

Programming in C:
A Practical Approach

Ajay Mittal
Assistant Professor

Department of Computer Science and Engineering
PEC University of Technology

Chandigarh

Copyright © 2010 Dorling Kindersley (India) Pvt. Ltd.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent,
resold, hired out or otherwise circulated without the publisher’s prior wriĴ en consent in any
form of binding or cover other than that in which it is published without a similar condition
including this condition being imposed on subsequent purchaser and without limiting the
rights under copyright reserved above, no part of this publication may be reproduced, stored
in or introduced into a retrieval system, or transmiĴ ed in any form or by any means (electronic,
mechanical, photocopying, recording or otherwise), without the prior wriĴ en permission of
both the copyright owner and above-mentioned publisher of this book.

ISBN: 978-81-317-2934-2

First Impression

Published by Dorling Kindersley (India) Pvt. Ltd., licensees of Pearson Education in South
Asia.

Head Offi ce: 7th Floor, Knowledge Boulevard, A-8(A), Sector - 62, Noida, India.
Registered Offi ce: 14 Local Shopping Centre, Panchsheel Park, New Delhi 110 017, India.

Laser typeset by Sigma Business Process, Chennai.

Printed in India by

The author and publisher have taken care in preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

The programs and applications presented in this book have been included for their
instructional value. They have been tested with care, but are not guaranteed for any particular
purpose. The author and publisher do not off er any warranties or representations, nor do they
accept any liabilities with respect to the programs or applications.

This book is dedicated to

my mother
Smt. Prem Lata

with deepest gratitude
&

the little angel, my nephew,
Jai Mittal
with love…

About the Author

Ajay Mittal is an Assistant Professor in the Department of Com-
puter Science and Engineering, PEC University of Technology
(formerly Punjab Engineering College), Chandigarh. He has done
M.E. (Computer Science & Engineering) with distinction from
Punjab Engineering College. His areas of interest are program-
ming and logic development, algorithm analysis and design,
compiler design, computer graphics and computer vision. He is
currently doing research in the area of computer vision. He has
a number of research papers in national/international journals
and conferences to his credit. He has a comprehensive profes-

sional experience and has been teaching C language for about a decade. During this span, he
has conducted numerous courses on C programming and Advanced C programming.

Contents

About the Author iv
Preface xiii

1 Data Types, Variables and Constants 1

1.1  Introduction 2
1.2  C Standards 2

1.2.1 Kernighan & Ritchie (K&R) C Standard 2
1.2.2 ANSI C/Standard C/C89 Standard 2
1.2.3 ISO C/C90 Standard 2
1.2.4 C99 Standard 2

1.3  Learning Programming Language and Natural Language: An Analogy 3
1.4  C Character Set 3
1.5  Identifiers and Keywords 4

1.5.1 Identifiers 4
1.5.2 Keywords 5

1.6  Declaration Statement 5
1.7  Data Types 6

1.7.1 Basic/Primitive Data Types 6
1.7.2 Derived Data Types 6
1.7.3 User-defined Data Types 6

1.8  Type Qualifiers and Type Modifiers 7
1.8.1 Type Qualifiers 7
1.8.2 Type Modifiers 7

1.9  Difference Between Declaration and Definition 7
1.10 Data Object, L-value and R-value 9

1.10.1 Data Object 9
1.10.2 L-value 9
1.10.3 R-value 9

1.11 Variables and Constants 10
1.11.1 Variables 10
1.11.2 Constants 10

1.12 Structure of a C Program 14
1.12.1 Comments 15
1.12.2 Section1: Preprocessor Directive Section 15
1.12.3 Section 2: Global Declaration Section 15
1.12.4 Section 3: Functions Section 16

1.13 Executing a C Program 16

vi Contents

1.14 More Programs for Startup 17
1.15 Summary 22

Exercise Questions 22
Conceptual Questions and Answers 22
Code Snippets 31
Multiple-choice Questions 33
Outputs and Explanations to Code Snippets 36
Answers to Multiple-choice Questions 40
Programming Exercises 40
Test Yourself 45

2 Operators and Expressions 47

2.1 Introduction 48
2.2 Expressions 48

2.2.1 Operands 48
2.2.2 Operators 48

2.3 Simple Expressions and Compound Expressions 48
2.3.1 Precedence of Operators 49
2.3.2 Associativity of Operators 49

2.4 Classification of Operators 49
2.4.1 Classification Based on Number of Operands 49
2.4.2 Classification Based on Role of Operator 50

2.5 Combined Precedence of All Operators 64
2.6 Summary 66

Exercise Questions 67
Conceptual Questions and Answers 67
Code Snippets 71
Multiple-choice Questions 79
Outputs and Explanations to Code Snippets 81
Answers to Multiple-choice Questions 97
Programming Exercises 97
Test Yourself 102

3 Statements 105

3.1 Introduction 106
3.2 Statements 106
3.3 Classification of Statements 106

3.3.1 Based Upon the Type of Action they Perform 107
3.3.2 Based Upon the Number of Constituent Statements 108
3.3.3 Based Upon their Role 110

3.4 Summary 137
Exercise Questions 137
Conceptual Questions and Answers 137
Code Snippets 149

Contents vii

Multiple-choice Questions 158
Outputs and Explanations to Code Snippets 160
Answers to Multiple-choice Questions 169
Programming Exercises 169
Test Yourself 180

4 Arrays and Pointers 183
4.1 Introduction 184
4.2 Arrays 184
4.3 Single-dimensional Arrays 186

4.3.1 Declaration of a Single-dimensional Array 186
4.3.2 Usage of Single-dimensional Array 189
4.3.3 Memory Representation of Single-dimensional Array 190
4.3.4 Operations on a Single-dimensional Array 191

4.4 Pointers 192
4.4.1 Operations on Pointers 194
4.4.2 void pointer 200
4.4.3 Null Pointer 201

4.5 Relationship Between Arrays and Pointers 202
4.6 Scaling up the Concept 203

4.6.1 Array of Arrays (Multi-dimensional Arrays) 203
4.6.2 Array of Pointers 209
4.6.3 Pointer to a Pointer 210
4.6.4 Pointer to an Array 210

4.7 Advantages and Limitations of Arrays 211
4.8 Summary 211

Exercise Questions 212
Conceptual Questions and Answers 212
Code Snippets 218
Multiple-choice Questions 224
Outputs and Explanations to Code Snippets 227
Answers to Multiple-choice Questions 238
Programming Exercises 238
Test Yourself 255

5 Functions 257
5.1 Introduction 258
5.2 Functions 258
5.3 Classification of Functions 259

5.3.1 Based Upon who Develops the Function 259
5.3.2 Based Upon the Number of Arguments a Function Accepts 299

5.4 Summary 302
Exercise Questions 303
Conceptual Questions and Answers 303
Code Snippets 312

viii Contents

Multiple-choice Questions 320
Outputs and Explanations to Code Snippets 322
Answers to Multiple-choice Questions 328
Programming Exercises 328
Test Yourself 337

6 Strings and Character Arrays 339

6.1  Introduction 340
6.2  Strings 340
6.3  Character Arrays 342
6.4  Reading Strings from the Keyboard 343
6.5  Printing Strings on the Screen 349
6.6  Importance of Terminating Null Character 351
6.7  String Library Functions 352

6.7.1  strlen Function 353
6.7.2  strcpy Function 353
6.7.3  strcat Function 354
6.7.4  strcmp Function 355
6.7.5  strcmpi Function 357
6.7.6  strrev Function 358
6.7.7  strlwr Function 358
6.7.8  strupr Function 359
6.7.9  strset Function 360
6.7.10 strchr Function 361
6.7.11 strrchr Function 362
6.7.12 strstr Function 363
6.7.13 strncpy Function 364
6.7.14 strncat Function 365
6.7.15 strncmp Function 367
6.7.16 strncmpi Function 368
6.7.17 strnset Function 369

6.8  List of Strings 369
6.8.1  Array of strings 370
6.8.2  Array of Character Pointers 371

6.9  Command Line Arguments 373
6.10 Summary 375

Exercise Questions 376
Conceptual Questions and Answers 376
Code Snippets 381
Multiple-choice Questions 388
Outputs and Explanations to Code Snippets 390
Answers to Multiple-choice Questions 400
Programming Exercises 401
Test Yourself 409

Contents ix

7 Scope, Linkage, Lifetime and Storage Classes 411

7.1 Introduction 412
7.2 Scope 412

7.2.1 Determination of Scope of an Identifier 412
7.2.2 Termination of Scope of an Identifier 413
7.2.3 Same Scope 414
7.2.4 Visibility of an Identifier 417

7.3 Linkage 420
7.3.1 External linkage 420
7.3.2 Internal Linkage 422
7.3.3 No Linkage 424

7.4 Storage Duration/Lifetime of an Object 424
7.5 Storage Classes 425

7.5.1 The auto Storage Class 426
7.5.2 The register Storage Class 428
7.5.3 The static Storage Class 429
7.5.4 The extern Storage Class 430
7.5.5 The typedef Storage Class 431

7.6 Dynamic Memory Allocation 432
7.6.1 Memory Leak 436

7.7 Summary 437
Exercise Questions 437
Conceptual Questions and Answers 437
Code Snippets 450
Multiple-choice Questions 458
Outputs and Explanations to Code Snippets 460
Answers to Multiple-choice Questions 469
Programming Exercises 470
Test Yourself 474

8 The C Preprocessor 477

8.1 Introduction 478
8.2 Translators 478
8.3 Phases of Translation 479

8.3.1 Trigraph Replacement 480
8.3.2 Line Splicing 481
8.3.3 Tokenization 481
8.3.4 Preprocessor Directive Handling 482

8.4 Summary 502
Exercise Questions 503
Conceptual Questions and Answers 503
Code Snippets 510
Multiple-choice Questions 518
Outputs and Explanations to Code Snippets 520

x Contents

Answers to Multiple-choice Questions 528
Programming Exercises 528
Test Yourself 531

9 Structures, Unions, Enumerations and Bit-fi elds 533

9.1 Introduction 534
9.2 Structures 534

9.2.1 Defining a Structure 534
9.2.2 Declaring Structure Objects 539
9.2.3 Operations on Structures 543

9.3 Pointers to Structures 554
9.3.1 Declaring Pointer to a Structure 554
9.3.2 Accessing Structure Members Via a Pointer to a Structure 555

9.4 Array of Structures 556
9.5 Structures within a Structure (Nested Structures) 559
9.6 Functions and Structures 561

9.6.1 Passing Each Member of a Structure Object as a Separate Argument 562
9.6.2 Passing a Structure Object by Value 563
9.6.3 Passing a Structure Object by Address/Reference 564

9.7 typedef and Structures 566
9.8 Unions 568
9.9 Practical Application of Unions 571

9.9.1 Calling DOS and BIOS Functions 572
9.9.2 Interrupt Programming 575

9.10 Enumerations 580
9.11 Bit-Fields 586
9.12 Summary 590

Exercise Questions 591
Conceptual Questions and Answers 591
Code Snippets 601
Multiple-choice Questions 610
Outputs and Explanations to Code Snippets 611
Answers to Multiple-choice Questions 617
Programming Exercises 617
Test Yourself 626

10 Files 629

10.1 Introduction 630
10.2 Files 630
10.3 Streams 631
10.4 I/O Using Streams 633

10.4.1  Opening a Stream 633
10.4.2  Closing Streams 635
10.4.3  Character Input 637
10.4.4  Character Output 638

Contents xi

10.4.5  File Position Indicator 641
10.4.6  End of File and Errors 646
10.4.7  Line Input 648
10.4.8  Line Output 649
10.4.9  Formatted Input 650
10.4.10 Formatted Output 650
10.4.11 Block Input 652
10.4.12 Block Output 652
10.4.13 Stream Buffering and Flushing the Streams 654

10.5 File Type 657
10.6 Files and Command Line Arguments 662
10.7 Summary 663

Exercise Questions 664
Conceptual Questions and Answers 664
Code Snippets 669
Multiple-choice Questions 671
Outputs and Explanations to Code Snippets 671
Answers to Multiple-choice Questions 673
Programming Exercises 674
Test Yourself 678

Appendix A: Number Systems 679

A.1 Number systems 679
A.2 Number System Conversions 681

A.2.1  Conversion from Decimal Number System to
any Other Number System 681

A.2.2  Conversion from Any Other Number System to
Decimal Number System 681

A.2.3  Conversion from Binary Number System to Octal and
Hexadecimal Number System 682

A.2.4  Conversion from Octal and Hexadecimal Number System to
Binary Number System 683

Appendix B: Algorithms and Flowcharts 684

B.1 Algorithm 684
B.2 Flowcharts 686

Appendix C: Translation Limits 691

Appendix D: ROM-BIOS and DOS Services 693

Appendix E: Graphics Programming 709

E.1 Computer Graphics 709
E.2 Initializing Graphics Mode in Turbo C 3.0 709

xii Contents

E.3 Drawing Basic Shapes 711
E.3.1 Simple Line Drawing 711
E.3.2 Stylish Line Drawing 713
E.3.3 Drawing Other Basic Shapes 716

E.4 Region Filling 717
E.4.1 Filling Regions with Different Patterns and Colors 719

E.5 Pattern Drawing Based on Regular Polygons 721
E.5.1 Drawing Rosettes 723
E.5.2 Swirling Polygons 725

E.6 Motif and Tiling 726
E.7 Viewport and Clipping 728

Appendix F: Answers to Test Yourself Questions 730

Index 737

“Dreams transform into thoughts, thoughts into actions and actions into reality”
—A.P.J. Abdul Kalam

“Until you try, you don’t know what you can’t do”
—Henry James

Why and How I Wrote this Book
I ventured into the field of C programming as a young novice undergraduate like you about fif-
teen years back. At that time I had a little programming experience with BASIC, PASCAL and
FORTRAN languages. I had heard about the enormous power of C programming language
and was fascinated about it. I learnt and practiced it for about five years, and then fortunately
had the opportunity to teach it to young engineering students at PEC University of Technol-
ogy (formerly Punjab Engineering College), Chandigarh. This new assignment changed my
perspective a bit; however, my learning and understanding about the language continued to
evolve. Gradually, I developed a flair for solving problems faced by students in conceiving
and understanding the intricacies of the language. Years of teaching have given me a clear
idea about how a student perceives, conceives and understands the language. During these
years, I have observed the deficiencies and the weaknesses in the literature available on C
language. About two years back, I decided to share my knowledge and experiences with you
in the form of a book, which is unique and removes the loopholes in the existing literature on
C language. During the past two years, along with the fellows (mentioned in the acknowledg-
ment section), I have worked hard towards the realization of this book on Programming in C:
A Practical Approach, which is in your hands right now. It adopts a unique and well-tested
practical approach towards learning C language. I am sure that this book will help you in gain-
ing proficiency in C programming. Happy Learning and All the Best!

C Programming Language
C is a general-purpose, block-structured, procedural, case-sensitive, free-flow, portable, pow-
erful high-level programming language. The language is so powerful that UNIX, one of the
most accepted operating systems, is written in it. It is said that programming languages are
‘born’, ‘age’ and eventually ‘die’. However, C programming language has only matured from
the time it was born. It holds the same relevance as it held when it was developed by Dennis
Ritchie at the Bell Telephone Laboratories in 1972.

C Programming: A First Programming Course
Programming in C is introduced into undergraduate professional courses as a first program-
ming course. The course intends to make the students well conversant with the syntax of C
programming language and also focuses on the development of logic and problem-solving
abilities in the students. The importance of this course can be clearly fathomed from the fact

Preface

xiv Preface

that the knowledge of C programming language is maintained as a pre-requisite for place-
ments in almost all reputed software companies. Good understanding of C language also cre-
ates a strong foundation for learning other programming languages like C++, Java, etc.

About the Book
The book Programming in C: A Practical Approach adopts a unique and well-tested practical ap-
proach towards learning C programming language. The book covers the concepts in a lucid
manner for the benefit of novice as well as amateur programmers who are looking for a com-
prehensive source to increase their skill in C programming. Though the book does not assume
prior knowledge in the subject; a basic awareness of the working of computers will make the
going easier.

Structure of the Book
The book is structured into ten chapters with six appendices. Emphasis has been laid on the
organization and placement of concepts in the chapters so that they can be easily learnt. The
principle behind the organization of the concepts in the book is gradually decreasing the level
of abstraction and thereby increasing the in-depth knowledge. A link between the listing of a
concept and the detailed discussion on the concept is maintained by using forward and back-
ward references.

Chapter 1 provides an introduction to C language along with the chronological listing of
its various standards. It starts with the presentation of the common programming vocabulary
such as character set, identifiers, keywords, variables, constants and data types. It also makes
some forward jumps in the flow of learning and describes how to write, compile and execute
simple C programs. Chapter 2 describes operators and how to create expressions using them.
A detailed classification in the lines of operators as arithmetic, relational, logical, and bitwise,
is presented. It also presents a detailed discussion on how expressions are evaluated and the
intricacies involved in this evaluation process. Statements, which form the smallest indepen-
dent unit within a C program, are discussed in Chapter 3. The classification of statements
into executable and non-executable statements, simple statements and compound statements,
branching statements and iteration statements is presented in detail.

Chapter 4 deals with the derived data type arrays and pointers. It talks about the inter-
relationship between arrays and pointers. Chapter 5 introduces functions. Functions help in
modularizing the program and the code reuse. It expounds on the concept of recursion in a
unique manner. Chapter 6 introduces strings and character arrays. Various string operations
using library functions and user-defined functions are presented. The notions of scope, life-
time and linkage are examined in Chapter 7. It also elucidates various storage class specifiers.
Chapter 8 analyzes the translators and focuses on a translator known as a preprocessor. Vari-
ous directives used to control preprocessors are described in detail. Chapter 9 explicates the
definition of new data types using structures, unions and enums. The chapter covers bit-fields
and interrupt programming, the practical application of unions. Chapter 10 illustrates how
input/output can be performed using files.

Appendix A throws light on the number system and the conversion of one number system to
another. Appendix B compiles the flowcharts and algorithms pertinent to the topics discussed
in the book. Appendix C spells out the translation limits that each compiler conforming to the
ANSI/ISO standard must support. Appendix D lists various ROM-BIOS and DOS services.

Preface xv

Appendix E demonstrates graphics programming using Turbo C 3.0. Solutions to all Test
Yourself exercises are put together in Appendix F.

Salient Features and Strengths of the Book
The salient features and strengths of the book are:

1. Comprehensive coverage of C programming language. The content of each chapter is
clear, lucid and self-explanatory.

2. The theory is reiterated through conceptual questions and their elucidative explanatory
answers. The book has an extensive collection of nearly 1000 unique, relevant and con-
ceptual questions. These questions have either been asked by the students during the
courses on C programming or have been developed to cover each and every concept of
the C programming language.

3. The concepts are explained with the help of programming examples. One of the unique
features of the book is the presentation of programming examples with the help of trace
arrows and remarks.

4. Simultaneous discussion on the behavior of a program with Borland Turbo C 3.0, Bor-
land Turbo C 4.5 and MS-VC++ 6.0 compilers.

5. Unique and in-depth discussion on structure padding and recursion.

Typographical Conventions
The book tries to keep a consistent style in the use of special or technical terms. The normal
text is written in Palatino Linotype regular typeface, whereas the C syntactic terms like re-
served words, etc. are written in Agency FB regular typeface. The conceptual questions presented at
the end of each chapter are written in Palatino Linotype italic typeface for normal text and Agency
FB regular typeface for C syntactic terms. The answers to these conceptual questions appear at the
same place in Palatino Linotype regular typeface for normal text and Agency FB regular typeface for
C syntactic terms. The outputs to the code snippets and answers to multiple-choice questions
are present at the end of each chapter using the same typographical conventions. The first oc-
currence of each technical term is in bold.

References to the topics present in other chapters are given in Forward/Backward reference
boxes, whereas the references to the topics present in the same chapter are given by providing
footnotes.

Web Resources and Feedback
All the source codes are available on the website http://www.pearsoned.co.in/ajaymittal. Con-
structive comments are most welcomed, and feedback to improve the book will be highly ap-
preciated. Any query may be directly addressed to me at ajaymittal@pec.ac.in.

Acknowledgements
A dream is visualized by a pair of eyes; however, many pairs of hands join together and work
hard towards its realization. Throughout the project, I received the much-needed support at
all fronts from various people. The list is so exhaustive that I may not be able to enumerate all
the names. I express my heartfelt thanks to all who helped me at any point of time during the
writing of this book. I would like to specially thank the following persons who have helped
me in different ways:

xvi Preface

My sincere thanks to Dr Manoj Dutta, Director, PEC University of Technology; Dr Sanjeev
Sofat, Professor and Head, Computer Science and Engineering Department; Dr Vijay Gupta,
Vice-Chancellor, Lovely Professional University, Ex-Director, Punjab Engineering College;
my colleagues Divya and Arvind Kakria and my friends Praveen Grewal and Naveen Aggarwal
for their unabated support and inspiration.

My students provided helpful insights while working on the drafts of the manuscript: Mo-
hit Virmani, Deepti Sabani, Akansha Bansal, Subhangi Harsha, Ankit Anand, Amandeep Jakhu and
Shefali Saroha. I thank Mohit for his thoughtful comments and dedicated efforts in proof read-
ing. His reviews have considerably improved this book.

I am obliged to Thomas Rajesh, Sachin Saxena, Pradeep Banerjee, M.E. Sethurajan, Jennifer Sargunar,
Munish Modi and other members of the editorial and production teams of Pearson Education
for their hard work and vast patience. I am especially thankful to Jennifer, who has taken per-
sonal interest towards the betterment of the script. I would also like to thank Showick Thorpe,
who introduced the project to his colleague Thomas.

Last but not the least, I express my heartfelt gratitude to my parents Sh. T.L. Mittal and Smt.
Prem Lata, and my brother Hemraj Mittal and his wife Sabina for their moral support and pa-
tience throughout the period of writing the book. My little nephew Jai Mittal was my inspira-
tion and played an important role in his own way towards the early completion of the book.

Ajay Mittal

DATA TYPES, VARIABLES
AND CONSTANTS

1

Learning Objectives

In this chapter, you will learn about:

Various features of C language �
Various C’s standards �
C’s character set �
Identifiers and Keywords �
Rules to write identifier names in C �
Data types, type qualifiers and type modifiers �
Declaration statement �
Difference between declaration and definition �
Length and Range of various data types �
l-value and r-value concept �
Variables and constants �
Classification of constants �
Structure of a C program �
Process of compiling and executing a C program �
Writing simple C programs �
Using � printf and scanf functions
Use of � sizeof operator

2 Programming in C—A Practical Approach

1.1 Introduction
C is a general-purpose, block-structured, procedural, case-sensitive, free-flow, portable and
high-level programming language developed by Dennis Ritchie at the Bell Telephone Labora-
tories. The selection of ‘C’ as the name of a programming language seems to be an odd choice
but it was named C because it evolved from earlier languages Basic Combined Programming
Language (BCPL) and B.

In 1967, Martin Richards developed BCPL for writing system software (i.e. operating sys-
tems and compilers). Ken Thompson in 1970 developed a stripped version of BCPL and named
it B. The language B was used to create early versions of UNIX operating system. Both the
languages BCPL and B were ‘typeless’, and every data object occupied one word in the mem-
ory. In 1972, Dennis Ritchie developed C programming language by retaining the important
features of BCPL and B programming languages and adding data types and other powerful
features to the retained feature set of BCPL and B. The language C was initially designed as a
system implementation language for developing system software for the UNIX operating sys-
tem. Thus, it was widely known as the development language of the UNIX operating system.
However, after its popularity, it has spread over many other platforms and is used for creating
many other applications in addition to the system software. Thus, nowadays, C is known as a
general-purpose language and not only as a system implementation language.

1.2 C Standards
The rapid expansion of C to various platforms led to many variations that were similar but
were often incompatible. This was a serious problem for programmers who wanted to develop
code that could run on several platforms. This problem led to the realization of the need for a
standard. This section lists the formulation of various C standards in the chronological order:

1.2.1 Kernighan & Ritchie (K&R) C Standard
The first edition of ‘The C Programming Language’ book by Brian Kernighan and Dennis
Ritchie was published in 1978. This book was one of the most successful computer science
books and has served as an informal standard for the C language for many years. This infor-
mal standard was known as ‘K&R C’.

1.2.2 ANSI C/Standard C/C89 Standard
In 1983, a technical committee was created under the American National Standards Institute
(ANSI) committee to establish a standard specification of C. In 1989, the standard proposed
by the committee was formally approved and is often referred to as ANSI C, Standard C or
sometimes C89.

1.2.3 ISO C/C90 Standard
In 1990, the International Organization for Standardization (ISO) adopted the ANSI C standard
after minor modifications. This version of the standard is called ISO C or sometimes C90.

1.2.4 C99 Standard
After the adoption of the ANSI standard, the C language specifications remained unchanged
for sometime, whereas the language C++ continued to evolve. To accommodate this evolu-
tion of C++, a new standard of C language that corrected some details of ANSI C standard

Data Types, Variables and Constants 3

and added more extensive support to it was introduced in 1995. The standard was published
in 1999 and is known as C99. The C99 standard has not been widely adopted and is not sup-
ported by many popular C compilers.

i
The text and questions in this book are in accordance to ANSI/ISO standards and are
tested on Borland Turbo C (TC) 3.0 compiler for DOS, Borland TC 4.5 compiler for Windows
and Microsoft VC++ 6.0 compiler for Windows.

1.3 Learning Programming Language and Natural Language:
An Analogy

Writing a C program is analogous to writing an essay. Recall all the stages through which you
have undergone in the process of learning how to write an essay in English. Your teacher must
have told you:

How to create words from letters.1.
How to form sentences using words and grammar.2.
How to organize sentences and create paragraphs.3.
How to arrange paragraphs and write an essay.4.

In this book, you will learn about:
How to create identifiers using the characters available in the character set of C lan-1.
guage. This is analogous to creating words in a natural language.
How to use identifiers to form expressions, which can be further converted to state-2.
ments, the smallest logical unit of a program. Forming a statement is analogous to form-
ing a sentence.
How to use statements to write functions. Writing a function is analogous to writing a 3.
paragraph.
How to use functions to create a program. This is analogous to creating an essay from 4.
paragraphs.

The above learning objectives are organized in this book as follows:
Creating identifier names: Chapter 11.
Creating expressions and statements: Chapters 2 and 32.
Creating functions: Chapter 53.

Since, I do not want to restrain you from writing programs till Chapter 5, I will make some
forward jumps in the flow of learning C programming language. I will introduce you to pro-
gram writing in this chapter itself, but if something does not seem obvious, I advise you to be
a bit patient. The concepts will be clearer when you go through the first few chapters and will
be clear by the end of Chapter 5.

1.4 C Character Set
A character set defines the valid characters that can be used in a source program or interpreted
when a program is running. The set of characters that can be used to write a source program
is called a source character set, and the set of characters available when the program is being
executed is called an execution character set. It is possible that the source character set is
different from the execution character set, but in most of the implementations of C language,
the two character sets are identical.

4 Programming in C—A Practical Approach

The basic source character set of C language includes:
1. Letters:
 a. Uppercase letters: A, B, C, …, Z
 b. Lowercase letters: a, b, c, …, z
2. Digits: 0, 1, 2, …, 9
3. Special characters: , . : ; ! ” ^ # % ^ & * () { } [] < > | \ / _ ~ etc.
4. White space characters:
 a. Blank space character
 b. Horizontal tab space character
 c. Carriage return
 d. New line character
 e. Form feed character

1.5 Identifiers and Keywords
If you know C’s source character set, the next step is to write identifiers. This is analogous to
writing words in a natural language.

1.5.1 Identifiers
An identifier refers to the name of an object. It can be a variable name, a label name,Â a func-
tion name,Â a typedef name,Â a macro nameÂ or a macro parameter, a tag or a member of a
structure, a union or an enumeration.Â

The syntactic rules to write an identifier name in C are as follows:
Identifier name in C can have letters, digits or underscores. 1.
The first character of an identifier name must be a letter (either uppercase or lowercase) 2.
or an underscore. The first character of an identifier name cannot be a digit.
No special character (except underscore), blank space and comma can be used in an 3.
identifier name.
Keywords or reserved words cannot form a valid identifier name.4.
The maximum number of characters allowed in an identifier name is compiler depen-5.
dent, but the limit imposed by all the compilers provides enough flexibility to create
meaningful identifier names.

The following identifier names are valid in C:
Student_Name, StudentName, student_name, student1, _student

The following identifier names are not valid in C:
Student Name (due to blank space), Name&Rollno (due to special character &), 1st_student

(first character being a digit), for (for being a keyword).

i
It is always advisable to create meaningful identifier names. Meaningful identifier names are
easier to read and increase the maintainability of a program. For example, it is better to create
an identifier name as student_name instead of snam.

Forward Reference: Label name (Chapter 3), function (Chapter 5), typedef name (Chapter 7),
macro name (Chapter 8), structure, union, enumeration (Chapter 9).

Data Types, Variables and Constants 5

1.5.2 Keywords
Keyword is a reserved word that has a particular meaning in the programming language. The
meaning of a keyword is predefined. A keyword cannot be used as an identifier name in C
language. There are 32 keywords available in C. Table 1.1 gives a set of keywords present in
C language.

Table 1.1 | List of keywords in C

S.No Keyword S.No Keyword S.No Keyword S.No Keyword
1. auto 9. double 17. int 25. struct
2. break 10. else 18. long 26. switch
3. case 11. enum 19. register 27. typedef
4. char 12. extern 20. return 28. union
5. const 13. float 21. short 29. unsigned
6. continue 14. for 22. signed 30. void
7. default 15. goto 23. sizeof 31. volatile
8. do 16. if 24. static 32. while

1.6 Declaration Statement
If you have learnt how to create an identifier name, you should know that every identifier
(except label name) needs to be declared before it is used.

An identifier can be declared by making use of the declaration statement. The role of a
declaration statement is to introduce the name of an identifier along with its data type (or just
type) to the compiler before its use. The general form of a declaration statement is:

[storage_class_specifierÂ][type_qualifier†|type_modifier‡] type§ identifier [=value[,...]];

i The terms enclosed within square brackets (i.e. []) are optional and might not be present in a
declaration statement. The type, identifier and the terminating semicolon (shown in bold) are
the mandatory parts of a declaration statement.

The following declaration statements¶ are valid in C:
int variable; (type int and identifier name variable present)
static int variable; (Storage class specifier static, type int and identifier name variable

present)
static unsigned int variable; (Storage class specifier static, type modifier unsigned, type int and

identifier name variable present)
static const unsigned int variable; (Storage class specifier static, type qualifier const, type modifier

unsigned, type int and identifier name variable present)
int variable=20; (type int, identifier name variable and value 20 present)
int a=20, b=10; (type int, identifier name a and its initial value 20 present, an-

other identifier name b and its initial value 10 present")

† Refer Section 1.8.1 for a description on type qualifiers.
‡ Refer Section 1.8.2 for a description on type modifiers.
§ Refer Section 1.7 for a description on types.
¶ These are actually definition statements. Refer Section 1.9 for a description on declaration and definition.

6 Programming in C—A Practical Approach

A declaration statement in which more than one identifier is declared is known as a short-
hand declaration statement. For example, int a=20, b=10; is a shorthand declaration statement.
The corresponding longhand declaration statements equivalent to this shorthand declara-
tion statement are int a=20; int b=10;. It is important to note that shorthand declaration can only
be used to declare identifiers of the same type. In no way can it be used to declare identifiers
of different types, e.g. int a=10, float b=2.3; is an invalid statement.

Forward Reference: Storage class specifier (Chapter 7).

1.7 Data Types
If you know how to write a declaration statement, you would probably know that the declaration
statement is used to tell the data type (or just type) of an identifier to the compiler before its use.

Data type or just type is one of the most important attributes of an identifier. It determines the
possible values that an identifier can have and the valid operations that can be applied on it.

In C language, data types are broadly classified as:
Basic data types (primitive data types)1.
Derived data types2.
User-defined data types3.

1.7.1 Basic/Primitive Data Types
The five basic data types and their corresponding keywords available in C are:

Character (1. char)
Integer (2. int)
Single-precision floating point (3. float)
 Double-precision floating point (4. double)
No value available (5. void)

1.7.2 Derived Data Types
These data types are derived from the basic data types. Derived data types available in C are:

Array type1. Â e.g. char[], int[], etc.
Pointer type2. Â e.g. char*, int*, etc.
Function type3. Â e.g. int(int,int), float(int), etc.

Forward Reference: Array type (Chapter 4), pointer type (Chapter 4), function type
(Chapter 5).

1.7.3 User-defined Data Types
The C language provides flexibility to the user to create new data types. These newly created
data types are called user-defined data types. The user-defined data types in C can be created
by using:

Data Types, Variables and Constants 7

 Structure1. Â

 Union2. Â

 Enumeration3. Â

Forward Reference: Structure, union, enumeration (Chapter 9).

1.8 Type Qualifiers and Type Modifiers
The declaration statement can optionally have type qualifiers or type modifiers or both.

1.8.1 Type Qualifiers
A type qualifier neither affects the range of values nor the arithmetic properties of the de-
clared object. They are used to indicate the special properties of data within an object. Two
type qualifiers available in C are:

1. const†† qualifier: Declaring an object const announces that its value will not be changed
during the execution of a program.

2. volatile qualifier: volatile qualifier announces that the object has some special properties
relevant to optimization.

1.8.2 Type Modifiers
A type modifier modifies the base type to yield a new type. It modifies the range‡‡ and the
arithmetic properties of the base type. The type modifiers and the corresponding keywords
available in C are:

Signed (1. signed)
Unsigned (2. unsigned)
Short (3. short)
Long (4. long)

1.9 Difference Between Declaration and Definition
It is very important to know the difference between the terms declaration and definition.
Declaration only introduces the name of an identifier along with its type to the compiler be-
fore it is used. During declaration, no memory space is allocated to an identifier. Definition
of an identifier means the declaration of an identifier plus reservation of space for it in the
memory. The amount of memory space reserved for an identifier depends upon the data type
of the identifier. Identifiers of different data types take different amounts of memory space.
The memory space required by an identifier also depends upon the compiler and the work-
ing environment used. Table 1.2 lists the length of various data types in DOS and Windows
environment.

†† Refer Section 1.11.2.2 for a description on const qualifier.
‡‡ Refer Section 1.9 for a description on range modification by type modifiers.

8 Programming in C—A Practical Approach

Table 1.2 | Data types and their memory requirements

S.No Data type Base/Modified TURBO C 3.0/DOS MS VC++ 6.0/WINDOWS

1. char Base 1 Byte 1 Byte
2. int Base 2 Bytes 4 Bytes
3. float Base 4 Bytes 4 Bytes
4. double Base 8 Bytes 8 Bytes
5. signed 〈data type 1, 2〉 Modified 〈same as data type 1, 2〉 〈same as data type 1, 2〉
6. unsigned 〈data type 1, 2〉 Modified 〈same as data type 1, 2〉 〈same as data type 1, 2〉
7. short int Modified 2 Bytes 2 Bytes
8. long int Modified 4 Bytes 4 Bytes
9. long float Modified 8 Bytes 8 Bytes
10. long double Modified 10 Bytes 8 Bytes
11. void Base Object of void type cannot be created

The data type determines the possible values that an identifier can have. The range of a
data type depends upon the length of the data type. Table 1.3 lists the range of various data
types in DOS and Windows environment.

Table 1.3 | Range of various data types

S.No Data type TURBO C 3.0/DOS MS VC++ 6.0/WINDOWS

1. char −128 to 127 −128 to 127
2. int −32768 to 32767 −2,147,483,648 to 2,147,483,647
3. float 3.4 * 10−38 to 3.4 * 1038 3.4 * 10−38 to 3.4 * 1038

4. double 1.7 * 10−308 to 1.7 * 10308 1.7 * 10−308 to 1.7 * 10308

5. signed 〈data type 1, 2〉 Same as 1, 2 as by default data
types are signed

Same as 1, 2 as by default data
types are signed

6. unsigned char 0 to 255 0 to 255
7. unsigned int 0 to 65535 0 to 4,294,967,295
8. unsigned long int 0 to 4,294,967,295 0 to 4,294,967,295
9. short int −32768 to 32767 −32768 to 32767
10. long double 3.4 * 10–4932 to 1.1 * 104932 1.7 * 10−308 to 1.7 * 10308

i
Despite the big difference between the terms declaration and definition, the word declaration
is commonly used in place of definition. All the statements written in Section 1.6 are actually
definition statements, but I have referred to them as declarations because at that point I just
wanted to focus on the name and the type of an identifier.

The statement int variable=20; mentioned in Section 1.6 is actually a definition statement be-
cause it allocates 2 bytes (or 4 bytes) to variable somewhere in the memory (say, at memory loca-
tion with address 2000) and initializes it with the value 20. The memory allocation is purely random
(i.e. any free memory location will be randomly allocated). This is illustrated in Figure 1.1.

Data Types, Variables and Constants 9

 Data Store (Memory) variable

20

 Addresses 2000 (Memory locations are addressed, like houses are
addressed, for e.g. 2000 is a memory address)

Figure 1.1 | Allocation of memory to variable

If int variable; is a definition statement, then how can I declare variable?
If you want to actually declare variable, write extern int variable;. extern is a storage class

specifier.Â The keyword extern provides a method for declaring a variable without defining it.
The extern declarationÂ does not allocate the memory.

Forward Reference: Storage class specifier (Chapter 7), extern declaration (Chapter 7).

1.10 Data Object, L-value and R-value
You must have known by this time that upon definition, an identifier is allocated some space
in memory depending upon its data type and the working environment. This memory al-
location gives rise to two important concepts known as the l-value concept and the r-value
concept. These concepts are described below.

1.10.1 Data Object
Data object is a term that is used to specify the region of data storage that is used to hold val-
ues. Once an identifier is allocated memory space, it will be known as a data object.

1.10.2 L-value
L-value is a data object locator. It is an expressionÂ that locates an object. In Figure 1.1, variable
is a sort of name given to the memory location 2000. variable here refers to l-value," an object
locator. The term l-value can be further categorized as:

1. Modifiable l-value: A modifiable l-value is an expression that refers to an object that
can be accessed and legally changed in the memory.

2. Non-modifiable l-value: A non-modifiable l-value refers to an object that can be accessed
but cannot be changed in the memory. ¶¶

l in l-value stands for ‘left’; this means that the l-value could legally stand on the left side of
an assignment operator.

1.10.3 R-value
R-value refers to ‘read value’. In Figure 1.1, variable has an r-value" 20.

¶¶ Refer Section 1.11.2.2 to learn how to make an l-value non-modifiable.

10 Programming in C—A Practical Approach

r in r-value stands for ‘right’ or ‘read’; this means that if an identifier name appears on the
right side of an assignment operator it refers to the r-value.

Consider Figure 1.1 and the expression variable=variable+20. variable on the left side of the as-
signment operatorÂ refers to the l-value. variable on the right side of the assignment operator
(in bold) refers to the r-value. variable appearing on the right side refers to 20. The number 20 is
added to 20 and the value of expression is 40 (r-value). This outcome (40) is assigned to variable
on the left side of the assignment operator, which signifies l-value." The l-value variable locates
the memory location where this value is to be placed, i.e. at 2000. After the evaluation of the
expression variable=variable+20, the contents of the memory are shown in Figure 1.2.

 Data Store (Memory) variable

40

 Addresses 2000

Figure 1.2 | Contents of memory location 2000 after the evaluation of expression variable=variable+20

Remember it as:
The l-value refers to the location value, i.e. the location of the object, and the r-value
refers to the read value, i.e. the value of the object.

Forward Reference: Expressions and operators (Chapter 2).

1.11 Variables and Constants
Variables and constants are two most commonly used terms in a programming language.

1.11.1 Variables
A variable is an entity whose value can vary (i.e. change) during the execution of a program.
The value of a variable can be changed because it has a modifiable l-value. Since it has a modi-
fiable l-value, it can be placed on the left side of the assignment operator. Note that only the
entities that have modifiable l-values can be placed on the left side of the assignment operator.
The variable can also be placed on the right side of the assignment operator. Hence, it has an
r-value too. Thus, a variable has both an l-value and an r-value.

1.11.2 Constants
A constant is an entity whose value remains the same throughout the execution of a program.
It cannot be placed on the left side of the assignment operator because it does not have a
modifiable l-value. It can only be placed on the right side of the assignment operator. Thus, a
constant has an r-value only. Constants are classified as:

Data Types, Variables and Constants 11

Literal constants1.
Qualified constants2.
Symbolic constants3.

1.11.2.1 Literal Constant
Literal constant or just literal denotes a fixed value, which may be an integer, floating point
number, character or a string. The type of literal constant is determined by its value. Literal
constants are of the following types:

Integer literal constant1.
Floating point literal constant2.
Character literal constant3.
String literal constant4.

1.11.2.1.1 Integer Literal Constant
Integer literal constants are integer values like −1, 2, 8, etc. The rules for writing integer literal
constants are as follows:

An integer literal constant must have at least one digit.1.
It should not have any decimal point.2.
It can be either positive or negative. If no sign precedes an integer literal constant, then 3.
it is assumed to be positive.
No special characters (even underscore) and blank spaces are allowed within an integer 4.
literal constant.
If an integer literal constant starts with 5. 0, then it is assumed to be in an octal number
system, e.g. 023 is a valid integer literal constant, which means 23 is in an octal number
system and is equivalent to 19 in the decimal number system.
If an integer literal constant starts with 6. 0x or 0X, then it is assumed to be in a hexadecimal
number system, e.g. 0x23 or 0X23 is a valid integer literal constant, which means 23 is in a
hexadecimal number system and is equivalent to 35 in the decimal number system.
The size of the integer literal constant can be modified by using a length modifier. The 7.
length modifier can be a suffix character l, L, u, U, f or F. If the integer literal constant is
terminated with l or L then it is assumed to be long. If it is terminated with u or U, then it
is assumed to be an unsigned integer, e.g. 23l is a long integer and 23u is an unsigned integer.
The length modifier f or F can only be used with a floating point literal constant and not
with an integer literal constant.

1.11.2.1.2 Floating Point Literal Constant
Floating point literal constants are values like −23.1, 12.8, −1.8e12, etc. Floating point literal con-
stants can be written in a fractional form or in an exponential form. The rules for writing
floating point literal constants in a fractional form are as follows:

A fractional floating point literal constant must have at least one digit.1.
It should have a decimal point.2.
It can be either positive or negative. If no sign precedes a floating point literal constant, 3.
then it is assumed to be positive.

12 Programming in C—A Practical Approach

No special characters (even underscore) and blank spaces are allowed within a floating 4.
point literal constant.
A floating point literal constant by default is assumed to be of type 5. double, e.g. the type
of 23.45 is double.
The size of the floating point literal constant can be modified by using the length modi-6.
fier f or F, i.e. if 23.45 is written as 23.45f or 23.45F, then it is considered to be of type float
instead of double.

The following are valid floating point literal constants in a fractional form:
−2.5, 12.523, 2.5f, 12.5F

The rules for writing floating point literal constants in an exponential form are as follows:
A floating point literal constant in an exponential form has two parts: the mantissa part 1.
and the exponent part. Both parts are separated by e or E.
The mantissa can be either positive or negative. The default sign is positive.2.
The mantissa part should have at least one digit. 3.
The mantissa part can have a decimal point but it is not mandatory.4.
The exponent part must have at least one digit. It can be either positive or negative. The 5.
default sign is positive.
The exponent part cannot have a decimal point.6.
No special characters (even underscore) and blank spaces are allowed within the man-7.
tissa part and the exponent part.

The following are valid floating point literal constants in the exponential form:
−2.5E12, −2.5e−12, 2e10 (i.e. equivalent to 2×1010)

1.11.2.1.3 Character Literal Constant
A character literal constant can have one or at most two characters enclosed within single
quotes e.g. ‘A’, ‘a’, ‘\n’, etc. Character literal constants are classified as:

Printable character literal constants1.
Non-printable character literal constants2.

1.11.2.1.3.1 Printable Character Literal Constant
All characters of source character set except quotation mark, backslash and new line character
when enclosed within single quotes form a printable character literal constant. The following
are examples of printable character literal constants: ‘A’, ‘#’, ‘6’.

1.11.2.1.3.2 Non-printable Character Literal Constant
Non-printable character literal constants are represented with the help of escape sequences.
An escape sequence consists of a backward slash (i.e. \) followed by a character and both
enclosed within single quotes. An escape sequence is treated as a single character. It can be
used§§Â in a string like any other printable character. A list of the escape sequences available
in C is given in Table 1.4.

§§Refer Programs 1-7 and 1-9 for learning the usage of the escape sequences ‘\t’ and ‘\n’.

Data Types, Variables and Constants 13

Table 1.4 | List of escape sequences

S.No Escape sequence Character value Action on output device

1. \’ Single quotation mark Prints ‘

2. \” Double quotation mark (“) Prints “

3. \? Question mark (?) Prints ?

4. \\ Backslash character (\) Prints \

5. \a Alert Alerts by generating a beep
6. \b Backspace Moves the cursor one position to the left of its

current position
7. \f Form feed Moves the cursor to the beginning of next page
8. \n New line Moves the cursor to the beginning of the next line
9. \r Carriage return Moves the cursor to the beginning of the current

line
10. \t Horizontal tab Moves the cursor to the next horizontal tab stop
11. \v Vertical tab Vertical tab
12. \0 Null character Prints nothing

Forward Reference: Refer Question numbers 35–37 and their answers for examples on the
usage of escape sequences.

1.11.2.1.4 String Literal Constant
A string literal constantÂ consists of a sequence of characters (possibly an escape sequence)
enclosed within double quotes. Each string literal constant is implicitly terminated by a null
character (i.e. ‘\0’). Hence, the number of bytes occupied by a string literal constant is one
more than the number of characters present in the string. The additional byte is occupied by
the terminating null character. Thus, the empty string (i.e. “”) occupies one byte in the memory
due to the presence of the terminating null character. However, the terminating null character
is not counted while determining the length of a string. Therefore, the length of string “ABC” is
3 although it occupies 4 bytes in the memory.

Forward Reference: Strings and character arrays (Chapter 6).

1.11.2.2 Qualified Constants
Qualified constants are created by using const qualifier. The following statement creates a
qualified character constant named a:

const char a=’A’;
Consider a definition statement int a=10;. This statement allocates 2 bytes (or 4 bytes, in case

of Windows environment) to a somewhere in the memory and initializes it with the value
10. The memory location can be thought of as a transparent box in which 10 has been placed.
It is possible to modify the value of a. This means that it is possible to open the box and

14 Programming in C—A Practical Approach

change the value placed in it. Now, consider the statement const int a=10;. The usage of the const
qualifier places a lock on the box after placing the value 10 in it. Since the box is transparent, it is
possible to see (i.e. read) the value placed within the box, but it is not possible to modify the
value within the box as it is locked. This is depicted in Figure 1.3.

a
20

a
20

10

2000 Address 2000
(a) int a=10; (b) const int a=10;

10

Figure 1.3 | Use of const qualifier

Since qualified constants are placed in the memory, they have l-value. However, as it is not
possible to modify them, this means that they do not have a modifiable l-value, i.e. they have
a non-modifiable l-value.

1.11.2.3 Symbolic Constants
Symbolic constants are created with the help of the define preprocessor directive.Â For exam-
ple: #define PI 3.14124 defines PI as a symbolic constant with value 3.14124. Each symbolic constant is
replaced by its actual value during the preprocessing stage.Â

Forward Reference: Preprocessor directives, preprocessing stage (Chapter 8).

1.12 Structure of a C Program
In general, a C program is composed of the following sections:

Section 1:1. Preprocessor directives
Section 2: 2. Global declarations
Section 3: 3. Functions

Sections 1 and 2 are optional, i.e. they may or may not be present in a C program but Section
3 is mandatory. Section 3 should always be present in a C program. Thus, it can be said that ‘A
C program is made up of functions’. Look at the simple program in Program 1-1.

Line Prog 1-1.c Output window

1
2
3
4
5
6

//Comment: First C program
#include<stdio.h>
main()
{
 printf(“Hello Readers!!”);
}

Hello Readers!!

Program 1-1 | A simple program that prints “Hello Readers!!”

Data Types, Variables and Constants 15

Program 1-1 on execution††† outputs Hello Readers!!. The contents of Program 1-1 are described
below.

1.12.1 Comments
Line 1: is a comment. Comments are used to convey a message and to increase the readability
of a program. They are not processed by the compiler. There are two types of comments:

Single-line comment1.
Multi-line comment2.

1.12.1.1 Single-line Comment
A single-line comment starts with two forward slashes (i.e. //) and is automatically termi-
nated with the end of line. Line 1 of Program 1-1 is a single-line comment.

1.12.1.2 Multi-line Comment
A multi-line comment starts with /* and terminates with */. A multi-line comment is used
when multiple lines of text are to be commented.

1.12.2 Section1: Preprocessor Directive Section
Line 2: #include<stdio.h> is a preprocessor directive statement.Â The preprocessor directive sec-
tion is optional but you will find it in most of the C programs. In the initial phase of learn-
ing, just remember that #include<stdio.h> is a preprocessor directive statement, which includes
standard input/output (i.e. stdio) header (.h) file. This file is to be included if standard input/
output functions like printf or scanf are to be used in a program.
The following points must be remembered while writing preprocessor directives:

The preprocessor directive always starts with a pound symbol (i.e.1. #).
The pound symbol2. # should be the first non-white space character in a line.
The preprocessor directive is terminated with a new line character and not with a semi-3.
colon.
Preprocessor directives are executed before the compiler compiles the source code. 4.
These will change the source code, usually to suit the operating environment (pragma
directiveÂ) or to add the code (include directive) that will be required by the calls to li-
brary functions.Â

Forward Reference: Preprocessor directives, pragma directive (Chapter 8), library functions
(Chapter 5).

1.12.3 Section 2: Global Declaration Section
The global declarationÂ section is optional. This section is not present in Program 1-1. In the
initial phase of learning, I am not going to use global declarations.

Forward Reference: Global declarations (Chapter 7).

††† Refer Section 1.13 to learn how to execute a C program.

16 Programming in C—A Practical Approach

1.12.4 Section 3: Functions Section
This section is mandatory and must be present in a C program. This section can have one or more
functions. A function named main is always required. The functions section (Lines 3–6) in Program
1-1 consists of only one function, i.e. main function. Every function consists of two parts:

Header of the function1.
Body of the function2.

1.12.4.1 Header of a Function
The general form of the header of a function is

[return_type] function_name([argument_list])
The terms enclosed within square brackets are optional and might not be present in the func-
tion header. Since the name of a function is an identifier name, all the rules discussed in Section
1.5.1 for writing an identifier name are applicable for writing the function name. Line 3 in Pro-
gram 1-1 specifies the header of the function main, in which the return_typeÂ and the argument_listÂ
are not present. The name of the function is main and it is a valid identifier name. In the initial
phase of learning, I will write functions without specifying a return type and an argument list.

i Writing a function without specifying a return type may lead to the generation of a warning
message during the compilation but we can ignore it for the time being.

Forward Reference: return_type, argument_list (Chapter 5).

1.12.4.2 Body of a Function
The body of a function consists of a set of statementsÂ enclosed within curly brackets com-
monly known as braces. Lines 4–6 in Program 1-1 form the body of main function. The body of
a function consists of a set of statements. Statements are of two types:

Non-executable statements1. Â: For example: declaration statement
Executable statements2. Â: For example: printf function call statement

It is possible that no statement is present within the braces. In such a case, the program
produces no output on execution. However, if there are statements written within the braces,
remember that non-executable statements can only come prior to an executable statement, i.e.
first non-executable statements are written and then executable statements are written. The
body of main function in Program 1-1 has only one executable statement, i.e. printf function call
statement.

Forward Reference: Statements, executable statement and non-executable statements
(Chapter 3).

1.13 Executing a C Program
If you have finished writing the code listed in Program 1-1, follow these steps to execute your
program:

Data Types, Variables and Constants 17

1. Save program: with .c extension. This will help you in retrieving the code in case the
program crashes upon execution.

2. Compile program: Compilation can be done by going to the Compile Menu of Borland
TC 3.0 and invoking the compile option available in that menu. The shortcut for this
step is the Alt+F9 key. If working with Borland Turbo C 4.5, go to the Project Menu and
invoke the compile option. It has the same shortcut key. In Microsoft Visual C++ 6.0, go
to the Build Menu and invoke the compile option. The shortcut for this is the Ctrl+F7
key. After the compilation, look for errors and warnings. Warnings will not prevent you
from executing the program and if there are any, just ignore them for the time being.
If there are errors, check that you have written the code properly. There should be no
typing mistake and all the characters listed in Program 1-1 should be present as such. If
there is no error, Congrats!! you can now execute your program.

3. Execute/run program: Execution can be done by going to the Run Menu and invoking
the run option in Borland Turbo C 3.0. The shortcut key is Ctrl+F9. In Borland Turbo
C 4.5, the program can be executed by going to the Debug Menu and invoking the run
option. It has the same shortcut key. In Microsoft Visual C++ 6.0, go to the Build Menu
and invoke the run option. The shortcut key for this is Ctrl+F5.

4. See the output: If working with Borland Turbo C 3.0, to see the output go to the user
screen. This can be done by going to the Window Menu and invoking the user screen
option. The shortcut for this step is Alt+F5. In Borland TC 4.5 and Microsoft Visual C++
6.0, the output screen will automatically pop-up.

1.14 More Programs for Startup
If you have successfully executed Program 1-1 and have gained some confidence, look at some
more programs (Programs 1-2 to 1-11). Type the programs as such and compile them. If there
are errors, find out the errors and rectify them. After rectification, recompile the programs and
execute them to get a practical feel of all the concepts that we have discussed till now.

Line Prog 1-2.c Output window

1
2
3
4
5
6
7

//Comment: Case Sensitivity
#include<stdio.h>
Main()
{
 int valid_name=20;
 printf(“%d”, valid_name);
}

Linker error
Reasons:
• C Language is case sensitive
• Main is not same as main
What to do?
• Replace Main by main in line 3 and then recheck

Program 1-2 | A program that emphasizes the case sensitivity of C language

Line Prog 1-3.c Output window

1
2
3
4
5
6
7

//Comment: Identifier
#include<stdio.h>
main()
{
 int 1st_student=20;
 printf(“%d”, 1st_student);
}

Compilation error
Reason:
• 1st_student is not a valid identifier name
What to do?
• Replace it everywhere by student1 and then recheck

Program 1-3 | A program that emphasizes the rules to write an identifier name

18 Programming in C—A Practical Approach

Line Prog 1-4.c Output window

1
2
3
4
5
6
7

//Comment: Keyword
#include<stdio.h>
main()
{
 int if=20;
 printf(“%d”, if);
}

Compilation error
Reason:
• if is a keyword. It cannot be used as an identifier name
What to do?
•  Replace it everywhere by a valid identifier name and then

recheck

Program 1-4 | A program that emphasizes the fact that keyword is not a valid identifier name

Line Prog 1-5.c Output window

1
2
3
4
5
6
7

//Comment: Semicolon is Terminator
#include<stdio.h>
main()
{
 int valid_name=20
 printf(“%d”, valid_name);
}

Compilation error
Reasons:
• A statement in C is terminated with a semicolon
•  In line 5, declaration (actually definition) statement is not ter-

minated with a semicolon. This leads to the compilation error
What to do?
• Place semicolon at end of line 5 and then recheck

Program 1-5 | A program that emphasizes the fact that statements in C are terminated with a semicolon

Line Prog 1-6.c Output window

1
2
3
4
5
6
7

//Comment: printf function use
#include<stdio.h>
main()
{
 int valid_name=20;
 printf(“The value is %d”, valid_name);
}

The value is 20

Program 1-6 | A program that illustrates the use of printf function to print the value of an identifier

Program 1-6 upon execution outputs The value is 20. The definition statement in line 5 defines
an identifier valid_name and initializes it with the value 20. This value is printed with the help of
printf function in line 6. The rules for using printf function are as follows:

The name of 1. printf function should be in lowercase.
The inputs (or arguments) to 2. printf function are given within round or circular brackets,
popularly called parentheses.
At least one input is required, and the first input to 3. printf function should always be a
string literal or an identifier of type char*.Â

Forward Reference: Pointers (Chapter 4), Character pointer, i.e. char* (Chapter 6).

4. The inputs are separated by commas.
5. If values of identifiers are to be printed with the help of printf function, the first input to

printf function should be a format string. For example, in Program 1-6, in line 6, “The value
is %d” is a format string. A format string consists of format specifiers. For example, line 6

Data Types, Variables and Constants 19

in Program 1-6 consists of a format specifier %d. A format specifier specifies the format
according to which the printing will be done. There is a different format specifier for
each data type. Format specifier is written as %x, where x is a character code listed in
Table 1.5.

Table 1.5 | Format specifiers in C language

S.No Data type x Format
specifier

Remark

1. char c %c Single character
2. int i %i Signed integer
3. int d %d Signed integer in decimal number system
4. unsigned int o %o Unsigned integer in octal number system
5. unsigned int u %u Unsigned integer in decimal number system
6. unsigned int x %x Unsigned integer in hexadecimal number system
7. unsigned int X %X Unsigned integer in hexadecimal number system
8. long int ld %ld Signed long
9. short int hd %hd Signed short
10. unsigned long lu %lu Unsigned long
11. unsigned short hu %hu Unsigned short
12. float f %f Signed single precision float in form of [-]dddd.dddd e.g. 22.25, −12.34

13. float e %e Singed single precision float in form of [-]d.dddde[+/-]ddd e.g. −2.3e4, 2.25e−2

14. float E %E Same as %e, with E for exponent
15. float g %g Singed value in either e or f form, based on given value and precision
16. float G %G Same as %g, with E for exponent if e format is used
17. double lf %lf Signed double-precision float
18. String type s %s String
19. Pointer type p %p Pointer

Line Prog 1-7.c Output window

1
2
3
4
5
6
7
8
9

//Comment: scanf function use
#include<stdio.h>
main()
{
 int number;
 printf(“Enter number\t”);
 scanf(“%d”,&number);
 printf(“The number entered is %d”,number);
}

Enter number 12
The number entered is 12
Remarks:
•  ‘\t’ present in line 6 is an escape sequence and is
 used to create tab-spacing
•  Observe the tab-space between the string “Enter

number” and the value 12 in the output window

Program 1-7 | A program that illustrates the use of scanf function

20 Programming in C—A Practical Approach

Program 1-7 upon execution prompts the user to enter a value of number. In response, the
user enters the value 12. The entered value is then printed by the printf function. The scanf func-
tion is used to take the input just like the printf function is used to print the output. The rules
for using scanf function are as follows:

The name of 1. scanf function should be in lowercase.
The inputs (or arguments) to 2. scanf function are given within parentheses.
The first input to 3. scanf function should always be a format string or an identifier of type
char*. Ideally, the format string of a scanf function should only consist of blank separated
format specifiers.Â

Forward Reference: Refer Question number 14 and its answer to know why the format string
of a scanf function should only consist of blank separated format specifiers.

4. The inputs are separated by commas.
5. The inputs following the first input should denote l-values. For example, in line 7 of

Program 1-7, the second input is &number. The symbol & is address-of operatorÂ and is
used to find the l-value of its operand.Â Thus, &number refers to the l-value.

The scanf function takes inputs from the user according to the available format specifiers in
the specified format string and stores the entered values at the specified l-values. Thus, the
scanf function specified in line 7 of Program 1-7 takes an integer value (due to %d format speci-
fier) and stores it at the l-value (i.e. &number).

Forward Reference: Address-of operator, operand (Chapter 2).

Line Prog 1-8.c Output window

1
2
3
4
5
6
7
8
9

10

//Comment: Add two numbers
#include<stdio.h>
main()
{
 int number1, number2, number3;
 printf(“Enter numbers\t”);
 scanf(“%d %d”,&number1, &number2);
 number3 = number1+number2;
 printf(“The sum is %d”,number3);
}

Enter numbers 12 13
The sum is 25

Program 1-8 | A program to add two numbers entered by the user

Line Prog 1-9.c Output window

1
2
3
4
5

//Comment: Swap two numbers
#include<stdio.h>
main()
{
 int number1, number2, number3;

Enter numbers 12 13
Numbers before swap 12 13
Numbers after swap 13 12

(Contd...)

Data Types, Variables and Constants 21

6
7
8
9

10
11
12
13

 printf(“Enter numbers\t”);
 scanf(“%d %d”,&number1, &number2);
 printf(“Numbers before swap %d %d\n”,number1, number2);
 number3=number1;
 number1=number2;
 number2=number3;
 printf(“Numbers after swap %d %d\n”,number1, number2);
}

Remark:
•  ‘\n’ present in line 8 is an escape sequence

and is used to place a new line character in
the output

Program 1-9 | A program to swap two numbers

Line Prog 1-10.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13

//Comment: Swap two numbers without using a third number
#include<stdio.h>
main()
{
 int number1, number2;
 printf(“Enter numbers\t”);
 scanf(“%d %d”,&number1, &number2);
 printf(“Numbers before swap %d %d\n”,number1, number2);
 number2=number1+number2;
 number1=number2-number1;
 number2=number2-number1;
 printf(“Numbers after swap %d %d\n”,number1, number2);
}

Enter numbers 12 13
Numbers before swap 12 13
Numbers after swap 13 12

Program 1-10 | A program to swap two numbers without using a third number

Line Prog 1-11.c Output window

1
2
3
4
5
6
7
8
9

10

//Comment: Usage of sizeof operator
#include<stdio.h>
main()
{
 printf(“Character takes %d byte in memory\n”, sizeof(char));
 printf(“Integer takes %d bytes in memory\n”, sizeof(int));
 printf(“Float takes %d bytes in memory\n”, sizeof(float));
 printf(“Long takes %d bytes in memory\n”, sizeof(long));
 printf(“Double takes %d bytes in memory\n”, sizeof(double));
}

Character takes 1 byte in memory
Integer takes 2 bytes in memory
Float takes 4 bytes in memory
Long takes 4 bytes in memory
Double takes 8 bytes in memory
Remark:
• The output of the program may vary

with the compiler and the working
environment

Program 1-11 | A program to find the size of various data types

Program 1-11 makes the use of sizeofÂ operator to find the size of data types. The specified
output is the result of execution using Borland Turbo C 3.0/4.5. If it is executed using MS VC++
6.0, the size of integer would be 4 bytes.

Forward Reference: sizeof operator (Chapter 2).

22 Programming in C—A Practical Approach

1.15 Summary
C is a general-purpose, block-structured, procedural, case-sensitive, free-flow, portable, 1.
high-level language.
There are various C standards: Kernighan & Ritchie (K&R) C standard; ANSI C/Stan-2.
dard C/C89 standard; ISO C/C90 standard; C99 standard.
ANSI C and ISO C are the most popular C standards. Most popular compilers nowa-3.
days are ANSI compliant.
C character set consists of letters, digits, special characters and white space characters.4.
Identifier refers to the name of an object. It can be a variable name, a label name, a 5.
typedef name, a macro name, name of a structure, a union or an enumeration.
Keyword cannot form a valid identifier name. The meaning of keyword is predefined 6.
and cannot be changed.
Every identifier (except label name) needs to be declared before its use. They can be 7.
declared by using a declaration statement.
The declaration statement introduces the name of an identifier along with its data type 8.
to the compiler before its use.
Data types are categorized as: basic data types, derived data types and user-defined 9.
data types.
The declaration statement can optionally have type qualifiers or type modifiers or 10.
both.
A type qualifier does not modify the type.11.
A type modifier modifies the base type to yield a new type.12.
Declaration is different from definition in the sense that definition in addition to decla-13.
ration allocates the memory to an identifier.
Variables have both l-value and r-value.14.
Constants do not have a modifiable l-value. They have an r-value only.15.
C program is made up of functions.16.
C program should have at least one function. A function named 17. main is always required.

Exercise Questions
Conceptual Questions and Answers

1. What method is adopted for locating includable source files in ANSI specifications?
 For including source files, include directive is used. The include directive can be used in two

forms:
 #include<name-of-file>
 or
 #include“name-of-file”
 #include<name-of-file> searches the prespecified list of directories (names of include directories can

be specified in IDE" settings) for the source file (whose name is given within angular brackets),

Data Types, Variables and Constants 23

and text embeds the entire content of the source file in place of itself. If the file is not found there,
it will show an error ‘Unable to include ‘name-of-file’’.

 #include“name-of-file” searches the file first in the current working directory. If this search is not
supported or if the search fails, this directive is reprocessed as if it reads #include<name-of-file>, i.e.
search will be carried out in the prespecified list of directories. If the search still fails, it will
show the error ‘Unable to include ‘name-of-file’’.

IDE stands for Integrated Development Environment. All the tools (like text editor, prepro-
cessor, compiler and linker) required for developing programs are integrated into one pack-
age, known as IDE.

2. Is there any difference that arises if double quotes, instead of angular brackets are used for including stan-
dard header files?

 If double quotes instead of angular brackets are used for the inclusion of standard header files,
the search space unnecessarily increases (because in addition to the prespecified list of directo-
ries, the search will unnecessarily be carried out first in the current working directory) and thus,
the time required for the inclusion will be more.

3. Under what circumstances should the use of quotes be preferred over the use of angular brackets for the
inclusion of header files, and under what circumstances is the use of angular brackets beneficial?

 Self-created or user-defined header files should be included with double quotes because
inclusion with double quotes makes files to be searched first in the current working directory
(where the user has kept self-created header files) and then in the prespecified list of directo-
ries. If standard header files are to be included, angular brackets should be used because the
standard header files are present in the prespecified list of directories and there is no use of
searching them in the current working directory. Usage of double quotes for including standard
header files will also work, but will take more time.

4. ‘C is a case-sensitive language’. Therefore, does it create any difference if instead of #include<stdio.h>,
#include<STDIO.H> is used? If no, why?

 ‘C is a case-sensitive language’ means that the C constructs are case sensitive (i.e. depends upon
whether uppercase (like A) or lowercase (like a) is used). The name of the source file specified for
inclusion is not a C construct. Whether it will be case sensitive or not depends upon the work-
ing environment. In case of DOS and Windows environment, file names are case insensitive. In
Unix and Linux environment, file names are case sensitive. So, if working in DOS or Windows
environment, <STDIO.H> can be used instead of <stdio.h>, it does not create any difference. But, in case
of Unix or Linux environment, it does create a difference.

5. A program file contains the following five lines of the source code:
 #include<stdio.h>
 main()
 {
 printf(“Hello World”);
 }
 When the program is compiled, the compiler shows the number of lines compiled to be greater than 5, why

it is happening so?
 During the preprocessing stage,Â include preprocessor directive (the first line of source code)

searches the file stdio.h in the prespecified list of directories and if the header file is found, it (the
include directive) is replaced by the entire content of the header file. If the included header file con-
tains another include directive, it will also be processed. This processing is carried out recursively

24 Programming in C—A Practical Approach

till either no include directive remains or till maximum translation limit is achieved (ISO specifies
the nesting level of include files to be at most 15). Hence, one line of source code gets replaced by
multiple lines of the header file. During the compilation stage, these added lines will also be
compiled; hence, the compiler shows the number of lines compiled to be greater than five.

Forward Reference: Preprocessing stage (Chapter 8).

6. Is int a; actually a declaration or a definition?
 The role of the declaration statement is to introduce the name of an identifier along with its data

type (or just type) to the compiler before its use. During the declaration, no memory space is al-
located to an identifier. Since int a; statement in addition to introducing the name and the type of
identifier a, allocates memory to a, it actually becomes a definition.

7. How are negative integral numbers stored in C?
 Internally, numbers are stored in the form of bits (i.e. binary digits) and are represented in the

binary number system.Â In the binary number system, negative numbers are not stored directly.
To store both the sign and magnitude of a number, some convention for storage has to be used.
In C language, the convention used for storing an integral" number is sign-two’s complement
representation.

 What is sign-two’s complement representation?
1. For every integral number, the Most Significant Bit (MSB) contains the sign, and the rest of

the bits contain the magnitude.
2. If the sign is positive, the MSB is 0 and if the sign is negative, the MSB is 1.
3. If the MSB contains bit 0 (i.e. a positive number), the magnitude is in the direct binary rep-

resentation.
4. If the MSB contains bit 1 (i.e. a negative number), the magnitude is not in the direct binary

representation. The magnitude is stored in two’s complement form. To get the value of
the magnitude, take two’s complement of the stored magnitude.

 How to find two’s complement of a binary number?
 Two’s complement of a binary number is its one’s complement plus one.
 One’s complement of a binary number can be determined by negating every bit (i.e. by

converting 0’s to 1’s and 1’s to 0’s). For e.g. One’s complement of 100101 is 011010 (i.e. every
bit is negated). Two’s complement of 100101 is its one’s complement plus one (i.e. 011010 + 1
= 011011). The following tables show how 200 and −200 are stored in memory:

 Storage representation of 200:

Sign
Bit 16
MSB

Magnitude (MSB is 0, so direct binary representation of 200)
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0

 Storage representation of −200:

Sign
Bit 16
MSB

Magnitude (MSB is 1, so magnitude is two’s complement representation of 200)
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0

Data Types, Variables and Constants 25

Integral type consists of integer type and character type.

Forward Reference: Binary number system (Appendix A).

 8. How does the maximum value that an integral data type supports depends upon its size?
 Consider integer data type, taking 2 bytes, i.e. 16 bits in memory. The maximum value it can

have is as follows:

Sign
Bit 16
MSB

Magnitude (MSB is 0, so direct binary representation)
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Sign Bit = 0 (means number is positive), magnitude is maximum (as all the magnitude bits have
maximum value, i.e. 1). The stored number is 32767 (i.e. 215−1).

 Now, consider character data type (taking 1 byte, i.e. 8 bits in memory). The maximum value it
can have is 27−1 = 127. This can be shown as follows:

Sign
Bit 8
MSB

Magnitude (MSB is 0, so direct binary representation)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

0 1 1 1 1 1 1 1

 This shows that the maximum value that an integral type can take is directly in rela-
tion to its size. That is why, if an integer variable is not able to store a value (e.g. 70000), we
switch to long integer because long integer takes 32 bits in memory. Thirty-one bits will be
used for storage of magnitude. Hence, the maximum value (2147483647, i.e. 231−1) of long inte-
ger is far greater than the maximum value of integer (32767, i.e. 215−1), which has only 15 bits
for the storage of magnitude.

i
Data type as such does not take any space in memory. Objects associated with the defined
identifiers take memory space according to their data types. Wherever it is referred in the
text that data type takes some space in memory, it implies that the object of the specified
data type takes that much memory space.

9. What will the output of the following program segment be? (Assume that integer data type takes 2 bytes of
memory.)

#include<stdio.h>
 main()
 {
 int a=32768;
 printf(“%d”,a);
 }
 The output that this program snippet prints is −32768. This can be well understood if one knows

how integers are stored in the memory.

26 Programming in C—A Practical Approach

 If integer type takes 2 bytes in the memory, 32767 is stored as follows:

Sign
Bit 16
MSB

Magnitude (MSB is 0, so direct binary representation)
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Now, 32768 is 32767+1. If 1 is added in the above representation:

Sign
Bit 16
MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 The value that comes in the memory is given in bold. The carry generated from Bit 15 has moved
into Bit 16 (i.e. sign bit). Now, the sign bit becomes 1 (i.e. number becomes negative). If sign bit is
1, the magnitude of number is stored in two’s complement form. The magnitude of number, i.e.

Magnitude (MSB is 1, so magnitude is in two’s complement representation)
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 is in two’s complement form. To get the value of magnitude, take two’s complement of two’s
 complemented representation of the magnitude. The magnitude can be found as follows:

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Magnitude in two’s
complement form

(Row 1)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

One’s complement 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Two’s complement of

value in row 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Decimal equivalent of the value obtained is 215 = 32768. The sign was negative, so the number
 becomes −32768. Hence, whenever the value of an integral data type exceeds the range, the value
 wraps around to the other side of the range.

10. If a value assigned to an integral variable exceeds the range, the assigned value wraps around to the other
side of range. Why?

 A value greater than the maximum value that the magnitude field can hold makes the sign
bit 1, i.e. makes the number negative and it seems like that value has wrapped around to the
other side of range; e.g. for character data type, 127 (the maximum value) can be stored as
follows:

Data Types, Variables and Constants 27

Sign
Bit 8
 MSB

Magnitude
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

0 1 1 1 1 1 1 1

 If the value is further increased by 1, it becomes as follows:

Sign
Bit 8
MSB

Magnitude
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

1 0 0 0 0 0 0 0

 The sign bit turns out to be 1. Hence, the number is negative and the magnitude is in two’s
complement form. To get the value of magnitude, take two’s complement of 0000000. It comes
out to be 10000000. This is equivalent to 128 and because the sign bit was 1, the value becomes
−128 (seems as the value has wrapped around to the other side of the range).

11. What are l-value and r-value?

Backward Reference: Refer Section 1.10 for a description on l-value and r-value.

12. Are nested multi-line comments by default allowed in C? If no, how can nested comments be allowed?
 No, by default nested multi-line comments" are not allowed in C. Multi-line comments do not

nest, i.e. we cannot have a multi-line comment within another multi-line comment. This hap-
pens because after finding /*, which marks the beginning of the multi-line comment, the con-
tents of comments are examined only to find the characters */, which terminates the comment.

 In the following example:
 /* comment starts here
/*nested comment starts here
this terminator gets associated with marker of the first line*/
this line will not become comment*/
 In the first line /* is encountered and the multi-line comment starts. Now only */ will be searched.

It appears in line 3. This occurrence of */ gets associated with /* of the first line, and the comment
is assumed to be finished but some part of the outer comment still persists and this leads to an
error.

 So in the above example, the portion that gets commented out is given in bold:
 /* comment starts here
/*nested comment starts here
this terminator gets associated with marker of the first line*/
this line will not become comment*/
 Nested comments can be allowed by making changes in IDE settings or by using pragma directive.Â

Use #pragma option −C to allow nested multi-line comments.

Comment is a feature provided by almost all the programming languages. It is used to in-
crease the readability of the program.

Forward Reference: Pragma directive (Chapter 8).

28 Programming in C—A Practical Approach

13. How are real floating-type numbers treated in C?
 Real floating-type numbers in C, by default, are treated as that of type double (i.e. using double

precision), so that there should be lesser loss in precision. The following piece of code on execu-
tion (using Turbo C 3.0):

 #include<stdio.h>
 main()
 {
 printf(“%d”,sizeof(7.0));
 }
 prints 8 instead of 4. This is because 7.0 is treated as double (double precision) and not as float (single

precision). To make it float, write it as 7.0f.

14. The following piece of code is written to get a value from the user:
 main()
 {
 int number;
 scanf(“Enter a number %d”,&number);
 printf(“The number entered is %d”,number);
 }
 Irrespective of the number that I enter, I get a garbage value. Why?
 This problem is because of the string present inside scanf function. The scanf function cannot

print a string on to the screen. Therefore, Enter a number will not be printed. In addition, the entered
input should exactly match the format string" present inside the scanf function. Therefore, if a
number say 10 is entered, it does not match with the format string and the output will be garbage.
However, if Enter a number 10 is given in the input, the string in the input exactly matches the format
string. The number will take the value 10, and the output will be The number entered is 10.

The format specifiers in a format string are generic terms and get matched with any value
of the corresponding type. For example, %d gets matched with 10, 20, −23 or any other integer
value.

15. I have written the following piece of code keeping in mind the fact that the format string of scanf function
should only consist of format specifiers. Still, I get a garbage value. Why?

 main()
 {
 int number;
 printf(“Enter a number\t”);
 scanf(“%d”,number);
 printf(“The number entered is %d”,number);
 }

 The given piece of code gives a garbage value due to the erroneous use of scanf function. Since, the
second argument to the scanf function is not an l-value of the variable number, it will not be able to
place the entered value at the designated memory position. The rectified statement can be writ-
ten as scanf(“%d”,&number);.

16. main()
 {
 int a,b;
 printf(“Enter two numbers”);

Data Types, Variables and Constants 29

 scanf(“%d %d”,&a,&b);
 printf(“%d + %d = %d\n”,a,b,a+b);
 printf(“%d / %d= %d\n”,a,b,a/b);
 printf(“%d % %d=%d\n”,a,b,a%b);
 }
 The above piece of code on giving inputs 3 and 4 prints
 3 + 4 = 7
 3 / 4 = 0
 3 % %d= 4
 The last line is not printed correctly. How can I rectify the problem?
 This problem can be rectified by using character stuffing. Instead of writing
 printf(“%d % %d=%d\n”,a,b,a%b); use printf(“%d %% %d=%d\n”,a,b,a%b);.
17. What will the output of the following code snippet be and why?
 main()
 {
 char *p=”Hello\n”;
 printf(p);
 printf(“Hello ””Readers!..”);
 }
 The output of the code snippet is as follows:
 Hello
 Hello Readers!..
 The printf function requires the first argument to be of char* type (i.e. a string); hence, printf(p) is

perfectly valid and on execution prints Hello.
 Adjacent string literals get concatenated;Â hence, “Hello ””Readers!..” will get concatenated to form

“Hello Readers!..”. It will be printed by the next printf statement.

Forward Reference: Phase of translation during which the adjacent string literals are concat-
enated (Chapter 8).

18. What will the output of the following code snippet be and why?
 main()
 {
 char *p=“Hello\n”;
 printf(p“Readers!..”);
 }
 There is a compilation error in this code snippet. This error is due to the fact that only adjacent

string literals are concatenated. p is a variable and is not a string literal. It will not concatenate
with the string literal “Readers!..”. Hence the error.

19. What will the output of the following piece of code be?
 main()
 {
 int a=10,b=5,c;
 c=a/**//b;
 printf(“%d”,c);
 }
 The output of the code snippet will be 2. /**/ is a comment and will be neglected. Hence, the expres-

sion becomes c=a/b. Its output is 2.

30 Programming in C—A Practical Approach

20. How are floating point numbers stored in C?
 Institute of Electrical & Electronics Engineers (IEEE) has produced a standard (IEEE 754) for

floating point numbers. The standard specifies how single precision (4 bytes, i.e. 32 bits) and
double precision (8 bytes, i.e. 64 bit) floating point numbers are represented.

 An IEEE single-precision floating point number is stored in 4 bytes (32 bits). The MSB is Sign-bit,
the next 8 bits are the Exponent bits ‘E’ and the final 23 bits are the fraction bits ‘F’.

S E E E E E E E E F
8-bits for exponent 23-bits for mantissa (or fraction)

 How is a floating point number stored?
 Look at the following example to understand the concept. To store 5.75:

1. Convert 5.75 from the decimal number system (DNS) to the binary number system (BNS).
 The integer part 5 in DNS is equivalent to 101 in BNS.
 The fractional part 0.75 in DNS is equivalent to 0.110 in BNS.
 Therefore, 5.75 in DNS is equivalent to 101.110 in BNS.
2. The straight binary representation of a floating point number is normalized to make it

IEEE 754 compliant. Normalized numbers are represented in the form of 1.ffffff........ffff (f
is binary digit) * 2p, where p is the exponent. In a normalized number, the integer part is
always 1. The decimal point is adjusted by selecting a suitable value of exponent, i.e. p.

 101.110 in the normalized form is expressed as 1.01110 * 22.
 The value after the decimal point is stored in 23 fraction bits and the integer value is not

stored (as it is always 1 in all normalized numbers, so there is no need to store it). So, in
1.01110 * 22, only 01110 is stored in 23 bits as fraction.

3. The exponent is biased with a magic number 127 10, i.e. 127 is added to the exponent to
make it 129. The binary equivalent of 129 (i.e. 10000001) is stored in 8 bits reserved for the
storage of the exponent.

 Thus, 5.75 is stored as follows:

0 1 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S E E E E E E E E F

8-bits for exponent 23-bits for mantissa

 Why are exponents biased with magic number 12710?
 Exponents are biased with magic number 12710, so that floating point numbers can be compared

for equality, greater than or less than.
 Suppose exponents are not biased with magic number 12710. Instead, sign-two’s complement

representation is used to store the value of the exponent. If such a representation is used:
 2.0, i.e. 1.0 * 21 will be stored as follows:

0 0 0 0 0 0 0 0 1 0
S E E E E E E E E F

8-bits for exponent 23-bits for mantissa

 0.5, i.e. 1.0 * 2-1 will be stored as follows:

0 1 1 1 1 1 1 1 1 0
S E E E E E E E E F

8-bits for exponent 23-bits for mantissa

Data Types, Variables and Constants 31

 Now, if it is checked that whether 2.0 > 0.5, it turns out to be false as 0.5 is stored as a greater
value than the value of 2.0.

 Now, consider that exponents are biased with the magic number 12710.
 2.0 is stored as: Sign Bit = 0, Exponent = 1000 0000 (128 = 1+127), Fraction = 00......0000
 0.5 is stored as: Sign Bit = 0, Exponent = 0111 1110 (126 = −1+127), Fraction = 00......0000
 It can be shown as follows:

  2.0 0 1 0
  0.5 0 0 1 1 1 1 1 1 0
 Value S E E E E E E E E F

8-bits for exponent 23-bits for mantissa

 2.0 is stored as a greater value than 0.5. Hence, greater than operator will give the correct result.

 Conclusion with another example: To find storage representation of 0.4:
 1. Convert 0.4 to binary.
    0.4 * 2 = 0.8
    0.8 * 2 = 1.6
    0.6 2 = 1.2
    0.2 * 2 = 0.4
    0.4 * 2 = 0.8; this sequence repeats.
    Therefore, 0.4= 0.01100110011001100...
 2. Normalize 0.0110011001100... After normalization it can be written as 1.10011001100...*2−2.
 3.  Exponent is biased with the magic number 127. Therefore, the exponent becomes −2+127=125.

Its binary equivalent is 0111 1101.
   Hence, 0.4 will be stored as follows:

0 0 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
S E E E E E E E E F

8-bits for exponent 23-bits for mantissa

Code Snippets
 Determine the output of the following code snippets. Assume that the inclusion of the required header files

has been made and there is no prototyping error due to them.

21. main()
 {
 printf(“%d %d %d %d”,72,072,0x72,0X72);
 }
22. main()
 {
 printf(“%d %o %x”,72,72,72);
 }
23. main()
 {
 printf(“%i %i %i %i”,72,072,0x72,0X72);
 }

32 Programming in C—A Practical Approach

24. main()
 {
 printf(“%05d,%5d,%-5d”,32,32,32);
 }

25. main()
 {
 printf(“%6.3f,%06.3f,%09.3f,%-09.3f,%6.0f,%6.0f”,45.6,45.6,45.6,45.6,45.4,45.6);
 }
26. main()
 {
 int a=32768;
 unsigned int b=65536;
 printf(“%d %d”,a,b);
 }

27. main()
 {
 char a=128;
 unsigned char b=256;
 printf(“%d %d\n”,a,b);
 }

28. main()
 {
 float a=3.5e38;
 double b=3.5e309;
 printf(“%f %lf”,a,b);
 }

29. main()
 {
 printf(“%d %c”,’A’,’A’);
 }

30. main()
 {
 printf(“char occupies %d byte\n”, sizeof(char));
 printf(“int occupies %d bytes\n”, sizeof(int));
 printf(“float occupies %d bytes”, sizeof(float));
 }

31. main()
 {
 printf(“bytes occupied by ‘7’=%d\n”,sizeof(‘7’));
 printf(“bytes occupied by 7=%d\n”,sizeof(7));
 printf(“bytes occupied by 7.0=%d”,sizeof(7.0));
 }

32. main()
 {
 printf(“%d”,sizeof(‘\n’));
 }

Data Types, Variables and Constants 33

33. main()
 {
 printf(“%d %c”);
 }

34. main()
 {
 printf(“%d %d %d %d %d\n”,sizeof(032),sizeof(0x32),sizeof(32),sizeof(32U),sizeof(32L));
 printf(“%d %d %d”,sizeof(32.4),sizeof(32.4f),sizeof(32.4F));
 }

35. main()
 {
 printf(“\nab”);
 printf(“\bsi”);
 printf(“\rha”);
 }

36. main()
 {
 printf(“c:\tc\bin”);
 }

37. main()
 {
 printf(“c:\\tc\\bin”);
 }

38. main()
 {
 printf(“hello,world
 ”);
 }

39. main()
 {
 printf(“hello,world\
 ”);
 }

40. main()
 {
 char *p=”Welcome!..””to C programming”;
 printf(p);
 }

Multiple-choice Questions
41. The primary use of C language was intended for
 a. System programming c. Data processing
 b. General-purpose use d. None of these

34 Programming in C—A Practical Approach

42. C is a/an
 a. Assembly-level language c. High-level language
 b. Machine-level language d. None of these

43. C is a
 a. General-purpose language c. Procedural language
 b. Case-sensitive language d. All of these

44. Which of the following cannot be the first character of the C identifier?
 a. A digit c. An underscore
 b. A letter d. None of these

45. Which of the following cannot be used as an identifier?
 a. Variable name c. Function name
 b.  Constant name d. Keyword

46. Which of the following is not a basic data type?
 a. char c.  long
 b. fl oat d. double

47. Which of the following is not a type modifier?
 a.  long c.  signed
 b.  unsigned d. double

48. Which of the following is a type qualifier?
 a. const c.  long
 b. signed d. short

49. Which of the following is used to make an identifier a constant?
 a.  const c.  volatile
 b.  signed d. None of these

50. Which of the following have both l-value and r-value?
 a. Variables c. Both variables and constants
 b. Constants d. None of these

51. Which of the following is not a C keyword?
 a. typedef c. volatile
 b. enum d. type

52. Qualified constant can be
 a. Initialized with a value c. Both initialized and assigned
 b. Assigned a value d. Neither initialized nor assigned

53. Which of the following is not a valid literal constant?
 a. ‘A’ c. “ABC”
 b. 1.234 d. None of these

54. Which of the following is not a valid floating point literal constant?
 a. +3.2e−5 c. −2.8e2.3
 b. 4.1e8 d. +325.34

Data Types, Variables and Constants 35

55. By default, any real constant in C is treated as
 a. A fl oat c. A long double
 b. A double d. Depends upon the memory model

56. Which of the following is not a valid escape sequence?
 a. \r c. \v
 b. \a d. \m

57. Escape sequence begins with
 a. / c. %
 b. \ d. –

58. Single-line comment is terminated by
 a. // c. */
 b. End of line d. None of these 

59. The maximum number of characters in a character literal constant can be
 a. 0 c. 2
 b. 1 d. Any number

60. Which of the following character is not a printable character?
 a. New line character c. Quotation mark
 b. Backslash character d. All of these

61. Attributes that characterize variables in C language are
 a. Its name and location in the memory c. Its storage class
 b. Its value and its type d. All of these

62. In the assignment statement x=x+1; the meaning of the occurrence of the variable x to the left of the
assignment symbol is its

 a. Location (l-value) c. Type
 b. Value (r-value) d. None of these

63. Which one is an example of derived data type?
 a. Array type c. Function type
 b. Pointer type d. All of these.

64. In C language, which method is used for determining the type equivalence?
 a. Structural equivalence c. Both of these
 b. Name equivalence d. None of these

65. In the assignment statement x=x+1; the meaning of the occurrence of the variable x to the right of
the assignment symbol is its:

 a. Location (l-value) c. Type
 b. Value (r-value) d. None of these

66. If specific implementation of C language uses 2 bytes for the storage of integer data type, what is
the maximum value that an integer variable can take?

 a. 32767 c. −32768
 b. 32768 d. 65535

36 Programming in C—A Practical Approach

67. If specific implementation of C language uses 2 bytes for the storage of integer data type, then
what is the minimum value that an integer variable can take?

 a. –32767 c. 0
 b. –32768 d. None of these

68. Which of the following format specifier is used for printing an integer value in octal format?
 a. %x c. %o
 b. %X d. %i

69. How many bytes are occupied by the string literal constant “xyz” in the memory?
 a. 1 c. 3
 b. 2 d. 4

70. The variables and constants of which of the following type cannot be declared?
 a. int** c. void
 b. int(*)[] d. fl oat

Outputs and Explanations to Code Snippets
21. 72 58 114 114
 Explanation:
 All the outputs are desired in the decimal number system because of %d specifier. Now, 72 is a

decimal number, 072 is an octal number equivalent to 58 in the decimal number system, 0x72 and
0X72 are hexadecimal numbers equivalent to 114 in the decimal number system. Hence, the out-
put is 72 58 114 114.

22. 72 110 48
 Explanation:
 72 is to be printed in the decimal (%d specifier), the octal (%o specifier) and the hexadecimal num-

ber system (%x specifier). The octal equivalent of 72 is 110 and the hexadecimal equivalent of 72 is
48. Hence, the output is 72 110 48.

23. 72 58 114 114
 Explanation:
 %i specifier is used for integers. By default, it will output integer in the decimal number system

as it is the most commonly used number system.

24. 00032, 32,32
 Explanation:
 In the given format string, width specifiers are used along with the format specifiers. Width

specifier sets the minimum width for an output value.
 %5d means output will be minimum 5 columns wide and will be right justified.
 %−5d means output will be minimum 5 columns wide and will be left justified.
 %05d means output will be minimum 5 columns wide, right justified, and the blank columns will

be padded by zeros.

0 0 0 3 2 , 3 2 , 3 2
%05d
(*cw = 5, rj, padding of 0’s)

%5d
(*cw = 5, rj)

%–5d
(*cw = 5, - is used for lj)

Data Types, Variables and Constants 37

 *cw is column width, rj is right justified and lj is left justified.
 Hence, the output is 00032, 32,32.

25. 45.600,45.600,00045.600,45.600 , 45, 46
 Explanation:
 In the given format string, width specifiers and precision specifiers are used along with the for-

mat specifiers. Precision specification always begins with a period to separate it from the preced-
ing width specifier.

 %6.3f means output is 6 columns wide. 3 is the number of digits after decimal. It is shown as

4 5 . 6 0 0

 %06.3f means output is 6 columns wide. 3 is the number of digits after decimal. 0 means blank
spaces are to be padded by zeros. It is shown as

4 5 . 6 0 0

 %09.3f means output is 9 columns wide. 3 is the number of digits after decimal. 0 means blanks
spaces are to be padded by zeros. By default, the output is right justified. It is shown as

0 0 0 4 5 . 6 0 0

 %–09.3f means output is 9 columns wide. 3 is the number of digits after decimal. Since – is used,
the output will be left justified. Here the output shows blank spaces, and padding by zeros has
not been done because only 3 digits can be printed after the decimal. It is shown as

4 5 . 6 0 0

 %6.0f means output is 6 columns wide. 0 is the number of digits after the decimal. Rounding off
will take place and 45.4 will be rounded to 45. The output will be

4 5

 %6.0f means output is 6 columns wide. 0 is the number of digits after the decimal. Rounding off
will take place and 45.6 will be rounded to 46. It is shown as

4 6

26. −32768 0
 Explanation:
 Since the assigned values exceed the maximum value of integer type and unsigned integer type,

the values wrap around to the other side of the range. Hence, the outputs are −32768 (minimum
value of signed integer) and 0 (minimum value of unsigned integer).

27. −128 0
 Explanation:
 Since the assigned values exceed the maximum value of character type and unsigned character

type, the values wrap around to the other side of the range. Hence, the outputs are −128 (minimum
value of signed character) and 0 (minimum value of unsigned character).

38 Programming in C—A Practical Approach

28. +INF +INF
 Explanation:
 Range wraps around only in case of integral data type. Wrap around does not occur in case of float

and double data types. In case of float and double data types, if the value falls outside the range +INF"
or −INF" is the output.

+INF refers to +Infinity and –INF refers to –Infinity.

29. 65 A
 Explanation:
 Integers and characters together form integral data type and are not separated internally. If char-

acters are printed using %d specifier, it gives the ASCII equivalent of the character. Hence, the
output is 65, ASCII code of ‘A’. If %c specifier is used, it prints the character, i.e. ‘A’.

30. char occupies 1 byte
 int occupies 2 bytes
 float occupies 4 bytes
 Explanation:
 sizeof operator outputs the size of the given data type.

31. bytes occupied by ‘7’=1
 bytes occupied by 7=2
 bytes occupied by 7.0=8
 Explanation:
 sizeof operator can also take constant as input and returns the number of bytes required by the

data type of that constant as output. 7.0 is a real floating number and will be treated as double type.
Hence, sizeof(7.0) gives 8.

32. 1
 Explanation:
 ‘\n’ is a character, more specifically a new line character. Hence, sizeof operator returns 1, i.e. the

size of a character.

33. Garbage
 Explanation:
 Since format specifiers %d and %c are not linked to any value, they will output garbage. This is

only applicable for %d and %c specifiers. If %f specifier is not linked, it leads to abnormal program
termination.

34. 2 2 2 2 4
 8 4 4
 Explanation:
 032, 0x32, 32 all are integers in different number systems. 32U is an unsigned integer. Hence, their

size is 2. 32L is a long integer of size 4. 32.4 is a real floating-type number and is treated as a double of
size 8. 32.4f and 32.4F are float and their size is 4. Hence, the output.

Data Types, Variables and Constants 39

35.       ÅBlank line
 hai
 Explanation:
 ‘\n’ is a new line character. Due to ‘\n’, cursor appears in a new line and “ab” gets printed. ‘\b’ is a

backspace character. It places the cursor below the character ‘b’ and “si” gets printed. Therefore,
the output becomes “asi”. ‘\r’ is a carriage return character. It will make the cursor return to the
starting of the same line. The cursor will be placed below ‘a’. “ha” gets printed and overwrites
“as”. Hence, the output becomes “hai”.

36. c: in
 Explanation:
 ‘\t’ is a tab character and ‘\b’ is a backspace character. Due to ‘\t’ character ‘c’ gets tab separated

from “c:”. The output becomes “c: c”. ‘\b’ makes character ‘c’ to erase and “in” gets printed.
Hence, the output becomes “c: in”.

37. c:\tc\bin
 Explanation:
 The usage of an extra backslash is known as character stuffing. Now ‘\t’ will not be treated as a

tab character and will actually get printed. Similarly ‘\b’ will not be treated as a backspace char-
acter.

38. Compilation error
 Explanation:
 String cannot span multiple lines in this way. Hence, the error.

39. hello,world
 Explanation:
 Each instance of the backslash character (\) immediately followed by a new line character is de-

leted. This process is known as line splicing.Â Physical source lines are spliced to form logical
source lines. Only the last backslash on any physical source line shall be eligible for being part of
such a splice.

 Physical source lines
 main()
 {
 printf(“hello,world\
 ”);
 }
 after splicing will form the following logical source lines:
 main()
 {
 printf(“hello,world”);
 }
 Logical source lines are processed by the compiler. Hence, on execution, hello,world is the output.

Forward Reference: Phase of translation during which line splicing is carried out (Chapter 8).

40 Programming in C—A Practical Approach

40. Welcome!..to C programming
 Explanation:
 Adjacent string literals get concatenated. Hence, “Welcome!..”“to C programming” gets concatenated

and becomes “Welcome!..to C programming”. printf needs first argument to be of char* type. In printf(p)
this constraint is satisfied as p is the only argument and is of char* type. Hence, the value of p, i.e.
Welcome!..to C programming gets printed.

Answers to Multiple-choice Questions
41. a 42. c 43. d 44. a 45. d 46. c 47. d 48. a  49. a 50. a 51. d 52. a 53. d 54. c
55. b 56. d 57. b 58. b 59. c 60. d 61. d 62. a  63. d  64. a  65. b  66. a  67. b 68. c
69. d 70. c

Programming Exercises

Program 1 | Convert the temperature given in Fahrenheit to Celsius

Algorithm:
Step 1: Start
Step 2: Read the temperature given in Fahrenheit (f)
Step 3: Temperature in Celsius (c) = 5/9*(f−32)
Step 4: Print temperature in Celsius
Step 5: Stop

PE 1-1.c
FlowchartÂ" depicting the
flow of control in program

Output window

1
2
3
4
5
6
7
8
9

10
11

//Convert temperature in Fahrenheit to
 //Celsius
#include<stdio.h>
main()
{
 float f,c;
 printf(“Enter temperature in Fahrenheit\t”);
 scanf(“%f”,&f);
 c=5.0/9.0*(f-32);
 printf(“Temperature in Celsius is %6.2f”,c);
}

Print c

Start

Stop

Read
temperature in Fahrenheit

 c=5/9*(f– 32)

Enter temperature in Fahrenheit 106
Temperature in Celsius is 41.11

Flowchart is a graphical representation that depicts the flow of program control.

Forward Reference: Algorithms and Flowcharts (Appendix B).

Data Types, Variables and Constants 41

Program 2 | Find the area and circumference of a circle with radius r

Algorithm:
Step 1: Start
Step 2: Read the radius of circle (r)
Step 3: Circumference cir = 2*22/7*r
Step 4: Area area = 22/7*r*r
Step 5: Print circumference and area
Step 6: Stop

PE 1-2.c Flow chart depicting the flow
of control in program

Output window

1
2
3
4
5
6
7
8
9

10
11
12

//Circumference and area of circle
#include<stdio.h>
main()
{
 float r, cir, area;
 printf(“Enter the radius of circle\t”);
 scanf(“%f”,&r);
 cir=2*22.0/7*r;
 area=22.0/7*r*r;
 printf(“Circumference of circle is %6.2f\n”,cir);
 printf(“Area of circle is %6.2f\n”,area);
}

Print cir,
area

Start

Stop

Input radius r

cir=2*22/7*r
area=22/7*r*r

Enter the radius of circle 5
Circumference of circle is 31.43
Area of circle is 78.57

Program 3 | Find the average of three numbers

Algorithm:
Step 1: Start
Step 2: Read numbers no1, no2, no3
Step 3: Average avg = (no1+no2+no3)/3
Step 4: Print avg
Step 5: Stop

PE 1-3.c Flow chart depicting the flow
of control in program

Output window

1
2
3
4
5
6
7
8
9

10

//Average of three numbers
#include<stdio.h>
main()
{
 float no1, no2, no3,avg;
 printf(“Enter three numbers\t”);
 scanf(“%f %f %f”,&no1, &no2, &no3);
 avg=(no1+no2+no3)/3;
 printf(“Average of numbers is %6.2f\n”,avg);
}

Start

Print avg

Stop

avg=(no1+ no2 +no3)/3

Input numbers
no1, no2, no3

Enter three numbers 12 11 14
Average of numbers is 12.33

42 Programming in C—A Practical Approach

Program 4 | Simple Interest and the Maturity Amount

Algorithm:
Step 1: Start
Step 2: Read principle (p), rate of interest (roi), time period (t)
Step 3: Interest i = p*roi*t/100
Step 4: Amount amt = p+i
Step 5: Print i, amt
Step 6: Stop

PE 1-4.c Flow chart depicting the
flow of control in program

Output window

1
2
3
4
5
6
7
8
9

10
11
12

//Simple Interest
#include<stdio.h>
main()
{
 float p, roi, t, i, amt;
 printf(“Enter principle, rate and time\t”);
 scanf(“%f %f %f”,&p, &roi, &t);
 i=p*roi*t/100;
 amt=p+i;
 printf(“Interest is %6.2f\n”,i);
 printf(“Amount is %6.2f\n”,amt);
}

Print i, amt

Start

Stop

Input p, roi & t

Fahrenheit
i=i*roi*t/100

amt=p+i

Enter principle, rate and time 1000 7 2
Interest is 140.00
Amount is 1140.00

Program 5 | Find area of a triangle whose sides are a, b and c

Algorithm:
Step 1: Start
Step 2: Read sides a, b and c of triangle
Step 3: s = (a+b+c)/2
Step 4: area = sqrt(s*(s−a)*(s−b)*(s−c))
Step 5: Print area
Step 6: Stop

PE 1-5.c Flow chart depicting the
flow of control in program

Output window

1
2
3
4
5
6
7
8
9

10
11
12

//Area of a triangle
#include<stdio.h>
#include<math.h>
main()
{
 float a, b, c, s, area;
 printf(“Enter the sides of a triangle\t”);
 scanf(“%f %f %f”,&a, &b, &c);
 s=(a+b+c)/2;
 area=sqrt(s*(s−a) *(s−b) *(s−c));
 printf(“Area of triangle is %6.2f sq. units”,area);
}

Print area

Start

Stop

Fahrenheit

Input sides a,
b & c

s=(a+b+c)/2
area=sqrt(s*(s–a) *(s–b) *(s–c))

Enter the sides of a triangle 12 5 14
Area of triangle is 29.23 sq. units

Data Types, Variables and Constants 43

Program 6 | The velocity of an object is given in km/hr. Write a C program to convert the given velocity
from km/hr to m/sec

Algorithm:
Step 1: Start
Step 2: Input the velocity (velk) given in km/hr
Step 3: velocity in m/sec (velm) = velk*5/18
Step 4: Print velocity in m/sec (velm)
Step 5: Stop

PE 1-6.c Flow chart depicting the
flow of control in program

Output window

1
2
3
4
5
6
7
8
9

10

//Convert units of velocity
#include<stdio.h>
main()
{
 float velk, velm;
 printf(“Enter velocity in Km/hr\t”);
 scanf(“%f”,&velk);
 velm=velk*5/18;
 printf(“Equivalent velocity is %f m/sec”,velm);
}

Print velm

Start

Stop

Fahrenheit

Input velocity
(velk) in Km/hr

velm=velk*5/18

Enter velocity in km/hr 12
Equivalent velocity is 3.333333 m/sec

Program 7 | An object undergoes uniformly accelerated motion. The initial velocity (u) of the object
and the acceleration (a) are known. Write a C program to find the velocity (v) of the object after time t

Algorithm:
Step 1: Start
Step 2: Input the initial velocity (u) and acceleration (a) of the object in SI units
Step 3: Input the time (t) after which velocity is to be computed
Step 4: Velocity v = u+a*t
Step 5: Print value of velocity (v)
Step 6: Stop

PE 1-7.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14

//Compute velocity after time t
#include<stdio.h>
main()
{
 float u, v,a, t;
 printf(“Enter the value of initial velocity in m/s\t”);
 scanf(“%f”,&u);
 printf(“Enter the amount of acceleration\t”);
 scanf(“%f”,&a);
 printf(“Enter the time in sec.\t”);
 scanf(“%f”,&t);
 v=u+a*t;
 printf(“Velocity after %4.2f sec is %4.2f m/s”,t,v);
}

Enter the value of initial velocity in m/s 2.4
Enter the amount of acceleration 4
Enter the time in sec. 2
Velocity after 2.00 sec is 10.40 m/s

44 Programming in C—A Practical Approach

Program 8 | A year approximately consists of 3.156 × 107 seconds. Write a C program that accepts your
age in years and convert it into equivalent number of seconds

Algorithm:
Step 1: Start
Step 2: Enter age (age) in years
Step 3: Age in seconds (age_in_sec) = 3.156 × 107*age
Step 4: Print equivalent age in seconds (age_in_sec)
Step 5: Stop

PE 1-8.c Output window

1
2
3
4
5
6
7
8
9

10
11

//Equivalent age in seconds
#include<stdio.h>
main()
{
 int age;
 float age_in_sec;
 printf(“How old are you (years)?\t”);
 scanf(“%d”,&age);
 age_in_sec=3.156E7*age;
 printf(“Your age in seconds is %5.2E”,age_in_sec);
}

How old are you (years)? 18
Your age in seconds is 5.68E+08
Remark:
• %E specifier is used to print floating point value in

exponent form

Data Types, Variables and Constants 45

Test Yourself
1. Fill in the blanks in each of the following:

a. The C language was developed by ____________.
b. An identifier name in C starts with a ____________ .
c. One of the most important attributes of an identifier is its ____________.
d. int var; is a ____________ statement.
e. ____________ is a data object locator.
f. Constants do not have ____________ value.
g. ____________ qualifier is used to create a qualified constant.
h. Non-printable character constants are represented with the help of ____________ .
i. The first argument of printf function should always be a ____________ .
j. Floating point literal constant by default is assumed to be of type ____________ .
k. A C program is made up of ____________ .
l. Every statement in C is terminated with a ____________ .
m. The printf function prints the value according to the ____________ specified in the

____________.
n. The amount of memory that an object of a data type would take can be found by using

____________ operator.
o. The arguments following the first argument in a scanf function should denote ____________.

2. State whether each of the following is true or false. If false, explain why.
a. C is a case-sensitive language, which means that it distinguishes between uppercase charac-

ters and lowercase characters.
b. An identifier name in C cannot start with a digit.
c. All the variable names must be declared before they are used in a C program.
d. Comments play an important role in a C program and are processed by the C compiler to

produce an executable code.
e. Keyword or a reserved word cannot be used as a valid identifier name.
f. int a=20, b=30, c; is an example of a longhand declaration statement.
g. A type qualifier modifies the base type to yield a new type.
h. Constants have both l-value and r-value.
i. A character literal constant can have one or at most two characters enclosed within single

quotes.
j. The scanf function can be used to read only one value at a time.

3. Determine which of the following are valid identifier names in C:
a. main
b. MAIN
c. NewStudent
d. New_Student
e. a+b
f. for_while
g. 123abc
h. abc123
i. name&number
j. _classnumber
k. _number_

46 Programming in C—A Practical Approach

4. Determine which of the following are valid constants:
a. “ABC”
b. ‘#’
c. Abc
d. 1,234
e. –22.124
f. 1.23E-2.0
g. 0x2AG
h. ‘\r’
i. 0x23
j. 23L
k. –7.0f

5. Identify and correct the errors in each of the following statements:
a. int a=10, int b=20;
b. int a=10, float b=2.5;
c. int a=23u, b=2f;
d. const int number=100;
 number=500;
e. printf(1,2,3);
f. Printf(“To err is human”);
g. printf(“%d %d” no1, no2);
h. printf(“Humans learn by making mistakes”)
i. scanf(“%d %d”, no1, no2);
j. first_value+second_value=sum_of_values

OPERATORS AND
EXPRESSIONS

2

Learning Objectives

In this chapter, you will learn about:

Operands and opera � tors

Expressions �

Simple expressions and compound expressions �

How compound expressions are evaluated �

Precedence and associativity of operators �

How operators are classified �

Classification based on number of operands �

Unary, binary and ternary operators �

Classification based on role of operator �

 Arithmetic, relational, logical, bitwise, assign- �

ment and miscellaneous operators

Rules for evaluation of arithmetic expressions �

Implicit and explicit-type conversions �

Promotions and demotions �

Conditional, comma, � sizeof and address-of operator

Combined precedence of all � operators

48 Programming in C—A Practical Approach

2.1 Introduction
In Chapter 1, you have learnt about identifiers (i.e. variables and functions specifically printf and
scanf functions), constants and data types. In this chapter, I will take you a step forward and tell
you how to create expressions from identifiers, constants and operators. Finally, we will look
at how expressions are evaluated and the intricacies involved in this evaluation process.

2.2 Expressions
An expression in C is made up of one or more operands. The simplest form of an expression
consists of a single operand. For example, 3 is an expression that consists of a single operand,
i.e. 3. Such an expression does not specify any operation to be performed and is not mean-
ingful. In general, a meaningful expression consists of one or more operands and operators
that specify the operations to be performed on operands. For example, a=2+3 is a meaningful
expression, which involves three operands, namely a, 2 and 3 and two operators, i.e. = (assign-
ment operator) and + (arithmetic addition operator). Thus, an expression is a sequence of op-
erands and operators that specifies the computation of a value. Let us look at the fundamental
constituents of an expression, i.e. operands and operators.

2.2.1 Operands
An operand specifies an entity on which an operation is to be performed. An operand can be a
variable name, a constant, a function call or a macroÂ name. For example, a=printf(“Hello”)+2 is a
valid expression involving three operands, namely a variable name, i.e. a, a function call, i.e.
printf(“Hello”) and a constant, i.e. 2.

Forward Reference: Macros (Chapter 8).

2.2.2 Operators
An operator specifies the operation to be applied to its operands. For example, the expression
a=printf(“Hello”)+2 involves three operators, namely function call operator, i.e. (), arithmetic addi-
tion operator, i.e. + and assignment operator, i.e. =.

Based on the number of operators present in an expression, expressions are classified as
simple expressions and compound expressions.

2.3 Simple Expressions and Compound Expressions
An expression that has only one operator is known as a simple expression while an expres-
sion that involves more than one operator is called a compound expression. For example,
a+2 is a simple expression and b=2+3*5 is a compound expression. The evaluation of a simple
expression is easier as compared to the evaluation of a compound expression. Since, there is
more than one operator in a compound expression, while evaluating compound expressions
one must determine the order in which operators will operate. For example, to determine the
result of evaluation of the expression b=2+3*5, one must determine the order in which =, + and
* will operate. This order determination becomes trivial in the case of evaluation of simple
expressions like a+2, as there is only one operator and it has to operate in any case. The order

Operators and Expressions 49

in which the operators will operate depends upon the precedence and the associativity of
operators.

2.3.1 Precedence of Operators
Each operator in C has a precedence associated with it. In a compound expression, if the
operators involved are of different precedence, the operator of higher precedence operates
first. For example, in an expression b=2+3*5, the sub-expression 3*5 involving multiplication
operator (i.e. *) is evaluated first as the multiplication operator has the highest precedence
among =, + and *. The result of evaluation of an expression is an r-value. The sub-expression
3*5 evaluates to an r-value 15. This r-value will act as a second operand for an addition operator
and the expression becomes b=2+15. In the resultant expression, the sub-expression 2+15 will be
evaluated next as the addition operator (i.e. +) has a higher precedence than the assignment
operator (i.e. =). The expression after the evaluation of the addition operator reduces to b=17.
Now, there is only one operator in the expression. The assignment operator will operate and
the value 17 is assigned to b. 

The knowledge of precedence of operators alone is not sufficient to evaluate a compound
expression in case two or more operators involved are of the same precedence. For example,
in the expression b=2*3/5, the multiplication operator (i.e. *) and the division operator (i.e. /)
have the same precedence. The sub-expression 2*3/5 will evaluate to 1 if the multiplication
operator operates before the division operator and to 0 if the division operator operates prior
to the multiplication operator. To determine which of these operators will operate first, the as-
sociativity of these operators is to be considered.

2.3.2 Associativity of Operators
In a compound expression, when several operators of the same precedence appear together,
the operators are evaluated according to their associativity. An operator can be either left-to-
right associative or right-to-left associative. The operators with the same precedence always
have the same associativity. If operators are left-to-right associative, they are applied in a left-
to-right order, i.e. the operator that appears towards the left will be evaluated first. If they are
right-to-left associative, they will be applied in the right-to-left order. The multiplication and
the division operators are left-to-right associative. Hence, in expression 2*3/5, the multiplica-
tion operator is evaluated prior to the division operator as it appears before the division opera-
tor in the left-to-right order.

Now, let us look at various operators, their classification, precedence and associativity.

2.4 Classification of Operators
The operators in C are classified on the basis of the following criteria:

The number of operands on which an operator operates.1.
The role of an operator.2.

2.4.1 Classification Based on Number of Operands
Based upon the number of operands on which an operator operates, the operators are classi-
fied as:

50 Programming in C—A Practical Approach

1. Unary operators A unary operator operates on only one operand. For example,
in the expression −3, − is a unary minus operator as it operates
on only one operand, i.e. 3. The operand can be present towards
the right of the unary operator, as in −3 or towards the left of
the unary operator, as in the expression a++. Examples of unary
operators are: & (address-of operator), sizeof operator, ! (logical
negation), ~ (bitwise negation), ++ (increment operator), --
(decrement operator), etc.

2. Binary operators A binary operator operates on two operands. It requires an
operand towards its left and right. For example, in expression
2−3, − acts as a binary minus operator as it operates on two
operands, i.e. 2 and 3. Examples of binary operators are: *
(multiplication operator), / (division operator), << (left shift
operator), == (equality operator), && (logical AND), & (bitwise
AND), etc.

3. Ternary operator A ternary operator operates on three operands. Conditional
operator (i.e. ?:) is the only ternary operator available in C.

2.4.2 Classification Based on Role of Operator
Based upon their role, operators are classified as:

Arithmetic operators1.
Relational operators2.
Logical operators3.
Bitwise operators4.
Assignment operators5.
Miscellaneous operators6.

2.4.2.1 Arithmetic Operators
Arithmetic operations like addition, subtraction, multiplication, division, etc. can be performed
by using arithmetic operators. The arithmetic operators available in C are given in Table 2.1.

Table 2.1 | Arithmetic operators

S.No Operator Name of
operator

Category -ary of
operator

Precedence among
arithmetic class

Associativity

1. +
-
++
--

Unary plus
Unary minus
Increment
Decrement

Unary
operators

Unary Level-I
(Highest)

R→L
(Right-to-left)

2. *
/
%

Multiplication
Division
Modulus

Multiplicative
operators

Binary Level-II
(Intermediate)

L→R
(Left-to-right)

3. +
-

Addition
Subtraction

Additive
operators

Binary Level-III
(Lowest)

L→R

Operators and Expressions 51

i The operators within a row have the same precedence, and the order in which they are writ-
ten does not matter.

The following rules are observed while evaluating arithmetic expressions:

The parenthesized sub-expressions are evaluated first.1.
If the parentheses are nested, the innermost sub-expression is evaluated first.2.
The precedence rules are applied to determine the order of application of operators 3.
while evaluating sub-expressions.
The associativity rule is applied when two or more operators of the same precedence 4.
appear in the sub-expression.
If the operands of a binary arithmetic operator are of different but compatible types, C 5.
automatically applies arithmetic-type conversion to bring the operands to a common
type. This automatic-type conversion is known as implicit-type conversion.The result
of the evaluation of an operator will be of the common type. The basic principle behind
the implicit arithmetic-type conversion is that if operands are of different types, the
lower type (i.e. smaller in size) should be converted to a higher type (i.e. bigger in size)
so that there is no loss in value or precision. Since a lower type is converted to a higher
type, it is said that the lower type is promoted to a higher type and the conversion is
known as promotion. The following are common arithmetic-type conversions:
a. If one operand is long double, the other will be converted to long double, and the result will

be long double.
b. If one operand is double, the other will be converted to double, and the result will be

double.
c. If one operand is float, the other will be converted to float, and the result will be float.
d. If one of the operands is unsigned long int, the other will be converted to unsigned long int,

and the result will be unsigned long int.
e. If one operand is long int and the other is unsigned int, then

i. If unsigned int can be converted to long int, then unsigned int operand will be converted
as such, and the result will be long int.

ii. Else, both operands will be converted to unsigned long int, and the result will be
unsigned long int.

f. If one of the operands is long int, the other will be converted to long int, and the result
will be long int.

g. If one operand is unsigned int, the other will be converted to unsigned int, and the result
will be unsigned int.

h. If none of the above is carried out, both the operands are converted to int.
The above-mentioned rules can be summarized as:
Binary arithmetic operators can be used in one of the following three different modes:
1. Integer mode: If both the operands of a binary arithmetic operator are of

integer type, the mode of operation is said to be integer mode
and the result will be of integer type. For example: the result of
4/3 will be 1 instead of 1.3333, as integer mode operation results
in the value of integer type.

52 Programming in C—A Practical Approach

2. Floating point mode: If both the operands of a binary arithmetic operator are of float-
ing point type, the mode of operation is said to be floating point
mode and the result will be of floating point type. For example:
the result of 4.0/3.0 will be 1.333333, as the result of floating point
mode operation is of floating point type.

3. Mixed mode: If one of the operands of a binary arithmetic operator is of in-
teger type and another operand is of floating point type, the
mode of operation is said to be mixed mode. The operand of
integer type is promoted to floating point type and the result
will be of floating point type. For example: the result of 4/3.0
will be 1.333333.

Consider Program 2-1.

Line Prog 2-1.c Output window

1
 2
3
4
5
6
7
8

//Arithmetic expression
#include<stdio.h>
main()
{
 int a;
 a=2*3.25+((3+6)/2);
 printf(“The result of evaluation is %d”,a);
}

The result of evaluation is 10

Program 2-1 | A program that illustrates the evaluation of an arithmetic expression

Let us look at how the expression a=2*3.25+((3+6)/2) as specified in Program 2-1 gets evaluated.
The innermost parenthesized sub-expression (3+6) gets evaluated first. This sub-expression
evaluates to an r-value, i.e. 9. This r-value acts as an operand for the division operator. Now, the
expression reduces to a=2*3.25+(9/2). The sub-expression (9/2) gets evaluated next. Since both the
operands of the division operator are of integer type, the arithmetic involved is integer arithmetic
and thus, the result is an r-value of integer type, i.e. 4 instead of 4.5. The expression becomes
a=2*3.25+4. Since the multiplication operator (i.e. *) has a higher precedence than the addition
operator (i.e. +) and the assignment operator (i.e. =), the sub-expression 2*3.25 gets evaluated next.
In this sub-expression, the arithmetic involved is mixed mode arithmetic as one of the operands
is of integer type and the other is of floating point type. The operand 2 is promoted to 2.0. The
result of sub-expression 2.0*3.25 turns out to be 6.50. After the evaluation of this sub-expression,
the expression gets reduced to a=6.50+4. The sub-expression 6.50+4 involves mixed mode operation
and is evaluated to 10.50. Finally, the expression becomes a=10.50. In this expression, the value of
floating point type is assigned to a variable of integer type. The operand of floating point type
(i.e. 10.50) is automatically converted to an integer type so that it can be assigned to the integer
variable a. Since a higher type (i.e. float, bigger in size) is converted to a lower type (i.e. int, smaller
in size), it is said that the higher type is demoted to the lower type and this conversion is called
demotion. The method followed during demotion is truncation. Thus, 10.50 is demoted (i.e.
truncated) to 10 and is assigned to a. This value of a is printed by the printf function.

The important points about the arithmetic operators are as follows:
The 1. unary plus operator can appear only towards the left side of its operand.
The 2. unary minus operator can appear only towards the left side of its operand.

Operators and Expressions 53

3. Increment operator
 a. The increment operator can appear towards the left side or towards the right side of

its operand. If it appears towards the left side of its operand (e.g. ++a), it is known as
the pre-increment operator. If it appears towards the right side of its operand (e.g.
a++), it is known as the post-increment operator.

 b. The increment operator can only be applied to an operand that has a modifiable
l-value. If it is applied to an operand that does not have a modifiable l-value, there
will be ‘L-value required’ error. Try executing the code listed in Program 2-2.

Line Prog 2-2.c Output window

1
2
3
4
5
6
7
8

//Increment/ Decrement operator’s operand
#include<stdio.h>
main()
{
 int a;
 a=++2;
 printf(“The result of application of pre-increment operator is %d”,a);
}

Compilation error “L-value required”
Reasons:
• Operand of increment/decrement

operator should have a modifiable
l-value

• 2 is a constant and does not have
modifiable l-value

What to do?
•  Create a variable b, place value 2 in

it and instead of ++2 write ++b

Program 2-2 | A program to illustrate that operand of increment/decrement operator should have a
 modifiable l-value

 c. ++a or a++ is equivalent to a=a+1.
 d. The difference between pre-increment and post-increment lies in the point at

which the value of their operand is incremented.
   i. In case of the pre-increment operator, first the value of its operand is incremented

and then it is used for the evaluation of expression.
 ii. In case of the post-increment operator, the value of operand is used first for the eval-

uation of the expression and after its use, the value of the operand is incremented.

 The difference between two versions of increment operator is shown in the code listed
in Program 2-3.

Line Prog 2-3.c Output window

1
2
3
4
5
6
7
8
9

//Difference between Pre-increment and Post-increment
#include<stdio.h>
main()
{
 int a=2, b=2,c,d;
 c=++a;
 d=b++;
 printf(“a=%d, b=%d, c=%d, d=%d”,a,b,c,d);
}

a=3, b=3, c=3, d=2
Reasons:
• The value of a is incremented and

then it is assigned to c as a is pre-
incremented

• The value of b is assigned to d before
it is incremented as b is post-incre-
mented

Program 2-3 | A program that illustrates the difference between pre-increment and post-increment

54 Programming in C—A Practical Approach

 e. Increment operator is a token," i.e. one unit. There should be no white-space char-
acter between two ‘+’ symbols. If white space is placed between two ‘+’ symbols,
they become two unary plus (+) operators. Execute the code listed in Program 2-4 to
understand the significance of white-space character.

Line Prog 2-4.c Output window

1
2
3
4
5
6
7
8

//++ is a token. Don’t place white space in between + symbols
#include<stdio.h>
main()
{
 int a;
 a=+ +2;
 printf(“The result of evaluation is %d”,a);
}

The result of evaluation is 2
Remark:
•  There will be no compilation error as

in Program 2-2 because the expres-
sion a=+ +2 does not have an increment
operator. Instead it has two unary plus
operators, which can be applied on an
operand that does not have a modifi-
able l-value

Program 2-4 | A program that illustrates the significance of white-space character in increment operator

Tokens are the basic building blocks of a source code. Characters are combined into tokens
according to the rules of the programming language. There are five classes of tokens: identi-
fiers, reserved words, operators, separators and constants.

4. Decrement operator
a. The decrement operator can appear towards the left side or towards the right side of

its operand. If it appears towards the left side of its operand (e.g. −−a), it is known as
the pre-decrement operator. If it appears towards the right side of its operand (e.g.
a−−), it is known as the post-decrement operator.

b. The decrement operator can only be applied to an operand that has a modifiable
l-value. If it is applied on an operand that does not have a modifiable l-value, there
will be a compilation error ‘L-value required’.

c. −−a or a−− is equivalent to a=a–1.
d. The difference between pre-decrement and post-decrement lies in the point at

which the value of their operand is decremented.
i. In case of the pre-decrement operator, first the value of its operand is decre-

mented and then used for the evaluation of the expression in which it appears.
ii. In case of the post-decrement operator, first the value of the operand is used

for the evaluation of the expression in which it appears and then its value is
decremented.

 The difference between two versions of the decrement operator is shown in the code
listed in Program 2-5.

e. Decrement operator is a token, i.e. one unit. There should be no white-space charac-
ter between two ‘−’ symbols. If white space is placed between two ‘−’ symbols, they
become two unary minus (−) operators.

5. Division operator
a. The division operator is used to find the quotient.

Operators and Expressions 55

Line Prog 2-5.c Output window

1
2
3
4
5
6
7
8
9

//Diff. between Pre-decrement & Post-decrement operator
#include<stdio.h>
main()
{
 int a=2, b=2,c,d;
 c=−−a;
 d=b−−;
 printf(“a=%d, b=%d, c=%d, d=%d”,a,b,c,d);
}

a=1, b=1, c=1, d=2
Reasons:
• The value of a is decremented and

then it is assigned to c as a is pre-
decremented

• The value of b is assigned to d before
it is decremented as b is post-decre-
mented

Program 2-5 | A program that illustrates the difference between pre-decrement and post-decrement

b. The sign of the result of evaluation of the division operator depends upon the sign
of both the numerator as well as the denominator. If both are positive, the result
will be positive. If both are negative, the result will be positive. If either of the two is
negative, the result will be negative. For example: 4/3=1, −4/3=−1, 4/−3=−1 and −4/−3=1.
This can be observed by executing the code listed in Program 2-6.

Line Prog 2-6.c Output window

1
2
3
4
5
6
7
8

//Sign of the result of division operator
#include<stdio.h>
main()
{
 printf(“Sign of the result of division operator:\n”);
 printf(“4/3=%d, -4/3=%d\n”,4/3,-4/3);
 printf(“4/-3=%d, -4/-3=%d”,4/-3,-4/-3);
}

Sign of the result of division operator:
4/3=1, −4/3=−1
4/-3=-1, −4/−3=1
Remark:
•  The sign of the result of evaluation of

the division operator depends upon
the sign of the numerator as well as
the denominator

Program 2-6 | A program that illustrates the sign of result of division operator

6. Modulus operator
a. The modulus operator is used to find the remainder.
b. The operands of modulus operator (i.e. %) must be of integer type. Modulus opera-

tor cannot have operands of floating point type. Try executing the code listed in
Program 2-7.

Line Prog 2-7.c Output window

1
2
3
4
5
6
7
8

//Operands of the modulus operator must be of integer type
#include<stdio.h>
main()
{
 int a;
 a=2%3.0;
 printf(“The value of a is %d”,a);
}

Compilation error “Illegal use of floating point in the
function main”
Reason:
•  Operands of modulus operator

should be of integer type
What to do?
•  Write 3 instead of 3.0 or type cast 3.0

to int by writing (int)3.0

Program 2-7 | A program to illustrate that the operands of modulus operator must be of integer type

56 Programming in C—A Practical Approach

 c. The sign of the result of evaluation of modulus operator depends only upon the
sign of the numerator. If the sign of the numerator is positive, the sign of the result
will be positive else negative. For example: 4%3=1, −4%3=–1, 4%−3=1 and −4%−3=−1. This
can be observed by executing the code listed in Program 2-8.

Line Prog 2-8.c Output window

1
2
3
4
5
6
7
8

//Sign of the result of modulus operator
#include<stdio.h>
main()
{
 printf(“Sign of the result of modulus operator:\n”);
 printf(“4%%3=%d, -4%%3=%d\n”,4%3,-4%3);
 printf(“4%%-3=%d, -4%%-3=%d”,4%-3,-4%-3);
}

Sign of the result of modulus operator:
4%3=1, −4%3=−1
4%−3=1, −4%-3=−1
Remarks:
•  The sign of the result of evaluation of the

modulus operator depends only upon the
sign of the numerator

•  The % sign marks the beginning of format
specifier. If it is to be actually printed, use it
twice. Refer Question number 16, Chapter 1

Program 2-8 | A program that illustrates the sign of result of modulus operator

2.4.2.2 Relational Operators
Relational operators are used to compare two quantities (i.e. their operands). There are six
relational operators in C, which are given in Table 2.2.

Table 2.2 | Relational operators

S.No Operator Name of operator Category -ary of
operator

Precedence among
relational class

Associativity

1. <
>
<=

>=

Less than
Greater than
Less than or
equal to
Greater than or
equal to

Relational
operators

Binary Level-I L→R

2. ==
!=

Equal to
Not equal to

Equality
operators

Binary Level-II L→R

The important points about the relational operators are as follows:
There should be no white-space character between two symbols of a relational operator.1.
The result of evaluation of a relational expression (i.e. involving relational operator) is 2.
a boolean constant, i.e. 0 or 1.
Each of the relational operators yields 3. 1 if the specified relation is true and 0 if it is false.
The result has type int.
The expression 4. a<b<c is valid and is not interpreted as in ordinary mathematics. Since the
less than operator (i.e. <) is left-to-right associative, the expression is interpreted as (a<b)<c.
This means that ‘if a is less than b, compare 1 with c, otherwise, compare 0 with c’.
An expression that involves a relational operator forms a 5. condition. For example, a<b is
a condition.

Operators and Expressions 57

Consider Program 2-9 that illustrates the evaluation of a relational expression.

Line Prog 2-9.c Output window

1
2
3
4
5
6
7
8

//Relational operators
#include<stdio.h>
main()
{
 int a;
 a=2<3!=2;
 printf(“The value of a is %d”,a);
}

The value of a is 1
Remark:
•  The expression a=2<3!=2 is interpreted as

a=(2<3)!=2. The sub-expression 2<3 is true (i.e. 1).
1!=2 is true (i.e. 1). So, 1 is assigned to a

Program 2-9 | A program that illustrates the use of relational operators

2.4.2.3 Logical Operators
Logical operators are used to logically relate the sub-expressions. The logical operators avail-
able in C are given in Table 2.3.

Table 2.3 | Logical operators

S.No Operator Name of operator Category -ary of
operator

Precedence among
logical class

Associativity

1. ! Logical NOT Unary Unary Level-I R→L

2. && Logical AND Logical
operator

Binary Level-II L→R

3. || Logical OR Logical
operator

Binary Level-III L→R

i In C language, there is no operator available for logical eXclusive-OR (XOR) operation.

The important points about the logical operators are as follows:
Logical operators consider operand as an entity, a unit.1.
Logical operators operate according to the truth tables given in Table 2.4.2.

Table 2.4 | Truth tables of logical operations

AND Operation OR Operation NOT Operation

Operand1 Operand2 Result Operand1 Operand2 Result Operand Result
False False False False False False False True
False True False False True True True False
True False False True False True
True True True True True True

(a) (b) (c)

58 Programming in C—A Practical Approach

3. If an operand of a logical operator is a non-zero value, the operand is considered as true.
If the operand is zero, it is considered as false.

4. Each of the logical operators yields 1 if the specified relation evaluates to true and 0 if
it evaluates to false. The evaluation is done according to the truth tables mentioned in
Table 2.4. The result has type int.

5. The logical AND (i.e. &&) operator and the logical OR (i.e. ||) operator guarantee left-to-
right evaluation.

6. Expressions connected by the logical AND (&&) or the logical OR (||) operator are evalu-
ated left to right and the evaluation stops as soon as truthfulness or falsehood of the
expression is determined. Thus, in an expression:
a. E1&&E2, where E1 and E2 are sub-expressions, E1 is evaluated first. If E1 evaluates to 0 (i.e.

false), E2 will not be evaluated and the result of the overall expression will be 0 (i.e.
false). If E1 evaluates to a non-zero value (i.e. true) then E2 will be evaluated to deter-
mine the truth value of the overall expression. The fragment of code in Program 2-10
illustrates the mentioned fact.

Line Prog 2-10.c Output window

1
2
3
4
5
6
7
8
9

//Logical AND operator
#include<stdio.h>
main()
{
 int i=0,j=1,k=2,l;
 l=i&&j++&&k++;
 printf(“Resultant values after evaluation are:\n”);
 printf(“%d %d %d %d”,i ,j,k,l);
}

Resultant values after evaluation are:
0 1 2 0
Remark:
•  The expression l=i&&j++&&k++ is interpreted

as l=(i&&j++)&&k++. Since i is false, j++ will not
be evaluated and (i&&j++) evaluates to 0 (i.e.
false). Since (i&&j++) is false, k++ will not be
evaluated and the expression i&&j++&&k++
evaluates to 0, i.e. false. So, 0 is assigned to l

Program 2-10 | A program that illustrates logical AND operation

b. E1||E2, where E1 and E2 are sub-expressions, E1 is evaluated first. If E1 evaluates to a non-
zero value (i.e. true), E2 will not be evaluated and the result of the overall expression
will be 1 (i.e. true). If E1 evaluates to 0 (i.e. false) then E2 will be evaluated to deter-
mine the truth value of the overall expression. The fragment of code in Program
2-11 illustrates the mentioned fact.

Line Prog 2-11.c Output window

1
2
3
4
5
6
7
8
9

//Logical OR operator
#include<stdio.h>
main()
{
 int i=0,j=1,k=2,l;
 l=i&&j++||k++;
 printf(“Resultant values after evaluation are:\n”);
 printf(“%d %d %d %d”,i ,j,k,l);
}

Resultant values after evaluation are:
0 1 3 1
Remark:
•  The expression l=i&&j++||k++ is interpreted

as l=(i&&j++)||k++. Since i is false, j++ will not
be evaluated and (i&&j++) evaluates to 0 (i.e.
false). Since (i&&j++) is false, k++ needs to
be evaluated. k++ evaluates to 2 (i.e. true)
and k becomes 3. The overall expression
l=i&&j++||k++ evaluates to 1 (i.e. true). So, l=1

Program 2-11 | A program that illustrates logical OR operation

Operators and Expressions 59

2.4.2.4 Bitwise Operators

The C language provides six operators for bit manipulation. These operators do not consider
the operand as one entity and operate on the individual bits of the operands. The bitwise op-
erators available in C are given in Table 2.5.

Table 2.5 | Bitwise operators

S.No Operator Name of operator Category -ary of
operator

Precedence among
bitwise class

Associativity

1. ~ Bitwise NOT Unary Unary Level-I R→L

2. <<
>>

Left Shift
Right Shift

Shift
operators

Binary Level-II L→R

3. & Bitwise AND Bitwise
operator

Binary Level-III L→R

4. ^ Bitwise X-OR Bitwise
operator

Binary Level-IV L→R

5. | Bitwise OR Bitwise
operator

Binary Level-V L→R

The important points about the bitwise operators are as follows:
Bitwise operators operate on the individual bits of the operands and are used for bit 1.
manipulation.
They can only be applied on operands of type2. char, short, int, long, whether signed or
unsigned.
The bitwise-AND and the bitwise-OR operators operate on the individual bits of the 3.
operands according to the truth tables specified in Table 2.4.
The expression 4. 2&3 evaluates to 2 and 2|3 evaluates to 3. The operations on individual
bits of operands (i.e. 2 and 3) are shown in Figure 2.1.

Value,
operator
and
result

Sign
bit

Magnitude

Bit
16

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

2&3=2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

2|3=3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Figure 2.1 | Bitwise-AND and bitwise-OR operator operating on the individual bits of the operands

5. X-OR operator operates according to the truth table given in Table 2.6.

60 Programming in C—A Practical Approach

Table 2.6 | Truth table of X-OR operation

X-OR OPERATION

Operand1 Operand2 Result
False False False
False True True
True False True

True True False

6. The bitwise NOT operator results in 1’s complement of its operand.
7. Left shift by 1 bit is equivalent to multiplication by 2. Left shift by n bits is equivalent to

multiplication by 2n, provided the magnitude does not overflow.
8. Right shift by 1 bit is equivalent to an integer division by 2. Right shift by n bits is equiva-

lent to integer division by 2n.
9. The expression 4<<1 evaluates to 8 and 4>>1 evaluates to 2. This is shown in Figure 2.2.

Value,
operator
and
result

Sign
bit

Magnitude

Bit
16

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

4<<1=8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

4>>1=2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 2.2 | Left-shift and right-shift operations

2.4.2.5 Assignment Operators
A variable can be assigned a value by using an assignment operator. The assignment operators
available in C language are given in Table 2.6.

Table 2.6 | Assignment operators

S.No Operator Name of operator Category -ary of
operator

Precedence Associativity

1. = Simple assignment Assignment
&

Binary Level-I R→L

*=
/=
%=
+=
-=
&=
|=
^=
<<=
>>=

Assign product
Assign quotient
Assign modulus
Assign sum
Assign difference
Assign bitwise AND
Assign bitwise OR
Assign bitwise XOR
Assign left shift
Assign right shift

Shorthand
assignment
operators

Operators and Expressions 61

The important points about the assignment operators are as follows:
The operand that appears towards the left side of an assignment operator should have a 1.
modifiable l-value. If the operand appearing towards the left side of the assignment opera-
tor does not have a modifiable l-value, there will be a compilation error ‘L-value required’.
The shorthand assignment is of the form 2. op1 op=op2, where op1 and op2 are operands and
op= is a shorthand assignment operator. It is a shorter way of writing op1 = op1 op op2. For
example, a/=2 is equivalent to a=a/2.

Forward Reference: Refer Question numbers 53 and 65 and their answers for examples on
the usage of a shorthand assignment operator.

3. There should be no white-space character between two symbols of shorthand assign-
ment operators.

4. If two operands of an assignment operator are of different types, the type of operand
on the right side of the assignment operator is automatically converted to the type of
operand present on its left side. To carry out this conversion, either promotion or
demotion is applied.

5. The result of evaluation of an assignment expression is the value that is assigned. For
example, in the expression a=10;, the value 10 is assigned to a and the overall expression
evaluates to 10 (i.e. the value that is assigned).

6. The terms assignment and initialization are related but it is important to note the
differences between them. They are listed in Table 2.7.

Table 2.7 | Differences between initialization and assignment

S.No Initialization Assignment

1. First time assignment at the time of definition
is called initialization. For example: int a=10; is
initialization of a

Value of a data object after initialization can
be changed by the means of assignment. For
example: Consider the following statements int
a=10; a=20;. The value of a is changed to 20 by the
assignment statement

2. Initialization can be done only once Assignment can be done any number of times
3. Qualified constant can be initialized with a

value. For example, const int a=10; is valid
Qualified constant cannot be assigned a value.
It is erroneous to write a=10; if a is a qualified
constant

2.4.2.6 Miscellaneous Operators
Other operators available in C are:

1. Function call operatorÂ (i.e. ())
2. Array subscript operatorÂ (i.e. [])
3. Member select operatorÂ
 a. Direct member access operator (i.e. . (dot operator or period))
 b. Indirect member access operator (i.e. -> (arrow operator))
4. Indirection operatorÂ (i.e. *)
5. Conditional operator

62 Programming in C—A Practical Approach

6. Comma operator
7. sizeof operator
8. Address-of operator (i.e. &)

Forward Reference: Function call operator (Chapter 5), array subscript operator (Chapter 4),
member select operator (Chapter 9), indirection operator (Chapter 4).

2.4.2.6.1 Conditional Operator
Conditional operatorÂ is the only ternary operator available in C (Table 2.8).

Table 2.8 | Conditional operator

S.No Operator Name of operator Category -ary of
operator

Precedence Associativity

1. ?: Conditional operator Conditional Ternary Level-I R→L

The important points about the conditional operator are as follows:
The general form of conditional operator is 1. E1?E2:E3, where E1, E2 and E3 are sub-expressions.
The sub-expression 2. E1 must be of scalar type."
The sub-expression 3. E1 is evaluated first. If it evaluates to a non-zero value (i.e. true), then
E2 is evaluated and E3 is ignored. If E1 evaluates to zero (i.e. false), then E3 is evaluated
and E2 is ignored.

Integer and floating types are collectively called arithmetic types. Arithmetic types and
pointer types are collectively called scalar types.

Forward Reference: Refer Question number 33 and its answer for an example on the usage
of a conditional operator.

2.4.2.6.2 Comma Operator
The comma operator is used to join multiple expressions together (Table 2.9).

Table 2.9 | Comma operator

S.No Operator Name of
operator

Category -ary of
operator

Precedence Associativity

1. , Comma
operator

Comma Binary Level-I L→R

The important points about the comma operator are as follows:
Every instance of a comma symbol is not a comma operator. The commas separating 1.
argumentsÂ in a functionÂ call are not comma operators. If commas separating argu-
ments in a function call are considered as comma operators, then no function could have
more than one argument. The commas used in the declaration/definition statement are
not considered as comma operators. The commas appearing between the arguments in a
function call or commas appearing in a declaration/definition statement are separators.

Operators and Expressions 63

The comma operator guarantees left-to-right evaluation.2.
In expression 3. E1, E2, E3…En, the sub-expressions E1, E2, E3…En are evaluated in left-to-right
order. The result and type of evaluation of the overall expression is the value and type
of the evaluation of the rightmost sub-expression, i.e. En.
The comma operator has least precedence. 4.

 The piece of code in Program 2-12 illustrates the use of a comma operator.

Line Prog 2-12.c Output window

1
2
3
4
5
6
7
8
9

10

//Use of comma operator
#include<stdio.h>
main()
{
 int a,b;
 a=1, 2, 3, 4, 5;
 b=(1, 2, 3, 4, 5);
 printf(“Resultant values of a and b are:\n”);
 printf(“%d %d”,a ,b);
}

Resultant values of a and b are:
1 5
Remarks:
•  The precedence of assignment operator is

greater than comma operator
•  Thus, in the expression a=1,2,3,4,5, the sub-

expression a=1 gets evaluated first. Hence,
the value assigned to a is 1

•  In the expression b=(1,2,3,4,5), the sub-
expression 1,2,3,4,5 is parenthesized and will
be evaluated first. The result of evaluation of
comma operator is the result of evaluation
of the rightmost sub-expression, i.e. 5. Thus,
(1,2,3,4,5) evaluates to 5 and is assigned to b

Program 2-12 | A program to illustrate the use of comma operator

Forward Reference: Arguments, function (Chapter 5).

2.4.2.6.3 sizeof Operator
The sizeof operator is used to determine the size in bytes, which a value or a data object will
take in memory (Table 2.10).

Table 2.10 | sizeof operator

S.No Operator Name of
operator

Category -ary of
operator

Precedence Associativity

1. sizeof Size-of
operator

Unary Unary Level-I R→L

The important points about the sizeof operator are as follows:
1. The general form of a sizeof operator is:

a. sizeof expression or sizeof (expression) (For example: sizeof 2, sizeof(a), sizeof(2+3))
b. sizeof (type-name) (For example: sizeof(int), sizeof(int*), sizeof(char))

2. Parentheses should be used if the sizeof operator is applied on a type-name, as indicated
in point 1 b) above.

3. The type of result of evaluation of the sizeof operator is int.
4. The operand of the sizeof operator is not evaluated. This fact can be seen by executing the

code listed in Program 2-13.

64 Programming in C—A Practical Approach

Line Prog 2-13.c Output window

1
2
3
4
5
6
7
8
9

//sizeof operator
#include<stdio.h>
main()
{
 int a=1,b;
 b=sizeof(++a);
 printf(“Resultant values of a and b are:\n”);
 printf(“%d %d”,a ,b);
}

Resultant values of a and b are:
1 2
Remark:
•  The operand of sizeof operator is not evalu-

ated. Hence, ++a is not evaluated and thus,
the value of a remains unchanged, i.e. 1. The
value of a takes 2 bytes in memory (in case
of MS-VC++ 6.0, it takes 4 bytes). Thus, the
value of b is 2

Program 2-13 | A program to illustrate that operand of sizeof operator is not evaluated

5. The sizeof operator cannot be applied on operands of incomplete typeÂ or function
type.Â

Forward Reference: Incomplete type (Chapter 9), function type (Chapter 5).

2.4.2.6.4 Address-of Operator
The address-of operator is used to find the address, i.e. l-value of a data object (Table 2.11).

Table 2.11 | Address-of Operator

S.No Operator Name of
operator

Category -ary of
operator

Precedence Associativity

1. & Address-of
operator

Unary Unary Level-I R→L

The important points about the address-of operator are as follows:
The address-of operator must appear towards the left side of its operand.1.
The syntax of using the address-of operator is 2. &operand.
The operand of the address-of operator should be a variable or a function designator.3. Â
The address-of operator cannot be applied to constants, expressions, bit-fieldsÂ and to
the variables declared with registerÂ storage class.

Forward Reference: Function designator (Chapter 5), bit-field (Chapter 9), storage class
specifier (Chapter 7).

2.5 Combined Precedence of All Operators
Till now, I have described different operators according to their role and have categorized
them into various classes like arithmetic operators, relational operators, etc. I have described
the precedence of operators within a class (i.e. intra-class precedence). Now, it is the time to
consider the precedence of an operator with respect to the operators in other classes (i.e. inter-
class precedence). Table 2.11 provides a combined table of precedence.

Operators and Expressions 65

Table 2.11 | Combined precedence chart

S.No Operator Name of operator Category -ary of
operator

Precedence Associativity

1. ()
[]
->

.

Function call
Array subscript
Indirect member
access
Direct member
access

Level-I (Highest)

2. !
~
+
-
++
--
&
*
sizeof

Logical NOT
Bitwise NOT
Unary plus
Unary minus
Increment
Decrement
Address-of
Deference
Sizeof

Unary operators Unary Level-II R→L

3. *
/
%

Multiplication
Division
Modulus

Multiplicative
operators

Binary Level-III L→R

4. +
-

Addition
Subtraction

Additive
operators

Binary Level-IV L→R

5. <<
>>

Left Shift
Right Shift

Shift operators Binary Level-V L→R

6. <
>
<=

>=

Less than
Greater than
Less than or equal
to
Greater than or
equal to

Relational
operators

Binary Level-VI L→R

7. ==
!=

Equal to
Not equal to

Equality
operators

Binary Level-VII L→R

8. & Bitwise AND Bitwise operator Binary Level-VIII L→R
9. ^ Bitwise X-OR Bitwise operator Binary Level-IX L→R
10. | Bitwise OR Bitwise operator Binary Level-X L→R
11. && Logical AND Logical operator Binary Level-XI L→R
12. || Logical OR Logical operator Binary Level-XII L→R
13. ?: Conditional op-

erator
Conditional Ternary Level-XIII R→L

(Contd...)

66 Programming in C—A Practical Approach

S.No Operator Name of operator Category -ary of
operator

Precedence Associativity

14. =
*=
/=
%=
+=
-=
&=

|=

^=

<<=
>>=

Simple assignment
Assign product
Assign quotient
Assign modulus
Assign sum
Assign difference
Assign bitwise
AND
Assign bitwise
OR
Assign bitwise
XOR
Assign left shift
Assign right shift

Assignment &
Shorthaind
assignment
operators

Binary Level-XIV R→L

15. , Comma operator Comma Binary Level-XV (Least) L→R

2.6 Summary
Operand is an entity on which an operation is performed.1.
Operator specifies the operation to be performed on an operand.2.
Expression is made up of operands and operators.3.
Operands constituting an expression can be identifiers, constants or expressions them-4.
selves. The identifiers allowed to constitute an expression are variables, functions and mac-
ros. However, label names, typedef name, tags of structure, union or enumeration cannot
be a part of an expression. The expressions forming an expression are called sub-expres-
sions. An expression that is not a part of another expression is called full expression.
Based upon the number of operators in an expression, the expressions are classified as 5.
simple expressions and compound expressions.
Simple expressions have only one operator.6.
There is more than one operator present in a compound expression. To evaluate a com-7.
pound expression, the order in which the operators will operate is to be determined.
The order in which operators operate depends upon the precedence and the associativ-8.
ity of the operators.
In a compound expression, if operators of different precedence appear together, the 9.
operator of the higher precedence operates first.
In a compound expression, if operators of the same precedence appear together, then 10.
precedence is not sufficient to determine the order in which operators will operate. The
order of evaluation can be determined by looking at the associativity of the operators.
If operators are left-to-right associative, the operator that appears first in the left-to-11.
right traversal will operate first.
If operators are right-to-left associative, the operator that appears first in the right-to-12.
left traversal will operate first.
The operators with the same precedence have the same associativity but vice versa is 13.
not true.

Operators and Expressions 67

In an arithmetic expression, if the operands of a binary operator are of a different type, 14.
C automatically applies arithmetic-type conversion to bring the operands to a common
type. The type of result of the binary operator will also be the common type.
Automatic-type conversion is called implicit-type conversion.15.
Type can also be changed by applying explicit-type conversion.16.
Explicit-type conversion is done with the help of a type cast operator, i.e. 17. (). The syntax
of using the type cast operator is (target-type-name) expression.

Exercise Questions
Conceptual Questions and Answers

1. I have heard that white-space characters are ignored in C. If I write the statement a+ =2; in a C program,
there is a compilation error. However, if I write it as a+=2; it works. Why is the blank space (i.e. a white-
space character) between + and = not getting ignored?

 Every white-space character is not ignored in C. White-space characters separating tokens are
not significant and are ignored in C. Here, ‘+=’ is a token (i.e. a single unit, one operator). We
cannot have white space in between + and =. The occurrence of a white-space character between
them makes ‘+’ and ‘=’ two different tokens (i.e. two different operators and both are binary op-
erators). Two binary operators cannot come next to each other without having any operand in
between. This leads to an error.

 The following are allowed:
 1. a += 2;
 2. a+= 2;
 3. a +=2;
 because white-space characters come in between tokens and not within a token. Similarly,

printf (“Hello”); can be written and will work but pri ntf(“Hello”); will not work because the
white-space character does not separate different tokens but comes within a token (i.e. printf).
Thus, the statement ‘White-space characters are ignored in C’ can be corrected and refined as
‘Non-significant white-space characters are ignored in C’.

2. I want to check whether a number b lies in between numbers a and c. I have written the following segment
of code:

 if(a<b<c)
 printf(“b lies between a and c”);
 else
 printf(“b is an outlier”);
 The above segment of code does not work for all test cases. Why? Correct the code so that it starts working

as intended.
 The answer to why this code does not work for all test cases lies in understanding how expres-

sion a<b<c gets evaluated. In the expression a<b<c, two less than operators (<) are involved. The
less than operator is left-to-right associative, thus the expression a<b<c is interpreted as (a<b)<c. a<b
is evaluated first. Less than is a relational operator and the outcome of a relational operator is a
boolean constant, i.e. 1 (true) or 0 (false). Therefore, a<b can be 1 or 0, depending upon whether a
is less than b or not. Then, the result of comparison of a and b gets compared with c. Therefore,
instead of b getting compared with c, 0 or 1 gets compared with c. Here lies the flaw.

68 Programming in C—A Practical Approach

 Suppose a=2, b=1 and c=5, in a<b<c (i.e. 2<1<5), 2<1 is false, i.e. 0. Therefore, the expression becomes 0<5.
0<5 is true, i.e. 1; hence, the output will be ‘b lies between a and c’, which is wrong.

 Instead of writing a<b<c, the expression should be written as a<b&&b<c. The correct code is:
 if(a<b&&b<c)
   printf(“b lies between a and c”);
 else
 printf(“b is an outlier”);
 In the expression a<b&&b<c (i.e. 2<1&&1<5), 2<1 is false. Therefore, the entire expression evaluates to

false and the output is ‘b is an outlier’.

3. A programmer wants to find the average of three numbers. He has written the following piece of code
in C:

 main()
 {
 int a=10,b=12,c=13, average;
 average=a+b+c/3;
 printf(“Average is %d”,average);
 }
 Does the mentioned piece of code produce the correct result as intended? If no, why?
 No, the code does not produce the intended result due to the following reasons:

1. The division operator has a higher precedence than the addition operator. Hence, the ex-
pression average=a+b+c/3 is interpreted as average=a+b+(c/3) instead of being interpreted as
average=(a+b+c)/3.

2. The type of the variable average is taken as int instead of float.

4. If the code in the previous question is rectified and rewritten as
 main()
 {
 int a=10,b=12,c=13;
 float average;
 average=(a+b+c)/3;
 printf(“Average is %f”,average);
 }
 does this code produce the correct result? If no, why? Rewrite the code, so that it produces the correct

result.
 Still the code will not produce the correct result. This is due to the fact that in the expression

average=(a+b+c)/3, the sub-expression a+b+c will be evaluated first and then it is divided by 3. 10+12+13
turns out to be 35. 35/3 gives 11. (As both 35 and 3 are integers, integer mode arithmetic is appli-
cable. In this mode, the result of evaluation of binary arithmetic operator is an integer.) Now, 11 is
assigned to a float variable. Before assigning an integer value to a float variable, the integer value
gets promoted (i.e. converted into float). Thus, 11 get promoted to 11.0. Therefore, the average value
that gets printed is 11.000000 instead of 11.666667.

 The reason behind this problem is the application of integer arithmetic instead of floating point
arithmetic. We must do something so that floating point arithmetic or mixed mode arithmetic is
applied. To make this happen, any one of the below-mentioned ways can be adopted:

 1. average=(a+b+c)/3.0; //ÅImplicit-type conversion
 2. average=(float)(a+b+c)/3; //ÅExplicit-type conversion
 3. average=(a+b+c)/(float)3; //ÅExplicit-type conversion

Operators and Expressions 69

 In all the three cases, division is carried out between an int value and a float value. Thus, mixed
mode arithmetic is applicable instead of integer arithmetic and the result of computation turns
out to be a float value. By using any one of the above three ways, ‘Average is 11.666667’ gets printed.

5. The output of the following piece of code turns out to be 81 instead of the expected output 300. Why does
this happen? Suggest possible ways to rectify this problem.

 main()
 {
 int a=100,b=900,c;
 c=a*b/300;
 printf(“The value that c gets is %d”,c);
 }
 The expression c=a*b/300 contains three operators, namely assignment operator, multiplication

operator and division operator. Multiplication and division operators have the same prece-
dence. The assignment operator has a lesser precedence than these operators. Therefore, mul-
tiplication and division operators will be evaluated prior to the assignment operator. Being
left-to-right associative, multiplication will be carried out first as the multiplication operator
appears towards the left. When 100 and 900 (i.e. both integers) get multiplied, the result turns out
to be 90000, which exceeds the range of integer data type. Since the value exceeds the range, wrap
around will occur and 90000 will be mapped to 90000−65536 = 24464. Now, this number is divided
by 300 to give 81 as the result. Therefore, this problem occurs due to overflow and wrap-around
effect.

 In order to avoid this problem, we should prevent this overflow and wrap around. This can be
done by using range of long integer type instead of integer type. The following alternatives will
solve the problem:

 1. c=(long)a*b/300;
 2. c=a*(long)b/300;
 Now, long integer and integer gets multiplied and the result turns out to be a long integer. 90000 is

well within the range of long integer type; hence no overflow occurs.
 It is very important to note that the following ways do not solve the problem:
 1. c=(long)(a*b)/300;
 2. c=a*b/(long)300;
 3. c=a*b/300L;
 This happens because type casting does not prevent overflow in the above-mentioned state-

ments. In 1, first a and b are multiplied. At this stage, overflow occurs and the value becomes
24464. Therefore, there is no benefit now in type-casting it to a long integer. A similar reason
applies for 2 and 3.

6. Why does an assignment operator fail on constants, i.e. why cannot constants be placed on the left side of
an assignment operator?

 Assignment operator fails on constants because the assignment operator on its left side expects
an operand that has a modifiable l-value. Constants do not have a modifiable l-value and thus
cannot be placed on the left side of the assignment operator. If a constant is placed on the left side
of the assignment operator, the compiler shows ‘L-value required’ error.

7. A programmer wants to find the exponent of a number. He has written the following piece of code:
 main()
 {
 int x=10,y=2,result;
 result=x^y;

70 Programming in C—A Practical Approach

 printf(“The result of exponent operation is %d”,result);
 }
 Does the above-mentioned piece of code produce the intended result?
 No, the mentioned piece of code does not produce the correct result. There is no operator in C to

find the exponent of a number. The ^ operator is a bitwise XOR operator. Hence, the mentioned
piece of code finds ‘x bitwise-XOR y’ instead of ‘x exponent y’.

8. I have read that ‘Every statement in C is terminated with a semicolon’. The line number 1 in the given
piece of code is terminated with a comma instead of a semicolon. Will this piece of code work? If yes, what
would its output be?

 main()
 {
 printf(“Hello”), //Åline 1
 printf(“Readers!!..”) ; //Åline 2
 }
 As new line characters and comments are ignored during the translation phase by the compiler,

the given piece of code:
 main()
 {
 printf(“Hello”), //Åline 1
 printf(“Readers!!..”); //Åline 2
 }
 will be interpreted as
 main()
 {
 printf(“Hello”), printf(“Readers!!..”);
 }

 The interpreted code has only one statement that consists of two comma-separated expressions,
i.e. printf(“Hello”) and printf(“Readers!!..”). As the operands of the comma operator are evaluated in left-
to-right order, printf(“Hello”) is evaluated first followed by printf(“Readers!..”). Hence, the output of the
code would be HelloReaders!!..

9. From the previous question, I have inferred that semicolons separating two printf functions can be replaced
by commas. Is my inference correct?

 No. Consider the following piece of code:
 main()
 {
 printf(“Hello”); ;printf(“Readers!!..”);
 }
 The given piece of code on execution prints HelloReaders!!... If the semicolons appearing between the

printf functions are replaced by commas, the given code becomes
 main()
 {
 printf(“Hello”), ,printf(“Readers!!..”);
 }
 The resultant code on compilation gives ‘Expression syntax error’. This error is due to the fact

that two comma operators cannot appear consecutively. There must be an operand in between
them. Hence, the drawn inference is not correct.

Operators and Expressions 71

10. What will the output of the following code segment be?
 main()
 {
 int a=10,b=20;
 printf(“%d %d\n”,a,b);
 a=a*b;
 b=a/b;
 a=a/b;
 printf(“%d %d\n”,a,b);
 a=a^b;
 b=a^b;
 a=a^b;
 printf(“%d %d\n”,a,b);
 a=a+b;
 b=a-b;
 a=a-b;
 printf(“%d %d\n”,a,b);
 }

 The code provides three different ways to swap the contents of two variables without using a
 temporary variable.
 Initially, a=10, b=20. On execution of statements:
 a=a*b; //Åa will become 200
 b=a/b; //Åb will become 10
 a=a/b; //Åa will become 20
 Values are swapped.
 a=a^b; //Åa will become 30
 b=a^b; //Åb will become 20
 a=a^b; //Åa will become 10
 Values are swapped again.
 a=a+b; //Åa will become 30
 b=a-b; //Åb will become 10
 a=a-b; //Åa will become 20
 Values are swapped again.
 Hence, the output of the code would be:
 10 20
 20 10
 10 20
 20 10

Code Snippets
 Determine the output of the following code snippets. Assume that the inclusion of the required header files

has been made and there is no prototyping error due to them.

11. main()
 {
 int a;
 a=2*3+4%5–3/2+6;
 printf(“%d”,a);
 }

72 Programming in C—A Practical Approach

12. main()
 {
 printf(“%d %d %d %d”,6/5,-6/5,6/-5,-6/-5);
 }
13. main()
 {
 printf(“%d %d %d %d”,6%5,-6%5,6%-5,–6%–5);
 }
14. main()
 {
 int a=12,b;
 printf(“%d %d”,b,b=a);
 }
15. main()
 {
 int a=23,b=12,c=10,d;
 d=c=b=a;
 printf(“%d %d %d %d”,a,b,c,d);
 }

16. main()
 {
 int a=23,b=12,c=10,d;
 d=c+2=b+1=a;
 printf(“%d %d %d %d”,a,b,c,d);
 }

17. main()
 {
 int a=2,b=3,c=1,d;
 d=ac;
 printf(“%d”,d);
 }

18. main()
 {
 int a=3,b=2,c=1,d;
 d=a<b<c-1;
 printf(“%d”,d);
 }

19. main()
 {
 int a=10,b=20,c=30;
 c==a=b;
 printf(“%d %d %d”,a,b,c);
 }

20. main()
 {
 int a=10,b=20,c=30;
 c=a==b;

Operators and Expressions 73

 printf(“%d %d %d”,a,b,c);
 }

21. main()
 {
 int a=10,b=20,c=30;
 c==a==b;
 printf(“%d %d %d”,a,b,c);
 }

22. main ()
 {
 int a=012,b=034;
 int x=0x12,y=0x34;
 int c,d,u,v;
 c=a&b;
 d=a|b;
 u=x&y;
 v=x|y;
 printf("%d %d %d %d",c,d,u,v);
 }

23. main ()
 {
 int a=012,b=034;
 int x=0x12,y=0x34;
 int c,d,u,v;
 c=a&&b;
 d=a||b;
 u=x&&y;
 v=x||y;
 printf(“%d %d %d %d”,c,d,u,v);
 }
24. main()
 {
 int c=10,d,e;
 d=!c;
 e=~c;
 printf(“%d %d”,d,e);
 }

25. main()
 {
 int c=–4,d=4;
 printf(“%d %d %d %d”,~c,~d,c^d,~c^~d);
 }

26. main()
 {
 int i=10;
 printf(“%d”,i++*i++);
 }

74 Programming in C—A Practical Approach

27. main()
 {
 int i=10,j;
 j=++i++;
 printf(“%d %d”,i,j);
 }

28. main()
 {
 int i=10,j=11,k,l;
 k=i+++j;
 l=i+++++j;
 printf(“%d %d”,l,k);
 }

29. main()
 {
 int i=10,j=11,k,l;
 k=i+++j;
 l=i+++ ++j;
 printf(“%d %d”,l,k);
 }

30. main()
 {
 int i=10,j=11,k,l;
 k=i+++j;
 l=i++ +++j;
 printf(“%d %d”,l,k);
 }

31. main()
 {
 int x=20,y=35;
 x=y++ + x++;
 y=++y + ++x;
 printf(“%d %d”,x,y);
 }

32. main()
 {
 int i=100,j=20;
 i++=j;
 printf(“%d %d”,i,j);
 }

33. main()
 {
 int a=10,b;
 a>=5?b=100:b=200;
 printf(“%d”,b);
 }

Operators and Expressions 75

34. main()
 {
 int i=0,j=1,k=2,l;
 l=i||j++&&++k;
 printf(“%d %d %d %d”,i,j,k,l);
 }

35. main()
 {
 int i=0,j=1,k=2,l;
 l=i&&j++&&++k;
 printf(“%d %d %d %d”,i,j,k,l);
 }

36. main()
 {
 int i=0,j=1,k=2,l;
 l=++i&&j++&&++k;
 printf(“%d %d %d %d”,i,j,k,l);
 }

37. main()
 {
 int i=0,j=1,k=2,l;
 l=++i||j++&&++k;
 printf(“%d %d %d %d”,i,j,k,l);
 }

38. main()
 {
 int i=0,j=1,k=2,l;
 l=++i&&j++||++k;
 printf(“%d %d %d %d”,i,j,k,l);
 }

39. main()
 {
 int i=0,j=1,k=2,l;
 l=++i&&--j||++k;
 printf(“%d %d %d %d”,i,j,k,l);
 }

40. main()
 {
 int i=0,j=1,k=2,l;
 l=++i&&j--||++k;
 printf(“%d %d %d %d”,i,j,k,l);
 }

41. main()
 {
 int x=4;
 printf(“%d %d %d”,x,x<<2,x>>2);
 }

76 Programming in C—A Practical Approach

42. main()
 {
 int x=32767;
 printf(“%d”,x<<1);
 }

43. main()
 {
 int num=3;
 printf(“%d”,num<<2<<2);
 }

44. main()
 {
 int num=3;
 printf(“%d”,num<<(2<<2));
 }

45. main()
 {
 int num=5,i=1;
 printf(“%d”,(num<<i&1<<15)?1:0);
 }

46. main()
 {
 int num=5,i=1;
 printf(“%d”,(num<<i&&1<<15)?1:0);
 }

47. main()
 {
 float a=0.9;
 int c;
 c=a<0.9;
 printf(“%d”,c);
 }

48. main()
 {
 float a=0.5;
 int c;
 c=a<0.5;
 printf(“%d”,c);
 }

49. main()
 {
 float a=0.9;
 int c;
 c=a<0.9f;
 printf(“%d”,c);
 }

Operators and Expressions 77

50. main()
 {
 int a=0,b=0;
 ++a==0||++b==11;
 printf(“%d %d”,a,b);
 }

51. main()
 {
 int x=4+2%-8;
 printf(“%d”,x);
 }

52. main()
 {
 int i=5;
 i=!i>3;
 printf(“%d”,i);
 }

53. main()
 {
 int a=10,b=70,c;
 c=b=a*=2;
 printf(“%d %d %d”,a,b,c);
 }

54. main()
 {
 printf(“%x”,-1<<4);
 }

55. main()
 {
 int c=- -2;
 printf(“%d”,c);
 }

56. main()
 {
 int c=--2;
 printf(“%d”,c);
 }
57. main()
 {
 int i=5;
 printf(“%d %d %d %d %d”,i++,i--,++i,--i,i);
 }

58. main()
 {
 200;
 printf(“%d”,200);
 }

78 Programming in C—A Practical Approach

59. main()
 {
 int i=-1;
 +i;
 printf(“%d %d”,i,+i);
 }

60. main()
 {
 char not;
 not=!2;
 printf(“%d”,not);
 }

61. main()
 {
 int k=1;
 printf(“%d==1 is “”%s”,k,k==1?”True”:”False”);
 }

62. main()
 {
 const int i=4;
 float j;
 j=++i;
 printf(“%d %d”,i,++j);
 }

63. main()
 {
 int i=5;
 printf(“%d”,i=++i==6);
 }

64. main()
 {
 int i=5,j=10;
 j=i&=j&&10;
 printf(“%d %d”,i,j);
 }

65. main()
 {
 float x,y;
 x=7; y=10;
 x*=y*=y+28.5;
 printf(“%f %f”,x,y);
 }

66. main()
 {
 unsigned int a=0xffff;
 ~a;
 printf(“%x”,a);
 }

Operators and Expressions 79

67. main()
 {
 unsigned char i=0x80;
 printf(“%d”,i<<1);
 }

68. main()
 {
 unsigned a=–1;
 int b;
 printf(“%u ”,a);
 printf(“%u “,++a);
 }

69. main()
 {
 float u=3.5;
 int v,w,x,y;
 v=(int)(u+0.5);
 w=(int)u+0.5;
 x=(int)((int)u+0.5);
 y=(u+(int)0.5);
 printf(“%d %d %d %d”,v,w,x,y);
 }

70. main()
 {
 int u=3.5,v,w,x,y;
 v=(int)(u+0.5);
 w=(int)u+0.5;
 x=(int)((int)u+0.5);
 y=(u+(int)0.5);
 printf(“%d %d %d %d”,v,w,x,y);
 }

Multiple-choice Questions
71. The location of a global variable is bound at
 a. Load time c. Run time
 b. Procedure entry time d. None of these

72. Which of the following is not an arithmetic operator?
 a. * c. & 
 b. + d %

73. Which of the following is not a bitwise operator?
 a. && c. ^
 b. | d. >>

74. Which of the following operators in arithmetic class has the lowest precedence?
 a. % c. *
 b. / d. +

80 Programming in C—A Practical Approach

75. What is the correct way to round off a float variable z into an integer?
 a. x=(int)(z+0.5) c. x=(int)z+0.5
 b. x=(z+(int)z+0.5 d. x=(int)((int)z+0.5)

76. Comma operator is a/an
 a. Unary operator c. Ternary operator
 b. Binary operator d. None of these

77. The location of local variables and reference parameter is typically bound at
 a. Load time c. Run time
 b. Procedure entry time d. None of these

78. Evaluation of the expression involving || operator
 I. Takes place from left to right 
 II. Takes place from right to left 
 III. Stops when one of the operand evaluates to true 
 IV. Stops when one of the operand evaluates to false

 a. I and III c. II only
 b. III only d. IV

79. Evaluation of the expression involving && operator
 I. Takes place from left to right 
 II. Takes place from right to left 
 III. Stops when one of the operand evaluates to true 
 IV. Stops when one of the operand evaluates to false

 a. I and III c. II only
 b. I and IV d. IV

80. Expressions in C can be made from
 I. Operands alone 
 II. Operators alone 
 III. Operators and operands 
 IV. None of these

 a. I and III c. II only
 b. III only d. IV

81. What is the fundamental unit of execution in C?
 a. Expression c. Statement
 b. Sub-expression  d. Function

82. What is the minimum number of temporary variables required to swap the content of two
variables?

 a. 1 c. 0
 b. 2 d. None of these

83. int a; is actually a
 a. Declaration c. Neither a definition nor a declaration
 b. Definition d. None of these

84. The output of the following C code will be as follows:
 main()
 {

Operators and Expressions 81

 int a=10,b=20;
 printf(“%d %d”,a,b);
 a ^=b ^=a ^=b;
 printf(“%d %d”,a,b);
 }
 a. 10 20 10 20 c. 10 10 10 10
 b. 10 20 20 10 d. None of these

85. main()
 {
 if(~0 == -1)
 printf(“Perfect”);
 }
 a. Perfect c. Compilation error
 b. No output d. None of these

Outputs and Explanations to Code Snippets
11. 15
 Explanation:
 The expression a=2*3+4%5-3/2+6 gets evaluated as
 a=6+4%5-3/2+6
 a=6+4-3/2+6
 a=6+4-1+6
 a=10-1+6
 a=9+6
 a=15

12. 1 -1 -1 1
 Explanation:
 The sign of the result of evaluation of division operator depends upon the sign of both the

numerator as well as the denominator. If both are positive, the result will be positive. If either is
negative, the result will be negative and if both are negative, the result will be positive.

13. 1 -1 1 -1
 Explanation:
 The sign of the result of evaluation of modulus operator depends upon the sign of numerator

only. If the numerator is positive, the result will be positive. If the numerator is negative, the
result will be negative.

