitum, until we have a space
in which it is always possible to find an object
between two others, regardless of how small the

gap between them is. Spaces like these are called

dense spaces. A dense space is a continuum.

Like ordinal space, it has enough information to

quantitatively measure the proximity between

a pair of points; however, unlike ordinal space,

differences in proximity are not discrete. They

form a continuum. The information in a discrete

ordinal space of infinite extent, and a dense con-

tinuum, are structured differently but their degrees

of freedom and information carrying capacity

may be similar. This is how the difference scaled

domain emerges from ordinal domains and the

concept of neighborhood.

Physical space is an example of a dense, differ-

ence scaled space. We cannot quantify magnitudes

of points in physical space, but we can quantify

distances between them and also the ratios of

these distances. We can also conceive of a nil

distance between collocated objects. This leads

to ratio scaled space. Ratio scaled space has the

highest information carrying capacity of all the

spaces that we have discussed, which includes

the nil value. Nil denotes absence of magnitude,

which is different from “Don’t Know,” “Any,” or

“Null.” (Null is the absence of meaning.)

For example, the state space for the intensity of

light is ratio scaled. The absence of light, nil light

intensity, is manifested as total darkness and is a

special point of nil magnitude in intensity space.

Contrast this with a point in physical space, where

each point is similar to every other, serving only

to locate its neighbors, but conveying no informa-

tion on any intrinsic magnitude relative to other

points. As such, ratios between light intensity

are meaningful whereas ratios between points

in physical space are not.

Ordinal space may also have a nil value.

Consider an individual’s preference for fruit. She

might like blueberries the most, followed by apples

and grapes; she may be indifferent to bananas

and dislike oranges. This domain carries more

information than a domain that merely asserts an

order of preference because it conveys not only

the order of preference but also information on

the absence of preference, that is, a nil magnitude

for preference (in our example, indifference to

bananas). Difference scaled spaces and ordinal

spaces with nil values are both obtained from

ordinal spaces and can be considered different

polymorphisms of ordinal space. Dense ordinal

spaces are a difference scaled polymorphism with

two parents: ordinal space and difference scaled

space. See the endnote on the flow of time.
Ratio scaled space joins the two concepts and

is a polymorphism (subtype) with two parents. Its

parent spaces are difference scaled space and the

space with nil values (see Figure 4.1A).

The information carrying capacity of infor-

mation space depends on these properties of its

dimensions as well as the number of dimensions

involved. We will call the number of dimensions

of a space its dimensionality. All of these proper-

ties are polymorphisms of degrees of freedom.

Naturally, the information content of a pattern

in information space cannot exceed that of the

space that holds it.

A pattern in space may be multidimensional

but cannot exceed the dimensionality of the space

that holds it. The larger the number of dimen-

sions of the pattern and the greater information

content of each dimension of the space that holds

the pattern, the greater the information content

of the pattern. When we consider patterns of

multiple dimensions that consist of differently

scaled dimensions, properties of the same pat-

terns may appear to be different depending on the

direction of our perspective in information space.

Moreover, it is always possible to represent the

complete information content of one pattern in

another, provided the information carrying capac-

ity of the pattern representing the other equals or

exceeds the information carrying capacity of the

pattern it is representing (Mitra & Gupta, 2006).

Indeed, in an ontological sense, two patterns of

equal information carrying capacities may be

75

The Pattern at the Root of It All

considered different expressions of their com-

mon parent(s).

We usually think of space as though it were

physical space, in which we can locate a point with

a set of numbers that measures distances, angles,

or both (see Figure 4.2). The preceding discus-

sion showed that information space can be very

different, lacking any information on magnitude,

direction, and sometimes even neighborhood.

Moreover, there are a few disadvantages in us-

ing numbers to represent values. Every domain

contains three values that are absent from the

domain of numbers, namely “All,” “Unknown,”

and “meaningless.” (We will call meaningless-

ness “Null,” as opposed to “Nil”; the Nil conveys

absence of magnitude, whereas Null conveys the

absence of meaning, which includes things that

are impossible. These values are inherited from

the “All” and “Unknown” domains at the top of

the hierarchy in Figure 4.1.) Not all domains have

the Nil value represented by zero in the domain

of numbers. For instance, ratios are meaningless

for difference scaled quantities because the nil

value is unknown. For the same reason, adding

two points in physical space is meaningless: physi-

cal space is difference scaled, which means that

there is no nil value capable of being mapped to

the number zero and that no number can represent

“unknown.” Some of these issues are resolved in

ratio scaled space. For instance, we can meaning-

fully add intensities of light, which are points in

the ratio scaled intensity space because ratio scaled

space does have a nil value that we can map to

the number zero. However, it remains impossible

to represent the concept of an unknown intensity

with a number.

The operation of creating subspaces by remov-

ing dimensions is ambiguous. For instance, we

could create a two-dimensional plane from the

three-dimensional space in Figure 4.2 by con-

straining height to a fixed value or by eliminating
the dimension of height by asserting we do not

know it or do not care about it. This amounts to

assigning “Unknown” or “Any” values to heights.

A constraint increases information, the Unknown

value reduces information, and “Any” reduces

it even more. In general, the two-dimensional

spaces derived by each of these operations will

have different meanings and be very different

from each other in terms of their properties and

information content.

Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

Figure 4.2. Cartesian and polar coordinates in physical space

HEIGHT

WIDTH

LENGTHAngle 1

Angle 2
Distance from origin

Origin

Location

76

The Pattern at the Root of It All

A constrained pattern may be derived from a

less constrained pattern. The constrained pattern

will then be a polymorphism of its less constrained

parent, inheriting its parent’s behaviors and adding

its own. A constrained plane is a polymorphism

of a volume, whereas the relationship is reversed

for a volume derived by making unknown values

of an axis known. These concepts are important

when we carve patterns in information space

(Mitra & Gupta, 2006).

PROPERTIES OF PATTERNS IN
INFORMATION SPACE

The most fundamental and abstract property of

a pattern is the concept of freedom, as measured

by its degrees of freedom. The other properties

of a pattern depend on the kind of information

space that holds it. Each of these properties is

a polymorphism of the generic concept of con-

straint, which restricts the freedom of the pattern

to give it a structure and shape and thereby a

special identity and meaning. This is why every

property of a pattern is a polymorphism of the

topos, or theme of freedom, obtained by adding

information to distinguish one kind of freedom

from another.

Consider an example to illustrate the concept.

The concept of a triangle has more freedom than

the concept of an upright triangle because the

meaning of Triangle will not change if we rotate

it in space, whereas the upright triangle will cease

being an upright triangle if we reorient it. Note

that “Upright Triangle” conveys more informa-

tion than “Triangle” because “Upright” adds

information on orientation. Note that the meaning

of Triangle also contains the meaning of Upright

Triangle. Therefore, unlike our physical concept

of constraints curbing or physically truncating

physical patterns, adding a constraint to a pattern

Figure 4.3. Universal properties of pattern

Ordinal & subtypesDimensionality of pattern

AllDimensionality of state spaceNDimensionality

Ratio scaled spaceRatios of absolute location

Ordinal with Nil valueDifferences in absolute location

Y

Y

Y

Y

Y

Y

Directional?

Spaces with “Nil” value (Ratio

scaled and Ordinal with Nil value)

Absolute locationLocation

Difference Scaled & SubtypesClosed

Difference Scaled & SubtypesOpen

Ordinal & SubtypesBounded (Delimited)

Nominal & SubtypesUnbounded (Undelimited)Delimitation

Nominal & SubtypesFinite

Nominal & SubtypesInfiniteExtent

Nominal & SubtypesPatterns of exclusion

Nominal & SubtypesPatterns of inclusionInclusion vs.
Exclusion

Difference scaled & SubtypesPatterns of separation in terms of ratios of

separation (eg: Physical distance)

Ordinal & SubtypesPatterns of separation in terms of quantitative

differences (eg: differences in military rank)

Nominal & SubtypesRanking patterns

AllPatterns of distinctionCohesion/
Separation

OrdinalSequencing Patterns

AllPatterns of AssociationsAssociation

Valid in (Space)SubtypesParameter/
Feature

Ordinal & subtypesDimensionality of pattern

AllDimensionality of state spaceNDimensionality

Ratio scaled spaceRatios of absolute location

Ordinal with Nil valueDifferences in absolute location

Y

Y

Y

Y

Y

Y

Directional?

Spaces with “Nil” value (Ratio

scaled and Ordinal with Nil value)

Absolute locationLocation

Difference Scaled & SubtypesClosed

Difference Scaled & SubtypesOpen

Ordinal & SubtypesBounded (Delimited)

Nominal & SubtypesUnbounded (Undelimited)Delimitation

Nominal & SubtypesFinite

Nominal & SubtypesInfiniteExtent

Nominal & SubtypesPatterns of exclusion

Nominal & SubtypesPatterns of inclusionInclusion vs.
Exclusion

Difference scaled & SubtypesPatterns of separation in terms of ratios of

separation (eg: Physical distance)

Ordinal & SubtypesPatterns of separation in terms of quantitative

differences (eg: differences in military rank)

Nominal & SubtypesRanking patterns

AllPatterns of distinctionCohesion/
Separation

OrdinalSequencing Patterns

AllPatterns of AssociationsAssociation

Valid in (Space)SubtypesParameter/
Feature

O
rder of a pattern

(pattern of patterns, pattern of pattern of patterns etc.)

D
eg

re
es

 o
f

fr
ee

do
m

 (
in

fo
rm

at
io

n
ca

rr
yi

ng
 c

ap
ac

it
y)

Partition

Subtype
ofCardinality

(No. of participating
Objects)

Cardinality
(No. of participating

Objects)

May be infinite

77

The Pattern at the Root of It All

of information actually extends the meaning of

the pattern in information space by making dis-

tinctions and including these new meanings in

the scope of the pattern it constrained to create

the new meaning.

The essence of a pattern is the minimum

information required to define the identity of the
pattern. If all we need is a triangle, the essence

of the pattern will be “triangle,” not “upright

triangle.” The concept of “essential” emerges

from the concept of the essential pattern (Mitra &

Gupta, 2006). (See Appendix II on the Principle of

Parsimony. It asserts that we provide just enough

information and no more information than neces-

sary to describe a concept unambiguously.)

We could also create a new meaning, “Not

an upright triangle,” by adding a constraint that

excludes all upright triangles. Then we will have

a pair of mutually exclusive items, thereby creat-

ing a partition. Polymorphisms in an exclusion

partition are mutually exclusive; that is, an object

instance may only belong to one subclass in the

exclusion partition at any given moment. We

could also have inclusion partitions, in which an

object instance must belong to every subclass in

the inclusion set if it is a member of any one of

them (Mitra & Gupta, 2006). Unless we other-

wise qualify it, the word partition always implies

exclusion partition in this book.

Every constraint shapes a pattern of informa-

tion by adding more information to other patterns

in information space, which may be meanings,

making them more specific and narrower in scope.
Constraints always bear information and thereby

derive new meanings from old. Conversely, relax-

ing or removing a constraint changes the shape of

the meaning in information space by generalizing

the meaning, reducing the information payload of

the pattern, and broadening its scope. This is how

new learning and innovation are absorbed.

Each kind of space in the ontology of Figure

4.1 inherits the capability of conveying all the

information its parent does, and adds more, creat-

ing room for richer and more specific meanings.

Naturally, the information carrying capacity of

a pattern in information space cannot exceed

the information carrying capacity of the space

that holds it.

Based on these principles, we can infer sev-

eral universal properties of patterns from their

information content. Many of these properties

will depend on the direction from which we ex-

perience the pattern in information space. Figure

4.3 summarizes the discussion below and asserts

which properties of patterns can be directional in

information space; for example, the cylinder in

Figure 4.4 is a pattern that is delimited in some

directions but not in others. In Figure 4.3, items

in a “Partition” are mutually exclusive.3 For the

purposes of this book, it will suffice to understand
that the universal properties of patterns, which

flow from the concept of its essence and its degrees
of freedom, are:

1. Association: Conveys information and is the

basis for the concept of pattern; all patterns

are patterns of association. The fact of as-

sociation only establishes which objects are

mutually involved in a pattern. The concept

of neighborhood starts with association.

The association may have no information

on sequence, direction, or the nature of the

association.

2. Inclusion/exclusion: A pattern may be a pat-

tern of inclusion or a pattern of exclusion. A

pattern of inclusion asserts which objects are

associated with which, whereas a pattern of

exclusion asserts what is not associated, that

is, excluded or dissociated.

The certainty that an association does not
exist conveys as much information as the

certainty that the association exists. Both

are polymorphisms of the topos (the theme)

of association, which merely asserts that the

existence of an association, or a bar against it,

is a certainty. Contrast this with the absence

of information, when we do not know if either

constraint applies.

78

The Pattern at the Root of It All

3. Cardinality: Cardinality is the number of

objects that compose the pattern. Dense do-

mains are a subtype of domains of infinite
cardinality. Patterns like serial numbers,

for example, may not be dense but may go

on endlessly and be constituted of infinite
numbers of members.

4. Sequence: The law that defines the pattern
may or may not consider sequences. Sequence

is a polymorphism of the concept of associa-

tion and neighborhood. Association merely

asserts that two objects are connected in some

way (or not), whereas sequencing rules reduce

the degrees of freedom of the pattern by

specifying the order in which objects must be

arranged in the pattern. A pattern that asserts

that a blue bead must follow two adjacent red

beads on a necklace is a polymorphism of a

pattern that merely asserts that blue and red

beads must comprise the necklace.

Naturally, there can be no sequence for objects

that are located at the same point. As such,

patterns of collocation cannot be sequenced.

Sequence is meaningful only when there is

enough information to make distinctions

between points in information space to en-

able one to distinguish a beginning from an

end.

5. Extent: The concept of extent flows from
the concepts of cardinality and order. The

extent of a pattern might be infinite or finite.
For instance, a straight line of infinite length,
“Serial Number” and “Ancestor,” are all pat-

terns of infinite extent, whereas “Parent” and
the shapes in Figure 4.3 are patterns of finite
extent. Constraints may reduce the extent of a

pattern. Patterns of finite extent are polymor-
phisms of patterns of infinite extent. In this
way, “Enumeration” is a finite polymorphism
of Cardinality, and the concept of Scope is

a polymorphism of Extent (Mitra & Gupta,

2006).

6. Delimitation:Patterns of finite extent may be
delimited by boundaries or not. For instance,

in Figure 4.4, the pattern on the left occupies

a finite two-dimensional space marked by a
clear boundary whereas a similar pattern to

its right also sits on a finite two-dimensional
surface but is undelimited by boundaries that

mark its edge because it has no edge.

Delimiters of patterns are also patterns. For

instance, a circle at its rim delimits a disk; a

word is delimited by a space on both sides,

a sentence by a space at the beginning and a

period at the end, and the concept of “Grand

Parent” by the concept of “Generation.”

 On the other hand, a circle is a finite pattern,
but has no boundaries. Similarly, the concept

of a cycle of 24 hours is finite but is a boundless
pattern. Naturally, patterns of infinite extent

Figure 4.4. Delimiters and boundaries

Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

Finite, bounded
delimited pattern Finite, unbounded

pattern
Finite pattern unbounded in one
direction, delimited in another

Delimiter

79

The Pattern at the Root of It All

are unbounded and can have no delimiters.

The concept of time is a one-dimensional

pattern with no boundaries at either end. We

could think of the pattern as an infinitely long
line. When we add the concept of a 12-month

cycle to the concept of time, it becomes a

polymorphism, which we might visualize as

resembling a helix wrapped around the cylin-

der in Figure 4.3 with its boundaries removed

so that the cylinder stretches from an infinite
past to an infinite future. Each complete turn
of the helix will advance one year along the

time line. The 12-month cycle is finite but
unbounded, whereas the dimension of time

stretches to infinity on both ends. If we add
the information that the year begins on Janu-

ary 1, then a new polymorphism emerges,

which modifies the helical visualization of
the pattern in information space. The helix

now has a delimiter: a “cut,” or edge, on the

rounded surface that marks the beginning

and the end of the cycle of months.

Not all patterns in information space can be

visualized as easily. As we have discussed,

information space may not look like any space

we know; however, patterns in information

space will share these qualities of extent and,

for pattern of finite extent, the quality that
marks the presence or absence of delimit-

ers.

7. Open and closed patterns: A delimiter is a

boundary that marks the edge of a pattern. It

may be specified as an inclusion constraint
that includes the delimiter or an exclusion

constraint that excludes the delimiter. The

two forms are equivalent when we consider

discrete, finite patterns. However, a distinct
polymorphism of delimitation emerges when

a pattern is finite and dense. A pattern may
extend up to its boundary if the boundary

is included or could get arbitrarily close,

even infinitesimally close but cannot touch
its boundary if the boundary is excluded. A

disk that extends to its rim is a subtly differ-

ent pattern from a disk that stays inside the

circle that encloses it without being able to

ever actually touch the enclosing circle. A

boundary that is included in the pattern it

delimits is called a closed bound, whereas a

boundary excluded from the pattern is called

an open bound. In general, dense patterns

are richer in information than patterns that

are not dense, which is how these additional

polymorphisms of delimiters are obtained.

The concept of open bound gives rise to the

concept of “Many” in non-dense patterns of

infinite extent. “Many” is a polymorphism of
cardinality, in which a delimiter at infinity is
excluded from the pattern. For instance, we

may have an infinite series of whole numbers.
To this pattern, we may add a constraint that

infinite numbers are excluded. The series
can include arbitrarily large numbers but

not infinitely large numbers. This is how the
meaning of “Many” emerges.

Indeed, we could also hold the information

in the non-dense pattern of infinite extent in
a dense pattern of finite extent and map the
boundary to a finite value. “Many” would then
translate to a finite open bound that limits the
extent of the pattern. This equivalence may

not be intuitive, but information space does

not always resemble the space we live in, and

its laws are different. This leads to meanings

that are “open.” For instance, the meaning of

“squeeze” is delimited by the concept of no

pressure. It is an open bound. Squeezing can

involve very little pressure, but the complete

absence of pressure is excluded from the

meaning of squeeze, whereas negative pres-

sure may become “stretch.”

8. Cohesion/Separation: This parameter mea-

sures the mutual proximity of the constituents

of a pattern. The more cohesive a pattern, the

less the mutual separation of its constituents,

compared to their distance from objects that

80

The Pattern at the Root of It All

do not constitute the pattern. In information

space, it describes how “loose” or cogent a

meaning might be.

The cohesiveness of a pattern is based on

its proximity metric. As we have discussed

before, nominal patterns may only assert

whether there is a difference between a pair

of constituents or not. In a space with a little

more information, but one that is not quite

ordinal yet, we could also add the concept

of neighborhood and have patterns asserting

that some objects are closer than others but

not by how much. Ordinal space can quantify

differences but not ratios. Similarly, dense

spaces can quantify differences and ratios of

differences. In ratio scaled space, proximity

to the natural nil value may also be used as a

measure of cohesion. As such, the measure of

cohesion could not only use all of the measures

of a nominal, ordinal, and difference scaled

space but also involve ratios of magnitudes

of points in that space.

9. Density: Density is a polymorphism of co-

hesion that we discussed while considering

information space. A dense pattern may only

exist in a dense space. A dense pattern carries

more information than one that is not dense,

and a dense domain has an infinite cardinal-
ity.

10. Dimensionality: The dimensionality of a

pattern may not exceed the dimensionality of

the space that holds it. A three-dimensional

space may contain zero-, one-, two-, and

three-dimensional patterns. One and two-

dimensional patterns in a three-dimensional

space may be straight lines and flat planes
respectively or could twist and warp in three

dimensions (just as the one-dimensional line

might warp into two or three dimensions).

The information content of a pattern will

depend on its dimensionality as well as on

the minimum dimensionality of the space

required to hold the pattern. Generally, the

greater the dimensionality of a pattern and

the higher the dimensionality of the space that

holds it, the larger the information content of

the pattern.

11. Equivalence of patterns: A pattern may

represent another without loss of information

if its information carrying capacity equals

or exceeds the information content of the

essential pattern it is representing. This is

why nominal and ordinal patterns of finite
extent only require symbols to represent

them, whereas dense patterns need symbols

and units of measure, which in turn must be

physically represented by other symbols. A

symbol is a discrete pattern in physical space,

which we can sense. When it represents in-

formation, we call it a format. Symbols are

discrete, countable patterns. On the other

hand, dense patterns have infinite cardinal-
ity. Therefore, symbols by themselves do not

have enough information carrying capacity to

convey all the information in a dense pattern.

However, there are infinitely many numbers.
Therefore, numbers may represent dense

domains without losing large amounts of

information. (We will still lose “Unknown,”

“Any,” and “Null.”) Numbers can be formatted

as symbols. Each map from value to number

is a unit of measure, which can be represented

by a symbol. For example, weight is a dense

pattern; the textual words pounds and lbs
are symbols for the measure of weight called

pound.

In this book and its companions, the term

full format refers to the format of the number

and the format of the unit of measure con-

sidered as a set. Full formats are required to

physically represent dense patterns such as

difference and ratio scaled values in informa-

tion space. There are an infinite number of
possible units of measure and uncountable

numbers of formats for each (Mitra & Gupta,

2006). Non-dense patterns of infinite extent
also have infinite cardinality. Finite sets of
symbols cannot completely convey all the

81

The Pattern at the Root of It All

information in them. However, dense patterns

of finite extent can represent the information
in them. The kind of pattern required would

depend on the cohesion of the infinite pattern
it is representing. Patterns of infinite extent
may be represented by dense patterns of finite
extent without loss of information (see the

additional reading on set theory and cardinal-

ity of classes suggested in Appendix III for a

more complete coverage of these issues).

Each of the parameters of the pattern that

we have described is a polymorphism of its

degrees of freedom, and each contributes to

the overall degrees of freedom of the pattern.

Many of these polymorphisms are directional

in state space (see Figure 4.3) and can interact

in complex ways. For instance, in a mirror

image, both separation and sequence must be

preserved, except in the direction of reflec-

tion, when separation is preserved but not

sequence (sequence is inverted, turning left

into right).

Similarly, when size and orientation are not

essential parts of the pattern but only shape

is; the angular separation is preserved but

not absolute positions or linear separation.

Both angular and linear distances satisfy the

criteria for being a proximity metric and each

is a polymorphism of that concept.

12. Order of a pattern: Patterns may be consti-

tuted of patterns, which in turn may constitute

patterns and so on. The order of a pattern is

defined as the number of levels of patterns
involved in defining a pattern. Accordingly, a
pattern of patterns is a second order pattern.

A pattern of patterns of patterns is a third

order pattern, and so on. The concepts of a

governing process and the order of governance

are derived from this concept.

The figures in Appendix I capture the seman-

tics of Pattern.

DOMAINS OF MEANINGS VS.
FORMAT

The preceding sections showed how the generic

concept of measurability is derived from patterns

and normalized in the concept of Domain. The on-

tology of domains follows the ontology of Pattern,

which recognizes both qualitative and quantitative

measurement. The concept of a property of an

object is derived from its measurable behavior and

thus from its relationship with Domain. Meanings

are derived from the bald domains in Figure 4.1,

described in previous sections, by adding infor-

mation to them until they acquire business and

physical meanings as described in Box 4.2. Boxes

4.5 and 4.6 describe how relationships between

domains can create new meanings. This is one

way that automation can assemble new meanings

from its legacy of learning, adapting, and change

in response to new knowledge.4 Domains are

stateless classes of values. Temporal objects like

buildings, organizations, and persons cannot exist

unless they exist for a finite span of time. They are
stateful objects, and their properties are derived

from domains. Every feature of a temporal object

draws its value from a domain of meaning. At

any given moment, the feature can have only a

single value, which includes “Unknown,” “Any,”

a range, or a region of state space. The collection

of values of all features of a temporal object at a

given moment in time is its state at that time. A

temporal object like a car would qualify and limit

the meaning of a value like “weight” drawn from

the Weight Domain and constrain its meaning to

“Weight of Car.” Events may then change these

values. Boxes 4.5 and 4.6 describe domains and

their interactions.

Abstract concepts must be physically repre-

sented in an information system with symbols that

we can sense. Symbols are objects that we can

see, hear, touch, smell, or taste. A symbol must

82

The Pattern at the Root of It All

be a physical pattern we can see (like a shape or

text), a pattern of sound (for example, a spoken

word or a chime), a haptic (touch) pattern we can

feel with our sense of touch, or a pattern of odor

or taste. When symbols represent information,

they are said to format it. Box 4.1 describes how

symbols may format information.

Note that our five senses are the basis of five
formatting domains, based on sight (for example,

figures, pictures, and written words), sound (for

example, a spoken message or a tone), touch, odor,

and taste (not widely prevalent representations in

information systems yet), each of which normal-

izes different kinds of behavior. For instance, the

visual domain normalizes the sensation of color

as well as behavior like rotation of symbols in

physical space, the auditory domain normalizes

sensations such as the pitch and loudness of sound,

and the haptic domain normalizes sensations such

as heat and roughness.5

Formatting Rules: The metamodel of Format merely maps a value to a symbol. Figure 2.4 illustrates this. Figure A shows

the detail behind “expressed by” of Figure 2.4. Note that the Object Set in the “expressed by” relationship enables multiple

(optional) context dependent expressions of a value.

Figure A. Metamodel of Format maps Values to Symbols
Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New
York, NY: Cambridge University Press, 2006.©

Note that symbols may consist of arrangements of other symbols. A string of characters is a one-dimensional sequence

of symbols. Similarly, written sentences are sequences of written words, which in turn are sequences of alphabets. Symbols

may be patterns of other symbols, which in turn may be symbols that consist of yet other symbols that are themselves

patterns of symbols and so on. These symbols within symbols may thus be patterns that can be reused across more than

one set of symbols. Patterns need not always be one-dimensional strings of characters. They could be multidimensional

visual, auditory, and other patterns in any of the five fundamental formatting domains, or their combinations, based on
our five senses.6 The recursive relationship on Symbol in Figure A represents this fact.

Consider the role of Object Set. The Object Set of Figure A is one role of Set of Object States shown in Appendix I,

Figure I.2. Set of Object States had two partitions we had discussed. One partition of this space contained the pattern—the

symbol in Figure A, while another contained objects that influenced the pattern. The Object Set in Figure A is the set of

objects that influence the pattern. The foundation of format is the object being formatted. Therefore, that is the single

Box 4.1. Metamodels of format, format conversion, encryption, and formatting constraint

continued on following page

83

The Pattern at the Root of It All

most critical object that influences the symbol it is mapped to. The particular object must always be a member of Object
Set in Figure A. This is mandated by the inverse relationship between Object Set and Value. Object Set in Figure A must

always have one member—the value being formatted.

Consider the formatting behavior of the Object Set in Figure A. It gives us the capability of representing values in dif-

ferent formats depending on the context of the value. The object set has the context, and the rule expression has the context

sensitive map. The rule expression could map different values to different formats depending on states of objects in Object
Set. For example, the size of a drawing may be automatically scaled up or down, depending on the size of the frame it will

be displayed in; the color of text may be black, if the background is light, or white, if the background is dark and so on.

Figure A of Box 4.1 is the metamodel of format. The Object Set in Figure A of Box 4.1 not only maps values to symbols

but contains the context of the map as well. The map is polymorphic, and its parameters are members of Object Set.
Consider how the recursive relationship on Symbol in Figure A normalizes the information content of Format. Suppose

all values of an attribute (such as the temperature of an oven) in a certain range are displayed in red and are accompanied

by an audible signal. The audible signal is merely a different expression of the value, as are the colored visual symbols of

value. Each is a different format of the same Attribute Value. Together, the formats constitute a pattern synchronized in

time. Equally, with its constituent symbols, this composite pattern is a format too. The composite pattern normalizes rules

of synchronization between its constituents. Each constituent inherits different normalized behavior from a fundamental

formatting domain. This is how the recursive relationship on Symbol in Figure A normalizes the behavior of format and

how the normalized behavior flows from format to the expression of an attribute.
We have seen how the state of the symbol that represents it may be contingent on the state of the object it represents.

We have also seen how the state of the symbol could also be contingent on states of other objects in Object Set. These

states may even involve “don’t know” and null values. As such, formats may depend on whether certain objects or states

exist and whether they are known or not. If the originator of an e-mail attachment is unknown, the mail header might be

highlighted in red. Similarly, an operation that adds to the height of a shape is meaningless in two dimensions. Two-dimen-

sional shapes have only length and breadth, and hence their heights are “null.” The symbol that represents the operation

on a screen may be grayed out (a format) or excluded (the state of the excluded item is “null”). The members of Object Set
establish the context of Format, the symbol.

Often a formatting rule will apply only to values of a specific attribute. For example, a formatting rule might assert
that heights of mountains greater than 9999 must be expressed in exponential format. This formatting rule applies only

to a specific attribute of a specific object class—the height (an attribute) of a mountain (an object class). Formatting rules

can also apply to values of all attributes that map to a domain. These generic formatting rules will be directly linked to

domains, and all attributes that map to the domain will inherit the rule. The link between Value and Attribute in Figure A

of Box 4.1 represents rules that apply to values of specific attributes, whereas the direct link between value and domain is
for rules that are generic to all attributes that draw on that domain. (See the discussion of Figure C in Box 5.1 to understand

why the relationship between Attribute and Value is a subtype of the relationship between Value and Domain). An example

of a generic formatting rule is a rule that maps all values with an absolute magnitude greater than 9999 to an exponential

format. It is a rule attached to the Quantitative Domain of Figure 2.4. All quantitative domains such as height, weight,

and money are subtypes of the Quantitative Domain of Figure 2.4 and will inherit the particular rule.

Formats are the bridge between meaning and its presentation in tangible symbols to man or machine. This bridge

was not built by nature, but is arbitrarily determined by the hands of men and women who design business processes and

information systems. That is why we must make it context dependent by making the expression of a value depend on

Object Set in Figure A of this box.

Meanings may be context sensitive. Polymorphism supports this concept. A set of objects may be parameters that

influence the form a relationship or object assumes. Figure A shows that representation may also be influenced thus. Object
Set is a pattern that establishes the context of the format. The object set has all the attributes and emergent properties that

we had discussed under patterns, earlier in this chapter. Object Set could be a true set, in which items are not repeated, or

a list. Format may depend on states of members of Object Set and on emergent properties of Object Set, the pattern.

For example, the number of repetitions of a specific object is an emergent property of Object Set, the pattern (see

Object Occurrence Value in the metamodel of Pattern). We could color symbols that represent duplicated objects red.

Box 4.1. continued

continued on following page

84

The Pattern at the Root of It All

The color of a symbol is an indicator of its state. This is an example of how the state of format can depend on an emergent

property of Object Set, the pattern.

Indeed, there is no bar on making the format contingent on any emergent property of Pattern, like extent, dimensional-

ity, and the other attributes we discussed under Pattern, or the states of any of its constituents. Remember, relationships are

objects too and may be among the pattern’s constituents. Relationships represent interactions between objects, and there

is no bar on making formats contingent on complex interactions if need be. Indeed, constraints imposed by technology

are constraints imposed by physical devices7 used to support requisite formats. This is an integral part of business process

automation. Figure A is a bridge and a transform that links business meanings with symbols and information systems. It
is a bridge between Business Rules and Interface Rules layers of the Architecture of Knowledge in Figure 3.4. (Later in

this book, we will articulate other transforms that take us from one layer of Figure 3.4 to another.)

Format Conversion Rules: Formatting Rules map Values to Symbols, and Format Conversion Rules map one set of

symbols (or patterns of symbols) to other sets of symbols (or patterns of symbols). The metamodel of format conversion

is very similar to Figure A. The sole difference is that Value, on the left side of the diagram, is replaced by Symbol, and

the Object Set must contain the Symbol, not the Value being mapped to a symbol. Naturally, in Figure B, the fragment

from the metamodel of Attribute in the top lefthand corner of Figure A will be replaced by the structure relating Symbol
and Formatting Domain on the right side of the figure. Figure B follows from Figure A.

Figure B. Metamodel of Format Conversion maps Symbols to Symbols
Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New

York, NY: Cambridge University Press, 2006.©

Figure B is another polymorphism of Represent, in which both the object that is represented, and the object that

represents it, are symbols. The object set in Figure B of this box provides the capability to represent translation rules that

depend on combinations of objects. This structure supports context sensitive translation.

Just as it was mandatory for the object set in Figure B to contain the value it was formatting, it is mandatory for the

object set in Figure B to contain the symbol that it is converting. Symbols, as discussed under patterns, are perceptible

patterns. At least one object in the object set of Figure B, if not more, must be a pattern.

Patterns are arrangements of objects. We have discussed how a pattern involves existence, sequence, extent, delimita-

tion, position, proximity, and all the other attributes described by its metamodel (shown in Appendix I, Figures I.2 and

I.3). All of these attributes describe the state of a pattern and may influence the translation of one symbol (or pattern) to
another. The metamodel in Figure B supports this kind of behavior.

Symbols are not abstract like the meanings they represent. They must exist in physical space and time. In addition to

space and time dimensions, symbols inherit dimensions from their formatting domains, such as color and size from visual

Box 4.1. continued

continued on following page

85

The Pattern at the Root of It All

domains, or cadence, pitch, loudness, and timbre from audible domains, and yet others from olfactory, tactile, and taste

domains. Symbols are patterns in one, two, three, or higher dimensional state spaces,8 and so are formats. The metamodel

of Format Conversion is simple, but it supports complexity; it also supports simplicity. When an object set consists of a

single symbol, the translation rule becomes a simple symbol substitution rule. For example, a tone may also be mapped

to a waveform on an oscilloscope. This is a translation from the audio domain to a two-dimensional visual domain; it is

also a substitution of a symbol in one kind of formatting domain with that in another.

Format conversion is constrained by physical devices used to support requisite formats (which is an integral part of

business process automation), as well as by whims of users and systems designers. Therefore, they may be arbitrary and

complex9 or intuitive and simple. Object Set, the pattern in Figure B, can support simple, complex, and even arbitrary

format conversion rules because it is a pattern, and patterns may be simple, complex, and even arbitrary (see nominally

scaled proximity metrics and “patterns by decree” under Proximity Metric). The business process to populate Object Set
with the right members, such as actors (systems or individuals), devices, and business processes that frame the context of

format conversion and the conversion, will take them into account.

Thus, the object set in Figures A and B could account for complex context sensitive rules. For example, it might

mandate inclusion or exclusion of specific states and regions in state space for formatting symbols; it could account for

interactions between values or interactions between states of the symbol. Interactions between objects are represented

by their relationships with other objects. Relationships are objects too and may belong to object sets. Object sets support

the far greater complexity that patterns demand for context sensitive formatting and context sensitive format conversion.

Format and format conversion, after all, are patterns of rules.

As with formatting rules, format conversion rules can be either generic or specific. A given conversion may apply
to all symbols, only to specific numbers, only to specific domains, specific values, specific objects, specific attributes of
objects, or combinations of these. It all depends on their membership in Object Set.

A domain can be inferred from a value and an object from an attribute; hence either a value or a domain, and either
an object or its states may participate in such combinations. When it is the domain that matters, then all values in that

domain will be formatted in the same way (or will influence the format conversion in an identical fashion). When specific
values (or ranges) matter, only specific values or ranges will be formatted the same (or will influence the format conver-
sion). When conversion is contingent on only the existence (or not) of object instance(s), the format will depend only on the

membership of the object in Object Set; but when the state of the object also matters, the value set must contain relevant

states (or regions of state space) and only those states in the Object Set will be converted (or influence format conversion).
Note that the object set in Figure B must contain at least one object—the symbol being translated.

Format conversion is a relationship between two symbols. Thus, Format conversion is recursive on symbol.

May be contained in 0 to many
[contain 1 to many]

Symbol

Map to 1
[mapped by 0 or 1]

Expression of Rule

term in 0 or more
[conjoined via operator with 0 or more]

Object Set

May be used in 0 to many
[involve values in 1]

RULE
MEANING

Expressed by 1 or more
[express 1]

May be pattern in 1 or more
[be contained in 0 or more]

Figure C. Format conversion is a recursive aggregate relationship.
Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New
York, NY: Cambridge University Press, 2006.©

Box 4.1. continued

continued on following page

86

The Pattern at the Root of It All

Format Conversion and Encryption: Symbols are patterns, and patterns are lists or sets in state space. Format con-

version rule expressions like those in Figure C may involve not only states of patterns but also impute values to patterns.

Imputed values stem from the fact that we can arbitrarily associate a value or rank with a symbol (or pattern of symbols).

Imputing a rank or magnitude to a symbol is a map from Symbol to Value; it is similar to the relationship in Figure A,

except that it is in the reverse direction. To arrive at this reverse relationship, we could switch Value with Symbol and Value
Set with Symbol Set in Figure A. It is another polymorphism of the generic Represent relationship.10

Indeed, imputed values constitute a pattern of arbitrary, unsequenced association between a value and a symbol (see

Patterns in State Space). Let us return to Candu Compoot’s story. Instead of rating reputation for ethical behavior in terms

of Poor, Average, and Good, Candu Compoot may have assigned an arbitrary value of 10 points to the first cell of the
three-dimensional array in Figure A, 20 points to the next cell, 30 points to the third cell, and so on, increasing the imputed

value of each cell by 10 points until he reached the last (81st) cell, and imputed a value of 810 to it. Of course, had he treated

these as ratio scaled scores and done any statistical tests that ignored the true ordinal nature of his measurements, he might

have arrived at erroneous conclusions, but there is no bar against merely imputing a value to a symbol. He would merely

be creating a pattern.11 Imputed values are useful in encrypting or decoding information. Imputing a value, or pattern, to

a symbol or another value is merely another role of the Represent relationship and is similar to format conversion.

As stated early in this chapter, formatting symbols have attributes they inherit from the formatting domains. Format

conversion may therefore involve not only symbol conversion but conversion of symbol states as well. It boils down to

mapping symbols being converted to specific states of symbols they are converted to.
Indeed, each formatting symbol may be distinguished from every other symbol based on both the meaning and value

of its attributes. The brightness of a visual symbol may be mapped to the loudness of an audible signal; its color might

convert to pitch, the shade to timbre, and its size to cadence. These are maps between meanings in each formatting do-

main. On the other hand, it is not just brightness, the meaning that is mapped to loudness, another meaning. A specific
magnitude of brightness is also mapped to a specific magnitude of loudness. This is a map between values of attributes.

States are patterns of unsequenced association between attribute values. Format conversion converts not just bare symbols

but their states and patterns as well.

These maps are relationships. The relationship between attributes is the class of the relationship object, and those

between instances of attribute values are instances of the class. These maps can normalize and represent the extent of our

knowledge as well as the extent of our ignorance about format conversion. The state of the class level map between the

attribute being represented, as well as the attribute representing it, may be “do not know.” If this happens, the instance level

maps to become “do not know.” The class level map could also be “null”; that is, we know that it does not exist because it

is barred, and therefore we know that the instance level maps also cannot be.12 The state of the class level map may also

be constrained by a value constraint to “Null or Unknown.”13 When this happens, we do not know if the instance level

maps can even exist. The same constraints, similarly applied to instance level maps, indicate the extent of our knowledge

about conversion between specific states.
This discussion tells us why, when we configure knowledge from knowledge artifacts in an electronic repository,

the configuration management software must automatically check for consistency between instance level and class level
rules. The software must issue an exception if rules will become inconsistent so that one can make the right amendments

to keep knowledge normalized as one adapts software to changing business rules or to align software with new informa-

tion in new scopes.

Accuracy of Formats and Encrypted Information: Symbols carry meaning. Only then are they formats. This mean-

ing is information. If they lose information when one format is converted to another, they will lose some (or all) of their

meaning. Remember how meaning was lost in the examples in Chapter II when we divided irreducible facts. In order

to preserve the information content of the symbol being converted, the governing rule is: the degrees of freedom of the
essential pattern being converted must not exceed the degrees of freedom of the symbol it is converted to. Otherwise,

meaning will be lost. We will call this the golden rule of encryption. The discussion on information carrying capacity of

symbols on page 181 of [337] of Appendix III makes it clear why this must be so. Meaning will be preserved if informa-

tion is not lost in the conversion of symbols to symbols or meanings to symbols.

An object is a collection of attributes that lend meaning to its state. Attributes have values that instantiate the state.

As we have seen in the example above, when one object represents another, we must not only map attributes of the object

Box 4.1. continued

continued on following page

87

The Pattern at the Root of It All

being represented to those of the object representing it, but also map values of attributes of the object being represented

to values of attributes of the object representing it. Two laws apply to represent the relationship between objects—one

for mapping the meaning of state and the other for mapping instances of state. This is true for formatting rules, format

conversion rules, and rules that impute values to symbols. All these relationships are subtypes of the generic representa-

tion relationship. The laws for mapping states of objects to states of the objects that represent them are inherited by each

subtype of represent.
The generic Represent relationship (the relationship class) articulates the fact that an object may represent one or

more objects and, in turn, be represented by one or more objects. There is no injunction against mapping a single state of

the object being represented to many states of the object that represents it, nor is a single state of an object representing
another object barred from representing several states of the object(s) it is representing (see the example in the footnote).14

This is true for both kinds of maps—the one that maps meanings of attributes, as well as the one that maps instances of

states. Ill-considered representations of both kinds can be problematic. When many states represent one state, we might

denormalize information and create the very problem we are trying to solve in this book. When one state represents many,

we may lose information.

We will lose information when an object with fewer degrees of freedom represents an object with greater degrees of

freedom because the object with less information carrying capacity (fewer degrees of freedom) will simply not support

the requisite number of states needed to represent all the information that the object it is representing may carry. For ex-

ample, if we map ratio scaled states to an object with a nominally scaled state space, we will lose information. Nominally

scaled states are discrete and cannot represent the continuum of states that a ratio scaled attribute can. As such, some

ratio scaled states will be lost.

Objects are patterns, and if the object being represented does not fully use its information carrying capacity to store the

essential pattern in it (see The Essence of a Pattern in Chapter IV), we might preserve the meaning of the essential pattern

even if we represent it with another pattern with fewer degrees of freedom. We can do this if the degrees of freedom of

the essential pattern do not exceed that of the symbol that represents it. For example, in Candu Compoot’s story, Candu

Compoot could have imputed a score of 1 to a “poor” rating, 2 to “average,” and 3 to “good” (see Figure 4.1B). However,

the essential pattern in the ratio scaled state space of these scores would remain an ordinally scaled pattern, and it could

be mapped back to an ordinally scaled state space without losing its meaning.

Fortunately, there is a simple solution. However, simplicity comes at a price. We will need to sacrifice the set of all
possible ways one object may represent another and focus on only those conversions that map a single attribute of the ob-

ject being represented to a single attribute of the object representing it. We will also map a single state of the object being

represented to a single state of the object representing it (and thereby sidestep the problem of denormalization).

The metamodel of Proximity Metric in Appendix I can help to identify a subset of objects that can carry all informa-

tion in the objects it is representing and denormalizes none of it. The following rules are based on the information content

of the different kinds of patterns we discussed in this chapter:

Each attribute of the object being represented will map to exactly one attribute of the object that represents it.

A single value may not be represented by several values.

Multiple discrete values may not be mapped to a single discrete value that subsumes the discrete values mapped

into it.

Attributes that have a continuum of values may not be mapped to attributes with discrete values.

Ratio scaled attributes must be mapped to ratio scaled attributes only.

Difference scaled attributes may be mapped to difference or ratio scaled attributes.

Ordinally scaled attributes may be mapped to ratio, difference, or ordinally scaled attributes.

Nominally scaled attributes may be mapped to ratio, difference, ordinally, or nominally scaled attributes.

Rules 1 and 2 ensure that normalized information stays normalized. Rules 3-8 prevent information loss. We will call

the collection of the eight rules above Rules of Simple Representation. Rules 5-8 are tabulated as follows. Checked cells in

1.

2.

3.

4.

5.

6.

7.

8.

Box 4.1. continued

continued on following page

88

The Pattern at the Root of It All

the table indicate that corresponding representations will preserve information. Unchecked cells show which representa-

tions may lose information:

REPRESENTED ATTRIBUTE
REPRESENTING
ATTRIBUTE Nominal Ordinal

Difference
Scaled Ratio Scaled

Nominal

Ordinal

Difference Scaled

Ratio Scaled

Rules 5-8 of Simple Representation

The internal structure of the symbol, on the right side of Figure B, is a hierarchy like the hierarchy of domains (because

information carrying capacity is progressively added as we go down the hierarchy).

Rules of Simple Representation always ensure that an object representing another object does not violate the golden

rule of encryption. Symbols are objects, and the Rules of Simple Representation will apply to formatting symbols. The

Rules of Simple Representation will ensure that we can convert formats and impute values without losing information.

As such, we can encrypt information in a way that will not distort meaning and convert formats without losing informa-

tion in the conversion. Once the meaning is lost, it cannot be reacquired by merely decoding encrypted information or by

converting one symbol to another. Lost information is simply not present in the symbol or object, and one cannot wring

blood from stone!

Of course, there may be more complex maps that also preserve meaning, but we have sacrificed them. The Rules of
Simple Representation listed above will not exhaustively give us all possible symbols that have enough degrees of freedom

to represent the meaning in an object, but they will give us only those that do, and that is often good enough.

However, as we have seen, Simple Representation can sometimes exclude some very useful patterns and formats such

as arrays that categorize states of objects into categories represented by cells of the array. (Note how Rules 3, 4, and 6

would have excluded the array in Figure 4.6.) Arrays can help us to classify and to recognize complex multidimensional

patterns (like object instances, their states, and their histories). When we map object instances into cells of an array, we

must abandon the Rules of Simple Representation. Each cell of the array may categorize several states of the object that

map to it. In contrast, as we will soon see, Simple Representation is also not good enough when encryption requirements

mandate violation of Simple Representation in order to deliberately obfuscate meaning. Here is an example of a complex

object that has enough information carrying capacity to represent another but obfuscates meaning and is excluded by the

rules of simple representation:

In Candu Compoot’s story, we could map a single ordinal attribute, Concern for Ethical Behavior, to two ordinal at-

tributes, one nominal attribute and two objects. One object would have two attributes. One attribute would be ordinally

scaled and be restricted to only two values: poor and average. The second attribute would be a nominal yes/no attribute

that would represent the value good. Furthermore, we could add a mutual exclusivity constraint between the value yes, of

the yes/no attribute, and values of the other attribute (via relationships between partitions).

The other object would contain the order of each attribute in the first object. Accordingly, this object will rank Good
above Average.

The ordinally scaled attribute of the first object has ensured that Poor and Average are mutually exclusive and Average
is ranked above Poor. The constraint between partitions has ensured that Good, Average, and Poor are mutually exclusive.

The second object has established that Good is better than Average (which has already been established as better than

Poor). The information on ranks of values has been preserved by this pattern and all three values, Good, Average, and

Poor, would also continue to be mutually exclusive in the resulting pattern.

The original attribute has not lost any information in the translation, but the composite pattern, the object it is translated

to, is indeed a complex pattern. It is also clumsy. Regardless of how complex and clumsy it might be, it is a pattern that

does not violate the terms of represent, the relationship, or the golden rule of encryption. Hence, the model is “correct,” if

clumsy. It can express all the information in the pattern it represents accurately and completely, even if it does not do so

simply and elegantly. The Rules of Simple Representation will exclude this configuration of objects.

Box 4.1. continued

continued on following page

89

The Pattern at the Root of It All

The eight Rules of Simple Representation are often good enough, but they may not be good enough for complex en-

cryption needs. Sometimes, when the need for security is paramount, the requirement might be to deliberately obfuscate

meaning, and rules of encryption may be deliberately made commensurately obtuse. Encrypted information may even

be deliberately denormalized, and the same information may be represented in different formats in different places and

times. Encrypted information may be deliberately fragmented and distributed among multiple objects, some of which are

called “keys” to others. The results may be deliberately made complex and clumsy because the purpose of this kind of

encryption is not elegance and simplicity. Rather it is obfuscation.

Patterns lose degrees of freedom, and their capacity for representing and conveying meaning as constraints are slapped

onto them. No translation, however much it might obfuscate meanings being translated, may violate the golden rule of

encryption and still preserve all its original meaning. Appropriately, unrestricted formats must be chosen to represent

objects commensurate with their richness of meaning, the information content, of the object the format is representing.

For example, the full meaning conveyed by a single image of a rich and complex painting by a master artist can never be

described by an epiphany of words, whatever its volume, elegance, or scale.

Figure D shows what kind of maps may go between what kinds of states when one object represents another. It articu-

lates the detail behind the Represent relationship and demonstrates the polymorphic nature of represent.
The broken lined arrow is a value constraint between the information carrying capacities of the object being represented

and the object representing it. If we remove the value constraint (or weaken it—say, by limiting the difference between

information carrying capacities), representation may still be possible but with less and less precision once the information

carrying capacity of the object that is representing the other object falls below that of the object it is representing. If we go

on reducing the information carrying capacity of the object that is representing the other object, it will eventually become

a mere token for the existence of the object it represents, like the diagramming symbols in this book are only tokens for

the meanings you have been studying in it.15

In following figure, when the object on the right is a symbol, Figure D will become the metamodel of format—the
additional detail behind Figure A. When both objects, that being represented and that representing it, are symbols, Figure

D will become the metamodel of format conversion—the additional detail behind Figure B. When only the object on

the left is a symbol, Figure D will become the metamodel for imputing values (or objects, as we have been doing in our

diagrams) to a symbol. Thus, Figure D captures the polymorphic nature of represent.
Different components of knowledge may be “snapped” into place and the behavior of the represent relationship will

change commensurately to serve different ends. In the description of Figure D that follows, we will emphasize its role in

format conversion, but keep in mind that the same description will apply to its other roles as well, including that as the

metamodel for encryption of both symbol and meaning.

Object
Attribute

Value

Attribute

Rule Expression

(Only) Ordinal or Nominal
Rule Expression

(Only) Nominal
Rule Expression

Must take
only 1

[of 0 or more]

Ordinal
Value

Nominal
Value

Domain based
(nonexhaustive)

Partition
(inherited)

(inherited)

Map to 1
[mapped from 0 or 1]

(subtype)

term in 0 or more
[conjoined via operator with 0 or more]

Subset of

Subset of

Map to 1
[mapped from 0 or 1]

Su
bt

yp
e

of
Su

bt
yp

e
of

Mapped by 0 or many
[map 1]

(subtype)

Object Set

in
fl

ue
nc

e
0

to
 m

an
y

[i
nf

lu
en

ce
d

by
 0

 o
r

 1
]

(s
ub

ty
pe

)

*

RULE
MEANING

*

1

Exclude
rules with
Arithmetic
operators

Exclude rules
with ranking
operations

ObjectValue

DOMAIN

Is
 r

ol
e

of
 1

Is
member

of
Attribute

M
ust take only 1

[of 0 or m
ore]

Value

DOMAIN

Is role of 1

Is
member

of

M
ust take only

1

[of 0
or m

ore]

Object
Attribute

Value

Object

M
ay participate in 0 or m

ore
[contain 0 or m

ore]

Map to 1
[mapped from 0 or 1]

REPRESENTED BY

FORMATTING
DOMAIN

Is member of

is property of

Is member of

is property of

THIS SNAP-ON KNOWLEDGE COMPONENT WILL MAKE “REPRESENTED BY” INTO “CONVERT FORMAT”

CANNOT EXCEED

Information
Capacity

Information
Capacity

ObjectMust take only 1
[of 0 or more]

Sets are equalSets are equal

Sets are equalSets are equal

E
xpressed by 1 or m

ore
[expression of 1]

0..*

Mapped by 0 or more
[map 1 or more]

in
fl

ue
nc

e
0

to
 m

an
y

[i
nf

lu
en

ce
d

by
 0

 o
r

 1
]

(subtype)

(subtype)

Map to 1
[mapped from 0 or 1]

(subtype)

Figure D. Metamodel of representation
Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New

Box 4.1. continued

continued on following page

90

The Pattern at the Root of It All

York, NY: Cambridge University Press, 2006.©
Start at the top left hand corner of Figure D. Attributes may be nominally, ordinally, difference, or ratio scaled. We

understood how symbols inherit attributes from formatting domains early on in this chapter. Formatting attributes are

attributes of the formatting symbol.16 The object labeled Object Attribute Value in Figure D is the value of an attribute (at

a given moment in time) of a specific object. If the object is a symbol, the attribute value is a property of its formatting
domain. The attribute is the meaning of the property, and the value is an instance of the property. For example, if the object

is a tone, the attribute may be the pitch of the tone. A tone is an audio symbol and pitch is its attribute.

The three relationships shown separately between Object Attribute Value and Object, Attribute, and Value are intrinsi-

cally a part of a single atomic rule, a three way relationship represented by Object Attribute Value. The three relationships

are inseparable. The equality constraint between the three represents their inseparability. (We will understand that Object
Attribute Value is a kind of relationship between an attribute, an object, and a value in a domain of meaning.)

A characteristic of the object being translated may map to one or more characteristics of the object it is translated to.

For instance, the loudness of a tone may map to the brightness of an image, and pitch might map to color. This mapping

may be mediated by a rule expression. The rule expression is not a meaning; it is a formula or procedure, the expression

of a meaning. The meaning may be expressed in several equivalent ways (see the examples in Box 5.1).

Figure D makes this clear. Each map has a meaning. It is this meaning that makes it unique. Different maps with the

same meaning may employ different rule expressions to mediate between objects, but these maps will always be equiva-

lent; the results will be identical.

Consider the relationship between the object being represented and the meaning of the rule that represents it. Naturally,

an object may or may not be represented by another object, and if it is, several may represent it (although this will denor-

malize its meaning). Each such map between source and target attribute values will have a different meaning in terms of

the identity of the meaning of the Represented by relationship between these attribute values. The relationship between

the object being represented and Rule Meaning in Figure D articulates this in terms of its cardinality ratio.

Indeed, close inspection of Figure D, from the Object Attribute Value on the righthand side of Figure D to that on the

lefthand side of the figure, across Rule Meaning, shows that the map is between source and target Object Attribute Values.

Each is a conjunction of an object, an attribute, and a value, and it is possible for a given attribute value of one object to map

to several states of another object or even several states of several other objects—inelegant and complex?—Difficult, but
possible?—Yes, certainly. Note that the Rules of Simple Representation would not permit this. As an exercise for interested

readers, what alterations would you have to make to the model in Figure D to support only Simple Representation? Can

these relationships and cardinality ratios be considered “snap-on” components and another polymorph of represent?
When considering arrays, the represent relationship in Figure D also implies that a cell of an array may map to cells

of other arrays of different dimensions. For example, we could “unfold” the array in Figure 4.6 and map every cell in it

to a cell of a one-dimensional array or a position on a line. The opposite is also supported by the metamodel in Figure D.

Cells of an array with more dimensions could represent cells of an array with fewer dimensions.

The inverse of the relationship between Object Attribute Value and Rule Meaning is less intuitive. It asserts that each

Rule Meaning may represent more than one Object Attribute Value. To see the truth of that assertion, consider the three

dimensional array of Figure 4.6. Each time slice was a region in the object’s state space and represented a continuum—an

infinitude—of moments in time. It was an example of how several attribute values may be represented by a single at-
tribute value, the identity of the time slice. Figure D also articulates the possibility of attribute values of different objects

mapping to a single attribute value of a third object. This value subsumes (serves as a common category) for all attribute

values that map to it. Rules of Simple Representation would not permit this either (an exercise for readers: what changes

to Figure D would prevent this?).

The relationship between Rule Meaning and Object Attribute Value, in conjunction with that between Rule Meaning and

Rule Expression, implies the relationship between Object Attribute Value and Rule Expression. This implied relationship

does not stand on its own. It is a subtype of the relationship between Object Attribute Value and Rule Meaning—one that

only adds information about the specific formula or algorithm (of perhaps several) that implements the Rule Meaning.17

Should we have included exclude in Figure D? Can the absence of a symbol imply the presence of a meaning—or can

the absence of one object imply the presence of another? Yes, it certainly can. If a partition with two subtypes is exhaus-

tive and instances of one subtype are missing, it implies that instances of the other exist. However, we can articulate the

Box 4.1. continued

continued on following page

91

The Pattern at the Root of It All

same rule more intuitively, with greater simplicity and elegance, if we articulate exhaustivity and mutual exclusion at

the object class level, just as we have done with partitions. It is therefore okay to exclude exclude from the relationship in

Figure D. We have other means for inferring the presence of a value from the absence of another.

The Object Set in the left bottom corner of Figure D adds a different dimension to the polymorphism of represent. The

rule meaning (and by implication the rule expression) may depend on the objects in Object Set, as well as their interactions

and states. Indeed, the object set may contain object states, interactions (relationships) between states, regions of state

space, interactions between regions, and even between specific states and specific regions of state space. In Object Set,
specific states and regions of state space may be represented by subtypes of objects classes that satisfy those criteria and

their interactions by relationships between these subtypes. We have discussed some examples of this kind of polymorphic

behavior earlier in this box and demonstrated how Object Set normalizes complex rules of representation.

Figure D describes the structure of the Represent relationship. There can be several subtypes of the rule expression in

Figure D, and each will give rise to a different kind of representation, a polymorphism. The Object Set in Figure D shows

that representation may be context sensitive because other objects in the environment may influence the representation.
It is worth noting that maps between attributes and states that instantiate the metamodel in Figure D may be between

like domains as well as between unlike domains. For example, a tone may be mapped to an identical but louder tone.

This kind of format translation is the reusable component that supports the common act of adjusting the volume of an

audio signal—something we do so often that we rarely even think about it. It is a translation between like formatting

domains—audio domain to audio domain.

When it maps meanings to symbols, turning them into formats or converting one format to another, Figure D becomes
a context sensitive bridge—a polymorphic transform—that takes us from the world of business meaning to the universe
of supporting information systems. It is then a bridge from the Business Rules layer to the Interface Rules layer in the
architecture of Knowledge (Figure 3.4).

Formatting Constraints: Formats may be constrained in four basic ways:

States of symbols may be constrained: This amounts to attaching a value constraint to Attribute Value or, when the

constraint is generic to all attributes in that domain, by attaching the Value Constraint directly to the domain. When

several values are constrained, the constraint on State is merely a collection of Attribute Value Constraints attached

to various attributes of the format. Second order constraints may involve attaching value constraints to bounds and

other parameters of Value Constraint, as well as to members of Object Set in Figure D.

By constraining symbols that may express value(s): This constraint would go to the heart of Format—its instance

identifier. Symbols may be barred or made mandatory by attaching inclusion or exclusion constraints that limit the
kinds of instance identifiers that are permitted for qualified formats. This is merely a special case, a subtype, of the
constraint on the state of a symbol. The type of symbol is also an indicator of state.

By constraining formatting domains that may express value(s): This constraint would go to the heart of Formatting
Domain—its type. Domains may be barred or made mandatory by attaching inclusion or exclusion constraints that

limit the kinds of states that are permitted for qualified formats. Naturally, if the Domain itself is barred, so are all
symbols that map to it.

By constraining one or more emergent properties of Format, the pattern: This can limit multiplicity of occurrence,

size, dimensionality, delimitation, various statistical properties like variability, similarity, direction, and others we

have discussed under the architecture of patterns.

Where values have been imputed to symbols, formatting constraints may even be defined by attaching inclusion and
exclusion constraints to imputed values. These constraints may determine permitted, mandatory, and impermissible

symbols (for example, in a cipher).

Attaching Value Constraints to Format

Basic Formatting Constraints 1 and 2 are constraints on constituents of symbols or objects that influence them (i.e.,
members of Object Set of Figure D). Value Constraints may be attached to states of the object being formatted, as well

•

•

•

•

Box 4.1. continued

continued on following page

92

The Pattern at the Root of It All

as to the symbol formatting it. We have seen several examples earlier in this box and Basic Formatting Constraints 1 and

2 need no further elaboration. Basic Formatting Constraint 3 describes constraints attached to formatting domains and

inherited by all objects that have attributes that map to the constrained domain.

All symbols exist in physical space-time. Nature constrains physical space-time to a maximum of three spatial dimen-

sions and one time dimension. The dimensionality of a pattern is an emergent property (see the architecture of Pattern in this

chapter and its metamodel in Appendix I, Figures I.2 and I.3). Pattern in Physical Space-Time is a subtype of Pattern and

symbols are patterns in physical space and time. The dimensionality of such patterns is limited to a maximum of four—three

for space and one for time. This constraint is dictated by the metamodel of Pattern in Appendix I, Figure I.2.

Physical space and time are examples of a natural constraint on an emergent property of all formatting domains. As

was discussed under patterns, physical space is a pattern of unsequenced association. It consists of the length domain,

repeated one, two, or three times. Thus, physical space is a list of length domains. The multiplicity of Occurrence (Occur-

rence Value) of the Length domain in this list is limited to three (see Appendix I, Figure I.2) because nature has decreed

that physical space cannot exceed three spatial dimensions. Similarly, physical space-time, within which all symbols (and

hence formats) are expressed, is a pattern of unsequenced association of four domains. It too is a list, in which the length

domain is constrained to three occurrences and the time domain to one occurrence. These are examples of how constraints

may be attached to emergent properties of patterns in the metamodel of knowledge.

Some constraints exist in only specific perspective(s) and others in the Universal Perspective (Mitra & Gupta, 2005).

In a repository of Knowledge Artifacts, perspectives may be subtypes of similar perspectives that do not have these con-

straints. Remember the principle of subtyping by adding information. Each constraint is an item of information. Indeed,

every component is an item of information. Adding a component to a perspective makes it a subtype of the perspective

it was added to. Thus, perspectives themselves can be reusable models. The Universal Perspective is at the top of this

hierarchy and contains only universal constraints.

The value constraint attached to the Length domain and the dimensional limitation on physical space and space-time

are examples of constraints that reside in the Universal Perspective. Other perspectives inherit the rule from the Universal

Perspective. That all symbols must have one to three spatial dimensions and at most one temporal dimension is a constraint

on Formatting Domain. It is dictated by the metamodel of Pattern and resides in the Universal Perspective. Therefore, it

is inherited by every format, every perceptible symbol, in every perspective.

Appendix I, Figures I.2 and I.3 describe the emergent properties of patterns. Let us examine what constraints on each

emergent property of format, the pattern imply. Constraints on dimensions, direction, extent, and information carrying

capacities of formats are experienced most frequently.

Constraints on Dimensionality of a Symbol’s State Space:

Dimensionality of state space is the number of attributes in our model that describe the state of the object. An object is

a pattern and so is a symbol. Value constraints on the dimensionality of a pattern limit the number of attributes we may

consider in determining the state of the object or symbol. We have discussed dimensionality of state space at length and

have just discussed, with examples, how dimensionality of physical space is naturally constrained and how dimensional-

ity of state space may be constrained by technology. We have also seen where to attach these constraints to normalize

this knowledge.

Constraints on Dimensionality of a Symbol:

Naturally, the dimensionality of a pattern may not exceed that of the space that holds it. The metamodel of pattern in

Appendix I, Figures I.2 and I.3 also make this clear. This atomic rule is the most fundamental value constraint on the

dimensionality patterns in general and, specifically, on the dimensionality of formatting symbols in physical space. It is
also true in state space. We have just discussed how constraints on dimensionality are imposed by business process auto-

mation. Have you ever wished for the kind of display device Candu Compoot showed Count Albeans in Candu Compoot’s

story? Not only may value constraints limit the dimensionality of symbols, but they may also bar the existence of the time

Box 4.1. continued

continued on following page

93

The Pattern at the Root of It All

dimension in a format. A constraint that bars the time dimension in a visual (graphic) format makes a still picture—a

snapshot at a moment in time of the object being represented. Similarly, barring the time dimension in other formatting

domains bars change and movement over time.18

Now let us consider a nonspatial, nontemporal dimension of state space for a visual symbol. Constraining the range of

colors to black and white will create a black and white image. Unlike the constraint that froze the flow of time by barring
an entire dimension, this is a constraint on values, not on the existence of color, a dimension of state space. If there is no

color, there is no vision. Some formatting domains cannot exist without certain sensory attributes because it is those at-

tributes that define them. The existence of these attributes is the basis for distinguishing them as special subtypes of the
general formatting domain. We cannot constrain the existence of these dimensions (i.e., constrain their values to equal

“null”) without losing the domain and driving all states of symbols in it to “null.”

Process automation may force constraints like these on states of formats and even formatting of domains. Consider an

example that drives home the point so obviously that it might be considered even ridiculously obvious by some—a voice

synthesizer cannot support color and therefore cannot support visual formatting domains. The constraint may be obvious

to people but must be made explicit to automation by explicitly stating it in the metamodel. Only then will automated

intelligent agents19 be able to link meaning to format in business process designs they generate in different technology

environments.

New attributes literally add new dimensions to our presentation of symbols. For example, in the visual formatting

dimension, color is an attribute and a dimension added to the three spatial and one temporal dimension. We have discussed

color but not all its attributes like brightness and shade. Both the hue and brightness of a color convey information through

our sense of sight and hence are attributes of visual domains.

Indeed, color is a subjective sensation, as are attributes of all formatting domains. Some of these sensations form the

basis of the domain and cannot be constrained without losing the meaning of the domain itself and hence all symbols in it,

while others can be constrained and will only constrain our perceptions of those symbols. Constrained symbols will lose

some variety and may become less “rich” in terms of their perceived properties but will continue to be perceived.

Color has three dimensions.20

Hue – the kind of color it is (e.g., red, yellow, blue, green, etc.).

Brightness – how luminous or light the color is.

Purity – The shade or strength of the color in proportion to its brightness, also called its saturation, “richness,” or

“colorfulness” (see Appendix II on dimensions of color).

Subjective sensations cannot, strictly speaking, be “measured,” but they can be described. It is the meaning of these

descriptions that are the basis for states of symbols—meanings such as hue, its purity, and brightness that are dimensions

of state space.

Indeed, the subjective sensation of color is even impacted by other colors near it. The same color looks different

against different backgrounds.21 When we discuss color or, for that matter, any property of a perceptible symbol, it is

not the physical measurement that we mean (like the wavelength of light or the amplitude of a sound wave) but rather a

description of the subjective sensation.

The dimensionality of a symbol in state space is defined by how much values of these descriptive attributes can change
independently of others. For example, brightness is a dimension in state space for visual symbols. Even if value constraints

limit the brightness of an image to a narrow band, the image will still extend a little in the brightness dimension, but if

a value constraint freezes brightness to a single value, then the symbol will not extend at all in that dimension of state

space. In such a case, the symbol (not its state space) would lose that dimension. The symbol would continue to exist in

a seven dimensional space that has three spatial, three visual, and one temporal dimension, but the symbol itself would

lose one visual dimension, brightness, because its brightness cannot change (remember how cross sections of arrays lost

dimensions—see the discussion on arrays under Patterns in this chapter).

Similarly, if brightness and hue were related so that the brightness of the image was exactly determined by its hue,

the symbol would lose a dimension. Its shape would be a subspace that tilts or curves with respect to both the hue and

brightness axis (like a tilted, curved, or twisted two-dimensional surface in three-dimensional space; the exact shape will

•

•

•

Box 4.1. continued

continued on following page

94

The Pattern at the Root of It All

depend on the exact relationship between hue and brightness). This concept of dimensionality in state space applies not

only to visual symbols, but also to any formatting domain and indeed any object. The number of attributes determines

the dimensionality of its state space. The dimensionality of a symbol is determined by constraints on its states and those

of its constituents. Each value constraint, that defines the value of an attribute exactly, reduces the dimensionality of the
symbol (or the lawful state space of an object) by one dimension.

Constraints on Directions:

A dimension in state space is a direction. A direction in state space can also involve several dimensions. Directions in

state space are described by a coordinate system.22 Relative locations of a set of attribute values, compared with another

set of attribute values, establish the twin concepts of direction and proximity in state space. A direction in state space

represents possible sets of interactions between sets of attribute values. Constraints on these interactions can constrain

the extent of state space in these directions.

The discussion on patterns emphasizes that the direction of a pattern has meaning only in the context of its directional

attributes. Patterns may be constrained differently in different directions in state space and symbols and formats may too.

Moreover, the meaning of the constraint will depend on the attribute in question. Therefore, constraints on directions are

best discussed separately under each directional attribute as follows:

Constraints on Extent:

Extent describes the size and shape of a region of state space (see Appendix I, Figure I.2). Constraints on Extent limit the

shape and size of the region. This translates to limiting the scope and size of the format. The extent of the pattern being
mapped determines the scope of the object being represented by the format, the extent of the pattern it is mapped to, and

the size of the symbol that represents it. One can visualize this in physical space and time; therefore, clarity will be best

served by considering the meaning of extent in physical space first.
Consider an object, any object in physical space that is represented by another. Say, a home that the owner wishes to

sell. The owner can post an image of the home on a Web page to advertise the home. The home will be represented by its

image, a format, on a Web page. The picture may include only the building, or its extent may be increased to cover the

yard or even the immediate neighborhood. This is the extent of the object being mapped. It can be different in different

directions. For example, the roof may be cut off, but the picture might include the playground next to the home. These are

different ways in which the extent of the scene being mapped to the image may be curtailed in different directions. This

kind of limitation on the scope of the format is a set of value constraints attached to the extent, in different directions, of

the object being formatted.

In addition to the scope of the format, the format too has an extent that may be different from the object it formats.

In the example above, the image extends in different directions on the screen. Its size in any given direction represents

the extent of the image in that direction. This is quite different from its scope. The scope of the image is the extent of the

object it is formatting. The size of the image (possibly framed differently in different directions) is the extent of the image,

a format, not its scope. The image of the home may even be projected onto a screen in different sizes. The extent of the im-

age, a format, is different in each projection. The size of the image, the space it occupies, may be limited by different value

constraints in different directions, just as its scope was. This kind of limitation on the size of the format is a set of value

constraints attached to the extent, in different directions, of the format—the symbol a formatted object is mapped to.

In terms of components and structures of knowledge, Value Constraints are components, and the size is a set of value

constraints on the extent of the format. Contrast these value constraints with those that determined the scope of the

format: the constraints we have just discussed are attached to the extent of the format, the symbol, not the extent of

the object being formatted. The value constraints that determined the scope of the format were attached to the extent

of the object being formatted, not the symbol formatting it.

Accordingly, where a Value Constraint is attached, it determines the behavior of Format. The same Value Constraint

•

•

Box 4.1. continued

continued on following page

95

The Pattern at the Root of It All

attached to a different component results in different behavior and different atomic rules.

This is another example of how components of knowledge are meanings that engage each other like gears in a machine

to produce new meanings. These meanings are subassemblies of knowledge, which, in turn, are also components

of knowledge that can engage other components. The metamodel of knowledge contains components that will help

normalize other knowledge.

We could reduce or enlarge the extent of symbols in space. The extent of the format will change, but not the amount

of information it conveys. Thus, reduction or enlargement of an image is an operation on the spatial extent of a format.

The formatting domain normalizes it.

Changing the spatial extent of a symbol is not restricted to visual domains. It is generic to all formatting domains

because formatting symbols must occupy space and exist in time. The extent of an audible tone, an audible symbol, may

be limited in space without necessarily limiting its loudness in the space it is confined to; for example, with soundproof
barriers or electronic sound cancellation devices.

Consider how the extent of a format may be limited in time. The scope of a moving picture in a documentary film is
limited by both the space and the time span it covers. Speeding up or showing a film in fast or slow motion (without editing
it) preserves the extent of the scene that was filmed in both space and time but changes the extent of its format, the moving
image, in time. The movie becomes longer or shorter (but does not lose any information). As such, in physical space and

time, the extent of the format translates to size, whereas the extent of the object represented by the format translates to

scope, and value constraints may limit either item.

Based on this understanding, consider nonphysical directions in state space. Let us start by considering the extent of a

written word. The word occupies space on the page it is printed on. It is a two-dimensional pattern in physical space and we

have seen how its extent in physical space may be constrained by value constraints. Physical space is only a part (subspace)

of its state space. In state space, the word has more dimensions. One of these is a nominal dimension. This dimension

contains the set of letters that make words. Each letter is a point in this nominally scaled dimension. Constraining this set

by excluding some letters (points) on this nominally scaled axis of state space would curtail the spellings and existence

of words. Exclusion constraints are one kind of value constraint. Hence, the “size” of words in terms of the diversity of

letters in their spelling would be curbed by value constraints in this “direction” of state space.

This kind of constraint must be considered when formatting words in Chinese. The character set the language may

potentially use is enormous, and in the days when mechanical typewriters were used, typewriters would come with a partial

character set, that customers could replace as needed with additional characters. The customers’ choices of “typewriter

technology” constrained the choice, that is, extent of words in this alphabet dimension of state space.

A word is a sequence of letters. It is not merely the occurrence of the letter in the word but also the position of a letter

in it that spells the word. The spelling of the word is the pattern that defines it. Hence, in addition to its spatial dimen-

sions and permitted character set, the word has another dimension—the location of a letter in terms of its serial number

in the word.

Truncation:

Let us assume a mapping rule like that in Figure B is translating a word—mapping it back to the same state space. An

upper bound on this serial number dimension, applied to words being mapped, will curb its extent along this dimension

and truncate it. Applied to the format it is being mapped to, it might make it impossible to map long words that exceed this

upper bound (unless the mapping rule maps several positions of letters in the word being converted to fewer positions in

the word it is converted to and loses information. The mapping rule could also use more symbols. The additional symbols

could be codes for letters in positions that had to be truncated. Thus, a translation rule could increase the extent of one

dimension when another is curbed in order to preserve information carrying capacity of formats.)

Remember that the extent of a pattern is along a direction, and directions may be straight and simple or complex and

convoluted. There is no rule in the metamodel of pattern that bars us from considering the extent of a pattern along any
trajectory in state space, unless we explicitly formulate rules that ban paths or positions in state space. Remember how

even circular trajectories were considered in Figure 4.4.23 However, a detailed discussion of the topology of state space is

beyond the scope of this book.24

•

Box 4.1. continued

continued on following page

96

The Pattern at the Root of It All

Delimited Extent and Constraints on Delimiters:

We have seen how one pattern may delimit another. If one symbol delimits another, they may not overlap because the

delimiting symbol delimits the extent of the symbol it delimits (in one or more directions in state space). Symbols that do

not delimit the other could overlap; that is, they could occupy overlapping regions of state space and even have common

constituents in state space (see the overlapping trapezoids in Figure 5.9). On the other hand, the letters on these words

you are reading cannot overlap. Each letter is not only a pattern and a symbol but also a delimiter for others of its kind.

Constraints on delimiters may limit their identity or states. Invisible paragraph marks in Microsoft Word documents

delimit paragraphs; their identity and their state are both determined by value constraints. The identity is determined

by a value constraint that forces it to be a paragraph mark (Basic Formatting Constraint 2, discussed previously), while

the state is determined by value constraints on attributes that hide it or make it visible (Basic Formatting Constraint 3,

discussed previously).

Delimiters of the object being formatted (or represented) determine the scope of the format or representation (i.e., the

mapped extent of the object), and delimiters in the format determine the extent of the format. For instance, the frame of

the scanning surface on a copying machine delimits the area that will be scanned, whereas the edges of the paper in the

paper tray delimit the extent of the copy.

Constraints on Information Carrying Capacity (Degrees of Freedom):

Consider the image of the home in the example above. Increasing or decreasing its extent in physical space conserved the

information in it. Curbs on the extent of the object being represented (the home and its environment) limited the informa-

tion content of the object being mapped, but once the scope was set, it did not matter if we reduced or increased the size of

the image. The detail in the image was not lost. It might have become too small to see in a reduced image, but if our vision

had been acute enough, we could have picked it out. It would still be present in the picture. On the other hand, magnifying

the picture would not add any missing detail to it. Overall, the information content of the format did not depend on the

extent (it did, however, depend on the scope, i.e., extent of the object being mapped) of the format.

However, had the image been made of pixels on a screen or a half tone print that consisted of closely packed printed

dots like the pixels on a screen, its information carrying capacity would be limited by the size and density of pixels (or

dots). A blurred or grainy picture carries less detail, and hence less information than a sharp picture. Value constraints

on the information carrying capacity of the format (or its degrees of freedom, i.e., permitted states) would constrain its

fidelity. Indeed, unlike a conventional photograph, when holographic film is sliced (truncated), the hologram does not lose
extent; it loses fidelity instead. It blurs and loses resolution. The extent of the image stays the same. Information carrying
capacity only depends on number of permissible states of an object. It is distinct and different from extent and the other

emergent properties of patterns but depend on extent and the other emergent properties to the extent that curbs on them

limit the number (or cardinality—see the footnote25) of lawful states of the symbol (or object).

The same arguments will hold for the fidelity of a format in any formatting domain. We experience this firsthand when
converting music from one electronic format to another. Indeed, fidelity may even change with position or direction. Have
you ever compared the fidelity of music that you hear at the side of a speaker with that in front of it?

The fidelity of the format26 may be better in some directions of state space than in others. Our vision is most acute

directly in front of our eyes, whereas we can barely make out detail at the periphery of our vision (the “corner” of our eyes).

There is even a blind spot in our field of vision. The information carrying capacity at the blind spot is zero; we cannot
perceive objects in our blind spot. In general, patterns may be divided into constituent patterns based on regions in state

space (regions may also be subspaces), and each constituent may possess a different information carrying capacity. If its

constituents do not interact (mutually constrain each other), the information carrying capacity of the pattern will be the

sum of the capacities of its constituents. (Readers interested in more information may see Appendix II on the measure

of information.)

Box 4.1. continued

continued on following page

97

The Pattern at the Root of It All

Constraints on Location and Proximity:

A pattern’s Law of Location is a constraint on location; it is also fundamental to the existence of a pattern. Any value

constraint on the coordinates of a symbol in state space (or physical space and time) is a constraint on location. Confining
a footnote to the bottom of this page is a constraint on its location. Constraints on location may be in terms of displace-

ment of objects from the origin of a coordinate system or in terms of their proximity to other constituents of Pattern. A

format is a pattern (Appendix I, Figures I.2 and I.3).

Constraints on proximity metrics also constrain location—location relative to other constituents or symbols. Proxim-

ity in state space is a measure of similarity. Value constraints on proximity metrics limit the similarity or diversity of a

pattern’s constituents; they make the pattern more or less homogenous (or heterogeneous). For example, a constraint on

the pitch of syllables in a spoken word ensures that the word is expressed in a male voice. The syllables are constrained

to be similar in pitch. Constraints on proximity metrics may also affect how close or far a pattern’s constituents may be

in physical space and time, and formats are exactly this kind of perceptible pattern. A proximity constraint may limit the

space between characters of a one-dimensional string of characters or the distance between dots in a two-dimensional half

tone print or even that between pixels on a screen. Such a constraint determines both the homogeneity (and heterogeneity)

of the constituents of a symbol, as well as, in physical space-time, how tightly (or loosely) a pattern is clustered.

Limiting the extent of state space also limits the proximity of a pattern’s constituents. However, constraints on prox-

imity metrics contribute additional information because they limit proximities of a pattern’s constituents not only in the

context of extent but also in ways that extent cannot: The extent of a pattern determines its scope in state space whereas

constraints on proximity limit how much of its extent are actually occupied by a pattern’s constituents and how much is

“white space” or empty.

For example, the “tightness” of clusters of constituents in a pattern may be enhanced by imposing an upper bound on

proximity metrics between constituents within a cluster. Clusters may also be made more distinct by imposing a lower

bound on the mutual proximity between clusters (not constituents of clusters) in the pattern. Consider a screen that shows

the status of workstations on the shop floor of a factory. A design standard might mandate that the hue of all exceptions
be displayed in red, all normal statuses be green, and the status of workstations under maintenance be yellow. Further, the

standard might articulate permitted ranges of brightness and saturation of each color. The standard is based on clusters in

state space (as we have seen earlier in this box, color contributes three dimensions to state space). The standard does this

by articulating constraints on proximity of permitted colors to standard colors in each cluster.

Constraints on Aggregation Statistics:

Emergent statistical properties are properties of patterns that emerge from higher degree or higher order relationships

between properties (see Figure B of Box 5.1) or between a pattern’s constituents and the pattern itself. You could consider

the messages in a voice mailbox a pattern and individual messages its constituents. The total length of a set of messages

in a voice mailbox is the sum of lengths of individual messages. The total length of messages is a property of the pattern

that emerges from individual lengths of the constituents of the pattern.

Technology might dictate a limit on the total length of messages stored in the voice mailbox. The messages are per-

ceptible symbols. This makes a voice mailbox a part of business process automation. The rule of information staging

belongs to the Information Logistics layer of Figure 3.4. This rule is a value constraint attached to an emergent property of

a pattern—the aggregation of voice mail messages. These messages are in audio formats. We will elaborate on emergent

properties of aggregate objects later in the book.

Constraints on Object Occurrence Value:

We have discussed this with examples in our discussion of object sets in Figure A of this box. Therefore, occurrence

constraints need no further elaboration. Indeed, it is worth noting that an exclusion constraint is also a constraint on oc-

currence, a subtype in which the Object Occurrence Value is constrained to zero.

Box 4.1. continued

continued on following page

98

The Pattern at the Root of It All

Inclusion and Exclusion Constraints:

Convention, technology, the need for security and whims of individuals designing business tasks may be some of the

reasons for inclusion and exclusion constraints on format. We have discussed inclusion and exclusion constraints briefly
in Chapter IV and in our discussion of polymorphism and business process automation in this box.27

Constraints on Association and Sequence:

Consider the diversity of conventions in different languages that express the same ideas. There are bewilderingly different

ways of associating and sequencing letters, words, sentences, verbs, subjects, and objects in languages across the globe,

many of which have been incubated in the cradles of diverse and different civilizations. Letters and words of Indo-Euro-

pean languages are arranged left to right. Arabic is a right to left sequence. Chinese goes from top to bottom. These are

one-dimensional sequences of symbols in two-dimensional physical space—the plane of the paper.28

Sequences in nonphysical directions of state space also differ—directions like those that dictate the sequence of

components of a sentence (see the ordinal dimension described under constraints on extent). Expressions in English have

a subject, usually a noun or pronoun, followed by a verb, the format for an action, followed by the predicate, another

noun or pronoun; this is similar to the infix notation described in Appendix II under the Theory of Categories. Indeed,
the metamodel in this book follows this convention. Hindi, the language of Northern India, on the other hand, positions

the verb at the end of a sentence. These language conventions are constraints on sequences of symbols that express ideas.

Translating one language to another requires not only translation of symbols, but also one sequence of symbols to another.

Even conventions on arrangements of alphabets differ between languages. Arabic and the European languages arrange

their alphabets in a one-dimensional sequence, whereas many languages of India arrange their alphabet in a two-dimen-

sional sequence on a matrix.

Rules may force symmetry or lack of it in formatting symbols and patterns. Like exclusion and inclusion constraints,

constraints on association flow from convention, technology, the need for security and encryption, or even whims of
individuals designing business tasks. Sequence and symmetry go hand in hand. Sequence signifies asymmetry, when the
order of association, not the mere fact of association, matters. Lack of sequence is symmetry, when mere association, not

sequences, matters. We have discussed this aspect under Patterns in this chapter; see the discussion on how symbols that

do not distinguish their identity based on mirror images are laterally unsequenced patterns. Sequences give us informa-

tion by distinguishing between different states of association involving the same objects. Sequenced patterns, be they

meanings or formats, have more information carrying capacity than unsequenced patterns.

Constraints on Order:

Constraints on order of formats are rare, but given the architecture of Pattern, they are possible. We will not elaborate

further on this. It will suffice that readers understand that the metamodel of knowledge has room for these constraints
although they are not used often.

Closing Remarks on Formatting Constraints:

Usually, it is Business Process Automation and limitations of technology that are at the root of formatting constraints. All

physical devices have engineering limitations that limit the scale and precision with which they can express meanings.

These translate into constraints on extent and fidelity of the format. Technology may also impose constraints on states of
formats. A black and white display device might exclude all colors but black and white. Color, as we have seen, is a state

of Visual Symbol. A ticker tape may force all information to be displayed in a one-dimensional string of characters such

as numbers and words. Value constraints attached to key states of the visual domain can reduce a format to a ticker tape.

A device like a speaker will exclude the entire visual formatting domain. In this case, the physical device would be the

Box 4.1. continued

continued on following page

99

The Pattern at the Root of It All

reason for an exclusion constraint that goes to the very heart of the formatting domain—the domain identifier itself.
Constraints on formats may also flow from convention. Under Patterns, we discussed how convention bars mixing of

Roman and Arabic numerals in a number. These are exclusion constraints that go to the heart of the symbol—its identifier.
Languages also constrain formats in terms of sequences of symbols in state space and, of course, the symbols themselves,

a nominally scaled dimension of state space.

Conspicuous by their absence in this discussion on formatting constraints, have been issues related to rounding of

numbers. The rules for rounding numbers are not normalized by Format. Rather they are normalized by measures. Mea-

Box 4.1. continued

Engineers call the fundamental physical domains fundamental dimensions, and the study of domains that emerge from

relationships between them, Dimensional Analysis.

Dimensional Analysis is based on the premise that a few fundamental physical concepts such as space, time, mass, and

temperature lie at the heart of all physics. Quantified measures of the huge diversity of apparently unconnected physical
phenomena can be reduced to combinations of the few fundamental physical measures (of the fundamental concepts) at

the heart of all observable phenomena.

These fundamental quantities, or dimensions, are the foundation and fabric of all other physical quantities and their

measures. Velocity is distance moved per unit time, and the unit of velocity is units of length combined with units of time

(via the division operator). Mathematically, the unit of velocity, in terms of length and time is LT-1 (the negative power

implies division) where L is the unit of length, and T is the unit of time.30 We call these quantities domains, instead of

dimensions, in this book.

The choice of which physical quantities are termed fundamental is largely a measure of preference; the mathematical

basis for this assertion is provided by the Buckingham Pi theorem.31 We could have considered velocity a fundamental

domain; had we done so, we would have had to either drop time or distance from the class of fundamental domains. This

is because time may be expressed in terms of velocity and length (mathematically, T=LV-1, where V is the unit of velocity),

and length may be expressed in terms of time and velocity (L=VT). As such, if we promoted a secondary domain like ve-

locity into the class of fundamental domains, we would have to exchange it with a fundamental domain that it was related

to (either length or time). The domain we exchanged would have to be demoted to a secondary domain and the number

of fundamental domains would stay the same. The freedom to pick fundamental domains is ours, but not the freedom to

keep them. We can pick, only if we are willing to sacrifice related fundamental domains.32

The fact that the fundamental domains are limited to a fixed number is related to information content. Whenever a
physical phenomenon is observed, it conveys information. The information content of the observed phenomenon (velocity

or movement in the example above) reuses the information conveyed by one or more fundamental domains and adds to it.

The added information, a meaning, is the glue that glues together fundamental domains of information, pure meanings.

This glue is a relationship. The relationship may be a joint constraint—even a magnitude constraint.

The resultant is greater than its parts; this is a new atomic rule. The new rule cannot be inferred by considering each

part separately; if we did that, we would ignore the meaning of their relationship. As such, a relationship engages the ir-

reducible facts in fundamental domains to produce a new irreducible fact—the new phenomenon or physical law. Informa-

tion about constituent units is normalized in the fundamental domain, and added information, the “glue,” is normalized

by the relationship. When the relationship is a magnitude constraint, it is called a physical “law.”

Fundamental domains are sometimes termed primary or base domains and the derived domains are called secondary
or derived domains. This system, whereby base domains are glued together to produce secondary domains, is called a

coherent system of measurement33.

In 1954, at the Tenth General Conference on Weights and Measures, it was agreed that length, mass, time duration,

temperature, and either electric charge or electric current would be considered primary domains. (Electric current is the

flow rate of electric charge, and hence the two are related, and only one of them can serve as a member of the exclusive
club of primary domains.)

Box 4.2. Domain analysis and primary physical domains

continued on following page

100

The Pattern at the Root of It All

Physicists accept that there are four fundamental forces that shape all physical phenomena, namely, electromagnetism

(represented by electric charge), gravitation (represented by mass), the strong force, and the weak force (not represented in

the list of primary domains).34 Given today’s state-of-the-art in the engineering of hard products, of the four fundamental

forces, engineering systems need only consider mass and electromagnetism. That is why the strong and weak forces are

not represented in the list of primary physical domains. In some unimaginably far off future, we will have to include them

in the list as well. Measures of all other physical phenomena such as magnetic fields, energy, and color can, in theory, be
assembled from combinations of measures of primary domains.

The physical world frames information systems and business processes. Therefore, information systems and busi-

ness processes must align with the physical world. For this reason, the primary domains that frame the physical world of

engineering must form the basis of primary domains of components of knowledge about it. Although the list of physical

primary domains published in 1954 must frame the world of information systems, it does not have to be identical with the

list of primary domains that best normalize knowledge.

The list of 1954 was tailored to support physics and “hard” engineering based on the principles of physics. Among the

primary domains published in 1954, temperature is related to the rate at which the energy of a physical system changes

with respect to entropy (see Thermodynamics, Macropedia, Volume 28, page 616 of The New Encyclopedia Britannica,

15th Edition, 1988).

Entropy is a measure of orderliness, or information content of the system (see Entropy and Information Theory in

Appendix II, Shannon’s Information Theory). Engineering of business processes from business knowledge components

is not physics, nor is knowledge a “hard” product. When we engineer knowledge, the concept of temperature is less use-

ful as a primary domain. Knowledge is a configuration of meaning, and it is more convenient to configure meaning if we
consider information primary, not temperature. We do this by substituting temperature with information in our list of

primary domains. Temperature then becomes a secondary measure, derived by combining the measure of energy (units

of energy are derived from mass, length, and time domains35) with the measure of information. Information lets us build

hierarchies based on information content and adds meaning by inheritance. We can even create new meanings by associ-

ating one meaning with another. This is why information, not temperature, was in our list of primary physical domains.

(The Buckingham Pi Theorem36 justifies substitutions of this type.)
Similarly, the date and the time-lapse domains are related (see the endnote on how the flow of time is an emergent

property of information). The time-lapse domain is the class of all possible differences between pairs of values in the

date domain. We may substitute the time-lapse domain with the date domain in the list of primary domains, and demote

time lapse to a secondary, or derived, domain. In physics, and in the engineering systems that rely on physics, it is time

lapse between events that is important, not the actual date or time of occurrence. Business rules, on the other hand, may

depend on both. This is why we have replaced the time-lapse domain of 1954 with the date domain in our list of primary

domains.

Physicists consider the enumeration domain “dimensionless” information. The conference of 1954 did not include it

the list of primary domains. However, it is obvious that enumeration normalizes knowledge about the population of an

object class (or aggregate objects in general), and classes are key to configuring normalized knowledge. Therefore, the
enumeration domain is also key to normalizing knowledge and has been added to the list of primary domains. (Strictly

speaking, it is a subtype of the Information domain.) Meanings flow from these primary domains to every physical domain
that we know today and will fashion tomorrow. We cannot leave enumeration out.

Completeness, Accuracy, Validity, and Reliability have also been recognized as subtypes of information that add

specific business meanings. We cannot leave them out either.
Accuracy is the lack of bias in measurement, and reliability is the quality of consistency. A weighing scale may con-

sistently show two pounds more than the true weight of the item it is weighing. Then the scale is reliable but inaccurate

(i.e., that is, it is reliably inaccurate). In a deterministic system, reliability is either total or nil. In a stochastic system,

reliability is the chance of being consistent. Completeness is extent: whether the information covers the full or partial

extent of a pattern. Validity is a measure of correlation when we represent one pattern with another. For instance, it is not

valid to measure length with a weighing scale, but valid to do so with a measuring tape. In a deterministic system, valid-

ity is either total or nil. In a stochastic system, validity is a measure of correlation between a pair of objects. Overall, in a

deterministic system, a relationship either exists or it does not. In a stochastic system, the strength of a relationship may

Box 4.2. continued

continued on following page

101

The Pattern at the Root of It All

be measured by the chance of it existing, which is also a measure of validity of the relationship (Mitra & Gupta, 2006).

Based on the above, we have adapted the list of primary physical domains published in 1954 to better fit the engineer-
ing of knowledge as follows: “Temperature” has been substituted with “Information,” “Time Duration” with “Date,” and

“Enumeration” has been added. Completeness, Accuracy, Validity, and Reliability have been recognized as subtypes of

Information. The original list was developed primarily in support of the hard engineering sciences. This book and its

companions have adapted it to support the engineering of business knowledge.37 To this list, we must add “Preference,”

an ordinally scaled domain, and its dense polymorphism, “Fund,” which is the same as money. All meanings are built

Box 4.2. continued

Box 4.3. The principle of subtyping by adding information

The principle of subtyping by adding information asserts that a subtype object class has more information than its super-

type class(es). Subtypes share the information in their common supertype(s) and add information of their own. Creating

subtypes by adding data attributes is just one instance of this principle. Business meanings and features such as relation-

ships and constraints also add information. Thus, a Parent is a subtype of Ancestor, Apple is a subtype of Fruit, and an

Insurance Policy is a subtype of Agreement. A subtype has fewer degrees of freedom than its supertype.

The subtypes in the examples above are intuitively obvious. Other subtypes are less obvious. For instance, it may not

be immediately clear that the domain of sums is a subtype of the domain of summands. The cardinality of both domains

is infinite, but the domain of sums also carries information on which summations of summands result in which values.38

Given this fact, some readers might ask why the enumeration of fruit is not a subtype of the enumeration of apples and

oranges, instead of the other way around. They may reason (falsely) that the sum of numbers of apples and oranges adds

up to the numbers of fruit. Thus, if the domain of sums is a subtype of the domain of summands, the count of fruit should

be a subtype of the count of apples or oranges. The truth is the other way round: The count of fruit is the supertype of

the count of apples and oranges because we are counting fruit. Just as the enumeration of fruit added business meaning,

information, to the bald enumeration domain and thus made enumeration of fruit a subtype of the enumeration domain,

apple and orange added mutually exclusive business meanings to fruit. This added information made the count of apples,

as well as the count of oranges, subtypes of their common parent, the count of fruit. Counts of apples and oranges are not

bald counts. We know what we are counting. They have emerged from a relationship between an object apple (or orange),

and the domain of enumeration. Although counts of apples and oranges add to the count of fruit, they contain more infor-

mation than the count of fruit. Each is a count of a specific kind of fruit; each is a subtype of the general count of fruit.
Fruit has the freedom to be an apple or orange, but an apple or orange must be what it is. Thus, the count of fruit has

more freedom, that is, contains less information than the count of either apples or oranges. Therefore, the count of fruit

is the common parent of both the count of apples and the count of oranges. When mathematical operations and business

meaning conflict about which object is a subtype and which a supertype based on the principle of subtyping by adding
information, business meaning always wins. Follow this simple rule when in doubt and you will not go wrong.

In abstract terms, think of the object as a pattern of information. Parts of the pattern may be shared with other pat-

terns. This is shared information. However the pattern extends beyond the portion that is identical to other patterns. These

extensions add information and give the pattern its unique identity. Thus, the pattern may be conceived as a shared part

(the supertype), plus extensions (the added information). The composite of the two are the subtype.

A pattern with fewer degrees of freedom has a greater burden of information than a similar pattern with more freedom.

For example, a straight line is a pattern of two points: its ends and a rule about how they are connected. The line may be

of any length. The pattern will not lose its identity. The rules that make the pattern a pattern also give it the freedom to

retain its identity.

If we restricted the length of the line, we would add information. The pattern would lose some of its freedom. The

restricted pattern will be a subtype of the unrestricted pattern. This is the principle of subtyping by adding information.

The pattern with more information is always a subtype of the pattern with common information when information is

shared by two or more patterns. Box 5.3 describes how this applies to values. The following discussion shows how it ap-

plies to constraints:

continued on following page

102

The Pattern at the Root of It All

Quantitative (arithmetic)
Rule Expression

Nominal
Rule Expression

 Ordinal
Rule Expression

Subtype of

Subtype of

Inherit
Classification
information;
Add ranking
information

Inherit classification
and ranking
information;
Add quantitative
information

Figure A. Subtyping hierarchy

The subtyping hierarchy in Figure A is based on information content. A nominal (Boolean) rule expression only con-

veys classification information; an ordinal rule expression contains information on relative ranks—which result is larger
than which, but not by how much, whereas a quantitative rule expression with arithmetic operations conveys information

on relative and absolute magnitudes. Naturally, if you can rank a result, you can also classify it on that basis, but not

vice versa. Similarly, if you know how much one result exceeds another, you can rank and classify it, but not necessarily

the other way around. Thus, a nominal rule expression conveys less information than an ordinal rule expression, which

in turn conveys less information than a quantitative rule expression with arithmetic operations. (Note that occurrence
relationships between objects, the “normal” relationships we have discussed thus far, are also instances of nominal rule
expressions.)

The nominal rule expression normalizes classification information, to which the ordinal rule expression adds ranking
information (which it normalizes, even as it inherits classification information from its nominal parent). A quantitative rule
expression normalizes and adds information on quantified magnitudes, not just their relative ranks. It inherits ranking and
classification information from its ordinal parent. Based on the principle of adding information, the class of quantitative
rule expressions is a subtype of the class of ordinal rule expressions, which in turn is a subtype of the class of the class

of nominal rule expressions.

Box 4.3 continued

Box 4.4. “Soft” information: Information content, risk and reliability, and how the scalability of domains
mutates

We intuitively refer to “soft” information. This concept has a place in the model of knowledge. To understand the “softness”

of information, consider the overlap of accuracy, reliability, and enumeration, all of which are subtypes of the domain of

information. Enumeration is the total number of values in a domain (domains may be infinitely large39). Accuracy measures

proximity between two values, and reliability is how consistently we are accurate (other measures of reliability include

statistical confidence levels, which measure the probability of being near enough to a target value with requisite accuracy).
Accuracy, reliability, and enumeration contribute to the overall information content of the measurement. To understand

this interrelationship, let us consider an individual’s color preference domain as an example.

Consider a person with only a limited ability to discriminate between colors. She can only differentiate between colors

she likes, colors she is neutral to, and colors she hates. The domain has three values: “like,” “neutral,” and “hate.” She

cannot distinguish between colors she only likes a little from those she likes a lot. If she is forced to state her preference

in this form, her assertions will be meaningless, and meaningless degrees of preference will be spuriously introduced

into her color preference domain. They will be values that do not actually exist. Unless she becomes more selective about

her color preferences, the quantum of information in the domain will remain the same. The accuracy with which she can

distinguish between colors will not change because she can only distinguish neutrality from hating and neutrality from

liking for a color.

continued on following page

103

The Pattern at the Root of It All

This person’s color preference domain is ordinal, so we intuitively know that the difference between liking and hating

a color is greater than the distance between neutral and either like or hate. If she is forced to distinguish between colors

she likes only a little and those she likes a lot when she simply cannot, her responses will be random. In other words, her

responses will be unreliable, and the domain will be soft and uncertain. The overall information content determines overall

“softness” and therefore the kind of scalability the domain has (see Appendix II on Shannon’s Law). For this reason, if we

try to impute more scalability to a domain than its information content justifies—that is, impute ordinal, difference, or
ration scaled behavior to a nominal domain without increasing its intrinsic information content—values in it become less

and less reliable. We characterize this situation by saying the value has become progressively “softer.”

Conversely, if the size—the number of values—in a reliable domain is reduced, we will lose information in a different

way. In such a domain, we can reliably distinguish between the values that are left, but we know that we can be even more

accurate and maintain the same level of reliability and discrimination if there were more values in it. We call the domain

“grainy” because we could fill gaps between values and continue to make reliable measurements.
As such, if the individual we discussed above became a colors aficionado who can realize very subtle distinctions

in her preferences between subtle shades of color, we could increase the number of preferences (values of preference) in

her color preference domain without compromising her ability to reliably distinguish between her preferences for subtly

different shades of color.

As her preference for color becomes more astute, the number of values in her color preference domain will increase,

and the proximity between reliable values of preference for colors will keep decreasing. Eventually we would find that she
can discriminate between infinitely close values in a continuum of color. Then her color preference domain would have
gathered enough information to become effectively “dense” (when an infinite number of values exist between any two
values that are chosen to be arbitrarily close to each other) and of infinite cardinality. In other words, the domain has gained
enough enumeration, accuracy, and reliability to become a difference scaled domain. In fact, because the individual can

discriminate between like, hate, and neutral, this domain has a natural zero, so it has actually become a ratio scaled domain

(like the money domain). This is how the information content of a domain changes its very nature and scalability.

In real life, there is no absolute certainty. A person, regardless of her talent in the area, would never be able to make

infinitely subtle distinctions between her preferences. As colors and preferences get closer together, the ability to consis-

tently distinguish between them becomes less certain. The smaller the difference, the less the chance of being consistent

in our ability to distinguish between shades of color and our preference for them. In other words, the domain would get

softer and softer.

The model of knowledge in this series is deterministic. The only certainty recognized would be in a digitized world of

black and white. Choices in this world would be either always consistent or always inconsistent. To resolve this uncertain

reality with an idealized universe of absolute certainty, it has to be determined how much uncertainty and inconsistency

we will accept before we decide that a fact is absolutely certain or unknown. In our example, we would have to assert that

the concerned individual absolutely can or cannot meaningfully tell the difference between color preferences that are too

close. The chance of being able to distinguish between these values is not considered. When they are so close that we say

that the values are indistinguishable, we also imply that the values are virtually identical. Our deterministic model then
declares that they are identical. This also is how enumeration, accuracy, and reliability all add to the information content

and cardinality of a domain.

Validity is another attribute of information. In the example we discussed, Validity lets us know for certain that we

are focusing on the person’s color preference, not some other quality like the rotundity of colored objects shown to her or

their luster or odor that she might be confusing with preference for color. This may occur as a matter of chance; however,

in our idealized model based on certainty, this either happens or does not. In other words, these properties are completely

correlated or they are not (in statistical terms, the correlation coefficient is 1 or 0; there is no uncertainty involved). Va-

lidity measures the certainty of relationships, that is, with what measure of certainty a measurement of one property can

substitute for another. For example, is it valid to measure the length of a column of mercury in a thermometer to deduce

the temperature of an object? Is it valid to measure the weight of an object to determine its mass?

The real world is uncertain. We try to measure its uncertainty and risk by factoring chance into our models. Models

that consider chance and probability are called stochastic models. Those that ignore chance are called deterministic models.

Box 4.4 continued.

continued on following page

104

The Pattern at the Root of It All

Our model of knowledge is deterministic, and we compensate for it by recognizing risk, exception, and measurability in

this book.

Since the real world is shaded with uncertainty, its information content is manifested by the validity, enumeration, ac-

curacy, and reliability of the domains that flow through the concepts (objects) that constitute our understanding of reality.
The information content of each domain determines the “softness” and scalability of the domain. The information content

the domain is manifested by these features of information and may be traded between them, provided its total information

content is preserved. If we are willing to accept less reliability, the number of values can be increased (and gaps between

them decreased, that is, increased potential accuracy requirements for measurements within the domain). As we saw in

our thought experiment on color preference, if we are willing to sacrifice accuracy, we can increase reliability by making
the domain more granular. Granularity implies lack of information in terms of gaps between the values in a domain. These

gaps measure the meaningfulness of proximity with a level of reliability, in the pattern that underpins our understanding

of our universe. It is a world where black and white exist together in shades of gray; a world in which domains may be as

hard or soft as the information they convey. It is a world without absolute certainty or absolute meaning.

Box 4.4. continued

Box 4.5. Partial order, fuzzy meaning, and the scaling of derived domains

PREFERENCE

C
O

L
O

R
(S

eq
ue

nc
e

do
es

 n
ot

 m
at

te
r.

 C
ol

or
s

ca
n

be
 a

rr
an

ge
d

in
 a

ny
 o

rd
er

 a
lo

ng
 th

is
 a

xi
s)

Green

Red

Like DislikeNeutral

Blue

Figure A. The color preference domain and pattern of association
Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New

York, NY: Cambridge University Press, 2006.©

Complex domains are made of tuples that mix meanings.40 These domains describe state spaces.41 For instance, Figure

A is the state space created by tuple from two domains—Color and Preference. Values of color preference are points in

this state space. These values are a two dimensional pattern in a discrete two-dimensional space. The collection of val-

ues, the pattern, is the color preference domain. Domains have no states because they are the immutable and changeless

meanings: classes of values that create states via their relationships with objects like “Jane,” which do exist in time and

can therefore change.

If we exclude purely nominal state spaces, we are left with state spaces that have sequencing information on at least

one, if not more, axis. Such a state space is called a Partial Order in mathematics.42 Take a pair of points in Figure A, any

pair. If you can find a path from one point to another such that the value increases along one or more coordinates and does
not simultaneously decrease for another (or others) as you traverse the path (i.e., the path is always “upwards”), then the

pair is partially ordered— “Partially” because, even if they do not decrease, other coordinates might not increase. A state

space is a partial order if every pair of distinct points in it follows this dictum. Obviously, Figure A is a partial order. Given

continued on following page

105

The Pattern at the Root of It All

any pair of distinct points in it, you can always travel in a direction of increasing preference.

When we consider partially ordered domains, we find that sequencing information is not a simple yes/no issue. Dif-
ferent domains may have different amounts of sequencing information. The larger the proportion of sequenced axes and

the larger the sequenced domains that were joined,43 the larger is the quantum of sequencing information in the resultant

domain.

Given this definition of partial order, it follows that ordinal difference and ratio scaled domains are also partially
ordered. Further, every ordinal domain and its subtypes are totally ordered (see Total Order under Ordered Sets and

Sequences in Appendix II). As such, Total and Partial orders are not mutually exclusive. Total Order is more restrictive,

and hence, based on the principle of subtyping by adding information, a total order is a subtype of partial order (strange

but true, live from the logic of mathematics!).

When quantitative domains are associated with ordinal domains via a Cartesian product into a partial order, the infor-

mation content of the relationship is somewhere in between that of the domains that gave it birth. We can be conservative

and deem it to be an ordinal domain, but there is a cost in terms of information lost.

The information content of a relationship between domains is derived from the information content of the domains it

binds together. Therefore a relationship between domains creates a new domain of at least the scaling of the most informa-

tion sparse member of the participating domains (Rule 10a of domains).44 This is an idealization of complex and uncertain

reality. When the information content of the relationship (partial order) is closer to that of the quantitative domain, we are

justified in ignoring Rule 10a. The circumstances that justify this will usually be clearly recognizable. They will emerge
from relationships with the information domain (or its subtypes), and the new domain will be subtypes, not Cartesian

products of the other domain(s) involved. For example, Economic Value emerges from the junction of preference, an ordinal

domain, and information, a ratio scaled domain.45 As our information on people’s preferences increased in step with the

trading population, we increased the granularity with which we could discriminate between preferences, and new values

started filling the gaps between the discrete preferences. Gaps between values shrank until we reached a point where we
felt that we were dealing with a continuum of values.

Economic value is really quantified preference information. Economic Value conveys “softer,” more uncertain in-

formation than the engineering information conveyed by physical domains such as mass or length. We have described

why this is so. Indeed, until money was discovered, primitive economies based on bartering goods and services had no

unit of measure they could associate with economic value. However, when preference information of large numbers of

people was involved in larger communities, the information content inherent in preferences of individuals added up, and

the overall preference of the aggregate object, a population, became almost ratio scaled, and monetary exchange evolved.

With monetary exchange in place, the near quantitative statistical nature of aggregate preference became evident and

firmly established as the domain of money.
As we considered preferences of large numbers of individuals, the meaning of preference and the meaning of information

in the composite, preference information domain, “melted” into a single continuum of values. As more individuals were

considered, the information conveyed by each person’s preferences added up,46 and the relationship between preference

and information got denser and denser until it could be considered a ratio scaled continuum. Hence, we are justified in
considering Economic Value a primary domain that is a subtype of Preference, an ordinal domain.

Information rich domains of this type can be considered primary domains. They are domains like economic value, which

have emerged by adding up many instances—large numbers—of similar, information and poor, “fuzzy” meanings to the

extent that they have demonstrably become almost quantitatively scaled. These kinds of domains are found more often in

the softer social sciences such as psychology, sociology, and biology. Barring economic value, few are used universally.

Domains like Economic Value, which were created by adding information to primary domains with less information

until they changed into a new kind of domain are subtypes of the domains they grew from, albeit special subtypes that

came into being based on inheriting the subtyping relationships in Appendix I, Figure I.4.

Box 4.5 continued

continued on following page

106

The Pattern at the Root of It All

Box 4.6. Domains, relationships, and the Cartesian product

A relationship between two or more object instances creates a pattern. When a relationship is a sequenced pattern, it is a

Cartesian product between object classes.47 Tuples48 capture the fact that object instances listed in the tuple are “joined”

in a sequence. The Cartesian product is the class of tuples. It joins the object classes that participate in the relationship.

Cartesian products are antisymmetrical; that is, the direction of association matters, unless the object is referencing itself

(for example, “help” in is an antisymmetrical relationship: “person helps person” is asymmetrical unless it is self help). As

such, an association, (a, b), of two values “a” and “b,” is considered different from the association (b, a) of the same values

in asymmetrical relationships. Many relationships such as “child of” are also asymmetrical. However, some like “wedded

to” are symmetrical. The direction of association does not matter. The Cartesian product and asymmetrical relationships

are subtypes of relationships that are directionless associations like “wedded to.”

Although a relationship is an association, it is not only an association. It is an association pregnant with meaning. An

association is only a mathematical concept. By itself, it possesses no more meaning than a bald association. However,

relationships convey richer meanings, which they normalize. The Cartesian product is the mathematical artifice that nor-
malizes new meanings, meanings that emerge by associating one meaning with another or even several meanings with

each other. Temperature Preference is a Cartesian product of the Temperature domain with the Preference domain. It has

a unique meaning, but the meaning is obtained by combining the meaning of Temperature with the meaning of Prefer-
ence. These meanings were combined in a tuple to create a new meaning, “temperature preference.” The tuple in this

case is a list of two values, a value of temperature and a value of preference. It is also a list laden with meaning, obtained

by associating a temperature with a preference for that temperature. It possesses a unique meaning different from its

constituents, temperature, and preference.

A relationship like this cares about its direction, and a tuple cares about sequence and so does the Cartesian product.

If a set A is a set of members a1 and a2, and set B a set of members b1 and b2, then the tuple (a1, a2) is different from the

tuple (a2, a1). In the same way, (a1, b1) will be different from (b1, a1), and A x B from B x A. If A and B had been objects,

A x B would have been a relationship from A to B, whereas B x A would have been a relationship in the opposite direc-

tion, from B to A. Take the page you are reading in this book. The Book and Page are objects. The book contains this

page. A relationship from Book to Page contains and connects the two objects Book and Page. It may be true that Book
Contains Page, but the inverse cannot be true; obviously, this book cannot be contained in this page! As such, direction

can distinguish one meaning from another, just as it can distinguish one relationship from another. Further, sequence

distinguishes one tuple from another with the same elements, just as it distinguishes one Cartesian product of sets from

another with the same sets.

“Contained in” was the inverse of “contain” in the example above. Not all relationships in the reverse direction may

be inverses. We will return to the nature of relationships later in this book. For now, it will suffice to understand that
relationships between objects can be Cartesian products laden with meaning and to remember that relationships are also

object classes in their own right.

Consider a person’s car color preference. It is a four-way relationship between Person and Car, two “normal” objects that

may respond to events by changing their state and two domains, color and preference, that are immutable and changeless

fields of meaning. The relationship is a Cartesian product that may be expressed as Person x Car x Color x Preference.
Cartesian products are associative operations on sets. Therefore, Person x Car x Color x Preference = Person x Car x

(Color x Preference) = (Person x Car) x (Color x Preference). The three expressions—the four-way relationship between

Person, Car, Color, and Preference; the three-way relationship between object classes Car and Person and the Color
Preference domain; and the two-way relationship between the Person-Car relationship and the Color Preference do-

main—all mean the same. They are merely different expressions of the same rule meaning. It is also worth noting that,

although the Cartesian product might be associative, it is not commutative (see the discussion on operators in Appendix

II, under the Theory of Categories).

Domains are objects too. Cartesian product of attributes created the state space of an object class. The Cartesian

product of domains is a relationship between domains that also creates a state space (a space that is a domain), a class of

values, and a meaning that is changeless, eternal, and immutable.

Figure A of Box 4.5 was a state space created by the Cartesian product of two domains—Color and Preference. This

is why values of color preference are points in this state space. These values are a two-dimensional pattern in a discrete

two-dimensional space. The collection of values, the pattern, is the color preference domain. Domains have no states

continued on following page

107

The Pattern at the Root of It All

because they are the immutable and changeless meanings: classes of values that create states via their relationships with

temporal objects, like a person, which do exist in time and can therefore change.

Magnitude constraint vs. Cartesian product: Contrast the pattern created by the Cartesian product with that cre-

ated by an arithmetic operation—a relationship that is a magnitude constraint between domains. Figure A of Box 4.5 was

a two-dimensional pattern in two-dimensional space created by a Cartesian product. If we take the Cartesian product

of the length domain with itself (once), we will get a flat two-dimensional space. We will still need two coordinates—a
tuple—to describe a value (position) in this space. The price per piece domain, as we have discussed earlier, is obtained

by dividing values in the money domain by values in the enumeration domain. We can describe elements of this domain

in terms of a single value, not a tuple with multiple members; technically, you could also consider it to be a tuple with

a single member, but that is overkill. However, the domain does contain more information than merely its value. It is a

pattern. Figure A is a graph of a hypothetical price plotted against the money and enumeration axes. It is evident from

Figure A that the price per piece is a two dimensional pattern, curved in three-dimensional space, like the sail of a yacht

bellied out by a good breeze.

Money

Num
be

r o
f p

iec
es

Money per piece

Hole

Figure A. The money per piece pattern of association
Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New

York, NY: Cambridge University Press, 2006.©

Both tuples and magnitude constraints are patterns of association. Although magnitude constraints create domains

that are patterns of single values, not tuples, they also create patterns of greater complexity than tuples that may twist,

tilt, bend, fold, and break in more dimensions than the flat Cartesian spaces that hold mere tuples (see the discussion on
patterns49): This is hardly surprising, given the fact that an arithmetic operation conveys more information than mere as-

sociation. It tells us that the domains in question are not only associated but also associated in special ways specified by
the magnitude constraint. The extra information is in the magnitude constraint.

Null vs. nil values: Note how the nil values in the money and enumeration domains of Figure A not only fix the nil
value in the money-per-piece domain but also the null value in it. Given the number of pieces, the lower the quantum of

money, the less the quantum of money per piece. Money per piece naturally falls to nil when money is nil, provided that

the number of pieces is not nil. The number of pieces has the opposite effect. It is the denominator, and the less it is, the

larger the value of money per piece. As it approaches zero (there may be a continuum of fractional values between a single

piece and “nil” pieces), money per piece increases rapidly. Money per piece approaches infinite magnitudes as the number
of pieces approaches nil, provided the corresponding value of money is not nil. If there are no pieces and no money, the

notion of money per piece is meaningless. Note the null value in the pattern—a gap along the money per piece axis where

both the number of pieces and money are nil. When both are nil, money per piece has no meaning. It is not that it has no

magnitude, rather it has no meaning; it is a value that does not exist in the money per piece domain. It cannot when neither

money nor pieces are involved. It is null, not nil.

This gap, a null value in the fabric of the domain when both divisor and dividend are nil, is common to all quotients.

It is a property of the domain of quotients, inherited by each subtype.

Box 4.6. continued

continued on following page

108

The Pattern at the Root of It All

Domains too are objects, even if they represent immutable, changeless meanings—objects that never change state

but objects that lend meaning to states. “Normal” objects that change states may be related to domains or to each other.

Similarly, domains may participate in relationships with other domains. Relationships between domains and objects may

not be immutable. These relationships are “normal” objects that, driven by events, may switch from one value in a do-

main to another. On the other hand, domains are changeless and so are relationships between domains. Therefore, these

relationships, be they mere association or magnitude constraints, will be changeless, immutable domains as well. This is

the key distinction between domains and temporal objects. This is also how domains anchor the metamodel of knowledge

on the bedrock of immutable meanings.

Box 4.6 continued.

THE OBJECT AND THE STATE
MACHINE

A temporal object is a person, place, event, thing,

or concept that exists in time. Just as domains

become more meaningful in step with their in-

formation content, abstract objects also become

more choate and meaningful as we add temporal

and other information to them.50 These objects and

patterns become reusable business meanings by

capturing our shared understanding of business

and can therefore be components of knowledge

from which agile business processes and business

systems may be assembled.

This section summarizes how objects and their

temporal states can encapsulate, normalize, and

propagate knowledge through information space

and, as new information flows into information
space, how these objects become components that

can be reconfigured in step with new learning.
To exist in the real world, an object like a place,

person, event, or thing must exist for some span

of time, even if that time span is infinitesimally
short. To distinguish these objects that exist in time

from Domains, which are the immutable timeless

meanings, we call them Temporal Objects. Tem-

poral objects may be physical objects like people

and buildings or concepts like organizations or

budgets. All objects have properties. Properties

of domains will never change because domains

lie beyond the flow of time. On the other hand,
properties of temporal objects can change with

time. People, buildings, and organizations age,

people grow taller, buildings can change hands,

organizations can change their members and

their charters, and budgets can lapse, increase,

or decrease. We have understood how properties

of temporal objects flow from their relationships
with domains. The state of a temporal object at

a point in time is the combination of values of its

properties at the time. It describes the object at

that point in time. A person being single, 5 years

old, and 3 feet tall is a state of that person, which

can change over time, so that 20 years later, his

or her state might be married, 25 years old, and

6 feet tall.

Domains are classes of values. When a tem-

poral object switches a relationship from one

value to another in a domain, it changes its state.

Objects change state in response to events. The

event might be a discrete event like a wedding

or an event like the continuous passage of time.

The scope of our model of knowledge is limited

to discrete events. However, our model does not

ignore continuous changes. It merely considers

them to be a series of discrete changes. The pas-

sage of time may be sliced into discrete units like

years, months, or days. Continuous changes of

state, like the growth of a child, would be simi-

larly sliced into a set of discrete observations at

discrete times (see Figure 4.5).

A class of objects is a group of objects with

common properties. Individual objects in a class

are its instances. In Figure 4.5, the state of each

109

The Pattern at the Root of It All

instance is determined by four properties labeled v
1

through v
4
. The relationship between the class and

a domain determine what class of properties the

class has. The class of persons may have proper-

ties like height via a relationship with the length

domain. Individual instances of that relationship

between an instance of the object class and an

individual value in a domain determine the value

of that property for that instance of the object. The

object class in Figure 4.5 might be the class of

persons and the property labeled v
1
 could be the

age of a person. An individual person may be 25

years old (a value), whereas the class of persons

will have the property of Age derived from its

relationship with the time-lapse domain.

Each instance in Figure 4.5 is also divided into

time slices. Each time slice represents the state of

the object at the time. In a discrete model such as

ours, we assume that the object remains in that

state for a finite time period before another event
changes it. A property of an object could also be

its relationship with another object instance. If

the object class in Figure 4.5 were the class of

male persons, a marital relationship between

this object class and the class of female persons

would establish the institution of marriage. At the

instance level, a marital relationship between an

instance of a man and a woman would establish

their marital state. A wedding event would tie

the two instances together with the relationship,

whereas a divorce event would snap the tie, chang-

ing the state of the two object instances again.

Clearly, relationships like these between instances

of objects are nominally scaled. The existence

of the effect of an event is also a property of an

object. An agreement under negotiation may be

redrafted on request from any of the parties to the

agreement, whereas a sealed agreement will not

be. The effect of the request (an event) is deleted

by the event that seals the agreement. This too is

a change of state.

From Figure 4.5, it is clear that we must have

some way of identifying each instance of an ob-

ject so that we can track its history. The instance

identifier represents the identity of the object and
conveys the information that the object is distinct

from every other object. It also conveys that even

though an object changes state, all the states over

its history belong to the same object instance.

