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Preface 

The foundations of the subject of multiple comparisons were laid in the 
late 1940s and early 1950s, principaIly by David Duncan, S.N. Roy, 
Henry Scheffi, and John Tukey, although some of the ideas appeared 
much earlier in the works of Fisher, Student, and others; see Harter 1980 
for a complete historical account. Tukey’s (1953) mimeographed notes on 
the subject form a rich source of results (some of which are being 
rediscovered even today), but unfortunately they had only a limited 
circulation. Miller’s (1966) book helped to popularize the use of multiple 
comparison procedures (MCPs) and provided an impetus to new research 
in the field. There have been a large number of review articles surveying 
the field, most published during the 1970s (e.g., Aitkin 1969, Chew 
1976a, Dunnett 1970, Dunnett and Goldsmith 1981, Games 1971, Gill 
1973, Miller 1977, 1985, O’Neill and Wetherill 1971, Ryan 1959, Shaffer 
1986b, Spj~tvoll 1974, and Thomas 1973). Commonly used MCPs are 
discussed in many elementary and advanced texts. However, no unified 
comprehensive treatment of the subject that incorporates the develop- 
ments in the last two decades and that plays a role similar to Miller’s 
monograph is available. The aim of the present book is to fulfill this need. 

Because MCPs have been around for quite some time and because 
their use is well accepted (and sometimes even required) in many 
disciplines, one might expect that there would be few, if any, unresolved 
questions and controversies. Such is not the case, however. Considerable 
confusion still exists in regard to what the different MCPs provide, which 
ones should be used, and when. There are many statisticians who even 
question the very need and appropriateness of any multiple comparison 
approach (see, e.g., the discussion following O’Neill and Wetherill 1971, 
and the papers by Carmer and Walker 1982, Dawkins 1983, Little 1978, 
O’Brien 1983, Perry 1986, and Petersen 1977). 
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Some of the controversial issues cut across the general subject of 
statistical inference and are not germane specifically to multiple com- 
parisons. These include testing versus confidence estimation, and the 
choice of approach to inference (e.g., a classical Fisherian or a Neyman- 
Pearsonian approach, a decision-theoretic approach, a Bayesian ap- 
proach, or an informal graphical approach). We prefer not to take rigid 
stands on these issues. Certainly applications can be found for each basic 
approach to inference, although some types of applications are more 
common than others. We have tried to present a variety of techniques 
based on different approaches, spelling out the pros and cons in each 
case. The emphasis, however, is on classical approaches and on confi- 
dence estimation. 

Another line of criticism stems from the misuse of MCPs in practice. A 
common example of this is the application of an MCP (a popular choice 
being Duncan’s 1955 stepwise procedure) for making pairwise com- 
parisons among all treatments when the treatments have a certain struc- 
ture, as is the case when they correspond to  multifactorial combinations 
or to increasing levels of some quantitative factor (Chew 1976b). In such 
situations, comparisons other than pairwise comparisons may be of 
interest; for example, orthogonal contrasts, and a specially tailored MCP 
for such a family of comparisons may be required. Sometimes procedures 
other than MCPs are required, for example, when the researcher’s goal is 
to select the “best” treatment or to explore the possible clustering 
patterns among the treatments. The key point is that statistical proce- 
dures that should be used in a given problem depend on the questions of 
interest and the nature of research. Problems of inference encountered in 
empirical research are of diverse nature and indiscriminate use of MCPs 
or, for that matter, any other statistical technique in all problems is 
clearly inappropriate. In Chapter 1 we have addressed the questions of 
when and why to use MCPs. This discussion should also help to answer 
other basic criticisms voiced against multiple comparisons. 

The subject of multiple comparisons forms a part of the broader 
subject of simultaneous statistical inference. In this book we focus on 
problems involving multiplicity and selection (“data-snooping”) of infer- 
ences when comparing treatments based on univariate responses. (Refer 
to Krishnaiah, Mudholkar, and Subbaiah 1980 and Krishnaiah and Reis- 
ing 1985 for the corresponding multivariate techniques.) Roy’s union- 
intersection method forms the unifying theme used to derive the various 
classical MCPs for these problems. We do not discuss the problems of 
simultaneous point estimation and simultaneous confidence bands in 
regression. We also do  not discuss the related topic of ranking and 
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selection procedures, on which there are full-length books by Gibbons, 
Olkin, and Sobel (1977) and Gupta and Panchapakesan (1979). 

The following is a brief outline of the book. In Chapter 1 we e!aborate 
on our philosophy and approach to multiple comparison problems, and 
discuss the basic notions of families, error rates, and control of error 
rates. The remainder of the book is divided into two parts. Part I, 
consisting of Chapters 2-6, deals with MCPs based on a classical error 
rate control approach for fixed-effects linear models under the usual 
normal theory assumptions. Part 11, consisting of Chapters 7-11, deals 
with MCPs for other models and problems, and MCPs based on alterna- 
tive approaches (e.g., decision-theoretic and Bayesian). P e r e  are three 
appendixes. Appendix 1 gives some general theory of MCPs that is not 
restricted to the setting of Part I (for which case the corresponding theory 
is given in Chapter 2). Appendix 2 reviews the probability inequalities 
that are used in deriving and computing conservative critical points for 
various MCPs. Finally, Appendix 3 discusses the probability distributions 
that arise in the context of some classical MCPs. Tables of the percentage 
points of these distributions are also included in this appendix. 

Sections are numbered fresh starting in each chapter. Subsections, 
equations, examples, figures, and tables are numbered fresh starting in 
each section but with the corresponding section identification. In both 
cases there is no chapter identification provided. Thus, for example, 
within a given chapter, equation (3.10) is the tenth equation in Section 3 
of that chapter. When the same equation is referenced in another 
chapter, it is referred to as equation (3.10) of such and such chapter. 

This book is intended to serve the needs of researchers as well as 
practitioners. The comprehensive review of the published literature until 
1986, as well as the many open problems noted throughout the book, 
should prove valuable to researchers. (It should be remarked, however, 
that the literature on multiple comparisons is vast and i t  is impossible to 
reference each and every publication. We have limited our references to 
those publications that are relevant to the discussions of the topics 
covered in the book.) Practitioners should find it helpful to have the steps 
involved in implementing the various MCPs clearly spelled out and 
illustrated by small numerical examples. Many of the examples are taken 
from the original papers where the corresponding MCPs first appeared. 
As mentioned before, the examples and discussion of Chapter 1 provide 
useful guidelines to the perennial problem of when to use MCPs; a need 
for such case studies was noted by Anscombe (1985). 

We have assumed that the reader has had a course in mathematical 
statistics covering the basic concepts of inference and is familiar with 



X PREFACE 

matrix algebra, linear models, and experimental designs. For the benefit 
of those who may not have had training in the last two topics, we have 
included a brief review of the necessary ideas in Section 1 of Chapter 2. 
This book can be used as a text in a special topics course on multiple 
comparisons or for supplementary reading in a course on linear models 
and analysis of variance. 

In conclusion, we hope that this book will meet its stated objectives. In 
addition, we hope that it will help to dispel some of the confusion and 
controversy that have surrounded the subject of MCPs, and encourage 
their correct use when appropriate in practice. 

Tel Aviv, Israel 
Evanston, Illinois 

YOSEF HWHBERG 
AJIT C. TAMHANE 
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C H A P T E R  1 

Introduction 

Comparative studies are commonly employed in empirical research. 
Some examples of such studies are: clinical trials comparing different 
drug regimens in terms of their therapeutic values and side effects, 
agricultural field experiments comparing different crop varieties in terms 
of their yields, and sample surveys comparing different demographic 
groups in terms of their attitudes toward the issues of interest. Additional 
examples can be given from other fields of empirical research employing 
experimental or observational studies. 

Traditionally, a common tool in analyzing data from such studies is a 
test of homogeneity of the groups (treatments) under investigation. By 
itself, however, such a test does not provide inferences on various 
detailed comparisons among the groups that are often of interest to the 
researcher, for example, pairwise comparisons among the groups. In 
practice, some of the comparisons may be prespecified (i.e., before 
looking at the data) while the others may be selected after looking at the 
data (“data-snooping” or “post-hoc selection”). 

One possible approach to making such multipfe comparisons is to 
assess each comparison (prespecified or selected by data-snooping) sepa- 
rately by a suitable procedure (a hypothesis test or confidence estimate) 
at a level deemed appropriate for that single inference. This is referred to 
as a per-comparison or separate inferences approach. For instance, for 
detecting differences among the means of k 2 3  treatments, one could 
perform separate (:) pairwise two-sided r-tests, each at level a approp- 
riate for a single test, Such multiple I-zests (without a preliminary F-test of 
the overall homogeneity hypothesis H,, say) are in fact used quite 
frequently in practice; see, for example, Godfrey’s (1985) survey of 
selected medical research articles. But the difficulty with the per- 
comparison approach is that it does not account for the multiplicity or 
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2 INTRODUCTION 

selection effect (Tukey 1977), which has been put as follows: “If enough 
statistics are computed, some of them will be sure to show structure” 
(Diaconis 1985). The same difficulty is present in many other statistical 
problems, for example, in selection of the “best” subset of variables in 
regression and in repeated significance testing. In the following we further 
clarify the notion of the multiplicity effect in the context of pairwise 
comparisons among group means. For simplicity, our discussion is given 
in terms of hypothesis testing; a similar discussion can be given in terms 
of confidence estimation. 

Results of multiple t-tests are usually summarized by highlighting the 
significant pairwise differences. Any significant pairwise difference also 
implies overall significance, that is, rejection of H,. It can readily be seen 
that with (:) pairwise f-tests applied separately each at  level a, the 
probability of concluding overall significance, when in fact H ,  is true, can 
be well in excess of a and will be close to 1 for sufficientiy large k. The 
probability of concluding any false pairwise significance will equal a when 
exactly one pairwise null hypothesis is true, and will exceed a when two 
or more pairwise null hypotheses are true. (Under Ho this probability is 
the same as the former error probability.) Thus with multiple 1-tests, 
spurious overall and detailed (pairwise) significant results are obtained 
more frequently than is indicated by the per-comparison level a. This 
essentially is the import of the multiplicity effect. 

Statistical procedures that are designed to take into account and 
properly control for the multiplicity efiect through some combined or 
joint measure of erroneous inferences are called multiple comparison 
procedures (MCPs). Two early MCPs due to R. A. Fisher are discussed in 
Section 1. These MCPs are of different types. They help to illustrate the 
typology of MCPs followed in this book and the differences in the 
properties of the two types of MCPs. This section also informally 
introduces some terminology. Section 2 is devoted to the philosophy and 
basic notions of MCPs. Finally Section 3 gives a number of examples of 
multiple comparison problems, which are discussed in light of the basic 
notions developed in Section 2. 

1 TWO EARLY MULTIPLE COMPARISON PROCEDURES 

In order to discuss control of the multiplicity effect for the pairwise 
comparisons problem, we regard the ( i)  tests of pairwise null hypotheses 
as a family and consider alternative Type I error rates (Tukey 1953) for 
the inferences in this family. (A more detailed discussion of these two 
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concepts is given in Section 2.) The per-comparison error rate (PCE) is 
defined as the expected proportion of Type I errors (incorrect rejections 
of the true pairwise null hypotheses). It is obvious that multiple a-level 
t-tests control the PCE at level a but they do not control the probability 
of erroneous significance conclusions (overall or detailed) at level a. For 
this purpose, a more pertinent error rate is the famiiywise error rate 
(FWE), which is the probability of making any error in the given family 
of inferences. In the following we discuss an MCP proposed by Fisher 
(1935, Section 24) for making inferences on pairwise comparisons. This 
procedure has W E  = a under H,. We also discuss another MCP pro- 
posed by Fisher (op. cit.) which has FWE d a under aN configurations of 
the true unknown means. 

Fisher’s first procedure consists of performing multiple t-tests each at 
level a only if the preliminary F-test is significant at level a. This can be 
viewed as a two-step procedure in which H, is tested at the first step by an 
a-level F-test. If the F-test is not significant, then the procedure termi- 
nates without making detailed inferences on pairwise differences; other- 
wise each pairwise difference is tested by an a-level t-test. This procedure 
is referred to in the literature as the protected least sign$- 
cant difference (LSD) test. We refer to it simply as the LSD or the LSD 
procedure. 

The LSD controls the W E  at level a under Ho because of the 
protection provided to this hypothesis by the preliminary F-test. How- 
ever, at other configurations of the true means its W E  can be well in 
excess of a as the following argument shows. Suppose that one of the 
group means is far removed from the others, which are all equal. Then 
the preliminary F-test rejects almost surely and we essentially apply 
a-level multiple t-tests to k - 1 homogeneous means. If k - 1 > 2, then 
because of the multiplicity effect the FWE exceeds a. We therefore say 
that the LSD controls the W E  only in a weak sense (under H, but not 
under all configurations). 

Fisher’s second procedure is popularly known as the Boriferroni proce- 
dure, and it controls the FWE in the srrong sense, that is, under all 
configurations. This is a single-step procedure that consists of performing 
multiple t-tests, each at level a* = a/(:) without the preliminary F-test. 
If we define the per-family error rare (PFE) as the expected number of 
errors in the family, then under H ,  the PFE of this procedure equals a. 
At any configuration other than H,, since the number of true hypotheses 
is less than (;), the PFE is readily seen to be less than a. By the 
Bonferroni inequality (which says that the probability of a union of events 
is less than the sum of the individual event probabilities; see Appendix 2) 
it follows that the probability of at least one error is always bounded 
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above by the expected number of errors and hence W E  S PFE. There- 
fore the FWE of this procedure is strongly controlled at level a. 

At this point we can briefly compare the LSD and the Bonferroni 
procedures. As noted above, the LSD controls the W E  weakly (under 
H, only), while the Bonferroni procedure controls the FWE strongly. 
However, the LSD is more powerful than the Bonfqrroni procedure. The 
key reason behind this is not that the LSD controls the W E  weakly nor 
that the Bonferroni procedure controls the PFE (which is an upper bound 
on the W E )  strongly, although these are contributing factors. In fact, as 
we see in later chapters, even after both procedures are modified so that 
they exercise the same a-level strong control of the W E ,  the power 
superiority of the two-step procedure over the single-step procedure 
persists (although not to the same extent). The key reason is that the 
LSD uses the first step F-test to “learn” about the true configuration of 
means, and if they are indicated to be heterogeneous, it then uses liberal 
a-level multiple t-tests for pairwise comparisons. In this sense the 
two-step nature of the LSD makes it adaptive to configurations different 
from H,. On the other hand, the Bonferroni procedure, being a single- 
step procedure, is not adaptive; although the PFE under configurations 
different from H, is less than a, the Bonferroni procedure does not use 
more liberal critical points for such configurations. 

We also note that the Bonferroni test procedure can be readily 
inverted to obtain confidence intervals for all pairwise differences among 
the group means. All of these intervals cover the respective true pairwise 
differences with a joint coverage probability of at least 1 - a (FWE S a) 
and are therefore referred to as (1 - a)-level simultaneous confidence 
intervals. Such intervals cannot be obtained with the LSD procedure, 
which can be a serious shortcoming in many problems. 

The Bonferroni and LSD procedures initiated the development of two 
distinct classes of MCPs, namely, single-sfep* and mulristept (or stepwise) 
procedures, respectively. As just discussed, these two types of procedures 
are inherently different; as a result, generally the types of inferences 
(e.g., confidence estimates, tests, directional decisions on the signs of 
parameters under test) that can be made with them and their operating 

* An important subclass of single-step procedures is referred to as simulruneous procedures 
and studied in detail by Gabriel (1969) and others. We reserve this terminology for that 
subclass rather than using it for any single-step procedure as is sometimes done in the 
literature. It should also be mentioned that, when referring to a set of inferences together, 
we use the terms “simultaneous,” “joint,” and “multiple” interchangeably. 
f Many authors refer to multistep procedures as multisruge or sequenrial procedures; we 
avoid this terminology because usually it is used to describe the nature of sampling and not 
the nature of testing. 
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characteristics are different. These distinctions will become clearer as we 
study these MCPs further for a variety of multiple comparison problems 
(different families of inferences, various experimental and observational 
study designs, different distributional models for the data, etc.). 

2 BASIC NOTIONS AND PHILOSOPHY OF MULTIPLE 
COMPARISONS 

2.1 Families 

The classical statistical approach to inference is based on the premise of a 
separate experiment for each anticipated finding, which is assumed to be 
stated in advance. It is well recognized, however, that often a better 
scientific practice is to conduct one large experiment designed to answer 
multiple related questions. This practice is also statistically and economi- 
cally more efficient. Perhaps the most cogent justification for large 
(factorial) experiments was that originally given by Fisher (1926): 

No aphorism is more frequently repeated. .  . than  that we must ask 
Nature. . . one question at  a time. I am convinced that this view is wholly 
mistaken. Nature .  . . will best respond to. . . a carefully thought out ques- 
tionnaire; indeed if we ask her a single question, she will often refuse to  
answer until some other topic has been discussed. 

In the previous section we saw that a separate inferences (per- 
Comparison) approach to multiple related inferences can lead to too many 
false significances. On the other hand, it would be unwise to take the 
other extreme view, which attributes too many “apparently significant” 
results solely to chance and dismisses them as spurious. As a first step 
toward providing an objective approach to the problem of multiple 
inferences (e.g., for obtaining valid indicators of statistical significances of 
the inferences) we introduce the concept of a family: Any collection of 
inferences for which it is meaningful to take into account some combined 
measure of errors is called a family. For convenience, we also refer to the 
corresponding collection of inferential problems or even the correspond- 
ing collection of parameters on which the inferences are to be made as a 
family. 

Just what constitutes a family depends to a great extent on the type of 
research-exploratory or confirmatory. In purely exploratory research the 
questions of interest (or lines of inquiry) are generated by data-snooping. 
In purely confirmatory research they are stated in advance. Most empiri- 
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cal studies combine aspects of both types of research, but for expositional 
purposes we treat them separately. 

In exploratory research one must consider all inferences (including 
those that are actually made and those that potentially could have been 
made) together as a family in order to take into account the effect of 
selection. What are these “potential” inferences? Fisher ( 1935) has 
characterized them as those inferences that “Would have been from the 
start equally plausible.” As Putter (1983) puts it, these are inferences, 
“Which would have made. . . (the researcher) sit up and take notice in a 
‘similar’ w a y , .  . .’’ Why is it necessary to  consider the inferences that 
were not actually made? Because by controlling the FWE for the family 
of all potential inferences the probability of any error among the selected 
inferences is automatically controlled. (Putter 1983 has proposed an 
alternative appraoch based on controlling the error probability for each 
selected inference.) 

There are different types of families. The collection of pairwise 
comparisons considered in the previous section is an example of a finite 
family. In some problems the researcher may wish to examine any 
contrast among the group means (i.e., a linear combination of the group 
means where the coefficients of the linear combination sum to zero and 
they are not identically zero) that might turn out to be “interesting” in 
light of the data. Then the family of potential inferences is infinire 
consisting of all contrasts. In some other types of exploratory research it 
may be impossible to specify in advance the family of all potential 
inferences that may be of interest. For example, a researcher may wish to 
find out the effects of a given treatment on a list of variables that cannot 
be fully specified in advance (e.g., side effects of a drug). New variables 
may be added to the list (within the framework of the same study) 
depending on what is learned from the previous tests. In this case, it is 
impossible to formally account for the multiplicity effect. 

Let us now turn to confirmatory research. As noted earlier, in this type 
of research one usually has a finite number of inferences of interest 
specified prior to the study. If these inferences are unrelated in terms of 
their content or intended use (although they may be statistically depen- 
dent), then they should be treated separately and not jointly. If a decision 
(or conclusion) is to be based on these inferences and its accuracy 
depends on some joint measure of erroneous statements in the given set 
of inferences, then that collection of inferences should be considered 
jointly as a family. 

To summarize, the following are the two key reasons for regarding a 
set of inferences as a family (Cox 1965): 
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(i) To take into account the selection effect due to data-snooping. 
(ii) To ensure the simultaneous correctness of a set of inferences so 

as to guarantee a correct overall decision. 

2.2 Errw Rates 

In the previous section three different error rates were introduced. In the 
present section we define these error rates formally and discuss them 
further. 

Let 9 denote a family of inferences and let 9 denote an MCP for this 
family. We assume that every inference that 9 makes (or can potentially 
make) is either right or wrong. Let M ( 9 ,  8) be the random number of 
wrong inferences. We can now define the three error rates; the definition 
(2.3) of the PCE involves the cardinality N ( 9 )  of 9 and is valid only in 
the case of finite families. 

(i) Familywise Error Rate (EWE)*: 

FWE(9, 9) = Pr(M(9, 9) > 0) 

(ii) Per-Family Error Rate (PFE)*: 

PFE(F, 9) = E { M ( 9 , 9 ) } .  (2.2) 

(iii) Per-Comparison Error Rate (PCE)': 

For the infinite family the FWE and PFE are well defined for any MCP 
(the PFE may equal infinity). For a given MCP if the PCE for every finite 
subfamily is the same, then we can consider that common value as the 
PCE of that MCP for the infinite family. For example, if each inference is 
erroneous with the same probability a, then the PCE = a for an infinite 
family. 

* Many writers following Tukey (1953) refer to the familywise and per-family error rates as 
the experimentwise and per-experiment error rules, respectively. We prefer the former 
terminology (as in Miller 1981), since not all inferences made in a given experiment may 
constitute a single family. We also note that the per-comparison error rate i s  sometimes 
referred to as the per-s.%mrnmt or cornpariconwise error m e .  
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TABLE 2.1. Error Rates as Functions d N ( 9 )  wben a = 0.05 and 
(2.5) Holds 

N(9) PCE W E  PFE 

1 0.05 0.05 0.05 
5 0.05 0.23 0.25 

10 0.05 0.40 0.50 
20 0.05 0.64 1 .oo 
50 0.05 0.92 2.50 

In many problems only certain types of errors are counted and 
controlled. For example, in hypothesis testing problems it is common to 
count only Type I errors, say, M ’ ( 9 , 9 )  where M ‘ ( 9 , 9 )  S M(9, 9). 
The corresponding error rates defined for M ’ ( 9 ,  9’) as in equations 
(2.1)-(2.3) are referred to as Type I error rates. In the sequel, unless 
otherwise specified, the error rates will be assumed to be of Type I. 

From (2.1)-(2.3) the following relation among the error rates is easy 
to show: 

PCE I FWE S PFE . (2.4) 

For finite famiIies, the PFE is simply a multiple of the PCE, while the 
exact relationship between the PFE and FWE depends on N ( F )  and on 
the nature and the extent of the dependencies induced by 9 among the 
inferences in 9. If the inferences are mutually independent and the error 
rate for an individual inference is a, then PCE = a, PFE = @AJ($), and 

If a is close to zero and N ( 9 )  is small, then the first order approximation 
gives FWE a N ( 9 )  = PFE. Table 2.1 shows the large differences that 
can occur between the FWE and PFE when N(9) is large and (2.5) 
holds. 

2.3 Control of Error Rates 

The question of which error rate to control in a given multiple com- 
parison problem has generated much discussion in the literature. We 
review below some prominent opinions that have been expressed. 

Tukey (1953, Chapter 8) examined various error rates and reached the 
conclusion that control of the FWE “Should be standard, rarely will any 
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other be appropriate.” He rejected the relevance of the PCE in scientific 
work because of its underlying “Philosophy that errors are allowed to 
increase in proportion to the number of statements. . . .” His main 
arguments for controlling the FWE rather than the PFE were as follows: 

(i) Control of the EWE for the family of all potential inferences 
ensures that the probability of any error in the selected set of 
inferences is controlled. 

(ii) For an infinite family the FWE can be controlled but not the 
PFE . 

(iii) When the requirement of the simultaneous correctness of all 
inferences must be satisfied, the FWE is the only choice for 
control . 

Miller (1981, p. 10) also recommended the EWE because 

The thought that all.  . . statements are correct with high probability seems 
to afford. . . a greater serenity and tranquility of mind than a discourse 
on. , . expected number of mistakes. 

Spjstvoll (1972a) recommended the use of the PFE for finite families. He  
cited the following reasons in support of the PFE: 

(i) The PFE is technically easier to work with than the FWE. 
(ii) The PFE imposes a penalty in direct proportion to the number 

of errors, while the FWE corresponds to a zero-one loss 
function. 

(iii) Because the PFE is an upper bound on the FWE, controlling the 
former also controls the latter. 

Duncan (1955) advocated still another approach to error rate control 
in finite families. In this approach the PCE is controlled at traditional 
a-levels but the FWE is allowed to increase only as 1 - (1 - a) 
where “(9) is the number of statistically independent comparisons in 9. 

We now explain our approach to error rate control, which involves a 
careful consideration of the nature and purpose of the research. Again for 
simplicity, our discussion is phrased in terms of hypothesis testing. We 
first discuss the choice of an error rate to control in exploratory research. 
This choice is seen to depend on the level of statistical validity to be 
attached to exploratory findings and the type of family-infinite or finite. 
By “statistical validity” we refer to the levels of the Type I error 
probabilities. Here it is assumed that the conventional approach to 

N’(Y ) 
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inference is adopted, that is, a finding is said to be “established” if the 
negation of the finding is set up as a null hypothesis and is rejected using 
a suitable test. Type I errors are of concern in purely exploratory research 
when an effective screening of false positives is necessary. If this premise 
is not strictly true, then Type I1 errors (missing true leads) may be of 
greater concern. However, probabilistic measures of Type I errors are 
frequently chosen because they are easier to analyze and control. The 
probability of Type I1 errors is reduced by allowing a higher probability 
of Type I errors. (Alternatively, one can employ a decision theoretic 
approach that takes into account relative costs of Type I and Type 11 
errors. See the discussion of Duncan’s K-ratio t-tests in Chapter 11. Or 
one can design the experiment with the objective of controlling the 
probability of Type I1 errors; see Chapter 6.) 

The results of exploratory studies are not always reported with the 
same level of detail. Some studies report all the hypotheses tested and 
how they happened to be selected (e.g., some hypotheses may have been 
of prior interest, some may have been selected because of certain patterns 
apparent in the data, and some others may have been selected by “trial 
and error,” testing many candidate hypotheses until some significant ones 
are found). Some other studies only report the significant results and do 
not reveal the selection process that led to the reported results. In the 
former case the readers may perceive the research findings as less 
conclusive (needing additional confirmation) than in the latter case. 
Because in the latter case the finding!. convey a sense of greater conclu- 
siveness, it becomes incumbent upo.1 the researcher to apply stricter 
yardsticks of statistical validity. 

No error rate can be controlled if the family of all potential inferences 
cannot be specified in advance. One practical remedy in this case 
(Diaconis 1985) is to publish the results without any P-values but with a 
careful and detailed description of how they were arrived at. If possible, 
the results should be verified by future confirmatory studies. From now 
on we assume that the family can be specified in advance. 

In the case of an infinite family, the PFE is usually not amenable to 
control. (it cannot be bounded above when the same level a is used for 
individual inferences.) The PCE may be controlled at a desired level a 
(e.g., by making each separate inference at level a). However, this does 
not guarantee that the expected proportion of errors in the set of selected 
inferences is controlled at level a. In contrast to this, control of the FWE 
at level a provides an upper bound of CI on the probability of any 
erroneous inference even in the selected set of inferences. Thus when 
high statistical validity must be attached to exploratory inferences, the 
FWE seems to be the more meaningful error rate to control. In other 
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cases, the PCE may be controlled keeping in mind its limitations men- 
tioned above. 

In the case of a finite family all three error rates can be controlled. If 
high validity is to  be attached to exploratory findings, then the FWE 
seems to be the natural candidate because its control provides an upper 
bound on the levels of any selected hypotheses. As a rule of thumb, one 
may adhere to controlling the FWE whenever the findings are presented 
without highlighting the selection process and/or without emphasizing the 
need for further confirmation. 

Note that with any given error rate one has the freedom to choose the 
level a. For example, when high statistical validity is to be attached to 
exploratory findings, the FWE may be controlled at traditional a-levels 
for a single inference (e.g., 0.01 S a SO. 10). When low statistical validity 
can be tolerated, the FWE may be controlled at more liberal levels (e.g., 
0.10 < a S 0.25). Thus it may be prudent to uniformly adopt the W E  as 
the error rate to control with varying levels of a depending on the desired 
levels of statistical validity. 

In the case of low desired statistical validity, other alternatives are also 
possible. If confirmation is anticipated, then (especially when the same 
organization or individual is to carry out both the exploratory and 
confirmatory studies) it might be desirable to control the PFE at a level 
that depends on the costs of confirmation. One can also control the PCE 
at traditional a -levels, which amounts to a separate inferences approach 
in which the researcher is ignoring the selection effect; the researcher is 
using the results of statistical inferences merely as indicators to suggest 
hypotheses of interest to be pursued in future confirmatory studies. It 
should be noted that control of the PCE at level a implies control of the 
PFE at level a N ( 9 ) .  Also, the level at which the PFE is controlled 
provides an upper bound on the W E .  

We next turn to confirmatory research. As discussed in Section 2.1, 
here we usually have a finite prespecified family. All three error rates are 
possible candidates for control, the choice being determined by the way 
the correctness of the final decisions or conclusions (which are based on 
multiple inferences) depends on the errors in the individual inferences. If, 
in order for a final decision to be correct, it is necessary that all inferences 
be simultaneously correct, then clearly the FWE must be controlled. If it 
is only necessary to have no more than a certain number or a certain 
proportion of errors, then the PFE or the PCE may be controlled. 

To summarize, the particular error rate to be controlled should be 
determined by a detailed consideration of the nature of the given study 
and its place in the overall plan for research. In data analysis situations of 
varying complexity, it is hard to justify a fixed choice of one error rate in 
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all situations. This point of view is demonstrated by the examples in 
Section 3. 

Much of the discussion in the present book is oriented toward control 
of the FWE in the strong sense. This is done for the reasons cited above, 
and also because it enables us to uniformly calibrate different procedures 
to a common benchmark and thereby compare their operating charac- 
teristics in a fair manner. 

3 EXAMPLES 

The purpose of the following examples is to illustrate some of the ideas 
introduced in Section 2. Through these examples we also wish to bring 
out the potential pitfalls inherent in the “all or nothing” attitude taken by 
some with regard to multiple comparisons. 

Example 3.1 (Comparing New Competing Treatments with a Con- 
trol). One of the main activities in a pharmaceutical concern is the 
search for new drugs that are more effective (“better”) than a standard 
drug or placebo. In the exploratory phase of research it is common to 
start with a large number of chemicals with structures related to a known 
active compound (Dunnett and Goldsmith 1981). Therefore a screening 
device is needed to weed out potential noncontenders. An MCP can be 
used for this purpose. (Alternatively, one may adopt the subset selection 
approach of Gupta and Sobel 1958.) The choice of error rate and 
associated a depends on the costs of confirmation, relative costs of Type I 
versus Type I1 errors, and prior experiences with similar problems. One 
choice that is reasonable in some situations is the Type I PFE whose 
control guarantees a bound on the expected number of false leads. 

To obtain approval from the regulatory agency for marketing a new 
drug, the pharmaceutical company needs to demonstrate by a confirma- 
tory study that the new drug is at least as good as the control (i.e., the 
standard drug or placebo). Typically several drugs that have passed the 
exploratory screening phase are tested against the control in the confirma- 
tory phase. No Type I error must be made in any of these comparisons 
because otherwise a drug that is actually inferior to the control may be 
recommended. Thus in this case control of the Type I FWE is required. 

0 

The next example is also concerned with treatment versus control 
comparisons but a careful analysis of how the final conclusion depends on 
the individual inferences shows that control of the PCE is required. 
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Example 3.2 (Comparing a New Treatment with S e v e d  ControZs). Be- 
fore a pharmaceutical company can market a combination drug, the 
regulatory agency requires that the manufacturer produce convincing 
evidence that the combination drug is better than every one of its m (say) 
subcombinations, which may be regarded as controls (Dunnett and 
Goldsmith 1981). Thus protection is needed against erroneously conclud- 
ing that the combination drug is better than all of its subcombinations 
when in fact some of them are at least as good. 

If separate one-sided tests are used for comparing the combination 
drug with each subcombination (and concluding that the combination 
drug is better when all m tests reject), then the probability of erroneously 
recommending the combination drug can be seen to achieve its maximum 
at a least favorable configuration where exactly one subcombination is 
equivalent to the combination drug and all the others are infinitely worse. 
This follows from Berger’s (1982) general results on intersection-union 
rests. Thus to control the relevant Type I error probability it is only 
necessary to test each one of the rn possible least favorable configurations 
at level a. This amounts to controlling the PCE by using separate a-level 
tests. 0 

Multiple comparison problems can also arise when only two treatments 
are compared. The next two examples illustrate such situations. 

Example 3.3 (Comparing a New Trcotnrent with a Control for Several 
Classes of Patients). The problem of comparing a new treatment with a 
control for different classes of patients is common in clinical research. 
Tukey (1977) noted that although such comparisons are presumably 
separate, still, “Special attention is given to the results for whichever class 
or classes of patients for whom the results appear most favorable for the 
intervention or therapy under test.” Ethical considerations require that 
an inferior treatment should not be given in a follow-up confirmatory 
study or recommended for eventual use for any class of patients. Thus 
whether the study is exploratory or confirmatory, the FWE should be 
controlled. 

A closely related problem is that of detecting interactions between the 
treatments and some covariates of interest, for example, age, sex, and 
prognosis. Here the patients may be divided into (say) two categories for 
each covariate and the difference in the effects of the treatment and the 
control for the two categories may be contrasted. This problem was 

0 studied by Shafer and Olkin (1983). 

Example 3.4 (Comparing a New Treatment with a Control Bared on 
MultipZe Measures). This example was used in Section 2.1 to illustrate 
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exploratory situations where the family of all potential inferences cannot 
be specified in advance. The best approach then is to describe in detail 
how different measures (e.g., response variables, side effects) were 
selected in light of the data and/or prior knowledge so that the reader can 
appreciate the exploratory nature of the findings. 

Now consider a confirmatory study and suppose that the list of 
measures of interest is finite and can be specified in advance. Which error 
rate to control would then depend on &he criterion used for recommend- 
ing the new treatment. For example, if the criterion is based on the 
number of measures on which the new treatment does better, then the 
PFE should be controlled. On the other hand, if the criterion requires the 
new treatment to do better on all the measures, then the W E  should be 
controlled. 0 

The following example deals with comparisons of noncompeting treat- 
ments with a common control and is in direct contrast with Example 3.1. 
Here control of the PCE is justified regardless of whether the study is 
exploratory or confirmatory. 

Example 3.5 ( C o m p a r i n g  Noncompeting Treutments with a Control). 
Consider a situation where a common control is included in the experi- 
ment for benchmark purposes and the various treatments that are com- 
bined in one experiment mainly for reasons of economy are not competi- 
tive. For example, different school boards may hire the same consulting 
organization to perform evaluations of their different educational prog- 
rams. Clearly, each school board will only be concerned with the 
comparison of its own program with the control, and a board's interpreta- 
tion of the data will be unaffected by the fact that other programs were 
included in the same experiment and were compared with the same 
control. Also the consulting organization would report separately to each 
school board-not together as a group-and therefore it would have no 
special interest in ensuring that the FWE for the collection of all 
comparisons is controlled. Here we have a simultaneous study but each 
inference is autonomous (although statistically dependent). Therefore the 
PCE should be controlled. 0 

The following example also involves one central organization testing 
data from several independent sources, but because of the nature of the 
problem the conclusions reached here are quite different. 

Example 3.6 (Detailed Inferences FoUowing an Overall Test). The Nu- 
clear Regulatory Commission (NRC) of the United States is charged with 
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the responsibility of maintaining nuclear materials safeguards at various 
nuclear facilities in this country. One of NRC’s duties in this regard is to 
inspect balances of special nuclear materials at various locations in 
different periods and report if there are any losses (Goldman et  al. 1982). 
Such inspections are usually followed by suitable actions, and thus the 
inferences should be regarded as confirmatory. 

Suppose that there are k L 2 locations where inspections are perform- 
ed and material losses are measured. Let 0, denote the true unknown 
material loss in the ith location in a given period (1 5 i 5 k). The k 
hypotheses to be tested are 0, = 0 against the alternative 0, > 0 (1 d i d 
k). In this case, NRC may have a special interest in controlling the Type I 
W E  at some reasonably small level a so that not too many false alarms 
are raised. A way to proceed might be to first test the overall null 
hypothesis 0, = 4 = * - * = 0, = 0 (which is quite plausible in practice) at 
level a, and if it is rejected, then follow it up with detailed inferences on 
individual 0,’s (in particular, their confidence estimates) aimed at identify- 
ing the potentially “culprit” locations that should be further examined in 
order to determine the reasons for diversion or  losses of materials. 0 

The final example discusses two exploratory screening problems. They 
contrast two situations, one of which requires Type I error rate control, 
while the other requires Type I1 error rate control. 

Example 3.7 (Screening Problems Requiring Type I or Type XI Error 
Protection). In any pharmaceutical company drug screening is an ex- 
ploratory ongoing program in which a large number of compounds are 
routinely tested for the presence of activity. In this case, many null 
configurations are a priori plausible because quite a few compounds lack 
activity. The resources available for confirmatory testing are generally 
scarce and so control of some Type I error rate is appropriate, especially 
in those situations where elimination of a few active compounds is not a 
serious error (e.g., when a large number of alternative compounds are 
developed and tested). 

Let us now contrast this situation with one drawn from the area of 
carcinogenic testing. Consider an exploratory study for screening a large 
number of substances to detect those that are carcinogens. As in the 
previous example, here also many of the substances lack activity and 
therefore many null configurations are a priori plausible. However, here a 
Type I1 error is much more serious than a Type I error because if a true 
carcinogen goes undetected, then this could have serious consequences. 
One should employ an MCP for controlling a Type I1 error rate here. 
This could be achieved by a proper choice of the design of the study and 
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of sample sizes. MCPs controlling Type I error rates are often used 
(inappropriately) because the data are already available. Usually liberal 
control of Type I error rates is employed in such situations (e.g.. using a 
larger a, controlling the PCE rather than the W E ,  using weak rather 
than strong control) so that a larger proportion of substances are carried 
into the confirmatory phase and thus chances of missing any true car- 
cinogens are small. 0 
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C H A P T E R  2 

Some Theory of Multiple 
Comparison Procedures for 
Fixed-Effects Linear Models 

Part I of the book covers multiple comparison procedures (MCPs) for 
fixed-effects linear models with independent homoscedastic normal er- 
rors. In this chapter we give some basic theory for single-step and 
stepwise (multistep) MCPs for such models. A more general theory of 
MCPs, which is applicable to models other than those considered in Part I 
(e.g., nonparametric models and mixed-effects linear models), is given in 
Appendix 1. 

The theory of MCPs covered in Part I deserves a separate discussion 
for the following reasons: 

(i) This theory is simpler in some aspects, and hence serves as an 
easy introduction to the subject. Much of it also readily extends 
to other models. The general theory discussed in Appendix 1, 
although applicable to problems not covered by the present 
chapter, involves other restrictive assumptions and sometimes 
more complicated arguments. 

(ii) This theory and the associated MCPs are more fuIly developed 
than those for other models. 

The outline of this chapter is as follows. In section 1 we give a brief 
review of some basic results for fixed-effects linear models. (See Scheff6 
1959 for a fuller discussion.) Another purpose of this section is to set the 
stage for the discussion of the problem of multiple comparisons among 
the levels of a treatment factor of interest in designs involving other 
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factors (e.g., other treatment factors or blocking or covariate factors). 
Some examples of such designs are given, which are used throughout Part 
I. In section 2 we discuss single-step MCPs for nonhierarchical families. 
In such families there are no implication relations among the inferences 
(in a sense made precise later). In Section 3 we discuss single-step MCPs 
for hierarchical families. These MCPs are required to make inferences 
satisfying certain implication relations. In Section 4 we discuss stepwise 
(actually step-down) MCPs for both these types of families. 

1 A REVIEW OF FIXED-EFFECTS LINEAR MODELS 

1.1 The Basic Model 

Consider independent observations Y, , Y2,  . . . , Y ,  on a “response” vari- 
able Y. A linear model for Yi postulates that 

Y, = X , , p ,  + X i z p 2  + + Xi,& + E,  (1 S i Z  N )  (1 .1)  

where the P,’s are unknown parameters, the X,,’s are known constants 
(given values of “factors” X,), and the El’s are uncorrelated and identi- 
cally distributed random variables (r.v.’s), each with mean zero and 
variance cr’. Throughout Part I we assume that the E,’s are normally 
distributed. On letting Y = (Y,, . . . , Y,,,)’, X = {X,,}:  /3 = (p,, , . . , fl,)‘, 
and E = ( E , ,  . . . , EN)’,  (1.1) can be written in matrix notation as 

The model (1.2) is called finear because it postulates that E(Y) is a linear 
function of j?. 

Each factor can be qualitdive, that is, measured on a categorical scale, 
or quantitative, that is, measured on a numerical scale. The P,’s are often 
referred to as the effects of the corresponding factors X,. Linear models 
are classified as fixed-effects, rundom-effects, or mixed-effects according to 
whether the p,’s are considered all fixed, all random, or some of each 
type. In the rest of this chapter and throughout Part I we assume that the 
B,’s are fixed unknown parameters. 

1.2 Point Estimation 

The method of least squares estimation is usually employed for estimating 
B. A least squares ( L S )  estimator of B is defined as a vector f i  that 
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minimizes llY - X/3/I2, the squared Euclidean norm of the vector Y - Xp.  
It can be shown that B is an LS estimator if an9 only if it satisfies the set 
of normal equations: X'XS = X'Y. A solution fi  is unique if and only if X 
is full column rank. (A convenient approach to obtaining a unique LS 
estimator f i  when X is not full column rank is to introduce side-conditions 
on the j?,'s. This approach is used in some of the examples in Section 1.4.) 
However, in general, there exists a class of scalar linear functions of f l ,  
say I'B, such that for any solution fi  of the normal equations, I'p is unique 
and is an unbiased estimator of I'P. Such a linear function is referred to 
as an estimable parametric function (or simply referred to as a paramerric 
function). A vector parametric function is an ordered set of several scalar 
parametric functions. 

The necessary and sufficient condition for I'fl to be an estimable 
functio? is that I be in the row space of X. In particular, thefined vector 
q = X/3 gives a unique unbiased estimate of E(Y)  = Xfl. The vector ? is 
the projection of Y on the column space of X, and this projection is 
unique although B may not be unique. The class of estimable parametric 
functions forms a linear subspace whose dimension equals rank (X). 

Every LS estimator 6 can be written as B = M Y  for some matrix M 
satisfying XMXM = XM; if X is full column rank, then M = (X'X)-'X'. 
For any finite collection of parametric functions (I#?, I!#, . . . , I s ) '  = Lj3 
(say) (where L = (I , ,  I,, , . . , lm)' is an m x r known matrix), L b  has an 
m-variate normal distribution with mean vector L p  and covariance matrix 
a2LMM'L' (denoted by L b  - N(Lp, u'LMM'L')). Thus for the pur- 
poses of making inferences on parametric functiqns of P, we may assume 
that an estimator #I of #3 is available such that B - N( p, v'MM'). 

In many problems multiple comparisons are sought among the 
parametric functions of the components of a subvector 8 : k x 1 of #3. 
Often 8 corresponds to the effects of a certain qualitative factor (or a 
combination of two or more qualitative factors), which we refer to  as the 
treatment factor, and we refer to  its k B 2 levels as the treatments of main 
interest. Apart from 0, the parameter vector 0 possibly may contain the 
effects of other treatment factors. It may also contain the effects of 
factors such as blocks and covariates, included to account for the 
variability among the experimental (or observational) units and thus yield 
more precise comparisons among the treatment effects. 

Let 6 denote the corresponding subvector of f i  and let V :  k x k be 
the submatrix of MM' corresponding to  the 6 part of the vector. Then 
it is true that for any finite collection of parametric "functions 
(Ii8, . . . , I:@)' = L 8  (where L is an m X k known matrix), LO is distri- 
buted as N(L8, v'LVL'). Thus for the purposes of making inferences on 
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parametric function! of 8, we may assume that an estimator 6 of 8 is 
available such that 8 - N(8,  a2V). 

Finally, we assume that an unbiased estimator S2 of a2 is available that 
is distributed as u 2 x ~ / v  independent of 6. For Sz we can always use the 
mean square error (MSE) given by 

s2 = MSE = IIY - *I t2 
V 

where v = N - rank(X) is the error degrees of freedom (d.f.). 

1.3 Con6dence Estimation a d  Hypothesis Testing 

Let y = 1'8 = Elk_, li@ be an estimable scalar parametric function of 
interest where 6 is the subvector of @ corresponding to the treatment 
effects. Let 9 = 1'3 be the LS estimator of y ;  9 is distributed as N(y, u:) 
where ui = a'I'VI. Frequently y is a cuontrast among the e ' s ,  that is, 

In this section we review standard statistical tests and confidence 
estimates for y. These procedures are based on the likelihood ratio (LR) 
method and possess certain optimality properties. For example, if u2 is 
known, then the uniformly most powerful test of level a for testing 
Hi-' : 7 d yo against the upper one-sided alternative Hif )  : y > yo (where 
yo is a specified threshold that y must exceed in order to constitute a 
research finding of practical importance) can be shown to be an LR test 
that rejects Ho if 

2 

Ei"-, li = 0. 

here 2'"' is the upper a point of the standard normal distribution. For the 
lower one-sided alternative (Hb+' : y h yo vs. HI-' : y < 7 0 )  we have an 
analogous test. For testing Ho : y = yo versus the two-sided alternative 
H ,  : y # yo, the rejection region of the uniformly most powerful unbiased 
test of level a is given by 

This can also be shown to be an LR test. 
Corresponding to each of the above tests there is a (1 - a)-level 

confidence interval for y consisting of the set of yo-values for which H, is 
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not rejected by the given test. Thus corresponding to (1.4) we have a 
lower one-sided (1 - a)-level confidence interval for y given by 

and corresponding to (1.5) we have a two-sided (1 - a)-level confidence 
interval for y given by 

{ y  : y E [? * z(a’z)cr,]} . 

By reversing the steps above we can obtain an a-level rejection region 
for any hypothesis on y from any (1 - a)-level confidence region for y. 
For example, the rejection region (1.4) for Hh-):  y S yo corresponds to 
?-values for which the intersection of the set ( y  : y I yo) with the 
confidence interval (1.6) is empty. Similarly the rejection region (1.5) for 
H,: y = yo corresponds to +-values for which yo does not fall in the 
confidence interval (1.7). In general, given an arbitrary (1 - a)-level 
confidence region for y,  a test of any hypothesis Ho that restricts y to a 
specified subset of the real line can be obtained by rejecting Ho if the 
intersection of that subset with the confidence region is empty. The 
resulting test is known as the confidence-region resf (Aitchison 1964) and 
has size d a  (see Theorem 3.3). This result enables us to use a given 
confidence region for y to test any hypotheses (which may be specified 
after looking at the data) concerning y. 

If u2 is unknown but we have an independent estimator Sz of cr2 (as 
mentioned in the previous section), then the corresponding LR proce- 
dures use S, = S m  in place of u?, and critical points from Student’s 
t-distribution in place of those from the standard normal distribution. 
Thus (1.4) is replaced by the test that rejects H i - ) :  y 5 yo if 

and (1.5) is replaced by the test that rejects H o :  y = yo if 

where T r ’  is the upper a point of Student’s t-distribution with Y d.f. 
These procedures also possess certain optimal properties; see, for exam- 
ple, Lehmann (1986). 
Now consider a set of scalar parametric functions y, =I;@ and write 
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y = (lie, l;@, . . . , I;@)‘ = LO (say) where L = ( I , ,  I,, . . . , I=)’  is an rn x k 
known matrix. Let $ = L e  be an LS estimator of y. As noted before, + - N( y, aZLVL‘). 

The LR test of H,: y = yo versus H, : y f yo, where yo = (yol, yo*, . . . , 
yo,,,)’ is a specified vector, is of the form 

where we have assumed that L is a full row rank matrix. In (1.10) 5 is a 
critical constant to be chosen so as to make the level of the test equal to 
a. Standard distribution theory (see Scheffe 1959) shows that the test 
statistic on the left hand side of (1.10) has the F-distribution under H, 
with rn and Y d.f. and hence 6 = FZ,),,, the upper a point of that 
distribution. 

Associated with the test (1.10) there is a confidence region for y with 
level 1 - a, which comprises of all vectors yo that are not rejected by 
(1.10). This confidence region is given by 

(1.11) 

1.4 Examples 

Example 1.1 (One-way Layout). Consider a single qualitative factor 
with k 2 2 levels (treatments). Let Y,, be the jth observation on the ith 
treatment and assume the linear model 

K,=6’,+ E,, ( l S i S k , l S j S n , ) .  (1.12) 

In this case the unique LS estimates of the 6,’s are given by 4 = Y, = 
Ell-, YJn,  ( l S i d  k). The 0’s are independent normal with means 0, 
and variances u2 /n , .  Thus the matrix V=  diag(lln,, . . . , l / n k ) .  An 
unbiased estimate S2 of crz is provided by Sz = E:=, Z ~ L ~  (Y,, - P,)’/(N - 
k) with v = N - k d.f. where N = Ef=, n,. 

Throughout Part I we discuss MCPs for various families of parametric 
functions of the 6,’s for the one-way layout model. These procedures are 
applicable more widely to any design yielding LS estimates 0, that are 
independent of each other (i.e., the V matrix is diagonal) and of 
S2 - ~ z x ~ / v .  We call such designs balanced if the 4’s have equal var- 
iances. For these designs we can use the procedures restricted to balanced 
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one-way layouts (i.e., n, = n2 = . * - = nk). For a more general notion of 
balance for pairwise comparisons of treatment means, see (2.9) of 
Chapter 3. 0 

Example 1.2 Here the setup 
is the same as in the case of a one-way layout except that in addition to 
the treatment factor, we have a nonrandom quantitative factor X, called a 
covariate or concomitant. Usually the following linear model is postu- 
lated: 

(One-way b y o u t  with a Fixed Covariute). 

where (X,, Y,/) is the observation on the j th experimental unit receiving 
the ith treatment and X., is the grand mean of the X i , k  

The unique LS estimates of the Oi’s and p are given by 

where 

S X ,  = c (Xij  - x; . ) (Yi j  - Y;.) , sxx = 2 (Xi j  - , 
1.i i . i  

s,, = c (Y;j - Y,.)’ . 
h i  

and X i .  and ri. are the-sample means of the observations from the ith 
treatment. The vector 6 - N(8,  uZV) where V = { uii} is given by 

i f i = j  
1 (Xi. - x.y i, + s x x  

(1.15) 

The MSE estimate of uz is given by 

Sz = {Syy - S i y / S x x }  /(N - k - 1) (1.16) 

with v = N - k - 1 d.f. where N = C;”=, ni. 

Exampk 1.3 (B&nced Incomplete Block (BIB) Design). In a BIB 
design k treatments are arranged in 6 blocks each of size p < k such that 
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each treatment is replicated I times (at most once in each block) and 
every pair of treatments occurs together in A blocks. Here r = bp/k and 
A = I ( P  - l)/(k - 1). 

The linear model for this design is given by 

Y, = I.L + el + p, + E,, v(i ,  , ) E D  (1.17) 

where Y,, is the observation on the ith treatment in thej th  block, and D is 
the set of all treatment x block combinations in the design. Note that this 
model assumes no treatment X block interaction. 

The 0,’s and p,’s are not estimable but under the side conditions 
Zrz1 0, = C,=, /3, = 0, the unique LS estimates are given by = f , 
p, = Y, - F. (1  S j  S b), and 

b 

1 -  

( 1  5 i S k) . * PQi 8. = - ‘ Ak 
(1.18) 

Here p.. is the grand mean of the Y,,’s, ?.i is the mean of the Y,,’s from 
the jth block, and Qi is the ith “adjusted” treatment total given by the 
sum of all observations on the ith treatment -(l/p) X the sum of block 
totals for all blocks containing the ith treatment (1 S i S k ) .  It can be 
shown (see Scheffe 1959, page 167) that V= {u, , )  is given by 

The MSE estimator of u2 is given by 

(1.19) 

(1.20) 

with v = N - k - b + 1 d.f. where N = bp is the total number of observa- 
tions . 0 

Exampie 1.4 (Partially Balanced Incomplete Block (PBIB) Design). We 
consider a PBIB design with two associate classes. In this design there are 
k treatments arranged in b blocks each of size p < k such that each 
treatment is replicated I times (at most once in each block) and two 
treatments that are ith associates of each other occur together in A, blocks 
(i = 1,2). If two treatments are ith associates, then let p‘,, be the number 
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of treatments that are jth associates of one treatment and fth associates of 
the other (i, j ,  f = 1,2). The linear model for this design is the same as 
that for a BIB design given by (1.17). 

Rao's solution vector (see John 1971, p. 257) for this design takes the 
form 

~ = M Q .  (1.21) 

Here Q = (Q,, . . . , Q,)' is the vector of adjusted treatment totals Qi as 
defined for a BIB design and the solution matrix M = { m,} is given by 

f J  - if i # j are first associates I m.. = (1.22) 

l o  otherwise 

where 

For this design all contrasts c'8 are estimable, and 

cov(c$, C;6) = u2c~Mc2 V e l ,  cz E Ck 

where C" = { c E  Rk : C:=, ci = 0) is the k-dimensional contrast space. We 
can thus take V = M .  We then have 

2p (az2 + 6,,)(r2 if i and j are first associates 

if i and j are second associates . 
var(ii - 3) = 

(1.24) 

Therefore the design is unbalanced for pairwise comparisons (see (2.9) of 
Chapter 3) unless A, = A,, in which case the design reduces to a BIB 
design. The 1 -  MSE estimator of u2 for this design is given by (1.20) where 
fi = F.,, pi = Y.i - F,. (1 d j S  b), and the i i ' s  are given by (1.21). 0 
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2 SINGLE-STEP PROCEDURES FOR NONHIERARCHICAL 
FAMILIES 

In this section we restrict consideration to families of scalar parametric 
functions. Such families are nonhierarchical. Hierarchical families involv- 
ing vector parametric functions are discussed in Section 3.1 and more 
generally in Section 1.1 of Appendix 1. 

Before we proceed further it may be useful to illustrate the difference 
between a single inference on a vector parametric function and multiple 
inferences on its scalar components. For this purpose we use the follow- 
ing example from Lehmann (1952): Let 8, and 8, be the unknown 
proportions of items with major and minor defects in a lot. The lot is 
considered acceptable if 8, i $, and f& d $*, where do, and @,z are 
preassigned specification limits. If rejected lots are completely screened, 
then the reason for rejection is immaterial, and a single test of the 
hypothesis H , :  8, d 8,, and 4 I 8,, suffices. On the other hand, if a lot 
rejected for major defects is screened differently from one rejected for 
minor defects, then it is important to know the reason for rejection. 
Therefore separate tests on 0, and 4 are required. An MCP becomes 
necessary for performing these latter tests when they are regarded 
together as a family. The union-intersection method provides a general 
method for constructing such MCPs. We now discuss this method. 

2.1 The Union-Intersection Method 

Roy (1953) proposed a heuristic method of constructing a test of any 
hypothesis H, that can be expressed as an intersection of a family of 
hypotheses. Suppose that Ho = niE, Hot where I is an arbitrary index set. 
Further suppose that a suitable test of each Hoi is available. Then 
according to Roy’s union-intersection (UI) method, the rejection region 
for H, is given by the union of rejection regions for the Hot, i E I, that is, 
H, is rejected if and only if at least one Hoi is rejected. 

Roy and Bose (1953) showed that the single inference given by the UI 
test of H ,  implies multiple inferences (tests and confidence estimates) for 
the parameters on which the hypotheses Hoi are postulated. For example, 
suppose the hypotheses Hot are postulated on scalar parameters x, i E I, 
and I is finite. Then by inverting the UI test of Ho = nie, Hoi we obtain a 
confidence region for the vector parameter y.  It is seen later that from 
this confidence region we can derive simultaneous tests and confidence 
intervals not only on the yi’s but also on any functions of them. If the UI 
test of H,  is of level a, then all such inferences derived from it have the 
famiiywise error rate ( W E )  strongly controlled at level a. An MCP 
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derived in this manner from a UI test is referred to as a Uf procedure. 
Exactly how such UI procedures are derived is seen in Section 2.1.1 for 
finite families and in Section 2.1.2 for infinite families. In Section 2.3 we 
see that in addition to tests and confidence intervals we can also make 
directional decisions without exceeding the specified upper bound a on 
the W E .  

2.1.1 Finite Families 
In this section we consider the problem of making multiple inferences on 
the components x (1 S i d m )  of y = L8. We regard these inferences 
jointly as a family. If it is desired to control the per-family error rate 
(PFE) or the per-comparison error rate (PCE), then standard procedures 
for the individual yi*s (as discussed in Section 1.3) can readily be 
constructed. The optimality of such procedures is discussed in Chapter 
11. Here we focus on UI procedures for controlling the FWE. These 
latter procedures have been referred to as finite intersection procedures by 
Krishnaiah (1%5,1979). 

Two-sided inferences are discussed in Section 2.1.1.1 and one-sided 
inferences are discussed briefly in Section 2.1.1.2. 

2. I. I. I For testing H, : y = yo versus H ,  : y # x, 
an LR test was given in (1.10). Here we first give a UI test for the same 
problem based on a “natural” representation of H, as a finite intersection 
of hypotheses on the components of y. Consider a finite family of 
hypothesis testing problems: 

Two-Sided Inferences. 

H O , : . ) ; = y , , v e r s u s H , , : y i # y o i  ( l s i d m ) .  (2.1) 

Clearly, H,, = nim,, H,, and H, = Ur=, H,,. For testing H,, versus H,, we 
can use the LR test (1.9) whose rejection region is of the form 

The critical constants 6, can be determined as follows: The rejection 
region of the UI test of H, is the union of rejection regions (2.2). In order 
for this union to have size a, the 6,’s must satisfy 

Pr,,(l T,J > ti for some i = 1,2,  . . . , m} = a . (2.3) 

Usually we choose ti = 6 for all i for the following reasons: 

(i) The ttl testing problems (2.1) are generally treated symmetrically 
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with regard to the relative importance of Type I versus Type I1 errors. 
This implies that the marginal levels a, = Pr,&{l T I /  > 6 , )  should be the 
same for i = 1,2, . . . , m. Since the Tl’s have the same marginal distribu- 
tion under the Hal's (namely, Student’s t-distribution with Y d.f.), it 
follows that the 5,’s should be equal. 

(ii) For m = 2, Kunte and Rattihalli (1984) have shown that subject 
to (2.3) the choice ,fl = & minimizes 6, among all choices of ( [,, 2,). 
This corresponds to choosing a (1 - a)-level rectangular confidence 
region for y = ( y , ,  yz)‘  with the smallest area (from a certain class of 
rectangular confidence regions). One would conjecture that this result 
would also hold in higher dimensions. 

(iii) Finally, of course, the task of computing the 6,’s is greatly 
simplified if they are chosen to be equal. 

Letting 5, = 5 for all i, from (2.2) we see that the UI test of H ,  rejects 
if 

where (using (2.3)) 6 must be chosen so that 

From the standard distribution theory discussed in Appendix 3, it follows 
that under H,,  T , ,  T,, . . . , T ,  have an m-variate t-distribution with Y 
d.f. and the associated correlation matrix { pij}  where 

I;vli 
p.. = 

l1 {(l;vlJ)(l;vli)}”2 ( 1 5 i Z j S m ) .  (2.6) 

point of max,BismlTllr which is 

Now (2.5) holds ior any choice of yo. Therefore the set of all yo’s that 
will not be rejected by the UI test (2.4) constitutes a (1  - a)-level 
confidence region for y and is given by 

(2.7) 

The critical points I are extensively tabulated only in the 
equicorrelated case (p,, = p tl i # j ) ;  see Table 5 in Appendix 3. In other 
cases one must use some approximation. The simplest of such (conserva- 
tive) approximations is the Bonferroni approximation given by T u  , 
which leads to the well-known Eonferroni procedure. A less conservative 

(a12m) 
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approximation based on the Dunn-Sidak inequality (see Appendix 2) 
uses T?”’) where a* = 1 - (1 - a)’”’’. These approximations have been 
studied by Dunn (1958, 1959, 1%1). (For a still better approximation, see 
Example 2.1 below.) 

We now offer two examples, both of which involve special correlation 
structures { p i , } ,  thus obviating the need for using an approximation. 

Example 2.1. Suppose that the Ti's are uncorrelated. In that case the 
critical constant l T l ~ , ) , , ~ o ~  is denoted by [MI:,),, and is referred to as the 
upper (Y point of the Studentized maximum modulus distribution with 
parameter m and d.f. v. The resulting UI procedure was independently 
proposed by Tukey (1953) and Roy and Bose (1953) and is referred to as 
the Studentized maximum modulus procedure. Various applications of this 
procedure are studied in Chapter 5 .  

We note that if the $’s are correlated with an arbitrary correlation 
matrix { p , } ,  then IMiE,)v provides an approximation to the desired 
two-sided critical point I T/?,),,(p,,l that is sharper than the Dunn-Sidak 
approximation T ,  given above. (a*/‘) 

Example 2.2. As another example of a finite family, consider the family 
of all rn = (;) painvise differences between treatment means in the 
one-way layout model (1.12). The parametric functions of interest are 
6, - with variances Q*( 1 In, + 1 / n J )  
(1 S i < j S k ) .  The exact critical point of the distribution of the max- 
imum of the pairwise It(-statistics ITtJ[ = IY, - ? , l / S q m  (1 5 
i < j S k) is difficult to determine in this case. However, for a balanced 
one-way layout (n ,  = . * = nk = n) it can be determined easily by noting 
that 

and their LS estimates are ?, - 

l(Y1 - 6,)  - (y, - 6,)l 
s /t/FI fi max  IT,,^ = max 

1 Bic lbk I Sf </ S k  

is distributed as the range of k independent standard normal r.v.’s divided 
by an independent (& r.v. This r.v. is denoted by Qk,” and is referred 
to as the Studentized range r.v. with parameter k and d.f. v (see 
Appendix 3). Thus the desired critical point is QtL/fi, and the resulting 
(1 - a)-level simultaneous confidence intervals for all pairwise differ- 
ences 6, - 0, are 

6, - 8, E [ Y, - Fl 5 QtlS/VZ] (1 5 i < j S k) . (2.8) 

This is the well-known Tukey’s (1953) T-procedure (also known as the 
Studentized range procedure), which is discussed in detail in Chapter 3. 
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2.1.1.2 One-sided Znferences. We consider the problem of construct- 
ing simultaneous one-sided confidence intervals on the yj’s (1 5 i S m).  
Application of the UI method leads to the r.v. 

where T, T, ,  . . . , T,,, have an m-variate &distribution with v d.f. and the 
associated correlation matrix { p,,} given by (2.6). We denote the upper a 
point of (2.9) by T2r),,(p,,). The resulting (1 - a)-level simultaneous lower 
one-sided confidence intervals for the y,’s are given by 

The intervals (2.10) can be used to test hypotheses Hbr’ : y, 5 yo, 
against upper one-sided alternatives H l r ’  : yi > ‘yo; where the y,,’s are 
specified constants (1 S i S m). This test procedure rejects Ha, if 

It is readily seen that the Type I W E  of this test procedure is controlled 
at level Q. 

The critical points T ~ , ~ , ~ , , , i  are extensively tabulated only in the 
equicorrelated case ( p I j  = p V i # j ) ;  see Table 4 in Appendix 3. In other 
cases one must use some approximation. As in the preceding section, one 
can use the Bonferroni approximation T r ’ m ) .  When pmin > - 1 / ( m  - I ) ,  a 
less conservative approximation is given by T:.),,pmtn. This latter approxi- 
mation is based on Slepian’s (1962) inequality (see Appendix 2). 

Example 2.3. One-sided inferences are often of interest when comparing 
treatments with a control. Again consider the one-way layout model 
(1.12) and suppose that the kth treatment is a control with which the first 
k - 1 treatments are to be compared. The parametric functions of interest 
are yi = 4 - 6, [l I i - 5 k - 1). The correlation coefficients of the LS 
estimators jj = Yj  - Yk (1 I i 5 k - 1) are given by 

The resulting (1 - a)-level simultaneous lower one-sided confidence 
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intervals for the treatment-control differences are given by 

This is the well-known Dunnett's (1955) procedure for one-sided com- 
parisons with a control. The corresponding two-sided procedure uses the 
critical point 1 TI?-' i p , / )  in place of Tpi) l .v . (pif) .  These procedures are 

U discussed in detail in Chapter 5 .  

We conclude this section by noting that to construct an MCP for a 
finite family one must prespecify not only the number of comparisons, rn, 
but also the particular comparisons. Ury and Wiggins (1971) suggested 
that in a Bonferroni procedure some of the comparisons could be selected 
post-hoc as long as the total number of comparisons does not exceed the 
upper bound M. Rodger (1973) pointed out that the W E  is not 
controlled if the Bonferroni procedure is used in this manner. Ury and 
Wiggins (1974) offered a corrected version of their procedure in which 
the prespecified comparisons are made using the Bonferroni procedure at 
level a, (say), post-hoc comparisons are made using an appropriate 
procedure for the family from which these comparisons are selected at 
level a2 (say) where aI + a2 S a. 

2.1.2 Infinire Families 
Consider an infinite family of hypotheses testing problems: 

H,:a'y=a'y ,  versus H1,:a'y Za'y, ,  a E R " .  (2.12) 

Let H ,  = n,ERm H,, and H, = UaERm H,,. We now derive a UI test of H, 
using this representation, which will yield a UI procedure for the infinite 
family of parametric functions a'y, a E R". 

For testing H,, versus HI,, the LR test has the rejection region 

(2.13) 

where 5; is some critical constant appropriate for testing H,,,. If we 
choose 6, = 6 for all a E W", then by the UI method the rejection region 
for H, is given by 

(2.14) 
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Alternatively we can put 

a'y = a'L6 = 1'6 (2.15) 

where I = L'a is in 2, the row space of L with dimension m. We then have 

where 0, is such that a'yo = l'&. Thus (2.14) becomes 

(2.16) 

(2.17) 

The following theorem shows that the UI test (2.14) (or equivalently 
(2.17)) of Ho is the same as the LR test (1.10). A more general proof of 
this result when L a '  is singular is given by Altschul and Marcuson 
(1979). 

Theorem 2.1 (Roy and Bose 1953). If LVL' is a nonsingular matrix, 
then 

(2.18) 2 2 (+ - Yo"L')--Y? - %A 
S2 

sup T ,  = sup T ,  = 
#€It" IEY 

Furthermore, if 6 in (2.14) (or equivalently (2.17)) is chosen equal to 
fei, then that test has level a. 

Proof. Since L and V are full rank, it follows tuat LVL' is full rank and 
there exists a nonsingular m x m matrix M such that MM' = LVL'. Also 
there is a one-to-one correspondence between every I E 2' and every 
a E W" such that I = L'a. 

For finding the supremum of T i  = T i ,  without loss of generality, we 
can restrict to a such that a'MM'a = a'LVL'a = 1. Now, from (2.16) we 
have 

S'T: = {I'(6 - $)}' - - {a'MM-'L(h - 60)}2 
I'VI a'LVL'a 

= {(M'a)f(M-'L(h - $))}2 . (2.19) 

By the Cauchy-Schwarz inequality, the supremum of (2.19) is given by 

(a'MM'a)((6 - $)'L'M'-'M-'L(e - $)) 

= (i - ~ , J L ~ ( M M ~ ) - ' L ( ~  - 6) = (+ - y o ) ' ( ~ ~ ~ ' ) - l ( +  - y o ) ,  
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which proves (2.18). Since under H,, (2.18) is distributed as an mF,,,, 
0 r.v., the second part of the theorem follows. 

From this theorem it is clear that the confidence region (1.11) for y 
yields joint confidence intervals for the infinite family of all linear 
combinations a'y, a E R", or equivalently for all 1'0, I E 3'. In fact, we can 
write 

= Pr(1'8 E [116 -t (mF~",,)*'2S(I'W)''2] V I E 3) 

= 1 - a .  (2.20) 

Thus (2.20) provides simultaneous confidence intervals of level 1 - a 
for all 1'0, I E 9. This forms the basis of Scheffe's (1953) S-procedure, the 
vaned applications of which are discussed in Chapter 3. Scheffti derived 
his procedure by using a geometric projection method that is equivalent 
to the algebraic result of Theorem 2.1. This method (frequently referred 
to as Scheffi's projection merhod) is discussed in the following section. 

2.2 The Projection Method 

Suppose that we have a (1 - a)-level confidence region C for y = LB such 
that C is convex and symmetric around +, that is, 9 + b E C if and only if 
9 - b E C for any b E R". A set of (1 - a)-level simultaneous confidence 
intervals for all a'y. aER", or equivalently for all re, IE 3, can be 
derived from C by using the projection method based on the following 
simple identity: 

la'(+ - y) l  = 11a11- Ilprojection of 9 - y on all . 

Letting C, = { - y : 7 E C}, we have 

The maximum here is given by the line segment intercepted on the ray 
passing through a by two hyperplanes that are orthogonal to a and 
tangential to C,. The inequality (2.21) holds for all a €  0%'" if and only if + - y lies between all such hyperplanes. Since C, is convex, by the 
supporting hyperplanes theorem it follows that the latter statement is true 
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whenever 9 - y E C,, an event with probability-l- a.-Thus (2.21) yields 
(1 - a)-level simultaneous confidence intervals for all a’y, a E R“. 

Scheffi (1953) applied this method when C is the confidence ellipsoid 
(1.11). He showed that the value of the right hand side in (2.21) is given 
by 

(mF~,~)1’2(S2a’LVL’a)”2 = ( ~ F ~ , ) , ) ” ~ ( S ~ I ’ V I ) ’ ’ ~  , (2.22) 

which is the “allowance” (Tukey 1953) used in the intervals (2.20). 
We next apply the projection method to the rectangular confidence 

region (2.7). In this case the maximal projection of 9 - y on any vector a 
is obtained when 9 - y  is one of the “corner” vectors 
(&,$,, ?t2 , .  . . , *,$,.,,)‘ where 

Thus the right hand side of (2.21) can be written as ,Ez1 I,$,\ and 
hence (1 - a)-level simultaneous confidence intervals for all a’y are given 
by 

Richmond (1982) has given an algebraic proof of this result including the 
case where the li’s are possibly linearly dependent. 

Example 2.4. Consider two parameters y, and y2 and assume for sim- 
plicity that their LS estimators .F, and .F2 are uncorrelated with Ti - 
N(n, af) where (+: = 1 and vi = 4 are known. Thus in our notation, 
cr = 1 and LVL’ = diag(l,4). 

From ( l . l l ) ,  a (1 - a)-level confidence region for (yl, y z )  is given by 

2 

(2.24) 

where xi(..) is the upper a point of the x2  distribution with 2 d.f. This 
confidence region is shown in Figure 2.1 for a = 0.05 (xi(*) = 5.991). 

A (1 - a)-level confidence region for (yl, y2) based on (2.7) is given 
by 

{yl€[.F, *z(=‘)]} x { y 2 E [ . F 2 ~ 2 z ( n ’ ) ] }  (2 .23 

where 2‘”’’ is the upper a‘ = (1 - =)/2 point of the standard 
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Figure 2.1. 95% elliptical confidence region for ( y ! ,  y2) .  

normal distribution. This confidence region is shown in Figure 2.2 for 
Q = 0.05 (a' = 0.0127, 2'"'' = 2.237). 

The elliptical confidence region has longer intervals along both yl and 
y2 axes than the rectangular confidence region. However, the area of the 
former is 37.56 while that of the latter is 40.03. Also, the maximum 
dimension of the former is along its major axis (y2-axis), which is 9.792, 
while that of the latter is along its diagonal, which is 10.004. This type of 
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- Y 1  
+2.237 

-re 2.2. 95% rectangular confidence region for (Y,, v,). 

comparison between the elliptical and rectangular confidence regions 
extends to higher dimensions and to general covariance matrices of +. 

0 

Instead of viewing (2.7) as a single confidence statement concerning y 
one can also view it as a family of confidence statements concerning the 
yi’s. The joint confidence level of all of these statements is also clearly 
1 - a. We can use (2.7) to derive tests on the yi’s, for example, tests of 
the hypotheses If!, in (2.1). More generally, we can test any number of 
hypotheses on arbitrary functions of the yi’s by the confidence-region test 
method, which rejects a given hypothesis if the set of y-values postulated 
by it has an empty intersection with (2.7). In Theorem 3.3 it is shown that 
the FWE for all such inferences is controlled at a. 

Example 2.5. We now consider a linear combination a‘y where a = 
( l / f i ,  2/d3)’. Projection of the elliptical confidence region (2.24) on a 
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gives the interval [ ( 1 / a ) T 1  + (2/l/3)f2 -+ 4.513) using (2.22). Projection 
of the rectangular confidence region (2.25) on a gives the interval 
[(l/t/s)y, + ( 2 / f i ) 9 2  2 ( ( l / f i )  x 2.237 + ( 2 / f i )  x 4.474)] = 
[(l/t/s)T1 + (2/V3)92 f 5.021 using (2.23). Alternatively we may note 
that the vector a is along a diagonal of the rectangle (2.25) and therefore 
the length of the projection equals the length of the diagonal, which is 
2 x 5.002. 0 

This example illustrates how different regions might be preferred for 
obtaining confidence intervals for different types of parametric functions. 

2.3 Directional Decisions 

In some practical applications it is desired to make decisions on the signs 
of parameters of interest. Such decisions are referred to as directional 
decisions. In Section 2.3.1 we consider this problem for the case of a 
single parameter and in Section 2.3.2 for the case of multiple parameters. 

Directional decision problems differ from the inference problems 
considered thus far in this chapter in one important respect, namely, they 
require consideration of the so-called Type 111 errors (Kaiser 1960), 
which are errors of misclassifications of signs of nonnull parameter values. 
One approach in these problems is to control the Type Hi W E ,  that is, 
the probability of any misclassification of signs. This approach is satisfac- 
tory if null parameter values are a priori ruled out or if protection against 
Type I errors is not required (as would be the case if there is very little 
loss associated with Type I errors, e.g., when comparing the mean 
effectiveness of two medical treatments that are about equal on other 
counts such as side effects and costs). In other cases it would be desirable 
to control the probability of making any Type I or Type I11 errors (Type I 
and Type III W E ) .  

If only two decisions are allowed for each parametric sign (i.e., the 
sign is positive or negative), then it is clear that as each parameter value 
approaches zero, the Type 111 W E  will be at least 1/2 and thus cannot 
be controlled at a < 112. Therefore we need a third decision of “incon- 
clusive data” (Bohrer 1979) for each parameter. The MCPs discussed 
below have this three-decision feature. 

2.3.1 A Single Pammeter 
Let us consider a single parameter y whose sign is to be decided based on 
its estimate (the notation here is the same as in Section 1.3). The 
folIowing two procedures may be used for this purpose. 



48 MULTIPLE COMPARISON PROCEDURES FOR FIXED-EFFECTS LINEAR MODELS 

(i) First test H o :  y = 0 using the two-sided test (1.9) at level a. If Ho 
is rejected, classify the sign of y according to the sign of 9. 
Otherwise decide that the data are inconclusive. 

(ii) First observe the sign of 9. If 9 > 0, test If:-) : y Z 0 (and vice 
versa) using the one-sided test (1 .ti) at level a. If H i - )  is rejected, 
then decide that y > O .  Otherwise decide that the data are 
inconclusive. 

Both of these procedures have the same general form: Decide that 
y > 0 or y < 0, depending on whether 9 > &S, or + < -gS,, otherwise (if 
lql S (S,) decide that the data are inconclusive; here 5 = T‘,”’’’ for the 
first procedure and ( =  TF’ for the second. They can be. viewed as UI 
procedures for the family of two hypotheses testing problems: HL-’ : y I 0 
versus Hi” : y > 0 and H F  ): y 1 0  versus HI-’ : y < 0. 

Using the UI nature of both the procedures it is easy to show that the 
maximum of 

Pr{ H;’ or Hb-’ is falsely rejected) (2.26) 

is attained under Ho = HF’ f l  If:-); y = 0. This maximum is the prob- 
ability of a Type I error and equals a for the first procedure and 2a for 
the second procedure. If only Hk-) (say) is true but y ZO, then (2.26) is 
the probability of a Type I11 error and is given by Pr{ 9 > [S,ly < O } .  
This probability is an increasing function of y approaching the limit a12 
for the first procedure and a for the second procedure as y increases to 
zero. Thus the first procedure controls both the Type I and Type 111 error 
probabilities at level a while the second procedure controls only the 
latter. 

For the problem of classifying the sign of a single parameter, Neyman 
(1935a,b) and Bahadur (1952-53) have shown the optimality of the 
procedures stated above, which are based on the Student t-test. 

2.3.2 Multiple Parameters 
Let =I:@, i E I, be a collection of parametric functions o n  which 
directional decisions are desired; here I is an arbitrary index set. We first 
consider a generalization of the first procedure of the preceding section. 
This generalization involves augmenting a single-step test procedure for 
the family of two-sided testing problems: 

H,,: y, = 0 versus H , ,  : y, f 0, i E I (2.27) 

with directional decisions only on those y,’s (7: > 0 or <O depending on 
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whether > 0 or <0) for which the corresponding Hoi’s are rejected. As 
in the preceding section we now show that such a multiple three-decision 
procedure controls the Type I and Type 111 FWE if the test procedure 
controh the Type I FWE. 

Theorem 2.2. 
(2.27) if 

Consider a single-step test procedure that rejects Hoj of 

(2.28) 

where S, = S m ,  and the critical constants 6, > 0 are chosen so that 
the maximum Type I FWE = a. Then the multiple three-decision proce- 
dure that decides that y, > O  or <0 according as TI > &S+, or < - and 
makes no directional decision about y, if I & S , ,  i E I, has 

Type I and Type I11 FWE = Pr{any Type 1 or Type 111 error} ~5 a 
(2.29) 

for all values of the y,’s. 

Proof. 
procedure (2.28) is attained under Ho = niE, Noi, and thus 

It is readily shown that the maximum Type I FWE of the 

From this probability statement we obtain the following joint confidence 
statement concerning the yi’s: 

From Theorem 3.3 it follows that we can test any hypotheses on the y,’s 
using this confidence region and the Type I W E  I a for all such tests. In 
particular. we can test one-sided hypotheses Hbr’ : y, S 0 and H6,’ ’ : ‘y, 2 0. 
Using (2.30) we see that Hb;’ (respectively, H b ; ’ )  is rejected when 

> (,SF, (respectively, < - .$,SF,) and this rejection implies the decision 
’y, > 0 (respectively, <0), i E I. The Type I FWE for all such tests is the 
same as the Type I11 FWE for all directional decisions and hence the 
conclusion of the theorem follows. E l  

An alternative proof of the theorem can be given by noting that  the 
directional decision procedure given above can be looked upon as a UI 
procedure derived by representing Ho = n,,, H,, = nlEl  (HLl+) fl H6;’). 
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We next consider Bohrer's (1979) generalization of the second proce- 
dure of the preceding section. This generalization leads to a multiple 
three-decision procedure that controls only the Type 111 W E ;  no 
protection is provided against false rejections of the hypotheses H,, : 'yi = 
0. Bohrer restricted attention to the special case of a finite family of 
parametric functions { y, = I:@ ( 1  S i S m ) }  and a common critical con- 
stant ( > O .  The following theorem shows how ( is determined to control 
the Type 111 W E .  

Theorem 2.3 (Bohrer 1979). Consider a multiple three-decision proce- 
dure that decides that y, > 0 or <O according as 9, > (S+, or < - ( S ,  and 
makes no directional decision about 'y, if 1+11 5 (Ss (1 d i 5 m). This 
procedure has 

Type 111 FWE = Pr{at least one sign is misclassified} S a (2.31) 

for all values of the yi's if ( is chosen so that 

where the minimum is taken over all 2" combinations of the signs of the 
T,'s and where T,, T, ,  . . . , T ,  have an m-variate r-distribution with v 
d.f. and the associated correlation matrix {pi,}, the p,,'s being given by 
(2.6). 

Proof. We have 

2 Pr{(-sgn ' y i )  TI I ( (1 5 i S m ) }  (2.33) 

with equality attained if and only if 'yi + 0 for 1 s i 5 m. Here the Ti's are 
given by (2.9) and they have the joint distribution stated in the theorem. 

To satisfy (2.31) ( must be chosen so that (2.33) equals 1 - a. But the 
signs of the yi's are unknown. If the minimum of (2.33) over all 2" 
possible combinations of the signs of the Ti's equals 1 - a, then it follows 
that for any true combination of the signs of the yi's, (2.31) will be 
satisfied. 0 
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The solution 6 to (2.32) equals the maximum of the critical points 
TE,\.(20,,) over all 2” correlation matrices {‘.p,,} where { p t , }  is a fixed 
correlation matrix given by (2.6). When pt, = 0 for all i Z j .  the desired 6 
is simply Tt,’ , , , , , , ,  which is the upper a point of the Studentized (with Y 
d.f.) maximum of m independent standard normals. We refer to this r.v. 
as the Studentized maximum r.v. with parameter m and d.f. v and denote 
it by M,, ,”;  its upper a point is denoted by MI,”,’, = T:,)Y.(0) (see Table 6, 
Appendix 3). 

If the correlation matrix { p,,} is arbitrary, then an exact evaluation of 6 
from (2.32) is difficult. In such cases by using the Bonferroni inequality 
one can obtain a conservative upper bound on 6 ,  which is T r ‘ m ) .  Bohrer 
et al. (1981) studied several conservative approximations to the critical 
constant [ and found that this Bonferroni approximation is generally the 
best choice. 

Recently Bofinger (1985) has proposed an MCP for ordering all pairs 
of treatment means (Ot ,  q )  in a balanced one-way layout that controls the 
Type 111 FWE (the probability that any pair (O,, 0,) is incorrectly ordered) 
at a designated level a. According to Theorem 2.2, the T-procedure can 
be used for ordering the treatment means (declare 0, > 0, or <O, depend- 
ing on whether Y, - Y, > Q F L S I f i  or < Qt$iIfi, and do not order 
(el, q )  if I Y, - p,l S QF&Y/fi) with simultaneous control of the Type I 
and Type 111 W E .  Bofinger’s procedure has the same multiple three- 
decision structure, but it uses a smaller critical constant since it is 
required to control only the Type 111 W E ;  as a result, it is more 
powerful. The exact critical constant for Bofinger’s procedure is difficult 
to evaluate for k > 3. She has provided selected exact values for k = 2 and 
3 and upper bounds for k > 3. 

Optimality and admissibility questions concerning directional decision 
procedures have been studied by Bohrer and Schervish (1980), Bohrer 
(1982), Hochberg (1987) and Hochberg and Posner (1986). 

3 SINGLE-STEP PROCEDURES FOR HIERARCHICAL FAMILIES 

When comparing a given set of treatments, it is sometimes of interest to 
see whether some subsets can be regarded as homogeneous. Thus it is of 
interest to test hypotheses of the type H,: f7;, = 0,* = * - * = 8,, where 
P = { i,, i,, . . . , ip} { 1,2,  . . . , k} is of cardinality p (2 S p 5 k ) .  The 
hypothesis H, can be expressed as y, = 0 where ‘ y , : ( p  - 1) X 1 is a 
vector of any linearly independent contrasts among the el’s, i E P and 0 
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denotes a ( p  - 1) X 1 null vector. The family of all hypotheses H ,  is 
referred to as the family of subset (homogeneiry) hypotheses. In this 
family, a hypothesis HQ implies another hypothesis H ,  if P C Q. Families 
with such implication relations are referred to  as hierarchical families. 
Note that if H ,  implies H,, then y p  = APQya for some ( p  - 1) X ((I - 1) 
matrix ApQ. This motivates the following setting for hierarchical families 
of inferences on vector parametric functions; a more general (and sim- 
pler) description of hierarchical families is given in Appendix 1 .  

3.1 Hierarchical Families 

Consider a family of vector parametric functions y, = L,8, i E I, where L, 
is an rn, x k full row rank matrix and I is an arbitrary index set. Some of 
the y,'s may be scalar (i.e., m, = 1) but not all. To avoid trivialities 
further assume that for any two matrices L, and L, with rn, = m, we do 
not have L, = A,,L, for some nonsingular matrix A,,; that is, y, and y, are 
not nonsingular linear transformations of each other. However, if m, < 
m,, then there may exist a matrix A,, : m, x m, such that L, = A,,L,, that 
is, a y, of lower dimension may be obtained by linearly transforming a y, 
of higher dimension. In this case we say that y, is a lineurfuncfion of y,. 

Consider a family of hypotheses HI : y, E c, i E I, where the c ' s  are 
specified subsets of Rml. Suppose that for some pair ( y , ,  y,),  y, is a linear 
function of y, with y, = A,,y,. If 

4,UJ = {A,,y : Y E r;} c c , (3.1) 

then we say that H, implies H I .  In other words, the parameter values 
postulated by Hi form a subset of the parameter values postulated by H , .  
A family of hypotheses is said to be hierarchical if an implication relation 
holds between at least two hypotheses. 

If a hypothesis H, implies H I ,  then H, is said to be a componenr 
(Gabriel 1969) of H,. A hypothesis with no components is called mini- 
mal; all other hypotheses are called nonminimal (Gabriel 1969). For 
example, in the family of subset hypotheses, the pairwise hypotheses 
HI,  : 8, = 6, (1 S i < j d k) are minimal while all other subset hypotheses 
are nonminimal. All subset hypotheses are implied by the overall null 
hypothesis H , :  8, = % = - = 6, and are thus components of it. 

3.2 Coherence and Consonance 

Any MCP for a hierarchical family of hypotheses {HI, i E I }  is generally 
required to possess the following logical consistency property: For any 
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pair of hypotheses ( H I ,  H , )  such that H, implies H , ,  if H, is not rejected 
then H, is also not rejected. This requirement is called coherence and was 
introduced by Gabriel (1969). The same requirement under the name 
comparibility was introduced earlier by Lehmann (1957b). An MCP that 
satisfies this requirement is called coherent. A coherent MCP avoids the 
inconsistency of rejecting a hypothesis without also rejecting all hypoth- 
eses implying it. 

The coherence requirement for simultaneous confidence procedures 
can be stated in an analogous manner as follows: An MCP producing 
confidence regions c(Y) for y,, i E I ,  is said to be coherent if for any pair 
(Y,, y, )  such that y, = A,,y,, we have 

In other words, any yj in the confidence set c(Y) when linearly trans- 
formed using the transformation matrix A,, gives a 'y, that is admitted by 
the confidence set f ,(Y).  

Example 3.1. Consider a family of three parametric functions y, , yz, and 
y = (yl ,  y2)'. Suppose that the %'s are independently distributed as 
N( y,, 1). As in Example 2.4, a (1 - &)-level confidence region for ( y , ,  y2)  
is given by 

(3.3) If,-y,J= < Z'"" , i = 1 , 2  

where a '  = (1  - -)/2. A procedure that uses the projection of (3.3) 
on the corresponding axis as the confidence interval for each y, is clearly 
coherent according to (3.2) since the values of the y,'s ( i  = 1,2) admitted 
by their individual confidence intervals are exactly the ones admitted by 
the confidence region (3.3). 

A related simultaneous hypotheses testing problem involves testing 
H, : yI = 0, H ,  : yz = 0, and their intersection H,: y, = 0, y2 =: 0 against 
two-sided alternatives. A single-step test procedure can be based on 
(3.3). This test procedure, which rejects H, if max{l?,I, lT21} > 2'"'' and 
which rejects HI if 

Now consider a simultaneous confidence procedure for the same 
problem, which gives 

> 2'"'' (i = 1,2), is also coherent. 