14. 12 12
 Explanation:
 The comma operator guarantees left-to-right evaluation, but the commas separating the argu-

ments in a function call are not comma operators. They are considered as separators." If commas
separating argumentsÂ in a function callÂ are considered as comma operators, then no function
could have more than one argument. Hence, these arguments are not guaranteed to be evaluated
from left to right. The order of evaluation of arguments in a function call is compiler dependent.
In Borland TC 3.0 & Borland TC 4.5, evaluation takes place from right to left. Thus, if the code in
the given question is executed using the specified compilers, b=a gets evaluated first and b gets
the value 12. The result of the evaluation of the expression b=a turns out to be 12, i.e. the value that
is assigned. Therefore, 12 12 gets printed.

82 Programming in C—A Practical Approach

" Separators are used to separate two tokens. Unlike other programming languages:
•  Semicolon in C language is a terminator and not a separator. Terminator terminates a

statement. Statements in C are terminated with semicolon.
• In C language, the white-space character acts as separator.

Forward Reference: Arguments, function call (Chapter 5).

15. 23 23 23 23
 Explanation:
 d=c=b=a is a valid expression with no compilation error. The assignment operator" is right-to-left

associative. Thus, d=c=b=a is interpreted as (d=(c=(b=a))). Thus, first the value of a will be placed in
b, then the value of b will be placed in c and then the value of c will be placed in d. Hence, all b, c
and d will have a value of a, i.e. 23.

" The result of evaluation of an expression is an r-value. Assignment expression is no exception to
this rule. The result of evaluation of an assignment expression is the value that is assigned. For
example, a=10; assigns 10 to a and the overall expression evaluates to 10 (i.e. the assigned value). As
described in the explanation above, the value of b is not assigned to c. Actually, the result of evalu-
ation of expression b=a is assigned to c. However, since the result of evaluation of expression b=a is
the same as the value of variable b after assignment, the above explanation is also correct.

16. Compilation error (l-value required error)
 Explanation:
 c+2 and b+1 are expressions. The result of the evaluation of an expression is an r-value, and the as-

signment operator cannot have an r-value on its left side. Hence, the placement of c+2 and b+1 on
the left side of the assignment operator is erroneous and leads to ‘L-value required’ error.

17. 0
 Explanation:
 In expression d=ac, three operators namely, assignment operator (=), less than operator (<) and

greater than operator (>) are involved. The precedence of the assignment operator is least and
less than operator and greater than operator have the same precedence. < and > operators are
left-to-right associative. Thus, less than operator (<) will be evaluated first. a<b, i.e. 2<3 turns out
to be true, i.e. 1. Now 1>c, i.e. 1>1 is checked and it turns out to be false, i.e. 0. This is assigned to d.
Hence, d got the value 0.

18. 0
 Explanation:
 Out of =, < and – operators, – operator has the highest precedence. Thus, c-1 will be evaluated first

and turns out to be 0. a<b is evaluated then and turns out to be 0 (as 3<2 is false). Then 0<0 is evalu-
ated and turns out to be 0. This outcome is assigned to d. Therefore, d will have the value 0.

19. Compilation error (l-value required)

 Explanation:
 Out of == and = operator, the equality (==) operator has a higher precedence than the assign-

ment operator. Remember that the assignment operator has a lower precedence than every

Operators and Expressions 83

other operator except the comma operator. The equality operator will be evaluated first. c==a,
i.e. 10==30 evaluates to false, i.e. 0. Now, the expression becomes 0=b (i.e. trying to assign a value
of b to a constant). It is not allowed, as the assignment operator cannot have a constant (i.e. r-
value) on its left side and if it happens (as in this case), there will be ‘L-value required’ error.

20. 10 20 0
 Explanation:
 a==b is evaluated first and turns out to be 0. 0 is assigned to c. The values of a and b are not

 manipulated and remain the same. Hence, the result is 10 20 0.

21. 10 20 30
 Explanation:
 The equality operator is left-to-right associative. Hence, the expression c==a==b is interpreted as

(c==a)==b. The sub-expression c==a is evaluated first and turn out to be 0. Then, 0==b, i.e. 0==20 is
evaluated and results in 0. This outcome is not assigned to any variable and will be ignored. Val-
ues of a, b and c are not modified anywhere in the function. Hence, the output is 10 20 30.

22. 8 30 16 54

 Explanation:
 a will be stored in memory as follows:

Sign
Bit 16
MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

 b will be stored in memory as follows:

Sign
Bit 16
MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

 Result of & (Bitwise AND) and |(Bitwise OR) operators is shown in the figure below:
Operator

and result
Sign Magnitude
Bit
16

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

a 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

b 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

c=a&b=8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

d=a|b=30 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

 x will be stored in memory as follows:

Sign
Bit 16
MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit 1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

84 Programming in C—A Practical Approach

 y will be stored in memory as follows:

Sign
Bit 16
MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit 1

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

 Result of & (Bitwise AND) and |(Bitwise OR) operators is shown in the figure below:

Operator
and result

Sign Magnitude (Magnitude is in two’s complement representation)
Bit
16

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

x 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

y 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

u=x&y=16 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

v=x|y=54 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0

23. 1 1 1 1

 Explanation:
 In C language, a non-zero value is treated as true and zero value is treated as false. There-

fore, 012,034, 0x12 and 0x34 are treated as true as all are non-zero values. True && True evaluates
to true, i.e. 1. True || True evaluates to true, i.e. 1. Hence, 1 is assigned to c, d, u and v.

24. 0 –11

 Explanation:
 ! is logical NOT operator and ~ is bitwise NOT operator. Logical NOT operator, i.e. ! operates

on its operand considering it as a single entity while bitwise NOT operator, i.e. ~ operates on
the individual bits of its operand. In d=!c, c is 10, i.e. true. The result of logical negation of true
turns out to be false, i.e. 0. Hence, d will have a value of 0.

 The value of c (i.e. 10) will be stored in memory as follows:

Sign
Bit 16
 MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

 Bitwise operator (~) negates every bit of c. Hence, the result of bitwise negation will be as
follows:

Operator
and result

Sign
Bit 16
MSB

Magnitude of:
c is in normal binary representation
e is in two’s complement representation
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

e=~c 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1

Operators and Expressions 85

 Sign bit of e is 1. Therefore, the number e will be negative. Its value can be determined by taking
two’s complement of the two’s complemented representation of its magnitude as shown in the
figure below:

Magnitude (MSB is 1, so magnitude is in two’s complement representation)
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

e in two’s
complement

form

1 1 1 1 1 1 1 1 1 1 1 0 1 0 1

Its two’s
complement

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

 Since sign bit was 1, the value of e will be –11.

25. 3 -5 -8 -8
 Explanation:

Operator and
result

 Sign
Bit 16
MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

c=-4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

d=4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

~c=3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

~d=-5 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

c^d=-8 (XOR) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

~c^~d=-8 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

26. 110

 Explanation:
 Actually the result of this program snippet is compiler dependent. In the case of a post-increment

operator, the value of the operand is used first for the evaluation of expression and after its use
the value of the operand is incremented. The precise meaning of words ‘after’ and ‘expression’ is
left undefined. Two possible interpretations are as follows:

 1. According to the first interpretation, the value of the operand (i.e. i) is incremented after the
evaluation of the sub-expression" (i.e. i++).

 2. According to the second interpretation, the value of the operand (i.e. i) is incremented after
the evaluation of full expression" (i.e. i++*i++).

 If the value is incremented after the evaluation of the sub-expression (i.e. interpretation 1), the
expression i++*i++ will be evaluated to 10*11=110. If the value is incremented after the evaluation of
full expression (i.e. interpretation 2), the expression i++*i++ will be evaluated to 10*10=100. Differ-
ent compilers use different interpretations; hence, the result is compiler dependent. In Borland
TC 3.0 and Borland TC 4.5 compilers, increment takes place after the evaluation of the sub-
expression. Hence, the result is 110.

" An expression that is part of another expression is called sub-expression. An expression that
is not part of another expression is called full expression.

86 Programming in C—A Practical Approach

27. Compilation error (l-value required)
 Explanation:
 As the increment operator is right-to-left associative, the expression j=++i++ will be interpreted as

j=++(i++). The result of evaluation of sub-expression i++ will be an r-value. This r-value will act as an
operand for other increment operator, i.e. pre-increment operator. Thus, the expression reduces to
++(r-value). This reduced expression is erroneous, as increment and decrement operators can only
work on operands that have a modifiable l-value. Hence, there will be ‘L-value required’ error.

28. Compilation error (l-value required)
 Explanation:
 The tokenizer" of C language is greedy in nature. It always tries to create the biggest possible to-

ken. Thus, the expression k=i+++j will be treated as k=i++ +j and it is a well-formed expression. The op-
erator ++ will operate first and then operator + will operate. The outcome is assigned to k. In expres-
sion l=i+++++j, the tokenizer will divide the operator sequence +++++ into ++ ++ +. Thus, the expression
l=i+++++j will be treated as l=i++ ++ +j. The sub-expression i++ will evaluate to an r-value. The second ++
operator cannot operate on an r-value and hence, will lead to ‘L-value required’ compilation error.

" The first phase of a compiler that divides the sequence of input characters into tokens is
known as a tokenizer or a lexical analyzer. C language has ‘Greedy Tokenizer’. It always
tries to create the biggest possible token. For example, the sequence of input characters i++-+j
will be divided into token sequences i, ++, -, + and j. Consider another example, the sequence
of input characters i+++ ++j will be divided into token sequences i, ++, +, ++ and j. Note that the
white-space character between two characters is not ignored while tokenizing.

29. 23 21
 Explanation:
 The expression k=i+++j will be treated as k=i++ +j. First, the value of i is used for the evaluation of

sub-expression i++ and then it is incremented by 1. The value of j (i.e. 11) is added to the result of
evaluation of i++ (i.e. 10) and the outcome is assigned to k. Therefore, k will be 10+11=21. i will become
11 and j remains 11.

 The expression l=i+++ ++j will be treated as l=i++ + ++j. First, the value of i is used for the evaluation
of sub-expression i++ and then it is incremented by 1. The value of j will be incremented first and
then its value is used for the evaluation of full expression. The result of evaluation of two sub-
expressions (i.e. i++ and ++j) is added and is assigned to l. Thus, the value of l becomes 11+12=23. Both
i and j become 12 after the evaluation of full expression l=i+++ ++j.

30. Compilation error (l-value required error)
 Explanation:
 The expression l=i++ +++j will be treated as i++ ++ +j and will give an error due to the reason men-

tioned in Answer 28.
31. 57 94
 Explanation:
 In the expression x=y++ + x++, the values of x (i.e. 20) and y (i.e. 35) are used for the evaluation of sub-

expressions: y++ and x++. The outcomes of evaluation of these sub-expressions are added, and the
result is assigned to variable x (i.e. 20+35=55 and 55 is assigned to x). Then the values of y and x are
incremented (i.e. y becomes 36 and x becomes 56). In the next expression, the values of y and x get
incremented first (i.e. x becomes 57 and y becomes 37) and then they are used for the evaluation of
full expression y=++y + ++x (i.e. y=37+57=94). Hence, x and y become 57 and 94, respectively.

Operators and Expressions 87

32. Compilation error (l-value required)
 Explanation:
 In the expression i++=j, the increment operator and the assignment operator are involved. The in-

crement operator ++ has a higher precedence than the assignment operator and will get evaluated
first. The result of evaluation of increment operator is an r-value. This r-value lies on the left side
of the assignment operator and thus, leads to ‘L-value required’ error.

33. 100
 Explanation:
 The expression a>=5 evaluates to true. Hence, the expression" b=100 gets evaluated. Value 100 is

assigned to variable b and is printed by the next printf statement.

" In conditional expression E1?E2:E3, the sub-expression E1 is evaluated first. If it evaluates to a
non-zero value (i.e. true), then E2 is evaluated and E3 is ignored. If E1 evaluates to zero (i.e.
false), then E3 is evaluated and E2 is ignored.

34. 0 2 3 1
 Explanation:
 Rules to be followed:
 1. The precedence of the logical AND operator (&&) is higher than the precedence of the logical

OR (||) operator. The precedence of the logical AND operator and the logical OR operator is
only used to parenthesize the expression involving them.

 2. The logical AND operator (&&) and the logical OR operator (||) always guarantee left-to-right
evaluation irrespective of their precedence.

 3. If the first operand of the logical OR operator (||) evaluates to true, the second operand will
not be evaluated, as TRUE || anything (true or false) is TRUE.

 4. If the first operand of the logical AND operator (&&) evaluates to false, the second operand will
not be evaluated, as FALSE && anything (true or false) is FALSE.

 Expression l=i||j++&&++k will be treated as l=i||(j++&&++k), as the logical AND operator has a higher
precedence than the logical OR operator. The logical AND and logical OR operator guarantee
left-to-right execution. Hence, the expression l=i||(j++&&++k) is executed from left to right. The first
operand of the logical OR operator (||), i.e. i is 0, i.e. false; hence, the second operand needs to
be evaluated to determine the truth value of full expression. The sub-expression j++&&++k starts
evaluation. In sub-expression j++, j is post-incremented. The sub-expression j++ evaluates to 1 and
the value of j is incremented to 2. Since the first operand of the logical AND operator, i.e. j++ evalu-
ates to 1 (i.e. true), the second operand (i.e. ++k) needs to be evaluated. In sub-expression ++k, k is
pre-incremented. The value of k is incremented first and then its value is used for the evaluation
of expression. Thus, the value of k used for the evaluation of expression is 3. Therefore, 1&&3 turns
out to be 1. Thus, the second operand of the logical OR operator evaluates to 1. Hence, 0||1 will be
evaluated and turns out to be 1. The outcome is assigned to l.

 Therefore, the values are i=0, j=2, k=3, l=1.

35. 0 1 2 0
 Explanation:
 Since the logical AND operator is left-to-right associative, the expression l=i&&j++&&++k will be in-

terpreted as l=(i&&j++)&&++k. Recall Rule 4 mentioned in the previous answer. In the sub-expression
i&&j++, as the first operand of && operator, i.e. i is 0 (i.e. false), j++ will not be evaluated and the sub-

88 Programming in C—A Practical Approach

expression i&&j++ evaluates to 0. Due to the same reason, the sub-expression ++k will not be evalu-
ated and the full expression evaluates to 0. 0 is assigned to l. Hence, i=0, j=1, k=2 and l=0.

36. 1 2 3 1
 Explanation:
 The expression l=++i&&j++&&++k will be interpreted as l=(++i&&j++)&&++k. In the sub-expression ++i&&j++,

i is pre-incremented. i becomes 1 and the sub-expression ++i, evaluates to 1. Since the first operand
of the && operator evaluates to 1, i.e. true, the sub-expression j++ needs to be evaluated. The sub-
expression j++ evaluates to 1 and the value of j becomes 2. As 1&&1 evaluates to 1, the sub-expression
++k will be evaluated. k will become 3. 1&&3 evaluates to 1. Hence, l will get value 1. Therefore, the
values are i=1, j=2, k=3, l=1.

37. 1 1 2 1
 Explanation:
 Since the precedence of the logical AND operator is higher than the logical OR operator, the

expression l=++i||j++&&++k will be interpreted as l=++i||(j++&&++k). In the sub-expression ++i, i is pre-in-
cremented. i becomes 1 and the sub-expression ++i evaluates to 1. 1|| anything (0 or 1) is 1. Hence, the
sub-expression (j++&&++k) will not be evaluated. The values of j and k remain 1 and 2, respectively.
Therefore, the values are i=1, j=1, k=2, l=1.

38. 1 2 2 1

 Explanation:
 The expression l=++i&&j++||++k will be interpreted as l=(++i&&j++)||++k. In the sub-expression ++i&&j++, i

is pre-incremented. i becomes 1 and the sub-expression ++i evaluates to 1. Since the first operand
of the logical AND operator evaluates to true, the second operand needs to be evaluated. The
sub-expression j++ evaluates to 1 and j is incremented to 2. 1&&1 evaluates to 1. 1 || anything (0 or 1) is
1. Therefore, the sub-expression ++k will not be evaluated and the value of k remains 2. Thus, the
expression ++i&&j++||++k evaluates to 1 and is assigned to l. Hence, i=1, j=2, k=2 and l=1.

39. 1 0 3 1
 Explanation:
 The expression l=++i&&--j||++k will be interpreted as l=(++i&&--j)||++k. In the sub-expression ++i&&--j, i is

pre-incremented. i becomes 1 and the sub-expression ++i evaluates to 1. Since the first operand of
the logical AND operator evaluates to true, the second operand (i.e. --j) needs to be evaluated. j is
decremented to 0 and the sub-expression --j evaluates to 0. Thus, 1&&0 evaluates to 0. As the first
operand of the logical OR operator is 0, the sub-expression ++k needs to be evaluated. k becomes
3. 0||3 evaluates to 1 and is assigned to l. Hence, the values are i=1, j=0, k=3 and l=1.

40. 1 0 2 1
 Explanation:
 The expression l=++i&&j--||++k will be interpreted as l=(++i&&j--)||++k. In the sub-expression ++i&&j--, i is

pre-incremented. i becomes 1 and the sub-expression ++i evaluates to 1. Since the first operand of
the logical AND operator evaluates to true, the second operand (i.e. j--) needs to be evaluated.
The sub-expression j-- evaluates to 1 and j is decremented to 0. 1&&1 evaluates to 1. The first operand
of the logical OR operator evaluates to 1, so the second operand need not be evaluated. Hence,
++k will not be evaluated and the value of k remains 2. The expression ++i&&j--||++k evaluates to 1 and
is assigned to l. Hence, i=1, j=0, k=2, l=1.

Operators and Expressions 89

41. 4 16 1
 Explanation:
 << is the left shift operator. A shift by 1 bit in the left direction is equivalent to multiplication" by

2. A shift by n bits is equivalent to multiplication by 2n, provided the magnitude does not over-
flow.

 >> is the right shift operator. A shift by 1 bit in the right direction is equivalent to integer division
by 2. A shift by n bits is equivalent to integer division by 2n.

 4<<2 is equivalent to 4*22 = 4*4 =16
 4>>2 is equivalent to 4/22 = 4/4 = 1.

" The statement ‘A shift by 1 bit in the left direction is equivalent to multiplication by 2’ holds
true till there is no overflow in the magnitude field of the number. For example, if an integer
is stored in 2 bytes, 32767<<2 will not be 65534 because the magnitude field has overflowed.

42. –2
 Explanation:
 x=32767 will be stored in memory as follows:

Sign
Bit 16
MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 Shift by 1 bit in left direction will lead to

Sign
Bit 16
 MSB

Magnitude is in two’s complement representation
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

 Sign bit becomes 1. Hence, the number will be negative and its value can be determined by taking
two’s complement" of two’s complemented representation of its magnitude. Two’s complement
of 111 1111 1111 1110 is 000 0000 0000 0010, i.e. 2. Sign bit was 1, i.e. negative. Hence, the result will be –2.

" A good method to find two’s complement of a number is:
1. Look from the right side in the bits sequence.
2. Till 1 is encountered keep the bits sequence same.
3. After 1 has been encountered, negate every bit, i.e. 0 to 1 and 1 to 0.

For example, consider number  111 1111 1111 1110 Å
two’s complement will be      000 0000 0000 0010

43. 48
 Explanation:

 Since, the shift operator is left-to-right associative, the expression num<<2<<2 will be interpreted
as (num<<2)<<2. The sub-expression num<<2, i.e. 3<<2 evaluates to an r-value 12. This r-value acts as an
operand for the second shift operator and the sub-expression 12<<2 evaluates to 48.

90 Programming in C—A Practical Approach

44. 768
 Explanation:
 In expression num<<(2<<2), the sub-expression 2<<2 will be evaluated first." The result of its evalu-

ation will be an r-value, i.e. 8. Then, num<<8 (i.e. 3<<8) will be evaluated and results in 768.

" Parenthesized sub-expressions are evaluated first.

45. 0
 Explanation:
 Since the shift operator has a higher precedence than the bitwise AND (&) operator, the expres-

sion (num<<i&1<<15)?1:0) will be interpreted as ((num<<i)&(1<<15))?1:0). First, the operand1 of the conditional
operator (i.e. sub-expression num<<i&1<<15) will be evaluated as follows:

Operator and
result

Sign
bit 16
MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

num=5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

num<<i=num<<1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1<<15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

num<<i&1<<15=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Since the sub-expression num<<i&&1<<15 evaluates to 0, i.e. false, the outcome of the conditional op-
erator will be the result of evaluation of operand3, i.e. 0.

46. 1
 Explanation:
 The expression (num<<i&&1<<15)?1:0) will be interpreted as ((num<<i)&&(1<<15))?1:0). The sub-expression

num<<i&&1<<15 will be evaluated first. The sub-expression num<<i (i.e. 5<<1) evaluates to 10 and the sub-
expression 1<<15 evaluates to –32768. Both are non-zero values and non-zero values are considered
as true. Also, true&&true is true. Hence, num<<i&&1<<15 evaluates to true, i.e. 1. Since, operand1 of the
conditional operator evaluates to true, operand2 (i.e. 1) will be evaluated and results in 1.

47. 1
 Explanation:
 This question can only be answered after looking at some of the technicalities and intricacies

involved in storing floating point numbers. The following facts must be remembered:

 1. Each real floating-type number cannot be represented exactly in memory (i.e. with infinite
precision).

 During their storage, some round-off errors occur. Some real floating-type numbers are stored
as a greater value and some are stored as a lesser value.

 Execute the given code and have a look at the output:
   main()
 {
 float a=0.4, b=0.9;
 printf(“0.4 is stored as %.20f\n”,a);
 printf(“0.9 is stored as %.20f”,b);
 }

Operators and Expressions 91

 The output of this code turns to be
 0.4 is stored as 0.40000000596046447800 (i.e greater value)
 0.9 is stored as 0.89999997615814209000 (i.e smaller value)
 2. Floats are stored in 32 bits (1 bit for Sign, 8 bits for Exponents and 23 bits for Fraction).
 0.9 as a float will be stored in memoryÁ as follows:

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

3 F 6 6 6 6 6 6
S E E E E E E E E F

8-bits for exponent 23-bits for mantissa

Backward Reference: Refer Answer number 20 in Chapter 1 to review how float is stored in
memory.

3. Doubles are stored in 64 bits (1 bit for Sign, 11 bits for Exponents and 52 bits for Fraction).
 To store 0.9 (i.e. 0.11100110011001100110011001100...) as double:
 I. Normalize it. Value becomes 1.1100110011001100...* 2–1

 II. Bias the double exponent with value 1023 like float exponent is biased with 127. There-
fore, exponent after biasing becomes -1+1023=1022 i.e. 01111111110 (in binary)

 III. Fractional part is 11001100110011001100110011...
 0.9 as double will be stored in memory as follows:

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

3 F E C C C C C
S E E E E E E E E E E E F

11-bits for exponent 52-bits for mantissa (Continued in the next table)

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

C C C C C C C D
F F

(Continued from the previous table)

 4. Last nibble gets rounded off
 Why is the last nibble (i.e. 4 bits) in double represented by D instead of C?
 This is because of rounding. C gets rounded to D. This can be confirmed by running the fol-

lowing piece of code:
 main()
 {
 float a=0.9;
 double b=0.9;
 char *p;
 int i;
 p=(char*)&a;

92 Programming in C—A Practical Approach

 printf(“Float is stored in memory as:\t”);
 for(i=0;i<=3;i++)
 printf(“%02X ”,(unsigned char)p[i]);
 p=(char*)&b;
 printf(“\n Double is stored in memory as:\t”);
 for(i=0;i<=7;i++)
 printf(“%02X ”,(unsigned char)p[i]);
 }
 The above code gives as output
 Float is stored in memory as: 66 66 66 3F
 Double is stored in memory as: CD CC CC CC CC CC EC 3F
 Why is the output like CD CC CC CC CC CC EC 3F instead of 3F EC CC CC CC CC CC CD?
 The output is like this because the Intel family of micro-processors stores numbers in little-endian

format." Therefore, the least significant byte, i.e. CD gets stored in the lowest memory location
and hence gets printed first. The most significant byte, i.e. 3F is stored in the highest memory
location and will get printed last.

" In little-endian format of storing numbers, the least significant byte is always stored in the
lowest numbered memory location, and the most significant byte is stored in the highest.

 5. When float and double are compared, float gets converted into double first. This type of conver-
sion is called promotion. We say that float gets promoted to double.

 The float value 3F 66 66 66 is promoted to double and becomes:

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

3 F E C C C C C
S E E E E E E E E E E E F

11-bits for exponent 52-bits for mantissa (Continued in the next table)

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 0

C 0 0 0 0 0 0 0
F F

(Continued from the previous table)

 Only 23 fraction bits are available in float. Therefore, when float is promoted to double, the rest of
the fraction bits (shown in gray) will be taken as zero. Hence, when 0.9 as float is promoted to
double, it becomes 3F EC CC CC C0 00 00 00.

 This can be confirmed by running the below-mentioned piece of code:
 main()
 {
 float a=0.9;
 double c;
 int i;
 char *p;
 p=(char*)&a;
 printf(“Float value is stored as:\t”);
 for(i=0;i<=3;i++)

Operators and Expressions 93

 printf(“%02X “,(unsigned char)p[i]);
 printf(“\n”);
 printf(“Now float is converted to double\n”);
 c=a;
 p=(char*)&c;
 printf(“Promoted value is getting stored as:\t”);
 for(i=0;i<=7;i++)
 printf(“%02X “,(unsigned char)p[i]);
 }
 6. Comparison of double value and promoted float value
 Therefore, when this promoted float value (Step No. 5) is compared with the actual double value

(Step No. 3) with a less than operator, it results in 1 (i.e. true) because 3F EC CC CC C0 00 00
00 is lesser than 3F EC CC CC CC CC CC CD.

48. 0
 Explanation:
 0.5 as float will be stored as:

0 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
3 F 0 0 0 0 0 0

S E E E E E E E E F
8-bits for exponent 23-bits for mantissa

 0.5 as double will be stored as follows:

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
0 0 1 1 1 1 1 1 1 1 1 0

3 F E 0 0 0 0 0
S E E E E E E E E E E E F

11-bits for exponent 52-bits for mantissa (Continued in the next table)

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 0

C 0 0 0 0 0 0 0
F F

(Continued from the previous table)

 The fractional part in both the cases is zero. Therefore, when 0.5 as float is promoted to double, it
becomes 3F E0 00 00 00 00 00 00. This promoted value is equal to double value (3F E0 00 00 00 00 00
00). Hence, the less than operator on comparison gives zero.

49. 0
 Explanation:
 0.9, a double value," is demoted to float and is assigned to a float variable a. 0.9fÁ is also stored as a

float. In the expression c=a<0.9f, float is compared with float. Loss of precision is the same in both the
demotions. Hence, a<0.9f evaluates to 0 and is assigned to c.

" Floating-point literal constant by default is of type double.

94 Programming in C—A Practical Approach

Backward Reference: Refer Section 1.11.2.1.2 (Floating Point Literal Constant) in Chapter 1
to review length modifiers.

50. 1 1
 Explanation:
 The logical OR operator || guarantees left-to-right evaluation. Thus, in the expression ++a==0||++b==11,

the sub-expression ++a==0 will be evaluated first. a will be incremented by 1 and the sub-expres-
sion ++a evaluates to 1. The sub-expression ++a==0 (i.e. 1==0) evaluates to 0 (i.e. false). As the first
operand of the logical OR operator is false, the second operand needs to be evaluated to deter-
mine the truth value of the full expression. Thus, the sub-expression ++b==11 will be evaluated.
b is incremented by 1 and the expression ++b evaluates to 1. The sub-expression ++b==11 (i.e. 1==11)
evaluates to 0, i.e. false. Both the operands of the logical OR operator have evaluated to 0. Thus,
the full expression evaluates to zero. This outcome is not assigned to any variable and will be
ignored. Hence, the values of a and b that get printed are 1 and 1.

51. 6
 Explanation:
 In expression 4+2%–8, the modulus operator has the highest precedence. The result of the modu-

lus operator depends only upon the sign of the numerator. Thus, the sub-expression 2%-8 evalu-
ates to 2. This outcome is added to 4 and is assigned to x. Therefore, x will have value 6.

52. 0
 Explanation:
 As the logical NOT operator (i.e. !) has a higher precedence than the greater than operator (>), it

gets evaluated first. The sub-expression !i (i.e. !5) evaluates to 0. This outcome is compared with 3
and the sub-expression 0>3 evaluates to 0 (i.e. false). This outcome is assigned to i.

53. 20 20 20
 Explanation:
 The assignment operator is right-to-left associative. The sub-expression a*=2 (i.e. a=a*2) is evalu-

ated first. It evaluates to 20 and is assigned to a. The value of a is then assigned to b and b will
become 20. The value of b is assigned to c and c will also become 20. Hence, all a, b and c are 20.

54. fff0
 Explanation:
 –1 will be stored in memory as follows:
 MSB will be 1 as the sign is negative. Magnitude will be two’s complemented representation of 1,

i.e. 111 1111 1111 1111. This value is shifted in the left direction by 4 bits and the outcome of the shift opera-
tion is as follows:

Operator and
result

Sign
bit 16
MSB

Magnitude

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1<<4 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

In Hexadecimal f f f 0

Operators and Expressions 95

55. 2
 Explanation:
 In the expression − −2, both the occurrences of − are instances of unary minus operator. It is right-

to-left associative. The rightmost unary minus will first make 2 as –2. Then the second unary
minus makes this −2 as 2. Therefore, the result will be 2.

56. Compilation error (l-value required)
 Explanation:
 −− is not the same as − −. It is one token (i.e. one operator, namely pre-decrement operator). The pre-

decrement operator cannot operate on constants and requires an operand that has a modifiable
l-value. In the given question, since −− is applied on constant, it shows ‘L-value required’ error.

57. 4 5 5 4 5
 Explanation:
 In Borland TC 3.0 and 4.5, arguments of printf function are evaluated from the right. The value of

i is 5, so the sub-expression i evaluates to 5. In the sub-expression −−i, the value of i is decremented
to 4 and the sub-expression evaluates to 4. The sub-expression ++i increments the value of i to 5
and evaluates to 5. In the sub-expression i−−, i is post-decremented. The sub-expression evaluates
to 5 and then i is decremented to 4. In the sub-expression i++, i is post-incremented, so first the
value of i (i.e. 4) will be used and then it is incremented to 5. After the evaluation of values, the
printf function prints the values in a left-to-right order according to the given format specifiers.
Therefore, the values that get printed are 4 5 5 4 5.

58. 200
 Explanation:
 200; is a valid statement but does nothing. In the next statementÂ 200 is printed by the printf function.

Forward Reference: Statements (Chapter 3).

59. –1 –1
 Explanation:
 In expression +i, + is unary plus" and will not have any effect on the value of i. It is not the same

as ++i. In the next statement, the unmodified value of i gets printed. Hence, –1 –1 is the result.

" Unary plus does nothing and is known as the Dummy operator.

60. 0
 Explanation:
 2 is considered as true as it is a non-zero value. !TRUE evaluates to false, i.e. 0. The outcome is

assigned to the identifier not. This value of the identifier not is printed in the next statement.

61. 1==1 is True
 Explanation:
 In Borland TC 3.0 and 4.5, arguments of the printf function are evaluated from the right. Thus,

expression k==1?“True”:“False” is evaluated first. The sub-expression k==1 evaluates to true, hence the
result of the conditional operator turns out to be “True”. Also, adjacent string literals get concat-
enated. Hence, “%d==1 is””%s” will get concatenated to form “%d==1 is %s”. The integer specifier is
matched with k, which has value 1, and the string specifier %s is matched with string “True”. Hence,
the result that gets printed is “1==1 is True”.

96 Programming in C—A Practical Approach

62. Compilation error (Cannot modify a constant object)
 Explanation:
 The expression ++i is erroneous as i is defined as a qualified constant."

" Qualified constants do not have a modifiable l-value. Hence, it cannot be used as the
operand of an increment/decrement operator.

63. 1
 Explanation:
 First, the value of i is incremented by 1 and it becomes 6. 6 is compared for equality with 6 and

evaluates to true, i.e. 1. This outcome is then assigned to i and gets printed.
64. 1 1
 Explanation:
 The logical AND operator && has a higher precedence than the assign-bitwise AND operator

&=. The sub-expression j&&10 is evaluated first (i.e. 10&&10) and turns out to be true, i.e. 1. The sub-
expression i&=1 is equivalent to i=i&1 (i.e. i=5&1). On evaluation it gives 1. Therefore, i will take value
1. This value of i is assigned to j. Hence, both i and j will have value 1.

65. 2695.000000 385.000000
 Explanation:
 y+28.5 is computed first and turns out to be 38.5. y*=38.5 is computed then and the value of y be-

comes 385.0. Then, x*=385.0 is computed and the value of x becomes 2695.0. Therefore, the values
that get printed are 2695.000000 and 385.000000.

66. ffff
 Explanation:
 ~a does not change the value of a. The value of a remains the same and gets printed as ffff.
67. 256
 Explanation:
 0x80 is 1000 0000, shifting by 1 bit in the left direction gives 1 0000 0000 and this is equivalent to 256 in

decimal.
68. 65535 0
 Explanation:
 –1 will be stored in memory as follows:

Bit
16

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 i.e. all sixteen 1’s. -1 is assigned to a. Therefore, a becomes

Sign
bit 16

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

a=-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

++a 1
(carry gets
overflowed)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Operators and Expressions 97

 a is declared as unsigned. Therefore, the 16th bit is not considered as a sign bit but it is considered
as a magnitude bit. Therefore, the value of a that gets printed is 65535. If one is added to a, carry
overflows and the result turns out to be 0.

69. 4 3 3 3
 Explanation:
 In v=(int)(u+0.5), first 3.5+0.5 is evaluated and turns out to be 4.0. This is then type casted" to the

integer and becomes 4. 4 is then assigned to v.
 In w=(int)u+0.5, first u is type casted to the integer, i.e. it becomes 3. Then 0.5 is added to make it 3.5.

This value is then assigned to an integer variable. Before assignment, demotion will be carried
out. 3.5 will be demoted to 3 and then assigned to w.

 In x=(int)((int)u+0.5), x will get a value 3. Instead of implicitly demoting 3.5 to 3 as in the previous case,
it is now explicitly type casted to 3.

 In y=(u+(int)0.5), first 0.5 is type casted to 0. 0 is added to 3.5 and it comes out to be 3.5. 3.5 after im-
plicit demotion is assigned to an integer variable y. Hence, the value assigned to y will be 3.

" Type casting can be done explicitly by using a type cast operator. The syntax of using a type
cast operator is (target-type-name) expression.

70. 3 3 3 3
 Explanation:
 The identifier u is declared as int. Therefore, 3.5 will be demoted to 3 and will then be assigned to

u. Hence, u will have the value 3 instead of 3.5. All the remaining computations are carried out in
the same way as in the previous answer.

Answers to Multiple-choice Questions
71. a 72. c 73. a 74. d 75. a 76. b 77. b 78. a 79. b 80. a 81. c 82. c 83. b 84. b 85. a

Programming Exercises

Program 1 | Find one's and two's complement of a number

Algorithm:
Step 1: Start
Step 2: Read the number (num)
Step 3: One’s complement (oc) = ~num i.e. negate every bit using bitwise NOT operator
Step 4: Two’s complement (tc) = oc+1 i.e. two’s complement is one’s complement plus 1
Step 5: Print values of oc and tc
Step 6: Stop

Line PE 2-1.c Memory content Output window

1
2
3
4
5
6
7
8
9

10

//One’s and Two’s complement
#include<stdio.h>
main()
{
 int num, oc, tc;
 printf(“Enter number\t”);
 scanf(“%d”,&num);
 oc=~num;
 tc=oc+1;
 printf(“One’s complement is %d\n”,oc);

num=2

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

oc = –3 (Two’s complement representation)

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

Enter number 2
One's complement is –3
Two's complement is –2
Remarks:
•  ~ is bitwise NOT op-

erator
•  The sign bits of oc and

tc are 1. Hence, they are
negative and are stored
in two’s-complement
representation

(Contd...)

98 Programming in C—A Practical Approach

Line PE 2-1.c Memory content Output window

11
12

 printf(“Two’s complement is %d\n”,tc);
}

tc = –2 (Two’s complement representation)

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Program 2 | Assuming that bit numbering starts from 1. Write a C program to set a particular bit in a
given number

Algorithm:
Step 1: Start
Step 2: Read the number (num)
Step 3: Read the bit number (bit) that is to be set (i.e. to be made 1) in the given number
Step 4: Construct a temporary number such that it has 1 at the bit position that is to be set in the given number and

zero elsewhere. Temporary number can be constructed by using left-shift operator as temp=1<<(bit-1)
Step 5: To set the bit in the given number, perform bitwise OR of the number with the constructed temporary

number and save result in the number i.e. num=num|temp
Step 6: Print number (num)
Step 7: Stop

Line PE 2-2.c Memory content Output window

1
2
3
4
5
6
7
8
9

10
11
12
13

//Set particular bit in a given number
#include<stdio.h>
main()
{
int num, bit, temp;
printf(“Enter number\t”);
scanf(“%d”,&num);
printf(“Enter the bit number to be set\t”);
scanf(“%d”,&bit);
temp=1<<(bit-1);
num=num|temp;
printf(“Value after setting bit is %d”, num);
}

num=5

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

After setting bit 2, the value of num becomes

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

i.e.7

Enter number 5
Enter the bit number to be set 2
Value after setting bit is 7

Program 3 | Assuming that bit numbering starts from 1. Write a C program to negate a particular bit in
a given number

Algorithm:
Step 1: Start
Step 2: Read the number (num)
Step 3: Read the bit number (bit) that is to be negated (i.e. to be made 1 if it is 0 and vice-versa) in the given num-

ber
Step 4: Construct a temporary number such that it has 1 at the bit position that is to be negated in the given number

and zero elsewhere. Temporary number can be constructed by using left-shiftoperator as temp=1<<(bit-1)
Step 5: To negate the bit in the given number, perform bitwise XOR of the number with the constructed temporary

number and save result in the number i.e. num=num^temp
Step 6: Print number (num)
Step 7: Stop

(Contd...)

Operators and Expressions 99

Line PE 2-3.c Memory content Output window

1
2
3
4
5
6
7
8
9

10
11
12
13

//Negate a particular bit in a given number
#include<stdio.h>
main()
{
int num, bit, temp;
printf(“Enter number\t”);
scanf(“%d”,&num);
printf(“Enter the bit number to be negated\t”);
scanf(“%d”,&bit);
temp=1<<(bit-1);
num=num^temp;
printf(“Value after negating bit is %d”, num);
}

num=5

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

After negating bit 2, the value of num becomes

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

i.e.7
num=5

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

After negating bit 3, the value of num becomes

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

i.e.1

Enter number 5
Enter the bit number to be negated 2
Value after negating bit is 7

Output window
(second execution)

Enter number 5
Enter the bit number to be negated 3
Value after negating bit is 1

Program 4 | Given two numbers, say val and key. Wherever the bits of number key are 1, set the corre-
sponding bits of number val. Leave all other bits of number val unchanged

Algorithm:
Step 1: Start
Step 2: Read the numbers, val and key
Step 3: val=val|key
Step 4: Print number (val)
Step 5: Stop

Line PE 2-4.c Memory content Output window

1
2
3
4
5
6
7
8
9

10

//Set the corresponding bits
#include<stdio.h>
main()
{
int val, key;
printf(“Enter two numbers\t”);
scanf(“%d %d”,&val, &key);
val=val|key;
printf(“After setting bits, result is %d”,val);
}

val=4

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

key = 10

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

After setting the corresponding bits, val
becomes 14

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

Enter two numbers 4 10
After setting bits, result is 14

Output window
(second execution)

Enter two numbers 4 5
After setting bits, result is 5

100 Programming in C—A Practical Approach

Program 5 | Given two numbers, say val and key. Wherever the bits of number key are 1, negate the cor-
responding bits of number val. Leave all other bits of number val unchanged

Algorithm:
Step 1: Start
Step 2: Read the numbers, val and key
Step 3: val=val^key
Step 4: Print number (val)
Step 5: Stop

Line PE 2-5.c Memory content Output window

1
2
3
4
5
6
7
8
9

10

//Negate the corresponding bits
#include<stdio.h>
main()
{
int val, key;
printf(“Enter two numbers\t”);
scanf(“%d %d”,&val, &key);
val=val^key;
printf(“After negating bits, result is %d”,val);
}

val = 4

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
key = 5

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
After negating the corresponding bits, val becomes 1

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Enter two numbers 2 5
After negating bits, result is 7

Output window
(second execution)

Enter two numbers 4 5
After negating bits, result is 1

Program 6 | Given two numbers, say val and key. Wherever the bits of number key are 1, reset (i.e. make
0) the corresponding bits of number val. Leave all other bits of number val unchanged

Algorithm:
Step 1: Start
Step 2: Read the numbers, val and key
Step 3: Construct a temporary which is one’s complement of the key i.e. temp=~key.
Step 4: val=val&temp
Step 5: Print number (val)
Step 6: Stop

Line PE 2-6.c Memory content Output window

1
2
3
4
5
6
7
8
9

10
11

//Reset the corresponding bits
#include<stdio.h>
main()
{
int val, key, temp;
printf(“Enter two numbers\t”);
scanf(“%d %d”,&val, &key);
temp=~key;
val=val&temp;
printf(“After resetting bits, result is %d”,val);
}

val = 4

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

key = 5

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
After resetting the corresponding bits, val becomes 0

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Enter two numbers 4 5
After resetting bits, result is 0

Output window
(second execution)

Enter two numbers 2 5
After resetting bits, result is 2

Operators and Expressions 101

Program 7 | Write a C program to multiply a given number with 2n, without using a multiplication opera-
tor. The value of n will be entered by the user

Algorithm:
Step 1: Start
Step 2: Read a number (num).
Step 3: Input the value of n.
Step 4: To multiply number with 2n, shift the bits of number in left direction n times i.e. res=num<<n
Step 5: Print number (res)
Step 6: Stop

Line PE 2-7.c Memory content Output window

1
2
3
4
5
6
7
8
9

10
11
12

//Multiply by 2 raise to the power n
#include<stdio.h>
main()
{
int num, n, res;
printf(“Enter number to be multiplied\t”);
scanf(“%d”,&num);
printf(“Enter value of n\t”);
scanf(“%d”,&n);
res=num<<n;
printf(“Result of multiplication is %d”,res);
}

val = 4

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

res = 16

B
16

B
15

B
14

B
13

B
12

B
11

B
10

B
9

B
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Enter number to be multiplied 2
Enter value of n 3
Result of multiplication is 16
Remark:
•  Left shift by n bits is

equivalent to multi-
plication by 2n, pro-
vided the magnitude
does not overflow

102 Programming in C—A Practical Approach

Test Yourself
1. Fill in the blanks in each of the following:
 a. An ____________ specifies an entity on which operation is to be performed.
 b. An expression that has only one operator is known as ____________.
 c. Assignment operator is ____________ associative.
 d. The operands of a modulus operator must be of ____________ type.
 e. The result of evaluation of a relational expression is a ____________ .
 f. In a compound expression, if operators of different precedence appear together, the operator

of ____________ precedence operates first.
 g. The order in which operators operate depends upon the ____________ and the ____________

of the operators.
 h. If the operands of an operator are of different types, C automatically applies ____________to

bring the operands to a common type.
 i. The ____________ operator returns the number of bytes the operand occupies.
 j. ____________operator has least precedence.

2. State whether each of the following is true or false. If false, explain why.
 a. The operators with the same precedence always have the same associativity.
 b. The multiplication and division operators are left-to-right associative.
 c. The sign of the result of evaluation of the modulus operator depends upon the sign of both

the numerator as well as the denominator.
 d. The knowledge of precedence alone is sufficient to evaluate a compound expression.
 e. Conditional operator is a binary operator.
 f. The increment operator can only be applied to an operand that has a modifiable l-value.
 g. The expression ++a is equivalent to a+=1.
 h. In C language, there is no operator available for logical eXclusive-OR (XOR) operation.
 i. Qualified constant cannot be initialized with a value.
 j. The expression !(x>=y) is equivalent to the expression x<y.

3. Find the result of evaluation for the following expressions:
 a. 5*3/4-2
 b. ~5+3&&2
 c. 4-5&&!2
 d. 2<<2>>2
 e. 2<<2>2
 f. 2<3,4,5*3+2
 g. 5 != 10 && 2 | 3&5
 h. 2?2^2:2|5
 i. 3?~2?~5:4:3
 j. +2.25+-3.85

4. Which of the following expressions are valid? If valid, find the result of evaluation of expressions,
assuming identifiers a and b are defined and their values are a=10 and b=15. If invalid, identify the
errors.

 a. a+++b=20
 b. a=b==12==b
 c. ++a=23*5-4
 d. b=7.5%2.5

Operators and Expressions 103

 e. 2==3+5+=6
 f. 2*3/2.0&3
 g. a+++++b
 h. ~2~3^4
 i. a^=b^=10
 j. a&&=10

STATEMENTS

3

Learning Objectives

In this chapter, you will learn about:

Statements �

How statements are classified �

 Non-executable statements and executable �

statements

Simple statements and compound statements �

Declaration statement and definition statement �

Null statement and expression statements �

Labeled statements �

Flow control statements �

How to implement decision making �

Selection statements and jump statements �

How to perform iteration �

Iteration statements �

Role of � break and continue statements

Graphical representation of flow of control �

106 Programming in C—A Practical Approach

3.1 Introduction
In the last chapter, you have learnt how to form and evaluate expressions. In C language,
the expressions do not have any independent existence. To make them exist, they must be
converted into statements. A statement is the smallest logical entity that can independently
exist in a C program. In this chapter, I will tell you how to convert expressions into statements.
I will also describe how statements are executed, how to make decisions with the help of
branching statements and how to make a set of statements execute a number of times by
using iteration statements. Finally, we will look at how various statements can be used in
conjunction to perform meaningful tasks.

3.2 Statements
A statement is the smallest logical entity that can independently exist in a C program. No
entity smaller than a statement, i.e. expressions, variables, constants, etc. can independently
exist in a C program unless and until they are converted into statements. The code snippet in
Program 3-1 proves the above-mentioned fact.

Line Prog 3-1.c Output window

 1
 2
3
4
5
6
7
8

//Expressions cannot exist independently
#include<stdio.h>
main()
{
 int a;
 a=2+3
 printf(“Value of a is %d”,a);
}

Compilation error “Statement missing ; in function main”
Reason:
•  Expression in line 6 cannot exist indepen-

dently. It should be a part of some statement
What to do?
•  Convert expression a=2+3 into a statement

by terminating it with a semicolon and re-
execute the code

Program 3-1 | A program to illustrate that an expression cannot exist independently

A statement in a programming language is analogous to a sentence in a natural language.
Just as sentences are terminated with a period (i.e. full stop) in the English language, statements
in C language are terminated with a semicolon. When an expression is terminated with a
semicolon, it forms an expression statement. For example, a=2+3 is an expression. When it is
terminated with a semicolon, it forms an expression statement, i.e. a=2+3;. Expression statements
are classified according to the type of operator involved in the expression. Since an assignment
operator is involved in the expression statement a=2+3;, it can be called an assignment statement.
Moreover, as an arithmetic operator (+) is also involved in the expression statement a=2+3;, it
can also be called an arithmetic statement.

3.3 Classification of Statements
Statements in C are classified according to the following criteria:

Based upon the type of action they perform1.
Based upon the number of constituent statements2.
Based upon their role3.

Statements 107

3.3.1 Based Upon the Type of Action they Perform
A statement specifies an action to be performed. Based upon the type of action it performs, the
statements in C are classified into the following:

Non-executable statements1.
Executable statements2.

3.3.1.1 Non-executable Statements
Non-executable statements tell the compiler how to build a program. The important points
about non-executable statements are listed as follows:

These statements help the compiler to determine how to allocate memory, interpret and 1.
compile other statements in a program.
These statements are intended mainly for the compiler, and no machine code is gen-2.
erated for them. Only executable† statements play a role during the execution of a
program.
The order in which non-executable statements appear in a program is important. When 3.
a compiler compiles a program, it scans all the statements from top to bottom. A non-
executable statement can only affect the statements that appear below it. Thus, a non-
executable statement should appear only before executable statements within a block. ‡

Only non-executable statements can appear outside the body of a function.4. Â
Examples of non-executable statements are function prototypes,5. Â global variableÂ dec-
larations, constant declarations and preprocessor directiveÂ statements.

i
Although the separation between executable and non-executable statements is simple and
effective, it was rather rigid earlier. This rigidity was relaxed in the C99 standard, and flex-
ibility in terms of freely mixing executable and non-executable statements was provided.

Forward Reference: Function and function prototype (Chapter 5), global variables (Chapter 7),
preprocessor directives (Chapter 8).

3.3.1.2 Executable Statements
Executable statements represent the instructions that are to be performed when the program
is executed. The important points about executable statements are listed as follows:

For an executable statement, some machine code is generated by the compiler.1.
 An executable statement can appear only inside the body of a function.2.
 The examples of executable statements are assignment statements, branching state-3.
ments, looping statements, function call statements, etc.
A global definition like 4. const int obj=10; appears to be an executable statement, but it is a
non-executable statement.

The code segment in Program 3-2, if compiled with compilers conforming to pre-C99
standards, illustrates the fact that within a block, non-executable statements can appear only
before an executable statement.

† Refer Section 3.3.1.2 for a description on executable statements.
‡ Refer Section 3.3.2.2 for a description on blocks.

108 Programming in C—A Practical Approach

Line Prog 3-2.c Output window

 1
 2
3
4
5
6
7
8
9

//Executable and Non-executable statements
#include<stdio.h>
#include<conio.h>
main()
{
 clrscr();
 int a=10;
 printf(“Value of a is %d”,a);
}

Compilation error “Declaration is not allowed here”
Remarks:
•  Borland TC 3.0 generates this error but

some compilers (like Borland TC 4.5 and
other latest compilers) do not enforce this
constraint and does not produce an error

•  File must be saved with .C extension and
not with .CPP extension

Reason:
•  Line 6 is an executable statement but line 7

is a non-executable statement. If a compiler
conforming to pre-C99 standards is used,
non-executable statements can appear only
before executable statements

What to do?
•  Interchange lines 6 and 7 and re-execute the

code

Program 3-2 | A program that emphasizes on the order of occurrence of executable and non-executable
statements

The code snippet in Program 3-3 illustrates the fact that executable statements can appear
only inside the body of a function while non-executable statements can even appear outside
the body of a function, i.e. in global scope.

Line Prog 3-3.c Output window

 1
 2
3
4
5
6
7
8
9

//Executable and Non-executable statements
#include<stdio.h>
#include<conio.h>
int a=10;
a=a*2;
main()
{
 printf(“Value of a is %d”,a);
}

Compilation error “Type name expected”
Reason:
•  Line 5 is an executable statement. Execut-

able statements can appear only inside
the body of a function, i.e. in local scope.
Hence, line 5 leads to the compilation error

What to do?
•  Place content of lines 5 after line 7 and re-

execute the code

Program 3-3 | A program to show that executable statements can appear only inside the body of a
function

3.3.2 Based Upon the Number of Constituent Statements
Based upon the number of constituent statements, statements in C language are classified as
follows:

Simple statements1.
Compound statements2.

3.3.2.1 Simple Statements
A simple statement consists of a single statement. It is terminated with a semicolon. Examples
of simple statements are as follows:

Statements 109

1. int variable=10; //Ådefinition statement
2. variable+5; //Åexpression statement
3. variable=variable+10; //Åassignment statement

3.3.2.2 Compound Statements
A compound statement consists of a sequence of simple statements enclosed within a pair of
braces." An example of a compound statement is as follows:

{ //Å a compound statement consisting of three simple statements
int variable=10;
variable=variable*2;
variable+=5;
}

The important points about compound statements are listed below:
A compound statement is also known as a1. block.
A compound statement need not be terminated with a semicolon. However, if it is ter-2.
minated with a semicolon, there will be no compilation error but it will be interpreted
in a different way.§

A compound statement can be empty, i.e. there is no simple statement present inside the 3.
pair of braces, like {}. An empty compound statement is equivalent to a null¶ statement,
but it cannot act as a terminator for a statement. Figure 3.1 illustrates the interpretation
of this fact.

if(a==b)
{
}

if(a==b)
; null statement

printf(“Hello”){} printf(“Hello”);

Equivalent to

Not equivalent to

Valid as {} is equivalent to null
statement (i.e.;)

Invalid as {} cannot act as a
terminator

//

Figure 3.1 | Empty compound statement acts as a null statement but not as a terminator

4. A compound statement is treated as a single unit. If there is no jump†† statement present
inside the block, all the constituent simple statements will be executed in a sequence if
the program control enters the block.

5. A compound statement can appear at any point in a program wherever a simple state-
ment can appear.

6. In a block, non-executable statements (e.g. declaration statements) should come before
executable statements.

§ Refer Section 3.3.3.2 for a description on how a compound statement terminated with a semicolon is
interpreted.
¶ Refer Section 3.3.3.2 for a description on null statement.
†† Refer Section 3.3.3.4.1.2 for a description on jump statements.

110 Programming in C—A Practical Approach

Curly brackets, i.e. {}, are known as braces.

3.3.3 Based Upon their Role
Based upon their role, statements are classified as follows:

Declaration statement and definition statement1.
Null statement and expression statement2.
Labeled statements3.
Flow control statements4.

 a. Branching statements
 i. Selection statements
 ii. Jump statements
 b. Iteration statements

3.3.3.1 Declaration Statement and Definition Statement
The role of a declaration statement is to introduce the name of an identifier along with its
data type to the compiler before its use. All identifier names (except label names) need to be
declared before they are used. During declaration, no memory is allocated to an identifier. The
memory space for an identifier can be reserved by using a definition statement. The definition
statement declares an identifier and also reserves the memory space for it depending upon its
data type. For example, int a; is a definition statement, which reserves 2 bytes (or 4 bytes) for a
in the memory. To declare a, write extern int a;.Â

Forward Reference: extern, storage class specifiers (Chapter 7).

3.3.3.2 Null Statement and Expression Statements
A null statement just consists of a semicolon. For example:

;   //Å is a null statement

A null statement is the simplest form of program statement and performs no operation. It
is just used as a place-holder, i.e. it is used when the syntax of a language construct requires
a statement to be present, but the logic of a program does not require it. A null statement is
equivalent to an empty compound statement, i.e. {}. A compound statement need not be ter-
minated with a semicolon. However, if it is terminated with a semicolon, it is interpreted as a
compound statement followed by a null statement. Figure 3.2 illustrates the interpretation of
a compound statement, which is terminated with a semicolon.

Computations in C language are performed with the help of expression statements. An
expression terminated with a semicolon forms an expression statement. For example:

a=2+3;  //Å is an expression statement

Expression statements like printf(“Hello Readers”); in which the function call operator (i.e. ()) is
involved are called function call statements or function invocations.

Statements 111

A compound statement
terminated with a
semicolon

{
int variable=10;
variable=variable*2;
variable+=5;
};

 {
int variable=10;
variable=variable*2;
variable+=5;
}
;

Equivalent to

two statements, i.e. a compound
statement followed by a null
statement

is interpreted as

Figure 3.2 | Interpretation of a compound statement terminated with a semicolon

3.3.3.3 Labeled Statements
Labeled statements are rarely used in isolation. They have practical significance only when
they are used in conjunction with branching statements. In the following sub-sections, the
syntax of labeled statements is described. Their practical application will be discussed along
with the branching statements.†† Labeled statements are of three types:

Identifier-labeled statements1.
Case-labeled statements2.
Default-labeled statements3.

i
Practically, an identifier-labeled statement is used in conjunction with a goto§§ statement.
Case-labeled and default-labeled statements are useful only when they are used in conjunc-
tion with a switch¶¶ statement.

3.3.3.3.1 Identifier-labeled Statements
The general form of an identifier-labeled statement is:

 identifier: statement
The important points about identifier-labeled statements are listed below:

The identifier used in an identifier-labeled statement is called a 1. label name. For ex-
ample, in the following identifier-labeled statement, lab is the label name:

lab: printf (“Labeled statement”);
2. Unlike other identifiers, i.e. variable names, function names, etc., label names are not explic-

itly declared by using declaration statements. They are not explicitly declared because:
 a. There is no type associated with them.
 b. No operation is allowed on them. Unlike other identifiers, they cannot be used as an

operand in an expression.
3. Label names are implicitly (i.e. automatically) declared by their syntactic appearance, i.e.

an identifier followed by a colon and a statement is implicitly treated as a label name.
4. The statement after the label name in an identifier-labeled statement can be any statement,

even some another labeled statement. For example, the following statement is an identifier-
labeled statement whose constituent statement is another identifier-labeled statement.

†† Refer Section 3.3.3.4.1 for a description on branching statements.
§§ Refer Section 3.3.3.4.1.2.1 for a description on goto statement.
¶¶ Refer Section 3.3.3.4.1.1.5 for a description on switch statement.

112 Programming in C—A Practical Approach

label1: //ÅAn identifi er-labeled statement whose

label2:  //ÅConstituent statement is another identifi er-labeled statement
 printf(“Identifi er labeled statement’s statement is another identifi er labeled statement”);

5. Label name should be unique within a function.
6. Label names do not alter the flow of control.†††

7. Identifier-labeled statements have practical significance only when they are used in
conjunction with a goto statement.

The piece of code in Program 3-4 illustrates that label names do not impede the flow of control.

Line Prog 3-4.c Output window

 1
 2
3
4
5
6
7
8

//Identifier labeled statements
#include<stdio.h>
main()
{
 label1:
 label2:
 printf(“Identifier labeled statement”);
}

Identifier labeled statement
Remarks:
•  Label names do not alter the flow of

control
•  label1 followed by label2, followed by the printf

statement is one statement. Thus, the men-
tioned code has only one simple statement

Program 3-4 | A program to illustrate that label names do not alter the flow of control

3.3.3.3.2 Case-labeled Statements
The general form of a case labeled statement is:

 case constant-expression: statement
The important points about case labeled statements are as follows:
1. A case-labeled statement consists of the keyword case followed by a constant expression

(i.e. case label), followed by a colon and then a statement. An example of a valid case-
labeled statement is as follows:

case 2: printf(“case labeled statement”);
2. The case label should be a compile time constant expression of integral type. For ex-

ample, the following case-labeled statements are valid:
 a. case 2+3: printf(“Valid”); //Å2+3 is compile time constant expression of int type
 b. case a: printf(“Valid”); //Åwhere a is qualified constant of integral type
 c. case ‘A’: printf(“Valid”); //Å‘A’ is a character constant
 The following case-labeled statements are not valid:
 a. case j: printf(“Invalid”); //Åj is variable and not a constant
 b. case 2.5: printf(“Invalid”); //Å2.5 is an expression of float type and not of integral type
3. Case-labeled statements can appear only inside the body of a switch‡‡‡ statement.

††† Refer Section 3.3.3.4 for a description on flow of control and flow control statements.
‡‡‡ Refer Section 3.3.3.4.1.1.5 for a description on switch statement.

Statements 113

4. The constituting statement of a case-labeled statement can be any statement, even some
other case-labeled statement with a different case label. For example, a case-labeled
statement whose constituent statement is another case-labeled statement having a dif-
ferent case label is as follows:

case 1:    //ÅCase-labeled statement whose

case 2:  //ÅConstituent statement is another case-labeled statement
 printf(“Case labeled statement’s statement is another case labeled statement”);

3.3.3.3.3 Default-labeled Statements
The general form of a default labeled statement is:

 default: statement
The important points about default labeled statements are as follows:

A default-labeled statement consists of the keyword 1. default followed by a colon and a
statement.
A default-labeled statement can appear only inside the body of a 2. switch statement.
The constituting statement of a default-labeled statement can be any statement except 3.
the default-labeled statement. If a default-labeled statement is the constituting statement
of another default-labeled statement, it leads to ‘Too many default cases’ compilation
error. For example, the following default-labeled statement is not valid:

default:  //ÅDefault-labeled statement cannot have another default-labeled statement

 default: 
 printf(“This is not valid”);

3.3.3.4 Flow Control Statements
By default, statements in a C program are executed in a sequential order. The order in which
the program statements are executed is known as ‘flow of program control’ or just ‘flow of
control’. By default, the program control flows sequentially from top to bottom. All the pro-
grams that we have developed till now have default flow of control. Many practical situations
like decision making, repetitive execution of a certain task, etc. require deviation or alteration
from the default flow of program control. The default flow of control can be altered by using
flow control statements. Flow control statements are of two types:

1. Branching statements
 a. Selection statements
 b. Jump statements
2. Iteration statements

3.3.3.4.1 Branching Statements
Branching statements are used to transfer the program control from one point to another.
They are categorized as:

114 Programming in C—A Practical Approach

1. Conditional branching: In conditional branching, also known as selection, pro-
gram control is transferred from one point to another based
upon the outcome of a certain condition. The following
selection statements are available in C: if statement, if-else
statement and switch statement.

2. Unconditional branching: In unconditional branching, also known as jumping,
program control is transferred from one point to another
without checking any condition. The following jump state-
ments are available in C: goto statement, break statement,
continue statement and return statement.

3.3.3.4.1.1 Selection Statements
Based upon the outcome of a particular condition, selection statements transfer control from
one point to another. Selection statements select a statement to be executed among a set of
various statements. The selection statements available in C are as follows:

1. if statement
2. if-else statement
3. switch statement

3.3.3.4.1.1.1 if Statement
The general form of if statement is:

if(expression)   //Åif header
 statement     //Åif body

The important points about an if statement are as follows:

1. An if statement consists of an if header and an if body.
2. An if header consists of an if clause followed by an if controlling expression enclosed

within parentheses.
3. An if statement is executed as follows:

 a. The if controlling expression is evaluated.
 b. If the if controlling expression evaluates to true, the statement constituting if body is

executed.
 c. If the if controlling expression evaluates to false, if body is skipped and the execution

continues from the statement following the if statement.

4. The syntax of an if statement permits only a single statement to be associated with if
header. Practical applications often require that the execution of two or more statements
should depend upon the outcome of a particular condition. In such cases, the dependent
statements should be clubbed together to form a compound statement. This concept is
clarified with the help of the code snippet listed in Program 3-5 and its corresponding
flow chart.

Statements 115

Line Prog 3-5.c Flow chart depicting the flow of
control in program

Output window

 1
2
3
4
5
6
7
8
9

//if statement
#include<stdio.h>
main()
{
int a=5, b=10;
if(a>10 && a>b)
 printf(“a is greater than 10”);
 printf(“a is greater than b”);
}

a=5, b=10

if (a>10 AND a>b)

a is greater
than 10

a is greater
than b

Stop

No

Start

Yes

a is greater than b
Reasons:
•  Only one statement can be

associated with if header
•  Irrespective of the indenta-

tion made in the program,
printf statement in line 8 is not
associated with the if header
and is not dependent upon
the result of evaluation of if
controlling expression

•  Statement in line 8 is state-
ment next to if statement
and will always be executed
irrespective of the outcome
of if controlling expression

What to do?
•  Club statements in lines 7

and 8 into one compound
statement as shown in Pro-
gram 3-6

Program 3-5 | A program to illustrate the execution of if statement

Line Prog 3-6.c Flow chart depicting the flow of
control in program

Output window

 1
2
3
4
5
6
7
8
9

10
11

//if statement
#include<stdio.h>
main()
{
int a=5, b=10;
if(a>10 && a>b)
{
 printf(“a is greater than 10”);
 printf(“a is greater than b”);
}
}

a=5, b=10

if (a>10 AND a>b)

a is greater
than 10

a is greater
than b

Stop

No

Start

Yes

No output
Reasons:
•  Lines 7–10 constitute a com-

pound statement
•  The execution of both the

statements in lines 8 and 9
is dependent upon the re-
sult of evaluation of if con-
trolling expression

•  Since the if controlling ex-
pression evaluates to false,
statements in lines 8 and 9
do not get executed

Program 3-6 | A program to illustrate the execution of if statement

5. No semicolon should be placed at the end of the if header. However, if a semicolon is
placed at the end of the if header, there will be no compilation error (although this may

116 Programming in C—A Practical Approach

lead to logical error). This is one of the potential logical errors most amateur program-
mers do. The logical error due to the semicolon placed at the end of the if header is
depicted in the code listed in Program 3-7.

Line Prog 3-7.c Flow chart depicting the flow of
control in program

Output window

 1
2
3
4
5
6
7
8

//if statement
#include<stdio.h>
main()
{
int a=10, b=20;
if(a==b);
printf(“a is not equal to b”);
}

a=10, b=20

; (i.e. nullstatement)

if (a==b)

a is not equal
to b

Stop

No

Start

Yes

a is not equal to b
Expected output:
No output
Reason for deviation:
Presence of semicolon at the end of
the if header
How is the listed code interpreted?
•  It is interpreted as:
if(a==b)
;
printf(“a is not equal to b”);
•  if body is a null statement
•  printf statement is next to the if

statement and its execution does
not depend upon the outcome of
if controlling expression

Program 3-7 | A program to illustrate the effect of the semicolon placed at the end of the if header

3.3.3.4.1.1.2 if-else Statement
Most of the problems require one set of actions to be performed if a particular condition
is true, and another set of actions to be performed if the condition is false. To implement
such a decision, C language provides an if-else statement. The general form of the if-else
statement is:

 if(expression) //Åif-else header
 statement1 //Åif body
 else //Åelse clause
 statement2 //Åelse body

The important points about an if-else statement are as follows:
1. An if-else statement consists of an if-else header, if body, else clause and else body.
2. An if-else header consists of an if clause followed by an if-else controlling expression

enclosed within parentheses.
3. An if-else statement is executed as follows:
 a. The if-else controlling expression is evaluated.
 b. If the if-else controlling expression evaluates to true, the statement constituting the if

body is executed and the else body is skipped.
 c. If the if-else controlling expression evaluates to false, the if body is skipped and the

else body is executed.

Statements 117

 d. After the execution of the if body or the else body, the execution continues from the
statement following the if-else statement.

The code snippet in Program 3-8 illustrates the use of the if-else statement.

Line Prog 3-8.c Flow chart depicting the flow of control in
program

Output window

 1
 2
3
4
5
6
7
8
9

10
11

//if-else statement
//Find whether no. is even or odd
#include<stdio.h>
main()
{
int a=11;
if(a%2==0)
 printf(“Number a is even”);
else
 printf(“Number a is odd”);
}

a=11

if (a%2==0)

Number a is oddNumber a is even

Stop

No

Start

Yes

Number a is odd
Remarks:
•  The if-else con-

trolling expres-
sion a%2==0
evaluates to
false

•  The if body is
skipped and
the else body
gets executed

Program 3-8 | A program to illustrate the use of the if-else statement

4. The syntax of if-else statement permits only a single statement to be associated with
if clause and else clause. However, this single statement can be a compound state-
ment constituting a number of simple statements. Consider the piece of code in
Program 3-9.

Line Prog 3-9.c Output window

 1
2
3
4
5
6
7
8
9

10
11

//if-else statement
#include<stdio.h>
main()
{
int a=11;
if(a>10)
 printf(“The value of a is %d”,a);
 printf(“Value a is greater than 10”);
else
 printf(“Value a is less than 10”);
}

Compilation error “Misplaced else in function main”
Reasons:
•  Only a single statement can be associated with if clause and

else clause
•  The mentioned code is interpreted as:
if(a>10) //Åif statement
 printf(“The value of a is %d”,a);
printf(“Value a is greater than 10”); //Åstatement next to if statement
else //Åelse clause without any matching if clause
 printf(“Value a is less than 10”);
•  else clause cannot exist without a matching if clause
What to do?
•  Club statements in lines 7 and 8 into one compound state-

ment and re-execute the code

Program 3-9 | A program to illustrate the use of the if-else statement

5. Care must be taken that no semicolon is placed at the end of the if-else header or after the
else clause.

118 Programming in C—A Practical Approach

3.3.3.4.1.1.3 Nested if Statement
If the body of the if statement is another if statement or contains another if statement (as shown
below), then we say that if’s are nested and the statement is known as a nested if statement.
The general form of a nested if statement is:

if(expression)
 if statement

or

if(expression) //Ånested if statement
{ statement

 if statement

 statement
}

(a)
Body of an if statement is another
if statement

(b)
Body of an if statement contains another
if statement

This nesting can be done up to any level as shown below:
 if(expression1)
 if(expression2)
 if(expression-n)
 statement

The above structure seems to form a ladder and is known as the if ladder.

i
The number of levels up to which nesting can be done depends upon the translation limitsÂ
of the compiler. The translation limits constrain the implementation of language translators
and libraries.

Forward Reference: Translation limits mentioned in ANSI specifications (Appendix C).

3.3.3.4.1.1.4 Nested if-else Statement
In a nested if-else statement, the if body or else body of an if-else statement is, or contains, anoth-
er if statement or if-else statement. Program 3-10 illustrates the use of a nested if-else statement
to find the greatest of three numbers.

The careless use of a nested if-else statement introduces a source of potential ambiguity
referred to as the dangling else ambiguity. When a statement contains more number of if
clauses than else clauses, then there exists a potential ambiguity regarding with which if
clause does the else clause properly matches up. This ambiguity is known as dangling else
problem. The code listed in the column 1 of Table 3.1 suffers from a dangling else problem.
The other columns in the table show the two possible interpretations of the code listed in
column 1.

Statements 119

Line Prog 3-10.c Flow chart depicting the flow of control in
program

Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22

//Nested if-else statement
#include<stdio.h>
main()
{
int a, b, c;
printf(“Enter three numbers\t”);
scanf(“%d %d %d”,&a,&b,&c);
if(a>b)
{ //Åif body starts
 if(a>c)
 printf(“%d is greatest”, a);
 else
 printf(“%d is greatest”,c);
}//Åif body ends
else
{//Åelse body starts
 if(b>c)
 printf(“%d is greatest”,b);
 else
 printf(“%d is greatest”,c);
}//Åelse body ends
}

a is greatest

Input a, b & c

Stop

Start

if (a>b) NoYes

YesNoYes

No

c is greatest c is greatest

b is greatest

if (a>c) if (b>c)

Enter three numbers 1 4 2
4 is greatest
Remarks:
•  The program illus-

trates the use of nest-
ed if-else statement

•  Both if body and else
body of if-else state-
ment consists of if-
else statement

Program 3-10 | A program that uses a nested if-else statement to find the greatest of three numbers

Table 3.1 | The code in column 1 suffers from dangling else ambiguity. Columns 2 and 3 depict the two
possible interpretations of the code listed in column 1

Line Code suffering from dangling
else problem (Column 1)

Interpretation-I
(Column 2)

Interpretation-II
(Column 3)

1
2
3
4
5
6
7
8
9

10
11

//Dangling else problem
#include<stdio.h>
main()
{
int a=10, b=20;
if(a==100)
if(b==20)
printf(“Match-I”);
else
printf(“Match-II”);
}

//Interpretation-I
#include<stdio.h>
main()
{
int a=10, b=20;
if(a==100)
 if(b==20)
 printf(“Match-I”);
else
 printf(“Match-II”);
}

//Interpretation-II
#include<stdio.h>
main()
{
int a=10, b=20;
if(a==100)
 if(b==20)
 printf(“Match-I”);
 else
 printf(“Match-II”);
}

Output If interpreted in this way, the
output would be:

If interpreted in this way, the
output would be:

No output Match-II No output

120 Programming in C—A Practical Approach

The dangling else problem is solved in two ways:

1. Implicitly by compiler: The dangling else ambiguity is implicitly resolved by the
compiler by matching the else clause with the last occurring
unmatched if, i.e. interpreted in a way as shown in column
3 of Table 3.1. The outputs in columns 1 and 3 are the same.
This indicates that the code in column 1 is interpreted in the
same way as shown in column 3 of Table 3.1.

2. Explicitly by user: The dangling else ambiguity can be explicitly removed by the
user by using braces. This is shown in Table 3.2.

Table 3.2 | Dangling else ambiguity removed explicitly by the user

Line Code suffering from dangling
else problem (Column 1)

Dangling else ambiguity
removed from the code listed
in column 1 by using braces
(Column 2)

Dangling else ambiguity
removed from the code listed
in column 1 by using braces
(Column 3)

1
2
3
4
5
6
7
8
9

10
11

//Dangling else problem
#include<stdio.h>
main()
{
int a=10, b=20;
if(a==100)
if(b==20)
printf(“Match-I”);
else
printf(“Match-II”);
}

//Dangling else problem
#include<stdio.h>
main()
{
int a=10, b=20;
if(a==100)
{
 if(b==20)
 printf(“Match-I”);
}
else
 printf(“Match-II”);
}

//Dangling else problem
#include<stdio.h>
main()
{
int a=10, b=20;
if(a==100)
{
 if(b==20)
 printf(“Match-I”);
 else
 printf(“Match-II”);
}
}

Output Output Output

No output Match-II No output

3.3.3.4.1.1.5 switch Statement
A switch statement is used to control complex branching operations. When there are many
conditions, it becomes too difficult and complicated to use if and if-else constructs. In such
cases, the switch statement provides an easy and organized way to select among multiple op-
tions, depending upon the outcome of a particular condition. The general form of a switch
statement is:

switch(expression) //Åswitch header
statement //Åswitch body

The important points about a switch statement are as follows:
1. A switch statement consists of a switch header and a switch body.
2. A switch header consists of the keyword switch followed by a switch selection expression

enclosed within parentheses.

Statements 121

3. The switch selection expression must be of integral type (i.e. integer type or character
type).

4. The switch body consists of a statement. The statement constituting a switch body can be a
null statement, an expression statement, a labeled statement, a flow control statement,
a compound statement, etc.

5. Generally, a switch body consists of a compound statement, whose constituent state-
ments are case-labeled statements, expression statements, flow control statements and
an optional default-labeled statement.

6. Case labels of case-labeled statements constituting the body of a switch statement should
be unique, i.e. no two case labels should have or evaluate to the same value.

7. There can be at most one default labeled statement within the switch body.
8. A switch statement is executed as follows:

a. The switch selection expression is evaluated.
b. The result of evaluation of switch selection expression is compared with the case la-

bels of the case-labeled statements until there is a match or until all the case-labeled
statements have been examined.
i. If the result of evaluation of switch selection expression is matched with the

case label of a case-labeled statement, the execution starts from the matched
case-labeled statement, and all the statements after the matched case-labeled
statement within the switch body gets executed.

ii. If no case label of case-labeled statements within the switch body matches the
result of evaluation of switch selection expression, the execution starts with the
default-labeled statement, if it is present, and all the statements after the default-
labeled statement within the switch body gets executed.

iii. If none of the case labels match the result of evaluation of switch selection expres-
sion and there is no default-labeled statement present within the switch body, no
statement within the switch body will be executed and the execution continues
from the statement following the switch statement.

i It is a common misunderstanding that only the matched case-labeled statement or the de-
fault-labeled statement (if none of the case labels match) gets executed. In fact, the execution
begins with the matched case labeled statement or the default labeled statement, and all the
statements after the matched case labeled statement or the default labeled statement within the
switch body get executed.

The code snippets in Programs 3-11 to 3-13 clarify the points discussed above.

Line Prog 3-11.c Output window

1
2
3
4

//switch statement
#include<stdio.h>
main()
{

This is case option 1
Value of a is 1
This is case option 2
This is default option

(Contd...)

122 Programming in C—A Practical Approach

Line Prog 3-11.c Output window

5
6
7
8
9

10
11
12
13
14
15
16

int a=1;
switch(a)
{
case 1:
 printf(“This is case option 1\n”);
 printf(“Value of a is %d\n”,a);
case 2:
 printf(“This is case option 2\n”);
default:
 printf(“This is default option\n”);
}
}

Remarks:
•  A switch body consists of four statements and is interpreted

as:
{
case 1: //ÅStatement 1: case-labeled statement
 printf(“This is case option 1\n”);
printf(“Value of a is %d\n”,a); //ÅStatement 2: function call statement
case 2: //ÅStatement 3: case-labeled statement
 printf(“This is case option 2\n”);
default: //ÅStatement 4: default-labeled statement
 printf(“This is default option\n”);
}
•  Since case label 1 matches the result of evaluation of switch

selection expression, the execution starts from the statement
with the case label 1, and all the statements after it within the
switch body gets executed

Program 3-11 | A program to illustrate the working of a switch statement

Line Prog 3-12.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

//switch statement
#include<stdio.h>
main()
{
int a=3;
switch(a)
{
case 1:
 printf(“This is case option 1\n”);
 printf(“Value of a is %d\n”,a);
default:
 printf(“This is default option\n”);
case 2:
 printf(“This is case option 2\n”);
 }
}

This is default option
This is case option 2
Remarks:
•  There is no constraint about the position of a default-labeled

statement within the switch body
•  Since none of the case labels match the result of evaluation

of a switch selection expression, the execution begins with the
default-labeled statement

•  All the statements aĞ er the default-labeled statement within
the switch body gets executed

Program 3-12 | A program to illustrate that there is no constraint about the position of a default-labeled
statement within the switch body

Line Prog 3-13.c Output window

1
2
3
4
5
6

// switch statement & ranges
#include<stdio.h>
main()
{
char exp=’E’;
switch(exp)

Upper case vowel
Remarks:
•  A switch body consists of two case-labeled statements. The

code is interpreted as:
case ‘a’: //ÅStatement 1: case-labeled statement
 case ‘e’: //ÅConstituent statement of case-labeled statement is

(Contd...)

Statements 123

7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

{
case ‘a’:
case ‘e’:
case ‘i’:
case ‘o’:
case ‘u’:
 printf(“Lower case vowel\n”);
case ‘A’:
case ‘E’:
case ‘I’:
case ‘O’:
case ‘U’:
 printf(“Upper case vowel\n”);
}
}

 case ‘i’: //Åanother case-labeled statement
 case ‘o’:
 case ‘u’:
 printf(“Lower case vowel\n”);
case ‘A’: //ÅStatement 2: case-labeled statement
 case ‘E’:
 case ‘I’:
 case ‘O’:
 case ‘U’:
 printf(“Upper case vowel\n”);
•  In this way, the switch statement can be used to switch on

ranges
•  This is only beneficial when the ranges are small
•  C language does not support the following ways for switch-

ing on ranges:
•  case ‘A’-‘Z’ //Åif used, it will be interpreted as case -25

(i.e. ASCII code of ‘A’- ASCII code of ‘Z’)
•  case ‘A’ to ‘Z’ //Åallowed in Visual Basic but not in

C language

Program 3-13 | A program to illustrate the use of a switch statement to switch on ranges

3.3.3.4.1.2 Jump Statements
A jump statement transfers the control from one point to another without checking any condi-
tion, i.e. unconditionally. The following jump statements are present in C language:

1. goto statement
2. break statement
3. continue statement
4. return statement

3.3.3.4.1.2.1 goto Statement
The goto statement is used to branch unconditionally from one point to another within a func-
tion. It provides a highly unstructured way of transferring the program control from one point
to another within a function. It often makes the program control difficult to understand and
modify. Thus, the use of a goto statement is discouraged in powerful structured programming
languages like C. The syntactic form of a goto statement is:

goto label;
The important points about a goto statement are as follows:

The 1. goto statement is always used in conjunction with an identifier-labeled statement.
Within the body of a function in which the goto statement is present, an identifier-labeled
statement with a label name, same as the label name used in the goto statement should
be present.
The 2. goto statement on execution transfers the program control to an identifier-labeled
statement having a label name same as the label name used in the goto statement.

124 Programming in C—A Practical Approach

 The 3. goto statement can be used to make a forward jump as well as a backward jump. If
the goto statement is present before its corresponding identifier-labeled statement, the
jump made will be known as a forward jump. If the goto statement is present after its
corresponding identifier-labeled statement, the jump made will be known as a backward
jump. The forward and backward jumps are shown in Figure 3.3.

goto label;

label:

label:
 statement

goto label;

Forward jump Backward jump

statement

Figure 3.3 | Forward and backward jump

4. There can be two or more goto statements corresponding to an identifier-labeled state-
ment but there cannot be two or more identifier-labeled statements corresponding to a
goto statement. The interpretation of this rule is illustrated in Figure 3.4.

goto label;

goto label;

label:
statement

goto label;

label:
 statement

goto label;

label:
 statement

(a) Allowed (b) Not Allowed

?

Multiple labeled statementsMultiple goto statements

Figure 3.4 | (a) Multiple goto statements corresponding to one identifier-labeled statement are allowed;
(b) multiple identifier-labeled statements corresponding to one goto statement are not allowed

5. The goto statement can transfer control anywhere within a function, i.e. it can take con-
trol in or out of a nested if statement, nested if-else statement or nested loops. However,
a goto statement in no way can take control out of the function in which it is used.

3.3.3.4.1.2.2 break Statement
The syntactic form of a break statement is:

break;
The important points about a break statement are as follows:
1. A break statement can appear only inside, or as a body of, a switch statement or a loop.§§§

The code snippet listed in Program 3-14 verifies this fact.

§§§ Refer Section 3.3.3.4.2 for a description on loops.

Statements 125

Line Prog 3-14.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12

//break statement
#include<stdio.h>
main()
{
int a=10;
if(a==10)
{
 printf(“if controlling expression evaluates to true”);
 break;
 printf(“The value of a is %d”,a);
}
}

Compilation error “Misplaced break in function main”
Reasons:
•  The break statement can appear only inside or as

a switch/loop body
•  The break statement present in line 9 is neither a

part of a switch body nor a loop body
What to do?
•  Either remove the break statement from if body

or place the if statement inside a loop body or a
switch body

Program 3-14 | A program to illustrate that the break statement cannot appear outside the switch body or a
loop

2. A break statement terminates the execution of the nearest enclosing switch or the nearest
enclosing loop. The execution resumes with the statement present next to the termi-
nated switch statement or the terminated loop. The interpretation of this point is illus-
trated in the code snippet listed in Program 3-15.

Line Prog 3-15.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

//break statement
#include<stdio.h>
main()
{
int a=1;
switch(a)
{
case 1:
 printf(“One”);
 break;
case 2:
 printf(“Two”);
 break;
default:
 printf(“Default”);
}
printf(“\nThis statement is next to switch”);
}

One
This statement is next to switch
Remarks:
•  The switch body consists of five statements and is

interpreted as:
{
case 1: //ÅStatement 1: case-labeled statement
 printf(“One”);
break; //ÅStatement 2: break statement
case 2: //ÅStatement 3: case-labeled statement
 printf(“Two”);
break; //ÅStatement 4: break statement
default: //ÅStatement 5: default-labeled statement
 printf(“Default”);
}
•  Execution starts from the statement with the case label 1
•  Execution of break statement terminates the switch state-

ment and the control immediately transfers to the
statement present next to the switch statement, i.e.
printf(“\nThis statement is next to switch”);

Program 3-15 | A program to illustrate the execution of a switch statement

3.3.3.4.1.2.3 continue Statement
The syntactic form of a continue statement is:

continue;

126 Programming in C—A Practical Approach

The important points about a continue statement are as follows:
A 1. continue statement can appear only inside, or as the body of, a loop.
A 2. continue¶¶¶ statement terminates the current iteration of the nearest enclosing loop. The
semantics of the continue statement will be discussed after iteration statements.

3.3.3.4.1.2.4 return Statement
The general forms of a return statement are:

 return; or //ÅForm 1
 return expression; //ÅForm 2
The important points about a return statement are as follows:

A 1. return statement without an expression (i.e. Form 1) can appear only in a function
whose return typeÂ is void.
A 2. return statement with an expression (i.e. Form 2) should not appear in a functionÂ
whose return type is void.
A 3. return statement terminates the execution of a function and returns the control to the
callingÂ function.

The syntax and semantics of a return statement will be discussed in Chapter 5.

Forward Reference: Functions and their return types, calling function and called function
(Chapter 5).

3.3.3.4.2 Iteration Statements
Iteration is a process of repeating the same set of statements again and again until the speci-
fied condition holds true. Humans find iterative tasks boring but computers are very good at
performing iterative tasks. Computers execute the same set of statements again and again by
putting them in a loop. The C language provides the following three iteration statements:

1. for statement
2. while statement
3. do-while statement
In general, loops are classified as:
1. Counter-controlled loops
2. Sentinel-controlled loops

3.3.3.4.2.1 Counter-Controlled Loops
Counter-controlled looping is a form of looping in which the number of iterations to be
performed is known in advance. Counter-controlled loops are so named because they use a
control variable, known as the loop counter, to keep a track of loop iterations. The counter-
controlled loop starts with the initial value of the loop counter and terminates when the final
value of the loop counter is reached. Since the counter-controlled loops iterate a fixed number
of times, which is known in advance, they are also known as definite repetition loops. There
are three main ingredients of counter-controlled looping:

¶¶¶ Refer Section 3.3.3.4.2.4.2 for a description on the semantics of a continue statement.

Statements 127

Initialization of the loop counter.1.
An expression (specifically a condition) determining whether the loop body should be 2.
executed or not.
An expression that manipulates the value of the loop counter so that the condition in 3.
step 2 eventually becomes false and the loop terminates.

Firstly, I will describe the syntax of looping statements available in C language and how
they can be used for counter-controlled looping. In Section 3.3.3.4.2.2, I will describe the use of
available iteration statements for sentinel-controlled looping.

3.3.3.4.2.1.1 for Statement
Out of all the looping constructs available in C, for statement is the most popular one. The
general form of a for statement is:

 for(expression1; expression2; expression3) //Åfor header
 statement //Åfor body

The important points about a for statement are as follows:

1. The for statement consists of for header and for body.
 Points about for header:
2. The for header consists of the keyword for followed by three expressions separated by

semicolons and enclosed within parentheses.
3. All the expressions in the for header are optional and can be skipped. Even if all the

expressions are missing, it is mandatory to create three sections by placing two semico-
lons.

4. Three sections are named as: initialization section, condition section and manipulation
section.
a. Initialization section: expression1 constitutes the initialization section. It is used to

initialize (i.e. assign a starting value to) the loop counter. If the loop counter has
already been initialized, the initialization expression, i.e. expression1 can be skipped.
However, a semicolon is necessary and must be placed.

b. Condition section: expression2 forms the condition section. expression2 tests the value
of the loop counter. This section determines whether the body of the loop is to be
executed or not. In case of infinite loops, the condition section can be skipped.

 c. Manipulation section: expression3 is part of the manipulation section. The manipula-
tion expression manipulates the value of the loop counter so that the expression2 present
in the condition section eventually evaluates to false and the loop terminates.

5. Care must be taken that the for header is not terminated with a semicolon. If it is termi-
nated with a semicolon, the semicolon is interpreted as a null statement following the
for header (i.e. it is treated as for body).

 A point about for body:
6. The syntax of for statement permits only a single statement to be associated with for

header. If a number of statements are to be executed repeatedly, the statements should
be clubbed together to form a compound statement.

 Execution of for statement:

128 Programming in C—A Practical Approach

7. The for statement is executed as follows:
a. Initialization section is executed only once at the start of the loop.
b. The expression present in the condition section is evaluated.

i. If it evaluates to true, the body of the loop is executed.
ii. If it evaluates to false, the loop terminates and the program control is transferred

to the statement present next to the for statement.
c. After the execution of the body of the loop, the manipulation expression is evaluated.
d. These three steps represent the first iteration of the for loop. For the next iterations,

Steps b and c are repeated until the expression in Step b evaluates to false.
The facts mentioned above are illustrated in Program 3-16.

Line Prog 3-16.c Flow chart depicting the flow of
control in program

Output window

 1
2
3
4
5
6
7
8
9

10
11
12

//Use of for statement to find the
//sum of first n natural numbers
#include<stdio.h>
main()
{
int n, lc, sum=0;
printf(“Enter the value of n\t”);
scanf(“%d”,&n);
for(lc=1;lc<=n;lc++)
 sum=sum+lc;
printf(“Sum is %d”,sum);
}

sum=0

sum=sum+Ic
Ic=Ic+1

Ic=1

Is (Ic<=n)

Print sum

Input value of n

Stop

No

Start

Yes

Enter the value of n 10
Sum is 55

Program 3-16 | A program to illustrate the use of for statement for finding the sum of first n natural
numbers

The codes in Table 3.3 are equivalent to the code specified in Program 3-16.
Table 3.3 | Codes equivalent to the code listed in Program 3-16

Line Equivalent Code-I Equivalent Code-II Equivalent Code-III

1
2
3
4
5
6
7

//Use of for statement to find the sum
// of first n natural numbers
#include<stdio.h>
main()
{
int n, lc=1, sum=0; //Initialization of lc
printf(“Enter the value of n\t”);

//Use of for statement to find the sum
//of first n natural numbers
#include<stdio.h>
main()
{
int n, lc, sum=0;
printf(“Enter the value of n\t”);

//Use of for statement to find the
//sum of first n natural numbers
#include<stdio.h>
main()
{
int n, lc=1, sum=0;
printf(“Enter the value of n\t”);

(Contd...)

Statements 129

8
9

10
11
12

scanf(“%d”,&n);
for(;lc<=n;lc++)//Initialization missing
 sum=sum+lc;
printf(“Sum is %d”,sum);
}

scanf(“%d”,&n);
for(lc=1;lc<=n;)//Manipulation missing
 sum=sum+lc++;//Manipulation of lc
printf(“Sum is %d”,sum);
}

scanf(“%d”,&n);
for(;lc<=n;)//Both missing
 sum=sum+lc++;
printf(“Sum is %d”,sum);
}

The code snippet in Program 3-17 illustrates the effect of presence of a semicolon at the end
of for header.

Line Prog 3-17.c Flow chart depicting the flow of
control in program

Output window

1
2
3
4
5
6
7
8
9

10
11

//Effect of ; at end of for header
#include<stdio.h>
main()
{
int n, lc, sum=0;
printf(“Enter the value of n\t”);
scanf(“%d”,&n);
for(lc=1;lc<=n;lc++);
 sum=sum+lc;
printf(“Sum is %d”,sum);
}

sum=0

sum=sum+Ic

;i.e. Null statement
Ic=Ic+1

Ic=1

Is (Ic<=n)

Print sum

Input value of n

Stop

No

Start

Yes

Enter the value of n 10
Sum is 11
Remarks:
•  for header is terminated with

a semicolon
•  Semicolon is interpreted as

null statement and forms the
for body

•  The statement sum=sum+lc; is a
statement present next to the
for statement and thus gets
executed only once

•  The value of lc on the termi-
nation of loop will be 11

•  This value of lc is added to
sum to produce the men-
tioned output

Program 3-17 | A program to illustrate the effect of a semicolon at the end of a for header

3.3.3.4.2.1.2 while Statement
The general form of a while statement is:

 while(expression) //Åwhile header
 statement //Åwhile body

The important points about a while statement are as follows:

The 1. while statement consists of while header and while body.
The 2. while header consists of keyword while followed by while controlling expression en-
closed within the parentheses.
The controlling expression in 3. while header is mandatory and cannot be skipped.

130 Programming in C—A Practical Approach

The 4. while header should not be terminated with a semicolon. If it is terminated with a
semicolon, the semicolon is interpreted as a null statement following the while header
(i.e. it is treated as a while body).
The syntax of a 5. while statement permits only a single statement to be associated with while
header. If a number of statements are to be executed repeatedly, the statements should
be clubbed together to form a compound statement.
The 6. while statement is executed as follows:
a. The while controlling expression is evaluated.

i. If it evaluates to true, the body of the loop is executed.
ii. If it evaluates to false, the program control is transferred to the statement present

next to the while statement.
b. After executing the while body, the program control returns back to the while header.
c. Steps a and b are repeated until the while controlling expression in Step a evaluates to

false.

7. While making the use of while statement, always remember to initialize the loop counter
before the while controlling expression is evaluated and to manipulate the loop counter
inside the body of while statement, i.e. before the while controlling expression is evaluated
again.

The facts mentioned above are illustrated in Program 3-18.

Line Prog 3-18.c Flow chart depicting the flow
of control in program

Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Use of while statement to find
//the factorial of a number
#include<stdio.h>
main()
{
int num, lc, fact;
printf(“Enter number\t”);
scanf(“%d”,&num);
fact=1;
lc=1; //Initialization of loop counter
while(lc<=num)
{
 fact=fact*lc;
 lc=lc+1; //Manipulation of loop counter
}
printf(“Factorial is %d”,fact);
}

fact=fact*Ic
Ic=Ic+1

fact=1, Ic=1

Is (Ic<=n)

Print Factorial

Input number

Stop

No

Start

Yes

Enter number 5
Factorial is 120
Remarks:
•  Line 9 initializes the val-

ue of fact to 1. It is impor-
tant to initialize fact to 1
else garbage will be the
result

•  Line 10 provides the ini-
tialization of loop coun-
ter

•  Line 14 manipulates the
loop counter

Program 3-18 | A program to find the factorial of a number using while loop

The codes in Table 3.4 are equivalent to the code specified in Program 3-18.

Statements 131

Table 3.4 | Codes equivalent to the code listed in Program 3-18

Line Equivalent Code-I Equivalent Code-II Equivalent Code-III

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Use of while statement to find
//the factorial of a number
#include<stdio.h>
main()
{
int num, lc=1, fact=1;
printf(“Enter number\t”);
scanf(“%d”,&num);
while(lc<=num)
{
 fact=fact*lc;
 lc=lc+1;
}
printf(“Factorial is %d”,fact);
}

//Use of while statemnt to find
//the factorial of a number
#include<stdio.h>
main()
{
int num, lc=1, fact=1;
printf(“Enter number\t”);
scanf(“%d”,&num);
while(lc<=num)
 fact=fact*lc++;
 printf(“Factorial is %d”,fact);
}

//Use of while statement to find
//the factorial of a number
#include<stdio.h>
main()
{
int num, lc=0, fact=1;
printf(“Enter number\t”);
scanf(“%d”,&num);
while(lc++<num)
 fact=fact*lc;
printf(“Factorial is %d”,fact);
}

3.3.3.4.2.1.3 do-while Statement
The general form of do-while statement is:

 do //Ådo-while header
 statement //Ådo-while body
 while(expression); //Åwhile clause

The important points about a do-while statement are as follows:
1. The do-while statement consists of a do clause, followed by a statement that constitutes

do-while body, followed by the while clause consisting of while keyword followed by do-while
controlling expression enclosed within parentheses. The while clause is terminated with
a semicolon.

2. The controlling expression in a do-while statement is mandatory and cannot be skipped.
3. The syntax of a do-while statement permits only a single statement to be present. If a

number of statements are to be executed repeatedly, the statements should be clubbed
together to form a compound statement.

4. The do-while statement is executed as follows:
a. The statement, i.e. body of do-while statement, is executed.
b. After the execution of a do-while body, the do-while controlling expression is evalu-

ated.
i. If it evaluates to true, the statement, i.e. do-while body is executed again and Step

b is repeated.
ii. If it evaluates to false, the program control is transferred to the statement

present next to the do-while statement.
5. While making the use of a do-while statement, always remember to initialize the loop

counter before the do-while statement and to manipulate it inside the body of the do-while
statement so that the do-while controlling expression eventually becomes false.

6. The statement, i.e. body of the do-while loop is executed once, even when the do-while con-
trolling expression is initially false.

132 Programming in C—A Practical Approach

The code snippet in Program 3-19 illustrates the use of a do-while statement to find the sum
of the series 1 + 2 + 3… n terms.

Line Prog 3-19.c Flow chart depicting the
flow of control in program

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

//Use of do-while statement to fi nd
//the sum of the series 1+2+3…..n terms
#include<stdio.h>
main()
{
int terms, sum=0, lc=0;
printf(“Enter number of terms\t”);
scanf(“%d”,&terms);
do
{
sum=sum+lc;
lc=lc+1;
}
while(lc<=terms);
printf(“Sum of series is %d”,sum);
}

sum=0, Ic=0

sum=sum+Ic
Ic=Ic+1

Is (Ic<=terms)

Print sum

Input num. of terms

Stop

No

Start

Yes

Enter number of terms 5
Sum of series is 15
Remarks:
• Initialize the value of variable

sum to 0 else the result will be
garbage

• Look at the position of
controlling expression

• It is present at the end (i.e.
exit point) of the loop

• That is why, do-while is known
as exit-controlled loop

• for and while are known as
entry-controlled loops

Program 3-19 | A program to illustrate the use of a do-while statement

3.3.3.4.2.2 Sentinel-Controlled Loops
In sentinel-controlled looping, the number of times the iteration is to be performed is not
known beforehand. The execution or termination of the loop depends upon a special value
called the sentinel value. If the sentinel value is true, the loop body will be executed, other-
wise it will not. Since the number of times a loop will iterate is not known in advance, this type
of loop is also known as indefinite repetition loop.

Consider the problem of finding the maximum and the minimum from a set of numbers.
However, the set (i.e. numbers) and the cardinality of set (i.e. how many numbers are there in the
set) are not known beforehand; therefore, the user will enter them at the run time. The mentioned
problem can be solved by using sentinel-controlled looping as given in Programs 3-20 and 3-21.

Line Prog 3-20a.c Prog 3-20b.c Output window

1
2
3
4
5
6
7
8
9

//while statement for sentinel control
#include<stdio.h>
#include<conio.h>
main()
{
char choice;
int num, max, min;
printf(“Enter number\t”);
scanf(“%d”,&num);

//for statement for sentinel control
#include<stdio.h>
#include<conio.h>
main()
{
char choice;
int num, max, min;
printf(“Enter number\t”);
scanf(“%d”,&num);

Enter number 5
Want to enter more y
Enter number 3
Want to enter more y
Enter number 8
Want to enter more y
Enter number -2
Want to enter more n
Maximum is 8

(Contd...)

Statements 133

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

max=min=num;
printf(“Want to enter more\t”);
choice=getche();
while(choice==’y’||choice==’Y’)
{
printf(“\nEnter number\t”);
scanf(“%d”,&num);
if(num>max)
 max=num;
else
 if(num<min)
 min=num;
printf(“Want to enter more\t”);
choice=getche();
}
printf(“\nMaximum is %d”,max);
printf(“\nMinimum is %d”,min);
}

max=min=num;
printf(“Want to enter more\t”);
choice=getche();
for(;choice==’y’||choice==’Y’;)
{
printf(“\nEnter number\t”);
scanf(“%d”,&num);
if(num>max)
 max=num;
else
 if(num<min)
 min=num;
printf(“Want to enter more\t”);
choice=getche();
}
printf(“\nMaximum is %d”,max);
printf(“\nMinimum is %d”,min);
}

Minimum is -2
Remarks:
•  The loop terminates when

the user does not enter the
choice ‘Y’ or ‘y’

•  choice is the sentinel value
•  The number of iterations

after which the user will
say ‘no’ is not known in ad-
vance

•  The header file conio.h is to
be included for using the
function getche

•  The function getche is used to
get a character from the user.
It also outputs, i.e. echoes
the entered character onto
the screen. The character e
in getche stands for echo

•  The variant of getche func-
tion that is used to get a
character from the user
without echoing it on the
screen is getch function

Program 3-20 | A program to illustrate the use of while statement and for statement for sentinel-controlled
looping

Line Prog 3-21.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

//do-while statement for sentinel controlled looping
#include<stdio.h>
#include<conio.h>
main()
{
char choice;
int num, iteration=1, max, min;
do
{
printf(“Enter number\t”);
scanf(“%d”,&num);
if(iteration++==1)
 max=min=num;
else
 if(num>max)
 max=num;
 else
 if(num<min)
 min=num;

Enter number 5
Want to enter more y
Enter number 3
Want to enter more y
Enter number 8
Want to enter more y
Enter number -2
Want to enter more n

Maximum is 8
Minimum is -2
Remarks:
•  The loop terminates when the user does

not enter the choice ‘Y’ or ‘y’
•  choice is the sentinel value
•  The number of iterations after which the

user will say ‘no’ is not known in advance

(Contd...)

134 Programming in C—A Practical Approach

Line Prog 3-21.c Output window

20
21
22
23
24
25
26
27

printf(“Want to enter more\t”);
choice=getche();
printf(“\n”);
}
while(choice==’y’||choice==’Y’);
printf(“\nMaximum is %d”,max);
printf(“\nMinimum is %d”,min);
}

Program 3-21 | A program to illustrate the use of a do-while statement for sentinel-controlled looping

3.3.3.4.2.3 Nested Loops
If the body of a loop is, or contains another iteration statement, then we say that the loops are
nested. An example of a nested for loop is given in Program 3-22.

Line Prog 3-22.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12

//Nested for loop
#include<stdio.h>
main()
{
int olc,ilc;
for(olc=1;olc<=4;olc++)
{
 for(ilc=1;ilc<=4;ilc++)
 printf(“*”);
 printf(“\n”);
}
}

Remarks:
•  olc is the outer loop counter and ilc is the inner

loop counter
•  The inner loop is responsible for printing 4

stars in a row
•  The outer loop is responsible for printing 4

such rows

Program 3-22 | A program to illustrate the use of a nested for loop

3.3.3.4.2.4 Semantics of break and continue Statements
After the discussion of iteration statements, it is time to discuss the use of break and continue
statements. The break statement helps in terminating a loop, while the continue statement helps
in terminating the current iteration of a loop.

3.3.3.4.2.4.1 Semantics of break Statement
The important points about the usage of a break statement along with loops are as follows:

When the 1. break statement present inside a loop is executed, it terminates the loop and
the program control is transferred to the statement present next to the loop.
When the 2. break statement present inside a nested loop is executed, it only terminates
the execution of the nearest enclosing loop. The execution resumes with the statement
present next to the terminated loop.
There is no constraint about the number of 3. break statements that can be present inside a
loop.

Statements 135

The meaning of the above-mentioned points is illustrated in Program 3-23.

Line Prog 3-23.c Flow chart depicting the flow of
control in program

Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14

//Use of break statement
#include<stdio.h>
main()
{
int i;
for(i=1;i<=10;i++)
{
if(i==5)
 break;
printf(“%d ”,i);
}
if(i<11)
 printf(“\nPremature Termination”);
}

i=1

break

Is (i<=10)

Is (i==5)

Is (i<=11)

Print i

Premature Termination

No

No

No

Yes
Yes

Yes

Start

Stop

1 2 3 4
Premature Termination
Remark:
•  break statement is used

to prematurely termi-
nate the loop

Program 3-23 | A program to illustrate the use of break statement

Program 3-24 illustrates a break statement, which terminates the nearest enclosing loop.

Line Prog 3-24.c Values of olc and ilc Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13

//Use of break statement in nested loops
#include<stdio.h>
main()
{
int olc, ilc;
for(olc=1;olc<=3;olc++)
 for(ilc=1;ilc<=4;ilc++)
 {
 if(ilc==3)
 break;
 printf(“%d %d\n”,olc,ilc);
 }
}

olc=1
 ilc=1 //Åprints 1 1
 ilc=2 //Åprints 1 2
 ilc=3 //Å break executes & termi-

nates the inner loop
olc=2
 ilc=1 //Åprints 2 1
 ilc=2 //Åprints 2 2
 ilc=3 //Åbreak executes
olc=3
 ilc=1 //Åprints 3 1
 ilc=2 //Åprints 3 2
 ilc=3 //Åbreak executes

1 1
1 2
2 1
2 2
3 1
3 2
Remarks:
•  break statement ter-

minates only the
inner loop

•  The control still
remains inside the
outer loop

Program 3-24 | A program to illustrate that break statement terminates the nearest enclosing loop

The use of a break statement in checking whether a number is prime or not is illustrated in
Program 3-25.

136 Programming in C—A Practical Approach

Line Prog 3-25.c Flow chart depicting the flow of control Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

//Use of break statement to check
//whether a number is prime or not
#include<stdio.h>
main()
{
int num, i;
printf(“Enter the number\t”);
scanf(“%d”,&num);
for(i=2;i<num;i++)
 if(num%i==0)
 break;
if(i==num)
 printf(“Number is prime”);
else
 printf(“Number is not prime”);
}

i=2

break

Is (i<num)

Is (num%i==0)

Is (i==num)

Number is prime
Number is not prime

Stop

No

No

NoYes
Yes

Yes

Start

Enter num to be checked

Enter the number 9
Number is not prime
Remarks:
• Whether a number is

prime or not can be
determined by check-
ing whether the num-
ber is divisible by any
value from 2 to num-1

• When it is found that
the number num is di-
visible by some value
of i, there is no need to
check the divisibility
of num for rest of the
values of i

Program 3-25 | A program to check whether a number is prime or not

3.3.3.4.2.4.2 Semantics of continue Statement
The important points about a continue statement are as follows:

A 1. continue statement terminates the current iteration of the loop.
When a 2. continue statement present inside a nested loop is executed, it only terminates the
current iteration of the nearest enclosing loop.
On the execution of a 3. continue statement, the program control is immediately transferred
to the header of the loop.
There is no constraint about the number of 4. continue statements that can be present inside a loop.

The semantics of a continue statement is illustrated in Program 3-26.

Line Prog 3-26.c Flow chart depicting the flow of control Output window

 1
2
3
4
5
6
7
8
9

10
11
12

//Use of continue statement
#include<stdio.h>
main()
{
int i;
for(i=1;i<=10;i++)
{
if(i%2==0)
 continue;
printf(“%d ”,i);
}
}

i=1

Is (i<=10)

Is (i%2==0)

Print i

Stop

No

No

Start

Yes
Yes

1 3 5 7 9
Remark:
•  For even values of i, the

printf statement will not
be executed as the continue
statement transfers the
control to the header of
the loop

Program 3-26 | A program to illustrate the use of a continue statement

Statements 137

3.4 Summary
1. Statement is the smallest logical entity that can independently exist in a C program.
2. No entity smaller than a statement, i.e. expressions, variables, constants, etc. can exist in

a C program unless and until they are converted into statements.
3. A single statement is known as a simple statement.
4. A group of single statements can be clubbed together into one statement by enclosing

them within braces. A clubbed statement is known as a block or a compound state-
ment.

5. Non-executable statements are meant for the compiler. No machine code is generated
for non-executable statements.

6. Only executable statements play a role during the execution of a program. Only for
these statements, the machine code is generated.

7. A null statement performs no operation and consists of just a semicolon.
8. An expression statement performs the computation and is formed by terminating an

expression with a semicolon.
9. By default, the flow of program control is sequential and it flows from top to bottom.
10. Flow of control needs to be altered to implement decision making and iteration.
11. To alter the default flow of control, flow control statements are used.
12. To implement decision making, selection statements are used.
13. Selection statements are: if statement, if-else statement, and switch statement.
14. Selection statements can be nested.
15. Careless use of nested if-else statement may lead to dangling else problem.
16. Dangling else problem can be implicitly as well as explicitly solved.
17. A switch statement is a better alternative to a nested if-else statement and is used in the

complex decision making.
18. Looping can be performed by using iteration statements.
19. Three iteration statements available in C are: for statement, while statement and do-while

statement.
20. A break statement is used to terminate the nearest enclosing loop.
21. A continue statement is used to terminate the current iteration of the nearest enclosing loop.

Exercise Questions
Conceptual Questions and Answers

1. What is the smallest logical unit that can independently exist in a C program?
 Statement is the smallest logical unit that has an independent existence in a C program. No entity

smaller than a statement (i.e. expressions, variables and constants, etc.) can exist unless and until
they are converted into statements. Consider the following program segment:

 main()
 {
 int a=10,b=20,c;

138 Programming in C—A Practical Approach

 c=a+b //Å Error: Statement missing ; in function main()
 printf(“The value of c is %d”,c);
 }

 On compilation, the above-mentioned piece of code gives ‘Statement missing ; error’. This error
is due to the fact that c=a+b is an expression and not a statement. Expressions cannot indepen-
dently exist in a C program. To make them exist, they must be converted into statements by
terminating them with a semicolon. The following is the rectified code:

 main()
 {
 int a=10,b=20,c;
 c=a+b; //ÅExpression terminated with a semicolon forming a statement
 printf(“The value of c is %d”,c);
 }

2. What is meant by a simple statement and a compound statement?
 A simple statement consists of a single statement. For example, c=a+b; is a simple statement. A

compound statement consists of a sequence of simple statements enclosed within braces. The
following is an example of a compound statement:

 {
 c=a+b;
 a*=2;
 b+3;
 }

3. What are executable statements and non-executable statements?
 Executable statements are the statements that call for a processing action by the computer, such

as performing arithmetic, reading data, making decision and so on. Non-executable statements
are the statements that provide the information about the nature of data (e.g. declaration state-
ment). Non-executable statements can be placed outside the bodies of functions (i.e. in global
scopeÂ), but executable statements can only be placed within the body of some function (i.e.
local scopeÂ).

Forward Reference: Global and local scope (Chapter 7).

4. Write a simple C statement to accomplish the following tasks:
 a. Assign sum of x and y to z and increment the value of x by 1 after the calculation.
 b. Decrement the variable x by 1 then subtract it from the variable total.

 a. z=x++ + y;
 Note: Writing z=x++ + y is not valid as it is not a statement. It is an expression.
 b. total-=--x;
 or
 total=total- --x;
 Carefully note the position of white-space character. Writing total=total---x; or total=total-- -x;

is not the same as writing total=total- --x;. The difference between them is shown in the table given
below:

Statements 139

Column 1 Initial values After execution of
statement in Column 1

total x total x

total-=--x; 15 5 11 4

total=total- --x; 15 5 11 4

total=total-- -x; 15 5 9 5

total=total---x; 15 5 9 5

5. What is the difference between initialization and assignment?
 First time assignment at the time of definition is called initialization. Assigning a value to an

identifier after initialization will be treated as an assignment. The clear understanding of differ-
ence between terms initialization and assignment becomes important when we talk about quali-
fied constants. Consider the following piece of code:

 main()
 {
 const int a=20; //Å Initialization of a qualifi ed constant is valid.
 a=30; //Å Compilation error: Value cannot be assigned to a qualifi ed constant.
 }

 The above-mentioned code highlights the fact that:
 ‘We cannot assign a value to a qualified constant but we can initialize it’.

6. What is null statement and where is it used?

Backward Reference: Refer Section 3.3.3.2 for a description on null statement.

 A null statement is used when the syntax of a language construct requires a statement to be pres-
ent but the logic of the program does not require it. Its use is illustrated in the next answer.

7. How can you print “Hello World” without using a semicolon in a C program?
 The following code segment prints “Hello World” without using a semicolon.

 main()
 {
 if(printf(“Hello World”))
 {} //ÅNull statement. Syntax of if statement requires a statement to be present but
 } // the logic of the program does not require it. Hence, null statement is placed.

8. What is dangling else problem? How is it solved by a compiler and how can it be avoided?

Backward Reference: Refer Section 3.3.3.4.1.1.4 for the answer to this question.

9. Why does the following piece of code on compilation gives an error?
 main()
 {
 int a=1;
 if(a==1)
 printf(“This is if body\n”);

140 Programming in C—A Practical Approach

 printf(“This statement does not belong to if body”);
 else
 printf(“This is else body”);
 }

 The given piece of code on compilation gives ‘Misplaced else error.’ The source of error can be
found by looking at the syntax of an if-else statement. The general form of an if-else statement is:

 if(expression) //Å if header
 statement1 //Å if body
 else //Å else clause
 statement2 //Å else body

 It should be noted that only one statement can be associated with if clause and else clause. If more
than one statement needs to be associated with if clause or else clause, then a block comprising
those simple statements must be created. This block of statements, although comprising more
than one simple statement, will be treated as a unit, as one statement and can be associated with
if clause or else clause. The given piece of code is interpreted as:

 main()
 {
 int a=1;
 if(a==1)
 printf(“This is if body\n”); //ÅOnly this statement is associated with if clause
 printf(“This statement does not belong to if body”); //ÅThis statement is not in if body
 else //Åelse clause is leĞ without any matching if clause and this leads to error
 printf(“This is else body”);
 }

 To remove this error, club both the simple statements into a compound statement. The rectified
code is as follows:

 main()
 {
 int a=1;
 if(a==1)
 { //ÅCompound statement: It will be treated as a unit
 printf(“This is if body\n”);
 printf(“This statement does not belong to if body”);
 }
 else //ÅNow the else clause is properly matched with if clause
 printf(“This is else body”);
 }

10. Can the selection expression of a switch statement be a string?
 No, the selection expression of a switch statement cannot be a string. The switch selection expression

and case labels must be of integral type. Hence, the switch statement can be used to switch only on
integral data types (i.e. character and integer). Consider the following program segment:

 main()
 {
 switch(“Hello”)
 {
 case “Hello”:
 printf(“Hello”);

Statements 141

 case “Hi”:
 printf(“Hi”);
 }
 }

 In the above-mentioned piece of code, switch selection expression and case labels (shown in bold)
are strings. This is not allowed and thus, the code on compilation gives an error.

11. Can a switch statement have more than one default label?
 No, a switch statement cannot have more than one default label. In a switch statement, all the case

labels must be unique and at most one default label can be present. The presence of more than one
default label or duplicate case labels leads to ambiguity, which results in a compilation error.

12. Why does the following piece of code on compilation gives an error?
 main()
 {
 int i=65;
 switch(i)
 {
 case 65:
 printf(“This statement should get executed\n”);
 break;
 case ‘A’:
 printf(“A has ASCII code of 65, this statement should get executed\n”);
 break;
 default:
 printf(“Duplicate case labels lead to error\n”);
 }
 }

 The mentioned piece of code on compilation gives ‘Duplicate case in function main’ error. This is
due to the fact that integers and characters are not treated separately in C language. Characters
are stored internally in terms of their ASCII values. Character ‘A’ has ASCII value 65. So, writing
case ‘A’: is equivalent to writing case 65:. However, case label 65 is already present. Duplicate case
labels are not allowed. Hence, this leads to ‘Duplicate case in function main’ error.

13. Can we use a continue statement within the body of a switch statement like we can use a break statement
within it?

 No, a continue statement can appear only in or as a loop body. A switch statement is a branching
statement and not a looping statement. Hence, the continue statement cannot appear inside the
body of a switch statement.

14. Is it mandatory to have case labeled or default labeled statements within a switch body? If the switch body does
not contain any case or default labeled statements, will there be a compilation error?

 The general form of a switch statement is:
 switch(expression) //Åswitch header
 statement //Åswitch body

 A switch body consists of a statement. This statement can be a null statement, an expression state-
ment, a labeled statement, a flow control statement, a compound statement, etc. There is no
constraint that only labeled statements can form the switch body. Hence, it is not mandatory to
have case labeled or default labeled statements within the switch body. The following usages of switch
statement (without any case labeled or default labeled statements) are valid:

142 Programming in C—A Practical Approach

 a. switch(expr); //Åswitch body is a null statement
 b. switch(expr) //Åswitch body consisting of two function call statements

 {
 printf(“Two expression statements”);
 printf(“This is valid”);
 }

 c. switch(expr) //Åswitch body has a labeled statement, but the labeled
 { // statement is an identifier labeled statement and not a case labeled
 lab: // or a default labeled statement
 printf(“This is also valid”);
 goto lab;
 }

15. Can case labeled or default labeled statement exist outside the switch body?
 No, case labeled statements and default labeled statements can appear only inside the switch body.

Placing case labeled statements or default labeled statements outside the switch body leads to ‘Case/
Default outside of switch’ compilation error.

16. Why does the following piece of code gives an error on compilation?
 main()
 {
 int exp=2;
 switch(exp)
 {
 case 1:
 int j=2;
 printf(“The value of j in case 1 is %d\n”,j);
 case 2:
 printf(“The value of j in case 2 is %d\n”,j);
 }
 }

 This compilation error is due to the fact that the placement of the definition statement associated
with a case or default label is illegal unless it is placed within a statement block. The placement of
the definition statement within a statement block is mandatory because if the definition is not
enclosed within a statement block, the defined identifier would be visibleÂ (i.e. can be used)
across the case labels, but is initialized only if the case label within which it is defined is executed.
The presence of the statement block ensures that the name is initialized whenever it is visible. In
the given piece of code, int j=2; is not placed within a statement block. Hence, there is a compilation
error. The compilation error can be removed by placing int j=2; within a statement block.

Forward Reference: Visibility and scope (Chapter 8).

17. I have tried to rectify the problem in the code mentioned in the previous question. Does the following piece
of code compile successfully?

 main()
 {
 int exp=2;
 switch(exp)

Statements 143

 {
 case 1:
 {
 int j=2;
 printf(“The value of j in case 1 is %d\n”,j);
 }
 case 2:
 printf(“The value of j in case 2 is %d\n”,j);
 }
 }

 No, the given piece of code does not yet compile successfully. The given piece of code on com-
pilation gives ‘Undefined symbol ‘j’ in function main’ error. This error is due to the fact that
the identifier j defined within the statement block of case label 1 is visible (i.e. can be used) only
inside it. The identifier j is not visible (i.e. does not exist) outside the statement block in which it
is defined. Hence, reference to j in the printf statement of case label 2 is not valid and leads to the
compilation error.

18. Why does the following piece of code show just a sequence of zeros in its output?
 main()
 {
 int number=2;
 while(1)
 {
 printf(“%d ”,number);
 number*=2;
 }
 }

 The code actually outputs
 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 -32768 0 0 0 0 0 0 0 0 0 0 0 0
 0...infinite times.
 Initially number is two. It is represented in memory as:

Sign
Bit 16
MSB

Magnitude

Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

 Multiplying by two makes it four (i.e. equivalent to shifting in left direction by 1 bit).

Sign
Bit 16
 MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

 This shifting is continued and after 14 iterations, the number becomes:

Sign
Bit 16
 MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

144 Programming in C—A Practical Approach

 i.e. -32768. If the shifting is further carried out, the number becomes zero.

Sign
Bit 16
 MSB

Magnitude
Bit
15

Bit
14

Bit
13

Bit
12

Bit
11

Bit
10

Bit
9

Bit
8

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 From this point onwards irrespective of how many times shifting is carried out (i.e. number is
multiplied by two), the number remains zero. Hence, from this point onwards, the output will
only have zeros.

 Now, the speed of processing is so fast that first few outputs will be skipped (cannot be seen in
the output as the screen scrolls) and only a sequence of zeros can be seen. If you want to see all
the outputs, put some delay mechanism inside the loop. This can be done by using either the
function getch(), delay(int)" or sleep(int). "

" The function delay(int) suspends the execution of the program for a given time interval. The
time interval is an integer value and specifies the time in milliseconds. sleep(int) is a function
equivalent to the delay function. The delay function is provided in the DOS environment and the
sleep function is usually available with the WINDOWS environment.

19. I want to test whether a character entered by the user lies in the range ‘A’ to ‘C’ or ‘X’ to ‘Z’. Can I use a switch
statement to do this?

 Yes, a switch statement can be used to accomplish it. Use the following piece of code to check
whether the character entered lies in the range ‘A’ to ‘C’ or ‘X’ to ‘Z’.

 main()
 {
 char ch;
 printf(“Enter a character\t”);
 scanf(“%c”,&ch);
 switch(ch)
 {
 case ‘A’:
 case ‘B’:
 case ‘C’:
 printf(“The entered character is in range A-C”);
 break;
 case ‘X’:
 case ‘Y’:
 case ‘Z’:
 printf(“The entered character is in range X-Z”);
 break;
 default:
 printf(“The entered character is neither in range A-C nor in range X-Z”);
 }
 }

 However, this method would not be practical if the ranges are bigger. In case of bigger ranges,
usage of if-else statements with the involvement of logical operators in the controlling expressions
is preferred.

Statements 145

20. Do labels have scope like variables?
 Yes, labels do have scope like variables. A label name is a type of identifier that has only function

scope.Â It can be used anywhere in the function in which it appears.

Forward Reference: Function scope (Chapter 8).

21. Can we use a goto statement to take control from one function to some other function?
 A goto statement in no way can transfer control from one function to another function. Consider

the following piece of code:
 main()
 {
 goto here;
 }
 other_function()
 {
 here:
 printf(“The label is in other function”);
 }
 The above-mentioned code on compilation gives ‘Undefined label here in function main’ error. To

remove this error, use label here somewhere inside the body of main function.

22. Can a label be followed by another label or should it be followed by a statement?
 The general forms of labeled statements are:
 1. identifier: statement
 2. case constant-expression: statement
 3. default: statement
 After identifier label, case label or default label, there should be a statement. This statement can itself

be another labeled statement. Hence, label can follow another label. For e.g.
 lab: //Ålabel followed by another labeled statement
   try:
 printf(“This is valid”);
 Due to this definition of a labeled statement, the following form of a switch statement is valid:
 switch(expr)
 {
 case 1:
 case 2:
 printf(“Case 1 and Case 2”);
 case 3: case 4: case 5:
 printf(“Case 3,4 and 5”);
 }

23. Can a label name be the same as a function name or a variable name?
 Yes, label name can be the same as a function name or a variable name. Consider the following

piece of code:
 main()
 {
 int i=1;

146 Programming in C—A Practical Approach

 main:
 printf(“Function name is used as label name\n”);
 i++;
 if(i==2)
 goto i;
 goto main;
 i:
 printf(“Variable name is used as label name\n”);
 }
 In the given code, the function name, i.e. main and the variable name, i.e. i are used as label names.

The given code on execution gives an output as:
 Function name is used as label name
 Variable name is used as label name

24. Can a reserved word or a keyword like while, if, etc. be used as a label name?
 Reserved words or keywords cannot form valid identifier names. Since label names are identi-

fiers, reserved words or keywords cannot be used as valid label names.

25. All the identifiers need to be declared before their use. Label names are also identifiers. So, do we need to
declare label names?

 No, label names need not be declared. Label names are identifiers but no type is associated with
them. Hence, there is no need to explicitly declare them. Label names are implicitly declared by
their syntactic appearance. An identifier followed by a colon and a statement is implicitly treated
as a label name.

26. Is a goto statement capable of taking the control in or out of a nested loop?
 Yes, a goto statement is capable of taking the control in or out of a nested loop. The goto statement is

capable of taking control anywhere within a function in which it is used. Consider the following
piece of code:

 main()
 {
 int i,j;
 for(i=1;i<5;i++)
 for(j=1;j<5;j++)
 {
 printf(“This statement will be executed only once\n”);
 goto label;
 }
 label:
 printf(“goto statement has taken the control out of nested loop”);
 }
 Upon execution, it gives the output as:
 This statement will be executed only once
 goto statement has taken the control out of nested loop

27. Can a single break statement be used to terminate a nested loop?
 No, a single break statement cannot be used to terminate a nested loop. A break statement can only

terminate the execution of the nearest enclosing switch or the nearest enclosing loop. Consider the
following piece of code:

Statements 147

 main()
 {
 int i,j;
 for(i=1;i<3;i++)
 {
 for(j=1;j<3;j++)
 {
 break;
 printf(“This will not get printed”);
 }
 printf(“This will be executed twice as it is inside outer loop\n”);
 }
 }
 The break statement only terminates the inner for loop. The printf statement in the outer for loop

executes normally. The above piece of code on execution outputs:
 This will be executed twice as it is inside outer loop
 This will be executed twice as it is inside outer loop

28. What are entry-controlled and exit-controlled loops?
 In entry-controlled loops, condition is checked before the execution of body of the loop. The for

loop and while loop are examples of entry-controlled loops. In exit-controlled loops, the condi-
tion is checked after the execution of body of the loop. do-while is an example of an exit-controlled
loop. In entry-controlled loops, if the condition is initially false, the body of the loop will not be
executed. However, in exit-controlled loops, even if the condition is initially false, the body of the
loop will be executed once. Consider the following piece of code:

 main()
 {
 int i=2;
 do
 printf(“Condition is false, but this will be printed”);
 while(i<1);
 }

 The condition of a do-while loop is initially false; even then “Condition is false, but this will be printed” is the
output. This indicates that the body of the exit-controlled loop gets executed once, even if the
condition of the loop is initially false.

29. What are counter-controlled and sentinel-controlled loops?
 Counter-controlled looping is a form of looping in which the number of times the loop will ex-

ecute is known in advance. The counter-controlled loop starts with the initial value of the loop
counter and terminates when the final value of the loop counter is reached. Since a counter-
controlled loop iterates a fixed number of times, it is also known as a definite repetition loop. In
sentinel-controlled looping, the number of times the loop will execute is not known beforehand.
The execution or termination of the loop depends upon a special value called the sentinel value.
If the sentinel value is true, the loop body gets executed else not. Since the number of times the
loop will iterate is not known in advance, this type of loop is also known as an indefinite repeti-
tion loop.

30. What are the three main ingredients of counter-controlled looping?
 Three main ingredients of counter-controlled looping are:

148 Programming in C—A Practical Approach

 1. Initialization of the loop counter.
 2. A condition determining whether the loop body should be executed or not.
 3. An expression that manipulates the value of the loop counter so that the condition in Step 2

eventually becomes false and the loop terminates.

31. For every usage of a for loop, we can write an equivalent while loop. So, when should one prefer to use a for
loop and when should a while loop be preferred?

 A while loop should be preferred over a for loop when the number of iterations to be performed is
not known in advance. The termination of the while loop is based on the occurrence of some par-
ticular condition, i.e. a specific sentinel value. The usage of a for loop should be preferred when
the number of iterations to be performed is known beforehand. In short, a while loop is preferred
for sentinel-controlled looping and a for loop is preferred for counter-controlled looping.

32. Why does the following piece of code on compilation give a compilation error?
 main()
 {
 int i=2;
 while(i<10);
 {
 printf(“The value of i is %d”,i);
 if(i==5)
 break;
 }
 }

 The given piece of code gives a compilation error due to the fact that the break statement can ap-
pear only in or as a switch body or a loop body. Here, the break statement does not appear inside the
body of the while loop. The body of the while loop consists of a null statement. To rectify the given
code, remove the semicolon present at the end of the while header.

33. I want to terminate the nearest enclosing loop. Which construct in C provides me this functionality?
 To terminate the nearest enclosing loop, a break statement can be used. This can be seen by

executing the following piece of code:
 main()
 {
 int i,j;
 for(i=0;i<2;i++)
 {
 for(j=0;j<5;j++)
 {
 if(i!=0 || j!=0)
 break;
 printf(“This will be printed only once\n”);
 }
 printf(“This will be printed two times\n”);
 }
 }

34. I want to terminate the current iteration of the nearest enclosing loop. Which construct in C provides me
this functionality?

 To terminate the current iteration of the nearest enclosing loop, a continue statement can be used.
This can be seen by executing the following piece of code:

Statements 149

 main()
 {
 int i,j;
 for(i=0;i<2;i++)
 {
 for(j=0;j<5;j++)
 {
 if(i!=0 || j!=0)
 continue;
 printf(“This will be printed only once\n”);
 }
 printf(“This will be printed two times\n”);
 }
 }

35. The syntactic form of a for loop is as follows:
 for(expression1;expression2;expression3)
 statement

 What is the order in which expression1, expression2, expression3 and statement get evaluated?
 The order in which the expressions are evaluated is:
 1. expression1 is evaluated before the first evaluation of the controlling expression expression2.

expression1 is evaluated only once.
 2. expression2 is the controlling expression and is evaluated every time before the execution of the

loop body. If expression2 evaluates to true, the loop (i.e. statement) body will be executed other-
wise the control will come out of the loop.

 3. expression3 is evaluated after the execution of the loop body.

Code Snippets
Determine the output of the following code snippets. Assume that the inclusion of the required header files
has been made and there is no prototyping error due to them.

36. int a=10,b=20,c;
 c=a+b;
 main()
 {
 printf(“Value of c is %d”,c);
 }

37. main()
 {
 int a=10,b=20,c;
 c=a+2*b
 printf(“The value of c is %d”,c);
 }

38. main()
 {
 int a=10,b=20;
 if(a==b)
 printf(“a=10,b=20”);

150 Programming in C—A Practical Approach

 printf(“a and b are not equal”);
 }

39. main()
 {
 int a=10,b=20;
 if(a==b)
 {
 printf(“a=10, b=20”);
 printf(“a and b are not equal”);
 }
 }

40. main()
 {
 int a=10,b=20;
 if(a=b)
 printf(“a and b are equal”);
 else
 printf(“a and b are not equal”);
 }

41. main()
 {
 int a=10,b=20;
 if(a==b);
 printf(“a and b are equal”);
 else
 printf(“a and b are not equal”);
 }

42. main()
 {
 int a=10,b=10;
 if(a==b)
 printf(“a and b are equal\n”);
 else;
 printf(“a and b are not equal\n”);
 }

43. main()
 {
 if(1)
 printf(“This will always get executed”);
 else
 printf(“This will never get executed”);
 }

44. main()
 {
 if(printf(“Hello”))
 printf(“Students”);
 }

Statements 151

45. main()
 {
 int a=10,b=20;
 if(a==10)
 if(b==10)
 printf(“Value of a and b is 10”);
 else
 printf(“Value of a is 10 and b is something else”);
 }

46. main()
 {
 int a=10,b=20;
 if(a==10)
 {
 if(b==10)
 printf(“Value of a and b is 10”);
 }
 else
 printf(“Value of a is 10 and b is something else”);
 }

47. main()
 {
 int expr=10;
 switch(expr)
 printf(“This is valid but will not get executed”);
 }

48. main()
 {
 int expr=10;
 switch(expr);
 printf(“Tell whether this will get executed or not”);
 }

49. main()
 {
 float expr=2.0;
 switch(expr)
 {
 case 1: printf(“One”);
 case 2: printf(“Two”);
 default: printf(“Default”);
 }
 }

50. main()
 {
 int expr=2,j=1;
 switch(expr)
 {
 case j:

152 Programming in C—A Practical Approach

 printf(“This is case 1”);
 case 2:
 printf(“This is case 2”);
 default:
 printf(“This is default case”);
 }
 }

51. main()
 {
 char ch=’A’;
 switch(ch)
 {
 case ‘A’:
 printf(“Case label is A”);
 case “B”:
 printf(“Case label is B”);
 }
 }

52. main()
 {
 int expr=1;
 switch(expr)
 {
 case 1: printf(“One\n”);
 case 2: printf(“Two\n”);
 default: printf(“Three\n”);
 }
 }

53. main()
 {
 int expr=1;
 switch(expr)
 {
 case 1:
 printf(“One\n”);
 break;
 case 2:
 printf(“Two\n”);
 break;
 default: printf(“Three\n”);
 }
 }

54. main()
 {
 int expr=3;
 switch(expr)
 {
 default: printf(“Three\n”);

Statements 153

 case 1: printf(“One\n”);
 case 2: printf(“Two\n”);
 }
 }

55. main()
 {
 int expr=2;
 switch(expr)
 {
 case 1:
 printf(“This is case 1”);
 case 2-1:
 printf(“This is case 2”);
 }
 }

56. main()
 {
 int i=1,j=3;
 switch(i)
 {
 case 1:
 printf(“This is outer case 1\n”);
 switch(j)
 {
 case 3:
 printf(“This is inner case 1\n”);
 break;
 default:
 printf(“This is inner default case”);
 }
 case 2:
 printf(“This is outer case 2”);
 }
 }

57. main()
 {
 int expr=2;
 switch(expr)
 {
 case 1:
 printf(“This is case 1”);
 break;
 case 2:
 printf(“This is case 2”);
 continue;
 default:

154 Programming in C—A Practical Approach

 printf(“Default”);
 }
 }

58. main()
 {
 default:
 printf(“This is default labeled statement”);
 goto default;
 }

59. main()
 {
 int i=1;
 while(i<=5)
 {
 printf(“%d ”,i);
 i=i+1;
 }
 printf(“\nThe value of i after the loop is %d”,i);
 }

60. main()
 {
 int i=1;
 while(i<=5);
 {
 printf(“%d\n ”,i);
 i=i+1;
 }
 printf(“The value of i after the loop is %d”,i);
 }

61. main()
 {
 int i=1;
 while(i<=5)
 printf(“%d ”,i);
 printf(“The value of i after loop is %d”,i);
 }

62. main()
 {
 int i=1;
 for()
 {
 printf(“%d”,i);
 if(i=5)
 break;
 }
 }

Statements 155

63. main()
 {
 int i;
 for(i=1;i<=32767;i++)
 printf(“%d ”,i);
 }

64. main()
 {
 int i=1;
 for(;;)
 {
 printf(“%d ”,i);
 if(i==5)
 break;
 }
 }

65. main()
 {
 int i=1;
 for(;;)
 {
 printf(“%d”,i);
 if(i=5)
 break;
 }
 }

66. main()
 {
 int i=1;
 for(;i<=5;printf(“%d ”,i++));
 }

67. main()
 {
 int i=1;
 for(;i<=10;i++)
 {
 if(i%2==0)
 continue;
 printf(“%d ”,i);
 }
 }

68. main()
 {
 int i=1;

 loop:
 printf(“%d ”,i++);

156 Programming in C—A Practical Approach

 if(i==5) break;
 goto loop;
 }

69. main()
 {

 int i=1;
 loop:
 printf(“%d ”,i++);
 if(i==5) goto out;
 goto loop;
 out:
 ;
 }

70. main()
 {
 int i,j;
 for(i=1;i<3;i++)
 for(j=1;j<4;j++)
 {
 if(j==2) break;
 printf(“%d %d\n”,i,j);
 }
 }

71. main()
 {
 int i,j;
 for(i=1;i<3;i++)
 for(j=1;j<4;j++)
 {
 if(j==2) continue;
 printf(“%d %d\n”,i,j);
 }
 }

72. main()
 {
 int i=3;
 for(;i++=0;)
 printf(“%d”,i);
 }

73. main()
 {
 int a=0, b=20;
 char x=1, y=10;
 if(y,x,b,a)
 printf(“hello”);
 }

Chapter 3.indd 156Chapter 3.indd 156 28/02/2010 4:31:21 PM28/02/2010 4:31:21 PM

Statements 157

74. main()
 {
 int i=0;
 for(;i++;)
 printf(“%d”,i);
 }

75. main()
 {
 int i=0;
 for(;++i;)
 printf(“%d”,i);
 }

76. main()
 {
 int i=3,j=3;
 for(;i<6,j<4;i++,j++)
 printf(“%d %d\n”,i,j);
 }

77. main()
 {
 int i=1;
 while (i<=5)
 {
 printf(“%d”,i);
 if (i>2)
 goto here;
 i++;
 }
 }
 other_function()
 {
 here:
 printf(“The label is in other function”);
 }

78. main()
 {
 int i=3;
 goto label;
 for(i=0;i<5;i++)
 {
 label:
 printf(“%d ”,i);
 }
 }

79. main()
 {
 int i=5;

158 Programming in C—A Practical Approach

 do
 {
 printf(“%d”,i);
 i++;
 }while(i<10)
 }

80. main()
 {
 int i=5;
 do
 {
 printf(“%d”,i);
 i++;
 }while(i<0);
 }

Multiple-choice Questions
81. The smallest independent logical unit in a C program is
 a.  Expression c. Statement
 b. Token d. None of these

82. In C language, statements are terminated with
 a. Period c. New-line character
 b. Semicolon d. None of these

83. By default, statements in a C program are executed
 a. Randomly c. Sequentially in bottom to top order
 b. Sequentially in top to bottom order d. None of these

84. int ival; is actually a
 a. Declaration statement c.  Neither a declaration statement nor a defi-

nition statement
 b. Definition statement d. Declaration as well as a definition statement

85. Sentinel-controlled loop is also known as
 a. Definite repetition loop c. Indefinite repetition loop
 b. Infinite repetition loop d. None of these

86. Case label inside switch body must be
 a. An expression c. A constant integral expression
 b. An integral expression d. An integer constant

87. Which of the following forms of for statement is syntactically valid
 a. for(;;); c. for(;)
 b. for(;;) d. for();

88. The selection expression of switch statement must be of
 a. Integer type c. Integral type
 b. Float type d. String type

Statements 159

89. The C construct that is used to terminate the current iteration of a loop is
 a. break statement c. return statement
 b. continue statement d. None of these

90. Dangling else is an ambiguity that arises when in a statement the number of else clauses are
 a. Equal to the number of if clauses c. Greater than the number of if clauses
 b. Less than the number of if clauses d. None of these

91. The C construct that is used to terminate a loop is
 a. break statement c. return statement
 b. continue statement d. None of these

92. Minimum number of times a do-while loop will be executed is
 a. 0 c. Cannot be predicted
 b. 1 d. None of these

93. Which of the following statement is true about continue statement?
 a. It terminates the loop c. It can be used in or as a switch body
 b.  It terminates the current d. None of these

iteration of the loop

94. The body of a switch statement must consist of
 a. Case-labeled statements c. A statement
 b. Default-labeled statements d. Null statement

95. A continue statement can only be used in or as
 a. switch body c. if body
 b. Loop body d. None of these

96. Labels have
 a. Block scope c. Function scope
 b. Global scope d. File scope

97. A goto statement cannot take control
 a. Out of nested if-else c. Out of a function
 b. Out of a nested loop d. None of these

98. Consider the following segment of C code:
 int j,n;
 j=1;
 while(j<=n)
 j=j*2;
 The number of comparison made in the execution of the loop for any n>0 is
 a. ceiling(log2n)+2 c. ceiling(log2n)+1
 b. n d. floor(log2n)+2

99. Consider the following fragment of C code in which i, j and n are integer variables.
 for(i=n,j=0;i>0;i/=2,j+=1);

 The value of j after the termination of for loop is
 a. floor(log2n)+1 c. n
 b. n/2+1 d. ceiling(log2n)+1

160 Programming in C—A Practical Approach

100. Consider the following fragment of C code. How many times will the following loop be executed?
 x=500;
 while(x<=500)
 {
 x=x-600;
 if(x<0) break;
 }
 a. 0 c. 500
 b. 100 d. 1

Outputs and Explanations to Code Snippets
36. Compilation error
 Explanation:
 Non-executable statements can be placed outside the body of a function but executable state-

ments can only be placed within the body of a function. c=a+b; is an executable statement and can-
not be placed outside the body of a main function. To remove this error, place the statement c=a+b;
inside the body of the main function.

37. Compilation error (Statement missing ; in function main)
 Explanation:
 c=a+2*b is not a statement. It is an expression. No entity smaller than a statement can indepen-

dently exist in a C program. Hence, the error. To remove this error, convert the expression c=a+2*b
into a statement by terminating it with a semicolon.

38. a and b are not equal
 Explanation:
 printf(“a and b are not equal”); does not belongs to if body. It is a statement next to if statement and will

always be executed irrespective of the result of evaluation of if controlling expression.

39. No output
 Explanation:
 The if body is a compound statement consisting of two printf statements. Being a compound state-

ment, it will be treated as a unit, i.e. a single statement. Either all of its constituent statements will
be executed or none will get executed depending upon the outcome of the if controlling expres-
sion. Here, the if controlling expression evaluates to false. Hence, if body (i.e. printf statements) will
not be executed and thus, there is no output.

40. a and b are equal
 Explanation:
 The controlling expression of if-else statement is a=b. An assignment operator has been used in-

stead of equality operator. The value of b is assigned to a and the value of expression comes out
to be 20 (i.e. the assigned value of b). 20 is a non-zero value, i.e. true. If the if-else controlling ex-
pression evaluates to true, if body will get executed. Hence, if body (i.e. printf(“a and b are equal”);) gets
executed and a and b are equal is the result.

41. Compilation error (Misplaced else in function main)
 Explanation:
 This error is due to the presence of a semicolon after the if-else controlling expression. The men-

tioned code will be interpreted in the following way:

Statements 161

 main()
 {
 int a=10,b=20;
 if(a==b)
 ; //Åif body is a null statement
 printf(“a and b are equal”); //ÅThis statement is next to if statement
 else //Åelse clause is without any if clause
 printf(“a and b are not equal”);
 }
 To rectify this code, either remove the semicolon or make the null statement and printf(“a and b are

equal”); statement a single statement by enclosing them within braces.
42. a and b are equal
 a and b are not equal
 Explanation:
 a and b are not equal is a part of the output due to the presence of a semicolon after the else clause.

Null statement forms the else body. printf(“a and b are not equal”); statement is a statement next to the
if-else statement and will always get executed irrespective of the result of the evaluation of if-else
controlling expression.

43. This will always get executed
 Explanation:
 The controlling expression of if-else statement is 1. 1 is a non-zero value and is considered as true.

Every time you run this program, This will always get executed is the output as if-else controlling expres-
sion always evaluates to true.

44. HelloStudents
 Explanation:
 The controlling expression of if statement is evaluated first. Controlling expression of if state-

ment is printf(“Hello”). Function calls are valid expressions, so writing if(printf(“Hello”)) will not lead to
any compilation error. The expression gets evaluated and Hello is printed on the screen. The printf
function also returnsÂ an integer value. The value returned by the printf function is the number of
characters it prints. The number of characters in Hello is 5; hence, printf function returns 5. 5 is a non-
zero value and is treated as true. As the controlling expression of if statement evaluates to true,
if body gets executed and Students is printed on the screen. Hence, the output that gets printed is:
HelloStudents.

Forward Reference: Functions and the values returned by them (Chapter 5).

45. Value of a is 10 and b is something else
 Explanation:
 The code suffers from dangling else ambiguity. The ambiguity is implicitly resolved by the com-

piler and the code is interpreted in the following way:
 main()
 {
 int a=10,b=20;
 if(a==10)
 if(b==10)
 printf(“Value of a and b is 10”);

162 Programming in C—A Practical Approach

 else
 printf(“Value of a is 10 and b is something else”);
 }
 The given code has an if statement whose body consists of an if-else statement. The controlling

expression of if statement (i.e. a==10) evaluates to true, so its body (i.e. if-else statement) gets
executed. The controlling expression of if-else statement (i.e. b==10) evaluates to false, and hence
the else body, i.e. printf(“Value of a is 10 and b is something else”); gets executed.

46. No output
 Explanation:
 This code does not suffer from dangling else ambiguity. There is an if-else statement whose if

body consists of another if statement and else body consists of a printf statement. The controlling
expression of an if-else statement (i.e. a==10) evaluates to true, hence its if body will be executed
and else body will be skipped. The if statement present inside the if body of if-else statement starts
execution and its controlling expression (i.e. b==10) evaluates to false. Hence, its body will not be
executed and thus, nothing gets printed.

47. No output
 Explanation:
 The switch statement is executed according to the rule mentioned below:
 The switch selection expression is evaluated and the result of evaluation of the switch selection ex-

pression is compared against the value associated with each case label until either a match is suc-
cessful or all labels have been examined. If the result of evaluation of the switch selection expres-
sion matches the value of a case label, the execution begins from the statement with that case label.
The execution continues across case/default boundaries till the end of the switch statement. If there is
no match, the execution begins from the statement with the default label if it is present; otherwise
the execution of the program continues with the statement following the switch statement.

 According to the above-mentioned rule, execution can start only with the matched case labeled
statement or the default labeled statement, if it is present. Since the printf statement is neither a
matched case labeled statement nor a default labeled statement, it will not be executed. Hence,
there will be no output.

48. Tell whether this will get executed or not
 Explanation:
 Null statement present after the switch controlling expression forms the switch body. The printf state-

ment does not belong to switch body and is a statement present next to the switch statement. This
statement will always be executed irrespective of the value of switch selection expression.

49. Compilation error
 Explanation:
 switch selection expression and case labels must be of integral type. Since in the given code switch

selection expression is of float type, there will be a compilation error.

50. Compilation error
 Explanation:
 Case label must be a compile time constant integral expression. Since in the given code, vari-

able j is used as case label, there is a violation of syntactic rule and this leads to the compila-
tion error.

Statements 163

51. Compilation error
 Explanation:
 Case label must be of integral type, i.e. either integer type or character type. Usage of string as

case label (i.e. case “B”) is a violation of syntactic rule and leads to the compilation error.
52. One
 Two
 Three
 Explanation:
 A common misunderstanding is that only the statements associated with the matched case label

are executed. Rather, execution begins there and continues across case/default boundaries until the
end of switch statement is encountered.

53. One
 Explanation:
 The case label 1 gets matched with the value of switch selection expression. Execution begins from

the statement with the case label 1. printf(“One\n”); gets executed and One is printed on the screen.
The execution of statements would have been carried out till the end of switch statement but
the break statement is encountered after the printf statement. This break statement terminates the
switch statement. Hence, the rest of the case labeled, default labeled and other statements do not get
executed. Thus, One is the output.

54. Three
 One
 Two
 Explanation:
 There is no constraint about the position of default labeled statement within the switch body. It can

be placed before the case labeled statements, in-between the case labeled statements or after the
case labeled statements. Generally, it is placed after the case labeled statements but it can be placed
anywhere within the switch body. In the given piece of code, default labeled statement is placed be-
fore the case labeled statements. The result of evaluation of switch selection expression is matched
with the case labels. Since none of the case labels (i.e. 1 and 2) get matched with the evaluated value
of the switch selection expression (i.e. 3), the execution starts from the statement with the default
label and is carried out across the case boundaries till the end of the switch statement. Hence, the
printf statements associated with case labels 1 and 2 also gets executed.

55. Compilation error
 Explanation:
 The case labels should be unique. Although the case labels in the given piece of code seems to be

unique but they are actually the same. The constant expression 2-1 gets evaluated to 1. Since case
label 1 is already present, there is ‘Duplicate case in function main’ error.

56. This is outer case 1
 This is inner case 1
 This is outer case 2
 Explanation:
 The body of the switch statement consists of three statements:
 1. case labeled statement-1
 case 1:

164 Programming in C—A Practical Approach

 printf(“This is outer case 1\n”);
 2. switch(j) { …}
 3. case labeled statement-2
 case 2:
 printf(“This is outer case 2\n”);
 The execution of the statements starts from the statement with the matched case label. Since

case label 1 gets matched with the value of the switch selection expression (i.e. value of i), the
execution starts with printf(“This is outer case 1\n”);. The execution from this point is carried out
till the end of the switch statement. After the execution of the printf statement, statement 2, i.e.
the inner switch statement" starts execution. The body of the inner switch also consists of three
statements:

 1. Case-labeled statement-1
 case 3:
 printf(“This is inner case 1\n”);
 2. break;
 3. Default-labeled statement
 default:
 printf(“This is inner default case\n”);
 Since the value of selection expression of the inner switch (i.e. value of j) matches the case label 3,

execution starts with printf(“This is inner case 1\n”);. Execution from this point would have been carried
out till the end of the inner switch statement but after the execution of printf statement break state-
ment is encountered. This break statement terminates the execution of the nearest enclosing switch
(i.e. inner switch statement). Hence, the default labeled statement is not executed and the control is
immediately transferred to the case labeled statement-2 of the outer switch statement. The state-
ment printf(“This is outer case 2\n”); gets executed.

" This illustrates that there can be a switch statement within the body of another switch statement.
Hence, switch statements can be nested.

57. Compilation error: “Misplaced continue in function main()”

 Explanation:
 A continue statement shall appear only in or as a loop body. It cannot appear in or as a switch body. In

the given piece of code, continue is placed inside the switch body. This is a violation of the syntactic
rule and leads to the compilation error ‘Misplaced continue in function main.’

58. Compilation error
 Explanation:
 Remember the following syntactic rules:
 1. case labeled and default labeled statements can appear only inside the switch statement.
 2. case label and default label cannot be used with a goto statement. Only identifier labels can be

 used with the goto statement.
 Since there is violation of both the above-mentioned rules, there are compilation errors:
 1. ‘Default outside of switch in function main’    (Due to violation of rule 1)
 2. ‘Goto statement missing label in function main’  (Due to violation of rule 2)

Statements 165

59. 1 2 3 4 5
 The value of i after the loop is 6
 Explanation:
 The controlling expression (i<=5) is evaluated first and comes out to be true. The body of the loop

is executed. 1 gets printed and value of i becomes 2. The controlling expression is evaluated again
with the value of i being 2 (i.e. 2<=5). It comes out to be true and 2 gets printed. In this way 3 4 5
gets printed. The value of i becomes 6. The controlling expression (i.e. 6<=5) becomes false and the
loop terminates. The value of i when the loop terminates is 6 and gets printed by the next printf
statement.

60. No output
 Caution:
 Infinite loop
 Explanation:
 The presence of a semicolon at the end of the while header makes this program to stick into an

infinite loop. The controlling expression of a while statement is true and the body of the while state-
ment gets executed. The body of the while statement is a null statement. Null statement produces
no output. There is no expression in the body of the while statement that manipulates the value
of the loop counter so that the controlling expression eventually evaluates to false. Due to the
absence of a manipulating expression, the controlling expression of the while statement always
evaluates to true and keeps on executing the null statement. Hence, there will be no output and
the program will not terminate as it is trapped inside an infinite loop.

61. 1 1 1 1 1 ...infinite times
 Caution:
 Infinite loop
 Explanation:
 An expression that manipulates the value of the loop counter is missing. The controlling expres-

sion of the while statement always evaluates to true. Thus, an infinite loop.

62. Compilation error
 Explanation:
 The general form of for statement is:
 for(expression1;expression2;expression3)
 statement
 All the expressions in for header are optional and can be skipped. Even if all the expressions are

missing, it is mandatory to create three sections by placing two semicolons. In the given code,
the for header does not have the required sections. Thus, it is syntactically incorrect and leads to
a compilation error.

63. 1 2 3 ...32767 -32768 -32767...32767 -32768 -32767...infinite times
 Caution:
 Infinite loop
 Explanation:
 The loop counter i is initialized to 1. The condition i<=32767 (i.e. 1<=32767) evaluates to true. Hence,

the loop body gets executed and 1 is printed. The expression i++ gets evaluated and the value
of i becomes 2. Condition i<=32767 (i.e. 2<=32767) evaluates to true. The loop body gets executed

166 Programming in C—A Practical Approach

and 2 is printed. This process is continued till the value 32767 gets printed. Now, when i++ is
evaluated, the value of i does not becomes 32768 as 32768 exceeds the range of the integer data
type. Instead it becomes –32768 due to the wrap around effect. Thus, the condition i<=32767 (i.e.
-32768<=32767) still evaluates to true. Hence, the condition never becomes false and the loop will
not terminate.

64. 1 1 1 1...infinite times
 Caution:
 Infinite loop
 Explanation:
 for(;;) is syntactically valid and semantically (i.e. logically) it is an infinite loop. Inside the body of

for loop, a break statement is present and it seems to be an exit path from the loop. The break state-
ment will only be executed if the value of i becomes 5. Since the body of the for loop contains no
expression to manipulate the value of i, the value of i will never become 5 and thus the break statement
will never be executed. Hence, 1 will be printed infinite number of times.

65. 1
 Explanation:
 The initial value of i is 1. No condition is present inside the header of the for loop. Hence, with-

out checking any condition, the body of the loop starts execution. printf(“%d”,i) gets executed and
the value 1 gets printed. The statement present next to the printf statement is an if statement. The
controlling expression of if statement is evaluated. The if controlling expression (i.e. i=5) has an
assignment operator instead of an equality operator. The value 5 is assigned to i and the if control-
ling expression evaluates to true. Thus, the body of if statement, i.e. break statement gets executed.
The break statement terminates the for loop. Hence, 1 is the output.

66. 1 2 3 4 5
 Explanation:
 In the given piece of code, condition i<=5 (i.e. 1<=5) evaluates to true. Thus, the body of the for loop,

i.e. a null statement gets executed. After the execution of the body, the manipulation section (i.e.
printf(“%d ”,i++)) gets executed. It prints the current value of i (i.e. 1) and then increments the value
of i to 2. Again, the condition is checked and the above process is repeated. In this way 2 3 4 5 also
gets printed.

67. 1 3 5 7 9
 Explanation:
 For even values of i, the if controlling expression i%2==0 evaluates to true. The body of the if state-

ment (i.e. continue statement) gets executed. The continue statement on execution, immediately trans-
fers the control to the header of the loop and the rest of the statements in the body of the loop will
not be executed for the current iteration. Thus, for the even values of i, printf statement will not be
executed.

68. Compilation error
 Explanation:
 break statement shall appear only in or as a switch body or a loop body. Logically, we have created a

loop by using goto statement but since no looping construct (i.e. for, while or do-while) is used, a break
statement cannot be placed there. Hence, the compilation error ‘Misplaced break in function
main’ occurs.

Statements 167

69. 1 2 3 4
 Explanation:
 goto loop; statement is used to create a logical loop and goto out; statement is used to take the control

out of this logical loop. The printf statement present inside the logical loop prints the value of i.
The value of i is manipulated by the expression i++. When the value of i becomes 5, goto out; takes
the control out of the logical loop and the logical loop terminates.

70. 1 1
 2 1
 Explanation:

Value of i Condition
of outer
for loop

Value of j Condition
of inner
for loop

Controlling
expression
of if state-

ment (j==2)

Whether
break is

executed

Whether
printf
state-

ment is
executed

The
values

that get
printed

1 True 1 True False No Yes 1 1

2 True True Yes No
2 True 1 True False No Yes 2 1

2 True True Yes No
3 False Outer for loop is terminated

71. 1 1
 1 3
 2 1
 2 3
 Explanation:

Value of i Condition
of outer
for loop

Value of j Condition
of inner
for loop

Controlling
expression
of if state-

ment (j==2)

Whether
continue is
executed

Whether
printf

statement
is ex-

ecuted

The
values

that get
printed

1 True 1 True False No Yes 1 1

2 True True Yes No
3 True False No Yes 1 3

4 False Inner for loop is terminated
2 True 1 True False No Yes 2 1

2 True True Yes No
3 True False No Yes 2 3

4 False Inner for loop is terminated
3 False Outer for loop is terminated

168 Programming in C—A Practical Approach

72. Compilation error
 Explanation:
 ++ operator has higher priority than an assignment operator and will get evaluated first. The

expression i++ evaluates to an r-value and cannot be placed on the left side of the assignment
operator. Thus, i++=0 leads to the compilation error ‘L-value required in function main’.

73. No output
 Explanation:
 The if controlling expression is y,x,b,a. In if controlling expression, the sub-expressions y, x, b and a

are separated by comma operators. The comma-separated expressions (i.e. y, x, b and a) are evalu-
ated from left to right and the result of evaluation of full expression is the result of evaluation of
the right-most sub-expression (i.e. a). Since a is 0, the value of the entire expression y,x,b,a turns out
to be 0. 0 is considered as false and hence the if body will not be executed.

74. No output
 Explanation:
 i is initialized with 0. The condition of the for loop (i.e. i++) has post-increment operator. This

means, firstly the value of i (i.e. 0) is used for the evaluation of expression and then the value of i
will be incremented. Thus, the controlling expression of the loop evaluates to 0, i.e. false. Hence,
the body of the loop will not be executed and there will be no output.

75. 1 2 ...32767 -32768 -32767...–1
 Explanation:
 The condition of the for loop has a pre-increment operator. The value of i is incremented first and

then used for the evaluation of expression. The value of i first becomes 1 and then is used for the eval-
uation of the for controlling expression. Since the controlling expression evaluates to true, the body
of the loop will be executed and 1 gets printed. The condition is evaluated again, i becomes 2 and
gets printed. This process is repeated till 32767 gets printed. Now, when ++i is evaluated, i becomes
–32768 instead of 32768 (due to the range wrapping to the other side). This is a non-zero value and
will be treated as true and it gets printed. The condition is evaluated again, i becomes –32767 and gets
printed. This process is repeated till –1 is printed. After printing of -1, ++i gets evaluated and i becomes
0. 0 is treated as false; hence, the condition of the loop becomes false and the loop terminates.

76. 3 3
 Explanation:
 The condition of the for loop is an expression i<6,j<4. This expression has two sub-expressions

separated by a comma operator. The sub-expressions will be evaluated from left to right but
the outcome of the full expression, i.e. i<6,j<4 depends upon the outcome of the right-most sub-
expression, i.e. j<4. Hence, till the sub-expression j<4 evaluates to true, the body of the loop will be
executed. The initial value of j is 3. The sub-expression j<4 (i.e. 3<4) evaluates to true and the body
of the loop will be executed. The value that gets printed is 3 3. After the execution of the body of
the loop, the expression i++,j++ gets evaluated. Both i and j become 4. Now the condition j<4 (i.e. 4<4),
evaluates to false and the loop gets terminated.

77. Compilation error
 Explanation:
 A label name is a type of identifier that has only function scope.Â In function main, goto here;

statement is present but there is no label named here. The label here present inside the body of
other_function is not visible inside the function main, as label names have only function scope. Hence,
the compilation error ‘Undefined label here in function main’ occurs.

Statements 169

Forward Reference: Scopes, function scope (Chapter 8).

78. 3 4
 Explanation:
 The goto statement is capable of taking the program control in or out of a loop. In the given piece

of code, the goto statement is used to transfer the program control inside the for loop. Since the goto
statement transfers the control inside the for loop, the initialization expression in the for header
will not be executed. Hence, the value of i remains 3 instead of being initialized to 0. After this the
for loop works normally and 3 4 gets printed.

79. Compilation error
 Explanation:
 The general form of the do-while statement is:
 do
 statement
 while(expression);
 The semicolon after the while controlling expression is a must, else there will be a compilation

error ‘Statement ; missing’.
80. 5
 Explanation:
 do-while is an exit-controlled loop. The body of the loop will be executed once, even if the control-

ling condition is initially false. In the given piece of code, the controlling expression is initially
false, even then the body of the do-while loop is executed once, and 5 gets printed.

Answers to Multiple-choice Questions
81. c 82. b 83. b 84. b 85. c 86. c 87. a 88. c 89. b 90. b 91. a 92. b 93. b 94. c 95. b
96. c 97. c 98. d 99. a 100. d

Programming Exercises

Program 1 | Check whether a given number is even or odd without using modulus operator

Whether a number is even or odd can be determined by checking its Least Significant Bit (LSB). If the first bit of a
number is: LSB

• 0, the number is even, e.g. 6, i.e. 0000 0000 0000 0110
• 1, the number is odd, e.g. 13, i.e. 0000 0000 0000 1101

Line PE 3-1.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12

//Even or odd without using modulus operator
#include<stdio.h>
main()
{
int num;
printf(“Enter the number\t”);
scanf(“%d”,&num);
if((num&1)==0)
 printf(“Number %d is even”,num);
else
 printf(“Number %d is odd”,num);
}

Enter the number 12
Number 12 is even

Chapter 3.indd 169Chapter 3.indd 169 28/02/2010 4:31:23 PM28/02/2010 4:31:23 PM

170 Programming in C—A Practical Approach

Program 2 | Check whether a given year is leap or not

A year is a leap year, if:
• It is divisible by 4 but not by 100, or
• It is divisible by 400.

Line PE 3-2.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12

//Leap year
#include<stdio.h>
main()
{
int year;
printf(“Enter the year\t”);
scanf(“%d”,&year);
if(((year%4==0) && (year%100!=0)) || (year%400==0))
 printf(“%d is a leap year”, year);
else
 printf(“%d is not a leap year”, year);
}

Enter the year 2004
2004 is a leap year

Program 3 | Calculate the roots of a quadratic equation

The roots of a quadratic equation ax2 + bx + c = 0 can be obtained by using the expression − ± −=
2 4

2
b b acx

a
,

where b2–4ac is called discriminant.

If b2–4ac > 0, the roots are real and unequal.

If b2–4ac = 0, the roots are real and equal, i.e.
−=
2

bx
a

 .

If b2–4ac < 0, the roots are imaginary, i.e. − −= ±
2 4

2 2
b b acx
a a

i.

Line PE 3-3.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

//Roots of a quadratic equation
#include<stdio.h>
#include<math.h>
main()
{
int a, b, c, d;
float r1,r2;
int num;
printf(“Enter the coefficients a, b and c\t”);
scanf(“%d %d %d”, &a, &b, &c);
d=b*b-4*a*c;
if(d>0)
{
 r1=(-b+sqrt(d))/(2*a);
 r2=(-b-sqrt(d))/(2*a);
 printf(“Roots are real and unequal\n”);

Enter the coefficients a, b and c 1 4 3
Roots are real and unequal
Roots are: -1.000000 -3.000000

(Contd...)

Statements 171

17
18
19

20
21
22
23
24
25
26
27

 printf(“Roots are: %f %f”,r1,r2);
}
else if(d==0)
{
 r1= -b/(2*a);
 printf(“Roots are real and equal\n”);
 printf(“Roots are: %f %f”,r1,r1);
}
else
 printf(“No real roots, roots are imaginary”);
}

Program 4 | Find the sum of individual digits in a given positive integer number

Line PE 3-4.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Find sum of digits of a given number
#include<stdio.h>
main()
{
int num,sum=0,digit;
printf(“Enter the number\t”);
scanf(“%d”,&num);
while(num!=0)
{
 digit=num%10;
 sum=sum+digit;
 num=num/10;
}
printf(“Sum of digits is %d”,sum);
}

Enter the number 786
Sum of digits is 21

Program 5 | Find the reverse of a given number

Line PE 3-5.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Reverse of a given number
#include<stdio.h>
main()
{
int num,reverse=0, digit;
printf(“Enter the number\t”);
scanf(“%d”,&num);
while(num!=0)
{
 digit=num%10;
 num=num/10;
 reverse=reverse*10+digit;
}
printf(“Reverse is %d”, reverse);
}

Enter the number 534
Reverse is 435

172 Programming in C—A Practical Approach

Program 6 | Check whether a given number is a palindrome or not

A number is a palindrome if the reverse of the number is equal to the number itself, e.g. 121, 535, etc.

Line PE 3-6.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

//Palindrome
#include<stdio.h>
main()
{
int num, temp, digit, reverse=0;
printf(“Enter the number\t”);
scanf(“%d”,&num);
temp=num;
while(temp!=0)
{
 digit=temp%10;
 temp=temp/10;
 reverse=reverse*10+digit;
}
if(num==reverse)
 printf(“%d is a palindrome”, num);
else
 printf(“%d is not a palindrome”, num);
}

Enter the number 1234
1234 is not a palindrome

Output window
(second execution)

Enter the number 12321
12321 is a palindrome

Program 7 | Check whether a given number is perfect or not

An integer is said to be a perfect number if its factors (including 1) sum to the number, e.g. 6 is a perfect number
as 6=1+2+3, 28 is a perfect number as 28=1+2+4+7+14.

Line PE 3-7.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Perfect number
#include<stdio.h>
main()
{
int num, sum=0, i;
printf(“Enter the number\t”);
scanf(“%d”,&num);
for(i=1;i<num;i++)
{
 if(num%i==0)
 sum=sum+i;
}
if(num==sum)
 printf(“%d is a perfect number”, num);
else
 printf(“%d is not a perfect number”, num);
}

Enter the number 28
28 is a perfect number

Output window
(second execution)

Enter the number 23
23 is not a perfect number

Statements 173

Program 8 | Print first n perfect numbers
Line PE 3-8.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

//First n perfect numbers
#include<stdio.h>
main()
{
int num=1, sum=0, i, count=1, n;
printf(“How many numbers you want to print\t”);
scanf(“%d”, &n);
printf(“Perfect numbers are:\n”);
while(count<=n)
{
 for(i=1;i<num;i++)
 {
 if(num%i==0)
 sum=sum+i;
 }
 if(num==sum)
 {
 printf(“%d\t”,num);
 count++;
 }
 num++; sum=0;
}
}

How many numbers you want to print 3
Perfect numbers are:
6 28 496

Program 9 | Check whether a given number is an Armstrong number or not

A number is said to be an Armstrong number if the sum of cube of its digits is equal to the number itself, e.g. 153
is an Armstrong number as 153=13+53+33, i.e. 153 = 1 + 125 + 27.

Line PE 3-9.c Output window
 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

//Armstrong number
#include<stdio.h>
main()
{
int num, temp, digit, sum=0;
printf(“Enter the number\t”);
scanf(“%d”,&num);
temp=num;
while(temp!=0)
{
 digit=temp%10;
 sum=sum+digit*digit*digit;
 temp=temp/10;
}
if(num==sum)
 printf(“%d is an Armstrong number”, num);
else
 printf(“%d is not an Armstrong number”,num);
}

Enter the number 153
153 is an Armstrong number

Output window
(second execution)

Enter the number 221
221 is not an Armstrong number

174 Programming in C—A Practical Approach

Program 10 | Fibonacci series

Fibonacci series is a series in which a term is equal to the sum of the previous two terms. The first term of the
series is 0 and the second term is 1.

Line PE 3-10.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

//Fibonacci series: 0 1 1 2 3 5 8 13 21 ...
#include<stdio.h>
main()
{
int n, count=2, a=0, b=1, c;
printf(“How many terms do you want to print\t”);
scanf(“%d”,&n);
printf(“Fibonacci series:\n”);
printf(“%d\t%d\t”,a,b);
while(count<n)
{
 c=a+b;
 printf(“%d\t”, c);
 a=b;
 b=c;
 count++;
}
}

How many terms do you want to print 5
Fibonacci series:
0 1 1 2 3

Program 11 | Find sum of all odd numbers that lie between 1 and n

Line PE 3-11.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Sum of odd numbers 1+3+5+7...+n
#include<stdio.h>
main()
{
int n, sum=0, i=1;
printf(“Enter the value of n\t”);
scanf(“%d”,&n);
while(i<=n)
{
 if(i%2==1)
 sum=sum+i;
 i++;
}
printf(“Sum of odd numbers from %d to %d is %d”,1,n,sum);
}

Enter the value of n 5
Sum of odd numbers from 1 to 5 is 9

Program 12 | Find the sum of series 1+(1+2)+ (1+2+3) +(1+2+3+4)… n terms

Line PE 3-12a.c PE 3-12b.c Output window PE 3-12a.c

1
2
3
4
5
6

//Sum of the given series
#include<stdio.h>
main()
{
int num, i=1, j, sum=0;
printf(“Enter the number of terms\t”);

//Sum of the given series
//Output in a better way
#include<stdio.h>
main()
{
int num, i=1, j, sum=0;

Enter the number of terms 3
Sum of the series is 10

Output window PE 3-12b.c

Enter the number of terms 3
(1)+(1+2)+(1+2+3)= 10

(Contd...)

Chapter 3.indd 174Chapter 3.indd 174 28/02/2010 4:31:25 PM28/02/2010 4:31:25 PM

Statements 175

7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28

scanf(“%d”,&num);
while(i<=num)
{
 j=1;
 while(j<=i)
 {
 sum=sum+j;
 j++;
 }
 i++;
}
printf(“Sum of the series is %d”, sum);
}

printf(“Enter the number of terms\t”);
scanf(“%d”,&num);
while(i<=num)
{
 j=1;
 printf(“(“);
 while(j<=i)
 {
 printf(“%d”,j);
 sum=sum+j;
 j++;
 if(j<=i)
 printf(“+”);
 else
 printf(“)”);
 }
 if(i<num)
 printf(“+”);
 i++;
}
printf(“= %d”, sum);
}

Program 13 | Find the sum of series 12 + 22 + 32 + … n terms

Line PE 3-13.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14

//Sum of the given series
#include<stdio.h>
main()
{
int n, i=1, sum=0;
printf(“Enter the number of terms\t”);
scanf(“%d”,&n);
while(i<=n)
{
 sum=sum + i*i;
 i++;
}
printf(“Sum of series is %d”,sum);
}

Enter the number of terms 5
Sum of series is 55

Program 14 | Find the sum of series 1+1/2+1/3+… n terms

Line PE 3-14.c Output window

1
2
3
4
5
6
7
8

//Sum of the given series
#include<stdio.h>
main()
{
int n, i=1;
fl oat sum=0;
printf(“Enter the number of terms\t”);
scanf(“%d”,&n);

Enter the number of terms 3
Sum of series is 1.833333

(Contd...)