Every instance of an object will have a unique

identifier, which will never change between state
transitions over its full life, even after its death

or deletion. This identifier cannot have the same
value for any other object instance because it is

the identity of the object (instance) it represents,

standing for all the information that makes its

identity unique and different from every other

object instance in the universe for all time. This

identity will distinguish the object (instance) from

every other object (instance) as it moves through

state space, giving it a unique trajectory that is its

individual history through time. It also records

the irreducible fact that this specific instance of
an object exists in the world.51

We also need a time slice identifier to acknowl-
edge the existence of a time slice of an instance of

Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

Figure 4.5. The state of an object changes in response to discrete events

Time slice
(a single state of an instance of an object)

OBJECT CLASS
Present

Past

V1

V2

V3

V4

V1

V2

V3

V4

In
st

an
ce

Time Time

In
st

an
ce

V1

V2

V3

V4

In
st

an
ce

110

The Pattern at the Root of It All

an object (the design of the instance identifier and
time slice identifier are physical design issues).
Moreover, every state change will naturally be

associated with:

The time of change;

Who made the change (the operator as well

as process owner); and

The facility (automated or manual system)

that was used to make the change (immediate

reason, not root cause—the causal chain can

always be traced to root causes and sources

of change if all these audit attributes are

maintained).

We will call these items, which are often

required by auditors but are also the keys to the

history of the object instance, the “audit attributes”

of the object. Audit attributes reside in the Business

Process Automation layer of the Architecture of

Knowledge in Chapter III.

A temporal object class may be considered a

three-dimensional pattern like that in Figure 4.6.

Two-dimensional slices of this object might be

1.

2.

3.

perceived as history tables or relational database

tables that represent the current state of the object

class, but these are all implementation issues

in the technology layers of the Architecture of

Knowledge. In the business layer, an object is

a meaning and a pattern of information, not a

table of data, and this pattern has a history and

trajectory through state space.

An object class is a container of object in-

stances. Think of it as a bag of candy. The bag

has an identity different from its contents. In the

same way, the object class has an identity distinct

from the object instances it classifies. An object
class is also an object instance. A bag could be

empty, and so could an object class be devoid of

instances. We could conceive of an organization

without members or a class of persons born with

green hair that is empty because no one is born

with green hair. Moreover, object classes could

also be classes of object classes. Tithe class of

persons includes the classes of men and women.

The class of persons would normalize the com-

mon properties of all persons, whereas the class

of men would normalize the properties shared by

Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New York,
NY: Cambridge University Press, 2006.©

Figure 4.6. Perspectives of an object

Object
Instance 1

Object
Instance 2

Object
Instance 3

Property
1

Property
2

Property
3 Time Slices

Present

Past

History of Attribute 3
across all object instances

Current values of
attributes for each

object instance

State history of
Object Instance 3

B

A

C

1
2

3

111

The Pattern at the Root of It All

all men, and the class of women would normalize

the properties shared by all women. As such, the

class of men would inherit the shared properties

of all persons, but not the properties exclusive

to women, and the class of women would also

inherit the shared properties of persons, but not

the special properties of men. If the scope of

our model shifted so that we needed to add new

information, like the color of a person’s hair, we

could add the same to the class of persons, and

both the class of men and the class of women

would automatically inherit this property. On the

other hand, if we had to add information on the

color of a man’s beard, we would add this attribute

only to the class of men and it would not affect

women. In this way, knowledge and the impact

of change are driven to the right places via the

subtyping relationship.

Some experts distinguish a subtype from a

polymorphism. We make no distinction between

polymorphism and subtyping in this book; they are

both obtained by adding information to a parent

object, which creates a new meaning. We consider

subtypes and polymorphisms to be synonyms.

Some experts also distinguish a subtype from

a role, considering that a subtype (for example,

gender) will not change, whereas a role is a state

obtained via a relationship like marriage, which

can be changed by events. We make no such

distinction. As scopes shift and new learning rec-

ognizes new events, things previously considered

immutable become mutable. Even gender can

change in some animals (see Appendix II on the

Question of Gender). The principle of parsimony

in Appendix II admonishes us against adding

constraints unless they are absolutely necessary

to a meaning, an interaction, or a process. We

must specify the bare minimum of information

in order to be resilient and agile in information

space. This will lead to resilient business processes

and agile information systems as the subsequent

chapters of this book will show.

A meaning is abstract. It is a pattern of infor-

mation. Every object conveys information. Con-

straining information creates new meanings, as

we have understood in this chapter. Meanings can

contain other meanings. The meaning of “Man” is

contained in the meaning of “Person.” Every object

may be a place for another object. Information

may be a place for information because it includes

the information it contains. Not all places may be

physical places. A physical place and a physical

object are special polymorphisms of patterns of

information, as we will discuss next.

Temporal objects convey information about

their presence in time. Physical objects convey

information about their presence in space and time

with the caveat that a physical object may only

occupy one physical place at a time. Constraints

add information and reduce the degrees of freedom

of a pattern. Just as physical domains morphed

out of abstract domains in step with their infor-

mation content, business meanings and physical

objects emerge from abstract information. Figure

4.7 shows this hierarchy.

Money is obtained from the ordinally scaled

preference domain as it becomes dense by includ-

ing preferences of large numbers of individuals.

When we add temporal behavior to this domain

so that the quantum of funds may increase or

decrease in response to events, it becomes Fund,

which is temporal information that maps to the

ratio scaled money domain.

Information can only be perceived when it is

represented by physical symbols in a document.

The information is physically formatted thus.

Permitted formats will depend on the medium

of information. Medium is therefore a class of

documents based on formativeness. Individual

documents are actually instances of the medium

they belong to.52 The integration of Ontology into

the model of knowledge not only brings the power

of reason into the model of knowledge but also

enables the creation of resilient business processes

from reusable knowledge. The ontology also pro-

vides ready templates for accelerating the design

of business processes and information systems,

as well as avenues for enabling quantum leaps in

112

The Pattern at the Root of It All

Figure 4.7. Temporal object ontology

Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Business Knowledge, Norwood,
MA: Artech House, Inc., 2005. ©

Box 4.7. States, attributes, state variables, and type indicators: Much ado about nothing

The state of an object instance is the collection of values of its attributes at an instant in time.

The State (condition) of an object instance may not only change over time (as effects of events affect the object) but

also vary from object to object. These differences in state between objects, or between different states of the same object

at different times, are described by values of its attributes and the object’s relationships with other objects or itself. The

existence or non-existence of a relationship is a nominally scaled item of information like many state indicators are, and

indeed, there is little difference between the two.

For instance, some properties of glass panes, such as whether a pane is broken or not, might not only vary from pane

to pane but also change over time in response to events such as hammer strikes, whereas other properties, such as the

color and thickness of the pane might only vary from pane to pane. It is not that some attributes cannot or do not change

in real life, but only those events and effects that might change them are beyond the scope of the model.

Sometimes data modelers try to draw artificial distinctions between ratio or difference scaled attributes (like the
thickness of the glass pane) and nominally or ordinally scaled state or type indicators. A State indicator is a nominally

or ordinally scaled attribute that captures the fact that the behavior of an object can change suddenly in response to an

event or condition.53

A glass pane may be whole or broken; an agreement may be sealed or under negotiation. The metamodel of knowledge

distinguishes facts that do not involve the flow of time, that is, things that just are, from facts that involve the flow of
time, or things that become. Existence of attributes, states, types, relations, and constraints do not involve time. Chang-
ing values of these do. That is why, mathematically speaking, there is no distinction between attributes, participation in

relationships, types, constraints, and state indicators. These distinctions do not add any meaning to the metamodel, nor

do they make the metamodel any clearer. Indeed, these distinctions will only serve to complicate the metamodel. In this

book, we will consider them all to be attributes that contain information about the state of the object at a point in time.

Collectively, they are called features of the object.

Some analysts distinguish roles from state indicators. They assert that roles result from relationships, and state indi-

cators do not. A person (an object) may assume the role of an employee by participating in an employment relationship.

continued on following page

Medium of 0 or more
[conveyed by 1 or more]

MEDIUM

Document
Document

PHYSICAL OBJECT

PLACEPLACE
PERSON OR

ORGANIZATION
PERSON OR

ORGANIZATIONENERGY
FUNDFUND

EVENTEVENT

Subtype of

PERSON ORGANIZATION

(Partition)

Locate 0 or more
[Location of 0 or more]

Subtype of

Subtype of

Subtype of

Located in 1

[Location of 0 or more]

PHYSICAL
PLACE

VIRTUAL
PLACE

(Partition)

Located in 1 or more
[Location of 0 or more]

INFORMATIONINFORMATION

113

The Pattern at the Root of It All

Roles are state indicators, and there is little benefit in making a distinction between role and state.54

Data (and object) modelers sometimes justify making distinctions between State Indicators and Type Indicators based

on their assertion that states change in response to events, whereas some attributes called type indicators do not. Some

practitioners might argue that since the location of a bridge or an individual’s gender will never change, we must distinguish

these attributes from State Variables that do change. For the same reasons as before, nothing will be gained by making this

distinction mathematically or practically; it will only add complexity to the metamodel with no commensurate return.

Indeed, most so-called “constant” values are constant only within a limited scope. Systems change primarily because

new objects and behaviors must be brought in scope as businesses they support flex and innovate for competitive advantage.
The so-called “impossible-to-change, steadfastly constant” attributes may suddenly start changing in the new scope.

Most seasoned information modelers have come across several examples of this phenomenon in their professional

lives. However, we will illustrate the point with two rather extreme but little known interesting real life examples:

The first is about moving bridges: Even the London Bridge moved from London to Lake Havasu City in the U.S.A.—who
said bridges could not move?

The story of changing gender is even more interesting. Who said gender could not change? With so many species of

plants and animals that routinely change gender, scientists have had to invent a new word, gonochorostic, for species that

do not change their gender through their life span. If “individual” means an individual of any species, not just human, we

would have to allow for changes in gender.

The majority of reef fish change their gender at some point in their life. Similarly, for a desert shrub called Zuckia
Brandegei, half the plants open with male flowers and the other half open with female flowers; a few weeks later, they
switch. Male and female flowers shrivel up, and new flowers of the opposite sex bloom. Because of this adaptation, these
wind-pollinated shrubs are able to improve the odds that the species will flourish because the odds of mating with others
of their species are increased.

Box 4.7. continued

Box 4.8. Exclusion partitions, variation inheritance, and polymorphism

Partitions have a profound effect on inheritance—what is inherited and what is not. Sometimes the difference between

Exclusion and Inclusion Partitions is subtle. It depends on how the object being partitioned into subtypes has been defined
and the partitioning criteria being used. Consider the class of all people. Let us call it Person. Let us assume it has attributes

such as Name, Age, Gender, Height, and Weight. We also understand that some persons are parents and others are not.

Those who are parents have a “parent of” relationship with another person. This relationship does not exist for those who

are not parents. This is the criterion for distinguishing parents from nonparents, and Parenthood is a feature of Person.

Person is the union of the class of Parents and the class of Nonparents, which makes both Parent and Nonparent
subsets of Person. NonParent, the subclass, is defined by excluding all those who have the “parent of” relationship with

another person. Nonparent will inherit all attributes of Person, except parenthood. Figure A shows how this happens; the

“parent of” relationship is not inherited by its Nonparent subtype. (Technically, the value of parenthood is “unknown” in

“Person,” whereas it is constrained to equal “null” in nonparent.)

Inheritance with exceptions is called Variation Inheritance.55 Variation Inheritance flows from exclusion partitions
and supertypes that are anchored in the union of properties of (at least a few) subtypes (objects like these are called

parametric classes56). Extension Inheritance, on the other hand, flows from supertypes anchored in the intersection of
common properties of subtypes.

Restrictions on state spaces of subtypes may also lead to variation inheritance. Subtypes inherit properties, including

constraints from their supertypes. We may add more constraints to a subtype. When constraints are added to subtypes,

they must necessarily be stricter than or at least as strict as those it has inherited. After all, a subtype cannot violate the

lawful state space the subtype has inherited from its supertype.

The subtype may not be free to roam the entire state space (or facets) it has inherited from its supertype. Its own con-

straints may restrict it to even smaller regions inside the inherited state space. When subtyping criteria restrict the lawful

continued on following page

114

The Pattern at the Root of It All

state spaces of subtypes to regions or facets inside the supertype’s lawful state space, some inherited features (effects,

relationships, constraints, etc.) may become redundant57 or incorrect (i.e., the feature would allow the subtype to violate

its restricted state space). Such features must then be excluded. Hence, Variation Inheritance may flow from constraints.
For example, restricting one subtype (Nonparent) to the set of persons who have no (0) children was cause for variation

inheritance in Figure A.

Polymorphism

Variation Inheritance, also called Restricted Relationship Inheritance, and polymorphism, is an important concept in the

reuse of knowledge. It flows from the structure of relationships. Subtypes inherit relationships from supertypes along
with other features. Relationships normalize facts about interactions between objects. When relationships between ob-

jects are inherited, restriction and variation inheritance can interact in special ways. Subtypes may inherit relationships

unconditionally, or they may inherit relationships with caveats. The most common caveat is that the relationship inherited

by a given subclass will only be between it and other specific subclass(es). Thus, if two or more superclasses are related,
a subclass of one object may not always be related to all subclasses of the other object(s). In such cases, the relevant re-

lationships do not violate constraints imposed on supertypes. This is Inclusion Polymorphism: “Inclusion” because the

supertype generalizes and includes the behavior of subtype(s), and “polymorphism” because the relationship appears in

different forms for each subtype.58

For example, engineering firms in general manufacture engineering products. However, if we take automobile parts
manufacturers, a subtype of engineering firms, they manufacture only automobile parts, a subset of engineering products.
The manufacturing relationship is inherited, but it relates automobile parts manufacturers to a subset of engineering

products, not all engineering products. As such, if we said that the subtype, Automobile Parts Manufacturer, inherited the

manufacturing relationship from its supertype, we would not be telling the whole truth. The manufacturing relationship

is inherited but in restricted form. It only relates Automobile Parts Manufacturers to a subset of engineering products

(automobile parts), not all engineering products. The inherited relationship is actually a subtype of the manufacturing

relationship between corresponding supertypes. Only the subtype, not the entire relationship, was inherited. Hence, manu-
facture is a polymorphic relationship, and this is an example of Inclusion Polymorphism. The kind of firm is a parameter
that determines the subtype of manufacture, the relationship that is inherited.

In Figure A, if the Parent subtype had been only female parent, that is, Mother instead of Parent, only those instances

of “parent of,” that belong to its subtype, “mother of,” would have been inherited. This is another example of Inclusion
Polymorphism.

PERSON

NON-
PARENT

PARENT

PARENTHOOD PARTITION

Subtypes of Person

may be parent of 0 or more

parent of 1 or more
(inherited from Person)

Features
•Parenthood
•Name
•Age
•Gender
•Height
•Weight

Features
•Parenthood
•Name
•Age
•Gender
•Height
•Weight

Features
•Parenthood
•Name
•Age
•Gender
•Height
•Weight

Inherited
from

Person

Inherited
from
Person

EXCLUDE
FEATURE
FROMSUBTYPE

PERSON

NON-
PARENT PARENT

PARENTHOOD PARTITION

Subtypes of Person

parent of 1 or more
(added to subtype) Inherited

from
Person

Features
•Name
•Age
•Gender
•Height

•Weight

Features
•Name
•Age

•Gender
•Height
•Weight

Features
•Name

•Age
•Gender
•Height
•Weight

Inherited
from

Person

Parenthood
 (add feature to

subtype)+

Figure B. Partitioning criterion: Addition of parenthood
relationship (all features inherited by all subtypes)

Figure A. Partitioning criterion: Exclusion of parenthood
relationship (“parent of” is inherited by one subtype but not the
other)

Avoiding Variation Inheritance

If we had defined Person sans the parenthood attribute, we could have created a Nonparent subtype of Person without

an exclusion partition. We would have added Parenthood only to the Parent subclass. Then inheritance would flow from

Box 4.8 continued

continued on following page

115

The Pattern at the Root of It All

extending, instead of excluding, inherited properties of the subclass, and Extension Inheritance (see Box 7.3) instead of

Variation Inheritance would be at work. Figure B shows this.

The kind of inheritance that is appropriate depends on both the design of the supertype and the design of the partition,

whether the partition is an inclusion or exclusion partition. If supertypes contained only behavior common to all possible

subtypes, we would never need variation inheritance (with the exception of polymorphism). However, when the scope

of business expands under the imperative to change, we might find that behavior that we had assumed was common to
an entire object class was actually common only to subtypes in the limited scope of the old business (see Appendix II on

Lungfish). Legacies like these drive variation inheritance.
As the pace of change accelerates in a world driven by new knowledge and global competition, this can happen

frequently, laying layers of variation inheritance upon older layers of variation inheritance, until we end with complex,

poorly understood, tangled inheritance. This greatly increases the risk of chaos under the pressure of continual change

and is an imperative driving global business in the new millennium.

To minimize the risk of chaos, it is best to refactor, that is, reconfigure components of knowledge, to reduce the incidence
of variation inheritance.59 The principle of subtyping by adding information asserts that subtypes may be created from their

parents only by adding information. It brings a common perspective to inheritance subtyping and polymorphism.60

Extension and Variation Inheritance are not mutually exclusive. Unaffecting Inheritance is a form of Variation Inheritance

in which we only take away properties from subtype(s), as we did in the example in Figure A. There is also no bar against

taking away some properties while adding others. This form of inheritance is called Functional Variation Inheritance.

Functional Variation Inheritance boils down to subtypes over-ruling properties of supertypes. With Functional Variation

Inheritance, objects can become fluid shadows of reality that shift, blur, and change fundamentally between perspectives
and changes in requirements (see Chapter II, The Problem of Perspective).

To anchor objects firmly in stable perspectives and to reduce the complexity of reconfiguring processes and systems
under the twin imperatives of speed and change, analysts should strive to support change by adding new behavior as

much as possible and by judiciously taking obsolete behavior away (perhaps only when old behavior is incompatible or

in conflict with new behavior). When we do both simultaneously, objects and perspectives can become shifting chimeras
of reality.

Box 4.8 continued

the kinds of automated design tools we can use

to support these.

The following chapters of this book highlight

how automation may help to turn business knowl-

edge into resilient business processes that nurture

agility and innovation.

ENDNOTES

1 The behavior of information space and the

semantics of Pattern are discussed in detail

in the companion book from Cambridge

University Press. The discussion in [337]

(in Appendix III) integrates the metamodel

of Ontology into our model of knowledge,

lending the Metamodel of Knowledge the

power to reason.

2 [337] in Appendix III discusses the semantics

of patterns, measurement, and the proximity

metric in more detail.
3 [337] and [338] in Appendix III describe

Partitions and their topoi in more detail.
4 [337] and [338] in Appendix III describe

some of these aspects in greater detail.
5 [337] in Appendix III discusses formatting

domains, their behavior, and how symbols

in formatting domains may be organized

into languages.
6 [337] in Appendix III discusses the five

fundamental domains in more detail, under

Patterns of Sequenced vs. Unsequenced

Association.
7 Technological constraints may flow from the

actual hardware of physical devices or the

116

The Pattern at the Root of It All

systems software in the “Technology Rules
Layer” of Figure 3.4.

8 Written scripts are visual symbols in one-

dimensional sequences. Diagrams and

graphics may be patterns in two or three

dimensions. Patterns of movement involve

time, another dimension. Animated three-

dimensional graphics involves four-dimen-

sional symbols that may consist of four-

dimensional patterns. Higher dimensional

arrays of symbols may also exist. Business

and financial analysts often look for these
patterns.

9 The science of genetics has several real world

examples of complex format conversion

rules. Translation of genetic information

from DNA, through messenger RNA, to

their expression in proteins is an example

of complex real world translation rules that

are the key to the field of bioinformatics.
The genetic information in the DNA is

expressed as proteins. The symbols that

code for proteins in a strand of DNA are

nucleotide molecules. An extron is a stretch

of nucleotide molecules that codes for a

single protein. An extron is a symbol in its

own right. Other stretches of DNA, called

introns, do not code for proteins. Instead,

they contain sequences that change the

expression of extrons. Depending on the

symbol sequences and patterns in introns,

the same extron may express different pro-

teins. This is an example of a complex but

natural real world format conversion rule.

Both introns and extrons are symbols that

will be members of the object set in Figures

B and C of Box 4.1.
10 Represent is described in Box 36 on our

Web site.
11 Imputing a value to a symbol is a form of ad-

hoc polymorphism described under Kinds of

Polymorphism under Mathematical Theory

of Categories in Appendix II.

12 Figure 31 on our Web site has an example

of unsequenced association that drives a

“cannot exist” constraint from classes to

instances: an attribute value is a pattern of

unsequenced association between a single

attribute and a single value. The two are

glued to each other by a connective like the

“ ” operator in the note in Appendix II on

gluing objects together.
13 Constraining a map between attribute values

to be “Null or Do Not Know” requires that

a simple inclusion constraint on values of

states of the instance identifier be attached to
it. The value set will have two values— “null”

and “do not know.”
14 For example, in the array of Figure 4.6,

several time values were mapped to a single

time slice. The time slice was an ordinal state

indicator for the object instance, and the time

value was a difference scaled state indicator

of object instance. As such, a state of the

symbol (a slice of the 3-dimensional array)

representing the object actually represents

several states of that object.
15 Eventually when the object doing the rep-

resentation has no degrees of freedom left,

it cannot be a format because it cannot

represent a meaning. Constants are objects

like this. They do not even have the freedom

not to exist. They must exist and can have

only one value; they have no choices, not

now, not ever.
16 See under fundamental formatting domains,

and also patterns, for examples of formatting

attributes.
17 The metamodel of translation in Figure D

is very similar to the Rule Constrain rela-

tionship in Figure 48 of [337] in Appendix

III. The only difference is that, unlike a

constraint, the rule expression does not

exclude a value.
18 To tell the truth, all formatting symbols

must have a finite or unlimited extent in

117

The Pattern at the Root of It All

time; otherwise, they cannot exist, let alone

be perceived. However, this may not be rel-

evant to our model. It might suffice to bar
time sensitive changes in a format and say

that we have barred the time dimension in
the context of our model. The last italicized

part of the sentence is implied and often left

unsaid.
19 Automated agents are discussed in Box 36

on our Web site.
20 See Appendix II on Dimensions of Color. For

professionals interested in color as a part of

visual formats, [324] in Appendix III deals

with color, its properties, measurement, and

standards in detail.
21 The phenomenon of the same color looking

different against different backgrounds is

called Simultaneous Color Contrast or Color

Induction.
22 A direction expressed in a coordinate sys-

tem is a rule expression. It is only one of

several ways of describing the meaning of

the direction. Different coordinate systems

may describe the same direction on their

own terms.
23 A pattern is independent of the coordinate

system used to describe it. To understand

this, imagine we are creatures that live in the

pattern and our dimensionality is restricted

to the dimensionality of the pattern. More-

over, as creatures pasted to the pattern, with

no possibility of leaving it or looking at it

from the “outside,” we are unaware of the

greater space that holds the pattern. Then

the path we might follow in the space that

holds the pattern will not be evident to us,

but the pattern will be. Tensors are math-

ematical tools that let us describe laws that

are independent of coordinate systems. See

[256], [257], [260], and [262] in Appendix

III.
24 State space is a mathematical Topos. See

section 6.1 of [178], Chapter 11 of [314], as

well as [262], [263], and [264] in Appendix

III.
25 Number and cardinality (of states) are syn-

onyms when the number of states is finite.
When a continuum of states is involved,

like those in ratio or difference scaled

state spaces, the number of states becomes

infinite. Mathematically, the set of ratio
and difference scaled sets is said to have a

dense partial order (see Box 4.5 or [208] in

Appendix III). Cardinalities, or the relative

sizes of these infinite numbers, must then be
considered. This involves the mathematical

theory of transfinite numbers and is beyond
the scope of this book. Interested readers

may refer to Ordinal [212], Cardinal Number

[206], Continuum Hypothesis [204], Count-

able [202], and Countably Infinite [203] in
Appendix III.

26 The fidelity of a format depends on its in-

formation carrying capacity. It deteriorates

proportionately with the information carry-

ing capacity of the object representing an es-

sential pattern, if the information conveyed

by the essential pattern exceeds that of the

object that represents it.
27 Inclusion and exclusion constraints are

discussed in detail in [337] in Appendix

III. Also see the section on patterns in that

book.
28 When it serves as the medium for expressing

ideas in words, the plane of the paper has

been divided into a set of one-dimensional

arrays called a line. Each cell in a line has

an imputed value—a sequence number.

The direction that dictates the sequence

of components of a sentence in state space

(see the section on constraints on the ex-

tent of representation in this box) has been

mapped to matching sequence numbers. The

number of characters on a line is limited

by a value constraint (which creates a page

margin), which itself is subject to the line

118

The Pattern at the Root of It All

delimiter, two opposite edges of the page.

Lines truncate the sequence of components

in sentences. The remainder is mapped to

the next line and so on.

Lines are patterns that have imputed se-

quence numbers based on their position on

the second dimension of the plane of the

paper. The sequences of symbols, abstract

attributes in the state space of the format,

have been mapped to the two dimensional

physical space of format. This map depends

on convention, and different languages may

have different conventions.
29 [337] in Appendix III describes the com-

ponents of the Metamodel of Knowledge

that normalize rounding and truncation of

numbers. Each behavior is normalized at a

different place in the metamodel.
30 Dimensional analysis and the fundamental

physical dimensions are discussed in [271]

and [272] in Appendix III.
31 The physical world and its laws flow from

its information content. As we have seen,

the information content of a pattern is ul-

timately framed by its degrees of freedom.

The fundamental domains are only one of an

infinite number of possible bases for fram-

ing the physical laws. We could change our

perspective of what we consider fundamental

by substituting a dimension we consider

fundamental by another that we call derived,

provided we do not impute more or less

information content to the overall pattern.

This means that we cannot add or remove

fundamental domains at will: we may intro-

duce new fundamental domains only if we

turn some other fundamental domains into

derived domains. Buckingham’s Pi Theorem

proves this mathematically and describes the

kinds of changes that are permitted. [271,

[272], [287], [288], and [289] in Appendix III

provide additional reading on Buckingham’s

Pi Theorem and fundamental domains.

32 Buckingham’s Pi Theorem articulates that

a rule meaning may be expressed in many

different ways, possibly even with differ-

ent variables, but if we take a variable out

of the expression, we must compensate for

the information lost by including another

variable that puts the information back. See

[271], [287], [288], and [289] in Appendix

III.
33 Fundamental (primary) domains, second-

ary (derived) domains, and the system of

coherent measurement are described under

Measurement Theory, Macropedia, Volume

23, page 795 of [336] in Appendix III.
34 SeeFundamental Interactions, Micropedia,

Volume 5, page 51 of [336] in Appendix

III.
35 The measure of energy in terms of physical

domains is ML2T-2, where M is the measure

of mass, L is the measure of physical sepa-

ration, and T is a measure of elapsed time.

Albert Einstein’s special theory of relativity

showed that the measure of energy is even

simpler—that it is identical to the measure

of mass. However, this is more relevant to

physicists than business modelers. Busi-

ness models lose little if they consider each

measure to be a domain in its own right and

ignore the derivation of secondary domains

from primary domains unless there is a

business rule involved.
36 Buckingham’s Pi Theorem articulates the

fact that meanings of values are independent

of the units that express them. See [271],

[287], [288], and [289] in Appendix III.
37 Should we have added the strong and weak

forces to our list as well? Perhaps to incor-

porate future technology future. However,

this is not needed at this stage as the practi-

cal application of the metamodel is related

to business knowledge, and business is the

focus of this book.
38 [337] in Appendix III discusses domains in

detail.

119

The Pattern at the Root of It All

39 The size of (number of values in) a domain is

measured by its cardinality. The cardinality

of a domain may be finite or infinite. The
discussion on cardinality of domains in [337]

(in Appendix III) describes how even infinite
numbers may be compared and how some

infinite domains may be smaller or larger
than others. These concepts are based on

Cantor’s mathematics. Cantor was a 19th cen-

tury mathematician who created the theory

of transfinite numbers. Several publications
on number theory, metric spaces, and set

theory, listed in Appendix III, provide op-

portunities for further reading on this topic.

[172], [202], [203], [204], [206], [208], [212],

[216], [219], [220], [221], [222], [230], and

[231] in Appendix III deserve special men-

tion.
40 Tuples: see Box 19 on our Web site.
41 Box 4.6 describes how relationships between

domains create new domains.
42 Mathematics of Partial Order is covered in

[217] of Appendix III.
43 The size of a domain is measured by its

cardinality; the calculation gets complicated

when one considers domains with an infinite
number of values. See [202], [203], and [212]

in Appendix III.
44 Rule 10a in the chapter on domains in [337]

asserts that a relationship between domains

creates a new domain of at least the scaling

of the most information sparse member of

the participating domains. The derivation of

this rule is discussed in detail with examples

in that book.
45 [337] in Appendix III describes how Eco-

nomic Value emerges from the junction of

preference, an ordinal domain, and informa-

tion, a ratio scaled domain.
46 Readers interested in the mathematics of

how individual preferences add up to yield

domains richer in information, domains that

are more than the sum of their parts, may

refer to the discussion on concordance on

page 229 of [311] (in Appendix III).
47 Asymmetrical and antisymmetrical relation-

ships are Cartesian products: See Cartesian

Product on our Web site in Box 19. The as-

sociation between objects is a mathematical

category and an object in its own right. It is

the Product Category of [173] (in Appendix

III).
48 Tuples are described in Box 19 on our Web

site.
49 These patterns of curved spaces are math-

ematical manifolds. See [268] and [257] of

Appendix III.
50 [338] in Appendix III describes how business

meanings flow from the abstract objects.
51 A null value of the instance identifier

implies a non-existent object instance; an

“Unknown” value implies that the object

instance may or may not exist. When an

information system has no record of an ob-

ject instance, it could have either meaning;

most current methodologies do not resolve

this ambiguity.
52 [338] in Appendix III expands on the

discussion of Figure 4.7 and describes the

patterns of business knowledge from which

knowledge reuse, resilience, and agility flow.
These patterns may be utilized as templates

that may be used to integrate and coordinate

information, to create data, object, and pro-

cess models.
53 Further reading on state indicators is pro-

vided in [166] of Appendix III (Siegrist,

Sets and Events in Virtual Laboratories in

Probability and Statistics, 1997-2001).
54 Box 10 on our Web site amplifies on features

and states of objects.
55 Appendix II and [328] of Appendix III have

more information on variation and other

kinds of inheritance.
56 Object classes that are collections (sets) of

objects with (some) unshared properties

120

The Pattern at the Root of It All

are called parameterized classes in UML

(Unified Modeling Language, a widely used
object modeling syntax. See Box 22 on our

Web site). The parameter of a parameterized

class is the criterion for choosing objects

from the set. Parametric classes are shown

like this in UML: OBJECT
parameters

. Parameters are

sometimes called “arguments.” Interested

readers may refer to [50] and [329] of Ap-

pendix III for more information.
57 Meyer ([328] of Appendix III) calls this

restriction inheritance. However, it is also

a kind of variation inheritance.
58 Morphism is the quality of having a form

or shape. Polymorphism is the quality of

appearing in several apparently different

forms. In mathematics, morphisms are maps,

relationships, or rules between categories

that associate objects in one category with

those in other(s). When only subtypes of a

relationship are inherited, it could be said

that the supertype is inherited with special

variations or restrictions and hence pres-

ents itself in different forms. Therefore,

the relationship is polymorphic and this

phenomenon is polymorphism. See Poly-

morphism in Appendix II under the theory

of categories.
59 Appendix II, on refactoring, has more

information on reconfiguring components
of knowledge. [337] of Appendix III also

describes refactoring in more detail, with

examples in Chapter II under Default States,

Subtypes, and Variation Inheritance.
60 The principle of subtyping by adding infor-

mation is described in Box 4.3.

121

Chapter V
Relationships

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

The focus of this chapter is on how interactions between objects create new meanings. It develops a
model of business rules, and shows how mutability supports innovation. It introduces the rules that
support inference and innovation by manipulating the patterns of information that constitute different
meanings.

This chapter focuses on the interactions among

objects. These interactions convey information

and are relationships between objects. Thus,

relationships between objects are also informa-

tion bearing, meaningful objects. In this way,

new meanings are created by objects that relate

to each other. Without relationships, meanings

cannot engage, patterns cannot exist, and knowl-

edge cannot be.

Knowledge is a configuration of facts about
interactions that make the world around us what

it is. An interaction may be nominally scaled,

ordinally scaled, difference scaled, or ratio scaled.

The rule expressions in Box 4.1 were relationships.

The relationship between the two signatures and

the payability of the check, in which both the CFO

and the CEO’s signature are required to make the

check payable in the case study in Module 5 on

our Web site, is an example of a nominally scaled

relationship between attributes. In contrast, the

relationship between money per piece, number of

pieces, and money in Box 4.6 is an example of a

ratio scaled relationship. Relationships between

object classes are nominally scaled because they

merely articulate an association that asserts the

mere existence, not magnitude, of a meaning.

A relationship normalizes rules about object in-

teractions. For example, Person is an object class.

House is an object class. A person may live in a

house. “Live in” is the interaction between Person
and House. “Live in” is a relationship and also an

object. The “live in” relationship between Person
and House will normalize information about the

interaction about Person and House—information

like when an individual lived in which house, why

they moved, and when.1

A CASE STUDY

Authorizing a Check: Reusing and Modifying

Process Knowledge at our Web site shows how

122

Relationships

process design may be automated with reusable

components of normalized knowledge. It also

demonstrates how the properties of relationships

we have normalized in the different metaobjects

interact to produce different business behav-

iors.

The case study uses a set of processes for au-

thorizing checks. The processes are engineered

differently from the same reusable components

in support of different business environments.

Figure 7.24 represents this process. Figure 7.24A

starts with an example in which the CFO and the

CEO of a company must both sign a check in

order to authorize it. The case study on the Web

site describes how Figure 7.24A represents this.

It then describes how the processes in Figure

7.24B are polymorphisms of the pattern in Figure

7.24A and how business processes in Figure 7.24B

automatically flex as rules are changed.

INVERSE OF A RELATIONSHIP

A relationship is a map between objects. At the

class level, it maps between object classes; at the

instance level, it maps between object instances.

The map is a meaning that springs from the gulf

between objects. The objects it connects frame

the meaning of the map. For example, Person
and House frame the context of “lives in” in the

assertion that a “Person lives in House.” “Lives
in,” the relationship, bridges the gulf between

the two objects, Person and House, to create a

new meaning that depends on both Person and

House for its context and thus its very existence

(see Figure 5.6).

Every relationship implies another—its inverse

(see Box 5.1). Inverses are special relationships that

reverse the sense of the relationship that implies it

and complements its meaning. An inverse maps

back in the reverse direction, from the instance

level target to its instance level source.2 In the

example above, “live in” is a relationship between

Person and House. It is also a rule that maps the

set of persons to the set of houses (see Box 5.1).

An instance of “live in” is a rule that maps an

individual in the set of persons, to a particular

house, in the set of houses. That a person may

live in a house also implies that a house may be

lived in by a person. As such, “lived in by” is the

inverse of “live in.” If an instance of “live in” maps

a particular individual to a particular house, an

instance of “lived in by,” its inverse relationship,
maps that house back to the same individual.

Every metamodel discussed so far has paired

every relationship with its inverse.

Box 5.1. Relationships between attributes, meanings, and expressions

Box 5.1 elaborates on the behavior and the structure of relationships between attributes and the possibility of time depen-

dent, nonstationary relationships and constraints. It discusses multiway, conjoined interactions, recursive interactions,

rules, and the difference between a meaning and its expressions. It discusses, with examples, the mathematical relationship

between a meaning and its possible multiplicity of expressions.

Relationships normalize atomic rules about interactions between objects. Attributes and features of objects are

(meta)objects too, and relationships between them are repositories of knowledge about interactions between attributes
and features.

Relationships in examples thus far have all been about occurrences of object instances. We could think of them as

relationships between the instance identifiers of objects that participate in the relationship. Relationships between at-
tributes are much richer and more varied. They not only carry information about existence (occurrence), but also about

value—nominal, ordinal, and quantitative.

continued on following page

123

Relationships

objectValue A1 value C1
(image of value A1)

RULE

DOMAIN
OF RULE

CODOMAIN
OF RULESET A

(set of all
permitted values

of attribute A)

SET C
(set of all permitted
values of attribute

C)

INVERSE OF RULE

Figure A. A relationship between attributes is a mapping rule.
Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New
York, NY: Cambridge University Press, 2006.©

Figure A illustrates how values of one attribute may map to another.3 If attribute A in Figure A has a certain value

(let us call it value A1), the mapping rule maps it to the value of a value of attribute C (let us call it value C1).4 When C is

nominally scaled, this rule could be an exclusion or inclusion relationship of the kind in Box 29 on our Web site.5 When C

is an ordinal or quantitative attribute, this relationship could be a much richer repository of far more complex and varied

rules. Relationships that map to ordinal values can carry not only information on existence but also information about

ranking and ranges of values.6 Relationships that map to quantitative attributes can carry even more information. In addition

to existence and ranking, they may involve mathematical formulae that that use the full range of mathematical operators

such as addition, subtraction, multiplication, division, and other more complex mathematical functions.7

Indeed, these relationships may not only be between attributes but also between specific values of attributes. For

example, consider a relationship between two nominal attributes of object class Person, Gender (male or female), and

Type of Parent (father or mother). We know that all fathers must be male. A relationship between a specific value, Father,
of Type of Parent, and another specific value, Male, of Gender establishes this. The rule is an exhaustive inclusion set

between a value (Father), of attribute Parent Type, and a value (Male), of attribute Gender.
On the other hand, consider the mapping between Car Color, a nominal attribute of an object class called Car, and

Color Preference, an ordinal attribute of object class Person. Assume the categories of color preference are “Likes a lot,”

“Likes,” “Neutral,” and “Dislikes.” The map from Car Color to Color Preference is not merely a rule about including or

excluding a specific car color but a rule about mapping car colors into one of the ranked categories of color preferences.

Next consider a quantitative relationship that maps to a quantitative attribute. The Population of an object class is the

number of instances of an object class at any point in time. The population of the class is an attribute of the object class,
not object instance. It is also a ratio scaled attribute. The existence of an instance of the class is an attribute of the instance,

asserted by the instance identifier, a nominal attribute. The relationship between the instance identifier and the Population
is not merely an existence or ranking rule. It involves adding 1, an arithmetic operation, for every instance identifier.

The set of values mapped from the source attribute is called the Domain of the rule (or relationship). Similarly, the set

of values that the relationship maps to (of the target attribute) is called the Codomain of the rule (or relationship). Like the

value set of an inclusion or exclusion set, domains and codomains of relationships between attributes need not be proper
subsets (Proper Subset: see Box 19 on our Web site) of corresponding attribute domains.

A relationship’s codomain determines its potential. When a relationship involves only two attributes (like in Figure

A), nominal codomains will support inclusion and exclusion sets only. Ordinal codomains will support inclusion and ex-

clusion sets by themselves or in conjunction with ranking rules. Quantitative codomains will also support inclusion and

exclusion sets in conjunction with the full range of mathematical formulae. Also, based on the principle of subtyping by

adding information, it is evident that ordinal relationships will be polymorphisms of nominal relationships, and quantita-

tive relationships will be polymorphisms of ordinal relationships

Just as two attributes may be related via rules, so too may three or more attributes. For example, we know that the

number of male and female persons must always add up to the population of object class Person (the three related attributes,

Number of Males, Number of Females, and Population are all attributes of the object class Person, not of instances of

Person). These are rules that map combinations of values of attributes to a third attribute. Figure B illustrates this. Rules

like this are contained in the multiway relationship or interactions between attributes. These are called Joint Constraints
in the metamodel of knowledge. Like rules that involve two attributes, the operations that a rule in a Joint Constraint

Box 5.1 continued

continued on following page

124

Relationships

may contain (existence, ranking, and mathematical operations) will depend on the codomain of the rule—that is, whether

attribute C in Figure B is nominal, ordinal, or quantitative.

Consistent with the ontology of relationships we just discussed, nominal codomains will support rules with Boolean

operators (and, or, not) attached to inclusion and exclusion constraints only. Ordinal codomains will support Boolean

operators and ranking rules attached to inclusion and exclusion constraints, whereas Quantitative codomains will also

support inclusion and exclusion constraints in conjunction with the full range of mathematical operations (see Box 4.3).

Inverse of a relationship: The inverse of a relationship is a relationship that maps the image of the value in the codo-

main back to the original value in the domain. In this book, inverses have been shown [like this] in square brackets near

names of relationships.

object

value C1
(image of

combination of
values)

RULE

DOMAIN
OF RULE

CODOMAIN
OF RULE

SET A
Set of all

permitted values
of an attribute

(attribute A)

SET C
Set of all
permitted values
of a different
attribute
(attribute C)

Value A1

COMBINATION OF
ATTRIBUTES’

VALUESSET B
(set of all

permitted values
of a another

attribute
(attribute B)

Value B1

DOMAIN
OF RULE

Figure B. Multiway relationships between attributes are joint constraints that involve three or more interacting
attributes.

Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New

York, NY: Cambridge University Press, 2006.©

The Degree of a Relationship Between Attributes: The degree of a relationship between attributes is the number of
values it involves. If a rule involves values of the two different attributes, and one of another, it will be a third degree con-

straint; for instance, amount = price x quantity. If the relationship had involved, not values of two different attributes, but

values of an attribute in two different time slices, and a third attribute, it would still have been a third degree constraint.

“Rule Constrain” Is an Aggregate Object with a Structure: The discussion above makes it clear that “rule constrain”

is not only a relationship but also an aggregate object. It consists of a Rule and an inclusion/exclusion relationship.8

Figure C. A “Rule Constrain” relationship is an aggregate object with a structure.
Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New
York, NY: Cambridge University Press, 2006.©

Box 5.1 continued

continued on following page

125

Relationships

Figure C is the metamodel of “Rule Constrain.” It illustrates how the “rule constrain” relationship is not only a rela-

tionship but also an aggregate object with an internal structure. In the figure, “Rule Constrain” is the large round, three-

dimensional arrow between values. Components of constrain are shown inside it. That the rule may be a joint constraint

is shown by the fact that the value set connected to the Rule Expression might contain several values (presumably of

different attributes, or the same attribute, at different times that participate in a rule expression.

If the value set contains only the value of one attribute, the rule (expression) will be an interaction, or constraint

between only two attributes—the attribute (value) that constrains9 and the attribute (value) that is constrained. Whether

the value set contains one or several values, each value is an “input” to the rule expression, or more appropriately, the

argument of the rule expression in Figure C. Of course, a value may not participate in any constraint, joint or otherwise,

hence the zero lower bound on the relationship between Value and Value Set in Figure C.

A value in a value set may be that of an attribute, illustrated by the link between value and attribute in Figure C, or it

might not: values may sometimes be “constants” in mathematical formulae, drawn directly from the domain. For example,

yards must be multiplied by three to convert to feet. This factor, three, is a constant drawn from the domain of numbers.

Like a value set, it is a subset of a domain, except that it is a subset with a single, fixed member (a constant is a pattern
with no degrees of freedom). This is why value is not only related to domain in conjunction with attribute (in Figure C)

but also independently and directly linked to domain. This relationship shows that domains are classes of values.

The relationship between attribute and value is a subtype of this direct link. Whenever an attribute takes a value,

the value is a value from the attribute’s domain, and hence it implies this direct relationship between attribute and value.

However, the reverse is not true; the relationship between value and attribute may be instantiated independently when

constraints (including constants) are involved (the value of the attribute (or feature) will then be constrained to a value/

feature set). Thus, the relationship between attribute and value is a subset (subtype) of the relationship between value and

domain. In order to normalize knowledge, it is important to recognize this rule between the two relationships in Figure C.

If we do not recognize that the relationship (of value) with attribute implies the relationship to domain (but not necessarily

vice versa), we will replicate, not normalize, knowledge.10

The metamodel illustrates that a single “rule constrain” relationship may be applied to several values, and of course,

it must constrain at least one value; otherwise it is not a constraint. Like the value set in Figure 42, the value set in Figure

C may not necessarily be used to constrain values. It is only a set of values, a component that can have many and varied

uses. It stands by itself, independent of other objects in the metamodel of knowledge (except domains: it is a piece of a

domain, a subset of values in the domain). This is why the relationship from Value Set to Rule Expression is optional in

Figure C.

Rules, Rule Meanings, Terms, and Recursions11: Most of us are familiar with the fact that mathematical formulae

may consist of several terms bound together with mathematical operators. These terms are rule expressions themselves.

For example, consider a business that only sells identical widgets at identical prices and offers no credit. Then:

Total revenue = price per piece x number of pieces sold, and

Revenue per time period = Total Revenue time period over which sales transactions have occurred

Total Revenue is a result in the first equation. It is a term in the second. Thus, the rule expression in the first equation is
a term in the rule expression of the second equation. The example demonstrates that rule expressions may consist of terms

that are rule expressions themselves; that is, rule expressions can be aggregate objects with linear structures (a structure

in which objects are strung together in a sequence like a daisy chain or beads on a necklace rather than nodes on a lattice

or network).12 The relationship looping back on rule expression in Figure C represents this irreducible fact.

Most of us understand that the same rule may be expressed in different terms. For example, we could express Rule 2

above in different terms:

Revenue per time period = (price per piece x number of pieces sold) time period over which sales transactions have
occurred

1.
2.

Box 5.1 continued

continued on following page

126

Relationships

Similarly, consider that the edge of a square is a straight line that consists of two segments: one segment of length “a”

and the other of length “b.” The total length of the straight line will be a + b, and the area of a square may be expressed

in two ways, both of which have the same meaning:

Area = (a + b)2

Area = a2 + b2 + 2 x a x b

The meaning of the rule in both cases is exactly the same, and both expressions will always map a value in the domain

of the rule to identical values in its codomain. Only the terms in which the rules are expressed, that is, their calculation
procedures, will be different.13 Thus, a single rule may have many expressions.14

Consider what it means in Figure C when “rule constrain,” the aggregate object, consists of only one rule meaning

but possibly several corresponding rule expressions. It implies that all “rule constrain” relationships with the same Rule
Meaning are equivalent; they are the same constraint, at the business rule level, but not necessarily at the levels beneath

it in Figure 3.4. All “rule constrain” relationships with the same Rule Meaning mean the same thing, and therefore point

to a single object in the business rule layer of Figure 3.4. This object, a single rule meaning, may map to several objects,

each different, but equivalent rule expression in the lower (business process automation) layers of Figure 3.4. This hap-

pens because different, but equivalent, rule expressions are merely different formulae or calculation procedures for the

same constraint. Thus these objects in the business process automation layer are subtypes of “rule constrain.”15 This is
one kind of link, or transform, that takes us from business rule to process automation. We will find more as we forge
ahead into the metamodel of knowledge.

In this book, the term Abstract Rule means a Value Constraint (object) in which the Rule Meaning exists, but its Terms
(Rule Expression(s)) are unknown. For example, in the real world, we may not know the formula for calculating the vol-

ume of a complex shape, but nevertheless, we know that it does have a rule for calculating volume, which could possibly

be expressed in different ways, with different terms that we do not know. Hence, the meaning of the calculation can be

independent of its expression. In Figure D, Rule Meaning is the sense, or meaning, of the rule expression.

Unfortunately, there is no general algorithm or procedure that can show the equivalence of two or more rule expres-

sions16; that is, it has been mathematically and irrefutably proven that, given two or more different rule expressions, there

is no single automated procedure we can apply to say for sure that they either have, or do not have, the same meaning.

However, as we have seen in the examples above, this does not mean that a common meaning does not exist. We will call

this meaning the Rule Meaning.

RULE

Expression of RuleRULE MEANING
Expressed by 1 or more

[expression of 1]

Normal Form of
expression

Subtype of

Equivalent to 0 or 1
[equivalent to of 0 or more different]

Figure D. A rule has a unique meaning but many expressions.
Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowledge, New
York, NY: Cambridge University Press, 2006.©

Rule Meaning can be normalized by certain kinds of mathematical algorithms. These algorithms, applied to any rule

expression result in an expression called a “Normal Form.”17 These algorithms will reduce all rule expressions with the

same meaning to the same normal form. Thus, the normal form of the expression can anchor meaning. The problem is that

these algorithms are not always applicable to all rule expressions (see Appendix II on the Church-Rosser theorem).

1.
2.

Box 5.1 continued

continued on following page

127

Relationships

Figure D is the backbone of the metamodel of Rule. It is a model of key natural laws about real world rules—that they

can have several equivalent expressions, of which only one is a normal form. Figure D also states that a rule expression

may not have a normal form (the relationship from Rule Expression to Normal form states that there may be zero, that is,

no, normal forms equivalent to a given expression, but if there is, it must be unique (1) for all equivalent expressions).18

The real world does not care whether we can or cannot extract Rule Meanings from their expressions; they exist re-

gardless. Fortunately, we can find the meaning and equivalence of most rules of business from their expressions, and vice

versa. In other words, we can usually deduce its workable expression(s) given the meaning of the rule. Further, we can

often (but not always) also intuitively deduce the meaning of a rule expression without arcane mathematical algorithms

and theorems. However, these powerful tools are available if we need them and are required if we wish to have automa-

tion do it for us. Intelligent agents, armed with such tools, can test rule expressions for common meanings and ensure

that state spaces and attribute constraints stay consistent under the pressure of changing requirements. Indeed, this fact

that different but equivalent rule expressions all lead to the same end result, or meaning, is a basis for process reengineer-

ing and work flow rationalization when applied to relationships that involve the flow of time (process reengineering is
discussed later in this book).

Recursion is the definition of a rule expression using the rule expression itself. This might sound like circular logic,
or begging the argument, but it is not because we are not defining the meaning of the expression in terms of itself—only

the procedure or sequence of calculation (terms) is being defined this way.
Consider the factorial of a positive integer “N.” It is the product of a sequence of numbers starting with 1 and ending

with “N.” For example, Factorial(2) is 1 x 2 = 2, Factorial(3) is 1 x 2 x 3 = 6, Factorial(4) is 1 x 2 x 3 x 4 = 24, and so on.

We can state this rule by asserting that for all positive integers:

Factorial (N) = N x Factorial (N-1), and Factorial (0) = 1

Here, we have used a term, factorial, to define itself in the rule expression above. This is an example of how there is
no bar against rule expressions being expressed in terms of themselves. These kinds of expressions are called recursive
sequences of terms—terms that are the same rule expression but applied to different, but related, values in reverse sequence

from that implied by the “joined to” relationship in Figure C. 19 This recursive rule for computing a factorial of a number

traverses the relationship that loops back to Rule Expression, in Figure C, backwards to Factorial(1). The argument of each

term is one less than the argument of the term ahead of it; that is, the argument of each term, except the last (Factorial(1))

is constrained by the term ahead of it.

The meaning of this recursive calculation procedure or rule expression for computing “factorial” is identical to that of

a procedure in which we move forward along the same looping relationship in Figure C. Going forward along that relation-

ship, we would start by multiplying 1 by 2, and then the result by 3, and so on until “N.” Mathematically, this procedure

is described by the expression on the righthand side of the following equation:

Factorial (N) = Π
i=1

i=N
(i)

(The expression to the right of the equality (=) sign means mean that a series of numbers, i, starting from 1, increasing

in steps of 1 to a number N, are mutually multiplied together.)

The two different expressions on the righthand side of the two procedures for calculating factorial (N) will always

yield the same end result and express identical meanings. They are expressions of the same rule meaning20 and an example

of how a single rule may have several expressions. Figure D illustrates this natural law that flows from the metamodel
of knowledge.

Rule Expression is also an object that links the meaning of the rule, in the business layer, to a procedure for expressing

or calculating it, in the interface rules layer of Figure 3.4 (in the Technology Rules layer, we might have an algorithm that

computes the rule expression to optimize performance and to get requisite accuracy and speed depending on technology

constraints internal to the computing platform21). Indeed, mathematicians have conclusively proven that any iterative

Box 5.1 continued.

continued on following page

128

Relationships

computational procedure that can be implemented on a computer to express a rule can be expressed recursively and vice

versa22 (as the metamodel in Figure C shows, the relationship on Rule Expression may be traversed in either direction).

A recursive relationship is similar to, but not the same as, the recursion of terms in a rule expression. Unlike recur-

sive rule expressions, a recursive relationship describes a rule or constraint that is not a mere expression of meaning but

is a container of normalized meaning. Consider the recursive relationship on Value Set in Figure 42b. It shows that any

given value set may merge with another, which in turn may merge with yet another and so on, following the same rules of

merger. Similarly consider the bill of materials for a machine. The machine may consist of subassemblies, which in turn

might consist of other subassemblies and so on until we get to individual parts that go into the machine. We will come

across several recursive relationships like these in this book and in nature.

UML Syntax: Figure C also illustrates the UML syntax for aggregation (UML, an acronym for Unified Modeling
Language, is a standard syntax for modeling the behavior automated information systems). The diamond shapes on the

relationship between “rule constrain” and its components assert “rule constrain” is an aggregate of these components; that

is, it contains each component connected to the aggregate with a diamond. The “1” near the inclusion/exclusion component

further asserts that “rule constrain” has one inclusion/exclusion component—no more and no less. Similarly the 0..* near

the rule expression describes the lower and upper bounds of the number of rule expressions that may exist in a single

“rule constrain.” The “*” means that there is no upper bound (after all, a single rule meaning may be expressed in several

ways). The “0” means that a rule expression is optional. This might seem strange at first glance. If the rule expression is
missing or “null,” the constraint will not be a rule constraint. Instead, it will reduce to the simpler constraints that needed

only inclusion and exclusion sets to express themselves.23

Remember also there may be meanings we cannot express with rule expressions because we do not know the formula.

In this case, the rule expression will take the “unknown” value. The rule expression being unknown is a different state of

knowledge than knowing for certain that it does not exist.

Every “constrain” must have a rule meaning. The “1” adjacent to rule meaning in Figure C says it all. It not only as-

serts that rule meanings are mandatory for rule constraints but also that each rule constraint (obviously!) must have only

one and no more.

The “*” at other end of the relationship asserts that the same rule meaning may be used elsewhere as well. For example,

cubes have six identical square faces. Thus, the rule for computing the area of a square may be used to not only compute

the area of a square, but may also be a component of the rule for computing the volume of a cube. In this way, not only

may an expression be reused, but so too may the meaning of a rule.

The dark, solid diamond also has a meaning in UML. It asserts that “constrain” cannot exist unless it contains the

exclusion/inclusion relationship (it also asserts that the same instance of this include/exclude component may not be used

by any other object aggregation, including other “constrain” relationships, while it is a component of this “constrain.” This

atomic rule need not bother us because instances of include (exclude) are all alike. We can always use another instance

of include or exclude in another aggregation if we need it).

Stationary vs. Nonstationary Relationships Between Attributes: Like other relationships, relationships between at-

tributes may change over time, that is, rules (mathematical formulae and constraints) may change over time. For example,

exchange rates between currencies are in constant flux. Thus, the factor by which prices in U.S. dollars must be multiplied
to convert it to prices in British pounds (and vice versa) changes continually. Constraints that do not change over time

are called stationary constraints, whereas those that do evolve over time, like exchange rates, are called nonstationary
constraints. Nonstationary constraints in the metamodel make room for atomic rules that are time sensitive. Indeed, the

rule may require overhauling or replacing an entire formula, depending on the flow of events in time. We will discuss
nonstationary constraints and the flow of time in the chapter on processes later in this book. For the moment, it will suffice
to recognize that constraints can be either stationary or nonstationary.

Equations: Equations are a kind of constraint between attributes. Consider how equations emerge from exhaustive24

inclusion sets:

If the value set in an inclusion set is exhaustive and has only a single value in it, it is tantamount to forcing an at-

tribute to always equal that value.

1.

Box 5.1. continued

continued on following page

129

Relationships

Figure 5.1. Bijective, injective, and surjective relationships

Values in a value set may belong to attributes (perhaps in different time slices) or even the attribute being constrained

at a different point in time.

Constraints between values (of attributes) may involve arithmetic, Boolean, and ranking operations.

These three facts, together, are manifested in the metamodel of knowledge as equations between variables of a system:

An exhaustive inclusion set that contains only one attribute value (in its value set) is an equation. When the value set of

the joint constraint has several (attribute) values, the equation is multivariate; that is, it involves several variables.

2.

3.

Box 5.1. continued

When only two object instances are involved,

we can always infer the instance of an inverse

from the class of inverses. A person may be the

mother of another person. Mother of, the class, is

a relationship that loops back on the same object

class, Person. It maps one instance of Person to

another. A person must have only one natural

mother. Therefore, given a person, we can always

find the inverse to “mother of” that person. We

do not have to implicitly link each instance of

“mother of” to each instance of its inverse to

identify it as such. A class level linkage will suf-

fice (Figure 5.1a and b).

Contrast this with the “live in” relationship

between people and houses. Several individuals

may live in the same house. Therefore, given a

house, we cannot infer the inverse of “live in” by

merely specifying at the class level that “lived in

by” is the inverse of “live in.” We must necessarily

associate each instance level relationship with its

inverse (Figure 5.1c).

When a class of relationships is constrained by

a rule that bars several instances of the relationship

from mapping distinct source objects (instances)

to the same “target” object (instance), the inverse

of the relationship may be inferred from its target

(A) (B) (C)

130

Relationships

object (instance) alone. Relationships of this type

are called injective relationships.25 Both Figure

5.1a and b show injective relationships, but one

of them is special. The bijective relationship in

Figure 5.1a, also known as a “one-to-one relation-

ship,” is a special kind of injective relationship. In

bijective relationships, only one object instance

in the domain of the relationship may be related

to a single object instance in its codomain (see

Box 5.1). Figure 5.1a shows this. Figure 5.1b, on

the other hand, shows an injective relationship in

which a single object instance in the domain of

the relationship may be related to several object

instances in its codomain. Injective relation-

ships of this type are also called “one-to-many”

relationships.

A surjective relationship is a relationship of the

type “live in,” in which its target (object instance)

may map back to several source object instances.

When this happens, each inverse must be explicitly

linked to each relationship to avoid any ambiguity

about which inverse traces the relationship back

to which object (Figure 5.1c).

When more than two objects are involved in a

relationship (for example, in Figure 5.3), the con-

cept of inverse is similar. Given an object instance,

the inverse traces the relationship back to object

instances at the other “end(s)” of the relationship.

The relationship may be a joint constraint, even a

value constraint, and sometimes we may have no

information on the inverse. If this happens, the

inverse (i.e., its instance identifier) is presumed
to be “unknown.”26

RECURSION AND REFLEXIVITY

Consider the “mother of” relationship again. It

relates objects in the same object class through

Person. Relationships of this type are called recur-

sive relationships. Some recursive relationships,

called reflexive relationships, may even relate
object instances to themselves. For example, an

individual may be his own counsel in a court of

law. The recursive relationship, “counsel of” in

the rule “Person may be counsel of Person,” is

reflexive, whereas “mother of” in “Person may

be mother of Person” is irreflexive because a
person cannot be her own mother. Irreflexive re-

lationships must relate different object instances.

Reflexive relationships may weave different or
the same object instances into a pattern of as-

sociation. Figure 5.2 illustrates the difference

between reflexivity and irreflexivity. The latter
two are mutually exclusive subtypes of recursive

relationships.

Sometimes recursive relationships are also

called homogenous facts or Unary Relationships

because they are rules about a single homogenous

object class, as opposed to relationships that bridge

different (heterogeneous) object classes.27

Figure 5.2. Recursion, reflexivity, and irreflexivity

object instance 1

OBJECT
CLASS

Object instance 2
Instance of
reflexive
relationship

Instance of
irreflexive

relationship

RECURSIVE
RELATIONSHIPS

(homogenous facts)

131

Relationships

IDEMPOTENCY

An idempotent relationship is a special kind of

recursive relationship. Unlike a reflexive relation-

ship that may, or may not, loop back to the same

object instance, an idempotent relationship must
always loop back to the same object instance.

Idempotency is a stronger condition than reflex-

ivity, and in a way, an idempotent relationship is

the antithesis of an irreflexive relationship, which
is never allowed to connect an object instance to

itself. For instance, “self help” is idempotent with

respect to a person. The idempotent relationship

is the seed from which exchanges and returns,

at the heart of business, blossom. Idempotency

lends its meaning to business, and business

blooms from it.

SYMMETRICAL, ASYMMETRICAL,
AND ANTISYMMETRICAL
RELATIONSHIPS

Relationships weave objects into patterns. Con-

sider the atomic rule Person may be relative
of Person. The sequence of individuals in this

pattern is irrelevant. The sequence conveys no

information. Only the meaning of “relative of,”

a relationship between two individuals, and the

identities of the two individuals it connects mat-

ter. The relationship and its inverse are identical.

Relationships like this are called symmetrical

relationships. The direction of a symmetrical

relationship does not matter; only the connection

does. Relationships are patterns of association. In

Chapter IV, we saw that the sequence of objects

in a pattern may or may not be relevant, and it is

the same with relationships.

Let us add a little information to the “relative
of” relationship above. A parent is a kind of rela-

tive. Based on the principle of subtyping by adding

information (Chapter IV, Box 4.3), “Parent of” is a

subtype of “Relative of.” Consider the atomic rule

“Person may be parent of Person”. The direction

of this relationship certainly matters. We have not

only added sequencing information to the pattern,

but also know that a child cannot ever be a parent

of his own parent. The relationship not only tells

us that persons may be parents of persons but also

tells us that children cannot be parents of their

own parents. Obvious, but someone has to tell the

computer that! “Parent of” and its inverse, “Child

of,” may never under any circumstances for any

instance of Person be the same. Such relation-

ships are called asymmetrical relationships. The

inverse of an asymmetrical relationship can never

be the same as the original—the relationship it

is the inverse of.

Asymmetrical relationships, as we have just

seen, crystallize from symmetrical relationships

as we add information to them. They are subtypes

of information-starved, symmetrical parents.

Symmetrical and asymmetrical relationships may

also be nonhomogenous facts bridging different

kinds of objects. For instance, if a Person is as-
sociated with a Car, the reverse is also true—the

car is also associated with the same person. “As-
sociated with” is a symmetrical relationship be-

tween different object classes. On the other hand,

if we are more specific about the association, it
becomes asymmetrical. We know that persons

may drive cars, sell cars, and fix cars, but cars
cannot return the favor—cars cannot drive, sell,

or fix people.
Therefore, the inverses of these relationships

cannot be identical to the original. They are all

asymmetrical relationships between different

object classes—Person and Car.28

The symmetry or asymmetry of relationships

is a broad concept. It applies not only to nominal

patterns of the kind we have just discussed but

also to any pattern, even arithmetic operations

between ratio-scaled values in domains. This

property is inherited from the Join relationship

on the unknown domain in Appendix I; it springs

from the universal properties of patterns. For

example, arithmetic addition and multiplication

are symmetrical relationships between ratio scaled

132

Relationships

values, whereas subtraction and division are not

(see Commutative Operators in Appendix II under

the theory of categories).

Obviously, symmetry and asymmetry are

mutually exclusive properties of relationships;

however, when we consider the symmetry or

asymmetry of reflexive relationships, there is
a new complication—we must consider a new

class of relationships—one that emerges from

the trijunction of reflexivity, symmetry, and
asymmetry. Consider arithmetic subtraction of

values in a quantitative domain. It is asymmetric

unless the values being subtracted are the same.

If the two values are the same, the sequence of

subtraction will not matter; the result will be nil

in either case. Such relations that are symmetric

only when they loop back to the same object

instance, but asymmetric otherwise, are called

antisymmetric relationships.29

There are several examples of antisymmetric

relationships in this book. For instance, the convert
to relationship in Box 4.1 is an antisymmetrical

relationship.

THE ORDER AND DEGREE OF
RELATIONSHIPS

Relationships are bridges between objects. Just

as relationships between domains created new

domains, relationships between objects create

new objects—the relationship itself. Just as do-

mains of association (see Box 4.6) were Cartesian

products, so are relationships between objects

Cartesian products (or a generalization of Carte-

sian products—see Box 5.2). Take the atomic rule

we started with: Person may live in House. The

association between object classes Person and

House is their Cartesian product.30 However, the

relationship “live in” is more than a mere ordered

association between individuals and houses. It is

an ordered association to which a meaning has

been added—the meaning of “live in.” This makes

the association special. It is distinct and differ-

ent from other possible associations between the

class of persons and the class of houses, such as

“owns,” “sells,” or “decorates.” Indeed, each as-

sociation has its own distinct meaning that gives

the association its unique identity and character.

Relationships spring from Cartesian products be-

tween object classes, but they are more than mere

Cartesian products—relationships are subtypes of

the generic association established by a Cartesian

product, with subtypes that have crystallized with

clear and specific meanings.
The “live in” relationship was meaning

added to the Cartesian product of two object

classes—Person and House. Compare this with the

atomic rule: Product is sold to Customer through

Retailer. It is the Cartesian product of three object

classes—Product, Customer, and Retailer.
Relationships are generalizations of Cartesian

products of object classes (see Box 5.2) and are

characterized by two properties: the number of

object classes involved and the number of object

instances involved.

The constituents of a relationship are the dif-

ferent objects it relates. The order of a relationship

is the number of distinct object classes it involves,

and the degree of a relationship is the number of

distinct object instances a single instance of the

relationship involves. For instance, all recursive

relationships are first order relationships, but
reflexive relationships are first order, first-degree
relationships. On the other hand, the “live in” rela-

tionship between Person and House was a second

order, second degree relationship—second order

because it is an association between two object

classes, Person and House, and second degree

because an instance of “live in” is associated a

single instance of Person and a single instance

of House. Similarly, the relationship in Figure

5.3 is a third order relationship; it involves three

distinct object classes—Product, Customer, and

Retailer.
Sometimes, first order relationships are called

unary or monadic relationships; second order

relationships binary or dyadicrelationships; third

133

Relationships

Figure 5.3. A three-way relationship—Product is sold to Customer who buys through Retailer

Consider the rule Product is sold to Customer through Retailer in Figure 5.3. Is it really an atomic rule? What information

will we lose if we split it into the following distinct and unconnected facts?

Product is sold to Customer; and

Customer buys through Retailer

Assume this book you are reading is an instance of a product, and you are the customer who has purchased it. That

this book has been sold to you is an instance of the first fact. It does not say who sold it. An instance of the second fact
asserts that you buy from a specific retailer. However, it is not clear what you buy or have bought from the retailer. You
may have bought many different items from the same retailer. It may or may not have been this book you bought from this

retailer. This is the information that we have lost by breaking the three-way relationship of Figure 5.3 into two distinct

facts. This example illustrates that all Cartesian products of object classes establish atomic rules. We cannot split an as-

sociation established by a Cartesian product without losing information.

A Cartesian product, like the relationship in Figure 5.3, normalizes rules about the association it creates. For instance,

the product class may normalize the list price of a product, but the actual price you paid for the product you bought from a

particular retailer may be different from its list price. The sale price is an attribute of the sale. It belongs to the relationship

in Figure 5.3, a Cartesian product. Similarly, effects like sale cancellation, sale confirmation, and others will also belong
to the relationship and will be normalized by it.

Note also that a Cartesian product cares about the sequence of object classes it associates. (The Cartesian product is

a noncommutative operation—see Appendix II on the theory of categories for information on commutativity.) We have

seen that sequence does not matter to symmetrical relationships. Therefore, strictly speaking, the Cartesian product is
the basis of only antisymmetric and asymmetric relationships. A more general association is the generic basis for generic

relationships, and the Cartesian product is only a subtype of such generic association.

1.

2.

Box 5.2. Cartesian products make and normalize atomic rules

Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Business Knowl-

edge, Norwood, MA: Artech House, Inc., 2005. ©

134

Relationships

order relationships ternary or triadic relation-
ships; and fourth order relationships quaternary
or tetradic relationships. Relationships of an

arbitrary order “n” are also referred to as n-ary
or n-adic relationships. Often, relationships of

orders greater than two are also called higher
order relationships.31

THE CARDINALITY RATIO OF
RELATIONSHIPS

Relationships are patterns of association. Order
describes the number of classes woven into the

pattern, and degree connotes the number of dis-

tinct object instances. As we will see later in this

chapter, we can constrain either one (or both) in

different ways to elicit different kinds of real world

behavior. However, there is also another property

of relationships—the property of cardinality
ratio. Like order and degree, cardinality ratio

involves constraints on occurrence. The Cardi-

nality Ratio specifies how many object instances

in the codomain of the relationship may relate to

a single object instance in its domain (codomain

and domain of a relationship: see Box 5.1).

THE CARDINALITY RATIOS OF
BIJECTIVE AND SURJECTIVE
RELATIONSHIPS

Consider the relationships in Figure 5.1 again.

Figure 5.1a was a one-to-one relationship. As the

name implied, a single instance of Object Class

A in Figure 5.1a may relate to no more than one

instance of Object Class B. In Figure 5.1a, the

number of object instances in the codomain of

the relationship was constrained to a maximum

of one for each object instance in the domain

of the relationship. The cardinality ratio of the

relationship was therefore one. (Object Class

A is the domain of the relationship, and Object

Class B is the codomain of the relationship.) If we

relaxed this upper bound on how many objects

in object class B that a single instance of object

class A may link to, we will end up with Figure

5.1b. The upper bound may be two, three, four,

or any positive integer, even “many.” “Many”

articulates the fact that there may be no upper

bound.32 For instance, “lived in by,” the relationship

discussed under inverses, had no upper bound on

its cardinality ratio.

(In addition to the one-to-one, one-to-many

and many-to-one relationships of Figure 5.1,

there are also “many-to-many” relationships.

We will discuss these later under compositions

of relationships.)

The cardinality ratio of a relationship may

also be constrained by lower bounds. If the lower

bound is nil, the relationship becomes optional.

Consider the relationship“live in” between Person
and Home. At first, homeless persons may be out
of scope in our model, so the relationship would be

mandatory, and the cardinality ratio would have a

lower bound of 1. If we expanded the scope of our

model to include homeless people, the relation-

ship “live in” between Person and House would

have become optional; the lower bound on its

cardinality ratio would be nil because homeless

people do not live in houses. On the other hand,

consider an agreement between two or more

parties. Agreement is an object class, as are the

parties to the agreement. The rule between them

asserts, “Agreement must bind two or more Par-
ties.” The cardinality ratio of this relationship is

also constrained by a lower bound, but the lower

bound is two, not nil, in this case.

Contrast limitations on cardinality ratios with

those on the population of relationships. An option-

al relationship stipulates that not every instance of

the object in the domain of the relationship need be

related to object instances in the codomain of the

relationship. The lower bound on the cardinality

ratio of the relationship is nil. One could, without

violating this constraint, make it mandatory at the

class level by constraining the population of the

relationship class to be one or greater. With both

135

Relationships

constraints in place, even if every instance of the

relationship’s domain is not related to instances of

the relationship’s codomain, at least one will be.

The relationship will be optional at the instance

level, but mandatory at the class level.

CARDINALITY AND OTHER
PROPERTIES OF HIGHER ORDER,
HIGHER DEGREE RELATIONSHIPS

The cardinality ratios of unary and binary rela-

tionships have been discussed so far; the ratios of

higher order and higher degree relationships are

more complex. Several different kinds of cardi-

nality ratios have to be considered, and each may

have its own constraints and ranges. Consider the

relationship in Figure 5.3 again. The cardinality

of Customer may be constrained as it is in any

second order relationship—the number of times a

single customer appears in the set of tuples could

have upper limits, lower limits, or both. The car-

dinality of Retailer may also be constrained in the

same way, independently of limits on Customer.
However, the cardinality of all possible pairs of

values may also be constrained (for instance,

the number of times the same customer-retailer

pairs can occur in a triplet may be confined to
a range33).

When it comes to the 3-tuple in a third order

relationship, one enjoys little choice. The triplet

in a third order relationship must be unique. A

class, unlike a list, does not distinguish between

identical members. However, in a fourth or higher

order relationship, identical triplets embedded

in a 4-tuple could repeat, and rules may restrict

repetition. This pattern of repetition of parts of a

tuple generalizes the concept of cardinality ratio

for higher order relationships. Given cardinalities

of combinations, one can always derive their ratios.

In higher order relationships, the cardinalities

of combinations are as important as cardinality

ratios between individual objects bound by the

relationship.

The Cardinality of Combinations

The population of each member of the power set

of Product, Customer, and Retailer may be con-

strained independently (the concept of Power Set

is discussed in Box 19 on our Web site). Product,
Customer, and Retailer are object classes. Figure

5.4 shows possible combinations that may have

different populations. Each double-headed ar-

row in the figure represents a combination—a
member of the power set of Product, Customer,
and Retailer.

Figure 5.4. The cardinality of multiway relationships

is sold to.. buys thru...

product customer retailer

possible ways in which minimum and maximum
occurrence constraints may be defined

for a three-way relationship

m..n

m..n

m..n

136

Relationships

The topmost double-headed arrow, just under

“sold to...buys thru” in Figure 5.4 represents prod-

uct-customer combinations. The double-headed

arrow, just under and to the right, represents

Customer-Retailer combinations. The double-

headed arrow under those, folded at two corners to

point upwards, represents Product-Retailer pairs,

and the lowest double-headed arrow represents

Product-Customer-Retailer triplets.34

From Figure 5.3, one can see that the pairs in

Figure 5.4 are actually embedded in the triplet

and are an integral part of the triplet; further,

the occurrences of each pair in the triplet may

be individually constrained.35

Each double-headed arrow and each link be-

tween the relationship and the objects it relates

may have maximum and minimum cardinalities

(optionally) imposed on it. In NIAM,36 upper and

lower bounds are shown by the “m...n” notation

in Figure 5.4. The numbers “m” and “n” represent

upper and lower bounds on cardinality.

If the m...n label on the connection between

Product and the relationship in Figure 5.4 had been

3..50, it would imply that the number of products

in that relationship must always lie between 3 and

50, both inclusive; between Product and Customer
(the double-headed arrow that spans sold to and

buys thru in Figure 5.4), the label would restrict

the occurrence of distinct Product-Customer pairs

(in the tuples of Figure 5.3) to a number between 3

and 50; between Customer and Retailer, it would

limit the occurrence of distinct Customer-Retailer

pairs in the triple to a number between 3 and 50;

between Product and Retailer (the double headed

arrow with ends folded upwards in Figure 5.4),

it would do the same to Product-Retailer pairs;

attached to the lowermost arrow of Figure 5.4,

the label would limit the number of instances

of the third order relationship in Figure 5.4, the

Product-Customer-Retailer combinations, to a

number between 3 and 50.

Of course, if the populations of Product, Cus-
tomer, and Retailer are finite, there will only be a
finite set of possible Product-Customer-Retailer

combinations. The m...n label may restrict the

cardinality of the set even more but obviously

cannot increase it. If, in the course of events,

numbers of products, customers, and retailers

falls below a point where the number of Product-

Customer-Retailer combinations is less than the

requisite minimum (the “m” in the “m...n” label),

the relationship will cease to exist.37

A “distinct” Product-Customer combination

means that an instance of Product is paired with an

instance of Customer. Another Product-Customer

combination will be distinct from this one only

if a different instance of Product, or Customer,
or both Product and Customer are paired. If a

Product-Customer pair has exactly the same in-

stance of Product paired with the same instance

of Customer, it will not be considered a distinct

combination. Rather, the pairs will be mutually

indistinguishable and will be considered one – the

same instance of a combination.

The combinations of Product, Customer, and

Retailer in each triple of Figure 5.3 (and Figure

5.4) must be unique. Otherwise, the triple would

not be an instance of an object class. It would be

a member of a list instead. Each unique triple

represents an instance of a relationship between

the three objects bound into the relationship. It is

the instance identifier of the relationship.38

Although combinations within a tuple may

repeat, each tuple that represents a relationship

must be a unique combination. The cardinality

of a combination within the relationship is the

number of times that the distinct combination

occurs (in the relationship class—the set of all

tuples of that kind). The population of the relation-

ship class itself is the number of distinct tuples

that represent the relationship. The combination

that constitutes each instance of this tuple must

be unique.39

(Of course, when lower and upper bounds on

cardinality coincide, it implies that the cardinality

exactly equal this bound. If this is the case, we

will replace the “m...n” label by a single number

in the diagrams that follow.)

137

Relationships

Note that limiting the cardinality of Product
(or Customer or Retailer) in the relationship is

distinct and different from limiting the population

of Product (or Customer or Retailer), the object

class. The cardinality of Product in the relation-

ship (the number of times distinct products oc-

cur in the tuple) can obviously never exceed the

cardinality of Product, the class, but may be less

(or equal). However, subject to this condition, the

cardinality of Product in the relationship may be

constrained independently of the cardinality of the

class of products. The same rules will apply to the

other participants of the relationship as well. The

limitation obviously also applies to combinations

embedded in the relationship.

In general, any higher order relationship may

not only impose separate constraints on individual

cardinalities of the objects it relates but may also

constrain cardinalities of combinations of these

objects. As the order of a relationship increases,

the number of possible combinations increases

explosively.

Atomic Rules, Combinations, and
Cardinality Ratios

An instance of a relationship is a unique tuple

of object instances. It is also an object class

in its own right. The combination in the tuple

cannot repeat (if it did, the tuple would not be a

relationship—an object class—it would be a list

instead40). Several different measures of sizes for

relationships exist:

The number of different object instances tied

together (the degree of a relationship). We will

discuss this later.

The number of different object classes tied into

a relationship (the order of the relationship).

The number of times a distinct combination

(combinations of the kind in Figure 5.4) oc-

curs in a relationship class. We will call this

the cardinality of the combination.

1.

2.

3.

The population of a relationship class—the

number of complete tuples that are instances

of the relationship (like the entire 3-tuple of

the third degree relationship in Figure 5.3).

This is the cardinality of the relationship.

We have seen that joining tuples together (com-

binations like those in Figure 5.4) leads to another,

higher- degree tuple. As a part of a relationship,

these constituent tuples do not have to be unique

combinations. For instance, in Figure 5.3, the same

customer may buy the same product from several

retailers. When Product-Customer combinations

in the tuple are identical, the fact that each triple

has different retailers makes each triple unique.

The same Product-Customer combination may

occur several times in the Product-Customer tuple

because it is a part of another larger tuple—the

Product-Customer-Retailer triple.

However, if any constituent tuple is forced

to be unique, and no individual component in

it has overlapping cardinality constraints with

components outside the unique tuple, the par-

ticular tuple may be broken off as an independent
relationship. Such tuples, in turn, may consist of

other combinations that are unique. Those may

be broken off too, subject to the same rules. We

could continue doing this until we have tuples

that cannot be broken. Each tuple will then be an

irreducible fact about the objects it associates—an

independent relationship.

When tuples within tuples are unique, but

their components have cardinality constraints in

concert with components outside the unique tuple,

unique tuples may still be broken off as separate,

dependent relationships. The existence of these

relationships will be contingent on others. Figure

5.5 provides examples.41

The tuple is unique in every relationship and

anchors the concept of cardinality ratio. In Figure

5.3, the cardinality ratio of the relationship with

respect to Customer is the number of 3-tuples that

relate to (i.e., contain) a given instance of Cus-
tomer. This is the number of relationships a single

4.

138

Relationships

customer may have. Similarly, combinations in-

side the 3-tuple that contain the Customer object

class will also have cardinality ratios relative to

Customer. The cardinality ratio of the Product-

Customer combination relative to Customer, in

the Product-Customer-Retailer triple, will be the

number of Product-Customer combinations per
(instance of) customer. Cardinality ratios of the

other objects bound by the relationship will also

be similar.

Indeed, even combinations that constitute

the tuple may have cardinality ratios relative to

other combinations in the tuple, or even the whole

tuple. The cardinality ratio of the relationship with

respect to the Product-Customer pair of Figure

5.4 is the number of triples, per distinct Product-

Customer combination.

Null Combinations

When the cardinality of a combination is con-

strained to be nil, such combination is barred

from existing; the combination is null. When

the cardinality of an entire tuple is constrained

to zero, the relationship is null—it cannot exist.

This is different from saying there is no relation-

ship between them. Saying no relationship exists

is equivalent to saying that there is none we know

of, but it is possible that an unknown relationship

may exist. Barring a relationship is a stronger con-

straint. We are saying that we will not permit the

relationship; therefore, one is completely certain

that it will not exist.42

Indeed, we can strengthen the conditions even

further. All relationships between a given set of

objects are subtypes of the generic association

between them. A generic association asserts that

its constituents are mutually related in some un-

specified way. If we assert that no relationship may
exist between two or more objects by barring the

generic association between them, all associations

between them will be barred. Barring the super-

type automatically bars its subtypes. The objects

in the set then cannot be directly connected. One

cannot go from one object in the set to any other

member of the aggregate without passing through

other objects outside the set. Objects in the set

cannot be aware of each other without “observ-

ing” the behavior of outside intermediaries. For

instance, you become aware of a magnetic field
only because you can see iron being attracted or

a magnetized needle being deflected; you and the
field cannot interact directly with each other.

Other Properties of Combinations

Each combination is a pattern. When the sequence

of members of a combination does not matter, the

combination is symmetric. When members of a

combination are identical, it is the combination that

is reflexive. When sequences, not just identities,
of instances distinguish one combination from

another, it is the combination that is antisymmet-

ric (identical combinations cannot be sequenced;

they are collocated in information space). Just as

combinations in a relationship have cardinalities,

combinations as well as entire relationships have

degrees. Degrees can be constrained by value

constraints, just as combinations were, sometimes

with surprising results as we will see next.

Degrees of Combination

The length of a tuple like that in Figure 5.3 is

determined by its degree—the number of object

instances that participate in instances of the tuple.

For example, in Figure 5.3, if the object class on

the extreme right had also been Customer, the

relationship would have been a second order

third degree relationship—second order because

it would have involved only two object classes,

Product and Customer, and third degree because

each tuple would still involve three object in-

stances, a product and two customers. The tuple

would remain a triplet, like the triplets in Figure

5.3, but two members of the triplet would now be

customers instead of one.

139

Relationships

Just as we constrained the cardinality of

combinations of object classes in higher order

relationships, we can constrain the number of

occurrences of object instances in higher degree

relationships. These constraints translate to limi-

tations on lengths of tuples.43

Products and services, like telephone service

or insurance coverage, may be assembled to order

from a list of standard features. You can pick

and choose the features you want, and together,

they comprise the product or service you have

bought. There may be regulatory and technical

constraints on what features may be offered with

which others. These constraints are first order
relationships; they loop back from one feature

in the class of features to others in the same

class and involve only a single object class but

several object instances—instances in groups of

features that must (or must not) be sold together.

These constraints are first order, higher degree
relationships.

The imposition of limits on the degree of a

relationship will constrain the size of the tuple

that makes an instance of this relationship. When

features are combined into service offerings, too

many features in an offering may bewilder and

confuse customers. We might consider it prudent

to limit the number of features packaged into ser-

vice offerings for customers and might formulate

a guideline that not more than five features (such
as voice mail and call waiting) may be packaged

together in a service offering to customers. This
is a constraint, an upper bound, on the degree
of the relationship that glues features together to

create a product; the degree has an upper bound

of five in this case.
Constraints on combinations of instances,

that is, the degree of a relationship, are similar to

constraints on cardinality of higher order relation-

ships. They follow the same pattern—patterns

like those in Figure 5.4. If the constraints on the

combinations in Figure 5.4 had not limited the

number of occurrences of tuples but constrained

sizes of an individual tuples instead, they would

have constrained the degree of the combination.

Take the combination shown by the lower-most

double-headed arrow in Figure 5.4. It involves

three relationship classes—one each for Person,

Customer, and Retailer. A lower limit of one on

the degree of the combination will force instance(s)

of at least one of those relationships to exist at

any given moment in time.

An upper limit of two would force at most two
of the three to exist at all times—at least one will be

dropped. Which one(s) is/are dropped will depend

on responses to events, but the rule will ensure

that one of the three is always dropped. Indeed,

if there is no lower limit (i.e., the lower limit is

nil, inherited from the enumeration domain), all

of them might be dropped and the relationship

itself might be obliterated by an event.

If the upper and lower bounds are the same,

say two, one of the three relationships will always

be dropped; which two exist might change from

time to time in response to events.

Contrast this kind of constraint with constraints

on cardinality. Assume that the object classes

on the right of Figure 5.3 were both Customer
instead of one being Retailer. Consisting still of

three tuples, the relationship would now involve

only two object classes—Product and Customer.
Customer will be repeated in the tuple, taking the

place of Retailer. The relationship will then be a

second order, third degree relationship. Possible

constraints on cardinalities will still follow the

pattern in Figure 5.4, the only difference being that

the two of the three instances that make the three

tuple will belong to the same class—Customer.
This kind of constraint is very different from the

“at least” and “at most” value constraints attached

to the degree of the combination. Constraints

on cardinality and degree are different kinds of

value constraints. One constrains repetition of

tuples, and the other constrains the length of the

tuple—the number of components it may have.

Together they orchestrate the behavior of the

relationship.

140

Relationships

Generically, cardinality is a count of occur-

rences. So are degree and order. Each is a subtype

of a generic kind of cardinality, and each is a

special kind of cardinality—one describes the

length of a tuple, and the other counts the kinds
if objects that participate in a relationship. The

cardinality of a relationship (or object class), on

the other hand, counts the number of tuples (or

instances of an object) in the class.

In the discussion on market segments and

Borel Objects later in this chapter, we will see that

constraints like these can be very important to

business and flow naturally from the metamodel
of knowledge as we slice and dice facts to better

understand the world around us. Like any other

attribute value constraint, there may be several

constraints simultaneously attached to ordinali-

ties (order), cardinalities, and the degrees of

relationships. If these constraints clash, we will

obtain the null set.44 If they are consistent, we

may merge them.45

MUTUAL INCLUSION AND
EXCLUSION OF RELATIONSHIPS

Consider what would happen to the relationship

in Figure 5.3 if we forced the degree of the cus-

tomer–retailer combination to always be one. This

would imply that we cannot combine a customer

with a retailer in a tuple. It also means that given

a product, either a product-customer relationship

or a product-retailer relationship may exist, but

not both simultaneously. The two relationships

will be mutually exclusive. Forcing the degree

of any combination to equal one ensures that the

relationships in the combination are mutually ex-

clusive, and at least one of the mutually exclusive

relationships must exist at all times. If we permit-

ted a lower bound of zero, the mutually exclusive

set of relationships would become optional.

Figure 5.5a is an example of a mutually exclu-

sive pair of relationships. It asserts that a specific
insurance coverage will insure either a person or

an owned item (asset), but not both simultane-

ously. (Of course, the policy may include several

different kinds of coverage, and therefore both

may be covered by the complete policy, even if

individual coverage covers one or the other.) This

is an exclusion partition: if one object exists, the

other cannot. The object in question here is a rela-

tionship. As we will see further on in this chapter,

constraints on the degree and/or cardinality of a

relationship can articulate mutual exclusion and

more complex rules of business.

Contrast Figure 5.5a with Figure 5.5b. Figure

5.5b shows two mutually inclusive relationships.

If any one of the pair exists, the other must too.

A person may or may not own a car, but if she

does, she must also own insurance for it. Assume

that a hypothetical (fortunately!) draconian law

ensures that the car insurance stands automati-

cally cancelled the moment the car is discarded

or sold, and vice versa—if the car’s insurance is

cancelled, its ownership automatically and im-

mediately stands annulled. The existence of one

relationship compels the existence of the other.

Both relationships must exist simultaneously or

not at all. This kind of business rule arises from

cardinality constraints, not from constraints on

degree. If the cardinality of the combination has

a lower bound of zero, the relationship is optional.

If the combination has an upper bound of “many,”

several may exist, but each combination implies

another relationship.

Figure 5.5b is also an example of how we

could lose information if we are careless with

modeling atomic rules. The information lost in

the representation on the left is that ownership of

a car requires ownership of insurance for the same
car. The tuple on the right captures this fact.

Of course, the degree of this relationship is

exactly two, which ensures that the cardinality of

Person owns Car will always equal the cardinality

of Person owns Car Insurance. The constraints on

the cardinality and the degree of the combination,

together, ensure this. Interactions between car-

dinalities and degrees of combinations, together,

141

Relationships

determine the overall behavior of relationships.

Remember also that strict equality implies two

constraints, an upper bound and a lower bound

that coincide.

Consider how mutual inclusion of mandatory

relationships is different from having a pair of

independent mandatory relationships. Take a

group insurance policy for homes. Assume it

insures several individuals against damage to

their homes. Each individual is insured against

damage to his individual property. Moreover, it is

mandatory for at least one individual to subscribe

to it; otherwise, it is null and void.

We have two mutually inclusive relationships,

one from Insurance Policy to Insured Individual,
and the other from Insurance Policy to Insured
Property. Both are mandatory—the policy must

insure someone and something. Each agreement

may insure several individuals and several proper-

ties. Therefore, the upper bound on the cardinality

ratio of each relationship is “many.” However, by

themselves, these relationships and their cardinal-

ity ratios do not convey all the information they

must. Without mutual inclusion, we will not know

which properties are insured for whom. We have

no information on the Insured Individual- Insured
Property tuple. It is a ternary relationship, an

atomic rule—not two binary relationships. We lose

information when we try to divide the ternary into

two binaries—information on who has insured

what on that policy. Figure 5.5b shows how sets

of mutually inclusive binary relationships are

actually higher order relationships.

Figure 5.5b is an equality constraint between

object classes; that is, the classes are mutually in-

clusive. Equality constraints are only one manifes-

tation of constraints on cardinality of relationships.

Recognizing cardinality and its multiplicity in

interactions between multiple objects is a broader

concept than mutual inclusion. It can support a

much richer repertoire of business rules than mere

mutual inclusion constraints can. Constraints on

cardinality subsume mutual inclusion.

In Figure 5.5c, one relationship implies another,

but not vice versa—the two are not mutually
inclusive, but inclusion is involved—we know

that Person Owns Wheel includes and subsumes

Person Owns Car. This is because a person may

own wheels independently of cars. Owning a car is

only one of many possible ways of owning wheels.

The wheels are owned when cars are owned only

because they are parts of cars. Therefore, owning

a car implies owning wheels, but owning wheels

does not imply owning a car. Therefore, Person
Owns Car is a subset of Person Owns Wheel.46

Because the set of persons that own cars is a

subset of the set of persons who own wheels, the

car owner role is subsumed by a broader wheel

owner role. Therefore, the cardinality (population)

of car owners may, at most, equal the cardinality

of wheel owners, but may not exceed it. (The car-

dinality of wheel owners will equal the cardinality

of car owners when all wheel owners are also car

owners.) Only when we force the cardinality of

car owners to equal that of wheel owners (such as

by attaching value constraints like those in Figure

5.5b) do we force mutual inclusion between the

two relationships.

Figure 5.5c is a subsetting constraint between

relationships: if the subtype exists, the supertype

must also exist, but not necessarily vice versa. We

will elaborate on subtyping relationships later in

this book.

THE CARDINALITY OF SUBTYPES

The subtyping relationship provides the conduit

for propagating common knowledge. It is the

cornerstone on which reuse of knowledge rests.

Subtypes are more constrained than their parents

and convey more information (see Chapter IV).

Therefore, when relationships are subtyped, the

cardinality constraints on the subtype may be

different than those of the parent, in that the

subtype may have stricter cardinality constraints

142

Relationships

than the parent relationship, but may never have

looser cardinality constraints (the cardinality

constraints of the subtype may also be identi-

cal to its parent because the subtype may add

information to its parent in other ways, but the

cardinality of the subtype can never violate the

cardinality constraints of its parent under any

circumstances). For instance, a person may have

several ancestors. The upper bound on the number

of ancestors each person has is “many,” a number

that is defined as a positive, finite number. “Person
is descendant of two or more Person” captures

this fact. Descendant of is the relationship we

are interested in here. Child of is a subtype of

descendant of. The corresponding assertion is

“Person is child of exactly 2 Person.” Note that

the cardinality constraint of child of is different

from the cardinality constraint of descendant

of, but it does not violate it. This will be true for

constraints on order and degree as well. Indeed, a

subtype may never violate the lawful state space

of its parent but could exist within it. This is true

for all objects including relationships. Note how

the cardinality constraint in Figure 5.5c flows
from the very nature of subtyping.

There are also subtypes of the subtyping rela-

tionship itself in which cardinality constraints may

be even stricter. For instance, when an attribute

of an object takes a value from a domain, it is a

very special kind of subtyping relationship. In it,

the cardinality of the subtype (the attribute) was

exactly one; unlike most collections that may

have several members, this subtype can only

have one value at a time (a value is an instance

of the domain).47

Figure 5.5. Mutually inclusive and exclusive relationships

(a)

Mutual
Exclusion

If one
relationship
exists, the
other(s)
cannot

INSURANCE
COVERAGE

ASSET

PERSON

cover

cover

MUTUALLY
EXCLUSIVE
RELATIONSHIPS

X = cover

Person Asset

Degree = 1
cover

Insurance Coverage

=

co
ver..

D
egree =

 1

Person

Asset

Insurance
Coverage

(b)
Mutual

Inclusion

If any one
relationship
exists, the
other(s)
also must.

PERSON

CAR

CAR
INSURANCE

own

own

MUTUALLY
INCLUSIVE
RELATIONSHIPS =

own

Cardinality = 0 or more

own

Person

Car
Car

Insurance

Degree = 2 =

C
ardinality = 0 or m

ore
o

w
n

..Person

car

Car
Insurance

D
egree = 2

(c)
Subsetting

If one
relationship
exists, the
other must,
but not
vice-versa

PERSON

CAR

WHEEL

owns

SUBSET OF

owns

=
owns

Cardinality cannot exceed
cardinality of Person owns Wheel

owns

Person

Car Wheel

=

O
w

n
..

Person

Wheel

Car

Cardinality
Cannot
exceed

143

Relationships

If the lower limit on the cardinality of the

subtype had been nil, the attribute would have

become an optional attribute. The object the

attribute belonged to could then be either the

supertype or the subtype; we would not know

which. As such, constraints on cardinality shape

the behavior of relationships—even subtyping

relationships.

The class of subtyping relationships in which

the cardinality of the subtype is limited to one

occurs frequently in the world of business when

we choose one member, an instance, out of a set

of several possibilities. It is worth recognizing

this as a special kind of relationship—indeed it

is a special subtype of the subtyping relationship

itself.

INSTANCE LEVEL CONSTRAINTS
ON CARDINALITY

So far, we have discussed class level constraints

on cardinality ratios. Instance level cardinal-

ity constraints too are often found in business.

Some constraints may even change between

instances of relationships. Think of the “lived
in by” relationship between House and Person.

Some houses have more room than others. Each

instance of house may have a different capacity

for people—individual constraints on how many

persons may live in it. At the class level, we had

only asserted that “lived in by” was a one-to-many

relationship. We could impose an upper bound on

the cardinality of “lived in by,” but that constraint

would then apply to all houses uniformly; it will

not account for individual capacities of houses. For

this, we must cut the cardinality of each instance

of “lived in by” to fit the house it belongs to.
The cardinality ratios of subtypes of relation-

ships may stay within the range specified for its
parent, and the cardinality ratio of an instance of

a relationship cannot violate the cardinality ratio

of the class.48 As such, we may constrain the car-

dinality ratio of an instance of a relationship more

than the class does, but we cannot constrain it less.

It must stay within its class level limitations. For

example, if the class of cottages can house five
persons at most, an individual cottage may have

a capacity to house fewer than five persons, but
never more than five.

Cardinality maps to the enumeration do-

main, and cardinality ratios map to the domain

of Enumeration Quotients. Attached to both the

enumeration domain and the domain of enumera-

tion quotients is a value constraint that imposes a

lower bound of nil. This common sense constraint

is inherited by all cardinalities. Lower bounds

attached to the cardinality or the cardinality ratio

of a specific relationship may be larger (and this
will not violate this constraint inherited from the

enumeration domain or the domain of enumeration

quotients), but it cannot be negative. This is another

example of how domains normalize knowledge

and anticipate specifications (validation in this
case)—specifications that might be obvious, but
would otherwise need to be painstakingly docu-

mented in excruciating detail for programmers

who would then manually replicate the code

in equally excruciating detail to painstakingly

validate every enumerated item. Instead, systems

assembled from Knowledge Artifacts naturally

normalize the information and automate this

validation, deploying it automatically to every

enumerated item—even new relationships that

are born when the response to change is scope

creep.

COMPOSITIONS OF
RELATIONSHIPS

Relationships begin and terminate in objects.

Objects are nodes connected by a web of relation-

ships. As much as relationships connect objects,

objects connect relationships. Objects are the

glue that bind relationships together end-to-end.

Consider the following irreducible facts:

144

Relationships

1. Person lives in House; and
2. House located in Town.

Together, the two rules not only imply that

people live in towns, but that they do so because

they live in houses and houses are located in towns.

It does this by “gluing” lives in to located in. Both

are relationships between object classes (Person
and House, and House and Town, respectively).

An object class, House, glues one end of “lives
in” to the other end of “located in.” Figure 5.6a

shows this.

House mediates between the two relationships,

and together, “live in,” House, and “located in”

mediate between Person and Town. The compos-

ite, consisting of “live in,” House, and “located
in,” objects strung together on a daisy chain, is a

bridge between Person and House. The composite

may also be considered a relationship between

the two object classes it connects. Figure 5.6b

articulates this concept in a graphical manner.

Conversely, daisy chains of objects are often

hidden inside relationships.49

Indeed, given a web of objects and relation-

ships, every possible path mediated by relation-

ships and objects between a pair of objects, or even

back to the same object50 is a relationship. Adding

detail to a model often involves opening windows

into relationships to make objects and relationships

in the composition explicit.51 Later, we will see

how these windows can serve as the gateway to

innovation and process improvement.

A composition of objects and relationships

that touches objects outside the composition is

a subtype of a relationship that connects those

objects together. Take Figure 2.6. It reads Orga-
nization Ships Product. The Shipment object and

the ships relationship are identical. Whether we

see it as an object or as a relationship is a matter

of perspective—usually a matter of scope and the

level of detail we need to represent.52

A relationship may be a token that summarizes

a model—a web or daisy chain, rich and complex,

or sparse and simple—of objects and relationships

that are ports that “outside objects” can “plug”

into—objects the token relates. These aggregates

model the behavior of the token in layers of detail.

The token is a relationship. The detail may merely

be hidden from view or be yet unknown.

Mutability of Compositions

Consider what would happen to the composition

in Figure 5.6b if we replaced House with Trailer
Park. The meaning of the composition would

not change. Indeed, if we replaced House with

a supertype called Living Space, or any subtype

of Living Space, the meaning of the composition

would stay the same. If we did not have a win-

dow into the components in the composition, we

Figure 5.6. Relationships may be compositions of objects.

Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Business Knowledge, Norwood,
MA: Artech House, Inc., 2005. ©

(a)

An object class glues
relationships end-to-end

(b)

Two relationships imply the
third

145

Relationships

would not know which subtype of Living Space
instantiates a particular instance of Person lives
in Town. In general, each subtype of Living Space
in the composition of objects in Figure 5.6b is

mutable—maybe replaced—by another subtype

of Living Space without affecting the meaning

of the composition.

Mutability may not only mean replacement

of parts; it could also imply obliteration of parts.

For example, a house may consist of walls. We

may remodel a house and remove inner walls.

The essential meaning of the house will remain

even if some inner walls are gone. These walls

are mutable in the composition called a house.

Compositions are patterns, and it is the essential

pattern that they bring into focus.

Perspectives of Mutability

In the first example, where we replaced House
with Living Space, each composition with a dif-

ferent variant of Living Space could merely be

considered as a different rule expression of the

same meaning. Alternatively, we could consider

each composition (e.g., Person lives in Trailer
Park located in Town vs. Person lives in House
located in Town) to be subtypes of Person lives
in Town.

Based on the above, we have three equal per-

spectives, and a fourth that is slightly different:

1. House and Trailer Park are mutually mutable

(replaceable) objects in the composition of

Figure 5.6 (as are all subtypes of Living
Space).

2. Person lives in Trailer Park located in Town
and Person lives in House located in Town
are different and independent expressions of

the same meaning—Person lives in Town.

3. Person lives in Trailer Park located in Town
and Person lives in House located in Town
are subtypes of the composition in Figure

5.6 because they share two relationships (live
in and located in) connected to two shared

objects (Person and Town), and differ on

account of one object (House vs. Trailer
Park).

4. Person lives in Trailer Park located in Town
and Person lives in House located in Town
are subtypes of the composition in Figure

5.6, not because they share two relation-

ships (live in and located in) connected to

two shared objects (Person and Town) and

differ on account of one object (House vs.

Trailer Park), but because both House and

Trailer Park are subtypes of Living Space.

Perspective 4 will be the obvious choice if

the Person lives in Trailer Park located in Town
conveys common information, but not exactly

the same information, as Person lives in House
located in Town. If the information conveyed by

both compositions had been exactly the same

(this would have happened only if House, Living
Space, and Trailer Park had all conveyed exactly

the same meaning within the scope of the model),

the four perspectives would have been equivalent;

they would have all conveyed the same informa-

tion. However, common sense tells us that this is

not so. Perspective 4 is different—subtly different

because Trailer Park and House have each added

different nuances (information) to the meaning

of Living Space.

Even if there are no known differences in

the properties of House and Trailer Park within

the limited scope of the model, Perspective 4

implicitly “knows” that Living Space, House,

and Trailer Park are not exactly the same; Living
Space contains the shared meaning of House and

Trailer Park. Moreover Perspective 4 implicitly

presumes that unknown differences exist in the

information conveyed by House vs. that conveyed

by Trailer Park. It (implicitly) adds an unknown
number of unknown features (attributes and re-
lationships) and unknown effects to House and

Trailer Park. Remember that the unknown value

is also information. As such, Perspective 4 is

richer in information than the other perspectives

146

Relationships

in the list and is not exactly the same pattern of

meaning as the others.

Perspective 4 is preferable under the unre-

lenting pressure of change and scope creep. It

conforms to the principle of subtyping by adding

information and can integrate differences in be-

havior between subtypes easily. Many seasoned

analysts prefer this approach. Subtypes may result

from new learning or a larger scope and from

recognizing variations in behavior that compel

us to generalize objects in order to capture and to

normalize their common behavior in supertypes,

even as we attribute differences in behavior to

subtypes. Perspective 4 can adapt more easily to

change because it is different from the other two

perspectives—subtly different. It adds informa-

tion, adds unknown values, and adds unknown

properties.

(The patterns in the Universal Perspective will

use similar principles to tame the shifting chimera

of Perspective and to anchor the concepts firmly
in shared understanding.)

Mutable Perspectives

A composition is a pattern of objects. When is

a pattern a pattern? How much freedom does a

pattern have to change its internal structure be-

fore it becomes a different pattern? Chapter IV

provides the answers under Measures of Similar-

ity. It depends on the law that makes the pattern

a pattern and the proximity metric it involves. It

boils down to rule meaning.

A house is a pattern of walls, roof, ceiling,

floor, and other objects; it is a composition of these
items. When does a house stop being a house? Can

we add items such as furniture, a fireplace, and
chimney? If we did, we would almost certainly

consider the enlarged entity to still be a house.

What if we removed its walls, but left the fireplace
and furniture? Would it remain the same house,

or even a house? What if we replaced the outer

walls? Would we consider it the same or differ-

ent house? It all depends on the law that makes a

pattern a pattern and the freedom we allow before

we consider it a different pattern. The key is the

meaning of the pattern and the degrees of freedom

buried within that meaning.

We might even leave parts of the house out and

still consider it to be a different state of the same

house. Of course, parts left out remove informa-

tion, and parts added supplement information.

Based on the principle of subtyping by adding

information, a composition with information

added is a subtype of the composition to which

it adds information.

Remember that each combination of the kind

in Figure 5.4 is a pattern, so the laws of mutability

may not just make individual objects in a compo-

sition mutable with other objects, but mutability

may also be articulated in terms of combinations

of objects—compositions within compositions

may be mutable with compositions or single

objects (as the “live in” relationship between

Person and Town in Figure 5.6b is a metaphor

for the composition in it), as much as individual

objects in a composition may be mutable with

other individual objects or with compositions.

After all, compositions are objects too.

Mutable objects in a composition may not

all convey the same quantum of information,

but they must all convey the same essential pat-
tern53 of information. If they do not, they will be

mutable to the extent that they may be removed

from the composition, without loss of meaning

even if they are not replaced by another object.54

For example, an air conditioner is only an option

in a car; it is an optional object in the pattern of

parts we call a car.

Conversely, a subtype obtained by adding
information will always be mutable with its super-

type (but not vice versa) because the subtype will

convey the information content of the supertype

and then some; if the supertype carries a part of

the essential pattern, so must its subtypes (like

Trailer Park and House both conveyed “Living
Space”). This is known as Liskov’s Substitution

Principle.55

147

Relationships

(A word of caution: Remember that the added

information may be attributes, effects, or con-

straints that an attribute, effect, or value is barred

or restricted.)

If we remove or change immutable parts of a

composition, the composition will cease to exist.

It may be transformed to a new and different com-

position or cease to be considered as a composition

at all. It all depends on the law that makes the

pattern a pattern. The law is the pattern, and the

pattern the law. They are indistinguishable shades

of the other. Subtypes and supertypes of patterns

are subtypes and supertypes of the law, even if

they are patterns of unknown values. Patterns can

carry meanings even if they are compositions of

“Unknowns.”

Preserving the essential meaning of a pat-

tern—the composition—as its parts mutate is

the key to product and process innovation; to do

things differently as we strive for excellence is

to find new mutations that will better serve our
purpose—the purpose of the essential pattern.

Mutability and Innovation

Innovation often involves replacing mutable parts

of compositions without losing the essential pat-

tern—the information conveyed by the composite

object. In Figure 5.6b, we could replace House with

Trailer Park and not lose the meaning of Person
lives in Town. The behavior of each kind of lives
in may differ; each may have different cost, tax,

and mobility implications, but the essential pat-

tern, the meaning of the composite, Person lives
in Town, will stay the same.

Innovation usually involves mutability of this

kind—to alter the composition without chang-

ing the essence of the composite object. Objects

may be reconfigured into new patterns inside the
composite, as mutable compositions are replaced

or removed. Objects may even be exchanged for

new objects with new properties—features56

and effects, and if these objects are processes,

then dependencies, costs, cycle times, controls,

and resources may change.57 Through all these

changes, the essential relationships and meanings

of the composite must be preserved.

Sometimes, innovation springs from paradigm

shifts. A paradigm shift redefines the meaning
of a pattern—its very essence. In the example of

the house we discussed earlier, if we changed the

criteria that make a house a house, it would be a

paradigm shift—can a house without outside walls

but with a roof be living space be a house? It might

for some. Similarly, the essence of a process is in

its work products. Changing the work product of

a process is a paradigm shift.

A subtype adds its own meaning to that of

its parents. One can redefine the essential mean-

ing of the subtype without necessarily altering

the essential meaning of its parents; there are

levels of paradigm shifts. The larger and more

complex the composition is, the more complex its

meaning and information content can be—with

commensurately larger opportunities for innova-

tion through replacement or removal of mutable

parts, as well as the commensurately larger risk

of altering incompletely defined or unknown es-

sential patterns. Therefore, the larger and more

complex the composition is, the more abstract must

be the corresponding supertypes that will sup-

port mutability and, through mutability, support

innovation. This is the purpose of the Universal

Perspective (described further in Agile Systems
with Reusable Patterns of Business Knowledge:
A Component Based Approach). Large global

businesses, for instance, may be complex—very

complex. Opportunities can be vast, and the

risks immense. They can leverage opportunity

and manage risk only by timely deployment of

knowledge and sharing of innovation. The pat-

terns in the Universal Perspective can be their

pipeline, as we will see next.

If the repository of knowledge artifacts con-

tains information on mutability of components,

the configuration of components to meet a given
goal subject to mutable criteria could be auto-

mated. When the cost of labor is low, a manual

148

Relationships

process could replace an automated one (and vice

versa). Each process would be assembled from

components in the repository of knowledge arti-

facts that will know what is mutable with what,

and what their costs, cycle times, and constraints

are. The metaphor will be preserved, even as its

constituents and configurations change.
For instance, a new kind of accounting invoice

or bill created to support one business environ-

ment will not only reuse the behavior it inherits

from a supertype called Bill, but it will also be

mutable with the supertype in every composition

that contains the supertype Bill. The repository of

knowledge artifacts can make it a consideration

in all business environments that deploy these

compositions. Whether to use it or not may depend

on local criteria and local management, but it will

be knowledge automated, automatically deployed,

and knowledge automatically shared—the need of

the hour for large, globally dispersed businesses

that must excel in an unrelentingly competitive

and unforgiving marketplace where customer

loyalty and success depend on sheer excellence

supported by information.

Meanings can be subtyped and refactored

(see Appendix II on refactoring) as new learn-

ing sweeps away the old, and unknowns become

known, and as new unknowns join the ranks of the

old. Laws and compositions themselves may flit
between states, subtypes, knowns, and unknowns

as change runs riot through flickering perspectives
of reality and its perceptions.

THE CAPACITY FOR
RELATIONSHIPS

Relationships connect objects, and objects re-

turn the favor, so which is the relationship and

which is the object? The answer is a matter of

perspective—relationships after all are object

classes too.

Just as relationships could limit the numbers

of objects they involve, objects too may limit the

number of relationships they may have with other

objects. Just as constraints on order, degree, and

cardinality ratios could be imposed on relation-

ship classes as well as on individual instances of

relationships, so too may the same constraints

be imposed at both classes and instances of

objects.

Business rules might dictate that a person, an

instance of an object, may participate (a relation-

ship) in only one project (another object) at a time.

This is an upper bound on the cardinality ratio of

Participate, a dyadic relationship between object

classes Person and Project. Assume we change

the rule. We allow a person to divide her time

between at most five projects. The upper bound
on the cardinality ratio of Participate has just

become five instead of one.
Along with special projects inside the firm, the

individual may spend time with the firm’s cus-

tomers. Then, his time must be divided between

customer care and internal projects. The total

number of feasible relationships that employees

may have with projects and customers may

then be in question. The model may require that

the upper bound cap the total cardinality ratio,

rather than the cardinality ratios of relationships

between employees and projects, and employees

and customers separately.

So far, participate, the relationship, has con-

veyed only nominal information on a person’s

participation in projects and customer care. At

the instance level, it has only told us whether

a person is, or is not, associated with a specific
project and/or a specific customer. It has not
said how much of the resource (person) will be

consumed by the project or customer, nor if all

projects and customers will consume his time

and effort equally.

The relationship can be more informative than

this. For instance, it could tell us that one project

might consume twice as much time as another,

as might a customer. The time an individual can

devote to projects and customers may be limited.

Hence, there are two interdependent items of

149

Relationships

information involved—an individual’s capacity

to participate in relationships and the quantum

of that capacity depleted by each relationship.

The capacity for participation is an attribute of

the object and normalized by it, and the capacity

consumed is an attribute of each relationship and

is normalized by the relationship. Each relation-

ship between instances of objects may not only

convey the fact of association, but also how much

of an object’s capacity for association with other

objects it consumes. Just as cardinality ratios could

vary at class or instance levels, the capacity for

association locked up by a relationship may vary

by relationship class or by relationship instance58

(or even by combinations within a high order of

higher degree relationship—combinations of the

kind shown in Figure 5.4).

TRANSITIVITY, ATRANSITIVITY, AND
INTRANSITIVITY

The detail in a composition may be hidden from

view. All we see may be a relationship (or an ob-

ject). We might not even be interested in peeling

the cover off an object to search for compositions

within it—our interest might be only focused on

the manifested behavior if the object. The black

box has returned to haunt us again, but in a dif-

ferent form—clearer and more precise—preci-

sion in terms of information content, cardinality,

ordinality, subtyping, and other properties.

Consider information content first. It is

manifested in transitive relationships—a term

for relationships that implies other relationships.

Transitive relationships are merely alternative

expressions of the same meanings.

Take a composition of relationships. Every

composition implies the relationship it com-

poses. It follows that we will replicate informa-

tion if we articulate both the relationship and its

composition(s) independently in our model. For

instance, in Figure 5.6b, two assertions, a person
lives in one house and house is located in one

town, implies the third—that a person lives in
one town.

When two or more relationships imply another,

they are said to be transitive (with respect to each

other). One must be dropped in order to normal-

ize information because the others imply it. For

instance, had we dropped “located in” between

House and Town in Figure 5.6b, it will still be

implied by the two assertions that we would have

retained:

Person lives in House, and

Person lives in Town

Which relationship we drop is a matter of

choice. Both perspectives will be equivalent

regardless of our decision (if we assume home-

lessness is outside our scope).

Sometimes, relationships carry information

on intransitivity—that they are barred by other

relationships of the same kind. For example, con-

sider parenthood and grandparenthood. A person

may be the child of a parent, who, in turn is the

child of another. The “parent of” relationship in

Person may be parent of Person is recursive and

irreflexive. It is also intransitive. We know that if
three or more individuals are related via a chain

of “parent of” relationships, the individual at

the beginning of the chain cannot be the parent

of the person at the end of the chain. (This also

automatically applies to its inverse, the “Child
of” relationship.)

The irreflexivity of “parent of ” prohibits

cycling back to the same individual but lets us

cycle back to different individuals each time we

go round the irreflexive loop that joins individuals
into a daisy chain. However, this composition,

made of identical repeating components, cannot

co-exist with an identical component that joins

the first and the last objects in the chain directly.
This is the property of intransitivity.

When a relationship is intransitive, the com-

position and the direct relationship are mutually

exclusive. They cannot coexist. The degree of

1.

2.

150

Relationships

intransitivity gives us the length of an intransi-

tive composition that preserves intransitivity. It

could be infinite.
Transitivity, on the other hand, implies the

opposite. A recursive irreflexive relationship can
be transitive. If it is a daisy chain of components,

even identical components, and implies a connec-

tion of the same kind between the beginning and

the end of the chain. Consider that a person may

be a descendant of another person. “Descendant
of” is an irreflexive, asymmetrical, recursive

relationship on object class Person. If a chain of

individuals are linked together by descendant of,
it implies that the individual at the beginning of

the chain is also a descendant of the individual

at the end. Contrast this with child of.
“Child of” is an intransitive relationship

that is asymmetrical, irreflexive, and recursive.
“Descendant of ” is a transitive relationship

that is asymmetrical, irreflexive, and recursive.
“Child of” was obtained by adding informa-

tion to “Descendant of”—by making it more

specific and reducing the degrees of freedom of

its meaning. Using the principle of subtyping by

adding information, “Child of” is a subtype of

“Descendant of.” Just as asymmetrical relation-

ships crystallized from symmetrical relationships

as we added information to their meanings, so

too do intransitive relationships crystallize from

transitive relationships when we add information

to them.

Nontransitivity is a weaker condition than

intransitivity. Consider the daisy chain of rela-

tionships we just discussed, in which “child of”

“friend of” has replaced. The chain of “friend
of” relationships between persons does not imply

that the person at the beginning of the chain is

a friend of the person at the end of the chain. It

does not bar it either. Such a relationship may

or may not exist independently of the composi-

tion represented by the chain of friends. This is

the property of nontransitivity, also known as

atransitivity.

Atransitivity tells us that the relationship is

not transitive with another (or a composition).

One relationship does not imply the other but may

coexist with it and may articulate an indepen-

dent atomic rule. It tells us that even if the same

relationship connects multiple objects in a daisy

chain of repeated relationships, the composition

will not convey the same meaning as joining the

objects at the beginning and the end of the daisy

chain directly via the relationship.

Cardinality Ratios of Composites

Consider the cardinality ratios of composites. A

composite consists of daisy chains of objects and

relationships. It follows that the cardinality ratio

of a composite relationship will be determined

by the cardinality ratios of relationships inside

the daisy chain as follows:

A one-to-one relationship in tandem with

another one-to-one relationship results in

a one-to-one composite. It does not matter

which end of an on-to-one relationship is

joined to which end of another one-to-one

relationship.

A one-to-one relationship in tandem with

a one-to-many relationship (or vice-versa)

yields a one-to-many composite.

A many-to-one relationship in tandem with a

one-to-one relationship (or vice versa) yields

a many-to-one composite.

A one-to-many relationship in tandem with

a one-to-many relationship yields a one-to-

many composite.

A many-to-one relationship in tandem with

a many-to-one relationship yields a many-to-

one composite.

One can easily visualize the above ideas by

laying relationships like those in Figure 5.1 end-

to-end. However, when we glue one-to-many or

many-to-one relationships together end to end, we

1.

2.

3.

4.

5.

151

Relationships

end up with a more complex kind of cardinality—a

many-to-many composition. A many-to-many re-

lationship may map a single instance of an object

in the domain of the relationship to several object

instances in its codomain (like Figure 5.1b), and
simultaneously its inverse may do the same in
the opposite direction (like in Figure 5.1c). The

result is total ambiguity if one tries to retrace a

relationship through its inverse.

Many-to-many compositions occur when:

6. A one-to-many relationship is joined in tan-

dem with a many-to-one relationship (or vice

versa).

7. A pair of one-to-many relationships is joined

at their common source.

8. If any one (or both) of the relationships joined

together is optional, the composite is also

optional.

When many-to-many cardinalities occur,

we can only resolve ambiguity by opening a

window into the composition and resolving the

many-to-many relationship into its injective and

surjective components. We will now describe

how this is done. The process is mechanical and

may be automated.

Resolving Many-to-Many Relationships

Consider the relationship Person is employed by

Organization. Its inverse is Organization employs
Person (the relationship and its inverse have been

underlined for your convenience). It is possible

for a single individual to hold multiple jobs in dif-

ferent organizations. For example, an individual

may have a day job with one company and an

evening job with another. As such, the employ-

ment relationship from Person to Organization
is a one-to-many relationship; its inverse too is

one-to-many. Most organizations employ several

individuals. When a one-to-many relationship has

a one-to-many inverse, it is called a many-to-many

relationship. Figure 5.7 illustrates the many-to-

many employment relationship between Person
and Organization.

Many-to-many relationships are actually two

relationships mediated by a Cartesian product.

Hidden within the many-to-many employment

relationship in the example above is the Cartesian

product of Person and Organization. The object

class Person has an optional one-to-many relation-

ship with Person Employed in Organization, as

does object class Organization. Person Employed
in Organization is a Cartesian product of Person

Figure 5.7. A many-to-many relationship

PERSON

ORGANIZATION

m
a
n
y
t
o
m
a
n
y

many
to
many
resolution

PERSON

ORGANIZATION

Person
employed In
Organization

0 to many

Employ
0 to many

m
ay be em

ployed by 0 or m
ore

[em
ploy 0 or m

ore]

152

Relationships

and Organization. Indeed, it is the employment

relationship itself, an object in its own right. The

many-to-many employment relationship between

Person and Organization is merely a composition

of two different relationships, one from Person
to Person Employed in Organization, and the

other from Organization to Person Employed in
Organization—two relationships glued together

end-to-end, in tandem, by the Cartesian product

Person Employed in Organization. Figure 5.7

illustrates this.

Each many-to-many relationship may be

resolved into two (or more) one-to-many or

many-to-one relationships with an object that

is the Cartesian product of the objects related

by the many-to-many relationship. The choice

of direction—an arbitrary choice—determines

whether the relationships inside the composition

are one-to-many or many-to-one (when one direc-

tion is chosen, the other is automatically implied

by the inverse of the relationship that was cho-

sen). Automated tools can resolve many-to-many

relationships like the relationship in Figure 5.7.

Indeed, many do.

COLLECTIONS OF OBJECTS AND
THE STATE SPACE OF
RELATIONSHIPS

A relationship is an object. Figure 5.3 shows how

the objects it relates determine the state space

of a relationship: Each axis of this nominally

scaled state space will represent an object class

the relationship involves, and each tuple, a point

in this state space, represents an instance of the

relationship. The very identity of the relationship,

an object, is the conjunction of the identities of the

objects it relates, and is dependent on them.

The complete state space represents all pos-

sible relationships, regardless of whether they

exist or not, or even if they are “lawful” or not.

Regions in this state space represent collections

of relationships. Slicing and dicing this state space

groups and regroups relationship into different

categories (Figure 5.8).