(?I - Y,)' + ( 9 2  - Y2I2 x f w  7 (3.4) 

as a (1 - a)-level confidence region for ( yI ,  y2) and 
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Y2 

1 Confidence region 

region 

Figure 3.1. Confidence regions (3.4) and (3.5) for 1 - a = 0.95, 

as a (1 - a)-level confidence interval for y, (i = 1,2). Note that 
qm’> Z ( p ’ 2 )  and thus condition (3.2) is violated. Therefore this 
procedure is not coherent. The confidence regions (3.4) and (3.5) are 
displayed in Figure 3.1 for a = 0.05 ( d m  = 2.448, Z ( a ’ 2 )  = 1.96). 

If we base tests of y and y, ( i  = 1,2) on the respective confidence 
regions (3.4) and (3.5), then it is easy to see that the resulting test 
procedure is also not coherent. For example, consider any yo = (y,,!, yoz)’ 
in the hatched region. Clearly, H , :  y = yo will be accepted but its 
component hypotheses H ,  : yl = yo, and H2 : yz = yo* will be rejected. 

We now turn to another desirable property for MCPs. For a hierarchi- 
cal family of hypotheses {H,, i E I), consonance (Gabriel 1969) refers to 
the property that whenever any nonminimal H, is rejected, at least one of 
its components is also rejected. An MCP that has this property is called 
consonant. 

It should be noted that nonconsonance does not imply logical con- 
tradictions as noncoherence does. This is because the failure to reject a 
hypothesis is not usually interpreted as its acceptance. Also sometimes 
the failure to reject a component of H ,  may be due to noninclusion of 



SINGLE-STEP PROCEDURES FOR HIERARCHICAL FAMILIES 47 

enough components of H, in the family. Thus whereas coherence is an 
essential requirement, consonance is only a desirable property. 

Example 3.1 (Continued). We show that the noncoherent MCP de- 
picted in Figure 3.1 is also nonconsonant. Consider any yo = (yo, ,  xlZ)’ in 
the shaded region. Then clearly, H , :  y = yo will be rejected since yo falls 
outside the confidence region (3.4), but its components H I  : y, = yo, will 
not be rejected because yoi falls in the confidence interval (3.5) for y, 
( i  = 1,2).  0 

3.3 Simultaneous Test and Confidence Procedures 

Gabriel (1969) gave a theory of a special class of single-step test 
procedures for hierarchical families of hypotheses, which he referred to as 
simultaneous test procedures. * We first discuss this theory in Section 3.3.1. 
(The extensions and limitations of the theory for more general models 
and testing problems than those considered in Part I are discussed in 
Section 1 of Appendix 1.) In Section 3.3.2 we discuss the confidence 
analogs of simultaneous test procedures. We also discuss the confidcnce- 
region test method of Aitchison (1964), which can be used to simulta- 
neously test any number of additional hypotheses. 

3.1. I Simuhneous Test Procedures 
Let { H ,  : y, E c ,  i E I} be a hierarchical family of hypotheses. A simulta- 
neous test procedure for this family is characterized by a collection of test 
statistics Z,, i E I ,  and a common critical constant 5 such that the 
procedure rejects H ,  if Z, > 6 ,  i E I. Usually we require the test statistics 
2, to be monotone, that is, Z, 2 2, with probability 1 whenever ff, implies 
H , .  The following theorem makes clear why this is necessary. 

Theorem 3.1 (Gabriel 1369). The simultaneous test procedure stated 
above is coherent for any choice of the critical constant 6 if and only if the 
test statistics 2, are monotone. 

Proof. If the test statistics are monotone, then it is clear that if H, 
implies H I  and if 2, > 6 ,  then with probability 1, Z, > 6 and hence H, is 
rejected. If the test statistics are not monotone, then for some value of 6 
we can have 2, < 6 < 2, with positive probability. Hence the implied 

*The abbreviation STP is often used in the literature for a simultaneous test procedure. We 
do not use this abbreviation because it can be confused with stepwise test procedures 
discussed later in this chapter and in other parts of the book. 
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hypothesis H i  is rejected but not the implying hypothesis Hi, and thus the 
procedure is not coherent. 0 

From now on we assume that the test statistics satisfy the monotonicity 
property. Note that because of this property a simultaneous test proce- 
dure can test all hypotheses in a given hierarchical family in a single step; 
no stepwise ordering of the tests is required to ensure coherence. The 
problem of determining the common critical constant 6 is addressed in 
Section 3.3.2. 

We now discuss two standard methods of obtaining monotone test 
statistics. 

3.3.1.1 
monotone decreasing function of 

Likelihood Ratio Statistics. An LR test statistic 2, for H I  is a 

sup L 
A, = - 

sup L 
H, 

where L is the likelihood function of the data, the numerator supremum 
is over the part of the parameter space postulated by H I ,  while the 
denominator supremum is unrestricted, that is, over the entire parameter 
space. It is readily seen (Gabriel 1969, Lemma A) that the LK test 
statistics { Z l ,  i E  I} are monotone. Hence by Theorem 3.1, any simulta- 
neous test procedure based on them (i.e., a procedure that rejects HI if 
Z, > 6 for some common critical constant 6)  is coherent. However, such a 
procedure is not necessarily consonant. We see in Section 3.3.1.2 that a 
simultaneous test procedure must be based on UI statistics in order to be 
both coherent and consonant. 

Example 3.2. Consider the hierarchical family of subset hypotheses in 
the context of the one-way layout design of Example 1.1. For any subset 
P = { i l ,  i,, . . . , i p )  C {1,2,  . . . , k }  of size p 22, the simultaneous test 
procedure based on LR statistics rejects the hypothesis H, : q, = * . * = 6, 
if 

2 n,( Y, - 
> 5  rGP 

S2  
2, = (3.6) 

- - - 
where Y,, = C l e f  n ,Y , IC,Gp n, .  We see in the sequel that the common 
critical constant 6 must be chosen equal to ( k  - l)F(k(!)I.V in order to 
control the Type I FWE at a designated level a. Furthermore, this 
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procedure it: im lied by Scheffi's S-procedure (2.20) where 3' is taken to 
be the space C of all k-dimensional contrasts. 

This procedure is coherent but not consonant. For example, the test of 
the overall null hypothesis H,, : 0, = = 0, may be significant according 
to (3.6), but this does not imply that there is at least some subset of the 
treatments for which the homogeneity hypothesis will be rejected using 

P 

(3.6). 0 

3.3.1.2 Union-Intersection Sfatisrics. A general presentation of the UI 
method for constructing a single-step test procedure can be given as 
follows: Let I,,, be the index set of all minimal hypotheses in { H I ,  i E I} 
and let Z:,),, be the index set of the minimal components of a nonminimal 
H,. We assume that every nonminimal ti, can be expressed as 

H , =  n H , ,  ~ E Z - I ~ , , .  
iEi!& 

Let &(Y) be the indicator test function of H I  when data vector Y is 
observed, that is, ,P,(Y) = I if Hi is rejected and 0 if H, is not rejected. 
Given the indicator test functions +,(Y) for all i E I,,,, the UI test of any 
nonminimal H, is given by 

The collection of test functions { +,(Y), i E I} obtained using (3.7) is 
referred to as a UZ procedure. Note that this is a single-step test 
procedure but not necessarily a simultaneous test procedure. 

A UI procedure is derived by first constructing tests for HI,  i E I,,, ,  
and then obtaining tests of nonminimal H, by using (3.7). If the critical 
region of each H, for i E I,,,,, is of the form ( Z ;  > I ) ,  then from (3.7) we 
see that the test statistic for any nonminimal H, will be 2, = max (,) Z, 
and its critical region will be (2, > I ) .  The 2,'s obtained in this manner 
are referred to as L I Z  statistics. They are monotone because if HI implies 
Hi, then I:!,  C I:), and therefore Z, = max Z, 2 2, = maxIE,[,, 2,. 

'€,In," ml" 

This implies coherence. The following theorem shows that a coherent and 
consonant single-step test procedure is equivalent to a UI procedure. 

(EIrntn 

Theorem 3.2 (Gabriel 1969). For a hierarchical family { H,,  i E I } ,  a 
single-step test procedure is coherent and consonant if and only if it is a 
UI procedure. 
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Proof. 
nonminimal Hi, 

We have coherence and consonance if and only if for every 

But this condition is satisfied if and only if (3.7) holds, which is the 
0 defining property of a UI procedure. 

Example 3.3. Consider the setting of Example 3.2 but for the balanced 
case (n, = * * . = nk = n). The minimal hypotheses in the family of subset 
hypotheses are pairwise null hypotheses Hi, : 8, = 0, (1 i i < j I k). Sup- 
pose for testing each H,) we use the 1-test, which rejects H,, if 

The UI procedure then rejects any nonminimal hypothesis H, : 0,, = - - = 
8, if 

max IFi - Y,Ivx 
> s  S 

Z, = max T,,I = ‘ . j E p  
i . I E P  

By Theorem 3.2 this procedure is coherent and consonant. We see in the 
sequel that the common critical constant 5 must be chosen equal to Q t t  
in order to control the Type I W E  at a designated level a. Furthermore, 

0 this procedure is implied by Tukey’s T-procedure (2.8). 

3.3.2 Simultaneous Confidence Procedures and Confidence-Region Tests 
Let { Z i ( y , ) ,  i E I} be a collection of scalar pivotal r.v.’s for the family of 
parametric functions { yi = Lie, i E I}, that is, the joint distribution of the 
Zi(yi)’s, i E I, is free of unknown parameters 6 (and hence of the y,’s) 
and cr2. In analogy with simultaneous test procedures, a simultaneous 
confidence procedure for the yt’s, i E l ,  can be based on a common 
critical constant 5. The associated (1 - a)-level simultaneous confidence 
regions for the yi’s are given by 

if 5 is chosen to be the upper a point of the distribution of maxiel Z,( yi ) ,  
that is, if 

P r { Z , ( y , ) ~ ~ V i E I } = 1  - a .  (3.9) 
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In analogy with Theorem 3.1, this simultaneous confidence procedure will 
be coherent if and only if the pivotal r.v.'s Z,(  y,)  are monotone, that is, if 
Z,(yj )  L Z,(y,) with probability 1 whenever y, is a linear function of y,. 

The intersection of regions (3.8) gives a ( 1  - a)-level confidence 
region @(Y) (say) for 6. We can test arbitrary hypotheses H, : 7, E & by 
the confidence-region test method (Aitchison 1964), which 

rejects HI if n Q(Y) = (b , i E 1 ; (3.10) 

here 4 denotes an empty set. It is easy to see that this is equivalent to a 
simultaneous test procedure that 

rejects H,  if Z, = inf Z i ( y 1 )  > 5 , i E I .  (3.11) 
Y'E 1; 

Theorem 3.3. The simultaneous test procedure (3.10) (or equivalently 
(3.11)) controls the Type I FWE at level a if 6 is chosen to be the upper a 
point of the distribution of max,,=, Z , ( y , ) .  

Proof. Let HI,  i E f, be the set of true null hypotheses where fC I. 
Without loss of generality we can take I" to be nonempty since there is no 
Type I error if I'is empty. Let y :  denote the true value of y, for i E I; 
clearly YPE for i E  f. The Type I W E  of the simultaneous test 
procedure (3.11) is given by 

P r { c  n @(Y) = 4 for some i E f) = Pr{z,(y,> > 6 v 7, E 17 for some i E I }  
5 Pr{ Z , ( y Y )  > 5 for some i E I }  
5 Pr{Z,(yp) > 6 for some i E I) 

= a (from (3.9)). 

Since this inequality holds for all r'C I, the theorem follows. 0 

Suppose that we are given the statistics Z ,  (derived using the methods 
in Section 3.3.1, for instance) associated with the simultaneous test 
procedure that rejects HI : y, E if Z,  > 6, i E I. To determine the com- 
mon critical constant 6 so as to control the W E  at a designated level a, 
we can apply the preceding theorem by identifying the pivotal r.v.3 
Z , ( y , )  underlying the test statistics Z,  and then choosing 6 to be the upper 
a point of maxIEI Zi (y I ) .  A more direct and equivalent approach is to 
choose 6 to be the upper a point of the distribution of max,,, 2, under 
the overall hypothesis N o =  n,,, H,. Using this approach it can be 
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readily verified that the appropriate critical constant 6 equals (k - 
l)Fy’,.” in Example 3.2 and QtL in Example 3.3. 

We now give two examples of simultaneous confidence procedures and 
confidence-region tests. 

Example 3.4. Consider the collection of pivotal r.v.3 

which are correlated mrFm,,v r.v.’s (the so-called augmented F r.v.’s with 
m, and Y d.f.). From Theorem 2.1 we see that Z,(y,) can be expressed as 

where 2i is the vector space of dimension M, spanned by the rows of L, 
(recall that y, = L,8). Now if 7, is a linear function of y,, then L, = A,,L, 
and thus 2, is a subspace of 2,. Therefore it follows that Z,( 7,) B Z,( y,) 
with probability 1 and the pivotal r.v.3 (3.12) satisfy the monotonicity 
property. For testing the hypotheses H,: y, = yo, where the y,,,’~ are 
specified vectors, it is clear that the test statistics 2, = Z,(yo,) also satisfy 
the monotonicity property. 0 

Example 3.5. The previous example dealt with two-sided inferences. In 
the present example we consider a hierarchical family of one-sided 
inferences on yl = lie, yz = I;@, and y = (yl ,  yz)’. 

For yl and y2 we can choose the pivotal r.v.’s 

If we choose Z,(y) = max{Z,(y,), ZZ(y2)} as the pivotal r.v, for y, then 
clearly the monotonicity condition is satisfied. The upper (Y point of the 
distribution of max{Z,(y), Zl(yl), Z2(y2)}  = Z o ( y )  is given by TYL.p 
where 

l;v12 

V ( W  I )(I;vI 2 ) . 
P =  

This gives the following simultaneous (1 - a)-level lower one-sided confi- 
dence regions for yl, y2, and y :  

yi 2 +, - 7-t;,psm (i = 1,2) .  (3.13) 
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Suppose we want to test hypotheses H, : y, -I 0, H 2 :  y2 S 0, and H ,  = 
H ,  n H,. Then the confidence-region test based on (3.13) rejects Hi if 

and rejects H, if 

This simultaneous test procedure controls the Type I FWE at level a and 
is coherent. 0 

More generally, if we have a (1 - a)-level confidence region @(Y), 
then we can test any number of arbitrary hypotheses on 6 by the 
confidence-region test method. Moreover, using the projection method of 
Section 2.2 we can obtain confidence regions for any functions of 6. Since 
all such inferences are deduced from the same probability statement 
(namely, Pr{6 E Q(Y)} = 1 - a), the Type I EWE for them is controlled 
at a. In particular, we can classify the signs of any scalar functions f(6) by 
testing the hypotheses f(6) 5 0 and f(6) 1 0  by the confidence-region test 
method. The Type I and Type 111 W E  of such a directional decision 
procedure is also controlled at a (see Theorem 2.2). 

4 STEP-DOWN PROCEDURES 

Stepwise procedures can be divided into two types-step-down and 
step-up. A step-down procedure begins by testing the overall intersection 
hypothesis and then steps down through the hierarchy of implied hypoth- 
eses. i f  any hypothesis is not rejected, then all of its implied hypotheses 
are retained without further tests; thus a hypothesis is tested if and only if 
all of its implying hypotheses are rejected. On the other hand, a step-up 
procedure begins by testing all minimal hypotheses and then steps up 
through the hierarchy of implying hypotheses. If any hypothesis is 
rejected, then all of its implying hypotheses are rejected without further 
tests; thus a hypothesis is tested if and only if all of its implied hypotheses 
are retained. Typically a step-down procedure uses a notiincreasing 
sequence of critical constants for successive steps of testing while a 
step-up procedure uses a nondecreasing sequence. 

In this section we study some theory of step-down procedures. An 
analogous theory is not available for step-up procedures; in fact, there 
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has been only one such procedure proposed in the literature (see Section 
4 of Chapter 4). 

As noted in Chapter 1, step-down procedures are generally more 
powerful than the corresponding single-step procedures. There are some 
drawbacks associated with the former, however. First, their application is 
limited, for the most part, to hypothesis testing problems; only in a few 
cases it is known how to invert them to obtain simultaneous confidence 
intervals (see Section 4.2.4). Second, only for a few step-down test 
procedures has it been shown that they can be augmented with directional 
decisions in the usual manner with control of both the Type I and Type 
I11 FWE (see Section 4.2.3). Third, they can only be used for finite 
families of hypotheses and the inferences cannot be extended to larger 
families than those initially specified. As seen in Sections 2 and 3 these 
limitations do not apply to single-step procedures. 

A general method for constructing step-down procedures is given in 
Section 4.1. Step-down procedures for nonhierarchical families are 
studied in Section 4.2 and for hierarchical families in Section 4.3. 

4.1 The Closure Method 

A general method for constructing step-down test procedures was pro- 
posed by Marcus, Peritz, and Gabriel (1976). This method is referred to 
as the closure method and the resulting procedures are referred to as 
closed testing procedures. Peritz (1970) originally applied this method to 
the problem of testing all subset homogeneity hypotheses in a one-way 
layout (see Section 4.3.1). 

Let {Hi (1 S i d m ) }  be a finite family of hypotheses (on scalar or 
vector parametric functions). Form the closure of this family by taking all 
nonempty intersections H, = n iEP HI for P C {1 ,2 ,  . . . , m}. If an a- 
level test of each hypothesis H, is available, then the closed testing 
procedure rejects any hypothesis H, if and only if every H, is rejected by 
its associated a-level test for all Q 2 P. The following theorem shows that 
this procedure controls the Type I FWE. 

Theorem 4.1 (Marcus et al. 1976). The closed testing procedure stated 
above strongly controls the Type I FWE at level a. 

Proof. Let { H , ,  i E P }  be any collection of true null hypotheses and let 
H, = nlEp Hi where P is some unknown subset of { 1,2, . . . , m } .  If P is 
empty, then there can be no Type I error, so let P be nonempty. Let A be 
the event that at least one true H, is rejected and B be the  event that H ,  
is rejected. The closed testing procedure rejects a true Hi if and only if all 
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hypotheses implying H i ,  in particular H,, are tested at level a and are 
rejected, and the test of Hi is also significant at level a. So A = A f l  B and 
thus under H,, 

F W E = P r { A } = P r { A ~ B } = P r { B } P r { A ~ B } S a .  (4.1) 

The last inequality follows since Pr{B} = a when H ,  is true. Because 
0 (4.1) holds under any H,, the theorem follows. 

As is evident from the proof above, this theorem is applicable more 
generally and is not restricted to the normal theory linear models setup of 
the present chapter. 

4.2 Nonhierarchical Families 

We assume the setting of Section 2.1.1 and consider the problem of 
testing a nonhierarchical family of hypotheses HI : y, E (1 5 i S rn) 
where 'y, = I : @  and the c 's  are specified subsets of the real line. The 
number of tests in a closed testing procedure increases exponentially with 
rn. Therefore it is of interest to develop a shortcut version of the closed 
testing procedure. This topic is discussed next. 

4.2.1 
Suppose that for any P C { 1,2, . . , m} the set of parameter points for 
which all H,'s, i E P, are true and all H,'s, jeP, are false is nonempty for 
any choice of P. This means that every partition of the m hypotheses into 
two subsets such that the hypotheses in one subset are true and those in 
the other subset are false is possible for at least some point in the 
parameter space. This is referred to as the free combinations condition by 
Holm (1979a); this condition is assumed to hold (except when noted 
otherwise) in the present section. Note that this condition is not satisfied 
for the family of pairwise null hypotheses because, for example, the set 
(0, - 0, = 0) n (6, - 0, = 0) n (8, - 0, z0) is empty. 

Consider a closed testing procedure that uses UI statistics for testing 
all intersection hypotheses H ,  = n f E P  HI (i.e., the test statistic for every 
intersection hypothesis H, is derived from those for the Hf's by the UI 
method). Such a closed testing procedure can be applied in a shortcut 
manner because the UI tests have the property that whenever any 
intersection hypothesis H ,  is rejected, at least one of the HI's implied by 
H p  is rejected. Therefore, in order to make a rejection decision on any 
HI, i t  is not necessary to test all the intersections H, containing that H,;  
one simply needs to test only the latter. But this must be done in a 

A Shortcut Version of the Closed Testing Procedure 
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step-down manner by ordering the H,’s to ensure the coherence condition 
that a hypothesis is automatically retained if any intersection hypothesis 
implying that hypothesis is retained. 

If the UI related test statistics for the hypotheses H ,  are of the form 
Z, = maxIEp Z, (which is the case if the rejection regions for the individu- 
al H,’s are of the form Z, > 0, then the requirement mentioned above 
can be ensured if the H,’s are tested in the order of the magnitudes of the 
corresponding test statistics 2,’s from the largest to the smallest. Thus the 
hypothesis corresponding to the largest Z, is tested first. (Note that 
testing this hypothesis is equivalent to testing the overall intersection 
hypothesis.) If it is rejected, then any intersection hypothesis containing 
that hypothesis will clearly be rejected and therefore that hypothesis can 
be set aside as being rejected without further tests. Next the hypothesis 
corresponding to the second largest Z, is tested. This procedure is 
continued until some 2, is found to be not significant. At that point all the 
hypotheses whose test statistic values are less than or equal to the current 
Z, are automatically retained. 

According to Theorem 4.1, this procedure will control the Type I FWE 
at level a if the individual tests at different steps are of level a. Suppose 
that at some step the hypotheses H,,  i E P, are still to be tested. Then an 
a-level test is obtained by comparing the test statistic Z ,  = maxIEp Z, 
against the upper a point of its distribution under H ,  = nrEP H,. 

This shortcut version of the closed testing procedure was proposed by 
Holm (1979a) (also independently proposed earlier in special contexts by 
Hartley 1955, Williams 1971, and Naik 1975) who labeled it a sequentially 
rejecrive procedure. We now give two examples of this procedure. 

Example 4.1. Suppose that the estimates q, (1 d i S rn) are independent 
and we wish to test H I  : y, = yo, (1 I i S m )  against two-sided alternatives. 
In that case, as seen in Example 2.1, the distribution of maxlslsm IT,[ 
under ny’l H ,  is the Studentized maximum modulus distribution with 
parameter m and d.f. v. The upper a point of this distribution is denoted 
by lMl!$,,. More generally, the upper a point of the distribution of 
max,,,}T,I under H ,  is given by IM{‘,3! where p = card(P). 

The closed testing procedure can be applied in a shortcut form as 
follows: 

(i) First order the (T,I-statistics as ( T I , , ,  S lTIc2)  S . a . 5  IT/(, , .  Let 
/I(,,, H ( ? ) ,  , . . , H(,,,) be the corresponding ordered hypotheses 

Reject H,,, if IT](,,,) > IMIE,),,; otherwise retain all hypotheses 
without further tests. 

H; . 
( i i )  
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(iii) In general, reject H(,) if I > I M I I ~ ,  for i = m, m - I ,  . . . , j .  
If H , i ,  is not rejected, then also retain H(j-l) ,  . . . , H(I) without 
further tests. 

Note that the corresponding single-step test procedure mentioned in 
Example 2.1 uses a common critical point IMIE.),,, which is strictly greater 
than IMllfy’ for i = 1,2,  . . . I rn - 1. Therefore that single-step test proce- 
dure is less powerful than the step-down test procedure stated above. 

0 

Example 4.2. We next describe an application of the closed testing 
procedure to the problem of making one-sided comparisons with a 
control (Naik 1975, Marcus et al. 1976). Consider the finite family of 
hypotheses {Hi : 6, - 6, S 0 (1 Z i 5 k - 1)) against upper one sided alter- 
natives. Assume that n 1  = * .  * = n k - ,  = n and let p = n l ( n  + nk). The 
closed tcsting procedure can be applied in a shortcut form as follows: 

(i) Calculate the statistics 

r, - Yk 
s d m k  (1 5 i 5 k - 1) , 

and order them S * .  . S T ( k - l ) .  Let H(l) ,  ff[*,, . . . , 
H(k - I )  be the corresponding hypotheses. 
Reject H + , )  if T ( k - I )  > T f ? l , v , p ;  otherwise retain all hypoth- 
eses without further tests. 
In general, reject ti(,) if > TfP:p for i = k - 1. k - 2, . . . , j .  
If H ( , )  is not rejected, then also retain H(,- ,), . . . , H ,  without 
further tests. 

S 

(ii) 

(iii) 

It is readily seen that this step-down procedure is more powerful than 
the single-step test procedure based on (2.1 l ) ,  which uses a common 

0 critical constant ~ f - ) ~ . ~ , ~  > TIP:, for i = 1, . . . , k - 2. 

4.2.2 
In the preceding section we gave two examples of step-down test proce- 
dures obtained by the closure method. In both cases the correlation 
structure { p4,} was particularly simple, which enabled us to easily obtain 
the exact critical point for an a-level test at each step. Furthermore, the 
critical point used at each step depended on the f,’s still under test only 
through their number. When the correlation structure of the fI’s is 
arbitrary, this is no longer the case. In general, suppose that at a given 
step a set of hypotheses Hi : y, = yoi for i E P is still to be tested (against, 

A Sequentially Rejective Bonferroni Procedure 
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say, two-sided alternatives). Then for comparing with the max,,, IT, / -  
statistic, one must use the critical constant l T i ~ ~ , R ,  where R, is the 
correlation matrix of the 9 , 's  for i E P and p = card(P). Computation of 
these critical constants poses a formidable problem. Furthermore, for 
each different subset P of hypotheses, the critical point must be calcu- 
lated anew. 

A simple, conservative solution to this problem can be based on the 
Bonferroni inequality. One can thus use T f ' 2 p )  in place of I Tl'pSt,R, in the 
procedure stated above. This is the basic idea behind Holm's (1979a) 
so-called sequentially rejective Bonferroni procedure. This procedure can 
be implemented as follows once the P-values for the test statistics for the 
H, (1  S i S m) have been calculated. Order the P-values P ( , )  2 Pi*)  2 
+ . Z P,,, and let H ( , ) ,  H(*,, . . . , H(,) be the corresponding hypotheses. 
First check if P,,, 2 a / m ,  in which case retain all the hypotheses without 
further tests; otherwise (if P,,, < a/m) reject H(,) and proceed to test 
H(m- l ) .  Next check if P ( , , . - l ) Z a / ( m  - l ) ,  in which case retain 
H(m-l) ,  . . . , H,,, without further tests; otherwise (if < a / ( m  - 1)) 
reject Him-l)  and proceed to test H ( , - 2 ) ,  and so on. This step-down 
Bonferroni procedure based on the P-values may be contrasted with the 
corresponding single-step Bonferroni procedure in which all the P-values 
are compared to the common value alm. Clearly, the step-down proce- 
dure is more powerful. 

Shaffer (1986a) proposed a modification of the sequentially rejective 
Bonferroni procedure when the free combinations condition is not as- 
sumed to hold and thus the truth or falsity of certain hypotheses implies 
the truth or falsity of some others. For example, if we have three 
hypotheses: H ,  : 6, = 6,, H , :  0, = 6,, and H, : 6, = S,, and if,  say, H ,  is 
known to be false, then it follows that at least one of H2 and H ,  must also 
be false. Such information can be utilized in sharpening the sequentially 
rejective Bonferroni procedure as follows: In the usual procedure, after 
the j hypotheses corresponding to the j smallest P-values (viz., P( C= 

Y )  : P ( m - l )  S .  . . d P i , - , + , ) )  have been rejected, the ( j  + 1)th hypothesis IS 

tested by comparing P(,,,-,) with a / ( m  - j ) .  Shaffer suggested that instead 
of a / ( m  - j )  one should use a/j* where j' equals the maximum possible 
number of true hypotheses given that at least j hypotheses are false. She 
also noted that a further sharpening can be obtained (at the cxpense of 
greater complexity) by determining j *  given that at least j specific 
hypotheses are false. Conforti and Hochberg (1986) showed that this 
latter modified procedure is equivalent to Peritz's (1970) closed testing 
procedure. They also gave an efficient computational algorithm based on 
graph theory for calculating j' for the family of painvise comparisons. 
However, this algorithm is derived under quite a restrictive assumption, 
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which often is not satisfied. Therefore Shaffer's simpler modification is 
recommended in practice. 

4.2.3 Directional Deciswns 
Shaffer (1980) considered the problem of supplementing a closed testing 
procedure having Type I EWE S a for the family { H,  : y, = 0 (1 S i S m)} 
with directional decisions for any null hypotheses that are rejected in 
favor of two-sided alternatives. (Thus, e.g., if H ,  : y, = 0 is rejected, then 
decide the sign of 'y, depending on the observed sign of q,.) She showed 
that if the test statistics for the individual hypotheses are independently 
distributed, then such a directional decision procedure controls both the 
Type I and Type 111 FWE at level a; for a further discussion of this 
result, see Appendix 1, Section 3.3. For single-step procedures this result 
was shown in Theorem 2.2 without assuming independence of the test 
statistics. 

Shaffer's condition of independence of test statistics is rather restric- 
tive. It does not hold in most problems that we have discussed thus far. 
For example, even if the $,'s are independent (p , ,  = O  V i Z j ) ,  the 
statistics T, are correlated because they all share the common estimate S2 
of a2. In this case, for the step-down procedure based on the Studentized 
maximum modulus distribution given in Example 4.1, Holm (1979b) has 
given a proof to show that Shaffer's result holds even though the 
independence condition is violated. 

Very little work has been done on step-down procedures for control- 
ling only the Type I11 W E  when making directional decisions. See, 
however, Bohrer and Schervish (1980) and Hochberg and Posner (1986). 

4.2.4 Shulraneous Confidence Estimation 
Kim, Stefansson, and Hsu (1987) proposed a method* for obtaining 
simultaneous confidence intervals associated with some step-down testing 
procedures. Their method applies to general location parameter families 
of distributions. But at present it is only known how to apply it to test 
procedures for one-sided hypothesis testing problems satisfying the free 
combinations condition. Thus, for example, it is not known whether one 
can use this method to derive two-sided simultaneous confidence intervals 
associated with, say, Fisher's least significant difference (LSD) procedure 
(after adjusting it so that it controls the Type I FWE; see Example 4.6) 
for all pairwise differences of treatment means in a one-way layout. 

Let 6 - N(#, a%) and let { H c ,  i E I} be a family of linear hypotheses 

Our discussion of this method is based on Stefansson and Hsu (1989, which is an earlier 
version of Kim, Stefansson. and Hsu (1987). 
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on B where I is an arbitrary index set. Let (6,(6) be the indicator test 
function for HI corresponding to the given test procedure where A(6) = 1 
(respect_ively, =0) means that H, is rejected (respectively, not rejected) 
when B is observed, i E  I. The method is based on the following 
straightforward result. 

Theorem 4.2 (Kim, Stefansson, and Hsu 1987). Define 

c(6) = {e: 0,,,,(6 - e )  = 0) (4.2) 

where g( .) is an arbitrary function mapping W k  into I. If 

Pr{4,(6) = ile = 0) = a v i E I , 

P r { e E ~ ( 6 ) ) = 1 - a  v e e W  

(4.3) 

then 

Thus C ( 6 )  provides a (1 - a)-level confidence region for 8. 0 

Note that the sole probability assumption (4.3) states that the size of 
each test is a when B = 0 although each Hi can be a composite hypoihesis 
(including the parameter poi"; 8 = 0). By making a judicious choice of 
g(8)  and the test functions #1,(8), one can obtain simultaneous confidence 
regions for any desired parametric functions of 8. We now illustrate the 
use of this theorem to obtain lower one-sided simultaneous confidence 
intervals for 0, - 6, (1 I i S k - 1) by inverting the one-sided step-down 
test procedure of Example 4.2. 

Example 4.3. Recall that the hypotheses under test are H ,  :tl, - 6, SO 
(1 5 i I k - 1) and the ordered hypotheses H,, corres- 
pond to the ordered statistics: ?(,) S _T2, S * * S T ( , - , )  or equivalently 
the ordered sample means Y(,) S Yt2, S .  S Y ( , - l l .  Let P = {(l), 
(2), . . . , ( p ) }  and H, = np=, H(l) .  Note that I consists of all nonempty 
subsets P. The indicator test function of H ,  for the given step-down 
procedure is given by 

H ( 2 , ,  . . . , H, ,  

o if Fti) s Y k  + i = l ,  . . . , p  
(4.4) 4 p ( y )  = 1 otherwise 

where 
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We know that 4,(Y) is a test of level a of the hypothesis H,.  In 
particular, Pr{ 4,(Y) = 1) = a for all subsets P when 0, = . - = 0, - I  = e,, 
Thus (4.3) is satisfied and we can apply Theorem 4.2 with 

g ( 8 )  = { i : e, s e, ( 1 s i 5 k - 1 )} . 

We obtain from (4.2) 

where the unions are taken over all nonempty subsets P of 

The confidence set (4.6) is rather cumbersome to use. It can he 
restated in a more convenient form as follows: Let p be the index such 
that 

{ 1 , 2 , . .  . , k - 1 ) .  

Y , , , > Y , + ( , ( i = k - - l ,  . . . ,  p + 1 )  and F(,, 5 Y, + 6,.  

that is, the step-down test procedure rejects H ( , - * ) ,  . . . , H,, +,)  and 
retains H(, , ,  . . . , H ( , ) .  Then 

provide (1 - a)-level simultaneous lower one-sided confidence intervals; 
here x- = min(x, 0). 

Comparing (4.7) with the intervals (2.11) (for n ,  = * - .  = nk-, = n and 
pi, = p = n / ( n  + n,) for all i # j )  associated with the corresponding single- 
step test procedure, we see that the confidence bounds in the former are 
not always as sharp as those in the latter for all i = 1,2 ,  . . . , k - 1. In 
fact, for those treatments for which H, is rejected (thus implying that 
0, - 0, > 0) the confidence bound given by (4.7) is zero while that given 
by (2.11) is positive. The lack of positive lower bound for Oi - 0, in this 
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case is a drawback of (4.7). For those treatments for which H, is not 
rejected, the confidence bounds given by (4.7) are at least as sharp as 
those given by (2.11). 

4.3 Hierarchical Families 

In Chapter 1 we introduced Fisher’s LSD, which is a step-down proce- 
dure for the hierarchical family consisting of the overall null hypothesis 
and all pairwise null hypotheses. In this section we study the theory of 
step-down procedures for the larger family of all subset hypotheses. After 
introducing some basic preliminaries in Section 4.3.1 we discuss the 
application of the closure method to this family in Section 4.3.2. The 
resulting closed testing procedure is not easy to use because it involves 
too many tests. Simpler step-down procedures that are not of closed type 
are studied in Section 4.3.3. 

4.3.1 Preliminan’es 
Let 6 - N ( 8 ,  a%) where V is a known matrix and let S Z - u a z , y ~ l v  
independent of i. Assume that, for testing each subset homogeneity 
hypothesis H,: 6, = 8, for all i ,  j E P, we have a test statistic 2, whose 
distribution under H p  is free of unknown parameters 8 and u2. If large 
values of 2, indicate heterogeneity of the subset P, then we need an 
appropriately chosen upper critical point of the null (under H,) distribu- 
tion of 2, for testing H,. This critical point may, in general, depend on P 
and we denote it by 5,. 

Later we  need to consider hypotheses of the type H, = 17:= I H,, where 
P = ( P I ,  P 2 , .  . . , P,) is a “partition” of K = (1,2,  . . . , k}, that is, the 
Pi’s are disjoint subsets of K with cardinalities p ,  Z 2 such that C := p ,  < = 
k;  here r ,  the number of homogeneous subsets, is between 1 and k / 2 .  
These hypotheses correspond to parameter configurations 8 with at least 
two of the 6,’s equal and are referred to as multiple subset hypotheses. 
Consideration of such parameter configurations becomes necessary for 
studying whether a given MCP controls the FWE strongly. Note that the 
family { H , ,  VP} forms the closure of the family { H p .  V P }  and is the 
family addressed by the closed testing procedure of Section 4.3.2. 

Theorems 4.3 and 4.4 give the choice of the so-called nominal signifi- 
cance levels to be used for each test in the procedures of Sections 4.3.2 
and 4.3.3, respectively. Both of these theorems require the following 
condition to hold: For any Hp = fir=, H,, 
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for the given set of test statistics {Z,} and critical constants { S,}. From 
Kimball (1951) it follows that for a one-way layout design, (4.8) is 
satisfied when the Z,’s are Studentized range or F-statistics. Moreover, 
there is equality in (4.8) if cr2 is known. More general conditions for (4.8) 
to hold can be obtained from Theorem 2.3 in Appendix 2 and are as 
follows: 

(i) For every given S, the set (2 ,  S S,,} is convex and symmetric 
about the origin in the space of the 4, j E P, (1 S i S r) .  

(ii) The matrix V has the product structure 

u,, = A , A ,  (1 Z i # j S k) (4.9) 

for some real constants A,. 

It is conjectured (see Conjecture 2.3.1, Tong 1980, p. 27) that (4.8) 
holds without the condition (4.9). However, Khatri’s (1970) proof of this 
conjecture has been shown to be in error by Sidak (1975). 

4.3.2 A Closed Testing Procedure 
The basic principle behind the closure method was explained in Section 
4.1. There it was shown (see Theorem 4.1) that given a finite family of 
hypotheses, if one tests each intersection hypothesis at level a subject to 
the coherence requirement, then the Type I FWE is strongly controlled at 
level a. Peritz (1970) applied this method to the family of all subset 
hypotheses. The resulting closed testing procedure tests every multiple 
subset hypothesis H,, at nominal level a subject to the coherence require- 
ment which is satisfied if, whenever a hypothesis Hp is not rejected, then 
all HQ’s that are implied by Hp are retained automatically without further 
tests. Note that if P =  (P , ,  P, ,  . . . , P, )  and Q =  (PI ,  Q,, . . . , Q,) ,  then 
Hp implies HQ if and only if every Pi 2 Q, for some j (1 S i S r ,  1 I j S s). 

Let ap = PrNp{ZP > 6,) be the nominal level of the test of H,; note 
that a, is assumed to depend on P only through its cardinality p. The 
following theorem shows that Peritz’s choice (4.10) for the ap’s results in 
nominal level Sa for each multiple subset hypothesis Hp. Before stating 
the theorem we introduce the following terminology (due to Begun and 
Gabriel 1981): A hypothesis Hp = fl;=, H ,  is said to be significant at 
nominal level ap if and only if Z,,> sp, for some i (1 d i S r )  where 
p = ( p , ,  p 2 ,  . , . , p,)’  denotes the vector of cardinalities of 
P , ,  P , ,  . * .  7 p,. 

Theorem 4.3 (Begun and Gabriel 1981). Suppose that we use the 
following nominal levels for tests of individual hypotheses Hp: If P is a 
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singleton, say P = (P), then test H, at level a. If P is not a singleton, say 
P =  (P,, P z , .  . . , P,) for r h 2 ,  then test each H ,  at level 

= 1 - (1 - a ) ~ i ”  ( 1  s i s r )  . (4.10) 

Then ap S a for all Hp if (4.8) is satisfied. Hence the resulting closed 
testing procedure controls the Type I W E  strongly at level a. 

Proof. If P is a singleton, then we clearly have a,, = a. If P is not a 
singleton, then 

aP, 

5 1 - n (1  - 9,) 
i - l  

(from (4.8)) 

r 

= 1 - n (1 - [l - (1 - (from (4.10)) 
I = ]  

= 1 - ( 1  - a ) w k  

d a  (since p i  S k) 
t = l  

Hence from Theorem 4.1 it follows that the Type I FWE is strongly 
controlled at level a. 0 

As noted above, the closed testing procedure involves testing every 
multiple subset hypothesis Hp unless it is retained by implication. A 
systematic and computationally feasible algorithm for implementing this 
procedure was given by Begun and Gabriel (1981), and is discussed in 
Section 3 of Chapter 4. 

4.3.3 
Many step-down procedures proposed in the literature for the family of 
subset hypotheses share a common testing scheme that is much simpler 
than that of the closed testing procedure. Einot and Gabriel’s (1975) 
description of this testing scheme is given below. By making different 
choices for the test statistics Z, and the critical points tP used to test 
subset hypotheses H p ,  different step-down procedures in this class can be 
obtained. 

A Class of Other Step-Down Procedures 

4.3.3.1 A General Testing Scheme. Coherence requires that a subset 
hypothesis H, be rejected if and only if all implying subset hypotheses H, 
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are rejected for Q 2 P. This is ensured by carrying out the tests in a 
step-down fashion as follows: 

Step 1. 

Step 2. 

Step 3. 

Test the overall null hypothesis H, : 8, = 0, = * . = 8,. 

(a) 
and stop testing. 
(b) If Z ,  > 5,. then reject N, and proceed to Step 2. 
Test the subset hypotheses H, for all subsets P of size k - 1. 

(a) If Z, 5 (,, then retain all Ha’s ,  Q C P. If Z, 9 6, for all P 
of size k - 1, then stop testing. 

(b) If Z, > tP, then reject H,. If H ,  is  rejected for some P, 
then proceed to Step 3. 
In general, if H ,  is rejected for P of size p L 3. then test all of its 
subsets of size p - 1 (except those that were retained by implica- 
tion at an earlier step). If H, is retained, then retain Ha for all 
Q C P. Continue in this manner until no subsets remain to be 
tested. 

If Z, d (,, then retain all subset hypotheses H,,, P C K ,  

A simultaneous test procedure uses a common critical value 6, = 6 for 
all P C K and statistics Z, having the monotonicity property that Z, I Z ,  
whenever Q C P. As we saw in Theorem 3.1, this ensures coherence 
without a step-down testing scheme as above. 

Now consider a balanced one-way layout. Suppose we use the Studen- 
tized range statistic 

.\/ii(max Yl - min F,) 
(4.11) I E P  I E P  

S R ,  = 

for testing the hypothesis H, .  Because of symmetry considerations, here 
each critical point 6, depends on P only through its cardinality p; let us 
denote it by 5, (2 S p d k). Lehmann and Shaffer ( 1 9 7 )  noted that in 
this case whenever a hypothesis H, is rejected using the step-down 
procedure given above, every H, implied by H ,  such that Q contains the 
two treatments yielding maxlEp Y, and minlEp PI will also be rejected 
(and hence need not be separately tested) if the 6,’s satisfy the following 
necessary and sufficient condition: 

(4.12) 

In particular, the two treatments corresponding to maxlEp Y, and 
miniep Y, can be declared significantly different from each other when H, 
is rejected. This enables us to use a shortcut step-down procedure as 
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illustrated in Example 4.4 below. Note that, as in Section 4.2.1, this 
shortcut version is possible because the statistics (4.11) are UI statistics. 
See Section 3.1 of Appendix 1 for a further discussion of this problem in 
the setting of general location parameter families of distributions. 

Example 4.4. For a balanced one-way layout design the statistic R, 
given by (4.11) is distributed as a Studentized range r.v. QP.” under H,. 
Suppose that we test each H, at the same (nominal) level (Y by using the 
critical point 6 ,  = QKt. These critical points satisfy (4.12) because QE!, is 
increasing in p for fixed OL and v. Therefore a shortcut step-down 
procedure can be used as follows: Let p(l) 5 ? ( 2 t  S - .  . S ?(k) be the 
ordered sample means. 

Srep 1.  (a) Test H ,  first. If v X ( ~ ( ~ )  - y( , , ) /S  S QtL, then retain all 
subset hypotheses H,, P C  K, and stop testing. 

(b) If f i ( Y t k )  - p(,,)/S> QtLy then reject H ,  (and all HQ’s 
for Q K containing both (1) and ( k ) )  and proceed to Step 2. 

(a) Test H,, and HP2 where PI = ( ( l ) ,  I . . , ( k  - 1)) and Pz = 

{(2), . . . ( k ) } .  If V Z ( Y [ ~ - , )  - p(,))/SS Qr-),,v2 then - retain all 
subset hypotheses H,, P C  P,. Similarly if v Z ( Y t k )  - Y ( , , ) / S  S 
Q?!,,”, then retain all subset hypotheses H,, P G  P,. If both 
H p ,  and H,, are not rejected, then stop testing. 

(b) If at least one of H,, or H ,  is rejected, then proceed to 
Step 3. 
In general, if H, for subset P = {(i), . . . , ( j ) }  with cardinality 
p = j - i + 1 Z 3 is rejected, then also reject all subset hypoth- 
eses H ,  for Q C P containing both ( i )  and ( j ) .  Test H,, and H,. 
where P, = {(i + l ) ,  . . . , (j)} and P2 = {(i), . . . , ( j  - 1 ) )  unf 
less they are retained as homogeneous by implication at a 
previous step. For testing Up, use the statistic \/ii_CYc,, - 
Y(,+l))/S and for testing H,, use the statistic f i ( Y ( , - , ,  - 
?(,)) /S. Compare both the statistics against the same critical 
point Q;:,“. If H,, is not rejected, then retain all subset 
hypotheses H, for P C_ P, ( i  = 1,2). Stop testing when no further 
subsets remain to be tested. 

This procedure was proposed by Newman (1939) and later reinvented by 
Keuls (1952) and is hence known as the Newman-Keuls (NK) procedure. 

El 

The nominal levels aP of a step- 

Step 2. 

Srep 3. 

We study it in more detail in Chapter 4. 

4.3.3.2 
down procedure are given by 

Nominal and True Levels. 
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a, = PrHp(Zp > 5,) , P C K I 

and the corresponding true levels a; are given by 

(4.13) 

(Note that the supremum in (4.14) is needed because the given probabili- 
ty depends on the Oi’s, igP, and hence is not the same under all 0’s 
satisfying H,. In contrast, no supremum is needed in (4.13).) A true Ievel 
a; takes into account the fact that the hypothesis H, can be rejected if 
and only if the hypotheses Ha are rejected for all Q 2 P ;  thus a; gives 
the supremum of the true probability of rejecting H ,  when H, is true. 
Clearly, we have a; = ax and a ; S  a, for all P C K. Under the so-called 
separability condition (stated in Appendix l ) ,  one can show that a;+ a, 
when 10, - 0,(+= for all i E P, j g P .  This condition is satisfied by the 
standard procedures based on Studentized range and F-statistics (see 
Example 3.1 of Appendix 1 )  that we study in Part I. 

4.3.3.3 
given MCP, 

Control of the Type I Familywise Error Rate. Define, for the 

a * ( P )  = sup[PrHp(any H,, (1 S i S r)  is rejected}] . (4.15) 
HP 

Then the given MCP controls the Type I FWE strongly at level a if 

a* = max{a*(P)) S a .  (4.16) 

To simplify the presentation, from now on we make the assumption 
that each a, depends on P only through p and denote it by a,,. Theorem 
4.4 below gives a simple upper bound on a * ( P ) .  

P 

Theorem 4.4 (Tukey 1953). Under the separability condition referred 
to above and condition (4.8), for any partition P = ( P , ,  P , ,  . . . , P , )  we 
have 

r 

a * ( P ) s  1 - n(1- a,,), (4.17) 
r - i l  

and hence 

(4.18) 
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where the maximum is taken over all sets of integers p l ,  . . . , p ,  satisfying 
pi Z 2 ,  ErSl pi S k, and 1 S r S k12. 

Proof. First note that the probability of at least one false rejection 
under Hp = n:=, H,, is maximized under a (limiting) least favorable 
configuration of the 6,’s when the homogeneous subsets P , ,  . . . , P, are 
spread infinitely apart from each other. This is so because in that case, 
with probability one, none of the sets P, will be retained by implication. 
Under this least favorable configuration we can write 

= 1 - n (1 - 
I =  I 

Hence (4.17) is proved. The upper bound (4.18) requires no  proof. 0 

It is worth noting that the upper bound obtained depends only on the 
nominal significance levels ap ( 2  S p 5 k) and not on the choice of the 
test statistics Z,. 

If there is any doubt about the validity of assumption (4.8), then one 
can instead use the first order Bonferroni inequality to obtain the 
following upper bound on a *( P): 

r 

**(P) I c ap,, 
r =  I 

(4.19) 

This upper bound is more conservative than (4.17) but it is always valid. 
It is easily seen that if the nominal levels ap are chosen as 

a P  ap = - k ( 2 s p  s k )  , (4.20) 
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then (4.16) is satisfied. This specification of the ap’s was suggested by 
Ryan (1960). Tukey (1953) and Welsch (1972) independently proposed a 
slightly improved (still satisfying (4.16)) specification 

aP 
P k  
a = - ( 2 S p S k - 2 ) ,  a k - , = a k = a  (4.21) 

If assumption (4.8) holds, then (4.21) can be further improved upon to 
obtain 

- = 1 - (1 - 
aP 

(2 d p 5 k - 2) , a,-, - ak = a . (4.22) 

We refer to (4.22) as the Tukey-Welsch (TW) specification.? We see in 
Appendix 1 that this specification is very close to the “optimum” 
specification of the a p ’ s  derived by Lehmann and Shaffer (1979). Because 
of its near optimality and ease of use, we adopt this specification in the 
sequel. 

Example 4.5. As seen in Example 4.4, the NK-procedure uses the 
nominal levels a2 = * * - = a, = a. From (4.18) we obtain the following 
upper bound on the maximum Type I FWE of the NK-procedure: 

a * S  max [I-(1-a)‘] 
(PI,, ’ I P,)  

= max [1 - ( l - a ) ‘ ]  
1 C r S k l ?  

= 1 - (1  - a ) [ k / * J  (4.23) 

where LxJ is the greatest integer dx .  If a* is known, then we have 
equality in (4.23). Since (4.23) exceeds a for k > 3, it follows that the 
NK-procedure does not strongly control the W E  at the designated level 
a. This fact was noted by Tukey (1953) and Hartley (1955). 

From (4.23) we see that if we use the nominal level a’ = 1 - (1 - 
a)1 / ikJ21 for each test in the NK-procedure, then the resulting modified 
procedure will control the Type I W E  in the strong sense at level a. 

c) 

Example 4.6. We now obtain an upper bound on a* for Fisher’s LSD 
introduced in Chapter 1 .  For simplicity we assume a balanced one-way 
layout setting. As in the proof of Theorem 4.4, it can be readily shown 

t Einot and Gabriel (1975) attribute (4.22) (with ak_, given by the first part of the formula) 
to Ryan (1960). 
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that under H,, = n:=, H , ,  

r 

a * ( P )  S 1 - n Pr{ Q P r , ”  5 VZ!TF’2’) 
i = l  

LINEAR MODELS 

(4.24) 

where QP,.” is a Studentized range r.v. with parameter p, and d.f. Y 

(1 S i S r). Spjstvoll (1971) conjectured and Hayter (1986) proved that 
the maximum of the right hand side of (4.24) over all P is achieved when 
k - 1 of the 0’s are equal and the remaining one is removed at a distance 
tending to infinity; in fact, we get equality in that case and 

It is clear that a* exceeds a for k > 3 .  For example, for v = m  and 
a =0.05, Hayter’s (1986) calculations show that this upper bound in- 
creases from 0.1222 for k = 4 to 0.9044 for k = 20. Thus the LSD does not 
strongly control the W E  at the designated level a for k > 3.  From (4.25) 
we see that if at the second step we compare each pairwise 111-statistic 
with the critical point Q Y ) l , v / f i  instead of T!,‘”’), then the FWE will be 

0 strongly controlled at level a. 

Exumple 4.7. Duncan (1955) proposed the following nominal levels: 

ap = 1 - ( I  - a)”-’ ( 2 5 ~ ~  k). (4.26) 

Duncan’s ap L a for p 2 2 with equality holding if and only if p = 2, and 
thus they are more liberal than those of Newman and Keuls when both 
use the same a appropriate for a single comparison. Since the NK- 
procedure does not control the W E  at level a, it is clear that neither 
does the Duncan (D) procedure based on (4.26). In fact, from (4.18) it 
follows that for the D-procedure, 

a* s 1 - (1 - a y  . (4.27) 

As in Example 4.5, we have equality in (4.27) if u2 is known. 
Duncan’s nominal levels are intended to provide a -level protection 

separately for each pairwise comparison (PCE = a). Duncan’s reasons for 
his liberal choice of nominal levels are stated in his 1955 paper (pp. 
14-18) and are convincingly critiqued by Miller (1981, p. 89). If it is 
desired to control the FWE at level a using a,’s that increase with p 
according to (4.26): then from (4.27) we see that the following modified 
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nominal levels must be used: 

( 2 S p  5 k ) .  (4.28) 

0 

ap = 1 - (1 - a ) ( P - w ( k - J )  

This modification was suggested by Einot and Gabriel (1975). 

Before concluding this section we remark that if one makes a direc- 
tional decision in the usual manner whenever a pair of treatments is 
found significant using a step-down procedure, then it is not known (no 
mathematical proof is available) whether the Type I and Type 111 FWE is 
still controlled. 



C H A P T E R  3 

Single-Step Procedures for 
Pairwise and More General 
Comparisons among All 
Trea trnen ts 

Consider the general linear model setting of Section 1.1 of Chapter 2 and, 
as assumed there, let 8 = (el, %, . . . , dk)‘ be the vector of parameters of 
interest corresponding to the k treatpent effects. Let 6 be the least 
squares (LS) estimator of B such that 8 - N(8 ,  u Z V )  where V is a known 
positive definite symmetric matrix. We also have an estimator S’ of a’ 
that is distributed independently of 6 as a u2,ytlv random variable (r.v.). 

The families of comparisons considered here include (i) pairwise 
comparisons, (ii) all contrasts, (iii) subset homogeneity hypotheses, and 
(iv) multiple subset homogeneity hypotheses. These families were intro- 
duced in Chapter 2. Note that (i) is a subfamily of (ii) and (iii), while (iv) 
forms a closure of (iii). Thus the latter three families can be regarded as 
generalizations of the family of pairwise comparisons. For families (i) and 
(ii) either simultaneous confidence estimates or  hypotheses tests (or both) 
may be of interest. We primarily concentrate on simultaneous confidence 
estimates. As noted in Chapter 2, the associated simultaneous tests are 
readily obtained by the confidence-region test method. Families (iii) and 
(iv) involve only hypotheses tests. Stepwise procedures for these two 
families are discussed in Chapter 4. 

In Section 1 we discuss Scheffe’s procedure and illustrate its use in 
different families. Tukey’s procedure for balanced designs is discussed in 
Section 2. Various extensions of the Tukey procedure for unbalanced 
designs are discussed in Section 3. The procedures described in the first 
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three sections are compared in Section 4. Some extensions of these 
procedures and further comments on them are given in Section 5 .  

1 SCHEFT'J?S S-PROCEDURE 

1.1 General Balanced or Unbalanced Designs 

Scheffe's (1953) S-procedure in its general form was given as a simulta- 
neous confidence statement (2.20) in Chapter 2. For convenience, we 
reproduce it here: Exact (1 - a)-level simultaneous confidence intervals 
for all 1'8, I E 2' (where Y is a specified subspace of dimension m 5 k) are 
given by 

1'8 E [1'6 * (mF~",)"2S(I'VI)''2] V I E 2 (1.1) 

where F:,'y denotes the upper a point of the F-distribution with rn and Y 
degrees of freedom (d.f.). A derivation of (1.1) was given in Theorem 2.1 
of Chapter 2. 

Any hypothesis H ,  : 1'8 = 0 (or equal to any other specified constant) 
for I E 2, whether specified u priori or selected [I posteriori by data- 
snooping, can be tested by the confidence-region test method using (1.1). 
Similarly one-sided inferences and directional decisions can also be made. 
The familywise error rate ( W E )  for all such inferences is controlled at 
a; see Theorem 3.3 of Chapter 2. 

An optimality property of the intervals (1.1) was shown by Bohrer 
(1973). He showed that under certain conditions (which are commonly 
satisfied), the intervals (1.1) have the smallest average (with respect to a 
uniform measure over an ellipsoidal region in the space 2) width among 
all simultaneous confidence procedures with the same confidence level. 
See Naiman (1984) for a generalization of Bohrer's result. 

In the present section we discuss some applications of the basic 
S-procedure (1.1). The versatility of the S-procedure stems from the 
flexibility available in the choice of space 2 and its applicability to any 
design following the general linear model of Section 1.1 of Chapter 2. It 
forms the basis of techniques for constructing simultaneous confidence 
bands in regression problems, a topic that is not covered in the present 
book. In fact, Working and Hotelling's (1929) method of constructing a 
simultaneous confidence band in simple linear regression was a precursor 
of Scheffe's procedure. 

As a first example, we consider the one-way layout design discussed in 
Example 1.1 of Chapter 2. As noted there, the formulas in this case apply 
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more generally whenever a design yields LS estimates ir that are indepen- 
dently distributed N(B,, ur,u2) r.v.’s (where the u,,’s are known constants) 
and an unbiased estimate S2 of u2 is distributed independently of the 6,’s 
as a u x , l v  r.v. 

By choosing 2’ to be the contrast space Ck = { c  E Rk : E:- c, = O }  and 
applying (1.1) we obtain the following (1 - a)-level simultaneous confi- 
dence intervals for all contrasts among the treatment means in a one-way 
layout (for notation see Example 1.1 of Chapter 2): 

2 2  

where ?i is the sample mean for the ith treatment (1 S i S k) and 
S2 = MS,,,,, with v = C;k_l ni - k d.f. For pairwise comparisons, the 
intervals given by (1.2) simplify to  the following conservative (1 - 
a )  -level simultaneous confidence intervals: 

The test procedure based on (1.3) is often referred to in the literature 
as the fully sign$cant difference or globally significant difference (the 
FSD or GSD) test. These names reflect the larger critical value, {(k - 
l)F?_’ }”’ which the pairwise It[-statistic, IT,,l = Ip, - p,l/S R l l n  + l / n  , must exceed in order to be significant, in contrast to 
Fisher’s least significant difference (LSD) test (see Chapter l ) ,  which uses 
the smaller critical value T?”) .  

As another example, consider the one-way layout design with a fixed 
covariate discussed in Example 1.2 of Chapter 2. In the following we use 
the notation defined there, in particular, the V matrix for this design 
given by (1.15) of Chapter 2. The exact (1 - a)-level simultaneous 
confidence intervals for all contrasts Ef=,  crei using the S-procedure work 
out to be (see Halperin and Greenhouse 1958): 

k k 

i - 1  i= 1 

2 I/.? 

ci(Xi .  -X..)] } ] V c € C k .  (1.4) 

For pairwise differences 0, - 0,, the intervals of (1.4) simplify to the 
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following conservative (1 - a)-level simultaneous 

6, - 5 {(k - l)Ff-’,,p}1’2S 
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confidence intervals: 

Similar formulas apply for estimating the contrasts (general and pairwise) 
among the treatment effects in a randomized block design with a fixed 
covariate and fixed block effects. 

We now discuss the relation between the S-procedure and the analysis 
of variance (ANOVA) F-test. As seen in Theorem 2.1 of Chapter 2, the 
simultaneous confidence intervals (1.1) are based on showing that 

where L? is a specified sabspace of dimension m 5 k and L: m x k is any 
matrix whose rows form a basis for 3‘. In particular, if 2 is the contrast 
subspace Ck and if the overall null hypothesis H, :el = 6, = - . . = Bk holds, 
then (1.6) becomes 

here C: (k - 1) x k is any matrix whose rows are linearly independent 
contrasts. For a one-way layout, ( I  .7) becomes 

where f = EF=l n , Y i / C ~ ~ ,  n, is the grand mean of the Y i , k  Note that the 
statistic in (1.7) is simply (k - 1) times the ANOVA F-statistic for testing 
H, and therefore the ANOVA F-test rejects H ,  at level a if and only if 

> (k - l ) F y l , v  for some c E ck. (1.9) 
(C‘O)2 

s (c ’ VC) 

But (1.9) is precisely the test of si nificance of any contrast c ’ i  based on 
the S-procedure (1.1) with 9 = C . This means that the ANOVA F-test f 
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for H ,  is significant at level a if and only if at least some contrast c‘6 (in 
particular, the one giving the supremum in (1.7)) is significant at FWE = 
a using the S-procedure. For a one-way layout, the contrast c that gives 
the supremum in (1.8) can be shown to be given by 

c,  = an,( Y, - f ) (1 25 i s k) 

where a is an arbitrary nonzero constant. However, this contrast may not 
be of any practical interest and the S-procedure does not provide a 
method for hunting other significant contrasts. Gabriel (1964) proposed a 
different way of applying the S-procedure to make detailed inferences 
implicit in a significant ANOVA F-test. This is discussed in the following 
section. 

1.2 A Simultaneous Test Procedure for the Family of Subset Hypotheses 

For convenience, we restrict our attention to the one-way layout setting 
in this section. To test a subset hypothesis H,: 8, = 8, V i, j E P, the test 
associated with the S-procedure (1.2) rejects if the supremum of the test 
statistic 

over the subspace of Ck such that C i E p  c,  = 0, cj = 0 for j j Z P  exceeds the 
critical constant (k - l)F:?,,”. In analogy with (1.8), this supremum is 
given by the left hand side of (1.10) below and the resulting simultaneous 
test procedure rejects H ,  if 

c .,(Pi - fp)2 

> (k - l)Fp-)*,, (1.10) 
S2 

( p  - l)Fp = I E P  

where Y p  = ( C t E p  n j Y , ) / ( Z I E ,  n,) .  Since all of these tests for the subset 
hypotheses H, are derived from a common (1 - a)-level confidence 
statement (1.2), it is clear that the W E  of this simultaneous test 
procedure is strongly controlled at level a. In Example 3.2 of Chapter 2 
we noted that this simultaneous test procedure is coherent, being based 
on likelihood ratio (LR) test statistics. Observe that the ANOVA F-test 
for the overall null hypothesis H ,  = n p  H p : 8 ,  = 6, = * * * = 8, is included 
in (1.10). This procedure readily extends to more general designs. 

Gabriel (1964) pointed out that because of coherence, results of the 
tests (1.10) on all sets P can be concisely summarized either in the form 
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of a list of minimal sign$cant sets, that is, significant sets that have no 
significant proper subsets, or in the form of a list of maximal nonsignific- 
ant sets, that is, nonsignificant sets that are not proper subsets of other 
nonsignificant sets. Significance or nonsignificance of any set P can be 
readily ascertained from such a list. 

Peritz (1965) noted that every minimal significant set P determined 
using (1.10) can be divided into two disjoint subsets Q = { i E P :  pi > ?p} 
and R = { j E P :  ~5 ?,,} such that one can make the statement 

max { 8,) > min { 3) , 
iEQ I E R  

and the probability that any such statement is erroneous is controlled a1 
a. This permits a partial ordering of the 6,’s. 

Now consider the family of multiple subset hypotheses {H, = 
nIc1 Hpo}  where P = (P,, Pz,  . . . , P,)  is a “partition” of { 1,2, . . . , k}, 
that is, the P,’s are disjoint subsets of { 1,2, . . . ,k} with cardinalities 
p, 2 2  and E:=, p ,  5 k. Note that this is a hierarchical family since if 
Q = ( Ql ,  Q,, . . . , Q,) is a subpartition of P = (PI,  P z ,  . . . , P,) (i-e., if 
every Q ,  is a subset of some P,), then H p  implies HQ. 

A simultaneous test procedure for this family can be constructed by 
applying the union-intersection (UI) method to tests of component 
hypotheses H ,  given by (1.10). The resulting procedure rejects H p  if 

(1.11) 

A more powerful procedure in this case rejects H p  if 

c ( P I  - IF,,, > (k - l)FP?].” . 
r = = I  

This procedure is coherent and controls the FWE at level a, but is not 
conson ant . 

1.3 Examples 

Example 2.1 (Randomized Block Design). Duncan (1955) gave the data 
shown in Table 1.1 on the mean yields (in bushels per acre) of seven 
varieties of barley, labeled A through G, which were each replicated six 
times in a randomized block design. Duncan also gave an analysis of 
variance, which shows that MSvarlellcJ = 366.97 with 6 d.f. and MS,,,,, = 

79.64 with 30 d.f. Thus S = m= 8.9::1. Also F = 4.61, which is 
highly significant (PCO.005).  We now apply the S-procedure to make 
detailed comparisons among the varietal means to find where the signific- 
ant differences lie. 



78 SINGLE-STEP PROCEDURES FOR COMPARISONS AMONG ALL TREATMENTS 

TABLE 1.1. Varietal Means (in Bushels per Acre) 

Variety A B C D E F G 

P 49.6 71.2 67.6 61.5 71.3 58.1 61.0 

Source: Duncan (1955). 

From (1.3) we obtain the critical value to be used for testing pairwise 
differences with (conservative) FWE = a = 0.05 as 

rz d m i  x S i ?  = x 8.9244- = 19.63. 
n 6 

Using this critical value we find two pairwise differences significant: 
E - A = 71.3 - 49.6 = 21.7 and B - A = 71.2 - 49.6 = 21.6. Since this is a 
simultaneous test procedure we can also make directional decisions (see 
Theorem 2.2 of Chapter 2) and claim that A is significantly “worse” than 
both B and E. 

After looking at the data the researcher may wish to compare the 
average yield of the varieties A ,  F, and G, which produce the three 
lowest sample mean yields, with the average yield of the varieties C ,  B, 
and E, which produce the three highest sample mean yields. Since this 
contrast is suggested by the data, it is appropriate to use formula (1.2). 
For 1 - a = 0.95 we obtain the desired interval to be 

67.6 + 71.2 + 71.3 49.6 + 58.1 + 61.0 6 
- rt_ X 8.924 x J I ! ~  

3 3 
= 13.80k 11.34= (2.46,25.14). 

We next illustrate use of the S-procedure for the family of all subset 
homogeneity hypotheses. In carrying out this simultaneous test procedure 
we need not test any subsets containing varieties A and E or A and B, 
since such subsets will be automatically significant because the pairs 
(A, E) and (A,  B) have been found significant. The critical value to be 
used in this procedure for a = 0.05 is (k - l)F??),,” = 6 x 2.42 = 14.52. 
We begin with the largest subset not containing these two pairs, which is 
P = (F, G, D, C,  B, E). For this subset ( p  - 1)F, = 12.10 < 14.52, and 
therefore the subset is nonsignificant (i.e., the null hypothesis H, is not 
rejected). The next largest subset that remains to be tested is P =  
(A, F, G, D, C) for which ( p  - 1)F, = 12.94< 14.52, and therefore this 
subset is also nonsignificant. In fact, these two subsets are maximal 
nonsignificant sets, any subsets of them being also nonsignificant. Deci- 
sions on individual subsets can be combined to make a decision on any 

0 multiple subset hypothesis as indicated in Section 1.2. 
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Example 1.2 (Randomized Block Design with a Fixed Covwiute). Steel 
and Torrie (1980, p. 412) give data on the ascorbic acid content (mea- 
sured in mg per 100 g of dry weight) for 11 varieties of lima beans planted 
in n = 5 randomized blocks. To keep the example short we consider only 
the first k = 6 varieties. From past experience it was known that the 
ascorbic acid content was negatively correlated with maturity of the plants 
at harvest. Percentage of dry matter (from 1 M g  of freshly harvested 
beans) was measured as an index of maturity and used as a covariate. 
This covariate is clearly not fixed but we regard it to be so for illustration 
purposes in this example and also in Example 3.2 of this chapter. (See 
Example 2.3 of Chapter 8 where the same data are used, but the 
covariate is regarded as random.) The data are reproduced in Table 1.2. 
Table 1.3 gives the sums of squares and cross products of X and Y for the 
given data. The formulas for the analysis of covariance for a randomized 
block design are slightly different from the ones given in Example 1.2 of 
Chapter 2 for a one-way layout, and are given in (2.37)-(2.41) of 
Chapter 8. Using those formulas we get SS,,,,, = S,, - S:,/S,, = 959.3 
with v = ( k  - l)(n - 1) - 1 = 19 d.f., and hence MS,,,,, = S 2  = 

TABLE 1.2. Ascorbic Acid Content" ( Y )  and Percentage of Dry Matter* (X) for 
Lima Beans 

Block 

1 2 3 4 5 

Variety X Y X Y X Y X Y X Y 

1 34.0 93.0 33.4 94.8 34.7 91.7 38.9 80.8 36.1 80.2 
2 39.6 47.3 39.8 51.5 51.2 33.3 52.0 27.2 56.2 20.6 
3 31.7 81.4 30.1 109.0 33.8 71.6 39.6 57.5 47.8 30 .1  
4 37.7 66.9 38.2 74.1 40.3 64.7 39.4 69.3 41.3 63.2 
5 24.9 119.5 24.0 128.5 24.9 125.6 23.5 129.0 25.1 126.2 
6 30.3 106.6 29.1 111.4 31.7 99.0 28.3 126.1 34.2 95.6 

' In mg per lOOg of dry weight. 
bBased on lOOg of freshly harvested beans. 
Source: Steel and Torrie (1980, p. 412). 

TABLE 1.3. Sums of Squares and Cross Products for Data in Table 1.2 

xx X Y  YY 
Vane t ie s A,, = 1552.8 A,, = -6198.4 A ,, = 25409.6 

Blocks B,, = 234.0 B,, = - 654.6 By,= 2045.7 
Error S,, = 257.1 S,, = - 714.8 S,, = 2946.6 
Total T,,y = 2043.9 T x y  = -7567.8 T, ,  = 30401.9 
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TABLE 1.4. Adjusted Varietal Means for Data in Table 1.2 

Variety 1 2 3 4 5 6 

35.42 47.76 36.60 39.38 24.48 30.72 X = 35.73 
88.10 35.98 69.92 67.64 125.76 107.74 

0, 87.24 69.43 72.34 77.80 94.49 93.82 

x, 
5 

TABLE 1.5. Simultaneous 90% Scheffe Intervak for All Pairwise 
Differences for Data in Table 1.2 

A , .  . . A  

( I ,  j )  0, - 0, 2 Allowance ( i ,  j )  6, - 2 Allowance 

17.81 It 23.38 ( L 6 )  -24.39 2 28.96 
14.90 t 14.93 (374) -5.46 2 15.43 
9.44 2 15.95 (39 5 )  -22.15 2 23.02 

-7.25 rt 21.79 (3 ,6 )  -21.48 -t 17.07 
-6.58 2 16.32 (47 5 )  -16.69 2 26.39 
-2.91 2 22.13 (4,6) -16.02 2 19.51 
-8.37 -t 19.21 (596) 0.67 -c 17.43 

-25.06 2 37.11 

959.3/19=50.49 (S=7.106). The estimate of the common slope is 
f i  = S,,/S,, = -2.78. 

Tabie 1.4 shows the calculation of the adjusted varietal means 6, = 
y,. - $(XI .  - X..). In (1.5) we use a = 0.10, Fi,:) = 2.18 and thus obtain 
90% Scheffe intervals for all pairwise comparisons between the varieties, 
which are given in Table 1.5. Note that these intervals are rather wide. 
Based on these intervals we find that only varieties 3 and 6 are significant- 
ly different (variety 6 is significantly better than variety 3) and pair ( 1 , 3 )  
is on the borderline of significance. One can use (1.4) to construct a 
confidence interval or to test the significance for any contrast E:=, c,O,. 

0 

L 

2 TUKEY’S T-PROCEDURE FOR BALANCED DESIGNS 

2.1 Balanced One-way Layouts 

2.1.1 Pairwise Comparisons 
Tukey’s T-procedure was given as a simultaneous confidence statement 
(2.8) in Chapter 2 for the family of painvise comparisons in a balanced 
one-way layout. For convenience, we reproduce it here: Exact ( 1  - 
a)-level simultaneous confidence intervals for all pairwise differences 
Oi - 0, are given by 
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e, - 6, E [PI - Y, & Qt$/t/ii] (1  5 i < j S k) (2.1) 

where QgL is the upper a point of the Studentized range distribution with 
parameter k and Y d.f. 

One can test the significance of any pairwise difference using the 
intervals (2.1) with the W E  controlled at a. The resulting procedure is 
sometimes referred to in the literature as the honestly signijicant differ- 
ence or the wholfy signijicunt difference (the HSD or the WSD) test. 

We now mention some optimality properties of the T-procedure. 
Gabriel (1970) showed that in a balanced one-way layout, among all 
procedures that give equal width intervals for all pairwise differences with 
joint confidence level L 1 - a, the T-procedure (2.1) gives the shortest 
intervals. This follows from the union-intersection (UI) nature of the 
T-procedure noted in Example 2.2 of Chapter 2. Genizi and Hochberg 
(1978) showed that in the class of all transformation procedures (see 
Section 3.2.4) having joint confidence level 2 1 - a, the T-procedure 
gives the shortest interval for every pairwise difference. Based on the 
result of Kunte and Rattihalli (1984) for the two-dimensional case, one 
may conjecture another optimality property for the T-procedure for 
k > 2, namely, that among all (1 - a)-level simultaneous confidence 
procedures with confidence intervals of the form GI - 6, & d,,S, the T- 
procedure (2.1) minimizes the quantity IIlgr<,Sk d, , ,  which is proportion- 
al to the volume of the joint confidence parallelepiped for the pairwise 
differences 6, - 6, (1 d i < j d k). 

2.1.2 All Conhasts 
The intervals (2.1) can be extended to the family of all contrasts Z:=, c l f j ,  
yielding the following (1 - a)-level simultaneous confidence intervals: 

This extension is based on the following lemma. 

Lemma 2.1 (Tukey 1953). 
let tij (1 S i < j S k) be nonnegative numbers. Then 

Let x = (x, ,  . . . , x k ) '  be any real vector and 

k k  
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where c,’ = max(c,, 0) and c; = -min(c,, 0). When t,, = 6 2 0, (2.3) 
simplifies to 

Ic, I k 

J x , - x , l I (  V i < j  e I c ’x lS6  x - V c E C k .  (2.4) 
0 

We obtain (2.2) by letting x, = PI - 8, (1 i i S k) and 6 = QEjS/.L/ri in 
(2.4), and by making use of the fact that (2.1) holds with probability 
1 - a and hence (2.2) does too. 

2 r = l  

2.1.3 All Linear Combinations 
We now consider an extension of the T-procedure to the family of all 
linear combinations of the 6,’s; this extension is also due to Tukey (1953). 
Arbitrary linear combinations become of interest when, for example, the 
experimenter wants simultaneous inferences on the 0,’s in addition to 
contrasts c’8, c E Ck. The following algebraic result enables us to extend 
the T-procedure to  all linear combinations of the 9 ’ s .  

Lemma 2.2 (Tukey 1953). Let x = (x,, . . . , X k ) ’  be an arbitrary real 
vector and let xo = 0. Define a norm for vector 1 E Rk as 

Then 

= max{ max Ixi - x i l ,  max Ix i l>  . 

If we let x = (Y - tl)trii/S where Y = ( vl, . . . , P,)’, then it follows 

I SIC15 k I s i l k  

from (2.6) that 

where 

I(Yi - ei) - ( V ;  - e,)l 
I S i < j S k  S t f i  

The first term inside the braces is a Studentized range r.v. Q k , ,  and the 
second term is a Studentized maximum modulus r.v. IMl,,,. The r.v. QL,, 
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has the Studentized augmented range distribution (see Appendix 3). If 
QL::) denotes the upper a point of Q;+, then exact (1 - a)-level simulta- 
neous confidence intervals for all linear combinations C:-* Irei are given 
by 

We have not included the tables of Q;$' in this book since their use is 
extremely limited; the interested reader is referred to Stoline (1978). 
Tukey (1953) noted that QtL is a good approximation for QL!:) provided 
k Z 3 and a 5 0.05. 

2.2 General Balanced Designs 

Thus far we have restricted the discussion of the T-procedure to the 
balanced one-way layout setting for which it was originally proposed by 
Tukey (1953). However, Tukey also extended it to designs where the 5's 
have a constant variance and are equicorrelated, that is, the covariance 
matrix crzV of the Gr9s is a "uniform" matrix with v,, = u (say) for 
1 I i 5 k and u,, = u (say) for 1 5 i Z j S k. Thus the common correlation 
coefficient p equals u/v with --I/(k - 1 ) S p  5 1. The resulting exact 
(1 - a)-level simultaneous confidence intervals for all contrasts C:=, c,O, 
are given by 

A proof of (2.8) may be found in Miller (1981, p. 46) or Scheffi (1959, p. 
75). An application of (2.8) to multiple comparisons in a balanced 
incomplete block design is given in Section 2.4. 

Hochberg (1974~) proved a more general result that if all pairwise 
differences (6 - 6,) have the same variance, 

var(tj - 6/) = v z ( u i ,  + v,, - 2ur,) = 2a'u, (say) , (2.9) 

then exact (1 - a)-level simultaneous confidence intervals for all con- 
trasts are given by 

k k 

i =  1 i = I  i = l  

Any design satisfying (2.9) is referred to as pairwise balanced. 



89 SINGLE-STEP PROCEDURES FOR COMPARISONS AMONG ALL TREATMENTS 

Scheffi (1959, p. 29) and Miller (1981, p. 42) stated that the simulta- 
neous confidence intervals (2.7) for all linear combinations can be 
similarly extended to the case where the 4 ' s  have equal variances and 
correlations, but Hochberg (1976b) showed that this assertion is in- 
correct. 

2.3 A Simultaneous Test Procedure for the Family of Subset Hypotheses 

The T-procedure (2.1) implies the following simultaneous test procedure 
for the family of subset hypotheses in a balanced one-way layout design: 
Reject Hp :el = 3 V i ,  j E P if 

max Y, - min V, 
S k 7 i  >Q',SL - I E P  I E P  R ,  = (2.11) 

In Example 3.3 of Chapter 2 we see that this procedure is coherent, 
consonant, and controls the FWE at level a. For a general pairwise 
balanced design (satisfying (2.9)), (2.11) takes the form: Reject Hp if 

max - min ii 
SVG 

>Qtl. I E P  I E P  R p  = (2.12) 

This simultaneous test procedure can be extended to  the family of 
multiple subset hypotheses by the UI method. The resulting procedure 
rejects any multiple subset hypothesis Hp = n:= if 

(2.13) 

This procedure is also coherent, consonant, and controls the FWE at 
level a. 

2.4 Examples 

Example 2.1 (Randomized B k k  Design; Continuation of Example 
I .I ). We now apply the T-procedure to the barley data of Example 1.1. 
For making painvise comparisons at a = 0.05 the appropriate critical 
value is Q r t S l f l =  4.46 X 8 . 9 2 4 1 6  = 16.26. (Compare this critical 
value with 19.63 for the S-procedure.) Using this critical value we find 
one additional significant difference as compared to the S-procedure, 
namely C - A = 67.6 - 49.6 = 18. 

We next construct a 95% confidence interval for the contrast {(C+ 
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B + E )  - ( A  + F + G)} / 3  (selected a posteriori), which was also anal- 
yzed by the S-procedure. Using (2.2) we obtain the desired confidence 
interval as 

13.80 -+ 16.26 = (-2.46, 30.06) . 

Note that although the T-procedure gives narrower confidence intervals 
than the S-procedure for pairwise comparisons, for the higher order 
contrast considered here it gives a substantially wider confidence interval. 

By using the range procedure (2.11) at a = 0.05 we find the maximal 
nonsignificant sets to be ( A ,  F, G, D) and (F, G, D, C, B ,  E). Recall 
that in Example 1.1 we obtained ( A ,  F, G, D, C) and (F, G, D, C, B, E) 
as the maximal nonsignificant sets by using the procedure (1.10). Thus in 
this example (2.11) declares some additional subsets significant in com- 
parison to (1.10). This is, however, not always the case. For a further 

n discussion of the powers of the two procedures see Section 4.1. 

Example 2.2 (Balanced Incomplete Block Design). From (1.19) of 
Chapter 2 we see that a balanced incomplete block (BIB) design has a V 
matrix with u , ~  = u = p ( k  - l)/Ak*, u,, = u = -p/Ak' for i # j ,  and thus 
p = -1 /(k - 1). Because of the common correlation we can use (2.8) to 
obtain the following simultaneous 100( 1 - a)% confidence intervals for 
all pairwise comparisons among the 4,'s: 

where the Gt*s and S2 = MS,,,,, with Y = bp - b - k 4 I d.f .  are given, 
respectively, by (1.18) and (1.20) of Chapter 2. 

3 MODIFICATIONS OF THE T-PROCEDURE FOR UNBALANCED 
DESIGNS 

The family of pairwise comparisons is of common interest in practice. We 
have seen that the T-procedure is optimal for this family according to 
various criteria for balanced designs. Thus it is natural to seek modifica- 
tions of the T-procedure for making pairwise comparisons in unbalanced 
designs. Although the S-procedure can be used for this purpose (see 
(1.3)), it is known to be overly conservative in this case. 

Many of the proposed modifications of the T-procedure are designed 
to address the family of pairwise comparisons directly and give simulta- 
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neous confidence intervals of the form 

(3.1) 

where 

di ,=vi ,+oj , -2ul j  ( l S i < j S k ) .  (3.2) 

By using (2.3) these intervals can be extended to the family of all 
contrasts as follows: 

Depending upon whether the critical constant 5 is chosen to guarantee 
that the coverage probability of (3.1) is exactly or approximately equal to 
the nominal confidence level 1 -a, we have an exact or approximate 
modification of the T-procedure. Most of the approximate modifications 
are in fact conservative, that is, they use upper bounds on the exact value 
of 5 and thus guarantee that the associated coverage probability is at least 
1 - a. Exact procedures are discussed in Section 3.1 and approximate/ 
conservative procedures are discussed in Section 3.2. Illustrative exam- 
ples are given in Section 3.3. 

3.1 Exact Procedures 

3.1. I Painvise Comparisons 
In order €or the simultaneous confidence intervals (3.1) to have a joint 
confidence level exactly 1 - a, the critical constant 6 must be the upper a 
point of max I TI,] where 

t S r < ] S k  

The TI]? have a joint (:)-variate singular 1-distribution with Y d.f. and the 
associated correlation matrix, which can be readily computed. Thus in 
principle, it is possible to numerically evaluate the required critical 
constant 6 = St!* by solving the equation 

' Here we have suppressed the dependence of 5 on V; it can be shown that the correlation 
matrix associated with the T,,'s depends only on the d,,'s, and thus 5 depends on V only 
through the d,,'s. 
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Pr( max ITij/ S 6 )  = 1 - a 
1 I i < j S k  

(3.5) 

However, this is generally a difficult computational task. Spurrier and 
Isham (1985) have carried out this task for unbalanced one-way layout 
designs (in which case dii = 1 /n, + 1 /ni  for i f j )  for k = 3. Their method 
as extended by Hayter (1985) to general unbalanced designs is outlined in 
the following paragraph. 

Denote T, = TIz, T2 = T I 3 ,  and T3 = TZ3.  Then 

and (T,,  T 2 )  have a bivariate t-distribution with v d.f. and the associated 
correlation coefficient 

Using (3.6) we can write (3.5) as 

where f v ( r l ,  I,; p )  is the bivariate t density function of ( T I ,  T2), 

and 

Note that Im - G I  S v'& always and this ensures that u( t , ,  6 )  2 
/(t l ,  6 )  for - 5  5 r ,  4 6 .  Spurrier and Isham (1985) tabulated the solu- 
tions St: to equation (3.7) for k = 3 ,  a = 0.01, 0.05, and 0.10, and 
n,, n2, n3 satisfying n, 2 3, 1 0 5  N = C:,, nj S 29, and v = N - 3. For 
N Z 30 they suggested the following approximation: 
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The constant 6:: depends on the proportions n , / N  (1 5 i S 3) and is 
tabulated in their paper for a = 0.01,0.05, and 0.10. Thus for unbalanced 
one-way layouts with three treatments we now have the tables available 
to construct exact simultaneous pairwise confidence intervals (which can 
be extended to all contrasts using (3.3)) for practical values of n,, n 2 ,  r t 3 ,  

and a. For a general unbalanced design with given values of the di,’s 
(defined in (3.2)) we can find (by rounding off to the nearest integers) the 
“equivalent” one-way layout sample sizes 

2 2 2 
n ,  = f n2 = 7 n3= 

d12 + d 1 3  - d23 d 1 2  + d 2 3  - d 1 3  dl, + 4 3  - d , ,  ‘ 

(3.9) 

However, the error d.f. v for the given design will not generally equal 
Cj=,  n,  - 3 for which case Spurrier and Isham (1985) have prepared their 
tables. If Y is large (227), then the approximation given by (3.8) can be 
employed with the proportions n , / C j = ,  n ,  (which are required to find 
t$l) computed from (3.9). 

The preceding method can be extended to higher values of k but the 
computations become more formidable and tedious. Hayter (1985) has 
given the necessary formulas for k = 4. 

3.1.2 General Contrasts 
Let CGC‘ be a specified set of contrasts. For pairwise comparisons 
C = {e, - e, (1 5 i < j  d k ) )  where e , :  k x 1 is the ith unit vector. 
Uusipaikka (1985) considered the problem of constructing exact (1 - 
a)-level simultaneous confidence intervals for contrasts c‘8 ,  c E C .  This 
requires the evaluation of the distribution of 

Ici(e - e)l 
2: s m  * 

Uusipaikka showed that the distribution function of this r.v. is given by 

(3.10) 

where F ( . )  is the distribution function of a Fk-,,” r.v. and g(.) is the 
density function of the r.v. 

z = sup IC‘UI. 
C E C ’  
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Here U has the uniform distribution on the unit hypersphere in k - 1 
dimensions, 

Y k - l = ( X E R k - l : x ' x = l } ,  

and C* is any subset of Y k - '  that is in one-to-one correspondence with C 
via the relation 

c;vc, 

{(c;vc,)(e;Vc,)) l 'z 
c;'c; = 

for every two pairs of c l ,  c2 E C and c;, c; E C*. The real number 5 in 
(3.10) is equal to 

inf sup Ic'x( 
x I 5 Y k - I  C E C '  

so that P r { l S Z Z l } = l .  
To obtain exact (1 - a)-leveI simultaneous confidence intervals 

c w  E [ c f e  * 5 ~ ~ 7 6 1  v c E c , 
we need to find the critical constant 6 = ttL (where the dependence on V 
is again suppressed), which is the solution in x to the equation obtained 
by setting (3.10) equal to 1 - a. The main obstacle in implementing this 
method is that the density function g(.) of the r.v. 2 is extremely 
complicated and hence it is difficult to evaluate N ( - )  except in some 
special cases. 

One such special case is  C = Ck, in which case C* = Yk- '  and hence 
Z = 1 with probability one. Then from (3.10) we have H ( x )  = F [ x 2 / ( k  - 
l)] so that 

tt; = { ( k  - l )Fp l ."} ' '2 ,  

which gives Scheffi's S-procedure for simultaneous confidence intervals 
for all contrasts c'8, c E C'. More commonly we are interested in a proper 
(usually finite) subset of Ck. Uusipaikka (1985) has evaluated the exact 
distribution g( ) for k = 3 and 4 when C consists of k - 1 pairwise linearly 
independent contrasts. This gives us a method for constructing exact 
simultaneous confidence intervals for pairwise differences in any unbal- 
anced design with three or four treatments. 

3.1.3 All Linear Combinations 
Spjstvoll and Stoline (1973) proposed an exact extension to unbalanced 
one-way layouts of the T-procedure for the family of all linear combina- 
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tions 1’8 (see (2.7)). Their procedure is based on writing 

(3.11) 

so that the (Yi - 8,)’s are transformed to n l ~ ’ i z ( < r j  - O,)’s, which are 
independent N(0, 0’ )  r.v.’s. As the vector I ranges over R‘, so does the 
vector (lp;”, . . . , l k n ~ ” ) .  This gives the following exact (1 - a)-level 
simultaneous confidence intervals for all linear combinations 1’8: 

where QL::) is the upper a critical point of the Studentized augmented 
range distribution with parameter k and d.f. v. Note that if we put 
U = diag( 1 / 6 ,  . . . , 1 I-), then 

where M(U’I) is the norm (defined in (2.5)) of the vector U’I. When the 
n,’s are equal to n, (3.12) reduces to (2.7). Spjetvoll and Stoline (1973) 
proposed using the intervals (3.12) for pairwise comparisons, in which 
case they take the form 

QLl-Z’S max( 1 /fi, 1 /fl) J 6, - 3 E [ PI - <r, ( 1 S i < j S k )  . 
(3.13) 

This procedure based on the transformation (3.11) was mentioned by 
Tukey (1953, p. 322) (and studied by his student Kurtz 1956, pp. 15-16). 
Therefore we refer to it as the Tukey-Spjgrvoll-Stoline ( T S S )  procedure. 
Tukey considered this procedure not so satisfactory because, “It trans- 
forms painvise comparisons into linear combinations which are not even 
contrasts. ” 

The TSS-procedure can be extended to general unbalanced designs by 
writing (in analogy with (3.11)) 

lye - e) = iruu-’(Cj - e) (3.14) 

where UU’ = V  and thus the transformed vector U-’ (6  - e) consists of 
independent N ( 0 ,  c’) r.v.’s. This was noted by Hochberg (1975a), who 
gave the following generalization of the simultaneous confidence intervals 
(3.12): 
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The matrix U that satisfies UU’=V is not unique. This raises the 
question of choosing U in some optimal manner, for example, to minim- 
ize the lengths of the confidence intervals (3.15) in some sense. Another 
consideration in the choice of U is the following: Any contrast e E Ck in 6 
is transformed by (3.14) to a linear combination U’c in U--’6. To allay 
Tukey’s concern (mentioned above) that the latter may not be a contrast, 
can one choose U so that U’c E Ck? Hochberg (1975a) answered the latter 
question in the affirmative by noting that this is achieved by choosing U 
with equal row sums. Genizi and Hochberg (1978) called such a matrix a 
contrast set preserving (CSP) matrix. Hochberg (1975a) showed that if U 
is a CSP matrix, then exact (1 - a)-level simultaneous confidence inter- 
vals for all contrasts are obtained by using the critical constant QEl, in 
(3.15) in place of the larger constant Q;!:). 