176 Programming in C—A Practical Approach

Line PE 3-14.c Output window

9
10
11
12
13
14
15

while(i<=n)
{
 sum=sum + 1/(fl oat)i;
 i++;
}
printf(“Sum of series is %f”,sum);
}

Program 15 | Making use of sine series, evaluate the value of sin(x), where x is in radians

According to sine series: sin() = − + − +
3 5 7

...
3! 5! 7! !

nx x x xx x
n

Line PE 3-15.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

//Evaluate sin(x)
#include<stdio.h>
main()
{
int i=1,n;
fl oat sum, term, x;
printf(“Enter the value of x in radians\t”);
scanf(“%f”,&x);
printf(“Enter the power of end term\t”);
scanf(“%d”,&n);
sum=0;
term=x;
i=1;
while(i<=n)
{
 sum=sum + term;
 term=(term*x*x*-1)/((i+1)*(i+2));
 i=i+2;
}
printf(“Sin of %4.2f is %f”,x, sum);
}

Enter the value of x in radians 3.14
Enter the power of end term 25
Sin of 3.14 is 0.001593

Program 16 | Reverse, add and check for palindrome

Problem statement: Take a number, reverse its digits and add the reverse to the original. If the sum is not a palin-
drome, repeat the procedure with the sum until the result is a palindrome. Write a program that takes a number
and gives the resulting palindrome and the number of additions it took to find it.

Test case:  354 807 1515
+ 453 + 708 + 5151

807_____

1515_______

6666_______

Result:  Palindrome is 6666 and the number of additions to find it is 3.

(Contd...)

Statements 177

Line PE 3-16.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

//Comment: Reverse and Add
#include<stdio.h>
#include<conio.h>
main()
{
int num, temp, reverse=0, add=0, digit;
printf(“Enter the number\t”);
scanf(“%d”,&num);
while(1)
{
 temp=num; //ÅSave num in temp
 reverse=0;
 while(temp!=0) //ÅFind the reverse of temp
 {
 digit=temp%10;
 reverse=reverse*10+digit;
 temp=temp/10;
 }
 if(num==reverse) //ÅIs it a palindrome
 {
 printf(“\nPalindrome is %d and no. of addition is %d”,reverse, add);
 break;
 }
 else //ÅIf no, repeat the procedure with sum
 {
 printf(“ %d\n”,num);
 printf(“+ %d\n”,reverse);
 num=num+reverse;
 printf(“----------\n”);
 printf(“ %d\n”,num);
 printf(“-----------\n”);
 add++; //ÅKeep track of number of additions performed
 }
}
}

Enter the number 354
 354
+ 453

 807

 807
+ 708

 1515

 1515
+ 5151

 6666

Palindrome is 6666 and no. of addition is 3

Program 17 | Print pyramid of digits as shown below for n number of lines

Pyramid of digits:
1

2 3 2
3 4 5 4 3

4 5 6 7 6 5 4
……………………………..

Logic to print the pyramid:

1
2 3 2

3 4 5 4 3
4 5 6 7 6 5 4

(Contd...)

178 Programming in C—A Practical Approach

1. Get the number of rows in the pyramid, let it be n.
2. In each row r (where r is the row number) leave (n-r) spaces blank and then print (2r-1) values. The printing

of values starts with the row number. The first
−⎡ ⎤

⎢ ⎥
2 1

2
r

 values are printed by incrementing the previously

printed value. The next −⎢ ⎥
⎣ ⎦

2 1
2
r values are printed by decrementing the previously printed value.

Line PE 3-17.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

//Print pyramid of digits
#include<stdio.h>
main()
{
int n, r=1, val, j;
printf(“Enter the number of rows in the pyramid\t”);
scanf(“%d”,&n);
while(r<=n) //ÅPrint n rows
{
 val=r; //ÅPrinting starts with row number
 for(j=1;j<=n-r;j++)
 printf(“\t”); //ÅPrint n-r blank spaces
 for(j=1;j<=2*r-1;j++)
 if(j<=(2*r-1)/2) //ÅPrinting left half of the row
 printf(“%d\t”,val++);
 else if(j==(2*r-1)/2+1) //ÅPrinting middle element of row
 printf(“%d\t”,val);
 else //ÅPrinting right half of the row
 printf(“%d\t”,--val);
 printf(“\n”);
 r++;
}
}

Enter the number of rows in the pyramid 4
 1
 2 3 2
 3 4 5 4 3
4 5 6 7 6 5 4

Program 18 | Print Floyd’s triangle

Floyd’s triangle:
1
2 3
4 5 6
7 8 9 10
……………………………..

Logic to print Floyd’s triangle:
1. Get the number of rows in the Floyd’s triangle, let it be n.
2.  In each row r (where r is the row number), print r values. The printing of values starts with 1. Successive

values are printed by incrementing the previously printed values.

(Contd...)

Statements 179

Line PE 3-18.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Floyd’s triangle
#include<stdio.h>
main()
{i
nt n, r=1, val=1, j;
printf(“Enter the number of rows in the triangle\t”);
scanf(“%d”,&n);
while(r<=n) //ÅPrint n rows
{
 for(j=1;j<=r;j++) //ÅPrinting a row
 printf(“%d\t”,val++); //ÅPrinting values
 printf(“\n”); //ÅNew-line for next row
 r++;
}
}

Enter the number of rows in the triangle 4
1
2 3
4 5 6
7 8 9 10

180 Programming in C—A Practical Approach

Test Yourself
1. Fill in the blanks in each of the following:
 a. The smallest logical entity that can independently exist in a C program is ____________ .
 b. Statements in C language are terminated with a/an ____________ .
 c. A compound statement is also known as ____________ .
 d. The types of labeled statements are ____________, ____________, ____________ .
 e. A case label should be a compile time constant expression of ____________ type.
 f. The form of looping in which the number of iterations to be performed is known in advance is

 called ____________ .
 g. The execution or termination of a sentinel-controlled loop depends upon a special value

 known as ____________ .
 h. Sentinel-controlled loop is also known as ____________ .
 i. The statements for which no machine code is generated are called ____________ .
 j. To alter the default flow of control, ____________ statements are used.
 k. ____________ statement is used to terminate the current iteration of the enclosing loop.
 l. An expression terminated with a semicolon is known as ____________ statement.
 m. ____________ is an exit-controlled loop.
 n. The ____________ statement when executed in a switch statement causes immediate exit

 from it.
 o. Careless use of nested if-else statement may lead to ____________ problem.
2. State whether each of the following is true or false. If false, explain why.
 a. Only non-executable statements can appear outside the body of a function.
 b. Null statement performs no operation.
 c. An empty compound statement is equivalent to a null statement.
 d. An entry-controlled loop is executed at least once.
 e. Identifier-labeled statement is a branching statement and alters the flow of control.
 f. A continue statement can appear inside, or as a body of switch statement or a loop.
 g. Case-labeled statements can appear only inside the body of a switch statement.
 h. A break statement is used to terminate the current iteration of the loop.
 i. A switch selection expression can be of any type.
 j. In an entry-controlled loop, if the body of the loop is executed n times the expression in the

 condition section is evaluated n+1 times.
3. Write a simple C statement to accomplish each of the following:
 a. Test if the value of the variable count is greater than 10. If so, print “Count is greater than

 10”.
 b. Assign the value 10 to the variables a, b and c.
 c. Increment the value of variable var by 10 and then assign it to variable stud.
 d. Test if the least significant bit of the variable num is 1. If so, assign 10 to variable a else

 assign 20 to it.
 e. Find factorial of a number n and assign it to variable fact.
4. Programming exercise:
 a. Write a C program that prints the integers between 1 and n which are divisible by 7. Get the

 value of n from the user.
 b. Write a C program that prints the integers from 1 to n omitting those integers which are divis-

 ible by 7. Get the value of n from the user.
 c. Write a C program that prints the integers between 1 and n which are divisible by 3, but not

 divisible by 4.

Statements 181

 d. Write a C program to find the sum of all integers that lie between 1 and n and are divisible by 7.
 e. Write a C program to evaluate 1×2×3×4×…n. Get the value of n from the user.
 f. Write a C program to print first n Armstrong numbers. Get the value of n from the user.
 g. Write a C program to print first n prime numbers. Get the value of n from the user.
 h. Write a C program to evaluate the following series (Get the value x and n from the user):

 i. = − + − + ∞"
2 4 6

cos() 1
2! 4! 6!
x x xx

 ii. = + + + + ∞"
2 4 6

cosh() 1
2! 4! 6!
x x xx

 iii. = + + + + ∞"
2 3 4

exp() 1
2! 3! 4!
x x xx x

 iv. = + + + +…1 1 1 11
1! 2! 3! !

e
n

 v.
= + + + ∞…

2

2 2 2

1 1 11
6 2 3 4
π

i. Write a C program to generate the following patterns (get the number of rows in the pattern
from the user):

 1.     1 2 3 4 5
1 2 3

1

 2.     1
1 2 3

1 2 3 4 5
1 2 3

1

ARRAYS AND POINTERS

4

Learning Objectives

In this chapter, you will learn about:

The limitation of basic data types �
Derived data types: array type and pointer type �
Arrays �
Single-dimensional and multi-dimensional arrays �
Declaration and usage of arrays �
Memory representation of arrays �
 Different ways of storing multi-dimensional arrays �
Pointers �
Operations allowed on pointers �
Pointer arithmetic �
void � pointer and null pointer
Relationship between arrays and pointers �
Arrays of pointers �
Pointer to a pointer �
Pointer to an array �
Advantages and limitations of arrays �

184 Programming in C—A Practical Approach

4.1 Introduction
So far you have learnt about the basic data types, expressions and statements. In the previous
chapter, you have learnt the use of iteration statements to perform repetitive tasks like sum-
ming first n natural numbers, etc. Consider a problem to find the average of marks secured by
five students in a course. A piece of code written for it is given in Program 4-1.

Line Prog 4-1.c Output window

 1
 2
3
4
5
6
7
8
9

10

//Average of marks secured by students
#include<stdio.h>
main()
{
 int marks1=10, marks2=12, marks3=9, marks4=11, marks5=17;
 int sum; float average;
 sum=marks1+marks2+marks3+marks4+marks5;
 average=sum/5.0;
 printf(“Average marks secured is %f ”,average);
}

Average marks secured is 11.800000

Program 4-1 | A program to find average marks secured by students

The powerful iteration statements discussed in Chapter 3 have not been used here to sum
up the marks secured by the students because the marks are stored in separate variables and it
is not possible to access them in a generalized way. Since there are only five students, it is pos-
sible to find the average in the above-mentioned manner. Now suppose there are 200 students
in a course. For a problem of this scale, it is not feasible to create separate variables for storing
the marks and finding the average in the above-mentioned manner. To solve such problems,
a method is required that helps in storing and accessing data in a generalized and an efficient
manner. The C language provides this method in the form of a derived data type known as
array type or just array.

Consider another real-time problem that requires storing and processing names like “Sam”
entered by the user. There is no basic data type available in C that provides this flexibility. A
variable of char type can be used to store only one character but cannot be used to store all the
three characters of the name “Sam”. The derived array type provides a solution to this problem.
An array enables the user to store the characters of the entered name in a contiguous set of
memory locations, all of which can be accessed by only one name, i.e. the array name.

The array type has a close relationship with another derived data type, known as the pointer
type or just pointer. Their relationship is so intimate that they cannot be studied in isolation.
In this chapter, I will describe both arrays and pointers. Finally, we will look at the operations
that can be applied on them and how to use them to solve problems.

4.2 Arrays
An array is a data structure" that is used for the storage of homogeneous data, i.e. data of the
same type. Figure 4.1 depicts arrays of four different types.

Arrays and Pointers 185

‘A’ ‘r’ ‘r’ ‘a’ ‘y’
[0] [1] [2] [3] [4]

(a)

1 5 8 12 7 18 11 10
(b)

1.2 5.1 8.3 12.9 7.5 18.4 11.1 10.0
(c)

‘A’ 1 ‘r’ 2 ‘r’ 3 ‘a’ 4 ‘y’ 5

(d)

array1

array2

array3

array4

Subscripts or indices

Figure 4.1 | (a) Character array; (b) integer array; (c) float array; (d) array of user-defined type

The important points about arrays are as follows:
1. An array is a collection of elements of the same data type. The data type of an element

is called element type. For example, in Figure 4.1, the element type of array1 is char, array2
is int, array3 is float and array4 is user-defined type.Â

2. The individual elements of an array are not named. All the elements of an array share
a common name, i.e. the array name. For example, in Figure 4.1 (a), all the elements of
array, i.e. ‘A’, ‘r’, ‘r’, ‘a’ and ‘y’ have a common name, i.e. array1.

3. The individual elements of an array are distinguished and are referred to or accessed
according to their positions in an array. The position of an element in an array is speci-
fied with an integer value known as index or subscript. Because arrays use indices or
subscripts to access their elements, they are also known as indexed variables or sub-
scripted variables.

4. The array index in C starts with 0, i.e. index of the first element of an array is 0.
5. The memory space required by an array can be computed as (size of element type) ×

(Number of elements in an array). For example, in Figure 4.1, array1 takes 1×5, i.e. 5 bytes
in the memory, array2 takes 16 bytes (if an integer occupies 2 bytes), array3 takes 32 bytes
and array4 takes 15 bytes (if an integer takes 2 bytes) in the memory.

6. Arrays are always stored in contiguous (i.e. continuous) memory locations. For exam-
ple, in Figure 4.1, if the first element of array1 is stored at memory location 2000, then the
successive elements of the array will be stored at the memory locations 2001, 2002, 2003
and 2004. In case of array2, if the first element is stored at memory locations 2000-2001, the
next elements will be stored at the memory locations 2002-2003, 2004-2005, and so on.

Data structure is a logical representation of data. It provides systematic mechanisms for
storage, retrieval and manipulation of data. Examples of data structures are: arrays, stacks,
queues, linked lists, trees, etc.

Forward Reference: User-defined data types (Chapter 9).

Chapter 4.indd 185Chapter 4.indd 185 28/02/2010 2:42:10 PM28/02/2010 2:42:10 PM

186 Programming in C—A Practical Approach

In general, arrays are classified as:
1. Single-dimensional arrays
2. Multi-dimensional arrays

4.3 Single-dimensional Arrays
A single-dimensional or one-dimensional array consists of a fixed number of elements of the
same data type organized as a simple linear sequence. The elements of a single-dimensional
array can be accessed by using a single subscript, thus they are also known as single-sub-
scripted variables. The other common names of single-dimensional arrays are linear arrays
and vectors. Single-dimensional arrays are shown in Figure 4.2.

‘A’ ‘r’ ‘r’ ‘a’ ‘y’

[0] [1] [2] [3] [4]
(a)

1 5 8 12 7 18 11 10
(b)

1.2 5.1 8.3 12.9 7.5 18.4 11.1 10.0
(c)

‘A’ 1 ‘r’ 2 ‘r’ 3 ‘a’ 4 ‘y’ 5

(d)

array1

array2

array3

array4

Subscripts or indices

Figure 4.2 | Single-dimensional arrays

There are two aspects of working with arrays:
1. Declaration (i.e. creation) of array
2. Usage (i.e. storing or referring elements) of array

4.3.1 Declaration of a Single-dimensional Array
The general form of a single-dimensional array declaration is:
<storage_class_specifi erÂ><type_qualifi er><type_mod>type_specifi er identifi er[<size_specifi er>]<=initialization_list<,...>>;

Forward Reference: Storage class specifier (Chapter 7).

The important points about a single-dimensional array declaration are as follows:

1. The terms enclosed within angular brackets (i.e. <>) are optional and might not be pres-
ent in a declaration statement. The terms shown in bold are the mandatory parts of a
single-dimensional array declaration.

Arrays and Pointers 187

2. A single-dimensional array declaration consists of a type specifier (i.e. element type),
an identifier (i.e. name of array) and a size specifier (i.e. number of elements in the
array) enclosed within square brackets (i.e. []). The following declarations of single-
dimensional arrays are valid:

int array1[8]; //Åarray1 is an array of 8 integers (Integer array)
float array2[5]; //Åarray2 is an array of 5 floating point numbers (Floating point array)
char array3[6]; //Åarray3 is an array of 6 characters (Character array)

3. The size specifier specifies the number of elements in an array. The syntactic rules about
the size specifier are as follows:

a. It should be a compile time constant expression of integral type.

 Reasons:
i. The memory space to an array is allocated at the compile time. The memory

requirement of an array depends upon its element type and the number of
elements (i.e. size) in it. Hence, the size of an array must be known at the com-
pile time so that memory can be allocated to it.

ii. The size of an array cannot be expanded or squeezed at the run-time. Thus, size
must be a constant expression so that it cannot be changed at the run-time.

The following declarations of single-dimensional arrays are valid:
int array1[3+5]; //Å3+5 is a compile time constant expression of int type
float array2[size]; //Åwhere size is a qualified constant of integral type
char array3[size]; //Åwhere size is a symbolic constant of integral type
The following declarations of single-dimensional arrays are not valid:
int array1[j]; //Å j is a variable and not a constant
int array2[3.5]; //ÅIt is not possible to create an array of 3.5 locations

b. It should be greater than or equal to one.

 Reason: It is not possible to create an array of size zero, i.e. having no element.
It is allowed to create an array of size 1, i.e. having only one element. Array of size
1 is like a simple variable and does not provide any significant advantage.
The following declarations of single-dimensional arrays are not valid:
int array1[-1]; //Å It is not possible to create an array of -1 locations
char array2[0]; //Å It is not possible to create an array of 0 locations

c. The size specifier is mandatory if an array is not explicitly initialized, i.e. if an
initialization list is not present.

Reason: If an initialization list is present, it is possible to determine the size of
array from the number of initializers in the initialization list. In that case, the size
specification becomes optional.
The following declaration of a single-dimensional array is not valid:
int array1[]; //ÅHere, it is not possible to determine the size of array
 //Å Hence, the amount of memory to be allocated cannot
 //  be determined

188 Programming in C—A Practical Approach

4. Initializing elements of a single-dimensional array: Like variables can be initialized,
similarly the elements of an array can also be initialized. The syntactic rules about the
initialization of array elements are as follows:

a. The elements of an array can be initialized by using an initialization list. An ini-
tialization list is a comma-separated list of initializers enclosed within braces.

b. An initializer is an expression that determines the initial value of an element of
the array.

c. If the type of initializers is not the same as the element type of an array, implicit
type casting will be done, if the types are compatible. If types are not compatible,
there will be a compilation error. The code segment in Program 4-2 illustrates
this fact.

Line Prog 4-2.c Output window

 1
 2
3
4
5
6
7
8
9

10

//Initializers of compatible but different types
#include<stdio.h>
main()
{
 int arr1[]={2.3, 4.5, 6.9};
 float arr2[]={‘A’,’B’,’C’};
 printf(“Elements of arrays are initialized with\n”);
 printf(“arr1: %d %d %d\n”,arr1[0],arr1[1],arr1[2]);
 printf(“arr2: %f %f %f\n”,arr2[0],arr2[1],arr2[2]);
}

Elements of arrays are initialized with
arr1: 2 4 6
arr2: 65.000000 66.000000 67.000000
Remarks:
•  The element types of the arrays are differ-

ent from the types of initializers but the
types are compatible

•  float initializers are demoted and then ele-
ments of arr1 are initialized

•  char initializers are promoted before initial-
izing the elements of arr2. ASCII values of
characters are used

Program 4-2 | A program to illustrate that the initializer’s type can be different from the element type of an array

d. The number of initializers in the initialization list should be less than or at most
equal to the value of size specifier, if it is present.
The following declarations of single-dimensional arrays are valid:

int array1[]={1,2,3,4,5}; //ÅInitialization list {1,2,3,4,5} present
int array2[]={2+3,a+5}; //ÅInitializers are 2+3 and a+5, where a is an int variable
char array3[6]={‘A’,’r’,’r’,’a’,’y’}; //ÅNumber of initializers is less than the value of
 // size specifier

The following declaration of a single-dimensional array is not valid:

int array1[2]={1,2,3,4,5}; //Å Number of initializers cannot be more than the
 // value of size specifier

e. If the number of initializers in the initialization list is less than the value of the size
specifier, the leading array locations (i.e. occurring first) equal to the number of
initializers get initialized with the values of initializers. The rest of the array loca-
tions get initialized to 0 (if it is an integer array), 0.0 (if case of floating point array)
and ‘\0’ (i.e. null character, if it is an array of character type). The above-mentioned
fact is shown in Figure 4.3.

Arrays and Pointers 189

‘A’ ‘r’ ‘r’ ‘\0’ ‘\0’

(a) char array1[5]={‘A’,’r’,’r’};

1 8 12 7 0 0 0
(b) int array2[8]={1,5,8,12,7};

1.2 5.1 8.3 12.9 7.5 0.0 0.0

(c) float array3[8]={1.2,5.1,8.3,12.9,7.5};

array1

array2

array3
0.0

5

Figure 4.3 | Contents of arrays if the number of initializers is less than their size

4.3.2 Usage of Single-dimensional Array
The elements of a single-dimensional array can be accessed by using a subscript operator (i.e.
[]) and a subscript. The important points about the usage of single-dimensional arrays are as
follows:

1. For accessing the elements of a one-dimensional array, the general form of expression
is E1[E2], where E1 and E2 are sub-expressions and [] is the subscript operator. One of the
sub-expressions E1 or E2 must be of an array type" or a pointer type† and the other sub-
expression must be of an integral type.

2. The sub-expression of the integral type (i.e. the subscript) must evaluate to a value
greater than or equal to 0.

3. The array subscript in C starts with 0, i.e. the subscript of the first element of an array is
0. Thus, if the size of an array is n, the valid subscripts are from 0 to n-1. However, if the
array index greater than n-1 is used while accessing an element of the array, there will be
no compilation error. This is due to the fact that C language does not provide compile
time or run-time array index out-of-bound check. However, using an out-of-bound
indexÂ may lead to run-time error or exceptions. Thus, care must be taken to ensure
that the array indices are within bounds, i.e. from 0 to n-1.

An array type is one of the derived data types. It is said to be derived from an element type
and if the element type is T (where T is a generic term and can be int, float, char or any other type),
the array type is called ‘array of Ts’. The construction of an array type from an element type
is called ‘array type derivation’. Consider the declaration statement int array[5]; the array type
derived from an element type int is int[5].

Forward Reference: Refer Question numbers 17 and 42 and their answers.

The code snippet in Program 4-3 illustrates the use of a singe-dimensional array.

† Refer Section 4.4 for a description on pointer type.

190 Programming in C—A Practical Approach

Line Prog 4-3.c Output window

 1
 2
3
4
5
6
7
8

//Use of single-dimensional array
#include<stdio.h>
main()
{
 int a[3]={10,20,30};
 printf(“Elements of array are:\n”);
 printf(“%d %d %d”,a[0],a[1],a[2]);
}

Element of array are:
10 20 30
Remarks:
•  a is of array type.
•  The expression a[0] refers to the first ele-

ment, a[1] refers to the second element and
a[2] refers to the third element of the array

Program 4-3 | A program to illustrate the use of subscript operator

4.3.2.1 Reading, Storing and Accessing Elements of a One-dimensional Array
An iteration statement (i.e. loop) is used for storing and reading the elements of a one-dimen-
sional array. The code snippet in Program 4-4 illustrates a method to read, store and access the
elements of a single-dimensional array.

Line Prog 4-4.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

//Use of single-dimensional array
#include<stdio.h>
main()
{
 int marks[200], lc, studs, sum=0;
 float average;
 printf(“Enter the number of students in class\t”);
 scanf(“%d”,&studs);
 printf(“Enter marks of students\n\n”);
 for(lc=0;lc<studs;lc++)
 {
 printf(“Enter marks of student %d\t”,lc+1);
//Reading and storing elements in a 1-D array
 scanf(“%d”,&marks[lc]);
 }
 for(lc=0;lc<studs;lc++)
//Accessing elements stored in the 1-D array
 sum=sum+marks[lc];
 average=(float)sum/studs;
 printf(“\nAverage marks of the class is %f”,average);
}

Enter the number of students in class 5
Enter marks of students

Enter marks of student 1 10
Enter marks of student 2 12
Enter marks of student 3 9
Enter marks of student 4 11
Enter marks of student 5 17

Average marks of the class is 11.800000
Remarks:
•  The marks of 200 students can be stored

in an array named marks. The elements of
the array can be accessed in general way
by writing marks[lc], where lc ∈ {0….199}

•  Although at the runtime marks of only 5
students are entered, the size of array is
kept 200 to accommodate the worst case
(i.e. 200 students)

•  195 locations are not used. Hence,
195*2=390 bytes of memory got wasted

•  In line number 19, integer variable sum is
explicitly type casted to float

Program 4-4 | A scalable version of Program 4-1

4.3.3 Memory Representation of Single-dimensional Array
The elements of an array are stored in contiguous (i.e. continuous) memory locations. This is
depicted in Figure 4.4.

i The mentioned addresses refer to the starting addresses of the elements. The first element in
Figure 4.4(c) occupies the memory locations 2000–2003.

Chapter 4.indd 190Chapter 4.indd 190 28/02/2010 2:42:10 PM28/02/2010 2:42:10 PM

Arrays and Pointers 191

‘A’ ‘r’ ‘r’ ‘a’ ‘y’

2000 2001 2002 2003 2004
(a) char array1[]={‘A’,’r’,’r’,’a’,’y’};

1 5 8 12
2000 2002 2004 2006

(b) int array2[]={1,5,8,12};

(c) float array3[]={1.2,5.1,8.3,12.9};

1.2 5.1 8.3 12.9
2000 2004 2008 2012

array1

array2

array3

Figure 4.4 | Elements of the array are stored in contiguous memory locations

4.3.4 Operations on a Single-dimensional Array

4.3.4.1 Subscripting a Single-dimensional Array
The only operation allowed on arrays is subscripting. Subscripting is an operation that selects
an element from an array. To perform subscripting in C language, a subscript operator (i.e. [])
is used. The rules for subscripting have already been discussed in Section 4.3.2.

4.3.4.2 Assigning an Array to Another Array
A variable can be assigned to or initialized with another variable but an array cannot be as-
signed to or initialized with another array. The following statement is not valid and leads to a
compilation error:

array1=array2; //Åwhere array1 and array2 are arrays of the same type and size
Reason: In C language, the name of the array refers to the address of the first element of the
array and is a constant object. It does not have a modifiable l-value. Since it does not have a
modifiable l-value, it cannot be placed on the left side of the assignment operator.
To assign an array to another array, each element must be assigned individually. The code seg-
ment in Program 4-5 illustrates the mentioned fact.

Line Prog 4-5.c Output window

 1
 2
3
4
5
6
7
8
9

10

//Assignment of an array to another array
#include<stdio.h>
main()
{
 int a[3], b[3]={10,20,30};
 printf(“Assigning an array to an array:\n”);
 a=b;
 printf(“Elements of array a are:\n”);
 printf(“%d %d %d”,a[0],a[1],a[2]);
}

Compilation error “L-value required in function main”
Reasons:
•  The name of the array a refers to the address of the

first element of the array and is a constant object
•  It does not refer to a modifiable l-value
•  Hence, it cannot be placed on the left side of the

assignment operator
What to do?
•  Making use of a loop, assign individual elements

of array b to the elements of array a by writing
a[i]=b[i], where i∈{0,1,2}

Program 4-5 | A program to illustrate that an array cannot be assigned to another array in one step

192 Programming in C—A Practical Approach

4.3.4.3 Equating an Array with Another Array
When the operands of an equality operator are of the array type, it always evaluates to false.
Reason: In C language, the name of an array refers to the address of the first element of the
array and the addresses of first elements of two arrays can never be the same. Hence, when
the operands of an equality operator are of array type, it always evaluates to false. Program
4-6 illustrates the mentioned fact.

Line Prog 4-6.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

10

//Equality operator & arrays
#include<stdio.h>
main()
{
 int a[3]={10,20,30}, b[3]={10,20,30};
 if(a==b)
 printf(“Arrays are equal”);
 else
 printf(“Arrays are not equal”);
}

a
10 20 30

2000 2002 2004
b

10 20 30
4000 4002 4004

Arrays are not equal
Reasons:
•  The name of arrays a and b refers to

the addresses of their first elements,
i.e. 2000 and 4000, respectively

•  Since the addresses are different, the
equality operator evaluates to false,
although the contents of the arrays
are the same

What to do?
•  For checking equality, check the

equality of all individual elements

Program 4-6 | A program to illustrate the behavior of equality operator on arrays

To check whether the contents of two arrays are the same or not, check the equality of each
individual element.
Programs 4-5 and 4-6 illustrate that the name of an array refers to the address of the first ele-
ment of the array. An expression of an array type (e.g. the name of array) is automatically con-
verted to an expression of pointer type. This automatic conversion makes the simultaneous
discussion of arrays and pointers essential.

4.4 Pointers
A pointer is a variable that holds the address of a variable or a function. A pointer is a power-
ful feature that adds enormous power and flexibility to C language. A pointer variable can be
declared as:

[storage_class_specifi er][type_qualifi er][type_modifi er]type_specifi er* identifi er[=l-value[,...]];

The important points about pointers are as follows:

1. The terms enclosed within square brackets (i.e. []) are optional and might not be pres-
ent in a declaration statement. The terms shown in bold are the mandatory parts of a
pointer variable declaration.

2. A pointer variable declaration consists of a type specifier (i.e. referenced type),
punctuator * and an identifier (i.e. name of pointer variable). The following declara-
tions are valid:

int *iptr; //Åiptr is pointer to an integer
float *fptr; //Åfptr is pointer to a float
char *cptr; //Åcptr is pointer to a character

Arrays and Pointers 193

const int *ptric; //Åptric is pointer to an integer constant or constant integer
unsigned int *ptrui; //Åptrui is pointer to an unsigned integer

3. Pointer variable declarations are read from the right side. The punctuator * is read
as ‘pointer to’. So the declaration statement int *iptr; is read as ‘iptr is a pointer to an
integer’."

The concept of pointer declaration is scalable. It is possible to declare a pointer to a variable,
which itself is a pointer variable. Such a pointer is known as a pointer to a pointer.‡ The dec-
laration statement int **pptr; declares a pointer to a pointer and is read as ‘pptr is a pointer to
a pointer to an integer’.

4. A pointer variable can hold the address of a variable or a function.Â In Figure 4.5(a) iptr
is an integer pointer and holds the address of an integer variable a. In Figure 4.5(c) pptr
is pointer to pointer to an integer and holds the address of an integer pointer iptr, which
in turn holds the address of an integer variable val.

int *iptr=&a;
 a

iptr 10
2000 Address 2000
4000

float fval=12.5;
float *fptr;
fptr=&fval;

 fval
fptr 12.5
8200 Address 8200
6000

int val=12;
int *iptr=&val;

int **pptr=&iptr;
val

iptr 12
8200 8200

6000 pptr
6000
9300

(a) (b) (c)

Figure 4.5 | Pointers holding addresses

5. Every pointer variable takes the same amount of memory space irrespective of whether
it is a pointer to int, float, char or any other type. This fact is illustrated in the code segment
given in Program 4-7.

Line Prog 4-7.c Output window

 1
 2
3
4
5
6
7
8
9

10
11

//Size of pointer variables
#include<stdio.h>
main()
{
 char *cptr;
 int *iptr;
 float *fptr;
 printf(“Pointer to character takes %d bytes\n”,sizeof(cptr));
 printf(“Pointer to integer takes %d bytes\n”,sizeof(iptr));
 printf(“Pointer to float takes %d bytes\n”,sizeof(fptr));
}

Pointer to character takes 2 bytes
Pointer to integer takes 2 bytes
Pointer to float takes 2 bytes
Remarks:
•  The above output is the result of execu-

tion using Borland Turbo C 3.0 IDE
•  In Borland Turbo C 4.5 or MS-VC++ 6.0

each type of pointer variable takes 4 bytes

Program 4-7 | A program to illustrate that a pointer to any type takes the same amount of memory space

‡ Refer Section 4.6.3 for a description on the pointer to a pointer.

194 Programming in C—A Practical Approach

6. The value of a pointer variable is printed with %p format specifier. Since the pointer vari-
ables hold addresses, which are unsigned integers, %u format specifier can also be used
for printing pointer values. However, the use of %p format specifier is recommended
over the use of %u format specifier.

Forward Reference: Pointers to functions (Chapter 5).

4.4.1 Operations on Pointers
The operations allowed on pointers are as follows:

4.4.1.1 Referencing Operation
In referencing operation, a pointer variable is made to refer to an object. The reference to an
object can be created with the help of a reference operator (i.e. &). The important points about
the reference operator are as follows:

1. The reference operator, i.e. & is a unary operator and should appear on the left side of its
operand.

2. The operand of the reference operator should be a variable of arithmetic type" or pointer
type." The operand of the reference operator can also be a function designator,Â i.e.
name of a function.

3. The reference operator is also known as address-of operator.
The above-mentioned points are depicted in Figure 4.6.

 float fval=12.5;
 float *fptr;
 fptr=&fval;

fval
fptr 12.5

Address
6000
8200 8200

//Å fval is a floating point variable initialized with 12.5
//Å fptr is a pointer to float type
//Å The address-of fval is assigned to fptr. fval is known as
// referenced object and fptr is known as referencing
// object and references fval

Figure 4.6 | A float pointer referencing a float variable

Integral and floating types are collectively called arithmetic types. A pointer type describes
an object, whose value provides reference to an object of type T. T is a generic term and will
be known as reference type. It can be int, float, char or any other type. A pointer type derived
from the reference type T is called ‘pointer to T’. The construction of a pointer type is called
‘pointer-type derivation’.

Forward Reference: Function designator, pointer to a function (Chapter 5).

4.4.1.2 Dereferencing a Pointer
The object pointed to or referenced by a pointer can be indirectly accessed by dereferencing
the pointer. A dereferencing operation allows a pointer to be followed to the data object to

Arrays and Pointers 195

which it points. A pointer can be dereferenced by using a dereference operator (i.e. *). The
important points about the dereference operator are as follows:

1. The dereference operator (i.e. *) is a unary operator and should appear on the left side
of its operand.

2. The operand of a dereference operator should be of pointer type.
3. The dereference operator is also known as indirection operator or value-at operator.

The code snippet in Program 4-8 illustrates the use of a dereference operator.

Line Prog 4-8.c Memory Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13

//Dereferencing pointers
#include<stdio.h>
main()
{
 int val=12;
 int *iptr=&val;
 int **pptr=&iptr;
 printf(“Value is %d\n”,val);
 printf(“Value by dereferencing iptr is %d\n”,*iptr);
 printf(“Value by dereferencing pptr is %d\n”,**pptr);
 printf(“Value of iptr is %p\n”,iptr);
 printf(“value of pptr is %p\n”,pptr);
}

val
iptr 12

2254 2254
2250 pptr

2250
2246

Value is 12
Value by dereferencing iptr is 12
Value by dereferencing pptr is 12
Value of iptr is 2407:2254
Value of pptr is 2407:2250
Remarks:
•  The printed addresses are in

the form of segment address:
offset address

•  The segment address and the
offset address are in the hexa-
decimal number system

•  If the memory is assumed to
be analogous to a city, the seg-
ment address is analogous to
a sector number and the off-
set address is analogous to a
house number

•  The addresses that you get in
the output may be different
from the mentioned address-
es as the memory allocation is
purely random

•  val=12, iptr=2254 and
 ptr=2250
•  *iptr=value-at(iptr)=value-

at(2254)=12
•  * * p p t r = v a l u e - a t (v a l u e -

at (p p t r))=value-at (value-
at(2250))=value-at(2254)=12

Program 4-8 | A program to illustrate the dereferencing operation

4.4.1.3 Assigning to a Pointer
1. A pointer can be assigned or initialized with the address of an object. A pointer vari-

able cannot hold a non-address value and thus can only be assigned or initialized with
l-values. Program 4-9 illustrates this fact.

196 Programming in C—A Practical Approach

Line Prog 4-9.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

// Invalid assignment to pointer variable
#include<stdio.h>
main()
{
 int val=10;
 int *ptr=val;
 printf(“Value of variable is %d\n”,val);
 printf(“Pointer holds %p\n”, ptr);
}

ptr 10

Garbage
4000

Compilation error “Cannot convert int to int*”
Reasons:
•  Pointer variables can only hold

addresses
•  A pointer variable ptr cannot

hold an integer value val
What to do?
•  Initialize ptr with the address of

variable val by writing &val and
re-execute the code

Program 4-9 | A program to illustrate that a pointer variable cannot hold a non-address value

i There is an exception to this rule. The constant zero can be assigned to a pointer. For ex-
ample, int *iptr=0; is valid. Assignment or initialization with zero makes the pointer a special
pointer known as the null pointer.§

2. A pointer to a type cannot be initialized or assigned the address of an object of another
type. Program 4-10 illustrates this fact.

Line Prog 4-10.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

// Invalid assignment to pointer variable
#include<stdio.h>
main()
{
 int val=10;
 float *ptr=&val;
 printf(“Value of variable is %d\n”,val);
 printf(“Pointer holds %p\n”, ptr);
}

val
ptr

2000
4000 integer variable

float pointer

10
2000

A float pointer cannot point
to an integer variable

Compilation error “Cannot convert int* to
float*”
Reasons:
•  A pointer variable can only

be assigned address of an ob-
ject of the same type

•  A pointer variable ptr (of type
float*) cannot hold the ad-
dress of an integer variable
(i.e. int*)

What can be done?
•  Explicitly type cast int* to float*

by using type cast operator.
Write float* ptr=(float*)&val; and
then re-execute the code

Remark:
•  Explicit type casting of point-

ers may give unexpected re-
sults and is not recommended

Program 4-10 | A program to illustrate that a pointer to a type cannot be assigned address of an object of
another type

§ Refer Section 4.4.3 for a description on null pointer.

Arrays and Pointers 197

3. A pointer can be assigned or initialized with another pointer of the same type. How-
ever, it is not possible to assign a pointer of one type to a pointer of another type without
explicit type casting.

i There is an exception to Rules 2 and 3. A pointer to any type of object can be assigned to a
pointer of type void*¶ but vice-versa is not true. A void pointer cannot be assigned to a pointer
to a type without explicit type casting.

4.4.1.4 Arithmetic Operations (Pointer Arithmetic)
Arithmetic operations can be applied to pointers in a restricted form. When arithmetic opera-
tors are applied on pointers, the outcome of the operation is governed by pointer arithmetic.
The pointer arithmetic rules are mentioned below.

4.4.1.4.1 Addition Operation
1. An expression of integer type can be added to an expression of pointer type. The result

of such operation would have the same type as that of pointer type operand. If ptr is a
pointer to an object, then ‘adding 1 to pointer’ (i.e. ptr+1) points to the next object. Simi-
larly, ptr+i would point to the ith object beyond the one the ptr currently points to. This is
shown in Table 4.1.

Table 4.1 | Addition operation on pointers

S. No Operator Type of
operand 1

Type of
operand 2

Resultant
type

Example Initial
value

Final
value

How to determine?

1. Addition
operator
 (+)

Pointer
to type T

int Pointer
to type T

Result = initial value
of pointer + integer
operand*sizeof (the ref-
erence type T)

Example1: float* int float* ptr=ptr+1 ptr=2000 2004 2000+1*(4)=2004 as
sizeof(float)=4

Example2: int* int int* ptr=ptr+5 ptr=2000 2010 2000+5*(2)=2010, if
sizeof(int)=2

2. Addition
operator
 (+)

Pointer Pointer Not allowed

2. Addition of two pointers is not allowed.
3. The addition of a pointer and an integer is commutative, i.e. ptr+1 is same as 1+ptr.

4.4.1.4.2 Increment Operation
The increment operator can be applied to an operand of pointer type. Table 4.2 depicts the ap-
plication of an increment operator to an operand of a pointer type.

¶ Refer Section 4.4.2 for a description on void pointer.

Chapter 4.indd 197Chapter 4.indd 197 28/02/2010 2:42:11 PM28/02/2010 2:42:11 PM

198 Programming in C—A Practical Approach

Table 4.2 | Increment operation on a pointer

S. No Operator Type of
operand

Resultant
type

Example Initial
values

Final
values

How to determine?

1. Increment
operator
 (++)

Pointer
to type T

Pointer to
type T

Post-increment:
Result=initial value of
pointer
Pre-increment:
Result = initial value of
pointer + sizeof (the refer-
ence type T)
In both the cases:
Value of pointer=Value
of pointer + sizeof (the
reference type T)

Exam-
ple1:

Post-
increment

float* float* ftr=ptr++ ftr=?
ptr=2000

ftr=2000
ptr=2004

Exam-
ple2:

Pre-
increment

float* float* ftr=++ptr ftr=?
ptr=2000

ftr=2004
ptr=2004

4.4.1.4.3 Subtraction Operation
1. A pointer and an integer can be subtracted. The operation along with examples is shown

in Table 4.3.

Table 4.3 | Subtraction operation on pointers

S. No Operator Type of
operand 1

Type of
operand 2

Resultant
type

Example Initial
value(s)

Final
value

How to
determine?

1. Subtraction
operator
 (-)

Pointer to
type T

int Pointer
to type T

Result = initial
value of pointer -
integer operand
*sizeof (the refer-
ence type T)

Example1: float* int float* ptr=ptr-1 ptr=2000 1996 2000-1*(4)=1996 as
sizeof(float)=4

Example2: int* int int* ptr=ptr-5 ptr=2000 1990 2000-5*(2)=1990, if
sizeof(int)=2

2. Subtraction
operator (-)

Pointer to
type T

Pointer to
type T

int Result=(operand1-
operand2)/ sizeof
(the reference
type T)

Example3: float* float* int a=p2-p1 p1=2000
p2=2008

2 (2008-2000)/
sizeof(float)=
(2008-2000)/4=2

2. Subtraction of integer and pointer is not commutative, i.e. ptr-1 is not the same as 1-ptr.
The operation 1-ptr is illegal.

3. Two pointers can also be subtracted. Pointer subtraction is meaningful only if both the
pointers point to the elements of the same array. The result of the operation is the differ-
ence in subscripts of two array elements. The mentioned rule is described in Table 4.3
and is depicted in Figure 4.7.

Arrays and Pointers 199

float array3[]={1.2,5.1,8.3,12.9};

1.2 5.1

p2-p1 = 2, i.e. difference between the subscripts

array

p1=2000 p2=2008

12.9
[3][2]

8.3
2000 2004 2008 2012

[1][0]

Figure 4.7 | Pointer subtracted from a pointer

4.4.1.4.4 Decrement Operation
The decrement operator can be applied to an operand of pointer type. Table 4.4 depicts the
application of a decrement operator to an operand of pointer type.

Table 4.4 | Decrement operation on a pointer

S.No Operator Type of
operand

Resultant
type

Example Initial
values

Final
values

How to determine?

1. Decrement
operator
 (--)

Pointer
to type T

Pointer to
type T

Post- decrement:
Result=initial value of
pointer
Pre-decrement:
Result = initial value of
pointer - sizeof (the ref-
erence type T)
In both the cases:
Value of pointer=Value
of pointer - sizeof (the
reference type T)

Exam-
ple1:

Post-
decrement

float* float* ftr=ptr-- ftr=?
ptr=2000

ftr=2000
ptr=1996

Exam-
ple2:

Pre-
decrement

float* float* ftr=--ptr ftr=?
ptr=2000

ftr=1996
ptr=1996

4.4.1.5 Relational (Comparison) Operations
A pointer can be compared with a pointer of the same type or with zero. A comparison of
pointers is meaningful only when they point to the elements of the same array. Table 4.5 de-
picts the comparison of pointers.
Table 4.5 | Relational operations on pointers

S.No Operator Type of
operand 1

Type of
operand 2

Resultant
type

Example Initial
values

Final
value

How to
determine?

1. Comparison
operators
(==, !=, <, <=, >, >=)

Pointer to
type T

Pointer to
type T

int
(0 i.e. false
or 1 i.e.
true)

Example1: float* float* int r=p1!=p2 p1=2000
p2=2008

1

Example2: float* float* int r=p1<p2 p1=2000
p2=2008

1

Example3: float* float* int r=p2>=p1 p1=2000
p2=2008

1

(Contd...)

200 Programming in C—A Practical Approach

S.No Operator Type of
operand 1

Type of
operand 2

 Resultant
type

Example Initial
values

Final
value

How to
determine?

Example4: float* float* int r=p2==p1 p1=2000
p2=2008

0

float array3[]={1.2,5.1,8.3,12.9};
[0] [1] [2]
1.2 5.1 8.3

2000

array

p1=2000 p2=2008

2004 2008 2012
12.9
[3]

4.4.1.6 Illegal Pointer Operations
The following operations on pointers are not allowed:

1. Addition of two pointers is not allowed.
2. Only integers can be added to pointers. It is not valid to add a float or a double value to a

pointer.
3. Multiplication and division operators cannot be applied on pointers.
4. Bitwise operators cannot be applied on pointers.
5. A pointer of one type cannot be assigned to a pointer of another type (except void*) with-

out explicit type casting.
6. A pointer variable cannot be assigned a non-address value (except zero).

The pointer arithmetic discussed above is not applicable to void pointers. However, what actu-
ally are void pointers?

4.4.2 void pointer
void is one of the basic data types available in C language. void means nothing or not known. It
is not possible to create an object of type void. For example, the following declaration statement
is not valid and leads to ‘Size of var unknown or zero’ compilation error.

void var;
Although an object of type void cannot be created, it is possible to create a pointer to void. Such
a pointer is known as a void pointer and has type void*. void pointer is a generic pointer and can
point to any type of object. Figure 4.8 depicts the mentioned fact.

void* ptr;

?

2000
ptr

void pointer can point to any type of data.
The type of data inside the block can be
char, int, float or any other type.

Figure 4.8 | void pointer

4.4.2.1 Operations on void Pointer
The following operations on void pointer are allowed:

1. A pointer to any type of object can be assigned to a void pointer. This is a standard con-
version and the compiler will do it implicitly without any explicit type casting. This is
shown in Program 4-11.

Arrays and Pointers 201

Line Prog 4-11.c Output window

 1
 2
3
4
5
6
7
8
9

//Assigning a pointer to a void pointer
#include<stdio.h>
main()
{
int a=10;
int *iptr=&a;
void *vptr=iptr;
printf(“int* is implicitly converted to void*”);
}

int* is implicitly converted to void*
Remarks:
• iptr is of int* type
• vptr is of void* type
•  int* implicitly gets converted to void*

in line number 7

Program 4-11 | A program to illustrate that pointer to any type implicitly gets converted to void*

2. void pointers can be compared for equality and inequality.

The following operations on void pointers are not allowed:
1. A void pointer cannot be dereferenced.
2. Pointer arithmetic is not allowed on void pointers.

Reason: A void pointer cannot be dereferenced and pointer arithmetic is not applicable
on it because the compiler does not know what kind of object the void pointer is really
pointing to. Hence, the precise number of bytes to which the pointer refers to is not
known. The compiler must know the number of bytes to which a pointer refers to in
order to apply dereference operation and pointer arithmetic.

i Before the application of dereference operator or arithmetic operator on a void pointer, it must
be explicitly type casted to a pointer to a specific type.

4.4.3 Null Pointer
A null pointer is a special pointer that does not point anywhere. It does not hold the address
of any object or function. It has numeric value 0. The following declaration statement declares
nptr as a null pointer:

int *nptr=0;
The macroÂ or symbolic constant NULL defined in the header files stdio.h, stddef.h, stdlib.h, alloc.h and
mem.h can also be used for the creation of a null pointer. The following declaration statement is
equivalent to the declaration statement mentioned above:

int *nptr=NULL;
The important points about null pointers are as follows:

1. When a null pointer is compared with a pointer to any object or a function, the result of
comparison is always false.

2. Two null pointers always compare equal.
3. Dereferencing a null pointer leads to a runtime error.

Forward Reference: Macros and symbolic constants (Chapter 8).

202 Programming in C—A Practical Approach

4.5 Relationship Between Arrays and Pointers
In C language, arrays and pointers are so closely related that they cannot be studied in isolation.
They are often used interchangeably. The following relationships exist between arrays and pointers:

1. The name of an array refers to the address of the first element of the array, i.e. an expres-
sion of array type decomposes to pointer type. Program 4-12 illustrates this fact.

Line Prog 4-12.c Output window

 1
 2
3
4
5
6
7
8
9

//Arrays and pointers relationship-I
#include<stdio.h>
main()
{
 int arr[3]={10,15,20};
 printf(“First element of array is at %p\n”,arr);
 printf(“Second element of array is at %p\n”,arr+1);
 printf(“Third element of array is at %p\n”,arr+2);
}

First element of array is at 24D7:2242
Second element of array is at 24D7:2244
Third element of array is at 24D7:2246
Remarks:
•  The name of the array (i.e. arr) refers to the

address of the first element of the array
and is a constant object

•  The expression arr+1 decomposes to pointer
type

•  Thus, in expression arr+1, the arithmetic
involved is pointer arithmetic

•  Note that ++arr cannot be written instead
of arr+1 as arr is a constant object

Program 4-12 | A program to depict the relationship between arrays and pointers

 The name of an array refers to the address of the first element of the array but there are
two exceptions to this rule:
a. When an array name is operand of sizeof operator it does not decompose to the ad-

dress of its first element. Program 4-13 illustrates this fact.

Line Prog 4-13.c Output window

1
 2
3
4
5
6
7

//sizeof operator and arrays
#include<stdio.h>
main()
{
 int array[5]={10,15,20,25,30};
 printf(“The result of sizeof operator is %d\n”,sizeof(array));
}

The result of sizeof operator is 10
Remarks:
•  The result of the sizeof operator is the size

of the complete array (i.e. 5 elements * 2
bytes each = 10 bytes)

•  This example clearly indicates that the
name of the array is not decomposed into
pointer type

•  If it would have been decomposed into
pointer type, the result would have been
2 as integer pointer takes 2 bytes in the
memory (in case of Borland Turbo C 3.0)

Program 4-13 | A program to illustrate the application of the sizeof operator on arrays

b. When an array name is an operand of reference or address-of operator it does not
decompose to the address of its first element.

Arrays and Pointers 203

2. In C language, any operation that involves array subscripting is done by using pointers.
The expression of form E1[E2] is automatically converted into an equivalent expression of
form *(E1+E2). Program 4-14 illustrates this fact.

Line Prog 4-14.c Output window

 1
 2
3
4
5
6
7
8
9

//Arrays and pointers relationship-II
#include<stdio.h>
main()
{
 int array[3]={10,15,20};
 printf(“Elements are %d %d %d\n”,array[0], array[1],array[2]);
 printf(“Elements are %d %d %d\n”,*(array+0),*(array+1),*(array+2));
 printf(“Elements are %d %d %d\n”,0[array],1[array],2[array]);
}

Elements are 10 15 20
Elements are 10 15 20
Elements are 10 15 20
Remarks:
•  E1[E2] is the usual way of subscript-

ing (used in line number 6)
•  E1[E2] gets converted to *(E1+E2). The

transformed way of subscripting
is used in line number 7

•  0[array] used in line number 8 is
also valid because 0[array] will
automatically be converted to
*(0+array), which is equivalent to
*(array+0), + being a commutative
operation

•  *(array+0) is equivalent to array[0].
Hence, 0[array] is equivalent to
array[0]

Program 4-14 | A program to depict the relationship between arrays and pointers

4.6 Scaling up the Concept
With all this knowledge at hand, it is the time to scale up the concept and look at array of
arrays (i.e. multi-dimensional arrays), array of pointers, pointer to a pointer and pointers to
arrays.

4.6.1 Array of Arrays (Multi-dimensional Arrays)
A 2-D array is an array of 1-D (i.e. single dimensional) arrays and can be visualized as a plane
that has rows and columns. Each row is a single-dimensional array. A 3-D array is an array
of 2-D arrays and can be visualized as a cube that has planes. Each plane is a 2-D array. This
concept can be scaled up to any level and in general, an n-D array is an array of (n₋1)-D arrays.
Arrays having dimensions higher than three are generally not needed unless and until highly
data-extensive applications are to be developed. Therefore, I will restrict the discussion only
to three-dimensional arrays.

4.6.1.1 Two-dimensional Arrays
A two-dimensional array has its elements arranged in a rectangular grid of rows and columns.
The elements of a two-dimensional array can be accessed by using a row subscript (i.e. row
number) and a column subscript (i.e. column number). Both the row subscript and the column
subscript are required to select an element of a two-dimensional array. A two-dimensional ar-
ray is popularly known as a matrix. Figure 4.9 depicts a two-dimensional array as an array of
1-D arrays.

Chapter 4.indd 203Chapter 4.indd 203 28/02/2010 2:42:12 PM28/02/2010 2:42:12 PM

204 Programming in C—A Practical Approach

 ColumnsÆ
A 2-D array Æ

Å
R

ow
s 2 1 2 3 4 5 6 Å1st 1-D array

(Array of 1-D arrays) 1 6 8 4 5 9 0 Å2nd 1-D array

2 7 2 4 8 0 4 Å3rd 1-D array

6 3 1 1 8 3 0 Å4th 1-D array

Figure 4.9 | A two-dimensional array

4.6.1.1.1 Declaration of a Two-dimensional Array
The general form of a two-dimensional array declaration is:
<sclass_specifi er><type_qualifi er><type_modifi er>type identifi er[<row_specifi er>][column_specifi er]<=initialization_list<,...>>;

The important points about a two-dimensional array declaration are as follows:

1. The terms enclosed within angular brackets (i.e. <>) are optional and might not be pres-
ent in a declaration statement. The terms shown in bold are the mandatory parts of a
two-dimensional array declaration.

2. A two-dimensional array declaration consists of a type specifier (i.e. element type), an iden-
tifier (i.e. name of the array), a row size specifier (i.e. number of rows in an array) and a
column size specifier (i.e. number of columns in each row). The size specifiers are enclosed
within square brackets. The following declarations of two-dimensional arrays are valid:

 int array1[2][3]; //Åarray1 is an integer array of 2 rows and 3 columns
 float array2[5][1]; //Åarray2 is a float array of 5 rows and 1 column
 char array3[3][3]; //Åarray3 is a character array of 3 rows and 3 columns

3. The row size specifier and column size specifier should be a compile time constant ex-
pression greater than zero.

4. The specification of a row size and column size is mandatory if an initialization list is
not present. If the initialization list is present, the row size specifier can be skipped but
it is mandatoryÂ to mention the column size specifier.

5. Initializing elements of two-dimensional arrays: Like one-dimensional arrays, the ele-
ments of two-dimensional arrays can also be initialized by providing an initialization
list.

 The syntactic rules about the initialization of elements of a two-dimensional array are
as follows:

a. The number of initializers in the initialization list should be less than or at most
equal to the number of elements (i.e. row size × column size) in the array.

b. The array locations are initialized row-wise. If the number of initializers in the ini-
tialization list is less than the number of elements in the array, the array locations
that do not get initialized will automatically be initialized to 0 (if it is an integer

Arrays and Pointers 205

array), 0.0 (in case of a floating point array) and ‘\0’ (i.e. null character if it is an ar-
ray of character type). The mentioned fact is shown in Figure 4.10.

int array[4][7]={2,1,2,3,4,5,6,1,6,8};

 array ColumnsÆ

Å
R

ow
s 2 1 2 3 4 5 6

1 6 8 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Figure 4.10 | Initialization of a two-dimensional array

c. The initializers in the initialization list can be braced to initialize elements of the indi-
vidual rows. If the number of initializers within the inner braces is less than the row
size, trailing locations of the corresponding row get initialized to 0, 0.0 or ‘\0’, depending
upon the element type of the array. The mentioned fact is shown in Figure 4.11.

int array1[4][7]={{2,1},{2,3,4},{5},{6,1,6,8}};

 array1 ColumnsÆ

Å

R
ow

s 2 1 0 0 0 0 0

2 3 4 0 0 0 0

5 0 0 0 0 0 0

6 1 6 8 0 0 0

int array2[4][7]={{2,1},{2,3,4}};

 array2 ColumnsÆ

Å

R
ow

s 2 1 0 0 0 0 0

2 3 4 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

(a)

(b)

Figure 4.11 | Initialization of individual rows of a two-dimensional array

Forward Reference: Refer Question number 58 and its answer to know why it is mandatory
to specify column size specifier even if a 2-D array is explicitly initialized.

4.6.1.1.2 Usage of a Two-dimensional Array
The elements of a two-dimensional array can be accessed by using row and column subscripts.
The important points about the usage of a two-dimensional array are as follows:

1. An element of a two-dimensional array can be accessed by writing E1[E2][E3], where E1, E2
and E3 are sub-expressions. One of the sub-expressions E1 or E2 must be of an array type
or a pointer type, and the other sub-expressions must be of integral type. Program 4-15
illustrates the use of a subscript operator to access the elements of a two-dimensional
array.

Chapter 4.indd 205Chapter 4.indd 205 28/02/2010 2:42:12 PM28/02/2010 2:42:12 PM

206 Programming in C—A Practical Approach

Line Prog 4-15.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

//Two-dimensional arrays
#include<stdio.h>
main()
{
 int a[2][3]={2,1,3,2,3,4};
 printf(“Elements of array are:\n”);
 printf(“%d %d %d\n”,a[0][0], a[0][1], a[0][2]);
 printf(“%d %d %d\n”,1[a][0], 1[a][1], 1[a][2]);
}

a [0] [1] [2]

[0] 2 1 3

[1] 2 3 4

Elements of array are:
2 1 3
2 3 4
Remarks:
•  The general form of an ex-

pression for accessing an
element of a 2-D array is
E1[E2][E3]

•  In line number 7, E1 is of ar-
ray type and E2 is of int type

•  In line number 8, E1 is of int
type and E2 is of array type

•  Both types of usage are
valid

•  The sub-expression E3 must
be of integral type and can-
not be of array type

Program 4-15 | A program to illustrate the usage of a two-dimensional array

2. The expression E1[E2][E3] is implicitly converted into an equivalent expression of form
((E1+E2)+E3). Program 4-16 illustrates this fact.

Line Prog 4-16.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15

// Subscript operator and equivalent conversion to pointer form
#include<stdio.h>
main()
{
 int a[2][3]={2,1,3,2,3,4};
 printf(“Use of subscript operator:\n”);
 printf(“%d %d %d\n”,a[0][0], a[0][1], a[0][2]);
 printf(“%d %d %d\n”,a[1][0], a[1][1], a[1][2]);
 printf(“Use of pointer expressions:\n”);
 printf(“%d %d %d\n”,*(*(a+0)+0), *(*(a+0)+1), *(*(a+0)+2));
 printf(“%d %d %d\n”, *(*(a+1)+0), *(*(a+1)+1), *(*(a+1)+2));
 printf(“Use of mixed form of expressions:\n”);
 printf(“%d %d %d\n”,*(a[0]+0), *(a[0]+1), *(a[0]+2));
 printf(“%d %d %d\n”, *(a[1]+0), *(a[1]+1), *(a[1]+2));
}

Use of subscript operator:
2 1 3
2 3 4
Use of pointer expressions:
2 1 3
2 3 4
Use of mixed form of expressions:
2 1 3
2 3 4
Remark:
•  The expression *(a+i) is equiva-

lent to a[i]. Hence, the expres-
sion *(*(a+i)+j) is equivalent to
*(a[i]+j), which is further equiva-
lent to a[i][j]

Program 4-16 | A program to illustrate the conversion of a subscript operator into an equivalent pointer
form

3. In an expression that involves an array, if the number of subscripts used with the array
name is less than the dimensions of the array, the expression refers to an address instead
of a value. Program 4-17 illustrates this fact.

Arrays and Pointers 207

Line Prog 4-17.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13

//Number of subscripts and values
#include<stdio.h>
main()
{
 int a[2][2]={2,1,3,4};
 printf(“No subscript used:\n”);
 printf(“%p\n”,a);
 printf(“One subscript used:\n”);
 printf(“%p %p\n”,a[0], a[1]);
 printf(“Two subscripts used:\n”);
 printf(“%d %d\n”,a[0][0], a[0][1]);
 printf(“%d %d\n”,a[1][0], a[1][1]);
}

a

Indices [0] [1]

[0] 2 1

2234 2236

[1] 3 4

2238 2240

No subscript used:
234F:2234
One subscript used:
234F:2234 234F:2238
Two subscripts used:
2 1
3 4
Remarks:
•  When no subscript is used, the ex-

pression a refers to the starting ad-
dress of the first element (i.e. first
row) of the array

•  When one subscript is used, the
expressions a[0] and a[1] refer to the
starting address of the first row and
the second row, respectively

•  When two subscripts are used, the
expressions in line numbers 11 and
12 refer to the value of the corre-
sponding array element

Program 4-17 | A program to illustrate the outcome of an expression that uses lesser subscripts than dimensions

4.6.1.1.2.1 Reading, storing and accessing elements of a 2-D array
The elements can be read and stored in a 2-D array by making use of nested loops. Program
4-18 illustrates the method to read, store and access the elements of a two-dimensional array.

Line Prog 4-18.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

// Reading, storing and accessing elements of a two-dimensional array
#include<stdio.h>
main()
{
 int a[10][10], olc, ilc, rows, cols;
 printf(“Enter the number of rows(<10):\t”);
 scanf(“%d”,&rows);
 printf(“Enter the number of cols(<10)\t”);
 scanf(“%d”,&cols);
 printf(“Enter the elements:\n”);
 for(olc=0;olc<rows;olc++)
 for(ilc=0;ilc<cols;ilc++)
 scanf(“%d”,&a[olc][ilc]); //ÅReading and storing elements
 printf(“The entered elements were:\n”);
 for(olc=0;olc<rows;olc++)
 {
 for(ilc=0;ilc<cols;ilc++)
 printf(“%d ”,a[olc][ilc]); //ÅAccessing elements
 printf(“\n”);
 }
}

Enter the number of rows(<10): 2
Enter the number of cols(<10): 2
Enter the elements:
2
3
3
4
The entered elements were:
2 3
3 4
Remarks:
•  olc is the outer loop counter
•  ilc is the inner loop counter
•  To read and store elements in a

2-D array, a nested loop consist-
ing of two loops is required

•  The outer loop is for getting the
rows, and the inner loop is for
getting the elements of a row
(i.e. columns)

Program 4-18 | A program to illustrate the method of reading, storing and accessing elements of a two-
dimensional array

208 Programming in C—A Practical Approach

4.6.1.1.3 Memory Representation of a Two-dimensional Array
A 2-D array can be visualized as a plane, which has rows and columns. Although multi-
dimensional arrays are visualized in this way, they are actually stored in the memory, which
is linear (i.e. one dimensional). Hence, a multi-dimensional array is to be stored in one dimen-
sion. There are two ways of doing this:

1. Row major order of storage
2. Column major order of storage

4.6.1.1.3.1 Row Major Order of Storage
In row major order of storage, the elements of an array are stored row-wise. In C language,
multi-dimensional arrays are stored in the memory by using row major order of storage.
Figure 4.12 shows the row major order of storage.

2 3 1 4 8 6 9 7
2000 2002 2004 2008 2010 2012 2014

In C language, 2-D array will be stored in the memory as

2006

2 3 1 4
8 6 9 7

Figure 4.12 | Row major order of array storage

4.6.1.1.3.2 Column Major Order of Storage
In column major order of storage, the elements of an array are stored column-wise. Column
major order of array storage is used in the languages like FORTRAN, MATLAB, etc. Figure
4.13 shows the column major order of storage.

2
2000 2002 2006 2008 2010 2012 2014

Using column major order of storage, 2-D array will be stored in memory as

9 4 76 138
2004

2 3 1 4
8 6 9 7

Figure 4.13 | Column major order of array storage

4.6.1.2 Three-dimensional Arrays
A three-dimensional array can be visualized as a cube that has a number of planes. Each plane
is a two-dimensional array. Thus, a three-dimensional array is made up of two-dimensional
arrays. Figure 4.14 depicts a three-dimensional array as an array of 2-D arrays.

0 1 2
6 7 8

0 1 2 0

0
1

1 2 3 5 9
4 5 6 6

2 7 8 9

Plane 2
Plane 1

Plane 0

Figure 4.14 | A three-dimensional array

Arrays and Pointers 209

4.6.1.2.1 Declaration of a Three-dimensional Array
The general form of a three-dimensional array declaration is:

<scspec*><type_qual><type_mod>type identifi er[<plane_specifi er>][row_specifi er][column_specifi er]<=init_list<,...>>;
*- scspec means storage class specifier
The important points about a three-dimensional array declaration are as follows:

1. The terms enclosed within angular brackets (i.e. <>) are optional and might not be pres-
ent in a declaration statement. The terms shown in bold are the mandatory parts of a
three-dimensional array declaration.

2. A three-dimensional array declaration consists of a type specifier (i.e. element type), an
identifier (i.e. name of array), a plane size specifier, a row size specifier and a column
size specifier. The size specifiers are enclosed within the square brackets (i.e. []).

3. The plane size specifier, row size specifier and column size specifier should be a com-
pile time constant expression greater than zero.

4. The specification of all size specifiers is mandatory if the elements of an array are not
explicitly initialized. If an initialization list is present, the plane size specifier can be
skipped but it is mandatory to mention the row size specifier and column size specifier.
The general rule is ‘While declaring n-D arrays, even if initialization list is present,
it is mandatory to specify (n-1) fastest varying specifiers’. In case of two-dimensional
arrays, the column size specifier varies faster as compared to the row size specifier.
In case of three-dimensional arrays, column size specifier and row size specifier vary
faster than a plane size specifier.

5. Initializing elements of three-dimensional arrays: The elements of a three-dimension-
al array can be initialized in the same way as the elements of a two-dimensional array
are initialized, i.e. by providing an initialization list.

4.6.2 Array of Pointers
An array of pointers is a collection of addresses. The addresses in an array of pointers could be
the addresses of isolated variables or the addresses of array elements or any other addresses.
The only constraint is that all the pointers in an array must be of the same type. Program 4-19
illustrates the use of array of pointers.

Line Prog 4-19.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

10

// Array of pointers
#include<stdio.h>
main()
{
 int a=10,b=20, c=30;
 int* arr[3]={&a, &b, &c};
 printf(“The values of variables are:\n”);
 printf(“%d %d %d\n”,a,b,c);
 printf(“%d %d %d\n”,*arr[0],*arr[1],*arr[2]);
 }

a
10 c

4000 b 30
20
4400

4000 4400
2000

arr

5400

5400
2004 2002

The values of variables are:
10 20 30
10 20 30
Remarks:
•  arr is an array of integer

pointers and holds the ad-
dresses of variables a, b and c

•  All the variables are of the
same type

Program 4-19 | A program to illustrate the use of array of pointers

Chapter 4.indd 209Chapter 4.indd 209 28/02/2010 2:42:12 PM28/02/2010 2:42:12 PM

210 Programming in C—A Practical Approach

4.6.3 Pointer to a Pointer
A pointer that holds the address of another pointer variable is known as a pointer to a pointer.
Such a pointer is said to exhibit multiple levels of indirection. There can be many levels of
indirection in a single declaration statement. Consider the code snippet in Program 4-20.

Line Prog 4-20.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31

// Pointer to a pointer
#include<stdio.h>
main()
{
 int i=10;
 int *p1=&i; //ÅPointer to int
 int **p2=&p1; //ÅPointer to pointer to int
 int ***p3=&p2; //ÅPointer to pointer to pointer to int
 int ****p4=&p3;//Å………………concept scales up
 int *****p5=&p4;
 int ******p6=&p5;
 int *******p7=&p6;
 int ********p8=&p7;
 int *********p9=&p8;
 int **********p10=&p9;
 int ***********p11=&p10;
 int ************p12=&p11;
 printf(“The values of variables are:\n”);
 printf(“%d\t”,*p1);
 printf(“%d\t”,**p2);
 printf(“%d\t”,***p3);
 printf(“%d\t”,****p4);
 printf(“%d\t”,*****p5);
 printf(“%d\t”,******p6);
 printf(“%d\t”,*******p7);
 printf(“%d\t”,********p8);
 printf(“%d\t”,*********p9);
 printf(“%d\t”,**********p10);
 printf(“%d\t”,***********p11);
 printf(“%d\t”,************p12);
}

The values of variables are:
10 10 10 10 10 10 10 10 10 10 10 10
Remarks:
•  The ANSI C standard says that all

compilers must handle at least 12
levels of indirection

•  Some compilers may support more
levels of indirection

•  Two levels of indirection are common
•  Level of indirection higher than two

becomes difficult to understand and
visualize

•  In an expression, if the number of in-
direction operators used to derefer-
ence a pointer is less than the number
of punctuators (*) used to declare the
pointer, then the pointer will not be
completely dereferenced and the ex-
pression refers to an address

•  The number of indirection operators
required to completely dereference a
pointer is equal to the number of punc-
tuators (*) used while declaring it

•  For example, in the mentioned code
the expression *p2 refers to an address,
i.e. address of p1. In the expression
**p2, p2 is completely dereferenced
and refers to the value of i, i.e. 10

Program 4-20 | A program to illustrate the use of multi-level pointers

4.6.4 Pointer to an Array
It is possible to create a pointer that points to a complete array instead of pointing to the indi-
vidual elements of an array or isolated variables. Such a pointer is known as a pointer to an
array. The following declaration statements declare such pointers:

int (*p1)[5]; //Åp1 is a pointer to an array of 5 integers
int (*p2)[2][2]; //Åp2 is a pointer to an integer array of 2 rows and 2 columns
int (*p3)[2][3][4]; //Åp3 is a pointer to an integer array having 2 planes. Each plane
 //Åhas 3 rows and 4 columns

Arrays and Pointers 211

i While declaring pointer to an array, parentheses, i.e. () are used because [] binds more tightly
than *. If parentheses are not used, the declaration int *p1[5]; declares p1 as an array of 5 integer
pointers. In the said declaration, p1 becomes an array instead of becoming a pointer because []
binds p1 more tightly than *. To make p1 a pointer to an array of 5 integers, write it as int(*p1)[5].
In this declaration, parentheses are used to bind p1 with *.

Program 4-21 illustrates the use of a pointer to an array.

Line Prog 4-21.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

10
11
12

// Pointer to an array
#include<stdio.h>
main()
{
 int arr[2][2]={{2,1},{3,5}};
 int (*ptr)[2]=arr;
 printf(“Address of row 1 is %p\n”,arr[0]);
 printf(“Address of row 2 is %p\n”,ptr+1);
 printf(“1st element of row 1 is %d\n”, arr[0][0]);
 printf(“1st element of row 2 is %d\n”,ptr[1][0]);

}

ptr

4000

arr
[0] [1]

[0] 2 1
2234 2236

[1] 3 5
2238 2240

indi-
ces

2234
Address of row 1 is 234F:2234
Address of row 2 is 234F:2238
1st element of row 1 is 2
1st element of row 2 is 3
Remarks:
•  arr refers to the address of the

first element of the array
•  Elements of a 2-D array are

1-D arrays
•  Thus, arr refers to the address

of first 1-D array of two inte-
gers (i.e. first row)

•  The type of arr is int(*)[2]
•  Type of ptr is int(*)[2]
•  ptr is initialized with the start-

ing address of row 1
•  ptr+1 will point to the next row
•  As types of arr and ptr are

same and both refer to the
same address, the expression
ptr[1][0] is equivalent to the ex-
pression arr[1][0]

Program 4-21 | A program that illustrates the creation and usage of a pointer to an array

4.7 Advantages and Limitations of Arrays
The direct indexing supported by arrays is their biggest advantage. Direct indexing means
the time required to access any element in an array of any dimension is almost the same ir-
respective of its location in the array.
The limitations of arrays are as follows:

1. The memory to an array is allocated at the compile time.
2. Arrays are static in nature. The size of an array cannot be expanded or cannot be

squeezed at the run time.
3. The size of an array has to be kept big enough to accommodate the worst cases. There-

fore, memory usage in case of arrays is inefficient.

4.8 Summary
1. An array is used to store homogeneous data, i.e. data of the same type.
2. All the elements of an array have the same name, i.e. the array name. They are distin-

guished on the basis of their locations in the array. Locations are specified by using an
integer value known as an index or a subscript.

212 Programming in C—A Practical Approach

3. Arrays are also known as indexed variables or subscripted variables.
4. Array index in C starts with 0.
5. C does not provide array index out-of-bound check.
6. Arrays are stored in contiguous (i.e. continuous) memory locations.
7. Arrays are classified as single-dimensional arrays and multi-dimensional arrays.
8. Subscript operator is used to access the elements of an array.
9. The array name refers to the address of the first element of the array and is a constant

object.
10. An array cannot be assigned to or initialized with another array.
11. If an array is equated with another array, it always evaluates to false.
12. A pointer is a variable that holds the address of a variable or a function.
13. Restricted arithmetic can be applied on pointers. Arithmetic on pointers is governed by

pointer arithmetic.
14. Addition of two pointers, addition of a float or a double value to a pointer, application of

multiplication and division operators on pointers are not allowed.
15. void pointer is a generic pointer and can point to any type of object.
16. Dereferencing a void pointer and applying pointer arithmetic to it is not allowed.
17. Null pointer is a special pointer that does not point anywhere.
18. Dereferencing a null pointer leads to run time error.
19. An n-D array is an array of (n₋1)-D arrays.
20. The expression of form E1[E2] is implicitly converted to an expression of the form

*(E1+E2).
21. In C language, multi-dimensional arrays are stored in the memory by using row major

order of storage.

Exercise Questions

Conceptual Questions and Answers
1. What is a pointer? Where is it used?
 A pointer is an objectÂ that holds the address of another object. A pointer is used to indirectly

manipulate the value of an object to which it points.

Forward Reference: Object (Chapter 7).

2. I know about basic data types in C language but what is pointer type?
 Apart from basic data types, the C language allows to derive types from the basic data types.

These types are called derived data types. A pointer type is one of the derived data types.

Backward Reference: Refer Section 4.4 for a detailed description on pointer type.

3. What will the output of the following piece of code be?
 main()
 {
 int *a;

Chapter 4.indd 212Chapter 4.indd 212 28/02/2010 2:42:13 PM28/02/2010 2:42:13 PM

Arrays and Pointers 213

 float *b;
 char *c;
 printf(“%d %d %d”, sizeof(a),sizeof(b),sizeof(c));
 }

 The output of the given piece of code is dependent on the execution environment and the com-
piler used. If the code is executed using Borland TC 3.0 compiler for DOS, it outputs 2 2 2. If the
same code is executed using Borland TC 4.5 compiler for Windows or Microsoft VC++ 6.0 com-
piler, it outputs 4 4 4.

 An important point to be noted here is that all pointers take 2 or 4 bytes in the memory (depend-
ing upon the execution environment and the compiler used), irrespective of whether they are
pointers to int, float, char or some other data type. The difference between pointers of different data
types is neither in the representation of the pointer nor in their values. The difference, rather, is
in the type of the object being addressed.

4. Why does the following piece of code on execution using Borland TC 3.0 compiler for DOS outputs 2 1
instead of 2 2 and if executed using Borland TC4.5 compiler for Windows or Microsoft VC++ 6.0 compiler
outputs 4 1 instead of 4 4?

 main()
 {
 char *a,b;
 printf(“%d %d”,sizeof(a),sizeof(b));
 }

 The code actually gives a correct output. The syntactic rule concerned with the declaration of
a pointer states that ‘A pointer is declared by prefixing an identifier with punctuator *. In a
comma separated declaration list, the punctuator * must precede each identifier intended to
serve as a pointer’.

 Thus, in the declaration statement char *a,b;, a is declared as ‘pointer to an object of type char’ and b
is declared as ‘data object of type char’ and not as a pointer.

5. The bitwise AND operator (&) and multiplication operator (*) are binary operators. In the following piece
of code, these operators are used with only one operand. Even then the code compiles successfully. How is
it possible?

 main()
 {
 int a=10, b=20;
 int *ptr;
 ptr=&a;
 printf(“The object to which ptr points has value %d”,*ptr);
 ptr=&b;
 printf(“The object to which ptr points now has value %d”,*ptr);
 }

 The & symbol can be used as a bitwise AND operator and as a reference operator. Similarly, the
symbol * can be used as a multiplication operator and as a dereference operator. The particular
instance of a symbol corresponds to which operator depends upon the context in which it is
used. The context can be determined by looking at:

1. Number of operands
2. Type of operands

214 Programming in C—A Practical Approach

 The following are the possible combinations:

Symbol Number of
operands

Type of
operands

Meaning of arithmetic,
scalar and pointer type

Operator

& Two Arithmetic type Integer, float and character Bitwise AND operator
One Scalar type Arithmetic type and

pointer type
Reference operator

* Two Arithmetic type Integer, float and character Multiplication operator
One Pointer type Pointer to a data type Dereference operator

 The symbol & when used as a reference operator should appear as a prefix unary operator and
should be applied on the operands of scalar type that have l-values. The symbol * when used as
a dereference operator should appear as a prefix unary operator and should be applied on the
operands of the pointer type. In the mentioned piece of code: & symbol refers to the reference
operator and * symbol refers to the dereference operator, which are unary operators. Hence the
code compiles successfully.

6. Why does the following piece of code not compile successfully?
 main()
 {
 int *ptr=10;
 printf(“The value pointed to by pointer is %d”,*ptr);
 }

 The mentioned piece of code does not compile successfully because of illegal initialization state-
ment whereby a pointer variable ptr is tried to be initialized with an integer value 10. The com-
piler gives ‘Cannot convert int to int*’ error because the types int and int* are incompatible and the
compiler will not carry out int to int*conversion implicitly. This error can however be removed by
making use of explicit type casting and writing the statement as int ptr=(int*)10;. In this statement,
the programmer has forcefully converted int to int* and will himself or herself be responsible for
the results. This type of explicit type conversion is not recommended.

7. Can const qualifier be used with pointer types like it can be used with basic data types?
 Yes, const qualifier can be used with pointer types. It is important to understand the use of const

qualifier when it is mixed with pointer type. const qualifier can be mixed with pointer type in the
following ways:

S.No Use of const qualifier with
pointer type (Column 2)

Meaning of statements in
Column 2

What is constant?

1. const int *ptr ptr is a pointer to an integer
constant

Integer object pointed to by
ptr

2. int const *ptr ptr is a pointer to a constant
integer (same as declaration
at S.No. 1)

Integer object pointed to by
ptr

3. int *const ptr ptr is a constant pointer to an
integer

ptr is constant

4. const int *const ptr ptr is a constant pointer to an
integer constant

Both ptr and the integer object
pointed to by ptr are constant

5. int const *const ptr ptr is a constant pointer to
a constant integer (same as
declaration S.No. 4)

Both ptr and the integer object
pointed to by ptr are constant

Arrays and Pointers 215

8. What is pointer arithmetic?

Backward Reference: Refer Section 4.4.1.4 for a description on pointer arithmetic.

9. In the expression *pointer++, which entity gets incremented: pointer or the value to which the pointer
points?

 Dereference operator * and the increment operator ++ are unary operators and unary operators
are right-to-left associative. The expression *pointer++ will be interpreted as *(pointer++). Thus, in
this expression, the value of the pointer instead of the value pointed by the pointer gets incre-
mented.

10. I want to print the memory address to which a pointer points. Which format specifier should I use to print
it?

 The format specifier used for printing pointers (addresses) is %p. The printed format depends
upon which memory model is used. It will either be XXXX:YYYY (segment:offset) or YYYY (offset
only).

 Consider the following piece of code:
 main()
 {
 int a=10;
 int *ptr=&a;
 printf(“The value of pointer is %p”,ptr);
 }

 If the code is executed using Borland TC 3.0 compiler for DOS and small memory model, it prints
FFF4 (offset address only). If worked with huge memory model, it prints 900E:00FE (segment and
offset address).

11. What is array type and how is it declared?

Backward Reference: Refer Sections 4.2 and 4.3 for a description on array type.

12. I want to store an integer value, a float value and a character value in an array. Is it possible?
 No, arrays can only be used for storage of homogeneous data (i.e. data of the same type). Arrays

cannot be used for storage of heterogeneous data (i.e. data of different types). For storage of het-
erogeneous data, structures and unionsÂ are used.

Forward Reference: Structure and unions (Chapter 9).

13. How is the declaration int * a[10] different from int (*a) [10]?
 While reading C declarations remember that [] bindsÂ more tightly than *. In the declaration

statement int *a[10]; the identifier name a is bound to [] instead of * and it is read as ‘a is an array
of 10 integer pointers’. In the declaration statement int (*a)[10];, () is used to bind a to *. Hence, the
declaration is read as ‘a is a pointer to an array of 10 integers’.

Forward Reference: Refer Section 5.3.1.1.8 on pointers to functions to see that () also binds
more tightly than *.

216 Programming in C—A Practical Approach

14. How is an expression involving a subscript operator internally represented?
 The general form of an expression involving a subscript operator is E1[E2], where both E1 and E2 are

sub-expressions. One of the sub-expressions E1 or E2 must be of array type or pointer type and the
other expression must be of integer type. Every expression of the form E1[E2] automatically gets
converted to an equivalent expression of the form *(E1+E2). Hence, the expression E1[E2] is internally
represented as *(E1+E2).

 Consider the following piece of code:

 main() E1 is of array type
 { E1 is of pointer type
 int array[4]={4,5,6,7}; Transformed form of subscript operator
 int *pointer=array;
 printf(“%d %d %d\n”, array[0],pointer[1],*(array+2), *(pointer+3));
 }
 The mentioned code on execution outputs:
 4 5 6 7

15. Are the expressions arr and &arr same, if arr is an array of type T?
 No, the expressions arr and &arr are not the same. The expression &arr yields ‘a pointer to an

array of type T’ and the expression arr yields ‘a pointer to type T’. The expression arr refers to the
address of first element of the array and the expression &arr refers to the base address of the entire
array. To understand the difference between arr and &arr, consider the following piece of code:

 main()
 {
 int arr[5]={1,2,3,4,5};
 printf(“The base address of array is %p or %p\n”,arr,&arr);
 printf(“After incrementing by one they point to %p and %p”,arr+1,&arr+1);
 }
 The code on execution outputs:
 The base address of array is 1B6F:223A or 1B6F:223A
 After incrementing by one they point to 1B6F:223C and 1B6F:2244
 Increment of one in arr increments it by 2-bytes as it is of type int* while increment of one in &arr

increments it by 10-bytes as its type is int(*)[5] (i.e. pointer to an array of 5 integers).

16. Does the C language provide array index out-of-bound check?
 No, the C language does not provide compile-time or run-time array index out-of-bound

check. If an array is declared as T array[size], the maximum valid index is size-1, as array index
in C language starts from 0. Nothing stops a programmer from stepping across an array
boundary and accessing the array with an index greater than size-1. The program having
array index out-of-bound will compile and execute but will access to the memory location
that does not belong to the array. This illegal memory access may be fatal and may even crash
the program.

17. Why does the following piece of code on execution give a garbage value?
 main()
 {
 int array[3]={1,2,3};
 printf(“The last element of array is %d”,array[3]);
 }

Arrays and Pointers 217

 The mentioned piece of code gives a garbage value because the array index is out-of-bound. The
maximum valid array index is 2. Since the array is indexed with 3, reference has been made to the
memory location that does not belong to the array (i.e. garbage field). Hence, the code on execu-
tion gives a garbage value. Note that in some cases the program may even crash, i.e. terminate.

18. How will you visualize a multi-dimensional array?

Backward Reference: Refer Section 4.6.1 for a description on multi-dimensional arrays.

19. How are multi-dimensional arrays stored in C?

Backward Reference: Refer Section 4.6.1 for a description on multi-dimensional arrays.

 Suppose a three-dimensional array is declared as int a[3][2][2]={0,0,0,1,2,3,4,5,6,7,8,9};. It can be visual-
ized as:

0 1
6 7

2 3 9
0 5
1

0 0
0 1

Plane 2
Plane 1

Plane 0

 The shown 3-D array will actually be stored in the physical memory as:
a

[0][0][0] [0][0][1] [0][1][0] [0][1][1] [1][0][0] [1][0][1] [1][1][0] [1][1][1] [2][0][0] [2][0][1] [2][1][0] [2][1][1]

0 0 0 1 2 3 4 5 6 7 8 9
2000-01 2002-03 2004-05 2006-07 2008-09 2010-11 2012-13 2014-15 2016-17 2018-19 2020-21 2022-23

20. What would be the result of a sizeof operator, when it is applied on an array type?
 When the sizeof operator is applied on an operand of array type, the result is the total number of

bytes occupied by the array.

21. What is null pointer? Is null pointer same as uninitialized pointer?

Backward Reference: Refer Section 4.4.3 for a description on null pointer.

 No, null pointer is not the same as uninitialized pointer. A null pointer does not point to any ob-
ject or function, while an uninitialized pointer might point anywhere. The declaration statements
int *ptr=0; and int *ptr=NULL; create a null pointer, named ptr, and the declaration statement int *ptr;
creates an uninitialized pointer.

22. What is a void pointer?

Backward Reference: Refer Section 4.4.2 for a description on void pointer.

23. Why is pointer arithmetic not applicable on void pointers?
 Pointer arithmetic is not applicable on void pointers because the compiler does not know what

kind of object the void pointer is really pointing to. Before applying an arithmetic operator on void*,
explicitly type cast void* to a pointer to a specific type.

Chapter 4.indd 217Chapter 4.indd 217 28/02/2010 2:42:13 PM28/02/2010 2:42:13 PM

218 Programming in C—A Practical Approach

24. Given the declaration statement, int array[10],i=2; what are the types of expressions array, &array, *array,
array[i]?

 The types of expressions:
 array is int* (i.e. pointer to the first element of array)
 &array is int(*)[10] (i.e. pointer to the entire array)
 *array is int (i.e. value of first element of the array)
 array[i] is int (i.e. value of (i+1)th element of the array)

25. Given the declaration statement, int array[10][10],i=2,j=2; what are the types of expressions array, &array, *array,
array[i], **array, array[i][j]?

 The types of expressions:
 array is int(*)[10] (i.e. pointer to the first row of array)
 &array is int(*)[10][10] (i.e. pointer to the entire array)
 array is int (i.e. pointer to first element in the first row of array)
 array[i] is int* (i.e. pointer to first element in (i+1)th row of the array)
 **array is int (i.e. value of first element in first row of the array)
 array[i][j] is int (i.e. value of element in (i+1)th row and (j+1)th column of the array)

Code Snippets
 Determine the output of the following code snippets. Assume that the inclusion of the required header files

has been made and there is no prototyping error due to them.
26. main()
 {
 char*p1,p2;
 printf(“%d %d”,sizeof(p1),sizeof(p2));
 }

27. main()
 {
 printf(“%d %d %d”,sizeof(char*),sizeof(int*),sizeof(float*));
 }
28 main()
 {
 char far *p1, near *p2, huge *p3;
 printf(“%d %d %d”,sizeof(p1),sizeof(p2),sizeof(p3));
 }

29. main()
 {
 int a=10;
 int *ptr=&a;
 printf(“%d %d”,++*ptr,*ptr++);
 }

30. main()
 {
 int a=10;
 int *ptr=&a;
 printf(“%d %d”,*ptr++,++*ptr);
 }

Arrays and Pointers 219

31. main()
 {
 int a=10;
 const int *ptr=&a;
 *ptr=50;
 printf(“The changed value of pointed object is %d”,*ptr);
 }

32. main()
 {
 int a=10,b=20;
 int *const ptr=&a;
 *ptr=20;
 printf(“The changed value of pointed object a is %d”,*ptr);
 ptr=&b;
 *ptr=10;
 printf(“The changed value of pointed object b is %d”,*ptr);
 }

33. main()
 {
 int a=10,b=20;
 const int *const ptr=&a;
 *ptr=20;
 printf(“The changed value of pointed object a is %d”,*ptr);
 ptr=&b;
 *ptr=10;
 printf(“The changed value of pointed object b is %d”,*ptr);
 }

34. main()
 {
 int *ptr=10;
 printf(“The value of pointer is %p”,ptr);
 }

35. main()
 {
 int *ptr=0;
 printf(“The value of pointer is %p”,ptr);
 }

36. main()
 {
 int *ptr1=0;
 int *ptr2=NULL;
 if(ptr1==ptr2)
 printf(“ptr1 becomes a NULL pointer”);
 else
 printf(“ptr1 does not become a NULL pointer”);
 }

220 Programming in C—A Practical Approach

37. main()
 {
 int arr[];
 arr[0]=arr[1]=arr[2]=5;
 printf(“%d %d %d”,arr[0],arr[1],arr[2]);
 }
38. main()
 {
 int size=3;
 int arr[size];
 arr[0]=arr[1]=arr[2]=5;
 printf(“%d %d %d”,arr[0],arr[1],arr[2]);
 }
39. main()
 {
 int a[]={1,2,3};
 printf(“%d %d %d”,a[0],a[1],a[2]);
 }
40. main()
 {
 int a[2]={1,2,3};
 printf(“%d %d %d”,a[0],a[1],a[2]);
 }
41. main()
 {
 int arr[6]={1,2,3,4};
 int i;
 for(i=0;i<6;i++)
 printf(“%d ”,arr[i]);
 }
42. main()
 {
 int arr[3]={1,2,3};
 printf(“%d %d %d”,arr[1],arr[2],arr[3]);
 }
43. main()
 {
 int arr[]={1,2,3};
 arr[0,1,2]=10;
 printf(“%d %d %d”,arr[0],arr[1],arr[2]);
 }
44. main()
 {
 int arr[]={1,2,3,4,5},i;
 arr[1+2]=10;
 for(i=0;i<5;i++)
 printf(“%d ”,arr[i]);
 }

Chapter 4.indd 220Chapter 4.indd 220 28/02/2010 2:42:13 PM28/02/2010 2:42:13 PM

Arrays and Pointers 221

45. main()
 {
 int arr[]={1,2,3,4,5},i;
 arr[2.5+1.5]=10;
 for(i=0;i<5;i++)
 printf(“%d ”,arr[i]);
 }
46. main()
 {
 int array[]={1,2,3,4};
 printf(“The number of elements in array are %d”,sizeof(array)/sizeof(array[0]));
 }
47. main()
 {
 int a=10,b;
 int arr[]={1,2,3}, brr[3];
 printf(“Assigning the content of a to b\n”);
 b=a;
 printf(“Assigning the contents of one array to another\n”);
 brr=arr;
 printf(“Contents of brr are %d %d %d”,brr[0],brr[1],brr[2]);
 }
48. main()
 {
 int arr[]={1,2,3},brr[]={1,2,3};
 if(arr==brr)
 printf(“Contents of array arr and brr are same\n”);
 else
 printf(“Contents of array arr and brr are not same”);
 }
49. main()
 {
 int a[]={1,2,3,4,5};
 int *ptr=a;
 printf(“%d %d\n%p %p”,*a,*ptr,a,ptr);
 }
50. main()
 {
 int arr[]={1,2,3,4,5};
 printf(“%p %p\n”,arr,&arr);
 printf(“%p %p”,++arr,++&arr);
 }
51. main()
 {
 int arr[]={1,2,3,4,5};
 printf(“%p %p\n”,arr,&arr);
 printf(“%p %p”,arr+1,&arr+1);
 }

Chapter 4.indd 221Chapter 4.indd 221 28/02/2010 2:42:13 PM28/02/2010 2:42:13 PM

222 Programming in C—A Practical Approach

52. main()
 {
 int a[]={1,2,3,4,5};
 printf(“%d %d %d %d %d”,*a,*(a+0),*(0+a),a[0],0[a]);
 }
53. main()
 {
 int *ptr;
 int arr[]={1,2,3,4};
 ptr=arr;
 printf(“%d %d”,arr[2],ptr[2]);
 }
54. main()
 {
 int arr[]={2.8,3.4,4,6.7,5};
 int j,*ptr=arr;
 for(j=0;j<5;j++)
 {
 printf(“ %d “,*ptr);
 ++ptr;
 }
 }
55. main()
 {
 int j=20;
 int arr[] = {10,j,30,40,50},i,*ptr;
 ptr = arr;
 for(i=0; i<5; i++)
 {
 printf(“%d ” ,*ptr);
 ptr++;
 }
 }
56. main()
 {
 int arr[2][3]={1,2,3,4};
 printf(“%d %d %d %d %d %d”,arr[0][0],arr[0][1],arr[0][2],arr[1][0],arr[1][1],arr[1][2]);
 }
57. main()
 {
 int arr[2][3]={{1,2},{3,4}};
 printf(“%d %d %d %d %d %d”,arr[0][0],arr[0][1],arr[0][2],arr[1][0],arr[1][1],arr[1][2]);
 }
58. main()
 {
 int arr[][]={1,2,3,4};
 printf(“%d %d %d %d %d %d”,arr[0][0],arr[0][1],arr[0][2],arr[1][0],arr[1][1],arr[1][2]);
 }

Arrays and Pointers 223

59. main()
 {
 int arr[2][][]={1,2,3,4,5,6,7,8};
 int i, j, k;
 for(i=0;i<2;i++)
 for(j=0;j<2;j++)
 for(k=0;k<2;k++)
 printf(“%d”,arr[i][j][k]);
 }

60. main()
 {
 int arr[][3]={1,2,3,4};
 printf(“%d %d %d %d %d %d”,arr[0][0],arr[0][1],arr[0][2],arr[1][0],arr[1][1],arr[1][2]);
 }

61. main()
 {
 int arr[2][2]={1,2,3,4};
 printf(“%p %p\n%p %p”,&arr[0][0],&arr[0][1],&arr[1][0],&arr[1][1]);
 }

62. main()
 {
 int arr[2][3]={1,2,3,4,5,6};
 printf(“%d %d %d”,arr[1][2],1[arr][2],*(*(arr+1)+2));
 }

63. main()
 {
 int arr[2][3]={1,2,3,4,5,6};
 printf(“%d %d %d”,arr[1][2],1[arr][2],1[2][arr]);
 }

64. main()
 {
 int a[] = {0,1,2,3,4};
 int *p[] = {a,a+1,a+2,a+3,a+4};
 int **ptr = p;
 printf(“%d %p %p %p %p %p\n”,**ptr,&ptr,*ptr,*p,p,a);
 }

65. main()
 {
 int a[2][2][2]={1,2,3,4,5,6,7,8};
 printf(“%p %p %p\n”,a,a[0],a[0][0]);
 printf(“%p %p %p\n”,a,a[1],a[1][1]);
 printf(“%d %d”,a[0][0][0],a[1][1][1]);
 }

66. main()
 {
 void a,b;
 void *ptr;

Chapter 4.indd 223Chapter 4.indd 223 28/02/2010 2:42:13 PM28/02/2010 2:42:13 PM

224 Programming in C—A Practical Approach

 ptr=&a;
 printf(“ptr points to a\n”);
 ptr=&b;
 printf(“ptr now points to b”);
 }

67. main()
 {
 int a=10;
 int* i_ptr=&a;
 void* v_ptr=i_ptr;
 *i_ptr++;
 *v_ptr++;
 printf(“The value of objects pointed to by pointers are %d %d”,*i_ptr,*v_ptr);
 }

68. main()
 {
 int arr[]={1,2,3,4,5};
 int *ptr=arr;
 ptr=ptr+1;
 printf(“The value pointed by ptr is %d”,*ptr);
 }

69. main()
 {
 int arr[]={1,2,3,4,5};
 int *ptr1=arr;
 int *ptr2=arr+3;
 printf(“The result of ptr2-ptr1 is %d”,ptr2-ptr1);
 }

70. main()
 {
 int array[]={1,2,3,4,5};
 int *ptr1=array;
 int *ptr2;
 ptr2=ptr1*2;
 printf(“The value of ptr2 is %p”,ptr2);

 }

Multiple-choice Questions
71. Arrays are used to store the elements of
 a. The same type c. Multiple types
 b. Different types d. None of these

72. Array index in C language starts from
 a.  1 c. Any integer value
 b. 0 d. None of these

Arrays and Pointers 225

73. The size specifier in the array declaration must be
 a. An expression c. A constant expression of integral type
 b. A constant expression d.  A constant expression of integral type

having a value greater than zero

74. In C language, elements of two-dimensional arrays are stored in
 a. Random order c. Row major order
 b. Column major order d. None of these

75. The elements of an array are stored in
 a. Contiguous memory locations c. Randomly allocated memory locations
 b. Discontinuous memory locations d. None of these

76. If one of the operands of subscript operator is of array type, the other operand of the subscript
operator can be

 a. An expression c. An integral constant only
 b. An expression of integral type d. None of these

77. If arr is an array of integers, which of the following expression(s) is equivalent to the expression
arr[0]?

 a. *arr c. 0[arr]
 b. *(arr+0) d. All of these

78. Given the declaration statement int arr[5];, the type of expression arr is
 a. int* c.  int*[5]
 b. int(*)[5] d. None of these

79. Given the declaration statement int arr[5];, the type of expression &arr is
 a. int* c.  int*[5]
 b. int(*)[5] d. None of these

80. Given the declaration statement int arr[5][7];, the linear offset from the beginning of the array to
any given element arr[2][3] can be computed as

 a. 2*7+3 c.  2*5+3*7
 b. 2+3*5 d. None of these

81. Given the declaration statement int array[3][2][2]={1,2,3,4,5,6,7,8,9,10,11,12};, what is the value of array[2][1][0]?
 a. 3 c.  7
 b. 5 d. 11

82. Given the statement int a[8]={0,1,2,3};, the definition of a explicitly initializes its first four elements.
Which one of the following describes how the compiler treats the remaining four elements?

 a.  The remaining four elements are c.  C standard defines the particular
 initialized to zero behavior as implementation dependent
 b. It is illegal to initialize only a d. None of these

   portion of the array

83. In the C language, pointer is
 a. Address of a variable c. A variable for storing address
 b. An indication of the variable to accessed next d. None of these

226 Programming in C—A Practical Approach

84. Which of the following is a derived type?
 a. Pointer type c. Function type
 b. Array type d. All of these

85. Which of the following is a correct way to declare two integer pointers a and b?
 a. int* a,b; c.  int* a,int* b;
 b. int *a,*b; d. None of these

86. A null pointer points to
 a. No object c. Null character stored at the end of string
 b. Null value d. None of these

87. Pointer arithmetic cannot be performed on
 a. void pointers c. Dangling pointers
 b. Uninitialized pointers d. None of these

88. Which of the following conversions is carried out implicitly by the compiler?
 a.  Conversion of void pointer to any c.  Conversion of pointer of one type to the
 other pointer type on assignment   pointer of another type on assignment
 b.  Conversion of integer constant zero into d. None of these

null pointer of desired type on assignment

89. Given the declaration statement int* a[2][3][4];, which of the following definitions and initialization
of p is valid?

 a. int* (*p)[3][4]=a; c.  int* (*p)[2][3][4]=a;
 b. int ****p=a; d. None of these

90. Given the declaration statement int const* ptr;, which of the following objects is constant?
 a. ptr c. Both ptr and the object pointed to by ptr
 b. The object pointed to by ptr d. The given declaration is not valid

91. Given the declaration statement const int* ptr;, which of the following objects is constant?
 a. ptr c. Both ptr and the object pointed to by ptr
 b. The object pointed to by ptr d. The given declaration is not valid

92. Given the declaration statement int* const ptr;, which of the following objects is constant?
 a. ptr c. Both ptr and the object pointed to by ptr
 b. The object pointed to by ptr d. The given declaration is not valid

93. Given the declaration statement int const* const ptr;, which of the following objects is constant?
 a. ptr c. Both ptr and the object pointed to by ptr
 b. The object pointed to by ptr d. The given declaration is not valid

94. In the expression ++*ptr, the value of which entity gets incremented?
 a. ptr c. Both ptr and the object pointed to by ptr
 b The object pointed to by ptr d. The given expression is not valid

95. In the expression *ptr++, the value of which entity gets incremented?
 a. ptr c. Both ptr and the object pointed to by ptr
 b. The object pointed to by ptr d. The given expression is not valid

Chapter 4.indd 226Chapter 4.indd 226 28/02/2010 2:42:14 PM28/02/2010 2:42:14 PM

Arrays and Pointers 227

Outputs and Explanations to Code Snippets
26. 4 1 (If executed using Borland TC 4.5 for Windows or Microsoft VC++ 6.0)
 2 1 (If executed using Borland 3.0 for DOS)
 Explanation:

Backward Reference: Refer to the explanations given in Answer numbers 3 and 4.

27. 4 4 4 (If executed using Borland TC 4.5 for Windows or Microsoft VC++ 6.0)
 2 2 2 (If executed using Borland 3.0 for DOS)
 Explanation:

Backward Reference: Refer to the explanation given in Answer number 3.

 sizeof operator yields the size of its operand in bytes. The operand can be an expression or pa-
renthesized name of a type. In the given code, the operands of sizeof operators are parenthesized
name of the derived types (i.e. char*, int* and float*).

28. 4 2 4 (If executed using Borland 3.0 for DOS)
 Explanation:
 In DOS, the total amount of memory accessible is 1 MB, i.e. 1 megabyte. The entire block of

memory is divided into various segments that are 64 K, i.e. 64 kilobytes in size. There are various
segments like Code Segment (CS), Data Segment (DS), Extra Segment (ES), etc.

 The type of pointer to be used for accessing the memory location depends upon whether the
memory location to be accessed lies in the same segment or different segments. If the memory
location to be accessed lies in the same segment, the access is called intra-segment access and if
it lies in a different segment then it is called inter-segment access.

 If intra-segment access is to be made, pointer of 16-bits is sufficient to refer to all the memory
locations (as 216= 64 K). The 16-bit (2 bytes) pointer that is used for
intra-segment access is known as a near pointer.

 However, if inter-segment access is to be made, the pointer of 16-
bits falls short of its memory addressing capability. Hence, a bigger
pointer of 32-bits is used to make inter-segment access. The 32-bit (4
bytes) pointers that are used for inter-segment access are known as far
pointers and huge pointers.

 The far pointer contains a 16-bit segment address and a 16-bit offset
address (i.e. address within a segment) while the near pointer has
only a 16-bit offset address. huge pointers are essentially far pointers
but in a normalized form.

 The concept of far, near and huge pointers is available in DOS, which
has less memory accessible. It is not a part of the C standard and
is an extension to the language provided by some of the compilers (e.g. Borland Turbo C 3.0).
Refer to the compiler documentation before using these non-standardized qualifiers as they
might not be supported by all the compilers (e.g. Borland Turbo C 4.5 and MS-VC++ 6.0 compil-
ers do not support these non-standardized extensions).

29. Garbage Value 10
 Caution:
 Program may even abnormally terminate.

Segment of
64 KB

1 megabyte
memory

228 Programming in C—A Practical Approach

 Explanation:
 Suppose variable a gets allocated at the memory address 2000 and variable ptr gets allocated at

the memory address 4000. The variable ptr is initialized with the address of variable a. This can be
illustrated as:

2000

10ptr

4000

Address 2000

a

 The arguments of printf functions are evaluated from right to left. So, the expression *ptr++ will be
evaluated first and will be interpreted as *(ptr++). Due to post-increment, firstly the value of ptr is
used for the evaluation of expression and then the value of ptr will be incremented. The expres-
sion evaluates to 10 and the value of ptr becomes 2002. This can be illustrated as:

a

ptr
GarbageValue

2002

Unallocated
memory

Address 2000 2002

4000

10

 After evaluation of expression *ptr++, the expression ++*ptr will be evaluated. The expression will
be interpreted as ++(*ptr). ptr being pointing to an unallocated memory location, i.e. 2002, the be-
havior of the operation ++(*ptr) is undefined. It will give a garbage value and in extreme cases, the
program may even terminate abnormally.

30. 11 11
 Explanation:
 Suppose variable a gets allocated at the memory address 2000 and variable ptr gets allocated at

the memory address 4000. The variable ptr is initialized with the address of variable a. This can be
illustrated as:

a
ptr

2000 Address 2000
4000

10

 The expression ++*ptr will be evaluated first and will be treated as ++(*ptr). This expression makes
the value pointed to by the pointer ptr to increment by 1. This can be shown as:

a
ptr 11

2000 Address 2000
4000

 After the evaluation of expression ++*ptr, *ptr++ starts evaluation. The expression *ptr++ will be
treated as *(ptr++). Being post-incremented, the value of ptr used for the evaluation of expression
will be 2000. The expression evaluates to 11 and the value of ptr becomes 2002.

Chapter 4.indd 228Chapter 4.indd 228 28/02/2010 2:42:14 PM28/02/2010 2:42:14 PM

Arrays and Pointers 229

31. Compilation Error (Cannot modify a constant object)
 Explanation:
 In the declaration statement const int *ptr=&a;, ptr is declared as ‘pointer to a constant integer’. The

object to which pointer ptr points is constant and cannot be modified.

a 50
ptr 10

2000

Constant object

Address 2000
4000

 Hence, writing *ptr=50; is not valid and leads to a compilation error.

32. Compilation Error (Cannot modify a constant object)
 Explanation:
 The declaration statement int *const ptr=&a; declares ptr as ‘constant pointer to integer’. Pointer is

constant and must point to the same object throughout. It cannot be made to point to a different
object throughout the execution of the program.

a
ptr 10

2000

Constant object

Address 2000
4000

b
20 Invalid: As ptr is declared

a constant object 6000

 Hence, writing ptr=&b; is invalid and leads to a compilation error.

33. Compilation Error (Cannot modify a constant object)
 Explanation:
 The declaration statement const int* const ptr=&a; declares ptr as ‘constant pointer to a constant inte-

ger’. Both the pointer and the object to which the pointer points are constant.

Constant object a
ptr 10
2000 Address 2000

4000
b

20Invalid as ptr is declared
a constant object 6000

Constant object
20

 Hence, both the statements *ptr=20; and ptr=&b; are invalid and lead to a compilation error.

230 Programming in C—A Practical Approach

34. Compilation error (Cannot convert int to int*)
 Explanation:
 An integer value 10 is assigned to a pointer variable of type int*. This is not a standard conversion

and the compiler will not be able to carry it out implicitly and gives a compilation error ‘Can-
not convert int to int*’. The error can be removed by explicitly type casting int to int* by writing
int*ptr=(int*)10;. However, this conversion is not recommended.

35. The value of pointer is 0000:0000
 Explanation:
 The conversion of integer value zero to pointer type is standard conversion and is carried out im-

plicitly by the compiler. When a variable or expression of pointer type is initialized, assigned or
compared with 0, the constant 0 is implicitly converted into correctly typed null pointer. Hence,
there will be no compilation error as in Question number 34.

36. ptr1 becomes a NULL pointer
 Explanation:
 The integer constant zero is implicitly converted to null pointer of the correct type. NULL is a

predefined macroÂ that specifies null pointer value. Hence, in the given code both ptr1 and ptr2
become null pointers. As two null pointers always compare equal, the if condition evaluates to
true and ‘ptr1 becomes a NULL pointer’ gets printed.

Forward Reference: Macros and symbolic constants (Chapter 8).

37. Compilation Error (Size of ‘arr’ is unknown)
 Explanation:
 Memory to an array is allocated at the compile time. To allocate the memory, the compiler should be

able to determine the number of bytes to be allocated. To determine it, the compiler needs to know:

1. The element type of array
2. The size of array

 The size information can be provided by giving:
1. Size specifier (it should be a compile time constant expression), and/or
2. Initialization list (number of initializers in the initialization list determines the size of array)

 Since in the declaration statement int arr[]; both the size specifier and the initialization list are not
given, the compiler will not be able to determine the number of bytes to be allocated to arr. This
leads to a compilation error.

38. Compilation error (Constant expression required)
 Explanation:

Backward Reference: Refer the explanation given in Sections 4.2 and 4.3.

 Although, size is initialized with a literal constant, size itself is a non-constant object (i.e. it is a
variable). Access to its value can only be accomplished at the run time, so it is illegal to use it as
an array size specifier. To remove this error, make size a qualified constant by using const qualifier
and write it as const int size=3; instead of int size=3;.

Arrays and Pointers 231

39. 1 2 3
 Explanation:
 The compiler uses the initializers in the initialization list to determine the size of the array and to

initialize the array locations.

40. Compilation error (Too many initializers)
 Explanation:
 The number of initializers in the initialization list cannot be more than the value of the size speci-

fier. They can be less than or at most equal to the value of the size specifier.

41. 1 2 3 4 0 0
 Explanation:
 If the number of initializers in the initialization list is less than the value of the size specifier, the

leading array locations equal to the number of initializers get initialized with the values of initial-
izers. The rest of the array locations get initialized to 0 (if it is an integer array), 0.0 (in case of float
array) and ‘\0’, i.e. null character (if array is of character type).

42. 2 3 Garbage Value
 Explanation:
 In C language, an array index starts from 0 and the maximum value of the valid index is size-1.

However, if the index value greater than the maximum valid value is used, there will be no
compilation error as C language does not provide an array index out-of-bound check. If array is
accessed with an out-of-bound index, the result will be a garbage value. In the extreme case, the
program may terminate.

43. 1 2 10
 Explanation:
 To access an array location, an expression of array type and an expression of integral type are

used with a subscript operator. In the statement arr[0,1,2]=10;, arr is an expression of array type and
0,1,2 is an expression of integer type. The expression 0,1,2 evaluates to 2 as the result of the evalua-
tion of a comma operator is the result of evaluation of the right-most sub-expression. Hence, 10 is
assigned to arr[2].

44. 1 2 3 10 5
 Explanation:

Backward Reference: Refer to the explanation given in Answer number 43.

45. Compilation error (illegal use of floating point)
 Explanation:
 An expression of float type cannot be used with a subscript operator. Hence, writing a[2.5+ 1.5] is not

valid and leads to a compilation error.
46. The number of elements in array are 4
 Explanation:
 When the sizeof operator is applied on the operand of an array type, the result is the total number

of bytes allocated to the array. So, sizeof(array) results in 8. However, sizeof(array[0]) gives the size of
one element of the array, i.e. 2. Hence, sizeof(array)/sizeof(array[0]) results in 4.

232 Programming in C—A Practical Approach

47. Compilation Error (L-value required error)
 Explanation:
 The name of an array refers to the address of the first element of an array and does not have a

modifiable l-value. Since it does not have a modifiable l-value, it cannot be placed on the left side
of the assignment operator. Hence, writing brr=arr is not valid and leads to a compilation error.

48. Contents of array arr and brr are not same
 Explanation:
 Suppose, the array arr gets allocated at the memory location 2000 and brr gets allocated at the

memory location 4000. This is shown in the figure below:

arr brr

4002 40044000
1 2 31 2 3

2000 2002 2004

 Since, the name of the array refers to the address of the first element of the array, arr refers to 2000
and brr refers to 4000. The addresses are not equal (in fact they can never be) and hence, the printf
statement of the else body gets executed to produce the mentioned result.

49. 1 1
 1367:21EA 1367:21EA
 Explanation:

Backward Reference: Refer to the explanations given in Answer numbers 15 and 20.

 The name of type ‘array of type T’ is implicitly converted to pointer of type ‘pointer to T’ (with
two exceptions). The pointer refers to the address of the first element of the array. Hence, the
initialization statement int *ptr=a; initializes ptr with the address of the first element of the array.

ptr
21EA

22AB

21EC–ED

a

1 2 3 4 5
[2] [4][0] [1] [3]

21EE–EF 21F0–F1 21F2–F3 1367: 21EA–EB

 Therefore, *a and *ptr give the value of the first element of the array, a and ptr give the address of
the first element of the array (i.e. base address of the array).

i The mentioned addresses are in hexadecimal number system.

50. Compilation error (L-value required error)
 Explanation:

Backward Reference: Refer to the explanation given in Answer number 15.

 The name arr refers to the address of the first element of the array and &arr refers to the base
address of the entire array. Both arr and &arr are constant objects and do not have a modifiable
l-value. The increment operator can operate only on operands that have a modifiable l-value.
Hence, the expressions ++arr and ++&arr are erroneous.

Arrays and Pointers 233

51. 230F:21EC 230F:21EC
 230F:21EE 230F:21F6
 Explanation:

Backward Reference: Refer to the explanation given in Answer number 15.

 Both the expressions arr and &arr refer to the starting address of the array arr, say 230F:21EC. The
expression arr+1 evaluates to 230F:21EE as the type of arr is int* and the sizeof(int*) is 2. The expression
&arr+1 evaluates to 230F:21F6 as the type of arr is int(*)[5] and the sizeof(int(*)[5]) is 10.

arr+1 &arr+1
arr and &arr

230F: 21EC-ED 21F0-F1
1 2 3 4 5

[1][0] [2] [3] [4]

21EE-EF 21F4-F521F2-F3

52. 1 1 1 1 1
 Explanation:
 All the expressions *a, *(a+0), *(0+a), a[0] and 0[a] are equivalent and refer to the first element of

array, i.e. 1.

53. 3 3
 Explanation:
 Both the expressions arr[2] and ptr[2] are equivalent to *(arr+2) and *(ptr+2), respectively. Since arr

has been assigned to ptr, *(ptr+2) is equivalent to *(arr+2), i.e. 3.

54. 2 3 4 6 5
 Explanation:
 Since initializers in the initialization list of an integer array are of float type, the initializers will be

demoted before initializing array locations. As ptr is initialized with arr, it points to the first ele-
ment of the array arr. During every iteration of the loop, the value of element pointed to by ptr is
printed, and ptr is made to point to the next element of the array arr. In this way, the entire array
gets printed.

55. 10 20 30 40 50
 Explanation:
 Initializers in the initialization list can be pre-defined variables. Hence, writing int arr[]={10,j,30,40,50}

is valid as j is a predefined variable having a value of 20.

56. 1 2 3 4 0 0
 Explanation:
 As the number of initializers in the initialization list is less than the value of the size specifier, the

leading array locations equal to the number of initializers get initialized with the values of initial-
izers. The rest of the array locations get initialized to 0. Since multi-dimensional arrays in C are
stored in row major order, elements of the array are initialized row by row. Thus, the contents of
initialized array will be:

Cols 0 1 2
1 2 3

1 4 0 0

R
ow

s

2-D array arr 0

234 Programming in C—A Practical Approach

57. 1 2 0 3 4 0
 Explanation:
 The initializers in the initialization list are bracketed to initialize individual rows. Since the num-

ber of initializers within the inner brackets is less than the row size, the last element of each row
gets initialized to 0. The contents of the initialized array are as follows:

Cols 0 1 2
1 2 0

1 3 4 0

R
ow

2-D array arr 0

58. Compilation error (Size of type is unknown or zero)
 Explanation:
 While declaring 2-D arrays, even if the initialization list is present, both the row size specifier and

the column size specifier cannot be skipped. In the declaration statement int arr[][]={1,2,3,4}; there
are four initializers, so the number of elements in the array will be at least four. There are three
different ways to create an array of four elements:
1. int arr[1][4]={1,2,3,4}, i.e. array having one row and four columns, or
2. int arr[4][1]={1,2,3,4}, i.e. array having four rows and one column, or
3. int arr[2][2]={1,2,3,4}, i.e. array having two rows and two columns

 So, the compiler will not be able to determine the number of rows and columns in an array.
 Since arrays are stored in row major order, if the number of columns in a row of an array is speci-

fied, the compiler will be able to determine the number of rows and can create the array. Look at
the following declarations and the arrays that get created:

1. int arr[][4]={1,2,3,4}
arr 0 1 2 3

0 1 2 3 4

2. int arr[][2]={1,2,3,4}
arr 0 1

0 1 2

1 3 4

3. int arr[][1]={1,2,3,4}
arr 0

0 1

1 2

2 3

3 4

4. int arr[][3]={1,2,3,4} (Number of elements in the array will be greater than 4)
arr 0 1 2

0 1 2 3

1 4 0 0

Arrays and Pointers 235

5. int arr[][5]={1,2,3,4} (Number of elements in the array will be greater than 4)

arr 0 1 2 3 4

0 1 2 3 4 0

59. Compilation error (Size of type is unknown or zero)
 Explanation:
 “While declaring n-D array, even if initialization list is present, it is mandatory to specify (n-1)

fastest varying size specifiers so that compiler can uniquely determine the dimensions and create
the array”.

 In case of 3-D arrays, even if the initialization list is present, it is mandatory to mention both the
column size specifier and the row size specifier, as they vary faster as compared to plane size
specifier as shown in the figure below. The plane size specifier can be skipped, if the initialization
list is present, e.g. the declaration int arr[][2][2]={1,2,3,4,5,6,7,8}; is valid and the compiler will create an
array that has two planes, each having two rows and two columns, as shown in the figure below:

arr 0 1
Plane 1 5 6

Plane 0 0 1

3 4

2 8

1

Plane 0 Plane 1
Row 0 Row 1 Row 0 Row 1

Col 0 Col 1 Col 0 Col 1 Col 0 Col 1 Col 0 Col 1
a[0][0][0] a[0][0][1] a[0][1][0] a[0][1][1] a[1][0][0] a[1][0][1] a[1][1][0] a[1][1][1]

1 2 3 4 5 6 7 8
21F8 21FA 21FC 21FE 2200 2202 2204 2206

 In the declaration statement present in the given question, the plane size specifier is mentioned
but the column size and the row size specifier are not mentioned. Hence, the compiler cannot
uniquely determine the dimensions of the array. This leads to a compilation error.

60. 1 2 3 4 0 0
 Explanation:

Backward Reference: Refer to the explanations given in Answer numbers 58 and 59.

61. 2367:21EA 2367:21EC
 2367:21EE 2367:21F0
 Explanation:
 The printf statement prints the addresses of array elements. The printed addresses show that the

elements of an array are stored in the memory using row major order of storage.

62. 6 6 6
 Explanation:
 The declaration statement int arr[2][3]={1,2,3,4,5,6}; creates an array as shown in the figure below:

arr 0 1 2

0 1 2 3

1 4 5 6

236 Programming in C—A Practical Approach

 The expression of form E1[E2][E3] (where one of the sub-expressions E1 or E2 is of array type or
pointer type and the other sub-expressions are of integral type) gets converted to expression of
form *(*(E1+E2)+E3). Hence, all the expressions arr[1][2], 1[arr][2], *(*(arr+1)+2) are equivalent and refer
to the element in row 1 and column 2, i.e. 6.

63. Compilation error (Invalid indirection in function main)
 Explanation:
 The expression 1[2][arr] gets converted to expression of form *(*(1+2)+arr). Application of derefer-

ence operator * on the expression of integer type, i.e. (1+2) is not valid and leads to a compilation
error.

64. 0 228F:2202 228F:2208 228F:2208 228F:21F4 228F:2208
 Explanation:
 Suppose that the defined arrays and the pointer variable have been allocated memory as shown

in the figure below. p and a being names of the arrays refer to the address of the first element of
the array. Hence, the expressions p and a result in 228F:21F4 and 228F:2208, respectively. Both the
expressions *p and *ptr refer to the value at memory address 228F:21F4 and result in 228F:2208. The
expression &ptr refers to the address of variable ptr, i.e. 228F:2202. The expression **ptr, refers to
value at memory address 228F:2208 and results in 0.

a

228F:

ptr p 0 1 2 3 4
21F4 2208 220A 220C 220E 221O

228F:2202 228F: 21F4 21F8

220A 220C 220E 22102208
0 1 2 3 4

10 2 3 4

21F6 21FA 21FC

 The printf statement prints the values of the evaluated expressions to produce the mentioned result.

i As memory allocation is purely random the values of printed addresses may vary, if the code
is executed on different machines or at different times.

65. 242F:21F8 242F:21F8 242F:21F8
 242F:21F8 242F:2200 242F:2204
 1 8
 Explanation:
 In an expression, if the number of subscripts used with an array name is less than the dimensions

of the array, then the expression refers to an address. Suppose that array a gets allocated at the
memory location 21F8 and is stored in the memory as shown in figure below:

arr 0 1

Plane 1 5 6

Plane 0 0 82

43

1

1

Arrays and Pointers 237

Plane 0 Plane 1
Row 0 Row 1 Row 0 Row 1

Col 0 Col 1 Col 0 Col 1 Col 0 Col 1 Col 0 Col 1
a[0][0][0] a[0][0][1] a[0][1][0] a[0][1][1] a[1][0][0] a[1][0][1] a[1][1][0] a[1][1][1]

1 2 3 4 5 6 7 8
21F8 21FA 21FC 21FE 2200 2202 2204 2206

The expression:

1. a refers to the starting address of the first element of the array (plane 0), i.e. 242F:21F8.
2. a[0] refers to the starting address of plane 0, i.e. 242F:21F8.
3. a[0][0] refers to the address of plane 0 and row 0, i.e. 242F:21F8.
4. a[1] refers to the address of plane 1, i.e. 242F:2200.
5. a[1][1] refers to the address of plane 1 and row 1, i.e. 242F:2204.
6. a[0][0][0] refers to the value at plane 0, row 0 and column 0, i.e. 1.
7. a[1][1][1] refers to the value at plane 1, row 1 and column 1, i.e. 8.

66. Compilation error (Size of a and b is unknown in function main)
 Explanation:
 Declaring an object of type void is not allowed. Hence, the declaration statement void a,b; is errone-

ous.

67. Compilation error (Size of type is unknown or zero)
 Explanation:
 Pointer arithmetic is not allowed on void pointers. Hence, the statement *v_ptr++; is erroneous.

68. The value pointed by ptr is 2
 Explanation:
 The pointer ptr is initialized with the address of the first element of the array arr. After increment-

ing it by 1, it points to the next element of the array, i.e. 2. The printf statement prints the value of
the element pointed to by the pointer ptr.

69. The result of ptr2-ptr1 is 3
 Explanation:
 Suppose, the array arr gets allocated at the memory location 2000. ptr1 is initialized with the ad-

dress of the first element of the array, i.e. 2000 and ptr2 is initialized with the address of arr[3], i.e.
2006. This is depicted in the figure below:

arr [0]

1 2

ptr1 ptr2
[1] [2] [3] [4]

3 4 5
2000 2002 2004 2006 2008

The expression ptr2-ptr1 will be computed as (ptr2-ptr1)/sizeof(int), i.e. (2006-2000)/2=3.

Backward Reference: Refer Section 4.4.1.4.3 for a description on pointer subtraction.

238 Programming in C—A Practical Approach

70. Compilation error (illegal use of pointers)
 Explanation:
 Application of multiplication operator on pointers is not allowed.

Answers to Multiple-choice Questions
71. a 72. b 73. d 74. c 75. a 76. b 77. d 78. a 79. b 80. a 81. d 82. a 83. c 84. d
85. b 86. a 87. a 88. b 89. a 90. b 91. b   92. a 93. c 94. b 95. a

Programming Exercises

Program 1 | Maximum-Minimum: Find the maximum and minimum element in a set of n elements

Algorithm:
Step 1: Start
Step 2: Assign the first array element to two different variables (i.e. max and min) that will hold the maximum

and minimum value
Step 3: Loop through the remaining elements, starting from the second element. When a value larger than the

present maximum value is found, it becomes the new maximum. Similarly, when a value smaller than the
present minimum value is found, it becomes the new minimum

Step 4: After the termination of the loop, print the maximum and minimum values
Step 5: Stop

PE 4-1.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

//Maximum and minimum
#include<stdio.h>
main()
{
int elements[20], num, i, max, min;
printf(“Enter the number of elements in the set (max. 20)\t”);
scanf(“%d”,&num);
printf(“Enter the elements:\n”);
for(i=0;i<num;i++)
 scanf(“%d”,&elements[i]);
max=min=elements[0]; //ÅLet max and min is the first item
for(i=1;i<num;i++)
 if(elements[i]>max) //Åif element[i]>max, then set max=element[i]
 max=elements[i];
 else if(elements[i]<min) //Åelse if element[i]<min, then
 min=elements[i]; //Å set min=element[i]
printf(“Maximum element in the set is %d\n”,max);
printf(“Minimum element in the set is %d\n”,min);
}

Enter the number of elements in the set (max. 20) 5
Enter the elements:
12
-3
45
67
8
Maximum element in the set is 67
Minimum element in the set is -3

Program 2 | Find arithmetic mean, variance and standard deviation of n elements

Arithmetic mean is given as: =1=
n

ii x
x

n
∑

Variance is given as:
2

=1()n
ii

x
x x
n

∑ −
=σ

(Contd...)

Arrays and Pointers 239

Standard deviation is given as: 2
=1()n

ii x x
n

∑ −

PE 4-2.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

//Arithmetic mean, variance and standard deviation
#include<stdio.h>
#include<math.h>
main()
{
float elements[20], sum=0.0, mean, var, sd;
int num, i;
printf(“Enter the number of elements (max. 20)\t”);
scanf(“%d”,&num);
printf(“Enter the elements:\n”);
for(i=0;i<num;i++)
 scanf(“%f”,&elements[i]);
for(i=0;i<num;i++)
 sum=sum+elements[i];
mean=sum/num;
sum=0.0;
for(i=0;i<num;i++)
 sum=sum+(elements[i]-mean)*(elements[i]-mean);
var=sum/num;
sd=sqrt(var);
printf(“Arithmetic mean is %f\n”,mean);
printf(“Variance is %f\n”,var);
printf(“Standard deviation is %f\n”,sd);
}

Enter the number of elements(max. 20) 6
Enter the elements:
2.1
2.9
2.3
2.4
1.8
2.5
Arithmetic mean is 2.333333
Variance is 0.115556
Standard deviation is 0.339935

Program 3 | Linear Search: Given a list of n elements and a key. Find whether the given key exists in the
list or not. If it exists, print its position in the list

Algorithm:
Step 1: Start
Step 2: Read the elements present in the list and store them in an array
Step 3: Read the key to be searched in the list
Step 4: Loop to compare every element in the array with the key. When an equal value is found, print the location

where the match has been found. If the loop finishes without finding a match, the search fails and print the
message that key is not present in the list

Step 5: Stop

PE 4-3.c Output window

1
2
3
4
5
6
7
8
9

//Linear Search
#include<stdio.h>
main()
{
int elements[20], num, i, key, found=0;
printf(“Enter the number of elements (max. 20)\t”);
scanf(“%d”,&num);
printf(“Enter the elements:\n”);
for(i=0;i<num;i++)

Enter the number of elements(max. 20) 6
Enter the elements:
12
10
5
-3
14
2
Enter the key that you want to search -3

(Contd...)

240 Programming in C—A Practical Approach

PE 4-3.c Output window

10
11
12
13
14
15
16
17
18
19

20
21

 scanf(“%d”,&elements[i]); //ÅRead elements in the list
printf(“Enter the key that you want to search\t”);
scanf(“%d”,&key); //ÅRead the key to be searched
for(i=0;i<num;i++) //ÅLoop
 if(elements[i]==key) //ÅComparison of element & key
 { //ÅKey found
 printf(“%d exists at location no. %d\n”,key, i+1);
 found=1;
 }
if(found==0) //ÅKey not found in the list
 printf(“%d does not exist in the list”,key);
}

-3 exists at location no. 4

Program 4 | Insertion Sort: Given list of n elements. Arrange them in an ascending order

Principle:
Insertion Sort works on the principle of sorting by insertion. Any given unsorted list can be divided into two lists
such that one is sorted and the other is unsorted. For example, the given unsorted list

12 1 8 10 5 3

can be divided into two parts such that one list is sorted and other list is unsorted. The divided list is shown as:

Unsorted list

12 1 8 10 5 3

Sorted list

Initially the sorted list consists of zero or one element, as the list containing zero or one element is always sorted
and the unsorted list consists of the rest of the elements.
Insertion Sort sorts by removing one element from the unsorted list at a time and inserting it at a proper position
in the sorted listed. To make room for the insertion, some of the elements in the sorted list need to be moved. Each
iteration of Insertion Sort reduces the size of the unsorted list by one and increases the size of the sorted list by
one. Ultimately, the unsorted list will vanish and the entire list will be sorted.
The general procedure of the Insertion Sort is shown in the figure below:

-------- ---------

item ≤ i item i item > i ---------

Sorted list Unsorted list

Sorted list Unsorted list

item i

(Contd...)

Arrays and Pointers 241

Insertion Sort sorts the given list as shown below:

Initial Order 12 1 8 10 5 3

Insert Second Entry 1 12 8 10 5 3

Insert Third Entry 1 8 12 10 5 3

Insert Fourth Entry 1 8 10 12 5 3

Insert Fifth Entry 1 5 8 10 12 3

Insert Sixth Entry 1 3 5 8 10 12

Sorted list

Sorted list Unsorted list

Size of sorted list increases
Size of unsorted list decreases

PE 4-4.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

//Insertion Sort
#include<stdio.h>
main()
{
int list[20], num, current, i, j;
printf(“Enter the number of elements (max. 20)\t”);
scanf(“%d”,&num); //ÅRead the number of elements in the list
printf(“Enter the elements:\n”);
for(i=0;i<num;i++)
 scanf(“%d”,&list[i]); //ÅRead the elements of the list
//ÅFirst element is sorted and the rest of the list is unsorted
for(i=1;i<num;i++)
 if(list[i]<list[i-1]) //ÅRemove element from the unsorted
 { //list and place it at proper position
 current=list[i]; //in the sorted list
 for(j=i-1;j>=0;j--)
 {
 list[j+1]=list[j];
 if(j==0||list[j-1]<=current)
 break;
 }
 list[j]=current;
 }
printf(“After sorting, elements are:\n”);
for(i=0;i<num;i++) //ÅPrint sorted list
 printf(“%d\n”,list[i]);
}

Enter the number of elements(max. 20) 6
Enter the elements:
12
10
5
-3
14
2
After sorting, elements are:
-3
2
5
10
12
14

242 Programming in C—A Practical Approach

Program 5 | Selection Sort: Given a list of n elements. Arrange them in an ascending order

Insertion Sort has one major disadvantage. Insertion of an element removed from the unsorted list into the
sorted list requires the elements in the sorted list to be moved to create space for the new element. Consider
the insertion of sixth entry in the previous program. Insertion of 3 into the sorted list requires the movement
of 5, 8, 10 and 12. These excessive movements become very expensive especially if the elements are very large
such as records of employee’s personal file or student transcripts. It would be far more efficient if an entry being
moved could immediately be placed in its final position. Selection Sort accomplishes this goal and works on the
following principle:

Principle:
Selection Sort works on the principle of sorting by selection. The given unsorted list is initially divided into two
lists—the sorted list containing no element and the unsorted list containing all the elements. For example, the
given unsorted list

12 1 8 10 5 3

can be divided into two parts as:

12 1 8 10 5 3

 Sorted list Unsorted list

Selection Sort selects the minimum element from the unsorted list and exchanges it with the first element in the
unsorted list. The selected element has moved to its final position; hence, the size of the sorted list is increased by
one and the size of the unsorted list is decreased by one. This process of selecting the minimum element from the
unsorted list, exchanging it with the first element in the unsorted list and then increasing the size of the sorted list
and decreasing the size of the unsorted list by one is repeatedly followed till the entire list becomes sorted. The
general procedure of Selection Sort is shown in the figure below:

sorted small elements unsorted large elements

sorted small elements

sorted list unsorted list

Sorted list Unsorted list

Minimum element in the unsorted list First element in the unsorted list

Swap

(Contd...)

Arrays and Pointers 243

Selection Sort sorts the given list as shown below:

12 1 8 10 5 3

1 1 2 8 1 0 5 3

1 3 8 1 0 5 12

1 3 5 1 0 8 12

1 3 5 8 1 0 12

1 3 5 8 1 0 12

Sorted list

Initial Order

Unsorted List Sorted list

Size of sorted list increases

Size of unsorted list decreases

PE 4-5.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26

//Selection Sort
#include<stdio.h>
main()
{
int list[20], num,min, temp, i, j;
printf(“Enter the number of elements (max. 20)\t”);
scanf(“%d”,&num); //ÅRead number of elements in the list
printf(“Enter the elements:\n”);
for(i=0;i<num;i++)
 scanf(“%d”,&list[i]); //ÅRead the elements
for(i=0;i<num-1;i++) //ÅInitially entire list is unsorted
{
 min=i;
 for(j=i+1;j<num;j++) //ÅSelect minimum element in the list
 if(list[j]<list[min])
 min=j;
 { //ÅPlace selected element at 1st position in the unsorted list
 temp=list[min];
 list[min]=list[i];
 list[i]=temp;
 }
}
printf(“After sorting, elements are:\n”);
for(i=0;i<num;i++) //ÅPrint sorted list
 printf(“%d\n”,list[i]);
}

Enter the number of elements(max. 20) 6
Enter the elements:
12
10
5
-3
14
2
After sorting, elements are:
-3
2
5
10
12
14

Program 6 | Bubble Sort: Given a list of n elements. Arrange them in an ascending order

Principle:
Bubble Sort works on the following observation:

‘Bubbles (or lighter elements) rise up in water and heavier elements sink’
The given unsorted list is initially divided into two lists—the sorted list containing no element and the unsorted
list containing all the elements. For example, the given unsorted list

(Contd...)

244 Programming in C—A Practical Approach

Program 6 | Bubble Sort: Given a list of n elements. Arrange them in an ascending order

12 1 8 10 5 3

can be divided into two parts as:

12 1 8 10 5 3

 Unsorted list Sorted list

Bubble Sort scans the unsorted list from left to right and swaps elements when a pair of adjacent elements is found
to be out of order. After one complete iteration (also known as a pass), the heaviest element (i.e. the largest ele-
ment) is at the right end of the unsorted list, but the earlier elements may still be out of order. The size of unsorted
list is decreased by one and the size of the sorted list is increased by one. This process is repeated till the unsorted
list vanishes and the entire list becomes sorted. Bubble Sort sorts the given list as shown below:

1 1 2 8 1 0 5 3

1 8 1 2 1 0 5 3

1 8 1 0 1 2 5 3

1 8 1 0 5 1 2 3

1 8 1 0 5 3 1 2

1 8 1 0 5 3 1 2

1 8 1 0 5 3 1 2

1 8 1 0 5 3 1 2

1 8 5 1 0 3 1 2

1 8 5 3 1 0 1 2

1 8 5 3 1 0 1 2

1 8 5 3 1 0 1 2

1 5 8 3 1 0 1 2

1 5 3 8 1 0 1 2

Unsorted list Sorted
listPass 1

Unsorted list Sorted
list

Pass 2

Unsorted list Sorted
list

Pass 3

1 5 3 8 1 0 1 2

1 5 3 8 1 0 1 2

1 3 5 8 1 0 1 2

1 5 8 1 0 1 2

1

3

3 5 8 1 0 1 2

1 3 5 8 1 0 1 2

Unsorted list Sorted
list

Pass 4

Unsorted list
Sorted
list

Sorted list

Pass 5

1 2 1 8 1 0 5 3

PE 4-6.c Output window

1
2
3
4
5
6
7
8
9

10
11

//Bubble Sort
#include<stdio.h>
main()
{
int list[20], num,min, temp, i, j;
printf(“Enter the number of elements (max. 20)\t”);
scanf(“%d”,&num); //ÅRead number of elements in the list
printf(“Enter the elements:\n”);
for(i=0;i<num;i++)
 scanf(“%d”,&list[i]); //ÅRead the elements
for(i=0;i<num-1;i++) //ÅPasses

Enter the number of elements(max. 20) 6
Enter the elements:
12
10
5
-3
14
2
After sorting, elements are:
-3
2

(Contd...)

(Contd...)

Arrays and Pointers 245

12
13
14
15
16
17
18
19

20
21
22

 for(j=0;j<num-1-i;j++)
 if(list[j]>list[j+1]) //ÅIf elements are out of order, swap them
 {
 temp=list[j];
 list[j]=list[j+1];
 list[j+1]=temp;
 }
printf(“After sorting, elements are:\n”);
for(i=0;i<num;i++) //ÅPrint sorted list
 printf(“%d\n”,list[i]);
}

5
10
12
14

Program 7 | Given two sorted one-dimensional arrays A and B of size m and n, respectively. Merge them
into a single-sorted array C that contains every element from arrays A and B in ascending order

PE 4-7.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

//Merge two Sorted arrays into one
#include<stdio.h>
main()
{
int A[20], B[20], C[40] ;
int i, j, l, h, m, n;
printf(“Enter the number of elements in A (max. 20)\t”);
scanf(“%d”,&m); //ÅRead number of elements in A
printf(“Enter the elements in sorted order:\n”);
for(i=0;i<m;i++)
 scanf(“%d”,&A[i]); //ÅRead the elements
printf(“Enter the number of elements in B (max. 20)\t”);
scanf(“%d”,&n); //ÅRead number of elements in B
printf(“Enter the elements in sorted order:\n”);
for(i=0;i<n;i++)
 scanf(“%d”,&B[i]); //ÅRead the elements
i=0; j=0; h=0;
while(i<m || j<n)
{
 if(A[i]<=B[j])
 {
 C[h]=A[i];
 i++;
 }
 else
 {
 C[h]=B[j];
 j++;
 }
 h++;
}
if(i==m)
 for(l=j;l<n;l++)
 C[h++]=B[l];
else if(j==n)
 for(l=i;l<m;l++)
 C[h++]=A[l];

Enter the number of elements in A (max. 20) 5
Enter the elements in sorted order:
1 3 5 7 9
Enter the number of elements in B (max. 20) 4
Enter the elements in sorted order:
2 4 6 8
After merging, elements are:
1 2 3 4 5 6 7 8 9

(Contd...)

246 Programming in C—A Practical Approach

PE 4-7.c Output window

38
39
40
41

printf(“After merging, elements are:\n”);
for(i=0;i<m+n;i++) //ÅPrint merged array C
 printf(“%d ”,C[i]);
}

Program 8 | Matrix addition: Add two matrices of order m × n

PE 4-8.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31

//Matrix Addition
#include<stdio.h>
main()
{
int mat1[10][10], mat2[10][10], resultant[10][10];
int m, n, row, col;
printf(“Enter the order of matrices (max. 10 by 10)\t”);
scanf(“%d %d”,&m, &n);
printf(“Enter the elements of matrix-1:\n”);
for(row=0;row<m;row++)
{
 for(col=0;col<n;col++)
 scanf(“%d”,&mat1[row][col]);
}
printf(“Enter the elements of matrix-2:\n”);
for(row=0;row<m;row++)
{
 for(col=0;col<n;col++)
 scanf(“%d”,&mat2[row][col]);
}
for(row=0;row<m;row++)
 for(col=0;col<n;col++)
 resultant[row][col]=mat1[row][col]+mat2[row][col];
printf(“The result of matrix addition is:\n”);
for(row=0;row<m;row++)
{
 for(col=0;col<n;col++)
 printf(“%d ”,resultant[row][col]);
 printf(“\n”);
}
}

Enter the order of matrices (max. 10 by 10) 3 3
Enter the elements of matrix-1:
1 2 3
4 5 6
7 8 9
Enter the elements of matrix-2:
2 3 4
1 2 3
1 1 0
The result of matrix addition is :
3 5 7
5 7 9
8 9 9

Program 9 | Matrix multiplication: Multiply two matrices

Given two matrices A and B

A =
A11 A12

A22A21  
and

 

B11 B12 B13

B21
B =

B22 B12

(Contd...)

Arrays and Pointers 247

The result of the matrix multiplication is given as:

C2×3 = A2×2 B2×3 = A21 B31 + A22 B21 A21 B12 + A22 B22 A21 B13 + A22 B23

A11 B11 + A12 B21 A11 B12 + A12 B22 A11 B13 + A12 B23

PE 4-9.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

//Matrix Multiplication
#include<stdio.h>
#include<stdlib.h>
main()
{
int mat1[10][10], mat2[10][10], resultant[10][10]={0};
int m1, n1, m2, n2, i, j, k;
printf(“Enter the order of matrix-1 (max. 10 by 10)\t”);
scanf(“%d %d”,&m1, &n1);
printf(“Enter the elements of matrix-1:\n”);
for(i=0;i<m1;i++)
{
 for(j=0;j<n1;j++)
 scanf(“%d”,&mat1[i][j]);
}
printf(“Enter the order of matrix-2 (max. 10 by 10)\t”);
scanf(“%d %d”,&m2, &n2);
printf(“Enter the elements of matrix-2:\n”);
for(i=0;i<m2;i++)
{
 for(j=0;j<n2;j++)
 scanf(“%d”,&mat2[i][j]);
}
if(n1!=m2)
{
 printf(“Matrices are not compatible for multiplication\n”);
 exit(1);
}
else
{
 for(i=0;i<m1;i++)
 for(j=0;j<n2;j++)
 for(k=0;k<n1;k++)
 resultant[i][j]=resultant[i][j]+mat1[i][k]*mat2[k][j];
}
printf(“The result of matrix multiplication is:\n”);
for(i=0;i<m1;i++)
{
 for(j=0;j<n2;j++)
 printf(“%d ”,resultant[i][j]);
 printf(“\n”);
}
}

Enter the order of matrix-1 (max. 10 by 10) 2 3
Enter the elements of matrix-1:
1 2 3
4 5 6
Enter the order of matrix-2 (max. 10 by 10) 3 3
Enter the elements of matrix-2:
2 3 4
1 2 3
1 1 0
The result of matrix multiplication is :
7 10 10
19 28 31

Chapter 4.indd 247Chapter 4.indd 247 28/02/2010 2:42:17 PM28/02/2010 2:42:17 PM

248 Programming in C—A Practical Approach

Program 10 | Find the sum of principal diagonal elements of a square matrix

The set of elements extending from the upper-left-most corner to the lower-right-most corner in a square matrix
are known as principal diagonal elements. An element Aij of a square matrix is principle diagonal element if and
only if i=j.

PE 4-10.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

//Sum of principle diagonal elements
#include<stdio.h>
main()
{
int matrix[10][10];
int order, sum=0, i, j;
printf(“Enter the order of the square matrix(max. 10)\t”);
scanf(“%d”,&order);
printf(“Enter the elements of matrix:\n”);
for(i=0;i<order;i++)
{
 for(j=0;j<order;j++)
 scanf(“%d”,&matrix[i][j]);
}
for(i=0;i<order;i++)
 sum=sum+matrix[i][i];
printf(“Sum of elements of principal diagonal is %d”,sum);
}

Enter the order of the square matrix (max. 10) 3
Enter the elements of matrix:
1 2 3
4 5 6
7 8 9
Sum of elements of principal diagonal is 15

Program 11 | Matrix transpose: Find the transpose of a given matrix

The transpose of the matrix A is another matrix AT, which can be found by any one of the following actions:
1. Writing the rows of A as the columns of AT

2. Writing the columns of A as the rows of AT

3. Reflect A about its main diagonal to obtain AT(only possible in case of square matrix).
The transpose of an m×n matrix A with elements Aij is an n×m matrix AT =Aji, 1≤i≤n and 1≤j≤m.

PE 4-11.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Matrix Transpose
#include<stdio.h>
main()
{
int matrix[10][10], matrix_transpose[10][10];
int m, n, i, j;
printf(“Enter the order of the matrix(max. 10 by 10)\t”);
scanf(“%d %d”,&m, &n);
printf(“Enter the elements of the matrix:\n”);
for(i=0;i<m;i++)
{
 for(j=0;j<n;j++)
 scanf(“%d”,&matrix[i][j]);
}
for(i=0;i<n;i++)

Enter the order of matrix (max. 10 by 10) 2 4
Enter the elements of matrix:
1 2 3 4
5 6 7 8
Transpose of the matrix is:
1 5
2 6
3 7
4 8

(Contd...)

Arrays and Pointers 249

16
17
18
19

20
21
22
23
24
25

 for(j=0;j<m;j++)
 matrix_transpose[i][j]=matrix[j][i];
printf(“Transpose of the matrix is:\n”);
for(i=0;i<n;i++)
{
 for(j=0;j<m;j++)
 printf(“%d “,matrix_transpose[i][j]);
 printf(“\n”);
}
}

Program 12 | Check whether a given square matrix is symmetric or not

A square matrix A is symmetric if A=AT (i.e. the matrix is equal to its transpose).

PE 4-12.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33

//Symmetric matrix
#include<stdio.h>
main()
{
int matrix[10][10], matrix_transpose[10][10], unequal=0;
int i,j,order;
printf(“Enter the order of the square matrix(max. 10 by 10)\t”);
scanf(“%d”,&order);
printf(“Enter the elements of the matrix:\n”);
for(i=0;i<order;i++)
{
 for(j=0;j<order;j++)
 scanf(“%d”,&matrix[i][j]);
}
for(i=0;i<order;i++)
 for(j=0;j<order;j++)
 matrix_transpose[i][j]=matrix[j][i];
for(i=0;i<order;i++)
{
 for(j=0;j<order;j++)
 if(matrix[i][j]!=matrix_transpose[i][j])
 {
 unequal=1;
 break;
 }
 if(unequal==1)
 break;
}
if(unequal==0)
 printf(“The matrix is symmetric\n”);
else
 printf(“The matrix is not symmetric\n”);
}

Enter the order of the square matrix (max. 10 by 10) 3
Enter the elements of matrix:
1 2 3
2 1 4
3 4 1
The matrix is symmetric

250 Programming in C—A Practical Approach

Program 13 | Upper triangular matrix: Extract the upper triangular matrix from a square matrix

A square matrix in which all the elements below the main (i.e. principal) diagonal are zero is known as upper
triangular matrix and a square matrix in which all the elements above the main diagonal are zero is known as
lower triangular matrix.
Upper triangular matrix can be extracted from a square matrix by extracting the elements of principle diagonal
and the elements that lie above it.

PE 4-13.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28

//Extraction of Upper Triangular matrix
#include<stdio.h>
main()
{
int matrix[10][10], ut_matrix[10][10], unequal=0;
int i,j,order;
printf(“Enter the order of the square matrix(max. 10 by 10)\t”);
scanf(“%d”,&order);
printf(“Enter the elements of the matrix:\n”);
for(i=0;i<order;i++)
{
 for(j=0;j<order;j++)
 scanf(“%d”,&matrix[i][j]);
}
for(i=0;i<order;i++)
 for(j=0;j<order;j++)
 if(i<=j)
 ut_matrix[i][j]=matrix[i][j];
 else
 ut_matrix[i][j]=0;
printf(“Upper Triangular matrix is:\n”);
for(i=0;i<order;i++)
{
 for(j=0;j<order;j++)
 printf(“%d “,ut_matrix[i][j]);
 printf(“\n”);
}
}

Enter the order of the square matrix (max. 10 by 10) 3
Enter the elements of the matrix:
1 2 3
2 1 4
3 4 1
Upper Triangular matrix is:
1 2 3
0 1 4
0 0 1

Program 14 | Strictly upper triangular matrix: Check whether a given matrix is strictly upper triangular
or not

An upper triangular matrix is strictly upper triangular if the elements of the principal diagonal are zero.

PE 4-14.c Output window

 1
2
3

//Strictly Upper Triangular matrix
#include<stdio.h>
main()

Enter the order of the square matrix (max. 10 by 10) 3
Enter the elements of matrix:
0 2 3

(Contd...)

Arrays and Pointers 251

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31

{
int matrix[10][10], notzero=0;
int i,j,order;
printf(“Enter the order of the square matrix(max. 10 by 10)\t”);
scanf(“%d”,&order);
printf(“Enter the elements of the matrix:\n”);
for(i=0;i<order;i++)
{
 for(j=0;j<order;j++)
 scanf(“%d”,&matrix[i][j]);
}
for(i=0;i<order;i++)
{
 for(j=0;j<order;j++)
 if(i>=j)
 if(matrix[i][j]!=0)
 {
 notzero=1;
 break;
 }
 if(notzero==1)
 break;
}
if(notzero==1)
 printf(“The given matrix is not strictly upper triangular\n”);
else
 printf(“The given matrix is strictly upper triangular\n”);
}

0 0 4
0 0 0
The given matrix is strictly upper triangular

Output window
(second execution)

Enter the order of the square matrix (max. 10 by 10) 3
Enter the elements of matrix:
6 2 3
0 0 4
2 0 0
The given matrix is not strictly upper triangular

Program 15 | Matrix Inverse: Find the inverse of a 3 × 3 matrix

The inverse of a square matrix A, is a matrix A-1 such that AA-1=I, where I is the identity matrix. The matrix A has
an inverse if and only if the determinant of A (written as |A|) is not equal to zero. A matrix whose inverse exists
is known as invertible matrix
Finding the inverse of a matrix using Gauss–Jordan elimination method:
Step 1: Start
Step 2: Read the elements of the matrix A whose inverse is to be found
Step 3: Check whether its determinant is zero or not. If it is zero, print that inverse does not exist and stop, else

proceed to Step 4
Step 4: Form the augmented matrix B. It is formed by augmenting the matrix A with an identity matrix of the same

dimensions. If the matrix A is of order m × n, the augmented matrix B = [A|I ] is of order m × 2n. It consists
of two parts: the first part corresponds to A and the second part corresponds to I

Step 5: Apply elementary row operations on the augmented matrix B so that its first part reduces to identity ma-
trix. By performing these row operations, the inverse of the matrix A appears in the second part

Step 6: The matrix augmentation can be undone to retrieve the inverse of the matrix
Step 7: Print the inverse of the matrix
Step 8: Stop

(Contd...)

Chapter 4.indd 251Chapter 4.indd 251 28/02/2010 2:42:17 PM28/02/2010 2:42:17 PM

252 Programming in C—A Practical Approach

Example:

22 33 11 11 00 00 22 33 11 11 00 00
11 11 22 00 11 00 11 11 22 00 11 00
22 33 44 00 00 11 22 33 44 00 00 11

A =A = I =I = B =B =

Step 1: R1->R1/B[0][0]
1 3 2 1 2 1 2 0 0
1 1 2 0 1 0
2 3 4 0 0 1

B =

Step 2: R2->R2-B[1][0]*R1
1 3 2 1 2 1 2 0 0
0 -1 2 3 2 -1 2 1 0
2 3 4 0 0 1

B =

Step 3: R3->R3-B[2][0]*R1
1 3 2 1 2 1 2 0 0
0 -1 2 3 2 -1 2 1 0
0 0 3 -1 0 1

B =

Step 4: R2->R2/B[1][1]
1 3 2 1 2 1 2 0 0
0 1 -3 1 -2 0
0 0 3 -1 0 1

B =

Step 5: R1->R1-B[0][1]*R2
1 0 5 -1 3 0
0 1 -3 1 -2 0
0 0 3 -1 0 1

B =

Step 6: R3->R3-B[2][0]*R2
1 0 5 -1 3 0
0 1 -3 1 -2 0
0 0 3 -1 0 1

B =

Step 7: R3->R3/B[2][2]
1 0 5 -1 3 0
0 1 -3 1 -2 0
0 0 1 -1 3 0 1 3

B =

Step 8: R1->R1-B[0][2]*R3
1 0 0 2 3 3 -5 3
0 1 -3 1 -2 0
0 0 1 -1 3 0 1 3

B =

(Contd...)

Arrays and Pointers 253

Step 9: R2->R2-B[1][2]*R3
1 0 0 2 3 3 -5 3
0 1 0 0 -2 1
0 0 1 -1 3 0 1 3

B =

Step 10: Undo the matrix augmentation and print inverse

2 3 3 -5 3
0 -2 1

-1 3 0 1 3
A-1 =

PE 4-15.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

//Inverse of a matrix
#include<stdio.h>
main()
{
float matrix[3][3], aug_matrix[3][6];
float identity[3][3]={1,0,0,0,1,0,0,0,1}; //Å3×3 identity matrix
float c,r, sub, det;
int i,j,order=3,k, row, col;
printf(“Enter the elements of 3 by 3 matrix:\n”);
for(i=0;i<order;i++)
{
 for(j=0;j<order;j++)
 scanf(“%f”,&matrix[i][j]); //ÅRead the elements of the matrix
}
//ÅCalculate the determinant of the matrix
det=matrix[0][0]*(matrix[1][1]*matrix[2][2]-matrix[2][1]*matrix[1][2]) -
matrix[0][1]*(matrix[1][0]*matrix[2][2]-matrix[2][0]*matrix[1][2]) +
matrix[0][2]*(matrix[1][0]*matrix[2][1]-matrix[2][0]*matrix[1][1]);
if(det!=0) //Åif determinant is not zero inverse can be found
{
 for(i=0;i<order;i++) //Åaugmenting the matrix with identity matrix
 for(j=0;j<order;j++)
 {
 aug_matrix[i][j]=matrix[i][j];
 aug_matrix[i][j+3]=identity[i][j];
 }
//ÅElementary row operations
 for(i=0;i<order;i++)
 for(j=0;j<order;j++)
 {
 if(i==j)
 {
//ÅImplementing Steps 1, 4 and 7 described in the example above
 c=aug_matrix[i][i];
 for(k=0;k<6;k++)
 aug_matrix[i][k]=aug_matrix[i][k]/c;
//ÅImplementing Steps 2,3,5,6,8 and 9 described in the example above
 for(row=0;row<order;row++)

Enter the elements of 3 by 3 matrix:
2 3 1
1 1 2
2 3 4
Inverse of the matrix is:
 0.67 3.00 -1.67
 0.00 -2.00 1.00
-0.33 0.00 0.33

(Contd...)

254 Programming in C—A Practical Approach

PE 4-15.c Output window

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

 {
 sub=aug_matrix[row][j];
 for(col=0;col<6;col++)
 if(row!=i)
 {
 aug_matrix[row][col]-=sub*aug_matrix[i][col];
 }
 }
 }
 }
 printf(“Inverse of the matrix is:\n”);
 for(i=0;i<order;i++) //ÅPrinting the inverse of the matrix
 {
 for(j=0;j<order;j++)
 printf(“%5.2f “,aug_matrix[i][j+3]);
 printf(“\n”);
 }
}
else //Åif determinant is zero, print that inverse does not exist
 printf(“Inverse does not exist”);
}

Arrays and Pointers 255

Test Yourself
1. Fill in the blanks in each of the following:

a. An array is used for the storage of ____________ data.
b. The array index in C language starts with ____________.
c. The elements of an array are always stored in ____________ memory locations.
d. The size specifier in an array declaration must be a compile time expression of ____________

type.
e. The elements of an array can be accessed by using ____________ operator.
f. The object pointed to by a pointer can be indirectly accessed by using ____________ operator.
g. The expression equivalent to the expression arr[5][4], where arr is an integer array is

____________.
h. The biggest advantage of arrays is their ____________ capabilities.
i. In an expression, if the number of subscripts used with the array is less than the dimensions

of the array, the expression always refers to a/an ____________.
j. The comparison of two null pointers always results in ____________.

2. State whether each of the following is true or false. If false, explain why.

a. In an array declaration, the number of initializers in the initialization list should be less than
or at most equal to the value of size specifier.

b. The index of an array must be a positive integer greater than zero.
c. A pointer variable can be initialized with a constant value zero.
d. A pointer to any type of object can be assigned to a pointer of type void* without explicit type

casting.
e. A void pointer can be assigned to a pointer variable without explicit type casting.
f. The name of the array refers to the base address of the complete array.
g. The size of an array cannot be changed at the run time.
h. If the size specifier is not mentioned in an array declaration, the size of the array is automati-

cally initialized to a single element.
i. Multi-dimensional arrays in C are stored in the memory using column major order of storage.
j. The declaration statement int* a[10]; declares a as a pointer to an integer array of 10 elements.

3. Programming exercises:

a. Write a C program to find the sum of all the elements of an array.
b. An array consists of integers. Write a C program to count the number of elements less than,

greater than and equal to zero.
c. Write a C program to check whether a given matrix is skew-symmetric or not.
d. Write a C program to extract lower-triangular matrix from a square matrix.
e. Write a C program that returns the position of the largest element in an array.
f. In a class there are twenty students and each student undergoes five courses. Write a C pro-

gram to find out the average marks secured by each student and the overall average of the
class.

FUNCTIONS

5

Learning Objectives

In this chapter, you will learn about:

Functions �
Advantages of using functions �
 Classification of functions as user-defined �
functions and library functions
User-defined functions �
How to declare, define and call functions �
Way of increasing flexibility of functions �
Different ways of supplying inputs to a function �
return � statement
How to provide default inputs to a function �
Recursion and its use to solve problems �
Classification of recursion �
How recursion works �
Tower of Hanoi problem �
Function type and pointers to functions �
Array of function pointers �
Passing arrays and functions to functions �
Commonly used library functions �
Variable argument functio � ns

258 Programming in C—A Practical Approach

5.1 Introduction
In the previous chapters, you have seen how to declare identifiers (Chapter 1), how to write
expressions (Chapter 2) and how to write statements (Chapter 3). In this chapter, I will tell
you how to group these components in a function so that these components can be reused in
a program. I will describe the advantages of using functions, how to declare, define and call
them. You will be familiarized with the methods of increasing flexibility of a function and
different ways of passing inputs to a function. Finally, we will have a discussion about the
advanced topics like pointers to functions, arrays of function pointers and passing functions
to a function.

5.2 Functions
Most of the computer programs that solve real-world problems are much bigger and complex
than the programs presented in the first few chapters. The existing software engineering prac-
tices used to develop such complicated programs work on the following principles:

1. Top-down design, modularization, stepwise refinement and bottom-up development:
According to this principle, a complex problem should be modularized (i.e. divided)
into sub-problems that are simpler, manageable and easier to solve as compared to the
original problem. If the divided sub-problems are still complex and cannot be easily
solved, they are further divided into sub-problems. Each level of division provides a
refinement and simplicity to the problem. This process of modularization is carried
out till the sub-problems are simple enough and can be easily solved. The solutions for
these simple problems are then developed and merged to provide a solution for the
overall complex problem. This approach of problem solving is also known as ‘divide-
and-conquer strategy.’ This strategy is practically followed in real life whereby a senior
officer responsible for the execution of a work divides the work among his subordi-
nates. The subordinate officers may further divide the assigned work among their sub-
ordinates, get the work done and report back to their senior officer. This hierarchical
division of work is shown in Figure 5.1.

Project Manager
(Develop scientific calculator)

Project Leader 1
(Trigonometric functionality)

Project Leader 3
(Complex arithmetic functionality)

Project Leader 2
(Arithmetic functionality)

Software Engineer 1
(Additon, Subtraction,

Multiplication & Division)

Software Engineer 2
(Exponentials, Base

conversions)

Figure 5.1 | Hierarchical division of work

Functions 259

 Thus, in this approach of solution development, a solution to the given problem is
thought of at an abstract level. This abstract solution is divided into modules, and each
level of division refines the solution by adding details to the divided modules. The
process of division is carried out till the divided modules are well defined and simple
enough to be generated (i.e. coded). The functionality of each module is kept in a sepa-
rate function. These functions are relatively independent of each other and interact with
each other to provide a solution to the overall problem.

2. ‘Don’t reinvent the wheel.’ Another important software engineering principle states
that ‘Don’t reinvent the wheel.’ This means that the functionality that has already been
developed should be reused instead of being developed again. Functions help a lot in
realizing this principle. The commonly required functionality is developed and kept in
standard libraries for the use in the form of library functions. In the previous chapters,
we have used the input and output functionality by using scanf and printf library func-
tions. The C standard library provides a rich set of functionality for performing the
common mathematical calculations, string and character manipulations, input/output
and other useful operations.

The above two software engineering principles give a hint about the importance and the need
of functions. Several other advantages of modularizing a program into functions include:

Reduction in code redundancy1.
Enabling code reuse2.
Better readability3.
Information hiding4.
Improved debugging and testing5.
Improved maintainability6.

As already described in Chapter 1, a C program is made up of functions. Functions interact
with each other to accomplish a particular task. They are classified according to the following
criteria:

Based upon who develops the function1.
Based upon the number of arguments a function accepts2.

5.3 Classification of Functions
5.3.1 Based Upon who Develops the Function

Based upon who develops the function, functions are classified as:

User-defined functions1.
Library functions2.

5.3.1.1 User-defined functions
User-defined functions are the functions that are defined (i.e. developed) by the user at the
time of writing a program. The user develops the functionality by writing the body of the
function. These functions are sometimes referred to as programmer-defined functions. Pro-
gram 5-1 illustrates the use of user-defined functions add, sub and println.

260 Programming in C—A Practical Approach

Line Prog 5-1.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

//User defined functions
#include<stdio.h>
//Function declarations or function prototypes
println();
int add(int, int);
int sub(int x, int y);
//main function, the master function
main()
{
 int a,b,sum, diff;
 printf(“Enter the values\t”);
 scanf(“%d %d”,&a, &b);
//Function invocations
//Asking the workers to do work
 sum=add(a,b);
 diff=sub(a,b);
 println();
//Master presents the results returned by workers
 printf(“Result of addition is %d\n”,sum);
 printf(“Result of subtraction is %d\n”,diff);
}
//Function definitions
println()
{
printf(“-------------------------\n”);
}
int add(int a, int b)
{
return a+b;
}
int sub(int a, int b)
{
return a-b;
}

Enter the values 4 3

Result of addition is 7
Result of subtraction is 1
Remarks:
•  println, add and sub are user-defined func-

tions
•  In line numbers 4, 5 and 6, user-defined

functions are declared
• In line numbers 23 to 34, they are defined
•  In line numbers 15, 16 and 17, they are

called
•  Line numbers 23, 27 and 31 consist of

headers of the functions println, add and
sub

•  The variables declared in the function
headers or function declarations are
known as parameters

•  In line numbers 6, x and y are the param-
eter names

•  In line numbers 27 and 31, a and b are the
parameter names

•  The parameters declared inside the func-
tion headers are similar to the variables
declared inside the body of the function

• main is also a user-defined function

Program 5-1 | A program that illustrates the use of user-defined functions

As you have seen in the code snippet in Program 5-1, there are three aspects of working
with user-defined functions:

Function declaration, also known as function prototype 1.
Function definition2.
Function use, also known as function call or function invocation3.

5.3.1.1.1 Function Declaration
All identifiers (except labels) need to be declared before they are used. As function names
are also identifiers, this is true for functions as well. All the functions need to be declared

Functions 261

or defined† before they are used (i.e. called‡). The general form of a function declaration
is:

[return_type] function_name([parameter_list or parameter_type_list]);

The important points about the function declaration are as follows:
The terms enclosed within the square brackets are optional and might not be present in 1.
a function declaration statement. The terms shown in bold are the mandatory parts of
a function declaration.
The function declaration consists of the name of the function along with its return type 2.
and parameter list or parameter-type list enclosed within parentheses. Function decla-
ration is also known as function prototype. For example, in Program 5-1 the declaration
of function add in line number 5 consists of parameter-type list, and the declaration of
function sub in line number 6 consists of parameter list.
Function names are identifiers. All syntactic rules discussed in Section 1.5.1 for writing 3.
identifier names are applicable for writing the function names as well. The name of a
function is also termed as function designator.
The specification of the return type is optional. If specified, the return type of a function 4.
can be any type (e.g. char, int, float, int*, int**, void, etc.) except array type and function type.§
For example, in Program 5-1 the return type of the function println is not specified and
the return type of functions add and sub is int.
The syntactic rules for writing a parameter-type list and parameter list in a function 5.
declaration are as follows:

a. The parameter-type list is a comma-separated list of parameter types. The param-
eter type can be any type (e.g. char, int, float, int*, int**, void, etc.) except function type.
If only a parameter-type list is mentioned, the function declaration is said to have
abstract parameter declaration.

b. A parameter name can optionally follow each parameter type. A parameter name
should be a valid variable name. If parameter names follow parameter types in a
parameter-type list, it becomes a parameter list. If the function declaration con-
sists of a parameter list, it is said to have complete parameter declaration. For
example, in Program 5-1 (in line number 5) function add has abstract parameter
declaration and (in line number 6) function sub has complete parameter declara-
tion.

c. Using a combination of complete parameter declaration and abstract parameter
declaration (i.e. naming some of the parameters and leaving the rest of them un-
named) is also allowed. For example, the following declarations of function add
are also allowed:

int add(int x, int);
int add(int, int y);

d. No two parameter names appearing in the parameter list can be the same.
e. The shorthand declaration of parameters in the parameter list is not allowed.

Function declaration is a statement, so it must be terminated with a semicolon.6.

† Refer Section 5.3.1.1.2 for a description on function definitions.
‡ Refer Section 5.3.1.1.3 for a description on function calls.
§ Refer Section 5.3.1.1.8 for a description on the function type.

262 Programming in C—A Practical Approach

A function need not be declared, if it is defined before it is called.7.
The following function declarations are valid:
1. add(); //ÅReturn type and parameter list are not present
2. int add(int,int); //Åint is the return type and int, int is the parameter-type list
3. int* add(int,float); //Åint* is the return type and int, float is the parameter-type list
4. int add(int a, int b); //ÅParameter list contains the names of parameters, i.e. a and b
5. int add(int, int b); //ÅCombination of abstract and complete parameter declaration

The following function declarations are not valid:
1. int add(int a, float a); //ÅBoth the parameter names are the same
2. int add&sub(int, int); // Å Name of the function is not valid as it contains the special

character &
3. int add(int a,b); //ÅShorthand declaration of parameters is not allowed
4. int add(int a, int b) //ÅThe declaration is not terminated with a semicolon

Function prototypes (i.e. function declarations) are important and their necessity can be seen
from two different perspectives:

1. User perspective It tells the user how to use a pre-defined or library function.¶ It
tells the user the number of parameters along with their types
that a function expects and its return type. This is necessary
and sufficient information for a user to use a function. For ex-
ample, consider the following function prototype:

 int add(int,int);
 It tells the user that function add expects two integers and re-

turns the result as an integer. With all this information, the
user will be able to use the function add. Function prototype
does not provide any information about how the functional-
ity is implemented by the function. We have been able to use
the printf function in the previous chapters because we know its
prototype. The prototype of the printf function is available in the
header file stdio.h. We do not know anything about how printing
functionality is implemented by the printf function.

2. Compiler perspective It allows the compiler to perform type checking. By type
checking the compiler ensures that while making a function
call, the user provides the correct number and the correct type
of arguments. If the number of arguments is not the same as
the number of parameters or if their types are not compatible
with the types of parameters provided in the function declara-
tion, the compiler issues an error message.

i If some of the parameters are provided with default arguments,†† the number of arguments
in a function call can be lesser than the number of parameters.

¶ Refer Section 5.3.1.2 for a description on library functions.
†† Refer Section 5.3.1.1.5 for a description on default arguments.

Functions 263

5.3.1.1.2 Function Definition
Function definition, also known as function implementation, means composing a func-
tion. Every function definition consists of two parts:

1. Header of the function
2. Body of the function

Thus, defining a function involves composing its header and the body.

5.3.1.1.2.1 Header of a Function
The general form of header of a function is:
 [return_type] function_name([parameter_list])

The important points about the function header are as follows:
The terms enclosed within the square brackets are optional and might not be present in a 1.
function header. The terms shown in bold are the mandatory part of a function header.
Unlike function declaration, the header of a function can only have complete parameter 2.
declaration. It cannot have abstract parameter declaration or a combination of abstract
and complete parameter declaration. The variables declared in the parameter list will
receive the data sent by the calling function.‡‡ They serve as the inputs to the function.
No two parameter names appearing in the parameter list can be the same.3.
The shorthand declaration of parameters in the parameter list is not allowed.4.
The return type and the number and the types of parameters in the function header 5.
should exactly match the corresponding return type and the number and types of pa-
rameters in the function declaration, if it is present. For example, look at the function
declarations in line numbers 4, 5 and 6 and function headers in line numbers 23, 27 and
31 in Program 5-1.
It is not mandatory to have the same names for the parameters in the function declara-6.
tion and function definition. For example, in Program 5-1, the names of parameters in
the declaration of function sub in line number 6 are x and y while the names of param-
eters in the header of the function sub in line number 31 are a and b.
The header of a function is not terminated with a semicolon.7.