SLICING AND DICING
ASSOCIATIONS BETWEEN
OBJECTS

Consider the object called “Sale” in Figure 5.8;

it is a third order relationship. Figure 5.8a shows

Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Business Knowl-
edge, Norwood, MA: Artech House, Inc., 2005. ©

Figure 5.8. State spaces of relationships

PRODUCT
SALE

PRODUCT
“constituent”
of relationship

CUSTOMER

“constituent”
of relationship

= Relationship

PLACE
“constituent”
of relationship

3rd ORDER
RELATIONSHIP

sell

Sell to

Sell at

products

places

customers

a particular product sold to
a particular customer at
a particular place

products

places

customers

a particular product sold to
a particular customer at
a particular place

A category is a region
 with various points inside it

Ovelapping
categories

Mutually
Exclusive, or
Non- overlapping
categories

Two
dimensional
region

(a) Product Sale is a relationship (b) A tuple is a point in state space (c) Slicing and dicing state space into regions

153

Relationships

this in entity-relationship format, and Figure

5.8b in state space format. Figure 5.8c shows

how this state space may be sliced and diced.

Regions may be mutually exclusive or not. Even

disjoint regions can be considered a part of a

single collection. These arbitrary collections rep-

resent market segments based on what products

(or product ranges) were sold to which kinds of

customers in which places. These regions need

not be three-dimensional volumes. They could be

any subspace—lines, surfaces, patterns that may

twist and turn,59 patterns that are bounded, finite,
unbounded, or even infinite. They may be any kind
of pattern. If we only cared about products sold

to a specific customer and were required to ana-

lyze which products the customer bought where,

our market segments would be two-dimensional

regions of state space—patterns of points on a

plane. These points will be located in a vertical

plane, parallel to the product-place plane of Figure

5.8c. The plane on which these regions are located

will intersect the customer axis at the point that

represents the customer in question.

Just as the unknown domain (Chapter IV) was the supertype from which all domains emerged, the “Don’t care” value

is the supertype from which all other values flow. It asserts only that a value exists. It does not matter what that value is,
not even if it is known or unknown. Every domain—even the unknown domain—has a “Don’t care,” that is, “All” value

(equivalent to “everything in Figure 4.1) from which its values emerge as meanings of specific magnitudes are added to
them.

Consider how the “Don’t care” value is different from the “Unknown” value. Assume we make and sell graphic

design software through intermediaries such as retailers and distributors. We may have information on identities and

usage patterns of only some end users because they have registered the software they bought. There may be others who

have not registered, so we do not know who they are, but they call in, requesting support on an ad-hoc basis. We may

want to segment the market by known and unknown users—a distinction based on the “Unknown” value. We may also

be interested in our pattern of sales regardless of whether we know or do not know the end user. Then we will segment

the market based on the “All” or “Don’t care” value—the collection of end users both known and unknown. This kind of

segment is very different from the segmentation that made distinctions based on the “Unknown” value.

“Don’t care” conveys less information than “Unknown”; it does not even tell us whether we do or do not know a spe-

cific value; it only tells us that values exist. Therefore, based on the principle of subtyping by adding information, “Don’t
care” is the supertype of all values, even “Unknown.” It is identical to “Not null.” “Null” represents meaninglessness

and impossibility. See the section on the metamodel of relationships further on in this book.

Representing State Spaces Graphically

In a nominally scaled state space like that in Figure 5.8b (and Figure 5.8c), each axis represents a domain. The axes intersect

at the origin; the origin is a point common to each axis. The “Don’t care” value is common to all domains. Therefore, if

the origin represents the “Don’t care” value graphically, each facet of state space such as product-place, product-customer,

and customer-place will represent state spaces in which respective values of customer, place, and product do not mat-

ter—that is, are (respectively) “Don’t care.” This is just one kind of origin. It is one way of representing a value shared

by all domains that frame that space. There may be other kinds of origins as well because other kinds of values may be

shared across domains.

All ratio scaled domains share the “nil” value. A ratio scaled state space may impute the nil value to its origin (see

Figure 4.2). The origin of a state space may represent any value common to the domains that frame it. Sometimes it may

be neither “Nil” nor “Don’t care”; it could be a natural lower bound shared by the domains involved, or even an arbitrary

point (as in difference scaled state spaces). The choice is ours—the geometrical representation of state space is just that—a

graphical, albeit incomplete way of representing a more complex reality. Domains may share more than one value, but

geometrically we can have only one origin—a point where the lines that represent each domain intersect.

Box 5.3. “Don’t care,” the source of all values

154

Relationships

On the other hand, if we only cared about

products and where they were sold, regardless of

customers, we would need a “don’t care” value

on the customer axis. (“Don’t care” is identical

to “all.” This value will subsume both known

values, as well as the Unknown Value.) Assign-

ing this “don’t care” value to the customer will be

equivalent to reducing the relationship in Figure

5.8a to a second-degree relationship by eliminat-

ing Customer. Note that “don’t care” does not bar

the relationship with Customer, nor does it assert

its non-existence (like the null value would). It

merely asserts that the information is irrelevant

or unavailable.

Based on the principle of subtyping by adding

information, this relationship is a supertype of

the relationship in Figure 5.8a. The state space

of the supertype will be a two-dimensional state

space defined only by Product and Place. Each

instance of Product Sale will become a 2-tuple in

the state space of the supertype. Similarly, if we

were only interested in segmenting the market by

product, the relationship would become monadic,

and the state space would be left with only a single

axis—the product axis.

As such, the kind of state space in Figure 5.8

cannot, by itself, represent Market Segment, the

object. Market Segment is a collection of state

spaces. One state space for each possible combi-

nation—combinations like those in Figure 5.4.

It is a power set.

However, it is clear from Figure 5.8 that the

existence of the three-dimensional state space

implies the existence of its two-dimensional

facets—the product-place, product-customer,

and customer-place planes in Figures 5.8b and c.

Indeed, we have just discussed how these second

order relationships are supertypes of the relation-

ship in Figure 5.8a. The existence of the subtype

implies the existence of its supertype (but not

vice versa). Therefore the three-dimensional state

space in Figure 5.8b implies not only existence

of regions of three-dimensional space, but also

the existence of regions of its one- and two-di-

mensional supertypes—members of the power

set we just discussed. As such, even though the

state space in Figure 5.8b will not represent all

market segments by itself, it can do so by implica-

tion. No new information need be added. Indeed,

adding information already implied would only

denormalize and duplicate knowledge.

The state spaces segmented in the examples

above were nominally scaled. Points in each

region (segment) were discrete collections of

objects, unrelated, with no sense of continuity, no

definition of closeness (beyond the fact that each
is unique and distinct from others in the region)

nor of any concept of ordered arrangement within

the segment. There were no ranges or intervals

between points involved. What if we had to slice

and dice ordinal or quantitative state spaces or

mixed spaces, in which different dimensions are

scaled differently? In partially or totally ordered

spaces (see Box 4.5), we must recognize ranges,

intervals, and bounds—shapes and patterns like

those in Figure 5.8c. For instance, market seg-

mentation may depend on the sale price of the

product, a quantitative attribute of Product Sale.
If this happens, Sale Price will be an axis of the

state space that we must segment. Market segments

must now consider the set of all possible intervals
along ordinal or quantitative dimensions. (To make

it easier to visualize geometrically, consider a

three-dimensional state space in which Product
Sale is a binary relationship that only involves

Place and Product, two axes of this state space,

and the third axis is Sale Price, an attribute of

the relationship60—see Figure 5.9.)

Borel Objects

The set of all possible intervals opens the door to

a very special object class called the Borel Set.
A Borel set is the set of all possible intervals on

an axis of state space, or when multiple axes are

involved, the set of all possible regions in that

space.61 These intervals (regions) may or may not

overlap. Each region in Figure 5.8c is an instance

155

Relationships

of a Borel set in the state space therein. If we

recognize the “Don’t care” value, the Borel set

will include all intervals in state space, as well as

intervals in the state space of its supertypes—the

facets it implies.

Although a Borel Set is hard to visualize

graphically, an instance of a Borel Set is easier to

understand and visualize—at least in one-, two-,

and three-dimensional spaces. Every region in

space, whatever its shape, size, or extent is an

instance of a Borel Set, and so is every collec-

tion of regions, overlapping or disjoint, finite or
infinite, bounded or unbounded, open or closed.
Figure 5.9 illustrates this simple truth.

When segmentation involves ordinal, differ-

ence, or ratio scaled axes, regions will depend on

gaps between values, and hence Borel Sets, will

be involved. When segmentation is in terms of

nominally scaled axes, segmentation will involve

collections of points in state space—the power

set we discussed earlier. Intervals are also col-

lections of points in state space. We will call the

union of these intervals and collections as the

Borel Object or the Power Borel Set. The Borel

object generalizes the concept of the class of all

possible segments, regardless of how the space is

scaled, and regardless of whether it has any null

values—“holes”—in it (see Figure A in Box 4.6).

It is the class of segments.62

Every relationship class is associated with

a Borel object; indeed, every relationship class

automatically implies the existence of its Borel

object. The rules are:

The Borel object of a relationship is related to

the same object classes as the relationship.

Relationships between individual object

classes and the Borel object are optional (to sup-

port the “all” value we discussed above).

At least one, perhaps more, of these individu-

ally optional relationships must exist in order to

instantiate a Borel object. In other words, the de-

gree of the combination of relationships between

the Borel object and its constituent object classes

must be one or more.

Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Business Knowl-
edge, Norwood, MA: Artech House, Inc., 2005. ©

Figure 5.9. Instances of Borel Sets

Sale price

p
ro

d
u

ct
s

places

= INSTANCES OF
BOREL SETS

ANOTHER INSTANCE
OF A BOREL SET

156

Relationships

A relationship and its Borel object have an

optional many-to-many association between them.

Note the cardinality ratios inside the many-to-

many composition between the relationship and

its Borel object in Figure 5.10. The relationship

must necessarily be contained in some region of

its state space, hence the composition is mandatory

in that direction; but other regions of state space

can be empty, and the composition is optional in

the other directions. In compliance with Rule 8 for

joining relationships, the overall many-to-many

relationship is optional.

The rules we just articulated are illustrated

in Figure 5.10.

The Borel object helps to analyze the infor-

mation content of a relationship class by slicing

and dicing it to look for patterns (just as Candu

Compoot did in the tale reproduced earlier from

our Web site63). Indeed, Borel objects provide

a key to the analysis of business behavior and

the search for patterns. This approach is a tool

that supports management decision-making and

process innovation rather than one that provides

support for the day-to-day transactions of an

operating business.

Borel objects are containers of analytical

patterns that normalize a higher order of non-

procedural knowledge about the businesses than

transactions do. Take the thought a step further.

What if we wished to segment the market by slic-

ing and dicing information that the associative

object—the relationship—does not normalize,

but its constituents do? For instance, we want to

segment the market by list price of product (an

attribute of Product64), customer revenue (an at-

tribute of Customer), and mean temperature of

the place (an attribute of Place), all taken together,

and look for patterns across these segments. To

segment the market in this manner, we will need

to consider the entire composition of objects in

Figure 5.8a. This leads us to a kind of information

space we have not discussed yet.

Since we are interested in combinations of

information across constituent objects, we have

implicitly recognized that a relationship binds

them, and hence implicitly recognized the corre-

sponding Borel object. However, we must enhance

the state space of the relationship (and hence the

Borel object it implies) by including additional

axes—dimensions—one for each item of infor-

mation normalized by its constituents.65

This enhanced state space of the relationship

will support the kind of segmentation we require.

In the example above, the enhanced state space of

Figure 5.10. Borel objects and relationships

(At least 1 relationship to a constituent entity must exist at any given time)

RELATIONSHIP
(ASSOCIATIVE OBJECT)

OBJECT
“constituent”
of Borel Object

OBJECT

“constituent”
of manifold

OBJECT

“constituent”
of manifold

BOREL OBJECT
OF

RELATIONSHIP

many
to

many
RELATIONSHIP

BOREL OBJECT

RESOLUTION
OBJECT

1 to many

0 to many

0 to many

0 to many

0 to many

= Relationship

Degree of combination = 1 or more

Eg.: Product
Transfer/usage
agreement

Eg.: Market
segment

resolution object name
<relationship name>

IN
<borel object name>

Note: At least one relationship, (or combination of relationships), with
constituent objects -- product,customer ,sales channel -- must exist at
each moment in time

PRODUCT
SALE

PRODUCT
“constituent”
of relationship

CUSTOMER

“constituent”
of relationship

SALES
CHANNEL

“constituent”
of relationship

MARKET
SEGMENT

m
a
n
y
t
o
m
a
n
y

PRODUCT
SALE

MARKET
SEGMENT

PRODUCT SALE
IN MARKET
SEGMENT

1 to many

0 to many0 to many

0 to many

0 to many

many
to
many
resolution

= Relationship

= Borel Object

= Resolution Object

(a) A relationship class implies a Borel Object (b) An example of a relationship and its Borel Object

157

Relationships

the relationship will include points that represent

tuples of individual list prices, mean tempera-

tures and customer revenues. We can slice and

dice this space, and each region will represent a

collection of points—a segment (which might or

might not be empty). This kind of space is like

no space we know. Each point on the axis bears

more information than the mere existence of an

object. It is also a token for an object that bears

information on its state. Each axis is a token for

a stateful object class and may unfold into a full-

blown state space of its own.

Of course, treating the composite as a single

object will denormalize information. For instance,

the same place may be repeated in several distinct

tuples that represent distinct points in the state

space of Figure 5.8b,66 and each will have the

same mean temperature because mean tempera-

ture belongs to the place alone, not the combina-
tion of place, customer, and product.67 However,

when we look for patterns, we are synthesizing

and combining information. We are looking at

differences and similarities between combina-
tions. The Borel set lets us do so. The fact that

the mean temperature of a place belongs to place

alone has already been normalized by the Place,

a constituent of the state space of the three-way

relationship between Place, Product, and Cus-
tomer. Place has merely lent this information to the

Borel object to allow it to be grouped with other

tuples. The Borel object does not normalize the

same information as its constituents; this would

be repetition. Instead, it normalizes information

about groups, patterns, and aggregates. It gives

identity to an aggregate object.

Aggregate objects have emergent properties,

patterns that the Borel object normalizes. Aggre-

gate objects also subsume Borel objects. The Borel

object is just one role of the aggregate object, as

are object compositions, object classes, subclasses,

and other collections of object instances. Even an

object instance is a collection of attributes and

hence an aggregate object.

ENDNOTES

1 [88] in Appendix III describes relation-

ships and their properties in mathematical

terms.
2 [188] in Appendix III describes the inverse

of a relationship in mathematical terms.
3 Readers interested in more mathematical

rigor may refer to Function, Domain, Codo-

main, Image, and Range in Appendix II

under the Theory of Categories. [232], [233],

[234], [235], [308], and [309] in Appendix

III have more information.
4 If A1 in set A is mapped to C1 in set C, C1

is called the image of A1.
5 Nominal attributes only establish the exis-

tence of values. They carry no information

on magnitude. Therefore, in Figure A of

Box 5.1, if attribute C is a nominal attri-

bute, the mapping rule can only be a rule

about existence of a value (i.e., an inclusion

or exclusion rule). Relationships between

nominal attributes will always be inclusion

or exclusion sets.
6 See [211], [212], [214], [215], and [251] in

Appendix III for the theoretical foundations

of ordinality.
7 See [240] and [251] in Appendix III for the

theoretical foundations of the richness of

relationships between attributes.
8 Ron Ross, in [294], Chapter VII, calls these

objects calculators. Ross does not distin-

guish the rule meaning from its possible

expressions(s) (see [243] in Appendix III). He

identifies type 1 rules as those that involve
attributes, and type 2 rules as those that only

involve values. [294] in Appendix III con-

tains several examples of joint constraints

and rule expressions acting in concert with

inclusion and exclusion sets. Ross identifies
the following rule expressions as those used

frequently in business processes: Summation
over a set of values, subtraction, multiplica-
tion, division, identifying the largest item

158

Relationships

in a set, identifying the smallest in the set,

average over a set, determining the median
of a set, determining the mode (the most

frequently occurring value in a set), deter-

mination of a rate per unit (usually time),

determining a percentage and determining

a percentile. In addition to the list in [294],

enumeration is used commonly in business

processes. Box 28 on our Web site discusses

rule constraints in detail (the rule may be

a simple “or,” that is, the constrained value

must/must not take a value from the value

set, in which case Rule Constrain reduces to

the inclusion/exclusion constraint (object B

of Box 28 on our Web site). Refer to [294] for

more information about the use of recursion

in rule expressions.
9 Constraining values are those inside the

value set in Figure C.
10 Here is an example of how the metamodel

provides automated agents an opportunity

to automatically adapt software to changes

in scope by aligning with the metamodel

of knowledge. When an attribute is an

argument of a rule expression, its value is

assigned to a value set and the link between

the domain and the value is automatically

instantiated by implication, i.e., rules associ-

ated with domain may be physically inferred

by the software application (or automated

agent) via the attribute in Figure C. However

a value might not always be the value of an

attribute. It could be a parameter of the rule

expression, and independent of any attributes

of objects in the business model. Often this

happens because the scope of the model is

limited and might exclude the attribute that

the value could belong to. Since the value

is a parameter that is not associated with

any attribute in the scope of the system,

the (automated) agent must establish a

(physical) relationship between the value

and the domain to inherit rules linked to

the domain. If a subsequent scope change

brings the corresponding attribute into the

business model, the agent must recognize it,

delete the physical relationship to domain,

and switch the software strategy for access-

ing the domain and rules stored therein so

that it inherits these rules via the attribute.

Accordingly, the agent would automatically

consolidate rules specific to the attribute
with those it has inherited from the domain,

eliminating redundancy and identifying

conflict. This is only one of several kinds
of adaptations that may flow from changing
the scope and rules of business. However, it

is an instance of how software can adapt to

the new rules and scopes. It reflects the kind
of intelligence that software must acquire to

change its own configuration, with minimal
or no human intervention, as it adapts to

changes in scope and aligns with evolving

business processes.
11 Refer to Chapters VI and VII of [294] (in

Appendix III) for more information about

recursive rule expressions.
12 Refer to Appendix II on Lambda Calculus

and the Church Rosser Theorem for more

detail on the implications of the fact that the

terms of a rule may consist of other terms.
13 The fact that the same rule may be expressed

in different terms is analogous to the fact that

the same value may be expressed in different

formats. In neither case does the meaning
change the rule or the value. Meaning is the

focus of the metamodel of knowledge.
14 To understand the rigorous, mathematical

basis of why a single rule may have many

expressions, refer to the abstract mathemat-

ics of Lambda Calculus. Appendix II has a

nonbrief, nonmathematical description of

Lambda Calculus. [240] in Appendix III has

more mathematical detail. Appendix III also

has other publications on Lambda Calculus:

[239], [241], [242], [244], [245], [246], [247],

[248], [249], [250] (all in Appendix III). [251]

in Appendix III deals with the mathematics

159

Relationships

of rules. Appendix III contains publications

on mathematical functions that discuss the

mathematics behind rule expressions.
15 Just as interfaces may pass values (of attri-

butes) between systems, they may also pass

rules. Both rules and values are information

and the interface is where the contract for

information exchange resides (see the dis-

cussion of SOA in Chapter III). Just as this

contract describes formats for data exchange

and presentation at the interface when pass-

ing data, it must describe the expression of
the rule being passed when passing a rule to

another actor. The rule is then, like data, just

another parameter being exchanged between

actors. Therefore, rule expressions (as op-

posed to meanings) reside in the interface

rules layer of Figure 3.4. This concept, where

both values and rules are generalized param-

eters of rule expressions, which may in turn

be parameters themselves, are supported by

the mathematics of Lambda (λ) Calculus.
Mathematically inclined readers may refer to

the publications on λ-calculus in Appendix
III to understand how rule expressions may

be manipulated. Nonmathematicians who

are interested in the concept may refer to

the note on λ-calculus in Appendix II. A
new style of programming called functional
programming, based on λ-calculus, is emerg-

ing in support of these concepts. Functional

programming tools can turn these concepts

into practical, working automation. Refer to

Appendix II on functional programming,

and [242], [254], and [306] in Appendix III

for more information.
16 See [250] and [240] for reasons why there is

no general algorithm to show the equivalence

of different rule expressions. This is not in

conflict with the Church Rosser Theorem
([245], [246], [247], [248], [249], and [307]

in Appendix III) because the theorem does

not imply that a normal form is reachable

by the reduction procedure in it for rule

expressions. It only says that if reduction of

terms terminates, it will end in a term that is

a unique normal form, and all equivalent rule

expressions that can be reduced will always

reduce to the same normal form. The normal

form of all equivalent rule expressions are

unique to them and can be used to anchor

their unique meaning but may not always

be easy, or even possible, to identify. Warn-

ing—nonmathematical readers beware!
17 The Church Rosser Theorem in mathemat-

ics describes the confluence property: that a
rule expression may be evaluated in two or

more different ways, and both will lead to

the same result (See [243], [246], [247], [248],

and [307] in Appendix III). [243], [244], and

[246] in Appendix III describe methods of

reducing two or more rule expressions to

their common, normal form. Appendix II

describes the Church Rosser Theorem and

Normal Forms for nonmathematicians.
18 Some rule expressions may normalize mean-

ing: “A lambda expressions which does not

allow any function application reduction is

called a normal form. Not every λ expres-

sion is equivalent to a normal form, but if

it is, then the normal form is essentially

unique…. Furthermore, there is an algorithm

for computing normal forms. This algorithm

halts if and only if the lambda expression

has a normal form. This is the content of

the Church-Rosser theorem.”—[240] in Ap-

pendix III. Readers interested in the Church

Rosser Theorem may refer to Appendix II

and the several publications in Appendix

III on this topic.
19 Readers interested in a more mathematically

precise description of how objects may be

“joined” in a sequence to create new con-

figurations of knowledge will find additional
information in Appendix II, in the note on

gluing objects together.
20 “Two functions are equal by Extension

if they have the same meaning: they give

160

Relationships

the same result when applied to the same

argument”—Andrew Myers of Cornell

University on Lambda Calculus in [243] in

Appendix III (see Appendix II on Lambda

Calculus).
21 The relationship between Rule Meaning,

Rule Expression, and Computational Algo-
rithm (for the Rule Expression) is analogous

to the relationship between Domain, Unit of
Measure, and Format in [337] in Appendix

III. Each Rule Meaning must be expressed

in at least one, and perhaps more, Rule Ex-
pressions, each of which in turn, must be

implemented with at least one, and perhaps

several, Computational Algorithms. Most

student programmers come across algo-

rithms that involve blocks of instructions

inside iterative loops. Often the algorithm

might require a parameter be initialized

each time the algorithm is invoked and be

left unchanged thereafter, independently

of any logic inside the iterative part of the

algorithm. Every programmer learns not to

put such initialization commands inside the

iteration so that it is executed only once, and

computing cycles are not needlessly wasted

in iteratively restating the same value. Just

as there are several formats for expressing

values, there are multiple computational

algorithms that could implement a single

rule expression; of course, some could be

more computationally efficient than others
and therefore preferred by the designer of

the automated system.
22 “Any function that can be evaluated by

a computer can be expressed in terms of
recursive functions, without use of itera-
tion”—[237] in Appendix III.

23 [337] in Appendix III discusses value con-

straints. It describes simple constraints in

which attribute values must/must not assume

values in a set of values, called a “value set.”

The book also discusses “rule constraints”

which are more complex. Values are permit-

ted or not depending on interactions between

values in a value set. An attribute might be

permitted to take a value or not depending

on a rule that might involve the values of

one or more values in a value set. Finally, a

magnitude constraint is defined as a special
kind of value constraint, in which values and

interactions in a value set might constrain

quantitative values of ratio or difference

scaled attributes.
24 Exhaustivity is an attribute of Class, an

object in the metamodel of knowledge. An

exhaustive class, or set contains every pos-

sible member. A non-exhaustive class (or set)

contains fewer than all possible members.

[337] in Appendix III discusses the impact of

exhaustivity on value constraints in detail.
25 See inverses, bijection, injection, and sur-

jection in Appendix II under the theory

of categories and also [234] (in Appendix

III).
26 Mathematically, when an inverse can be in-

ferred from a class level relationship or rule

expression alone, it is said to exist, and when

it cannot, mathematicians say it does not ex-
ist. Mathematical existence implies that the

inverse is completely determined by the re-

lationship it reverses; it carries no additional

information. Mathematical non-existence

of inverses implies the opposite—that we

need additional information if we need to

map back to the original objects from the

target because the original map does not have

this information. In this book, we call such

inverses “unknown,” instead of non-existent

because we can resolve ambiguity and map

back to the original object instances given

this information. The information must be

explicitly associated with each instance of

the relationship reversed.
27 Homogenous fact and Unary Relationship

are NIAM terms. [297] in Appendix III

describes NIAM (a methodology).

161

Relationships

28 These are also examples of asymmetrical

subtypes of symmetrical relationships.
29 When a relationship is both irreflexive and

antisymmetric, it becomes asymmetric.

Asymmetry follows from using the Boolean

“and” to join irreflixivity with antisymme-

try, that is, by the (set) intersection of these

two properties. Each is an item of informa-

tion—knowledge about a relationship. [165]

in Appendix III discusses antisymmetry and

its interaction with ordinal domains.
30 Cartesian Product: see Box 19 on our Web

site.
31 These are NIAM terms for relationships.

See [297] in Appendix III.
32 “Many” implies a finite value. Infinite cardi-

nality leads to mathematical complications.

See [202], [203], and [206] in Appendix

III.
33 Cardinalities (and other properties of objects)

may have upper and lower bounds, permis-

sible and impermissible ranges, permitted

or barred lists of values, and all the other

value constraints in Chapter IV.
34 Chapter 5 of [297] (in Appendix III) has algo-

rithms for breaking the tuple into equivalent

patterns of objects and relationships.
35 If the numbers of customers and retailers

is individually constrained, the number of

customer-retailer combinations will also

be constrained. As such, the populations of

combinations in Figure 5.4 are interdepen-

dent. Each may be constrained by limita-

tions on populations of other members of

the power set. Constraints on cardinalities

naturally imply these constraints. We do

not have to explicitly assert these implicit

constraints for every impacted combination.

This also normalizes knowledge—explicitly

asserting a truth implied another denormal-

izes knowledge. Independent constraints

may make these constraints more, but not

less, restrictive.

36 NIAM is a fact modeling methodology de-

scribed in [297] in Appendix III. It provides

more details on cardinality and interac-

tion.
37 [337] in Appendix III discusses clashing

constraints in more detail.
38 Figure 36 on our Web site represents the

instance identifier of a relationship in a
visual manner.

39 Limitations on cardinality will be framed

by value constraints ([337] in Appendix III

discusses these constraints in detail).
40 A list distinguishes between multiple occur-

rences of an object. Sets and classes do not.

Thus a list conveys more information than a

set and may be considered its subtype. Box

7.10 describes the difference between a set

and a list.
41 Readers can find more information in [297]

in Appendix III.
42 Barring an object is equivalent to constrain-

ing its instance identifier to null.
43 Constraining the degree of a tuple to exactly

zero is equivalent to forcing its cardinality

to zero. Both bar the relationship (i.e., create

the null relationship).
44 [337] in Appendix III discusses validation

of constraints.
45 [337] in Appendix III discusses mergers of

constraints in detail.
46 Subset: see Box 19 on our Web site.
47 Figure 35 on our Web site shows the relation-

ship between a domain and an attribute
48 A subtype may restrict or match the cardinal-

ity/cardinality ratios of the supertype, but

cannot violate constraints inherited from

supertypes.
49 [173] in Appendix III describes object com-

positions mathematically.
50 [173], [188], and [193] (all in Appendix III)

mathematically prove that compositions are

relationships, even compositions that loop

back to the same object.

162

Relationships

51 [173] in Appendix III shows compositions

of relationships are associative (Appendix

II, in the note on category theory, describes

associativity in mathematical terms).
52 Based on the principle of subtyping by

adding information, a perspective that adds

detail to relationships or objects constitutes

a subclass of the perspective it is detailing.

The superclass can then be considered to

be a reusable subassembly of configured
components.

53 See Essential Patterns in Chapter IV.
54 An object that can be removed from a com-

position without affecting its meaning is

mutable with the “null” object of Box 5.3.
55 Liskov’s Substitution Principle asserts that

it must be possible to substitute any object

instance of a subclass for any object instance

of a superclass without affecting the seman-

tics of a program written in terms of the

superclass. Although articulated for com-

puter programs, this principle also applies

to business meaning. See The Substitution

Principle in Chapter 2 of [333] (in Appendix

III).
56 Ownership, locations, technological capa-

bilities, and other business properties are

also features of objects.
57 The work products of a process are tied to

its essential meaning. (The essential mean-

ing is the same as the essence of a pattern,

described in Chapter IV.) A paradigm shift,

that changes the essential meaning of a pro-

cess, will also change its work products.
58 This chapter extends XML sharability con-

cepts. (See [54] and [55] in Appendix III).
59 If the choice of any one of the related objects

(three in this example) is determined by

the others (the other two in this example),

we will get subspaces like these—lines,

surfaces, and patterns that may be “flat” or
may twist in higher dimensions.

60 An instance of product sale is a tuple identi-

fied by the conjunction of Product and Place

in this example. Sale Price joins the product-

place tuple to form a sale price- product-

place 3-tuple. This is implied through the

transitive relationships Sale Price has with

Product and Place, via the instance identi-

fier of Product Sale (see Figure 36 on our

website).
61 [310], [281], and [282] (all in Appendix III)

discuss the application of Borel Sets. [310]

Chapter 4, Section 1 defines Borel Sets math-

ematically; Chapter 7, Section 5 discusses

Borel Sets of tuples and multidimensional

spaces.
62 The Borel object generalizes the concept of

arrays. It implies the existence of not only

the cells of a multidimensional array, but

also of collections of cells. The “Don’t care”

value implicitly summarizes an array into

its lower dimensional facets, which are also

arrays. Borel objects subsume and extend

the multidimensional arrays supported by

XML ([54] and [55] in Appendix III).
63 The Borel object, the model in Box 14 on

our Web site and Figure 4.5 all support the

time series analysis mentioned in [54] and

[55] in Appendix III; time can be a dimen-

sion of a multidimensional array.
64 The list price is an attribute of Market Seg-

ment, whereas the sale price is an attribute

of Product Sale. Product is one way of

segmenting the market.
65 An instance of product sale is a tuple identi-

fied by the conjunction of Product, Place,
and Customer in this example. Compositions

of relationships—relationships glued end-

to-end by objects—are also relationships.

The fact that List Price is an attribute of

Product, Customer Revenue is an attribute

of Customer and Mean Temperature is an

attribute of Place, implies List price, Cus-
tomer Revenue, and Mean Temperature
of a place form a 3-tuple equivalent to the

Product, Place, and Customer tuple. They

163

Relationships

form the state space of the composition we

segment (see Figure 36 on our Web site).
66 The points that represent the same place

will lie in a plane parallel to the page you

are reading. The place axis of Figure 5.8b

will pass through this plane at the point that

represents the place that is being repeated.
67 [297] and [304] (in Appendix III) discuss the

normalization of repeating groups of data.

The Universal Perspective bases normaliza-

tion on meanings.

164

Chapter VI
Object Aggregation

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

This chapter describes the information and meanings that emerge from aggregates. It shows how the
concepts like containment and subtyping are configured from the concept of location.

Classes, subclasses, compositions, and relation-

ships are collections of object instances. So are

systems, cars, and households. They are all ex-

amples of aggregate objects. Aggregate objects

are collections of parts—parts that are also ob-

jects—structured, unstructured, or collected into

sets based on a multitude of criteria. These col-

lections have properties that are distinct from the

properties of the members that constitute them.1

We have found these collections everywhere in

the metamodel of knowledge—in perspectives,

in relationships, in domains of values, in patterns

of things; they are found even in the concept of

object class itself, the root from which the tree of

knowledge grows.

Let us start by recapitulating what we already

know about aggregate objects:

1. Aggregate objects are also object instances.

This implies that each instance of an ag-

gregate object must have a unique identifier
and history (except in the case of a domain,

which may not have history). The class of

insurance claims is a collection of claims. An

instance of the collection is an instance of an

object, and the many instances of insurance

claims in it are also instances of objects.

Further, aggregate objects may themselves

be aggregations of aggregate objects.

2. Aggregate objects can be any collection of

objects, structured or loose. Some examples

are:

{ Patterns:

{ Perspectives: Perspectives are topoi2—

consistent, self contained, complete

structures of knowledge. They are

compositions of components, relation-

ships, and rules valid within a scope

(see Box 2.5).

{ Sets and lists: Sets do not distinguish

between multiples of the same object

among its members; lists do.

{ Object classes: Members of object

classes share attributes and effects. Ob-

ject classes do not distinguish between

multiples of the same object among its

members.

165

Object Aggregation

{ Domains and value sets: Domains and

value sets are aggregates of values.

{ Compositions and other aggregates of

objects.

3. Aggregate objects have emergent properties

(see Box 4.1), which are different and dis-

tinct from the properties of their constituent

objects, but are derived from them on the

following basis:

{ The enumeration of its members is a

universal emergent property of all ag-

gregate objects.

{ Enumeration is an attribute of the ag-

gregate, not of its constituent members.

Indeed, each combination in Figure 5.4

may be considered to be an aggregate,

and it is clear that some of these combi-

nations can contain others. For example,

the combination of three represented by

the lowest double headed arrow in Fig-

ure 5.4, implicitly contains all the other

combinations, and the combinations

of two in the same Figure implicitly

contain two object classes.

{ Enumeration constraints on aggre-

gates may also include enumeration

constraints on combinations of aggre-

gates—cardinalities, degrees, and the

order of a combination. Constraints on

the order of an aggregate are constraints

on the number of different object

classes from which instances may be

aggregated at any given moment.

{ Order, degree, and cardinality are

emergent properties of aggregate ob-

jects; relationships inherit them from

aggregates. Relationships are subtypes

of aggregates—subtypes with added

information on structures and mean-

ings of structures.

{ The overall state of the aggregate is de-

termined by the states of its contents.

{ Objects inside aggregate objects may be

events. Aggregate objects may change

state spontaneously if invisible internal

events or events beyond the scope of the

model change the state of the aggregate

object.

Emergent properties are often distinguished

from resultant properties of aggregates.3

An emergent property is a property of the ag-

gregate that is independent of the properties of

its parts, whereas a resultant property is derived

from properties of the parts of an aggregate. The

horsepower of an engine belongs to the engine

alone and is not directly derived from attributes

of its parts, whereas the weight of the engine is

the sum of the weights of individual parts and is

therefore derived from them. As such, Horsepower
would be an emergent property of Engine, whereas

its weight would be a resultant property.

However, in this book, we will not make this

distinction. We will not distinguish between

emergent and resultant properties because both are

items of information conveyed by the existence of

the aggregate. The only difference between them

is that a resultant property conveys information

on its derivation, whereas the emergent property

does not. The emergent property seems to pop up

magically because the structural details of the

composition within the aggregate are unknown.

The aggregate is a pattern. We may not know the

pattern in its entirety (and are at liberty to discard

even what we do know).

The only reason the horsepower of the engine

seems to pop up magically from the aggregate

of its parts, rather than being logically derived

from known properties of those parts, is that

we have ignored the structure—the pattern of

parts that make the engine. Resultant properties

may convey more information than emergent

properties (information about their derivation

from parts), but distinguishing between resultant

and emergent properties when we recognize the

“unknown” value is redundant. Therefore, unless

it is explicitly stated otherwise, emergent and

resultant properties (of aggregates) will mean the

same in this book.

166

Object Aggregation

EMERGENT PROPERTIES OF
AGGREGATE OBJECTS

Attributes may mutually constrain each other

with value constraints. These constraints were

relationships between attributes. In Chapter IV,

we discussed operations that are valid in each kind

of domain. These operations were relationships

between values. We have seen how attributes of

an object instance may be derived from other

attributes. Derived attributes are related to other

attributes via joint constraints that consist of valid

operations between domains and/or inclusion and

exclusion sets.

The perimeter of a triangle is the sum of the

lengths of each side. Perimeter, as well as the

length of each side, is a distinct attribute of Tri-
angle. The summation is a relationship—a rule

constraint valid only in ratio scaled domains.

Similar operations may also relate attributes of

the aggregate object with one or more attributes

of objects that are contained in it.

The impact of operations such as summation,

multiplication, and sequencing acting across the

contents of an aggregate gives birth to an attribute

of the aggregate—a derived attribute—derived

from attributes of its contents. In an object class

such as Insurance Claim, the total of all claim

amounts is an attribute of the class, derived from

individual claim amounts, which are attributes

of individual instances of the class of insurance

claims.

Just as attributes of the aggregate may be

derived from the contents of an aggregate, so

too may object classes. These may be considered

derived classes rather than derived attributes. For

instance, the largest insurance claim is a derived

class with a single member—itself—because it

is derived by a ranking operation that operates

across all instances of the class of insurance

claims (an operation valid in quantitative as well

as ordinal domains4). Similarly the class of five
largest customers is a class derived from the class

of customers (both examples are also subsets of

Customer, the class5). Rule constraints, like those

in Box 5.1, may select, map, and transform the

contents of an aggregate. The resultant collection

will be a derived aggregate object6—derived

because it not only contains information on its

contents, but also information on rules about how

it was derived from another.

We have seen how operations across attributes

of an instance of an object create instance level

derived attributes. Remember that the aggregate

too is an instance of an object and therefore ag-

gregates may also have derived attributes. These

derived attributes are emergent properties like the

number of objects the aggregate contains or the

total weight of its parts. An object class is a kind

of aggregate. For instance, if we are considering

insurance claims, the number of individual claims

is an attribute of the class. Therefore, the aver-

age claim amount—the total claim amount (an

attribute of the class) divided by the number of

insurance claims in the class (another class level

attribute)—is also an attribute of the class. It is an

attribute of the class because class (aggregate) level

attributes may be derived from joint constraints

with other class level attributes (attributes of the

aggregate), just as instance level attributes were

derived from other instance level attributes.

Data modelers sometimes argue that derived

attributes are derived from others and therefore

do not provide additional data; hence, derived at-

tributes have no place in the data model. However,

it is clear that derived attributes do convey ad-

ditional information—the information conveyed

by the operation(s) that they are derived from.

Therefore, they do have a place in the object

model. Derived attributes of contents of aggre-

gates, as well as derived attributes of aggregates

themselves, carry information about operations.

These operations and the information they convey

are often inherited from domains.

The use of the word derived might give an

impression of a temporal sequence of calculation.

This is not so. These joint constraints merely

constrain values of attributes mutually. They tell

167

Object Aggregation

us what values are valid with others in a pattern

of attribute values. There is no before and after

in these constraints.

THE INFORMATION CONTENT OF
AGGREGATE OBJECTS

In Figure I.4 of Appendix I, we can see how do-

mains acquire structure, meaning, and behavior as

we add information, a small step at a time. So too

does the pattern of object instances—aggregates

and compositions of objects.

At one end of the information spectrum, we

have an aggregate object that has very little in-

formation—just that a bunch of objects belong to

a pattern and that patterns are aggregate objects.

On the other end of the spectrum, we have full

information about the pattern—its meaning,

structure, and detail. For instance, at one end of

the information spectrum, we may merely know

that a house consists of walls, and therefore

instances of walls are members of an aggregate

object called house; and at the other end of the

spectrum we may have full information on the

appearance, smell, and feel of a house and will

know exactly where and how walls are connected

into the structure, a pattern we call House.

Connecting with Compositions:
The Power of Inference

Until we open a window into an aggregate, we

have no information on its composition—the

structures and rules between objects in it. Indeed,

we may not even know or care about the contents

of an object—not even whether it is an aggregate

or not. When this happens, the aggregate stops

being an aggregate and becomes a simple object

of the kind we have discussed throughout this

book. Objects have relationships with other objects

(or recursively with themselves). That is the only

information of interest to us when the aggregate

is hidden from view.

However, if we try to peer into the internal

structure of an object, we may find that it consists
of other objects. That is all we might know. We

may know nothing about the structures that con-

nect its contents or which external relationships

connect to which object(s) inside it. As we gain

information about the aggregate, we will know

more about its internal structure and the objects

inside it that give rise to various external relation-

ships, that is, where external relationships connect

to structures within the aggregate. Each object is

a port that objects outside the aggregate can plug

into. Remember, relationships are objects too and

are therefore also ports of this kind. Objects may

“plug into” relationships as illustrated in Figure

5.3. If objects plug into relationships, they increase

the order of the relationship.

When we do not know about an object within

an aggregate, it is hidden from us. The word “hid-

den” is a misnomer. It suggests that we know of

its existence but cannot see it. That kind of rule

belongs to the interface layer of Figure 3.4, not the

business layer we have focused on. In the business

layer, it is more appropriate to say that we have no

information about where a relationship connects

with a structure inside an aggregate because the

information is missing from the aggregate—it

is the same as saying that we do not know what

the relationship connects to because we do not

know the entire structure inside the aggregate and

may not know all the objects in it; therefore, we

cannot say which object an external relationship

connects with. Both articulations are the same.

They convey the same information—the internal

connection is “unknown.”

When objects in a composition are unknown,

all we can say is that a relationship connects to

the aggregate. When they are known, we can be

more precise; we can say that we are certain that

the relationship connects to the aggregate and

not a component within, for the aggregate too is

a repository of normalized information, or that it

connects to precisely one or more objects within

the aggregate.

168

Object Aggregation

The aggregate consists of its contents. The

relationship “consists of” connects the aggregate

to its contents. When another relationship touches

the aggregate from the outside, the composition

of that relationship and what it “consists of” con-

nects the external object to the objects within the

aggregate. If a Person owns a Car, and the Car
consists of parts, a composite relationship will

link Person to Part through Car (just as Person
was linked to Town through House in Figure 5.6).

Sometimes the composite relationship may be

transitive, and sometimes not. If a person owns a

house, he also owns its walls, which demonstrates

that “owns” is transitive with “consists of” (Fig-

ure 6.1a). On the other hand, if a person lives in

a house, it would be hard to believe that she also

lives in its walls!—a fact that shows that “lives

in” is nontransitive with “consists of.”

Note that “lives in” is nontransitive, not in-
transitive. An intransitive relationship is mutually

exclusive with a composition of relationships. To

understand why “lives in” is nontransitive and not

intransitive, think of termites in a house. If the

termites live in the walls of a house, they also live

in the house because the walls are a part of the

house (the house consists of its walls), but to live

in the house, the termites do not have to live in

its walls (they could be abnormal termites which

prefer living in rooms like people do). Hence, both

“live in” and “consists of” can simultaneously and

independently coexist (see Figure 6.1b— “live in”

and “consist of” form a daisy chain from Termite
to House to Wall, and “live in” also simultaneously

connects Termite to Wall directly).

Note also that “live in” is transitive with “part
of,” the relationship that is the inverse of “consists

of,” from which you can infer that if you live in a

part, you certainly live in the whole. This dem-

onstrates an important rule—if a relationship is

transitive with the inverse of another, it cannot be

intransitive with the relationship in question—a

law buried in the metamodel of knowledge and

one that can be useful in automating inference,

reasoning, and validating compositions of rela-

tionships.

You are absolutely correct if you think that

the “live in” relationship between Termite and

Wall in Figure 6.1 is a subtype of the “live in”

relationship between Termite and House in the

same figure. “Live in” between Termite and Wall
is an inclusion polymorph of “live in” between

Termite and House. The two relationships are not

only nontransitive, but one is also a subset of the

other, like the relationships in Figure 5.5c were.

This will always happen when transitive inverses

and nontransitive relationships are configured as
they are in Figure 6.1b, because a subtype always

implies and instantiates its supertype, but not

necessarily vice versa.

Figure 6.1. “Consists of” is transitive with some relationships, but not with others

a) Example of transitivity with Consists of b) Example of non-transitivity with Consists of

PERSON

HOUSE

WALL

Owns 0 or more
[owned by 0 or more]

Consists of 1 or more
[part of 0 or 1]

TRANSITIVE

Owns 0 or more
[owned by 0 or more]
(automatically implied)

Transitive relationship

TERMITE

HOUSE

WALL

Live in 0 or 1
[lived in by by 0 or more]

Consists of 1 or more
[part of 0 or 1]

NOT TRANSITIVE

Live in 0 or 1
[lived in by 0 or more]
(not automatically implied)

Non-transitive relationship

[part of]

TRANSITIVE

(inverse of “Consists of”)

169

Object Aggregation

This leads to a common pitfall when we inte-

grate multiple perspectives and processes. It is one

way in which knowledge may be unintentionally

denormalized by the unwary. If we were work-

ing in a limited scope that was restricted only to

termites in the walls of a house, we might have

only modeled the relationship between Termite and

Wall in Figure 6.1b. Later, if our scope shifted to

include the entire menagerie that might occupy a

house, including people, we might add Occupant
and House to our model, and connect the two

with the same “live in” relationship. Without the

metamodel, knowledge would begin to fragment

and denormalize; the fact that termites live in

walls is implied by the relationship between Oc-
cupant and House, and it is restated again because

a termite is also an occupant. Our metamodel

however, recognizes that the “live in” relation-

ship between Occupant and House implies the

relationship between Termite and Wall because

the wall is a part of the house (see the transitive

pair in Figure 6.1b). It will be instantiated the

moment a termite lives in a wall (or any other

Part) of the house. The metamodel can coordinate

knowledge without denormalizing it; it has the

power to reason.

Relationships that are transitive with “consists
of” also give rise to an important class of poly-

morphic relationships between the external object

and its contents—polymorphic relationships

that can help automate inference and reasoning.

Owning the walls and the basement of a house

are implied by the fact of ownership of the house;

both relationships are examples of polymorphic

variants of owning the house. Similarly, Succeed
and its inverse Precede, which place objects on a

timeline, are also transitive with consists of. This

has profound ramifications on how the metamodel
of knowledge infers and reasons.

Occurrence and connection constraints may

also be imposed on relationships that touch an

aggregate. Relationships of this type help to

normalize constraints like:

Whether the relationship must connect only

to the aggregate.

Whether the relationship must connect to at

least one object within the aggregate (when

the object becomes “known”).

Whether it must connect to every object within

the aggregate as they turn from “unknown”

to “known” (remember the “all” value of

Box 5.3).

How many objects of what kind within the ag-

gregate the relationship may connect with.

Other kinds of more complex constraints

on occurrence obtained by constraining the

degree, order, and cardinality of the relation-

ship.

These relationships and constraints are the

glue that can bind different compositions and

aggregates into an integrated whole. They are the

metaobjects behind the integration of behaviors,

business processes, and the systems that support

them. These systems, which are aggregations of

objects, are sometimes still, but more often not;

they flow, twisting and changing in step with the
flow of time. They are then temporal compositions
that we will discuss in Chapter VII. The key to

reengineering is to keep these relationships and

rules normalized as we integrate compositions by

ensuring that they are attached to the information

they truly normalize and are propagated where

required by subtyping, inheritance, transitivity,

and refactoring.7

Existence Dependency

Sometimes the very basis, the identity of the ag-

gregate, may depend on one or more constituents.

If a house has no doors, it is just a house without

a door, but still a house; however, without walls,

it ceases to be a house. Walls and doors are dif-

ferent from House, the aggregate structure made

of walls, doors, and other parts. A house can exist

without a door, but without walls, there is no house.

When this happens, the aggregate object is said

•

•

•

•

•

170

Object Aggregation

to have an existence dependency on one or more

constituent objects—in this case, on its walls.

The Borel object in Chapter V was another

example of existence dependency. It depended

on its constituents for its very existence; a market

segment could exist even if it were empty (noth-

ing was sold into it), but it could not exist unless

at least one of its parameters (constituent objects

like those in Figure 5.10b) also existed.

Note how existence dependency may involve

properties of relationships like cardinality ratios,

order, and degree:

Take an example from the insurance industry:

In the insurance industry, a fleet of cars is
defined as a collection of at least five cars.
In this case, the existence of the aggregate,

the fleet, depends on the cardinality ratio of
its containment relationship (“at least five”)
with its constituent object class, Car.
Consider Market Segment: In Figure 5.10, the

existence of Market Segment did not depend

on the joint or individual existence of Cus-
tomer, Product, and Sales Channel; instead

it depended on the degree of its relationship

(“at least one”) that involved the combination
of these objects.

Consider the existence dependency between

a house and its defining walls: We may assert
that a house can exist only if its outer walls

do. The problem is that houses come in dif-

ferent shapes. Houses may have several outer

walls, be four walled, three walled, or houses

with even fewer defining walls—perhaps
even one curved cylindrical wall we call its

outside surface. An upper bound of “many”

on the relationship between a house and its

defining walls will not capture this existence
dependency. After all, “many” can also im-

ply an existence dependency on fewer than

all its defining walls, whereas we know that
the house can only exist if all its defining
walls do. Only if the cardinality ratio of the

relationship is “all,” the value we discussed

•

•

•

in Box 5.3, will it accurately articulate exis-

tence dependency between houses and their

defining walls (and customize the cardinality
ratio for each instance of House).

Can a part be inseparable from the whole,
that is, depend on the aggregate for its very
existence? Yes, indeed it can.8 Consider a

pattern, say a sphere. The sphere has a sur-

face. The surface of the sphere is a part of

the sphere—it might be considered an item

in the composition that makes the sphere.

However, without the sphere, there is no

surface. As such, the surface, an item in the

pattern called a sphere, depends on the whole

pattern for its very existence. This fact of

existence dependency—total inseparability of

the part and whole—is an irreducible fact that

is independent of other irreducible facts like

shareability (see the discussion of an object’s

capacity for relationships) and mutability.

A point on the surface may be shared by

two spheres if they touch, but the existence

of that point is dependent on the existence

of the surface of the sphere—at least one of

the two spheres—which in turn is dependent

on the existence of the sphere for its very

existence. The point may exist if at least

one of the compositions it belongs to does.

The spheres are even mutable. They may be

deformed into other objects (or replaced by

other objects) that have the same surface.

The surface will continue to exist as long as

it belongs to some shape.

These examples illustrate that existence de-

pendency between a component and the ag-

gregate may have the same properties as that

between the aggregate and the component.

It all depends on the information content of

the pattern—the composite inside the aggre-

gate. We may not have full information on

the pattern but may have just enough to say

that a specific part depends on the whole for
its very existence—especially if that part is

pure information in a pattern of information.

•

•

•

171

Object Aggregation

It becomes a meaning9 rather than a physical

object that can be peeled off or physically

removed like the walls of a house or the parti-

tions of a cubicle in the office. For instance,
a platoon cannot exist unless the army it

belongs to does.

Obviously, a composition cannot have an

existence dependency with an optional ob-

ject. That would directly contradict the very

meaning of existence dependency.10

On the other hand, the composition could be

existentially dependent on one or more mu-

table objects. If this were so, the composition

would exist if the mutable object existed and

could continue to exist even if the mutable

object were replaced. A house will continue

to be the same house even if you replace

its roof, but without a roof, it might not be

considered a house because it will cease to

be living space.

Relationships are metaphors for compositions

and these examples demonstrate that existence

dependency between aggregates and their con-

tents is a relationship subject to the same rules as

other relationships, rules that flow from proper-
ties such as cardinality, degree, and mutability.

These properties are derived from properties of

patterns.11 Relationships, aggregate objects, and

compositions are all patterns of association.

“Aggregation of ” and “composed of” are

relationships too. An aggregate object contains

other objects. These objects are its contents. The

aggregate might also consist of compositions of

its contents. Existence dependency, mutability,

and other properties of compositions that we have

discussed earlier emerge from the information

content of the “aggregation of” or “composed
of” relationships—how much information each

relationship conveys on internal structures and

compositions inside the aggregate. We will dis-

cuss this next.

•

•

THE INFORMATION IN
AGGREGATION VS. THE
INFORMATION IN COMPOSITION

A subtle difference exists between “aggregation
of” (the same as “consists of”) and “composed of.”

“Aggregation of” conveys less information than

“composed of” (and therefore, by the principle of

subtyping by adding information, it is the super-

type of “composed of”): “Aggregation of” merely

tells us that an object belongs to a collection. It con-

veys no information on structure. The collection

is the “bag,” and the object aggregated is an item

in the “bag.” Aggregation of tells us nothing about

relationships, interactions, or other information

within the bag. The “bag” might even be empty.

A collection may have an identity independent of

its contents, just as a warehouse has an identity

independent of the goods that fill it.
“Composed of,” on the other hand, may have

varying amounts of information on the internal

structure of the bag and the objects in it. It might

have just enough information about structure to

tell us that there is a structure of some kind, but

not what it is. It might even add bits of information

that give us partial information on the composi-

tions inside the bag—bits and pieces about what

connects to what, even bits and pieces about

cardinalities, order, and degree.

As we leach the information from “composed
of,” its meaning starts approaching “aggregation
of”; when all information on structure is gone,

the two meanings become identical. However,

even if “composed of” stops short of becoming

“aggregation of,” its information content can

sometimes be very sparse indeed. It might only

tell us what objects must exist for the composition

to be meaningful. For example, “composed of”

might only tell us that a market segment cannot

exist without its constituents or that a house cannot

exist without walls and a roof. When this happens,

the result is the kind of existence dependency

prevalent in UML and XML.12

172

Object Aggregation

Instead of removing information, if we keep

adding information to “composed of” and dive

deeper into its subtyping hierarchy, the meaning

of the aggregation becomes clearer and more

complete. It tells us more about the composition:

its internal structures, cardinalities, cardinality

ratios, capacities for association, sequences, and

measurability; each property we have discussed

starts crystalizing in step with the information

we add. In the example of the house, we could go

all the way up to full information including the

image, feel, and smell of the house. The complete

pattern tells us exactly where each component

of the house, such as its walls, roof, doors, and

windows fit, which items connect to what, where,
and how, and what the emergent properties of the

composition, a pattern, are.

Based on the above, “composed of” cannot be

neatly subtyped into a finite hierarchy of subtypes.
Compositions may be complex, and the quantum of

information available on a composition may vary

on a broad continuum, depending on the (possibly

very large) multitudes of ways components in an

aggregate may be configured into compositions
of objects. Standards such as UML and XML

address some of the most common subtypes of

aggregations (see Box 6.1).

Figure 6.2 shows that “composed of” is a

subtype of “aggregation of” because Object

Composition is a subtype of Aggregate Object.

Aggregate objects include compositions. This is

why “composed of” is an inclusion polymorphism

of “aggregation of” (Inclusion Polymorphism:

see Box 4.8).

UML13 recognizes two kinds of aggregation relationships (see the discussion of UML syntax in Box 5.1)—relationships

that merely convey information on what items are in which collections (and upper and lower bounds on the cardinality

ratios of these aggregation relationships) and relationships that assert existence dependencies with object classes. UML

also recognizes, for aggregation relationships, a nominally measured, yes/no form of the capacity constraint on association

we discussed in Chapter V. With UML, we can express the fact that an aggregate object may depend on another object for

its very existence, and we may also assert that once the object is engaged in one collection, no other collection may have

it (at the same time)—that is, the object cannot be simultaneously shared across aggregate objects.

These patterns of associations are the patterns we find frequently in business. However, the concepts we have developed
in this chapter are broader. They subsume and extend UML and XML concepts. Unlike UML and XML, the intent of the

metamodel in this book is to articulate the structure of knowledge—all deterministic temporal and nontemporal rules

that may be configured into components of knowledge—rules that express different behavior depending on how they are
glued, where, and in what subtyped form.

Box 6.1. Existence dependency and share ability in object aggregations

OBJECT

AGGREGATE
OBJECT

OBJECT
COMPOSITION

Aggregate of 0 or more

[part of 0 or more]

SUBTY
PE

O
F

Composed of 1 or more
[component in 0 or more]

SUBTYPE OF

Less

information

More

information

Included in

Figure 6.2. “Composed of” is a subtype of “Aggregation of”

173

Object Aggregation

For a composition to exist, it must possess at
least one object (and obviously, that object can-

not be an optional object14). Therefore, although

“composed of” is a subtype of “aggregation of,”
the cardinality ratio of “composed of” is not the

same as the cardinality ratio of “aggregation of.”

The cardinality constraints on a subtype may

be the same as, or stricter than, the cardinality

constraints of its parent(s).15

Of course, aggregation of is an asymmetrical

relationship (and therefore “composed of,” its sub-

type, is also asymmetrical). It would be absurd to

suggest that the constituent of an aggregate may

contain the aggregate that contains it.16 In Figure

5.6, if a town contains a house, the house, obvi-

ously, can never contain the town.

An aggregate object is a pattern of object

instances just as a domain was a pattern of val-

ues with common meanings, and an object class

was a pattern of object instances with common

properties. Both domains and object classes were

special kinds of aggregate objects. An aggregate

object is a more general term than either—it

could be any pattern of object instances—even

patterns by decree.

The aggregate object is a hidden composition

about which very little, or a great deal, might

be known. At a minimum, we must know that

it consists of other objects. Otherwise, it cannot

be an aggregate. At most, it may blossom into a

rich and complex composition of objects, con-

nections, interactions, and emergent properties

that can rival the reality that makes the aggregate

its metaphor. Often, our knowledge lies between

these two extremes, and we may only know what

combinations of objects are mandatory for the

mere existence of the pattern we call the aggre-

gate object. Very often, much is unknown and

hidden from view.

LOCATION, CONTAINMENT, AND
INCORPORATION

“Contains” may conjure a mental picture of a

dream home furnished with rich furniture and a

kitchen replete with your favorite food or of Santa

Claus bearing a bag of gifts—gifts contained in
his bag. “Contains” may also conjure a mental

picture of an aggregate object with its contents

inside it—inside the perimeter of its picture—a

diagram that represents the idea of aggregation,

like the diagram of subprocesses in Figure 7.21.

Our mental pictures might make it seem most

reasonable to equate the aggregation relationship

that makes one object a part of another with the

“contains” relationship, in which one object resides

within another. However, our mental picture is

not quite correct; “contains” is subtly different

from “aggregate of.”

The fact that “contains” is not the same as

“aggregate of” becomes clear when we consider

the inverses of the two relationships. The inverse

of “aggregate of” is “part of” and the inverse

of “contains” is “contained in.” You may own

a dream home, but a friend might have lent you

the furniture and also asked you to stash some of

the food in the refrigerator until she returns from

a chore in the neighborhood; you may also have

done your bit for Christmas and lent poor Santa

the bag because Santa had none to spare. You own

the home and Santa’s bag, but alas, not the gifts

contained in the bag; neither do you own your

friend’s food contained in your kitchen, nor the

rich furniture contained in your house. However,

you do own the walls of your home because you

own the home. The house is an aggregation of

its walls while it merely contains the food and

furniture. They are not a part of the house (like the

walls are). The part of relationship is stronger than

contained in; it conveys more information. “Part
of” means “contains” and then some; it conveys

174

Object Aggregation

additional meaning over and above “contained
in.” That meaning is information on what it means

for one object to consist of a collection of others.

Based on the principle of subtyping by adding

information in,17 “aggregate of” is a subtype of

“contains.” “Consists of” it the same as “aggregate

of”; they are synonyms. Therefore, “Consists of”

is also a subtype of “contains.”

“Location” merely locates a pattern in state

space relative to another (it is synonymous with

“located relative to” in Figure 7.27a and Figure

7.29). The location of an object is only mean-

ingful relative to the location of another object.

Location is a symmetrical relationship because

location is mutual. There must be at least two

objects involved. To locate an object in terms of

itself conveys no information and is therefore

meaningless. Therefore, no instance of “locate”

may loop back on the same object instance. Object

instances that locate each other may belong to the

same or different classes. If object instances in the

same class locate each other, “locate” becomes a

recursive relationship, but it must be irreflexive
because the object cannot locate itself.

“Contained in” is an asymmetrical polymor-

phism (subtype) of “locate”18 that describes a

special kind of relative location of the limits of a

pair of patterns; it tells us that one pattern encap-

sulates another, without necessarily incorporating

it—that the limits of the encapsulating pattern

surround the limits of the enclosed (encapsulated)

pattern.19

You might ask why we have labeled “Contained

in” asymmetrical instead of antisymmetrical. Can

an object or pattern be considered to contain itself?

Isn’t a pattern its own, largest, and most complete

part? Yes, we could have labeled “Contained in”

antisymmetrical, but remember that “Contained

in” is a polymorphism of “Located relative to” (a

relationship we can simply abbreviate to “locate”).

As we have seen, a meaningful location must

always reference another pattern; otherwise, it

conveys no information. “Contained in” inherits

this fact. To say a pattern contains itself begs

the argument; it conveys nothing. This is why

“Contained in” must be asymmetrical to convey

any meaning. This is how we will use it in this

book and in the repository of knowledge.

“Consists of” (its inverse is “Part of”) is a

stricter, more constrained condition. It tells us

that the contained pattern not only lies within the

boundaries or limits of the containing pattern but

is also incorporated into the containing pattern.

The containing pattern does not merely envelope

the contained pattern in this case but makes it an

integral part of itself. The two join as one pattern

with its own unique identity.

“Locate” has several other polymorphisms.

Mutually exclusive special meanings like “on,”

“under,” and others may also be added to “locate.”

In the section on the architecture of pattern, we saw that a ratio scaled space has a natural zero. In Chapter IV, we saw

that this added information turns difference scaled domains into ratio scaled domains. The origin of a ratio scaled space

is fixed. All objects in a ratio scaled space will be located relative to a single fixed location that we have named their
“origin.” The origin does not locate itself; the origin adds information. It tells us that it is the reference point for locating

all objects in a space. It is an object—a special object and meaning that conveys this information. As an origin embeds

itself and becomes a part of a space or domain without a natural origin, it adds its meaning to the meaning of that space

or domain and creates a new polymorphism—a new meaning built upon the old. The new meaning has a natural point of

reference—usually a nil value or a natural limit of some kind. We have seen several examples of this in our discussion of

patterns and domains. The origin in State Space, or the natural nil (or limiting) value of a domain, is a special pattern of

information and an object. Indeed, all patterns of information are objects, and so is an Origin.

Box 6.2. Location vs. origin

175

Object Aggregation

Each implies the general sense of “locate” (and

elaborates on relative location) but may or may not

be “part of” the object it is in, on, or under. “Part

of” adds a different and an independent mean-

ing to one of these polymorphisms—contained
in—and hence is its subtype.

All subtypes of “Contained in,” including

“Part of,” share the properties of asymmetry and

transitivity that they inherit from “Contained
in”—if one object contains others, which in turn

contains yet others, the objects at the end of the

chain will also be contained in the objects at the

beginning of the chain. This is also true for the

inverse relationships. Every subtype of “con-
tains,” including “aggregate of,” will inherit the

properties of asymmetry and transitivity from

contains.20 This gives the metamodel the power

of reason—the ability to infer what objects are

contained in which aggregations and what kinds

of aggregations are subsumed in which others,

and that the meaning of “contained” is not ab-

solute; there are nuances within “contain,” each

with the power of inference it has inherited from

“contain.”

ENDNOTES

1 [89] in Appendix III discusses aggregates

and emergent properties.
2 The Oxford reference dictionary calls a topos

a “stock theme.” A mathematical category

binds abstract structures and relationships

into a consistent set of laws. A topos is a

category with a complete set of laws in a

given scope. See [173] and [183] in Appendix

III.
3 Emergent properties were discussed in (Fors-

bak, n.d.), which is item [89] in Appendix

III
4 Atomic rules that derive or constrain at-

tribute values are relationships between

attributes. The validity of a rule depends

on the domain of the attributes bound into

the rule (see [337]: Chapter III and Figure

48). When related values are all ratio scaled,

relationships normalized by ratio scaled

domains (e.g., arithmetic addition), and re-

lationships inherited from parent domains

(e.g., ranking) will be valid (Figure 68 on

our Web site); when all related values are all

quantitatively scaled, relationships that are

valid in quantitative domains (e.g., arithme-

tic subtraction), along with those inherited

from parent domains, will be valid; when

related values are quantitatively or ordinally

scaled, but not nominally scaled, relation-

ships that are valid in ordinal domains (e.g.,

ranking) and those inherited from nominal

domains will be valid; and if any value in

the relationship is nominally scaled, only

operations valid in all domains (e.g., as-

sociation) will be valid.
5 See Box 19 on our Web site.
6 A derived aggregate object is the codomain

of a rule of derivation (Box 5.1, Figures A

and B) with a business meaning; it belongs

to the business layer of Figure 3.4 (example:

“the class of top ten customers”). Contrast

this with View in Figure 33 on our Web

site, which resides in the business process

automation layer. A view adds information

on presenting information to actors. It takes

objects from business meaning to the Inter-

face Layer and may also involve selection

criteria. As such, Selection Criteria is a

component of knowledge reused in different

contexts for different purposes.
7 See refactoring in Appendix II. Refactoring

is also discussed underVariation Inheritance

in Chapter II of [337] (in Appendix III).
8 [89] in Appendix III discusses existence

dependency between parts and wholes, their

share ability, and their mutability.
9 Existence dependency implies that the

very meaning of a pattern is contained in

the meaning of another. The dependent

pattern depends on another for its identity.

176

Object Aggregation

Mutual existence dependency implies that

each pattern contains the meaning of the

other. If the two patterns are distinct, this

seems counterintuitive—how can an ob-

ject (a meaning) that contains another be

contained in the object (another meaning)

that contains it? Mathematically, it can be

shown that parts can contain wholes when

we deal with infinitely large cardinalities.
Indeed, we can see this even without abstract

mathematical analysis. Consider Figure 5.9.

The twisting surface in Figure 5.9 is a part

of a three-dimensional space. Yet, because

it twists and folds in three dimensions, the

surface also implies the existence of the

volume of which it is a part. The volume too

admits the existence of the twisted surface,

just because it is a volume, and the surface is

one of its infinitely many parts. [202], [203],
and [206] (in Appendix III) mathematically

describe how parts may contain the whole

and yet be a part.
10 An optional object in an aggregation is mu-

table with the null object (see the discussion

on mutability in Chapter V). A null instance

identifier asserts that the object does not ex-

ist. This is a more constrained pattern than

not knowing if the object exists.
11 Cardinality relates to object counts in a pat-

tern. Degree maps to extent. Mutability maps

to the variability we will tolerate before we

say it is a different pattern.
12 [55] in Appendix III describes XML stan-

dards. See the discussion of UML syntax

in Box 5.1. UML and XML are discussed

in Box 10 on our Web site.
13 UML is an acronym for the Unified Modeling

Language. See Box 22 on our Web site.
14 Optional objects are mutable with “null”

(see Box 5.3) because they do not convey

the essential meaning of the composition

(see Chapter IV).

15 The rule that asserts that a subtype cannot

violate constraints imposed on its parent(s)

was discussed in [337] in Appendix III, under

Figure 42. That discussion demonstrates that

cardinality ratios of subtypes may be dif-

ferent from, albeit constrained to lie within

the limits imposed by their supertypes.
16 At first glance, it would seem “aggregation

of” is asymmetrical: Common sense dictates

that a constituent of an aggregate object

cannot contain the aggregate it belongs to.

In Figure 5.6, a town might contain a house,

but it would be absurd to suggest that the

house may contain the town. It is absurd to

suggest that parts may contain the whole

when we deal with object classes of finite
population, but common sense breaks down

when cardinalities (populations) are infi-

nitely large. For example, the cardinalities

of some domains are infinite (e.g., length). In
such cases, an item that is a part of another

may also contain the item it is a part of. [172],

[202], [203], [206], and [212] (all in Appendix

III) discuss this kind of containment. Some

fractal patterns are examples of patterns that

are created by repeating the same pattern

endlessly so that each component and each

spot on the pattern contains its own image;

and we could drill down into points in the

pattern to find itself forever (see [281] in
Appendix III). The metamodel of Pattern

in Appendix I also supports this. However,

this book will assume that “aggregation of”

is asymmetrical. If objects are permitted to

contain themselves, it would become anti-

symmetrical, but the idempotent instance

of aggregation conveys no information and

may be ignored (see Location, Containment,

and Incorporation).
17 Box 4.3 discusses the principle of subtyping

by adding information.
18 Asymmetrical polymorphisms of sym-

metrical relationships are discussed with

the metamodel of relationship.

177

Object Aggregation

19 See place, location, and containment in the

Universal Perspective (Box 72 on our Web

site).

20 See Figure 7.27a. Box 72 on our Web site

also elaborates on containment.

178

Chapter VII
Processes, Events, and
Temporal Relationships

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

A process is a relationship that involves the flow of time. It is an irreducible fact about sequences in
time. Processes are objects that cause change. Change involves time, and time involves events. Events
have effects—effects that change states of objects and relationships. This is how processes are agents
of change.

In order to understand Process, we must under-

stand the temporal nature of relationships and the

properties that flow from the place where time
and event meet relationships and objects.1 The

scope of our metamodel is restricted to discrete

change; all relationships, temporal or not, must

relate not just object instances to object instances,

but also time slices of object instances to time

slices of object instances. Figure 7.1 shows this

concept and the distinction between temporal and

nontemporal relationships.

The time slices in Figure 7.1 are identical to

those in Figure 4.5. Relationships may not only

exist between object instances but may also

occur between time slices of object instances.

Figure 7.1 shows this fact. A temporal relation-

ship is between time slices at different points in

time; a nontemporal relationship is a relationship

between contemporary time slices. Temporal

and nontemporal relationships may be between

the same or different object instances, and these

object instances may belong to the same or dif-

ferent object classes.

The sweep of time makes temporal relation-

ships special. Time cannot reverse itself. The

direction of a temporal relationship carries more

information than the nontemporal relationships

of Chapter V. It carries information about the

flow of time, about cause and effect. Temporal
relationships are a subclass of relationships—a

“The past not only contains, in its depths, the unrealized future, but in part the realized future itself”
- Tagore, Nobel laureate and Bengali Poet

179

Processes, Events, and Temporal Relationships

subclass that recognizes the flow of time and
its irreversibility. They inherit the properties

of nontemporal relationships and add temporal

properties. They add the tide of time.

“Having written, the moving finger moves on”;
no effect may change the past. States of time slices

past are cast in stone, as are relationships between

time slices in the past. However, the past can af-

fect the present—and the future. Relationships

between time slices present and past are mutable

by events and effects, like any other relationship

we have discussed thus far, but we must now

consider their temporal dimensions as well. Taken

together, they are properties of processes because

temporal relationships are processes.

A temporal relationship is a process because

it is a bridge across time built on causality.2

Causality connects causes (objects) in the past to

consequences (objects) in the present (or future); a

process connects resources in the past to products

in the present (or future). Processes are a poly-

morphism of causality. The meaning of Process

conveys a little more information than cause and

consequence. It also tells us that resources are used

to produce products. Both resources and products

are objects, but resources precede products, and

processes are the causal link across time that

connect them—processes like Bake Cookie that

turn dough into cookies.

RESOURCES AND WORK
PRODUCTS

Bake Cookie is a temporal relationship between

Dough and Cookie (ignoring the request for fresh

cookies for the moment). Dough and Cookie are

object classes. Dough comes first, and Cookie
follows. Bake Cookie connects Dough in the past

to Cookie in the present. Dough is a resource and

Cookie is its work product. The objects that come

before in temporal relationships are resources, and

those that come later are products; they could be

byproducts and waste products as well, which we

will discuss later in this chapter.

Resources may be consumed by the process

(as dough is) to make cookies or may only be

needed for reference (or for other purposes that

do not consume the resources). Resources that

are not consumed are catalysts for the process.

For example, the recipe for baking cookies is a

resource (although it has not been shown in Figure

7.2a) that it is not consumed by the process, like

the dough was. Similarly the cook is a resource

Figure 7.1. Temporal and nontemporal relationships

another temporal relationship
(relates object instances at different moments in time)

OBJECT CLASS

V1

V2

V3

V4

Instance

Present

Past

V1

V2

V3

V4

Instance
V1

V2

V3

V4

Instance

Time Time

OBJECT CLASS

V1

V2

V3

V4

Instance

Present

Past
V1

V2

V3

V4

Instance
V1

V2

V3

V4

Instance

TimeTime

OBJECT CLASS

V1

V2

V3

V4

Instance

Present

Past

V1

V2

V3

V4

Instance
V1

V2

V3

V4

Instance

Time Time

Non-temporal
 1 to many
 relationship
(relates object
instances at
the same
moment in time)

temporal 1 to many relationship
(relates object instances at different moments in time)

OBJECT CLASS

V1

V2

V3

V4

Instance

Present

Past

V1

V2

V3

V4

Instance
V1

V2

V3

V4

Instance

Time Time

recursive
temporal
relationships
(both irreflexive)

180

Processes, Events, and Temporal Relationships

that is not consumed by Bake Cookie but is nev-

ertheless needed by the process.3

Also note that a resource may have a life in the

context of the process it is a resource for; that is,

it may only be usable by the process provided it is

used within a window of usability. For instance,

the dough may harden and become unusable for

baking. Similarly, most pharmaceutical products

may only be consumed within a time slot after

they are made—they have expiry dates. Figure

7.2b is the metamodel of this kind of behavior. The

consumption and reference (or use as a catalyst)

of a resource by a process are all polymorphisms

(subtypes) of the generic Use relationship in Fig-

ure 7.2b. The process itself may have a window

of time in which it is enabled. This is accounted

for by the fact that an event is an interval of time

and, like any other resource, may have a life or

may expire at a certain time.

Figure 7.2. Baking a cookie and the metamodel of resource use

A.

B.

RESOURCE

BAKE COOKIE
REQUEST
FRESH
COOKIES

EXTERNAL
EVENT

Cookie WORK
PRODUCT

Dough Consumed by

producetrigger

PROCESSEvent Product

Resource Used by 0 or more (an event)

[use 1 or more]
Produce 1 or more

[produced by 0 or more
Trigger 0 or more

triggered by 1 or more

Resource Expiry
time for processRESOURCE LIFE

Beginning of
Resource life for process

Used within 0 or more valid
[Valid for 1 or more use]

Subset of

Sometimes the work product of a process is pure information—an observation. This is where queries, reports, and obser-

vations fit in. We know that even the non-existence of an object is inseparable from information about it; non-existence
can be considered to be a state—the null state we have discussed earlier. Hence, an object and information about it are

as inseparable as light and shadow.

When information is the work product of a process, it is almost always in the form a report of some kind—an observa-
tion.4 The report may be formatted in plain text, graphically, audibly, or in full audiovisual format. The report may even

specify what data sources must be used. Reports, queries, and observations lie in the business process automation layers

of Figure 3.4. Obtaining and reporting this information does involve the flow of time in those layers; there is a before
and an after—the information comes before and the report comes after. These queries and reports are processes in the

interface and information logistics layers of Figure 3.4.

These processes might not always be automated; they could be manual. You could ask a resident for driving direc-

tions in a new locality. This is manually done. The information exists because the locality does, but you still have to get

it from someone, something, or somewhere—a source and a store for that information. The processes in the interface and

information logistics layers of Figure 3.4 could be manual or automated, but information logistics and interfaces there

Box 7.1. Inquiry, reporting, and observation

continued on following page

181

Processes, Events, and Temporal Relationships

CYCLE TIME

The time lapse between the two ends of a tempo-

ral relationship is the cycle time of the process.

In Figure 7.2, it is the time it took to bake the

cookie—to turn Dough, the resource, into Cookie,

the product, by baking it. Cycle time is a universal

attribute of all temporal relationships (processes).

Cycle time maps to the time-lapse domain; it

distinguishes temporal relationships (processes)

from nontemporal relationships. All processes
must begin and end (except Sagas—see Box 7.2).
The beginning moment and ending moment are
events that occur at well defined times (even if

the beginning and the end are unknown, they are

still presumed to be distinct moments). Temporal

beginnings and ends map to the date-time domain.

The cycle time is a derived attribute; it is the

elapsed time between the beginning and end of

the temporal relationship (the process).

The work products of a process follow from its

resources; they succeed the resources that made

them. The process locates its products, relative to
its resources, in time. Cycle Time is the temporal

distance between the products and resources.

Succession is a temporal relationship; in fact, it

is a temporal polymorphism of the “locate rela-
tive to” relationship we discussed in the section

on Location, Containment, and Incorporation
in Chapter VI. Locate turns to succession when

we add the flow of time to its meaning. We will
discuss this in detail later in this chapter.

TEMPORAL INVERSES,
REVERSIBILITY, AND REVERSION

The flow of time adds a new dimension to the
inverse—the concept of reversibility of a pro-

cess. Consider Bake Cookie in Figure 7.2 again.

Once the cookie is baked, we cannot unbake it

to reproduce the dough we baked; Bake Cookie
is an irreversible process. On the other hand, we

can freeze ice into ice cubes and melt the cubes

will always be. Inquiries are processes, but they are processes in the information logistics and interface layers, not in the

Business Rules layer of Figure 3.4.

The trigger for a process that gives us information—a report or observation of some kind in some format—could be

an explicit request for information or an internal trigger like a state change or the occurrence of an internal condition. For

instance, a stock alert—a report—might be triggered when the inventory of an item falls below a critical level. Indeed, the

trigger and the process are two different objects; the same process may be triggered by several different conditions. Each

is a component of knowledge that we may assemble and configure into composite business processes. Each normalizes
different kinds of information.

Can an inquiry change the state of a business object? Usually not. However, it is conceivable that the state of an object

may change merely because we have asked about it. Many seasoned managers will testify that just asking about business

operations can improve them. Indeed, that happens even in the physical world. An entire branch of modern physics—quan-

tum mechanics—is based on the premise that merely knowing the state of a physical object or ensemble of objects may

alter it. However, processes like these are beyond the ambit of both this book and our metamodel. Readers can refer to

the additional information in Appendix II, under the note on the locale of matter and energy, and the generalization of

distance. Items [284], [285], and [286] in Appendix III provide further reading (Note on Hilbert Space, n.d.; Hilbert Space

Explorer, n.d.; and Sarfatti, n.d.).

When we must represent this kind of irreducible fact—a business rule that asserts that the state of an object emerges

only when we ask about it, the inquiry would be an event like any other, an event with an effect that turns unknown val-

ues of attributes into known values (see the discussion on the unknown value in Chapter IV). The event is a trigger for a

state change—a trigger that can perturb values of attributes, values unknown, or even known. The inquiry process puts

an object into the “observed” state.

Box 7.1. continued

182

Processes, Events, and Temporal Relationships

to get the same water we had frozen. Therefore,

Freeze Water is a reversible process.

A reversible process is an inverse that goes

forward in time. It converts products back to the

same instances of the resources that they were

created from. All processes are not reversible.

Reversibility is an attribute of Process. Without

time, a relationship and its inverse would be one

inseparable whole. Time adds information. This

information separates a process from its inverse,

or rather its Reversion. We must articulate which

part of a relationship will go forward in time—the

relationship in question, or its inverse. Moreover,

we must distinguish processes that may be re-

versed from those that may not. The sweep of time

brings forth the meaning of Reversibility.

Reversibility may not always be absolute.

Reversible processes may not always recover all

the resources that were consumed. How much of

the original resources a reversible process may

recover can be a consideration. When more than

one resource is involved, reversibility may be

unequal for each resource. The measure of revers-

ibility may vary by resource, and partial revers-

ibility, like any other metric, may be nominally,

ordinally, difference, or ratio scaled. Therefore,
reversibility may be measured by resource and

the measure of reversibility is a measure of ef-

ficiency of the reversion of a process.

Each reversible process has one or more re-
version counterparts. Each may be considered

to be a mutable subtype of the generic reversion

process (generic for the process being reversed).

The efficiency of each alternative could be dif-
ferent. Cardinality constraints of inverses can

constrain the number of object instances in an

object class. Similarly, when the object class is

a process, cardinality constraints can limit the

number of times a process may be reversed (see

the discussion under Temporal Cardinality).

Temporal relationships will also have ordi-

nary inverses that go back in time, retracing the

resources transformed into the product. These

inverses can be very useful in quality assurance

and in diagnosing the impact of resources and

processes on products.

TEMPORAL RECURSION,
TEMPORAL REFLEXIVITY, AND
TEMPORAL IDEMPOTENCY

When we include information on the flow of time in
a recursive relationship, it enriches the repertoire

of all three kinds of recursive relationships: irre-

flexive relationships, reflexive relationships, and
idempotent relationships. The repertoire expands

because recursion, reflexivity, and idempotency
may apply independently to an instance of the

object, to a time slices of an object, or simultane-

ously to both (see Figure 7.1). Time creates novel

and exotic kinds of recursion, reflexivity, and
idempotency from nontemporal parents.

A nontemporal recursive relationship loops

back to the same object class. When the flow of
time is considered, a relationship may or may

not loop back to the same time slice. If it does,

it cannot be a process because processes always

involve the flow of time. Causality is implicit in a
process. Resources come before products. Thus,

when time is considered, we obtain strange and

exotic relationships that may be processes or not,

depending on how they are constrained:

A class recursive temporal relationship also

loops back to the same class, usually with

different time slices of the same or differ-

ent object instances. If it is also time slice

reflexive, it may (but does not always have
to) connect the same time slice; if time slice

is irreflexive, it cannot do so. On the other
hand, if the recursive relationship is time slice

idempotent, then it must do so.

A class irreflexive temporal relationship can-

not loop back to the same object instance.

A time slice irreflexive temporal relationship

cannot loop back to the same time slice.

•

•

•

183

Processes, Events, and Temporal Relationships

An idempotent temporal relationship loops

back to the same object instance but may be

time slice irreflexive—it may have to con-

nect different time slices of the same object

instance. It could also be time slice reflexive;
that is, it may be permitted to connect the

same time slice of the same object but is not

required to always do so.

A totally idempotent temporal relationship

must always connect the same time slices of

the same object instance.

A time slice idempotent temporal relationship

must always relate concurrent time slices

of object instances. The object instances

could belong to the same or different object

classes.

A reflexive nontemporal relationship may

loop back to the same instance of an object,

but a temporally reflexive relationship may
also loop back to the same time slice of the

same object instance. However, unlike its

idempotent counterpart, it does not have to

do so (for example, a person may be his own

counsel in a court of law or may ask someone

else to fill the role).
A nontemporal antisymmetric relationship

is a relationship that is asymmetric unless

it loops back to the object instance, and a

temporally antisymmetric relationship is

a relationship that is asymmetric unless it

loops back to the same time slice of the same

object instance.

When a relationship loops back to the same

time slice, there is no passage of time; it can-

not be a process because there is no “before”

and “after.” Therefore, totally or time slice
idempotent temporal relationships are not
processes, and neither are instances of reflex-
ive relationships that loop back to the same
time slice. They fall under the category of the

nontemporal relationship of Chapter V.

Hence, if a person is to represent herself in

a court of law in future, the representation is a

•

•

•

•

•

•

process. It may consist of compositions of subpro-

cesses like preparation and planning. However, the

irreducible fact that she is currently representing

herself at the court, at this very instant, cannot

involve the flow of time, and hence it becomes a
nontemporal relationship.

As you leach a process of its temporal infor-

mation, it fades into a nontemporal relationship

because processes are relationships with infor-

mation added—information on which end of the

relationship (temporally) precedes which.

TEMPORAL ASYMMETRY

The flow of time is asymmetrical. It always flows
from past through the present, into the future. It

can never flow the other way. Therefore, processes
are all asymmetrical relationships. If they were

not, causality would break down. We know that

the physical world is causal. Business too must

be causal because business must be done in the

physical world of cause and effect. It is a part of

the Universal Perspective.

The property of symmetry (and its opposite,

asymmetry) of nontemporal relationships is re-

placed by the property of reversibility (and its op-

posite, irreversibility) of temporal relationships.

Figure 7.1 makes clear that cardinalities,

orders, and degrees of temporal relationships

must also consider the irreversible sweep of time.

Nontemporal constraints may be placed on oc-

currences of concurrent combinations of objects

in tuples, as they were in Figure 5.4 and Figure

5.5. Temporal constraints are similar, but they

are constraints on occurrences across time slices.

Constraints that cross time slices may cross time

slices of a single object instance or time slices of

different object instances of the same or different

object classes.

Based on the above, Figure 5.4 cannot rep-

resent a higher order or higher degree temporal

relationship. It must be adapted to include the time

dimension. In Figure 5.4 (and Figure 5.5), one-

184

Processes, Events, and Temporal Relationships

dimensional chains of object instances are strung

into tuples. Adding the time dimension turns the

one-dimensional chain into the two-dimensional

sheet of Figure 7.3.

Figure 7.3 is just like Figure 5.4 except for the

fact that the tuple has been stretched along the

timeline into the past and has been sliced each time

it changed state. The one-dimensional combina-

tions of Figure 5.4 may now extend across cells

of the two-dimensional matrix in Figure 7.3.

Cardinalities, degree, order, mutability, sym-

metry, inverses, and the other properties we dis-

cussed in Chapter V are now expressed in terms

of combinations of cells of this matrix of time

slices. It stretches tuples into the past, slicing each

as it changes state. New kinds of orders, degrees,

and cardinalities can crystallize from this matrix,

and no process may ever traverse this matrix

from the future to the past. A process may only

reverse the effects of another process but only as

it spins into the future. A process and its revers-

ible counterpart must always go forward into the

future. The moving finger, having written moves
on, but because it moves; it adds new meanings

to concepts such as mutability, order, and degree

as we will see next.

TEMPORAL MUTABILITY

Consider a new car and its temporary license plate

as you drive it away from the dealer. For a limited

time, the temporary and permanent license plates

will be legally mutable. After that, you must have

the permanent license plate. The car has changed

state. In its new state, the permanent license plate

is not mutable with the temporary license plate.

In its old state, it was. This example shows that

mutability may be time sensitive.

The example of the car and its mutable license

plate is simple. It depends on a single cell in Fig-

ure 7.3, a time slice of Car. Other rules are more

complex; combinations of cells may be mutually

mutable—combinations like those in Figure 5.4,

extended into temporal dimensions as they are

in Figure 7.3. Mutability, like the other proper-

ties of temporal relationships, may normalize a

fact about a single cell or about combinations of

cells in Figure 7.3. As such, mutability may be

made contingent on the overall state of a system,

which might change as processes forge ahead in

time, creating, changing, and deleting objects

and states.

Figure 7.3. A temporal relationship is a two dimensional matrix

Past

Constituent
Object
Classes

possible combinations for which
constraints may be defined
in a three-way relationship

m..n

m..n

po
ss

ib
le

co
m

bi
na

tio
ns

of
tim

e

sl
ic

es
fo

r whi
ch

co
ns

tra
in

ts

m
ay

be
de

fin
ed

ov
er

th
re

e
st

at
e

ch
an

ge
s

customerproduct retailer

Components
of tuple

Tim
e

Slic
es

Examples of temporal
combinations

(which might be constrained)

HIGH ORDER TEMPORAL RELATIONSHIP

Present

Flow of time

Sold to.. buys thru..

Temporal
Matrix

185

Processes, Events, and Temporal Relationships

TEMPORAL ORDER

Nontemporal order is the number of distinct object

classes that a relationship binds, as elaborated

below:

When we consider temporal order, we must

consider the remoteness of history bound into

the relationship. How far back into the history

of each object class does the relationship reach

in order to articulate the rule about a change

of state at present? We must know, by object

class, how many time slices a relationship

spans. This gives us the temporal order of

the relationship by object class.

The instance recursive relationship in Fig-

ure 7.1 is a relationship of second temporal

order; the class recursive relationship is of

third temporal order; the temporally injective

relationship at the top of Figure 7.1 is also of

third temporal order. It does not matter that

the relationship connects with the current

time slice of its target object, as well as the

first past time slice (counting backwards from
the present). It goes back to the third time

slice in the past (the first time slice was in the
present) and temporal order measures how far

back a relationship reaches. Therefore, it is a

relationship of the third temporal order.5

Among all time slices of all objects bound

by a relationship, the time slice farthest back in

the past is special. It tells us how remote a time

period can influence the present (for a specific
temporal relationship class). This is the overall

temporal order of the relationship. The points on

your driver’s license earned three years ago may

influence your insurance premiums today; this is
a temporal relationship that spans three years in

addition to the current year. Each year is a time

slice for this purpose; hence, it is a relationship

of the third temporal order.

The influence of the past usually fades with
the passage of time. Temporal order tells us how

•

•

far into the past we must go to account for pres-

ent behavior. If an event five state changes old
is a guard condition for a state change today, in

a process that uses only one kind of resource to

produce only one kind of work product, it is a

second order process (because it relates only two

object classes, a single resource to a single work

product). However, it is a second order process

of the fifth temporal order. It is a temporally fifth
order process even if events one, two, three, and

four time slices old have no influence on state
changes at present because events five time slices
old influence state changes that can occur now.

When state transitions depend only on contem-

porary events, the processes that effect those

transitions have no memory—they are processes

of temporal order zero.

Although unlikely, it is possible that the remote

past may influence some kinds of behavior more
than the recent past can. The constructs in Figures

7.1 and 7.3 can support this scenario.

TEMPORAL DEGREE

The degree of a relationship is the number of

instances that may be glued into a tuple. Just as

temporal order could be specified in terms of the
temporal order of an object in a relationship, as

well as the overall temporal order of the relation-

ship, so too can the temporal degree:

The temporal degree of a relationship with

respect to a participating object instance is

the number of distinct time slices of that

object instance the relationship involves. It

is therefore also the degree of an idempotent

relationship—the number of times a process

loops back to the same product or reuses

the same resource—a process in which the

resource and product are the same object (in

perhaps different states. Example: the loop

from Check to Check in Figure 7.24b).

•

186

Processes, Events, and Temporal Relationships

Can distinct time slices ever be concur-

rent?—The answer might seem to be an

obvious no, but there are subtleties that could

turn it into a yes when polymorphisms are

considered. Consider an electronic check that

must be signed by two individuals. The check

becomes payable when both have signed. We

therefore have three states of the check—one

for each individual’s signature and the third

which tells us it has both signatures and is

therefore payable. The check may be signed

electronically, independently by each signa-

tory; therefore, the signatures may be obtained

simultaneously or not. The signature process

loops from check back to the same check, in

a different state. Indeed, the process itself

changes the state of the check; it is idempotent

with respect to the check. If each signatory

signs at a different time, the signature pro-

cess connects two different time slices of the

check, and clearly the process will be a second

degree, idempotent relationship. However, if

both polymorphisms of the process—each

signature event—occur concurrently, the

process has repeated both its polymorphisms

simultaneously and is complete in a single

time-period instead of two. Is this a first or
second degree process?

It is a second degree process because two

processes of the same kind (the signature

process); a 2-tuple are inextricably joined

together to produce the final product—the
end state—a payable check. The relationship

puts no constraint on temporal sequence or

concurrency of the two polymorphisms of

the signature process.

From the perspective of each polymorphism

of the signature process—a classification
based on who signs, it is a second order re-

lationship—two different kinds of processes

(objects) are involved, but from the perspective

of their common supertype, the signature pro-

cess, both are the same kind of object; hence

the signature process is a first order process.

It loops back to the same instance of check,

so it is also a first degree, idempotent process.

However, when we give it a temporal dimen-

sion, each signature being put on the check

becomes an event, and thereby, paradoxically,

a temporal, idempotent relationship may be a

higher degree process, even if it loops back

to the same time slice because the time slice

may contain multiple polymorphisms of the

same process in an aggregate object that also

joins them into a tuple. The aggregation of

subtypes is also a subtype of the generic

signature process. We will elaborate objects

of this kind under process engineering.

The temporal degree of a relationship with

respect to a participating object class is the

number of distinct time slices of all object

instances of that object class that an instance

of the relationship involves (ties into a tuple).

Compare this with the nontemporal cardinal-

ity ratio of an object in a relationship. The

nontemporal cardinality ratio of an object

in a relationship is the number of distinct

target object instances that instances of the

relationship associate with a single source

object (see Figure 5.1 and the discussion

under Figure 5.3).

The overall temporal degree of a relationship

is the total number of time slices of all objects

that the relationship involves.

Constraints on temporal degree constrain

the length of the temporal tuple; they are

occurrence constraints on numbers of time

slices in a tuple; each cell of the temporal

matrix is a time slice of an object instance of

an object class. It is the occurrence of these

cells, individually and in combination, that

may be constrained—combinations like

those in Figure 7.3. This constraint may limit

the length of the tuple, put a floor under it,
or both. Complex constraints may dictate

several ranges of valid and invalid lengths.

Just as multiple objects could be involved

in the combinations in Figure 5.4, multiple

•

•

•

187

Processes, Events, and Temporal Relationships

cells might be involved in the combinations

of Figure 7.3. For example, the lowest double-

headed arrow of Figure 5.4 is a three-way

combination.

TEMPORAL CARDINALITY:
CONCURRENCY, REPEATABILITY,
AND BATCH PROCESSES

The cardinality of temporal relationships must

describe not just the cardinality of combinations,

but also the cardinality of combinations across

different time periods. Cardinality constraints

may involve combinations of cells in the matrix

of Figure 7.3. Implications of the temporal nature

of cardinality include:

Batch processes: The cardinality ratio of a

single cell describes how many items of an

object class were simultaneously involved in

an instance of the relationship at the time. If

the object class is a resource, the cardinality

ratio of the cell that represents the contem-

porary time slice tells us how many items

of the resource are required at a time by an

instance of the process. If the object class is

a product, it tells us how many items of the

product a single instance of the process pro-

duces at a time. Remember that the process

may consume resources or produce products

in batches, and there may be several instances

of the resource or product in a batch. (Figure

7.11c has examples of batch processes. Box

7.5 also has more information.)

Concurrency and repeatability: A process

is an object class, and like other object classes,

counting the occurrence of instances of a

process measures its cardinality. However,

a process has a time dimension. It occurs

over a time period and has a beginning and

may have an end. Therefore, the scope of

the cardinality of a process must be defined
in terms of occurrences in time. Extending

cardinality into temporal dimensions results

•

•

in three kinds of cardinality:

° Concurrency: The concurrency of a

process is the number of instances of

the process that are running in parallel

(see Figure 7.4). It is a form of temporal

cardinality because we count number

of instances of the process at a given
time.

° Repetition: Repetition is the number

of times the process repeats across
time slices (Figure 7.4). It is a form of

temporal cardinality because we count

number of instances of the process

across time slices. (Repeatability is a

constraint on Repetition). The scope of

repetition may be described in terms

of one or more time slots—that is, we

may care about repetition in only some

time periods.

° Nontemporal cardinality: Nontem-

poral cardinality does not care about

the flow of time. It is “unknown” to
the process. Nontemporal cardinality

is the total number of instances of the

process—the sum of those running in

parallel at each time slice and those

repeated across time slices. (In the

example shown in Figure 7.4, the

nontemporal cardinality is 3+4+2=9.)

Although nontemporal cardinality does

not care about the flow of time, when
applied to a process that does care about

the flow of time, it may be described in
terms of one or more time slots—that

is, we may not care about the flow of
time only in certain time periods.

° The nontemporal cardinality of an

idempotent process must also be its

temporal degree—the number of times

it must repeat and/or occur concur-

rently.

Cardinality ratios, on the other hand, articulate

somewhat different rules. In Figure 7.4, assume

that the end of Bake Cookie in the preceding time

188

Processes, Events, and Temporal Relationships

slice triggered each repetition of Bake Cookie
in the following time slice. This implies that

every instance of bake cookie in a time slice was

related to its predecessor by a temporal relation-

ship that reads “succeeded by,” one can think of

each connecting arrow between successive Bake
Cookies in Figure 7.4 as this relationship. The

concurrency ratio (a kind of cardinality ratio) of

this relationship tells us the number of successors

in the following time slice that each instance of

Bake Cookie may trigger.

Constraining the concurrency ratio of this

temporal relationship at a given moment will

limit the number of successors of each instance
of Bake Cookie in the next time period, whereas

limiting the concurrency of the Bake Cookie
object class in the next time period will limit the

total number of instances of Bake Cookie that can

concurrently occur in that period, regardless of

how it was triggered, or by which instance of pos-

sibly multiple instances of preceding processes.

This is the difference between concurrency and

concurrency ratio.

Naturally, the number of instances of the Bake

Cookie process that may actually occur will be

limited by both constraints if they occur simulta-

neously. The two constraints will then be merged

subject to the laws of merger of constraints.

The difference between repeatability and

repeatability ratio is similar—one constrains

repeatability of processes triggered by a single

instance of an event, and the other constrains

the number of instances of the class that may be

repeated over time. If a poor quality toner is a

resource in a copying process, the repeatability

of that process may be less than another similar

process that uses high quality toner; that is, the re-

peatability of the process triggered by an instance

of a toner cartridge in the copying machine may

be different from the repeatability of the same

kind of process triggered by a different instance

of toner cartridge in the copying machine. This

is different from the total repeatability of the

process, which might depend on the overall life

of the copying machine.

Figure 7.4. Temporal cardinality: Concurrency vs. repetition

Bake Cookie

Concurrent Instances
of BakeCookie

Concurrent Instances
of BakeCookie

Concurrent Instances
of BakeCookie

FLOW OF TIME

Concurrency at given moments
(Another form of temporal cardinality)

Repetition
(a form of temporal cardinality)

Bake CookieBake Cookie

(3) (4)
(2)

189

Processes, Events, and Temporal Relationships

Constraining concurrency will cap (and/or

put a floor under) the number of processes of
that class that may run in parallel. (Constraining

concurrency to nil in one or more time slices will

bar the process from executing at those times.)

Repeatability may cap (and/or put a floor under)
the number of times the process may be repeated.

Constraining nontemporal cardinality will cap

(and/or put a floor under) the total occurrence of
the process, parallel or repeating.

Constraints on the cardinality of a process

could also be across a range(s) of time slices. A

process may be barred at certain times but forced

to occur at others with different limitations on

concurrency and repeatability.

If there are several ovens used to bake cook-

ies, several instances of Bake Cookie could occur

simultaneously. The concurrency of Bake Cookie
would be capped by the number of ovens available

for baking cookies at the time. Some ovens might

be shut down from time to time for maintenance.

As such, constraints on the concurrency of Bake
Cookie could change over time (Figure 7.4).

Like any other object, a process may consist

of an aggregation or composition of processes.

By constraining the cardinality of the aggregate,

we can constrain the number of times the aggre-

gation or composition may be repeated (or run

concurrently). Constraining the repeatability of

an aggregate that consists of a reversible process

and its reversion will constrain the number of

times a process may be repeatedly executed and

reversed. It is the aggregate that will normalize

this rule, not the individual processes in it.

Just as we could limit cardinalities of combi-
nations or single objects in an aggregate, we can

limit cardinalities of combinations of events in

an aggregation or composition of events. These

limitations may constrain concurrency, repeat-

ability, or nontemporal cardinality, individually

or in combination.

The occurrence of the aggregate may also be

constrained in the same way. Constraining the

occurrence of the aggregate is different from

constraining independent occurrences of its

parts. Constraining the aggregate ensures that

the aggregation of parts is limited—not the

independent occurrences of parts that may be

members of the aggregate. We could limit the

number of times Bake Cookie, the aggregate in

Figure 7.5b occurs, but its constituent, Arrange
Dough Glob on Cookie Sheet, will not be bound

by this limitation if it occurs by itself, outside

the composition in Figure 7.5b. Even if we do not

bake cookies, we could still arrange dough globs

if it pleases us to do so.

EFFICIENCY AND PRODUCTIVITY

Efficiency is derived from cardinality ratios of
resources and work products. It is a measure of

the quantum of production per unit of resource

consumed or used. The efficiency of a resource
is the cardinality ratio of the product divided by

the cardinality ratio of the resource. Temporal

efficiency is the cardinality ratio of the product
divided by the cycle time of the process—the

number of units produced per unit time per (in-

stance of) process. When the resource is human,

we might call it productivity.

CAPACITY FOR TEMPORAL
RELATIONSHIPS

Just as objects could have a limited capacity for

nontemporal relationships, they can have a lim-

ited temporal capacity for temporal relationships.

Further, just as the number of object instances it

could relate to measured an object’s capacity for

nontemporal relationships, the temporal capac-

ity of an object for temporal relationships is the

capacity of a time slice (of the object instance) for

relating to time slices of other (or the same) object

instances. Finally, just as an object’s nontemporal

capacity for relationships could vary at class or

instance levels, so too may its temporal capacity

190

Processes, Events, and Temporal Relationships

for temporal relationships vary by class, instance,

time slice, or even combinations thereof.

A razor used for shaving might use a single

detachable blade at a time. The blade is a resource

used by the shaving process. At any given moment

in time, only a single blade can be a resource

for a single instance of the shaving process, and

while it is thus engaged, no other process can use

the blade as a resource. Hence, its nontemporal

capacity for use in processes like shaving, scrap-

ing, and cutting is limited to one.

On the other hand, the blade has a life. It gets

blunter with each use and must be discarded af-

ter repeated use. Therefore, there is a cap on its

capacity for repeated use.

The blade may be a resource for only one pro-

cess at a time, but may be used multiple times. The

cap on its simultaneous availability as a resource

(its nontemporal capacity) is different from its

capacity for repeated use (temporal capacity) as

a resource. This example illustrated how tem-

poral and nontemporal capacities are different

properties of a temporal object (an object like

the object in Figure 4.5 that exists for a period of

time). One is the blade’s capacity for simultane-

ous relationships and the other its capacity for

repeated relationships.

Like nontemporal capacity, temporal capacity

may be different for different object instances.

Some blades get blunt more easily than others.

Just as there could be instance level constraints

on cardinality ratios, there may be instance level

constraints on temporal and nontemporal capaci-

ties. Each instance level temporal or nontemporal

relationship may consume a part of this capacity.

How much it consumes is an attribute of the rela-

tionship (just as it was for instance level cardinality

ratios). Indeed, we can extend the concept so that

relationships at different times, as well as across

different combinations of time slices like those

in Figure 7.3, may deplete different amounts of

an object’s capacity for relationships.

An object instance’s capacity for relationships

might even change over time. The capacity of a

time slice of an instance of an object for relation-

ships will be the capacity for relationships at that

point in time for that object instance.

GOVERNANCE AND
NONSTATIONARITY

When a relationship is mutable, that is, can change

over time, it is a nonstationary relationship. When

any property, such as capacity, cycle time, or ef-

ficiency, changes over time, it is nonstationary.
Stationary relationships are frozen for all time

and so are stationary properties. They do not

ever change.

The properties of a stationary process are fixed
for all time. When the properties of a process

change over time, it is called a nonstationary

process. Processes that change properties of other

processes are called higher governance order

processes. A second (governance) order process

changes the properties of a first (governance)
order process, a third (governance) order process

changes the properties of a second (governance)

order process, and so on. Higher governance order

processes govern lower order processes, just as

higher order patterns governed lower order pat-

terns. Relationships are patterns too.

This terminology might be somewhat con-

fusing, considering that processes are temporal

relationships, and the order of a relationship has

a different meaning (Chapter V). To avoid con-

fusion, the term “order” of a relationship, be it

temporal or not, will have the meaning of “order”

in Chapter V, and this book calls the governance

of one process by another as the governanceorder
of the process (or pattern).

A process that defines another is also a higher

governance order process. Defining a process is
different from triggering a successor; triggers

initiate instance(s) of a process, whereas process

definition describes process classes. Box 7.4
provides an example.

191

Processes, Events, and Temporal Relationships

EVENTS

Temporal relationships are processes because

they convey cause and effect information—in-

formation on resources and products. What if

we do not have this information but know that

something happens over a period of time or even

at an instant in time? The occurrence is then an

object—a temporal object but not a relationship.

It is an event.

Events are independent objects. When we leach

cause and effect information out of events, they

stand on their own—temporal objects in their

own right that, unlike processes, are not bridges

between other objects. Based on the principle of

subtyping by adding information,6 every process

is also an event.

We will expand on this concept soon, but for

the moment bear in mind that events are processes,
or processes shorn of information on resources,
products, and causality (the very information a
process conveys on transformation of resources
into products). Because processes are subtypes
of events, they will inherit all properties of
events—the properties we have discussed thus
far and the properties that we will discuss going
forward. Processes may, of course, also possess

additional properties that are not universal to all

events.

Every event must have a start time and usu-

ally an end time. Events, like any other object,

may be resources used and products produced by

processes. In Figure 7.2, a request for fresh cook-

ies is an event. It is also a resource that triggers

Bake Cookie and starts the process rolling. All
processes must be triggered by some event, even

if it is the beginning or end of another process.

Other examples of events that might trigger pro-

cesses are the arrival of a particular time of day

(for instance, the end of a trading day may trigger

trade reconciliation processes) and the beginning

or end of another event (for instance, the start of

a production run for a batch of chemicals may

be triggered by the end of the reactor loading

process).7

Unlike processes, events may have no end and

no duration8—its cycle time may be infinite or
nil. For instance, the beginning and the end of a

process are events with no duration. We will call

an event of nil duration a moment.
When the cycle time is nil, the start time equals

the end time. Bridging start and end times of an

event with an equality constraint reduces it to an

event of no duration like the flash of a camera.
A question for the thoughtful reader—do the

beginning and the end of a process of nil dura-

tion have implicit start and end times? Is this

kind of process any different from a nontemporal

relationship? Why?

Events may even occur spontaneously; they

may be caused by processes beyond the scope of

the model or by the inherent uncertainties we have

ignored in our deterministic metamodel. These

spontaneous events too can trigger, suspend, or

terminate processes.

Processes are events of finite duration (or
of infinite duration as shown in Box 7.2) with
information on resources and products added.

Some events may never end. They are patterns of infinite extent. Processes are polymorphisms of events. Processes that
never end, like long stories, are called Sagas. However, if we assume that change must always occur in discrete steps,

instances of processes must always begin and end; a resource must either be transformed (change its state) or not. A train

of processes like the perpetual cycle of production runs in a factory are a saga when considered together: we know that

a process may also be a composition of subprocesses. Subprocesses are not subtypes of the aggregate process (discussed

under the essence of a Process and the goals of Business); they are members of the aggregation. Some compositions of

Box 7.2. The saga of processes that never end

continued on following page

192

Processes, Events, and Temporal Relationships

Therefore, they are subtypes of events. Processes

must relate resources to products. Therefore, they

are also relationships—temporal relationships,

a subtype of Relationship. As such, Process is a

subtype with two parents—Event and Relation-
ship.

SUCCESSION CONSTRAINTS:
TEMPORAL RELATIONSHIPS
BETWEEN EVENTS

Events are objects. Relationships between them

will inherit all the properties of relationships we

have discussed so far, even the temporal proper-

ties that we discussed in this chapter. However,

events are not ordinary objects. They are temporal

objects that occur in time and have a beginning and

often an end. That makes temporal relationships

between them special. The special characteristics

that temporal relationships acquire, over and above

those we have discussed thus far, is the property

of temporal dependency—that the occurrence of

one event might be contingent on another and that

this contingency implies that one event may tem-

porally succeed or precede another. (“Precede”

is the inverse of “Succeed.” The relationship is

obviously asymmetrical.)

Shorn of information on its resources and

product, Bake Cookie is an event. When we peel

back the covers, we find that it is a composition
of successive events; first we must arrange dough
globs on a cookie sheet, then bake the cookie,

and finally unload cookies from the oven. (If we
added resource and product information to each

event, the composition would become a process

map like that in Figure 7.11c—a map of how

cookies are baked.)10 Indeed, events may even

be contingent on beginnings and ends of other

events. Temporal succession implies not just

existence of states but also constraints on which

states may succeed which. We will consider the

processes may be an unending sequence of discrete processes that goes on forever; the aggregate never ends after it starts,

even if its parts do. This is how an aggregate can become a perpetual process. Although the scope of our metamodel is

limited to the consideration of discrete change, it must include sagas.

The idempotent loops in Box 7.12 could be aggregate processes that perpetually cycle through sets of states, always

returning to the state they started from before beginning their endless cycle afresh. Processes that cycle in this fashion

resemble the finite, but unbounded, patterns that we discussed in Chapter IV. However, time flows remorselessly from the
past to the future. The moving finger of time can never go back and neither can a process be undone (its effects may of
course be reversed by another process, but the occurrence of the process is cast in stone or, more appropriately, in time).

Time unravels these otherwise finite patterns to make them infinite and undelimited along the time axis in state space (like

an infinitely long helix wound around the cylinder in Figure 4.5c—if the cylinder had not been delimited above).
The term saga conforms to the Business Process Markup Language (BPML) standard from the Business Process

Management Initiative (BPMI) consortium, which is now a part of OMG, the Object Management Group.9 [63] in Ap-

pendix III (Arkin, 2001) describes BPML in detail. An event of finite duration conveys more information than a saga.
It tells us when the event must end. Based on the principle of subtyping by adding information, a process that ends is a

polymorphism of Saga, the metaobject.

A generic Saga has no information on when it will end, if it ends at all. Its end time (and duration) is unknown and

may even be infinite. On the other hand, we might know for sure that an event might be endless. This kind of endless
event is a subtype of the generic saga. We will call it an Endless Saga. A process that we know will end, even if we do

not know when, is also a polymorphism of the generic saga but we will not call it Saga. Rather, we will call it a discrete

process. A process with a well defined, known end is a subtype of a discrete process. It is the “ordinary” process that we
have been discussing here.

Box 7.2. continued

193

Processes, Events, and Temporal Relationships

mere occurrence of contingent events before we

consider more complex dependencies in which

events are contingent on beginnings and ends of

other events.

States of an Event

From Figure 7.5, each event in the composition is

a state of the Bake Cookie process, and the differ-

ent states represent a strict progression, tracking

the extent to which Bake Cookie has progressed

after it was started.

Every event (and therefore every process) of

finite duration has at least three possible mutually
exclusive states: Not Started; Started (the same

as “in progress”); and Finished. Not Started and

Finished are equivalent to Not Occurred and

Occurred. For events of infinitesimally small
durations, Started merges into Finished, both of

which therefore imply Occurred. Sagas will never

finish, although they may start (see Box 7.2).
For all events (and therefore all processes too),

two more states must be added, Suspended and

Cancelled. Suspended implies partial completion.

Implicit in partial completion is the assumption

that there are intermediate states, known or un-

known, between Started and Finished—a pro-

gression, and therefore a composition of events,

known or unknown, linked by a Web or chain of

succeeds (precedes) relationships, also known or

unknown. “Suspended” implies that this temporal

progression was halted and may continue from

where it stopped. We may not even know where

it stopped, especially if we do not know the com-

position implicit in Suspended, but we do know

that it stopped somewhere—in an Unknown state

of an Unknown composition, supported by the

Unknown value that we discussed earlier.

Cancelled, on the other hand, implies that the

progression was halted and must be restarted from

the beginning. Cancelled implies no intermediate

states or compositions.

The more information we have about the com-

position, the more states we can add to the event.

Each event in an aggregate event is a possible state

indicator—an event started, finished, suspended,
or cancelled. Events too, like other objects, have

histories of state changes. States have temporal

relationships with other (or the same) states, such

as state transitions and succession rules. These

rules and relationships, like all others, will be

framed by the properties of temporal relation-

ships. However, time always flows forward.
“The moving finger, having written, moves on.”
Common sense tells us that temporal succession

cannot cycle back to the same or previous time

slices. Temporal succession is an asymmetrical

relationship that is temporally irreflexive even if
it loops back to the same object instance.

“Suspended” and “Cancelled” are two ex-

tremes in the spectrum of a halted progression of

states of an event (and therefore its subtype—a

Figure 7.5. A composition of events

RESOURCE

BAKE COOKIE
REQUEST
FRESH
COOKIES

EXTERNAL
EVENT

Cookie WORK
PRODUCT

Dough

Make
cookie
Dough

Arrange
dough glob
on cookie
sheet

Bake
dough

Unload
cookie

A.

B.

Consumed by

producetrigger

precedes precedesprecedes

ANOTHER
EXTERNAL
EVENT

194

Processes, Events, and Temporal Relationships

process). Business rules might dictate that the

event (or process) be restarted from a past state.

Any past state can qualify (and past states can also

influence which past states qualify via temporal
properties like order, degree, mutability, and

others we have discussed). These kinds of rules

about suspending and rolling back processes

could not exist if the succession constraint did

not. Temporal compositions carry more informa-

tion than their nontemporal counterparts—they

carry information on the flow of time.11 Temporal

rules of succession, suspension, and cancellation

crystallize from the temporal information within

Event—from temporal compositions known,

unknown, or only partially known.

•Occurred •Started •Stopped
•Finished

•Suspended

•In Progress

Do Not
Start Do Not

restart
Inclusion

Polymorphism

•Interrupt•Interrupt

•Cancel•Cancel

•Not Occurred

•Occurrence

= Subtype= Subtype

Figure A. The topos of occurrence

Is “Start” the opposite of “Stop”? It might come as a surprise to many, but “Stop” is not opposed to start; it actually ex-

tends the meaning of “Start.” In information space, “Stop” is a polymorphism of “Start,” and both are polymorphisms of

occurrence as discussed in the following paragraphs.

Beginnings and ends can be distinguished in ordinal space. Unless there is a beginning, there can be no end. However,

an end is not always mandatory. An occurrence like a process may begin but may have no end. It could be a pattern of

infinite extent in the forward direction. An end constrains this infinite pattern and makes it finite. As such, we can have
beginnings without ends, but all ends must have beginnings. Therefore “End” becomes an extension of the pattern called

“Begin”; further, “End” is a polymorphism of “Begin.”

“Start” and “Stop” occur when time sequences are considered. They are inclusion polymorphisms of “Begin” and

“End” respectively. “Stop” is a polymorphism of “Start.”

Moreover, we could attach a “do not start” constraint to the theme of occurrence so that the event cannot start. Ad-

ditional polymorphisms of occurrence emerge when we consider the flow of time within this constraint. If the process had
already started when the constraint is activated, it will interrupt the process. The meaning of interruption is assembled

from “do not start” and “In progress.”

The concept of Latency is also formed in a similar manner. Consider conditional polymorphisms of “do not start.” If

the occurrence of the event is contingent on the occurrence of other events, some of these predecessor events might oc-

cur, but the successor event will stay latent until all its predecessors have occurred. A latent event is in a suspended state.

“Suspend” is a polymorphism obtained from “Stop,” when we know that a process is not complete. When it is complete, we

consider it “Finished.” “Suspended” and “Finished” add information to “Stopped” and are therefore its polymorphisms.

An unconditional “do not start” constraint attached to “Suspended” creates the meaning of “cancelled,” which is

therefore a polymorphism of “Suspended.” These are the universal states of process.

The power of reason resides in this ontology. Suspension and cancellation not only imply stopping but also the act of

starting. Latency and interruption are transmitted down causal chains, which are sequencing constraints (relationships)

Box 7.3. Plan, start, stop, and occur

continued on following page

195

Processes, Events, and Temporal Relationships

Events in Parallel

Compositions of events need not always be daisy

chains like the composition in Figure 7.5b. Com-

positions could be networks of succession rules,

like the task dependency diagrams in a complex

project or business processes in a corporation.12

A firm might take an order, pick items from
inventory, and ship the items to a customer. The

events represent a natural progression of states

of the order fulfillment process. No event in the
daisy chain may occur unless the event before

it has occurred. On the other hand, invoicing is

contingent on taking the order, but it is independent

on picking items from inventory (if we assume

that all items are always available and we need no

credit or payment check on customers). Therefore,

invoicing may occur in parallel with picking stock

to fulfill the order. Assume that the invoice is
shipped with the order. Then the shipment event

is contingent on completing both the stock pick-

ing and invoicing events. Figure 7.6 shows how

this order fulfillment process is a network, not a
daisy chain, of succession rules.

In Figure 7.6, the event at the arrowhead may

only occur if the event at the tail of the arrow has

occurred. Neither Pick Items nor Raise Invoice

can occur unless an order is taken (obviously!),

but once an order is taken, neither depends on

the other, and both are free to happen in parallel.

The shipment event, however, depends on both

and cannot occur unless both Raise Invoice and

Pick Items have occurred.

Figure 7.6 illustrates two alternative conven-

tions for diagramming event dependencies; there

are several others as well. The Project Manage-

between events. An automated system can become “aware” of rings and cyclic causal chains of deadlocked processes

(which we have discussed under load balancing), each waiting in deadly embrace for a predecessor to finish, which in
turn, might be waiting for successors to finish. “Aware” processes may use some of the strategies described under load
balancing to break the deadlock.

All processes inherit another universal state from the primal object. When we add intent on a future state to an ob-

ject, it becomes a planned state. This universal state is normalized by the primal object and is inherited by all objects,

including relationships and processes. There may also be planned and unplanned relationships and processes. This state

is independent of the existence of the other universal states of Process. Hence, we may have planned or unplanned cancel-

lations, suspensions, and occurrences.

Box 7.3. continued

TAKE ORDER

PICK ITEMS

RAISE
INVOICE

SHIP ITEMS
WITH

INVOICE
TAKE ORDER

PICK ITEMS

RAISE
INVOICE

SHIP ITEMS
WITH

INVOICE

(a)

PDM Notation

(b)

UML Notation

Figure 7.6. A network of event succession rules

196

Processes, Events, and Temporal Relationships

ment Institute (PMI)13 prefers the notation in

Figure 7.6a and the Object Management Group

prefers the notation in Figure 7.6b. PDM is an

acronym for Precedence Diagramming Method

and UML for Unified Modeling Language. A
detailed discussion of PDM and UML is beyond

the scope of this book.14 It is the pattern of rules

about event interdependencies that we are inter-

ested in. The figures help us to visualize these
patterns embedded in our metamodel.

Conditional Events

Rules of succession can be conditional. Con-

sider Figure 5.5 again. The relationships were

conditional. Each relationship was contingent

on another. Succession might be a temporal re-

lationship between temporal objects, but it is still

a relationship. Succession is subject to the same

contingencies as the relationships in Figure 5.5

(and also the more complex contingencies that

flow from constraints on order and degree). Let
us consider the three simplest cases first and un-

derstand how the flow of time adds to each:

Mutual inclusion (Figure 5.5b)

Mutual exclusion (Figure 5.5a)

Subsetting (Figure 5.5c)

Mutual Inclusion
When one event occurs, the other must too, and

both are triggered by the occurrence of their

common predecessor. In Figure 7.6, Take Order
triggers both Pick Item and Raise Invoice, and,

if items are picked, the invoice must be raised

and vice versa.

If the relationship between Take Order and

Pick Item were optional (the lower bound on its

cardinality ratio would then be zero), Pick Item
might or might not occur after Take Order occurs.

Raise Invoice would occur only if Pick Item oc-

curred, and Raise Invoice would not occur if Pick
Item did not. Conversely, Raise Invoice might or

might not occur after Take Order occurs. Pick

1.

2.

3.

Item would occur only if Raise Invoice occurred,

and Pick Item would not occur if Raise Invoice
did not. Processes inherit these constraints from

relationships.

This is the most common form of succession

between events with common predecessors.

Diagramming conventions like PDM in Figure

7.6a support it. Indeed, we may have many mutu-

ally inclusive successor events after Take Order

(such as Check Customer Credit Rating, Check
Customer Payment Status, and Check Stock Avail-
ability). Each branch of the succession relationship

is contingent only on the event at the root of the

arrow and the occurrence of the other branch(es).

Figure 5.5 highlights that the mutual inclusion

constraint is on the cardinality of the combination
of events, not individual events.

The usual convention in PDM is that succession

is mandatory (implying that the cardinality ratio

of the succession relationship is at least 1). Busi-

ness processes and events are usually contingent

on predecessors, and mandatory succession is the

most frequent pattern of succession. If any one

relationship in a mutually inclusive set (of rela-

tionships) is mandatory, all the others must also

be mandatory. Most diagramming techniques like

those in Figure 7.6 imply mandatory succession.

We will also follow this convention.

So far, we have discussed succession in terms

of events occurring (or not). We know events have

beginnings and may have ends. When predeces-

sors or successors are events of finite duration, suc-

cession must necessarily involve their beginnings

and ends. Frequently, it is the beginning of the

successor that follows the end of the predecessor.

Unless we say otherwise, this will be our assump-

tion; successors start only after predecessors end

(although we will discuss complex rules under

beginnings and ends of events).

The differences between temporal and nontem-

poral cardinality were described with Figure 7.4.