The problem of choosing an “optimal” CSP matrix was considered by 
Felzenbaum et al. (1983). Given any non-CSP matrix U satisfying UU’ = 
V, they proposed a specific transformation of U into a CSP matrix and 
gave a sufficient condition for a uniform improvement (shorter confidence 
intervals for all contrasts) of the transformed procedure over the original. 
We omit the details of this work since the Tukey-Kramer (TK) proce- 
dure (discussed in Section 3.2.1), which is now known to guarantee the 
designated confidence level conservatively, gives uniformly shorter confi- 
dence intervals than those given by this optimal procedure for all pairwise 
contrasts; it is also much easier to implement. 

3.2 Approximate/Conservative Procedures 

As noted in the previous section, the critical constant 6 needed for an 
exact simultaneous confidence procedure for a finite family of contrasts is 
very difficult to obtain numerically except when the number of treatments 
is small. For this reason many approximate/conservative modifications of 
the T-procedure that are easier to implement have been proposed in the 
literature. In this section we review these modified procedures. 

3.2.1 The Tukey-Kramer Procedure 
Historically this was the first modification, originally proposed by Tukey 
(1953) and later proposed independently by Kramer* (1956, 1957) in the 

Actually Duncan’s (1957) modification of the step-down range procedure for unbalanced 
designs corresponds more accurately to Tukey’s modification of the single-step range 
procedure; see Sation 2.2 of Chapter 4. 
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context of step-down procedures. This modification (referred to as the 
Tukey-Kramer procedure or the TK-procedure) uses Qt‘/./Z as an 
approximation to the upper a point of the distribution of max,s,,,s, IT,,[ 
where the Ti,’s are given by (3.4) (if V is pairwise balanced, then of 
course no approximation is involved). The resulting (1 - a)-level simulta- 
neous confidence intervals for all pairwise differences are 

where the d,,’s are defined by (3.2). For an unbalanced one-way layout, 
(3.16) becomes 

Tukey (1953, p. 39) conjectured that the approximation in the use of 
(3.17) “. . . is apparently in the conservative direction,” that is, 

for all values of the n , ’ ~  (or more generally for all diagonal covariance 
matrices a%). This is referred to as the Tukey conjecture. For the case of 
general unbalanced designs with nondiagonal V matrices, Tukey (1953, p. 
333) stated that the properties of the approximate procedure (3.16) are 
“even less clear.” 

In a doctoral dissertation under Tukey’s supervision, Kurtz (1956) 
proved the inequality (3.18) for all n , ’ ~  when k = 3 and for nearly equal 
n,’s when k = 4. Kurtz (1956) examined two additional cases for arbitrary 
k and found the Tukey conjecture to be true in both. These cases are: 

(i) The ratio between any two n,’s either tends to 0 or 33. 
(ii) All but one of the n,’s are equal and that one is extremely large. 

In case (i) when k is large, Kurtz found that, “The true error rate can be 
much smaller than the nominal.” For example, when k = 50, the true 
W E  is 0.0032 with a nominal error rate of 0.05. 

Dunnet (1980a) carried out an extensive simulation study that pro- 
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vided quite conclusive evidence in support of the Tukey conjecture for 
moderate to large imbalances among the ni’s. For small to moderate 
imbalances his results were Iess conclusive, but in most cases the esti- 
mated error rates were either close to or lower than the nominal. 
Previously several workers including Keselman, Murray, and Rogan 
(1976), Keselman, Toothaker, and Shooter (1975), and Smith (1971) had 
verified by simulation the conservative nature of the TK-procedure. 
Guided by Dunnett’s simulations, Brown (1979) gave an analytical proof 
of the Tukey conjecture for k = 3, 4, and 5. The complete resolution of 
the validity of the Tukey conjecture for all k was achieved by Hayter 
(1984). Hayter proved that the simultaneous coverage probability (3.18) 
is strictly minimized when the ni’s are equal. Thus if the ni’s are not all 
equal, then we have strict inequality in (3.18). 

A generalized Tukey conjecture would extend inequality (3.18) to 
nondiagonal covariance matrices V, which may result from other unbal- 
anced designs, for example, a one-way layout with a fixed covariate. 
Brown (1984) has shown that this generalized conjecture is true when 
k = 3. Brown’s proof based on Kurtz’s (1956) work is geometrical in 
nature. Hayter (1985) has shown that the conjecture holds for any k 2 3 if 
the d,,’s given by (3.2) satisfy 

d,, = a; i aj (1 S i <  j d k) (3.19) 

for some positive numbers a;. 
To summarize, the TK-procedure offers a very simple and readily 

implementable solution to the problem of making pairwise comparisons 
in unbalanced designs. This solution is conservative (but not overly) for 
designs with diagonal V. For designs with nondiagonal V the solution is 
known to be conservative only for some special cases. Because of its 
simplicity and nearly accurate control of the W E ,  in Section 4 we 
recommend the use of the TK-procedure over other alternative proce- 
dures proposed for pairwise comparisons. We now discuss these other 
procedures briefly. 

3.2.2 The Miller-Winer Procedure 
For a one-way layout with unequal sample sizes Miller (1981, p. 43) 
suggested using some “average” of the n , ’ ~  in place of n in the T- 
procedure (2.1). winer (1971) recommended the use of the harmonic 
mean of the R , ’ s .  

The simulation results of Keselman, Toothaker, and Shooter (1975) 
indicate that this procedure can be liberal (i.e., its W E  is greater than 
nominal a or its joint confidence level is less than nominal 1 - a) in 
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moderate to highly imbalanced designs. In fact, the liberal nature of the 
Miller-Winer (MW) procedure can be analytically shown as follows. 

The simultaneous coverage probability of all pairwise intervals for the 
MW-procedure with nominal joint confidence level 1 - a is 

where each TI, is t-distributed with v d.f. and n' is the harmonic mean of 
the n,'s. Consider one of the (t) statements in (3.20), say for i = 1 ,  j = 2, 
and let l l n ,  + 1 / n ,  = 6, .!2fZ3 (1 I n , )  = A. Then the coverage probability 
for that single statement is 

(3.21) 

It is clear that if the n,'s are sufficiently unequal, then A / 6  becomes small 
enough to make 

(3.22) 

For example, when k = 3 ,  a =0.05, and v = = ,  we have QtL =3.31, 
7'"') = 1.96, and it is easy to verify that (3.22) is satisfied when 
n ,  = I t z  <0.1038n3. However, (3.22) implies that (3.21), and hence 
(3.20), is less than 1 - a ,  thus proving that the MW-procedure is liberal. 
Because of this drawback of the MW-procedure we drop it from further 
consideration. 

3.2.3 Procedures Based on the Bonferroni and Related Inequalities 
These procedures involve finding progressively less conservative upper 
bounds on the upper a point of the distribution of maxIL,<,Sk lTiil where 
the Tli's are given by (3.4). The Bonferroni-type inequalities on which 
these bounds are based are discussed in Appendix 2. 

The Bonferroni procedure uses the first order Bonferroni inequality: 

By equating the right hand side of (3.23) to 1 - a, the Bonferroni upper 
bound on 6 is found to be T ,  where k' = (i). Thus conservative 
(1 - a)-level simultaneous confidence intervals for all pairwise differ- 
ences are given by 

( a 1 2 k ' )  

t$-$€[6, - ( . *  7 ' F ' 2 k ' ) S f l ]  ( l S i < j S k ) .  (3.24) 
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Hunter (1976) proposed using an optimal second order Bonferroni 
upper bound (see Appendix 2, Theorem 1.1) on 6, the calculation of 
which requires a specialized computer program (Stoline and Mitchell 
1981). This makes the use of Hunter’s method not worthwhile, particular- 
ly because the upper bound must be calculated separately for every 
imbalanced design and because, as we see later, the TK-procedure 
usually provides a sharper upper bound that can be read directly from 
standard tables. 

The Dunn-Siduk procedure proposed by Dunn (1958) is based on the 
sharper (than (3.23)) inequality 

(3.25) 

which was proved by Sidak (1967). This inequality yields a less conserva- 
tive upper bound on 5, namely T r ” 2 ) ,  where a‘ = 1 - (1 - The 
resulting intervals are given by 

4 - t$E[ii - 4.2 Tf”*’Sfl] (1 S i < j S  k). (3.26) 

Hochberg (1W4b) exploited the following more refined version of the 
inequality (3.25) also due to Sidak (1967): 

Pr{ max ]Ti , ]  s 6 )  ~Pr{ ] i%f lk . ,p  s 6 )  , (3.27) 

which yields a further improved upper bound on 5,  namely 1MlE!,, the 
upper a critical point of the Studentized maximum modulus distribution 
with parameter k*, and d.f. v. Whereas (3.25) is obtained by regarding 
the Tij‘s as independently distributed t r.v.’s, (3.27) is obtained by 
regarding only their jointly normally distributed numerators as indepen- 
dent (all sharing the common denominator S). We thus get the following 
conservative (1 - a)-level simultaneous confidence intervals for all pair- 
wise differences: 

(3.28) 

l d i < j l k  

Oi - t$ E [ii - 4 2 IM$’y S e . 1  (1 S i < j I k) . 

Hochberg (1974b) referred to this rocedure as the GT2-procedure. 

k = 2, and thus for k Z 3 the GT2-procedure is more conservative than 
the TK-procedure*. Since the TK-procedure has now (Hayter 1984) been 

Spurner (1981) proposed an improvement of the GT2-procedure for k = 3 that gives 
shorter confidence intervals than the TK-procedure for some cases of large imbalances 
among the n,’s in a one-way layout. But because this improvement is too specialized and 
needs extra tables, we do not consider it here. 

We note that IM$:, Z Qti/ P 2 with equality holding if and only if 
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analytically shown to control the W E  for all k when V is diagonal and 
for k = 3  when V is nondiagonal, it should be the preferred choice for 
making pairwise comparisons in those cases. In other cases, the GT2- 
procedure may be used if guaranteed control of the W E  is desired. For 
further comparisons and recommendations, particularly for applications 
involving general contrasts, see Section 4. 

3.2.4 
In recent years several graphical procedures have been proposed that 
attempt to control the W E  (at least approximately) for the family of all 
pairwise comparisons among the means. Every such procedure consists of 
plotting the sample means along with the so-called “uncertainty” intervals 
around them, so that any two sample means can be declared significantly 
different from each other (at a designated level a for the W E )  if and 
only if their uncertainty intervals do not overlap. For example, Tukey’s 
T-procedure for a balanced one-way layout can be implemented graphi- 
cally as follows: Construct uncertainty intervals with half-width equal to 
&;($/2trii) around each sample mean Y,. It is easy to verify that 
Y, - Yi are significantly different at level a using the T-procedure, that is, 
I?, - 71 > Q t : S / . / i i ,  if and only if the uncertainty intervals ?, ? 

Q(,“$/2t/Ti and p, 5 Q t : S / 2 f i  do  not overlap. Note that this graphical 
procedure is exact. These uncertainty intervals plotted around the or- 
dered sample means for the barley data of Duncan (1955) are shown in 
Fig. 3.1. From this figure we see that varieties A and B, A and C ,  and A 
and E are significantly different from each other at a = 0.05. 

For an unbalanced one-way layout, graphical procedures can be 
devised corresponding to each simultaneous confidence procedure for the 
family of pairwise comparisons described in the preceding sections. Since 
for this family the TK-procedure is now known to be generally preferred 
to all of its contenders, we present our discussion with reference to it .  

According to the TK-procedure, PI - y, are declared significantly 
different at W E  S a if 

Procedures Designed for Graphical Display 

(3.29) 

If in the graphical display we use uncertainty intervals of half-width 
Q t $ W i l f i  around p, (1 Z i S k), then using the criterion of nonover- 
lapping uncertainty intervals, we would declare y, - p, significantly dif- 
ferent if 

1 ?, - > ( Qt!/fi)S( W, + W,) (1 S i < j 5 k )  . (3.30) 
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Comparing (3.30) with (3.29) we see that the W,’s should be chosen so 
that ( W ,  + W,) closely approximates (1 /n, + 1 /n,)”’ for each i # j .  
(Clearly, for unequal n,’s one cannot choose the W,’s so that (3.29) and 
(3.30) will arrive at identical decisions for all sample outcomes. In fact, 
Hochberg, Weiss, and Hart (1982) noted that for certain configurations of 
the p,’s and n,’s, no W,’s exist for which the decisions according to (3.29) 
and (3.30) are identical.) 

Gabriel (1978a) offered a simple choice for thc W,’s, namely, W, = 
1 1% (1 Z i S k). This choice can be liberal since 1 /fi + 1 /- can 
be less than ( l / n ,  + 1 /n,)”* for some (q, n,)-values. Hochberg et al. 
(1982) and Gabriel and Gheva (1982) proposed some approximate 
graphical procedures that improve upon the earlier ones of Gabriel 
(1978a) and Andrews, Snee, and Sarner (1980). We now discuss these 
improved procedures. 
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Two of the graphical procedures proposed by Hochberg et al. (1982) 
are designed to control the FWE conservatively by imposing the con- 
straints 

W,+ W 1 Z a j  QiZj (3.31) 

where the d,]’s are given by (3.2). Gabriel and Gheva (1982) modified 
one of these procedures. The other two procedures proposed by Hoch- 
berg et al. do not satisfy (3.31), but simulation results show that one of 
them is always on the conservative side (has FWE 5 a) and is thus the 
recommended one. This procedure uses Wl’s that minimize 

cc (wl+y-v-q)z.  
1 & I  <is k 

The minimizing Wi’s are given by 
k 

]+i (1  S i S k) . (3.32) 
(k - l ) ( k  - 2) w, = 

It can be shown that the resulting Wl’s are nonnegative and satisfy 

Finally we note that Feder (1975) has constructed a special graph paper 
to facilitate pairwise comparisons of means. This graph paper can be used 
to construct simultaneous confidence intervals for all pairwise differences 
between the treatment means based on Turkey’s T-procedure. The main 
feature of this graph paper is its incorporation of the critical points of the 
Studentized range distribution (and hence the name “ Studentized range 
graph paper”), making the use of the tables unnecessary. 

3.3 Examples 

Example 3.1 (Unbalanced One-way Layout). The data for this example 
are taken from Duncan (1957). The treatment means and the correspond- 
ing sample sizes are given in Table 3.1. For these data we have MS,,,,, = 
S 2  = 5,395 (S = 73.45) with Y = 16 d.f. 

1 LI (WI + W,) = c El+ ,  G. 

TABLE 3.1. Data for Example 3.1 

Treatment A B C D E F G 

743 851 873 680 902 734 945 
n, 5 5 3 3 2 2 3 
y, 

Source: Duncan (1957). 
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TABLE 3.2. Simultaneous 95% TK-Intervals for All Pairwise 
Differences for Data in Table 3.1 

- -  
(i, j )  Y, - Y, 2 Allowance (i, j )  p, - 2 Allowance 

-108 * 155.7 
- 130 k 179.8 

63 2 179.8 
- 159 2 206.0 

9 2 206.0 
-202 t 179.8 
-22 2 179.8 
171 k 179.8 

-51 2 206.0 

-94 2 179.8 
117 2 206.0 

193? 201.1 
-29 2 224.8 
139 t 224.8 

-72 2 201.1 
-222 It 224.8 
-54 t 224.8 

-265 2 201.1 
168 t 246.2 
43 2 224.8 

-211 rt 224.8 

We first illustrate the application of the TK-procedure for constructing 
simultaneous confidence intervals for all pairwise comparisons. Using 
(3.17) with a$,:) = 4.74 we obtain simultaneous 95% TK-intervals, which 
are given in Table 3.2. 

From these intervals only comparisons ( A ,  G) and (0, G) are found 
to yield significant differences. This is not surprising in view of the fact 
that the sample sizes are so small. 

The S-intervals given by (1.3) will be uniformly (for all pairwise 
differences) longer by a factor of 

the corresponding factor for the GT2-intervals (see (3.28)) being 

However, the S-intervals would become competitive for higher order 
contrasts. For example, if the contrast ( A  + R + C + 0 ) / 4  - ( E  + F + 
G ) / 3  is selected post hoc, then the 95% TK-interval for this contrast 
using (3.3) and (3.17) is [-73.58 2 207.11, while the corresponding 
S-interval using (1.2) is [-73.58 2 138.01. 

We next illustrate the use of the graphical procedure (3.30) with the 
choice of the Wj’s given by (3.32). (Recall that some of the resulting 
pairwise intervals may be shorter than the TK-intervals (3.17) since 
condition (3.31) is not imposed.) Calculations yield the following values: 
W,=O.3231, W,=O.3231, W3=0.4076, W4=O.4O76, W5=O.5O6l, W , =  
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Figure 3.2. Uncertainty intervals on the treatment means for data in Table 3.1.  

0.5061, and W, = 0.4076. The uncertainty intervals PI -t (Qrt/fi) SW, 
for the seven treatment means are displayed in Figure 3.2. Notice that 
these uncertainty intervals are of unequal lengths. 

From this graphical display we see that comparisons ( A ,  G) and 
( D ,  C) are found to yield significant differences. Also note that com- 
parisons ( B ,  D), (C, D), and (0, E) barely fail to be significant. 0 

Example 3.2 (Randomized Block Design with a Fixed Covariate; Continua- 
tion of Example 1.2). We calculate simultaneous 90% confidence inter- 
vals for all pairwise differences using the TK-procedure. The TK-allow- 
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ance for the (i, j)th pairwise comparison is given by 

For a =0.10, k =6,  and v = 19, QE: =3.97; also S=7.106, n = 5 ,  
S,, = 257.1, and the Xi.% are as given in Table 1.4. For any pairwise 
comparison the ratio of the width of the S-interval to that of the 
TK-interval is 

Using this factor we find that comparisons (1,3) and (3,5)! which are 
barely nonsignificant according to the S-procedure (see Table l S ) ,  turn 
out to be significant according to the TK-procedure, the corresponding 
confidence intervals being [14.90 5 12.681 for the (1,3) comparison and 
[-22.15 -+ 19.551 for the (3,5) comparison. In addition, the comparisons 
(2,6) and (4,6) are on the borderline of significance, the corresponding 
confidence intervals being [-24.39 2 24.631 and [- 16.02 +- 16.591, respec- 
tively. 

The graphical procedure (3.30) can be applied by calculating the W,'s 
from (3.32) with d ,  = 2/n + (X,. - X,.)2/S,,. We omit the details. (7 

Example 3.3 (PartioUy Balanced Incomptete Block Design). This exam- 
ple is taken from Hochberg (1975a). Consider a group divisible partially 
balanced incomplete block (PBIB) design with two associate classes for 
six treatments in six blocks: (1,2,3), (3,4,5),  (2,5,6), (1,2,4), 
(3 ,4 ,6) ,  and (1.5,6). For this design we have k = 6, b = 6, p = 3, r = 3, 
Y =7, A ,  =2, A, = 1, and 

Pairs (1,2), (3,4), and (5,6) are first associates 
second associates. 

Using (1.24) of Chapter 2 we readily obtain 

2 var(6. - 6) = d,, u 

2 .  ' I  
and all other pairs are 

if i and j are first associates, 
if i and j are second associates . = (/:" 

To construct 95% TK-intervals for all pairwise differences we use 
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(3.16) with QkY’ = 5.36 and the d,,’s given by the expression above, and 
obtain 

Oj - 8, E [i, - 4 ? 3.28231 

8, - 6, E [6, - 4 2 3.545SI 

if i and j are first associates, 

if i and j are second associates. 0 

4 COMPARISONS AMONG SINGLE-STEP PROCEDURES 

4.1 Balanced Designs 

For balanced designs essentially there are only two contenders: the 
S-procedure and the T-procedure. The ratio of the length of the S- 
interval to that of the T-interval for a contrast c ‘ 8  is given by 

[ r = l  i: c:)”2 

{ t =  i I Icrl/2} 

Note that R greater than unity favors the T-procedure and vice versa. 
Scheffk (1953) investigated this ratio. His calculations show that 
R , ( k ,  Y, a) remains nearly constant as a varies between 0.01 and 0.10, 
and decreases very slightly as v increases. So over their practical ranges, a 
and v have little effect on R,  and we need to consider its dependence only 
on k and c. 

The most common comparisons among the treatment means are what 
we call “ p  : q comparisons,” which involve contrasts of the type 

where P and Q are disjoint subsets of { 1,2, . . . , k} with cardinalities p 
and q, respectively ( p  + q S k ) .  For such a p:  q contrast R2(c) equals 
( l lp  + 1 /q)1‘2. It is readily apparent that R2(c) will be maximum (the 
T-procedure will have the maximum advantage over the S-procedure) 
when p = q = 1 ,  that is, for pairwise comparisons (in which case the 
T-procedure is known to provide the shortest intervals). As p and q 
increase, which results in “higher order” contrasts, R2(c)  decreases and 
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the T-procedure loses its advantage over the S-procedure. Scheffk (1959, 
pp. 75-77) gives a numerical comparison for k = 6, a = 0.05, and Y = 30 
between the two procedures for a balanced one-way layout that shows 
that the T-procedure is preferred for low order contrasts such as 1 : 1 and 
1 : 2 comparisons, while the S-procedure is preferred for higher order 
contrasts. Scheffk’s calculations show that the ratio R decreases from 1.17 
for 1 : 1 comparisons to 0.67 for 3 : 3 comparisons. 

If an experimenter’s primary interest lies in pairwise contrasts, al- 
though he or she may wish to make inferences on few additional ones, 
then the T-procedure may offer a better choice. However, an experiment- 
er who does not have a special interest in specific contrasts, but rather 
wishes to select any contrast that may be suggested by data, is probably 
better off using the S-procedure. Thus the S-procedure is suitable for 
“data-snooping.” When intermediate contrasts are of primary interest, 
the procedure described in Section 5.1 may be used. 

We next compare, for the case of a balanced one-way layout, the 
powers of the simultaneous test procedures based on the S-procedure (see 
Section 1.2) and the T-procedure (see Section 2.3) for the family of 
subset hypotheses. Fix a subset P C_ K = { 1,2 ,  . . . , k} of size p (2 S p S 
k) and let T~ denote the p-vector of deviations (4 - g,,) /a, i E P, where 
8,, = (1 / p )  C i E p  6,. Under H,,, 7,, is a null vector. Define the P-subset 
power (Einot and Gabriel 1975), denoted by ppr as the probability of 
rejecting H p  when it is false. The powers @,, of both of these procedures 
depend only on 4, i E P, and not on q, jeP. Furthermore, since these 
procedures are location and scale invariant, p p  for each depends on 0,. 
i E P, and u only through 7,,. The P-subset power for the S-procedure is 
given by 

P . ~ ( T ~ )  = Pr{( p - l ) F p - . l . v ( 6 ~ )  > ( k  - l)FP?,,s.} (4.2) 

where Fv, .&62)  is a noncentral F r.v. with d.f. v,, v2 and the noncentrali- 
ty parameter S’, and 6; = TLT,,. The P-subset power for the T-procedure 
is given by 

P:(rp) = P r t Q p . v ( 7 p ) >  Qt!) (4.3) 

where Q,.,(T,,) is the range of p independent N(7,, 1) r.v.’s ( i E  P) 
divided by an independent r.v. Note that P i  depends on 7,, only 
through the scalar quantity 6; = T~T,,, while such a simplification is not 
possible for P;. 

For the overall null hypothesis H,, = H ,  : f3, = + 3 = O,, the S-procedure 
gives the usual F-test of the analysis of variance. The power function of 
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this test,  pi(^,), has been extensively studied. David, Lachenbruch, and 
Brandis (1972) made a numerical investigation of the power function 
F ; ( T ~ )  for testing H,, = H,. Their results show that / ~ L ( T ~ )  is approxi- 
mately maximized and exceeds p;(rK) when the 7,’s are so situated on 
the sphere Efx,  T ;  = k+’ that their range is maximum. The range of the 
T ~ ’ S  is maximuni in the configuration 

where T ( , )  S .  * 5 T ( ~ ) .  David, Lachenbruch, and Brandis (1972) have 
shown that /3; ( T ~ )  has a stationary point at (4.4), but it has not yet been 
analytically proven that the maximum of p i  ( T ~ )  is attained at (4.4). 

The P-subset powers (4.2) and (4.3) have not been studied for other 
subsets (i.e., for 2 S p  S k - 1). Gabriel (1964) has studied (4.2) and 
(4.3) under H,, in which case they are called p-mean signijicunce levels 
(Duncan 1955) denoted by a: and a p ,  respectively (2 5 p 5 k ) .  For 
k = 8, v = 40, and a = 0.10, Gabriel’s calculations are summarized in 
Table 4.1. This table shows that when the two procedures are designed to 

the relative difference between Q and a increases as p decreases. This 
implies that for local alternatives to H,, the T-procedure will be more 
powerful than the S-procedure and this dominance of the T-procedure 
over the S-procedure would persist over larger regions of local alterna- 
tives when the subset P being tested is a relatively small subset of the 
whole set K (which corresponds to lower order contrasts). 

Ramachandran and Khatri (1957) considered the problem of testing a 
“pair slippage” hypothesis 

T 

h a v e F W E = a ( i . e . , a : = a : = a ) ,  t h e n a  T S  > a p f o r 2 S p S k - l , a n d  
s p  

for some pair (Oi, 8,) against the null hypothesis H , : O ,  = . - . O k  in a 

TABLE 4.1. p-Mean Significance Levels for the S- and T-Procedures 

P 

8 7 6 5 4 3 2 

a: 0.10 0.079 0.048 0.021 0.009 0.003 0.001 

a: 0.10 0.081 0.062 0.045 0.030 0.016 0.006 

Source: Gabriel (1964). Reproduced with the kind permission from the 
Biometrin Society. 
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balanced one-way layout. In (4.5), O is unspecified and A > O  is given. 
They showed that in the class of symmetric, and location and scale 
invariant procedures with given error probability a under H,, the 

Reject H ,  if following test is optimal: 

T =  

where 5 is the upper a point of the test statistic T under H,. If H ,  is 
rejected, - -  then conclude - -  that pair (O,,  0,) has slipped as in (4.5) where 
Y, = Y,,, and Y, = Y,,,,,. Ramachandran and Khatri mistakenly regard 
the test statistic T in (4.5) as the Studentized range statistic. It is not the 
Studentized range statistic since it uses the total sum of squares rather 
than the within groups sum of squares in the denominator. In fact, this is 
an instance where the T-procedure is not optimal. 

The T-procedure is reasonably robust but perhaps less so than the 
S-procedure against departures from normality (particularly in cases of 
extreme nonnormality) as shown by the simulation studies of Ramseyer 
and Tcheng (1973) and Brown (1974). If there are serious doubts about 
the normality assumption, then one recourse is to employ an appropriate 
distribution-free or robust procedure; see Chapter 9 for a discussion of 
these procedures. The T- and S-procedures are much less robust in the 
presence of heterogeneous error variances. Special procedures to deal 
with this situation are discussed in Chapter 7. Departures from the 
assumption of independence have not been studied in as much detail as 
the other two. Box (1954) found that the effect of correlated errors on 
the performance of the F-test can be serious in terms of increased 
probability of Type I errors. An analogous study of the test based on the 
Studentized range statistic is lacking. 

4.2 Unbalanced Designs 

We first consider the problem of confidence estimation of pairwise 
contrasts in an unbalanced one-way layout. For this problem the TK- 
procedure is unarguably the best alternative available at this time (apart 
from the few cases for which exact procedures are available as discussed 
in Section 3.1). It is now analytically proven to be conservative. Yet the 
extent of conservatism in the TK-procedure is quite small even for cases 
of rather severe imbalance as shown by the numerical results of Uusipaik- 
ka (1985) and Spurrier and Isham (1985), and simulation results of 
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Dunnett (198Oa). It provides uniformly shorter intervals than most of its 
competitors. This is readily clear for the GT2-procedure (and hence for 
the Bonferroni and Dunn-Sidak procedures) because of the inequality Qcf/f i  < l M $ ) v ,  and for the S-procedure because of the inequality 
QFl / f i<  { ( k  - ' l )F~?l ,p}*'z  for k >2 .  With regard to the transforma- 
tion procedures, Genizi and Hochberg (1978) proved that for any pair- 
wise contrast the TK-interval is not longer than that provided by any 
transformation procedure. The only procedures that may beat the TK- 
procedure for certain configurations of the n,'s are the Hunter procedure 
based on the optimal second order Bonferroni inequality and the graphi- 
cal procedure (3.30) of Hochberg et al. (1982) based on the choice (3.32) 
for the W,'s. However, as noted before, for the Hunter procedure the 
critical constant must be evaluated separately for each combination of the 
n,'s by running a special computer program. On the other hand, the 
TK-procedure can be applied very easily since its critical constant QtL 
does not depend on the particular combination of the n,'s and is 
extensively tabulated (Harter 1960, 1969). Regarding the graphical proce- 
dure (3.30), it is not known whether it controls the W E  conservatively. 

We next consider the problem of confidence estimation of general 
contrasts in an unbalanced one-way layout. For this problem the S- 
procedure and the transformation procedures are viable alternatives to 
the TK-procedure. The comparison between the TK- and S-procedures is 
very similar to that between the T- and S-procedures for a balanced 
one-way layout. In this case also we can write an expression analogous to 
(4.1) for the ratio of the lengths of the S- and TK-intervals by using (1.2) 
and (3.3), respectively. The dependence of this ratio on the n,'s (in 
addition to the c,'s) makes the comparison more difficult. However, the 
general conclusion that the TK-intervals are shorter than the S-intervals 
for low order contrasts, and the S-intervals are shorter for moderate to 
high order contrasts still holds. The transformation procedures can also 
be shown to yield shorter intervals than the TK-intervals for high order 
contrasts, but they involve much more computation than the S-procedure 
and hence the latter is preferred for high order contrasts. Tse (1983) gave 
some specific numerical criteria for choosing one procedure over the 
other for different contrasts. (Earlier Ury 1976 had given similar criteria 
for pairwise contrasts for choosing between the S-, TSS-, GT2-, and the 
Dunn-Sidak procedures. In view of the established superiority of the 
TK-procedure in this case, these criteria are no longer of interest.) It 
cannot be overemphasized, however, that in a given application one must 
use only one procedure for all contrasts. That procedure may be chosen 
depending on which contrasts are of primary interest. If different proce- 
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dures are used to construct intervals for different contrasts (e.g., if for 
each contrast of interest the procedure that gives the shortest interval for 
that contrast is used), then clearly the designated joint confidence level is 
not guaranteed. 

For general unbalanced designs the TK-procedure would again be the 
most preferred choice for making painvise comparisons if it can be shown 
to control the FWE conservatively. At the present time this is known to 
be true only for k = 3 and for k h 4 when the variances of the pairwise 
differences have the additive structure (3.19). In other cases, if guaran- 
teed control of the EWE is desired, then we recommend the use of the 
GT2-procedure. The ratio of the length of the GT2-interval to that of the 
TK-interval is proportional to f i l M } E ! , l Q t I .  Stoline (1981) computed 
this ratio and found that it lies in the range 1.01-1.04 for a = 0.01, 
1.02-1.05 for a =0.05, 1.03-1.06 for a =0.10, and 1.05-1.09 for a = 
0.20. Thus the GT2-intervals are only fractionally longer than the TK- 
intervals. For higher order contrasts we recommend the use of the 
S-procedure for the same reasons that were mentioned earlier. 

The robustness performance of the TK-procedure is similar to that of 
the T-procedure. In the case of variance heterogeneity the TK-procedure 
tends to be liberal and the extent of liberalism increases if larger 
variances are paired with smaller sample sizes and vice versa (Keselman, 
Games, and Rogan 1978). Violation of the normality assumption does 
not seriously affect the Type I W E  of the TK-procedure but violation of 
the independence assumption does. 

5 ADDITIONAL TOPICS 

5.1 An Intermediate Procedure for p :  q Comparisons 

In Section 4.1 we saw that for a balanced one-way layout, the T- 
procedure is preferred for all 1 : 1 and few other low order (e.g., all 1 : 2) 
contrasts, while the S-procedure is preferred for high order contrasts. Can 
a procedure be constructed that would give shorter intervals for inter- 
mediate contrasts than those given by both of these procedures? Hoch- 
berg and Rodriguez (1977) addressed this question. They noted that both 
the T- and S-procedures are UI procedures (see Sections 2.1.1 and 2.1.2 
of Chapter 2); the T-procedure is obtained by writing H, : 0, = S, = - . . = 
0, as a finite intersection nlSicjrk(6li - 6) = 0), while the S-procedure is 
obtained by writing H, as an infinite intersection ncECt(c't9 = 0). More 
generally, one can choose a finite subset C c C k  of interest such that 
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Ho = flcEc(c’B = 0) and base the U1 procedure on the distribution of the 
r.v. 

where Y = (Y1, Y z ,  . . . , Yk)’. 
When C is chosen to be some subset of all p : q comparisons (including 

all pairwise comparisons), Hochberg and Rodriguez showed how the 
resolution of the resulting procedure can be “optimally” extended to the 
family of all p : q comparisons, and further to the family of all contrasts. 
The upper a point of the r.v. (5.1) (denoted by (Et(C)) falls between 
QFL/fi (obtained when C = the set of all pairwise contrasts) and 
{(k - l ) F ~ - ) , a v } ” 2  (obtained when C = C‘). The resulting intervals are 
shorter than both the S- and T-intervals for intermediate contrasts but 
longer than the T-intervals for pairwise contrasts and longer than the 
S-intervals for high order contrasts. 

As in Uusipaikka’s (1985) work, the critical constant [:t(C) is 
difficult to evaluate for arbitrary C. Hochberg and Rodriguez employed 
Siotani’s (1964) second order Bonferroni approximation and tabulated 
the critical constants ,$L(C) for C = {all 1 : 1 and 1 :2 comparisons} and 
{all 1 : 1 and 2: 2 comparisons} for selected values of k, a, and v. 

5.2 Multiple Comparisons Following a Significant F-Test 

Often in practice, multiple comparisons between treatment effects (e.g., 
confidence estimates or tests for selected contrasts) are pursued only 
when the F-test for the equality of the treatment effects is significant. In 
fact, Scheffi (1953, 1959) prescribed the use of his procedure in this 
manner. Olshen (1973) argued that when the S-intervals (1.1) are used in 
this manner, their conditional confidence level (conditioned on the event 
that the augmented F-statistic (1.6) for the hypothesis that I ‘B  = 0 V 1 E 2’ 
is significant at level a) is more pertinent than their unconditional 
confidence level; the latter equals the nominal value 1 - a. He proved 
that the conditional confidence level is less than 1 - a (and can be 
substantially less than 1 - a for some values of the unknown parameters 8 
and cr2) if v 2 2 and M F ~ , ’ ,  5 3v. Thus the nominal confidence level 1 - LY 

is not guaranteed if the intervals (1.1) are used conditionally. 
This problem is, of course, not unique to the S-procedure. Bernhard- 

son (1975) studied by Monte Carlo methods the Type I error rates of five 
multiple comparison procedures (MCPs) (including the S-procedure and 
some step-down procedures) conditional on the significant outcome of a 
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preliminary F-test. He found the same phenomenon, namely, that the 
conditional Type I error rates exceeded the nominal levels for all five 
MCPs. 

In response to Olshen’s (1973) result, Scheffk (1977) suggested that in 
genuine multiple comparison problems, any inferences of interest based 
on (1.1) should be pursued regardless of the outcome of the preliminary 
F-test. Essentially, he suggested unconditional use of the S-procedure 
when it is applicable. The F-test of the hypothesis n,,y(l’B = 0 )  (if 
Y = Ck, then this is the overall null hypothesis 8, = 4 = * = 0,) belongs 
to the family of inferences based on the simultaneous intervals (1.1) and 
all such inferences (including the F-test, confidence estimates for selected 
1’8, directional decisions on 1’8, etc.) are correct unconditionally with 
probability 1 - a. Clearly, if the preliminary F-test is not significant at 
level a, then the confidence interval for every I’B (I E 2’) would cover 
zero. For a further exchange of views on the conditional use of the 
S-procedure in practice, see the comment on Scheffe’s (1977) article by 
Olshen and the rejoinder by Scheffe. 
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Stepwise Procedures for Pairwise 
and More General Comparisons 
among All Treatments 

The previous chapter dealt with single-step procedures for families of 
pairwise and more general comparisons among all treatments. The pre- 
sent chapter is devoted to stepwise procedures for those same families 
except the family of all contrasts. This latter family is infinite and stepwise 
procedures for infinite families are not available. 

Two types of stepwise procedures are discussed in this chapter-step- 
down and step-up. The distinction between the two is explained in 
Section 4 of Chapter 2. These procedures are generally more powerful 
than their single-step counterparts in Chapter 3. However, they suffer 
from two shortcomings: ( i )  they can be used only for testing and not for 
confidence estimation, and (ii) it is not known whether they control the 
Type I and Type 111 familywise error rate ( W E )  if directional decisions 
are made in the usual manner on the signs of any pairwise differences that 
are found significant. As a result their applicability is somewhat limited. 

We now give a brief summary of the present chapter. The first three 
sections are devoted to step-down procedures. Section 1 discusses step- 
down procedures based on F-statistics for the family of subset hypoth- 
eses, while Section 2 discusses the corresponding procedures based on 
Studentized range statistics. A practical algorithm for implementing the 
closed step-down testing procedure of Section 4.3.2 of Chapter 2 is given 
in Section 3. This procedure addresses the closed family of multiple 
subset hypotheses. In Section 4 a step-up procedure due to Welsch (1977) 
is presented. Finally Section 5 gives a comparison between various 
single-step and stepwise procedures. 
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1 STEP-DOWN PROCEDURES BASED ON FSTATISTICS 

In this section we consider step-down procedures that have the same 
general testing scheme as in Section 4.3.3.1 of Chapter 2 and that use 
F-statistics for testing the subset homogeneity hypotheses H,. As noted 
there, these procedures can be shown to satisfy the separability condition. 
Furthermore, assumption (4.8) of Chapter 2 can be shown to hold for 
these procedures, as seen in the sequel. Therefore we can use Theorem 
4.4 of Chapter 2 to find a choice of the nominal levels ap’s to control the 
Type I FWE strongly at a designated level a .  Among such choices we 
adopt the Tukey-Welsch (TW) choice (see (4.22) of Chapter 2): 

for the reasons cited there. We refer to these procedures as step-down F 
procedures (also referred to in the literature as multiple F procedures). 

Note that a shortcut testing scheme, as in the case of the Newman- 
Keuls (NK) procedure (see Example 4.4 of Chapter 2) cannot be used in 
conjunction with a step-down F procedure. Thus if a subset P with 
cardinality p 2 3 is found significant, then generally no statement can be 
made about the significance of its subsets without going through the full 
hierarchy of tests on those subsets. This is true regardless of whether the 
monotonicity condition (4.12) of Chapter 2 is satisfied or not. 

We discuss step-down F procedures for one-way layouts in Section 1 . 1  
and then indicate their extensions to generai balanced or unbalanced 
designs in Section 1.2. 

1.1 One-way Layouts 

We follow the notation of Example 1.1 of Chapter 2. In a step-down 
F-procedure, for testing any subset homogeneity hypothesis H ,  : 0, = 0, 
V i ,  j €  P we use the F-statistic: 

where p is the cardinality of set P. The statistic Fp is distributed as an 
FP- , ,“  random variable (r.v.) under H,. So the nominal level is exactly ap 
when the statistic F,, is compared against the critical point 5, = F r ! ; , * .  
Assumption (4.8) of Chapter 2 can be shown to hold in the present case 
by using Kimball’s (1951) inequality. Therefore the Type I W E  is 
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strongly controlled at level a, as noted at the beginning of Section 1,  if 
the a,'s are chosen according to (1.1). 

We now give a small example to illustrate this procedure. 

Example 1.1 (Baknced One-way Layout). Consider a balanced one- 
way layout with k = 5 treatments and n = 9 observations on each treat- 

TABLE 1.1. Results of the Step-Down F Procedurts Using the TW and NK 
Nominal Levels 

TW ap's NK ap's 

Set P Fp f = F'"P' , Decision" f ,  = FF! ,.,, Decision 

ABCDE 

ABCD 
ABCE 
ABDE 
ACDE 
BCDE 

ARC 
A BD 
ACD 
ABE 
ACE 
ADE 
BCD 
BCE 
BDE 
CDE 

AB 
AC 
A D  
AE 
BC 
BD 
BE 
CD 
C E  
DE 

11.16 

7.06 
12.92 
14.56 
14.17 
7.06 

3.57 
10.57 
10.57 
19.32 
19.00 
20.32 
3.57 
9.81 
8.07 
6.84 

4.59 
6.00 

21.09 
37.50 
0.09 
6.00 

15.84 
4.59 

13.50 
2.34 

2.61 S 2.61 

2.84 S 2.84 
S 
S 
S 
S 

3.69 NS 
S 
S 
S 
S 
S 
NS 
S 
S 
S 

5.85 NSI 
NSI 
S 
S 

NSI 
NSI 

S 
NSI 
S 

N S  

3.23 

4.08 

S 

S 
S 
S 
S 
S 

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 

S 
S 
S 
S 
NS 
S 
S 
S 
s 

NS 

'S = significant, NS = not significant, NSI = not significant by implication. 
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ment. The ordered treatment means are 

A B C D E  
10.0 13.5 14.0 17.5 20.0 

and S2 = 12 with Y = 40 degrees of freedom (d.f.). 
We use two different choices of nominal levels-the TW-specification 

(1.1) and the NK-specification ap = a for all p with a = 0.05. The latter 
choice is, of course, known to be liberal but it is used here for two 
reasons: First, we wish to demonstrate the additionai significant results 
obtained using a liberal procedure. Second, the results of both the 
procedures using the TW and the NK specifications of the ap’s are needed 
to apply the Peritz procedure in Example 3.1 where the same data are 
used. These results are summarized in Table 1.1. The maximal nonsig- 
nificant sets obtained by the stepdown F procedures employing the two 
different specifications of nominal levels are then as follows: 

TW-specification: ( A ,  B ,  C), ( B ,  C, D), (0, E )  
NK-specification: ( B ,  C), ( D ,  E ) .  

Note the additional significant decisions obtained using the NK nominal 
levels. 0 

1.2 General Balanced or Unbalanced Designs 

In this case we have 6 - N(6 ,  a2V)  and S2 - a2 ,y t / v  independently of 
each other where V is an arbitrary positive definite symmetric matrix. The 
likelihood ratio (LR) test of H ,  : 0, = S, V i ,  j E P results in an F-statistic 
that can be written as 

8;c , ‘( c pv,c;) - ’ c ,ep 
( p  - 1)s’ 

F,, = 

where is a p-vector consisting of the 6,’s for i E P, V, is a p x p 
submatrix of V corresponding to the subset P, and C, is a ( p  - 1) x p 
matrix whose rows form a basis for the contrast space Cp.  

Note that Fp is distributed as an FP-, ,” r.v. under H, and thus the 
nominal level is exactly ap when (1.3) is referred to the critical point 
F ‘ u p )  p - 1 . ” -  Condition (4.8) of Chapter 2 can be shown to hold by using the 
following argument: For any P C (1,2,  . . . , k) with cardinality p => 2, the 
set { F ,  Sconstant} is an ellipsoid centered at the origin in the space of 
the 6,’s for i E P, and hence the condition of convexity and symmetry 
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about the origin is satisfied. The condition that V has the product 
structure (see (4.9) of Chapter 2) may not be satisfied for some designs. 
In such cases the validity of (4.8) is conditional on the truth of the 
conjecture referred to there. 

2 STEP-DOWN PROCEDURES BASED ON STUDENTIZED RANGE 
STATISTICS 

2.1 Balanced Designs 

We consider the general setting of Section 2.1 of Chapter 3 where we 
assumed that 6 - N(8, a%), S 2  - a2,yt/v independently of 6, and the 
matrix V satisfies the pairwise balance condition (see (2.9) of Chapter 3): 

(say) V i Z j .  (2.1) 

We now study step-down procedures that are based on Studentized range 
statistics 

var(4 - 4) = a2(u, ;  + ujj - 2u,) = 2a 2 uo 

for testing the subset hypotheses H,, and that follow the general testing 
scheme of Section 4.3.3.1 of Chapter 2. We refer to them as slep-down 
runge procedures (also referred to in the literature as multiple runge 
procedures). The NK-procedure given in Example 4.4 of Chapter 2 is 
such a procedure. That procedure uses a constant nominal level ap = a 
for testing each H,. We use the TW-specification (1.1). 

As noted in Chapter 2, step-down range procedures satisfy the 
separability condition. When the 6;’s are independent (e.g., in a balanced 
one-way layout), condition (4.8) of Chapter 2 is satisfied because of 
Kimball’s (1951) inequality. Hence Theorem 4.4 of Chapter 2 applies and 
the Type I FWE is strongly controlled using the TW-specification of a,%. 
In the general nonindependence case it is not known whether the latter 
condition is satisfied or not. 

In order to  implement the shortcut version of the step-down range 
procedure (which permits one to declare any subset containing the two 
treatments yielding maxiEp 0, and minicp Oi as significant whenever a 
subset P is declared significant), the critical points 6, = Q?: must satisfy 
the monotonicity condition (4.12) of Chapter 2 as in the case of the 
NK-procedure. If the ap’s are chosen according to ( l . l ) ,  the 6,’s are not 



STEP-DOWN PROCEDURES BASED ON STUDENTIZED RANGE STATISTICS 115 

always monotonically nondecreasing in p, but we enforce monotonicity by 
setting 6, = Qr!;,',! whenever Q'Op) P." < QF!i;J (3 S p  5 k). Notice that this 
makes the procedure more consewatwe. In the sequel we do  not 
reemphasize this point but such adjustments of critical points are as- 
sumed. 

We do not describe the step-down range procedure in detail because 
structurally it is the same as the NK-procedure given in Example 4.4 of 
Chapter 2. This procedure can be implemented by using a method due to 
Duncan (1955) that makes it easier to  interpret the results. In this 
method the ii's are first ordered: i,, d it2)-S - - * I Bk,, and the treatment 
labels are written in the order of the B((,'S. Whenever any p-range, 
$icp-,) - i(il, is tested and found nonsignificant, the set of treatments 
{(i), ( i  + l),  . . . , (i + p - I)} is underscored by drawing a line connect- 
ing (i) to ( i + p - l )  ( l S i S k - p + 1 , 2 S p d k ) .  Any subset of treat- 
ments sharing a common line is retained as homogeneous by implication 
without actually testing it. Any subset of treatments that is not connected 
by a common line is declared as heterogeneous. We now illustrate this 
method by an example. 

Example 2.1 (Rondonrizcd Block Design; CoM'nuclrion of Example 1.1 of 
Chapter 3). For these data we have k = 7, n = 6, S2 = 79.64, and Y = 30. 
Calculations of the critical values Q?? S/m where the apk are given by 
(1.1) is shown in Table 2.1 for a =0.05; the upper a oints needed in 
these calculations were obtained by linearly interpolating in log, a in 
Table 8 in Appendix 3. The ordered sample means are as follows. 

p 9  

A F G D C E E  
49.6 58.1 61.0 61.5 67.8 71.2 71.3 (2.3) 

We now apply the step-down range procedure. 

Srep 1. A and E are significantly different since 71.3-49.6=21.7> 
16.26. 

TABLE 2.1. Calculation of the Critical Values 

P 2 3 4 5 6 7 

0.015 0.022 0.029 0.036 0.05 0.05 UP 
Q" 3.66 4.00 4.19 4.30 4.30 4.46 
Qbq" S l f i  13.35 14.57 15.25 15.67 15.67 16.26 
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Step 2. (a) A and B are significantly different since 71.2- 49.6= 
21.6 > 15.67. 
(b) F and E are not significantly different since 71.3 - 58.1 = 
13.2< 15.67. Underscore the treatments F, G, D, C, B, E. 
A and C are significantly different since 67.6 - 49.6 = 18.0 > 
15.67. 
A and D are not significantly different since 61.5 - 49.6 = 
11.9 < 15.25. Underscore the treatments A,  F ,  G, D. 

This concludes the procedure since no sets remain to be tested that are 
not contained in underscored (homogeneous) sets. The final outcome of 
these tests is summarized by the underscorings shown in (2.3). Note that 
we obtained the same result earlier by using the T-procedure (see 

0 

Step 3. 

Step 4 .  

Example 2.1 of Chapter 3). 

2.2 Unbalanced Designs 

We now consider general unbalanced designs for which condition (2.1) is 
not satisfied. For this setup, Kramer (1957) and Duncan (1957) proposed 
two different step-down range procedures. We describe the two proce- 
dures below and then indicate the reasons for the superiority of Duncan’s 
procedure. (Both of these procedures were originally proposed in con- 
junction with Duncan’s specification of ap’s (see (4.26) of Chapter 2); 
however, we use the TW-specification ( l . l ) . )  

2.2.1 The Kramer Procedure 
Kramer’s procedure can be applied in a shortcut manner using Duncan’s 
method of underscoring indicated homogeneous subsets as described in 
Section 2.1. For testing the significance of a p-range, 6 ( i + p - , )  - 6(1,, the 
procedure uses the critical value 

( 1 s  i l  k - p  + 1 , 2 S p S  k) 

where, as in (3.2) of Chapter 3, d,, = u,, + uI, - 2u, (1  5 i # j S k). Note 
that this is equivalent to defining the Studentized range statistic for any 
set P = { i,, i,, . . , ip} such that GI,  S ii2 5 - * * d GI, by 

which is compared with the critical point Q‘,9.; here the superscript K on 
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R, stands for Kramer. In the special case of an unbalanced one-way 
layout, RF’  is given by 

This statistic does not have the Studentized range distribution under H,. 
The nature of approximation that is involved is discussed in Section 2.2.2. 

2.2.2 The Duncan Procedure 
Duncan (1957) defined the Studentized range statistic for testing the 
significance of any subset P of size p 2 2 by 

which is compared with the critical point Q:; ; here the superscript D on 
R, stands for Duncan. Note that RLD’ also does not have the Studentized 
range distribution under Hp. 

Duncan’s statistic R Y ’  is a union-intersection (UI) test statistic (for 
the family H,, : 6, = 0, Vi, j E P) while Kramer’s statistic R(pK) is not. Also, 
for any subset P, R(pU) is never smaller than R F ) ,  and hence if the two 
statistics are referred to the same critical point Qr;,), then Duncan’s 
procedure will be at least as powerful as Kramer’s procedure. Therefore 
the former will be preferred if it is known to control the W E .  This point 
is discussed later in this section. 

Since for any subset P we always have R(pD) 2 R F ) ,  it follows that if P 
is significant by Kramer’s procedure, then it will also be significant by 
Duncan’s procedure. In addition, some sets which are Krarner-nonsig- 
nificant may be Duncan-significant. Therefore, to apply Duncan’s proce- 
dure one can first apply Kramer’s procedure and note all maximal 
nonsignificant sets. Each one of these sets must be further scrutinized to 
check whether there is a pair of &values in that set such that their 
Studentized difference exceeds the critical value appropriate for that set. 
Thus suppose P = { 1, . . . , p }  is the set under question and further 
suppose that G, 5 6* 5 - d 5.  Then one must check whether there is a 
pair (i, j )  such that 
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If no such pair is found, then set P and all of its subsets are retained. If at 
least one such pair is found, then set P is declared significant and 
treatments i and j, as significantly different. If set P is declared significant, 
then its subsets must again be tested for significance. If pair (i, j )  satisfies 
(2.4), then the two subsets of P to be tested at the next step are P - {i} 
and P - { j ) .  Both of these Sets have cardinality p - 1 and therefore the 
appropriate critical point to be used is ( p - l  = Qf~r,’,!. This procedure is 
applied recursively until no sets remain to be tested. (Duncan proposed a 
different algorithm for carrying out the tests but the final outcome is the 
same. The purpose of Duncan’s algorithm is to simplify the task of 
computing the statistics RLD’. But if the number of treatments is not too 
large, then the statistics RbD’ can be obtained from a table of all pairwise 
Irl-statistics; in this case it is not even necessary to apply the Kramer 
procedure first. This is illustrated in Examples 2.2 and 2.3.) 

We note that the underscoring method used to display homogeneous 
subsets cannot be used with this procedure. This is because when the 
treatments are ordered according to their &values, it does not necessarily 
follow that if two treatments are in the same homogeneous set then all 
treatments internal to those two treatments are also in the same set; in 
fact, the 0’s of the internal treatments can be significantly different from 
each other. 

We next address the question of control of the FWE using this 
procedure. (The Kramer procedure is more conservative than the Dun- 
can procedure, and hence if the latter controls the W E ,  then the former 
does, too.) From Theorem 4.4 of Chapter 2 we see that Duncan’s 
procedure with the W-specification of the aP’s will control the FWE if 
(i) assumption (4.8) of Chapter 2 is satisfied, and (ii) 

PrHp{RLD’> QbqPy)} S ap V P C  K .  (2.5) 

The conditions for (i) to hold have been discussed in Section 4.3.1 of 
Chapter 2. The convexity and symmetry condition on the sets { RbD’ I 
constant} is satisfied for any design, but the product structure condition 
(4.9) of Chapter 2 may be satisfied only for some designs, for example, 
trivially for unbalanced one-way layouts. If the conjecture referred to 
there is true, then (i) holds in all cases. Next inequality (2.5) corresponds 
to the Tukey conjecture discussed in Section 3.2.1 of Chapter 3. We saw 
there that this conjecture has been proved for unbalanced one-way 
layouts, but for general unbalanced designs it has not been proved except 
for k = 3. Thus at least for unbalanced one-way layouts (i) and (ii) are 
both satisfied and hence Duncan’s procedure with the TW-specification of 
ap’s controls the FWE at level a. 

We now give two examples to illustrate the Duncan procedure. 
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Example 2.2 (Unbalanced One-way Layout; Continuation of Example 3.1 
o j  Chapter 3 ) .  In this example we have k = 7, Sz = 5,395, and v = 16. 
The sample means and sample sizes are given in Table 3.1 of Chapter 3. 

We wish to apply Duncan’s procedure to these data at a = 0.05 using 
the TW-specification of ap’s. The corresponding values of QP; obtained 
by linearly interpolating with respect to log,a, in Table 8 in Appendix 3 
are shown in Table 2.2. 

In this example the number of treatments is modest and we can easily 
compute all the pairwise statistics f i t  T,,! (1 5 i < j S k) from which the 
range statistics R F ’  can be readily obtained for any set P. These pairwise 
statistics are given in Table 2.3. 

In the following sequence of tests made by the Duncan procedure, if 
some set (and a particular pair of treatments in that set) is found 
significant at any step, then at the following step two subsets of that set 
are tested for significance. As explained earlier, the two subsets are 
obtained by deleting one treatment of the significant pair at a time from 
the set. 

Step 1. For P =  (D, F, A .  B,  C ,  E ,  G ) ,  R(pD’ = R ( G . D )  = 6.249 > 4.75. 
Therefore G and D are significantly different. 

Step 2. (a) For P = ( F ,  A, B,  C ,  E ,  C ) ,  R Y ’  = R(G.A)  = 5.326>4.57. 
Therefore G and A are significantly different. 
(b) For P = ( D ,  F , A ,  B,  C , E ) ,  R T ’ =  R, , , , ,=4.682>4.57.  
Therefore E and D are significantly different. 

TABLE 2.2. Calculation of the Critical Values 

P 2 3 4 5 6 7 

5J 0.015 0.022 0.029 0.036 0.05 0.05 

“For p = 6 the correct value of Q?.,‘ is 4.56. We use the value 
for p = 5 so that the critical points are monotone in p .  

QW p , y  3.87 4.25 4.44 4.57 4.57” 4.75 

TABLE 2.3. Values of f i l T o \  Statistics 

D F A B C E 
- - - F 1.139 - - 

A 1.661 0.2W - - - - 
B 4.508 2.693 3.288 - - - 
C 4.551 2.932 3,427 0.580 - - 
E 4.682 3.234 3.659 1.174 0.612 - 
C 6.249 4.450 5.326 2.478 1.698 0.907 
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Step 3. (a) For P = ( F ,  B ,  C ,  E,  G ) ,  RLD) = R ( G , F )  = 4.450 < 4.57. 
Therefore retain the set (F, B, C ,  E, C) as homogeneous. 
(b) For P = (F, A ,  B,  C ,  E ) ,  RL!) = R ( E , A )  = 3.659 < 4.57. 
Therefore retain the set (F, A,  B, C, E)  as homogeneous. 
(c) For P = ( D , F , A , B , C ) ,  R ~ ’ = R , , , , , = 4 . 5 5 1 < 4 . 5 7 .  
Therefore retain the set (D, F, A ,  B, C) as homogeneous. 

This completes the application of the Duncan procedure. The maximal 
nonsignificant sets retained by the Duncan procedure at a = 0.05 are thus 
(F, B, C ,  E,  G ) ,  ( F ,  A, B ,  C ,  E), and (0, F, A ,  B ,  C ) .  Two treatments 
not appearing together in any of the retained sets are significantly 
different; two treatments appearing together in any retained set are not 
significantly different. 

Duncan (1957) obtained smaller maximal nonsignificant sets, namely 
(D, F,  A), ( F ,  B ,  C ) ,  and ( B ,  C, E ,  C) (thereby obtaining additional 
significances between some treatments, e.g., A and B) because he used 
his more liberal choice for aP’s given by (4.26) of Chapter 2. Also note 
that the pair (D, E) was found nonsignificant by the Tukey-Kramer (TK) 
single-step procedure (see Example 3.1 of Chapter 3) while it is found 
significant by the present step-down procedure. 

Example 2.3 (Randomized Block Design with a Fired Covariate; Continua- 
tion of Example 1.2 of Chapter 3 ) .  In this example we have k = 6 
treatments randomized in each of n = 5 blocks. The adjusted treatment 
means 6, are given in Table 1.4 of Chapter 3. We also have Sz = 50.49 
with v = 19 d.f. 

The values of Qb9py‘ needed to  apply the Duncan procedure at a = 0.10 
are given in Table 2.4. The airwise statistics V?lT,,( = 16, - ( I i S W  
where d,, = 2 / n  + (x,. - x, ) ISxx are given in Table 2.5 (note that here 
the varieties 1 , 2 , .  . . , 6  are labeled A ,  B ,  . . . , F, respectively). 

Step 1. For P = ( B , C , D , A , F , E ) .  R ( D ) =  R(C,F) = 5.847 > 3.97. 

P 
The steps in the Duncan procedure are as follows: 

Therefore C and F are significantly different. 

TABLE 2.4. Calculation of the Critical Values 

P 2 3 4 5 6 

up 0.035 0.051 0.068 0.10 0.10 
Q?; 3.22 3.57 3.76 3.76“ 3.97 

“For p = 5 the correct value of Qf;’ is 3.75. We use 
the value for p = 4  so that the critical points are 
monotone in p. 
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TABLE 2.5. VaIws of f i lT,I  Statistics 

B C D A F 

C 0.616 - 
D 2.030 1.657 - - - 
A 3.558 4.657 2.767 - - 
F 3.925 5.847 3.833 1.879 - 
E 3.149 4.473 2.955 1.551 0.180 

- - - 

Step 2. (a) For P = (B, D, A, F, E ) ,  R(pD) = R ( B , F )  = 3.925 > 3.76. 
Therefore B and F are significantly different. 
(b) For P = (B, C ,  D, A ,  E ) ,  R y )  = R ( A , C )  - - 4.657 > 3.76. 
Therefore A and C are significantly different. 

Step 3. (a) For P = (D, A, F, E ) ,  RF’ = RfD,F)  = 3.833 > 3.76. There- 
fore D and F are significantly different. 
(b) For P = ( B ,  D , A , E ) ,  R(pD’=R,, , , ,=3.558<3.76.  
Therefore retain the set (B, D, A ,  E) as homogeneous. 
(c) For P = ( B ,  C ,  D, E ) ,  RIP’ = R ( C , E )  = 4.473 > 3.76. There- 
fore C and E are significantly different. 

Step 4. (a) For P =  ( A ,  F, E ) ,  R F )  = R ( A , F )  - - 1.879 < 3.57. There- 
fore retain the set ( A ,  F, E) as homogeneous. 
(b) For P = ( B ,  C ,  D), RLD’ = R(, ,D)  = 2.030< 3.57. There- 
fore retain the set (B, C, D) as homogeneous. 
(c) Retain the sets (D, A ,  E) and (B, D, E) as homogeneous 
because they are contained in the set (B, D, A,  E), which was 
retained at Step 3b. 

This completes the application of the Duncan procedure. The maximal 
nonsignificant sets retained at a = 0.10 are (B, D, A. E ) ,  ( A ,  F, E), and 
(B, C ,  D). 0 

3 PERITZ’S CLOSED STEP-DOWN PROCEDURE 

In this section we describe a practical algorithm due to Begun and 
Gabriel (1981) for implementing Peritz’s (1970) closed step-down proce- 
dure for the family of multiple subset hypotheses. The theory underlying 
this procedure was given in Section 4.3.2 of Chapter 2. There we saw that 
this procedure controls the Type I W E  strongly at level a by testing each 
multiple subset hypothesis Hp = fl,=, H ,  at nominal level a (subject to 
the coherence requirement). If any Hp is regarded as significant when at 
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least some Hp, is significant at level aPi (1 S i S r)  where 

(3.1) 
a if P = ( P , )  is a singleton 

then from Theorem 4.3 of Chapter 2 we know that the nominal level of 
this test of H p  is controlled at a. Although this basic procedure is simple 
to state, it is difficult to implement because of the complicated implication 
relations among the hypotheses H,.  

It may be observed that the first part of (3.1) corresponds to the 
NK-choice of nominal levels for testing individual subset hypotheses H,, 
while the second part of (3.1) corresponds to the TW-choice (1.1). If we 
refer to the corresponding stepdown procedures as the NK- and TW- 
procedures, respectively, then the following statements can be made 
(note that Begun and Gabriel refer to the TW-procedure as the Ryan 
procedure): 

(i) Any H ,  that is retained by the NK-procedure will also be 
retained by the closed procedure but the latter may retain some more 
H,’s by implication. This follows because the nominal levels used by the 
closed procedure for testing individual H,’s are always less than or equal 
to those used by the NK-procedure. For example, fork  = 4, Hfl ,z ,  may be 
significant at  level a, but H(1,2) and H(3.4) may each be nonsignificant at 
level 1 - (1 - 

(ii) Any H, that is rejected by the TW-procedure will also be 
rejected by the closed procedure, but the latter may reject some more 
H,’s. This follows because the nominal levels used by the closed proce- 
dure for testing individual H,’s are always greater than or equal to those 
used by the TW-procedure. 

Begun and Gabriel’s (1981) algorithm is based on these two observa- 
tions and it proceeds as follows: 

Step 1.  Retain all H,’s that are retained by the NK-procedure. 
Srep 2. Reject all H,’s that are rejected by the TW-procedure. 
Step 3. Classify as contentious those H,’s that are retained by the 

TW-procedure but rejected by the NK-procedure. Make deci- 
sions on contentious H,’s starting from the largest P in the 
following manner: Retain a contentious H ,  if 

(a) a contentious H ,  is retained and P C  Q, or if 
(b) H, is nonsignificant at level a,, = 1 - (1 - a)’!’ and for 
some Q in the complement of P with cardinality q h2, H, is 
nonsignificant at level aq = I - (1 - 
Reject a contentious H ,  if (a) and (b) are both violated. 

thus causing Htlr2) and H(3,4) to be retained. 
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Notice that although the closed procedure addresses the family of 
multiple subset hypotheses, this algorithm makes decisions on subset 
hypotheses (which are of primary or sometimes of sole interest). Deci- 
sions on multiple subset hypotheses can be obtained in the usual manner 
by rejecting H p  = n H ,  if and only if at least some H ,  is rejected. 
These decisions on the H,’s are identical to the ones obtained by stepping 
down through the hierarchy of the Hp’s and using the nominal levels 
given in (3.1) for testing each Hp. 

Another noteworthy feature of the closed procedure is that a decision 
on any set P is dependent on sets Q in the complement of P. Thus if the 
8’s outside a set P are spread out, it can help in the rejection of Hp. 

We now give two examples to illustrate Peritz’s closed procedure. The 
first example uses F-statistics while the second example uses Studentized 
range statistics. 

Example 3.1 (Balanced One-way Layout; Continuation of Example 
2.1).  We use the data of Example 1.1 where the 7W and NK step-down 
F procedures were applied at a = 0.05. From the results given in Table 
1.1 we find that the largest contentious sets are ( A ,  B, C) and (B, C, D). 
Using the algorithm for Perirz’s closed procedure we make decisions on 
these and smaller contentious sets as follows: 

Retain ( A ,  B ,  C) as homogeneous since ( A ,  B, C) is nonsignificant at 
level a3 = 1 - (1 - and since (D, E), which is in the complement of 
( A ,  B, C), is also nonsignificant at level a, = 1 - (1 - 

Declare (B, C, D) as heterogeneous since it is not contained in any 
retained contentious set and since ( A ,  E), which is in the complement of 
(B, C, D), is significant at level nz. 

We now make decisions on the smaller contentious sets ( A ,  B ) ,  
( A ,  C), (B, D), and (C, 0).  The sets ( A ,  B) and ( A ,  C) are contained in 
the retained contentious set ( A ,  B, C) and therefore are retained. The 
sets (B, D) and (C, D) are contained in rejected contentious sets 
(B, C ,  D )  and therefore they must be further examined. 

Declare (B, D )  as heterogeneous since (B, D) is significant at level a, 
and since ( A ,  C), ( A ,  E), (C, E), and ( A ,  C, E), which are all in the 
complement of (B, D), are also significant at levels a4 where q = 2 for the 
first three sets and q = 3 for the last set. 

Retain (C, D) as homogeneous since (C, D) is nonsignificant at level 
a2 and since ( A ,  B), which is in the complement of (C, D),  is also 
nonsignificant at level a2. 

In addition to the above decisions, the Peritz procedure also provides 
decisions on all multiple subset hypotheses. For example, H((A,B).(C,D,t) l  
is rejected because (C, D, E) is significant at level a3. On the other hand, 
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H( (A ,  s, C ) ; ( D , E ) )  is retained because (A,  B, C) is nonsignificant at level a, 
0 and (D, E) is nonsignificant at level a2. 

Example 3.2 (Randomized Block Design; Continuation of Example 
2.1). The TW range procedure was applied in Example 2.1 at level 
a = 0.05. The maximal nonsignificant sets identified by that procedure 
were ( A ,  F, G, D) and (F, G, D, C ,  B ,  E ) .  

We now apply the NK range procedure to the same data. The critical 
values needed for this procedure are given in Table 3.1 for a = 0.05. 
Applying the tests in the same manner as in Example 2.1 we obtain the 
same maximal nonsignificant sets as obtained by the TW range proce- 
dure, namely (A,  F, C, D) and (F ,  G, D, C,  8, E). Thus there are no 
contentious sets in this example and therefore the Peritz range procedure 
makes the same decisions as the ‘TW and NK range procedures. 

TABLE 3.1. Critical Values for the NK Range Procedure 

P 2 3 4 5 6 7 

0 :!* 2.89 3.49 3.85 4.11 4.31 4.47 
QbqtSlfi 10.52 12.70 14.00 14.94 15.67 16.26 

0 

4 STEP-UP PROCEDURES 

4.1 Balanced Designs 

There is just one example of a step-up procedure in the multiple 
comparison literature, which was proposed by Welsch (1977) for the 
family of subset hypotheses in balanced one-way layouts. His procedure is 
based on Studentized range statistics. Determination of the critical points 
6 ,  ( 2 1 p  5 k) required for controlling the Type I FWE at designated 
level a using this procedure is discussed later in this section. We first 
describe the steps in the procedure: 

Step 1. Order the treatment means Y(,) C-Y(2) Z -1 * Z Y(k) .  Begin by 
testing all “gaps” or “2-ranges,” ( Y ( , + l )  - Y( , , )  (1 S i Z k - l), 
by comparing them with the critical value [ , S I f i .  If p(,+l) - 
Y( , )  > &S/t/7i, then declare that gap as significant and the 
corresponding pair of treatments as different. Also declare all 
sets of treatments containing that pair as heterogeneous and the 
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corresponding p-ranges containing that gap as significant by 
implication without further tests. Proceed to Step 2 if at least 
one gap is not declared as significant. 
In general, test a p-range (Y(p+t - , ) -Y( l ) )  ( l S i S ' k - p +  
1 , 2  5 p S k), using the critical value tpS/V7i if that p-range is 
not declared significant by implication at an earlier step. If 

- p ( l )  > tpS/v'ii, then declare that p-range as signific- 
ant and the pair of treatments corresponding to Y(p+ l - , )  and 
?(,) as different. Also declare all sets of treatments containing 
that subset of p treatments as heterogeneous and the corrcs- 
ponding q-ranges containing that p-range for all q > p  as sig- 
nificant by implication without further tests. Continue in this 
manner until no ranges remain to be tested that are not already 
declared as significant. 

- - 
Step 2. 

Clearly, this stepiup procedure is both coherent and consonant. Also it 
would be expected to possess good power properties (at least for some 
parameter configurations) since it concludes significance by implication in 
contrast to stepdown procedures, which conclude nonsignijicance by 
implication. A more detailed comparison between the two types of 
procedures is given in Section 5 .  

We next indicate how Welsch (1977) determined the critical points 5, 
so as to achieve strong control of the Type I W E .  Welsch's result is 
stated in the following theorem. 

Theorem 4.1 (Welsch 1977). Let Z(l) I Z ( 2 )  S * - * S Z(k )  be an ordered 
random sample from a standard normal distribution and let [I be 
distributed independently as a r.v. where Y is the error d.f. on 
which the estimate S2 is based. Define 

and 

where t2 5 * . * S 5, are critical constants used by the step-up procedure. 
If these constants are determined so that 

i: ap, a 
i=! 
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for all r-tuples (1 I r 5 k/2) of integers ( pl,  p 2 ,  . . . , p r )  with p, 2 2 and 
E:=l p i  5 k, then the step-up procedure controls the Type I FWE strongly 
at level a. 

Proof. Using the Bonferroni inequality it follows that the Type I W E  
under any Hp = n :rl Hp, is bounded above by 

2 Prq{Hpi is rejected} . (4.2) 
i = l  

We next obtain an upper bound on a general summand in (4.2). To 
simplify the notation denote Hpi for a - general summand - by H ,  where 
P = { l ,  . . . , p }  with 2 S p S k .  Let Y ( i , 3 . . . I Y ( , ,  be the ordered 
means in set P. The hypothesis H ,  will be rejected at the first step (when 
testing 2-ranges) if 

Next, for p 2 3  consider testing a j-range (3 d j S p ) .  In that case 
rejection of H p  is possible if for some q (2 S q S j ) ,  

(4.3) 

Note that rejection of H p  is possible using (4.3) when a q-range 
( p ( r + q - l )  - Y(,,) from set P exceeds ~,S/V% (which is the appropriate 
critical value for a j-range) for j > q because ( j - q )  sample means Y, for feP could lie between F ( , , , - , ,  and p(,) (and thus make it a j-range). 
Now since sj Z i& for j Z q,  it follows that event (4.3) is contained in the 
event 

We thus obtain 

RHP{ H, is rejected} 
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Substituting this in (4.2) we see that (4.1) must hold for all multiple 
U subset hypotheses H p ,  and hence the theorem follows. 

Welsch (1977) proposed the choice 

a = -  " P  ( 2 Z p I k - 2 ) ,  a k - ] - a k = a ,  - 
P k  

which clearly guarantees (4.1), For this choice of ap's and subject to the 
monotonicity constraint t2 d tj 5 * * . d tk, Welsch (1977) tabulated the 
critical constants 6,  (2 5 p S k )  for k = 2(1)10, v = 5, 20, 40, =, and 
a = 0.05 which he obtained using Monte Carlo simulations. 

For a general balanced design satisfying the painvise balance condition 
(2.1), the same procedure as described above and the same tables of the 
critical constants 6, can be used. But, of course, for testing a p-range 
(q,,+,-]) - &)), the critical value must be modified to tPSv'i&. 

We now demonstrate the use of this step-up procedure by an example. 

Example 4.1 (Randomized Block Design; Continuation of Example 
2.1). For these data we have S2 = 79.64 with v = 30 d.f. The critical 
values for a = 0.05, v = 30 excerpted from Welsch's tables are given in 
Table 4.1. 

The ordered sample means are 

A F G D C B E  
49.6 58.1 61.0 61.5 67.6 71.2 71.3. 

The sequence of tests in the Welsch procedure is as follows: 

Step 1. The largest gap (2-range) is F - A =58.1 - 49.6 = 8.5. Thus 
none of the 2-ranges exceeds the critical value 13.52. 

Step 2. The largest 3-range is G - A = 61.0 - 49.6 = 11.4. Thus none of 
the 3-ranges exceeds the critical value 14.86. 

Step 3. The largest 4-range is D - A = 61.5 - 49.6 = 11.9. Thus none of 
the 4-ranges exceeds the critical value 15.45. 

Step 4. The largest 5-range is C - A = 67.6 - 49.6 = 18.0 > 15.85. Thus 
the set ( A ,  F, G ,  D, C )  is significant and, in particular, A and C 

TABLE 4.1. Critical Values for the Step-up Procedure 

P 2 3 4 5 6 7 

3.71 4.08 4.24 4.35 4.35 4.52 
[ J i f i  13.52 14.86 15.45 15.85 15.85 16.47 
6, 
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are different. From this it follows that sets ( A ,  F, G, D, C ,  8 )  
and (A,  F, G, D, C, B, E) are also significant and need not be 
tested. Also, A and B, and A and E are different. 

Step 5. The only 6-range that remains to be tested is E - F = 71.3 - 
58.1 = 13.2 < 15.85, which is thus nonsignificant. 

We thus obtain the following maximal nonsignificant sets: 
( A ,  F, G, D) and (F, G ,  D, C, B, E ) .  Note that in Example 2.1, the TW 

0 step-down range procedure yielded the same result. 

4.2 Unbalanced Designs 

Welsch's step-up procedure has not yet been extended to general unbal- 
anced designs, that is, designs that do not satisfy the pairwise balance 
condition (2.1). One possible way of developing an approximate exten- 
sion is as follows: Order the parameter estimates: i(,) S ( 2 )  S . . * S & ) .  

Use Welsch's step-up procedure with these ordered estimates but with the 
critical value (pS(P(r)(f  + p - , )  12)'" when testing the significance of a 
p-range O t f + p - , )  - OC,, ( l S i i S k  - p  + 1 , Z S p I k )  where d,, = u,, + u,, - 
Zu,, and the (,'s (2 S p  5 k )  depend, of course, on the error d.f. Y, the 
number of treatments k, and level a. it seems worthwhile to study the 
nature of the approximation (whether it is conservative or liberal) 
involved in this extension. Another way to extend Welsch's step-up 
procedure to unbalanced designs is by using F-statistics instead of range 
statistics. 

1 

5 h COMPARISON OF SINGLE-STEP AND STEPWISE PROCE- 
DURES 

5.1 Criteria for Comparison 

We first discuss the criteria on which the comparisons between different 
multiple comparison procedures (MCPs) are based. Since confidence 
estimation analogs of the stepwise procedures of this chapter are not 
available, we restrict our comparisons to tests. The principal criterion is 
the power for testing subset homogeneity hypotheses. Other criteria 
include convenience of use and ease of interpreting the results. Strictly 
speaking, all of the comparisons apply only to balanced one-way layouts 
because the various simulation studies reported in the literature have 
been carried out only for this case. 
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procedures for balanced one-way layouts, only the step-down procedures 
of Tukey-Welsch and Peritz and the step-up procedure of Welsch satisfy 
this requirement, and hence are included in the comparison. Step-down 
procedures based on Studentized range statistics as well as F-statistics are 
considered. For the Welsch step-up procedure only Studentized range 
statistics are considered, since a corresponding procedure based on 
F-statistics has not been developed yet. 

From the description of Peritz’s closed procedure it is clear that it will 
be more powerful (using any definition of power) than the TW-procedure, 
which in turn will be more powerful than the corresponding single-step 
procedure; the appropriate single-step procedure to compare is the 
T-procedure (respectively, the S-procedure) if the step-down procedures 
are based on Studentized range statistics (respectively, F-statistics). How- 
ever, we still retain all of these MCPs in our comparison because they are 
not quite equal on other counts. For example, single-step procedures are 
easier to use, yield confidence intervals, and allow directional decisions. 
These advantages are not available with stepwise procedures. Also, the 
Peritz procedure is less convenient to apply (requires more computations 
and cross-checking) than the TW-procedure. Therefore, we would like to 
assess the power differences between these MCPs in detail, and ascertain 
whether they are large enough to justify the use of the more complicated 
procedures. We study the performances of these MCPs in conjunction 
with Studentized range and F-statistics to determine the relative advan- 
tages associated with each type of statistic under different parameter 
configurations. 

5.3 Discussion 

Prior to Einot and Gabriel’s (1975) work, several authors (Baiaam 1963, 
Petrinovich and Hardyck 1969, Boardman and Moffitt 1971, Carmer and 
Swanson 1973, Thomas 1974) carried out simulation studies to compare 
the performances of different MCPs. They found that single-step proce- 
dures (the S-procedure and the T-procedure) have the least power, while 
the Duncan (D) procedure (see Example 4.7 of Chapter 2) has the 
highest power. However, we have seen that the D-procedure is the most 
liberal of all MCPs and does not strongly control the Type I FWE. Thus 
the reported differences in powers were mainly due to different choices of 
nominal significance levels made by different MCPs and had nothing to 
do with the intrinsic properties of the MCPs. Einot and Gabriel (1975) 
were the first to highlight this simple fact and to postulate that corn- 
parisons be restricted to only those MCPs that strongly control the Type I 
FWE at the same level. 
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As mentioned in Section 5.1, Einot and Gabriel studied the P-subset 
powers of various MCPs by means of simulation. Their study was 
confined to balanced one-way layouts with k = 3,4,  5 ,  n = 9, and selected 
configurations 8. The essence of their findings is that the S- and T- 
procedures do not lose much in terms of the P-subset power in com- 
parison to the TW and the Peritz step-down procedures. More specifical- 
ly, the gain in power due to the use of the stepdown procedures in 
comparison to the single-step procedures is not substantial enough to 
offset some of the disadvantages associated with the former, such as more 
complicated implementation and unavailability of confidence intervals. 

Einot and Gabriel found very small differences in the powers of the 
MCPs based on Studentized range statistics. The power differences 
between the T-procedure and the TW-procedure were roughly of the 
order of 0.01 to 0.08 and those between the T-procedure and the Peritz 
procedure were of the order of 0.04 to 0.09. Smaller differences in power 
were observed when the P-subset power of the T-procedure was fixed at 
0.50 and when P was a larger subset of the whole set of treatments while 
larger differences in power were observed when the P-subset power of 
the T-procedure was fixed at 0.75 and when P was a smaller subset of the 
whole set. The power differences were somewhat larger for the MCPs 
based on F-statistics. The power differences between the $-procedure and 
the W-procedure were of the order of 0.05 to 0.14 and those between 
the S-procedure and the Peritz procedure were of the order of 0.07 to 
0.15 with the extreme differences occurring under the same conditions as 
in the case of the procedures based on Studentized range statistics. 

On the basis of these results Einot and Gabriel recommended the use 
of the T-procedure in most practical problems. For situations where 
confidence intervals are not of interest, they recommended the ‘W 
step-down procedure based on F-statistics over the Peritz procedure 
because the latter involves “impractically complicated” tests. However, 
the implementation of the Peritz procedure has now become feasible 
through the computer program developed by Begun and Gabriel (1981). 

Ramsey (1978) studied the ail-pairs powers of various procedures via 
simulation and came up with conclusions opposite to those of Einot and 
Gabriel (1975). The essence of Ramsey’s findings is that the Peritz 
procedure (particularly the one based on F-statistics) can be considerably 
more powerful than the T-procedure under different configurations, the 
advantage being greatest when the means are widely separated. In a large 
number of cases Ramsey found that the all-pairs power of the Peritz 
procedure exceeds that of the T-procedure by more than 0.20 and in 
extreme cases by more than 0.50. The TW Studentized range procedure 
also performed quite well except under the configuration of equispaced 
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means when the advantage of the Peritz procedure (based on Studentized 
range or F-statistics) was quite large. The performance of the Peritz 
procedure based on F-statistics was uniformly superior to the perform- 
ance of the same procedure based on Studentized range statistics except 
when the means were equispaced, in which case the powers of the two 
procedures were roughly equal. 

Einot and Gabriel (1975) and Ramsey (1978), using two different 
definitions of power, reached quite different conclusions: Einot and 
Gabriel found that the extra power associated with step-down procedures 
is not worth the trouble and it is better to use single-step procedures, 
while Ramsey found that this extra power can be quite substantial. 
Gabriel (1978b) offered the following explanation of why step-down 
procedures dominate single-step procedures substantially in terms of the 
all-pairs power but not in terms of the Y-subset powers, in particular, the 
per-pair power: In a step-down procedure (particularly the Peritz proce- 
dure) the rejection of any subset hypothesis becomes more likely if any of 
the other subsets are rejected, while in a single-step procedure the 
decision on a given subset is independent of the decisions on other 
subsets. Therefore, step-down procedures enjoy a significant advantage 
over single-step procedures for joint rejection decisions on several 
nonhomogeneous subsets, but not for a single rejection decision on a 
particular nonhomogeneous subset. 

Welsch ( 1977) compared his step-up procedure with selected com- 
petitors and found that it generally has the best performance in terms of 
the overall power, followed closely by the TW step-down procedure 
based on Studentized range statistics. The Peritz procedure was not 
included in Welsch’s comparison. The gain in power over the TW- 
procedure is not substantial enough to justify the use of the step-up 
procedure when one takes into account the drawbacks associated with it, 
namely, the lack of extensive tables of critical constants needed for its 
implementation and its presently limited applicability to only balanced 
designs. 

To summarize, if confidence estimates of pairwise differences or 
directional decisions about them are desired, then the only option is to 
use one of the single-step procedures. A comparison between different 
single-step procedures is given in Section 4 of Chapter 3. If only the tests 
of subset homogeneity hypotheses are of interest, then stepwise proce- 
dures offer the potential of significant gains in power. Among the 
step-down procedures, the Peritz procedure based on F-statistics is 
generally the most powerful choice, but it is rather cumbersome to apply 
by hand. The TW procedure is somewhat less powerful but it is much 
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easier to apply, particularly when Studentized range statistics are used in 
a balanced one-way layout. The step-up procedure of Welsch dominates 
the TW step-down procedure (both based on Studentized range statistics) 
by a small amount, and it may be used if the required critical constants 
are available in Welsch (1977). 



C H A P T E R  5 

Procedures for Some 
Nonhierarchical Finite 
Families of Comparisons 

In Chapters 3 and 4 we discussed procedures for some families of pairwise 
and more general comparisons among all treatments. In this chapter we 
discuss procedures for some other families of comparisons. A few of these 
families also involve comparisons among all treatments (e.g., the family 
of orthogonal comparisons); however, they are treated here separately 
because they are not generalizations of the family of pairwise com- 
parisons. The families considered are for the most part finite and 
nonhierarchical. The theory underlying the procedures for such families is 
covered in Sections 2.1.1 and 4.2 of Chapter 2 for single-step and 
step-down procedures, respectively. 

In Section 1 we consider the family of orthogonal comparisons. The 
problem of comparing the treatment means in a one-way layout with 
known standard values or  benchmarks provides a simple example of this 
family. In Section 2 we consider the family of comparisons of treatment 
means with a single benchmark corresponding to  the unknown mean of a 
control treatment. In Section 3 we consider the family of comparisons of 
treatment means with the mean of the unknown “best” treatment, that is, 
the treatment having the largest mean. Finally in Section 4 we discuss 
procedures for two miscellaneous families: the family of deviations from 
the average of all treatment means and the family of successive differ- 
ences in treatment means when the means have an P priori ordering. 

134 

Multiple Comparison Procedures 
Yosef Hochberg,Ajit C. Tamhane 

Copyright 0 1987 by John Wiley & Sons, Inc 



ORTHOGONAL COMPARISONS 135 

1 ORTHOGONAL COMPARISONS 

In this section we are concerned with making simultaneous inferences on 
a finite family of parametric fun5tions I:@, i = 1,2, . . . , m, such that their 
least squares (IS) estimators I:@ are uncorrelated, that is, 

cO”(l;i, 1;i) = oZI:VI, = 0 (1 s i # j 5 m) . (1.1) 

Because of the joint normality of the I@s, (1.1) implies their mutual 
independence. 

The simplest example of orthogonal comparisons is what Tukey (1953) 
refers to as “batch” comparisons in a one-way layout. These are the 
comparisons of batch or treatment means 8, with specified values $, or 
more generally, simultaneous confidence intervals for the 0,’s (1 d i S k). 
Here the parametric functions of interest are 0, = I:@ where I, is a k-vector 
with unity in the ith place and zero everywhere else, V =  
diag(l /n , ,  . . . , 1 I n k ) ,  and thus condition (1.1) is clearly satisfied. More 
generally, condition (1.1) is satisfied for a one-way layout if the vectors I, 
satisfy 

= o  ( l S i # j S m ) .  
‘ ih l )h - 

h = l  * h  

For a balanced one-way layout, condition (1.2) becomes I:I, = 0 for all 
i # j .  In that case, if the 1,’s are contrast vectors c, E Ck, then the c:8’s 
(1 5 i S m) are called orthogonal contrasts and m can be at most k - 1. 
For example, the coefficients of orthogonal polynomials constitute such a 
set of orthogonal contrasts among the treatment means when the treat- 
ments consist of equispaced levels of a quantitative factor. 

Another application of ortho ona! comparisons arises in 2d factorial 
experiments. Assume that the 2 factorial combinations are randomized 
within each of n complete blocks. The vector 8 con_sists of the true means 
of the k = 2d factorial combinations. The vector 0, which is the corres- 
ponding vector of sample means (across blocks), is normally distributed 
with mean B and variance-covariance matrix (v2/n)I. The 2d - 1 com- 
parisons consisting of d main effects, (:) first order interactions, and so 
on, can be expressed as contrasts c:B (1 S i ~5 2d - 1) where tic, = 0 for all 
i # j  and each component of c, equals -C(1/2)d-’ so that c:c, = ( 1 / 2 ) d - * .  
These are orthogonal comparisons because cov(c:& cl6) = (cr*/n)c:c, = 0 
for all i # j .  Each c : i  has the same variance, which equals (a2/n)c:c, = 
0 * / ( 2 ~ - * n ) .  The finite set that an experimenter might wish to specify in 

% 
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advance could be the whole set of 2'- 1 comparisons or any subset of 
special interest (e.g., main effects only or higher order interactions only). 