5.3.1.1.2.2 Body of a Function
The body of a function consists of a set of statements enclosed within braces. The body of a func-
tion can have non-executable statementsÁ and executable statements.Á The non-executable state-
ments can only come before the executable statements. The non-executable statements declare
the local variablesÂ in the function and the executable statements determine its functionality, i.e.
what the function does. A function can optionally have special executable statement known as
the return statement.§§ The return statement is used to return the result of the computations done in
the called function and/or to return the program control back to the calling function.

Backward Reference: Executable and non-executable statements (Chapter 3).

‡‡ Refer Section 5.3.1.1.3 for a description on calling functions and called functions.
§§ Refer Section 5.3.1.1.3.3.1 for a description on the return statement.

264 Programming in C—A Practical Approach

Forward Reference: Local variables (Chapter 7).

5.3.1.1.3 Function Invocation/Call/Use
The call to a function can be well described along with the discussion on the classification of func-
tions. Depending upon their inputs (i.e. parameters) and outputs, functions are classified as:

Functions with no input–output1.
Functions with inputs and no output2.
Function with inputs and one output3.
Function with inputs and outputs 4.

5.3.1.1.3.1 Function with No Input–Output
A function with no input–output does not accept any input and does not return any result.
Since no input is to be given to the function, the parameter list of such functions is empty. Even
if the parameter list is empty, the function header must have the empty set of parentheses or
with the keyword void.¶¶ These functions have limited functionality and are not flexible (i.e.
they cannot be used in a variety of circumstances). Due to their limited functionality they have
limited utility too. Consider the snippet in Program 5-2.

Trace
Col. 2

Prog 5-2.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14

1

2

6

3

4

5

//Function with no input-output
#include<stdio.h>
//Function declaration
printsum();
//main function, the master function
main()
{
 printsum();
}
//Definition of function printsum
printsum()
{
 printf(“Sum of 2 and 3 is %d”,2+3);
}

main
{
 printsum();
}

printsum()
{

Control is transferred to printsum

Control returned back to main

}

Sum of 2 and 3 is 5
Warnings (2):
•  Function should re-

turn a value in func-
tion main

•  Function should re-
turn a value in func-
tion printsum

Remarks:
•  Ignore the warnings

for the time being
•  printsum is a function

with no input–output
•  The order of execution

of the statements is de-
picted in the trace col-
umn (i.e. column 2)

Program 5-2 | A program that uses a function with no input–output

The important points about functions with no input–output are as follows:
In Program 5-2, the function 1. printsum has no input and does not return any result.
The function 2. printsum has been invoked, i.e. called in line number 8. A function with no
inputs can be called by writing a function designator (i.e. name of the function) fol-

¶¶ Refer Section 5.3.1.1.3.1.1 for a description on void functions.

Functions 265

lowed by a function call operator, i.e. (). The function designator followed by the func-
tion call operator is known as a function call.
The function that calls a function (i.e. which contains a function call) is known as a 3. call-
ing function, and the function that has been called is known as a called function. In the
given code, main" is the calling function and printsum is the called function.
A function call terminated with a semicolon is known as a 4. function call statement.
After the execution of the function call statement, the program control is transferred to 5.
the called function. The execution of the calling function is suspended and the called
function starts execution. For example, in Program 5-2, after the execution of the func-
tion call statement in line number 8, the program control transfers to line number 11.
The order of execution of statements in a program can be checked by tracing" the pro-
gram. The program trace is depicted in column 2. Note the position of trace arrows 2
and 3 in Program 5-2.
After the execution of the called function (with no output) is complete, the program 6.
control returns to the calling function, and the calling function resumes its execution. In
Program 5-2, this is depicted by trace steps 5 and 6 in column 2.

1.  The execution of C program always begins with the function main. Function main need not
be explicitly called.

2.  Tracing is a debugging technique in which the statements of a program are executed one
by one. Non-executable statements are not executed. Hence, during the tracing, the pro-
gram control does not stop at non-executable statements. Thus, for non-executable state-
ments trace arrows are not shown. The shortcut key for tracing in Borland TC 3.0 and 4.5
is F7. The shortcut key for tracing in MS-Visual C++ 6.0 is F11. Keep on pressing these keys
to trace the program.

5.3.1.1.3.1.1 void Functions
Program 5-2 on compilation gives a warning message ‘Function should return a value.’ We
have been ignoring this warning since Chapter 1 but now it is the time to know the reason
behind this warning and how to remove it.

Every function in C language is supposed to return an integer value. If the return type of a
function is not specified, it is assumed to be int by default. Thus, in Program 5-2, the return type
of the functions main and printsum is assumed to be int. As no return statement is used within the
body of these functions to return the expected integer value, the compiler gives the warning
message ‘Function should return a value.’

Removal of warning message

If a function does not return any value, then the return type of the function should be speci-
fied as void (means nothing). Functions whose return type is void are known as void functions.
Reconsider the code snippet mentioned in Program 5-2 with void mentioned as the return type
of the functions main and printsum. The modified form of the code listed in Program 5-2 is men-
tioned in Program 5-3.

266 Programming in C—A Practical Approach

Line Prog 5-3.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14

//Function with no input-output
#include<stdio.h>
//Function declaration
void printsum();
//main function, the master function
void main()
{
 printsum();
}
//Function definition
void printsum()
{
 printf(“Sum of 2 and 3 is %d”, 2+3);
}

Sum of 2 and 3 is 5
Remarks:
•  As the functions printsum and main do not return any value,

void is specified as their return type
•  The program now on compilation does not give any warn-

ing message
•  Some compilers (e.g. Borland TC 4.5) do not allow void

to be specified as return type of the function main. They
enforce the return type of the function main to be int

What to do?
•  If Borland TC 4.5 is used, either leave the return type of

function main unspecified or specify it as int and place
return 0; as the last statement of function main. 0 is an arbi-
trary value. Any integer value can be used instead of 0

Program 5-3 | A program that uses a void function

The important points about void functions are as follows:

A 1. void function does not return any value. Either no return statement should be present in-
side the body of a void function or if it is present, it should be of the form return;. The return
statement of the form††† return expression; cannot be used inside the body of a void function.
When a return statement of the form return; is placed inside the body of a void function, its
execution terminates the execution of the void function and returns the program control
back to the calling function. The code snippet in Program 5-4 illustrates this fact.

Line Trace Prog 5-4.c Output window

1
 2
3
4
5
6
7
8
9

10
11
12
13
14

1

2

7

3

4

5

6

//Return statement inside void function
#include<stdio.h>
//Function declaration
void printsum();
//Function definitions
void main()
{
 printsum();
}
void printsum()
{
 printf(“This is a void function\n”);
 printf(“This is a statement before return statement\n”);
 return;

This is a void function
This is a statement before return statement
Remarks:
•  After the function call in line num-

ber 8 gets executed, the program
control transfers to line number 10

•  This is depicted by trace arrows 2
and 3

•  Execution of the function main is
suspended and the printsum function
starts execution

•  After the execution of the return
statement in line number 14, the
program control returns back to the
main function

††† Refer Section 5.3.1.1.3.3.1 for a description on various forms of return statement.

(Contd...)

Functions 267

15
16
17

 printf(“This is a statement after return statement\n”);
 printf(“Unreachable code\n”);
}

•  This is depicted by trace arrows 6
and 7

•  The execution of the function printsum
is terminated and the main function
resumes its execution

•  printf statements in line numbers 15
and 16 remain unreachable

Program 5-4 | A program that illustrates the use of return statement inside void function

A 2. void function call expression evaluates to void. Hence, such expressions cannot be placed
on the right side of an assignment operator. For example, the expression a=printsum() is er-
roneous if printsum is a void function. The code snippet in Program 5-5 illustrates this fact.

Line Prog 5-5.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13

//void function call expression cannot be assigned to a variable
#include<stdio.h>
void printsum(void);
void main(void)
{
 int a;
 a=printsum();
 printf(“The value of a is %d”,a);
}
void printsum(void)
{
 printf(“Sum of 2 and 3 is %d”,2+3);
}

Compilation error “Not an allowed type in function
main”
Remarks:
•  The return type of the function printsum

is void
•  An expression of type void cannot be

assigned to a variable
•  Hence, the expression a=printsum() in

line number 7 is erroneous

Program 5-5 | A program that illustrates the void function call expression, which cannot be assigned to a variable

Also, the keyword void is sometimes placed within parentheses in the function header
to signify that the function does not have any input. This is depicted in the code snippet in
Program 5-5.

5.3.1.1.3.2 Function with Inputs and No Output
The function printsum developed in Program 5-2 is rigid. Each invocation of the function printsum
prints the sum of 2 and 3. It cannot be used to print the sum of different values. The reason
behind this rigidity of the printsum function is the lack of inputs to it. A function can be made
flexible by adding inputs to it. The modified flexible form of the code listed in Program 5-2 is
mentioned in Program 5-6.

The observable points about the code snippet given in Program 5-6 are as follows:

1. The printsum function developed in Program 5-6 is flexible as compared to the printsum
function developed in Program 5-2. It can now be used to print the sum of any two in-
teger values.

2. This flexibility is due to the added inputs. The printsum function now accepts two inputs
of the integer type.

268 Programming in C—A Practical Approach

Trace Prog 5-6.c (Column 4) Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1

2

3

4

8

9

10

14

5, 11

6, 12

7, 13

//Function with inputs and no output
#include<stdio.h>
//Function declaration
void printsum(int, int);
//Function definitions
void main()
{
 int a,b;
 printf(“Enter values of a & b\t”);
 scanf(“%d %d”,&a,&b);
 printsum(a,b);
 printf(“Enter values of a & b again\t”);
 scanf(“%d %d”,&a,&b);
 printsum(a,b);
}
void printsum(int x, int y)
{
printf(“Sum of %d and %d is %d\n”,x,y,x+y);
}

main{
 actual arguments

 printsum(a,b); }

 formal parameters

printsum(int x, int y) {
 --------------- }

Enter values of a & b 4 6
Sum of 4 and 6 is 10
Enter values of a & b again 7 2
Sum of 7 and 2 is 9
Remarks:
•  Function printsum accepts two

arguments, i.e. inputs
•  In line number 11, a and b are

known as actual arguments
•  In line number 16, x and

y are known as formal
parameters

•  The parameters declared in
the function header are like
other local variables declared
inside the body of a function

•  After execution of the func-
tion call in line number 11,
the values of a and b are cop-
ied into the variables x and y
and the control is transferred
to the function printsum

Program 5-6 | A program that uses a function with inputs

3. A function with inputs can be called in a similar way as a function without input is called,
i.e. by using a function call operator. Inputs to a function are given by providing comma-
separated expressions within the parentheses of the function call operator. For example,
the printsum function defined in Program 5-6 can be called in the following ways:
 printsum(2,3); //ÅInputs are constants 2 and 3
 printsum(a,b); //ÅInputs are variables a and b
 printsum(a+2,b-3); //ÅInputs are expressions a+2 and b-3

4. The expressions that appear within the parentheses of a function call are known as ac-
tual arguments, and the variables declared in the parameter list in the function header
are known as formal parameters. For example, in Program 5-6, a and b are actual argu-
ments of printsum function and x and y are the formal parameters.

5. The commas separating the actual arguments in a function call are not comma opera-
tors. If commas separating arguments in a function call are considered to be comma op-
erators, then no function could have more than one argument. The commas appearing
between the arguments in a function call are just separators.

6. The below-mentioned steps are followed when a function with inputs is invoked:
a. The actual argument expressions are evaluated.
b. The program control is transferred to the called function and the result of the

evaluation of the actual argument expressions are assigned to the formal param-
eters on one-to-one basis as shown in column 4 of Program 5-6.

Functions 269

c. The execution of the calling function is suspended and the called function starts
the execution.

7. When the execution of the called function (with no output) is complete, the program
control returns to the calling function, and the calling function resumes its execution.

Consider the code snippet in Program 5-7, which has a more generalized form of printsum
function defined in Program 5-6. The developed printsum function can now print the output in
decimal, octal or hexadecimal number system according to the user’s requirement.

Line Prog 5-7.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25

//Further generalization of printsum
#include<stdio.h>
//Function printsum accepts three inputs
void printsum(int, int, char);
//Function definition
void main()
{
 int a,b;
 char base;
 printf(“Enter the values of a & b\t”);
 scanf(“%d %d”,&a,&b);
 printf(“Enter base of output(O, D or H)\t”);
 flushall();
 scanf(“%c”,&base);
 printsum(a,b,base);
}
void printsum(int x, int y, char base)
{
 if(base==’d’||base==’D’)
 printf(“Sum of %d and %d in decimal is %d”,x,y,x+y);
 else if(base==’o’||base==’O’)
 printf(“Sum of %d and %d in octal is %o”,x,y,x+y);
 else if(base==’h’||base==’H’)
 printf(“Sum of %d and %d in hexadecimal is %X”,x,y,x+y);
}

Enter the values of a & b 2 10
Enter base of output(O, D or H) H
Sum of 2 and 10 in hexadecimal is C
Remarks:
•  The flexibility of the function printsum is

increased by providing an additional
input, i.e. base

•  If flushallÂ function is not used before the
use of the scanf function, the scanf func-
tion might not prompt the user to enter
a character

•  The function flushall is used to flush, i.e.
empty the streamsÂ so that the scanf
function prompts the user to enter a
character

Program 5-7 | A program that uses a more generalized form of the printsum function developed in
Program 5-6

Forward Reference: flushall() and streams (refer Question number 15 and its answer, Chapter 6).

5.3.1.1.3.3 Function with Inputs and One Output
The function printsum developed in Programs 5-6 and 5-7 receives inputs but does not return
any value, rather it prints the result of the computation. However, the printing of the result of
the computation by the called function is not always desired. The result of the computation

270 Programming in C—A Practical Approach

may be required in the calling function for further processing. The best software engineering
practices suggest the following:

1. The developed functions should be kept as general as possible so that they can be used
in different situations.

2. Functions should generally be coded without involving any direct I/O operation (i.e. di-
rect use of I/O functions like printf, scanf, getch, etc.). A function should receive inputs in the
form of arguments and return the result of computations instead of directly printing it.

3. A function should behave like a ‘black box’ that receives inputs, and outputs the desired
value.

The result of the computations performed inside the called function is returned to the calling
function by using the return statement.

5.3.1.1.3.3.1 return Statement
The return statement is used to return the result of the computations performed in the called
function and/or to transfer the program control back to the calling function. There are two
forms of the return statement:

1. return;
2. return expression;

The important points about the return statement are as follows:

1. First form of the return statement, i.e. return;:
a. This form of the return statement is used when a function does not return any

value (i.e. inside void functions).
b. It cannot be used inside a function whose return type is not void.
c. It terminates the execution of the called function and transfers the program con-

trol back to the calling function without returning any value.
2. Second form of the return statement, i.e. return expression;:

a. This form of the return statement returns the function’s result along with the pro-
gram control back to the calling function.

b. It cannot be placed inside the body of a void function and can only appear inside
the body of a function whose return type is not void.

c. The expression following the keyword return in the return statement is known as
the return expression.

d. The return expression can be an arbitrarily complex expression and can even
have function calls. For example, in the statement return n*fact(n-1);, the return ex-
pression consists of a call to the function fact.

e. The return expression is evaluated and the result of evaluation of the return ex-
pression is returned to the calling function along with the program control.

f. If the return type of a function and the type of the result of evaluation of a return
expression is not the same, the result of evaluation of the return expression is
implicitly type casted to the return type of the function, if they are compatible.
If they are incompatible, there will be a compilation error. Consider Program 5-8
that makes use of a function to compute the area of a circle.

Functions 271

Line Prog 5-8.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

//Area of a circle
#include<stdio.h>
//Function declaration
circle_area(int);
//Function definitions
void main()
{
 int radius;
 float area;
 printf(“Enter the radius of circle\t”);
 scanf(“%d”,&radius);
 area=circle_area(radius);
 printf(“Area of circle is %f\n”,area);
}
circle_area(int radius)
{
 return 3.1428*radius*radius;
}

Enter the radius of circle 2
Area of circle is 12.000000
Remarks:
•  The area of circle that gets printed is 12.000000

instead of the actual value of 12.571200
•  This happened because the return type of

function circle_area is not mentioned. If the
return type of a function is not mentioned,
it is assumed to be int by default

Program 5-8 | A program illustrating that the specification of the return type is mandatory if the return type
is other than int

The observable points about the code snippet in Program 5-8 are as follows:

 i. The area of the circle printed is 12.000000 instead of the actual value 12.571200.
ii. The value of the area actually computed inside the function circle_area is 12.571200 (i.e. a

float value) but since the return type of the function is not mentioned, it is assumed to be
int (as int is the default return type of a function). The type of result of evaluation of the
return expression is not the same as the return type of the function. Thus, as mentioned
above, the result of evaluation of the return expression 3.1428*radius*radius, i.e. 12.571200 is
type casted (i.e. demoted) to an integer value 12 before being returned. Hence, in the
expression area=circle_area(radius), the sub-expression circle_area(radius) evaluates to 12. Since
an integer value, i.e. 12 is assigned to a float variable area, it is firstly promoted to 12.000000
and then assigned. This value of area is then printed by the printf function in the next state-
ment, i.e. line number 13.

iii. The precise value of an area can be obtained by specifying the return type of the func-
tion circle_area as float. This is shown in the code snippet given in Program 5-9.

Line Prog 5-9.c Output window

1
 2
3
4
5
6
7
8

//Area of a circle
#include<stdio.h>
//Function declaration
float circle_area(int);
//Function definitions
void main()
{
 int radius;

Enter the radius of circle 2
Area of circle is 12.571200
Remarks:
• float is specified as the return type of the

function circle_area
•  The value of area that gets printed is 12.571200

instead of 12.000000 (as printed in Program
5-8)

(Contd...)

272 Programming in C—A Practical Approach

Line Prog 5-9.c Output window

9
10
11
12
13
14
15
16
17
18

 float area;
 printf(“Enter the radius of circle\t”);
 scanf(“%d”,&radius);
 area=circle_area(radius);
 printf(“Area of circle is %f\n”,area);
}
float circle_area(int radius)
{
 return 3.1428*radius*radius;
}

Program 5-9 | A program that illustrates the effect of specification of the return type of a function

3. There is no constraint on the number of return statements that can be placed inside the
body of a function. Although, a number of return statements can be placed inside the
body of a function, only one of them that appears first in the logical flow of control gets
executed. With the execution of this return statement, the program control returns to
the calling function and the rest of the statements that appear after this return statement
remain unreachable.

4. ‘A function can return only one value.’ It is not possible to return more than one value
by writing multiple return statements as mentioned in point 3 above or by writing
return value1, value2, . . . valueN;. In this statement value1, value2, . . . valueN is the return expression,
which is evaluated first and then its outcome is returned. The return expression con-
sists of comma operators. The comma operator guarantees left-to-right evaluation and
returns the result of the rightmost sub-expression. Hence, the expression value1, value2, . . .
valueN evaluates to valueN and this value is returned. Program 5-10 illustrates this fact.

Line Prog 5-10.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Attempt to return more than one value
#include<stdio.h>
//Function declaration
int sum_diff(int,int);
//Function definitions
void main()
{
 int a=10, b=2;
 printf(“Sum is %d\n”,sum_diff(a,b));
 printf(“Difference is %d\n”,sum_diff(a,b));
}
int sum_diff(int a,int b)
{
 int sum=a+b;
 int diff=a-b;
 return sum,diff;
}

Sum is 8
Difference is 8
Remarks:
•  In line number 16, an attempt is made to re-

turn values of sum and diff
•  However, the return statement can return

only one value
•  The return statement in line number 16 re-

turns the value of diff, i.e. the value of the
rightmost return sub-expression

Program 5-10 | A program illustrating that the return statement cannot return more than one value

Functions 273

As we have seen, it is not possible to return more than one value (without making the use of
structuresÂ) by making use of the return statement. However, it is possible to indirectly return
more than one value to the calling function. This indirect method of returning more than one
value to the calling function is discussed in the next section.

Forward Reference: Structures (Chapter 9).

5.3.1.1.3.4 Function with Inputs and Outputs
More than one value can be indirectly returned to the calling function by making the use of
pointers. In fact, the pointers can also be used to pass arguments to a function. Depending
upon whether the values or addresses (i.e. pointers) are passed as arguments to a function, the
argument passing methods in C language are classified as:

1. Pass by value
2. Pass by address

5.3.1.1.3.4.1 Passing Arguments by Value
The method of passing arguments by value is also known as call by value. In this method, the
values of actual arguments are copied to the formal parameters of the function. If the argu-
ments are passed by value, the changes made in the values of formal parameters inside the
called function are not reflected back to the calling function. The code snippet listed in Pro-
gram 5-11 illustrates this concept.

Line Prog 5-11.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

//Use of pass by value in swap function
#include<stdio.h>
//Function declaration
void swap(int,int);
//Function definitions
void main()
{
 int a=10,b=20;
 printf(“Before swap values are %d %d\n”,a,b);
 swap(a,b);
 printf(“After swap values are %d %d\n”,a,b);
}
void swap(int x, int y)
{
 x=x+y;
 y=x-y;
 x=x-y;
 printf(“In swap function values are %d %d\n”,x,y);
}

a
10
2234 2236

swap function
formal parameters

x

x

4022 4024
After execution of
 x=x+y;
 y=x-y;
 x=x-y;

4022 4024

main function
actual arguments

b
20

2010

20 10

y

y

Before swap values are 10 20
In swap function values are 20 10
After swap values are 10 20
Remarks:
•  On the execution of the func-

tion call, i.e. swap(a,b);, the val-
ues of actual arguments a and
b are copied into the formal
parameters x and y

•  Formal parameters are al-
located at separate memory
locations

•  A change made in the formal
parameters is independent of
the actual arguments

•  On returning from the called
function, the formal param-
eters are destroyed and the
access to the actual argu-
ments gives values that are
unchanged

Program 5-11 | A program that illustrates pass by value

Chapter 5a.indd 273Chapter 5a.indd 273 28/02/2010 3:01:01 PM28/02/2010 3:01:01 PM

274 Programming in C—A Practical Approach

Analogy: The reason why the changes made in the formal parameters in the called function
are not reflected back to the calling function can be understood by looking at this analogy. The
main function, i.e. the master function wants to get some changes done in a file from its subordi-
nate worker, i.e. the swap function. The main function got the file (i.e. actual arguments) Xeroxed
and has handed over the Xeroxed copy of the file (i.e. formal parameters) to the swap function
for changes. The swap function has made changes in the Xeroxed copy and has returned the file
back to the main function. On getting the control back, the main function is still referring to the
original file and finds that no changes have been made in it. The changes have been made in
the Xeroxed copy, so how can the main function find changes in the original file?

5.3.1.1.3.4.2 Passing Arguments by Address/Reference
The method of passing arguments by address or reference is also known as call by address
or call by reference. In this method, the addresses of the actual arguments are passed to the
formal parameters of the function. If the arguments are passed by reference, the changes made
in the values pointed to by the formal parameters in the called function are reflected back to
the calling function. The code snippet listed in Program 5-12 illustrates this concept.

Line Prog 5-12.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

//Use of pass by reference in swap function
#include<stdio.h>
//Function declaration
int swap(int*,int*);
//Function definitions
void main()
{
 int a=10,b=20;
 printf(“Before swap values are %d %d\n”,a,b);
 swap(&a,&b);
 printf(“After swap values are %d %d\n”,a,b);
}
int swap(int *x, int *y)
{
 *x=*x+*y;
 *y=*x-*y;
 *x=*x-*y;
 printf(“In swap function values are %d %d\n”,*x,*y);
}

a
10

2234 2236

swap function
formal parameters

x

4022 4024
After execution of

*x=*x+*y;
*y=*x-*y;
*x=*x-*y;

main function
actual arguments

b
20

22362234

20 10

y

Before swap values are 10 20
In swap function values are 20 10
After swap values are 20 10
Remarks:
•  Addresses of the actual ar-

guments are passed instead
of their values

•  Changes made in the called
function are actually done
in the memory locations of
the actual arguments

•  On returning from the
called function, the formal
parameters are destroyed
but since the changes were
made at the memory loca-
tions of the actual argu-
ments, they can still be
found there

Program 5-12 | A program that illustrates pass by reference

Analogy: The reason why the changes made in the called function are reflected back to the
calling function can be understood by looking at this analogy. The main function, i.e. the master
function wants to get some changes done in a file from its subordinate worker, i.e. the swap
function. The main function has kept the file (i.e. actual arguments) in a file cabinet (i.e. memory).
The main function tells the swap function the changes to be made and the location of the file in

Functions 275

the cabinet (i.e. the memory address). The swap function opens up the file cabinet, locates the
file, makes changes in it, places it back at the same position in the cabinet and reports to the
main function that the work has been done. On getting the control back, the main function opens
up the file cabinet, looks at the file and finds the changes made in it.

5.3.1.1.3.4.3 Returning More Than One Value Indirectly
Consider the code listed in Program 5-10, where we tried to return more than one value by
making the use of the return statement and failed. I will now illustrate how to return more than
one value to the calling function indirectly by making the use of a call by reference. In the code
snippet listed in Program 5-13, the called function indirectly returns more than one value to
the calling function.

Line Prog 5-13.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

//Indirectly returning more than one value
#include<stdio.h>
//Function declaration
void sum_diff(int,int,int*,int*);
//Function definitions
void main()
{
 int a=10, b=2;
 int sum, diff;
 sum_diff(a,b,&sum,&diff);
 printf(“Sum is %d\n”,sum);
 printf(“Difference is %d\n”,diff);
}
void sum_diff(int a,int b, int*sum, int*diff)
{
 *sum=a+b;
 *diff=a-b;
}

Sum is 12
Difference is 8
Remarks:
•  Mixed method of passing arguments is used
•  Two arguments, i.e. a and b are passed by value
•  Other two arguments, i.e. sum and diff are passed

by reference
•  The results of the computations made in the

called function are stored in the memory loca-
tions of the actual arguments (i.e. sum and diff) by
making the use of passed addresses

•  Actually, sum_diff function does not return any
value

Program 5-13 | A program that illustrates the method to indirectly return more than one value by making the
use of pass by reference

5.3.1.1.4 Passing Arrays to Functions
Like simple variables, arrays can also be passed to functions. There are two ways to pass ar-
rays to functions:

1. Passing individual elements of an array one by one
2. Passing an entire array at a time

Passing individual elements of an array one by one is similar to passing basic variables. The
individual elements of an array can be passed either by value or by reference. However, this
way of passing an array is not preferred due to the following reasons:

1. If the number of elements in an array is large, passing the entire array will take a large
number of function calls, as one element is passed with each function call. As the func-
tion calls are time consuming, this method of passing an array to a function will dete-
riorate the performance of a program.

276 Programming in C—A Practical Approach

2. When the individual elements of an array are passed to the function one by one, the
complete array will never be available to the called function for processing at a time.
The called function will always have a piecemeal array.

The code segments listed in Program 5-14 illustrate the passing of array elements one by
one.

Line Prog 5-14a.c Prog 5-14b.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22

//Individual elements of array passed
//by value
#include<stdio.h>
int sum_array(int,int);
void main()
{
 int arr[10], nele, lc, sum=0;
 printf(“Enter the no. of elements\t”);
 scanf(“%d”,&nele);
 printf(“Enter elements of array\n”);
 for(lc=0;lc<nele;lc++)
 scanf(“%d”,&arr[lc]);
 for(lc=0;lc<nele;lc++)
 {
 sum=sum_array(arr[lc],sum);
 }
 printf(“Sum is %d”,sum);
}
int sum_array(int element, int sum)
{
 return sum+element;
}

//Individual elements of array passed
//by reference
#include<stdio.h>
int sum_array(int*,int);
void main()
{
 int arr[10], nele, lc, sum=0;
 printf(“Enter the no. of elements\t”);
 scanf(“%d”,&nele);
 printf(“Enter elements of array\n”);
 for(lc=0;lc<nele;lc++)
 scanf(“%d”,&arr[lc]);
 for(lc=0;lc<nele;lc++)
 {
 sum=sum_array(&arr[lc],sum);
 }
 printf(“Sum is %d”,sum);
}
int sum_array(int* element, int sum)
{
 return sum+*element;
}

Enter the no. of elements 5
Enter elements of array
2
4
5
7
1
Sum is 19
Remarks:
•  Iteration is used to pass

the elements of the array
one by one

•  Number of iterations re-
quired to pass n elements
of an array to a function
is n

Program 5-14 | A program that illustrates the passing of an array element by element

Passing entire array at a time is a preferred way of passing arrays to functions. The entire
array is always passed by reference.

The following sections describe the passing of one-dimensional and multi-dimensional ar-
rays to functions.

5.3.1.1.4.1 Passing One-dimensional Arrays to Functions
The syntactic rules to pass one-dimensional arrays to a function are as follows:

1. The actual argument in the function call should only be the name of the array without
any subscript.

2. The corresponding formal parameter in the function definition must be of array type
or pointer type (i.e. pointer to the first element of the array). If a formal parameter is of
array type, it will be implicitly converted to pointer type.

3. The corresponding parameter type in the function declaration should be of array type
or pointer type.

Functions 277

The code snippet mentioned in Program 5-15 illustrates the different ways of passing a one-
dimensional array to a function.

Line Prog 5-15a.c (Column 2) Prog 5-15b.c (Column 3) Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25

//Passing 1-D array
#include<stdio.h>
void find_max_min(int[],int);
void main()
{
 int arr[10], nele, lc, sum=0;
 printf(“Enter the no. of elements\t”);
 scanf(“%d”,&nele);
 printf(“Enter elements of array\n”);
 for(lc=0;lc<nele;lc++)
 scanf(“%d”,&arr[lc]);
 find_max_min(arr, nele);
 printf(“Max is %d\n”,arr[0]);
 printf(“Min is %d\n”,arr[1]);
}
void find_max_min(int arr[], int nele)
{
 int lc, max=arr[0], min=arr[0];
 for(lc=1;lc<nele;lc++)
 if(arr[lc]>max)
 max=arr[lc];
 else if(arr[lc]<min)
 min=arr[lc];
 arr[0]=max; arr[1]=min;
}

//Passing 1-D array
#include<stdio.h>
void find_max_min(int*,int);
void main()
{
 int arr[10], nele, lc, sum=0;
 printf(“Enter the no. of elements\t”);
 scanf(“%d”,&nele);
 printf(“Enter elements of array\n”);
 for(lc=0;lc<nele;lc++)
 scanf(“%d”,&arr[lc]);
 find_max_min(arr, nele);
 printf(“Max is %d\n”,arr[0]);
 printf(“Min is %d\n”,arr[1]);
}
void find_max_min(int* arr, int nele)
{
 int lc, max=arr[0], min=arr[0];
 for(lc=1;lc<nele;lc++)
 if(arr[lc]>max)
 max=arr[lc];
 else if(arr[lc]<min)
 min=arr[lc];
 arr[0]=max; arr[1]=min;
}

Enter the no. of elements 5
Enter elements of array
2
4
5
7
1
Max is 7
Min is 1
Remarks:
•  Passing the entire array at

a time is an efficient way of
passing a number of values
to a function

•  In column 2, in line number
16, the declared formal pa-
rameter arr is of array type

•  It will be implicitly con-
verted to pointer type

•  Hence the declaration of arr
made in line number 16 in
column 2 will be converted
to the declaration of arr
made in line number 16 in
column 3

•  The two declarations of arr
are equivalent

Program 5-15 | A program that illustrates the method of passing a one-dimensional array to a function

5.3.1.1.4.2 Passing Two-dimensional Arrays to Functions
The syntactic rules to pass two-dimensional arrays to a function are as follows:

1. The actual argument in the function call should be the name of an array.
2. The corresponding formal parameter in the function definition must be of array type or

pointer type (i.e. pointer to the first element of the array).
a. If the formal parameter is of array type, it is mandatory to specify the column

specifier. In general, in case of n-D arrays, if the formal parameter is of array
type, it is mandatory to specify (n-1) fastest varying specifiers.

b. If the formal parameter is of pointer type, it must be a pointer to an element
of the two-dimensional array (i.e. one-dimensional array having the number
of columns same as the number of columns specified for the two-dimensional
array). In general, for n-D arrays, if the formal parameter is of pointer type, it
must be a pointer to (n-1)-D array having the size specifications same as the
(n-1) fastest varying size specifications for the n-D array.

278 Programming in C—A Practical Approach

3. The corresponding parameter type in the function declaration should be a matching
array type or pointer type.

The code snippet in Program 5-16 illustrates the passing of a two-dimensional array to a function.

Line Prog 5-16.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32

//Passing 2-D array
#include<stdio.h>
void largest_ele(int[][10],int*,int*);
void main()
{
 int arr[10][10];
 int rows, cols, rc, cc;
 printf(“Enter no. of rows in array(<10)\t”);
 scanf(“%d”,&rows);
 printf(“Enter no. of cols in array(<10)\t”);
 scanf(“%d”,&cols);
 printf(“Enter elements of array:\n”);
 for(rc=0;rc<rows;rc++)
 for(cc=0;cc<cols;cc++)
 scanf(“%d”,&arr[rc][cc]);
 largest_ele(arr,&rows,&cols);
 printf(“Largest element is %d\n”,arr[rows][cols]);
 printf(“Located in row no. %d\n”,rows);
 printf(“Located in column no. %d\n”,cols);
}
void largest_ele(int arr[][10],int *rows, int *cols)
{
 int row=0, col=0, rc=0, cc=0, max=arr[0][0];
 for(rc=0; rc<*rows;rc++)
 for(cc=0;cc<*cols;cc++)
 if(arr[rc][cc]>max)
 {
 max=arr[rc][cc];
 row=rc; col=cc;
 }
 *rows=row; *cols=col;
}

Enter no. of rows in array(<10) 3
Enter no. of cols in array(<10) 3
Enter elements of array:
8 4 6
7 9 3
2 1 5
Largest element is 9
Located in row no. 1
Located in column no. 1
Remarks:
•  In line number 21, the declared formal

parameter is of array type
•  It will be implicitly converted to pointer type
•  The equivalent declaration is int(*)[10], i.e.

pointer to one-dimensional array of 10 inte-
gers

•  It is assumed that the row and column num-
ber starts with 0

Program 5-16 | A program to illustrate the method of passing of a two-dimensional array to a function

5.3.1.1.5 Default Arguments
In Section 5.3.1.1.3.2, we have seen how functions can be made flexible by adding inputs to
them. Each input adds some flexibility to the function and makes the function more general.
However, some inputs are the same in majority of the cases and have special values only
in rare circumstances. For example, in Program 5-7, the common base input to the function
printsum is ‘D’, i.e. decimal number system. In rare circumstances, the user wants the output to
be in an octal number system or a hexadecimal number system. These general functions are
sometimes unwieldy as the values are to be supplied for each argument.

Functions 279

The C language frees the programmer from this difficulty by providing the concept of
default arguments. A default argument is a value that is an appropriate argument value for a
parameter in majority of the cases. Consider the code snippet in Program 5-17 that makes the
use of default argument for base input in printsum function discussed in Program 5-7.

Line Prog 5-17.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

//Default arguments
#include<stdio.h>
//Function declaration
void printsum(int, int, char base=’D’);
//Function definition
void main()
{
 printf(“Use of default arguments:\n”);
 printf(“General conditions:\n”);
 printsum(5,6);
 printsum(3,4);
 printf(“Rare conditions:\n”);
 printsum(6,9,’H’);
 printsum(6,9,’O’);
}
void printsum(int x, int y, char base)
{
 if(base==’d’||base==’D’)
 printf(“Sum of %d and %d in decimal is %d\n”,x,y,x+y);
 else if(base==’o’||base==’O’)
 printf(“Sum of %d and %d in octal is %o\n”,x,y,x+y);
 else if(base==’h’||base==’H’)
 printf(“Sum of %d and %d in hexadecimal is %X\n”,x,y,x+y);
}

Use of default arguments:
General conditions:
Sum of 5 and 6 in decimal is 11
Sum of 3 and 4 in decimal is 7
Rare conditions:
Sum of 6 and 9 in hexadecimal is F
Sum of 6 and 9 in octal is 17
Remarks:
•  In line number 4, the parameter base

is initialized with the value ‘D’
•  This initialization makes 'D' as default

argument for the parameter base
•  A function that provides a default

argument for a parameter can be in-
voked with or without an argument
for this parameter

•  In line numbers 10 and 11, the func-
tion printsum is invoked without speci-
fying an argument for the parameter
base

•  In line numbers 13 and 14, argu-
ments ‘H’ and ‘O’, respectively, are
specified as arguments for the pa-
rameter base. These values override
the default argument value ‘D’

•  Borland Turbo C 3.0 IDE does not
support the use of default argu-
ments

Program 5-17 | A program that illustrates the use of default arguments

The important points about the default arguments are as follows:

1. The arguments can be made default by using initialization syntax within the parameter
list during the function declaration. For example, in line number 4 in Program 5-17, the
parameter base has been made default by initializing it with ‘D’.

2. A function that provides a default argument for a parameter can be invoked with or
without an argument for this parameter.

3. However, if an argument is provided, it overrides the default argument value.
4. A function declaration can specify default arguments for all or for a subset of param-

eters. If the default arguments are specified only for a subset of parameters, then these
parameters should be kept on the trailing side. The code snippet in Program 5-18 illus-
trates this fact.

280 Programming in C—A Practical Approach

Line Prog 5-18.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13

//Default arguments for a subset of parameters
#include<stdio.h>
//Function declaration
int add(int a, int b=12, int c);
//Function definitions
void main()
{
 add(10,12);
}
int add(int a, int b, int c)
{
 printf(“The result after addition is %d\n”,a+b+c);
}

Compilation errors
“Default value missing following parameter b”.
“Too few parameters in call to ‘add(int, int, int)’ in
function main”
Remark:
•  In line number 4, the default argument

for the parameter b cannot be specified
unless and until the default argument
for parameter c is specified

What to do?
•  Either specify the default argument for

the parameter c or remove the default
argument value for the parameter b

Program 5-18 | A program illustrating that the specification of default arguments for a subset of
parameters

The code snippet in Program 5-19 is the rectified version of the code listed in Program 5-18.

Line Prog 5-19.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13

//Default arguments can be specified for parameters that lie on the
//trailing side of the parameter list
#include<stdio.h>
int add(int a, int b=12, int c=8);
void main()
{
 add(10);
 add(10,1);
}
int add(int a, int b, int c)
{
 printf(“The result after addition is %d\n”,a+b+c);
}

The result after addition is 30
The result after addition is 19
Remarks:
•  In line number 4, the default argu-

ments are specified for two trailing pa-
rameters b and c

•  Since, no default argument is specified
for the parameter a, at least one argu-
ment is required to invoke the function
add

•  In line number 8, the argument value 1
overrides the default argument value
for the parameter b

Program 5-19 | A program illustrating that the default arguments can be specified for the parameters that lie
on the trailing side of the parameter list

5. The default argument should not be specified in the function definition. If the default
argument is provided in the parameter list of function definition as well, there will be
‘Default argument value redeclared error.’ The code snippet in Program 5-20 illustrates
this fact.

6. It is not mandatory to have a default argument as a constant expression. Any expression
can be used as the default argument. When the default argument is an expression, the
expression is evaluated when the function is called. The code snippet in Program 5-21
illustrates this fact.

Functions 281

Line Prog 5-20.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Redeclaration of default arguments
#include<stdio.h>
//Function declaration along with the specification of the default
//arguments
int add(int a=12, int b=8);
void main()
{
 add();
 add(10);
 add(10,12);
}
//Function definition with re-specification of the default arguments
int add(int a=12, int b=8)
{
 printf(“The result after addition is %d\n”,a+b);
}

Compilation error “Default argument value redeclared”
Remark:
•  The default arguments are specified in

the function declaration, they should
not be re-specified in the header of the
function definition

What to do?
•  Remove default argument values from

the header of the function definition

Program 5-20 | A program illustrating that the default arguments should not be re-declared in the header of
the function definition

Line Prog 5-21.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20

//Use of an expression as default argument
#include<stdio.h>
//Function declarations
int sub(int,int);
int add(int a=12,int b=sub(3,1));
//Function definitions
void main()
{
 add();
 add(10);
 add(10,12);
}
int add(int a, int b)
{
 printf(“The result after addition is %d\n”,a+b);
}
int sub(int a, int b)
{
 return a-b;
}

The result after addition is 14
The result after addition is 12
The result after addition is 22
Remarks:
•  In line number 5, the default argument

for the parameter b is an expression
sub(3,1)

•  Carefully note the order of declaration
of function sub and function add

•  Before specifying sub as the default ar-
gument, it should be either declared or
defined

•  Change the order of declaration of func-
tion sub and function add, i.e. interchange
the contents of line numbers 4 and 5 and
observe the result of compilation

Program 5-21 | A program that illustrates the use of an expression as the default argument

5.3.1.1.6 Command Line Arguments
We have seen that arguments are given to the functions to increase their flexibility. Since main is also
a function, can we give arguments to the function main? The answer to this question is YES! The main
function can also accept arguments. The arguments to a called function are supplied from the call-
ing function. However, main is the first function that gets invoked at the program startup. Therefore,

282 Programming in C—A Practical Approach

how are arguments supplied to the function main? The arguments to the function main are supplied
from command lineÂ and thus, have a special name known as command line arguments.Â

Forward Reference: Command line arguments (Chapter 6).

5.3.1.1.7 Recursion
Recursion is a powerful programming technique that can be used to solve the problems that can be
expressed in terms of similar problems of smaller size. For example, consider a problem to find the
factorial of a number n. The problem of finding the factorial of n can be expressed in terms of a similar
problem of smaller size as n!=n×(n-1)!. Recursion provides an elegant way of solving such problems.
In recursive programming, a function calls itself. A function that calls itself is known as a
recursive function, and the phenomenon is known as recursion. Recursion is classified ac-
cording to the following criteria:

1. Whether the function calls itself directly (i.e. direct recursion) or indirectly (i.e. indirect
recursion).

2. Whether there is any pending operation on return from a recursive call. If the recursive
call is the last operation of a function, the recursion is known as tail recursion.

3. Pattern of recursive calls. According to the pattern of recursive calls, recursion is classi-
fied as:

a. Linear recursion
b. Binary recursion
c. n-ary recursion

5.3.1.1.7.1 Direct and Indirect Recursion
A function is directly recursive if it calls itself, i.e. the function body contains an explicit call
to itself. Indirect recursion occurs when a function calls another function, which in turn calls
another function, eventually resulting in the original function being called again. The func-
tions involved in indirect recursion are known as mutually recursive functions. Figure 5.2
illustrates direct and indirect recursion.

Direct recursion Indirect recursion

A() //ÅDirect recursive function
{
------------- //ÅStatements

A(); //ÅCall to itself

}

A() //ÅMutually recursive function A
{
------------- //ÅStatements
B(); //ÅFunction A calls function B

}
B() //ÅMutually recursive function B
{
------------- //ÅStatements
A(); //ÅFunction B calls function A

}

Figure 5.2 | Direct and indirect recursion

Functions 283

Direct recursive functions are simpler and more elegant as compared to indirectly recursive
functions and are most commonly used. The code snippet in Program 5-22 illustrates the use
of recursion to find the factorial of a number.

Line Trace Prog 5-22.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

1

2

3

4

15

16

5,8,11

6,9,12

13

6, 12

7, 10

14

//Recursion to find the factorial of a number
#include<stdio.h>
//Function declaration
int fact(int);
//Function definitions
void main()
{
 int no, factorial;
 printf(“Enter the number\t”);
 scanf(“%d”,&no);
 factorial=fact(no);
 printf(“Factorial of %d is %d”, no, factorial);
}
//Definition of directly recursive function fact
int fact(int no)
{
 if(no==1)
 return 1;
 else
 return no*fact(no-1);
}

Enter the number 3
Factorial of 3 is 6
Remarks:
•  The body of the function fact contains

call to itself
•  Thus, fact is a directly recursive func-

tion
•  Though recursion is very powerful and

highly expressive, it is hard to visualize
•  Trace the program and carefully observe

the execution of function calls
•  Trace arrows in column 2 depicts the or-

der of execution of statements

Program 5-22 | A program that makes the use of a recursive function to find the factorial of a number

The important points about how to develop recursive functions are as follows:
1. Thinking recursively is the first step to solve a problem using recursion.
2. Every recursive solution consists of two cases:

a. Base case: Base case is the smallest instance of problem, which can be eas-
ily solved and there is no need to further express the problem in
terms of itself, i.e. in this case no recursive call is given and the re-
cursion terminates. Base case forms the terminating condition of
the recursion. There may be more than one base case in a recursive
solution. Without the base case, the recursion will never terminate
and will be known as infinite recursion. For example, no==1 is the
base case of the recursive function fact listed in Program 5-22.

b. Recursive case: In a recursive case, the problem is defined in terms of itself, while
reducing the problem size. For example, when fact(n) is expressed
as n×fact(n-1), the size of the problem is reduced from n to n-1.

3. Express the solution in the form of base cases and recursive cases. For example, the fac-
torial problem can be expressed as:

fact(no) =
1

no × fact(no 1)−
⎧
⎨
⎩

 Relation of the above form is known as recurrence relation.

when no = 1
when no > 1

284 Programming in C—A Practical Approach

4. Code for the recurrence relation.

5.3.1.1.7.2 Tail Recursion and Non-tail Recursion
Tail recursion is a special case of recursion in which the last operation of a function is a re-
cursive call. In a tail recursive function, there are no pending operations to be performed on
return from a recursive call. Consider the code snippets in Program 5-23 to find the factorial
of a number.

Prog 5-23a.c (Column 2) Prog 5-23b.c (Column 3) Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

//Non-tail recursive factorial function
#include<stdio.h>
//Function declaration
int fact_norm(int);
void main()
{
 int no, factorial;
 printf(“Enter the number\t”);
 scanf(“%d”,&no);
 factorial=fact_norm(no);
 printf(“Resultant factorial is %d”,factorial);
}
//Non-tail recursive fact function
int fact_norm(int no)
{

 if(no==1)
 return 1;
 else
 return no*fact_norm(no-1);
}

//Tail recursive factorial function
#include<stdio.h>
//Function declaration
int fact_tail(int, int);
void main()
{
 int no, factorial;
 printf(“Enter the number\t”);
 scanf(“%d”,&no);
 factorial=fact_tail(no,1);
 printf(“Resultant factorial is %d”,factorial);
}
//Tail recursive fact function
int fact_tail(int no, int result)
{
 if(no==1)
 return result;
 else
 return fact_tail(no-1,no*result);
}

Enter the number 4
Resultant factorial is 24
Remarks:
•  fact_norm function in

column 2 is a non-
tail recursive func-
tion

•  Although the last
operation in this
function seems to
be a recursive func-
tion call, it is actual-
ly a multiplication
operation

•  fact_tail function in
column 3 is a tail
recursive function

•  The last operation
of this function is a
recursive function
call

Program 5-23 | Non-tail recursive and tail-recursive versions of function fact
The observable points about the code snippets listed in Program 5-23 are as follows:

1. The function fact_norm listed in Program 5-23a is not tail recursive because there is a
pending operation, i.e. multiplication to be performed on return from a recursive call.

2. The function fact_tail listed in Program 5-23b is tail recursive as it has no pending opera-
tion on return from a recursive call.

3. Tail recursion is desirable because it eliminates the need to store the result of the com-
putations made in a function before making the tail recursive function call (as there is
no operation is to be performed on returning from the tail recursive function). The result
of the computations made before tail recursive function call is passed as an argument
to the tail recursive function. Due to this, conversion of a non-tail recursive function to
a tail recursive function is often required. The method to convert a non-tail recursive
function to a tail recursive function is as follows:
a. A non-tail recursive function can be converted to a tail recursive function by adding

one or more auxiliary parameters. For example, result is added as an auxiliary param-
eter in the definition of function fact_tail.

Functions 285

b. Incorporate the pending operation into the auxiliary parameter in such a way that
the non-tail recursive function no longer has a pending operation. For example, the
pending operation of multiplication is incorporated into the auxiliary parameter
result as no*result.

Consider another application of recursion in finding the terms of a Fibonacci series. In the
Fibonacci series, every value is the sum of previous two values. The first two values of the
Fibonacci series are 0 and 1. The values 0 1 1 2 3 5 8 13 21 … form the Fibonacci series. The
recurrence relation for finding any term in Fibonacci series is:

fib(n) =
0
1

fib(n−1) + fib(n−2)

⎧

⎨
⎪

⎩
⎪

Program 5-24a lists the code that uses a non-tail recursive function fib_norm to find a Fibonacci
term. The conversion of a non-tail recursive function to a tail recursive function is done in
Program 5-24b.

Line Prog 5-24a.c Prog 5-24b.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20

//Non-tail recursive Fibonacci function
#include<stdio.h>
//Function declaration
int fib_norm(int);
void main()
{
 int n, term;
 printf(“Enter term no.\t”);
 scanf(“%d”,&n);
 term=fib_norm(n);
 printf(“Fibonacci term is %d”,term);
}
//Non-tail recursive function fib_norm
int fib_norm(int n)
{

 if(n==1) return 0;
 if(n==2) return 1;
 return fib_norm(n-1)+fib_norm(n-2);
}

//Tail recursive Fibonacci function
#include<stdio.h>
//Function declaration
int fib_tail(int,int,int);
void main()
{
 int n, term;
 printf(“Enter term no.\t”);
 scanf(“%d”,&n);
 term=fib_tail(n,1,0);
 printf(“Fibonacci term is %d”,term);
}
//Tail recursive version of fib_norm
int fib_tail(int n,int next, int result)
{

 if(n==1) return result;
 return fib_tail(n-1, next+result, next);
}

Enter term no. 4
Fibonacci term is 2
Remarks:
•  fib_norm is a non-tail recur-

sive function as the last
operation to be performed
in function fib_norm is addi-
tion instead of being a re-
cursive call

•  fib_norm has two base cases,
i.e. when n=1 and when n=2

•  fib_tail is the corresponding
tail recursive version

•  Two auxiliary parameters,
i.e. next and result are used

•  The pending addition
operation in fib_norm is in-
corporated in the auxil-
iary parameter of fib_tail as
next+result

Program 5-24 | Non-tail recursive and tail recursive functions to find a Fibonacci term

4. Tail recursive functions can be easily transformed into iterative functions to improve
the efficiency of a program.

5.3.1.1.7.3 Pattern of Recursive Calls
Based upon the number of recursive calls within a function, the recursion is classified as:

1. Linear recursion
2. Binary recursion
3. n-ary recursion

if n = 1
if n = 2
for n > 2

286 Programming in C—A Practical Approach

5.3.1.1.7.3.1 Linear Recursion
The simplest form of recursion is linear recursion. A linearly recursive function makes only
one recursive call. The function fact discussed in Program 5-22 is a linearly recursive function,
as there is only one recursive call within its body. The next section describes how recursion
works and how function calls form a linear structure.

5.3.1.1.7.3.1.1 How Recursion Works
Consider the code listed in Program 5-22. Figure 5.3 shows how recursion works to compute
the value of factorial of 4.

AR of main AR of fact4 AR of fact3 AR of fact2 AR of fact1

G temp return
no*fact(no-1)

return
no*fact(no-1)

return
no*fact(no-1)

return 1;
Terminating

point
of recursion

temp=fact(4);
return 4*6; return 3*2; return 2*1; return 1;

no
arguments

arguments arguments arguments arguments

 no no no no4 3 2 1

Recursion Unwinds

Linear structure of activation records

Recursion Winds

Figure 5.3 | Winding and unwinding of linear recursion

i G (in the above figure) signifies garbage value of local variable temp and AR stands for activa-
tion record.

The function main gives a call to the function fact with 4 as an argument. Execution of this call
creates an activation record" for the function fact. The activation record of the function main is
packed, placed on the run-time stack," and the activation record of the function fact becomes
live. The value of no in the live activation record is 4. Since no≠1 in the current activation, the state-
ment return no*fact(no-1); gets executed. The return expression itself contains a call to the function fact
with 3 as an argument. The execution of this function call packs the current activation record of
fact, places it onto the run-time stack and creates a new activation record with the value of no as
3 and makes it live. The same process is repeated till the activation record with the value of no
as 1 gets created. This part of recursion in which a number of activation records are created and
piled up on the run-time stack is known as winding of recursion. During the winding of recur-
sion, new activation records keep on getting created. As each activation record requires some

Functions 287

memory space, the memory requirement of a program increases during the winding of recur-
sion. If there is no spare memory space for creating the new activation records, the recursion
terminates abnormally.
When memory space is available, the winding of recursion terminates when the terminating
condition of recursion is reached. In the code snippet listed in Program 5-22, the recursion
terminates when the value of no becomes 1. From this point onwards, the recursion starts un-
winding. During the unwinding process, the called activation" returns a value to its calling
activation. After returning the value, the activation record of the called activation is destroyed
and the memory occupied by it is freed. As shown in Figure 5.3, the last activation returns 1 to
the second last activation, which in turn returns 2 to the third last activation and so on. In this
way, the first activation of the function fact returns 24 to the function main.

" The term activation means execution of a function. If a function is executing, it is said to be ac-
tive. In a C program, multiple functions can be active at the same time. For example, suppose
function main calls a function fun1, which in turn calls another function fun2. While the function
fun2 is executing, the functions main, fun1 and fun2 are all active. When the function fun2 completes
its execution and returns the program control to the function fun1, only the functions main and
fun1 remain active and the function fun2 becomes inactive.
 Activation of each function requires a separate activation record. An activation record refers
to the chunk of memory, which holds the following:

 An activation record is automatically created when a function starts the execution and is au-
tomatically destroyed when a function returns the control to its caller. The activation records
for all of the active functions are stored in the region of memory called the stack.

Forward Reference: Automatic and local variables (Chapter 7).

5.3.1.1.7.3.2 Binary Recursion
A binary recursive function calls itself twice. The fib_norm function listed in Program 5-24a is a
binary recursive function. In the binary recursion, the tree of recursive calls is a binary tree."
Figure 5.4 depicts the tree of recursive calls for fib_norm(3).

Dynamic link

Saved state

Parameters

Local variable

Temporary storage

1. Dynamic link: It points to the activation record of the caller.
2. Saved state: It refers to the contents of the program counter

and registers when the function is called. It is used to restore
the context of the caller function when the program control
returns.

3. Parameters: They refer to the memory space required by the
parameters declared within the header of the function.

4. Local variables: They refer to the memory space required by
the automatic local variables.Â

5. Temporary storage: It refers to the storage used for evaluat-
ing the expressions.

288 Programming in C—A Practical Approach

fib_norm(2)

1

1 1

fib_norm(1)

fib_norm(1) fib_norm(0)

fib_norm(3)

0

2

Figure 5.4 | Tree of recursive calls to the function fib_norm

Binary recursion is used in solving some of the important computing problems like:

1. Tower of Hanoi problem
2. Sorting by merge sort
3. Searching by binary search
4. Fibonacci series generation, etc.

" Binary tree is a non-linear data structure in which every node of a tree can have at most two
children. The tree shown in Figure 5.4 is a binary tree.

5.3.1.1.7.3.2.1 Tower of Hanoi Problem
Tower of Hanoi is one of the classical problems of computer science. The problem states that:

1. There are three stands (Stands 1, 2 and 3) on which a set of disks, each with a different
diameter, are placed.

2. Initially, the disks are stacked on Stand 1, in order of size, with the largest disk at the
bottom.

The initial structure of Tower of Hanoi with three disks is shown in Figure 5.5.

1

2

3

Stand-1 Stand-2 Stand-3

Figure 5.5 | Tower of Hanoi with three disks

The ‘Tower of Hanoi problem’ is to find a sequence of disk moves so that all the disks are
moved from Stand-1 to Stand-3, adhering to the following rules:

1. Move only one disk at a time.
2. A larger disk cannot be placed on top of a smaller disk.
3. All disks except the one being moved should be on a stand.

‘Tower of Hanoi’ is tough and computationally expensive. However, the expressive power of
recursion can be used to easily formulate a solution to this problem. The general strategy for
solving the Tower of Hanoi problem with n disks is shown in Figure 5.6.

Chapter 5a.indd 288Chapter 5a.indd 288 28/02/2010 3:01:03 PM28/02/2010 3:01:03 PM

Functions 289

3

1
2

1
2

3

1
2 3

3
1

2

Stand-1

Stand-1

Stand-1

Stand-1

Stand-2

Stand-2

Stand-2

Stand-2

Stand-3

Stand-3

Stand-3

Stand-3

Figure 5.6 | General strategy to solve the Tower of Hanoi problem with three disks

The movement of n-1 disks forms the recursive case of a recursive solution to move n disks.
The base case of a solution involves the movement of only one disk. The recurrence relation
for solving the Tower of Hanoi problem can be written as:

TowerOfHanoi(disks) =
TowerOfHanoi(disks 1)

move the disk
−

⎧
⎨
⎩

if disks = 1
if disks > 1

The code snippet listed in Program 5-25 solves the Tower of Hanoi problem.

Line Prog 5-25.c Output window

1
 2
3
4
5
6
7
8
9

10
11
12
13

#include<stdio.h>
//Function declaration
void move(int,int,int,int);
//Function definitions
void main()
{
 int disks=3;
 printf(“Follow these moves:\n”);
 move(disks,1,3,2);
}
void move(int count,int start,int finish,int temp)
{
 if(count>0)

Follow these moves:
Move disk 1 from 1 to 3
Move disk 2 from 1 to 2
Move disk 1 from 3 to 2
Move disk 3 from 1 to 3
Move disk 1 from 2 to 1
Move disk 2 from 2 to 3
Move disk 1 from 1 to 3
Remarks:
•  Line number 15 codes step 1 of the

general solution shown in Figure 5.6
•  Line number 16 is the base case and

codes step 2 of the general solution
shown in Figure 5.6

(Contd...)

1. Move the topmost n-1 disks from Stand-1 to
Stand-2.

2. Move the largest disk from Stand-1 to
Stand-3.

3. Move n-1 disks from Stand-2 to Stand-3.

4. Final structure.

290 Programming in C—A Practical Approach

Line Prog 5-25.c Output window

14
15
16
17
18
19

 {
 move(count-1,start,temp,finish);
 printf(“Move disk %d from %d to %d\n”,count,start,finish);
 move(count-1,temp,finish,start);
 }
}

•  Line number 17 codes the step 3 of the
general solution shown in Figure 5.6

•  How disks will be actually moved
can be seen by tracing the program
and keeping track of argument val-
ues to the recursive calls

Program 5-25 | A program to solve the Tower of Hanoi problem

The actual disk movements are shown in Figure 5.7.

1
2

3

11 33
22

11 33 22

33
11

22

33
11

22

11 22 33

Stand-1

Stand-1

Stand-1

Stand-1

Stand-1

Stand-2

Stand-2

Stand-2

Stand-2

Stand-3

Stand-3

Stand-3

Stand-3

Stand-2 Stand-3

Stand-1 Stand-2 Stand-3

(Contd...)

Chapter 5a.indd 290Chapter 5a.indd 290 28/02/2010 3:01:04 PM28/02/2010 3:01:04 PM

Functions 291

3
2

1

1 3
2

Stand-1

Stand-1 Stand-2 Stand-3

Stand-2 Stand-3

Figure 5.7 | Actual disk movements in solution to the Tower of Hanoi problem with three disks

Binary tree of recursive calls to the move function is shown in Figure 5.8.

3. move (1,3,2,1)
move disk 1 from 3 to 2

1. move (1,1,3,2)
move disk 1 from 1 to 3

6. move (2,2,3,1)
move disk 2 from 2 to 3

2. move (2,2,3)
move disk 2 from 1 to 2

**Disk movements can be determined by taking in-order traversal of the tree. Disk movements are numbered.

4. move (3,1,3,2)
move disk 3 from 1 to 3

5. move (1,2,1,3)
move disk 1 from 2 to 1

7. move (1,1,3,2)
move disk 1 from 1 to 3

Figure 5.8 | Tree of recursive calls to the function move

5.3.1.1.7.3.3 n-ary Recursion
The most general form of recursion is n-ary recursion where n is not a constant but some
parameter of function. n-ary recursive functions are used in generating permutations. The
permutations of integers 1, 2 and 3 are as follows:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

The code snippet listed in Program 5-26 uses n-ary recursion to print the permutations of in-
tegers 1, 2 and 3.

292 Programming in C—A Practical Approach

Line Prog 5-26.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

//n-ary recursion
#include<stdio.h>
//Definition of n-ary recursive function
permute(int array[], int parray[],int L,int N)
{
int i,j;
//Base case: Processing the permutations
if(L>N)
{
 for(i=1;i<=N;i++)
 printf(“%d “,parray[i]);
 printf(“\n”);
}
//Recursive Case: Number of case depends upon the parameter
//value N. Number of time recursive calls are given is variable.
else
{
 for(i=1;i<=N;i++)
 {
 if(array[i]==0)
 {
 parray[L]=i;
 array[i]=1;
 permute(array,parray,L+1,N);
 array[i]=0;
 }
 }
}
}
main()
{
 int array[10]={0}, parray[10],n;
 printf(“Generating permutations of 1 to n\n”);
 printf(“Enter the value of n(<10)\t”);
 scanf(“%d”,&n);
 permute(array,parray,1,n);
}

Generating permutations of 1 to n
Enter the value of n(<10) 3
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
Remarks:
•  permute is an n-ary recursive function
•  The number of time recursive calls are

given to permute depends upon the value
of the parameter n

•  Since the parameter n is a variable, the
number of recursive calls in the activa-
tion of permute varies

•  Trace the program to understand it
clearly

Program 5-26 | A program that illustrates the use of recursion to print permutations

5.3.1.1.8 Pointers to Functions
Like recursion, pointers to functions provide an extremely interesting, efficient and el-
egant programming technique. The following concepts allow the creation of a pointer to
a function:

1. Like variables, a compiled code upon execution gets some space in the main memory.
Thus, a function in the program code is placed at some memory location in the Code
Segment.Á

Functions 293

2. Functions like all other identifiers (except labels) do have a type. Function type is one of
the derived data types. It consists of return type of the function and types of its param-
eters. For example, type of a function mult that accepts one integer and one float argument
and returns a float value is float(int,float). The construction of a function type from its return
type and parameter types is called ‘function type derivation’.

3. It is possible to create a pointer to any type (even void type). Hence, the creation of a
pointer to a function type is also possible. A pointer to a function, commonly known as
function pointer, is a variable that points to the starting address of the function.

Unfortunately, pointers to functions are less frequently used because of their complicated
syntax. The following aspects of function pointers must be mastered so that they can be used
in a correct way:

1. Declaration of a function pointer
2. Assigning or initializing a function pointer
3. Calling a function using a function pointer

Backward Reference: For a description on Code Segment (CS) refer Answer number 28
(Chapter 4).

5.3.1.1.8.1 Declaration of a Function Pointer
Consider the function fact developed in Program 5-22, which accepts an integer and returns an
integer value. The type of function fact is int(int). A pointer to the function type int(int) is declared
as:
 int (*ptr)(int);
In the above declaration," ptr is a pointer to a function that accepts an integer and returns an
integer value.

" While reading C declaration, remember that [] and () bind more tightly than *. Hence, in dec-
laration statement int* ptr(int);, the identifier ptr is bound to () instead of * and is read as: ptr is a
function that accepts an integer and returns an integer pointer. The () can be used to bind ptr
with *. In declaration statement int(*ptr)(int);, () is used to bind ptr with *. Hence, this declaration
is read as: ptr is a pointer to a function that accepts an integer and returns an integer value.

Table 5.1 mentions some of the functions developed in this chapter, their types and pointers
to functions of that type.
Table 5.1 | Pointers to function types

S.No Function name(s) Program number Function type Pointer to function type

1. println 5-1 int() int(*)()

2. add, sub 5-1 int(int,int) int(*)(int,int)

3. printsum, main 5-5 void(void) void(*)(void)

4. printsum 5-6 void(int,int) void(*)(int,int)

5. printsum 5-7 void(int,int,char) void(*)(int,int,char)

(Contd...)

294 Programming in C—A Practical Approach

6. circle_area 5-9 float(int) float(*)(int)

7. swap 5-12 int(int*,int*) int(*)(int*,int*)

8. sum_diff 5-13 void(int,int,int*,int*) void(*)(int,int,int*,int*)

9. find_max_min 5-15a int(int[],int) int(*)(int[],int)

10. find_max_min 5-15b int(int*,int) int(*)(int*,int)

11 largest_ele 5-16 void(int[][10],int*,int*) void(*)(int[][10],int*,int*)

12. f_calling_fs 5-30 void(int,int,int(*)(int,int)) void(*)(int,int,int(*)(int,int))

5.3.1.1.8.2 Assigning or Initializing a Function Pointer
A pointer to a function of type T can be assigned or initialized with the address of a function
of type T or with a pointer of the same type. To assign or initialize a function pointer with the
address of a function, just place the function designator (i.e. the name of the function) of a
suitable and known function on the right side of the assignment operator. In the following
statements, the address of the function sub is assigned to the function pointer str:

 int sub(int,int);
 int (*str)(int,int);
 str=sub;

In the following statements, the function pointer atr is initialized with the address of the func-
tion add:

 int add(int,int);
 int(*atr)(int,int)=add;

The important points about the function pointer assignment or function pointer initialization
are as follows:

1. At the time of function pointer assignment or initialization, the function designator
must be known, i.e. declared or defined.

2. The function designator implicitly refers to the starting address of the function. How-
ever, the function designator can optionally be preceded by the address-of operator (&)
to signify the address of function. The following two statements are equivalent:

 int (*atr)(int, int)=add;
 int (*atr)(int,int)=&add;

5.3.1.1.8.3 Calling a Function Using Function Pointer
A function pointer can be used to call a function in any of the following two ways:

1. By explicitly dereferencing it using the dereference operator, i.e. *
2. By using its name instead of the function’s name

Program 5-27 illustrates the method of calling a function using the function pointers.

Chapter 5a.indd 294Chapter 5a.indd 294 28/02/2010 3:01:04 PM28/02/2010 3:01:04 PM

Functions 295

Line Trace Prog 5-27.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1

2

3

4

5

9

13

6,10

7, 11

8,12

//Calling functions using function pointers
#include<stdio.h>
int add(int a,int b);
main()
{
//Assigning address by using function designator only
 int (*ptr1)(int,int)=add;
//Assigning address by using address-of operator
 int (*ptr2)(int,int)=&add;
 printf(“Calling functions using function pointers:\n”);
//Calling function by dereferencing function pointer
 (*ptr1)(10,12);
//Calling by using function pointer name
 ptr2(2,3);
}
int add(int a, int b)
{
 printf(“The result of addition is %d\n”,a+b);
}

Calling functions using function pointers:
The result of addition is 22
The result of addition is 5
Remarks:
•  Type of function add is int(int,int)
•  ptr1 and ptr2 are pointers to a function

of type int(int,int)
•  ptr1 is assigned an address of the

function add by using the function
designator only

•  ptr2 is assigned an address of the
function add by using address-of op-
erator and the function designator

•  ptr1 and ptr2 both point to the function
add

•  In line number 12, ptr1 is dereferenced
and is used to call the function add

•  In line number 14, ptr2 is used to call
the function add without dereferenc-
ing it

•  Trace the program and note the trace
arrow numbering

Program 5-27 | A program that illustrates the method of calling function using function pointers

5.3.1.1.9 Array of Function Pointers
Like arrays of pointers to other types, it is possible to create array of pointers to function type
(i.e. array of function pointers). The following declaration statement declares arr as an array of
pointers to functions that accept two integers and returns an integer:

 int (* arr[4])(int,int);

The important points about the above declaration and the array of function pointers are as
follows:

1. arr is an array of function pointers. Each pointer takes 2 bytes or 4 bytes in the memo-
ry depending upon the compiler and the working environment used. Hence, the total
memory space allocated to arr will be 8 bytes or 16 bytes. The code snippet in Program
5-28 illustrates this fact.

Line Prog 5-28.c Output window
 1
 2
3
4
5
6
7

//Size of array of function pointers
#include<stdio.h>
main()
{
 int (*arr[4])(int,int);
 printf(“Memory allocated to arr is %d bytes”,sizeof(arr));
}

Memory allocated to arr is 8 bytes
Remarks:
•  Turbo C 3.0 gives the above-mentioned result.

If Turbo C 4.5 is used, the result will be 16 bytes
•  The name of an array does not decompose to a

pointer type if it is an operand of sizeof operator
•  sizeof operator gives the memory allocated to

the complete array
Program 5-28 | A program that finds the size of an array of function pointers

296 Programming in C—A Practical Approach

2. Like other arrays, arrays of function pointers can also be initialized by providing an
initialization list. The initializers in the initialization list should be function designators
of the known functions (i.e. declared or defined) of appropriate type. All the initializing
functions should have the same type.

3. The array of function pointers can be used to call functions in a generalized way. The
code snippet in Program 5-29 illustrates the initialization of an array of function point-
ers and the method to call functions in a generalized way.

Line Prog 5-29.c Output window
 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

//Array of function pointers
#include<stdio.h>
//Function declarations
int add(int,int);
int sub(int,int);
int mult(int,int);
int div(int,int);
//Function definitions
main()
{
//Array of function pointers initialized with initialization list
 int (*arr[4])(int,int)={add,sub,mult,div};
 int lc;
 printf(“Calling functions using iteration:\n”);
//Functions called in a generalized way by using loop
 for(lc=0;lc<4;lc++)
 arr[lc](6,3);
}
int add(int a,int b)
{
 printf(“Result of addition of %d and %d is %d\n”,a,b,a+b);
}
int sub(int a,int b)
{
 printf(“Result of subtraction of %d and %d is %d\n”,a,b,a-b);
}
int mult(int a,int b)
{
 printf(“Result of multiplication of %d and %d is %d\n”,a,b,a*b);
}
int div(int a,int b)
{
 printf(“Result of division of %d and %d is %d\n”,a,b,a/b);
}

Calling functions using iteration:
Result of addition of 6 and 3 is 9
Result of subtraction of 6 and 3 is 3
Result of multiplication of 6 and 3 is 18
Result of division of 6 and 3 is 2
Remarks:
•  All functions add, sub, mult and div

have the same type, i.e. int(int,int)
•  These functions accept two integers

and return an integer
•  arr is an array of 4 function pointers

of type int(*)(int,int)
•  arr is initialized with an initializa-

tion list
•  All the initializers are of the same

type
•  It can also be initialized as:

int(*arr[4])(int,int)={&add,&sub,&mult,&div}

Program 5-29 | A program that illustrates the use of array of function pointers

Functions 297

5.3.1.1.10 Passing Function to a Function as an Argument
A function can accept arguments of pointer type. We have seen the application of pointers to pass
arrays as arguments to the functions. Pointers can also be used to pass functions to a function.
The code snippet in Program 5-30 illustrates the use of pointers to pass functions to a function.

Line Trace Prog 5-30.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

1

2

3

10

17

4,11

5,12

9,16

6

7

8

13

14

15

//Passing function to a function as an argument
#include<stdio.h>
//Function declarations
int add(int,int);
int sub(int,int);
//Declaration of function whose third parameter is a function ptr
void f_calling_fs(int,int,int(*)(int,int));
//Function definition
void main()
{
 printf(“Passing functions to a function:\n”);
// Third argument in the following function calls is a function designator
 f_calling_fs(10,20,add);
 f_calling_fs(10,20,sub);
}
void f_calling_fs(int a, int b, int (*fun)(int,int))
{
 fun(a,b);
}
int add(int a,int b)
{
 printf(“Result of addition of %d and %d is %d\n”,a,b,a+b);
 return 0;
}
int sub(int a,int b)
{
 printf(“Result of subtraction of %d and %d is %d\n”,a,b,a-b);
 return 0;
}

Passing functions to a function:
Result of addition of 10 and 20 is 30
Result of subtraction of 10 and 20 is -10
Remarks:
•  The third argument to

the function f_calling_fs is a
function pointer of type
int(*)(int,int)

•  In line number 13, the ad-
dress of the function add
is passed to the function
f_calling_fs

•  In line number 18, the
passed argument is used
to call the function. Since
the address of the func-
tion add has been passed,
the call fun(a,b) is equiva-
lent to add(a,b)

•  Similarly, in line num-
ber 14, the function sub is
passed to f_calling_fs and
on the second execution
of line number 18, it is
called

•  Trace the program and
note the trace arrow num-
bering

Program 5-30 | A program that illustrates the passing of functions to a function

5.3.1.2 Library Functions
Library functions or pre-defined functions are the functions whose functionality has already
been developed by someone and are available to the user for use. For example, printf and scanf
are library functions. There are two aspects of working with library functions:

1. Declaration of library functions
2. Use of library functions

5.3.1.2.1 Declaration of Library Functions/Role of Header Files
We have seen that the user-defined functions need to be declared before they are called. This is
true for library functions as well. A library function needs to be declared before it is called. The

Chapter 5a.indd 297Chapter 5a.indd 297 28/02/2010 3:01:05 PM28/02/2010 3:01:05 PM

298 Programming in C—A Practical Approach

declarations of library functions are available in their respective header files. To make these
declarations accessible in a program file, the corresponding header files are included. For ex-
ample, the prototype, i.e. the declaration of printf function is available in the header file stdio.h.
That is why stdio.h is included before calling the printf function. If the header file containing the
declaration of the library function is not included before its use, there will be a compilation
error ‘Prototype missing.’

5.3.1.2.2 Use of Library Functions
Library functions are used in the same way as user-defined functions, i.e. by using a function
call operator. The role and usage of some of the common library functions are listed below.

5.3.1.2.2.1 Library of Mathematical Functions
The mathematical library defines some of the common mathematical functions. The declara-
tions of these mathematical functions are available in the header file math.h. Table 5.2 lists the
commonly used mathematical functions available in the math library.

Table 5.2 | Mathematical functions available in math library

S.No Function Function declaration and use Role

Trigonometric functions

1. acos double acos(double x); Returns arc cosine of x in radians
2. asin double asin(double x); Returns arc sine of x in radians
3. atan double atan(double x); Returns arc tangent of x in radians
4. atan2 double atan2(double y, double x); Returns the arc tangent in radians of y/x based on the

signs of both values to determine the correct quadrant
5. cos double cos(double x); Returns the cosine of a radian angle x
6. cosh double cosh(double x); Returns hyperbolic cosine of x
7. sin double sin(double x); Returns the sine of a radian angle x
8. sinh double sinh(double x); Returns hyperbolic sine of x
9. tan double tan(double x); Returns the tangent of a radian angle x
10. tanh double tanh(double x); Returns hyperbolic tangent of x

Exponential, logarithmic and power functions

11. exp double exp(double x) Returns the value of e raised to the xth power
12. frexp double frexp(double x, int *exponent); frexp splits a double number x into mantissa and ex-

ponent. Given x, frexp calculates the mantissa m and
exponent n such that x = m*2n

13, ldexp double ldexp(double x, int exponent); Returns x multiplied by 2 raised to the power of expo-
nent, i.e. returns x*2n

14. log double log(double x); Returns the natural logarithm (base e) of x
15. log10 double log10(double x); Returns the common logarithm (base 10) of x
16. pow double pow(double x, double y); Returns x raised to the power of y
17. sqrt double sqrt(double x); Returns the square root of x

(Contd...)

Functions 299

Other mathematical functions

18. ceil double ceil(double x); Returns the smallest integer value greater than or
equal to x

19. fabs double fabs(double x); Returns the absolute value of x (a negative value be-
comes positive, positive value remains unchanged)

20. floor double floor(double x); Returns the largest integer value less than or equal to x
21. fmod double fmod(double x, double y); Calculates x modulo y, i.e. returns the remainder of x

divided by y

i The return type of every math library function is double.

5.3.1.2.2.2 Library of Standard Input/Output Functions
The functionality of standard input and output operations is provided by this library. The
declarations of these functions are available in the header file stdio.h. stdio is an acronym for stan-
dard input output. The common standard input/output functions are printf, scanf, gets,Â puts,Â
getch, getchar, putch, putchar, etc.

Forward Reference: gets, puts and other input–output functions (Chapter 6).

5.3.1.2.2.3 Library of String Processing Functions
This library consists of functions that are used for stringÂ processing. The common string
library functions are strcpy, strrev, strcat, strcmp, strcmpi, etc. The declarations of these functions
are available in the header file string.h. The role and working of string library functions will be
discussed in Chapter 6 after the discussion on character arrays.

Forward Reference: String processing functions (Chapter 6).

5.3.2 Based upon the Number of Arguments a Function Accepts
Based upon the number of arguments a function accepts, functions are classified as follows:

1. Fixed argument functions
2. Variable argument functions

5.3.2.1 Fixed Argument Functions
A function that accepts a fixed number of arguments is called a fixed argument function. If
the fixed argument function does not specify any default argument, invoking a fixed argu-
ment function with a lesser number of arguments than expected leads to a compilation error.
A fixed argument function cannot even be invoked by supplying more number of arguments
than expected. For example, pow function listed in Table 5.2 expects two arguments of type
double. The following invocations of pow function are erroneous:

pow(); //ÅLesser number of arguments supplied than expected
pow(2.0); //ÅLesser number of arguments supplied than expected
pow(2.0,1.5,1.0); //ÅMore number of arguments supplied than expected

300 Programming in C—A Practical Approach

5.3.2.2 Variable Argument Functions
A function that accepts a variable number of arguments is called a variable argument func-
tion. For example, printf is a variable argument function, which can accept one or more argu-
ments. The type of first argument must be char* and there is no constraint about the type of rest
of the arguments. The following calls to printf function are valid:

printf(“Hello”); //ÅOnly one argument of type char*
printf(“%d”,2); //ÅTwo arguments. The type of the first argument is char* and the

// second is int
printf(“%s %s”,”Hi”,”!!”); //ÅThree arguments, all of type char*

A function that accepts a variable number of arguments" can be created by using the
macrosÂ va_start, va_arg, va_end available in the header file stdarg.h. The piece of code in Program
5-31 illustrates the development of a variable argument function.

Line Prog 5-31.c Output window
 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32

//Variable argument functions
//File stdarg.h is to be included for using va_list, va_start, etc.
#include<stdarg.h>
#include<stdio.h>
//Ellipses (i.e. three dots) are used to declare variable argument function
int sum(int no_of_arguments, …);
//Function definitions
main()
{
 int result;
//Function sum invoked with 4 arguments
 result=sum(3,12,13,14);
 printf(“The result of addition of 3 numbers is %d\n”,result);
//Function sum invoked with 6 arguments
 result=sum(5,10,20,30,40,50);
 printf(“The result of addition of 5 numbers is %d\n”,result);
}
//Definition of a variable argument function
int sum(int no_of_arguments,…)
{
 int arg,i=0,total=0;
 va_list ptr;
 va_start(ptr,no_of_arguments);
 arg=va_arg(ptr,int);
 while(i++<no_of_arguments)
 {
 total+=arg;
 arg=va_arg(ptr,int);
 }
 va_end(ptr);
 return total;
}

The result of addition of 3 numbers is 39
The result of addition of 5 numbers is 150

Program 5-31 | A program that makes use of variable argument functions

Functions 301

The important points about the code listed in Program 5-31 and the variable argument func-
tions are as follows:

1. Since the function sum is ‘a fixed number of argument followed by a variable number
of argument’ function, it is declared as int sum(int no_of_arguments,…);. Ellipses" (…) are used
while declaring a variable argument function.

2. Role of ellipses: The number of arguments that can be passed to a variable argument
function is not fixed. Hence, while declaring a variable argument function, it is not pos-
sible to list the types of all the arguments that might be passed to the function during
the function call. The solution to this problem is provided by ellipses. While declaring
a variable argument function, ellipses (…) are used in the parameter list. The presence
of ellipses (…) tells the compiler that when the function is called, zero or more argu-
ments may follow and that the type of the arguments is not known. Ellipses (…) used
in the declaration of the variable argument function suspend the type checking.

 The prototype/declaration of printf function is int printf(const char*,…);. The prototype says
that there can be one or more arguments in the printf function call. The type of first argu-
ment would be const char* and the latter arguments can be of any type. Due to ellipses (…)
the following uses of printf function are valid:

1. printf(“Hello Readers”);
2. printf(“%d %d”,2,3);
3. printf(“%d %s %c”,2,”Hi”,’1’);

3. The variable argument functions are developed with the help of macros va_start, va_arg
and va_end, declared in the header file stdarg.h. Therefore, the header file stdarg.h is included
so that the macros can be used."

4. The header file stdarg.h also declares a type va_list that holds the information needed by
the macros va_arg and va_end. A variable ptr of type va_list is declared in the function sum.

5. The macro va_start takes two parameters ptr and lastfix. The type of the first parameter ptr
is va_list and lastfix is the last fixed parameter supplied to the variable argument function.
The last fixed parameter supplied to the variable argument function sum is no_of_arguments
and is of type int. The macro va_start sets ptr to point to the first of the variable arguments
being passed to the function.

6. The macro va_arg is used to return the arguments in the variable list. The first time va_arg
is used, it returns the first argument in the list. Each successive time va_arg is used, it
returns the next argument in the list. The macro va_arg returns the values of type given
to it as its second argument (for example, int in the code listed in Program 5-31).

7. The macro va_end should be called after va_arg has read all the arguments. If the macro
va_end is not used, the program may show strange and undefined behavior.

8. The order in which the macros va_start, va_arg and va_end should be called is:
a. va_start must be called before the first call to va_arg or va_end.
b. va_end should only be called after va_arg has read all the arguments.

" Variable argument functions actually have a fixed number of arguments followed by a vari-
able number of arguments.
 There should be only three dots, i.e. (…) in ellipses. Usage of more than three dots in ellipses
leads to a compilation error.
The syntax of using macros is similar to the syntax of using functions.

Chapter 5a.indd 301Chapter 5a.indd 301 28/02/2010 3:01:06 PM28/02/2010 3:01:06 PM

302 Programming in C—A Practical Approach

Forward Reference: Macros (Chapter 8).

5.4 Summary

Functions help in modularizing a program into smaller simple parts.1.
Functions are classified based upon: (a) who develops the function and (b) the param-2.
eter and the return type of the function.
Based upon who developed the function, they are categorized as: (a) user-defined func-3.
tions and (b) library functions.
Based upon the parameter and the return type of the function, they are categorized as: 4.
(a) functions with no input and no output, (b) functions with inputs but no output, (c)
functions with inputs and a single output and (d) functions with inputs and multiple
outputs.
User-defined functions are defined by the user at the time of writing a program and are 5.
also known as programmer-defined functions.
There are three aspects of working with user-defined functions: (a) function declara-6.
tion, (b) function definition and (c) function call.
Function definition, also known as function implementation means composing a func-7.
tion. Every function definition consists of two parts: (a) header of the function and (b)
body of the function.
A function with no input–output does not accept any input and does not return any result.8.
The execution of a C program always begins with the function 9. main. It need not to be
called explicitly.
Functions whose return type is 10. void are known as void functions. void functions do not
return any value.
While calling a function, the expressions that appear within the parentheses of a func-11.
tion call are known as actual arguments, and the variables declared in the parameter list
in the header of function definition are known as formal parameters.
The 12. return statement is to return the result of computations done in the called function
and/or the program control back to the calling function.
There are two forms of 13. return statement: (a) return; and (b) return expression;.
Depending upon whether values or addresses are passed as arguments to a function, 14.
the argument passing methods in C language are classified as: (a) pass by value and (b)
pass by reference/address.
If arguments are passed by value, the changes made in the values of formal parameters 15.
inside the called function are not reflected back to the calling function.
If the arguments are passed by reference/address, the changes made in the values point-16.
ed to by the formal parameters in the called function are reflected back to the calling
function.
A function can return only one value by using the 17. return statement but it can indirectly
return more than one value using the concept of pass by reference/address.
When an array is passed as an argument to a function, it implicitly gets converted to a 18.
pointer type.

Functions 303

The arguments can be made default by using an initialization syntax within the param-19.
eter list during the function declaration.
The default argument should not be specified in the function definition.20.
Function calling itself is called recursive function and the process is known as recursion.21.
Recursive functions may be: (a) direct recursive/indirect recursive and (b) tail recursive/22.
non-tail recursive.
There are three patterns of recursive calls: (a) linear, (b) binary and (c) n-ary.23.
Like recursion, pointers to functions provide an extremely interesting, efficient and el-24.
egant programming technique.
A pointer to a function, commonly known as the function pointer, is a variable that 25.
points to the address of a function.
Library functions or pre-defined functions are the functions whose functionality has 26.
already been developed by someone and is available to the user for use.
The arguments to the function 27. main are supplied at the command line and thus have a
special name known as command line arguments.

Exercise Questions

Conceptual Questions and Answers
1. What is a function? What are the advantages of using functions?
 A function is a group of statements that performs a specific task and is relatively independent

of the remaining code. Functions are used to organize programs into smaller and independent
units. Several advantages of modularizing the program into functions include:

1. Reduction in code redundancy
2. Enabling code reuse
3. Better readability
4. Information hiding
5. Improved maintainability

2. Do functions have a type like other identifiers? If yes, how is it derived?
 Yes, functions do have a type like all other identifiers except labels. Function type is one of the

derived types and consists of return type of the function and the types of its parameters. For
example, the type of a function mult that accepts one integer and one float parameter and returns
a float value is float(int,float). The construction of a function type from its return type and parameter
types is called ‘function type derivation’.

3. What are the differences between a function declaration and a function definition?

Backward Reference: Refer Sections 5.3.1.1.1 and 5.3.1.1.2 for a description on function dec-
laration and function definition.

 The major differences between a function declaration and a function definition are as follows:

a. A function can only be defined once but can be declared many times.
b. A function can be declared within the body of some other function but cannot be defined within

the body of some other function.

304 Programming in C—A Practical Approach

c. A function definition can also serve as a function declaration but the vice versa is not true. The
function definition serves as a function declaration if it is present before the function call.

d. The function definition can be changed without changing the function declaration but if the func-
tion declaration is changed, it becomes necessary to change the function definition.

e. For using (i.e. calling) a function, it is sufficient and necessary to know the function declaration
without knowing anything about how it is defined.

4. What is meant by prototyping a function? Why is a function prototype necessary?
 The function declaration is also called a function prototype. Hence, function prototyping means

declaring a function.

Backward Reference: Refer Section 5.3.1.1.1 for a description on function prototype and its
necessity.

5. ‘C is a strongly typed language’. What does that mean?
 ‘C is a strongly typed language’ means that the arguments of every function call are type checked

during the compilation. If the compiler detects a type mismatch between the type of an argument
and the type of corresponding parameter, an implicit-type conversion is applied if possible. If it
is not possible to apply implicit-type conversion, the compiler issues an error message. That is
why functions cannot be called until they are declared or defined. The declaration or definition
of function is necessary for the compiler to perform the type checking on the arguments of the
function call against the function parameter list.

6. Is it mandatory to specify the same name for the parameters in the declaration and definition of a func-
tion?

 No, it is not mandatory to have the same name for the parameters in the function declaration and
the function definition. In fact, it is not even compulsory to write names of the parameters in the
function declaration.

 Backward Reference: Refer Section 5.3.1.1.1 for a description on abstract parameter declara-
tion and complete parameter declaration.

7. I want to write a function add that should add the contents of two integer variables and return their sum. I
have made the following declaration for the function:

int add(int v1,v2);

 The compiler is not accepting it and is showing an error. Why?

Backward Reference: Refer Section 5.3.1.1.1 (Point 5) for a description on syntactic rules for
writing the parameter list and the parameter type list.

 The compiler shows an error due to erroneous parameter list. The shorthand declaration of pa-
rameters in the parameter list is not allowed and leads to the compilation error. The rectified
declaration for the function can be written as int add(int v1,int v2);.

8. What are user-defined functions and library or pre-defined functions? Is main a library function or a user-
defined function?

Backward Reference: Refer Sections 5.3.1.1 and 5.3.1.2 for a description on user-defined
functions and library functions.

Functions 305

 User-defined functions are defined by the user at the time of writing a program. Library func-
tions are the functions whose functionality has already been developed by someone and are
available to the user for use.

 main is a user-defined function because the functionality to the main function is always added by
the user by writing its body.

9. Why do we include header file(s) in our programs? What is their role?

Backward Reference: Refer Section 5.3.1.2.1 for a description on the role of header files.

10. What is meant by the terms actual arguments and formal parameters?

Backward Reference: Refer Section 5.3.1.1.3.2 (Point 4) for a description on actual arguments
and formal parameters.

11. What are the different ways of passing arguments to a function?

Backward Reference: Refer Sections 5.3.1.1.3.4.1 and 5.3.1.1.3.4.2 for a description on pass by
value and pass by reference.

12. Does C actually have a pass by reference?
 No, the C language actually does not have a pass by reference. The C language always passes the

argument by value. The call by reference is artificially simulated by passing addresses by value.
In a call by reference, the l-values given as actual arguments are copied into the parameters of
pointer type.

13. How are arrays passed to the functions?
 Arrays are always passed by reference. The word array here means the entire array and not the

individual array elements.

Backward Reference: Refer Section 5.3.1.1.4 for a description on passing arrays to functions.

14. What are the various forms of return statement? What is the specific use of each form?

Backward Reference: Refer Section 5.3.1.1.3.3.1 for a description on return statement.

15. It is said that ‘Function can only return one value’. Can’t I return more than one value by writing
return value1, value2, value3;?

Backward Reference: Refer Section 5.3.1.1.3.3.1 (Point 4) to answer this question.

16. Can a function have more than one return statement within its body?
 Yes, a function can have more than one return statement within its body. There is no constraint

about the number of return statements that can be placed within a function’s body. For example,
the following piece of code is valid:

306 Programming in C—A Practical Approach

 int funct()
 {
 return 1; //ÅControl returns from this point
 printf (“This can never be executed”); //Å This point onwards, code is unreachable
 return 2;
 return 3;
 printf(“There are multiple return statements”);
 }
 Although, a number of return statements can be placed inside the body of a function, only one

of them that appears first in the logical flow of control gets executed. With the execution of this
return statement, the program control returns to the calling function and the rest of the statements
that appear after this return statement remain unreachable.

 On compiling the mentioned code, there will be no error, but the compiler issues a warning mes-
sage ‘Unreachable code in function funct’. This warning is due to the fact that the program control
returns to the calling function with the execution of the first return statement and can never reach
the latter part of the code.

17. I have developed the following piece of code to compute the area of a circle. It outputs 78.000000 instead of
the actual value of the area of circle, i.e. 78.537498. Why?

 circle_area(int);
 main()
 {
 int rad=5.5;
 float area;
 area=circle_area(rad);
 printf(“The area of circle is %f”,area);
 }
 circle_area(int rad)
 {
 float area;
 area=3.1415*rad*rad;
 return area;
 }

Backward Reference: Refer Section 5.3.1.1.3.3.1 (Point 2 (f)) to answer this question.

18. In the programs that I have written till now, I got a warning message ‘Function should return a value’.
What does this mean?

 This warning message comes if the return type of a given function is not void, and in the body of
the function return statement has not been used to return any value. For example, consider the
following piece of code:

 main()
 {
 printf(“Warning message”);
 }

 The mentioned code on compilation gives a warning message: ‘Function should return a value’.
There can be three different ways to remove this warning:

Functions 307

main()
{
 printf(“Warning message”);
 return 0;
}

void main()
{
 printf(“Warning message”);
}

#pragma warn -rvl
main()
{
 printf(“Warning message”);
}

Way I Way II Way III

A compilation of the above-mentioned codes will not generate a warning message because:

1. Way I returns an integer value.
2. Way II mentions the return type as void.
3. Way III configures the compiler using pragmaÂ directive in such a way that it does not generate

‘Function should return a value’ warning message.

Forward Reference: pragma directive (Chapter 8).

19. What is the difference between a warning and an error?
 Warning is only an indicator that something may go wrong but an error is a notification that

some mistake (i.e. syntactic violation) has occurred. The compiler can be configured to turn off
the display of warning messages but it cannot be stopped from displaying error messages.

20. Can a return type of a function be an array type or a function type?
 No. The return type of a function shall be void or an object type other than an array type and a func-

tion type. Arrays and functions are returned to the calling function in the same way as they are
passed to the called function, i.e. by the means of pointers. For example, consider the following
code snippets:

 In Code I (a), the return type of the function fun_returning_array is an array type. The given code on
compilation gives an error. Code 1 (b) shows the rectified version of Code I (a) whereby an array
arr is returned by the means of a pointer, i.e. the address of the first element of the array. In Code
II (a), the function area_of_square is passed to the function fun by the means of a pointer. In Code II
(b), the function fun returns function area_of_square by the means of a pointer.

int[3] fun_returning_array();
main()
{
 int *ptr;
 ptr=fun_returning_array();
 printf(“%d %d %d”,ptr[0],ptr[1],ptr[2]);
}
int[3] fun_returning_array()
{
 int arr[3]={1,2,3};
 return arr;
}

Code I (a) (Return type is array type)

int* fun_returning_array();
main()
{
 int *ptr;
 ptr=fun_returning_array();
 printf(“%d %d %d”,ptr[0],ptr[1],ptr[2]);
}
int* fun_returning_array()
{
 int arr[3]={1,2,3};
 return arr;
}

Code I (b) (Return type is a pointer)

(Contd...)

308 Programming in C—A Practical Approach

int area_of_square(int side)
{
 return side*side;
}
int fun(int (*fun_name)(int))
{
//The parameter fun_name contains the address of function
//area_of_square
 return fun_name(2);
//The function area_of_square is called with argment 2. The
//result returned by the function area_of_square is returned
//by the function fun
}
main()
{
//The function fun is called with the name of function
//area_of_square as an argument
 printf(“Area is %d”,fun(area_of_square));
}

Code II (a)(Function passed to a function)

int area_of_square(int side)
{
 return side*side;
}
int(*fun())(int)
{
//Function fun accepts no argument. It returns a pointer to
//a function that accepts an integer and returns an integer
 return area_of_square;
}
main()
{
//The function fun is called without any argument. It returns a
//pointer to the function area_of_square. The returned
//pointer is used to call the function area_square with
//argument 2
 printf(“Area is %d”,fun()(2));
}
Code II (b)(Function returned by the means

of a pointer)

21. What are activation records?

 Backward Reference: Refer Section 5.3.1.1.7.3.1.1 for a description on activation records.

22. What is recursion? What are the advantages and disadvantages of recursion over iteration?

 Backward Reference: Refer Section 5.3.1.1.7.1 for a description on direct and indirect
recursion.

 The merits and demerits of recursion over iteration are listed below:

Iteration Recursion

1. Performance wise, iteration is superior as
compared to recursion

2. Memory requirement of an iterative func-
tion is less as compared to that of a recur-
sive function

1. Performance of recursion is poor as com-
pared to iteration. Recursion involves calling
the same function again and again. The ex-
ecution of a function call is time consuming
as the entire state of a calling function needs
to be saved before the control is passed to the
called function. Therefore, precious comput-
ing time is wasted in book-keeping tasks

2. Recursion involves function calls. Each func-
tion call requires creation of an activation re-
cord, which takes some memory. The memo-
ry required by an activation record is directly
proportional to the number of local vari-
ables declared within the recursive function.

(Contd...)

Functions 309

3. Infinite iteration will not terminate

4. Iteration is diffucult to express in some
cases

 The total memory required by the recursion is
equal to the memory taken by all the activation
records that exist at some particular instance

3. Infinite recursion will automatically termi-
nate when there is no memory space left for
the creation of the activation records

4. One of the major advantages of the recursion
is the ease of expression. The tasks that are
expressible in terms of themselves can be eas-
ily coded by using recursive functions. For
example, the computation of the factorial of a
number. The factorial of a number is equal to
the number multiplied by the factorial of the
number minus one, i.e. fact(n)=n*fact(n−1)

23. What is tail recursion?

Backward Reference: Refer Section 5.3.1.1.7.2 for a description on tail recursion.

24. How do the declaration statements int *func(int);, int(*func)(int); and int(*func())(int); differ from each other?
 While reading C declarations, remember that [] and () bind more tightly than *. In the declara-

tion statement, int *func(int); the identifier name func is bound to () instead of * and it is read as:
func is a function that accepts an integer and returns a pointer to an integer. In the declaration
statement, int (*func)(int); () is used to bound func to *. Hence, the declaration is read as: func is a
pointer to a function that accepts an integer and returns an integer. In the declaration state-
ment int(*func())(int); the identifier name func is bound to inner () instead of * and is read as: func is a
function that accepts no argument and returns a pointer to a function that accepts an integer
and returns an integer.

25. If there is a type mismatch between the type of argument and the type of corresponding parameter, will the
compiler apply implicit-type conversion? Is the same applicable if there is a mismatch between the type of
value returned and the return type of a function?

 Yes, if the type of the argument and the corresponding parameter do not match or if the type of
value returned does not match the return type of the function, an implicit-type conversion is ap-
plied, if possible. If it is not possible to apply an implicit-type conversion, the complier issues an
error message.

26. I have encountered the following piece of code:
 int add(int v1,int v2=10);
 main()
 {
 int result;
 result=add(5);
 }
 int add(int v1,int v2)
 {
 return v1+v2;
 }

310 Programming in C—A Practical Approach

 There are two parameter names in the parameter list of the function add. I have read that if the number
of arguments is incorrect or the types of arguments are not compatible with the types of parameters, the
compile time error is issued. In the call to function add only one argument is given instead of two, but still
the code is executing. Why is the compiler not showing an error?

 The compiler does not show an error because v2 is a default argument. A function that provides
a default argument for a parameter can be invoked with or without an argument for that param-
eter. If an argument is not provided, the default argument value is used, but if it is provided it
overrides the default argument value.

27. What are variable argument functions? How are they created?

Backward Reference: Refer Section 5.3.2.2 for a description on variable argument functions.

28. A variable argument function can have a variable number of arguments, so it is not possible to list the
type and number of all the arguments that might be passed to a function. Therefore, how can I make
declaration for a variable argument function, and how is type checking done for a variable argument
function?

Backward Reference: Refer to the role of ellipses mentioned in Section 5.3.2.2 to answer this
question.

29. Are the following declarations equivalent?
1. void funct();
2. void funct(parameter_list,…);
3. void funct(…);

 No, the specified declarations are not equivalent. In declaration 1, funct is declared as a function
that accepts no arguments. In declaration 2, funct is declared as a function that at least accepts the
arguments of the specific type mentioned in the parameter list. In declaration 3, funct is declared
as a function that can take zero or more arguments.

30. Why does the following piece of code not compile successfully?
 test_function()
 {
 printf(“Control is now in test function”);
 return;
 }
 main()
 {
 printf(“There is a simple call to a test function”);
 test_function();
 printf(“Control returns to main after executing test function”);
 }
 The code does not compile successfully because the return type of the function test_function is not

specified. By default, it would be considered as int. In the body of the function test_function, the
first form of the return statement (i.e. return;) is used, but it can only be used if the return type of
the function is void. That is why the compiler shows an error. There are two ways of removing
this error:

Functions 311

1. Specify the return type of the function test_function as void.
2. Use the second form of return statement (i.e. return expression;) in the body of the function test_function.

Write return 0; instead of return;.

31. I have written the following piece of code:
 inc_value(int a)
 {
 5+return a;
 }
 main()
 {
 int a=10,c;
 c=inc_value(a);
 printf(“The incremented value of a returned is %d”,c);
 }
 Why is the following piece of code not working?
 The code is not working because it is not valid to write 5+return a;. return is a statement and cannot

be used as an operand of an operator. Only the expressions can form operands of an operator.
Instead of 5+return a; it should have been return 5+a; or return a+5;.

32. What will the output of the following piece of code be?
 main()
 {
 printf(“%d”,sizeof(printf(“Hello Readers!!”)));
 }
 The output of the code WILL NOT be Hello Readers!!2. The given piece of code on execution out-

puts 2. Remember that the operand of sizeof operator is not evaluated. Thus, when the expression
printf(“Hello Readers!!”) is given to it as an operand, it is not evaluated, and the operator operates on
its return type, i.e. int. Thus, the output comes out to be 2. Consider another example:

 main()
 {
 int a=2;
 printf(“%d ”,sizeof(a+=2));
 printf(“%d ”,a);
 }
 The mentioned piece of code on execution outputs 2 2 instead of 2 4 because the expression a+=2 is

not evaluated.

33. What will the output of the following piece of code be?
 main()
 {
 printf(“goto statement trying to transfer control to other function”);
 goto target_pt;
 }
 other_funct()
 {
 target_pt:
 printf(“The target label is present in other function”);
 }

312 Programming in C—A Practical Approach

 The mentioned piece of code on compilation gives an error ‘Undefined label target_pt in function
main’. The goto statement can only transfer the control from one point to another within the same
function. It cannot take the control from one function to another.

34. Both the function call statement and the goto statement can be used to transfer the control from one point
to another. Then, why does the goto statement cannot be used to transfer control from one function to an-
other?

 The goto statement cannot be used to take the control from one function to another. Transferring
the control from one function to another is not as simple as transferring control within the same
function. If a control is to be transferred from one function (i.e. calling function) to another (i.e.
called function), the following two additional tasks along with some other activities are to be
performed:

1. Saving all the computations performed in the calling function prior to the function
call: All the computations performed in the calling function prior to the function call need
to be saved so that they need not be carried out again upon returning from the called
function. To save all the computations performed, all the local variables declared within
the calling function are saved before executing the function call. The stored values of the
local variables are restored after returning from the called function.

2. Saving the point of function call: The point from where the function call is given is saved
so that the control can return to the same point after executing the called function. The
point of the function call can be saved by taking the dump of content of registers, spe-
cifically IP register. Instruction Pointer (IP) register is a 16-bit register that points to the
memory location of the next statement to be executed. When the control returns from the
called function, the content of the Instruction Pointer register is restored so that the state-
ment next to the statement containing the function call gets executed.

 Execution of these additional tasks requires some time and that is why function calls are time
consuming. Transferring the control within the same function just requires the manipulation of
content of the Instruction Pointer and does not require the above tasks to be carried out. Since the
goto statement just manipulates the content of the Instruction Pointer and does not carry out the
above-mentioned tasks, it cannot be used to transfer the control from one function to another.

35. Inputs are given to the functions by means of arguments. main is also a function. Therefore, can we give
inputs to the function main by supplying arguments?

 Yes, inputs to the function main can be given by making use of command line arguments.Â

Forward Reference: Command line arguments (Chapter 6).

Code Snippets
 Determine the output of the following code snippets. Assume that the inclusion of the required standard

header files has been made and there is no prototyping error due to them. Prototypes of user-defined func-
tions are explicitly mentioned, if required.

36. main()
 {
 int a;
 a=printf(“Hello”)+printf(“Readers!!”);
 printf(“\n%d characters printed”,a);
 }

Functions 313

37. main()
 {
 int a=10,b=20,c;
 c=add(a,b);
 printf(“The result after addition is %d”,c);
 }
 int add(int a, int b)
 {
 return a+b;
 }
38. main()
 {
 int add(int,int),a,b;
 a= b=10;
 printf(“The result of addition is %d”,add(a,b));
 }
 int add(int a,int b)
 {
 return a+b;
 }
39. int add(int,int);
 main()
 {
 int a=10,b=10,c;
 c=add(a,b);
 printf(“The result after addition is %d”,c);
 }
 int add(int a, int b)
 {
 return a+b;
 }
40. main()
 {
 int add(int,int),a,b,c;
 a=10;b=20;
 c=add(a,b);
 printf(“The result of addition is %d”,add(a,b));
 }
 int add(int a, b)
 {

 return a+b;
 }
41. main()
 {
 int add(int,int),a,b,c;
 a=10; b=20;
 c=add(a,b);
 printf(“The result of addition is %d”,c);
 int add(int a,int b)

314 Programming in C—A Practical Approach

 {
 return a+b;
 }
 }
42. void fun(int a)
 {
 printf(“The value of a inside fun is %d\n”,a);
 }
 main()
 {
 int a=10,b;
 b=fun(a);
 printf(“The value of b after call to fun is %d”,b);
 }
43. fun(int a)
 {
 printf(“The value of a inside fun is %d”,a);
 }
 main()
 {
 int a=10,b;
 b=fun(a);
 printf(“\nThe value of b after call to fun is %d”,b);
 }

44. fun(int a)
 {
 printf(“The value of a inside fun is %d\n”,a);
 a+2;
 }
 main()
 {
 int a=10,b;
 b=fun(a);
 printf(“The value of b after call to fun is %d”,b);
 }
45. int add(int,int);
 main()
 {
 int a=10,b=20,c;
 c=add(a,b);
 printf(“The result after addition is %d”,c);
 }
 int add(int a, int b)
 {
 a+b;
 }
46. int add(int,int);
 main()

Functions 315

 {
 int a=10,b=20,c;
 c=add(a,b);
 printf(“The result after addition is %d”,c);
 }
 int add(int a, int b)
 {
 a+b;
 return;
 }
47. int add(int a,int b)
 {
 return a+b;
 }
 main()
 {
 int c;
 c=add(10);
 printf(“The result after addition is %d”,c);
 }
48. int add(int a,int b=12)
 {
 return a+b;
 }
 main()
 {
 int c;
 c=add(10);
 printf(“The result after addition is %d”,c);
 }
49. int add(int a,int b=12)
 {
 return a+b;
 }
 main()
 {
 int c;
 c=add(10,20);
 printf(“The result after addition is %d”,c);
 }
50. int add(int a=12,int b)
 {
 return a+b;
 }
 main()
 {
 int c;
 c=add(10,20);
 printf(“The result after addition is %d”,c);
 }

316 Programming in C—A Practical Approach

51. int swap(int a,int b)
 {
 a^=b^=a^=b;
 printf(“The values of a and b in swap are %d %d\n”,a,b);
 }
 main()
 {
 int a=10,b=20;
 printf(“This is illustration of pass by value\n”);
 printf(“The values of a and b before swap are %d %d\n”,a,b);
 swap(a,b);
 printf(“The values of a and b after swap are %d %d\n”,a,b);
 }
52. int swap(int *a,int *b)
 {
 *a^=*b^=*a^=*b;
 printf(“The values of a and b in swap are %d %d\n”,*a,*b);
 }
 main()
 {
 int a=10,b=20;
 printf(“This is illustration of pass by reference or address\n”);
 printf(“The values of a and b before swap are %d %d\n”,a,b);
 swap(&a,&b);
 printf(“The values of a and b after swap are %d %d\n”,a,b);
 }
53. int sum_diff(int a,int b)
 {
 int sum=a+b;
 int diff=a-b;
 return sum,diff;
 }
 main()
 {
 int a=20,b=10;
 printf(“Sum is %d and Difference is %d\n”,sum_diff(a,b),sum_diff(a,b));
 }
54. int sum_diff(int a,int b)
 {
 int sum=a+b;
 int diff=a-b;
 return sum, return diff;
 }
 main()
 {
 int a=20,b=10;
 printf(“Sum is %d and Difference is %d\n”,sum_diff(a,b),sum_diff(a,b));
 }

Functions 317

55. int sum_diff(int a,int b)
 {
 int sum=a+b;
 int diff=a-b;
 return sum;
 return diff;
 }
 main()
 {
 int a=20,b=10;
 printf(“Sum is %d and Difference is %d\n”,sum_diff(a,b),sum_diff(a,b));
 }

56. sum_diff(int a,int b,int *sum,int *diff)
 {
 *sum=a+b;
 *diff=a-b;
 }
 main()
 {
 int a=20,b=10,sum,diff;
 sum_diff(a,b,&sum,&diff);
 printf(“Sum is %d and Difference is %d\n”,sum,diff);
 }

57. fun1()
 {
 return printf(“Control is in Function1\n”);
 }
 fun2()
 {
 return printf(“Control is in Function2\n”);
 }
 main()
 {
 printf(“%d %d”,fun1(),fun2());
 }

58. fun1()
 {
 return printf(“Control is in Function1\n”);
 }
 fun2()
 {
 return printf(“Control is in Function2\n”);
 }
 main()
 {
 printf(“%d”,fun1()+fun2());
 }

318 Programming in C—A Practical Approach

59. int fact(int no)
 {
 if(no==1)
 return 1;
 else
 return no*fact(no-1);
 }
 main()
 {
 int temp;
 temp=fact(4);
 printf(“The value of factorial of 4 is %d”, temp);
 }
60. main()
 {
 printf(“Infinite Recursion\n”);
 main();
 }
61. check_ptr(int [2][3]);
 main()
 {
 int arr[2][3]={1,2,3,4,5,6};
 printf(“Size of arr in function main is %d\n”,sizeof(arr));
 check_ptr(arr);
 }
 check_ptr(int arr[2][3])
 {
 printf(“Size of arr in function check is %d”,sizeof(arr));
 }
62. int add(int a,int b)
 {
 return a+b;
 }
 main()
 {
 int (*ptr)(int,int);
 ptr=add;
 printf(“The result of addition is %d\n”,ptr(2,3));
 printf(“The result of addition is %d”,(*ptr)(2,3));
 }
63. int add(int a,int b)
 {
 return a+b;
 }
 int sub(int a,int b)
 {
 return a-b;
 }
 int mul(int a,int b)

Functions 319

 {
 return a*b;
 }
 int div(int a,int b)
 {
 return a/b;
 }
 main()
 {
 int (*ptr[4])(int,int)={add,sub,mul,div};
 int i;
 for(i=0;i<4;i++)
 printf(“The result of called function %d is %d\n”,i+1,ptr[i](10,5));
 }
64. int add(int,int);
 int sub(int,int);
 fun(int(*)(int,int));
 main()
 {
 printf("%d\n",fun(add));
 printf("%d",fun(sub));
 }
 fun(int (*a)(int,int))
 {
 return a(2,3);
 }
 int add(int a,int b)
 {
 return a+b;
 }
 int sub(int a,int b)
 {
 return a-b;
 }

65. int add(int a,int b){return a+b;}
 int sub(int a,int b){return a-b;}
 int mult(int a,int b){return a*b;}
 int div(int a,int b){return a/b;}
 int (*f_returning_fps(int))(int,int);
 main()
 {
 int i=1, j=3, res1,res2;
 res1=f_returning_fps(i)(15,5);
 printf(“Result of operation1 is %d\n”,res1);
 res2=f_returning_fps(j)(15,5);
 printf(“Result of operation2 is %d\n”,res2);
 }
 int(*f_returning_fps(int a))(int,int)

320 Programming in C—A Practical Approach

 {
 int (*arr[4])(int,int)={add,sub,mult,div};
 return arr[a];

 }

Multiple-choice Questions
66. A function can return

a. No value c. Two values
b. Only one value d. As many values as the user likes

67. By default, the return type of a function is
a. char c. float
b. int d. void

68. A function can be
a. Defined within another function c.  Both defined as well as declared within

another function
b. Declared within another function d. None of these

69. Which of the following can be a possible return type of a function?
a. Array type c. Pointer type
b. Function type d. All of these

70. Which of the following is not a valid parameter type for a function?
a. Array type c. Pointer type
b. Function type d. None of these

71. A function that calls itself within its own body is called
a. Mutually recursive c. Direct recursive
b. Indirect recursive d. None of these

72. The changes made in the parameters in the called function are reflected to the calling function.
The probable method of argument passing is:
a. Pass by value c. Any of pass by value or pass by reference
b. Pass by reference d. None of these

73. The method used to pass an array to a function is
a. Value c. Cannot be passed to functions
b. Reference d. None of these

74. Which of the following is a definite advantage of recursion over iteration?
a. Better execution speed c. Ease of expression
b. Saving in memory space d. None of these

75. The declaration statement int *ptr(int,int); declares ptr to be a
a.  Pointer to a function that accepts two c. Pointer to an array of two integers

integers and returns an integer
b.  A function that accepts two integers d. None of these

and returns a pointer to an integer

Functions 321

76. The execution of a program
a. Always starts with main function c. Can start from any function
b. Starts with the function that is d. None of these

defined first

77. The type of a function depends upon
a. Its return type c. Its return type and types of its parameters
b. Types of its parameters d. None of these

78. The values given to a function at the time of making the function call are called
a. Actual arguments c. Formal parameters
b. Formal arguments d. None of these

79. The statement that is used to terminate the execution of a function is
a. break statement c. continue statement
b. return statement d. exit function call statement

80. main is a
a. User-defined function c. Pre-defined function
b. Library function d. None of these

81. In the C statement, a=f1(1,2)+f2(2,3)/f3(3,4);, the order in which functions f1, f2 and f3 are called is
a. f1, f2, f3 c. f3, f2, f1
b. f2, f3, f1 d. Random order

82 In the C statement, a=f1(1,2),f2(2,3),f3(3,4);, the order in which functions f1, f2 and f3 are called is
a. f1, f2, f3 c. f3, f2, f1
b. f2, f3, f1 d. Random order

83. In the C statement, printf(“%d %d %d”,f1(1,2),f2(2,3),f3(3,4));, the order in which functions f1, f2 and f3 are
called is
a. f1, f2, f3 c. Random order
b. f3, f2, f1 d.  The order is unspecified and is compiler

dependent

84. The number of times Infinite recursion is printed by the following C program is
 main()
 {
 printf(“Infinite recursion\n”);
 main();
 }

a. Infinite number of times c. Till the run-time stack does not overflow
b. 32767 times d. 65535 times

85. Which of the following is a variable argument function?
a. printf c.  gets
b. puts d. strcpy

322 Programming in C—A Practical Approach

Outputs and Explanations to Code Snippets
36. HelloReaders!!
 14 characters printed
 Explanation:
 The printf function call is a valid expression. The printf function returns an integer value equal to the

number of characters it prints. Hence, printf(“Hello”) prints Hello and returns 5. Similarly, printf(“Readers!!)
prints Readers!! and returns 9. The values returned by the printf functions are summed up and the
final value is assigned to the integer variable a. The value of a is printed by the next printf state-
ment.

37. Compilation error “Call to undefined function ‘add’ in function main()”
 Explanation:
 A function needs to be defined or declared before it is called. In the given piece of code, function

add is neither defined nor declared before it is called. Hence, the compiler will not be able to per-
form type-checking and therefore issues an error message.

38. The result of addition is 20
 Explanation:

Backward Reference: Refer the explanation given in Answer number 3.

 It is valid to declare a function within the body of some other function. The function add is de-
clared within the body of the function main before its call. Upon invocation, function add returns
the result of the addition of the values of a and b, i.e. 20. The returned result is printed by the printf
function.

39. The result of addition is 20
 Explanation:
 The only constraint about the place of declaration of a function is that it should be before its call.

The declaration can be either in the local scopeÂ or in the global scope.Â In the given piece of
code, the function add has been declared in the global scope.

Forward Reference: Local scope and Global scope (Chapter 7).

40. Compilation error
 Explanation:
 Shorthand declaration of the parameters in the parameter list is not allowed and this leads to the

compilation error. The rectified declaration of the parameter list is as follows:
 int add(int a, int b)
 {……}

41. Compilation error
 Explanation:

Backward Reference: Refer the explanation given in Answer number 3.

Functions 323

 A function can be declared but cannot be defined within the body of some other function. In the
given piece of code, function add is defined within the body of the function main. This is not valid
and leads to the compilation error.

42. Compilation error
 Explanation:

Backward Reference: Refer Section 5.3.1.1.3.1.1 (Point 2).

 The return type of the function fun is void. It will not return any value. If it does not return any
value, how can the returned value be assigned to b? Hence, writing b=fun(a); is erroneous and leads
to the compilation error.

43. The value of a inside fun is 10
 The value of b after call to fun is 31
 Explanation:
 The return type of the function fun is not specified and by default will be considered as int. The

function fun is expected to return an integer value but no return statement is used inside its body
to return a value. If no return statement is used inside the body of a function to return a value,
then by default it returns the content of the accumulator register (AX). The content of the ac-
cumulator register is the result of the last computation. The printf function prints a string and
returns a value equal to the number of characters it prints. Therfore, after the execution of printf
function, the content of the accumulator register will be the value returned by the printf function,
i.e. 31. The content of the accumulator register will be returned by the function fun, will be as-
signed to the variable b and will be printed later.

 Try changing the number of characters in the string given to the function printf in the function
fun and observe the values of b.

The content of the accumulator register can be observed by tracing the program and looking
at its content in the register window. In Borland TC 3.0, register window can be opened by
going to the Window menu and invoking the Register option. In Borland TC 4.5, register win-
dow can be opened by going to the View menu and invoking the Register option.

44. The value of a inside fun is 10
 The value of b after call to fun is 12
 Explanation:

Backward Reference: Refer the explanation given in Answer number 43.

 The last computation performed in the function fun is a+2. After the execution of this computation,
content of the accumulator would be 12. As no return statement is used in the function fun, it returns
the content of the accumulator register, i.e. 12.

45. The result after addition is 30
 Explanation:
 Since no return statement is present, the result of the last computation that is present in the accu-

mulator register (i.e. result of a+b) is returned.

324 Programming in C—A Practical Approach

46. Compilation error
 Explanation:
 The first form of the return statement (i.e. return;) can only be used if the return type of the function

is void. In the given code, the return type of the function add is int, so the second form of the return
statement, i.e. return expression; should have been used instead of return;.

47. Compilation error “Too few parameter in call to add(int,int) in function main”
 Explanation:
 Function add is a fixed argument function and expects two arguments. As it is called with only

one argument, i.e. 10, there is a mismatch in the number of arguments and the number of param-
eters. Therefore, the compiler issues an error message.

48. The result after addition is 22
 Explanation:
 There will be no compilation error as in Question number 47. If a function provides a default ar-

gument for a parameter, then it can be invoked with or without an argument for that parameter.
In the given piece of code, the default argument (i.e. 12) is provided for the parameter b. Hence, it
is not mandatory to provide an argument for the parameter b.

49. The result after addition is 30
 Explanation:
 If an argument corresponding to the parameter with the default argument is provided in a func-

tion call, it overrides the value of the corresponding default argument. In the given piece of code,
function add is called with two arguments, i.e. 10 and 20. The value 20 overrides the default argu-
ment value. Hence, the value of b in the function add will be 20. Thus, the value returned by the
function add will be 30 and it gets printed by the printf function.

50. Compilation error “Default value missing following parameter a”
 Explanation:
 A function declaration can specify default arguments for all or for a subset of parameters. If de-

fault arguments are specified only for the subset of parameters, then they should be specified for
the parameters that lie on the trailing side. Hence, it is not possible to specify the default argu-
ment for the parameter a unless and until the default argument for the parameter b is specified.

51. This is illustration of pass by value
 The values of a and b before swap are 10 20
 The values of a and b in swap are 20 10
 The values of a and b after swap are 10 20
 Explanation:
 Since the values of a and b are passed by value, the changes made in the values of the parameters

inside the called function are not reflected to the calling function.

52. This is illustration of pass by reference or address
 The values of a and b before swap are 10 20
 The values of a and b in swap are 20 10
 The values of a and b after swap are 20 10
 Explanation:
 Since the values of a and b are passed by reference, the changes made in the values pointed to by

the parameters inside the called function are reflected to the calling function.

Functions 325

53. Sum is 10 and Difference is 10
 Explanation:
 A function can return only one value. It seems that return sum,diff; returns the value of both sum and

diff. However, it is not true. In the statement return sum,diff;, the return expression sum,diff is evaluated
first and then its outcome is returned. The comma operator involved in the expression guaran-
tees left to right evaluation and returns the result of the rightmost sub-expression. Therefore, the
return expression sum,diff evaluates to the result of the evaluation of diff. Hence, both the calls to
function sum_diff, returns the value of diff, i.e. 10. That is why the output comes out to be Sum is 10 and
Difference is 10.

54. Compilation error “Expression syntax in function main”
 Explanation:
 return is a statement and not an expression. It cannot be used as an operand of any operator. Writ-

ing return sum, return diff; is not valid as return statement is an operand of comma operator. It should
be either return sum; return diff; or return sum, diff;.

55. Sum is 30 and Difference is 30
 Explanation:
 A function can have more than one return statement within its body. If more than one return

statement is present inside the body of a function, only the return statement that appears first
in the logical flow of control gets executed. In the given piece of code, the statement return sum;
appears first in the logical flow of control. Therefore, it gets executed and the control along
with the value of sum is returned to the calling function, i.e. main. The statement return diff; will
never be executed and forms an unreachable part of the code. Hence, both the calls to the func-
tion sum_diff, return the value of sum, i.e. 30. That is why the output comes out to be Sum is 30 and
Difference is 30.

56. Sum is 30 and Difference is 10
 Explanation:
 By making the use of the return statement, a function can return only one value. However, it is pos-

sible to indirectly get more than one result from a function either by using global variablesÂ or
pass by reference. In the given piece of code, pass by reference is used to indirectly get two outputs
from the function sum_diff.

 Suppose, the variables a, b, sum and diff that are localÂ to the function main are allocated at the
memory locations 2000, 2002, 2004 and 2006, respectively. The parameters declared in the header
of the function sum_diff are local to the function sum_diff and are allocated at separate memory loca-
tions, say 4000, 4002, 4004 and 4006 respectively. Note that the type of the variables sum and diff in the
function main is int while the type of variables sum and diff in the function sum_diff is int*. The variables
a and b are passed by value while the variables sum and diff are passed by reference. The passed
values and the execution of statements are shown in the following figure:

326 Programming in C—A Practical Approach

i G (in the above figure) means garbage.

 The variables in the statement *sum=a+b; refer to the local variables of the function sum_diff. This state-
ment places the result of addition of a and b, i.e. 30 at the memory location 2004, i.e. in the sum vari-
able of the function main. Similarly, *diff=a+b, places the difference of a and b, i.e. 10 at the memory
location 2006, i.e. in the diff variable of the function main. In this way, the function sum_diff has indirectly
returned two values to the calling function, i.e. main. Thus, reference to the variables sum and diff in
the function main after the execution of the function sum_diff gives 30 and 10, respectively, instead of
garbage values.

Forward Reference: Local variables and global variables (Chapter 7).

57. Control is in Function2
 Control is in Function1
 24 24
 Explanation:
 The comma operator guarantees left-to-right evaluation, but the commas separating the argu-

ments in a function call are not comma operators. If the commas separating the arguments in
a function call are considered as comma operators, then no function could have more than one
argument. Hence, arguments are not guaranteed to be evaluated from left to right. The order of
evaluation of arguments in a function call is unspecified and is compiler dependent. In Borland
TC 3.0 and TC 4.5, the evaluation takes place from right to left.

58. Control is in Function1
 Control is in Funciton2
 48
 Explanation:
 The expression fun1()+fun2() gets evaluated first and the result of its evaluation is printed. The oper-

ands of + operator are evaluated from left to right. Hence, the function fun1 is called first and then
the function fun2 is called.

59. The value of factorial of 4 is 24
 Explanation:

Backward Reference: Refer Section 5.3.1.1.7.3.1.1 for the answer.

Activation record of main Activation record of sum_diff
Name a b Name a b
Type int int a and b are passed by value Type int int
Value 20 10 Value 20 10

Address 2000 2002 Address 4000 4002

Name sum diff Name sum diff
Type int int sum and diff are passed by reference Type int* int*
Value G G Value 2004 2006

Address 2004 2006 Address 4004 4006

Chapter 5a.indd 326Chapter 5a.indd 326 28/02/2010 3:01:08 PM28/02/2010 3:01:08 PM

Functions 327

60. Infinite Recursion
 Infinite Recursion
 Infinite Recursion
 Infinite Recursion …
 Caution:
 Keeps on printing ‘Infinite Recursion’ till the run-time stack does not overflow.
 Explanation:
 The given piece of code, if executed using Turbo C 3.0, keeps on printing ‘Infinite Recursion’ till the

run-time stack does not overflow. The run-time stack overflows when a large number of activation
records are stacked up and there is no memory space left for creating and stacking new activation
records. Once the run-time stack overflow occurs, the program will terminate. That is why it is
said that ‘Infinite recursion will automatically terminate but infinite iteration will not’. Note
that in Turbo C 4.5, it is not allowed to call the function main from within the function main.

61. Size of arr in function main is 12
 Size of arr in function check is 2 (In Borland Turbo C 4.5 the output will be 4)
 Explanation:
 arr declared inside the body of the function main is a two-dimensional array of integers having

two rows and three columns. The parameter arr declared in the header of the function check_ptr as
int arr[2][3] implicitly gets converted to int (*arr)[3], i.e. pointer to an integer array of size 3. That is
why, the size occupied by arr in the function main is 12, and in the function check_ptr is 2 (as a pointer
takes two bytes in Borland TC 3.0 irrespective of the data to which it points).

62. The result of addition is 5
 The result of addition is 5
 Explanation:
 The declaration statement int(*ptr)(int,int); declares ptr as a pointer to a function that accepts two in-

tegers and returns an integer. The assignment statement ptr=add; assigns the starting address of the
function add to the pointer ptr. The function add can be invoked by the means of pointer by either
writing ptr(2,3); or (*ptr)(2,3);, where 2 and 3 are the values of the arguments to the function add.

63. The result of called function 1 is 15
 The result of called function 2 is 5
 The result of called function 3 is 50
 The result of called function 4 is 2
 Explanation:
 The declaration statement int (*ptr[4])(int,int)={add,sub,mul,div}; declares ptr as an array of pointers to func-

tions that accepts two integers and returns an integer. It also initializes the array locations with the
starting addresses of the functions add, sub, mul and div. These functions are called in the loop by writing
p[i](10,5), where 10 and 5 are the arguments to the functions. The functions called for the values of i: 0, 1,
2 and 3 are add, sub, mul and div, respectively. The values returned by these functions are then printed.

64. 5
 -1
 Explanation:
 The declaration fun(int(*)(int,int); declares fun as a function that accepts a pointer to a function that

accepts two integers and returns an integer. The return type of fun is not specified and by default
would be int. In the function main, fun is called with add as an argument. This means that the start-
ing address of the function add is passed as an argument to the parameter a of the function fun.

328 Programming in C—A Practical Approach

Within the body of the function fun, the expression a(2,3), calls the function pointed to by a with 2
and 3 as the arguments. Since a at present points to the function add, the function add is called with
the arguments 2 and 3. The value returned by the function add, i.e. 5 is returned by the function
fun. Therefore, 5 gets printed. In the next printf statement, the function fun is called with sub as the
argument. The starting address of the function sub is passed as an argument to the parameter a of
the function fun. The expression a(2,3), calls the function pointed to by a with 2 and 3 as the argu-
ments. Since a now points to the function sub, the function sub is called with the arguments 2 and
3. The value returned by the function sub, i.e. -1 is returned by the function fun and is printed in the
function main. Thus, the output.

65. Result of operation1 is 10
 Result of operation2 is 3
 Explanation:
 f_returning_fps is a function that takes an integer and returns a pointer to a function that takes two inte-

gers and returns an integer. When the function f_returning_fps is invoked with argument values i=1 and
j=3, it returns pointers to the functions sub and div, respectively. The returned pointers are used to in-
voke the respective functions with argument values 15 and 5. The invoked functions sub and div return
integer values 10 and 3, respectively. These returned values are assigned to the variables res1 and res2
and are printed by the printf function.

Answers to Multiple-choice Questions
66. b 67. b. 68. b 69. c 70. b 71. c 72. b 73. b 74. c 75. b 76. a 77. c. 78. a 79. b
80. a 81. b 82. a 83. d 84. c 85. a

Programming Exercises

Program 1 | Devise a C function that checks whether a given number is prime or not and illustrate its use

Line PE 5-1.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

//Function to check whether a given number is prime or not
#include<stdio.h>
int prime(int no); //ÅFunction declaration
main()
{
int num;
printf(“Enter the number to be checked:\t”);
 scanf(“%d”, &num);
if(prime(num)==0)
 printf(“Number is not prime\n”);
else
 printf(“Number is prime\n”);
}
int prime(int no) //ÅFunction definition
{
 int i;
 for(i=2;i<no;i++)
 if(no%i==0) //ÅIs number divisible by any number from 2 to n-1
 return 0; //Åif yes, number is not prime, return 0
 return 1; //Åif no, number is prime, return 1
}

Enter the number to be checked: 13
Number is prime

Output window
(second execution)

Enter the number to be checked: 18
Number is not prime

chapter 5b.indd 328chapter 5b.indd 328 28/02/2010 3:06:11 PM28/02/2010 3:06:11 PM

Functions 329

Program 2 | Devise a C function that sums all the elements of an array. Illustrate its use

Line PE 5-2.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

//Function that sums all the elements of an array
#include<stdio.h>
int sumall(int array[], int num); //ÅFunction declaration
main()
{
int num, i, result, elements[20];
printf(“Enter the number of elements in the array (max. 20):\t”);
 scanf(“%d”, &num);
printf(“Enter the elements:\n”);
for(i=0;i<num;i++)
 scanf(“%d”,&elements[i]);
result=sumall(elements, num);
printf(“The sum of all the elements of the array is %d”,result);
}
int sumall(int array[], int num) //ÅFunction definition
{
 int i,sum=0;
 for(i=0;i<num;i++)
 sum=sum+array[i];
 return sum;
}

Enter the number of elements in the array (max. 20) 5
Enter the elements:
10 2 4 7 11
The sum of all the elements of the array is 34

Program 3 | Devise a C function that checks whether two matrices can be multiplied or not. If yes, mul-
tiply them. Illustrate the use of the developed function

Line PE 5-3.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

//Matrix Multiplication with the help of functions
#include<stdio.h>
#include<stdlib.h>
int mat_multiply(int mx1[][10], int m1, int n1, int mx2[][10], int m2, int n2, int mx3[][10]);
main()
{
int mx1[10][10], mx2[10][10], mx3[10][10]={0};
int m1, n1, m2, n2, i, j, indicator;
printf(“Enter the order of matrix-1 (max. 10 by 10)\t”);
scanf(“%d %d”,&m1, &n1);
printf(“Enter the elements of matrix-1:\n”);
for(i=0;i<m1;i++)
{
 for(j=0;j<n1;j++)
 scanf(“%d”,&mx1[i][j]);
}
printf(“Enter the order of matrix-2 (max. 10 by 10)\t”);
scanf(“%d %d”,&m2, &n2);
printf(“Enter the elements of matrix-2:\n”);
for(i=0;i<m2;i++)
{
 for(j=0;j<n2;j++)
 scanf(“%d”,&mx2[i][j]);
}

Enter the order of matrix-1 (max. 10 by 10) 2 3
Enter the elements of matrix-1:
1 2 3
4 5 6
Enter the order of matrix-2 (max. 10 by 10) 3 2
Enter the elements of matrix-2:
1 2
3 4
5 6
The result of matrix multiplication is:
22 28
49 64

Output window
(second execution)

Enter the order of matrix-1 (max. 10 by 10) 2 3
Enter the elements of matrix-1:
1 2 3
4 5 6
Enter the order of matrix-2 (max. 10 by 10) 2 2
Enter the elements of matrix-2:
1 2
3 4
Matrices are not compatible for multiplication

(Contd...)

330 Programming in C—A Practical Approach

Line PE 5-3.c Output window

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

indicator=mat_multiply(mx1, m1, n1, mx2, m2, n2, mx3);
if(indicator==0)
 printf(“Matrices are not compatible for multiplication\n”);
else
{
printf(“The result of matrix multiplication is:\n”);
for(i=0;i<m1;i++)
{
 for(j=0;j<n2;j++)
 printf(“%d ”,mx3[i][j]);
 printf(“\n”);
}
}
}
int mat_multiply(int mx1[][10], int m1, int n1, int mx2[][10], int m2, int n2, int mx3[][10])
{
 int i, j, k;
 if(n1!=m2)
 return 0;
 else
 { for(i=0;i<m1;i++)
 for(j=0;j<n2;j++)
 for(k=0;k<n1;k++)
 mx3[i][j]=mx3[i][j]+mx1[i][k]*mx2[k][j];
 return 1;
 }
}

Program 4 | Merge Sort: Given a list of n elements, arrange them in an ascending order using Merge Sort

Divide-and-conquer is an algorithm design strategy. It works as follows:

1. It checks whether the given instance of problem P is small or not. The given instance is said to be small if
it can be easily solved.

2. If the given instance is small, solve it and return the solution. Else, follow the next step.
3. Divide the given instance of problem into smaller sub-problems P1, P2, P3….Pn.
4. Solve the smaller sub-problems recursively by applying divide-and-conquer strategy.
5. Combine the solutions for sub-problems P1, P2, P3….Pn into a solution for P.

Merge Sort is a sorting algorithm that is based on divide-and-conquer strategy. Merge sort works as follows:
1. The size of the given list is determined.
2. If it is 0 or 1 (i.e. it is a small problem), then the list is already sorted. Otherwise, for the lists of the size

greater than 1, follow the next step.
3. The unsorted list is divided into two halves of approximately equal size (i.e. division of problem P into P1

and P2).
4. The divided sub-lists are recursively sorted by applying Merge Sort.
5. The sorted sub-lists are merged back into one sorted list.

For example, Merge sort sorts the given unsorted list L as follows:

L

[0] [1] [2] [3] [4] [5]
12 1 8 10 5 3

(Contd...)

//ÅThe list L is divided at midpoint into two halves L1 and L2

Functions 331

 L11 L12 L2
[0] [1] [2] [3] [4] [5]
12 1 8 10 5 3

 L111 L112 L12 L2

[0] [1] [2] [3] [4] [5]
12 1 8 10 5 3

 L11 L12 L2
[0] [1] [2] [3] [4] [5]
1 12 8 10 5 3

 L1 L2
[0] [1] [2] [3] [4] [5]
1 8 12 10 5 3

 L1 L21 L22

[0] [1] [2] [3] [4] [5]
1 8 12 10 5 3

 L1 L211 L212 L22

[0] [1] [2] [3] [4] [5]
1 8 12 5 10 3

 L1 L21 L22
[0] [1] [2] [3] [4] [5]
1 8 12 5 10 3

 L1 L2
[0] [1] [2] [3] [4] [5]
1 8 12 3 5 10

L
[0] [1] [2] [3] [4] [5]
1 3 5 8 10 12

 L1 L2
[0] [1] [2] [3] [4] [5]
12 1 8 10 5 3

//Å The list L1 is further divided at midpoint into two halves L11
and L12

//Å The list L11 is further divided at midpoint into two halves L111
and L112

//Å The lists L111 and L112 are of size 1 and are already sorted. They
are merged to form the sorted list L11

//Å List L12 is of size 1 and is already sorted. The list L11 is also
sorted. The sorted lists L11 and L12 are merged to form the
sorted list L1

//Å The list L2 is divided at midpoint into two halves L21 and L22

//Å The list L21 is further divided at midpoint into two halves L211
and L212

//Å The lists L211 and L212 are of size 1 and are already sorted. They
are merged to form the sorted list L21

//Å List L22 is of size 1 and is already sorted. The list L21 is also
sorted. The sorted lists L21 and L22 are merged to form the
sorted list L2

//Å Both the lists L1 and L2 are sorted. They are merged to form the
sorted list L

(Contd...)

332 Programming in C—A Practical Approach

Line PE 5-4.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

//Merge Sort
#include<stdio.h>
int mergesort(int list[], int high, int low);
int merge(int num[], int low, int mid, int high);
main()
{
 int list[20], num, i;
 printf(“Enter the number of elements (max. 20)\t”);
 scanf(“%d”,&num);
 printf(“Enter the elements:\n”);
 for(i=0;i<num;i++)
 scanf(“%d”,&list[i]);
 mergesort(list, 0, num-1);
 printf(“After sorting, elements are:\n”);
 for(i=0;i<num;i++)
 printf(“%d\n”,list[i]);
}
int mergesort(int list[], int low, int high)
{
 int mid;
 if(low<high)
 {
 mid=(low+high)/2;
 mergesort(list, low, mid);
 mergesort(list, mid+1, high);
 merge(list, low, mid, high);
 }
}
int merge(int list[], int low, int mid, int high)
{
 int temp[20], k;
 int h=low, i=low, j=mid+1;
 while((h<=mid) && (j<=high))
 {
 if(list[h]<=list[j])
 {
 temp[i]=list[h];
 h=h+1;
 }
 else
 {
 temp[i]=list[j];
 j=j+1;
 }
 i=i+1;
 }
 if(h>mid)
 for(k=j;k<=high;k++)
 {
 temp[i]=list[k];

Enter the number of elements(max. 20) 6
Enter the elements:
12
10
5
-3
14
2
After sorting, elements are:
-3
2
5
10
12
14

(Contd...)

Functions 333

51
52
53
54
55
56
57
58
59
60
61
62

 i++;
 }
 else
 for(k=h;k<=mid;k++)
 {
 temp[i]=list[k];
 i++;
 }
 for(k=low;k<=high;k++)
 list[k]=temp[k];
 return 0;
}

Program 5 | Quick Sort: Given a list of n elements, arrange them in ascending order using Quick sort

Quick Sort is another efficient sorting algorithm that is based on the divide-and-conquer strategy. In Merge Sort,
the list was divided at its midpoint into sub-lists that were independently sorted and later merged. In Quick Sort,
the division into two sub-lists is made so that the sorted sub-lists do not need to be merged later. This can be
accomplished by picking up an element in the list known as the pivot element. The elements of the list are rear-
ranged, so that all the elements that are less than the pivot element come towards the left of the pivot element and
all the elements greater than the pivot element come after it (i.e. towards its right). This rearrangement is known
as partitioning. After partitioning, the pivot element is at its final position. The sub-list of lesser elements (i.e.
towards the left of pivot element) and greater elements (i.e. towards the right of pivot element) are recursively
sorted by using Quick Sort.
Partitioning:
C.A.R. Hoare, the developer of the Quick Sort algorithm, used the following approach to partition a list:

1. Consider the first element of the list as the pivot element.
2. Rearrange the elements of the list so that the pivot element is moved to its final position. This rearrange-

ment can be done as follows:

a. Suppose the given list is:

[0] [1] [2] [3] [4] [5]
12 1 8 10 5 3

b. At the end of the list, append an element that is greater than all the elements present in the list.

[0] [1] [2] [3] [4] [5] [6]
12 1 8 10 5 3 ∞

c. The first element of the unsorted list is the pivot element. Take two pointers, say i and j. The pointer i
points to the pivot element and the pointer j points to the appended largest element.

 i j

[0] [1] [2] [3] [4] [5] [6]
12 1 8 10 5 3 ∞

d. Increment the pointer i, till a value greater than the pivot element is encountered. Decrement the pointer
j, till a value smaller than the pivot element is encountered. If the pointer i is towards the left of pointer j
(i.e. i<j), swap the values pointed to by them else swap the value pointed to by the pointer j with the pivot
element. After this process, the pivot element will be at its final position.

(Contd...)

334 Programming in C—A Practical Approach

[0] [1] [2] [3] [4] [5] [6]
12 1 8 10 5 3 ∞

 i

[0] [1] [2] [3] [4] [5] [6]
12 1 8 10 5 3 ∞

[0] [1] [2] [3] [4] [5] [6]
3 1 8 10 5 12 ∞

The pivot element 12 has moved to its final position. It divides the list into two sub-lists. One containing the ele-
ments lesser than the pivot element and one containing elements greater than the pivot element (empty in this
case). This clearly indicates that the divided sub-list may have a significantly different size. The divided sub-lists
are recursively sorted by using Quick Sort.

Line PE 5-5.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30

//Quick Sort
#include<stdio.h>
int quicksort(int list[], int high, int low);
int partition(int num[], int low, int high);
int swap(int list[], int i, int j);
main()
{
 int list[21], num, i;
 printf(“Enter the number of elements (max. 20)\t”);
 scanf(“%d”,&num);
 printf(“Enter the elements:\n”);
 for(i=0;i<num;i++)
 scanf(“%d”,&list[i]);
 list[num]=10000;
 quicksort(list, 0, num-1);
 printf(“After sorting, elements are:\n”);
 for(i=0;i<num;i++)
 printf(“%d\n”,list[i]);
}
int quicksort(int list[], int low, int high)
{
 int pos;
 if(low<high)
 {
 pos=partition(list, low, high+1);
 quicksort(list, low, pos-1);
 quicksort(list, pos+1, high);
 }
}
int partition(int list[], int low, int high)

Enter the number of elements(max. 20) 6
Enter the elements:
12
10
5
-3
14
2
After sorting, elements are:
-3
2
5
10
12
14
Remark:
•  In the given code it is assumed

that the elements entered in the
array will be less than 10000

(Contd...)

//Å The pointer i is moved till element greater than the pivot element is en-
countered. Since there is no element greater than the pivot element, the
pointer i will stop at the appended largest element. If ∞ would have not
been appended, the pointer i would have strayed into garbage field.

//Å Since pointer j is towards the le of pointer i, swap the pivot element with
the element pointed to by j. The pivot element comes to its final position.

j i

//Å The pointer j points to the element lesser than the pivot element.

j

Functions 335

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

{
 int v=list[low], i=low, j=high;
 do
 {
 do
 {
 i++;
 }while(list[i]<v);
 do
 {
 j--;
 }while(list[j]>v);
 if(i<j)
 swap(list, i, j);
 }while(i<j);
 list[low]=list[j];
 list[j]=v;
 return j;
}
int swap(int list[], int i, int j)
{
 int temp;
 temp=list[i];
 list[i]=list[j];
 list[j]=temp;
 return 0;
}

Program 6 | Binary search: Given a list of n elements arranged in ascending order and a key, find whether
the given key exists in the list or not. If it exists, print its position in the list

Binary search is an efficient searching algorithm based on the divide-and-conquer strategy. It is based on the as-
sumption that the elements of the list are arranged in an ascending order. Similar to the linear search, it works by
comparing the key with the elements of the list, but with a difference in the pattern of making comparisons.
In the binary search, initially the key is compared with the element present at the middle position of the list. If both
are equal, the key is found and the search is finished. If the key is less than the middle element, search the key in
the list present towards the left of the middle element. If the key is greater than the middle element, search the key
in the list present towards the right of the middle element.

Line PE 5-6.c Output window

1
2
3
4
5
6
7
8
9

10

//Binary Search
#include<stdio.h>
int binarysearch(int list[], int low, int high, int key);
main()
{
int list[20], num, i, key, low, high, index;
printf(“Enter the number of elements (max. 20)\t”);
scanf(“%d”,&num);
printf(“Enter the elements in ascending order:\n”);
for(i=0;i<num;i++)

Enter the number of elements(max. 20) 6
Enter the elements in ascending order:
10
15
32
48
92
128
Enter the key that you want to search 48
48 exists at location no. 4

(Contd...)

336 Programming in C—A Practical Approach

 11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

 scanf(“%d”,&list[i]); //ÅRead elements in the list
printf(“Enter the key that you want to search\t”);
scanf(“%d”,&key); //ÅRead the key to be searched
index=binarysearch(list, 0, num-1, key);
if(index==-1)
 printf(“%d does not exist in the list”,key);
else
 printf(“%d exists at location no. %d\n”,key, index+1);
}
int binarysearch(int list[], int low, int high, int key)
{
 int mid;
 if(low==high) //Åif low==high, there is only one element
 {
 if(list[low]==key) //Åif that element is equal to key
 return low; //Åreturn its index
 else //Åelse key is not present in the list
 return -1; //Åreturn -1 as it is not a valid index value
 }
 else
 {
 mid=(low+high)/2; //Åmiddle position is found
 if(list[mid]==key) //Åif element at middle position=key
 return mid; //Åreturn the index of middle location
 else if(list[mid]>key) //Åif key<middle element, search left portion of the list
 return binarysearch(list, low, mid-1, key);
 else //Åsearch the right portion of the list
 return binarysearch(list, mid+1, high, key);
 }
}

Output window
(second execution)

Enter the number of elements(max. 20) 6
Enter the elements in ascending order:
10
15
32
48
92
128
Enter the key that you want to search 50
50 does not exist in the list

Functions 337

Test Yourself
1. Fill in the blanks in each of the following:

a. ____________help in modularizing a program into smaller simple parts.
b. The execution of a C program always begins with function ____________.
c. The expressions that appear within the parentheses of a function call are known as

____________.
d. The two ways of passing arguments to a function are ____________ and ____________.
e. The variables declared in the parameter declaration list in the function header are known as

____________.
f. The first argument to the printf function should be of ____________ type.
g. The return type of each math library function is ____________ .
h. The return type of a function cannot be ____________.
i. ____________ is a special case of recursion in which the last operation of a function is a recur-

sive call.
j. By default, the return type of a function is ____________.
k. Execution of each function requires a separate ____________.
l. The activation records for all of the active functions are stored in the region of memory called

____________.
m. The part of recursion in which a number of activation records are created and piled up is

known as ____________.

2. State whether each of the following is true or false. If false, explain why.
a. C is a strongly typed language.
b. main is a library-defined function.
c. There can be only one return statement within a function body.
d. printf is an example of a variable argument function.
e. The function designator implicitly refers to the starting address of the function.
f. The return statement is used to terminate the execution of a program.
g. A function can be defined within the body of another function, and the function defined

within another function is known as nested function.
h. Directly recursive functions are also known as mutually recursive functions.
i. A function need not be declared, if it is defined before it is called.
j. The shorthand declaration of parameters in the parameter list is not allowed.
k. One of the uses of function prototype is in type checking.
l. If the arguments are passed by reference, the changes made in the values pointed to by the

formal parameters in the called function are reflected to the calling function.
m. A function can return only one value.

3. Programming exercises:
a. Write a C function that checks whether a given number is even or odd. Illustrate its use.
b. Write a C function that checks whether a given number is perfect or not. Illustrate its use.
c. Write a recursive C function to find the sum of individual digits of a given positive integer

number.
d. Write a C function that finds the reverse of a given number.
e. Write a C function that checks whether a given number is a palindrome or not.
f. Write a C function that checks whether a given number is an Armstrong number or not.
g. Write an iterative C function to print the first n terms of a Fibonacci series. Get the value of n

from the user.
h. Write a recursive C function to print the first n terms of a Fibonacci series. Get the value of n

from the user. Illustrate its use.

338 Programming in C—A Practical Approach

i. Write an iterative C function that finds the value of xn. Get the values of x and n from the user.
Illustrate its use.

j. Write a recursive C function that finds the value of xn. Get the values of x and n from the user.
Illustrate its use.

k. Write a recursive C function that implements linear search. Given a list of n elements and a
key. Using the developed function, check whether the given key exists in the list or not. If yes,
print the position at which it exists in the list.

l. Write an iterative C function that finds the factorial of a given integer. Use this function to

 find
n
r

n!C =
r! n-r !()

m. Write a recursive C function that finds the factorial of a given integer. Use this function to

 find n
r

n!C =
r! n-r !()

n. Write a C function to evaluate the following series. Use a function to compute the factorials.
 Get the value x and the number of terms in the series from the user:

 i.

x x xx
2 4 6

cos() 1
2! 4! 6!

= − + − + ... ∞

ii.

x x xx
2 4 6

cosh() 1
2! 4! 6!

= + + − + ... ∞

iii.

x x xx x
2 3 4

exp() 1
2! 3! 4!

= + + + + + ... ∞

iv.

e
n

1 1 1 11 ...
1! 2! 3! !

= + + + + +

o. Write a C function that finds the sum of all the elements of a matrix. Illustrate the use of this
function.

p. Write a C function that checks whether a given matrix is symmetric or not. Illustrate its use.
q. Write a C function that finds the sum of elements of the principal diagonal of a matrix. Illus-

trate the use of this function.
r. Write a C program that extracts the lower-triangular matrix from a square matrix. Illustrate

the use of the developed function in a program.
s. Write a C function that finds the largest and the smallest element in a matrix. Illustrate the use

of the developed function in a program.
t. Write a C function that swaps the contents of two one-dimensional arrays. Do not use any ad-

ditional storage space. Illustrate the use of the developed function in a program.
u. Given n boolean variables x1, x2, x3 ….. xn. We wish to print all the possible combinations of the

truth values that they can assume. For instance, if n is equal to 2, there are four possibilities 00,
01, 10 and 11. Write a C program to accomplish this task.

v. Write a C program to implement ternary search. The ternary search works on the following
strategy:
Given a sorted list of n elements in ascending order. First, test the element at the location
n/3 for equality with the given key x. If they are found to be equal, print that the given key
is found at the location n/3, else compare it with the element at the location 2n/3. If they are
found to be equal, print that the given key is found at location 2n/3, else reduce the size of the
list to one-third and search the given key in the reduced list.

STRINGS AND CHARACTER
ARRAYS

6

Learning Objectives

In this chapter, you will learn about:

Strings
How strings are represented in C language
The usage of character arrays to store strings
 Null character and its importance in string
representation
How to read strings from the keyboard
How to print strings on the screen
 Various string operations like copy, compare,
concatenate, etc.
String library functions
How to store and work with a list of strings
Command line arguments

340 Programming in C—A Practical Approach

6.1 Introduction
The character string is one of the most useful and important data types. You have used the
character strings all the way in the previous chapters, but there is still much to learn about
them. The C string library provides a wide range of functions for strings like reading, writ-
ing, copying, comparing, combining, searching, etc. This chapter will add these capabilities to
your programming skills.

6.2 Strings
A character string literal constant or just a string literal is a sequence of zero or more charac-
ters enclosed within double quotes. For example, “GOD Bless!!” is a string literal constant. Know-
ingly or unknowingly, you have used strings in abundance with the printf function in previous
chapters.
The important points about the string literal constants are as follows:

1. String literals are enclosed within double quotes, whereas character literals are enclosed
within single quotes, e.g. “A” is a string literal constant while ‘A’ is a character literal con-
stant.

2. The used double quotes are not part of the string literal and are used only to delimit
it.

3. Every string literal constant is automatically terminated by the null character, i.e. ‘\0’.

The character constant with an ASCII value of zero is known as a null character and is writ-
ten as ‘\0’.

4. Like other literal constants, string literal constants are also stored in the memory. The
characters enclosed within double quotes and the terminating null character are stored
in the contiguous memory locations in a similar manner as arrays are stored in the
memory. Thus, a string literal constant “GOD Bless!!” will be stored in the memory as shown
in Figure 6.1.

G O D B l e s s ! ! ‘\0’

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Figure 6.1 | Storage of string literal constant “GOD Bless!!”

5. Unlike other literal constants, the amount of the memory space required for storing a
string literal constant is not fixed and depends upon the number of characters present
in a string literal.

6. The number of bytes required to store a string literal constant is one more than the num-
ber of characters present in it. The additional byte is required for storing the terminat-
ing null character. For example, the memory required to store the string literal “xyz” is 4
bytes. The code snippet in Program 6-1 illustrates this fact.

Strings and Character Arrays 341

Line Prog 6-1.c Output window

1
2
3
4
5
6

//Memory requirement of string literal
#include<stdio.h>
main()
{
 printf(“Memory requirement of \”xyz\” is %d bytes”,sizeof(“xyz”));
}

Memory requirement of “xyz” is 4 bytes
Remarks:
•  Escape sequence \” is used to print

dou ble quotes
•  The additional byte is required to

store the terminating null character

Program 6-1 | A program to illustrate that the memory space required by a string literal constant is one more
than the number of characters in it

7. The length of a string is defined as the number of characters present in it. The terminat-
ing null character is not counted while determining the length of a string. For example,
the length of the string literal “xyz” is 3. The code snippet in Program 6-2 verifies this fact.

Line Prog 6-2.c Output window

1
2
3
4
5
6
7
8

//Length of string literal
#include<stdio.h>
//string.h header file is to be included for using string library functions
#include<string.h>
main()
{
printf(“Length of string literal \”xyz\” is %d characters”,strlen(“xyz”));
}

Length of string literal “xyz” is 3 characters
Remarks:
•  The terminating null character is not

counted while determining the length
of a string

•  strlen is a string library function that
determines the length of a string

•  The prototype of the strlen function is
present in the header file string.h

Program 6-2 | A program to find the length of a string

8. A string literal constant of zero length is known as an empty string. The empty string is
written as “”, i.e. no character enclosed within double quotes. Although an empty string
is of zero length, it still takes 1 byte in the memory for the storage of a null character.

9. In C language, string type is not separately available, and character pointers are used
to represent strings. Thus, the type of string literal (e.g. “xyz”) is const char*. The constant
pointer refers to the address of the first element of the string. The strings represented
and interpreted in this way are known as C-style character strings. The code snippet in
Program 6-3 illustrates that a string literal decomposes into a pointer (const char*) point-
ing to the first character of the string.

Line Prog 6-3.c Output window

1
2
3
4
5
6
7

//C-style character strings are represented by const char*
#include<stdio.h>
main()
{
 printf(“The first character of string literal \”xyz\” is %c\n”,*“xyz”);
 printf(“The second character of string literal \”xyz\” is %c”,*(“xyz”+1));
}

The first character of string literal “xyz” is x
The second character of string literal “xyz” is y
Remarks:
•  The type of string literals is const char*
•  “xyz” refers to the address of the first

element of the string, i.e. the address
of x

•  Hence, dereferencing “xyz” outputs x

Program 6-3 | A program to illustrate that the string literal constant refers to the address of its first element

342 Programming in C—A Practical Approach

10. Since a string literal constant refers to a constant character pointer and does not have
a modifiable l-value, only the operations that can be applied on constant pointers can
be applied on C-style character strings. The application of any other operator on string
literals that cannot be applied on constant pointers leads to ‘L-value required’ compila-
tion error. The code snippet in Program 6-4 illustrates this fact.

Line Prog 6-4.c Output window

 1
 2
3
4
5
6

//String literal refers to constant character pointer
#include<stdio.h>
main()
{
 printf(“The first character of string literal \”xyz\” is %c”,*“xyz”++);
}

Compilation error “L-value required”
Remarks:
•  The expression *”xyz”++ will be in-

terpreted as *(“xyz”++)
•  The application of the post-

increment operator on “xyz” leads to
the compilation error as “xyz” does
not have a modifiable l-value

Program 6-4 | A program to illustrate that a string literal constant refers to a constant pointer and does not
have a modifiable l-value

11. Since C-style character string is of const char* type, it can be assigned to or initialized to a
character pointer variable. The following statements are valid:

char *string=”Strings!!!”;
string=”Trings!!!”;

12. Adjacent string literal constants are concatenated. This concatenation is carried out dur-
ing the preprocessing phase. The code snippet in Program 6-5 illustrates this fact.

Line Prog 6-5.c Output window

 1
 2
3
4
5
6

//Adjacent string literal constants get concatenated
#include<stdio.h>
main()
{
 printf(“GOD Bless ” ”us” “!!!”);
}

GOD Bless us!!!
Remark:
•  Adjacent string literal constants

in line number 5 are concatenated
and then printed

Program 6-5 | A program to illustrate that the adjacent string literal constants get concatenated

Forward Reference: Preprocessor directives (Chapter 8).

6.3 Character Arrays
An integer variable can store the value of an integer constant. For example, statement int a=10;
creates a variable a to store an integer constant 10. Similarly, float variables can store floating point
constants, and character variables can be used to store character constants. Now, the question
that arises here is: ‘Can we create a variable that can be used to store a string literal constant?’.
The answer to this question is YES! We can create variables of type char[] (i.e. character arrays)
to store string constants.

Chapter 6.indd 342Chapter 6.indd 342 28/02/2010 3:45:08 PM28/02/2010 3:45:08 PM

Strings and Character Arrays 343

The general form of a string variable or a character array declaration is:
<s_class_specf ><type_qualifier><type_modifier>char identifier[<size_specifier>]<=initialization_list OR string literal>;
The important points about string variable declarations are as follows:

1. The terms enclosed within angular brackets (i.e. <>) are optional and might not be pres-
ent in a declaration statement. The terms shown in bold are the mandatory parts of a
string variable declaration.

2. Since a string variable is a character array, all the syntactic rules discussed in Chapter 4
for declaring arrays are applicable for declaring string variables as well.

3. The size specification is optional if a string variable is explicitly initialized.
4. The string variable or character array can be initialized in two different ways:

a. By using string literal constant: In the declaration statement char str[6]=”Hello”; the
character array or string variable str is initialized with a string literal constant “Hello”.
It will be stored in the memory as shown in Figure 6.2.

b. By using initialization list: The alternate way to initialize a character array is by us-
ing a list of character initializers. The declaration statement char str[6]={‘H’,’e’,’l’,’l’,’o’,’\0’};
initializes the locations of the character array str with character initializers. The char-
acter array str will be stored in the memory in the same way as shown in Figure 6.2.

char str[6]=”Hello”; or char str[6]={‘H’,’e’,’l’,’l’,o’,’\0’};
str

H e l l o \0

2000 2001 2002 2003 2004 2005

Figure 6.2 | Two different ways to initialize a string variable or a character array

i When a character array is initialized with a list of character initializers, the terminating null
character is to be explicitly placed but when it is initialized with a string literal constant, the
terminating null character is automatically placed (if the size of the character array is one
more than the length of the string literal constant).

Forward Reference: Storage class specifier (Chapter 7).

6.4 Reading Strings from the Keyboard
The user can enter strings and store them in character arrays at the run time in a similar
manner as the string literal constants can be stored in the character arrays at the compile
time. The methods that can be used to read strings from the user at the run time are as
follows:

1. Using scanf function: The scanf function with %s format specification can be used to read
a string from the user and store it in a character array. The code snippet in Program 6-6
illustrates the use of the scanf function to read a string from the user.

344 Programming in C—A Practical Approach

Line Prog 6-6.c Output window

 1
 2
3
4
5
6
7
8
9

//Reading strings using the scanf function
#include<stdio.h>
main()
{
 char name[20];
 printf(“Enter your name\t”);
 scanf(“%s”,name);
 printf(“Your name is %s”,name);
}

Enter your name Sam
Your name is Sam
Remark:
•  The scanf function automatically terminates

the input string with a null character, and
therefore the character array should be
large enough to hold the input string plus
the terminating null character

Program 6-6 | A program to illustrate the use of scanf function to read a string from the user at the run time

The important points about the use of scanf function for reading strings are as follows:
a. The scanf function with %s specifier reads all the characters up to, but not including, the

white-space character. For example, in Program 6-6, instead of entering the first name,
enter the full name, e.g. “Sam Mine”. Even on entering the full name, the output of the
program would be “Your name is Sam”. This happens because the scanf function reads the
characters only up to the first white-space character.

 Thus, scanf function with %s specifier can be used to read single word strings like “Sam”
but cannot be used to read multi-word strings like “Sam Mine”.

b. The scanf function can be used to read a specific number of characters by specifying
the field width. The code snippet in Program 6-7 illustrates the use of a field width
specifier.

Line Prog 6-7.c Output window

 1
 2
3
4
5
6
7
8
9

//Field width specifier and scanf function
#include<stdio.h>
main()
{
 char name[20];
 printf(“Enter your name\t”);
 scanf(“%3s”,name);
 printf(“Your name is %s”,name);
}

Enter your name Samuel
Your name is Sam
Remarks:
•  If the length of the entered string is more

than the specified field width, the number
of characters read will be at most equal to
the field width

•  The scanf function reads all characters up
to, but not including, the white-space
character even if the value of field width
specification is more than the position of
first white-space character

Program 6-7 | A program to illustrate the use of a field width specifier and the scanf function

c. The scanf function can also be used to read selected characters by making use of search
sets. A search set defines a set of possible characters that can make up the string. The
rules to write search sets are as follows:

i. The possible set of characters making up the search set is enclosed within square
brackets, e.g. [abcd]. The scanf function reads all the characters up to but not includ-
ing the one that does not appear in a search set. If a search set [abcd] is used, the
scanf function reads the input characters and stops when a character except a, b, c
or d is encountered. The code snippet in Program 6-8 illustrates this fact.

Strings and Character Arrays 345

Line Prog 6-8.c Output window

 1
 2
3
4
5
6
7
8
9

//Search set and scanf function
#include<stdio.h>
main()
{
 char name[20];
 printf(“Enter your name\t”);
 scanf(“%[abcd]”,name);
 printf(“Your name is %s”,name);
}

Enter your name daman
Your name is da
Remarks:
•  Search sets are case sensitive
•  If the specified search set is [abcd] and the

entered string is Daman, no character will
be read, as the character D does not belong
to the search set

Program 6-8 | A program to illustrate the use of a search set and the scanf function

ii. If the first character in the bracket is a caret (i.e. ̂), the search set is inverted to include
all the characters (even white-space characters) except those between the brackets.
For example, the search set [^abcd] searches the input for any character except a, b, c
and d. The scanf function reads the input characters and stops when the characters a,
b, c or d are encountered. The code snippet in Program 6-9 illustrates this fact.

Line Prog 6-9.c Output window

 1
 2
3
4
5
6
7
8
9

//Inverted search set and scanf function
#include<stdio.h>
main()
{
 char name[20];
 printf(“Enter your name\t”);
 scanf(“%[^abcd]”,name);
 printf(“Your name is %s”,name);
}

Enter your name Neha
Your name is Neh
Caution:
•  The input will only terminate when any

character specified within the brackets is
encountered

•  Matching process is case sensitive
•  Re-execute the code and enter the name

in uppercase, i.e. NEHA. The input will not
terminate even on pressing enter. Enter
character ‘a’ and then press enter. The in-
put will terminate

Program 6-9 | A program to illustrate the use of inverted search set and the scanf function

 The inverted search set can be used with the scanf function to read a line of text.
The code snippet in Program 6-10 illustrates the use of an inverted search set to
read a line of text.

Line Prog 6-10.c Output window

 1
 2
3
4
5
6
7
8
9

//Reading a line of text using inverted search set
#include<stdio.h>
main()
{
 char line[50];
 printf(“Enter a line of text:\n”);
 scanf(“%[^\n]”,line);
 printf(“The text you entered is:\n%s”,line);
}

Enter a line of text:
We can change our destiny!!
The text you entered is:
We can change our destiny!!
Remark:
•  The inverted search set [^\n] can be used

to read the characters till the new line
character is encountered

Program 6-10 | A program to illustrate the use of an inverted search set to read a line of text

346 Programming in C—A Practical Approach

iii. The search set can be used for including the characters that lie within a particular
range. For example, the search set %[d-f] searches the input for any character that
lies in the range d to f, i.e. d, e and f.

d. The scanf function automatically terminates the input string with a null character and
therefore the character array should be large enough to hold the input string plus the
terminating null character.

e. It is not mandatory to use ampersand, i.e. address-of operator (&) with string variable
names while reading strings using the scanf function. The reason behind this relaxation
is that the scanf function requires an l-value as an argument where it can store the input.
Since the string variable is a character array and the name of an array refers to the ad-
dress of the first element of the array, the string variable name itself refers to the l-value.
However, if an address-of operator is used with the string variable name, there will be
no problem since it also refers to the same address. The code snippet in Program 6-11
illustrates this fact.

Line Prog 6-11.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13

//Usage of address-of operator with
//string variable is not mandatory
#include<stdio.h>
main()
{
 char name[5];
 printf(“Enter your name\t”);
 scanf(“%s”,name);
 printf(“Your name is %s\n”,name);
 printf(“Enter your name again\t”);
 scanf(“%s”,&name);
 printf(“Your name is %s\n”,name);
}

name

A j a y \0

4000 4001 4002 4003 4004

Enter your name Ajay
Your name is Ajay
Enter your name again Ajay
Your name is Ajay
Remarks:
•  Usage of address-of op-

erator while using a string
variable with the scanf func-
tion is not mandatory

•  Both name and &name refer to
the same memory address,
i.e. 4000

Remember:
•  The difference between

name and &name is that the
type of name is char* while
that of &name is char(*)[5]

Program 6-11 | A program to illustrate that the usage of address-of operator with a string variable is not
mandatory

2. Using getchar function: The getchar function is used to read a character from the terminal,
i.e. keyboard. The prototype of the getchar function is int getchar(void); and is available in the
stdio.h header file. The getchar function reads a character from the keyboard and returns
the ASCII code of the read character. Since a string is a sequence of characters, the getchar
function can be called repeatedly to read a string. The code snippet in Program 6-12
illustrates the use of the getchar function to read a string.

3. Using gets function: Another convenient way to accept a string from the user at the
run time is by using the gets library function. The prototype of the gets function is
char* gets(char*); and is available in the stdio.h header file. The gets function accepts a
character array or a character pointer as an argument, reads characters from the key-
board until a new line character is encountered, stores them in a character array or

Strings and Character Arrays 347

in the memory location pointed by the character pointer, appends a null character to
the string and returns the starting address of the location where the string is stored.
The code snippet in Program 6-13 illustrates the use of the gets function.

Line Prog 6-12.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12

//Iterative use of getchar function to read a string
#include<stdio.h>
main()
{
 char ch, line[50];
 int loc=0;
 printf(“Enter a line of text:\n”);
 while((ch=getchar())!=’\n’)
 line[loc++]=ch;
 line[loc]=’\0’;
 printf(“The text you entered is:\n%s”,line);
}

Enter a line of text:
We can change our destiny!!
The text you entered is:
We can change our destiny!!

Program 6-12 | A program to illustrate the use of the getchar function to read a string

Line Prog 6-13.c Output window

 1
 2
3
4
5
6
7
8
9

10
11

//Use of gets function to read a string
#include<stdio.h>
main()
{
 char plang[50];
 printf(“Enter name of a programming language\n”);
 gets(plang);
 printf(“First programming language is %s\n”,plang);
 printf(“Enter name of another programming language\n”);
 printf(“Second programming language is %s\n”,gets(plang));
}

Enter name of a programming language
Visual Basic
First programming language is Visual Basic
Enter name of another programming language
Visual C#
Second programming language is Visual C#
Remarks:
•  The gets function can be used to read

multi-word strings.
•  Since the gets function returns the

pointer to the input string, it can be
used as an argument within the printf
function (as done in line number 10)

Program 6-13 | A program to illustrate the use of the gets function to read a string

The important points about the gets function are as follows:
a. Unlike the scanf function, the gets function reads the entire line of text until a new

line character is encountered and does not stop upon encountering any other white-
space character.

b. Thus, the gets function is suited for reading multi-word strings.
The important points about the input functions mentioned above are as follows:

a. The input functions are categorized into buffered input functions and unbuffered
input functions.

b. In buffered input, the input given is kept in a temporary memory area known as the
buffer and is transmitted to the program when the Enter key is pressed. The pressed
Enter key is also transmitted to the program in the form of a new line character,
which the program must handle.

348 Programming in C—A Practical Approach

c. In unbuffered input, the given input is immediately transferred to the program without
waiting for the Enter key to be pressed.

d. The difference between buffered and unbuffered input is depicted in Figure 6.3.

Unbuffered input

Buffered input

Type Hello! Hello!

Type Hello!
Hello!\n ! o l l e H

Buffer

Contents are immediately made available to the program without
waiting for the Enter key to be pressed

As the contents are typed, they are
sent one by one to the buffer

When the Enter key is pressed, the con-
tents temporarily held in the buffer are
made available to the program

Figure 6.3 | Unbuffered and buffered input

e. The examples of buffered input functions are scanf, getchar and gets function.
f. The examples of unbuffered input functions are getch and getche function.
g. Program 6-12 can be rewritten using the unbuffered input function getche as in Program

6-14.