Constraints on the concurrency of Pick Item will

tell us how many items we may pick in parallel,

regardless of whether they were triggered by one

197

Processes, Events, and Temporal Relationships

order or several. Constraints on its repeatability

will tell us how many times we may repeat “pick

item” over a set of time periods, regardless of what

events might trigger each repetition. If the lower

bound on the cardinality of the period 1–period

4 combination is two, it implies that Pick Item
must happen at least twice in both time period 1

and time period 4. Their triggers and causes are

irrelevant. In contrast, the cardinality ratio of the

succession relationship between Take Order and

Pick Item will tell us how many items we may

pick in parallel for each Take Order event (after

it occurs).15 Their common trigger is an instance

of Take Order.
The succession relationship is temporal. It

can also specify different cardinality ratios in

different time periods that follow Take Order.
The incidence of Pick Item that follows a single

Take Order event may differ in different time

periods. For instance, concurrency ratios may

dictate that three concurrent Pick Item events

follow in the period immediately after (a specific
instance of) Take Order and two more follow two

time slices later.

Constraints on temporal cardinalities of com-

binations across the cells of the temporal matrix

of Figure 7.3 lead to even more complex rules for

triggering successive processes.

Mutual Exclusion
Succession of mutually exclusive events implies

that one event cannot occur if the other does, even

if both are triggered by the occurrence of a com-

mon predecessor. Consider a recruitment process.

We interview the candidate and either offer him

the job or not. If the candidate is offered a job, he

is issued an offer letter; otherwise he gets a letter

of regret; the event Interview Candidate will be

succeeded by either Make Offer or Express Regret,
not both. If the candidate is offered a position, the

letter of regret must not be issued and vice versa.

Figure 7.7a articulates this:

Assume the mutually exclusive pair is manda-

tory (like it usually is). The succession of events

must proceed through one of the two mutually

exclusive paths. What decides which path will be

taken, and which excluded? Conditions and events

do. The decision to reject or accept a candidate is

an event (perhaps of zero duration). Conditions that

occur in time are also events (as are all temporal

occurrences16). Mutually exclusive events may

trigger mutually exclusive successions of events.

Figure 7.7b shows this. It is the decision to hire or

reject the candidate, both of which are events that

were buried inside the succession relationships

in Figure 7.7a. Each has been shown explicitly

in Figure 7.7b. Each is a part of the composition

Figure 7.7. An example of mutually exclusive succession

INTERVIEW
CANDIDATE

MUTUALLY EXCLUSIVE
SUCCESSION OF EVENTS

X

ISSUE REGRET
LETTER

MAKE
OFFER

= INTERVIEW
CANDIDATE

ACCEPT
CANDIDATE

REJECT
CANDIDATE

MUTUALLY EXCLUSIVE
SUCCESSION OF EVENTS

X

ISSUE REGRET
LETTER

MAKE
OFFER

COMPOSITION

COMPOSITION

(a) (b)

198

Processes, Events, and Temporal Relationships

of events inside the succession relationships in

Figure 7.7a.

These kinds of mutually exclusive triggers are

found frequently in business.17 Bill payment often

follows this kind of pattern. If the total amount

of a vendor’s bill exceeds a threshold, a senior

manager might have to approve payment. Oth-

erwise, it might be paid routinely. The condition

that the bill amount has exceeded the threshold

is an event. That it is at or below the threshold is

another mutually exclusive event. These events

will determine which path is taken. They are

guard conditions. How many such situations do

you know of in the business you are in?

A mandatory pair of mutually exclusive suc-

cession relationships mandates that one of the

mutually exclusive events in the pair must suc-

ceed their common predecessor. An optional pair

implies that neither event may succeed their com-

mon predecessor. We have seen how mandatory

mutual exclusion implies equating the degree of

the mutually exclusive combination to one, and

optionality implies a lower bound of zero and an

upper bound of one. Similarly, a lower (upper)

bound on temporal degree will mandate at least
(at most) a prescribed total number of instances of

the successor events be repeated over any of the

prescribed time periods (a combination of time

slices). If the lower bound on the degree of the

period 1–period 4 combination is two, it implies

that the process must succeed its predecessor at

least twice in either time period 1 or time period

4, or both considered together.
(Contrast constraints on the degree of a re-

lationship with the “and” constraint implied by

limitations on temporal cardinality. Constraints

on degree generalizes the inclusive “or” rule,

whereas constraints on cardinality generalize the

Boolean “and.” “Not” is implied by Nil.)

Mutual inclusion and exclusion can occur

together when we consider the flow of time. Two
or more processes may be mutually inclusive but

concurrently exclusive. With reference to Figure

7.6, in order to fulfill an order, we may need to

pick items and raise an invoice, but a (somewhat

foolish!) business rule might bar us from doing

both concurrently. Therefore, either Pick Item may

need to follow Raise Invoice or vice versa—we do

not care which goes first—but the rule is that both
cannot occur together at the same time (perhaps

because resources are limited). Thus, temporal

inclusion can coexist with temporal exclusion,

provided they do not address the same time slice

concurrently or are not in conflict if they do.18

Indeed, as we saw in our example, constraints

on temporal degree and temporal cardinality can

interact in complex ways.

Subtyping of Succession
Consider a service center for a software manu-

facturer. They take calls and log customer is-

sues. Many issues are minor, such as forgotten

passwords and compatibility with printers. The

customer service representative helps the cus-

tomer to resolve these issues on the telephone.

However, bugs and defects may surface from time

to time. The service center logs and tracks these

separately as outstanding software problems. The

service center coordinates their resolution with

the development, maintenance, and operations

departments until they are closed to the custom-

ers’ satisfaction. Some problems may be severe.

Senior managers must be alerted when this

happens. A part of this chain of events has been

shown in Figure 7.8.

In Figure 7.8a, only software bugs are opened

as problems; other issues might be logged, but that

event stream is beyond the figure’s scope. Open
New Problem succeeds Analyze Issue only when

a new software problem is found. Often no bug is

discovered, or the problem was discovered earlier,

and Open New Problem will not succeed Analyze
Issue. Therefore, the succession of Analyze Issue
by Open New Problem is optional (and the lower

bound on the cardinality ratio of the succession

relationship between Open New Problem and

Analyze Issue is zero).

199

Processes, Events, and Temporal Relationships

New problems must be logged regardless of

how trivial or severe they might be. Whenever a

new problem is deemed severe, senior managers

must be alerted, and of course, it must be logged

(like any other new problem); that is, whenever

Alert Management succeeds Analyze Problem,

Open New Problem must also succeed Analyze
Problem. However, the converse is not true. Open
New Problem may succeed Analyze Problem,

but Alert Management might not because the

problem was minor. A subtype always implies

its supertype, but the supertype does not imply

the existence of its subtype(s). The Analyze Prob-
lem–Alert Management succession is a subtype

of the Analyze Problem–Open New Problem
succession. It is like the relationship in Figure

5.5c, with facts about temporal succession added.

Subtyping of temporal succession implies that

when the subtype occurs, its supertype(s) must also

occur (but not vice versa) at the same or different

time(s). If the supertype has to occur concurrently,

we must attach this constraint, which will then

be a separate component connecting the subtype

to its supertype.

The example in Figure 7.7 shows that it is events

that trigger each successor and that composi-

tions of events are transitive with respect to the

relationships they replace. Figure 7.8b also shows

this. The occurrence of Severe New Problem is

an event. Severe New Problem is also a product

of the Analyze Problem process. However, it

does not have to occur each time New Problem
occurs, but it may because Severe New Problem
is a subtype of New Problem. This is implied by

its succession being a subtype of the succession

of New Problem (see Figure 7.8b). A successor

event can also be considered the product of the

process (a kind of event) it succeeds. Products

and resources, including events and processes,

may be subtyped like any other object.

When three relationships are mutually transi-

tive, like they are in Figure 7.8b, they form a tran-
sitive triad. In order to normalize the information

conveyed by the triad of three relationships, we

must always leave one relationship out; the others

imply it. Explicitly showing it would replicate the

information. In a nontemporal triad of transitive

relationships, it does not matter which relation-

ship we drop to normalize the information in the

ensemble. However, a triad of temporal relation-

ships conveys more information than a triad of

nontemporal relationships; it conveys information

about the flow of time. In a transitive triad of
temporal relationships, it is the relationship that

has the longest duration that should be deleted

because the others will imply it before it ends.

Figure 7.8. An example of a succession subtype

ANALYZE
ISSUE

OPEN NEW
PROBLEM

ALERT
MANAGEMENT

TAKE
SERVICE

CALL
SUBTYPE OF

Severe new
problem

Succe
eded by 0 or m

ore

[su
cce

ed 1]

Succeeded by 0 or more

[succeed 1]

=

ANALYZE
ISSUE

OPEN NEW
PROBLEM

ALERT
MANAGEMENT

TAKE
SERVICE

CALL

SEVERE
NEW

PROBLEM
trigger

Severe problem

TRANSITIVE

TRIAD

Succeeded by 0 or m
ore

[succeed 1]

Succeeded by 0 or more

[succeed 1]

SUBTYPE OF

(a) (b)

200

Processes, Events, and Temporal Relationships

In Figure 7.8b, we would delete the direct link

between Analyze Issue and Alert Management,
and in Figure 7.11c, it is the direct link between

Request for Fresh Cookies and Arrange dough
glob on Cookie Sheet that would go. As we open

windows into events and temporal relationships

to show compositions within, it is important to

remember this interrelationship. This principle

is useful in designing workflow and creating
process maps too.

We highlight an area of caution about subtyp-

ing of events. When two or more events share a

common predecessor, and one or more succes-

sive events are mandatory while the others are

optional; the mandatory relationship(s) may,

in one sense, be considered supertypes of the

optional relationship(s). The reason is that man-

datory events always occur; they will happen

when optional events do and also when they do

not. Remember that a subtype always implies its

supertype, but the supertype does not imply the

existence of its subtype(s). If we had no other

information on the meanings of these events, we

might (fallaciously) conclude that the optional

events imply mandatory events, but not vice

versa. Showing an optional event as the subtype

of a mandatory event is meaningful in a process

map only when the subtype adds information to

its supertype beyond the fact that it is optional,

and the supertype is mandatory. The subtype

must imply the supertype because it conveys ad-

ditional meaning—just as Severe New Problem
in Figure 7.8 added meaning to New Problem by

qualifying it.

Complex Constraints and
Conjunctions of Events

Conjunctions of events are also events. Consider

Ship Items in Figure 7.6. Neither Pick Item nor

Raise Invoice triggered it. It was triggered by their

conjunction. Ship Item could only occur when both

Pick Item and Raise Invoice occurred. This is the

meaning of several arrows converging on a single

event in PDM or several arrows converging on a

single bar in UML (see Figure 7.6). Convergence

of arrows implies that tuples of events (tuples like

the combinations in Figure 5.4) trigger the com-

mon target of converging arrows (for example,

the last event of Figure 7.6). The combinations

in Figure 5.4 were subject to constraints on order

and degree, and so too are the triggers of events.

Triggers are events that initiate others.

Since succession of events is a temporal re-

lationship, and events are temporal objects, we

may constrain both temporal and nontemporal

properties (such as cardinality, degree, order,

etc.) of these triggers. Both simple and complex

rules of succession will flow from constraints on
temporal and nontemporal properties. Here are

a few scenarios:

Each instance of the successor will be trig-

gered by a single conjunction of its predeces-

sors (the usual meaning of arrows converging

on a target event): The cardinality ratio of

the tuple of predecessors with respect to the

successor will equal one (Figure 7.9)19:

The target event will be triggered by any

one of its predecessors (the inclusive “or”):

The degree of the tuple of predecessors will

equal one or more. For example in Figure 7.16,

either Collaborate and Resolve Exceptions

•

•

Cardinality Ratio = 1

Successor

Predecessor Predecessor

(with respect to successor)

Every instance of its successor

is triggerred by a single
instance of the conjunction

Figure 7.9. A single conjunction of predecessors
triggers the successor

201

Processes, Events, and Temporal Relationships

or Identify Order Forecast Exceptions may

trigger Create Order.
The target event will be triggered by the

occurrence of any two of its predecessors:

The degree of the tuple of predecessors will

equal two or more.
The target event will be triggered by the

occurrence of any one predecessor if the

other(s) does (do) not simultaneously occur

(the exclusive “or”): The degree of the tuple

of predecessors will equal exactly 1.

The target event will be triggered by the

consecutive repetition of a predecessor: The

repeatability of the predecessor must be two

or more over successive time periods—see

Figure 7.4.

The target event will be triggered by the repeti-

tion of its predecessor (exactly) once each at

two specific times. Each qualified repetition
will trigger exactly two parallel instances of

successors. However, if multiple instances

of the trigger occur in parallel at both times,

they will not trigger the target event:

There is a temporal relationship between

predecessors and successors that captures

this complex rule. The relationship combines

constraints on concurrency with constraints

on concurrency ratios as follows:

{ “The target event will be triggered by
its predecessor”: Two types of events

are involved; one type is the successor

and a different type the predecessor.

Therefore, the triggering relationship is

a binary relationship between predeces-

sor and successor—its order is two.

{ “The target event will be triggered by
the repetition of its predecessor (ex-
actly) once each at two specific times
…However, if multiple instances of
the trigger occur in parallel at both
times, they will not trigger the target
event”: The concurrency of the trigger

is mandated to be exactly one at those

two times.

•

•

•

•

{ “Each qualified repetition will trig-
ger exactly two parallel instances of
successors”: The concurrency ratio

between the successor and predecessor

is two in each time slot.

If we needed to make the triggering condition

even more stringent by asserting that the trig-

gering event must repeat only in the specified
time slots in order to trigger the successor,

we could further constrain the nontemporal

cardinality of the trigger (in the triggering

relationship) to equal exactly two.

The target event will be triggered by at least

two repetitions of the predecessor at two

different times; it does not matter when the

predecessor was repeated as long as it fell into

one of the specified time slots: The temporal
degree of the combination of triggers in those

time slots will be two or more.

As an exercise for the reader, how should

one constrain the cardinality of succession if

the successor must occur only if the predecessor

does not occur at a specific time? For instance,
if no customer calls occur over a period of one

day, one might make random calls to customers

to confirm that no call center or communication
problem exists.20

Mutual inclusion, subtyping, and mutual exclu-

sion constraints can transcend across time slices

to bind similar or different kinds of relationships

across time into a rule. When we consider the

flow of time, conditional succession can express
complex “if-then-else” rules that frequently occur

in business—rules like “if a review occurs today, it
cannot occur for the next 30 days,” or “if a review
occurred last month, it must be followed up next
month and the month after by similar reviews,”

and “a follow up session cannot be held if the
initial review was skipped.”

Mutual inclusion, mutual exclusion, and sub-

setting relationships of Figure 5.5 are special cases

that emerged from special constraints on cardinali-

ties and degrees of combinations of the kind in

•

202

Processes, Events, and Temporal Relationships

Figure 5.4. In the same way, succession relation-

ships across time—mutually inclusive, mutually

exclusive, and subtype succession—emerge from

constraints on degrees and cardinalities of combi-

nations across time. All occurrence rules are built

on this foundation, be they simple or complex.

They may even be rules about when and under

what conditions how many resources are required,

and when, depending on what, how many items

are produced.21 These rules are irreducible facts

about occurrences of events that are contingent

on occurrences of other objects—rules about

processes that create, temper, and mold.22

Successions of Compositions:
Information in Time

Event succession is a temporal relationship.23 Re-

lationships are objects, which may grow attributes

and behavior in step with new learning as their

information payload becomes larger than a mere

semantic link between objects. This is also true for

succession relationships. As we add information

to a succession relationship, the latter can grow

into a full-blown process. It must be a process

because the flow of time is already embedded in
the fact of temporal succession.

This process (or event) will naturally occupy a

time slot between the two events that it connects,

like the discovery of Severe New Problem, an

event in Figure 7.8, did between Analyze Issue
and Alert Management (which were also events

in that figure). We can always insert an event
between two successive events by adding infor-

mation to the fact of succession. The new event

will always be automatically located between

the two successive events it connects and the

facts of succession will not be disrupted (as we

did in Figure 7.8 by inserting the discovery of a

Severe New Problem between “Analyze Issue”

and “Alert Management”). Conversely, we can

remove information from an event in a process

map until it only carries information on its posi-

tion in time relative to the other events in the

composition. Then it will become a mere event

succession relationship between the events it con-

nects. We could “remove” a process (or event)
from a composition, and the succession rela-
tionships will automatically “heal themselves”
by merely going “through” the missing process
to the objects that event connected them to. As

illustrated in Figure 7.8, a relationship that goes

“through” another event or process in this manner

is transitive with respect to the relationships that

were “removed.”

Indeed, just as relationships could grow into

full blown multiobject compositions as we added

information, a succession relationship can grow

into a full blown process map as we add informa-

tion to it; and just as an entire composition could

shrink into a relationship as it lost information,

so too may full blown process maps shrivel into

mere assertions of temporal succession if all in-

formation, save the flow of time, seeps out. (If the
assertion loses all temporal information, it will

cease to be an event; instead it will become the

nontemporal relationship of Chapter V.)

Event succession is a relationship, and pro-

cess maps are compositions of events. With the

passage of time, an entire composition could

succeed another. Indeed, that is how we integrate

processes—processes like the baking of cookies

integrated with the making of dough as we have

done in Figure 7.5 and in Figure 7.11, or even entire

integrated supply chains that sweep products and

services from businesses to business to customer,

which we will discuss in this section.

Chapter VI described how each known object

(and relationship) in a composition or aggregate

object is a “port” to the world outside the aggregate.

When objects in the composition were unknown,

all we could say was that a relationship connects

to the aggregate. When they were known, we

could articulate:

Whether the relationship must connect only

to the aggregate.

•

203

Processes, Events, and Temporal Relationships

Whether the relationship must connect to at

least one object within the aggregate (when

the object becomes “known”).

Whether it must connect to every object within

the aggregate as they turn from “unknown”

to “known.”

How many objects of what kind within the

aggregate the relationship may connect with

and other kinds of more complex constraints

based on the degree, order, and cardinality

of the relationship.

When the relationship in question is tem-

poral succession, rules can become even more

complicated for we must now articulate what

comes before what and under what conditions.

Paradoxically, this complexity can actually sim-

plify and anticipate requirements of business

processes. Remembering that event succession

is a Cartesian product is the key that makes the

complex look simple.

Asymmetrical relationships are Cartesian

products and so are event successions. Event suc-

cession is an asymmetrical relationship between

events because time cannot be reversed—what

is done is history and cannot be undone. It fol-

lows (from the discussion in Box 5.2) that event

succession is a Cartesian product of the events it

connects with added meaning—the meaning of

succession in time. Event succession is transitive

with “consists of,” the relationship that makes a

composition an aggregate and connects every

constituent to this aggregate.24 When a succession
relationship connects an object to a composition
or aggregate object, it potentially connects it to
every object within the aggregate.

Consider the composition in Figure 7.8. Ana-
lyze Issue was an event that preceded both Open
New Problem and Alert Management. Consider

an aggregate object that contains both Open New
Problem and Alert Management. Not only did Ana-
lyze Issue precede the aggregate, but subtypes of

Analyze Issue—Analyze “Open New Problem” Is-
sue and Analyze “Alert Management” Issue—were

•

•

•

automatically implied. (Note that the subtypes are

at a level of detail not shown in the figure.) They
were implied because Analyze Issue preceded the

aggregate object that contained both.

We also know that succession can be con-

ditional. Whether the event that precedes a

composition precedes every object in it, or only

some, is an irreducible fact normalized by the

succession relationship (these relationships are

temporal polymorphisms of constraints on con-

nections with aggregate objects). Sometimes, we

may not have full information; we may know

that the event must precede at least one object in

the composition (and perhaps more), but we may

not know which one(s). If we do not know, all

we can say is that it connects to the composition

as a whole; we cannot tell more because we have

no information.

When a composition succeeds an event, not only
must the event precede one or more objects inside
the composition, but a polymorphic subtype of the
event may also precede objects in the composi-
tion (just as Analyze “Alert Management” Issue
preceded Alert Management)—one subtype for
each object. Each such subtype will be a case of
inclusion polymorphism (see Box 4.8), and each
will be a specialized event relevant to only its
“own” object within the overall composition, an
object it will always precede. Whether we rec-
ognize these polymorphic subtypes or not, they
are implied for every object in the composition
(unless a relationship is specifically barred for a
particular object in a composition, it is implied
by the “all” value of Box 5.3). Recognition of
these implicit events is only a question of how
much detail we must have to satisfy our business
requirement. These polymorphic implicit events
anticipate requirements; they were always there
in the metamodel of knowledge, emerging only
when we need them from the timeless engagement
of meanings within.

204

Processes, Events, and Temporal Relationships

Beginnings and Ends

So far, we have considered only the occurrence

of events, not their beginnings and ends. We had

discussed how occurrence involves beginnings

and ends, but we have ignored these beginnings

and ends of events. It is now time to consider them;

rules of succession cannot be complete unless we

also consider beginnings and ends of events in

the sweep of time. A renowned American poet

has said:

What we call the beginning is often the end. And
to make an End is to make a Beginning. The End
is where we start from.

- T.S. Elliott

Beginnings and ends of events are events

too and all we have said for succession between

events will also apply to their beginnings and

ends. Of course, when we resolve events into

their beginnings and ends, the end of an event

(if it occurs) must always succeed its beginning,

but this need not be true across different events.

Across events, we can treat each beginning and

end as an occurrence—an event by itself. Let us

start by considering the succession of a pair of

events:

One event may not begin before the other

does

{ Delays may be involved

•

{ Events will be constrained to begin

together when delays are forbidden

An event may not end before another does

{ Delays may be involved

{ Events will be constrained to end to-

gether when delays are forbidden

The beginning of one event must follow the

end of another

{ Delays may be involved

{ The beginning of one event must im-

mediately follow the end of another

when delays are forbidden

The first two succession constraints are inde-

pendent and may be put in place simultaneously.

We could have events that must begin and end

together. The last constraint leads to a daisy chain

of successive events or processes that trace a path

through a PDM or UML activity diagram in Figure

7.6. It excludes either of the first two succession
constraints above and can support complex rules

of delayed succession (see Complex Constraints

and Conjunctions of Events in this section). Table

7.1 summarizes possible interactions between the

beginnings and the ends of successor–predeces-

sor pairs:

The concepts in Table 7.1 may be generalized

to cover cases where multiple events are joined

into a single successor–predecessor relationship.

We have recently discussed the joining of multiple

events and how these conjunctions are higher

order temporal relationships. What we have not

•

•

SUCCESSOR

PREDECESSOR Begin End

Begin
Optional time gap

(may be nil or unknown)

Optional time gap

(may be nil or unknown)

End
Optional time gap

(may be nil or unknown)

Optional time gap

(may be nil or unknown)

Table 7.1. Begin-End interactions between a successor-predecessor pair of events

205

Processes, Events, and Temporal Relationships

discussed is the issue of delayed beginnings and

ends of conjoined events. We will do so now.

Every instance of an event has a beginning

and perhaps an end on a timeline. What we mean

by the term “event conjunction” becomes com-

plicated when we involve the passage of time.

In Figure 7.6, consider the completion of events

Pick Item and Raise Invoice that trigger Ship Item.

Ship Item was triggered by the conjunction of the

ends of Pick Item and Raise Invoice. If one of

the two predecessors to Ship Item finished, how
long would we have to wait for the other to finish
before the conjunction “timed out,” that is, was

not considered a conjunction? In other words,

the question of temporal delay is implicit in the

concept of “conjunction” when the conjunction

is between events—the question is, in what win-

dows of time will the conjunction be considered

a conjunction? (Of course, we could even wait

forever.) The value constraints25 may assert simple

or complex temporal windows.

Temporal windows could be sets of specific
times or ranges framed by inclusion or exclusion

sets. When inclusion sets are involved, the window

will assert the conjunction. When exclusion sets

are involved, the window will deny it.

A conjunction is a relationship. When events

in a conjunction belong to different classes, the

conjunction is a higher order temporal relation-

ship; when events in a conjunction belong to the

same class, the conjunction is a higher degree

temporal relationship. Constraints on temporal

and nontemporal cardinality and degree (discussed

earlier) may make these conjunctions even more

complex. However, the timing of conjunctions

is our topic now. It will suffice to remember that
these conjunctions will inherit the rules we have

discussed for temporal relationships, and that

these may in turn interact with the timings and

occurrences of events in a conjunction. Complex

rules of business may emerge from complex in-

teractions between properties of processes and

events in conjunctions like these.

Consider the collection of beginnings and end-

ings of events in a conjunction (the union of the set

of “begin event” events and the set of “end event”

events). When we consider rules and constraints

on event succession, every distinct pair in the set

may (optionally) be time lagged with respect to

every other. Beginnings of events may follow each

other subject to timing constraints, as may ends

of events, or even beginnings and ends of events.

These beginnings and ends may be beginnings

and ends of the same or different events.

The time lag between the beginning and

the end of the same event will be its cycle time,

whereas time lags across different events will

be considered delayed beginnings or endings;

however, both are conceptually identical—both

are time lags between beginnings and ends of

events and may be parameters in rules about

event succession.

Time lags and leads are ratio scaled. They can

be subject to constraints on ratio scaled values.

When multiple events are related, windows of

time may even mutually constrain each other via

joint constraints such as those in Box 5.1.26 These

rules about time lags and timings of beginnings

and ends could become as complex as necessary

but will always be subject to two constraints. We

will call them the Golden Rules of Event Succes-

sion in this book:

The common-sense constraint that the end of

an event cannot precede its beginning.27

The fact that a successor cannot start until

all its predecessors have started. If it did,

the successor would be anticipating a future

event and thus violate the laws of cause and

effect. This is the principle of causality. All

causal processes are subject to it.28

High order/degree (and binary) event conjunc-

tions may involve not only predecessors but also

all events in the succession relationship—pre-

decessors and successors. As such, when time

delays are involved:

•

•

206

Processes, Events, and Temporal Relationships

There may be time delays in triggering suc-

cessors.

There may be time windows within which

successors must (or may) occur (or time

windows that constrain cycle times).

Exact time delays between triggers may

be mandated (or exact cycle times may be

mandated).

There may be time delays between triggers,

and these delays may be time windows in

which the conjunction of triggers is recog-

nized (or denied).29

When conjunctions of multiple events trigger a

successor, the occurrence of a predecessor is said

to “enable,” but not necessarily trigger the succes-

sor. “Enabling” a successor changes its state by

readying it for execution. Processes may be only

temporarily enabled. The enablement may be an-

nulled after a time. If the other triggering event(s)

does(do) not occur in the requisite time period,

the successor reverts to the “disabled” state. The

state of an event (or process) may change to vari-

ous stages of “enablement” even before it starts.

When processes are enabled, but not triggered,

we call them latent processes. The property of

being latent is called process latency.

The opposite may also happen. Processes may

be disabled by events (or conjunctions of events,

which, as we have discussed earlier, are also

events). Processes disabled in this manner will

not fire even when all other prerequisites have
been satisfied.

In general, enablement and latency may involve

complex rules about time lags and leads. Moreover,

there may be multiple types and stages of latency

and enablement (and disablement) corresponding

to the occurrence of multiple events in the con-

joined trigger of a process (or event).

In the case study with the check payment

example in Module 5 at our Web site, the CFO

and CEO signing the check are two distinct

events (processes that produced corresponding

signatures—see the discussion on process engi-

•

•

•

•

neering under Figure 7.24 later in this chapter)

with clear beginnings and ends. Assume that a

business rule dictates that the signatures must be

obtained within three months of each other. The

end of each signature event (process) would en-

able the check payment event, but check payment

would stay latent until both predecessor events

ended—provided no more than three months
elapsed between the ends of the two events.
Unlike nontemporal relationships that mutually

relate “derived attributes,” such as “price per

piece,” “Quantum of Money,” and “Number of

pieces” (Box 4.6, Figure A), these kinds of tem-

poral rules are normalized by workflow, which
are temporal relationships between events and

capture the dynamics of derivation based on the

flow of activities in time.
We have seen how cycle time is a special case,

a subtype, of time lags between events. Figure 7.10

shows examples of delayed event conjunctions.

Note how the principle of causality ensures that

time lags (delays across events and cycle times of

conjoined events) are constrained in each event

conjunction so that the successor always begins

after the predecessor starts.

Enablement and latency may involve not only

timings of beginnings and ends of different events

but may also involve cycle times of the events in

the conjunction. The term “Timing of an event”
generalizes both concepts. (“Timing” means

specific times or windows of time relative to an
absolute time, such as a specific date, or relative
to another event, such as the beginning or end of

a process.) The timing of an event is the key to

event conjunction.

Note that an event conjunction is also an event

in its own right, and all we have said about events

in general will also be true for their conjunctions.

Each conjunction will also have its own beginning

and perhaps an end, as Figure 7.10 shows. Figure

7.10 also shows that the cycle time of a network

(or conjunction—a special part of the network

where events converge into a conjoined relation-

ship30) of successive events cannot be obtained

207

Processes, Events, and Temporal Relationships

by a simple summation of all delays and cycle

times of processes in the network. Instead, this
cycle time depends on the critical path—the path

with the longest duration going forward in time

through the network.31

A network of events linked by succession

relationships is also a composition of events. The

cycle time of the composition is the cycle time

of the critical path through the composition. For

instance, the cycle time of the composition in

Figure 7.6 is the cycle time of Take Order, plus

the cycle time of the longer of the two parallel

events, Pick Item and Raise Invoice, plus the cycle

time of Ship Item with Invoice. The longer event

is the bottleneck because its successor cannot

start until it finishes.

When a network of events has conditional

events in it, its cycle time will be conditional. We

have discussed how a composition may represent

a single relationship. Processes are temporal

relationships. Event succession is a temporal

relationship between events. As such, a network

of events (even a part of a network) may also be

considered an event in its own right, and the cycle

time of an event may thus be conditional. Often

process reengineering and innovation involves

discovering compositions that will reduce cycle

times in order to speed up a process. Speed is

becoming the key to prosperity, and even survival,

in the dawning economy driven by knowledge,

ideas, and innovation across the globe. The rules

described herein are the basis for management of

speed under different conditions.

Figure 7.10. Examples of delayed succession (Delays across events and cycle times are both examples
of time lags)

(a)

1. Predecessors must follow each
other with a finite delay.

2.Successor is delayed relative to
the end of the last predecessor.

Predecessor

Successor

Predecessor

BEGIN END BEGIN END BEGIN END

Cycle Time Cycle TimeCycle TimeDelay Delay

(b)

1. Predecessors must follow each
other with a finite delay.

2.Successor is delayed relative to
the start of the last predecessor

PredecessorPredecessor

BEGIN END BEGIN END

Cycle Time Cycle TimeDelay

Successor

BEGIN END

Cycle TimeDelay

(Begin
Delay)

(c)

1. Predecessors must follow each
other with a finite delay.

2.Successor is delayed relative to
the end of the first predecessor

PredecessorPredecessor

BEGIN END BEGIN END

Cycle Time Cycle TimeDelay

Successor

BEGIN END

Cycle TimeDelay

(Begin
Delay)

208

Processes, Events, and Temporal Relationships

We can reduce any part of a succession network

to a single high level event if we are not interested

in the detail within it, and conversely, any node

(event or process) in a succession network may

be expanded into a network.32 A rule in Chapter

VI said that every object in the composition is a

potential port for connecting to objects outside

the composition. If we expand an event into a

composition, at least one event, and perhaps more,

in the composition must connect to the event(s) it

connects. Indeed, we might even formulate rules

that will constrain compositions by constraining

the number, type, and identity of events within a

composition that may be ports to events outside it.33

However, the fewer the constraints, the richer our

choices, and the easier it will be to innovate.

As we increase the number of events involved

in triggering or constraining other events, the

possibilities grow explosively—even more ex-

plosively than the possibilities described under

Figure 5.4 because each event has a beginning and
may also have an end.34 (Scheduling techniques

in PDM, PERT, and GERT focus on techniques

that identify these critical paths and calculate cycle

times of the network as a whole under various

assumptions).35

Conjunctions of events are relationships, which

in addition to constraints on timing and latency

may be subject to constraints on temporal and

nontemporal cardinalities and degrees discussed

earlier. Processes must also have goals and pur-

poses. A work product tied to an event makes it

a process. Businesses have goals they strive to

achieve and events of interest to business must

serve its objectives. This is the essence of Busi-
ness Process. We will discuss this next.

The Essence of a Process and the
Goals of Business

Every process must have a work product. This

product is its essence—its purpose and goal. It

could have several work products. Each would be

a purpose. For instance, a process that separates

wheat from chaff produces both wheat and chaff.

Wheat is food and chaff may burn as fuel. An event

(process) may have multiple goals. It may also

have byproducts, waste products, and coproducts

that are produced in the act of producing the work

product(s). What is considered a work product or

coproduct and what is considered a byproduct or

waste product is a business decision—a decision

about the goals, priorities, and purposes of the

process and hence of the business. If the intent

were to produce wheat, chaff would be a waste

product. If the overwhelming priority was to pro-

The aim of a business is an item of information. It is information implicitly attached to an unknown process. The process

is a process for realizing a goal or achieving an objective.36 If the objective of a business is to make cookies, this purpose

is a goal implicitly attached to the bake process (Figure 7.11a). This composition of Work Product and unknown process

is the businesses’ chosen purpose—its aim and intent. We may subsequently add information to this “unknown” process,

as we have done in Figure 7.11, to flesh out how cookies will be baked, but the initial composition tells us what we must

make—what the objective is. However, neither composition tells us why we must make cookies. For this, we must turn to

a higher governance order process, a process that sets the purpose, the initial composition of goal and unknown process.

This governance process is different from the process that realizes the purpose set by the governance process. The process

that sets the purpose also tells us why it is the purpose of the business. This purpose or goal setting process is a higher

governance order process because it creates another process, even if the process it creates is only implied and even though

this implied process conveys no information beyond its work product at this point.

Its purpose results from the interaction of the enterprise with its external business environment. This purpose is

formulated from interactions of four kinds of factors. Two are internal to the business, and two are external:

Box 7.4. Goals and governance: Processes for making processes

continued on following page

209

Processes, Events, and Temporal Relationships

Internal factors:

• Internal strengths of the business

• Internal weaknesses of the business

External factors:

• Opportunities in the business environment

• Threats in the business environment

The core value of the product and service propositions a business offers to its markets lies in the interaction of these

four kinds of factors. Since value emerges from the interaction of a business with its external environment, at least one

factor in the interaction must be internal, and another must be external. It follows that the goals of a business will follow

from this foundation; the rationale for a goal is a relationship between at least one internal and one external factor. However,

there could be many factors in a single interaction as long as at least one factor is internal and another is external. Thus,

the goal setting process will be a second or higher order relationship. Its degree too must be two or more (several strengths,

several opportunities, several weaknesses, and several threats might participate in the interaction). This relationship is a

process because the factors in its rationale temporally precede the goal. The purpose and objectives of the business are

work products of this process that answers why.37

Figure A shows an instance of the goal setting process for a local telephone services provider after barriers to local

and long distance telecommunications services were legislated away. Strengths, weaknesses, opportunities, and threats

precede the firm’s purpose Therefore, their mutual higher order relationship with the objective that follows is a process:

GOVERNANCE

PROCESS

FOR SETTING

OBJECTIVES

•The cost of the composition is constrained to be less than
current network cost by an unknown amount

•The Build process will replace (change the state of) the current
network

WORK PRODUCT OF GOVERNANCE PROCESS
•Build= Process for realizing goal, linked to
•Network = Goal (Work Product of Build)

BUSINESS PURPOSE
Build a low cost replacement network

Threat:
•Competition in local markets

Weaknesses:
•High cost structure.

•Little experience is developing partnerships/alliances to leverage the marketplace.
Strengths:
• (Telecommunications) Infrastructure development competencies and experience

•Established infrastructure in traditional markets.
•Ability to attract high profile partners.

Opportunities:

•Entry into long distance services markets
•Cost barriers to competitors developing local infrastructure are high in the short term

NETWORK
C O M P O S I OT I N

BUILD

Figure A. Example of a process for setting corporate objectives

Note that the relationship between Business Purpose, the object class, and Rationale, another object class (a process

of the kind shown in Figure A, with or without its temporal information) may be a many-to-many relationship. Several

purposes may emerge from each rationale, and several rationales may lead to the same purpose. The rationale is the

interaction between Strengths, Weaknesses, Opportunities, and Threats that leads to Purpose. We will call it the SWOT

interaction.

Process engineering starts when we start identifying the means by which we will realize our goals: only when we add

information to a purpose, which is a composition of a goal and an unknown process on how the unknown process will

realize its goal, will waste and byproducts (or side effects) emerge. It is only then that we will know if two or more goals

of the business can be coproducts realized by a single process—an irreducible fact, like the separation of wheat and chaff

that produced both wheat and chaff—or if each is a separate subprocess, a separate irreducible fact in an aggregation.

That information is added only when the process for realizing, not deriving, the corporate purpose is designed.

Sometimes the goals of a governing process are confused with the goals of the process it governs. Take a process

called Ship Item that ships an item from a warehouse to a customer. Like all other processes, it normalizes information

like cycle time (shipment time in this case), latency, efficiency, and others that we have already discussed. Assume the
objective is to shorten shipment cycle times by an as yet unknown amount. The goal is a value constraint attached to

the cycle time attribute of the shipment process. The constraint is a goal because it was the work product of a governing

process—it is a governance goal. Strictly speaking, the shipment process normalizes the constraint, not the goal. Even if

the governance process is not in scope, or unknown, it is implied the moment we call the constraint a goal38; the limita-

tion on cycle time is an object that is a constraint when it relates to the shipment process and a goal when it relates to

•

•

Box 7.4. continued

continued on following page

210

Processes, Events, and Temporal Relationships

duce wheat, but production of chaff for fuel had a

marginal priority, chaff would be a byproduct. If

the priority given to chaff were comparable with

that for wheat, chaff would be a coproduct.

Let us consider a business that bakes cookies.

This is its goal. The purpose of a Bake Cookie
process is to produce cookies. Figure 7.11a shows

this.

Figure 7.11a shows how Bake Cookie is trig-

gered by an event, Request for Fresh Cookies,

and how Bake Cookie consumes a resource,

Dough, in order to produce cookies. Resources

and triggers are pieces of information added to

business goals. They are information on how the

goal will be achieved, not what the goal must be.

There may be other ways of achieving the goal

with other resources and triggers. Based on the

principle of subtyping by adding information,

the process that identifies resources and triggers
(triggers are also resources) is a subtype of the

the process that governs the shipment. Indeed, a smart governance process might even assemble both into a conjoined,

irreducible fact as it designs Ship Item.

(As an exercise for the reader, how would you model a goal that requires that each shipment meet its delivery com-

mitment?)

Box 7.4. continued

Figure 7.11. An example of how a process map follows from business objectives

RESOURCE

REQUEST
FRESH
COOKIES

Make cookie
Dough

Arrange dough
glob on cookie
sheet

Bake dough Unload cookie
(IRREDUCIBLE
FACT - NO SPLITTING !)

Dough Mix

Water

Dough

WORK PRODUCT/RESOURCE

Cookie Sheet
(Fresh)

Cookie Sheet
(in use)

Dough globs Cookie batch

Cookie Sheet
(in use)

Cookie

Cookie Sheet
(used)

WASTE OR BY
PRODUCT

BAKE COOKIE
REQUEST
FRESH
COOKIES

EXTERNAL
EVENT

Cookie WORK
PRODUCT

Dough

Make
cookie
Dough

Arrange
dough glob
on cookie
sheet

Bake
dough

Unload
cookie

TRANSITIVE
TRIAD

A.

B.

C.

BAKE COOKIE Cookie
PURPOSE

OF
BAKE COOKIE

Subtype of

�(Change scope?)

211

Processes, Events, and Temporal Relationships

process that realizes the goal. The goal is a work

product (Cookie in this case).

Contrast this kind of subtype of a process

from a subtype that elaborates on or integrates

business purposes by adding information, and

detail, only to the goal. Assume that the cookie

factory does some strategic thinking and reposi-

tions its business as a multiproduct bakery instead

of a cookie factory. It decides to produce other

baked products, such as cakes, bread, muffins,
and others in addition to cookies. Cookie will

then become a subtype of Baked Product, and

Bake Cookie will be a subtype of the more generic

Bake process (remember Inclusion Polymorphism
from Box 4.8).

Indeed, each process for baking the different

kinds of products the bakery decides to bake will

be a subtype of the generic “Bake” process. These

subtypes are based, not on adding information

on resources and triggers, but on subtyping the

work product itself. The strategic objective of the

business now is to manufacture Baked Product.
Manufacturing Cookies, Cakes, Bread, Muffins,
and other subtypes of Baked Product are tactical

objectives towards this end—each is a subtype of

the strategic goal; each is also an irreducible fact

made specific by adding meaning.39

Sometimes, business objectives will be less

homogenous. They may not always neatly fit an
obvious process based subtyping hierarchy of the

kind we just described. When this is the case, the

business will consist of a collection of processes

that may have little in common beyond the generic

“Make” process (under supply chains). The collec-

tion will be an aggregate object. This object is a

composition of processes, in which processes may

or may not be interdependent and the products

of a process in the composition may or may not

be used as resources by others. (A composition

could be a network of connected objects, a collec-

tion of isolated objects, or a collection of isolated

networks of objects, with no connections between

these isolated “islands.”)

Consider how a business might see opportu-

nity in heterogeneous products—products that

do not belong to a subtyping hierarchy. Contrast

the composition in Figure 7.11b with the subtype

in Figure 7.11a. Figure 7.11a shows how one ir-

reducible fact may be a subtype of another based

on the principle of adding information. Figure

7.11b is a collection of successive processes that

constitute a temporal composition. Some work

products of processes in the composition are sub-

types of Baked Product, while others are not (see

Figure 7.11c). The composition is an expression

of Bake Cookie. The first process in the composi-
tion, Make Cookie Dough, produces Dough. The

bakery could also position itself as a supplier of

dough (in addition to baked products). Whether

dough is a coproduct, a byproduct, or intermedi-

ate product (work in progress) is a business deci-

sion. This is the essence of the SOA framework,

that the process for producing each s considered

a “service”, and it is a busincess decision as to

what these service offerings will be, and the

availability of these choices will not only make

the business agile, because it will enable it to

seize new opportunities that it can identify in the

market place, but will also identify services it can

outsource or provide to its business partners in an

extended enterprise. The processes that serve the

objectives of a business, and indeed, the objec-

tives themselves, might be subtypes of strategic

goals or mere collections of irreducible facts in

connected or unconnected temporal compositions,

as they are in Figure 7.11b.

Processes that produce disparate products may

even merge into one irreducible fact—a conjoined

high order temporal relationship. Separating

wheat from chaff was an example of this. It was

an irreducible fact. The very act of separating the

wheat from the chaff produced both the wheat and

the chaff. Based on the principle of subtyping by

adding information, this process was a subtype

of two processes—one that produced wheat and

another that produced chaff. The process for

separating wheat from chaff was aligned with the

goals of a business that asserted that its objective

was to produce wheat, a business that asserted that

212

Processes, Events, and Temporal Relationships

its primary purpose was to produce chaff, or a

business that asserted its twin objectives were to

produce both. Note that the two parent processes

were inseparable in their common subtype. The

two parents were glued into an irreducible fact

by a process that supported either or both busi-

ness objectives—the production of wheat and the

production of chaff.

We cannot represent the process that sepa-

rates wheat from chaff as a composition of two

separate business processes, one that outputs

chaff and another that outputs wheat. It would

be meaningless to decompose the process in this

way. The very act of separating wheat from chaff

produces both wheat and chaff. The process was

not a composition of two separate subprocesses.

Rather, it was a subtype with two parents, each of

which described a distinct (potential) goal. Thus,

the process itself was a single irreducible fact.

Business could prioritize these goals and even

declare that one has no priority and hence was a

waste product of the process, but two products

there would always be.

These examples demonstrate how, when the

multiple individual objectives of a business are

subtypes of a single higher level strategic objec-

tive, each process will be a subtype of a single

higher level strategic process (remember inclu-

sion polymorphism in Box 4.8). However, when a

business has multiple disconnected objectives, the

supporting process may be a collection of distinct

processes, an aggregate object (perhaps parts of a

composition), or be a subtype of multiple parents.

It all depends on business process engineering

and the difference between a subprocess and a

subtype of a process.

A subprocess is different from the subtype of a
process. A subprocess is a part of an aggregate
object, which may be an event or another process.
A subtype of a process is exactly what it says it
is—it is a subtype, subject to rules such as in-
heritance, mutability of subtypes, enumeration of
subtypes and others we have discussed (subtyping

is a much stricter polymorphism of the “Part of”
relationship—see Location, Containment, and
Incorporation and Figure 7.27). Substates are not
states of the subtypes of a process or event; they
are states of events within a composition inside
an aggregate event (or process).

Although individual subprocesses are not subtypes
of the process they collectively express, based on
the principle of subtyping by adding information,
the composition as a whole is a subtype of the
process it expresses because it was obtained by
adding information to the process.40

Process Maps, Supply Chains, and
Business Process Engineering

A process map is a composition of processes. To

be meaningful, it must express a business objec-

tive or, more accurately, support it. A composi-

tion expresses a relationship, and a composition

of processes or events expresses a process or

event. Processes within compositions are called

subprocesses.41

Figure 7.11b shows one possible expression of

Bake Cookie. The processes in this composition

are subprocesses; these subprocesses are by no

means subtypes of Bake Cookie. They are steps

towards that goal, and each is a process in its own

right with its own purpose and products. Each is

also a step in time towards the end of Bake Cookie.
Each must be a temporal step because Bake

Cookie is a process, and a process is a temporal

relationship. The expression of a process must

therefore be a temporal composition, and each

subprocess in the composition is the repository of

a substate of the process it expresses—a substate

in a temporal progression.42

Other temporal compositions could also

achieve the same goal. We might not make the

cookie dough ourselves. We might buy the cookie

dough from a vendor. Then we would insert

a Buy Cookie Dough process between Make
Cookie Dough (now the responsibility of a sup-

213

Processes, Events, and Temporal Relationships

plier) and Arrange Dough Glob on Cookie Sheet.
This composition would be another expression

of Bake Cookie. Indeed, Make Cookie Dough
might now be considered beyond the boundaries

(scope) of the Bake Cookie composition. This is

how processes are reengineered. This is also how

the same process may be expressed differently

without deflecting its purpose.
(It is not that we do not need dough anymore,

and Make Cookie Dough must still occur before

Arrange Dough Glob on Cookie Sheet, only the

ownership of the process has shifted so that it is

not the firm’s responsibility. The scope of Bake
Cookie has changed from one perspective, but

not from another, larger perspective that includes

the complete supply chain.43 The discussion on

process mutability in Box 7.6 describes the prin-

ciples involved. We will discuss this kind of scope

change when we discuss process ownership and

supply chains.)

Both Make Cookie Dough and Buy Cookie
Dough are subtypes of a generic Obtain Cookie
Dough process and hence are mutually mutable in

the composition. It is the shadow of Obtain Cookie
Dough, their common supertype that lies hidden

in the composition making Make Cookie Dough
and Buy Cookie Dough mutable. The supertype

facilitates creative process reengineering. If we

recognize this, we can be even more creative and

flexible and look for other subtypes of Obtain
Cookie Dough that might give us an edge over our

competitors. (Of course, we can only outsource

Make Cookie Dough if we agree that making

dough is not a business goal of the firm.)
Compositions like these, that describe the

subprocesses within a process, are called process

maps. They are expressions of the processes they

map. The process map in Figure 7.11b conveys

information on temporal succession of subpro-

cesses. Figure 7.11c is a more detailed process map.

It adds information on resources and products to

the events of Figure 7.11b. Unlike the composition

in Figure 7.11b, the composition in Figure 7.11c is

mixed. It is a temporal network of processes and

“ordinary” objects that have nothing to do with

the flow of time.
In Figure 7.11c, these “ordinary” objects are

shown as open-ended rectangles. Processes are

closed rectangles. Arrows pointing from the

“ordinary” object towards a process (input re-

lationships) show that the object is a resource to

the process. Arrows emerging from the process

(the output relationships) show that the object is

a product. Arrows between processes show suc-

cession relationships. Indeed, when one process

triggers another in succession, the trigger in one

sense is a resource to the process it triggers—a

triggering resource.

Dough, Dough Globs, and a Cookie Sheet
are “ordinary” objects, whereas Arrange Dough
Globs on Cookie Sheet is a process. Dough and

a Fresh Cookie Sheet are also resources used by

Arrange Dough Globs on Cookie Sheet, which

then produces Dough Globs and a Cookie Sheet
In Use (the process changes the state of Cookie
Sheet from “Fresh” to “In Use”).

Figure 7.11c bears an uncanny resemblance

to a dataflow diagram. It is no accident. We have
deliberately chosen a technique that is familiar to

many information systems analysts to represent

the flow of resources and products through a
chain of processes.44 However, unlike the data-

flow diagrams in information systems design,
the open-ended rectangles do not represent data

stores or files. They represent real world objects
in our object model. We are still in the uppermost

layer of Figure 3.4. Later, we will study the trans-

forms that take us from this layer into the layers

of business process automation and information

logistics.

Input and Output Processes

The “input” relationship between resource and

process, as well as the “output” relationship be-

tween process and product can also be temporal

relationships. These relationships too will have

the properties of processes we have discussed in

214

Processes, Events, and Temporal Relationships

this section. The cardinality of input and output

relationships will tell us how many instances of

each resource are required and how many in-

stances of each product is produced by a single

instance of the process. This cardinality may be

temporal or not, that is, resources (instances of

resources) may be required sequentially or simul-

taneously, and products (instances of products)

may be produced sequentially or simultaneously

by a single instance of a process. When the flow
of time matters, temporal properties must be

considered, when it does not, nontemporal prop-

erties will suffice. The transformation process

at its core is a temporal relationship between the

inputs and outputs of a process. Therefore the

availability and acquisition of resources, and the

outflow of the product, are events in time. This
is why input and output relationships have been

shown as processes in Figure 7.12.

Input and output processes may interact and

be constrained in complex ways, like the other

higher order or higher degree process we have

discussed. We may slice the input process in

Figure 7.12 horizontally into independent pro-

cesses (one for each input) only when the rules

within the input process for a single resource

A single instance of a process may produce multiple instances of a product. Then the nontemporal degree of the temporal

relationship, the process, is two or more with respect to its product; it is a batch process. In Figure 7.11c, cookies were

baked in batches (when we consider the Bake Cookie composition without the last, unloading process, the baking of cook-

ies is done in batches). The batch is an aggregate object—the collection of a single class of work products that is produced

by a single instance of a process. Members of the aggregate may be traced back to the same instance of the process that

made or changed them.

When a single instance of a process uses (consumes, refers to, or uses as a catalyst) multiple instances of a single

resource, that is, its degree is two or more with respect to the resource, it is said to use the resource in batches. Indeed, the

input process may then be said to be a batch process. For instance, the input of cookies into the Unload Cookie process

in Figure 7.11c was in batches.

Sometimes the use of the term Batch Process does not make clear whether its products are produced in batches, its

resources used in batches, or both. In this book, the term will mean that batch processes produce in batches, regardless

of how they pick their resources.

Batch processes are frequently found in manufacturing operations. Pharmaceutical products, confectionary, bottles

and cans, and many other items are made and packed in batches. The World Batch Forum (WBF) is a nonprofit industry
consortium dedicated to the management, operation, and automation of batch process manufacturing. We will discuss

their standards later in this section45 (see http://www.wbf.org/world_batch_forum.htm).

Box 7.5. Batch processes

INPUT
PROCESS

OUTPUT
PROCESS

TRANSFORMATION
PROCESS

May be split only if each
input process is an
independent irreducible fact

May be split only if each
output process is an
independent irreducible fact

CORE BUSINESS PROCESS
OF THE COMPOSITION
(normalizes its purpose.

Is also repository of rules
for creating

products with resources)

Input process normalizes rules
about feeding resources to the

business process

Output process normalizes rules
about the flow of products from

the business process

Figure 7.12. A composition of input, output, and transformation events

215

Processes, Events, and Temporal Relationships

(type) are independent of other resources or out-

put processes. Otherwise, like the separation of

wheat from chaff in the discussion on Figure 7.11,

the input process will tie several objects into an

inseparable irreducible fact. (This reasoning is

equally valid for the output process.)

Consider the last process in Figure 7.11c. It

unloads cookies from the sheet they were baked

on. The resources are the cookie sheet (in use—a

state of the cookie sheet, in which it is loaded with

cookies), and the batch of cookies that were just

baked on the cookie sheet. Before the batch of

freshly baked cookies is unloaded, when it enters

the unloading process, the batch of cookies is still

on the cookie sheet that it was baked on. Both

resources are input to the process together. There

is no other way they may be input—it would be

meaningless for a cookie sheet to be fed into the

unloading process without its cookies and vice

versa. The separation of wheat from chaff was a

process that bound the production of two prod-

ucts, wheat and chaff, into one irreducible fact.

Similarly the Unload Cookie process of Figure

7.11c binds the feeding of two resources, cookie

sheet and cookie batch, into a single irreducible

fact. The two resources interact. The input rela-

tionships are mutually inclusive and temporally

synchronized. The input process presumes it is so

and ensures that cookies are fed to the unloading

workstation arranged on the cookie sheets they

were baked on. It cannot be split into separate

input processes—one for cookies and the other

for the cookie sheet any more than the process

for separating wheat from chaff could be split

into a process for producing wheat and another

for producing chaff. Figure 7.12 articulates these

rules.

The transformation process in Figure 7.12

is the event that normalizes rules about how

resources are turned into products. The trans-

formation process will bake the batch of cookies

and separate cookies from the cookie sheet. In

the Unloading subprocess inside “bake cookie”,

the production of cookies and the waste product,

used cookie sheets, are also inseparable, but once

it is done, separate processes could convey the

cookies and the used sheets away. As such, even

though the input process and the transformation

process cannot be split, the output process may

be split after the cookies have been peeled off

the cookie sheet.

Input and output processes will also normalize

any constraints on the temporal rate or speed with

which resources are fed to the process (for example,

from a hopper to the machine that consumes the

inputs) and output from the process (after they

are produced). Sometimes the entire composi-

tion might be an irreducible fact. In a chemical

factory that produces hydrocarbon based resins,

the kind of resin produced depends on the rate at

which raw materials are fed to the reactor, and the

rate at which the product is taken out. However,

this kind of complexity is normally absent in the

discrete and deterministic business processes that

are the ambit of our metamodel (as opposed to

continuous engineering processes like those for

producing hydrocarbons).

Input and output relationships may sometimes

carry no information on the flow of time. They
will then cease to be processes. A person may

be responsible for overseeing the operation of

a process, but not actually operating it. He is a

resource needed by the process, even if he does

not actually work it (see Process Ownership).

Oversight responsibility is an irreducible fact,

an item of information and a relationship that

has nothing to do with the flow of time. It is an
“ordinary” relationship between a process and a

resource it utilizes.

On the other hand, consider input processes

for individuals who actually work a process and

hence are also resources used by the process.

The process we will consider is a meeting that

is expected to articulate and finalize a strategy.
The meeting will be held in a specific conference
room. The participants will all have to physically

travel to the meeting (perhaps only walk across

a hall, but walking too is a mode of transporta-

216

Processes, Events, and Temporal Relationships

tion). The participants are resources used by the

meeting, a process, to create a work product, a

strategy. Their transportation to the meeting place

is the input process.

Contrast this kind of meeting with a telecon-

ference. That too is a meeting that might use the

same resources to create the same products; only

the mode of transportation to the meeting, its input

process, will be different. Both kinds of meetings

will be subtypes of the process that creates a

strategy. Indeed, both subtypes even use the same

resources. They will differ only in terms of the

input process—how participants are conveyed to

the meeting. The composite process in Figure 7.12

is therefore a subtype of the process at its core;

input and output processes are information added

to the transformation process. The transformation

process is at the heart of the temporal relation-

ship. Without it, there are neither resources nor

products, neither inputs nor outputs.

When the result of the transformation depends

on the method of input or the method of output,

such as rates of flow, the composition becomes a
single irreducible fact. Otherwise it may be di-

vided into subprocesses. In either case, the input

process and the output process are components of

process knowledge that may be “snapped on” to

the transformation at the heart of a process.

Load Balancing

Load balancing ensures that limited resources

are optimally allocated. When resources have

a limited capacity for relationships (Chapter

V), the issue of critical paths and cycle times of

the composition can become very complex. If a

process (or another object) engages a resource,46

the resource may be unavailable or only partially

available for use by another process: its capacity

for relationships may be completely or partially

consumed.47 For instance, a person may be unavail-

able or only partially available as a resource for a

project if she is engaged in other tasks.

When this happens, the process may:

Be cancelled.

Wait for the resource to become available

(be “enabled” but not triggered, as we had

discussed under beginnings and ends of

events48).

Use a substitute resource (a resource mutable

with the resource that is engaged). The substi-

tution may fully or partially substitute for the

quantum of the resource that was engaged.

Acquire the engaged resource, totally or

partially, and proceed. The other processes

that had engaged the resource will then either

be interrupted or might extend their cycle

times commensurately (since the resource

will either become unavailable to them or

its availability will diminish). Interrupted

processes may be cancelled or suspended

until requisite resources are available in suf-

ficient quantity.

Which of the four options actually happens

will depend on business rules. These rules might

depend on (and hence be normalized by) only the

resource (such as a first-come-first serve rule)
or the process. They might even depend on the

interaction of resources and processes (events).

Hence, complex rules may be normalized by

relationships between processes (such as rela-

tive priorities), relationships between resources,

or relationships between processes, events, and

resources—including processes of a higher gov-

ernance order.49 When 3 or 4 is the case, acquisi-

tion of the resource may also depend on similarly

complex business rules.

The interactions that normalize rules of acqui-

sition and mutability of resources may be simple or

complex relationships—sometimes higher degree

and high order relationships, sometimes temporal

and sometimes not. They will conform to the laws

of temporal and nontemporal relationships we

have discussed previously. These relationships are

containers for rules about interactions—contain-

•

•

•

•

217

Processes, Events, and Temporal Relationships

ers that can normalize if we generalize.

The issue of cycle time and critical path through

a process map can become complex when many

processes that share common resources occur

in parallel. Load balancing ensures that limited

resources are optimally shared subject to busi-

ness rules. The criteria that determine what is

optimal are business decisions. Frequently, it is

minimal cycle time, minimal cost, or priority for

critical products, customers, and services. How-

ever, there are several other kinds of criteria that

management may use to determine optimality and

resolve resource (and goal) conflict (such as equal
treatment for all customers—often a regulatory

requirement for public services).

Unless care is taken, chains of complex pro-

cesses may deadlock; that is, a process might wait

for a resource that is not available because it has

been engaged by another process (or processes),

which in turn is (are) waiting for a product of the

first process,50 which they also use as a resource

(for example, two programmers who must change

the same item of code—each might wait for the

other to finish so that they do not overwrite each
other’s modifications). Each process might even
have engaged an insufficient quantum of the
resource and might be waiting for more before

it can complete. Neither process can therefore

finish and release enough resources for the other
to finish. Thus, deadlocked processes will wait
forever unless a governing process or time-out

breaks the deadlock. Indeed, in long and com-

plex causal chains, the product the deadlocked

processes are waiting for might occur far down

the chain. Processes stalled thus are sometimes

said to be in a “deadly embrace.”

Temporal networks (process compositions)

could become chaotic when complex rules and

shared resources are mixed with massively paral-

lel processes.51 This may lead to deadly embraces

that paralyze the network (entirely, or in parts).

Parallelism, however, is often the key to speed.

This is why speed is sometimes traded for risk in

the design of business processes. Greater accuracy

(especially temporal accuracy) and higher order

governance (see Nonstationarity discussed earlier

on) can sometimes reduce risk, when cycle times

are compressed, by promoting greater reliability

at high speeds.

(Most scheduling and workflow management
software resolves resource conflict by allocating
scarce resources first to high priority processes,
and then, if priorities are equal, on a first-come-
first-serve basis. These priorities are usually ordi-
nally scaled. However, as we have seen, priorities

may be conditional, and rules could be far more

complex52,53).

Cycle Time, Activity Cost, and
Process Value

Even when a business has sound vision, sound

products, and a robust strategy, the cycle time, cost,

and net value of its processes are often of critical

concern. Together, they can determine the ability

of the business to compete. Event normalizes the

cycle time of a process; Process normalizes its

activity cost. The metacomponent that normal-

izes value is more complex. The value added by

a process is its contribution to the value of the

supply chain that it is a part of. The supply chain

is its context and its contribution to the value of

the supply chain is its contribution to the value of

products and services produced by the aggregate.

The aggregate, as we know, is a composition of

processes that form the supply chain. Therefore,

the value of a process is normalized by the ag-

gregation relationship between the process and

the composition. We have discussed how mem-

bership in one composition does not necessarily

preclude membership in others. Therefore, the
total value added by a process is normalized by
the aggregation of aggregate relationships it
participates in. The net value added by a process

is the difference between its added value and its

activity cost.

218

Processes, Events, and Temporal Relationships

Added Value

The only reason for the existence of a process is

the value it adds to the product despite its cost

and cycle time. The products in question are the

products and services that the overall supply chain

delivers—its ultimate goal(s). Because it is derived

from interactions beyond the immediate scope of

the subprocess, the value added by a subprocess

is often harder to quantify than its cycle time

or activity cost. For this reason, it is sometimes

ignored, or given short shrift, when processes are

reengineered. The cost of a process is easier to

measure, and measurability may tilt the balance

when a more judicious approach might be called

for. The question is how might we measure the

value added by process. It is a question we must

answer with a question.

The answer to this question lies in the an-

swer to another question: “what would we lose

if we eliminated this process?” Added value of

a subprocess in a composition is an opportunity

cost that must be measured in terms of the entire
composition—the supply chain that provides its

context. The opportunities lost by eliminating a

subprocess may be measured in terms of changes

in parameters of the overall composition, such

as cycle time and product quality, as well as the

impact of these changes on consequential oppor-

tunity costs of products and services produced

by the composition. Opportunity costs may be

measured in terms of opportunities and risks of

different kinds, such as revenues, market share,

competitive position, and others. Like cycle time,

the value of a composition cannot be obtained by

the arithmetic addition of values of individual

subprocesses in it. It is perhaps paradoxical that

the entire value of a composition might be wholly

contained in more than one subprocess at the

same time. In Figure 7.11c, eliminating even one

subprocess would bring the entire composition

to a grinding halt. That is the opportunity cost

of each subprocess; each has a value equal to the

entire composition.

While eliminating a subprocess will not

always bring all compositions to a halt, it could

have other impacts on product quality, cycle time

of the composition, and its cost. If this happens,

we must measure the consequences of losing or

replacing the subprocess in terms of impact on

items such as market share and revenue. That will

be its opportunity cost.

The value of an instance of a process is the

value it adds to each instance of compositions it

participates in simultaneously. An object (and

therefore a process) may simultaneously partici-

pate in several compositions. When we compute

the total contribution of a process to the goals of

the business, we must be careful not to double

count its contribution to processes and products

in overlapping compositions that also contribute

to the same goals. This makes estimation of value

even more difficult when the process contributes
to several close knit similar compositions with

many common processes and products that are

work in progress.

Supertyping and subtyping—abstracting

common components by generalizing them, can

sometimes make complex compositions simpler,

and untangle uncontrolled proliferation of over-

lapping processes. (We will see examples under

supply and demand chains.) However, in large

businesses, the estimation of the value of every

activity, or even only critical activities, may be

a daunting task. Subprocesses may be too many,

and compositions too complex, with not enough

information to allow accurate and reliable estima-

tion of the value. Analysts may be overwhelmed.

Hard data on monetary value might be impossible

to obtain and soft estimates might have to suffice
(“Soft” information: see Box 4.4).

Often monetary value added may only be

nominally or ordinally measurable, yet it is the

key to competitive advantage. Even when es-

timates have wide margins of error, value can

exceed cost by orders of magnitude. Even when

it cannot be quantified, even when estimates are
subjective, even if they are intuitive, value must

be considered.

219

Processes, Events, and Temporal Relationships

Activity Cost

An activity has a cost. The activity cost is the

cost of each instance of the process. It may be

the direct or indirect cost of the activity that

includes overheads such as governance costs or

costs that truly belong to, and are normalized by,

a composition to which the activity belongs (such

as facilities costs). The Direct Line Activity Cost
is the direct cost of the activity. It does not include

indirect costs such as allocations and overheads.54

The Indirect Line Activity Cost includes indirect

costs such as allocations and overheads and is the

cost of ownership of the activity.

The activity is an event. It may be a composi-

tion of input, output, and transformation events

(the transformation event uses resources to create

products—see Figure 7.12). Each event in Figure

7.12 will have a cost (even if the cost is nil or

“unknown”). In addition, resources consumed

may have costs. The activity cost is the sum of the

entire composition of resources consumed, input

and output events, as well as the transformation

event that corresponds to a single occurrence

(instance) of the activity. Unlike cycle times, the

activity cost of a composition of processes (or

events) is the total cost of all activities (processes

or events) in the composition.

However, when a composition contains con-

ditional events, conditional activities may or may

not actually fire. An activity cost is incurred only
when an activity occurs—once for each instance

of the activity that actually fires. Therefore, condi-
tional compositions may have conditional activity

costs—just as they may have conditional cycle

times. The purpose of reengineering processes

and products is often to reduce the activity cost

and/or cycle time of the entire composition.

Marginal cost—the change in cost—is key

when the purpose of process reengineering is

to reduce cost. Fixed costs might have been

normalized by the composite process but al-

located to subprocesses to support accounting

requirements. These costs will not change if an

individual subprocess in a composition is altered

or even eliminated (for instance, fixed overhead
costs like facilities and oversight costs for the

entire composition considered as a whole will

not change unless the entire composition with all
its subprocesses is eliminated). Therefore Direct,

rather than Indirect Line Activity Costs, are often

the key to cost minimization.

This argument does not rule out the fact that

sometimes the direct line activity cost of a pro-

cess may also have fixed cost components. These
fixed costs could flow from subprocesses within
the activity. In Figure 7.11, cleaning the vat in

which dough is made might be a subprocess hid-

den inside “Make Cookie Dough,” and the cost

of cleaning the dough vat each time we make

dough might be fixed. Eliminating the making of
dough would eliminate this subprocess as well.

Consequently, the cost of the subprocess, fixed
or not, would also go away if we eliminated the

making of dough.

When we consider the marginal cost of a

composite subprocess, we must not consider the

cost components normalized by the composition(s)

the subprocess belongs to, but must consider costs

normalized by other subprocesses that belong to

it. When we eliminate entire compositions as a

part of process reengineering, we may eliminate

the activity costs of a subprocess in them com-

pletely only if we eliminate all compositions that

own the subprocess. If some such compositions

remain, instances of the subprocess will no longer

be triggered as a part of compositions that are
eliminated. This will reduce the frequency with

which instances of the subprocess are triggered

but will not completely eliminate the subprocess.

Therefore, the frequency with which the activity

cost of the subprocess is incurred will be reduced,

but the activity cost will still be incurred (albeit

less often). That in turn will reduce, but not elimi-

nate, the aggregate activity cost of the subprocess.

This aggregate cost will be the activity cost of

the subprocess aggregated over the compositions

it still belongs to.

220

Processes, Events, and Temporal Relationships

In complex cases, governance costs could also

be impacted by the existence of subprocesses,

and some “fixed” governance costs might even
interact with a process merely because it exists.

In such cases, the model may become complex.

Fortunately, this level of complexity is usually not

necessary. Simpler models may often be almost

as effective. When interaction of marginal cost

with governance costs cannot be ignored, the

composition under consideration—the scope of

the cost model—must also include higher (gov-

ernance) order processes—see the discussion of

nonstationary processes early in this section. ([83]

in Appendix III (Jones, 1998) provides details of

compositions that mix governed processes with

governance processes.)

Cycle Time

We have seen how, unlike activity cost, the cycle

time of a composition of processes (or events)

is not obtained by summing up cycle times of

individual events in the composition; rather, it

is obtained by summing cycle times and delays

along the critical path through the composition.

However, cycle times, like activity cost, may be

fixed or may depend on the quantum of resources
used by the process. The relationship may be

simple; the cycle time might decrease inversely

in simple proportion to the cardinality of the re-

source. Two persons may finish digging a ditch
in half the time it would take one person to dig

it, or it might be more complex—a team of 50

programmer analysts might take more than one

fiftieth of the time it would take one programmer
analyst to finish a project.

Cycle time could even depend on interactions

between different kinds of resources and events.

The quantum of workspace, numbers of workers,

and availability of tools might jointly determine

productivity.55 Joint dependency implies that the

contribution of each resource or event to overall

productivity might depend on properties of the

other resources, events, and even products pro-

duced. Measuring the marginal contribution of

each resource or event to cycle times of others

in the composition (and hence to the cycle time

of the overall composition) may not be meaning-

ful in isolation; in very complex situations, we

might have to consider the entire composition

of resources, input, output, and transformation

processes as one indivisible unit—a single ir-

reducible fact.

And finally, cycle time, activity cost, and
added value will all depend on the scope of the

composition—what subprocesses we will consider

in arriving at the cycle time, activity cost, and

value of the whole. The scope of the composition

is often determined by process ownership (as it

was in the example in Figure 7.11b, when Make
Cookie Dough was outsourced). Naturally, chang-

ing scope or ownership may also change activity

costs, cycle times, and value. Reliability, accuracy,

and quality may also be impacted.56

Process Ownership

A person or organization must be responsible for

every business process—even automated pro-

cesses. Responsibility for a process is different

from doing the work of a process. Sometimes it is

called “ownership” of the process. The “owner” is

responsible for the overall quality and relevance

of the process, its issues, and coordination re-

quirements. Usually the owner of a process will

also oversee its operation. However, in large

organizations, the supervision of the process

might be delegated to another organization or

person (through formal and informal internal

“contracts”). The owner will still be responsible

for the process, but its supervision and immedi-

ate authority for proper operation may be the

responsibility of a different person or organiza-

tion. We will therefore distinguish between the

Responsibility (R) and Authority (A) dimensions

of process ownership.

The individual who actually executes or oper-

ates the process might also be different from those

221

Processes, Events, and Temporal Relationships

who are responsible for it or have supervisory

authority over its operation. Although a super-

visor may have oversight responsibility for the

manufacturing process, a workman might actually

operate a machine on the shop floor; although an
operations supervisor may be responsible for the

operation of an information system, an operator

might actually key data into a screen to operate

it. We will call this responsibility for “work-

ing” the process the “Work” (W) dimension of

ownership.

Processes frequently require collaboration or

consultation before or as the work is done. We

will call this the “Consultative” (C) dimension

of process ownership. All processes will be RW

processes, and some may be RWC or RAWC

processes. Of course, there is no bar on a single

individual filling more than one of roles for the
same or different tasks; if C and W merge, the

W replaced C when the two roles were played by the same person or organization because, based on the principle of subtyp-

ing by adding information, W is a subtype of C, and when the two roles converged on the same person (or organization), we

replaced the supertype with the subtype as follows: C is responsible for providing information to facilitate operation of the

process, whereas W is responsible for operating it and applying his or her expertise to ensure its proper operation. When

we merged C with W, we added information on who does a special kind of work—operation of the process itself. This is

why W is a subtype of C. Conversely, a W role may also be split into C and W roles played by different individuals.

Unlike the convergence of C and W, R replaced A because A was a subtype of R that we removed when the two

roles were merged in the same person or organization. Consequently, only the supertype was left as follows: Based on

the principle of subtyping by adding information, A is a subtype of R because it carries information on the contract that

delegated authority for process oversight. When we merged the two roles in a single resource, delegation had no meaning.

Therefore, the subtype became meaningless and was automatically replaced by the supertype as a resource for the process.

(In terms of the metamodel we are building, delegation is a special kind of representation—an irreflexive subtype of the
reflexive representation relationship.58 When that irreflexive relationship is attached to the owner of a process instead of
a symbol, it is called delegation.)

In both cases, the metamodel automatically adjusted the roles when responsibilities were realigned. If the metamodel can
automate the merger of roles, so can automation. These rules are a part of the algebra of process reengineering and they
may be automated in the electronic repository of knowledge artifacts—automated in support of process reengineering.

When we remove information about a resource without changing the transformation process of Figure 7.12, a supertype

implicitly replaces the resource we removed. It happened when R and A converged. It also happened when we divested

dough making in our introductory discussion on process mapping. In that discussion, a supertype, Acquire Cookie Dough,

automatically replaced its subtype, Make Cookie Dough. Subsequently we added information to the subtype to make it

more specific.
This principle of mutability is at the heart of process reengineering. Whether we recognize it or not, whether we real-

ize it or not and whether we know it or not, the supertype exists within a broken supply chain. Supporting information
systems may ignore this law only at their own peril. Conversely, adding information to resources may refine a supply
chain (or part thereof).

An event or process that triggers a successor process is also a resource for the successor. Based on Liskov’s principle,

a subtype of a resource is mutable with its supertype, but not necessarily vice versa. The implicit supertype hidden in a

broken temporal composition is a special supertype—a supertype mutable with the subtype it has replaced. If a process

was lost, the supertype is a process that produces the resource that was lost or produces a mutable supertype of that lost

resource. In terms of patterns, the supertype is the home of the essential pattern—the information that is essential for

the resource to stay a resource of the transformation process (see The Essence of a Pattern in Chapter IV). This law will

govern all governing processes that declare that their objective is to integrate or divest parts of a supply chain—it is

embedded in the metamodel of knowledge. It is integral to what makes a process a process. It is a law that governs the

making and breaking of processes.

Box 7.6. Automatic mutability of roles and resources in a process

222

Processes, Events, and Temporal Relationships

C role will be lost. W will replace it. Similarly,

if R and A merge, R will replace A.57 It is com-

mon sense, but someone has to tell the computer

that.

People or organizations with R, A, C, and W

level responsibilities are also resources used by

processes. High-level processes are implemented

by compositions of subprocesses. As we descend

through successive levels of detail in a composition

to individual tasks in a workflow, we will assign
W-level role responsibilities.

Although a task may have several C resources,

it is usually good management practice to have

only one each of R, A, and W resource. However,

this is not always possible. Just as the separation

of wheat from chaff was a task that could not be

broken into separate subprocesses for producing

wheat and chaff, some tasks need multiple W level

resources. A tug-of-war game in which two teams

pull a rope from opposite sides needs at least two

people—one on each side. The cardinality of the

input relationship may be two or more for a W

resource, or the process might even be an irreduc-

ible fact that binds different kinds of resources to

each other inseparably.59

On the other hand, it is always possible for a

task to have unique R and A resources by design.

It must happen by design; nothing stops us from

assigning multiple managers responsibility and

authority for a single task—if we do not mind

them tripping over each other. Also remember

that, from a purely mechanical perspective, tasks

may be arbitrarily grouped into a composition,

and each subtask may have a different owner. The

composition, a process, may have several owners

unless it is a special composition in which all

processes have been assigned the same owner.

Several process mapping techniques such as

the Activity Dependency Diagramming technique

of UML and the process mapping technique by

Hammer superimpose one of the three RAW

dimensions on process maps with “swim lanes”60

(as opposed to joining the resource to each process

with a line as the dataflow diagramming technique

Figure 7.13. Swim lanes in a process map

Call Information
Services Supplier

Customer

Record
Anomaly

Analyze
Anomaly

Resolve
Anomaly

Record
Severity
& Cause

Assign
Resolution

Group

Close
Anomaly

Call Center

Propose
Resolution

Call Center
authorized to resolve

Call Center not
 authorized to resolve

Record
Commu-
nication

Network
 &Data Center

 Operations

Test
Proposal

Not Resolved

Resolved

Marketing &
Shipping

Take
Order

Place
Order

Training

Ship
Software

Receive
Shipment
& Install
Software

Validate
Customer

Inform
Management

Software Development
 & Maintenance

Resolve

Resolve

Resolve

Send
Memo

Legal & Security Deny Assistance

Not Valid
Customer

Severe
Problem

Receive
Comm-

unication

Valid Customer

Activate
Customer.

X
X

X

X

Receive
Proposal

Use
Service

Anomaly
(event)

Trigger for Call
Center process

223

Processes, Events, and Temporal Relationships

does). Figure 7.13 shows the R dimension in swim

lanes for the call center process of an informa-

tion services provider. Note how the customer

is uppermost, and the other swim lanes are the

supplier’s internal organizational units (or supply

chain partners). Note also how the supplier’s swim

lanes are arranged in terms of their “distance” from

the customer. Those dimensions that interface

directly and most frequently with the customer

come first. This helps us understand the value of
each process owner in terms of her contribution to

the value of the service delivered to the customer.

It also facilitates process design and simplicity

from the customer’s perspective.

Technology is creating a new economy of

rapid and unrelenting change on a global scale. It

is changing our paradigms of what can be, what

should be, and the very image of what a business

process is. The age of knowledge is not only an

age of rapid and unrelenting change driven by

competition, but also an age of rapid and unre-

lenting change served by collaboration. Product

life cycles are being rapidly compressed. Risks

are large and success is handsomely rewarded.

Experience and expertise must be rapidly pooled

in order to innovate and bring ideas, products, and

services to market in compressed time frames.

The old sequential paradigms of isolation built

in the age of mass production are being replaced

by paradigms of speed, simultaneity, and col-

laboration. Tasks in which workers would throw

their work products over the wall to individuals

tasked to perform the next task are being rapidly

replaced by collaborative tasks in which multiple

and diverse knowledge workers simultaneously

collaborate to rapidly and iteratively produce a

finished product in a compressed time box. It is
the age of the high order relationship. In this age,

more and more, we find several individuals playing
W and C roles in a single, indivisible, time-boxed

process. In these collaborative processes, a new

role, “Facilitator” or “Coordinator” is replacing

“Authority” (A). We could call it “F.”61

Objectives of Subprocesses

Each subprocess has work product(s) and hence

has its own objectives. Collectively, subprocesses

express the goals of the process they compose

in concert, but each has its individual goal(s). In

very large and complex compositions, prioritiz-

ing, reengineering, and realigning subprocesses

can become very complex indeed.

Although each work product in a process map

is a step towards the larger purpose of the compo-

sition as a whole, we have seen how it is not the

goal of the overall composition, and it may not

even be a subtype of this larger goal. The goals of

processes they own become the goals of individu-

als and organizations that own them. How indi-

vidual work products orchestrate steps towards

the overall goal of the composition may get lost in

the “wiring” of large and complex compositions.

Goals of subprocesses may become paramount

to their owners. Many seasoned managers have

experienced how this can lead to resource conflict
and even conflicting objectives in organizations.
Conflict resolution and organizational effective-

ness are complex subjects that have spawned

professional experts and specialized branches of

knowledge. It is beyond the scope of this book. It

will suffice if we recognize that the golden rule of
process design is “keep compositions simple—as

simple as possible.”

As we will see under supply chains, the concept

of subtyping facilitates simplicity by recogniz-

ing commonality. When process compositions

are complex, high order (governance) processes

are needed to prevent chaos by regulating these

complex compositions.

Integrating Businesses

Business integration often implies business pro-

cess integration. Business processes are integrated

to realize synergies between the integrated parts.

Synergies might be in terms of value delivered to

customers, reduced cost, reduced cycle time, less

224

Processes, Events, and Temporal Relationships

risk and greater reliability, or enhanced product

and process quality. Product, customer, or process

imperatives may drive the perceived benefits of
integration.

Customers may buy or use a cluster of related

products and services together, or different

products may be sold in similar markets to

similar customers. Therefore, there may be

benefit in managing their marketing, distribu-

tion, and sales in an integrated way.

Products may be similar. Therefore, there may

be benefit in designing, manufacturing, and
marketing them in an integrated way.

Processes may be similar. Therefore, there

may be benefit in managing them in an in-

tegrated way.

Some processes may use products of others

as resources. Therefore, they may also benefit
from being managed in an integrated fashion.

Benefits of scale, quality, reliability speed,
cost, and responsiveness are only some of the

benefits an integrated process might reap.

Information, telecommunications services,

and entertainment are each distributed to similar

customers electronically with public commu-

nications networks; hence, the concept of ICE

(Information, Communications, Entertainment)

businesses. Indeed, telephone, television, and

entertainment firms have sought to acquire and
integrate their businesses on this basis.

Similarly, Manufacturing, Transportation,

Retail, and Distribution businesses also build

strategic relationships or otherwise try to integrate

their processes because the product of the pro-

cesses of one is often a resource for the processes

of another, and together, they are a supply chain

delivering value to the user (ultimate customer) of

the product produced by the overall supply chain.

The user of the product is the very reason for the

existence of the supply chain and therefore the

very reason for the existence of each business in

the supply chain.

•

•

•

•

There are two kinds of process integration—

horizontal integration and vertical integration.
In horizontal integration, subtypes are integrated

so that economies are realized by integrating

management of common components. These

components may be components of products or

processes. The bakery that decided to produce

variations of baked products or an automobile

manufacturer who decides to produces variations

of similar models of cars are both expanding and

integrating their business horizontally. In verti-
cal integration, the processes in a supply chain

are integrated so that the products of one process

are used as resources of others. These products

may be work products, coproducts, byproducts,

or even waste products. When a firm integrates
its business with a supplier, it is integrating ver-

tically.62 Indeed, horizontal integration, driven

by the need to manage common components of

products, services, and processes may also ben-

efit from vertical integration. The two kinds of

integration are not mutually exclusive; they may

even be complementary.

As collaboration wraps itself around competi-

tion in the age of the World Wide Web, a Web

of information backed by expertise and global

capabilities, it is supply chains more than indi-

vidual firms that have begun competing for their
place in the sun.

Supply and Demand Chains:
Compositions in Time

A supply chain is a succession of events, resources,

and intermediate products that deliver end prod-

ucts and services to consumers or end users.

Customers in a supply chain need not always be

end users. For instance, customers of a confec-

tionary manufacturer may be the distributors or

retailers, whereas the end users of confectionary

are their customers. Figure 7.11c was an example

of a part of the supply chain for cookies. Figure

7.14 is an example of a full supply chain.

225

Processes, Events, and Temporal Relationships

The supply chain in Figure 7.14 consists of two

parts. The upper half is a composition of processes

that add value to the product or service in order

to generate customer demand, whereas the lower

half focuses on making and getting products and

services to customers.

The upper half of the integrated supply chain

is where new products, services, and business

propositions are developed based on market needs.

This is where customers’ needs and product–ser-

vice use is analyzed to create new product–service

propositions and specifications. The upper half
addresses the satisfaction of customer needs that

creates the demand for products and services. That

is why it is called a Demand Chain. The demand

chain is where providers of products and services

awaken to new opportunity, embrace their vision

of business, articulate missions, state their objec-

tives, and assert their intent in product markets

of their choice.

The lower half of the integrated supply chain

in Figure 7.14 produces and delivers products

and services conceived and designed in the up-

per half: Resources are sourced and staged; the

products and services are produced and delivered

to their users (“delivery” might involve physical

transportation or merely giving users access to

services, software, or information). The Demand

Chain creates demand, and the Supply Chain

fulfills it.
Consider how a distribution channel consisting

of several supply chain partners is typically found

in the lower half of the supply chain in Figure

7.14. Consider a candy maker. The candy maker

may sell candy to distributors, who in turn sell

their stock of purchased candy to retail outlets,

Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Business Knowl-
edge, Norwood, MA: Artech House, Inc., 2005. ©

Figure 7.14. An example of a basic supply chain

226

Processes, Events, and Temporal Relationships

from where the end customer buys candy. The

manufacturer’s customer is the distributor, not

the consumer (user) of candy, and the distributor’s

customer is a retailer who is also not the con-

sumer of candy. The manufacturer, distributor,

and retailer are all a part of the supply chain

to the consumer of candy. They are owners of

processes in the supply chain that make them

owners and customers of candy on the way to its

consumer—the end user of candy. This is why

“customer” is an ambiguous term. To remove

ambiguity, we will call the user “end customer,”

“end user,” or “consumer.”

(A point to ponder for the thoughtful reader:

if a customer buys a box of candy as a gift for

someone else, who is the consumer and who the

end user? What if the recipient of the gift shares

the candy with someone else? Where should we

stop and why?)

Although the upper half of Figure 7.14 is called

a demand chain and the lower half the supply

chain by many, the industry does not universally

agree on these terms. It is broadly accepted that

the upper half will be called a Demand Chain, but

there is no agreement on whether only the lower

half or the entire cycle will be called the Supply
Chain. Unless we qualify it otherwise in this

book, we will call the full, integrated cycle the

supply chain. However, regardless of the tyranny

of words, each half is a value chain wedded to the

other.63 Together, the cycle creates value for the

consumer, the producer, and the intermediaries

between them. Their mutual interdependence is

thus completed.64

Hidden inside the high level processes in Figure

7.14 may be subprocesses like ordering, planning,

and purchasing that describe how different prod-

ucts are made, sold, and designed. Also, hidden

in the “wiring” of Figure 7.14, are succession

rules, input processes, and output processes that

bind the value chain into a composite whole. Each

subprocess normalizes information of a different

kind. However, at this highest level, they are all

unknown—hidden but not necessarily null in the

integrated supply chain.

With markets driving the need to collabo-

rate and innovate across corporations and with

technology making it ever more possible to do

so creatively and quickly, collaboration across

corporate and functional boundaries is becom-

ing increasingly important to the survival and

prosperity of firms; often the highest returns are
obtained by addressing cross-enterprise issues.

Processes are being integrated and redesigned in

support of these needs—even across corporate

boundaries. Since the late 1990s, there has been

a quickening of interest in creating supply chain

standards to facilitate process integration and im-

provement across corporations. These standards

must unify, yet they must also support diversity.

This can be challenging.

The chain of events in Figure 7.14 fits a mass
produced product more than a custom-engineered

product. Consider the supply chain for mass-pro-

duced candies. The manufacturer must produce

the candy before he can sell it. This conforms to

the chain of events in Figure 7.14. Contrast this

situation with the supply chain for a highly cus-

tomized product developed in close collaboration

with the customer. Consider a custom-built home.

The customer and the architect might envision and

design it together, and the home may be sold, on

this basis, before it is made and delivered to its

owner. If this happens, the “sell” process would

migrate to the upper half of Figure 7.14. This supply

chain does not conform to the chain of events in

Figure 7.14. As such, the supply chain in Figure

7.14 cannot be a universal standard.

This was an example of the difficult and deli-
cate challenge that standard supply chain models

must overcome—competitive advantage often lies

in distinguishing the firm’s products, services,
and processes from competition in order to pull

ahead, whereas collaboration presumes a com-

mon interface, supported by a common process.

The two business imperatives are diametrically

opposed and standard models must support both,

227

Processes, Events, and Temporal Relationships

or at least not compromise either—a difficult
proposition.

As automation speeds time to market, produce,

and deliver, as rapid and continual innovation

overwhelms older products, shortening life cycles

and making customers ever more fickle and harder
to satisfy, as the cycle in Figure 7.14 whirls faster

and faster squeezing some into oblivion, the

following have become the key to survival and

prosperity:

Change: The demand chain is becoming

critical, as is its integration into the overall

supply chain. Changes to products and pro-

cesses are fraught with risk, but change is

also the very basis for survival and growth;

change avoidance has become the larger,

more strategic risk. Changes to products and

processes distinguish a firm and give it custom
advantages over its competition in the eyes

of its customers. Custom built supply chains

can steal a march over competition with

custom processes and improved products that

satisfy end users better, faster, and cheaper

than competition.

(The term “product” means the entire pack-
age of products and services that constitute
the business proposition offered to custom-
ers, and this is how we use the term in this
book.)
Automation: Automation has become an in-

tegral part of the business process. Automated

enablers reduce cycle time, manage the scale

of operations, increase reliability, widen the

window of availability, and reduce operating

cost. However, setup costs for automation,

such as software development, training, and

infrastructure, can be significant. The time
taken to develop and deploy improved auto-

mation can adversely impact the cycle time of

supply chains very significantly. The impact
on business can be severe if it increases the

time taken to implement innovative ideas

and market improved products. This delay

•

•

is often a major disincentive for innovation,

and innovation is vital to business in this age

of knowledge. It is change and new learning

that sustains business. Reuse of automated

components will reduce setup costs, speed

the process, and reduce “teething trouble”

each time changes are made, this is the basis

of service oriented architecture, also known

by its anronym SOA. Therefore, done right,

it can make the business; done wrong, it can

break it.

Process: Changing a process requires realign-

ment of automation with the new process. Not

only can change be hampered by the need to

alter and reconfigure automated support, but
the process can also be adversely affected

for the same kinds of reasons as automation

was—setup costs, the cost of process defini-
tion, training, infrastructure, deployment,

testing and tuning, and so forth.

Process integration: Processes, integrated

and automated across a supply chain, speed its

cycle time. They can also reduce cost, improve

reliability, and improve the quality of service.

The key to success is integration across the

enterprises that are partners in a supply chain,

shortening, simplifying, standardizing, and

removing process redundancy, giving each

partner visibility into the processes and in-

formation of the other.

Hence, it is a delicate balance that must be

struck between change vs. stability, competitive

strength through difference, vs. interoperability

through common standards—a balance between

customization and standardization. It is this bal-

ance between uniqueness and conformity that

is becoming ever more precarious, even as it

becomes the key to survival and success. Figure

7.15 makes the point.

The most broadly reusable components of

knowledge are those that configure the meaning
of business. That is the outer rim of Figure 7.15.

These components are best practices all busi-

•

•

228

Processes, Events, and Temporal Relationships

nesses follow. They are the configurations of
knowledge that integrate the diverse partners in

a supply chain. It is these components that make

interoperability possible. They are relatively few

but the key to every business. Naturally, they are

also the components of knowledge most often

denormalized, fragmented, and repeated across

businesses, business systems, departmental sys-

tems, and low-level operations. They are replicated

uncountable times in uncountable forms and

formats. It makes their numbers seem vast and

their nature impossibly diverse. It makes integra-

tion of processes seem difficult and integration
of supporting software sometimes impossible.

Identifying and normalizing this knowledge must

be the ultimate goal of every supply chain. These

componenets should therefore also be the basis for

identifying services in SOA. They are described

in item [338] of Appendix III.

Snapped on to these broad components in

the outer rim of Figure 7.15 are components that

differentiate one industry from another. This is

typically the space occupied by vendors of Enter-

prise Resource Planning (ERP) solutions such as

ORACLE, SAP, PeopleSoft, MAPICS, and others.

However, ERP and supply chain management are

rapidly converging under the pressures of driv-

ing competition and shortening time frames. To

merge the ERP of the twentieth century into the

spinning supply chains of the twenty-first, we must
identify the broader components in the outer rim

of Figure 7.15. Only then will we be able to extract

the common cross industry knowledge embed-

ded in the multitude of ERP systems in operation

today. Only then will we know what normalized

industry practices may be snapped on to which

cross-industry components to normalize the entire

ensemble of knowledge, which will make our

processes and systems incredibly agile.

Users of ERP may then snap custom knowl-

edge from the inner rings of Figure 7.15 on to the

common knowledge at the rim. Thus, they can

quickly differentiate their firms from competition
in a way that will facilitate process and prod-

uct innovation as well as standardization—the

three survival imperatives in the turbulent age

of knowledge.

Figure 7.15. The delicate balance between competitive advantage, commonality, and distinction

Banking

Fi
na

nc
ia

l S
er

vi
ce

s

Focus on Commonality

Service
Engagement
Space

Common Space for
interoperability standards
& standard components

Focus on custom
value &

competitive
strength through

differentiation
(Custom

Components)

focus on competitive advantage through
interoperability and economic efficiency

(Broadly Reusable Components)

Insurance

G
overnm

ent/M
ilitary

R
E

U
S

A
B

IL
IT

Y

229

Processes, Events, and Temporal Relationships

Figure 7.16. The high level CPFR supply chain model

Understanding and normalizing this knowl-

edge in the outer rim of Figure 7.15 is not only

the key to its reuse but also the key to interop-

erability, innovation, and a strong competitive

position under the immense pressures of global

change. Recognizing these facts embedded in the

common sense, Figure 7.15 provides the key to

normalizing knowledge, its customization, and

reuse. This is the key to the kinds of creativity and

cost control that lend a corporation its competi-

tive cutting edge. It is also the key to managing

change in order to speed it. To survive and prosper,

the whirling supply chains of our time must be

reconfigured even as they whirl ever faster, flexing
nimbly with opportunistic and strategic business

practices; Opportunity may be lost forever if not

grasped in time.

In business and in software, it is separating the

shared and identifying the unique that presents the

biggest challenge. This challenge must be won if

we must create standards that will wrest integra-

tion and interoperability across the diverse work

products and services in supply chains (see Figure

7.19). Industry standard supply chain models have

tried to address the outer rim of Figure 7.15. They

have had only limited success. These standards are

not mutually integrated and do not refer to each

other. The Universal Perspective, summarized

on our Web site, ties them together. It addresses

the outer rim of Figure 7.15. Agile Systems with
Reusable Patterns of Business Knowledge: A
Component Based Approach, another book by

the same authors, elaborates further on the Uni-

versal Perspective and has the unifying patterns

from which all supply chains and their standards

must emerge.

The Universal Perspective flows from the
Metamodel of Knowledge. It adds normalized

business information to the already normalized

meanings in the Metamodel of Knowledge. Sup-

ply chains are polymorphisms of the Universal

Perspective. Supply chain standards derived from

the Metamodel of Knowledge, and the Universal

Perspective will normalize and integrate informa-

tion in complex, global supply chains of the kind

in Figure 7.19.

The State of the Art in supply chain standards is
discussed in Supply Chains and the Metamodel
of Knowledge, a supplementary section on our
Web site.

Reviewing standard supply chain model standards
will help the reader to understand how these stan-
dards help and what their limitations are.

Develop
Front-End
Agreement

Create
Joint

Business
Plan

Create
Sales

Forecast
Identify

Sales
Forecast

Exceptions

Collaborate
& Resolve
Exceptions

Create
Order

Forecast

Identify
Order

Forecast
Exceptions

Collaborate
& Resolve
Exceptions

Create
Order Deliver

Develop
Business

Plan Sourcing
& Production

Make
Product

Fill
Order
& Ship

Receive Retail

Consumer
Purchase

& Use

Develop
Business

MANUFACTURER
OWNED PROCESSES

DISTRIBUTOR
OWNED PROCESSES

JOINTLY OWNED
PROCESSES

CONSUMER
OWNED PROCESS

PLAN FORECAST REPLENISH

X

Mutually
Exclusive

EitherTrigger
(Trigger event

degree=1)

(No Exceptions)

230

Processes, Events, and Temporal Relationships

Figure 7.17. The basic ARIS business process model

Figure 7.18. The netmarket supply chain

Check
Order

Make
Item

Place
Order

Accept
Item

Accept
Funds

Process
Order

CUSTOMER

SUPPLIER

ENTERPRISE

Plan
Manufacturing

Place
Order

Pay
Supplier

Ship
Item

Pay

Accept
Funds

Define
Netmarket

Type

Define
Netmarket

Vision

Develop
Netmarket
Business

Define
Netmarket

Supplementary
Specifications

Purpose & Scope of

Market
•Positioning

•Opportunity
•Product-Market

•Stakeholders
•Netmarket owner
•Value Chain
•Market Segments

•Users
•Usage Environment
•User Needs

•Netmarket offering
Overview

•Competition
•Netmarket integration

•Standards & tools

•Customization
capabilities

•Netmarket profitability
•Criteria for success

Type of Market

•Market and product segmentation & categories
•Kind of Buyer-Supplier relationship
•Netmarket performance goals
•Netmarket complexity & Cost

•Demand for Netmarket and Use price
• Volatility
•Product vs.Transaction cost

•Workflow
•Market character & risk
•Process Owner (Market Analyst)
•Change Management

(Owned by Netmarket

Business Developer)
•Determine Pricing Model
•Sign up Buyers & Sellers
•Determine market
liquidity

•Licencing and legal requirements

•Netmarket Quality Criteria
•Usability
•Performance

•Supportability
•Performance standards

•Market Availability, reliability and downtime
•Capacity & volumes
•Fault management & Recovery

•Support & staffing
•Design constraints

Auction

Reverse
Auction

(Create)
Execute

Negotiated
Workflow

Find
Product

Execute
Trade

Execute:
•Auction
•Reverse Auction
•Exchange
•RFP/RFQ
(all subtypes of
Execute Trade)

Fulfill
Order

(Sub-processes):
•Purchase Order
•Shipment
•Receiving/Acceptance
•Invoicing
•Payment

Use
Financial
Services

Collect
Netmarket

Fee

Chat
collborate

Subtype of

Create
Auction

Execute
RFP/RFQ
(Create

RFP/RFQ)

Enter Vertical
Community

Subtype of

Govern
(Demand Chain)

Use

•Hosting
•Integration with other supply chain standardsand taxononies
•Product/Service Catalogs & presentation formats
•Search Methods, Tools& search engines
•Format conversions, Catalog sources and information logistics

•Data maintenance, integrity, synchronization & update frequency
•Data stewards/owners
•Third Parties & service suppliers

•Netmarket development and management Tools
•User environment, functions, features & security
•Technology and platform requirements & standards

Awaken and
Envision

Design & Improve

Sell

Design &
Improve

(SUPPLY)

Analyze

231

Processes, Events, and Temporal Relationships

You must have personally experienced ad-hoc and unstructured processes; they are even desirable under some circum-

stances. Sometimes they can speed things up, handle difficult exceptions, or even make business agile in turbulent times
when plans and assumptions become obsolete even before they are articulated. Under these conditions, good governance

can break down in a storm of change and complexity. Most of us intuitively understand and have personally experienced

processes that are ad-hoc and lack the kind of structure prescribed for baking cookies in Figure 7.11. It would be an ex-

ercise in futility to attempt to structure a meeting for brainstorming new ideas in fine detail by attempting to anticipate
every detailed event that can occur at the meeting, the conditions for it, its work products, interactions, resources, and

ownership. Business has room for ad-hoc and unstructured processes. Does the metamodel we are building have room

for unstructured or semistructured processes? The answer is a resounding yes.

The structure of a process, or the lack thereof, is based on its information content. There are four dimensions—kinds

of information that lend a process structure:

Ownership dimensions

Triggering rules (rules of process succession and process prerequisites)

Resources and work products (Although they have been shown together in the cube below, resources and work

products are separate dimensions in the structure of a process)

When any of this information is unknown, the process loses some structure. When nothing is known about the process,

it becomes the metaprocess. The metaprocess only tells us what a process is—its meaning and properties. On the other

end of the information scale, when everything about a process is known, we cannot only draw deterministic process maps

like that in Figure 7.11c, that show each resource, product, and flow, but also assign ownership in terms of the RAWC and

F roles we discussed earlier. When some of this information is unknown, the process is semistructured. The larger the

quantum of missing information, the more unstructured the process will be.

For instance, consider the rambunctious exchange of information in a brain storming session. It lacks almost all the

information above. All we know is who the participants are (the resources), the facilitator (if indeed one exists), and the

kind of work product we expect (but not a great deal about it). Indeed, sometimes even the resources and roles are un-

known. There is no team. Then the process is truly ad-hoc (when governance processes fill in or change the information
dynamically, the process cannot be called ad-hoc or unstructured. It might only be nimble. Only when information is truly

missing—it is unknown and ungoverned until the process occurs—is the process unstructured).

Consider the following figure. It is busy, but it describes exactly where structured and unstructured processes sit in
the metamodel of process and how it is the inherent lack of information that makes a process unstructured. As we leached

a domain of information, it lost measurability; as we leach a process of information, it loses structure—provided we do

not remove the temporal information that makes a process a process (if we do, it ceases to be a process and becomes a

nontemporal relationship). This is how processes become “soft” information. (The characteristics of “soft” information

are described in more detail in Box 4.4.)

•

•

•

Box 7.7. Collaboration and agility with unstructured processes and soft information

continued on following page

232

Processes, Events, and Temporal Relationships

Figure A. The information content of structured vs. unstructured processes

Each edge of the cube in the upper half of the figure represents a dimension of process structure. The corresponding
information may be missing (unknown), uncertain or known (certain). The metamodel in this book is deterministic. It

does not admit chance. Information is either present or absent; it is either certain or certainly missing. Therefore, for our

purpose, each kind of information is either unknown or known. The “uncertain” position was only included for illustrative

purposes—to show that information content of each dimension is actually a sliding scale in a continuum of uncertainty

in the real and uncertain world; we are going to wish away uncertainty in our discussion here but uncertainty that cannot

be wished away from reality.

Moreover, the cube has only three dimensions—length, breadth, and height. We need four, one each for ownership,

triggers, resources, and products. We are one dimension short. That is why products and resources share a single edge of

the cube (at the bottom). That edge has been expanded into a grid in the bottom half of the figure to show separate dimen-

sions for resources and products. Together, the grid and the cube show that processes are structured in four dimensions.

(If we became bloody minded about detail, we could insist on a dimension for each kind of responsibility, for each

resource, each product and each kind of trigger; however, such detail would contribute little to this discussion on the

meaning of process structure or rather the lack of it.)

The process on the top left hand cell of the cube is a completely structured process in which all resources, products,

triggers, and responsibilities are completely known. We could map it like the processes in Figure 7.11c. Diagonally opposite

it is the process in which none of these are known; it is only known that these will occur. This is the metaprocess of our

metamodel. Inside the cube, between these two extremes, are processes in which some of this information is known, but

some is missing. They are the semistructured and unstructured processes. The ad-hoc process, in which only the work

product is known, would lie inside the bottom edge of the cube. Within that edge, it would be in the top left hand cell of

the grid in the lower half of the figure.
Consider how unstructured and structured processes can orchestrate a composition of processes together. An aggregate

process that consists of subprocesses without full information on succession, ownership, resources, or work products, is

an unstructured process. Unstructured aggregate processes may well be a subprocess in a structured process map, and

Box 7.7. continued

continued on following page

233

Processes, Events, and Temporal Relationships

Some of these standards address unstructured
processes. This section discusses how the
Metamodel of Knowledge addresses unstructured
and loosely structured processes. It shows how
the lack of structure does not imply lack of clarity
or an unmanaged process, but a flexible process,
which determines the values of its parameters, its
owners, responsibilities, and goals at execution
time. It discusses the governance of unstructured
processes to ensure that they foster flexible re-
sponses, not chaos.

The purpose of these standards is to support in-
teroperability between partners in a supply chain
and to foster flexibility, integrity, transparency, and
diversity of products, services, and processes. The
following standard models are widely referenced
and have been discussed in this section.

conversely, parts of an unstructured process may be structured. For instance, Figure 7.13 described a structured process,

but the subprocess that assigned responsibility for resolution may have been unstructured in its internal operation. The

analysis of the problem and assignment of responsibility for resolving the problem might have been a collaborative process

between the call center, operations, training, and software development departments.

We may have completely ad-hoc processes, collaborative processes in which the team and resources are known, but

not any chains of subprocesses in a composition or a fully structured process of the kind in Figure 7.11 or Figure 7.13, or

even a mix of each in a complex composition. Indeed, in a deterministic model like ours, that does not support partial

certainty, each item of information will either be known or unknown. Four dimensions lend a process its structure. Thus,

processes may be structured in 2 x 2 x 2 x 2 = 16 ways. Of these, one is the completely structured process we have dis-

cussed at length and the other is the metaprocess in the metamodel we are developing. That leaves 14 kinds of unstructured

processes in a deterministic metamodel (excluding the metaprocess). The ARIS supply chain model, which we will soon

discuss, describes five kinds of unstructured processes in Figure 46 of Scheer.65

The 14 unstructured processes in our metamodel include, subsume, and extend the five processes in ARIS.
Adding structure (information) to an unstructured relationship or process creates more structured polymorphisms.

A Saga is also a kind of unstructured process. It has no information on when it will end, if it ends at all. An Endless Saga

is a subtype of Saga that we know for sure will not end. A process that we know will end, even if we do not know when,

is also a polymorphism of the generic saga, but we will not call it Saga; we will call it a discrete, or “ordinary,” process

(Box 7.2).

(Points to ponder for the thoughtful reader: This book describes more than four properties of processes. If some of

these other properties, like cardinality, degree, or the operating instructions that turn resources into products, are missing,

might the process be considered unstructured? Would we be justified if we considered some of these properties, such as
degree, order, and cardinality, extended information on process succession and subsumed them under that item? What if

we know who has responsibility for a process, but not who actually works it? For example, the responsibility for produc-

ing and delivering a management report might be fixed, but the choice of the person who physically delivers the report to
preordained recipients might be ad-hoc. Does this make report delivery a semistructured process? Does it imply that the

process ownership dimension lacks structure and the process itself is therefore semistructured? How do we distinguish

between structured and unstructured processes?)

Box 7.7. continued

Figure 7.19. A dynamic, semistructured, flexible,
any-to-any supply chain

SUPPORT &
HOSTING

(SUPPLIERS)
PRODUCTION
OF PRODUCTS
& SERVICES

CORPORATE
RESELLERS

SHIPPERS

VALUE ADDED
RESELLERS

INSURERS & REINSURERS

FINANCERS

PUBLISHERS

DISTRIBUTORS

END USERS

RETAILER

NET MARKET
ANALYST

234

Processes, Events, and Temporal Relationships

The CPFR Model from the Voluntary Inter-
industry Commerce Standards Association
CPFR is an acronym for Collaborative Planning
Forecasting and Replenishment. The CPFR model
in Figure 7.16 is a model of collaboration between

buyers and sellers that primarily targets the retail
industry. Its intent is to facilitate collaboration
between manufacturers and intermediaries in the
supply chain that ends with the consumer.

Figure 7.20. The SCOR supply chain model

SOURCE DELIVERMAKE

GENERIC PROCESS

ENABLE

Su
bt

yp
e

of

Subtype of

DISCRETE

PROCESS

Partition
of

Partition of

SUBTYPES
•Deliver to Value Added
Reseller (VAR)

•Deliver to distributor

•Deliver to direct sales

•Deliver to retailer

•Deliver to catalog sales

•Deliver to intermediate
manufacturing supply (Work
in progress)

•Deliver to field service

•Deliver to internal delivery

•Deliver to returns delivery

ENGINEER
TO ORDER

MAKE
TO ORDER

MAKE
TO STOCK

(Configure to Order)

(Build to Order)

SOURCE ENGINEER
TO ORDER PRODUCT

SOURCE MAKE
TO ORDER PRODUCT

SOURCE
PURCHASED

PRODUCT

Partition of

Partition of

CUSTOMERSUPPLIER

LEVEL 1:
The generic
SCOR
Process

LEVEL 2:
Product Specific
SCOR
Configurations

METALEVEL: Processes exist

SUPPLY CHAINIDENTIFY, PRIORITIZE
& AGGREGATE
REQUIREMENTS

IDENTIFY, PRIORITIZE
& AGGREGATE
RESOURCES

BALANCE RESOURCES
WITH REQUIREMENTS

ESTABLISH
PLAN

PLAN

Subtype of

(COMPOSITION) (COMPOSITION)

SUBPROCESSES
•Manage Rules

•Manage/Assess Performance

•Manage Data

•Manage Inventory

•Manage Capital Assets

•Manage movement and
routing

•Manage Configuration

•Manage Regulations &
Compliance

Aggregated into

ENABLE PLAN
• (Include) Align with
Financial Plan

ENABLE DELIVER
• (Include) Manage
Customer Returns

ENABLE SOURCE
• (Include) Manage
supplier agreements

Partition of

LEVEL 3:
•Subprocesses
•Resources
•Work
Products

Schedule
Product
Delivery

Receive
Product

Authorize
Supplier
Payment

Transfer
Product

Verify
Product

Common to all sourcing

Identify Sources
of Supply

Finalize Suppliers,
Negotiate

Include only when sourcing of
Engineered to order Product

SOURCE

Schedule
Manufacturing

Activities

Issue
Materials

Release
Product

Pack
Make &

Test

Common to making all products

Finalize
Engineering

Include only when making
Engineered to order Product

MAKE

Release To
Deliver

Stage
Product

Partition of

DELIVER
Multitudes of permutations of subprocesses
deliver products made to stock, configured from
stocked components, or engineered to order

ENABLE

Partition of

PLAN DELIVERY

PLAN MAKE

PLAN INTEGRATED
SUPPLY CHAIN

PLAN SOURCE

(DERIVED)

(Work Product:
Sourcing Plan)

(Work Product:
Production Plan)

(Work Product:
Delivery Plan)

(Note: Enable “Make” does not add subprocesses - it is a polymorphic manifestation of enable) Partition of

Reserve
Resources

&
Determine
Delivery

Date

Consolidate
Orders

Select
Carriers &

Rate
Shipments

Route
Shipments

Plan &
Build
Loads

Receive,
Configure,

Enter &
Validate
[order,

terms &
conditions]

Process
Inquiry

&
Quote

Pick
Product

Receive
Product at
Warehouse

Load Vehicle,
Generate
Shipping

Documents,
Verify Credit &

Ship Product

Receive
Product at
Customer

Site

Install
Product

Invoice &
Receive
Payment

DELIVER MAKE TO STOCK

Reserve
Resources

&
Determine
Delivery

Date

Consolidate
Orders

Select
Carriers &

Rate
Shipments

Route
Shipments

Plan &
Build
Loads

Receive,
Configure,

Enter &
Validate
[order,

terms &
conditions]

Process
Inquiry

&
Quote

Pick
(staged)
Product

Load Vehicle,
Generate
Shipping

Documents,
Verify Credit &

Ship Product

Receive
Product at
Customer

Site

Test &
Install

Product

Invoice &
Receive
Payment

DELIVER ENGINEER TO ORDER

Enter
Order,

Commit
Resources
& Launch
Program

Schedule
Installation

Route
Shipments
& Select
Carriers

Plan &
Build

Loads &
Shipments

Negotiate
& Receive
Contract

Obtain &
Respond
to Quote

Pick
(staged)
Product

Load Vehicle,
Generate
Shipping

Documents,
Verify Credit &

Ship Product

Receive
Product at
Customer

Site

Test &
Install

Product

Invoice &
Receive
Payment

DELIVER MAKE TO ORDER

235

Processes, Events, and Temporal Relationships

The ARIS Model
ARIS is an acronym for Architecture of Integrated
Information Systems. The backbone of the ARIS
supply chain is shown in Figure 7.17. It is an in-
put-output model with the enterprise at its center.
ARIS focuses on inbound and outbound logistics
between customers and the enterprise and, sepa-
rately, between suppliers and the enterprise.

The Netmarket Model
Like CPFR, and unlike ARIS, the netmarket model
from Rational Software Corporation in Figure 7.18
is an intensely collaborative set of unstructured
processes that are reusable within a limited scope,
primarily for trading through the Web. This section
on the Web describes the flexibility, governance,
utility of these unstructured processes, and what
the lack of structure means to automation.

Figure 7.21. Examples of SCOR Level 3 processes with resources and work products

A.

PLAN

IDENTIFY, PRIORITIZE
& AGGREGATE
REQUIREMENTS

IDENTIFY, PRIORITIZE
& AGGREGATE
RESOURCES

BALANCE RESOURCES
WITH REQUIREMENTS

ESTABLISH
PLAN

COMMON RESOURCES
•Item Master
•Routings
WORK PRODUCTS
•Prioritized Requirements

COMMON RESOURCES
•Enablement Information
•Materials Order
•Supplier & Component availability
WORK PRODUCTS
•Prioritized Resources

RESOURCES
•Planning Decisions
•Policies
WORK PRODUCTS
•Balanced Resources & Requirements

WORK PRODUCT
•Plan

SPECIAL RESOURCES
• Bill of Materials (Source & Make only)
• Deliver Plans (Source & Make only)
• Customer Requirements (Make & Deliver only)
• Production Plans (Make only)
• Service Levels (Deliver only)
• Order Backlog (Deliver only)
• Order Forecast (Deliver only)

SPECIAL RESOURCES
• Scheduled Activity Output (Make & Deliver only)
• Sourcing Plans (Make & Deliver only)
• Customer Requirements (Make & Deliver only)
• Production Plans (Deliver only)
• Production Capacity (Make only)

PLAN

B.
SOURCE

Schedule
Product
Delivery

Receive
Product

Authorize
Supplier
Payment

Transfer
Product

Verify
Product

Identify Sources
of Supply

Finalize Suppliers,
Negotiate

Include only when sourcing of
Engineered to order Product

RESOURCES
•Sourcing Plans
•Design Specifications
WORK PRODUCTS
•Request for proposal

RESOURCES
•Request for proposal
WORK PRODUCTS
•Procurement signal

RESOURCES
•Sourcing data
•Sourcing plans
•Replenishment signal
WORK PRODUCTS
•Procurement signal
•Materials on order

RESOURCES
•Purchased Materials
WORK PRODUCTS
•Verified receipt

RESOURCES
•Materials Pull Signal
•Material Inventory
location

•Work in Progress
Inventory location

•Finished products
Inventory location

WORK PRODUCTS
• Inventory

Common to all sourcing

C.

MAKE

Schedule
Manufacturing

Activities

Issue
Materials

Release
Product

Pack
Make &

Test

Common to making all products

Finalize
Engineering

Include only when making
Engineered to order Product

Release To
Deliver

Stage
Product

Partition of

RESOURCES
•Quotation
WORK PRODUCTS
•Final product &
process design

RESOURCES
•Production Plans
•Replenishment signals:
Delivery & Make

•Order backlog
WORK PRODUCTS
•Manufacturing Schedule

RESOURCES
• Inventory
WORK PRODUCTS
•Updated inventory
• Issued Materials

RESOURCES
•Product & process
design

WORK PRODUCTS
•Make replenish
signal

WORK PRODUCT
•Product Inventory

236

Processes, Events, and Temporal Relationships

Rosettanet
Rosettanet is a consortium of over 400 major
Information Technology, Electronic Components,
and Semiconductor Manufacturing companies.
The intent of Rosettanet is to create and promote
business process standards that will help integrate
global supply chains driven by the Web. Roset-
tanet supply chains may be global, dynamic, and
flexible, flexing to seek new opportunities even as

they reduce cost and time. Rosettanet emphasizes
the “supply” side of dynamic supply chains in
electronic space.

The SCOR Model from the Supply Chain
Council
SCOR, the Supply Chain Operations Reference
Model, is a generic, multilevel supply chain model
that was developed in 1996. The Supply Chain

Figure 7.22. Examples of the SCOR Enable process

(Note that the subprocesses in the figure do not necessarily occur in sequence)

A
ENABLE

INTEGRATED
SUPPLY CHAIN

PLAN

Manage
(plan)
Data

Collection

Manage
(integrated

supply
chain)

Inventory

Manage
(planning)

Configuration

Manage
Integrated

Supply Chain
Transportation

Manage
(integrated

supply
chain)
Capital
Assets

•Supply chain
performance
improvement plan

•Supply
chain
execution
data

•Item master
•Bill of materials
•Routings

Manage
(supply chain)

Performance

Manage
(planning)

Rules

(special)
Align supply

chain unit
plan with
Financial

Plan

Manage
Regulatory

Requirements &
Compliance

•Routings
•Capacity
constraints

•Planning
decision
policies

• Routings
• Capacity

constraints
• Planning

decision
policies•Service

requirements

• Routings
• Capacity

constraints
• Planning decision

policies

•Regulatory
requirements

•Business plan
•Strategic plan

•Service Levels
•Planning
decision
policies

WORK PRODUCTS

RESOURCES

•Supply chain
performance
Metrics

•Continuous
improvement plan

•Planning
data • Inventory

Strategy • Revised Capital
• Projected internal

& external
production
capacity

• Make/Buy decision
• Outsourcing plan

• Projected
internal &
external capacity

• Outsourcing
plan (movement & routing is

common to all SCOR “enable”
processeses. It is subsumed into
these subprocess for enabling
Plan)

(Performance
assesment is
common to all
SCOR “enable”
processes. It is
subsumed into this
subprocess for
enabling Plan)

(Data management is common to
all SCOR “enable” processes. It
is subsumed into this subprocess
for enabling Plan)

(This subprocess is
only for enabling
Plan)

B
ENABLE MAKE

Managing configuration
is common to all SCOR
“enable” processes. It is
subsumed into several
subprocesses for enabling
Make. Configuration
information is embedded
in production rules,
material routing and
location, equipment and
facilities status and
disposition, and even in
regulatory compliance.
We must be clear about
what it is that we must
configure in order to
extract, generalize and
coherently place shared
configuration behavior
into a common
configuration process.
Unless we classify
resources and work
products first, clarity is
lost in processes that
produce, use or act on
them.

Manage
(production)

Data

Manage
(production)

work in
progress
materials

(a kind of
inventory)

Manage
equipment
& facilities

(a kind of
capital
asset)

• Information Needs
Analysis

• Information needed to
maintain &create
automated
information systems

•Systems capability
• Information from
business processes

Manage
(production)
Performance

Manage
(production)

Rules

Manage
(production)
Regulatory
Compliance

•Capacity requirement
•Production orders planned &
actual

•Reports
•Incoming material
information

•Material location
•Information handling rules

• Production plans & budgets
• Parts availability
• Equipment & facilities

monitoring information
• Production quality & policies
• Manufacturer recommended

maintenance schedules &
specifications

•Regulatory
requirements

WORK PRODUCTS

RESOURCES

• Information
Systems Plan

•Reports,
information &
documents

•Preventive maintenance &
calibration schedule

•Equipment & facilities
replacement & disposition plans

•Parts & services consumed

• Material location rules
• Material movement

information and
methods

•Corporate objectives
& strategies

•Functional strategies
•Business plan
•Production plans
•Product design
•Production
capabilities

•Production rules

•Corporate objectives
& strategies

•Functional strategies
•Business plan
•Production plans
•Product design
•Production
capabilities

•Production rules

(movement & routing is
common to all SCOR “enable”
processes. It is subsumed into
this subprocess for enabling
Make)

(managing capital assets is
common to all SCOR “enable”
processes. It is subsumed into
this subprocess for enabling
Make)

C

ENABLE
DELIVER

Manage
(Delivery)

Information

Manage
(Finished
Goods)

Inventory

Manage
Product Life

Cycle
Manage

Transportation

Manage
(Deliver)
Capital
Assets

•Customer
address

•Customer
credit history

•Customer
purchase
history

•Customer
contract status

•Customer
shipping
preferences

Manage

(delivery)

Performance

Manage

(delivery)
Rules

(special)
Manage

Customer
Returns

Manage
Import/Export
Requirements

•Product mix & plans
•Integrated supply
chain plan

•Current inventory
information

•Returns information
•Scrap authorization
•Customer master
database

•Inventory rules

•Approved
item master

•Supply
chain
performance
metrics

•Inventory
rules

•Rules for
orders

•Budget

•Management
reports

•Supply chain
performance
metrics

•Planning
decision
policies

•External
configuration
rules

• Standard
practices & rules

• External carrier
rate tables

• Contract carrier
rates

• Customer order
size, weight,
freight class

•Planning decision
policies

• Inventory rules
•External Return
material
authorization

WORK PRODUCTS

RESOURCES

•External
benchmark data

•Delivery
Performance

•Returns data
•Customer order
•Customer carrier
contracts

•Warehouse
operating
constraints

•Delivery
performance

Movement &
routing is common
to all SCOR
“enable” processes.
It is subsumed into
this subprocess for
enabling DeliverData management is common to all SCOR “enable”

processes. It is subsumed into this subprocess for
enabling Deliver). The information involves all
information needs of the Deliver process

(This subprocess is
only for Deliver)

Managing inventory is common
to all SCOR “enable”
processes. It is subsumed into
this subprocess for enabling
Deliver.