A two-sided single-step procedure for the family of orthogonal com- 
parisons is given in Example 2.2 of Chapter 2 and the corresponding 
step-down test procedure is given in Example 4.1 of Chapter 2. Both of 
these procedures are based on the Studentized maximum modulus distri- 
bution. This is the distribution of maxlT,] where the pivotal random 
variables (r.v.3) 

have a joint multivariate t-distribution with the associated common 
correlation p = 0 and degrees of freedom (d.f.) v. In Sections 1.1 and 1.2 
we further expound on these two procedures and also discuss their 
one-sided analogs, which are based on the distribution of max TI (known 
as the Studentized maximum distribution). A numerical example is given 
to illustrate these procedures. 

1.1 SingleStep Procedures 

i s m )  follow from (2.7) of Chapter 2 and are given by 
Simultaneous (1 - a)-level two-sided confidence intervals for I:@ (1 S 

i:e E p:i 5 I M I ~ ~ ~ I  (1  s i s m) ; (1.4) 

here IMlff,', is the upper a point of the Studentized maximum modulus 
distribution with parameter m and d.f. v. For batch comparisons in a 
one-way layout (1.4) takes the form 

t ~ ,  E [Y, I M J : ~ S / ~ ]  ( 1  s i 5 A )  . 
and for orthogonal contrasts in a balanced one-way layout (1.4) takes the 
form 

As noted in Chapter 2. these intervals can be used to test hypotheses 
on I:e, say, ti,,, : lie = 0 versus H,, :1:e # 0 ( 1  5 i s m ) .  If any H,, is 
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rejected, then one can classify the sign of I;O depending on the sign of 1:8. 
This single-step test procedure controls the Type I and Type III family- 
wise error rate ( W E )  at level a. 

The lower one-sided analog of (1.4) is given by 

i;e I i$i - ~ l n 4 ‘ y s m  (1 s i 5 m) (1.5) 

where M:,’y is the upper a point of the Studentized maximum distribution 
with parameter m and d.f. v. If upper confidence bounds are required for 
a subset of the I:O’s and lower confidence bounds are required for the 
rest, then the same critical constant Mt,: can be used to guarantee that 
the joint confidence level = 1 - a. The subset for which one type  of 
confidence bounds are required may be fixed in advance or selected based 
on the data. The latter option enables us to make directional decisions 
about the I:B’s (I:@ > 0 or < 0 depending on whether l:6 > M z , ) , , . S m  
or < - M E . ) , , S m )  with control of the Type III W E  (but not the Type 
I FWE) at level a. The resulting procedure is a special case of the 
multiple three-decision procedure given in the paragraph following 
Theorem 2.3 of Chapter 2. 

Example 1.1. The data for this example are taken from Cochran and 
Cox, (1957, Section 5.24a). The same data were used by Bechhofer and 
Dunnett (1982) to demonstrate Tukey’s Studentized maximum modulus 
procedure (1.4) for orthogonal constrasts. Here we use them to dernon- 
strate, in addition, the directional decision procedure based on the 
Studentized maximum distribution. 

The data pertain to the effects of four fertilizers (M = manure, N = 
nitrogen. P = phosphorous, K = potassium), each at two levels, on the 
yield of grass. The 2‘ factorial combinations of levels are randomized in 
each of n = 4 blocks. There are 15 orthogonal contrasts here consisting of 
the four main effects (M, N, P, K), the six two-factor interactions (MN, 
MP, MK, NP, NK, PK)? four three-factor interactions (MNP, MNK, 
MPK, NPK) and one four-factor interaction (MNPK). Assuming no 
interaction between treatments and blocks, the mean square error (MSE) 
estimator of cr’ is S’ = 90.5 based on 45 d.f. and the estimated standard 
error of each estimated effect is I&% = 2.378. 

The 99% and 90% simultaneous confidence intervals using (1.4) are 
i n  i t ) )  = given in Table 1.1. In these calculations I M I ~ ~ , ~ ~ )  = 3.65 and lMl,s.4j 

2.81. Thus the allowances l M l ~ ~ l & %  for 99% and YO% intervals are 
given by 3.65 x 2.378 = 8.68 and 2.81 x 2.378 L- 6.68. respectively. The 
f-statistics associated with the estimated effects are also given in the same 
table. The matistics that are significant at a = 0.01 (i.e., It1 > 3.65) are 
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TABLE 1.1. Simultaneous Confidence Lntwvak for Effects in a Z' Factorial 
Experiment 

Confidence Interval 

Type Effect 1 - (I = 0.99 1 - a = 0.90 I-Statistic" 

Main M 18.0 f 8.68 18.0 2 6.68 7.57'' 
effect N 21.3 2 8.68 21.3 ;f: 6.68 8.%'* 

P 5.5 2 8.68 5.5 h 6.68 2.31 
K 24.1 f 8.68 24.1 2 6.68 10.13'' 

Two-factor MN 3.2 h 8.68 3.2 2 6.68 1.35 
interactions MP -0.3 ? 8.68 -0.3 2 6.68 -0.13 

MK -7.5 2 8.68 -7.5 f 6.68 -3.15' 
NP 3.5 2 8.68 ' 3.5 2 6.68 1.47 
NK 10.9 2 8.68 10.9 -t 6.68 4.58** 
PK 3.2 f 8.68 3.2 2 6.68 1.35 

Three-factor MNP - 1.4 I?: 8.68 -1.4 2 6.68 -0.59 

MPK 0.8 2 8.68 0.8 f 6.68 0.34 
NPK 0.5 It 8.68 0.5 2 6.68 0.21 

Four-factor MNPK -1.65 8.68 -1.626.68 -0.67 

interactions MNK -8.5 58.68 -8.526.68 -3.57' 

interactions 

'A double asterisk indicates significance at cr = 0.01. A single asterisk indicates 
significance at Q = 0.10. 

marked with double asterisks and the caes that are significant at a = 0.10 
(i.e., It1 >2.81) are marked with single asterisks. 

If the main interest is in determining the signs of the effects (i.e., if we 
are concerned with protection only against Type 111 errors), then we can 
use the more powerful directional decision procedure mentioned earlier. 
The critical constant needed for this procedure for a = 0.10 is M$,;$) = 
2.55. Comparing this value with the t-statistics we conclude that the 
effects M, N, K, and NK have positive signs and the effects MK and 
MNK have negative signs. In this instance, these are the same effects for 
which we are able to classify the signs by using the less powerful 
Studentized maximum modulus procedure. 0 

1.2 Step-Down Procedures 

A step-down procedure for testing hypotheses on orthogonal comparisons 
against two-sided alternatives is given in Example 4.1 of Chapter 2. A 
step-down procedure for one-sided alternatives is similar to that given in 
Example 4.2 of Chapter 2. Here we have p = 0 and hence we use the 
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critical constants TI:&, = ~lpy' in successive steps of testing (1 I i I m).  
The T,-statistics are based on the pivotal r.v.3 (1.3). 

From Theorem 4.1 of Chapter 2 it follows that both of these proce- 
dures control the Type I W E  at level a ,  these being the shortcut 
versions of the corresponding closed testing procedures. We also saw in 
Section 4.2.3 of Chapter 2 that the two-sided stepdown procedure can be 
accompanied by directional decisions on those Ii8's for which the null 
hypotheses are rejected, without exceeding the designated level a for the 
Type I and Type I11 FWE (Holm 1979b). 
By using the method of Kim, Stefinsson, and Hsu (1987) one can 

construct (1 - a)-level simultaneous confidence intervals associated with 
the one-sided stepdown procedure (the corresponding analog for the 
two-sided procedure is not available). These intervals are given by 
(analogous to (4.7) of Chapter 2) 

( 1 S i S m )  

where x -  =min(x,O) and p is such that T( , ,>Mlf , '  for i = m ,  m - 
1, . . . , p + 1 and Tcpt d M F l ;  here Ttl, 5 T(2,  5 * * * S T(,,,) are the or- 
dered T,-statistics. One can similarly obtain upper one-sided confidence 
bounds. 

Exarnplc 1.1 (Continued). Suppose that we only wish to test the signifi- 
cances of the various factorial effects. In that case it is preferable to use 
the two-sided step-down procedure. Clearly for any given a, all the 
effects that were found significant by the single-step procedure will also 
be found significant by the stepdown procedure; the latter may find some 
additional ones significant. Thus for a = 0.01, the latter will also find the 
effects M, N, K, and NK significant. The next effect in the order of 
magnitude is the three-factor interaction MNK, which has the Irl-statistic 
equal to 3.57. Comparing this with IMlti;\) = 3.55 we find that this effect 
is also significant. The next ordered effect is the two-factor interaction 
MK, which has the It/-statistic equal to 3.15. Comparing this with 
I M I ~ ~ ; ~ ~ )  = 3.51 we find that MK is not significant at a = 0.01. Therefore 
all the remaining effects are concluded to be not significant at a = 0.01. 
For a = 0.10, the stepdown procedure finds the same effects significant 

0 that were found by the single-step procedure. 

2 COMPARISONS WITH A CONTROL 

In many experimental situations a standard of comparison is provided by 
a control group with which different treatment groups are compared. For 
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example, in a clinical trial a control group consists of patients treated with 
a standard existing therapy or no therapy (placebo), and the treatment 
groups consist of patients treated with new therapies. Often the new 
treatments are of interest only if they are shown to be “better” than the 
control. Thus comparisons with the control can be used as a screening 
device to eliminate noncontending treatments. 

If the goal is to select the treatments that are “better” than the 
control, then a one-sided procedure is required. Sometimes it is desired 
to identify both sets of treatments, those that are “better” than the 
control and those that are “worse” than the control. In this case, a 
two-sided procedure with directional decisions is required. (For an alter- 
native approach to this problem see Section 1.2 of Chapter 6.) We now 
proceed to study single-step and step-down procedures for these goals. 

2.1 Single-Step Procedures 

2.1.1 
In Example 2.3 of Chapter 2 we gave Dunnett’s (1955) one-sided and 
two-sided simultaneous confidence intervals for 0, - 0, (1 S i I k - 1) for 
a one-way layout where the kth treatment is regarded as a control. In the 
present section we extend these to general balanced or unbalanced 
designs. Thus consider the setting of Section 1 of Chapter 2. Let 
6 - N(6, a 2 V )  and Sz - a 2 x t / v  be the usual estimates of the vector of 
treatment effects 8 and the error variance u2, respectively. 

The parameters of interest are y, = lie = di - 0, where l i  is a k-vector 
with +1  in the ith place, -1 in the kth place, and zero everywhere else 
(1 4 i S k - 1). From (2.10) of Chapter 2 we obtain the following (1 - 
a)-level simultaneous one-sided confidence intervals for 0; - 0, : 

Exact Procedures for Balnnced or Unbalanced Designs 

ei - e, 2 Gi - 6, - TF-) ( , , ) S ~ v i i  + vkk - 2u,, (1 S i d k - 1) 
(2.1) 

where by using (2.6) of Chapter 2, the correlation coefficient pi, between 
6. - ik and 3 - ik is found to be 

The corresponding two-sided intervals (see (2.7) of Chapter 2) are given 
by 
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If p,, = p for all i Zj, then we refer to the design as balanced with 
respect to treatments. The critical points T K )  ( p , ) l  are 
tabulated only for this equicorrelated case. For unbalanced designs with 
arbitrary p,'s. it is clearly impractical to tabulate these critical points. 
Even a computer program to calculate these critical points would be 
prohibitively costly to run for moderate to large k because of the 
necessity to repeatedly evaluate (k - 1)-dimensional integrals of the 
multivariate t density function. However, for certain special correlation 
structures these (k - 1)-dimensional integrals can be reduced to lower 
dimensional iterated integrals, thus simplifying the computational task 
considerably. We first illustrate this in the simplest case of an unbalanced 
one-way layout. 

From Example 2.3 of Chapter 2 we see that for an unbalanced 
one-way layout, p,/ is given by 

(p,)) and 

plI=A,A, ( l S i # j S k - l )  (2.4) 

where 

From (1.la) and ( l . lb )  of Appendix 3 we see that when the p,'s have 
such a product structure, the cumulative distribution functions (c.d.f.'s) of 
maxlElzk T, and max,s,I,-, lT,I can be writtcn as 

and 

respectively. Here @( .) denotes the standard normal c.d.f. and F,( a )  

denotes the c.d.f. of a r.v. The desired critical points are obtained 
by setting (2.6) and (2.7) equal to 1 - a  and solving for 1. Computer 
programs to evaluate these integrals are given in Dunnett (1984). 

When k = 3, there are only two comparisons, namely, 6, - 6, and 
6 - 6,. Therefore the critical point needed for simultaneously making 
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these two comparisons involves only one correlation coefficient, pI2 ,  
which depends on the particular design. Thus the iterated integral 
representations given above to evaluate the exact critical points are not 
necessary. We illustrate this case with the following example. 

Example 2.2. The data in Table 2.1 are taken from Dunnett (1955). The 
data pertain to blood count measurements on three groups of animals, 
one of which served as the control while the other two were treated with 
different drugs. Due to accidental losses, the numbers of animals in the 
three groups were unequal. The pooled MSE is computed to be S 2 =  

The correlation coefficient between 6, - 6conlror and 6, - Bconlro, is 
1.3805 (S = 1.175) with d.f. v = 12. 

1 . .  . . A  

given by 

We can linearly interpolate in 1/(1- p) in Tables 4 and 5 in Appendix 3 
to obtain the following approximate upper 5% critical points: 
~ ( 0 . 0 5 )  (0.05) 

2,,2.0.4264 2.123 and I T12,12.0.4264 2.513. (The corresponding exact 
values are 2.1211 and 2.5135, respectively.) Using the interpolated values 
we calculate 95% one-sided and two-sided intervals for the differences 
between the drugs and the control as follows. 

95% One-sided Intervals 

eA - e c , , , , , , ~ s . 9 0 - s . z ~ - 2 . i 2 3 ~  1 . 1 7 5 ~  
= 0.65 - 1.61 = -0.96. 

TABLE 2.1. Blood Counts of Animals (in Millions d Cells 
per Cubic Millimeter) 

Drug A Drug B Control 

9.76 12.80 7.40 
8.80 9.68 8.50 
7.68 12.16 7.20 
9.36 9.20 8.24 

10.55 9.84 
8.32 

p, 8.90 10.88 8.25 
n, 4 5 6 

Source: Dunnett (1955). 
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e, - econ,rol 2 10.88 - 8.25 - 2.123 x 1.175 x 
~ 2 . 6 3  - 1.51 = 1.12. 

If upper limits are desired instead of lower limits, then they can be 
calculated in an analogous manner. 

95% Two-sided Intervals 

0, - 8cont,ol E [8.90 - 8.25 +- 2.513 X 1.175 x d m ]  
= [-1.26,2.56]. 

= (0.84,4.42] . 
e, - econtro, E p0.88 - 8.25 * 2.513 x 1.175 x 

Thus only for drug I3 is the rise in the blood count statistically significant. 
0 

In general, for any unbalanced design the exact critical points 
Tk (.) - 1. ".( P,,, and I TIf'-',,,,,,, can be evaluated using ( rn + I)-variate iter- 
ated integrals (where rn + 1 < k - 1) if the pij's can be expressed as 

where the Ahi's satisfy 

If T I ,  T , ,  . . . , T k - l  have a joint 1-distribution with this associated corre- 
lation structure, then the Ti's can be expressed as 

where the 2,'s (1 _I i I rn + k - 1) are independent standard normal r.v.'s 
and il is  distributed independently as a fi r.v. The probability 
distributions of max TI and max IT,I can now be evaluated in a manner 
similar to (2.6) and (2.7), respectively, by conditioning on U and 
Z,, . . . , Z,,,, which results in an (rn + 1)-dimensional iterated integral in 
the unconditional distribution. For example, the c.d.f. of max TI can be 
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written as 
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Clearly, m should be small for this procedure to be computationally 
feasible. 

Exumple 2.2. Consider a one-way layout with a fixed covariate. This 
design was discussed in Example 1.2 of Chapter 2. By using (2.2) above 
and (1.15) of Chapter 2 we obtain 

2 a,a, - alak - a,a, + a, + 1 In, 
p,, = com(e, - e,, e, - e,) = 

0, 
(1 S i # j S k - 1) (2.11) 

where 

(XI. - X..) 
S;; 

a,  = 

If we choose 

then it is easy to see that (2.11) can be expressed in the form (2.8) with 
m = 2. Also condition (2.9) is clearly satisfied since A:, + A:{ = 1 - 
1/nj6f < 1. Thus the c.d.f.3 of max TI and max IT,] can be written as 

0 trivariate integrals similar to (2.10). 

2.1.2 
For many unbalanced designs conditions (2.8) and (2.9) are not satisfied 
for a small value of m and therefore a substantial reduction in the 
dimensionality of the integrals as in (2.10) is not possible. Even if (2.8) 
and (2.9) are satisfied, a computer program for evaluating the reduced 

Approximate Procedures for Unbalanced Designs 
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dimensional integrals may not be available. In such cases, it would be 
desirable to find suitable approximations to the exact critical points that 
can be readily obtained from the available tables. 

Natural approximations to the critical points T ~ ? , , v , ~ p , / l  or I Tly?,,v,(p,,) 
are provided by replacing the ptl's by some common value p since the 
tables are widely available for this equicorrelated case. For k - 1 = 3, 
Dutt et al. (1976) suggested using p = ri,/(nk + 6 )  where t7= 
CfrL;I n , / ( k  - 1). However, numerical results show that this approximation 
is generally liberal (see Example 2.3). By using the inequalities of Slepian 
(1962) and Sidak (1967), conservative upper bounds on these critical 
points are provided by using p = min pIl if min p,, > - 1 / ( k  - 2). Less 
conservative approximations would result if p is chosen to be a suitable 
average of the p,,'s. Dunnett (1985) considered this approach in the 
context of unbalanced one-way layouts. By noting that in this case the 
p,,'s possess the product structure (2.4), he suggested the use of the 
geometric mean of the p,,'s, which is given by 

Observe that for k = 3 the geometric mean approximation is in fact exact 
since ;= pIz = A , A 2  where the A,'s are given by (2.5). Dunnett (1985) 
performed an extensive numerical study of the resulting approximations 
T'"' k - I . v.5 and lT]r?l ,v ,5  for k > 3, and found that they are always conserva- 
tive, that is, they provide upper bounds on the exact critical points 
T(" t - ) 1 . v. I P,,) and I TIP? ,.". { p , , J ,  respectively. 

Dunnett (1985) also investigated numerically the use of the arithmetic 
mean p. Because of the  inequality F Z g ,  i t  follows (by using the 
inequalities of Slepian 1962 and Sidak 1967, respectively) that T:"_', . y , p  

and ITIIP-),,Y.p will be smaller than the corresponding critical points 
obtained by using b. Dunnett's numerical results showed that the former 
still are upper bounds on the exact critical points and thus provide 
sharper (less conservative) approximations than Tr! l .u ,6  and 1 TI:-), ,..;, 
respectively. The conservatism of the approximations based on either p or 
p' has not been analytically established yet. 

is the 
arithmetic mean of the A,'s. It is easy to see that, for k = 3, this gives a 
liberal approximation since p = { ( A ,  -I- A,)/2}* > A , A z  = plZ if A ,  f A ? .  
For k > 3 it is not known how this approximation performs. 

Example 2.3. Dutt et al. (1976) gave an example in which three 
treatment groups are compared with a control in a one-way layout. The 

Another possible approximation is to use p = i2 where 
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TABLE 2.2. Exact and Approximate Values of One-Sded and Two-sided 
Multivariate f Critical Points 

Approximate Values for Different Choices of p,, = p 
- ., 

Critical Exact n 
Point Value P = 3 = 0.5091 = p’ = 0.4824 = 6 = 0.4852 = iz = 0.4877 

2.1419 2.1369 2.1437 2.1430 2.1424 

2.4599 2.4656 2.4650 2.4645 

~ ( 0  0 5 )  

1 ~ J ( 0 . 0 5 )  
J . ~ ~ . I P , ~ )  

3.J3.(fir) 2‘4639 

sample sizes for the treatment groups are n, = 12, n, = 5, and 0,  = 11, 
and that for the control group is n4 = 9. Using (2.5) we calculate 
A, =0.7559, A2 =0.5976, and A, =0.7416. Then from (2.4) we get the 
following correlation matrix: 

The error d.f. Y eauals 33. 
The exact values and various approximations to the upper 5% one- 

sided and two-sided critical points, T3,33 , {p , j )  (0.05) and I Tlrg{p,fl ,  are given in 
Table 2.2. 

Notice that all of the approximations are quite close to the correspond- 
ing exact values. The Dutt et al. approximation is liberal; the other three 
are conservative. Although the p = i2 approximation is the sharpest of 
the latter three in this example, because of its known liberal nature for 
k = 3, it cannot be recommended for genera1 use. Based on the current 

0 evidence, our choice is to use p = i. 

2.1.3 Extensions and Other Remarks 
In Chapter 6 we consider the problem of optimally allocating a given 
number of observations among the control and each one of the treat- 
ments when using a completely randomized design. One of the results 
stated there is that the allocation nk = n m  is nearly “optimal” where 
n is the common number of observations on each one of the treatments 
and nt is the number of observations on the control. This allocation 
minimizes the common variance of the (pi - yk)’s (1  5 i S k - 1). 

We next discuss an extension of the simultaneous confidence intervals 
(2.3) to the family of all contrasts. This extension, which is similar to the 
extension of the Tukey (T) procedure from the family of pairwise 
comparisons to the family of all contrasts (see Section 2.1.1 of Chapter 
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3), was proposed by Shaffer (1W7) and is based on the following 
algebraic lemma. 

Lemma 2.1 (Shaffer 1977). Let xl, x 2 , .  . . , x k  be any real numbers 
and let 11, J 2 , .  . . , &-, be any nonnegative numbers. Then 

(Shaffer gives the result for the case t1 = 6, = . - * = +$k-l, but it is trivial 
to extend her argument to the more general case given here.) 

Now from (2.3) we know that with probability 1 - a, 

I(ii - el) - ( i k  - e,)] s I T ~ ~ ~ ~ ~ ~ . ( , , } S ~ U , ,  + ukk - hi, (1 s i I k - 1) 

Sdu,, + ukk - 2u,, ( 1  5 i 5 k - I) ,  and using (2.12) we obtain 
where the p,,’s are given by (2.2). Letting x ,  = 6, - 0, (1 S i d k), ti = 

the following 100( 1 - a)% simultaneous confidence intervals for all con- 
trasts: 

I Tlk-l,v,{pl,) (. 1 

Shaffer (1977) made a comparative study of these intervals with the 
Scheffi intervals (see (1.2) of Chapter 3) and the Tukey intervals (see 

or n , = * * * =  nk-, = n,/-. (In the latter case the Tukey-Kramer 
(TK) intervals are used instead of the Tukey intervals.) Generally 
speaking, the intervals (2.13) are competitive only when the comparison 
is between the control on the one hand and only a few treatments on the 
other hand. If a comparison does not involve the control, then the 
interval (2.13) is excessively wide. 

(2.2) of Chapter 3) for the one-way layout case when either n1 = * * * = n k  

2.2 Step-Down Procedures 

A shortcut form of the closed testing procedure of Marcus, Peritz, and 
Gabriel (1976) for testing one-sided hypotheses on 4 - 8, (1 d i 5 k - 1) 
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was given in Example 4.2 of Chapter 2. That step-down procedure is 
applicable when the correlations p,l are all equal, and in that case it 
clearly provides a more powerful alternative than the corresponding 
single-step procedure. A two-sided step-down procedure can be con- 
structed in an analogous manner. 

When the P,~ 'S  are not all equal, one can use the sequentially rejective 
Bonferroni procedure of Section 4.2.2 of Chapter 2, which provides 
conservative control of the FWE. For testing one-sided hypotheses, a 
slightly less conservative procedure is obtained if at the Ith step of testing 
(I = 1 , 2 , .  . . , k - 2), we use the critical constant instead of 
T Y k - / ) )  used by the sequentially rejective Bonferroni procedure. For 
testing two-sided hypotheses one can similarly use the critical constant 
III~I~?,,~ in place of T ,  

Simultaneous confidence intervals for 0, - 0, (1 d i S k - 1) derived 
using the method of Kim, Stefinsson, and Hsu (1987) from the one-sided 
step-down test procedure were given in Example 4.3 of Chapter 2 for the 
equicorrelated case. When the p , , ' ~  are not equal and one of the 
aforementioned conservative procedures is used, an obvious modification 
of the critical constant in (4.7) of Chapter 2 gives the corresponding 
simultaneous confidence intervals. It is not as yet known how to derive 
two-sided simultaneous confidence intervals associated with the corres- 
ponding step-down procedures. 

(u/ Z(k-1 ) )  

Example 2.4. Table 2.3 gives some data on the uterine weights of mice 
(this variable being used as a measure of estrogenic activity) obtained 
from an estrogen assay of a control solution and six test solutions 
(referred to as treatments) that had been subjected to an in v i m  
activation technique. These data are taken from Steel and Torrie (1980, 
p. 144). The design consists of a one-way layout with four mice per 
group. 

TABLE 2.3. Uterine Weights of Mice (in mg) 

Solutions 

1 2 3 4 5 6 Control 

84.4 64.4 75.2 88.4 56.4 65.6 89.8 
116.0 79.8 62.4 90.2 83.2 79.4 93.8 
84.0 88.0 62.4 73.2 90.4 65.6 88.4 
68.6 69.4 73.8 87.8 85.6 70.2 112.6 

y, 88.25 75.40 68.45 84.90 78.90 70.20 96.15 

Source: Steel and Tortie (1980). 
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It is desired to identify those treatments that significantly lower the 
estrogenic activity as compared to the control. For this purpose we apply 
the one-sided step-down test procedure given in Example 4.2 of Chapter 
2. The pooled MSE for these data is S2 = 145.84 with v = 21 d.f. The 
1-statistics for testing the differences between the control mean and the 
treatment means are shown in Table 2.4. 

The ordered f-statistics are to be compared with the critical points 
T'"' P > Y . P  where p = f (since all groups have the same sample size), Y = 21, 
p = 6 , 5 ,  . . . , 1, and a is chosen to be 0.10. These critical points are listed 
in Table 2.5 for convenience. 

Since the largest r-statistic, 3.244, exceeds T:;:::,, = 2.08 we conclude 
that treatment 3 lowers the estrogenic activity with respect to the control. 
Comparing the next largest r-statistic, 3.039, with Tr;\o{,2 = 2.01 we 
conclude that treatment 6 also lowers the estrogenic activity with respect 
to the control. Proceeding in this manner we find that the same conclu- 
sion is drawn for treatments 2 and 5 but not for treatments 1 and 4. If we 
use the corresponding single-step test procedure, then all the 1-statistics 
will be compared with the common critical point T&;Y;i2 = 2.08, and thus 
significant results will be found only for treatments 3. 6, and 2. 

Associated with this step-down procedure there are simultaneous 
lower one-sided 90% confidence limits on the differences between the 
treatment and control means, which we now compute. The lower confi- 
dence limits are given by (4.7) of Chapter 2: 

e, - q.2 i -  y, - pi - 7-;;,,,,skp]- n (1  S i S k - 1) 

where x -  = min(x, 0) and p is the index of the largest ordered f-statistic 

TABLE 2.4. 1-Statisti for the Differences in Means 
Between tbe Control and the Treatments 

Treatments 

1 2 3 4 5 6 

0.925 2.430 3.244 1.317 2.020 3.039 

TABLE 2.5. Critical Points 
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that is not found statistically significant by the step-down test procedure. 
In the present example p = 2  and therefore TEi.,,2SV% = 1.64 x 
12.08 x = 14.00. The lower confidence limit is zero for Bcontror - Bj 
for i = 3 , 6 , 2  and 5 ,  that is, for those mean differences that are concluded 
to be positive by the step-down test procedure. The lower confidence 
limits for BCoatro, - 8, and 6con,ro, - 6, are given by 96.15 - 84.90 - 14.00 = 

0 -2.75 and 96.15 - 88.25 - 14.00 = -6.10, respectively. 

3 COMPARISONS WITH THE “BEST” TREATMENT 

In the preceding section we considered the problem of comparing the 
treatments under study with a control treatment that is used as a 
benchmark. In some applications the relevant benchmark is the (un- 
known) “best” treatment, that is, the treatment having the largest 
8-value. The parameters of interest in this case are 6, - max 8 ,  or 
alternatively 8, - max,,, 6, (1 Z i S k). Notice that these are nonlinear 
functions of 8; all of the families that we have dealt with thus far have 
involved linear parametric functions of 8. Hsu (1981) constructed simulta- 
neous upper one-sided confidence intervals for 0, - max, 3. Later Hsu 
(1984a) obtained simultaneous two-sided confidence intervals for 8, - 
max,,, Or that imply the results of his 1981 paper. 

In Section 3.1 we give Hsu’s (19Ma) basic procedure for the case of a 
balanced one-way layout. We also discuss how his procedure provides 
stronger inferences than those inherent in the indifference-zone selection 
procedure of Bechhofer (1954) and the subset selection procedure of 
Gupta (1956,1965). In Section 3.2 we note some extensions of the basic 
procedure, particularly to unbalanced one-way layouts. 

I 1. 

3.1 The Basic Procedure 

We use the notation of Example 1.1 of Chapter 2 throughout. The 
following additional notation is used in the proof of the following 
theorem. Let OC,, S 8(*, 4 * S 8(k) denote the ordered treatment means 
and let EY(,,  = eCi,, i = 1,2, .  . . , k (i.e., ?(,) is the sample mean of the 
treatment having the ith smallest &value, 8(,)).  

Theorem 3.1 (Hsu 19%). Simultaneous (1 - a)-level confidence 
intervals for 8, - rnax,,, 6/ are given by 
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where 

x -  = rnin(x, 0), and x +  = max(x, 0) 

Proof. Define the events 

- - 
E = { Y(k) - Y(,) - (6(k, - 6(,,) > - d  ( 1  5 i 5 k - 1)) , 

El = (6, - maxq S (Y, - max < + d)' ( I  5 i 5 k)} , 
I + I  J # I  

and 
- - 

E ,  = (0, - maxq 2 ( Y l  - max Y, - d ) -  (1 S i 5 k)} . 
If* j + r  

Clearly, Pr(E) = 1 - a for all 8 and a,. We show that E C E n E2 
whence _the theorem follows. To simplify the notation put L, = I (  F, - 
max,,, _Y, - d ) -  and U, = (Y, - mu,,, P, + d)' (1 S i d k). Also let 
L,, = (Y, - Y, - d ) -  and note that L, = rnin,,, Lll .  

We first show that E G E,: 

EC{F, , , -  ~ ( l ) - ( 6 ( ~ ~ - e ( k - ~ ) ) > - d  V i # k }  

= 

c (6, - O ( L . - 1 )  s u, V i }  

- e(,-,, 5 Y(k) - F, + d Vi z (k); O, - o,,-,, 50 Vi + (k)} 

= (6, - maxq U, Vi} 
I ?+I 

where the last equality follows because all the U,'s are 2 0  
We next show that E E,: 

E c { q L )  - e(,) 5 (F(k) - F(,) + d)' vi z k} 

= {(F, - F(k)  - d ) -  s 6, - O(,,) V i  f ( k ) ;  el - OCk)  = Ofor i = (k)} 

2 {min L,, 5 0, - O(k) V i }  

= ( L , s e , - m a q  V i )  
J f l  

I f 1  

where the last equality follows because all the L,'s are SO. 0 

If we set a11 the Ui's = +m, then we obtain lower one-sided confidence 
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bounds on 8, - max,,, (1 5 i S k). Because these lower confidence 
bounds are constrained to be nonpositive, they also provide lower 
confidence bounds on 8, - OCk,  (1  S i S k), which were originally derived 
by Hsu (1981). 

Two-sided simultaneous confidence intervals on 0, - Otk, were derived 
by Edwards and Hsu (1983). Their approach is based on the idea of 
regarding each treatment as a known control, and adapting the set of all 
resulting two-sided intervals for comparisons with known controls to 
obtain the following intervals for comparisons with the unknown “best”: 

(1 Q i S k) (3.2) 

where 

‘z Y = [ i: Y, 2 max P, - S , S ~  -1 
n 

To guarantee that the joint confidence level 21 - a, 
f ,  and t2 must be chosen so as to satisfy 

the critical constants 

Pr { - 5, S Ti S t2 ( 1 S i S k - 1 )} = 1 - a 

where T I ,  T z ,  . . . , T k - ,  have a joint (k - 1)-variate t-distribution with Y 
d.f. and the associated common correlation p = 4. If we set = += in 
(3.2), then Hsu’s (1981) upper confidence bounds on O(kl - 8, ( 1  S i 5 
k - 1) are obtained. If we set 6, = t2 = 5 (say), then 5 = I 2 .  

Notice that although both (3.1) and (3.2) are two-sided intervals, the 
former are based on one-sided critical points, while the latter are based 
on two-sided critical points. However, the former give constrained (be- 
cause all the L,’s are SO and all the U,’s are 20) intervals on 0, - 
max,., 0, (1 S i s k )  while it can be shown that the latter imply uncon- 
strained intervals on 8, - max,.,? (1 S i S k). Hsu (1985) has given a 
method for removing the nonpositivity constraint on the L,’s that requires 
the use of a slightly larger critical value than d. This enables one to obtain 
a positive lower bound on the amount by which the treatment that 
appears to be the “best” (i.e., which produces the largest p,) is better 
than the best of the remaining treatments. Kim, Stefinsson, and Hsu 
(1987) have given a unified approach to deriving both sets of confidence 
intervals by inverting appropriate one-sided and two-sided tests for 
comparisons with a control. 
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We next note connections between the intervals (3.1) and some results 
from the ranking and selection theory. Gupta (1956, 1%5) showed that if 
one selects a subset 9’ of treatments according to the rule 

then Ycontains the “best” treatment with probability at least 1 - a for all 
6 and cr2; thus Y is a (1 - a)-level confidence set for the “best” 
treatment. Note that (3.3) is equivalent to selecting treatment i if U, > 0 
(1 S i 5 k). Hsu (1984a) pointed out that one can make the confidence 
statement (3.1) and the statement {(k) E Y )  simultaneously with confi- 
dence level 1 - a since both follow from the same event E, which has the 
probability 1 - a. 

Whereas the connection with the subset selection is through the upper 
bounds U,, the connection with the indifference-zone selection is through 
the lower bounds L,. Suppose we define treatment i as “good” if 
6, - i&) 2 - S* (1 S i 5 k) where 6 * > 0 is a prespecified constant. Then 
it can be shown that all treatments with L, Z -6; are “good” with 
probability at least 1 -a. This is the confidence statement implied by 
Desu’s (1970) procedure (extended to the unknown (it case). If treatment 
[k] corresponds to pfkl = max, 7 ,  then Fabian’s (1962) result (extended 
to the unknown cr2 case) states that with probability 1 - a, qk, - etk) 2 
LIkl 2 -St. Note that Hsu’s procedure is an improvement over Desu’s 
and Fabian’s procedures because it provides lower confidence bounds 
(which are sharper than those of Desu’s) on all 4 - @(k,  (while Fabian’s 
bound is only on qkl - 6fk)) at the same confidence level 1 - a. 

By letting 6’- 0 we can choose treatment i as the “best” if L, = 0. 
that is, if v, hmax,,, p, + d. Clearly, at most one treatment will satisfy 
this condition. For S *  > O ,  if o2 is known, then R Z2(Zf?,~,,,cr/6*)* will 
guarantee that at least one treatment satisfies L, 2 -6 * . If cr’ is un- 
known, then at least two stages of sampling (as in Stein 1945) are 
required to guarantee that at least one treatment satisfies L, 2 - S * .  

Example 3.1. Consider the barley data (Duncan 1955) given in Example 
1.1 of Chapter 3. Suppose that we wish to construct 90% simultaneous 
confidence intervals for - 9 (1 S i 5 k). For this purpose we 
need the value of the critical point 7’p-:o$,2. For k = 7 and Y = 30 it is 
found to be 2.05 from Table 4 in Appendix 3. The pj’s (each based on 
n = 6 observations) are given in Table 3.1, and S = 8.924. Thus the 
“allowance” d = 2.05 X 8.924 x V?% = 10.56. The desired intervals can 
now be computed by using (3.1) and are shown in Table 3.1. 
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TABLE 3.1. 90% Simultaneous Confideace 
Intervals for 6, - maxi+, 6, 

A 49.6 [-32.26, 0.00) 
B 71.2 [- 10.66,10.46] 
C 67.6 [-14.26, 6.861 
D 61.5 [-20.36, 0.761 

F 58.1 [ -23.76, 0.001 
G 61 .O [ -20.86, 0.26) 

E 71.3 [ - 10.46,10.66] 

From these confidence intervals we see that varieties A and F can be 
eliminated as being not in contention for the “best” since the upper 
bounds of their intervals are zero, indicating that there is another variety 
(namely E) that is “better.” Note that no variety can be selected as the 

0 “best” at a = O . l O  since all the lower bounds are negative. 

3.2 Extensions 

We first consider an extension of the basic procedure to unbalanced 
one-way layouts. In this case, simultaneous (1 - a)-level confidence 
intervals for 0, - max,., 3 are given by [ L,, (I, J (1 S i S k )  where 

and 

In these expressions TPJ,.v.p, is the upper a point of max 
( T I , ,  , . , T ,..,, T I + , ,  . . . , T k )  where the Ti’s,  i # I ,  have a joint (k - 
1)-variate t-distribution with Y d.f. and the associated correlation matrix 
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R,, whose off-diagonal elements are given by 

This extension in slightly modified forms is given for the two-sided case in 
Edwards and Hsu (1983) and for the one-sided case in Hsu (1984b). 

If we set ni = n for all i, then the confidence limjts (3.4) reduce to 
(3.1). Also notice that in the unbalanced case, the minimum in the 
formula for Li is taken over treatments in set 3’; in the balanced case this 
modification is immaterial. 

We have confined our discussion here only to one-way layouts. But 
some of the procedures can be extended to more complex designs, for 
example, block designs (Hsu 1982) and split-plot and split-block designs 
(Federer and McCulloch 1984). 

Another extension of the basic procedure proposd by Hsu (1984b) is 
the use of the so-called R- and S-values. The R-value for a treatment is 
the smallest a for which that treatment can be rejected, that is, not 
included in set Y’. For the treatment that appears to be the “best” (this is 
the treatment yielding the largest L,, which in the balanced case is the 
same as the one yieiding the largest pi), the S-value is the smallest a for 
which that treatment can be selected as the “best.” The R- and S-values 
are informative in the same way that the P-values are informative in 
significance testing. 

The R-value for treatment i is given by (Hsu 1984b) 

R , =  l - P r { T , S t , V j f i }  ( 1 S i S k )  

where 

is the observed value, and the joint distribution of T , ,  . . . , 
T ,-,, . . , Tk is the same as that encountered following (3.5). By 
using (2.6) we can write R,  as 
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If the treatment that appears to be the “best” is denoted by [k], then 
clearly SIkl = maxizlkl R,. 

The computations of the confidence limits (3.4) and of the R- and 
S-values are quite formidable. Hsu has developed a computer program 
for this purpose (which also deals with the balanced case) called RSMCB 
(for Ranking and Selection and Multiple Comparisons with the Best) that 
is now available in version 5 of the SAS package (see Aubuchon, Gupta, 
and Hsu 1986). The following example is taken from Gupta and Hsu 
(1984), which gives a more detailed description of this program. 

Example 3.2. An experiment was performed to compare seven brands of 
filters for their ability to reveal the microorganism fecal coliform in river 
water. Three samples of each brand of filter were selected and 100ml of 
sample water was poured through each. After 24 hours of incubation, the 
number of colonies of the target microorganism on each filter was 
recorded. Two samples were damaged because of colony blurring and 
spreading, resulting in missing data. The final results are shown in Table 
3.2. For this data set the pooled sample variance is S2 = 411.2 with v = 12 
d.f. For 1 - a = 0.95, the PROC RSMCB gave the results shown in Table 
3.3. 

The upper bounds for brands 1, 2, 3, 4, and 6 are zero, indicating that 
some other brand is “better” than these. This result is confirmed by the 
R-values for these brands, all of which are less than the designated level 
a = 0.05. Thus only brands 5 and 7 will be selected by the subset selection 
rule (3.3). Note that brand 5 cannot be selected as the “best” at a = 0.05 
since the corresponding lower bound is less than zero. This is also 
confirmed by its S-value = 0.1007, which is greater than 0.05. 

TABLE 3.2. Counts of Cdonh 00 Different 
Brands of Filters 

Brand 

1 69 
2 118 
3 171 
4 122 
5 204 
6 140 
7 170 

Counts 

122 
154 
132 
119 
225 
130 
165 

95 95.3 
102 124.7 
182 161.7 
- 120.5 
190 206.3 
127 132.3 
- 167.5 

Source: Gupta and Hsu (1984). 
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TABLE 3.3. 95% Simultaneous Confidence Intervals for 
@I - I e, 

Brand [ L , ,  U,I R ,  s, 
1 [ - 153.94, 0.00] 0.0001 - 
2 [-124.61, 0.001 O.OOO9 - 
3 1 -87.61, 0.00) 0.0418 - 
4 [ - 133.84, 0.00) 0.0013 - 

6 [ - 116.94, 0.00] 0.0019 - 
7 [ -86.84, 7.951 0.1007 - 

5 [ -7.95.86.841 - 0.1007 

4 TWO MISCELLANEOUS FAMILIES 

4.1 Comparisons with the Average 

The last two sections dealt with the problems of comparing the treatments 
with different benchmarks; in Section 2 the benchmark was a given 
control, while in Section 3 the benchmark was the (unknown) “best” 
treatment. Here we consider the problem of comparing the treatment 
means t? with their average 8 = Z:=l 8 , /k ,  which serves as the benchmark. 
The family of interest is thus the deviations 8, - 8 (1 5 i S k) that 
measure how much “better” or “worse” each treatment is compared to 
their average. Notice that each deviation 8, - 6 is a contrast c:6 where c, 
has the ith entry equal to  (k - l)/k and the remaining (k - 1) entries 
equal to -Ilk each. This is thus a finite family of linear parametric 
functions and we can apply the results of Section 2.1.1 of Chapter 2. 

To keep the discussion simple, throughout this section we confine our 
attention to the setting of a balanced one-way layout. In that case the LS 
estimator of 0, - s is PI - = Z:sl pf/&. These 
estimators have a singular multivariate normal distribution with means 
0, - 5, common variance a z ( k  - l)/kn, and common correlation p = 
-l/(k - 1). The pivotal r.v.3 

- 

- - 
(1 S i 5 k )  where 

have a multivariate r-distribution with Y d.f. and the associated common 
correlation p = -1 /(k - 1). Thus 100( 1 - a)% one-sided simultaneous 
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confidence intervals for 0, - 6 (1 S i S k) will have the form 

and the corresponding two-sided intervals will have the form 

The intervals c4.2) can be extended to the family of all linear combina- 
tions Ef=l  Ii(q - 6). It is clear that the resulting family is the family of all 
contrasts ,Zf=l c iq  since the contrast vectors corresponding to q -  6 
(1 5 i d k - 1) form a basis for the space of all contrasts. This is also seen 
from the fact that Cf=, Ii(Oi - 6) = Ef-l ciei with ci = li - 1 (1 I i S k). 
The extension is based on the following algebraic lemma. 

Lemma 4.1. Let ( x , ,  x 2 , .  . . , X k ) ’  and (I,, I,, . . . , f k ) ’  be any real vec- 
tors in Rk and let ,$ >O. Then 

Proof. 

k 

d f C I l ; - q .  
i -  1 

BY letting x i  = Yi - ei (1 s i s k) and f = l T l ~ ~ , - l , ( k - . l )  Sq-n 
in this lemma and using (4.2), we obtain the following lOO(1 - a)% 
simultaneous confidence intervals for all E:-l l,(ei - 6): 

V IER’ .  
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The intervals (4.1) and (4.2) can be used to identify “discrepant” 
treatments in a balanced one-way layout. For example, suppose that the 
discrepancy 4 - 6 can be in either direction. Then any treatment i 
satisfying 

can be regarded as discrepant at FWE = a. This is a single-step test 
procedure for the family of hypotheses { H,,, : 0, - 6 = 0 (1  S i S k)} cor- 
responding to the two-sided confidence intervals (4.2). In the case of 
assertions of discrepancies, one can also make directional decisions about 
the signs of discrepancies in the usual manner. The Type I and Type I11 
FWE for this single-step procedure is controlled at level a. 

When only the identification of discrepant treatments is of interest 
(and not the estimates of the discrepancies), a step-down test procedure 
as in Example 4.1 of Chapter 2 can be used. This procedure compares the 
ordered /T,]-statistics, I /Tl(k-l)  2 * * .  2 IT\(, ,  with successively 
smaller critical points /TIE; .-,, 

Procedures similar to those given for detecting discrepant treatments 
can be used in the closely related problem of detecting outlier observa- 
tions in a single normal sample. This problem was studied by Nair (1948), 
who considered the one-sided case, and Halperin et al. (1955), who 
considered the two-sided case. Nair (1948,1952) tabulated the one-sided 
critical points ((k - l ) /k )”*  TE:,- , , , (k- . , ) ,  which were later corrected by 
David (1956) and further supplemented by Pillai and Tienzo (1959) and 
Pillai (1959). Upper and lower bounds (based on the first order and 
second order Bonferroni inequalities, respectively) on the two-sided 
critical points ((k - l ) / ~ ) ” ’ ~ ~ ~ ~ ~ , - , , ~ ~ ~ . , ~  were tabled by Halperin et al. 
(1955). Thus the values of the critical points needed for computing (4.1) 
and (4.2) are available in the literature. 

( p  = k, k - 1 , .  . .). 

4.2 Successive Comparisons among Ordered Means 

In some applications the means 0, of interest are ordered in a natural way 
(e.g., according to the time sequence of collection of the corresponding 
samples) and it is desired to compare the adjacent pairs of means. The 
objective in making such successive comparisons may be to detect when 
changes in the means occurred. Such comparisons may also be of interest 
when the 6,’s are the mean responses for increasing dose-levels of some 
drug and they are nor necessarily monotone (See Chapter 10, Section 4 
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for the problem of multiple comparisons among the 6,’s when they are 
monotonically ordered.) 

The family of parametric functions of interest in these problems is 
{qt, - 6, (1 S i S k - 1)). This is a finite family of linear parametric 
functions and we can apply the results of Section 2.1.1 of Chapter 2 to 
obtain simultaneous confidence intervals and hypotheses tests on el+ I - 
6,. Hochberg and Marcus (1978) consider a related design problem, which 
is discussed in Chapter 6. - - 

- 6, are Y, , ,  - Y, (1 d i i k - 1). which 
follow a (k - 1)-variate normal distribution with means el,, - el, com- 
mon variance 2a2/n ,  and correlations 

The LS estimators of 

Simultaneous 100( 1 - a)% upper one-sided confidence intervals for 
q,, - 4. have the form 

and the corresponding two-sided confidence intervals have the form 

where the p,,’s are given by (4.3). 
The exact values of the critical points Tp-) ,.”. (p , , )  and IT1r.’,,v., p c f )  have 

not been tabulated. Cox et al. (1980) proposed using l M / r - ) l . v  in place of 

evaluated the second order Bonferroni lower bound on I Tlf-), .v,,p,,).  The 
numerical results in their Table 19 show that the two bounds are fairly 
close, and thus l M l ~ - ) l , v  is a good approximation. An analogous conserva- 
tive approximation to ~ ~ 2 , ~ ~ . ~ ~ , , ~  is M Y ! l , v .  

One-sided and two-sided step-down test procedures for tests on dj+ - 
6, (1 S i S k - 1) can be constructed using the methods of Section 4.2 of 
Chapter 2. For conservative control of the FWE one can use the critical 
constants ME: in the one-sided case, and IMlEb in the two-sided case 
(1 S p 5 k - 1). Sequentially rejective Bonferroni procedures of the type 
discussed in Section 4.2.2 of Chapter 2 would be even more conservative. 

I Tlk-,,v.(, , , l ,  (a ) thus providing a conservative approximation. They also 



C H A P T E R  6 

Designing Experiments for 
Multiple Comparisons 

Most of the work in multiple comparisons has focused on the inferential 
aspects of the procedures and on the control of Type I error rates. This is, 
of course, consistent with the way the problem of significance testing is 
generally approached. However, in many applications it is of interest to 
control a suitable Type I1 error rate under some specified nonnull 
configurations. An analog of this latter requirement in the case of 
simultaneous confidence estimation is the specification of prescribed 
“widths” for the intervals. When such requirements are specified by an 
experimenter, they should be taken into account in designing the experi- 
ment, specifically in the determination of sample sizes. The present 
chapter is devoted to such design considerations arising in multiple 
comparison problems. 

There are essentially two different formulations used in specifying 
design requirements in multiple comparison problems: 

(i) An indifference-zone type formulation, which involves specifying 
two “threshold” constants 6, C S, such that all contrasts with values no 
greater than 6, are to be classified as “small,” while those with values no 
less than 6, are to be classified as “large.” Any contrast with a value 
between these two limits (the so-called “indifference-zone”) can be 
classified either way. In this formulation the familywise error rate (FWE) 
corresponds to the probability of any misclassification. It is desired to 
control this probability at or below a designated level a for all parameter 
configurations. This formulation owes its origin to Bechhofer’s (1954) 
indifference-zone approach to selection problems. 

(ii) In the second formulation the focus is on simultaneous confi- 
dence estimation. It is desired to construct simultaneous confidence 
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intervals with specified joint confidence level 1 - a  for a family of 
parametric functions of interest such that the intervals have prescribed 
“widths” (or “allowances”). 

These formulations are illustrated in Section 1 for a one-way layout 
setting under the assumption that the error variance u* is known. This 
assumption enables us to use a single-stage sampling procedure for 
controlling the designated error rate. The families considered are: (i) all 
pairwise comparisons, (ii) comparisons with a control, (iii) comparisons 
with the “best,” and (iv) comparisons between successive treatments in a 
set of u priori ordered treatments. In practice, uz is usually not known 
accurately. If it is still desired to use a single-stage procedure, then two 
options are available for specifying design requirements: (i) If a conserva- 
tive upper bound on u2 is known, then it can be used for design purposes. 
(However, the analysis should be done using an estimate of ut obtained 
from the data.) (ii) Alternatively, instead of specifying the thresholds or 
allowances in absolute units, they can be specified as multiples of u. 
Thus, for example, in the indifference-zone formulation, instead of 
directly specifymg 6, and 4, one could specify A, = 6,Iu and A2 = SJu, 
respectively. If 6, and 6, are specified in absolute units and if option (i) is 
not available, then the design requirements cannot be met by using a 
single-stage sampling procedure. In Section 2 we describe some two-stage 
procedures for the aforementioned four families when u2 is unknown. * 
Finally, in Section 3 a class of incomplete block designs for comparing 
treatments with a control is discussed. Illustrative examples are given for 
representative problems. 

As this book was going to press, Hsu (1986) sent us a preprint of a paper in which he 
proposed an alternative approach (conceptually similar to the one proposed by Tukey 1953, 
Chapter 18) to sample size determination in the case of simultaneous confidence estimation 
when u2 is unknown and a single-stage sampling procedure is to be used. In this approach, 
in addition to the usual requirement that the specified joint confideme level be L1- a. it is 
also required that the probability of the joint Occurrence of the event of simultaneous 
coverage (“correct” inference) and the event that the common random width of the 
confidence intervals is 526 (“useful” inference) be at least 1 - 8; here 1 - f l <  1 - a and 
6 > O  are preassigned constants. Note that in this approach it is not required that the 
probability of “useful” inference be unity as is required in the approaches described in 
Sections 1 and 2.  It is to meet this latter more stringent requirement that u’ must be known 
if a single-stage procedure is to be used; if a’ is unknown then a two-stage (or more 
generally a sequential) procedure must be used. For a given family (e.g.. the family of all 
pairwise comparisons), instead of determining the common sample size n per treatment to 
satisfy a specified requirement concerning the joint probability of “correct” and “useful” 
inferences, Hsu recommends studying that probability as a function of n for specified 1 - a 
and 6lu. 
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1 SINGLE-STAGE PROCEDURES 

1.1 Painvise Comparisons 

We consider the one-way layout model of Example 1.1 of Chapter 2 but 
assume the balanced case: n ,  = - - = nk = n (say). For design purposes 
we assume throughout Section 1 that the common error variance w 2  is 
known. For this setting Reading (1975) proposed an indifference-zone 
formulation for the problem of all pairwise comparisons. In this formula- 
tion two positive constants 6, and 6, are specified such that 6, < 6,. The 
pairwise difference 0, - is regarded as “small” if 18, - 915 6, and as 
“large” if 10, - 6,l t 8,; the corresponding treatments are regarded as 
“practically equal” and “different,” respectively (1 d i < j S k). Each 
pairwise difference is to be classified as “small” or ‘‘large.’’ Any decision 
with regard to the pairwise difference lying in the “indifference-zone,” 
8, < 10, - O,l< 6,, is regarded as correct, but if any “small” or “large” 
difference is misclassified, then the overall Classification is regarded as 
erroneous. For the pairwise differences that are declared “large,” the sign 
of the difference is also part of the decision, that is, if a ‘‘large’’ 10, - 0,I is 
correctly classified but it is concluded that 0, > B, when in fact 0, 4 q ,  then 
the classification is regarded as erroneous. Note that misclassifying a 
“small” (respectively “large”) difference corresponds to a Type I (respec- 
tively, Type 11) error and the misclassification of the sign of a correctly 
classified “large” difference corresponds to a Type IIi  error. It is desired 
to control the probability of an erroneous classification (which corres- 
ponds to the FWE combining Type I, Type 11, and Type 111 errors) at or 
below a designated level a ( O <  a < 1 - ( l)k* where k” = (”,) for all 
values of the 0,’s. 

Reading proposed the following procedure: Take n independent obser- 
vations on each treatment and compute the sample means (1  5 i S k). 
Classify the pairwise difference 10, - 6jl as “small” if IF, - <I 5 6 and as 
‘‘large’’ if lY, - Y,1> [; in the latter case also conclude that 0, > 0, or 
0, < B, depending on whether Y, > 7 or y, < p, (1 S i # j 5 k). Here the 
critical constant 6 > 0 and the minimum sample size n are to be deter- 
mined so as to satisfy the specified FWE requirement. 

The crucial step in obtaining the required values of 6 and n is the 
determination of the “least favorable” configuration of the 0,’s that 
maximizes the W E  (i.e., the probability of misclassification) for given 
(k, u) and specified (a,, a*). Reading obtained an exact solution to this 
problem for k = 2. For k h 3 he obtained only an approximate solution by 
determining the least favorable configuration of the B,’s for a Bonferroni 
upper bound on the exact probability of misclassification. Using the 
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expressions thus obtained Reading gave tables of constants from which 6 
and n can be determined for given k and cr’, and specified 6,, 6,, and a. 
When these values of 6 and n are used in the procedure described above, 
the FWE is controlled at or below a for all values of the 6,’s. The use of 
Reading’s table is illustrated in Example 1.1. 

In the second design formulation one specifies a (common) fixed 
allowance A > 0 for simultaneous confidence intervals on all pairwise 
differences 0, - e,, that is, one requires, say, lOO(1 - a)% simultaneous 
confidence intervals of the following form: 

e i - q € [ Y , -  < + A ]  ( 1 S i C j S k ) .  

In this case it is easy to see (using equation (2.1) of Chapter 3 for the 
Tukey intervals) that the common sample size n per treatment is given by 

where 1x1 denotes the smallest integer 3. 

Exumple 1.1. Suppose that k = 4 treatments are to be compared with 
each other and each has a standard deviation cr = 0.5. Two treatments are 
considered different if their means are apart by at least 6, = 1 unit while 
they are considered practically equal if their means are apart by no more 
than 6, = 0.2 units. A correct classification of all pairwise differences is to 
be guaranteed with probability at least 1 - a = 0.95. We wish to deter- 
mine the smallest sample size n per treatment and the associated critical 
constant 6 that will guarantee the specified design requirement when used 
in Reading’s (1975) procedure. 

From Reading’s (1975) Table 3 (entering the row corresponding to the 
ratio a,/& = 0.2) we find that n(6,/a)’ = 68.72 and 6 / S 2  = 0.584. There- 
fore n = 168.72(0.5)*J = 18 and [ = 0.584. If after taking a random 
sample of size 18 from each treatment we obtain the sample means 
r, = 5 .5 ,  y2 = 6.0, r3 = 7.0, and Y4 = 7.5, then treatments in the pairs 
(1,2) and (3,4) can be classified as practically equal; treatments in all 
other pairs can be classified as different. This result can be depicted 
graphically as in the case of the step-down range procedure of Section 2.1 
of Chapter 4. For every pair of treatments that are classified as different 
we can make a directional decision in the usual manner. 0 

1.2 Comparisons with a Control 

Now consider the setting of Chapter 5 ,  Section 2 where the kth treatment 
is regarded as a control with which the first k - 1 treatments are to be 
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compared. Tong ( 1969) considered the problem of classifying the treat- 
ments as “good” or “bad” relative to the control using a formulation 
analogous to that in the previous section for the pairwise comparisons 
problem. In this formulation two constants 6, and 6, are specified such 
that 6, < 8,; note that these constants need not be positive. Let 

G =  {i:tl, Z 0, +a,, 1 S is k - 1) , 

B = ( i : 8 , 5 B k + 6 , ,  l S i S k - l } ,  

and 

be the index sets of “good,” “bad,” and “indifferent” treatments, 
respectively, relative to the control. Each treatment is to be classified 
either as “good” or “bad.” Any classification that misclassifies at least 
one ‘‘good” or “bad” treatment is regarded as erroneous, but “indiffer- 
ent” treatments can be classified either way without affecting the correct- 
ness of the overall classification. The FWE is to be controlled at or below 
a designated level a ( O <  a < 1 - (4)” ’ )  for all values of the O,.’s. 

Tong proposed the following procedure for this purpose: Take n 
independent observations on each treatment and the control, and com- 
pute the sample means pi (1 _I i S k). Classify treatment i as “good” if 
Y, - pk Z 6 and as “bad” if pi - p, < ( (1  S is k - 1) where t a n d  n are 
to be determined so as to satisfy the FWE requirement. Tong made the 
choice 4 = (6, + S,)/2; thus it only remains to determine the smallest n .  

To find the least favorable configuration of the q.’s for this procedure, 
first note that it suffices to consider the case where there are no 
“indifferent” treatments. Furthermore, for fixed sets G and B with 
cardinalities g 2 0 and b 2 0 (with g + b = k - l), respectively, it suffices 
to consider the configurations 0, = 0, + 6, for all i E G and 0, = 0, + 6, for 
all i E B. Then the probability of a correct classification can be written as 

where the 2 , ’s  have a (k - 1)-variate normal distribution with zero 
means, unit variances, and 
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Tong showed that (1.1) is minimized with respect to unknown g when 
g = (k - 1) /2 if k is odd and g = k / 2  if k is even. For this configuration he 
tabulated the solution A = ((6, - 6 , ) / 2 u } m  to the equation obtained 
by setting (1.1) equal to 1 - a. This table can be used for determining the 
common sample size n necessary for given k and a’, and specified 6, , 4, 
and a. 

Since the control plays a special role in that each treatment is 
compared to it, one would expect that more observations should be 
allocated to it than to each one of the treatments. Sobel and Tong (1971) 
formulated this design problem as follows: Let n be the common number 
of observations on each treatment and let nk be the number of observa- 
tions on the control. Let e = (6, + 6,)/2 as in Tong’s (1%9) procedure. 
Find the “optimal” values of n and n, that minimize the total sample size 
N = nk + (k - 1)n subject to the condit‘on that FWE S a (Le., the 
probability of a correct classification Sl - a) for all values of the tli’s. 
Sobel and Tong derived the equations necessary for determining the 
optimal values of n, and n. They also studied the asymptotic ( N + m )  
behavior of the solution. But they did not provide tables for implement- 
ing their solution for finite values of N. Tamhane (1987) considered the 
problem of simultaneous optimal choice of n,, n, and 5. He showed that 
for k odd, Tong’s choice f = (6, + &)I2 is optimal, but for k even, a 
different choice of 6 is optimal. This optimal choice can be numerically 
determined, along with n, and n, by solving a set of simultaneous 
equations. He gave tables for determining the optimal values of 6 ,  n,, 
and n. In the same article he also extended Sobel and Tong’s (1971) 
asymptotic result that €or N = nk + (k - l )n  approaching infinity, the 
square-root allocation rule, nL = n m  (see Section 2.1.3 of Chapter 
5 ) ,  recommended by Dunnett (1955), is optimal. Both of these articles 
regard n and nL as nonnegative continuous variables, or equivalently, 
7 = n,/N as a continuous variable taking values in the interval (0 , l ) .  If N 
is large, then this continuous approximation is quite good. 

Exumple 2.2. Consider the same setting as in Example 1.1  but now 
suppose that treatment 4 is a control with which the first three treatments 
are to be compared. If tl,-8,46, =0.2, then the ith treatment is 
regarded as “bad” relative to the control and if 4 - 6, L S, = 1.0, then the 
ith treatment is regarded as “good” relative to the control (i = 1,2,3).  A 
correct classification of the three treatments is desired with probability at 
least 1 - a = 0.90. We wish to find the smallest total sample size N and 
the associated values of n,  n,, and f that when used in the given 
classification procedure will guarantee the specified design requirement. 

From Table 2 in Tamhane (1987) we obtain the optimal values of 
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b = (6, - S , ) f l / 2 a ,  c = m, and d = <N/u to be 4.8826, 0.7684, 
and 14.1926, respectively. It should be noted that d is tabulated for 
y = 6J6, = 2 from which the optimal d for any other y can be obtained by 
the formula d + b(2 - y ) / ( y  - 1).  

From the tabulated value of b, we first calculate 

If we allocate 24 of these 38 observations to the three treatments with 
n = 8  per treatment and the remaining n4=  14 observations to the 
control, then we get a = 0.7559, which is quite close to the optimal 
value of c. Notice that the square root allocation rule gives c = a = 
(!)”* = 0.7598. Next we have y = 1 /0.2 = 5 and therefore the optimal 
d = 14.1926 + 4.8826(-3)/4 = 10.5307, from which we get the optimal 

If we use Tong’s (1969) original procedure, then the required critical 
constant is 6 = (1 + 0.2)/2 = 0.6. The tabulated A = ((4 - 6,)/2~}.\/7;;;z 
in this case equals 1.8004 from Tong’s tables, which gives n, the common 
sample size for each treatment and the control, equal to L2(2 x 0.5 X 

1.8004/0.8)2J = 11. The total sample size required by Tong’s procedure is 
thus N = 4 x 11 = 44. Compare this with N = 38 obtained using the 
optimal procedure and notice the saving. Larger savings are possible for 

0 

= 10.5307 x 0.5 1- = 0.8542. 

larger k and smaller (6, - S,)/u. 

Bechhofer (1969) considered a related design problem from the view- 
point of simultaneous one-sided confidence interval estimation of the 
differences ei - 19, (1 S i 5 k - 1). Bechhofer and Nocturne (1972) consi- 
dered the analogous problem for simultaneous two-sided interval estima- 
tion. In these formulations it is assumed that the experimenter can 
prespecify a common “allowance” A > 0 for each interval estimate and a 
joint confidence level 1 - a. The design problem is then for given k and 
a’, and specified A > 0 and a, to determine both the smallest total sample 
size N = nk + n(k - I )  and the associated optimal allocation (nk ,  n) ,  so as 
to guarantee 

Pr{e, - e, I Pi - Pk + A (1 I is k - 1)) B 1 - a 

Pr{ei - 0, €[pi - r, -+ A ]  (1  I i s  k - 1)) 21 - 

(1.3) 

for one-sided interval estimates, and 

(1.4) 

for two-sided interval estimates. 
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Solutions to these optimal allocation problems were given by Bech- 
hofer (1%9) (for one-sided intervals) and Bechhofer and Nocturne 
(1972) (for two-sided intervals). Letting y = n , / N  and A = A f l / r r ,  the 
left hand side of (1.3) can be written as 

and that of (1.4) can be written as 

where @( - )  denotes the standard normal distribution function. Note that 
these integrals depend on A ,  N, and u only through a single unitless 
quantity A. 

First consider the problem of determining the optimal proportion y of 
observations on the control for given A > 0. As mentioned before, it is 
convenient to regard y as a continuous variable. The optimal y in the 
one-sided case (respectively, two-sided case) is the value that maximizes 
(1.5) (respectively, (1.6)). The optimal y can be obtained by solving the 
equation obtained by setting the partial derivative of (1.5) (respectively, 
(1.6)) with respect to y equal to zero. To determine the smallest N, or 
equivalently the smallest A that guarantees (1.3) (respectively, (1.4)), it is 
necessary to solve two simultaneous equations for y and A ,  one obtained 
by setting the partial derivative of (1.5) (respectively, (1.6)) with respect 
to y equal to zero and the other obtained by setting (1.5) (respectively, 
(1.6)) equal to the specified value 1 - a. Solutions to these simultaneous 
equations are tabulated in Bechhofer and Tamhane (1983) for k - 1 = 
2(1)10 and 1 - a =0.75, 0.90, 0.95, and 0.99. 

Bechhofer (1969) and Bechhofer and Nocturne (1972) also showed for 
their respective problems that as A+m,  the o timal proportion 

square-root allocation rule mentioned earlier. 

q + m / ( l  + ./kli) or equivalently n k / n + t  9- k - 1 ,  which is  the 

Exumpfe 2.3. Consider the setting of Example 1.2 but now suppose that 
instead of classifying the treatments as “good” or “bad” relative to the 
control, we wish to estimate the differences 0, - 0, (1 S i 5 3) using 90% 
simultaneous upper one-sided confidence intervals (1.3). Let the specified 
allowance A = 0.2. From Table 2 in Bechhofer and Tamhane (1983) we 
find that the optimal values of y and A are 0.335 and 4.819, respectively. 
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From the latter we calculate the minimum value of N to be l(4.819 X 

0.5/0.2)2J = 146. Of these 146 observations, we ailocate n = 32 to each 
one of the three treatments and the remaining n4 = 50 observations to the 
control. This gives y =50/146=0.342, which is quite close to the op- 
timum y. 0 

1.3 Comparisons with the “Best” 

This family was considered in Chapter 5,  Section 3. Desu (1970) studied 
the design problem associated with this family from the indifference-zone 
viewpoint. Let 6, and 6, be two preassigned constants such that 0 < 6, < 
4, and let 

and 

B = { i :  6, S qk1 - 6, (1 S i 5 k)} 

be the index sets of “good” and “bad” treatments, respectively, where 
qkl = max 0,. Notice that here the unknown “best” treatment (i.e., the 
treatment with mean q k l )  is used as a benchmark for comparisons, while 
in the previous section the known control treatment was used as a 
benchmark. Desu considered the goal of selecting a random subset 6 of 
treatments such that (? n B = 4, which he referred to as a correcf 
decision (CD). In other words, a correct decision is made when all bad 
treatments are excluded from the selected subset e. (Note, however, that 
some good treatments may also be excluded from c.) The selection 
procedure is required to satisfy the probability requirement that 
Pr,{CD} Z 1 - a for all 8. This probability requirement implies that one 
can make the simultaneous confidence statement 

Desu proposed the following procedure: Take a random sample of size 
(1 5 i 5 k). Let n on each treatment and compute the sample means 

prk, = max y,. Then choose the subset 

Desu showed that to satisfy the stated probability requirement, the 
constant c must be equal to Z p ? , . f j 2 ,  the upper a equicoordinate point of 
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the standard (k - 1)-variate equicorrelated normal distribution with com- 
mon correlation= $. In order that 6 be nonempty, we must have 
n 2 (ccr/S,)*, which determines n. 

Hsu (1981) showed that using Desu’s procedure one can make a 
stronger simultaneous confidence statement than (1.7). namely, 

where 

el7 pi+ z , O )  ( l S i 5 k ) .  

Note that Hsu provides confidence intervals for all differences qkl - fli 
from the “best.” Furthermore, his upper confidence bounds Ui S 6, for 
i E (?, and hence are sharper than those in (1.7). For a further discussion 
of Hsu’s work we refer the reader to Section 3 of Chapter 5.  

1.4 Successive Comparisons among Ordered Means 

This family was discussed in Chapter 5 ,  Section 4.2. The design problem 
for this family was considered by Hochberg and Marcus (1978), who 
proposed an indifference-zone formulation analogous to the ones given in 
the preceding two sections. 

Let 6, and S, be prespecified constants such that S, < 6,. The ith 
increment A, = f?,,, - 8, is regarded as “small” if AI S S, and ‘‘large’’ if 
A, Sr S, (1 5 i S k - 1). Each one of the k - 1 successive differences is to 
be classified as “small” or “large.” An erroneous classification is defined 
as one that misclassifies at least one “small” or “large” A,. Any A, lying 
in the indifference-zone (a,, 6,) may be classified either way without 
affecting the correctness of the overall classification. The FWE is to be 
controlled at or below a designated level a ( O <  a < 1 - ( ! ) “ I )  for all 
values of the 0,’s. 

Hochberg and Marcus (1978) proposed the following procedure for 
this purpose: Let Y, be the sample mean based on n independent 
observations (1 S i S k). Classify the ith successive difference, A, = 
8,+, - el, as “small” if Y,+, - Y, S 6 ,  and as “large” if Y,,, - Y, > 8 
(1 5 i I k - 1). The critical constant 8 and the common sample size n are 
to be determined so as to satisfy the specified FWE requirement. 

For determining a least favorable configuration of the 8,’s that maxim- 
izes the FWE of this procedure, it suffices to restrict consideration (as in 
Section 1.2) to configurations where each A, equals either 6, or S,. 
Hochberg and Marcus (1978) showed that the configuration A, = S, for all 
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i or A, = 6, for all i maximizes the FWE and the “optimal” value of 6 that 
minimizes the corresponding maximum W E  is (6, + 6,)/2. They also 
showed that for this choice of 4, the smallest common sample size n that 
controls the FWE in the least favorable configuration (and hence for all 
values of the el’s) is given by n = 1(2Aa/(6, - ~ 5 , ) } ~ ]  where A is the 
solution to the equation 

Pr{ max Z, S A }  = 1 - a ;  (1.9) 
1srsck-1 

here the 2,’s are jointly distributed standard normal random variables 
(r.v,’s) with the correlation structure 

Unfortunately for this correlation structure the left hand side of (1.9), 
which gives the probability of a correct classification under a least 
favorable configuration, cannot be expressed in a form convenient for 
computation. Hochberg and Marcus (1978) obtained the following lower 
bound on it by using Kounias’s (1968) improved Bonferroni inequality: 

1 ,- ( k  - 1)Pr{Z, > A )  + Pr{Z, > A ,  Z ,  > A) + ( k  - 3 ) ( ~ r { ~ ,  > A}) ’  . 

( 1.10) 

This lower bound is exact for k = 3. Hochberg and Marcus (1978) 
tabulated the solutions A to the equation obtained by setting (1.10) equal 
to 1 - a for selected k and a. This table can be used for determining a 
conservative sample size n (exact for k = 3) that meets the specified FWE 
requirement. 

2 TWO-STAGE PROCEDURES 

In Section 1 we assumed that u2 is known. When u’ is unknown, the 
probability of a Type I1  error at a specified nonnull alternative cannot 
be controlled at a designated level (or equivalently simultaneous confi- 
dence intervals of prespecified widths cannot be constructed) using a 
single-stage procedure. Sequential procedures are needed for such pur- 
poses. The simplest types of sequential procedures are two-stage proce- 
dures. Such two-stage procedures are based on the following basic result. 
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Theorem 2.1 (Stein 1945). Let Yj ( i =  1 , 2 , .  . .) be independent 
N( p, u2 )  r.v.3. Let S2 be an unbiased estimate of u2 that is distributed 
as u * , y ~ / u  independently of C:=l Yi and Y,+, , Y,,+2, . . . , where n is some 
tixed positive inte er. Let N h n be a positive integer valued function of 
S2. Denote = Xi, ,  Y&N. Then ( y  - p)t/iJ/S is distributed as a Stu- 

0 

5 
dent’s f r.v. with u degrees of freedom (d.f.). 

2.1 Pairwise Comparisons 

Consider the balanced one-way layout model of Section 1.1. Suppose that 
simultaneous confidence intervals with confidence coefficient 1 - a and 
prespecified allowance A > 0 are desired for all pairwise differences 0, - 9, 
(1 S i < j S k). For this problem Hochberg and Lachenbruch (1976) 
proposed a two-stage procedure that is based on the result of Theorem 
2.1. This procedure operates as follows. 

Stage 1. Take n 2 2 independent observations from each of the k treat- 
ments and compute the usual pooled unbiased estimate S2 of 
u2 based on u = k(n - 1) d.f. Let 

where i = A/&: and Qtl is the upper a point of the Studen- 
tized range distribution with parameter k and d.f. v. 
In the second stage take N - n additional independent observa- 
tions from each of the k treatments and compute the overall 
sample means Yi = C j - l  Y,IN (1 S i 5 k). Then 100( 1 - a)% 
simultaneous confidence intervals for all painvise differences 
9, - 9, are given by 

Stage 2. 

- N  

flj-B,E[pj- Y , ? A ]  ( l S i < j S k ) .  (2.2) 

These confidence intervals can be extended to the family of all 
contrasts by using Lemma 2.1 of Chapter 3. Thus loo( 1 - a)% simulta- 
neous confidence intervals for all contrasts Efml cI0, are given by 

The confidence intervals (2.2) with N given by (2.1) follow from the 
result (which follows from Theorem 2.1) that f i / S  times the range of 
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Y, - e l , .  . . , Yk - 6, has the Studentized range distribution with parame- 
ter k and d.f. Y. Hochberg and Lachenbruch (1976) also gave a two-stage 
procedure for testing H, : 0, = 0, = - . . = 0, using the Studentized range 
statistic f imax,s , , , ,k  I PI - Y,I /S. This procedure guarantees specified 
power whenever max,,,,,,k 16, - 0,l h 6 where S > 0 is a specified con- 
stant. 

Example 2.2. As in Example 1.1 suppose that pairwise comparisons are 
to be made among k = 4 treatments, but now assume that (T’ is unknown 
and simultaneous confidence intervals are of interest. Let 1 - a = 0.95 
and A = 0.4. If n = 7 observations are taken from each treatment in the 
first stage, then v = k(n - 1) = 24. Thus 3 = 0.4/3.90 = 0.1026 where 
QrZ) = 3.90 is taken from Table 8 in Appendix 3. If the first stage data 
yield the pooled estimate S = 0.5 (the value of (T used in Example l . l ) ,  
then 

and therefore 17 observations must be taken on each treatment in the 
second stage. 0 

2.2 Comparisons with a Control 

Consider the setup of Section 1.2. For the problem of classification of 
treatments with respect to a control, Tong (1969) proposed a two-stage 
procedure similar to the one described in Section 1.2. For Tong’s 
procedure the constant 5 in (2.1) equals (6, - 6 , ) / ( 2 f i T r ? 1 . v , R ) ;  here 
Tr-!l.v,R is the upper Q equicoordinate point of a (k - 1)-variate t- 
distribution with v d.f. and associated correlation matrix R whose entries 
are given by (1.2) with g = (k - 1) /2  if k is odd and g = k/2 if k is even. 
A table of these equicoordinate points is given by Tong. Having obtained 
the overall sample means P,, the treatments are classified in the same way 
as in the case of the single-stage procedure of Section 1.2; thus treatment 
i is classified as “good” with respect to the control treatment k if 

- Pk L 6 and as “bad” if pi - Yk < 6 (1 _S i 5 k - 1) where 6 = (6, + 
S2)/2. That this procedure controls the FWE at or below a for all values 
of the Oi’s follows from the fact that the vector 

has the (k - 1)-vanate f-distribution referred to above but with arbitrary 
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(unknown) g ( O l g  5 k - l), and g = k12 (respectively, g = (k - 1)/2) is 
the least favorable value of g for k even (respectively, k odd). 

This same approach can be used for constructing two-stage procedures 
to obtain simultaneous confidence intervals for 0, - Bk (I  Z i S k - 1) 
having a common prescribed width 2A. We omit the details. Similarly a 
two-stage procedure can be constructed that uses a fixed critical constant 
for determining whether each difference between the sample means of 
successively ordered treatments is “smail” or “large.” The details can be 
found in the Hochberg and Marcus (1978) article. 

3 INCOMPLETE BLOCK DESIGNS FOR COMPARING 
TREATMENTS WITH A CONTROL 

Blocking is a standard technique used to improve the precision of a 
comparative experiment. When all pairwise comparisons between treat- 
ment means or specified orthogonal contrasts are of equal interest, 
symmetrical block designs are the natural choice. In particular, if the  size 
of each block is the same and this common size is less than the number of 
treatments (i.e., the blocks are incomplete) then balanced incomplete 
block (BIB) designs have certain optimality properties and should be 
used (Kiefer 1958). 

Still restricting our attention to the incomplete block setting we now 
consider the question of appropriate designs to use for the comparisons 
with a control problem. Cox (1958, p. 238) noted the inappropriateness 
of BIB designs between all treatments (including the control) for this 
purpose in view of the special role played by the control treatment. Cox 
suggested a design in which the same number of plots in each block are 
allocated to the control, and the test treatments are arranged in a BIB 
design in the remaining plots of the blocks. Bechhofer and Tamhane 
(1981) proposed a general class of designs called balanced trearmenr 
incomplere block ( B T f B )  designs; Cox’s design is a member of this class. 
To define this class we first introduce some notation. 

Let the treatments be indexed 1,2,  . . . , k with k denoting the control 
treatment and 1,2,  . . . , k - 1 denoting the k - 1 test treatments. Let p 
denote the common size of each block and b, the number of blocks. 
Bechhofer and Tamhane (1981) considered the following additive linear 
model for an observation Yt,h obtained when the ith treatment is assigned 
to the hth plot of the j th  block: 
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where the EIJh's are independent N ( 0 ,  u') random errors. Let GI - Gk be 
the LS estimate of 0,-0, ( l S i 5 k - 1 ) .  

For given (k, p ,  b) a design is referred to as a BTIB design if it has the 
property that 

var(6,-6,)=7'aZ ( 1 S i s k -  1) (3.2) 

and 
- 1 1  1 

corr(0, - 8,' 0,. - 0,) = p (1  S i f  i' Z k - 1) (3.3) 

for some 7' > 0 and p (-1 l (k  - 2) < p < 1). Here r2  and p depend, of 
course, on the particular design employed. Designs having this same 
balance property were considered earlier by Pearce (1960). 

Let nIi denote the number of replications of the ith treatment in the jth 
block (1 S i 5 k, 1 S j  S b). Theorem 3.1 of Bechhofer and Tamhane 
(1981) gives the foilowing conditions as both necessary and sufficient for 
a design to be BTIB: 

h 

2 n k l n l l = A o  ( l S i 5 k - 1 )  
1'1 

and 
h 

(3.4) 

for some nonnegative integers A,, A,. In order that the (8, - 6,)'s be 
estimable we must have A, > 0. 

The following is an example of a BTIB design for k = 5, p = 3, and 
b = 7 :  

1 2 3 5 5 5 2 :  
5 5 5 5 5 5 1  

3 3 4 1 2 4 4  

here the columns represent the blocks. This design has A, = 3 and A ,  = 1. 
We now consider the analysis aspects of BTIB designs. Let T,  denote 

the sum of all observations on treatment i (1 5 i 5 k) and let B, denote 
the sum of all observations in the j th block (1 S j 5 b). Define S: = 
E:-, n,,BJ and Q, = kT, - B:  (1 S i S k). Bechhofer and Tamhane 
showed that the LS estimate of 0, - 8, is given by 

I 
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Also of (3.2) is given by 

and p of (3.3) is given by 

The analysis of variance table for a BTIB design is as shown in Table 
3.1. In this table G denotes the sum of all observations, and H denotes 
the sum of the squares of all observations. An unbiased estimate of c* is 
given by S = MS,,,,, = SS,,,,,/(bp - b - k + 1) with Y = bp - b - k + 1 
d.f.  

The estimates gi - gk along with the estimate S2 of cr2 can be used in 
Dunnett's procedure (see Section 2 of Chapter 5 )  to obtain the following 
100( 1 - a)% simultaneous one-sided confidence intervals: 

2 

The corresponding two-sided intervals are given by 

6 , - e k € [ j i - G k  + I T ( ~ - l l * v , p ~ S ]  ( 1 S i S k - 1 ) .  (3.10) 

In (3.9), Tp?l,u.p (respectively, in (3.10), ~ T ~ ~ ? l ~ u , p )  is the upper a point 

TABLE 3.1. Analysis of Variance for a BTIB Design 

Source Sum of Squares (SS) d.f. 

Treatments 
(adjusted k - 1  
for blocks) i- I 

Blocks 
(unadjusted) 

Error 

Total 

l b  GZ 
P 1-1 bP 
- C, B ; - -  

By subtraction 

b - 1  

bp - b - k + 1 

bp - 1 
G2 
bP 

H - -  
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of the distribution of the maximum of the components (respectively, 
absolute values of the components) of a (k - 1)-variate equicorrelated 
t-distribution with Y d.f. and common correlation p given by (3.8). 

Bechhofer and Tamhane formulated the problem of determining an 
“optimal” BTIB design in the following way: Suppose that k, p ,  and b are 
given and u2 is assumed to be known for design purposes. Further 
suppose that a common allowance A > O  is specified and it is desired to 
have simultaneous one-sided confidence intervals of the form 

1 -  6 - 6, S 6; - 6, + A (1 5 i s  k - 1) , (3.11) 

or simultaneous two-sided confidence intervals of the form 

q. - 6, €[4 - ik f A ]  (1 S i S k  - 1). (3.12) 

An “optimal” BTIB design for the one-sided (respectively, two-sided) 
case maximizes the joint confidence coefficient associated with (3.11) 
(respectively, (3.12)). Tables of such optimal designs for k - I = 2(1)6 
and p = 2,3 are given in Bechhofer and Tamhane (1985). The following 
example is taken from this reference. 

Example 3.1. Suppose that an experimenter wishes to compare two 
treatments (labeled 1 and 2) with a control (labeled 3) in blocks of size 
p = 2 .  Further suppose that the experimenter wishes to make simulta- 
neous 95% one-sided confidence statements about 6, - 4 ( i  = 1.2) and 
that for design purposes a common fixed standardized allowance A /a = 1 
is specified. From Table OPT1.2.2 in Bechhofer and Tamhane (1985) we 
find that for A / a  = 1.0. the smallest number of blocks required to 
guarantee a joint confidence coefficient of 0.95 is b = 15 and the actual 
achieved joint confidence coefficient is 0.9568. The corresponding optimal 
design requires six copies of design D, = { 7 :} and three copies of design 
D, = {l}. Thus out of a total of 30 experimental units, 12 are allocated to 
the control and 9 are allocated to each one of the two treatments. 

This optimal design calculation assumes that u2 is known. After the 
data are collected using this design, the experimenter must estimate u2 by 
S’ = MS,,,,, from Table 3.1 and then apply (3.9) to calculate the desired 
one-sided confidence intervals. For this design it is easy to verify that 
A,, = 6, A, = 3  and hence r 2  = 0.25 and p = 1 from (3.7) and (3.8), 
respectively. From Table 3.1 we see that the error d.f. v = 13. The critical 
constant needed for making 95% simultaneous one-sided confidence 
intervals is T 2 . , 3 , , ; 3 ,  which approximately equals 2.116 as found by linear 
interpolation with respect to 1/(  1 - p )  and l / v  in Table 4 in Appendix 3. 

(0 0.5) 
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Thus the desired upper one-sided confidence intervals will have the form 

ei - e, s iji - ij3 + 2.1 16 x 0.5 x s ( i  = 1,2) 

where ii - 4 (i = 1,2)  can be calculated using (3.6). 
If two-sided confidence intervals are desired, then from Table 

OPT2.2.2 of Bechhofer and Tamhane (1985) the optimal design is found 
to consist of eight copies of D, and three copies of D, with a total of 19 
blocks. The rest of the calculations are similar to those given above. 

0 
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C H A P T E R  7 

Procedures for One-way Layouts 
with Unequal Variances 

In Part I we studied multiple comparison procedures (MCPs) for fixed- 
effects linear models with independent, homoscedastic normal errors. 
These MCPs use the usual mean square error (MSE) as an estimate of 
the common a‘. However, if the homoscedasticity assumption is violated, 
then many of these MCPs are not very robust in terms of their Type I 
error rates, that is, their Type I error rates differ by not insignificant 
amounts from their nominal values when the variances are unequal. In 
the present chapter we consider MCPs that are designed to take into 
account possibly heterogeneous variances by utilizing their separate 
sample estimates. We restrict to the one-way layout setting and follow the 
same notation as in Example 1.1 of Chapter 2, but now denote the ith 
treatment variance by o, (1 5 i S k). 

Many simulation studies have shown that the MCPs based on the usual 
MSE estimate are in fact liberal (i.e., their Type I error rates exceed their 
nominal values), particularly when large uf’s are paired with small n,’s 
and vice versa (inverse pairing); see, for example, Keselman and Rogan 
(1978), Dunnett (1980b), Tamhane (1979), and Korhonen (1979). Kesel- 
man and Rogan’s (1978) simulation results showed that the Tukey- 
Kramer (TK) procedure and the Scheffe (S) procedure are both liberal in 
the presence of heterogeneous variances, the latter being somewhat less 
so (see also Scheffk 1959, Section 10.4). Dunnett’s (1980b) simulation 
study showed that the actual Type I familywise error rate ( W E )  of the 
TK-procedure can be more than four times the nominal value a (for 
a = 0.05) if the a:’s and ni’s are inversely paired, and thus the ( a f l n , ) ’ ~  
are highly imbalanced. In Tamhane’s (1979) simulation study the TK- 
procedure was not included but the Tukey-Spjatvoll-Stoline (TSS) and 
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Hochberg’s (1974b) GT2-procedures were included. Both of these proce- 
dures were found to have excessive Type I error rates only when the 
imbalance among the (af/n,)-values was large. However, this apparently 
robust behavior is due to the fact that these procedures are inherently 
conservative (for the case of homogeneous variances) while the TK- 
procedure is sharp. Korhonen (1979) studied the robustness of Tukey’s 
T-procedure, the TSS-procedure and the Bonferroni procedure with 
respect to the violations of the normality, independence, and homos- 
cedasticity assumptions. He found that these procedures are quite robust 
against departures from normality but not against departures from the 
other two assumptions. We again note that all of these articles study 
robustness with respect to the Type I FWE only. 

This discussion shows the need for MCPs that are not based on the 
assumption of homogeneous variances. In Section 1 we review such 
single-stage MCPs. It is possible to construct such exact (having FWE = 
the nominal value a) single-stage MCPs for the family of all linear 
combinations of the 6,’s but not for the family of all contrasts (or for any 
subset of that family such as the family of pairwise comparisons or the 
family of comparisons with a control). Only approximate (having W E  
a) MCPs can be used in the latter case. These approximate MCPs are 
suitable extensions of the available procedures for the Behrens-Fisher 
problem, which is a special case for k = 2 of the contrasts problem under 
variance heterogeneity. Although only approximate single-stage MCPs 
can be constructed for the contrasts problem, it is possible to construct 
exact two-stage MCPs (having W E  = a) for the same problem. In 
Section 2 we discuss these two-stage MCPs. All of the procedures in 
Sections 1 and 2 are simultaneous confidence (and test) procedures. No 
stepwise test procedures have been proposed for comparing the means 
without assuming homogeneous error variances. In Section 3 we offer 
some suggestions for two step-down procedures but their details remain 
to be worked out. 

1 SINGLE-STAGE PROCEDURES 

As stated before, the MCPs discussed in this section fall into two groups. 
The MCPs in the first group address the family of all linear combinations 
of the 6,’s while those in the second group address the family of all 
contrasts. The MCPs in the first group are exact while those in the second 
group are approximate, usually conservative. Note that the contrasts 
problem is a generalization of the Behrens-Fisher problem for which also 
no exact single-stage solution is known to exist. 
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In the following we let PI = Z;:, Yr,/nr and S: = C ~ L ,  ( Y ,  - ~ , ) ' / ( n ,  - 
I )  denote the sample mean and sample variance, respectively, for the ith 
treatment based on n, observations (1 S i 5 k ) .  Note that the Srz's are 
distributed independently of each other and of the P,'s as ufx~,/wr 
random variables (r.v.'s) where w, = n,  - 1 (1 S i 5 k ) .  