Line Prog 6-14.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13

//Iterative use of getche function to read a string
#include<stdio.h>
#include<conio.h>
main()
{
 char ch, line[50];
 int loc=0;
 printf(“Enter a line of text:\n”);
 while((ch=getche())!=’\r’)
 line[loc++]=ch;
 line[loc]=’\0’;
 printf(“\nThe text you entered is:\n%s”,line);
}

Enter a line of text:
We can change our destiny!!
The text you entered is:
We can change our destiny!!
Remarks:
•  The prototype of the getche function is

present in the header file conio.h
•  The sentinel value to be used for un-

buffered input functions like getche is
‘\r’, i.e. carriage return character in-
stead of ‘\n’, i.e. new line character that
is used for buffered input functions

Program 6-14 | A program to illustrate the use of the getche function to read a string

Forward Reference: Refer Question number 15 and its answer to know how a program can
handle the transmitted new line character.

Strings and Character Arrays 349

6.5 Printing Strings on the Screen
The methods that can be used to print strings on the screen are as follows:

1. Using printf function: The printf function can be used to print a string literal constant,
the contents of a character array and the contents of the memory locations pointed by a
character pointer on the screen in two different ways:

a. Without using format specifier: The printf function can print strings onto the
screen without using any format specifier. The code snippet in Program 6-15
illustrates this use.

Line Prog 6-15.c Output window

 1
 2
3
4
5
6
7
8
9

10
11

//Printing a string with the help of printf function without using any
//format specifier
#include<stdio.h>
main()
{
 char str[20]=”Readers!!”; //Array holding string
 char* ptr=”Dear”; //Character pointer pointing to a string
 printf(“Hello”); // Printing string literal constant
 printf(ptr) // Printing string pointed to by a character pointer
 printf(str); // Printing contents of character array
 }

HelloDearReaders!!
Remarks:
•  The first argument of the

printf function must be of type
const char*

•  A string literal constant and a
string variable name refer to
const char*

•  Hence, the usage of the printf func-
tion as done in line numbers 8, 9
and 10 is perfectly valid

Program 6-15 | A program to illustrate the use of the printf function without a format specifier to print strings

The important points about this type of usage are as follows:
i. The first argument of the printf function must be of const char* type. Since the

string variable name and the string literal constant implicitly decompose into
const char*, this type of usage is perfectly valid.

ii. This type of usage however has a limitation that the contents of only one
character array or the contents pointed by only one character pointer can be
printed at a time.

b. Using %s format specifier: The second way to print the strings on the screen is
by using the printf function along with the %s format specifier. The code snippet
in Program 6-16 illustrates this use.

Line Prog 6-16.c Output window

 1
 2
3
4
5
6
7
8
9

//Printing strings by using printf function along with %s
//format specifier
#include<stdio.h>
main()
{
 char str[20]=”Readers!!”;
 char* ptr=”Dear”;
 printf(“%s%s%s”,”Hello”, ptr,str);
}

HelloDearReaders!!
Remarks:
•  %s specifier is used to print a string

literal, the contents of a character
array and a string literal pointed
to by a character pointer

•  Two or more strings can be print-
ed by a single call to the printf func-
tion having multiple %s specifiers

Program 6-16 | A program to illustrate the use of the printf function the along with %s specifier to print strings

Chapter 6.indd 349Chapter 6.indd 349 28/02/2010 3:45:08 PM28/02/2010 3:45:08 PM

350 Programming in C—A Practical Approach

 This type of usage has an advantage that two or more strings can be printed by a
single call to the printf function having multiple %s specifiers.

2. Iteratively printing a string’s constituent characters: A string can be printed by itera-
tively printing its constituent characters. They can be printed either by using the putchar
function or by using the putch function. The prototype of the putchar function is int putchar(int c);
and is present in the header file stdio.h. The prototype of the putch function is int putch(int c);
and is present in the header file conio.h. The code snippet in Program 6-17 prints the
strings by using these functions.

Line Prog 6-17.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

//Printing string by iteratively printing its constituent characters
#include<stdio.h>
#include<conio.h>
main()
{
 char str[20]=”Hello”;
 char *ptr=”Dear”;
 int i=0, j=0 ;
 while(str[i]!=’\0’)
 printf(”%c”,str[i++]);
 while(*ptr!=’\0’)
 putch(*ptr++);
 while(*(“Readers!!”+j)!=’\0’)
 {
 putchar(*(“Readers!!”+j));
 j++;
 }
}

HelloDearReaders!!
Remark:
•  A character can also be printed by us-

ing the printf function and the %c format
specifier as shown in line number 10

Program 6-17 | A program to illustrate the printing of a string by printing its constituent characters

3. Using puts function: Another convenient way to print the strings on the screen is by us-
ing the puts function. The prototype of the puts function is int puts(const char*); and is avail-
able in the stdio.h header file. The puts function prints the string on the screen and returns
the number of characters printed. The code snippet in Program 6-18 illustrates the use
of the puts function to print strings.

Line Prog 6-18.c Output window

 1
 2
3
4
5
6
7
8
9

10

//Use of puts function to print a string
#include<stdio.h>
main()
{
 char str[20]=”Readers!!”;
 char* ptr=”Dear”;
 puts(“Hello”);
 puts(ptr);
 puts(str);
 }

Hello
Dear
Readers!!
Remarks:
•  The argument to the puts function can

be a string literal constant or a character
array or a character pointer pointing to
a string

•  The puts function prints the string and plac-
es a new line character after the string

Program 6-18 | A program to illustrate the use of the puts function to print a string

Strings and Character Arrays 351

The important points about the usage of the puts function are as follows:
i. It has a limitation that only one string can be printed at one time.
ii. The difference between the puts function and the printf function is that the puts function

places a new line character after printing the string, whereas the printf function does
not. Compare the outputs of Programs 6-15 and 6-18.

6.6 Importance of Terminating Null Character
The terminating null character in strings is very important. Every string operation checks the
presence of the null character to determine the end of a string. Consider the piece of code snippet
in Program 6-19 that illustrates the importance of terminating a null character in strings.

Line Prog 6-19.c Output window

 1
 2
3
4
5
6
7
8
9

10

//Importance of terminating null character
#include<stdio.h>
#include<string.h>
main()
{
 char str[5]={‘H’,’e’,’l’,’l’,’o’};
 printf(“The string is\t”);
 puts(str);
 printf(“Its length is %d”,strlen(str));
 }

The string is Hello�¥¤§¶
Its length is 10
Remarks:
•  The printf function and the puts function print the

characters starting from the memory location
pointed to by its argument till the terminating
null character is encountered

•  In line number 6, the character array str is initial-
ized with a list of characters and the null character
is not explicitly placed at its end

•  If a character array is not terminated with a null
character, the output of the strlen function would
be indeterminate and depends upon where the
null character is present in the memory

•  Thus, the puts function in line number 8 while
printing str gives garbage (any arbitrary value) as it
starts printing from the memory location pointed
to by its argument (i.e. 4000) and keeps on printing
till a terminating null character is encountered

•  The number of garbage characters in the output
depends upon where the first null character is en-
countered in the memory

•  Executing the same code at different times or on
different machines may give different outputs (i.e.
Hello followed by different and/or different number
of garbage characters)

•  The strlen function determines the length of the
string by counting the number of characters in
the string starting from the memory location
pointed to by its argument till the null character
is encountered. The terminating null character
is not counted while determining the length of
a string

Memory contents

str

H e l l o G G G G G \0

4000 ... 4010

(Contd...)

352 Programming in C—A Practical Approach

Line Prog 6-19.c Output window

•  Thus, it is very important to explicitly place the null
character at the end when a character array is ini-
tialized with the character initializers or when its
content are manipulated

•  The null character is automatically placed at the
end of a character array when it is initialized with
a string literal constant or when scanf and gets func-
tions are used to read a string from the user

Program 6-19 | A program to illustrate the importance of the terminating null character in the strings

6.7 String Library Functions
The C string library provides a large number of functions that can be used for string manipula-
tions. The commonly used C string library functions are given in Table 6.1.

Table 6.1 | C string library functions

S. No Function
name

Prototype Role

1. strlen int strlen(const char* s); Calculates the length of a string s
2. strcpy char* strcpy(char* dest, const char* src); Copies the source string str to the destina-

tion string dest

3. strcat char* strcat(char *dest, const char*src); Appends a copy of the string src to the
end of the string dest

4. strcmp int strcmp(const char*s1, const char* s2); Compares two strings
5. strcmpi int strcmpi(const char*s1, const char* s2); Compares two strings without case sen-

sitivity
6. strrev char* strrev(char* s); Reverses the content of a string s
7. strlwr char* strlwr(char* s); Converts the string to lowercase
8. strupr char* strupr(char* s); Converts the string to uppercase
9. strset char* strset(char* s, int ch); Set all characters in a string s to the char-

acter ch

10. strchr char* strchr(const char* s, int c); Scans a string for the first occurrence of a
given character

11. strrchr char* strrchr(const char* s, int c); Finds the last occurrence of a character c
in the string s

12. strstr char* strstr(const char* s1, const char* s2); Finds the first occurrence of a substring
(i.e. s2) in another string (i.e. s1)

13. strncpy char* strncpy(char* dest, const char* src, int n); Copies at the most n characters of the
string src to the string dest

14. strncat char* strncat(char* dest, const char* src, int n); Appends at the most n characters of the
string src to the string dest

(Contd...)

Strings and Character Arrays 353

15. strncmp int strncmp(const char* s1, const char* s2, int n); Compares at the most n characters of two
strings s1 and s2

16. strncmpi int strncmpi(const char* s1, const char* s2, int n); Compares at the most n characters of two
strings s1 and s2 without case sensitivity

17. strnset char* strnset(char* s, int ch, int n); Sets the first n characters of the string s to
the character ch

The following sub-sections illustrate the use of the above-mentioned string library functions
along with the development of user-defined functions with the same functionality.

6.7.1 strlen Function
Role: The strlen function is used to find the length of a string.
Input: The input to the strlen function can be a string literal constant or a character ar-

ray holding a string or a character pointer pointing to a string.
Output: The strlen function returns the length of the string. The terminating null charac-

ter is not counted while determining the length of the string.
Usage: The code snippets in Program 6-20 illustrate the use of the strlen function and

the development of the strlen functionality.

Line Prog 6-20a.c
Using library function

Prog 6-20b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

//Finding length of a string
#include<stdio.h>
#include<string.h>
main()
{
 char *ptr=”Dear”;
 char name[50]=”Reader”;
 printf(“The length of strings:\n”);
 printf(“Hello is %d\n”,strlen(“Hello”));
 printf(“Dear is %d\n”,strlen(ptr));
 printf(“Reader is %d\n”,strlen(name));
}

//Finding length of a string
#include<stdio.h>
int mystrlen(char* s);
main()
{
 char *ptr=”Dear”;
 char name[50]=”Reader”;
 printf(“The length of strings:\n”);
 printf(“Hello is %d\n”,mystrlen(“Hello”));
 printf(“Dear is %d\n”,mystrlen(ptr));
 printf(“Reader is %d\n”,mystrlen(name));
}
int mystrlen(char *s)
{
int i=0;
while(*(s+i)!=’\0’)
 i++;
return i;
}

The length of strings:
Hello is 5
Dear is 4
Reader is 6
Remarks:
•  The strlen function re-

turns the number of
characters that pre-
cede the terminating
null character

•  If a terminating null
character is not pres-
ent at the end of
a string, the strlen
func tion gives an ar-
bitrary result

Program 6-20 | A program to find the length of a string (a) using a library function and (b) using a user-defined
function

6.7.2 strcpy Function
Role: The strcpy function copies the source string to the destination string.
Inputs: A source string and a destination string. The source string can be a string literal

or a character array or a character pointer pointing to a string. The destination

354 Programming in C—A Practical Approach

should be a character array or a character pointer to the memory location in
which the source string is to be copied.

Output: The strcpy function copies the source string to the destination and returns a
pointer to the destination string.

Usage: The code snippets in Program 6-21 illustrate the use of the strcpy function and
the development of the strcpy functionality.

Line Prog 6-21a.c
Using library function

Prog 6-21b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26

//Copying one string to another
#include<stdio.h>
#include<string.h>
main()
{
 char src[50]=”Hello”;
 char dest[50];
 puts(“Source string is”);
 puts(src);
 strcpy(dest,src);
 puts(“Destination string is”);
 puts(dest);
}

//Copying one string to another
#include<stdio.h>
char* mystrcpy(char* dest, const char* src);
main()
{
 char src[50]=”Hello”;
 char dest[50];
 puts(“Source string is”);
 puts(src);
 mystrcpy(dest,src);
 puts(“Destination string is”);
 puts(dest);
}
char* mystrcpy(char* dest, const char* src)
{
int i=0;
while(src[i]!=’\0’)
{
 dest[i]=src[i];
 i++;
}
//Null character should be explicitly placed at
//the end of the string.
dest[i]=’\0’;
return dest;
}

Source string is
Hello
Destination string is
Hello
Remark:
•  If the number of charac-

ters in the source string is
more than the number of
characters that the desti-
nation can hold, a memo-
ry exception may arise

Program 6-21 | A program to copy a string (a) using a library function and (b) using a user-defined function

i The destination character array or the destination memory block to which the charac-
ter pointer points should be big enough to hold the source string. If they are not big
enough, a run time exception may occur. Refer Question number 12 and its answer for
more details.

6.7.3 strcat Function
Role: The strcat function concatenates one string with another. It appends a source

string to the destination string.

Strings and Character Arrays 355

Inputs: The source string to be appended and the destination string to which the
source string is to be appended. The first argument of the function strcat can
be a character array or a character pointer but should not be a string literal
constant.

Output: The strcat function appends a source string to the destination string and returns
a pointer to the destination string.

Usage: The code snippets in Program 6-22 illustrate the use of the strcat function and
the development of the strcat functionality.

Line Prog 6-22a.c
Using library function

Prog 6-22b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

//Concatenating a string with another
#include<stdio.h>
#include<string.h>
main()
{
 char dest[50]=”Hello”;
 char src[50]=”Readers!!”;
 puts(“The strings are::”);
 puts(dest);
 puts(src);
 strcat(dest,src);
 puts(“After concatenation::”);
 puts(dest);
}

//Concatenating a string with another
#include<stdio.h>
char* mystrcat(char* dest, const char* src);
main()
{
 char dest[50]=”Hello”;
 char src[50]=”Readers!!”;
 puts(“The strings are::”);
 puts(dest);
 puts(src);
 mystrcat(dest,src);
 puts(“After concatenation::”);
 puts(dest);
}
char* mystrcat(char* dest, const char* src)
{
int i=0, j=0;
while(dest[i]!=’\0’)
 i++;
while(src[j]!=’\0’)
{
 dest[i]=src[j];
 i++;j++;
}
dest[i]=’\0’;
return dest;
}

The strings are::
Hello
Readers!!
After concatenation::
HelloReaders!!
Remarks:
•  The length of the desti-

nation string after con-
catenation = the length
of the destination string
before concatenation
plus the length of the
source string

•  The destination should
be big enough to hold
the destination string
plus the source string

•  If it is not big enough,
the characters of the re-
sulting string would be
placed in unreserved
memory and may lead
to memory violation.
Hence memory excep-
tion may occur

Program 6-22 | A program to concatenate a string with another (a) using a library function and (b) using a
user-defined function

6.7.4 strcmp Function
Role: The strcmp function compares two strings.
Inputs: Two strings str1 and str2 that are to be compared in the form of string literal

constants or character arrays or character pointers to the memory locations in
which str1 and str2 are stored.

356 Programming in C—A Practical Approach

Output: The strcmp function performs the comparison of str1 and str2 character by char-
acter, starting with the first character in each string and continuing with the
subsequent characters until the corresponding characters differ or until the
end of the strings is reached. It returns the ASCII difference of the first dissimi-
lar corresponding characters or zero if none of the corresponding characters in
both the strings are different.

Usage: The code snippets in Program 6-23 illustrate the use of the strcmp function and the
development of the strcmp functionality.

Line Prog 6-23a.c
Using library function

Prog 6-23b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28

//Comparing two strings
#include<stdio.h>
#include<string.h>
main()
{
 char str1[20],str2[20];
 int res;
 puts(“Enter string 1:”);
 gets(str1);
 puts(“Enter string 2:”);
 gets(str2);
 res=strcmp(str1,str2);
 if(res==0)
 puts(“Strings are equal”);
 else
 puts(“Strings are not equal”);
}

//Comparing two strings
#include<stdio.h>
int mystrcmp(const char* s1, const char* s2);
main()
{
 char str1[20],str2[20];
 int res;
 puts(“Enter string 1:”);
 gets(str1);
 puts(“Enter string 2:”);
 gets(str2);
 res=mystrcmp(str1,str2);
 if(res==0)
 puts(“Strings are equal”);
 else
 puts(“Strings are not equal”);
}
int mystrcmp(const char* s1, const char* s2)
{
int i=0;
while(s1[i]!=’\0’ || s2[i]!=’\0’)
{
 if(s1[i]!=s2[i])
 return(s1[i]-s2[i]);
 i++;
}
return 0;
}

Enter string 1:
Hello
Enter string 2:
Hi
Strings are not equal

Output window
(second execution)

Enter string 1:
Hello
Enter string 2:
Hello
Strings are equal

Output window
(third execution)

Enter string 1:
hello
Enter string 2:
HELLO
Strings are not equal
Remarks:
•  strcmp(str1,str2) returns a

value:
•  0 if str1 and str2 are

equal, or
•  >0 if str1 is greater than

str2, i.e. str1 comes after
str2 in lexicographic or-
der (i.e. dictionary or-
der), or

•  <0 if str1 is lesser than str2
i.e. str1 comes before str2,
in lexicographic order

Program 6-23 | A program to compare two strings (a) using a library function and (b) using a user-
defined function

Strings and Character Arrays 357

6.7.5 strcmpi Function
Role: The strcmpi function compares two strings without case sensitivity. The suffix

character ‘i’ in strcmpi stands for ignore case.
Inputs: Two strings str1 and str2 that are to be compared, in the form of string literal

constants or character arrays or character pointers to the memory locations in
which str1 and str2 are stored.

Output: The strcmpi function performs a comparison of strings str1 and str2 without case
sensitivity. It returns the ASCII difference of the first different corresponding
characters or zero if none of the corresponding characters in both the strings
are different.

Usage: The code snippets in Program 6-24 illustrate the use of the strcmpi function and
the development of the strcmpi functionality.

Line Prog 6-24a.c
Using library function

Prog 6-24b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30

//Comparing two strings without
//case sensitivity
#include<stdio.h>
#include<string.h>
main()
{
 char str1[20],str2[20];
 int res;
 puts(“Enter string 1:”);
 gets(str1);
 puts(“Enter string 2:”);
 gets(str2);
 res=strcmpi(str1,str2);
 if(res==0)
 puts(“Strings are equal”);
 else
 puts(“Strings are not equal”);
}

//Comparing two strings without
//case sensitivity
#include<stdio.h>
int mystrcmpi(const char* s1, const char* s2);
main()
{
 char str1[20],str2[20];
 int res;
 puts(“Enter string 1:”);
 gets(str1);
 puts(“Enter string 2:”);
 gets(str2);
 res=mystrcmpi(str1,str2);
 if(res==0)
 puts(“Strings are equal”);
 else
 puts(“Strings are not equal”);
}
int mystrcmpi(const char* s1, const char* s2)
{
int i=0;
while(s1[i]!=’\0’ || s2[i]!=’\0’)
{
if((s1[i]==s2[i])||(s1[i]-s2[i])==32||(s1[i]-s2[i])==-32)
 i++;
else
 return(s1[i]-s2[i]);
}
return 0;
}

Enter string 1:
HELLO
Enter string 2:
hello
Strings are equal

Output window
(second execution)

Enter string 1:
Hello
Enter string 2:
Hi
Strings are not equal

Output window
(third execution)

Enter string 1:
hello
Enter string 2:
HELLO
Strings are equal
Remarks:
•  The difference be-

tween the ASCII
values of lowercase
letters and their up-
percase counterparts
is 32

•  For example, ‘a’ has
an ASCII value of 97
while ‘A’ has an ASCII
value of 65

Program 6-24 | A program to compare two strings without case sensitivity (a) using a library function and
(b) using a user-defined function

Chapter 6.indd 357Chapter 6.indd 357 28/02/2010 3:45:09 PM28/02/2010 3:45:09 PM

358 Programming in C—A Practical Approach

6.7.6 strrev Function
Role: The strrev function reverses all the characters of a string except the terminating

null character.
Input: A string in the form of a character array or a character pointer or a string literal

constant.
Output: The strrev function reverses the string and returns a pointer to the reversed string.
Usage: The code snippets in Program 6-25 illustrate the use of the strrev function and

the development of the strrev functionality.

Line Prog 6-25a.c
Using library function

Prog 6-25b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28

//Reversing the contents of a string
#include<stdio.h>
#include<string.h>
main()
{
 char str[20];
 puts(“Enter a string:”);
 gets(str);
 strrev(str);
 puts(“After reversal, the string is:”);
 puts(str);
}

//Reversing the contents of a string
#include<stdio.h>
char* mystrrev(char* s);
main()
{
 char str[20];
 puts(“Enter a string:”);
 gets(str);
 mystrrev(str);
 puts(“After reversal, the string is:”);
 puts(str);
}
char* mystrrev(char* s)
{
int i=0, j=0;
char temp;
while(s[i]!=’\0’)
 i++;
i--;
while(i>j)
{
 temp=s[i];
 s[i]=s[j];
 s[j]=temp;
 j++;i--;
}
return s;
}

Enter a string:
Hello
After reversal, the string is:
olleH

Output window
(second execution)

Enter a string:
Hello Readers
After reversal, the string is:
sredaeR olleH
Remarks:
•  The strrev function can also

be applied on the string lit-
erals, i.e. strrev(“Hello”)=”olleH”

•  strrev(strrev(“String”))=”String”
•  Reversal of reverse of a

string is the string itself

Program 6-25 | A program that reverses contents of a string (a) using a library function and (b) using a
user-defined function

6.7.7 strlwr Function
Role: The strlwr function converts all the letters in a string to lowercase.
Input: A string in the form of a character array or a character pointer or a string literal

constant.

Strings and Character Arrays 359

Output: It returns a pointer to the converted string.
Usage: The code snippets in Program 6-26 illustrate the use of the strlwr function and

the development of the strlwr functionality.

Line Prog 6-26a.c
Using library function

Prog 6-26b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

//Converting all the characters of a
//string to lower case
#include<stdio.h>
#include<string.h>
main()
{
 char str[20];
 puts(“Enter a string:”);
 gets(str);
 strlwr(str);
 puts(“Lowercase string is:”);
 puts(str);
}

//Converting all the characters of a
//string to lower case
#include<stdio.h>
char* mystrlwr(char* s);
main()
{
 char str[20];
 puts(“Enter a string:”);
 gets(str);
 mystrlwr(str);
 puts(“Lowercase string is:”);
 puts(str);
}
char* mystrlwr(char* s)
{
int i=0;
while(s[i]!=’\0’)
{
 if(s[i]>=65 && s[i]<=90)
 s[i]=s[i]+32;
 i++;
}
return s;
}

Enter a string:
HELLO
Lowercase string is:
hello

Output window
(second execution)

Enter a string:
HELLO READERS!!
Lowercase string is:
hello readers!!
Remarks:
•  Digits, special characters

and white-space characters
within the string remain un-
changed

Program 6-26 | A program that converts all the characters of a string to lowercase (a) using a library function
and (b) using a user-defined function

6.7.8 strupr Function
Role: The strupr function converts all the letters in a string to uppercase.
Input: A string in the form of a character array or a character pointer or a string literal

constant.
Output: It returns a pointer to the converted string.
Usage: The code snippets in Program 6-27 illustrate the use of the strupr function and

the development of the strupr functionality.

Chapter 6.indd 359Chapter 6.indd 359 28/02/2010 3:45:09 PM28/02/2010 3:45:09 PM

360 Programming in C—A Practical Approach

Line Prog 6-27a.c
Using library function

Prog 6-27b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

//Converting all the characters of a
//string to uppercase
#include<stdio.h>
#include<string.h>
main()
{
 char str[20];
 puts(“Enter a string:”);
 gets(str);
 strupr(str);
 puts(“Uppercase string is:”);
 puts(str);
}

//Converting all the characters of a
//string to uppercase
#include<stdio.h>
char* mystrupr(char* s);
main()
{
 char str[20];
 puts(“Enter a string:”);
 gets(str);
 mystrupr(str);
 puts(“Uppercase string is:”);
 puts(str);
}
char* mystrupr(char* s)
{
int i=0;
while(s[i]!=’\0’)
{
 if(s[i]>=97 && s[i]<=122)
 s[i]=s[i]-32;
 i++;
}
return s;
}

Enter a string:
hello
Uppercase string is:
HELLO

Output window
(second execution)

Enter a string:
hello readers!!
Uppercase string is:
HELLO READERS!!
Remark:
•  Digits, special charac-

ters and white-space
characters within a
string remain un-
changed

Program 6-27 | A program that converts all the characters of a string to uppercase (a) using a library function
and (b) using a user-defined function

6.7.9 strset Function
Role: The strset function sets all characters in a string to a specific character.
Inputs: A string and a character. The string can be in the form of a character array or a

character pointer or a string literal constant.
Output: The strset function sets all the characters in the string to the given character and

returns a pointer to the string.
Usage: The code snippets in Program 6-28 illustrate the use of the strset function and

the development of the strset functionality.

Line Prog 6-28a.c
Using library function

Prog 6-28b.c
Using user-defined function

Output window

1
 2
3
4
5

//Setting all the characters of a string to
//a specific character
#include<stdio.h>
#include<string.h>
main()

//Setting all the characters of a string to
//a specific character
#include<stdio.h>
char* mystrset(char* s, int ch);
main()

Before using strset(), string is:
123456789
After using strset(), string is:
ccccccccc

(Contd...)

Strings and Character Arrays 361

6
7
8
9

10
11
12
13
14
15
16
17
18
19
21
22
23
24
25

{
 char str[10]=”123456789”;
 char ch=’c’;
 puts(“Before using strset(), string is:”);
 puts(str);
 strset(str,ch);
 puts(“After using strset(), string is:”);
 puts(str);
}

{
 char str[10]=”123456789”;
 char ch=’c’;
 puts(“Before using strset(), string is:”);
 puts(str);
 mystrset(str,ch);
 puts(“After using strset(), string is:”);
 puts(str);
}
char* mystrset(char* s, int ch)
{
int i=0;
while(s[i]!=’\0’)
{
 s[i]=ch;
 i++;
}
return s;
}

Remark:
•  All the characters

(letters, digits, spe-
cial characters and
white-space charac-
ters) with in a string
are set to a specific
character

Program 6-28 | A program that sets all the characters of a string to a specific character (a) using a library
function and (b) using a user-defined function

6.7.10 strchr Function
Role: The strchr function scans a string for the first occurrence of a given character.
Inputs: A string and a character to be found in the string. The string can be in the form

of a character array or a character pointer or a string literal constant.
Output: The strchr function scans the input string in the forward direction, looking for

the specific character. If the character is found, it returns a pointer to the first
occurrence of the character in the given string. If the character is not found it
returns NULL.

Usage: The code snippets in Program 6-29 illustrate the use of the strchr function and
the development of the strchr functionality.

Line Prog 6-29a.c
Using library function

Prog 6-29b.c
Using user-defined function

Output window

1
 2
3
4
5
6
7
8
9

10

//Scans a string for the first occurrence
//of a given character
#include<stdio.h>
#include<string.h>
main()
{
 char str[20], ch;
 char* ptr;
 puts(“Enter a string:”);
 gets(str);

//Scans a string for the first occurrence
//of a given character
#include<stdio.h>
char* mystrchr(const char* s, int c);
main()
{
 char str[20], ch;
 char* ptr;
 puts(“Enter a string:”);
 gets(str);

Enter a string:
Hello
Enter a character to be found:
e
Located at the index 1

Enter a string:
Hello

Output window
(second execution)

(Contd...)

362 Programming in C—A Practical Approach

Line Prog 6-29a.c
Using library function

Prog 6-29b.c
Using user-defined function

Output window

11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

 puts(“Enter a character to be found:”);
 scanf(“%c”,&ch);
 ptr=strchr(str,ch);
 if(ptr==NULL)
 puts(“Character not found”);
 else
 printf(“Located at the index %d”,ptr-str);
}

 puts(“Enter a character to be found:”);
 scanf(“%c”,&ch);
 ptr=mystrchr(str,ch);
 if(ptr==NULL)
 puts(“Character not found”);
 else
 printf(“Located at the index %d”,ptr-str);
}
char* mystrchr(const char* s, int c)
{
int i=0;
while(s[i]!=’\0’)
{
 if(s[i]==c)
 return((char*)s+i);
 i++;
}
return NULL;
}

Enter a character to be found:
y
Character not found
Remark:
•  The terminating null

character is also con-
sidered to be a part of
the string

Program 6-29 | A program that scans a string for the first occurrence of a given character (a) using a library
function and (b) using a user-defined function

6.7.11 strrchr Function
Role: The strrchr function locates the last occurrence of a character in a given string.
Inputs: A string and a character to be found in the string. The string can be in the form

of a character array or a character pointer or a string literal constant.
Output: The strrchr function scans the input string in the reverse direction, looking for

a specific character. If the character is found, it returns a pointer to the first
occurrence of the character in the given string. If the character is not found, it
returns NULL.

Usage: The code snippets in Program 6-30 illustrate the use of the strrchr function and
the development of the strrchr functionality.

Line Prog 6-30a.c
Using library function

Prog 6-30b.c
Using user-defined function

Output window

1
 2
3
4
5
6
7
8
9

10

//Scans a string in the reverse direction
//for the first occurrence of a given
//character
#include<stdio.h>
#include<string.h>
main()
{
 char str[20], ch;
 char* ptr;
 puts(“Enter a string:”);

//Scans a string in the reverse direction
//for the first occurrence of a given
//character
#include<stdio.h>
char* mystrrchr(const char* s, int c);
main()
{
 char str[20], ch;
 char* ptr;
 puts(“Enter a string:”);

Enter a string:
Hello
Enter a character to be found:
o
Located at the index 4

(Contd...)

Strings and Character Arrays 363

11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33

 gets(str);
 puts(“Enter a character to be found:”);
 scanf(“%c”,&ch);
 ptr=strrchr(str,ch);
 if(ptr==NULL)
 puts(“Character not found”);
 else
 printf(“Located at the index %d”,ptr-str);
}

 gets(str);
 puts(“Enter a character to be found:”);
 scanf(“%c”,&ch);
 ptr=mystrrchr(str,ch);
 if(ptr==NULL)
 puts(“Character not found”);
 else
 printf(“Located at the index %d”,ptr-str);
}
char* mystrrchr(const char* s, int c)
{
int i=0;
while(s[i]!=’\0’)
 i++;
i--;
while(i>=0)
{
 if(s[i]==c)
 return((char*)s+i);
 i--;
}
return NULL;
}

Output window
(second execution)

Enter a string:
Hello
Enter a character to be found:
y
Character not found

Output window
(third execution)

Enter a string:
Hello
Enter a character to be found:
l
Located at the index 3
Remark:
•  The terminating null

character is also con-
sidered to be a part
of the string

Program 6-30 | A program that scans a string in the reverse direction for the first occurrence of a given char-
acter (a) using a library function and (b) using a user-defined function

6.7.12 strstr Function
Role: The strstr function finds the first occurrence of a string in another string.
Inputs: Two strings str1 and str2. The strings can be in the form of a character array or a

character pointer or a string literal constant.
Output: The strstr function finds the first occurrence of the string (i.e. str2) in the string

(i.e. str1). If the string str2 is found, it returns a pointer to the position from where
the string starts. If the string str2 is not found in the string str1, it returns NULL.

Usage: The code snippets in Program 6-31 illustrate the use of the strstr function and
the development of the strstr functionality.

Line Prog 6-31a.c
Using library function

Prog 6-31b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

//Finding string within a string
#include<stdio.h>
#include<string.h>
main()
{
 char* ptr;
 char str1[20];
 char str2[20]
 puts(“Enter a string:”);

//Finding string within a string
#include<stdio.h>
char* mystrstr(const char* s1, const char* s2);
main()
{
 char* ptr;
 char str1[20];
 char str2[20];
 puts(“Enter a string:”);

Enter a string:
Hello Readers!!
Enter the string to be found:
Read
Found at the index 6
Found in Readers!!

(Contd...)

364 Programming in C—A Practical Approach

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

 gets(str1);
 puts(“Enter the string to be found:”);
 gets(str2);
 ptr=strstr(str1,str2);
 if(ptr==NULL)
 puts(“String not found”);
 else
 {
 printf(“Found at the index %d\n”,ptr-str1);
 printf(“Found in %s”,ptr);
 }
}

 gets(str1);
 puts(“Enter the string to be found:”);
 gets(str2);
 ptr=mystrstr(str1,str2);
 if(ptr==NULL)
 puts(“String not found”);
 else
 {
 printf(“Found at the index %d\n”,ptr-str1);
 printf(“Found in %s”,ptr);
 }
}
char* mystrstr(const char* s1, const char* s2)
{
int i=0,j=0,k;
while(s1[i]!=’\0’)
{
 k=i;
 while(s2[j]!=’\0’)
 {
 if(s1[k]!=s2[j])
 break;
 k++;j++;
 }
 if(s2[j]==’\0’)
 return (char*)s1+i;
 else
 i++;j=0;
}
return NULL;
}

Output window
(second execution)

Enter a string:
Hello Readers!!
Enter the string to be found:
Student
String not found

Program 6-31 | A program that finds a string within a string (a) using a library function and (b) using a
user-defined function

6.7.13 strncpy Function
Role: The strncpy function copies at the most n characters of a source string to the des-

tination string.
Inputs: A character array or a character pointer to the memory location where the

source string is to be copied (i.e. destination), the source string that is to be
copied and an integer value that specifies the number of characters of the
source string that is to be copied.

Output: The strncpy function copies at the most n characters of the source string to the
destination and returns a pointer to the destination string.

Usage: The code snippets in Program 6-32 illustrate the use of the strncpy function and
the development of the strncpy functionality.

Strings and Character Arrays 365

Line Prog 6-32a.c
Using library function

Prog 6-32b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

//Copying at the most n characters of
//a source string to the destination
//string
#include<stdio.h>
#include<string.h>
main()
{
 char src[50];
 char dest[50];
 int n;
 puts(“Enter source string:”);
 gets(src);
 puts(“Enter the value of n:”);
 scanf(“%d”,&n);
 puts(“Source string is:”);
 puts(src);
 strncpy(dest,src,n);
 dest[n]=’\0’;
 puts(“Destination string is:”);
 puts(dest);
}

//Copying at the most n characters of
//a source string to the destination
//string
#include<stdio.h>
char* mystrncpy(char* dest, const char* src, int n);
main()
{
 char src[50];
 char dest[50];
 int n;
 puts(“Enter source string:”);
 gets(src);
 puts(“Enter the value of n:”);
 scanf(“%d”,&n);
 puts(“Source string is:”);
 puts(src);
 mystrncpy(dest,src,n);
 dest[n]=’\0’;
 puts(“Destination string is:”);
 puts(dest);
}
char* mystrncpy(char* dest, const char* src, int n)
{
int i=0;
while(i<n)
{
 if(src[i]=='\0')
 {
 dest[i]='\0';
 break;
 }
 else
 {
 dest[i]=src[i];
 i++;
 }
}
return dest;
}

Enter source string:
Hello Readers!!
Enter the value of n:
5
Source string is:
Hello Readers!!
Destination string is:
Hello
Remarks:
•  If the source string

contains more than n
characters, n charac-
ters are copied and
the null character
is not placed at the
end. The terminat-
ing null character
is to be explicitly
placed as done in
line number 18

•  If the source string
is shorter than n
char acters, the termi-
nating null charac-
ter is copied into the
destination string

Try:
•  Comment line num-

ber 18
•  Execute the code

with the same input
and observe the gar-
bage characters in
the output in some
of the executions

Program 6-32 | A program that copies at most n characters of a source string to a destination string (a) using
a library function and (b) using a user-defined function

6.7.14 strncat Function
Role: The strncat function concatenates a portion of one string with another. It ap-

pends at the most n characters of a source string to a destination string.

Chapter 6.indd 365Chapter 6.indd 365 28/02/2010 3:45:10 PM28/02/2010 3:45:10 PM

366 Programming in C—A Practical Approach

Inputs: The source string to be appended, the destination string to which the source
string is to be appended and the number of characters to be appended. The
destination string should be a character array or a character pointer but should
not be a string literal constant.

Output: The strncat function appends at the most n characters of the source string to the
destination string and returns a pointer to the destination string.

Usage: The code snippets in Program 6-33 illustrate the use of the strncat function and
the development of the strncat functionality.

Line Prog 6-33a.c
Using library function

Prog 6-33b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32

//String Concatenation
#include<stdio.h>
#include<string.h>
main()
{
 char dest[50], src[50];
 int n;
 puts(“Enter strings:”);
 gets(dest);
 gets(src);
 puts(“Enter the value of n:”);
 scanf(“%d”,&n);
 puts(“The strings are:”);
 puts(dest);
 puts(src);
 strncat(dest,src,n);
 puts(“After concatenation:”);
 puts(dest);
}

//String Concatenation
#include<stdio.h>
char* mystrncat(char* dest, const char* src, int n);
main()
{
 char dest[50], src[50];
 int n;
 puts(“Enter strings:”);
 gets(dest);
 gets(src);
 puts(“Enter the value of n:”);
 scanf(“%d”,&n);
 puts(“The strings are:”);
 puts(dest);
 puts(src);
 mystrncat(dest,src,n);
 puts(“After concatenation:”);
 puts(dest);
}
char* mystrncat(char* dest, const char* src,int n)
{
int i=0, j=0,k=1;
while(dest[i]!=’\0’)
 i++;
while(src[j]!=’\0’ && k<=n)
{
 dest[i]=src[j];
 i++;j++;k++;
}
dest[i]=’\0’;
return dest;
}

Enter strings:
Hello
Readers!!
Enter the value of n:
7
The strings are:
Hello
Readers!!
After concatenation:
HelloReaders
Remarks:
•  Unlike strncpy, a termi-

nating null character
is always appended to
the result

•  The maximum num-
ber of characters in
the destination string
after the execution of
strncat would be the
number of characters
in the dest (before ex-
ecution of strncat)+n+1

Program 6-33 | A program that concatenates at the most n characters of a source string with the destination
string (a) using a library function and (b) using a user-defined function

Strings and Character Arrays 367

6.7.15 strncmp Function
Role: The strncmp function compares a portion of two strings.
Inputs: Two strings str1 and str2 and the value of n, i.e. the number of characters to be

compared.
Output: The strncmp function performs the comparison of str1 and str2, starting with the

first character in each string and continuing with the subsequent characters
until the corresponding characters differ or until the end of strings is reached
or n characters have been compared. It returns the ASCII difference of the first
dissimilar corresponding characters or zero if none of the corresponding n
characters in both the strings are different.

Usage: The code snippets in Program 6-34 illustrate the use of the strncmp function and
the development of the strncmp functionality.

Line Prog 6-34a.c
Using library function

Prog 6-34b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30

//Comparing a portion of two strings
#include<stdio.h>
#include<string.h>
main()
{
 char str1[20],str2[20];
 int res, n;
 puts(“Enter string 1:”);
 gets(str1);
 puts(“Enter string 2:”);
 gets(str2);
 puts(“Enter the value of n:”);
 scanf(“%d”,&n);
 res=strncmp(str1,str2,n);
 if(res==0)
 puts(“String portions are equal”);
 else
 puts(“String portions are not equal”);
}

//Comparing a portion of two strings
#include<stdio.h>
int mystrncmp(const char* s1, const char* s2, int n);
main()
{
 char str1[20],str2[20];
 int res,n;
 puts(“Enter string 1:”);
 gets(str1);
 puts(“Enter string 2:”);
 gets(str2);
 puts(“Enter the value of n:”);
 scanf(“%d”,&n);
 res=mystrncmp(str1,str2,n);
 if(res==0)
 puts(“String portions are equal”);
 else
 puts(“String portions are not equal”);
}
int mystrncmp(const char* s1, const char* s2,int n)
{
int i=0;
while((s1[i]!=’\0’ || s2[i]!=’\0’) && i<n)
{
 if(s1[i]!=s2[i])
 return(s1[i]-s2[i]);
 i++;
}
return 0;
}

Enter string 1:
Hello
Enter string 2:
Hi
Enter the value of n:
1
String portions are equal

Output window
(second execution)

Enter string 1:
Hello
Enter string 2:
Hello
Enter the value of n:
4
String portions are equal

Output window
(third execution)

Enter string 1:
hello
Enter string 2:
HELLO
Enter the value of n:
3
String portions are not equal

Program 6-34 | A program that compares a portion of two strings (a) using a library function and (b) using
a user-defined function

368 Programming in C—A Practical Approach

6.7.16 strncmpi Function
Role: The strncmpi function compares a portion of two strings without case sensitivity.
Inputs: Two strings str1 and str2 and the value of n, i.e. the number of characters to be

compared.
Output: The strncmpi function performs the comparison of str1 and str2 without case sen-

sitivity, starting with the first character in each string and continuing with the
subsequent characters until the corresponding characters differ or until the
end of strings is reached or n characters have been compared. It returns the
ASCII difference of the first different corresponding characters or zero if none
of the corresponding n characters in both the strings are different.

Usage: The code snippets in Program 6-35 illustrate the use of the strncmpi function and
the development of the strncmpi functionality.

Line Prog 6-35a.c
Using library function

Prog 6-35b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32

//Comparing a portion of strings
//without case sensitivity
#include<stdio.h>
#include<string.h>
main()
{
 char str1[20],str2[20];
 int res, n;
 puts(“Enter string 1:”);
 gets(str1);
 puts(“Enter string 2:”);
 gets(str2);
 puts(“Enter the value of n:”);
 scanf(“%d”,&n);
 res=strncmpi(str1,str2,n);
if(res==0)
 puts(“String portions are equal”);
else
 puts(“String portions are not equal”);
}

//Comparing a portion of strings without
//case sensitivity
#include<stdio.h>
int mystrncmpi(const char* s1, const char* s2, int n);
main()
{
 char str1[20],str2[20];
 int res,n;
 puts(“Enter string 1:”);
 gets(str1);
 puts(“Enter string 2:”);
 gets(str2);
 puts(“Enter the value of n:”);
 scanf(“%d”,&n);
 res=mystrncmpi(str1,str2,n);
 if(res==0)
 puts(“String portions are equal”);
 else
 puts(“String portions are not equal”);
}
int mystrncmpi(const char* s1, const char* s2,int n)
{
int i=0;
while((s1[i]!=’\0’ || s2[i]!=’\0’) && i<n)
{
if((s1[i]==s2[i])|| (s1[i]-s2[i])==32|| (s1[i]-s2[i])==-32)
 i++;
else
 return(s1[i]-s2[i]);
}
return 0;
}

Enter string 1:
Hello
Enter string 2:
Hi
Enter the value of n:
2
String portions are not equal

Output window
(second execution)

Enter string 1:
Hello
Enter string 2:
Hello
Enter the value of n:
5
String portions are equal

Output window
(third execution)

Enter string 1:
hello
Enter string 2:
HELLO
Enter the value of n:
4
String portions are equal

Program 6-35 | A program that compares a portion of two strings without case sensitivity (a) using a library
function and (b) using a user-defined function

Strings and Character Arrays 369

6.7.17 strnset Function
Role: The strnset function sets the first n characters in a string to a specific character.
Inputs: A string, a character and an integer value n.
Output: The strnset function sets the first n characters in a string to the given character

and returns a pointer to the string.
Usage: The code snippets in Program 6-36 illustrate the use of the strnset function and

the development of the strnset functionality

Line Prog 6-36a.c
Using library function

Prog 6-36b.c
Using user-defined function

Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
21
22
23
24
25
26
27
28
29
30
31

//Setting the first n characters of a string
//to a specific character
#include<stdio.h>
#include<string.h>
main()
{
 char str[20], ch;
 int n;
 puts(“Enter the string:”);
 gets(str);
 puts(“Enter the character:”);
 scanf(“%c”,&ch);
 puts(“Enter the value of n:”);
 scanf(“%d”,&n);
 puts(“Before using strnset(), string is:”);
 puts(str);
 strnset(str,ch,n);
 puts(“After using strnset(), string is:”);
 puts(str);
}

//Setting the first n characters of a
//string to a specific character
#include<stdio.h>
char* mystrnset(char* s, int ch, int n);
main()
{
 char str[20], ch;
 int n;
 puts(“Enter the string:”);
 gets(str);
 puts(“Enter the character:”);
 scanf(“%c”,&ch);
 puts(“Enter the value of n:”);
 scanf(“%d”,&n);
 puts(“Before using strnset(), string is:”);
 puts(str);
 mystrnset(str,ch,n);
 puts(“After using strnset(), string is:”);
 puts(str);
}
char* mystrnset(char* s, int ch, int n)
{
int i=0;
while(s[i]!=’\0’ && i<n)
{
 s[i]=ch;
 i++;
}
return s;
}

Enter the string:
Hello Readers!!
Enter the character:
X
Enter the value of n:
6
Before using strnset(), string is:
Hello Readers!!
After using strnset(), string is:
XXXXXXReaders!!
Remark:
•  If the length of the

string is less than the
value of n then the
strnset function sets
all the characters of
the string to the spe-
cific character

Program 6-36 | A program that sets the first n characters of a string to a specific character (a) using a library
function and (b) using a user-defined function

6.8 List of Strings
In the previous sections, we have seen how to store the strings in character arrays and the
functions that can be used to manipulate them. However, real-time applications often require

370 Programming in C—A Practical Approach

storage and manipulation of a number of strings (i.e. list of strings) and not only a single
string. A list of strings can be stored in two ways:

1. Using an array of strings
2. Using an array of character pointers

6.8.1 Array of strings
If an application requires the storage of multiple strings, an array of strings can be used to
store them. Since a string itself is stored in a one-dimensional character array, the list of strings
can be stored by creating an array of one-dimensional character arrays, i.e. two-dimensional
character array. Figure 6.4 depicts an array of strings.

A 2-D char array R a m a n \0 1st string
(Array of strings) S a m \0 2nd string

V i s h a l \0 3rd string
N e h a \0 4th string

Figure 6.4 | Array of strings

6.8.1.1 Declaration of Array of strings
The general form of an array of strings declaration is:
<sclass_specifi er><type_qualifi er><type_modifi er>char identifi er[<row_specifi er>][column_specifi er]<=initialization_list>;

The important points about an array of strings declaration are as follows:

1. Array of strings declaration consists of char type specifier, an identifier name, row size
specifier and column size specifier. The following declarations are valid:

char array1[2][30]; // array1 can store 2 strings of maximum 30 characters each
char array2[5][5]; // array2 can store 5 strings of maximum 5 characters each

2. All the syntactic rules discussed in Chapter 4 for declaring two-dimensional arrays are
applicable for declaring arrays of strings as well.

3. Initialization of array of strings: Array of strings can be initialized in two ways:

a. Using string literal constants: Using string literal constants, an array of strings can
be initialized as:

char str[][20]={
 “Raman”,
 “Sam”,
 “Vishal”,
 “Neha”
 };

b. Using a list of character initializers: Using a list of character initializers, an array of
strings can be initialized as:

Strings and Character Arrays 371

char str[][20]={
 {‘R’,’a’,’m’,’a’,n’,’\0’},
 {‘S’,’a’,’m’,’\0’},
 {‘V’,’i’,’s’,’h’,’a’,’l’,’\0’},
 {‘N’,’e’,’h’,’a’,’\0’}

};

6.8.1.2 Reading List of Strings from the Terminal
A list of strings can be read from the terminal by iteratively calling the gets or scanf function.
Program 6-37 reads a list of strings from the terminal and stores them in an array of strings.

Line Prog 6-37.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

//Reading a list of strings from the terminal
#include<stdio.h>
main()
{
 int i=0,j=0, marks[10], max;
 char students[10][20], ch;
 printf(“Enter names of students and their marks:\n”);
 while(1)
 {
 scanf(“%s %d”,students[i], &marks[i]);
 printf(“Do you want to enter more(Y/N)\t”);
 flushall();
 scanf(“%c”,&ch);
 if(ch==’Y’||ch==’y’)
 i=i+1;
 else
 break;
 if(i==10)
 {
 printf(“Cannot hold more names\n”);
 break;
 }
 }
 max=0;
 for(j=0;j<i;j++)
 if(marks[j]>marks[max])
 max=j;
 printf(“\n%s got maximum marks”,students[max]);
}

Enter names of students and their marks:
Praveen 89
Do you want to enter more(Y/N) Y
Ashok 80
Do you want to enter more(Y/N) Y
Manish 90
Do you want to enter more(Y/N) Y
Ameet 85
Do you want to enter more(Y/N) N

Manish got maximum marks
Remarks:
•  List of strings can be read by itera-

tively using the gets or scanf function
•  The role of the flushall function is to

flush (i.e. clear) the contents of all
the streams

•  Refer Question number 15 for a de-
scription on streams and the flushall
function

Program 6-37 | A program that demonstrates a method to read a list of strings

6.8.2 Array of Character Pointers
An array of strings can also be stored by using an array of character pointers. The starting ad-
dresses of strings are stored in an array of character pointers as shown in Figure 6.5.

372 Programming in C—A Practical Approach

char* languages[]={“Basic”, “Java”, “Fortran”, “C”, “C++”};
languages

[0] 2000 B a s i c \0
 [1] 4000 2000 2001 2002 2003 2004 2005 2006 2007
 [2] 6000 J a v a \0
 [3] 2010 4000 4001 4002 4003 4004 4005 4006 4007
 [4] 8000 F o r t r a n \0

6000 6001 6002 6003 6004 6005 6006 6007
C \0

Array indices 2010 2017
C + + \0

8000 8001 8002 8003 8004 8005 8006 8007

2011 2012 2013 2014 2015 2016

Figure 6.5 | Storing a list of strings using an array of character pointers

6.8.2.1 Use of Array of Character Pointers
Program 6-38 demonstrates the use of an array of character pointers to store a list of strings.

Line Prog 6-38.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

//Use of array of character pointers
#include<stdio.h>
main()
{
int i,a[4];
char* states[]={“Punjab”, “Bihar”, “Rajasthan”, “Gujarat”} ;
char* capitals[]={“Gandhinagar”, “Chandigarh”, “Jaipur”, “Patna”};
printf(“States\t\t\tCapitals\n”);
printf(“---\n”);
for(i=0;i<4;i++)
printf(“%d. %-10s\t\t%d. %s\n”,i+1,states[i],i+1,capitals[i]);
printf(“\nMatch states in Col. 1 with capitals in Col. 2\n”);
printf(“(Enter only Sr. Nos.)\n”);
printf(“---\n”);
for(i=0;i<4;i++)
{
 printf(“Capital of state %d is at\t”,i+1);
 scanf(“%d”,&a[i]);
}
printf(“---\n”);
for(i=0;i<4;i++)
printf(“%-11s is capital of %s\n”,capitals[a[i]-1],states[i]);
}

States Capitals

1. Punjab 1. Gandhinagar
2. Bihar 2. Chandigarh
3. Rajasthan 3. Jaipur
4. Gujarat 4. Patna

Match states in Col. 1 with capitals in Col, 2
(Enter only Sr. Nos.)

Capital of state 1 is at 2
Capital of state 2 is at 4
Capital of state 3 is at 3
Capital of state 4 is at 1

Chandigarh is capital of Punjab
Patna is capital of Bihar
Jaipur is capital of Rajasthan
Gandhinagar is capital of Gujarat
Remark:
•  Lists of strings are stored using ar-

rays of character pointers in line
number 6 and 7

Program 6-38 | A program that illustrates the use of an array of character pointers

Strings and Character Arrays 373

6.9 Command Line Arguments
In the previous chapter, we have seen that inputs are given to the functions by means of argu-
ments. main is also a function. Therefore, can we give inputs to the function main also by sup-
plying arguments? The answer to this question is YES! Inputs to the function main are given by
making use of special arguments known as command line arguments.
If you have used DOS, you must have used copy command. The copy command looks like:

copy source_file.txt dest_file.txt
To the copy program, the name of the source file (i.e. source_file.txt) and the name of the desti-
nation file (i.e. dest_file.txt) are given as inputs. These inputs are given at the command line or
command prompt and are known command line arguments.

C provides a fairly simple mechanism for retrieving command line arguments entered
by the user at the command line. To retrieve the command line arguments, the function main
should be defined as:
main(int argc, char* argv[]) // Header of the function main
{
//…….Statements…….
//…….Body…..
//…….Statements……..
}

In the header of the function main, two parameters are given, namely:
1. argc: The parameter argc stands for argument count and is of integer type.
2. argv: The parameter argv stands for argument vector and is an array of character pointers.

i The names of parameters are dummy and can be anything like abc, xyz, etc. but generally the
names argc and argv are used.

Suppose that on the command prompt, the user has entered:
prog opt1 opt2 sfi le dfi le

The important points about the given input are as follows:
1. The command line arguments are separated by blank spaces. In the given input, there

are five arguments. The name of the program file (actually executable file) will also be
counted while determining the argument count.

2. The parameter argc will receive a value equal to the number of arguments specified on
the command prompt. In the given example, argc will have the value 5.

3. The first argument is the name of the program file (actually executable file). The file prog.
exe should be present in the current working directory.

4. The contents of the parameter argv will be:
argv[0]=”prog”
argv[1]=”opt1”
argv[2]=”opt2”
argv[3]=”sfile”
argv[4]=”dfile”

374 Programming in C—A Practical Approach

The contents of the array argv are shown in Figure 6.6.

argv
[0] 2000
[1] 4000
[2] 6000
[3] 2010
[4] 8000

6000 6001 6002 6003 6004
Array indices s f i l e \0

2010 2011 2012 2013 2014 2015
d f i l e \0

2000

4000

p g

o
2001

4001
o \0

8003 8004 800580028000 8001

p t 2

p t 1 \0
4002 4003 4004

2002 2003 2004
\0 r o

Figure 6.6 | Contents of the array argv

Program 6-39 illustrates the use of command line arguments.

Line Prog 6-39 mycopy.c Command prompt

 1
 2
3
4
5
6
7
8
9

10

//Command line arguments
#include<stdio.h>
main(int argc, char* argv[])
{
 int i=0;
 printf(“The number of arguments are %d\n”, argc);
 printf(“Arguments are:\n”);
 for(i=0;i<argc;i++)
 printf(“%s\n”,argv[i]);
}

c:\tc\bin>mycopy source.txt dest.txt
The number of arguments are 3
Arguments are:
c:\tc\bin>mycopy.exe
source.txt
dest.txt

Program 6-39 | A program that illustrates the use of command line arguments

To execute Program 6-39, follow these steps:
1. Save the program with .c extension. Suppose the name given to the program file is

mycopy.c.
2. Compile the program and check for compilation errors.
3. If there are no errors, build an executable file by invoking Make or Build all option in

the Compile Menu of Turbo C 3.0 or by invoking Make all or Build all option in the
Project menu, if using Turbo C 4.5. By default, the name of the executable file would be
the same as the name of the program file. However, if a different name is given to the
executable file, note it.

4. Observe the name and path of the directory in which the executable file is created.
5. Invoke the command prompt. Change the directory and make the current working di-

rectory the same as the directory in which the executable file was created.

Strings and Character Arrays 375

6. Execute the program by writing the name of the executable file followed by blank sepa-
rated arguments, e.g. mycopy source.txt dest.txt

7. If using Turbo C 3.0, the other way to execute Program 6-39 is by providing arguments from
the IDE. Invoke Arguments… option is available in the Run Menu. Provide the arguments and
execute the program. Note that if using this option, all the arguments except the name of
the program file are to be provided. The name of the program is used by default and should
not be specified.

Practically, the command line arguments are used in the applications that involve file
handling.

Forward Reference: Files and file handling (Chapter 10).

6.10 Summary
1. A string literal is a sequence of zero or more characters enclosed within double quotes.
2. A string literal is automatically terminated by a null character.
3. A null character has an ASCII value of 0 and is written as ‘\0’.
4. Due to this additional null character, a string constant takes 1 byte more than the num-

ber of characters present in the string.
5. String literals are stored in character arrays.
6. In C language, string type is not separately available and character pointers are used to

represent a string.
7. The type of string literal constants is const char*. The constant pointer refers to the ad-

dress of the first character of the string.
8. Strings can be read from the keyboard by using scanf and gets functions.
9. The scanf function is used for reading single-word strings while the gets function can be

used for reading multi-word strings.
10. Strings are printed on the screen by using printf and puts functions.
11. The printf function does not place a new line character after printing the string but the puts

function places a new line character after printing the string.
12. The C string library provides a rich set of functionality to manipulate strings in the form

of library functions like strcpy, strcmp, strcat, strrev, etc.
13. Real-time applications often require storage and processing of a number of strings at a

time. A list of strings can be stored by using an array of strings or by using an array of
character pointers.

14. The main function can also take string inputs from the command line. The arguments
given to the function main from the command line are known as command line argu-
ments.

Chapter 6.indd 375Chapter 6.indd 375 28/02/2010 3:45:11 PM28/02/2010 3:45:11 PM

376 Programming in C—A Practical Approach

Exercise Questions

Conceptual Questions and Answers
1. What is a null character?
 A character constant with an ASCII value of zero is known as the null character and is written as ‘\0’.

2. What is a character string literal constant? How is it written and stored in the memory?

Backward Reference: Refer Section 6.2 for a description on character string literal constants.

3. What can the maximum number of characters in a character literal constant be?
 The character constant can be one (e.g. ‘A’) or two (e.g. ‘\n’) characters long. Hence, the maximum

number of characters in a character literal constant can be two.
4. What would be the size of the following arrays:
 char str1[]= “Hello”;
 char str2[]={‘H’,’e’,’l’,’l’,’o’};

 The character array str1 is initialized with a character string literal constant “Hello”. Since a charac-
ter string literal constant is terminated by a null character ‘\0’, the contents stored in the character
array str1 will be (say array is allocated at 2000):

str1 H e l l o \0
Memory
addresses

2000 2001 2002 2003 2004 2005

 The character array str2 is initialized with the five initializers in the initialization list. Hence, the
contents of str2 will be (say array is allocated at 4000):

str2 H e l l o
Memory
addresses

4000 4001 4002 4003 4004

 Therefore, the size of array str1 is 6 and that of str2 is 5.

5. What are the different ways to print character arrays?
 The following code illustrates four different ways to print character arrays:
 main()
 {
 char character_array[]=”Example”;
 int i;
 printf(character_array); // Way 1
 printf(“\n%s\n”,character_array); // Way 2
 puts(character_array); // Way 3
 for(i=0;character_array[i]!=’\0’;i++) // Way 4
 printf(“%c”,character_array[i]);
 }
 In way 1, the character array is printed without using any format specifier. The first argument

of the printf function must be of type const char* and the array name character_array is implicitly

Strings and Character Arrays 377

converted to pointer type char*. Since the types const char* and char* are compatible, the compiler
implicitly converts char* to const char*. Therefore, this usage is perfectly valid. This type of usage
however has a limitation that only one character array can be printed at a time.

 In way 2, the character array is printed by using a %s format specifier. This type of usage has an
advantage that many character arrays can be printed by a single call to the printf function by using
multiple %s specifiers. For example:

 main()
 {
 char character_array1[]=”Hello”;
 char character_array2[]=”Readers”;
 printf(“%s %s”,character_array1,character_array2);
 }
 In way 3, the puts function is used to print the character array. The difference between the puts and

printf function is that the puts function places a new line character at the end, while the printf func-
tion does not do so.

 In way 4, a for loop is used to print all the characters of the array character_array one by one.

6. Is the declaration char str[6]=”Hello” same as char *str=”Hello”?
 No, the declaration char str[6]=”Hello”; is not the same as char *str=”Hello”;. The first declaration state-

ment declares str to be a character array of size six and initializes the elements of array str with the
characters of the string literal constant “Hello”. However, the second declaration statement declares
str to be a pointer to the character type and initializes it with the base address of string “Hello”. The
difference between the two declarations is shown in the figure below:

str H e l l o \0
Memory
addresses

2000 2001 2002 2003 2004 2005

(a) char str[6]=”Hello”;

str 4000 H e l l o \0
Memory
addresses 3000 4000 4001 4002 4003 4004 4005

(b) char *str=”Hello”;

 Another difference is that the first declaration statement allocates six bytes of the memory space
to str, while the second declaration allocates two bytes to str (since it is a pointer).

i It is very important to note that arrays are not pointers, although they are very closely re-
lated and sometimes have similar usage. For example, it is valid to write puts(str) and printf(str),
where str is either declared by (a) or (b) as shown in the figure above.

7. The following piece of code on execution gives some garbage. Why?
 main()
 {
 char str[5]=”Hello”;
 puts(str);
 }

378 Programming in C—A Practical Approach

 The puts function outputs a sequence of characters (i.e. a string) on the screen. The output starts
from the character pointed to by the pointer argument and is carried out till the null character is
encountered.

 The declaration char str[5]=”Hello”; creates a character array of five locations and initializes the loca-
tions with the characters ‘H’, ‘e’, ’l’, ’l’ and ’o’. The array does not have the space to accommodate the
null character. The array allocation and the memory contents are shown in the figure below:

Array str Unallocated memory

str H e l l o G G G G G
Memory
addresses 2000 2001 2002 2003 2004 2005 2006 2007 2008 ...

 The function call puts(str) prints the characters starting from location 2000 till the null character is en-
countered. Since the character array str does not have the terminating null character, the output will
be Hello followed by some garbage characters. The number of garbage characters depends upon
where the null character (i.e. 0 value) is encountered in the memory. Execution of the same code at
different times or on different machines may give a different number of garbage characters.

8. Will the following piece of code also give some garbage as the previous code does?
 main()
 {
 char *str=”Hello”;
 puts(str);
 }
 No, the mentioned piece of code outputs Hello and does not give any garbage character. The decla-

ration char* str=”Hello”; creates str as a ‘pointer to character’ and initializes it with the base addresses
of string literal constant “Hello”. This can be depicted as:

str 4000 H e l l o \0
Memory
addresses 2000 4000 4001 4002 4003 4004 4005

 The function call puts(str) starts printing the characters from the memory location 4000 till the null
character is encountered. Since there is a null character ‘\0’ available at the memory location 4005,
the output will be Hello only without any garbage.

9. Why does the following piece of code not work? Rectify it.
 main()
 {
 char string[15]=”Hello Readers”;
 strcat(string,’!’);
 puts(string);
 }
 The following piece of code on compilation gives ‘Cannot convert char to char*’ error. The error is

due to the fact that the strcat function expects two arguments of type char* (i.e. both the arguments
should be strings). In the function call, strcat(string,’!’); the second argument is a character (i.e. of
type char) and is not a string (i.e. of type char*). The conversion from type ‘char to char*’ is not a
standard conversion, hence, the compiler will not carry it out implicitly and flags it as an error.
The rectified call to the strcat function is strcat(string,”!”);.

Strings and Character Arrays 379

10. What is the difference between strchr and strrchr functions?

Backward Reference: Refer Sections 6.7.10 and 6.7.11 for a description on strchr and strrchr
functions.

11. Describe the behavior of the scanf function when applied on strings.

Backward Reference: Refer Section 6.4 for a description on the behavior of the scanf function
when applied on strings.

12. The following piece of code compiles successfully. However, on execution gives an exception. Why? Rectify
it.

 main()
 {
 char *str;
 printf(“Enter a string\t”);
 gets(str);
 printf(“The string entered was\t”);
 puts(str);
 }
 The given code on execution gives an exception because before calling the gets function we have

not allocated sufficient memory space to store the string entered by the user. There will be no
compilation error because the gets function has no way to check whether the memory space
pointed to by str is allocated or not.

 The following are the rectified pieces of equivalent code:

#include<stdio.h>
main()
{
 char str[10];
 printf(“Enter a string\t”);
 gets(str);
 printf(“The entered string was\t”):
 puts(str);
}

Rectified code 1

#include<stdio.h>
#include<alloc.h>
main()
{
 char *str=(char*)malloc(10);
 printf(“Enter a string\t”);
 gets(str);
 printf(“The entered string was\t”);
 puts(str);
}

Rectified code 2

 In the rectified code 1, str has been declared to be a character array of size 10. Hence, 10 bytes are
allocated to str at the compile time. In the rectified code 2, the malloc (i.e. memory allocate) func-
tion is used to allocate 10 bytes of memory. malloc function returns a void pointer to the allocated
memory space. The void* is type casted to char* and is assigned to str, i.e. str is made to point to the
allocated memory space.

i Some of the compilers like GNU GCC compiler, Borland Turbo C 3.0, etc. may not generate
an exception, if the uninitialized pointer like str is used with the gets function.

13. What would be the output of the following piece of code?
 main()
 {
 char str[10]=”ab\n\tcd”;

380 Programming in C—A Practical Approach

 printf(“Size of string is %d”,strlen(str));
 }
 The given piece of code on execution outputs:
 Size of string is 6
 Character sequences like \n are interpreted at the compile time. When a backslash and an ad-

jacent character n appear in a character constant or a string literal constant, they are immediately
translated into a single new line character, i.e. one token. Similar translations also occur for other
character escape sequences like \t, \b, \r, etc.

 Hence, the string literal constant “ab\n\tcd” has six characters namely ‘a’, ’b’,’\n’, i.e. new line char-
acter, ‘\t,’ i.e. tab character, ’c’ and ’d’.

14. Consider the following piece of code:
 main()
 {
 char str[10];
 gets(str);
 printf(“Size of string is %d”,strlen(str));
 }
 What would the output of the mentioned piece of code be, if the user entered the same string as in the previ-

ous question, i.e. “ab\n\tcd”?
 On execution of the code, if the user enters the string “ab\n\tcd”, the output of the code would be:
 Size of string is 8
 The output of this code is different from the output of the previous question because of the fact

that when strings are taken from the user or read from a file at the run time, no interpretation of
character sequences like \n, \t, etc. is performed. ‘\’ and ‘n’ are treated as separate characters and
are not transformed into single characters. The same is true for other escape sequences.

 Hence, the string “ab\n\tcd” entered by the user at the run time has eight characters namely ‘a’, ’b’,’\’,
‘n’, ‘\’, ‘t’, ’c’ and ’d’.

15 Consider the following piece of code:
 main()
 {
 char str1[20],str2[20];
 printf(“This code demonstrates two different ways to read strings\n”);
 printf(“Enter string 1\t”);
 scanf(“%s”,str1);
 printf(“Enter string 2\t”);
 gets(str2);
 printf(“\nThe strings entered were\n”);
 puts(str2);
 puts(str1);
 }
 On execution, the code does not use the prompt to enter string 2 and directly starts printing the strings.

Why?
 The reason behind this behavior can be understood by learning how input and output are done

in C. All the input and output in C are done with streams. A stream can be thought of as a buffer
from which a sequence of data elements is made available during input or to which a sequence
of data elements is written during output. The figure shown below depicts how input and output
are done by means of input and output streams.

Strings and Character Arrays 381

Streams
Standard Input Stream

(stdin)Program User
(Keyboard)

Standard Output Stream
(stdout)

Monitor

 All the input functions like scanf, gets, getc etc. read from the standard input stream stdin and
prompt the user to enter the data only if the stream is empty. If the stream already contains data
or some characters, the input function will not prompt the user and silently retrieves the already
available characters from the stream.

 Suppose on execution of the given code, the user typed Hello and pressed the Enter key. The con-
tents entered into the standard input stream are shown in the figure below.

Stream stdin

H e l l o \nProgram User
(Keyboard)

 The scanf function retrieves all the characters from stdin up to but not including the white-space
character. Hence, after the execution of the function call scanf(“%s”,str1);, Hello is removed from stdin
and is stored in str1 but the new line character still remains in the stream stdin. The call to the func-
tion gets(str2); finds the new line character in the stream. That is why it does not prompt the user
to make input. It silently removes that new line character from stdin and stores it in str2.

 This problem can be solved by removing the new line character from the stdin stream before giv-
ing call to the gets function. This can be done either by calling function flushall(); or fflush(stdin);. The
rectified piece of code is as follows:

 main()
 {
 char str1[20],str2[20];
 printf(“This code demonstrates two different ways to read strings\n”);
 printf(“Enter string 1\t”);
 scanf(“%s”,str1);
 printf(“Enter string 2\t”);
 flushall(); //flushall(); flushes all the streams
 //or fflush(stdin); flushes only stdin stream.
 gets(str2);
 printf(“\nThe strings entered were\n”);
 puts(str2);
 puts(str1);
 }

Code Snippets
 Determine the output of the following code snippets. Assume that the inclusion of the required header files

has been made and there is no prototyping error due to them.
16. main()
 {
 char str1[]= “Strings”;
 char str2[]={‘S’,‘t’,‘r’,‘i’,‘n’,‘g’,‘s’};

382 Programming in C—A Practical Approach

 puts(str1);
 puts(str2);
 }
17. main()
 {
 char str[]=”Strings”;
 int i;
 for(i=0;str[i];i++)
 printf(“%c”,str[i]);
 }
18. main()
 {
 printf(“%d %d”,sizeof(‘A’),sizeof(“A”));
 }
19. main()
 {
 char str1[]=”Hello”;
 char *str2=”Hello”;
 printf(“%d %d\n”,sizeof(str1),sizeof(str2));
 printf(“%d %d”,sizeof(*str1),sizeof(*str2));
 }
20. main()
 {
 char str[]=”Characters”;
 printf(“%d %d”,strlen(str) ,sizeof(str));
 }
21. main()
 {
 char str1[]=”Hello”;
 char str2[]=”Readers!”;
 printf(“Hello ””Readers!””\n”);
 puts(“Hello ””Readers!”);
 printf(“%s %s”,str1,str2);
 }
22. main()
 {
 char str1[]=”Hello”;
 char str2[]=”Readers!”,
 puts(str1,str2);
 }
23. main()
 {
 char str1[]=”Hello”;
 char str2[]=”Readers!”;
 puts((str1,str2));
 }
24. main()
 {
 char *str;

Strings and Character Arrays 383

 str=”Hello”,”Readers!”;
 puts(str);
 }
25. main()
 {
 char *str;
 str=(”Hello”,”Readers!”);
 puts(str);
 }
26. main()
 {
 char str1[]=”Hello”;
 char str2[]=”Readers!”;
 printf(str1,str2);
 }
27. main()
 {
 char str[]=”HelloReaders!”;
 printf(“%s %s %s”,&str[5],&5[str],str+5);
 }
28. main()
 {
 char str[]=”Hello Readers!”;
 printf(“%c %c %c”,str[6],6[str],*(str+6));
 }
29. main()
 {
 printf(“Hello Readers!”+6);
 }
30. main()
 {
 putchar(“Hello Readers!”[6]);
 putchar(6[”Hello Readers!”]);
 }
31. main()
 {
 printf(“The size of string is %d\n”,sizeof(“Hello Readers!”));
 printf(“The string is allocated memory starting at %p”,&”Hello Readers!”);
 }
32. main()
 {
 char str1[]=”Strings!”;
 char str2[]=”Strings!”;
 if(str1==str2)
 printf(“Strings are same!!”);
 else
 printf(“Strings are different!!”);
 }

384 Programming in C—A Practical Approach

33. main()
 {
 char str1[]=”Strings!”;
 char str2[]=”Strings!”;
 if(strcmp(str1,str2)==0)
 printf(“Strings are same!!”);
 else
 printf(“Strings are different!!”);
 }

34. main()
 {
 char str1[]=”strings!”;
 char str2[]=”STRINGS!”;
 if(strcmp(str1,str2)==0)
 printf(“Strings are same!!”);
 else
 printf(“Strings are different!!”);
 }

35. main()
 {
 char str1[]=”strings!”;
 char str2[]=”STRINGS!”;
 if(strcmpi(str1,str2)==0)
 printf(“Strings are same!!”);
 else
 printf(“Strings are different!!”);
 }

36. main()
 {
 if(strcmp(“Strings”,”Strings\0”))
 printf(“Strings are different!!”);
 else
 printf(“Strings are same!!”);
 }

37. main()
 {
 char str1[]={‘S’,’t’,’r’,’i’,’n’,’g’,’s’};
 char str2[]=”Strings”;
 if(strcmp(str1,str2))
 printf(“Strings are different!!”);
 else
 printf(“Strings are same!!”);
 }

38. main()
 {
 char format[]=”%d\n”;
 format[1]=’c’;

Strings and Character Arrays 385

 printf(format,65);
 }
39. main()
 {
 char format[]={37,111,32,37,120,0};
 printf(format,format[0],format[1]);
 }
40. main()
 {
 char str1[]=”Strings”;
 char str2[10];
 str2=str1;
 puts(str1);
 puts(str2);
 }
41. main()
 {
 char src[]=”Strings”;
 char dest[10];
 strcpy(dest,src);
 puts(src);
 puts(dest);
 }
42. main()
 {
 char dest[]=”Visual Basic”;
 char src[]=”C++”;
 puts(strcpy(&dest[7],src));
 }
43. main()
 {
 char dest[]=”Visual Basic”;
 char src[]=”C++”;
 strcpy(&dest[7],src);
 puts(dest);
 }
44. main()
 {
 char dest[]=”Visual Basic”;
 char src[]=”Visual C++”;
 strcpy(&dest[7],&src[7]);
 puts(dest);
 }
45. main()
 {
 if(printf(“\0”))
 printf(“Characters”);
 else

386 Programming in C—A Practical Approach

 printf(“Strings”);
 }

46. main()
 {
 char cities[][11]={“Delhi”,”Chandigarh”,”Noida”};
 int i;
 for(i=0;i<3;i++)
 puts(cities[i]);
 }

47. main()
 {
 char languages[5][20]={“Visual Basic”,”Java”,”Fortran”,”C”,”C++”};
 int i; char *t;
 t=languages[3];
 languages[3]=languages[4];
 languages[4]=t;
 for (i=0;i<=4;i++)
 printf(“%s\n”,languages[i]);
 }

48. main()
 {
 char *languages[]={“Basic”,”Java”,”Fortran”,”C”,”C++”};
 int i; char *t;
 t=languages[3];
 languages[3]=languages[4];
 languages[4]=t;
 for (i=0;i<=4;i++)
 printf(“%s\n”,languages[i]);
 }

49. main()
 {
 char lang[5][20]={“Visual Basic”,”Java”,”Fortran”,”C”,”C++”};
 int i; char *t;
 t=lang[0];
 while(*t++!=32);
 for(i=0;i<5;i++)
 {
 puts(lang[0]);
 strcpy(t,lang[i+1]);
 }
 }

50. main()
 {
 int i,len;
 char *ptr=”String”;
 len=strlen(ptr);
 for(i=0;i<len;i++)

Strings and Character Arrays 387

 {
 puts(ptr);
 ptr++;
 }
 }

51. string_manipulation(char[][]);
 main()
 {
 char arr[][10]={“Hello”,”Students”};
 string_manipulation(arr);
 printf(“%s %s”,arr[0],arr[1]);
 }
 string_manipulation(char arr[][])
 {
 strcpy(arr[1],”Readers!!”);
 }

52. string_manipulation(char(*)[10]);
 main()
 {
 char arr[][10]={“Hello”,”Students”};
 string_manipulation(arr);
 printf(“%s %s”,arr[0],arr[1]);
 }
 string_manipulation(char (*arr)[10])
 {
 strcpy(arr[1],”Readers!!”);
 }

53. string_manipulation(char[][10]);
 main()
 {
 char arr[][10]={“Hello”,”Students”};
 string_manipulation(arr);
 printf(“%s %s”,arr[0],arr[1]);
 }
 string_manipulation(char arr[][10])
 {
 strcpy(arr[1],”Readers!!”);
 }

54. char[20] print_string()
 {
 char str[20]=”Strings!!”;
 return str;
 }
 main()
 {
 puts(print_string());
 }

388 Programming in C—A Practical Approach

55. main(int argc,char*argv[])
 {
 int i;
 printf(“The argument count is %d\n”,argc);
 printf(“The content of argument vector i.e. array is\n”);
 for(i=0;i<argc;i++)
 printf(“%s\n”,argv[i]);
 }

 Suppose the name of the program file is ques55.c and the executable file ques55.exe is invoked from the com-
mand prompt as follows:

 c:\>ques55 Hello Readers!!

Multiple-choice Questions
56. The maximum number of characters in a character literal constant can be

a. One c. Three
b. Two d. As many as the user likes

57. The size occupied by a string literal constant in the memory is
a.  One more than the number of c. One less than the number of
 characters in the string    characters in the string
b.  Same as the number of d. None of these

characters in the string

58. The value returned by the strlen function when a string literal constant is given to it as an
argument is
a. One more than the number of c. One less than the number of

characters in the string argument    characters in the string argument
b. Same as the number of characters in d. None of these

the string argument

59. String literal constants are terminated by
a. New line character c. Null character
b. Carriage return character d. None of these

60. The ASCII code of the null character is
a. 32 c. 13
b. 27 d. 0

61. The output of the statement printf(“%d”,”123456”[1]); is
a. 1 c. 50
b. 2 d. None of these

62. The output of the statement printf(“%s”,”123456”+1); is
a. 123456 c. 23456
b. 123457 d. None of these

63. The correct way to compare two string literal constants “Hello” and “Hi” is
a. “Hello”=”Hi” c. strcmp(“Hello”,”Hi”)
b. “Hello”==”Hi” d. None of these

Strings and Character Arrays 389

64. The output of the statement puts(“\0ABCD\0”); is
a. ABCD c. \0ABCD
b. No output d. Compilation error

65. The result of evaluation of the expression strcmp(“Hello”,”Hi”); will be
a. 0 c. −4
b. 4 d. None of these

66. The correct statement to copy a string literal constant “Hello” to a character array str is
a. str=“Hello”; c. strcpy(“Hello”,str);
b. strcpy(str,“Hello”); d. None of these

67. Adjacent string literal constants
a. Are always concatenated c. Leads to compilation error
b. Are treated as two separate tokens d. None of these

68. The invocation of the function call strcat(“Hi”,”Readers!!”); leads to
a. HiReaders!! c. Run-time exception
b. Compilation error d. None of these

69. The invocation of the function call puts(“Hi”,”Readers!!”); leads to
a. HiReaders!! c. Run-time exception
b. Compilation error d. None of these

70. The invocation of the function call puts(“Hi””Readers!!”); leads to
a. HiReaders!! c. Run-time exception
b. Compilation error d. None of these

71. The output of the following program file ques71.c, if executed from the command line as ques71 1 2 3, is
main(int argc, char* argv[])

 {
 int val;
 val=argv[1]+argv[2]+argv[3];
 printf(“%d”,val);
 }

a. 6 c. Compilation error
b. 123 d. None of these

72. The output of the following program file ques72.c, if executed from the command line as ques72 1 2 3, is
 #include<stdlib.h> // atoi function converts string to an integer and its

 // prototype is in stdlib.h
 main(int argc, char* argv[])
 {
 int val;
 val=atoi(argv[1])+atoi(argv[2])+atoi(argv[3]);
 printf(“%d”,val);
 }

a. 6 c. Compilation error
b. 123 d. None of these

390 Programming in C—A Practical Approach

73. The output of the following program file ques73.c, if executed from the command line as ques73 1 2, is
main(int argc, char* argv[])

 {
 char str[10];
 strcpy(str,argv[1]);
 strcpy(str,argv[2]);
 printf(“%s”,str);
 }

a.  1 c. 12
b. 2 d. None of these

74. The output of the following program file ques74.c, if executed from the command line as ques74 1 2, is
main(int argc, char* argv[])

 {
 char str[10];
 strcpy(str,argv[1]);
 strcat(str,argv[2]);
 printf(“%s”,str);
 }

a. 1 c. 12
b. 2 d. None of these

75. Which of the following is true about argv?
a. It is an array of character pointers c. It is an array of characters
b. It is a pointer to an array of d. None of these

character pointers

Outputs and Explanations to Code Snippets
16. Strings
 Strings! ¥¤§¶
 Explanation:
 As the character array str1 is initialized with the character string literal constant, str1[7] will be a

null character. However, as the character array str2 is initialized with a list of characters, i.e. ‘S’,
’t’, ’r’, ’i’, ’n’, ’g’ and ’s’, no terminating null character is placed in it. Hence, the puts function while
printing str2 gives garbage as it prints from the memory location pointed to by its argument till
the terminating null character is encountered.

17. Strings
 Explanation:
 The for loop is used to print the elements of character array str one by one. The loop terminates

when the value of i becomes 7 and str[i] evaluates to 0 (i.e. the ASCII value of null character).
for(i=0;str[i];i++) is equivalent to writing for(i=0;str[i]!=’\0’;i++).

18. 1 2
 Explanation:
 ‘A’ is a character constant and characters take one byte in the memory. "A" is a string literal constant

and string literal constants are terminated by a null character, i.e. ‘\0’. So “A” is actually made up
of two characters, i.e. ‘A’ and ‘\0’. Hence, sizeof(“A”) comes out to be 2.

Strings and Character Arrays 391

19. 6 2
 1 1
 Explanation:
 str1 is a character array of 6 locations while str2 is a pointer to character. Hence, size of str1 and str2

would be 6 and 2, respectively (in Borland TC 3.0 for DOS), and 6 and 4 (in Borland TC 4.5 for
Windows or Microsoft Visual C++ 6.0). The usage of * with str1 and str2 dereferences them to a
character and hence, sizeof(*str1) and sizeof(*str2) would be 1 and 1.

20. 10 11
 Explanation:
 The strlen function computes the length of a string given to it as an argument. The strlen function

does not count the null character while computing the length of the string. It returns the number
of characters that precedes the terminating null character. On the other hand, the sizeof function
also counts the memory required by the null character while computing the number of memory
bytes occupied by the string.

21. Hello Readers!
 Hello Readers!
 Hello Readers!
 Explanation:
 Adjacent character string literal constants are concatenated. Hence, writing “Hello ””Readers!””\n” is

equivalent to writing “Hello Readers!\n”. The printf function outputs this character string literal con-
stant onto the screen. The puts function also does the same with a difference that it places the new
line character at the end. Hence, there is no requirement of the new line character in the string
given to puts. The last call to the printf function uses %s specifiers to output the contents of the char-
acter arrays str1 and str2.

22. Compilation error “Extra parameter in call to puts”
 Explanation:
 The puts function expects only one argument of char* type while in the call puts(str1,str2); two argu-

ments of type char* are provided. Hence, there is an extra parameter in the function call, which is
the source of error.

23. Readers!
 Explanation:
 The argument of the puts function is an expression (str1,str2). Now, the instance of the comma sym-

bol separating str1 and str2 in the expression (str1,str2) is treated as a comma operator. The comma
operator guarantees left-to-right evaluation and returns the result of the rightmost sub-expres-
sion. Therefore, the expression (str1,str2) evaluates to str2. Hence, the string Readers! gets printed.

24. Hello
 Explanation:
 The string literal constant refers to the address of its initial element except in the cases when it

is an operand of the sizeof operator or the unary & operator. Hence, “Hello” and “Readers!” refer to
the starting addresses of the strings “Hello” and “Readers!”. In the expression, str=”Hello”,”Readers!”, the
assignment operator has a higher priority as compared to the comma operator. Hence, the as-
signment operator is evaluated first and the starting address of the string literal constant “Hello”
is assigned to str. In the next statement, the string pointed to by str is printed by the puts function.
Hence, “Hello” is the output.

392 Programming in C—A Practical Approach

25. Readers!
 Explanation:
 The use of parentheses makes the comma operator to be evaluated first. The comma operator re-

turns the result of the rightmost sub-expression. Therefore, in the expression str=(“Hello”,”Readers!”),
the starting address of the string “Readers!” is assigned to str. In the next statement, the string
pointed to by str is printed by the puts function. Hence "Readers!" is the output.

26. Hello
 Explanation:
 On compilation, the given code does not produce a compilation error as the code of Question

number 22 does. This is due to the fact that printf is a variable argument function. It can take a
variable number of arguments while puts can only take one argument. Examples when the printf
function takes 1, 2 and 3 arguments are as follows:

 printf(“Hello Readers”); // Only one argument
 printf(“%d”,2); // Two arguments
 printf(“%d %d”,2,3); // Three arguments
 The following important points should also be remembered:

1. The comma symbol appearing in a printf function call is not treated as a comma operator.
2. The printf function expects the first argument to be a string (commonly known as a format

string). It actually prints only the first argument while the other arguments available in the printf
function replace the format specifiers in the first string, if they are present. If no format speci-
fiers are present in the format string, the arguments following the first argument are ignored.

 Hence, the output of printf(str1, str2); is Hello, as the string str1 does not contain a format specifier.

27. Readers! Readers! Readers!
 Explanation:
 The declaration statement char str[]=”HelloReaders!”; allocates str, say at the memory location 2000. The

contents of the array are shown in the figure below:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
str H e l l o R e a d e r s ! \0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

 The printf function prints the sequence of characters from the address given as an argument till
null character is encountered. All the expressions &str[5], &5[str] and str+5 evaluate to 2005. There-
fore, the printing starts from the character present at the location 2005 and is carried out till a null
character is encountered.

28. R R R
 Explanation:
 The expressions str[6], 6[str] and *(str+6) refer to the seventh character of the array str, i.e. R.
29. Readers!
 Explanation:
 Suppose the string literal constant “Hello Readers!” is allocated the memory space from the address

2000 to 2014 as depicted in the figure below:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14]
H e l l o R e a d e r s ! \0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Strings and Character Arrays 393

 String literal constant refers to the address of its initial element except in the cases when it is
an operand of the sizeof operator or the unary & operator. Hence, the expression “Hello Readers!”
evaluates to 2000, and the expression “Hello Readers!”+6 evaluates to 2006. When the expression
“Hello Readers!”+6 is given as an argument to the printf function, the printf function starts printing
the characters from 2006 till a null character is encountered. Hence, the output comes out to
be Readers!.

30. RR
 Explanation:
 The function putchar outputs the character given to it as an argument on the screen. Suppose the

string “Hello Readers!” is allocated the same memory location as in Answer number 29.
 In the first call to the function putchar, the argument is an expression “Hello Readers!”[6]. This expres-

sion gets converted to the form *(“Hello Readers!”+6). The expression *(“Hello Readers!”+6) evaluates to
*(2000+6), i.e. *(2006), i.e. R (refer to the explanation given in Answer number 29). Similarly, 6[“Hello
Readers!”] evaluates to R.

Backward Reference: Refer to the explanation given in Answer number 14 (Chapter 4).

31. The size of string is 15
 The string is allocated memory starting at 2A4F:00AD
 Explanation:
 The string literal constant expression does not decompose into the pointer to its initial element

when it is an operand of the sizeof operator or the unary & operator.

32. Strings are different!!
 Explanation:
 In the expression str1==str2, str1 and str2 are the names of character arrays and refer to the addresses

of their first elements. Since the addresses of the first element of two arrays can never be the
same, the expression str1==str2 evaluates to false and Strings are different!! is the output.

33. Strings are same!!
 Explanation:
 strcmp(str1,str2) performs a comparison between str1 and str2, starting with the first character in

each string and continuing with the subsequent characters until the corresponding characters
differ or until the end of strings is reached. It returns the ASCII difference of the first dissimilar
corresponding characters or zero if none of the corresponding characters in both the strings are
different.

 For example, when strcmp function is applied on the strings str1 (say strings) and str2 (say sonio)
shown in the figure below, it returns 116-111 (i.e. ASCII code of ‘t’ – ASCII code of ‘o’) = 5.

str1 s t r i n g s \0

Memory addresses 2000 2001 2002 2003 2004 2005 2006 2007

str2 s o n i o \0

Memory addresses 4000 4001 4002 4003 4004 4005

394 Programming in C—A Practical Approach

 strcmp(str1,str2) returns a value equal to:
 0 if str1 and str2 are equal, or
>0 if str1 is greater than str2, i.e. str1 comes after str2 in lexicographic order, or
<0 if str1 is lesser than str2, i.e. str1 comes before str2 in lexicographic order.

 In the given question, str1 and str2 being the same, the expression strcmp(str1,str2)==0 evaluates to
true as the strcmp function returns 0. Hence, Strings are same!! is the output.

34. Strings are different!!
 Explanation:
 The strcmp function when used to compare str1 and str2 returns 115-83 (i.e. ASCII code of ‘s’-ASCII

code of ‘S’) = 32. The returned value is not equal to zero. Hence, the expression strcmp(str1,str2)==0
evaluates to false and Strings are different!! is the output. Note that the strcmp function considers the
case sensitivity of the characters while comparing the strings.

35. Strings are same!!
 Explanation:
 The strcmpi function compares the strings without case sensitivity. The character i in the strcmpi

function stands for ignore case.

36. Strings are same!!
 Explanation:
 Suppose, the character string literal constants “Strings” and “Strings\0” are allocated the memory

space at the addresses 2000 and 4000 as shown in the figure below:

S t r i n g s \0

Memory addresses 2000 2001 2002 2003 2004 2005 2006 2007

S t r i n g s \0 \0

Memory addresses 4000 4001 4002 4003 4004 4005 4006 4007 4008

 The function call strcmp(“Strings”,”Strings\0”) compares characters of both the strings one by one until
the corresponding characters differ or until the end of the strings is reached. In the given piece of
code, the function call terminates by comparing the null characters located at the locations 2007
and 4007 and returns 0. Hence, Strings are same!! is the output.

37. Strings are different!!
 Explanation:
 Suppose that the character array str1 gets allocated at the memory address 2000 as shown in the

figure below. The first seven elements of the character array str1 are initialized with the characters
‘S’, ’t’, ’r’, ’i’, ’n’, ’g’ and ‘s’, and the memory locations following 2006 contain garbage values.

[0] [1] [2] [3] [4] [5] [6]

str1 S t r i n g s G G G G

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 ...

i G (in the above figure) means garbage value.

Chapter 6.indd 394Chapter 6.indd 394 28/02/2010 3:45:13 PM28/02/2010 3:45:13 PM

Strings and Character Arrays 395

 The contents of the character array str2 allocated at the memory address 4000 are shown in the
figure below:

[0] [1] [2] [3] [4] [5] [6] [7]

str2 S t r i n g s \0 G G G G

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 ...

 The function strcmp(str1,str2) returns the ASCII difference of the first dissimilar corresponding char-
acters or zero if there is no dissimilarity. The first dissimilarity in str1 and str2 is in the characters
located at 2007 and 4007, respectively. Hence, the function strcmp returns the difference between
garbage value G and 0 (i.e. the ASCII code of the null character). There is high probability that
this garbage value is a non-zero value, and hence Strings are different!! is the output. However, by
chance, if the garbage value located at 2007 is 0 (which has lesser probability), then the output will
be Strings are same!!.

38. A
 Explanation:
 The contents of the character array format after initialization are shown in the figure below:

[0] [1] [2] [3]

format % d \n \0

2000 2001 2002 2003

 After the execution of the assignment statement format[1]=’c’; the contents of the character array
format become:

[0] [1] [2] [3]

format % c \n \0

2000 2001 2002 2003

 Writing printf(format,65); is equivalent to writing printf(“%c\n”,65);. Printing of integer value 65 is
done according to the %c format specifier; hence A is the output (since 65 is the ASCII value of
‘A’).

39. 45 6f
 Explanation:
 The character array format is initialized with an initialization list consisting of integer values. If

the initialization list of a character array consists of integer values, then the locations of the array
are initialized with the characters whose ASCII values are equivalent to the integer values in the
initialization list. The characters having an ASCII value of 37 is ‘%’, 111 is ‘o’, 32 is ‘ ’, (i.e. blank
space), 120 is ‘x’ and 0 is ‘\0’, i.e. null character. The initialized contents of the character array format
are shown in the figure below:

[0] [1] [2] [3] [4] [5]

format % o % x \0

2000 2001 2002 2003 2004 2005

396 Programming in C—A Practical Approach

 Now, printf(format,format[0],format[1]); prints the value of format[0] (i.e. 37) and format[1] (i.e. 111) accord-
ing to %o and %x format specifiers, respectively. Hence, the output comes out to be 45 and 6f as the
octal equivalent of 37 is 45 and the hexadecimal equivalent of 111 is 6f.

40. Compilation error “L-value required”
 Explanation:
 str2 is the name of the character array and is a constant object. It cannot be placed on the left

side of an assignment operator. Hence, writing str2=str1 is not valid and gives ‘L-value required’
error.

41. Strings
 Strings
 Explanation:
 The strcpy(dest,src); copies the string pointed by src into the memory location pointed to by dest. The

copying terminates after the terminating null character of src has been copied to dest. The strcpy
function returns the starting address of the memory location where the string has been copied.
Thus, after the execution of the function call strcpy(dest,src); both str and dest contain “Strings”, and
their contents are printed using the puts function.

42 C++
 Explanation:
 The contents of the character array dest and src are shown in the figure below:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

dest V i s u a l B a s i c \0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

[0] [1] [2] [3]

src C + + \0

4000 4001 4002 4003

 The function call strcpy(&dest[7],src); copies the contents of the source string src to the memory loca-
tions starting from 2007, i.e. &dest[7]. The contents of dest after the function call are as follows:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

dest V i s u a l C + + \0 c \0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

 The strcpy function returns the address of the memory location where the string has been copied.
Hence, strcpy(&dest[7],src); returns 2007. The puts prints the sequence of characters starting from the
memory location 2007 till a null character is encountered. Hence, C++ is the output.

43. Visual C++
 Explanation:

Backward Reference: Refer to the explanation given in Answer number 42.

Strings and Character Arrays 397

44. Visual C++
 Explanation:

Backward Reference: Refer to the explanation given in Answer number 42.

45. Strings
 Explanation:
 The printf function returns an integer value equivalent to the number of characters printed. Print-

ing of the null character using the printf function returns zero. Hence, Strings is the output.

46. Delhi
 Chandigarh
 Noida
 Explanation:
 The content of a two-dimensional character array cities is shown in the figure below:

cities [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

[0] D e l h i \0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

[1] C h a n d i g a r h \0

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

[2] N o i d a \0

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

 Referring to a two-dimensional array with only one subscript gives the starting address of a row.
Hence, the expression cities[0] refers to the starting address of the first row, i.e. 2000, and cities[1]
refers to the starting address of the second row, i.e. 2011. The function call puts(cities[i]), prints the
strings in the first, second and third rows.

47 Compilation error “L-value required”
 Explanation:
 Referring to a two-dimensional array with only one subscript refers to the starting address of

the row and is a constant object. The C compiler will not allow its manipulation. Hence, writing
languages[3]=languages[4] is not valid and leads to ‘l-value required’ compilation error.

48. Basic
 Java
 Fortran
 C++
 C
 Explanation:
 languages is an array of character pointers and is initialized with the base addresses of the string

literal constants “Basic”, “Java”, ”Fortran”, ”C” and “C++”. Contiguous memory (say from the memory
address 1000-1009) is allocated to the array languages while the string literal constants are placed
randomly in the memory. This is depicted in the figure below:

398 Programming in C—A Practical Approach

languages
1000 [0] 2000

B a s i c \0

\0

\0

\0

\0

1002 [1] 4000

2000 2001 2002 2003 2004 2005 2006 2007

1004 [2] 6000

J a v a

1006 [3]
8000

4000 4001 4002 4003 4004 4005 4006 4007

1008 [4]
2010

F o r t r a n
6000 6001 6002 6003 6004 6005 6006 6007

C

C + +Memory addresses and
array indices

2010 2011 2012 2013 2014 2015 2016 2017

8000 8001 8002 8003 8004 8005 8006 8007

 The statements t=languages[3];, languages[3]=languages[4]; and languages[4]=t; swap the values of languages[3]
and language[4]. After the execution of these statements, the contents of array languages are as depicted
in the figure below:

languages
1000 [0] 2000

B a s i c \0

\0

\0

\0

\0

1002 [1] 4000

2000 2001 2002 2003 2004 2005 2006 2007

1004 [2] 6000

J a v a

1006 [3]
2010

4000 4001 4002 4003 4004 4005 4006 4007

1008 [4]
8000

F o r t r a n
6000 6001 6002 6003 6004 6005 6006 6007

C

C + +Memory addresses and
array indices

2010 2011 2012 2013 2014 2015 2016 2017

8000 8001 8002 8003 8004 8005 8006 8007

 Thus, the printing of the strings pointed by the content of the array languages yields the mentioned
result.

49. Visual Basic
 Visual Java
 Visual Fortran
 Visual C
 Visual C++
 Explanation:
 The content of the two-dimensional character array lang is shown below:

lang [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
[0] V i s u a l B a s i c \0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
[1] J a v a \0

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
[2] F o r t r a n \0

2026 2027 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
[3] C \0

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
[4] C + + \0

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

Strings and Character Arrays 399

 The character pointer t, say, gets allocated at 4000. After the execution of the assignment statement
t=lang[0]; t starts pointing to the starting address of the first row of the character array lang. After the
execution of while(*t++!=32); statement, t points to the location next to the blank space (ASCII value
32) in the first row of lang, i.e. 2007. Each iteration of the for loop with the loop counter value i prints
the content of lang[0] and copies the strings in the row i+1 at the memory location pointed by t, i.e.
2007.

50. String
 tring
 ring
 ing
 ng
 g
 Explanation:
 Suppose the character pointer ptr and the character string literal constant “String” are allocated the

memory space as shown in the figure below. Since is initialized with the character string literal
constant, it points to the starting address of the string literal, i.e. 4000.

ptr 4000 S t r i n g \0

2000 4000 4001 4002 4003 4004 4005 4006

 Every iteration of the for loop prints a string being pointed by ptr and increments the contents of
the pointer ptr.

51. Compilation error
 Explanation:

Backward Reference: Refer the explanation given in Answer number 59 (Chapter 4).

 While declaring a two-dimensional array, both the row size and column size cannot be left blank. It
is mandatory to mention the column size specifier. Hence, the declaration string_manipulation(char [][]);
is not valid. It can be rectified by mentioning the column size specifier as string_manipulation(char [][10]);.
The same should also be done in the function header.

52. Hello Readers!!
 Explanation:
 The two-dimensional character array arr is passed by reference to the string_manipulation function.

Suppose the array arr (local to the function main) gets allocated at the memory location 2000.
The name arr declared in the function header string_manipulation is of type pointer to the charac-
ter array of size 10 and is local to the function string_manipulation. Suppose it gets allocated at the
memory location say 4000. The name of a two-dimensional array refers to the starting address
of the first row of the array. Therefore, the function call string_manipulation(arr); passes 2000, i.e. the
starting address of the first row of the array to the function string_manipulation. This is shown in
the figure below:

400 Programming in C—A Practical Approach

Function main Function
string_manipulation

arr is a two-dimensional character array
arr is a pointer to a
character array of
size 10

arr [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] arr

[0] H l l oe \0

\0

2000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 4000

[1] S t d e t snu
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

string_manipulation(arr) passes 2000

 The call to the function strcpy inside the body of function string_manipulation copies the string “Readers!!”
at arr[1], i.e., 2010 (because arr is a pointer to a character array of size 10). Thus, the string “Readers!!”
overwrites the string “Students” present in the second row of the character array arr. That is why when
arr[0] and arr[1] are printed, the output comes out to be Hello Readers!!.

53. Hello Readers!!
 Explanation:
 The parameter declaration char arr[][10] gets implicitly converted to char(*arr)[10]. Thus, the men-

tioned code becomes equivalent to the code given in Question number 52.

Backward Reference: Refer to the explanation given in Answer number 52 for the output.

54. Compilation error
 Explanation:
 The return type of a function cannot be an array type. Since the return type of the function

print_string is an array type, i.e. char [20], the compiler issues an error message.

55. The argument count is 3
 The content of argument vector i.e. array is
 c:\ques55.exe
 Hello
 Readers!!
 Explanation:

Backward Reference: Refer to the explanation given in Section 6.9.

 Arguments in command line are separated by blank spaces. Since there are two blank spaces,
the total number of command line arguments is three. Note that the name of the program file
(actually executable file) is also counted while determining the argument count. argv[0] points to
c:\>ques55.exe, argv[1] points to Hello and argv[2] points to Readers!!. Therefore, these strings get printed.

Answers to Multiple-choice Questions
56. b 57. a 58. b 59.c 60. d 61. c 62. c 63. c 64. b 65. c 66. b 67. a 68. c
69. b 70.a 71. c 72. a 73. b 74. c 75. a

Strings and Character Arrays 401

Programming Exercises

Program 1 | Input a string and find the number of vowel(s) present in the string

Line PE 6-1.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31

//Number of vowels in a string
#include<stdio.h>
main()
{
char string[200];
int count=0, i=0;
printf(“Enter a string:\n”);
gets(string);
while(string[i]!=’\0’)
{
 switch(string[i])
 {
 case ‘A’:
 case ‘E’:
 case ‘I’:
 case ‘O’:
 case ‘U’:
 case ‘a’:
 case ‘e’:
 case ‘i’:
 case ‘o’:
 case ‘u’:
 count++;
 }
 i++;
}
if(count==1)
 printf(“One vowel is present in the string”);
else
 printf(“%d vowels are present in the string”, count);
}

Enter a string:
There is nothing more beautiful in the world than a healthy wise old man- Yutang
25 vowels are present in the string

Program 2 | Input a string and count the number of occurrences of a particular character in the string

Line PE 6-2.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13

//Count number of occurrences of a particular character in the string
#include<stdio.h>
main()
{
 char string[200], ch;
 int count=0, i=0;
 printf(“Enter a string:\n”);
 gets(string);
 printf(“Enter the character:\t”);
 scanf(“%c”,&ch);
 while(string[i]!=’\0’)
 {
 if(string[i]==ch)

Enter a string:
Nature, time and patience are three great physicians- Bohn
Enter the character: e
In the given string, e occurred 8 times

(Contd...)

402 Programming in C—A Practical Approach

Line PE 6-2.c Output window

14
15
16
17
18

 count++;
 i++;
 }
 printf(“In the given string, %c occurred %d times\n”,ch, count);
}

Program 3 | Input a string and count the number of blank spaces in the string

Line PE 6-3.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

//Number of blank spaces
#include<stdio.h>
main()
{
 char string[200], ch;
 int count=0, i=0;
 printf(“Enter a string:\n”);
 gets(string);
 while(string[i]!=’\0’)
 {
 if(string[i]==’ ‘)
 count++;
 i++;
 }
 printf(“Number of blank spaces in the given string are %d”, count);
}

Enter a string:
People resent a joke if there is some truth in it- Tagore
Number of blank spaces in the given string are 11

Program 4- Input two strings of equal length from the user and determine how many times the correspond-
ing positions in two strings hold exactly the same characters

Line PE 6-4.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20

//Number of same characters at the corresponding positions in two strings
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
main()
{
 char str1[30], str2[30];
 int length1, length2, count=0, i;
 printf(“Enter two strings of equal length\n”);
 printf(“Enter first string:\t”);
 gets(str1);
 printf(“Enter second string:\t”);
 gets(str2);
 length1=strlen(str1);
 length2=strlen(str2);
 if(length1!=length2)
 {
 printf(“The entered strings are of different lengths\n”);
 exit(1);
 }

Enter two strings of equal length
Enter first string: choice
Enter second string: chance
Corresponding positions hold same characters 4 times

Output window
(second execution)

Enter two strings of equal length
Enter first string: very
Enter second string: much
Corresponding positions hold same characters 0 times

Output window
(third execution)

Enter two strings of equal length
Enter first string: life
Enter second string: lovely
The entered strings are of different lengths

(Contd...)

Strings and Character Arrays 403

21
22
23
24
25
26
27
28

 else
 {
 for(i=0;i<length1;i++)
 if(str1[i]==str2[i])
 count++;
 printf(“Corresponding positions hold same characters %d times”, count);
 }
}

Program 5 | Input a string and display the alternate characters of the string

Line PE 6-5.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

//Printing alternate characters of a string
#include<stdio.h>
main()
{
 char str[200], altchars[200];
 int i=0, length, j=0;
 printf(“Enter a string:\n”);
 gets(str);
 length=strlen(str);
 while(i<length)
 {
 altchars[j]=str[i];
 i=i+2;
 j=j+1;
 }
 altchars[j]=’\0’;
 printf(“Alternate characters in the string are:\n”);
 puts(altchars);
}

Enter a string:
Hatred is preferable to the friendship of fools
Alternate characters in the string are:
Hte speeal otefinsi ffos

Program 6 | Input a string and display the alternate characters of the string in the reverse order

Line PE 6-6.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Printing alternate characters of a string in the reverse order
#include<stdio.h>
#include<string.h>
main()
{
 char str[200], altchars[200];
 int i=0, length, j=0;
 printf(“Enter a string:\n”);
 gets(str);
 length=strlen(str);
 i=length-1;
 while(i>=0)
 {
 altchars[j]=str[i];
 i=i-2;

Enter a string:
Harmony in character gains goodwill even from strangers
Alternate characters of the string in reverse order are:
senrsmr eelido na ecrh iyorH

(Contd...)

404 Programming in C—A Practical Approach

Line PE 6-6.c Output window

16
17
18
19

20
21

 j=j+1;
 }
 altchars[j]=’\0’;
 printf(“Alternate characters of the string in reverse order are:\n”);
 puts(altchars);
}

Program 7 | Input a multi-word string and find out the number of words in the string

Line PE 6-7.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Number of words in a string
#include<stdio.h>
#include<string.h>
main()
{
char str[200];
int i=0, count=0;
printf(“Enter a string:\n”);
gets(str);
while(str[i]!=’\0’)
{
 if(str[i]==’ ‘)
 count++;
 i++;
}
printf(“Number of words in the string are %d\n”,count+1);
}

Enter a string:
A man should be educated enough to know that education alone is not enough
Number of words in the string are 14

Program 8 | Input a string and check whether the given string is a palindrome or not

Line PE 6-8.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//To check whether a given string is a palindrome or not
#include<stdio.h>
#include<string.h>
main()
{
 char str[200], rev[200];
 printf(“Enter a string:\t”);
 gets(str);
 strcpy(rev,str);
 rev=strrev(str);
 if(strcmp(str,rev)==0)
 printf(“The given string is a palindrome”);
 else
 printf(“The given string is not a palindrome”);
}

Enter a string: NITIN
The given string is a palindrome

Output window
(second execution)

Enter a string: Hello
The given string is not a palindrome

Strings and Character Arrays 405

Program 9 | Input a string and count the number of occurrences of a particular word in the string

Line PE 6-9.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31

//Counting the number of occurrences of a particular word in a string
#include<stdio.h>
#include<string.h>
main()
{
 char str[200], word[20], temp[20];
 int i=0, j=0, count=0;
 printf(“Enter a string:\n”);
 gets(str);
 printf(“Enter the word:\t”);
 gets(word);
 while(str[i]!=’\0’)
 {
 while(str[i]!=’ ‘ && str[i]!=’\0’)
 {
 temp[j]=str[i];
 j++; i++;
 }
 temp[j]=’\0’;
 if(str[i]!=’\0’)
 {
 i++; j=0;
 }
 if(strcmp(temp,word)==0)
 count++;
 }
 if(count==0)
 printf(“The word \”%s\” does not exist in the string”, word);
 else
 printf(“The word \”%s\“ exists %d times in the string”, word, count);
}

Enter a string:
Fools are not aware of their own faults although they are known to all
Enter the word: are
The word “are” exists 2 times in the string

Output window
(second execution)

Enter a string:
You must not expect everything exactly to your taste
Enter the word: are
The word “are” does not exist in the string

Program 10 | Input a string and count the number of occurrences of a particular string in the string

Line PE 6-10.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Counting the occurrences of a particular string in the string
#include<stdio.h>
#include<string.h>
main()
{
 char str1[200], str2[200], temp[20];
 int i=0, j=0,k=0, count=0;
 printf(“Enter a string:\n”);
 gets(str1);
 printf(“Enter the string to be searched:\t”);
 gets(str2);
 while(str1[i]!=’\0’)
 {
 k=0;
 while(str2[k]!=’\0’)

Enter a string:
Try not to become a man of success but rather to be a man of value
Enter the string to be searched: a man of
String “a man of” exists 2 times

Output window
(second execution)

Enter a string:
Try not to become a man of success but rather to be a man of value
Enter the string to be searched: civil society
String “civil society” doesnot exist in the given string

(Contd...)

406 Programming in C—A Practical Approach

Line PE 6-10.c Output window

16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

 {
 if(str1[j]==str2[k])
 j++, k++;
 else
 {
 j=i+1;
 break;
 }
 if(str2[k]==0)
 count++;
 }
 if(str2[k]==0)
 i=j;
 else
 i++;
 }
 if(count==0)
 printf(“String \”%s\” doesnot exist in the given string\n”, str2);
 else
 printf(“String \”%s\” exists %d times\n”, str2, count);
}

Program 11 | A class consists of a number of students whose names are entered in a random order. Dis-
play the names of all the students that start with a particular character

Line PE 6-11.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

//Displaying the names of students starting with a particular character
 #include<stdio.h>
#include<string.h>
main()
{
 char names[40][30], firstchar;
 int num, i;
 printf(“How many students are there in the class:\t”);
 scanf(“%d”,&num);
 printf(“Enter the names of students:\n”);
 for(i=0;i<num;i++)
 gets(names[i]);
 printf(“\nEnter the first character of student’s name:\t”);
 scanf(“%c”,&firstchar);
 printf(“Students whose names starts with %c are:\n”,firstchar);
 for(i=0;i<num;i++)
 if(names[i][0]==firstchar)
 puts(names[i]);
}

How many students are there in the class: 10
Enter the names of students:
Abhay Singh
Neha Singla
Jasraj Singh
Aditya Raina
Tarun Kumar
Amol Sood
Joydeep Chandra
Tushar Sharma
Rajini Bansal
Sam

Enter the first character of student’s name: A
Students whose names starts with A are:
Abhay Singh
Aditya Raina
Amol Sood

Strings and Character Arrays 407

Program 12 | A class consists of a number of students whose names are entered in a random order. Dis-
play the names in a sorted order

Line PE 6-12.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

//Displaying the names of students in a sorted order
 #include<stdio.h>
#include<string.h>
main()
{
 char names[40][30], current[30];
 int num, i,j;
 printf(“How many students are there in the class:\t”);
 scanf(“%d”,&num);
 printf(“Enter the names of students:\n”);
 for(i=0;i<num;i++)
 gets(names[i]);
 for(i=1;i<num;i++) // Insertion Sort
 if(strcmp(names[i],names[i-1])<0) // equivalent to if(names[i]<names[i-1])
 {
 strcpy(current,names[i]); // equivalent to current=names[i]
 for(j=i-1;j>=0;j--)
 {

 strcpy(names[j+1],names[j]); // eq. to names[j+1]=names[j]
 if(j==0||(strcmp(names[j-1],current)<0))
 break;
 }
 strcpy(names[j],current);
 }
 printf(“\nAfter sorting, names of students are:\n”);
 for(i=0;i<num;i++) // Print sorted list
 puts(names[i]);
}

How many students are there in the class: 10
Enter the names of students:
Abhay Singh
Neha Singla
Jasraj Singh
Aditya Raina
Tarun Kumar
Amol Sood
Joydeep Chandra
Tushar Sharma
Rajini Bansal
Sam

After sorting, names of students are:
Abhay Singh
Aditya Raina
Amol Sood
Jasraj Singh
Joydeep Chandra
Neha Singla
Rajini Bansal
Sam
Tarun Kumar
Tushar Sharma

Program 13 | Chandigarh Housing Board has released a list of successful applicants in the preliminary
draw of lots. Find out whether a given name is in the list or not

Line PE 6-13.c Output window

1
2
3
4
5
6
7
8

//Searching a name in the list
 #include<stdio.h>
#include<string.h>
main()
{
char applicants[40][30], name[30];
int num, i,found=0;
printf(“The list of draw is of how many applicants?\t”);

The list of draw is of how many applicants? 10
Enter the names:
Abhay Singh
Neha Singla
Jasraj Singh
Aditya Raina
Tarun Kumar
Sam

(Contd...)

408 Programming in C—A Practical Approach

Line PE 6-13.c Output window

9
10
11
12
13
14
15
16
17
18
19

20
21
22

scanf(“%d”,&num);
printf(“Enter the names:\n”);
for(i=0;i<num;i++)
gets(applicants[i]);
printf(“\nEnter name to be searched:\t”);
gets(name)
for(i=1;i<num;i++) // Linear search
 if(strcmp(applicants[i],name)==0)
 found=1;
if(found==1)
printf(“Name \”%s\” appears in the list of successful applicants”);
else
printf(“Name \”%s\” does not appear in the list of successful applicants”);
}

Amol Sood
Joydeep Chandra
Tushar Sharma
Rajini Bansal

Enter the name to be searched: Sam
Name “Sam” appears in the list of successful applicants

Program 14 | Count the number of sentences, words and characters in a given paragraph

Line PE 6-14.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32

//Counting the number of sentences, words and characters in a given paragraph
 #include<stdio.h>
main()
{
char paragraph[1000];
int i=0, sentence=0, word=0, chs=0;
printf(“Enter the text:\n”);
scanf(“%[^\n]”, paragraph);
while(paragraph[i]!=’\0’)
{
 switch(paragraph[i])
 {
 case ‘!’:
 case ‘.’:
 case ‘?’:
 sentence++;
 chs++;
 break;
 case ‘ ‘:
 case ‘\t’:
 chs++;
 word++;
 break;
 default:
 chs++;
 }
 i++;
 }
printf(“\nNumber of sentences in paragraph are %d\n”, sentence);
printf(“Number of words in paragraph are %d\n”, word+1);
printf(“Number of characters in paragraph are %d\n”, chs);
}

Enter the text:
Hello! How are you? Where were you? I have been looking
for all these days.

Number of sentences in paragraph are 4
Number of words in paragraph are 15
Number of characters in paragraph are 75

Strings and Character Arrays 409

Test Yourself
1. Fill in the blanks in each of the following:

a. A string literal constant of zero length is called ____________.
b. Every string literal in C is terminated by ____________.
c. The amount of memory taken by an empty string literal is ____________.
d. The type of string literal is ____________.
e. A string literal constant is always enclosed within ____________.
f. Adjacent string literals are ____________.
g. The scanf function uses ____________ format specification to read a string from the user.
h. ____________ string library function is used to compare two strings without case sensitivity.
i. The ____________ character is used to invert the search set.
j. ____________ function is used to read a character from the keyboard.
k. Inputs to function main are given by making use of special arguments known as ____________ .

2. State whether each of the following is true or false. If false, explain why.
a. The length of a string literal constant is equal to the number of characters present in it.
b. The length of an empty string literal constant is one.
c. The amount of the memory space required for storing a string literal constant is not fixed and

depends upon the number of characters present in the string literal.
d. The number of bytes required to store a string literal is equal to the number of characters

present in it.
e. It is not mandatory to use ampersand (i.e. address-of operator) with string variable names

while reading string using the scanf function.
f. Unlike the scanf function, the gets function reads the entire line of text until a new line charac-

ter is encountered and does not stop upon encountering any other white-space character.
g. The printf function can print a string on the screen without using any format specifier.
h. If the character array to be printed does not have a terminating null character, the output

would be the content of the character array followed by some garbage character.
i. It is not mandatory to have the first argument of the printf function to be of const char* type.
j. The string library function strrev reverses all the characters of a string including the null

character.
k. It is not possible to initialize a character array with a string literal constant.
l. A list of strings can be stored by using a two-dimensional character array.

3. Programming exercises:
a. A certain piece of text is entered. By mistake, at some places two or more spaces are placed

between two words. Write a C program that removes these extra spaces between the words.
b. Without using inbuilt string library functions, write a C program to check whether a given

string is a palindrome or not.
c. Write a C program to find the longest word in a given string. Also print the length of the

word.
d. Write a C program to read a text and omit all occurrences of a particular word in the text.
e. Write a C program to read a text and omit all occurrences of a particular string in the text.
f. Write a C program to read a text. Implement the find and replace functionality. The find func-

tionality will find a given substring in the text, and the replace function will replace the found
substring with a given string.

SCOPE, LINKAGE, LIFETIME
AND STORAGE CLASSES

7

Learning Objectives

In this chapter, you will learn about:

Sco pe and visibility of an identifier

Local variables and global variables

Linkage

Different types of linkages in C

The lifetime of an object

Different storage classes

How to allocate memory at the run time

412 Programming in C—A Practical Approach

7.1 Introduction
In the previous chapters, we have learnt about how to declare variables within a function
and have seen that the amount of memory allocated to a variable depends upon its data type.
We have restricted our discussion to the declaration of variables within a function (i.e. local
variables) and have not discussed about the global variables (i.e. variables declared outside
all the function definitions). The issues like scope, visibility, storage class and linkage of a
variable were not included in the discussion. In this chapter, we will discuss these key issues
in detail.

7.2 Scope
The scope of an identifier is a region of the program within which the identifier is visible (i.e.
it can be used). In C language, the following four types of scopes are defined, which determine
the visibility of an identifier:

1. File scope or global scope
2. Block scope or local scope
3. Function prototype scope
4. Function scope

7.2.1 Determination of Scope of an Identifier
The scope of an identifier (except label) is determined by the position of its declaration. The
scope of a label is determined by the position of its appearance. The rules to determine the
scope of an identifier are as follows:

1. If a declaration statement that declares an identifier (except label) appears outside all
the functions and their parameter lists, the identifier has file scope or global scope.
Such a declaration statement is called global declaration, and the identifier is said to be
global or external identifier.

2. If a declaration statement that declares an identifier (except label) appears inside a block
(i.e. within an opening brace and its associated closing brace) or within a list of para-
meter declarations in a function definition, the identifier has block scope or local scope.
Such a declaration is known as local declaration and the identifier is said to be local to
the block in which it is declared, or local to the function if it appears within the list of
parameter declarations in a function definition.

3. If a declaration statement that declares an identifier (except label) is a part of a list of
parameter declarations in a function prototype, the identifier has function prototype
scope.

4. A label is the only kind of identifier that always has function scope. It can be used any-
where within the function in which an identifier-labeled statement specifying the label
name appears.

Consider the piece of code in Program 7-1 that makes the use of various identifiers. Based
upon the position of their declarations, the scopes of the identifiers have been determined and
are specified in column 3.

Chapter 7.indd 412Chapter 7.indd 412 28/02/2010 5:23:03 PM28/02/2010 5:23:03 PM

Scope, Linkage, Lifetime and Storage Classes 413

Line Prog 7-1.c (Column 2) Scopes (Column 3) Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

//Identifiers and their scopes
#include<stdio.h>
int sum_diff(int a, int b);
int diff;
main()
{
 int no1,no2,sum;
 printf(“Enter two numbers\t”);
 scanf(“%d %d”,&no1, &no2);
 sum=sum_diff(no1,no2);
 printf(“Sum is %d\n”,sum);
 printf(“Diff is %d\n”,diff);
}
int sum_diff(int f, int g)
{
 int sum;
 if(f!=g)
 goto label;
 else
 {
 sum=2*f;
 diff=0;
 return sum;
 }
 label:
 sum=f+g;
 diff=f-g;
 return sum;
}

// a and b have function prototype scope
// diff has file scope or global scope

// no1, no2 and sum have block scope or
// local scope
// They are said to be local to the function
// main

// f and g have block scope or local scope
// f and g are local to the function sum_diff
// sum has block scope or local scope
// It is said to local to the function
// sum_diff

// label has function scope

Enter two numbers 12 13
Sum is 25
Diff is -1
Remarks:
•  Since the declarations

of the identifiers a and
b appear within the
function prototype,
they have function
prototype scope

•  The identifier diff ap-
pears outside the bod-
ies of all the functions
and their parameter
lists. Hence, it has file
or global scope

•  The identifiers no1, no2
and sum appear within
the definition of the
function main, so they
have local scope and
are said to be local to
the function main

•  The identifiers f and g
appear within the list
of parameter declara-
tions in the definition
of the function sum_diff,
hence, they have local
scope and are local to
the function sum_diff

•  The identifier sum has
local scope

•  The identifier label has
function scope, since
label names always
have function scope

Program 7-1 | A program that illustrates the concept of scope determination

7.2.2 Termination of Scope of an Identifier
The termination of scope of an identifier is determined by the following rules:

1. File scope terminates with the end of the source file (commonly known as translation
unit).

2. Block scope terminates with the end of the associated block (i.e. with the closing brace
of the block).

414 Programming in C—A Practical Approach

3. Function prototype scope terminates with the end of the function declaration (i.e. func-
tion prototype).

4. Function scope terminates with the closing brace of the function definition.

7.2.3 Same Scope
Two identifiers have the same scope if and only if their scopes terminate at the same point. The
piece of code in Program 7-2 illustrates the concept of the same scope.

Line Prog 7-2.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Concept of the same scope
#include<stdio.h>
fun();
int c;
main()
{
 int a,b;
 printf(“a and b have the same scope\n”);
 printf(“They have local scope\n”);
 fun();
}
int d;
fun()
{
 printf(“c and d have the same scope\n”);
 printf(“They have global scope\n”);
}

a and b have the same scope
They have local scope
c and d have the same scope
They have global scope
Remark:
•  Although identifiers c

and d are declared at dif-
ferent places, they have
the same scope since
their scopes terminate at
the same point

Program 7-2 | A program that illustrates the concept of the same scopes

7.2.3.1 Declaration and Definition of an Identifier within the Same Scope and
Different Scopes

In the previous chapters, we have seen the difference between the terms declaration and defi-
nition. Declaring a variable means describing its type to the compiler without allocating any
memory space to it. Defining a variable means declaring it, plus allocating memory space to
it. In general, we say that int a; is a declaration statement although it is a definition statement.
To actually make it a declaration, prefix extern storage class specifier† and write it as extern int a;.
The keyword extern provides a method for declaring an identifier without defining it. The extern
specification does not cause any memory space to be allocated.

In a C program, it is possible to declare an identifier with a same name and type more than
once in the same scope (i.e. one scope). An identifier can have many identical declarations in
the same scope. The word identical means that the type of identifier in all the declarations
should be equivalent.

Two types are equivalent if they contain the same set of type specifiers, taking into account
that some specifiers can be implied by others. For example, long alone implies long int. Thus, the
types long and long int are equivalent.

† Refer Section 7.5 for a description on storage class specifiers.

Chapter 7.indd 414Chapter 7.indd 414 28/02/2010 5:23:03 PM28/02/2010 5:23:03 PM

Scope, Linkage, Lifetime and Storage Classes 415

The piece of code in Program 7-3 demonstrates that multiple identical declarations in the same
scope are allowed.

Line Prog 7-3.c Output window

 1
2
3
4
5
6
7
8
9

//Multiple identical declarations in the same scope
#include<stdio.h>
main()
{
 extern int a;
 extern int a;
 printf(“The value of a is %d”,a);
}
int a=20;

The value of a is 20
Remarks:
•  The identifier a is declared twice (in line num-

bers 5 and 6)
•  The extern declaration does not allocate any

memory space
•  It only provides information about the type of

the identifier and tells the compiler that the
definition of the identifier will be available else-
where in the program

•  The identifier a is defined in line number 9
•  It is mandatory to define an identifier used in

a program
Try:
•  Comment line number 9 and try to execute the

code. Look at the errors

Program 7-3 | A program illustrating that there can be multiple identical declarations of an identifier in the
same scope

If there are multiple declarations of an identifier in a scope, the type of the identifier in all the
declarations must be the same. If the type of an identifier in the declarations is not the same,
there will be ‘Type mismatch in re-declaration of identifier name’ compilation error. The piece
of code in Program 7-4 illustrates this fact.

Line Prog 7-4.c Output window

1
2
3
4
5
6
7
8
9

//The types in multiple declarations must be identical
#include<stdio.h>
main()
{
 extern int a;
 extern float a;
 printf(“Non-identical declarations in same scope\n”);
 printf(“The value of a is %d”,a);
}

Compilation error “Type mismatch in re-declaration of ‘a’ in func-
tion main”
Remark:
•  The type of identifier a in the declarations made

in line numbers 5 and 6 are not identical, which
is the source of error

What to do?
•  Make the type of identifier a in both the declara-

tions identical
Can the program be executed now?
•  No, the program on execution gives linker er-

ror ‘Undefined symbol _a in module’
•  From the perspective of the compiler, there is no

error and the compilation stage will succeed
•  Since there is no definition of the identifier a,

the linker will not be able to link the declara-
tion with the definition of a and this leads to a
linker error

What to do?
•  Define a

Program 7-4 | A program illustrating that the type of an identifier in multiple declarations must be identical

416 Programming in C—A Practical Approach

Although it is possible to declare an identifier more than once in the same scope, it is not
allowed to define an identifier more than once in the same scope. Each object‡ (identifier)
must have only one definition in a scope. This is known as one definition rule. For objects
with no linkage§ (i.e. local variables), this rule applies separately to each block. For objects
with internal linkage (refer footnote§), this rule applies separately to each translation unit
(i.e. file). For objects with external linkage (refer footnote§), it applies to the entire program
(which can have more than one file).

Backward Reference: Data object (Chapter 1).

The piece of code in Program 7-5 illustrates the application of one definition rule.

Line Prog 7-5.c Output window

 1
2
3
4
5
6
7
8

//Multiple definitions in the same scope
#include<stdio.h>
main()
{
 int a=10;
 int a=20;
 printf(“The value of a is %d”,a);
}

Compilation error “Multiple declaration for ‘a’ in function
main”
Remarks:
•  According to one definition rule, there

can be only one definition of an identifier
in a scope

•  Although there are multiple definitions,
the compiler message indicates multiple
declarations since the term declaration is
commonly used in place of definition

•  It is pertinent to mention that the specified
error is irrespective of the initialized values

What to do?
•  Remove either of the definitions made in

line numbers 5 or 6

Program 7-5 | A program that illustrates the application of one definition rule

Although it is not allowed to define an identifier more than once in the same scope, it is pos-
sible to define an identifier with the same name more than once, if the definitions lie in differ-
ent scopes. In such a case, all of them refer to separate objects. The piece of code in Program
7-6 illustrates this fact.

Line Prog 7-6.c Output window

1
2
3

//Multiple definitions of an identifier in different scopes
#include<stdio.h>
int a=10, b=20;

The value of a & b in line 6 is 10 20
The value of a & b in line 9 is 20 30
The value of a & b in line 12 is 30.500000 40

‡ Refer Section 7.4 for a description on object.
§ Refer Section 7.3 for a description on linkage.

(Contd...)

Scope, Linkage, Lifetime and Storage Classes 417

4
5
6
7
8
9

10
11
12
13
14
15

main()
{
 printf(“The value of a & b in line 6 is %d %d\n”,a,b);
 {
 int a=20, b=30;
 printf(“The value of a & b in line 9 is %d %d\n”, a,b);
 {
 float a=30.5; int b=40;
 printf(“The value of a & b in line 12 is %f %d\n”, a,b);
 }
 }
}

Remarks:
•  The identifier a is defined thrice in the pro-

gram, even then there is no compilation
error because the definitions are present
in different scopes

•  One definition rule states that only one
definition of an identifier can be present
in a scope

Program 7-6 | A program illustrating that multiple definitions of an identifier can be present in different
scopes

In Program 7-6, we have seen that it is possible to define identifiers with the same name (hav-
ing same type or different types) in different scopes. However, it is not possible to declare an
identifier with the same name but different types in different scopes. Even if the declarations
are present in different scopes, the type of identifiers in multiple declarations must be identi-
cal. The piece of code in Program 7-7 illustrates this fact.

Line Prog 7-7.c Output window

 1
2
3
4
5
6
7
8

//Multiple declarations in different scope
#include<stdio.h>
extern int a;
main()
{
 extern float a;
 printf(“This is not allowed”);
}

Compilation error “Type mismatch in re-declaration of ‘a’ in
function main”
Remark:
•  The type of identifiers must be identical in

all the declarations, whether they lie in the
same scope or different scopes

Program 7-7 | A program illustrating that the type of an identifier must be identical in all the declarations
irrespective of the scope in which the declaration is present

7.2.4 Visibility of an Identifier
An identifier is visible (i.e. can be used) only in the portion of a program encompassed by its
scope. The visibility of an identifier (except label) begins from the point of its declaration till
the termination of its scope. The visibility of a label name is within the function in which the
identifier-labeled statement specifying the label name appears, i.e. within the opening and the
closing brace of the function definition in which it appears.

Consider the piece of code in Program 7-8 that makes use of various identifiers. The regions
of the program in which the identifiers are visible are shown in column 3 in Figure 7.1.

418 Programming in C—A Practical Approach

Line Code window Visibility region (Column 3)

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

//Visibility of an identifier
#include<stdio.h>
int func(int a, int b);
int c;
main()
{
 int d;
 //…Statements
}
int e;
int func(int f, int g)
{
 int h;
 //…Statements
 label:
 //…Statements
 goto label;
}

Figure 7.1 | Visibility of an identifier

An identifier cannot be used outside the region in which it is visible. If it is used, it leads to a
compilation error. The piece of code in Program 7-8 illustrates this fact.

Line Prog 7-8.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13

//An identifier used outside its scope
#include<stdio.h>
void func();
main()
{
 int a=20;
 printf(“The value of a in main is %d\n”,a);
 func();
}
void func()
{
 printf(“The value of a in func is %d”,a);
}

Compilation error “Undefined symbol ‘a’ in function func”
Remarks:
•  The identifier a declared (actually defined) in line num-

ber 6 has a local scope and is visible only inside the
function main

•  The usage of identifier a in the function func is not valid
since it is not visible there

What to do?
•  Either define a in the global scope so that it is visible in

both the functions main and func or re-define identifier a
in the function func

Program 7-8 | A program illustrating that an identifier cannot be used outside of the region in which it is visible

7.2.4.1 Shadowing and Name Resolution
When an identifier with a same name is defined in different scopes, all the definitions refer to
separate objects. Now when the identifier is used in an expression, it should be determined as
to which object this usage of identifier refers to. The principle of shadowing helps in determin-
ing the object to which a particular usage of an identifier refers to. Shadowing states that the
definition of an identifier in the immediate scope (i.e. present or current scope) shadows (i.e.
hides, supersedes) the definitions of the identifier present in the enclosing scope.

a and b are visible only
within function

prototype

d is visible from this point till
the end of the function main

f, g, h and label
are visible only
within the func-
tion func

e is visible from this
point till the end of
the file, including
the function func. It
is not visible inside
the function main

c is visible from
this point onwards
till the end of the
file. It is visible in
the functions main
and func

Scope, Linkage, Lifetime and Storage Classes 419

Name resolution is a process by which a name (i.e. an identifier) used in an expression is as-
sociated with a declaration. It uses the principle of shadowing and works as follows:

1. The declaration of a name is searched in the immediate scope. If the declaration is found,
the name is resolved and is associated with the declaration.

2. If the declaration is not found, the enclosing scope is searched. If the declaration is
found, the name is resolved and is associated with the declaration.

3. If the declaration is still not found, the process in Step 2 is repeated until either a decla-
ration is found or the global scope has been searched.

4. If the global scope has been searched and no declaration has been found, the use of the
identifier name is flagged as an error.

i In some places, the word declaration is used in place of definition. The places where declara-
tion actually means definition can be determined by the context.

The piece of code in Program 7-9 illustrates the principle of shadowing and name resolution.

Line Prog 7-9.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Shadowing and name resolution
#include<stdio.h>
int a=10; // identifier a defined in file/global scope
main()
{
 printf(“The value of a in line 6 is %d\n”,a);
 {
 int a=20; // This definition of a shadows the definition
 // of a present in the global scope
 printf(“The value of a in line 10 is %d\n”,a);
 {
 float a=30.5;// This definition of a shadows the definition of a
 // present in the global scope and the enclosing block scope
 printf(“The value of a in line 14 is %f\n”,a);
 }
 }
}

The value of a in line 6 is 10
The value of a in line 10 is 20
The value of a in line 14 is 30.500000
Remarks:
•  To resolve the usage of the

identifier a in line number
6, the immediate scope is
searched. Since there is no
declaration of a in the im-
mediate scope, the enclos-
ing scope, i.e. global scope is
searched. The declaration of
a is found and the usage of a
in line number 6 is associated
with this declaration (actually
definition). Hence, the value
of a in line number 6 is 10

•  To resolve the usage of iden-
tifier a in line number 10, the
immediate scope, i.e. block
scope is searched. The dec-
laration of a is found in line
number 8 and the usage of a
is resolved with this declara-
tion. Hence the value of a in
line number 10 is 20

•  Similarly, the usage of a in line
number 14 is resolved with
the declaration present in the
immediate block scope at line
number 12

Program 7-9 | A program that illustrates shadowing and name resolution

420 Programming in C—A Practical Approach

7.3 Linkage
Linkage is a process by which the identifiers declared in different scopes, or in the same scope
more than once, are made to refer to the same data object or the function. There are three dif-
ferent types of linkage:

1. External linkage
2. Internal linkage
3. No linkage

7.3.1 External linkage

The C language allows a program to be spread across two or more files, compiled separately
and then linked together. In a program that consists of a set of translation units (i.e. files) and
libraries; each declaration of a particular identifier with an external linkage denotes the same
object or the function. An identifier with an external linkage can be used anywhere within a
multi-file program.

The linkage of an identifier can be made external by using extern storage class specifier in the
declaration statement. All the global variables and functions by default have external linkage.
The code snippet in Program 7-10 illustrates the use of identifiers with an external linkage.

Line Prog 7-10 one.c two.c Project window new10.prj

1
2
3
4
5
6
7
8
9

//External linkage
#include<stdio.h>
fun();
main()
{
extern int a;
printf(“In main value of a is %d”,a);
fun();
}

int a=20;
fun()
{
printf(“In fun value of a is %d”,a);
}

Files
•  one.c
•  two.c

Output window

In main value of a is 20
In fun value of a is 20
Remarks:
•  By default, all the global variables

and the functions have external
linkage

•  Global variable a and the function
fun defined in two.c have external
linkage

•  The linkage of the identifier a de-
clared in line number 6 in one.c is
made external by using extern stor-
age class specifier

•  The declaration of a in line number
6 and the use of function fun in line
number 8 in the file one.c refers to the
definitions in the file two.c

•  Although a is defined in the file
two.c, it is mandatory to declare the
identifier a in the file one.c before its
usage

Program 7-10 | A program that illustrates the usage of external linkage

Scope, Linkage, Lifetime and Storage Classes 421

Figure 7.2 Illustrates the execution of the multi-file program using Turbo C 3.0.

Figure 7.2 | Snapshots of the multi-file program and its execution using Turbo C 3.0

The objects with an external linkage are accessible within all the translation units of a pro-
gram and hence must be uniquely defined. Multiple definitions of an identifier with external
linkage in different translation units lead to linker errors. The piece of code in Program 7-11
illustrates this fact.

Line Prog 7-11 one.c two.c Project window new11.prj

1
2
3
4
5

//Usage of objects with external linkage
//in multiple translation units
#include<stdio.h>
fun();
main()

int a=20;
fun()
{
printf(“The value of a in func is %d”,a);
}

Files
• one.c
• two.c

(Contd...)

(a) Edit window

(b) User screen

422 Programming in C—A Practical Approach

Line Prog 7-11 one.c two.c Output window

6
7
8
9

10
11

{
extern int a;
printf(“The value of a in main is %d”,a);
fun();
}
int a=10;

Linker error “_a defined in module one.c
is duplicated in module two.c”
Remarks:
•  The files one.c and two.c are

compiled separately and
there is no compilation er-
ror

•  The identifier a is defined in
both the files one.c and two.c

•  Since both the definitions
have external linkage, they
will be visible across the
pro gram. These duplicate
definitions lead to the linker
error

What to do?
•  Either remove the definition

made in one.c, or
•  Change the linkage of a in

two.c from external to inter-
nal so that it is accessible
only within two,c

•  Refer Section 7.3.2 to know
how to change the link-
age of global variables and
functions from external to
internal

Program 7-11 | A program illustrating that objects with external linkage are accessible within all the transla-
tion units of a program

7.3.2 Internal Linkage
Within a file (i.e. a translation unit), each declaration of an identifier with internal linkage de-
notes the same object or the function. The object and the function are unique to that translation
unit. Such objects and functions can only be accessed in the translation unit in which they are
defined and are not accessible in other translation units.

The linkage of an identifier can be made internal by using static storage class specifier in the
declaration statement. The code snippet in Program 7-12 illustrates the use of identifiers with
an internal linkage.

Line Prog 7-12 one.c two.c Project window new12.prj

1
2
3

//Usage of internal linkage
#include<stdio.h>
fun();

static int a=20;
fun()
{

Files
• one.c
• two.c

(Contd...)

Scope, Linkage, Lifetime and Storage Classes 423

4
5
6
7
8
9

10

main()
{
extern int a;
printf(“In main value of a is %d”,a);
fun();
}
int a=10;

printf(“In fun value of a is %d”,a);
}

Output window

In main value of a is 10
In fun value of a is 20
Remarks:
•  The linkage of identifier a defined

in two.c is made internal by using the
static storage class specifier

•  The identifier a defined in two.c is ac-
cessible only within two.c and hence
does not duplicate the definition of
identifier a present in one.c

•  The function fun defined in two.c still
has external linkage and, therefore,
is accessible from one.c

Try:
•  Make the linkage of function fun

internal so that it is not accessible
from one.c

•  To make the linkage of function fun
internal, write the header of the
function fun as static fun() in the file
two.c

•  Look for the errors that creep in by
changing the linkage of the func-
tion fun defined in two.c

Program 7-12 | A program that illustrates the usage of internal linkage

Figure 7-3 illustrates the execution of Program 7-12 by using Turbo C 3.0.

(a) Edit window

Chapter 7.indd 423Chapter 7.indd 423 28/02/2010 5:23:07 PM28/02/2010 5:23:07 PM

424 Programming in C—A Practical Approach

Figure 7.3 | Snapshots of Program 7-12 and its execution using Turbo C 3.0

7.3.3 No Linkage
By default, all the identifiers with block scope or function prototype scope have no linkage.
Each of the declared identifier (except functions) with no linkage refers to a separate object.
Functions can have internal linkage or external linkage only. They cannot have no linkage.

7.4 Storage Duration/Lifetime of an Object
An identifier denotes an object. Whenever an identifier is declared (actually defined), some
storage space depending upon the type of an identifier is reserved by the compiler. For exam-
ple, upon encountering the declaration statement int variable=20;, the compiler reserves 2 bytes
(or 4 bytes in Turbo C 4.5) of storage space. Upon execution, the reserved storage space is al-
located. The allocated memory space is denoted as an object (specifically data object). This is
shown in Figure 7.4.

Data Store (Memory) variable
20

Addresses 2000 (Memory locations are addressed, like
houses are addressed, e.g. 2000 is a
memory address)

Figure 7.4 | Data object variable allocated at the memory location 2000

i Object exists only at the run time, i.e. at the time of execution of the program.

The duration for which the storage space is reserved depends upon the storage duration of
the object. The storage duration of an object determines its lifetime. Thus, the lifetime of an
object is a portion of the program execution during which the memory space is guaranteed to

(b) User screen

Scope, Linkage, Lifetime and Storage Classes 425

be reserved for it. Throughout the lifetime of an object, it has a constant address and it retains
its last stored value. The lifetime of an object and the scope of an identifier are related but are
entirely different concepts. Ideally, the scope of an identifier should be a subset of the life-
time of an object it denotes; otherwise, it would be possible to refer to an identifier even after
its denoted storage space goes away. If an object is referred outside of its lifetime, its behavior
would be undefined.
In C language, there are three types of lifetime:

1. Static (or global): An object (i.e. a function or a variable) with static or global lifetime
exists and has a value throughout the execution of a program. All the objects associated
with the functions and global identifiers have static or global lifetime.

2. Automatic (or local): Objects with automatic or local lifetime are allocated new stor-
age space each time the execution control passes to the block in which their associated
identifiers are defined. When the program control moves out of the block, the objects as-
sociated with the identifiers defined within the block cease to exist and no longer have
meaningful values. All the objects associated with the local identifiers by default have
automatic or local lifetime.

3. Allocated: The lifetime of an allocated object extends from the time of their allocation
until deallocation. The allocation is done with the help of memory allocation functions
like malloc, calloc or realloc.¶ The deallocation can be done by calling the library function
named free. The malloc, calloc or realloc functions allocate the memory at the run time. The
allocation of memory made at the run time is known as dynamic memory allocation
(refer footnote¶), in contrast to the static memory allocation, in which the memory is
allocated (actually reserved) at the compile time.

7.5 Storage Classes
Every identifier not only has a data type but also has a storage class. To fully define an identifier,
one needs to mention not only its data type, but also its storage class. If any storage class is not
specified in a declaration statement, the compiler assumes the default storage class depending
upon the scope in which the declaration is made. The storage class of an identifier determines:

1. Where the object associated with the identifier would be stored (in the memory or CPU
registers).

2. What the initial value of the object associated with the identifier would be (if the identi-
fier is not initialized in the declaration statement).

3. Whether the object associated with the identifier would have static (global) or auto-
matic (local) lifetime.

4. What the linkage of a function or an identifier would be.

The storage class of an identifier can be specified with the help of a storage class specifier. The
storage class specifier is prefixed in a declaration statement declaring an identifier associated
with the object. The C language provides the following storage class specifiers:

1. auto
2. register
3. static

¶ Refer Section 7.6 for a description on malloc, calloc, realloc functions and dynamic memory allocation.

426 Programming in C—A Practical Approach

4. extern
5. typedef

The general syntax of a declaration statement is:
[storage_class_specifi er][type_qualifi er | type_modifi er] datatype identifi ername [=value[, ...]];

For example, the declaration statement static int a;, associates static storage class with the object
identified by a.
The important points about the usage of storage class specifiers in a declaration statement are
as follows:

1. At most one storage class specifier can be specified in a declaration statement. For ex-
ample, the declaration statement auto register int a; is erroneous as two storage class speci-
fiers, i.e. auto and register have been used in the declaration statement.

2. The storage class specifier that can be used in a declaration statement depends upon the
scope in which the declaration is made. The exact meaning of each storage class speci-
fier depends upon:

a. Whether the declaration appears in the global scope or local scope.
b. Whether the identifier being declared is a variable or a function.

The following sections present the use of various storage class specifiers in detail.

7.5.1 The auto Storage Class
The important points about the auto storage class are as follows:

1. By default, an object whose identifier has block scope or local scope (i.e. declared within
a block) has auto storage class.

2. The storage class specifier auto specifies that the declared data object (i.e. variable) will
be stored in the main memory.

3. It specifies that the declared object will have automatic (local) lifetime. The object will
come into existence from the point of its declaration and remains into existence till the
program control remains within the block in which it is declared. The code snippet in
Program 7-13 illustrates this fact.

Line Trace Prog 7-13.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13

1

2

3

4

5

6

7

8

//Existence of auto variables
#include<stdio.h>
main()
{
 auto int a=10
 printf(“The value of a is %d\n”,a);
 {
 int b=20;
 printf(“The value of b is %d\n”,b);
 }
 printf(“Here b is not visible\n”);
 printf(“The value of a is %d”,a);
}

The value of a is 10
The value of b is 20
Here b is not visible
The value of a is 10
Remarks:
•  To look at the value of the variable a and b at vari-

ous trace steps, add watch on a and b
•  The procedure to add watch in Turbo C 3.0 is:
 ο  Go to Debug Menu by pressing ‘Alt+d’
 ο  Go to watch option by pressing ‘w’
 ο  Press ‘Enter’ to add watch on variable a
 ο  Repeat the entire procedure to add watch on

variable b

(Contd...)

Scope, Linkage, Lifetime and Storage Classes 427

 ο  The shortcut key to add watch is ‘Ctrl+F7’
•  The procedure to add watch in Turbo C 4.5 is:
 ο  Go to Debug Menu by pressing ‘Alt+d’
 ο  Go to watch option by pressing ‘w’
 ο  The shortcut for the first two steps (i.e. for

opening watch option directly) is Ctrl+F5
 ο  Enter the expression on which watch is to be

placed i.e. variable a
 ο  Repeat the entire procedure to add watch on

variable b
•  After adding watch, start tracing and open watch

window to observe the value of a and b.
•  To open the watch window, go to the window

menu by pressing ‘Alt+w’ and then select the
watch option by pressing ‘w’

Watch window

At trace step 1:
Undefined symbol ‘a’
Undefined symbol ‘b’

At trace step 2:
a=-29011 (i.e. Garbage value as a is yet not initialized)
Undefined symbol ‘b’  (b is not yet defined as the pro-

gram control has not yet en-
tered the block in which it is
declared)

At trace step 3:
a=10
Undefined symbol ‘b’

After trace step 3, i.e. At trace step 4:
a=10;
b=657 (i.e. Garbage value as b is not yet initialized)
At trace step 5:
a=10
b=20

At trace step 6:
a=10
Undefined symbol ‘b’ (Now b does not exist as the pro-

gram control came out of the
block in which it is declared)

After trace step 8:
Undefined symbol ‘a’
Undefined symbol ‘b’

Program 7-13 | A program illustrating that the auto objects have automatic lifetime

428 Programming in C—A Practical Approach

4. The variables declared with auto storage class specification are not implicitly initialized.
A variable declared with auto storage class specification has to be explicitly initialized,
otherwise it will have a garbage value.

5. It is not possible to specify auto storage class specifier in the declarations that are made
in the global scope. The piece of code in Program 7-14 illustrates this fact.

Line Prog 7-14.c Output window

1
2
3
4
5
6
7
8
9

//auto storage class specifier
#include<stdio.h>
auto int a;
main()
{
 printf(“Enter the value of a”);
 scanf(“%d”,&a);
 printf(“The entered value is %d”,a);
}

Compilation error “Storage class ‘auto’ is not allowed here”
Remark:
•  Since the scope of an identifier should be a sub-

set of the lifetime of its object, auto (i.e. local) can-
not be the lifetime of an object that has a global
scope

Program 7-14 | A program illustrating that auto storage class specifier cannot be used in the declarations
made in the global scope

6. The variables declared with auto storage class specification have no linkage.

7.5.2 The register Storage Class

The important points about the register storage class are as follows:

The 1. register storage class suggests that the access to the declared object should be as fast
as possible.
The object of an identifier for which the 2. register storage class has been specified is stored
in central processing unit (CPU) register instead of being stored in random access mem-
ory (RAM) or the main memory, if possible. The CPU register is a scarce resource and
provides faster access than memory. If it is not possible to spare a CPU register to store
an identifier; the identifier will be stored in RAM and the register specification is simply
treated as auto specification.
The storage class specifier 3. register specifies that the declared object will have automatic
(i.e. local) lifetime. Hence, the register storage class specifier cannot be used in the decla-
rations made in the global scope.
The variables declared with 4. register storage class specification are not implicitly initial-
ized. A variable declared with register storage class specification has to be explicitly ini-
tialized, otherwise it will have a garbage value.
The variables declared with 5. register storage class specification have no linkage.
It is not possible to compute the address of an object whose identifier is declared with 6.
register storage class specifier. If address-of operator (i.e. &) is applied to an object de-
clared with storage class register, the compiler will issue an error message. The piece of
code in Program 7-15 illustrates this fact.

Scope, Linkage, Lifetime and Storage Classes 429

Line Prog 7-15.c Output window

1
2
3
4
5
6
7
8

//register storage class specifier and the address of an identifier
#include<stdio.h>
main()
{
 register int a=200;
 printf(“The value of a is %d\n”, a);
 printf(“The address of variable a is %p”,&a);
}

Compilation error “Must take address of a memory
location”
Remarks:
•  It is not possible to compute the

address of a variable declared with
register storage class specification

•  Note that some compilers ignore
the register storage class specifier
and store objects in the memory as
an auto object. In such a case, there
will be no compilation error and
the address of the allocated mem-
ory space will be printed

Program 7-15 | A program illustrating that it is not possible to compute the address of an object whose
identifier is declared with a register storage class specifier

8. The register storage class is commonly used for loop counters to improve the perfor-
mance of a program.

7.5.3 The static Storage Class
The important points about the static storage class are as follows:

The storage class specifier 1. static specifies that the declared object will have static (i.e.
global) lifetime.
It specifies that the declared object will be stored in the main memory.2.
It can be used both with the identifiers declared in the local scope (i.e. local identifiers) 3.
as well as in the global scope (i.e. global identifiers).
The variables declared with 4. static storage class specification are implicitly initialized. If
a variable declared with static storage class specification is not explicitly initialized, its
object will be implicitly initialized to 0 if it is of int type, 0.0 if it is of float type and ‘\0’ if
it is of char type.
If a 5. static variable is present inside the local scope, the associated object is initialized only
once. The object will not be reinitialized even if the program control re-enters the block
in which the variable is declared. Thus, the value of static variables persists between the
function calls. The piece of code in Program 7-16 illustrates this fact.

Prog 7-16.c Output window

1
2
3
4
5
6
7
8
9

//The value of static variables persists between the function calls
#include<stdio.h>
fun(int i);
main()
{
int i=0;
for(i=0;i<5;)
 fun(++i);
}

The value of a on entry to fun on execution no. 1 is 10
The value of a after increment is 11
The value of a on entry to fun on execution no. 2 is 11
The value of a after increment is 12
The value of a on entry to fun on execution no. 3 is 12
The value of a after increment is 13
The value of a on entry to fun on execution no. 4 is 13
The value of a after increment is 14
The value of a on entry to fun on execution no. 5 is 14
The value of a after increment is 15

(Contd...)

430 Programming in C—A Practical Approach

Prog 7-16.c Output window

10
11
12
13
14
15

fun(int i)
{
 static int a=10;
 printf(“The value of a on entry to fun on execution no. %d is %d\n”, i, a);
 printf(“The value of a after increment is %d\n”,++a);
}

Remarks:
•  The value of variable a persists be-

tween the function calls
•  The variable a is initialized only once,

i.e. when the function fun is called for
the first time

Program 7-16 | A program illustrating that the value of static variables persists between the function calls

6. The static storage class specifier can also be used to modify the linkage of an identifier:

a. The global identifiers by default have external linkage. If static specifier is used
in the declaration of a global identifier, the identifier will have internal linkage
instead of external linkage.

b. When static storage class specifier is used with the local identifiers, the local identi-
fiers will have internal linkage instead of no linkage.

7. The static storage class specifier cannot be used in parameter declaration either in the
function declaration or in the function definition. The piece of code in Program 7-17 il-
lustrates this fact.

Line Prog 7-17.c Output window

1
2
3
4
5
6
7
8
9

10
11

//static storage class specifier
#include<stdio.h>
int add(static int a, static int b)
{
return a+b;
}
main()
{
int c=add(2,3);
printf(“The value of c is %d”,c);
}

Compilation error “Storage class static is not allowed
here”
Remark:
•  The usage of static storage class speci-

fier is not allowed in the parameter
declaration either in the function dec-
laration or in the function definition

Program 7-17 | A program illustrating that a static storage class specifier cannot be used in the parameter
declaration either in the function declaration or in the function definition

7.5.4 The extern Storage Class
The important points about the extern storage class are as follows:

Identifiers declared in the global scope, by default, have 1. extern storage class.
The storage class specifier 2. extern is used to declare a variable without defining it.
However, if a variable is initialized, the 3. extern declaration becomes a definition. For ex-
ample, extern int a; is a declaration but extern int a=200; is a definition. The initialization is
possible only if the declaration is done in the file or global scope.
An 4. extern variable cannot be initialized if a declaration statement is written within the
block or local scope. The piece of code in Program 7-18 illustrates this fact.

Scope, Linkage, Lifetime and Storage Classes 431

Line Prog 7-18.c Output window

1
2
3
4
5
6
7

//extern storage class specifier
#include<stdio.h>
main()
{
 extern int a=200;
 printf(“The value of a is %d”,a);
}

Compilation error “extern variable cannot be initialized in
function main”
“Undefined symbol ‘a’ in function main”
Remarks:
•  The extern storage class can only be used

with the objects that have external linkage
•  Since local variables have no linkage, extern

cannot be used in the declaration state-
ment present in the local scope

Program 7-18 | A program illustrating that an extern variable cannot be initialized if the declaration is done
in the block scope or local scope

5. The extern storage class specifier is used to specify that an object is defined with external
linkage elsewhere in a program.

6. The extern storage class specifier cannot be used in the parameter declaration either in
the function declaration or in the function definition. The piece of code in Program 7-19
illustrates this fact.

Line Prog 7-19.c Output window

1
2
3
4
5
6
7
8
9

10
11

//extern storage class specifier
#include<stdio.h>
int add(extern int a, extern int b)
{
return a+b;
}
main()
{
int c=add(2,3);
printf(“The value of c is %d”,c);
}

Compilation error “Storage class extern is not allowed here”
Remark:
•  The function parameters can only have auto

or register storage class

Program 7-19 | A program illustrating that extern storage class specifier cannot be used in the parameter
declaration either in the function definition or declaration

7.5.5 The typedef Storage Class
The important points about the typedef storage class are as follows:

1. The typedef storage class specifier is used for syntactic convenience only.
2. typedef is used for creating a synonym or an alias for a known type.
3. The syntax of writing a typedef declaration is:

typedef known-type-T synonym-name;
 where T is a generic term and can be int, float, char or any other type.

The code snippet in Program 7-20 illustrates the use of typedef storage class.

432 Programming in C—A Practical Approach

Line Prog 7-20.c Output window

 1
2
3
4
5
6
7
8

//typedef storage class specifier
#include<stdio.h>
main()
{
typedef char* cp;
cp c;
printf(“The size of character pointer c is %d bytes”,sizeof(c));
}

The size of character pointer c is 2 bytes
Remarks:
•  After creating a synonym name cp using

typedef, it is possible to refer to the type char*
by writing cp

•  The declaration in line number 6, declares
a variable c of type char*

•  If executed using Borland TC 4.5, the size
of the character pointer would be 4 bytes

Program 7-20 | A program that illustrates the use of typedef storage class specifier

4. Note that typedef does not introduce a new type. It only creates a synonym for the known
type.

Table 7.1 summarizes the features of a variable defined with the described storage class
specifications.

Table 7.1 | Summary of storage classes

S.No Storage class Storage Initial value Lifetime Linkage

1. auto Memory Garbage Automatic No
2. register CPU registers Garbage Automatic No
3. static Memory Zero Static Internal
4. extern Memory Zero Static External
5. typedef Used for syntactic convenience only

7.6 Dynamic Memory Allocation
The allocation of memory at the run time (i.e. as a program executes) is known as dynamic
memory allocation. In C language, memory can be dynamically allocated by calling malloc, cal-
loc or realloc functions. The prototypes of these functions are available in the header files alloc.h
or malloc.h. The functions that are used for dynamic memory allocation are as follows:

1. The malloc function:
 The syntax of malloc function is:

void* malloc(size_t size);

 The important points about the malloc function are as follows:

i. The malloc function allocates the memory space for an object whose size is specified
by the parameter size.

ii. size_t is not a type. It is a synonym for the type unsigned int. The type definition for size_t
is available in the header files alloc.h and malloc.h.

Scope, Linkage, Lifetime and Storage Classes 433

iii. The allocated space will not be initialized. The value of the allocated space will be
undetermined (i.e. garbage).

iv. The dynamically allocated memory is allocated from heap.
v. The malloc function returns a void pointer (i.e. void*) to the allocated space, if successful.
vi. If unsuccessful in making the allocation, it returns a null pointer.

Before using malloc, calloc or realloc functions, include header file alloc.h or malloc.h if you are using
Borland Turbo C 3.0 or Borland Turbo C 4.5 and malloc.h if you are using Microsoft Visual C++
6.0.

The piece of code in Program 7-21 illustrates the use of the malloc function.

Line Trace Prog 7-21.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

10

1

2

3

4

5

6

//Use of malloc function
#include<stdio.h>
#include<malloc.h>
main()
{
 float *ptr;
 ptr=(float*)malloc(sizeof(float));
 *ptr=30.25;
 printf(“The value within block is\n%f”,*ptr);
}

After trace step 2:
ptr

Garbage
2000 ?

The value within block is
30.250000

After trace step 3:
ptr

4000
2000 Garbage

4000

After trace step 4:
ptr

4000
2000 30.25

4000

Program 7-21 | A program that illustrates the use of the malloc function

2. The calloc function:
 The syntax of the calloc function is:

void* calloc(size_t n, size_t size);

 The important points about the calloc function are as follows:
i. The calloc function allocates the memory space for an array of n objects, each of whose

size is specified by the parameter size.
ii. All the bits in the allocated memory space are initialized to zero.
iii. The function returns a void pointer (i.e. void*) to the allocated memory space, if

successful.
iv. If the memory space cannot be allocated, a null pointer is returned.

The piece of code in Program 7-22 illustrates the use of the calloc function.

434 Programming in C—A Practical Approach

Line Trace Prog 7-22.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

10
11
12

1

2

3

4,6,8,10

5,7,9

11,13,15,17

12,14,16

18

//Use of calloc function
#include<stdio.h>
#include<malloc.h>
main()
{
 int *ptr,i;
 ptr=(int*)calloc(3,sizeof(int));
 for(i=0;i<=2;i++)
 (ptr+i)=10(i+1);
 for(i=0;i<=2;i++)
 printf(“The value at the index %d is %d\n”,i,*(ptr+i));
}

After trace step 2:
ptr

Garbage
2000 ?

The value at the index 0 is 10
The value at the index 1 is 20
The value at the index 2 is 30

After trace step 3:
ptr

4000
2000

0 0 0
4000 4002 4004

After trace step 9:
ptr

4000
2000

10 20 30
4000 4002 4004

Program 7-22 | A program that illustrates the use of the calloc function

3. The realloc function:
 The syntax of the realloc function is:

void* realloc(void *ptr, size_t size);

 The important points about the realloc function are as follows:

 i. The realloc function deallocates the old object pointed by ptr and returns a pointer to
a new object that has the size specified by the parameter size.

 ii. The major use of the realloc function is to resize the dynamically allocated object
(especially an array).

 iii. The content of the new object shall be the same as that of the old object prior to deal-
location, if the new object is greater in size than the old object. Any bytes in the new ob-
ject beyond the size of the old object have undetermined values (i.e. garbage values).

 iv. If ptr given to the realloc function is a null pointer, the realloc function behaves like the
malloc function.

 v. If the second argument (i.e. size) passed to the realloc function is zero, it behaves like
a free function.

 vi. If ptr does not match a ptr earlier returned by a malloc, calloc or realloc function, or if space
has been deallocated by call to the free or realloc function, its behavior is undefined.

 vii. If the memory for the new object cannot be allocated, the old object is not deallo-
cated and its value remains unchanged.

 viii. The realloc function returns a void pointer (i.e. void*) to the new object, or a null pointer
if the new object cannot be allocated.

Scope, Linkage, Lifetime and Storage Classes 435

The piece of code in Program 7-23 illustrates the use of the realloc function.

Line Trace Prog 7-23.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1

2

3

4,6,8,10

5,7,9

11

12

13

14,16,18,20,22,24

15,17,19,21,23

25

26

//Use of realloc function
#include<stdio.h>
#include<malloc.h>
main()
{
 int *ptr,i;
 ptr=(int*)calloc(3,sizeof(int));
 for(i=0;i<=2;i++)
 ptr[i]=10*(i+1);
 //ptr[3] is illegal
 ptr=(int*)realloc(ptr,5*sizeof(int));
 ptr[3]=23;
 ptr[4]=84;
 for(i=0;i<=4;i++)
 printf(“Value at index %d is %d\n”,i,*(ptr+i));
 realloc(ptr,0); //equivalent to free(ptr)
}

After trace step 2:
ptr
G

2000

?
Value at index 0 is 10
Value at index 1 is 20
Value at index 2 is 30
Value at index 3 is 23
Value at index 4 is 84

After trace step 3:
ptr

4000
2000

0 0 0
4000 4002 4004

After trace step 9:
ptr

4000
2000

10 20 30
4000 4002 4004

After trace step 11:
ptr

6000
2000

10 20 30 G G
6000 6002 6004 6006 6008

After trace step 13:
ptr

6000
2000

10 20 30 23 84
6000 6002 6004 6006 6008

Program 7-23 | A program that illustrates the use of the realloc function

Since malloc, calloc and realloc functions return a void pointer, the returned pointer must be type
casted to the appropriate type before use.

The lifetime of dynamically allocated objects extends from the time of their allocation until
deallocation. The deallocation is automatically done with the termination of a program or can
be done by giving a call to the function free.

436 Programming in C—A Practical Approach

4. The free function:
 The syntax of the free function is:

void free(void* ptr);
 The important points about the free function are as follows:

i. The free function causes the memory space pointed to by ptr to be deallocated.
ii. Pointer to any type of object can be passed as an argument to the free function. The

conversion of a pointer to any type of object to a void pointer is a standard conversion
and will be carried out implicitly without any explicit type cast.

iii. If ptr is a null pointer, no action occurs.
iv. If the argument does not match a pointer earlier returned by the calloc, malloc or realloc

functions or if the memory space has already been deallocated by a call to free or
realloc functions, the behavior is undefined.

v. The free function returns no value.

7.6.1 Memory Leak
Memory leak is a common situation that happens when the dynamic memory allocation is
used without proper care. It occurs when the dynamically allocated memory is no longer
needed but it is not freed. If we continuously keep on allocating the memory without freeing it
for reuse, the entire heap storage will be exhausted. After this, it will not be possible to allocate
any memory space from the heap. In such circumstances, the memory allocation functions will
start failing and the program will start behaving unexpectedly. The piece of code in Program
7-24 suffers from memory leak.

Line Prog 7-24.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

//Memory leak
#include<stdio.h>
#include<malloc.h>
#include<string.h>
void lcase(char* Uname)
{
 char *Lname;
 int i=0;
 Lname=(char*)malloc(strlen(Uname)+1);
 while(*(Uname+i)!=’\0’)
 {
 (Lname+i)=(Uname+i)+32;
 i++;
 }
 *(Lname+i)=’\0’;
 printf(“Name in Lower Case is %s\n”,Lname);
 // To avoid memory leak, place free(Lname); here
}
main()
{
 char name[]=”SAM”;
 printf(“Name in Upper Case is %s\n”,name);
 lcase(name);
}

Name in Upper Case is SAM
Name in Lower Case is sam
Remarks:
•  The mentioned piece of code converts an upper-

case string into lowercase
•  The code suffers from memory leak
•  The memory has been allocated in the function

lcase by giving a call to the malloc function but it
is not freed

•  This dynamically allocated memory has allocat-
ed lifetime, i.e. it exists till it is not freed by giv-
ing a call to the function free or till the program
does not terminate

•  Thus, the allocated memory exists even after the
program control returns from the function lcase

•  If the function lcase is called larger number of
times in the function main, the entire heap stor-
age will be exhausted and the program will start
behaving unexpectedly

•  To rectify the problem, use free function at the
end of lcase function to free the allocated memory
for reuse

Program 7-24 | A program that suffers from memory leak

Scope, Linkage, Lifetime and Storage Classes 437

7.7 Summary

The scope of an identifier is a region of the program within which the identifier is vis-1.
ible (i.e. it can be used).
There are four types of scopes, namely file scope or global scope, block scope or local 2.
scope, function prototype scope and function scope.
Two identifiers have the same scope if and only if their scopes terminate at the same 3.
point.
The keyword 4. extern provides a method for declaring an identifier without defining it.
An identifier can have many identical declarations in the same scope.5.
It is not allowed to define an identifier more than once in the same scope.6.
One definition rule states that each object must have only one definition in a scope.7.
It is possible to define an identifier with the same name more than once if the definitions 8.
lie in different scopes.
Shadowing states that the definition of an identifier in the immediate scope shadows/9.
supersedes the definitions of the identifier present in the enclosing scope.
Name resolution is a process by which a name used in an expression is associated with 10.
a declaration or a definition.
Linkage is a process by which the identifiers declared in different scopes or in the same 11.
scope more than once can be made to refer to the same data object or function.
Lifetime of an object is the portion of the program execution during which the storage 12.
is guaranteed to be reserved for it.
To fully define an identifier, we also need to specify its storage class. 13.
There are five storage classes, namely 14. auto, register, static, extern and typedef.
Allocation of the memory at the run time is called dynamic memory allocation.15.
The memory can be allocated dynamically by using the 16. malloc, calloc or realloc functions.
The 17. free function is used to deallocate the memory allocated by malloc, calloc or realloc functions.
Careless allocation of the memory at the run time leads to memory leak.18.

Exercise Questions
Conceptual Questions and Answers

1. What is meant by the scope of an identifier? What are the different types of scopes available in C
language?

 The scope of an identifier is a region of the program within which the identifier is visible (i.e. it
can be used). C defines four scopes that determine the visibility of an identifier:
1. File scope or global scope
2. Block scope or local scope
3. Function prototype scope
4. Function scope

Backward Reference: Refer Section 7.2 for a description on the scope of an identifier.

438 Programming in C—A Practical Approach

2. How can I determine whether an identifier has file scope, block scope, function scope or function prototype
scope?

Backward Reference: Refer Section 7.2.1 for a description on the determination of the scope
of an identifier.

3. How can I determine the region of the program in which an identifier is visible?

Backward Reference: Refer Sections 7.2.4 and 7.2.2 to determine the visibility of an identifier.

4. When is the scope of two identifiers said to be the same?

Backward Reference: Refer Section 7.2.3 for a description on the same scope.

5. What is the difference between declaring a variable and defining a variable?

Backward Reference: Refer Sections 7.2.3.1 and 7.5.4 for a description on the difference be-
tween declaring a variable and defining a variable.

6. Is it possible to declare an identifier with a same name and type more than once in the same scope?
 Yes, it is possible to declare an identifier with a same name and type more than once in the same

scope.

Backward Reference: Refer Section 7.2.3.1 to find the answer to this question.

7. Can we define an identifier with a same name more than once in the same scope? Can we define an identi-
fier with a same name in different scopes? If identifiers with a same name are defined in different scopes, do
they refer to one object or different objects?

 No, it is not possible to define an identifier with a same name more than once in the same scope,
but it is possible to define an identifier with a same name in different scopes. If identifiers with a
same name are defined in different scopes, they refer to different objects.

Backward Reference: Refer Section 7.2.3.1 to find the answer to this question.

8. Is it possible to declare an identifier with a same name but a different type in different scopes?

Backward Reference: Refer Section 7.2.3.1 to find the answer to this question.

9. What is meant by shadowing?

Backward Reference: Refer Section 7.2.4.1 for a description on shadowing.

Scope, Linkage, Lifetime and Storage Classes 439

10. What is meant by name resolution?

Backward Reference: Refer Section 7.2.4.1 for a description on name resolution.

11. What is meant by linkage? What are the different kinds of linkages available in C language?

Backward Reference: Refer Section 7.3 for a description on linkage.

12. What is meant by the lifetime of an identifier? Is it the same concept as the scope of an identifier? If no, how
is it different from the scope?

 The lifetime of an identifier (actually object) is a portion of the program execution during which
the storage is guaranteed to be reserved for it. Throughout its lifetime, it has a constant address
and it retains its last stored value. The lifetime of an identifier and the scope of an identifier are
related but are entirely different concepts. Ideally, the scope of an identifier should be a subset of
the lifetime of an object it denotes; otherwise, it would be possible to refer to an identifier even
after its denoted storage goes away. If an identifier is referred outside of its lifetime, its behavior
would be undefined.

13. In C language, what are the various types of lifetime that an object can have?

Backward Reference: Refer Section 7.4 for a description on lifetime of an object.