Configuration
management is
common to all
SCOR “enable”
processes. It is
subsumed into
these subprocess
for enabling
Deliver

Management of regulatory
compliance is common to
all SCOR “enable”
processes. It is subsumed
into these subprocesses for
enabling Deliver)

•Revised business
assumptions

•Budgets
•Source of products
•Location of
customers

•Product mix & plans
•Government
constraints

•Government
regulations

•Shipping history
•Receipt history
•External tariffs
& duties

•Scrap authorization
• Incoming material
information

•Credit to accounts
receivable

•Returns

•Management
reports

•Supply chain
performance
metrics

•Customer service
requirements

•Enterprise
Distribution
model

•Government
constraints

•Shipping
parameters &
documentation

•External duty
drawback
claims

•Customer
master
database

• Inventory
rules

•Supply chain
performance

•Delivery
performance

• Inventory
target levels

• Shipping
parameters &
documentation

• Supply chain
performance
metrics

•Rules for
orders

•Configuration
rules

237

Processes, Events, and Temporal Relationships

Council (SCC), a rapidly growing global trade
association of several hundred major firms, has
adopted it as a standard. Figures 7.20 through
7.22 describe SCOR at different levels of detail.
SCOR is also a polymorphism of the generic
process model in Figure 7.12: The Source process
in SCOR is a polymorphism of the Input process
in Figure 7.12; the Make process of SCOR is a
polymorphism of the Transformation process of
Figure 7.12, and the Deliver process of SCOR is
a polymorphism of the Output process of Figure
7.12. The merits and demerits of SCOR are dis-
cussed in detail in Module V on our Web site. This
discussion will show that:

Generic processes are reusable, and we

can customize them through the subtyping

mechanism.

Subtyping and polymorphism give us a great

deal of flexibility in configuring and custom-

izing processes.

Temporal compositions are both like and un-

like the nontemporal compositions because a

temporal composition is a polymorphism of

a nontemporal composition.

The limitations of obtaining reuse by gener-

alizing and subtyping processes, rather than

the objects these processes use, create, and

change.

•

•

•

•

S95 from the World Batch Forum (WBF) and
Related Standards
The purpose of S95 is to seamlessly integrate
manufacturing operations on the factory floor
with the logistics of business. The World Batch
Forum (see Box 7.5) and ISA (Instrumentation
Systems and Automation Society)66 sponsor the
S95 standard. S95 divides manufacturing opera-
tions into the five conceptual layers in Figure 7.23,
starting from sensors and devices deep inside
the machinery of production and ending at the
Enterprise Resource Planning Level. Our Web
site has more detail.67

The reason for forging supply chains is the

meeting and melding of processes—their inte-

gration and optimization across corporate and

national boundaries in support of innovation,

speed, responsiveness, and most of all, in support

of customers. Therefore it is important to under-

stand how the metamodel will help us integrate

and reengineer the business process itself. That

will be our focus in the sections that follow.

Expanding, Integrating, and
Divesting Chains of Processes

Businesses integrate across supply chains through

partnerships, acquisitions, mergers, strategic ar-

Figure 7.23. The S95 hierarchy model

⌫ Level 0: Sensors and devices (like limit switches, temperature or light sensors bar code readers etc.)

⌫ Level 1: Direct controls for Sensors and devices

⌫ Level 2: Supervisory control of level 1 systems (like statistical process and quality control processes)

(Control Layer Boundary)

Î Level 3: Manufacturing Execution systems (MES) – detailed manufacturing plan & schedule, release
of work orders for execution, manufacturing recipes, bills of material, shop floor/work center routing
and operating instructions

Î Level 4: Enterprise Resource Planning (ERP) processes – business infrastructure and supply chain.

The front door of the enterprise

238

Processes, Events, and Temporal Relationships

rangements, and a plethora of other formal and

informal business relationships. However, the

benefits of integration will only flow if business
processes are integrated and information flows
smoothly. Requisite products must be available

where they are needed, when they are needed, and

at the right price in supply and demand chains,

and so must information. Experience shows that

integrating information systems is difficult and
risky unless the processes they support are also

integrated and conform to a core of common

standards. The age of collaboration is also the

age of unity in infinite diversity.
When we integrate compositions of processes,

there is every chance that information and busi-

ness rules will be replicated and denormalized.

They must be coordinated and merged. In other

words, knowledge must be normalized if synergies

must be realized. The components described in

this book and rules we have discussed for assem-

bling and mutually engaging these components

will facilitate normalization of knowledge and

realization of process synergy.

Consider Figure 7.11. Assume that one orga-

nization makes cookie dough and another bakes

cookies. The two processes are a part of the

supply chain that eventually delivers cookies to

customers. Assume that they decide to integrate

their processes. Before integration, Arrange
Dough Glob on Cookie Sheet was triggered by a

request for fresh cookies (the transitive succession

relationship in Figure 7.11c). After integration, we

must decide when we will initiate Make Cookie
Dough—should we start making the dough when

a request for fresh cookies is made (the “make to

order” polymorphism in SCOR), or should we keep

replenishing the dough each time it falls below a

critical level (the “make to stock” polymorphism

in SCOR) and not change the trigger for Arrange
Dough Glob on Cookie Sheet?

Assume we decide to trigger the making of

dough only in response to a request for fresh cook-

ies (as we have done in Figure 7.11c). In order to

keep information normalized, we must move, not

add, the triggering relationship to Make Cookie
Dough. We discussed the rules and reasons for this

under Figure 7.8b. When we expand a temporal

composition and add objects and relationships to

it, some temporal relationships might be transitive

with respect to others; we have discussed why we

must exclude the transitive relationship with the

longest duration in order to normalize temporal

information.

Conversely, these kinds of considerations are

equally true when we divest parts of a process.

In a temporal composition, downstream triggers,

relationships, events, and constraints derived from

upstream objects must be replaced if they are

broken off as a part of process divestiture or reen-

gineering. Not only will these replacements repair

and refurbish the divested and retained parts of the

process and make them operational but will also

articulate the functional requirements for making

supporting information systems operational for

the separated parts of the composition. Indeed,

with the transforms in Chapter VIII, some of the

changes could even be automated.

In the turmoil of global markets and the con-

verging pressures of opportunity and competi-

tion, driven by new learning, technology, and

innovation, businesses must continually flex to
prosper, or even to merely survive. In this tumult,

continual divestiture and acquisition of products

and businesses, with supporting processes, is

becoming more the norm than the exception. In

this age of information, the information infra-

structure that supports a process has significant
value. It is not just the process, but also its sup-

porting information systems that add value to a

divestiture or acquisition. Information systems

must be divestible with processes, or conversely,

acquiring the information system with the process

will add significant value to the acquisition. The
rules we will discuss next will facilitate all three:

divestiture, acquisition, and integration.68

239

Processes, Events, and Temporal Relationships

Process Reengineering and the
Mutability of Compositions

A process has a purpose. We understood this

purpose is the essence of the process. If the pur-

pose changes, the process loses its identity and

its essence—the essential temporal pattern and

rule it represents. We also understood that a rule

might have many expressions (Box 5.1). A process

is a temporal rule. Like any other rule, it may be

implemented (expressed), in many different ways

without losing its identity or purpose. We saw

this when we discussed subprocesses. We saw

processes could be reengineered in four ways

without losing their purpose:

Subprocesses may be added to (or deleted

from) a process map (same as adding or

deleting substates).

Rules of succession between subprocesses

may be changed (same as changing permitted

state transitions).

Resources (and role responsibilities) may be

changed, merged, or split.

Processes may be made more or less struc-

tured.

Through all four kinds of changes, the work

product of the process must remain inviolate.

Its essence and purpose will then be preserved.

Even as it keeps its work products and purpose

intact, all four kinds of changes will change the

process map—the composition that represents

the process. It will be the same rule—the same

essential pattern—only the expression of the rule

will be different; the temporal composition will

have changed, but not its work products. These

temporal compositions are knowledge machines

that engage elemental meanings to create the

process, and each meaning is a part—a compo-

nent of knowledge. The essence of a process can

only be preserved when change parts of these

compositions are mutable. Thus, mutability of

components—of Knowledge Artifacts—lies at

the heart of process reengineering.

•

•

•

•

These change parts are subprocesses, resources,
rules of state change and succession of substates,
and the information that lends a process its struc-
ture—three of the four dimensions of Box 7.7 (the
work product is not negotiable). The states of
events within events, the events in compositions
hidden within aggregate events (and processes),
are often called substates of the aggregate (dis-
cussed in The Essence of a Process). They are
change parts too. Process reengineering involves
discovering those compositions that match our im-
provement criteria—our process objectives—more
than current compositions do.

Adding and Reusing Subprocesses

Processes may be reengineered by adding sub-

processes (substates) to the original process. For

instance, in Figure 7.11, we could have inserted

an “Inspect Dough Glob” process between “Ar-
range Dough Glob on Cookie Sheet” and “Bake
Dough.” It would change neither the work product

nor purpose of Bake Cookie. The process would

remain a bake cookie process, but the process

map would now have an additional subprocess

and an additional substate, “Dough Globs under
Inspection.” The process was changed without

changing the product.

Process reengineering often involves insert-

ing new subprocesses that will add value to the

process or product in some way or removing sub-

processes of doubtful value. Inserting processes

into a sequence is identical to adding information

to the sequence and turning a succession relation-

ship into a full blown process, whereas deleting

a subprocess will merge it into the succession

relationship, which will consequently “heal itself”

(discussed under successions of compositions).

The new composition of subprocesses will be

a subtype of the old composition. It must be; we

added a substate and changed nothing else. We

know it must be a subtype of the old composition

because adding a new state is adding information.

and we know that subtypes retain the information

in their parents and add their own information to

240

Processes, Events, and Temporal Relationships

this inherited information. Liskov’s substitution

principle also tells us that subtypes are mutable

with corresponding supertypes in a composition

but herein lies a trap: the composition is a temporal

composition; some objects occur before others,

and the work product occurs last. In the following

discussion, we will see that process subtyping does

not necessarily imply subtyping its work products

nor does subtyping the work product always imply

that a subtype of the generic process can produce

it. Moreover, compositions may be subtyped in

bewilderingly different ways, which can make

their reuse extremely complicated.

We could decide that we will introduce colored

cookies into the market and modify the composi-

tion in Figure 7.11b to make colored cookies. To

make colored cookies, we might insert an “add
color” event between “Arrange Dough Glob” and

“Bake Dough.” However, that would change the

work product. Thus, that change would be a case

of product engineering and expansion of product

markets. In this case, both the process and the

product were changed; the process was changed

to make and support a new product. Process en-

gineering followed product engineering. It was

a consequence, not a cause. We will discuss that

under Product Reengineering. Our present focus

is the new process.

The new process will produce colored cookies.

It will also add a new state to Bake Cookie (which

supports our intuition that Bake Colored Cookie
is a subtype of Bake Cookie). The new process is

a subtype, an inclusion polymorph (see Box 4.8)

of the old process because Colored Cookie, its

work product, is a subtype of Cookie, the work

product of the old process—provided we did not

know nor care about the color of cookies the old

process produced. If we did (and we probably did

care about their shade of brown or white, even if

we did not call those cookies “colored,” and did

not think of them as such in business parlance),

then the old cookies had a color. In that case,

neither kind of cookie would be a subtype of the

other; both would be subtypes of a generic class

of cookies.

A completely different process may produce

the same work product as the following example

shows. When this happens, the process is a subtype

of the same service. A service may be considered

to be the composition of product and the generic

process that produces it:

Consider two processes that make potable

water—one from fuel cells by combining oxygen

and hydrogen and the other from seawater by

desalinating it:

The fuel cell burns hydrogen. The chemi-

cal reaction releases energy and water is a

coproduct.

Seawater has salt; it is unfit for drinking.
A different process uses energy to distill

seawater to produce purified, potable water
for drinking.

Resources and processes are different between

the two processes for making potable water, but

both make drinking water; they have the same

purpose. If we had no information on resources

or transformations within the process, the two

would be indistinguishable “black boxes.” The

differences are internal—different compositions

for producing the same work product, with differ-

ent resources, transformation rules and probably

cycle times and activity costs as well. Each is a

subtype of a service for production of water.

The Trap of Reusability and the
Paradox of Knowledge Reuse

Mathematically, the problem with subtyping

compositions (or aggregations) is that each is a

combination of parts, and each might share its

parts with others. Thus, there could be an enor-

mous number of ways of partitioning the com-

position—every possible part and combination

within the combinations within the composition

1.

2.

241

Processes, Events, and Temporal Relationships

Figure 7.24. An example of a polymorphic process in a process map with nontemporal relationships

is a possible criterion for partitioning it (see the

Borel object in Chapter V).

The only object shared by the two processes

for making water was their work product—potable

water, the object at the end of the composition.

The work product is the single stable object that

anchors alternative compositions, but it occurs

last. The universe of mutable compositions means

every possible composition that leads to that single

object at its end. The possibilities could be im-

mense and even infinite. The subtypes of these
compositions may be equally bewildering and

prolific. Indeed, if we change a few succession
relationships in this possibly immense variety of

subtypes so that a different object takes the last

place, what was a resource may become a prod-

uct and the product a resource. A subtype of the

composition that produced one product may even

A
Non-
temporal
relationship:
Person-
Credential-
Signatory
and Check

Person Check

CFO CEO
Check Signing Credential

Hold title to 0 or more
[held by 0 or more]

0..1

Check Signatory:
 Person with Check Signing Credential

(The same person cannot sign the same check multiple times)

Hold
[held by]

0..m
[0..m]

(sam
e

relationship) 0..m
[0..2]

Check Signatory

CFO CEO

Sign 0 or more
[signed by 0 to 2]

sign
[signed by]

(s
am

e

re
la

tio
ns

hi
p)

CFO’s
Signature

CEO’s
Signature

Payability
of Check

non-temporal 3-way
relationship

[s
ig

ne
d

by
]

surjection(inverse
relationship)

The structure that connects
“sign” to “Check”

Check

[s
ig

ne
d

by
]

S
ig

n

B
Adding
“before”
and “after”
temporal
information
to the “sign”
relationship
and then
subtyping
the process

242

Processes, Events, and Temporal Relationships

be said to produce the resource that produced the

product—a very confusing situation indeed!

Nontemporal compositions are different. No

one object or a group of objects can be said to

occur before or after others. All objects in the

composition are equal. However, subtyping even

nontemporal combinations can lead to the same

problem of a confusing profusion of subtypes of

bewildering variety.

We discussed the problem of perspective in

Chapter II. It is also process decomposition come

back to haunt us again and to tell us why it will

not work when scope is too broad, operations

too diverse, or systems too complex—the very

characteristics of the global large-scale businesses

and supply chains of the post-industrial era. To

slay the problem of perspective, subtyping must

start with products, resources, and processes—not

with compositions. This is the hidden trap we

must step around.

Paradoxically, reusing process knowledge is
reusing knowledge of subprocesses and compo-

sitions of subprocesses that express a process,

produce a product, and conform to performance

criteria. It is knowledge of what works, what

works well, and what does not, in terms of what

and under what conditions—parameters that are

often the goals of the process that governs the

composition (see Box 7.4). Thus, the heart of the

paradox is that extracting the common parts of a

composition involves subtyping the composition

and attempting to subtype compositions with even

a few change parts can be bewildering—a trap

we must step around.

The solution to this paradox lies in the fact that

reuse of the composition is not based on subtyping

compositions per se. Rather, it is based on either

using the work product of the composition as a

resource in a larger composition, or it is based

on subtyping the work product itself—just as

“colored cookie” was a subtype of generic cook-

ies, and generic cookies were a subtype of Baked
Product. The basis for adding processes was the

requirement for creating the new attributes (or

behaviors) of the subtype. The composition for

producing a generic product may be reused on

this basis, and new subprocesses added to create

specific properties. When we do this, the generic
product becomes an internal, possibly notional

resource in the composition, just as a generic

cookie was a notional resource in the process for

making colored cookies; the new process becomes

an inclusion polymorph of the old. The old process

may then be reused as a supertype, just as Chat-

Each person may sign the check at different times, but we have not constrained the concurrency of the polymorphisms of

“Sign Check” in Figure 7.24b. If it is a paper check, two persons cannot sign concurrently, and the two polymorphisms in

Figure 7.24b will be mutually exclusive at a given moment, but mutually inclusive over a given time period. On the other

hand, if it is a check that must be signed electronically, the two subprocesses in Figure 7.24b will not be barred from oc-

curring at the same time. Our discussion assumes that the constraints on concurrency are not known. The check is just a

paper or electronic check. We discuss concurrent check signatures under product engineering (see Box 7.9). Note also that

we have not constrained the sequence in which the two checks must be signed. There is no procedure that insists that the

CFO sign before the CEO or vice versa. If there were, the two polymorphisms would be sequenced—a daisy chain in a

process map inside the aggregate. Naturally, if such a sequence was mandated, the subprocesses could not be concurrent,

but the converse is not true—barring concurrency does not mandate a sequence. Sequencing a set of processes carries

more information than a bar on concurrency does. Sequencing not only tells us that events cannot occur concurrently but

also tells us which events must follow which. Therefore, a succession relationship is a subtype of a bar on concurrency.

Box 7.8. The information content of concurrency and sequencing constraints

243

Processes, Events, and Temporal Relationships

Collaborate was reused in the Netmarket supply

chain of Figure 7.18. Module 5 on our Web site

has a case study on reusing and modifying process

knowledge with the check payment example in

Figure 7.24, in which both the CEO and the CFO’s

signatures are needed to pay a check. It shows

how compositions of processes can emerge from

the need to subtype a generic process based on

its work product. The case study also shows how

process design may be automated with reusable

components of normalized knowledge.

Changing the Succession of
Processes

Even if no new subprocesses are added, and sub-

states stay the same between temporal composi-

tions, we can still change sequences of activities

to produce new compositions that will produce the

same end product. The only difference between

the two compositions will be that state transitions

will differ—Rules for state transitions and process

roll backs emerge from what may succeed what.

In the example on making colored cookies that

we just discussed, the “add color” subprocess

would be situated between “Arrange Dough Glob
on Cookie Sheet” and “Bake Dough” in Figure

7.11b. Subsequently, our process engineers might

discover that the taste and quality of our cook-

ies will not be affected, but process costs will

be trimmed if we use colored dough instead of

coloring each dough glob individually before we

bake it. We might then transfer “Add Color” to

its new position, between Make Cookie Dough
and Arrange Dough Glob on Cookie Sheet (in

Figure 7.11b). The new composition will have

the same parts as the old, but it will be a new

configuration and both configurations will be
mutable. Both configurations will be mutable
because both configurations are subtypes of a
composition in which Add Color is included in

Bake Cookie. Therefore, conforming to Liskov’s

Substitution Principle, they are mutually mutable.

Neither composition will change the meaning of

Bake Colored Cookie. Bake Colored Cookie will

have the same states as before, but rules for state

transitions, process interruption, and rollback

will change because the pattern of succession of

events within the composition has changed. The

composition normalizes these kinds of rules.69

Neither the meaning of Bake Colored Cookie,

nor the meaning of its work product, Colored
Cookie, has changed, but the activity cost of one

composition is less than that of the other. Different

temporal compositions may retain the purpose

of the composite process and yet have different

activity costs, cycle times, use different resources

(usually subtypes of a more generic resource), and

differ in other vital process parameters we have

discussed previously. The composite process will

retain its meaning, for its meaning is determined

by its work product, not by its constraints or its

parameters. The work product is the purpose

and the reason for its very existence; if the work

product does not change, neither does the pro-

cess or its purpose. This is the heart of process

reengineering.

(Each variant is just a different mutable sub-

type of a supertype in which only the purpose is

known. Each variant is therefore automatically

mutable with others; see Liskov’s Substitution

Principle.)

We could also change sequences of processes

by making them parallel to successors. The pro-

cess in Figure 7.6 may have been the result of

reengineering an older version of the process in

which Take Order, Pick Items, Raise Invoice, and

Ship Items with Invoice were all serially strung

together in a sequential daisy chain. The paral-

lel implementation of the reengineered process

reduced its cycle time without affecting its work

product—its purpose and objective.

Rearranging subprocesses or their succession

within a process is thus no different from adding

subprocesses to a composition—if we maintain
the constancy of its work products. We are merely

creatively reconfiguring the subprocesses within.
The succession relationship too is a process; it is a

244

Processes, Events, and Temporal Relationships

temporal relationship, albeit one that is starved of

information (see Successions of Compositions).

Alternative Resources: Alternative
Processes

Reassignment of responsibility is arguably the

most common form of process reengineering we

will find. It happens when a manager assigns (or
reassigns) roles of employees; it happens when

organizations restructure and reassign roles and

responsibilities of organizational units such as

departments and profit centers; it happens when
an organization outsources its processes and

services, when supply chains are made or broken,

and even when organizations merge or divest parts

of their business.

People are a resource processes use. People fill
roles, and roles impose responsibilities. People

who fill these roles must discharge the responsi-
bilities we discussed under Process Ownership.

Thus, roles are resources; each role is a class of

resource that is instantiated by individuals before

a process occurs. Thus, role is a resource class,

and the individual is a resource instance. A person

may fill one or more roles, and in doing so, may
have to merge the responsibilities of each role.

Box 7.6 discussed the merger of roles and respon-

sibilities. Roles may also require credentials and

skills of different kinds of the individuals who fill
them—credentials and skills needed to discharge

the responsibilities the role demands. Just as the

merger of responsibilities subsumed some roles

into their supertypes (see Box 7.6), so can skills

and credentials be subsumed into supertypes.

The “A” role for manufacturing operations on

the shop floor of a factory might require that the
person discharging the responsibility have an en-

gineering degree; the engineering specialization

and degree might be irrelevant, the person must

be an engineer. The person could be a mechani-

cal, civil, electrical, or electronics engineer, or

any other. The engineer might have a bachelor’s

degree in engineering, a master’s degree, a PhD,

or something else, provided it is a recognized

degree. This credential is a supertype of more

specialized credentials, such as degrees in dif-

ferent engineering specializations (mechanical,

civil, electrical, electronics, etc.), at different levels

(bachelor, master, PhD, etc.). Liskov’s substitu-

tion principle (and common sense!) tells us that

each of these kinds of specialized credentials is

mutable with the others in this role. The example

demonstrates that in order to normalize process

knowledge, the most generalized resource, that

is, the resource that carries the least information,

which is also, the least specified or constrained
resource the process can use—can be specified
as the requirement for the process. We will call it

the Principle of Parsimony (see Appendix II).

The Principle of Parsimony will apply equally

to any resource,70 even resources that are not

people—resources like materials, information,

and the like. In Figure 7.11, if dough of any kind

would do when we bake a cookie, asking that

dough be a resource used for baking cookies is

the right thing to do. On the other hand, if only

cookie dough, a special kind of dough with special

properties is needed, then only cookie dough the

resource must be.

Let us assume this is the case; that baking

a generic “Baked Product” requires a generic

kind of dough, whereas baking a cookie needs

special cookie dough. Then the process—the

temporal before-and-after relationship between

Cookie Dough and Cookie would be an inclusion

polymorph, a subtype, derived from the similar

generic Bake relationship between Dough and

Baked Product. As we have seen under reusing

compositions, when this happens, we can reuse

the process map for baked products as a basis

for the new process, and add information to this

generic map to derive the process map for the

more specialized process. Process knowledge and

the wisdom that comes with experience can thus

be reused to create new processes and meet new

challenges that grow out of the old.

245

Processes, Events, and Temporal Relationships

Subprocesses in process maps like these—

maps that are polymorphic subtypes of more

generic process maps—could use the same generic

resources as corresponding subprocesses in their

parents, or they may add information to resources

in one of two ways: Subprocesses that are inher-

ited from the parent process could add informa-

tion to the parent subprocess by (1) subtyping its

resources or (2) by including additional kinds of

resources. A generic Bake process might use a

generic resource—Dough, whereas Bake Cookie,
its subtype might use a subtype of Dough—Cooke
Dough; similarly, each check signing process in

Figure 7.24b used a different kind of signature. On

the other hand, subtypes of the planning process

in Figure 7.21a added information by including

new resources of different kinds in each of its

different polymorphic manifestations (even as

it retained the resources used by its parent). Of

course, a subtype could also do both.

Naturally, different resources imply that the

rules for transforming resources into products

will also be different. Additional resources, or

subtypes, of generic resources could impact

guard conditions or even the elementary opera-

tions within the process that transform resources

to products—operations as elementary as the

Production Segments of standard S95, which we

discussed under Supply Chains.
Inclusion polymorphs, subtypes of a more

generic relationships between generic resources

and products, could also impose more stringent

constraints on order, cardinality, degree, and other

properties of corresponding subprocesses than the

parent relationship does, provided they violate no

constraints set by the parent. We saw how sub-

processes may even be added or resequenced in

polymorphic relationships of this kind.

However, through all this, to normalize

knowledge and retain flexibility, the composi-
tion, as well as the subprocesses within, should

only specify the bare minimum of information

required to produce the requisite work product.

The key consideration is that subprocesses ob-

tained by adding information to sparse parents

will reuse the information in their more generic

parents and add only the information needed to

transform specialized resources into special-

ized products. Naturally, this must take into

account the constraints imposed on the process

and also the product by its governing processes

(if any)—governing processes like those in Box

7.4. No constraint (like constraints on cycle time,

activity cost, or others we have discussed) may be

violated just because we neglected to include this

information. These constraints could be inherited,

if they were generic constraints normalized by

the supertype, or added on, if they are specific
to a subtype.

Process and product reengineering may also

involve assessing the net value and opportunity

costs of these constraints and sometimes even

acting on the assessment by obliterating or alter-

ing constraints based on prior assumptions (and

sometimes even presumptions). When processes

change, so could resource requirements; even roles

and requirements for skills and credentials might

have to be creatively reengineered. This will be

our next topic. The metamodel we are building

does not constrict creativity; rather it creates room

for it with its laws—these laws, after all, are the

laws of reason; we could even call them laws of

common sense.

Processes That Gain or Lose
Structure

Let us return to a process snapped in two for

some reason. The reason may be a divestiture, an

organizational restructuring, a disrupted supply

chain or any other reason. From Box 7.6, we know

that even if we neglect to repair the process, the

ghost of the divested process, a supertype that

carries its essence, will still lurk in the shadows.

If we do not consciously repair divested processes,

unstructured processes will take their place, or

the process will cease—it will lose its essence

and simply disappear.

246

Processes, Events, and Temporal Relationships

Unstructured processes may keep the process

going in some form because it is a supertype of

the lost process and hence mutable with it (con-

forming to Liskov’s Substitution Principle); from

Box 7.7 we know that unstructured processes

carry less information than structured processes

but can preserve their essence (see Unstructured

Collaboration). For instance, consider Figure

7.11b. If we divested the making of cookie dough

but neglected to say how we would get the dough

to make dough globs, someone (unspecified)
would somehow (unspecified) beg, borrow, or
steal dough to make dough globs each time we

made cookies. The process for getting dough

would become unstructured and ad-hoc with no

articulated values for parameters like cycle time,

activity cost, and the others we have discussed.

Each would only be instantiated at the moment

an instance of the ad-hoc process actually occurs

and could swing wildly and unpredictably without

constraint over any conceivable range. This is the

penalty an unstructured process imposes; it may

not necessarily be more nimble than a structured

process but will certainly be less constrained

and hence risky (unreliable) and less stable. Poor

quality may be the penalty we must pay for the

lack of governance.

Poor quality might mean product or process

quality, the process in terms of the properties

that relate resources to work products, including

the temporal properties of processes we have

discussed, and the product, in terms of its attri-

butes and behavior.71 The term quality subsumes

both—it is an aggregation (not a subtype!) of the

information conveyed by both the process and the

product. Both have to be interpreted in the context

of the domains of information quality described

in Chapter IV. However, quality need not always

be the price of agility. Unstructured processes

may or may not be nimble, but they can be made
more nimble as we will now see.

Parameters for structured processes are es-

tablished by governing processes—processes of

higher governance order of the kind described in

Box 7.4 and elsewhere. In the century we have

just left behind governing processes were more

like the processes in Box 7.4; parameters were

static and preordained, prescribed by slow mov-

ing governance, for a broad class of processes,

and reviewed infrequently (if that). Governing

processes in the century that we are entering

must be different. They must be different because

businesses, nay, entire supply chains must be

agile and reliable in order to survive, respond,

and win a prize as fickle as it is precious—the
customer for whom they exist. It is the fickle but
fractious customer they must serve in order to

prosper and grow.

In the previous century, parameters of process-

es—their desired values and prescribed subpro-

cesses—were usually set in stone and preordained

for every instance of a class of processes. In the

century future, governing processes may have

to set these values from instance to instance,72

even as the supply chains beyond the enterprise

spin on at blinding speed, driving the processes

within—processes of the kind in Figure 7.20—at

an equal pitch so that they can be in harmony. This

is not an ad-hoc process. It is a governed process

and can even be a well-governed process, but it

is an unforgiving process. It is also a process that

must be governed at blinding speeds. Some busi-

ness managers compare it to changing the tires

of a car even as it belts down the highway at 60

miles an hour.

(Even if governing the parameters of, and

creating subprocesses for, every instance of a

process is an extreme situation, parameters and

subprocesses may have to be reviewed much more

frequently, much faster, and at more granular levels

than before. Automation leveraged by qualified,
motivated, and creative people will help.)

What it implies for business is convergence

of governance and execution—a sea change from

the work ethic of the industrial age where work-

ers repetitively and, often mindlessly, followed

instructions with little thought and no creativity.

That approach, applied to the needs of the new

247

Processes, Events, and Temporal Relationships

century will also divorce plan from action and

governance from process. Obliterating gover-

nance is not the solution. It will not always speed

processes; it can even slow them down, and it will

always increase risk. The result can be inconsistent

or invalid and ad-hoc processes—perhaps even

a slower, blundering process. The solution is to

change the style and substance of governance.

The solution is to drive responsibility and

authority down to the lower levels of the chain

of command; to make them converge at the point

where a process meets the person who executes

it. Each person with W level responsibility (see

Process Ownership in this chapter) should also

be responsible for at least first order governance
of agile processes. In extreme cases, the gover-

nance process might even allocate individual

responsibilities each time an instance of a process

occurs. (For example, the most qualified person
available in a network of workers may, by mutual

consent, volunteer to take responsibility for doing

the task.73)

The workers of the knowledge-age must be

qualified, creative, self-driven, and able to exercise
relatively sophisticated judgment compared to

those of the age just past. The focus of manage-

ment must shift commensurately upwards—to-

wards processes that govern the governance

processes—upwards on the scale of governance

order. The age of knowledge has arrived, and with

it the age of the trained knowledge worker and the

age of the trained knowledge manager.74

Product Reengineering and the
Mutability of Compositions

So far, our focus has been on a process and its

given purpose. It has been on doing things right.
Product engineering is more strategic. The focus

must be on doing the right things for the right

reasons and matching the right purpose to the

needs of the market and all the other constituen-

cies the business must serve. When we reengineer

products, the purpose of the process that makes it

shifts—the purpose is not inviolate any more.

The purpose of the process, its work product,

has remained a constant unshakeable anchor for

a process even as it flexed, changed, and morphed
to wrap itself around constraints and objectives

dictated by governance. Now that anchor will

Financial
Stakeholders

How are we performing
financially?

Features MetricsGoals

Customers

Are they delighted?

Features MetricsGoals

Regulators

Are we compliant?

Features MetricsGoals

Learning &
Knowledge

Are we adaptable?

Features MetricsGoals

Business Process
Owner

Are they optimal?

Features MetricsGoals

Goals

Features

Metrics

Figure 7.25. The community of stakeholders

248

Processes, Events, and Temporal Relationships

have to move. Product reengineering can even

obliterate it. It can shake the process to its very

foundations. The purpose of the process is no

longer inviolate; it is violated. The purpose shifts

usually in response to shifting needs. Shift it may,

but we cannot let the purpose drift, for that would

cast the process adrift. When it lifts anchor, a

process can move purposefully only if it knows

what others need. The process, bereft of its anchor,

will need a guiding star.

The work product is this guiding star. It must

be; even when it is not an immutable anchor, it is

the work product that connects the process to the

needs of the world beyond: The process will chart

a course only when its work product matches the

requirements of the world beyond its boundaries,

either as a resource for another process or as a

solution that satisfies customers—partners in a
supply chain—or even the end user at the very

end of the chain. Figure 7.25 describes the dif-

ferent kinds of stakeholders—communities of

interest—that work products must satisfy. They

can be communities with complex stakes in the

business.

The features in Figure 7.25 are qualities of the

product or process that each community may be

interested in and may assess formally or infor-

mally, quantitatively or qualitatively, methodically

or intuitively; even impressions might count.

These “features” are features in the broadest sense.

They are attributes, relationships, costraints, and

behaviors at class or instance levels that impact

each community in Figure 7.25.75

(A single feature of a product might be of

interest to a single community in Figure 7.25 or

to several. For instance, a guaranty of perfor-

mance might be of interest to every community

in Figure 7.25.)

The community of financial stakeholders may
be internal stakeholders like accountants and profit
center managers, or external, like the financial
analysts and stock traders who fuel financial
markets. Similarly, regulators may be internal,

like internal auditors, or external, like external

auditors, government regulators, public interest

groups, and others. Customers may be partners

in a supply chain or the end user who is the target

of the chain. The community of learning and

knowledge may be trainers, researchers, teach-

ers, and other specialized communities interested

in the information content of the product and its

potential for reuse and absorption. Process own-

ers are those interested in the product meeting

its specification in order to match a mandate; a
mandate dictated by either a governing process

or a process downstream that will use the prod-

uct as a resource. Perhaps both the process that

produces the product and the processes that use

it belong to a larger composition—a process that

is being reengineered for the kinds of reasons we

have discussed before.

The work product is a bundle of features, some-

times tied together by complex rules of inclusion

Figure 7.26. The structure of a product or resource

FEATURE FEATURE
GROUP

describe 1 or more
[must be described by 1]member of 1 or more

[contain 1 or more]

Must exclude/include 1 or more
[must be excluded/included in 1 or more]

(first order
multiple

degree object)
STAKEHOLDER

NEED

satisfied by 0 or more
[satisfy 0 or more]

PRODUCT

consist of 0 or more
[be part of 0 or more]

PROCESS produce 1 or more
[produced by 0 or more]

Resource for 0 or more
[uses one or more]

(irreflexive)

Subtype
of

satisf
ied

 by absen
ce

of 0
 or m

ore

[absen
ce

 sa
tis

fy
0 or m

ore]

249

Processes, Events, and Temporal Relationships

or exclusion. For instance, attributes like product

color, footprint, shape, warranties, guarantees,

insurance, service options, financing options and
others will all be features of products. Sometimes

inclusion of one feature might automatically

imply inclusion of others. For instance, coverage

against theft may automatically include coverage

against fire when cars are insured. Features may
be bundled into feature groups that describe a

product, as illustrated in Figure 7.26.76

Figure 7.26 is the metamodel at the root of

all product engineering. It is the summarized

metamodel of Object, and hence of all products

and resources. Note how mandatory inclusion or

exclusion of features in a group restricts member-

ship of the group. It tells us what features may

or may not be bundled together in the product.

A restricted group has fewer degrees of freedom

than an unrestricted group. Therefore, a group that

restricts membership is a subtype of a group that

does not. The inclusion or exclusion constraint,

the relationship between Feature and Feature
Group in Figure 7.26, adds this information

to the membership relationship in that figure.
Therefore, based on the principle of subtyping

by adding information, the inclusion/exclusion

relationship is a subtype of the membership re-

lationship between Feature and Feature Group.

Indeed, on this basis, the Feature Group itself is

a subtype of Feature and therefore a feature with

an identity of its own.

Note also that some stakeholder needs may be

insatiable or unsatiated—there may be no features

that address them. Conversely, a feature may have

little value; it may satisfy no stakeholder need.

It will then be a candidate for reengineering or

a target of obliteration. The many-to-many rela-

tionship between Feature and Stakeholder Need
also implies that many features may address a

single need, and some features may therefore be

redundant. Those too could be targets of product

reengineering.

Sometimes, a feature may be of worse than

marginal value. It might actually reduce the util-

ity of the product for the constituencies it serves;

its absence will then add value to the product.

Consider the check in Figure 7.24. It needed two

signatures: the CEO’s signature and the CFO’s

signature. If it was a paper check, both the CEO

and the CFO could not sign the check simulta-

neously. That is information. Constraints add to

the information content of the check and may

therefore be considered its features.77 However,

those features are inconveniences. The business

community had to accept these constraints be-

cause there were no alternatives until information

technology made electronic money transfers and

electronic signatures possible. Both individuals

may sign an electronic check simultaneously

or separately; it does not have to be physically

conveyed from one desk to another. The absence

of these constraints of the paper check—features

with information payload—actually increases the

utility of an electronic check; it becomes more

valuable to the community than the paper check

was. Thus, losing features—information—can

sometimes add value to the product.

The relationship in Figure 7.26, represented

by the broken-lined arrow between Stakeholder
Need and Feature articulates this negative synergy

between features and stakeholders. That relation-

ship, a negative articulation, will be a subtype of

the other relationship, the positive articulation

between Stakeholder Need and Feature, only when

it is a constraint. Otherwise it will be an equal and

independent relationship (see Box 7.9).

The process in Figure 7.26 is also worth not-

ing. It is a business or engineering process that is

not necessarily restricted to the production of a

single feature; it may produce many. Conversely,

there may be different processes that can all pro-

duce the same feature; we saw examples of this

earlier—how different processes may produce

the same product. This is why the relationship

between a Feature and Process is many-to-many

in the figure. It tells us that there may be many
different ways of producing the same feature—an

issue we have discussed at some length under

250

Processes, Events, and Temporal Relationships

process reengineering. The cardinality of that

relationship also tells us that a process need not

always produce a feature; for instance, the con-

currency constraint on signing the paper check

was not produced by a process.

(Could we consider the concurrency constraint

a byproduct of the engineering process that printed

the check? Why or why not?)

Each such process is also a subprocess in a

composition that makes the product. “Color” was

a feature of “cookie” (in the recent example of col-

ored cookies), and “add color” was the subprocess

that produced it. This is similar to the relationship

between product segment and production segment

in the S95 standard (under supply chains), except

A feature may add value to the product and it might also detract from it, but a feature will always add information. A product

with more features is loaded with more information than one with less; in terms of the pattern that represents the product

in information space (state space), its degrees of freedom are fewer. A feature may be desirable or undesirable from the

perspective of the stakeholders in Figure 7.25. When it is undesirable, the absence of the feature will address their needs.

The absence of a feature is as much an assertion as its presence. It conveys information about the product and is different

from being ambiguous (not knowing) about it. A product with a feature is as much a subtype of a product in which the

presence of the feature is indeterminate (unknown) as a product without it is—provided that the feature we have removed

is not a constraint. When a feature is a constraint, removing the constraint removes information. A constraint restricts the

degrees of freedom of the pattern of information that represents the constrained object. A constraint is information, and

it adds information. Therefore, a constrained object is a subtype of a similar unconstrained object.

For instance, a paper check has a feature in common with all physical objects; it can only be at one physical location

at a time. It is a constraint. On the other hand, an electronic check is not constrained thus. Therefore, it conveys less in-

formation (it lacks information on its precise location in space and, more importantly, locations it is excluded from) and

is consequently less restrictive—it has more degrees of freedom (see Chapter IV). Product reengineering often involves

removing features like this—features and constraints that are undesirable or otherwise reduce the value of a product. The

unconstrained product has less information than the constrained product and fewer features but more value.

The following metamodel illustrates the constraints a paper check adds to the process in Figure 7.24. It is these con-

straints that an electronic check targets with smart product and process reengineering.

Contiguous or disconnected
geographical areas demarcated
by boundaries or points in space
(for example, geographical
footprints, coordinates of an
airplane, latitude and longitude
etc.)

CHECK SIGNATORY SIGNATURE
PROCESS

CHECK

Occ
upied

 by (c
oncu

rr
en

cy
 = 0..1

)

[occ
upy (

co
ncu

rr
en

cy
=1]

Subtype
of

PLACE

Contiguous or disconnected
locations where information,

energy or physical objects may
be located or exchanged

(for example, internet bulletin
board, the electromagnetic

spectrum, a geographical
footprint etc.)

Subtype of

PHYSICAL
PLACE Idempotent loop around Physical

Place i.e., they must be co-located

(2)

O
ccupied by (concurrency = 0..1)

[occupy (concurrency=1]

Figure A. Multiple inheritance of the same relationship type ties the signatory of a check, the check, and the check
signing process to the same physical space

Box 7.9. Product engineering, features, added value and information content

continued on following page

251

Processes, Events, and Temporal Relationships

Figure A tells us that a check must be signed where the signatory is located, and only one signatory may sign at a time

because both signatories cannot be at the same place at the same time—a place of signature can hold only one signatory

and check at a time. The Occupied by relationship in Figure A is a subtype of the Contain relationship we have discussed

in this book. The same kind of relationship relates each instance of check signatory, the check itself, and the signature

process to Physical Place in Figure A.

We hardly need to elaborate on the fact that the signature has to happen where both the check and its signatory are

placed. It is perhaps less obvious that this bit of common sense makes the relationship between Physical Place and the

signature process a subtype of both the relationship between Physical Place and Signatory and the relationship between

the Physical Place and the check. The relationship between Physical Place and the process is a derived relationship. It is

derived from both parents, to which it adds information about the occurrence of the process at that place. We can see that

the relationship between Physical Place and the process is a subtype of its twin parents because it is contingent on both

parents, but not vice versa. The parent relationships, Physical Place to Signatory and the Physical Place to Check, stand

independently; a signatory must occupy some place and so must the check. However, the check can only be signed where

both these locations coincide. (See the discussion on the subsetting constraint in Figure 5.5c—the subtype cannot occur

unless the supertypes do, but the supertype may occur without the supertype.78)

All three are also polymorphisms of Occupied by, and in Figure A, the relationship in the middle is also a polymorphic

subtype of the relationships on either side. It is also idempotent with respect to place: if we followed the relationship around

the loop from an instance of physical place occupied by the signatory, the signature process and the check, we would end

at the same instance of physical place we started from. We must because all three objects—the signatory, the process,

and the check—must be collocated. The cardinality constraints imposed on the quaternary relationship of Figure B are

just a different format for expressing exactly the same rules as Figure A. Figure B shows the cardinality constraint that

makes the relationship in Figure A idempotent with respect to Physical Place. The format in Figure B is useful for showing

complex cardinality constraints—also components of knowledge—that occur in high order relationships.

In Chapter V, we saw how constraints on degree, cardinality and order are at the root of the behavior of relationships

and their interactions. These constraints on occurrence can manifest themselves in uncountable variations and interac-

tions as properties of mutual inclusion, mutual exclusion, subsetting, reflexivity, idempotency, and even more complex
constraints on occurrence. The cardinalities in Figure A show that a signatory, a process, a check, or any combination of

these objects may optionally occupy a place, but the inverse is mandatory—each object, singly or in combination, must

occupy a place (obviously!). Figure B elaborates on the cardinality of this inverse:

CHECK
SIGNATORY

SIGNATURE
PROCESS CHECK

occupy (concurrency=1)

PHYSICAL
PLACE

PLACE

Subtype of

1

Idempotent loop on place (each object is co-located, i.e., the instance of place each is located in is identical)

2 0..m 0..m 1..m

Figure B. Idempotency can be interpreted as a cardinality constraint

Figure B tells us that there are exactly two signatories to a check, that there may be no checks or several, and that

there are several places to hold them. Figure B also tells us that a check may only be signed where the signatory is (natu-

rally!)—that is, the signatory, the signature process, and the check must occupy the same physical place at the same

time. Moreover, this combination of signatory, the signature process, and an individual check at a given time and place

is unique. It distinguishes one signature process from another. Idempotency is established by this limit on the cardinality

of the signatory-process-check-place tuple. (The cardinality of Occupied by relationship (not shown in Figure B) for this

Box 7.9. continued

continued on following page

252

Processes, Events, and Temporal Relationships

combination ranges from 0 to 1 and provides for the contingency that there may be quiescent periods when check signing

does not occur.)

However, unlike Figure A, Figure B by itself does not tell us that a person may occupy a different place than a check does

(it does not bar it either). To articulate these rules, we would require distinct Signatory–Physical Place and Check–Physi-

cal Place relationships—separate relationships, 2-tuples not shown in Figure B, with (binary) cardinality constraints that

would tell us that at a given time a check or person may only occupy a single place. The three relationships would each

normalize three different irreducible facts. Figure B shows only fact 3 below:

A check must always have a physical location.

A signatory must always have a physical location (not necessarily the location of the check).

The location of the signatory and check must be identical when the check is signed (Figure B).

The fourth irreducible fact, also not shown in Figure B, is the inverse relationship between the signatory and physi-

cal space—that an instance of physical space cannot hold more than one signatory at a time. It is a cardinality constraint

imposed by this inverse, an assertion that articulates an independent irreducible fact. It forces the two polymorphisms

of the signature process in Figure 7.24b to become nonconcurrent. They cannot occur at the same time, even if they are

mutually inclusive.

Our reengineering focus will be Rule 1—a feature of the check. We will change it so that the check can be in several

places simultaneously. Then each signatory can have simultaneous access to the check, and the signature process may

then occur concurrently. To understand how we can do this, we must understand the subtyping relationship between Place
and Physical Place.

Place, in Figures A and B, is a more generic concept than the three-dimensional physical space we live in (or its

subspaces like a two dimensional geographical area); it is any venue in which information or physical objects may be

exchanged or stored. It subsumes both physical and virtual space; a place could be a virtual location like a Web site or

the electromagnetic spectrum. Indeed, the FCC (Federal Communications Commission, a government organization for

regulating telecommunication businesses in the U.S.) auctions parts of the spectrum to telecommunications companies like

others might auction real estate. Unlike an object in physical space, an item of information in the virtual world may not be

tied to a single place at any moment in time; the same information may concurrently exist at different locations—Web sites,

frequencies, electronic bulletin boards, and the like. Information about the check can be available to both the CEO and

CFO wherever and whenever they access the Web (or virtual space in general). This is the key to reengineering not only the

check but also several other kinds of products which, stripped of their tangible form and format, are pure information.

Physical Place, unlike its more generic parent, is a special kind of Place. It is a constrained place occupied by physical

objects. Physical Place is a subtype of Place in which an object may occupy only one place at a time (different instances

of Physical Place also have different capacities for “containing” different objects—see the discussion on an object’s

capacity for relationships).79 The paper check is stuck in this paradigm. That is why all the signatories who must sign it

cannot concurrently sign it. To release this constraint on Check, we must recognize that it is not a physical object; it is

information, and it can reside in a virtual place. The moment we switch the relationship between Check and Physical Place
in Figure A from Physical Place to Place, it loses its concurrency constraint; it is a different product, less constrained,

with fewer features.

Figure C breaks physical Place into two subtypes to show the two places the check must be signed—one place for

each polymorphism in Figure 7.24b. Figure C also shows each polymorphism of Sign Check, as well as each signatory,

separately. The cardinality ratio of each signatory with respect to each signature process is shown in parenthesis between

the signatory and the process in Figure C. It is the same as in Figure 7.24b because it is the same process:

•

•

•

Box 7.9. continued

continued on following page

253

Processes, Events, and Temporal Relationships

CHECK SIGNATORY
(CEO)

SIGNATURE
PROCESS

CHECK
(PAPER)

occupy (concurrency=1 Idempotent on place)

PLACE

Subtype of

PHYSICAL
PLACE

CHECK SIGNATORY
(CFO)

SIGNATURE
PROCESS

Subtype of

PHYSICAL
PLACE

Concurrently Exclusive
Mutually Inclusive

Relationships

occupy (concurrency=1, Idempotent on place)

POLY M OR H I SM B POLY M OR H I SM A

Subtype
of

Subtype
of

(1) (1)

(Feature will
be removed by
reengineering

“Check”)

Figure C. Polymorphisms of “Sign Check”

In Figure C, the fact that the check cannot be in two places at the same time is shown by the concurrency constraint

on the mutually inclusive relationship between the check and the two places where it is signed. It is this feature of check

we will remove as we release it from its Physical Place into a more generic Place. Figure D shows how this happens as

we relocate the check from Physical Place to Place. We do this by switching the “occupy” relationship between the Check
and Physical Place from Physical Place to Place. The check is now pure information stripped of its physical medium—its

paper form. Figure D illustrates the effect of this switch.

CHECK SIGNATORY
(CEO)

SIGNATURE
PROCESS

CHECK
(INFORMATION)

Occupy
(concurrency=1)

PLACE

Subtype of

PHYSICAL
PLACE

CHECK SIGNATORY
(CFO)

SIGNATURE
PROCESS

Subtype of

PHYSICAL
PLACE

occupy
(concurrency=1)

POLY M OR H I SM APOLY M OR H I SM B

Occupy 1 or more (inherited) Occupy 1 or more (inherited)
Occupy 1 or more

Subtype
of

Subtype
of

Idempotent on placeIdempotent on place

(1) (1)

Figure D. The reengineered check and its signature process minus undesirable features

Before the check was reengineered, it was a paper check. The two polymorphisms of Sign Check in Figure 7.24b were

constrained. They could not occur concurrently. After reengineering the check, the two different polymorphisms of the

check signing processes in Figure 7.24b may occur concurrently. The process will be faster, with less latency. It will adapt

the moment it loses this burdensome feature, a constraint on concurrency. The process will thus become more valuable

to those with stakes in the business.

Box 7.9. continued

continued on following page

254

Processes, Events, and Temporal Relationships

that the structure in Figure 7.26 is not confined
to products and processes of the manufacturing

industry alone. The products in Figure 7.26 could

be individual services like an insurance policy,

individual physical items like a car, packages of

several services or physical items bound into a

product, or even services packaged with tangible

physical items like a car with a warranty and

24x7 customer service (that is, customer service

at any time on any day), information on upgrades

or new features, membership of chat rooms or

communities of interest, and so on.

Note also that it is the inclusion of temporal

information in the composition of relationships

that loops back from Product to Feature that

turns it into a process—the process on the top

left hand corner of the figure. Every nontempo-

ral relationship is a potential process if we add

temporal information to it. It can instantiate how,

and with what resources, the product at the other

end of the relationship may be produced.

For now, it will suffice to understand that sub-

typing and reuse of components cannot happen

in a vacuum. That, as we saw, could easily trap

us into a meaningless and confusing mechani-

cal exercise that interminably juggles complex

combinations with no clarity or precision about

what may be reused where. Rather, inclusion and

exclusion of features based on stakeholder’s needs,

will help us identify and reuse compositions of

processes—processes that produce a product via

its features. Subtypes of products and polymor-

phic variants of processes may thus be driven by

stakeholder need channeled through features—the

This example demonstrated not only how a product may be reengineered but also focused on a frequent source of

reengineering opportunities and a common source of business rules—subtypes of the “contains” relationship that relates

objects of different kinds to Place and Physical Place and how Physical Place can inherit these relationships from Place,

imposing concurrency constraints of its own. A companion book by the same authors, Agile Systems with Reusable Pat-
terns of Business Knowledge: A Component Based Approach, elaborates on patterns in the Universal Perspective, which

describe several other universal and frequently reused patterns like this. These generic patterns are the basis for product

and process reengineering. They are used frequently in different and disguised forms, like the electronic check was. The

patterns stay disguised, hidden behind their polymorphic masks. Designers and analysts focus on the mask (like Check
was a mask—a manifestation of Information); knowledge remains unshared and imprisoned in specific reengineering
applications—we keep re-inventing the wheel every time we make a change. The Universal Perspective unifies shared
knowledge and unmasks its fragmented multitudes to show them up for what they truly are: polymorphic hordes with a

single face and a single form. In Agile Systems with Reusable Patterns of Business Knowledge: A Component Based Ap-
proach, we will see them crystallize out of their uncountable disguises. We can then reuse the wheel, unmasked.

Sometimes features may be even more complex than we have shown in this example. Some features may add value

for some stakeholders but detract from the product for others. The needs of the communities shown in Figure 7.25 some-

times diverge to the point of conflict. Then a feature that is useful for some may become worse than worthless for others.
Reducing the order-to-payment cycle time might be a desirable feature for a seller but undesirable for a cash strapped

buyer. Business strategy often involves formulating the optimal balance of features for the community of stakeholders.

However, that discussion is beyond the scope of this book. It belongs to the realm of game theory ([313] in Appendix III

and Chapter 11 of Gillett, 1976, has additional reading on game theory. Readers who are interested in the business aspects

of product and process reengineering may read [295] of Appendix III—Hammer & Champy, 1993).

For us here, it will suffice to understand that the concept of feature and the structure in Figure 7.26 provide the hooks
that connect product planning and business strategy, disciplines at the heart of any well run business, to business process

engineering. Processes produce features, and features require processes; the line between process and product reengi-

neering is indeed very thin.

Box 7.9. continued

255

Processes, Events, and Temporal Relationships

features that make a product and lend it an iden-

tity. Random walks through fields of abstract
and meaningless permutations of subprocesses

and their mutual interdependency can neither be

productive nor meaningful. It is unlikely to result

in creative reuse of process knowledge across

large scopes in complex situations.

Indeed, the line between product and process

engineering is very thin. Reengineering a process

may alter substates of the process and features of

intermediate products within the process—an

aggregation of subprocesses. Reengineering the

features—states—of the end product is product

reengineering—a subtype and a special case of

process reengineering, in which the features of the

last product in a temporal composition are reen-

gineered. We may cross the thin red line in either

direction as we strive to please the stakeholders

in Figure 7.25. In this, we strive to excel. It is a

search for excellence driven by global competition

and striving that will never end.

THE METAMODEL OF
RELATIONSHIP

Generalizing relationships is the key to normal-

izing interactions between objects. Relationships

are objects that convey information about interac-

tions, strong and weak, quantitative and qualita-

tive, information rich and information sparse. The

inchoate information in the gulf between objects

crystallizes around a Web of relationships.

A relationship is an object. It is also a pattern

of objects, sometimes sequenced, sometimes

not.80 Sequenced, it can be a Cartesian product;

unsequenced, it is still a pattern of object instances

(see Box 5.2). It could also be a pattern of the

same object instance, for example, reflexive or
idempotent relationships, but it must always be

always a pattern with a meaning.

This meaning might convey minimal informa-

tion: that some unknown relationship “involves”

or associates object instances in some unspecified

way. As such, “involves” is the basic thread, a bare

relationship that is the foundation and parent of

every relationship in this book. If it had a lighter

information payload, it could not be a relation-

ship. “Involves” only tells us that the objects it

connects are associated. “Involves” is the essence

of the pattern called “relationship.”

Meanings of relationships crystallize and

grow around this central thread shared by every

relationship. If this thread breaks, relationships

vanish into null space—a place of nonbeing for

things that are not and the things that cannot be.

It is this place, in the bottomless gulf between

objects in information space, that holds the

meaning of nonexistence—nullity—and within

it lies an even darker region—the nullity of the

impossible, the home of things that cannot be.

That which cannot be is a subtype of that which

is not. It adds information to nullity—the mean-

ing of impossibility. Null space denies existence,

and its darker regions deny even the possibility

of existence.

Processes that cut relationships or delete

objects send them into null space. Constraints

that clash send objects and relationships even

deeper—into the region of impossibility. Effects

that create bring objects into existence from the

darkness of null space, a change of state. Effects

that delete constraints can make even the impos-

sible possible. They can pull objects out, even from

the darkness of impossibility at the heart of null

space into the band of possibility. Other effects

may then make the possible exist.

Any relationship that denies existence de-

scribes the impossible relationship in the depths of

null space. A relationship that asserts that a person

cannot contain another person bars containment

and, in so doing, sends that which it denies into

null space. “Involve” is the shared meaning that

makes a relationship possible. “Involve” could

declare the existence of an association, and “In-
volve” could also bar it. In either case, “Involve”

conveys information about an association. It is a

thread shared by all relationships.

256

Processes, Events, and Temporal Relationships

The primary channel for propagating shared

meaning is the subtyping relationship. The

metamodel in Figure 7.29 shows how the com-

mon behaviors of relationships filter down to the
bottom of the hierarchy there. A subtype adds

information. The added information manifests

meaning by making a general meaning more

specific, like “composed of” makes “aggregation
of” more specific by describing the structure of
the composition. Subtyping also propagates con-

straints. Subtypes inherit the lawful state space

of their supertypes and may restrict it even more

by adding constraints—also information—of its

own. A subtype may add features that increase

the dimensionality of the state space it inherits.

The inherited state space will then become a

subspace within the state space of the subtype,

but even as it adds information, the subtype must

stay within the constraints it has inherited. A

subtype cannot violate the constraints and law-

ful state space it has inherited from its parent but

may add information to the parent relationship in

the following ways:

Like any other object, a relationship will

have its dual in null space—a rule that says

that the relationship (or object) in question

does not (or cannot) exist. These will all be

•

A set has no information on replication of its members. Multiple instances of the same member are considered to be one.

Different members are considered different instances, even if they are identical in every way because the individual in-

stance identifiers of each member are then considered a symbol of all things (states) that are different between the members
and therefore distinguish one member from another nominally identical member of the set. A list, on the other hand, has

information on the multiplicity of membership of instances of the same object instance.

A relationship is like a list of object instances, but there are differences: A list may be empty, without any items,

whereas an instance of a relationship must list at least one object instance (perhaps more). If the relationship has only one

object instance, it is idempotent because it relates the instance to itself. Therefore, it must list the instance at least twice.

A relationship is a more constrained pattern than a list, with less freedom and more information: a subtype. Figure 7.29

makes this clear.

An empty list is a zero degree, zero order aggregate. A list with only one occurrence of a single object instance is a

first order, first degree aggregate. A relationship must be at least a second-degree list of at least first order. Its order and
degree could be higher, and as we have seen, enumeration constraints of various kinds may capture interactions between

members of this list.

Unlike an aggregate object or list, an instance of a relationship cannot occur unless the objects (instances) it relates

also occur. Thus, Aggregate Object and List have more degrees of freedom than Relationship.82

A list is a kind of aggregate object. An aggregate object may contain nothing: It may be the empty set, and so may a list

be empty. A list or aggregate object (instance) thus has an existence independent of the actual occurrence of instances of the

aggregation relationship; their potential to occur suffices. However, the converse is not true. An aggregation relationship
cannot exist without its aggregate object—the object that will hold the constituents aggregated. The aggregation relation-

ship fuses a constituent with an aggregate object. The aggregate object only signifies this potential.83 The aggregation

relationship adds the meaning of “fusion” to the sparse “involve” relationship. Simultaneously it mandates the occurrence

of an aggregate object, but the aggregate object does not mandate the occurrence of the aggregation relationship—it may

be an empty set. Thus, the aggregation relationship is richer in information than either involve or the aggregate object. It

is a subtype of involve, thrice removed from the aggregate object of Figure 7.29.

A list could also be an arbitrary, meaningless pattern by decree. (Indeed, this is why it may even be an empty list—it

may even exist by decree, without any constituents.) A relationship, on the other hand, has a tad more information. It

must always have a meaning. At a minimum, this meaning must be that it is a list of interacting objects that involve each

other. Even if we do not know precisely what this interaction is, we know that there is an interaction—a set of rules that

binds the members of the list to each other in some unknown way. This makes Relationship a subtype of the more generic

concept called List.84

Box 7.10. List vs. relationship vs. set

257

Processes, Events, and Temporal Relationships

subtypes of the generic relationship that bans

(or nullifies) its target object. In Figure 7.29 it
is labeled “Bar.” Some of its more common

synonyms are also shown in parenthesis next

to this label.

A relationship is similar to an aggregate

object. It is a kind of List. An instance of a

relationship is a collection of object instances

like an instance of an aggregate object is. The

same object instance may occur several times

in an aggregate object, as it may in a list,

and in a reflexive relationship. However, the
aggregate (not the aggregation relationship)

conveys less information than a relationship:

Even when several object instances are inter-

related with a bare higher order or higher

degree “involve” relationship, we know that

they are inextricably joined into one irreduc-

ible fact. An aggregate is more nebulous. We

have no information on the junctions between

individual objects—we only know that they

have a common envelope—the aggregate.

The aggregate may be a collection of objects

with no relationships between them, or even

if some are related, the relationships may not

be fused into one irreducible fact like those in

Figures 5.3 or 5.4.81 An aggregate may even

be empty. A relationship, on the other hand,

must have at least one object, and if it has

only one, the relationship must repeat that

object instance at least one more time (see

Box 7.10). It is a more constrained pattern of

information than the aggregate. Constraints

•

add information. Thus, the aggregate is on

the other side of the thin line of information

that makes a relationship a relationship. It is

a pattern like a relationship but with a tad

less information than “involve.” Therefore

“involve” is a subtype of an aggregate object

even though, paradoxically, “aggregation of”

is a subtype of “involve” (see Box 7.10).

The aggregation relationship is a special

subtype of the “involve” relationship. Aggre-

gation implies the existence of a collection.

The collection is the aggregate. Objects are

members of the aggregate. The aggregate is

related to each member with a “consists of”

relationship (“Aggregation of” is a synonym.

The inverse is “aggregated by,” or its syn-

onym, “part of”).85 Consists of conveys only

a little more information than involve, but

unlike involve, it does not negate existence;

it always asserts it. Aggregation tells us that

the objects involved are members of a group.

Little else is known. We know neither rhyme,

reason, nor basis unless we elaborate on this

basic “consists of” relationship, which will

add meaning and turn it into a subtype or poly-

morphism of “consists of.” In this threadbare

form, aggregation is a pattern by decree.

Set membership is also a subtype of the ag-

gregation relationship. An aggregate could be

a list or a set. The same object instance may

occur several times in an aggregate when it

is a list, but when the aggregate is a set, mul-

tiple occurrences of the same object are not

•

•

A list has more information than a set; it distinguishes between occurrences of identical parts, whereas a set does not.

Based on the principle of subtyping by adding information, it follows that a list is a subtype of a set, and therefore listed
in is a polymorphism of set of Figure 7.27a makes this distinction.

Figure 7.27a shows that subtypes are polymorphisms of subsets—they are proper subsets (proper subsets: see Box 19 on

our Web site) with constraints attached to features of the parent object. This includes the case where the value of a feature

of the parent might be “unknown” to the extent that it is not even known if the feature may exist, whereas its value in the

subtype is “does not exist” (i.e., constrained to be null) or constrained to exist (with a non-null value). Therefore, Figure

7.27a shows subtypes and lists as different polymorphisms of set membership and hence also of the Aggregate Object.

Box 7.11. Subtypes, sets, lists, and polymorphisms

258

Processes, Events, and Temporal Relationships

distinguished from each other. Each member

of a set is considered only once in the set.

Therefore, a list conveys more information

than a set does—it distinguishes between

separate occurrences of the same object. An

aggregate could be either. Thus, based on the

principle of subtyping by adding information,

both “list of” and set membership are subtypes

of “consists of,” and Set and List are subtypes

of the generic aggregate object. This kind

of subtyping is called polymorphism. It is a

form of subtyping wherein new meanings are

obtained by constraining other meanings to

become more specific. Polymorphisms are
meanings obtained by adding information
to other meanings.
{ A relationship and its inverse are one

integral whole, representing the same

pattern in information space. Thus,
the inverse of a polymorphism of a
relationship is also a polymorphism
(subtype) of the inverse of the parent
relationship. (See Figure 7.27c: we

may substitute any relationship for

“Part of” and any polymorphism of

that relationship for “subtype of,” and

the relationships between inverses and

subtypes in Figure 7.27c will still hold

true.)

{ We have just seen that set member-

ship is a polymorphism of “Consists
of.” The implications are profound. It

implies that “Subtype of,” the fount of

inheritance and reusability, is a poly-

morphism of “Part of.” Consequently,

A
The hierarchy of
polymorphisms at
the root of all
polymorphisms

(Composed of, of
Figure 6.2, is hidden
in Figure 7.27A to
minimize clutter. It
lies between Part of
and Subtype of in this
figure.)

B
Locate and its
polymorphisms are
transitive

C
Subtype of is a
polymorphism of
Part of;

Supertype of is a
polymorphism of
Consists of;

The subtype of an
inverse is the inverse
of a subtype

Figure 7.27. The subtyping relationship is its own creation.

259

Processes, Events, and Temporal Relationships

“Supertype of,” the inverse of the sub-

typing relationship is a polymorphism

of “Consist of,” the inverse of “Part
of.”86 Figure 7.27c makes this clear.

Figure 7.27a summarizes our earlier

discussion on location, containment

and aggregation, and adds to it the fact

that subtyping is a polymorphism of

“part of.”

The impact of these polymorphisms

is so profound and universal that we

barely stop to think about it. We take

these polymorphisms of “locate” for

granted; we consider them common

sense, but we must tell automation that.

Only then can we instill automated

common sense in our processes. The

impact of the hierarchy in Figure 7.27a

will be our next topic of discussion.

{ The locate relationship is the root of

the concept of Place—physical or vir-

tual.87 Location is relative: an object

can only be located by another object,

and an idempotent location conveys

no information. It starts as soon as we

have enough information to distinguish

a pair of objects (see Chapter IV) and

becomes firmly established with the
concept of neighborhood in the ontol-

ogy of Figure 4.1. The ontology in

Chapter IV also tells us that when we

have enough information, location can

become absolute (in domains with nil

values). However, the concept of relative

location is still valid in spaces that sup-

port absolute location. These features

are inherited down the ontological

hierarchy in Figure 4.1).

Locate flows from the concept of the
Proximity Metric described in Chapter

IV. As we add information to the do-

main that describes Locate, it becomes

progressively more quantitative (see

the discussion in Chapter IV). Poly-

morphisms of Locate also inherit this

behavior. For example, Contained in
can be a yes/no relationship, or it could

describe the exact quantitative position

of the contained object relative to the

envelope that defines the containing
object. Thus, the exact position of

a chair in a room may be specified
relative to the walls of the room, or we

may only know that the chair is inside

the room, but not exactly where in the

room. This would apply to Part of as

well. For instance, we may know that

salt and water are parts of a salty solu-

tion, and we may also know the exact

concentration or quantity of salt in the

solution. Subtype of also inherits this

property, but it is harder to conceive of

quantitative subtypes. A quantitative

subtyping relationship would convey

information on how much one object

may be considered a kind of another.

For instance, consider a class of ob-

jects called “sharp knife.” How sharp

a class of knives is would determine

how much they fit into the category of
sharp knives.

The relationships in Figure 7.27a are

polymorphisms of location. They are

common relationships we use all the

time. The hierarchy in the figure im-

plies that relationships deeper in the

hierarchy may be more constrained

but cannot violate constraints imposed

on relationships above them.88 This

information gives us a ready template

for normalizing several kinds of rules

and constraints associated with Place.

If we assert that a Mountain is a kind

(subtype) of Terrain, it also implies that

a Mountain must be a part of a Terrain,

that it must be contained in a Terrain

and that the mountain is smaller than

the terrain that contains it. We can

260

Processes, Events, and Temporal Relationships

also infer, from the hierarchy in Figure

7.27, that a Terrain locates a mountain

(and vice versa). (However, it does not

imply that a mountain is a terrain if we

merely assert that a terrain locates the

mountain or it contains it or is a part

of it.)

A Place might also be a virtual place.

For instance, a television show might

be located on a (television) channel.

A television channel is a part of in a

Medium (television), which implies that

the location of the show is the medium.

A medium is a class of places. Thus,

location in a place also implies location

in a medium, which makes Medium a

kind of Place (for example, the chan-

nel).89

If we constrain the information car-

rying capacity, or the size of a virtual

place, the constraint will be inherited

by all channels in that place and will

constrain all items Contained in, Part
of, or Subtypes of that medium (place).

Similarly, if we constrain the size of a

physical location, all items Contained
in, Part of, or Subtypes of that place

will inherit that constraint.

The hierarchy in Figure 7.27a is a

template that we can use to normalize

constraints; it tells us where and at what

level we must attach what constraints

and rules to have them automatically

filter through the hierarchy of Figure
7.27a to all the objects the rule must

constrain.

 Thus common sense flows from the
power of reason, and the power of

reason flows from the Metamodel of
Knowledge. Both may reside in a re-

pository of Knowledge artifacts if we

can identify the patterns of information,

like the hierarchy in Figure 7.27a, that

are a Part of it. That hierarchy is a com-

ponent, a part, a pattern of information,

and a meaning.

{ Figure 7.27a also tells us that an ag-

gregate is a kind of Place because

objects may be parts of an assembly

(or subassembly). For instance, gears

are parts of the transmission of a car

and the car itself is made from its parts.

For this reason, both the car and the

transmission can be legitimately called

a Place that locates (and contains) its

parts. Indeed, the fact that a Car can

contain people (who are obviously not

car parts!) also makes it a place for

people. It could even be inferred from

this that people must be smaller than

cars. On the other hand, if we told it

that people may also be located on a

bicycle, it would not know which the

larger object is—a person, or a bicycle,

all it could infer is that a bicycle is a

kind of place.

{ Constraints on size are instance level

caps on the cardinality ratios of con-
tained in or its polymorphisms (the

live in relationship between Person

and House in Chapter V was a poly-

morphism of containment).90 Size and

other constraints/rules will filter down
the hierarchy of Figure 7.27a. We will

discuss constraints on cardinality ratios

next. This discussion will demonstrate

how the structure in Figure 7.27a can

help normalize behavior and automate

the power of reason.

{ Figure 7.27c shows that a subtyping re-

lationship between a pair of objects will

inherit the same cardinality constraints

as a Part of relationship between the

pair and could crimp the cardinality

between the pair even more, but Subtype
of may never violate the cardinality of

Part of. The same line of reasoning

261

Processes, Events, and Temporal Relationships

will also apply to Supertype of and its

parent, Consists of.
{ The hierarchy in Figure 7.27 asserts that

Part of is a subtype of Contained in, and

hence Consists of, the inverse of Part of,
is a subtype of Contains, the inverse of

Contained in. This fact combined with

Liskov’s principle tells us that when

items like cars, homes, and machinery

are assembled from other items, a part
that is declared to be mandatory must
be a part of the assembly, but may be
substituted by variants, which may
be optional subtypes. For instance,

consider a car being manufactured. A

rule tells us that every car must have

one steering system. It is a mandatory

part of a car. Steering systems may be

of different kinds. Say we have two,

Power and Manual, steering systems.

Each kind of steering system is a non-

overlapping subtype because a power

steering system can never also be a

manual steering system or vice versa.

The fact that a car must have a steering

system automatically implies that a car

must consist of a steering system, which

in turn implies that a car may or may not

consist of a power steering system (the

same logic also applies to the manual

steering system or any other mutually

exclusive kinds of steering systems).

This example demonstrates that the
subtype of a part can be optional if
the supertype of the part is manda-
tory—common sense, but someone has

to tell the computer that! Indeed, this

fact is inherited from “Locate,” which

is where it is normalized.

{ There are two rules about summation of

populations in partitions, which lead to

more complex kinds of inference when

combined with the subtyping hierarchy

in Figure 7.27. They are as follows:

1. The sum of populations of individual sub-

types in an exhaustive partition will equal

that of the parent object. In a non-exhaustive

partition, the sum may be less but cannot

exceed the population of the parent object.

The units of measure of the sum will be

inherited from the enumeration domain.

2. Adding to (subtracting from) the population

of a subtype will add to (subtract from) the

population of its parents but not necessarily

vice versa.

These rules also tell us other things about

parts, assemblies, and subtypes. For in-

stance, they tell us that if at least two (or

more) of an item is mandatory in a group

or assembly of items, some non-overlapping

subtypes of the item may be mandatory,

while others could be optional. On the other

hand, if a group or assembly of items can-

not consist of more than three of an item,

the group cannot have more than three of

any non-overlapping subtype of the same

item. Also, cardinalities of specific (non-
overlapping) subtypes of the item could be

capped at three, two, one, or none, provided

the total cardinality of all subtypes, taken

together, are capped at three. All this is

common sense. This kind of common sense

and reasoning flows from the rule in Figure
7.27c, combined with rules about domains in

the Metamodel of Knowledge, which assert

that the cardinality (number of instances) of

a subtype is limited by the cardinality of

its supertype(s), and the cardinality of the

supertype adds up to the sum of cardinali-

ties of its (non-overlapping) subtypes in an

exhaustive partition. The following example

clarifies and illustrates this bit of common
sense embedded within the metamodel of

knowledge:

Consider which objects in the hierarchy

of Figure 7.27a normalize this logic. At

first glance, it might seem that this kind
of common sense is normalized by a com-

262

Processes, Events, and Temporal Relationships

posite relationship in which Part of acts in

tandem with Subtype of. However, we will

be mistaken if we think so. The hierarchy

in Figure 7.27a contradicts this seemingly

simple and intuitive conclusion, as the fol-

lowing arguments show:

Locate is a transitive relationship; if a chain

of objects are connected by a string of locate
relationships, the object at the beginning

of the chain locates not just its immediate

neighbor in the chain but also every object

in the chain. Polymorphisms of locate,

namely contains, part of, and subtype of,
also inherit this property of transitivity (see

Figure 7.27a).

Keeping this in mind, consider the locate
relationship between the pair of objects in

Figure 7.27b, one of which envelopes (con-

tains—but not necessarily as its parts) other

objects. Naturally, Object 1 will also locate

the contents of Object 2 (Objects 3 and 4) as

it locates Object 2 in Figure 7.27b. Objects

3 and 4 will be located by a relationship

that is also locate but that locate is a com-

position of the original locate joined with

contain (Figure 7.27b). The composition is

transitive with respect to locate. Therefore

the composite relationship also boils down

to locate.91

However, the composite locate carries a tad

more information than the Locate between

Objects 1 and 2; it tells us that it is a compo-

sition of locate and contains. Contains has

more information than locate, hence so too

must its composition have more information.

This makes the composite locate of Figure

7.27b a polymorphism of locate between

Objects 1 and 2 in that figure. This implies
that the composite locate will inherit any

constraints imposed on the relationship

between Objects 1 and 2, including cardi-

nality constraints. Moreover, it could crimp

these cardinality constraints even more

(but it cannot relax them). This property is

normalized by the composition of Locate
and Contain. Lower level polymorphisms
of these relationships, like compositions
of Part of and Subtype of, will also inherit
this property. Indeed, in the examples we

discussed, we have seen that they do.

The rules in our example above about the

occurrences of subtypes, derived from rules

of occurrences of parent parts in an assembly

or aggregation, was normalized not by the

composition of Part of acting in tandem

with Subtype of but by the composition of

Locate, acting in tandem with Contain.

Without the hierarchy in Figure 7.27a, it

might have been much harder to derive this.

Un-normalized, the rule would have been

replicated polymorphism by polymorphism,

in each polymorphism of the composite

locate of Figure 7.27b. The composition is a

permutation of relationships; possible varia-

tions are many. Behavior would fragment

and replicate, and its impact would spin

uncontrolled through these variations into

business processes or at best be manually

controlled and coordinated by the common

sense of process designers or programmers.

Experience has told us that that approach

has its limitations; coordinating, developing,

testing, correcting, and deploying processes

will take longer. The bottom line: a negative

impact on time to market which might be

intolerable in the age of innovation backed

by information.

The rules normalized by Figure 7.27, in

tandem with the other rules we have en-

capsulated in our model, instill common

sense and the power to reason in artifacts

of knowledge. This kind of common sense

can help tune and transform cardinalities

of relationships as perspectives shift in

step with new learning, new technology,

and new options. Perspectives shift as new

learning and new options let us generalize

or specialize parts and components of items

263

Processes, Events, and Temporal Relationships

(like cars or books) in new contexts. This

common sense flows from the metamodel
of knowledge and is normalized within it.

{ Note how the hierarchy of Figure

7.27a turns into a process as we infuse

temporal information into it. It is clear

that if we infuse a bare modicum of

temporal sequence into the subtyping

relationships in the hierarchy of Figure

7.27a, we will get generic processes

like Locate and then Contain, which

locates an item and then envelopes or

acquires it without incorporating it as

a part (envelope and acquire are also

polymorphisms of contain); Locate
and Contain, followed by Incorporate,

which make the acquired item a part;

Locate, Acquire, and Incorporate,

followed by Absorb (or Ingest), which

make the acquired part lose its inde-

pendent identity so that the composite

becomes one integral entity rather than

a composition made of distinct parts. As

we have seen, the composition, consid-

ered as a whole, will then be a subtype

of the object that absorbed it. These are

examples of how universal patterns and

processes flow as polymorphisms from
the Metamodel of Knowledge. These

processes are universal patterns used in

manufacturing, mergers, targeting, or

salvage operations and much more.

Aggregates and compositions that add infor-

mation to an object are its polymorphisms. We

must consider the aggregate (or composition)

as a whole. Each object in the aggregation

adds information to the overall aggregate.

This is also true when the objects in the ag-

gregation (or composition) are relationships.

Thus, aggregations and compositions of re-

lationships, considered in Toto, are subtypes

of the aggregate (or composite) relationship

they represent.

•

Let us now analyze how this impacts idempo-

tency. An idempotent relationship is an object. As

we obtain more information about its composition,

we might find the idempotent relationship is an

aggregation of objects.

We might then find that it is an aggregation of
idempotent relationships like a bunch of looping

strands of wire that circle back to a common origin

(like the edges of the petals of a sunflower loop
back to the calyx in the center), or we might find
that the idempotent relationship breaks up into a

chain of distinct objects connected in a looping

ring (see Box 7.12). However, we might have

added just enough information to an idempotent

relationship to clearly say that it consists of distinct

object classes, but not enough to say that these

object classes are linked in a loop like the cycle

of states in Box 7.12. The information we have

might only tell us that the idempotent relationship

is an aggregate of three or more object classes

and that one object class anchors the idempotent

polymorphism as follows:

Each object in the aggregate will be related

to the object that anchors the polymorphism in a

pattern like a wheel with spokes. The anchoring

class will be at the hub of the wheel, and the other

classes will lie on the rim, with relationships from

each converging on the hub (like the spokes of the

wheel). Moreover, instances of these relationships

will converge on the same instance of the object

at the hub, much like the pattern in Box 7.12.

To understand this polymorphism of an idem-

potent composition in business terms, consider a

negotiation. The negotiation negotiates the terms

and conditions of an agreement. A renegotiation

is called a renegotiation only because it rene-

gotiates the same terms and conditions as the

original negotiation. Thus, the negotiation and

its renegotiation are idempotent with respect to

Terms and Conditions, an object class:

The relationship between Negotiation and

Terms and Conditions not only requires that Ne-
gotiation and Renegotiation be related to instances

of Terms and Conditions, but requires that they be

264

Processes, Events, and Temporal Relationships

related to the same instance of Terms and Condi-
tions. Only then may an instance of Negotiation to

be considered a renegotiation and only then may

we pair an instance of negotiation with an instance

of renegotiation and vice versa. Thus, the pattern

of Negotiation and Renegotiation is idempotent

with respect to Terms and Conditions.
It follows that the idempotency of the aggrega-

tion must be demonstrated with respect to at least
one object class in the aggregate—the class that

anchors the idempotent hub of the pattern. The

aggregate may also be idempotent with respect

to more than one object class. Instances of rela-

tionships could converge on the same instance

of different objects in different classes. Then the

aggregate will be idempotent with respect to two

or more object classes (the wheel will then have

multiple hubs).

Consider the mutually inclusive pair of re-

lationships in Figure 5.5b. It tells us that the

owner of a car must also own insurance. Thus,

the composition in that figure is idempotent with

respect to Person. The rule also tells us that it is the

owner’s car that the insurance policy must insure

(a relationship not shown in the figure). It follows
that the composition must also be idempotent with

respect to Car. As such, this composition has two

idempotent hubs, Person and Car.
Indeed, if we did not have enough information

to distinguish cars from people, we would not be

able to separate cars and people into distinct object

classes; we would only know that a car is a differ-

ent instance of an object than a person and would

perforce club both instances into a single object

class (we might call the class Physical Object).
The composition we just discussed would still

be idempotent, but now it would be idempotent

with respect to two instances of Physical Object,
a single object class. The order of the relationship

was reduced by the loss of information, but not

yet its degree (as we lose even more informa-

tion, distinctions between object instances too

may be also be lost; see Chapter IV). Thus, an
idempotent relationship may be idempotent with
respect to several object instances or several
object classes.

Consider the difference between relationships

that are merely mutually inclusive and those

that are also idempotent. Common sense would

We have seen how an idempotent loop was a composite relationship that strung several subtypes of a Check—different

states—via another object, the signatory of the check, into a composite loop to articulate a rule that said that they must all

sign the same check. We have also seen how the class of signatories was glued to the class of checks with a relationship

between attributes—a relationship and composition that was a port of connection between the check and objects that were

not checks—objects beyond the boundaries of the class. We know that we can consider a path that loops back to a given

object through multiple objects, tracing relationships in-between, a single, unified, composite relationship—a recursive a
loop from an object back to itself—if we ignore the objects buried within the loop. This is how a composition that loops

through several objects can be considered a recursion on one member of the group (Figure A, Part d). The loop is idempotent

with respect to a member when the relationship must always loop back to the same instance of that object class.

We know that these relationships between attributes need not always loop back through different object classes; they

may even connect an instance of an object to others in its own class. The relationship then becomes a recursive relation-

ship. It becomes an idempotent relationship when it must always connect to the same instance of the same object. Indeed,

a relationship between states may even cycle back to the same state of the same object instance via intermediate states.

It can only do so when each state is separated from the others by the flow of time. The composition must connect states
of the same instance of the object across the time slices shown in Figure 7.1. Naturally, the relationship cannot loop back

in time, but it can loop back to the same state—a loop in state space as the following figures show. If the object is always
condemned to loop back to the same state, it is an idempotent relationship between states.

Box 7.12. Idempotent processes: State vs. object

265

Processes, Events, and Temporal Relationships

dictate that the mutually inclusive relationship in

Figure 5.5b is idempotent with respect to Person
as well as Car, that the owner of a car must also

own insurance for the car she owns. Contrast this

rule with a somewhat nonsensical rule that might

mandate that if a person owns a car, somebody

must own car insurance (and vice versa). The

rule need not require the owner of the insurance

to also be the owner of the car or even the owner

of a car. It might not even require the owner of

the insurance policy to insure the car owner’s

car—any car might do. Hence, mutual inclusion

may be idempotent or not.

(a) Enough information is added to an object with a
reflexive relationship to distinguish between objects. The
reflexive relationship now consists of a pair of non-recursive
relationships

(b) Enough information is added to the reflexive relationship
to distinguish various reflexive polymorphisms. The object
stays the same.

(c) A combination of the situation in Figure (a) and Figure
(b). When even more information is added, the reflexive
relationship becomes irreflexive between the parent object
and its polymorphisms.

OBJECT
RETURN

(d) Similar to the situation in Figure (a), but enough
information has been added to create a ring of distinguishable
objects and relationships

Figure A. Some polymorphisms of reflexive relationships

A business rule that articulates a loop in state space is an idempotent relationship. Such loop will be a path in state

space through intermediate states that always cycles through the same set of states. There might even be several loops that

cycle back to the same state—each loop a different path through a different set of states; some might even share states in

common, but each path will have a distinct identity if even one state in it is unique to it. Each loop like this, with or without

states in common, is a process because it involves the flow of time; it cycles through states, moving forward in time.
Loops of this type are idempotent relationships, but they are not idempotent relationships between object instances;

rather they are idempotent with respect to a given state of a single instance of an object—an even stricter, more constrained

form of idempotence than the relationships we have discussed earlier. The patterns we had discussed were idempotent with

respect to a single instance of a single class of objects; the pattern we are discussing now is idempotent with respect to a

single feature (or a combination of features) of a single instance of a single class of objects.92 When only two states are

involved, the relationship becomes a “toggle” that can respond to events by switching to the state it is not in. This kind of

toggling or looping between states will be familiar to many analysts and designers: a watch may toggle between displaying

the date in Gregorian vs. military format each time a stud is pressed. Naturally, if we add a daisy chain of intermediate

states to this idempotent loop, as we have seen, that loop will become a composition and a subtype of the original pair.

The behavior and the rules involved will be exactly the same, regardless of whether the process or relationship in question

is between object instances or between features of an object instance. It is the relationship that we are dealing with and

the rules that a relationship will normalize.

Box 7.12. continued

266

Processes, Events, and Temporal Relationships

A strictly constrained pattern of informa-

tion that mandates mutual inclusion of the same

object instance, not just an object instance of the

same object class, is a polymorphism of its less

constrained parent. In the same way, the other

relationships in Figure 5.5 may be idempotent

or not. As such, idempotency with respect to an

object instance is independent of mutual inclu-

sion, mutual exclusion, or subsetting constraints.

Each is an irreducible fact which may be joined

to create new, more restrictive irreducible facts,

which attach to the same object instance.

It is perhaps not immediately clear that the

subtyping relationship too may have special

polymorphisms—subtypes that convey spe-

cial information or constraints even as they

subtype an object class. Figure A of Box 7.12

shows this can happen:

{ The fact that an aggregate, considered

in Toto, adds information to an object

even as it expresses its meaning is the

source of one such polymorphism. It is

a key polymorphism—the expressed
by relationship in Figure D of Box 5.1

reproduced earlier in this book. As

we have seen, this relationship is the

cornerstone for innovation, process

reengineering, and much else. In Box

5.1, in the discussion on rule expres-

sions, we show how a single meaning

may be expressed in multiple ways.

Each expression is a composition of

terms. In Chapter VI, we learned that

a relationship may be expressed by a

composition of objects, and there may

be several compositions that may boil

down to the same relationship. In this

chapter, we have seen how a process or

service may be implemented in several

ways and how these can be composi-

tions expressing a relationship. The

expressed by relationship is a special

case—a polymorphism and subtype of

•

the subtyping relationship itself. Figure

7.29 articulates this.

{ Picking a single member, an object

instance from an object class is also

a polymorphism of the subtyping

relationship. This polymorphism is

frequent in business. It is the parent of

business rules that select a special item

for attention from a group of similar
items.

{ Its parent relationship, “Part of” in

Figure 7.29, is more generic. It singles

out one item from a collection. The

collection does not have to be an object

class. It could be an aggregation of like

or unlike objects. A class of objects is

a collection of like object instances.

Thus, “instance of” is a polymorphism

of “Part of,” and a subtype of the sub-

typing relationship itself.

{ Part of singles out one item as a mem-

ber of a collection, but that item may

also be a collection. Thus Part of has

the freedom to pick multiple items.

Instance of is different. Instance of is a

special polymorphism of the subtyping

relationship. In this polymorphism, the

cardinality of the subtype is restricted to

a single member. All aggregate objects

are not object classes. Even though

Part of focuses attention on one item

among those in any kind of aggregation

or composition, that item might be a

collection of objects, an object instance

in a class of similar objects, or a single

item in a collection of dissimilar parts

of a composition. When the collection is

a class, we can make finer distinctions.
The subtyping relationship is based on

shared information. We have recently

seen how this makes the subtyping re-

lationship a specialized polymorphism

of Part of, one that applies only to ob-

ject classes. That Instance of is also a

267

Processes, Events, and Temporal Relationships

polymorphism of Part of is thus a fact

inherited from its parent—the subtyp-

ing relationship itself. That Instance
of restricts the subtype to only one

member is an irreducible fact added

to the subtyping relationship. It would

replicate information to reassert that

Instance of is a polymorphism of Part
of when we have already asserted that

Subtype of is a polymorphism of Part
of. This is why the relationship between

Instance of and Part of is a broken line

in Figure 7.29. The broken line merely

reiterates the fact without reasserting it.

The purpose is to remind and clarify,

not replicate.

{ “Instance of” fuses with a temporal

parent, a process, and manifests itself

as the “Pick” production segment in the

S95 standard model we described under

supply chains. Figure 7.29 shows this.

“Pick Item” tells us when and under

what conditions an item will be picked

for processing. Instance of restricts the

subtype to only one member. Pick to

picks one item of a class. The process

selects only one item, just as instance of
does. Of course, the item picked could

be a collection and aggregate object in

its own right. Then each would be a

member of a batch based on the instance

of Pick that picked them. Thus, the

concept of a batch process is implicit

in the concept of picking items from a

collection.

Higher order and higher degree relationships

are polymorphisms of their lower order coun-

terparts. It is a special case of a composition

being a subtype of the aggregate; adding an

object to a relationship adds information to

the relationship. For instance, take a second

order relationship: Product is sold to Customer
(both Product and Customer are objects; sold

to is the relationship between them). We can

•

attach a third object, Retailer, to this relation-

ship to make it the third order relationship in

Figure 5.3. That third order relationship adds

information to “Product is sold to Customer”

and is therefore a subtype of its second order

counterpart. Similarly, Feature Group in Fig-

ure 7.26 was a relationship between features

and also a subtype of Feature.

Thus, we can add new objects to relationships

and include fresh detail on their interactions each

time we do so. It will add detail to the meaning of

the relationship and build new atomic rules by add-

ing components of knowledge—meanings—to

the old. Thus, we may iteratively detail and en-

rich our business model and the business rules it

represents. We can do so as we iteratively cycle

through increasing levels of detail in a prototype

on its way to becoming a full-fledged information
system. ([144] in Appendix III, Kruchten, 1995,

has more on iterative systems development).

However, we must judiciously sidestep the

problem of perspective when we peel back layers

of detail. As the order (or degree) of a relationship

increases, there may be enormously large num-

bers of combinations of relationships that may be

supertypes of a given subtype. Conversely, given

a high order or high degree relationship, it may be

subtyped in an enormously large number of ways.

A relationship between any combination of two of

the objects in Figure 5.3 would be the supertype

of the third order relationship in Figure 5.3, and

the possibilities will increase explosively as the

order (or degree) of the relationship increases.

When scope is broad, and interactions complex, it

is easy to get lost in information space if we have

no mooring. This is why we need the Universal

Perspective; it is our anchor (on our Web site).93

The Universal Perspective will not have the fine
detail and granularity of the final model but will
articulate common rules and shared objects.
Systems definition can then proceed in rapid it-
erative steps. Each iteration will add functional

268

Processes, Events, and Temporal Relationships

detail to the Universal Perspective by enriching it
with new information—objects, features, effects,
rules, aliases, and so forth. As we add detail, we
should apply Liskov’s Substitution Principle (see
Mutability of Compositions) and the Principle of
Parsimony (see Alternative Resources—Alterna-
tive Processes) to ensure that we add only infor-
mation essential for the business function. The
shared information in the Universal Perspective
will help ensure that information stays normalized
and that the mutability of objects and processes
are optimized. The Universal Perspective will also
help untangle the tangled inheritance hierarchies
that might have been inherited from legacy systems
and opportunistic designs of the past.94

The Universal Perspective will anchor the out-

ermost layer of Figure 7.15 and lead to the layers

beneath. It can be the starting point for iterative

development and the basis of the initial prototype

from which development of all information sys-

tems and business processes can proceed.

Constraints on the upper and lower bounds of

the cardinality of a subtype might be identi-

cal to the supertype or be constrained to lie

within the bounds imposed by the supertype.

These rules also apply to the degree and order

of subtype relationships.

A relationship between specific attributes,
states, or features of objects is a subtype of a

more generic relationship between objects; it

adds information to the more generic relation-

ship by elaborating on the features it relates

and becomes a subtype of the relationship it

elaborates on (see the examples in Box 5.1).

Like any other object, a subtype of a relation-

ship may add features of its own. For instance,

we added an attribute, sale price, to the product

sale relationship in Figure 5.8a. A subtype

may thus add attributes, effects, constraints,

and relationships. (A relationship may add

relationships by involving more objects, that

is, increasing its order or degree.)

•

•

•

A relationship may also be subtyped by adding

new meaning to it, like part of added mean-

ing to contained in. Making a meaning more

specific adds information to the relationship
as much as new features and effects do. It is

equivalent to changing its state by adding

constraints that restrict it (the meaning) to

make the relationship more specific. Thus,
“mother of” is a subtype of “parent of.” It

adds meaning to “parent of” and makes it

more specific—a change of state and a poly-

morphism of “parent of” that resulted from

elaborating on, and thereby constraining, its

meaning. (As we have seen, all relationships

are polymorphisms of the generic “involve”

relationship).

A relationship may also be subtyped by sub-

typing one or more objects it binds together.

Subtyping objects makes them more specific
and increases their information content, which

then flows into polymorphisms of the generic
relationship between the generic objects it ties

together. Box 4.8 has examples. The composed
of relationship in Figure 6.1 was another ex-

ample of this kind of polymorphism.

Each object a relationship binds may poten-

tially be subtyped. Thus, each object carries

within it the potential to add meaning. Each is

potentially a parameter of the polymorphism

(see Inclusion Polymorphism in Box 4.8).

Idempotent relationships bind only one object,

so they may have at most one parameter.

An asymmetrical relationship may be a poly-

morphism of a more generic symmetrical

relationship (see Box 5.2). An asymmetrical

relationship constrains its inverse to have

a different meaning from the relationship.

The constraint is a business rule—an item

of information.

For example “Involves” is a generic relation-

ship that only tells us that two objects are as-

sociated, that is, “involved” with each other,

but conveys little meaning beyond that. It is

symmetrical because it has the bare minimum

•

•

269

Processes, Events, and Temporal Relationships

of information—just enough to make it a

relationship. Similarly, the relationship “rela-

tive of,” in “Person is relative of Person” is

a symmetrical relationship between persons.

On the other hand, a more specific kind of
relationship like “ancestor of,” which adds

meaning (the meaning of “ancestor”) to the

generic concept of relative, is an asymmetrical

relationship between persons; a person cannot

be the ancestor of his own ancestor. “Ancestor
of” (and its inverse “descendant of”) is an

asymmetrical subtype derived from a sym-

metrical relationship, “relative of.”
An antisymmetrical relationship is also a

polymorphism of a symmetrical relation-

ship (for the reasons cited above). It is also

a reflexive relationship. We have added just
enough information to make every instance

of the recursive relationship asymmetrical

except the instances that loop back on the

same object (instance).

Consider the subtraction relationship between

two ratios or difference scaled values. Sub-

traction is an antisymmetrical relationship.

Subtraction is also a subtype, a polymorphism

of a generic reflexive involve relationship. A

reflexive involve relationship only tells us that

there is some unknown interaction between

object instances that belong to the same object

class. “Involve,” we know, is a symmetrical

relationship; if one object instance involves

another, it naturally implies that the involved

object must also involve the object that in-

volves it. The meaning of arithmetic subtrac-

tion is more specific. Subtraction too is a kind
of involvement, but it is an involvement that

is asymmetrical unless a value is subtracted

from itself; then it becomes symmetrical.

Constraining the meaning of involvement

to “subtraction” will make the relationship

antisymmetrical. The arithmetic subtraction

is an antisymmetrical polymorphism of the

symmetrical, reflexive “involve” relationship

(between quantitative values).

•

(If we added even more information to the

meaning of an antisymmetrical relation-

ship, it could become a true asymmetrical

relationship.)

Note that an instance of a relationship that

loops back to the same object instance must

always be symmetrical, but there is a caveat.

The state of the object instance at each end

of the relationship must be identical. This

will make them indistinguishable. (This is

automatically the case when it is the same

time slice of the same object instance—see

Figure 7.1.) Since the object instances the

relationship connects are the same, and in the

same state, they will be indistinguishable.95

It will therefore be meaningless to say that

one precedes the other in a relationship. This

implies that the instance of the relationship

is symmetrical. Self Help is a symmetrical

relationship because Helped by and its inverse,

Help, are indistinguishable when a person

helps herself. When this is not the case, Help
is asymmetrical—helped by is not the same

as help unless the person who is helping and

the person being helped are the same person.

Help, as in Person helps Person, is an anti-

symmetrical relationship, and Self Help is its

idempotent polymorphism.

This is one way an idempotent relationship

may be a polymorphism of an antisymmetrical

relationship. The idempotent “fibers” (sym-

metrical instances) of an antisymmetrical

relationship loop back to the same object

instance, whereas the other “fibers” (asym-

metrical instances) of the antisymmetrical

relationship are both irreflexive and asym-

metrical. Therefore, if we segregate the two

kinds of instances of the relationship into

distinct subclasses, one subclass will be a

symmetrical idempotent polymorphism,

and the other will be an irreflexive and
asymmetrical polymorphism of the antisym-

metrical relationship we have partitioned.

The two subsets will exhaustively partition

270

Processes, Events, and Temporal Relationships

the antisymmetrical relationship. Figure 7.29

makes this clear.

A recursive relationship conveys less infor-

mation than a nonrecursive relationship. It

does not distinguish one object class from

another; its source and target object classes are

indistinguishable. A recursive relationship,

with no further information except that it is

recursive, does not even tell us if there are

constraints on it that will prevent it from being

reflexive. Even the existence or nonexistence
of the constraint is unknown. The constraint

carries even less information than the “Don’t
care” value of Box 5.3; it could even be null.

A reflexive relationship conveys a tad more
information. It tells us that there are definitely
no constraints that will bar the relationship

from looping back to the same object instance

that the “value” of the constraint is definitely
null. A reflexive relationship is a subtype of a
recursive relationship, a fact that is both intui-

tive and logically sound in Figure 7.29.

Moreover:

An irreflexive relationship is also a subtype
of a recursive relationship; an irreflexive
relationship asserts that there is a constraint

that bars reflexivity in a recursive relationship

(the value of the constraint is at least “not

null,” a value that is identical to the “Don’t
care” value of Box 5.3. It implies that, at a

minimum, we know that the relationship is

irreflexive even if the rest of its meaning mat-
ters little or is unknown. Of course, we could

add meaning to irreflexive relationships to
obtain even more specific irreflexive mean-

ings, which will be irreflexive polymorphisms
of irreflexive relationships. The “parent of”

relationship we cited recently was an irre-

flexive polymorphism of another irreflexive
relationship, “ancestor of.” All recursive

relationships, including irreflexive relation-

ships, may have irreflexive polymorphisms.

•

•

This is why the irreflexive polymorphism is
a direct subtype of a recursive relationship in

Figure 7.29. Every other recursive relationship

inherits this fact.

An irreflexive relationship can be a polymor-
phism of its reflexive parent because irreflex-

ivity constrains a recursive relationship and

hence adds information. The information it

adds is an irreducible fact: that the relation-

ship cannot loop back to the object at its

other end. It cannot look like a snake eating

its own tail.

Consider the generic represent relationship.96

It is a reflexive relationship. Conversion or
encryption of formatting symbols is a poly-

morphism of this generic representation.

Conversion of a symbol to itself has little

value if we are encrypting it. If we impose a

constraint that denies this kind of meaningless

encryption, the reflexive represent relation-

ship will open out to become an irreflexive
encrypt relationship. The constraint is the

added information that makes encryption

an irreflexive polymorphism of represent.
Encryption may apply not only to symbols

but also to meanings: Although no eagle has

ever touched the moon, the first manned
spaceship to land on the moon announced,

“The Eagle has landed,” when it completed

the journey.

An idempotent relationship is also a polymor-

phism of its reflexive parent. Idempotency
also constrains a reflexive relationship and
adds information. It adds the fact that the

relationship must loop back to the object at

its other end. It must look like a snake eating

its own tail.

Consider people helping people. A person may

help himself or other people. Thus, help is a

reflexive relationship on object class Person.

Self Help is an idempotent polymorphism of

the generic help relationship: Self Help is a

subtype of Help, in which the help relationship

must loop back to the same person; it is con-

•

271

Processes, Events, and Temporal Relationships

strained to do so. This constraint is the extra

information Self Help adds to the meaning of

Help that makes Self Help idempotent.

The example also makes it clear that any

reflexive relationship may be partitioned into
mutually exclusive irreflexive and idempotent

subsets. Indeed, the antisymmetrical relation-

ship inherits this constraint. However, the

idempotent subset is more restricted when it

is applied to an antisymmetrical relationship.

We have recently discussed why this subset

must be a class of symmetrical relationships.

Figure 7.29 clearly articulates these irreduc-

ible facts.

Readers might find it puzzling that in Fig-

ure 7.29, the class of reflexive relationships
has not been partitioned into two mutually

exclusive subsets—one idempotent and the

other irreflexive. Moreover, the irreflexive
polymorphism of a reflexive relationship
is not even directly shown as a subset of

the reflexive relationship in that figure (the
polymorphism is inherited from a supertype).

This is because an irreflexive relationship
may be a polymorphism of any recursive

relationship, be it idempotent, antisymmetri-

cal, or even another irreflexive relationship.
We have seen how this can happen to an

antisymmetrical or reflexive relationship.
It is also true for idempotent relationships.

An idempotent relationship can also “open

out” into an irreflexive polymorphism when
we add information. The reasons are subtle.

They are buried deep within the laws that

carve objects out of the inchoate information

swirling through information space as the

following example will show:

Consider a nation. Nations may be at war with

other nations. A nation may even be at war

with itself. When a nation wars with itself, we

call it a civil war. Nation is a class of objects.

Thus, War is a reflexive relationship between
nations, and Civil War is its idempotent

polymorphism that loops back to the same

instance of Nation. If we add information to

the nation to discriminate between its warring

parts, the idempotent relationship will open

out to show which part is at war with which.

The idempotent relationship normalizes the

fact that an entity is at war with itself, and its

non-idempotent polymorphisms normalize

the fact that the war is between distinct parts

of an intrinsically whole entity.

A reflexive relationship may have irreflexive or
idempotent polymorphisms, and idempotent

polymorphisms in turn may have irreflexive
polymorphisms. The indirect and direct routes

to an irreflexive polymorphism of a reflexive
relationship are subsumed by the fact that a

reflexive relationship may have irreflexive
polymorphisms, as Figure 7.29 implies it may.

It may because this feature is inherited from

the generic recursive relationship.

As we add information to a recursive relation-

ship, it may resolve into nonrecursive or recursive

relationships of various kinds, in step with the in-

formation and meanings we add. Polymorphisms

of a recursive relationship are subtypes of the

relationship that may take up different positions

in the subtyping hierarchy for recursive relation-

ships in Figure 7.29. Eventually, after enough

information has been added, the recursive “loop”

may “open up.” The recursive relationship may

distinguish between object classes it connects and

“straighten out” into a nonrecursive relationship.

The “parent of” relationship in Figures A and B

of Box 4.8 was an example of this. Figure 7.29

highlights that any recursive relationship—all its

polymorphisms (subtypes)—may have nonrecur-

sive polymorphisms.

The objects a polymorphism connects may not

all be subtypes of the generic objects connected

by the parent relationship. Polymorphisms may

also connect supertypes to subtypes. The “par-
ent of” relationship in Figures A and B of Box

4.8 was an example of this. The “composed of”

relationship in Figure 6.1 was another example

of this kind of polymorphism.

272

Processes, Events, and Temporal Relationships

Thus, we may obtain a nonrecursive polymor-

phism of a recursive relationship by seeding it with

extra information through its parameters, but we

can never obtain a recursive polymorphism by

adding information to a nonrecursive relationship.

For similar reasons, we may obtain irreflexive
polymorphisms of reflexive or idempotent rela-

tionships by adding information to them, but not

vice versa. Indeed, relationships of different kinds

in Figure 7.29 may have polymorphisms that are

beneath them in the subtyping hierarchies there

but cannot have polymorphisms above them.

Polymorphisms of relationships may even be

obtained by adding a parent from another par-

tition. The parent will contribute information

to create new meanings. With reference to Fig-

ure 7.29, adding temporal information to “part
of” would create a process that changes the

parts of an aggregate over time. The process

would tell us when, and for how long, a com-

ponent will be a part of the aggregate object.

Of course, the component could also remain

a part of the aggregate indefinitely after it is
assembled into it. The process for assembling

•

an item from its parts will be a subtype of

this process.97 “Assemble” is a process and a

polymorphism of consists of because it now

contains temporal information, that the parts

are resources that exist before the assembly

that consists of those parts. Thus Assemble
is a process that has two parents, the Part of
relationship, and the generic process. Figure

7.28 shows that Assemble connects the same

generic objects part of did, but the relationship

now has added a nuance to its meaning. As

such, Assemble is a polymorphism that has

elaborated on the meaning of “part of.”
If the work product of the assemble process

(the target of the part of relationship) is a car,

then the process will tell us when which part

is assembled into the car being manufactured.

Assemble Car is thus a polymorphism of As-
semble. Assemble Car is a step deeper into

the subtyping hierarchy of Figure 7.28, a step

that increases information content. It adds

the information that the aggregate object in

question is a car. It constrains the generic ag-

gregate by making its meaning more specific.
It is a subtype of assemble. It adds meaning

Figure 7.28. An example of a polymorphism between subtypes

Processpart of

Assemble(Resource) (Product)
Component

Aggregate Object
Component

Aggregate Object

Assemble Car

Car Part
(Resource)

Car
(Product)

Subtype of
(Polymorphism)

Subtype
of

Subtype
of

Same
object

Same
object

Subtype of
(Polymorphism)

273

Processes, Events, and Temporal Relationships

to assemble and makes it more specific. It is
also an example of a polymorphism that relates

subtypes of the objects the parent relationship

binds together. Note how the objects bound

by the parent relationship in Figure 7.28 (the

generic assemble) have become parameters: If

the aggregate object is a car, it automatically

implies that the resources (components) are car

parts, which are now subtypes of Component
in Figure 7.28.

Figure 7.28 shows how Assemble Car normal-

izes the fact that it connects a subtype to a subtype

and thus becomes a subtype of a more generic

Assemble relationship. The subtyping operation

embedded in Assemble Car is thus implied by the

subtyping operations on either side of it. Thus, the

triad of subtyping operations is not independent

irreducible facts: The polymorphism in the middle

implies the subtypes on either side. This is why

the subtypes on both sides have been shown with

broken lines. If we articulate all three as inde-

pendent irreducible facts, we will denormalize

information. The information we will replicate

will be that Assemble Car binds specific subtypes
of the same object classes its generic parent binds.

This is the information Assemble Car has added

to the generic assemble process.98 This is how

Assemble Car made the objects it involved more

specific. The relationship constrained the degrees
of freedom of Component and Aggregate Object
because it was a constraint—a stricter constraint

than its parent. It created a pattern of objects, as

did its supertypes. It carved new patterns from

the patterns created by its supertypes. These pat-

terns were not the patterns of tangible symbols

but patterns of abstract meanings—information

in information space shaped by constraints. Thus,

constraints that constrain patterns become poly-

morphisms of the patterns they constrained, and

both could be abstract meanings.

The concept of transitivity and intransitivity is

only meaningful in a composition. A relation-

•

ship may be said to be transitive, intransitive,

or atransitive with respect to others in a com-

position. The following arguments will show

that an intransitive relationship is actually a

subtype of an asymmetrical relationship in

a composition:

Consider relative of, and its subtype, ancestor
of, again. We discussed both relationships re-

cently. Relative of was a transitive relationship

in the composition we had discussed. It was

also a symmetrical relationship. On the other

hand, ancestor of, also a transitive relation-

ship, was asymmetrical. This demonstrates

how the property of transitivity is independent

of symmetry or asymmetry of relationships

in a composition.

However, the property of intransitivity is

different; if a relationship is intransitive with

respect to a composition, the relationships

in the composition must be asymmetrical.

Consider what would happen if we made

ancestor of even more specific and turned it
into and parent of. Parent of is a subtype of

ancestor of. It constrains the ancestor to be

a parent. The composition we had discussed

would become intransitive if we constrained

ancestor of thus. An ancestor twice removed

from a descendant remains an ancestor but

cannot be a parent. We added informa-

tion—meaning—to a transitive composition

and turned it into an intransitive composition

by constraining it further.

We did this by constraining an already asym-

metrical relationship even more. Parent of

made ancestor of even more specific than it
was. Unless we leach meaning from the com-

position, it will remain intransitive. Adding

meaning will plant it even more firmly in the
camp of intransitive compositions. Thus, if we

constrained Parent of even more and turned it

into Mother of or Father of, the composition

would stay intransitive because we crossed

a critical threshold when we made ancestor
of into parent of. The threshold we crossed

274

Processes, Events, and Temporal Relationships

was in terms of information content—the

richness and specificity of meaning. Only
asymmetrical relationships that are patterns

of information with little freedom may be

assembled into intransitive compositions.

Asymmetry does not always imply in-

transitivity, but the converse is not true;

intransitivity always implies asymmetry.

Thus, intransitivity conveys more informa-

tion—meaning—than mere asymmetry. It

adds information to asymmetry (like parent

of added information to ancestor of by tell-

ing us what kind of ancestor we meant). An

intransitive composition is therefore a subtype

of an asymmetrical relationship.

An intransitive relationship will never be

symmetrical. The information payload of

symmetrical relationships is too light to

automatically imply the nonexistence of

another relationship. (Of course, we could

do so by including additional constraints,

but this information will then be normal-

ized by the constraint added explicitly, not

implicitly, by the relationship.) This is why an

intransitive composition must always describe

an asymmetrical relationship. Figure 7.29

makes this clear. It shows that an intransitive

composition is a subtype of an asymmetrical

relationship.

A symmetrical composition is a subset of the

set of transitive compositions. A symmetrical

composition always implies transitivity (like

the relative of composition we recently dis-

cussed), but we have seen that the converse is

not true; a transitive relationship may or may

not be derived from a composition of sym-

metrical relationships. It could also flow from
compositions of asymmetrical relationships

(like ancestor of did in our recent example).

The set of symmetrical compositions is there-

fore a subset of the set of transitive composi-

tions. Symmetrical compositions also express

symmetrical relationships; they let us peek

into the guts of a symmetrical relationship by

•

adding information on its components. There-

fore, the composition, considered as a whole,

is a subtype of a symmetrical relationship. It

follows that a symmetrical composition is a

subtype of a symmetrical relationship, even
as it is a subset of transitive compositions.
Figure 7.29 makes this clear.

An intransitive relationship is a polymorphism

of a transitive relationship for the same rea-

son that made an asymmetrical relationship

a polymorphism of a symmetrical relation-

ship; enriched meanings may also add con-

straints—information—that bar transitivity.

If a chain of three or more persons is related via

the “ancestor of” relationship into a hierarchy

of ancestors, the person at the beginning of the

chain will also be an ancestor of the person

at the end of the chain. That relationship is

implied by, and is therefore transitive with, the

others in the chain. On the other hand, when

we add meaning to “ancestor of” to make it

a more specific relationship like “mother of,”

we know that the person at the beginning of

the chain cannot be the mother of the person

at the end of the chain. Thus, the “mother of”

relationship is intransitive. It was obtained

from the “ancestor of” relationship by add-

ing meaning (information) to it. “Mother of”

is thus an intransitive subtype of a transitive

relationship, “ancestor of.”

Transitive Composition in Figure 7.29 is in

a different partition from symmetrical (and

asymmetrical) relationships. The metamodel

in Figure 7.29 will permit a transitive com-

position to be either a symmetrical or asym-

metrical relationship (as it should). On the

other hand, an intransitive composition is

always constrained to be an asymmetrical

relationship in Figure 7.29 because Intransi-
tive Composition is a subtype of Asymmetrical
Relationship. It is perhaps less obvious that

this structure also implies that an intransitive

composition is a subtype (polymorphism) of

its transitive parent.

•

275

Processes, Events, and Temporal Relationships

To understand why this is so, consider that a

transitive composition may be asymmetrical

or symmetrical (for instance, relative of, a

symmetrical relationship, and ancestor of,
an asymmetrical relationship, were both

parts of transitive compositions in examples

cited recently). Therefore, if we only know

that a composition is transitive, we cannot

tell whether it is describes a symmetrical

or asymmetrical relationship. On the other

hand, an intransitive component must always

be asymmetrical; if we know that a composi-

tion is intransitive, we can tell with complete

certainty that the composition describes an

asymmetrical relationship. Thus, the intran-

sitive composition has a larger information

payload than a transitive composition. It adds

meaning and is therefore a subtype.

That an intransitive composition is a subtype

of a transitive composition is thus implied

in Figure 7.29 by the subtyping relationship

between asymmetrical and symmetrical

relationships, together with the fact that a

transitive relationship may be symmetrical

or asymmetrical, whereas an intransitive

relationship is always asymmetrical. The

subtyping relationship between Symmetrical
Relationship and Asymmetrical Relationship
in Figure 7.29, together with the subtyping

relationship between Asymmetrical Relation-
ship and Intransitive Composition in that

figure, thus implies the subtyping relation-

ship between Intransitive Composition and

Transitive Composition in the same figure.
This is why it is shown with a broken line

in Figure 7.29.

Note also how subtyping and subsetting op-

erations are distinct and different in Figure

7.29. If we ignore their common information

content, transitive and intransitive relations

may be segregated into mutually exclusive

subsets in the set of all compositions, but

when we consider the information conveyed

by their meanings, one is a subtype of the

other, based on their generic and shared

meaning (just as mother of was a subtype of

ancestor of, in the example above, because a

mother is a kind of ancestor (but obviously

not vice versa). It tells us that, although we

may group transitive and intransitive compo-

sitions into mutually exclusive sets, we may

also obtain an intransitive relationship from

a transitive relationship by constraining or

adding to its meaning. Thus, polymorphism

and subsetting need not always be aligned.

Whether polymorphism equates to a subset

depends on the criterion for partitioning the

object class.

(For the same kinds of reasons, we could also

segregate symmetrical and asymmetrical

relationships into mutually exclusive subsets

even though one is a subtype (polymorphism)

of the other and similar arguments will hold

for the rule expressions in Figure 7.29.)

Adding information on the flow of time to a
relationship creates a subtype—a process.

This temporal information flows into relation-

ships from Event. Thus, a process has two

parents, Relationship and Event.
“Succeeds,” the succession relationship (and

its inverse “precede”), adds the bare mini-

mum of information on the flow of time to
“involves.” It is the thread from which all pro-

cesses emerge. “Succeeds” is asymmetrical

because time is asymmetrical. “Succeeds”

is therefore a subtype of “involves” that has

become asymmetrical with the addition of

temporal information on the flow of time from
the past to the future—the moving finger,
having written, moves on.

Every process is a subtype of “Succeeds” (or its

inverse “precede”). Every process is derived

from “Succeeds” by adding meanings, work

steps, or resource transformation information

to it. “Succeeds” (and its inverse, “precede”)

is the parent of every process. “Succeeds” is

an asymmetrical relationship and so is every

process. They have all inherited this informa-

tion from “Succeeds.”

•

•

•

276

Processes, Events, and Temporal Relationships

Figure 7.29. The metamodel of relationship

277

Processes, Events, and Temporal Relationships

Every process must use at least one resource

and may use more. It must also produce at

least one product and perhaps more. On the

other hand, every object need not be a resource

for a process or a product of one (although

all polymorphisms of the primal object are

potential resources and also potential products

of some unknown process).

Adding information on the flow of time can
also result in temporal distinctions between

similar relationships that lead to new kinds

of subtypes. These subtypes distinguish one

iteration of a process from another (even when

the iterations are concurrent). They divide

processes into different polymorphisms and

new subclasses of the original relationship. We

discussed this early under temporal degree.

In Box 7.12 and the case study in Module 5

at our Web site, we also saw how instances

of an idempotent relationship could split into

different subclasses as we added information

on the flow of time to the signature process.
The object labeled “iteration” in Figure 7.29

articulates the existence of these kinds of

polymorphisms.

Adding structure (information) to an unstruc-

tured relationship or process creates more

structured polymorphisms. We discussed

this in Box 7.7 and under unstructured col-

•

•

•

laboration. Indeed, processes added 16 new

conduits for adding information to those

created by nontemporal relationships. More-

over, the information added in any of these

16 ways may lie in a continuum that goes

from nil to a lot. Each dimension in Box 7.7

can be a basis for partitioning a process. A

Saga is also a kind of unstructured process.

It has no information on when it will end, if

it ends at all. An Endless Saga is a subtype

of Saga that we know for sure will not end.

A process that we know will end, even if we

do not know when, is also a polymorphism

of the generic saga, but we will not call it

Saga; we will call it a discrete, or “ordinary,”

process (Box 7.2).

A Moment is even more constrained than a

definitive discrete event. It is a moment in time,
an event of nil duration in which start and

end times coincide. It is therefore a subtype

(polymorphism) of the “ordinary” event.

Constraints are also relationships. Just as a

composition is a subtype of a relationship,

a Rule Expression adds information on the

steps by which the value of a rule may be

derived (and its meaning expressed). Thus,

rule expressions are polymorphisms of rule

meanings. Computational algorithms are

the link between the business and informa-

•

•

In Figure 7.29, “Subtype” and “Polymorphism” are synonymous. You could substitute one for the other without changing

any meanings. This happens because, when we consider subtyping a relationship, we must consider its shared features.

The features it has in common with other relationships stem from the shared information payload of a relationship. We

discussed features and their relationship with constraints under product engineering. There we saw how constraints bear

information and add to the information content of objects. These are the features inherited by subtypes. Subtypes will also

add features of its own to those it inherits. Thus, the conduit of shared information is the subtyping relationship, which

will convey a progressively larger information payload down a subtyping hierarchy. Relationships also share information

in the same way. Constraints may also be shared thus. These constraints sculpt meanings from the inchoate information

swirling through information space. A subtype retains inherited meanings and makes it more specific by constricting it
with stricter constraints of its own. Thus, “ancestor” is more specific and more constrained than a “relative,” and “mother”
or “father” is even more specific and constrained than “ancestor.”

Box 7.13. Subtypes, features, polymorphisms, and constraints

278

Processes, Events, and Temporal Relationships

tion logistics layers of the Architecture of

Knowledge.

As rule expressions descend the hierarchy

from occurrence to Boolean to ordinal to

ratio scaled rules, they add information on

magnitude and measurability to the meaning

of the rule. This is yet another way relation-

ships may be subtyped.

Interactions, information, rules, and meanings

lead us from aggregation to Relationship. As we

plunge down through this hierarchy of meaning,

relationships get richer and more meaningful but

always more constrained. Meanings, as we have

understood, flow from constraints. A constraint
is information.

Figure 7.29 describes the semantics of Re-

lationship. It shows how meanings are shared,

constrained, and how the information percolates

through patterns normalized by relationships of

different kinds. The left half of Figure 7.29 fo-

cuses on nontemporal relationships, whereas the

right side is the metamodel of Process. Figure

7.29 shows subtypes of relationships can be more

complex than most. They are polymorphisms

based on shared information. We have discussed

each in this chapter.

An object or relationship is a pattern of infor-

mation. The pattern conveys meaning, and that

meaning conveys behavior. Patterns need not be

patterns of tangible symbols; they may also be

patterns of abstract information. The pattern and

the meaning it conveys is a component, which

may be combined with others and reused to cre-

ate new meanings.

Meanings may be combined across the plethora

of partitions and subtypes in Figure 7.29 to yield a

rich harvest of relationships. Figure 7.28 was one

example. Figure 8.3 has another. In Figure 8.3,

adding temporal information to “Consists of” pro-

duces “invoke.” “Invoke” tells us when to invoke

effects in the control process of Figure 8.3, the

contol process is called an orchestration Service

in the lexicon of SOA. These are two examples

•

of the myriad meanings that lie hidden within

the metamodel in Figure 7.29. These meanings

lurk as possibilities we can call forth and instan-

tiate in reality. There are an immense number

of ways objects may combine and specialize as

they spin their webs of meaning in information

space—webs that continually tie and sculpt more

objects of different kinds. These webs sunder kind

from kind, the existent from the possible, and the

possible from the impossible. Thus, the Web of

reality is spun by rules that constrain.

Each relationship in Figure 7.29 is a starting

point. These starting points are abstractions at

the heart of multitudes of nuanced meanings con-

veyed and normalized by the uncounted hordes

of business relationships, which express business

meanings, needs, recommendations, require-

ments, policies, and rules of various kinds. The

subtypes and partitions in Figure 7.29 provide

the templates and guidelines for normalizing the

essential information conveyed by these rules

about interactions between objects. Each par-

ent parts one essence of a pattern from another,

peeling it away from the essence of its subtype.

Each subtype is also a relationship and a pattern

of information. Each enfolds, encapsulates, and

normalizes a meaning. Each meaning is a rule

that different polymorphisms of a relationship

will inherit even as they enrich it with meanings

added. Each is a vessel of normalized behavior.

We can create richer, even more complex vessels

by combining them across the partitions of Figure

7.29. Each such vessel will be a more complex

pattern that will enfold and normalize a more

complex rule. The example in Figure 7.28 was

but one such instance.

A constraint adds information to a pattern and

reduces the freedom of the pattern to be the pat-

tern it is. Constraining a relationship in any way

will subtype it. Subtyping is the channel through

which common behavior flows and spreads into
information space. Constraints flow through this
channel, attaching themselves to objects and

relationships in myriad polymorphic disguises.

279

Processes, Events, and Temporal Relationships

A constraint turns the inchoate information at

the gray border of existence into objects. These

objects are the relationships, categories, perspec-

tives, and symbols we can sense and understand.

They may be also be conduits of pure and abstract

information, meanings devoid of form that exist

as timeless concepts in information space. The

concept of constraint subsumes and extends be-

yond relationships. We will now turn to constraints

to conclude our journey into the metaworld of

knowledge.