1.1 All Linear Combinations 

DL-PROCEDURE. This procedure proposed by Dalal (1978) is based on 
the following variation of Holder's inequality, which was earlier used for 
constructing MCPs by Dwass (1959). 

Lemma 1.1. 
x E R k  and any 5 2 0  

Let p ,  q Z 1 such that l lp + 1 / q  = 1. Then for any vector 

An important special case of (1.1) for p = 1, q = Q: gives 

Another important special case 

I k , I i 2  

Let Db";'",. . , Yk be the upper a point of the distribution of 

where Tw is a Student's t r.v. with w, degrees of freedom (d.f.) (1 S i S k )  
and the 'T , ' s  are independently distributed. We now show that exact 
(1 - a)-level simultaneous confidence intervals for all linear combina- 
tions I,=, arel are given by k 

where p .  (I P O  are such that l lp f l / q  = 1. On letting b, = a i S l / f i  
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(1 5 i d k) we have 

= l - a .  

For p = 1, q = m, it follows that D- .  , , . yt - - maxlsr=ik ITv,\ and thus 
Db) Ic; Y I . .  . , , is the solution in D of the equation 

n (2F”jD)  - 1) = 1 - a 
1 = 1  

where F,( .)  denotes the distribution function of a T, r.v. 
For p = 1, q = m, a modified version of the DL-procedure, which is 

easier to implement in practice was proposed by Tamhane (1979). This 
modification of (1.4) results in the following exact (1 - a)-level simulta- 
neous confidence intervals: 

si 
k k 1; 

2 ui 6, E [ (I, pi 5 [ 7’;’) I a }] V a E Rk ( 1.6) 
i -  I i = l  i = I  

where T?” is the upper a* point of Student’s f distribution with v d.f. 
and a* = $ (1 - (1 - The Ty”’s  are easier to obtain (e.g., from 
the tables of Games 1977 or by interpolating in Table 1 in Appendix 3) 
than solving equation (1.5). The original DL-procedure and the modified 
DL-procedure are identical when the vi’s are equal and also when the 
vi’s--,a (the known variances case). For other situations the perform- 
ances of the modified DL-procedure and the original DL-procedure are 
comparable on the average (Tarnhane 1979). Thus it does not seem 
necessary to consider the original DL-procedure (for p = 1, q = m) sepa- 
rately. 

For p = q = 2 the DL-procedure was proposed earlier by Spjfitvoll 
(1972b). He gave the following approximation to DELI., , , , ”~ obtained by 
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matching the first two moments of D,; 
r.v.: 

, , , ,,k with those of a scaled F 

where 

( k - 2 ) r i  {u, I (v ,  -2)}12+4k { u f ( v , -  l ) ~ ( u r - 2 ) z ( u i - ~ ) }  

and 

(1.9) 
k 

We refer to this procedure as the SP-procedure. 

H1-PROCEDURE. This procedure was proposed by Hochberg (1976a). Let 

k independent t r.v.3 T,, ,  T-, . . . , T,, that is, 
RilQ), , , ~ denote the upper a point of the augmented range RL,, , , , , ”~ of 

Then exact (1 - a)-level simultaneous confidence intervals for all linear 
combinations C t l  ulOi are given by 

k k 

2 u , ~ ~ E [ ~  a ip i+  R:jU),,,vkA4(b)] V a E R k  (1.10) 
i - 1  i=  1 

where b = ( b ,  , . . . , b k ) ‘ ,  

b,? = max(bi, 0) , and b- = max(-b,, 0) , 

i = 1 , 2  , . . . ,  k. 
That the intervals (1.10) have exact 1 - a  joint confidence level 
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follows from the probability calculation below: 

= Pr{R:,* 

= l - a .  

. Yk s R " , .  I ( U )  . . , Irk } (using Lemma 2.2 of Chapter 3) 

Tables of RL,(f), , , are not available. If the vi's are large, then 
R q * . .  . , q  may be approximated by the upper a point of the augmented 
range of k independent standard normal variables; the latter may be 
obtained from Stoline's (1978) tables of the Studentized augmented range 
distribution with d.f. equal to m. Hochberg (1976a) has given a short table 
of the upper a points of the range of k independent Student f variates 
each with v d.f. for a =0.05 and 0.10; these critical points (denoted by 
R'"' w .  . . . .  ") provide close approximations (lower bounds) to R:ru), , , y* 

when uI = .  * .  = vk = Y. 

1.2 All Contrasts 

1.2.1 
The Behrens-Fisher problem involves making an inference on 8, - Oz 
when a: and a: are unknown and unequal. Thus it is a special case of the 
contrasts problem for k = 2. No exact single-stage solution (i.e., an exact 
a-level single-stage test or a (1 - a)-level single-stage confidence interval 
for dl - 6,) is available for this problem. However, a variety of approxi- 
mate solutions have been proposed; for a review, see Lee and Gurland 
(1975). Perhaps the most popular among these is the one proposed by 
Welch (1938), which involves a proximating the distribution of { f ,  - 
V2 - (6, - 4)) I ( S t l n ,  + S ~ i n , ) "  by Student's f-distribution with esti- 
mated (random) d.f. C given by 

The Special Case k = 2 (The Behrens-Fisher Problem) 

P 

( S ; / n ,  + S;ln,)*  

{ S ; / n ; ( n ,  - 1) + S:/n:(n,  - 1)) 
;= (1.11) 
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Wang (1971) made a numerical study of the Welch approximate solution 
and found that it controls the Type I error rate fairly closely over a wide 
range of vi/cri values as long as n,, n2 2 6. Many of the single-stage 
MCPs for the contrasts problem are extensions of this approximate 
solution. 

1.2.2 
All of the following procedures are of Tukey-type (except the Brown and 
Forsythe 1974a procedure, which is of Scheffe-type). In a Tukey-type 
procedure simultaneous confidence intervals for all pairwise contrasts are 
first obtained having the following form: 

The General Case k I 2  

These interkals can then be extended to all contrasts using 
Chapter 3 as follows: 

(1.12) 

Lemma 2.1 of 

V c E C k  

(1.13) 

where C k  is the k-dimensional contrast space (c E IW' : C:=l c, = 0) and 

In (1.12), the ,$f;''s are suitably chosen so that the joint confidence level 
is approximately 1 - a. We now discuss various procedures that have 
been proposed for choosing the (f,O)'s. 

H~-PROCEDURE. In  this procedure proposed by Hochberg (1976a) the 
(!p"s are set equal to a common value (say) ( ( u )  that is determined by 
using the Welch approximate solution for k = 2 and the Bonferroni 
inequality. This results in the following equation for determining 6'"': 

where each Tli = ( Yi - q )  / ( S : / n ,  + S: /n , )*" is approximately distributed 
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as a Student’s t r.v. with 

(1.15) 

d.f. in analogy with (1.11) ( 1 S i C j S k ) .  
Because of the difficulty in numerically solving (1.14)’ Tamhane 

(1979) proposed a modified version of the H2-procedure (also proposed 
earlier independently by Ury and Wiggins 1971) that uses 6:;’ = T‘;”’ 
where a’ = a / 2 k *  and k *  = (i). Clearly, the Tp”’s  are much easier‘lo 
obtain (e.g., from the tables of Bailey 1977) than solving (1.14). This 
modified HZprocedure also has the advantage of having a constant 
per-comparison error rate (PCE). As in the case of the DL-procedure, 
the average performances of the original and the modified versions of the 
HZprocedure are comparable and hence the original HZ-procedure may 
be dropped from consideration. 

GH- AND C-PROCEDURES. The GH-procedure proposed by Games and 
Howell (1976) can be regarded as an extension of the TK-procedure to 
the case of unequal variances; the extension is achieved by using the 
Welch approximate solution. Thus the GH-procedure uses S s ’  = 

QE:,]/d? where C,, is given by (1.15). 
In view of the liberal nature of this procedure (see the discussion in 

Section 1.4), Dunnett (1980b) proposed instead using 

which for k = 2 reduces to Cochran’s (1964) solution to the Behrens- 
Fisher problem. Dunnett refers to this procedure as the C-procedure. We 
note that the GH- and C-procedures become identical when all the 
v,’s400. When all the n,’s are equal (to n,  say), 6:;’ = Q::-[/fi for the 
C-procedure, which is strictly larger (with probability 1) than all the 
6:;) = QgLgl / f i  for the GH-procedure where the q,’s are given by (1.15). 

T2- AND T~-PROCEDURES. The T2-procedure proposed by Tamhane 
(1977) employs Sidik’s (1967) multiplicative inequality (instead of the 
Bonferroni inequality used in the H2-procedure) in conjunction with the 
Welch a roximate solution; this yields 6;;) = T‘,”’ where a” = f { 1 - 
(1 - a) }. Because the Sidak inequality is sharpe; than the Bonferroni 
inequality ( T r ” ’  < TIP’’ for k > 2), the T2 - procedure always provides 
narrower confidence intervals than the HZ-procedure. 

1 RP 
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In Tamhane’s (1979) simulation study the T2-procedure was found to 
be conservative; therefore the modified H2-procedure would be even 
more conservative and may be dropped from consideration. To reduce 
the conservatism of the T2-procedure, Dunnett (1980b) proposed a 
modification based on the Kimball (1951) inequality, which leads to the 
choice Sf’ = }MI:! ;,,. For k > 2 this critical constant is smaller than the 

critical constant T;.) used in the T2-procedure. Dunnett refers to this 
modified procedur2as the T3-procedure. Note that T2 and T3 become 
identical when all the v,’s-+m. 

BF-PROCEDURE. This procedure proposed by Brown and Forsythe 
(1974a) uses Scheffe’s projection method to obtain the following approxi- 
mate (1 - a)-level simultaneous confidence intervals for all contrasts 
~ 1 6 ~  q,: 

where 

A 

uc = 

2 (i ;==I [c:s’ /n, ] )  
(1.18) 

For pairwise contrasts (1.17) reduces to the general form (1.12) with 
6;;) = {(k - l)Ff-),,c,,}”2. Closely related procedures have been proposed 
by Naik (1967). 

Example 1.1. The data in Table 1.1 on the amounts of different types of 
fat absorbed by doughnuts during cooking are taken from Snedecor and 
Cochran (1976, p. 259). We assume that the one-way layout model holds 
for these data. 

Suppose that it is desired to make all pairwise comparisons between 
the four types of fat. If the variances ut are not assumed to be a priori 
equal, then a possible approach is to first perform a preliminary test of 
homogeneity on the variances using a test such as the Bartlett test. If the 
test does not reject the nu11 hypothesis, then one may wish to assume 
equal variances and use an appropriate MCP (e.g., the T-procedure in 
the present example). If the test does reject the null hypothesis, then one 
may wish to use an MCP such as the T3-procedure, which is designed for 
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TABLE 1.1. Fat Absorbed per Batch in Grams 

Fat 

1 2 3 4 

164 178 175 155 
172 191 193 166 
168 197 178 149 
177 1 82 171 164 
156 185 163 170 
195 177 176 168 

y, 172 185 176 162 
s ,2 178 60 98 68 
”, 6 6 6 6 
v, 5 5 5 5 

S , l f i  5.45 3.16 4.04 3.37 

Source: Sncdecor and Cochran (1976). 

unequal variances. However, the properties of such a composite proce- 
dure involving a preliminary test on the variances are unknown. If the 
preliminary test is not very powerful, then the null hypothesis will be 
accepted with high probability even when the variances are unequal, 
resulting in a “wrong” MCP being used, which will have excessive Type I 
error rates. 

If a guaranteed protection against the Type I FWE is desired, then one 
may wish to use an MCP for unequal variances without performing any 
preliminary test on the variances. If the variances are in fact equal, then 
such an MCP may not be as powerful as an MCP that is based on the 
homogeneous variances assumption. 

In the present example the Bartlett test for the equality of variances 
leads to the retention of the null hypothesis (P-value > 0.50). However, it 
is known that for small sample sizes this test is not very powerful. 
Therefore we may wish to ignore this nonsignificant test outcome and 
apply one of the MCPs for unequal variances. 

For the family of pairwise comparisons we only illustrate the use of 
T3-, GH- and C-procedures since other procedures are not competitive in 
this case. We use a = 0.05. 

Using (1.15) we calculate i,2 = 8.03, i,, = 9.22, i,4 = 

8.33, i& = 9.45, CZ4 = 9.%, and 634 = 9.68. The critical constants 1 MI:! ;,( 

for a = 0.05 and k* = (:) = 6 are obtained by linear interpolation in llv 
from Table 7 of Appendix 3. Using these critical constants, simultaneous 

T3-Procedure. 
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95% confidence intervals for all pairwise differences are computed as 
follows: 

178 60’ ”’ 

178 98 I ”  

61 - 62 : 172 - 185 2 3.361 ( - + - 6 )  =-13221.17 

el - e,: 172 - 176 t 3.255(T + y) = -4 -c 22.08 

6, - e,: 172 - 162 2 3.332( + -J = 10 t 21.34 

e, - e, : 185 - 176 -+ 3.237( - t -) = 9 2 16.61 

178 68 

60 98 
6 6  

60 68 

98 68 ”* 

4 - 6, : 185 - 162 2 3.2O2( 6 + 6 )  = 23 2 14.79 

e, - e, : 176 - 162 2 3.221( -i; + --J = 14 -+ 16.94 

Thus only the difference 4 - 6, is found significant using this procedure. 

GH-Procedure. For this procedure the critical constants are QE\,,/ 
fi where the QEL,,’s are obtained by linear interpolation in llv in Table 
8 of Appendix 3. Using these critical constants, simultaneous 95% 
confidence intervals for all pairwise differences are calculated as follows: 

4.525 178 60 I ”  
6, - 4 : 172 - 185 2 (-)( 7 + 7)  = -13 5 20.15 v2 

4 395 178 98 I / *  
6, - 6, : 172 - 176 +. ( - & )(-g-+x) = -4e21.08 

4.488 178 68 
e , - e 4 : m - i 6 2 - c (  T)(T + 7)  = 10k20.32 

4-6,:185- 1762 ( - & )( 7 + y) = 9215.87 

4.330 60 68 ”* -)( 6 + z) = 2 3 5  14.14 4 - 6, : 185 - 162 ? ( 

4373 60 98 I ”  

fi 

Once again, only the difference 4 - 6, comes out significant. Note that 
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because Q E i , , l f i  < l M l ~ ) c , ,  for k > 2, the intervals obtained using the 
GH-procedure are uniformly shorter than those obtained using the 
T3-procedure. However, as noted earlier, the GH-procedure may be 
liberal. 

Since all the q’s are equal, as noted in the discussion of 
the C-procedure, the critical constants 6;;) are the same for all pairwise 
comparisons and this common value equals Qr;””/t/z = 5 .221f i .  This 
will yield intervals that are uniformly longer than those given by either 
the T3- or the GH-procedure. 

Now let us suppose that after looking at the data, the experimenter 
decided to estimate the contrast (& + %)I2 - (0, + @,)I2 because it cor- 
responds to the comparison between the average for treatments with high 
sample means with that for treatments with low sample means. For the 
T3-procedure a 95% confidence interval for this contrast using (1.13) is 

C-Procedure. 

+-(20.15+21.05+ 14.14+ 16.19)= 13.5 k71.53 .  
185 + 176 172 + 162 - 

2 2 

Let us next illustrate the use of the procedures for all linear combina- 
tions and also the use of the BF-procedure to estimate this contrast. 

DL-Procedure. Forp = 1 ,  q = m ,  we have 0:’”. , . , . = T!? = 3.791 
for v = 5 and a = 0.05 (a* = f { 1 - ( 1  - = 0.00637) using the tables 
of Games (1977) or by interpolating in Table 1 of Appendix 3. Thus from 
(1.4) we obtain the following 95% confidence interval for the contrast 
(e, + e ~ 2  -(el + 0,) /2:  

185 + 176 - 172 + 162 -t 3.791(5.45 + 3.16 + 4.04 + 3.37) = 13.5 2 60.73 . 
2 2 

SP-Procedure. We use the approximation (1.7) where for v, = . . . = 
wk = 5 we get a = 40/9 and 6 = 6 from (1.9) and (1.8), respectively. Thus 
Drg05) , ( ( 4 0 / 9 ) F ~ ~ ’ ) ’ ‘ 2  = ((40/9) x 4.53)”’ = 4.49. Then from 
(1.4) we obtain the following 95% confidence interval for the contrast 
(4 + 4 ) / 2  - (e, + 04)/2: 

I :1 178 60 98 
-c 4.49 - + - + - + %) = 13.5 t 36.84 185 + 176 172 + 162 

2 - 2 ( 6 6 6 6  

HI-Procedure. To implement this procedure we require the value of 
the critical point R:!“’ , ”, which is not tabulated. instead we use the 
lower bound RF’ , which equals 5.05 for k = 4, Y = 5, and a = 0.05 
from the table provided by Hochberg (1976a); note that this results in a 
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slightly shorter (and possibly liberal) interval. From (1.10) we obtain the 
following 95% confidence interval for the contrast (4 + 4)/2 - (6, + 
e4)/2: 

**' -t 176 - 172 + 16* -+ 5.05 max(3.16 + 4.04,5.45 + 3.37) 
2 2 

= 13.5 2 44.54. 

BF-Procedure. From (1.18) we calculate Cc = 16.48 for c = (-0.5, 
+0.5, +0.5, -0.5)'. By linear interpolation in l l v  in the F-table we 
obtain FY.P15)48 z3.22. Thus from (1.17) we obtain the following 95% 
confidence interval for the contrast (a, + 4 ) / 2  - (6, + 0,)/2: 

185 + 176 
- 3.22) 

172 + 162 -e (3 
2 2 

= 13.5 2 25.50 

We see that the BF-procedure provides the shortest interval and the 
SP-procedure the next shortest for the contrast of interest in this exarn- 
ple. This holds generally for higher order contrasts. Also note that the 
T3-procedure provides the longest interval for this high order contrast, 
although it generally provides the shortest intervals for pairwise contrasts. 

0 

1.3 Comparisons with a Control 

If the kth treatment is a control and simultaneous confidence intervals are 
desired for contrasts 0, - 0, (1 S i S k - l ) ,  then some of the procedures 
described above can be readily modified to address this family. For 
simultaneous two-sided intervals on e, - 0, (1 5 i S k - l ) ,  the H2-, TZ- 
and T3-procedures can be modified by simply replacing k *  = (:) by k - 1, 
which is the new number of comparisons. For obtaining simultaneous 
one-sided intervals on 0, - 0, (1 S i I k - l ) ,  in addition to this modifica- 
tion, one must use 2u' and 2a" in the H2- and K!-procedures, respective- 
ly. In the case of the T3-procedure, the critical constant IMIIp-',. i,k must 
be replaced by the corresponding critical constant Mf?, . i,k from the 
Studentized maximum distribution. 

1.4 A Comparison of Procedures 

We first consider the MCPs that address the family of all linear combina- 
tions of the 3's. It was shown in Tamhane's (1979) simulation study that 
the DL- and HI-procedures are highly conservative not only for pairwise 
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contrasts but also for higher order contrasts. That simulation study also 
showed that the SP-procedure, although very conservative for pairwise 
contrasts, offers intervals for higher order contrasts that are shorter than 
those yielded by all other procedures except the BF-procedure. The 
conservatism of the DL- and H1-procedures even for higher order 
contrasts would seem to rule out their use in most applications. The 
SP-procedure also cannot be recommended based only on its second best 
performance for higher order contrasts. 

For pairwise contrasts, the only contenders are the T3-, C- and 
GH-procedures. The GH-procedure yields shorter intervals than the 
T3-procedure because of the inequality IMI$! G,, > QF) /fi for k > 2. 
However, as alluded to earlier, the GH-procedure can sometimes be 
liberal; see the simulation results of Keselman and Kogan (1978), 
Tamhane (1979), and Dunnett (1980b). Thus narrower confidence inter- 
vals (higher power) associated with the GH-procedure are obtained at the 
expense of occasionally excessive Type I FWE. Dunnett's (1980b) results 
indicate that the GH-procedure is most liberal when the variances of the 
sample means, o f l n , ,  are approximately equal. 

While the GH-procedure is sometimes liberal, the C- and T3-proce- 
dures are found to be always conservative (and hence the T2-procedure, 
too). Between the T3- and C-procedures, the former gives better per- 
formance for pairwise contrasts when the v,'s are small, while the latter 
gives better performance when the v,'s are moderately large. 

The BF-procedure is very conservative for pairwise contrasts but for 
higher order contrasts it gives the best performance among all proce- 
dures. 

To summarize, for pairwise and lower order contrasts the T3-proce- 
dure is recommended when the sample sizes are small while the C- 
procedure is recommended when the sample sizes are large. It should be 
mentioned that when the sample sizes are not too small, these procedures 
do not lose much in terms of power if, unknown to the experimenter, the 
variances are in fact equal or nearly equal. The GH-procedure may be 
used in these same situations with the benefit of narrower confidence 
intervals if slightly excessive Type I FWE can be tolerated. For higher 
order contrasts we recommend the BF-procedure. 

s 11 

2 TWO-STAGE PROCEDURES 

2.1 Preliminaries 

As noted earlier, none of the single-stage MCPs for the contrasts problem 
are exact. It is, however, possible to construct exact MCPs for this 
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problem using a two-stage sampling scheme due to Stein (1945). An 
important feature of the resulting two-stage MCPs is that they yield fixed 
width (which can be prespecified by the experimenter) simultaneous 
confidence intervals for the contrasts of interest, as opposed to the 
random width intervals associated with single-stage MCPs. Such a use of 
Stein-type procedures was made earlier in Chapter 6, where the error 
variances were assumed to be unknown but equal. We need the following 
analog of Theorem 2.1 of Chapter 6, which is suitable for unequal 
variances. 

Theorem 2.1 (Stein 1945). Let the Yj’s ( i  = 1.2,  . . .) be independent 
and identically distributed N( p, a*) r.v.’s. Let Sz be an unbiased esti- 
mate of uz that is distributed as a2,y t /v  independently of Crl,  Y, and 
Y, , , ! ,  Y,,,*, . . . where n is some fixed positive integer. Let 

where 6 > 0 is an arbitrary constant and 1x1 denotes the smallest integer 
Bx. Then there exist real numbers I,, I,, . . . , I, satisfying 

such that 

has Student’s f-distribution with v d.f. 0 

The use of this result in providing a solution to the Behrens-Fisher 
problem was first made by Chapman (1950) and later by Ghosh (1975). 
In multiple comparison problems involving variance heterogeneity this 
result was used by Dudewicz and Dalal (1975); see also Healy (1956). 

Two-stage MCPs can be based on ordinary sample means or general- 
ized sample means (see (2.2b) below). In the former case Theorem 2.1 of 
Chapter 6 is used to claim the desired Student’s t-distribution result, 
while in the latter case Theorem 2.1 of the present chapter is used. The 
sampling scheme for any two-stage MCP based either on sample means or 
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on generalized sample means is basically the same. It is described here for 
convenience, and is not repeated for each individual MCP. 

Two-Stage Sampling Scbeme 

Stuge 1.  Take a random sample of size n, from the ith treatment and 
calculate the sample variance Sf based on v, = n,  - 1 d.f. 
(1 S i S k). Determine the total sample size Ni to be taken on 
the ith treatment using the formula 

N, = m a {  n;, [ J} (for a sample mean MCP) 

(2.la) 
or 

Ni = max(n, + 1, L 511 (for a generalized sample mean 

MCP) . (2.lb) 

Here 6 > O  is a predetermined constant that depends on the 
MCP to be employed, the joint confidence level 1 - a, the d.f. 
v,, and the desired fixed width associated with each interval. 

Stage 2. Take an additional random sample of size N, - n,  from the ith 
treatment and calculate for 1 S i I k ,  

4 

- ] = I  
c YII 

Y, = - (for a sample mean MCP) (2.2a) 
Nl 

or 

N, 

p, = c lilyij (for a generalized sample mean MCP) 
j =  I 

(2.2b) 

where the 1, ’s  satisfy 

Ni 

/ In ,  7 2 = 1 , li, = I , ,  = ‘ - = 
j - 1  
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Use the sample means Y, or the generalized sample means 9, in 
the appropriate MCP. 

Dudewicz, Ramberg, and Chen (1975) have recommended the follow- 
ing choice of the lii’s for generalized sample mean MCPs: 

where 

Nj - n, 
1; = _f_ { 1 + [ 1 - ; (1  - . 

N, (S; /z l2 
With this choice the calculation of the generalized sample mean Fi given 
by (2.2b) simplifies to 

f i  = l i n ; Y ; ‘ )  + (1 - l i n , ) Y y  (2.4) 

where for the ith treatment, Yf’) is the sample mean based on n, 
observations from the first stage and Yfz) is the sample mean based on 
N, - nj observations from the second stage (1 5 i d k). 

2.2 Ail Linear Combinations 

2.2.2 
Let DZLl.. . . Yk be as defined in Section 1.1. Then simultaneous confi- 
dence intervals for all linear combinations Z:=, ai6, with confidence level 
at least 1 - II are given by 

Procedures Based on Sample Means 

If the u,’s are normalized so that Cik,] at = 1, then to obtain a common 
fixed width = 2W for all intervals (2.5), we choose 6 = W/DE),,,. , , , . Y~ in 
(2. la) for the two-stage sampling scheme. An approximation to 
D(”) 2; Y , .  . - . , U& isgiven by (1.7); if nI = - m e =  nk = n (say), then u and b in 
that approximation simplify to  

k(n - l)(b - 2) ( k  + 2)n - 5 k  + 2 
3 

, b =  
b(n - 3) 0 =  
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That the intervals (2.5) have a joint confidence level at least 1 - a 
follows because 

(since s,/fl s 4 v i from (2.1)) 

k I i 2  ] (using (1.3)) 

= I - a .  

Hochberg (1975b) propoxd a Tukey-type two-stage procedure based 
on Lemma 2.2 of Chapter 3 that yields the following simultaneous 
confidence intervals for all linear combinations E:zl a,@.: 

where 6, = u , S , / f l  (1  d i 5 k) and M ( b )  and RL:a’ . u4 are as defined in 
Section 1.1 in the context of the H1-procedure. Comments on how to 
approximate RLtf’ 

2.2.2 
One can use the generalized sample means Y, in place of the sample 

means p, in (2.6) and obtain simultaneous confidence intervals for all 
linear combinations C:=, ale, with a joint confidence level exactly equal to 
1 - a. This procedure was proposed by Tamhane (1977). 

Bishop (1979) proposed a related MCP for the family of all linear 
combinations of the treatment effects a, where a, = 6, - ( I /&)  E:-, 6, 
(1 S i I k), which is equivalent to the family of all contrasts of the 0,’s. 

Let v:,’y 

y* are also provided in Section 1.1. 

Procedures Based on Generalized Sample _Means 

Uk denote the upper a point of the distribution of 

where the T,,’s are independent Student I r.v.’s (1 S i 5 k) and f =  
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(1 /&) .E:= T,.  Then exact (1 - a)-level simultaneous confidence intervals 
for all linear combinations Efs1 a,a, are given by 

- 
where ? = ( I / & )  C,“,, Fr. If the a,’s are normalized so that C:=, af = 1, 
then to obtain a common fixed width = 2W for ail intervals (2 .7 ) ,  we 
choose 6 = W/Vtf.) , , . ”~ in (2.lb) in the two-stage sampling scheme. 

That the intervals (2.7) have a joint confidence level exactly equal to 
1 - a follows because 

= I - a .  

Tables of (Vlf.’ , , yc )2  for selected values of wI = . . . = wk = Y (say) and 
a have been given by Bishop et al. (1978). For other cases the following 
approximation suggested by Hochberg (1975b) can be used: 

v(a) = ( a F ; y  
v , .  . . 4 

where a and b are obtained by matching the first two moments of 
vt,. . Yk with those of aF,.,. When v, = . . * = v, = v, this results in the 
following equations for ~1 and b: 

ab Y -- - ( k - 1 ) -  
6 - 2  l J - 2  

and 

b2a(a + 2 )  vZ(k  - 1) 
( b - 2 ) ( 6 - 4 )  ( Y - 2 ) k  v - 2  

- - 
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2.3 All Contrasts 

2.3.1 
Hochberg (1975b) proposed an MCP based on sample means that gwes 
the following simultaneous confidence intervals for all contrasts C;",l c 1 4  
with joint confidence level at least 1 - a: 

Procedures Based on Sample Means 

k k 

i =  2 1 C ~ ~ E [ X  i- 1 ~ ~ ~ ~ f f V ~ ~ , , , ~ ~ ~ ( ~  I.;] c:)"~] VCEC' (2.8) 

where V:,), , y1 is as defined in the preceding section. If the cl's are 
normalized so that C:*l C: = 2, then to obtain a common fixed width = 
2W for all intervals (2.8) we choose 6 = W/V'?Vlf,' , yt in (2.la) in the 
two-stage sampling scheme. 

The following probability calculation shows that the intervals (2.8) 
have a joint confidence level at least 1 - a: 

= Pr{ lc'TI S V c , ) ,  , , , ,,k(crc)"2 V c E C k }  (2.9) 

where T = (T", ,  . . . , Tvk)' and the T,'s are independent Student t r.v.'s. 
Now let A = I - ( l / k ) J  where I is the' identity matrix and J is the matrix 
of all l's, both matrices being of order k. Then for any contrast c E  Ck.  
Ac = c and A is idempotent. By the Cauchy-Schwartz inequality we have 

and therefore it is readily seen that (2.9) is bounded below by 1 - a. 

2.3.2 Procedures Based on Generalized Sample Means 
Tarnhane (1977) proposed an MCP based on generalized sample means 
that gives the following simultaneous confidence intervals for all contrasts 
C,",, c1B1 with confidence level exactly 1 - a: 

1: k k 

r = l  1 '1  
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where Rtf( , y l  is the upper a point of the range of k independent 
Student f r.v.’s T,,, T,, . . . , T,,k. If the c,’s are normalized so that 

lc,} = 2, then to obtain a common fixed width = 2W for all intervals 
in (2.10) we choose 5 = W/RF.) , yk in (2.lb) in the two-stage sampling 
scheme. As noted earlier in Section 1.1, Hochberg (1976a) has provided a 

That (2.10) provides exact (1  - a)-level simultaneous confidence inter- 
vals for all contrasts C:;-, clot can be shown using arguments similar to 
those given before. 

short table of RE,) uk for the special case u, = . * = ’k . 

2.4 Comparisons with 8 Control 

In this section we assume that treatment k is the control treatment with 
which the remaining k - 1 treatments are to be compared. Thus it is 
desired to construct simultaneous confidence intervals (one-sided or 
two-sided) for 0, - 0, (1 5 i S k - 1). In the literature only MCPs based 
on generalized sample means have been proposed for this problem 
although it is not difficult to develop their sample mean analogs. 

2.4.1 One-sided Comparisons 
Dudewicz and Ramberg (1972) and Dudewicz, Ramberg, and Chen 
(1975) proposed the following exact ( I  - a)-level simultaneous one-sided 
confidence intervals for all differences 0, - 0,: 

- I  

0, - 6, d Y, - Y k  f (HIP,’. . , ~,~ ( 1 5 i k - 1 )  (2.1 1 ) 

- where H : ) .  is the upper a point of the distribution of H,,,,  , - . ”‘ 
max,,,s,.., (TU, - Tpk)  where the 7,’s are independent Student t r.v.’s. If 
it is desired to have a common fixed “width” (or allowance) = W for all 
intervals (2.11), then we use 6 = W/H:,’, , , v4 in (2.lb) in t he  two-stage 
sampling scheme. 

, y1 is  the solution in H to the equation It is readily seen that H‘,P,’, 

x k - l  n F,,(X + H )  d F J x )  = 1 - Ly (2.12) 

where F , ( .  ) is the c.d.f. of Student’s /-distribution with u d.f. Dudewicz, 
Ramberg, and Chen (1975) have tabulated the solution to this equation 
for the special case Y, = . . = uk = Y (say) for selected values of k ,  a. 
and v. 

2.4.2 Two-sided Comparisons 
Dudewicz and Dalal (1983) proposed the following exact ( I - a)-level 
simultaneous two-sided confidence intervals for al l  differences 0, - t?, 
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(1 d i s k  - 1): 

- where HLfH', , y r  is the upper a point of the distribution of HI, .  . y L  - 
max,,,5k -, 1 T ,  - Tvkl. If it is desired to have a common fixed width = 2W 
for all intervals (2.13), then we use t =  W/Hi:: )  , " ~  in (2.lb) in the 
two-stage sampling scheme. 

, v *  is the solution in H' to  the equation It is readily seen that HLlf' 

z k - - 1  n {$(x + H ' )  - F , ( x  - H ' ) }  dFVk(x)= 1 - a. (2.14) 

Dudewicz and Dalal (1983) have tabulated the solution to this equation 
for the special case uI = * .  . = vk = v (say) for selected values of k ,  a, 
and v. 

Although tables of the critical constants H'"' and H""' are available 
only for the case where in the first stage an equal number of observations 
are taken on each treatment (including the control), it is in fact desirable 
to have unequal first stage sample sizes. This is because (i) the treatment 
variances uf are unequal, and (ii) even when the uf's are equal, since the 
control treatment plays a special role of being the benchmark for 
comparisons, more observations should be taken on it than the other 
treatments (see Section 1.2 of Chapter 6). Bechhofer and Turnbull (1971) 
have shown that if the u:'s are known, then an asymptotically optimal 
choice for a single-stage MCP for one-sided comparisons is given by 

In the case of a single-stage MCP, an alternative criterion based on 
minimizing the sum (or the maximum) of the variances of p, - pk leads to 
the choice 

One of these choices may be used for the first stage sample sizes in the 
two-stage sampling scheme if some prior estimates of the of's are 
available. For the given choice of the nj's one can then compute H'"' (for 
one-sided comparisons) from (2.13) or H""' (for two-sided comparisons) 
from (2.14). 
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Example 2.1. The data for the following example are taken from Bishop 
and Dudewicz (1978). These data pertain to the effects of different 
solvents on the ability of the fungicide methyl-2-benzimidazole carbamate 
to destroy the fungus Peniciliium expansum. The fungicide was diluted in 
four different solvents. In the first stage n = 15 samples of fungus were 
sprayed with each mixture and the percentages of fungus destroyed (the 
Y,,’s) were noted. The summary statistics for the first stage are as shown 
in Table 2.1. 

Let us suppose that it is desired to construct simultaneous confidence 
intervals for all pairwise contrasts at a joint confidence level of 95% with 
each interval having half-width = W = 2.0 (say). 

We first illustrate the application of Hochberg’s (1975b) sample means 
procedure (2.8) to this problem. From Bishop et al. (1978) we obtain 
(V;:.O5’ ,4)2 = 9.65. Thus f = W/fiV(,:,”) , ,4  = 2 P m  = 0.455. 
Using (2.la) we calculate the following total sample sizes: N ,  = 15, 
N ,  = 16, N3 = 29, and N4 = 15. Thus no additional observations are 
needed on solvents 1 and 4, but one and fourteen additional observations 
must be taken in the second stage on solvents 2 and 3, respectively. After 
having taken these additional observations, we calculate the cumulative 
sample means v, (1  5 i 2 k). Simultaneous 95% confidence intervals for 
all pairwise differences 6, - 3 are then given by f, - < 2 2 (1 S i < j 5 

We next illustrate the application of Tamhane’s (1977) generalized 
sample means procedure (2.10) to this simultaneous confidence estima- 
tion problem. From Table 1 in Hochberg (1976a) we obtain R;0,.O5) . ,4 2 

4.03 by linear interpolation in llv. Thus 6 = W/RIi.@5’ I 14 = 214.03 = 
0.4%. Using (2. lb) we calculate the following total sample sizes: N ,  = 16, 
N ,  = 16, N3 = 24, and N4 = 16. Thus only one additional observation must 
be taken on solvents 1 ,2 ,  and 4, and nine additional observations must be 
taken on solvent 3. After having taken these additional observations, we 
calculate the second stage sample means p:2) and then the generalized 
sample means Y, via (2.4) where the 1,’s given by (2.3) are as follows: 
I, = 0.0775, I, = 0.0704, I ,  = 0.0438, and I, = 0.0950. Simultane_ous confi- 
dence intervals for all pairwise differences are then given by Y, - Y, +- 2 
(1 5 i < j 5 4 ) .  

4). 

TABLE 2.1. Summary Statistics for the First Stage 

Solvent 1 2 3 4 

Yf” %.84 94.69 94.38 97.33 
sf 2.110 3.171 5.884 0.780 
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If instead of all pairwise comparisons, only comparisons with solvent 4 
(say) are of interest, then the procedures of Section 2.4 can be employed. 
If one-sided confidence intervals are of interest, then (2.11) can be used 

Chen (1975). If two-sided confidence intervals are of interest, then (2.13) 
can be used with H;$.a5), ,., = 3.67 from the tables given in Dudewicz and 

with H ' ( o . 0 5 )  . , . = 3.17 from the tables given in Dudewicz, Ramberg, and 

Dalal (1983). El 

3 STEP-DOWN PROCEDURES 

In this section we discuss possible modifications (to account for variance 
heterogeneity) of some classical step-down procedures for comparisons of 
means in a one-way layout. Some of these modifications were suggested 
by Dijkstra (1983). 

3.1 Modified Fisher's Least Significant Difference Procedure 

The preliminary F-test of the overall null hypothesis H,:  8, = 6, = * * . = 8, 
can be replaced by one of its robust (to departures from variance 
homogeneity) versions. Such robust F-tests for this generalized Behrens- 
Fisher problem of comparing k h 2 treatment means in the presence of 
variance heterogeneity have been proposed by James (1951), Welch 
(1947, 1951), and Brown and Forsythe (197Jb). For example, Welch 
(1947) proposed the modified F-statistic 

where 

k 

The overall null hypothesis is rejected if 

where N = Xf,, nI and F?!,, N - k  is the upper a point of the F-distribution 
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with k - 1 and N - k d.f. (See the simulation studies by Brown and 
Forsythe 1974b, and Dijkstra and Werter 1981 for a performance com- 
parison of different robust modifications of the F-test.) 

As in Fisher's least significant difference (LSD) procedure, if Ho is not 
rejected using (3.3) (say), then all pairwise null hypotheses HI,  : 0, = 8, are 
retained without further tests. If Ho is rejected, then each pairwise null 
hypothesis is tested at level a using the Welch test for the Behrens-Fisher 
problem discussed in Section 1.2.1. Because robust tests are used at both 
steps of testing, the operating characteristics of the modified LSD (under 
heterogeneous variances) would be expected to be similar to those of 
Fisher's LSD (under homogeneous variances). 

3.2 Modified Newman-Keuls Type Procedures 

Newman-Keuls (NK) type step-down procedures based on F-statistics 
(discussed in Section 1 of Chapter 4) can be readily modified by using 
robust F-tests such as (3.3) in place of the usual F-tests for subset 
homogeneity hypotheses. 

Next let us discuss a step-down procedure based on Studentized range 
statistics. Consider the statistic 

(3.4) 

for testing the homogeneity hypothesis on subset P { 1,2, . . . , k }  of 
treatments. This is a union-intersection (UI)  test statistic obtained by 
considering the homogeneity hypothesis on set P a s  the intersection of the 
corresponding pairwise null hypotheses. and using the usual standardized 
difference as the statistic for each pairwise test. The homogeneity hypo- 
thesis is rejected if (3.4) exceeds some critical constant that depends on 
the null distribution of (3.4) and the nominal significance level ap where p 
is the cardinality of set P. The statistics (3.4) can be used in the usual 
step-down testing scheme wherein if the homogeneity hypothesis on any 
set P (with cardinality p >2)  is not rejected, then all subsets of P are 
retained as homogeneous without further tests. If the homogeneity 
hypothesis is rejected, then all subsets of P of size p - 1 are tested. 

This step-down procedure is completely specified once we fix the 
nominal significance levels ap (2 S p S k) and the associated critical 
constants with which the statistics (3.4) are to be compared. The ap's may 
be chosen according to one of the specification schemes given in Section 
4.3.3 of Chapter 2. To determine the associated critical constants we need 
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to know the distribution of (3.4) under the homogeneity hypothesis H ,  
for set P. 

In the Welch (1938) method the exact distribution of the ( i ,  j)th 
standardized difference under 0, = 0, is approximated by that of t;,, r.v. 
where e, is the estimated d.f. given by (1.15). Thus (3.4) is approximately 
distributed as the maximum over i, j €  P of correlated r.v.’s rq , .  No 
attempt has been made to get a handle on the distribution of this 
maximum, which is a very difficult problem. Note, however, that by using 
the Bonferroni inequality we can construct a nominal a,-level UI test of 
H, that rejects H, if, for at least one i, j E P, 

where p’ = ( 2 ” ) .  
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Procedures for Mixed 
Two-way Layouts and Designs 
with Random Covariates 

In the present chapter we consider multiple comparison procedures 
(MCPs) for two distinct types of experimental designs. The first is an 
equireplicated two-way layout where the factor of main interest (the 
treatment factor) is fixed and the other factor (e.g., blocks) is random. 
This is the general balanced mixed model in the traditional sense. The 
commonly used one-way repeated measures design is a special case of this 
model. The model for the second experimental design considered in this 
chapter involves, aside from the fixed treatment factor, covariates that 
are random but observable. The coefficients in the linear model corres- 
ponding to these covariates are assumed to be fixed (and unknown). Thus 
all the effects are fixed but the observable covariates are random. 

The one-way repeated measures design and the equireplicated mixed 
two-way layout form the setting for Section 1. Various models for these 
designs are introduced in Section 1.1. The corresponding procedures are 
described in Sections 1.2 and 1.3. A comparison of the procedures is 
given in Section 1.4. In section 2 we discuss MCPs for analysis of 
covariance (ANCOVA) designs with random covariates. The general 
model for such designs is described in Section 2.1 by first introducing a 
simple model and then building upon it. Unconditional (with respect to 
the values of the covariates) MCPs are discussed in Section 2.2; these 
MCPs are exact. Conditional (on the observed values of the covariates) 
MCPs are discussed in Section 2.3; these MCPs are approximate. The two 
types of MCPs are compared in Section 2.4. 
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u#) PROCEDURES FOR MIXED TWO-WAY AND ANCOVA DESIGNS 

1 
AND MIXED TWO-WAY DESIGNS 

PROCEDURES FOR ONE-WAY REPEATED MEASURES 

1.1 Models 

We first discuss models for one-way repeated measures designs and then 
for mixed two-way designs. Both of these designs have a fixed treatment 
factor (say, A )  and another random factor (say, B). 

In a one-way repeated measures design, blocks consisting of a random 
sample of, say, n experimental units drawn from a large population 
constitute the random factor. Each unit is measured repeatedly at ,  say, k 
successive points in time or under k different conditions. The times or 
conditions of measurements are fixed in advance, and constitute the 
treatment factor. When the conditions of measurements correspond to 
actual treatments and when these treatments are randomly allocated 
within each block (possibly consisting of different but matched ex- 
perimental units), then the resulting design is referred to as a randomized 
block design (with random blocks). The two designs are analyzed similar- 
ly; for convenience, we have presented our discussion in the context of 
the former. 

Let Y, = (Y , , ,  Y,,, . . . , Yk,)' denote the vector of responses for the j th 
experimental unit (1 d j S n ) .  The following model is commonly as- 
sumed: 

Y, = M, + E, (1  S j S n )  (1.1) 

where all the M, = (M,,, M , ,  . . . , Mk,)' and E, = (E,,, E,,, . . . , Ek,)' are 
distributed independently of each other as k-variate normal vectors, the 
former with mean vector 8 = (O,, O,, . . . ,Sk ) '  (the vector of treatment 
effects) and variance-covariance matrix 2, and the latter with mean 
vector 0 and variance-covariance matrix a Z I .  Thus the Y,'s are indepen- 
dent and identically distributed (i.i.d.) N(8,  Z) random vectors where 

We now discuss mixed two-way designs. In a mixed two-way layout the 
random factor may not be a blocking factor. Also, for each factor-level 
combination (i, j ) ,  we may have r,, 2 1 observations Y,,! with mutually 
independent replication errors El,/ (1 S I S r,,). Restricting to the bal- 
anced case (r,, = r 1 l for all i, j ) ,  we write the following model for the 
observation vectors Y,/ = ( Y,,,,  YZl l ,  . . . , Yk,/)': 

z =Po + a21. 

Y,/ =MI + El/ (1  S j S  n ,  1 d IS  r )  (1.2) 

where Y,, , Y,,, . . . , Y,, have a joint kr-variate normal distribution with 
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the Y,,’s having a common mean vector 8 and the following covariance 
structure: 

When there is a single replication per cell ( r  = l ) ,  this model reduces to 
that for a one-way repeated measures design. 

Exact procedures for making pairwise comparisons among the 6,’s can 
be constructed if we impose special restrictions on the form of Z. (See 
Section 1.3.1 for an exact procedure for contrasts among the 0,’s under a 
general model.) The least restrictive of such models for a one-way 
repeated measures design was proposed by Huynh and Feldt ( 1970). This 
model assumes that P = { afi . }  is given by 

2A, + T~ if i = i’ 
A, + A,. i f i # i ’  

a,,# = 

for some 7 ’ > 0  and real A,’s.  Note that (1.4) is equivalent 
condition that all pairwise differences of the treatment sample 
Y, = C y = ,  YJn have the same variance given by 

- 2 2  
var(F,.- Y , , . ) = -  ( l S i # i ’ S k ) .  

n 

(1.4) 

to the 
means 

(1.5) 

Recall that this is the pairwise balance condition (2.9) of Chapter 3. We 
refer to (1.4) (or equivalently (1 S)) as the spherical model. 

A special case of the spherical model is obtained when Z,, is a 
“uniform” matrix having the following form: 

Po = ~r i [ ( l  - POP + P ~ J I  ( 1  * 6 )  

where I is a k X k identity matrix, J is a k X k matrix of all l’s, and 
- l / ( k  - 1) 5 po 5 1. This is equivalent to B also having the same form: 

Z = (g: + w2)[( 1 - p) I  + pJ] (1.7) 
where 

Po 4 
P = v .  

This model is obtained by putting T’ = ai(l - po)  + crz and A, = poc+i/2 
for all i in (1.4). For balanced mixed two-way layout designs (with r P l ) ,  
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(1.7) has been referred to as the symmetric model by Scheffe (1956) and 
Hocking (1973). 

1.2 Exact Procedures for Spherical and Symmetric Models 

1.2.1 
Designs with a Singk Replication per Cell 

If the spherical model holds, then an exact Tukey-type procedure can be 
based on Theorem 1.1 below. The proof of this theorem follows along the 
lines of Huynh and Feldt (1970). These authors showed that (1.4) is a 
necessary and sufficient condition for the mixed two-way analysis of 
variance (ANOVA) F-test to  be exact (see also Rouanet and Lepine 
1970). In Theorem 1.1, 

One-way Repeated Measures Designs or Mixed Two-way 

k n  c c (Y,, - Y,. - Y, + Y )2 
r = l  , = I  

(k - l)(n - 1) 
MS,, = 

denotes the mean square for interaction between A and B; here the dot 
notation is the usual one-a dot replacing a subscript indicates averaging 
over that subscript. 

Theorem 1.1. The pivotal random variable (r.v.) 

I Pi. - Y,.. - (e; - ej3)l 
max 

IS;<; Lk q m  
has the Studentized range distribution with parameter k and d.f. (k - 
1) x ( n  - 1) if and only if (1.4) or equivalently (1.5) holds. 

Proof. From (1.5) it follows, using the result of Hochberg ( 1 9 7 4 ~ ) ~  that 

If,, - F,.. - (ej - e,.)I 
G5-l max 

l S < i ' S k  

is distributed as the range of k i.i.d N ( 0 ,  1) r.v.'s. It only remains to show 
that 

2 2  
7 X ( k - l ) ( n - I )  

M S A B  - (k - l ) (n  - 1) 

independent of the pi.%. This follows from the results of Box (1954), who 
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showed that SS,, = (k - l)(n - 1)MSAB is distributed independently of 
the Pi.*s as the weighted sum of k - 1 independent x:-l r.v.’s, the 
weights being the positive eigenvalues of the matrix Z(I - J/k). This 
weighted sum is distributed as ~ ~ x ~ ~ - ~ ~ ( ~ - ~ )  if and only if all the eigen- 
values are equal to T‘, which is true if and only if I; has the form (1.4). 

0 

From this theorem and (2.4) of Chapter 3 it follows that exact 
(1 - a)-level simultaneous confidence intervals for all contrasts El”, ciOi 
are given by 

where Qt:k-,)(n-l) denotes the upper a point of the Studentized range 
distribution with parameter k and d.f. (k - l)(n - 1 ) .  

Bhargava and Srivastava (1973) independently proved Theorem 1. I 
for the symmetric model using a different technique. We explain this 
technique since it extends readily to balanced mixed two-way layouts with 
multiple replications per cell. 

The symmetric model in this case is equivalent to  the intradass 
correlation model: 

d corr(Y,,, Y r . , ) = p l  =- ( l S i # i ‘ S k , l S j S n )  

Bhargava and Srivastava transformed the Yr,’s to independent 
r.v.’s Z,, with common variance cr’ by using the transformation 

cro + u 

z,, = yrI - 6P./ (1 4 i s  k, 1 S ~ S  n) 

normal 

(1.11) 

k where Y., = E,,, Y J k  and 6 = 1 + (1 - p l ) l ’ * { 1  + (k - l )p1}-”*.  Note 
that the Zi,’s are not observable because 6 involves the unknown parame- 
ter pl. They showed that for any contrast c E Ck the following relations 
hold: 

k k 

2 c r ~ ; , = C  c,zi, ( l s j l n ) ,  
r = l  I =  1 
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and 
k n  

ss,, = (k - l)(n - l)MS,, = c 2 (ZI ,  - 2, - 2 )  + z. )2 . 
r = l  f " 1  

Therefore SS,, is distributed as a 2 ~ : k -  - independent of any contrast 
in the fl 's (which can be expressed as the same contrast in the Z, . ' s ) .  
Their result then follows on realizing that (1.9) can be expressed in terms 
of the Z,,'s as 

(1.13) 

and it has the distribution of a Q k , [ k - l ) ( n - l )  r.V. 
We have presented here the exact Tukey-type procedure for the 

spherical and symmetric models. The corresponding exact Scheffe-type 
procedure can be constructed in an analogous manner. Stepwise proce- 
dures can also be constructed similarly. 

In closing we mention that Fenech (1979) considered Kempthorne's 
(1952, p. 137) randomization model for the randomized block design. 
This model does not assume that the errors are independent, normal, and 
have a constant variance. He showed (under some simple conditions) that 
the true Type I FWE of (1.10) approaches the nominal level (Y as the 
number of blocks increases to infinity. 

1.2.2 Balanced Mixed Two- Way Designs with Multiple Replications 
per Cell 
In this case we only consider the symmetric model. For this model, using 
(1.3) and (1.7) we obtain the following correlation structure among the 
yi,;s: 

I 0  if j # i' . 

By using two transformations similar to (1.11) in a recursive fashion, 
Hochberg and Tamhane (1983) showed that the r.v. 

(1.15) 
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has the Studentized range distribution with parameter k and d.f. (k - 1) 
x (n - 1) where 

Thus the lOO(1 - a)% simultaneous Tukey-type intervals for all contrasts 
E;=, ciOi are given by 

Note that (1.10) is a special case of (1.16) for r = 1. Also note that 

cannot be used in (1.16) in place of MS,.. 

1.3 Procedures for General Models 

1.3.1 An Exact Procedure 
This exact procedure was proposed by Scheffi (1959, pp. 270-274) and is 
based on Hotelling's T2-test. For this procedure to be valid it is only 
necessary that the vectors (E l l , .  . . , Ek,) be i.i.d. multivariate normal; 
here Ell = E;=, ElI l f r ,  

To apply the procedure, first compute the differences 

D ~ ~ = Y , ,  -Fk, ( 1 s i s k - - 1 , 1 S j s n ) ,  

and the cross products 

R 

Al , ,  = C, ( D j j  - Di.)(Di8,  - Di..) (1 5 i, i ' S  k - 1). (1.17) 
, = I  

Let A = { A , l , }  be the (k - 1) x (k - 1) matrix of cross products and let 
6 = (DI . ,  DZ., . . . , Dk-, . ) '  be the vector of mean differences. Using the 
fact that the vectors Di = (D , , ,  D, ,  . . . , Dk-ls,)',  j = 1,2,  . . . , n ,  are 
independent and multivariate normal, each with mean vector 6 = 
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(aI, a,, . . . , = (0, - d,, 4 - d,, . . , , - 8,)' and variance- 
covariance matrix X D ,  which is estimated independently by a Wishart 
matrix ( l / (n  - l)]A, it follows that 

T2 = n(n - 1)(D - 6),A-'(D - 6) (1.18) 

is distributed as a ((k - l)(n - l ) / (n  - k + l ) } F k - l , n - k + I  r.v. (where it is 
assumed that n 2 k). Thus the T*-statistic can be used to test the overall 
null hypothesis H,,: 0, = 8, = - * - = 0,, which is equivalent to the hypo- 
thesis that S is a null vector. Scheffk (1959, p. 273) shows how his 
projection method can also handle random projections (necessitated by 
the fact that A is a random matrix) to obtain simultaneous confidence 
intervals for all linear combinations of the 6,'s. But any linear cornbina- 
tion Cfir,' fI6, of the 9's equals the contrast C:=] clOI among the 0,'s where 
c, = 1, (15 is k - l), and c, = --Z;i: I,, and similarly E::; 1,6, = 
,$ c, ?, . We thus obtain the following 100( 1 - a)% simultaneous 
confidence intervals for all contrasts C:=, c,0,: 

v c E ck (1.19) 

where d = (cl, c2, . . . , c k - l ) f .  
For painvise and some additional low order contrasts, (1.16) yields 

shorter intervals than (1.19). This, however, must be weighed against the 
fact that (1.19) is more generally valid than (1.16). 

1.3.2 Approximate Procedures 
An approximate procedure for pairwise comparisons can be based on the 
pivotal r.v.'s 

{ Y, - PI.. - (e, - e l r ) } f i  
$s,, + st,,< - 2s,,* 

TIIS  = ( l S i < i f S k )  (1.20) 

where 

n c CY,,. - Fi. )(Y,,,. - P I , . . )  

Si,. = ''I (1 S i, i f  S k) . (1.21) 
(n - 1) 

To obtain 100( 1 - a)% simultaneous confidence intervals for all pairwise 
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differences (Ii - 0,. , we must determine the critical constant 6 such that 

inf Pr{ I Ti,  I I s 8 ( 1 s i < i‘ s k)) = 1 - a (1.22) 

where the infimum is taken over the set of all variance-covariance 
matrices Z, of the independent vectors (Y,,. , fz,., . . . , ykl )’. 

Based on an extensive simulation study, Alberton and Hochberg 
(1984) conjectured that the infimum in (1.22) is attained for Z, = I. This 
is an extension of the Tukey conjecture discussed in Chapter 3. They also 
found for k = 3 that for a large range of values of a and n ,  the (-value 
satisfying (1.22) is well approximated by lh41$!n-, , the upper a point of 
the Studentized maximum modulus distribution with parameter k* = 
k(k - 1)/2 and d.f. n - 1 .  Based on these results Alberton and Hochberg 
proposed the following approximate loo( 1 - a)% simultaneous confi- 
dence intervals for the pairwise differences 4. - 4,: 

(1.23) 

A slightly conservative approximation is obtained by employing the 
Bonferroni method that amounts to using Tip_':*' (where a* = a/k*) in 
place of I M I F ! n - , .  These intervals can be extended in the usual manner 
to the family of all contrasts using (2.3) of Chapter 3. Another multiple 
comparison technique appropriate under Scheffe’s general model was 
given by Mudholkar and Subbaiah (1976). 

We now give a comprehensive example to illustrate the various 
procedures. 

Example 1.1. Table 1 . 1  shows coded data given by Scheffe (1959, p. 
289) on the measurements of flow rates of a fuel through three types of 
nozzles (factor A) by five different operators (factor B ) ,  each of whom 
made three determinations on each nozzle. 

We regard the nozzle as a fixed factor and the operator as a random 
factor. We thus have a balanced mixed two-way layout. Suppose that it is 
of interest to make three pairwise comparisons among the types of 
nozzles with Type I familywise error rate (FWE) a = 0.10. 

The cell means and the analysis of variance for the data in Table 1 . 1  
are given in Tables 1.2 and 1.3, respectively. 

Assuming the symmetric model (1.7) we can apply (1.16) to  obtain the 
following 90% simultaneous confidence intervals for three pairwise differ- 
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TABLE 1.2. Cell Means Y,,. for Coded Data in Table 1.1 

Operator (Factor B )  

Nozzle (Factor A) 1 2 3 4 5 Y, 
1 -1.00 14.33 6.33 14.00 22.67 11.27 
2 10.67 6.33 14.67 -2.67 8.00 7.40 
3 3.00 -16.33 -5.33 -2.00 10.00 -2.13 

p, 4.22 1.44 5.22 3.11 13.56 Y, =5.51 
~ 

TABLE 1.3. Analysis of Variance for Coded Data in Table 1.1 

Source Sum of Sauares (SS) d.f.  Mean Square ( M S )  

Nozzle main effects SS, = 1428.45 2 MS, = 714.23 

Nozzle x operator SS,, = 1819.51 8 MS,, = 227.44 

Error SS,,,,, = 3037.96 30 MS,,,,, = 101.27 

Total SStota, = 7085.80 44 

Operator main effects ss, = 799.88 4 M S ,  = 399.94 

interaction 

e, - e, : 11.27 - 7.40 * 13.12 = [-9.25,16.99] 

6, - 6, : 11.27 + 2.13 t 13.12 = [0.28,26.52] 

4 - 6, : 7.40 + 2.13 rt 13.12 = [ - 3.59,22.65] , 

Thus only the nozzle types 1 and 3 are significantly different at a = 0.10 
using the intervals (1.16). We may also note that the F-ratio for the 
nozzle main effects is MS,IMS,,  = 3.14 with 2 and 8 d.f., which is just 
significant at a = 0.10 (F$lof = 3.11). Both of these procedures are, of 
course, valid only if the symmetric model (1.7) holds; otherwise they 
must be regarded as approximate. 

We next consider the procedures of Section 1.3 that do not require the 
assumption of the symmetric model for their application. We first con- 
sider the simultaneous confidence intervals (1.19) based on HoteHing’s 
T2-Test. The values of the D,j = pi,. - pk,. computed from Table 1.2 are 
shown in Table 1.4. Matrix A defined in (1.17) is then given by 

1 610.72 273.39 
273.39 522.65 

A = [  
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TABLE 1.4. Values of the Di,'s Computed From Table 1.2 

i 
1 1 2 3 4 5 

1 -4.00 30.66 11.66 16.00 12.67 D,  =13.40 

2 7.67 22.66 20.00 -0.67 -2.00 D2 = 9.53 

The d-vectors corresponding to the differences - e,, 8, - 6,, and 4 - 0, 
are (1, --I)' ,  (1, O)' ,  and (0, l ) '  and the corresponding values of (d'Ad) 
are 586.59, 610.72, and 522.65, respectively. The factor {(k - l ) /n(n - 
k + l)}Fr-),,n-k+l for a = 0.10, k = 3, n = 5 equals (2115) X 5.46 = 0.728. 
We thus obtain the following 90% simultaneous confidence intervals for 
all painvise differences: 

el - e, : 3.87 2 (0.728 x 586.59)"' = [ - 16.79,24.53] 

e, - el, : 13.40 -+ (0.728 x 610.72) = [ -7.69,34.49] 

e, -e,:9.53? ( 0 . 7 2 8 ~ ~ 2 2 . 6 ~ ) " ~ = ( - 9 . 9 8 , 2 9 . 0 4 ~ .  

Note that these intervals are much wider than the ones obtained using the 
procedure (1.16) and none of the pairwise differences can be declared 
significant . 

Finally, we apply the Alberton-Hochberg approximate procedure 
(1.23). For this purpose note that 

A,,  610.72 
4 4 

S,, + S,, - 2S,, = - = - = 152.68 

Also lM l~ ; 'o )  = 2.98. From (1.23) we compute the 90% simultaneous 
confidence intervals for all pairwise differences as follows: 

- [-12.27,20.01] 
'146.65 el - e, :3.87 5 2.98~'- - 

5 

152.68 el - e, : 1 3 . 4  t 2 . 9 8 J T  = [ -3.07,29.87] 
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These intervals, although shorter than the ones obtained using the 
Scheff6-type procedure, are still too wide to enable us to claim a 

0 significant difference for any pair. 

1.4 A Comparison of Procedures 

For one-way repeated measures designs it is well known that the F-test of 
the overall null hypothesis Ho : 0, = & = * * - = 6, becomes increasingly 
liberal (i.e., the Type I error probability exceeds the nominal level) as I; 
departs from the sphericity assumption (1.4); see Rogan, Keselman, and 
Mendoza (1979) for a summary of simulation work on this topic. Maxwell 
(1980) and Mitzel and Games (1981) studied by simulation techniques the 
performance of the Tukey-type procedure (1.10) for pairwise com- 
parisons when the sphericity assumption is violated. They found that it 
also behaves in a liberal fashion (see also Boik 1981). These authors 
recommend using (1.19) or (1.23) (actually the Bonferroni version of 
(1.23), which is slightly more conservative). For pairwise comparisons, of 
course, (1.19) gives overly conservative results and (1.23) is preferred. 
For general contrasts one may wish to use (1.19). 

For one-way repeated measures designs, Stoline (1984) made a simula- 
tion study of a composite procedure for pairwise comparisons that 
consists of performing a preliminary test of sphericity of the I; matrix (see 
Mauchly 1940 and Huynh and Feldt 1970). Depending on the outcome of 
this test, one uses either (1.10) (which is appropriate when the sphericity 
assumption holds) or the Bonferroni version of (1.23) (which is appro- 
priate when the sphericity assumption does not hold). However. the 
preliminary test lacks adequate power for detecting departures from 
sphericity unless it is used at nominal significance levels as high as 0.50. 
Therefore Stoline concluded that the unconditional (without the prelim- 
inary test) use of (1.23) is generally the preferred choice for pairwise 
comparisons. The Tukey-type intervals (1.10) should be used uncondi- 
tionally only when the sphericity assumption is known to be satisfied 
(which would rarely be the case in practice) or they should be used 
conditionally in conjunction with a preliminary test of sphericity at 
a =0.50. 

2 
WITH RANDOM COVARIATES 

PROCEDURES FOR ANALYSIS OF COVARIANCE DESIGNS 

2.1 Models 

The simplest ANCOVA design consists of a one-way layout with a single 
covariate. Thigpen and Paulson (1974) considered the following model 
for this design: Let X,, and Y,, denote the observations on the covariate 
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and the response variable, respectively, for the jth individual in the ith 
treatment group ( 1 5  iS  k, 1 Z j S n l ) .  It is assumed that the pair 
(Xi , ,  Y,.)‘ has a bivariate normal distribution with mean vector (&, Oi) l  

and variance-covariance matrix 

where all the parameters are unknown and all the pairs (X,,, Y,,)’ are 
independent (1 S i I k ,  1 5 j 5 n l ) .  Thigpen and Paulson further assumed 
that = S2 = . . . = Sk = 5 (say). Conditionally on XI, we can write 

Y,, = el + p(x,, - 6 )  + E,, (1 s is k ,  is; s n , )  (2- 1) 

where p = p v y / u x  and the E,,’s are i.i.d. N ( 0 ,  a’) with u2 = ui(  1 - p2). 
Note that the slope coefficient p is fixed. 

Bryant and Paulson (1976) considered a more general model allowing 
designs other than the one-way layout and involving more than one 
random covariate. However, they still retained the assumption that all 
random covariate vectors are identically distributed. More specifically, 
their model assumes that on the ith experimental unit (1  5 i S N) a 
vector of q 2 1 random concomitant variables ( X f , ,  X,, , . . . , X,q)‘  = XI 
and a single response variable Y, are measured where the vectors (X:, Y,)’ 
are i.i.d. ( q  + 1)-variate normal with mean vector (g, a)  and variance- 
covariance matrix 

all the parameters being unknown. Here 6 is q X 1, the q ’ s  are scalars, 
f,, is q X q ,  vxy is q x 1, and u; > 0 is a scalar. The v,’s are related by 
a linear model 

9 = (q, 1 . . * * = AC’ 

where p :  r X 1 is a vector of unknown parameters, and A: N X r is a 
known design matrix whose ith row is a: (1 5 i S N). Thus conditionally 
on X i  we can write 

Yj = aip + (XI - f )’@ + E, ( 1 I i d N) (2.2) 

where 

B = z , :Wx,  
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2 8  and the Ei’s are i.i.d. N ( 0 ,  a2) with a’ = a,, - a , , Z ~ ~ u , , .  It is as- 
sumed that N >  q + r and that the rows a; of the design matrix A satisfy 
certain balance conditions (stated as (2.16), (2.17), and (2.18) in the 
sequel). The parameters of interest are 

where the bi’s are r x 1 vectors of known constants. The contrasts among 
the ei’s are assumed to be estimable. It can be seen that (2.1) is a special 
case of (2.2). 

Bryant and Bruvold (1980) further generalized the model (2.2) by 
relaxing the assumption of the same mean 6 for all covariate vectors. 
They assumed that there are m covariate groups, and if the i th  observa- 
tion comes from the j th covariate group, then XI is q-variat;: normal with 
mean Si and variance-covariance matrix X x x  (common for all groups), 
(1 S i I N ,  1 d j d m). Thus model (2.2) generalizes to 

Yi = a,‘p + (X, - SS,)’P + E, (1 S i S N )  (2.4) 

where E = [ t,, &, . . . , &,,,I is a q x m matrix and 6, = (af,,  S r Z ,  . . . , aim)‘ 
where 6 ,  = 1 or 0 depending on whether the ith observation belongs to 
the j th covariate group or  not. 

Let Y = ( Y , ,  Y , ,  . . . , Y.v)‘, X = (X,, X,, . . . , XN)’, A = (S,, 4, . . . , 
S,)’, E =  ( E l ,  E2 ,  . . . , EN)‘, and 

Then (2.4) can be written in matrix notation as 

Example 2.2 discusses a design for which model (2.6) is appropriate. 

2.2 Exact Unconditional Procedures 

2.2.1 Pairwise Comparisons 
In the present section we consider a simultaneous confidence procedure 
that exactly controls the Type I FWE unconditionally with respect to the 
values of the covariates for the family of all pairwise comparisons. This 
procedure can thus be considered a generalization of the classical T- 
procedure. In the following section we consider a Tukey-Kramer (TK) 
type procedure used conditionally on the observed values of the 
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covariates. However, there is no mathematical proof that this latter 
procedure controls the FWE in all cases. 

To give the formulas for the least squares (LS) estimates of the 
parameters of interest, we first define some notation. Let $ = 

(&, i2,. . . , Em) where 

here #, 7 C:, a,, is the number of experimental units in covariate group 
j .  Thus 6, is simply the vector of sample means of the covariates for 
observations in group j .  Further let 

Z = X - A G ,  (2.8) 

H = I - A(A’A)-A’ , (2.9) 

S , y x  = Z’HZ , S x y  = Z,’HY , S,, = Y‘HY , (2.10) 

and 

Y = N -  q -rank (A) ; (2.11) 

here (A’A)- denotes a generalized inverse of AA.  Then the LS estimates 
of p and p are given by 

jj = s-’s x x  X Y  9 
(2.12) 

fi  = (A’A)-A’(Y - Zb), (2.13) 

and the corresponding unbiased estimate of v 2  is given by 

(2.14) 2 1  s =-{S Y Y Y  - s ; Y s ; ; s x Y )  . 

Using (2.13) the LS estimate of 0, can be expressed as 

6; = bifi = b:(AA)-A’(Y - Zb) (1  S i S k )  . (2.15) 

The balance conditions that are necessary for the application of the 

(i)  Let B(A’A)-B’ = V =  { u i i . }  where B = (b,, b2, . . . , bk)‘. The first 
exact unconditional procedure can now be given as follows: 
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balance condition is then (cf. (2.9) of Chapter 3) 

ui,  + u, . , .  - 2uii, = 2u, (1 5 i # i' S k) . (2.16) 

Bryant and Bruvold (1980) postulate the condition that the u,,'s are all 
equal and the u,,.'s for i # if are all equal, which is less genera1 than 
(2.16). For model (2.1). this condition reduces to n I  = * .  * = n k  = n (say) 
and we get uo = 1 tn. 

(ii) The second condition is 

bj(A'A)-A'A = d' (1  5 i 5 k) (2.17) 

where d = ( d , ,  d,, . . . , dm)' is a vector of constants. 

constants r = { yi,}  such that 
(iii) The third condition is that there exists an r X rn matrix of 

A = A T .  (2.18) 

In other words, the columns of A are in the column space of A. 

unconditional (with respect to the XI%) distribution of 
Under these three conditions, Bryant and Bruvold (1980) derived the 

(2.19) 

They showed that this distribution depends only on q ,  k ,  and Y (and does 
not depend on m and any unknown nuisance parameters). This distribu- 
tion is the same as that derived by Bryant and Paulson (1976) under the 
assumption of a common mean vector for all covariate vectors, and it can 
be obtained as a special case of Theorem 2.1; see the discussion following 
that theorem. For q = 0 this distribution is identical to the Studentized 
range distribution. If Q::," denotes the upper a point of the distribution 
of Qq,k.,  , then loo( 1 - a)% unconditional simultaneous confidence inter- 
vals for all pairwise differences among the 6,'s are given by 

These intervals can be extended to the family of all contrasts by applying 
(2.4) of Chapter 3. Bryant and Paulson (1976) have given tables of QE& 
for selected values of a, k ,  q ,  and Y. A simple approximation to QE!," in 
terms of QtL = Qtj." is given by (2.26) in the sequel. 

One can also develop unconditional step-down test procedures based 
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on the ranges of the 6,’s. Bryant and Bruvold (1980) have given a 
Duncan-type step-down procedure with associated tables of Qb4.d.” for the 
nominal significance levels ap = 1 - (1  - a)’-’ (2 d p 5 k). We omit the 
details regarding the development of such procedures since they are quite 
similar to those described in Chapter 4. 

2.2.2 General Contrasts 
Bryant and Fox (1985) showed that the extended T-procedure just 
discussed is a special case of the following general result: Any simulta- 
neous confidence procedure for a given family of contrasts among the 
treatment means in an ANOVA design can be extended to the same 
family of contrasts in an ANCOVA design with random covariates. This 
extension is based on a general distributional result that we now discuss. 

Consider model (2.6) and let 8 = (el, O,, . . . , 0,)‘ be the parameter 
vector of interest where the 0,’s are given by (2.3). The LS estimate 6 of 8 
is given by (2.15) and the corresponding unbiased estimate Sz of cz is 
given by (2.14). Under the assumption that j.3 = O  (i.e., there are no 
covariates in the model) denote the LS estimate of 8 by Go (obtained by 
putting @ = 0 in (2.15)) and the corresponding unbiased estimate of cr2 by 
St ,  which has vo = N - rank (A) d.f.; here Si = S,,/v,. We then have the 
following theorem. 

Theorem 2.1 
valued function satisfying the following conditions: 

(Bryant and Fox 1985). Let T(x),  x E 8 ‘  be any real 

(i) 
(ii) 

T(ux)  = u’T(x) for any u 2 0 and for some real constant y. 

T(x + r l )  = T(x) for any real r (where 1 is a vector of all 1’s). 

Let F,(r; k ,  v )  denote the distribution function of T((6 - @)is )  under 
model (2.6) and let FJt;  k ,  v) denote the distribution function of 
T((e0 - 8 )  IS,)) under the additional hypothesis that fl = 0. Then 

(2.21) 

where g(u)  is the beta density with parameters (v + 1)12 and q i 2 ,  that is, 

The choice of the function T ( - )  depends on the particular family of 
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contrasts of interest. Assuming the balance conditions (2.16)-(2.18). the 
choice 

(2.22) 

corresponds to the family of pairwise comparisons. For the family of 
comparisons with a control, the balance condition (2.16) modifies to the 
following two conditions: 

L ) , , + u ~ ~ - ~ u , ~ = ~ u ~  ( 1 S i S k - l ) ,  (2.23) 

and 

u l l ,  - utk - u ~ , ~  + ukk = 2pu, (1 S i # i f  S k - 1)  (2.24) 

where - l / ( k  - 1) I p S 1. In this case, for two-sided comparisons we 
have 

(2.25) 

For model (2.1), conditions (2.23) and (2.24) reduce to n r  = = 
n L w I  = n (say), and we get 2u, = 1 l n  + 1 / n ,  and p = n / ( n  + n k ) .  

Both (2.22) and (2.25) satisfy conditions (i) and (ii) of Theorem 2.1 
for - y = 1. In the case of (2.22), the distribution F q ( .  ; k, u)  is that of the 
Q 4 . k . v  r.v. defined in (2.19) and it is obtained from (2.21) by substituting 
for F,( * ; k,  u )  the distribution function of the Qk," r.v. In the case of 
(2.25), the distribution Fq( ; k ,  v )  is obtained from (2.21) by substituting 
for Fo( 7 ; k, u )  the distribution function of max,,,,,_,lT,I where the T,'s 
have a ( k  - 1)-variate equicorrelated 1-distribution with u d.f. and com- 
mon correlation p. Thus this theorem provides a general method for 
obtaining the distribution function of the pivotal r.v. associated with any 
unconditional procedure for the ANCOVA design with random covariates 
(satisfying appropriate balance conditions) given the distribution function 
of the corresponding pivotal r.v. for the ANOVA design. 

Although relation (2.21) can be utilized to evaluate the exact critical 
points associated with any unconditional procedure, in practice it would 
be desirablc to have simple approximations to these critical points in 
terms of the critical points of the corresponding procedure for the 
ANOVA design. Let DEi,y denote the upper Q point of the r.v. Dq,k,v,  
which has the distribution Fq( * ; k, u).  Bryant and Fox (1985) proposed 
the approximation 

D ( Q )  q . k . u  vi iD~L.*  (2.26) 
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where the constants (b and 77 are chosen so as to match the first two 
moments of the r.v.’s D:.k.v and qD:,,,, . For y = 1, these constants are 
given by 

(2.27) 
4I, - 2r, (6 - 2 ) 4 v  + 9 - 1) 

4J= 11 - 12 ’ 11= 4 ( u - 2 ) ( v - l )  

where 

I ,  = (Y - I)(v - 2)(v + 9 - 3 ) ,  I, = (v -3)(v - 4 ) ( v  + q - 1). 
( 2 . W  

Bryant and Fox made an extensive numerical investigation of this 
approximation in selected cases and found it to be accurate to within 
20.02 whenever Y 2 10 and q S 3. Thus they concluded that it is not 
necessary to compile separate tables of D t i . w  if the tables of DgL.” 
applicable to the ANOVA design are available. The following example 
provides an illustration of this approximation. 

Example 2.2. Let us approximate ~ ~ 0 6 ~ ~ ~  using (2.26). This critical point 
is needed in Example 2.3. 

First calculate, using (2.28), t ,  = (19 - 1)(19 - 2)(19 + 1 - 3) = 5202 
and r2 = (19 - 3)(19 - 4)(19 + 1 - 1) = 4560. Next calculate, using (2.27), 
4 = 18.206 and T) = 1.050. Thus the desired approximation is Q\06!y; 
~ Q $ ~ ~ o , .  Interpolating linearly in 1 l u  between Q ~ , ~ ’  = 3.98 and 
QC,$’ = 3.97 we get Qr,Fim 3.978. Substituting this value in the above 

0 (0 10) 4 076 
we get Q 1.6.19 - * * 

2.3 An Approximate Conditional Procedure 

In Chapter 3 we discussed the TK-procedure for painvise comparisons in 
general fixed-effects linear models. In fact, one of the early applications 
of the TK-procedure was to the one-way layout design with a single fixed 
covariate. Hochberg and Varon-Salomon (1984) proposed to use the 
same procedure (generalized here to handle any number of covariates) in 
the ANCOVA design conditionally on the observed values of the random 
covariates. This procedure is based on the following distributional result. 

Theorem 2.2. For model (2.6), conditionally on X = (X,,  X,, . . . , XN)’ 
the estimator 6 given by (2.13) is multivariate normal with mean vector 

~ ( f i l x )  = (A‘A)-A‘A~ + (A’A)-A’A(~ - ~ ) p  (2.29) 
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and variance-covariance matrix 

COV( @ Ix ) = u2 { (AA) - + (A‘A) - ~ 2 ( & ~ 2 ) -  I ~ A ( A ’ A )  - } 

=C’R (say) (2.30) 

where 2 and H are defined in (2.8) and (2.9), respectively. Furthermore, 
uS2/u2 (where u is given by (2.11) and S2 is given by (2.14)) is distributed 
as a x2 r.v. with u d.f. independently of $. 

Proof. Conditionally on X, 2 is a matrix of constants and Y is a vector 
of independent normal r.v.’s; each Yi has variance d. Thus from the 
standard results about fixed-effects linear models (see, e.g., Scheffi 1959, 
Chapter 2) we can show that 6 given by (2.12) is normal with E( BlX) = 
f l  and cov(sIX) = r2(2’&)-*. Also uS2/a2  is distributed as xt. Further- 
more (A’A)-AY, s, and Sz are mutually independent. Therefore fi  = 

(AA)-A(Y - @) is distributed independently of Sz as a multivariate 
normal vector with E(fiIX) and cov(fiIX) given by (2.29) and (2.30), 

Using (2.15) and (2.17) together with Theorem 2.2, we see that the 
respectively. 0 

8’s are jointly normally distributed with 

’ E(6IX) = b:(AA)-AAp + b;(AA)-AA(e - S)@ 
= b:(AA)-AAp + d’A(2 - S)P (1 S i d  k )  , (2.31) 

COV(~/X) = a 2 ~ ~ ~ t  = a2w (say) (2.32) 
and 

where B = (b l ,  b,, . . . , bk)’ and R is defined in (2.30). From (2.31) we 
note that contrasts among the ii’s are conditionally unbiased. This follows 
because if e E Ck then 

E(e‘61X) = c’B(AA)-A’Ap + (d’A(2 - E)P)c‘I 

= c‘B(A’A)-AAp 

= c’e 

where the last step follows from the estimability assumption made 
following (2.3). Thus conditionally on X, each 

, . a  

e, - el, - (e, - el I 
s ~ w , ,  + w, .’. - 2 w,, , 

TI, .  = (1  4 i f  i f  S k )  
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has Student's t-distribution with Y d.f. Here the w,,.'s are elements of the 
matrix W defined in (2.32). The extended Tukey conjecture (see Chapter 
3, Section 3.2.1) states that max,s,,,.,k lTl,.I is stochastically smaller than 
a Q k . " I f i  r.v. If this conjecture is 
(1 - a)% simultaneous (conditional) confidence 

correct, then 100 
intervals for pairwise 

differences 6, - 6;, are given by 

w;; + W i . l .  - 2wii .  
6, - e;, E [ i, - il, 2 n : q l s J - 7 - ]  (1 5 i < i '  s k) . 

(2.33) 

If the conditional joint confidence level of intervals (2.33) is at least 1 - a 
then, of course, the unconditional joint confidence level will also be at 
least 1 - a. 

Although we have discussed only the case of pairwise comparisons 
here, it should be clear that conditional procedures can also be developed 
for other families of comparisons, for example, comparisons with a 
control. Such conditional procedures are not restricted to designs satisfy- 
ing certain balance conditions as are the corresponding unconditional 
procedures. 

The following example demonstrates, for a randomized complete block 
design with fixed block effects, the computations required for implement- 
ing the unconditional and conditional procedures for pairwise com- 
parisons. A numerical illustration of the procedures is given in Example 
2.3. 

Exumple 2.2. Consider a randomized complete block design with k 
treatments, n blocks, and N = kn experimental units where both the 
treatments and the blocking factor are fixed. Let (XI/, Y,,)' be a bivariate 
normal observation on the ith treatment in the j t h  block. Conditional on 
XI, we assume that 

where 6, is the ith treatment effect, $ is the jth block effect, 6, is the 
common mean of the covariates XI/ from block j ,  p is the common slope 
coefficient, and the E,,'s are i.i.d. N ( 0 ,  u 2 )  random errors; here all the 
unknown parameters are regarded as fixed and the 4,'s satisfy the 
condition C:-, Icr, = 0. 

We establish a correspondence between (2.34) and (2.6) by noting that 
p = ( e  ,,... , ek ;  + , , . . . , J I , ) ' ,  s=(t,,e2,.. .  . e n ) ,  9 = 1 ,  r = k + n ,  
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n ,  

I A = n  

n 

k n -- 
I 

1 
1 

1 

1 

1 
1 

1 

1 

1 

which is the incidence matrix of the design, and 

1 
i 

1 

1 

1 
k n  x n  

, 

k n x ( k + n )  
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(2.35) 

(2.36) 

The parameters of interest here are 6, = b:p (1 5 i S k) where b, is a 
(k + n)-vector with 1 in the i th  place and 0 everywhere else. For this 
design the balance conditions (2.16)-(2.18) can be verified as follows: 
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(i) 

(ii) 

(iii) 
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First check that B(A'A)-B' = V =  ( l /n ) I  and thus condition 
(2.16) is satisfied with uo = 1 In. 
Next check that b:(A'A)-A' is a 1 X kn row vector consisting of k 
blocks of n components each, with the ith block consisting of all 
entries = l / n  and all other blocks consisting of zero entries only. 
Thus bi(A'A)-A'A is a 1 x n row vector d' = (1 l n ,  . . . , 1  i n )  for 
all i = 1,2,. . . , k, and hence condition (2.17) is satisfied. 
Condition (2.18) is obviously satisfied since the columns of A are 
the same as the last n columns of A as is seen by inspecting 
(2.35) and (2.36). 

Hence the exact unconditional procedure (2.20) can be used for making 
pairwise comparisons among the Oi's. 

The estimates of interest are derived as follows. Let 

c c (X,, - xl. - x./ + X . . ) ' ,  
1 = 1  j - 1  

s x x  = (2.37) 

k n  

s,, = c. c (Yi/ - Y,. - T/ + Y..)? . 
i = l  ) = I  

The LS estimates of the Oi's are 

6, = F,. - @(Xi. - X..) (1 s i 5 k) (2.38) 

where 

S X Y  

s x x  
p = - .  

Also 

(2.39) 

where 

Y = kn - 1 - (k + n - 1) = kn - k - n . (2.41) 

Thus for a randomized complete block design with a single random 
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covariate, all the quantities needed for applying the exact unconditional 
procedure (2.20) are available through the formulas (2.37)-(2.41). 

For appiying the approximate conditional procedure (2.33) we need, 
in addition, the matrix W = BRB' where B = [ I txk [Okxn]  and R is given by 
(2.30). It can be checked that 

which, of course, is the formula for the variance of 5; - ij, in the 
corresponding fixed covariate model. 0 

Example 2.3 (Randomized Block Design with a Random Covariate). We 
use the data of Example 1.2 of Chapter 3 to illustrate the conditional and 
unconditional procedures. Recall that in that example (and in Example 
3.2 of Chapter 3) the covariate (percentage of dry matter) was regarded 
as fixed for illustration purposes. Here we regard it as random. 

Suppose that we wish to construct simultaneous 90% unconditional 
confidence intervals (2.20) for all pairwise differences 8, - 8,. (1 2 i < i' S 
6). In Example 1.2 of Chapter 3 we calculated the LS-estimates that are 
given'in Table 1.4 of that chapter. In that example we also calculated 
S = 7.106 with v = 19 d.f. In Example 2.1 of this chapter we obtained the 
value of the critical constant Qioi:;: 4.076. Thus the common allowance 
for the desired intervals is Q , ,6 , ,9S/dZ 3 4.076 X 7 . 1 0 6 / f i  = 12.95. 

The intervals given by (2.33) corresponding to the approximate condi- 
tional procedure are the same as the TK-intervals, the computational 
details of which are given in Example 3.2 of Chapter 3. 

For these data, the unconditional intervals work out to be shorter than 
the conditional intervals for all pairs except (1,3). The allowance for 
(1 ,3)  using the latter interval is 12.69 (see Example 3.2 of Chapter 3); 
using the former interval it is 12.95. As we see in Section 2.4, however, 
generally the conditional procedure yields shorter intervals than the 

- (0.10) 

unconditional procedure. 0 

2.4 A Comparison of the Conditional and Unconditional Procedures 

As noted before, the unconditional procedures are applicable only in 
certain balanced designs, while the conditional procedures are not so 
restricted. Thus, for example, the latter can be used for making pairwise 
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or treatments versus control comparisons in ANCOVA designs that do  
not satisfy the appropriate balance conditions given earlier. 

It should be reemphasized, however, that for the family of pairwise 
comparisons there is as yet no analytical proof for k > 3  that the 
conditional TK-type procedure (2.33) controls the unconditional FWE. 
This result would follow if the Tukey conjecture were true for k > 3 for 
general nondiagonal convariance matrices; see the discussion in Section 
3.2.1 of Chapter 3. Brown (1984) proved this conjecture for k = 3. For 
k > 3 Hochberg and Varon-Salomon (1984) studied the unconditional 
Type I FWE of this procedure for the one-way ANCOVA design with a 
single random covariate and equal number of replications per treatment. 
They showed that this W E  depends on k ,  a, and n, but it does not 
depend on the parameters of the joint normal distribution of (X, Y).  
They also conducted a simulation study and found that the unconditional 
FWE S a in all the cases that they studied. This lends further support to 
the conjecture that the conditional procedure (2.33) is always conser- 
vative. 

Of course, instead of using the Tukey-Kramer version of the con- 
ditional procedure, one could use the GT2 or the Dunn-Sidik ver- 
sions, which are known to be conservative. Alternatively one could use 
Scheffk’s S-procedure conditionally. which would provide exact control of 
the unconditional FWE for the family of all contrasts but which would be 
overly conservative for the family of painvise comparisons. In general, if 
we have a procedure that is known to control the  FWE for a given family 
of contrasts in ANCOVA designs with fixed covariates, then that proce- 
dure when used in a conditional manner would also control the FWE 
unconditionally in designs with random covariates. Whether to use a 
conditional or an unconditional procedure in a given situation when both 
can be applied depends on the following considerations among others: (i) 
guaranteed control of the FWE, (ii) convenience of use, and (iii) lengths 
of the confidence intervals. 

With regard to (i), we already have commented in detail as far as the 
conditional procedures are concerned. The unconditional procedures, of 
course, control the FWE exactly. With regard to ( i i ) ,  the conditional 
procedures are more convenient to use because their critical points are 
more widely tabulated. Nonetheless, (iii) is likely to he the niajor 
consideration in the choice of a procedure and hence we discuss it in 
detail next. 

Hochberg and Varon-Salomon (1984) compared the lengths of the 
pairwise confidence intervals yielded by the two procedures, (2.20) and 
(2.33), for the balanced one-way layout design with a single random 
covariate. Note that the unconditional procedure (2.20) yields the same 
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length for each pairwise interval, namely 2 Q ~ ~ , v S / f i ,  while the condi- 
tional procedure (2.33) yields different lengths. The ratio of the lengths 
of the two intervals for the ( i ,  i‘)th comparison is given by 

- Qf:Sj/l In + (XI. - X,. )zlZS,, 
Ru.,.k,v - ob) I,k.”S/* 

7 

where S,, = E:=* CT-, (X,, - ~ l . ) ’ .  For the general case of q L 1 random 
covariates this ratio can be expressed as 

where Fm,n is an F r.v.  with m and n d.f. Hochberg and Varon-Salomon 
(1984) evaluated E{Ra, , ,&,”} for various combinations of a, k ,  and v, and 
found it to be generally less than unity, thus favoring the conditional 
procedure over the unconditional one. They also evaluated Pr{ RU.,.k.,, > 
1) and found that it generally lies between 0.2 and 0.3. 