14. If I want to specify the lifetime of an object, how can I specify it?
 The lifetime of an object can be specified with the help of a storage class specifier.

Backward Reference: Refer Section 7.5 for a description on storage classes and storage class
specifiers.

15. What are the differences between static local variable and global variable?
 The key differences between a static local variable and a global variable are:

1. A static local variable has block/local scope while a global variable has file/global scope.
2. A static local variable has internal linkage while a global variable has external linkage.

 The key similarity between a static local variable and a global variable is that both have static/
global lifetime.

16. Can a variable be declared in a header file? Can it be defined in a header file?
 A variable that is to be accessed from more than one file can and should be declared in a header

file. However, such a variable must be defined only in one source file. Variables can be, but
should not be defined in the header files because the header files can be included in multiple
source files, which would cause multiple definitions of a variable and thus lead to an error.

17. Is it possible to declare a static variable without defining it?
 No, it is not possible to declare a static variable without defining it. Consider the following statement:

static int a; // This is a definition and not a declaration as memory space is allocated to a
 If we do not want to allocate memory space to the identifier a, the storage class specifier extern

should be used. However, it is not possible to use both the storage class specifiers static and extern
at the same time. Hence, it is not possible to declare a static variable without defining it.

440 Programming in C—A Practical Approach

18. It is said that 'Functions and global variables have external linkage. A global variable or a function defined
in one source file can be used in another source file in a multi-file program'. How can I do this?

 Consider a program that consists of two source files one.c and two.c. The source file two.c contains
the definition of an identifier ident1 and a function fun. These definitions are used in another source
file one.c of the program. Since the global variables and the function have external linkage, this
usage is allowed. The following code snippets illustrate this type of usage using Codeblocks, the
open source, cross-platform IDE:

 The given piece of code on execution outputs:

 The value of ident1 defined in other source file is 250
 Function fun is defined in other source file

Backward Reference: Refer Section 7.3.1 to learn how to execute a multi-file program using
Turbo C 3.0.

(a) one.c

(b) two.c

Scope, Linkage, Lifetime and Storage Classes 441

19. What is the effect of storage class specifier static when applied on function definition/declaration and global
identifiers?

 The storage class specifier static when applied on a function definition/declaration and global
identifiers, changes their linkage from external to internal, i.e. they can now be used only within
the same source file and not within the other source files. Consider the same code as in the previ-
ous answer except that the definition of the identifier and the function has been made static by
specifying static storage class specifier in the source file two.c.

 On execution, there are two linker errors: ‘Undefined reference to ‘ident1” and ‘Undefined reference to ‘fun”.
These errors are due to the fact that ident1 and fun have internal linkage as static storage class speci-
fier has been used. They can now only be used within the same source file (i.e. two.c) and not
within any other source file (i.e. one.c).

20. When should the register storage class specifier be used? Does using the register storage class specifier guar-
antee to improve the performance of a program?

 The register storage class specifier hints to the compiler that the variable will be heavily used and
should be kept in the CPU register, if possible, so that it can be accessed faster. However, since

(a) one.c

(b) two.c

442 Programming in C—A Practical Approach

the CPU registers are limited in number and some registers can hold only specific type of data
(such as floating point numbers), the number of register storage class specifiers that will actually
have any effect depends upon the machine on which the program will be executed. Also, in some
cases, it might actually be slower to keep a variable in a register because that register will then
become unavailable for other purposes, or because the variable is not used enough to justify the
overhead of loading and storing it in CPU register.

 Therefore, when should the register storage class specifier be used?
 The answer is never, with most modern compilers. Modern C compilers are so advanced that

they usually make better decisions than the programmer about which variables should be stored
in the registers. In fact, many compilers actually ignore the register storage class specifier, which
is perfectly legal, because it is only a hint and not a directive.

21. What is meant by initialization and assignment? What are the different types of initializations?
 First time assignment at the time of definition is called initialization. Assigning a value to an identi-

fier after initialization is treated as assignment. Initialization is classified according to two criteria:
1. Whether it is done by the system or by the user (implicit/explicit initialization).
2. Whether it is done at the run time or at the compile time.

Implicit/explicit Initialization Run-time/compile-time initialization

1.  In an initialization statement, if the value
of initialization is implicitly provided by
the system and not by the user, then it is
known as implicit initialization. Only
extern and static variables are guaranteed to
be implicitly initialized.

2.  In an initialization statement, if the value
of initialization is explicitly provided by
the user, then it is known as explicit ini-
tialization.

For example:
static int a; // Implicitly initialized
int a=20; // Explicit initialization

1.  In an initialization statement, if the value
of initialization can be determined at the
compile time, then it is called compile-
time initialization.

2.  In an initialization statement, if the value
of initialization can only be determined at
the run time, then it is called run-time ini-
tialization.

For example:
int a=20; // Compile-time initialization
int a=sqrt(4); // Run-time initialization

22. I know that a case label should be a constant expression of integral type. I have written the following piece
of code. The compiler is not accepting it and is showing an error “Constant expression required”, although I have
made lab, a constant by using const qualifier. Why?

 main()
 {
 const int lab=sqrt(4);
 int expr=2;
 switch(expr)
 {
 case lab:
 printf(“Initializations are of two types”);
 case 3:
 printf(“Case labels should be constant expression known at the compile time”);
 }
 }

Scope, Linkage, Lifetime and Storage Classes 443

 The statement ‘case label should be a constant expression of integral type’ is correct but in-
complete. A further refinement states that ‘Case label should be a compile-time constant
expression of integral type’. This means that the value of the expression should be known at the
compile time. In the mentioned code, the initialization is a run time initialization, so the value of
initializer can only be determined at the run time. This is not allowed for case labels and hence
leads to a compilation error.

23. Do all the variables need to be initialized explicitly?
 No, all the variables need not be initialized explicitly. The variables that are defined outside

all functions (i.e. in file/global scope with external or internal linkage) and the variables de-
fined inside a function with internal linkage (i.e. with static storage class specifier) are im-
plicitly initialized with a base value, if not initialized explicitly. For example, integers are
implicitly initialized with 0, float with 0.0, char with ‘\0’, if explicit initializers are not given. It
is important to note that even if static variables are present inside block/local scope, they are
initialized only once.

 The variables defined inside a function with no linkage (i.e. auto variables or register variables)
will have undefined values (i.e. garbage values), if they are not explicitly initialized. If they
are not initialized, the user should make sure that they are assigned some value before they
are used.

24. Where are the variables stored in the memory?
 Depending upon their lifetime, variables are stored in one of the following three memory regions:

1. Variables that are defined outside all the functions (i.e. in file/global scope with an external
or an internal linkage) and the variables defined
inside a function with internal linkage (i.e. with
static storage class specifier) exist for the lifetime of
a program’s execution. These variables are stored in
a data segment. A data segment is a fixed size area
in the memory set aside for these variables.

2. Variables that are defined inside the block/local
scope without using the static storage class speci-
fier (i.e. auto variables) come into existence when
the program control enters the block of code con-
taining them and they cease to exist when the
program control leaves that block of code. These
variables are stored in a stack. A stack is an area
of memory that starts out small and grows auto-
matically up to some predefined limit. The stack is
kept in the region of memory known as the stack
segment.

3. The third type of memory area is used not to actually store the variables but to store the
objects pointed to by pointer variables. This type of memory area is used to store the objects
that have allocated lifetime. This memory area is known as a heap. A heap is another area
that starts out small and grows, but it grows only when there is an explicit call to some
memory allocation functions like malloc, calloc or realloc. The heap, like the stack, has a limit on
how much it can grow. The heap can share memory segment either with the stack or the data
segment or can have its own segment (i.e. extra segment).

High
memory

Heap
grows down

Stack segment/extra
segment

Stack
grows up

Data segment:
Global variables, static

variables, constants and
literals

Low
memory

Code segment:

Program code

444 Programming in C—A Practical Approach

25. What is dynamic memory allocation? What are the differences between dynamic memory allocation and
static memory allocation?

 The allocation of memory at the run time (i.e. as the program executes) is known as dynamic
memory allocation. In C, memory can be allocated dynamically by calling malloc, calloc or realloc
functions. The allocation of memory at the compile time is called static memory allocation.

Static memory allocation Dynamic memory allocation

1.  Static memory is allocated automatically
by the compiler when the definition state-
ments are encountered.

2.  To make static memory allocation, the
amount of the memory space to be re-
served should be known at the compile
time.

3.  Since the amount of memory to be allocat-
ed is determined in advance at the com-
pile time, this type of memory allocation
may sometimes lead to memory wastage
especially in the case of arrays.

4.  Memory allocated at the compile time has
static or automatic lifetime.

5.  This allocation is done either from a data
segment or a stack.

6.  Static memory allocation is faster as com-
pared to dynamic memory allocation.

1.  Dynamic memory is allocated only when
there is an explicit call to malloc, calloc or real-
loc functions.

2.  In dynamic memory allocation, the amount
of the memory space to be reserved can be
given at the run time.

3.  Since the amount of memory to be allocat-
ed can be given at the run time, the mem-
ory is allocated as per the requirements,
and memory wastage can be avoided.

4.  Memory allocated at the run time has al-
located lifetime.

5.  This allocation is done from the heap.

6.  Dynamic memory allocation is slower as
compared to static memory allocation.

26. How can I dynamically allocate and deallocate the memory?

Backward Reference: Refer Section 7.6 for a description on dynamic memory allocation.

27. The mentioned code on execution outputs “Hello Readers!!”.
 #include<alloc.h>
 /*Note: In all the questions that have a call to malloc, calloc or realloc functions, include header file alloc.h or malloc.h if you are

using Borland Turbo C 3.0 or Borland Turbo C 4.5 and malloc.h if you are using Microsoft Visual C++ 6.0*/
 main()
 {
 char *str;
 str=(char*)malloc(20);
 strcpy(str,”Hello Readers!!”);
 puts(str);
 }
 I know that the prototype of the malloc function is void*malloc(size_t size);. In the mentioned code, an integer is

given as an argument to the malloc function instead of an argument of type size_t. Even then the compiler is
not showing an error ‘Unable to convert int to size_t’. Why?

 The compiler does not show an error because size_t is not a type. It is just a synonym for the type
unsigned int. The type definition for size_t is available in the header files alloc.h and malloc.h. To verify it,
open the header files alloc.h or malloc.h and search for size_t. You will find a statement typedef unsigned size_t;,
which declares size_t as a synonym for the type unsigned int.

Scope, Linkage, Lifetime and Storage Classes 445

 In the given piece of code, 20 (i.e. an integer) is given as an input argument to the function malloc,
while it actually expects an unsigned int. The compiler can implicitly type cast int to unsigned int, both
types being compatible. Thus, the given code is free from errors.

 Thus, it will be wrong to say that int and size_t are compatible types because size_t is actually not a
type.

28. What is memory leak?

Backward Reference: Refer Section 7.6.1 for a description on memory leak.

29. What is the biggest advantage of using arrays and what is the biggest disadvantage of using statically al-
located arrays?

 The biggest advantage of using arrays is the direct addressing scheme supported by the arrays.
Direct addressing means that any location of an array can be directly accessed by using an index
(subscript) value. The time required to access any value is the same irrespective of the location of
the value. The biggest disadvantage of using statically allocated arrays is that the static memory
allocation most of the times leads to memory wastage.

 Consider the following scenario that illustrates how static memory allocation leads to memory
wastage. Suppose there are 200 students in a class of computing course. The instructor of the
course wants to store the marks of all the students and has created a statically allocated array of
type float. Since he or she actually does not know the number of students who are actually going
to appear in the examination beforehand, he or she has to keep the size of the array as 200 (i.e.
equal to the maximum number of students). This statically allocated array will take 800 bytes in
the memory. However, suppose on the exam day, 25 students could not make it for the examina-
tion and remain absent. Thus, only 175 locations out of 200 allocated locations are actually used
and 100 bytes of the memory space gets wasted.

30. How can I allocate a one-dimensional array dynamically?
 A one-dimensional array can be allocated dynamically by using malloc or calloc memory allocation

functions. Consider the following piece of code that makes use of the calloc/malloc function to dy-
namically create a one-dimensional array:

 #include<stdio.h>
 #include<alloc.h>
 #include<stdlib.h> // The prototype of the exit function is present in the header files stdlib.h and process.h
 main()
 {
 int *array, size, i;
 printf(“Enter the size of array that you want to create\t”);
 scanf(“%d”,&size);
 array=(int*)malloc(size*sizeof(int));
 //array=(int*)calloc(size,sizeof(int)); // Instead of the previous statement, this statement can also be used
 if(array==NULL)
 {
 printf(“Memory allocation function failed, memory space could not be allocated”);
 exit(1);
 }
 else
 printf(“Congrats!! array of size %d created successfully\n”,size);

446 Programming in C—A Practical Approach

 for(i=0;i<size;i++)
 array[i]=10*(i+1);
 printf(“Elements of array are\n”);
 for(i=0;i<size;i++)
 printf(“%d “,array[i]);
 free(array);
 }

31. Can a two-dimensional array be dynamically allocated in the same way as a one-dimensional array?
 Yes, a two-dimensional array can be dynamically allocated using the malloc or calloc function, but

creating a two-dimensional dynamic array is a bit more complicated than creating a one-dimen-
sional dynamic array.

 If the number of columns in the two-dimensional array to be created is known, the following
code illustrates its dynamic creation and use:

 #include<stdio.h>
 #include<alloc.h>
 #include<stdlib.h> // or #include<process.h>
 #define NCOLS 3
 main()
 {
 int (*array)[NCOLS];
 int NROWS, i, j;
 printf(“Enter the number of rows of two-dimensional dynamic array\t”);
 scanf(“%d”,&NROWS);
 array=(int(*)[NCOLS])malloc(NROWS*NCOLS*sizeof(int));
 //array=(int(*)[NCOLS])calloc(NROWS, NCOLS*sizeof(int));
 if(array==NULL)
 {
 printf(“Memory allocation function failed, memory space could not be allocated”);
 exit(1);
 }
 else
 printf(“Congrats!! array of size %d*%d created successfully\n”,NROWS,NCOLS);
 for(i=0;i<NROWS;i++)
 for(j=0;j<NCOLS;j++)
 array[i][j]=i+j;
 printf(“\n\nThe contents of array are:\n\n”);
 for(i=0;i<NROWS;i++)
 {
 for(j=0;j<NCOLS;j++)
 printf(“%d”,array[i][j]);
 printf(“\n”);
 }
 free(array);
 }

 In the above-mentioned code, the two-dimensional dynamic array is used in the same way as a
two-dimensional static array is used, i.e. by using two subscript operators.

Scope, Linkage, Lifetime and Storage Classes 447

 If the number of columns in a two-dimensional array is not known, the following code illustrates
its dynamic creation and use. Note that by this method, the dynamic two-dimensional array can-
not be used in the same way as the two-dimensional static array.

 #include<stdio.h>
 #include<alloc.h>
 #include<stdlib.h> // or #include<process.h>
 main()
 {
 int *array;
 int NROWS,NCOLS, i, j;
 printf(“Enter the number of rows and columns of two-dimensional dynamic array\t”);
 scanf(“%d %d”,&NROWS,&NCOLS);
 array=(int*)malloc(NROWS*NCOLS*sizeof(int));
 //array=(int*)calloc(NROWS, NCOLS*sizeof(int));
 if(array==NULL)
 {
 printf(“Memory allocation function failed, memory space could not be allocated”);
 exit(1);
 }
 else
 printf(“Congrats!! array of size %d*%d created successfully\n”,NROWS,NCOLS);
 for(i=0;i<NROWS;i++)
 for(j=0;j<NCOLS;j++)
 array[i*NCOLS+j]=i+j;
 printf(“\n\nThe contents of array are:\n\n”);
 for(i=0;i<NROWS;i++)
 {
 for(j=0;j<NCOLS;j++)
 printf(“%d”,array[i*NCOLS+j]);
 printf(“\n”);
 }
 free(array);
 }

32. The number of rows and the number of columns of a two-dimensional array to be created is not known in
advance. They will be entered by the user at the run time. The user only knows to access the elements of a
two-dimensional array using two subscripts, like arr[i][j] if arr is of array type. How should the user create
a two-dimensional dynamic array so that he or she should be able to use it too?

 If the number of rows and the number of columns of a two-dimensional array are not known
in advance, it can still be dynamically created in such a way so that it can be used like a normal
two-dimensional static array, i.e. using two subscripts. The following code illustrates this fact:

 #include<stdio.h>
 #include<alloc.h>
 #include<stdlib.h> // or #include<process.h>
 main()
 {
 int **array;
 int NROWS,NCOLS, i, j;
 printf(“Enter the number of rows and columns of two-dimensional dynamic array\t”);

448 Programming in C—A Practical Approach

 scanf(“%d %d”,&NROWS,&NCOLS);
 array=(int**)malloc(NROWS*sizeof(int*));
 if(array==NULL)
 {
 printf(“Memory allocation function failed, memory space could not be allocated”);
 exit(1);
 }
 for(i=0;i<NROWS;i++)
 {
 array[i]=(int*)malloc(NCOLS*sizeof(int));
 if(array[i]==NULL)
 {
 printf(“Memory allocation function failed, memory space could not be allocated”);
 exit(1);
 }
 }
 printf(“Congrats!! array of size %d*%d created successfully\n”,NROWS,NCOLS);
 for(i=0;i<NROWS;i++)
 for(j=0;j<NCOLS;j++)
 array[i][j]=i+j;
 printf(“\n\nThe contents of array are:\n\n”);
 for(i=0;i<NROWS;i++)
 {
 for(j=0;j<NCOLS;j++)
 printf(“%d”,array[i][j]);
 printf(“\n”);
 }
 free(array);
 }

33. Can the size of a statically and dynamically allocated array be increased? If yes, how?
 It is not possible to increase the size of a statically allocated array. However, the size of a dynami-

cally allocated array can be increased using the realloc function. The following code illustrates
how to increase the size of a dynamically allocated array:

 #include<stdio.h>
 #include<alloc.h>
 #include<stdlib.h> // or #include<process.h>
 main()
 {
 int *array, size,newsize, i;
 printf(“Enter the size of array that you want to create\t”);
 scanf(“%d”,&size);
 array=(int*)malloc(size*sizeof(int));
 //array=(int*)calloc(size,sizeof(int)); // This statement can also be used instead of previous statement
 if(array==NULL)
 {
 printf(“Memory allocation function failed, memory space could not be allocated”);
 exit(1);
 }

Scope, Linkage, Lifetime and Storage Classes 449

 else
 printf(“Congrats!! array of size %d created successfully\n”,size);
 for(i=0;i<size;i++)
 array[i]=10*(i+1);
 printf(“\n\nElements of array are\n”);
 for(i=0;i<size;i++)
 printf(“%d “,array[i]);
 printf(“\nDue to increased requirement, size of array needs to be increased\n”);
 printf(“\nEnter the new size of the array\t”);
 scanf(“%d”,&newsize);
 array=(int*)realloc(array,newsize*sizeof(int));
 if(array==NULL)
 {
 printf(“The size of array cannot be increased, resize operation failed”);
 exit(1);
 }
 else
 printf(“Congrats!! The size of array increased from %d to %d\n”,size,newsize);
 for(i=size;i<newsize;i++)
 array[i]=10*(i+1);
 printf(“\n\nElements of array are\n”);
 for(i=0;i<newsize;i++)
 printf(“%d “,array[i]);
 free(array);
 }

34. What are the problems associated with the usage of global variables?
 There are certain problems associated with the usage of global variables. The global variables

should be used with caution and should always be carefully documented. The major problems
associated with using global variables are:

1. The name of a global variable may clash with a name of global variables defined in the li-
braries or in other source files. This name-clashing problem is called the global namespace
pollution problem.

2. The global variables are visible (i.e. they can be used) within all the functions of a program.
All the functions can change the value of global variables. This makes debugging, testing and
maintenance of the code difficult.

35. The global objects are visible to all the functions of a program. That means various functions of a program
can communicate by using global objects. Then, why don’t we fully rely on global objects as a method of
communication between functions?

 We do not full rely on global objects as a method of communication between functions
because:
1. Usage of global objects pollutes the global namespace and this may lead to name conflicts.
2. The global objects can be manipulated in any function. Any function can accidentally

or maliciously manipulate the global object. This accidental or malicious manipulation
cannot be prevented if global objects are used and is very difficult to find out. This
makes testing and debugging difficult for the programs that make excessive use of glob-
al objects.

450 Programming in C—A Practical Approach

Code Snippets
 Determine the output of the following code snippets. Assume that the inclusion of the required header files

has been made and there is no prototyping error due to them.

36. int var=100;
 fun()
 {
 printf(“The value of var in fun is %d\n”,var);
 }
 main()
 {
 printf(“The value of var in main is %d\n”,var);
 var=var+200;
 fun();
 }

37. int var=100;
 fun()
 {
 int var=50;
 printf(“The value of var in fun is %d\n”,var);
 }
 main()
 {
 printf(“The value of var in main is %d\n”,var);
 var=var+200;
 fun();
 }

38. fun()
 {
 int var=100;
 printf(“The value of var in fun is %d\n”,var);
 }
 main()
 {
 printf(“The value of var in main is %d\n”,var);
 var=var+200;
 fun();
 }

39. fun(int var)
 {
 printf(“The value of var in fun is %d\n”,var);
 }
 main()
 {
 int var=100;
 printf(“The value of var in main is %d\n”,var);
 fun(var/2);
 }

Scope, Linkage, Lifetime and Storage Classes 451

40. fun()
 {
 lab:
 printf(“Labels have function scope”);
 }
 main()
 {
 goto lab;
 }

41. int var=100;
 main()
 {
 extern int var;
 extern int var;
 printf(“The value of var is %d”,var);
 }

42. int var=200;
 int var=250;
 main()
 {
 printf(“Multiple definitions”);
 }

43. auto int var=200;
 main()
 {
 printf(“The value of var is %d”,var);
 }

44. main()
 {
 int exp=1,j=10;
 switch(exp)
 {
 case 1:
 {
 int j=2;
 printf(“The value of j in case 1 is %d\n”,j);
 }
 case 2:
 printf(“The value of j in case 2 is %d\n”,j);
 }
 }

45. main()
 {
 extern int var;
 printf(“The value of var is %d”,var);
 }

452 Programming in C—A Practical Approach

46. main()
 {
 extern int var;
 printf(“The value of var is %d”,var);
 }
 int var=200;

47. main()
 {
 extern int var;
 printf(“The value of var is %d”,var);
 int var=200;
 }

48. extern int var=200;
 main()
 {
 printf(“The value of var is %d”,var);
 }

49. main()
 {
 extern int var=200;
 printf(“The value of var is %d”,var);
 }

50. function(static int para)
 {
 printf(“The value of parameter is %d”,para);
 }
 main()
 {
 int var=200;
 printf(“The value of var is %d”,var);
 function(var);
 }

51. int var;
 main()
 {
 printf(“If not initialized, the value of global variable will be %d”,var);
 }

52. main()
 {
 int var;
 printf(“If not initialized, the value of local variable will be %d”,var);
 }

53. main()
 {
 static int var;
 printf(“If not initialized, the value of static local variable will be %d”,var);
 }

Scope, Linkage, Lifetime and Storage Classes 453

54. main()
 {
 static extern int var;
 printf(“The value of var is %d”,var);
 }

55. int a=200;
 main()
 {
 int b=300;
 printf(“The values in outer block of main are %d %d\n”,a,b); // line 1
 {
 int a=400;
 printf(“The values in inner block of main are %d %d\n”,a,b); // line 2
 }
 printf(“The values back in outer block of main are %d %d\n”,a,b); // line 3
 }

56. one.c
 extern_function();
 main()
 {
 extern int var;
 printf(“The value of external var is %d\n”,var);
 extern_function();
 }

 two.c
int var=200;
extern_function()
{
 printf(“Function in other translation unit”);
}

57. one.c

 static_function();
 main()
 {
 extern int var;
 printf(“The value of external var is %d”,var);
 static_function();
 }

 two.c
static int var=200;
static static_function()
{
 printf(“Function in other translation unit”);
}

58. one.c

 int var=200;
 function()
 {
 printf(“Function in same translation unit”);
 }
 main()
 {
 printf(“The value of external var is %d”,var);
 function();
 }

 two.c
int var=200;
function()
{
 printf(“Function in other translation unit”);
}

59. fib_term()
 {
 int a=0,b=1;
 int c;

454 Programming in C—A Practical Approach

 c=a+b; a=b; b=c;
 return c;
 }
 main()
 {
 int count=0,i;
 printf(“First five terms of Fibonacci series are:\n”);
 for(i=0;i<5;i++)
 printf(“%d ”,fib_term());
 }

60. fib_term()
 {
 static int a=0,b=1;
 int c;
 c=a+b; a=b; b=c;
 return c;
 }
 main()
 {
 int count=0,i;
 printf(“First five terms of Fibonacci series are:\n”);
 for(i=0;i<5;i++)
 printf(“%d ”,fib_term());
 }

61. main()
 {
 int i=5;
 printf(“The value of i is %d\n”,i--);
 if(i)
 main();
 }

62. main()
 {
 static int i=5;
 printf(“The value of i is %d\n”,i--);
 if(i)
 main();
 }

63. main()
 {
 int i;
 for (i=0; i<3; i++)
 {
 int x = 0;
 static int y = 0;
 printf(“x=%d, y=%d\n”, x++, y++);
 }
 }

Scope, Linkage, Lifetime and Storage Classes 455

64. int *j;
 func()
 {
 static int i=10;
 j=&i;
 }
 main()
 {
 func();
 printf(“The value of i in function func is %d”,*j);
 }

65. main()
 {
 int *j;
 {
 int i=10;
 j=&i;
 }
 printf(“The value of i is %d”,*j);
 }

66. main()
 {
 int* ptr;
 ptr=malloc(sizeof(int));
 *ptr=200;
 printf(“The value of allocated object is %d”,*ptr);
 }

67. main()
 {
 int* ptr;
 ptr=(int*)malloc(sizeof(int));
 *ptr=200;
 printf(“The value of allocated object is %d”,*ptr);
 }

68. main()
 {
 int* ptr;
 ptr=(int*)malloc(sizeof(int));
 printf(“If not assigned a value, the allocated object has %d”,*ptr);
 }

69. main()
 {
 int* ptr;
 ptr=(int*)calloc(1,sizeof(int));
 printf(“If not assigned a value, the allocated object has %d”,*ptr);
 }

456 Programming in C—A Practical Approach

70. main()
 {
 int *ptr;
 ptr=(int*)malloc(256*256-1);
 if(ptr==NULL)
 printf(“Memory allocation fails”);
 else
 printf(“Memory allocation successful”);
 }

71. main()
 {
 int *ptr;
 ptr=(int*)malloc(256*256L-1);
 if(ptr==NULL)
 printf(“Memory allocation fails”);
 else
 printf(“Memory allocation successful”);
 }

72. main()
 {
 int *ptr;
 ptr=(int*)malloc(256*256L);
 if(ptr==NULL)
 printf(“Memory allocation fails”);
 else
 printf(“Memory allocation successful”);
 }

73. main()
 {
 char *ptr;
 ptr=(char*)malloc(6);
 strcpy(ptr,”Hello”);
 puts(ptr);
 strcat(ptr,”Readers!!”);
 puts(ptr);
 }

74. main()
 {
 char *ptr1;
 ptr1=(char*)malloc(6);
 strcpy(ptr1,”Hello”);
 puts(ptr1);
 ptr1=(char*)realloc(ptr1,15);
 strcat(ptr1,”Readers!!”);
 puts(ptr1);
 }

Scope, Linkage, Lifetime and Storage Classes 457

75. main()
 {
 typedef int i;
 i var=200;
 printf(“The value of variable var is %d”,var);
 }
76. main()
 {
 typedef static int i;
 i var=200;
 printf(“The value of variable is %d”,var);
 }
77. main()
 {
 typedef char* cp;
 cp i,j;
 printf(“The size of i and j is %d %d”,sizeof(i),sizeof(j));
 }
78. char* print_string()
 {
 char str[]=”Strings!!”;
 puts(str);
 return str;
 }
 main()
 {
 puts(print_string());
 }
79. char* print_string()
 {
 static char str[]=”Strings!!”;
 puts(str);
 return str;
 }
 main()
 {
 puts(print_string());
 }
80. char * print_string()
 {
 char *str=”Strings!!”;
 puts(str);
 return str;
 }
 main()
 {
 puts(print_string());
 }

458 Programming in C—A Practical Approach

Multiple-choice Questions
81. The difference between variable declaration and variable definition is that
 a.  Declaration allocates memory for a c. Definition allocates memory for a variable
     variable while definition does not    while declaration does not
 b.  Variable can be defined many times d. None of these

but can be declared only once

82. The region of the program in which an identifier will be visible is determined on the basis of
 a. Scope of the identifier c. Storage class of the identifier
 b. Lifetime of the identifier d. None of these

83. The region of the program in which the storage for an identifier is guaranteed to be reserved is
determined on the basis of

 a. Scope of the identifier c. Storage class of the identifier
 b. Lifetime of the identifier d. None of these

84. The identifier declared outside of all the functions and their parameter lists have
 a. Global scope c. Function scope
 b. Local scope d. Function prototype scope

85. The statement int a;
 a. Defines an identifier a c.  Neither defines nor declares an identifier

a. It is erroneous
 b. Declares an identifier a d. None of these

86. The statement extern int a;
 a. Is a definition of identifier a c.  Is both a declaration as well as a definition

of identifier a
 b. Is a declaration of identifier a d. None of these

87. The statement extern int a=200;, if present in global scope
 a. Defines an identifier a c.  It is erroneous to initialize extern variable in

global scope
 b. Declares identifier a d. None of these

88. The statement extern int a=200;, if present in local scope
 a. Defines an identifier a c.  It is erroneous to initialize extern variable in

local scope
 b. Declares identifier a d. None of these

89. The ideal relationship between the scope and the lifetime of an identifier is that
 a. Scope of an identifier should be a c. Scope of an identifier should be the same
    subset of lifetime of an identifier    as the lifetime of an identifier
 b.  Lifetime of an identifier should be a d. None of these

subset of scope of an identifier

90. The lifetime of global variables by default is
 a. Static c. Allocated
 b. Automatic d. None of these

Scope, Linkage, Lifetime and Storage Classes 459

91. The global variables by default have
 a. External linkage c. No linkage
 b. Internal linkage d. None of these

92. The local variables by default have
 a. External linkage c. No linkage
 b. Internal linkage d. None of these

93. The lifetime of local variables by default is
 a. Static c. Allocated
 b. Automatic d. None of these

94. The lifetime of an object can be specified with the help of
 a. Type specifier c. Format specifier
 b. Storage class specifier d. None of these

95. The lifetime of an local identifier can be changed from automatic to static by using
 a. An extern specifier c. A static specifier
 b. An auto specifier d. None of these

96. The linkage of global variable can be changed from external to internal by using
 a. An extern specifier c. A static specifier
 b. An auto specifier d. None of these

97. The maximum number of storage class specifiers in a declaration statement can be
 a. Only one c. Any number
 b. Two d. None of these

98. The memory space to local variables is allocated from
 a. Stack c. Data segment
 b. Heap d. None of these

99. The correct way to deallocate dynamically created one-dimensional array arr is
 a. free(arr); c. free(*arr);
 b. free(arr[0]); d. None of these

100. The typedef specifier is used to
 a. Create a new type c. Rename a known type
 b. Create a synonym for a known type d. None of these

101. The statement int x=0x23|0x56; has
 a. Compile time initialization c. Compile time error
 b. Run-time initialization d. None of these

102. The statement int x=sqrt(4); has
 a. Compile time initialization c. Compile time error
 b. Run-time initialization d. None of these

103. The static variables of int type are implicitly initialized to
 a. 0 c.  static variables can only be assigned a value

but cannot be initialized
 b. Undetermined value (i.e. garbage value) d. None of these

Chapter 7.indd 459Chapter 7.indd 459 28/02/2010 5:23:20 PM28/02/2010 5:23:20 PM

460 Programming in C—A Practical Approach

104. The operator that cannot be applied on variables defined with register storage class specifiers is
 a. sizeof c. Logical negation
 b. Address-of d. None of these

105. While resolving name, the declaration of the name is first searched in
 a. Immediate scope c. Enclosing scope
 b. Global scope d. None of these

Outputs and Explanations to Code Snippets
36. The value of var in main is 100
 The value of var in fun is 300
 Explanation:
 Two things to be kept in mind while determining the output of this code snippet are:

1. Whether some declaration of the name is visible at the point of its usage. If no declaration is
visible at the point of usage of the name, there will be a compilation error.

2. With which definition of the name, the present usage of the name is resolved and associated.
 In the given code snippet:

1. The global declaration of the identifier var is visible inside both the functions main and fun.
Hence, there will be no compilation error.

2. Since there is no local definition of the identifier var in the function main, the name var used
inside the function main is resolved and associated with the global definition having value 100.
This is printed and later var is modified to 300. In the function fun also, no local definition of
the identifier var is present. Hence, the name var used inside the function fun is also resolved
with the same global definition of var, having the changed value 300. This value is printed
inside the function fun.

37. The value of var in main is 100
 The value of var in fun is 50
 Explanation:
 In the given code snippet:

1. The global declaration of identifier var is visible inside the function main. Since there is no lo-
cal definition of the identifier var in the function main, the identifier name var used inside the
function main is resolved and is associated with the global definition having the value 100. This
is printed and later var is modified to 300.

2. However, in the function fun, a local definition of the identifier var is present. This local defini-
tion of var shadows the global definition of the identifier var. Hence, the name var used inside the
function fun is resolved with the local definition of var and not with the global definition of the
identifier var. The local identifier var has the value 50. This value is printed in the function fun.

38. Compilation error “Undefined symbol ‘var’ in function main”
 Explanation:
 Although the identifier var has been declared inside the function fun, it is not visible inside the

body of the function main. As no declaration of the identifier var is visible at the point of its usage
in the function main, there will be a compilation error.

39. The value of var in main is 100
 The value of var in fun is 50

Scope, Linkage, Lifetime and Storage Classes 461

 Explanation:
 The identifier var defined as a parameter in the definition of the function fun has block/local scope

and can be legally used only inside the body of the function. The function fun has been called by
value inside the function main. Hence, the parameter var obtains the value 50 as a result of argu-
ment passing and this value of var is printed inside the function fun.

40. Compilation error “Undefined label ‘lab’ in function main”
 Explanation:
 A label has function scope, i.e. it is visible only inside the body of the function in which it is

declared (note that a label name need not to be declared separately. Its syntactic appearance, i.e.
label name followed by a colon and a statement serves as a declaration for the label). In the given
code snippet, the label name lab declared inside the function fun is not visible inside the function
main. In the function main, there is no separate declaration of the label lab. Hence, the usage of the
label name lab in the goto statement remains unresolved and leads to a compilation error.

41. The value of var is 100
 Explanation:
 The identifier var has been declared twice in the block/local scope. It is legal to declare an identi-

fier with the same name and type more than once in the same scope. No definition of identifier var
is present inside the local scope. The usage of the identifier var inside the function main is resolved
with the global definition having the value 100. This value of var is printed by the printf function.

42. Compilation error “Variable ‘var’ is initialized more than once”
 Explanation:
 An identifier cannot be defined more than once in the same scope. Two definitions of the identi-

fier var in file/global scope leads to the compilation error.

43. Compilation error “Storage class ‘auto’ is not allowed here”
 Explanation:
 The scope, i.e. visibility of an identifier should be a subset of its lifetime. Thus, auto (i.e. local)

cannot be the lifetime of an object that has global scope. Hence, the usage of the auto storage class
specifier in the declaration made in the global scope leads to the compilation error.

44. The value of j in case 1 is 2
 The value of j in case 2 is 10
 Explanation:
 When an identifier is referenced, the immediate scope in which the name is used is searched. If a

declaration is found, the name is resolved and the value is used. If it is not found, the enclosing
scope is searched. This process continues, until either a declaration is found or a global scope
has been searched. If the latter occurs and no declaration is found for the name, the use of name
is flagged as an error. Reference of j used in the printf statement of case label 1 is resolved by j de-
clared in the immediate scope and the resolved value of j will be 2. The reference of j in the printf
statement of case label 2 is resolved by j declared in the function scope and the resolved value of
j will be 10. The resolved values of j are printed by the respective printf statements.

45. Linker error “Undefined symbol _var in module”
 Explanation:
 The identifier var is declared using the extern storage class specifier. The storage class specifier

extern promises that somewhere in the program the identifier will be defined and has external

462 Programming in C—A Practical Approach

linkage. The promise is not being fulfilled is detected at the time of linking, when the linker
checks all the modules (i.e. the source files and the linked objects) to find that the identifier var
has not been defined anywhere in the program. As far as compilation is concerned, the code does
not show any error.

46. The value of var is 200
 Explanation:
 The identifier var is declared using the extern storage class specifier. Later, it is defined and has

external linkage. The usage of identifier var inside the function main is resolved with the external
definition and the value 200 is printed.

47. Compilation error “Multiple declaration for ‘var’ in function main”
 Explanation:
 The identifier var is declared using the extern storage class specifier. The definition corresponding

to this declaration can have external linkage but cannot have no linkage. Since the identifier var is
defined in the block/local scope, it has no linkage. This is not allowed and leads to the compila-
tion error.

48. The value of var is 200
 Explanation:
 The extern specifier is used to declare a variable without defining it. However, if the variable is

initialized, the extern declaration becomes a definition. Hence, extern int var=200; becomes a defini-
tion. The usage of identifier var in the function main is resolved with this definition of var. Thus, the
value of var printed by the printf function inside the function main is 200.

49. Compilation error “extern variable cannot be initialized in function main”
 Explanation:
 The extern variable cannot be initialized if the declaration statement is written within the block/

local scope. The error is due to the fact that the extern storage class can only be used with the ob-
jects that have external linkage. Since local variables have no linkage, extern cannot be used in the
declaration statement present in the local scope.

50. Compilation error “Storage class ‘static’ is not allowed here”
 Explanation:
 The static storage class specifier cannot be used in the parameter declaration either in the function

declaration or in the function definition. Hence, declaring the parameter para as static in the func-
tion definition leads to the compilation error.

51. If not initialized, the value of global variable will be 0
 Explanation:
 Identifiers with external linkage (i.e. global variables) or with internal linkage (i.e. static variables)

are implicitly initialized with a base value, i.e. 0 for int, 0.0 for float and ‘\0’ for char. In the given code
snippet, var is a global identifier of int type. Hence, it is implicitly initialized to 0 and its value is
printed inside the function main.

52. If not initialized, the value of local variable will be 19125
 Explanation:
 A variable defined inside a function with no linkage (i.e. auto variable or register variable) will have

an undefined value (i.e. garbage value), if it is not initialized explicitly. If it is not initialized, the

Scope, Linkage, Lifetime and Storage Classes 463

user should make sure that it is assigned some value before it is used. In the given code, the local
identifier var is neither initialized nor assigned any value before its use. Hence, the value of the
variable var printed inside the function main is a garbage value. Note that this value may vary from
system to system and on different executions.

53. If not initialized, the value of static local variable will be 0
 Explanation:
 The identifiers with internal linkage (i.e. static variables) are implicitly initialized with a base

value, i.e. 0 for int, 0.0 for float and ‘\0’ for char. Hence, the local static identifier var is initialized to 0.
This value of var gets printed.

 Note that the scope of the identifier var is still local, i.e. it is visible only inside the function main,
the lifetime is global, i.e. the storage is reserved till the program executes and the initialization is
carried out only once.

54. Compilation error “Too many storage classes in declaration in function main”
 Explanation:
 At most one storage class specifier can be mentioned in a declaration statement. Two storage

class specifiers, i.e. static and extern have been used in the declaration statement static extern int var;.
This is a violation and on compilation leads to an error.

55. The values in outer block of main are 200 300
 The values in inner block of main are 400 300
 The values back in outer block of main are 200 300
 Explanation:
 The variable a is defined in the global scope and has the value 200. The variable b is defined

in the local scope (say outer block scope) of the function main. In line 1, the occurrence of a is
resolved with the global definition of a and the occurrence of b is resolved with the local (i.e. in
outer block scope) definition of b. Hence, the values of a and b that get printed are 200 and 300,
respectively.

 After line 1, another block scope starts (say inner block scope) and that too has a definition of
variable a. The present definition of a has the value 400. The usage of a in line 2 refers to the defini-
tion present in the immediate scope (i.e. in inner block scope), having the value 400. Since b is also
used in line 2, its definition is searched in the immediate scope (i.e. the inner block scope). Since
no definition of variable b is found in the inner block scope, the enclosing scope (i.e. outer block
scope) is searched for the definition of b. The definition of variable b is present in the outer block
scope and, hence, the usage of variable b in line 2 is resolved with this definition having the value
300. Thus, the values of a and b printed in line 2 are 400 and 300, respectively.

 After line 2, the inner block scope ends. The usage of the variable a in line 3 is again resolved with
its definition present in the global scope and the variable b is resolved with its definition present
in the immediate scope (i.e. outer block scope). Hence, the values of a and b that get printed are
200 and 300, respectively.

56. The value of external var is 200
 Function in other translation unit
 Explanation:
 All the global variables and functions by default have external linkage. An identifier with exter-

nal linkage can be used anywhere within a multi-file program. In the given code, the usage of the
identifiers var and extern_function in the source file one.c is resolved with their definitions present in
the source file two.c.

464 Programming in C—A Practical Approach

57. Linker errors “Undefined symbol _var” & “Undefined reference to _static_function”
 Explanation:
 The identifiers var and static_function defined in the source file two.c will have internal linkage be-

cause the storage class specifier static has been used. The identifier with an internal linkage can be
used only within the same translation unit in which it is defined and not across multiple transla-
tion units. Thus, the usage of the identifiers var and static_function in the source file one.c cannot be
resolved with the static definition of identifiers var and static_function made in the source file two.c.
Also, no other definition of the identifiers var and static_funciton is available. Hence, the usage of the
identifiers var and static_function remains unresolved and leads to a linker error.

58. Linker errors “Multiple definition of _var” & “Multiple definition of _function”
 Explanation:
 Since the identifiers var and function are defined in the source file one.c in the file/global scope, they

will have external linkage. No other definition of these identifiers with external linkage should
be present in the same translation unit. In other translation units, there can be a definition of
the same identifiers with internal linkage, but not with external linkage, else there will be mul-
tiple definition error. In the given piece of code, the identifiers var and function are redefined with
external linkage in the source file two.c. Thus, there are multiple definition errors. To rectify the
problem, either remove the definitions from the source file two.c or make their linkage internal by
using the static storage class specifier. The use of static prevents the clash of definitions made in the
source file two.c with the definitions present in the source file one.c.

59. First five terms of Fibonacci series are:
 1 1 1 1 1
 Explanation:
 Every time the program control enters a function block, the auto local variables defined (i.e. de-

fined without using static specifier) inside the block and the parameter list of the function are
created and initialized. Being local to the function block, these auto variables exist till the program
control remains inside the function block. As the program control leaves the function block, all
the auto local variables defined inside the function block are destroyed.

 In the given piece of code, when the program control enters the block of the function fib_term,
the local variables a, b and c are created and the variables a and b are initialized to 0 and 1,
respectively. After the execution of the statements c=a+b; a=b; b=c;, the value of the variables, a,
b and c will be 1, 1 and 1. This value of the variable c is returned using the return statement. As
the control leaves the function block, all the local variables i.e. a, b and c are destroyed and the
memory occupied by them is freed. The value returned by fib_term function, i.e. 1 is printed in
the function main.

 When the function fib_term is called again, the local variables a, b and c are created again. The
variables a and b are initialized again to 0 and 1, respectively. The whole process mentioned above
is repeated and the value of c is computed as 1, which is returned by the function fib_term to the
function main. Hence, every time the function fib_term is called, it returns 1.

60. First five terms of Fibonacci series are:
 1 2 3 5 8
 Explanation:
 Every time the program control enters a function block, the auto local variables defined (i.e. de-

fined without using static specifier) inside the block and the parameter list of the function are
created and initialized. The static variables defined (i.e. defined by using the storage class speci-

Chapter 7.indd 464Chapter 7.indd 464 28/02/2010 5:23:21 PM28/02/2010 5:23:21 PM

Scope, Linkage, Lifetime and Storage Classes 465

fier static specifier) inside a function block are created only once (i.e. during the first call to the
function). The auto local variables exist till the control remains inside the function body but the
static local variables exist till the program terminates. As the auto local variables are destroyed on
the return from the function, they are created and initialized every time a function is recalled. As
the static variables persist and do not get destroyed on the return from a function, these variables
are created and initialized only once (i.e. during the first call to a function). These variables retain
their values during the function calls.

 In the given piece of code, when the function fib_term is called for the first time, the variables a, b
and c are created. The variables a and b are initialized to 0 and 1, respectively. After the execution
of the statements c=a+b; a=b; b=c;, the values of the variables a, b and c will be 1, 1 and 1. This value
of variable c is returned using the return statement. As the control leaves the function block, the
auto local variable, i.e. c is destroyed and the memory occupied by it is freed. The static variables
a and b are not destroyed. The value returned by the fib_term function, i.e. 1 is printed in the main
function.

 When the function fib_term is called again, i.e. second time, the auto local variable c is created again
but the static local variables a and b already persist. Since the values, i.e. 1 and 1 already persist in
the static local variables a and b, they are not initialized now. The statements c=a+b; a=b; b=c; are ex-
ecuted and the value of variables a, b and c becomes 1, 2 and 2. The value of c, i.e. 2 is returned to
the function main and c is destroyed.

 In this manner, every time the function fib_term is called, it uses the persisting values of a and b to
compute the value of c.

61. The value of i is 5
 The value of i is 5
 The value of i is 5
 ……..Till stack does not overflow
 Explanation:
 The variable i is an auto local variable. It is defined and initialized to 5 every time the function main

is called. In the body of the function main, the value of i, i.e. 5 is printed and then it is decremented
to 4. The control expression of the if statement, i.e. i evaluates to true (as i=4) during each call to
the function main. Hence, main is called again and again and the recursion becomes infinite. This
infinite recursion will automatically terminate when there is no stack space to create any more
activation records (i.e. when the stack overflows). Note that some compilers like Borland Turbo
C 4.5 do not allow the function main to be called from any function in the program and gives a
compilation error.

62. The value of i is 5
 The value of i is 4
 The value of i is 3
 The value of i is 2
 The value of i is 1
 Explanation:
 The variable i is a static local variable. It is defined and initialized only once, i.e. during the first

invocation of the function main. The later invocations of the function main use the persisting value
of i. Therefore, in the given piece of code, during the first invocation of the function main, the
variable i is defined and initialized to 5. This value of i is printed and then it is decremented to 4.
The control expression of the if statement then evaluates to true, and the recursive call is given
to the function main.

466 Programming in C—A Practical Approach

 During this call, i.e. second call, the variable i is not defined and not initialized again. The persist-
ing value of i, i.e. 4 is used. This value of i is printed and i is decremented to 3. The control expres-
sion of the if statement evaluates to true, and the recursive call is given to the main function again.

 The above process is repeated with the persisting values of i and the above-mentioned output is
the result.

63. x=0, y=0
 x=0, y=1
 x=0, y=2
 Explanation:
 During each execution of the body of the for loop, the variable x is defined again and initialized to

0 as its storage class is auto. However, the variable y is defined and initialized only once, i.e. dur-
ing the first execution of the body of the for loop as its storage class is static. Hence, during every
execution of the body of the for loop, the value of the variable x is not preserved, but the value of
the variable y is preserved.

64. The value of i in function func is 10
 Explanation:

 Backward Reference: Refer Section 7.5.3 for a description on static storage class.

65. The value of i is 10
 Caution:
 This code may give a memory exception.
 Explanation:
 The identifier j is defined in the local scope (say outer block) of the function main. The identifier i

is defined in the further nested scope (say inner block). The identifier j is even visible inside the
inner block. In the inner block, the variable j is assigned the address of the variable i. As soon as
the program control comes out of the inner block, the variable i is destroyed and the memory
occupied by it is freed. However, the pointer j still points to the memory location where i was
stored.

 The pointer that points to an unallocated or freed memory location is known as a dangling
pointer. Hence, j is a dangling pointer. Dereferencing a dangling pointer may sometimes (less
probable) lead to memory exception. It is with high probability that the user will get the correct
result. This is due to the reason that although the memory is deallocated, the contents remain
there unless and until the location is allocated to some other object and is then modified.

66. Compilation error “Unable to convert ‘void*’ to ‘int*’”
 Explanation:
 The malloc function is used to allocate a memory block that can hold any (i.e. generic) type of data.

If successful, the malloc function returns a generic pointer (i.e. void*) to the allocated block because
it does not know what type of data will be stored in the allocated block. Depending upon the type
of data stored in the allocated memory block, this void pointer must be type casted to an appropri-
ate type. In the given piece of code, a memory block is allocated to hold the integer data, but the
void pointer is not type casted to an appropriate type before being assigned to ptr. Hence, there is
a compilation error. To rectify the code, type cast void* returned by the malloc function to int* before
assigning it to ptr.

Scope, Linkage, Lifetime and Storage Classes 467

67. The value of allocated object is 200
 Explanation:

Backward Reference: Refer the explanation given in Answer number 66.

68. If not assigned a value, the allocated object has 19073
 Explanation:
 The value of the memory space allocated by the malloc function is undetermined, i.e. garbage.

Hence, the given code prints a garbage value.

69. If not assigned a value, the allocated object has 0
 Explanation:
 The value of the memory space allocated by the calloc function is automatically initialized to

zero.

70. Memory allocation fails (if using Borland Turbo C 3.0)
 or
 Memory allocation successful (Microsoft Visual C++ 6.0)
 Explanation:
 The input argument of the malloc function is 256*256-1.
 If working with compilers that allocate 2 bytes to an integer like Turbo C 3.0, the result of the

evaluation of 256*256-1 comes out to be -1. This is due to the fact that 256*256 becomes 65536, which
exceeds the maximum value of integer data type, i.e. 32767. If a value exceeds the maximum value
of the integer data type, there is wrap-around effect. After wrap around, 65536 will be mapped
to 0 and 256*256-1 becomes -1. Hence, the value of the input argument given to the malloc function
is -1. The input to the malloc function must be greater than zero as it is not possible to allocate a
memory block of size zero or lesser than 0 bytes. Thus, the malloc function fails in the given code
and returns a NULL pointer. Since ptr is a NULL pointer, the if expression evaluates to true, and the if
body of the if-else statement gets executed and ‘Memory allocation fails’ gets printed.

 If working with compilers that allocate 4 bytes to an integer like Microsoft Visual C++ 6.0, the re-
sult of evaluation of 256*256-1 comes out to be 65535. This is due to the fact that the maximum value
of the integer data type if it is of size 4 bytes is 2147483647. Hence, there will be no wrap-around
effect. The malloc function allocates the memory block of size 65535 bytes successfully and returns
a pointer to it. Thus, ptr is not a null pointer. The expression of the if-else statement evaluates to
false, the else body gets executed and ‘Memory allocation successful’ gets printed. Note that if using Mi-
crosoft Visual C++ 6.0, include file malloc.h instead of alloc.h.

71. Memory allocation successful
 Explanation:
 Even if you are working with compilers like Turbo C 3.0, the result of the evaluation of 256*256L-1

comes out to be 65535. This is because of 256L being a long integer. The result of 256*256L comes out
to be 65536, which lies within the permissible range of long integers. Hence, no wrap around will
occur as in Answer number 70. The expression 256*256L-1 evaluates to 65535. The malloc function allo-
cates the memory block of size 65535 bytes successfully and returns a pointer to it. Thus, ptr is not a
null pointer. The expression of the if-else statement evaluates to false, the else body gets executed and
‘Memory allocation successful’ gets printed. Note that sometimes you may get an output as ‘Memory allocation
fails’. This happens when the compiler is not able to allocate such a large chunk of memory space.

468 Programming in C—A Practical Approach

72. Memory allocation fails (If working in DOS environment i.e. using Borland Turbo C 3.0 or Borland Turbo C 4.5)
 or
 Memory allocation successful (If working in Windows environment i.e. using MS VC++ 6.0)
 Explanation:
 The maximum size of the memory block that can be allocated using the malloc function depends

upon the environment in which you are working. The maximum size of memory block that can
be allocated with the help of the malloc function in DOS environment is 65535 bytes i.e. 64 KB-1. If the
memory block of size greater than 65535 bytes, is to be allocated, the function farmalloc can be used.

i Some of the latest compilers do not support the farmalloc function.

73. Hello
 HelloReaders!!
 Caution:
 The code may sometimes give memory exception.
 Explanation:
 The function malloc is used to allocate a memory block of 6 bytes. The function strcpy is used to place

the string "Hello" in the allocated memory block. The allocated memory block is big enough to success-
fully accommodate the five characters of the string “Hello” and a terminating null character. The func-
tion strcat concatenates the string “Readers!!” with the string “Hello”. Now, the memory block cannot fully
accommodate the string “HelloReaders!!”. Hence, some of the characters are written into the unallocated
memory space. This access to the unallocated memory space may sometimes lead to an exception or
abrupt program termination. However, it is highly probable that the user will get the correct result.

74. Hello
 HelloReaders!!
 Explanation:
 The function malloc is used to allocate a memory block of 6 bytes. The function strcpy is used to

place the string “Hello” in the allocated memory block. The allocated memory block is big enough
to successfully accommodate the five characters of the string “Hello” and a terminating null char-
acter, but it is not big enough to accommodate the string “HelloReaders!!”. If the string “HelloReaders!!”
is placed in the memory block of present size, some of the characters of the string will be written
into the unallocated memory space. This may lead to an abnormal behavior. Hence, the realloc
function is used to resize the memory block and to make it big enough so that it can hold the
string “HelloReaders!!”. After resizing the memory block, the string “Readers!!” is concatenated with
the string “Hello” already present in the reallocated memory block. Since the entire string is accom-
modated into the reallocated memory block, there will be no abnormal behavior.

75. The value of variable var is 200
 Explanation:
 The typedef storage class specifier is used for creating a synonym name i for the type int. After this

statement, the synonym name i can be used in the place of the type int. Hence, the initialization
statement i var=200; is equivalent to int var=200;.

76. Compilation error “Two many storage classes in declaration in function main”
 Explanation:
 Only one storage class specifier can be used in a declaration statement. In the declaration state-

ment typedef static int i;, two storage class specifiers, namely typedef and static are specified. This leads
to a compilation error.

Scope, Linkage, Lifetime and Storage Classes 469

77. The size of i and j is 2 and 2
 Explanation:
 The declaration statement cp i,j; creates two variables i and j to be of type cp. However, cp is an alias

name for the type char*. Hence, the type of both the variables i and j is char*. Thus, the size taken
by both of them is 2 and 2 (if using Borland Turbo C 3.0), 4 and 4 (if using Borland Turbo C 4.5 or
MS VC++ 6.0).

78. Strings!!
 öå¥¢¤˘Í (Garbage)
 Explanation:
 The character array str is local to the function print_string. It has automatic (i.e. local) lifetime. Mem-

ory space is allocated to str as the program control enters the function print_string and encounters
its declaration statement. It remains into existence till the program control remains within the
function. As the control comes out of the function, the character array str will be destroyed and
the memory allocated to it is freed.

 In the function print_string, the call to the puts function prints “Strings!!”. The next statement re-
turns str (i.e. the address of the first element of str) to the function main. An attempt to print the
string by the means of the returned pointer in the function main will print garbage because the
memory location to which str points has been deallocated. Hence, the printf function outputs
garbage.

79. Strings!!
 Strings!!
 Explanation:
 The character array str has been declared as static. It has static (i.e. global) lifetime. After its cre-

ation, it remains into existence till the end of the program. The attempt to print the string by the
means of the returned pointer in the function main will print “Strings!!” because the character array
str, being static, still exists although the function print_string has terminated.

80. Strings!!
 Strings!!
 Explanation:
 The character pointer str is local to the function print_string. It is stored on the stack and has au-

tomatic (i.e. local) lifetime. The character pointer str is initialized with the address of the first
element of the string literal “Strings!!”. The string literal “Strings!!” is stored in the data segment
and has static (i.e. global) lifetime. After its creation, it will remain into existence till the pro-
gram terminates.

 In the function print_string, the call to the puts function prints “Strings!!”. The next statement returns
str (i.e. the address of the first element of str) to the function main. As the program control returns
to the function main, the character pointer str is destroyed but the memory location whose address
has been returned to the function main still exists as it has static lifetime. Thus, an attempt to print
the string by the means of the returned pointer in the function main will print “Strings!!”.

Answers to Multiple-choice Questions
81. c 82. a 83. b 84. a 85. a 86. b 87. a 88. c 89. a 90. a 91. a 92. c 93. b
94. b 95. c 96. c 97. a 98. a 99. a 100. b 101. a   102. b 103. a 104. b 105. a

470 Programming in C—A Practical Approach

Programming Exercises

Program 1 | An instructor of a computing course wants to store and find the average of marks of all the
students appearing in an examination. As he or she does not know how many students will appear on the
examination day, he or she does not want to create a static array and waste the memory space. Solve his
or her problem by creating a dynamic array, storing the marks of the students and finding the average

Line PE 7-1.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28

//Dynamic Array
#include<stdio.h>
#include<alloc.h>
#include<stdlib.h>
main()
{
 int *array, num, i, sum=0;
 float avg;
 printf(“How many students have appeared in the examination?\t”);
 scanf(“%d”,&num);
 array=(int*)malloc(num*sizeof(int));
 if(array==NULL)
 {
 printf(“Memory allocation failed. Program cannot proceed\n”);
 exit(1);
 }
 else
 {
 printf(“Enter the marks of %d students:\n”,num);
 for(i=0;i<num;i++)
 scanf(“%d”,(array+i));
 for(i=0;i<num;i++)
 sum+=*(array+i);
 avg=(float)sum/num;
 printf(“Sum of marks of all the students is %d\n”,sum);
 printf(“Average of marks secured are %f”,avg);
 }
}

How many students have appeared in the examination? 5
Enter the marks of 5 students:
12
14
21
16
8
Sum of marks of all the students is 71
Average of marks secured are 14.200000

Program 2 | Two matrices are to be multiplied but their size is not known in advance. The size and the
elements of the matrices will be entered by the user at the run time. Making use of dynamic memory al-
location, create the matrices and find the result of their multiplication

Line PE 7-2.c Output window

1
2
3
4
5
6
7

//Dynamic two-dimensional array
#include<stdio.h>
#include<alloc.h>
#include<stdlib.h>
main()
{
 int *mat1, *mat2, *resultant;

Enter the order of first matrix:
2 3
Enter the order of second matrix:
3 3
Enter the elements of first 2*3 matrix:
1 2 3
4 5 6

(Contd...)

Scope, Linkage, Lifetime and Storage Classes 471

8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

 int rows1, cols1, rows2, cols2, i, j, k;
 printf(“Enter the order of first matrix:\n”);
 scanf(“%d %d”, &rows1, &cols1);
 printf(“Enter the order of second matrix:\n”);
 scanf(“%d %d”, &rows2, &cols2);
 if(cols1!=rows2)
 {
 printf(“Matrix multiplication is not compatible\n”);
 exit(1);
 }
 else
 {
 mat1=(int*)malloc(rows1*cols1*sizeof(int));
 mat2=(int*)malloc(rows2*cols2*sizeof(int));
 resultant=(int*)calloc(rows1, cols2*sizeof(int));
 if(mat1==NULL||mat2==NULL||resultant==NULL)
 {
 printf(“There is some problem in memory allocation\n”);
 exit(1);
 }
 else
 {
 printf(“Enter the elements of first %d*%d matrix:\n”, rows1, cols1);
 for(i=0; i<rows1; i++)
 {
 for(j=0; j<cols1; j++)
 scanf(“%d”,&mat1[i*cols1+j]);
 printf(“\n”);
 }
 printf(“Enter the elements of second %d*%d matrix:\n”, rows2, cols2);
 for(i=0; i<rows2; i++)
 {
 for(j=0; j<cols2; j++)
 scanf(“%d”,&mat2[i*cols2+j]);
 printf(“\n”);
 }
 for(i=0; i<rows1; i++)
 for(j=0;j<cols2;j++)
 for(k=0;k<cols1;k++)
 resultant[i*cols2+j]+=mat1[i*cols1+k] * mat2[k*cols2+j];
 printf(“The result of matrix multiplication is:\n”);
 for(i=0; i<rows1; i++)
 {
 for(j=0; j<cols2; j++)
 printf(“%d “,resultant[i*cols2+j]);
 printf(“\n”);
 }
 free(mat1); free(mat2); free(resultant);
 }
 }
}

Enter the element of second 3*3 matrix:
2 3 4
1 2 3
1 1 0
The result of matrix multiplication is:
7 10 10
19 28 31

472 Programming in C—A Practical Approach

Program 3 | Making the use of recursion and static variables, print the first n terms of Fibonacci series

Line PE 7-3.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

//Fibonacci Series
#include<stdio.h>
#include<conio.h>
int fib(int num);
main()
{
 int terms;
 printf(“Enter the number of terms that you want to print:\t”);
 scanf(“%d”,&terms);
 printf(“%d terms of Fibonacci series are:\n”);
 fib(terms);
}
fib(int num)
{
 static int a=0;
 static int b=1;
 static int i=0;
 static int c;
 if(i==0)
 {
 printf(“%d “,a);
 i++;
 }
 if(i==1)
 {
 printf(“%d “,b);
 i++;
 }
 if(i<num)
 {
 c=a+b;
 a=b;
 b=c;
 printf(“%d “,c);
 i++;
 fib(num);
 }
}

Enter the number of terms that you want to print: 10
10 terms of Fibonacci series are:
0 1 1 2 3 5 8 13 21 34

Program 4 | Making use of recursion and static variables, print the sum of the first n natural numbers

Line PE 7-4.c Output window

 1
2
3
4
5
6
7

//Sum of first n natural numbers
#include<stdio.h>
#include<conio.h>
int sum(int);
int main()
{
int num;

Enter the number of natural numbers that you want to sum up: 10
The sum of 10 natural numbers is 55

(Contd...)

Scope, Linkage, Lifetime and Storage Classes 473

8
9

10
11
12
13
14
15
16
17
18
19

20
21
22

printf(“Enter the number of natural number that you want to sum up:\t”);
scanf(“%d”,&num);
printf(“The sum of first %d natural numbers is %d”, num, sum(num));

}
int sum(int num)
{
 static int i=1;
 static int result=0;
 result=result+i;
 i++;
 if(i<=num)
 sum(num);
 return result;
}

Program 5 | Two strings are entered by the user. Dynamically create an array that holds the result of
concatenation of the entered strings

Line PE 7-5.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

//String concatenation
#include<stdio.h>
#include<alloc.h>
#include<string.h>
int main()
{
 char str1[50], str2[50], *resultant;
 int length1, length2;
 printf(“Enter first string:\t”);
 gets(str1);
 printf(“Enter second string:\t”);
 gets(str2);
 length1=strlen(str1);
 length2=strlen(str2);
 resultant=(char*)malloc(length1+length2+1*sizeof(char));
 strcpy(resultant, str1);
 strcat(resultant, str2);
 printf(“Concatenated string is %s”, resultant);
}

Enter first string: Hello
Enter second string: Readers
Concatenated string is HelloReaders

474 Programming in C—A Practical Approach

Test Yourself
1. Fill in the blanks in each of the following:

a. The region of the program within which an identifier is visible is determined by its
____________.

b. ____________ is the only kind of identifier that always has function scope.
c. The keyword ____________ provides a method for declaring an identifier without defining

it.
d. One definition rule states that __.
e. The principle of shadowing states that __.
f. ____________ is a process by which a name used in an expression is associated with a decla-

ration.
g. All the global variables and functions by default have ____________ linkage.
h. The linkage of an identifier can be made internal by using ____________ storage class speci-

fier in the declaration statement.
i. All the identifiers with block scope or function prototype scope by default have ____________

linkage.
j. Function can have ____________ or ____________ linkage but cannot have ____________

linkage.
k. The portion of program execution during which the memory space of an object is guaranteed

to be reserved is known as ____________.
l. Objects with ____________ lifetime are allocated new storage each time the execution control

enters the block in which their associated identifiers are defined.
m. The allocation of memory space made at the run time is known as ____________.
n. An object with block scope by default has ____________ storage class.
o. ____________ storage class specifier is used to create a synonym for a known type.

2. State whether each of the following is true or false. If false, explain why.
a. The scope of an identifier is determined by the position of its declaration.
b. Function scope terminates with the end of function declaration.
c. It is possible to define an identifier with a same name and type more than once in the same

scope.
d. It is possible to define an identifier with a same name more than once, if the definitions lie in

different scopes.
e. It is possible to declare identifiers with a same name but different types in different

scopes.
f. At most one storage class specifier can be specified in a declaration statement.
g. The variables declared with auto storage class specification are implicitly initialized.
h. It is not possible to specify an auto storage class specifier in the declarations that are made in

the global scope.
i. It is not possible to apply address-of operator to an identifier declared with register storage

class specifier.
j. The variables declared with static storage class specification are implicitly initialized to

zero.
k. The values of auto variables persist between the function calls.
l. size_t is a type.
m. The value of the memory space allocated by using the malloc function is implicitly initialized

to zero.
n. Careless allocation of memory at the compile time leads to memory leak.

Chapter 7.indd 474Chapter 7.indd 474 28/02/2010 5:23:22 PM28/02/2010 5:23:22 PM

Scope, Linkage, Lifetime and Storage Classes 475

3. Programming exercises:

a. Two matrices are to be added but their size is not known in advance. The size and the ele-
ments of the matrices will be entered by the user at the run time. Write a C program that
makes the use of dynamic memory allocation to create the matrices and find the result of
their addition.

b. Write a C program that makes use of dynamic memory allocation to create and store a matrix
and find its inverse.

c. Write a C program that makes use of a recursive function and static variables to find the facto-
rial of a given number.

d. Write a C program that dynamically creates two string arrays to hold strings entered by the
user. Concatenate the strings and store the resulting string in the first array. Resize the first
array using realloc.

THE C PREPROCESSOR

8

Learning Objectives

In this chapter, you will learn about:

Translators and their classification
Phases of translation
Trigraph replacement, line splicing and tokenization
Macros and its types
Token replacement and token pasting
Predefined macros
Source file inclusion and line control directive
error directive
pragma directive
Null directive

478 Programming in C—A Practical Approach

8.1 Introduction
In the previous chapters, you have developed several programs using C language, which is
a high-level language. However, you will be surprised to know that the computer (i.e. the
machine) cannot understand high-level languages. It can only understand machine-level
languages, which are in the form of 1’s and 0’s. Humans do not want to write programs in
machine-level languages because they are difficult to read and modify, more error prone and
difficult to debug. Therefore, translators, which convert a high-level language program into
an equivalent machine-level language program, are used to enable humans to write programs
in high-level languages and at the same time make it possible to execute them on machines.
The concept of translators can be understood by looking at the story board given below:

You should also know that compiler is not the only translator that works before the execu-
tion of a program. The preprocessor is another translator that works and processes the source
code before it is given to the compiler. It operates under the control of commands known
as preprocessor directives. In this chapter, I will tell you how the preprocessor directives
are written, various preprocessor directives and the precautions one must take while using
them.

8.2 Translators
A translator is a program that takes a program written in a language called the source lan-
guage as an input and converts it into an equivalent program in another language called the
target language. Translators are classified according to the classes of their source and target
languages. The classification of translators according to the classes of their source and target
languages is shown in Table 8.1.

The C Preprocessor 479

Table 8.1 | Classification of translators according to their source and target languages

S.No Source language Input

Name of Translator Output

Target language

1. High-level language Preprocessor High-level language
2. High-level language Compiler Low-level language (i.e. assembly-level

language or machine-level language)
3. Assembly-level language Assembler Machine-level language
4. High-level language Interpreter Machine-level language

The preprocessor is a translator that converts a program written in one high-level language
into an equivalent program written in another high-level language. For example, a prepro-
cessor converts the code written in C into an equivalent program in simplified C language.
The compiler converts a program written in a high-level language into an equivalent pro-
gram either in an assembly-level language or a machine-level language. If the output of the
compiler is an assembly language program, an assembler is required to further convert it
into the machine code. An interpreter is a translator that converts the statements written in
a high-level language program into equivalent statements in a machine-level language one
by one on the fly.

8.3 Phases of Translation
The conversion of a source program file into an executable file is done in eight conceptual
steps known as phases of translation. The eight phases of translation are:

1. Trigraph sequences are replaced by their single character equivalents. This phase is car-
ried out by the preprocessor and is called trigraph replacement.

2. Each instance of a backslash character (i.e. \) immediately followed by a new-line char-
acter is deleted by the preprocessor. This process is known as line splicing.

Backward Reference: Refer Question numbers 38 and 39 (Chapter 1) and their answers for
examples on line splicing.

3. The source file is decomposed into preprocessing tokens and a sequence of white-space
characters. Each comment is replaced by a single-space character and new-line charac-
ters are retained. Whether a sequence of white-space characters other than a new-line
character is to be replaced by a single-space character or not is implementation defined.
This phase is carried out by the preprocessor and is called tokenization.

4. The preprocessor directives are executed and macros are expanded. This is known as
directive handling and macro expansion. After their execution, all the preprocessor
directives are then deleted.

5. Escape sequences in character constants and string literals are converted to their char-
acter equivalents.

6. Adjacent string literals are concatenated.
7. Each preprocessing token is converted into a token. White-space characters separating

tokens are no longer significant and are removed. The resulting tokens are syntactically
and semantically analyzed and translated into an object code by the compiler.

Chapter 8.indd 479Chapter 8.indd 479 28/02/2010 4:15:55 PM28/02/2010 4:15:55 PM

480 Programming in C—A Practical Approach

8. All external object and function references are resolved. All the required libraries are
linked together to satisfy an external reference not defined in the current program. This
phase is carried out by the linker, and the output of this phase is an executable file ready
for the execution.

The first four phases of translation need an explicit description and are described in the follow-
ing sections in detail. The working of the rest of the phases is clear from the above-mentioned
text and will be clearer in the further course of discussion.

8.3.1 Trigraph Replacement
A character set defines the valid characters that can be used in a source program or interpreted
when a program is running. The set of characters that can be used to write a source program is
called a source character set, and the set of characters available when the program is executing
is called an execution character set. It is possible that the source character set is different from
the execution character set.

There are a number of character sets that exist. For example, ISO 646, ASCII, EBCDIC,
ISO8859, ISO8859-1, ISO8859-2,…, ISO8859-16, etc. A character that exists in one character set
might not exist in some other character set.

To write C programs using character sets that do not contain all of C’s punctuation charac-
ters, ANSI allows the use of nine trigraph sequences in the source file. A trigraph sequence is a
sequence of three characters, the first two of which are question marks and the third character
should belong to the given set of characters {=, (, /,), ‘, <, !, >, -}. Trigraph sequences are replaced
by their corresponding character equivalents during the first phase of translation (i.e. trigraph
replacement). Table 8.2 lists the valid trigraph sequences and their character equivalents.

Table 8.2 | Trigraph sequences and their character equivalents

S.No Trigraph sequence Character equivalent

1. ??= #

2. ??([

3. ?? / \

4. ??)]

5. ??’ ^

6. ??< {

7. ??! |

8. ??> }

9. ??- ~

No other trigraph sequence is recognized. A question mark (?) that does not begin the above-
mentioned trigraph sequences remains unchanged during the translation.

Some compilers support an option to turn the recognition of trigraphs off or disable the
trigraphs by default, and they require an option to turn them on. Some issue warning mes-
sages when they encounter trigraph sequences in the source files. Borland supplies a separate
trigraph processor (TRIGRAPH.EXE) with Turbo C 3.0 and 4.5. This file is present in the BIN
folder of the Turbo C installation and is only used when the trigraph processing is desired.

The C Preprocessor 481

The objective behind supplying a separate trigraph processor is to maximize the speed of
compilation.

8.3.2 Line Splicing
During the preprocessing stage, each instance of a backslash character (i.e. \) immediately fol-
lowed by a new-line character is deleted. This process is known as splicing. Physical source
lines present in the source program are spliced to form logical source lines. Only the last back-
slash on any physical source line is eligible for being a part of such a splice. Consider Figure
8.1.

Hello World

Line splicing After execution

Physical source lines of
code (Column 1)

Logical source lines of
code (Column 2)

Output
(Column 3)

main()
{
printf(“Hello World\
“):
}

main()
{
printf(“Hello World”):
}

Figure 8.1 | Line splicing

Column 1 contains the physical source lines of the code. After the preprocessing stage, the
physical source lines are spliced to form logical source lines of the code, as mentioned in
column 2 in Figure 8.1. Logical source lines are processed by the compiler during phase 7 of
translation. The output produced on the execution of the logical source lines of the code listed
in column 2 is shown in column 3 in Figure 8.1.

8.3.3 Tokenization
A preprocessing token is the smallest indivisible element of C language in the translation
phases from 3 to 6. The categories of the preprocessing tokens are: header names, identifi-
ers, preprocessing numbers, character constants, string literals, punctuators and a single non-
white-space character. A token is the smallest indivisible element of C language in the trans-
lation phases 7 and 8. The categories of tokens are: keywords, identifiers, constants, string
literals and punctuators (i.e. operators, separators or terminator). For example, the operator
+= is one token.

C’s tokenizer is greedy in nature. It always tries to create the biggest possible token. If
an input stream of characters has been parsed into tokens up to a given character, the next
token is the longest sequence of the characters that could constitute a token. For example, the
program fragment x+++++y is parsed as x ++ ++ + y, which violates a constraint on the increment
operator and leads to a compilation error. If the tokenizer would have been intelligent instead
of being greedy and parses the mentioned fragment as x ++ + ++ y, it would have been a valid
expression.

Backward Reference: Refer Question number 28 (Chapter 2) and its answer to see the greedy
nature of C’s tokenizer.

482 Programming in C—A Practical Approach

8.3.4 Preprocessor Directive Handling
The preprocessor is controlled by directives known as preprocessor directives, which are not
a part of C language. A preprocessor directive consists of various preprocessing tokens and
begins with a # (pound) symbol. The important points for writing a preprocessor directive are
as follows:

The pound symbol (1. #) should either be the first character in a source file or the first non-
white-space character in a line.
A new-line character ends the preprocessor directive.2.
The white-space characters that can appear between the preprocessing tokens within a 3.
preprocessing directive are a single-space character or a horizontal tab-space character
(i.e. white-space characters like new-line, vertical tab and form feed are not allowed).
The preprocessor directives can appear anywhere in a program but are generally placed 4.
at the beginning of a program before the function main or before the beginning of a par-
ticular function.

Table 8.3 illustrates the application of the rules mentioned above for writing an include directive.

Table 8.3 | Rules for writing the preprocessor directives

S.No Preprocessor directive Valid or invalid?

1. #include<stdio.h> Valid, pound symbol is the first character in the
source file

2. #include <stdio.h> Valid, white-space characters (only space and hori-
zontal tab) can appear within a preprocessor direc-
tive

3. #include<conio.h> Valid, pound symbol is the first non-white-space
character in a line

4. a#include<string.h> Invalid, as pound symbol is not the first non-
white-space character in a line

5. #include<math.h> #include<stdarg.h> Invalid, as the first preprocessor directive is not
terminated with a new-line character and the sec-
ond preprocessor directive’s pound symbol is not
the first non-white-space character

6. #include
<dos.h>

Invalid, as a white-space character between pre-
processing tokens within a preprocessing directive
cannot be a new-line character

The various preprocessor directives available in C language are as follows:

Macro replacement directive (1. #define, #undef)
Source file inclusion directive (2. #include)
Line directive (3. #line)
Error directive (4. #error)
Pragma directive (5. #pragma)
Conditional compilation directives (6. #if, #else, #elif, #endif, #ifdef, #ifndef)
Null directive (7. # new-line)

Chapter 8.indd 482Chapter 8.indd 482 28/02/2010 4:15:55 PM28/02/2010 4:15:55 PM

The C Preprocessor 483

8.3.4.1 Macro Replacement Directives
A macro is a facility provided by the C preprocessor, by which a token can be replaced by the
user-defined sequence of characters. Macros are defined with the help of the define directive.
The identifier name immediately following the define directive is called the macro name. Macro
names are generally written in upper case.

8.3.4.1.1 Types of Macro
There are two types of macros:

Macro without arguments, also called 1. object-like macros.
Macro with arguments, also called 2. function-like macros.

8.3.4.1.1.1 Object-like Macros
An object-like macro is also known as a symbolic constant. It is defined as:

#defi ne macro-name replacement-list

The important points about object-like macros are as follows:
The 1. define directive causes each subsequent instance of the macro name to be replaced by
the replacement list of preprocessing tokens present in the definition of the macro.
The replacement list can even be empty. 2.
The object-like macro name must be a preprocessing identifier. During the translation 3.
phases 3 to 6, keywords are not recognized separately and are treated as identifiers.
Hence, they can also be used as a macro name, e.g. the following object-like macro defi-
nition is perfectly valid:

#defi ne int char

Forward Reference: Refer Question numbers 44 and 45 and their answers for the appropriate
usage of a macro name.

There shall be a white-space character (blank-space character or horizontal tab space 4.
character) between the macro name and the replacement list in the definition of an
object-like macro.

The piece of code in Program 8-1 illustrates the use of an object-like macro.

Line Prog 8-1.c After the preprocessing stage Output window

 1
 2
3
4
5
6
7
8

//Object-like macro
#include<stdio.h>
#define PI 3.142
main()
{
int rad=5;
printf(“Area of circle is %f”,PI*rad*rad);
}

//The content of the header file stdio.h
//replaces the include directive and is
//placed here
main()
{
int rad=5;
printf(“Area of circle is %f”,3.142*rad*rad);
}

Area of circle is 78.550000
Remarks:
•  PI is an object-like macro
•  During the preprocess-

ing stage, each subse-
quent instance of PI is
replaced by its replace-
ment list (i.e. 3.142)

Program 8-1 | A program that illustrates the definition and the use of an object-like macro

484 Programming in C—A Practical Approach

8.3.4.1.1.2 Function-like Macros
A macro with arguments is called a function-like macro. Its usage is syntactically similar to a
function call and it can be defi ned as:

#defi ne macro-name(parameter-list) replacement-list

The piece of code in Program 8-2 illustrates the use of a function-like macro.

Line Prog 8-2.c After the preprocessing stage Output window

 1
 2
3
4
5
6
7
8

//Function-like macro
#include<stdio.h>
#define SQR(x) (x*x)
main()
{
int side=5;
printf(“Area of square is %d”,SQR(side));
}

//The content of the header file stdio.h
//replaces the include directive and is
//placed here
main()
{
int side=5;
printf(“Area of square is %d”,(side*side));
}

Area of square is 25
Remarks:
•  Each time a function-like

macro name is encoun-
tered, the macro name is
replaced by the replace-
ment list

•  The parameters present
in the replacement list
of macro definition are
replaced by the actual
arguments present in the
macro invocation

Program 8-2 | A program that illustrates the definition and the use of a function-like macro

i The white-space characters preceding or following the replacement list are not consid-
ered as a part of the replacement list for either form of macro (i.e. object-like or function-
like).

During the preprocessing stage, the macro names are expanded and are replaced by their re-
placement lists. This process is known as macro expansion. Macro expansion is purely textual.
If proper care is not taken while defining macros, they might lead to unexpected results.

8.3.4.1.2 Common Macro Pitfalls
Macros can create problems if they are not defined and used carefully. The common macro
pitfalls are described in subsequent sections.

8.3.4.1.2.1 Magical White Space
1. There should be a white-space character (blank-space character or horizontal tab-space

character) between the macro name and the replacement list in the definition of an
object-like macro. The piece of code in Program 8-3 illustrates the effect of the violation
of the above-mentioned rule.

Line Prog 8-3.c Output window

 1
 2
3
4

//Magical white-space character
#include<stdio.h>
#define PI=3.1428
main()

Compilation error “Expression syntax in function main”
Remarks:
•  The code is not working due to the erroneous definition of

the object-like macro PI

(Contd...)

The C Preprocessor 485

5
6
7

{
printf(“The value of constant PI is %f”,PI);
}

•  There should be a white-space character between the mac-
ro name and the replacement list in the definition of an
object-like macro instead of the character ‘=’

What to do?
•  Rectify the macro definition as #define PI 3.1428

Program 8-3 | A program that illustrates the significance of a white-space character between the macro
name and its replacement list

2. There should be no white-space character between the macro name and the left paren-
thesis of parameter list in the definition of a function-like macro. The piece of code in
Program 8-4 illustrates the effect of the violation of the above-mentioned rule.

Line Prog 8-4.c Output window

 1
 2
3
4
5
6
7

//Magical white-space character
#include<stdio.h>
#define CUBE (x) x*x*x
main()
{
printf(“Cube of 5 is %d”,CUBE(5));
}

Compilation error “Undefined symbol x in function main”
Remarks:
•  Due to a white-space character between the macro name

CUBE and the left parenthesis of the parameter list in the
macro definition, CUBE will be treated as an object-like mac-
ro and not as a function-like macro

•  After the macro expansion, the expression CUBE(5) will be-
come (x) x*x*x(5)

•  The preprocessed code on compilation gives the specified
error

What to do?
•  Remove the white-space character between the macro

name and the left parenthesis in the macro definition. Re-
execute the code and check the result

Program 8-4 | A program illustrating that there should be no white-space character between the macro name
and the left parenthesis of the parameter list

8.3.4.1.2.2 Operator Precedence Problems

1. In the definition of a macro, the replacement list must always be parenthesized to pro-
tect any lower precedence operator in it from a higher precedence operator in the sur-
rounding expression. The piece of code in Program 8-5 illustrates the effect of the viola-
tion of the above-mentioned rule.

Line Prog 8-5.c Output window

1
 2
3
4
5
6
7
8

//Operator precedence problem-I
#include<stdio.h>
#define DOUBLE(x) x+x
main()
{
int result, x;
printf(“Enter the value of x\t”);
scanf(“%d”,&x);

Enter the value of x 3
Value of result is 18
Expected result:
Value of result is 30
Remarks:
•  Macro expansion is purely textual
•  Macros are expanded during the preprocessing stage be-

fore the compilation stage

(Contd...)

486 Programming in C—A Practical Approach

Line Prog 8-5.c Output window

9
10
11

result=5*DOUBLE(x);
printf(“Value of result is %d”,result);
}

•  Thus, after the preprocessing stage, the expression
result=5*DOUBLE(x) becomes result=5*x+x

•  Since the multiplication operator has a higher precedence
than the addition operator, it will operate first

•  Thus, the result of the expression comes out to be 18 in-
stead of 30

What to do?
•  Parenthesize the replacement list to protect the lower pre-

cedence operator (i.e. addition operator) in it from the sur-
rounding higher precedence operator (i.e. multiplication
operator)

•  Re-define the macro as: #define DOUBLE(x) (x+x) and re-execute
the code

Program 8-5 | A program that illustrates an operator precedence pitfall in the macro definition

2. In the definition of a function-like macro, all the occurrences of parameters in the re-
placement list must be parenthesized to protect any low precedence operator in the
actual arguments from the rest of the macro expansion. The piece of code in Program
8-6 illustrates the effect of the violation of the above-mentioned rule.

Line Prog 8-6.c Output window

 1
 2
3
4
5
6
7
8
9

//Operator precedence problem-II
#include<stdio.h>
#define SQR(x) (x*x)
main()
{
int val=2, result;
result=SQR(val+1);
printf(“Result is %d”,result);
}

Result is 5
Expected result:
Result is 9
Remarks:
•  After the preprocessing stage, the expression result=SQR(val+1)

becomes result=val+1*val+1 (i.e. result=2+1*2+1)
•  Since the multiplication operator has a higher precedence

than the addition operator, it will get evaluated first. Thus,
the expression evaluates to 5

•  Since the lower precedence operators in the actual argu-
ments are not protected from the rest of the macro expan-
sion, the program gives an unexpected result

What to do?
•  Parenthesize all the parameters in the replacement list
•  Redefine the macro as: #define SQR(x) ((x)*(x)) and re-execute

the code

Program 8-6 | A program that illustrates an operator precedence pitfall in the macro definition

8.3.4.1.2.3 Arguments with a Side-effect
1. While calling a function-like macro, the argument should not be an expression with a

side-effect.

A side-effect is a modification of a data object or a file. Modifying an object, modifying a file or
calling a function that does any of these operations are all side-effects. The evaluation of an ex-
pression may also produce side-effects. For example, the evaluation of the expression result=value++
has side-effects as it modifies the data objects, namely result and value. The assignment operator,

(Contd...)

The C Preprocessor 487

increment operator and decrement operator have side-effects. The side-effects of evaluations
should be complete at certain specified points in the execution sequence known as sequence
points.
A sequence point is a point in the program execution sequence at which all the side-effects
of the previous evaluations are complete and no side-effects of subsequent evaluations have
taken place. The semicolon marks a sequence point, i.e. all the changes made by assignment
operators, increment operators and decrement operators in a statement must take place be-
fore the program control proceeds to the next statement.

The piece of code in Program 8-7 illustrates the call to a function-like macro whose argument
is an expression with a side-effect.

Line Prog 8-7.c Output window

 1
 2
3
4
5
6
7
8
9

//Arguments with side-effect
#include<stdio.h>
#define SQR(x) (x*x)
main()
{
int val=2, result;
result=SQR(++val);
printf(“Result is %d”,result);
}

Result is 16
Expected result:
Result is 9
Remarks:
•  Function-like macro call text replaces all the

occurrences of the parameters in the replace-
ment list with the actual arguments. The ac-
tual arguments are not evaluated before be-
ing replaced

•  Thus, after the preprocessing stage, the expres-
sion result=SQR(++val) becomes result=++val*++val
and evaluates to 16

•  If SQR would have been defined as a function,
the result would have been 9 because in a
function call the actual arguments are evalu-
ated before being passed to the function

What to do?
•  Eliminate the side effect from the argument of

SQR and write the statement in line number 6 as:
++val;
result=SQR(val);

Program 8-7 | A program to illustrate that an argument to a function-like macro should not be an expression
with a side-effect

8.3.4.1.2.4 Undesirable Semicolon
1. Avoid the use of a semicolon in and at the end of a macro definition. The code snippet in

Program 8-8 illustrates the effect of the presence of a semicolon in a macro definition.

Line Prog 8-8.c Output window

1
 2
3
4
5
6

//Effect of the use of a semicolon in the macro definition
#include<stdio.h>
#define SWAP(a,b) a=a+b; b=a-b; a=a-b
main()
{
int a=20, b=10;

Compilation error “Misplaced else in function main”
Remarks:
•  During the preprocessing stage, the macro

SWAP is expanded and is replaced by multiple
statements (i.e. a=a+b; b=a-b; a=a-b;)

(Contd...)

488 Programming in C—A Practical Approach

Line Prog 8-8.c Output window

7
8
9

10
11
12
13

printf(“Swap the values of a and b only if a is greater\n”);
if(a>b)
 SWAP(a,b);
else
 printf(“Values are not swapped\n”);
printf(“Resultant values of a and b are %d %d”,a,b);
}

•  Only the first statement (i.e. a=a+b;) forms the if
body. The other two statements will be consid-
ered as the statements next to the if statement

•  The else clause remains unmatched and leads
to “Misplaced else error”

•  It is recommended to use commas instead of
using semicolons in the macro definition

What to do?
•  Redefine the macro as:
  #define SWAP(a,b) a=a+b, b=a-b, a=a-b

Program 8-8 | A program that illustrates the effect of the use of a semicolon in a macro definition

The code snippet in Program 8-9 illustrates the effect of the presence of a semicolon at the end
of a macro definition.

Line Prog 8-9.c Output window

 1
 2
3
4
5
6
7
8
9

10
11

//Effect of the use of semicolon at the end of macro definition
#include<stdio.h>
#define CUBE(x) ((x)*(x)*(x));
main()
{
int a=2, b=8;
if(CUBE(a)==b)
 printf(“Cube of a is equal to b\n”);
else
 printf(“Cube of a is not equal to b\n”);
}

Compilation error
Remark:
•  The semicolon at the end of the macro definition

after the macro expansion forms an ill-formed
expression and leads to a compilation error

What to do?
•  Remove the semicolon present at the end of

the macro definition
•  Re-execute the code and check the result

Program 8-9 | A program that illustrates the effect of the use of a semicolon at the end of a macro definition

8.3.4.1.3 Stringification/Token Replacement
In a function-like macro definition, if the replacement list consists of a parameter immediately pre-
ceded by a ‘#’ preprocessing token, then during the preprocessing stage, the preprocessor replaces
both the ‘#’ preprocessing token and the parameter with a single character string literal (which
contains the spelling of the argument corresponding to the parameter). Since # and parameter are
replaced by a single character string literal, it is known as token replacement. In addition, as #
preprocessing token converts the argument corresponding to a parameter into a string literal, # is
known as stringizing operator and the operation is known as stringification. The code snippets
in Programs 8-10 and 8-11 illustrate the use of a stringizing operator.

Line Prog 8-10.c After the preprocessing stage Output window

 1
 2
3
4
5
6
7

//Token replacement or stringification
#include<stdio.h>
#define STR(x) #x
main()
{
printf(STR(Token replacement));
}

//The content of the header file stdio.h
//replaces the include directive and is
//placed here
main()
{
printf(“Token replacement”);
}

Token replacement

Program 8-10 | A program that illustrates the use of a stringizing operator

The C Preprocessor 489

Line Prog 8-11.c After the preprocessing stage Output window

 1
 2
3
4
5
6
7
8

//Token replacement or stringification
#include<stdio.h>
#define STR(x) #x
main()
{
char str[20]=STR(Token replacement);
puts(str);
}

//The content of the header file stdio.h
//replaces the include directive and is
//placed here
main()
{
char str[20]=”Token replacement”;
puts(str);
}

Token replacement

Program 8-11 | A program that illustrates the use of a stringizing operator

The important points about token replacement are as follows:
1. White-space characters between the argument’s preprocessing tokens become a single-

space character in the replaced character string literal constant. The piece of code in
Program 8-12 illustrates this fact.

Line Prog 8-12.c After the preprocessing stage Output window

 1
 2
3
4
5
6
7
8

//Token replacement or stringification
#include<stdio.h>
#define STR(x) #x
main()
{
char str[20]=STR(Token replacement);
puts(str);
}

//The content of the header file stdio.h
//replaces the include directive and is
//placed here
main()
{
char str[20]=”Token replacement”;
puts(str);
}

Token replacement

Program 8-12 | A program illustrating that during stringification, white-space characters between the argu-
ment’s preprocessing token are replaced by a single-space character

2. White-space characters before the first preprocessing token and after the last prepro-
cessing token composing the macro’s argument are deleted. The piece of code in Pro-
gram 8-13 illustrates this fact.

Line Prog 8-13.c After the preprocessing stage Output window

 1
 2
3
4
5
6
7
8

//Token replacement or stringification
#include<stdio.h>
#define STR(x) #x
main()
{
char str[20]=STR(Token replacement);
puts(str);
}

//The content of the header file stdio.h
//replaces the include directive and is
//placed here
main()
{
char str[20]=”Token replacement”;
puts(str);
}

Token replacement

Program 8-13 | A program illustrating that during stringification, white-space characters at the start and at
the end of an argument’s preprocessing token are deleted

3. The original spelling of each preprocessing token in the argument is retained in the
character string literal constant, except a ‘\’ character is inserted before each ‘”’ and ‘\’
character. The piece of code in Program 8-14 illustrates this fact.

490 Programming in C—A Practical Approach

Line Prog 8-14.c After the preprocessing stage Output window

1
2
3
4
5
6
7
8

//Token replacement or stringification
#include<stdio.h>
#define STR(x) #x
main()
{
char str[30]=STR(White “space” character);
puts(str);
}

//The content of the header file stdio.h
//replaces the include directive and is
//placed here
main()
{
char str[30]=”White \”space\” character”;
puts(str);
}

White “space” character

Program 8-14 | A program that illustrates the insertion of ‘\’ character during stringification

8.3.4.1.4 Concatenation/Token Pasting
In an object-like macro definition, if in the replacement list, a ## preprocessing token appears between
two tokens, both the tokens are pasted to form one token. In a function-like macro definition, if in the
replacement list, a ## preprocessing token appears between two parameters, the parameters will be
replaced by the corresponding arguments, and the arguments will be glued and pasted to form one
token. Since, two tokens are pasted (or concatenated) to create one token, it is known as token past-
ing or token concatenation or just concatenation, and the operator ## is known as the concatenation
operator. The code snippets in Program 8-15 illustrate token pasting in an object-like macro.

Line Prog 8-15.c After the preprocessing stage Output window

1
2
3
4
5
6
7
8

//Token pasting in an object-like macro
#include<stdio.h>
#define var x##y
main()
{
int var=10;
printf(“Value of xy is %d”,xy);
}

//The content of the header file stdio.h
//replaces the include directive and is
//placed here
main()
{
int xy=10;
printf(“Value of xy is %d”,xy);
}

Value of xy is 10

Program 8-15 | A program that illustrates token pasting in an object-like macro

The code snippets in Program 8-16 illustrate token pasting in a function-like macro.

Line Prog 8-16.c After the preprocessing stage Output window

1
2
3
4
5
6
7
8

//Token pasting in a function-like macro
#include<stdio.h>
#define PASTE(x,y) x##y
main()
{
int PASTE(var,1)=10;
printf(“Value of var1 is %d”,var1);
}

//The content of the header file stdio.h
//replaces the include directive and is
//placed here
main()
{
int var1=10;
printf(“Value of var1 is %d”,var1);
}

Value of var1 is 10

Program 8-16 | A program that illustrates token pasting in a function-like macro

The following points must be remembered while using token pasting:
1. A ## preprocessing token shall not occur at the beginning or at the end of the replacement

list for either form of the macro definition (i.e. object-like macro or function-like macro).
2. ## is one token. There should be no white-space character between two # characters.

The C Preprocessor 491

8.3.4.1.5 Predefined Macros
The ANSI C standard defines several macros for the use in C language. The macros that are
already defined in C language are known as predefined macros. These macros can be used
without defining them. They cannot be redefined and hence, these macro names cannot ap-
pear immediately after define and undef directive.

The predefined macros recognized by ANSI-compliant compilers are as follows:
1 . _ _ FILE_ _ : The _ _ FILE_ _ macro expands to the name of the current file in the form of a

string constant. The piece of code in Program 8-17 illustrates the use of _ _ FILE_ _ macro.

Line Prog 8-17.c Output window

 1
 2
3
4
5
6

//__FILE__ macro
#include<stdio.h>
main()
{
printf(“The name of current file is %s”, __FILE__);
}

The name of current file is 8-17.c

Program 8-17 | A program that illustrates the application of the predefined __FILE__macro

2. _ _ LINE_ _ : The _ _ LINE_ _ macro expands to the current line number in the source file. The
expanded line number is a decimal integer constant. The line number can be altered
with the help of the line directive.† The piece of code in Program 8-18 illustrates the use
of _ _ LINE_ _ macro.

Line Prog 8-18.c Output window

 1
 2
3
4
5
6

//__LINE__ macro
#include<stdio.h>
main()
{
printf(“Current line number is %d”, __LINE__);
}

Current line number is 5
Remark:
•  Place two blank lines before the printf

statement and re-execute the code to
notice the change in the output

Program 8-18 | A program that illustrates the application of the predefined __LINE__ macro

3. _ _ DATE_ _ : The _ _ DATE_ _ macro expands to the compilation date of the source file in the
form of a string constant. The expanded string constant is 11 characters long and is of
the form ”Mmm dd yyyy“. The important points about _ _ DATE_ _ macro are as follows:

a. The name of the month will be three characters long with the first character being in
uppercase.

b. The name of the month is the same as generated by the asctime library function de-
clared in the header file time.h.

c. If the value of day of the month is less than 10, it is padded with space on the left (i.e.
the first character of dd is a space character). Some of the compilers, e.g. Turbo C 3.0
output zero padded value of the day, if it is less than 10.

† Refer Section 8.3.4.3 for a description on line directive.

492 Programming in C—A Practical Approach

The piece of code in Program 8-19 illustrates the use of _ _ DATE_ _ macro.

Line Prog 8-19.c Output window (using Turbo C 3.0)

 1
 2
3
4
5
6

//__DATE__ macro
#include<stdio.h>
main()
{
printf(“Date of compilation is %s”, __DATE__);
}

Date of compilation is Apr 02 2009

Output window (using Turbo C 4.5)

Date of compilation is Apr 2 2009

Program 8-19 | A program that illustrates the application of the predefined __DATE__ macro

4. __TIME__: This macro expands to a string constant that describes the time at which the C pre-
processor is being invoked. The expanded string constant is eight characters long and is of
the form ”hh:mm:ss“. The piece of code in Program 8-20 illustrates the use of __TIME__ macro.

Line Prog 8-20.c Output window (using Turbo C 4.5)

 1
 2
3
4
5
6

//__TIME__ macro
#include<stdio.h>
main()
{
printf(“Time of preprocessing is %s”, __TIME__);
}

Time of preprocessing is 18:56:55

Program 8-20 | A program that illustrates the application of the predefined __TIME__ macro

5. __STDC__: This macro expands to 1, if the compiler conforms to ANSI C and ISO C standards.
Some compilers may not support this macro. For example, this macro is not supported by
Turbo C 3.0. The piece of code in Program 8-21 illustrates the use of __STDC__ macro.

Line Prog 8-21.c Output window (using Turbo C 4.5)

 1
2
3
4
5
6
7
8
9

//__STDC__ macro
#include<stdio.h>
main()
{
if(__STDC__==1)
printf(“This compiler conforms to ANSI and ISO C standards”);
else
printf(“This compiler does not comply with ANSI and ISO C standards”);
}

This compiler conforms to ANSI and ISO C standards

Program 8-21 | A program that illustrates the use of the predefined __STDC__ macro

The important points about the predefined macros are as follows:
1. The ANSI predefined macros start and end with two underscores. There should not be

a white-space character between the underscores.
2. The predefined macro name cannot appear immediately following a define directive.

Also, a predefined macro cannot be undefined using an undef directive.‡ The piece of
code in Program 8-22 illustrates this fact.

‡ Refer Section 8.3.4.1.6 for a description on the undef directive.

The C Preprocessor 493

Line Prog 8-22.c Output window (Turbo C 3.0)

1
2
3
4
5
6
7
8

//Predefined macros
#include<stdio.h>
#define __TIME__ 10
#undef __DATE__
main()
{
printf(“define and undefine directives cannot be used with predefined macros”);
}

Compilation errors
“Define directive needs an identifier”
“Bad undef directive syntax”

Program 8-22 | A program to illustrate that it is not allowed to redefine and undefine a predefined macro

Some implementations provide additional predefined macros. Whether a predefined macro is
supported by a specific implementation or not can be checked by referring to its documenta-
tion. The common implementation defined macros are:

1. _ _ c p l u s p l u s : This macro is defined when C++ compiler is in use. It can be used to test
whether C compiler or C++ compiler is used.

2. NULL: The NULL macro is defined in the header files stdio.h and stddef.h. It represents a null
pointer value. The NULL pointer is defined as (void*)0. The null pointer created with the
help of NULL does not point to any object or function and is not the same as the uninitial-
ized pointer, which might point anywhere.

3. EOF: The EOF macro is defined in the header file stdio.h. This macro represents an integer
value that is returned when end-of-file is encountered.

Forward Reference: Use of EOF macro (Chapter 10).

8.3.4.1.6 undef Directive
The undef preprocessor directive causes the specified identifier to be no longer defined as a
macro name. The general form of the undef preprocessor directive is:

#undef identifi er

The piece of code in Program 8-23 illustrates the use of the undef directive.

Line Prog 8-23.c Output window

1
2
3
4
5
6
7
8

//undef directive
#include<stdio.h>
#define VER 2.2
#undef VER
main()
{
printf(“Current version of software is %f”,VER);
}

Compilation error “Undefined symbol ‘VER’
in function main”

Program 8-23 | A program that illustrates the use of the undef directive

494 Programming in C—A Practical Approach

The important points about the undef directive are as follows:

1. If the identifier specified with the undef directive is not currently defined as a macro
name, it is ignored.

2. The identifier specified with the undef directive cannot be the name of a predefined
macro.

3. A macro can be redefined anywhere in the program. The most recent definition of the
macro is considered while expanding the macro. If the redefinition of the macro is not
identical (i.e. the redefined macro definition is not exactly the same as the first defini-
tion of the macro), the compiler will issue a warning message ‘Redefinition of ‘macroname’ is not
identical’. It is not compulsory to undefine a macro before redefining it. The code snippet
in Program 8-24 illustrates the above-mentioned facts.

Line Prog 8-24.c Output window

1
2
3
4
5
6
7
8

//Redefining a macro
#include<stdio.h>
#define DOUBLE 2
#define DOUBLE(x) (2*x)
main()
{
printf(“Double of 2 is %d”, DOUBLE(2));
}

Double of 2 is 4
Warning:
Redefinition of ‘DOUBLE’ is not identical
Remarks:
•  The macro DOUBLE is redefined without

undefining it
•  It is not mandatory to undefine a mac-

ro before redefining it
•  After the redefinition of DOUBLE as a

function-like macro, it is not possible
to use it as an object-like macro, i.e. as
a symbolic constant

•  Usage of DOUBLE as a symbolic constant
instead of a function-like macro leads
to a compilation error

•  The macro definitions will not be con-
sidered identical if:

 ο  one of the macro is an object-like
macro and the other is a function-
like macro

 ο  both are object-like macros but they
have different replacement lists

 ο  both are function-like macros but
they have different parameter lists
or replacement lists

Program 8-24 | A program that illustrates the redefinition of a macro

8.3.4.1.7 Scope of Macro Definitions
The identifier defined as a macro can be used from the point of its definition till a corresponding
undef directive is encountered or (if it is not encountered) till the end of the translation unit (i.e.
file). Unlike the scope of other identifiers (i.e. variables, labels, etc.), the scope of a macro name
is independent of the block structure. The piece of code in Program 8-25 illustrates this fact.

The C Preprocessor 495

Line Prog 8-25.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Scope of macro definitions
#include<stdio.h>
main()
{
printf(“Macro MAC and variable var are not yet defined\n”);
printf(“They cannot be used here\n”);
{
#define MAC 10
int var=10;
printf(“Value of MAC=%d, var=%d\n”,MAC, var);
}
 //Here variable var is inaccessible
printf(“Macro MAC can be used here but variable var cannot\n”);
printf(“Value of MAC outside the block is %d\n”,MAC);
#undef MAC
printf(“Macro MAC cannot be used now onwards”);
}

Macro MAC and variable var are not yet defined
They cannot be used here
Value of MAC=10, var=10
Macro MAC can be used here but variable var cannot
Value of MAC outside the block is 10
Macro MAC cannot be used now onwards
Remarks:
•  Macro defined inside the block (line

number 8) is used outside the block (line
number 14). It shows that the scope of
macro definition is independent of the
block structure

•  Usage of macro name after it has been
undefined (using #undef) leads to a com-
pilation error

Program 8-25 | A program that illustrates the concept of scope of macro definitions

8.3.4.2 Source File Inclusion Directive
The source file inclusion directive include tells the preprocessor to replace the directive with the con-
tent of the file specified in the directive. The include directive is generally used to include the header
files, which contain the prototypes of the library functions and the definitions of the predefined
constants. The source file inclusion directive include can be written in three different ways:

1. #include <name-of-file>: #include<name-of-file> searches the prespecified list of directories
(names of include directories can be set in IDE settings) for the source
file (whose name is given within angular brackets), and text em-
beds the entire content of the source file in place of itself. If the file
is not found there, it will show the error ‘Unable to include ‘name-of-file’’.

2. #include “name-of-file”: #include“name-of-file” first searches the file in the current working
directory. If this search is not supported or if the search fails,
this directive is reprocessed as if it reads #include<name-of-file>, i.e.
the search will be carried out in the prespecified list of directo-
ries. If the search still fails, it will show the error ‘Unable to include
‘name-of-file’’.

3. #include token-sequence: #include token-sequence searches the file as in Point 1 or in Point 2
depending upon the form of the directive to which it matches
after the preprocessing token sequence is processed.

The piece of code in Program 8-26 illustrates the use of the third form of the include directive.

Line Prog 8-26.c Output window

1
2
3

//Source file inclusion directive
#define STR(x) #x
#include STR(stdio.h)

Third form of source file inclusion directive

(Contd...)

496 Programming in C—A Practical Approach

Line Prog 8-26.c Output window

4
5
6
7

main()
{
printf(“Third form of source file inclusion directive”);
}

Program 8-26 | A program that illustrates the use of the source file inclusion directive

8.3.4.3 line Directive
The line directive is used to reset the line number and the file name as reported by _ _ LINE_ _ and
_ _ FILE_ _ macros. The line directive is used for the purpose of error diagnostics. The line directive
has two forms:

1. #line constant: The line directive of this form causes the compiler to ascertain
that the line number of the next source line is equal to the deci-
mal integer constant specified in the directive. It has no effect
on the file name as reported by the _ _ FILE_ _ macro.

2. #line constant “filename”: The line directive of this form causes the compiler to ascertain
that the line number of the next source line is given by the
decimal integer constant and the current file is named by the
identifier filename specified in the directive.

The piece of code in Program 8-27 illustrates the use of the line directive.

Line Prog 8-27.c Output window

1
2
3
4
5
6
7
8
9

10

//line directive
#include <stdio.h>
main()
{
printf(“Line no. is %d, Filename is %s\n”, __LINE__, __FILE__);
#line 200
printf(“Now, Line no. is %d, Filename is %s\n”, __LINE__,__FILE__);
#line 100 “Abc.c”
printf(“Atlast, Line no. is %d, Filename is %s\n”, __LINE__, __FILE__);
}

Line no. is 5, Filename is 8-27.c
Now, Line no. is 200, Filename is 8-27.c
Atlast, Line no. is 100, Filename is Abc.c
Remarks:
•  In line number 6, the line directive assigns

200 as the line number to the next line
•  In line number 8, the line directive assigns

100 as the line number to the next line and
changes the file name to “Abc.c”

Program 8-27 | A program that illustrates the use of the line directive

8.3.4.4 error Directive
The error directive causes the preprocessor to generate the customized diagnostic messages
and causes the compilation to fail. The error directive has the following forms:

1. #error: This directive causes the preprocessor to issue an error with-
out any message.

2. #error token-sequence: This directive causes the preprocessor to issue an error mes-
sage that includes the text specified by the token sequence.

The error directive is often used with conditional compilation directives.§ The code segment
in Program 8-28 illustrates the use of the error directive.
§ Refer Section 8.3.4.6 for a description on conditional compilation directives.

The C Preprocessor 497

Line Prog 8-28.c Output window

1
2
3
4
5
6
7

//error directive
#include <stdio.h>
#error This is a customized error message
main()
{
printf(“Use of error directive cause the compilation to fail”);
}

Compilation error
Fatal 8-28.C 3: Error directive: This is a customized error
message

Program 8-28 | A program that illustrates the use of the error directive

Forward Reference: Refer Question number 25 and its answer for the usage of the error
directive.

8.3.4.5 pragma Directive
The pragma directive is used to specify diverse options to the compiler. The options are specific
for the compiler and the platform used. The pragma directive configures some of the compiler
options that can otherwise be configured from the command line. Note that all options of the
compiler cannot be configured using the pragma directive. An unrecognized pragma directive is
ignored without an error or a warning message. It is strongly recommended to use the pragma
directive after referring to the compiler documentation. The pragma directive is written as:

#pragma token-sequence

The commonly used forms of the pragma directive are as follows:

1. #pragma option: It is written as #pragma option [options…]. The common options that can be used
with Turbo C 3.0 and the DOS environment are given in Table 8.4.

Table 8.4 | Some of the pragma options available with Turbo C 3.0

S.No Option Role

1. -C Allows nested comments
2. -C- (Default) Does not allow the nesting of comments
3. -G Causes the compiler to bias its optimization in favor of speed over size
4. -G- (Default) Causes the compiler to bias its optimization in favor of size over speed
5. -r (Default) Enables the use of register variables
6. -r- Suppresses the use of register variables
7. -a Forces structure members to be aligned on machine-word boundary.
8. -a- (Default) Results in byte alignment

Forward Reference: Byte alignment and machine-word alignment (Chapter 9).

498 Programming in C—A Practical Approach

Program 8-29 illustrates the use of the pragma option –C.

Line Prog 8-29.c Rectified code

1
2
3
4
5
6
7
8
9

10
11

//Nested multi-line comments
#include <stdio.h>
main()
{
/*Start of Outer Comment
 /*Inner Comment*/
End of Outer Comment*/
printf(“By default nested comments are not allowed”);
 }

//Nested multi-line comments
#include <stdio.h>
#pragma option -C
main()
{
/*Start of Outer Comment
 /*Inner Comment*/
End of Outer Comment*/
printf(“By default nested comments are not allowed\n”);
printf(“pragma option –C makes them allowed”);
}

Output window Output window

Compilation error By default nested comments are not allowed
pragma option –C makes them allowed

Program 8-29 | A program that illustrates the use of pragma option –C to allow nested comments

2. #pragma warn: The #pragma warn can be used to turn on, off or toggle the state of warnings.
The #pragma warn can be written as:

 #pragma warn +www (Turns on the warning with character code www)
 #pragma warn –www (Turns off the warning with character code www)
 #pragma warn .www (Toggles the state of warning with character code www)

The character codes for specific warnings can be determined by referring to the compiler docu-
mentation. The common warning character codes that can be used with the pragma directive in
Turbo C 3.0 are given in Table 8.5.

Table 8.5 | Some of the warning codes that can be used with the pragma directive in Turbo C 3.0

S.No Warning code Warning

1. dup Redefinition of ‘macro’ is not identical
2. voi void functions may not return a value
3. rvl Function should return a value
4. par Parameter ‘parameter’ is never used
5. pia Possibly incorrect assignment
6. rch Unreachable code
7. aus ‘Identifier’ is assigned a value that is never used

The code snippets in Program 8-30 illustrate the use of #pragma warn to suppress the common
warnings mentioned above.

Chapter 8.indd 498Chapter 8.indd 498 28/02/2010 4:15:57 PM28/02/2010 4:15:57 PM

The C Preprocessor 499

Line Prog 8-30.c Modified code

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Suppression of warning messages
#include <stdio.h>
#define PI 2
#define PI 4
main()
{
int a=10;
if(a=PI)
 printf(“The value of PI is %d”,PI);
return 1;
 printf(“This is unreachable statement”);
}

//Suppression of warning messages
#include <stdio.h>
#pragma warn –dup
#pragma warn –pia
#pragma warn –rch
#pragma warn –rvl
#pragma warn -aus
#define PI 2
#define PI 4
main()
{
int a=10;
if(a=PI)
 printf(“The value of PI is %d”,PI);
return 1;
 printf(“This is unreachable statement”);
}

Output window Output window

The value of PI is 4
Warnings(5):
Redefinition of PI is not identical
Possibly incorrect assignment in function main()
Unreachable code in function main()
Function should return a value in function main()
‘a’ is assigned a value that is never used in function main()

The value of PI is 4
Warnings(0)
Remark:
•  All the warnings are suppressed by us-

ing the pragma directive

Program 8-30 | A program that illustrates the use of pragma directive to suppress various warnings

3. #pragma startup and #pragma exit: The #pragma startup and #pragma exit directives can be used to
execute a function before and after the execution of the function main. These directives
can be written as:

#pragma startup function-name
#pragma exit function-name

The piece of code in Program 8-31 illustrates the use of #pragma startup and #pragma exit directives.

Line Prog 8-31.c Output window

1
2
3
4
5
6
7
8
9

10

//pragma startup and pragma exit directives
#include <stdio.h>
function_before_main()
{
printf(“This will be executed before main\n”);
}
function_after_main()
{
printf(“This will be executed after main\n”);
}

This will be executed before main
This is main function
This will be executed after main
Remarks:
•  The output indicates that the function

function_before_main is executed before,
and the function function_after_main is
executed after, the execution of the
function main

(Contd...)

500 Programming in C—A Practical Approach

Line Prog 8-31.c Output window

11
12
13
14
15
16

#pragma startup function_before_main
#pragma exit function_after_main
main()
{
printf(“This is main function\n”);
 }

•  The functions function_before_main and
function_after_main must be defined
before being used with the pragma
directives

•  The function function_before_main can set
up some prerequisites for the function
main, and function_after_main can perform
some clear up tasks

Program 8-31 | A program that illustrates the use of pragma startup and pragma exit

8.3.4.6 Conditional Compilation Directives
Conditional compilation means that a part of a program is compiled only if a certain condition
comes out to be true. The available conditional compilation directives are as follows:

#if, #ifdef, #ifndef, #else, #elif, #endif

The syntax of using the conditional compilation directives is listed in Table 8.6.

Table 8.6 | Syntax and semantics of the conditional compilation directives

S.No Conditional compilation
directive

Syntax Semantics

1. #if-#endif #if constant-exp
 statements-set
#endif

The compiler compiles the statements-set only if
the constant expression evaluates to true

2. #if-#else-#endif #if constant-exp
 statements-set1
#else
 statements-set2
#endif

If the constant expression evaluates to true, the
statements-set1 will be compiled, else the state-
ments-set2 will be compiled

3. #if-#elif-#endif #if constant-exp1
 statements-set1
#elif constant-exp2
 statements-set2
#endif

Statements-set1 will be compiled if the constant
expression1 evaluates to true. The statements-
set2 will be compiled only if the constant expres-
sion1 evaluates to false and constant expression2
evaluates to true

4. #ifdef-#endif #ifdef identifier
 statements-set
#endif

Statements-set will be compiled only if the identi-
fier is a predefined macro name or has been previ-
ously defined as a macro with define preprocessor
directive without an intervening undef directive
with the same identifier name

5. #ifdef-#else-#endif #ifdef identifier
 statements-set1
#else
 statements-set2
#endif

Statements-set1 will be compiled only if the iden-
tifier is a predefined macro name or has been
previously defined as a macro name with define
preprocessor directive without an intervening
undef directive with the same identifier name. Oth-
erwise, statements-set2 will be compiled

(Contd...)

The C Preprocessor 501

6. #ifdef-#elif-#endif #ifdef identifier
 statements-set1
#elif constant-exp
 statements-set2
#endif

Statements-set1 will be compiled only if the iden-
tifier is a predefined macro or has been previous-
ly defined as a macro with define preprocessor di-
rective without an intervening undef directive with
the same identifier name. Statements-set2 will be
compiled if no macro with the name as specified
by the identifier has been defined, and the con-
stant expression evaluates to true. If the macro
has not been previously defined and the constant
expression evaluates to false, no statements-set
will be compiled

7. #ifndef-#endif #ifndef identifier
 statements-set
#endif

Statements-set will be compiled if no macro with
the name as specified by the identifier has been
previously defined

8. #ifndef-#else-#endif #ifndef identifier
 statements-set1
#else
 statements-set2
#endif

Statements-set1 will be compiled if no macro
with the name as specified by the identifier has
been previously defined. Otherwise, statements-
set2 will be compiled

9. #ifndef-#elif-#endif #ifndef identifier
 statements-set1
#elif constant-exp
 statements-set2
#endif

Statements-set1 will be compiled only if no mac-
ro with a name as specified by the identifier has
been previously defined. Statements-set2 will be
compiled if a macro with the name as specified by
the identifier is a predefined macro or has been
defined with define directive without an interven-
ing undef directive with the same identifier name
and the constant expression evaluates to true. If
the macro has been defined and the constant ex-
pression evaluates to false, no statements-set will
be compiled

The important points about the use of conditional compilation directives are as follows:
1. The conditional compilation preprocessor directives can appear anywhere in the program.
2. The statements set can be empty, can have preprocessor directives and/or C statements.

The piece of code in Program 8-32 illustrates the use of conditional compilation directives.

Line Prog 8-32.c Output window

1
2
3
4
5
6
7

//Conditional compilation directives
#include <stdio.h>
#define EMBEDDED
#ifndef EMBEDDED
 #error This code is meant for embedded systems only
#endif
main()

Embedded systems are used in real time applications

(Contd...)

502 Programming in C—A Practical Approach

Line Prog 8-32.c Output window

8
9

10
11
12
13
14
15

{
#ifdef EMBEDDED
 printf(“Embedded systems are used in real time applications\n”);
#else
 This part of program will not be compiled
 Put code meant for Non-embedded systems
#endif
 }

Program 8-32 | A program that illustrates the use of conditional compilation directives

8.3.4.7 Null Directive
A null directive is of the form:

new-line
The null directive has no effect.

8.4 Summary

A translator is a program that converts a program written in a source language to an 1.
equivalent program in a target language.
Translators are classified according to the classes of their source and target languages.2.
According to classes of their source and target languages, translators are classified as 3.
preprocessors, compilers, assemblers and interpreters.
The preprocessor is a translator that is invoked prior to the compiler.4.
The preprocessor is controlled by the commands known as preprocessor directives, 5.
which are not a part of C language.
There are eight phases of translation to convert a source program file into an executable 6.
file.
Trigraph replacement is the first phase of translation. During this phase, the trigraph 7.
sequences are replaced by their single-character equivalents.
During the second phase of translation, known as line splicing, each an instance of 8.
a backslash character immediately followed by a new-line character is deleted by the
preprocessor.
The third phase of translation is tokenization, during which the source file is decom-9.
posed into the preprocessing tokens and a sequence of white-space characters.
During the fourth phase of translation, the preprocessor directives are executed and the 10.
macros are expanded.
A preprocessor directive always begins with a 11. # (pound) symbol.
A macro is a facility provided by a C preprocessor, by which a token can be replaced by 12.
the user-defined sequence of characters.
Two types of macros can be created: object-like macros and function-like macros.13.
Object-like macro is also known as a symbolic constant.14.
Function-like macro is a macro with arguments.15.
A function-like macro is said to be safe, if it behaves like a function call.16.
Macros can create problems if they are not defined and used carefully.17.

The C Preprocessor 503

The preprocessing token 18. # is known as a stringizing operator.
The preprocessing token19. ## is used for token pasting.
Conditional compilation directives are used for conditional compilation. It means that a 20.
part of a program is compiled only if a certain condition comes out to be true.
Conditional compilation directives are: 21. #if, #ifdef, #ifndef, #else, #elif, #endif.

Exercise Questions
Conceptual Questions and Answers

1. What are translators and how are they classified?

Backward Reference: Refer Section 8.2 for a description on translators.

2. What are the various stages a program undergoes before execution?
 The various stages a program undergoes before execution are:

1. Translation
2. Loading
The various parts of translation are:
1. Preprocessing
2. Compilation
3. Linking

Source program (.C File)

Simplified C program

Object code (.Obj File)

Relocatable executable
code (.Exe File)

Preprocessor

Compiler

Source libraries (.Obj Files)

Linker

Loader

Address binding and
execution

Translation

Loading

3. What are the various phases of translation?

Backward Reference: Refer Section 8.3 for a description on phases of translation.

4. What is a trigraph sequence and a digraph sequence?

Backward Reference: Refer Section 8.3.1 for a description on trigraph sequences.

504 Programming in C—A Practical Approach

 Digraph sequences are a pair of characters that get replaced by their character equivalent.
Similar to a trigraph processor, a separate digraph processor is required for processing the
digraph sequences. The following table lists the valid digraph sequences and their character
equivalents:

S.No Digraph sequence Character equivalent

1. <: [

2. :>]

3. <% {

4. %> }

5. %: #

6. %:%: ##

 The major difference between trigraph sequences and digraph sequences is that trigraphs are
replaced within string literals but digraph sequences are not.

5. What is line splicing?

Backward Reference: Refer Section 8.3.2 for a description on line splicing.

6. What is the difference between a token and a processing token?

Backward Reference: Refer Section 8.3.3 for a description on token and preprocessing token.
Also refer Question number 1 (Chapter 2) and its answer.

7. How are preprocessor directives written? List the various preprocessor directives available in C.

Backward Reference: Refer Section 8.3.4 for a description on preprocessor directives and the
rules to write them.

8. What is a macro? What are object-like macros and function-like macros? How are they defined?

Backward Reference: Refer Section 8.3.4.1 to answer this question.

9. The following lines of code are written in a source file:
 #define EMPTY // line number 1
 EMPTY #include <stdio.h> // line number 2
 Can you say that line number 2 is a preprocessor directive?
 Line number 2 begins with a macro name EMPTY. Since line number 2 does not begin with a pound

symbol (#), it will not be said as a preprocessor directive

10. Why is the following piece of code not working?
 #define PI=3.1417
 main()
 {
 printf(“The value of constant PI is %f”,PI);
 }

Chapter 8.indd 504Chapter 8.indd 504 28/02/2010 4:15:58 PM28/02/2010 4:15:58 PM

The C Preprocessor 505

 The following piece of code is not working due to the erroneous definition of the object-like
macro PI. There should be a white-space character between the macro name and the replacement
list in the definition of the object-like macro PI instead of the character ‘=’. The rectified piece of
code is written as

 #define PI 3.1428571
 main()
 {
 printf(“The value of constant PI is”,PI);
 }

11. I have read that ‘An identifier should be declared before it is used, else there will be a compilation error’.
The identifier PI has not been declared in the following piece of code but still the code gets executed and the
compiler does not show any error. Why?

 #define PI 3.1417
 main()
 {
 printf(“The value is %f”, PI);
 }
 The compiler does not show any error because the compiler does not find any token PI as it has

already been replaced by the replacement list 3.1417 during the preprocessing stage. After the pre-
processing stage and macro expansion, the processed code handed over to the compiler will be

 main()
 {
 printf(“The value is %f”, 3.1417);
 }
 Since this code does not contain any instance of the token PI, there is no requirement to declare

it.

12. I have written the following piece of code:
 #define square(x) x*x
 main()
 {
 float result;
 result=1.0/square(2);
 printf(“Result is %f”,result);
 }
 I was expecting the output of the code to be 0.250000, but on execution, the code outputs 1.000000. Why?

How can I rectify it?

 Remember that macro expansion is purely textual. Macros are expanded during the preprocess-
ing stage before the compilation stage. This fact is illustrated by the code segments listed below:

Before the preprocessing stage After the preprocessing stage

 #define square(x) x*x
 main()
 {
 float result;
 result=1.0/square(2);
 printf(“Result is %f”,result);
 }

main()
{
 float result;
 result=1.0/2*2; // Macro expanded
 printf(“Result is %f”,result);
}

506 Programming in C—A Practical Approach

 After the macro expansion is carried out during the preprocessing stage, the expression
result=1.0/square(2); becomes result=1.0/2*2;. Since the division operator and the multiplication opera-
tor have the same precedence and are left-to-right associative, the division is carried out first and
then the multiplication is done. Thus, the result comes out to be 1.000000. The given piece of code
can be rectified by parenthesizing the macro’s replacement list to protect any lower precedence
operators present in it from the higher precedence operators present in the surrounding
expression. The rectified code is given below:

 #define square(x) (x*x)
 main()
 {
 float result;
 result=1.0/square(2);
 printf(“Result is %f”,result);
 }

 The mentioned rectified code on execution outputs: Result is 0.250000

13. I have defined the macro in the way suggested in the answer of the previous question and have written the
following piece of code:

 #define square(x) (x*x)
 main()
 {
 int number=2,result;
 result=square(number+1);
 printf(“Square of 3 is %d”,result);
 }
 Still the code does not work as intended and outputs 5 instead of 9. Why? How can I rectify it?

 After macro expansion is done during the preprocessing stage, the given piece of code becomes:
 main()
 {
 int number=2,result;
 result=(number+1*number+1);
 printf(“Square of 3 is %d”,result);
 }
 The expression result=(number+1*number+1); evaluates to 5 instead of the expected value 9 because the

multiplication operator has a higher precedence than the addition operator. The given piece of
code can be rectified by parenthesizing all the occurrences of the parameters in the macro’s
replacement list to protect any low precedence operators in the actual arguments from the rest
of the macro expansion. The rectified code is given below:

 #define square(x) ((x)*(x))
 main()
 {
 int number=2,result;
 result=square(number+1);
 printf(“Square of 3 is %d”,result);
 }
 The mentioned rectified code on execution outputs: Square of 3 is 9

14. If I define the macro square as suggested in the answer of the previous question and call it in an expression,
can I safely assume that my code will work correctly as if it were an expression statement consisting of a
function call?

The C Preprocessor 507

 If the macro square is defined in the way suggested in Answer number 13, still it cannot be safely
assumed that an expression containing a call to the macro square is the same as if it is an expres-
sion containing a call to a function that returns the squared value of its input parameter. Consider
the following pieces of code and the differences in the results of their executions:

Code-I Macro version Code-II Function version

#define square(x) ((x)*(x))
main()
{
 int i=2,result;
 result=square(++i);
 printf(“The value of result is %d”,result);
}

int square(int x){
return x*x; }
main()
{
 int i=2,result;
 result=square(++i);
 printf(“The value of result is %d”,result);
}

 The execution of code-I, i.e. macro version outputs: The value of result is 16.
 The execution of code-II, i.e. function version outputs: The value of result is 9.
 The macro square exhibited this type of behavior because its argument is an expression (i.e. ++i)

with a side-effect.

15. What are the points that one should keep in mind while defining macros?

Backward Reference: Refer Section 8.3.4.1.2 for a description on common macro pitfalls.
Also refer Question numbers 10, 12, 13, 14, 48, 54, 55 and 56 and their answers.

16. What are the differences between function-like macros and functions?
 Although function-like macros and functions appear to be the same, they are actually not. The

major differences between function-like macros and functions are as follows:

Function-like macros Functions

1.  The replacement list of function-like mac-
ros is just text replaced during the prepro-
cessing stage every time the macro name
is encountered. There is no argument
passing and no control is transferred.

2.  Since the control is not actually transferred,
the time required in making a function
call is saved. Thus, the use of function-like
macros provides a better performance as
compared to functions.

3.  Since the macro name is text replaced by
the replacement list during the preprocess-
ing stage, the use of macros will increase
the program size. This increases the code
redundancy.

4.  Thus, the use of macros makes the pro-
gram run faster but increases the program
size.

1.  In a function call, the control is passed
to the called function along with the ar-
guments, the calculations are made in
the called function and their value is re-
turned to the calling function.

2.  As the control transfers to and fro be-
tween the called function and the calling
function, some of the time gets wasted in
making the function call. Thus, the use of
functions and their calls slow down the
program.

3.  Functions use the same piece of code
again and again. Hence, they avoid code
redundancy and this is the main benefit
of using functions.

4.  Thus, the use of the function makes the
program smaller and compact but it de-
teriorates the program’s speed.

508 Programming in C—A Practical Approach

17. I have encountered the following piece of code that makes use of an object-like macro PI. When I try to ex-
ecute the code, it gives an error ‘Undefined symbol PI’. Why?

 #define PI 3.141
 #undef PI
 main()
 {
 int rad=2;
 printf(“Area of circle is %f”,PI*rad*rad);
 }
 The given piece of code on compilation gives an error ‘Undefined symbol PI’ due to the usage of undef

directive. The symbol PI has been defined as an object-like macro but as it has been undefined
with the undef directive before its use; therefore, the preprocessor will not be able to make the
macro replacement. That is why, the compiler shows the error.

18. What is meant by token replacement and token pasting?

Backward Reference: Refer Sections 8.3.4.1.3 and 8.3.4.1.4 for a description on token replace-
ment and token pasting.

19. Is macro replacement carried out within a string literal constant?
 No replacement is carried out if a name identical to the macro name appears as a part of a string lit-

eral constant or as a part of some other name. For example, consider the following piece of code:
 #define LINE 100
 main()
 {
 int MAXLINE=25;
 printf(“The length of LINE is %d”, MAXLINE);
 }
 The mentioned piece of code on execution prints: The length of LINE is 25. No replacement is carried

out for the name LINE that appears as a part of the string literal or as a part of the name MAXLINE.

20. What are the various ways in which a source file inclusion directive can be written?

Backward Reference: Refer Section 8.3.4.2 to answer this question.

21. What method is adopted for locating the includable source files in ANSI specifications?
 According to ANSI specifications:

(1) #include<name-of-file> searches a prespecified list of directories (names of include directories can
be set in IDE settings) for the source file (whose name is given within angular brackets), and
text embeds the entire content of the source file in place of itself. If the file is not found there,
it will show error ‘Unable to include name-of-file’.

(2) #include“name-of-file” first searches the file in the current working directory. If this search is not
supported or if the search fails, this directive is reprocessed as if it reads #include<name-of-file>,
i.e. search will be carried out in a prespecified list of directories. If the search still fails, it will
show the error ‘Unable to include name-of-file’.

(3) #include token-sequence searches the file as in (1) or (2) depending upon the form of directive to
which it matches after the token sequence is processed.

The C Preprocessor 509

22. Is there any difference that arises if double quotes, instead of angular brackets are used for including the
standard header files?

 If double quotes are used for the inclusion of standard header files instead of angular brackets,
the search space unnecessarily increases (in addition to the list of prespecified directories, search
will unnecessarily be carried out first in the current working directory), and the time required for
the inclusion will be more.

23. Under what circumstances should the use of quotes be preferred over the use of angular brackets for the
inclusion of header files and under what circumstances is the use of angular brackets beneficial?

 Self-created or user-defined header files should be included with double quotes because the in-
clusion with double quotes makes the files to be searched first in the current working directory
(where the user has kept self-created header files) and then in the prespecified list of directories.
If the standard header files are to be included, angular brackets should be used because the standard
header files are present in the prespecified list of directories and there is no use in searching them
in the current working directory. Usage of double quotes for including the standard header files
will work but will take more time.

24. What is conditional compilation?

Backward Reference: Refer Section 8.3.4.6 for a description on conditional compilation
directives.

25. What is the role of the error directive?

Backward Reference: Refer Section 8.3.4.4 for a description on error directive.

 Suppose the user wants to develop some functionality that is very specific to some applications
like Video Graphic Adaptors (VGAs), etc. The user has written the following piece of code:

 main()
 {
 #ifndef VGA
 #error This code is for Video Graphic Adaptors only
 #else
 int hresolution=640, vresolution=480;
 //….code specific to VGA follows
 #endif
 }
 The code on compilation gives ‘Fatal error: This code is for Video Graphic Adaptors only’ as VGA is not previously

defined. If VGA is previously defined using the define directive, the code sets the horizontal and
vertical resolution to be 640 and 480, respectively, and the other code statements specific to VGA
will be processed.

26. What is the role of the pragma directive?

Backward Reference: Refer Section 8.3.4.5 for a description on the pragma directive. Also refer
Question numbers 27-30 and their answers.

510 Programming in C—A Practical Approach

27. Are nested multi-line comments by default allowed in C? If no, how can the pragma directive be used to
allow them?

 No, by default the nested multi-line comments are not allowed. Use #pragma option –C to make the
nested multi-line comments allowed.

Backward Reference: Refer the description given in Section 8.3.4.5. Also refer Question num-
ber 12 (Chapter 1) and its answer.

28. How can the pragma directive be used to suppress ‘Function should return a value’ warning?

Backward Reference: Refer the description given in Section 8.3.4.5 to answer this question.

29. By default, a program execution always starts with and terminates with the function main. Can I make some
other function to execute before or after the execution of the function main? If yes, how?

 Yes, the #pragma startup and #pragma exit directives can be used to execute a function before and after
the execution of the function main.

Backward Reference: Refer Section 8.3.4.5 for a description on pragma startup and pragma exit.

30. A compiler can translate a high-level language program into an equivalent low-level language program, i.e.
assembly-level language or machine-level language program. Till now, the compiler has been producing a
machine-level code. How can I configure the compiler so that it starts producing an assembly-level code?

 Assembly-level code can be generated by using –S option of the Turbo C 3.0 compiler. It should
be noted that this option cannot be used with the pragma directive. It should be invoked from the
command line only.

Code Snippets
 Determine the output of the following code snippets. Assume that the inclusion of the required header files

has been made and there is no prototyping error due to them. Also, the trigraph processor is available and
is invoked first.

31. ??=include<stdio.h>
 main()
 {
 int arr??(5??)=??<1,2,3,4,5??>;
 printf(“The first three elements are: %d %d %d”,arr[0],arr[1],arr[2]);
 }

32. %:include<stdio.h>
 main()
 <%
 int arr<:5:>=<%1,2,3,4,5%>;
 printf(“The first three elements are:\n%d %d %d”,arr[0],arr[1],arr[2]);
 %>

33. main()
 {
 printf(“Trigraph??/tsequences??/nin string literal”);
 }

The C Preprocessor 511

34. main()
 {
 printf(“Digraph<:sequences:>”);
 }

35. main()
 {
 printf(“Will it be replaced???/tYes/No?”);
 }

36. main()
 {
 printf(“Hello
 Readers!!”);
 }

37 main()
 {
 printf(“Hello \
 Readers!!”);
 }

38. main()
 {
 printf(“Hello ””Readers!!”);
 }

39. main()
 {
 printf(“Hello ” ”Readers!!”);
 }

40. main()
 {
 char *str=”Hello”;
 printf(str”Readers!!”);
 }

41. #define PI=3.14
 main()
 {
 int rad=2;
 printf(“Circumference of the circle is %f”,2*PI*rad);
 }

42. #define PI 3.14
 main()
 {
 int rad=2;
 printf(“Circumference of the circle is %f”,2*PI*rad);
 }

43. #define PI 3.14;
 main()

512 Programming in C—A Practical Approach

 {
 int rad=2;
 printf(“Circumference of the circle is %f”,2*PI*rad);
 }

44. #define int char
 main()
 {
 int var;
 printf(“The size of var is %d”,sizeof(var));
 }

45. #define + -
 #define * /
 main()
 {
 int a;
 a=2+3*5;
 printf(“The value of a is %d”,a);
 }

46. #define clrscr() 200
 main()
 {
 printf(“This will be printed\n”);
 clrscr();
 printf(“The value is %d”,clrscr());
 }

47. #define SQUARE(x) x*x
 main()
 {
 printf(“The square value of 2 is %d”, SQUARE(2));
 }

48. #define SQUARE (x) x*x
 main()
 {
 printf(“The square value of 2 is %d”,SQUARE(2));
 }

49. #define SQUARE(x) x*x
 main()
 {
 int a=20,b;
 b=a/SQUARE(2);
 printf(“The value of b is %d”,b);
 }

50. #define SQUARE(x) (x*x)
 main()
 {
 int a=20,b;

The C Preprocessor 513

 b=a/SQUARE(2);
 printf(“The value of b is %d”,b);
 }

51. #define SQUARE(x) (x*x)
 main()
 {
 int a=5,b;
 b=SQUARE(a+2);
 printf(“The value of b is %d”,b);
 }

52. #define SQUARE(x) ((x)*(x))
 main()
 {
 int a=5,b;
 b=SQUARE(a+2);
 printf(“The value of b is %d”,b);
 }

53. #define SQUARE(x) ((x)*(x))
 main()
 {
 int a=2,b;
 b=SQUARE(++a);
 printf(“The value of b is %d”,b);
 }

54. #define SQUARE(x) ((x)*(x));
 main()
 {
 int a=2,b=4;
 if(SQUARE(a)==b)
 printf(“Square of a is equal to b”);
 else
 printf(“Square of a is not equal to b”);
 }

55. #define SWAP(a,b) a^=b; b^=a; a^=b;
 main()
 {
 int a=20,b=10;
 printf(“The values of a and b before swap are %d %d\n”,a,b);
 SWAP(a,b)
 printf(“The values of a and b after swap are %d %d\n”,a,b);
 }

56. #define SWAP(a,b) a^=b; b^=a; a^=b;
 main()
 {
 int a=20,b=10;
 printf(“Swap the values of a and b only if a is greater than b”);
 if(a>b)

514 Programming in C—A Practical Approach

 SWAP(a,b)
 else
 printf(“Values are not swapped”);
 printf(“Resultant values of a and b are %d %d”,a,b);
 }

57. #define SWAP(a,b) a^=b, b^=a, a^=b
 main()
 {
 int a=20,b=10;
 printf(“Swap the values of a and b only if a is greater than b\n”);
 if(a>b)
 SWAP(a,b);
 else
 printf(“Values are not swapped\n”);
 printf(“Resultant values of a and b are %d %d”,a,b);
 }

58. #define SWAP(a,b) a^=b^=a^=b
 main()
 {
 int a=20,b=10;
 printf(“Swap the values of a and b only if a is greater than b\n”);
 if(a>b)
 SWAP(a,b);
 else
 printf(“Values are not swapped\n”);
 printf(“Resultant values of a and b are %d %d”,a,b);
 }

59. #define VALUE 100
 main()
 {
 int MAXVALUE=1000;
 printf(“The VALUE is %d”,MAXVALUE);
 }

60. #define STR(x) #x
 main()
 {
 printf(STR(Hello Readers!!));
 }

61. #define STR(x) #x
 main()
 {
 printf(STR(Hello Readers!!));
 }

62. #define STR(x) #x
 main()
 {
 printf(STR(Hello Readers!!));
 }

The C Preprocessor 515

63. #define STR(x) #x
 main()
 {
 printf(STR(Hello “Read”ers!!));
 }

64. #define STR(x,y,z) #x#y#z
 main()
 {
 char str1[30]=STR(THE,C,PREPROCESSOR);
 char str2[30]=STR(THE,C,COMPILER);
 puts(str1);
 puts(str2);
 }

65. #define STR(x) #x
 #include STR(stdio.h)
 main()
 {
 printf(“Third form of include directive”);
 }

66. #define PASTE(tk1,tk2) tk1##tk2
 main()
 {
 int var1=100;
 printf(“The value of var1 is %d”,PASTE(var,1));
 }

67. #define PASTE(tk1,tk2) tk1##tk2
 main()
 {
 int var1=100,var2=200,var3=300;
 int i;
 for(i=1;i<=3;i++)
 printf(“The value of var%d is %d\n”,i,PASTE(var,i));
 }

68. #define PASTE(tk1,tk2) tk1##tk2
 main()
 {
 int var[]={100,200,300};
 int i;
 for(i=0;i<=2;i++)
 printf(“The value of var%d is %d\n”,i,PASTE(var,[i]));
 }

69. #define p(x,y,z) x##y##z
 main()
 {
 int arr[]={ p(2,3,4), p(,5,6), p(6,,7), p(8,9,), p(10,,), p(,11,)},i;
 for(i=0;i<6;i++)
 printf(“%d ”,arr[i]);
 }

516 Programming in C—A Practical Approach

70. #define CONST 100
 #undef CONST
 main()
 {
 printf(“The value of CONST is %d”,CONST);
 }

71. #define CONST 100
 #undef VAR
 main()
 {
 printf(“The value of CONST is %d”,CONST);
 }

72. #define CONST 100
 main()
 {
 printf(“The value of CONST is %d”,CONST);
 #undef CONST
 }

73. #define CONST 100
 main()
 {
 printf(“The value of CONST is %d”,CONST);
 }
 #undef CONST

74. #define CONST 100
 main()
 {
 #define CONST 10
 printf(“The value of CONST is %d”,CONST);
 }

75. #define VER 1
 main()
 {
 #ifdef VER
 printf(“Place code corresponding to version 1”);
 #else
 printf(“Place code corresponding to version other than 1”);
 #endif
 }

76. #define VER 1
 main()
 {
 #ifdef VER
 printf(“Place code corresponding to version 1”);
 #else
 WILL IT BE A COMPILATION ERROR??

The C Preprocessor 517

 #endif
 }

77. #define VER 1
 main()
 {
 #if VER==1
 printf(“Place code corresponding to version 1”);
 #else
 printf(“Place code corresponding to version other than 1”);
 #endif
 }

78. #define VER 1
 main()
 {
 #if VER=1
 printf(“Place code corresponding to version 1”);
 #else
 printf(“Place code corresponding to version other than 1”);
 #endif
 }

79. #define VER 1
 main()
 {
 int a=1;
 #if a==VER
 printf(“Place code corresponding to version 1”);
 #else
 printf(“Place code corresponding to version other than 1”);
 #endif
 }

80. #define VER 1
 main()
 {
 const int a=1;
 #if a==VER
 printf(“Place code corresponding to version 1”);
 #else
 printf(“Place code corresponding to version other than 1”);
 #endif
 }

81. main()
 {
 #ifdef WINDOWS
 PLACE CODE FOR WINDOWS OPERATING SYSTEM
 #elif defined(LINUX)
 PLACE CODE FOR LINUX OPERATING SYSTEM
 #else
 #error OPERATING SYSTEM IS NOT KNOWN

518 Programming in C—A Practical Approach

 #endif
 }

82. main()
 {
 /* The C PREPROCESSOR
 /* THERE ARE VARIOUS DIRECTIVES*/
 PRAGMA IS ONE OF THEM*/
 printf(“THE C PREPROCESSOR”);
 }
83. #pragma option –C
 main()
 {
 /* The C PREPROCESSOR
 /* THERE ARE VARIOUS DIRECTIVES*/
 PRAGMA IS ONE OF THEM*/
 printf(“THE C PREPROCESSOR”);
 }

84. int req_var_value;
 func()
 {
 printf(“This function setups the prerequisites of function main\n”);
 req_var_value=200;
 }
 #pragma startup func
 main()
 {
 printf(“This is function main\n”);
 printf(“The requisite value of variable is %d”,req_var_value);
 }

85. #define size_of(data) ((char *)(&data+1)-(char *)(&data))
 main()
 {
 int INT;
 char CHAR;
 float FLOAT;
 double DOUBLE;
 printf(“Size of int: %d\n”,size_of(INT));
 printf(“Size of char: %d\n”,size_of(CHAR));
 printf(“Size of float: %d\n”,size_of(FLOAT));
 printf(“Size of double: %d\n”,size_of(DOUBLE));
 }

Multiple-choice Questions
86. A translator that converts a program written in a high-level language into an equivalent program

written in some other high-level language is
 a. Interpreter c. Assembler
 b. Compiler d. Preprocessor

The C Preprocessor 519

87. Preprocessing is a phase of translation, which occurs
 a. Before compilation c. After compilation but before linking
 b. After compilation d. None of these

88. Which of the following are replaced even within string literals?
 a. Macro names c. Trigraph sequences
 b. Digraph sequences d. None of these

89. Among function-like macro call and function call, which one is efficient time-wise?
 a. Function-like macro call c. Both take equal time
 b. Function call d. None of these

90. The following piece of code on execution leads to:
 main(){
 puts(“Hello”,”Readers!!”); }
 a. Compilation error c. Readers!!
 b. Hello d. None of these

91. The following piece of code on execution leads to:
 #define puts printf
 main(){
 puts(“Hello”,”Readers!!”); }
 a. Compilation error c. Readers!!
 b. Hello d. None of these

92. The following piece of code on execution leads to:
 #define int char
 main(){
 int a=4;
 printf(“%d”,sizeof(a)); }
 a. Compilation error c. 2
 b. 1 d. None of these

93. The following piece of code on execution leads to:
 #define sizeof
 main(){
 int a=4;
 printf(“%d”,sizeof(a)); }
 a. Compilation error c. 2
 b. 1 d. 4

94. The following piece of code on execution leads to:
 #define a 10
 void fun();
 main()
 {
 fun();
 printf(“%d”,a); }
 fun()
 {
 #undef a

520 Programming in C—A Practical Approach

 #define a 50
 }
 a. Compilation error c. 50
 b. 10 d. None of these

95. If the following piece of code is executed on a 16-bit DOS environment, the output will be
#define cp_d char*

 typedef char* cp_t;
 main(){
 cp_t p1,p2;
 cp_d p3,p4;
 printf(“%d %d\n”,sizeof(p1), sizeof(p2));
 printf(“%d %d”,sizeof(p3), sizeof(p4));
 }
a.  2 2 c. 2 1

2 2 2 1
b.  2 2 d. 2 1

2 1 2 2

Outputs and Explanations to Code Snippets
31. The first three elements are: 1 2 3
 Explanation:
 The source file contains the trigraph sequences like ??=, ??(, ??), ??< and ??>. During the first phase

of translation, these trigraph sequences are replaced by their character equivalents #, [,], { and },
respectively, by the Borland trigraph processor TRIGRAPH.EXE.

32. The first three elements are: 1 2 3
 Explanation:
 The digraph sequences are replaced by their character equivalents. The digraph sequences %:,

<%, %>, <: and :> are replaced by #, {, }, [and], respectively. Some of the IDEs like GNU provides
an integrated digraph processor with a GNU GCC compiler while some of them like Turbo C
require a separate digraph processor.

33. Trigraph sequences
 in string literal
 Explanation:
 Trigraph sequences are replaced even within string literals. The trigraph sequence ??/ in the

string literal “Trigraph??/tsequences??/nin string literal” is replaced by the character equivalent \. Hence,
the string literal after the trigraph replacement becomes “Trigraph\tsequences\nin string literal”. The re-
sultant string when printed produces the mentioned output.

34. Digraph<:sequences:>
 Explanation:

Backward Reference: Refer to the explanation given in Answer number 4.

 The digraph sequences within string literals are not replaced.

The C Preprocessor 521

35. Will it be replaced? Yes/No?
 Explanation:
 Trigraph sequences are replaced within string literals. After processing, the trigraph processor

outputs:
 main
 {
 printf(“Will it be replaced?\tYes/No?”);
 }
 The processed code on execution outputs the above-mentioned result.

36. Compilation error “Unterminated string or character constant”
 Explanation:
 String literals cannot span multiple lines in this way.

37. Hello Readers!!
 Explanation:

Backward Reference: Refer to the explanation given in Section 8.3.2.

 During phase 2 of translation, the physical source lines in
 main()
 {
 printf(“Hello \
 Readers!!”);
 }
 are spliced to form the following logical source lines:
 main()
 {
 printf(“Hello Readers!!”);
 }
 Logical source lines are processed by the compiler. Hence, on execution, Hello Readers!! is the out-

put.

38. Hello Readers!!
 Explanation:

Backward Reference: Refer to the explanation given in Section 8.3.

 During phase 6 of translation, adjacent string literal constants are concatenated.

39. Hello Readers!!
 Explanation:

Backward Reference: Refer to the explanation given in Section 8.3.

522 Programming in C—A Practical Approach

 During phase 7 of translation, the white-space characters between two tokens are removed. After
the execution of this phase, the white space between the string literal tokens “Hello ” and “Readers!!”
is removed and they become adjacent to each other. During rescanning and further replacement,
these adjacent string literals are concatenated to form “Hello Readers!!”.

40. Compilation error
 Explanation:
 During translation, only the string literals are concatenated. str is not a string literal. A try to concat-

enate the string pointed to by str with the string literal “Readers!!” leads to the compilation error.

41. Compilation error
 Explanation:
 The compilation error is due to the erroneous definition of object-like macro PI.

Backward Reference: Refer to the explanation given in Section 8.3.4.1.2.

 There shall be a white-space character (blank-space character or horizontal tab-space character)
between the macro name and the replacement list in the definition of the object-like macro in-
stead of the character ‘=’.

42. Circumference of the circle is 12.560000
 Explanation:
 During phase 4 of translation, macro names are replaced by their replacement list. Thus, after

phase 4 of translation, the source code becomes:
 main()
 {
 int rad=2;
 printf(“Circumference of the circle is %f”, 2*3.14*rad);
 }
 The above code on execution outputs the above-mentioned result.

43. Compilation error
 Explanation:
 After macro expansion, the statement printf(“Circumference of the circle is %f”,2*PI *rad); becomes

printf(“Circumference of the circle is %f”,2*3.14;*rad);, which is not valid due to the occurrence of the semico-
lon after 3.14. It is always recommended to avoid the use of semicolon in or at the end of a macro
definition.

44. The size of var is 1
 Explanation:
 It is legal to use a reserve word as a macro name. However, this should be done with utmost care.

After the preprocessing stage, the declaration int var; becomes char var;. Since the memory allocation
is done by the compiler, to which the type of identifier var is char, it allocates 1 byte to it. Hence, the
size of var comes out to be 1.

45. Compilation error “Define directive needs an identifier”
 Explanation:
 Macro name should be identifiers. Since + and – are not valid identifiers, they cannot be used as

macro names.

The C Preprocessor 523

46. This will be printed
 The value is 200
 Explanation:
 After the macro expansion, the code becomes:
 main()
 {
 printf(“This will be printed\n”);
 200;
 printf(“The value is %d”,200);
 }
 The above code is free from any compilation error and on execution gives the above-mentioned

result.

47. The square value of 2 is 4
 Explanation:

Backward Reference: Refer to the explanation given in Section 8.3.4.1.

48. Compilation error “Undefined symbol x in function main”
 Explanation:
 SQUARE in the given piece of code does not become a function-like macro. It becomes an object-

like macro due to the white-space character between the macro name SQUARE and left parenthesis.
After macro expansion, the given piece of code becomes:

 main()
 {
 printf(“The square value of 2 is %d”,(x) x*x(2));
 }
 The preprocessed code on compilation gives ‘Undefined symbol x’ error because the symbol x has not

been declared. Even if x would have been declared, there would still be an error because expres-
sion (x) x*x(2) is not well formed.

49. The value of b is 20
 Explanation:
 After the macro expansion, the expression b=a/SQUARE(2) becomes b=a/2*2. Since the division and

the multiplication operators have the same precedence and are left-to-right associative, in the
given expression division is carried out first and then multiplication is done.

50. The value of b is 5
 Explanation:
 After the macro expansion, the expression b=a/SQUARE(2) becomes b=a/(2*2), which on evaluation

assigns 5 to the variable b. The result is different from the result of the execution in Answer
number 49 because the replacement list of macro SQUARE has been parenthesized.

51. The value of b is 17
 Explanation:
 After the macro expansion, the expression b=SQUARE(a+2) becomes b=a+2*a+2. Since the multipli-

cation operator has higher precedence as compared to the addition operator, multiplication is

524 Programming in C—A Practical Approach

carried out first. Hence, the right side of the expression b=5+2*5+2 evaluates to 17, which is then
assigned to b.

52. The value of b is 49
 Explanation:
 After the macro expansion, the expression b=SQUARE(a+2) becomes b=(a+2)*(a+2), which on evalua-

tion assigns 49 to the variable b. The result is different from the result of the execution in Answer
number 51 because all the occurrences of the parameters in the replacement list of macro SQUARE
has been parenthesized.

53. The value of b is 16
 Explanation:

Backward Reference: Refer Section 8.3.4.1.2.3 to answer this question.

54. Compilation error
 Explanation:
 The semicolon at the end of the macro definition is the cause of the compilation error. After the

macro expansion, the if controlling expression becomes ((a)*(a));==b. The expression is ill-formed
and on compilation leads to an error.

55. The values of a and b before swap are 20 10
 The values of a and b after swap are 10 20
 Explanation:
 After the expansion of the macro SWAP, the given piece of code becomes:
 main()
 {
 int a=20,b=10;
 printf(“The values of a and b before swap is %d %d\n”,a,b);
 a^=b; b^=a; a^=b;
 printf(“The values of a and b after swap is %d %d\n”,a,b);
 }
 The above code swaps the values of a and b.

56. Compilation error “Misplaced else in function main”
 Explanation:
 When the macro SWAP is replaced by the multiple statements (i.e. a^=b; b^=a; a^=b;), only the first

statement (i.e. a^=b;) forms the if body. The other two statements will be considered as the state-
ments next to the if statement. The else clause remains unmatched and leads to ‘Misplaced else’ error.

57. Swap the values of a and b only if a is greater than b
 Resultant values of a and b are 10 20
 Explanation:
 After the expansion of the macro SWAP, there will be a single statement in the if body. Hence, there

will be no error as in Answer number 56.

58. Swap the values of a and b only if a is greater than b
 Resultant values of a and b are 10 20

The C Preprocessor 525

 Explanation:
 After the expansion of the macro SWAP, there will be a single statement in the if body, which swaps

the value of the variables a and b.

59. The VALUE is 1000
 Explanation:
 No replacement is carried out if a name same as the macro name appears as a part of a string

literal constant or as a part of some other name.

60. Hello Readers!!
 Explanation:
 The stringizing operator # preceding a parameter of a function-like macro converts an argument

corresponding to the parameter into a string literal. In the given piece of code, STR(Hello Readers!!)
gets converted to a string literal “Hello Readers!!” and is printed.

61. Hello Readers!!
 Explanation:
 The stringizing operator # converts a sequence of white-space characters between the argument’s

preprocessing tokens into a single white-space character in the replaced string literal. In the
given piece of code, STR(Hello Readers!!) gets converted to “Hello Readers!!”.

62. Hello Readers!!
 Explanation:
 The stringizing operator # deletes the white-space characters before the first preprocessing token

and after the last preprocessing token of the argument. In the given piece of code, STR(Hello
Readers!!) gets converted to “Hello Readers!!” and is printed.

63. Hello “Read”ers!!
 Explanation:
 The stringizing operator # inserts backslash character (i.e. \) before every instance of “ and \

characters that appears in the argument while converting it into string literal. In the given piece
of code, STR(Hello “Read”ers!!) gets converted to “Hello \“Read\”ers!!”. This string is printed by the printf
function. Hence, the output is Hello "Read"ers!!.

64. THECPREPROCESSOR
 THECCOMPILER
 Explanation:
 The stringizing operator converts each argument corresponding to a parameter into a string lit-

eral, and the adjacent string literals get concatenated.

65. Third form of include directive
 Explanation:
 The stringizing operator converts stdio.h into “stdio.h”. After replacement, the source file inclusion

directive becomes #include“stdio.h”. This form of include directive is valid and searches the file stdio.h
firstly in the current working directory and then in the prespecified list of directories.

526 Programming in C—A Practical Approach

66. The value of var1 is 100
 Explanation:
 In a function-like macro definition, if in the replacement list, a ## preprocessing token appears

between two parameters, the parameters are replaced by the corresponding arguments and the
arguments are glued and pasted to form one token. In the given piece of code, the arguments var
and 1 corresponding to the parameters tk1 and tk2, respectively, are pasted to create one token, i.e.
var1. Hence, after preprocessing, the given piece of code becomes:

 main()
 {
 int var1=100;
 printf(“The value of var1 is %d”,var1);
 }
 This code on execution outputs the mentioned result.

67. Compilation error “Undefined symbol vari in function main”
 Explanation:
 During the preprocessing stage, the macro PASTE performs the token pasting and gets replaced by

vari. During the compilation stage, the name vari is found to be undefined and a compile time error
is raised.

68. The value of var0 is 100
 The value of var1 is 200
 The value of var2 is 300
 Explanation:
 During the preprocessing stage, the macro PASTE performs the token pasting and gets replaced

by var[i]. To C compiler var[i] is a well-formed expression having a subscript operator whose op-
erands are of array type and integer type. Hence, on execution the given code outputs the men-
tioned result.

69. 234 56 67 89 10 11
 Explanation:
 The preprocessing tokens ## paste the arguments corresponding to the parameters x, y and z. If

any of the argument corresponding to the parameter x, y or z is missing, it will be ignored. After
token pasting and macro expansion, p(2,3,4) will be replaced by one token, i.e. 234. Similarly, p(,5,6)
will be replaced by 56 as the missing argument corresponding to the parameter x is ignored.

70. Compilation error “Undefined symbol CONST in function main”
 Explanation:
 The undef directive causes the CONST preprocessor definition to be no longer defined as a macro

name. Hence, during the preprocessing stage, no macro expansion is carried out for CONST. After
the preprocessing stage, during the compilation stage, there will be a compilation error since the
name CONST has not been declared.

71. The value of CONST is 100
 Explanation:
 It is not erroneous to apply undef to an unknown identifier. Hence, #undef VAR is perfectly valid.

Since, VAR has not been previously defined using the define directive, this directive will be ignored
without any error or warning message.

The C Preprocessor 527

72. The value of CONST is 100
 Explanation:
 At the point of usage of CONST, CONST is defined as a macro with 100 as its replacement list. During

the preprocessing stage, macro CONST will be replaced by 100. And when the undef directive is en-
countered, it causes CONST to be no longer defined as a macro name.

73. The value of CONST is 100
 Explanation:
 A preprocessor directive can appear anywhere within a program.

74. The value of CONST is 10
 Explanation:
 A macro can be redefined anywhere in the program. The most recent definition of the macro is

considered while expanding the macro. If the redefinition of the macro is not identical, the com-
piler will issue a warning ‘Redefinition of ‘macroname’ is not identical’.

75. Place code corresponding to version 1
 Explanation:
 The ifdef directive tests whether a name has been defined as a macro or not. Since VER has already

been defined using the define directive, the printf statement that lies between #ifdef-#else will be com-
piled and later on executed.

76. Place code corresponding to version 1
 Explanation:
 #ifdef-#else-#endif is a condition compilation directive. The ifdef directive tests whether a name has

been defined using the define directive or not. Since VER has already been defined using the define di-
rective, the printf statement that lies between #ifdef-#else will be compiled and later on executed. The
text that lies between #else-#endif will not be compiled. Hence, there will be no compilation error.

77. Place code corresponding to version 1
 Explanation:
 Since, the constant expression (i.e. VER==1) of the if directive evaluates to true, the statements that

lie between #if-#else will be compiled and later on executed.

78. Compilation error “L-value required in function main”
 Explanation:
 The constant expression of the if directive is erroneous. A symbolic constant VER is placed on the

left side of the assignment operator, and this leads to a compilation error.

79. Compilation error “Constant expression required in function main”
 Explanation:
 Only a constant expression can be used with the if directive. Since a is a variable, a==VER is not a

constant expression and cannot be used with the if directive.

80. Place code corresponding to version 1
 Explanation:
 The const qualifier has been used to make a as a qualified constant. Hence, a==VER forms a constant

expression and can be used with the if directive.

528 Programming in C—A Practical Approach

81. Fatal: Error directive: OPERATING SYSTEM IS NOT KNOWN in function main
 Explanation:
 The defined operator checks whether a given identifier has been defined as a macro or not. It evalu-

ates to 1 if identifier has been defined. Since WINDOWS and LINUX have not been defined, the error
directive produces the customized error OPERATING SYSTEM IS NOT KNOWN.

82. Compilation error
 Explanation:
 By default, nested multi-line comments are not allowed in C language.

83. THE C PREPROCESSOR
 Explanation:
 The #pragma option -C has been used to make the nested multi-line comments allowed.

84. This function setups the prerequisites of function main
 This is function main
 The requisite value of variable is 200
 Explanation:
 The #pragma startup is used to make the function func execute before the function main. The function

func sets the value of global variable req_var_value to be 200. This value of global variable req_var_value
is accessed inside the function main.

85. Size of int: 2
 Size of char: 1
 Size of float: 4
 Size of double: 8
 Explanation:
 The macro size_of implements the functionality of the sizeof operator.

Answers to Multiple-choice Questions
86. d 87. a 88. c 89. a 90. a 91. b 92. b 93. d 94. b 95. b

Programming Exercises

Program 1 | Define a macro to find the greatest of the two given numbers. Illustrate the use of this macro
in a program

PE 8-1.c Output window

 1
2
3
4
5
6
7
8
9

10

//Macro to find greatest of the two numbers
#include<stdio.h>
#define GREATEST(a,b) (a>b?a:b)
main()
{
int num1, num2;
printf(“Enter two numbers:\t”);
scanf(“%d %d”, &num1, &num2);
printf(“The greatest of two numbers is %d”,GREATEST(num1,num2));
}

Enter two numbers: 12 10
The greatest of two numbers is 12

(Contd...)

The C Preprocessor 529

Program 2 | Define a macro to check whether a given number is even or odd. Illustrate the use of this
macro in a program

PE 8-2.c Output window

 1
2
3
4
5
6
7
8
9

10

//Macro to check whether a given number is even or odd
#include<stdio.h>
#define EVENODD(a) ((a)%2==0?”even”:”odd”)
main()
{
int num;
printf(“Enter a number to be checked:\t”);
scanf(“%d”, &num);
printf(“%d is an %s number”, num, EVENODD(num));
}

Enter a number to be checked: 12
12 is an even number

Output window
(second execution)

Enter a number to be checked: 5
5 is an odd number

Program 3 | Define a macro to find the harmonic mean of two numbers. Illustrate the use of this macro
in a program

PE 8-3.c Output window

 1
2
3
4
5
6
7
8
9

10

//Macro to find the harmonic mean of two numbers
#include<stdio.h>
#define HMEAN(a,b) ((float)(2*(a)*(b))/((a)+(b)))
main()
{
int num1, num2;
printf(“Enter two numbers:\t”);
scanf(“%d %d”, &num1, &num2);
printf(“Harmonic mean of %d and %d is %f”,num1, num2, HMEAN(num1,num2));
}

Enter two numbers: 4 6
Harmonic mean of 4 and 6 is 4.800000

Program 4 | Define a macro to swap the contents of two variables. Illustrate the use of this macro in a
program

PE 8-4.c Output window

 1
2
3
4
5
6
7
8
9

10
11
12

//Macro to swap the contents of two variables
#include<stdio.h>
#defi ne SWAP(a,b) (a^=b^=a^=b)
main()
{
int num1, num2;
printf(“Enter two numbers:\t”);
scanf(“%d %d”, &num1, &num2);
printf(“Before swapping, the value of num1=%d and num2=%d\n”,num1,num2);
SWAP(num1, num2);
printf(“After swapping, the value of num1=%d and num2=%d”,num1,num2);
}

Enter two numbers: 4 6
Before swapping, the value of num1=4 and num2=6
After swapping, the value of num1=6 and num2=4

530 Programming in C—A Practical Approach

Program 5 | Define a nested macro to find the minimum of three integers. Illustrate the use of this macro
in a program

PE 8-5.c Output window

 1
2
3
4
5
6
7
8
9

10
11

//Nested macro to fi nd the minimum of three integers
#include<stdio.h>
#defi ne MIN2(a,b) (a<b?a:b)
#defi ne MIN3(a,b,c) (MIN2(a,b)<c?MIN2(a,b):c)
main()
{
int a, b, c;
printf(“Enter three numbers:\t”);
scanf(“%d %d %d”, &a, &b, &c);
printf(“Minimum of %d, %d and %d is %d”, a, b, c, MIN3(a,b,c));
}

Enter three numbers: 4 1 6
Minimum of 4, 1 and 6 is 1

Program 6 | Define a macro to check whether a given three-digit number is an Armstrong number or not.
Illustrate the use of this macro in a program

PE 8-6.c Output window

 1
2
3
4
5
6
7
8
9

10
11

//Nested macro to check whether a given three digit number is an Armstrong number or not
#include<stdio.h>
#define POW3(x) ((x)*(x)*(x))
#define ARM(n) ((n==POW3(n%10)+POW3(n/10%10)+POW3(n/100%10)) ? “is”:”is not”)
main()
{
int num;
printf(“Enter a three digit number:\t”);
scanf(“%d”, &num);
printf(“%d %s an Armstrong number”, num, ARM(num));
}

Enter a three digit number: 153
153 is an Armstrong number

Output window
(second execution)

Enter a three digit number: 127
127 is not an Armstrong number

The C Preprocessor 531

Test Yourself
1. Fill in the blanks in each of the following:

a. A translator that converts a program written in a high-level language into an equivalent pro-
gram in a machine-level language is known as ____________.

b. The set of characters available when the source program file is executing is called
____________.

c. The first two characters of a trigraph sequence are ____________.
d. The input character sequence x+++++y is divided into the following stream of tokens

________________________.
e. ____________ is a facility provided by a C preprocessor, by which a token can be replaced by

the user-defined sequence of characters.
f. Object-like macros are also known as ____________.
g. The ____________ directive is used to configure some of the compiler options.
h. The only directive that has no effect is ____________.
i. ____________ is the smallest element of the language during the third to sixth phase of

translation.
j. The C tokenizer always tries to create ____________ possible token.

2. State whether each of the following is true or false. If false, explain why.
a. During the preprocessing stage, each instance of backslash character immediately followed

by a new-line character is deleted.
b. The keywords are not preprocessing tokens. Thus, it is possible to use a keyword as an iden-

tifier name in a preprocessor directive, e.g. #define int char.
c. The preprocessor directives are terminated with a semicolon.
d. The preprocessor directives can only appear before the function main.
e. The concatenation operator (i.e. ##) can appear at the beginning or at the end of the replace-

ment list in a macro definition.
f. ## is one token and there should be no white-space character between two ## characters.
g. A predefined macro cannot appear immediately following a define directive.
h. A predefined macro can be undefined using an undef directive.
i. If the identifier specified with the undef directive is not currently defined as a macro, there will

be a compilation error.
j. The scope of a macro is the block in which it is defined.
k. Macro replacement is carried out even within a string literal constant.

3. Programming exercises:
a. Define a macro to check whether a given year is a leap year or not. Illustrate the use of this

macro in a program.
b. Define a macro to find the sum of digits of a three-digit number. Illustrate the use of this

macro in a program.
c. Define a macro to check whether a given three-digit number is perfect or not. Illustrate the

use of this macro in a program.
d. Define a macro that does not make use of a modulus operator to check whether a given num-

ber is even or not. Illustrate the use of this macro in a program.
e. Define a macro to find the maximum of three integers. Illustrate its use.
f. Define a macro that does not make use of a bitwise XOR operator to swap the contents of two

variables. Illustrate its use.

Chapter 8.indd 531Chapter 8.indd 531 28/02/2010 4:16:00 PM28/02/2010 4:16:00 PM

STRUCTURES, UNIONS,
ENUMERATIONS AND BIT-FIELDS

9

Learning Objectives

In this chapter, you will learn about:

User-defined data types
Structures
How to define new data types using structures
 How to declare objects of the newly created
structure type
 Various operations that can be applied on the
objects of a structure type
 Arrays, pointers, functions and structures used
in conjunction
 Creating syntactically convenient name for user-
defined types
Unions
Difference between structures and unions
Application of unions in interrupt programming
Enumerations
 Storing information less than a byte by making
use of bit-fields

534 Programming in C—A Practical Approach

9.1 Introduction
In previous chapters, you have seen that C language provides a rich set of primitive and derived
data types for the efficient storage and manipulation of data. In case these data types do not suit
your requirements, C language also provides the flexibility to create new data types. These data
types are known as user-defined data types and can be created by using structures, unions and
enumerations. In chapter 4, you have learnt that arrays can be used for the storage of homoge-
neous data. However, they cannot be used for the storage of data of different types. The data
of different types can be grouped together and stored by making use of structures. One of the
similarities between arrays and structures is that both of them contain a finite number of ele-
ments. Thus, array types and structure types are collectively known as aggregate types.

Unions are similar to structures in all aspects except the manner in which their constitu-
ent elements are stored. In structures, separate memory is allocated to each element, while in
unions all the elements share the same memory.

Enumerations help you in defining a data type whose objects can take a limited set of
values. These values are referred to by names, known as enumerators, which are more conve-
nient to handle. In this chapter, I will tell you how to define new data types using structures,
unions and enumerations. I will also let you know how to declare and manipulate objects of
these newly defined data types.

9.2 Structures
A structure is a collection of variables under a single name and provides a convenient way of
grouping several pieces of related information together. Unlike arrays, it can be used for the
storage of heterogeneous data (i.e. data of different types). There are three aspects of working
with structures:

Defining a structure type, i.e. creating a new type1.
Declaring variables and constants (i.e. 2. objects) of the newly created type
Using and performing operations on the objects of the structure type3.