REFERENCES

Arkin, A. (2001, March 8). Business Process
Management Initiative Consortium. Retrieved

October 14, 2007, from http://www.bpmi.org

Jones, R.L. (1998, August). NASA technical paper.
Retrieved October 14, 2007, from Design Tool

for Multiprocessor Scheduling and Evaluation of

Iterative Data Flow Algorithms: http://www.iis.

sinica.edu.tw/JISE/ 2000/200005_07.pdf

Kruchten, P. (1995). The 4+1 view model archi-

tecture. IEEE Software (Canadian version), pp.

42-50.

ENDNOTES

1 To understand the nature of the temporal

information added to an object or relation-

ship by the flow of time, see the note in
Appendix II on the flow of time.

2 A process is the Cartesian product of two

aggregate objects—the aggregation of

resources and the aggregation of products.

Resources come first, and products come
afterwards.

3 [116] in Appendix III has more information

on resources of different kinds and frame-

works for using and assigning them.
4 Like any other resource, an observation may

have a life (period of validity for a process).

(See [299] in Appendix III.) The interaction

between a process and its resource normal-

izes this behavior.
5 When we considered nontemporal order,

we were counting the occurrences of purely

nominal information—the participation of

object classes in relationships; each class

must be counted. Time on the other hand

implies a natural progression. Counting

back to the past implies the passage of all

time slices until the present. One can derive

the temporal order of a relationship across

time by counting back to the most remote

time slice that influenced the present.
6 Box 4.3 describes the principle of subtyping

by adding information.
7 [331] in Appendix III classifies events into

Call Events (requests that must be responded

to); Change Events (conditions, or changes,

in the value of a Boolean expression); Signal
Events (receipt of explicit communica-

tion—a message); Time Events (arrival of

an absolute time, or the passage of a relative

amount of time).
8 Events with no duration are called delta

functions in mathematics. Processes of

negligible duration also occur, but change

that denies the passage of time also denies

causality. The explosion of a firecracker
produces smoke and uses resources (such

as the oxygen in the air and the energy

consumed in triggering it), but cause and

effect—before and after—are implicit in a

process: The resources come first, and the
products come afterwards; a process must

have a finite duration, even if it is negligibly
small.

9 The Business Process Management Initia-

tive (BPMI) consortium is a consortium of

diverse firms across the industrial spectrum.
BPMI asserts that its purpose is to standard-

ize business process definitions “that span
multiple applications, corporate departments

280

Processes, Events, and Temporal Relationships

and business partners, behind the firewall,
and over the internet” to facilitate collabora-

tion across supply chains. BPMI standards

also facilitate integration of information

systems assembled from best-of-breed

components provided by diverse vendors

who might excel in their respective niches.

See http://www.bpmi.org.
10 The objects in Figure 7.5b are events. They

convey no information on transformation of

resources to products. Their names imply

work products and make them look like pro-

cesses, but they become explicit processes

only when information about resources,

products, or both are added (see Figure 7.11).

Based on the principle of subtyping by add-

ing information, a process is a subtype of

an event. It is a subtype of an event that is

also a relationship between resources and

products; therefore, it is a subtype with two

parents—Relationship and Event.
11 Temporal compositions carry more informa-

tion than nontemporal compositions (rules of

event succession). Based on the principle of

subtyping by adding information, temporal

compositions are subtypes of nontemporal

compositions. Temporal compositions

inherit the properties of compositions we

discussed earlier and add special properties

that flow from the tide of time and event.
12 [61] in Appendix III (A Guide to Project

Management Body of Knowledge, n.d.) has

further reading on the task dependency

diagramming technique. The sections on

process algebras, UML, and Petrinets have

additional reading on other techniques for

modeling business processes.
13 The Project Management Institute is a

cross industry international organization

dedicated to developing and standardizing

best project management practices. The

PMI publishes, owns, and maintains the

Project Management Body of Knowledge

(PMBOK). The PDM diagramming tech-

nique helps to schedule project tasks and to

determine the critical path. (The acronym

for the Critical Path Method is CPM.) PDM

is also the basis of PERT (Project Evaluation

and Review Technique), GERT (Graphical

Evaluation and Review Technique), and

SPREM (Software Project Evaluation and

Review Model). GERT, SPREM, and Petri-

nets of various kinds also support conditional

branching of processes. See Appendix II

on Petrinets and items under Process/Task/

Schedule Managementand Models and Pro-

cess Algebras and Techniques in Appendix

III.
14 The diagram in UML is called an activity

dependency diagram. Both PDM and UML

help to describe event (and process) depen-

dency. (See [61], [86], [329], [330], [331], and

[332] in Appendix III.)
15 What if the two constraints clash? What if no

orders are taken, but Pick Item is mandated?

[337] in Appendix III discusses consistency

of constraints.
16 [331] in Appendix III classifies events into

Call Events (requests that must be responded

to); Change Events (conditions, or changes,

in the value of a Boolean expression); Signal
Events (receipt of explicit communica-

tion—a message); Time Events (arrival of

an absolute time, or the passage of a relative

amount of time).
17 PDM does not support conditional branch-

ing; GERT, SPREM, Hierarchical Time

Extended Petrinets (H-EPNs), and UML do.

In UML, the branch will occur at a diamond

icon, and each branch will be associated

with a guard condition (usually written in

plain English). An arrow from the preceding

synchronization bar would terminate in the

decision diamond, from which all mutually

exclusive branches would flow on to other
successor events and synchronization bars.

H-EPNs support the semantics of event

dependencies described here. They support

281

Processes, Events, and Temporal Relationships

event compositions (via the subnet concepts),

temporal delays, and complex branching

decisions. (See [72] in Appendix III.)
18 When two or more event succession rules

are in conflict, the result is null succession

(meaningless, nonexistent succession).

When subassemblies of knowledge are

assembled from knowledge artifacts, the

knowledge repository should bring these

conflicts to the attention of analysts or reposi-
tory managers and insist on their resolution

before the subassembly can be released for

use.
19 Multiple instances of events may occur

simultaneously and the number of event

conjunctions that trigger a successor may

be different from the number of successors

a conjunction triggers. The relationship we

considered in the example is a conjunction

that triggers a single successor. The cardi-

nality ratio of the inverse of this third order

relationship (with respect to the conjunction)

is the number of successors each instance of

the conjunction (of predecessors) triggers;

in this case, it will be one.
20 The non-occurrence of service calls on a

given day is also an event. It would trigger

the Make Random Customer Call event.

Conversely, the occurrence of an event may

ensure that a successor is not triggered, even

if the other triggers occur; that is, an event

may disable a successor. A special kind of

connection in the succession network, called

an “inhibitor arc,” between the event that

bars and the event barred is used to represent

these “negative” succession relationships.

See Petrinets in Appendix II and section 2.5

of [72] in Appendix III. Mutually exclusive

sets of events are also inhibitors (of the

excluded event). “Inhibitor arcs” assert a

negative temporal relationship—a constraint

on event succession.
21 Petrinets, a technique developed in 1962 by

Carl Petri, implements cardinality and event

conjunctions with the artifice of passing
“tokens” to successor processes. The succes-

sor begins only after its predecessors have

provided the requisite tokens. See Appendix

II on Petrinets.
22 This book supports the standards published

by the BPMI consortium (see [63] in Ap-

pendix III). BPML supports the kinds of

conditional branching and event triggering

described here. [63] also supports conditional

mutability of resources and products (which

our metamodel supports via subtyping

and polymorphisms). However, this book

emphasizes the layer of business meaning

in Figure 3.4 and interfaces to the busi-

ness process automation layers more than

[63] does. Conversely, [63] emphasizes the

business process automation layers and its

interfaces with the technology layer more

than this book does. (See http://www.bpmi.

org for information about BPMI.)
23 Triggering events and predecessor processes

are resources in the before and after relation-

ship a process articulates. Successors are

products produced by predecessors: when

one process spawns another, the spawned

process is clearly a product of the process(es)

that spawned it either singly or in combina-

tion.
24 Every constituent may be a constituent of

one or more aggregates; unless constrained

by a capacity constraint, physical aggregates

are an important class of aggregate objects

discussed in the Universal Perspective (see

[338] in Appendix III): The physical world

naturally constrains physical objects to

one physical location. Consequently, their

membership in physical aggregates may be

constrained. However, in general, the “part
of” relationship (the inverse of “consists of”)

does not necessarily constrain the member-

ship of a constituent to a single aggregate.
25 [337] in Appendix III discusses value con-

straints in detail.

282

Processes, Events, and Temporal Relationships

26 Business rules that involve mutual con-

straints between time slots are consistent

with the metamodel of Value Constraint in

Figure 49 of [337] in Appendix III.
27 If a convoluted rule ever places the end of

even a single event before its beginning for

any combination of time lags or timings,

the process will never execute; it will be the

impossible “null” process. The repository of

knowledge artifacts should pre-empt this by

alerting users.
28 The principle of causality states that no event

may be influenced by an event that has not
yet occurred (else cause and effect will break

down). An exercise: Is risk a measure of

how the future might influence the present?
Consider the distinction between current

anticipation and future occurrence.
29 UML draws heavily on Petrinet and State

Charts. (See State Charts on page 55 of

[337] of Appendix III and Appendix II on

Petrinets.) The vertical bars in Figure 7.6b

are called synchronization bars. UML does

not explicitly recognize and structure time

delays between triggers or windows of op-

portunity for successors. Other techniques

like Petrinets, SPREM (see [87] in Appendix

III), LOTOS (see [78] in Appendix III),

and ARIS (see [118] in Appendix III) do.

In UML, they could be written in unstruc-

tured text near the synchronization bar as

guard conditions). See bibliography items

under Process Algebras. [69] in Appendix

III provides a succinct overview and links

to additional resources. LOTOS, an acro-

nym for Language of Temporal Ordering

Specifications, was declared a standard by
the International Standards Organization

(ISO) in 1988 (ISO standard 8807). However,

LOTOS did not support complex rules such

as those that involved delayed responses to

events. Subsequent extensions to LOTOS,

including Real Time LOTOS (RT-LOTOS),

do. RT-LOTOS supports time delays, re-

strictions, and process latency, wherein a

process may have been enabled by one event

but will not be initiated unless another oc-

curs. LOTOS supports mutually exclusive

processes, parallel processes, processes that

must synchronize on an event, as well as the

“normal” sequence, wherein the beginning

of a process is contingent on the end of an-

other. LOTOS also supports interruption of

processes. RT LOTOS adds the concept of

delays, windows in time when processes may

be latent, and “hidden” internal events. [78]

in Appendix III provides more information

on LOTOS and RT-LOTOS.
30 Although it is not the intent of UML, the

vertical synchronization bars in UML activ-

ity diagrams could represent event conjunc-

tions—relationships of various, degrees,

orders, and possible latencies between events

(also see Figure 7.6b).
31 Temporal networks cannot loop back on past

events; that is, the future cannot influence the
past, but the past may influence the future
(the principle of causality). Networks like

this are called acyclic networks because

they cannot cycle (loop back) to previous

instances (nodes). Critical paths apply to

acyclic networks.
32 See the mathematics of Hierarchical Time

Extended Petrinets in [72] in Appendix

III.
33 Rules that constrain connections to ports

within a composition will be higher order

rules of governance. They will not be higher

order processes unless they change con-

straints over time, but they will be higher

order patterns because they will constrain

other patterns.
34 A branch of mathematics called Pi-Calculus

deals with concurrent interactive processes,

in which dynamic interaction may change

the flow of events in a process. See [75], [76],
and [77] in Appendix III and Appendix II

on Pi-Calculus and Petrinets.

283

Processes, Events, and Temporal Relationships

35 UML could, but does not, use the activity

dependency diagramming technique (Figure

7.6) to address process cycle times; it focuses

on interpreting requirements for computer

programmers. Also see Appendix II on

Petrinets, [312] and other publications on

Petrinets and scheduling in Appendix III.
36 Management literature sometimes distin-

guishes a goal from an objective. In some

strategic planning methodologies, goals are

quantitative and objectives are not. However,

the distinction is not universally accepted.

In this book, we will not make fine distinc-

tions between “Goal” and “Objective.” The

“Purpose” of a business is very similar to

both goal and objective. It is the goal at-

tached to an unknown process for meeting

the goal. The process, being “unknown,”

does not add information to its goal.
37 This process is called SWOT analysis in

management literature—an acronym for

Strengths, Weaknesses, Opportunities,

and Threats analysis. In SWOT analysis,

it is often easy to show linkages between

objectives and their rationale in a table, a

column each for strengths, weaknesses,

opportunities, threats, and objectives.
38 An object may play several roles simultane-

ously. (See [337] in Appendix III.)
39 See the discussion in Box 4.3.
40 Different compositions of a process are

different ways of obtaining the same end

results. Each will be mutable with the oth-

ers because compositions, as a whole, are

subtypes of the process they compose (see

Liskov’s Substitution Principle).
41 A process may be a relationship of any

order—an irreducible fact that connects

several resources and work products into

a single relationship. For instance, Unload
Cookie in Figure 7.11c is a fifth order tem-

poral relationship that glues three resources

(including its trigger) and two products into

a single irreducible fact.

42 The state of the composition is the combi-
nation of states of components in it. It is

called a superstate. See [79] in Appendix

III and the section on state charts in [330]

in Appendix III.
43 A supply chain is a chain of events that uses

resources to create and deliver products. Fig-

ure 7.11c shows a part of a supply chain.
44 Information systems analysts are familiar

with data flow diagrams. This is why we have
adapted them for process mapping. There

are other more robust techniques, which

also show flow rates, cardinalities, and other
rules. (See [6] and [10] in Appendix III.)

45 See batch processes in [100], [103], and [104]

in Appendix III. Our metamodel supports the

requirements for batch processes articulated

at CAPE-21 (a process engineering forum).

(See [104] in Appendix III.)
46 The “lived in by” relationship between House

and Person (see The Capacity for Relation-

ships in Chapter V) demonstrates how an

“ordinary” object may engage another so

that it becomes unavailable as a resource to

a process: The house, a building, will not be

available as factory for memory chips while

it is a home. As such, it cannot be a resource

for a process that produces memory chips

while people live in it.
47 In 2001, the BPMI (Business Process

Management Initiative) consortium aimed

to standardize business process definitions
“that span multiple applications, corporate

departments and business partners, behind

the firewall, and over the internet” (see http://

www.bpmi.org). BPMI published the BPML

standard for business process modeling

(See [63] in Appendix III)). Our metamodel

extends BPML: BPML recognizes that a pro-

cess may engage resources. Our processes

inherit this behavior from relationships. Our

relationships also recognize that they may

partially engage the capacity of an object.

Moreover, processes also inherit the property

284

Processes, Events, and Temporal Relationships

of cardinality from relationships. We have

seen how this translates to the quantum of

resources required by a process.
48 The succession of a process may depend

on the occurrence of a predecessor object

(this object could also be an event or another

process). An object becoming available as a

resource is a temporal occurrence and, there-

fore, an event. This is why the metamodel

makes succession contingent on events. The

events could be input events.
49 [116] in Appendix III articulates governing

principles for resolving resource conflicts.
Resolution of resource conflicts may depend
on objectives. (See [72], [83], [85], [86], and

[153] in Appendix III.)
50 In a deadlock, the process may be waiting

for an item produced one or more steps down

the causal chain of events.
51 Complexity leads to chaotic behavior. This

occurs when small differences in rules, tim-

ings of responses, and values of variables

lead to unpredictable, unmanageable, and

large differences in end results that cascade

through the composite process. It then be-

comes hard to foresee every exception and

contingency. Chaotic behavior is a major

field of mathematics. Experience chaos in-

teractively in [293] in Appendix III, or see

[292], [323], and Box 18 on our Web site.
52 If it can be inherited from the metamodel,

process modeling, task, or project manage-

ment functions do not need to be re-analyzed

and rebuilt each time software is developed.

Rules that acquire or substitute resources

and resolve resource conflicts are relation-

ships. With temporal information added,

they become processes, their behavior

inherited from relationships and processes

in the metamodel.
53 The complex behavior of temporal networks,

their optimization, and load balancing is a

subject in its own right and is addressed in

the recommended reading in Appendix III,

under Process/Task/Schedule Management

and Models. [72], [83], [86], [305], and [312]

in Appendix III provide additional informa-

tion on this topic. [83] (in Appendix III), a

NASA paper, describes an automated opti-

mization algorithm that resolves resource

conflicts and complexity with governing
processes (called “control edges” in the

publication).
54 [7] in Appendix III has illustrative examples

and more information on activity cost. It

includes a calculation worksheet.
55 Joint constraints are discussed with Figure

43 in [337] (in Appendix III), Figure 44

in [337], and Figure C of Box 5.1 (in this

book).
56 [295] in Appendix III discusses methods of

business process redesign and the business

rationale driving change and scope creep.
57 Sometimes the “I,” or “keep informed” role,

is included in the RAWCF dimensions of

process ownership. However, “I” gives us

little information on the purpose of the role.

At the meaning level, we need to know that

the information is being shared for consulta-

tion, facilitation, tracking, or governance.

Tracking and governing processes are

considered to be distinct from processes

they track and govern. Thus, we believe the

RAWCF categories are more precise and ac-

tion oriented. The “I” dimension belongs to

the information logistics layer, more than the

business meaning layer in the architecture of

knowledge. It describes information flow.
58 Box 36 on our Web site discusses represen-

tation in more detail. Representation must

be irreflexive because every component of
knowledge must convey some information; it

is a pattern in information space. An object

representing itself conveys no information.

Therefore, representation must be irreflex-

ive. Unlike representation, a relationship

like “self help” does convey information and

hence is a component of knowledge. [338] in

285

Processes, Events, and Temporal Relationships

Appendix III describes several key business

polymorphisms of representation.
59 [116] and [153] in Appendix III discuss

resolution of resource conflicts, interchange-

ability of resources, work allocation, and

derivation of work hierarchies.
60 The section on Activity Diagrams (see [333]

and [331] in Appendix III) discusses UML

swim lanes.
61 A facilitated workshop in which manage-

ment and information systems specialists

design a service architecture or a collabora-

tive session in which designers, production

specialists, and product managers jointly

design a product (e.g., a car) are examples

of intensely collaborative processes. The

resolution processes in Figure 7.13 may be an

intensely collaborative process between the

departments involved. The section on sup-

ply and demand chains has more examples.

[36] in Appendix III provides examples of

intensely collaborative, reusable e-com-

merce use cases. Also see [115], [116], and

[120] in Appendix III.
62 [295] in Appendix III has more on business

engineering.
63 The Value Chain Markup Language (VCML)

from Vitria Technology, Inc., describes a

value chain as “a network of all of the busi-

ness partners and transactions in a supply

and demand chain from raw materials and

subassemblies to the consumer.” It asserts

“A value chain spans vertical and horizontal
relationships within and across industries.
It addresses relationships with all parties
participating in designing, manufacturing,
financing, marketing, delivering, and sup-
porting a product or service.” See [65] in

Appendix III and http://www.vcml.net/. Note

the subtle but important difference between

this definition and that in this book. In this
book, the value chain is the chain of interde-

pendent processes that deliver value. These

processes might be owned and managed

by the kinds of process owners mentioned

in the VCML definition, but our definition
focuses purely on the process regardless of

ownership; our Value Chain is the chain of

processes that deliver value.
64 Items in Appendix III under Demand and

Supply Chain Standards discuss supply and

demand chains, the value chain of Figure

7.14, and the imperatives that drive their

integration.
65 [118] in Appendix III provides further read-

ing on the ARIS patterns published by Dr.

Scheer.
66 The Instrumentation Systems and Auto-

mation Society (ISA) is a nonprofit trade
association of measurement and control

engineers. Founded in 1945, ISA has over

39,000 members spread over more than 110

countries. In its own words, ISA “fosters

advancement in the theory, design, manu-

facture, and use of sensors, instruments,

computers, and systems for measurement

and control.” See http://www.isa.org/.
67 [100] and [102] in Appendix III describe the

S95 process standard.
68 [295] in Appendix III discusses business

redesign, reasons, and methods.
69 State charts articulate rules about permitted

and barred state transitions. See [79] and

[333] in Appendix III.
70 [153] in Appendix III discusses subtyping

of mutable resources for processes.
71 [337] in Appendix III discusses features of

objects such as attributes and behavior.
72 The BPML standard, recently published by

the Business Process Management Initia-

tive consortium (http://www.bpmi.org), is

one of the very few that support dynamic

assignment of resources and products as

instances of processes occur. BPML, like the

metamodel in this book, recognizes that loss

of structure may make a process unreliable.

The metamodel model in this book also tells

us that this will happen unless unstructured

286

Processes, Events, and Temporal Relationships

processes are dynamically governed. [63]

and [64] in Appendix III discuss BPML.
73 [116] in Appendix III expands on how

needs may be identified and matched with
available resources in different business

environments. [153] in Appendix III expands

on subtyping hierarchies of roles that can

facilitate assignment of mutable human

resources.
74 Automated actors are assuming W respon-

sibilities, and individuals are moving up to

A (see Box 7.6 and the discussion around it).

As W and A start converging in the same

individual, the value added by individuals

at the W level is being replaced more and

more their value at the A level.
75 The “features” of Figure 7.25 are called

“attributes” by the Balanced Score Card

methodology, a framework that is used to

identify measures of success for a business.

It is a broader concept than the “attribute”

of this book.
76 Agile Systems with Reusable Patterns of

Business Knowledge: A Component Based
Approach, a companion book by the same

authors, elaborates on the metamodel of

“Feature.” Chapter IX in this book describes

the metamodel of feature at a high level.
77 The information added to the check are

temporal cardinality constraints: the concur-

rency ratio between the resource that signs a

check and the check signing process must be

1 or less (i.e., a signatory may sign only one

check at a time), and the concurrency of the

aggregate process, the two polymorphisms

in Figure 7.24b considered together, must be

one or less (i.e., the same check cannot be

signed by more than one person at a time).
78 If the signature process always has to hap-

pen whenever the check and signatory are

collocated, the relationship between the

place and the process would be implied
by the relationships on either side of it in

Figure A. That relationship would then

become transitive with respect to the other

two, instead of being their common subtype.

Obviously, that is not the case. Therefore,

the relationship between the place and the

process is derived from the other two, but

as a subtype, not as a member of a transitive

triad.
79 These patterns of information—rules and

relationships of objects with Place and Physi-

cal Place—are discussed in the Universal

Perspective in Agile Systems with Reusable
Patterns of Business Knowledge: A Compo-
nent Based Approach.

80 The metamodel of Pattern in Figure I.3

and Figure I.2 of Appendix I is a detailed

description of the semantics of “Object.”

Figure 31 on our Web site summarizes the

concept. [337] in Appendix III discusses the

semantics of pattern in detail.
81 See Appendix II on gluing objects together:

The connectives between objects in a

threadbare “involve” relationship are not

null. A null operator implies no operation,

no relationship, no interaction, and assured
independence between objects. We could

call a “value” that subsumes both “Don’t
care” and “null” “Any.” “Any” conveys no

information. There is no element of surprise,

it distinguishes nothing and subsumes every-

thing. It is always expected. Its information

content is zero (see Appendix II on Shannon’s

information theory). The Exclude relation-

ship in Figure 7.29 is also a connective (a

single connective could connect multiple

objects). It is an interaction between that

which exists and that which cannot. This

exclude relationship is subsumed by involve
(Figure 7.29). All relationships are interac-

tions, and all interactions are connectives.

Involve is the “Don’t care” relationship. It

does not care what the interaction is, only

that there is one. This is different from “Any”

and “Unknown” (see Box 5.3).

287

Processes, Events, and Temporal Relationships

82 Chapter IV discusses degrees of freedom.
83 An aggregate object is a supertype of the

aggregation relationship. The object not

only conveys less information than the re-

lationship, but the relationship cannot exist

without the object, whereas the object may

occur without the relationship.
84 Figure 31 on our Web site summarizes the

semantics between List and Object.
85 Some kinds of aggregation may be sym-

metrical (relationships): when classes of

infinite cardinality are considered, a part
may even contain the whole. Thus, a class

that is a part of another class may also be a

part of the class it is a part of. The metamodel

in Figure 7.29 supports this because it tells

us that asymmetrical relationships are sub-

types of their symmetrical counterparts but

does not make this arcane and surprising

symmetrical supertype of asymmetrical

aggregation explicit.
86 A set is a kind of mathematical class, but we

have used Set and Class interchangeably in

this book.
87 [337] and [338] in Appendix III discuss place

and location in detail.
88 Composed of (Figure 6.2) has been hidden

in the hierarchy of Figure 7.27a. Part of
does not distinguish between structure and

the lack of it, whereas Composed of does.

Hidden to avoid clutter, Composed of lies

between Part of and Subtype of in Figure

7.27a.
89 The Universal Perspective in [338] in Ap-

pendix III elaborates on the concept of Place.

Also see Box 72 on our Web site.
90 Size is a polymorphism of capacity. Capacity

stems from relationships (Chapter V) and

Size from the containment relationship. Size

can have different polymorphisms. Each

polymorphism of containment is a poten-

tial polymorphism of Size. For example,

a constraint on how many people can live

in a house is a polymorphism of size that

stems from the Live in relationship (Chap-

ter V), which in turn is a polymorphism of

containment. The floor space of a house is
another polymorphism of size that stems

from a containment relationship with the

area domain.
91 The precision with which Object 1 locates

Object 2 in Figure 7.27b will be greater than

the precision with which it locates Objects

3 or 4; the contents of Object 2 could lie

anywhere within its limits. Object instances

are patterns of information, and patterns

have limits and degrees of freedom. Preci-

sion increases as degrees of freedom are

reduced.
92 A generic relationship between instances

of objects that tells us only that the objects

are related (“involved” in some unspecified
way) conveys less information than one

between attributes of objects. You could

consider generic occurrence relationships

between object classes relationships between

instance identifiers. Instance identifiers may
also be considered attributes of objects,

albeit special attributes that lend an object

its very identity. Occurrence information

like cardinality, ordinality (order of the

relationship) degree, and idempotence

add information to this generic and vague

involvement between objects. They make

the relationship more specific. An occur-
rence relationship between object classes

conveys less information than a quantitative

relationship, or even a relationship that tells

us which specific attributes of what objects
are related and bound by what constraints

on values. This is why an idempotent loop

on the states of an object instance conveys

more information than an idempotent rela-

tionship that generically relates the object

instance to itself. The relationship tells us

specifically which state of the object must
cycle through what other states to return to

the original state.

288

Processes, Events, and Temporal Relationships

Indeed, if the cycle involves states of other

objects, it becomes an idempotent composi-

tion—a composite process with resources

and products that cycles back to restore the

object at the beginning back to the state it

started in. If the cycle is not idempotent with

respect to the other objects in the loop, the

original object may be considered a catalyst

for the composite process; it is a resource that

facilitates change without being altered.
93 [338] in Appendix III describes the Universal

Perspective in detail.
94 The Universal Perspective is useful for new

systems/process designs and also for the

integration and reengineering of diverse

legacy business processes, supply chains,

information systems, and databases.
95 Idempotent relationships between different

states of the same object may or may not

be symmetrical. The “shatter” relationship

from a whole to a shattered glass pane in

Figure 20 in [337] in Appendix III is idem-

potent, asymmetrical, and irreversible: it

involved whole and shattered states of the

same glass pane. State transitions involve

processes. Processes involve time. Time is

asymmetrical. Therefore, processes, idem-

potent or not, are asymmetrical relationships

(which may or may not be reversible).
96 Box 36 on our Web site and Chapter IV

discuss representation.
97 Assemble is a polymorphism of Make in the

SCOR supply chain of Figure 7.20.
98 Assemble Car normalizes the intelligence

about how car parts are assembled into a

car: Given any two members of the triad in

Figure 7.28, “Car Part,” “Assemble,” and

“Car,” the third is implied and adds no new

information.

289

Chapter VIII
Crossing the Chasm:

Business Process to
Information Systems

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

This chapter describes the bridge between business meanings and automated information systems. It de-
scribes the information architecture that interfaces computational processes to the business semantic.

We have seen how an object is a pattern of informa-

tion (see Chapter IV and Box 7.9). It is an abstract

pattern in an abstract place that can be called

information space. This pattern of information is

the essence of the object—its “spirit” in one sense;

it lends meaning to the object. This information

manifests itself in physical space only when it is

attached to a format. A physical object could in the

same way also be considered to be a “format” of

an object in physical space, a manifestation of the

information it conveys. This information makes

it what it is. In crossing the chasm from business

process to information systems, our focus must

shift from format to meaning.

The meanings glue the physical world of busi-

ness process, tangible objects, and mechanisms

Figure 8.1. The bridges from business process to information system

Tangible Objects,
Processes &
Mechanisms

Tangible Information
Information Logistics,

Interface & Technology
Layers

Abstract Meanings
& Patterns that

unify

INFORMATION SPACE
(A CONNECTING HUB)REAL

WORLD

INFORMATION
SYSTEM

290

Crossing the Chasm: Business Process to Information Systems

to the world of tangible information systems that

automate and track the information content of

the real world. As we have seen, these meanings

engage each other to produce new, compound

meanings that support both simple and complex

behaviors in multitudes of possible configura-

tions. Changing or reconfiguring a meaning will
automatically change the meaning and behavior

of the business process or object that manifests

it in the world of business and, simultaneously,

without pause, will also change the information

content and configuration of information sys-

tems that tangibly manifests information about

that behavior. The meanings unify, but we must

know what bridges we must cross and how to

transform meanings into the behavior of infor-

mation systems. The transforms in this section

are those bridges.

These bridges too are components of knowl-

edge—great sweeping bridges that connect the

physical world of business to the vast universe

of meanings beyond—meanings that are pure

information—and then sweep back from abstract

meanings to the tangible world that gives pure

information a shape and form that we can sense,

store, and manipulate.

The primary focus of this book has been the

bridge that links the tangible world of business

to the abstract world of meanings beyond. Box

4.1 and Equivalence of Patterns in Chapter IV

contained transforms that gave intangible mean-

ings tangible form—formats and measures we

could manipulate. In this section, we will dwell

on translating business processes to information

systems. The design of the technology, interface,

and information logistics layers of Figure 3.4 are

discussed where they touch layers of business

meaning. We will see how the design process may

be automated by special transformation logic.

The key to the first bridge in Figure 8.1—the
bridge from the tangible world to the world of

abstract meaning—is simple. Tangible objects

and processes convey information that we must

abstract, normalize, and focus on. Every object

and every process in the real world must be mir-

rored by a pattern of information—a model that

abstracts its essence. Its counterpart in information

space, a simple reflection, will reflect every object,
resource, product, and process. Unfortunately,

rules that are simple at the beginning seldom retain

their simplicity as we peel back layers of meaning

to reveal the complexity that lies beneath.

A real life business object—a resource, a

product, or both—must map to an information

object, but it must also be generalized and clas-

sified in order to normalize information. This, as
we have seen, can be complex, but the patterns

in the Universal Perspective, in tandem with

our metamodel and the various algorithms for

reducing data to normal forms can help (see Ap-

pendix II on normalization). Liskov’s principle

and the Principle of Parsimony must be applied

to the Universal Perspective, so that the business

semantic is an generalized as possible, without

being ambiguous. This will facilitate agility and

resuse across different contexts in support of

innovation.

A real life business object will interact with

other objects. These interactions will be reflected
in information bearing relationships in informa-

tion space. The interactions too must be normal-

ized. We have discussed them at length. It is the

same with processes. They are relationships that

carry information on the flow of time. We have
discussed them too. However, as we will see, the

behavior of these reflections is subtly different
from the reality they mirror.

TRANSFORMING BUSINESS
PROCESSES INTO EFFECTS OF
EVENTS

The reflection of processes in information systems
is relatively simple when the process produces

(or changes) only one product: Events normalize

temporal information, and objects respond to

events; events have effects on objects through

291

Crossing the Chasm: Business Process to Information Systems

processes. Such effects bridge the chasm between

information space and information system. When

a process produces or alters a single product, the

process maps directly to the effect. The informa-

tion process will then be a direct reflection of the
business process and is also the effect of an event.

The event it is an effect of is the businesses process

itself or, transitively, the effect of the event that

triggers the business process.

When a process produces multiple products,

the rules become more complicated; the system

must know how information in an individual

information object must be changed to reflect
the changes wrought by processes that act on

several objects. If we can decompose the process

into subprocesses that have only one output, we

can map each process to an effect of an event,

but the map between process and effect becomes

complicated when the process cannot be resolved

into subprocesses with a single output—when

the process is an irreducible fact like the process

for separating wheat from chaff was (under The

Essence of a Process) or like the unloading of

the cookie sheet was in Figure 7.11c. Unloading

the cookie from the cookie sheet separated cook-

ies from the sheet they were baked on and, in a

single operation, created each cookie in its final

form even as it created the used cookie sheet. It

was done in one stroke as a single inseparable

irreducible fact. There is no business process that

will produce the cookie separately from the used

cookie sheet in this operation—but, as we will see

next, its reflection in information space will.
An information system deals in information,

not the real and tangible objects that are the

manifestation of that information. A process in

an information system must update both the in-

formation about the cookie sheet and the cookie

to reflect the changes the business process has
made. Updating the state of the cookie sheet is

the effect of “Unload Cookie,” an event on Cookie
Sheet. Cookie Sheet, the information object, con-

veys and normalizes information about the real

cookie sheet. It normalizes this effect—an item

of information on the behavior of cookie sheets

used for baking cookies. On the other hand, the

production of the cookie in its final, unloaded
form is the effect of the same “Unload Cookie”

event on Cookie, the information object that

reflects information about real world cookies. If
we cut the Unload Cookie process in two as we

have done in Figure 8.2 so that each piece of the

process has only one output, we will have the two

individual effects—one for Cookie and the other

for Cookie Sheet.

Figure 8.2. The bridge from Process to Effect: Cutting a process with two products into effects of
events

Unload cookie

Bake dough

Cookie batch

Cookie Sheet
(in use)

Cookie
(information)

Cookie Sheet (used)
(information)

Change
state of
cookie sheet

Create cookie

Begin
(not

necessarily
together)

End
(not
necessarily
together)

(effect)

(effect)

(PROCESS)

precede

(Process)

Cookie

Cookie Sheet
(used)

�(Mutually Inclusive Effects)
(PRODUCTS)

(RESOURCES)

292

Crossing the Chasm: Business Process to Information Systems

However, we know that we cannot cut the

meaning of the business process thus. As we

have seen, that will be meaningless. This trans-

form has taken us beyond the world of business

into the world of information about the business.

Each effect will drive the logic at the heart of the

process that updates information, a process that

information systems will use.

If the information system is synchronized

with the real world, both effects will begin and

end together with the process in the real world

but a process and its reflection do not have to

be synchronized. Indeed, even the two effects

do not have to be synchronized. All we know is

that they are mutually inclusive; if one occurs,

the other too must occur—even if they do not

occur concurrently.

Technology constraints might bar them from

occurring concurrently or even simultaneously

with the processes they reflect, but they must
both occur because the business process, reflected
in the universe of information, has no meaning

unless they both occur (in the terminology of

service oriented architecture the pair would be

called a “short running” or “ACID” transaction).

If some technical glitch in the information system

prevents one of the two effects from occurring

when the other has, we must restore the informa-

tion system to the state it was in before either

one occurred—it is the source of roll-back and

recovery rules many designers of information

systems are familiar with. (There may also be

other causes for rollback and recovery that are

internal to the design of the process automation

and technology layers of Figure 3.4, but those are

not our focus here.1)

Note how this kind of roll-back and recovery

is different from a business rule (discussed under

Transforming Business Processes into Effects of

Events), in which the chef asserts that if the Bake
Cookie process (in Figure 7.11c) is interrupted for

more than an hour after making dough, then it has

to restart from the beginning—by baking fresh

dough and starting the process all over again. That

is a business rule, a fact that stands on its own.

On the other hand, rolling back the information

carrying reflection of a business process because
both effects could not complete and therefore

compromised the integrity of the process, was

a rule of information systems derived from, and

dependent on, the transform in Figure 8.2. It did

not stand on its own as a rule of business. (As

an exercise for the reader, how would you model

the chef’s rule? In the terminology of service

oriented architecture, rules like these are called

“long running” transactions.)

If a business process has more than two prod-

ucts, the transformation in Figure 8.2 will slice the

business process once for every product in order to

derive the effect that applies to that product. The

business process will then be mirrored by a col-

lection of information processes—effects—that

have a single output in information space.

TRANSFORMING BUSINESS
PROCESSES INTO INFORMATION
SYSTEMS CONTROL PROCESSES

The effect is how an event touches an object. The

junction can be a many-to-many relationship (see

Figure 5.7). If we group all effects for a given event

into an aggregate object, that aggregate can some-

times be a module in an information system—it

will contain a complete set of instructions on how

objects must be changed when the event occurs,

or rather, when the information system gets word

of its occurrence.2 However, the order in which

effects are applied to a system to change its state

must not violate the sequence of effects mandated

by business processes. Ignoring this sequence is a

common source of defects in information systems.

We can prevent these defects from occurring by

using the transform in Figure 8.2 to derive effects

and then sequencing effects in sequences dictated

by business process maps.

Control processes in information systems

sequence effects. To keep the state of information

293

Crossing the Chasm: Business Process to Information Systems

consistent with the state of the business process,

these control processes must be derived from

business processes. Just as business processes

were transformed into effects in information

space, process dependencies, timings, latencies,

and sequences may be transformed into control

processes in information space. When two or

more effects in information space are derived by

the transform in Figure 8.2, the control processes

in information space will only specify that they

are mutually inclusive and have the same process

dependencies and timing constraints as the busi-

ness process each was derived from.

The actual implementation of this abstract con-
trol process will only crystallize when it crosses
the bridge to information systems in Figure 8.1.
It is then that rules about synchronization will
be added. These rules will tell us whether the
implementations of effects are timed to occur
in parallel, in sequence, synchronized with the
occurrence of the physical business process (in
real time systems), within what tolerances and

with what accuracy, reliability and completeness.
The augmented control process in Box 8.2 has
these rules.

The implementations of the abstract control

process will also incorporate information on

interfaces to mechanisms that convey informa-

tion about the occurrence of real world events

to the control process. Similarly, information

on interfaces that convey information from the

control process to interfaces used by the actors

who use the system will be a part of the control

process—information about states of objects, con-

trol events, exceptions, and substates within the

control process. We will call this the augmented
control process.

We will return to transforms that produce this

interface under navigation interfaces and again un-

der information input-output processes. Now we

will focus on the sequencing of effects. Figure 8.3

illustrates how control processes sequence effects

of events on objects (the term “I/S” in the figure
is an acronym for “Information System”):

Figure 8.3. Control processes and the sequencing of effects

I/S control
Process

(A)

Interface (“P” for Presentationof
information) navigates the information
system by triggering control processes

Object

response

to

Business

Event

(“E” for Effect)

Effect

Object

The same I/S control
process (“C”) reused within
another control Process

Controls use of, & sequences

Accesses
&

Updates

Effect

Object

(recording of events & data,
navigation through screens,
 dialogs, menus etc)

The same components may be invoked by different control processes
Objects (Reusable Components)

(Effects of

Events on

Objects)

Re-usable

Process (C)
(A subassembly of

effects and controls)

PARALLEL
PROCESSES

I/S control
Process

(B)

• Business processes are triggered by business
events

• Business Events act on business objects
– These actions are effects of business events.

– Effects...

• Create or delete object instances

• Update attributes or states of objects

• Create, destroy or switch relationships between

particular instances of objects

HOW OBJECTS RESPOND TO

EVENTS

(Effects of Events

 on Objects)

Actor

Accesses
&

Updates

Triggers, Interrupts

and controls

(Event)(Event)

Process (Another Reusable Component)

INFORMATION INPUT AND
OUTPUT PROCESSES

(Flow of Time)

Information systems
Control Processes derived

from business process maps

(C)

294

Crossing the Chasm: Business Process to Information Systems

Automation can be blindly mechanical and to-

tally reliable if it is told how to transform resources

into products. If we automate the transform in

Figure 8.2, as well as the creation of control pro-

cesses from business process maps, defects of the

kind that flow from incorrect sequences of effects
will be few. Control processes thus created will

reflect business process dependencies.
Control processes sequence and coordinate

effects of events. Information objects that are

reflections of their real world counterparts en-

capsulate these effects. These objects normal-

ize or inherit the effects that control processes

sequence. Control processes reflect the sequence
of business events described by business process

maps. (Control Processes are called “Orchestra-

tion Services” in SOA lexicon, and the effects

they invoke are called “Services” that compose

business processes.) The object, and through it,

the effect, both become reusable components of

knowledge that can be referenced by different

control processes. Under process engineering, we

saw how business processes may be reengineered

by changing process dependencies, sequences, or

inserting new processes in process maps (some-

times in support of new features). Correspond-

ing control processes will reflect these changes
by resequencing the same effects differently (in

tandem with new effects when new processes

are inserted). For instance, each variation of the

“Sign Check” process in Box 7.9 referenced the

same effects of the same signature events on the

check, but the temporal sequences in which these

effects were invoked were different. Similarly,

the Bake Colored Cookie process we discussed

under process engineering resequenced effects by

inserting a new effect into the process map for

baking cookies (in support of a new feature—the

color of the cookie).

In Box 7.9 (and under Process Reengineering),

had there been two variations of the check signing

process favored by two different subsidiaries, one

in which the CEO had to sign before the CFO,

and the other in which the CFO signed before the

CEO, it is the control process that would change,

not the computer code or information structures

that reflect the effects of signature events on the
check. In this manner, change has been isolated

and contained in information space by normal-

izing different kinds of information in the right

objects in the metamodel of knowledge.

Control processes could also be reusable

knowledge (components) in information space.

Control processes normalize information about

sequencing effects. They are the direct reflection of
the sequencing information contained in process

maps that describe business process dependen-

cies, sequences, and latency. In our discussion on

supply chains, we have seen how one business

process may reuse another. In the same way, one

control process may invoke another, and there is

no bar against other control processes invoking

it as well. As such, control processes themselves

may be shared components of information—sub-

assemblies of knowledge in information space.

Control processes are also called ‘Orchestra-

tion Services’ in the lexicon of Service Oriented

Architecture. Figure 8.3 illustrates how a control

process may not only invoke an effect of an event

but may also invoke another control process that

itself is a subassembly of parts—a sequence of

effects and events—a shareable component of

knowledge in the repository of knowledge arti-

facts, referenceable (invokable) by several control

processes. Figure 8.3 shows how these sequences

may even execute in parallel if the business process

they are derived from may also do so.

A control process could also encapsulate rules

about process interruption, process suspension,

and roll-back, like the chef’s rule about restart-

ing the baking process if it is suspended for too

long (described in our discussion of the states of

events). To these rules of business, control pro-

cesses also add rules about effects of events that

are not strictly business events. They are events

that flow from things that happen in the business
process automation layers of Figure 3.4—rules

like the roll-back rule in our discussion of Fig-

295

Crossing the Chasm: Business Process to Information Systems

ure 8.2 for effects that fail to occur. Eventually,

when the information system is adapted to a

specific technology platform, control processes
will also add effects of events in the technology

layer of Figure 3.4 (see Box 8.2). However, these

events, effects, and even objects that reside in the

technology, interface, and information logistics

layers of Figure 3.4 are beyond the scope of this

discussion. For us, it will suffice to understand
how control processes are derived from business

process maps and how they reflect rules of process
dependency, latency, and roll-back that sequence

and control the execution of business effects on

information objects—objects that are derived

from business objects.

Information about business events is conveyed

to the information system via an interface with an

Actor (the interface will also provide information

to the system about events that have occurred in the

other layers of Figure 3.4, but those events are not

the focus of this discussion). The Actor executes

the control process and could be either a person

or automation (see the “W” dimension of process

ownership in the section on Process Ownership).

The actor’s interface with information objects

lies in the business process automation layers of

Figure 3.4. We will discuss the transforms that

produce these interfaces later this section.

The metamodel does not restrict a control

process to a single interface or a single actor.

There may be several. Different technologies and

mechanisms may support different interfaces and

actors, and each may reuse the augmented control

process of Box 8.2. This augmented process is

how the process in Figure 8.3 is implemented in

information systems. It resides in the interface

layer of Figure 3.4. The augmented control process

was derived from the control process in Figure

8.3, which may be reused in several implementa-

tions. The control process in Figure 8.3 and its

augmentation in Box 8.2 are both components

of knowledge, but not components of business
knowledge. They are components of business

process automation. They carry information on

how the information system will synchronize and

time effects, without violating the constraints

imposed by the business process.

(All possible implementations of control

processes may not be realized. This is why the

injective relationship in the metamodel above is

optional. Also note that the injective relationship

between control processes in the different layers

of Figure 3.4 and the augmented control process

is “composed of” rather than its less restricted

form, “consists of.” This is because the effects

and events in the lower layers of Figure 3.4 are

added to on the structure in Figure 8.3. Thus, when

the unaugmented control process of Figure 8.3

is augmented, it tells us exactly when and under

what conditions the augmented control process in

the metamodel above will invoke the nonbusiness

effects embedded in it.)

Different footprints of large businesses and

supply chains often subscribe to different stan-

dards and technologies in support of different

needs, legacies, and business environments. A

Note that this recursive “invoke” relationship on the class of control processes is a subtype of the “composed of” rela-

tionship. It is an optional many-to-many relationship in our metamodel. “Invoke” tells us when a part of the composition

must fire because we have infused information on sequences of effects in time into “composed of.” It is a synonym for

“select” and “Pick.”

We have seen how an object may optionally contain other objects or be contained in several others. Contains is a

generic many-to-many, recursive, optional relationship on a generic object. Both “invoke” and “composed of” inherit this

recursion and cardinality from “contains.”

Box 8.1. The metamodel of “invoke”

296

Crossing the Chasm: Business Process to Information Systems

large and complex global corporation or supply

chain must coordinate its policies across this di-

verse and fractured world. It must leverage shared

knowledge and draw the line between centraliza-

tion and autonomy very carefully to optimize

the synergy of its parts without losing its agility

and ability to compete in diverse communities.

It must walk a very narrow divide between reuse

and replication, between standardization and

customization, between stability and innovative

Box 8.2. The injective relationship between a control process and its augmentation

Interface
Events & Effects

Control &
Navigation

Information
Logistics Events

& Effects
Control

Technology
Events & Effects

Control

Unaugmented
Control Process
(Business Effects

Control)

part of 0 or more
[Composed of 1]

Augmented
Control Process

part of 0 or more
[Composed of 1]

part of 0 or more
[Composed of 1]

part of 0 or more
[Composed of 1]

INFORMATION
INPUT & OUTPUT PROCESS

Figure A. The metamodel of an augmented control process

A control process may have several augmentations. Indeed, the control process at the core of an augmentation will not

change when new technology drives changes in interfaces with new or old actors or information systems reengineering

drives changes in information logistics. (The unaugmented control process will only change if the product or business

process is reengineered. We have discussed how this can be automated under process and product engineering.) The

distinction between a control process and its augmentation separates business process knowledge from its technological

implementation. Designers of information systems will thus be free to reuse the unaugmented control process even as

they leverage new technology innovatively, creating new and innovative interfaces in step with the growing potential of

advancing technology platforms. Indeed, the same unaugmented control process may even be at the heart of processes

that support diverse legacy technologies, in diverse legacy environments, in different business footprints (like it was in

Box 3.1). Thus, we will be able to support swift change through reuse of business process knowledge even as change rides

in on the wings of technology and diversity.

For example, a business unit or supply chain partner in a less technologically advanced footprint might support only

old IBM 3270 interfaces without GUI (Graphical User Interface), whereas another footprint might support Microsoft

Windows. The interfaces, and even source and destination files, may be different, but the unaugmented control processes
at the heart of equivalent business applications for both actors will stay the same. Only the interface and information

logistics processes will be different. These may be “snapped on” to the unaugmented control process to produce the differ-

ent configurations that will execute in each environment. Together, the interface control and information logistics control
processes will constitute the information input or information output process. This process is identical to the input and

output process in Figure 7.12, except that it applies only to processes that use information to produce information; it is a

subtype, an inclusion polymorphism of the input/output processes of Figure 7.12 (inclusion polymorphism was discussed

in Box 4.8. The polymorphic behavior of the generic check signing process in Figure 7.24b was another example of in-

clusion polymorphism). We will discuss information input and output processes later in this section. Now it will suffice
to understand that the injective relationship between a control process and its augmentation is the reason why a business

rule may have multiple implementations (see Box 3.1).

297

Crossing the Chasm: Business Process to Information Systems

change and, most of all, between bureaucratic

morass and uncoordinated chaos.

This is getting harder and harder to do as

corporate footprints and supply chains stretch to

transnational and even global scales in support of

integrated businesses and the enormously diverse

supply chains. These supply chains must be co-

ordinated. It is hard to coordinate these large and

diverse chains because change flies swiftly on the
wings of new technology bolstered by ruthless

competition. The fact that a control process may

have several augmentations gives each footprint

the agility it needs to serve the fractured global

communities of Figure 7.26 (see the business

example in Box 3.1). The transforms we have

described will isolate and normalize change to

foster reusability. Components of shared business

practices may be welded to custom interfaces and

different technologies appropriate for different

footprints. We can then innovate without losing

the standard and create without losing the legacy

of appropriate practice. It will become easier to

navigate the middle path—the narrow divide that

is becoming ever narrower and harder to walk.

Automation can help us race while we keep our

balance.

However intricate the rules of business or auto-
mation might be, the key to creating the control
processes in Figure 8.3 is the realization that
an effect is derived from a process—a temporal
relationship—and therefore the sequence in
which effects are applied must be the same as
the sequence of the processes they were derived
from. Changing the sequence can compromise
the integrity of the system. The system might then
diverge from the reality it must reflect.

Of course, business process maps themselves

may be created from reusable components

(discussed under Process Engineering, Product

Engineering, and Supply Chains). However, that

is not the focus of this transform. Here our sole

intent is to turn business processes into informa-

tion systems processes.

TRANSFORMS THAT IMPLEMENT
NONTEMPORAL RELATIONSHIPS

Information systems processes also mirror static

constraints. Consider the relationships in Figure

5.1. In an information system, a bidirectional

navigation process may implement each kind

of relationship in Figure 5.1. Each kind of rela-

tionship can also be the basis for a presentation

format—an interface. The process will support

and implement the interface:

Navigation Interfaces

Take the injective relationship in Figure 5.1b. It

charts a navigation path from a single instance

of object class A to possibly several instances of

object class B. This information may be presented

to a human actor as tables, pull down windows,

drop down lists, information bearing graphics, and

multimedia formats of the kind we discussed in

Box 4.1. For nonhuman actors, it will be informa-

tion bearing files and feeds such as indexed tables,
sequentially batched files, queue files, random
access files, and so forth. The only constraint
imposed by the relationship is that it be possible

to list several instances of object class B for each

instance of object class A.

Interfaces of this kind will be objects in the

interface layer of Figure 3.4,3 and an injective

relationship may be supported by any presentation

interface that can show several values associated

with a single value. Relationships may be navi-

gated in both directions; hence the same kind of

interface will also apply to surjective relation-

ships. Thus, any presentation interface including

tables, drop down lists, or other presentation

298

Crossing the Chasm: Business Process to Information Systems

formats that permits the presentation of several

associated objects, given a single target object

instance, will suffice.
Given a source object (an instance of object

class A in Figure 5.1), the interface for the sur-

jective relationship should have the capability of

navigating to, and presenting any instance of, the

target object (an instance of object class B in Fig-

ure 5.1) that the source object might be related to,

and conversely for an injective relationship, given

a target object that is an instance of object class

B, the interface should be capable of navigating

back to the related instance of the source object

in object class A.

Many-to-many relationships are surjective or

injective relationships joined end-to-end (Figure

5.7). Thus, the interface for a many-to-many rela-

tionship would involve the same one-to-many (or

many-to-one interface) we just discussed, except

that they will be joined end to end into a compos-

ite interface. Each many-to-many traversal will

involve stepping through each injective–surjective

component of the composite interface every time

we step from an instance of a source object to an

instance of a related target object.

Higher order or higher degree relationships

implemented in a relational database will typically

present related object instances as joined tables.

Each row of the table will be the union4 of all

features and effects normalized by each object

in the relationship and the relationship itself. The

selection criterion object5 will give actors access

to some or all of these features, depending on

who the actor is.

Information on sequences, visibility, and

accessibility may be added to the navigation

process. Value constraints are special kinds of

relationships. Also, all objects, including relation-

ships, will inherit formatting rules, sequencing

rules, inclusion and exclusion sets, and displays,

which are all components that mediate a view

of an abstract object. (Figure 33 on our Web site

describes the semantics of View). A View links

abstract meanings to the interface layer of Figure

3.4 to make them tangible. Then, with style guides,

the design of the interface layer may be automated

(see [154] and [155] in Appendix III). A View is

one of several bridges between the business and

interface layers of Figure 3.4.

Note that the sequencing object attached to a
View6 does not necessarily imply a temporal se-
quence. It implies the generic sequenced pattern.
It could be a temporal sequence, a sort sequence
in a report, a sequence in one or more directions
in space relative to one or more delimiters, or
any other dimension mapped from state space.
Sequences in a report or display do not necessarily
imply that the displayed items must be produced
in the same temporal sequence. An information
systems process could fill the slots in any temporal
sequence or even simultaneously if the technol-
ogy permits it.

The Navigation Process

Each component of View will be supported by a

process in either the business process automation

layers or in the technology layer of Figure 3.4. A

process that implements an interface may be an

inquiry process that merely presents information

to an actor or a process that also changes the

state of an object (Box 7.1). Information systems

processes that change the state of an object must

pick the object instance they will update via a

View. The process that implements the interface

will reside in the lower layers of Figure 3.4. This

interface will also be an object. The process that

implements it may be in either the interface layer

or the technology layer of Figure 3.4 (it will depend

on the degree of automation of the technology

platform—see Chapter III). This process will

seek, select, and gather information, navigating

from object to object, traversing relationships

as it and composes information, and building

compositions of information objects in the in-

formation system.7 The relationships it traverses

may be subtypes or not, temporal or not (if they

are temporal, they will be processes), inherited

299

Crossing the Chasm: Business Process to Information Systems

or not. Remember also that subtypes of objects

will inherit the navigation process itself.

These processes are the bridge between con-

trol processes and the presentation process (P)

in Figure 8.3. These interface processes, objects,

and events add to and augment the list of business

objects and effects in Figure 8.3. They round out

and complete the control process. They implement

the information system in tangible form. Thus,

these processes and interfaces turn intangible

meanings into tangible information. They are

the transforms that sweep abstract meanings

over the chasm in Figure 8.1, across the bridge

from abstraction to information system. We will

describe how this information, produced by

each transform, is normalized when we discuss

Information Input-Output further on in this

chapter. Now it will suffice to understand that
the interface to an object may be automatically

created from business objects and their mutual

interactions—the relationships and processes that

bind them to each other.

Implementing Nontemporal
Relationships with Processes

Sometimes static constraints can be more com-

plex than the relationships in Figure 5.1, or even

Figure 5.2. For instance, the state of a check (an

object) made payable when it has the CEO and

CFO’s signature is derived by a nontemporal

relationship between payability (a state of the

check) and the presence of each signature (also

states of the check). On the computer system,

however, a process implements the nontemporal

relationship because derivation takes computer

time (however short).8 This applies not just to

relationships between attributes but can also apply

to relationships between objects. It takes time to

create, update, or remove information about real

world relationships, that is, a real world technol-

ogy constraint.

When these relationships are transformed into

processes in the technology or business process

automation layers of Figure 3.4, these processes

may create multiple outputs. Slicing the process

into effects, as we have done in Figure 8.2, will

augment the control process by adding these

information systems effects to the business ef-

fects they invoke.9 The triggers for these process

implementations of nontemporal relationships

are derived from the nontemporal relationship

they implement. The trigger is the occurrence

of a state that leads to changes in one or more

derived states.

For example, in Figure 7.24b, a check becomes

payable when it has two signatures. A process

can implement this rule by changing the state

indicator of the check to signal that it is payable

after state indicators for signatures show that

the check has obtained the requisite signatures.

Effects of internal events like these (information

systems events internal to the information object)

are transitive with external business events (like

signing the check). The control processes in Figure

8.3 must also manage them. The control process

will ensure that the state of the information system

remains consistent with the state of the real world

process it reflects.
Sometimes information systems processes will

merely validate the consistency of the information

system and raise alarms when there are excep-

tions. These alarms may apply to temporal or

nontemporal constraints—alarms that are raised

when rules like mutual inclusion, mutual exclu-

sion, subsetting, concurrency, value constraints,

and the like are violated. Some of these alarms

would be business exceptions, whereas others

will be exceptions triggered by faults within the

technology, information logistics, or interface

layers (for example, a computer or a program

may be defective, a file might be missing, or data
might be in an unexpected format or transported

too slowly or too rapidly). Exceptions require ex-

ception processes. Only some of these exceptions

are violations of business rules. Exceptions may

also be faults and anomalies within technology,

information logistics, or interface layers.

300

Crossing the Chasm: Business Process to Information Systems

This discussion has shown us why information

systems process maps may not always faithfully

reflect business process maps. Moreover, auto-

mated process flows must reflect business process
dependencies augmented with information sys-

tems dependencies that implement nontemporal

rules and relationships in the business model.

The purpose of the control process in Figure 8.3

is to ensure that the state of the information sys-

tem remains consistent with the state of the real

world business system. The information systems

process map is derived from the business process

map. However, the information systems process

map must also account for nontemporal busi-

ness rules and orchestrate interface processes,

information flow, and technology rules, as well
as potential faults, failures, and anomalies in all

of these layers

The business process and the information

systems maps are coordinated by operations that

constitute the effect of an event—operations on

information objects. Understanding these op-

erations—the most granular of all components

through which time sweeps into, through, and

beyond an object to record the steady drumbeat

of its history—will be our next step into the

metamodel of knowledge. These operations are

simple and few, yet they rivet effects to objects,

and by doing so, they seamlessly weld informa-

tion system to business process.

The heart of the information system, the

transforms that make the state of the information

system consistent with the states of the business,

can then be produced by automation. Business will

thus be seamlessly and automatically reflected in
the information system that supports it. The busi-

ness process will thus create its own information

system, an information system that is its shadow.

Like all shadows, it will be an information system

that will flex in step with the business process.
It will adapt, as the business process continually

adapts to serve the communities in Figure 7.24

in their eternal search for excellence. It is a rest-

less search, a perpetual striving, a flexing and
reshaping that can never end.

THE OPERATION OF EFFECTS

Effects fundamentally make change; they cre-

ate, delete, or update objects. Strictly speaking,

creation and deletion are also subsumed into the

concept of updating the state of an object; they are

subtypes of the update effect in which the value

of the instance identifier of the object is either
changed from “null” or to “null.”10 Processes (and

therefore effects) may also change relationships;

relationships too are objects. For example, a per-

son or organization becomes a Customer when

a business process ties the buyer with a product

and a seller via a purchasing relationship. Thus,

effects may create, delete, or update relationships,

like they may update, delete, or create any other

object. In terms of the operations that constitute

an effect:

An effect might create an (information)

object.

An effect might delete an (information)

object.

An effect might update the state of an (infor-

mation) object.

The object may also be a relationship, attri-

bute, or an effect.

If the object is a relationship, the effect might

switch the relationship from one instance of

an object to another.

The state of an object is the combination of

values of its attributes, constraints, and relation-

ships with other objects. The effect11 changes

the state of an object by changing its features.

A process could also be a relationship between

attributes. Corresponding effects will then alter

specific attributes—one attribute for every distinct
effect. Effects like these are operations. The same

•

•

•

•

•

301

Crossing the Chasm: Business Process to Information Systems

event may trigger several operations. Indeed, the

fact that an attribute has changed may also trigger

cascading changes, all stemming from the same

root cause—the event that started the chain of

cascading changes.

All operations triggered by a single event on

a single object will be the effect of the event on

the state of the object (see the example in Figure

8.4). These attribute (and feature) level effects12

are the elementary operations that collectively

constitute the object level effect of the event. As

we have also discussed, some of these operations

may even stem from nontemporal relationships

between attributes. These operations will keep

attribute values mutually consistent with busi-

ness rules, updating attribute values as needed, or

flashing alarms if they are validation operations
(sometimes they may do both). Thus, at the object

level, the effect of an event on an object may consist

of the following kinds of operations:

An operation may replace the value of a fea-

ture (data attributes, relationships, effects, and

constraints). Replacing a feature could imply

switching a relationship from one instance of an

object to another.13 An input process will provide

the replacement value (discussed this later in this

section).

An effect may delete or create an object (re-

member relationships are objects too).14 This

too is an operation.

An effect may replace, create, or delete another

effect. These too are operations.

For example, the terms and conditions of

an agreement under negotiation may be up-

dated several times, but once the agreement

is sealed, the update effect is deleted. It is

recreated again if the agreement is reopened

for renegotiation.

This kind of behavior can be modeled by bar-

ring the update effect if a state indicator shows

that it is a sealed agreement—a guard condition

on a state change that is contingent on another

•

•

state indicator. Thus, the combination of a guard

condition and a state indicator conveys informa-

tion on the applicability (and hence, the very

existence) of the effect that would change the

terms and conditions of the agreement. Updat-

ing the state indicator referenced by the guard

condition is thus tantamount to an operation on

the effect. Thus, state indicators that establish

the presence or absence of an effect and guard

conditions contingent on these values of the state

indicator can model effects of this kind.

 (See Figure 8.4 for another example of an effect

like this. This is only one of several techniques for

implementing effects that create, delete, or change

other effects. Can you think of other techniques

for implementing effects like these?)

An operation may determine the value of an

attribute (feature) from the values of other

attributes (features)—perhaps even states of

other objects. These operations flow from
relationships between attributes (features).

They are attribute (feature) level effects that

capture information on cascading changes

that flow from an effect that changes any at-

tribute (feature) in the relationship. It might

even change several attributes (features)

simultaneously, but each will be a distinct

operation. The operations will collectively

constitute the effect.

The payability of the check in the section on

process engineering was implemented in the in-

formation system by an effect that was contingent

on other state indicators of the check. Similarly, a

quantitative rule like “Amount = price x Quantity”

may be implemented by an effect that derives the

value of one of the attributes in the relationship

from values of the other attributes. These kinds

of effects typically implement second or higher

degree (and order) quantitative or qualitative

relationships between attributes. Attribute value

constraints and relationships between attributes

are identical in the metamodel of knowledge.15

•

302

Crossing the Chasm: Business Process to Information Systems

For example, any event that changed either

Price or Quantity would change the Amount. The

Amount will be fixed the moment we know the
exact values of both Price and Quantity. However,

the converse is not true. Fixing the Amount will

not fix the Price and Quantity. Their degrees of
freedom will be limited, but not zero. A value is

fixed only when its degree of freedom is nil; that
is, the attribute (feature) has no freedom to take

any other value. The inverse relationships from

Price and Quantity to Amount do not have this in-

formation. Thus, if an event changed the Amount,

we would be at a loss to make corresponding

changes to the Price and Quantity unless at least

one of them was also known.16 If not, the best we

could do would be to set the price and quantity to

“Unknown” and fix all three values when any two
become known. (Does this kind of “Unknown”
value carry more information than a completely

unconstrained “Unknown” value? Hint: Consider

its degrees of freedom and the discussion on the

ratio scaled domains in Chapter IV.)

If we have an event that will change values of all
three attributes simultaneously (Quantity, Price,
and Amount), that is, an effect constituted of
operations that update all three values without
reference to the constraining relationship between
them, the constraining nontemporal relationship17

would translate to a process that validates all
three for consistency. Setting state indicators to
flag the object for inconsistency (or consistency)
will record the result of such validations. These
attribute level validations and changes to state
indicators will also be operations on the check.
You could think of these operations as being effects
that are mutually inclusive, or transitive, with the
effect that changes any one of the attributes in the
relationship. Since they must always go together,
the operations may all be packaged under the ef-
fect that occurs first but all must occur if any one
occurs—even if they happen at different times in
the information system.

The example in Figure 8.4 shows the operations

that constitute the effect of an event on an object.

Note also how operations have been aggregated

into the effect based on how a single event (class)

will change the state of a single object (class).

Note also how the guard condition establishes the

presence or absence of an attribute level effect,

which is an operation within another effect.

Thus, an event may trigger a series of one or

more operations on an object. These operations

collectively determine the state of the object after
the event has occurred. Taken together, these

operations constitute the effect of the event, and

like any other process, the temporal order of these

operations may be significant: Executing these
operations in different sequences may result in

different states of the object. To keep the state

of an information object consistent with its real

world counterpart, the order of operations must

be consistent with business processes in the

business process map. These operations are the

most granular of information systems processes

needed to keep the state of an individual informa-

tion object consistent with the real world object

it reflects.
An operation may set the value of an attribute

(or the occurrence of another effect) in information

space but will store it in an information system.

Store in an information system reflects Set in

information space. Store is also a subtype of its

more generic counterpart, Set, because it conveys

more information; It tells us how the value in

question is set in an information system.

Operations in information space are thus re-

flected in information systems by their subtypes.
However, attributes (or features) in information

space may be reflected in information systems by
their supertypes because the information system

might drop some real world information. For

example, in Figure 8.4, the information system

might set a nominal “yes/no” flag instead of the
full signature to show that the check is signed.

Then, the information system would have less

information than the real world on the signature

303

Crossing the Chasm: Business Process to Information Systems

on the check. Hence, the state of the check in the

information system would be a supertype of its

counterpart in the real world. This could happen

because input or output mechanisms have limita-

tions or because the input process or the output

process filters information.
It depends on business process automation:

interface and information flow. For instance, if
the check is signed on a pad that senses the sig-

nature and stores it automatically, then the actual

image of the signature may be faithfully stored

in the information system with no information

loss. Electronic signatures may also be used and

stored without losing information (see Box 7.9).

On the other hand, if only the information about

the occurrence of the signature (a Yes or No)

is input by an operator via a simple IBM3270

or GUI interface, from a workstation equipped

with a simple CRT (Cathode Ray Tube) terminal

hitched to keyboard or a touch screen, we might

only be able to capture information about the oc-
currence of the signature, but not its real world

form or format. The implementation of an attribute

in information space will climb the subtyping

hierarchy in Figure 4.1, depending on how much

information is filtered as it maps to the informa-

tion system. Information input-output processes

also convey and filter the real world value of the

attribute. Naturally, this will impact the choice of

possible formats in which the attribute can tangibly

manifest itself in an information system (see the

information carrying capacity of Format in Box

4.1). Units of measure information could become

invalid when quantitative information maps to

qualitative domains in an information system.

The feature being mapped to an information

system may also be value constraints. If the

value constraint loses information as it maps to

an information system, its implementation will

climb the subtyping hierarchy from quantitative

rule expression, through ordinal rule expression,

to nominal rule expression. Note that occurrence

relationships between objects are also value

constraints. They are nominal value constraints

between object identifiers. Thus, information rich,
real world value constraints may even be reduced

to information sparse occurrence relationships in

information systems.

Automating the transform that carries a feature

over the bridge in Figure 8.1, from abstraction to

concrete information system, can facilitate auto-
matic adaptation to a technology environment.

When an interface or mechanism can convey

more information, an automated agent18 could

sense it and adjust the feature, its formats, and

operations in the information system (including

Figure 8.4. An example of an effect with guard conditions and operations

CFO SIGNATURE
EVENT EFFECT OF CFO

SIGNATURE ON
CHECK

OPERATIONS
1. Store CFO Signature

2. If CEO signature is not null
set check Payability
indicator to “Payable”Guard

condition

Operations in Effect

CHECK
(OBJECT)

Subtype of

Set (store) occurrence
of CFO signature
(state indicator)

Set (store) CFO signature

One operation may be a
subtype of another depending
on its information content

304

Crossing the Chasm: Business Process to Information Systems

value constraints). The scope of adjustment may

include guard conditions that might bar input or

output formats because the information content

of an object does not support them. Information

conveyance processes will normalize these ef-

fects. In the same way, the navigation interfaces

(discussed recently) can also become sensitive

to the technology that will (or will not) support

them.

Each time an event affects an object a trans-

form sweeps a feature over the chasm in Figure

8.1 from abstraction to concrete system. If an

automated agent could adapt this transform to

its technological environment, the information

system could become a chimera that flexes with
the reality it mirrors.

Then, a change in information acquisition

technology will also become an event that has

an effect—perhaps different effects on different

objects. These effects will collectively, transpar-

ently, and seamlessly rewrite and reconfigure the
information system each time it updates the state

of an information object. The augmented control

process of Box 8.2 would incorporate these inter-

face events into the structure in Figure 8.3. The

information system would then automatically

adapt, leveraging interfaces and mechanisms

that convey information to it each time it triggers

an effect. This information would filter through
operations and effects to corresponding objects.

The shadow of reality will be cast through the

prism of technology, and these shadows will flex
and move when input and output processes flex in
response to shifting technology. The same effects

may be manifested by a choice of interfaces sup-

ported by a choice of platforms in support of the

choice of business process automation appropriate

for environments in vastly different footprints.

Indeed, the same information may even be simulta-

neously acquired or presented in different formats

and styles by different interfaces supported by

different input and output devices.

This is how the information system can move,

adapt, and change in step with business in its eter-

nal search for excellence. This is also how we can

fulfill the promise of seamless integration between
business processes and information systems and

support businesses striving to serve the diverse

global community of supply chain partners and

other stakeholders.

INFORMATION INPUT-OUTPUT
PROCESSES

Input and output processes may also be snapped

on to information systems processes (like in

Figure 7.12; joining transformation processes

with input and output processes is generic. This

is inherited by both business and information

systems processes from their generic parent).

When the process was a business process, the

input processes described how resources are

conveyed to the process that makes the product,

and the output process describes how products are

conveyed from the process that makes them.19 The

resources and products of information systems

processes are information. The input process

snapped onto an effect or any process that uses

information to produce information must describe

where the information will be sourced from, sub-

ject to what rules (like sequence, format, speed,

etc.). These are rules of information logistics and

the protocols for interfacing with other processes

and actors. Input and output processes may be

divided into information logistics processes and

interface processes (Figure 8.5).

Input and output processes are analogs of the

sourcing and delivery processes we discussed

under supply chains (the transformation process at

the heart of Figure 7.12 is the analog of “Make”).

The information that information sourcing and

delivery processes normalize was discussed in

Chapter III under Information Logistics Layer and

Interface Rules Layer. Snapping input and output

processes onto an effect or operation identifies
from where (which files, records, and so forth),
when, and under what conditions information will

305

Crossing the Chasm: Business Process to Information Systems

be fed to the effect and where the results will be

recorded, for how long, and in what formats.

Figure 8.5 shows subtypes in two distinct

partitions. It is these components that isolate

and connect business meaning to the technology

platform that implements a business process. Typi-

cally, in a large and diverse corporation, similar

information is fragmented and replicated in sev-

eral files managed by a colorful legacy of multiple
systems used in different business footprints by

different subsidiaries and organizational units

for different or similar purposes. Different input

processes may be snapped on to the same trans-

formation process to support different business

units. They might refer to similar data stored in

different files, formats, units of measure, storage
media, and so forth. Thus, business and systems

knowledge will be segregated and normalized in

different metaobjects. An automated repository

of knowledge artifacts can then facilitate reuse

in different parts of the firm.
Information input and output processes are

not reflections of the business input and output
processes of Figure 7.12. Business input and output

processes are business processes (for example,

the feeding of dough to the oven in Figure 7.11c),

which will have their own information input,

transformation and output processes.

The input and output processes in Figure 7.12

were processes that conveyed resources to, and

products from, a transformation. They were busi-

ness processes. Each business process might also

have exceptions—what action must the process

take when the unexpected occurs—conditions

like missing resources or broken conveyance

mechanism. Exceptions like these lead to excep-

tion processes. Each process in Figure 7.12—the

transformation process, the input process, the

output process, and corresponding exception

processes may be transformed from information

space to information systems by the transforms

we have described. The products of these trans-

forms will also be the effects, operations, control

processes, and interfaces of the kind in Figure

8.3 (P). These effects and control processes will

also be implemented by information systems

processes and will all have information input

and output processes “snapped on” to either end

(like the process in Figure 7.12 had business input

and business output processes snapped on to the

transformation process at its core).

These information input, output, and trans-

formation processes may, in turn, have their own

exception processes—exceptions that deal with

unexpected conditions in the business process

automation layers of Figure 3.4—exceptions like

missing files, corrupt data, and unexpected or
unknown formats.

The information input or information output

process is not a reflection of a business input or
output process, but it is a polymorphism of it—a

polymorphism derived from processes that use

information to produce information. All input

processes must source and transport resources

Information
Conveyance

Process

Information
Input

Process

Information
Input

Process

Information
Output
Process

Information
Output
Process

INPUT/OUTPUT PARTITION

(sourcing process) (delivery process)

Information
logistics

Information
logistics

Information
Interface

Information
Interface

BUSINESS PROCESS AUTOMATION
PARTITION

subtype of subtype of

Figure 8.5. Kinds of information conveyance

306

Crossing the Chasm: Business Process to Information Systems

to the transformation process in Figure 7.12 and

so must the information input process source and

transport information resources to the informa-
tion transformation process; it is a subtype of the

transformation process in Figure 7.12. All input

processes must time sequence and prepare the re-

source and feed it to the transformation process in

the required form and orientation; so must the input

process feed the information to the information
transformation process in the required form and

format at the right time and in the right sequence.

These factors apply equally to the output process

that receives the product(s) of the transformation.

Overall, information input and output processes

will consist of an information logistics layer that

normalizes information transportation, source,

and destination information and an interface layer
that formats, times, and prepares information in

the tangible form expected by the information
transformation process.

Transforms from Business to
Interface Layers

Thus, the transform from information space to

information system adds information about the

form, format, timing, sequence, quality, and

security of tangible information in the informa-

tion system (see the examples in Chapter III).

This transform is the contract for information
exchange between information space and tangible
information systems (Figure 8.1).

Transforms from Business to
Information Logistics Layers

The transform from information space to informa-

tion system also adds information about the sourc-

ing, delivery, and transportation of information

in the information system. The transportation of

information includes calculations and algorithms,

which are all expressions of meanings. There

may be several ways of expressing a meaning,

and several algorithms may produce the same

result (see Box 5.1). This transform describes
how the availability of information, implicit in
information space, will be implemented by its
physical transportation and storage in informa-
tion systems, as it sweeps requirements over the

bridge in Figure 8.1.

Information input and output processes in an

information system are assembled from the inter-

face and information logistics components in Box

8.2. They wrap themselves around pure business

meanings that cast their shadows from abstract

information space and connect these abstractions

to technology platforms lending them tangible

form and substance. We discussed how, if these

transforms are automated and transformation

events are considered every time information

crosses the bridges of Figure 8.1, these forms could

become context sensitive formats. The form will

flex with the shadow, input and output processes
will add to the effects, events, and objects in the

control process of Box 8.2. When this happens,

it will be hard to distinguish the shadow from

substance.

“…the self was not the same;
Single nature's double name
Neither two nor one was call'd.
Reason in itself confounded,…
Simple were so well compounded,
That it cried ‘How true a twain
Seemeth concordant one!’”

William Shakespeare

The Phoenix and the Turtle

WHEN RULES ARE VIOLATED

The chef’s rule about restarting the baking

process for cookies if it was interrupted for too

long was an example of the fact that a rule—any

rule—may be violated. In other words, there may

be exceptions. This is our penalty for ignoring the

uncertain nature of the real world. We have seen

307

Crossing the Chasm: Business Process to Information Systems

how a process is a container of special kinds of

rules. No rule is absolute, and therefore neither

is any process. Exceptions are our hook into the

world of chance we have ignored.

What would we do in Figure 7.11c if there were

no cookie sheets even though the dough globs

were ready for baking? What would we do if the

input process had no exceptions but the oven did

not produce cookies of the right consistency, taste,

or color? What would we do in Figure 7.24b if a

check without both signatures were accidentally

paid? Exception processes will describe the pro-

cedures that must be followed when rules are

violated—when the unexpected happens. These

exception processes will be subprocesses within

“Bake Cookie” or “Pay Check.” To account for

possible mistakes, or violation of rules, we must

have exception processes—also triggered by

events—events that must not happen.

The Risk Management Transform

We can account for these events by “cutting”

(partitioning) a business process into the expected

and the exception. This is our first “cut” in Fig-

ure 8.6a—the horizontal cut right through the

“middle” of the process. The exception process

in Figure 8.6a is the contingency process that

describes the procedures that must be followed

when an exception occurs.

Figure 7.12 showed how input and output pro-

cesses can be “snapped on” to the transformation

process at the core to produce a composite process.

The input and output processes in the composition

normalize input and output rules (for resources and

products respectively), separating them from the

rules of transformation. We have also discussed

how exceptions will apply equally to the compo-

nents in Figure 7.12. The aggregate in Figure 8.6a

is the collection of the core business process and

corresponding exception process(es). The verti-

cal “cuts” in Figure 8.6a separate transformation

processes from input and output processes. The

vertical cuts follow the first horizontal “cut.”

Thus, we obtain not only the input and output

processes for the “normal” business process but

also the input and output processes for business

contingencies—how contingency resources will

be sourced and how products of contingency

procedures will be produced and registered.

Each partition in Figure 8.6a will be a sub-

process of the aggregate process. The aggregate

process in Figure 8.6a itself will thus be a composi-

tion of interdependent processes—a process map.

This composite process will also be a subtype of

the process that was partitioned. Subtypes add

information. This subtype will add information

on exceptions.

The business process and its exception(s) are

transformation processes like the transformation

process in Figure 7.12. Each has input and out-

put processes snapped on to either end (like the

transformation process in Figure 7.12 did). Each

“normal” and “exception” transformation process

also has its counterpart in information space.

Figure 8.6b expands the composition in Figure

8.6a to include these information processes from

information space. These reflections of business
processes in information space also consist of

processes for input, output, and transformation

of information. These too are included in Figure

8.6b. The aggregate in Figure 8.6b has been sliced

into business and information segments to make

these distinctions clear.

Each information transformation process,

in turn, may be partitioned into “normal” and

“exception” segments. Each segment will be a

subprocess, and each will have corresponding

information input and output processes. They

too are members of the composition in Figure

8.6b. The “diagonal” slices of input and output

processes in Figure 8.6b distinguish input or

output of “mainstream” information from ex-

ception information—information like missing

files, unexpected formats, unreadable data, and
the like.

Figure 8.6 represents a transform that takes

a business process and “cuts” (segments) it into

308

Crossing the Chasm: Business Process to Information Systems

subprocesses by adding information. Each seg-

ment (subprocess) adds and normalizes a different

kind of information. Missing from Figure 8.6 (to

avoid clutter) is the fact that each information
input and output process for each information

systems process, exception, or otherwise, will

be further subdivided into information logistics

and interface processes.

Remember that effects, also not shown in

Figure 8.6 to reduce clutter, are embedded in each

subprocess. The transforms we have discussed

for producing additional information systems

processes, like effects, control processes, process

implementations of static rules, and others, will

also apply to each subprocess of Figure 8.6b. The

composition in Figure 8.6b will integrate these

control processes, effects, navigation objects,

and derived processes into a composite whole. It

will cement the business layer in Figure 3.4 to the

business process automation layers in that figure.
The two business process automation layers in

Figure 3.4 will thus mediate between abstract

business meaning and its physical implementation

on a computing platform. They will glue abstract

meaning to its technology implementation even

as they decouple and isolate each (Box 8.2).

We also know that a single meaning may have

several expressions (see Box 5.1). This is also true

of meanings and their implementations in informa-

tion systems; a single business process (“normal”

or “exception”) may have several polymorphisms

in information systems. Each polymorphism will

be a variation that has different input or output

processes, possibly implemented on different

technology platforms (see Box 3.1). We have also

seen how different successions of subprocesses in

a process map, or different sequences of effects

in an information system, can also implement the

same process. These too may be considered poly-

morphic variations of the same single theme—a

process and a meaning.

Note how our discussion of the transform in

Figure 8.6 has conveniently ignored exceptions

in the technology layer—the computing platform

itself. We have ignored them, not because they do

not happen, but because the scope of this book

Figure 8.6. Exception processes

A.
NORMAL

EXCEPTION PROCESS

INPUT
PROCESS

OUTPUT
PROCESS

BUSINESS
PROCESS

#

#

B.

NORMAL

EXCEPTION PROCESS

INPUT
PROCESS

OUTPUT
PROCESS

TRANSFORMATION
PROCESS

Business Information
BusinessInformation

(information exception)

(information exception)

(Information output exception for
normal business process)

(Information output exception for
business exception process)

(Information input for
normal business process)

(Information input for
business exception process)

BUSINESS PROCESS

I N FORM A T I ON PROC ESS
FOR N ORM A L BU SI N ESS

BUSINESS EXCEPTION PROCESS

�

�

�

�

I N FORM A T I ON PROC ESS FOR
BU SI N ESS EX C EPT I ON S

�

�

�

�

�

�

�

�

309

Crossing the Chasm: Business Process to Information Systems

is restricted to the layer of business meaning in

Figure 3.4. The interface and information logistics

layers mediate between business meaning and its

instantiation in technology. We have described

this meeting ground—the grand confluence that
gives form to the shadows of pure meaning cast

from information space.

The “Unknown” Exception and
Unstructured Processes

It is not only the business process that can suffer

exceptions; any business rule may be violated in

the real world. For instance, the cardinalities of

an “ordinary” nontemporal relationship may be

violated, a value constraint may be violated, a

conversion rule may be violated, or more gener-

ally, any rule mandated by any pattern may be

violated. Objects only change state in response to

an event. Even if the state in question is an initial

state, it is an inquiry event that will discover the

violation (see Box 7.1). Therefore, the occurrence

of the exception will always be an event, and

the event will trigger its exception process. If
no exception process is explicitly specified, the
process will not be null; it will be “Unknown.”
An automated agent20 would treat it as such and

might alert users if exceptions without prescribed

exception procedures occur.

Indeed, the exception process might trigger a facil-
ity for creating exception processes “on-the-fly”
when the exception procedure is unknown. The
facility will let a user make the unknown excep-
tion process known. A facility of this kind might
assist in implementing the kinds of unstructured
processes we discussed under net markets and in
Box 7.7. Note also that based on the principles
in Box 4.3, an unknown process, be it an excep-
tion or mainstream process, is a supertype of a
known process in the metamodel of knowledge.
Thus, the metamodel of knowledge requires that
an unknown exception process automatically
trigger this facility if it is implemented and avail-

able. It will be a reflection of the logic, naturally
and timelessly embedded in the metamodel of
knowledge, casting its shadow from information
space (see Unstructured Collaboration under
Supply Chains).

Information Exceptions

Business exception processes will manage

violations of business rules, and corresponding

information processes will manage information

about these violations, such as the issuing of alerts,

alarms, the tracking of exceptions, changing states

of exceptions, and the like. Information exception
processes will manage violation of information
systems rules as follows:

The interface layer within the output pro-
cess snapped on to the information systems
exception processes would perform format-

ting functions like highlighting information
exceptions (missing files, corrupt data, and
so forth). Outputting alarms about informa-
tion exceptions in the form expected by a

device that displays, sounds, or shows the

alarm, navigating and displaying informa-
tion exceptions and the like will also be the

responsibility of the information exception
output process. The information logistics layer

in the information exception output process

would manage the storage and transportation

of information exceptions after they are cre-

ated or updated.

The interface layer within the corresponding

input process would accept corrections or

other information that might change states

of information exceptions. Its information

logistics layer would manage the storing,

staging, and transportation of this kind of

input data into the process that changes the

state of information exceptions.

(The information normalized by interface and
information logistics layers has been listed in
Chapter III.)

•

•

310

Crossing the Chasm: Business Process to Information Systems

States of information exceptions would

only be set and changed by the information
exception (transformation) process between

the information input and information output

processes in Figure 8.6. The information ex-

ception process would simultaneously signal

the existence of any associated alarms and

set their states and magnitudes. (Box 4.1 has

several examples.) The corresponding infor-

mation output process would interpret these

states, magnitudes, and alarms, and format

them in appropriate forms for actors who will

then sense them. These formats may be dif-

ferent and may depend on the kind of output

device and style guide being used.

Given an exception style guide and the trans-

formation in Figure 8.6, an automated agent may

create exception processes and its counterparts

in information systems.

May we also snap (reuse) the input and output

processes for “normal” transformation processes

onto exception processes? Absolutely!—it is a

process design decision. Inputs like corrections

could be fed to the input process through the same

interface as normal data (for example, a screen).

Many information systems designers do this in-

tuitively. Output interfaces as well as information

transportation and staging rules may be similarly

shared by both “normal” and “exception” streams.

It is up to the information systems designer (or the

style guide) to determine how information excep-

tions will be stored, segregated, and displayed

in tangible form. The transforms in Figure 8.6

identify the processes that normalize and hold

this information in information space.

Referential Integrity Exceptions

Referential integrity rules are rules of interde-

pendence between states of a system—business,

information, or automation. When the lawful

state space21 of any object depends on, that is,

“refers to,” states of other objects, the states in

question are said to be mutually constrained by

• referential integrity constraints. The objects in

question may even be compositions, attributes,

features, or relationships and processes. The states

in question may even be the mere occurrence or

absence of the object.

The relationship between the payability of

the check and the presence of signatures, and

the relationship between price, amount, and

quantity were examples of referential integrity

constraints. Some relationships between objects

also impose special kinds of referential integrity

constraints—constraints that make the occurrence

of one object contingent on the occurrence of

another. That the existence of an order is contin-

gent on the existence of the customer is one such

referential integrity constraint.

Referential integrity must be addressed in

all but the simplest information systems. Most

analysts are familiar with referential integrity

issues. Exception processes resolve these issues.

For example, consider the issues raised by the

relationship between a customer and her open

orders when the customer must be deleted: Should

the request to delete the customer be honored if

the customer has outstanding orders still pending

delivery? Typically, there would be three different

solutions to an issue like this:

1. The automatic cascading delete solution:
The customer will be deleted without further

ado and so would all outstanding orders for

that customer.

2. The optional cascading delete solution:
The customer will be deleted and so would

all outstanding orders for that customer after

the user is warned, and a response elicited, in

which he (or an inanimate actor—it) confirms
that this is indeed what is required. In this

implementation, the user also has the option

of canceling the request if orders are still

outstanding for the customer.

3. Theprohibiteddeletesolution:The user has

no choice. He (or it) cannot delete a customer

if the customer still has open orders pend-

ing. The user must delete every outstanding

311

Crossing the Chasm: Business Process to Information Systems

order before he (or it) is allowed to delete the

customer. (There may also be variations on

this theme. For example, confirmation may
be sought for each outstanding order, and the

user given the option of deleting each. The

customer would be deleted only after the

user deletes every order outstanding on that

customer.)

Each solution lies in the exception layer of the

deletion effect, and each is a different “snap-on”

component. These differences give the effect

the variability needed across different footprints

that might require different implementations of

the deletion effect. The first solution is an event
that affects two objects—the customer and or-

ders attached to the customer via the ordering

relationship. The other two are guarded effects:

The second solution creates the deletion effect

depending on a business process automation

event—the confirmation (or lack of it) flashed
from the interface with the actor in Figure 8.6.

The third solution simply bars the effect—deletes

it—if an instance of customer shows a connection

to pending orders via the ordering relationship

(or its subtypes). Each implementation of the

deletion effect is a polymorphism of the basic

deletion request. We obtained each variation by

snapping on a different exception process to the

deletion effect.

The deletion effect was only one of several

kinds of referential integrity issues that informa-

tion systems designers must address. Typically,

referential integrity issues involve mandatory

relationships between objects (we must also create

its mandatory relationships if an effect creates an

instance of an object with mandatory relation-

ships), subtyping relationships (we must delete the

subtype if the supertype is deleted, but not vice

versa) and mutual exclusion (mutually exclusive

objects cannot simultaneously coexist. Either the

creation of a mutually exclusive object must be

barred by a guard condition, or the effect must

delete an object as it creates its mutually excluded

counterpart). Earlier we saw how even more

complex referential integrity issues can emerge

from constraints on degree, order, and cardinality

of relationships between objects. The approach

here will also resolve these complex issues. It will

also solve referential integrity issues that involve

more than mere occurrence information—issues

like violations of magnitude constraints such as

Amount = Price x Quantity, ranking constraints,

and the like. The transform in Figure 8.6 will stay

the same; only the exceptions fed to it will change.

The transform will always cut the process into

the subprocesses in Figure 8.6—once for each

business exception.

The transform in Figure 8.6 isolates change

and encapsulates variations. It permits reuse of

common knowledge even as it creates the space

for diversity and exception. Overall, it facilitates

agility, innovation, excellence, and customer

satisfaction in the face of diversity, change, com-

petition, and the unexpected.

Automating Adaptability

Adapting to the unexpected is the key to new

learning. Learning is the key to adapting success-

fully. The information poor “unknown” process,

as we have seen, is the key to both. It creates room

for things without structure—things beyond our

experience—and the room for improvisation (see

unstructured collaboration under supply chains

and Box 7.7). Adaptation, improvisation, and

learning converge for us and also for informa-

tion systems.

Each time the “unknown” exception process for

a hitherto unanticipated contingency is specified
(possibly with the facility for creating exception

processes that we have recently discussed), that

particular exception will have a known solution.

That solution may be instantiated and recorded by

the facility for creating exception processes “on

the fly”—the facility we discussed under the risk
management transform. The next time a similar

exception occurs, the same solution could be op-

tionally presented to an actor (who may or may not

use it), or it might fire automatically. (A governing

312

Crossing the Chasm: Business Process to Information Systems

process will determine which implementation is

chosen.) The key to reusing experience in this

way is similarity—the similarity of exceptions,

as well as those of solutions. The key questions

are how similar must the exceptions be, and more

importantly, how do we determine what similarity

is before we can fit our past experience to it?
Similarity is indistinguishable from proxim-

ity in state space. Relationships, processes, and

constraints are patterns of information. Similarity

flows from their parameters and properties—prop-

erties like those we have discussed under each

kind of metaobject—enumeration, reliability,

validity, cardinality, degree, kind of constraining

rule, the kind of domain it maps to, and several

others. Objects may be subtyped depending on

their information content (Box 4.3); so too may

exceptions and exception processes. Matching an

exception process to an exception boils down to

matching the right patterns of information—to

find and match the essence of the exception with

the essence of the exception process.

Pattern recognition techniques may be used to

match an exception to the right exception process.22

Often this process will be adequate to respond to

subtypes of the exception also. Pattern matching

is still an area of active research beyond the scope

of this book. It will suffice to understand that
the pattern of information in an exception may

be matched to the pattern of information in the

corresponding exception process, which might

then be applied to subtypes of the exception. This

is our hook to the universe of systems that adapt

through experience—experience of exceptions

and the processes for managing them.23

Pattern recognition in tandem with the Prin-
ciple of Parsimony (discussed under alternative

resources, under process reengineering) may be

useful in generalizing exceptions, which could

then be matched with corresponding processes.

Sometimes we may have to add operations, guard

conditions, and other information to subtypes of

these exception processes to respond optimally to

subtypes of exceptions (that is the subtype might

be an inclusion polymorphism).

The exception process is a relationship. The

key to generalizing the process depends on the

parameters of relationships, which we have dis-

cussed. This is how we integrate it all into the

Metamodel of Relationship, and thus complete it.

As we jave seem meanings are relationships and

objects carved by patterns of information shaped

by constraints in information space. The time has

now come to understand how constraints shape

meanings and features of ojects. That will be our

last step as we close this discussion on relationships

and the bridges they build in information space.

ENDNOTES

1 BPML ([63] in Appendix III) maps roll-back

recovery requirements in the information

logistics layers of Figure 3.4 to rules of

technology.
2 Events may be represented by the rows,

while objects by the columns, of a matrix.

Each cell of the matrix may then hold the

effect of the event in the row, on the object

in the corresponding column of the matrix.

Each row of the matrix would then contain

all effects of the event in the row, and each

column, the effects that a single object

suffers from all the events that affect it. A

matrix like this facilitates grouping effects

by event or by object.
3 [154] and [155] in Appendix III have more

information on presentation formats.
4 See Box 19 on our Web site.
5 The semantics of selection criteria are in

Figure 33 on our Web site.
6 Figure 33 on our Web site describes the

semantics of View.
7 The navigation process resides in the

interface layer of Figure 3.4. As naviga-

tion processes step from object to object

313

Crossing the Chasm: Business Process to Information Systems

through relationships, subprocesses in the

information logistics layer gather and store

information by accessing and updating files.
(See information input-output processes.)

8 We have discussed why computers need

processes that take time to execute, even

when implementing nontemporal relation-

ships. We speculate that quantum computers

of the future may speed response times by

implementing nontemporal relationships

with “quantum entanglement,” in which

the passage of time is irrelevant. Quantum

entanglement is the phenomenon described

by the Aspect Experiments discussed in Ap-

pendix II in the note on messages between

objects.
9 Processes in the lower layers of Figure 3.4

have the same characteristics as the business

processes of this section.
10 Box 5.3 elaborates on the Null value.
11 The Law of Demeter [IEEE Software in

1989] asserts that a method associated with

an object should invoke only methods as-

sociated with the following kinds of objects:

(1) itself, (2) its parameters, (3) any objects

it creates/instantiates, and (4) its direct

component objects (in case it is an aggregate

object). The Law prohibits invocation of the

methods of an object that is returned by

another method. See the Demeter/Adaptive

Programming home page at http://www.ccs.

neu.edu/research/demeter/ or “The Demeter

Method with Propagation Patterns,” a book

by Dr. Karl J. Lieberherr of Northeastern

University, published by PWS Publishing

Company, ISBN: 0-534-94602-X.
12 Effects may act on individual properties (at-

tributes, relationships, constraints, and even

effects. (See Box 10 on our Web site).
13 Null and Unknown are also values. Replac-

ing any value with Null removes informa-

tion and turns an object into a supertype.

Conversely, replacing Null with any other

value subtypes the object. If the feature is

a relationship, nullifying it is equivalent

to cutting (deleting) the relationship, and

replacing the null value is equivalent to ty-

ing the objects involved into a relationship

(creating a relationship between them).
14 Creating an object is equivalent to replac-

ing the Null value of its instance identifier
with a different value. Deleting an object is

equivalent to making its instance identifier
Null.

15 [337] in Appendix III discusses attribute

value constraints in more detail and shows

why they are relationships between attri-

butes.
16 Chapter 4 of [311] (in Appendix III) discusses

degrees of freedom. [312], [313], Chapter 8,

section 6 of [309] and Chapter 7, section 7.5

to 7.8 of [314] (all in Appendix III) discuss

determination of constrained values.
17 Figure 44 on our Web site is a graphical

representation of a three-way constraint

between check amount, monthly rental, and

energy charges, in which the three-way rela-

tionship may become a validation process if

an event changes all three simultaneously.
18 Agents are discussed in Box 36 on our Web

site.
19 BPML, a process modeling language from

BPMI (http://www.bpmi.org), calls the ge-

neric conveyance process the assignment
process. See [63] in Appendix III.

20 Box 36 on our Web site discusses agents.
21 [337] (in Appendix III) and Appendix II

on the BWW model discusses Lawful and

Conceivable state space.
22 [337] (in Appendix III) describes the se-

mantics of Pattern and discusses pattern

recognition.
23 [298] (in Appendix III) provides an overview

of expert systems, artificial intelligence, and
pattern recognition.

314

Chapter IX
The Nature of Constraints

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

This chapter wraps up the discussion by describing how normalized components of information are
carved out of inchoate information by constraints, and manifested as objects with specific properties
and meanings. It describes the essential identity between a law and its outcome.

A constraint is like a prism through which we

can view the inchoate and bring order to it. Con-

straints split the clear light of information into

the rainbow shards of objects and meanings we

have discussed earlier and those we will discuss

ahead. We have seen how constraints add informa-

tion and metamorphose into objects of different

kinds—objects and relationships we have dis-

cussed throughout this book. Now we will unify

them into an integral whole by subsuming them

into the ultimate constraint—a generic concept

that will sunder information space to make the

inchoate choate.

THE SHAPING OF OBJECTS

Usually when we think of constraints, we think of

constraints on attribute values.1 However, “Con-

straint” is a broader concept; it subsumes value

constraints and more. Constraints surge through

information space, sculpting and shaping islands

of meaning, sundering and merging as they ebb

and flow through patterns of information. They

fashion all that is, all that is not, and all that can-

not be from the inchoate information shimmering

through information space. To understand how

this happens, put this book down on a clear night,

go out and look up at the sky.

“The very small is the very large when boundaries are forgotten;
The very large is the very small when its outline is not seen”

- Seng ts’an, 6th-century Zen patriarch

315

The Nature of Constraints

On a clear night, the sky is full of stars, each

an instance of a star. How do you tell one in-

stance from another? By its position, of course.

The position of each star distinguishes it from

its neighbors. The position of an object is one

aspect of its state. To the naked eye, each star is

distinguished by its state in physical space. Look

for Jupiter. Your newspaper may contain a star

chart that will show you where it is. Some stars

twinkle and others burn steadily in the night

sky. If Jupiter has risen, it will be the brightest

star burning steadily in the sky. If you have a

powerful telescope, look at Jupiter through the

telescope. Jupiter is a single spark seen with the

naked eye—a single instance of an object. Seen

through a good telescope, you will see Jupiter

resolved into many sparks. Each new spark is a

satellite of Jupiter—each a distinct and different

instance of an object.

Seen with the naked eye, Jupiter was a single

spark, a single instance of a star because of its

unique position—its state—in the night sky. This

location—a state—was the pattern of information

that made Jupiter a unique instance of an object.

The telescope made finer distinctions than the un-

aided eye could. It added information. It resolved

smaller differences in positions to make them

distinctly different. It could make finer distinctions
between states. Thereby, the telescope split what

appeared to be a single object into distinct object

instances. The resolution of the telescope was far

finer than the resolution of the naked eye, and it
resolved a single instance of an object into many

instances by adding information on the state of an

object. It reduced the degrees of freedom of the

pattern—the region of the sky—that a spark could

occupy and still be considered a single occurrence

of an object. It constrained the law that made the

pattern a pattern and made it more restrictive. That

is how a single instance of an object was resolved

into several distinct instances of objects and a

single state split into many. The pattern sculpted

stars from amorphous and inchoate information.

That law was a constraint.

In previous chapters, we have seen how an

instance of an object is a unique pattern of in-

formation that captures its essence—a meaning.

The state of a pattern of information determines

its unique identity and distinguishes it from oth-

ers of its kind. The instance identifier represents
this identity; the law that makes the pattern a

pattern also shapes an instance of an object in

information space. This law creates the pattern

by constraining its degrees of freedom.

The law that makes a pattern a pattern is

indeed a constraint. We may resolve a pattern

into additional distinct patterns by making the

constraint even more restrictive. Each pattern

may be an instance of an object, a relationship,

an object class, or any of the other metaobjects

we have discussed so far. The spark seen with

the unaided eye subsumed the sparks seen with

the telescope. If we considered the original spark

an object class, the sparks through the telescope

would be its subtypes. If the original spark was

an object instance, each spark resolved by the

telescope would be its polymorphism.

Conversely, if we remove information, bound-

aries of patterns may blur. Patterns may then lose

their identities and become indistinguishable from

each other. They may merge into one pattern that

will subsume them all. Thus, many sparks may

become one; object instances could lose their

distinct identities and merge into one, an object

that subsumes them all.

It can happen to any object instance—any

pattern. Even object instances like colors and

values could blur and melt into each other or split

into distinct object instances just as the spark of

Jupiter did (see Box 4.4). Consider the impact

of this on polymorphisms of idempotent and

antisymmetrical (or reflexive) relationships. An
instance of an idempotent relationship loops back

to an instance of an object (as an instance of a

reflexive relationship also might). If we add infor-
mation to this object, it could resolve into multiple

objects, just like the single spark of Jupiter did.

Some subtypes (polymorphisms) of the original

316

The Nature of Constraints

relationship would then connect distinct objects.

These polymorphisms would not be idempotent

or antisymmetrical (or even reflexive). In this way,
polymorphisms of idempotent or antisymmetrical
relationships could be irreflexive relationships.
Figure 7.29 makes this clear. Moreover, the rela-

tionship could even “open out” into a nonrecursive

relationship between object classes. This is why

polymorphisms of an idempotent relationship may

be idempotent, irreflexive, or even nonrecursive,
in step with the information it adds through its

parameters—the objects it connects.

The instance identifier in the discussion of
Figure 4.5 was a token for the essential pattern

that makes the instance of an object what it is.

When the boundaries of this essential pattern

start blurring, object instances start losing their

identities. Some models permit multiple object

instances to be in the same state. For instance,

there may have been several whole red glass

panes or several shattered blue panes of identical

thickness, which are therefore considered to be

in the same state. Two or more object instances

may be in the same state, only because we have

not represented the complete state space that gives

the instance its identity. Very often, the unshared

aspects that lend an object—a pattern of informa-

tion—its identity are not explicitly stated in the

model; rather they are intuitively understood. The

object class is based only on shared dimensions of

state space. When we permit two or more object

instances to occupy the same point in state space

and still retain their distinct identities, we are

implicitly using their distinct object identifiers
as tokens for all that is not shared so that each

has a distinct existence—an unshared meaning
in state space.

Hence, constraints on the instance identifier,
a nominal, albeit special attribute that signals the

existence of a distinct instance of the object, will

force or deny the existence of a specific instance
of an object.

Thus, information content distinguishes one

instance from another. When this happens, the

implied relationship is that the instances related

these objects to the same class. Adding informa-

tion to a class distinguishes one class from an-

other—remember that a class is also an instance

of an object. Thus, as we add information to an

inchoate object, it acquires meaning, first in terms
of a distinct identity, and then, as its information

content grows, in terms of different classes and

categories. Thus, membership of a class is a type

of relationship between instances of that class.

We have also seen how classes may be subtyped

based on their information payload. Instances may

also be subtyped based on information content.

When the relationship between instances is not

sufficient to provide a distinct identity to each
object, but enough to distinguish between them

in terms of subtypes, it leads to the concept of

temporal distinction on a timeline: An instance

of a temporal object is distinguished from its past

states by the fact that it “knows” about its past;

that is, it has that information, whereas instances

of past states do not have information on the

states that succeeded them (see Appendix II on

the flow of time).

PATTERNS OF PERSPECTIVE AND
THE METAMODEL OF CONSTRAINT

At first was neither Being nor Nonbeing.
There was not air nor yet sky beyond.
What was its wrapping? Where?..
There was no death then, nor yet deathlessness;
..Then that which was hidden by the void,..emerg-
ing, stirring, through the power..came to be.

- The Rig Veda, 10, 129, the third millennium

B.C., one of the oldest treatises known to man

The recursive second degree “involve” relation-

ship is the most information sparse of all rela-

tionships. It is the border that marks the point

where relationships crystallize from the generic

concept of a list (Box 7.10). Every relationship

is a polymorphism of this phantom milestone in

317

The Nature of Constraints

information space. Figure 7.28 showed us its key

polymorphisms. These polymorphisms may flow
from its parameters—the objects it connects—or

should we say that the objects get the informa-

tion from the relationship?—that the relationship

is special, and therefore the objects it connects

are subtypes of the object its generic parent con-

nects? The information content of the relationship

is actually the information content of the entire

ensemble—the composition of objects connected

by relationships—a pattern.

Note the difference between the two polymor-

phisms of the part of relationship in Figure 7.28.

The generic assemble was obtained by adding

information to the part of relationship indepen-

dently of the objects it connected (actually it was

obtained by fusing it with a third object—the

process—via the subtyping relationship). On the

other hand, Assemble Car was obtained by adding

information to the aggregate object by making it

more specific—by constraining and restricting
it to specifically be only a car and nothing else.
The “assemble” relationship obtained the extra

information that turned it into a polymorphism,

“assemble car,” from one of the objects that had

been previously bound by it. No new object was

assembled into it. Was the meaning added to an

object it bound, to make that object a subtype,

or was it implied by the connection between ob-

jects?—Did the information flow from “car,” to

turn “assemble” into “assemble car,” or was “car”

the result of “assemble car”? It is impossible to

say. In its most generic and abstract form, both

formulations are equivalent. They are polymor-

phisms of the same concept—an amorphous,

abstract constraint lurking at the boundaries of

conception.

We understood how the information in “as-
semble car,” a relationship, carved the subtypes

on either side of it in Figure 7.28. What if a sub-

type was given a-priori? What if it were given

to us that we must only be concerned with cars

when we consider aggregate objects and all else

is out of scope? Then we would also know that

every aggregate object—a car—is linked via the

Assemble Car relationship to Car Part. As such,

that role of Aggregate Object (car), in conjunc-

tion with the Assemble Car relationship would

identify those components that were car parts

(this is called Backward Chaining in Artificial
Intelligence—King & Hamon, 1985).2 Similarly,

Car Parts, a role of Component, in conjunction

with Assemble Car, a relationship that contains

the instructions for assembling car parts into cars,

would map only to those aggregate objects that are

cars (this is called Forward Chaining in Artificial
Intelligence—King & Hamon, 1985).

Thus, the law that sculpts the pattern contains

the pattern within it. The law cannot be separated

from the pattern or the pattern from the law. The

pattern and its law are identical, both are con-

straints, and that constraint is information (see

Appendix II on Lambda Calculus).

How do we obtain these patterns? We obtain

them with relationships—interactions of various

kinds. An attribute may constrain the value of

others via value constraints. Value constraints

are relationships (between attributes—Mitra

& Gupta, 2006). The value of an attribute may

also be constrained, independently of any other

attribute, by a relationship between the attribute

and a value in a domain. Indeed, a constraint on

attribute value is a feature, and a single value

associated with an attribute in merely a special

case of the value constraints, in which the upper

and lower limits of the range of a value constraint

on a quantitative attribute have converged to the

same value, or for a nominally scaled attribute, the

inclusion set has been reduced to a single value

(value constraints have been described in detail

in [337] of Appendix III). We have also seen how

attributes themselves emerged from relationships

between domains and instance identifiers,3 and

even how domains emerged from the junction of

value (measurability) with shared meaning. We

saw how domains themselves lie hidden between

domains, in relationships. Even rule expressions

were constraints and composite relationships,4

318

The Nature of Constraints

as were bounds, ranges, and patterns of every

kind. Every metaobject we have discussed thus

far is a pattern of information—a constraint and

a polymorphism of a relationship. Some conveyed

more information, and some less, but all were

patterns—relationships between metaobjects.

We saw how relationships between instance

identifiers are polymorphisms of occurrence or
existence constraints and how relationships be-

tween attributes may be magnitude constraints,

also polymorphisms of constraint. We saw how

magnitude constraints reduce to existence con-

straints in their most information sparse form.

Ultimately, we saw how an instance identifier
was only a token for a pattern of information—an

instance of an object. A pattern is the ultimate

object. Every instance of an object is a pattern of

information, and every pattern is an instance of

an object. They are one meaning, identical and

indistinguishable, in information space.

Even object classes were patterns based on re-

lationships between an instance identifier and vari-
ous domains. Each kind of relationship grouped

information into classes. Each group was therefore

valid in a perspective. Perspectives themselves

emerged from relationships that tied these groups

to them. Only the universal object—a specter that

only tells us that a group exists—subsumed them

all. It could even be the empty set.

The universal object was a gray ghost that

contained within it not only the potential to be,

but it is also the potential to be anything and

everything, even null space—the place for that

which cannot be—an emptiness and a paradox

in information space at the very edge of all that

is and that which can be.

They all are patterns built with constraints,

which classify, segregate, sunder, and bind. Each

constraint is information. Information is mean-

ing. A meaning may not only be expressed but

may also be subtyped—turned into new mean-

ings and made more specific by constraining it
further; each meaning is a pattern of information

and that pattern is a constraint—an abstract law

of information.

Moreover, each expression of a rule, and there

may be several, are its polymorphisms. Thus, we

arrive at the metamodel of Constraint, the most

general and abstract of all that we have surveyed,

and yet an integral part of them—a part that

subsumes the whole; every metamodel we have

seen thus far is subsumed in it. None could exist

without it, yet some of these polymorphisms are as

complex as the metamodel of constraint is simple.

We have generalized them, and generalizations,

although often hard to conceive, tend to be simple

when we finally articulate them. This generalized
constraint is the ultimate feature. It subsumes all

Figure 9.1. The metamodel of object property

MEANING
(CONSTRAINT)

Expressionexpression of 1
[expressed by 1 or more]

Normal Form of
expression

Subtype of

Equivalent to 0 or 1
[equivalent to of 0 or more different]

equivalent to 0 or more different
(symmetrical relationship)

Subtype of

(INHERITED)

Composed of 1 or more
[composition of 1 or more]

Composed of 1 or more
[composition of 1 or more]

(antisymmetrical polymorphism)

(a polymorphism of the subtyping relationship)

(polymorphism of the subtyping relationship)

(inherited)

OBJECT PROPERTY

319

The Nature of Constraints

other features. It lends an object its very mean-

ing and behavior to match. It is the metamodel

of Object Property.

We have discussed how a single meaning might

have several expressions. Figure 9.1 adds to this; it

tells us that meanings may add to meanings, and

each time a new meaning or nuance is added to

a meaning, it makes the meaning more specific,
further restricting the freedom of the pattern,

reducing its degrees of freedom and thereby

subtyping it. We have seen several examples in

Chapter IV. Box 5.1, under rules, their meanings,

and expressions, discusses how meanings and

expressions may be qualitative or quantitative,

and that many expressions may be reduced to

a unique “normal” form. If the meaning is a

conjunction of meanings, this normal form will

contain conjunctions of other normal forms—one

for each conjoined meaning.

Meanings, quantitative or qualitative, and their

expressions may be combined with other mean-

ings. The area of a face of a cube is a meaning that

can be quantified (length of one side multiplied
by the length of another). The volume of a cube

is also a quantifiable meaning, which may be
expressed in several ways: area of a face multi-

plied by the length of one side or its equivalent

expression, the length of a side multiplied by itself

thrice and others. Thus, volume may be derived

from area, and the meaning of Area is embedded

in the meaning of Volume. Both are quantifiable
patterns of information, and one is a component

of the other. We can use the concept of area as a

constraint on its own or to constrain a volume.

For instance, a term that expresses the area of a

face of a cube will constrain the area of a painting

on a face of the cube and also the volume of fluid
that the cube will hold. In this way, the real world

lets us reuse meanings to create new meanings,

expressed in different formulae.5 The recursive

relationship on Meaning in Figure 9.1 represents

this natural atomic rule.

When meanings may be combined with mean-

ings to create new meanings, their expressions may

also be combined into an expression of the new

meaning (Figure 9.1). The expression inherited

this rule from the meaning it expresses because

it is a subtype of that meaning. If the meaning

is the volume of a cube, it contains within it the

meaning of the area of a face of the cube. Then

the normal form of the formula for computing

the volume—an expression of its meaning—will

also contain a term that is the normal form of the

formula for computing the area of the face of the

cube, as it does.

We saw how this was a step towards lending

the metamodel the power of reason. The law

and the pattern were one inseparable object, a

meaning. Such meaning could be qualitative

(like “ancestor” or “friend”), a quantifiable con-

cept (like area or volume), a formula, a bound, a

range, a visible, audible, or tangible pattern like

a picture or a signal, or even a physical law like

the path of a ray of light through a prism. The

meaning of Meaning in Figure 9.1 subsumes all

of these meanings. This Meaning is a generic

constraint—a pattern of information. The law

and the pattern are one.

Figure 9.1 is a model of this ultimate general-

ization. We have merged the concept of patterns,

processes, interactions, information, objects,

meanings, their expression, and constraints into

one unified whole. However, this merger, con-

sidered in isolation, is only another step towards

the ultimate flexibility and adaptability we seek.
We have seen that we must not only generalize

but also normalize these constraints to automate

and facilitate their reuse. Only through reuse of

meanings and their configurations can we make
our business processes and information systems

adaptable and scalable. It is only through nor-

malization that we can automate the propagation

of constraints and meanings, even as we control

their risk of their uncontrolled replication and

the consequent risks of cascading, uncontrolled,

and unintentional side effects. As such, it is the

normalization of constraints that holds the key to

320

The Nature of Constraints

flexibility, adaptability, and reuse of information.
The normalization of constraints is the focus of

the next section.

NORMALIZING CONSTRAINTS

Who knows what is the truth or who may declare it?
What is the path that leads to the place of forces?
Only the inferior abiding places are perceived, not
those in mysterious superior locations

The Rig Veda 3.54.5

The key to normalizing information is to attach

the right constraint at the right place so that it is

inherited, rather than replicated. Only then may

we make a change and have it automatically radi-

ate through a system of meanings—objects and

relationships—changing behavior where it must

and only where it must. If we can do this, new

learning will seep into the system, through it, and

the system will adapt in step.

Consider the concept of size in physical space.

Length is a primary domain, and domains such

as area and volume emerge from relationships the

length domain has with itself.6 Consider the size

domain. The meaning of size subsumes length,

area, and volume because it is a supertype of

length.7 Physical Size is an ordinally scaled domain

that has lost all quantitative information, save the

nil value and ranking information. (Remember

how quantitative domains fade to qualitative do-

mains as they lose information.) We could impose

a constraint on physical size, which cannot fall

below nil, and the constraint will be inherited by

every kind of (physical) size domain. If we did

not, we would have to replicate this information

for every attribute that measures physical size, be

it the size of an ant or of an elephant.

Based on the above, the constraint, that the

smallest possible physical size is nil, should be

attached to the physical size domain. It is a fea-
ture of the domain. Nil physical size implies the

absence of physical size of any magnitude, not

the absence of the meaning of physical size. Ants,

elephants, and all other objects that map one or

more attributes to domains like length, volume,

and others we discussed, will inherit this con-

straint. We will not have to replicate it for each.

It will even be inherited when we do not quantify

size—when it is a nebulous, qualitative concept.

This is how generalization and normalization

must go hand in hand to facilitate adaptability

through reuse of meaning.

Every metaobject we have discussed so far

generalized shared behavior. Each was a pattern

of universally shared information, the meanings

shared and reused most often. From these patterns

of sharing, the world of business is shaped. These

metaobjects are information poor compared to

the objects and processes familiar to business.

They must be because they are the information

sparse containers of the few critical rules that are

always used and reused to lend meaning to the

universal behaviors that shape our understand-

ing of the world around us. They are skeletal

structures of information—patterns that frame

new learning even as they support the old. As we

fill them with meaning, they swell with informa-

tion and manifest themselves as the information

rich objectives, goals, resources, products, and

processes that enrich, and indeed create, the

meaning of business.

Perception flows from their expression, their
formats, and measures, and reason from their

tight embrace. Configured and attached to each
other with the right relationships, metaobjects

create the logic of business. In this book, we

have seen how backward and forward causal

chains of metaobjects, in the right configuration
and ontology, can not only seek goals but also

the means for achieving objectives. Hence, the

right metaobject ontology can infuse the power

of reason into the model.

So far, we have studied each metaobject in

isolation. We discussed configurations in the

321

The Nature of Constraints

isolated chapters. Now they must be combined.

We can only normalize their interaction if we can

rise above the minutiae of each metamodel to see

how each interacts with the others, configuring
and synthesizing knowledge, and normalizing

behavior.

The next chapter will integrate the Metamodel

of Knowledge. The purpose of the integrated

model will be to attach features—the meanings

in Figure 9.1—at the right places to the right

metaobjects, which themselves are patterns of

meaning. They are constraints that surge through

patterns in information space, rendering, creating,

sundering, melding, and morphing meaning. The

integrated metamodel of the next chapter is the

overarching structure that rules the rest.

REFERENCES

King, D., & Hamon, P. (1985). Artificial intel-
ligence in business. John Wiley & Sons.

Mitra, A., & Gupta, A. (2006). Creating agile
business systems with reusable knowledge. Cam-

bridge University Press.

ENDNOTES

1 Value constraints and “joint constraints,” in

which several data items mutually constrain

their values, have been discussed in depth

in [337] in Appendix III. The scope of this

discussion includes the “unknown” and

“null” values.
2 In Backward Chaining, a chain of reasoning

may traverse several relationships backward

from a purpose to resources and means. In

Forward Chaining, a chain of reasoning may

traverse several relationships forward, from

resources and means, to purpose.
3 How attributes emerge from relationships

between domains and instance identifiers is
described in Chapter IV; see Figure 35 on

our Web site.
4 The fact that rule expressions are composite

relationships is explained in Figure 45 on

our Web site.
5 See [337] in Appendix III (Chapter IV, sec-

tion 3). This describes how quantitative and

qualitative meanings may be reused and

formulated in units of measure and expres-

sions of meanings they are a part of.
6 Described in more detail in [337] in Appen-

dix III (Chapter IV, section 3). See Rule 10

under the metamodel of domain and Rule

2 under The Risk and Benefit of Domain
Analysis.

7 See [337] in Appendix III (Chapter IV, sec-

tion 3).

322

Chapter X
The Whole Shebang:

The Integrated Metamodel
of Knowledge

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

This is the final chapter of the book. It describes the overarching structure of knowledge. This chapter
provides an overview of the interactions between the fractured meanings normalized by each metaob-
ject. It shows how the entire scheme is integrated into one unified context, which leads to the concept
of Knowledge itself. Wherever knowledge and meaning exist, we will find their generic components
configured in this manner.

WHAT IS THE MODEL OF
KNOWLEDGE AND WHY IS IT
USEFUL?

Knowledge is the understanding of meanings,

reasons, and rules. In preceding chapters, we

have seen how it starts with the recognition of

Pattern and is based on reasoning, inference,

understanding, and predictability. It is coordinated

information that has a structure. The concept of

a pattern is the cornerstone of Knowledge, and

recognizing this helps us integrate reasoning, busi-

ness rules, business processes, and ontology into

one holistic pattern we have called the Metamodel

of Knowledge in this series of books.

Each pattern in this book and its companions

describes the components from which knowledge

is assembled. These patterns are not isolated

islands of meaning. Each is only a window into

the overall pattern of information that describes

the very meaning of Knowledge. The overall

pattern would be impossible for a single human

“…impose thine awe upon all thy works and thy dread upon all that thou has created…that they may
form a single band to do thy will with a perfect heart”

-extract from a Jewish prayer at Rosh Hashanah

323

The Whole Shebang: The Integrated Metamodel of Knowledge

mind to grasp in its entirety unless it is presented

piecemeal—a few concepts and relationships at a

time. Thus, each is also a window into the whole.

Although every concept may not be present in

every diagram in this series of books, each affects

the others through relationships and interactions

that are hidden in that figure. Figure 10.1 shows,
at a high level, the overall interaction between

these parts. The behavior of the entire structure,

its complex interactions, and configurations is
best stored in electronic Knowledge Artifacts and

managed by automation. These Knowledge Arti-

facts will facilitate the operation of the 24 Hour

Knowledge Factory we described in Chapter I.

The objects and semantic models in this book

can help identify irreducible facts. They are the

shared, generalized patterns that provide templates

for mapping the irreducible facts of knowledge

and meaning and can thus assist in the parsing of

knowledge (the patterns in its companion book

from Artech House Publishers can help parse

business rules to identify its atomic components).

The ontology and the semantic models in this

book also lend the model power to reason. For

instance, Figure 7.27 describes the ontology of

location and containment. That chapter described

why containment relationships are transitive when

joined together. Thus, if it is known that a person

lives in a house and the house is located in a town,

it may be automatically inferred that the person

lives in the town. Box 7.9 had another example

of pattern based automated reasoning. Thus, the

patterns in this book and its companions can be

a cornerstone for the Semantic Web.

Sometimes, this reasoning defies human intu-

ition. However, it is always mathematically correct

and logically consistent. For instance, consider the

question: can a part equal a whole? The intuitive

answer is that it cannot. However, we have seen

that when we deal with infinite numbers, a part
may equal the whole. Consider Figure 7.27b. If

the envelope that contained Objects 2 and 3 were

infinitely extended, containment would be mean-

ingless, and the asymmetry of “part of” could

become “unknown.” In some situations, it could

behave symmetrically like “locate” does (see the

notes at the end of Chapter VI. This is consistent

with the fact that an asymmetrical relationships

may be derived from symmetrical relationships

by adding information, and “part of” can lose

its asymmetry as we increase the freedom of the

pattern and reduce its constraints and information

content by extending the pattern to infinity in
information space). The following example shows

one instance of how this could happen.