Bryant and Fox (1985) investigated the case q = 3. Their results are in 
general agreement with those of Hochberg and Varon-Salomon for the 
case q = 1. They found that the distribution of Ra,3,k.v is tightly concen- 
trated near 1 particularly for v Z 15. Thus although Pr{Ro.3.k.v > I }  is 
small (0.2 to 0.4), E{Ra,3.k.,,} is only slightly less than unity. The 
superiority of the conditional procedure over the unconditional one is 
substantial only for very small values of v. The same conclusion was 
arrived at when they considered alternative measures such as the expect- 
ed squared lengths and the root mean square lengths of the (; ) pairwise 
intervals associated with the two procedures. 

To summarize. for the family of pairwise comparisons the conditional 
procedure (2.33) is preferred over the unconditional procedure (2.20) for 
small d.f. v. For moderate to large v the two procedures give about the 
same results and hence the choice would depend on other considerations. 
Analogous comparisons of the conditional and unconditional procedures 
for other families of contrasts have not been carried out, but one would 
expect the final conclusions to be not too different from the above. 



C H A P T E R  9 

Distribution-Free and Robust 
Procedures 

This chapter is primarily devoted to multiple comparison procedures 
(MCPs) that are distribution-free (also commonly referred to as non- 
parametric) in the sense that their Type 1 error rates do not depend 
(under relatively mild assumptions) on the distributions that generate the 
sample data. In the context of testing of hypotheses, this means that the 
marginal or also the joint null distributions of the test statistics do  not 
depend on the underlying distributions of the observations. This corres- 
ponds to the notion of a testing farn’ly and of a joint testing family 
(discussed in Section 1.2 of Appendic l ) ,  respectively. Some of the 
procedures that are surveyed here are distribution-free in a more restric- 
tive sense, as is seen in the sequel. We also discuss in this chapter some 
robust MCPs that are not exactly distribution-free but that are resistant to 
substantial departures from the usual distributional assumptions (in par- 
ticular, the normality assumption) and to gross outlier observations. 

It is well known (see, e.g., Scheffe 1959, Chapter 10) that single 
inference procedures based on 1- and F-statistics are fairly robust to 
nonnormality. However, as noted by Ringland (1983), the problem of 
robustness becomes more serious in the case of multiple inferences. To 
illustrate this point Ringland used the example of the normal theory 
Bonferroni procedure for a finite family of inferences on scalar paramet- 
ric functions. This procedure uses the critical points from the extreme tail 
portion of the r-distribution, and this is the portion that is most sensitive 
to nonnormality. Furthermore, even if the discrepancy due to nonnor- 
mality in the Type I error probability for a single inference is not large, 
for multiple inferences this discrepancy gets magnified by a factor equal 
to the number of inferences. Since many finite union-intersection (UI) 
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procedures are approximated by the Bonferroni procedure, they also 
suffer from the same lack of robustness. Hence the MCPs of this chapter 
should be used when the normality assumption is suspect. 

To keep the presentation simple, the main body of the discussion in 
this chapter is restricted to simple statistics such as sign, rank, and signed 
rank statistics. Extensions to general linear rank statistics are briefly 
summarized in Section 3.3. 

The one-way layout design is the setting for Section 1. In Sections 1.1 
and 1.2 we consider single-step test procedures for two families- 
comparisons with a control and a11 paitwise comparisons, respectively. 
We also explain how these procedures yield the associated simultaneous 
confidence intervals for appropriate contrasts among location parameters 
when a location model is assumed. Step-down procedures for the family 
of subset hypotheses are discussed in Section 1.3. A comparison among 
the various procedures is given in Section 1.4. 

The randomized complete block design is the setting for Section 2. The 
underlying models and the associated hypotheses of interest are explained 
in Section 2.1. In Section 2.2 we consider the family of comparisons with 
a control and discuss Steel’s procedure based on sign statistics and 
Nemenyi’s procedure based on signed rank statistics. Section 2.3 is 
devoted to single-step test procedures for the family of all pairwise 
comparisons. Analogs of the Steel and Nemenyi procedures are discussed 
as well as another procedure proposed by Nemenyi that is based on 
Friedman rank statistics. Section 2.4 describes some step-down proce- 
dures. A comparison among the various procedures is made in Section 
2.5. 

Some other nonparametnc procedures and problems are discussed in 
Section 3. They include permutation procedures, median tests, and 
general linear rank statistics. Finally in Section 4 a discussion of MCPs 
based on some robust estimators is given. 

1 PROCEDURES FOR ONE-WAY LAYOUTS 

1.1 Comparisons with a Control 

Consider a control treatment labeled k and test treatments labeled 
1 ,2 , .  . . , k - 1 where k 2 3 .  Let { Y,, (1 S j S . ? , ) }  be a random sample of 
size n, from treatment i (1  5 i g k). We assume that the Y,,’s come from a 
continuous distribution F, (1 S i d k). We also assume that n, = n, = 
... = n k V l  = n (say), which may be different from n,. Under this assump- 
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tion the computation of the exact critical points necessary to implement 
the MCPs described below is greatly simplified. 

Steel (1959b) proposed a single-step test procedure for the family of 
hypotheses H,,, : F, = Fk (1  f i 5 k - l ) ,  which we now describe. In this 
procedure the n observations from F, and the nk observations from Fk are 
pooled and rank ordered from the smallest to the largest. Because the 
observations from only the treatments being compared are ranked, this is 
referred to as the method of separate runkings. Let R,, be the rank of Y,  
in this ranking (1 S j S n )  and let RSfi be the Wilcoxon rank sum statistic: 

n 

RS,;= C R ,  ( l s i S k - 1 )  
I =  1 

Suppose that the alternatives to the Hal's are the one-sided hypotheses 
H::) : F, < Fk (1 S i S k - 1) (where F < G means that F ( x )  S G(x) for all 
x E R  with a strict inequality for at least some x ,  that is, a random 
observation from F is stochastically larger than an independent random 
observation from G). In this case Steel’s procedure rejects H,, if 

RSfi > RSi.!:’ (1 S i I k - 1) (1.1) 

where RS;:;’ is the upper a point of the distribution of 

RSL-, = max RS,; 
l s I s k - 1  

under the overall null hypothesis H,, : F, = F2 = - * = F,. 

Fk (1 I i 5 k - l), then Steel’s procedure rejects H,,, if 
If the alternatives to the Ho,’s are the one-sided hypotheses H : : ) :  F, > 

RS, = n(nk + n + 1) - RS,; > RS;!:) (1  d i 5 k - 1 ) .  (1.2) 

(Note that RS,; is the rank sum for sample i if all n + nk observations 
from treatments i and k are assigned ranks in the reverse order. The same 
critical point RS;!:’ is used in both (1.1) and (1.2) because the joint 
distribution of the RS,i’s is the same as that of the RS,i’s under H,.) 

For the two-sided alternative H I ,  = HI:’ U H : : ) ,  Steel’s procedure 
rejects H,, if 

RS,, = max(RS,;, RS, )  > RSr?l (1  S i S k - 1) (1.3) 

where RSr?l is the upper a point of the null distribution (under H,)  of 

RS,-, = max RS,, . 
I d i S k - 1  (1-4) 
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Note that the critical points RS;!?) and RSr-)), are functions of k, n ,  n k ,  
and a only, and do not depend on the specific common distribution 
function under H,. Therefore these procedures control the Type I 
familywise error rate (FWE) under Ha at level a. A natural question to 
ask is whether the Type I FWE is controlled under configurations other 
than Ho.  The following theorem answers this question. 

Theorem 1.1. Each one of the single-step test procedures (1.1)-(1.3) 
strongly (that is, under all configurations) controls the Type I W E  at the 
designated level a. 

Proof. We prove the result only for (1.1); the proofs for the other two 
procedures are similar. Let P be any nonempty subset of { 1,2 ,  . . . , k - 
l} of cardinality p. Then under nlEP H,,, the joint distribution of the 
RSli’s for i E P does not depend on the common distribution F, = Fk,  
i E P. This joint distribution is simply the permutational distribution 
obtained from the equally likely (under n,,,H,,) orderings of the 
nk + pn observations where in computing RS,; we only consider the 
relative ranks of the observations from the treatments i E P and k. 
Therefore { ( H a l ,  R S J ) ,  i = 1, . . . , k - l} forms a joint testing family. 
From Theorem 1.2 of Appendix 1 it follows that the T y  II FWE of (1.1) 
is maximized under the overall null hypothesis Ha = n,,, H,, : F, = F, = 
...* Fk. Since is the upper a point of the distribution of 

0 max,slsL-l RS,; under H,, the theorem follows. 

Steel (1959b) computed exact upper tail probabilities of the null 
distribution of R S , _ ,  for k = 3.4; n = 3,4,5 where n = ni (1 d i 5 k). For 
large ni’s the joint null distribution of the RS,i’s can be approximated by 
a multivariate normal distribution with the following parameters: 

tz;(n; + nk + 1) 
(1 r i s k  - l ) ,  

2 
&( RS,: ) = 

Thus for n ,  = n2 = * - - = n,- ,  = n (say), a large sample approximation to 
RS;!;’ is given by 
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where [xJ denotes the smallest integer greater than or equal to x and 
2'"' k-1 .p  is the one-sided upper a equicoordinate point of k - 1 equicorre- 
lated standard normal variables with common correlation p = n / ( n  + 
ni + 1). Similarly a large sample approximation to RSYJl is given by 

where lZ}t?l,p is the corresponding two-sided upper a equicoordinate 
point. The critical points ZIp-)l.p and ~ Z l f ~ l , p  are given in Tables 2 and 3 
respectively, of Appendix 3, for selected values of k, a, and p. The 
constant f in (1.6) and (1.7) is the standard continuity correction. 

Suppose now that the F,'s are members of a location parameter family, 
that is, 

Fi( y) = F( y - 0,) (1 S i S k) (1.8) 

where F(.) is an unknown continuous distribution function and the 0,'s 
are unknown location parameters. We now explain how to construct 
simultaneous confidence intervals (one-sided or two-sided) for 6, - 0, 
(1 d i S k - 1) .  The basic theory of nonparametric confidence intervals 
based on rank statistics for location parameters is given in Lehmann 
(1963) and Hodges and Lehmann (1963). 

First consider one-sided intervals. Let RS, i (S)  be the rank sum for 
sample i when a constant S is subtracted from each observation from 
sample i ,  which is then ranked together with sample k (1 5 i 5 k - 1). 
The set of values of 6 that satisfy the inequality R S i ( 6 )  S RS,'$' is an 
interval of the form [S,,m). The collection of these intervals forms 
simultaneous lower one-sided confidence intervals for the differences 
6, - 0, (1  I i 5 k - 1) with a joint confidence level of 1 - a. Simultaneous 
upper one-sided intervals are obtained similarly by considering the 
inequalities R S , i ( S )  d RSlf",'. Simultaneous two-sided intervals are ob- 
tained by considering the inequalities RS,, (6 ) = max{ RS,; (6 ), 

Explicit formulas for these intervals can be given as follows. Let 
Dlr , ( , )  < Dlk,(2)  < - + - < Dl,,lnnk) be the ordered values of the differences 
D,,,,, = Y,, - Y,, (1  S j d n, 1 5 15 n,). Then simultaneous (1 - cY)-level 
lower one-sided confidence intervals on the (0, - 0,)'s are given by 

R S , i ( 6 ) }  5 R S , - , .  (a ) 

w), i = 1 , .  . . , k - 1, where 1 ? & . ( N ; l q ) +  1) , 

n(n + 1 )  
2 

- RS;:'. N;:' = nn, + 
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The corresponding upper one-sided intervals are given by ( -03, 

1, i = 1 ,  . . . , k - 1, and the two-sided intervals are given by D 
i k . (nnk-  A’;?’) 

i -  1,. . * ,  k - 1 ,  

where 

(1.10) 

These confidence intervals can be obtained graphically as follows 
(Miller 1981 has credited this graphical method to  L.E. Moses). To 
obtain the lower one-sided intervals plot the nnk pairs of values (Yk,, Y,,) 
(1 S j 5 n,  1 S 1 S n,) as points on a graph paper (with the Y,,’s as 
abscissa and the Yt,’s as ordinate values). Draw a 45” line through one of 
these points such that exactly N,’!:’ points fall below the line. Then 

is the intercept of this line on the ordinate axis (1 I i 4 

& - 1). The upper one-sided intervals are obtained by following the same 
procedure but by drawing a 45” line through one of the points such that 
N;?) points lie above it. The two-sided confidence intervals are also 
obtained similarly but now two 45” lines are drawn through two of these 
points such that the lower line has Np?, points below it and the upper line 
has NF!, points above it. The intervaf intercepted by these two lines on 

D,k,(N;Cq)+ I )  

the vertical axis is then [ D , k , ( A ’ y + , ) *  Dd,(nnk-*tk (.) - , )  I . i = l  , . . . ,  k - 1 .  

Example 1.1. The following data in Table 1.1 on the rate of dust 
removal from three groups of suhjects to assess mucociliary efficiency are 
taken from Hollander and Wolfe (1973, p. 116). 

We wish to make two-sided comparisons of the two disease groups of 
subjects with the normal (control) group. We use Steel’s procedure (1.3) 

TABLE 1.1. Half-Time of Mucociliary Clearance (in Hours) 

Subjects with 
Obstructive Airway Disease 

3.8 
2.7 
4.0 
2.4 

(1)  

Subjects with Normal 
Asbestosis Subjects 

2.8 2.9 
3.4 3.0 
3.7 2.5 
2.2 2.6 
2.0 3.2 

(2) (3) 

Source: Hollander and Wolfe (1973). 
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for this purpose. Separate pairwise rankings result in RS:, = 22, R S ,  = 
18, and RS,: = 27, R S ,  = 28. Exact critical points of the null distribution 
of R S k - ,  = max,s,s,-,{max(RSl~, RS,;)} are not available when the 
sample sizes are unequal. We explore the applicability of the large sample 
approximation (although the sample sizes here are quite small) based on 
the asymptotic joint normality of the rank sums with parameters given by 
(1.5). To control the W E  asymptotically at level a, we can compare the 
test statistic RS,, = max(RS,;, RS,) with the critical constant (obtained 
using (1.7)) 

( 2  = 1,2) (1.11) 

where 

(Note a slight change in notation between (1.7) and (1.11). In (1.7) the 
subscript on RS‘”’ denotes the number of treatment-control comparisons 
while that in (1.11) denotes the parriculur treatment-control comparison.) 
For the equal sample sizes case, (1.11) gives a reasonably good approxi- 
mation even for small sample sizes. For example, if n, = n2 = n3 = 5 ,  then 
for a = 0.25 we have IZI&2:’ = 1.4538 from Odeh’s (1982) tables, and 
thus we obtain RSj:25) = RSEZ5’ P (34.961 = 35. If we use Steel’s 
(1959b) exact tables, then we get the two-sided critical point correspond- 
ing to a =0.2486 to  be 36. 

Note that in (1.6) and (1.7) we assumed that n, = n,  = * * - = n k -  I so as 
to obtain a common correlation p between all the RS,;’s since tables of 
the maximum of correlated standard normal variables are available only 
for this special case. However, for k - 1 = 2 there is only a single 
correlation to consider, which makes this assumption unnecessary. 

From (1.12) we calculate p = 0.4264. A conservative approximation to 
IZIF:,4264 is IZl:; 4 ,  which for a = 0.25 equals 1.4706 as seen from Odeh’s 
(1982) tables. From (1.11) we then calculate RS10,.25’ = 126.SOJ = 27 and 
R S g  2 5 )  = (35.041 = 36. Comparing these critical points with 
max(RS:,, RS,} = 22 and max{ RS;,, RS,} = 28, respectively, we con- 
clude that neither comparison is significant at a = 0.25. 

If we assume the location model (1.8) for the present data, then 
simultaneous confidence intervals on 8, - % ( i  = 1,2) can be obtained 
using the graphical procedure described earlier. Consider 6, - 6, first. 



PROCEDURES FOR ONE-WAY LAYOUTS 241 

-0.5 

Plot thepairs(Y,,,Y,j) ( lSjS4,  1 5 I S S ) a s s h o w n i n F i g u r e  1.1.To 
obtain a 75% simultaneous two-sided confidence interval on 0, - 0, draw 
two 45" lines through two of these points such that N',;"'' points fall 
above the upper line and below the lower line, where (from (1.10)) 

y3 i 

4 x 5  
2 

2 7 = 3 ;  2 5 )  = 
, 3  4 x 5 + - -  

here we have used the approximation RSI: 2 5 )  = 27. (Note again a slight 
change in notation compared to (i . lO),  where the subscript on A""' 
denotes the number of treatment-control comparisons; here it denotes the 
particular treatment-control comparison.) The desired interval is given by 
the interval intercepted on the vertical axis by the two 45" lines. From 
Figure 1.1 this interval is seen to be (-0.50, 1.201. 

../. 

1 L Confidence interval for 6, - 6, 

Figure 1.1. Graphical construction of a simultaneous 75% two-sided confidence interbat for 
8, - 8,. 
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A similar graphical construction gives [ -0.80, 0.801 as a simultaneous 
75% two-sided confidence interval for 0, - 0,. Here the number of points 
falling above and below the two 45" lines is (using R S \ ~ Z 5 ) z 3 6 )  

1.2 Pairwise Comparisons 

1.2.1 A Procedure Based on Rank Sum Statistics Using Separate Rankings 
Consider the setup of Section 1.1 but now consider the family of all 
pairwise hypotheses f i l l ,  : F, = F,. (1 5 i < i' 5s k) against two-sided alter- 
natives. Steel (1960) and Dwass (1960) independently proposed a single- 
step test procedure for this family that is based on separate pairwise 
rankings of observations. They considered only the balanced case n, = 
" 2  = . . * =  nk = n. We first describe the Steel-Dwass procedure for this 
balanced case. 

Let RS,:. be the rank sum of the n observations from treatment i when 
the 2n observations from treatments i and i' are ranked together, and let 
RS,. = RS,:;, = n(2n + 1) - RS,:. (1 S i < i' S k). Let 

RSZ = max {max(RS,:., RS,:,)} , 
1 5 i < t ' = k  

and let RS:'"' be the upper a point of the distribution of RS: under the 
overall null hypothesis H,,: F, = F2 5 .  . . = Fk .  (Note that the notation for 
pairwise comparisons is different from that for comparisons with a 
control. Here the subscript on RS* denotes the number of treatments and 
not the number of pairwise comparisons among them.) The Steel-Dwass 
procedure rejects HI,, : F, = F,. in favor of a two-sided alternative if 

max(RS,:., RS':,) > RS:'"' (1 d i < i 'z  k) . (1.13) 

Note that 

which shows that RS:'"' can be determined from the (:)-variate joint 
distribution of the statistics RS,:, (1 9 i < i' 9 k). 

Theorem 1.2. The single-step test procedure (1.13) strongly controls the 
Type I W E  at the designated level a. 
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Proof. The proof is similar to that of Theorem 1.1. It is based on 
verifymg that { (Hj l , ,  RS,:.), 1 S i < i' 5 k }  is a joint testing family and 
then applying Theorem 1.2 of Appendix 1. To do this, note that the 
intersection of any subset of painvise hypotheses HII, is equivalent to a 
multiple subset hypothesis: H,,, n - - - n H ,  where the Pj's are disjoint 
subsets each of size at least two and kip, postulates that all treatments 
belonging to subset P, have the same distribution (1 S j S r). The RSl:,'s 
in disjoint subsets are independent. Hence it is enough to verify that the 
joint distribution of these statistics for i, i' E P, is distribution-free. This is 
readily verified using an argument similar to that used in the proof of 
Theorem 1.1. 0 

The exact null distribution of RS: is obtained by considering the (kn ) !  
different orderings (which are equally likely under H,) of all the observa- 
tions and computing 

number of orderings giving RS: = r 
(kn) !  

Pr{RS: = r }  = 

Steel (1960) computed this exact distribution for k = 3 and n = 2 ,3 ,4 .  
For large n,  an approximation due to Dwass (1960) may be used. Dwass 
showed that the joint asymptotic (n  + 00) distribution of the statistics RS,:. 
(1 5 i < i' S k) under H, is multivariate normal with the following 
parameters: 

n(2n + 1) 
2 

E(RS,;J = 

n2(2n + 1) 
12 

var(RS,:.) = 

0 
n 

corr(RS,:., R S ; . )  = 2n + 1 
- n  I 2n + 1 

( 1 5 i < i' 5 k) , 

(1 5 i < i '  s k) , 

i#j, i ' i t j '  
(1.15) 

The correlation structure (1.15) is asymptotically (n+ a) identical to the 
correlation structure of (:) pairwise differences among k independent and 
homoscedastic random variables (r.v.'s). Therefore, the asymptotic distri- 
bution of 
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can be approximated by that of a Qk,=/fi r.v. where Q k , =  is the range of 
k independent and identically distributed (i.i.d.) N(0 , l )  r.v.'s. This yields 
the approximation 

where 5 is the standard continuity correction and QfL is the upper a point 
of the QkSl r.v. 

For unequal but large sample sizes we can use a Tukey-Kramer (TK) 
type approximation; see Chapter 3, Section 3.2.1. The rank sums RS,:. 
and RSf, are computed from the pairwise rankings of the n,  -t n , .  
observations from F, and F , . .  Under HI,, : F, = F , , ,  the mean and variance 
of RS,:, are given by 

n, (n ,  + n , .  + 1) 

n,n, . (n ,  + n , .  f 1) 

2 
E( RS,:.) = > 

12 
var(RS,;.) = 

(1.17) 

The asymptotic joint normality of the RS,:,'s can be deduced, for 
example, from the general results of Koziol and Reid (1977). The large 
$ample a-level TK-type approximate procedure would then reject H,, ,  in 
favor of a two-sided alternative if max{RS,:., n, (n , .  + 1)  - RS,:.} > RS:,!"' 
where 

(1 S i < i' S k) . (1.18) 

The single-step test procedure described above can be inverted to 
obtain simultaneous confidence intervals for pairwise differences 0, - 0,. 
(1 S i < i' S k )  if we assume the location model (1.1). For this purpose 
we can use a graphical method similar to the one described in Section 1.1. 
Here we plot (Y,, YjOj,) .  The critical number of points that must fall 
above and below the two 45" lines is now 

(1.19) 

1.2.2 
Dunn (1964) proposed a single-step test procedure that is based on joint 
rankings of observations from all the treatments. Let R,, be the rank of Y,, 

Procedures Based on Rank Sum Statistics Using Joint Rankings 



PROCEDURES FOR ONE-WAY LAYOUTS 245 

in the pooled sample of N = EFn1 ni observations and let 

The Dunn procedure rejects I f l i ,  : F, = F,. in favor of a two-sided alterna- 
tive if 

( 1 5 i < i' S k) 
(1.20) 

IR;. - RJ 

where 2'"'' is the u er a* point of the standard normal distribution, 
a+ = f { l  - (1 -a) , and k* = ( i ) .  (Actually, Dunn noted that it 
would be desirable to use 2'"'). but she instead used a slightly larger 
critical value z("'*~*).) 

Dunn's procedure is based on the asymptotic (n,--*m, n,lN-, A,, 
O <  A, < 1 for all i) multivariate normality of ( R , , ,  R z . ,  . . . , R, ) with the 
following parameters under the overall null hypothesis If,) : F, = F, = 

1 ,.P.p 

- * .  5 Fk: 

( 1 I i S k ) .  (1.21) ( N  + - n,) var(R,.) = 
12ni 

(1 5 i < i '  s k) . ( N +  1) 
12 COV(R, , R , ,  ) = -- 

This asymptotic distribution result was derived by Kruskal and Wallis 
(1952) in the context of their analysis of variance test; see (1.23) below. 
From (1.21) it follows that, under H,,, the differences R, - R,. have 
marginal normal distributions with zero means and variances equal to 
N(N + I)(n,-' + n,:')/l2. Application of the Dunn-SidPk inequality then 
shows that the single-step test procedure (1.20) asymptotically controls 
the FWE at level a under the overall null hypothesis H ,  (but not 
necessarily under other configurations). 

If the sample sizes n, are all equal, then the R, 's have equal variances 
and equai covariances under H,. Thus in large samples we can use 
Tukey's T-procedure for painvise comparisons, which involves replacing 
2'"'' in (1.20) by a sharper critical point QtL/fl. If we assume that the 
Tukey conjecture stated in Section 3.2.1 of Chapter 3 holds for general 
nondiagonal covariance matrices, then we can use this critical point even 
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in the case of unequal sample sizes. This leads to a TK-type modification 
of the Dunn procedure that rejects H,,, :F,  = F,. if 

( 1 S i < i’ d k )  . 
(1.22) 

12 

For the case of equal sample sizes, McDonald and Thompson (1967) 
have tabled the critical points of maxls,<i,dklR,. - R,. . l .  Their computa- 
tions are based on the exact (not asymptotic) null distribution, but they 
employ certain probability inequalities; thus the tabled critical points are 
slightly on the conservative side. See also the tables of Tobach et al. 
(1967). 

Nemenyi (1963) proposed a procedure based on an application of 
Scheffk’s projection method (see Section 2.2 of Chapter 2) to the 
Kruskal-Wallis test. The large sample a -level Kruskal-Wallis test rejects 
the overall null hypothesis H ,  if 

2 

KW= n , ( R ,  - y) > x : - , ( a )  (1.23) 
N ( N +  1) , = I  

where *:-[(a) is the upper a point of the chi-square distribution with 
k - 1 d.f. Application of the projection method to (1.23) leads to a 
single-step test procedure of level a that rejects kft,,: F, = F,. if 

This procedure is clearly more conservative than (1.22) and hence is not 
recommended. 

The single-step test procedures of this section cannot be used for 
constructing simultaneous confidence intervals since they are not based 
on testing families. Also they do not strongly control the FWE under all 
configurations although they do control it (at least in large samples) under 
H,; see Section 1.4 for a fuller discussion. 

Example 1.2 If all three pairwise com- 
parisons are of interest for the data in Table 1.1, then the Steel-Dwass 
procedure based on the TK-type approximation to the critical points 
(1.18) can be used. Clearly, the comparisons (1,3) and (2,3) will still be 
nonsignificant because we now have a larger family. For the comparison 
(1,2) we calculate RS: ,  = 24, R S ,  = n l ( n l  + n, + 1) - RS; ,  = 16, and 

(Continuation of Example 1 . 1 ) .  
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thus max{RS&, RS,} = 24. This is to be compared with the critical 
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point 

For a = 0.20 we have QTL = 2.42 from Table 8 in Appendix 3, and hence 
RS:i0 2 0 )  = 132.501 = 33. Thus this comparison is also not significant at 
a = 0.20. Simultaneous confidence intervals for 0, - 4. can be constructed 

0 by using a graphical method similar to that in Example 1.1. 

1.3 Step-Down Procedures 

Nonparametnc step-down procedures have not been developed to the 
same extent as their normal theory counterparts. The possibility and 
desirability of using nonparametric test statistics in step-down procedures 
have been noted by several authors (e.g., Ryan 1960, Steel 1961, Miller 
1981, Campbell 1980). Lehmann and Shaffer (1979) have investigated 
some properties of such procedures, for example, separability, and 
control of the Type I FWE. Recently Campbell and Skillings (1985) 
studied these procedures further. 

Consider the class of step-down test procedures discussed in Section 
4.3.3 of Chapter 2 for the family of subset homogeneity hypotheses. 
Campbell and Skillings (1985) proposed the following three choices of 
test statistics in that class for the balanced one-way layout case: 

(i) Separate ranks Steel-Dwass statistics: 

RS; = max {max(RS,:., R S f , ) )  . 
i . i ‘ E P  

(ii) Joint ranks range statistics: 

where RIP’ is the average rank of the observations from treat- 
ment i when the observations from all treatments in set P are 
jointly ranked. 

(iii) Kruskal-Wallis statistics: 

It is clear that for any “partition” ( P , ,  P z ,  . . . , P,) of {1,2, .  . . , k }  
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(where the P,’s are disjoint subsets of cardinality p, h 2 and C:=, p, I k) 
the statistics RS;, ,  R S ; 2 , .  . . , RS;, are mutually independent. The same 
holds for the other two choices of test statistics because of the reranking 
for each subset. Also the step-down procedures based on these statistics 
possess the separability property; this was shown for the Kruskal-Wallis 
statistics by Lehmann and Shaffer (1979), and similar proofs can be given 
for the other two statistics. Thus for all three choices of test statistics we 
can apply Theorem 3.2 of Appendix 1 to obtain the upper bound (3.15) 
stated there on the Type I FWE in terms of the nominal levels ap. To 
control the Type I FWE at a designated level a we can therefore use one 
of the standard choices for the ap’s, for example, the Tukey-Welsch 
(TW) choice: 

(Yp = 1 - ( I  - a)’’‘ ( 2 s p  5 k - 2 )  I a k . . I  = a k  = a .  

The discreteness of the distribution of nonparametric statistics can pre- 
sent problems in achieving the desired ap levels, however. 

Since this procedure involves testing too many subsets, Campbell and 
Skillings considered an ad hoc shortcut version of this procedure as 
follows. At the initial step the treatments are ordered and labeled 
1,2, . . . , k according to their rank sums computed from the joint rank- 
ings and this same labeling is used in the subsequent steps. At  the 
(k - p + 1)th step ( p  = 2, .  . . , k), subsets of the form { j ,  j + 1, . . . , j + 
p - 1> are tested if and only if they have not been retained as homoge- 
neous by implication at a previous step. When testing the homogeneity of 
subset { j ,  j -+ 1, . . , , j + p - l } ,  the observations from those treatments 
are reranked and the difference in the rank sums of the “extreme” 
treatments, j and j + p - 1, is tested for significance at nominal level ap. 
If this difference is found significant, then treatments j and j + p - 1 are 
concluded to be different and one proceeds in the next step to test the 
homogeneity of subsets { j ,  j + 1,. . . , j + p - 2) and { j + 1, j + 
2, . . . , j + p - l}. If the rank sum difference is found to be not signific- 
ant at nominal level ap, then the subset { j ,  j + 1, . . . , j + p - 1) and all 
of its subsets are retained as homogeneous. 

Campbell and Skillings showed that under the location model this 
shortcut procedure asymptotically ( n  + m) has the same upper bound on 
the Type I W E  as given by (3.15) of Appendix 1. Thus by choosing the 
ap’s appropriately (e.g., the TW-choice) the Type I FWE can be strongly 
controlled. Other statistics and ordering rules can also be used. 

One would expect this shortcut step-down procedure to be generally 
more powerful than its nonparametric single-step competitors as well as 
the corresponding all-subsets step-down procedure. This was confirmed in 
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the simulation study made by Campbell and Skillings. It should, however, 
be noted that the shortcut procedure can in some instances suffer from 
lack of power and inconsistent decisions because the ordering of the rank 
sums after reranking may not agree with the initial ordering of the rank 
sums based on the joint ranking of all the observations. 

The subject of nonparametric stepwise procedures is still far from fully 
developed. Further research is needed in the areas of choice of test 
statistics, directional decisions, and step-up procedures. So the present 
section should be viewed only as preliminary in nature. 

1.4 A Comparison of Procedures 

We first restrict attention to single-step test procedures and discuss the 
choice between separate rankings and joint rankings. The first point to 
note is that the test statistics computed from joint rankings do not yield 
testing families, while those computed from separate rankings do. For 
example, the distribution of the test statistics IR, - R , .  I used for testing 
H,,, in the procedures of Section 1.2.2 is not determined under H,,, since 
it also depends on the distributions of the observations from other 
treatments that are not postulated to be homogeneous under If,,,. For 
this reason these procedures do not strongly control the Type I W E .  
Oude Voshaar (1980) showed that under the slippage configuration (i.e., 
k - 1 treatments have the same distribution and one treatment has a 
different distribution) the Type I W E  of the (improved) Dunn proce- 
dure (1.22) based on joint rankings can exceed the nominal a level for 
highly skewed distributions even under the assumption of the location 
model. The lack of the testing family property also implies that single- 
step test procedures based on joint rankings do not have corresponding 
confidence analogs. The Steel-Dwass procedure (1.13) based on separate 
rankings does not suffer from these drawbacks. Higner (1984) has shown 
similar drawbacks for procedures based on joint rankings in treatments 
versus control problems. 

Although procedures based on separate rankings would generally be 
preferred in view of the advantages mentioned above, one should not 
overlook power considerations when making a choice of the method of 
ranking to use. Koziol and Reid (1977) have shown that asymptotically 
(n,+os,  n , l N + A , ,  O < A ,  < 1 V i ) ,  the Steel-Dwass procedure (1.13) 
based on separate rankings and the (improved) Dunn procedure (1.22) 
based on joint rankings have the same power properties under local 
alternatives for location or scale shifts. This extends the result of Sherman 
(1%5), who showed that the two procedures have the same Pitman 
efficiencies. However, these equivalence results are asymptotic and for 
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local alternatives; the powers of the two procedures can be different in 
small samples and under nonlocal alternatives. Skillings ( 1983) provided 
some useful guidelines for these latter situations based on a simulation 
study. He found that neither procedure is uniformly superior in terms of 
power for all nonnull configurations. The (improved) Dunn procedure 
(1.22) is more powerful for detecting differences between extreme treat- 
ments when there are intermediate treatments present. On the other 
hand, the Steel-Dwass procedure (1.13) is not affected by the presence 
of other treatments and hence has higher power for detecting differences 
between adjacent treatments. Fairly and Pearl (1984) arrived at the same 
conclusion analytically by comparing the Bahadur efficiencies of the two 
procedures. 

Lehmann (1975, pp. 244-245) has noted that joint rankings may 
provide more information than separate rankings in location problems. 
He has also noted a lack of transitivity that can arise with separate 
rankings in which, say, treatment 1 can be declared better than treatment 
2, and treatment 2 can be declared better than treatment 3, but treatment 
1 cannot be declared better than treatment 3. Such intransitivities cannot 
arise with joint rankings. Despite these limitations separate rankings are 
still generally preferred in practice. 

Comparisons between single-step and step-down procedures have been 
made by Lin and Haseman (1978) and Campbell and Skillings (1985) 
using Monte Carlo methods. The conclusions here are generally similar to 
those obtained in the normal case (see Section 5.3 of Chapter 4), namely 
that step-down procedures are more powerful than single-step procedures 
particularly for certain definitions of power. 

2 
DESIGNS 

PROCEDURES FOR RANDOMIZED COMPLETE BLOCK 

2.1 Models and Hypotheses 

We consider n complete blocks of common size k. The k treatments are 
assigned randomly within each block. Let Yij be the observation on the 
ith treatment in the jth block (1 5 i S k, 1 S j 5 n). As in Section 1 we 
assume that the Yt,’s are continuous r.v.*s so that ties occur among them 
with zero probability. 

The most general nonparametric model for this setting postulates only 
that the random vectors (Y,,, Y2,, . . . , Yk,) are mutually independent for 
j = 1,2,  . . . , n; the distributions of these vectors can be different in 
different blocks. For this general model there are at least three common 
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ways of specifying the null hypothesis of equality of any pair of treat- 
ments i and I”. They are as follows: 

If!;,): median( Yi, - Yi.,) = 0 (1  S j S n) ; (2.14 

Hj:):distribution of Yij - YiSi is symmetric about zero (1 S j  S n )  ; 

(2.lb) 

H$) : Yji and Y,., are exchangeable within each block j (1 S j S n) . 
(2 .k )  

Note that H $ )  3 Hi,? 5$ H$); thus is the most general hypothesis of 
the three while H::) is the least general. 

Many nonparametric statistics can be used to test the pairwise hypoth- 
eses (2.1a)-(2.1c), the simplest among them being the sign statistic 
Sf.  = the number of blocks with positive differences Yj j  - Yi.,. Now St:, is 
marginally distribution-free under each one of the three hypotheses, but 
the collection of the S,;.’s for i, i ’ E  P (where P is any subset of K = 
{ 1,2, . . . , k }  of size p 2 3) is not jointly distribution-free under the 
corresponding intersection hypotheses f l i , i . E p  Hll! for 1 = 1,2,3.  In other 
words, {(Hlf!, Sr:.), 1 5 i <= i’ 4 k} forms a testing family but not a joint 
testing family (1 5 1 d 3). As explained in Section 1.4 of Appendix 1, the 
Type I FWE can be controlled (exactly) for a simultaneous test procedure 
if it is based on a joint testing family. With just a testing family, (exact) 
control of the Type I W E  is not possible but the Type I per-family error 
rate (PFE) can be readily controlled (by using the Bonferroni inequality), 
which thus provides conservative control of the W E .  The same difficulty 
arises with other nonpararnetric test statistics. 

Joint testing families are obtained only if further assumptions are 
added to our general nonparametric model. One such assumption is that 
of within block independence. This assumption makes {(H!:), Sl.), 1 5  
i <  i’S k )  a joint testing family but not the other two. Under this 
assumption HI’’ is simply the hypothesis that Yij and Yi.j have the same 
distribution for each j .  All three collections {(Hlf!, S,;.), 1 5  i < i’ 5 k } ,  
for 1 = 1 ,2 ,3  become joint testing families under the model 

Y . . = p i j +  ‘ I  E ,  ( l Z i S k ,  1 S j S n )  (2.2) 

where the pij’s are unknown mean effects (fixed) and the error vectors 
( E l j , ,  . . , E k j )  are independently distributed with zero mean vectors but 
wirh possibly different (continuous) distributions, each of which is sym- 
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metric in its k arguments. All three hypotheses Hi(! are given by pJ1 = p,., 
(1 I j S n )  under (2.2). 

In some problems we assume that the treatment and block effects are 
additive, that is, pi, = 6, + p, where the el's and B,'s are unknown fixed 
treatment and block effects, respectively. The marginal distribution of Y,, 
is then of the form 

~ , , ( y ) = ~ ( y - e ~ - p , )  ( i s i s k , i ~ j s n )  (2.3) 

for some unknown continuous distribution function F( . ). (Actually the 
assumption of fixed block effects can be relaxed.) We refer to  (2.2) as the 
location model and to (2.3) as the additive location model. Under the 
additive location model the hypotheses H::? (1 S I 5 3) are given by 
el = o,,. 

2.2 Comparisons with a Control 

2.2.1 
Let us suppose, as in Section 1.1, that the kth treatment is a control and 
the first k - 1 treatments are to  be compared with it. Under model (2.2) 
consider the hypotheses 

A psocedrrre Based on Sign StatiPtics 

Hoi:p, ,=pkl  V j ( 1 S i i k - 1 ) .  (2.4) 

Steel (1959a) proposed a single-step test procedure based on sign 
statistics for testing the hypotheses (2.4) simultaneously. Let S,; be the 
number of blocks in which Y, - Ykl > 0 ,  S,i = n - S l i ,  and S,, = 
max(S,;, S l i )  (1  I; i d k - 1). Next let 

and - max S,, . "-' - 1 S i S k - 1  

Further let S:$) and Sf?,._), be the upper a points of the distributions of 
Si - l  and S,-l, respectively, under the overall null hypothesis H ,  = 

HOi.  The Steel procedure rejects H,, in favor of the one-sided 
alternative that pi, > pkl for some j if 

,-,k-1 

s,: > s,'!:' (1 s i I k - 1) (2 .5 )  

and in favor of the two-sided alternative that pll # fi,, for some j if 

s;, > slpl, (1 s is k - 1 ) .  (2.6) 
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The null distributions of Si-l and S k - l  can be obtained by utilizing the 
fact that the k! permutations of the observations in each block are equally 
likely under H,,. The distribution-free nature of Sl- ,  and Sk-.] is a 
consequence of this fact. This also implies that under model (2.2). the 
procedures (2.5) and (2.6) are based on joint testing families and they 
strongly control the Type I W E  at the designated level a. 

Steel (1959a) gave a few exact values of the critical points S,'!:' and 
Sf-)), for k = 2 and 3, and for n = 3 ,4 ,5 .  Additional tables were given by 
Rhyne and Steel (1965). For large R ,  approximations to the critical points 
can be obtained by using the asymptotic multivariate normality of the 
vector (S,',, . . . , S l - , , k )  with the folIowing parameters under H,,: 

n n 1 
3 

E ( S , ; ) =  5 , var(S,;)= 4 , corr(S,:, s,:,)= - . 

Thus the desired large sample approximations are given by 

and 

(2.7) 

Under models (2.1a)-(2. lc) the correlations among the Sli's depend 
on the unknown distribution functions of the Y,,'s (even under the 
appropriate null hypotheses) and thus we do not obtain joint testing 
families. However, one can use the Bonferroni inequality to conservative- 
ly control the FWE in these cases. This implies that Zp-),.,,3 and 
IZI~-)l.1,3 in (2.7) and (2.8) must be replaced by Z(P ' (k - l ) )  and z ( a / z ( k  - 1)) 

respectively. The Bonferroni approximation can also be employed with 
small sample sizes based on the exact binomial distributions of the S,i's 
and S,i 's.  

We now discuss simultaneous confidence intervals derived from the 
test procedures (2.5) and (2.6) under the additive-location model (2.3). 
Lower one-sided confidence intervals on the differences 6, - 6, (1 S i S 
k - 1) are obtained as follows. Let SI:(6)  be the number of blocks for 
which Yl, - Yk, > 6. It can be shown that the set of values of 6 that satisfy 
the inequality S,L(S)lSi!q) is an interval of the form [a,,=), and the 
collection of such intervals for i = 1,2,  . . . , k - 1 forms simultaneous 
(1 - a)-level lower one-sided confidence intervals on the k - 1 differ- 
ences 6, - 6,. Simultaneous upper one-sided intervals are obtained simi- 

9 
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larly by considering the inequalities S l i ( 6 )  S S;!:' = S,'!:', and simulta- 
neous two-sided intervals are obtained by considering the inequalities 

These confidence intervals can be conveniently computed as follows 
(Lehmann 1963). Order the n differences D, = Y,j - Y,, (1 I j d n )  and 
let Die,) < Dl(2) < - * < Ditn) be the ordered values (1 Z i 5 k - 1). Simul- 
taneous (1 - a)-level lower one-sided intervals are given by 

Sik (6 )  i Sf?,. 

pi(,; ), a) (1 s i s k - 1) (2.9) 

where 1,' = n - S;?' + 1. Simultaneous two-sided intervals are given by 

pic,,,, DiCU,,] (1 I is k - 1). (2.10) 

2.2.2 
Based on what we know about the relative performances of the sign and 
signed rank tests for the paired samples problem, it is natural to expect 
that if an MCP for comparisons with a control can be based on signed 
rank statistics, then it would generally be more powerful than the Steel 
procedure based on sign statistics. Nemenyi (1963) proposed such a 
procedure. However, his procedure is not distribution-free even under 
the restrictive model (2.3). 

< ID(,(,, < - . < IDI,,,, be 
the ordered absolute values of the D,,'s. Let R,, be the rank of D,, in this 
ranking. Then the signed rank statistic for testing the hypothesis H,, : 0, = 
0, (under model (2.3)) against the upper one-sided alternative that 0, > 8, 
is given by 

A Procedure Based on Signed Rank Statistics 

Let D,, = YII - Ykl (1 I j S n )  and let 

S R , ; = C  R , I (Di j>O)  ( l S i S k - 1 )  (2.11) 
/'I 

where I (A )  is an indicator function of event A.  The signed rank statistic 
for testing H,, against the two-sided alternative that e, # 8, is given by 

n(n + 1) 
sR,, = ma,( SRL, - S R , i )  ( 1 S i S k - 1 ) .  (2.12) 

Let SRL-, = maxlsrsk-, SR,; and SR, - ,  = max,s,s,-, SR,,. Further let 
SRZZ' and SRjP_), be the upper a points of the distributions of SR,'-, and 
SR, - I ,  respectively, under the overall null hypothesis H ,  = n;:; H,, . (As 
noted in the sequel, SR,'-, and S R , - ,  are not truly distribution-free under 
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H,,  and therefore their critical points depend on the distribution F under 
model (2.3).) Nemenyi’s (1963) procedure rejects H,, in favor of the 
upper one-sided alternative if 

and in favor of the two-sided alternative if 

Now although the SRl i ’s  are marginally distribution-free, they are not 
jointly distribution-free under H,.  (The latter statement is true, more 
generally, for any subset of at least two of the SR,i’s under the intersec- 
tion of the corresponding H,,’s.) In other words, { ( H o , ,  S R l i ) ,  1 S i 5 
k - l} is a testing family but not a joint testing family. The dependence of 
the joint distribution of S R t k , .  . . , SRk+-,., under H ,  on the common 
distribution of the Yl,’s in each block persists even when the Y,,*s are 
assumed to be independent within blocks and even asymptotically as 
n + 03. These facts were proved by Hollander (1966). Of course, the same 
statements also apply to the statistics SR,, . 

Hollander (1966) showed that the asymptotic distribution of 
(SR;,, . . . , sRl-1.k) is multivariate normal with the following pararne- 
t e n  under H,: 

n(n i- 1)(2n + 1) 
24 

n(n + var(SRi)  = 
4 ’  E(sR,‘,) = 7 

(2.15) 
COIT(SR,’,, SR,?,) = p ( F )  = 12A(F) - 3 .  

Here F is the unknown distribution function in the model (2.3) and 

h ( F )  = Pr{X, + X, c X, + X,, X, + X, < X, + X,} , 

where all the Xi’s are independent with common distribution F. Thus the 
correlations among the SRi ’ s  depend on the unknown F. Therefore 
procedures (2.13) and (2.14) are not even asymptotically distribution- 
free. 

It can be shown using the results of Lehmann (1964) that 0 < p ( F )  5 f 
and for many of the common distributions, p(F) is between 0.45 and 0.50 
(see Miller 1981, p. 162). Nemenyi (1963) used Monte Carlo methods to 
estimate p ( F )  for the uniform distribution and found it to be close to $ .  
Based on this result he proposed the following large sample approxima- 
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tion to the critical point SR:$': 

A corresponding approximation to SRE?l is obtained by replacing 
Zt"' k - 1 . I i 2  by \Zlt?l,l,2 in (2.16). Both of these approximations are slightly 
on the liberal side because the upper bound on p(F) ,  namely i ,  is used in 
their derivation. A conservative approximation to SR,'$' (respectively, 
SR?!,) can be obtained by acting as if p ( F ) = O ,  which amounts to 
replacing Zt-)l , l ,2 in (2,16) by 2'"'' (respectively, Z'"''*') where a * = 

1 - (1 - Alternatively, a consistent estimate of p(F)  can be used 
(see Miller 1981, p. 162) to obtain asymptotically exact critical points. 

We now discuss how simultaneous confidence intervals can be obtained 
under model (2.3) for 8, - 8, (1 S i 5 k - 1) based on signed rank statis- 
tics. These intervals, being based on single-step test procedures (2.13) 
and (2.14), are also not truly distribution-free. 

Let S R , i ( S )  and SR, , (S )  be the signed rank statistics as in (2.11) and 
(2.12), respectively, but after subtracting S from each Y,, (1 5 i S k - 1, 
1 S j S n ) .  It can be shown that the set of S-values that satisfy the 
inequality SR, : (S )S  SR,'2' is an interval of the form [6,,=) and for 
i = 1,2, . . . , k - 1 they give simultaneous (1  - a)-level lower one-sided 
confidence intervals on the (0, - 9)'s. Similarly simultaneous (1 - 
a)-level upper one-sided intervals can be obtained from the inequalities 
S R , i ( S )  = n(n + 1)/2 - S R , i ( 6 )  5 SRl$ ' ,  and two-sided intervals can be 
obtained from the inequalities S R , , ( S )  S SR(,"_), (1 5 i S k - 1). 

Tukey proposed the following graphical method for constructing these 
intervals. First, for fixed i ,  plot the n differences Y,, - Yk, (1 S j S n) on 
the vertical axis. Next draw two lines, one with slope + 1  and the other 
with slope -1 ,  from each one of these n points extending in the positive 
right half of the plane. These lines intersect in (;) points, which together 
with the n points on the vertical axis give n(n + 1112 points. Now draw a 
horizontal line through one of these points so that n(n + 1) /2 -  SR;:' 
points are below it. Let this horizontal line intersect the vertical axis at 6,. 
Repeat this procedure for i = 1,2, . . . , k - 1. Then the desired simulta- 
neous lower one-sided intervals for the (8, - B,) 's are given by (S,, r) 
(1 S i S k - 1). Miller (1981, p. 164) explains why this graphical proce- 
dure works. 

For two-sided intervals two horizontal lines must be drawn through 
two points such that n(n + 1)/2 - SR:"_)), points fall below the lower line 
and above the upper line. Let [ti,,, S,,] be the interval intercepted by the 
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two lines on the vertical axis. Repeat this procedure for i = 1,2, . . . , k - 
1. The desired simultaneous (1 - a)-level two-sided intervals for the 
(0, - ek)'s are then [ai,, 6,,] (1 S i 5 k - 1). 

The procedures of this section are similar to those of the following 
section for pairwise comparisons and hence they are not illustrated here 
separately; see Example 2.1 for pairwise comparisons instead. 

2.3 Pairwise Comparisons 

2.3.1 A Procedure Based on Sign Statistics 
Assume model (2.2) and consider the hypotheses 

Hi;. :p j j  = pi,, V j (1 S i < i' S k) 

Nemenyi (1963) and Rhyne and Steel (1967) independently proposed 
a single-step test procedure based on sign statistics Sll ,  = max(S,:., S,:.) 
that are defined in analogy with the S,, statistics of Section 2.2.1. Let 
S: = m a x , L l ~ l ~ B k  and let S,t'"' be the upper point of the distribution of 
S: under the overall null hypothesis H, = nlsl<,,sk H I , , .  The Nemenyi 
procedure rejects Hll, in favor of the two-sided alternative if 

s,~. > s:'"' (1 i i < i' s k )  . (2.17) 

It can be shown that under the location model (2.2), the collection 
{(HIIS, S,It), I S i < i ' S  k} forms a joint testing family. As a result, the 
single-step test procedure (2.17) strongly controls the Type I W E  at 
level a. 

Selected values of the critical points S:'"' were calculated by Nemenyi 
(1%3) for k = 3 and for small values of n. More detailed tables of 
cumulative probabilities and critical points for k = 3 have been given by 
Rhyne and Steel (1967). To obtain a large sampfe (n -+ 03) approximation 
to S:'"), note that the asymptotic joint distribution of the S+'s is a 
(t)-variate singular normal distribution with the following parameters 
under H,: 

n n 
E(Sl:.) = - , var(S,:.) = - , 2 4 

i # j ,  i ' # j '  
i # j ,  i' = j '  or i = j ,  i f  # i f  corr(S;. , S,;.,) = (2.18) 

- 3  i # j ' , i ' = j o r i = j ' ,  i ' # j .  

Using the fact that Sjj .  = n/2 + ISl;, - n/21 (1 I i < i' S k), we can ap- 
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proximate S:'"' by 

(2.19) 

where l Z l ~ ~ R  is the upper a point of the maximum of the absolute values 
of k* = (:) standard normal r.v.'s having the correlation matrix R whose 
entries are given by (2.18). The values of l Z l ~ ~ n  have not been tabulated 
for the special correlation structure R. But by using the Dunn-Sidak 
inequality we can obtain the following bounds on IZl:!,: 

where a* = 1 - (1 - a)'lk'. Here the left hand side inequality is obtained 
by replacing all + 4's by + t 's ,  and the right hand 
obtained by replacing all 2 f 's by 0's. Nemenyi (1963) 
imating [Zl:), by 

side inequality is 
proposed approx- 

(2.20) 

where the weights 3 and f are chosen because they give the weighted 
average of the correlation coefficients corresponding to the upper and 
lower bounds on lZ$!R, namely, and 0, to be the desired value f. A 
comparison of the large sample approximation to S:'"' given by (2.19) 
(where lZl$:n is approximated by (2.20)) with some exact values shows a 
good agreement and therefore use of this approximation is recom- 
mended. 

The method of constructing simultaneous two-sided confidence inter- 
vals for 6, - 6,. (1 S i < i' d k) is similar to that described in Section 2.2. 
To obtain the interval for 6, - 6,, we order the differences D,,.., = 
Y/ - Y1j (1 s j  z5 n )  as D,,*,(,) < DIl,.(2) < . * < D,,..,,, . The desired inter- 
val for 6, - 0,. is then given by (in analogy with (2.10)): 

where I ,  = n - S:'"' + 1 and u, = S;@). 

2.3.2 
The Nemenyi procedure of Section 2.2.2 for comparisons with a control 
can be extended in an obvious manner to the problem of all pairwise 

A Procedure Based on Signed Rank Statistics 
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comparisons (for which Nemenyi 1963 proposed it originally). Formally, 
this procedure rejects Hii.  : F, = &, in favor of a two-sided alternative if 

SRii. > SR:'") ( 1 S i < i' S k) (2.22) 

where the SRii.'s are defined analogously to (2.12) and SR:'"' is the 
upper a point of the r.v. 

SR: = max SR,,. 
I S i < i ' S k  

under the overall null hypothesis H ,  = n,sI<iesk H l i . .  However, this 
procedure inherits all the difficulties that are present in the case of 
comparisons with a control. In particular, the collection { ( H i i , ,  SR,,.), 
1 I i < i' d k }  is not a joint testing family and the distribution of SR: 
under Ho depends on the common distribution F under model (2.3). In 
large samples (n -P 00) the joint distribution of the SR,,,'s can be approxi- 
mated by a (:)-variate normal distribution with means and variances 
given by (2.15) and with nonnegative correlations that depend on F. By 
setting these correlations equal to zero we obtain the following conserva- 
tive approximation to SR:'"': 

where cx* = 1 - (1 - a)"&', k* = (;), and Z(a"2) is the upper a * /2 point 
of the standard normal distribution. The resulting procedure (2.22) 
conservatively controls the Type I W E  in large samples. 

The simultaneous confidence intervals of Section 2.2.2 can also be 
extended in an obvious manner to all pairwise differences di - 0,. (1 5 i < 
i' I k ) ;  see Example 2.1. 

2.3.3 A Procedure Based on Within-Block Rank S:atistics 
Nemenyi (1963) proposed a single-step procedure for testing all treat- 
ment differences in a randomized block design based on an application of 
Scheffk's projection method (see Section 2.2 of Chapter 2) to the 
Friedman (1937) test. The large sample (n ---* 00) Friedman 2-way analysis 
of variance (ANOVA) test rejects the null hypothesis of exchangeability 
of the Yli's (1 5 i S k) in each block j (1 S j I n )  if 
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where 

(1 S i S k )  

and Rii is the rank of Y,, among the observations in the j th  block 
( 1 S i S  k ,  1 S j S n ) .  By applying the projection method to (2.24) 
Nemenyi obtained a single-step test procedure that rejects the pairwise 
null hypothesis Hi,. of the exchangeability of observations from treat- 
ments i and i' within each block if 

In large samples this procedure controls the Type I FWE conservatively 
at  level a under the overall null hypothesis H,,. At other configurations it 
may fail to control the Type I W E  because of the lack of joint testing 
family property. 

A more powerful procedure for all pairwise comparisons (again with 
guaranteed control of the Type I FWE in large samples only under H,) is 
obtained by noting that asymptotically under H,, the R, 's are jointly 
normally distributed with E ( R ,  ) = ( k  + 1)/2, var(R, ) = (k2 - 1)/12n, 
and corr(fi, , R , .  ) = -1  /(k - 1)  for i # i'. Thus the painvise balance 
condition (2.9) of Chapter 3 is satisfied and hence the results of Section 
2.2 of Chapter 3 can be applied. The resulting improved procedure 
rejects H,,, if 

McDonald and Thompson (1967) have tabulated selected critical 
points of the exact small sample null distribution of maxl,,,,.s, ( R ,  - 
R,. I where R,. = Ey-, R , .  These critical points are slightly on the conser- 
vative side because of certain inequalities used in their computation. 

2.3.4 
Procedures based on sign statistics and within-block rank statistics utilize 
only intra-block comparisons among the treatments. Inter-block informa- 
tion cannot be utilized under the location model (2.2) because of the 
difficulty in adjusting for block effects. However, under the additive- 
location model (2.3) it is possible to  exploit the inter-block information. 
We saw an example of this in Section 2.3.2 where we discussed a 

Procedures Based on Aligned Rank Statistics 
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procedure based on signed rank statistics. This is a special case of 
“aligned rank statistics” that use the inter-block information. Single-step 
procedures based on general “aligned rank statistics” were proposed by 
Sen (1969a). 

Aligning the Yf,’s amounts to transforming them into new variables 
whose distributions do not depend on the block effects. For example, for 
k = 2, if we subtract the average of each block, (Y,, + Y 2 , ) / 2 ,  from each 
observation Yf, ,  then under model (2.3) we get pairs of aligned variables, 
(Y,, - Y2,) /2 and (Y2, - Y , , ) / 2 ,  j = 1, . , . , n .  Ranking after alignment 
means jointly ranking all the transformed variables across blocks and 
treatments. A test of 6, = t# can then be based on the rank sum 
differences between the treatments. For k = 2, use of the signed rank 
statistic is readily seen to be equivalent to the rank sum test applied to the 
joint ranking of aligned variables (Y, ,  - Yz,)’s and ( Y2, - Y,,)’s. 

More generally for k > 2, the alignment of the Y,,’s can be achieved by 
subtracting some estimate of the location of the block (e.g., the block 
mean or median) from each observation in a given block. All aligned 
observations are then jointly ranked. The ranks assigned to the ordered 
aligned observations (referred to as the aligned ranks) are then summed 
across blocks for each treatment. A conditionally distribution-free test of 
the overall null hypothesis H,: 0, = . . = 0, based on aligned ranks util- 
izes the fact that under this hypothesis, all ( k ! ) “  within-block permuta- 
tions are equally likely. Puri and Sen (1971, Chapter 7) show that general 
rank score statistics obtained from aligned ranks are unconditionally 
distribution-free in large samples. 

The theory of aligned rank statistics developed in Sen (1968) was 
applied to the problem of all pairwise comparisons by Sen (1969a). H e  
used aligned rank statistics obtained from the joint rankings of observa- 
tions from all treatments. Alternatively, one may adopt the following 
separate rankings procedure to obtain a (conditional and asymptotically 
unconditional) testing family. When a test for the homogeneity of a 
subset P of treatments is desired, align observations only from those 
treatments within each block (by subtracting some translation invariant 
and symmetric function of the Y,,’s for i E P ) .  Next rank order these 
aligned observations across treatments in subset P and across blocks, and 
let the test statistic of the corresponding hypothesis be a suitable function 
of these aligned ranks. 

Example 2.2. Table 2.1 gives some data on the effectiveness of hypnosis 
(higher skin potential indicating higher effectiveness) under four reques- 
ted emotions (treatments) on eight sibjects (blocks). These data are 
taken from Lehmann (1975, p. 264). 
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TABLE 2.1. Skin Potential Adjusted for Initial Level (in Millivolts) under Four 
Hypnotically Requested Emotions 

Subjects 

Emotions 1 2 3 4 5 6 7 8 

Fear (1) 23.1 57.6 10.5 23.6 11.9 54.6 21.0 20.3 
Happiness (2) 22.7 53.2 9.7 19.6 13.8 47.1 13.6 23.6 
Depression (3) 22.5 53.7 10.8 21.1 13.7 39.2 13.7 16.3 
Calmness (4) 22.6 53.1 8.3 21.6 13.3 37.0 14.8 14.8 

Source: Lehmann (1975). 

Suppose that we wish to make all pairwise comparisons between the 
four emotions. We assume the additive-location model (2.3) and use the 
procedures of Section 2.3. To apply these procedures we calculate the 
sign and signed rank statistics as shown in Table 2.2. The ties occurring in 
the calculation of signed rank statistics are handled by assigning average 
ranks. They affect the variance of the SRi,.'s but this effect is ignored 
here. 

From Table 2.2 we see that the comparison (1,4) between the 
emotions of fear and calmness produces both the largest sign statistic and 
the largest signed rank statistic. We compare the sign statistic S , ,  = 7 with 
the large sample critical point (2.19) where IZIEtR is approximated by 
(2.20). For a =0.20 we obtain 

- -  - x - 2.78 + I x 2.09 = 2.01 . 
3 v 2 3  

Then from (2.19) we obtain 

Thus we see that even at a =0.20 we cannot find any significant 
differences between the four emotions. This is, of course, due to the fact 
that with just eight blocks, the MCP based on sign statistics lacks 
sufficient power to detect any differences. 

Let us next apply the signed rank procedure of (2.22). The SR,,.'s are 
not jointly distribution-free (both in finite samples and asymptotically) 
even under the restrictive model (2.3). Hence we use the conservative (in 
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large samples) upper bound on SR:'"' given by (2.23) to obtain 

SR:(o.20) 3 - 8 ~ 9 x 1 7  
- 4 2  + I + 2 . 0 9 J 1 4  1 = 133.42J = 34. 

Thus we find that the comparison (1,4) with SR,, = 34 is barely signific- 
ant at a =0.20. 

We next demonstrate how to construct simultaneous pairwise confi- 
dence intervals based on sign and signed rank statistics. We again use the 
pair (1,4) for illustration purposes. The confidence intervals for the 
pairwise differences ei - 6, based on sign statistics are given by (2.21) 
where for a = 0.20 we have I ,  = n - S:'"' + 1 = 8 - 8 + 1 = 1 and u, = 
Sf '" )  = 8. The desired simultaneous two-sided 80% confidence interval 
for 8, - 0, is therefore given by [D14,(l), D14,(8)], which equals [ O S ,  17.61 
as seen from Table 2.2. 

To calculate the interval based on signed rank statistics we employ the 
graphical method given in Section 2.2.2 (modified here for pairwise 
differences). First, as shown in Figure 2.1, plot the differences Y,i - Y4, 
(1 S j  S 8) on the vertical axis and draw lines with slopes t l  through 
these points. This gives a total of n(n + 1)/2 = 36 points as explained in 
Section 2.2.2. Next draw two horizontal lines through two of these points 
such that n(n + 1)/2 - SR:'"' = 36 - 34 = 2 points fall above and below 
each line. The desired 80% simultaneous two-sided confidence interval 
for 0, - 0, is then given by the interval intercepted on the vertical axis by 
the two horizontal lines, which as seen from Figure 2.1 equals 
I0.30, 11.551. 

To apply procedure (2.26) we assign ranks 1-4 to the observations 
under four different conditions for each subject. The resulting rank sums 
are R,.  =27, R2. =20, R3, = 19, and R,. = 14. The maximum rank sum 
difference is lR l .  - R4.( = 13. This difference just fails to be significant at 
a = 0.05 as can be seen by comparing it with the critical value 

The corresponding exact critical value can be found from McDonald and 
Thompson's (1967) tables. This value is 14 with an exact upper tail 
probability of 0.034, which agrees with the large sample approximation. 

It is of some interest to note that in this example a much more 
significant result is obtained with procedure (2.26) than with procedures 
(2.17) and (2.22). It is not known whether this is generally true, that is, 
whether procedure (2.26) is generally more powerful. 



RANDOMIZED COMPLETE BLOCK DESIGNS 265 
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Figure 2.1. Graphical construction of a simultaneous 80% two-sided confidence interval for 
0, - 8, based on signed rank statistics. 

6i 

2.4 Step-Down Procedures 

Here we discuss only the choice of distribution-free test statistics that can 
be used in different step-down procedures. Other aspects of these proce- 
dures are essentially as discussed in Section 1.3. Consider the hypothesis 
Hp of homogeneity of treatments in subset P of cardinality p 2 2. For 
testing this hypothesis we can use a variety of nonparametric test 
statistics; the following three are simple extensions of the statistics 
presented earlier for painvise comparisons: 
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(i) 

(ii) 

S, = max Sll, , 

SR, = max SR, , .  , 

1.1 E P  

1.1 E P  

Here R f p )  = Cy=l R:;'In and R6' is the rank of 
tions in block j that come from treatments in set 

(2.27) 

Yjj among the p observa- 
P. These statistics should 

be compared with S;(*pp), SR,+'"p', and ,y:-,(ap), respectively, where the 
ap's are nominal significance levels. 

Under the additive-location model (2.3) we can construct step-down 
procedures that use aligned rank test statistics. These are based on testing 
families (conditionally and asymptotically unconditionally) but not on 
joint testing families. To guarantee control of the FWE in such settings 
one may use nominal significance levels (4.20) of Chapter 2 that are 
derived from the Bonferroni inequality. Other step-down procedures 
(e.g., the Peritz closure-type procedure or step-down procedures for 
comparisons with a control) can also be readily constructed. 

2.5 A Comparison of Procedures 

The remarks made in Section 1.4 pertaining to the choice between 
separate rankings and joint rankings apply in the present setting too. 
Thus the procedures of Section 2.3.3 would not generally be preferred for 
making pairwise comparisons because they are based on joint rankings 
and hence are not guaranteed to control the Type I FWE in the strong 
sense; they also do not yield confidence estimates. Procedure (2.22), 
although it is based on separate rankings, suffers from a similar defect in 
that it is not truly distribution-free. However, this can be remedied (at 
least in large samples) by using an easily determined conservative upper 
bound on its critical point. Procedure (2.17) is distribution-free but may 
suffer from lack of power in some situations. Thus the signed rank 
procedure (2.22) with a suitable correction of its critical point may offer 
the best choice in practice. 

If one is interested only in tests and not in confidence estimation, then 
step-down procedures should be used because of their higher power. No 
studies have been conducted to assess the relative powers of step-down 
procedures based OR different test statistics given in (2.27).  Therefore no 
clear recommendation can be given. It should be noted that these 
statistics are based on separate rankings for different subsets. Thus the 
step-down procedures based on them do not have the drawbacks of the 
single-step procedure (2 .25) ,  which was based on joint rankings. 
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3 PROCEDURES BASED ON OTHER APPROACHES 

3.1 

To bring out the main ideas behind permutation MCPs (also referred to as 
randomization or rerandomization MCPs) we consider the problem of 
pairwise comparisons among all treatments in the simplest setting of a 
balanced one-way layout. Miller (1981, p. 179) proposed a procedure for this 
problem based on the randomization distribution of the range of the sample 
means. This distribution is obtained by regarding all (kn)! perrnuta- 
tionsof the observations among the k treatmentsasequally likely. The upper 
a point of this distribution is used as the common critical point for testing the 
homogeneity of any subset of treatments by using the range of the sample 
means for that subset as the test statistic. Shuster and Boyett (1979) extended 
this procedure to randomized block designs. 

Petrondas and Gabriel (1983) showed that these procedures are not 
valid because, for example, a pairwise null hypothesis implies equal 
probabilities only for the permutations of the observations from those two 
treatments, and not for the permutations of the observations from all the 
treatments. As a result, the use of a common critical point obtained from 
the randomization distribution of the range of all the sample means does 
not control the Type I FWE of the procedure. To obtain valid permuta- 
tion tests, one must consider separately for each hypothesis only the 
subreference set of permutations that become equally likely under that 
hypothesis. Thus, for example, for testing the equality of any two 
treatments, one must consider the randomization distribution induced by 
the ( 2 n ) ! / ( n ! ) '  equally likely permutations of the  2n observations from 
those two treatments with n observations allocated to each. The test is 
conducted by referring the observed value of the test statistic to the upper 
a point of the randomization distribution of that test statistic. Such a test 
is clearly distribution-free. 

In the same manner, a distribution-free test can be obtained for testing 
the homogeneity of any subset of treatments. A family of such subset 
hypotheses. together with the corresponding test statistics (with separate 
randomization distributions), forms a testing family but not a joint testing 
family. However, one can use the Bonferroni method to construct a 
procedure that controls the FWE conservatively. For example, to control 
the FWE for the family of all pairwise comparisons, each painvise test 
can be carried out at level a/(;). To achieve this, a separate critical point 
is used for each test, which is the upper o / ( i )  point of the randomization 
distribution (appropriate for that test) of the test statistic. Recently 
Gabriel and Robinson (1986) have shown how simultaneous confidence 
intervals can be derived from rerandomization tests. 

Procedures Based on Permutation Tests 
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Petrondas and Gabriel (1983) also discuss a Peritz-type closed step- 
down procedure that uses tests based on separate randomization distribu- 
tions. All of these procedures can be extended to the randomized block 
design setting. Here the randomization distributions are obtained by 
regarding within block permutations as equally likely. 

3.2 A Procedure Based on Median Statistics 

Nemenyi (1963) proposed a single-step procedure for the problem of 
pairwise comparisons in the one-way layout setting based on Mood's 
two-sample median test. This procedure was rediscovered by Levy 
(1979). As we point out below, this procedure is plagued with serious 
problems and must be modified for use in practice. 

Let n,, n2, . . . , n, be the sizes of independent samples corresponding 
to k treatments. Let F, be the common continuous distribution of the n, 
independent observations on treatment i and put N = E:=, n,. Nemenyi 
proposed the following procedure for testing all pairwise hypotheses 
H,,. : F, = F,. (1 d i < i f  I k): Find the grand median of the pooled sample 
of all N observations and calculate M I ,  the number of observations from 
the ith treatment group that exceed the grand median (1 S i S k). Reject 
H,l, if IM,/n, - M , , / n l . 1  is large (1 5 i < i' 5 k). The common critical 
value is obtained from the joint distribution of M I ,  M,, . . . , M, under 
the overall nu11 hypothesis Ha : Fl 3 F2 = * * . = Fk.  This distribution is 
given by 

where 

For the case n, = - * * = n, = n ,  Nemenyi obtained exact critical points of 
the distribution of max,si<i.sk IM, - M,,1 using (3.1) for a few selected 
values of k and n. In other cases one can use the asymptotic ( n , - , m  V i) 
multivariate normal approximation to the distribution of the M,'s with the 
following parameters under H,: 
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ni (N  - nl)(N - M)M 
var( Mi) = ( l S i S k ) ,  (3.3) N'(N - 1) 

nlni.(N - M)M 
COV(M,, MI.)  = - ( 1  S i < i ' S  k )  . 

N*(N - I )  

If the ni's are equal to a common value, say, n, then the Mi's have equal 
variances and covariances, and 

2n(N-M)MN n var(Ml - MI.) = = -  
NZ(N-1)  - 2 

Therefore (as noted in Section 2.2 of Chapter 3), the r.v. 

[Mi - Mi.l  
m max 

I % i < r ' P k  

(3.4) 

(3.5) 

is asymptotically distributed as a Qk*= r.v. under H,.  Thus for the large 
equal sample sizes case, <(qQtL serves as the common critical point 
for testing : F, = F,. using the test statistic (MI - M," (1 S i < i' I k ) .  

One basic difficulty with this procedure is that it is not based on a 
testing family since for any treatment pair (i, i'), the distribution of 
IM, - M,,I is not determined under H,,. :Fl = F,.. This difficulty is. of 
course, common to all nonparametric MCPs that use the method of joint 
rankings. Ryan and Ryan (1980) have pointed out another difficulty with 
this procedure. They give an example where four treatment groups are 
equispaced in their locations and the interval supports of their distribu- 
tions are nonoverlapping. Therefore we have M ,  = 0, M, = 0,  M, = n ,  
and M, = n with probability one. Using the median procedure, the 
treatment pairs (1,2) and (3,4) will be declared nonsignificant and all 
other pairs will be declared significant (if n and/or a are large enough). 
Notice that, although the location separations between 1 and 2 and 
between 2 and 3 are the same, this procedure declares the former pair as 
nonsignificant but the latter pair as significant. 

A way to overcome both of these difficulties is to base the procedure 
on separate median statistics for each of the (:) pairwise comparisons. 
This gives a joint testing family. Therefore the necessary critical point can 
be found from the distribution of the maximum of these median statistics 
under the overall null hypothesis. 
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3.3 Procedures Based on General Linear Rank Statistics 

Sen ( 1966) proposed the following nonparametric generalization of 
Tukey's T-procedure. This generalization uses general linear rank statis- 
tics, and is applicable to balanced one-way layouts. 

Denote by n the common sample size from each treatment group. Let 
J , ( u )  be a monotone nondecreasing function defined on the [0, I]  interval 
satisfying the regularity conditions stated in Chemoff and Savage (1958, 
p. 972). Let = J n ( r n / 2 n )  (1 i m I 2 n ) ,  and let 

1 2n v, = - c (Em., - En)* 4 (3.6) 
1 2n 

2n 2 n - 1  m = ,  
En = - c Ern." 7 

For comparing treatments i and i f ,  Sen proposed the two-sample Cher- 
noff-Savage statistic: 

2n 

T,, ,  = c E, , ,Zc"  (1 S i < i' 5 k )  (3.7) 
m = l  

where Z:')  = 1 if the mth smallest observation among the pooled sample 
of 2n observations from treatments i and i' comes from treatment i, and 
ZE') = 0 otherwise. The Wilcoxon statistic RS,:, considered in Section 1.2 
is a special case of (3.7). 

It can be shown that {(If,,,, T I , , ) ,  1 5  i < i' 5 k} forms a joint testing 
family. Therefore the common critical point for the single-step test 
procedure that controls the Type I W E  at level a can be obtained as the 
upper a point of the distribution of the maximum of the (suitably 
standardized) statistics T,,,. Under the overall null hypothesis Sen (1966) 
showed that 

is distributed asymptotically ( n - , m )  as the range of k i.i.d. N ( 0 ,  1) r.v.'s. 
Thus Sen's procedure concludes that treatments i and i ' are significantly 
different if 

Scheffe's S-procedure can also be generalized to the nonpararnetric 
setting in a similar manner as above. Both of these procedures can be 
extended to more complex designs. The review article by Sen (1980) is a 
good reference for these developments and their multivariate extensions. 
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We now turn to the problem of simultaneous confidence estimation. 
Sen (1966) showed how the Hodges-Lehmann (1963) method can be 
used to obtain simultaneous confidence intervals for 0, - 0,. (1  d i < i '  S 
k) under the location model for the one-way layout design. The method 
involves a somewhat complicated inversion scheme. Sen (1969a) indicated 
that the same method can be extended to the randomized block design 
(under model (2.3)) using general aligned rank scores. Wei (1982) 
proposed a simpler method that does not require numerical inversion. 
Wei's intervals are based on Mann-Whitney statistics (applied to aligned 
Cbservations), and they can be given in an explicit form as follows: Let 
Y,, = Yl, - pi  be the aligned observations where p , j  is the jth block mean 
( i S i S k ,  l S j S n ) .  Let 

D:;;) < D!;;) < . . . < Dia;: 

be the ordered values of the differences D;;.'' = F,, - (1  S j ,  j '  Z n ) .  
Then simultaneous confidence intervals for 0, - 0,. with a large sample 
confidence level of 1 - a are given by 

D("') 0,) < 4 - e,. < D:::": (1  s i < i' 5 k )  (3.10) 

where la = [n2/2 - ( Q 3 2 ' * / 6 ) 1 ,  u, = [ n 2 / 2  + ( Q F : t 1 ~ ' ~ / 6 ) 1  + 2 and [XI 
denotes the greatest integer 5 x. 

4 ROBUST PROCEDURES 

In recent years considerable research effort has been directed toward the 
development of robust estimates of location and their standard errors. 
Although the problem of robust estimation has received much attention, 
very little effort has been made to develop MCPs that employ these 
robust estimates. Two recent contributions in this direction have been 
made by Dunnett (1982) and Ringland (1983). 

Dunnett conducted an extensive simulation study to compare simulta- 
neous confidence procedures based on different estimators of location in 
terms of two criteria: (i) stability of their joint confidencc levels under 
different nonnormal but symmetric and unimodal distributions, and (ii) 
their average confidence interval widths. For the family of all pairwise 
comparisons among the location parameters dl (1 S i S k) in a one-way 
layout setting, he considered the following class of simultaneous confi- 
dence intervals: 
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In (4. l ) ,  i, is a robust estimate of O,, &i is an associated robust estimate of 
the scale parameter cr, of the distribution of the observations from 
treatment i, i, is an “effective” sample size for il ,  and (,,,, is a critical 
constant that is chosen so as to guarantee the desired joint confidence 
coefficient of 1 - a. Dunnett approximated t,,., by T!””, the upper a* 
point of Student’s 1-distribution with GI, d.f. where 

”11 

6, is an “effective” d.f. associated with I?:, and a* is chosen so that the 
intervals in (4.1) have a joint confidence coefficient of 1 - a when the 
underlying distributions are normal. A conservative choice for a* is 
a* = i(1- (1 - where k *  = (i). As an example, if 6, is the p- 
trimmed mean, then i, = n,(l - 2 p )  and < = i, - 1. For some other 
robust estimators such as adaptive estimators (the particular adaptive 
estimators studied were wave, bi-square, and Hampel) the choice of il 
and GI is not so clear, and Dunnett took them to be n, and n,  - 1.  
respectively. 

Dunnett’s simulation study was restricted to the balanced one-way 
layout setting. His overall conclusions were as follows: Tukey’s T- 
procedure becomes increasingly conservative and yields very wide confi- 
dence intervals for long-tailed and outlier prone distributions. As cxpcc- 
ted, procedures based on robust estimators roughly maintain the desig- 
nated joint confidence level. They generally have narrower confidence 
intervals for nonnormal distributions at the expense of somewhat wider 
confidence intervals relative to the T-procedure for the normal distribu- 
tion. Procedures based on trimmed mean type estimators perform better 
for short-tailed distributions such as the uniform, while procedures based 
on adaptive estimators (wave, bi-square, and Hampel) perform better for 
long-tailed distributions such as the Cauchy. 

An important outcome of Dunnett’s work is the finding that the 
distribution-free procedure of Steel and Dwass (which controls the FWE 
for all distributions) is the best choice for near-normal distributions. The 
Steel-Dwass procedure is dominated by other procedures based on 
robust estimators only for extremely long-tailed distributions. Thus to 
make a proper choice among the various rival procedures, it is necessary 
to have a rough idea about the nature of the underlying distributions. 

Ringland (1983) considered the problem of simultaneous confidence 
estimation of the location parameters 0, (1 5 i 5 k )  in a one-way layout 
under the assumption of a common scale parameter u for all treatment 
distributions. Let 2, = f l (4 - O , ) / f  where ij is an M-estimate of 8, and 
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Fj is an asscbciated Studentizing factor (1 5 i S k); the formulas for 
evaluating the 8i’s and $i’s are given in Ringland’s article. He considered 
the following three methods of constructing simultaneous confidence 
regions for the 6,’s: 

(i) The Bonferroni method: 

(ii) The Studentized maximum modulus method: 

(iii) The Scheffi projection method: 

k 

i= I 

Here v may be taken to be the usual error d.f., u = E:=.I n, - k. 
To study the error probabilities associated with these three confidence 

regions, Ringland derived the first order Edgeworth expansion for the 
joint distribution of the Zi’s from which he obtained approximations to 
the desired probabilities. He evaluated these approximations numerically 
(and estimated the corresponding exact probabilities by simulation) for 
different choices of M-estimators of the 0,’s and cr and for different 
underlying distributions. His main conclusions were as follows: The 
Bonferroni and Studentized maximum modulus methods are relatively 
nonrobust and exceed the nominal error probability a when k is large and 
the distributions are heavier tailed than the normal. On the other hand, 
the Scheffe projection method controls the FWE quite accurately under 
different situations and is thus robust. These conclusions are fairly 
independent of different choices of estimators. In summary, this study 
points to  the lack of robustness of the classical (based on the least squares 
estimates) Tukey-type (finite UI) MCPs and the need for accurate 
approximations to the critical points of the distributions of the maximums 
of Studentized M-estimators. 
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Some Miscellaneous Multiple 
Comparison Problems 

In this chapter we study procedures for some miscellaneous multiple 
comparison problems. Some of these problems are related to thc ones 
considered in the earlier chapters. But for the most part these problems 
and associated procedures do not fit neatly into one of the earlier 
chapters and hence are discussed separately here. 

In Section 1 we discuss some multiple comparison procedures (MCPs) 
for categorical data. Section 2 considers the problem of multiple com- 
parisons of variances; the problem of simultaneous confidence regions for 
variance components in random-effects models is also discussed here. 
Section 3 describes some graphical procedures for multiple comparisons 
of means. These procedures are for the most part informal in nature (i.e., 
they are not designed to control a specified error rate) as opposed to 
those discussed in Chapter 3. Section 4 is concerned with multiple 
comparisons of means under order restrictions. Section 5 deals with the 
problem of simultaneous inferences on interactions in two-way layouts. 
Finally Section 6 considers the problem of partitioning (clustering) of 
treatment means in a one-way layout. 

I MULTIPLE COMPARISON PROCEDURES FOR 
CATEGORICAL DATA 

We review here procedures for the following problems involving categori- 
cal data: 

(i) Multiple comparisons among k treatments with Bernoulli re- 
sponses. 
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(ii) Multiple comparisons among the cell probabilities of a single 
multinomial distribution. 

(iii) Multiple comparisons among the cross product ratios in two and 
higher dimensional conlingency tables. 

(iv) Multiple comparisons among k logistic response curves. 

Even for making a single inference a very few exact small sample 
procedures are available for categorical data. Thus it is not surprising that 
almost all MCPs are based on large sample normal approximations. 

1.1 Treatments with Bernoulli Responses 

Suppose that we wish to compare k independent treatments with Ber- 
noulli responses in terms of their success probabilities r, ,  r2,  . . . , rk.  
The data consist of n, independent observations on the ith treatment of 
which Y, are successes, the sample proportion of successes being 6, = 
Y,/n, (1 5 i d k ) ,  For pairwise comparisons among the r , ' s ,  (1 - a)-level 
large sample (n, -+ = Vi) simultaneous confidence intervals based on the 
Tukey-Kramer (TK) procedure (see Chapter 3, Section 3.2.1) are given 
by 

( 1 5 i < j % k )  (1.1) 

where QEi is the upper a point of the range of k independent and 
identically distributed (i.i.d.) standard normal variables. Simultaneous 
confidence intervals for rn prespecified contrasts among the n,'s can be 
obtained by applying the Bonferroni or the somewhat sharper Dunn- 
Sidak inequality (see Appendix 2). 

Knoke (1976) considered a so-called maximal contrast test that is 
essentially the Scheffe procedure applied to dichotomous data. This 
procedure can be used to data-snoop contrasts among the r r ' s .  Using 
Monte Carlo simulations he studied the significance levels and powers of 
several competing procedures to test the overall null hypotheses H,, : r ,  = 
r2 = * .  . = .rr, and/or to make multiple comparisons among the mi's. 

Bhapkar and Somes (1976) considered a matched samples design for 
comparing k treatments with Bernoulli responses. In this design there are 
n matched sets of observations or blocks where each block consists of 
responses of the same subject to k treatments or responses of k different 
subjects who are matched according to relevant criteria and then assigned 
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randomly to k treatments. Let Xll = 1 or  0 depending on whether the 
outcome for the ith treatment is a success or failure in the jth block 
(1 S i S k, 1 S j 5 n) .  For this experimental setup Bhapkar and Somes 
assumed a 2k-cell multinomial model where the cells are indexed by 
6 = (al, a,, . . . , 6,)’ with 6, = 1 or 0 indicating a success or failure, 
respectively, on the ith treatment (1 S i S k). Let lr6 be the cell probabili- 
ty for cell 8, C, lr6 = 1. The marginal success probability Ti for the ith 
treatment is given by the sum of the v6’s over all 6’s with S,  = 1 
(1 S i d k) and the joint success probability lr,, for the ith and jth 
treatment is given by the sum of the n a y s  over all 6’s with 6, = 6, = I 
(1 S i # j  I k). It is desired to make comparisons among the lri’s.  

Let Y, = Cy.=, X,l and i?, = Y, /n  be the number of successes and the 
proportion of successes on the ith treatment, respectively (1 S i d k). 
Also let Y,, = Z;=, X,,X,, be the number of blocks that result in successes 
on both the ith and jth treatment and let i?,, = Y,,/n (I  5 i Z j 5 n). It is 
well known that the vector vE(i?, - lr,, i;* - lr2, . . . , i?k - irk) has an 
asymptotically ( n  -P 00) multivariate normal distribution with zero mean 
vector and variance-covariance matrix V = { u,,} where ull = n,( 1 - T,) 
and u,, = nit - n , ~ ,  (1 S i # j S  k). Furthermore, the matrix V can be 
consistently estimated by ?= {C,,} where C,, = i?,(l - el) and 6,) = i?, - 
Gii?l (1 d i # j  d k). Using these facts Bhapkar and Somes (1976) showed 
that asymptotically (1 - a)-level simultaneous confidence intervals for all 
contrasts ZF=l c,n, are given by 

where C? is the &-dimensional contrast space and ~ : - ~ ( a )  is the upper a 
point of the chi-square distribution with k - 1 degrees of freedom (d.f.). 
These intervals are derived by the Scheffe projection method (see Section 
2.2 of Chapter 2). If one is interested in a prespecified finite set of 
contrasts among the ni’s, then generally narrower intervals can be 
derived by using the Bonferroni inequality or the slightly sharper Dunn- 
Sidak inequality. The large sample (1 - a)-level Dunn-SidPk simulta- 
neous intervals for all pairwise comparisons are given by 

I ’GI + GI - 2GIj - (3, - G,)’ 
d n 

( I S i C j S k ) ;  (1.3) 

here Z‘”” is the upper a* = f {1 - (1 - a)’’k’} point of the standard 
normal distribution and k* = (:). Note that because the Gi’s are not 
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independent it is not known whether the TK-procedure can be applied 
here to yield guaranteed (in large samples) simultaneous (1 - a)-level 
painvise confidence intervals except when k = 3; see the discussion in 
Section 3.2.1 of Chapter 3. 

1.2 Multinomial Cell Probabilities 

Consider a single k-cell multinomial distribution with cell probabilities 
T, ,  n,, . . , , nk, C;",l T, = 1.  Let Y,, Y,, . . . , Yk be the observed cell 
frequencies with CF=l Y, = n and let 6, = Y , / n  (1 S i 5 k). Also let n = 

(n,, r,, . . . , Asymptotically 
( t i -  s), t/Ti(l i  - n) has a (k - I)-variate normal distribution with zero 
mean vector and variance-covariance matrix V =  {u, , }  where u,, = n,(l - 
T, ) ,  u,, = - 7rl n, ( 1 S i # j S k - 1). Hence 

and & = (el, e2, . . . , Gk- l ) ' .  

is distributed as ,y:-,. By solving the inequality n C:rl {(el - T,)'/T,} d 
x i - , ( a ) ,  Quesenberry and Hurst (1964) derived the following asymptotic 
(1 - a)-level simultaneous confidence intervals for the n,'s: 

where 5 = ,yi-l(a).  These intervals are shorter in small samples than the 
following intervals proposed by Gold ( 1963) but are asymptotically 
equivalent to them: 

Note that both (1.4) and (1.5) are conservative, being based on the 
Scheffi projection method. 

Goodman (1965) proposed Bonferroni intervals for the r I ' s  that are 
shorter than both (1.4) and (1.5) for the usual values of k and a. (See Alt 
and Spruill 1978 and Savin 1980 for more detailed comparisons between 
the Bonferroni and Scheff6 intervals.) These intervals use 6 = ,y:(a/k) = 
(Z(R'2C))2 in (1.4). Goodman (1965) has also given Bonferroni intervals 
for pairwise differences r, - T, and for pairwise ratios T~/T,. 

Bailey (1980) has studied the use of the arcsine transformation of the 
multinomial proportions el = Y, /n  to obtain simultaneous confidence 
intervals for the T,'s. He found that these intervals are preferable to (1.4) 
in small samples. 
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For multiple comparisons among the cell probabilities of several 
independent k-cell multinomial distributions, see Gold (1963) and Good- 
man (1964a). 