9.2.1 Defining a Structure
The general form of structure-type definition (or just structure definition) is:

[storage_class_specifier][type_qualifier] struct [structure_tag_name]
 {
 type member_name1[, member_name11, …];
 [type member_name2[, member_name22, …]];
 ………
 } [variable_name];

The important points about structure definition are as follows:
1. The terms enclosed within the square brackets are optional and might not be present in

a structure definition statement. However, the terms shown in bold are the mandatory
parts of the structure definition.

2. A structure definition consists of the keyword struct followed by an optional identifier
name, known as structure tag-name, and a structure declaration-list enclosed within
the braces. The examples of the structure definition given in Table 9.1 are valid.

Structures, Unions, Enumerations and Bit-fields 535

Table 9.1 | Structure definitions with and without tag-name

struct book // Structure tag-name is book
{
 char title [25]; // Structure declaration-list
 char author[20];
 int pages;
 float price;
};

(a)

struct // Structure tag-name not present
{
 char title[25]; // Structure declaration-list
 char author[20];
 int pages;
 float price;
};

(b)

3. The structure definition defines a new type, known as structure type. For example, in
Table 9.1(a) the structure type is struct book. After the definition of the structure type, the
keyword struct is used to declare its variables.

4. Since the tag-name of a structure is an identifier, all the rules discussed in Section 1.5.1
for writing an identifier name are applicable for writing the structure tag-name. If the
tag-name is present, it will act as a name for the newly created data type.

5. The newly created type (i.e. tag name of the defined structure) is visible, after its defini-
tion, only in the scope in which it is defined. Hence, it is not possible to declare objects
of the defined structure type outside the scope in which it (i.e. its tag name) is visible.
The piece of code in Program 9-1 illustrates this fact.

Line Prog 9-1.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

//The defined structure type is visible only in the scope in which it is defined
#include<stdio.h>
func(); // Declaration of the function func
main()
{
 struct coord // The type struct coord is defined in the scope local to the function main
 {
 int x,y;
 };
 struct coord pt1, pt2; // Declaring variables pt1 and pt2 of the created type struct coord
// Other statements in the function main
// ………………………….
}
func()
{
struct coord pt3; // The tag name coord is not visible here
// Other statements in the function func
// ………………………….
}

Compilation errors
“Undefined structure ‘coord’ in
function func()”
“Size of ‘pt3’ is unknown or zero in
function func()”
Remarks:
•  Since the structure coord

is defined in the func-
tion main, it is visible
only in the function
main

•  It is possible to declare
the variables of this
newly created type in
the scope local to the
function main, but not
outside this scope

•  Hence, the declaration
of the variable pt3 of
type struct coord in the
scope local to the func-
tion func leads to the
compilation error

Program 9-1 | A program to illustrate that a defined structure type is visible only in the scope in which it is
defined

536 Programming in C—A Practical Approach

6. The newly created type is incomplete until the closing brace of the structure declara-
tion-list is encountered. The newly created type is complete thereafter.

7. The structure declaration-list consists of declarations of one or more variables, possi-
bly of different types. The variable names declared in the structure declaration-list are
known as structure members or fields. Structure members can be variables of the basic
types (e.g. char, int, float, etc.), pointer types (e.g. char*, etc.) or aggregate type (i.e. arrays
or other structure types). They are declared in the same way as normal identifiers are
declared.

•  An incomplete type describes an object but lacks the information needed to determine its
size. Due to the lack of information about the size, an object of incomplete type cannot be
created.

•  Array type and structure type are collectively known as aggregate type.

8. A structure declaration-list cannot contain a member of void type or incomplete type
or function type. Hence, a structure definition cannot contain an instance of itself.
However, it may contain a pointer† to an instance of itself. Such a structure is known as
a self-referential structure.

9. In principle, a structure definition can have an infinite number of members. However,
practically the number of members in a single structure definition depends upon the
translation limits of the compiler.

Forward Reference: Translation limits mentioned in ANSI/ISO specifications (Appendix C).

The interpretation of the above-mentioned rules is shown in Table 9.2.

Table 9.2 | Rules regarding the types of structure members

Form of data Structure definition

a.
a b c

Types char int float

struct record
{ // Structure declaration-list consists of variables of different types
char a;
int b;
float c;
};

(Valid)
A structure can have data of different types

† Refer Section 9.3 for a description on pointers to structures.

(Contd...)

Structures, Unions, Enumerations and Bit-fields 537

b. A box contains two boxes struct box
{
struct box a; // Type struct box is incomplete until the closing brace is enco-
struct box b; // -untered. Hence, a member of type struct box cannot be created
};      // Type struct box is complete this point onwards

(Invalid)
A structure cannot contain an instance of itself

c. A name consists of two
names: first name and last
name.

first_name last_name

A phonebook entry con-
sists of the name of a
person and his mobile
number.

person_name mobile_no

struct name
{
 char first_name[20];
 char last_name[20];
}; // Type struct name is complete now onwards
struct phonebook_entry
{
 struct name person_name; // Member of complete type struct name
 char mobile_no[10]; // can be created
};

(Valid)
A structure can contain members of other complete types

d. A node of a linked list con-
sists of integer data and a
pointer to a node.

data ptr data ptr

 Node 1     Node 2
   Linked list

struct node
{
 int data;
 struct node* ptr; // Structure contains a pointer to an instance of itself.
}; // This is an example of a self-referential structure

(Valid)
A structure can contain a pointer to itself

10. It is possible to use the shorthand declaration to declare two or more structure mem-
bers of the same type. The examples of the structure definition given in Table 9.3 are
valid.

Table 9.3 | Shorthand declaration used to declare structure members of the same type

struct book
{
 char title [25], author[20]; // Shorthand declaration
 int pages;
 float price;
};

(a)

struct two_dimensional_coordinate
{
 int x,y; // Shorthand declaration
};

(b)

11. The name of a structure member can be the same as the structure tag-name without any
conflict, since they can always be distinguished from the context. However, the names
of two structure members in a structure declaration-list can never be the same.

538 Programming in C—A Practical Approach

12. Two different structure types may contain members of the same name without any
conflict.

13. It is important to note that a structure definition does not reserve any space in the
memory.

A structure definition does not reserve any memory space for the structure members in the
data segment but since structure definition becomes a part of the program code, it takes some
space in the code segment.

14. Since structure definition does not reserve any memory space for the structure mem-
bers, it is not possible to initialize the structure members during the structure defini-
tion. The structure definitions in Table 9.4 are not valid.

Table 9.4 | Initialization of structure members is not allowed during the structure definition

struct book
{
 char title [30]=”India 2020: A Vision for the new millennium ”;
 char author[20]=”A P J Abdul Kalam”;
 int pages=400;
 float price=225.50;
};

(a)

struct two_dimensional_coordinate
{
 int x=0;
 int y;
};

(b)

15. If a structure definition does not contain a structure tag-name, the created structure
type is unnamed. The unnamed structure type is also known as an anonymous struc-
ture type. It is not possible to declare its objects (i.e. variables and constants) after its
definition. Thus, the objects of unnamed or anonymous structure type should be de-
clared only at the time of structure definition.

 The declaration of the structure variables at the time of unnamed structure definition is
given in Table 9.5.

Table 9.5 | Declaration of structure variables at the time of structure definition

struct
{
 char title [25];
 char author[20];
 int pages;
 float price;
} book1;
// Declaration of structure variable book1

(a)

struct
{
 int x;
 int y;
} pt1, pt2; // Declaration of structure variables pt1, pt2

(b)

 The declaration of structure constants at the time of unnamed structure definition is
given in Table 9.6.

Structures, Unions, Enumerations and Bit-fields 539

Table 9.6 | Declaration of structure constants at the time of structure definition

const struct
{
 char title [25];
 char author[20];
 int pages;
 float price;
} book={“Programming C”, “Anirudh”, 450, 225.50};
// Creation of qualified constant book

(a)

struct
{
 char title [25];
 char author[20];
 int pages;
 float price;
} const book={“Programming C”, “Anirudh”, 450, 225.50};
// Creation of qualified constant book

(b)

i It is always better to provide a structure tag-name while creating a structure type. The tag-
name is convenient for declaring the variables and constants of the defined structure type
later in the program.

16. A structure-type definition can optionally have a storage class specifier and type quali-
fiers. However, the type qualifiers and storage class specifier (except typedef†) should
only be used in a structure definition if the structure objects are also declared at the
same time. The piece of code in Program 9-2 illustrates this fact.

Line Prog 9-2.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12

//Use of storage class specifier while defining a structure type
#include<stdio.h>
static struct point
{
 int x;
 int y;
};
main()
{
 struct point pt1;
 // Other statements
 }

Compilation error “Storage class ‘static’ not allowed here”.
Remark:
•  The storage class specifiers except typedef

should not be used in a structure-type
definition if the objects are not declared
at the time of structure definition

Program 9-2 | A program illustrating that a storage class specifier except typedef should not be used while
defining a structure type if its objects are not declared at the same time

17. Since a structure definition is a statement, it must always be terminated with a semicolon.

9.2.2 Declaring Structure Objects
Variables and constants (i.e. objects) of the created structure type can be declared (actually
defined) either at the time of structure definition or after the structure definition. The declara-
tion of variables and constants at the time of structure definition has been discussed in Section
9.2.1. Variables and constants of the created structure type can be created after the structure

† Refer Section 9.7 for a description on using typedef storage class specifier in structure definition or with
structure object declaration.

540 Programming in C—A Practical Approach

definition only if the defined structure type is named or tagged. The general form of declaring
structure objects is:

[storage class specifi er] [type_qualifi er] struct named_structuretype identifi er_name [=intialization_list [,…]];

The important points about the structure object declaration are as follows:
1. The terms enclosed within the square brackets are optional and might not be present in

a structure object declaration statement. The terms shown in bold are the mandatory
parts of the structure object declaration.

2. A structure object declaration consists of:
i. The keyword struct for declaring structure variables. It can also be used in conjunc-

tion with const qualifier for declaring structure constants.
ii. The tag-name of the defined structure type.
iii. Comma-separated list of identifiers (i.e. variable names or constant names). A vari-

able can optionally be initialized by providing an initializer. However, initialization
of a constant is must.

iv. A terminating semicolon.

 The following structure variable declarations are valid:
 struct book c_book, algorithm_book; // Structure type book defined in Table 9.1(a)
 struct phonebook_entry entry; // Structure type phonebook_entry defined in Table 9.2(c)
 struct two_dimensional_coordinate pt1={2,3}, pt2; // Structure type two_dimensional_coordinate de-

//  fined in Table 9.3(b). The structure vari-
//  able pt1 //is initialized.

The following structure constant declarations are valid:
 const struct book c_book, algorithm_book={“C Programming”, “Anirudh”, 450, 225.50};
 const struct phonebook_entry entry={{“Mohit”,”Virmani”}, “1234567899”};
 const struct two_dimensional_coordinate pt1={2,3}, pt2={4,5};

3. Note that, in C language, the objects of the defined structure type cannot be declared with-
out using the keyword struct. However, this rigidity is relaxed in C++ language. If it is in-
convenient to use the keyword struct every time to declare an object of the defined structure
type, use the storage class specifier typedef§ to create a syntactically convenient alias name
for the defined structure type so that the keyword struct need not be used again and again.

4. Upon the declaration of a structure object, the amount of the memory space allocated to it
is equal to the sum of the memory space required by all of its members. For example, the
amount of memory allocated to a variable of the structure type struct book defined in Table
9.1 (a) is 51 bytes (if the integer takes 2 bytes) or 53 bytes (if the integer takes 4 bytes). The
number of bytes of the memory space occupied by an object of the structure type also de-
pends upon how members of the structure object are stored¶ in the memory. The memory
space allocated to a structure object can be determined by using the sizeof operator.

5. The structure members are assigned memory addresses in increasing order, with the
first structure member starting at the beginning address of the structure itself. This can
be checked by applying address-of operator on a structure object and its members as

§ Refer Section 9.7 for a description on the usage of typedef storage class specifier with structures.
¶ Refer Section 9.2.3.1.3 for a description on the alignment of structure members.

Structures, Unions, Enumerations and Bit-fields 541

done in Program 9-7 in Section 9.2.3.1.3. Whether structure members are stored in con-
secutive memory locations or not, depends upon how the members of a structure object
are aligned (refer footnote¶ on previous page).

6. Initializing members of a structure object: Like variables and array elements, the
members of a structure object can also be initialized at the compile time. The syntactic
rules about structure member initialization are as follows:
i. The members of a structure object can be initialized by providing an initialization

list. An initialization list is a comma-separated list of initializers.
ii. The order of initializers must match the order of structure members in the structure

definition.
iii. The type of each initializer should be the same as the type of corresponding struc-

ture member in the structure definition. If the type of an initializer is not the same as
the type of the corresponding structure member, implicit type casting will be done if
types are compatible. If types are not compatible, there will be a compilation error.

iv. The number of initializers in an initialization list can be less than the number of
members in a structure object and if it happens, the leading structure members (i.e.
occurring first) will be initialized with the initializers in the initialization list. The
rest of the members will automatically be initialized with 0 (if they are of integer
type), 0.0 (if they are of floating point type), ‘\0’ (if they are of char type) and null
pointer (if they are of pointer type). This rule is recursively applied to initialize all
the elements/members of a structure member (if it is of aggregate type).

v. Nested structures and arrays can be initialized by using nested braces.

 Examples of structure member initialization are as follows:
 struct book c_book={“My Life”, “C Motilal”, 400, 210.50};
 struct phonebook_entry entry={{“Rajesh”,”Kumar”}, “9814000561”};
 struct two_dimensional_coordinate pt1={2}, pt2={2,3};

i It is important to note that the structure members cannot be initialized during the structure
definition; however, the members of a structure object can be initialized by providing an
initialization list.

7. A structure object declaration can optionally have a type qualifier. If the type qualifiers
are used while declaring a structure object, they are applied to all the members of the
structure object. The piece of code in Program 9-3 illustrates this fact.

Line Prog 9-3.c Output window

1
2
3
4
5
6
7
8
9

//Using type qualifiers while declaring a structure object
#include<stdio.h>
struct point
{
 int x;
 int y;
};
main()
{

Compilation errors “Cannot modify a constant object
in function main()”
Remarks:
•  To access the members of a structure

object, the member access operator,
i.e. dot operator is used. Refer Section
9.2.3.1.1 for a description on how to
access members of a structure object
using the dot operator

(Contd...)

542 Programming in C—A Practical Approach

Line Prog 9-3.c Output window

10
11
12
13
14

 const struct point pt={2,3};
 pt.x=20;
 pt.y=40;
 // Other statements...
}

•  The type qualifier const is applied to
all the members of the structure ob-
ject. Hence, the type of pt.x and pt.y is
const int and thus, it is not possible to
place them on the left side of the as-
signment operator

Program 9-3 | A program that illustrates the use of type qualifiers while declaring a structure object

8. A structure object declaration can optionally have a storage class specifier. The impor-
tant points about the usage of a storage class specifier in a structure object declaration
are as follows:

i. If a structure object is declared with a storage class specifier other than typedef, the
properties resulting from the storage class specifier except with respect to linkage,
also apply to the members of the object, and so on recursively for any aggregate
member object present in the structure definition. The piece of code in Program 9-4
illustrates this fact.

Line Prog 9-4.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Declaring structure object with a storage class specifier other than
//typedef
#include<stdio.h>
struct point
{
 int x;
 int y;
};
main()
{
 struct point pt1;
 static struct point pt2;
 printf(“The coordinates of pt1 are %d,%d\n”, pt1.x, pt1.y);
 printf(“The coordinates of pt2 are %d,%d\n”, pt2.x, pt2.y);
}

The coordinates of pt1 are 9495,19125
The coordinates of pt2 are 0.0
Remarks:
•  Since the structure object pt1 is local

to the function main and is not initial-
ized, its members contain garbage
values

•  Since the structure object pt2 is
declared with static storage class
qualifier, all the properties result-
ing from it except linkage, are ap-
plicable to all the members of the
structure object pt2

•  Thus, all the members of the struc-
ture object pt2 are initialized to zero,
since static storage class specifier has
been used

•  To access the members of a structure
object, the member access operator,
i.e. dot operator is used. Refer Section
9.2.3.1.1 for a description on how to
access members of a structure object
using the dot operator

Program 9-4 | A program that illustrates the declaration of a structure object with a static storage class specifier

ii. The structure objects declared with register storage class specifier are treated as auto-
matic (i.e. auto) objects.

Structures, Unions, Enumerations and Bit-fields 543

9.2.3 Operations on Structures
The operations that can be performed on an object (i.e. variable or constant) of a structure type
are classified into two categories:

1. Aggregate operations
2. Segregate operations

9.2.3.1 Aggregate Operations
An aggregate operation treats an operand as an entity and operates on the entire operand as
a whole instead of operating on its constituent members. The four aggregate operations that
can be applied on an object of a structure type are as follows:

1. Accessing members of an object of a structure type
2. Assigning a structure object to a structure variable
3. Address of a structure object
4. Size of a structure (i.e. either structure type or a structure object)

9.2.3.1.1 Accessing Members of an Object of a Structure Type
The members of a structure object can be accessed by using:

1. Direct member access operator (i.e. ., also known as dot operator).
2. Indirect member access operator†† (i.e. ->, also known as arrow operator).

The important points about the use of a dot operator are as follows:
1. The dot operator accesses a structure member via structure object name while the arrow

operator accesses a structure member via a pointer to the structure. The general form of
using a dot operator is:

structure_object_name.structure_member_name
2. The dot operator is a binary operator.
3. The first operand of the dot operator should have qualified or unqualified structure

type and the second operand should be the name of a member of that type. The piece of
code in Program 9-5 illustrates the use of the dot operator.

Line Prog 9-5.c Output window

1
2
3
4
5
6
7
8
9

10
11

//Use of dot operator
#include<stdio.h>
struct coord // Definition of type struct coord
{ // Creation of new type for 2-D coordinate
int x,y;
};
main()
{
 struct coord pt1={4,5}; // pt1 is a variable of type struct coord
 const struct coord pt2={2,3}; // pt2 is a qualified constant of type struct coord
 int tx, ty;

Enter values of translation vector:
4 2
After translation, coordinates are:
Pt1 (8,7)
Pt2 (6,5)
Remarks:
•  In line number 15, the

first operand of each
dot operator is of un-
qualified structure type
(i.e. struct coord)

†† Refer Section 9.3.2 for a description on indirect member access operator.

(Contd...)

544 Programming in C—A Practical Approach

Line Prog 9-5.c Output window

12
13
14
15
16
17

 printf(“Enter values of translation vector:\n”);
 scanf(“%d %d”,&tx, &ty);
 printf(“After translation, coordinates are:\n”);
 printf(“Pt1 (%d,%d)\n”, pt1.x+tx, pt1.y+ty);
 printf(“Pt2 (%d,%d)\n”, pt2.x+tx, pt2.y+ty);
}

•  In line number 16, the
first operand of each
dot operator is of quali-
fied structure type (i.e.
const struct coord)

Program 9-5 | A program to illustrate the use of a direct member access operator

9.2.3.1.2 Assigning a Structure Object to a Structure Variable
Like simple variables, a structure variable can be assigned with or initialized with a structure
object (i.e. variable or constant) of the same structure type. The piece of code in Program 9-6
illustrates the assignment and initialization of a structure variable.

Line Prog 9-6.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

//Initialization and assignment of a structure variable
#include<stdio.h>
struct book // Structure definition
{
 char title[25];
 char author[20];
 int price;
};
main()
{
 //Initializing a structure variable by providing an initialization list
 struct book b1={“Cutting Stone”, “Abraham”, 200}:
 //Initializing a structure variable with another structure variable
 struct book b2=b1;
 // Declaring an uninitialized structure variable
 struct book b3;
 b3=b2; // Assigning a structure variable to a structure variable
 printf(“%s by %s is of Rs. %d rupees\n”, b1.title, b1.author, b1.price);
 printf(“%s by %s is of Rs. %d rupees\n”, b2.title, b2.author, b2.price);
 printf(“%s by %s is of Rs. %d rupees\n”, b3.title, b3.author, b3.price);
 }

Cutting Stone by Abraham is of Rs. 200
Cutting Stone by Abraham is of Rs. 200
Cutting Stone by Abraham is of Rs. 200
Remarks:
•  In line number 12, the struc-

ture variable b1 is initialized
by providing an initializa-
tion list

•  In line number 14, the struc-
ture variable b2 is initialized
with the structure variable
b1

•  In line number 17, the struc-
ture variable b2 is assigned
to the structure variable b3

•  The assignment operator
copies the values of all the
members of a structure ob-
ject present on its right side
to the corresponding mem-
bers of a structure variable
present on its left side

•  Hence, printing the values
of members of all the three
structure variables gives the
same result

Program 9-6 | A program that illustrates the initialization and assignment of a structure variable

The important points about the structure variable assignment are as follows:
1. Unlike arrays, a structure variable can be assigned with or initialized with a structure

object of the same type. If the type of assigning or initializing structure object is not the

Structures, Unions, Enumerations and Bit-fields 545

same as the type of structure variable on the left side of the assignment operator, there
will be a compilation error. Note that it is not even possible to explicitly type cast a
structure type to another structure type.

2. The assignment operator assigns (i.e. copies) values of all the members of the structure
object on its right side to the corresponding members of the structure variable on its left
side one by one. Hence, the assignment operator, when applied on structure variables
performs member-by-member copy.

3. The structure assignment does not copy any padding bits.‡‡

4. Due to member-by-member copy behavior of the assignment operator on the structure
variables, structure objects can be passed to functions§§ by value and can also be re-
turned from functions.

9.2.3.1.3 Address-of a Structure Object
The address-of operator when applied on a structure object gives its base (i.e. starting) address.
It can also be used to find the addresses of the constituting members of a structure object. The
piece of code in Program 9-7 illustrates the use of the address-of operator on a structure object
and its constituting members.

Prog 9-7.c Memory contents Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Address-of operator and structures
#include<stdio.h>
struct complex
{
int re, im;
};
main()
{
 struct complex c1={2,3};
 const struct complex c2={4,5};
 printf(“Address of c1 is %p\n”,&c1);
 printf(“Address of its real part is %p\n”,&c1.re);
 printf(“Address of its imaginary part is %p\n”,&c1.im);
 printf(“Address of c2 is %p\n”,&c2);
 printf(“Address of its real part is %p\n”,&c2.re);
 printf(“Address of its imaginary part is %p\n”,&c2.im);
}

c1

c1.re c1.im

2 3

222C 222E

c2

c2.re c2.im

4 5

223C 223E

Address of c1 is 233F:222C
Address of its real part is 233F:222C
Address of its imaginary part is 233F:222E
Address of c2 is 233F:223C
Address of its real part is 233F:223C
Address of its imaginary part is 233F:223E
Remarks:
•  The memory allocation is purely

random, and the result of the ex-
ecution may vary for executions
at different times or on different
machines

•  The address of the first struc-
ture member is the same as the
address of the structure object

•  Thus, the first structure mem-
ber starts at the beginning ad-
dress of the structure itself

Program 9-7 | A program that illustrates the use of the address-of operator on structures

The output of the address-of operator depends upon how the members of a structure object
are stored in the memory. There are two different ways of storing the members of a structure
object:

‡‡ Refer Section 9.2.3.1.3 for a description on structure padding.
§§ Refer Section 9.6.2 for a description on passing structure objects to functions by value.

Chapter 9.indd 545Chapter 9.indd 545 28/02/2010 4:35:08 PM28/02/2010 4:35:08 PM

546 Programming in C—A Practical Approach

a. Byte aligned: If the members of a structure object are byte aligned, then every structure
member starts from a new byte (i.e. they can appear at any byte boundary). In byte
alignment, the data members are stored next to each other. Storage of members of a
structure variable using byte alignment is shown in Figure 9.1.

Definition Memory contents

struct type
{
 char a;
 int b;
 char c;
 float d;
}var;

var
a b c d

1001 1011 1100 1001 1111 1101 1010 1000

2000 2001 2002 2003 2004 2005 2006 2007

In byte alignment, data members are placed next to each other

char takes 1 byte, int takes 2 bytes and float takes 4 bytes in the memory
Note that only 4 bits are shown in the cells above but actually 8 bits are present in
each cell

Figure 9.1 | Storage of the members of a structure object using byte alignment

b. Machine-word boundary aligned: Most of the machines access objects of certain types
faster if they are aligned properly. In order to increase the performance of the code on such
machines, the compiler aligns the members of a structure object with the storage boundar-
ies whose addresses are multiple of their respective sizes. This is shown in Figure 9.2.

Definition Memory contents

struct type
{
 char a;
 int b;
 char c;
 int d;
}var;

var
a b c d

1001 H 1011 1100 1001 H 1111 1101

2400 2401 2402 2403 2404 2405 2406 2407

H represents holes.
char takes 1 byte, int takes 2 bytes and float takes 4 bytes in the memory

Figure 9.2 | Storage of members of a structure object using machine-word boundary alignment

 The character members can appear at any byte boundary (since the size of character
type is 1). Let us assume that the structure member a of the type struct type (as shown in
Figure 9.2) gets allocated at the memory address 2400. Since the size of the integer type
is 2, the member b must appear immediately at the next even-byte boundary. Thus, the
memory location 2401 is not a valid start location for the structure member b. Hence, it
starts from the storage boundary with the memory address 2402. Similarly, the next two
members of the structure object var are stored.

 The vacant spaces (as shown in Figure 9.2) in between the members of a structure, if
they are machine-word boundary aligned, are known as holes. The holes contain ran-
dom bytes known as padding bytes. Thus, the process by which the C compiler inserts
unused bytes after the structure members to ensure that each member is appropriately
aligned is called structure padding. Consider another example given in Figure 9.3.

Structures, Unions, Enumerations and Bit-fields 547

Definition Memory contents

struct newtype
{
 char a;
 double b;
}var;

var

a b

1001 H H H H H H H 1101 0010 1101 1101 0010 1001 1011 1100

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 240A 240B 240C 240D 240E 240F

H represents holes.
char takes 1 byte and double takes 8 bytes

Figure 9.3 | Another example of storing a structure object using machine-word boundary alignment

 Let us assume that the character member a of the type struct newtype is stored at the memo-
ry location 2400. The size of the member b is 8 bytes, since it is of type double. Hence, it can
only start from a storage boundary whose address is a multiple of 8. Thus, the structure
member b is placed at the memory address 2408 and there are seven holes (i.e. padding
bytes) between members a and b.

A character object can be allocated at any memory address and have no alignment
requirement. Thus, if in Figure 9.3, the character member a gets allocated at the memory
address 2405 instead of the memory address 2400, the number of padding bytes required
would have been two and if it gets allocated at 2407, no padding byte would have been
required. Does it mean that the number of padding bytes required to store objects of a
given structure type is variable?

 No, for a given compiler and the underlying hardware configuration, the number of
padding bytes required to store objects of a given structure type is fixed. A structure
member whose address requirement is a higher multiple than another is said to have
stricter alignment. Thus, in Figure 9.3, the member b has stricter alignment than the
member a. Also, each structure object must be as strictly aligned as its most strictly
aligned member. Thus, an object of the structure type defined in Figure 9.3 should be
as strictly aligned as its member b and can only start from the memory locations that are
divisible by 8. Therefore, the objects of the structure type defined in Figure 9.3 can start
from memory addresses like 2400, 2408, etc. Hence, if a structure object starts from any
of these memory locations, the number of padding bytes required would be 7.

Interestingly, if you think that 7 bytes are too much to be wasted for padding, you
can place a limit on the amount of padding that can be done by the compiler. The
amount of padding can be restricted by setting¶¶ a pack size value. By default, the
pack size in Turbo C 3.0 and 4.5 is 2 and is 4 in MS-VC++ 6.0. Thus, if the members
of a structure object are machine-word aligned, they can appear at the storage
boundaries that have addresses that are either multiple of their respective sizes
or the pack size, whichever is smallest. Therefore, if the structure object shown in
Figure 9.3 is stored using Turbo C 3.0/4.5, there will be two holes between the mem-
bers a and b and if it is stored using MS-VC++6.0, there will be four holes (since pack
size is 4) instead of 7.

¶¶ Refer Section 9.2.3.1.4 for a description on how to set the pack size.

548 Programming in C—A Practical Approach

 The important points about structure padding are as follows:
i. The members of a structure object are always stored in the order in which they are

declared. They will never be reordered to improve the alignment and save padding.
ii. The padding can only appear in between two structure members (i.e. internal pad-

ding) or after the last structure member (i.e. trailing padding). In no case can it ap-
pear before the first member of the structure object. The reason behind placing the
padding bytes after the last member of the structure object is to enable the alignment
in an array of structures. Consider the structure type and an array object defined in
Figure 9.4.

Definition Memory contents

struct ntype
{
 int a;
 char b;
}var[2];

var
var[0] var[1]

a b a b

1001 1010 0101 H 0100 1110 1100 H

2400 2401 2402 2403 2404 2405 2406 2407

H represents holes.
int takes 2 bytes and char takes 1 byte

Figure 9.4 | Storage of array of structure objects when the members of a structure are machine-word bound-
ary aligned

 The member a of the first element of the array var (i.e. first structure object) starts at
the even-byte boundary. The member b can be placed at the next byte boundary. Thus,
there is no padding between the members a and b of the first structure object. The mem-
ber a of the second element of the array (i.e. second structure object) must appear at
the even-byte boundary. Thus, 2403 is not a valid start location for the member a of the
second structure object. Therefore, the compiler places a padding byte at the end of the
first structure object so that the second structure object can be aligned properly.

iii. Whether the members of a structure object will be byte aligned or machine-word
boundary aligned, depends upon the compiler, its configuration, the working en-
vironment and the underlying machine. Some compilers (e.g. Borland TC 3.0 and
Borland TC 4.5) use byte alignment by default while some compilers (e.g. MS-VC++
6.0) by default use machine-word boundary alignment. The pragma directive can also
be used to configure††† the compiler to use the appropriate alignment scheme for
storing the structure members.

9.2.3.1.4 Use of sizeof Operator on Structures
When the sizeof operator is applied to an operand of a structure type, the result is the total
number of bytes that an object of such type will occupy in the memory. The important points
about the use of a sizeof operator on structures are as follows:

††† Refer Section 9.2.3.1.4 for a description on how to configure the compiler to use the appropriate align-
ment scheme for storing the structure members.

Structures, Unions, Enumerations and Bit-fields 549

1. The general form of sizeof operator is:
a. sizeof expression or the sizeof(expression)
b. sizeof(type i.e structure_type)

The usage of both the forms of sizeof operator on operands of a structure type is given in the
code segment listed in Program 9-8.

Line Prog 9-8.c Output window (Borland TC 3.0)

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15

//sizeof operator & structures
#include<stdio.h>
struct pad
{
 char a;
 int b;
 char c;
 float d;
};
main()
{
struct pad var;
printf(“Objects of type struct pad will take %d bytes\n”, sizeof(struct pad));
printf(“Structure variable var takes %d bytes\n”,sizeof var);
}

Objects of type struct pad will take 8 bytes
Structure variable var takes 8 bytes

Output window (Borland TC 4.5)
(second execution)

Objects of type struct pad will take 8 bytes
Structure variable var takes 8 bytes

Output window (MS-VC++ 6.0)
(third execution)

Objects of type struct pad will take 16 bytes
Structure variable var takes 16 bytes
Remarks:
•  In Borland Turbo C 3.0/4.5, char-

acter takes 1 byte, integer takes 2
bytes and float takes 4 bytes

•  Also, in Borland Turbo C 3.0/4.5,
structure members are stored us-
ing byte alignment. Hence, there
is no padding

•  Thus, the sizeof operator gives the
output as 1+2+1+4=8 bytes in Bor-
land Turbo C 3.0/4.5

•  In Microsoft VC++ 6.0, character
takes 1 byte, integer takes 4 bytes
and float takes 4 bytes

•  Also, in Microsoft VC++ 6.0, the
structure members are machine-
word boundary aligned and the
default pack size is of 4 bytes

•  Thus, the sizeof operator outputs
4+4+4+4=16 bytes in Microsoft
VC++ 6.0

Program 9-8 | A program that illustrates the use of the sizeof operator on structures

2. The result of the sizeof operator when applied on a structure is equal to the sum of the size of
all of its members. It also includes the space taken by internal and trailing padding. The
pragma directive can be used to turn the structure padding on or off. In Borland Turbo C 3.0
and 4.5, the structure padding can be turned on by using #pragma option –a. Another method
to turn on the structure padding in TC 4.5 is by invoking the following menu items:

 options>project>advanced compiler>processor>data alignment>word alignment instead
of byte alignment.

550 Programming in C—A Practical Approach

 The piece of code in Program 9-9 illustrates the use of the pragma directive to configure
Borland TC 3.0 and 4.5, so that it stores the structure members using the machine-word
boundary alignment.

Line Prog 9-9.c Output window (Borland TC 3.0/4.5)

 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

//sizeof operator & structures
#include<stdio.h>
#pragma option –a
struct pad
{
 char a;
 int b;
 char c;
 float d;
};
main()
{
struct pad var;
printf(“Objects of type struct pad will take %d bytes\n”, sizeof(struct pad));
printf(“Structure variable var takes %d bytes\n”,sizeof var);
}

Objects of type struct pad will take 10 bytes
Structure variable var takes 10 bytes
Remarks:
•  In line number 3, the pragma direc-

tive is used to store the structure
members using machine-word
boundary alignment

•  In Borland Turbo C 3.0/4.5, the
pack size is 2 bytes

•  In Borland Turbo C 3.0/4.5, float
takes 4 bytes

•  Hence, the sizeof operator gives an
output as 2+2+2+4=10 bytes

Program 9-9 | A program to illustrate that the result of the sizeof operator includes internal and trailing padding

 The pragma option that can be used to turn off the structure padding in Borland Turbo C 3.0
and 4.5 is #pragma option –a–. The #pragma option -a- is, however, not recognized in MS-VC++
6.0. To specify the pack size for structures, MS-VC++ 6.0 uses #pragma pack(n) directive,
where n is the size according to which the packing will be done. The piece of code in
Program 9-10 illustrates the structure packing in MS-VC++ 6.0.

Prog 9-10.c Output window (MS-VC++ 6.0)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

//sizeof operator & structures
#include<stdio.h>
#pragma pack(2)
struct pad
{
 char a;
 int b;
 char c;
 float d;
};
main()
{
struct pad var;
printf(“Objects of type struct pad will take %d bytes\n”, sizeof(struct pad));
printf(“Structure variable var takes %d bytes\n”,sizeof var);
}

Objects of type struct pad will take 12 bytes
Structure variable var takes 12 bytes
Remarks:
•  In Microsoft VC++ 6.0, #pragma pack(n) is

used to specify the pack size
•  #pragma pack(2) specifies the pack size to

be 2 bytes
•  To store the structure members using byte

alignment in MS-VC++ 6.0 #pragma pack(1) is
used. #pragma pack(1) specifies that members
can be placed at any byte boundaries

•  #pragma pack(2) specifies that members of
size greater than two can be placed at
even-byte boundaries

•  In Microsoft VC++ 6.0, integer takes 4
bytes

•  Thus, the sizeof operator gives output as
2+4+2+4=12 bytes

(Contd...)

Structures, Unions, Enumerations and Bit-fields 551

Memory contents

Alignment with machine-word boundaries, pack size is 2 bytes
a b c d

1001 H 1011 1100 1111 1010 1001 H 1111 1101 1010 1000

2000 2001 2002 2203 2004 2005 2006 2007 2008 2009 2010 2011

(a) #pragma pack(2) used

Alignment with byte boundaries, pack size is 1 byte
a b c d

1001 1011 1100 1111 1010 1001 1111 1101 1010 1000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
(b) #pragma pack (1) used

Using MS-VC++ 6.0, char takes 1 byte, int takes 4 bytes and float takes 4 bytes in the memory

Program 9-10 | A program that finds the size of a structure object and a structure type after packing the
structure members according to the given pack size

9.2.3.1.5 Equating Structure Objects of the Same Type
The use of an equality operator on the operands of a structure type is not allowed and leads to
a compilation error. The piece of code in Program 9-11 illustrates this fact.

Line Prog 9-11.c Output window (MS-VC++ 6.0)

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

//Equality operator and structures
#include<stdio.h>
#pragma pack(2)
struct pad
{
 char a;
 int b;
 char c;
 float d;
};
main()
{
struct pad var1={‘A’, 2, ‘B’, 2.5}, var2={‘A’, 2, ‘B’, 2.5};
if(var1==var2)
 printf(“Structure variables are equal\n”);
else
 printf(“Structure variables are unequal\n”);
}

Compilation error “Invalid structure operation in function
main”
Remarks:
•  Since the structure members are not always

stored in the contiguous memory locations,
the use of the equality operator is not al-
lowed on the objects of a structure type

•  Thus, the usage of the equality operator on
the structure variables in line number 14
leads to the compilation error

Memory contents

var1

a b c d

A 1011 2 B 1101 2.5

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

(Contd...)

var

var

552 Programming in C—A Practical Approach

Memory contents

var2

a b c d

A 1010 2 B 0001 2.5

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011

Program 9-11 | A program to illustrate that the application of the equality operator on the structure objects
is not allowed

The important points about the application of an equality operator on the objects of a structure
type are as follows:

1. Unlike arrays, the members of a structure object may not be stored in contiguous mem-
ory locations. If the members of a structure object are machine-word boundary aligned,
there may be some holes in the structure. These holes are filled with padding, which is
random and undefined. As given in Program 9-11, although the values of all the mem-
bers of both the structure variables are equal, the structures are not equal because the
holes do not contain identical padding.

2. Due to the structure padding, the operation of the equality operator on structures is re-
stricted and this is a general rule. Even if byte alignment is used for storing members of
a structure object, in which there are no holes between the structure members, the use
of the equality operator on structure objects leads to a compilation error.

Forward Reference: Also refer Question number 18 and its answer to find other reasons for
why the equality operator does not work on structures.

3. For similar reasons, the application of relational operators like >=, <=, >, < and != is not
allowed on structures.

4. Whether two structure objects are equal or not can be determined by comparing all the
members of the structure objects separately. The piece of code in Program 9-12 checks
the equality of two structure objects.

Line Prog 9-12.c Output window (MS-VC++ 6.0)

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Equality operator and structures
#include<stdio.h>
struct pad
{
 char a;
 int b;
 float c;
};
main()
{
struct pad var1={‘A’, 2, 2.5}, var2={‘A’, 2, 2.5};
const struct pad var3={‘B’,3,5.5}, var4={‘C’,7,9.5};
printf(“Checking equality of structure objects:\n”);
if(var1.a==var2.a && var1.b==var2.b && var1.c==var2.c)
 printf(“Structure variables are equal\n”);

Checking equality of structure objects:
Structure variables are equal
Structure constants are unequal
Remarks:
•  The equality of structure objects can be

checked by equating every member of
the structure object

•  Specify different initializers in the ini-
tialization list of the structure variable
var2 and then re-execute the code

(Contd...)

Structures, Unions, Enumerations and Bit-fields 553

16
17
18
19

20
21
22

else
 printf(“Structure variables are unequal\n”);
if(var3.a==var4.a && var3.b==var4.b && var3.c==var4.c)
 printf(“Structure constants are equal\n”);
else
 printf(“Structure constants are unequal\n”);
}

Program 9-12 | A program that illustrates a method of determining whether two structure objects are equal

9.2.3.2 Segregate Operations
A segregate operation operates on the individual members of a structure object. The individual
members of a structure object are like normal objects (i.e. variables and constants). Therefore,
any operation that is applicable on an object of a particular type can be applied on a structure
member of that type. The piece of code in Program 9-13 illustrates segregate operations on the
members of a structure variable.

Line Prog 9-13.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

//Segregate operations
#include<stdio.h>
struct book
{
 char title[25];
 char author[20];
 int pages;
 float price;
};
main()
{
 struct book book1, book2;
 printf(“Enter title, author name, pages and price of book1:\n”);
 gets(book1.title);
 gets(book1.author);
 scanf(“%d %f”,&book1.pages,& book1.price);
 flushall();
 printf(“Enter title, author name, pages and price of book2:\n”);
 gets(book2.title);
 gets(book2.author);
 scanf(“%d %f”,&book2.pages, &book2.price);
 printf(“\nIn second edition, the pages of books are increased by 100\n”);
 printf(“The cost of books is increased by 10%\n\n”);
// Operations on individual members
 book1.pages+=100;
 book2.pages+=100;
 book1.price=book1.price*110/100;
 book2.price=book2.price*110/100;
 printf(“In second edition: book1 has %d pages\n”,book1.pages);

Enter title, author name, pages and price of book1:
The Book of Wisdom
Stephen W. K. Tan
480
225
Enter title, author name, pages and price of book2:
Who moved my cheese?
Dr Spencer Johnson
400
210

In second edition, the pages of books are increased by 100
The cost of books is increased by 10%

In second edition: book1 has 580 pages
The second edition of book1 is of Rs. 247.500000
In second edition: book2 has 500 pages
The second edition of book2 is of Rs. 231.000000

(Contd...)

554 Programming in C—A Practical Approach

Line Prog 9-13.c Output window

30
31
32
33

 printf(“The second edition of book1 is of Rs. %f\n”,book1.price);
 printf(“In second edition: book2 has %d pages\n”,book2.pages);
 printf(“The second edition of book2 is of Rs. %f\n”,book2.price);
}

Program 9-13 | A program that illustrates the operations on the individual members of a structure object

9.3 Pointers to Structures
As pointer to any other type can be created, it is possible to create a pointer to a structure type
as well. The pointers to structures have the following advantages:

1. It is easier to manipulate the pointers to structures than manipulating structures them-
selves.

2. Passing a pointer to a structure as an argument to a function‡‡‡ is efficient as compared
to passing a structure to a function. The size of a pointer to a structure is generally
smaller than the size of the structure itself. Thus, passing a pointer to a structure as an
argument to a function requires less data movement as compared to passing the struc-
ture to a function.

3. Some wondrous data structures (e.g. linked lists, trees, etc.) use the structures contain-
ing pointers to structures. Pointers to structures play an important role in their success-
ful implementation.

9.3.1 Declaring Pointer to a Structure
The general form of declaring a pointer to a structure is:

[storage_class_specifi er] [type_qualifi er] struct named_structure_type* identifi er_name[=l-value[,...]];

The important points about declaring a pointer to a structure are as follows:
1. The terms enclosed within the square brackets are optional and might not be present in

a declaration statement. The terms shown in bold are the mandatory parts of a structure
pointer declaration statement.

2. A pointer to a structure type can be declared in a separate declaration statement only
if the structure type is named. If the structure type is unnamed, the structure pointer
should be created at the time of structure definition as shown in Program 9-14.

3. The declared structure pointer can optionally be initialized with an l-value. The initial-
izing l-value should be of appropriate type, else there will be a compilation error.

The piece of code in Program 9-14 illustrates the declaration of a pointer to a structure.

Line Prog 9-14.c Output window (Borland TC 4.5)

1
2
3
4
5

//Pointers to structures
#include<stdio.h>
struct coord
{
 int x, y,z;

Addresses of pt1 and pt2 are 2397:0076 2397:2292
Addresses of ptr1 and ptr2 are 2397:0D38 2397:228E
ptr1 and ptr2 point to 2397:0076 2397:2292
Size of type (struct coord) is 6
Size of type (struct coord*) is 4

‡‡‡ Refer Section 9.6.3 for a description on passing a pointer to a structure as an argument to a function.
(Contd...)

Chapter 9.indd 554Chapter 9.indd 554 28/02/2010 4:35:09 PM28/02/2010 4:35:09 PM

Structures, Unions, Enumerations and Bit-fields 555

6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21

}pt1={2,3,5}, *ptr1; // Declaration of structure pointer at the
 // time of structure definition
main()
{
struct coord pt2={4,5,6};
struct coord *ptr2=&pt2; // Declaration of structure pointer in a
 // separate declaration statement
ptr1=&pt1;
printf(“Addresses of pt1 and pt2 are %p %p\n”,&pt1,&pt2);
printf(“Addresses of ptr1 and ptr2 are %p %p\n”,&ptr1,&ptr2);
printf(“ptr1 and ptr2 point to %p %p\n”,ptr1,ptr2);
printf(“Size of type (struct coord) is %d\n”, sizeof(struct coord));
printf(“Size of type (struct coord*) is %d\n”,sizeof(struct coord*));
printf(“pt1 and pt2 take %d bytes\n”, sizeof(pt1));
printf(“ptr1 and ptr2 take %d bytes\n”, sizeof(ptr1));
}

pt1 and pt2 take 6 bytes
ptr1 and ptr2 take 4 bytes
Remarks:
•  As the memory allocation is purely ran-

dom, the output may vary for different
executions at different times or on differ-
ent machines

•  If executed using Borland Turbo C 3.0,
only offset addresses will be printed and
the size of struct coord*, ptr1 and ptr2 that
gets printed is 2 bytes.

Memory content

ptr1 ptr2

0076 2292 pt2 x y z

2397:0D38 2397:228E 4 5 6
pt1 x y z 2397:2292 2294 2296

2 3 5

2397:0076 0078 0080

Program 9-14 | A program that illustrates the declarations and the use of pointers to a structure type

9.3.2 Accessing Structure Members Via a Pointer to a Structure
The members of a structure object can be accessed via a pointer to a structure object by using
one of the following two ways:

1. By using the dereference or indirection operator and the direct member access operator
2. By using the indirect member access operator (i.e. ->, known as the arrow operator)

The important points about accessing the structure members, via a pointer to the structure
object are as follows:

1. The general form to access a structure member via a pointer to the structure object using
the dereference and dot operator is:

    (*pointer_to_structure_type).structure_member_name
2. It is mandatory to parenthesize the dereference operator and the structure pointer be-

cause the dot operator has a higher precedence than the dereference operator.
3. The members of a structure object can also be accessed via the pointer to the structure

object by using only one operator, known as the indirect member access operator or
arrow operator. The general form of such access is:

pointer_to_structure_object->structure_member_name

556 Programming in C—A Practical Approach

4. The arrow operator consists of a hyphen (–) followed by a right arrow (>) with no space
in between.

5. The expression pointer_to_structure_object->structure_member_name is equivalent to the expres-
sion (*pointer_to_structure_object).structure_member_name.

The piece of code in Program 9-15 illustrates the structure member access via the pointer to
the structure object.

Line Prog 9-15.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13

//Accessing structure members via pointer to the structure object
#include<stdio.h>
struct coord
{
int x, y;
};
main()
{
struct coord pt={2,3};
struct coord *ptr=&pt;
printf(“Coordinates of Pt1 are (%d,%d)\n”,(*ptr).x, (*ptr).y);
printf(“Coordinates of Pt1 are (%d,%d)\n”,ptr->x, ptr->y);
}

Coordinates of Pt1 are (2,3)
Coordinates of Pt1 are (2,3)
Remarks:
•  In line number 11, the structure mem-

bers are accessed via the pointer to the
structure object by using the derefer-
ence operator and direct member ac-
cess operator

•  In line number 12, the structure mem-
bers are accessed by using the indirect
member access operator

Program 9-15 | A program that illustrates structure member access via structure pointer

9.4 Array of Structures
It is possible to create an array whose elements are of structure type. Such an array is known as
an array of structures. Consider the structure type struct book defined in Program 9-13. The infor-
mation about the title of the book, author’s name, number of pages and its price can be stored in
a variable of type struct book. We have created the variables book1 and book2 of this type in Program
9-13 to store the specified information about two books. Now, suppose we need to store the
information about a number of books available in a library. To store the information about sev-
eral books, creating a separate variable for each book is not feasible. Here an array of structures
provides a convenient way to store the information about the books available in the library. The
piece of code in Program 9-16 illustrates the use of array of structures for this purpose.

Line Prog 9-16.c Output window (Borland Turbo C 4.5)

1
2
3
4
5
6
7
8
9

//Array of structures
#include<stdio.h>
#include<conio.h>
#define MAXBOOKS 10
struct book
{
 char title[30];
 char author[30];
 int pages;

Enter the information of book1:
Enter the title of the book: The law and the lawyer
Enter the author’s name: M K Gandhi
Enter the number of pages in the book: 200
Enter the price of the book: 125
Do you want to enter more(Y/N): Y
Enter the information of book2:
Enter the title of the book: Rise and fall of super powers
Enter the author’s name: Paul

(Contd...)

Structures, Unions, Enumerations and Bit-fields 557

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

 float price;
};
main()
{
 struct book library[MAXBOOKS];
int count=0,i;
char ch;
while(1)
{
 printf(“Enter the information of book %d:\n”, count+1);
 printf(“Enter the title of the book:\t”);
 gets(library[count].title);
 printf(“Enter the author’s name:\t”);
 gets(library[count].author);
 printf(“Enter the number of pages in the book:\t”);
 scanf(“%d”,&library[count].pages);
 printf(“Enter the price of the book:\t”);
 scanf(“%f”,&library[count].price);
 flushall();
 count++;
 if(count==MAXBOOKS)
 {
 printf(“Capacity full\n”);
 break;
 }
 else
 {
 printf(“Do you want to enter more(Y/N):\t”);
 ch=getche();
 printf(“\n”);
 if(ch==’y’||ch==’Y’)
 continue;
 else
 break;
 }
}
printf(“\nFollowing are the books in the library:\n\n”);
for(i=0;i<count;i++)
{
printf(“%s by %s: %d pages is of Rs. %6.2f\n”,
library[i].title, library[i].author, library[i].pages,
library[i].price);
}
}

Enter the number of pages in the book: 250
Enter the price of the book: 150
Do you want to enter more(Y/N): N

Following are the books in the library:

The law and the lawyer by M K Gandhi: 200 pages is of Rs. 125.00
Rise and fall of great powers by Paul: 250 pages is of Rs. 150.00
Remarks:
•  In line number 4, macro MAXBOOKS is defined to

have value 10
•  In line number 5, the structure type struct book

is defined
•  In line number 14, an array of 10 elements is

declared whose element type is struct book
•  Elements of this array can be accessed in the

same way as the elements of other arrays can
be accessed, i.e. by using the subscript opera-
tor

•  If executed using Borland Turbo C 3.0 or
other older compilers, there will be the fol-
lowing error:
scanf: floating point formats not linked
Abnormal program termination error

Program 9-16 | A program that illustrates the use of array of structures

The important points about the use of array of structures are as follows:
1. An array of structures is declared in the same way as any other kind of array is declared.

The only difference is that the element type of an array of structures is the defined

558 Programming in C—A Practical Approach

structure type while the element type of other arrays is either a basic type or a derived
type.

2. An array of structures is quite big in size. If it is defined inside the block/local scope
without using the static storage class specifier (as in Program 9-16), it is placed on the
stack. The stack is an area of memory that starts out small and grows automatically up
to a predefined limit. It is possible that the default size of a stack is too small to accom-
modate an array of structures. In such a case, there will be stack overflow run-time er-
ror. The following solutions can be used to fix this problem:
a. Reduce the array size. For example, Program 9-16 executes fine till the size of the ar-

ray library is kept 60 (in TC 4.5). If the size of the array is further increased, there will
be stack overflow run-time error.

b. Use the storage class specifier static while declaring the array so that it is not stored
on the stack.

3. If Program 9-16 is executed using the Borland Turbo C 3.0 compiler, the following error
will occur:
scanf: fl oating point formats not linked
Abnormal program termination

 The reason behind this error is that older Borland compilers like Borland Turbo C 3.0 for
DOS attempt at keeping the size of a program compact by using the smaller versions of
the scanf function if the program does not use floating point values. However, these com-
pilers get fooled if the floating point values are in an array of structures (as in Program
9-16). The problem can be solved by adding the following lines of code:

 #include<math.h>
 float dummy= cos(0.0);    // This statement is an executable statement and should

// not be placed in the global scope. It should be placed
// in the local scope after the non-executable statements.

 The piece of code in Program 9-17 illustrates the usage of the above dummy statement to
rectify the problem of the scanf function in Borland Turbo C 3.0 or other older compilers:

Line Prog 9-17.c Output window (Borland Turbo C 3.0)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Array of structures
#include<stdio.h>
#include<conio.h>
#include<math.h>
#define MAXBOOKS 10
struct book
{
 char title[30];
 char author[30];
 int pages;
 float price;
};
main
{
 struct book library[MAXBOOKS];

Enter the information of book1:
Enter the title of the book: The law and the lawyer
Enter the author’s name: M K Gandhi
Enter the number of pages in the book: 200
Enter the price of the book: 125
Do you want to enter more(Y/N): Y
Enter the information of book2:
Enter the title of the book: Rise and fall of super powers
Enter the author’s name: Paul Kennedy
Enter the number of pages in the book: 250
Enter the price of the book: 150
Do you want to enter more(Y/N): N

Following are the books in the library:

(Contd...)

Structures, Unions, Enumerations and Bit-fields 559

16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

int count=0,i;
char ch;
float dummy=cos(0.0);
while(1)
{
 printf(“Enter the information of book %d:\n”, count+1);
 printf(“Enter the title of the book:\t”);
 gets(library[count].title);
 printf(“Enter the author’s name:\t”);
 gets(library[count].author);
 printf(“Enter the number of pages in the book:\t”);
 scanf(“%d”,&library[count].pages);
 printf(“Enter the price of the book:\t”);
 scanf(“%f”,&library[count].price);
 flushall();
 count++;
 if(count==MAXBOOKS)
 {
 printf(“Capacity full\n”);
 break;
 }
 else
 {
 printf(“Do you want to enter more(Y/N):\t”);
 ch=getche();
 printf(“\n”);
 if(ch==’y’||ch==’Y’)
 continue;
 else
 break;
 }
}
printf(“\nFollowing are the books in the library:\n\n”);
for(i=0;i<count;i++)
{
printf(“%s by %s: %d pages is of Rs. %6.2f\n”,
library[i].title, library[i].author, library[i].pages,
library[i].price);
}
}

The law and the lawyer by M K Gandhi: 200 pages is of Rs. 125.00
Rise and fall of great powers by Paul Kennedy: 250 pages is of Rs. 150.00
Remarks:
•  The dummy statement float dummy=cos(0.0); is used

to load the floating point version of the scanf func-
tion

•  Addition of this statement removes the problem
of the scanf function associated with the usage of
floating point values in an array of structures in
older compilers like Borland Turbo C 3.0

Program 9-17 | A program that solves the problem of the scanf function associated with the usage of floating
values in an array of structures in older compilers like Borland Turbo C 3.0

9.5 Structures within a Structure (Nested Structures)
A structure can be nested within another structure. Nested structures are used to create com-
plex data types. Consider the example of structure type phonebook_entry created in Table 9.2(c).
A record in a phone book consists of the fields: name of a person and his mobile number. The

560 Programming in C—A Practical Approach

field ‘name of a person’ is a composite field that further consists of a person’s first name and
his last name. To construct such a type, which consists of composite fields, nested structures
are used. The program segment in Program 9-18 illustrates the use of nested structures.

Line Prog 9-18.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

//Nested structures
#include<stdio.h>
#include<conio.h>
struct name
{
 char first_name[20];
 char last_name[20];
};
struct phonebook_entry
{
 struct name person_name;
 char mobile_no[15];
};
main()
{
 struct phonebook_entry p1, p2;
 printf(“Enter the details of the first person:\n”);
 printf(“Enter the first name of the person:\t”);
 gets(p1.person_name.first_name);
 printf(“Enter the last name of the person:\t”);
 gets(p1.person_name.last_name);
 printf(“Enter the mobile number:\t”);
 gets(p1.mobile_no);

 printf(“Enter the details of the second person:\n”);
 printf(“Enter the first name of the person:\t”);
 gets(p2.person_name.first_name);
 printf(“Enter the last name of the person:\t”);
 gets(p2.person_name.last_name);
 printf(“Enter the mobile number:\t”);
 gets(p2.mobile_no);

 printf(“\nRecords in the phone book are:\n”);
 printf(“-------------------------------------\n”);
 printf(“%s %s:\t%10s\n”,p1.person_name.first_name,
 p1.person_name.last_name, p1.mobile_no);
 printf(“%s %s:\t%10s\n”,p2.person_name.first_name,
 p2.person_name.last_name, p2.mobile_no);
}

Enter the details of the first person:
Enter the first name of the person: Parul
Enter the last name of the person: Sood
Enter the mobile number: 9882687681
Enter the details of the second person:
Enter the first name of the person: Rajini
Enter the last name of the person: Bansal
Enter the mobile number: 9412345980

Records in the phone book are:
--
Parul Sood : 9882687681
Rajini Bansal: 9412345980
Remark:
•  As the structure member person_name

is of type struct name, the dot operator
is applied twice to access its members
(as shown in line numbers 35-38)

Program 9-18 | A program that illustrates the use of nested structures

The important points about nested structures are as follows:
1. The nested structures contain the members of other structure types. The structure types

used in the structure definition should be complete.

Chapter 9.indd 560Chapter 9.indd 560 28/02/2010 4:35:10 PM28/02/2010 4:35:10 PM

Structures, Unions, Enumerations and Bit-fields 561

2. It is even possible to define a structure type within the declaration-list of another struc-
ture-type definition. The piece of code in Program 9-19 illustrates this fact.

Line Prog 9-19.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

//A structure type defined within another structure type definition
#include<stdio.h>
struct phone_entry
{
 struct name
 {
 char fnam[20];
 char lnam[20];
 } pnam;
 char mno[10];
};
main()
{
struct phone_entry per1={{“Anil”,”Kumar”}}, per2={{“Anand”}};
printf(“Enter the mobile number of %s %s\n”,per1.pnam.fnam, per1.pnam.lnam);
gets(per1.mno);
 printf(“Enter the mobile number of %s %s\n”,per2.pnam.fnam, per2.pnam.lnam);
gets(per2.mno);
printf(“\nPhone book entries are:\n”);
printf(“------------------------\n”);
printf(“%s %s:\t%s\n”, per1.pnam.fnam, per1.pnam.lnam, per1.mno);
printf(“%s %s:\t%s\n”, per2.pnam.fnam, per2.pnam.lnam, per2.mno);
}

Enter the mobile number of Anil Kumar
9814456767
Enter the mobile number of Anand
9888852525

Phone book entries are:

Anil Kumar 9814456767
Anand 9888852525
Remark:
•  The structure type struct

name is defined within the
declaration-list of the struc-
ture type struct phone_entry

Program 9-19 | A program illustrating that it is allowed to define a structure type within the structure defini-
tion-list of another structure-type definition

3. The member access operator is used to access the members of structure members, e.g.
in Program 9-19, the member fnam of the structure member pnam of the structure variable
per1 can be assessed by writing per1.pnam.fnam.

4. In principle, structures can be nested infinitely. However, practically the number of lev-
els of nested structure definitions in a single structure definition list depends upon the
translation limits of the compiler.

Forward Reference: Translation limits mentioned in ANSI/ISO specifications (Appendix C).

9.6 Functions and Structures
In Chapter 5, you have learnt about functions. You have seen that the flexibility of functions
can be increased by passing arguments to functions. In the previous chapters, you have learnt
about how to pass variables, arrays and pointers to functions. In this section, I will tell you
how to pass structures to a function. The three ways of passing a structure object to a function
are as follows:

562 Programming in C—A Practical Approach

1. Passing each member of a structure object as a separate argument
2. Passing the entire structure object by value
3. Passing the structure object by address/reference

9.6.1 Passing Each Member of a Structure Object as a Separate Argument
A structure object can be passed to a function by passing each member of the structure object.
The members of the structure object can be passed by value or by address/reference. The piece
of code in Program 9-20 illustrates the passing of structure objects by the means of passing
each of its members by value and by address/reference.

Line Prog 9-20.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

//Passing structure objects by passing their structure members
#include<stdio.h>
struct complex
{
 int re;
 int im;
};
add_complex(int, int, int, int);
mult_complex(int*,int*,int*,int*);
main()
{
 struct complex no1, no2;
 printf(“Enter the real and imaginary parts of 1st number:\t”);
 scanf(“%d %d”,&no1.re, &no1.im);
 printf(“Enter the real and imaginary parts of 2nd number:\t”);
 scanf(“%d %d”,&no2.re, &no2.im);
 add_complex(no1.re, no1.im, no2.re, no2.im);
 mult_complex(&no1.re, &no1.im, &no2. re, &no2.im);
}
add_complex(int a, int b, int c, int d)
{
if(b+d<0)
 printf(“The result of their addition is %d%di\n”,a+c,b+d);
else
 printf(“The result of their addition is %d+%di\n”,a+c,b+d);
}
mult_complex(int* a, int* b, int* c, int*d)
{
int re, im;
re=*a * *c-*b * *d;
im=*a * *d + *b * *c;
if(im<0)
 printf(“The result of their multiplication is %d%di\n”,re, im);
else
 printf(“The result of their multiplication is %d+%di\n”,re, im);
}

Enter the real and imaginary parts of 1st number: 2 –3
Enter the real and imaginary parts of 2nd number: 4 5
The result of their addition is 6+2i
The result of their multiplication is 23–2i

Output window
(second execution)

Enter the real and imaginary parts of 1st number: –2 –3
Enter the real and imaginary parts of 2nd number: 4 –5
The result of their addition is 2–8i
The result of their multiplication is –23–2i
Remarks:
•  In line number 17, each member of the

structure objects no1 and no2 is passed by
value to the function add_complex

•  In line number 18, each member of the
structure objects no1 and no2 is passed
by address/reference to the function
mult_complex

Program 9-20 | A program that illustrates the method of passing a structure object by passing its members

Structures, Unions, Enumerations and Bit-fields 563

The observable points about passing a structure object by the means of passing its members
are as follows:

1. This method of passing a structure object to a function is highly inefficient, unmanage-
able and infeasible if the number of members in a structure object to be passed is large.

2. This method of passing a structure to a function is suited if the structure contains only
a few members. Also, the members must be of basic types or derived types but not of
structure type (i.e. nested structures).

3. The members of the structure object can be passed by value or by address/reference.

9.6.2 Passing a Structure Object by Value
The member-by-member copy behavior of the assignment operator when applied on struc-
tures makes it possible to pass a structure object to, and return a structure object from a func-
tion by value. The piece of code in Program 9-21 illustrates the passing of a structure object to
a function by value.

Line Prog 9-21.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

//Passing and returning structure objects by value
#include<stdio.h>
struct complex
{
 int re;
 int im;
};
struct complex add_complex(struct complex, struct complex);
main()
{
 struct complex no1, no2, no3;
 printf(“Enter the real and imaginary parts of 1st number:\t”);
 scanf(“%d %d”,&no1.re, &no1.im);
 printf(“Enter the real and imaginary part of 2nd number:\t”);
 scanf(“%d %d”,&no2.re, &no2.im);
 no3=add_complex(no1,no2);
 if(no3.im<0)
 printf(“The result of their addition is %d%di\n”,no3.re, no3.im);
 else
 printf(“The result of their addition is %d+%di\n”,no3.re, no3.im);
}
struct complex add_complex(struct complex a, struct complex b)
{
 struct complex temp;
 temp.re=a.re+b.re;
 temp.im=a.im+b.im;
 //It is invalid to write temp=a+b
 return temp;
}

Enter the real and imaginary parts of 1st number: 2 –3
Enter the real and imaginary parts of 2nd number: 4 5
The result of their addition is 6+2i

Output window
(second execution)

Enter the real and imaginary parts of 1st number: –2 –3
Enter the real and imaginary parts of 2nd number: 4 –5
The result of their addition is 2–8i
Remarks:
•  The structure objects no1 and no2 are

passed to the function add_complex by
value

•  This passing is possible because of
member-by-member copy behavior of
the assignment operator when applied
on structures

Program 9-21 | A program that illustrates the passing of a structure object to a function by value

564 Programming in C—A Practical Approach

The observable points about passing structure objects to a function by value are as follows:

1. This method of passing a structure object to a function is better (i.e. manageable) than
the previous method of the structure passing in which each member of the object is
passed individually.

2. In this method, all the members of a structure object are passed together instead of be-
ing passed individually.

3. If the number of members in a structure object is quite large, this method involves large
data movement. In such a case, the method of passing structure object via the pointer
(as discussed in Section 9.6.3) will be more efficient.

4. As the structure objects are passed by value, the changes made in the formal parameters
in the called function are not reflected back to the calling function. The piece of code in
Program 9-22 illustrates this fact.

Line Prog 9-22.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

//Taking reflection of a point about a line inclined at 45˚ to the x-axis
#include<stdio.h>
struct point
{
 int x;
 int y;
};
reflectpoint(struct point);
main()
{
 struct point pt;
 printf(“Enter the x and y coordinates of the point:\t”);
 scanf(“%d %d”,&pt.x, &pt.y);
 reflectpoint(pt);
 printf(“The x and y coordinates of the reflected point: (%d,%d)”,pt.x, pt.y);
}
reflectpoint(struct point pt)
{
 int temp;
 temp= pt.x;
 pt.x=pt.y;
 pt.y=temp;
}

Enter the x and y coordinates of the point: 4 7
The x and y coordinates of the reflected point: (4,7)
Remark:
•  The changes made in the structure

object in the called function reflectpoint
are not reflected back to the calling
function main

Program 9-22 | A program to illustrate the usage of passing the structure objects by value

9.6.3 Passing a Structure Object by Address/Reference
If the number of members in a structure object is quite large, it is beneficial to pass the struc-
ture object by address/reference. This method of passing the structure object requires fixed
data (i.e. equal to the size of a pointer) movement irrespective of the size of the structure ob-
ject. The piece of code in Program 9-23 illustrates the method of passing the structure objects
to a function by address/reference.

Structures, Unions, Enumerations and Bit-fields 565

Line Prog 9-23.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

//Passing and returning structure objects by address/reference
#include<stdio.h>
struct complex
{
 int re;
 int im;
};
struct complex mult_complex(struct complex*, struct complex*);
main()
{
 struct complex no1, no2, no3;
 printf(“Enter the real and imaginary parts of 1st number:\t”);
 scanf(“%d %d”,&no1.re, &no1.im);
 printf(“Enter the real and imaginary parts of 2nd number:\t”);
 scanf(“%d %d”,&no2.re, &no2.im);
 no3=mult_complex(&no1,&no2);
 if(no3.im<0)
 printf(“The result of their multiplication is %d%di\n”,no3.re, no3.im);
 else
 printf(“The result of their multiplication is %d+%di\n”,no3.re, no3.im);
}
struct complex mult_complex(struct complex* a, struct complex* b)
{
 struct complex temp;
 temp.re=a->re*b->re-a->im*b->im;
 temp.im=a->re*b->im+a->im*b->re;
 //It is invalid to write temp=a*b
 return temp;
}

Enter the real and imaginary parts of 1st number: 2 –3
Enter the real and imaginary parts of 2nd number: 4 5
The result of their multiplication is 23–2i

Output window
(second execution)

Enter the real and imaginary parts of 1st number: –2 –3
Enter the real and imaginary parts of 2nd number: 4 –5
The result of their multiplication is –23–2i
Remark:
•  In line number 16, the structure ob-

jects no1 and no2 are passed by address/
reference to the function mult_complex

Program 9-23 | A program that illustrates the passing of a structure object to a function by address/reference

The observable points about passing the structure objects to a function by address/reference
are as follows:

1. This method of passing a structure object to a function is better (i.e. efficient) than the
previous method of passing a structure object by value.

2. In this method of passing a structure object, instead of passing the entire structure ob-
ject, only the address of a structure object is passed. Hence, this method of structure
passing requires less data movement.

3. Since a structure object is passed by address, the changes made in the objects pointed to by
the formal parameters in the called function are reflected back to the calling function. The
piece of code in Program 9-24 illustrates this fact.

Line Prog 9-24.c Output window

1
2
3
4

//Taking reflection of a point about a line inclined at 45˚ to the x-axis
#include<stdio.h>
struct point
{

Enter the x and y coordinates of the point: 4 7
The x and y coordinates of the reflected point: (7,4)

(Contd...)

566 Programming in C—A Practical Approach

Line Prog 9-24.c Output window

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

 int x;
 int y;
};
reflectpoint(struct point*);
main()
{
 struct point pt;
 printf(“Enter the x and y coordinates of the point:\t”);
 scanf(“%d %d”,&pt.x, &pt.y);
 reflectpoint(&pt);
printf(“The x and y coordinates of the reflected point: (%d,%d)”,pt.x, pt.y);
}
reflectpoint(struct point* pt)
{
 int temp;
 temp= pt->x;
 pt->x=pt->y;
 pt->y=temp;
}

Remark:
•  The changes made in the structure ob-

ject in the called function reflectpoint are
reflected back to the calling function
main

Program 9-24 | A program to illustrate the usage of passing the structure objects by address/reference

9.7 typedef and Structures
In Section 9.2.2, we have seen that a structure object can be declared by using the keyword
struct followed by the tag-name of the defined structure type and the identifier name of the
object to be declared. The usage of the keyword struct while declaring a structure object some-
times proves to be a bit inconvenient. In Chapter 7, we have seen that the storage class speci-
fier typedef can be used for creating syntactically convenient names (i.e. aliases). Thus, it can be
used to create an alias for the defined structure type so that the keyword struct is not required
repeatedly to declare the structure objects. The piece of code in Program 9-25 illustrates the
use of the typedef storage class specifier along with structures.

Line Prog 9-25.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14

//Use of typedef to create an alias for a structure type
#include<stdio.h>
typedef struct name
{
 char first_name[20];
 char last_name[20];
} NAME;
struct phonebook_entry
{
 NAME person_name;
 char mobile_no[11];
};
typedef struct phonebook_entry PH_ENTRY;
main()

Enter the details of the first person:
Enter the first name of the person: Sam
Enter the last name of the person: Mine
Enter the mobile number: 9870096971
Enter the details of the second person:
Enter the first name of the person: Mani
Enter the last name of the person: Kumar
Enter the mobile number: 9922134654

Records in the phone book are::

Sam Mine: 9870096971
Mani Kumar: 9922134654

(Contd...)

Chapter 9.indd 566Chapter 9.indd 566 28/02/2010 4:35:10 PM28/02/2010 4:35:10 PM

Structures, Unions, Enumerations and Bit-fields 567

15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

{
 PH_ENTRY p1, p2;
 printf(“Enter the details of the first person:\n”);
 printf(“Enter the first name of the person:\t”);
 gets(p1.person_name.first_name);
 printf(“Enter the last name of the person:\t”);
 gets(p1.person_name.last_name);
 printf(“Enter the mobile number:\t”);
 gets(p1.mobile_no);

 printf(“Enter the details of the second person:\n”);
 printf(“Enter the first name of the person:\t”);
 gets(p2.person_name.first_name);
 printf(“Enter the last name of the person:\t”);
 gets(p2.person_name.last_name);
 printf(“Enter the mobile number:\t”);
 gets(p2.mobile_no);

 printf(“\nRecords in the phone book are::\n”);
 printf(“-------------------------------------\n”);
 printf(“%s %s:\t %10s\n”,p1.person_name.first_name,
 p1.person_name.last_name, p1.mobile_no);
 printf(“%s %s:\t %s\n”,p2.person_name.first_name,
 p2.person_name.last_name, p2.mobile_no);
}

Remarks:
•  The storage class specifier typedef

is used to name a new type or to
rename an old type

•  In line number 3, it is used to
name a new type

•  In line number 13, it is used to
rename the already defined type
struct phonebook_entry

Program 9-25 | A program that illustrates the use of the storage class specifier typedef to name and rename
a structure type

A typedef name, i.e. the created alias name can be the same as the structure name. The piece of
code in Program 9-26 illustrates this fact.

Line Prog 9-26.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Alias name can be same as structure name
#include<stdio.h>
struct name
{
 char first_name[20];
 char last_name[20];
} ;
typedef struct name name; // typedef name is same as structure tag-name
main()
{
name person;
printf(“Enter the first name and the last name of the person:\n”);
scanf(“%s %s”,person.first_name, person.last_name);
printf(“The name of the person is %s %s”,person.first_name, person.last_name);
}

Enter the first name and the last name of the person:
Arvind Mishra
The name of the person is Arvind Mishra
Remarks:
•  In C, it is not allowed to declare an

object of the defined structure type
by using the tag-name of the de-
fined structure type without using
the keyword struct

•  However, in C++, this rigidity was
relaxed

Program 9-26 | A program that illustrates the use of the storage class specifier typedef

568 Programming in C—A Practical Approach

9.8 Unions
Just like structures, unions are used to create user-defined types. A union is a collection of one
or more variables, possibly of different types. All the major aspects of union, like defining a
union type, declaring objects of a union type, using and performing operations on objects of a
union type are the same as that of structures. The only difference between them is in the terms
of storage of their members. In structures, a separate memory is allocated to each member,
while in unions, all the members of an object share the same memory.

A union object is used only if one of its constituting members is to be used at a time. In such
a situation, it proves to be memory efficient as compared to structures. The important points
about unions are as follows:

1. Defining a union type: A union type is defined in the same way as a structure type,
with the only difference that the keyword union is used instead of the keyword struct to
define the union type.

2. Declaring union objects: Objects of a union type can be declared either at the time of
union type definition or after the union type definition in a separate declaration state-
ment. Objects of the union type can be created after the union definition only if the
defined union type is named or tagged.

The general form of declaring a union object is:
[storage_class_specifi er] [type_qualifi er] union named_union_type identifi er_name [=intialization_list [,…]];

The important points about a union object declaration are as follows:
1. The terms enclosed with the square brackets are optional and might not be present in a

union variable declaration statement. The terms shown in bold are the mandatory parts
of a union object declaration statement.

2. A union object declaration consists of:
a. The keyword union for declaring union variables. It can also be used in conjunction

with const qualifier for declaring a union constant.
b. The tag-name of the defined union type.
c. Comma-separated list of identifiers. The variables can optionally be initialized by

providing initialization lists. However, the initialization of constants is must.
d. A terminating semicolon.

3. Size of a union object or union type: Upon the declaration of a union object, the amount
of memory allocated to it is the amount necessary to contain its largest member. It can
be checked by using the sizeof operator. The piece of code in Program 9-27 illustrates the
use of the sizeof operator on a union object.

Line Prog 9-27.c Output window

1
2
3
4
5
6

//Unions and sizeof operator
#include<stdio.h>
union variables
{
 char a;
 int b;

Objects of type union variables will take 8 bytes
Union variable var takes 8 bytes
Remarks:
•  The sizeof operator when applied

on unions returns the size of its
largest member

(Contd...)

Structures, Unions, Enumerations and Bit-fields 569

7
8
9

10
11
12
13
14
15

 float c;
 double d;
} ;
main()
{
union variables var;
printf(“Objects of type union variables will take %d bytes\n”,sizeof(union variables));
printf(“Union variable var takes %d bytes\n”, sizeof(var));
}

•  Since in the union type union
variables, the size of the largest
member (i.e. d of type double) is
8, the sizeof operator when ap-
plied on the union type union
variables or on the objects of this
type, outputs 8

Program 9-27 | A program that illustrates the use of the sizeof operator on unions

4. Address-of a union object: The members of a union object are stored in the memory in
such a way that they overlap each other. All the members of a union object start from
the same memory location, which in fact, is the same as the starting address of the union
object. This can be checked by applying the address-of operator to the union object as
well as to its constituting members. The application of the address-of operator on a
union object and its constituent members is illustrated in Program 9-28.

Prog 9-28.c Memory contents Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Address-of operator and unions
#include<stdio.h>
union variables
{
 char a;
 int b;
 float c;
} ;
main()
{
 union variables var;
 printf(“Starting address of var is %p\n”,&var);
 printf(“Starting address of 1st member is %p\n”,&var.a);
 printf(“Starting address of 2nd member is %p\n”,&var.b);
 printf(“Starting address of 3rd member is %p\n”,&var.c);
 printf(“Starting address of 4th member is %p\n”,&var.d);
}

var

a

b

c

2482 2483 2484 2485

Starting address of var is 1A5F:2482
Starting address of 1st member is 1A5F:2482
Starting address of 2nd member is 1A5F:2482
Starting address of 3rd member is 1A5F:2482
Remark:
•  In the defined type union variables,

the first byte (lower order) is
shared by all the three mem-
bers a, b and c. The second byte
is shared by the members b
and c. The third and the fourth
bytes are exclusively owned
by the member c

Program 9-28 | A program illustrating that all the members of a union object start from the same memory
location

5. Initialization of a union object: Since the members of a union object share the same
memory, the union object can hold the value of only one of its member at a time. Hence,
while initializing a union object, it is allowed to initialize its first member only. The
piece of code in Program 9-29 illustrates this fact.

570 Programming in C—A Practical Approach

Line Prog 9-29.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13

//Initialization of union objects
#include<stdio.h>
union variables
{
 char a;
 int b;
 float c;
} ;
main()
{
 union variables var={‘A’, 2, 2.5};
 printf(“The values of the members are %c %d %f”, var.a, var.b, var.c);
}

Compilation error “Declaration syntax error in
function main()”
Remarks:
•  The initialization of all the mem-

bers of the union object var, in line
number 11 gives a compilation
error

•  To remove this error, initialize
only the first member of the union
object var and then re-execute the
code

Program 9-29 | A program illustrating that only the first member of a union object can be initialized

 Since the members of a union object share the memory in an overlapped fashion, only
one member at a time can be assigned a value. Accessing the value of this member gives
a meaningful result, while accessing the value of any other member gives a garbage
value as a result. The piece of code in Program 9-30 illustrates this fact.

Trace Prog 9-30.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

1

2

3

4

5

6

7

8

9

10

//Access only the lastly assigned member of a
//union object
#include<stdio.h>
union variables
{
 char a;
 int b;
} ;
main()
{
 union variables var={‘A’};
printf(“First member is %c\n”,var.a);
var.b=300;
printf(“First member now is %c\n”,var.a);
printf(“Second member is %d\n”,var.b);
var.a=’A’.
printf(“First member now is %c\n”,var.a);
printf(“Second member now is %d\n”,var.b);
}

After trace step 2:
var

1 0 0 0 0 0 1 0

a(=65)

Bit
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Bit
15

1 0 0 0 0 0 1 0 G G G G G G G G

b(=Garbage)

After trace step 4:
var

0 0 1 1 0 1 0 0

a(=44)

0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0

b(=300)

After trace step 7:
var

0 0 1 1 0 1 0 0

a(=44)

0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0

b(=65+256=321)

Note that in the above illustra-
tions, the bit 0, i.e., LSB is present
on the left-hand side

First member is A
First member now is ,
Second member is 300
First member now is A
Second member now is 321
Remarks:
•  After trace step

2, the member
a of the union
variable var is ini-
tialized with the
character con-
stant ‘A’, i.e. 65

•  This also initial-
izes the lower
order byte of the
member b, while
its upper order
byte still contains
garbage value

•  After trace step
4, the value as-
signed to mem-
ber b, i.e. 300
completely mod-
ifies the content
of the member a

(Contd...)

Structures, Unions, Enumerations and Bit-fields 571

•  Hence, the value
of member a be-
comes 44 (i.e.
00101100 in binary
number system)

•  After trace step
7, when the
value ‘A’ i.e. 65
is placed in the
member a, the
lower order byte
of the member b
is modified and
becomes 65

•  Hence, the value
of the entire
mem ber b comes
out to be
65+256=321

Program 9-30 | A program illustrating that accessing only the lastly assigned member gives a meaningful result

 One of the potential pitfalls in using the unions is the possibility of accidentally
retrieving the value currently stored in the union through an inappropriate mem-
ber. For example, in Program 9-30, if the last assignment is to the member a and the
programmer accidentally retrieves the value of the member b, the result will be a
garbage value.

3. Operations on union objects: All the operations on union objects are applied in the
same way as they are applied on the structure objects. For example, the members of a
union object can be accessed in the same way as the members of a structure object can
be assessed, i.e. by using a member access operator.

 Similar to structures, the following operations are feasible on unions:

a. Assigning a union object to a union variable of the same type.
b. Passing a union object or a pointer to a union object as a function argument.
c. Returning a union object from a function, etc.

9.9 Practical Application of Unions
In the previous chapters, you have used printf, scanf, getch and other library functions a number
of times. These library functions perform rudimentary operations like printing an output on
the screen, reading input from the keyboard, etc. In other words, these functions interact with
the hardware of the machine. However, if you delve deeper into the technical details of how
these functions interact with the hardware, you will come to know that these functions do not
have any direct interaction with the hardware. The process through which the library func-
tions interact with the hardware of the machine is shown in Figure 9.5.

572 Programming in C—A Practical Approach

Program

printf function scanf function getch function

DOS layer

Motherboard BIOS VGA BIOS Disk BIOS

Hardware of the machine

High-level functions

BIOS functions

Figure 9.5 | Hardware interaction

The important points about the mechanism through which hardware interaction is performed
are as follows:

1. The interaction with the hardware of the machine is done by calling the low-level ma-
chine specific code routines, generally provided by the hardware manufacturers. These
routines are known as Basic Input Output System (BIOS) routines.

2. There are several different BIOSes. For example, the motherboard BIOS performs the
initial hardware detection and system booting. The Video Graphic Adaptor (VGA) BIOS
handles all the screen manipulation functions. The Disk BIOS manages disk input–out-
put and other disk operations.

3. These BIOSes are generally placed in the Read Only Memory (ROM) to ensure that
they are always available and are not affected by the disk failures. Thus, they are also
known as ROM-BIOSes.

4. There is a layer of Disk Operating System (DOS) software, which sits on the top of these
lower-level BIOSes and provides a common access to these lower-level BIOSes in a form
that is easier to use in the programs.

5. A call to a library function generates a DOS call, which may in turn call an appropriate
BIOS routine to interact with the hardware.

6. Thus, a task performed by a library function can also be performed by directly calling
DOS or by calling the lower-level BIOS routines to perform the task.

9.9.1 Calling DOS and BIOS Functions
DOS and BIOS functions can be called by generating interrupts. An interrupt is a signal to the
microprocessor or just the processor of the computer informing that an event has occurred
and it needs an immediate attention. When the processor receives an interrupt signal, it sus-
pends the execution of the current program and executes a specific routine (DOS or BIOS rou-
tine) known as Interrupt Service Routine (ISR). An interrupt signal can be generated either
by hardware or a software function call. When it is generated by hardware (e.g. key press), it
is known as hardware interrupt. If it is generated by giving a call to the software functions like
int86, int86x, intdos, intdosx, etc., it is called software interrupt. In this section, we will look at how
to generate the software interrupts using the functions int86 and intdos.

Structures, Unions, Enumerations and Bit-fields 573

The prototype of the function int86 is int int86(int intno, union REGS* inregs, union REG* outregs);. and the
function intdos is intdos(union REGS* inregs, union REGS* outregs);.

The important points about the usage of the functions int86 and intdos are as follows:

1. Calling ISRs (DOS or BIOS routines) is not as simple as calling the high-level functions
because ISRs are not named. These are stored at the specific locations in the memory
and can be executed by transferring the program control to those memory locations. It
is very cumbersome to remember the starting address of every ISR. Thus, to abbrevi-
ate the problem, an index table, known as Interrupt Vector Table (IVT) is provided.
The IVT is stored in the first 1024 bytes of the memory, i.e. from the memory address
0x0000-0x03FF. There are 256 entries in IVT and each entry is of 4 bytes, which specifies
the complete (i.e. segment and offset) address of the interrupt service routine.

2. To call a BIOS service routine, an integer number is provided as an argument to the function
int86. This integer argument is an index of an IVT entry, where the address of the specific ISR
is stored. From IVT, the address of the ISR is retrieved and the control is transferred to the
starting memory location of the ISR. The mentioned procedure is shown in Figure 9.6.

01 0004-0007 SINGLE STEP
00 0000-0003 DIVIDE ERROR

Interrupt
Numbers,
in Hex

Addresses of
IVT entries in
Hex

Interrupt entries in
IVT

Interrupt
service
routines

FF
RESERVED

. …
……

…

33 00CC-00CF MOUSE

MOUSE ISR21 0084-0087 DOS FUNCTION CALLS

1A 0068-006B
19 0064-0067

17 005C-005F
16 0058-005B
15 0054-0057
14 0050-0053

OTHER ISRs

……
……

…

13 004C-004F
12 0048-004B
11 0044-0047

VIDEO ISR

10 0040-0043 VIDEO

05 0014-0017 PRINT SCREEN

int86(0x33, _,_)

Call to an ISR

TIME
BOOTSTRAP

PRINTER

KEYBOARD

CASSETTE
SERIAL

DISK

MEMORY SIZE
EQUIPMENT LIST

Figure 9.6 | Interrupt vector table and its use

574 Programming in C—A Practical Approach

3. To call a DOS service routine, the functions intdos and intdosx are used. The DOS services
are grouped together under the interrupt number 0x21. The functions intdos and intdosx
execute interrupt 0x21 to invoke the specified DOS function. Since these functions al-
ways execute interrupt 0x21, the interrupt number is not given as an input to them.

4. Like arguments are given to the functions, similarly inputs are given to ISRs, which de-
termine their behavior. The inputs to ISRs are given by placing the values in the CPU’s
(i.e. microprocessor’s) registers. The CPU register is a sort of memory, which is internal
to it, provides direct and very fast data access as compared to the external memories
like cache, Random Access Memory (RAM) and hard disk. The number of registers in
a CPU and their size depends upon the architecture of a microprocessor. The registers
available in 8086 microprocessor and its family are shown in Figure 9.7.

AH (15-8) AL (7-0)

AX (0-15)

BH (15-8) BL (7-0)

BX (0-15)

CH (15-8) CL (7-0)

CX (0-15)

DH (15-8) DL (7-0)

DX (0-15)

SI (0-15)

DI (0-15)

IP (0-15)

BP (0-15)

SP (0-15)

ES (0-15)

SS (0-15)

CS (0-15)

DS (0-15)

FLAGS (0-15)

General purpose registers

Offset registers

Segment registers

Flag register

 Accumulator Register

 Base Register

 Count Register

 Data Register

 Source Index

 Destination Index

 Base Pointer

 Stack Pointer

 Extra Segment

 Stack Segment

 Code Segment

 Data Segment

 Flag Register

Instruction Pointer

Figure 9.7 | Registers available in 8086 microprocessor and their classification

As shown in Figure 9.7, the registers available in 8086 microprocessor are classified as:
1. General-purpose registers
2. Offset registers
3. Segment registers
4. Flag register

Structures, Unions, Enumerations and Bit-fields 575

The general-purpose registers, i.e. Accumulator register, Base register, Count register and
Data register are 16-bit registers and are referred to as AX, BX, CX and DX, respectively. It is
also possible to individually access the lower and the higher bytes of these registers. The lower
and the higher bytes of these registers are referred to as AL, AH, BL, BH, CL, CH, DL and DH,
respectively. The other registers can be accessed in totality, i.e. all the 16 bits at a time. In Bor-
land Turbo C 3.0/4.5, a type union REGS has been defined in the header file dos.h, which helps in
passing the information to and from the functions int86 and intdos.
The important points about the predefined type union REGS are as follows:

1. The type union REGS has been defined in the header file dos.h as:
 union REGS
 {
 struct WORDREGS x;
 struct BYTEREGS h;
 };
The types struct WORDREGS and struct BYTEREGS have also been defined in the header file dos.h as:
struct WORDREGS
{
 unsigned int ax, bx, cx, dx;
 unsigned int si, di, cflag, flags;
};
struct BYTEREGS
{
 unsigned char al, ah, bl, bh;
 unsigned char cl, ch, dl, dh;
};

2. The objects of the type union REGS can be declared as:
  union REGS identifier_names; e.g. union REGS inregs, outregs;

3. The 16-bit members (i.e. ax, bx, cx, etc.) are accessed through the member x, and 8-bit
members (i.e. al, ah, bl, bh, etc.) are accessed through the member h of the declared objects
of the union type union REGS. For example, if the object iregs is defined to be of the union
type union REGS. The 16-bit member bx is accessed as iregs.x.bx while its higher and lower
parts, i.e. bh and bl are accessed as iregs.h.bh and iregs.h.bl, respectively.

4. An input to the interrupt service routine can be given by setting the values of the specif-
ic members of the declared objects of the type union REGS and by passing them by address/
reference to the functions int86 and intdos. The value of a member of a declared object of
the type union REGS can be set as:
  inregs.x.ax=1;  // Setting the value of the member ax to be 1
  inregs.h.ch=2; // Setting the value of the member ch to be 2

9.9.2 Interrupt Programming
Examples of interrupt programming are given in Programs 9-31 to 9-36. The elaborated in-
terrupt list is given in Appendix D for reference. The exhaustive interrupt list may run up to
thousands of pages and such a listing is beyond the scope of this book.

576 Programming in C—A Practical Approach

Line Prog 9-31a.c
Using library function

Prog 9-31b.c
Using interrupt programming

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
20
21
22
23
24

//Printing text at specific location using the function gotoxy
#include<stdio.h>
#include<conio.h>
main()
{
int row, col;
clrscr();
printf(“Enter the row and column number in which you want\
to print the text\t”);
scanf(“%d %d”,&row, &col);
gotoxy(row,col);
printf(“Hello Readers”);
}

//Implementing function gotoxy using interrupt programming
#include<stdio.h>
#include<conio.h>
#include<dos.h>
void mygotoxy(int, int);
main()
{
int row, col;
clrscr();
printf(“Enter the row and column in which you want\
to print the text\t”);
scanf(“%d %d”,&row, &col);
mygotoxy(row,col);
printf(“Hello Readers”);
}
void mygotoxy(int x, int y)
{
union REGS inregs, oregs;
inregs.h.ah=2;
inregs.h.bh=0;
inregs.h.dh=x;
inregs.h.dl=y;
int86(0x10, &inregs, &oregs);
}

Output window (Turbo C 3.0)

1
2
3
4

Enter the row and column number in which you want to print the text: 4 5

 Hello Readers

Remarks:
•  The program calls a ROM-BIOS function that positions the cursor in the desired row and column
•  The associated interrupt has number 0x10 in hexadecimal (i.e. 16 in decimal)
•  There are a number of services available under this interrupt like positioning the cursor on

the screen, changing the size of the cursor, plotting a pixel on the screen, etc
•  These service routines have a service number associated with them. The associated service

number is to be placed in the AH register before the interrupt is being called
•  Refer Appendix D for an elaborated description of ROM-BIOS services
•  The function call int86(0x10, &inregs, &oregs); can also be written as int86(16, &inregs, &oregs);
•  Generally, interrupts are numbered in hexadecimal and thus, the first method of calling the

function is preferred
•  All the programs making the use of interrupts work with Turbo C 3.0 compiler for DOS but

not with Turbo C 4.5 and MS-VC++ 6.0 compilers for Windows. These compilers work with
32-bit environment (i.e. Windows) and create 32-bit programs, whereas interrupts work only
with 16-bit programs

Program 9-31 | A program that illustrates the usage and the implementation of the function gotoxy

Structures, Unions, Enumerations and Bit-fields 577

Line Prog 9-32a.c
Using library function

Prog 9-32b.c
Using interrupt programming

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20

//Reading a character using the function getche
#include<stdio.h>
#include<conio.h>
main()
{
char ch;
clrscr();
printf(“Enter a character:\t”);
ch=getche();
printf(“\nThe character that you entered is %c”,ch);
}

//Implementing the function getche using the interrupt programming
#include<stdio.h>
#include<conio.h>
#include<dos.h>
char mygetche();
main()
{
char ch;
clrscr();
printf(“Enter a character:\t”);
ch=mygetche();
printf(“\nThe character that you entered is %c”,ch);
}
char mygetche()
{
union REGS inregs, oregs;
inregs.h.ah=1;
intdos(&inregs, &oregs);
return oregs.h.al;
}

Output window (Turbo C 3.0)

Enter a character: H
The character that you entered is H

Remarks:
•  The program calls a DOS routine that reads a character from the standard input with echo
•  The DOS routines are grouped together under the interrupt number 0x21 in hexadecimal (i.e.

16 in decimal)
•  There are a number of services available under this interrupt like read a character, write a

character on the screen, write a character to the printer, get machine name, create directory,
rename directory, delete file, etc.

•  These service routines have a service number associated with them. The associated service
number is to be placed in the AH register before the interrupt is called

•  Refer Appendix D for an elaborated description of DOS services
•  The function call intdos(&inregs, &oregs); can also be written as int86(0x21, &inregs, &oregs);

Program 9-32 | A program that illustrates the usage and the implementation of the function getche

Line Prog 9-33a.c
Using library function

Prog 9-33b.c
Using interrupt programming

1
2
3
4
5
6

//Printing the character using the function putch
#include<stdio.h>
#include<conio.h>
main()
{
char ch;

//Implementing the function putch using the interrupt programming
#include<stdio.h>
#include<conio.h>
#include<dos.h>
myputch();
main()

(Contd...)

578 Programming in C—A Practical Approach

Line Prog 9-33a.c
Using library function

Prog 9-33b.c
Using interrupt programming

7
8
9

10
11
12
13
14
15
16
17
18
19

clrscr();
printf(“The character is:\t”);
putch(‘A’);
}

{
char ch;
clrscr();
printf(“The character is:\t”);
myputch();
}
myputch()
{
union REGS inregs, oregs;
inregs.h.ah=2;
inregs.h.dl=’A’;
intdos(&inregs, &oregs);
}

Output window (Turbo C 3.0)

The character is: A

Remarks:
•  The program calls a DOS routine to implement the functionality of the putch function
•  The routine that writes a character onto the screen has service number 2
•  The service number is placed in the AH register by assigning 2 to inregs.h.ah before the inter-

rupt is called
•  Refer Appendix D to see that the character to be written is placed in the DL register
•  In the given code, the character ‘A’ is placed in the DL register by assigning ‘A’ to inregs.h.dl

Program 9-33 | A program that illustrates the usage and the implementation of the function putch

Line Prog 9-34.c
Using library function

Output window (Turbo C 3.0)

1
2
3
4
5
6
7
8
9

10
11
12
13

//Printing a string on the screen by using the interrupt programming
#include<stdio.h>
#include<conio.h>
#include<dos.h>
main()
{
union REGS inregs, oregs;
char *ch=”Interrupt Programming$”;
clrscr();
inregs.h.ah=9;
inregs.x.dx=(unsigned int)ch;
intdos(&inregs,&oregs);
}

Interrupt Programming
Remarks:
•  The service number of the DOS routine that

prints a string on to the screen is 9. It is to be
placed in the AH register before the inter-
rupt is called, thus 9 is assigned to inregs.h.ah

•  The segment:offset address of the string
that is to be printed is to be placed in the
DX register

•  ch points to the base address of the string
that is to be printed

•  Thus, ch is assigned to inregs.x.dx. But, since
ch is of type char*, it has to be explicitly
type casted to unsigned int before assigning
to inregs.x.dx

•  The program prints a string on the screen
without using the printf and puts function

Program 9-34 | A program that illustrates the usage and the implementation of the function puts

Structures, Unions, Enumerations and Bit-fields 579

Line Prog 9-35.c
Using library function

Output window (Turbo C 3.0)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20

//Getting the machine name using the interrupt programming
#include<stdio.h>
#include<conio.h>
#include<alloc.h>
#include<dos.h>
char* machinename();
main()
{
clrscr();
printf(“The name of the machine is %s”, machinename());
}
char* machinename()
{
union REGS inregs, oregs;
char *ch=(char*)malloc(16);
inregs.h.ah=0x5E;
inregs.x.dx=(unsigned int)ch;
intdos(&inregs,&oregs);
return ch;
}

The name of the machine is COMP2
Remarks:
•  The service number of the DOS routine

that get the machine name is 5E
•  Thus, the hexadecimal value 5E is placed

in the AH register by assigning the value
to inregs.h.ah

•  The service routine also expects the base
address of a 16-byte buffer (i.e. charac-
ter array) in which the machine name
will be placed to be assigned to the DX
register

•  Instead of the function call intdos(&inregs,
&oregs); the function call int86(0x21, inregs,
oregs); can also be used

Program 9-35 | A program that illustrates the usage of the interrupt programming to get the machine name

Line Prog 9-36.c
Using library function

Output window (Turbo C 3.0)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

//Mouse Programming using interrupt programming
#include<stdio.h>
#include<conio.h>
#include<dos.h>
initmouse();
showmouseptr();
union REGS iregs, oregs;
main()
{
 clrscr();
 printf(“Developing the mouse support\n”);
 initmouse();
 getch();
}
initmouse()
{
 iregs.x.ax=0;
 int86(0x33, &iregs, &oregs);
 if(oregs.x.ax==0)
 printf(“Mouse not supported by the system”);
 else
 showmouseptr();
}

Developing the mouse support

Mouse Cursor

Remarks:
•  The interrupt number for developing

the mouse support is 0x33
•  The program implements only two ser-

vices, i.e. initialize the mouse support
and show the mouse pointer

(Contd...)

580 Programming in C—A Practical Approach

Line Prog 9-36.c
Using library function

Output window (Turbo C 3.0)

24
25
26
27
28

showmouseptr()
{
 iregs.x.ax=1;
 int86(0x33,&iregs,&oregs);
}

•  Refer Appendix D and implement other
services to read the position and button
status of the mouse, to define the hori-
zontal and the vertical cursor range, to
change the shape of the cursor, etc

Program 9-36 | A program that illustrates the usage of the interrupt programming to provide mouse support

9.10 Enumerations
In C language, enumerations provide another way to create user-defined types. An enumera-
tion type is designed for the objects that can have a limited set of values. For example, consider
an application in which we want a variable to hold a Boolean value. We can create an enumera-
tion type BOOL that have two values FALSE and TRUE. The values FALSE and TRUE are known as enu-
meration constants. The variables of type BOOL can either have value FALSE or TRUE (i.e. Boolean
value). Note that the values FALSE and TRUE are not the strings, but are integer constants. The
compiler internally associates an integer value each with the names FALSE and TRUE. Thus, any
operation that is applicable on an integer constant can be applied on them and any operation
that is applicable on a variable of integer type can be applied on a variable of type BOOL. Since
the integer values are represented by the names, the enumeration type helps in making the
programs more readable. The important points about enumerations are as follows:

1. Definition of an enumeration type: The general form of an enumeration-type definition is:
[storage_class_specifi er][type_qualifi er] enum [tag-name] {enumeration-list}[identifi er=initializer[,…]];

 The important points about the definition of an enumeration type are as follows:
 i. The terms enclosed within the square brackets are optional and might not be pres-

ent in the definition of an enumeration type. The terms shown in bold are manda-
tory parts of an enumeration definition.

 ii. An enumeration definition consists of a keyword enum, followed by an optional
identifier name known as enumeration tag-name and a comma-separated list of
enumerators enclosed within braces. All the enumerators present in the enumera-
tion list forms an enumeration set.

 iii. An enumerator is an identifier that can hold an integer value. It is also known as
the enumeration constant. An integer value can optionally be assigned to an enu-
merator, e.g. in the enumeration-type definition enum BOOLEAN {true=1, false=0};, the in-
teger constants 1 and 0 are assigned to the enumerators true and false, respectively.

 iv. The names of the enumerators in the enumeration list must be unique.
 v. The values assigned to enumerators in the enumeration list need not be unique,

e.g. the enumeration definition enum COLORS {red=2, green=1, yellow=1}; is perfectly valid.
 vi. Each enumeration constant has a scope that begins just after its appearance in the

enumeration list. Due to this rule, the enumeration definition enum COLORS {red=2,
green=red, yellow=green}; is perfectly valid.

 vii. Each enumerator in an enumeration list names a value. The enumeration con-
stants are like symbolic constants except that their values are set automatically. By
default, the first enumerator has the value 0. Each subsequent enumerator, if not

Structures, Unions, Enumerations and Bit-fields 581

explicitly assigned a value, has a value 1 greater than the value of the enumera-
tor that immediately precedes it. The piece of code in Program 9-37 illustrates the
interpretation of this rule.

Line Prog 9-37.c Output window

 1
 2
3
4
5
6
7
8
9

//If not explicitly specified, values to the enumeration constants are
//automatically assigned
#include<stdio.h>
enum CARS {alto, omni, esteem=3, wagonR, swift=1, dzire};
main()
{
 printf(“The value of various enumeration constants are:\n”);
 printf(“%d %d %d %d %d %d”, alto, omni, esteem, wagonR, swift, dzire);
}

The values of various enumeration constants are:
0 1 3 4 1 2
Remarks:
•  The first enumerator, i.e. alto is auto-

matically initialized with 0
•  Each subsequent enumerator, if

not explicitly assigned a value, has
a value 1 greater than the value of
the enumerator that immediately
precedes it. Thus, the enumeration
constant omni will have the value 1

•  The enumeration constant esteem is
explicitly given a value 3

•  The enumeration constant wagonR
will have the value 3+1=4

•  Similarly, the enumeration con-
stants swift and dzire will have the
values 1 and 2, respectively

Program 9-37 | A program to illustrate that the values of enumeration constants are set automatically

 viii. The enumeration definition can optionally have the storage class specifier and type
qualifiers. However, they should be used in an enumeration-type definition statement
only if the objects of the defined enumeration type are declared at the same time.

 ix. The enumeration definition is a statement and must be terminated with a semicolon.

2. Declaring objects of an enumeration type: There are two ways to declare variables of
an enumeration type:
a. At the time of enumeration-type definition: Objects of an enumeration type can be

declared at the time of enumeration-type definition. The variable declarations of the
defined enumerated type given in Table 9.7 are valid.

Table 9.7 | Declaration of enumeration variables at the time of the enumeration-type definition

enum BOOL {false, true} flag1, flag2;
(a)

enum {false, true} flag1, flag2;
(b)

 The declarations of the constants of the defined enumerated type given in Table 9.8
are valid.

Table 9.8 | Declaration of the enumeration constants at the time of enumeration-type definition

enum BOOL {false, true} const flag1=true, flag2=false;
(a)

const enum BOOL {false, true} flag1=true, flag2=false;
(b)

enum {false, true} const flag1=true, flag2=false;
(c)

const enum {false, true} flag1=true, flag2=false;
(d)

582 Programming in C—A Practical Approach

b. After enumeration-type definition in a separate declaration statement: Objects of an
enumeration type can be created after its definition only if it is named or tagged. The
keyword enum is used to declare the variables of the defined enumeration type. It is
used in conjunction with the const qualifier to create the constants of the newly created
type. The general form of declaring the objects of the defined enumeration type is:
[storage_class_specifi er][type_qualifi er]enum named_eumeration_type identifi er_name[=initializer[,…]];

 The important points about the declaration of an object of the defined enumeration
type are as follows:
i. The terms enclosed within the square brackets are optional and might not be

present in an enumeration object declaration. The terms shown in bold are the
mandatory parts of the enumeration object declaration.

ii. An enumeration object declaration consists of:
a. The keyword enum for declaring the enumeration variables. The keyword

enum in conjunction with the const qualifier for declaring the constant of the
defined enumeration type.

b. The tag name of the defined enumeration type.
c. Comma-separated list of identifiers (i.e. variable names and constant names).

A variable can optionally be initialized by providing an initializer. However,
the initialization of a constant is must.

d. An object of an enumeration type can be initialized with another object of
the same enumeration type or with one of the enumerators present in the
enumeration list or with an integer value. The piece of code in Program 9-38
illustrates this fact.

Line Prog 9-38.c Output window

 1
 2
3
4
5
6
7
8
9

10
11

//Initialization of an object of the enumeration type
#include<stdio.h>
enum SWITCH {off, on};
main()
{
 enum SWITCH s1=on;
 enum SWITCH s2=s1, s3=0;
 printf(“The value of enumeration object s1 is %d\n”,s1);
 printf(“The value of enumeration object s2 is %d\n”,s2);
 printf(“The value of enumeration object s3 is %d\n”,s3);
}

The value of enumeration object s1 is 1
The value of enumeration object s2 is 1
The value of enumeration object s3 is 0
Warnings(2):
Initializing SWITCH with int in function main()
Function should return a value in function main()
Remarks:
•  Enumerations behave like integers, but it is

common for a compiler to issue a warning
message when an object of an enumeration
type is initialized with something other than
one of its constants or an expression of its
type

•  When the enumeration objects are initialized
with integers, the compiler will not check
that whether the initialized value is valid for
such an enumeration or not

•  Thus, it is even possible to initialize s3 with
–8, 9 or any other integer value

Program 9-38 | A program that illustrates the initialization of an enumeration object

Structures, Unions, Enumerations and Bit-fields 583

3. Operations on the objects of an enumeration type: The following operations can be
performed on the object of an enumeration type:
a. Size of an enumeration object or enumeration type: An enumeration object holds

an enumerator, which in fact is an integer constant. Thus, when the sizeof operator is
applied on an enumeration object or an enumeration type, it outputs the size of an
integer. The piece of code in Program 9-39 illustrates this fact.

Line Prog 9-39.c Output window

 1
 2
3
4
5
6
7
8
9

//Size of an enumeration object or enumeration type
#include<stdio.h>
enum SWITCH {off, on};
main()
{
 enum SWITCH s=on;
 printf(“The size of the enumeration type SWITCH is %d\n”,sizeof(enum SWITCH));
 printf(“The size of the enumeration object s is %d\n”,sizeof(s1));
}

The size of the enumeration type SWITCH is 2
The size of the enumeration object s is 2
Remarks:
•  The size of the enumeration

type or an enumeration object
is the same as the size of an in-
teger object

•  If executed using MS-VC++ 6.0,
it outputs 4

Program 9-39 | A program that illustrates the use of the sizeof operator on an enumeration type and an
enumeration object

b. Address-of an enumeration object: The address-of operator can be applied on an
enumeration object to find the address of the memory space allocated to it. The
piece of code in Program 9-40 illustrates the application of the address-of operator
on an enumeration object.

Line Prog 9-40.c Output window

 1
 2
3
4
5
6
7
8

//Address-of operator and structures
#include<stdio.h>
enum SWITCH {off, on};
main()
{
 enum SWITCH s=on;
 printf(“Address of memory space allocated to s is %p\n”,&s);
}

Address of memory space allocated to s is 249F:220C
Remarks:
•  As the memory allocation is purely

random, the printed address may vary
for executions at different times or on
different machines

•  The definition of an enumeration type
does not take any space in the memo-
ry, i.e. data segment. However, since it
becomes a part of the code, it occupies
some space in the code segment

•  Hence, it is possible to apply the ad-
dress-of operator on an enumeration
type

Program 9-40 | A program that illustrates the use of the address-of operator on an object of enumeration
type

c. Assignment of an enumeration object to an enumeration variable: A variable of an
enumeration type can be assigned with another object of the same enumeration type
or with one of the enumerators present in the enumeration list or with an integer
value.

584 Programming in C—A Practical Approach

d. Behavior of equality operator on the objects of an enumeration type: The equality
operator can be applied to check the equality of two objects of an enumeration type.

The piece of code in Program 9-41 illustrates the use of an assignment operator and the equal-
ity operator on the objects of an enumeration type.

Line Prog 9-41.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12

//Equality of enumeration objects
#include<stdio.h>
enum SWITCH {off, on};
main()
{
 enum SWITCH s1=on, s2;
 s2=s1; // Assignment to an enumeration variable
 if(s1==s2) // Testing the equality of two enumeration variables
 printf(“Both the switches are in ON state\n”);
 else
 printf(“Switches are in different states\n”);
}

Both the switches are in ON state
Remarks:
•  An integer can also be assigned to

an enumeration type
•  When the enumeration objects are

assigned with integers, the compiler
will not check whether the assigned
value is valid for such an enumera-
tion or not. However, it will issue a
warning message

•  It is possible to equate the enumera-
tion objects of the same enumera-
tion type

•  It is even possible to equate the
enumeration object with an integer
constant or an integer variable

Program 9-41 | A program that illustrates the use of the equality operator on the objects of an enumeration type

e. Other operators: All the operators that work on integer objects can be applied on the
objects of an enumeration type and those that can be applied on integer constants
can be applied on enumerators. The piece of code in Program 9-42 illustrates the use
of logical operators on the objects of enumeration types.

Line Prog 9-42.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

//Enumerations and logical operators
#include<stdio.h>
enum COMBINATION {series=1, parallels=2};
enum SWITCH {OFF, ON};
main()
{
 enum COMBINATION ckt;
 enum SWITCH s1, s2;
 printf(“Enter the configuration of the circuit:\n”);
 printf(“(Press 1 for series and 2 for parallel)\n”);
 scanf(“%d”,&ckt);
 printf(“Enter the status of the switches:\n”);
 printf(“(Press 0 for OFF state and 1 for ON state)\n”);
 scanf(“%d %d”,&s1,&s2);
 if(ckt==series)
 {
 if(s1==ON && s2==ON)
 printf(“The bulb will glow”);

Series configuration

Parallel configuration

5V

s1 s2

s1

s2

5V

Enter the configuration of the circuit:
(Press 1 for series and 2 for parallel)
1
Enter the status of the switches:
(Press 0 for OFF state and 1 for ON state)
1 1
The bulb will glow

Output window
(second execution)

Enter the configuration of the circuit:
(Press 1 for series and 2 for parallel)
1
Enter the status of the switches:
(Press 0 for OFF state and 1 for ON state)
1 0
Circuit is not complete, bulb will not glow

(Contd...)

Structures, Unions, Enumerations and Bit-fields 585

19
20
21
22
23
24
25
26
27
28
29

 else
 printf(“Circuit is not complete, bulb will not glow”);
 }
 else
 {
 if(s1==ON || s2==ON)
 printf(“The bulb will glow”);
 else
 printf(“Circuit is not complete, bulb will not glow”);
 }
}

Output window
(third execution)

Enter the configuration of the circuit:
(Press 1 for series and 2 for parallel)
2
Enter the status of the switches:
(Press 0 for OFF state and 1 for ON state)
1 0
The bulb will glow

Output window
(fourth execution)

Enter the configuration of the circuit:
(Press 1 for series and 2 for parallel)
2
Enter the status of the switches:
(Press 0 for OFF state and 1 for ON state)
0 0
Circuit is not complete, bulb will not glow

Program 9-42 | A program that illustrates the use of logical operators on the objects of the enumeration
type

f. Type conversions: The objects of the enumeration type can participate in the ex-
pressions and can be passed as arguments to functions. Whenever necessary, an
enumeration type is automatically promoted to an arithmetic type. The piece of
code in Program 9-43 illustrates this fact.

Line Prog 9-43.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13

//Enumerations and Type conversion
#include<stdio.h>
enum shapes {triangle=3, quadrilateral, pentagon, hexagon};
main()
{
 enum shapes s1=triangle, s2=quadrilateral, s3;
 printf(“The number of vertices in s1 are %d\n”, s1);
 printf(“The number of vertices in s2 are %d\n”,s2);
 printf(“Total number of vertices in s1 and s2 are %d\n”,s1+s2);
 printf(“\nNo. of vertices in s3 are twice the no. of vertices in s1\n”);
 s3=2*s1;
 printf(“The number of vertices in s3 are %d\n”,s3);
}

The number of vertices in s1 are 3
The number of vertices in s2 are 4
Total number of vertices in s1 and s2 are 7

No. of vertices in s3 are twice of the no. of vertices in s1
The number of vertices in s3 are 6
Remarks:
•  Whenever objects of an enumeration

type participate in an expression,
they are promoted to arithmetic type,
if required

•  In line number 11, the enumeration
type enum shapes is initially promoted
to an integer type and then later de-
moted back to the enumeration type
enum shapes

Program 9-43 | A program that illustrates the implicit-type conversion of an enumeration object

586 Programming in C—A Practical Approach

g. Limitation of enumeration type: The only limitation of an enumeration type is that
it is not possible to print the value of an enumeration object in the symbolic form.
The value of an enumeration object is always printed in the integer form. However,
a debugger may be able to print the values of enumeration objects in the symbolic
form. The piece of code in Program 9-44 illustrates this fact.

Line Trace Prog 9-44.c Output window

 1
 2
3
4
5
6
7
8
9

1

2

3

4

5

//Limitation of an enumeration type
#include<stdio.h>
main()
{
enum BOOLEAN {false, true} var;
var=true;
printf(“The value of var is %d”,value);
//printf(“The value of var is %s”,value);
}

The value of var is 1

Watch window

After trace step-3:
a: 1 /*true*/
Remarks:
•  It is not possible to print the value of an enumera-

tion object in the symbolic form
•  As shown in the watch window, a debugger

prints the value of an enumeration object both in
the symbolic form and the integer form

Program 9-44 | A program illustrating that the value of an enumeration object cannot be printed in the
symbolic form

9.11 Bit-fields
From the knowledge that you have imbibed till now, the smallest amount of information that
you can store in the memory is 1 byte, i.e. in the form of character objects. However, most of
the computer applications need to process the information smaller than a byte. For example,
in data communication, the receiver application needs to check the parity of the received
data. The parity of the received data can either be even or odd. Only 1 bit of information is suf-
ficient to specify the parity, i.e. bit will be 0 if the parity is even and 1 otherwise. The receiver
also needs to know whether the data communication will be synchronous or asynchronous.
Again, this information can be stored using 1 bit, i.e. bit will be 0 if data communication is
synchronous and 1 otherwise. If the data communication is asynchronous, the receiver has to
explicitly synchronize itself with the sender. For this purpose, the sender sends start bits to the
receiver, before sending the actual data. The number of start bits that a sender sends can be 0,
1, 2 or 3. The receiver can store this information by using 2 bits.

Parity checking is one of the simplest error-checking techniques. Parity refers to the number
of bits with the value of one in a given set of bits. Parity can be either even or odd. If the num-
ber of 1’s in the given set of bits is even, the parity is said to be even. In odd parity, the number
of 1’s in the given set of bits is odd.

The receiver applications need to be very compact in size (i.e. memory efficient) as they have
to be used in mobile devices. When it is required to make smaller applications, where every
bit of the memory space is precious, the memory cannot be wasted by storing the information
that takes 1 or 2 bits into separate bytes.

Here, the application of bit-fields comes into the real picture. Bit-fields help in packing
several objects into a single unit. They can only be declared as a part of a structure or a union.

Structures, Unions, Enumerations and Bit-fields 587

In a structure or a union declaration-list, it is possible to specify for a member, the number of
bits that it will take in the memory. Such a member is called a bit-field. The general form of a
bit-field declaration is:

 struct|union [tag_name]
 {
 type member_name : integer_constant_expression;
 [type member_name : integer_constant_expression;]
 ……………
 }[variable_name];

The important points about the bit-field declaration are as follows:

1. The terms shown in square brackets are optional and might not be present. The terms
shown in bold are mandatory parts of the declaration. The symbol | stands for OR, i.e.
either struct or union should be present.

2. A bit-field declaration can only appear within a structure or a union declaration-list.
3. Bit-fields must be of integral type. Thus, the type that can be specified in the bit-field

declaration can be char, int or unsigned int.
4. A compile time integer constant expression specifies the width of the bit-field in bits.

It must be non-negative and should not be greater than the number of bits available in
an object of the type used in the bit-field declaration. The piece of code in Program 9-45
illustrates this fact.

Line Prog 9-45.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13

//The size of a bit-field
#include<stdio.h>
struct receiver
{
 unsigned int parity: 22;
 unsigned int mode: 1;
 unsigned int start_bits:2;
 int data;
};
main()
{
// Statements…
}

Compilation error “Bit field too large”
Remarks:
•  The number of bits specified for a bit-field

should not be more than the number of bits
available in an object of the type used in the
bit-field declaration

•  Thus, it is not possible to specify the size of
the bit-field parity to be 22, as the number of
bits in an object of the type unsigned int is 16

Program 9-45 | A program that demonstrates a constraint about the size of a bit-field

5. If the value of the constant expression specifying the number of bits in a bit-field is
0, then the declaration should have no declarator (i.e. name of the bit-field). A bit-
field having 0 width is known as an unnamed bit-field. Unnamed bit-fields cannot
be referenced as their content at the run time is unpredictable. They are used as
dummy fields for the alignment purposes. The piece of code in Program 9-46 illus-
trates this fact.

588 Programming in C—A Practical Approach

Line Prog 9-46.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13

//Unnamed bit-fields
#include<stdio.h>
struct receiver
{
 unsigned int parity: 1;
 unsigned int mode: 0;
 unsigned int start_bits:2;
 int data;
};
main()
{
// Statements…
}

Compilation error “Bit field must contain at least one bit”
Remarks:
•  If the value of constant expression speci-

fying the number of bits in a bit-field is
0, then the declaration should have no
declarator

•  If the bit field is named, then it must con-
tain at least 1 bit

•  Thus, the specification of the declarator
mode in line number 6 leads to the compi-
lation error

•  Remove the declarator name mode and re-
compile the code

Program 9-46 | A program illustrating that if the size of a bit-field is 0, the bit-field should be unnamed

The operations that can be performed on the bit-fields are as follows:
1. Referencing a bit-field: As bit-fields are a part of a structure or a union object, they are

referenced in the same way as other structure or union members are referenced. The
piece of code in Program 9-47 illustrates this fact.

Prog 9-47.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

//Referencing a bit-field
#include<stdio.h>
struct receiver
{
 unsigned int parity: 1;
 unsigned int mode: 1;
 unsigned int start_bits: 2;
 int data;
};
main()
{
struct receiver mobile_receiver={1, 1, 2, 200};
if(mobile_receiver.parity==0)
 printf(“The receiver works with even parity\n”);
else
 printf(“The receiver works with odd parity\n”);
if(mobile_receiver.mode==0)
 printf(“The receiver supports synchronous data transmission\n”);
else
{
 printf(“The receiver supports asynchronous data transmission\n”);
 printf(“There should be %d start bits\n”, mobile_receiver.start_bits);
}
}

The receiver works with odd parity
The receiver supports asynchronous data transmission
There should be 2 start bits
Remark:
•  Bit-fields can be referenced in the

same way as other members of struc-
ture or union type are referenced, i.e.
by using a direct member access op-
erator or an indirect member access
operator

Program 9-47 | A program that illustrates how to access the bit-fields

Structures, Unions, Enumerations and Bit-fields 589

2. Other operations: Bit-field behave like an integer object and can participate in expres-
sions in exactly the same way as an object of the integer type would do, regardless of
how many bits are there in the bit-field.

 The following operations cannot be performed on bit-fields:
1. Address-of a bit-field: It is not possible to obtain the address of a bit-field member.

Unary address-of operator cannot be applied to a bit-field object. Thus, it is not
possible to have an array of bit-fields or pointers to bit-fields. The piece of code in
Program 9-48 illustrates this fact.

Line Prog 9-48.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

//Address-of a bit-field member
#include<stdio.h>
struct receiver
{
 unsigned int parity: 1;
 unsigned int mode: 1;
 unsigned int start_bits: 2;
 int data;
};
main()
{
struct receiver mobile_receiver={1, 1, 2, 200};
printf(“The memory address of object mobile_receiver is %p\n”, &mobile_receiver);
printf(“The memory address of bit-field parity is %p\n”,&mobile_receiver.parity);
// Other statements…
}

Compilation error “illegal to take ad-
dress of bit-field in function main()”
Remarks:
•  It is not allowed to take

the address of a bit-field
member

•  Hence, line number 14 is
erroneous and leads to a
compilation error

•  Comment line number 14
and re-execute the code
to see that it is possible to
take the address of a struc-
ture object that contains
bit-fields

Program 9-48 | A program to illustrate that it is not possible to take the address of a bit-field

2. Size-of a bit-field: Like the address-of operator, it is not possible to apply the sizeof
operator on a bit-field object. The piece of code in Program 9-49 illustrates this fact.

Prog 9-49.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15

//sizeof a bit-field member
#include<stdio.h>
struct receiver
{
 unsigned int parity: 1;
 unsigned int mode: 1;
 unsigned int start_bits: 2;
 int data;
};
main()
{
struct receiver mobile_receiver={1, 1, 2, 200};
printf(“The size of bit-field object parity is %d\n”,sizeof(mobile_receiver.parity));
// Other statements…
}

Compilation error “sizeof may not
be applied to a bit-field in function
main()”
Remarks:
•  It is not allowed to apply

the sizeof operator to a bit-
field object

•  Hence, line number 13 is
erroneous and leads to a
compilation error

Program 9-49 | A program illustrating that it is not possible to apply the sizeof operator on bit-fields

Chapter 9.indd 589Chapter 9.indd 589 28/02/2010 4:35:13 PM28/02/2010 4:35:13 PM

590 Programming in C—A Practical Approach

The important points about the application of the sizeof operator on bit-fields are as follows:
1. An implementation may allocate an addressable storage unit large enough to hold a

bit-field. If enough space remains, a bit-field that immediately follows another bit-field
in a structure shall be packed into adjacent bits of the same unit. If insufficient space re-
mains, whether a bit-field that does not fit is put into the next unit or overlaps adjacent
units is implementation defined.

2. An unnamed bit-field (i.e. bit-field with width 0) indicates that no further bit-field is to
be packed in the unit in which the previous bit-field (if any) is placed. The piece of code
in Program 9-50 illustrates this fact.

Line Prog 9-50.c Output window (Turbo C 4.5)

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

//sizeof structure having unnamed bit-field
#include<stdio.h>
struct receiver
{
 unsigned int parity: 1;
 int :0; // Unnamed bit-field
 unsigned int mode: 1;
 unsigned int start_bits: 2;
 int data;
};
main()
{
struct receiver mobile_receiver;
printf(“The size of object mobile_receiver is %d\n”, sizeof(mobile_receiver));
// Other statements…
}

The size of object mobile_receiver is 6
Remarks:
•  The unnamed bit-field is used

for alignment purposes
•  An unnamed bit-field indicates

that no further bit-field is to be
packed in the unit in which the
previous bit-field is placed

•  Thus, the bit-fields, i.e. mode
and start_bits are placed in the
unit next to the unit in which
the bit-field parity is placed

•  The structure member data
takes 2 bytes

•  Thus, the total size occupied by
the structure object mobile_receiver
is 2+2+2= 6 bytes

Program 9-50 | A program that illustrates the use of an unnamed bit-field for alignment purpose

9.12 Summary
1. C language also provides the flexibility to create new types, known as user-defined types.
2. User-defined types can be created by using structures, unions and enumerations.
3. Unlike arrays, the data of different types can be grouped together and stored by making

use of structures.
4. A structure is a collection of variables under a single name and provides a convenient

way of grouping several pieces of related information together.
5. The structure definition defines a new type, known as structure type.
6. The structure declaration-list in a structure definition consists of declarations of one or

more variables, possibly of different types.
7. A structure declaration-list cannot contain a member of void type or incomplete type or

function type.
8. A structure definition cannot contain an instance of itself.
9. A structure definition may contain a pointer to an instance of itself. Such a structure is

known as self-referential structure.

Structures, Unions, Enumerations and Bit-fields 591

10. Structure definition does not reserve any space in memory.
11. It is not possible to initialize the structure members during the structure definition.
12. The structure members cannot be initialized during the structure definition, but the

members of a structure object can be initialized by providing an initialization list.
13. An unnamed structure type is also known as an anonymous structure type.
14. The member of a structure object can be accessed by using: direct member access opera-

tor or indirect member access operator.
15. A structure object can be assigned to a structure variable of the same type.
16. An assignment operator when applied on structure variables performs member-by-

member copy.
17. The members of a structure object can be byte aligned or machine-word boundary

aligned.
18. If the members of a structure object are machine-word boundary aligned, the padding

bytes can appear in between two structure members or after the last structure mem-
ber.

19. The sizeof operator when applied on a structure object includes the space taken by inter-
nal and trailing padding.

20. The use of the equality operator on operands of a structure type is not allowed.
21. An operation that is applicable on an object of a particular type can be applied on a

structure member of that type.
22. Like a pointer to any other type, it is possible to create a pointer to a structure type as

well.
23. It is possible to define a structure type within the declaration-list of another structure-

type definition.
24. Unions are similar to structures except that memory is shared among all the members.
25. The amount of memory allocated to a union object is the amount necessary to contain

its largest member.
26. Only the first member of a union object can be initialized.
27. Unions are extensively used in interrupt programming.
28. Enumerations provide another way to create a user-defined type. An enumeration type

is designed for variables that can have a limited set of values.
29. In a structure or a union declaration-list, it is possible to specify for a member, the num-

ber of bits that it will take in the memory. Such a member is called a bit-field.
30. Bit-fields help in packing several objects into a single unit.

Exercise Questions

Conceptual Questions and Answers
1. I know that C language provides a rich set of primitive and derived data types for the efficient storage and

manipulation of the data. Unfortunately, none of the primitive or derived data types suit my requirements.
What should I do so that I can efficiently store and manipulate the data?

 C language provides a rich set of primitive and derived data types for the efficient storage and
manipulation of the data. Even then, in case these data types do not suit your requirements, you
can define new data types. These new data types are known as user-defined data types. In C lan-
guage, the user-defined data types can be created by using structures, unions and enumerations.

592 Programming in C—A Practical Approach

Functions are created for the operations allowed on these data types. These user-defined data
types along with the defined functions can be used for the efficient storage and manipulation of
the data.

2. What are aggregate types?
 Aggregate types represent multiple values of the same type or of different types. Aggregate types

include arrays and structures. Arrays are used to represent multiple values of the same type,
while structures are used to represent multiple values of the same type or of different types.

3. Like structure type, union type also contains a number of members, possibly of different types. Then, why
does the aggregate type not include union type?

 Aggregate type does not include a union type because an object of a union type can contain only
one member at a time.

4. What are anonymous structures?
 Unnamed structures are known as anonymous structures. The tag-names are not specified while

defining anonymous structures.

5. Consider the following piece of code:
 struct complex
 {
 int re;
 int im;
 }
 main()
 {
 struct complex no1={2,3}, no2={4,5};
 printf(“The sum of complex numbers is %d+%di”,no1.re+no2.re, no1.im+no2.im);
 }
 We know that the structure-type definition is a statement and must be terminated with a semicolon. How-

ever, Turbo C 3.0 compiler on compiling the above-mentioned code gives no error, although the structure-
type definition is not terminated with a semicolon. Why? Can it be avoided to terminate a structure defini-
tion with a semicolon?

 The Turbo C 3.0 compiler does not show any error because it interprets the structure-type defini-
tion as a return type of the function main. This does not mean that the structure definition should
not be terminated with a semicolon. The missing semicolon at the end of a structure definition
would lead to a compilation error in the following cases:
1. Some compilers (e.g. Borland Turbo C 4.5) do not allow the return type of the function main to

be any other type except int. In such cases, the mentioned piece of code on compilation gives
an error. Hence, the mentioned piece of code will not work with all the compilers.

2. If there is some declaration statement present after the structure definition with a missing
terminating semicolon (as shown below), there will be a compilation error even if it is com-
piled with a Borland Turbo C 3.0 compiler.

 struct complex
 {
 int re;
 int im;
 } // The missing semicolon will lead to a compilation error
 int somevariable; // Declaration statement
 main()

Structures, Unions, Enumerations and Bit-fields 593

 {
 …// Statements
 }

6. I have written the following piece of code:
 struct type
 {
 char a;
 int b;
 float c;
 };
 type variable;
 The mentioned piece of code does not work and gives a compilation error. Why? How can I rectify it?
 In C language it is not allowed to declare an object of the defined structure type only by using its

tag-name without using the keyword struct. Hence, the statement type variable; is erroneous. There
are two ways to rectify this problem:
1. Using the keyword struct: Use the keyword struct to declare the object variable of the defined

structure type. Hence, the statement type variable; should be written as struct type variable;.
2. Using the storage class specifier typedef: Use the storage class specifier typedef to construct a

syntactically convenient alias name for the defined structure type and then declare an object
using the alias name. The storage class specifier typedef can be used either at the time of the
structure definition or after the structure definition in a separate statement as shown below:

 typedef struct type
 {
 char a;
 int b;
 float c;
 }type;
 type variable; // Object declaration

(a) typedef used at the time of structure
definition

 struct type
 {
 char a;
 int b;
 float c;
 };
 typedef struct type type;
 type variable; // Object declaration

(b) typedef used after the structure definition
in a separate statement

7. I know that a function cannot be defined within the body of another function. However, can I define a
structure type within another structure-type definition?

 Yes, a structure type can be defined within another structure-type definition. For example, the
structure definitions struct registers, struct word_registers, struct byte_registers shown below are perfectly
valid:

 struct registers
 {
 struct word_registers {unsigned int ax, bx, cx, dx, si, di, cflags, flags;} x;
 struct byte_registers {unsigned char al, ah, bl, bh, cl, ch, dl, dh;} h;
 };

8. Why does a structure not have an instance of itself?

Backward Reference: Refer Section 9.2.1 to answer this question.

594 Programming in C—A Practical Approach

9. Can a structure have a pointer to itself?
 Yes, a structure can have a pointer to an instance of itself. Such a structure is known as a self-

referential structure.

10. I know that the sizeof operator when applied on the structures returns the total memory space required by
all of its members. I have applied the sizeof operator on an object of the following structure type:

 struct fields
 {
 char a;
 int b;
 char c;
 float d;
 };
 The sizeof operator is returning a size larger than the sum of size of all the fields. Why? How can I rectify

this problem?
 A structure may have internal and trailing padding to align the structure members with the

machine-word boundaries. The sizeof operator counts these internal and trailing padding bytes
as well. Thus, the sizeof operator returns a size larger than the sum of size of all the fields of the
structure. This problem can be rectified by byte aligning of the members of the structure so that
there is no padding. The members of a structure can be byte aligned by using #pragma option –a– (if
working with Borland Turbo C 3.0/4.5) or #pragma pack(1) (if working with MS-VC++ 6.0) .

11. I have defined two structure types struct type1 and struct type2 as given below.
 struct type1 struct type2
 { {
 long a; char c;
 short b; long a;
 char c; short b;
 }; };
 Both the types have the same members but listed in a different order. Would the sizeof operator return the

size of both the types to be same?
 No, the sizeof operator would not necessarily return the same size for both the defined structure

types. If the members of the structure types are machine-word boundary aligned, the structure
members may have the padding in between or at the end. The padding depends upon the order
in which of the members of a structure are placed in the structure-type definition. For example, if
MS-VC++ 6.0 compiler is used and the pack size is 4 bytes, an object of the type struct type1 will be
stored in the memory as:

a b c

1001 1000 0101 0010 0000 1111 1011 H

2400 2401 2402 2403 2404 2405 2406 2407

 An object of the structure type struct type2 will be stored in the memory as:

c a b

1011 H H H 1001 1000 0101 0010 0000 1111 H H

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411

Chapter 9.indd 594Chapter 9.indd 594 28/02/2010 4:35:14 PM28/02/2010 4:35:14 PM

Structures, Unions, Enumerations and Bit-fields 595

 The structure member c of the structure type struct type2 can start from any byte boundary. The
structure member a can only start from a storage boundary that has an address, which is multiple
of 4, i.e. size of type long. Hence, the structure member a cannot start from the memory location
2401, since it is not multiple of 4. It can be placed at memory address 2404 and thus there are 3
padding bytes in between the member c and a. The structure member b can start from memory
location 2408, since the memory address is a multiple of 2, i.e. size of type short.

 The compiler also places 2 padding bytes after the member b because it wants to ensure the align-
ment constraints on the next structure object, if there is any. Suppose the compiler does not pad
at the end and the member c of the next structure object starts from the memory location 2410. It
is a valid start location for the member c since it is of char type. Then, the compiler places 3 pad-
ding bytes as it did in the previous object and places the member a at the memory location 2414.
However, the memory address 2414 is not divisible by 4, i.e. size of the member a. Hence, it is not
a valid start location for the member a. Thus, the compiler cannot enforce alignment constraints
by starting the second structure object from the memory location 2410.

 Now, suppose the compiler pad places 2 bytes at the end of the first structure object and starts
placing the members of the next structure object from the memory location 2412. The member c of
the second structure object is placed at the memory location 2412. There will be 3 padding bytes in
between the structure members c and a and the member a starts from the memory location 2416. It
is a valid start location for the member a, since the address is divisible by 4. Thus, the compiler is
able to enforce alignment constraints.

 Thus, if the members of the structure objects are machine-word boundary aligned, an object of
the type struct type1 will take 8 bytes while an object of the type struct type2 will take 12 bytes. If the
members of the structure objects are byte aligned, objects of both the types struct type1 and struct
type2 will take the same number of bytes because in byte alignment there is no padding.

12. Some of the precious memory space can be saved if the members of a structure type are judiciously ar-
ranged. Would the compiler do this task for me and rearrange the members of the defined structure type in
a manner that requires less padding?

 No, the members of a structure object are always stored in the order in which they are declared
in the structure-type definition. The compiler will never reorder them to improve the alignment
and save padding.

13. Is the following definition of the structure type syntactically correct?
 struct car
 {
 char* make;
 char* model;
 enum color colour;
 };
 enum color {red, green, blue};
 No, the given definition of the structure type struct car is erroneous. The scope of the enumera-

tion tags begins just after the appearance of the tag in a type specifier that declares the tag (i.e.
enumeration tags cannot be used before they are defined). Thus, the usage of the enumeration
tag color in the declaration-list of the struct car leads to the compilation error ‘’color’ must be a previously
defined enumeration tag’. The code can be rectified by defining enumeration type enum color before the
definition of the structure type struct car.

14. Is the following piece of code syntactically correct? If yes, what would its output be?
 struct complex
 {

596 Programming in C—A Practical Approach

 int re;
 int im;
 };
 struct complex con(struct complex);
 main()
 {
 struct complex num={2,3};
 printf(“After conjugation, the real and imaginary parts are %d and %d”,con(num).re, con(num).im);
 }
 struct complex con(struct complex num)
 {
 num.im=-num.im;
 return num;
 }
 Yes, the given piece of code is syntactically correct and on execution outputs:
 After conjugation, the real and imaginary parts are 2 and –3
 If f is a function returning a structure or a union, and x is a member of that structure or union,

then f().x is a valid expression. Thus, con(num).re and con(num).im are valid expressions and evaluates
to 2 and –3, respectively.

15. Like array name and function name, does a structure name point to the base address of the structure?
 No, like array name and function name (i.e. function designator), the structure name does not

point to the base address of the structure. A structure name refers to the entire structure.

16. Like for arrays, can it be said with certainty that the members of a structure object are stored in contiguous
memory locations?

 No, like arrays it cannot be said with certainty that the members of a structure object are stored
in contiguous memory locations. Members of a structure object may have padding in between.

17. Given the following type definition and object declarations:
 struct t { int i; const int ci;};
 struct t t;
 const struct t ct;
 What would be the type of the following expressions?

1. t.i
2. t.ci
3. ct.i
4. ct.ci

 The given expressions are of the following types:
1. t.i int
2. t.ci const int
3. ct.i const int
4. ct.ci const int

18. Why does the equality operator (==), inequality operator (!=) and other relational operators not work on
structures?

 The equality operator, inequality operator and relational operators do not work on structures
because there is no way for a compiler to implement structure comparison. A simple byte-by-
byte comparison would fail while comparing the random bits present in the internal padding.

Structures, Unions, Enumerations and Bit-fields 597

A member-by-member comparison might require unacceptable amounts of repetitive code for
large structures. Also, any compiler-generated comparison would not compare the members ap-
propriately in all cases, e.g. the members of the type char* should be compared with the strcmp
function instead of being compared with equality (==) operator.

Backward Reference: Refer Section 9.2.3.1.5 for more details.

Forward Reference: Refer Question numbers 40 and 41 and their answers.

19. How can I find the byte offset of a member within a structure?
 The byte offset of a member within a structure can be found by using offsetof macro defined in the

header file stddef.h. The offsetof macro accepts the name of the structure type as the first argument
and the name of member whose offset is to be found as the second argument. It returns the byte
offset of the member as an integer value. The following piece of code illustrates the use of the
offsetof macro to find the offset of a member:

 #include<stddef.h>
 struct type
 {
 char a;
 int b;
 char c;
 float d;
 };
 main()
 {
 printf(“The offset of member a is %d\n”,offsetof(struct type, a));
 printf(“The offset of member b is %d\n”,offsetof(struct type, b));
 printf(“The offset of member c is %d\n”,offsetof(struct type, c));
 printf(“The offset of member d is %d\n”,offsetof(struct type, d));
 }
 The mentioned piece of code on execution using Borland Turbo C 3.0/4.5 outputs:
 The offset of member a is 0
 The offset of member b is 1
 The offset of member c is 3
 The offset of member d is 4
 The important points about the usage of the offsetof macro are as follows:

1. The output of the offsetof macro depends upon how the structure members are aligned (i.e.
byte aligned or machine-word boundary aligned). Make the structure members machine-
word boundary aligned in the above-mentioned code by using #pragma option -a and then re-
execute the above-mentioned code and look at the output.

2. If the macro is not previously defined, define it as:
#define offsetof(s_name, m_name) (size_t)&(((s_name*)0)->m_name)

20. How is the declaration struct type {.……}; different from typedef struct {……..} type;?
 The differences between the two declaration statements are as follows:

598 Programming in C—A Practical Approach

struct type{…..}; typedef struct {……} type;
1.  This declaration statement declares a

structure tag name (i.e. type)
2.  The keyword struct is to be used while

declaring objects of the defined type (e.g.
struct type objects;)

3.  The requirement of using the keyword
struct to declare the instances of the de-
fined structure type is a bit inconvenient

1.  This declaration statement declares a
typedef name (i.e. an alias name)

2.  The objects can be declared just by using
the typedef name (e.g. type objects;). There is
no need to use the keyword struct

3.  This form of declaration is slightly more
abstract. For example, from the declara-
tion statement type objects; the user does
not come to know that type refers to a
structure type as the keyword struct is
not used

21. I have heard that a structure can have a pointer to itself but the mentioned piece of code is not working and
is giving a compilation error. Why?

 typedef struct
 {
 int data;
 NODE* link;
 } NODE;
 The storage class specifier typedef creates a new name (i.e. an alias name) for a type. We can define

a new structure type and create a typedef name (i.e. alias name) for it at the same time. However, a
typedef name cannot be used until it is defined. In the given question, the typedef name NODE is used
before it is defined. This leads to a compilation error. There are two ways to rectify this problem:
1. Instead of defining an unnamed type, define a named type by giving a tag name to the

structure (e.g. struct node). Then declare the field link as struct node* link;. The rectified code is men-
tioned below:

 typedef struct node
 {
 int data;
 struct node* link;
 } NODE;
2. Disentangle the typedef definition from the structure definition and place it before the struc-

ture definition as shown below:
 typedef struct node NODE;
 struct node
 {
 int data;
 NODE *link;
 };

22. Is the definition of the following union type syntactically correct? If yes, what would be the size of an object
of the following union type?

 union numbers
 {
 struct {char a[10];} one;
 struct {int a[10];} two;
 struct {float a[10];} three;
 }; 

Structures, Unions, Enumerations and Bit-fields 599

 Yes, the definition of the union type union numbers is syntactically valid. The amount of the memory
allocated to a union object is equal to the size of its largest member. Since the largest member in
the given union type union numbers is three (i.e. of 4×10=40 bytes), the size of an object of the union
type union numbers would be 40.

23. Is the following piece of code syntactically correct? If yes, what would its output be?
 typedef struct error
 {
 int warning, error, exception;
 } error;
 main()
 {
 error err;
 err.error=2;
 switch(err.error)
 {
 case 1: printf(“Some warnings are there\n”); break;
 case 2: printf(“Some error occurred\n”); break;
 case 3: printf(“Some exception is there\n”);
 }
 }
 Yes, the following piece of code is syntactically correct and on execution outputs ‘Some error occurred’.

Based upon the context, the compiler can distinguish between the different usages of the name
error. For example, in the statement error err; the usage of error is treated as the typedef name. In the
statement err.error=2; the usage of error is treated as the member name. If there would have been a
statement like struct error err; the usage of error would have been treated as the structure tag name.

24. How can I keep track of which field of a union is in use?
 There is no automatic way to keep a track of which union field is in use. However, we can create

a type with an additional member, which keeps a record of the union field currently in use. The
following code segment illustrates the definition of such type:

 struct trackedunion
 {
 enum {UNKNOWN, CHAR, INT, FLOAT, LONG, DOUBLE} code;
 union
 {
 char a;
 int b;
 float c;
 long d;
 double e;
 } u;
 };
 Initially the value of code is set to UNKNOWN, because it is not known that which union field is in use.

After that, whenever a value is assigned to a union field, the code field is set appropriately. Thus,
the code field keeps a track of which union field is being last written to.

25. What are the differences between a symbolic constant and an enumeration constant?
 The important differences between symbolic constants and enumeration constants are as follows:

600 Programming in C—A Practical Approach

Symbolic constants Enumeration constants

1.  Symbolic constants are created with the
help of define directive

2.  The symbolic constants have global
scope. They can be used throughout
the translation unit (i.e. file) after their
definition

3.  Symbolic constants do not have any type
associated with them

4.  The values of the symbolic constants are
to be mentioned explicitly

1.  Enumeration constants are created as a
part of enumeration type definition

2.  The enumeration constants have the lo-
cal scope. They can only be used in the
scope in which the enumeration type
has been defined

3.  Enumeration constants are of integer
type

4.  The values of the enumeration constants
are set automatically. By default, the first
enumeration constant has value 0

26. Instead of printing the values of the enumeration constants, I want to print them symbolically. How can I
do that?

 The only limitation of an enumeration type is that it is not possible to print the value of an enu-
meration object in their symbolic form. By default, the value of an enumeration object is always
printed in the integer form. However, you can write your own function to map an enumeration
value into a string. The following piece of code illustrates one such function map that maps an
enumeration value into a string:

 #include<stdio.h>
 enum BOOLEAN {FALSE, TRUE};
 char* map(enum BOOLEAN);
 main()
 {
 enum BOOLEAN a, b;
 a=FALSE;
 b=TRUE;
 printf(“The values of a and b in integer form are %d and %d\n”, a, b);
 printf(“The values of a and b in symbolic form are %s and %s”,map(a), map(b));
 }
 char* map(enum BOOLEAN a)
 {
 switch(a)
 {
 case 0:
 return “FALSE”;
 case 1:
 return “TRUE”;
 }
 }
 The above-mentioned piece of code on execution outputs:
 The values of a and b in integer form are 0 and 1
 The values of a and b in symbolic form are FALSE and TRUE

27. Is the following piece of code syntactically correct? If yes, what would its output be?
 typedef enum error {warning, error, exception} error;
 main()

Structures, Unions, Enumerations and Bit-fields 601

 {
 error err;
 err=error;
 switch(err)
 {
 case 1: printf(“Some warnings are there\n”); break;
 case 2: printf(“Some error occurred\n”); break;
 case 3: printf(“Some exception is there\n”);
 }
 }
 No, the mentioned piece of code is syntactically incorrect and on compilation leads to ‘Multiple

declarations for ‘error’’ error. The compiler shows an error because based upon the context, it is not
able to distinguish between the use of error as an alias name in the declaration statement error err;
and error as an enumeration constant in the assignment statement err=error;.

28. What is the efficient way to store flag values?
 Flag refers to one or more bits that are used to store a value that has an assigned meaning.

Flags are generally used to control or indicate the outcome of different operations. For ex-
ample, the carry flag of microprocessor is set to 1 if an addition operation generates a carry
out of the most significant bit position. Similarly, the zero flag is set to 1 when the result of an
operation is zero (e.g. subtraction of two equal numbers). Flags can be efficiently stored by
making the use of bit fields.

Backward Reference: Refer Section 9.11 for more details.

29. What are unnamed bit-fields? Why are they used?
 Bit-fields with length 0 are known as unnamed bit-fields. Unnamed bit-fields are used for the

alignment purposes. An unnamed bit-field indicates that the next field should be placed in a
separate unit and not with the previous field in the same unit.

30. ‘Use of standard library functions increase the size of the executable file but the use of interrupt functions
does not increase the size of the executable file’. Is this statement true?

 No. This statement is false. The Turbo C library functions also use the interrupts and were writ-
ten by programmers. The only difference between the library functions and the interrupts is in
the ease of usage. The library functions are easier to use and are more flexible as compared to
interrupts.

Code Snippets
 Determine the output of the following code snippets. Assume that the inclusion of the required header files

has been made and there is no prototyping error due to them.
31. struct book
 {
 char title[20];
 char author[20];
 int pages;
 float price;
 };
 main()

602 Programming in C—A Practical Approach

 {
 book Cbook;
 printf(“The size of object Cbook is %d bytes”, sizeof(Cbook));
 }

32. struct book
 {
 char title[20];
 char author[20];
 int pages;
 float price;
 };
 main()
 {
 struct book Cbook;
 Cbook.title=”The power of positive attitude”;
 Cbook.author=”P Subramanyam”;
 Cbook.pages=400;
 Cbook.price=225.50;
 printf(“%s by %s is of %f rupees”, Cbook.title, Cbook.author, Cbook.price);
 }

33. struct book
 {
 char *title;
 char *author;
 int pages;
 float price;
 };
 main()
 {
 struct book Cbook;
 Cbook.title=”The power of positive attitude”;
 Cbook.author=”P Subramanyam”;
 Cbook.pages=400;
 Cbook.price=225.50;
 printf(“%s by %s is of %f rupees”, Cbook.title, Cbook.author, Cbook.price);
 }

34. struct car
 {
 struct engine e;
 struct chassis c;
 };
 struct engine
 {
 int hp;
 int cc;
 };
 struct chassis

Structures, Unions, Enumerations and Bit-fields 603

 {
 int length;
 int width;
 };
 main()
 {
 struct car yourcar={{68, 1400}, {3200, 2358}};
 if(yourcar.e.cc<1400)
 printf(“It is a small segment car\n”);
 else if(yourcar.e.cc>=1400 && yourcar.e.cc<1600)
 printf(“It is a middle segment car\n”);
 else
 printf(“It is a big segment car\n”);
 }

35. struct car
 {
 struct engine {int hp; int cc;} e;
 struct chassis {int length; int width;} c;
 };
 main()
 {
 struct car yourcar={{68, 1400}, {3200, 2358}}, mycar={{52, 1000},{3500,2500}};
 if(yourcar.c.length>mycar.c.length)
 printf(“Your car is lengthier than mine\n”);
 else
 printf(“My car is lengthier than yours\n”);
 }

36. //Assuming the compiler used is Borland Turbo C 4.5
 struct car
 {
 char *make;
 char *model;
 char *reg_no;
 struct {int hp; int cc;} e;
 struct {int length; int width; char* color;} c;
 float cost;
 };
 main()
 {
 struct car mycar;
 printf(“The size of type struct car is %d\n”,sizeof(struct car));
 printf(“The objects of type struct car will take %d bytes of memory\n”, sizeof(mycar));
 }

37. struct car
 {
 char *manufacturer=”Maruti”;
 char *make;
 };

604 Programming in C—A Practical Approach

 main()
 {
 struct car mycar, yourcar;
 mycar.make=”Swift”;
 yourcar.make=”Dzire”;
 printf(“We own %s and %s cars manufactured by %s”, mycar.make, yourcar.make, mycar.manufacturer);
 }

38. struct car
 {
 char *make;
 char *model;
 };
 main()
 {
   struct car mycar={“Maruti”, ”Dzire”};
 struct car yourcar=mycar;
 strupr(yourcar.make);
 strupr(yourcar.model);
 printf(“Your car is %s-%s\n”,yourcar.make, yourcar.model);
 printf(“My car is %s-%s\n”,mycar.make, mycar.model);
 } 

39. struct car
 {
 char *make;
 char *model;
 };
 main()
 {
 struct car mycar={“Maruti”, ”Dzire”}, yourcar={“Maruti”, ”Dzire”};
 if(mycar==yourcar)
 printf(“Both of us own car of same make and model”);
 else
 printf(“We own different types of cars”);
 }

40. struct car
 {
 char *make;
 char *model;
 };
 main()
 {
 struct car mycar={“Maruti”, ”Dzire”}, yourcar={“Maruti”, ”Dzire”};
 if(mycar.make==yourcar.make && mycar.model==yourcar.model)
 printf(“Both of us own car of same make and model”);
 else
 printf(“We own different types of cars”);
 } 

Structures, Unions, Enumerations and Bit-fields 605

41. struct car
 {
 char *make;
 char *model;
 };
 main()
 {
 struct car mycar={“Maruti”, ”Dzire”}, yourcar={“Maruti”, ”Dzire”};
 if(strcmp(mycar.make,yourcar.make)==0 && strcmp(mycar.model, yourcar.model)==0)
 printf(“Both of us own cars of same make and model”);
 else
 printf(“We own different types of cars”);
 }

42. struct 3Dpoints
 {
 int x;
 int y;
 int z;
 };
 main()
 {
 struct 3Dpoints pt1, pt2;
 pt1.x=pt2.x=20;
 pt1.y=10; pt2.y=30;
 printf(“Points in xy plane are:\n”);
 printf(“Pt1(%d %d)\n”, pt1.x, pt1.y);
 printf(“Pt2(%d %d)\n”,pt2.x,pt2.y);
 }

43. struct complex
 {
 int re;
 int im;
 };
 main()
 {
 struct complex number={2,3};
 int *ptr1=&number.re, *ptr2=&number.im;
 if(ptr2>ptr1)
 printf(“The imaginary part is stored towards the right of real part in the number object\n”);
 else if(ptr1>ptr2)
 printf(“The real part is stored towards the right of imaginary part in the number object\n”);
 else
 printf(“Both the real part and imaginary part overlap\n”);
 }

44. struct point
 {
 int x, y;
 };

606 Programming in C—A Practical Approach

 main()
 {
 struct point origin;
 printf(“The coordinates of origin are %d,%d”, origin.x, origin.y);
 }

45. struct point
 {
 int x, y;
 };
 main()
 {
 struct point origin={0};
 printf(“The coordinates of origin are %d,%d”, origin.x, origin.y);
 }

46. struct point
 {
 int x, y;
 };
 main()
 {
 static struct point origin;
 printf(“The coordinates of origin are %d,%d”, origin.x, origin.y);
 }

47. #include<alloc.h>
 struct node
 {
 int data;
 struct node *link;
 };
 main()
 {
 struct node* ptr, *temp;
 ptr=(struct node*)malloc(sizeof(struct node));
 ptr->data=10;
 temp=(struct node*)malloc(sizeof(struct node));
 ptr->link=temp; temp->data=20;
 temp=(struct node*)malloc(sizeof(struct node));
 ptr->link->link=temp; temp->data=30;
 temp->link=NULL;
 temp=ptr;
 while(temp!=NULL)
 {
 printf(“%d\t”,temp->data);
 temp=temp->link;
 }
 }

Structures, Unions, Enumerations and Bit-fields 607

48. struct complex
 {
 int re;
 int im;
 };
 main()
 {
 struct complex no={2,3};
 struct complex* cptr=&no;
 printf(“The real and imaginary parts of complex number are %d and %d”, *cptr.re, *cptr.im);
 }

49. struct complex
 {
 int re;
 int im;
 };
 main()
 {
 struct complex no={2,3};
 struct complex* cptr=&no;
 printf(“The real and imaginary parts of complex number are %d and %d\n”, (*cptr).re, (*cptr).im);
 printf(“The real and imaginary parts of complex number are %d and %d”, cptr->re, cptr->im);
 }

50. union contactno
 {
 char mobileno[10];
 char landlineno[10];
 char pagerno[10];
 };
 main()
 {
 union contactno electrician={“9416234213”, “5356785”, “941-998856”};
 printf(“The mobile number of my electrician is %s\n”, electrician.mobileno);
 printf(“You can also contact him on his landline number %s”, electrician.landlineno);
 }

51. union coordinates
 {
 int x;
 int y;
 };
 main()
 {
 union coordinates point;
 point.x=20;
 point.y=30;
 printf(“The coordinates of point are %d,%d”, point.x, point.y);
 }

608 Programming in C—A Practical Approach

52. #define struct union
 struct type
 {
 char a;
 int b;
 float c;
 };
 main()
 {
 printf(“The size of defined structure type is %d”, sizeof(struct type));
 }

53. typedef struct union;
 struct type
 {
 char a;
 int b;
 float c;
 };
 main()
 {
 printf(“The size of defined structure type is %d”, sizeof(struct type));
 }

54. enum color {red, green, blue};
 main()
 {
 printf(“The values of enumeration constants are %d %d %d”, red, green, blue);
 }

55. enum color {red, green=red, blue=green};
 main()
 {
 printf(“The values of enumerations constants are %d %d %d”, red, green, blue);
 }

56. enum values {a, b=32767, c};
 main()
 {
 printf(“Values of enumeration constants are %d %d %d”, a, b, c);
 }

57. enum values {a=2, b=3, c};
 main()
 {
 int var=7, res1, res2;
 res1=var%b;
 res2=res1%res2;
 printf(“The values of res1 and res2 are %d and %d”,res1, res2);
 }

Structures, Unions, Enumerations and Bit-fields 609

58. main()
 {
 int bitfield: 2;
 bitfield=3;
 printf(“The value of bitfield is %d”,bitfield);
 }

59. int parity=1;
 struct dataobject
 {
 int paritybits: parity;
 int data;
 };
 main()
 {
 int i, count=0;
 struct dataobject obj={0, 2, 23};
 while(obj.data!=0)
 {
 if(obj.data%2==1)
 count++;
 obj.data=obj.data>>1;
 }
 if(count%2==0)
 {
 obj.paritybits=0;
 printf(“The data has even parity”);
 }
 else
 {
 obj.paritybits=1;
 printf(“The data has odd parity”);
 }
 }

60. struct dataobject
 {
 int paritybits: 1;
 int data;
 };
 main()
 {
 int i, count=0;
 struct dataobject obj={0, 2, 23};
 while(obj.data!=0)
 {
 if(obj.data%2==1)
 count++;
 obj.data=obj.data>>1;
 }

610 Programming in C—A Practical Approach

 if(count%2==0)
 {
 obj.paritybits=0;
 printf(“The data has even parity”);
 }
 else
 {
 obj.paritybits=1;
 printf(“The data has odd parity”);
 }
 }

Multiple-choice Questions
61. User-defined types can be created by using
 a. Structures c. Enumerations
 b. Unions d. All of these

62. A structure declaration-list cannot contain a member of
 a. void type c. Function type
 b. Incomplete type d. All of these

63. Objects of the defined structure type can be created
 a. At the time of structure declaration c.  Either at the time of structure declaration

or after the structure declaration
 b. After the structure declaration d. None of these

64. A member of a structure object can be accessed through the structure object name by using
 a. Direct member access operator c. Arrow operator
 b. Indirect member access operator d. None of these

65. A member of a structure object can be accessed through a pointer to the structure object by using
 a. Direct member access operator c. Dereference operator
 b. Indirect member access operator d. None of these

66. Which of the following operators is not applicable on an object of a structure type?
 a. Equality operator c. Address-of operator
 b. Assignment operator d. sizeof operator

67. Nested structure contains members of
 a. Same structure type c. Incomplete structure types
 b. Other defined structure types d. None of these

68. The maximum number of members in a structure declaration-list
 a. Can be two c.  Depends upon the translation limits

of the compiler
 b. Can be infinite d. None of these

69. Which of the following method of passing a structure object to a function is most efficient?
 a. Passing each member of a structure c.  Passing a structure object by address/
    object as a separate argument    reference
 b. Passing a structure object by value d. None of these

Structures, Unions, Enumerations and Bit-fields 611

70. The amount of the memory allocated to a union object is
 a. The amount of memory necessary to c. The sum of memory requirement of all of
    contain its largest member    its members
 b.  The amount of memory necessary to d. None of these

contain its smallest member

71. Which member(s) of a union object can be initialized?
 a. Only first member c. All members
 b. Only last member d. None of these

72. An enumeration constant is of
 a. char type c. float type
 b. int type d. None of these

73. The width specifier of a bit field should be a
 a. Variable c.  Compile time constant expression of

integer type
 b. Constant d. None of these

74. The value of a constant expression specifying the width of a bit field cannot be
 a. 0 c.  Greater than the number of bits available

in an object of the type used in bit field
declaration

 b. 1 d. None of these

75. A bit-field of which of the following types cannot be created
 a. int c. char
 b. unsigned int d. float

Outputs and Explanations to Code Snippets
31. Compilation error “Undefined symbol ‘book’ in function main”
 Explanation:
 In C language, it is not allowed to declare an object of the defined structure type by using its tag-

name without using the keyword struct. Hence, the declaration statement book Cbook; is erroneous
and leads to the compilation error. To rectify the code, use the keyword struct in the declaration
statement and write it as struct book Cbook; or use the storage class specifier typedef to create book as an
alias name for the structure type struct book.

32. Compilation error “L-value required in function main”
 Explanation:
 Both the expressions Cbook.title and Cbook.author are of type char[20] (i.e. array type) and do not have

an l-value. Hence, they cannot be placed on the left side of the assignment operator. Placement
of these expressions on the left side of the assignment operator leads to the specified compilation
error.

33. The power of positive attitude by P Subramanyam is of 225.500000 rupees
 Explanation:
 The expressions Cbook.title and Cbook.author are of type char* and have l-values. Hence, they can be

assigned the base addresses of the strings.

612 Programming in C—A Practical Approach

34. Compilation errors
 “Undefined structure ‘engine’”
 “Undefined structure ‘chassis’”
 “Size of the type is unknown or zero”
 Explanation:
 Structure tags have the scope that begins just after the appearance of the tag in a type specifier

that declares the tag. The usage of the structure tag-names engine and chassis in the declaration-list
of the structure type struct car leads to ‘Undefined structure ‘engine’’ and ‘Undefined structure ‘chassis’ errors
because the structure tags have not yet been defined. Also, a structure definition cannot contain
a member of the incomplete type. A structure type is said to be incomplete until the closing brace
of its declaration-list is encountered. An incomplete type lacks the information needed to deter-
mine the size of its object. Hence, the usage of incomplete types struct engine and struct chassis in the
declaration-list of struct car leads to the ‘Size of the type is unknown’ error. To rectify the code, define the
structure types struct engine and struct chassis before the definition of the structure type struct car.

35. My car is lengthier than yours
 Explanation:
 It is allowed to define a structure type within another structure-type definition. Hence, the defini-

tions of the structure types struct engine and struct chassis in the declaration-list of struct car are perfect-
ly valid. Also, the members e and c are of the complete type because before their occurrence the
closing brace of their respective structure types, i.e. struct engine and struct chassis has already been
seen by the compiler. The length member of the member c of the objects yourcar and mycar is initial-
ized with the values 3200 and 3500, respectively. Hence, the expression yourcar.c.length>mycar.c.length
evaluates to false and “My car is lengthier than yours” gets printed.

36. The size of type struct car is 28
 The objects of type struct car will take 28 bytes of memory
 Explanation:
 The specified result is the result of the execution in Turbo C 4.5.

Backward Reference: Refer Section 9.2.3.1.4 to answer this question.

37. Compilation error
 Explanation:
 Since the structure definition does not reserve any memory space for the structure members, it

is not possible to initialize the structure members during the structure definition. Hence, the ini-
tialization of the structure member manufacturer with the string literal “Maruti” during the structure
definition is erroneous and leads to the compilation error.

38. Your car is MARUTI-DZIRE
 My car is MARUTI-DZIRE
 Explanation:
 Suppose the structure object mycar gets allocated at the memory location 2000. The make and the

model members of the structure object mycar are initialized with the string literals “Maruti” and “Dzire”
(say located at memory locations 4000 and 6000, respectively). Thus, they point to the base ad-
dresses of the strings. Another structure object yourcar, say gets allocated at the memory location
8000. Since the structure object yourcar is initialized with the structure object mycar, all the members
of mycar are copied one by one to the corresponding members of yourcar. Thus, the make and model

Structures, Unions, Enumerations and Bit-fields 613

members of the structure object yourcar also start pointing to the strings located at the memory
locations 4000 and 6000, respectively. This is shown in the figure below:

mycar make model

4000 6000

2000

M a r u t i \0

4000 4001 4002 4003 4004 4005 4006

yourcar D z i r e \0

4000 6000 6000 6001 6002 6003 6004 6005

8000 make model

 As the corresponding members of the structure objects mycar and yourcar point to the same memory
locations (i.e. same strings), the changes made in the strings through yourcar.make and yourcar.model
will also be available through mycar.make and mycar.model.

39. Compilation error “Illegal structure operation in function main”
 Explanation:
 The use of the equality operators on the structures is not allowed. Hence, the expression

mycar==yourcar is erroneous and leads to a compilation error.

Backward Reference: Refer Section 9.2.3.1.5 for more details.

40. We own different types of cars
 Explanation:
 Suppose the structure objects mycar and yourcar get allocated at the memory locations 2000 and

6400, respectively. The members of these structure objects point to the string literals as shown in
the figure given below:

M a r u t i \0

4000 4001 4002 4003 4004 4005 4006

D z i r e \0

mycar 6000 6001 6002 6003 6004 6005

4000 6000

2000 make model M a r u t i \0

8000 8001 8002 8003 8004 8005 8006

D z i r e \0

yourcar 2004 2005 2006 2007 2008 2009

8000 2004

6400 make model

 The sub-expression mycar.make==yourcar.make compares the value 4000 with 8000 and hence evaluates
to false. Similarly, the sub-expression mycar.model==yourcar.model also evaluates to false. Thus, the if
expression evaluates to false and the printf statement present in the else body gets executed.

614 Programming in C—A Practical Approach

 The specified code gives the unexpected output because the equality operator compares the
pointers instead of the strings pointed to by the pointers.

41. Both of us own cars of same make and model
 Explanation:
 In the given code, the strcmp function is used to compare the strings pointed to by the pointers.

Since the strings compare equal, the if expression evaluates to true and the printf statement present
in the if body gets executed.

42. Compilation error
 Explanation:
 The tag-name of a structure is an identifier and must start with a letter or an underscore. 3Dpoints

is not a valid identifier name and hence cannot form a structure tag-name.

43. The imaginary part is stored towards the right of real part in the number object
 Explanation:
 If the objects pointed are the members of the same structure object, pointers to the structure

members declared later compare greater than the pointers to the members declared earlier in the
structure. Thus, ptr2>ptr1 evaluates to true.

44. The coordinates of origin are 7903,19125
 Explanation:
 Since the structure object origin is defined inside the body of the function main, it has local scope.

Thus, its members will not be automatically initialized and will contain garbage values.

45. The coordinates of origin are 0,0
 Explanation:
 If the number of initializers in the initialization list is less than the number of structure members

in a structure object, the leading structure members (equal to the number of initializers in the
initialization list) are initialized with the initializers in the initialization list and the rest of the
structure members will automatically be initialized with 0. Thus, in the given code, the member
y of the structure object origin automatically gets initialized to 0.

46. The coordinates of origin are 0,0
 Explanation:
 If a structure object is declared with a storage class specifier, the properties resulting from the

storage class specifier (except with respect to linkage) apply to all the members of the object.
Thus, as the structure object origin is declared with the storage class specifier static, all the members
of the structure object will automatically be initialized to 0.

47. 10 20 30
 Explanation:
 The code creates a linked list of three nodes. The data fields of the nodes are assigned the values 10, 20

and 30, respectively. The while loop is used to traverse the list and print the values of the data field.

48. Compilation error “Structure required on the left side of . in function main”
 Explanation:
 The dot operator has higher precedence than the dereference operator. Hence, the expression

*cptr.re is interpreted as *(cptr.re). The dot operator on its left side expects a structure name. Since

Structures, Unions, Enumerations and Bit-fields 615

in the interpreted expression pointer to a structure is present on the left side of the dot operator
instead of a structure name, there is a compilation error.

49. The real and imaginary parts of complex number are 2 and 3
 The real and imaginary parts of complex number are 2 and 3
 Explanation:
 The members of a structure object can be accessed via the pointer to the structure object by using

one of the following two ways:
 1. By using a dereference or indirection operator and dot operator
 2. By using an arrow operator

50. Compilation error
 Explanation:
 It is not allowed to initialize all the members of a union object. Only the first member of the union

object can be initialized.

51. The coordinates of point are 30,30
 Explanation:
 In the union object point, both the members x and y share the memory locations. Changing the

value of a member will change the value of the other member too. Thus, assignment of the value
30 to the member y will also change the value of the member x from 20 to 30.

52. The size of defined structure type is 4
 Explanation:
 During the preprocessing stage, the macro struct is text replaced by the replacement string union

wherever it appears in the program code. Thus, after the preprocessing stage, the code becomes
 union type
 {
 char a;
 int b;
 float c;
 };
 main()
 {
 printf(“The size of defined structure type is %d”, sizeof(union type));
 }
 When the sizeof operator is applied on a union type, it outputs the size of its largest member. Thus,

sizeof(union type) returns 4.

53. Compilation error
 Explanation:
 The storage class specifier typedef is used for creating a synonym name or alias for a known type.

The syntax of the typedef declaration is:
typedef type_name synonym_name;

 The type_name should be a defined type. Since in the given declaration, struct is not a defined type,
the statement is erroneous and on compilation shows an error ‘{ expected’. The compiler expects
structure declaration-list after the keyword struct. Also, the synonym_name should be a valid identifier

616 Programming in C—A Practical Approach

name. In the given declaration statement, synonym name is union, which is a keyword and not a
valid identifier name. This also leads to an error.

54. The values of enumeration constants are 0 1 2
 Explanation:
 The values of the enumeration constants are set automatically. The first enumerator has the value

0. Each subsequent enumerator, if not explicitly assigned a value, has a value 1 greater than the
value of the enumerator that immediately precedes it. Thus, the enumeration constant red will
have the value 0, green will have the value 1 and blue will have the value 2.

55. The values of enumeration constants are 0 0 0
 Explanation:
 Each enumeration constant has a scope that begins just after its appearance in an enumeration

list. Thus, it is possible to initialize the enumerator green with the enumerator red and the enu-
merator blue with the enumerator green.

56. Compilation error “The value for ‘c’ is not within the range of an int”
 Explanation:
 An enumerator can hold an integer value. Also, each subsequent enumerator in an enumeration

list, if not explicitly assigned with a value, has a value 1 greater than the value of the enumerator
that immediately precedes it. Thus, the enumerator c will have the value 32767+1, i.e. 32768. Since
the value of the enumerator c falls outside the range of the integer type, there will be a compila-
tion error.

57. The value of res1 and res2 are 1 and 1
 Explanation:
 All the operators that work on an integer type can be applied on objects of an enumeration type

and the operators applicable on integer constants can be applied on enumerators. Thus, the ap-
plication of the modulus operator on the objects of enumeration type res1 and res2 and enumera-
tor b is perfectly valid.

58. Compilation error
 Explanation:
 A bit-field declaration can only appear within a structure or a union declaration-list.

59. Compilation error “Constant expression required”
 Explanation:
 The width specifier of a bit-field can be a constant expression of the integer type. In the given

piece of code, the variable parity is used to specify the width of the bit-field paritybits. This is errone-
ous and leads to the specified compilation error.

60. The data has even parity
 Explanation:
 The while loop is used to count the number of 1’s in the data member of the structure object obj. After

the termination of the while loop, the value of the variable count is equal to the number of 1’s in the
data member. If the value of variable count is even, the bit-field paritybits of the object obj is set to 0
else it is set to 1. A message indicating the parity of data is also printed.