Consider a triangle like that in Figure 1.2.

Imagine it is cut in two by a horizontal line like

one of the boundaries between the segments in

the figure. This line is shorter than the base of the
triangle. The side of the triangle connects the one

end of the shorter line to the one end of the base.

Take a point on the shorter line that is close to

this end. You can draw a line from that point to

a point on the base that is close to the end of the

base. Repeat this until you reach the other end of

the shorter line and the base. Now do this for the

points in between those you have connected. You

can continue the procedure an infinite number
of times because there are an infinite number of
points on each line. You will always find a point
on the base that corresponds to a point on the

shorter line. However, if you superimposed the

shorter line on the base, it would only be a part

of the larger line that represents the base of the

triangle. This implies that the points on the shorter

segment are only a part of the points on the full

base. On the other hand, we have also shown that

every point on the base has a corresponding point

on the shorter segment. This has happened because

containment and “part of” may become symmetri-

cal relationships like “locate” when patterns of

infinite extent are considered, and an infinite part
of an infinite pattern may contain the whole pat-
tern. This is not intuitively obvious to us because

we cannot easily understand the infinitely large
or infinitesimally small. However, the semantics
of knowledge implied and anticipated it.

324

The Whole Shebang: The Integrated Metamodel of Knowledge

The objects and their features in the seman-

tic models in this book can also be the basis

for identifying the most granular services that

knowledge management and process modeling

tools should provide (remember that relationships

are also objects). Each object also implies three

effects, which are also services: creation of the

object, and change of state (changing to a null

state implies deletion, similarly, changing from

a null state implies creation). Relationships also

imply services that may switch instances of re-

lationships between values and adding temporal

information to relationships, or compositions will

create processes. In the same way, the patterns in

a companion book, Agile Systems with Reusable
Patterns of Business Knowledge: A Component
Based Approach from Artech House Publishers,

can be the basis for creating the components of

business services and business processes.

For example, the patterns in this series, work-

ing in unison, may even lead into an intelligent

“wizard” for analyzing functional requirements.

Consider the semantics of buying and selling.

We know that the process of selling may be au-

tomatically inferred from the effect that creates

the Negotiation/Agreement object (called NAG in

Figure 2.18 of Agile Systems with Reusable Pat-
terns of Business Knowledge: A Component Based
Approach). The work product of this process is

the transfer of rights to a business product (which

could be a physical product, money, information,

a place, a task (service), an organization or some

aggregation of one or more of these items, a pattern

described in the companion book). The semantics

of the pattern described in that book also imply

that a buyer and seller must be involved in creat-

ing the “NAG,” and optional intermediaries may

be involved. The process “wizard” could require

the mandatory information and ask about the

optional information. The user would have the

option of saying that the information is unknown

and could fill it in later. The wizard would “know”
that optional items, like intermediaries, may be

“null” (does not exist), but mandatory information

(e.g., the buyer and seller) may be “unknown,” but

cannot be “null.” Moreover, the wizard could infer

from the ontology in that book that the buyer and

seller are either individual people or organizations

and would inherit their features and behavior.

Thus, it would automatically present the appro-

priate forms to capture this information for each

sale. It may ask about the distribution channel,

and if this consists of intermediary persons and

organizations, it would capture the same informa-

tion, along with their interrelationships, if any. It

would also “know” that the distribution channel is

a network of relationships and therefore can have

restructuring behavior associated with it. Beyond

this, it would know that the sale process must have

the RAWCF parameters described in Chapter VII

and that the sale must be executed by a person. It

may therefore automatically present the requisite

forms to capture this information. The semantics

of tasks and resources would also lead into asking

about requisite credentials and qualifications for
the individual executing the sale (for example,

real estate sales require that the realtor be certi-

fied). Semantics like these would be inferred from
the fact that adding temporal information to the

sale turns it into a process, which has the same

semantics as a task and the task-resource pattern

in Figure 2.16 of Agile Systems with Reusable
Patterns of Business Knowledge: A Component
Based Approach. This example describes only

a tiny slice of the reasoning abilities inherent in

the integrated pattern of knowledge. We leave

it to the reader who has read the entire series to

see how even terms of sale, like provisioning of

products, billing, and payments may be inferred

by the integrated model of knowledge.

Moreover, these patterns distinguish the

semantics of meanings from how they are ren-

dered. Thus, these services also permit a business

or knowledge service to interface with others

through a multiplicity of Service Level Agree-

ments (SLAs); that is, the SLA also becomes a

service that is invoked by the core services which

operate at the plain of meanings. Such SLAs will

325

The Whole Shebang: The Integrated Metamodel of Knowledge

render information in different physical forms

with different degrees of precision, which can

all tie back to a single unified meaning. For ex-

ample, alternative algorithms for computing the

same quantity with the same or different levels

of precision (for example, the surface of a sphere)

or alternative representations of the same item

(for example, a mountain as a contour map or a

hologram) would render the same meaning dif-

ferently by attaching different SLAs to the core

meaning being represented. Thus, the patterns in

this series identify the core meanings that must

underpin the Semantic Web (the semantics of

patterns that render information were outlined

in Chapter IV and have been described in more

detail in a companion book from Cambridge

University Press: Creating Agile Business Systems
with Reusable Knowledge).

METHODOLOGY

We could speed systems integration and require-

ments analysis with the patterns in this series as

we discover new information on the behavior of a

complex, large scale business system in iterative

steps. We can start with the generalized semantic

patterns in this series and use them as-is (with per-

haps only cosmetic name changes and synonyms

to fit the business domain). This would help with
the difficult task of abstracting generalized pat-
terns to help integrate and coordinate information.

This kind of model is time consuming and risky to

build, but nevertheless, is critical for coordinating

information across broad scopes and creating reus-

able services in SOA. The patterns in this series

give us a prepackaged starting point and would

save the time required to build abstract models

while mitigating the risks inherent in developing

the right abstractions. We would add information

to these patterns only when we must, in the form

of constraints, data, relationships, and behavior

specific to the business domain. We would add

this information only if it does not exist in the

generalized models articulated in this series.

We could speed process modeling, integration,

and reuse by using the patterns in this series as a

starting point and adding temporal information

to create processes. The patterns in this series

can help identify generic processes (relationships

would become processes when temporal informa-

tion is added). Key resources and work products

could also be identified from these patterns. For
instance, a relationship between Fund Amount and

Calendar may help identify a process for apply-

ing funds to specific time periods in a spending
pattern (Pattern in Figure 2.19 of Agile Systems
with Reusable Patterns of Business Knowledge:
A Component Based Approach) and a mutually

inclusive relationship (Figure 5.5b of this book)

may require that two processes be mutually in-

clusive. Thus, buying a car should trigger buying

car insurance and vice versa.

When integrating diverse semantic models,

such as those commonly found in different systems

or different collaborating businesses, the patterns

in this series can broker the translation of informa-

tion between them. Each semantic model, object

model, or data model would be mapped to the

objects in model of normalized knowledge in this

series. This would help normalize and coordinate

information much faster, and with less risk, than

if these abstractions were built from scratch each

time. Thus, Employee in a Human Resources

system and Citizen in a Homeland Security

system would both map to Person. Moreover,

Person would convey additional behaviors like

consumption of goods and services, the behavior

of becoming a customer through purchases and

so on. The Universal Perspective, described in

Agile Systems with Reusable Patterns of Business
Knowledge: A Component Based Approach, is a

polymorphism of the model in this book, which

would be especially useful in this regard.

Sometimes the problems that flow when these
patterns are not used may be more instructive

than abstract discussions on how to use them.

326

The Whole Shebang: The Integrated Metamodel of Knowledge

For instance, one of the authors (Mitra) was deal-

ing with a complex fund management system. It

was important to know the locations that were

impacted by actions taken on various funds and

grants, as well as the location of the action. The

latter capability had been omitted during require-

ments analysis and was difficult to update the
design to include this information. The patterns

in this book determine that location is a universal

property normalized by the fundamental metao-

bject. It is created by the Locate relationship we

discussed in Chapters VI and VII. We also know

that a Task is a kind of object and therefore inher-

its the location property from the Fundamental

Object (Chapter VII). Therefore, the patterns in

this book would always permit easy incorporation

of location information for a task. This location

could be a physical or virtual location, and it may

be “unknown” until it is given a specific value.
However, the location of a task would never be

“null” (does not exist). Thus, had the designers of

the fund management system used the patterns

in this series of books, this important fact would

not have been overlooked during requirements

analysis and the fund management system would

have been easily extensible.

In this book, we have described the infor-
mation that is required to model complex and

simple business rules and processes. How this

information can facilitate, and even automate,

process design is illustrated by several examples.

Some of the more complex processes that were

optimized, automated, or made more resilient

may be found in examples under Processes That

Gain or Lose Structure, Product Reengineering

and the Mutability of Compositions, Box 7.9, and

the complex example on the Web referred to in

Figure 7.24.

This series of books identifies the information
that is required to model business knowledge. It

is a complete model because it is derived from

the semantics of Pattern, which is the foundation

of all knowledge. What constitutes knowledge,

behavior, business rules, process, and reasoning

must be identified before we can discuss how the

information should be collected: whether it should

be done iteratively, or in a waterfall, which roles

should do what tasks, the skills required, and

the work breakdown structure of these tasks.

Traditionally, we have relied on intuition to iden-

tify information needs. However, if we wish to

automate the process, create the Semantic Web,

or even design tools that will describe the process

in a standard, computing platform independent

form for automation, we must formalize this

information and ensure its completeness. That

is the intent of this series.

The right process for collecting the information

will depend on the state of each organization—its

size, complexity, skills, and culture. There may

be many ways in which this information may

be collected and managed. The complexity and

volume of information required to cover diverse

business environments suggests that a separate

book be dedicated to the process of collecting

the information identified in this series (tasks,
roles, responsibilities, skills, sequence, format,

and so forth).

Figure 10.1 binds the models in this book and

its companions into one integrated meaning: the

meaning of knowledge and how it is configured.
It is a concise view; each object and interaction in

Figure 10.1 is rich with the semantic information

we have already described. Together, they weave

a mighty tapestry of information that creates the

very concept of knowledge.

THE INTEGRATED MODEL OF
KNOWLEDGE

Figure 10.1 shows how domains mediate between

objects, the corresponding meanings and physical

representations they create. As seen in Figure

10.1, meanings may be represented by different

patterns of symbols in different formats, and each

will then be a synonym for the others.

327

The Whole Shebang: The Integrated Metamodel of Knowledge

Figure 10.1. The integrated metamodel of knowledge

Gro
upof1ormore

[groupedby1ormore]

O
b

je
ct

F
ea

tu
re

va

lu
e

F
ea

tu
re

O
b

je
ct

In
st

an
ce

S
ta

te
M

o
m

en
t

O
b

je
ct

C
la

ss

P
ar

ti
ti

o
n

S
u

b
ty

p
e

D
o

m
ai

n

va
lu

e

T
ak

e
1

[v
al

u
e

o
f

0
o

r
m

o
re

]

P
ar

ti
ti

o
n

ed
b

y
0

o
r

m
o

re
[p

ar
ti

ti
o

n
 1

] C
la

ss
if

ie
s

2
o

r
m

o
re

m
u

tu
al

ly
 e

xc
lu

si
ve

[c
la

ss
if

ie
d

 b
y

1]

U
n

it
 o

f
M

ea
su

re

D
if

fe
re

n
ce

S
ca

le
d

D
o

m
ai

n

R
at

io
S

ca
le

d
D

o
m

ai
n

unit
ofm

ea
su

re
of1

[m
ea

su
re

d
by1orm

ore
]

F
o

rm
at

(S
ym

b
o

l)

F
o

rm
at

ti
n

g
C

o
n

st
ra

in
t

C
o

n
st

ra
in

 1
 o

r
m

o
re

[c
o

n
st

ra
in

ed
 b

y
1]

C
o

n
d

it
io

n
al

 F
o

rm
at

s
-

ex
cl

us
iv

ity
/in

cl
us

iv
ity

-
 p

at
te

rn
-

le
ng

th
-A

cc
ur

ac
y

-
R

an
ge

/li
st

M
ea

su
re

C
o

n
ve

rs
io

n
ru

le

C
o

n
ve

rt
 f

ro
m

 1
[c

o
n

ve
rt

ed
 b

y
0

o
r

m
o

re
]

-
 f

ro
m

 u
n

it
 o

f
m

ea
su

re
-

to
 u

n
it

 o
f

m
ea

su
re

-
co

n
ve

rs
io

n
 f

ac
to

r
-

(r
u

le
 e

xp
re

ss
io

n
)

B
eg

in
n

in
g

M
o

m
en

t
In

st
an

ce
 o

f
1

[i
n

st
an

ti
at

ed
 in

 0
 o

r
m

o
re

]

In
st

an
ce

of
1

or
m

or
e

[C
la

ss
of

0
or

m
or

e]

at
 e

ve
ry

 d
is

ti
n

ct
 (

1)
[o

f
1

o
r

m
o

re
]

F
ea

tu
re

va
lu

e
C

o
n

st
ra

in
t

Consist of 1 or more
[part of 1]

A
tt

ri
b

u
te

S
u

b
ty

p
e

o
f

in
st

an
ce

of
1

[c
la

ss
of

1
or

m
or

e]

fo
rm

at
of

1
or

m
or

e

[f
or

m
at

te
d

in
1

or
m

or
e]

S
u

b
se

t
o

f

M
u

tu
al

ly
 In

cl
u

si
ve

S
u

b
ty

p
e

o
f

Subtype of

C
o

n
ve

rt
 t

o
 1

[t
ar

g
et

 o
f

0
o

r
m

o
re

]

A
g

g
re

g
at

e
O

b
je

ct

S
u

b
ty

p
e

o
f

D
o

m
ai

n
va

lu
e

C
o

n
st

ra
in

t

D
o

m
ai

n

M
ea

su
re

d
in

0
or

m
or

e

[m
ea

su
re

of
1

or
m

or
e]

[e
xi

st
en

ce
de

pe
nd

en
cy

]

C
on

st
ra

in
0

or
m

or
e

[c
on

st
ra

in
ed

by
1] M

u
tu

al
ly

 In
cl

u
si

ve

C
o

n
d

it
io

n
 o

f
0

o
r

1
[c

o
n

d
it

io
n

ed
 b

y
1]S
et

 o
f

1
o

r
m

o
re

[s
u

b
se

t
o

f
1

o
r

m
o

re
]

M
u

tu
al

ly
In

cl
u

si
ve

R
el

at
io

n
sh

ip
E

ff
ec

t

E
ve

n
t

P
ro

ce
ss

S
u

b
ty

p
e o
f

S
u

b
ty

p
e o
f

S
u

b
ty

p
e

o
f

C
o

m
p

o
se

d
 o

f
1

o
r

m
o

re
[c

o
m

p
o

n
en

t
o

f
1]

E
n

d
in

g
M

o
m

en
t

-s
u

b
ty

p
in

g
 c

ri
te

ri
o

n

Subtype of

S
u

b
ty

p
e

o
f

D
el

im
it

s
1

o
r

m
o

re
[d

el
im

it
ed

 b
y

0
o

r
1]

D
el

im
it

s
1

o
r

m
o

re
[d

el
im

it
ed

 b
y

1]

(T
em

p
o

ra
lly

)
p

re
ce

d
es

 0
 o

r
m

o
re

[(
T

em
p

o
ra

lly
)

su
cc

ee
d

s
1

o
r

m
o

re
]

B
eg

in
n

in
g

M
o

m
en

t

E
n

d
in

g
M

o
m

en
t

E
ve

n
t

S
u

b
ty

p
e

o
f

S
u

b
ty

p
e

o
f

C
h

an
g

e
1

o
r

m
o

re
[c

h
an

g
ed

 b
y

1
o

r
m

o
re

]
M

o
n

it
o

r
1

o
r

m
o

re
[M

o
n

it
o

re
d

 b
y

1
o

r
m

o
re

]

O
b

je
ct

In
st

an
ce

F
ea

tu
re

va

lu
e

In
st

an
ce

Id
en

ti
fi

er
S

u
b

ty
p

e
o

f

U
p

d
at

e
E

ff
ec

tE
ff

ec
t

In
q

u
ir

y
E

ff
ec

t

S
u

b
ty

p
e

o
f

In
st

an
ce

 o
f

1
[i

n
st

an
ti

at
ed

 in
 0

 o
r

m
o

re
]

S
ta

te
 o

f
O

b
je

ct
In

st
an

ce
In

st
an

ce
 o

f
1

[i
n

st
an

ti
at

ed
 in

 0
 o

r
m

o
re

]

S
et

 o
f

1
o

r
m

o
re

[s
u

b
se

t
o

f
1

o
r

m
o

re
]

(i
n

h
er

it
ed

)

C
o

n
d

it
io

n
 o

f
0

o
r

m
o

re
[c

o
n

d
it

io
n

ed
 b

y
1]

(i
n

h
er

it
ed

)

C
o

n
st

ra
in

t
d

u
ra

ti
o

n
 =

 n
il

(a
n

ti
-

sy
m

m
et

ri
ca

l)

tr
ig

g
er

 0
 o

r
m

o
re

[T
ri

g
g

er
ed

 b
y

0
o

r
1]

in
te

rr
u

p
t

0
o

r
m

o
re

[i
n

te
rr

u
p

te
d

 b
y

0
o

r
m

o
re

]

In
st

an
ce

 o
f

o
f

S
am

e
O

b
je

ct
s

(a
n

ti
-

sy
m

m
et

ri
ca

l)

co
n

ve
rt

 f
ro

m
 1

 o
r

m
o

re
[c

o
n

ve
rt

ed
 b

y
0

o
r

m
o

re
]

co
n

ve
rt

 t
o

 1
[m

ap
p

ed
 f

ro
m

 0
 o

r
m

o
re

]
F

o
rm

at
C

o
n

ve
rs

io
n

R
u

le

C
o

n
st

ra
in

 1
 o

r
m

o
re

[c
o

n
st

ra
in

ed
 b

y
1]

L
o

ca
te

d
 b

y
0

o
r

m
o

re
(s

u
b

ty
p

es
)

•C
on

ta
in

ed
 in

 0
 o

r
m

or
e

•P
ar

t o
f 0

 o
r

m
or

e
•(

st
ru

ct
ur

ed
 p

ar
t o

f 0
 o

r
m

or
e)

•s
ub

ty
pe

 o
f 0

 o
r

m
or

e

328

The Whole Shebang: The Integrated Metamodel of Knowledge

Note how domains normalize measurability

and numerical expressions of magnitude. Figure

10.1 shows that a magnitude may be articulated

in different units of measure, which in turn may

be stated in different formats. Further, ratio

scaled domains will inherit the fact that they must

articulate magnitudes in units of measure from

difference scaled domains. Many common codes

of a business organization will be found in the

top righthand quadrant of Figure 10.1.

Note also how Event normalizes the passage of

time. The beginning and the end of an event are

attributes of Event that map to the Date Domain

(not shown in the figure). Process links meanings

to Time through Event, State, and Effect, the por-

tals through which time flows into objects from
Process. Some implications may not be obvious.

Remember processes have owners. Effects will

inherit this information. Processes always end

unless they are sagas—see Box 7.2.1 The end of

a process is the beginning of an altered state of an

object (processes that only monitor information

also make subtle changes—that the object has

been/is being monitored. However, note that for

an inquiry process, its beginning, not end, signals

the fact that the object is under observation. This

fact is also a state of the object. As such, an inquiry

(i.e., monitoring) process changes the state of an

object as it begins2). It follows that every instance

of state in Figure 10.1 will convey information

on not only the meaning and value of the state of

an instance of an object, but also on:

Who made the change (All the dimensions of

process ownership: R, A, W, C, and F).

When the change was made.

The instance of the process that caused the

change and the instances of resources that

were used.

Why it was made (the causal chain that led

to the process).

How long it took to make the change (cycle

time of the process).

•

•

•

•

•

This information is useful for auditing the

process. Therefore, we call them the audit at-
tributes of State. They are naturally associated

with every time slice in Figure 4.5. How much

of this information the computer system actu-

ally records is a design decision in the business

process automation layers (of the Architecture of

Knowledge), but regardless of what is filtered in
or out, in what form or format, the information is

naturally available and resident in the meanings

of things—in the metamodel of knowledge of

Figure 10.1. This information is also critical for

satisfying the Sarbanes-Oxley Law that corpora-

tions in the United States must satisfy.

Figure 10.1 conveys the semantics of State.

Remember that “instance of” is a polymorphism

of the subtyping relationship. If we consider the

entire composition from “Object Feature Value”

through “Domain” in Figure 10.1, the structure

in this figure shows that a feature must assume
a single value from a single domain at a moment

in time. This value could be a constraint.

Since the value of a specific feature of a spe-

cific object instance is an instance of the value

of object features in general (Figure 10.1), and

State describes a collection of values of features

in Figure 10.1, it follows that the state of an object

instance will be a collection of values of corre-

sponding features for that object (instance). This

relationship between “Object Instance Feature
Value” and “State of Object Instance” is inherited

from their generic (class level) parents in Figure

10.1. Figure 10.1 articulates this fact.

Several object instances could be in the same

state. The relationship between State and Object
Instance in Figure 10.1 articulates this (when

different object instances are considered to be

in the same state, the fact that they are different

instances is the sole differentiator of their states,

which is represented by the differences in value

of the instance identifier). The corresponding
relationship between State of Object Instance and

Object Instance is an inclusion polymorphism of

this relationship. The state of an object instance

329

The Whole Shebang: The Integrated Metamodel of Knowledge

is an instance of (and therefore a subtype of)

State.

Figure 10.1 shows that an object class is an

aggregate object based on common features. It

tells us that object classes may be partitioned

into subtypes and that there may be several such

partitions but that subtypes in a single partition

will always be mutually exclusive. It is true that

even if we show only one subtype in a partition, its

dual, the class that is not that subtype, implicitly

exists. A partition will always have at least two

subclasses, and it could have more. Moreover,

Figure 10.1 generalizes attributes, effects, con-

straints, and relationships into Features and maps

features to domains.

An instance identifier is an attribute, albeit a
special kind (subtype) of attribute. It is a token

for the unknown (unspecified) pattern of informa-

tion that lends an instance of an object its unique

identity. The instance identifier distinguishes one
instance (of an object) from others in its class. It

tells us that this object (instance) is different from

another object (instance) of the same class. It is a

token for the information that makes them differ-

ent. It is therefore a kind of classifier, a nominally
scaled attribute only because we might find it
difficult to articulate its state, which we know is
different from the footprint of another object with

a different identity. If both objects have exactly

the same footprint (state) in information space,

they become mutually indistinguishable. It fol-

lows that all instance identifiers must map to the
nominal domain.

An “ordinary” relationship between objects is

a relationship between instance identifiers. It only
tells us that a specific interaction occurs (or does
not). It too conveys only nominal information. The

Involvement Domain is thus a polymorphism of

the nominal domain.3 All relationships are defined
on the involvement domain.

Some relationships can convey more infor-

mation than the mere occurrence. For instance,

attributes are a kind of object. We have seen how

nominal relationships between attributes can swell

into ordinal and quantitatively scaled rule expres-

sions. This happens as we fill them with informa-

tion on measurability and magnitude. They do so

in step with the hierarchy of rule expressions in

Figure 7.29. Relationships between attributes, like

the attributes themselves, may also map to quan-

titative domains. For instance, the enumeration

relationship maps a collection of instance iden-

tifiers to a quantitative domain of enumeration.
These maps will be rule expressions that mutually

constrain values of attributes. Relationships may

also map to Ordinal Involvement and Quantitative
Involvement domains. Quantitative involvement

domains in turn may be domains of ratio scaled

involvement or difference scaled involvement in

which the strength of the interaction only quanti-

fies differences in magnitude, not absolute levels

of involvement (see Chapter IV).

The hierarchy of domains of involvement

mirrors the hierarchy of domains in Figure 4.1,

each a subtype of a domain in Figure 4.1. Every

domain of involvement is thus an inclusion poly-

morphism of a corresponding domain in Figure

4.1. This is why relationships, like other kinds of

features, also emerge from maps between objects

and domains; only in this case, the domains are

domains of involvement.
Effect is also a kind of feature. What kind

of domains might effects map to? Effects hold

the winds of change. Remember that they are a

kind of process (albeit not business processes),

and processes are relationships. Processes are

also the conduits of information about temporal

changes. Therefore, effects map to temporal poly-

morphisms of the involvement domains we just

discussed—polymorphisms that convey informa-

tion on how qualitative or quantitative involvement

has changed with the flow of time.4

An effect may cut an “ordinary” nominally

scaled occurrence relationship between objects

or tie objects together into this kind of nominally

scaled involvement. However, the domain of

changing involvement can be more complex when

we focus on quantitative involvement. A quantita-

330

The Whole Shebang: The Integrated Metamodel of Knowledge

tive rule that involves two or more objects nor-

malizes the magnitude by which the value of one

object will change if the magnitudes, or qualitative

involvement, of the others change. In Figure A of

Box 4.5, we know that the total amount (money)

is the arithmetic product of unit price (money per
piece) and number of units (number of pieces).
We can compute the change in the magnitude of

total amount, given changes in magnitudes of unit

price and units. This information is normalized by

the quantitatively scaled arithmetic relationship

between the three items (total amount, unit price,

and units). If an effect changes one, it must also

convey information on how much the magnitude
of the other(s) will change.

This effect will flow from a process. The
process is information about changes in time.
The effect maps changes in time to the object. It

will tell us how quickly or slowly, at what tempo

and to what drumbeat of effects, do changes in

magnitude occur. Therefore, the effect will inject

information about the temporal rate of change

of magnitudes into the objects it involves. In the

example we just discussed, it would tell us how

quickly, at what temporal pace, units, prices, and

total amounts might change. (Clearly, the sensitiv-

ity of one attribute to changes in the others differs

in different regions of the sail-like surface in

Figure A of Box 4.5. If we introduce time into this

equation, so that one or more involved attributes

start changing, how quickly or slowly the others

will respond will depend on where we are on that

surface.) The quantitative relationship maps to the

generalized domain of changes in involvement

over time. These are domains of growth. They

are frequently used secondary domains.5

The audit attributes, discussed earlier in this

chapter, flow into objects from processes through
effects—especially information on cycle time—

the time taken to make a change. However, effects

also convey an additional polymorphism of this

temporal change domain. Remember that an ef-

fect is not a business process; it is an information

systems process. Therefore, an effect normalizes

the time when the information system, not business
process, made the change and the time it took to
do so (as opposed to the real world timing and

duration of the business process). For instance, in

the process in Figure 7.6b, the shipment may have

been made at 10 p.m. and completed (unloaded at

its destination) by midnight but may have been

actually entered into the information system only

at the start of business on the following day. The

effect would only occur the next day, even though

the corresponding business process may have

occurred the day before (see Figure 8.2).

The start, end, and duration of an effect are

systems audit attributes that may also be associated

with the state of an object, but unlike the audit

attributes we have discussed earlier in this section,

they will lie in the business process automation

layers of the Architecture of Knowledge. These

are also attributes that map to domains of temporal

involvement—the Date (date-time) domain and

the Time (time-lapse) domain. Indeed, we may

use this information to compute and balance the

load on the information system. We would do this

in much the same way we balanced resources and

load on the business system.

The metamodel of knowledge is a container for

common sense. It normalizes common sense even

as it creates room for constructive creativity. It is

flexible and generic; its polymorphisms are many,
almost uncountable. These uncountable polymor-

phisms manifest the creativity and innovation

latent within the Metamodel of Knowledge. This

metamodel is key to integrating and reusing the

knowledge that lies in our amorphous collective

experience—experience that gives the businesses

we work for the competitive edge they must con-

stantly seek, sharpen, and hone in order to survive

and prosper in the Age of Knowledge.

Our next step must therefore be to bring order

to the infinite possibilities that lie within this
metamodel—to fill this container of meaning
with business sense. This business sense will be

normalized patterns of business meaning—the

patterns most often used, which are also the pat-

331

The Whole Shebang: The Integrated Metamodel of Knowledge

terns of business that integrate business processes,

supply chains, information systems, databases,

and even business knowledge itself into the elu-

sive, but real Universal Perspective. The Universal

Perspective is a shared understanding that is the

basis of our shared communication of meanings

and their mutual engagement in the shade and light

of human thought. It is the enabler of the 24 hour

Knowledge Factory and the steps beyond.

As we add business information to the

Metamodel of Knowledge, a new framework, the

Universal Perspective bubbles up. The Universal
Perspective captures the essence of business from

which the tree of knowledge grows. Within the

Universal Perspective hide simple rules that join

businesses—common rules, disguised. They are

used again and again in a million masks, each a

generalization that hides the substance within.

The Universal Perspective is where abstraction

and substance meet, and in that meeting, shadow

and substance transform themselves into the

knowledge machine, where logic, inference, and

information combine into one indistinguishable

whole at the beating heart of the machine. That,

however, must be the topic of a different book

([338] in Appendix III).

“There came a lady clad in grey
in the twilight shining:
one moment she would stand and stay,
her hair with flowers entwining,
He woke, as he had sprung from stone,
and broke the spell that bound him:
he clasped her fast, both flesh and bone,
and wrapped her shadow around him.
…when caverns yawn
and hidden things awake,
they dance together…till dawn
and a single shadow make.”
-from the Shadow Bride in The Adventures of

Tom Bombadil by J.R.R. Tolkien

REFERENCE

Mitra, A., & Gupta, A. (2005). Agile Systems
with Reusable Patterns of Business Knowledge.
Artech House.

ENDNOTES

1 Must a monitoring process end? States of

some objects could be continuously moni-

tored, over an infinite time horizon after
some business event triggers the process.

The triggering event may even be the cre-

ation of the object that must be monitored.

For example, consider radioactive decay:

the half life of an isotope is the time it takes

for one half of (the mass) of the isotope to

spontaneously change into another isotope or

chemical element. Thus, at the end of its half

life, one half of the original isotope is left; at

the end of two half lives, one quarter (½ x

½) is left; at the end of three half lives, one

eighth (½ x ½ x ½) is left; and so on. The

amount of the changing isotope left keeps

decreasing, but the process cannot consume

the entire quantity of the isotope in a finite
time. Thus, radioactive decay is a saga which

may trigger its own monitoring and also be

continuously monitored forever.
2 Information dissemination activities are

polymorphisms of the monitoring process

of Figure 10.1. The inquiry (monitoring)

process in Box 7.1 makes an object “aware”

of the state of another (or even the same)

object. Whether this is done by “asking,”

“sending,” or “publishing” are business

process automation issues. The inquiry pro-

cess in Figure 10.1 (and Box 7.1) belongs to

the business rules layer of the Architecture

of Knowledge (see Chapter III). “Asking,”

“sending,” “disseminating,” “publishing,”

and “broadcasting” information are poly-

332

The Whole Shebang: The Integrated Metamodel of Knowledge

morphisms that implement it in the infor-

mation logistics layer of the Architecture

of Knowledge. They address information

conveyance. However, if the scope of the

process—its meaning—goes beyond mere

communication of information and also

involves the creation of a document of some

kind, such as a newspaper, a magazine, a

Web page, or an electronic file, it ceases to
be an information inquiry process. It has a

physical work product—a document that it

creates or updates, and is therefore an update

process.
3 An interaction (relationship) between objects

may be a matter of chance in a stochastic

model. If there is no chance of an interaction,

the validity of the relationship is Nil. If the

interaction is certain, its validity is Total.
The involvement domain could become

ratio scaled in a nondeterministic model

if we measure the validity of involvement.

[337] (in Appendix III) discusses validity

in more detail.
4 Effects hook the metamodel to analytical

calculus and differential equations in math-

ematics: If we allowed continuous change,

changes in involvement would map to time

derivatives of various orders, which are

domains of growth.
5 [337] (in Appendix III) discussed domains

of growth in more detail.

333

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

APPENDIX I
SEMANTICS OF PATTERN

Object

May be pattern of 0 or more
[be part of 0 or more]

Figure I.1. An object may be a pattern of objects

The Pattern of relationship in Figure I.1 summarizes the semantics of Pattern, which we discussed briefly
in Chapter 4. Mitra and Gupta (2006) discuss the semantics of Pattern in detail. The following figures
convey the semantics of location, dimensionality, proximity, freedom, order, sequence, delimitation,

extent, and the other properties of Pattern that are discussed in Chapter 4.

Law of
Interaction

• Dimensionality of
state space

PATTERN
OBJECT INSTANCE

Constrains 0 or more
[constrained by 0 or more]

Object
Occurrence

Value

Exclude region of

CONSTRAIN

Incusion/
Exclusion
Partition

(C)

Set of
Object States
(State Space)

Object
State

Sets are
equal

Contains 0 or more
[contained in 0 or more]

(implied)

not delimited by

delimited by 1 or more

C2

C1

E1

E2

Include region of

Enumerates Occurrence of 1

[Occurrence enumerated by 1]

Enumerated in 1
[has 1 or more]

STATE SPACE
OF PATTERN

Subtype
(role) of

•Dimensionality
•Direction

Laws of absolute location

B4

Laws of
Separation

(B)

Location
Partition

(F)

F
1

B3

F
2

B1

B2

Law of
Interaction

of
0

or
m

or
e

[in
1]Set of 0 or more[in 1 or more] Subtype

of

•Order
•Degrees of Freedom

Law of
Interaction

Sequenced/
Unsequenced
Association

Partition
(A)

A1

A2

Pattern of
collocationKIND OF PATTERN

Subtype of

Located in 0 or more

[pattern of 1 or more]

2..*

held in 1 0r more
[holds 0 or more]

*

Aggregate of 2 or more
Aggregated by 0 or more

Arrays
Pattern in

Discrete Space

Pattern in
physical space

and time

Subtype of

KIN
D OF

PATTERN

Subtype of

Locate sequenced

43

Delimitation
Partition

(E)

2

1

• Dimensionality of pattern
• Direction(s) in pattern
• Aggregate Statistics about

location and separation of
components (e.g. variance
of separations)Subtype (role) of

Cannot
exceed

Dimensionality
(of pattern)

Dimensionality
(of state space)

Locate unsequenced

Figure I.2. Top: Semantics of partitions and subtypes of Pattern: The structure of the “Pattern of”
relationship

334

Appendix

Region
of State
Space

(Range) PATTERN DELIMITER
(BOUND)

Begin Delimiter

End Delimiter

Begin/End
Partition

Closed
Delimiter

Open
Delimiter

Subtype of

Closed/Open
Delimiter
Partition

Subtype of

Sequenced
Region
of State
Space

May be delimited by 0 or more
[delimit 1 or more]

(inherited)

Su
bt

yp
e

of

Su
bt

yp
e

of

Quantitatively
Scaled Region
of State Space

May be delimited by 0 or
more unsubstitutable
[delimit 1 or more]

(inherited)

May be delimited by 0 or
more unsubstitutable
[delimit 1 or more]

(inherited)

May be delimited by
0 or more

Subtype of

Sequenced/
Unsequenced

Delimiter
Partition

End Pattern Delimiter

Infinite Pattern

Finite Pattern

EXTENT
Partition

(D)

D1

D2

Sensed in 1 or more
[contain 1 or more]

Object

pattern of 0 or more
[be contained in 0 or more]

FORMATTING
DOMAIN

Visual
Domain

Audible
Domain

Olfactory
Domain

Tactile
Domain

Taste
Domain

FUNDAMENTAL FORMATTING DOMAINS
partition of
[partitioned by]

KIND OF
DELIMITER

KIND OF
DELIMITER

Open Delimited Pattern

KIND OF

PATTERNSequenced Delimited Pattern KIND OF
PATTERN

May be delimited by 0 or more
[delimit 1 or more]

(inherited)

Subtype of
(inherited)

•Dimensionality
•Direction

(inherited)
•Dimensionality

•Direction

(inherited)
•Dimensionality

•Direction

4

2

unsequenced pattern delimiter

Begin Pattern Delimiter

Sequenced
Pattern

Delimiter

3
1

Figure I.2. Bottom: Semantics of partitions and subtypes of Pattern: The structure of the “Pattern of”
reationship

Sequenced Pattern
(ordered list)

Unsequenced Pattern
(unordered list)

(Subtypes In Partition)

Partition of
[Partitioned into]

(A2)

Pattern of inclusion

Pattern of exclusion

INCLUSION / EXCLUSION
PARTITION

(C)

(Subtypes In Partition)

(C2)

(C1)

Object

Other Fundamental Attributes

•Dimensionality of pattern

•Dimensionality of State Space

•Degrees of freedom
•Order of the pattern.

(Subtypes In Partition)

Su
bt

yp
e

of

Sequenced Delimited Pattern

Su
bt

yp
e

of

Open Delimited Pattern

Pattern Delimiter

Sequenced Pattern Delimiter

BEGIN/END PARTITION

Unsequenced Pattern Delimiter
SEQUENCED/UNSEQUENCED DELIMITER PARTITION

Partition of
[Partitioned into]

Begin Pattern Delimiter

Partition of
[Partitioned into]

Delimited Pattern

Undelimited Pattern (E1)

Subtype of

Delimit 1 or more

[delimited by 1 or more]

End Pattern Delimiter

Delimit 1 or more
[delimited by 1 or more]

(inherited)

Subtype
of

Partition of
[Partitioned into]

Infinite Pattern

Finite Pattern

EXTENT
PARTITION

(D)

(Subtypes In Partition)

(D2)

(D1)

Label for directional
partition in State Space

(E2)

(A1)

SEQUENCED/UNSEQUENCED
ASSOCIATION PARTITION

(A)

Su
bt

yp
e

of

DELIMITATION PARTITION
(E)

Subtype of

May be pattern of 1 or more

[be part of in 0 or more]

1

4

3

2

Label for directional
partition in State Space5

May delimit 0 or more

[be delimited by 0 or more]

Figure I.3. Top: Metamodel of Pattern

Reproducted by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Resusable Knowledge, New
York, NY: Cambridge University Press, 2006. ©

335

Appendix

Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowl-

edge, New York, NY: Cambridge University Press, 2006.©

Figure I.3. Bottom: Metamodel of Pattern

Sequenced Pattern
(ordered list)

Pattern in Physical
Space and Time

Pattern of
collocation

Su
bt

yp
e

of

Unsequenced Pattern
(unordered list)

Patterns with no separation
in state space

(Subtypes In Partition)

(A2)

object

Time: 1 dimensional patterns
Physical Space: 1, 2 and 3 dimensional patterns

Physical Space-Time: 2, 3 and 4 dimensional patterns

Sequenced Delimited Pattern

Su
bt

yp
e

of

May delimit 0 or more
[be delimited by 0 or more]

LOCATION
PARTITION

(F)

(Subtypes In Partition)

Pattern of Separation
between States

Pattern of absolute
States

(F2)

(F1)

Pattern of Distinctions
between States

SEPARATION
PARTITION

(B)

(Subtypes In Partition)

(B1)

Pattern of Difference
Scaled Separation

Pattern of Ordinal
Separation

(B3)

(B2)

Su
bt

yp
e

of

(A1)

SEQUENCED/UNSEQUENCED
ASSOCIATION PARTITION

(A)

Partition of
[Partitioned into]

Patterns of Ratio Scaled
Separation(B4)

(For example, distances in physical space)

Su
bt

yp
e

of
1

4

3

2

Label for directional
partition in State Space 5

May be pattern of 1 or more
[be part of in 0 or more]

6

336

Appendix

The concepts of information, meaning, and measurability start with the semantics of Pattern. Do-

mains are based on the information content of patterns and encapsulate the concept of measurability,

from which the properties and behavior of temporal objects emerge.

Value Constraint
Proximity of a pair of

states cannot exceed the
summation of

proximities of states over
any trajectory that
connects the pair

constrain
[constrained by]

Measure of similarity between 2
[similarity may be measured by 0 or more]

Nominal
Proximity

Metric

Nominal
Proximity

Metric

Ordinal
Proximity

Metric

Ordinal
Proximity

Metric

Ratio
Scaled

Proximity
Metric

Ratio
Scaled

Proximity
Metric

Difference
Scaled

Proximity
Metric

Difference
Scaled

Proximity
Metric

Subtype of

STATE

Measure of similarity between 2
[similarity may be measured by 0 or more]

Measure of similarity between 2
[similarity may be measured by 0 or more]

Measure of similarity between 2
[similarity may be measured by 0 or more]

Subtype of

Subtype of

Proximity
Metric

Subtype
of

NOMINAL
STATE

ORDINAL
STATE

QUANTITATIVELY SCALED STATE
•Difference scaled state
•Ratio scaled state

Value Constraint
The proximity between a pair of

dissimilar states cannot be Nil or less

Value Constraint
The proximity of a state to

itself must be nil

Value Constraint
The proximity between a pair of states

must be the same in both directions

6

When we know items exist,
but have no idea of their
similarity, or even co-
location (identity)

Rules

Figure I.3. Continuation: Metamodel of Pattern
Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowl-

edge, New York, NY: Cambridge University Press, 2006.©

337

Appendix

Figure I.4. Top: Metamodel of Domain

Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowl-

edge, New York, NY: Cambridge University Press, 2006.©

Figure I.4. Bottom: Metamodel of Domain

Reproduced by permission from Mitra, A., & Gupta, A., Creating Agile Business Systems with Reusable Knowl-

edge, New York, NY: Cambridge University Press, 2006.©

Su
bt

yp
e

of

Subtype of

Su
bt

yp
e

of

NOMINAL
DOMAIN

ORDINAL
DOMAIN

DOMAINS WITH
LOWER BOUNDS Subtype of

Subtype of

class of 0 or more
[member of 1]

VALUE

DOMAIN
Join with 0 or more

[conjunction of 0 or more]

Subtract 2 values in 1

[add 1 value of corresponding]

Subtype of

Difference between 2 value in 1

BINARY DOMAIN
(Distinguishes only nil from

non-nil values)

NIL
VALUE

Subtype of

m
em

ber of 0 or m
ore

[contains 1]

VALUE
DIFFERENCE

DOMAINS

Subtype of

cartesian product of 0
or more

Subtype of

Subtype of

ORDINAL DOMAIN
WITH NIL VALUES

DIFFERENCE
SCALED DOMAIN

Subtype of

1
2

3

Su
bt

yp
e

of

Subtype of

Su
bt

yp
e

of

NOMINAL
DOMAIN

ORDINAL
DOMAIN

DOMAINS WITH
LOWER BOUNDS Subtype of

Subtype of

class of 0 or more
[member of 1]

VALUE

DOMAINDOMAINDOMAIN
Join with 0 or more

[conjunction of 0 or more]

Subtract 2 values in 1

[add 1 value of corresponding]

Subtype of

Difference between 2 value in 1

BINARY DOMAIN
(Distinguishes only nil from

non-nil values)

NIL
VALUE

Subtype of

m
em

ber of 0 or m
ore

[contains 1]

VALUE
DIFFERENCE

DOMAINS

Subtype of

cartesian product of 0
or more

Subtype of

Subtype of

ORDINAL DOMAIN
WITH NIL VALUES

DIFFERENCE
SCALED DOMAIN

Subtype of

1
2

3

ORDINAL
DOMAIN

WITH NIL
VALUES

RATIO
SCALED

DOMAIN

Subtype of Subtype of

DIFFERENCE
SCALED
DOMAIN

Junction of 1 or more

MASS LENGTH INFORMATION MONEY

Subtype of

PRIMARY DOMAIN PARTITION (DOMAINS THAT ARE CONJUNCTIONS OF NO, i.e., 0, DOMAINS)

- EXHAUSTIVITY OF PARTITION UNKNOWN -

PRIMARY
RATIO SCALED
DOMAIN

PRIMARY/SECONDARY DOMAIN PARTITION

SECONDARY
RATIO SCALED

DOMAIN

Subtract 2 values in
[add 1 value of]
(inherited by inclusion,
i.e., inclusion polym

orphic)

ENUMERATION

Subtype of

Subtype of

Subtract 2 values in 1

[add 1 value of corresponding]

DOMAIN OF
GAPS OF

SEQUENCE

DOMAIN OF
RATIO SCALED

GAPS

PREFERENCE DATE-TIMEELECTRIC

CHARGE

Subtype of
(inherited by inclusion,

i.e., inclusion polymorphic)

Su
bt

yp
e

of

TIME
DOMAIN

Subtype
of

Subtype of

Subtype
of

Subtype of

DOMAINDOMAINDOMAIN

Partition of
[partitioned by]

Partition of
[partitioned by]

Junction of 0

Join with 0 or more
[conjunction of 0 or more]

Partitioning criterion

Subtype of

Subtract 2 values in 1
[add 1 value of corresponding]

RELIABILITY
(RISK)

ACCURACYVALIDITYCOMPLETENESS
(EXHAUSTIVITY)

Subtype of

1

2

3

338

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

APPENDIX II
NOTES

The text in this appendix is based on portions of material from Agile Systems with Reusable Patterns
of Business Knowledge: A Component Based Approach, published by Artech House Press, Norwood,
Massachusetts, USA. The URLs provided in this book may have changed since it was written. Readers
may use the Wayback Machine at http://www.archive.org/index.php to locate the following publications.
Searches should go as far back as the year 2000.

A. Normalization

The process of removing redundancy in information is called Normalization. When normalized, each

unique item of information is stated only once. The benefit of dealing with normalized information is
that when information changes, it may be changed only once (at source) to effect the change wherever

that item is used. However, to optimize computer performance, information is often denormalized in

automated systems; that is, the same items of information are repeated redundantly. This, however,

comes at a cost—inflexibility under the pressure of change and new learning.
As a natural consequence of advances in database technology in the 1960s, Dr. E.F. Codd of IBM

proposed the first rules of data normalization in a research paper, “A Relational Model for Large Shared
Databanks” in 1970. The paper turned out to be a decisive definition of rules for removing redundancy
in data. Influenced by President Nixon’s attempts at normalizing relations with China, Dr. Codd called
the process “normalization.”

Modern relational databases consist of two-dimensional tables of columns and rows. These tables are

termed relations, hence the name “relational database.” The columns and rows are known as attributes

and tuples, respectively.

The process of normalization is incremental and can exist at several levels of completion. Redundan-

cies have to be removed in stages by decomposing relations into smaller, simpler tables.

1. First Normal Form: Breaking up rows so that they do not contain any repeating groups of data

brings it to the First Normal Form. For example, a row containing customer data with concatenated

customer information, such as name, address, and billing details, is not in the First Normal Form

because there will be several rows with the same customer name/address data, each associated

with different billing data. In order to bring it to First Normal Form, the name-address pair needs

to be placed in a separate table and the billing information in yet another table; both tables should

be referenced by the same unique identifier, such as a customer ID.
2. Second Normal Form: When all data are not only unique in each row (first normal form), but also

all of the attributes (columns) are dependent on the full primary key, then the data are supposed

to be in the Second Normal Form. By dependent, we mean that only by knowing the full primary

key, one can uniquely identify the value of each attribute. For example, if the primary key in a parts

order table is the vendor ID and order combined, we cannot identify an order by knowing only the

order ID or the vendor ID. All the data for that order are dependent on knowing both IDs (i.e., the

full primary key).

3. Third Normal Form: A table is said to be in Third Normal Form when each non-key column (at-

tribute) is unique, is dependent only on the primary key and nothing else, and is independent of

339

Appendix

other columns. For example, if state name and state abbreviation are both non-key columns in an

address table, the value of one column is dependent on the value in the other. Thus, only one of

them needs to be present in the address table; the other should be placed in a state table, in order

for the data to be in Third Normal Form.

4. Fourth Normal Form: A table is in Fourth Normal Form when there is at most one many-to-one

relationship in the table. If a vendor has many office locations and each location supplies certain
unique parts, then inputting the location and part information in a single vendor table would not

render it in Fourth Normal Form. The locations need to be in one table and parts (dependent on lo-

cation ID) in another table—thus ensuring one 1:M relationship in each table. The first table would
have many locations for one vendor. The second table would have many parts for one location.

5. Higher Normal Forms: There are more normal forms; they occur when an object has three or more

parents.

As a result of normalization, tables get broken up into many independent tables. A highly normalized

database is easy to maintain due to the nonredundancy of information. In real life, data are denormal-
ized to speed automated processing. If it is needed, denormalization should be controlled and tracked

by automation in order to facilitate impact analysis if changes are required, while simultaneously im-

proving computer efficiency.
Although Codd enunciated a well-defined set of rules for normalization, which have been further

developed over time, it should be noted that these refer only to data, not their business meaning. How-

ever, it is possible to store not only data but also business rules (knowledge) in a nonredundant fashion

such that change made at a single source automatically takes effect in corresponding business processes.

This series describes the concept in detail.

B. Messages Between Objects

Objects, in computer systems, interact with each other by passing messages between them. In real life,

objects can interact with each other without passing messages. The Process Algebras and Techniques

section in Appendix III describes concepts such as Petrinets, SPREM, and other formal techniques.

These techniques, which deal with sequencing and conditional branching, all implicitly or explicitly use

the concept of passing messages between objects. However a message is only one kind of interaction.

Interactions between objects may not involve the flow of time or the passing of messages, as we have
discussed in this book. They may be rules about how these objects are semantically related to each

other or about shared information. Interactions of this kind (as well as those that involve the flow of
time or messages) may also be considered objects. Recent experiments in physics have demonstrated it

is not just semantic concepts that relate to each other without message passing; physical objects can do

so too. The Aspect experiments at the end of the twentieth century demonstrated that physical objects

separated in physical space in the real world may also influence each other without physically passing
information or messages to each other. Refer to the “Aspect Experiments” performed by Philipp Grangier,

Alain Aspect, Jean Dalibard, and Gerard Roger at the Instut d’Optique Theoretique et Appliquee, Orsay,

France in 1981/1982 (these experiments are described for laymen in The Meaning of Quantum Theory
by Jim Baggot, published by Oxford University Press in 1992 and in The Conscious Universe by Menas

Kafatos and Robert Nadeau published by Springer-Verlag in 1990 on pages 9 and 71-72).

340

Appendix

C. Background: How the Concepts “Energy and Matter” Were Established

A Greek philosopher named Thales (638-548 B.C.) first developed the theory of matter. Centuries later,
Antione Lavosier defined the first law of the conservation of matter in 1777. For further information,
please visit http://www.nidlink.com/~jfromm/chem201/history.htm, http://atomhistory.homestead.

com/timeline.html, and http://www.nidlink.com/~jfromm/chem201/history.htm.

One hundred fifty years later, in the second half of the seventeenth century, the concept of energy
was first developed when Huygens stated that the “capability of a system to do work is called energy
which can be measured (in ergs). It possesses no mass, shape, size or inertia.” Julius Robert von Mayer

and James Joule independently discovered the universal law of conservation of energy in 1842 and

1843, respectively.

For detailed information, go to: http://zebu.uoregon.edu/~js/ast121/lectures/lec06.html, http://zebu.

uoregon.edu/~js/glossary/huygens.html, http://www.science.urich.edu/~rubin/pedagogy/132/132notes/

132notes_18.html, and http://www.nidlink.com/~jfromm/chem201/history.htm.

Just as Huygens formalized the existence of energy, Shannon produced a revolutionary paper on

information content. Shannon’s original paper, called “A Mathematical Theory of Communication” was

a watershed in information theory (see the note on Shannon’s theory).

D. How Physical Objects and Information Relate

We know that several physical objects can be applied to or governed by a single physical law. This law

is just an item of information. Many objects can express this law. For example, the mathematical calcu-

lation of gravitational force between two objects is a piece of information conveyed by each and every

pair of possible objects. The mathematical formula has information, which is as real as the matter that

constitutes the objects. Taking this further, one can say that it is the information content of objects that

allow us to sense them through our own senses or artificial sensors.

E. Location of Matter and Energy

In the book, matter and energy are presumed to be determined in absolute terms. Quantum principles

are not relevant to business situations. However, quantum theory demonstrates that not only are even

physical objects and energy stochastic rather than deterministic concepts, but so are space and time

themselves. They are all manifestations of information. For those who are interested in further reading

on the topic, several impressive books exist on quantum phenomena such as The Meaning of Quantum
Theory by Jim Baggot published by the Oxford University Press in 1992, The Nature of Space and Time
by Stephen Hawking and Roger Penrose (1996) published by Princeton University Press, and Quantum
Mechanics and Experience (1992) by David Albert published by Harvard University Press.

The only difference between physical objects and energy on one hand and pure information or

concepts on the other is that physical objects and phenomena are constrained to exist in one region of

physical space at a given moment in time to the exclusion of all other physical places. Information is

physically sensed or recorded in the physical world by physical objects or energy. As we have described

in this book, the same information may have multiple expressions in the physical world. Indeed, as we

have discussed in this book, pumping information into objects creates distinctions between them so

341

Appendix

that they acquire distinct identities in information space. This concept may also be extended to physical

space, which is merely one aspect of information space.

F. Measure of Information: Shannon’s Information Theory

Claude Shannon of Bell Laboratories, in his epic paper titled “A Mathematical Theory of Communica-

tion” (1948), created a new postulate using Statistics, Probability Theory, and Communication Theory.

He stated that both information and uncertainty are technicalities of choosing one or more items from

a set. Shannon provided the means to measure this information in a real system. His premise was that

the amount of information in a message or observation was directly correlated to the average amount of

“surprise” contained within. To use Shannon’s words, the postulate says that uncertainty is the average

“surprisal for the infinite string of symbols produced by a device.” In other words, the less the message
content, the more the information content in it. The unit of information content was called bit.

If a system possesses an identical probability of being in one of “M” possible states or if a message

has “M” equiprobable possible values, the amount of information in that system or message can be

expressed as:

Amount of Information = log
2
(M), where M denotes the number of possible states or values.

In situations where the chances of outcomes are uneven, the amount of information can be computed

by:

2
1

[()]
M

i i
i

H PLog P
=

= −∑

where H is the amount of information, and P
i
is the probability of the ith of M possible outcomes

A twentieth-century mathematician, A.N. Kolmogorov, showed that the amount of information con-

tained in ordinal, nominal, difference scaled and ratio domains increases in consonance with Shannon’s

measures.

For example, consider the quantum of information conveyed by the nominal domain “gender.” It is

equally possible that a person is a man or woman. Since there are only two possibilities (M=2 in the

formula), Shannon’s formula would yield:

Amount of Information = log
2
(2) = 1 bit of information

We can now compare this with the information content of a two-valued ordinal domain—say an

individual’s preferences for two types of activities—indoors and outdoors. In the following example,

all outcomes are deemed to be equally possible. The possibilities include:

The individual likes indoor activities more than outdoor activities;

The individual likes both of them equally;

The individual likes outdoor activities more than indoor activities.

There are three equally possible answers; therefore, Shannon’s formula states:

1.

2.

3.

342

Appendix

Amount of Information in the Domain = log
2
(3) = 1.585 bits of information

This is obviously more than the amount of information conveyed solely by gender. Since gender is

in a nominal domain, whereas activity preference is in an ordinal domain, we can say that the latter is

richer in information than the former. This is consistent with our model of knowledge.

The purpose of elaborating on Shannon’s theory is to show that his perspective on laws of data

compression and data transmission are consistent with our metamodel. Our focus is on normalizing

knowledge through discovery of its natural laws. Shannon’s law focuses on the quantum of information.

It says nothing about the structure of information or the meaning the information conveys. This is the

void that we address in this book and in the two companion books.

There are many remarkable publications on the subject of information theory. The Information
Theory Primer by Thomas D. Schneider, although geared towards molecular biologists, is an introduc-

tion that explains information theory very concisely to mathematically inclined readers. The publication

is located at http://www-lecb.ncifcrf.gov/~toms/paper/primer/latex/index.html. Lecture notes from A
Short Course in Information Theory, a set of eight lectures on information theory (January 1995) by

David J.C. MacKay of Cavendish Laboratory, Cambridge, Great Britain has links to Mr. Schnieder’s

primer as well as to other relevant publications. This publication can be found at http://wol.ra.phy.cam.

ac.uk/pub/mackay/info-theory/course.html. Advanced material can be found in the paper “Entropy and

Information Theory” (1990) by Robert Gray of Information Systems Laboratory, Stanford University

(publisher by Springer-Verlag); this publication can be found at http://ee.stanford.edu/~gray/it.pdf. In

“Fifty Years of Shannon Theory” by Sergio Verdu, Fellow, IEEE, published the details of Shannon’s

work and its extension by other researchers in IEEE Transactions on Information Theory, Volume 44,

No. 6, October 1998. Verdu describes how the theory is also applicable to diverse fields of knowledge
beyond data transmission and compression; this publication can be found at http://www.ehb.itu.edu.

tr/~devrim/shannon.pdf.

G. Mathematical Theory of Categories (or Types): Domains, Functions,
Groups, Functors, and Morphisms

In mathematics, a set of objects is a category and their related transformations (morphisms). They are

the building blocks of set theory. Saunders McLane, one of the creators of the Theory of Categories,

explains that categories are created to describe natural transformations. This theory forms the basis for

much of information systems, as well as for this book.

When applied on a successive basis, a total set of transformations will leave the original objects;

in addition, one will have a Group. (Items subject to transformation may constitute any number of

things—objects, numbers, rules, relationships, state spaces, attributes, or anything else.) Mathemati-

cally, a group is a category with one object in which all transformations (morphisms) are isomorphisms

(i.e., after all transformations occur the net change applied to the object is zero). For a more complete

definition of a group and other information, see:

Group: http://www.math.niu.edu/~beachy/abstract_algebra/study_guide/31.html

Isomorphism: http://www.math.niu.edu/~beachy/abstract_algebra/study_guide/34.html, or

Isomorphism from Wikipedia at http://www.wikipedia.com/wiki/isomorphism

343

Appendix

(“An isomorphism is a bijection from one set of a mathematical object to the set of another mathematical
object such that the structures defined upon these sets in these objects, such as orderings and opera-
tions, are preserved.”)

Order isomorphism from Wikipedia: http://www.wikipedia.com/wiki/order+isomorphism

(Useful for ordinally scaled values: An order isomorphism is an isomorphism between a pair of partially
ordered sets that preserves the order of elements in each set when the elements of one are mapped to
the other.)

Each group (of transformations) is characterized by mathematical rules that have no preference as

to what will be changed. A mathematical operator such as addition is easy to understand, as it does not

matter what is being added. As such, group theory can be applied to many types of objects and is very

helpful when an analysis of the laws governing sets and their relationships needs to be performed; it

is a powerful tool for deducting and analyzing the properties of metaobjects and constitutes a robust

theoretical foundation for the metamodel of knowledge.

For readers who are mathematically inclined, key concepts in category theory are as follows:

A category is a collection of objects and a collection of morphisms (shown as “arrows” below) such

that

Each morphism f has a “typing” on a pair of objects A, B written f:A→B. This is read 'f is a mor-
phism from A to B'., A is the “source” or “domain” of f and B is its “target” or “codomain”

There exists a partial function on morphisms called composition. A composition is shown with the

infix ring symbol, o as follows: A “composite” U o V : A→ C occurs when U:B→C and V:A→
B (this is the mathematical basis of process decomposition and traversal of relationships in object

models).

This composition is associative: h o (g o f) = (h o g) o f (this is the mathematical basis for transi-

tive relationships).

Each object A has an identity morphism id_A:A→A associated with it. This is the identity under
composition, shown by the equations id_B o f = f = f o id_A (this is the mathematical basis for
reflexive relationships).

At times, the composition ring is not included. A common, but not universal, mathematical convention

is to use uppercase letters for objects, lowercase letters for morphisms, and script font for categories,

which may also be considered mathematical variables.

Usually, the morphisms between two objects need not form a set (to avoid problems with Russell’s

paradox described at the end of this note). 2-morphisms are transformations between morphisms, 3-

morphisms are transformations between 2-morphisms, and so on to n-morphisms. N-categories are

the number of categories with n-morphisms. These types of morphisms serve as the foundation for

metarules such as sociopolitical laws.

Isomorphism: An isomorphism is a bijection (see bijection further on in this note) from one set of

objects to another, such that the structures defined on these sets of objects (like orderings and opera-

tions) are preserved, that is, fAÆB = fBÆA.

Homomorphism: A homomorphism (commonly referred to as a morphism) is a copy of an original

transformation.

1.

2.

3.

4.

344

Appendix

A domain of a function is the set of values for which a function is defined. A codomain is the set of

values consisting of all the possible results of a function. The codomain of a function f such that fD→
C is C. A function’s range (defined below) is a subset of its codomain.

Suggested additional reading: Items [166], [167], [168], [232], [233], [234], [235] , [308], and other

publications listed under “Set Theory” in Appendix III.

The range of a function is the class of values attained by applying the function to each element

within its domain. So, if f : X→ Y then the class g(X) = { g(x) | x in X } is the range of X under g. The
range is a subclass of C, the codomain. The image of a function is defined in the same way but usually
pertains to an individual member of the class of values.

Thus, for a class of values x and any function g(x), x is the domain and g(x) is the range, and the

mathematical expression g: X→ Y implies:
A function maps an object from one value in its domain to one and only one member in its range. It

is a special kind of relationship and a subtype of the more generic mathematical concept of a morphism.
A morphism is a transformation that can make one set equal to another. As such, a function can be

formally defined as:
If X and Y are sets where X is the domain and Y is the codomain, then a function g from X to Y,

normally written as a subset of X x Y such that:

For each x in X, there exists some a in A such that (x, a) is an element of the function g. It means

that the function is defined for every element of X.
For each x in X, a1 and a2 in a, if both (x, a1) and (x, a2) are elements of the function g then a1 =

a2; that is, the function is uniquely defined for every element of X.

Inverse of a Function:

For function, f : X→ Y, the function g : X→Y is a left inverse if for all y in X, g (f y) = y. g is a right
inverse if, for all x in X, f (g x) = x. g is called the inverse of f without the “right” or “left” qualification,
if both conditions are true. Only an injection (when no pair of different inputs will result in the same

output) has a left inverse (it cannot be a many-to-one relationship). Only a surjection (every member of

the codomain maps to a member of the function’s domain) has a right inverse. Only a bijection (there is

one and only one element of the domain that maps to one and only one element of the codomain) pos-

sesses an inverse. The mathematical convention is that f -1 denotes the inverse of a function f.

These mathematical axioms also serve as the basis of cardinality ratios and inverse relationships

between objects.

Consider a class of mappings between two objects, X and Y, of a category. A mathematical morphism
is an instance of the class.

Map is a function that yields a list. A Map uses its first argument as a parameter for each element
of its second argument (a list) to return the list of results.

Functors are generalizations of the “Map.” Classification may be thought of as using a special
mathematical operator on its arguments to create a “Type.” If we call the operator T, it returns a type

“list of T.” The difference with the map function is nondescript: Map takes a function and applies it to

each element of a list separately; however, it does not return a single item called List, which would be

a container of individual items. This container is the list and is the shared mathematical basis of ag-

gregations and relationships. A functor F is a mathematical operator. It operates on types. Functors are

1.

2.

345

Appendix

polymorphic operators on functions with the type:

 F : (x→y) → (F x→F y)

Ring:

A ring is a commutative group (R, E) and a binary operation that satisfies the following constraints
for all a, b, and c in R such that there exists a multiplicative identity or unity for all a in R:

a 1 = 1 a = a (This “unity” is a generalization of the number 1)

when:

a (b E c) = (a b) E c

a (b E c) = (a b) E (a c)

(a E b) c = (a c) E (b c)

Sometimes, the term “unitary ring” is used for these kinds of rings because they possess a multi-

plicative identity. The term “Ring” is then generalized to mean mathematical groups with or without

this kind of multiplicative identity.

A ring is a system that possesses a set R of elements and two binary operations. The first binary
operation is commutative, while the second is associative. The second operation distributes over the

first. (Also, see notes on commutative operators, associative operators, and distributive operators.)
In a commutative ring, the commutative law will hold true for both the associative and the com-

mutative operations. One example of a commutative ring is a set of real numbers.

Commutative Operators:

A binary operation combines two items. A binary operation is commutative if the of order of items being

operated on is irrelevant to its result. When adding two numbers, the order in which the numbers are

added does not matter. Therefore, we can conclude that addition is commutative. Certain operations,

however, such as subtraction and division are not commutative. The fact that 4 divided by 2 is 2, whereas

2 divided by 4 is 0.5, is an instance of the noncommutativity of the division operator.

Associative Operations:

An operation is associative when it combines three or more items, two at a time, and the initial pairing

of the items is irrelevant to the result. For example, addition is associative because (a+b)+c = a+(b+c).

Because (a÷b)÷c does not equal a÷(b÷c), division is not associative. It follows that the parentheses in-

dicating which quantities should be combined first are not needed when an operation is associative.

Distributive Operations:

Take an operation, “*” and another we will call “E.” * is called left distributive over E when

a * (b E c)=(a * b) E (a * c) for every possible value of a, b, and c.

346

Appendix

Similarly, right distributivity over E occurs when

(a * b) E c = (a E c) * (b E c) for every value of a, b, and c.

For instance, multiplication is left distributive over addition because a×(b+c) = (a×b) + (a×c).

Polymorphism:

Christopher Strachey first conceived of polymorphism in 1967. Hindley and Milner then developed and

extended it. Polymorphism is when context specific behavior is normalized by subtyping and general-
izing objects. These objects may also be relationships and interactions. For example, a word and a room

have length, but the exact meaning of length is ambiguous. It depends on whether we are discussing

the length of a word or the length of a room. As such, “word” and “room” can be seen as parameters of

length that fix its meaning by adding contextual information to the generic concept of length. Therefore,
the length of a word may be measured by the amount of letters in it, whereas the length of a room may

be any real number. This is also an example of subtyping by adding information (constraints), in which

the context constrains the meaning of length, pegging it down more precisely than in an “unknown”

context.

Polymorphism describes the shared behavior of objects and helps normalize the behavior common to different classes of

objects. Polymorphism may be categorized as follows (additional reading in [90], [91], and [239] of Appendix III). [91]

POLYMORPHISM

Universal
Polymorphism

Adhoc
Polymorphism

Parametric
Polymorphism

Inclusion
Polymorphism

Overloading
Polymorphism

Coercive
Polymorphism

Figure A. Kinds of polymorphism
Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Business Knowledge,

Norwood, MA: Artech House, Inc., 2005. ©

Universal, or “true” polymorphism: In this book, we are concerned mainly with Universal (true) polymorphism.

Universal polymorphism is a uniform type in which behavior has been generalized over an infinite number of types into
a common feature as follows:

Parametric polymorphism is when common behavior is generalized in abstract classes. Subtypes add information by

constraining these classes to provide more precise forms of the generalized behavior. For instance, movement is generic

behavior shared by all physical objects. A wheel rolls. Rolling is a more constrained and precise form of movement added

by a subtype called “wheel” of physical objects. Parametric polymorphism lends an ontology the power of inference.

Thus, the parameter “wheel” helps infer that the object will roll, whereas the parameter “frog” would infer that the object

moves by hopping. Parametric polymorphism also flows from domains and their interrelationships. For example, the age
of different kinds of objects such as individuals, documents, ideas, or buildings may be calculated by:

Box II.1. Kinds of polymorphism

347

Appendix

Infix Rings and Infix Notation:

When functions are placed between their operands, this designation is called “infix notation.” For
example, “1+2” is an instance of infix notation.
A function that is not defined for all possible values of its arguments is called a partial function.
For example, f(x) in the following equation is a partial function:

f(x) = 1/x if x ≠ 0.

A partial function on morphisms is called a composition. The infix ring symbol, o, stands for a
composition. A composition may be denoted by a symbol. Let us consider a composition Z= x o y. Z

is the “composite.”

Z: A→ C, if x: B→C and y: A→B.

Russell’s Paradox and the Axiom of Regularity:

Russel’s paradox pertains to set theory. It is a logical contradiction, first discovered by Bertrand Rus-

sell (1872-1970), a British mathematician. The contradiction can be stated as: If R is the set of all sets

which do not contain themselves, is it possible for R to contain itself? If R contains itself, it cannot do

•

•

Age= Current Time - Time of creation

Current time and time of creation may be considered parameters of the function called “Age.” This is why this kind

of polymorphism is qualified as Parametric.

Inclusion polymorphism is when subtypes inherit behavior. For example, a human may walk, which means both male

and female humans may walk.

Ad-hoc polymorphism is usually “unnatural” in that it is a construct that acts over a finite number of possibly unrelated
types. It usually flows from some kind of ad-hoc assignment of items to object classes as follows:

Overloading assigns the same syntax for behaviors of different types. For example, the symbol “+” may stand for

arithmetic addition of integers, the separate arithmetic additions of the real and imaginary parts of complex numbers or

concatenation of strings of symbols. Unlike parametric polymorphism, which will use the same procedure to derive the

behavior of every subtypes, overloading reuses the name of the function but, depending on the context, uses different

procedures to handle the different subtypes. Thus, the function name is really a homonym (two different meanings with

the same label) in this case.

Coercive polymorphism is when an object instance is arbitrarily declared to belong to a subtype (usually for computa-

tional convenience or efficiency. For example, symbols such as periods, commas, asterisks, and other “special characters”
in a computer system are assigned a sort sequence, even though, unlike numbers, they do not convey any magnitude or

sequencing information. Similarly, in a nominal domain, values may be arbitrarily assigned an order or magnitude. In an

ordinal domain, coercion happens when differences or ratios between values are arbitrarily assigned a magnitude or ratios

of values in any but ratio scaled domains are compared. It is also common in object-oriented programming: sometimes

programmers will use the same variables to refer to objects of different classes at run-time.

Box II.1. continued

348

Appendix

so because a set cannot contain itself, and if it does not, then by definition, it contains itself. This hap-

pens because sets may only have members of a single type (e.g., integers or sets of integers) and no type

is allowed to refer to itself so no set can contain itself. This principle is called the Axiom of Regularity
of the Axiom of Foundation. The formal assertion is that for every set S, there is an element in it that

is disjointed from S. As such, no set can belong to itself. The concept of mathematical classes resolves

this contradiction because classes may refer to themselves.

H. Natural Zeros for Temperature and Time (Date)

Although a natural zero was established for temperature and more recently for time/date by cosmologists,

this concept does not apply to the metamodel for business rules. We are only concerned with the fact that

there are domains of information that convey information on differences or gaps between objects but do

not have any information on ratios, which makes them difference scaled rather than ratio scaled.

Those interested in further reading on the natural zero in the date domain may refer to almost any

article on modern cosmology. The following publications have a more narrative, as opposed to a math-

ematical, approach to the issue:

A Brief History of Time by Stephen Hawking published by Bantam Books

The Whole Shebang by Timothy Ferris, published by Simon & Schuster

The Elegant Universe by Brian Greene, published by W. W. Norton and Co

The Nature of Space and Time by Stephen Hawking and Roger Penrose, published by Princeton

University Press

The Inflationary Universe by Alan H. Guth, published by Addison-Wesley Publishing Co. Inc.

Principles of Physical Cosmology by P. J. E. Peebles, published by Princeton University Press

Before the Beginning by Martin Rees, published by Addison-Wesley

The first three of these books also explain the natural zero of temperature in their glossaries.
(Also see the note on the flow of time as an emergent property of information in this appendix.)

I. Positivism

Positivism postulates that concepts exist only as “quantities” that can be observed. This concept is di-

vergent from our focus in this book, which is to develop a metamodel that will facilitate normalization

of knowledge—a very real and tangible outcome for information systems.

J. Definition of the State Machine and How It Relates to Service Oriented Archi-
tecture

A state machine may be described mathematically as a 6-tuple: its inputs, outputs, and internal states

are as follows:

Let

I be the set of input events

•
•
•
•

•
•
•

349

Appendix

O be the set of output events

S be the set of internal states

f be the function that maps I and S to O, such that the outputs will result from inputs to the system

in internal state S, (i.e., O= f (I x S)). f is called the transfer function or transform of the black box that

describes the state machine.

g be the function that maps I and Scurrent
 to S

next
, S

next
 being the internal state of the system after it

has received inputs I in its current state S
current

, (i.e., S
next

= g (I x S
current

). Note that in the nomenclature

of knowledge this book, g is the set of effects of events in set I that changes the state of an object).

S
0
 be the set of possible initial states (it follows that S

0 ∩ S).

The state machine is then described by:

State Machine = (I, O, S, f, g, S
0
)

The cardinality of S could be infinite (i.e., the set S may have an infinite number of members). When
S is finite, the 6-tuple is called a finite state machine, also known as finite state automata.

Configurations of finite state automata, composed of parts that do not change their internal states
are less prone to chaos when its parts or configurations are changed. The concept of assembling busi-
ness processes by coupling such “services” is a cornerstone of service oriented architecture and reuse

of services. These services may be shown as a 3-tuple:

Service = (I, O, f)

Services are then said to be “loosely coupled” because they have no information on the internal states

of other services (the 6-tuple represents “tight” coupling between components).

Services interface with each other through a published “contract,” which determines what outputs,

in what formats and precision the service will return in exchange for inputs provided in the “contracted”

format and precision. This kind of architecture can facilitate concepts like “business on demand,” in

which services mutually “call” on each other via a messaging network (usually the Web), as they are

needed (on demand). Thus, an accounting service (system) may choose which of several possible cur-

rency exchange services it will use at run time when it finds the need to convert foreign exchange.
These services may have been made available on the Web by different foreign exchange brokers, and

the accounting service may “fail-over” to another vendor if its preferred service is down.

Although loose coupling facilitates and simplifies service reuse, loose coupling does not guarantee
reusability. Identifying reusable components is a major issue in the current state of the art in Service

Oriented Architecture (SOA). This book and its companions in the series develop the models and pat-

terns that assist in identifying reusable services. We do this by identifying the ontology of concepts

from which deterministic knowledge is configured.

K. The Question of Gender

Gender is a complex domain, rich with meaning. It is much richer than many of us may think and pro-

vides a good example of how behavior and systems can flex and adapt in step with new learning. The
following excerpts and references show how the meaning of gender expands and flexes in step with our

350

Appendix

biological knowledge of living species. The other books in this series use these examples to show how

knowledge may be refactored. As an exercise, readers of this book may use the following to construct

examples of how processes and scopes of systems may shift as the simple biparental concept of gender

gives way to more complex constraints:

General discussion on gender (from http://pages.ripco.net/~barbarian/archive_08NOV00.html).

Living creatures may be male, female, or hermaphrodite. Hermaphrodites may be of two kinds: those

that can procreate by mating with themselves and those that must procreate by mating with another

individual of its species. Do we count hermaphrodites as a single gender or are there two hermaphrodite

genders? Some sea creatures exhibit more complex genders: There are a number of species that have

“intersexual” genders. Intersexual animals have both male and female organs without being hermaph-

roditic. There are also many transsexual species: individuals of transsexual species change their gender

in the normal course of their life. Most changes are just variations on the male/female theme, but some

are not. For example, the striped parrot fish has five genders derived from biological sex, genetic origin,
and “color phase”: (1) genetic female, born female—each of these fish will become male and change
color; (2) transsexual male, born female. These individuals become male before they assume their

terminal-phase color; (3) terminal-phase transsexual males, born female. These fish become male and
change color at the same time; (4) genetic male, born male. Most of these individuals change color but

do not change gender; (5) terminal-phase genetic male, born male. They start as males, change color,

but not gender, while they are still young.

Thus, the concept of gender can be fluid and may depend on the criteria we use to differentiate be-

tween genders. Here are more examples:

Earthworm Gender (based on Nick Musurka’s Earthworm Web Page http://members.aol.com/camu-

surca/earthworms/reproduc.htm):

Earthworms are hermaphroditic, meaning that each worm carries male and female sex organs. Dur-

ing mating, the worm produces tubes from its skin in which sperm is released and carried, and several

eggs are released as well. Fertilization itself actually takes place inside of the capsule.

Fish gender (by Aaron Rice, Department of Biology, Davidson College, North Carolina, USA at

http://www.bio.davidson.edu/Courses/anphys/1999/Rice/Rice.htm):

Most reef fish are characterized by sex change during the course of their life. Only a small part of
the population stay the same sex their entire lives (gonochoristic). Some fish will change sex only once,
while others will switch sex multiple times, and some even have both sexes at the same time.

The University of Michigan, Museum of Zoology, Animal Diversity Web article by Erin Wayman

at http://animaldiversity.ummz.umich.edu/accounts/cirrhilabrus/c._exquisitus$narrative.html

The Exquisite Wrasse is a particular type of reef fish, in which only female fish can change its sex.
When the female changes her sex, her appearance also changes into that of a male.

Plant Gender (an article by Rachel Clark, August 1, 2000, at http://www.earthsky.com/2000/es000801.

html):

351

Appendix

Almost all flowering plants have both male and female parts; some rely on animal pollination while
others are self reliant. An interesting flowering plant, however, is known as Zuckia brandegei. Each half
of the plant will open up with either the male or female parts and then, a few weeks later, they switch.

Species with a single gender (from Lizards Without Dads by Maryalice Yakutchik, Copyright ©

2000):

The New Mexico whiptail is a half a foot long lizard with the ability to clone itself naturally. There-

fore, a female can bear genetically duplicated offspring without a male counterpart.

Discovery Communications Inc at http://www.discovery.com/exp/lizards/wodads.html

Recently, it was discovered that Komodo dragons can sometimes, but not usually, also reproduce

in the same way.

L. The Bunge-Wand-Weber Model

Developed between 1990-1996, the Bunge-Wand-Weber model (BWW model) was based on a rigorous

mathematical foundation in an effort to unify both natural and abstract reality (similar to the Theory

of Categories). The BWW model has essentially been developed and can be used as an instrument for

analyzing the redundancy, accuracy, and completeness of information systems methodologies.

The BWW model can check completeness and redundancies (called overspecification) in methodolo-

gies (see item [12]—Roseman & Green, 2000—in Appendix III for BWW ontological constructs) in

order to characterize the behavior of information systems. The intent of this note is to give readers an

understanding of the core concepts of BWW based on [21] in Appendix III (Opdahl, 1998).

According to this model, the real world is comprised of things. Things have properties (which are also

things). Some properties may be shared by multiple things. These shared properties denote relationships

between these things. A system is a composite thing. Composite things are comprised of component

things, and may in turn be a part of a still larger system. The properties of a composite thing may be

either hereditary or emergent. A hereditary property belongs to a component thing, whereas an emergent

property does not. It is a property of the composite thing. A set of things with the same set of properties

form a class. Things, properties, systems, and classes are the metaconstructs of the BWW model. Things
and associated properties are the fundamental metaconstructs of the BWW model, whereas classes and

systems are derived from these fundamental metaconstructs. (The BWW model asserts that these derived

concepts be derived only from its fundamental metaconstructs and nothing else.) These concepts of the

BWW model support static structures. “State,” “Transformation,” and “Stable state” support dynamic

behavior. The BWW model asks that real world systems should be represented as completely and validly

as possible. It also stipulates that problem analysis methods should support exploration of relations, both

within and between each of these metaconstructs in as systematic a way as possible.

M. Multiperspective Modeling and Facet Modeling

(This discussion is based on research in item [15] in Appendix III)

Every experienced analyst knows of the trials, tribulations, friction, and professional disagreements of

modeling information in “the correct fashion.” Projects are known to have stalled because of differences

in professional opinions of “the correct model,” given the same requirements. This happens because

each stakeholder brings a slightly different perspective to the problem. Stakeholders possess different

352

Appendix

experiences, training, and beliefs that shape their perspectives of the problem domain. The underlying

assumption of multiperspective modeling is that a problem analyses endeavor should involve several

stakeholders who bring different perspectives of the problem and the associated business processes.

By applying the BWW model, we can see that perspectives, made up of things and properties, are

limited by the set of things and properties that a stakeholder is aware of. A perspective can therefore

be seen as an abstraction of the problem domain. The BWW model defines a class as a set of things
that holds a particular set of properties, and a perspective summarizes only a component of properties

of each thing; therefore, the same thing may belong to different classes when viewed from different

perspectives. Mutual properties correspond to interrelationships between things. Therefore, differ-

ent perspectives of the same things will correspond to dissimilar dependencies between these things.

A methodology is considered to be incomplete (i.e., there exists a construct deficit in BWW terms) unless it possesses
at least one construct for each and every BWW ontology construct.

The clarity of the methodology (in BWW terms) is calculated by a review of the following three criteria:

Construct Overload: If there exists more than one way to specify a BWW ontological construct, then the meth-

odology is said to be affected by construct overload, an ultimate detraction from clarity.

Construct Redundancy: If more than one methodology construct specifies the same BWW ontological construct,
then the methodology is said to be affected by construct redundancy, another detraction from clarity.

Construct Excess: If there exist constructs that fail to map to BWW ontological constructs, then the methodol-

ogy is said to be affected by construct excess, yet another detraction from clarity.

BWW Model Constructs are cataloged in the following figure (for additional reading on the BWW model, see Ap-

pendix III for a detailed explanation of each one):

THING PROPERTY

Particular General Intrinsic MutualEmergent Hereditary Attributes

CLASS
KIND

(is-a relationship)

STATE

CONCIEVABLE
STATE SPACE

STATE LAW

LAWFUL
STATE SPACE

EVENT PROCESS

CONCIEVABLE
EVENT SPACE

HISTORY

LAWFUL
EVENT SPACE

TRANSFORMATION

LAWFUL
TRANSFORMATION

COUPLING
(binding mutual property)

SYSTEM
SYSTEM

COMPOSITION

SYSTEM
STRUCTURE

SUBSYSTEM

SYSTEM
ENVIRONMENT

SYSTEM
DECOMPOSITION

LEVEL
STRUCTURE

External
Event

Internal
Event

Stable
State

Unstable
State

Well
Defined
Event

Poorly
Defined
Event

ACTS ON

Figure A. Bunge-Wand-Weber constructs
Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Business Knowledge,

Norwood, MA: Artech House, Inc., 2005. ©

•

•

•

•

•

Box II.2. BWW model test criteria

353

Appendix

Hence, when viewed from different perspectives, the problem domain will appear as different systems

of things, classes, and properties.

As observers, we constitute a part of the reality that we look at. We can, therefore, not regard ob-

servation of reality as distinct from the reality that is being observed. From the facet modeling point

of view, perspective and conception hold just as much weight as things and properties in the problem

domain. Does this mean that we have to be limited by perspective? Individuals perceive the world partly

from their own unique point of view, partly from widely held generalizations implicit to the world of

business, and partly from values that are imposed by the physical world. Due to the existence and ap-

plicability of these widely shared ideas, it is possible to define universal business classes as has been
done in Part II of this book.

Four metaconstructs emerge as essential to multiple perspectives modeling:

Things: This is the elementary unit of the BWW model. The real world is comprised of things. A

composite thing may be comprised of other things.

Properties: Things possess properties. Properties can be either intrinsic, mutual (shared in rela-

tionships), emergent (i.e., emerge when things are assembled), or hereditary (i.e., acquired through

inheritance).

Conceptions: Conceptions emerge when things are perceived from a specific perspective. Concep-

tions are based on a subset of the properties of the underlying thing.

Perspectives: Perspectives are the views of stakeholders of the particular problem domain in a

given context at a particular moment in time. A perspective comprises of a set of conceptions with

properties and class definitions.

Object-oriented methods do not explicitly recognize perspectives as being fundamental metaobjects

and rarely support explicit methodological steps to represent them; however, facet modeling does sup-

port multiple perspectives.

Facet modeling views the problem domain as consisting of phenomena (i.e., “things” in the BWW

model), properties, aspects (i.e., “conceptions” in the BWW model), and perspectives, as follows:

Items represent phenomena. Items are durable categories, instances, and aggregations, but not events

since events are not durable.

Facets of items represent various aspects of phenomena.

Primitive subfacets represent various properties of aspects. Properties are perceived only from an

aspect; hence they belong to the aspect and not directly to the item. Sometimes the same property

may emerge from two or more aspects. This is the key to reuse across aspects.

Perspectives are views abstracted from the facet model.

N. Generalizing Concept of Distance: Metric Spaces and Metrics

The distance between objects in the physical world can be grasped intuitively. The physical concept of

distance is specified in terms of the difference between two objects in terms of their positions in physical
space. Distance can also be generalized to measure how different or similar two objects are in terms of

other properties as well. This mathematically generalized distance leads to the concept of a metric (see

[266] and [309] in Appendix III). A metric is calibrated in terms of similarities of positions in metric

1.

2.

3.

4.

1.

2.

3.

4.

354

Appendix

space (see items [265] and [266] in Appendix III). Physical space is three-dimensional. It is the space

we physically occupy and is only one of several kinds of possible of metric spaces. We measure physical

distance along a straight line. This is only one type of metric. State space exemplifies a whole different
kind of metric space and may have different metrics. Mathematically, metrics and metric spaces are

defined in the following manner where the function “m” possesses the characteristics of distance:
A metric on the set U is a real-valued function m on U x U that satisfies all of the following condi-

tions (item [305] in Appendix III):

Positivity: m(u,u) = 0 but m(u, v) > 0, if u is distinct from v (common sense dictates that no separation

must exist between identical positions because they are at the same location and a finite distance
must exist between distinct places).

Symmetry: m(u, v) = m(v, u). In other words, the metric (distance) between a pair of locations is the

same, regardless of the member of the pair used to measure from.

The triangle inequality: m(u, v) possesses the maximum value denoted by m(u,v) + m(w, v) for every

w. “The direct metric,” that is, the distance between a pair of locations, cannot exceed the metric

(length of the path) via a third point. The direct metric is an analog of the length of a straight line

in physical space.

In mathematical terms, a metric space is a set U with a metric defined on it. The metric space is a
discrete metric space when the attributes of an object are nominally scaled as follows (item [267] in

Appendix III:

A discrete metric, M, is:

M(u, u) = 0, and

M(u, v) = 1, if u is not equal to v

The discrete metric can only specify whether or not there is a difference in state between objects,

but not the magnitude of the difference.

Pseudometric spaces are spaces in which m(u, v) = 0 for some u, v pairs, even if u and v are dif-

ferent. This is the basis of the concept of mutability between components. In this book, if a knowledge

component replaces another in an aggregate, the aggregate is considered to have changed state. Thus, in

our metamodel of knowledge, state spaces are metric, not pseudometric spaces. However, the Principle

of Parsimony in our book and the ontology we describe makes subclasses mutable with superclasses.

This is because objects (components) become mutually distinct in step with added information. Conse-

quently, as we ascend ontological levels, one loses information and distinctions fade away. This is how

mutability is derived in our model, even though the state space of knowledge is described by a metric,

not pseudometric, space.

Semimetric spaces are those that do not satisfy the triangle inequality; that is, the direct metric be-

tween two points cannot be more than the metric via a third point. This may occur, for instance, when

the cycle time of a business process making a direct state transition is more than the sum of cycle times

of processes that pass through various intermediate states. For instance, a process of shipping packages

via a direct route could be more expensive than routing it via several intermediary points.

Readers interested in more information about different kinds of spaces should read the section on

Spaces and their Properties in Appendix III. [266] in Appendix III has succinct definitions of various

1.

2.

3.

355

Appendix

kinds of spaces. [268] and [269] in Appendix III provide mathematical descriptions of the generaliza-

tion of the concept of distance.

Hilbert Spaces are a type of metric space are used for modeling state spaces of stochastic systems

(while this book focuses on discrete deterministic systems). They are difficult to visualize as analogs
of the two dimensional planes, three-dimensional spaces, or even higher dimensional state spaces.

Each axis of a Hilbert space is a complex number so that information can be arranged in Hilbert space.

This means that the probability of a given state is represented by each coordinate, which is a complex

number (unlike the spaces we have discussed thus far, where each coordinate is a real number, rank, or

category). A Hilbert space is capable of having infinite dimensions. Each dimension of Hilbert space
connotes a state of potential existence of the system. Objects in an undetermined state are said to exist

in a convoluted pattern of a Hilbert space that is infinitely dimensional. These objects have incompletely
defined potentialities. All possible states, even mutually exclusive states, coexist and add up provided they
are not observed. (Observation turns unknowns to known values and changes the state of the system).

Each object can then possess its own Hilbert space. When many objects interact, or for an aggregate

object, the Hilbert space is the product of all the individual Hilbert spaces of their components. In this

labyrinthine notion, components lose their identity and may be thought of as being in all possible states

at all possible times but with differing probabilities.

Since the metamodel in this book addresses only deterministic discrete systems, Hilbert spaces

would only be of interest if the metamodel is extended to include stochastic behavior, which is inherent

in the uncertainty of information in the real world.

Although in our metamodel querying the state of a system will not change its state, such systems do

occur in real life. For example, productivity increased in several factories when workers came to know

that their productivity was going to be measured. This fact alone can cause improvements. However,

such effects are difficult to calibrate. Accordingly, we ignore Hilbert spaces in this book. Individuals
interested in more information may refer to Appendix III. In Appendix III, [266] has succinct defini-
tions of various kinds of spaces, whereas [268] and [269] have mathematical descriptions of how the

concept of distance can be generalized. [283], [284], [285], [286] in Appendix III provide additional

reading on Hilbert spaces.

O. Kinds of Inheritance

Bertrand Meyer, the creator of the object oriented language Eiffel and the president of ISE first described
this scheme. Meyer took imperfection of modeling, programming and knowledge into account while

building this scheme. Remember that polymorphism (described in the note on the Mathematical Theory

of Categories) is also an inheritance mechanism. The inheritances in Meyer’s taxonomy emerge natu-

rally from the Metamodel of Knowledge. The metamodel unifies these concepts rendering extraneous
distinctions unnecessary:

356

Appendix

INHERITANCE

Model
Inheritance

Variation
Inheritance

Subtype
Inheritance

View
Inheritance

Functional
Variation

Inheritance

Type
Variation

Inheritance

Software
Inheritance

Reification
Inheritance

Facility
Inheritance

Restriction
Inheritance

Extension
Inheritance

Unaffecting
Inheritance

Structure
Inheritance

Implementation
Inheritance

Constant
Inheritance

Machine
Inheritance

(Applies to) (Applies to)

Figure II.1. Kinds of inheritance
Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Busi-

ness Knowledge, Norwood, MA: Artech House, Inc., 2005. ©

Model Inheritance: When one object is related to another with an is-a relationship.

Software Inheritance: Inheritance used to express pure software issues, rather than external “real

world” issues. This book focuses on business knowledge components and software inheritance is not

in scope.

Variation Inheritance: When an object class is described by identifying their differences from

another object class and may apply to either model or software inheritance.

Model Inheritance: Model inheritance describes the following kinds of inheritance and unifies
them under one ontology:

Subtype Inheritance: When mutually exclusive subtypes inherit the behavior of a class of objects.

Subtypes must exist in the state space of their supertypes and hence share their attributes and ef-

fects. The mutual exclusivity, which leads to the concept of partitions as metaobject in our model

of knowledge, is derived by adding a constraint that members are mutually exclusive between

subtypes.

Extension Inheritance: When a subtype adds features. These features may be attributes, relation-

ships, and effects. Thus, the state space of the subtype extends of the state space of the supertype

into additional dimensions. This is why it is called “extension” inheritance. The subtype will inherit

properties of the supertype, which are the dimensions of state space that the subtype shares with

its supertype.

View Inheritance: This happens when the constraint that prohibits an object instance for being a

member of two or more subtypes is omitted. Then the object instance may simultaneously exist in

two or more subtypes, which will be subtypes in different partitions. The object will then “inherit”

the properties it shares with its supertype and will also have special properties and restrictions,

which is the information that the subtype adds to its members.

Restriction Inheritance: Constraints add information. Thus, restricting the state space of an object

class may create subclasses. This may involve constraining values of attributes or behavior. Restric-

tions on behavior are typically called “guard conditions” in UML. When restricting the state space

of an object in this way creates the subclass, the state space of the subclass carves out a region inside
the state space of the superclass. This region is shared between the subclass and superclass and is

the information they share in information space.

•

•

•

•

357

Appendix

Variation Inheritance: Reuse of knowledge implies that we gather common components and add
to them, rather than modify or override them. A variation created by excluding or overriding some

properties implies that a reusable component with common properties might have been overlooked or

redundancies created. From a practical point of view, as Meyer points out, it might be expedient, even if

not theoretically perfect. For example, it might be expedient to assume that deserts have sand and then

declare exceptions for specific ice deserts. This may also be addressed by assigning different default
values to different subtypes as described in other books in this series.

Unaffecting Inheritance: Unaffecting Inheritance excludes specific features of the parent object(s);
asserting that those features of the parent do not exist in the subtype. Excluding behavior is the

same as declaring one or more features “null,” that is, “meaningless” (as opposed to “unknown.”

In this, the Entity relationship diagramming technique commonly used for modeling is ambiguous.

There is no clear convention about whether not mentioning a feature of an object implies that it can-

not exist or if its existence is unknown). This is a constraint that asserts that something cannot be.

Constraints are information added, and thus this basis for creating a subtype is valid and conforms

to the principle of subtyping by adding information.

Thus, implied constraints on these subtypes may be more restrictive than those on the supertype.

A subtype may not violate the constraints it inherited from the supertype but may be denied some

state transitions in order to keep it within the restrictions in its state space (this is one way of auto-

mating inference). Unaffecting inheritance and exclusion partitions can be convenient constructs

for normalizing knowledge under these conditions.

Meyer calls these implied constraints Restriction Inheritance. Restriction and unaffecting inheri-

tance converge in our model of knowledge (see item [338] in Appendix III).

Type Variation Inheritance: When one or more states (of an object) require definition of additional
behavior(s). For example, athletic persons have lower resting pulse rates than the average person it

requires definition of pulse rate to describe this type of person. It boils down to applying extensional
inheritance in a restricted region of the state space of an object.

Functional Variation Inheritance: When the subclass overrules some behavior(s) of the super-

class. It boils down to combining “unaffecting” with Extension inheritance. The comments related

to “unaffecting” Inheritance apply here as well. For example, nonflying birds such as ostriches
override the flying behavior of the superclass, birds.

Software Inheritance:

Facility Inheritance: When the supertype is an arbitrary collection of properties that other object

classes may inherit from. These supertypes might be some composition of real world objects, tai-

lored to optimize performance on specific software platforms, or perhaps the business model just
did not do due diligence and designers find reusable facets on the fly and decide to use them in the
interests of expediency. Reusable properties should naturally flow from the object classes in Part II
and the metamodel of knowledge:

Constant Inheritance: When subtypes inherit attributes from the supertype.

Machine Inheritance: When subtypes inherit effects from the supertype.

•

•

•

•

•

•

358

Appendix

Reification Inheritance: “Reification” means making an abstract concept into a material thing. It
is the actual structure that implements a concept. For example, Entity-Relationship of data models

in relational databases use Reification Inheritance.
Structure Inheritance: When subtypes inherit mathematical properties like addition, subtraction,

and the like. Thus, they apply to domains that inherit properties because they are subtypes of other

domains. For example, the set of integers is naturally ratio scaled because it inherits properties from

ratio scaled domains.

Implementation Inheritance: This deals with implementation of concepts in software. Software

objects inherit properties from concepts and implement them in software with Implementation

Inheritance.

P. Lungfish

While it is a common belief that all fish are aquatic, it is less well known that some fish are amphibious.
These facts were used in this series of books to construct examples of how new learning can reshape

concepts and how models and computer systems must flex to accept new knowledge. Readers may use
the following details to examine how systems based on the assumption that fish are always aquatic ani-
mals might automatically adapt to the fact that a class of fish, called Lungfish, are amphibious. Between
345-395 million years ago, most of the world was inhabited by lungfish. Today, only six known species
of lungfish exist. All lungfish possess gills, for breathing water, and lungs, for breathing air. They live
in swamps and small rivers in South America, West and South Africa, and Australia. When the water

dries up, African and South American lungfish burrow into soft mud and breathe through their mouths.
The African lungfish can survive up to four years outside water, while the Australian lungfish can be
up to seven feet long and weigh over 100 pounds. This fish can also walk on dry land on its fins. For
more information, see http://www.oregonzoo.org/cards/Rainforest/lungfish.african.htm or http://home.

enitel.no/haraldseide/.

Q. Refactoring

When it is first written, object-oriented software is usually not reusable. Systems designers experience
problems when they attempt to reuse code written for one application in another. Reusable software

slowly emerges after several modifications have been made, keeping reuse in mind, of course. This
evolution may involve writing of new code or modification of existing code. Behavior must be pre-

served as code is added or modified in order to let existing applications continue to use the new code.
Behavior-preserving manipulations that alter the design of such reusable code are called refactoring.
The process is also termed “refactoring,” however, it does not change behavior. Instead, refactoring
redistributes and then reorganizes behavior among components of a system. If performed correctly, this

can enhance the reusability of components, and the modification can become more simplified depend-

ing on the reusability of the components, even though reusable components emerge through a trial and

error basis. This process helps to keep software well structured, even under the pressure of change.

Changes follow typical patterns. Effects, relationships, attributes, and constraints are transferred from

one class to another. Classes may be split into smaller components or subclasses, so that one part can

be altered independently of another. At times, classes are generalized into a common superclass, fol-

lowed by moving common functionality up into the new superclass. To date, refactoring is performed

•

•

•

359

Appendix

manually, making it time-consuming, resource intensive, and prone to errors. This laborious process

allows reusable components to emerge in a slow and incremental fashion. The intent of the patterns and

metamodel is to diminish the incidence of errors to provide guidance and template that could help to

diminish the side effects of modifying code between design iterations and to enable refactoring to be

performed with greater speed and reliability. Automated refactoring tools, like refactory, can greatly

assist in this endeavor.

See Chapter 2 of [329] in Appendix III for further details on refactoring and when to use this ap-

proach. The University of Illinois has a research project on developing automated techniques to facilitate

refactoring: details are available at http://cbl.leeds.ac.uk/nikos/tex2html/examples/concepts/node9.html

and at http://losser.st-lab.cs.uu.nl/~visser/cgi-bin/twiki/view/Transform/SmalltalkRefactory or http://st-

www.cs.uiuc.edu/users/brant/Refactory/.

R. How Attributes Emerge from Domains

An attribute might be thought of as an overlap (set intersection) between the domain it is from, which

is a class of values with shared meaning, measurability, and constraints, and a temporal object, with

specific properties. Each distinct intersection of the object with a domain provides a distinct attribute
of the object. Sometimes the same object and domain may have several distinct intersections. Each will

be an attribute that maps to the same domain. For example, a sugar cube is an object with length, width,

and height. Each is an attribute that maps to the length domain. Thus, the sugar cube has three distinct

intersections with the length domain.

In general, each axis of an object’s state space is an intersection of the object with an abstract domain:

an irreducible fact that a distinct property exists.

S. Lambda Calculus

Lambda Calculus, denoted as λ−calculus and developed by Alonzo Church in the 1930s, provides a
mathematical system for specifying relationships between functions, expressions, and values. Each is

considered to be a type of a mathematical object that exists on its own merit. Relationships between

these objects are expressed in terms of λ−expressions.
In λ−calculus functions, values and λ−expressions can constitute arguments of λ−expressions. At

the time when λ−expressions are evaluated, results can be λ−expressions, functions, or values. Further,
expressions can operate on other expressions or be defined in terms of other expressions and objects,
much like a string of beads that is used to form longer strings and even a necklace.

Based on the above, λ−calculus can serve as a theoretical foundation for the metamodel of knowl-
edge, especially for generalizing and abstracting concepts related to meaning and expression. Since

business rules, constraints, relationships, and objects are inherently equivalent in character, one can use

λ−calculus to express all of these parameters as arguments of λ−expressions. Readers may refer to the
publications listed in Appendix III. Automation implements λ−calculus using Functional Programming
techniques. (See the note on functional programming.)

Germane within λ−calculus are the Church-Rosser theorem and the Normal Form (of λ−expressions);
these deal with the issue of equivalence of λ−expressions. The fact that the same meaning may be ex-

pressed in different forms is a concept that is related to our metamodel of meaning. Readers can refer

to the note on the Church-Rosser theorem and relevant publications in Appendix III.

360

Appendix

T. Church-Rosser Theorem and Normal Forms

The Church-Rosser theorem, discovered by Alonzo Church and J. Barkley Rosser, proves that a Rule

Meaning possesses no more than one normal form and that this normal form is the value of a λ-expres-

sion if it exists. The Church-Rosser theorem further asserts that all equivalent rule expressions can be

reduced to the same single normal form (see items [240], [241], [242], [250] in Appendix III).

Two strategies exist for reducing rule expressions to their normal forms. Applicative Order Reduction

is similar to the “bottom-up” approach in systems analysis; while it is less computing resource intensive,

it is not always successful in locating the normal form even when one exists. Normal Order Reduction,

on the other hand, is a “top down” approach that uses more computing resources but is guaranteed to

find the normal form if it exists. Unfortunately, not all lambda expressions have normal forms, and
reduction algorithms may cycle endlessly when this happens (see λ−calculus in Lambda calculus, n.d.;
A Brief description and history, n.d.; Larson, 1996; Entscheidungsproblem, n.d.).

U. Gluing Objects Together

Operators configure components by gluing objects together to create new meanings. The theory of
categories and Rings provides the mathematical basis for this (see the note on the theory of categories).

Relationships flow from the concept of the generalized (generic) operator. The generic operator has
different subtypes. In this note, we will describe the subtypes that are key to configuring knowledge
from its components. It is worth noting that symmetry is based on commutative operators, whereas

asymmetry is based on noncommutative operators (see the note on commutativity).

One subtype of the generalized operator is similar to arithmetic addition (indeed, arithmetic addition

is a polymorphism of this operator when ratio scaled values are involved). For brevity, we will denote

this operator with the symbol “&.” A configuration, “C,” of objects “A” and “B” is created by joining
two objects, “A” and “B” with the operator “&” as follows:

C = A&B

We can further postulate an object “null” in our system, such that joining this object to another with

“&” will not add information, and therefore will not create a new meaning. Symbolically, we show this

as follows:

B = null & B

We may also postulate that “&” is commutative, that is, A&B is the same as B&A. This means re-

gardless of the sequence in which the objects joined by “&,” it will result in the same composite object

“C.” Imagine that “C” is a box. Only the contents of the “box” give the box its properties; the order in

which items are arranged inside the box does not matter. In terms of knowledge, the order of arrange-

ment does not exist because A&B cannot be distinguished from B&A.

Similarly, we could postulate a commutative operator, , which generalizes arithmetic multiplica-

tion and has the property:

null B = null

361

Appendix

Existence dependency between objects is the based on this operator. For example, an attribute can-

not not exist if its value is null.

Some junctions between objects are not commutative (in this book, we have described why noncom-

mutative operators are polymorphism of commutative operators). Let be a noncommutative operator.

Then, unlike the arithmetic plus operator A B will not equal B A (provided B and A are not equal);

that is, the order in which two objects (or object classes) are joined will yield different and distinct objects

(or object classes) with different properties. For instance, arithmetic division is an example of a noncom-

mutative operator because swapping the divisor with the dividend results in a different quotient.

Operators join two or more propositions into a compound proposition. Therefore, operators are called

connectives. Connectives are also objects. Connectives may be monadic. Monadic operators operate

on one object at a time. Negation is an example of a monadic operator. Operators may also be dyadic.

Dyadic operators operate on two objects at a time. Triadic operators operate on three objects at a time.

In general, operators may be “p-adic” connectives that glue “p” objects together at a time. (Based on

the principle of subtyping by adding information, the generic p-adic operator may be considered a

polymorphism of the generic (p-1)-adic operator; an object that is not an operator, and does not depend

on another for its existence may be considered a “zero-adic” operator.)

V. Functional Programming

Functional programming is related to λ−calculus. Unlike algorithmic languages, which contain assign-

ment statements, iterative loops, and variables, functional programming focuses on the computation of

functions that may contain values, rule expressions, and mathematical functions in the form of arguments

and return functions. Higher-order functions are capable of taking functions as arguments and return

functions as results. Functional programming relies on recursion. Typically, a functional programming

call to a function, with itself as its argument, can be computed without multiple calls.

Examples of functional programming languages are Haskell, Scheme, ML, and LISP. Haskell is an

area of active research. Please visit http://www.haskell.org/ for further details.

W. Dimensions of Color

Colorimetrics is the science of measuring color. The physical identity of color is based on the wave-

length of light and its intensity as a function of this wavelength. The subjective sensation of color, on

the other hand, is extremely difficult to quantify. Maxwell’s Color Triangle theory gives us one of the
systems for classifying color and describes the subjective sensation of color using three dimensions:

Hue, Saturation, and Brightness.

Brightness is described as the “luminosity” of a color—a sensation that correlates with the intensity

of light it reflects back to the eye compared to a white object similar to it. The Hue of a color correlates
with its position in the electromagnetic spectrum and specifies the kind of color in terms of primary
colors—red, blue, and green, up to two at a time. Maxwell’s Color triangle specifies mixtures of all
three primary colors and conveys information on hue, as well as the “richness” or saturation:

362

Appendix

BLUE RED

GREEN WHITE

magenta

cyan yellow

Figure II.2. Maxwell’s Color Triangle
Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Business

Knowledge, Norwood, MA: Artech House, Inc., 2005. ©

Colors at the periphery of Maxwell’s Triangle are fully saturated and do not become “paler” with any

shade of white. Colors at the three corners of the triangle are the three “pure” fully saturated, primary

colors—red, blue, and green. In the middle, it is an equal mixture of all three primary colors, that is,

pure white. Along its edges are fully saturated mixtures of two colors.

Item [324] in Appendix III provides further reading on colorimetry and Maxwell’s Triangle. (See

Chamberlin & Chamberlin, 1980 in Appendix III.)

X. Number Systems and Radix

Multiple numbering systems exist—binary, octal, decimal, and even hexadecimal. The decimal system

is our normal numbering system, composed of 10 digits, 0 through 9. The system is based on powers

of 10; it uses 10 different numeric digits, hence its base, or radix, is said to be 10.

Within the binary system, there exist only two digits, 0 and 1. The base or radix is therefore 2. In

the binary system, the number 10 is equal to 2 in our decimal system, 11 is 3, 100 is 4, 101 is 5, and so

on.

The Octal system uses eight digits and, therefore, starting from 0, its count becomes 0, 1, 2, 3, 4, 5,

6, 7, 10, 11, 12…

The hexadecimal system utilizes 16 digits, six more than the decimal system. The extra digits beyond

9 are A, B, C, D, and F. As such, numbers starting from 0 are: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (same as 10

in the decimal system), B (same as 11 in the decimal system), C (same as 12), D (same as 13), E (same

as 14), F (same as 15). Then we wrap around to 10 (same as 16 in the decimal system), 11 (same as 17

in the decimal system), and so on. We come to 1A, the same as 24 in the decimal system, and continue

from there.

A number system may be based on any radix. The binary system is useful in computer technology

when dealing with hardware and has found its way into software via that route. The Octal and hexa-

decimal systems condense the binary format since they are even multiples and exponents of the binary

system.

363

Appendix

Y. Ordered Sets and Sequences

A well ordered set of symbols possesses a lower bound. A ranking scheme that commences with the

lowest height of a human is an example of a well ordered set. The chapter numbers of a book is another

example of a well ordered set. When there is no lower bound, but members of the set must still follow

a sequence, we have a totally ordered set. Consider the set of integers. If we allow both negative and

positive integers in our set, it will be an unbounded set of integers that are naturally sequenced from

lower to higher magnitudes. This is an example of a totally ordered set. The only requirement for this

type of set is that one must be able to position every member of the set in a sequence. Mapping ordinal
values to a totally ordered set of numbers suffices to convey the relevant information. Naturally, all well

ordered sets are also totally ordered, although the inverse is not necessarily true. Thus, well ordered

sets are a subclass of totally ordered sets.

Z. Pi-Calculus

Robin Milner developed Pi-calculus in the late 1980s as a formal language for the simulation and the

analysis of complex interacting processes. It is a formal mathematical language that describes multiple

concurrent processes that interact with each other. The feature called “mobility” caters to a network of

interdependent events that can dynamically reconfigure the topology in step with interactions between
events. Pi-calculus includes syntax to specify the behavior and interactions between processes. It con-

tains a set of “laws of congruence” to determine the equivalence of syntactically different expressions

and “reduction rules” to determine the timing and nature of the interaction in terms of a collection of

states, an initial state, a set of transitions that describe a starting state, an action and a post-action state,

and a set of accepting states.

Pi-calculus can deal with both deterministic and nondeterministic interactions. Apart from issues

of timing, state transitions, and guard conditions, pi-calculus can cater to the location and the migra-

tion of processes from one place to another. The concept of Place in pi-calculus is an extension of the

concept of a purely geographical place (as described in this book and its companions). Further reading

on pi-calculus is provided in Appendix III, items [75], [76], and [77].

AA. Petrinets

Petrinets are named after Carl Petri, the creator of this technique for graphically modeling processes.

Processes are represented in a linked network of interdependent processes. Predecessor processes pass

“tokens” to successor processes, through connections called “arcs,” which enable the execution of these

successors. The successor processes commence only after their predecessors have provided all required

tokens.

Thus, a Petrinet can be visualized as a network like that in Figure II.3. Each node is an event, and

each connection between them is a succession relationship (the arc). Places at the ends of each arc hold

incoming and outgoing tokens. (Think of the area within a node in Figure II.3 as a “place.”) A process

starts by consuming its tokens, only after all requisite tokens are received. (The input and output car-

dinality of the arc determines how many tokens are added and removed from the places it connects.)

Some kinds of arcs may convey tokens to stop state transitions. Transient latency (time-out) of a process

is represented by allowing places to hold a token for a limited time.

364

Appendix

Place
(with 2 tokens)

Place
(with two tokens)

Empty Place

Immediate
transition

Delayed transition
(Deterministic)

Input arc
multiplicity (i.e., cardinality) = 2

2

i.e., this transition has occurred twice,
and the successor will now occur.
When the successor occurs, it will

empty this place.

i.e., this transition requires two tokens
from each arc in order to occur (fire).

2

A token will be
placed here after
the predecessor

transition fires. It
will enable the

firing of the
successor transition

Token

Output
arc

Figure II.3. An example of a Petrinet
Reproduced by permission from Mitra, A., & Gupta, A., Agile Systems with Reusable Patterns of Business

Knowledge, Norwood, MA: Artech House, Inc., 2005. ©

In “color” Petrinets, tokens are associated with data, which may be related to guard conditions,

time delays, and complex rules about triggering events. [69], [70], [71], [72], [74], and [78] in Appendix

III provide further reading on Petrinets. Section 2.5 of [72] in Appendix III has an especially succinct

description of various features and extensions of the technique.

AB. The Law of Minimal Specification and the Principle of Parsimony

The law of minimal specification is a version of Occam’s Razor, conceived by philosopher William of
Ockham (1284-1347), stating that only the minimum assumptions needed, and no more, should be made

when developing a model or theory (sometimes called the Principle of Parsimony).

This implies the omission of concepts, properties, features, and other constructs that are not truly

needed to model or explain a phenomenon. This strategy simplifies the model and reduces the risk of
inconsistencies, ambiguities, and redundancies within or outside the model. In terms of the ontology

of information, Occam’s Razor suggests generalization to the maximum extent possible, provided one

does not generalize essential patterns away. (Essential patterns were discussed in Chapter IV.) It thus

maximizes the mutability of resources and products, making a process or a model more resilient under

the pressures of change.

The Principle of Parsimony is very important for universal models, such as those in this series

because their domains are complex. Without the Principle of Parsimony, the chances of arriving at a

manageable model are slim.

The English translation of Occam’s words, “Pluralitas non est ponenda sine necessitas,” is “Plural-

ity should not be posited without necessity”—in other words, “Keep it simple.” Simplicity has various

365

Appendix

interpretations in different situations. In this book, we have interpreted it as generalizing patterns,

concepts, and models, without compromising the essential pattern of information or behavior. These

comprise the Essential Features of the model.

Aristotle’s version of the Principle of Parsimony is “Entities must not be multiplied beyond what

is necessary.” Although Occam and Aristotle’s principles predate us by three millennia, they are still

useful to us today in formulating and utilizing the models in this series. It can also assist in guarding

against analysis paralysis, which is arguably the biggest risk many complex projects face. This is why

we call it “The Law of Minimal Specification.”

AC. The Nature of Time

The flow of time is universal. In this book, we have also seen how Time is a fundamental component
from which the meaning of “Process” is derived. Can we derive the meaning of Time from other more

fundamental components? We speculate here that we can. Consider the difference that time makes to

the information content of a temporal object as it flows from the past to the future (see Figure 4.5).
As the object progresses through time, it progressively acquires larger and larger amounts of history,

which is nothing but information on past states of the object. Thus, it gains information and may be

considered a subtype, or polymorphism, of its past identities. We have discussed in this book how the

subtyping relationship emerges from the concept of location, which emerged from the concept of refer-

ence (when one object refers to another. Location is a polymorphism of this concept). If we add enough

information to the subtyping relationship between objects to make it a dense, ordinal composition, the

composite object will be time like. It will become a dense, sequenced domain, in which a value further

on in the sequence will have information about all values prior to it but no information about its succes-

sor values. Moreover, because the class is dense, these values will be in a continuum. This implies that

it will always be possible to find an intermediate value between every pair possible of values of time
regardless of how close they are to each other. (Ordinal and dense domains were described under the

ontology of domains in Chapter IV.) If we consider a stochastic, as opposed to a purely deterministic

model, it will imply that values may have probabilistic information about successor values—a kind of

“leakage” of information about future states. The further the future, the more the uncertainty, and the

less the leakage will be (see soft information in Box 4.4).

Thus, we can speculate that the time domain may be configured as an aggregate object that consists
of a dense, sequenced aggregation of the subtyping relationship and that the flow of time will be its
emergent property. Seen thus, it can be deduced that the time domain must have a natural nil value

when there is insufficient information to distinguish between objects as in the “all value” we discussed
in Chapter IV. Similarly, we can speculate that the distinction between object instances is merely a

result of the class acquiring enough information to enable distinctions between instances (see Chapter

IX). It implies that if we track back in time to the point when there is no information, it will not be pos-

sible to distinguish between instances, or even classes, of objects, and this will be the natural nil value

of the time domain. Since information content cannot take negative values, the Time domain will be a

well ordered class, with a lower bound at nil information, or the “All” value. Moreover, the ontology in

Chapter IV also implies that the time domain will lose the characteristics of a continuum and become

discrete and even nominal as we approach this imputed nil value of time, and the ability to distinguish

between distinct objects and instances in time will also increasingly become grainy and stochastic.

366

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

APPENDIX III
SUGGESTED READING

(The URLs provided in this book may have changed since it was written; readers may use the Wayback
Machine at http://www.archive.org/index.php to locate the following publications. Searches should go
as far back as the year 2000.)

PAPERS

Intelligent Agents

Mark Nissen, Professor BA248D, Naval Postgraduate School, Monterey, CA (http://web.nps.navy.

mil/~menissen/) in Telecommunications and Distributed Processing: Intelligent Agents: A Technol-

ogy and Business Application Analysis, Nov. 30, 1995

Shen, W., and Norrie, D.H. of Division of Manufacturing Engineering, The University of Calgary

in Knowledge and Information Systems, an International Journal, 1(2), 129-156, 1999: Agent-Based

Systems for Intelligent Manufacturing: A State-of-the-Art Survey at http://imsg.enme.ucalgary.

ca/publication/abm.htm

Cetus Team: Distributed Objects & Components: Mobile Agents, 2001/03/17, Copyright © 1996-

2000 at http://www.cetus-links.org/oo_mobile_agents.html

Business Process (Re)engineering and E-commerce

4. B. de Vries, J.P. van Leeuwen, H. H. Achten of Eindhoven University of Technology, The Nether-

lands: Design Studio of the Future (1997) at http://www.ds.arch.tue.nl/Research/publications/bauke/

CIBW78_97.htm (Describes structures of Physical Object, Feature, Activity, and application of
virtual reality to engineering design)

5. Craig Standing, School of Management Information Systems, Edith Cowan University, Joonda-

lup, Western Australia: Managing and Developing Internet Commerce Systems with ICDM ©

1999 at http://www.vuw.ac.nz/acis99/Papers/PaperStanding-048.pdf (Perspective of the full BPR
process—Strategic planning through process design and rollout. Focuses on differences between
business processes in a traditional vs. collaborative e-commerce environment)

6. William J. Kettinger, James T. C. Teng, and Subashish Guha in Business Process Change: A

Study of Methodologies, Techniques, and Tools, Appendices 4 and 5, in MISQ Archivist, March

1997 (Alphabetical list of major Business Process Reengineering Techniques and tools with brief

descriptions) at http://129.252.51.247/bpr/aa-4.htm (you may have to access the paper from the

MISQ Archivist site at http://www.misq.org/archivist/home.html)

7. Activity Based Costing and Management from QPR software at http://www.qpronline.com/abc/

activity_based_intro.html (you may have to go there via http://www.qpronline.com)

8. The (U.S.) Department of Defense, 12/15/94: Framework for Managing Process Improvement

9. Ellen Gottesdiener, President, EBG Consulting, Inc: OO Methodologies: Process & Product Pat-

terns © EBG Consulting, Inc., SIGS Publications. (All Rights Reserved) published in Component

Strategies November, 1998 Vol. 1, No. 5 at http://www.ebgconsulting.com/OOmethodsArticleCS-

mag.html

1.

2.

3.

367

Appendix

10. Wilfred van der Vegte, Assistant Professor, Delft University of Technology presented at EDIProd

Conference, October 14, 2000, Dychow, Poland: Reflections on artifact related process modeling
at http://www.ediprod.uz.zgora.pl/files/ediprod2000.html, http://dutoce.io.tudelft.nl/%7Ewilfred/

WFvdVegte-EDIProd2000.htm, http://www.sdpsnet.org/journals/vol6-2/vegte1.pdf, http://dutoce.

io.tudelft.nl/~wilfred/ (Summary and assessment of different Process Modeling techniques and a
process classification scheme)

Ontologies and Component Reuse Projects

11. Jose Vasconcelos, Department of Computer Science, University of York, UK and Multimedia Re-

source Center, University of Fernando Pessoa, Portugal, Chris Kimble, Department of Computer

Science, University of York, UK, Feliz Gouveia, Multimedia Resource Center, University of Fer-

nando Pessoa, Portugal, Daniel Kudenko, Department of Computer Science, University of York,

UK: A Group Memory System for Corporate Knowledge Management: An Ontological Approach,

September 2000 at http://www-users.cs.york.ac.uk/~kimble/ research/ECKM-2000-paper.pdf

12. Peter Green of Department of Commerce, University of Queensland, Australia and Michael Rose-

man of School of Information Systems, Queensland Institute of Technology, Australia: Ontological

Analysis of Integrated Process Modeling: Some Initial Insights: a paper presented in the Proceed-

ings of the Australian Conference on Information Systems (ACIS 2000), Brisbane, Australia, 6-8

December 2000 (Evaluates ARIS against BWW criteria)

13. Michael Rosemann of Queensland University of Technology, School of Information Systems and

Peter Green of University of Queensland, Department of Commerce in the Proceedings of the

Information Systems Foundations Workshop on Ontology, Semiotics and Practice 1999: Enhancing

the Process of Ontological Analysis—The “Who cares” Dimension at http://www.comp.mq.edu.

au/isf99/Rosemann.htm (A discussion of the BWW model applied to facets and Information Sys-

tems Analysis and Design) (Knowledge Reuse Algebras and Test Beds for Techniques)

14. C N G (Kit). Dampney and M. S. J. Johnson, Department of Computing, Macquarie University in

Proceedings of the Information Systems Foundations Workshop: Ontology, Semiotics and Practice

1999: An Information Theory Formalization and the BWW Ontology at http://www.comp.mq.edu.

au/isf99/DampneyJohnson.htm (Bunge Wand Weber (BWW) Framework - Rigorous algebra for

testing the completeness of techniques/ontologies regarding Business Rule expression)

15. Andreas L. Opdahl and Brian Henderson-Sellers of School of Computing Sciences, University

of Technology, Sydney in Proceedings of the Information Systems Foundations Workshop Ontol-

ogy, Semiotics and Practice 1999: “Evaluating and Improving OO Modeling Languages Using

the BWW-Model” at http://www.comp.mq.edu.au/isf99/Opdahl.htm (Bunge Wand Weber (BWW)

Framework - Rigorous algebra for testing the completeness of techniques/ontologies regarding

Business Rule expression)

16. Glynn Winskel and Mogels Nielsen, Computer Science Department, Aarhus University, Denmark:

Categories in Concurrency (1997). See abstract at http://www.brics.dk/upd/EP/97/WN_CC/EP-97-
WN_CC.bib, https://booktrade.cambridge.org/catalogue.asp?isbn=0521580579 (A comprehensive

process algebra based on Category Theory and Functors)

17. David Rowe, John Leaney, Computer Systems Engineering, School of Electrical Engineer-

ing, University of Technology, Sydney: Evaluating Evolvability of Computer Based Systems

Architectures: An Ontological Approach in IEEE International Conference on Engineering of

368

Appendix

Computer-Based Systems (ECBS workshop 1997) at http://csdl2.computer.org/persagen/DLAb-

sToc.jsp?resourcePath=/dl/proceedings/&toc=comp/proceedings/ecbs/1997/7889/00/7889toc.

xml&DOI=10.1109/ECBS.1997.581903 (Applies BWW to systems evolution trajectories and

Architecture)

18. John Mylopoulos, University of Toronto in Information Systems 23 (3-4), June 1998: Information

Modeling in the Time of Revolution (Compares various well known reuse, Modeling and Knowl-

edge Representation algebras)

19. Julieanne van Zyl and Dan Corbett, School of Computer and Information Science, University of

South Australia: Framework for Comparing Methods for Using or Reusing Multiple Ontologies

in an Application, a paper presenred in the proceedings of the 8th International Conference on

Conceptual Structures, Darmstadt, Germany. August, 2000. (Also lists and compares several major

Ontology and Reuse projects/frameworks)

20. Urban Nulden, Department of Informatics, Göteborg University, Sweden: The Why, What, and

How of Reuse in Software Developmentat the 20th Information Systems Research Seminar in

1997 at Scandinavia, Hankø, Norway at http://staff.cs.utu.fi/IRIS/y/1997.htm (Translates the set-

theoretic BWW framework to a more easily understood metamodel and compares various modeling

algebras in terms of BWW criteria. Also evaluates the BWW framework itself.)