1.3 Contingency Tables 

Goodman ( 1964b) considered the problem of constructing simultaneous 
confidence intervals for cross product ratios 

( 2 s  is a,  2 s  j S b )  =I I T I ,  

Ti I TI] 
= - 

in an a x b table. For convenience, assume that sampling is multinomial 
with a total sample of size n and cell probabilities rr1 (1 S i S a ,  1 d j S 
6). Let Y,, denote the observed cell frequencies with Cp=, C:=, Yr, = n. 
The natural estimate of 4r, is (assuming that all the YrI’s > 0) 

Let Or, = log, $,, and ill = log, I&/. It can be shown (Piackett 1962) that for 
studying the joint distribution of any set of contrasts among the logcYII’s, 
the latter can be regarded as asymptotically (n + m) uncorrelated with 
variances l/ra7rr,. From this result one can calculate the asymptotic 
covariance matrix V of the O,,’s. The diagonal entries of V are u,] = 

var(ir,) = n- ’ (7rr i1  + ..,I1 + T;’ + nlll) and the off-diagonal entries are 

ull, + a,, T;’’) where 6,, and a,, are 
Kronecker 6’s. Moreover, asymptotically the 6,,’s are-jointly normal with 
means Or,. Let 8 denote the vector of the 6,,’s and 8 the corresponding 
vector of the 6r,1s. Let 5 be a consistent estimate of V obtained by 
estimating the n7zI,’s with Y,,’s. Then the asymptotic distribution of 
(6 - 8)’+-’(6 - 8 )  is ,yt where v = (a  - 1) x (6 - 1). By Scheffe’s projec- 
tion method it then follows that asymptotic (1 - a)-level simultaneous 
confidence intervals for all contrasts among the 9’s are given by 

1 1  

= cov(e,,, O r - , . )  = n - l ( r l l 1  + a,, 

where c denotes the contrast vector formed from the crj’s satisfying 
Cg,, C;+ c,, = 0 and C“ denotes the corresponding v-dimensional ( v  = 
( a  - l)(6 - 1)) contrast space. 

If only pairwise differences between the Orj’s (which correspond to 
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pairwise ratios between the t,hlj’s) are of interest, then shorter intervals 
can be obtained by using the TK-procedure. These intervals are given by 

( 2 s  i, i ’5  a, 2 1  j ,  j ‘ S  b ) .  (1.9) 

Gabriel (1966) proposed a simultaneous test procedure for testing 
independence hypotheses for all subtables of an a X 6 table. If the 
sampling is product multinomial, that is, if the rows can be viewed as 
independent multinomial populations, then any independence hypothesis 
for a subtable can be interpreted as a homogeneity hypothesis concerning 
the given subset of cell probabilities of the corresponding row popula- 
tions. 

Let A and B denote the sets of all rows and columns. respectively, and 
let P C A and Q C B denote specified subsets of rows and columns with 
cardinalities p d a and q d 6, respectively. For testing the hypothesis of 
independence HpQ for the subtable formed by the rows in P and columns 
in Q, Gabriel proposed the log-likelihood ratio statistic 

(1.10) 

where Ylo = C l e Q  Y,, , Yp, = C,,, Y,,, and YpQ = C , E P  C , E V  Y,, . The hypo- 
thesis H,, is rejected if Z > ,y”,(c.) where v = (a - l)(6 - 1). Note that 
the common critical point ,y ,(a) is based on the asymptotic distribution of 
Z , ,  = rnaxp,Q ZPq under the overall independence hypothesis H A , =  ’ P.Q HPQ; this distribution is chi-square with v = (a  - l)(b - 1) d.f. It 
follows from Theorem 1.2 of Appendix 1 that this procedure controls the 
Type I FWE at level a in large samples for the family of hypotheses H p Q .  
Furthermore, this simultaneous test procedure is coherent because the 
statistics Z,, are monotone (i.e, if P >  P’. Q 2 Q’ then ZpQ 2 ZPeQ’). 
Gabriel noted that the family of hypotheses tested by this procedure can 
be expanded (without exceeding the upper limit u on the FWE) to 
include hypotheses of the type n:=, Hp,Qh where ( P , ,  Q , ) ,  
( P 2 ,  Q 2 ) ,  . . . , ( P , ,  Q,) are disjoint combinations. It is concluded that at 
least one H ~ , ~ ~  is false if E:=, z , ,  > ,yt(a). 

Hirotsu (1983) considered the problem of simultaneous testing of all 
null hypotheses concerning rowwise interactions (and similarly but sepa- 

‘9 
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postulated only for a: and not for a’.) The full prior density is then 

P( rl, a’, 5 ’ )  =PI( r))P*(U29 5 ’ )  (3.24) 

where pI( q) is given by (3.21) with a: = ( 5’ - a’) ln .  
Starting with this prior and the loss function given in (3.14) and (3.11), 

Waller and Duncan derived the Bayes rule, which is the product of the 
following component Bayes rules: 

where t* = t * ( K ,  F, q,  f )  is a critical constant that depends on K, f =  
vo + v = vo + k(n - l ) ,  q = k - 1 + qo, 

and 

(3.26) 

(3.27) 

Here MS,,,,, and MSerr0, are the usual mean squares in the ANOVA 
table. 

The values of t * ( K ,  F, q ,  f )  have been tabulated by Waller and 
Duncan (1972). We give these values in Table 9 of Appendix 3. The 
derivations for the computations of these tables are given in Waller and 
Duncan (1974) and a computer program is given in Waller and Kemp 
(1975). We note the followin relation between the t * (K ,  F, q ,  f)-values 
of this section and t * ( K ,  v, y )-values of the preceding section: 5 

t * ( K ,  F, Q), Q)) = t* (K,  00, F - 1) 

= p F - 1  t * ( K ,  =, m) . (3.28) 
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For using the table of the t*-values one needs to specify K ,  qo (with 
q = k - 1 + qo) and vo (with f =  Y + yo); in addition the value of the 
F-ratio is needed, which can be calculated from (3.26) once (i and G: are 
specified. As noted before, K = 50, 100, and 500 correspond roughly to 
a = 0.10, 0.05, and 0.01, respectively. The values of 4, and vo are chosen 
to indicate the relative weights that one wishes to attach to the prior 
estimates [i and ui with reference to k - 1 and v, which are the weights 
(d.f.) associated with MS,,,,, and MS,,,,,, respectively. If prior estimates 
l i  and wi of 5’ and w z  are not available, then one can set 40 = v, = 0. In 
this case p 2 ( u 2 ,  S 2 )  does not depend on L T ~  and (: and becomes a uniform 
density in log, w 2  and log, g’. In this case (3.26) reduces to the usual 
ANOVA F-statistic. 

We now illustrate the use of the Waller-Duncan procedure by 
reanalyzing Duncan’s (1955) barley data given in Example 1.1 of Chapter 
3. 

Example 3.1. Recall that we have MSvarietier = 366.97 with 6d.f. and 
MS,,,,, = Sz = 79.64 with 30 d.f. Let us suppose that prior estimates 6 ;  
and L T ~  are not available and thus qo = vo = 0, 4 = 6, f = 30, and F = 4.61. 
Next we must choose a value for K. Corresponding to a PCE of a = 0.05 
we choose K = 100. Interpolating linearly in Table 9 of Appendix 3 with 
respect to a = l/<F = 0.466 as suggested by Waller and Duncan, we find 
that the critical f *  =2.108. The critical value for the mean difference is 
thus 

t * S p  = 2.108 x 8 . 9 2 4 ~  Tz 6 = 10.86 
n 

This value is slightly larger than the value T $ k o S ’ S m  = 10.52 used in 
the second step of testing by Fisher’s LSD at a 50.05, but is much 
smaller than the value 16.26 used by Tukey’s T-procedure, which controls 
the FWE at level 0.05. Thus here the Waller-Duncan procedure is 
slightly more conservative than Fisher’s LSD, but is much less conserva- 
tive than Tukey’s procedure. In fact, it leads to the same significant 

CI pairwise differences as found by Fisher’s LSD. 

Duncan (1975) has extended this approach to the family of all con- 
trasts (still restricting attention to the balanced one-way layout setting), 
but the validity of this extension is not clear (at least to us) because of the 
technical difficulties of defining an additive loss function for the infinite 
family of inferences on all contrasts or for a random finite subset selected 
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from this family. He assumed noninformative priors for c2 and J2,  that is, 
vo = qo = 0 (which is not essential to the final result), and showed that the 
same critical value t* = P ( K ,  F, q ,  f) encountered in (3.25) can be used 
to test any contrast E:-l crOl, either specified a priori or  selected a 
posreriori by data-snooping. The decision rule for each contrast is similar 
to (3.25) except that Y, - p, is replaced by the estimated contrast 
Cfx I c,p,, and S m  is replaced by the estimated standard error of the 
contrast, namely, s(c~. , c f ~ n ) " ~ .  

Duncan and Godbold (1979) further extended this Bayesian approach 
(under the usual additive linear losses, a normal symmetric prior on the 
Or's, and a noninformative prior on IY' and 5') to pairwise comparisons in 
an unbalanced one-way layout. The procedure given by Duncan and 
Godbold is only an approximation to the exact Bayes rule. 

The main difficulty that arises in the unbalanced case is that the 
quantities 

E(MS, , , , , )  = na; + u2 = I 2  (3.29) 

and 

E(MS, , )  = E(SS,,)  = cr/c: + (2 = sf, (3.30) 

are not equal for all i # j; here 

and 

To overcome this difficulty, Duncan and Godbold suggested using sepa- 
rate critical constants r * ( K ,  F,,,  9,, ,  f) for separate painvise comparisons. 
The "F"-statistic, 5,. for the (i, j)th pairwise comparison (with q,, being 
its numerator d.f. given by (3.32) below) is arrived at by first obtaining an 
unbiased estimate 6: = (MS,,,,, - MS,,,,,)/n' of the variance component 
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0: and then computing FIj from 

= r,,F + (1 - r, ,)  (1 d i < j  S k )  (3.31) 

where rll = G,,/n and F = MSIr,,,/ MS,,,,, is the usual F-statistic. Note that 
F,, - 1 = r f 1 ( F -  1) can be thought of as an estimate of rf, where, in 
analogy with (3.22), 

here l2 is given by (3.29). Now Fi, does not have an F-distribution 
because its numerator is not distributed as a (scaled) x 2  r.v. But the 
distribution of the numerator can be approximated by that of a [i,y:f,/q,l 
r.v. where, using the Satterthwaite (1946) method of matching moments, 

r i F Z  (1 - r;i)2 
4 . .  = + (1  S i < j 5 k) . (3.32) 

( k - 1 ) F i  fF;Z, 

The Duncan-Godbold procedure is now clear: First choose the error 
weight ratio K using the guidelines given earlier. Next let f =  the d.f. 
available for estimating cr’, which in a one-way layout equals Y = 
Elk_, n, - k. Then for each painvise comparison compute F,, from (3.31), 
q,, from (3.32), and find c*(K,  F,,, q,,, f )  from Table 9 in Appendix 3 
using interpolation if necessary. Compare the 1-statistic 

for the (i, j)th treatment difference against the critical value 
t * ( K ,  F,,  q,,, f )  and use the usual three-decision rule. Duncan and 
Godbold have also extended this procedure to the case of correlated 
estimates 6, of the treatment effects 0, (which arise, e.g., in a one-way 
layout with a fixed covariate); we refer the reader to their paper for 
details. 

Stevenson and Bland (1Y82), using an approach similar to that of 
Waller and Duncan (1Y69), have derived a Bayesian multiple comparison 
procedure for the e’s  when the treatment variances I: are unknown and 
unequal. 
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3.5 Bayesian Simultaneous Confidence Intervals 

Dixon and Duncan (1975) derived minimum Bayes risk simultaneous 
confidence intervals for all pairwise differences A,, = 0, - 6, (1 S i < j S k) 
in a balanced one-way layout. They assumed the following additive loss 
structure for the total loss resulting from simultaneously estimating the 
All’s by intervals [a,,, b,,]: 

(3.33) 

where 

k , ( a  - A)2 + k,(b - A)2 , 
k,(a - A)’ + k,(b - A)’ , 

A < u 
u I A S  b (3.34) t k,(a - A)2 + kl (h  - A)’ , A > 6 

L(A, [a ,  b ] )  = 

and k, 2 k, > 0. The loss function (3.34) is derived as follows: Consider 
the problem of estimating A by a lower one-sided interval [a,  33) and let 
the corresponding loss function be 

Here k, 2 k, implies that the loss incurred if A is overestimated by an 
amount Iu - A1 is K = k,/ko 2 1 times the loss incurred if A is underesti- 
mated by the same amount. Similarly for the problem of estimating A by 
an upper one-sided interval (-m, b ] ,  let the loss function be 

k , ( b  - A)’ , 
k,(b - A ) ’ ,  A S  b . 

A > b 
b )  = ( 

Then 

For the loss function given by (3.33)-(3.34) and under the same prior 
density model (3.24) assumed for the testing problem, the Bayes intervals 
[a,:, b,:] are obtained by separately minimizing the individual compo- 
nents of the Bayes risk. This leads to a pair of integral equations for each 
(i, j) whose solutions give a,: and b,: (1 S i < j d k). Dixon and Duncan 
showed that each interval [u,:, b;] corresponds to the set of values of A, 
for which decision dz is made in the three-decision problem of choosing 
between 

d: :decide A,, > A, , d: :decide Ax) = A, , d i  :decide A,, < A, 
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using the Bayes test of Waller and Duncan (1969) given in the preceding 
section but modified to take into account the fact that A,, is now tested 
against a nonzero value A,. This test has the form (3.25) except that the 
critical constant t* now depends also on r,, = A , , l S m  (in addition to K, 
F, q,  and f); the critical constant t* used in (3.25) corresponds to T,, = 0. 
It may be noted that the equivalence between the Bayes tests and Bayes 
confidence intervals depends on the assumption of additive linear losses 
for the former and additive squared error losses for the latter. The 
squared error losses can be thought of as integrals of the linear losses. 
This equivalence result is shown to hold for more general loss functions 
by Dixon (1976). 

The exact evaluation of the intervals [a,;, b,:] poses a formidable 
computational problem. However, the intervals turn out to have a 
particularly simple form when (r: and c2 are assumed to be known (i.e., 
q = f = a). In this case the simultaneous confidence intervals are given by 

( 1  S i < j  5 k) (3.35) 0, - fl, E +[ p, - r, -e t * ( K ,  a, ~))+-"~cz] 
where the multiplying constant 

+=-= Y 2  d 
1 + y 2  a : + 0 2 / n  

is called a shrinkage factor and t , ( K ,  a, Q)) = t * ( K ,  Q), a, m) is the solution 
to (3.6). Note from (3.5) that r J K ,  a, w)$-''' = t , ( K ,  m, y ' ) .  Also note 
that for K = 1 ,  t , ( K , w ,  00) = 0 and thus (3.35) reduces to +(PI - p,), 
which is the well-known Bayes point estimate of 0, - 3 with respect to a 
symmetric (since k, = k,; see (3.34)) squared error loss function. 

In practice, y 2  and ( r2  are not known but may be consistently 
estimated by qz = F - 1 (=0 if F S 1) and S2, respectively (where F is 
calculated using (3.26) and S2 is calculated using (3.27)). Substitution of 
these estimates in (3.35) and use of (3.28) results in the following 
confidence intervals: 

( l s i < j S k ) .  
(3.36) 

These confidence intervals can be readily extended to all contrasts; see 
Duncan (1975) for details. 

It should be emphasized that (3.35) and (3.36) are not derived so as to 
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have a given joint confidence coefficient. A confidence interval with a 
posterior probability content of 1 - a can be derived for any pairwise 
difference 0, - 4 by noting that the posterior distribution of 0, - is 
normal with mean = @(p, - c) and variance = 2&r2/n. Estimating JI and 
a2 consistently by (1 - 1/F) and Sz, respectively, yields the following 
(1 - a)-level (per-comparison) large sample confidence intervals for 
8, - 4: 

where Z(p’z) is the upper a / 2  point of the standard normal distribution. 
A comparison of (3.36) with (3.37) shows that these intervals are 
identical if t * ( K ,  00, do) = Z(a’2), which can be achieved by an appropriate 
choice of K and a. 

We finally note that if three-decision tests of hypotheses concerning 
6, - 0, (Oi - = 0 or >O or < O )  are carried out using the confidence 
intervals (3.36) in the usual manner, then the resulting decision rule has 
exactly the same form as (3.25) except that t*  now equals r*(K,  F, 30, do), 
which is the result of the large sample ( q  = f =  =) assumption. 

3.6 Concluding Comments 

An attractive feature of the Bayesian procedures discussed in this section 
(also summarized in Duncan and Dixon 1983) is the adaptive, post-hoc 
manner in which the critical t*-values depend on the extent of 
heterogeneity between treatments. A large F-ratio implying large 
heterogeneity between treatments suggests less cautionary (small) r *  - 
values. A small F-ratio implying small heterogeneity between treatments 
suggests more cautionary (large) t* -values. Thus these procedures adap- 
tively adjust the critical values without sacrificing power when the treat- 
ment means are a posreriun’ indicated to be heterogeneous. 

Another attractive feature is that the choice of a in conventional 
statistical procedures is replaced by that of a more basic and understand- 
able quantity K. 

A crucial assumption made throughout Duncan’s work (as well as that 
of Lehmann’s and Spjatvoll’s works) is that the total loss for the 
simultaneous problem is the sum of the losses for the component 
problems. It is because of this assumption that the optimal procedure for 
the simultaneous problem turns out to be the product of the optimal 
procedures for the corresponding component problems. Clearly, in many 
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cases the assumption of an additive loss function is not appropriate; for 
example, if the simultaneous correctness requirement (see Chapter 1, 
Section 2) is to be satisfied, then the total loss is a multiplicative function 
of the component (zero-one) losses. The additive loss assumption gives 
the Bayes procedure the nature of a PCE controlling procedure in the 
sense that the critical t* does not depend on the number of comparisons. 
The assumption of linear losses present in Duncan’s work may serve as a 
good local approximation for small differences 6; - 9, but for large 
differences the validity of this assumption may be in doubt. 

There is a major difference between the unprotected LSD (i.e., 
multiple t-tests each at level a) and Duncan’s Bayesian test, although 
both are PCE controlling type procedures. While in the unprotected LSD 
the comparison between any pair of treatments is independent of the 
sample means of the other treatments present in the experiment, in the 
Bayesian procedure it is dependent on those results through the F-ratio, 
which is a measure of heterogeneity among all treatments. For example, 
suppose that we have five treatments under study, labeled A,  B, C, D, 
and E, which are ordered according to their sample means. The unprotec- 
ted LSD may find the difference E - A significant but the Bayesian 
procedure at a comparable a-level (K-ratio) may find that difference not 
significant because the F-ratio is lowered (and hence the critical I *  is 
ipcreased) due to the presence of B, C, and D, whose sample means fall 
between those of A and E. Duncan and Brant (1983) used this example 
to refute O’Brien’s (1983) suggestion that the comparison between a 
given pair of treatments must not be affected by the presence of other 
treatments in the same experiment. 

4 A COMBINED BAYESIAN AND NEYMAN-PEARSON 
TYPE APPROACH 

In Section 3.4 we studied Waller and Duncan’s (1969) procedure for 
pairwise comparisons of means in a balanced one-way layout that minim- 
izes the posterior expectation of a loss function (given by (3.14) and 
(3.11)) assuming certain prior distributions for the unknown parameters. 
As we saw, their procedure turns out to be a “continuous” version of 
Fisher’s LSD procedure. Lewis (1984) considered the problem of making 
directional decisions on all pairwise differences using a mathematical 
framework similar to that in Waller and Duncan (1969) but without 
assuming an explicit loss structure. We now describe his approach. 

Lewis (1984) considered the following modification of Fisher’s LSD 
procedure: Compare the usual ANOVA F-statistic with a suitably chosen 
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critical constant F*. If F S F*, then stop testing and conclude that no 
significant differences exist among treatments. If F > F*, then proceed to 
make directional decisions as follows: Decide that 0, > (respectively, 
6, < 8,) if the T,,-statistic given by (3.12) is greater than t* (respectively, 
less than - r e )  where r *  is another suitably chosen critical constant; make 
no directional decision on pair (i, j) if IT,,] S r* (1 S i < j  5 k). Note that 
here t* does not depend on the value of the F-statistic as in the 
Waller-Duncan procedure. 

To determine the critical constants F* and t * ,  Lewis (1984) proposed 
the following Bayesian modification of the classical error rate control 
approach. Let PFE(6, a’) denote the Type I11 per-family error rate, that 
is, PFE is the expected number of misclassifications of signs. In the 
classical approach one would require that PFE(6, a*) Z y for all 6 and 
a‘ where 7 (0 < y < ( )) is a prespecified constant. Lewis proposed to 
control a weighted average of PFE(6. a’)-values, the average being taken 
with respect to a weighting function defined over the space of 6. This 
weighting function is formally similar to the prior distribution for 8. As in 
Waller and Duncan (1%9), Lewis assumed that the 0,’s are independent 
N(6,,, C T : )  r.v.3. He referred to this assumption as the single-cluster modcl 
for the 0,’s with 8, and a’ being, respectively, the center and spread of the 
cluster. Because of location invariance, we can take 0, = 0 without loss of 
generality. Denote the weighted - average of PFE(6, a2)  with respect to 
this weighting function by PFE(u:, a’). Because of the symmetry in the 
procedure and in the weighting function, we get 

The corresponding expression for the expected number of correct classifi- 
cations is obtained by reversing the inequality on 8, - 0,. Lewis proposed 
to find F* and f *  subject to 

PFE(&, U 2 ) S  y v u ; ,  u2 

where y is prespecified. 

Duncan (1969), Lewis was able to express (4.1) as 
By making an orthonormal transformation similar to that in Waller and 

where V, and V, have a bivariate [-distribution with d.f. v and an 
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associated correlation coefficient 

nu: 
P = (  nug  2 + u 2 )  ; 

furthermore, conditional on (V2, V3) ,  

u + 2  
u(1 + Q / u )  vi - F k - 2 . v + 2  

where 

v; - 2 p v 2 v ,  + v: 
Q =  1 - p z  

Thus (4.2) can be evaluated by two-dimensional numerical integration of 
a cumulative F-probability with respect to the bivariate t-density of 
(V2, V , )  over the quadrant: V, > (1 - p2)”*r* and V, < 0. The corres- 
ponding expression for the expected number of correct classifications is 
obtained by reversing the inequality on V, to V, > 0. Note that (4.2) 
depends on vi and uz only through p ,  which is a function of nu:/v’ .  

For given k and Y, by evaluating (4.2) for different combinations of F* 
and t * ,  Lewis discovered that a unique pair ( F * ,  r ” )  can be found such 
that (4.2) approaches the specified upper bound y as u: - 0  and attains 
that upper bound as an interior maximum (as a function of n u i / ( r 2 ) .  
Putting F* = F:“-),,” and r* = Tla) ,  Lewis tabulated the values of a and p 
for y = 0.025 and for selected values of k and v. Notice that these values 
are not determined so as to maximize some measure of power. 

Lewis compared the performance of this modified Fisher LSD with 
Bohrer’s (1979) Bonferroni procedure (see Section 2.3.2 of Chapter 2). 
The latter is equivalent to using Fisher’s LSD augmented with directional 
decisions for F* = 0 and l* = T p ‘ k * )  where k* = ( ). He found significant 
power advantages for the modified LSD. For example, in one such 
comparison, to obtain the same expected number of correct classifica- 
tions, the Bonferroni procedure required nearly twice the number of 
observations required by the modified LSD. 

5 A r-MINIMAX APPROACH 

In many decision problems any u priori information concerning the 
unknown parameters is likely to be incomplete and thus a fully Bayesian 



A T-MINIMAX APPROACH 337 

approach requiring a complete specification of the prior distribution may 
not be justified. In a r-minimax approach to a decision problem, it is 
presumed that we have partial information concerning the prior distribu- 
tion, that it belongs to a specified class r of priors. One then finds a 
decision procedure that minimizes the maximum Bayes risk where the 
maximum is taken over r. Such a decision procedure is called r-minimax. 
In this generalized framework, a Bayes procedure with respect to a given 
prior is a r-minimax procedure if r consists of only a single prior. On the 
other hand, a minimax procedure is a r-minimax procedure if r consists 
of all priors. The present section is devoted to the description of the 
r-minimax approach adopted by Randles and Hollander (1971) to the 
problem of treatments versus control comparisons. See Gupta and Huang 
(1977, 1981) for an application of this approach to the general class of 
multiple comparison problems considered by Spjstvoll (19724. 

Randles and Hollander (1971) considered the following setup: Sup- 
pose that on treatment i we observe a sufficient statistic X, having the 
density function f , (x  - O,), i = 1,2, . . . , k. The f,( *)‘s are assumed to be 
known, but the el’s are unknown. The kth treatment is a control with 
respect to which the first k - 1 treatments are to be classified into two 
groups as follows: The ones with 8, Z 0, + A are to be classified as 
“better” than the control, and the ones with 0, 5 6, are to be classified as 
“no better” than the control where A > 0 is a specified constant. Randles 
and Hollander referred to the former treatments as “positive” and the 
latter treatments as “negative.” This formulation is similar to those 
studied by Lehmann (1961) and Tong (1969). 

Consider the decision rule S(X) = (6, (X), . . . , 6, - (X)) where 6, (X) is 
the conditional probability of selecting the ith treatment (1 I i S k - 1) as 
“positive” having observed X = (X,, X,, . . . , X,)’. The loss function is 
assumed to be of the form 

k - l  

w, wq) = C ~ , ( e  v)) (5.1) 
1 - 1  

where [ ;,( 1 - 6,(X)) if 8, 2 ek + A 
&(& W)) = C,S,(X) if 0, S 0, ( 1 l i S k - 1 )  (5.2) 

otherwise. 

Here c,  > 0 (respectively, c2 > 0) is the cost of misclassifying a “positive” 
(respectively, “negative”) treatment. The risk function is H(8, 6 )  = 
clN, + c2N2 where N ,  and N2 are the expected numbers of misclassified 
“positive” and “negative” treatments, respectively. 
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Let n(8) be any prior distribution on 6 and define 

fl,(i) = {e:6; 2 6, + A} , fl,(i) = ( 8 :  6; 5 0,) (1 5 i s k - 1) 

Randles and Hollander assumed the following class of priors: 

where the pairs (ni, v : )  are specified. 
The derivation of the r-minimax rule involves first obtaining the least 

favorable prior distribution in r and then finding the Bayes rule with 
respect to that prior. Because of the additive nature of the loss function 
(5.1), the latter problem decomposes into finding the Bayes rules for the 
component problems corresponding to the k - 1 component decision 
rules S,(X). For the case of a known control (i.e., known 6,), the 
r-minimax rule So(X) is such that Sp(X) = 1 or 0 according as 

c2 r : h ( X i  - 6,) - c, ri f , (X,  - 0, - A) I 0 or > 0 (I  5 i 5 k - 1) . 
(5.3) 

Miescke (1981) generalized this result and offered an alternative proof 
based on the Neyman-Pearson theory of hypothesis testing. If each f,( - ) 
has a monotone nondecreasing likelihood ratio property in its parameter 
el, then (5.3) is equivalent to checking if XI Z d ,  or d,  for some d ,  
(1 5 i S k - 1). Notice that this rule depends on c, and c2 only through 
their ratio c,/c, and similarly on n,, and n: only through their ratio n,/r;. 

For the case of an unknown control, invariance considerations lead to 
procedures based on XI - X, (1  S i d k - 1). Denoting by g , ( y  - (6, - 
e,)) the density function of Y, = X, - xk, the r-minimax rule S'(X) can 
be shown to have the following form: Sp(X) = 1 or 0 according as 

c2 r i g i (  Yi) - c1 rig,( Y, - A) d 0 or >O ( 1 S i Z k - 1) . (5.4) 

A complete proof of this result was given by Miescke (1981). As before, 
if the f;( -)'s have the monotone likelihood ratio property, then the same 
is true for the gi( a ) % ,  and (5.4) is equivalent to checking if Y, 2 d :  or < d :  
for some d :  (1 5 i 5 k - 1). 

Example 5.1. Let Yi - N(6,,  u2/n, ) ,  i = 1,2,. . . , k, be the sample 
means of treatments in a one-way layout and suppose that O,, the mean of 
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the control treatment, and the error variance a2 are known. The Yi’s are 
sufficient statistics in this problem. By applying (5.3) with Xi = pi we get 
that the ith treatment is selected as “positive” if and only if 

If 0, is unknown but g2 is known, then application of (5.4) results in the 
decision rule that selects the ith treatment as “positive” if and only if 
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A P P E N D I X  1 

Some General Theory of 
Multiple Comparison Procedures 

Chapter 2 was devoted to the theory of multiple comparison procedures 
(MCPs) for fixed-effects linear models with independent homoscedastic 
normal errors, which was the framework for Part I. Much of that theory 
applies with minor modifications to many of the problems considered in 
Part 11. However, in other cases the theory of Chapter 2 needs to be 
supplemented and extended, which is the purpose of the present appen- 
dix. We assume that the reader is familiar with Chapter 2. Many 
references to that chapter are made in the sequel. As in Chapter 2, 
throughout this appendix we restrict to the nonsequential (fixed-sample) 
setting. 

The following is a summary of this appendix. Section 1 discusses the 
theory of simultaneous test procedures in arbitrary models. This discus- 
sion is based mostly on Gabriel (1969). When a simultaneous test 
procedure (and more generally a single-step test procedure) addresses 
hypotheses concerning parametric functions, it can be inverted to obtain a 
simultaneous confidence procedure for those parametric functions. Con- 
versely, from a given simultaneous confidence procedure one can obtain 
the associated simultaneous test procedure by applying the confidence- 
region test method. The relation between simultaneous confidence esti- 
mation and simultaneous testing is the topic of Section 2. Finally Section 
3 discusses some theory of step-down test procedures, including the topics 
of error rate control, optimal choice of nominal significance levels, and 
directional decisions. Here no general theory for deriving the associated 
simultaneous confidence estimates is as yet available; some preliminary 
work in this direction by Kim, Stefhsson, and Hsu (1987) is  discussed in 
Section 4.2.4 of Chapter 2. 

343 

Multiple Comparison Procedures 
Yosef Hochberg,Ajit C. Tamhane 

Copyright 0 1987 by John Wiley & Sons, Inc 



344 THEORY OF MULTIPLE COMPARISONS 

1 SIMULTANEOUS TEST PROCEDURES 

1.1 Hierarchical Families 

Let Y denote the set of observations. The distribution function of Y 
depends on a collection of unknown entities (possibly nondenumerable) 
that are together denoted by w. The space of all possible w's is denoted 
by R and is referred to as the parameter space. For example, throughout 
Part I we assumed the fixed-effects linear model (1.2) of Chapter 2, 
which states that Y has an N-variate normal distribution with mean vector 
Xp and variance-covariance matrix a21 where X:N X r is a known 
matrix. Thus w = (0 ,  [T*) and il = W' x R: (where r W Y  is the positive half 
of the real line). For another example, in the one-way layout location 
model (1.8) of Chapter 9, w consists of the common unknown distribu- 
tion function F ( . )  and the vector of location parameters 8 = 

We consider a family of distinct hypotheses H ,  : o E R, , i E I, where II, 
is a proper subset of R and I is an index set, not necessarily denumerable. 
For convenience, instead of HI we refer to the subset R, (to which HI 
restricts w )  as a hypothesis. In many problems of interest the hypothesis 
no = nle,fl, belongs to the family and is referred to as the overall 
hypothesis. 

A hypothesis fl, implies another hypothesis 0, (0 , j  0,) if 0, E 0,. In 
this case R, is said to be a component of R, (a proper component if the 
containment is strict) and an implication relarion is said to hold between 
R, and il,. Those hypotheses that do  not have any proper components are 
referred to as minimal; all other hypotheses are referred to as nonrnini- 
mal. The index set of the minimal hypotheses is denoted by I,,,,,. 

A family with at least one implication relation is referred to as a 
hierarchical famify. Note that every a,, i E I - { O } ,  is a proper compo- 
nent of 0,; hence every family containing R, is a hierarchical family. 

(e,, e,, . . . , e,)'. 

1.2 Testing Families 

Consider a family of hypotheses {a,, i E I} (not necessarily hierarchical) 
and let 2, = Z,(Y) be a real valued test statistic for R,,  i E I. We assume 
that large values of Z, are suitable for rejecting R, ,  i E I .  The collection 
{(a,, Z , ) ,  i E I} is called a testingfumily provided that for every i E I, the 
distribution of 2, is completely specified under 0, (i.e., it is the same for 
all o E a,). If the joint distribution of the Z,'s for i E r' is completely 
specified under n,,fil, for every ?C I, then the testing family is called 
joinr. For a hierarchical family, if the relation Z,(Y) L Z,(Y) holds almost 
everywhere (a.e.) whenever R,+ R, ,  then the testing family is called 
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monotone. In a monotone testing family we have Zo(Y) 2 Zi(Y) for all 
i E I - (0) a.e. where Z,(Y) is the test statistic for no. If the family of 
hypotheses is closed under intersection, then the testing family is called 
closed. 

For a given testing family {(ai, Z i ) ,  Gabriel (1969) defined a simultu- 
neow test procedure as that collection of tests in which the test for fli 
rejects if Zi > f (i E I) where f is a common critical constant for all tests. 
Note that in Chapter 2, Section 3.3, where we introduced simultaneous 
test procedures for fixed-effects linear models, we did not impose the 
requirement of a testing family. This allowed us to include one-sided 
hypotheses on scalar parameters (see Example 3.5 in Chapter 2) in the 
family. More generally, if this requirement is not imposed and/or the 
critical constant is not the same for all tests but they can be carried out in 
one step without reference to one another, then we refer to the corres- 
ponding procedure as a single-step test procedure. 

1.3 Coherence and Consonance; Likelihood Ratio and 
Union-Intersection Methods 

The concepts of coherence and consonance introduced in Section 3.2 of 
Chapter 2 readily extend to the general setting of this appendix. The 
result of Theorem 3.1 of Chapter 2 concerning the coherence of the 
procedure and monotonicity of the test statistics is also applicable to the 
general setting here. 

In this book we primarily employed the likelihood ratio (LR) and 
union-intersection (UI) methods of test construction. As explained in 
Sections 3.3.1.1 and 3.3.1.2 of Chapter 2, each of these methods leads to 
monotone test statistics for hierarchical families, and this result is also not 
restricted to the fixed-effects linear model setting of Part I. There are 
other methods of constructing monotone test statistics. For example, 
instead of the LR tests of independence given in Section 1.4 of Chapter 
10, one may use Pearson’s chi-square statistics, which also have the 
monotonicity property. 

Regarding consonance, we have a general result in Theorem 3.2 of 
Chapter 2, which states that a simultaneous test procedure is consonant if 
and only if it is a UI procedure. Thus UI procedures are the only ones, 
which guarantee that whenever a nonminimal hypothesis is rejected at 
least one of its components will also be rejected. It is desirable for an 
MCP to have this property but not essential. The lack of consonance 
(referred to  as dissonance) is not as serious a drawback as the lack of 
coherence. This is because of the nonsymmetry in the interpretation of 
rejection and acceptance decisions in classical significance testing. 
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UI statistics are obtained by starting with suitable statistics 2, for 
i E I,,,,, and then using 2) = maXlEl(,) Z, for any nonminimai 0, where 
Z:,), is the index set of all minimal hso theses  implied by il,, j E I - I,,,. 
The Z,'s for i E I,,, are usually chosen to be the LR statistics. This choice 
is based on certain desirable properties of the LR statistics. Also often 
with this choice, {(Ri, Z , ) ,  i E I,,,} forms a joint testing family. The 
following theorem gives a useful property of the UI statistics when the 
latter holds. 

Theorem 1.1 If {(a,, Z , ) ,  i E I,,,} is a joint testing family, then 
{(a,, Z , ) ,  i E I} is a joint testing family provided the Z,'s are UI 
statistics. 

Proof. For any I' C I and under any w E nrE,, R,, the joint distribution 
of the ZI's, i E 1', is determined by the joint distribution of the Z,'s, 
j E I::: ,  where Zt;: = U I E I 8  ZL:,. But n ( I  ) R, 2 nrEf. R, ,  and since 
{(a,, Z,), i E I,,,} is a joint testing family, it follows that the joint 
distribution of the Z,'s, i E I f ,  is the same under any w E n,,, (2,. 0 

l?IlnI" 

1.4 Control of the Familywise Error Rate 

We next turn to the question of error rate control for simultaneous test 
procedures. The main result is summarized in the following theorem. 

Theorem 1.2 (Gabriel 1969). Consider a simultaneous test procedure 
based on a testing family {(a,, Z , ) ,  i E I} and a critical constant 6 .  Let 
R, = nIef R, and 2, = maxIEI Z,. This simultaneous test procedure con- 
trols the Type I familywise error rate (FWE) strongly (for all parameter 
configurations) at a designated level a provided 

max Pr,{Z, > S }  = a , 
wen,  

and the testing family is either closed or joint. 

Proof. Let fC I denote the index set of true hypotheses and let 
fi = nieT Ri be the set of corresponding parameter points. For w E 6 ,  the 
W E  is given by 

Pr,{R, is rejected for some i E I} = Pr,{ma_x 2, > ,$} . 
I E I  

When the testing family is either closed or joint, this probability is the 
same for all w E 6; thus it may be denoted by Prh{maxi,? 2, > S } .  This 
equals Pra,{maxiEi Zi > 6 }  since fl0 C R. Now 2, = maxfE, 2, 2 

- 
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maxiEj Zi. Therefore 

where the last step follows from (1.1) and from the fact that the testing 
0 family is either closed or joint. This proves the theorem. 

Dunn’s procedure, given in Section 1.2.2 of Chapter 9, offers an 
example of a single-step procedure that is not based on a closed or a joint 
testing family. In fact, Dunn’s procedure controls the W E  only under 
the overall null configuration. 

1.5 Resolution and Power 

The operating characteristics of a simultaneous test procedure depend on 
the family of hypotheses R,, i E I, and the collection of associated test 
statistics Z , ,  i E I. The choice of a family affects the operating characteris- 
tics of a simultaneous test procedure in the following way: The “wider” 
the family, the less power the procedure possesses for detecting nonnull 
hypotheses because the common critical constant corresponding to a 
“wider” family is larger for a fixed level a. However, a “narrow” family 
may not have a sufficiently rich subfamily of implied hypotheses (e.g., 
minimal hypotheses) and hence may often result in dissonances when a 
nonconsonant procedure is used. Gabriel (1969) proposed resolution as a 
criterion for comparing two simultaneous test procedures based on 
different testing families (i.e., either different families of hypotheses or 
different test statistics or both). We now discuss this criterion. 

Consider two simultaneous test procedures, 9 and B’, based on the 
testing families {(RE, Z l ) ,  i E I} and {(O:,  2:)’ i E I ‘ ) ,  and common 
critical constants 6 and 6‘ .  respectively. To make a meaningful com- 
parison between 9 and 9‘, they must test the same hypotheses at least to 
the extent that R, = nrEI R, = Rh = nrElc R: and I,,,,,, C 1‘, that is, both 
the families must have the same overall hypothesis and the minimal 
hypotheses of one must be included in the other. Tukey’s procedure (9) 
for pairwise comparisons and Scheffi’s procedure (9”) for contrasts 
provide an example of two such procedures. 

For this setup Gabriel (1969) introduced the following definition: 
Procedure 9 is said to be no less resolvent than procedure 9’ if both have 
the same level, and 

(Zi  > 6) 2 ( Z ]  > 5’) a.e. V i E Imin . 



348 THEORY OF MULTIPLE COMPARISONS 

8 is strictly more resolvent if the containment in (1.2) is proper for at 
least some i E Imin. 

The following theorem shows how to obtain a no less resoivent 
simultaneous test procedure from a given' one. 

Theorem 1.3 (Gabriel 1969). Given a simultaneous test procedure 9" 
based on a monotone family {(a,, Z;), i E I} (not necessarily a testing 
family) with common critical constant t f  and associated level a, a no less 
resolvent procedure of level a can be obtained by using UI test statistics 
for all the nonminimal hypotheses. 

Proof. Given the test statistics 2: for minimal hypotheses il,, the UI 
test statistic for a nonminirnal il, is given by Z, = maxlf,,,, 2:. Because of 
the monotonicity of the original statistics, we have 2, I Z ;  for all 
j E I - f,,,,,. Let Z,  = 2: for all i E I,,,,, and consider a simultaneous test 
procedure B based on {(fi,, Z,), i E I}. To achieve the same levei a as 
that of 9', the new procedure 9 requires a critical constant 5 that is 

a 

mtn 

clearly no larger than 6'. This proves the theorem. 

From this theorem we can also conclude that given a simultaneous test 
procedure, we can obtain another one that has at least the same powers 
for rejecting any minimal hypotheses. This is achieved by using the same 
test statistics for the minimal hypotheses as used by the original proce- 
dure and UI test statistics for all nonminimal hypotheses. Thus we have 
the following theorem. 

Theorem 1.4 (Gabriel 1969). Among all simultaneous test procedures 
of level a that use the same set of test statistics Z, for j E I,,,,,, a UI 

0 procedure has the highest powers for all il,, j E I,,,. 

It should be noted that the superiority of a UI procedure extends only 
over minimal hypotheses. If powers for nonminirnal hypotheses are 
compared, then the UI procedure is not always the winner. 

2 SIMULTANEOUS CONFIDENCE PROCEDURES 

2.1 Simultaneous Confidence Regions 

This section is concerned with the problem of simultaneous confidence 
estimation of a collection of parametric functions. Usually there is some 
vector parametric function 6 = 6(w) E Rk such that all parametric func- 
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tions of interest can be expressed as functions of 0, say, yi = yi(8) ,  i E I. 
In Chapter 2 we confined attention to linear parametric functions yi = 
Lie, i E I where 8 was a subvector of j3 and hence of w = ( p ,  a’) . 

A region O(Y) C Rk is referred to as a confidence region for 6 of 
confidence level 1 - a if 

inf Pr,(eE@(Y)} = 1 - a .  
,En 

A collection of confidence regions {ri(Y),  i E I} for (yi, i E I} is referred 
to as a family of simultaneow (or joint)  confidence regions of joint 
confidence level 1 - a if 

-En inf Pr,{y,ET,(Y) V i E I } = l - a .  (2.2) 

If all the y,’s are scalar parameters, then the T,(Y)’s, i E I are typically 
intervals and are referred to as simultaneous confidence intervals. 

A procedure for constructing simultaneous confidence regions is re- 
ferred to as a simultaneous confidence procedure. Given ( 2 .  l ) ,  a simulta- 
neous confidence procedure can be based on the projection method (see 
Section 2.2 of Chapter 2) to yield 

It is clear that the joint confidence level of these simultaneous confidence 
regions is at least 1 - a. Alternatively one could start with (2.2) and 
obtain a confidence region for 8 given by @(Y) = niel e i ( Y )  where 

Qi(Y)  = {e: yi(e) E r,(Y)} , i E I .  

This confidence region also has confidence level at least 1 - a. 

2.2 Coherence and Consonance in Simultaneous Confidence Estimation 

Consider two parametric functions, say, y, = y,(e) and y, = y,(fl). We say 
that y, implies if for every value of y, there corresponds a unique value 
of y,, that is, if there exists a function A,( .  ) such that y, = A,( yt). If there 
is at least one such implication relation in a family of parametric functions 
{ y , ,  i E I}, then that family is called a hierarchical family. Those y, ’s ,  
i E I, that do not imply any other y,’s, j E I, are referred to as minimal 
and their index set is denoted by I,,,,,. 

A simultaneous confidence procedure that yields simultaneous confi- 
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dence regions {I',(Y), i E I} for a given hierarchical family {y, ,  i E I} is 
said to be coherent if whenever y, implies y i ,  then a.e. 

The procedure is said to be consonant if for every value yoj of y, not in 
rj(Y) there is a parametric function y , ,  i E I, implied by y, such that its 
corresponding value yo, =x,(yo,)  is not in r l (Y) .  

2.3 Deriving Simultaneous Confidence Regions from a Simultaneous 
Test Procedure 

Let { y, ,  i E I }  be a hierarchical family of parametric functions. Consider 
the family of hypotheses { I t , (  yo,), i E I} where Q,( yo,) = { o : y, = 
y,(@(o)) = yo,} for some specified value yo,, i E I. We assume that the 
overall hypothesis 0, = nlE, fl,(yo,) is nonempty. 

Suppose that for each i E I we have a real valued statistic Z,(  yo,) = 
Z,(Y, 'yo,) for testing It,(yo,) such that large values of Z,(yo,) are suitable 
for rejection of It l (yol) .  Furthermore, assume that {(I t l (yot) ,  Z,(yo,)) ,  
i E I }  forms a joint testing family. Then the common critical point (5 for 
an a -level simultaneous test procedure can be found from the equation 

By inverting this simultaneous test procedure we obtain the following 
simultaneous confidence regions: 

The joint confidence level of these regions is clearly 1 - a. 
As in Section 3.3.2 of Chapter 2, the preceding discussion can be 

presented in a unified way in terms of pivotal random variables (r.v.'s). 
Thus suppose that for a given family of parametric functions { x ,  i E I} 
we have an associated collection of pivotal r.v.'s { Z,(yi), i E I} such that 
their joint distribution is the same under all o E It .  If a critical constant 6 
satisfies 

Pr, { max Zi( n) d 6 )  = 1 - a W o E It , 
I E I  

then the two types of simultaneous inferences, namely, confidence re- 
gions and hypotheses tests, can be derived from this single probability 
statement. For given Y, the sets (2.4) provide simultaneous confidence 
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regions of joint confidence level 1 - a. On the other hand, the sets of Y 
for which Zi (Y ,  yoi) > 6 provide simultaneous tests (rejection regions) of 
level a for the hypothesized values yoi of yi, i E I. More general hypoth- 
eses can also be tested by using the confidence-region tests discussed in 
the following section. 

Theorem 2.1 (Gabriel 1969). The simultaneous confidence procedure 
(2.4) is coherent and consonant if and only if the associated simultaneous 
test procedure that rejects a,( yo,) if Z,( yo,) > i$ is coherent and consonant 
for all yo,, i E I .  

Proof. If the given simultaneous test procedure is coherent, the joint 
testing family {(Ol(yol) ,  Zl(yol)) ,  ZEI} must be monotone for all yo,, 
i E  I. From this it follows that if y, =A,(?,),  then Z,(y, )2  Z , (y , )  with 
probability 1 and hence a.e. 

which shows that (2.4) is coherent. The converse can also be shown 
similarly. 

Next, the consonance of the simultaneous test procedure implies that if 
a nonminimal hypothesis n,(yo,) is rejected, then some component of it, 
say, f l , (yol ) ,  is also rejected where yo, =f;,(y,,). The first event is 
equivalent to yo,$l-,(Y), while the second event is equivalent to yo, = 
fi,( yo,) $l-,(Y), which implies the consonance of the simultaneous confi- 
dence procedure. Again the converse can be shown similarly. n 

Clearly, a simultaneous test procedure must be based on UI statistics 
in order for it to be consonant. In fact, analogous to Theorem 1.4 we 
have the following theorem. 

Theorem 2.2. Given the statistics Zi(yol)  satisfying (2.3) and the as- 
sociated (1 - cY)-level simultaneous confidence regions l-,(Y) given by 
(2.4), one can construct UI statistics Z:(yo,)  and the associated (1 - 
a)-level simultaneous confidence regions r:(Y) such that l-;(Y) C r,(Y) 
a.e. for all i E I .  0 

2.4 Confidence-Region Tests 

The basic idea of confidence-region tests (Aitchison lW), as explained in 
Section 3.3.2 of Chapter 2, is to start with a (1 - a)-level confidence 
region in the parameter space and check whether its intersection with the 
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set of hypothesized values for the parametric function under test is empty 
(in which case the given hypothesis is rejected). Any number of hypoth- 
eses can be tested in this manner and the Type 1 FWE for all such tests is 
controlled at a. In this section we discuss this idea under a more general 
setting than that considered in Chapter 2. 

By using the projection method, from (2.1) we obtain 

R(Y)= {w:O(w)E@(Y)} 

as a (1 - a)-level confidence region for w. Any family of hypotheses 
{Qi ,  i E I} can be tested using this confidence region as follows: 

Reject f l i  if Ri n R ( Y )  = 4 ,  i E I ( 2 . 5 )  

where 4 denotes an empty set. The following theorem extends Theorem 
3.4 of Chapter 2. 

Theorem 2.3. The simultaneous test procedure (2.5) has Type I FWE d 
a for all w E 0. Furthermore, if the family {a,, i E I} is hierarchical, 
then (2.5) is coherent. 

Proof. For procedure (2 .5)  we have, under any w Efl, 

Type I FWE = Prw{Q, fl Q(Y) = 4 for at least one true a,} 
5 Pr,{wjZSl(Y)} = a , 

and hence the first part of the theorem follows. Next, if fl, implies a,, 
that is, if fl, C R,, then fl, n a(Y) # 4 3 ill n fl(Y)) # 4, and hence the 

0 second part of the theorem follows. 

Suppose that a confidence region for 0 is constructed by inverting a 
simultaneous test procedure based on the LR method for a family of 
hypotheses on 8. Aitchison (1965) showed that the confidence-region test 
procedure derived from this confidence region for the given family of 
hypotheses is the same as the original simultaneous test procedure. A 
similar result can be shown to hold for procedures based on the U1 
met hod. 

3 STEP-DOWN TEST PROCEDURES 

In this section we discuss some theory of step-down test procedures under 
the general setting of the present appendix. The emphasis here is on 
exploring more fully and in greater generality the concepts that were only 
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briefly dealt with in Chapter 2 (e.g., separability and error rate control); 
straightforward extensions of the results and methods in Chapter 2 (e.g., 
the closure method) are not given. We also discuss some new topics, for 
example, the optimal choice of nominal levels. 

3.1 Control of the Famfiywise Error Rate 

3.1.1 Geneml Results 
A step-down test procedure for an arbitrary finite hierarc..icaI family of 
hypotheses, {$I,, i E I), can be described as follows: Define a “nominal” 
test function $p(Y) for each hypothesis R, where 4p(Y)  = 1 if rejection 
of R, is indicated when Y is observed and 4p(Y) = 0 otherwise; here the 
prefix “nominal” refers to the test of that hypothesis without reference to 
the tests of any others. The “true” or “actual” test function of Ri is given 
by 

For a step-down test procedure with nominal tests I$: and true tests Cbi the 
EWE under any w E R is given by 

where f =  f (w)  is the set { i  E I: w E a,}, that is, the index set of true 
hypotheses under w. The FWE is strongly controlled at the designated 
level (Y if (3.2) is S a  for all w E R. The following lemma gives a simple 
upper bound on (3.2). 

Lemma 3.1. 
i E  I ) ,  

For a step-down test procedure with nominal tests {4p, 

Pr,{mq +,(Y) = 1) s Pr, {max + P ( Y )  = 1) tl w E R . (3.3) 

From (3.1) we have &(Y) 4 #p(Y) a.e. for all i f  I and hence 
(3.3) follows. 0 

i E I  i E l  

Proof. 

For the family of subset hypotheses under the normal theory one-way 
layout setting, Tukey (1953, Chapter 30) noted that the task of control- 
ling the FWE for a given step-down procedure is simplified (essentially by 
ignoring the step-down nature of the procedure and focusing attention 
only on the nominal tests) if that procedure satisfies a certain condition 
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(see Example 3.1 below). Lehmann and Shaffer (1979) extended this 
condition to arbitrary one-way layouts and referred to it as the separabifi- 
ty condition. We no? give a gefiniticn of separability for the present 
general setting: Let I C I and J = I - I be the index subsets of true and 
false hypotheses, respectively, and let 

(where R i ’  denotes the complement of a,). The set of parameter 
configurations O ( f )  called separable by a given step-down procedure if 
there exists w* E R(1) such that the probability that the procedure rejects 
all false hypotheses is 1 under o*, that is, 

Pr,.{4i(y) = 1 v j E i) = 1 . (3.5) 

Usually such o * ’ s  are limiting parameter configurations in R(f).  If every 
R(T) is separable by a given procedure, then we call that procedure 
separating. 

Notice that if j E J” and R,. C R,, then j ‘  E J”. Therefore, from (3.1),  
+,(Y) = 1 for all j E if and only if +y(Y) = 1 for all j E j ,  and hence 
(3.5) is equivalent to 

Prm.(+:(Y) = 1 v j E  j )  = 1 . (3.6) 

Example 3.1. Consider the usual normal theory one-way layout model. 
Let P = { i , ,  i,, . . . , i p }  be a subset of K = {1,2, . . . , k} of cardinality p 
(2 5 p 5 k) and consider the family of subset hypotheses 

{n, :e, ,=e,2=- .=e, ,  P ~ K ) .  (3.7) 

An arbitrary configuration involves r Z  1 distinct groups of 8’s of car- 
dinalities p , ,  p r ,  . . . , p ,  (C:=, p ,  = k) such that 

All such configurations are separable by every step-down procedure of 
Chapter 4. This is because those procedures are based on the range or 
F-statistics, and for any subset hypothesis R, that involves 8’s from at 
least two distinct groups, these statistics tend to infinity in probability if 
the distance between any two unequal 6’s tends to infinity. Hence 0, is 

0 rejected with probability 1 under such configurations. 
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The configurations w* that satisfy (3.6) are called feast favorable in 
Q(l)  because for separating step-down procedures, the upper bound on 
the W E  given in (3.4) is achieved at such w*'s. This is shown in the 
following lemma. 

Lemma 3.2. For a separating step-down procedure, for any w* satisfy- 
ing (3.6) we have 

Proof. Using (3.1) we can write the left hand side of (3.8) as 

(3.8) 

Let 

f={j :n ,ER,}cf  and ~ = { j : R , , ~ f l l } ~ ~ ,  i e f .  

Then (3.9) can be written as 

(3.10) 

Because of the separability condition (3.6) we have 

Hence (3.10) simplifies to 

which clearly equals the right hand side of (3.8). 0 

The next theorem gives a sufficient condition under which controlling 
the FWE of a step-down procedure at all least favorable configurations 
w* implies control of the W E  at all w E R. This theorem makes use of 
the results of Lemmas 3.1 and 3.2. 

Theorem 3.1. Suppose that the nominal tests 4; can be specified in 
terms of real valued test statistics Z,, i E I. Further suppose that 
{(R,, Z i ) ,  i E I} forms a joint testing family and that the step-down 
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procedure is separating._Under thes: conditions, if for all least favorable 
configurations w *  EiZ(I )  (where I C I is an arbitrary subset of true 
hypotheses) 

~ r , . { m a > 4 P ( ~ ) =  1) i a ,  (3.11) 
1EI 

then the FWE is strongly (for all w E Q) controlled at level a. 

Proof. Because {toi, Z,), i E I }  is a joint testing family, we can write 

for any I .  Using (3.2), (3.8), and (3.11) in (3.12) we then get 

Pr, {ma? 4;i(~) = 1) s a v w E a(?) , 
i E f  

which proves the theorem. 0 

Thus the task of controlling the W E  using a step-down test procedure 
reduces to guaranteeing (3.11). The probability in (3.11) depends on the 
oominal tests 4; in a simple manner because it essentially ignores the 
step-down testing scheme. An application of this result to the family of 
subset hypotheses is given in Theorem 3.2 (see also Theorem 4.3 of 
Chapter 2). 

3.1.2 
We now confine attention to the case where Y consists of k indepen- 

dent samples Y,, Y,, . . . , Y,. The parameter point w also consists of k 
components, w , ,  w 2 , .  . . , o,, such that the distribution of Yi depends 
only on wi (1 S i S k). Let be a scalar valued function of w, that is of 
interest (1 Z i S k). Consider the family of subset hypotheses (3.7) as in 
Example 3.1 but without restricting to the normal theory assumptions. 
Lehmann and Shaffer (1979) have given several examples of separating 
step-down procedures for this family in parametric as well as nonparamet- 
ric problems. 

Assume that Pr,{ 4"pY) = l }  is the same for all w E 42, and denote 
this common value by a,. Thus we are assuming that the nominal tests 
4: of Q, are similar for all P C  K. As in Section 4.3.3 of Chapter 2 we 
refer to  the ap's as nominal levels. We first state the following useful 
lemma. (The proofs of the results in this section are omitted as they are 
special cases of the general results stated above.) 

Application to the Family of Subset Hypotheses 
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Lemma 3.3 (Tukey 1953). For a separating step-down procedure, if 
under any subset hypothesis R, we have 

then 

sup Pr,{c$,,(Y) = 1) = a, . 
-enp 

This supremum is attained under any least favorable configuration such 
that the q’s, jPP, are sufficiently different from the Oi’s, i E P, to 

0 

In the following we assume that each ap depends on P only through p, 
the cardinality of P, and hence we denote it by ap. For llP = fly,, np, 
where P = (P,, P2, . . . , P,) is any partition of K = { 1,2 ,  . . . , k} consist- 
ing of disjoint subsets Pi with cardinalities p, Z 2 (1 s i S r)  satisfying 
El=,  pi 5 k, define 

guarantee that all Rq’s, Q _> P, are rejected with probability 1. 

a*(P) = sup Pr,{ max c#+,(Y) = 1) 
oefl, tSiZr  

(3.13) 

as in (4.15) of Chapter 2. We then have the following theorem analogous 
to Theorem 4.4 of Chapter 2. 

Theorem 3.2 (Tukey 1953). If the given step-down procedure is 
separating and if the nominal tests #: associated with it are statistically 
independent, then 

r 

a * ( P )  = I - n (1 - ap> (3.14) 

where the a,,’s are nominal levels of the tests c$:, (1 S i S r). Therefore 

i = l  

where the maximum is taken over all sets of integers pl ,  . . . , p, satisfying 
pi B2, E:=* pi S k ,  and 1 S r S kJ2. 

From (3.15) we see that to control the W E  strongly, only the choice 
of the nominal levels ap matters. For given a, the nominal levels ap 
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should be chosen so that 

(3.16) 

regardless of the choice of the test statistics. 

3.1.3 A Shortcut Procedure 
We next consider a shortcut version of the step-down test procedure 

for the family of subset hypotheses in the special case of the location 
parameter family of distributions. Thus suppose that we have k indepen- 
dent r.v.’s, Yl, Y z , .  . . , Yk, where Y, has the distribution 

Pr(Y, S y )  = F( y - 8,) (1 S i S k) , (3.17) 

F being known and continuous. Consider a step-down procedure in which 
the nominal tests of the subset homogeneity hypotheses Q, are based on 
the range statistics R, = max,Ep Y, - minrEP Y, (P C K). The critical con- 
stants used in the nominal tests of f l p  and the associated nominal levels 
are assumed to depend only on the cardinalities p of P; we denote them 
by 6, and ap ,  respectively (2 S p S k). As seen in Example 4.4 of 
Chapter 2, a shortcut step-down procedure can be employed in this 
setting if the critical constants 5, form a monotone sequence 

& S & S . . . S & .  (3.18) 

In this procedure whenever any R, is rejected, the two 8’s corresponding 
to max,,, Y, and minrEP Y, and any subset containing these two 8’s are 
declared heterogeneous without further tests. Lehmann and Shaffer 
(1977) showed that (3.18) is a necessary and sufficient condition for 
(3.14) to hold for this shortcut procedure under the location parameter 

In the nonindependence case when the ranges R, are positively 
dependent (e.g., when the Y,’s have independent numerators but a 
common Studentizing factor in the denominators), equality (3.14) is 
replaced by the inequality 

setting. 

when (3.18) is satisfied. 

3.2 An Optimal Choice of the Nominal Levels 

We now consider the problem of choosing the aP’s “optimally” for a 
given step-down procedure for the family of subset hypotheses. Here an 
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“optimal” choice of the ap’s is one that maximizes the powers, that is, the 
probabilities of rejecting false hypotheses, subject to (3.16). If the 
statistics Z, for the nominal tests of Q, are given, then fixing the a,’s 
fixes their critical values and hence the power functions of the procedure. 
Since larger a,,’s are associated with higher powers, an optimal choice of 
the ap’s would correspond to maximizing them subject to (3.16). We now 
describe Lehmann and Shaffer’s (1979) solution to this problem. 

It can be shown that, without any restriction on a*, . . . , ah_*,  the 
maximal values of ah-,  and ah can always be chosen as 

a;- l  = a: = a .  (3.19) 

For k =3 ,  (3.19) provides the optimal choice. For k = 4 ,  (3.19) 
together with a: = 1 - (1 - a)”’ provides the optimal choice. For k 2 5, 
however, it is not possible to simultaneously maximize all ap’s. 

When a uniformly best choice of the ap’s does not exist, it is 
convenient to define the notion of admissible a,,’s. A set (a2, aJ ,  . . . , ah) 
is called inadmissible if there exists another set (a;, a;, . . . , a;)  such 
that both satisfy (3.16) for a specified a, and ap S a6 for all p = 2, . . . , k 
with strict inequality for at least some p. If the set (a2, a3, . . . , a&) is not 
inadmissible, then it is said to  be admissible. 

To obtain reasonable power against any pattern of inhomogeneities, 
Lehmann and Shaffer proposed the criterion of maximizing min2SpLk ap 
subject to (3.16) when k B 5. It can be shown that any admissible choice 
of ap’s satisfies a2 S a3 d - - * S a&. Therefore this max-min criterion 
requires maximization of a2 subject to (3.16). This maximum is given by 

(3.20) 

where [ x ]  denotes the integer part of x .  For k odd, Lehmann and Shaffer 
showed that subject to (3.16) and (3.20) all ap’s are simultaneously 
maximized by the choice 

(3.21) 

I /  [&:2] a: = 1 -(1 -a) 

L p l Z J i ( k t 2 J  
ap* = 1 - (1 - a) ( 2 S p d k ) .  

Notice that this choice agrees with (3.19) for p = k - 1 and k. 
For k even, however, it is not possible to simultaneously maximize all 

ap’s subject to (3.16) and (3.20) when k L 5 .  Based on fairly narrow 
bounds on the admissible ap’s, Lehmann and Shaffer recommended the 
following choice for these values of k :  

= a: = a .  (3.22) 

This choice was given in (4.22) of Chapter 2 for any k and was referred to 
there as the Tukey-Welrch (TW) specifkation. 

ap* = 1 - ( 1  - a)p’k ( 2 S p d k  - 2 ) ,  
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3.3 Directional Decisions 

In Section 4.2.3 of Chapter 2 we briefly discussed (in a restricted context) 
the problem that is the topic of the present section. Shaffer (1980) 
considered finite nonhierarchical families of hypotheses postulating 
specified values for scalar parametric functions against two-sided alterna- 
tives. She showed that under certain conditions it is possible to supple- 
ment step-down procedures with directional decisions in case of rejections 
of postulated values, and still control the Type I and Type 111 W E .  We 
now give a formal statement of this result under the more general setting 
of this appendix. 

Consider m scalar parametric functions y, = y , ( e ( o ) )  (1 5 i 5 m). Sup- 
pose that we are interested in testing H,, : y, = yo, (1 5 i S m) against 
two-sided alternatives, the yol’s being specified constants. Further sup- 
pose that we have independent test statistics 2, with distributions 

Pr(Zi 5 z )  = F,(z,  y,), F, is nonincreasing in y, (1 I i 5 m) . 
(3.23) 

Thus the 2,’s may have different distributional forms but they must be 
stochastically increasing in y,’s. Let ti, and t,, be the maximum and 
minimum values, respectively, for which 

Pr,(Z, < 5:,> (1 - > Pr,,(Z, > k, )  5 a,a,  (3.24) 

with equalities holding if the 2 , ’ s  are continuous; here the at’s and a,‘s 
are fixed constants satisfying 0 S uI S 1 (1 S i S m) and 

(1 - a J ) ’ =  1 - a  ( 1 I j S m )  (3.25) 

for a designated level a. Notice that by choosing the q’s appropriately we 
can have any combination of one-sided and two-sided tests. (When all 
tests are one-sided there are no directional decisions to be made and only 
the Type I W E  is to  be controlled.) 

The following is a generalization of Holm’s (1979a) step-down pro- 
cedure: 

Step 1. Reject H,, if 2, < (:, or 2, > (,,,, (1 S i I m ) .  If at least one H,, 
is rejected, then proceed to Step 2. In general, let r l - ,  be the 
number of Ho,’s rejected at the (I - 1)th step (I - 1 = 
1 , 2 , .  . . , m - 1) .  If t l - ,  = 0, retain all hypotheses that have not 
been rejected until that step and stop testing. If r,- I > 0, pro- 
ceed to Step 1. 
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Step 1. Consider all Hoi’s that have not been rejected up to the (I - 1)th 
step. Reject any such ifoi if Zi< ( : j  or Zi > Sjj where j =  

Notice that, as a result of (3.23) and (3.24), if J denotes the index set 

- p - 1  
& = I  r k .  

of j t 1 unrejected hypotheses at step 1, then under H,, = nrE, H,,, , 

with equality holding if all the Z,’s are continuous. 
If any H,,: y, = yo, is rejected, one would usually wish to decide 

whether y, < yo, or y, > yo,. Since the Z,’s are assumed to have stochasti- 
cally increasing distributions in the ‘y,’s, a natural way to do  this is by 
augmenting Holm’s procedure as follows: If H,, is rejected at the Ith step 
(1 5 1s m), then decide that ’y, < yo, or y, > yo, according to whether 
2, < t:, or 2, > 6, where j = m - ,?lLl’, r k .  For the resulting procedure the 
following theorem gives a set of sufficient conditions for the control of the 
Type I and Type 111 FWE. 

Theorem 3.3 (Shafler 1980). The step-down procedure with directional 
decisions stated above controis the Type I and Type I11 FWE strongly 
(for ali values of the y,’s) at level a if the test statistics Z, are indepen- 
dently distributed according to (3.23), the critical constants ti, and E:, are 
chosen according to (3.24) and (3.25), and the F,’s satisfy the following 
two conditions: 

(i) Let [z,:~,, t,~,:] be the convex support of F,(z, y,) and let 
( y : ,  y:*) be the range of possible values of y,. Then for i = 

1 , 2  , . . . ,  m, 

lim. Fi(z,  y,) = 1 , 
Y?Y I Y,+Y:- 

lim F,(z, y,) = 0 

(ii) 

where F: denotes the derivative of F, with respect to y. a 

It can be shown that condition (3.27) is satisfied for location and scale 
parameter families of distributions with monotone LRs, and for exponen- 
tial families of distributions that satisfy (3.26). 
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Some Probability Inequalities 
Useful in Multiple Comparisons 

In any simultaneous inference problem we are concerned with making 
probability statements about the joint occurrences of several random 
events %'?, . . . , 8, that are generally dependent. Typically event iTl is 
of the form ( X I  d 6 )  where X, is a random variable (r.v.) and 6 is some 
critical constant. n u s  fl:=, 8, is the e. ent that max,s,,, X, s 6. Except 
in some special cases, it is difficult to evdluate the probability of this event 
exactly, even on a computer. Thus easily computable bounds (usually 
lower bounds) are needed (David 1981, Section 5.3). Similar problems 
arise in many other areas of statistics, for example, in reliability, and in 
ranking and selection theory. For this reason, the subject of probability 
inequalities has received increasing attention in recent years. Tong (1980) 
is an excellent comprehensive reference on this subject. Our aim here is 
to provide a brief review of the inequalities that are commonly employed 
in determining bounds on the critical constants f used in multiple 
comparison procedures (MCPs). 

In Section 1 we study Bonferroni-type bounds, which are distribution- 
free and are thus applicable in very general settings. In Section 2 we 
consider the so-called multiplicative bounds, which are sharper than the 
first order Bonferroni bounds, but are valid under somewhat restrictive 
distributional assumptions. Both of these methods involve bounding the 
joint probability by some function of the marginal probabilities. In 
Section 3 we discuss some probability inequalities that can be obtained by 
the techniques of majorization (Marshall and Olkin 1979). 
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1 BONFERRONI-TYPE INEQUALITIES 

Let 8,, $, . . . , gk be k Z 2 random events. By the principle of inclusion 
and exclusion we get the well-known Boole's (also known as Poincari's) 
formula: 

where %: denotes the complement of event gi. The rth order Bonferroni 
approximation consists of using the first r terms of this finite series to 
approximate the left hand side of (1.1). Denote this approximation by S, 
(1 5 r 5 k - 1). Then S,, S,, S,, . . . provide upper bounds and 
S,, S,, S,, . . . provide lower bounds on the left hand side of (1.1). It is 
commonly believed that S, -5 S, 2% S, 2 * and S, S S, S S, S . . . , and 
thus the bounds increase in sharpness with the order; however, this is 
generally not true (see Schwager 1984 for counterexamples). The popular 
Bonferroni inequality uses the first order approximation yielding 

Many improvements of (1.2) have been proposed that require the 
knowledge of joint bivariate probabilities (i.e., joint probabilities of pairs 
of events). One such improvement was proposed by Kounias (1968). The 
Kounias inequality gives 

k 

Pr(fi %,) 1 - c Pr($:) + max c Pr(8f n . (1.3) 
i n  I 1 L # /  

In particular, if Pr(8F) = Pr(8;) and Pr(8: n % 5 )  = Pr(8T n 58;) for 
1 5 i # j S k, then (1.3) reduces to 

z 1 - k Pr($;) + (k - 1) Pr(8; n 8;). (1.4) 

Hunter (1976) improved upon the Kounias inequality; the same result 
was obtained independently by Worsley (1982). This result makes use of 
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two concepts from graph theory that are defined here for convenience: A 
rree is a connected graph without circuits (closed paths) and a spanning 
rree is a tree in which each vertex (node) is connected to at least some 
other vertex (i.e., there are no isolated vertices). The following theorem 
summarizes the Hunter-Worsley inequality. 

Theorem 1.1 (Hunter 1976, Worsley 1982). Consider a graph G with 
events %;, %’;, . . . , g i  as vertices with %: and %‘; joined by an edge elj if 
and only if ‘Z?: n 8; # 4. Then for any spanning tree T of G, 

In the class of all bounds (1.5), the sharpest bound is obtained by 
finding the spanning tree T* for which the term 

is maximum. The minimal spanning tree algorithm of Kruskal (1956) can 
be used to solve this problem of finding the maximum of (1.6) over the 
set of all spanning trees. The Kounias inequality (1.3) uses the maximum 
over only a subset of all spanning trees and hence is never sharper than 
(1.5) with T =  T*. 

Stoline and Mitchell (1981) have given a computer algorithm for 
evaluating Hunter’s bound when ‘Z?, is the event { T I  S t }  where 
T,, T 2 , .  . . , Tk have a joint multivariate r-distribution with a given 
associated correlation matrix { p,,} and degrees of freedom (d.f.) Y. In this 
case, Stoline (1983) has shown that Hunter’s inequality becomes consid- 
erably sharper than the first order Bonferroni inequality when all Ip,I > 
0.5. 

Hunter noted that if some proxies are available for the magnitudes of 
the probabilities Pr($: n %;), then for maximizing (1.6) it is not neces- 
sary to evaluate the actual probabilities; the proxies can be used instead. 
An example of this occurs when the event Sf =(X, > t )  ( 1 S i S k )  
where X,, X,, . . . , X, are jointly distributed standard normal r.v.’s with 
known correlations pl, (1  I i # j S k). In this case the bivariate distribu- 
tion of any pair (XI, X,) depends on i and j only through p I , ,  and by 
Slepian’s (1962) result (see Theorem 2.1 below) it follows that Pr(X, > 5, 
X, > 6)  is increasing in pI, for any 6.  Thus the pl,’s can be used as proxies. 
The same conclusion holds for the events S: = ( I X , l > t >  (1 4 i S k )  
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and/or if the Xi’s are divided by a common independently distributed 
r.v. (i.e., if the r.v.3 Y, = X i m  have a multivariate t- 

distribution with Y d.f. and associated correlation matrix { P , ~ } ) .  
Some other Bonferroni-type inequalities are discussed in Tong (1980, 

Section 7.1). 

2 MULTIPLICATIVE INEQUALITIH 

The basic aim here is to obtain multiplicative inequalities of the type 

Kimball’s (1951) inequality, which is stated in a more general form in 
Theorem 2.6 below, is one of the first such inequalities. Note that the 
bound in (2.1) is at least as sharp as the Bonferroni bound (1.2). 
However, while the Bonferroni bound is always valid, (2.1) is valid only 
under certain conditions. We study some dependence models for which 
multiplicative inequalities of the type (2.1) can be established. 

2.1 Inequalities for Multivariate Normal and Multivariate 1-Distributions 

Let X = (X, , X,, . . . , Xk)’  have a k-variate normal distribution with zero 
mean vector, unit variances, and correlation matrix R = { pi j}  (denoted by 
X - N(0,  R)). The following two probabilities are frequently encountered 
in the study of MCPs: 

where t,, t,, . . . , 6;, are some constants (positive in the case of (2.3)). 
Often, t1 = t2 = . * = ek = 6 (say) where 6 is the upper a point of the 
distribution of max X, (respectively, rnaxlX,l), which is evaluated by 
setting (2.2) (respectively, (2.3)) equal to 1 - a. 

Numerical evaluation of (2.2) and (2.3) involves a k-dimensional 
quadrature. Appendix 3 explains how this can be reduced to a one- 
dimensional quadrature when the pij’s have a so-called product srmcrure: 

p,, = Aihi (1 S i # j  5 k) (2.4) 
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where each Ai €(-1,  1). However, for pij’s not satisfying (2.4) such a 
reduction is not possible and, as a result, computational costs can be 
prohibitively high even for moderate k. Thus easily computable bounds 
on (2.2) and (2.3) are required. Note that (2.4) holds when all the pi,’s 
are equal. 

By utilizing special properties of the multivariate normal distribution it 
is possible to find multiplicative lower bounds on (2.2) or (2.3) that are 
functions of the univariate normal distribution, and that improve upon 
the first order Bonferroni bound. Slepian (1%2) showed the first general 
result along these lines, which is stated in the following theorem. 

Theorem 2.1 (Slepian 1962). For X - N(0, R), the “one-sided” prob- 
0 ability (2.2) is a strictly increasing function of each p i j .  

A corollary to this theorem is that a lower bound on (2.2) is obtained 
by replacing all the pl,’s by p,,, = min p,, if pmrn > - l / (k  - 1). As noted 
above, since this lower bound involves an equicorrelated multivariate 
normal distribution, it can be evaluated by using a one-dimensional 
quadrature. If all the pl, L O ,  then we obtain the well-known Slepian 
ineqwrliry : 

L 

Pr{ (x, 5 t l ) )  2 n Pr(X, I 6,). (2.5) 
1 - 1  1 - 1  

It is natural to expect that monotonicity results analogous to Theorem 
2.1 would hold for the “two-sided” probability (2.3). However, only 
partial analogs are valid here. Dunn (1958) proved the analog of (2.5),  
that is, 

if k S 3  or if k > 3  and the correlation matrix has the product structure 
(2.4). (See also Halperin 1967.) Sidak (1967) later extended this result to 
arbitrary positive definite correlation matrices for k > 3. Inequality (2.6) 
is therefore known as the Dunn-.%ddk inequality. 

A generalization of (2.6) was given by Khatri (1967). For X distributed 
as N ( 0 ,  R) where R = (pij} is a positive semidefinite correlation matrix, 
consider a partition of X and R as follows: 

here X ( ’ ) : m X l ,  X ( ” : ( k - m ) x l ,  R l l : m x m ,  R , , : m x ( k - m ) ,  and 
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R,, :(k - rn) x (k - m). Then X(I)- N ( 0 ,  R,,) and X") - N(0, R,,). For 
this setup Khatri proved the following result. 

Theorem 2.2 (Khatri 1967). Let A E R"' and A ,  E Rk-" be two con- 
vex regions symmetric about the origin. If R,, is of rank zero or one, then 

2 

Pr( (X'" E A l ) ]  I n Pr(X"' E A,) . (2.7) 
0 

l==l r = l  

A repeated application of (2.7) where at each stage one of the X""s is 
a scalar Xi and the corresponding set A, = { x  : 1x1 I t i }  yields (2.6). If R 
has the product structure (2.4), then the following stronger result holds. 

Theorem 2.3 (Khatri 1967). For X - N ( 0 ,  R) consider a partition of X 
into r component vectors Xfi)  (1 d i S r) where X ( i ) :  ki x 1, E;=, k i  = k .  
Let Ai Rki be a convex region symmetric about the origin (1 5 i I r ) .  
Then under (2.4), the inequalities 

and 

hold for every subset C of { 1,2,  . . . , r } .  The inequalities are strict if the 
Ai's are bounded sets with positive probabilities and the Ai's in (2.4) are 
nonzero. 0 

Corollary. From (2.9) it follows that under (2.4), 

(2.10) 

0 

Khatri (1970) attempted to extend Theorem 2.3 to cases where R does 
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not possess the product structure (2.4). His proof depended on an 
argument of Scott (1967) that was shown to be in error by Das Gupta et 
al. (1972) and Sidhk (1975). In fact, Sidak gave a counterexample to 
show that if R is arbitrary, then (2.9) is false while the validity of (2.8) is 
an open question. We refer to this open question as the Khalri Con- 
jecture. 

Sidak (1968) studied the monotonicity of the two-sided probability 
(2.3) in each pij. He showed by counterexamples that a complete 
two-sided analog of Slepian’s result stated in Theorem 2.1 is false. 
However, he was able to obtain the following partial analog, a much 
simpler proof of which was later provided by Jogdeo (1970). 

Theorem 2.4 (SidiQc 1968). Let X - N ( 0 ,  R( A)) where R( A) = {p lJ(  A)} 
is a positive semidefinite correlation matrix that for a fixed correlation 
matrix R = {p , }  depends on A E [0,1] in the following way: p,,(A) = 
p,,( A) = Ap,] for j Z 2 and p , (  A) = p,, for i, j Z 2. Then the two-sided 
probability (2.3) is a nondecreasing function of A. If R is positive definite, 
p,, # 0 for some j 2 2 and if all the 5,’s are positive, then (2.3) is a strictly 
increasing function of A. 0 

Corollary. Let A = ( A , ,  A,, . , , Ak) ‘ .  If X - N(0 ,  R( A)) where the corre- 
lation matrix R( A) = { AIAJpl,)  for some fixed correlation matrix { pIJ}  and 
A, E [0,1] for i = 1,2, . . . , k, then the monotonicity result of the theorem 
holds for each A,. 0 

Sidak (1968) also showed that for the equicorrelated case, pI, = p for 
all i # j ,  (2.3) is locally strictly increasing in p. For this same case, Tong 
(1970) derived the following result using a moment inequality for non- 
negative random variables. 

Theorem 2.5 (Tong 1970). Let X - N ( 0 ,  R) where the correlation mat- 
rix R has all offdiagonal elements equal to p (say) where p 1 0 .  Define 
for 1 S I 5 k, 

and 
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Then for i = 1,2 ,3 ,  

P i ( k ) Z { P i ( r ) } k ’ r Z { P i ( l ) } k  for l S r S k .  (2.11) 

The inequalities are strict if p > 0. 0 

The inequalities (2.5), (2.6), (2.10), and (2.11) extend to the multi- 
variate f-distribution by using a simple conditioning argument. Thus let 
Y, = X i / U  (1  S i 5 k) where U is distributed as a fi r.v. independent 
of the Xi’s. Then (Y,, Y z ,  . . , Yk)’ has a k-variate f-distribution with d.f. 
Y and associated correlation matrix R. By conditioning on U ,  the above- 
mentioned inequalities can be shown to hold with the X,’s replaced by the 
Yi’s. Theorem 2.5 was later generalized by Sidak (1973), and his result 
was further generalized by Tong (1980). 

2.2 Inequalities via Association 

The inequalities discussed in the preceding section are known to hold 
only in the case of multivariate normal and multivariate t-distributions. A 
question naturally arises as to whether one can establish similar rnulti- 
plicative inequalities in more general settings. As noted before, a multi- 
plicative lower bound involving marginal probabilities is of particular 
interest since it is sharper than the first order Bonferroni lower bound. A 
key idea behind the inequalities of the preceding section is that the 
variables with greater correlation are more likely to “hang together.” The 
extent of dependence between two jointly distributed normal r.v.’s is 
completely measured by their correlation coefficient. However, for arbi- 
trarily distributed r.v.’s this is not true and more general concepts of 
dependence are required. Lehmann ( 1966) introduced several concepts of 
bivariate dependence. Esary, Proschan, and Walkup (1967) introduced a 
very general concept of multivariate dependence called association. We 
define this concept below. 

Dcfinirion 2.1. Let X = (X,, X,, . . . , Xk)’. The r.v.’s X,, X,, . . . , X, 
are said to be assockfed if 

COV{81(X), gz(X)) 2 0  

for any two functions g ,  , g, : Rk-, R’ such that g, and g, are nondecreas- 
ing in each argument and E {  g,(X)} exists for i = 1,2. 

Esary, Proschan, and Walkup (1967) have given a number of results 
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that can be used to easily verify whether a given set of r.v.’s is associated. 
For example, a single r.v. is associated, a set of independent r.v.3 is 
associated, and nondecreasing (or nonincreasing) functions of associated 
r.v.’s are associated. 

If X , ,  X,, . . . , X, are associated r.v.’s, then it can be shown that the 
multiplicative inequalities (2.5) and (2.6) hoid. Another inequality that 
can be derived using the properties of associated r.v.’s is the following 
generalization of the Kimball inequality. 

Theorem 2.6 (Kimball 1951). Let g,, g , ,  . . . , g,: R k +  [0, m], and sup- 
pose that each g, is monotone (in the same direction) in each argument. 
Let X = (XI, X,, . . . , X,)‘ be a vector of associated r.v.’s. Then 

for every subset C of {1,2, . . . , r } .  0 

Kimball’s inequality is a special case of (2.12) for k = 1. Inequality 
(2.12) is useful when dealing with probabilities associated with r.v.’s of 
the type Z, = +hi(Y,, X )  (1 5 i 5 r )  where conditioned on X ,  the Yi’s are 
independent. 

3 INEQUALITIES VIA MAJORIZATION 

Majorization is increasingly used as a powerful technique for obtaining 
probability inequalities. Marshall and Olkin (1979) is a comprehensive 
reference on this topic. Tong (1980) has given a nice review of the topic 
in his Chapter 6. 

Definirion 3.1. Let a = ( a , ,  u,, . . . , a,)‘ and b = ( b l ,  b , ,  . . . , bk)’  be 
two real vectors and let qll 2 aIzr B * L alkl  and b i r l  2 b!,l 5 - - - Z b lk l  
be the corresponding ordered values. Vector a is said to rnalorrze vector b 
(denoted by a > b) if 

k k c a, = x b, 
1-1 i =  1 

and 
i I 

2 n [ , , Z x  bI i ,  for 1 d j S k - 1  
i = 1  i- 1 

(3.1) 

0 
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De/inition 3.2. A function g : Rk 4 BB’ is called Schur-convex (respective- 
ly, Schur-concuve) if a > b implies that g(a) Z g(b) (respectively, g(a) 5 

cl 

Theorem 3.1 (Marshall and OLkin 1974). Suppose that X =  
(XI, X,, . . . , X,)‘ has a Schur-concave joint density function f(x). Let 
A C Rk be a Lebesgue-measurable set such that 

g(b)). Such functions are permutation-symmetric. 

a E A  and a > b J b E A .  (3.2) 
Then 

Pr{(X - 8) E A }  = 1 /(x) dx 
A +# 

(3.3) 

is a Schur-concave 
a €  A } .  

function of 8. Here the set A + 0 = {b: b = a + e, 
0 

As a consequence of this theorem we obtain that under the stated 
conditions 

8 >  q3+Pr{(X - + ) € A }  LPr{(X - 8 )  E A }  . (3.4) 

In particular, if q3 = (8, e, . . . , 8 ) ’  where 8 = Efsl Oi/k, then (3.4) holds 
since 8 > (8, 8, . . . , 8)’. 

This result is useful in studying the supremums (with respect to  
underlying parameter values) of error probabilities of some MCPs. It can 
also be used to derive bounds on multivariate distribution functions. 
Suppose that X = (XI, X,, . . . , xk)’ has a Schur-concave density func- 
tion; then Pr{ f l f=  I (Xi 5 &)} and Pr{ nf= I ( X i  > 5 , ) )  are Schur-concave 
in = (t,, 6,. . . . , tk)’. Therefore, 

and a similar inequality holds for Pr{nf=, (X, > e l ) } ;  here = Cf=, 6, lk .  
Marshall and Olkin (1974) attempted to apply their result to derive 
multiplicative inequalities of type (2.5) for r.v.3 Xi that are conditionally 
independent and identically distributed. However, Jogdeo (1977) pointed 
out a flaw in their argument and gave correct conditions under which the 
desired result holds. 

Special cases of Theorem 3.1 were earlier proved by Anderson (1955) 
and Mudholkar (1966). Marshall and Olkin’s (1974) result can be viewed 
as a generalization of Mudholkar’s ( 1 M )  result in two ways: The latter 
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assumes that f(x) is unimodal (i.e., the level set {x:  f ( x )  2 c} is convex for 
every c), which implies Schur-concavity assumed in Theorem 3.1. Second- 
ly, the latter assumes that set A is permutation invariant and convex, 
which implies condition (3.2). Mudholkar's (1966) result, in turn, 
generalizes the following integral inequality of Anderson (1955). 

Theorem 3.2 (Anderson 1955). Let f ( x )  : Rk-, (0,m) be symmetric 
about the origin and unimodal. Let A C R* be symmetric about the origin 
and convex. If I, f(x) dx < QJ, then 

for all y and A E [ O ,  1). U 



A P P E N D I X  3 

Some Probability Distributions 
and Tables Useful in Multiple 
Comparisons 

In Section 1 of this appendix we discuss some samplin distributions 
(other than the elementary ones such as the normal, I ,  ,y , and F) that 
commonly arise in multiple comparison problems. In Section 2 we discuss 
the tables of critical points of these distributions, which are given at the 
end of this appendix. In addition to these tables we have also included a 
table of critical points of Student's t-distribution for very small tail 
probabilities whose applications are indicated in the sequel, and a table of 
critical points for the Waller-Duncan procedure discussed Chapter 11, 
Section 3.4. 

9 

I DISTRIBUTIONS 

1.1 Muttivariate Normal Distribution 

A random vector 2 = (2, , Z,, . . . , 2,)' is said to have a k-variate normal 
distribution with mean vector p and covariance matrix Z if its characteris- 
tic function &(u) = E(e'"'') is given by 

&(u) = exp(iu'p - 4 u'XU) 

where i = V=i. If L is positive definite, then the density function of 2 
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exists and is given by 

f(z) = (2~)-"'(det X)-*'* exp( - $(z - p) 'X - ' ( z  - p) }  ; 

in this case we say that Z has a nonsingular distribution. 
If the Zi's are standardized so that E ( Z , )  = 0 and var(2,) = 1, then P is 

a correlation matrix; we denote it by R with off-diagonal elements 
pi, =corr(Z,, Zj )  for i # j .  Distributions of maxZ, and maxlZil arise 
frequently in multiple comparison problems. In general, the probability 
integrals of these. distributions are of dimension k. However, if R satisfies 
the product structure condition (2.4) of Appendix 2, then using the 
representation 

Z ,  =fG Y, - A , Y ~  (1 d i s k )  

where Yo, Y l ,  . . . , Y, are independent and identically distributed (i.i.d.) 
N(0,l)  random variables (r.v.'s), these k-variate integrals can be ex- 
pressed as univariate integrals as follows: 

and 

where @( . ) is the standard normal cumulative distribution function 
(c.d.f.). The case of equicorrelated Zi's, that is, pij = p B 0 for all i # j ,  is 
a special case of the product structure with hi = fi for all i .  

For arbitrary R we denote the upper a points of the distributions of 
max Zi and maxlZil by 2:: and IZ(?h, respectively; in the equicorre- 
lated case we denote them by Z t j  and IZlE;, respectively. The critical 
point 2:; (respectively, 121~~) is the solution in z to the equation 
obtained by setting (1.la) (respectively, (1.lb)) equal to 1 - a with 
hi = flp for all i. 

1.2 Multivariate t-Distribution 

Let the 2,'s have a k-variate normal distribution with zero means, unit 
variances, and corr(Zi, 2,) =pi ,  for i Z j .  Let U be a x f  r.v. that is 
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distributed independently of the Zi’s and let Ti = Z i / m v  (1 S i 4 k ) .  
Then the joint distribution of T,, T 2 ,  . . . , Tk is called a k-variate t- 
distribution with Y degrees of freedom (d.f.) and associated correlation 
matrix R = { P , ~ ) .  If R is positive definite, then the density function of 
T = (T,, T2,  . . . , Tk)’ exists and is given by 

This distribution was derived independently by Dunnett and Sobel ( 1954) 
and Cornish (1954). The joint distribution of T : ,  T i , .  . . , T i  is a special 
case of the multivariate F-distribution (with common numerator d.f. = 1) 
introduced by Krishnaiah and Armitage (1970). Gupta (1963a) is a 
comprehensive reference on multivariate normal and multivariate r- 
distributions. 

For arbitrary R we denote the upper a points of the distribution of 
max Ti and maxlT,I by TtL.R and ITl t t ,R ,  respectively; in the equicorre- 
lated case we denote them by TE:,p and respectively. By 
conditioning on m u  = x and using ( l . l ) ,  the probability integrals of 
rnax T, and maxlT,) in the equicorrelated case can be written as follows: 

where F,( - )  is the c.d.f. of a fl r.v. The critical point T t : . ,  
(respectively, lT l t ! ,p )  is the solution in t to the equation obtained by 
setting (1.2a) (respectively, (1.2b)) equal to 1 - a. 

1.3 Studentized Maximum and Maximum Modulus Distributions 

The distribution of rnax,,,,, Ti when the T,’s have a joint equicorrelated 
k-variate t-distribution with Y d.f. and common correlation p = 0 is 
referred to as the Studentized maximum distribution with parameter k 
and d.f. v. The corresponding r.v. is denoted by Mk,” and its upper a 
point by ME:, which, of course, equals Tt;.,, .  

The distribution of rnax,,,,,lT,( in this case is known as the Studen- 
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tized maximum modulus distribution with parameter k and d.f. v. The 
corresponding r.v. is denoted by lMlk ,v  and its upper a point by /MI::, 
which, of course, equals l T l ~ ~ , - , .  

1.4 Studentized Range Distribution 

Let Z,, Z, ,  . . . , 2, be i.i.d. N(0,l)  r.v.’s and let U be an independently 
distributed ,y: r.v. Then the r.v. 

max lz, - Z,l 
I s t c j a k  

Q k . v =  

is said to have the Studentized range distribution with parameter k and 
d.f. v. When v = 00, the corresponding distribution is known as the range 
(of k i.i.d. standard normals) distribution. The probability integral of Q k , ”  

can be written in a closed form as follows: 

The upper a point of Qk,” is denoted by Q‘;! and is given by the 
solution in q to the equation obtained by setting (1.3) equal to 1 - a. 

In general, if X,, X,, . . . , Xk are independent r.v.3 with Xi having a 
c.d.f. Fi(x)  (1 S i 5 k), then the distribution of R ,  = max,+ilXl - X,l can 
be written as 

jr’i 

If the Xl’s have a common c.d.f. F(x) ,  then (1.4) simplifies to  the 
expression 

Pr{R, r )  = k j-: {F(x) - F(x - r ) ) k - l  dF(x) . (1.5) 

The range of k i.i.d. Student t r.v.’s arises in connection with some 
procedures for multiple comparison of means of normal distributions with 
unequal variances (see Chapter 7). For this case the upper a points of the 
range are given by Wilcox (1983). 



TABLES 377 

1.5 Studentized Augmented Range Distribution 

Consider the r.v. 

where Z , ,  Z, ,  . . . , 2, are i.i.d. N(0,l)  r . v . 3  and Zo = 1. The probability 
integral of QL,+ can be written as 

WQ;,, 5 4 = 1 W ( q 4  - 4 1' 

(1.6) 

The upper a point of the distribution of QLsv (denoted by QL:;)) is the 
solution in q to the equation obtained by setting (1.6) equal to 1 - a. 

A procedure based on the Studentized augmented range distribution 
for the family of all linear combinations of means in an unbalanced 
one-way layout is discussed in Section 3.1.3 of Chapter 3. However, this 
procedure is too conservative for the family of pairwise comparisons and 
hence is not recommended. Also Tukey (1953, Chapter 3) has noted that 
for k L 3  and a S0.05, QL!:) is well approximated by QE;. For these 
reasons we have not provided a table of Q;$)-vaIues in this book. The 
interested reader may refer to the tables computed by Stoline (1978). 

2 TABLES 

2.1 Details of the Tables 

The entries in all of the tables are given to three significant places (which 
in most cases implies two decimal place accuracy) and are rounded to the 
nearest digit in the last significant place. The original sources from which 
these tables have been adapted give the corresponding critical points to 
additional significant places. (Some of the tables were computed specially 
for the present book as noted below.) 
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Table 1 lists the values of Tf ) ,  the upper a critical point of Student's 
r-distribution with v d.f., for a = O.OOOl(O.OOOl)O.OOl(O.OOl)O.Ol and 
Y = 1(1)30(5)50,60,120,~. Computations of these critical points were 
done on New York University's computer using the IMSL routine 
MDSTI, which gives the inverse Student's &distribution. 

The main purpose of Table 1 is to provide values of T f '  for very small 
values of a, which are needed for applying many of the procedures 
described in this book. For example, for the Bonferroni and Dunn-Sidak 
procedures for pairwise comparisons of means, given in Section 3.2.3 of 
Chapter 3, we need the critical points Tr"'') Y 7 

respectively, where k' = (t). Tables of T ,  have been given by Bailey 
(1977) and of T~(1-"-u"'k ' ) '2)  by Games (1977). But these tables cannot 
be directly used in other cases where the number of comparisons is not of 
the form (i) for some integer k 2 2. Moses (1978) has given charts for 
finding Tf' for a ranging between 0.01 and O.oooO1 that can be used in 
general applications, as can the present tables. 

Tables 2 and 3 give the values of the critical points 2:; and IZlt;, 
respectively, for a = 0.01, 0.05, 0.10,0.25, k = 2(1)10(2)20(4)40,50, and 
p =0.1(0.2)0.7. Table 2 is adapted from Gupta, Nagel, and Pan- 
chapakesan (1973), while Table 3 is adapted from Odeh (1982). Previous- 
ly Milton (1963) and Krishnaiah and Armitage (1965) have given tables 
for 2:; and ( l Z l ~ ~ 2 ) ) 2 ,  respectively. 

Tables 4 and 5 give the values of the critical points T t ; , ,  and I T I ~ ~ , , ,  
respectively, for a = 0.01, 0.05, 0.10, 0.20, k = 2(1)10(2)20, v = 2( l)lO, 
12(4)24, 30, 40, 60, 120, a and p = 0.1(0.2)0.7. Both of these tables were 
computed specially for the present book By Professor C. W. Dunnett. 
Using the same programs, Bechhofer and Dunnett (1986) have prepared 
very extensive sets of tables of T t t , ,  and Recently Gupta, 
Panchapakesan, and Sohn (1985) have also published detailed tables of 
T t ; , , .  Another source for tables of T:'fl,, is the paper by Krishnaiah and 
Armitage (1966). Tables of I Tl;6,, can be found in Hahn and Hendrick- 
son (1971), Dunn and Massey (1%5), and Krishnaiah and Armitage 
(1970) (the last authors tabulated (I TlELf;)'). 

and I M l t : ,  
respectively, for a = 0.01, 0.05, 0.10, 0.20, k = 2(1)16(2)20, and v = 
2( 1)30(5)50, 60(20)120, 200, m. Both of these tables were also computed 
specially for the present book by Professor C. W. Dunnett. Previously a 
short table of was published by Pillai and Ramachandran (1954). 
Detailed tables of l M l f l  have been published by Stoline and Ury (1979), 
Stoline et al. (1980), and Bechhofer and Dunnett (1982). 

Table 8 gives the values of the critical points Q';; for a = 0.01, 0.05, 

and T(  ( 1 -( 1 -a)' '*(') i 2 )  

( 0 / 2 & ' )  

Tables 6 and 7 give the values of the critical points 
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0.10, 0.20, k = 3(1)16(4)40, and Y = 1(1)20, 24, 30, 40, 60, 120, a. This 
table was adapted from Harter (1960,1%9). Lund and Lund (1983) have 
given a computer program for calculating the Studentized range integral 
(1.3) and the critical points QEL. Barnard (1978) has given a computer 
program for the special case v = a. 

Finally Table 9 gives the critical points required to implement the 
Waller-Duncan procedure. These critical points are taken from the 1972 
corrigendum to the Waller-Duncan (1969) article. 

2.2 Rules for Interpolation 

The following rules are recommended for interpolating in Tables 1-8. 

(i) Interpolation with respect to the error d.f. Y should be done 
linearly in l/u. 

(ii) Interpolation with respect to the upper tail probability a should 
be done linearly in log, a. 

(iii) Interpolation with respect to k in Tables 2-8 should be done 
linearly in log, k. 

(iv) Interpolation with respect to p in Tables 2-5 should be done 
linearly in 1/( 1 - p) .  

To find the critical point f *  = t * ( K ,  F, q,  f )  for F-values not listed in 
Table 9, Waller and Duncan (1969) recommended linear interpolation 
with respect to b = [ F / ( F -  l ) ] ' I 2  for f Z 2 0  and with respect to a = 
1 /F'/'  for f < 20. For f = 4 the values of f a  are not given in the table but 
are given by the following rules: For K = 50, f * = 2.28 for all q and F such 
that F>5.20/q; for K = 100, f a  = 2.83 for all (I and F such that F >  
8.12/q; and for K = 500, t* = 4.52 for all q and F such that F > 20.43 /q. 
If an asterisk is shown in the table instead of a t*-value, it means that for 
that combination of (K, F, q ,  f )  all pairwise differences are not sig- 
nificant. 
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TABLE 9. Minimum Average Risk f-Vdues for tbe Waller-Duncan Procedure 
f Y K ,  F, 4, f). 

4 6 8 10 12 14 16 18 20 24 30 40 6u 120 

K = S O  

F =  1.2 (a = 0.913, b = 2.449) 

2-4 I * I L L s 

6 2.32 2.34 2.35 2.36 2.36 2.36 2.36 2.31 2.31 2.31 2.37 2.31 2.37 
10 2.31 2.41 2.45 2.47 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.51 2.58 

5 2.45 2.58 2.68 2 . n  2.84 2.90 2.95 3.00 3.09 3.19 3.32 3.48 3.68 
20 2.41 2-49 2.54 2.59 2.62 2.65 2.67 2.69 2.n 2.76 2.19 2.83 2.06 

F=1.4  (a=O.845, b=1.871) 

2 * * * * * * * * * * * * *  
4 2.26 2.25 2.23 2.22 2.21 2.21 2.20 2.20 2.19 2.18 2.11 2.16 2.15 
6 2.30 2.31 2.31 2.31 2.31 2.31 2.30 2.30 2.30 2.30 2.29 2.29 2.28 

10 2.34 2.31 2.39 2.41 2.41 2.42 2.42 2.43 2.43 2.43 2.44 2.44 2.44 
20 2.38 2.44 2.48 2.50 2.53 2.54 2.55 2.56 2.58 2.59 2.61 2.62 2.63 
= 2.42 2.52 2.59 2.65 2.69 2.73 2.76 2.19 2.83 2.87 2.92 2.94 2.92 

F = 1 . 7  (u=0.767, b=1.558) 

2 * * * * * .  I * * * * * *  

4 2.24 2.21 2.19 2.17 2.16 2.15 2.14 2.14 2.12 2.11 2.10 2.09 2.07 
6 2.28 2.21 2.26 2.25 2.24 2.23 2.22 2.22 2.21 2.20 2.19 2.18 2.16 

10 2.31 2.32 2.12 2.32 2.32 2.32 2.31 2.31 2.30 2.30 2.29 2.27 2.26 
20 2.34 2.31 2.39 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.39 2.31 2.35 
5 2.35 2.44 2.41 2.50 2.52 2.53 2.53 2.54 2.54 2.53 2.51 2.47 2.40 

F =  2.0 (a = 0.707, b = 1.414) 

2 * 2.00 1.98 1.97 l .% 1.94 1.93 1.91 1.90 1.88 
4 2.22 2.18 2.15 2.13 2.12 2.10 2.09 2.08 2.07 2.05 2.04 2.02 2.01 
6 2.26 2.23 2.21 2.19 2.18 2.17 2.16 2.15 2.13 2.12 2.10 2.09 2.07 

10 2.29 2.28 2.26 2.25 2.24 2.23 2.22 2.21 2.m 2.19 2.17 2.15 2.12 
20 2.31 2.32 2.32 2.31 2.30 2.29 2.29 2.28 2.26 2.25 2.22 2.20 2.16 
a 2.38 2.31 2.38 2.38 2.38 2.31 2.31 2.36 2.34 2.31 2.27 2.22 2.16 

F=2.4(u=0.645,  b=1.309) 

2 2.14 2.07 2.02 1.99 1.97 1.95 1.94 1.93 1.91 1.59 1.88 1 . S  1.84 
4 2.20 2.15 2.11 2.08 2.06 2.05 2.03 2.02 2.01 1.99 1.97 1.95 1.93 
6 2.23 2.19 2.16 2.13 2.11 2.09 2.08 2.01 2.05 2.03 2.01 1.99 1.97 

10 2.26 2.23 2.20 2.18 2.16 2.14 2.12 2.11 2.09 2.07 2.05 2.02 1.99 
20 2.28 2.26 2.24 2.22 2.20 2.18 2.16 2.15 2.13 2.10 2.07 2.04 2.00 
OE 2.30 2.30 2.28 2.26 2.24 2.22 2.21 2.19 2.16 2.12 2.08 2.03 1.99 

F = 3.0 (a  = 0.57l. b = 1.225) 

2 2.13 2.04 1.99 1.96 1.93 1.91 1.90 1.89 1.81 1.85 1.83 1.81 1.19 
4 2.18 2.11 2.06 2.03 2.00 1.98 1.96 1.95 1.93 1.91 1.89 1.87 1.84 

10 2.22 2.16 2.12 2.09 2.06 2.M 2.02 2.00 1.98 1.95 1.92 1.89 1.86 
20 2.24 2.19 2.15 2.11 2.08 2.06 2.04 2.02 1.99 I . %  1.93 1.89 1.86 
5 2.26 2.22 2.18 2.14 2.11 2.08 2.05 2.03 2.00 I .% 1.92 1.89 1.85 
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TABLE 9. Continued. 

q 6 8 10 12 14 16 18 20 24 30 40 60 120 

2 
4 

20 
X 

2 
4 

20 
w 

2 
4 

x 

2-= 

2-6 
8 

10 
12 
14 
16 
20 
40 

100 
m 

2-4 
6 
8 
10 
12 
14 
16 
20 
40 

100 
m 

F = 4 . 0  (a=O.Mo, b=1.155) 

2.10 2.01 1.95 1.91 1.88 1.86 1.84 1.83 1.81 1.79 1.77 1.75 1.73 
2.14 2.05 2.00 1.96 1.92 1.90 1.88 1.87 1.84 1.82 1.80 1.77 1.75 
2.18 2.11 2.05 2.00 1.96 1.93 1.91 1.89 1.86 1.83 1.80 1.77 1.75 
2.20 2.12 2.06 2.01 1.97 1.94 1.91 1.89 1.86 1.83 1.80 1.77 1.74 

F =  6.0 (a  = 0.408, 6 = 1.095) 

2.07 l.% 1.89 1.85 1.82 1.79 1.78 1.76 1.74 1.72 1.70 1.67 1.65 
2.09 1.99 1.92 1.87 1.83 1.81 1.79 1.77 1.75 1.72 1.70 1.68 1.65 
2.12 2.01 1.94 1.88 1.84 1.82 1.79 1.78 1.75 1.72 1.70 1.67 1.65 
2.13 2.02 1.94 1.89 1.85 1.82 1.79 1.77 1.75 1.72 1.70 1.67 1.65 

F =  10.0 (a  = 0.316. 6 = 1.054) 

2.03 1.91 1.83 1.79 1.75 1.73 1.71 1.69 1.67 1.65 1.63 1.61 1.59 
2.04 1.92 1.84 1.79 1.76 1.73 1.71 1.69 1.67 1.65 1.63 1.61 1.59 
2.06 1.93 1.85 1.79 1.76 1.73 1.71 1.69 1.67 1.65 1.63 1.61 1.59 

F=25.0 (a=0.200. 6=1.021) 

1.98 1.84 1.76 1.72 1.68 1.66 1.64 1.63 1.61 1.59 1.57 1.55 1.53 

F = % ( u = O .  b = l )  

1.93 1.79 1.72 1.67 1.64 1.62 1.60 1.59 1.57 1.55 1.54 1.52 1.50 

K -  100 

F =  1.2 (0=0.913, b-2.449) 

* * * * . . * * * * * * *  
2.91 2.94 2.% 2.97 2.98 2.99 2.99 2.99 3.M) 3.00 3.00 3.00 3.00 
2.93 2.98 3.01 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.10 3.11 3.12 
2.95 3.01 3.05 3.08 3.10 3.12 3.13 3.14 3.16 3.17 3.19 3.20 3.21 
2.% 3.03 3.08 3.12 3.14 3.16 3.18 3.19 3.21 3.23 3.25 3.27 3.29 
2.97 3.05 3.11 3.15 3.18 3.20 3.22 3.24 3.26 3.28 3.31 3.33 3.36 
2.99 3.08 3.14 3.19 3.23 3.26 3.28 3.30 3.33 3.37 3.40 3.44 3.47 
3.02 3.13 3.22 3.29 3.35 3.39 3.43 3.47 3.52 3.58 3.64 3.72 3.79 
3.04 3.17 3.28 3.36 3.44 3.50 3.55 3.59 3.67 3.76 3.86 3.98 4.11 
3.05 3.20 3.32 3.42 3.50 3.58 3.64 3.70 3.80 3.91 4.06 4.24 4.45 

F=1.4 (a=O.845, b=1.871) 

* * * . * * . * a * * * *  

2.85 2.84 2.83 2.02 2.82 2.81 2.80 2.80 2.79 2.78 2.77 2.75 2.14 
2.88 2.89 2.90 2.90 2.90 2.89 2.89 2.89 2.88 2.88 2.87 2.86 2.85 
2.90 2.93 2.94 2.95 2.95 2.% 2.96 2.% 2.95 2.95 2.95 2.94 2.93 
2.92 2.95 2.98 2.99 3.00 3.00 3.01 3.01 3.01 3.01 3.01 3.00 2.99 
2.93 2.97 3.00 3.02 3.03 3.04 3.04 3.05 3.05 3.06 3.06 3.05 3.05 
2.94 2.99 3.02 3.04 3.06 3.07 3.0% 3.08 3.09 3.09 3.10 3.10 3.09 
2.95 3.01 3.05 3.08 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.16 3.16 
2.98 3.06 3.12 3.16 3.19 3.22 3.24 3.25 3.28 3.30 3.31 3.32 3.32 
2.99 3.09 3.16 3.22 3.26 3.29 3.32 3.34 3.38 3.41 3.43 3.45 3.42 
3.01 3.12 3.20 3.26 3.31 3.35 3.39 3.42 3.46 3.50 3.53 3.54 3.46 
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TABLE 9. Continued. 

~ 

p 6 8 10 12 14 16 18 20 24 30 4 0 6 0  120 

K =  100 

F = 1 . 1  (@=0.167, b =  1.558) 

2 * * * * *  
4 * * * * *  
6 2.82 2.79 2.16 2.74 2.72 
8 2.64 2.83 2.81 2.80 2.78 

10 2.86 2.86 2.85 2.84 2.83 
12 2.87 2.88 2.88 2.81 2.86 
14 2.M 2.90 2.90 2.89 2.89 
16 2.89 2.91 2.91 2.91 2.90 

40 2.93 2.97 2.99 3.00 3.00 
100 2.94 2.99 3.02 3.04 3.05 
30 2.95 3.01 3.05 3.W 3.08 

m 2.90 2.93 2.93 2.94 2.93 

. . . * .  
2.61 2.59 2.58 2.56 2.54 
2.11 2.10 2.69 2.61 2.65 
2.17 2.16 2.75 2.14 2.12 
2.82 2.81 2.80 2.79 2 . n  
2.85 2.84 2.84 2.82 2.81 
2.8U 2.81 2.86 2.85 2.83 
2.90 2.89 2.89 2.87 2.86 
2.93 2.92 2.92 2.91 2.89 
3.00 3.00 2.99 2.98 2.97 
3.05 3.05 3.05 3.04 3.02 
3.09 3.09 3.08 3.07 3.05 

F = 2.0 ((I = 0.107. b = 1.414) 

2 4 * *  . . . . * . I  

4 2.14 2.61 2.63 2.59 2.56 2.54 2.52 2.51 2.49 2.46 
6 2.79 2.14 2.10 2.61 2.64 2.62 2.60 2.59 2.51 2.54 
8 2.81 2.77 2.14 2.71 2.69 2.67 2.65 2.64 2.62 2.59 

10 2.83 2.80 2.77 2.74 2.12 2.70 2.69 2.67 2.65 2.62 
12 2.84 2.82 2.79 2.17 2.15 2.13 2.71 2.10 2.61 2.64 
14 2.85 2.83 2.81 2.79 2 . n  2.75 2.13 2.12 2.69 2.66 
16 2.85 2.84 2.82 2.80 2.78 2.16 2.14 2.13 2.10 2.61 
20 2.85 2.85 2.84 2.82 2.80 2.18 2.71 2.15 2.12 2.69 
40 2.88 2.89 2.88 2.86 2.85 2.83 2.81 2.80 2.11 2.13 

100 2.89 2.91 2.90 2.89 2.88 2.86 2.64 2.82 2.19 2.75 
2.90 2.92 2.92 2.91 2.90 2.88 2.84 2.85 2.81 2.16 

F = 2.4 (0 = 0.645, b = 1.309) 
2 . * * . . * * . * *  
4 2.71 2.63 2.51 2.53 2.49 2.41 2.44 2.43 2.40 2.31 
6 2.15 2.68 2.63 2.58 2.55 2.52 2.50 2.40 2.46 2.42 

10 2.79 2.13 2.68 2.64 2.61 2.58 2.56 2.54 2.50 2.47 
12 2.19 2.14 2.10 2.66 2.62 2.60 2.51 2.55 2.52 2.48 
14 2.80 2.75 2.11 2.61 2.64 2.61 2.58 2.56 2.53 2.49 
16 2.81 2.16 2.n 2.68 2.65 2.62 2.59 2.51 2.53 2.49 

40 2.83 2.80 2.16 2.12 2.64 2.66 2.63 2.60 2.56 2.51 
100 2.84 2.81 2.78 2.14 2.11 2.61 2.64 2.62 2.51 2.51 
m 2.85 2.83 2.79 2.16 2.12 2.68 2.65 2.62 2.51 2.51 

8 2.77 2.11 2.66 2.62 2.59 2.56 2.54 2.52 2.49 2.45 

20 2.82 2.17 2.13 2.69 2.66 2.63 2.60 2.5a 2.54 2.50 

F=3.0 ((1=0.511, b =  1.225) 

2 * 2.41 2.36 2.32 2.29 2.21 2.25 2.22 2.20 
4 2.68 2.51 2.50 2.45 2.41 2.38 2.35 2.33 2.30 2.27 
6 2.11 2.61 2.54 2.49 2.44 2.41 2.39 2.36 2.33 2.29 
8 2.12 2.63 2.56 2.51 2.47 2.43 2.40 2.38 2.34 2.31 

10 2.14 2.65 2.58 2.52 2.48 2.44 2.41 2.39 2.35 2.31 
12 2.74 2.66 2.59 2.53 2.49 2.45 2.42 2.40 2.36 2.31 

* .  
2.52 2.54 
2.63 2.61 
2.10 2.68 
2.75 2.13 
2.79 2.76 
2.81 2.79 
2.84 2.81 
2.87 2.84 
2.94 2.89 
2.98 2.92 
3.01 2.93 

* *  
2.44 2.41 
2.52 2.49 
2.56 2.53 
2.59 2.56 
2.61 2.51 
2.63 2.59 
2.64 2.59 
2.65 2.61 
2.68 2.62 
2.69 2.62 
2.69 2.61 

* .  
2.34 2.31 
2.39 2.36 
2.42 2.38 
2.43 2.39 
2.44 2.39 
2.44 2.40 
2.45 2.40 
2.45 2.40 
2.46 2.39 
2.45 2.39 
2.15 2.38 

2.11 2.14 
2.24 2.20 
2.26 2.22 
2.21 2.22 
2.21 2.22 
2.21 2.22 

2.48 
2.58 
2.65 
2.10 
2.13 
2.75 

2.80 
2.83 
2.83 
2.81 

2.77 

* 
2.39 
2.46 
2.49 
2.52 
2.53 
2.54 
2.54 
2.55 
2.55 
2.53 
2.52 

2.18 
2.28 
2.32 
2.34 
2.34 
2.35 
2.35 
2.34 
2.34 
2.33 
2.32 
2.31 

2.11 
2.17 
2.18 
2.18 
2.18 
2.18 



TABLE 9. Continued. 

f 
q 6 8 I0 12 14 16 18 20 24 30 40 60 120 

K =  100 

14 2.15 2.66 2.60 2.54 2.49 2.46 2.43 2.40 2.36 2.32 2.21 2.22 2.17 
16 2.75 2.61 2.60 2.55 2.50 2.46 2.43 2.40 2.36 2.32 2.21 2.22 2.17 
20 2.76 2.60 2.61 2.55 2.51 2.41 2.43 2.41 2.36 2.32 2.27 2.22 2.11 
40 2.11 2.10 2.63 2.57 2.52 2.48 2.44 2.41 2.31 2.32 2.26 2.21 2.16 

100 2.78 2.11 2.64 2.5R 2.53 2.49 2.45 2.42 2.31 2.31 2.26 2.21 2.16 
m 2.19 2.71 2.65 2.59 2.53 2.49 2.45 2.42 2.31 2.31 2.26 2.20 2.15 

F==4.0(a=O.500. b=1.155) 

2 2.58 2.44 2.35 2.29 2.25 2.22 2.20 2.18 2.15 2.12 2.09 2.06 2.03 
4 2.63 2.50 2.41 2.35 2.30 2.21 2.24 2.22 2.18 2.15 2.12 2.08 2.05 
6 2.65 2.52 2.43 2.31 2.32 2.28 2.25 2.23 2.19 2.16 2.12 2.08 2.W 

10 2.67 2.55 2.46 2.39 2.34 2.30 2.26 2.24 2.20 2.16 2.12 2.08 2.04 
20 2.69 2.51 2.41 2.40 2.35 2.30 2.21 2.24 2.20 2.15 2.11 2.07 2.03 
-D 2.11 2.59 2.49 2.42 2.36 2.31 2.27 2.24 2.19 2.15 2.11 2.06 2.02 

F = 6.0 (a = 0.408, b = 1.095) 

2 2.53 2.37 2.21 2.21 2.16 2.13 2.10 2.08 2.05 2.02 1.99 1.96 1.93 
4 2.56 2.40 2.30 2.23 2.18 2.14 2.12 2.09 2.06 2.02 1.99 1.96 1.93 
6 2.58 2.42 2.31 2.24 2.19 2.15 2.12 2.09 2.06 2.02 1.99 1.95 1.92 

10 2.59 2.43 2.32 2.24 2.19 2.15 2.12 2.09 2.06 2.02 1.99 1.95 1.92 
20 2.60 2.44 2.32 2.25 2.19 2.15 2.12 2.09 2.05 2.M 1.98 1.95 1.92 
a 2.61 2.44 2.33 2.25 2.19 2.15 2.12 2.09 2.05 2.02 1.98 1.95 1.92 

F = 10.0 (a = 0.316. b = 1.054) 

2 2.48 2.30 2.19 2.12 2.07 2.04 2.01 1.99 I .% 1.93 1.90 1.87 1.85 
4 2.49 2.31 2.20 2.13 2.08 2.04 2.01 1.99 1.96 1.93 1.90 1.87 1.84 
6 2.50 2.31 2.20 2.13 2.08 2.04 2.01 1.99 I.% 1.93 1.90 1.87 1.84 

10- 2.51 2.32 2.20 2.13 2.08 2.04 2.01 1.99 I.% 1.93 1.90 1.87 1.84 

F =  25.0 (a = 0.200. b = 1.021) 

2-4 2.40 2.20 2.10 2.03 1.99 1.95 1.93 1.91 1.88 1.86 1.83 1.80 1.78 
6-9 2.41 2.21 2.10 2 0 3  1.99 1.95 1.93 1.91 1.88 1.86 1.83 1.80 1.78 

F = m ( u = O ,  b = l )  

2- 2.33 2.13 2.03 1.97 1.93 1.90 1.88 1.86 1.84 1.81 1.79 1.16 1.14 

K=SOO 

F=1.2 (a=0.913. b=2.449) 

20 4.70 4.82 4.89 * * * * * * * 
40 4.15 4.91 5.03 5.12 5.20 5.25 5.30 5.34 5.41 5.48 5.55 5.61 5.61 

100 4.79 4.98 5.13 5.25 5.34 5.43 5.50 5.56 5.6.5 5.16 5.89 6.02 6.13 
00 4.81 5.03 5.20 5.44 5.46 5.56 5.65 5.73 5.86 6.02 6.20 6.41 6.56 

F = 1.4 (a = 0.845. b = 1.871) 

2 - 1 6 .  t I * 8 I z L 

2 - 1 4 r  I c z c z I I I 

16 4.61 4.66 4.68 4.69 4.69 4.69 4.69 4.68 4.61 4.65 4.62 4.58 4.53 
20 4.64 4.10 4.13 4.15 4.16 4 . l l  4.77 4.76 4.16 4.14 4.12 4.68 4.62 
40 4.68 4.18 4.8.5 4.89 4.92 4.94 4.% 4% 4.97 4.97 4.95 4.90 4.81 
00 4.74 4.88 4.99 5.06 5.12 5.17 5.20 5.23 5.26 5.28 5.26 5.16 4.82 
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TABLE 9. Continued. 
- 

f 

q 6 8 10 12 I4 16 18 20 24 30 40 60 120 

K = M O  

f = 1 . 7 ( a = 0 . 7 6 7 .  b=1.558)  
2 - 8 0  I I 8 8 * I 

10 * * 4.08 4.02 3.95 3.87 
12 4.50 4.46 4.42 4.38 4.34 4.30 4.27 4.24 4.19 4.14 4.07 3.99 3.90 
20 4.55 4.54 4.52 4.49 4.46 4.43 4.40 4.37 4.32 4.26 4.18 4.08 3.95 
40 4.59 4.61 4.61 4.60 4.57 4.55 4.52 4.49 4.44 4.36 4.26 4.12 3.93 

4.64 4.69 4.71 4.72 4.71 4.69 4.66 4.63 4.57 4.46 4.31 4.07 3.76 

F= 2.0 (a  = 0.707, b = 1.414) 
2-6 * * 

8 * * 3.98 3.93 3.89 3.83 3.76 3.69 3.60 3.51 
10 4.41 4.31 4.22 4.15 4.08 4.03 3.98 3.94 3.88 3.80 3.72 3.63 3.53 
20 4.48 4.41 4.34 4.27 4.21 4.16 4.10 4.06 3.98 3.89 3.78 3.65 3.51 
40 4.51 4.47 4.41 4.35 4.29 4.23 4.17 4.12 4.03 3.92 3.78 3.62 3.44 
00 4.55 4.53 4.49 4.43 4.37 4.31 4.25 4.19 4.07 3.93 3.75 3.54 3.33 

F = 2 . 4  (a =0.615. b = 1.309) 

2-4 I * * * * * t * 
6 * * 3.77 3.71 3.65 3.61 3.54 3.47 3.39 3.30 3.22 
8 4.31 4.14 4.01 3.91 3.83 3.76 3.70 3.66 3.58 3.50 3.41 3.32 3.22 

10 4.33 4.18 4.05 3.95 3.87 3.79 3.73 3.68 3.60 3.51 3.42 3.31 3.21 

= 4.45 4.35 4.25 4.14 4.03 3.94 3.85 3.78 3.64 3.50 3.34 3.18 3.04 

F = 3.0 ( a  = 0.577, h = 1.225) 

2 * * * * * * * * * * - * *  
4 * * * 3.43 3.38 3.33 3 . 2 6 3 . 1 9 3 . 1 2 3 . 0 4 2 . 9 7  
6 4.19 3.95 3.79 3.66 3.56 3.49 3.43 3.37 3.30 3.21 3.13 3.04 2.95 

10 4.24 4.02 3.85 3.72 3.62 3.53 3.46 3.40 3.31 3.21 3.12 3.02 2.92 

= 4.33 4.15 3.97 3.82 3.69 3.57 3.48 3.40 3.28 3.15 3.03 2.92 2.82 

F=4.O(a=0.500, b=1.155) 

m 4.39 4.26 4.14 4.04 3.95 3.87 3.80 3.74 3.64 3.53 3.41 3.28 3.15 

20 4.28 4.08 3.91 3.77 3.6s 3.56 3.48 3.41 3.31 3.20 3.09 2.98 2.87 

2 w * t 1 2 . 8 1 2 . 7 5  
4 3.74 3.54 3.40 3.30 3.22 3.16 3-11 3.04 2.96 2.89 2.81 2.74 
6 4.08 3.18 3.58 3.43 3.32 3.24 3.17 3.12 3.04 2.95 2.87 2.79 2.71 

10 4.12 3.83 3.62 3.46 3.34 3.25 3.17 3.11 3.03 2.94 2.85 2.77 2.69 
20 4.15 3.86 3.64 3.48 3.35 3.25 3.17 3.10 3.01 2.92 2.83 2.74 2.66 
00 4.19 3.90 3.67 3.49 3.3s 3.24 3.15 3.09 2.99 2.89 230 2.72 1.65 

F =  6.0 (a = 0.408. b = 1.095) 

2 3.28 3.14 3.04 2.97 2.91 2.87 2.81 2.74 2.68 2.62 2.56 
4 3.90 3.54 3.32 3.17 3.06 2.98 2.92 2.87 2.W 2.73 2.66 2.60 2.53 
6 3.93 3.57 3.33 3.18 3.06 2.98 2.91 2.M 2.79 2.72 2.65 i.58 2.52 

10 3.95 3.59 3.34 3.18 3.06 2.97 2.91 2.85 2.78 2.71 2.64 2.57 2.51 - 3.99 3.62 3.36 3.18 3.05 2.96 2.89 2.83 2.76 2.69 2.62 2.56 2.50 
m 3.97 3.60 3.3s 3.18 3.06 2.97 2.90 2.a4 2.77 2.70 2.63 2.56 2.51 

415 



TABLE 9. Continued. 

f 
q 6 8 10 12 14 16 18 20 24 30 40 60 120 

K=SOO 

F = 10.0 (a  = 0.316. b = 1.054) 

2 3.72 3.33 3.10 2.96 2.86 2.79 2.14 2.70 2.64 2.58 2.52 2.47 2.42 
4 3.75 3.35 3.11 2.96 2.86 2.79 2.13 2.69 2.63 2.51 2.51 2.46 2.41 

10 3.78 3.36 3.11 2.96 2.85 2.78 2.72 2.68 2.62 2.56 2.50 2.45 2.40 
20 3.79 3.36 3.11 2.96 2.85 2.78 2.12 2.68 2.62 2.56 2.50 2.45 2.40 
x 3.80 3.37 3.11 2.95 2.85 2.77 2.72 2.61 2.61 2.56 2.50 2.45 2.40 

F = 25.0 (a  = 0.200, b = 1.021) 

2 3.55 3.14 2.92 2.79 2.10 2.64 2.59 2.56 2.51 2.46 2.41 2.36 2.32 
10 3.57 3.14 2.92 2.79 2.70 2.64 2.59 2.55 2.50 2.45 2.41 2.36 2.32 
x 3.51 3.14 2.92 2.78 2.70 2.63 2.59 2.55 2.50 2.45 2.41 2.36 2.32 

F = x  (a=O. b = l )  

2--p 3.39 3.00 2.80 2.69 2.61 2.55 2.51 2.43 2.44 2.39 2.35 2.31 2.27 

Source: Adapted from R. A. Waller and D. B. Duncan (1972), 1. Amer. Statist. Assoc., 67. 
253-255, with the kind permission of the publisher. 
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A P P E N D I X  3 

Some Probability Distributions 
and Tables Useful in Multiple 
Comparisons 

In Section 1 of this appendix we discuss some samplin distributions 
(other than the elementary ones such as the normal, I ,  ,y , and F) that 
commonly arise in multiple comparison problems. In Section 2 we discuss 
the tables of critical points of these distributions, which are given at the 
end of this appendix. In addition to these tables we have also included a 
table of critical points of Student's t-distribution for very small tail 
probabilities whose applications are indicated in the sequel, and a table of 
critical points for the Waller-Duncan procedure discussed Chapter 11, 
Section 3.4. 

9 

I DISTRIBUTIONS 

1.1 Muttivariate Normal Distribution 

A random vector 2 = (2, , Z,, . . . , 2,)' is said to have a k-variate normal 
distribution with mean vector p and covariance matrix Z if its characteris- 
tic function &(u) = E(e'"'') is given by 

&(u) = exp(iu'p - 4 u'XU) 

where i = V=i. If L is positive definite, then the density function of 2 
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exists and is given by 

f(z) = (2~)-"'(det X)-*'* exp( - $(z - p) 'X - ' ( z  - p) }  ; 

in this case we say that Z has a nonsingular distribution. 
If the Zi's are standardized so that E ( Z , )  = 0 and var(2,) = 1, then P is 

a correlation matrix; we denote it by R with off-diagonal elements 
pi, =corr(Z,, Zj )  for i # j .  Distributions of maxZ, and maxlZil arise 
frequently in multiple comparison problems. In general, the probability 
integrals of these. distributions are of dimension k. However, if R satisfies 
the product structure condition (2.4) of Appendix 2, then using the 
representation 

Z ,  =fG Y, - A , Y ~  (1 d i s k )  

where Yo, Y l ,  . . . , Y, are independent and identically distributed (i.i.d.) 
N(0,l)  random variables (r.v.'s), these k-variate integrals can be ex- 
pressed as univariate integrals as follows: 

and 

where @( . ) is the standard normal cumulative distribution function 
(c.d.f.). The case of equicorrelated Zi's, that is, pij = p B 0 for all i # j ,  is 
a special case of the product structure with hi = fi for all i .  

For arbitrary R we denote the upper a points of the distributions of 
max Zi and maxlZil by 2:: and IZ(?h, respectively; in the equicorre- 
lated case we denote them by Z t j  and IZlE;, respectively. The critical 
point 2:; (respectively, 121~~) is the solution in z to the equation 
obtained by setting (1.la) (respectively, (1.lb)) equal to 1 - a with 
hi = flp for all i. 

1.2 Multivariate t-Distribution 

Let the 2,'s have a k-variate normal distribution with zero means, unit 
variances, and corr(Zi, 2,) =pi ,  for i Z j .  Let U be a x f  r.v. that is 
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distributed independently of the Zi’s and let Ti = Z i / m v  (1 S i 4 k ) .  
Then the joint distribution of T,, T 2 ,  . . . , Tk is called a k-variate t- 
distribution with Y degrees of freedom (d.f.) and associated correlation 
matrix R = { P , ~ ) .  If R is positive definite, then the density function of 
T = (T,, T2,  . . . , Tk)’ exists and is given by 

This distribution was derived independently by Dunnett and Sobel ( 1954) 
and Cornish (1954). The joint distribution of T : ,  T i , .  . . , T i  is a special 
case of the multivariate F-distribution (with common numerator d.f. = 1) 
introduced by Krishnaiah and Armitage (1970). Gupta (1963a) is a 
comprehensive reference on multivariate normal and multivariate r- 
distributions. 

For arbitrary R we denote the upper a points of the distribution of 
max Ti and maxlT,I by TtL.R and ITl t t ,R ,  respectively; in the equicorre- 
lated case we denote them by TE:,p and respectively. By 
conditioning on m u  = x and using ( l . l ) ,  the probability integrals of 
rnax T, and maxlT,) in the equicorrelated case can be written as follows: 

where F,( - )  is the c.d.f. of a fl r.v. The critical point T t : . ,  
(respectively, lT l t ! ,p )  is the solution in t to the equation obtained by 
setting (1.2a) (respectively, (1.2b)) equal to 1 - a. 

1.3 Studentized Maximum and Maximum Modulus Distributions 

The distribution of rnax,,,,, Ti when the T,’s have a joint equicorrelated 
k-variate t-distribution with Y d.f. and common correlation p = 0 is 
referred to as the Studentized maximum distribution with parameter k 
and d.f. v. The corresponding r.v. is denoted by Mk,” and its upper a 
point by ME:, which, of course, equals Tt;.,, .  

The distribution of rnax,,,,,lT,( in this case is known as the Studen- 
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tized maximum modulus distribution with parameter k and d.f. v. The 
corresponding r.v. is denoted by lMlk ,v  and its upper a point by /MI::, 
which, of course, equals l T l ~ ~ , - , .  

1.4 Studentized Range Distribution 

Let Z,, Z, ,  . . . , 2, be i.i.d. N(0,l)  r.v.’s and let U be an independently 
distributed ,y: r.v. Then the r.v. 

max lz, - Z,l 
I s t c j a k  

Q k . v =  

is said to have the Studentized range distribution with parameter k and 
d.f. v. When v = 00, the corresponding distribution is known as the range 
(of k i.i.d. standard normals) distribution. The probability integral of Q k , ”  

can be written in a closed form as follows: 

The upper a point of Qk,” is denoted by Q‘;! and is given by the 
solution in q to the equation obtained by setting (1.3) equal to 1 - a. 

In general, if X,, X,, . . . , Xk are independent r.v.3 with Xi having a 
c.d.f. Fi(x)  (1 S i 5 k), then the distribution of R ,  = max,+ilXl - X,l can 
be written as 

jr’i 

If the Xl’s have a common c.d.f. F(x) ,  then (1.4) simplifies to  the 
expression 

Pr{R, r )  = k j-: {F(x) - F(x - r ) ) k - l  dF(x) . (1.5) 

The range of k i.i.d. Student t r.v.’s arises in connection with some 
procedures for multiple comparison of means of normal distributions with 
unequal variances (see Chapter 7). For this case the upper a points of the 
range are given by Wilcox (1983). 
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1.5 Studentized Augmented Range Distribution 

Consider the r.v. 

where Z , ,  Z, ,  . . . , 2, are i.i.d. N(0,l)  r . v . 3  and Zo = 1. The probability 
integral of QL,+ can be written as 

WQ;,, 5 4 = 1 W ( q 4  - 4 1' 

(1.6) 

The upper a point of the distribution of QLsv (denoted by QL:;)) is the 
solution in q to the equation obtained by setting (1.6) equal to 1 - a. 

A procedure based on the Studentized augmented range distribution 
for the family of all linear combinations of means in an unbalanced 
one-way layout is discussed in Section 3.1.3 of Chapter 3. However, this 
procedure is too conservative for the family of pairwise comparisons and 
hence is not recommended. Also Tukey (1953, Chapter 3) has noted that 
for k L 3  and a S0.05, QL!:) is well approximated by QE;. For these 
reasons we have not provided a table of Q;$)-vaIues in this book. The 
interested reader may refer to the tables computed by Stoline (1978). 

2 TABLES 

2.1 Details of the Tables 

The entries in all of the tables are given to three significant places (which 
in most cases implies two decimal place accuracy) and are rounded to the 
nearest digit in the last significant place. The original sources from which 
these tables have been adapted give the corresponding critical points to 
additional significant places. (Some of the tables were computed specially 
for the present book as noted below.) 
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Table 1 lists the values of Tf ) ,  the upper a critical point of Student's 
r-distribution with v d.f., for a = O.OOOl(O.OOOl)O.OOl(O.OOl)O.Ol and 
Y = 1(1)30(5)50,60,120,~. Computations of these critical points were 
done on New York University's computer using the IMSL routine 
MDSTI, which gives the inverse Student's &distribution. 

The main purpose of Table 1 is to provide values of T f '  for very small 
values of a, which are needed for applying many of the procedures 
described in this book. For example, for the Bonferroni and Dunn-Sidak 
procedures for pairwise comparisons of means, given in Section 3.2.3 of 
Chapter 3, we need the critical points Tr"'') Y 7 

respectively, where k' = (t). Tables of T ,  have been given by Bailey 
(1977) and of T~(1-"-u"'k ' ) '2)  by Games (1977). But these tables cannot 
be directly used in other cases where the number of comparisons is not of 
the form (i) for some integer k 2 2. Moses (1978) has given charts for 
finding Tf' for a ranging between 0.01 and O.oooO1 that can be used in 
general applications, as can the present tables. 

Tables 2 and 3 give the values of the critical points 2:; and IZlt;, 
respectively, for a = 0.01, 0.05, 0.10,0.25, k = 2(1)10(2)20(4)40,50, and 
p =0.1(0.2)0.7. Table 2 is adapted from Gupta, Nagel, and Pan- 
chapakesan (1973), while Table 3 is adapted from Odeh (1982). Previous- 
ly Milton (1963) and Krishnaiah and Armitage (1965) have given tables 
for 2:; and ( l Z l ~ ~ 2 ) ) 2 ,  respectively. 

Tables 4 and 5 give the values of the critical points T t ; , ,  and I T I ~ ~ , , ,  
respectively, for a = 0.01, 0.05, 0.10, 0.20, k = 2(1)10(2)20, v = 2( l)lO, 
12(4)24, 30, 40, 60, 120, a and p = 0.1(0.2)0.7. Both of these tables were 
computed specially for the present book By Professor C. W. Dunnett. 
Using the same programs, Bechhofer and Dunnett (1986) have prepared 
very extensive sets of tables of T t t , ,  and Recently Gupta, 
Panchapakesan, and Sohn (1985) have also published detailed tables of 
T t ; , , .  Another source for tables of T:'fl,, is the paper by Krishnaiah and 
Armitage (1966). Tables of I Tl;6,, can be found in Hahn and Hendrick- 
son (1971), Dunn and Massey (1%5), and Krishnaiah and Armitage 
(1970) (the last authors tabulated (I TlELf;)'). 

and I M l t : ,  
respectively, for a = 0.01, 0.05, 0.10, 0.20, k = 2(1)16(2)20, and v = 
2( 1)30(5)50, 60(20)120, 200, m. Both of these tables were also computed 
specially for the present book by Professor C. W. Dunnett. Previously a 
short table of was published by Pillai and Ramachandran (1954). 
Detailed tables of l M l f l  have been published by Stoline and Ury (1979), 
Stoline et al. (1980), and Bechhofer and Dunnett (1982). 

Table 8 gives the values of the critical points Q';; for a = 0.01, 0.05, 

and T(  ( 1 -( 1 -a)' '*(') i 2 )  

( 0 / 2 & ' )  

Tables 6 and 7 give the values of the critical points 
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0.10, 0.20, k = 3(1)16(4)40, and Y = 1(1)20, 24, 30, 40, 60, 120, a. This 
table was adapted from Harter (1960,1%9). Lund and Lund (1983) have 
given a computer program for calculating the Studentized range integral 
(1.3) and the critical points QEL. Barnard (1978) has given a computer 
program for the special case v = a. 

Finally Table 9 gives the critical points required to implement the 
Waller-Duncan procedure. These critical points are taken from the 1972 
corrigendum to the Waller-Duncan (1969) article. 

2.2 Rules for Interpolation 

The following rules are recommended for interpolating in Tables 1-8. 

(i) Interpolation with respect to the error d.f. Y should be done 
linearly in l/u. 

(ii) Interpolation with respect to the upper tail probability a should 
be done linearly in log, a. 

(iii) Interpolation with respect to k in Tables 2-8 should be done 
linearly in log, k. 

(iv) Interpolation with respect to p in Tables 2-5 should be done 
linearly in 1/( 1 - p) .  

To find the critical point f *  = t * ( K ,  F, q,  f )  for F-values not listed in 
Table 9, Waller and Duncan (1969) recommended linear interpolation 
with respect to b = [ F / ( F -  l ) ] ' I 2  for f Z 2 0  and with respect to a = 
1 /F'/'  for f < 20. For f = 4 the values of f a  are not given in the table but 
are given by the following rules: For K = 50, f * = 2.28 for all q and F such 
that F>5.20/q; for K = 100, f a  = 2.83 for all (I and F such that F >  
8.12/q; and for K = 500, t* = 4.52 for all q and F such that F > 20.43 /q. 
If an asterisk is shown in the table instead of a t*-value, it means that for 
that combination of (K, F, q ,  f )  all pairwise differences are not sig- 
nificant. 
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TABLE 9. Minimum Average Risk f-Vdues for tbe Waller-Duncan Procedure 
f Y K ,  F, 4, f). 

4 6 8 10 12 14 16 18 20 24 30 40 6u 120 

K = S O  

F =  1.2 (a = 0.913, b = 2.449) 

2-4 I * I L L s 

6 2.32 2.34 2.35 2.36 2.36 2.36 2.36 2.31 2.31 2.31 2.37 2.31 2.37 
10 2.31 2.41 2.45 2.47 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.51 2.58 

5 2.45 2.58 2.68 2 . n  2.84 2.90 2.95 3.00 3.09 3.19 3.32 3.48 3.68 
20 2.41 2-49 2.54 2.59 2.62 2.65 2.67 2.69 2.n 2.76 2.19 2.83 2.06 

F=1.4  (a=O.845, b=1.871) 

2 * * * * * * * * * * * * *  
4 2.26 2.25 2.23 2.22 2.21 2.21 2.20 2.20 2.19 2.18 2.11 2.16 2.15 
6 2.30 2.31 2.31 2.31 2.31 2.31 2.30 2.30 2.30 2.30 2.29 2.29 2.28 

10 2.34 2.31 2.39 2.41 2.41 2.42 2.42 2.43 2.43 2.43 2.44 2.44 2.44 
20 2.38 2.44 2.48 2.50 2.53 2.54 2.55 2.56 2.58 2.59 2.61 2.62 2.63 
= 2.42 2.52 2.59 2.65 2.69 2.73 2.76 2.19 2.83 2.87 2.92 2.94 2.92 

F = 1 . 7  (u=0.767, b=1.558) 

2 * * * * * .  I * * * * * *  

4 2.24 2.21 2.19 2.17 2.16 2.15 2.14 2.14 2.12 2.11 2.10 2.09 2.07 
6 2.28 2.21 2.26 2.25 2.24 2.23 2.22 2.22 2.21 2.20 2.19 2.18 2.16 

10 2.31 2.32 2.12 2.32 2.32 2.32 2.31 2.31 2.30 2.30 2.29 2.27 2.26 
20 2.34 2.31 2.39 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.39 2.31 2.35 
5 2.35 2.44 2.41 2.50 2.52 2.53 2.53 2.54 2.54 2.53 2.51 2.47 2.40 

F =  2.0 (a = 0.707, b = 1.414) 

2 * 2.00 1.98 1.97 l .% 1.94 1.93 1.91 1.90 1.88 
4 2.22 2.18 2.15 2.13 2.12 2.10 2.09 2.08 2.07 2.05 2.04 2.02 2.01 
6 2.26 2.23 2.21 2.19 2.18 2.17 2.16 2.15 2.13 2.12 2.10 2.09 2.07 

10 2.29 2.28 2.26 2.25 2.24 2.23 2.22 2.21 2.m 2.19 2.17 2.15 2.12 
20 2.31 2.32 2.32 2.31 2.30 2.29 2.29 2.28 2.26 2.25 2.22 2.20 2.16 
a 2.38 2.31 2.38 2.38 2.38 2.31 2.31 2.36 2.34 2.31 2.27 2.22 2.16 

F=2.4(u=0.645,  b=1.309) 

2 2.14 2.07 2.02 1.99 1.97 1.95 1.94 1.93 1.91 1.59 1.88 1 . S  1.84 
4 2.20 2.15 2.11 2.08 2.06 2.05 2.03 2.02 2.01 1.99 1.97 1.95 1.93 
6 2.23 2.19 2.16 2.13 2.11 2.09 2.08 2.01 2.05 2.03 2.01 1.99 1.97 

10 2.26 2.23 2.20 2.18 2.16 2.14 2.12 2.11 2.09 2.07 2.05 2.02 1.99 
20 2.28 2.26 2.24 2.22 2.20 2.18 2.16 2.15 2.13 2.10 2.07 2.04 2.00 
OE 2.30 2.30 2.28 2.26 2.24 2.22 2.21 2.19 2.16 2.12 2.08 2.03 1.99 

F = 3.0 (a  = 0.57l. b = 1.225) 

2 2.13 2.04 1.99 1.96 1.93 1.91 1.90 1.89 1.81 1.85 1.83 1.81 1.19 
4 2.18 2.11 2.06 2.03 2.00 1.98 1.96 1.95 1.93 1.91 1.89 1.87 1.84 

10 2.22 2.16 2.12 2.09 2.06 2.M 2.02 2.00 1.98 1.95 1.92 1.89 1.86 
20 2.24 2.19 2.15 2.11 2.08 2.06 2.04 2.02 1.99 I . %  1.93 1.89 1.86 
5 2.26 2.22 2.18 2.14 2.11 2.08 2.05 2.03 2.00 I .% 1.92 1.89 1.85 
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TABLE 9. Continued. 

q 6 8 10 12 14 16 18 20 24 30 40 60 120 

2 
4 

20 
X 

2 
4 

20 
w 

2 
4 

x 

2-= 

2-6 
8 

10 
12 
14 
16 
20 
40 

100 
m 

2-4 
6 
8 
10 
12 
14 
16 
20 
40 

100 
m 

F = 4 . 0  (a=O.Mo, b=1.155) 

2.10 2.01 1.95 1.91 1.88 1.86 1.84 1.83 1.81 1.79 1.77 1.75 1.73 
2.14 2.05 2.00 1.96 1.92 1.90 1.88 1.87 1.84 1.82 1.80 1.77 1.75 
2.18 2.11 2.05 2.00 1.96 1.93 1.91 1.89 1.86 1.83 1.80 1.77 1.75 
2.20 2.12 2.06 2.01 1.97 1.94 1.91 1.89 1.86 1.83 1.80 1.77 1.74 

F =  6.0 (a  = 0.408, 6 = 1.095) 

2.07 l.% 1.89 1.85 1.82 1.79 1.78 1.76 1.74 1.72 1.70 1.67 1.65 
2.09 1.99 1.92 1.87 1.83 1.81 1.79 1.77 1.75 1.72 1.70 1.68 1.65 
2.12 2.01 1.94 1.88 1.84 1.82 1.79 1.78 1.75 1.72 1.70 1.67 1.65 
2.13 2.02 1.94 1.89 1.85 1.82 1.79 1.77 1.75 1.72 1.70 1.67 1.65 

F =  10.0 (a  = 0.316. 6 = 1.054) 

2.03 1.91 1.83 1.79 1.75 1.73 1.71 1.69 1.67 1.65 1.63 1.61 1.59 
2.04 1.92 1.84 1.79 1.76 1.73 1.71 1.69 1.67 1.65 1.63 1.61 1.59 
2.06 1.93 1.85 1.79 1.76 1.73 1.71 1.69 1.67 1.65 1.63 1.61 1.59 

F=25.0 (a=0.200. 6=1.021) 

1.98 1.84 1.76 1.72 1.68 1.66 1.64 1.63 1.61 1.59 1.57 1.55 1.53 

F = % ( u = O .  b = l )  

1.93 1.79 1.72 1.67 1.64 1.62 1.60 1.59 1.57 1.55 1.54 1.52 1.50 

K -  100 

F =  1.2 (0=0.913, b-2.449) 

* * * * . . * * * * * * *  
2.91 2.94 2.% 2.97 2.98 2.99 2.99 2.99 3.M) 3.00 3.00 3.00 3.00 
2.93 2.98 3.01 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.10 3.11 3.12 
2.95 3.01 3.05 3.08 3.10 3.12 3.13 3.14 3.16 3.17 3.19 3.20 3.21 
2.% 3.03 3.08 3.12 3.14 3.16 3.18 3.19 3.21 3.23 3.25 3.27 3.29 
2.97 3.05 3.11 3.15 3.18 3.20 3.22 3.24 3.26 3.28 3.31 3.33 3.36 
2.99 3.08 3.14 3.19 3.23 3.26 3.28 3.30 3.33 3.37 3.40 3.44 3.47 
3.02 3.13 3.22 3.29 3.35 3.39 3.43 3.47 3.52 3.58 3.64 3.72 3.79 
3.04 3.17 3.28 3.36 3.44 3.50 3.55 3.59 3.67 3.76 3.86 3.98 4.11 
3.05 3.20 3.32 3.42 3.50 3.58 3.64 3.70 3.80 3.91 4.06 4.24 4.45 

F=1.4 (a=O.845, b=1.871) 

* * * . * * . * a * * * *  

2.85 2.84 2.83 2.02 2.82 2.81 2.80 2.80 2.79 2.78 2.77 2.75 2.14 
2.88 2.89 2.90 2.90 2.90 2.89 2.89 2.89 2.88 2.88 2.87 2.86 2.85 
2.90 2.93 2.94 2.95 2.95 2.% 2.96 2.% 2.95 2.95 2.95 2.94 2.93 
2.92 2.95 2.98 2.99 3.00 3.00 3.01 3.01 3.01 3.01 3.01 3.00 2.99 
2.93 2.97 3.00 3.02 3.03 3.04 3.04 3.05 3.05 3.06 3.06 3.05 3.05 
2.94 2.99 3.02 3.04 3.06 3.07 3.0% 3.08 3.09 3.09 3.10 3.10 3.09 
2.95 3.01 3.05 3.08 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.16 3.16 
2.98 3.06 3.12 3.16 3.19 3.22 3.24 3.25 3.28 3.30 3.31 3.32 3.32 
2.99 3.09 3.16 3.22 3.26 3.29 3.32 3.34 3.38 3.41 3.43 3.45 3.42 
3.01 3.12 3.20 3.26 3.31 3.35 3.39 3.42 3.46 3.50 3.53 3.54 3.46 
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TABLE 9. Continued. 

~ 

p 6 8 10 12 14 16 18 20 24 30 4 0 6 0  120 

K =  100 

F = 1 . 1  (@=0.167, b =  1.558) 

2 * * * * *  
4 * * * * *  
6 2.82 2.79 2.16 2.74 2.72 
8 2.64 2.83 2.81 2.80 2.78 

10 2.86 2.86 2.85 2.84 2.83 
12 2.87 2.88 2.88 2.81 2.86 
14 2.M 2.90 2.90 2.89 2.89 
16 2.89 2.91 2.91 2.91 2.90 

40 2.93 2.97 2.99 3.00 3.00 
100 2.94 2.99 3.02 3.04 3.05 
30 2.95 3.01 3.05 3.W 3.08 

m 2.90 2.93 2.93 2.94 2.93 

. . . * .  
2.61 2.59 2.58 2.56 2.54 
2.11 2.10 2.69 2.61 2.65 
2.17 2.16 2.75 2.14 2.12 
2.82 2.81 2.80 2.79 2 . n  
2.85 2.84 2.84 2.82 2.81 
2.8U 2.81 2.86 2.85 2.83 
2.90 2.89 2.89 2.87 2.86 
2.93 2.92 2.92 2.91 2.89 
3.00 3.00 2.99 2.98 2.97 
3.05 3.05 3.05 3.04 3.02 
3.09 3.09 3.08 3.07 3.05 

F = 2.0 ((I = 0.107. b = 1.414) 

2 4 * *  . . . . * . I  

4 2.14 2.61 2.63 2.59 2.56 2.54 2.52 2.51 2.49 2.46 
6 2.79 2.14 2.10 2.61 2.64 2.62 2.60 2.59 2.51 2.54 
8 2.81 2.77 2.14 2.71 2.69 2.67 2.65 2.64 2.62 2.59 

10 2.83 2.80 2.77 2.74 2.12 2.70 2.69 2.67 2.65 2.62 
12 2.84 2.82 2.79 2.17 2.15 2.13 2.71 2.10 2.61 2.64 
14 2.85 2.83 2.81 2.79 2 . n  2.75 2.13 2.12 2.69 2.66 
16 2.85 2.84 2.82 2.80 2.78 2.16 2.14 2.13 2.10 2.61 
20 2.85 2.85 2.84 2.82 2.80 2.18 2.71 2.15 2.12 2.69 
40 2.88 2.89 2.88 2.86 2.85 2.83 2.81 2.80 2.11 2.13 

100 2.89 2.91 2.90 2.89 2.88 2.86 2.64 2.82 2.19 2.75 
2.90 2.92 2.92 2.91 2.90 2.88 2.84 2.85 2.81 2.16 

F = 2.4 (0 = 0.645, b = 1.309) 
2 . * * . . * * . * *  
4 2.71 2.63 2.51 2.53 2.49 2.41 2.44 2.43 2.40 2.31 
6 2.15 2.68 2.63 2.58 2.55 2.52 2.50 2.40 2.46 2.42 

10 2.79 2.13 2.68 2.64 2.61 2.58 2.56 2.54 2.50 2.47 
12 2.19 2.14 2.10 2.66 2.62 2.60 2.51 2.55 2.52 2.48 
14 2.80 2.75 2.11 2.61 2.64 2.61 2.58 2.56 2.53 2.49 
16 2.81 2.16 2.n 2.68 2.65 2.62 2.59 2.51 2.53 2.49 

40 2.83 2.80 2.16 2.12 2.64 2.66 2.63 2.60 2.56 2.51 
100 2.84 2.81 2.78 2.14 2.11 2.61 2.64 2.62 2.51 2.51 
m 2.85 2.83 2.79 2.16 2.12 2.68 2.65 2.62 2.51 2.51 

8 2.77 2.11 2.66 2.62 2.59 2.56 2.54 2.52 2.49 2.45 

20 2.82 2.17 2.13 2.69 2.66 2.63 2.60 2.5a 2.54 2.50 

F=3.0 ((1=0.511, b =  1.225) 

2 * 2.41 2.36 2.32 2.29 2.21 2.25 2.22 2.20 
4 2.68 2.51 2.50 2.45 2.41 2.38 2.35 2.33 2.30 2.27 
6 2.11 2.61 2.54 2.49 2.44 2.41 2.39 2.36 2.33 2.29 
8 2.12 2.63 2.56 2.51 2.47 2.43 2.40 2.38 2.34 2.31 

10 2.14 2.65 2.58 2.52 2.48 2.44 2.41 2.39 2.35 2.31 
12 2.74 2.66 2.59 2.53 2.49 2.45 2.42 2.40 2.36 2.31 

* .  
2.52 2.54 
2.63 2.61 
2.10 2.68 
2.75 2.13 
2.79 2.76 
2.81 2.79 
2.84 2.81 
2.87 2.84 
2.94 2.89 
2.98 2.92 
3.01 2.93 

* *  
2.44 2.41 
2.52 2.49 
2.56 2.53 
2.59 2.56 
2.61 2.51 
2.63 2.59 
2.64 2.59 
2.65 2.61 
2.68 2.62 
2.69 2.62 
2.69 2.61 

* .  
2.34 2.31 
2.39 2.36 
2.42 2.38 
2.43 2.39 
2.44 2.39 
2.44 2.40 
2.45 2.40 
2.45 2.40 
2.46 2.39 
2.45 2.39 
2.15 2.38 

2.11 2.14 
2.24 2.20 
2.26 2.22 
2.21 2.22 
2.21 2.22 
2.21 2.22 

2.48 
2.58 
2.65 
2.10 
2.13 
2.75 

2.80 
2.83 
2.83 
2.81 

2.77 

* 
2.39 
2.46 
2.49 
2.52 
2.53 
2.54 
2.54 
2.55 
2.55 
2.53 
2.52 

2.18 
2.28 
2.32 
2.34 
2.34 
2.35 
2.35 
2.34 
2.34 
2.33 
2.32 
2.31 

2.11 
2.17 
2.18 
2.18 
2.18 
2.18 



TABLE 9. Continued. 

f 
q 6 8 I0 12 14 16 18 20 24 30 40 60 120 

K =  100 

14 2.15 2.66 2.60 2.54 2.49 2.46 2.43 2.40 2.36 2.32 2.21 2.22 2.17 
16 2.75 2.61 2.60 2.55 2.50 2.46 2.43 2.40 2.36 2.32 2.21 2.22 2.17 
20 2.76 2.60 2.61 2.55 2.51 2.41 2.43 2.41 2.36 2.32 2.27 2.22 2.11 
40 2.11 2.10 2.63 2.57 2.52 2.48 2.44 2.41 2.31 2.32 2.26 2.21 2.16 

100 2.78 2.11 2.64 2.5R 2.53 2.49 2.45 2.42 2.31 2.31 2.26 2.21 2.16 
m 2.19 2.71 2.65 2.59 2.53 2.49 2.45 2.42 2.31 2.31 2.26 2.20 2.15 

F==4.0(a=O.500. b=1.155) 

2 2.58 2.44 2.35 2.29 2.25 2.22 2.20 2.18 2.15 2.12 2.09 2.06 2.03 
4 2.63 2.50 2.41 2.35 2.30 2.21 2.24 2.22 2.18 2.15 2.12 2.08 2.05 
6 2.65 2.52 2.43 2.31 2.32 2.28 2.25 2.23 2.19 2.16 2.12 2.08 2.W 

10 2.67 2.55 2.46 2.39 2.34 2.30 2.26 2.24 2.20 2.16 2.12 2.08 2.04 
20 2.69 2.51 2.41 2.40 2.35 2.30 2.21 2.24 2.20 2.15 2.11 2.07 2.03 
-D 2.11 2.59 2.49 2.42 2.36 2.31 2.27 2.24 2.19 2.15 2.11 2.06 2.02 

F = 6.0 (a = 0.408, b = 1.095) 

2 2.53 2.37 2.21 2.21 2.16 2.13 2.10 2.08 2.05 2.02 1.99 1.96 1.93 
4 2.56 2.40 2.30 2.23 2.18 2.14 2.12 2.09 2.06 2.02 1.99 1.96 1.93 
6 2.58 2.42 2.31 2.24 2.19 2.15 2.12 2.09 2.06 2.02 1.99 1.95 1.92 

10 2.59 2.43 2.32 2.24 2.19 2.15 2.12 2.09 2.06 2.02 1.99 1.95 1.92 
20 2.60 2.44 2.32 2.25 2.19 2.15 2.12 2.09 2.05 2.M 1.98 1.95 1.92 
a 2.61 2.44 2.33 2.25 2.19 2.15 2.12 2.09 2.05 2.02 1.98 1.95 1.92 

F = 10.0 (a = 0.316. b = 1.054) 

2 2.48 2.30 2.19 2.12 2.07 2.04 2.01 1.99 I .% 1.93 1.90 1.87 1.85 
4 2.49 2.31 2.20 2.13 2.08 2.04 2.01 1.99 1.96 1.93 1.90 1.87 1.84 
6 2.50 2.31 2.20 2.13 2.08 2.04 2.01 1.99 I.% 1.93 1.90 1.87 1.84 

10- 2.51 2.32 2.20 2.13 2.08 2.04 2.01 1.99 I.% 1.93 1.90 1.87 1.84 

F =  25.0 (a = 0.200. b = 1.021) 

2-4 2.40 2.20 2.10 2.03 1.99 1.95 1.93 1.91 1.88 1.86 1.83 1.80 1.78 
6-9 2.41 2.21 2.10 2 0 3  1.99 1.95 1.93 1.91 1.88 1.86 1.83 1.80 1.78 

F = m ( u = O ,  b = l )  

2- 2.33 2.13 2.03 1.97 1.93 1.90 1.88 1.86 1.84 1.81 1.79 1.16 1.14 

K=SOO 

F=1.2 (a=0.913. b=2.449) 

20 4.70 4.82 4.89 * * * * * * * 
40 4.15 4.91 5.03 5.12 5.20 5.25 5.30 5.34 5.41 5.48 5.55 5.61 5.61 

100 4.79 4.98 5.13 5.25 5.34 5.43 5.50 5.56 5.6.5 5.16 5.89 6.02 6.13 
00 4.81 5.03 5.20 5.44 5.46 5.56 5.65 5.73 5.86 6.02 6.20 6.41 6.56 

F = 1.4 (a = 0.845. b = 1.871) 

2 - 1 6 .  t I * 8 I z L 

2 - 1 4 r  I c z c z I I I 

16 4.61 4.66 4.68 4.69 4.69 4.69 4.69 4.68 4.61 4.65 4.62 4.58 4.53 
20 4.64 4.10 4.13 4.15 4.16 4 . l l  4.77 4.76 4.16 4.14 4.12 4.68 4.62 
40 4.68 4.18 4.8.5 4.89 4.92 4.94 4.% 4% 4.97 4.97 4.95 4.90 4.81 
00 4.74 4.88 4.99 5.06 5.12 5.17 5.20 5.23 5.26 5.28 5.26 5.16 4.82 
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TABLE 9. Continued. 
- 

f 

q 6 8 10 12 I4 16 18 20 24 30 40 60 120 

K = M O  

f = 1 . 7 ( a = 0 . 7 6 7 .  b=1.558)  
2 - 8 0  I I 8 8 * I 

10 * * 4.08 4.02 3.95 3.87 
12 4.50 4.46 4.42 4.38 4.34 4.30 4.27 4.24 4.19 4.14 4.07 3.99 3.90 
20 4.55 4.54 4.52 4.49 4.46 4.43 4.40 4.37 4.32 4.26 4.18 4.08 3.95 
40 4.59 4.61 4.61 4.60 4.57 4.55 4.52 4.49 4.44 4.36 4.26 4.12 3.93 

4.64 4.69 4.71 4.72 4.71 4.69 4.66 4.63 4.57 4.46 4.31 4.07 3.76 

F= 2.0 (a  = 0.707, b = 1.414) 
2-6 * * 

8 * * 3.98 3.93 3.89 3.83 3.76 3.69 3.60 3.51 
10 4.41 4.31 4.22 4.15 4.08 4.03 3.98 3.94 3.88 3.80 3.72 3.63 3.53 
20 4.48 4.41 4.34 4.27 4.21 4.16 4.10 4.06 3.98 3.89 3.78 3.65 3.51 
40 4.51 4.47 4.41 4.35 4.29 4.23 4.17 4.12 4.03 3.92 3.78 3.62 3.44 
00 4.55 4.53 4.49 4.43 4.37 4.31 4.25 4.19 4.07 3.93 3.75 3.54 3.33 

F = 2 . 4  (a =0.615. b = 1.309) 

2-4 I * * * * * t * 
6 * * 3.77 3.71 3.65 3.61 3.54 3.47 3.39 3.30 3.22 
8 4.31 4.14 4.01 3.91 3.83 3.76 3.70 3.66 3.58 3.50 3.41 3.32 3.22 

10 4.33 4.18 4.05 3.95 3.87 3.79 3.73 3.68 3.60 3.51 3.42 3.31 3.21 

= 4.45 4.35 4.25 4.14 4.03 3.94 3.85 3.78 3.64 3.50 3.34 3.18 3.04 

F = 3.0 ( a  = 0.577, h = 1.225) 

2 * * * * * * * * * * - * *  
4 * * * 3.43 3.38 3.33 3 . 2 6 3 . 1 9 3 . 1 2 3 . 0 4 2 . 9 7  
6 4.19 3.95 3.79 3.66 3.56 3.49 3.43 3.37 3.30 3.21 3.13 3.04 2.95 

10 4.24 4.02 3.85 3.72 3.62 3.53 3.46 3.40 3.31 3.21 3.12 3.02 2.92 

= 4.33 4.15 3.97 3.82 3.69 3.57 3.48 3.40 3.28 3.15 3.03 2.92 2.82 

F=4.O(a=0.500, b=1.155) 

m 4.39 4.26 4.14 4.04 3.95 3.87 3.80 3.74 3.64 3.53 3.41 3.28 3.15 

20 4.28 4.08 3.91 3.77 3.6s 3.56 3.48 3.41 3.31 3.20 3.09 2.98 2.87 

2 w * t 1 2 . 8 1 2 . 7 5  
4 3.74 3.54 3.40 3.30 3.22 3.16 3-11 3.04 2.96 2.89 2.81 2.74 
6 4.08 3.18 3.58 3.43 3.32 3.24 3.17 3.12 3.04 2.95 2.87 2.79 2.71 

10 4.12 3.83 3.62 3.46 3.34 3.25 3.17 3.11 3.03 2.94 2.85 2.77 2.69 
20 4.15 3.86 3.64 3.48 3.35 3.25 3.17 3.10 3.01 2.92 2.83 2.74 2.66 
00 4.19 3.90 3.67 3.49 3.3s 3.24 3.15 3.09 2.99 2.89 230 2.72 1.65 

F =  6.0 (a = 0.408. b = 1.095) 

2 3.28 3.14 3.04 2.97 2.91 2.87 2.81 2.74 2.68 2.62 2.56 
4 3.90 3.54 3.32 3.17 3.06 2.98 2.92 2.87 2.W 2.73 2.66 2.60 2.53 
6 3.93 3.57 3.33 3.18 3.06 2.98 2.91 2.M 2.79 2.72 2.65 i.58 2.52 

10 3.95 3.59 3.34 3.18 3.06 2.97 2.91 2.85 2.78 2.71 2.64 2.57 2.51 - 3.99 3.62 3.36 3.18 3.05 2.96 2.89 2.83 2.76 2.69 2.62 2.56 2.50 
m 3.97 3.60 3.3s 3.18 3.06 2.97 2.90 2.a4 2.77 2.70 2.63 2.56 2.51 
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TABLE 9. Continued. 

f 
q 6 8 10 12 14 16 18 20 24 30 40 60 120 

K=SOO 

F = 10.0 (a  = 0.316. b = 1.054) 

2 3.72 3.33 3.10 2.96 2.86 2.79 2.14 2.70 2.64 2.58 2.52 2.47 2.42 
4 3.75 3.35 3.11 2.96 2.86 2.79 2.13 2.69 2.63 2.51 2.51 2.46 2.41 

10 3.78 3.36 3.11 2.96 2.85 2.78 2.72 2.68 2.62 2.56 2.50 2.45 2.40 
20 3.79 3.36 3.11 2.96 2.85 2.78 2.12 2.68 2.62 2.56 2.50 2.45 2.40 
x 3.80 3.37 3.11 2.95 2.85 2.77 2.72 2.61 2.61 2.56 2.50 2.45 2.40 

F = 25.0 (a  = 0.200, b = 1.021) 

2 3.55 3.14 2.92 2.79 2.10 2.64 2.59 2.56 2.51 2.46 2.41 2.36 2.32 
10 3.57 3.14 2.92 2.79 2.70 2.64 2.59 2.55 2.50 2.45 2.41 2.36 2.32 
x 3.51 3.14 2.92 2.78 2.70 2.63 2.59 2.55 2.50 2.45 2.41 2.36 2.32 

F = x  (a=O. b = l )  

2--p 3.39 3.00 2.80 2.69 2.61 2.55 2.51 2.43 2.44 2.39 2.35 2.31 2.27 

Source: Adapted from R. A. Waller and D. B. Duncan (1972), 1. Amer. Statist. Assoc., 67. 
253-255, with the kind permission of the publisher. 
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comparison of elliptical and rectangular 

regions, 36-38 
elliptical, 24 
rectangular, 28-30 

Confirmatory research, 5-6 
Consonance, 46, 49,345, 350 
Contingency tables, 278-281 
Contrasts: 

among means: 
Bayesian procedure, 328-329 
interaction contrasts, 295 
many-to-one, see Comparisons with 

control 
MCPs for ANCOVA designs with 

random covariates, 224-226 
MCPs for heterogeneous variances, 

MCPs for mixed two-way layouts, 211- 

monotone, 290-292 
orthogonal, see Orthogonal 

paitwise, see Painvise cornparisoas, of 

187-189,20-201 

215 

comparisons 

means 
p:q, 102, 107 
S-pmcedure, 74-15 
T-procedure and its modifications, 81- 

82,86,88-89 

among other parameters: 
cross-product ratios, 278 
proportions, 276 

Control of error rates: 
choice between FWE, PCE, and PFE, 8- 

11 
choice between Type I and Type 11, 10, 

15 
for directional decisions (Type I11 

errors), 39-43 
by distribution-free MCPs based on 

separate rankings, 237, 242-243 
by simultaneous test procedures, 346-347 
by single-step procedures, 28, 51 
by stepdown procedures, 54-55, 64.67- 

strong, 3 
weak, 3 

71, 353-358 

Cross-product ratios, 278 

Data-snooping, 1, 5 .  7, 33, 103 
Decision-theoretic approach, 31 1-314 
Design of experiments: 

for comparisons with "best" treatment, 

for comparisons with control, 164-169, 

for pairwise comparisons, 163-164, 172- 

for successive comparisons among 

169-170 

173-178 

173 

ordered treatments, 170 
Directional decisions: 

combined Bayesian and Neyman- 
Pearson approach, 334-336 

with single-step procedures, 39-43 
with step-down procedures, 59, 71. 360- 

361 
Dissonance, 345 
Distribution-free procedures, 234 

single-step, 235-247,252-264.267-271 
stepdown, 247-249, 265-266 

multivariate normal, 373-374 
multivariate I, 30, 375; 
Studentized augmented range, 83, 377 
Studentized maximum, 43,375 
Studentized maximum modulus, 31, 375 
Studentized range, 31,223, 376 

Distributions: 

Drug screening, 12, 15 
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Duncan’s D-procedure, 70 
modification for strong control of W E ,  

71 

unbalanced designs, 117-118 
Duncan’s stepdown procedure for 

D u d s  distribution-free procedure, 244- 

Dunn-hlhk inequality, 95, 366 
246, 249-250 

application to single-step MCPs, 31, 95, 
188, 245, 258, 276 

Effects (fied, mixed, random), 20,208 
Error rates, 7-8 
Experimentwise error rate, see Familywise 

error rate (FWE) 
Exploratory research, 5-6 

Factorial experiments, 5, 135, 137,294 
Families, 5 

hierarchical, 44, 344, 349 
nonhierarchical, 28 

Familywise error rate (FWE), 3, 7 
Finite intersection procedures, 29, 107- 

Friedman testlstatistics, 259, 266 

Fully significant difference (FSD) test, 74 

108 

F-tat, 24 

r-minimax approach, 336-339 
Gap-straggler test, 307 
Generalized sample mean MCPs, see Two- 

stage procedures, design aspects for 
unknown unequal d’s 

74 
Globally significant difference (GSD) test, 

Graphical procedures: 
for applying step-down range MCP, 115 
for construction of distribution-free 

confidence intervals, 239, 244, 256, 
264-265 

for displaying painvise comparisons, %- 
98,286-289 

GT2-procedure, 95 

Hierarchical families, 44, 344, 349 
HOlder’s inequality, 183 
Honestly significant difference (HSD) test, 

Hunter-Worsley inequality, 364 
81 

Implication relation (between hypotheses). 

Independence hypotheses in contingency 

Indifference-zone formulation, 161, 163. 

Integral inequality, 372 
Interactions in two-way layouts: 

procedures, 2%-301 
types of interaction contrasts, 295 

4,344 

tables, 279-280 

165, 169-170 

Intersection-union tests, 13, 282 
Isotonic inferences, 290 

Joint confidence level, 4, 349 
Joint testing families, 234, 344 

Khatri conjecture, 63, 368 
Kimball inequality, 370 

applications, 111,286,299, 300 
Kounias inequality, 171, 363 
Gamer’s step-down procedure for 

unbalanced designs, 116-117 
K-ratio r-tests, 10, 326 
Kruskal- Wallis testlstatistics, 246-247 

Least significant difference (LSD) 
procedure, 3 

PFE, 334-336 

variances, 204-205 

Bayesian version for control of Type 111 

modification for heterogeneous 

modification for strong control of W E ,  

Waller-Duncan MCP as continuous 
69-70 

extension of, 325 
Levels of significance: 

nominal, 66-67, 356 
optimal choice of, 358-359 
p-mean, 104 
true, 66-67 

Likelihood ratio method, 22, 48, 291. 345 
Linear combinations of means: 
MCPs for heterogeneous variances, 183- 

S-procedure, 35, 73 
T-procedure and its modifications, 82- 

Linear models (with fixed effects), 20-24 
Linear rank statistics, 270-271 

186. 197-199 

83, 89-91 
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Location model, 238, 252 
Logistic response curves, 281-282 
Loss functions, 312-313, 319-323, 331,337 

Majorization, 370 
Matched samples design, 275-2’76 
Median statistics, 268-269 
Miller-Winer procedure, 93-94 
Minimal hypothesis, 344 
Mixed two-way layout: 

comparison of procedures, 219 
models, 208-209 
procedures, 210-215 

Monotone testing families, 345 
Multinomial cell probabilities, 277 
Multiple comparison procedures (MCPs), 2 
Multiple F procedures, 111-114 
Multiple range procedures, 114-121 
Multiple subset hypotheses, 62 

S-procedure, 77 
T-procedure, 84 

Multiple {-tests, 1, 334 
Multiplicity effect, see Selection effect 
Multistep procedures, see Stepwise 

procedures 

Newman-Keuls’ NK-procedure, 66, 122 
modification for heterogeneous 

modification for strong control of W E ,  

Neyman-Pe arson type approach, 3 14 - 3 I8 
in combination with Bayesian approach, 

variances, 205-206 

69 

334-336 
Nonparametric procedures, see 

Normal plot, 287-288 

One-way layout, 24 

Distribution-free procedures 

Bayesian MCPs for balanced case, 323- 

Bayesian MCP for unbalanced case, 329- 

comparisons with average, 157-159 
comparisons with “best” treatment, 150- 

comparisons with control, 32-33, 57, 60- 

designing experiments for multiple 

324,327,332-333 

330 

156 

61, 142-143, 145, 148 

comparisons, 161-174 

distribution-free procedures, 235-250, 

MCPs for heterogeneous variances, 181- 

orthogonal comparisons, 135-136 
robust procedures, 271-273 
S-procedure, 74 
step-down pmxdures, 111-112, 114- 

step-up procedure, 124-128 
successive comparisons among ordered 

T-procedure, 31, SO, 80-83 
Orthogonal comparisons, 135-136 

single-step procedures, 136-138 
stepdown procedures, 138-139 

Orthogonal polynomials, 135, 290 

Painvise comparisons: 

267-271 

206 

120, 123 

means, 159-160 

of means, 2 
Bayesian procedures, 325-333 
design of experiments, 163-164, 172- 

MCPs for ANCOVA designs with 
173 

random covariates, 221-223,226- 
228 

187-188, 200-201 
MCPs for heterogenous variances, 

MCPs for mixed two-way layouts, 211- 

T-procedure and its modifications, 80- 
215 

81, 86 
of other parameters: 

cross-product ratios, 279 
dist ri bution-free MCPs , 242- 246, 257- 

proportions, 275-276 
robust procedures, 271-273 
variances, 283 

Parametric function, 21 
Partially balanced incomplete block (PBIB) 

dcsign, 27, 101 
Panion hypotheses, see Multiple subset 

hypotheses 
Partitioning treatment means: 

261 

cluster analysis based MCPs, 304-307 
comparison of procedures, 308-309 

Per-comparison approach, see Separate 

Per-comparison error rate (PCE), 3, 7 
inferences approach 
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Per-family error rate (PFE), 3, 7 
Peritz's procedure, 63. 121-124 
Permutation MCPs, 267-268 
Post-hoc selection, see Data-snooping 
Power, 103, 129, 347-348 
Prior distributions, 319, 323, 326-327 
Probability inequalities, 362-372 
Product structure of correlation matrix, 63, 

Projection method, 35-39, 349 
365,368,374 

applications, 214, 246, 260, 273, 275-278 

Ranking methods: 
comparison of joint and separate 

joint, 244-245 
separate, 236, 242 

rankings, 249-250 

Ranking and selection procedures. 153, 169 
Rank sum statistics, 236, 242 
Repeated measures design, see Mixed two- 

way layout 
Resolution, 347-348 
Robustness: 

to heterogeneous variances, 181-182 
to nonnormality, 234 
of S- and T-procedures, 105 

Robust procedures, 271-273 

Scheffk's projection method, see Projection 

Schefft's S-procedure, 35, 78-80 
comparison with T-procedure. 102-105 
relation to F-test, 75-76, 109 

method 

Schur-convex (concave) function, 371 
Selection effect, 2, 6. See also Data- 

Separability, 67, 248, 354 
Separate inferences approach, 1 
Sequentially rejective procedures, 57-58 
Shortcut closed procedures, 55-56, 358 
Signed rank statistics. 254-257, 258-259, 

Sign statistics, 252-254, 257-258, 266 
Simultaneous confidence bands, 73 
Simultaneous confidence intervals, 4, 349 

Bayesian, 331-333 
for categorical data problems, 275-279 
distribution-free, 238-239, 256, 258, 271 
with single-step procedures, 50-53 
with stepdown procedures, 59-61 

snooping 

266 

Simultaneous confidence regions, 349 
Simultaneous correctness requirement, 7 
Simultaneous procedures, 4 

simultaneous confidence procedures, 50- 

simultaneous test procedures, 47-50, 
53, 348-351 

344-348, 350-351 
for family of subset hypotheses, 48, 50, 

for independence hypotheses in 
contingency tables, 279-280 

use in clustering procedures, 308 

design aspects for known u2, 163-171 
for unknown unequal u%, 182-194 

comparison with step-down procedures, 

for hierarchical families, 43-53 
for nonhierarchical families, 28-93 

76-77, 84 

Single-stage procedures: 

Single-step procedures, 3, 345 

4, 128-133 

Slepian inequality, 32, 366 
Spacings, 287-288 
Square root allocation rule, 168 
Steel-Dwass procedure/statistics, 242-244, 

Stepwise procedures. 4, 53, 110 
247, 249-250, Z72 

step-down procedures, 53-71, 352-371 
based on F-statistics, 111-114 
based on Studentized range statistics, 

comparison with single-step 
procedures, 4. 128-133 

distribution-free, 247-249, 265-266 
for heterogeneous variances, u)4-206 
for hierachical families, 62-71 
for nonhierarchical families, 55-f? 

under order restrictions, 292-293 

114-124 

shortcut. 55-56.358 

step-up procedures, 53. 124-128, 132-133 
Strong control of error rates, 3 
Subset homogeneity hypotheses: 

control of W E  using step-down 

distribution-free stegdown procedures, 

S-procedure, 48. 76-77 
T-procedure. 50, 84 

means, 159-160 

procedure, 356-357 

247-249 

Successive comparisons among ordered 

design of experiments, 170 
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Tables of critical points: 
minimum average risk r-values, 411-416 
multivariate normal: 

one-sided, 381 
two-sided. 382 

one-sided, 383-390 
two-sided, 391-398 

multivariate t: 

Studentized maximum, 399-402 
Studentized maximum modulus, 403-406 
Studentized range, 407-410 
Student’s t, 380 

Testing families, 234, 344 
Transformation procedures, 89-91 
Tukey conjecture and its extensions, 92, 

Tukey-Kramer (TK) procedure, 91-93 
215,228,232 

application to ANCOVA designs, 226- 
228 

application to nonnormal problems for 
large samples, 244, 246, 275, 279 

comparison with other MCPs, 105-107 
Tukey-Spjstvoll-Stoline (TSS) procedure, 

Tukey’s T-procedure, 31. 50, 80-85 
approximate modifications for 

unbalanced designs, 91-98 
comparison with S-procedure, 102-105 
exact modifications for unbalanced 

90 

designs, 86-91 

Tukey- Welsch specification of nominal 

lwo-stage procedures, design aspects: 
for unknown d, 171-174 
for unknown unequal d ’ s ,  194-204 

I vs. Type I1 errors, 10, 15 

levels, 69, 111, 122, 359 

Type 111 errors, 39 

Unbalanced designs: 
comparison of single-step MCPs, 105- 

modifications of T-procedure, 85-98 
stepdown range procedures, 116-121 

Uncertainty intervals, % 
Union-intersection method, 28-35, 49, 345 

application to finite families, 29-33 
application to infinite families, 33-35 

Union-intersection (UI) procedures, see 

107 

Union-intersection method 

Variance components, 285-286 
Variances, multiple comparisons of, 282- 

286 

Waller-Duncan procedure, 327 
Weak control of error rates. 3 
Wholly significant difference (WSD) test, 

81 