21. Andreas L. Opdahl, Department of Information Science, University of Bergen: A Comparison

of Four Families of Multi-Perspective Problem Analysis Methods (1998) (Analyzes the nature of

multiple perspectives in BWW ontology for information systems and identifies principal differ-
ences between structured analysis, object-oriented analysis, faceted analysis, and viewpoints-based

analysis)

22. Yair Wand, Management Information Systems, Faculty of Commerce and Business Administration,

The University of British Columbia, Canada, and Richard Y. Wang, Sloan School of Management,

Massachusetts Institute of Technology, Cambridge, MA Business: Anchoring Data Quality Dimen-

sions in Ontological Foundations (1994) at http://web.mit.edu/tdqm/www/papers/94/94-03.html

(Analyzes various modeling techniques in terms of their ability to satisfy information quality

requirements)

23. Andreas L. Opdahl, Associate Professor, Department of Information Science, University of Bergen:

Towards A Faceted Modeling Language (1997) in Proceedings of the Fifth European Conference

on Information Systems 353-366, Cork Publishing Ltd, Cork (ISBN 1-86076-953-5)

24. National Committee for Information Technology Standards, Technical Committee H7: Object

Model Features Matrix (document number X3H7-93-007v12b, May 25, 1997) at http://www.objs.

com/x3h7/omfm12b.doc (Describes the Object Management Group core metamodel and compares

it with various other metamodels and standards, such as Eiffel and CORBA. Information about

Technical Committee H7 may be found at http://www.objs.com/x3h7/h7home.htm) (Knowledge
Reuse Projects)

25. John Kingston AIAI, University of Edinburgh: Merging Top Level Ontologies for Scientific Knowl-
edge Management (ref EDI-INF-RR-0171) in Proceedings of the AAAI Workshop on Ontologies

and the Semantic Web, AAAI-02 Conference, Edmonton, Canada, 29 July 2002 at http://www.inf.

ed.ac.uk/publications/report/0171.html (Lists, describes, and compares various major Knowledge

Reuse and Ontology projects)

26. List of some key Domain Specific and Cross Industry Software Component Reuse Projects with
links to each at http://marexpo.balport.com/Project-Navigator/project_navigator.htm and http://

marexpo.balport.com/Project-Navigator/matrix12.htm

369

Appendix

27. Peter Clark of Boeing: Some Ongoing KBS/Ontology Projects and Groups compiled at http://www.

cs.utexas.edu/users/mfkb/related.html

28. Institut für Angewandte Informatik und Formale Beschreibungsverfahren links to worldwide

Ontology and Knowledge use projects and researchers at http://www.aifb.uni-karlsruhe.de/ or

http://www.aifb.uni-karlsruhe.de/Projekte/

29. COMMET & KREST Knowledge Reusability and Configurability Projects at http://arti.vub.

ac.be/www/krest/information/commet-krest.html

30. TOVE (TOronto Virtual Enterprise) Knowledge Reuse project (as of 18, Feb 2002) at http://www.

eil.utoronto.ca/comsen.html

31. TOVE ontologies at http://www.eil.utoronto.ca/tove/toveont.html

32. KACTUS Reusable Knowledge Modeling (1995) at http://www.swi.psy.uva.nl/projects/ Kactus

33. Wielinga, Schreiber and others. Project 8145 (The project partners were Cap Gemini Innova-

tion (Jan. 94–Sep. 95), Integral Solutions Limited (Sep. 95–Sep. 96), CAP Programator, DELOS

S.p.A, FINCANTIERI, IBERDROLA, LABEIN, Lloyd’s Register, RPK Universität Karlsruhe,

STATOIL, SINTEF Automatic Control, University of Amsterdam: KACTUS ESPRIT): Model-

ing Knowledge About Complex Technical Systems for Multiple Use: Several papers at http://hcs.

science.uva.nl/projects/Kactus/Papers.html

34. PROJECTXML™, (Year: 2000) by Project.Net San Diego, CA. The firm’s Web site is http://www.

project.net/scripts/SaISAPI.dll/website/products/ProjectXML.jsp

35. The One World Information System (OWIS) General Enterprise Management (GEM), Engineer-

ing, and Improvement Framework at http://one-world-is.com/rer/owis/emeif.htm

36. Rational Corporation: Rational Requirements Framework: Net Market Edition (Year: 2000)

37. Simon Cox of Dublin Core Metadata Initiative: DCMI Box Encoding Scheme: specification of the
spatial limits of a place and methods for encoding this in a text string (Date Issued: 2000-07-28)

at http://dublincore.org/documents/2000/07/28/dcmi-box/

38. Simon Cox of Dublin Core Metadata Initiative: DCMI Period Encoding Scheme: specification of
the limits of a time interval and methods for encoding this in a text string (Date Issued: 2000-07-

28) at http://dublincore.org/documents/2000/07/28/dcmi-period/

39. Simon Cox of Dublin Core Metadata Initiative: DCMI Point Encoding Scheme: a point location in

space, and methods for encoding this in a text string (Date Issued: 2000-07-28) at http://dublincore.

org/documents/2000/07/28/dcmi-point/

40. Tim Menzies, Department of Artificial Intelligence, University of New South Wales: KBS Meth-

odologies: KADS and Others in a technical report in 1995 (TR95-28, Department of Software

Development, Monash University)

41. KADS: A development methodology for knowledge-based systems at http://www.mdx.ac.uk/www/

ai/samples/ke/53-kads.htm

42. Philippe Martin, University of Adelaide (Australia) - Computer Sciences Department: KADS top-

level ontology of concept types and relations types at http://meganesia.int.gu.edu.au/~phmartin/

WebKB/kb/topLevelOntology.html, http://meganesia.int.gu.edu.au/~phmartin/WebKB/interface/

hierarchyBrowser.html?objectKind=concept+type&top=Thing&relation=Subtype&minDepth=0

&openNodes=Entity+Situation+Spatial_entity+Information_entity, http://meganesia.int.gu.edu.

au/~phmartin/WebKB/interface/hierarchyBrowser.html?objectKind=relation+type&top=Binar

yRel&relation=Subtype&minDepth=0&openNodes=BinaryRel_from_a_situation+BinaryRel_
from_a_Process

370

Appendix

43. A. Th. Schreiber, J. M. Ackkermans, A. A. Anjewierden, R. de Hoog, N. R. Shadbolt, W. Van de

Velde, B. J. Wielinga: Knowledge Engineering and Management: The Common KADS Methodol-

ogy at http://www.commonkads.uva.nl/frameset-commonkads.html and http://www.commonkads.

uva.nl/frameset-commonkads.html

44. Kieron O’Hara, Artificial Intelligence Group, University of Nottingham, UK: A Representation
of KADS-I Interpretation Models Using A Decompositional Approach (1993) in Proceedings of

3rd KADS Meeting at http://eprints.ecs.soton.ac.uk/4164/

45. John Kingston AIAI, University of Edinburgh Common KADS: Overview of Knowledge Engi-

neering Methods at http://www.aiai.ed.ac.uk/~jkk/kadspubs.html

46. I. Laresgoiti and A. Bernaras1 of LABEIN, Spain, A. Anjewierden, A. Th. Schreiber and B. J.

Wielinga of University of Amsterdam, Department of Social Science Informatics, The Netherlands,

and J. Corera of IBERDROLA, Spain: Ontologies as Vehicles for Reuse: A Mini-Experiment (1996)

http://ksi.cpsc.ucalgary.ca/KAW/KAW96/laresgoiti/k.html

47. Knowledge Interchange Format (KIF) draft of proposed American National Standard (dpANS)

NCITS.T2/98-004: A Framework for Comparing Methods for Using or Reusing Multiple Ontolo-

gies in an Application (Year: 1998) at http://logic.stanford.edu/kif/dpans.html

48. Rational Corporation: Rational Reusable Asset Specification (A 1999 technical report; major
contributors Grady Booch, Catapulse, CTO Peter Eeles, Rational, RSO UK, Luan Doan-Minh,

Rational, SSO US, Kelli Houston, Rational, A&AF Senior Architecture Specialist, Ivar Jacob-

son, Rational, VP of Business Engineering, Wojtek Kozaczynski, Rational, Director of A&AF,

Philippe Kruchten, Rational Fellow, Grant Larsen, Catapulse, Senior Architecture Specialist, Jon

Lawrence, Rational, A&AF Product Manager, Davyd Norris, Rational Software, RSO Australia,

Jim Rumbaugh, Rational Fellow, Bran Selic, Rational, Methodologist, Jim Thario, Rational, A&AF

Senior Software Engineer)

Unified Modeling Language (UML)

49. Mike Lee, of Project Technology Inc: Object Oriented Analysis in the Real World (1992).

50. Rational Software Corporation: UML Quick Reference for Rational Rose (2001) at http://www.

rational.com/uml/resources/quick/index.jsp

UML General Purpose Concepts

UML Class Diagram

UML Class Diagram Relationships

UML Collaboration Diagram

UML Component Diagrams

UML Class Visibility Notation

UML State Transition Diagrams

UML Sequence Diagram

371

Appendix

Extended Modeling Language (XML)

51. XML Information Set W3C Working Draft 16 March 2001 and XML Information Set (Second

Edition) W3C Recommendation 4 February 2004 at http://www.w3.org/TR/xml-infoset/#infoitem.

element

52. XML Schema Part 1: Structures, W3C Candidate Recommendation 24 October 2000 of the World

Wide Web Consortium and XML Schema Part 1: Structures Second Edition, W3C Recommenda-

tion 28 October 2004 at http://www.w3.org/TR/xmlschema-1/

53. XML Schema Part 0: Primer W3C Proposed Recommendation, 16 March 2000; editor David C.

Fallside (IBM) at http://www.w3.org/TR/2001/PR-xmlschema-0-20010316/primer.html. Copyright

World Wide Web Consortium (Massachusetts Institute of Technology, Institut National de Recher-

che en Informatique et en Automatique, Keio University). All Rights Reserved.

54. XML Core Metamodel at http//:www.omg.org-cgi-bin-docad-01-02-03.txt and ftp://ftp.omg.org/

pub/docs/ad/01-02-03.txt

55. Extensible Markup Language (XML) 1.0 (Second Edition) Copyright © 2000 W3C® (MIT, INRIA,

Keio), All Rights Reserved and Extensible Markup Language (XML) 1.0 (Third Edition) W3C

Recommendation 04 February 2004 at http://www.w3.org/TR/REC-xml

Process/Task/Schedule Management and Models

56. Veryard Projects: Process Management Workflow, Workload, Work Control (© 1995-2001) at
http://www.users.globalnet.co.uk/~rxv/sebpc/workflow.htm

57. M. C. Tanuan, Software Engineering Manager of Waterloo EAServer QA, eBusiness Division,

Sybase, Inc.: An Introduction to Workflow and Business Process Modeling (December 2, 1997)
at http://se.uwaterloo.ca/~mctanuan/cs645/IntroBPMWF.htm

58. Stephen Russell Jernigan, M.S.E. and K. S. Barber, The University of Texas at Austin, 1996:

Distributed Search Method for Scheduling Flow Through a Factory Floor at http://www-lips.ece.

utexas.edu/~stevej/papers/thesis/masters.html

59. Various practitioners and academics: Diverse manufacturing process summaries of Refereed

Conference Papers of ICME 2000, 8th International Conference on Manufacturing Engineering

in Sydney, 27-30 August 2000. See http://www.unisa.edu.au/ame/pubs/2000.asp.

60. S. R. Jernigan, S. Ramaswamy, K. S. Barber, The Laboratory for Intelligent Processes and Sys-

tems, The Department of Electrical and Computer Engineering, The University of Texas at Austin:

November 30, 1995: A Distributed Search and Simulation Method for Job Flow Scheduling at

http://www-lips.ece.utexas.edu/~stevej/papers/simulation/simulation.html

61. Project Management Institute (PMI): A Guide to Project Management Body of Knowledge: PM-

BOK Guide 2000 edition. PMI Web page is at http://www.pmi.org/info/default.asp

62. Jürgen Sauer and Jain, L., Intelligent Techniques in Industry, CRC Press, 1998: Knowledge-Based

Scheduling Techniques in Industry. (Excerpts available at http://www-is.informatik.uni-oldenburg.

de/~sauer/paper/scheduling.html)

372

Appendix

Process Algebras and Techniques

63. Assaf Arkin of Intalio Inc. from the Business Process Management Initiative (BPMI) consor-

tium: Business Process Markup Language (BPML) Working Draft 0.4 3/8/2001. (The BPMI site

is http://www.bpmi.org) (“Business Process Modeling Language (BPML) is a meta-language for

the modeling of business processes, just as XML is a meta-language for the modeling of business

data. BPML provides a…model for collaborative & transactional business processes based on

a…finite-state machine”)
64. Vitria Technology, Inc.: Executive Overview: Value Chain Markup LanguageTM - VCMLTM: A

Collaborative E-Business Vocabulary Copyright ©2001 (Vitria Technology Inc. home page at

http://www.vitria.com)

65. Vitria Technology, Inc.: Downloads: Value Chain Markup Language™ - VCML™: A Collaborative

E-Business Vocabulary Copyright ©2001 (Lists transactions in different industries—indicator of

functions that are similar and different across industries. Visitors may download sample schemas

and documentation)

66. Alexander James Cowie, School of Computer and Information Science, University of South Australia:

The Modeling of Temporal Properties in a Process Algebra Framework (1999) at http://www.cis.

unisa.edu.au/~cisajc/thesis.pdf (For the mathematically inclined reader, a comprehensive review

of process algebras, their meaning, operation, utilization, and properties)

67. Deepa Pandalai, Honeywell Technology Center, Honeywell Inc. Minneapolis, USA and Lawrence

Holloway, Center for Robotics and Manufacturing Systems, University of Kentucky, Lexington,

KY, USA: Template Languages for Fault Monitoring of Concurrent and Non-Concurrent Discrete

Event Processes (March 1997) at (An algebra that deals with the rules of single and multiple in-

terleaved instances of identical concurrent processes)

68. Rajeev Alur and David Dill, Computer Science Department, Stanford University, CA, USA: A

Theory of Timed Automata (1994). Abstract available at http://www.cis.upenn.edu/~alur/Icalp90.

html and http://citeseer.ist.psu.edu/alur94theory.html

69. Petrinets at http://pdv.cs.tu-berlin.de/~azi/petri.html#pnresearch (Maintained by Armin Zimmer-

mann Dr.-Ing., research assistant, Technische Universität Berlin)

70. Graph Theory: Color Petrinet at http://markun.cs.shinshu-u.ac.jp/learn/graph/cn7/colorPetrinet.

html (Maintained by Shinshu University, Japan)

71. Graph Theory: CO Petrinet at http://markun.cs.shinshu-u.ac.jp/learn/graph/cn7/coPetrinet.html

72. Srinivasan Ramaswamy, Ph.D. University of Southwestern Louisiana: Hierarchical Time-Extended

Petri Nets (H-EPNs) for Integrated Control and Diagnostics of Multilevel Systems (1994) (For the

mathematically inclined reader, this is an excellent dissertation on the properties of processes, as

expressed by Petrinets)

73. Vijay K. Garg, University of California, Berkeley, CA, USA and M. T. Raghunath of the University

of Texas, Austin, TX, USA: Concurrent Regular Expressions and their Relationship to Petri Nets

(1992) at http://citeseer.ist.psu.edu/garg92concurrent.html (For mathematically inclined readers

only! Flexible way of specifying concurrent processes and also deals with interleaving, interleav-

ing closure, synchronous composition, and renaming of processes)

74. C. Ramchandani: Timed Petri nets, Technical Report 120, Project MAC, Massachusetts Institute

Technology, February 1974: A study of asynchronous concurrent systems. (An old but interesting

373

Appendix

paper. Project MAC (MAC was an acronym for “Man and Computer”) was one of the first vision-

ary attempts to program common sense in the form of business rules into automation)

75. Calculi for Mobile Processes at http://lamp.epfl.ch/mobility/ (A set of links to research papers on

Pi-Calculus. You may need permission from LAMP Programming Methods Laboratory, Institute

of Core Computing Science, School of Computer and Communication Sciences, Swiss Institute

of Technology, Lausanne at http://lamp.epfl.ch to access the site)

76. Marcus Lumpe at the University of Berne, Germany: A pi-calculus based approach to software

composition, an inaugural dissertation (January 21, 1999) in Bern University, Germany at http://

www.iam.unibe.ch/~scg/Archive/PhD/lumpe-phd.pdf

77. Lucian Wischik, University of Bologna, 30, August 2002: New Directions in Implementing pi

calculus at http://www.newcastle.research.ec.org/cabernet/workshops/radicals/2002/ Papers/Ber-

tinoro/18.pdf (A succinct, if mathematical, description of pi-calculus)

78. J-P. Courtiat, C.A.S. Santos, C. Lohr, B. Outtaj of LAAS-CNRS, France and Ecole Mohamedia

d’Ingénieurs, Rabat, Maroc: Experience with RT-LOTOS, a temporal extension of the LOTOS

formal description technique in Computer Communications 23 (2000) 1104-1123 at http://www.

laas.fr/RT-LOTOS/doc-src/CompCom99/CompCom99/ and http://www.laas.fr/~courtiat/PAPERS/

ComCom00.pdf (Real-Time LOTOS Process Algebra)

79. David Harel: On Visual Formalisms, Communications of the ACM, pages 521 to 523 and 527, May

1988, Volume 31, Number 5 (Algebra to simplify state representations in real world finite state
automata)

80. Alan M. Davis: A Comparison of Techniques for the Specification of External System Behavior.
Communications of the ACM, page 1105, September 1988, Volume 31, Number 9

81. David Harel and A. Pnueli, Department of Applied Mathematics, The Weizmann Institute of Sci-

ence, Rehovot, Israel: On Development of Reactive Systems, pages 8 to 10; NATO ASI Series F,

Vol. 13, Springer-Verlag, 1985

82. David Harel: On Visual Formalisms, Communications of the ACM, page 519, May 1988, Volume

31, Number 5

83. Robert L. Jones III of Langley Research Center, VA, USA: NASA Technical Paper 3491: Design

Tool for Multiprocessor Scheduling and Evaluation of Iterative Data Flow Algorithms (August

1998) at http://www.iis.sinica.edu.tw/JISE/2000/200005_07.pdf (Although this paper focuses on

distributed computer capacity and process efficiency, several concepts are also germane to real-
world, distributed business processes)

84. Sergio Bandinelli, Alfonso Fuggetta, Sandro Grigolli at Proceedings of the Second International

Conference on the Software Process: Process Modeling in-the-large with SLANG (1993) (Deals

with evolution of large process models and high level Petrinets)

85. Mark E. Pitstick and William L. Garrison, Path Research Report UCB-ITS-PRR-91-7, Institute for

Transportation Studies, University of California, Berkeley, USA: Restructuring the Automobile

Highway System for Lean Vehicles: The Scaled Precedence Activity Network (SPAN) Approach,

April 1991 (SPAN Process diagrams)

86. Klaus Neumann and Welf G. Schneider, Dokumenteserver der Universitätsbibliothek Karlsruhe,

in a 1997 Technical Report, Heuristic algorithms for job shop scheduling problems with stochastic

precedence constraints, describes GERT concepts at http://www.ubka.uni-karlsruhe.de/cgi-bin/

psview?document=/1997/wiwi/6&search=/1997/wiwi/6

374

Appendix

87. Bin-Shiang Liang, Feng-Jiang Wang, Institute of Computer Science and Information Engineering,

National Chiao Tung University, Taiwan, and Jenn-Nan Chen of Samar Electronics Corporation

Ltd, Taiwan: A Project Model for Software Development, a short paper in Journal of Science and

Engineering, 16, 423-446, 2000 at http://www.iis.sinica.edu.tw/JISE/2000/200005_07.pdf (SPREM

Process Algebra)

88. Workshop on Design of Algorithms, Dresden, Module 17 Design Algorithms Channel: A matrix

calculus for the analysis and generation of binary relations generalizations and applications, Part

1(1996) at http://marvin.sn.schule.de/~inftreff/modul17/task17_e.htm
89. Oyvind Forsbak, University of Oslo, Department of Informatics: A Critical Review of Aggregation

in Object Models and a Proposal for New Aggregation Concepts in UML, Graduate thesis

90. William Paul Rogers, Senior Engineering Manager and Application Architect, Lutris Technolo-

gies, in the April 2001 issue of Java World: Reveal the Magic Behind Subtype Polymorphism at

http://www.javaworld.com/javaworld/jw-04-2001/jw-0413-polymorph_p.html

91. Eric Allen, PhD graduate student, Programming Language Technology Group, Rice University,

in the February 2000 issue of Java World: Behold the Power of Parametric Polymorphism at http://

www.javaworld.com/javaworld/jw-02-2000/jw-02-jsr_p.html

92. R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. Mc.Innes, S. Parker, B. Smolinski at

CCA Forum (1999): Towards a common component architecture for high-performance scientific
computing

93. Grady Booch (Rational Software Corp.), Magnus Christerson (Rational Software Corp.), Matthew

Fuchs (Commerce One Inc.), Jari Koistinen (Commerce One Inc.) at the UML Resource Center:

UML for XML Schema Mapping Specification 12/08/99
94. Dr. James Rumbaugh (a collection of papers on OMT, objects, and patterns): OMT Papers, Sep-

tember 1995

95. P. H. Aiken, 1998, IBM: Reverse engineering of data at http://www.research.ibm.com/journal/

sj/372/aiken.txt

Demand and Supply Chains and Standards

96. Bill Hakanson, Executive Director Supply Chain Council (SCC), December 2, 1997: Supply

Chain Management: Where Today’s Businesses Compete at http://www.ascet.com/documents.

asp?d_ID=228 (Supply Chain meaning and process overview)

97. Gaps in Common Knowledge Between Professions (August, 2000), Copyright 2000 Kenneth

Kmack Associates (Analysis of gaps between standard business process models and initiatives

such as SCOR, CFPR, ARIS, XML, and others)

98. Gordon Stewart: Supply Chain Operations Reference Model (SCOR): The First Cross Industry

Framework for Integrated Supply Chain Management in Logistics Information Management, Vol

10 No 2, pp 62-67 (Year: 1997)

99. QPR Software: SCOR Supply Chain Model from the Supply-Chain Council at http://www.qprportal.

com/pg/scor_eng/ (you may have to access this publication via http://www.qpronline.com/)

100. S95 Standard (May 2001, ANSI/ISA S95.00.01-2000 Enterprise—Control System Integration

Standard) at http://www.pera.net/Standards/Stds_S95.html

375

Appendix

101. Dennis Brandl, Director, Enterprise Initiative Sequencia Corporation, NC USA, Peter Owen,

Eli Lilly & Co: A Tutorial on the SP95 Enterprise/Control Integration Standard at http://www.

iee.org/oncomms/sector/manufacturing/Articles/Download/EF5A16ED-3D3C-466F-BB4FB-

D56A2FB90CB

102. Keith Unger of EnteGreat Inc: Integrate ERP with Control Systems Using the S95 Model, © 2002,

Mountain Systems Inc, a presentation at the Mountain Systems Conference (May 13-17, 2002)

http://www.entegreat.com/eg_downloads_presentations_mountainsystems2002.htm (An overview

of S95 standard and its object model. You may have to access the site via www.entegreat.com)

103. Controls Definition & MES to Controls Data Flow Possibilities; MESA International White Paper
Number 3 © MESA International, Pittsburgh, PA, USA at http://www.mesa.org

104. Paul Sawyer, PES Associates presented on 13 August 2001 at CAPE-21 (a conference on Com-

puter Aided Process Engineering Tools and Techniques for the 21st Century): CAPE Tools for the

Design & Operation of Batch Processes (information on CAPE-21 is at http://cape-21.ucl.org.uk/

and http://cape-alliance.ucl.org.uk/)

105. Brian A. Johnson, managing partner for strategy, research, and thought leadership in the Cross

Financial Services Solutions Group, Accenture Corp: Fault Lines in CRM: New E-Commerce

Business Models and Channel Integration Challenges, White Paper (1/15/1999) at http://www.

crmproject.com/documents.asp?d_ID=706
106. Jagdish Sheth, Professor of Marketing, Goizueta Business School and Dr. Rajendra Sisodia Trustee

Professor of Marketing, Bentley College, Waltham, MA: Marketing’s Final Frontier: The Automa-

tion of Consumption 2000, accessible from http://www.jagsheth.net/pubs_articlesbytype.html and

http://www.crmproject.com/documents.asp?grID=187&d_ID=709

107. Osman Turan (2000), Department of Industrial and Systems Engineering, Virginia Tech: Introduc-

tion to Supply Chain Management at http://hokies.ise.vt.edu/oturan/SCM/introduction.html

108. QPR Software (2001): Introduction to Supply Chain Management at http://www.qpronline.com/

supplychainmanagement/supplychain_intro.html

109. Cyber M@rketing Services: Demand Chain Management: New Strategies for E-Business © IMA

1998, 1999, 2000. Cyber M@rketing Services, Teaneck, NJ, USA may be found at http://www.

elsnet.org/orgs/1697.html, Information Management Associates, Inc. (IMA), Irvine, CA, USA may

be found at http://www.elsnet.org/orgs/0770.html

110. Jan Holmström and Tiina Tissari, The ECOMLOG research program at the Department of Industrial

Engineering and Management, Helsinki University of Technology: IT Value Capture: Creating

an Effective Demand-Supply Chain for IT Solutions, presented at Logistics Research Network

(LRN) 5th Annual Conference, Cardiff, UK, September 2000. The paper may be accessed from

http://www.tuta.hut.fi/logistics/publications.html (Information Technology Value Chain)

111. REM Associates of Princeton, Inc: Supply chain move over, it’s time for demand chain (March

2000) Copyright © 1999, 2000 at http://www.remassoc.com/news/demandchain.asp

112. Jim Noller, project consultant, Renaissance Worldwide: Integrating the Demand Chain and the

Supply Chain: Technology and Trends (1999) at http://www.afsmi.org/journal/jun99/jun-003.htm.

Register at http://www.afsmi.org/ to access this site (“There is an inherent difference

between enterprise resource planning (ERP) systems and customer management systems. ERP

systems measure financial transactions. Customer management systems measure customer contact
events. However, to maximize the demand-chain value, processes and events need to be defined
and systems implemented to reduce the demand cycle time.”)

376

Appendix

113. Jan Holmstrom, William E. Hoover Jr., Perttu Louhiluoto, and Antti Vasara, Mckinsey & Co.,

The other end of the supply chain, McKinsey Quarterly, 2000, Number 1, pp. 62-71

114. Roberto Michel, Manufacturing Systems (1997): Why Best Practices Make Perfect: CFAR and

SCOR Initiatives Aim to Improve Supply Chain Operations, a paper in a 1997 issue of Manufactur-

ing Business Technology. The paper can be accessed online by registering at http://www.mbtmag.

com/Default.asp

115. Elgar Fleisch and Hubert Oesterle of Institute of Information Management, University of St.

Gallen, Switzerland: A Process Oriented Approach to Business Networking, in Volume 2,

Number 2 (year: 2000) Virtual Organization Net at http://verdi.unisg.ch/org/iwi/iwi_pub.nsf/
wwwPublYearEng/9A080ADF5173DC38C1256FC600471E98 or http://www.ve-forum.org/Proj-

ects/264/Issues/eJOV%20Vol2/Fleisch%20-%202000%20-%20eJOV2,2-1%20-%20A%20Process-

oriented%20Approach%20to%20Business%20Networking.pdf (access through http://verdi.unisg.

ch/org/iwi/iwi_pub.nsf/wwwPublRecentEng /9A080ADF5173DC38C1256FC600471E98) (Maps

supply and demand chain models to collaborative business networking models)

116. Kevin Crowston of School of Business Administration, The University of Michigan, USA in the

MIT Sloan Center for Coordination Science (http://ccs.mit.edu/): A Taxonomy of Organizational

Dependencies and Coordination Mechanisms (May 1999) at http://ccs.mit.edu/papers/CCSWP174.

html (Task and resource coordination models)

117. R. Alexander Milowski, XML Architect, and Ray Waldin, Senior XML Engineer, © 1999 Lexica

LLC: iLingo—The Language of Insurance e-Business at http://xml.coverpages.org/ilingowhite-

paper19991218.html (Insurance Supply Chain)

118. Prof. A.W. Scheer, Instutut Fur Wirtschaftinformatik der universitat des saarlander: ARIS business

process model at http://www.iwi.uni-sb.de/teaching/ARIS/aris-i/aris-e-i/index.htm and http://www.

iwi.uni-sb.de/teaching/ARIS/aris-i/aris-e-i/

119. Lee, Hau, L., Billington, Corey; Managing Supply Chain Inventory: Pitfalls and Opportunities,

in Sloan Management Review; Cambridge; Spring 1992; Volume 33, Issue 3

120. Ranier Alt, Elgar Fleissch, Hubert Osterle, Institute of Information Management, University of St.

Gallen, Switzerland: Electronic Commerce and Supply Chain Management at ETA Fabriques d’

Ebauches SA (2000) at http://www.csulb.edu/web/journals/jecr/ issues/20002 (Maps Complementary

Relationship between the intensively collaborative processes that support Electronic Commerce

and traditional Supply Chain process models such as SCOR)

121. Voluntary Interindustry Commerce Standards (VICS) Association: The CPFR Process Model at

http://www.cpfr.org/ProcessModel.html and http://www.cpfr.org/Images/5.htm

122. Voluntary Interindustry Commerce Standards (VICS) Association: The CPFR Data Model (2002)

at http://www.cpfr.org/Images/AppendixH.HTM or http://havinghadlunch.com:8080/ tamikin/GLS/

matter/CPFR_Tabs_061802.pdf (also see links to current papers at http://www.vics.org/commit-

tees/cpfr/)

123. Collaborative Practices Research Initiative Sponsored by The Neeley Supply and Value Chain

Center, Texas Christian University, November 15, 2004 at http://www.vics.org/committees/cpfr/

academic_papers/academic_papers
124. VICS: Process and Results Metrics: Measuring the Success of a Process-Driven Value Chain at

http://www.cpfr.org/Process-Results%20.html. See also http://havinghadlunch.com: 8080/tamikin/

GLS/matter/CPFR_Tabs_061802.pdf

377

Appendix

125. VICS CPFR XML Messaging Model standard draft dated Jan. 17, 2001 for public comment at

http://www.cpfr.org/XMLMessageModel.doc

126. ICS/CPFR IDEF0 Format Model at http://www.cpfr.org/AppendixI.html. See also http://having-

hadlunch.com:8080/tamikin/GLS/matter/CPFR_Tabs_061802.pdf

127. Rosettanet Standards at http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/LayoutInitial?

container=com.webridge.entity.Entity%5BOID%5B5F6606C8AD2BD411841F00C04F689339%5

D%5D&expanded=com.webridge.entity.Entity%5BOID%5B5F6606C8AD2BD411841F00C04F6

89339%5D%5D (You may have to access the site via www.rosettanet.org)

128. Rosettanet PIP Directory at http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/LayoutIn

itial?Container=com.webridge.entity.Entity%5BOID%5B9A6EEA233C5CD411843C00C04F689

339%5D%5D (PIP is an acronym for Partner Interface Processes. The site has a list of standard

Rosettanet PIPs—transactions exchanged by trading partners in a supply chain. You may have to

access the site via www.rosettanet.org)

129. Rosettanet PIPs at http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/LayoutInitial?Conta

iner=com.webridge.entity.Entity%5BOID%5B279B86B8022CD411841F00C04F689339%5D%5D

(PIP is an acronym for Partner Interface Processes. The site classifies rosettanet PIPs—transactions
exchanged by trading partners in a supply chain. You may have to access the site via http://www.

rosettanet.org)

130. Rosettanet Fundamental Business Data Entities at http://www.rosettanet.org/rosettanet/Rooms/

DisplayPages/LayoutInitial?Container=com.webridge.entity.Entity%5BOID%5B07C504EE1A96

D411BD89009027E33DD8%5D%5D (You may have to access the site via www.rosettanet.org)

131. Rosettanet Business Data Entities at http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/

LayoutInitial?Container=com.webridge.entity.Entity%5BOID%5BF7C104EE1A96D411BD8900

9027E33DD8%5D%5D (You may have to access the site via www.rosettanet.org)

132. Rosettanet Business Properties at http://www.rosettanet.org/rosettanet/Rooms/DisplayPages/

LayoutInitial?Container=com.webridge.entity.Entity%5BOID%5B62C104EE1A96D411BD8900

9027E33DD8%5D%5D (You may have to access the site via www.rosettanet.org)

133. David Sprott: Open Market Components: A CBDi Forum Report (January 2000) at http://www.

componentsource.com/services/cbdiopen_market.asp (Analyzes the market and emerging supply

chain standards in terms of how components must be defined)

Financial Accounting

134. AccountingSTUDY.comSM: Accounting Study Guide Copyright 1999-2002 at http://accountinginfo.

com/study/index.html (Succinctly describes the key principles used in financial accounting)
135. AccountingSTUDY.comSM: Accrual Basis vs. Cash Basis Accounting Copyright 1999-2002 at

http://accountinginfo.com/study/accrual-01.htm (A succinct description of Accrual and Cash basis

accounting with examples)

136. AccountingSTUDY.comSM: Introduction to Adjusting Journal Entries Copyright 1999-2002 at

http://accountinginfo.com/study/aje-01.htm (Describes reasons for accounting adjustment transac-

tions, with examples)

137. Wikipedia: U.S. generally accepted accounting principles at http://en.wikipedia.org/wiki/U.S._
generally_accepted_accounting_principles (Brief description of Generally Accepted Accounting

Principles and related standards)

378

Appendix

138. AccountingSTUDY.com.SM: FASB Statements, © by Financial Accounting Standards Board. ARB,

APB Opinions, © (All Rights Reserved) by the American Institute of Certified Public Accoun-

tants, Inc: Generally Accepted Accounting Principles in the United States Index © 1999-2002 at

http://cpaclass.com/gaap/gaap-us-01a.htm (A comprehensive source of U.S. GAAP information)

139. BookkeepersList.com, Copyright 1999-2003 at http://bookkeeperlist.com/gaap.shtml (A succinct

description of the principles that guide Financial Accounting Practices)

140. CPAclass.com: Ratios for Financial Statement Analysis Web Site, Financial Ratios: Summary,

© 1999-2002 at http://cpaclass.com/fsa/ratio-01a.htm (Succinct definitions of key ratios used for
financial analysis and evaluation)

141. CPAclass.com: Ratios for Financial Statement Analysis Web Site, Financial Ratios: Index, © 1999-

2002 at http://cpaclass.com/fsa/ratio-01.htm (List of common ratios used for financial analysis)
142. CPAclass.com: Annual Report Project Resources © 1999-2001 at http://www.cpaclass.com/arp/(A

comprehensive source of information related to developing a corporate annual report)

Software Process

143. David Chappell of Chappell & Associates: The Next Wave: Component Software Enters the Main-

stream, April 1997, at http://www.mc.edu/campus/users/gwiggins/syllabi/csc320/papers/dynamic-

3.html

144. Philippe Kruchten of Rational Software Corp. Canada in IEEE Software, November 1995, 12 (6),

pp. 42-50: The 4+1 View Model of Architecture

145. D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture,” ACM Software
Engineering Notes, Oct. 1992, pp. 40-52

146. Capability Maturity Model for Software (version 1.1) Publication TR 25 from Software Engineer-

ing Institute (SEI)

147. Carnegie Mellon University: CMMI Models Copyright 2002, at http://www.sei.cmu.edu/cmmi/

models/models.html (You may have to access the site through http://www.sei.cmu.edu/cmmi/)

148. Michael Paulk of Carnegie Mellon University: A History of the Capability Maturity Model for

Software at http://www.dfw-asee.org/archive/cmm-history.pdf (An overview of how the CMM

was sponsored, how it evolved, the other models it absorbed in the process, and its continuing

evolution. You may have to access the site through http://www.sei.cmu.edu/cmmi/)

149. Carnegie Mellon University: Concept of Operations for the CMMI Copyright 2002, at http://www.

sei.cmu.edu/cmmi/background/conops.html (Background and introduction to the Capability

Maturity Model Integration project. You may have to access the site through http://www.sei.cmu.

edu/cmmi/)

150. Bob Rassa of Raytheon Corporation and Clyde Chittister of the Software Engineering Institute ©

2002 Carnegie Mellon University: State of the CMMI: Improving Processes for Better Products

at http://www.raytheon.com/feature/stellent/groups/public/documents/legacy_site/cms01_042355.
pdf

151. Sarah A. Sheard of the Software Productivity Consortium: The Frameworks Quagmire, a Brief

Look, at http://www.software.org/quagmire/frampapr/frampapr.html (A brief descriptions of several

quality and process maturity frameworks and standards, and their relationships with each other)

379

Appendix

152. S. Bandinelli, A. Fugetta, and S. Ghezzi: Software processes as real time systems: A case study

using high level Petri nets. In Proceedings of the International Phoenix Conference on Computers

and Communications (Phoenix, AZ, April 1992, pp. 231-242)

153. Giancarlo Succi of University of Calgary, Canada, and Luigi Benedicenti, Paolo Predonzani, and

Tullio Vernazza of University Di Genova, Italy: Standardizing the Reuse of Software Processes at

http://portal.acm.org/citation.cfm?id=260564 (Develops a model for reuse of processes and contains

some excellent references to other research in the area)

User Interface Standards

154. Microsoft Inductive User Interface Guidelines at http://msdn.microsoft.com/library/default.

asp?url=/library/en-us/dnwui/html/iuiguidelines.asp

155. CSS2 Specification: Cascading Style Sheets, level 2 W3C Recommendation 12-May-1998 at http://

www.w3.org/TR/REC-CSS2/

Agile Processes and Adaptive Software

156. Peter Norvig and David Cohn of Harlequin Incorporated: Adaptive Software at http://www.norvig.

com/adapaper-pcai.html

157. Laura M. Meade of Automation & Robotics Research Institute’s Enterprise Engineering Program,

The University of Texas: Agile Process Design at http://arri.uta.edu/eif/lmmdis.html

158. Scott W. Ambler: Agile Software Development at http://www.agilemodeling.com/essays/agile-

SoftwareDevelopment.htm

159. Extreme Programming: A gentle introduction Copyright (c) 1999, 2000, 2001 Don Wells at http://

www.extremeprogramming.org/

160. Jim Dowling and Vinny Cahill of the Department of Computer Science, Trinity College, Dublin:

K-Component Architecture Meta-model for Self-Adaptive Software at http://www.cs.tcd.ie/pub-

lications/tech-reports/reports.01/TCD-CS-2001-50.pdf

161. Howard Smith, chief technology officer (Europe) of Computer Sciences Corporation and co-chair of
the Business Process Management Initiative, and Peter Fingar, executive partner with the Greystone

Group: The Next Fifty Years, an article in Darwin, December 2002 issue, at http://www.darwinmag.

com/read/120102/bizproc.html (A discussion of how computers have been seen as record keeping

machines for fifty years as opposed to adaptable management machines. The need is now to use
computers to gain actionable insight. For this, the authors say, corporations must shift their focus

from “systems of record” to “systems of process.” Moreover, “data processing” must give way to

“process processing.” The basic unit of automated support will then become the process, not data

or the application system. The concept of databases will thus give way to “process bases,” which

will record and track past, present, and future of business process structures because, in the words

of the authors, “business processes are the business.” The authors describe how business processes

will be made the central focus and basic building block of all automation and business systems

in support of agility and responsiveness, and assert that the manual development of supporting

information systems will be eliminated.)

380

Appendix

162. Peyman Oreizy, Ph.D candidate, University of California, Irvine; Michael Gorlick, Research Scien-

tist, Aerospace Corporation; Richard Taylor, Professor, Department of Information and Computer

Science, UCI and Director of the Irvine Research Unit in Software; Dennis Heinsbigner, Research

Associate Professor, University of Colorado, Boulder; Gregory Johnson, Member of Technical Staff,

Concept Shopping Inc.; Nenad Medvidevic, Assistant Professor, Computer Science Department,

University of Southern California; Alex Quilici, Associate Professor of Electrical Engineering,

University of Hawaii, Manoa; David Rosenblum, Associate Professor, Department of Computer

Science, UCI; and Alexander Wolf, Associate Professor, Department of Computer Science,

University of Colorado, Boulder: An Architecture Based Approach to Self-Adaptive Software at

http://ftp.ics.uci.edu/pub/c2/papers/ieee-is99.pdf

163. Paul Robertson of Dynamic Language Labs, Andover, MA: Self Adaptive Software, a white pa-

per for the Workshop on New Visions for Software Design and Productivity at http://www.hpcc.

gov/iwg/sdp/vanderbilt/position_papers/paul_robertson_self_adaptive_software.pdf

164. Karyl Scott, InformationWeek, April 1, 2002: Computer, Heal Thyself at http://www.infor-

mationweek.com/story/IWK20020329S0005 or http://www.informationweek.com/story/

IWK20020329S0005

Mathematical Foundations: Set Theory, Number Theory, Category Theory,
Theory of Functions, Lambda Calculus, Spaces and Their Properties, Borel
Sets, and Tensors

165. Mathematical and Logical Vocabulary, © 1996, 1997, 1998 Cycorp. All rights reserved. Cycorp

is based in Austin, Texas. The Cycorp home page is at http://www.cyc.com/cyc/company (Math-

ematical Sets, Categories, Topoi, Groups, and Rings)

166. Kyle Siegrist, Department of Mathematical Sciences, University of Alabama in Huntsville: Sets

and Events (© 1997-2001) in Virtual Laboratories in Probability and Statistics. The tutorial is

available at http://www.ds.unifi.it/VL/VL_EN/prob/prob2.html. Virtual Laboratories in Probability

and Statistics is at http://www.ds.unifi.it/VL/VL_EN/index.html (Describes Set Theory and Sigma

Algebra)

167. Set theory at http://www.wikipedia.com/wiki/Set_theory (describes the basic axioms of set

theory)

168. Basic set theory from Wikipedia at http://www.wikipedia.com/wiki/Basic+Set+Theory

169. Axiom of choice at http://www.wikipedia.com/wiki/Axiom_of_choice (About creating sets by

choosing elements from a collection of sets, even if they are sets with infinite members)
170. Power set at http://www.wikipedia.com/wiki/Power_set (The power set of any given set is the set

of all possible subsets of the set)

171. Axiom of regularity from Wikipedia at http://www.wikipedia.com/wiki/Axiom+of+regularity

(“no set belongs to itself, …otherwise [it] would violate the axiom of regularity.”)

172. Mathematical class from Wikipedia at http://www.wikipedia.com/wiki/mathematical+class (De-

scribes the differences between classes and sets, and how the mathematical concept of class sub-

sumes the mathematical concept of set: “A class is a collection of sets that can be unambiguously

defined by a property that all its members share.”)
173. Category theory from Wikipedia at http://www.wikipedia.com/wiki/category+theory (“A category

attempts to capture the essence of a class of structures, instead of focusing on individual objects...

the structure preserving maps between these objects are emphasized.”)

381

Appendix

174. John Baez, Professor of Mathematics, University of California, Riverside (August 7, 1992): Cat-

egories, Quantization, and Much More at http://math.ucr.edu/home/baez/categories.html (Although

it is written primarily for mathematical physicists, the paper is a good source of information on

category theory, groups, and morphisms, including higher order morphisms and categories, as

well as their application in diverse areas)

175. Chris Hillman, Ph.D., Mathematics, University of Washington: A Categorical Primer (July 2, 2001),

a tutorial paper, available at http://www.di.uminho.pt/~lsb/mmc_ap/Hilmann.pdf (A reasonably

simple mathematical introduction to category theory and topoi)

176. Goldblatt. Topoi: The Categorical Analysis of Logic at http://www.andrew.cmu.edu/~cebrown/

notes/goldblatt.html (An introduction to categories and topoi, the need for them, and how categories

and topoi generalize the concept of set)

177. John Baez, Professor of Mathematics, University of California, Riverside: This Week’s Finds in

Mathematical Physics (Week 68) October 29, 1995 at http://math.ucr.edu/home/baez/week68.html

(A relatively benign discussion of topoi for beginners, and a nonmathematical description of how

sub-objects emerge from commonalities based on the logic of topoi)

178. Steven Vickers, Department of Computing, Imperial College, London, UK, in Mathematical

Structures in Computer Science (1995), Volume 11 © 1995, Cambridge University Press: Topical

Categories of Domains at http://mcs.open.ac.uk/sjv22/TopCat.ps.gz (“a geometric form of construc-

tive mathematics…enables toposes as ‘generalized topological spaces’ to be treated…in a...spatial

way....it is quite in order to treat a topos as a ‘space’ whose points are models of the theory and to

treat a geometric morphism...as a transformation of points of one such space to points in another….

a topos can be considered both as a ‘generalized topological space” and as a ‘generalized universe

of sets.’”)

179. Heyting Algebra at http://publish.uwo.ca/~jbell/HEYTING.pdf (A brief introduction to Heyting

Algebra as a generalization of Boolean Algebra)

180. Masao Mori, Department of Information Systems, Interdisciplinary Graduate School of Engineering

Science, and Yasuo Kawahara of Research Institute of Fundamental Information Science, both of

Kyushu University, Japan: Heyting Algebra at http://www.i.kyushu-u.ac.jp/~masa/fuzzy-graph/

node2.html (A mathematical, but brief, introduction to Heyting Algebra, without proofs)

181. Robert Goldblatt in Studies in Logic and the Foundations of Mathematics, Volume 98, North Holland,

New York, 1984: Topoi, Categorical Analysis of Logic. Access the book via links at http://www.

mcs.vuw.ac.nz/~rob/ or http://www.library.cornell.edu/math/digital-books.php#index

182. Andrew M. Pitts of Computer Laboratory, University of Cambridge, England: Non-trivial Power

Types Can’t be Subtypes of Polymorphic Types, a paper presented in Proceedings of the Fourth

Annual IEEE Symposium on Logic in Computer Science, Asilomar, CA, July 1989, pp. 6-13 (IEEE

Computer Society Press, 1989), downloadable from http://www.cl.cam.ac.uk/~amp12/papers

183. Mathematical topos from Wikipedia at http://www.wikipedia.com/wiki/mathematical+topos (“A

topos (plural: Topoi) in mathematics is a type of category which allows to formulate all of math-

ematics inside it.”)

184. John Baez, Professor of Mathematics, University of California, Riverside, January 3, 2001: Topos

Theory in a Nutshell© John Baez at http://math.ucr.edu/home/baez/topos.html

185. Law of excluded middle from Wikipedia at http://www.wikipedia.com/wiki/law+of+the+excluded

+middle (“The law of excluded middle states that for any proposition, either it or its contradictory

obtains; for any proposition P, either P or not-P.” This law may not be true for all Topoi)

382

Appendix

186. Functor from Wikipedia at http://www.wikipedia.com/wiki/functor (“In category theory a functor

is a mapping from one category to another which maps objects to objects and morphisms to mor-

phisms in such a manner that the composition of morphisms and the identities are preserved”)

187. Monoid from Wikipedia at http://www.wikipedia.com/wiki/Monoid (“the set of all morphisms from

this object to itself, with composition as the operation [is an example of a Monoid]... categories

[are] generalizations of monoids.”)

188. Mathematical Group from Wikipedia at http://www.wikipedia.com/wiki/mathematical+group(“G

roups underlie other algebraic structures such as fields and vectors...also important..for studying
symmetry”)

189. Semigroup from Wikipedia at http://www.wikipedia.com/wiki/semigroup

190. Subgroup from Wikipedia at http://www.wikipedia.com/wiki/subgroup (the abstract mathemati-

cal theories that support the concept of subtyping by partitioning sets and show that subsets are

subtypes of supersets)

191. Group Action from Wikipedia at http://www.wikipedia.com/wiki/group+action

192. Mathematical Ring from Wikipedia at http://www.wikipedia.com/wiki/Mathematical+ring (A

kind of mathematical group that generalizes commutative and associative operations)

193. Fundamental Group from Wikipedia at http://www.wikipedia.com/wiki/fundamental+group

(Mathematical structures that convey information on loops and the one-dimensional structure of

space)

194. Group representation Lie Algebra from Wikipedia at http://www.wikipedia.com/wiki/

group+representation

195. Abelian group from Wikipedia at http://www.wikipedia.com/wiki/abelian+group (the mathematics

of commutative operators)

196. Lie Group from Wikipedia at http://www.wikipedia.com/wiki/Lie+group

197. Lie Algebra from Wikipedia at http://www.wikipedia.com/wiki/Lie+algebra

198. Ring Ideal from Wikipedia at http://www.wikipedia.com/wiki/ring+ideal (The mathematical

theories behind “ideal,” an abstraction and generalization of numbers)

199. Integral domain from Wikipedia at http://www.wikipedia.com/wiki/Integral+domain

200. Field from Wikipedia at http://www.wikipedia.com/wiki/field
201. Finite Field from Wikipedia at http://www.wikipedia.com/wiki/Finite+field
202. Countable at http://www.wikipedia.com/wiki/Countable(A set is countable if it is either finite or

the same size as the set of positive integers, a set with infinite numbers of members)
203. Countably infinite at http://www.wikipedia.com/wiki/Countably_infinite (On countability in

infinitely large sets)
204. Continuum hypothesis at http://www.wikipedia.com/wiki/Continuum_hypothesis (the set theoretic

basis of a continuum based on the continuum of real numbers)

205. Cantors Diagonal argument at http://www.wikipedia.com/wiki/Cantors_Diagonal_argument (A

logical argument that demonstrates that real numbers are not countably infinite)
206. Cardinal number at http://www.wikipedia.com/wiki/Cardinal_number (gauges the relative sizes

of sets, even sets with infinite members)
207. Number from Wikipedia at http://www.wikipedia.com/wiki/number (describes numbers as abstract

patterns and links to definitions of numbers of different kinds)
208. Dense from Wikipedia at http://www.wikipedia.com/wiki/Dense

383

Appendix

209. Jens Blanch, University of Gavle, Gavle, Sweden (1998): Domain representation of topological

spaces at http://www.sm.luth.se/~jens/pdf/top.pdf (describes Scott-Ershov domains and their prop-

erties; Scott-Ershov domains can facilitate approximation of the infinite continuum of numbers in
finite state machines)

210. Pascal Hitzler, Universität Tübingen February 1998: Scott Domains, Generalized Ultrametric

Spaces and Generalized Acyclic Logic Programs (now at University of Karlsruhe) (“...every object

of interest can be arbitrarily closely approximated by [compact elements])

211. Guy Davies, in a seminar series at ITE; Decision Theory, Hösten 2000: Order and Value Assign-

ment (A relatively benign discussion of ordinal value theory for those willing to brave it)

212. Ordinal at http://www.wikipedia.com/wiki/Ordinal (A set theoretic discussion of ordinalilty)

213. Total Order at http://www.wikipedia.com/wiki/Total_order (Mathematical basis of ordered sets

and ordinal domains)

214. Well-founded set at http://www.wikipedia.com/wiki/Well-founded_set (The set theoretic basis of

the origin in a coordinate system, especially in an ordinal domain)

215. Well-order at http://www.wikipedia.com/wiki/Well-order (A set theoretic discussion of lower

bounds on ordinal domains)

216. Ordered field at http://www.wikipedia.com/wiki/ordered+field (describes the set theoretic basis of

the “natural zero” of a domain)

217. Partial order at http://www.wikipedia.com/wiki/Partial_order (mathematical descriptions of sub-

typing and relationship to set theory, especially “posets”)

218. Lattice from Wikipedia at http://www.wikipedia.com/wiki/Lattice (Numbers, Functions, and

Number Theory)

219. Natural number from Wikipedia at http://www.wikipedia.com/wiki/Natural_number

220. Rational number from Wikipedia at http://www.wikipedia.com/wiki/rational+number

221. Irrational number from Wikipedia at http://www.wikipedia.com/wiki/irrational+number

222. Real number from Wikipedia at http://www.wikipedia.com/wiki/Real+number

223. Complex number from Wikipedia at http://www.wikipedia.com/wiki/complex+number

224. Transcendental number at http://www.wikipedia.com/wiki/transcendental+number

225. Hyperreal numbers from Wikipedia at http://www.wikipedia.com/wiki/hyperreal+numbers

226. Hypercomplex numbers f rom Wikipedia at ht t p://www.wik ipedia .com /wik i /

Hypercomplex+numbers

227. Octonions from Wikipedia at http://www.wikipedia.com/wiki/octonions

228. Quaternions from Wikipedia at http://www.wikipedia.com/wiki/quaternions

229. Sedenions from Wikipedia at http://www.wikipedia.com/wiki/sedenions

230. P-adic numbers from Wikipedia at http://www.wikipedia.com/wiki/p-adic+numbers

231. Surreal numbers from Wikipedia at http://www.wikipedia.com/wiki/Surreal_numbers
232. Functions and Random Variables at http://www.math.uah.edu/stat/ (Elementary introduction to

the mathematical theory of functions)

233. Function at http://www.wikipedia.com/wiki/Function (Another easily readable introduction to the

mathematical theory of functions)

234. Injective, surjective, and bijective functions from Wikipedia at http://www.wikipedia.com/wiki/

Injective,+surjective+and+functions

235. Cartesian product at http://www.wikipedia.com/wiki/Cartesian_product

384

Appendix

236. Direct Product from Wikipedia at http://www.wikipedia.com/wiki/direct+product (“In mathematics,

one can often define a direct product of objects already known, giving a new [object]”—focuses
on mathematical groups)

237. Recursion definition at http://www.wikipedia.com/wiki/Recursion_definition

238. Transfinite induction at http://www.wikipedia.com/wiki/Transfinite_induction (Transfinite Induc-

tion is a technique of proving that a property applies to all Ordinals) (Lambda Calculus, Functional

Programming, and Semantics)

239. Luca Cardelli of AT&T Bell Laboratories, Murray Hill, NJ, USA and Peter Wegner, Department

of Computer Science, Brown University, Providence, USA in Computing Surveys, Volume 17, no.

4, pp. 471-522, December 1985: On Understanding Types, Data Abstraction, and Polymorphism at

http://research.microsoft.com/Users/luca/Papers/OnUnderstanding.pdf (A mathematical treatment

of polymorphism and inheritance based on λ-calculus)
240. Lambda calculus at http://www.wikipedia.com/wiki/Lambda_calculus (A brief informal discussion

of λ-calculus, including emergence of functions, arithmetic operations, and recursion, as well as
a discussion of equivalence of rule expressions)

241. The Lambda Calculus: A Brief description and history at http://www.kids.net.au/encyclopedia-

wiki/la/Lambda_calculus#History

242. Jim Larson at the JPL Section 312: An Introduction to Lambda Calculus and Scheme, a talk in

a Programming Lunchtime Seminar on 7/26/1996 at http://www.jetcafe.org/~jim/lambda.html

(Describes how polymorphism emerges from λ-calculus and how λ-calculus is a universal model
of computation. Also describes a programming language, Scheme, which facilitates application

of λ-calculus.)
243. Andrew Myers of Cornell University: Advanced Programming Languages at http://www.cs.cornell.

edu/courses/cs611/2000fa/slides/lec09.pdf (A brief presentation on normalizing rule expressions

with Lambda Calculus. “Two functions are equal by Extension if they have the same meaning:

they give the same result when applied to the same argument”)

244. H. Zhang of Iowa University: Lambda Calculus at http://www.cs.uiowa.edu/~hzhang/c123/Lecture5.

pdf (A simple but mathematical definition of lambda calculus and normal form with reduction
algorithms and examples)

245. Church-Rosser theorem Copyright © 1999 M-J. Dominus at http://perl.plover.com/yak/lambda/

samples/slide014.html (A brief presentation of the Church Rosser theorem that reduces rule ex-

pressions to a normal form)

246. Chris Clack, Senior Lecturer and MScCS Course Director, Department of Computer Science, UCLA:

The Lambda Calculus, A Deeper Look at http://www.cs.ucl.ac.uk/teaching/3C11/HTML_Lec-

tures/lecture3_3C11/sld011.htm (Another good presentation on the essence of the Church-Rosser

Theorem)

247. Stephen Fenner (1996): Normal Forms and the Church-Rosser Theorem at http://www.cs.usm.

maine.edu/class/cos370/handouts/lambda/node7.html (Describes when Rule Expressions can and

cannot be reduced to normal forms)

248. Selinger, P., “Functionality, polymorphism, and concurrency: a mathematical investigation of pro-

gramming paradigms,” PhD thesis, University of Pennsylvania, 1997 (Both formal and intuitive

descriptions of the normal forms and the Church Rosser Theorem)

385

Appendix

249. Peter V. Homeier, U.S. Department of Defense, Ph.D. in Computer Science, UCLA, 1995: A proof

of the Church Rosser Theorem for Lambda Calculus in Higher Order Logic at http://www.cis.

upenn.edu/~hol/lamcr/lamcr.pdf

250. Entscheidungsproblem at http://www.wikipedia.com/wiki/Entscheidungsproblem (“Entscheidungs-

problem” is german for “the Decision Problem.” In mathematics Entscheidungsproblem addresses

the issue of the same rule being expressed in different ways. It specifically proves that there is
no general algorithm that will show that algebraic expressions that consist of different terms are

equivalent)

251. First-order predicate calculus at http://www.wikipedia.com/wiki/First-order_predicate_calculus

(Deals with symbolic logic that is the basis of set theory, values, relationships, arithmetic, and

logical operators)

252. Manfred Kanka: A paper on Semantics © Manfred Krifka, Institut für deutsche Sprache und Lin-

guistik, HU Berlin, WS 2000/2001at http://amor.rz.hu-berlin.de/~h2816i3x/SemanticsI-07.pdf

253. Anthony J. Roy, Department of Computer Science, University of Keele, UK in Technical Report

TR99-11, June, 1999: A Comparison of Rough Sets, Fuzzy Sets and Non-monotonic Logic at

http://pages.britishlibrary.net/aroy/ant/revigis/Comparisonpdf.pdf

254. Functional programming at http://www.wikipedia.com/wiki/Functional_programming (Functional

programming expresses logic by combining functions instead of focusing on execution of com-

puter commands. Arguments as well as results of functions can be functions.) (Spaces and Their

Properties)

255. Eric W. Weisstein: Space from Eric Weissensteinn’s Treasure Trove of Science at © Eric W. Weis-

stein at http://hades.ph.tn.tudelft.nl/Internal/PHServices/Documentation/MathWorld /math/math/

s/s513.htm (Succinct but very abstract mathematical definitions of various spaces including metric
spaces and state spaces)

256. Tensor from Wikipedia at http://www.wikipedia.com/wiki/Tensor

257. Tensor/Old from Wikipedia at http://www.wikipedia.com/wiki/Tensor/Old (“Tensors are quanti-

ties that describe a transformation between coordinate systems…in such a way that the physical

laws [are described in a way that is]…independent of the coordinate system chosen….tensors were

introduced as specific representations of the group of all changes of coordinate systems.”)
258. Tensor at http://hades.ph.tn.tudelft.nl/Internal/PHServices/Documentation/MathWorld/math

/math/t/t078.htm

259. Metric Tensor at http://hades.ph.tn.tudelft.nl/Internal/PHServices/Documentation/MathWorld

/math/math/m/m217.htm

260. Vector space from Wikipedia at http://www.wikipedia.com/wiki/vector+space

261. Normed vector space from Wikipedia at http://www.wikipedia.com/wiki/normed+vector+space

(description of mathematical “norm” and isometry)

262. Topology from Wikipedia at http://www.wikipedia.com/wiki/Topology

263. Pointless Topology at http://www.wikipedia.com/wiki/Pointless+topology

264. Topology Glossary from Wikipedia at http://www.wikipedia.com/wiki/Topology+Glossary

265. Dr. Paul Cairns (Principal Investigator) and Jeremy Gow (Researcher) of Interaction Design Centre

at the School of Computing Science, Middlesex University, UK: The definition of a metric space
based on lecture notes by Peter Collins in Elements of Euclidean and Metric Topology of the Inter-

active, available at the Mathematical Proofs research (IMP) project (January 2001 to June 2002),

386

Appendix

funded by The Engineering and Physical Sciences Research Council (EPSRC), UK at http://www.

uclic.ucl.ac.uk/imp/ (A simple definition of metric spaces)
266. Spaces with richer structures especially metric spaces in The Mathematical Atlas at http://www.

math.niu.edu/~rusin/known-math/index/54EXX.html (A minimally mathematical definition of
metric spaces and discussion of a metric as a generalized concept of topological distance)

267. Bruce MacLennan, Computer Science Department University of Tennessee, Knoxville: Discrete

metric space (1996)

268. Manifold from Wikipedia at http://www.wikipedia.com/wiki/Manifold (“A manifold, in mathemat-

ics, can be thought of as a ‘curved’ surface or space which locally looks like Euclidean space and

therefore admits the introduction of local charts or coordinate systems….Every manifold has a

dimension, the number of coordinates needed in local coordinate systems.”)

269. Hausdorff space from Wikipedia at http://www.wikipedia.com/wiki/Hausdorff+space (“A Hausdorff

space is a topological space in which any two distinct points have disjoint neighbourhoods.”)

270. Tychonoff space from Wikipedia at http://www.wikipedia.com/wiki/Tychonoff+space (“A Haus-

dorff space X is called a Tychonoff space if, for every nonempty closed subset C and every x in

the complement of C, there is a continuous function f : X -> [0,1] such that f(x) = 0 and f(C) = {1}”;
that is, a tychonoff space is a space of distinct points that may be partitioned into two mutually

exclusive sets of points. This is the mathematical theory that supports partitioning objects and

state spaces.)

271. Dimensional Analysis from Wikipedia at http://www.wikipedia.com/wiki/Dimensional+analysis

(A description of how other physical domains emerge from fundamental physical domains and

the use of this information in engineering sciences)

272. Fundamental Dimensions f rom Wikipedia at ht tp://www.wikipedia.com/wiki /

Fundamental+dimension (A description of fundamental physical domains of this book, called

“dimensions” in this publication)

273. Hausdorff dimension from Wikipedia at http://www.wikipedia.com/wiki/Hausdorff+dimension

(A mathematical description of the dimensionality of complex metric spaces that subsumes the

“normal” Euclidean concept of dimension)

274. Infimum from Wikipedia at http://www.wikipedia.com/wiki/Infinimum (a type of lower bound.

The Hausdorff dimension is related to this concept)

275. Hamel dimension from Wikipedia at http://www.wikipedia.com/wiki/Dimension+of+a+vector+spa

ce (A mathematical description of the dimensionality of vector spaces that subsumes the “normal”

Euclidean concept of dimension and accounts for the cardinality—see cardinal number—of the

space)

276. Connectedness from Wikipedia at http://www.wikipedia.com/wiki/connectedness (Mathematically

describes the concept of points in space being connected to points in their neighborhood, as well

as the weirder concept of points being isolated from others)

277. Simply Connected from Wikipedia at http://www.wikipedia.com/wiki/simply+connected (A

mathematical description of a path and connections in abstract spaces)

278. Eric W. Weisstein: Distance © Eric W. Weisstein at http://hades.ph.tn.tudelft.nl/Internal/PHSer-

vices/Documentation/MathWorld/math/math/d/d325.htm (A succinct description of a generalized

concept of distance in a manifold)

279. Eric W. Weisstein: Metric © Eric W. Weisstein at http://hades.ph.tn.tudelft.nl/Internal/PHSer-

vices/Documentation/MathWorld/math/math/m/m213.htm (A succinct description of a metric as

a generalized concept of distance)

387

Appendix

280. Measure at http://www.wikipedia.com/wiki/Measure (gauges the relative sizes of sets)

281. Thierry Coquand: How to define Measure of Borel Sets at http://www.cs.chalmers.se/~coquand/

riesz.pdf (A complex mathematical discussion of Borel sets and Cantor Spaces)

282. Borel Measure at http://www.wikipedia.com/wiki/Borel_measure (“The Borel Measure is the

measure on the smallest set algebra containing the intervals which gives to the interval [a,b] the

measure b-a.”)

283. Koji Tsuda, Electrotechnical Laboratory, Japan, Machine Understanding Division: Subspace Classi-

fier in Hilbert Space, Pattern Recognition Letters, Volume 20, Issue 5, May 1999, pp. 513-519.(Using
Hilbert spaces to automate creation of classes and subtypes based on similarities between objects.

The paper is a sophisticated mathematical discussion of how objects might be classified from a
large number of samples using statistical methods.)

284. Prof. C-I Tan Department of Physics, Brown University: Notes on Hilbert Space at http://www.

chem.brown.edu/chem277/Tan_on_Hilbert_Space.html

285. Hilbert Space Explorer, Copyright (GPL) © 2000 Norman D. Megill at http://us.metamath.org/

mpegif/mmhil.html (A set of definitions, theorems, and explanations about Hilbert Space)
286. Jack Sarfatti: A Semi-Pop Nonmathematical Tutorial on Hilbert Space in Quantum Mechanics

at http://www.qedcorp.com/pcr/pcr/hilberts.html (This paper focuses on representing quantum

mechanical states with the help of Hilbert Spaces: “Hilbert space contains infinite dimensions,
but these are not geometric. Rather, each dimension represents a state of possible existence for a

quantum system. All possible states coexist.” The book you are reading is about business systems,

not quantum states, and the metamodel in this book focuses on purely deterministic systems. In

contrast, the state of a quantum system is unknown, and merely querying it can change its state.

However, mathematically astute readers will find interesting analogs that can be extended to de-

scribe the states of nondeterministic business systems in Sarfatti’s paper—especially those that

might change state by merely querying the information in them. This can happen in all real-world

systems but is beyond the scope of this book. We can safely ignore Hilbert Space in this book.)

(Buckingham’s Pi Theorem—about the independence of physical laws from their units of mea-

sure)

287. Harald Hanche-Olsen, Department of Mathematical Sciences, Norwegian University of Science

and Technology (NTNU), Trondheim, Norway: Buckingham’s pi-theorem (Version 2001-09-15,

1998) (Describes Buckingham’s pi theorem with illustrative examples of its use in finding solu-

tions to physical problems. Includes a mathematical discussion of values, measurement, and units

of measure—nonmathematicians beware!)

288. Buckingham’s pi theorem from the Academic Press Dictionary of Science (Editor: Christopher

Morris). Publisher: Elsevier Science & Technology Books, December 1991 (concise description

of Buckingham’s pi theorem)

289. Eric Weisstein: Buckingham’s Pi Theorem from Eric Weisstein’s World of Physics at http://science-

world.wolfram.com/physics/BuckinghamsPiTheorem.html(Description and mathematical proof of

Buckingham’s pi theorem)

Information Theory, Chaos Theory, and Miscellaneous Publications

290. Information Theory from Wikipedia at http://wikipedia.com/wiki/information+theory(A brief

introduction to Shannon’s Information theory and measures of information)

388

Appendix

291. Sapir-Whorf Hypothesis from Wikipedia at http://wikipedia.com/wiki/Sapir-Whorf+hypothesis

(An overview of the impact of language on meaning and perception)

292. Chaos Theory from Wikipedia at http://www.wikipedia.com/wiki/Chaos+theory(A succinct in-

troduction to the theory of chaos)

293. Takashi Kanamaru, Dept. of Electrical & Electronic Engineering, Tokyo University of Agriculture

& Technology, Japan, and J. Michael T. Thompson, Dept. of Applied Mathematics & Theoretical

Physics, Cambridge: Introduction to Chaos and Nonlinear Dynamics, Sept. 1997 at http://brain.

cc.kogakuin.ac.jp/~kanamaru/Chaos/e/. See Time Series of Logistic map at http://brain.cc.kogakuin.

ac.jp/~kanamaru/Chaos/e/Logits/ (An interactive site that can give the reader a hands-on experi-

ence in chaotic systems)

Books

294. Ronald G. Ross: The Business Rule Book: Classifying, Defining and Modeling Rules. Publisher:
Database Research Group Inc, 1997.

295. Michael Hammer & James Champy: Reengineering The Corporation. Publisher: Harper Collins

(1993).

296. Peter Herzum and Oliver Sims: Business Component Factory: A Comprehensive Overview of

Component-Based Development for the Enterprise. Publisher: John Wiley & Sons, 1999.

297. G. M. Nijssen and T. A. Halpin, Conceptual Schema and Relational Database Design: A Fact

Oriented Approach. Publisher: Prentice Hall (1989).

298. Paul Harmon and David King: Artificial Intelligence in Business, Chapter 4: Representing Knowl-
edge, Chapter 5: Drawing Inferences. Publisher: John Wiley & Sons (1985).

299. Martin Fowler (1997): Analysis Patterns: Reusable Object Models. Publisher: Addison-Wesley

Longman Inc.

300. Prof. August-Wilhelm Scheer: ARIS, Business Process Frameworks. Publisher: Springer-Verlag

Ltd (August 1999).

301. Prof. August-Wilhelm Scheer: ARIS, Business Process Modeling. Publisher: Springer-Verlag Ltd

(November 1996).

302. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William Lorensen at

the General Electric Research and Development Center: Object-Oriented Modeling and Design,

Publisher: Prentice Hall (1991).

303. Structured Systems Analysis and Design Methodology (version 4) from the SSADM College Ltd,

1996 (See http://www.comp.glam.ac.uk/pages/staff/tdhutchings/chapter4.html).

304. Candace C. Fleming and Barbara von Halle. Handbook of Relational Database Design, Publisher:

Addison-Wesley (1989).

305. Maisell and Gnugnoli of Science Research Associates: Simulation of Discrete Stochastic Systems.

Published in 1972.

306. Raphael Finkel: Functional Programming. Publisher: Addison-Wesley Publishing Co. © 1996;

Chapter 4 at ftp://ftp.aw.com/cseng/authors/finkel/apld/finkel04.pdf

307. Paul Taylor: Practical Foundations of Mathematics, section 2.3 Sums, Products, and Function-
Types, at http://www.dcs.qmul.ac.uk/~pt/Practical_Foundations/html/s23.html Publisher: Cambridge

University Press, 1999.(A simple, physical explanation of lambda calculus and the need for it in

389

Appendix

addressing practical real world problems: “[We] discussed how functions act, but they must also

be considered as entities in themselves. Early…problems arose in which the unknown was a func-

tion as a whole, rather than its value at particular or even all points: the Sun’s light takes that path

through the variable density of the atmosphere which minimizes the time of travel; the motion of

a stretched string depends on its initial displacement along its whole length.”)

308. Daniel Finkbeiner II of Kenyon College: Matrices and Linear Transformations, Chapter 1. Pub-

lisher: W. H. Freeman and Co (1966).(Includes a mathematical discussion of sets, set operations,

functions, mapping between sets, relationships, and domains)

309. George Thomas and Ross Finney, Calculus and Analytical Geometry. Publisher: Addison-Wesley

Publishing Company Inc. 1996 (third edition published in 1960).(Has simple mathematical descrip-

tions of functions, domains, ranges, existence, and continuity)

310. Emanuel Parzen of Stanford University: Modern Probability Theory and Its Applications. Publisher:

John Wiley, 1960, 1992.

311. Sidney Siegel, research professor of psychology, The Pennsylvania State University: Nonparametric

Statistics for the Behavioral Sciences. Publisher: McGraw-Hill, Kogakusha Ltd, © McGraw-Hill,

1956, 1988.

312. Harvey M. Wagner of Yale University: Principles of Operations Research with Applications to

Managerial Decisions. Publisher: Prentice Hall, 1969, 1975.

313. Billy E. Gillett, Professor of Computer Science, University of Missouri-Rolla: Introduction to

Operations Research, a Computer Oriented Algorithmic Approach. Publisher: McGraw Hill Inc.

© 1976.

314. Erwin Kreysig, Professor of Mathematics, Ohio State University: Advanced Engineering Math-

ematics. Publisher: John Wiley and Sons, Inc. (1967, 1999).

315. A.W. Goodman, The University of South Florida: Modern Calculus with Analytic Geometry.

Publisher: The MacMillan Company, New York © 1967, 1974.

316. Durell, William R. of Data Administration Inc: The Complete Guide to Data Modeling.

317. W. Durell: Data Administration: A Practical Guide to Data Management. McGraw-Hill, Inc., New

York (1985).

318. Anastasia Pagnoni: Project Engineering: Computer-Oriented Planning and Operational Decision

Making. Publisher: Springer-Verlag, Berlin, Germany. (Describes various techniques for modeling

and managing tasks, including complex stochastic models of repetitive processes using techniques

such as GERT and Petrinets)

319. Kenneth M. Dymond: A Guide to the CMM: Understanding the Capability Maturity Model

for Software. Publisher: Process Transition International Inc., MD, USA, 1998. (Describes the

dynamics of Best Practices and processes needed to institutionalize change based on the System

Engineering Institute’s [SEI] Capability Maturity Model [CMM])

320. Jeanie Daniel Duck, Senior Vice President, the Boston Consulting Group. The Change Monster.

Publisher: Random House, 2002. (Excellent and very readable work on the social, emotional, and

organizational dynamics of change)

321. Geoffrey Moore: Crossing the Chasm. Publisher: HarperCollins Publishers Inc., New York, USA,

2004. (On the acceptance of technological innovation in the marketplace)

322. W. H. Inmon: A Brief History of Data Base Design. Publisher: John Wiley, 1999. (Describes some

changes in business environments and assumptions that have disrupted legacy systems)

390

Appendix

323. Tom Mullins, Department of Physics, University of Oxford, David Holton, Department of Hydro-

geology, Harwell Laboratory, Robert May, Department of Zoology, University of Oxford, J. M.

T. Thompson, Center for Nonlinear Dynamics and Applications, University College of London,

Peter L. Read, Department of Physics, University of Oxford, M. S. Child, Department of Chem-

istry, University of Oxford, and Jonathan Keating, Department of Mathematics, University of

Manchester: The Nature of Chaos. Publisher: Oxford University Press, 1993.

324. G. J. Chamberlin and D. G. Chamberlin: Colour, Its measurement, Computation and Application.

Publisher: Heyden and Sons Ltd © 1980.

325. Cybernetics A to Z by V. Pekelis, English translation. Publisher: Mir, Moscow 1974.

326. Maurice Aburdene of Bucknell University: Computer Simulation of Dynamic Systems Publisher:

William C. Brown Publishers, Dubuque, Iowa, USA (1988).

327. Averill Law, President, Simulation Modeling and Analysis Company, Tucson, Arizona, USA and

Professor of Decision Sciences, University of Arizona, and W. Kelton, Associate Professor of

Operations Research and Management Science, University of Minnesota: Simulation Modeling

& Analysis, second edition (1991). Publisher: McGraw-Hill, Inc.

328. Bertrand Meyer: Object-Oriented Software Construction Interactive ©1993-2001 Software Engi-

neering, Inc (All rights reserved). Key extracts are available at http://www.eiffel.com/doc/manu-

als/technology/oosc/inheritance-design/section_05.html

329. Martin Fowler and Kendall Scott: UML Distilled. Applying the Standard Object Modeling Lan-

guage: Publisher: Addison-Wesley Longman Inc.

330. Bruce Powel Douglass: Real-Time UML, Second Edition: Developing Efficient Objects for Em-

bedded Systems. Publisher: Addison-Wesley Longman Inc, 2000.

331. James Rumbaugh, Ivar Jacobson, Grady Booch: The Unified Modeling Language Reference
Manual. Publisher: Addison-Wesley Longman Inc, 1998.

332. Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language User Guide.
Publisher: Addison-Wesley Longman Inc.

333. Pierre-Alain Muller: Instant UML, published by Wrox Press Ltd. (© 1997), Birmingham, UK

334. Eugene Blanchard (Edited by Joshua Drake, Bill Randolph, Phuong Ma): Introduction to Network-

ing and Data Communications. Copyright © 2001 by Commandprompt, Inc and Copyright © 2001

by Eugene Blanchard at http://www.linuxports.com/howto/ intro_to_networking/book1.htm
335. Howard Smith and Peter Fingar: Business Process Management: The Third Wave. Publisher:

Meghan-Kiffer Press, 2002.

336. The New Encyclopedia Britannica, 15th Edition © 1988 Encyclopedia Britannica Inc.

337. Amit Mitra and Amar Gupta: Creating Agile Business Systems with Reusable Knowledge. Pub-

lisher: Cambridge University Press.

338. Amit Mitra and Amar Gupta: Agile Systems with Reusable Patterns of Business Knowledge: A

Component Based Approach. Publisher: Artech House, 2005.

339. James Martin: After the Internet: Alien Intelligence. Publisher: Regenery Publishing Inc., 2000.

OWL (Ontological Web Language)

340. OWL Web Ontology Language Use Cases and Requirements, W3C Recommendation 10 February

2004 at http://www.w3.org/TR/webont-req/#section-use-cases

391

Appendix

341. OWL Web Ontology Language Overview, W3C Recommendation 10 February 2004 at http://www.

w3.org/TR/owl-features/

342. OWL Web Ontology Language Guide , W3C Recommendation 10 February 2004 at http://www.

w3.org/TR/owl-guide/#Datatypes1

24 Hour Knowledge Factory

343. Research on the 24-Hour Knowledge Factory, in which work proceeds round-the-clock with three

teams of workers located in different continents at http://next.eller.arizona.edu/projects/24HrKF/

and http://next.eller.arizona.edu/publications/ssrn/index.aspx

344. Research on a pioneering example of off-shoring by a large multinational financial organization,
and novel approaches for other industries at http://next.eller.arizona.edu/books/ and http://next.

eller.arizona.edu/publications/ssrn/index.aspx

392

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

APPENDIX IV
MEANINGS, THE SEMANTIC WEB, ONTOLOGY, OWL, AND RDF

The Semantic Web is a vision of automation that operates on the plane of meaning. It envisions a fu-

ture in which machines automatically process and integrate a World Wide Web of information, based

on their meanings. A cornerstone of this vision is the concept of Ontology. An ontology is a semantic

model of concepts and their relationships. It describes a formal vocabulary and grammar. In support

of this vision, the W3C consortium recommended two modeling standards in 2004: RDF, the Resource

Description Facility for metadata, and OWL, the Web Ontology Language for integrating information.

This appendix summarizes the meanings in this book and its companions, and compares them with

those in OWL and RDF.

In earlier chapters, we have shown how some meanings are derived from others by constraining the

patterns of information they convey to create new meanings. These constrained patterns are subtypes

of the meanings they constrain, and every meaning is a polymorphism of the universal object—an un-

known pattern in information space that means everything and anything, and conveys nothing. It is a

primal pattern of information at the bare edge of existence from which all meanings flow. Every object
in our inventory of components is a polymorphism of this universal metaobject:

Activity (and other) Costs: The direct cost normalized by a process. Overheads are normalized

by the composition.

Aggregate Object: A collection. A composition is a structured aggregate.

Array: A multidimensional pattern of discrete points marking locations of objects and classes in

information space.

Assemble, a Polymorphism of Process and the Part of Relationship: Assemble emerged from a

process that made an item a part of an aggregate in step with the flow of time. Similarly, disassembly
cuts the relationship between an aggregate and its parts so that the part does not remain a part of the

aggregate after disassembly has occurred. Disassemble is also a process, but it is a polymorphism

of the Exclude relationship. Polymorphisms of Disassemble will tell us how an aggregate is picked

apart—explosively, all at once, or in steps—perhaps even one item at a time.

Attribute: A kind of object property that is also a subtype of Domain. It is a relationship between

an object class and a subtype of a domain that consists of a single value at any given time.

Beginning: A delimiter that marks the lower limit of a sequenced pattern in information space.

Start is a temporal polymorphism of Beginning. It is a beginning in time.

Beginning and Ending Moments of an Event: Both are subtypes of Moment.

Borel Object: A generalization of the concept of Array, useful for categorization and segmentation

of objects and state spaces—a power set of values or an infinitely large power set of ranges.
Bounds: The limits of a pattern in state space.

Capacity: A kind of cardinality constraint.

Cardinality: The “size” of a class. Cardinality is a supertype of Enumeration.

Composed of: A subtype of Consist of, wherein there is some information on the internal structure

of the aggregate in terms of associations between its parts; its inverse has been labeled Component

of.

Consist of: The inverse of Part of and a subtype of Locate.

•

•

•

•

•

•

•
•

•
•
•
•

•

393

Appendix

Contain: A supertype of Consist of and a subtype of Locate, wherein Location is constrained within

a delimited region of information space.

Cycle Time: The time interval from the start to the end of a process (Chapter V, Compositions of

Relationships—cycle time is a subtype of Event).

(Degree of) Freedom: The quantitative measure of the variability of a meaning or pattern. When

the meaning or pattern exceeds this, it changes its identity and is considered a different meaning or

pattern. The meaning of “freedom” stems from this concept (Chapter IV).

Delimiters: Patterns that mark the existence of a limit or boundary in state space. For instance, a

circle delimits a disk.

Domain: A domain is a class of values. The class may contain finite or infinite numbers of distinct
values and lends its members a common meaning, such as “length.” The meaning of Qualitative

measurement is encapsulated in nominal and ordinal domains: Nominal domains only distinguish

between values; Ordinal domains add information on sequences. The meaning of Quantitative

measurement is encapsulated in difference and ratio scaled domains: Difference scaled domains

add information on magnitudes; Ratio scaled domains add information on ratios and the concept of

nil magnitude. The Metamodel of Knowledge infers that quantitative values must be expressed in

units of measure, of which it may have several. Domains are arranged in a subtyping hierarchy.
The most elementary business and physical meanings start with Primary domains: Enumeration

(ratio scaled), Mass (ratio scaled), Physical separation (ratio scaled), Date/Time Lapse (difference

scaled—includes date and time of occurrence) Electric Charge (ratio scaled), and Overall Informa-

tion Content (ratio scaled), and Preference (ordinal). Secondary domains are derived from primary

domains as polymorphisms or from relationships between domains. A few frequently used second-

ary domains are Domains of Information Quality (Validity, that we are measuring the right thing;

Reliability, that the measurement is always consistent; Completeness and Accuracy, that the mea-

surement is unbiased), Economic Value Added (Ratio scaled polymorphism of Preference), various

domains of proportions, various domains of change/growth, and Gender. The cardinality of a domain

is a measure of its size, which might be infinite. A dense domain has an infinite number of values
between any ordered pair of values (for example, a difference scaled domain like temperature or a

ratio scaled domain like mass).

Effect: This is a kind (subtype) of process that changes the state of a single object. It is not always

a business process, but effects always map directly to computer systems processes. Effects are a

kind of Object Property.

Efficiency and Productivity of Processes: Temporal polymorphisms of cardinality ratios between

the work product of a process and resources used.

End: A delimiter that marks the upper limit of a sequenced pattern in information space that also has

a beginning. Although it is counterintuitive, End is a polymorphism of Beginning. It is obtained by

adding information to beginning and thus creates a distinction via a constraint. Stop is a temporal

polymorphism of End. It is an end in time (and thus is a polymorphism of Start).

Essence (of a pattern): This is the information that gives the pattern its identity and distinguishes

it from other similar patterns. It is closely tied to the freedom the pattern has to be that pattern. The

meaning of “essential” is derived from “essence,” and the meaning of “freedom” is derived from

the degrees of freedom of a pattern—Chapter IV, Measure of Similarity, under Pattern.

Event: A time interval. The time difference domain is a subtype of the Time domain.

•

•

•

•

•

•

•

•

•

•

394

Appendix

Exception Process (Polymorphism of Process): Processes triggered when constraints are vio-

lated. Exception processes are a mechanism for addressing the inherently stochastic nature of the

real world with a model that permits only discrete, deterministic change. Exception processes are

polymorphisms of Process in a different partition from input and output processes. Hence, there

may be exception processes for inputs, outputs, and transformations.

Expression of/Express: This relationship is a polymorphism of the subtyping relationship.

Extent: The scope of a pattern in information space (Chapter IV, Properties of Patterns in Informa-

tion Space).

Feature: Any property of an object—an attribute, relationship, effect, or constraint.

Format: A physical representation of information that may be sensed by an actor or observer.

(Generic) Constraint: A generic Constraint is a generalized Meaning, synonymous with Object

Property. Rule Constraint and Value Constraint are special subtypes of this generic constraint.

Governance(Applies toConstraints,Patterns,andProcesses): Governance instantiates parameters

and features of processes. Governing processes are processes that set parameters of processes they

govern. Governance processes often depend on tracking and exception processes to govern—another

commonly used theme in business.

Governance and Nonstationarity (Applies to Constraints, Patterns, and Processes): Nonsta-
tionarity is the property in which features and parameters change over time. Stationarity is a form

of temporal symmetry, in which behavior and properties are constant and agnostic of the flow of
time. Knowledge is configured from the meanings above and so are atomic rules and irreducible

facts, which are also components of knowledge. The fabric of knowledge is woven from these

components and their polymorphisms. These are the metaobjects and concepts that normalize rules

of different kinds. Rules, embedded in these containers, are configured and assembled into the
tapestry we call knowledge. When new learning flows into this structure, it radiates through the
entire fabric, changing and reconfiguring it through the rules, polymorphisms, and dependencies
we have discussed in this series of books. Figure 10.1 is an overview of their interaction. It tells us

how the container of knowledge is woven.

Idempotent Relationship: A relationship of an object instance with itself (for example, “self

help”).

Inclusion and Exclusion Sets (Mutually Exclusive Subtypes of Partition): Items in an inclusion

set are permitted, whereas items in an exclusion set are forbidden.

Incorporation: A subtype of Consist of, wherein the object loses its identity as a member of a

separate class of objects. It becomes a subtype.

Instance of: A different polymorphism of the subtyping relationship in the same partition that

imposes a constraint on a subclass that has only one member at any given time.

Intransitive Relationship: When a composition of relationships disallows the existence of another

relationship.

Involvement: The fact that a relationship exists. It is the most fundamental relationship. All rela-

tionships are polymorphisms of involvement.

Joint Constraints: When a value is constrained by an interaction between multiple objects. Joint

Constraint is a polymorphism of Value Constraint; it is a relationship of a higher order, with more

information in its Rule Expression and meaning.

•

•
•

•
•
•

•

•

•

•

•

•

•

•

•

395

Appendix

Language: A set of meanings and corresponding visual and audible symbols that point to the same

meanings. The existence of both auditory and visual symbols is not mandatory for every meaning,

but the existence of at least one of the two is mandated.

List of: A subtype of Consist of, wherein there is information on multiple occurrences of an in-

stance.

Load Balancing of Processes: Balancing capacities of related processes.

Location (Locate): When position in information space is fixed in relation to another object. Ori-
gin is a special location that contains a nil value or a value shared by multiple domains that create

a manifold in information space.

Location, Containment, Part of, and Subtyping: Location is relative. One object locates another

and creates the concept of Place. A Place may be a physical place, a virtual place, or even an ab-

stract meaning.

Magnitude Constraints: Restricts the magnitude of a difference or ratio scaled value. Based on

the principle of adding information, a magnitude constraint is a polymorphism of Value Constraint.

Joint Constraints and Magnitude Constraints are subtypes in different, independent partitions of

Value Constraint, so a constraint could simultaneously be both.

Meaning: Meanings are patterns of abstract information—Chapter IV. Meanings include the mean-

ing of a rule, as opposed to its expression. Polymorphisms of Meaning carve object instances and

object classes from the primal object.

Metaobject: A Metaobject is a generic and inchoate instance of an object. All objects are subtypes

of this primal object.

Moment: An event of nil duration.

Mutability: Substitutability of one object by another (Chapter V, Compositions of Relationships).

Name: Name and its subtypes, Synonym, Homonym, Alias, and Concept ID—Chapter II.

Number: Number is an expression of Quantitative Value and therefore a subtype of both Expres-

sion and Quantitative Value. Format is a kind of expression of Value in symbolic form. This makes

Format a subtype with two parents, Value and Symbol.
Object Class (a Subtype of an Aggregate Object): Object Class does not convey any information

on multiplicity of occurrence of the same object instance. A list is a subtype of an aggregate object

that conveys more information than a class. It distinguishes between occurrences of the same object

instance.

Observation, Inquiry, and Reporting: Processes that are polymorphisms of a generic “inquiry”

process, which changes the state of the object queried/observed to “queried/observed,” and may or

may not change it in other ways.

Object Instance: An individual object that is a member of a class of object instances and has the

information that distinguishes its identity from every other member of the class.

Object Partition: Object Partition is a criterion for dividing an object class into mutually exclusive

subtypes. A partition may be exhaustive (the subtypes in the partition collectively cover all possible

members of the partitioned class) or inexhaustive (the subtypes do not cover all possible members

of the partitioned class).

Object Property: Attributes, relationships, effects of events, and constraints associated with the

object.

Pattern: This is the root of the Metamodel of Knowledge. All its components are polymorphisms

of Pattern; an object instance is also a kind of pattern—a meaningful pattern of information.

•

•

•
•

•

•

•

•

•
•
•
•

•

•

•

•

•

•

396

Appendix

Perspective: A classification scheme. It is expressed in a network of objects and relationships. It is
also a Composition. Compositions are also subtypes of relationships. A Composition is a synonym

for Expression. Perspective is the same as Composition, which is a subtype of Relationship.

Pick: A polymorphism of Process and the Instance of relationship. Pick, the polymorphism, may

also have subordinate polymorphisms. For instance, one polymorphism may pick a single item out

of a collection or assembly of items, whereas another might pick a class of similar items out of that

collection of parts, and yet another polymorphism could pick a batch of similar or dissimilar parts

out of the collection.

Polymorphism: Synonym for subtype.

Precision:Precision is a synonym for Accuracy, and Exhaustiveness is a synonym for Completeness.

Note that less precise and less complete patterns convey less information than their more precise

or more complete counterparts. Therefore, the more precise or more complete pattern is a subtype

of its less precise or less complete counterpart.

Process: A subtype of two parents—event and relationship. Processes use resources to produce

products. Process inherits the features of Relationship, combined with temporal information from

Event, such as cycle time. Combined with temporal information from Event, the features inherited

from Relationship acquire new characteristics like temporal succession, productivity, reversibility,

temporal mutability—the time dependence of mutability between objects; temporal order (how far

back into history does a process reach to articulate rules about a change of state at present; tem-

poral degree), repeatability and concurrency; for idempotent relationships: the number of times a

process loops back to the same product or reuses the same resource. A Reporting Process changes

the state of an object from Unknown to a known value. An Inquiry changes the state of an object

from Unknown to Observed. It may or may not change other features that constitute the overall

state of the object.

Process Owner (Various Kinds): Responsible for execution of a process; R: Responsible for the

process; A: Has the authority to govern the process.

Product: An object produced by a process.

Proximity Metric: Measures of similarity. May also be a measure of distance (Chapter IV, Measure

of Similarity).

Purpose or Goal: An objective. It is a polymorphism of information.

Ranges: A range is a region in state space. In a unidimensional-sequenced space, a lower bound

may be distinguished from an upper bound.

Recursive Relationship: A relationship between objects that belong to the same object class.

Relationship: Relationship is an interaction. It is a polymorphism of a List, which in turn is a

polymorphism of Aggregate Object.

Representation: A polymorphism of expression.

Resource: An object that may be used by a process.

Resource Consumption is a polymorphism of Resource Life, in which the capacity of a resource

to engage is diminished over time by a known process. If a process changes the state of a resource,

it is considered consumed, and the changed resource is a Product (it could be a work product, a

waste product, or a byproduct).

Resource Life: A temporal polymorphism of Capacity; when time is added to the meaning of

capacity, the capacity to engage with objects will change over time. When the capacity decreases,

we might conceive of an “unknown” process that has engaged the capacity of an object. The “un-

•

•

•
•

•

•

•
•

•
•

•

•

•
•
•

•

397

Appendix

known” process starts “consuming” it or diminishing its capacity for engagement. If the decline is

precipitous at a particular point time after the resource is created, that interval may be considered

the life of the object.

Reversibility and Reversion (of Processes): Reversion is a process that is the inverse of another

process—it restores the original states of all involved objects, that is, undoes the effects of the

reversed process.

Rule Constraint: A rule that constrains a nominal, ordinal, or ratio scaled Value by tying them

together into an irreducible fact; a kind of Constraint.

Saga: A process with no definite end, which is also a supertype of a process with a definite end.
An endless saga is a polymorphism of Saga, in which it is definitely known that the process will
not end.

Size: A polymorphism of Capacity.

State, State Space, Trajectory in State Space, and Set of Possible Trajectories in State Space: All

are subtypes of Aggregate Object. The last two are also Compositions. A composition is a subtype

of aggregate object. Trajectory in State Space and Set of Possible Trajectories in State Space are

actually subtypes of Composition and therefore a subtype of Aggregate Object, once removed.

Subtype and Supertype: Subtypes of Object Class. A subtype is created from a supertype by the

subtyping relationship.

Subtyping Relationship: A kind of relationship that incorporates and extends a meaning by add-

ing information.

Supply Chains: Polymorphisms of Process, wherein extended enterprises create and deliver prod-

ucts and services to consumers of these services.

Symbols: Objects like text, pictures, sound, odor, and other items that may be sensed by an actor.

Symmetry: The lack of sequencing information. Note that processes cannot be symmetric; they

incorporate information on the flow of time, which is asymmetrical.
Temporal Succession: Sequence in time; a supertype of Process and subtype of relative location

(a succession enables a predecessor to locate its successor in time and vice versa). Causality is a

polymorphism of succession, and Process is a polymorphism of causality.

The Expression of a Rule: A meaning may have many expressions. Each expression is a perspec-

tive of that meaning. Therefore, Expression and Perspective are identical. Expression is the result

of Express (Expression of and Express are synonyms; their inverse is Expressed By1). Express is a

polymorphism of the subtyping relationship (as is “instance of”).

Tracking Process: A process obtained by infusing temporal information into the proximity metric.

It is a polymorphism of the proximity metric and Event Unit of Measure: A map from a quantita-

tive domain to the domain of numbers.

Transformation, Input, and Output Processes (Subtypes of Process): Transformation processes

use resources to create products. Input processes convey resources to transformation processes and

output processes convey products from transformation processes. They are all polymorphisms of

Process, and every business process consists of all three, input, transformation, and output process,

assembled in tandem.

Transitive Relationship: When a set of relationships implies another, the implied relationship is

transitive with respect to the others. In a transitive triad of relationships, any two relationships in

the triad imply the third. Transitive relationships and the property of transitivity encapsulate the

meaning of implication, which is distinct from causality.

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

398

Appendix

Truncation: Slices a pattern into a part. Truncate relates an object to its truncation. A truncated

pattern conveys less information than the pattern that was truncated. It is therefore a supertype of

the original pattern, and the inverse of Truncate is a polymorphism of the subtyping relationship.

Universal Perspective: A subtype of Perspective.

Use: The defining relationship between a process and its resources. The input process is a poly-

morphism of “Use.”

Value: Value encapsulates the concept of existence and measurability. It may convey distinctness,

an ordered sequence, a magnitude, the absence of magnitude (the Nil Value), Infinite magnitude,
the absence of meaning (the Null Value), the concept of “All,” “Any,” and “Unknown.”

Value Constraints: A kind (subtype) of Rule Constraint in which specific values are permitted or
excluded.

Value Sets: A collection of values at a point in time.

View: A conduit to the information conveyed by an object. A view consists of mechanisms such as

displays, formatting, and sequencing rules, inclusion and exclusion criteria.

Moreover, Agile Systems with Reusable Patterns of Business Knowledge, a book by the same authors

published by Artech House Publishers, extends the meanings above into shared business concepts at

lower levels of the ontology (see Figure 1.2).

We have summarized RDF and OWL as follows to enable our readers to compare and contrast them

with our approach. One key extension that the model in this book and its companions add to OWL

and RDF concepts is the semantics of pattern and measurability. This enables the model in the series

to integrate the model of ontology with business rules and business processes. Several OWL and RDF

concepts such as value constraints, conjunction, disjunction, properties, and others may thus be naturally

inferred and articulated by the integrated model of knowledge in this series of books.

The Dublin Core Metadata Initiative (DCMI) is a related initiative that has enriched the RDF vo-

cabulary (as described later in this appendix). Many of these extensions are articulated in the concept

of “audit attributes” of objects that flow from the metamodel of knowledge in this series. These “audit
attributes” would support traceability and authentication needs mandated by recent regulations such as

HIPAA and SOX (Sarbanes-Oxley regulations). Thus, the model in this series can enrich and extend

the standards already recommended by OMG and the W3C consortium:

RDF

RDF is an acronym for Resource Description Framework. It is a model of objects (“resources”) and

relationships. RDF provides simple semantics, and the model can be expressed in XML. It is a W3C

standard for describing Web metadata such as resources, and for Web pages, the title, author, modifica-

tion date, content, copyright information, and so forth.

RDF Schema describes properties and classes of RDF resources and has the semantics to generalize

these concepts. However, RDF is not easy to comprehend. It is meant for computers.

Examples

Metadata for items in inventory, such as price and items on hand

Metadata for schedules for such as timings of events

•

•

•

•

•

•
•

•

•

399

Appendix

RDF Rules

Resources are identified by Web identifiers (URIs)
Resources have properties and property values.

A Resource is anything that can have a URI, such as “http://www.GalaxySI.com”

A Property is a Resource that has a name, such as “author” or “home page”

A Property value is the value of a Property, such as “Amit Mitra” or “http://www.GalaxySI.

com”

Note that a property value can be another resource

RDF Metadata

RDF Classes

Element Class of Subclass of

Class All classes

Datatype All Data types Class

Resource All resources Class

Container (set of objects) All Containers Resource

Collection (set membership is

restricted by some criteria)
All Collections Resource

Literal Values of text and numbers Resource

List All Lists Resource

Property All Properties Resource

Statement All RDF Statements Resource

Alt Containers of alternatives Container

Bag Unordered containers Container

Seq Ordered containers Container

ContainerMembershipProperty All Container membership properties Property

XMLLiteral XML literal values Literal

RDF Attributes

Attribute Description

about Resource definition
Description Resource description

resource The property being defined by a resource
ID Element identifier
datatype Data type of an element

li List identifier
n Node

nodeID Elementary node identifier
parseType Defines the parsing of an element

•

•

1.

2.

3.

4.

400

Appendix

RDF Root of an RDF document

base XML base

lang Language in which the content (of an element) is rendered

RDF Properties

Property Operates on Produces Description

domain Property Class
The domain of the resource. The domain defines what a
property may apply to (operate on).

range Property Class The range of the resource. It defines what the property may
map to (produce).

subPropertyOf Property Property The property of a property

subClassOf Class Class Subtyping property

comment Resource Literal User friendly resource description

label Resource Literal User friendly resource name

isDefinedBy Resource Resource Resource definition
seeAlso Resource Resource Additional information about a resource

member Resource Resource The property of being an instance of a kind of resource

first List Resource The property of being the first member of a list
rest List List The second and subsequent members of a list

subject Statement Resource The subject of an assertion, i.e., the subject of a resource in an

RDF statement

predicate Statement Resource Similar to “subject”: The predicate of an assertion

object Statement Resource The object of the resource (in an RDF) Statement

value Resource Resource The value of a property

type Resource Class An instance of a class

The Dublin Core Metadata Initiative (DCMI) has added to RDF by adding the following standard

properties for RDF documents:

DCMI Property Definition

Title A name given to the resource

Description An account of the content

Identifier An unambiguous reference to the resource

Contributor An entity responsible for contributing to the content of a resource

Creator An entity with the primary responsibility for creating the content

Coverage The scope of the content

Format The physical or digital rendering of a resource

Date A date of an event in the life cycle of a resource

Language The language the content is rendered in

Publisher An entity responsible for making the resource available

401

Appendix

DCMI Property Definition

Relation A reference to a related resource

Rights Information about rights held in and over the resource

Source A reference to a resource from which the present resource is derived

Subject The topic of the content of the resource

Type The nature or kind of content

OWL

OWL is an acronym for Web Ontology Language. It is a W3C standard language for processing and

integrating Web information (as opposed to displaying) in a standard way. OWL adds more functions

and features to RDF, and like RDF, it is a part of the initiative to create the Semantic Web.

The Semantic Web is a vision of the Web in which information on the Web has explicit meanings,

which machines automatically integrate and process. Therefore, OWL is meant to be used when infor-

mation must be processed by automation, as opposed to (being displayed for) human operators. OWL

can represent the meanings of terms and the relationships between meanings.

OWL is written in XML and is based on the experience of DAML+OIL, which were standards that

preceded it.

Like RDF, OWL is meant for automation and is not user friendly

OWL has a larger vocabulary than RDF and supports more automation of functional require-

ments

With OWL, automation can reason; therefore the language goes beyond the basic semantics

of RDF

For example, OWL adds constructs such as disjointness, cardinality, equality, symmetry, and

enumerated classes (a class may be described by exhaustively enumerating its instances)

There are three flavors of OWL:

OWL Full (Has the full OWL syntax, however, sometimes axioms may not be fully decidable)

OWL DL (A subset of OWL Full that guarantees computability and decidability). The subset of

OWL constructs in OWL DL ensures that all conclusions are computable and can finish in finite
time (i.e., all computations are decidable). OWL DL constrains OWL constructs; for example, while

a class may be a subclass with multiple parents, it cannot be an instance of another class. OWL DL

constrains OWL Full as follows:

Separates the following by making them disjoint: classes, individuals (thus classes may not be

individuals), datatypes, datatype properties, object properties, annotation properties, ontology

properties, data values, and the built-in vocabulary

In OWL DL, object properties are disjoint from datatype properties. Therefore, the following

cannot be datatype properties:

inverse of,

•

•

•

•

•

•

•

•

•

•

402

Appendix

inverse functional,

symmetric, and

transitive

OWL DL requires that no cardinality constraints be placed on transitive properties or their

inverses or any properties they are subtypes of

Annotations are restricted to certain conditions

Axioms cannot have missing or extra components and must form a tree-like hierarchy

Assertions of sameness or differences between individuals must be about named individuals

(OWL adds equality and difference properties to RDF, that assert the sameness or distinctness

of things)

OWL Lite (A simpler subset of OWL DL), primarily supports those who only need classification
hierarchies and simple constraints. It is meant to be a stepping stone in migrating towards applying

the Semantic Web. For example, OWL Lite only permits cardinality values of 0 or 1. OWL Lite also

forbids the following set operations (these are not an exhaustive set of OWL Lite restrictions):

oneOf

unionOf

complementOf

hasValue

disjointWith

DataRange

OWL Classes

Class Description
AllDifferent All listed individuals are mutually different

allValuesFrom
All values of a property of class X are drawn from class Y (or Y is a description

of X)

AnnotationProperty

Describes an annotation. OWL has predefined the following kinds of
annotations, and users may add more:

Versioninfo

Label

Comment

Seealso

Isdefinedby
OWL DL limits the object of an annotation to data literals, URIs, or individuals

(not an exhaustive set of restrictions)

•

•

•

•

•

backwardCompatibleWith

The ontology is a prior version of a containing ontology and is backward

compatible with it. All identifiers from the previous version have the same
interpretations in the new version.

cardinality
Describes a class that has exactly N semantically distinct values of a property

(N is the value of the cardinality constraint)

Class Asserts the existence of a class

complementOf
Analogous to the Boolean “not” operator. Asserts the existence of a class that

consists of individuals that are NOT members of the class it is operating on

DataRange
Describes a data type by exhaustively enumerating its instances (this construct

is not found in RDF or OWL Lite)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

403

Appendix

Class Description

DatatypeProperty Asserts the existence of a property

DeprecatedClass

Indicates that the class has been preserved to ensure backward compatibility

and may be phased out in the future. It should not be used in new documents,

but has been preserved to make it easier for old data and applications to migrate

to the new version

DeprecatedProperty Similar to depreciated class

differentFrom Asserts that two individuals are not the same

disjointWith Asserts that the disjoint classes have no common members

distinctMembers Members are all different from each other

equivalentClass

The classes have exactly the same set of members. This is subtly different from

class equality, which asserts that two or more classes have the same meaning

(asserted by the “sameAs” construct). Class equivalence is a constraint that

forces members of one class to also belong to another and vice versa.

equivalentProperty

Similar to equivalent class: i.e., different properties must have the same values,

even if their meanings are different (for instance, the length of a square must

equal its width)

FunctionalProperty

A property that can have only one, unique value. For example, a property that

restricts the height to be nonzero is not a functional property because it maps to

an infinite number of values for height

hasValue
Links a class to a value, which could be an individual fact or identity, or a data

value (see RDF data types)

imports

References another OWL ontology. Meanings in the imported ontology become

a part of the importing ontology. Each importing reference has a URI that

locates the imported ontology. If ontologies import each other, they become

identical, and imports are transitive.

incompatibleWith
The opposite of backward compatibility. Documents must be changed to

comply with the new ontology.

intersectionOf Similar to set intersection. Members are common to all intersecting classes.

InverseFunctionalProperty
Inverses must map back to a unique value. Inverse Functional properties cannot

be many-to-one or many-to-many mappings.

inverseOf
The inverse relationship (mapping) of a property from the target (result) to the

source (argument)

maxCardinality An upper bound on cardinality (may be “many,” i.e., any finite value)
minCardinality A lower bound on cardinality

Nothing The empty set

404

Appendix

Class Description

ObjectProperty

Instances of properties are not single elements but may be subject-object

pairs of property statements, and properties may be subtyped (extended).

ObjectProperty asserts the existence and characteristics of properties:

RDF Schema constructs: rdfs:subPropertyOf, rdfs:domain and rdfs:

range

relations to other properties: owl:equivalentProperty and owl:

inverseOf

global cardinality constraints: owl:FunctionalProperty and owl:

InverseFunctionalProperty

logical property characteristics: owl:SymmetricProperty and owl:

TransitiveProperty

•

•

•

•

oneOf The only individuals, no more and no less, that are the instances of the class

onProperty Asserts a restriction on a property

Ontology
An ontology is a resource, so it may be described using OWL and non-OWL

ontologies

OntologyProperty A property of the ontolology in question. See imports.

priorVersion Refers to a prior version of an ontology

Restriction
Restricts or constrains a property. May lead to property equivalence,

polymorphisms, value constraints, set operations, etc.

sameAs
Asserts that individuals have the same identity. Naming differences are merely

synonyms.

someValuesFrom

Asserts that there exists at least one item that satisfies a criterion.
Mathematically, it asserts that at least one individual in the domain of the

“SomeValuesFrom” operator that maps to the range of that operator.

SymmetricProperty
When a property and its inverse mean the same thing (e.g., if Jane is a relative

of John, then John is also a relative of Jane)

Thing The set of all individuals

TransitiveProperty

If A is related to B via property P1 and B is related to C via property P2, then

A is also related to C via property P1. For example, if a person lives in a house,

and the house is located in a town, it may be inferred that the person lives in the

town because “Lives in” is transitive with “Located in.”

unionOf
Set union. A member may belong to any of the sets in the union to be a member

of the resulting set

versionInfo Provides information about the version

405

Appendix

OWL Properties

Property
Operates on
(Domain)

Produces
(Range)

allValuesFrom Restriction rdfs:Class

backwardCompatibleWith Ontology Ontology

cardinality Restriction xsd:nonNegativeInteger

complementOf Class Class

differentFrom Thing Thing

disjointWith Class Class

distinctMembers AllDifferent rdf:List

equivalentClass Class Class

equivalentProperty Property rdf:Property

hasValue Restriction value

imports Ontology Ontology

incompatibleWith Ontology Ontology

intersectionOf Class rdf:List

inverseOf ObjectProperty ObjectProperty

maxCardinality Restriction xsd:nonNegativeInteger

minCardinality Restriction xsd:nonNegativeInteger

oneOf Class rdf:List

onProperty Restriction rdf:Property

priorVersion Ontology Ontology

sameAs Thing Thing

someValuesFrom Restriction rdfs:Class

unionOf Class rdf:List

ENDNOTE

1 Expression, an object, is identical to Expressed By, its defining relationship; the information con-

veyed (and hence meaning) is identical. See Appendix II on functional programming. [337] in

Appendix III (Chapter IV, section 2) is also recommended for further reading.

406

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Amar Gupta is the Tom Brown Endowed chair of management and technology, professor of entre-

preneurship, MIS, management of organizations, computer science, and Latin American studies at the

University of Arizona. Earlier, he was with the MIT Sloan School of Management (1979-2004); for

half of this 25-year period, he served as the founding co-director of the Productivity from Information

Technology (PROFIT) initiative. Subsequent to his move to Arizona in 2004, he continued to maintain

ties with MIT as a visiting professor in college of engineering. He has published over 100 papers and

serves as associate editor of ACM Transactions on Internet Technology. At the University of Arizona,

Professor Gupta is the chief architect of new multidegree graduate programs that involve concurrent

study of management, entrepreneurship, and one specific technical or scientific domain. He has nurtured
the development of several key technologies that are in widespread use today and is currently focusing

on the area of the 24-hour knowledge factory.

Amit Mitra is a senior practice manager in TCS North American Global Consulting Practice and a

former senior vice president of process improvement and enterprise architecture at Galaxe Solutions,

where he established the practice. He is also the president and principal consultant at Sprybiz LLC. He

is a alumnus of KPMG and the former chief methodologist of the American International Group. He

is a seasoned practitioner in transforming the business of IT, facilitating business agility and enabling

the Service Oriented Enterprise.

About the Contributors

407

Index

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Symbols

24-Hour Knowledge Factory 5

A

abstract rule 126

actor 32, 53, 54, 65, 159, 295, 297, 298,

310, 311, 312, 394

aggregate 29, 85, 97, 100, 105, 124, 125

126, 128, 138, 157, 164, 165, 166,

167, 168, 169, 170, 171, 172, 173

174, 175, 176, 186, 189, 191, 192,

193, 202, 203, 211, 212, 214, 217,

218, 220, 232, 239, 242, 256, 257,

258, 260, 263, 264, 266, 267, 272,

273, 279, 281, 282, 286, 287, 292,

307, 313, 317, 329, 354, 392, 395,

397
aggregate event 193, 212

aggregate object 97, 100, 124, 125, 164,

165, 167, 171, 172, 173, 203, 257,

266, 279, 281, 313, 317, 392

aggregate process 191, 232, 286, 307
aggregate relationship 85

agility, and problems with change 1

ambiguity 10
antisymmetric 131, 132, 133, 138, 161, 183

antisymmetrical relationship 106

atomic rules 7, 10, 24, 37, 92, 140, 267,

394

atransitivity 150

augmented control process

293, 295, 296, 304

automation layer 49, 52, 60, 110, 126, 175,

294, 295, 298, 299, 305, 308, 330

B

bake colored cookie process 294

bake cookie process 239

batch process 187, 214, 283

bi-directional navigation process 297

bijective relationship 130

Borel object 140, 155, 156, 157, 162, 170,

241, 392

business knowledge 3

business process map 295, 300, 302

C

cardinality ratio 344, 393
cardinality ratios 90, 134, 170, 172, 187,

190

changes in time 330

class irreflexive 182

class of inverses 129
class recursive 182

codomain of the rule 123

composition 29, 144, 164, 193, 295, 317,
324, 343, 393

concurrency 187, 188

control process 278, 293, 294, 295, 296,

297, 299, 295, 300, 295, 296, 295,

296, 297, 299, 300, 304, 306

408

Index

conversion rules 17, 21, 22, 26, 27, 28, 84,

85, 87, 116

cycle time 14, 56, 181, 330

D

degree 124, 165, 185, 301, 396

degree relationship 135

degrees of combination 138

degrees of freedom 74, 76, 77, 78, 81, 87,

88, 89, 96, 111, 116, 146, 150, 249,

250, 256, 273, 287, 302, 313, 315,

393

domain, nominal 16

domain, physical expression 19

domain, qualitative 19

domain, quantitative 19

domain, ration scaled 18

domain of information 16

domain of the rule 123

domains and value sets 165

E

efficiency 189, 339, 393

ends 73, 136, 194, 204, 363

engineering 21

equations 128, 343

equivalence of patterns 80, 290

essence 13, 77, 147, 208, 312, 315, 393

events 12, 53, 106, 165, 191, 290, 348

events in parallel 195

exception process 307, 309, 310, 311, 312,

394

existence dependency 169, 361

F

factorial 127

features 26, 45, 113, 252, 300, 319, 329,
356, 394

feedback mechanism 38

G

golden rule of encryption 86

guard condition 25, 185, 198, 245, 280, 282

301, 302, 303, 304, 311, 312, 356

H

higher dimensional arrays 70

horizontal integration 224

I

idempotent 131, 176, 182, 183, 185, 186,

187, 192, 251, 255, 256, 259, 263,

264, 265, 264, 265, 266, 269, 270,

271, 272, 277, 287, 288, 315, 316

idempotent relationship 131, 185, 186, 255,

263, 264, 265, 269, 270, 271, 277,

288, 315, 316, 396

inclusion polymorphism 114, 172, 203, 212,

296, 312, 328, 329, 347

indivisible rules 10

information 365

information content 22, 167, 274, 316, 323,

340, 393

information mediation 16

information quality 306, 393

information space 67, 194, 294, 302, 303,

305, 306, 307, 309, 310, 312, 314,

323, 341, 392

injective relationships 130

input and output processes 214, 296, 304,

305, 306, 307, 310, 394

inquiries 181

interactions 38, 123, 171, 208, 319, 323,

339, 346

interface rule 45, 304

intransitivity 149, 273

inverses 22, 124, 402

irreducible facts 10, 11, 21, 25, 26, 27, 28,
31, 32, 36, 323, 394

K

knowledge 10
knowledge, structure of 9–33

knowledge artifacts 5, 6, 11

L

law of location 68, 97
law of minimal specification 312

409

Index

M

metamodel 44, 67, 122, 168, 255, 300, 318,

322, 342, 393

metaobject 326

multidimensional array 70

mutability 144, 170, 184, 354, 396

mutability and innovation 147

mutability of compositions 144, 247, 326

mutable perspectives 146

mutually exclusive 140

mutually exclusive relationships 140

N

nominal domain 16

nominally scaled attribute 329

non-transitivity 150

nontemporal cardinality 187

nontemporal relationship 183, 299

null combination 138

O

object classes 29, 41, 110, 130, 164, 183,

316, 357, 395

object instances 25, 29, 33, 68, 88, 106,

109, 110, 122, 129, 130, 132, 134,

137, 138, 139, 151, 157, 160, 164,

167, 173, 174, 178, 182, 183, 184,

186, 189, 190, 255, 256, 257, 264,

265, 266, 269, 298, 315, 316, 328,

356, 394
one-to-many 130

one-to-many relationships 51, 130
ownership 56, 58, 65, 140, 169, 213, 219,

220, 221, 222, 231, 232, 233, 284,

285, 295, 328

P

patterns 10, 40, 67, 164, 190, 314, 323,

338, 392

perspective, problems with 28

perspective, universal 30

physical place and signatory 251
physical place and the check 251

physical place and the process 251

pick 99, 139, 195, 196, 197, 198, 200, 205,
207, 243, 267, 280, 295, 396

potential 355

power Borel set 155

precedence diagramming method 196

principle of parsimony 77, 244, 364

process design 93, 262, 326

process engineering 3, 240, 294, 301

process maps 212, 294, 300

process ownership 56, 215, 220, 244, 247,

295, 328

process re-engineering 239

product engineering 250, 297

productivity 189, 220, 355, 393

Q

quantitative 329

R

R, A, W, C and F 328

ratio scaled domain 18

RAWC 222, 231

recursive relationships 82, 83, 128, 130, 131

150, 174, 182, 185, 264, 269, 270,

271, 272, 319, 396

recursive sequences 127

referential integrity 310, 311

reflexive 183, 315

reflexive relationships 130, 265, 343

relationships 26, 50, 88, 121, 122, 164, 178

repetition 135, 187

reusable components 36, 122, 297, 349

reversible process 182

reversion 397

rule constrain 124

rule constrain relationship 124

rule constraint 394

S

sagas 14, 181, 328

scaled rule expressions 329

SCOR model 4, 237
service oriented architecture (SOA) 6

sets and lists 164

soft 365

soft information 231

space 73
states of an event 193

410

Index

state space 68, 74, 81, 85, 86, 87, 90, 91,

92, 93, 94, 95, 96, 97, 98, 99, 104,

106, 109, 110, 113, 114, 117, 118,

142, 152, 153, 154, 155, 156, 157,

163, 174, 192, 250, 256, 264, 265,

298, 312, 313, 316, 354, 392

stationary constraints 128

subprocesses 173, 191, 307

subtyping relationship 21, 24, 33, 111, 141,

 142, 143, 252, 256, 258, 259, 260,

 266, 267, 275, 277, 317, 328, 365,

 394

succession relationship 363

succession relationships 196, 197, 199, 202,

203, 206, 238, 239, 244, 275

supply chains 5, 6, 11, 44, 213, 217, 218,

221, 223, 224, 225, 226, 227, 228,

229, 230, 233, 234, 235, 237, 238,

243, 245, 248, 283, 288, 294, 295,

296, 297, 304, 309, 311, 331, 397

surjective relationships 130, 297, 298

symmetrical relationships 106, 131, 174, 268

269, 273, 274, 275, 277, 323

T

technology layer 52, 55, 56, 59, 60, 65, 281

295, 298, 309

temporal 6, 14, 68, 172, 178, 294, 316, 32

4, 392

temporal antisymmetric 183

temporal capacity 189, 190

temporal relationships

181, 297, 299, 302, 309

time slice idempotent 182, 183

time slice irreflexive 182, 183

transform 35, 166, 290, 342

transformation process 214, 304, 305, 306,

307, 397

transitive relationships 149, 150, 238, 262,

273, 274, 275, 343, 397

U

UML syntax 128, 172, 176

unary relationships 130

universal perspective 29, 30, 33, 64, 92,

146, 147, 163, 177, 183, 229, 254,

267, 268, 281, 286, 287, 288, 290,

325, 331, 398

unstructured process 233, 309

V

value constraint 86, 89, 91, 92, 93, 94, 95,

 96, 97, 117, 130, 140, 143, 160,

166, 209, 299, 303, 309, 314, 394

vertical integration 224

view 37, 38, 167, 298, 312, 314, 352, 398