Structures, Unions, Enumerations and Bit-fields 617

Answers to Multiple-choice Questions
61. d 62. d 63. c 64. a 65. b 66. a 67. b 68. c 69. c 70. a 71. a 72. b 73. c 74. c 75. d

Programming Exercises

Program 1 | Define a data type for storing complex numbers and implement addition, subtraction, mul-
tiplication, conjugate and modulus operations for the defined type

Line PE 9-1.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

//Definition of complex data type and various operations applicable on it
#include<stdio.h>
#include<math.h>
#include<string.h>
struct complex
{
 int re;
 int im;
};
typedef struct complex COMP;
COMP add(COMP, COMP);
COMP sub(COMP*, COMP*);
COMP mult(COMP, COMP);
COMP conjugate(COMP);
float modulus(COMP);
void print(char* opr, COMP result, char* no=’\0’);
void printmod(char*, float);
main()
{
 COMP no1, no2, result;
 float mod;
 printf(“Enter the real and imaginary part of first complex number:\n”);
 scanf(“%d %d”, &no1.re, &no1.im);
 printf(“Enter the real and imaginary part of second complex number:\n”);
 scanf(“%d %d”, &no2.re, &no2.im);
 result=add(no1, no2);
 print(“addition”, result);
 result=sub(&no1, &no2);
 print(“subtraction”, result);
 result=mult(no1, no2);
 print(“multiplication”, result);
 result=conjugate(no1);
 print(“conjugate”, result, “no1”);
 mod=modulus(no1);
 printmod(“no1”,mod);
}
COMP add(COMP no1, COMP no2)
{
 COMP result;
 result.re=no1.re+no2.re;
 result.im=no1.im+no2.im;
 return result;
}

Enter the real and imaginary part of first complex number:
2 3
Enter the real and imaginary part of second complex number:
4 5
The result of addition is 6+8i
The result of subtraction is –2–2i
The result of multiplication is –7+19i
The result of conjugate of no1 is 2–3i
The result of modulus of no1 is 3.605551

(Contd...)

618 Programming in C—A Practical Approach

Line PE 9-1.c Output window

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

COMP sub(COMP* no1, COMP* no2)
{
 COMP result;
 result.re=no1->re-no2->re;
 result.im=no1->im-no2->im;
 return result;
}
COMP mult(COMP no1, COMP no2)
{
 COMP result;
 result.re=no1.re*no2.re – no1.im*no2.im;
 result.im=no1.re+no2.im + no1.im* no2.re;
 return result;
}
COMP conjugate(COMP no)
{
 COMP result;
 result.re=no.re;
 result.im=-no.im;
 return result;
}
float modulus(COMP no)
{
 float result;
 result=pow((no.re*no.re+no.im*no.im), 0.5);
 return result;
}
void print(char* opr, COMP res, char* no)
{
 if(strcmp(opr, ”conjugate”)==0)
 {
 if(res.im<0)
 printf(“The result of conjugate of %s is %d%di\n”,no,res.re,res.im);
 else
 printf(“The result of conjugate of %s is %d+%di\n”,no,res.re,res.im);
 }
 else
 {
 if(res.im<0)
 printf(“The result of %s is %d%di\n”,opr, res.re,res.im);
 else
 printf(“The result of %s is %d+%di\n”,opr, res.re,res.im);
 }
}
void printmod(char* no, float result)
{
 printf(“The result of modulus of %s is %f\n”, no, result);
}

Structures, Unions, Enumerations and Bit-fields 619

Program 2 | Develop a phonebook application. It should be able to store, modify and list entries pres-
ent in the phonebook. A phonebook entry consists of the name of a person and his contact information.
The name of a person consists of his first name and family name. The contact information consists of the
landline number and the mobile number of the person

Line PE 9-2.c

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<conio.h>
typedef struct name // Definition of struct type name
{
 char fname[20];
 char lname[20];
}NAM; // struct type name is aliased as NAM
typedef struct contact // Definition of struct type contact
{
 char landline[12];
 char mobile[12];
}CON; // struct type contact is aliased as CON
typedef struct phoneentry // Definition of struct type phoneentry
{
 NAM pname;
 CON pcontact;
}PENT; // struct type phoneentry is aliased as PENT

void printmenu() // Function printmenu prints various options
{
 printf(“***\n”);
 printf(“1. Press 1 to add records in phone book\n”);
 printf(“2. Press 2 to delete a record\n”);
 printf(“3. Press 3 to list available records\n”);
 printf(“4. Press 4 to search a record\n”);
 printf(“5. Press 5 to exit\n”);
 printf(“**\n\n”);
}

void addrecord(PENT book[], int* count) // Function addrecord adds a record in phone book and increments the count
{
 char ch;
 clrscr();
 printf(“ ****************\n”);
 printf(“ ADD RECORDS\n”);
 printf(“ ****************\n”);
 printf(“Enter the first name of the person:\t”);
 gets(book[*count].pname.fname);
 printf(“Enter the last name of the person:\t”);
 gets(book[*count].pname.lname);
 printf(“Enter the landline number:\t”);
 gets(book[*count].pcontact.landline);
 printf(“Enter the mobile number:\t”);
 gets(book[*count].pcontact.mobile);
 (*count)++;

(Contd...)

620 Programming in C—A Practical Approach

Line PE 9-2.c

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

 printf(“Record entered successfully\n\n”);
 flushall();
 printf(“Do you want to enter more records(Y/N):\t”);
 scanf(“%c”,&ch);
 flushall();
 if(ch==’Y’||ch==’y’)
 addrecord(book, count);
 else
 return;
}

void listrecords(PENT book[],int count) // Function listrecords lists all the records available in the phone book
{
 int i=0;
 clrscr();
 printf(“ ********************\n”);
 printf(“ LISTING RECORDS\n”);
 printf(“ ********************\n”);
 printf(“\n%-4s %-20s%-20s%-12s %-12s\n”,”S.No”,”First name”,”Last name”,”Landline No.”, “Mobile No.”);
 printf(“---\n”);
 while(i<count)
 {
 printf(“%4d. %-20s%-20s%-12s %-12s\n” ,i+1,book[i].pname.fname,book[i].pname.lname, book[i].pcontact.landline,
 book[i].pcontact.mobile);
 i++;
 }
 printf(“--\n”);
 printf(“\n%d record(s) available\n”,count);
 printf(“Press any key to return to main menu...\n”);
 getch();
}

void searchrecord(PENT book[], int count) // Function searchrecord searches a record according to various criteria
{
 int ch,i=0, found=0, no=0;
 char key[25];
 clrscr();
 printf(“ ****************\n”);
 printf(“ SEARCH RECORDS\n”);
 printf(“ ****************\n”);
 printf(“1. Press 1 to search by first name\n”);
 printf(“2. Press 2 to search by last name\n”);
 printf(“3. Press 3 to search by mobile number\n”);
 printf(“4. Press any other key to return to main menu\n”);
 flushall();
 printf(“Enter your choice:\t”);
 scanf(“%d”,&ch);
 switch(ch)
 {
 case 1:
 printf(“\n\nEnter the first name of the person\n”);

(Contd...)

Structures, Unions, Enumerations and Bit-fields 621

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

 flushall();
 gets(key);
 while(i<count)
 {
 if(strcmp(book[i].pname.fname,key)==0)
 {
 if(no==0)
 printf(“\n%-4s %-20s%-20s%-12s %-12s\n”,”S.No”,”First name”,”Last name”,”Landline No.”, “Mobile No.”);
 found=1; no++;
 printf(“%4d. %-20s%-20s%-12s %-12s\n”, no, book[i].pname.fname, book[i].pname.lname, book[i].pcontact.landline,

book[i].pcontact.mobile);
 }
 i++;
 }
 if(found==0)
 printf(“No record found\n”);
 else
 printf(“\n%d record(s) found\n”,no);
 printf(“Press any key to continue...\n”);
 getch();
 break;
 case 2:
 printf(“\n\nEnter the last name of the person\n”);
 flushall();
 gets(key);
 while(i<count)
 {
 if(strcmp(book[i].pname.lname,key)==0)
 {
 if(no==0)
 printf(“\n%-4s %-20s%-20s%-12s %-12s\n”,”S.No”,”First name”,”Last name”,”Landline No.”, “Mobile No.”);
 found=1; no++;
 printf(“%4d. %-20s%-20s%-12s %-12s\n”, no,book[i].pname.fname, book[i].pname.lname,
 book[i].pcontact.landline, book[i].pcontact.mobile);
 }
 i++;
 }
 if(found==0)
 printf(“No record found\n”);
 else
 printf(“\n%d record(s) found\n”,no);
 printf(“Press any key to continue...\n”);
 getch();
 break;
 case 3:
 printf(“\n\nEnter the mobile number of the person\n”);
 flushall();
 gets(key);
 while(i<count)
 {
 if(strcmp(book[i].pcontact.mobile,key)==0)
 {
 if(no==0)

(Contd...)

622 Programming in C—A Practical Approach

Line PE 9-2.c

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

200
201
202
203

 printf(“\n%-4s %-20s%-20s%-12s %-12s\n”,”S.No”,”First name”,”Last name”,”Landline No.”, “Mobile No.”);
 found=1; no++;
 printf(“%4d.%-20s%-20s%-12s %-12s\n”, no, book[i].pname.fname, book[i].pname.lname, book[i].pcontact.landline,
 book[i].pcontact.mobile);
 }
 i++;
 }
 if(found==0)
 printf(“No record found\n”);
 else
 printf(“\n%d record(s) found\n”,no);
 }
 printf(“Press any key to continue....\n”);
 getch();
}

deleterecord(PENT book[], int* count) // Function deleterecords deletes a record with particular S.NO in the list
{
 int sno, i;
 clrscr();
 printf(“ *****************\n”);
 printf(“ RECORD DELETION\n”);
 printf(“ *****************\n”);
 printf(“\n\nEnter the S.No of the record that you want to delete:\t”);
 scanf(“%d”,&sno);
 i=sno-1;
 if(sno<=0||sno>*count)
 printf(“Not a valid S.No\n”);
 else
 {
 while(i<*count)
 {
 book[i]=book[i+1];
 i++;
 }
 *count=*count-1;
 printf(“Record successfully deleted\n”);
 }
 printf(“Press any key to return to main menu...\n”);
 getch();
}

main()
{
 int ch, count=0;
 PENT book[50];
 clrscr();
 while(1)
 {
 printf(“ PHONE BOOK \n”);
 printmenu();
 printf(“Enter the choice:\t”);

(Contd...)

Structures, Unions, Enumerations and Bit-fields 623

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

220
221
222
223
224
225
226
227
228
229
230

 scanf(“%d”,&ch);
 flushall();
 switch(ch)
 {
 case 1:
 addrecord(book,&count);
 break;
 case 2:
 deleterecord(book, &count);
 break;
 case 3:
 listrecords(book, count);
 break;
 case 4:
 searchrecord(book, count);
 break;
 case 5:
 exit(1);
 break;
 default:
 printf(“Invalid option\n”);
 getch();
 exit(1);
 }
 clrscr();
 }
}

Output window (screen 1)

 PHONE BOOK

1. Press 1 to add records in phone book
2. Press 2 to delete a record
3. Press 3 to list available records
4. Press 4 to search a record
5. Press 5 to exit
**

Enter the choice: 1

Output window (screen 2)

 ADD RECORDS

Enter the first name of the person: Arvind
Enter the last name of the person: Kakria
Enter the landline number: 2576898
Enter the mobile number: 9878776856

Do you want to enter more records(Y/N): y

(Contd...)

624 Programming in C—A Practical Approach

Output window (screen 3)

 ADD RECORDS

Enter the first name of the person: Mohit
Enter the last name of the person: Bansal
Enter the landline number: 2576897
Enter the mobile number: 9888566892

Do you want to enter more records(Y/N): n

Output window (screen 4)

 PHONE BOOK

1. Press 1 to add records in phone book
2. Press 2 to delete a record
3. Press 3 to list available records
4. Press 4 to search a record
5. Press 5 to exit
**

Enter the choice: 3

Output window (screen 5)

 LISTING RECORDS

S.No First Name Last Name Landline No. Mobile No.

 1. Arvind Kakria 2576898 9878776856
 2. Mohit Bansal 2576897 9888566892

2 record(s) available
Press any key to return to main menu…

Output window (screen 6)

 PHONE BOOK

1. Press 1 to add records in phone book
2. Press 2 to delete a record
3. Press 3 to list available records
4. Press 4 to search a record
5. Press 5 to exit
**

Enter the choice: 2

(Contd...)

Structures, Unions, Enumerations and Bit-fields 625

Output window (screen 7)

 RECORD DELETION

Enter the S.NO of the record that you want to delete: 1
Record successfully deleted
Press any key to return to main menu…

Output window (screen 8)

 PHONE BOOK

1. Press 1 to add records in phone book
2. Press 2 to delete a record
3. Press 3 to list available records
4. Press 4 to search a record
5. Press 5 to exit
**

Enter the choice: 3

Output window (screen 9)

 LISTING RECORDS

S.No First Name Last Name Landline No. Mobile No.

 1. Mohit Bansal 2576897 9888566892

1 record(s) available
Press any key to return to main menu…

Output window (screen 10)

 PHONE BOOK

1. Press 1 to add records in phone book
2. Press 2 to delete a record
3. Press 3 to list available records
4. Press 4 to search a record
5. Press 5 to exit
**

Enter the choice: 5

626 Programming in C—A Practical Approach

Test Yourself
1. Fill in the blanks in each of the following:

a. Structures can be used for the storage of data of ____________ type.
b. A structure that contains a pointer to an instance of itself is known as ____________.
c. ____________ and ____________ are collectively known as aggregate type.
d. Unnamed structure types are also known as ________________________.
e. Like elements of an array are accessed by their indices, the elements of a structure are

accessed by their ____________.
f. Elements of a structure type can be accessed faster if they are ____________ aligned.
g. The members of a structure object can be accessed via a pointer to the structure object by

using ____________ operator.
h. The precedence of the direct member access operator is ____________ than the dereference

operator.
i. The memory allocated to a union object is the amount necessary to contain its ____________

member.
j. The ____________ can be used to create an alias for a previously defined type.

2. State whether each of the following is true or false. If false, explain why.
a. The variables of the defined structure type can only be declared in the scope in which the

defined structure type is visible.
b. A structure declaration-list cannot contain a member of void, function or incomplete type.
c. Structure, unions and enumerations are collectively known as aggregate type.
d. A structure that contains an instance of itself is known as a self-referential structure.
e. The name of a structure member can be the same as the structure tag-name.
f. A structure definition does not reserve any space in the memory.
g. Structure members can be initialized during the structure definition.
h. In C language, an object of a structure type can be created by just using its tag-name.
i. Like an array name, the name of a structure refers to its base address.
j. The assignment operator copies all the members of a structure object to a structure variable

along with the padding bytes.
k. Structure padding can appear anywhere within a structure object.
l. Unlike functions, a structure can be defined within another structure-type definition.
m. The keyword typedef is used to create a new data type.
n. Unions can be initialized in the same way as structures are initialized.

3. Programming exercise:
a. Define a structure data type called DATE for storing dates. The type contains three integer

members: day, month and year. Implement the following operations for the defined data
type:
i. Isvalid: Checks whether the entered date is valid or not, e.g. 31-2-2009 is not a valid

date since February does not have 31 days.
ii. Nextdate: Finds the next date, e.g. if the current data is 31-1-2009, then the result of Nextdate

operation is 1-2-2009.
iii. Datediff: Finds the difference between two dates.

b. Define a structure data type TRAIN_INFO. The type contains:
i. Train No: integer type
ii. Train name: string
iii. Departure time: aggregate type TIME
iv. Arrival time: aggregate type TIME

Chapter 9.indd 626Chapter 9.indd 626 28/02/2010 4:35:16 PM28/02/2010 4:35:16 PM

Structures, Unions, Enumerations and Bit-fields 627

v. Start station: string
vi. End station: string

 The structure type TIME contains two integer members: hour and minute. Maintain a train
timetable and implement the following operations:
1. List all the trains (sorted according to train number) that depart from a particular station.
2. List all the trains that depart from a particular station at a particular time.
3. List all the trains that depart from a particular station within the next one hour of a given

time.
4. List all the trains between a pair of start station and end station.

FILES

1010

Learning Objectives

In this chapter, you will learn about:

Files
C’s approach to perform file input–output
Streams
How to create, read, write and update files
Sequential access files
Random access files

630 Programming in C—A Practical Approach

10.1 Introduction
In the previous chapters, we have used functions such as scanf and printf to read and write data.
These are console input–output (I/O) functions that read data from or write data to the termi-
nal, i.e. keyboard and screen, respectively. The console I/O is preferred in interactive programs
where the amount of data in I/O is small. If a program deals with I/O of large volume of data,
the console I/O is not convenient and consumes a lot of time. Moreover, the entered data are
stored in variables and arrays. These data are lost when either the program is terminated or
the computer is turned off or power goes off. Upon re-execution of the program, the entire
data need to be entered again. You might have faced such inconvenience while executing Pro-
gram 9-2 in the last chapter. Every time the program is executed, all the records in the phone-
book are to be entered again. It is therefore required to enter the data and store (i.e. save) it on
disk so that it can be read by a program whenever required. This prevents one from entering
the data again and again. Data can be stored on a disk by using files.

In this chapter, I will tell you about files and how to perform basic file operations such as
creating a file, writing data to a file, reading data from a file, copying content of one file to
another, etc. I will also make you delve deeper into the technical details of how C language
performs file I/O. You will see that C adopts a device-independent model of input and output.
Input and output whether from physical devices such as terminals (e.g. printer, screen, key-
board, etc.) or from files on the disks are performed in the same way.

10.2 Files
Most programs do either input or output or most frequently both in order to perform a mean-
ingful task. The input or output is performed using peripheral devices attached to the system.
The devices may include I/O devices like printer, screen, keyboard, etc. or they may include
mass storage devices like magnetic disks, optical disks, magnetic tapes, etc. To perform I/O in
a device-independent form, C treats each of them in the same way. C treats each of them as a
file. Thus, a file can be a data set that can be read or written repeatedly (such as a disk file), or
a stream of bytes received from or sent to a peripheral device (such as a keyboard or display).
The latter are known as interactive files or device files.

In order to perform operations like reading from a file or writing to a file, some mechanism is
required to refer to the file. All the files (including the device files) have names that are strings.
The name of a file generally has two parts: file name and extension name. The constraints on the
file name are dictated by the underlying operating system. For example, in MS-DOS, a file name
can be up to eight characters long and can be in uppercase or lowercase letters. File extensions
consist of a period (i.e. dot) followed by up to three characters. Extensions are optional, but it is
a good idea to use them since they are useful for describing the content of a file. For example,
the .h extension in stdio.h helps you in quickly identifying that it is a header file. Similarly, the
extensions .exe means executable file, .com means command file, .c means C program file,
.cpp means cplusplus program file, .txt means text file, .dat means data file, etc.

A file must be opened before any operation can be performed on it. Opening a file associates
a connection or a communication channel with it. The connection to an open file is represented
either as a stream or as a file descriptor. File descriptors provide a primitive, low-level inter-
face for performing input and output operations on files. Streams provide a high-level interface,
layered on the top of primitive file descriptor facilities, for performing file I/O. Since streams are

Files 631

implemented in terms of file descriptors, the file descriptor can be extracted from a stream. It is
also possible to open a connection as a file descriptor and then associate a stream with it.

The I/O on a file can be performed either by using streams or file descriptors. However,
the C library functions for performing I/O using streams are much richer and more powerful
than the corresponding counterparts for the file descriptors. Thus, input and output using the
streams are more flexible and more convenient than using the file descriptors. Therefore, it is
advisable to perform input and output operations using the streams rather than using the file
descriptors. The file descriptors should only be used to perform low-level control operations
for which there are no equivalent stream operations.

10.3 Streams
Input and output, whether to or from physical devices such as terminals (e.g. screen, keyboard,
printer) or files supported on mass storage devices (e.g. hard disk) are mapped into logical data
streams, whose properties are more uniform than their associated files. A stream can be thought
of as a buffer to which bytes flow from a device (e.g. keyboard, disk, network connection, etc.)
during an input operation and during an output operation, bytes from the stream are made avail-
able to the device (e.g. printer, screen, disk, network connection, etc.). Thus, a stream is a fairly
abstract, high-level concept representing a communication channel to a data file or a device. Fig-
ure 10.1 illustrates the mechanism adopted by C language to perform input and output.

Input

Input

Output

Output
P r inter

Stream – file1

Stream – stdin

Stream – stdprn

Stream – file2

F ile 1

F ile 2

C
Program

K eyboard

Figure 10.1 | Input and output using streams

The important points about streams are as follows:
1. Before data can be read from, or written to a file, the file must be opened (which may

involve creating a new data file). Opening a file associates (opens) a stream with it.
2. When a program is executed, five standard streams namely stdin, stdout, stderr, stdaux and stdprn

are already open and available for use. The stream stdin is associated with keyboard for read-
ing the input. The streams stdout and stderr are associated with the screen for writing the out-
put and the errors, respectively. The stream stdprn is associated with the printer (i.e. parallel
port LPT1) and the stream stdaux is associated with an auxiliary port (i.e. serial port COM1).

3. It is possible to associate more than one stream with a file (e.g. both the streams stdout
and stderr are associated with the screen), but it is not possible to associate a stream with
two files at a time.

4. A stream can be opened for input (i.e. read), output (i.e. write) or both (i.e. update).

632 Programming in C—A Practical Approach

5. A stream associated with a file is represented by an object of the type FILE defined in the
header file stdio.h as:

   typedef struct
   {
   short level; // fill/empty buffer level
   unsigned flags; // File status flags
   char fd; // File descriptor
   unsigned char hold; // ungetc character if no buffer
   short bsize; // Buffer size
   unsigned char *buffer; // Data transfer buffer
   unsigned char *curp; // Current active pointer
   unsigned int istemp; // Temporary file indicator
   short token; // Used for validity checking
   } FILE;

6. An object of type FILE contains† all the information needed to control a stream, including
its file position indicator (i.e. current active pointer), a pointer to its associated buffer (if
any), an error indicator that records whether a read/write error has occurred and an end
of file indicator that records whether the end of file has reached.

7. Input from, or output to, a file can be performed either in text mode or binary mode. Ac-
cordingly, the corresponding associated stream can be a text stream or a binary stream.
A text stream is an ordered sequence of the characters composed into lines, terminated
by a new line character. Carriage return and line feed character combinations present in
the file are translated into a new line character before being placed in the stream. Thus,
text streams are interpreted. Due to this interpretation, what the program sees (i.e. data
within the text stream) can differ from what is actually present in the file (refer Figure
10.2). Text streams are typically used for reading and writing standard text files, print-
ing output to the screen or printer, or receiving input from the keyboard.

Binary streams are un-interpreted. They consists of one or more bytes of arbitrary
information with no translation of the characters. Thus, what the program sees (i.e. data
within the binary stream) is exactly the same as what is actually present in the file (refer
Figure 10.2). Binary streams are typically used for reading and writing binary files (such
as graphics files, word processing files, etc.), or reading and writing to the modem.

Figure 10.2 illustrates the difference between the text view and binary view of a file.
8. A stream can be unbuffered, line buffered or fully buffered. If a stream is un-buffered,

the characters written to the stream are immediately transmitted to the program (during
an input operation) or to the file (during an output operation). Since the I/O operations
on a file (i.e. disk or some other peripheral device) are generally slow and time consum-
ing, the data are read from or written to the file in the form of data blocks instead of a
single character at a time. The data block read from, or to be written to, the file is kept
in a stream, which acts as a buffer. When the program requires an input, it reads it from
the stream. When the stream gets empty, the next data block from the file is read into
it. During an output operation, the characters to be written to the file are accumulated
in the stream and transmitted to the file as a block. When the accumulated block will be

† Refer Section 10.5 for a description on the FILE type.

Files 633

transmitted to the file depends upon whether the stream is line buffered or fully buffered.
If a stream is line buffered, the characters are transmitted to the file when a new line char-
acter is encountered. If a stream is fully buffered, the characters are transmitted to the file
when the stream buffer is full (i.e. completely filled).

Difference between school and life:\r\n
In school, you are taught a lesson and then given a test.\r\n
In life, you are given a test that teaches you a lesson.\r\n
^Z

Difference between school and life:\r\n
In school, you are taught a lesson and then given a test.\r\n
In life, you are given a test that teaches you a lesson.\r\n
^Z

Difference between school and life:\n
In school, you are taught a lesson and then given a test.\n
In life, you are given a test that teaches you a lesson.\n
^Z

MS-DOS text file

Binary view Text view
Characters are interpreted. Carriage return

and line feed character combinations are
translated to new line character

Figure 10.2 | Binary and text views of a file

9. The association between a file and the stream can be broken by closing the stream. Before
a stream is disassociated from the file, any unwritten buffer content is transmitted to the
file (i.e. the stream is flushed). All the streams are automatically closed (i.e. flushed) when
the program terminates successfully (i.e. program does not get terminated abnormally).

10.4 I/O Using Streams
C language provides a number of library functions for reading and writing files using streams.
Most of the functions accept an object of the type FILE* as an argument. The object of the type
FILE*, sometimes known as file pointer, represents a pointer to a stream. This argument pro-
vides the information about the stream and its associated file on which the operations are to
be performed. It is advisable to manipulate FILE objects (i.e. streams) by using the input/output
library functions rather than manipulating them directly. The library functions described in
the following sections are used for creating the streams and performing the input and output
operations on them.

10.4.1 Opening a Stream
To perform an operation on a file, the file must be opened. The file can be opened by using the
function fopen. Opening a file with the function fopen creates a new stream and establishes a con-
nection between the file and the stream. The function fopen is declared in the header file stdio.h as:

FILE* fopen(const char* fi lename, const char* mode);

634 Programming in C—A Practical Approach

The important points about the usage of the function fopen are as follows:
1. The function fopen opens a file whose name is the string pointed to by the argument

filename and associates a stream with it. The argument string filename may also include
the path information. The path specifies the drive and the directory where the file is
located. The path can be an absolute path or a relative path . If path information is
not provided, the file is assumed to be in the current working directory.

An absolute path or full path starts from the root directory (i.e. drive name) and provides the
information regarding the location of a file regardless of the current working directory.
A relative path provides the information about the location of a file relative to the current work-
ing directory. For example, assume that c:\tc\bin is the current working directory and the file
stdio.h is present in the directory c:\tc\include. The file can be referred to by using the absolute
path as c:\tc\include\stdio.h. It can also be referred to by using the relative path as ..\include\stdio.h.

The following notations are used while writing a relative path: Two consecutive periods (i.e. ..)
means the parent directory of the current working directory, single period (i.e. .) means the cur-
rent directory and backslash (i.e. \) means the root directory (in case of DOS and WINDOWS
environment). Another way to refer the file stdio.h can be \tc\include\stdio.h. Now, suppose a
directory named dir is present in the current working directory. A file named file.txt is present in
the directory dir. The file can be referred to by using the relative path as .\dir\file.txt.

2. The argument mode is a string that specifies:
a. Whether to read data from the file or write data to it, or perform both.
b. Whether to generate new contents for the file or leave the existing contents in place.
c. Whether write operations to a file can alter the existing contents or can only append

bytes at the end of the file.
d. Whether file is opened in text mode or binary mode.

 The above-mentioned options for a file can be specified by providing an appropriate
string (listed in Table 10.1) as an argument mode to the function fopen.

Table 10.1 | Various modes for opening a file

Mode string Description

“r” Opens an existing file in the text mode for reading only

“w” Opens a file in the text mode for writing only. If the file already exists, it is trun-
cated to zero length (i.e. all the contents will be overwritten). If it does not exist,
a new file is created

“a” Opens a file in the text mode for append access (i.e. writing at the end of the file).
If the file already exists, its contents are unchanged and the output to the stream
is appended at the end of the file. Otherwise, a new empty file is created

“rb” Opens an existing file in the binary mode for reading only

“wb” Opens a file in the binary mode for writing only. If the file already exists, it is
truncated to zero length. If it does not exist, a new file is created

“ab” Opens a file in the binary mode for append access, i.e. writing at the end of the
file. If the file already exists, its contents are unchanged and the output to the
stream is appended at the end of the file. Otherwise, a new empty file is created

(Contd...)

Files 635

“r+” Opens an existing file in the text mode for update (i.e. reading and writing). The
initial contents of the file are unchanged and the file position indicator is at the
beginning of the file

“w+” Opens a file in the text mode for update (i.e. reading and writing). If the file already
exists, it is truncated to zero length. If it does not exist, a new file is created

“a+” Opens or creates a file in the text mode for both reading and appending. If the file
exists, its initial contents are unchanged. Otherwise, a new file is created. The ini-
tial file position for reading is at the beginning of the file, but the output is always
appended at the end of the file

“r+b” or “rb+” Opens an existing file in the binary mode for update (i.e. reading and writing).
The initial contents of the file are unchanged and the initial file position is at the
beginning of the file

“w+b” or “wb+” Opens a file in the binary mode for update (i.e. reading and writing). If the file al-
ready exists, it is truncated to zero length. If it does not exist, a new file is created

“a+b” or “ab+” Opens or creates a file in the binary mode for both reading and appending. If
the file already exists, its initial contents are unchanged. Otherwise, a new file is
created. The initial file position for reading is at the beginning of the file, but the
output is always appended at the end of the file

3. The function fopen returns a pointer to the object controlling the stream. If the open op-
eration fails, it returns a NULL pointer. The open operation may fail under the following
circumstances:
a. Opening a file with the read mode fails if the file does not exist or cannot be read.
b. Opening a file with the write mode fails if the file cannot be created. It cannot be

created if the disk is write-protected, if there is not enough space on the disk for
creating the file, etc.

4. When a file is opened with the update mode (i.e. for reading and writing), both the
input and output operations can be performed on the associated stream. However, the
output should not be directly followed by an input without flushing‡ the stream and the
input should not be immediately followed by an output without an intervening call to
a file-positioning§ functions like fseek or fsetpos.

5. When opened, a stream is fully buffered if and only if it does not refer to an interactive
device. The buffering of a stream can be set by using the functions setbuf and setvbuf¶.

10.4.2 Closing Streams
An open stream can be closed by using the function fclose. It is declared in the header file stdio.h as:

int fclose(FILE* stream);

The important points about the use of the function fclose are as follows:

1. A successful call to the function fclose causes the stream pointed to by the argument
stream and the associated file to be closed.

‡ Refer Section 10.4.13 for a description on how to flush a stream.
§ Refer Section 10.4.5 for a description on file positioning.
¶ Refer Section 10.4.13 for a description on stream buffering.

636 Programming in C—A Practical Approach

2. Before the stream is closed, any unwritten data present in the stream buffer are written
to the file (i.e. stream is flushed). Any unread buffered data are discarded.

3. A call to the function fclose disassociates the stream from the file and any buffer set by
the functions setbuf or setvbuf is disassociated from the stream. The memory allocated to
the buffer†† is deallocated, if it was allocated automatically.

4. After the stream is closed, the link between the stream and the file is broken. No further
I/O can be performed from the file unless the stream is reopened.

5. The function fclose returns zero if the stream is closed successfully and EOF ‡‡ if an error
occurs. For instance, an error occurs if the disk gets full, when the function fclose flushes
the remaining buffered data to the file before closing the stream.

The piece of code in Program 10-1 illustrates the usage of the function fclose.

Line Prog 10-1.c Output window

 1
 2
3
4
5
6
7
8
9

//The function fclose
#include<stdio.h>
#include<conio.h>
main()
{
 printf(“File your tax return on time\n”);
 fclose(stdout);
 printf(“Let the country progress”);
}

File your tax return on time
Remarks:
•  The function fclose in line number 7 closes the stan-

dard stream stdout
•  After the stream stdout is closed, the link between the

stream and the file (i.e. screen) is broken. No further
output can now take place via the stream stdout

•  Thus, the string “Let the country progress” in line number
8 does not get printed on the screen

Program 10-1 | A program that illustrates the use of the function fclose

The function fclose closes a specific stream. However, if the number of streams is more, all the
user-defined streams can be closed in a single function call by using the function fcloseall. The
function fcloseall closes all the open streams except the standard streams, i.e. stdin, stdout, stderr,
stdaux and stdprn. The function fcloseall is declared in the header file stdio.h as:

int fcloseall(void);
The important points about the function fcloseall are as follows:

1. The function fcloseall closes all the open streams (except the standard streams) and the
corresponding files.

2. The association between all the streams (except the standard streams) and their corre-
sponding files is broken. Any buffered unwritten data present in the stream are written
to the corresponding files, and the buffered unread data are discarded.

3. The function fcloseall returns zero if all the streams are closed successfully and EOF if an
error is detected.

4. It is better to close each stream separately so that the problems with the individual
streams can be identified.

5. All open streams are automatically closed when the program terminates successfully.
When the program terminates abnormally either due to a call to the function abort or

†† Refer Section 10.4.13 for a description on the usage of automatic and explicit buffers used by the streams
for I/O buffering.

‡‡ Refer Section 10.4.6 for a description on EOF.

Files 637

due to some runtime error (e.g. division by zero, floating point formats not linked, etc.),
whether the open streams will be closed or not is implementation defined.

The piece of code in Program 10-2 illustrates that the function fcloseall does not close the stan-
dard streams like stdout.

Line Prog 10-2.c Output window

 1
 2
3
4
5
6
7
8
9

//The function fcloseall does not close the standard streams
#include<stdio.h>
#include<conio.h>
main()
{
 printf(“File your tax return on time\n”);
 fcloseall();
 printf(“Let the country progress”);
}

File your tax return on time
Let the country progress
Remarks:
•  The function fcloseall does not close the

standard streams
•  Thus, the call to the function fcloseall in

line number 7 does not close the stan-
dard stream stdout

•  Therefore, the call to the function printf
in line number 8 prints the string “Let
the country progress” on the screen

Program 10-2 | A program to illustrate that the function fcloseall does not close the standard streams

10.4.3 Character Input
The function fgetc and the macro getc are used to read a character from a stream. The function
fgetc is declared in the header file stdio.h as:

int fgetc(FILE* stream);

The important points about the usage of fgetc and getc are as follows:
1. The function fgetc reads the next character from the stream pointed to by the argument

stream as unsigned char, converts it into int and returns its value.
2. After the character is read, the associated file position indicator§§ for the stream pointed

to by the argument stream is incremented.
3. If the end of file has been encountered or read error occurs, EOF is returned. Whether end

of file has been encountered or a read error has occurred can be distinguished by using
the functions feof and ferror¶¶.

4. The macro getc is just like the function fgetc, except that it is implemented††† as a macro.
The macro getc is defined in the header file stdio.h as:

#defi ne getc(f) ((--((f)->level) >=0)? (unsigned char)(*(f)-> curp++): fgetc(f))

5. The macro getchar is used to read the next character from the input stream stdin. It is de-
fined in the header file stdio.h as:

#defi ne getchar getc(stdin)
The piece of code in Program 10-3 illustrates the use of the functions fopen and fgetc to read the
content of a file.

§§ Refer Section 10.4.5 for a description on file position indicator.
¶¶ Refer Section 10.4.6 for a description on the functions feof and ferror.
††† Refer Section 10.5 for a description on the implementation of the macro getc.

638 Programming in C—A Practical Approach

Line Prog 10-3.c abc.txt

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24

//Read the content of a file
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE *fp;
 char ch;
 fp=fopen(“abc.txt”,”r”);
 if(fp==NULL)
 {
 printf(“Unable to read the file\n”);
 getch();
 exit(1);
 }
 else
 {
 while((ch=fgetc(fp))!=EOF)
 {
 printf(“%c”,ch);
 }
 fclose(fp);
 }
}

If you file your waste paper basket for fifty years, you have a public library

Output window

If you file your waste paper basket for fifty years, you have a public library
Remarks:
•  The prototype of the function exit is available in the

header file stdlib.h
•  The function fopen opens the data file abc.txt in read

mode
•  Since no path information is provided and only file

name is given, the data file is assumed to be present in
the current working directory

•  If the data file is present there, it is successfully opened
and a stream is associated with it. The pointer to the
stream is assigned to the variable fp

•  If the data file is not found, the function fopen fails and
returns a NULL pointer

•  The if statement in line number 10 checks whether the
file is successfully opened or not

•  If the file is successfully opened, the while loop in the else
body reads and prints all the characters till end of file,
i.e. EOF character is encountered

•  It is important to note that the expression ch=fgetc(fp)
must be parenthesized since the logical negation opera-
tor (i.e. !=) has higher precedence than the assignment
(i.e. =) operator

•  The macro getc can also be used in place of the function
fgetc

•  In line number 22, the function fclose closes the stream
and dissociates it from the file

Program 10-3 | A program that reads the content of a file and displays it on the screen

10.4.4 Character Output
The function fputc and the macro putc are used to write a character to the stream. The function
fputc is declared in the header file stdio.h as:

int fputc(int c, FILE* stream);

The important points about the usage of fputc and putc are as follows:
1. The function fputc writes the character specified by the argument c to the output stream

pointed to by the argument stream at the position indicated by the associated file posi-
tion indicator for the stream.

2. The file position indicator is advanced appropriately.
3. The function fputc firstly converts the character c to the type unsigned char and writes it to

the stream stream.
4. The function fputc returns the character written. If a write error occurs, the error indica-

tor for the stream is set and the function fputc returns EOF.

Files 639

5. The macro putc is just like the function fputc, except that it is implemented‡‡‡ as a macro.
The macro putc is defined in the header file stdio.h as:

#defi ne putc(c,f) ((++((f)->level) < 0)? (unsigned char)(*(f)-> curp++=(c)): fputc((c),f))
6. The macro putchar is used to output a character to the stream stdout. It is defined in the

header file stdio.h as:
#defi ne putchar putc((c),stdout)

The code segment in Program 10-4 illustrates the use of the function fputc to write a string to a file.

Line Prog 10-4.c Ouput window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

//Write a string to a file
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE *fp;
 char str[255];
 int i=0;
 fp=fopen(“abc.txt”,”w”);
 if(fp==NULL)
 {
 printf(“Unable to create the file\n”);
 getch();
 exit(1);
 }
 else
 {
 printf(“Enter the string that you want to write the file:\n”);
 gets(str);
 while(str[i]!=’\0’)
 {
 fputc(str[i++],fp);
 }
 fclose(fp);
 }
}

Enter the string you want to write to the file:
UNIX has its weak points but its file system is not one of
them.

abc.txt (after the execution of the program)

UNIX has its weak points but its file system is not one of
them.
Remarks:
•  The function fopen opens the data file abc.txt

in the write mode
•  Since no path information is provided

and only file name is given, the file is as-
sumed to be present in the current work-
ing directory

•  If the data file is present there, the data
file will be overwritten. If it is not present,
data file will be created

•  In line number 23, the function fputc writes
the characters present in the string str to
the stream pointed to by fp iteratively

•  Note that till this point, characters are
written to the stream and not to the data
file abc.txt

•  In line number 25, the function fclose
closes the stream pointed to by fp and
disassociates it from the file. Before this
disassociation occurs, the characters
available in the stream are actually writ-
ten to the data file

•  The macro putc can be used in place of the
fputc in line number 23

•  Note that there is no need to explicitly
place EOF character at the end of file like
null character (i.e. ‘\0’) is placed at the end
of strings

Program 10-4 | A program that writes a string to a file

‡‡‡ Refer Section 10.5 for a description on the implementation of the macro putc.

640 Programming in C—A Practical Approach

The code segment in Program 10-5 illustrates the use of the functions fgetc and fputc to copy
content of one file to another.

Line Prog 10-5.c c:\tc\abc.txt (before the execution of the program)

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26

//Copy content of one file to another file
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE *fp1, *fp2;
 char ch;
 fp1=fopen(“c:\\tc\\abc.txt”,”r”);
 fp2=fopen(“..\\new.txt”,”w”);
 if(fp1==NULL || fp2==NULL)
 {
 printf(“Problem in reading or writing a file\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 else
 {
 while((ch=fgetc(fp1))!=EOF)
 {
 fputc(ch,fp2);
 }
 fcloseall();
 }
}

Desolation is a file, and the endurance of darkness is preparation
for great light.

Current working directory: c:\tc\bin
c:\tc\new.txt (after the execution of the program)

Desolation is a file, and the endurance of darkness is preparation
for great light.
Remarks:
•  The content of a file can be copied to another file

by iteratively copying all the characters present
in it

•  Let us assume that the current working direc-
tory is c:\tc\bin

•  In line number 9, the absolute path and the file
name are given to the function fopen. It will open
the data file abc.txt present in the directory (folder
in Windows) c:\tc in read mode and associates a
stream pointed to by fp1 with it

•  Note that double slashes are used while writing
the path name because a single slash forms an
escape sequence, e.g. \t is an escape sequence

•  In line number 10, the relative path and the file
name are given to the function fopen. It will look
for the file new.txt in the parent directory of c:\tc\
bin, i.e. in c:\tc

•  If the file is present, it will be overwritten else a
new file will be created

•  The while loop in line number 20 reads character
from the stream pointed to by fp1 and writes it to
the stream pointed to by fp2. All the characters
are read and written iteratively

•  The function fcloseall closes all the open streams.
Before the streams are closed, they are flushed.
Thus, the execution of this function actually
writes the characters available in the stream
pointed to by fp2 to the file new.txt

Program 10-5 | A program that copies the content of one file to another

The code segment in Program 10-6 appends the content of a file at the end of another file.

Line Prog 10-6.c abc.txt (before the execution of the program)

1
 2
3
4

//Copy content of one file at the end of another file
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

I am still learning.

new.txt (before the execution of the program)

We learn by doing.
(Contd...)

Files 641

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26

main()
{
 FILE *fp1, *fp2;
 char ch;
 fp1=fopen(“abc.txt”,”r”);
 fp2=fopen(“new.txt”,”a”);
 if(fp1==NULL || fp2==NULL)
 {
 printf(“Problem in reading or writing a file\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 else
 {
 while((ch=fgetc(fp1))!=EOF)
 {
 fputc(ch,fp2);
 }
 fcloseall();
 }
}

new.txt (after the execution of the program)

We learn by doing. I am still learning.
Remarks:
•  The function fopen opens the data file abc.txt in the

read mode and the data file new.txt in the append
mode

•  Since only the names of the files are mentioned,
they are supposed to be present in the current
working directory

•  The while loop reads the content of the data file
associated with the stream pointed to by fp1 (i.e.
abc.txt) and appends it to the data file associated
with the stream pointed to by fp2 (i.e. new.txt)

Program 10-6 | A program that appends the content of one file at the end of another file

10.4.5 File Position Indicator
When a file is opened, a stream is associated with it. The file position indicator for the associ-
ated stream indicates where the stream is currently reading or writing in the file.
The important points about the file position indicator are as follows:

1. The file position indicator is represented as a long integer, which counts the number of
bytes from the beginning of the file.

2. The initial value of the file position indicator depends upon the mode in which the file
is opened. If the file is opened in the read mode or the write mode, the file position in-
dicator is at the beginning of the file and will have value zero. If the file is opened in the
append mode, the initial value of the file position indicator is implementation defined.

3. Every successful I/O operation on the stream associated with the file, advances the file
position indicator through the file. Each time a character is read or written, the file posi-
tion indicator is incremented.

4. The current location (i.e. value) of the file position indicator for the stream can be deter-
mined by using the functions ftell and fgetpos.
a. The function ftell: The function ftell is declared in the header file stdio.h as:

long int ftell(FILE *stream);

 The important points about the function ftell are as follows:
i. A successful call to the function ftell returns the current value of the file position

indicator for the stream pointed to by the argument stream.
ii. On failure, the function ftell returns -1L.

642 Programming in C—A Practical Approach

b. The function fgetpos: The function fgetpos is declared in the header file stdio.h as:
int fgetpos(FILE *stream, fpos_t* pos);

 The important points about the function fgetpos are as follows:
i. The function fgetpos stores the current value of the file position indicator for the

stream pointed to by the argument stream, in the object pointed to by the argu-
ment pos.

ii. fpos_t is a typedef name defined in the header file stdio.h as:
typedef long fpos_t;

iii. If successful, the function fgetpos returns zero. On failure, it returns a non-zero
value.

The piece of code in Program 10-7 illustrates the use of functions ftell and fgetpos to determine
the value of file position indicator.

Line Prog 10-7.c abc.txt (before execution of the
program)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31

//Use of the functions ftell and fgetpos to determine the
//current value of the file position indicator
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE *fp1, *fp2;
 char ch;
 long int loc1, loc2;
 fp1=fopen(“abc.txt”,”r”);
 fp2=fopen(“cde.txt”,”a”);
 if(fp1==NULL||fp2==NULL)
 {
 printf(“Unable to read the file\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 else
 {
 loc1=ftell(fp1);
 loc2=ftell(fp2);
 printf(“Initially, indicators are located at %ld %ld\n”,loc1, loc2);
 ch=fgetc(fp1);
 fputc(‘!’,fp2);
 loc1=ftell(fp1);
 loc2=ftell(fp2);
 printf(“After I/O, indicators move to the location %ld %ld\n”,loc1,loc2);
 ch=fgetc(fp1);
 fputc(‘!’,fp2);

Strength is life!!

cde.txt (before execution of the
program)

Weakness is death

Output window

Initially, indicators are located at 0 0
After I/O, indicators move to the location 1 18
Finally, indicators are at the location 2 19

cde.txt (after execution of the pro-
gram)

Weakness is death!!
Remarks:
•  The file abc.txt is opened in the

read mode and the file cde.txt is
opened in the append mode

•  The initial values of the file posi-
tion indicators are zero

•  Every successful input–output
operation on stream advances
the file position indicator

•  Since in append mode, the char-
acters are added at the end of the
file, after the first write operation
(i.e. in line number 26) the value
of file position indicator will be
the number of characters previ-
ously present in the file plus one,
i.e. 18

(Contd...)

Chapter 10.indd 642Chapter 10.indd 642 28/02/2010 4:48:52 PM28/02/2010 4:48:52 PM

Files 643

32
33
34
35
36
37

 fgetpos(fp1,&loc1);
 fgetpos(fp2,&loc2);
 printf(“Finally, indicators are at the location %ld %ld\n”,loc1,loc2);
 }
 fcloseall();
}

Program 10-7 | A program that illustrates the use of the functions ftell and fgetpos

5. For some files (e.g. disk files) the location (i.e. value) of the file position indicator can
also be changed so that data can be read from or written to any portion of the file. Files
that allow changing the value of the file position indicator are known as random access
files. Some files do not allow the file position indicator to be changed. Such files are
known as sequential access files (e.g. printers). The value of the file position indicator
in random access files can be changed with the help of functions fseek, fsetpos and rewind.
a. The function fseek: The function fseek is declared in the header file stdio.h as:

int fseek(FILE *stream, long int offset, int whence);

 The important points about the function fseek are as follows:
i. The function fseek sets the file position indicator for the stream pointed to by the

argument stream.
ii. The whence value indicates whether the offset is relative to the beginning of the

file, the current file position or the end of the file. The value of whence must be one
of the symbolic constants (macros) or their corresponding values listed in Table
10.2. The symbolic constants are defined in the header file stdio.h.

Table 10.2 | Possible values of whence argument

S.No whence Value File location

1. SEEK_SET 0 Seek from the beginning of the file
2. SEEK_CUR 1 Seek from the current position
3. SEEK_END 2 Seek from the end of the file

iii. The offset is the difference in bytes between the file position indicated by the ar-
gument whence and the new location of file position indicator. If the value of offset
is negative, the new location will be before (i.e. towards the left of) the whence
position. If it is positive, the new location will be after (i.e. towards the right
of) the whence position, and if it is zero, the new location will be the same as the
whence position.

iv. Before the file indicator position is set to new location, the function fseek flushes
(i.e. writes) any unwritten buffered data to the file. After flushing, the file posi-
tion indicator is changed to the new location.

v. A successful call to the function fseek clears the end-of-file indicator for the stream
and undoes any effect of the function ungetc§§§ on the stream.

vi. On success (i.e. if the file position indicator is successfully moved) the function
fseek returns a zero value. On failure, it returns a non-zero value.

§§§ Refer Section 10.5 for a description on the function ungetc.

644 Programming in C—A Practical Approach

The piece of code in Program 10-8 illustrates the use of the function fseek on an update stream.

Line Prog 10-8.c abc.txt (before the execution of the program)

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26

//Use of the function fseek on an update stream
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE *fp;
 char ch;
 fp=fopen(“abc.txt”,”r+”);
 if(fp==NULL)
 {
 printf(“Unable to open the file\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 else
 {
 fseek(fp, -10L, SEEK_END);
 fputc(‘1’,fp);
 fseek(fp,0L, SEEK_SET);
 while((ch=fgetc(fp))!=EOF)
 putchar(ch);
 }
 fclose(fp);
}

I will file nomination papers for assembly elections at 10:00 AM.

Output window

I will file nomination papers for assembly elections at 11:00 AM.

abc.txt (after the execution of the program)

I will file nomination papers for assembly elections at 11:00 AM.

Remarks:
•  The file abc.txt is opened in the “r+” mode, i.e. update

mode
•  The content of the stream pointed to by fp as it ap-

pears to the C program will be
I will file nomination papers for assembly elections at 10:00 AM.\n^Z
•  The fseek function in line number 19 positions the

file position indicator 10 characters towards the left
of SEEK_END whence position. This is shown as:

New Position SEEK _END

I will file nomination papers for assembly elections at 10:00 AM.\n^Z
•  The function fputc writes the character ‘1’ to the

stream fp at the position indicated by the file posi-
tion indicator. The character ‘1’ overwrites the char-
acter ‘0’ present in the stream

•  Note that till now, the character ‘1’ has overwritten
the character ‘0’ in the stream only and not in the
file, because the data of the stream have not yet
been flushed to the file

•  Observe this fact by tracing the program and check-
ing the content of the file abc.txt after the execution
of the statement in line number 20 but before the
execution of the statement in line number 21

•  The call to the function fseek in line number 21 posi-
tion the file position indicator at the beginning of
the file. Before repositioning, the unwritten buff-
ered data are written to the file

•  After execution of the statement in line number
21, check the content of the file to see that ‘1’ actu-
ally overwrites ‘0’ in the file

•  The while loop prints all the characters present in the
file

Program 10-8 | A program that illustrates the use of the function fseek

b. The function fsetpos: The function fsetpos is declared in the header file stdio.h as:
int fsetpos(FILE *stream, fpos_t* pos);

Files 645

 The important points about the function fsetpos are as follows:

i. The function fsetpos sets the file position indicator for the stream pointed to
by the argument stream according to the value of the object pointed to by the
argument pos.

ii. A successful call to the function fsetpos clears the end-of-file indicator for the
stream and undoes any effect of the function ungetc on the stream.

iii. On success (i.e. if the file position indicator is successfully moved), the function
fsetpos returns a zero value. On failure, it returns a non-zero value.

The piece of code in Program 10-9 illustrates the use of the function fsetpos on an update stream.

Line Prog 10-9.c abc.txt (before the execution of the program)

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30

//Use of the function fsetpos on an update stream
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE *fp;
 char ch;
 fpos_t location;
 fp=fopen(“abc.txt”,”r+”);
 if(fp==NULL)
 {
 printf(“Unable to open the file\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 else
 {
 fgetpos(fp,&location);
 location+=18;
 fsetpos(fp,&location);
 fputs(“25”,fp);
 location=0;
 fsetpos(fp,&location);
 while((ch=fgetc(fp))!=EOF)
 putchar(ch);
 }
 fclose(fp);
}

Bring file number 18

Output window

Bring file number 25

abc.txt (after the execution of the program)

Bring file number 25

Remarks:
•  The file abc.txt is opened in the “r+” mode, i.e. the up-

date mode
•  The initial value of file position indicator for the

stream pointed to by fp will be zero
•  The function fgetpos in line number 20 stores the cur-

rent value of the file position indicator for the stream
pointed to by fp in the object pointed to by its second
argument (i.e. in the object location)

•  Thus, after the execution of the statement in line
number 20, the value of location would be 0

•  The expression in line number 21 manipulates the
value of the object location and makes it 18

•  The function fsetpos in line number 22 sets the po-
sition of the file position indicator for the stream
pointed to by fp according to the value of the object
pointed to by its second argument (i.e. 18 characters
after the start position)

•  The function fputs writes the string “25” in the stream
pointed to by fp at the location indicated by the file
position indicator

•  Thus, the string “25” overwrites the string “18”. Till
now, “25” has been written in the stream pointed to
by fp and not physically to the file abc.txt

•  The call to the function fsetpos in line number 25
flushes the content of the stream and sets the file
position indicator to the beginning of the file

•  The while loop prints the content of the file

Program 10-9 | A program that illustrates the use of the function fsetpos

646 Programming in C—A Practical Approach

c. The function rewind: The function rewind is declared in the header file stdio.h as:
void rewind(FILE *stream);

 The important points about the function rewind are as follows:
i. The function rewind sets the file position indicator for the stream stream to the be-

ginning of the file.
ii. It is equivalent to (void) fseek(stream, 0L, SEEK_SET); except that the error indicator¶¶¶

for the stream is also cleared.
iii The function rewind returns no value.

10.4.6 End of File and Errors
Like strings are terminated by the null character, i.e. ‘\0’ and lines are terminated by the new
line character, i.e. ‘\n’, files are terminated by a special character known as end-of-file char-
acter. Different operating systems use different special characters to mark the end of the file.
For example, DOS and WINDOWS use Ctrl+Z character to mark the file’s end while the UNIX
operating system uses Ctrl+D character for it.

C provides a number of library functions like fgetc, etc. to read characters from a file. While
reading, when these functions encounter the end of the file, they return EOF character, irre-
spective of the character used by the operating system to mark the end of the file. The EOF,
commonly known as end-of-file character, is a macro defined in the header file stdio.h. The
important points about EOF are as follows:

1. EOF is an end-of-file indicator. It indicates that end of file has been reached and no more
data can be read from the stream associated with the file. It is a macro (symbolic con-
stant) defined in the header file stdio.h as:

#defi ne EOF (–1)
2. The actual value of EOF is a system-dependent negative number, but the most common

choice for EOF is –1. It is guaranteed that the EOF value compare unequal to any valid char-
acter code because the ASCII value of valid characters spans from 0 to 255.

3. File access and I/O functions also return EOF character in case they encounter some error
while performing the operation.

If EOF is used to indicate both the end of file and error, then how can it be determined
whether end of file has been reached or an error has occurred?

The C language provides an answer to this question by providing the functions feof and
ferror. Whether end of file is encountered or an error has occurred can be distinguished by
using the functions feof and ferror:

1. The function feof: The function feof is declared in the header file stdio.h as:
int feof(FILE* stream);

The important points about the function feof are as follows:
a. The function feof tests the end-of-file indicator†††† flag for the stream pointed to by the

stream.

¶¶¶ Refer Section 10.5 for a description on error indicator flag.
†††† Refer Section 10.5 for a description on end-of-file indicator flag.

Files 647

b. The function feof returns a non-zero value (i.e. true) if the end-of-file indicator flag
for the stream is set (i.e. end of file has been reached).

Consider the code to copy content of one file to another listed in Program 10-5. The men-
tioned code checks the EOF character to determine whether end of file has been reached. As
discussed, looking for EOF is not the best way to determine the end-of-file condition because
EOF can also be returned by a file I/O function if some error occurs. Thus, the code listed
in Program 10-5 is rewritten in Program 10-10 by using the function feof to determine the
end-of-file condition.

Line Prog 10-10.c abc.txt

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27

//Copy content of one file to another file
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE *fp1, *fp2;
 char ch;
 fp1=fopen(“abc.txt”,”r”);
 fp2=fopen(“new.txt”,”w”);
 if(fp1==NULL || fp2==NULL)
 {
 printf(“Problem in reading or writing a file\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 else
 {
 while(!feof(fp1))
 {
 ch=fgetc(fp1);
 fputc(ch,fp2);
 }
 fcloseall();
 }
}

Desolation is a file, and the endurance of darkness is preparation for
great light.

new.txt (after the execution of the program)

Desolation is a file, and the endurance of darkness is preparation for
great light.
ÿ
Remarks:
•  The file abc.txt is opened in the read mode and the

stream pointed to by fp1 is associated with it
•  The file new.txt is opened in the write mode and the

stream pointed to by fp2 is associated with it
•  If the function fopen successfully opens the files,

the program will proceed else the program will
be terminated by the call to the function exit

•  The while loop reads all the characters from the
stream fp1 and writes them to the stream fp2

•  The function fcloseall closes all the opened streams
and flushes the characters present in the buffer of
the streams, if any

•  Observe the presence of the character ÿ at the end
of the file new.txt. It is an end-of-file character.

•  The reason behind its presence in the file new.txt
is that the function feof return true only when the
end-of-file condition has been reached and the
end-of-file indicator flag is set

•  Refer Section 10.5. for a description on the end-of-
file indicator flag

•  Thus, in line number 22, the function fgetc reads
the end-of-file character from the stream fp1. In line
number 23, the function fputc writes the read end-of-
file character to the stream fp2 and then the while ex-
pression evaluates to false and the loop terminates

•  Change the statement written in line number 23 to
if(!feof(fp1)) fputc(ch,fp2); so that the end-of-file char-
acter does not get written to the file new.txt

Program 10-10 | A program that copies the content of a file to another

648 Programming in C—A Practical Approach

2. The function ferror: The function ferror is declared in the header file stdio.h as:
int ferror(FILE* stream);

The important points about the function ferror are as follows:
a. The function ferror tests the error indicator flag for the stream pointed to by the stream.
b. The function ferror returns a non-zero value (i.e. true) if the error indicator flag for

the stream is set (i.e. an error has occurred).

10.4.7 Line Input
The function fgetc is used to read a character from a stream. However, many programs inter-
pret input on the basis of lines. These programs require the use of the functions that can read
a line of text from a stream. The C library has the function fgets that can read a line of text from
a stream. It is declared in the header file stdio.h as:

char* fgets(char* s, int n, FILE* stream);
The important points about the usage of function fgets are as follows:

1. The function fgets reads characters from the stream pointed to by stream into the array
pointed to by s. It stops either by reading n-1 characters or a new line character.

2. The file position indicator is moved appropriately.
3. The new line character is retained and the null character is appended to mark the end

of the string.
4. The function fgets returns s if successful.
5. If end of file (i.e. EOF) is encountered and no character has been read into the array, the

content of the array remain unchanged and a null pointer is returned.
6. If a read error occurs, the content of array s are indeterminate and a null pointer is re-

turned.
The piece of code in Program 10-11 illustrates the above-mentioned points.

Line Trace Prog 10-11.c Output window

1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1

2

3

4

5

6

7

8

9

10

11

12

13

//Use of the function fgets
#include<stdio.h>
main()
{
 FILE *fp;
 char str[50],*p;
 fp=fopen(“abc.txt”,”r”);
 p=fgets(str, 35, fp);
 printf(str);
 p=fgets(str, 15, fp);
 printf(str);
 p=fgets(str, 15, fp);
 printf(str);
 p=fgets(str, 50, fp);
 printf(str);
 p=fgets(str, 10, fp);
 printf(str);
}

After trace step 2: abc.txt

Nostalgia is a file that\n
removes the rough\n
edges from the good old days\n^Z

str=”¥ÄÇÈÌÜßãö\x1\BJ|\x1” i.e. Garbage
p=””

After trace step 3: abc.txt

Nostalgia is a file that\n
removes the rough\n
edges from the good old days\n^Z

str=”Nostalgia is a file that\n”
p=” Nostalgia is a file that\n”

After trace step 5: abc.txt

Nostalgia is a file that\n
removes the rough\n
edges from the good old days\n^Z

Nostalgia is a file that
removes the rough
edges from the good old days
edges from the good old days
Remarks:
•  The function fgets in line

number 8 terminates after
reading the ‘\n’ character
from the stream pointed to
by fp. The ‘\n’ character is
retained. This can be con-
firmed by looking at the
contents of str after trace
step 3

•  The function fgets in line
number 10 terminates after
reading 14 (i.e. 15-1) char-
acters from the stream
pointed to by fp

(Contd...)

Files 649

str=”removes the ro”
p=”removes the ro”

After trace step 7: abc.txt

Nostalgia is a file that\n
removes the rough\n
edges from the good old days\n^Z

str=”ugh\n”
p=”ugh\n”

After trace step 9: abc.txt

Nostalgia is a file that\n
removes the rough\n
edges from the good old days\n^Z

str=”edges from the good old days\n”
p=”edges from the good old days\n”

After trace step 11: abc.txt

Nostalgia is a file that\n
removes the rough\n
edges from the good old days\n^Z

str=”edges from the good old days\n”
p=NULL

•  The function fgets in line
numbers 12 and 14 termi-
nates after reading the ‘\n’
character from the stream
pointed to by fp

•  The function fgets in line
number 16 encounters end
of file and no character has
been read. Thus, the con-
tents of the character array
str remain the same. This
can be confirmed by look-
ing at the contents of str af-
ter trace steps 9 and 11

•  Also, the function fgets
on encountering end of
file returns a null pointer.
Look at the value of p after
trace step 11

Program 10-11 | A program that illustrates the use of the fgets function

10.4.8 Line Output
A line of text can be written to a stream by using the function fputs. The function fputs is declared
in the header file stdio.h as:

int fputs(char *s, FILE* stream);
The important points about the usage of the function fputs are as follows:

1. The function fputs writes the string pointed to by the pointer s to the stream pointed to
by stream.

2. The terminating null character (i.e. ‘\0’) of the string is not written to the stream.
3. The successful execution of the function fputs returns a non-negative value. If a write er-

ror occurs, EOF is returned.
The piece of code in Program 10-12 illustrates the usage of the function fputs.

Line Prog 10-12.c Output window

 1
 2
3
4
5
6
7
8

//Usage of fputs function
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE *fp;
 int i;

The value returned by the function fputs is 111

abc.txt (after the execution of the program)

Hello Readers
Remarks:
•  The function fputs in line number 18 writes

the string “Hello Readers” to the stream point-
ed to by fp

(Contd...)

650 Programming in C—A Practical Approach

Line Prog 10-12.c Output window

9
10
11
12
13
14
15
16
17
18
19

20
21
22

 fp=fopen(“abc.txt”,”w”);
 if(fp==NULL)
 {
 printf(“Unable to create the file\n”);
 getch();
 exit(1);
 }
 else
 {
 i=fputs(“Hello Readers”, fp);
 printf(“The value returned by the function fputs is %d\n”, i);
 }
 fclose(fp);
}

•  The successful execution of the function
fputs returns a non-negative value

•  The value returned by the function fputs
is printed by the statement in line num-
ber 19

Program 10-12 | A program that illustrates the use of the function fputs

10.4.9 Formatted Input
The function fscanf is used to read formatted input from a stream like the function scanf is used
to read formatted input from the keyboard (i.e. the stream stdin). The function fscanf is declared
in the header file stdio.h as:

int fscanf(FILE* stream, char* format, …);

The important points about the usage of the function fscanf are as follows:
1. The function fscanf reads input from the stream pointed to by the argument stream.
2. The input will be taken according to the format specifiers present in the format string

pointed to by the argument format.
3. The arguments of the fscanf function following the format string should denote l-values.
4. The function fscanf can be used to read string from a file by using %s specifier. All the

rules discussed in Section 6.4 for reading strings using the scanf function are applicable.
5. The function fscanf returns EOF if an error occurs before the first item is read. Otherwise,

it returns the number of items successfully read.

10.4.10 Formatted Output
The function fprintf is used to write output to a stream like the function printf is used to write out-
put to the screen (i.e. the stream stdout). The function fprintf is declared in the header file stdio.h as:

int fprintf(FILE *stream, char *format, …);

The important points about the usage of the function fprintf are as follows:
1. The function fprintf writes the output to the stream pointed to by the argument stream.
2. The values of the arguments present after the format string pointed to by the argument

format, will be written to the stream according to the format specifiers present in the for-
mat string.

3. On successful execution, the function fprintf returns the number of characters written to
the stream. On error, it returns a negative value.

Program 10-13 provides a solution to the following problem and illustrates the use of the func-
tions fprintf and fscanf.

Files 651

The number of students present in a class and the marks secured by them in computing
end-term examination is present in a file named marks.txt. The number of students and their
marks are line separated (i.e. number of students are written in the first line and their marks
are written in the next line). The marks of students are blank space separated. Sort the marks
of the students and write the sorted list in the file at the end.

Line Prog 10-13.c marks.txt (before the execution of the program)

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

//The functions fscanf and fprintf
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
selectionsort(int num[], int noe)
{
 int i, j, min, temp;
 for(i=0;i<noe-1;i++)
 {
 min=i;
 for(j=i+1;j<noe;j++)
 if(num[j]<num[min])
 min=j;
 {
 temp=num[min];
 num[min]=num[i];
 num[i]=temp;
 }
 }
}
main()
{
 FILE *fp;
 char str[50],*p;
 int i, noe, num[50];
 fp=fopen(“marks.txt”,”r”);
 if(fp==NULL)
 {
 printf(“Unable to open the file\n”);
 getch();
 exit(1);
 }
 fscanf(fp,”%d”,&noe);
 for(i=0;i<noe;i++)
 fscanf(fp,”%d”,&num[i]);
 fclose(fp);
 selectionsort(num, noe);
 fp=fopen(“marks.txt”,”a”);
 if(fp==NULL)
 {
 printf(“Problem in accessing the file\n”);

10
23 12 89 73 45 65 22 90 78 67

marks.txt (after the execution of the program)

10
23 12 89 73 45 65 22 90 78 67
List of marks in sorted order is:
12 22 23 45 65 67 73 78 89 90
Remarks:
•  The file marks.txt is opened in read mode
•  The function fscanf in line number 33 reads the

number of entries present in the file
•  The iterative use of the fscanf function in line

number 35 reads all the entries into the array
num

•  The function selectionsort is used to sort all the
elements of the array

•  In line number 36 the file is closed and in line
number 38 it is reopened in the append mode

•  The iterative use of the function fprintf in line
number 47 appends the elements of the sorted
array num to the file

•  Note that instead of closing the file and then
reopening it again in the append mode, it can
initially be opened in the “r+” mode for reading
and writing

(Contd...)

652 Programming in C—A Practical Approach

Line Prog 10-13.c

42
43
44
45
46
47
48
49

 printf(“Unable to continue”);
 exit(1);
 }
 fprintf(fp,”List of marks in sorted order is:\n”);
 for(i=0;i<noe;i++)
 fprintf(fp,”%d “,num[i]);
 fclose(fp);
}

Program 10-13 | A program that illustrates the use of the functions fscanf and fprintf

10.4.11 Block Input
Binary files as well as text files can be efficiently read by using block input, which reads data
in terms of fixed size blocks instead of reading it by characters or by lines. The block input can
be done by using the function fread. The function fread is declared in the header file stdio.h as:

size_t fread(void *data, size_t size, size_t n, FILE* stream);

The important points about the usage of the function fread are as follows:
1. The function fread reads up to n elements of size size into the memory block (i.e. array)

pointed to by the argument data from the stream pointed to by the argument stream.
2. The function fread returns the number of elements read successfully, which may be less

than n if a read error occurs or if end of file (i.e. EOF) is encountered.
3. If the argument size or n is zero (i.e. no data are to be read), the function returns zero, and

the contents of the block and the state of the stream remain unchanged.

10.4.12 Block Output
Fixed size blocks of data can be written to a stream by using the function fwrite. The function
fwrite is declared in the header file stdio.h as:

size_t fwrite(void *ptr, size_t size, size_t n, FILE* stream);

The important points about the usage of the function fwrite are as follows:
1. The function fwrite writes up to n elements of size size from the memory block (i.e. array)

pointed to by the argument data to the stream pointed to by the argument stream.
2. The function fwrite returns the number of elements successfully written, which may be

less than n only if a write error occurs.
3. If the argument size or n is zero (i.e. no data is to be written), the function returns zero,

and the state of the stream remains unchanged.
The piece of code in Program 10-14 illustrates the use of the functions fread and fwrite to perform
block input and output.

Line Prog 10-14.c Output window

1
2
3
4
5

//Use of fread and fwrite functions
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
struct name

Enter the details of a person:
Enter the first name of the person: Jane
Enter the last name of the person: Ramon
Enter the mobile number: 9988700323
Do you want to enter more records(Y/N) Y

(Contd...)

Files 653

6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

{
 char first_name[20];
 char last_name[20];
};
struct phonebook_entry
{
 struct name person_name;
 char mobile_no[15];
};
main()
{
 FILE* fp;
 char ch;
 struct phonebook_entry p;
 fp=fopen(“phonebook.txt”,”wb+”);
 if(fp==NULL)
 {
 printf(“Some problem occurred\n”);
 printf(“Unable to continue\n”);
 exit(1);
 }
 while(1)
 {
 printf(“Enter the details of a person:\n”);
 printf(“Enter the first name of the person:\t”);
 gets(p.person_name.first_name);
 printf(“Enter the last name of the person:\t”);
 gets(p.person_name.last_name);
 printf(“Enter the mobile number:\t”);
 gets(p.mobile_no);
 fwrite(&p, sizeof(p),1, fp)
 printf(“Do you want to enter more records(Y/N)\t”);
 scanf(“%c”,&ch);
 fflush(stdin);
 if(ch!=’Y’ && ch!=’y’)
 break;
 }
 rewind(fp);
 printf(“\n\nPhonebook entries present in file are:\n”);
 printf(“%-20s %-20s %-15s\n”,”First Name”, “Last Name”, “Mobile \
 Number”);
 printf(“--\n”);
 while(!feof(fp))
 {
 fread(&p, sizeof(p), 1, fp);
 if(feof(fp))
 break;
 else

Enter the first name of the person: Sandoor
Enter the last name of the person: Fekete
Enter the mobile number: 9889900099
Do you want to enter more records(Y/N) N

Phonebook entries present in the file are:
First Name Last Name Mobile Number

Jane Ramon 9988700323
Sandoor Fekete 9889900099
Remarks:
•  The function call fflush(stdin) is used to

flush the buffer associated with the
stream stdin

•  Refer Section 10.4.13 for a descrip-
tion on the function fflush

(Contd...)

654 Programming in C—A Practical Approach

Line Prog 10-14.c Output window

54
55
56
57
58

 printf(“%-20s %-20s %-15s\n”, p.person_name.first_name,
 p.person_name.last_name, p.mobile_no);
 }
 fclose(fp);
}

Program 10-14 | A program that illustrates the use of the functions fread and fwrite

10.4.13 Stream Buffering and Flushing the Streams
In the previous sections, we have discussed various functions used to read characters from,
or write characters to, a stream. However, how these characters are transmitted to the pro-
gram (during an input operation) or to the file (during an output operation) depends upon
the stream buffering. Three common choices for stream buffering are: no buffering, line
buffering and full buffering. Accordingly, the streams are: unbuffered, line buffered or
fully buffered.

If a stream is unbuffered, the characters written to the stream are immediately transmit-
ted to the program (during an input operation) or the file (during an output operation). If the
stream is line buffered, the characters present in the stream are transmitted to the destination
when a new line character is encountered. When the stream is fully buffered, the characters
present in the stream are transmitted to the destination when the stream gets full (i.e. in block
of size equal to the buffer size).

It is very important to properly understand stream buffering while designing a user in-
terface for a program. Otherwise, the output may not appear when it is desired or it might
appear when it is not intended. The important points about stream buffering are as follows:

1. When opened, a stream by default is fully buffered if and only if it is not connected to
an interactive device.

2. If an opened stream is connected to an interactive device, by default it is line buffered.
3. For a buffered stream, the buffer to be used for I/O buffering is automatically allocated.

However, the functions setvbuf and setbuf can be used to specify a buffer that should be
used by the stream for I/O buffering.

4. By default, the size of the automatically allocated buffer for a buffered stream is given
by the macro BUFSIZ, defined in the header file stdio.h. The macro BUFSIZ expands to an in-
teger constant 512. Thus, by default the size of the automatically allocated buffer for a
buffered stream is 512.

5. The streams can be configured to have a behavior that differs from the default behavior.
Whether an opened stream should be unbuffered, line buffered or fully buffered, which
buffer is to be used for I/O buffering and what should the size of the buffer be, can be
explicitly specified by using the functions setvbuf and setbuf.
a. The function setvbuf: The function setvbuf is declared in the header file stdio.h as:

int setvbuf(FILE* stream, char *buf, int mode, size_t size);

 The important points about the usage of the function setvbuf are as follows:

i. The function setvbuf may be used only after the stream pointed to by stream has been
associated with a file and before any operation is performed on the stream.

Files 655

ii. The argument mode determines how stream will be buffered. The argument
mode can be one of the symbolic constants (macros) or their corresponding val-
ues listed in Table 10.3. The symbolic constants are defined in the header file
stdio.h.

Table 10.3 | Possible values of the mode argument

S.No mode Value Description

1. _IOFBF 0 Input/output will be fully buffered
2. _IOLBF 1 Input/output will be line buffered
3. _IONBF 2 Input/output will be un-buffered

iii If the argument buf is not a null pointer, the array pointed to by it will be used
as a buffer for I/O buffering instead of the automatically allocated buffer. The
array pointed to by buf should be a character array with a size of at least size. The
space allocated for the array pointed to by buf should not be freed till the stream
is open and the array remains its buffer.

iv If the argument buf is a null pointer, the function setvbuf function automatically
allocates a buffer to be used for I/O buffering. The buffer is allocated by using
malloc. The size of the allocated buffer will be equal to size. The memory used
by the automatically allocated buffer is automatically freed when the stream
is closed.

v The setvbuf function returns zero on success, or non-zero if an invalid value is
given for mode or on failure.

The piece of code in Program 10-15 illustrates the use of the function setvbuf.

Line Trace Prog 10-15.c Tracing Output window

1
 2
3
4
5
6
7
8
9

10
11
12
13

1

2

3

4

5

6

7

8

//Function setvbuf
#include<stdio.h>
#include<conio.h>
main()
{
 char arr[30];
 setvbuf(stdout, arr, _IOFBF, 30);
 puts(“Fairways are narrow”);
 fflush(stdout);
 puts(“you have to walk down”);
 puts(“them in a single file”);
 fclose(stdout);
}

After trace step 3:
arr=”Fairways are narrow\n”
Output Window:
Blank
After trace step 4:
arr=”Fairways are narrow\n”
Output Window:
Fairways are narrow
After trace step 5:
arr=”you have to walk down\n”
Output Window:
Fairways are narrow
After trace step 6:
arr=”a single file\n”
Output Window:
Fairways are narrow
you have to walk down
them in

Fairways are narrow
you have to walk down
them in a single file
Remarks:
•  The function setvbuf in line

number 7, changes the buff-
ering properties of the stan-
dard stream stdout

•  After the successful execution
of the statement in line num-
ber 7, the stream stdout will be
fully buffered, the character
array arr will be used as the
buffer for the stream and the
buffer size will be 30

•  The function puts writes to
the stream stdout

(Contd...)

656 Programming in C—A Practical Approach

Line Trace Prog 10-15.c Tracing Output window

After trace step 7:
arr=”a single file\n”
Output Window:
Fairways are narrow
you have to walk down
them in a single file

•  After trace step 3, there
will be No Output on the
screen because stdout is now
buffered and neither the
buffer has got full nor it is
flushed

•  After trace step 4, the string
will be printed onto the
screen because the buffer is
flushed by using the func-
tion fflush

•  After trace step 5, the string
“you have to walk down\n” is placed
in the buffer and will not be
transmitted to the screen

•  While executing trace step
6, by placing the characters
“them in“, the buffer got full,
hence it is flushed

•  Thus, after the execution of
trace step 6, the buffer i.e. arr
contents are “a single file”

Program 10-15 | A program that illustrates the use of the function setvbuf

b. The function setbuf: The function setbuf is declared in the header file stdio.h as:
void setbuf(FILE* stream, char *buf);

 The important points about the usage of the function setbuf are as follows:
i. If the argument buf is not a null pointer, the function setbuf specifies that the I/O

will be fully buffered and an array pointed by buf will be used for I/O buffering.
The size of the array pointed to by buf must be BUFSIZ.

ii. If the argument buf is a null pointer, I/O will be unbuffered.
iii. The function setbuf returns no value.
iv. Thus, except that it returns no value, the function setbuf is equivalent to the func-

tion setvbuf invoked with the values _IOFBF for mode and BUFSIZ for size, or if buf is a
null pointer, with the value _IONBF for mode.

6. As seen in Program 10-15, the characters from a buffered output stream are transmitted
to the file when the buffer gets full (in the case of fully buffered streams) or when new
line character is encountered (in the case of line-buffered streams). However, even if
these conditions are not met, the characters from a stream can be transmitted to the file
by flushing the buffer associated with the stream. Similarly, for a buffered input stream,
the characters present in the stream can be cleared by flushing the buffer associated
with the stream. The buffers associated with the streams can be flushed by using the
library functions fflush and flushall.

Files 657

a. The function fflush: The function fflush is declared in the header file stdio.h as:
int ffl ush(FILE* stream);

 The important points about the function fflush are as follows:
i. If the stream pointed to by stream is an input stream, the function fflush clears the

buffer associated with it.
ii. If the stream pointed to by stream is an output stream, the function fflush transmits

the characters present in the buffer associated with the stream to the file.
iii. If the stream is a NULL pointer, the function fflush performs the flushing action on

all open streams.
iv. The function fflush sets the error indicator for the stream stream and returns EOF if

an error occurs, otherwise it returns zero.
b. The function flushall: The function flushall is declared in the header file stdio.h as:

int fl ushall(void);
 The important points about the function flushall are as follows:

i. The function flushall clears all buffers associated with the open input streams and
writes all buffers associated with open output streams to the respective files.

ii. Any read operation following the call to the function flushall reads new data into
the buffers from the input files.

iii. The function flushall returns an integer that is equal to the number of open input
and output streams.

10.5 File Type
In the previous sections, we have seen that streams provide an efficient and convenient inter-
face to perform file I/O. Streams are objects of the type FILE defined in the header file stdio.h. Since
streams are so important it is worth exploring the inner details of the structure type FILE.
The definition of the structure type FILE is as follows:

typedef struct
{
 short level; // fill/empty buffer level
 unsigned flags; // File status flags
 char fd; // File descriptor
 unsigned char hold; // ungetc character if no buffer
 short bsize; // Buffer size
 unsigned char *buffer; // Data transfer buffer
 unsigned char *curp; // Current active pointer
 unsigned int istemp; // Temporary file indicator
 short token; // Used for validity checking
 } FILE;

The structure FILE contains several pieces of information like: a pointer to a buffer, so that the
file can be read in large chunks; a count to the number of characters left in the buffer; a pointer
to the next character position in the buffer; the file descriptor; and flags describing read/write
mode, error status and end-of-file indication, etc.

658 Programming in C—A Practical Approach

The descriptions of the various members of the structure type FILE are as follows:
1. Buffer level: The member level is of short int type. It describes the number of characters

left in the buffer that are not yet read.
Program 10-16 uses the level member of the FILE type to illustrate that new line character

is left in the standard input stream stdin when a string is read by using the function scanf,
while no character is left in the stream if the string is read by using the function gets.

Line Prog 10-16.c Output window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Different ways to read a string
#include<stdio.h>
#include<conio.h>
main()
{
 char str1[20], str2[20];
 printf(“Two different ways to read a string\n”);
 printf(“Enter string 1:\t”);
 scanf(“%s”,str1);
 printf(“No. of characters left after using scanf is %d\n”,stdin->level);
 fflush(stdin);
 printf(“Enter string 2:\t”);
 gets(str2);
 printf(“No. of characters left after using gets is %d\n”,stdin->level);
 printf(“The strings entered are:\n”);
 printf(“%s %s”, str1, str2);
}

Two different ways to read a string
Enter string 1: Member
No. of characters left after using scanf is 1
Enter string 2: Level
No. of characters left after using gets is 0
The strings entered are:
Member Level
Remarks:
•  The scanf function does not remove

the new line character present at the
end of the string entered by the user

•  Thus, one character is left in the buf-
fer associated with the stream stdin.
Thus, the value of stdin->level is 1

•  The function gets removes all the
characters including the new line
character from the stream stdin

•  Thus, the value of stdin->level is 0

Program 10-16 | A program that illustrates the application of the level member

2. File status flags: The member flags is of unsigned int type. It indicates the current status of
the stream. Table 10.4 lists the definition of flag bits along with their description.

Table 10.4 | File status flags

S.No File status flags Description

1. #define _F_RDWR 0x0003 File is opened for reading/writing
2. #define _F_READ 0x0001 File is opened for reading only
3. #define _F_WRIT 0x0002 File is opened for writing only
4. #define _F_BUF 0x0004 Stream is fully buffered
5. #define _F_LBUF 0x0008 Stream is line buffered
6. #define _F_ERR 0x0010 Error indicator flag for the stream
7. #define _F_EOF 0x0020 End-of-file indicator flag for the stream
8. #define _F_BIN 0x0040 Stream is opened in binary mode
9. #define _F_IN 0x0080 Data are incoming
10. #define _F_OUT 0x0100 Data are outgoing
11. #define _F_TERM 0x0200 File is a terminal

Files 659

Program 10-17 uses the end-of-file indicator flag to determine whether the end of file has been
reached or not instead of using the macro EOF or the function feof.

Line Prog 10-17.c abc.txt

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28

//Copy content of one file to another file
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE *fp1, *fp2;
 char ch;
 fp1=fopen(“abc.txt”,”r”);
 fp2=fopen(“cde.txt”,”w”);
 if(fp1==NULL || fp2==NULL)
 {
 printf(“Problem in reading or writing a file\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 else
 {
 while((fp1->flags & _F_EOF) != _F_EOF)
 {
 ch=fgetc(fp1);
 if((fp1->flags & 0x0020) != 0x0020)
 fputc(ch,fp2);
 }
 }
 fcloseall();
}

File Management

cde.txt (after the execution of the program)

File Management
Remarks:
•  The code presents a third way to check for

the end-of-file condition
•  The other two ways are:

i.   Use of EOF character
ii.  Use of the function feof

•  The macro _F_EOF has the value 0x0020
•  Hence, both of them can be interchangeably

used as in line numbers 20 and 23

Program 10-17 | A program that illustrates the use of the EOF flag bit of the flag member

Similarly, other flag bits can also be checked to infer the information about the configuration
and the status of the stream. Program 10-18 checks the flag bits to determine whether the
stream is opened for reading, writing or update.

Line Prog 10-18.c Output window

1
 2
3
4
5
6
7
8
9

//Check whether a stream/ file is opened for reading, writing or update
#include<stdio.h>
main()
{
 FILE* fp;
 fp=fopen(“abc.txt”,”r”);
 if((fp->flags & _F_RDWR) == _F_RDWR)
 printf(“File is opened for update\n”);
 else

File is opened for reading
Remark:
•  Change the mode string used in the

function fopen to “a” and “w” and then
re-execute the code

(Contd...)

660 Programming in C—A Practical Approach

Line Prog 10-18.c Output window

10
11
12
13
14
15
16

 if((fp->flags & _F_READ) == _F_READ)
 printf(“File is opened for reading\n”);
 else
 if((fp->flags & _F_WRIT) == _F_WRIT)
 printf(“File is opened for writing\n”);
 fclose(fp);
}

Program 10-18 | A program that checks various bits of the member flag to determine the configuration of
the stream

3. File descriptor: File descriptor is a unique non-negative integer used to identify an
open file. The value of a file descriptor can range from 0 to FOPEN_MAX. FOPEN_MAX is a macro
defined in the header file stdio.h. It describes the maximum number of files that a process
(i.e. a program in execution) can open simultaneously. The file descriptor values for the
standard streams have already been defined and are shown in Table 10-5.

Table 10.5 | File descriptor values for standard streams

S.No Standard stream File descriptor value

1. stdin 0
2. stdout 1
3. stderr 2
4. stdaux 3
5. stdprn 4

4. Hold character: The member hold holds the character returned by the ungetc function, if
there is no buffer. The function ungetc is declared in the header file stdio.h as:

int ungetc(int c, FILE* stream);

 The important points about the function ungetc are as follows:
i. The function ungetc pushes the character specified by c back on the input stream

pointed to by stream.
ii. The ANSI C standard guarantees pushback of only one character at a time.
iii. The ungetc function returns the character pushed back or EOF if the operation fails.

 Suppose it is required to read the characters from a stream up to (but not including) the
next colon. The function fgetc can be used to read characters until a colon is read and
then function ungetc can be used to push the colon back onto the stream. Program 10-19
illustrates such use of the function ungetc.

Line Prog 10-19.c abc.txt

1
2
3
4
5

//Use of the function ungetc
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()

Segment:Offset

Output window

Segment
The character that is pushed back is :

(Contd...)

Files 661

6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

{
 FILE* fp;
 char ch;
 char str[20];
 fp=fopen(“abc.txt”,”r”);
 setbuf(fp, NULL);
 ch=fgetc(fp);
 while(ch!=’:’)
 {
 printf(“%c”,ch);
 ch=fgetc(fp);
 }
 ungetc(ch, fp);
 printf(“\nThe character that is pushed back is %c\n”,fp->hold);
 fgets(str, 20, fp);
 printf(“The characters present in the stream buffer are:\n”);
 puts(str);
}

The characters present in the stream buffer are:
:Offset
Remarks:
•  By default, the opened streams are

buffered and the buffer size is 512
•  The function setbuf in line number 11

is used to make the stream pointed
to by fp unbuffered

•  The while loop reads the character from
the stream fp, till the colon is read

•  The function ungetc in line number 18,
pushes the character ‘:’ back on to the
stream fp

•  The member hold holds the ungetc char-
acter. Thus, ‘:’ is printed by the func-
tion printf in line number 19

•  Note that the member hold holds the
character, if the stream is unbuffered

•  Comment the function setbuf in line
number 11 and then check the result

Program 10-19 | A program that illustrates the use of the function ungetc

5. Buffer size: The member bsize is of type short int. It specifies the size of the buffer used by
the stream. Program 10-20 uses the member bsize to illustrate that the standard output
stream stdout is unbuffered if not redirected, and by default the size of the buffer used
for a buffered stream is 512.

Line Prog 10-20.c Output window

 1
 2
3
4
5
6
7
8
9

10

//The size of buffer
#include<stdio.h>
main()
{
 FILE* fp;
 fp=fopen(“abc.txt”,”r”);
 printf(“Buffer size for the stream stdout is %d\n”, stdout->bsize);
 printf(“Buffer size for the stream fp is %d\n”, fp->bsize);
 fclose(fp);
}

Buffer size for the stream stdout is 0
Buffer size for the stream fp is 512
Remarks:
•  The stream stout is unbuffered, if not

redirected
•  Thus, the buffer size for the stream

stdout is 0
•  User-defined streams by default are

buffered and the buffer size is 512
•  Thus, the buffer size for the stream

fp is 512

Program 10-20 | A program that illustrates the use of the member bsize

6. Buffer: The member buffer is a character pointer to data buffer used by the stream for I/O
buffering.

7. Current active pointer: The member curp is a pointer to the next character position in the
buffer. The macros getc and putc use curp to read and write the character to the stream. The
description of the definitions of the macros getc and putc is as follows:

i. The macro getc: The macro getc is defined in the header file stdio.h as:
#defi ne getc(f) ((--((f)->level) >=0)? (unsigned char)(*(f)-> curp++): fgetc(f))

662 Programming in C—A Practical Approach

 The getc macro reduces the buffer level and compares it to be greater than equal to
zero. If it evaluates to true, it returns the character pointed to by curp and advances
the pointer curp else if the level becomes negative, it calls the function fgetc to replen-
ish the buffer.

ii. The macro putc: The macro putc is defined in the header file stdio.h as:
#defi ne putc(c,f) ((++((f)->level) < 0)? (unsigned char)(*(f)-> curp++=(c)): fputc((c),f))

 The macro putc places character c in the buffer at the location pointed to by curp and
then advances the pointer.

10.6 Files and Command Line Arguments
Program 10-5 copies the content of one file to another file. Every time the program is executed,
it copies the content of file abc.txt to the file new.txt. Thus, the program is inflexible. We require a
program that can copy the content of any given source file to any destination file. This can be
done by getting the names of the source and destination files at the run time instead of hard
coding them in the program. One way to get the names of the source file and destination file at
the run time is by using the command line arguments. Program 10-21 illustrates the use of the
command line argument in the development of the general file copy application.

Line Prog 10-21 filecopy.c Command window

 1
 2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26

//File copy program that makes use of command line arguments
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main(int argc, char* argv[])
{
 FILE *fp1, *fp2;
 char ch;
 if(argc<3)
 {
 printf(“Usage: filecopy sourcefile destinationfile”);
 getch();
 exit(1);
 }
 fp1=fopen(argv[1], “r”);
 fp2=fopen(argv[2], “w”);
 if(fp1==NULL || fp2==NULL)
 {
 printf(“Some problem occurred\n”);
 printf(“Unable to continue”);
 getch();
 exit(1);
 }
 while(!feof(fp1))
 {
 ch=fgetc(fp1);

c:\tc\bin>filecopy source.txt destination.txt

source.txt (before the execution of the
program)

Confidence is as vital to success as oxygen is to the
body.

destination.txt (after the execution of the
program)

Confidence is as vital to success as oxygen is to the
body.
Remark:
•  Instead of file names, argv[1] and argv[2]

are given as arguments in the calls to
the function fopen

(Contd...)

Files 663

27
28
29
30

 if(!feof(fp1)) fputc(ch, fp2);
 }
 fcloseall();
}

Program 10-21 | A program to copy the content of one file to another

10.7 Summary
1. The console input–output is preferred in interactive programs where the amount of

data input–output is small.
2. If a program deals with input–output of a large volume of data, file input–output is

convenient and less time consuming as compared to console input–output.
3. C performs the input–output in a device-independent form by treating each physical

device as a file.
4. A file can be a data set that can be read or written repeatedly (such as a disk file), or a

stream of bytes received from or sent to a peripheral device (such as a keyboard or dis-
play).

5. In C, files are referred to by their file names.
6. A file must be opened before any operation can be performed on it.
7. The connection to an open file is represented either as a stream or as a file descriptor.
8. Streams provide a high-level interface to perform file input–output.
9. Files can be opened by using the function fopen. Opening a file associates a stream with

it.
10. Five standard streams namely stdin, stdout, strerr, stdaux and stderr are already open when

a program is executed and are available for use. These streams need not be opened or
closed.

11. A stream can be opened for input, output or both.
12. A file can be opened in a text mode or a binary mode. Accordingly, the corresponding

associated stream can be a text stream or a binary stream.
13. Text streams are interpreted while binary streams are uninterpreted.
14. A stream can be unbuffered, line buffered or fully buffered.
15. Streams are objects of the type FILE. Generally, they are manipulated by using objects of

the type FILE*, i.e. pointer to a stream.
16. A stream can be closed by using the function fclose. Closing a stream breaks the associa-

tion between the stream and the file.
17. The function fcloseall closes all the open streams except the standard streams.
18. Input from a stream can be taken by using the functions: fgetc, fgets, fscanf, fread, etc.
19. Output to a stream can be given by using the functions: fputc, fputs, fprintf, fwrite, etc.
20. The file position indicator for the associated stream indicates where in the file the stream

is currently reading or writing.
21. The current location of a file position indicator can be determined by using the func-

tions: ftell or fgetpos.
22. The value of the file position indicator can be changed by using the functions: fseek, fsetpos

or rewind.
23. Streams can be flushed using the functions: fflush or flushall.

664 Programming in C—A Practical Approach

Exercise Questions
Conceptual Questions and Answers

1. What is a stream?
 A stream is a continuous series of bytes that flows into or out of a program. Input and output

from physical devices or from disk files are handled with streams.

Backward Reference: Refer Section 10.3 for a description on streams.

2. What are standard streams?
 When a program is executed, the streams that are already open and are available to the program for

use are known as standard streams. The C language provides the following five standard streams:

Standard stream Description Associated file

stdin Standard input Keyboard

stdout Standard output Screen

stderr Standard error Screen

stdaux Standard auxiliary COM1: port

stdprn Standard printer LPT1: port

 Note that the streams stdaux and stdprn are not always defined because LPT1 and COM1 have no
meaning under certain operating systems. However, the streams stdin, stdout and stderr are always
defined. These streams need not be opened or closed.

3. What is meant by stream redirection?
 Changing the source file or the target file of an open stream is known as stream redirection.

Stream redirection is useful for changing the file attached to the standard streams stdin, stdout or
stderr. A stream can be redirected by using the function freopen. The function freopen is declared in
the header file stdio.h as:

FILE* freopen(const char* filename, const char* mode, FILE* stream);
 The important points about the function freopen are as follows:

1. The function freopen opens the file whose name is the string pointed to by the argument filename
and associates the stream pointed to by stream with it. The role of the argument mode is the
same as in the function fopen.

2. If filename is a null pointer, the function freopen attempts to change the mode of the stream to
that specified by the argument mode. The file associated with the stream remains the same.

3. The function freopen first attempts to close the file associated with the stream. Failure to close
the stream is ignored. The error indicator flag and the end-of-file indicator flag for the stream
are cleared (i.e. reset).

4. By default, the stream stdout writes characters to the screen. Can I make the stream stdout be printed some-
where other than the screen?

 Yes, the stream stdout can be printed somewhere other than screen by redirecting it. The following
piece of code illustrates the redirection of the stream stdout:

 #include<stdio.h>
 main()

Files 665

 {
 freopen(“abc.txt”,”w”,stdout);
 printf(“Where will this gets printed?”);
 }
 The mentioned piece of code on execution prints the string “Where will this gets printed?” to the file abc.txt

instead of printing it on the screen because the stream stdout has been redirected.

5. What is file handle?
 The file descriptor of a stream is also known as the file handle. It is a non-negative integer that

can completely describe the stream. The file handle (i.e. file descriptor) of a stream can be deter-
mined by using the function fileno. The function fileno is defined in the header file stdio.h as:

int fileno(FILE* stream);
 The important points about the function fileno are as follows:

1. The fileno is actually a macro defined in the header file stdio.h as:
#define fileno(f) ((f)->fd)

2. It returns the integer file handle associated with the stream.
 The following piece of code illustrates the use of the function fileno to retrieve the file handles of

the standard streams stdin and stdout:
 #include<stdio.h>
 main()
 {
 printf(“File handle of the standard input stream is %d\n”,fileno(stdin));
 printf(“File handle of the standard output stream is %d”,fileno(stdout));
 }
 The mentioned code on execution outputs
 File handle of the standard input stream is 0
 File handle of the standard input stream is 1

6. How can I restore a redirected stream?
 The following steps should be followed to redirect a stream and restore it back:

1. Duplicate the file handle of the stream before redirecting it by using the function dup. The
function dup is declared in the header file IO.h as int dup(int handle);. It takes the handle of the stream
as an input for which a duplicate handle is to be created.

2. Redirect the stream by using the function freopen.
3. Work with the redirected stream and close it after the use by using the function fclose.
4. Restore the original stream back by using the function fdopen. The function fdopen opens a

stream that has been duplicated with the function dup.
 The following piece of code illustrates the redirection and restoration of the standard stream stdout:
 #include<stdio.h>
 #include<IO.h>
 main()
 {
 int dup_handle;
 dup_handle=dup(fileno(stdout)); //Duplicating the file handle of the stream stdout
 printf(“Writing to original stdout stream\n”);
 printf(“This will be printed on the screen\n”);
 freopen(“abc.txt”,”w”, stdout); //Redirecting the stream

666 Programming in C—A Practical Approach

 printf(“Writing to the redirected stdout stream\n”);
 printf(“This will be printed in the file\n”);
 fclose(stdout);
 fdopen(dup_handle, “w”); //Restoring the stream
 printf(“Writing back to the original stdout stream\n”);
 printf(“This will appear again on the screen”);
 }

7. What are the differences between a text stream and a binary stream?

Text stream Binary stream

1.  Text streams are interpreted
2.  Carriage return and line feed character

combinations are translated to new line
character and vice versa

3.  Text streams are typically used for read-
ing and writing standard text files, print-
ing output to screen or printer, or receiv-
ing input from the keyboard

1.  Binary streams are uninterpreted
2.  No translation of characters takes place

3.  Binary streams are typically used for
reading and writing binary files such as
graphics file or word processing file, or
reading and writing to the modem

8. I have written the following statement to open a file:
FILE* fp=fopen(“file.dat”, ‘r’);

 Why does the mentioned statement not work?
 The mentioned statement does not work because the argument mode in call to the function fopen

should be a string and not a character. The rectified statement can be written as:
FILE* fp=fopen(“file.dat”,”r”);

9. I have written the following statement to open the file file.txt present in c:\tc\bin directory:
FILE* fp=fopen(“c:\tc\bin\file.txt”,”r”);

 Why does the mentioned statement not work?
 The mentioned statement does not work because the backslash character appearing in the string

literal given as an argument to the function fopen begins an escape sequence and gives a special
meaning to the character following it. The characters ‘\t’, ‘\b’ and ‘\f’ present in the string literal
are treated as tab, backspace and form feed character. These escape sequences manipulate the file
name. The file with this manipulated file name probably does not exist. Thus, the function fopen
fails and returns NULL pointer.

 The mentioned problem can be rectified by using one of the following two ways:
1. Use double backslashes instead of a single backslash in order to override escape sequences.

The rectified file name can be written as “c:\\tc\\bin\\file.txt”.
2. In MS-DOS, forward slashes are also accepted as directory separators. Thus, replace the back-

ward slashes in the string literal filename by the forward slashes in order to eliminate escape
sequences. The rectified file name can be written as “c:/tc/bin/file.txt”.

10. A program reads a character from the keyboard until EOF. How do I enter EOF from the keyboard to terminate
the input?

 Different operating systems use different special characters to mark the end of a file. DOS and
WINDOWS use the Ctrl+Z character to mark file’s end while UNIX uses Ctrl+D for it. Thus, to
enter the end-of-file character from the keyboard, enter the Ctr+Z character if working in DOS or
WINDOWS environment and enter the Ctrl+D character if working in UNIX environment.

Files 667

 The C language defines a symbolic constant EOF, which is returned by the library functions when
the end of file is encountered, irrespective of the character used to mark the file’s end. Execute the
following piece of code using Turbo C 3.0/4.5 to see that the input gets terminated by the Ctrl+Z
character:

 #include<stdio.h>
 main()
 {
 char ch;
 while((ch=getchar())!=EOF)
 putchar(ch);
 }

11. A file consists of the following sequence of numbers:
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

 A loop is used to read numbers from the file till EOF is encountered. So does the loop terminate after reading
all the number or does it terminate after reading –1 as EOF has the value –1?

 The loop will terminate after reading all the numbers and not after reading –1. –1 is not a char-
acter but is made up of two characters ‘–‘ and ‘1’. Also, their ASCII codes (i.e. 45 and 49) are not
equal to the defined value of EOF (i.e. –1). In fact, none of the valid characters compare equal to
the EOF character because the ASCII codes of valid characters are non-negative and spans from
0 to 255.

12. What is the difference if the function fwrite is used to output an integer value 12345 to a file instead of the
function fprintf?

 When the function fprintf is used to write the integer value 12345 to the file, it writes the binary
codes of the characters ‘1’, ‘2’, ‘3’, ‘4’ and ‘5’ (i.e. 49, 50, 51, 52 and 53) to the file. Thus, the data that
are written to the file are

00110001 00110010 00110011 00110100 00110101

 When the function fwrite is used to write the integer value 12345 to the file, it writes the binary code
for the value 12345 to the file. Thus, the data written to the file are:

00110000 00111001

13. How is the file opened with the “r” mode different from the file opened with the “r+” mode?
 The file opened with the “r” mode can only be used for reading, while the file opened with the “r+”

mode can be used for reading as well as writing (i.e. update).

14. Both the “r+” and “w+” modes are used to open a file for update. Then, what is the difference between them?
 Both the “r+” mode and the “w+” mode open a file for update. If the “r+” mode is used and the file

does not exist, the function fopen will fail and returns a NULL pointer. However, if the “w+” mode
is used and the file does not exist, a new file will be created. If the “r+” mode is used and the file
already exists, the content of the file will remain unchanged. However, if the “w+” mode is used
and the file already exists, the file is truncated to zero length.

15. Both the “w+” and “a+” modes are used to open a file for update. Also, if the file does not exist, a new file is
created in both the modes. Then, what is the difference between them?

 Both the “w+” and “a+” modes are used to open a file for update. Also, if the file does not exist, a
new file is created in the both the modes. However, if the file already exists, in the “w+” mode it is
truncated to zero length while in the “a+” mode its initial content remain unchanged.

668 Programming in C—A Practical Approach

16. If I use the function scanf with %c format specifier to read a Y/N response, the latter input gets skipped.
Why? How can I rectify this problem?

 This problem occurred because the new line character is left in the standard input stream stdin
after reading the Y/N response. The problem can be rectified by flushing the stream stdin after read-
ing the Y/N response using the function call fflush(stdin).

Backward Reference: Refer Question number 15 and its answer in Chapter 6 for a similar
problem.

17. How can I check whether a given stream is associated with a terminal?
 Whether a stream is associated with a terminal or a data file can be determined by checking the

_F_TERM flag of the member flags of the stream. The following piece of code illustrates such a test:
 #include<stdio.h>
 main()
 {
 FILE *fp=fopen(“abc.txt”,”w”);
 if((fp->flags & _F_TERM) == _F_TERM)
 printf(“Stream fp is associated with a terminal\n”);
 else
 printf(“Stream fp is not associated with a terminal\n”);
 if((stdout->flags & _F_TERM) == _F_TERM)
 printf(“Stream stdout is associated with a terminal\n”);
 else
 printf(“Stream stdout is not associated with a terminal\n”);
 }
 The mention piece of code on execution outputs:
 Stream fp is not associated with a terminal
 Stream stdout is associated with a terminal

18. I have written the following piece of code to determine whether the standard error stream stderr is associated
with a terminal or not:

 #include<stdio.h>
 main()
 {
 if(stderr->flags & _F_TERM == _F_TERM)
 printf(“The stream stderr is associated with a terminal”);
 else
 printf(“The stream stderr is not associated with a terminal”);
 }
 The mentioned piece of code on execution outputs “The stream stderr is not associated with a terminal”, although

the stream stderr is associated with the terminal (i.e. screen). Why?

 This problem occurred because the precedence of the bitwise AND operator (&) and the equality
operator (==) has not been taken into consideration. The equality operator has a higher prece-
dence than bitwise AND operator. Thus, the equality operator operates first and the expression
_F_TERM==_F_TERM evaluates to true (i.e. 1). Now, the expression stderr->flags & 1 is evaluated and it evalu-
ates to false because the LSB of the member flags of the stream stderrr is 0 since it an output stream.

 The problem can be rectified by parenthesizing the sub-expression stderr->flags & _F_TERM. The recti-
fied expression can be written as (stderr->flags & _F_TERM)==_F_TERM.

Files 669

19. Can I use the function fprintf to display output on screen?
 Yes, the function fprintf can be used to display the output on the screen by providing stdout as the

argument stream to it. The function call fprintf(stdout, …) is equivalent to the function call printf(…) and
displays the output on the screen.

20. When a program terminates abnormally, the last few lines of its output are often lost. Why?
 When a program terminates abnormally, the last few lines of its output are often lost because the

open streams are not flushed in case of abnormal termination.

Code Snippets
 Determine the output of the following code snippets. Assume that the inclusion of the required header

files has been made and there is no prototyping error due to them. The content of the referred file is shown
alongside.

21. main()
 {
 FILE* fp=fopen(“abc.txt”, ‘r’);
 while(!feof(fp))
 printf(“%c”,fgetc(fp));
 }

22. main()
 {
 FILE* fp=fopen(“abc.txt”, “r”);
 while(!feof(fp))
 {
 printf(“%c”,fgetc(fp));
 fseek(fp,-1,SEEK_CUR);
 }
 }

23. main()
 {
 int streams;
 streams=flushall();
 printf(“Number of opened streams are %d”,streams);
 }

24. main()
 {
 FILE *fp=fopen(“abc.txt”,”r”);
 printf(“%d”,fp->fd);
 }

25. main()
 {
 FILE* fp1, *fp2;
 int count1=0, count2=0;
 fp1=fopen(“abc.txt”, “r”);
 fp2=fopen(“abc.txt”,”rb”);
 while(fgetc(fp1)!=EOF)
 count1++;

abc.txt

You are only young once,
and if you work it right,
once is enough.

abc.txt

You are only young once,
and if you work it right,
once is enough.

abc.txt

Never bet on sure things
unless
you can afford to lose

abc.txt

Never bet on sure things
unless
you can afford to lose

670 Programming in C—A Practical Approach

 while(fgetc(fp2)!=EOF)
 count2++;
 printf(“The number of characters in text stream is %d\n”, count1);
 printf(“The number of characters in binary stream is %d”, count2);
 }

26. main()
 {
 FILE* fp;
 unsigned char ch;
 fp=fopen(“abc.txt”,”r”);
 while((ch=fgetc(fp))!=EOF)
 printf(“%c”,ch);
 fclose(fp);
 }

27. main()
 {
 FILE* fp1, fp2;
 char ch;
 fp1=fopen(“abc.txt”, “r”);
 fp2=fopen(“cde.txt”,”w”);
 while((ch=fgetc(fp1))!=EOF)
 fputc(ch, fp);
 }

28. main()
 {
 FILE* fp1, *fp2;
 char ch;
 fp1=fopen(“abc.txt”,”r”);
 fp2=fopen(“cde.txt”,“w”);
 while((ch=fgetc(fp1))!=EOF)
 fputc(ch, fp2);
 fclose(fp1, fp2);
 }

29. main()
 {
 FILE *fp1, *fp2;
 fp1=fopen(“abc.txt”,”r”);
 fp2=fopen(“cde.txt”,”r+b”);
 printf(“%x %x”, fp1->flags, fp2->flags);
 }

30. main()
 {
 if(stdin->flags & _F_TERM == _F_TERM)
 printf(“The stream stdin is associated with a terminal”);
 else
 printf(“The stream stdin is not associated with a terminal”);
 }

abc.txt

Doing easily what others find difficult is talent;
doing what is impossible for talent is genius

abc.txt

Doing easily what others find diffucult is talent;
doing what is impossible for talent is genious.

abc.txt, cde.txt

Doing easily what others find diffucult is talent;
doing what is impossible for talent is genious.

abc.txt

The world is divided into:
the people who do things and,
the people who get the credit.
Try, if you can, to belong to the first group.
There's less competition.

Files 671

Multiple-choice Questions

31. File input–output in C can be performed by using
 a. Only streams c. Both streams and file descriptors
 b. Only file descriptors d. None of these

32. By default, the stream stdout is
 a. Unbuffered c. Fully buffered
 b. Line buffered d. None of these

33. If a stream is fully buffered, the stream buffer is flushed when
 a. New line character is encountered c. Buffer gets full
 b. EOF is encountered d. None of these

34. The size of the buffer for a stream can be set by using the function
 a. setvbuf c. fsetpos
 b. setbuf d. None of these

35. If a file is to be opened for an update operation, the value of the argument mode in a call to the
function fopen should be

 a. “r” c. “a”
 b. “u” d. “r+”

36. Which of the following functions does not manipulate the value of the file position indicator
 a. fputc c. ftell
 b. fseek d. fgetc

37. Which of the following functions can be used to close the standard stream?
 a. fclose c. feof
 b. fcloseall d. None of these

38. Streams are objects of the type
 a. FILE* c.  int
 b. FILE d. int*

39. Only for positioning purpose, a call to the function rewind on the stream pointed to by s is equiva-
lent to the function call

 a. fseek(s, 0L, SEEK_SET); c. fseek(s, 0L, SEEK_END);
 b. fseek(s, 0L, SEEK_CUR); d. None of these

40. The file descriptor value of the stream stdin is
 a. 0 c. 2
 b. 1 d. None of these

Outputs and Explanations to Code Snippets
21. Compilation error
 Explanation:
 The argument mode of the function fopen should be a string and not a character. Hence, it is errone-

ous to use ‘r’ instead of “r” as an argument in the call to the function fopen.

672 Programming in C—A Practical Approach

22. YYYYYY…infinite times
 Explanation:
 The function fgetc reads the first character, i.e. Y from the text stream pointed to by the argument

fp and increments the file position indicator. The printf function prints the character read by the
function fgetc. The function fseek repositions the file position indicator back to the beginning of the
file. Hence, during the next iteration of the loop, the function fgetc reads the character Y again. In
this way, iterations of the loop read the character Y and print it. The end of the file will never be
reached and hence, the loop turns out to be an infinite loop.

23. Number of opened streams are 5
 Explanation:
 The function flushall returns the number of open input and output streams. Since the five standard

streams are already open when a program is executed, the function flushall returns 5.

24. 5
 Explanation:
 When a program is executed, five standard streams are already open and are available for use.

The file descriptors of these standard streams range from 0 to 4. Thus, the file descriptor for the
stream pointed to by fp will be the next integer value, i.e. 5.

25. The number of characters in text stream is 55
 The number of characters in binary stream is 58
 Explanation:
 Text streams are interpreted. The carriage return and line feed character combinations present at

the end of the line are translated into new line characters. However, no such interpretation takes
place for binary streams. Thus, the number of characters shown by the binary stream is more
than the number of characters shown by the text stream. The file abc.txt in the text mode and the
binary mode appears as:

abc.txt

Never bet on sure things\r\n
unless\r\n
you can afford to lose\r\n
^Z

MS-DOS file abc.txt
abc.txt abc.txt

Never bet on sure things\n
unless\n
you can afford to lose\n
^Z

Never bet on sure things\r\n
unless\r\n
you can afford to lose\r\n
^Z

Text mode Binary mode

26. Doing easily what others find difficult is talent;
 doing what is impossible for talent is genius.
 Explanation:
 The mentioned piece of code on execution prints the content of the file abc.txt on the screen but it

will enter an infinite loop and the program will not terminate. The function fgetc returns -1 upon

Files 673

encountering the end of the file. The returned value is stored in the unsigned char ch. Hence, on com-
parison it will always be unequal to EOF and thus the while loop becomes infinite.

27. Compilation error
 Explanation:
 In the declaration statement, the variable fp is declared to be of type FILE and not FILE*. Hence, it can-

not be used to hold the value returned by the function fopen, since the function fopen returns a value
of type FILE*. Moreover, the conversion from the type FILE* to the type FILE is not a standard conver-
sion and cannot be carried out by the compiler implicitly. Hence, there will be a compilation error.

28. Compilation error
 Explanation:
 The function fclose can have only one argument of type FILE*. Hence, the function call fclose(fp1, fp2)

is erroneous and leads to ‘Extra parameter in call to fclose in function main’ error.

29. 5 47
 Explanation:
 The following file status macros are defined in the header file stdio.h:

S.No File status flags Description

1. #define _F_RDWR 0x0003 File is opened for reading/writing

2. #define _F_READ 0x0001 File is opened for reading only

3. #define _F_WRIT 0x0002 File is opened for writing only

4. #define _F_BUF 0x0004 Stream is fully buffered

5. #define _F_LBUF 0x0008 Stream is line buffered

6. #define _F_ERR 0x0010 Error indicator flag for the stream

7. #define _F_EOF 0x0020 End-of-file indicator for the stream

8. #define _F_BIN 0x0040 Stream is opened in binary mode

9. #define _F_IN 0x0080 Data are incoming

10. #define _F_OUT 0x0100 Data are outgoing

11. #define _F_TERM 0x0200 File is a terminal

 Since the file abc.txt is opened in read mode and as by default the stream is fully buffered, the flags
_F_READ and _F_BUF for the stream are set. Thus, the value of fp1->flags will be equal to 0x0001 + 0x0004,
i.e. 0x0005. Similarly, since the file cde.txt is opened in the binary update mode (i.e. read and write),
the value of fp2->flags will be 0x0003 + 0x0004 + 0x0040, i.e. 0x0047.

30. The stream stdin is associated with a terminal
 Explanation:
 Although the expression stdin->flags & _F_TERM is not parenthesized, it still prints “The stream stdin is associated

with a terminal” because the LSB of stdin->flags is 1 (since the stream stdin is opened for reading only).

Answers to Multiple-choice Questions
31. c 32. a 33. c 34. a 35. d 36. c 37. a 38. b 39. a 40. a

674 Programming in C—A Practical Approach

Programming Exercises

Program 1 | Count the number of characters present in a file

Line PE 10-1.c abc.txt
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE* fp;
 char name[50];
 int count=0;
 printf(“Enter the name of the file:\t”);
 gets(name);
 fp=fopen(name, “r”);
 if(fp==NULL)
 {
 printf(“File cannot be opened\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 while(fgetc(fp)!=EOF)
 count++;
 printf(“The number of characters present in the file are %d”, count);
}

Hello Readers

cde.txt
File
Management

Output window (first execution)

Enter the name of the fi le: abc.txt
The number of characters present in the fi le are 14

Output window (second execution)

Enter the name of the fi le: cde.txt
The number of characters present in the fi le are 16
Remarks:
•  At the end of the line, carriage return and line

feed character combinations are present
•  As the fi le is opened in text mode, these

characters are interpreted as new-line character
•  Hence, at the end of the lines new-line characters

are present

Program 2 | Count the number of words present in a file

Word is defi ned as any sequence of characters that does not contain a blank, tab or new line character.

Line PE10-2.c abc.txt
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE* fp;
 char name[50], ch;
 int count=0;
 printf(“Enter the name of the file:\t”);
 gets(name);
 fp=fopen(name, “r”);
 if(fp==NULL)
 {
 printf(“File cannot be opened\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 while((ch=fgetc(fp))!=EOF)
 if(ch==’ ‘ || ch=’\t’ || ch==’\n’)
 count++;
 printf(“The number of words present in the file are %d”, count);
}

Laziness may appear attractive, but work gives satisfaction.

cde.txt
The harder you work,
the luckier you get.

Output window (first execution)

Enter the name of the file: abc.txt
The number of words present in the file are 8

Output window (second execution)

Enter the name of the file: cde.txt
The number of characters present in the file are 8
Remarks:
•  Two words may be separated by a blank space,

tab, or a new line character
•  The last line in the file has an extra new line

character
•  Thus, the total number of words in a file is equal

to count and not count+1

Files 675

Program 3 | Compare content of two files to determine whether they are the same or not

Line PE10-3.c abc.txt
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE* fp1, *fp2;
 char file1[50], file2[50], ch1, ch2;
 int flag_unequal=0;
 printf(“Enter the name of the file 1:\t”);
 gets(file1);
 printf(“Enter the name of the file 2:\t”);
 gets(file2);
 fp1=fopen(file1, “r”);
 fp2=fopen(file2,”r”);
 if(fp1==NULL|| fp2==NULL)
 {
 printf(“Files cannot be opened. Some problem occurred\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 while((ch1=fgetc(fp1))!=EOF && (ch2=fgetc(fp2))!=EOF)
 if(ch1!=ch2)
 {
 flag_unequal=1;
 break;
 }
 if(flag_unequal==1)
 printf(“File content differs”);
 else
 printf(“File content is same”);
}

Belief is the death of intelligence

cde.txt
Belief is the death of intelligence

Output window

Enter the name of the file 1: abc.txt
Enter the name of the file 2: cde.txt
File content is same

Program 4 | Check whether a given word exist in a file or not. If it exists, find the number of times it
occurs

Line PE 10-4.c abc.txt
1
2
3
4
5
6
7
8
9

10
11
12

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE* fp;
 char file[50], word[50], temp[50], ch;
 int count=0, i=0;
 printf(“Enter the name of the file:\t”);
 gets(file);
 fp=fopen(file, “r”);
 if(fp==NULL)

All men who have achieved great things have been great dreamers.

Output window

Enter the name of the file: abc.txt
Enter the word, you want to look for: have
The number of words present in the file are 2

(Contd...)

676 Programming in C—A Practical Approach

Line PE 10-4.c Output window

13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

 {
 printf(“File cannot be opened\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 printf(“Enter the word, you want to look for:\t”);
 gets(word);
 while((ch=fgetc(fp))!=EOF)
 {
 if(ch==’ ‘ || ch==’\n’)
 {
 temp[i]=’\0’;
 if(strcmp(word,temp)==0)
 count++;
 i=0;
 }
 else
 {
 temp[i++]=ch;
 }
 printf(“The number of words present in the file are %d”, count);
}

Program 5 | Search for a given word in the file and if it exists, replace it by its reversal

Line PE10-5.c abc.txt (before the execution of program)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22

#include<stdio.h>
#include<string.h>
#include<conio.h>
#include<stdlib.h>
main()
{
 FILE* fp;
 char file[50], word[50], temp[50], ch;
 int count=0,i=0, length;
 printf(“Enter the name of the file:\t”);
 gets(file);
 fp=fopen(file, “r+”);
 if(fp==NULL)
 {
 printf(“File cannot be opened\n”);
 printf(“Unable to continue\n”);
 getch();
 exit(1);
 }
 printf(“Enter the word, you want to look for:\t”);
 gets(word);
 while((ch=fgetc(fp))!=EOF)

He who does not understand your silence will probably not understand
your words.

Output window

Enter the name of the file: abc.txt
Enter the word, you want to look for: understand
The number of replacements done in the file are 2

abc.txt (after the execution of program)

He who does not dnatsrednu your silence will probably not dnatsrednu
your words.
Remarks:
•  The call to function fseek in line number 34 is very

important
•  Remember that when file is opened for updation,

the input should not be immediately followed by
the output without an intervening call to a file-
positioning function

(Contd...)

Files 677

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

 {
 if(ch==’ ‘ || ch==’\n’ || ch==’\t’)
 {
 temp[i]=’\0’;
 if(strcmp(word,temp)==0)
 {
 count++;
 length=strlen(temp);
 fseek(fp,-1*length-1, SEEK_CUR);
 strrev(temp);
 fprintf(fp,”%s”,temp);
 fseek(fp,1L,SEEK_CUR);
 }
 i=0;
 }
 else
 {
 temp[i++]=ch;
 }
 }
 printf(“The number of replacements done in the file is %d”,count);
}

678 Programming in C—A Practical Approach

Test Yourself

1. Fill in the blanks in each of the following:
a. The connection to an open file is represented either as a ____________ or as a ____________.
b. Five standard streams are _____, _____, _____, _____ and _____.
c. The streams stdout and stderr are associated with the ____________ for writing the output and

the errors.
d. An object of the type ____________ contains all the information required to control the stream.
e. ____________ stream is an ordered sequence of the characters composed into lines, termi-

nated by a new-line character.
f. If a stream is fully buffered, the characters are transmitted to the file when ____________.
g. The mode string used to open an existing file in the text mode for update is ____________.
h. When the end of the file is encountered, the function fgetc returns ____________.
i. The current location of the file position indicator for the stream can be determined by using

the functions ____________ and ____________.
j. The function call rewind(stream) is equivalent to the function call (void) fseek(stream, 0L, _____).
k. By default, the size of a buffer for a fully buffered stream is ____________.
l. If the argument buf in a call to the function setbuf is a null pointer, I/O will be ____________.

2. State whether each of the following is true or false. If false, explain why.
a. Standard streams are always present and need not be opened or closed.
b. In binary streams, any carriage return character that appears before a line feed character is

dropped.
c. The standard streams stdaux and stdprn are not always defined.
d. By default, the stream stdout by default is line buffered.
e. The default buffer size for a stream is 512 and can be varied by using the function setvbuf.
f. The function ftell is used to position the file position indicator within the file and to report the

new location of the file position indicator.
g. A file must be opened before it is used.
h. It is possible to associate more than one stream with a file but not a stream with two files at

a time.
i. All open streams must be explicitly closed before the successful termination of the pro-

gram.
j. The mode string “rb+” is the same as the mode string “r+b”.

3. Programming exercise:
a. Write a C program to count the number of lines present in a file.
b. Write a C program to count the number of occurrences of a given word in a file.
c. Write a C program to copy content of a file to another file, replacing each string of one or

more blanks by a single blank.
d. Write a C program to reverse the content of a file. Use command line arguments to get the

name of the file. Using a temporary file is allowed.
e. Write a C program to reverse the content of a file without using any temporary file. Use com-

mand line arguments to get the name of the file.

Appendix AAppendix A

NUMBER SYSTEMS

A.1 Number systems
A number system, also known as the numeral system, is a system for naming or representing
numbers. Each number system is characterized by a value known as base or radix. A number
system with base, or radix, r is a system that uses distinct symbols for r digits. The first digit
in every number system starts from 0. For example, a number system with base 2 contains two
digits: 0 and 1; base 8 contains eight digits: 0–7. If the base of a number system exceeds 10,
the additional digits use the letters of the alphabet, beginning with an A. Numbers are repre-
sented by a string of digit symbols. Table A.1 lists some of the available number systems along
with their base and the digits they use to represent numbers.

Table A.1 | Number systems

S.No Number system Base/Radix Symbols/Digits

1. Binary 2 0, 1

2. Ternary 3 0,1,2

3. Quaternary 4 0,1,2,3

4. Quinary 5 0,1,2,3,4

5. Senary 6 0,1,2,3,4,5

6. Septenary 7 0, 1, 2, 3, 4, 5, 6

7. Octonary or Octal 8 0, 1, 2, 3, 4, 5, 6, 7

8. Nonary 9 0, 1, 2, 3, 4, 5, 6, 7, 8

(Contd...)

680 Programming in C—A Practical Approach

S.No Number system Base/Radix Symbols/Digits

9. Decimal 10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

10. Undenary 11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A

11. Dudoenary 12 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B

12. Hexadecimal 16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Out of these number systems, four number systems, namely binary, octal, decimal and hexa-
decimal number systems are the most commonly used. The decimal number system is fa-
miliar to us. We use it to process any numerical quantity in day-to-day activities. However,
the computers do not use the decimal number system. They can only understand the binary
number system and work with binary digits, i.e. 0 and 1. The octal and hexadecimal number
systems are derived from the binary number system and are used to represent the binary
numbers in a compressed form.

The important points about the number systems are as follows:

1. A number in a number system is a string of digits allowed in the number system. For
example, 10101 is a valid binary number but 1012 is not, because the digit 2 does not exist in
the binary number system.

2. It is not possible to determine the value of a number just by looking at it. For example,
it is not possible to determine the value represented by the number 101. It can be a valid
binary number and represents 5 in the decimal number system. It can also be a valid
octal number and represents 65 in the decimal number system. Thus, just by looking at
the number 101, we cannot determine whether it represents 5 or 65 in the decimal number
system. To determine the exact value represented by a number, we must have informa-
tion about its number system. This information can be provided by specifying the base
of the number system as a subscript to the number enclosed within parentheses. For
example, 101 in the binary number system is represented as (101)2 and in the octal number
system as (101)8.

3. Each digit in a number has a place value. The right-most digit of a number has a place
value of 0. The place value of the other digits is one more than the place value of the
digit towards its right. For example, in a decimal number 483, the place value of the digit
3 is 0, the digit 8 is 1 and the digit 4 is 2.

4. Each number system is weighted, which means that some weight is associated with
each digit of a number. For a number in a number system with base r, the weight associ-
ated with the digit of the number having a place value of p is equal to rp. For example, in
a decimal number 483, the weight associated with the digit 3 is 100, the digit 8 is 101 and
the digit 4 is 102.

5. Since the weight associated with the right-most digit is the least, it is known as the least
significant digit (LSD) and as the weight associated with the left-most digit is the most,
it is known as the most significant digit (MSD). For example, in a decimal number 483,
digit 3 is the least significant digit and digit 4 is the most significant digit.

6. For a number in a number system, it is always possible to find an equivalent number in
other number systems. An equivalent number in other number systems can be found by
applying number system conversions.

Appendix A 681

A.2 Number System Conversions
Number system conversions are applied to find equivalent numbers in other number systems.
Number system conversions are classified as:

1. Conversion from the decimal number system to any other number system.
2. Conversion from any number system to the decimal number system.
3. Conversion from the binary number system to the octal and hexadecimal number system.
4. Conversion from the octal and hexadecimal number system to the binary number system.

A.2.1 Conversion from Decimal Number System to Any Other Number System
A decimal number can be converted to another number system with base or radix r, by using
the procedure given below:

1. Divide the given decimal number by the radix r of the desired number system to get a
quotient and a remainder.

2. Successively keep on dividing the obtained quotients with the radix r till 0 is obtained
as the quotient.

3. Preserve the remainders obtained during each division and write them in reverse order
(i.e. the remainder obtained first becomes the LSD and the remainder obtained last
becomes MSD) to form the equivalent binary number.

For example, the conversion of a decimal number 23 to the binary, the octal and the hexadeci-
mal number systems is shown in Table A.2.

Table A.2 | Conversion from the decimal to the binary, octal and hexadecimal number systems

Binary Octal Hexadecimal

2 23
2 11 r = 1 LSB
2 5 r = 1
2 2 r = 1
2 1 r = 0

0 r = 1 MSB
(23)10 = (10111)2

8 23
8 2 r = 7 LSB

0 r = 2 MSB

(23)10 = (27)8

16 23
16 1 r = 7 LSB

0 r = 1 MSB

(23)10 = (17)16

A.2.2 Conversion from Any Other Number System to Decimal Number System
A number given in any number system can be converted to the decimal number system by
multiplying each digit of the number with its associated weight and then by summing up the
results of all the multiplications.

For example, conversion from the binary, octal and hexadecimal number systems to the
decimal number system is shown in Table A.3.

682 Programming in C—A Practical Approach

Table A.3 | Conversion from the binary, octal and hexadecimal number systems to the decimal number
system

Binary to decimal Octal to decimal Hexadecimal to decimal

(1011)2 (?)10
1×23+0×22+1×21+1×20

=8+0+2+1 = 11
(1011)2 (11)10

(726)8 (?)10
7×82+2×81+6×80

=448+16+6 = 470
(726)8 (470)10

(AB)16 (?)10
10×161+11×160

=160+11 = 171
(AB)16 (171)10

A.2.3 Conversion from Binary Number System to Octal and Hexadecimal
Number System

Octal and hexadecimal number systems are used to represent the binary numbers in a com-
pressed form. Thus, the conversions from and to the binary, octal and hexadecimal number
systems are very important.

A binary number can be converted to an octal number by using the following procedure:
1. The binary number is partitioned into groups of 3 bits each. The group size is kept as

three because 3 bits can represent all the 8 combinations (0–7) present in the octal num-
ber system (since 23=8).

2. Start creating groups from the right side of the number. If the left-most group remains
incomplete, complete it by appending 0’s on the left.

3. For each group of bits assign the corresponding octal equivalent.
4. The string of octal digits so obtained gives the octal equivalent of the binary number.

Conversion from the binary to the octal number system is shown in Table A.4.

Table A.4 | Conversion from the binary to the octal number system

Binary to octal Binary to octal

(101001)2 (?)8

1 0 1 0 0 1

5 1

(101001)2 (51)8

(1011101)2 (?)8

1 0 1 1 1 0 1

The left-most group is incomplete. Complete the group by ap-
pending 0’s on the left and assign an octal equivalent to each
group.

0 0 1 0 1 1 1 0 1

1 3 5

(1011101)2 (135)8

Conversion from the binary to the hexadecimal number system is similar except that the bits
are divided into groups of four. The group size is kept as four because 4 bits can represent all
the 16 combinations (0–F) present in the hexadecimal number system. The equivalent hexa-
decimal digit for each group of four digits is written. The string of the hexadecimal digits so
obtained gives the hexadecimal equivalent of the binary number.

Conversion from the binary to the hexadecimal number system is shown in Table A.5.

Appendix A 683

Table A.5 | Conversion from the binary to the hexadecimal number system

Binary to hexadecimal Binary to hexadecimal

(11101001)2 (?)16

1 1 1 0 1 0 0 1

E 9

(11101001)2 (E9)16

(1011101)2 (?)16

 1 0 1 1 1 0 1

The leftmost group is incomplete. Complete the group by ap-
pending 0’s on the left and assign a hexadecimal equivalent to
each group.

0 1 0 1 1 1 0 1

55 D

(11101001)2 (5D)16

A.2.4 Conversion from Octal and Hexadecimal Number System to Binary
Number System

The conversions from the octal and hexadecimal number system to the binary number system
are the reverse of the binary to the octal and hexadecimal number system conversions. To con-
vert a given octal number to the binary number system, for each octal digit write the equiva-
lent three-digit binary code. Similarly, to convert a given hexadecimal number to the binary
number system, for each hexadecimal digit write the equivalent four-digit binary code.

Conversions from the octal and hexadecimal number systems to the binary number system
are given in Table A.6.

Table A.6 | Conversion from the octal and hexadecimal number systems to the binary number system

Octal to binary Hexadecimal to binary

(45)8 (?)2

4 5

1 0 0 1 0 1

(45)8 (100 101)8

(CD)16 (?)10

C D

1 1 0 0 1 1 0 1

 (CD)16 (1100 1101)16

B.1 Algorithm
The study of algorithms, sometimes called algorithmics, is one the fundamental areas of Com-
puter Science. Algorithmics is concerned with discovering efficient algorithms and represent-
ing them so that they can be understood by the computers. In this brief introduction to algo-
rithms, I will tell you about what defines an algorithm and how to represent algorithms.

Algorithm is a fundamental notion in Computer Science. Therefore, it deserves a pre-
cise description. An algorithm can be described as ‘A finite set of instructions, which if
followed, accomplishes a particular task’. In addition, every algorithm must satisfy the
following criteria:
1. Input: An algorithm may have zero or more quantities that are externally sup-

plied as the input. An algorithm with zero input is rigid and performs the
same type of task. Inputs are provided to increase the flexibility of the
algorithm and help in developing generic algorithms.

2. Output: An algorithm must produce at least one output.
3. Definiteness: Each instruction must be clear and unambiguous. For example, an in-

struction like ‘add 2 or 3 to x’ is not allowed.
4. Finiteness: An algorithm must have a finite number of instructions, i.e. it always ter-

minates. This is one of the most important differences between an algo-
rithm and a program. An algorithm always terminates while a program
may or may not terminate.

5. Effectiveness: Every instruction of an algorithm must be feasible. It should be possible
to carry out the instructions of the algorithm.

Thus, an algorithm can be formally described as ‘a well-ordered finite collection of unambigu-
ous and effectively computable operations that when executed produces a result’.

Appendix B

ALGORITHMS AND
FLOWCHARTS

Appendix B 685

There are a number of choices for writing algorithms. One option is to write an algorithm
in a natural language like plain English. Although, plain English seems to be a good choice for
writing algorithms, the following are some inherent problems associated with the specifica-
tion of an algorithm in plain English:

1. Algorithms written in plain English are verbose. An algorithm written in plain English
includes many words that contribute to correct grammar or style but do nothing to
communicate the algorithm.

2. Instructions written in plain English are generally ambiguous. Often an English sen-
tence can be interpreted in many different ways.

The above-mentioned problems make plain English a poor choice for specifying algorithms. An-
other option for writing algorithms is using programming languages. Programming languages
avoid the problems of being wordy and ambiguous however, there are some other disadvan-
tages that make them undesirable for writing algorithms. The specification of an algorithm in a
programming language requires learning special syntax and symbols that are not a part of plain
English language. Also, an algorithm written in a programming language is difficult to read
and understand especially if one is not conversant with the programming language in which it
is written. The dependence of algorithm specification on programming languages can be elimi-
nated by using a pseudocode. A pseudocode is used to express algorithms in a manner that is
independent of a particular programming language. The prefix pseudo is used to emphasize
that this code is not meant to be compiled or executed on a computer. Using the pseudocode,
one can convey the basic ideas about an algorithm without worrying about how the algorithm
will be implemented. The pseudocode basically consists of C and Pascal constructs and English-
like phrases. The conventions commonly used in a pseudocode are as follows:

1. Two forward slashes // are used to indicate that the remaining line should be treated as
a comment.

2. An identifier begins with a letter. The data types of variables are not explicitly declared.
The types will be clear from the context.

3. There are two Boolean values, true and false. In order to produce these values, the logi-
cal operators and, or and not, and the relational operators <, <=, >, >=, != are provided.

4. Elements of multi-dimensional arrays are accessed using square brackets. For example,
if M is a two-dimensional array, the (i,j)th element of the array is denoted as M[i,j]. Array
indices start at 0.

5. Assignment statements have the form x:=e, which assigns the value of expression e to
the variable x. Multiple assignments can be performed in one statement; for example,
x:=y:=e assigns the value of expression e to variables x and y.

6. Loop constructs can be specified by using one of the three forms:
 for variable:= value1 to value2 do in steps of increment
 loop statements

 while conditional expression do
 loop statements

 do
 statements

while conditional expression

686 Programming in C—A Practical Approach

7. A conditional statement has the following forms:
 if condition then statement
 if condition then statement1 else statement2
8. Input and output are done using the instructions read and write. No format specifiers

are used to specify the size of input or output quantities.
9. There is only one type of procedure: Algorithm. A pseudocode procedure is specified

by giving its name, followed by a parameter list and then the sequence of steps in the
procedure. The inclusion of the parameter list in procedures increases the flexibility of
procedures and allows more generic procedures to be developed.

Another way to express algorithms is using structured English, which combines the familiar-
ity of plain English with the structure and order of programming languages and pseudocode.
In this approach, English is used to write operations. Each operation in the algorithm is writ-
ten on a separate line so that they are easily distinguished from others. The operations are
grouped by indenting and numbering lines.

In Table B.1, an algorithm to add n numbers is described by using the above-discussed
notations.
Table B.1 | Different notations used to specify an algorithm to add n numbers

Plain English Programming language ‘C’

First, read the numbers to be added. Initial-
ize a resultant value to 0. Now, add all the
numbers to this resultant value one by one.
If all the numbers have been added, output
the resultant value.

int add(int a[], int n)
{
 int i, s=0;
 for(i=0;i<n;i++)
 s=s+a[i];
 return s;
}

Pseudocode Structure English

Algorithm add(a, n)
{
 s:=0.0;
 for i:=1 to n do
 s:=s+a[i];
 return s;
}

Step 1: Start
Step 2: Initialize sum(s) and number of numbers read(i)

to 0
Step 3: Read the number of numbers to be added. Let it

be n
Step 4: Read a number to be added and let it be a.
Step 5: s=s+a and i=i+1
Step 6: If i<n, go to Step 4 else go to step 7.
Step 7: Output the value of sum(s)
Step 8: Stop

B.2 Flowcharts
A flowchart is a graphical representation of an algorithm. It is a diagrammatic representa-
tion that illustrates the sequence of operations to be performed to get a solution to a problem.
Flowcharts are generally drawn in the early stages of formulating a computer solution to the
problem.

The American National Standard Institute (ANSI) defines a flowchart as ‘A graphical rep-
resentation for defining and analyzing solution to a problem in which standard symbols are

Appendix B 687

used to represent operation, data flow or equipment’. Flowcharts are drawn according to the
defined rules and using standard symbols prescribed by ANSI. The symbols prescribed by
ANSI are given in Table B.2.

Table B.2 | Flowchart symbols

S.No Symbol Name Description

1. Terminator A start or stop point in a process

2. Process A computation step or an operation

3. Decision Decision making or branching

4. Delay A waiting period

5. Data I/O Input or output operation

6. Predefined process A formally defined sub-process

7. Alternate process An alternate to the normal process step

8. Document A document or a report

9. Multi-document Multiple documents

10. Preparation A preparation or set-up process step

11. Display A machine display

12. Manual input Manual input to a system

(Contd...)

688 Programming in C—A Practical Approach

S.No Symbol Name Description

13. Manual operation A process step that is not automated

14. Card Punch card I/O

15. Punched tape Punch tape I/O

16. On-page connector Connector for joining two parts of a program.
Should exist in a pair on a page

17. Off-page connector Continuation onto another page

18. Logical OR Logical OR operation

19. Summing junction Logical AND operation

20. Collate Organizing data into a standard format or
arrangement

21. Sort Sort data in some predefined order

22. Stored data General data storage

23. Magnetic disk Data storage on magnetic disk

24. Direct access storage Storage on a hard drive

(Contd...)

Appendix B 689

25. Internal storage Data stored in main memory (RAM)

26. Magnetic tape Data storage on magnetic tape

27. Flow lines Indicates the direction of flow of information
28. Annotation Used for comment writing

Creating flowcharts is more of an art than a science. There is no unique correct flowchart for
solving a given problem. Each programmer can come up with his or her own flowchart, pro-
vided the formal rules for drawing flowcharts are observed. Though there are no hard and fast
rules, the guidelines for drawing flowcharts are as follows:

1. Every flowchart should begin with a terminator labeled ‘Start’ and end with a termina-
tor labeled ‘Stop’. These merely indicate the physical starting and terminating points of
the flowchart.

2. Symbols in the flowchart are connected by lines with arrowheads to define the direction
of flow from step to step. The default direction of flow is from top to bottom of the page
and from left to right. Arrowheads should be used to show the direction of the flow,
especially if it is other than top to bottom or left to right.

3. Lines should never cross. In certain circumstances, a programmer may find it dif-
ficult to avoid crossing a line or to prevent drawing a long and jagged line between
the symbols. In such circumstances, the connector symbols can be used to keep the
flowchart simple. The connector symbol indicates a transfer of flow and thus, always
appears in pairs. An arrowhead leading into the connector indicates that the control
is to be transferred to the point at which that connector’s counterpart appears. An
arrowhead leading from a connector indicates the point at which the control re-enters
the flowchart.

4. Only one flow line should come out from a process symbol.
5. Only one flow line should enter a decision symbol, but two or three should come out of

it. Labels should be placed on flow lines coming out of the decision symbol to indicate
the decision.

6. Write within symbols briefly. Additional necessary information to describe data or com-
putational steps can be provided by using the annotation symbol.

7. The symbols may be drawn of any size, only the shape is standard.

690 Programming in C—A Practical Approach

Figure B.1 illustrates a flowchart to add n numbers.

Start

Read n

sum=0, i=0

sum=sum+no
i=i+1

Read no

Is i<n?

Print sum

Stop

Yes

No

Read the number to
be added

Figure B.1 | Flowchart to add n numbers

According to ANSI/ISO standard, each compiler conforming to the standard should be able to
translate and execute a program that contains constructs subject to the following limits:

• 127 nesting levels of blocks

• 63 nesting levels of conditional inclusion

• 12 pointer, array and function declarators (in any combinations) modifying an arithme-
tic, structure, union or incomplete type in a declaration

• 63 nesting levels of parenthesized expressions within a full expression

• 63 significant characters in an internal identifier (i.e. with internal linkage) or a macro
name

• 31 significant characters in an external identifier (i.e. external linkage)

• 4095 external identifiers in one translation unit (i.e. file)

• 511 identifiers with block scope declared in one block

• 4095 macro identifiers simultaneously defined in one preprocessing translation unit

• 127 parameters in one function definition

• 127 arguments in one function call

• 127 parameters in one macro definition

• 127 arguments in one macro invocation

Appendix C

TRANSLATION LIMITS

692 Programming in C—A Practical Approach

• 4095 characters in a logical source line

• 4095 characters in a character string literal

• 15 nested levels for #included files

• 1023 case labels for a switch statement (excluding those for any nested switch statements)

• 1023 members in a single structure or union

• 1023 enumeration constants in a single enumeration

• 63 levels of nested structure or union definition in a single structure definition-list

Table D.1 presents an elaborate interrupt list along with the values to be placed in the input reg-
isters before calling the interrupts and the values returned by them. The exhaustive interrupt list
may run up to thousands of pages and listing it is beyond the scope of this book.

Table D.1 | Interrupt list

S.No int No. Purpose Service Inputs Returns Notes

1. 0x05 Print
screen

- - Nothing Sends screen contents to printer.
Works in text mode

2. 0x10 Video
i. Set video

mode
0 AH=0x00

AL=Desired Video
mode

Nothing The value of AL and corre-
sponding video modes are:
0x0: 40×25 text, 16 grey
0x1: 40×25 text, 16/8 color
0x2: 80×25 text, 16 grey
0x3: 80×25 text, 16/8 color
0x4: 320×200 graphics, 4 color
0x5: 320×200 graphics, 4 grey
0x6: 640×200 graphics, mono
0x7: 80×25 text, mono
0x8: 160×200 graphics, 16 color
0x9: 320×200 graphics, 16 color
0xA: 640×200 graphics, 4 color
0xD: 320×200, 16 color EGA,
VGA
0xE: 640×200, 16 color EGA,
VGA
0xF: 640×350, mono EGA, VGA

Appendix D

ROM–BIOS AND DOS SERVICES

(Contd...)

694 Programming in C—A Practical Approach

S.No int No. Purpose Service Inputs Returns Notes

0x10: 640×350, 4 or 16 color
EGA, VGA
0x11: 640×480 graphics, 2 color
0x12: 640×480 graphics, 16 col-
or, VGA
0x13: 320×200 graphics, 256
color, VGA

ii. Set
cursor
size-text
mode

1 AH=0x01
CH=cursor start scan
line and options
CL=bottom scan line
containing cursor

Nothing Bits of the CH register and cor-
responding options:
Bit(s) Description
7 should be zero
6,5 cursor blink
(00=normal, 01=invisible,
10=erratic, 11=slow)
(00=normal, other=invisible on
EGA/VGA)
4-0 topmost scan line con-

taining cursor
iii. Set

cursor
position

2 AH=0x02
BH=page number
DH=row
(00 is top)
DL=column
(00 is left)

Nothing

iv. Get
cursor
position

3 AH=0x03
BH=page number

CH=start scan
line
CL=end scan
line
DH=row
DL=column

v. Select
active
display
page

5 AH=0x05
AL=new page number

Nothing Specify which of the multiple
display pages will be visible

vi. Scroll
window
up

6 AH=0x06
AL=number of lines
by which to scroll up
BH=attribute used
to write blank lines
at the bottom of the
window
CH, CL= row, column
of window’s upper
left corner
DH, DL=row, column
of window’s lower
right corner

Nothing Affects only the current active
page

vii. Scroll
window
down

7 AH=0x07
AL=number of lines
by which to scroll
down

Nothing Affects only the current active
page

(Contd...)

Appendix D 695

BH=attribute used to
write blank lines at
the top of the window
CH, CL= row, column
of window’s upper
left corner
DH, DL=row, column
of window’s lower
right corner

viii. Set color
palette

B AH=0x0B
BH=palette color ID
BL=color to be used
with the palette

Nothing Works for CGA/EGA/VGA only

ix. Display
pixel

C AH=0x0C
AL=pixel value
CX= pixel column
DX=pixel row
BH=page number

Nothing

x. Read
pixel

D AH=0x0D
CX=pixel column
DX=pixel row
BH=page number

AL=pixel value

xi. Get
current
video
mode

F AH=0x0F AH=number
of character
columns on
screen
AL=display
mode
BH=active
page number

3. 0x11 Get
equip-
ment list

- Nothing AX=equipment
list

Bits of AX represents:
Bit(s) Description
0 disk drive present/

absent
 (0: absent, 1: present)
1 math coprocessor pres-

ent/absent
 (0: absent, 1: present)
2-3 RAM in 16Kb blocks
4-5 initial video mode
 00= unused
 01=40×25 color
 10=80×25 color
 11=80×25 mono
6-7 Number of disk drives
8 DMA present/absent
 (0: absent, 1: present)
9-11 Number of serial ports
12 Game port
 (0: absent, 1: present)
13 serial printer
14-15 number of printers

(Contd...)

696 Programming in C—A Practical Approach

S.No int No. Purpose Service Inputs Returns Notes

4. 0x12 Get
memory
size

- Nothing AX=memory
size in Kb

5. 0x13 Disk
services

i. Reset
disk con-
troller

0 AH=0x00
DL=disk
0x00-7F floppy disk
(bit 7 is reset)
0x80-FF hard disk
(bit 7 is set)

Nothing

ii. Get disk
status

1 AH=0x01
DL=disk
0x00-7F floppy disk
0x80-FF hard disk

AL= status code Status code values in AL are
AL=0: no error
AL=1: bad command
AL=2: address mark not

found
AL=3: write attempt to write

protected disk-F
AL=4: sector not found
AL=5: reset failed-H
AL=6: floppy disk removed-F
AL=7: bad parameter table-H
AL=8: DMA overrun-F
AL=9: DMA across 64Kb

boundary
AL=A: bad sector flag-H
AL=B: bad track flag-H
AL=C: media type not

found-F
AL=D: invalid number of

sectors on format-H
AL=E: control data address

mark detected-H
AL=F: DMA arbitration level

out of range-H
AL=10: bad CRC
AL=11: ECC corrected data

error-H
AL=20: NEC controller failure
AL=40: seek failed
AL=80: time out (failed to re-

spond)
AL=AA: drive not ready-H
AL=BB: undefined error-H
AL=CC: write fault-H
AL=E0: status register error-H
AL=FF: sense operation

failed-H

-F: Floppy disk only
-H: Hard disk only

(Contd...)

Appendix D 697

(Contd...)

iii. Read
disk sec-
tors

2 AH=0x02
AL=number of sectors
CH=track number
CL=sector number
DH=head number
DL=disk
0x00-7F floppy disk
0x80-FF hard disk
ES:BX=pointer to buffer

If successful:
Carry
Flag=clear
AH=0x00
AL=number of
sectors read

If unsuccessful:
Carry Flag=set
AH= status
code

For status code, refer interrupt
no. 0x13, service number 1

iv. Write
disk
sectors

3 AH=0x03
AL=number of sectors
CH=track number
CL=sector number
DH=head number
DL=disk
0x00-7F floppy disk
0x80-FF hard disk
ES:BX=pointer to buffer

If successful:
Carry
Flag=clear
AH=0x00
AL=number of
sectors written

If unsuccessful:
Carry Flag=set
AH= status
code

For status code, refer interrupt
no. 0x13, service number 1

v. Verify
disk
sectors

4 AH=0x04
AL=number of sectors
CH=track number
CL=sector number
DH=head number
DL=disk
0x00-7F floppy disk
0x80-FF hard disk
ES:BX=pointer to
buffer

If successful:
Carry
Flag=clear
AH=0x00
AL=number of
sectors verified

If unsuccessful:
Carry Flag=set
AH= status
code

For status code, refer interrupt
no. 0x13, service number 1

vi. Format
disk
track

5 AH=0x05
AL=number of sectors
CH=track number
CL=sector number
DH=head number
DL=disk
0x00-7F floppy disk
0x80-FF hard disk
ES:BX=pointer to
4-byte address fields
containing of
-byte 0=track
-byte 1=head
-byte 2=sector
-byte 3=bytes/sector
  0- if 128 bytes per
sector

If successful:
Carry
Flag=clear
AH=0x00
AL=number of
sectors verified

If unsuccessful:
Carry Flag=set
AH= status
code

698 Programming in C—A Practical Approach

S.No int No. Purpose Service Inputs Returns Notes

  1- if 256 bytes per
sector

  2- if 512 bytes per
sector

 3- if 1024 bytes per
sector

vii. Get drive
param-
eters

8 AH=0x08
DL=disk
0x00-7F floppy disk
0x80-FF hard disk

If successful:
Carry
Flag=clear
BL=drive type
CH=low eight
bits of maxi-
mum cylinder
number
DH=maximum
head number
DL=number of
drives
ES:DI= drive
parameter
table (floppies
only)

If unsuccessful:
Carry Flag=set
AH=status
code

For status code, refer interrupt
no. 0x13, service number 1

BL specifies values for diskette
drive types:
0x01-  360K, 40 track, 5.25”
0x02-  1.2M, 80 track, 5.25”
0x03-  720K, 80 track, 3.5”
0x04-  1.44M, 80 track, 3.5”

viii. Initialize
two fixed
disk base
tables

9 AH=0x09
DL=disk
0x80-FF hard disk

If successful:
Carry
Flag=clear
AH=0x00

If unsuccessful:
Carry Flag=set
AH=status code

For status code, refer interrupt
no. 0x13, service number 1

ix. Read
long

A AH=0x0A
AL=number of sectors
DL=disk
0x80-FF hard disk
DH=head number
CH=cylinder number
CL=sector number
ES:BX=pointer to
buffer

If successful:
Carry
Flag=clear
AH=0x00
AL=number of
sectors read
If unsuccessful:
Carry Flag=set
AH=status code

For status code, refer interrupt
no. 0x13, service number 1

This service is supported for
hard disks only. The upper
2-bits of 10-bit cylinder num-
ber are placed in the upper 2
bits of CL register

x. Write
long

B AH=0x0B
AL=number of sectors
DL=disk
0x80-FF hard disk
DH=head number
CH=cylinder number

If successful:
Carry
Flag=clear
AH=0x00
AL=number of
sectors written

For status code, refer interrupt
no. 0x13, service number 1

This service is supported for
hard disks only. The upper
2-bits of 10-bit cylinder num-
ber are placed in the upper 2
bits of CL register

(Contd...)

Appendix D 699

CL=sector number
ES:BX=pointer to
buffer

If unsuccessful:
Carry Flag=set
AH=status code

xi. Seek to
cylinder

C AH=0x0C
CH=lower 8 bits of
cylinder
CL=upper 2 bits of
cylinder in bits 6-7
DH=head number
DL= disk
0x80-FF hard disk

If successful:
Carry
Flag=clear
AH=0x00
AL=number of
sectors written

If unsuccessful:
Carry Flag=set
AH=status
code

For status code, refer interrupt
no. 0x13, service number 1

This service is supported for
hard disks only

xii. Reset
fixed
disk
system

D AH=0x0D
DL= disk
0x80-FF hard disk

If successful:
Carry
Flag=clear
AH=0x00
AL=number of
sectors written

If unsuccessful:
Carry Flag=set
AH=status
code

For status code, refer interrupt
no. 0x13, service number 1

This service is supported for
hard disks only.

xiii. Test for
drive
ready

10 AH=0x10
DL= disk
0x80-FF hard disk

If successful:
Carry
Flag=clear
AH=0x00
AL=number of
sectors written

If unsuccessful:
Carry Flag=set
AH=status
code

For status code, refer interrupt
no. 0x13, service number 1

This service is supported for
hard disks only

xiv. Reca-
librate
drive

13 AH=0x11
DL= disk
0x80-FF hard disk

If successful:
Carry
Flag=clear
AH=0x00
AL=number of
sectors written

If unsuccessful:
Carry Flag=set
AH=status
code

For status code, refer interrupt
no. 0x13, service number 1

This service is supported for
hard disks only

xv. Control-
ler diag-
nostics

14 AH=0x14 If successful:
Carry
Flag=clear

For status code, refer interrupt
no. 0x13, service number 1

(Contd...)

700 Programming in C—A Practical Approach

S.No int No. Purpose Service Inputs Returns Notes

AH=0x00
AL=number of
sectors written

If unsuccessful:
Carry Flag=set
AH=status code

This service is supported for
hard disks only

xvi. Get disk
type

15 AH=0x15
DL=disk
0x00-7F floppy disk
0x80-FF hard disk

If successful:
Carry
Flag=clear
AH=disk-type
code
CX:DX=
number of 512
byte sectors
when AH=3

If unsuccessful:
Carry
Flag=set
AH=status code

For status code, refer interrupt
no. 0x13, service number 1

This service is not supported
for PC or PC/XT. Disk-type
codes are:
 AH=0: disk non-existent
 AH=1: disk, no change de-

tection present
 AH=2: disk change detection

present
 AH=3: fixed disk

xvii. Get disk
change
status

16 AH=0x16 DL=drive
that had disk
change
0x00-7F
floppy disk
AH=disk
change status

This service is not supported
on PC or PC/XT. Status code in
AH are:
 00= no disk change
 01= disk changed

xviii. Set disk
type

17 AH=0x17
AL= floppy disk-type
code
0x00 not used
0x01 320/360Kb
floppy disk in 360Kb
drive
0x02 320/360Kb
floppy disk in 1.2Mb
drive
0x03 1.2Mb floppy
disk in 1.2Mb drive
0x04 720Kb floppy
disk in 720Kb drive
DL= disk
0x00-7F floppy disk

If successful:
Carry
Flag=clear
AH=0x00
AL=number of
sectors written

If unsuccessful:
Carry Flag=set
AH=status
code

For status code, refer interrupt
no. 0x13, service number 1

This service is not supported
for floppy disks on PC or PC/
XT. Disk-type codes for AL are:
  AL=00: no disk
  AL=01: regular disk, regular

drives
  AL=03: high-capacity disk in

high capacitydrives

xix Set
media
type for
format

18 AH=0x18
CH=number of cyliners
CL=sectors per track
DL= disk
0x00-7F floppy disk

If successful:
Carry
Flag=clear
AH=0x00
ES:DI=segment:
offset of disk

For status code, refer interrupt
no. 0x13, service number 1

(Contd...)

Appendix D 701

parameter table
for media type

If unsuccessful:
Carry Flag=set
AH=status code

6. 0x16 Key-
board

i. Read
keyboard
character

0 - AH=scan code
AL=ASCII code

ii. Report
whether
character
ready

1 AH=0x01 zero flag=0
character
available to be
received
zero flag=1
no character
in keyboard
buffer
AH=scan code
AL=ASCII code

iii. Get shift
status

2 AH=0x02 AL key status The bits of AL register signi-
fies:
Bit Description
Bit 0=1 Right shift key de-

pressed
Bit 1=1 Left shift key de-

pressed
Bit 2=1 Control key depressed
Bit 3=1 Alt key depressed
Bit 4=1 Scroll Lock ON
Bit 5=1 Num Lock ON
Bit 6=1 Caps Lock ON
Bit 7=1 Insert ON

7. 0x017 Printer
i. Send one

byte to
printer

0 AH=0x00
AL=character
DX=printer number

0- LPT1
1- LPT2
2- LPT3

AH=success/
failure code

The bits of AH register signifies:
Bit Description
Bit 0=1 Time out
Bit 3=1 I/O error
Bit 4=1 Printer selected
Bit 5=1 Out of paper
Bit 6=1 Printer Acknowledge
Bit 7=1 Printer not busy

ii. Initialize
printer

1 AH=0x01
AL=character
DX=printer number

0- LPT1
1- LPT2
2- LPT3

AH=success/
failure code

The status code is same as for
service 0x01

(Contd...)

702 Programming in C—A Practical Approach

S.No int No. Purpose Service Inputs Returns Notes

iii. Get
printer
status

2 AH=0x02
AL=character
DX=printer number

0- LPT1
1- LPT2
2- LPT3

AH=success/
failure code

The status code is same as for
service 0x01

8. 0x19 Boot-
strap
Loader

- - Nothing Reboots the system

9. 0x1A Time
i. Read

contents
of the
clock tick
counter

0 AH=0x00 AL=midnight
signal, 0x00
if midnight
passed since
last read, non-
zero otherwise
CX=tick count,
high portion
DX=click
count, low
portion

ii. Set value
in clock
tick
counter

1 AH=0x01
CX=tick count, high
portion
DX=click count, low
portion

Nothing

iii. Get cur-
rent time
from
CMOS
time/date
chip

2 AH=0x02 CH=hours in
Binary Coded
Decimal (BCD)
CL=minutes in
BCD
DH=seconds in
BCD
DL=1 if day-
light saving
time, 0 if stan-
dard time

Applies to AT and later only

iv. Set time
in CMOS
time/date
chip

3 AH=0x03
CH=hours in Binary
Coded Decimal (BCD)
CL=minutes in BCD
DH=seconds in BCD
DL=1 if daylight sav-
ing time, 0 if standard
time

Nothing Applies to AT and later only

v. Read
date
from
CMOS
time/date
chip

4 AH=0x04 DL=day in
BCD
DH=month in
BCD
CL=year in
BCD

(Contd...)

Appendix D 703

CH=century in
BCD

vi. Set date
in CMOS
time/date
chip

5 AH=0x05
DL=day in BCD
DH=month in BCD
CL=year in BCD
CH=century in BCD

Nothing

vii. Set alarm
in CMOS
time/date
chip

6 AH=0x06
CH=hours in BCD
CL=minutes in BCD
DH=seconds in BCD

If successful:
Carry flag is
clear
If unsuccess-
ful:
Carry flag is
set

viii. Reset
alarm

7 AH=0x07 Nothing

10. 0x21 DOS
services

i. Termi-
nate
program

0 AH=0x00
CS=PSP segment
address

Nothing

ii. Read
character
from
standard
input,
with
echo

1 AH=0x01 AL=character
read

Waits for keyboard input from
STDIN and echoes to STDOUT

iii. Write
charac-
ter to
standard
output

2 AH=0x02
DL=character to write

AL=last char-
acter output

Outputs character to STDOUT

iv. Read
character
from
STDAUX

3 AH=0x03 AL=character
read

Wait for character and reads
from STDAUX

v. Write
charac-
ter to
STDAUX

4 AH=0x04
DL=character to write

Nothing Sends character in DL to
STDAUX. It waits until
STDAUX is available

vi. Write
character
to printer

5 AH=0x05
DL=character to print

Nothing Sends character in DL to STD-
PRN i.e. standard print stream.
It waits until STDPRN device is
ready before output

vii. Direct
console
I/O

6 AH=0x06
DL=(0-FE) character
to output.
=FF if console input
request

AL=input
character if
console input
request

Reads from or writes to the
console device depending
upon the value of DL

(Contd...)

704 Programming in C—A Practical Approach

S.No int No. Purpose Service Inputs Returns Notes

Zero flag=0
if console re-
quest character
available in AL
=1 if no charac-
ter is ready and
request was
console input

Cannot output character FF as
FF indicates read operation
For console read, no echo is
produced

viii. Direct
console
input
without
echo

7 AH=0x07 AL=character
from STDIN

Waits for keyboard input until
keystroke is ready
Character is not echoed to
STDOUT

ix. Console
input
without
echo

8 AH=0x08 AL=character
from STDIN

x. Print
string

9 AH=0x09
DS:DX=pointer to the
string ending in ‘$’

Nothing Outputs character string to
STDOUT up to ‘$’

xi. Buffered
keyboard
Input

A AH=0x0A
DS:DX=pointer to
input buffer of the
format

Nothing

xii. Check
standard
input
status

B AH=0x0B AL=00 if no
character avail-
able
=FF if charac-
ter is available

Checks STDIN for available
characters. The available char-
acter is not returned

xiii. Clear
keyboard
buffer
and
invoke
keyboard
function

C AH=0x0C
AL=0x01, 0x06, 0x07,
0x08, 0x0A

See return val-
ues of services
with AH value
0x01, 0x06,
0x07, 0x08,
0x0A

The main function is to clear
the input buffer and specific
0x21 interrupt routine

xiv. Disk
reset

D AH=0x0D Nothing All file buffers are flushed to
disk

xv. Select
disk

E AH=0x0E
DL=zero based, drive
number
(0-A:, 1-B:……etc.)

AL=one based,
total number
of logical
drives includ-
ing hardfiles

xvi. Get al-
location
table
informa-
tion

1B AH=0x1B AL=sectors per
cluster
CX=bytes per
sector

Retrieves information on capac-
ity and format of default drive
DS:BX can be used to deter-
mine if drive is RAMDISK or
removable

(Contd...)

Appendix D 705

DX= clusters
on disk
DS:BX= Seg-
ment offset of
media descrip-
tor
0xF8-Hard
disk
0xFC- 5.25 inch
single sided, 9
sector
0xFD- 5.25
inch double
sided, 9 sector
0xFE- 5.25 inch
single sided, 8
sector
0xFF- 5.25 inch
double sided, 8
sector

xvii. Get al-
location
table
informa-
tion for
specified
drive

1C AH=0x1C
CL=drive number
(0-default, 1-A:, 26-Z:)

AL=sectors per
cluster
CX=bytes per
sector
DX=clusters on
disk
DS:BX= Seg-
ment offset
of media
descriptor
(Refer service
AH=0x1B)

Retrieves information on ca-
pacity and format of default
drive
DS:BX can be used to deter-
mine if drive is RAMDISK or
removable

xviii. Get disk
free
space

36 AH=0x36
DL=drive number
(0-default, 1-A:, 26-Z:)

AX=sectors per
cluster=FFFF if
drive is invalid
BX=number
of available
clusters
CX=number
of bytes per
sector
DX=number
of clusters per
drive

Used to determine available
space on specified disk

xiv. Create
directory

39 AH=0x39
DS:DX= segment:
offset address of
directory name

If successful:
carry flag is
clear
If unsuccess-
ful:
carry flag is set
AX=error

(Contd...)

706 Programming in C—A Practical Approach

S.No int No. Purpose Service Inputs Returns Notes

xx. Remove
directory

3A AH=0x3A
DS:DX= segment:
offset address of
directory name

If successful:
carry flag is
clear
If unsuccess-
ful:
carry flag is set
AX=error

Allows deletion of directory if
it is empty

xxi. Change
directory

3B AH=0x3B
DS:DX= segment:
offset address of
directory name

If successful:
carry flag is
clear
If unsuccess-
ful:
carry flag is set
AX=error

xxii. Delete
file

41 AH=0x41
DS:DX= segment:
offset address of the
filename

If successful:
carry flag is
clear
If unsuccess-
ful:
carry flag is set
AX=error

Wild characters not allowed in
file name

xxiii. Get file
attribute

43 AH=0x43
AL=0
DS:DX=segment:
offset address of the
file name

If successful:
carry flag is
clear
If unsuccessful:
carry flag is set
AX=error

File attributes are bit encoded.
The bits of CX register signifies:
Bit Description
Bit 0=1 Read only
Bit 1=1 Hidden
Bit 2=1 System
Bit 3=1 Volume label entry
Bit 4=1 Sub-directory entry
Bit 5=1 Archive bit
Bit 6=1 Unused
Bit 7=1 Unused

xxiv. Set file
attri-
butes

43 AH=0x43
AL=1
DS:DX=segment:
offset address of the
file name

If successful:
carry flag is
clear
If unsuccessful:
carry flag is set
AX=error

File attributes are bit encoded.
The bits of CX register signifies:
Bit Description
Bit 0=1 Read only
Bit 1=1 Hidden
Bit 2=1 System
Bit 3=1 Volume label entry
Bit 4=1 Sub-directory entry
Bit 5=1 Archive bit
Bit 6=1 Unused
Bit 7=1 Unused

xxv. Get
current
directory

47 AH=0x47
DL=Drive number
(0-default, 1-A:,
2-B:…etc.)
DS:DI=segment:
offset address of buffer
where DOS places the
current directory name

If successful:
carry
flag=clear
and buffer is
filled with full
pathname from
root of current
directory.

Returns the current directory
relative to the root directory.
The leading slash ‘\’ and drive
designator are omitted

(Contd...)

Appendix D 707

If unsuccessful:
Carry flag=set
AX=error code

xxvi. Find first
matching
file

4E AL=0x4E
DS:DX=segment:
offset address of file
name. File name can
contain wild card
characters.
CX= file attributes
used while searching

If successful:
carry
flag=clear
Disk transfer
area is setup
with the file in-
formation. The
file informa-
tion is 43 bytes
long and con-
tains following
details:
0-20 reserved
bytes
21 file attributes
22-23 time
of creation/
modification
24-25 date
of creation/
modification
26-30 file size
31-422 file name

If function
unsuccessful:
Carry flag=set
AX=error code

File attributes are bit encoded.
The bits of CX register signi-
fies:
Bit Description
Bit 0=1 Read only
Bit 1=1 Hidden
Bit 2=1 System
Bit 3=1 Volume label entry
Bit 4=1 Sub-directory entry
Bit 5=1 Archive bit
Bit 6=1 Unused
Bit 7=1 Unused

xxvii. File next
matching
file

4F AH=0x4F
Assumes that DTA
points to buffer used
by previous success-
ful interrupt 0x21,
function 0x4E

If successful:
Carry
flag=clear
Disk transfer
area is set
up with the
file informa-
tion. The file
information is
43 bytes long
and contains
detail given in
service 0x4E
If unsuccessful:
Carry flag=set
AX=error code

This service is useful for write
own DIR command

xxviii. Rename
file

56 AH=0x56
DS:DX=segment: off-
set address of file to
be renamed. Wild

If successful:
carry
flag=clear
If unsuccessful:

Supports full pathnames and
allows renaming files across
directories. In DOS version 3.0
and later, this function can be
used to rename directories

(Contd...)

708 Programming in C—A Practical Approach

S.No int No. Purpose Service Inputs Returns Notes

card characters are
not allowed.
ES:DI: segment: offset
address of new name
of file. Wild card
characters are not
allowed.

Carry flag=set
AX=error code

11. 0x33 Mouse
i. Reset

mouse
and get
status

0 AX=0x00 AX=0xFFFF is
mouse support
is available
AX=0 if mouse
support is not
available
BX-number of
buttons

Resets mouse to default driver
values. Mouse is positioned to
screen centre. Mouse cursor is
reset and hidden

ii. Show
mouse
cursor

1 AX=0x01 Nothing

iii. Hide
mouse
pointer

2 AX=0x02 Nothing

iv. Get
mouse
posi-
tion and
button
status

3 AX=0x03 CX=horizontal
x position
(0-639)
DX=vertical
y position
(0-199)
BX=Button
status

The bits of BX signifies:
Bit(s) Description
0 Left button pressed
1 Right button pressed
2 Center button pressed

v. Set
mouse
cursor
position

4 AX=0x04
CX=horizontal posi-
tion
DX=vertical position

Nothing Default cursor position is at
the screen center. The position
must be within the range of
the current video mode. The
position may be rounded to fit
screen mode resolution

vi. Set
mouse
horizon-
tal Min/
Max
position

7 AX=0x07
CX=maximum hori-
zontal position
DX=maximum hori-
zontal position

Nothing Restricts mouse horizontal
movement to window. If mini-
mum value is greater than the
maximum value, the values are
swapped

vii. Set
mouse
vertical
Min/Max
position

8 AX=0x08
CX=maximum verti-
cal position
DX=maximum verti-
cal position

Nothing Restricts mouse vertical move-
ment to window. If minimum
value is greater than the maxi-
mum value, the values are
swapped

E.1 Computer Graphics
These days, computers have invaded the field of art. They have been used in many graphi-
cal applications such as interior designing, architectural planning, flight simulation, virtual
museums, pencil drawings, caricature generation, video games, animations, etc. The journey
of computer graphics formally began in 1963, when Ivan Sutherland, the father of Comput-
er Graphics, demonstrated the use of computers for the interactive design of line drawings.
Sutherland developed a system, called Sketchpad, for man–machine interactive picture gen-
eration that made people aware of the potential capabilities of the computers that can be used
in the field of graphics. His work gave a boost to the developments in the field of computer
graphics, and by the end of 1970, a large number of algorithms existed for scan conversion,
hidden line/surface removal, shading and rendering. These developments were sufficient for
computer graphics to be adopted as an efficient, powerful and economical tool by engineers,
scientists, designers, illustrators and artists.

This appendix provides a basic introduction about graphics programming using Turbo
C 3.0. However, if you are passionate about graphics programming and want to develop
some real-time graphical applications, I suggest you learn and use Open Graphics Library
(OpenGL). OpenGL consists of over 250 standard library functions that can be used to draw
two-dimensional and three-dimensional scenes, which are as realistic as photographs.

E.2 Initializing Graphics Mode in Turbo C 3.0
The first step in graphics programming is to initialize the graphics mode. In Turbo C 3.0, the
graphics mode can be initialized by calling the function initgraph. The prototype of the function
initgraph is void initgraph(int *graphdriver, int *graphmode, char *pathtodriver); and is available in the header
file graphics.h. The important points about the use of the function initgraph are as follows:

Appendix E

GRAPHICS PROGRAMMING

710 Programming in C—A Practical Approach

1. The function initgraph accepts three arguments: the graphics driver, the graphics mode
and the path to the driver.

2. The argument *graphdriver is an integer that specifies the graphics driver to be used. The
graphics driver constants enumerated in the header file graphics.h are listed in Table E.1.

Table E.1 | Graphics driver constants and their values

Graphics driver constant Value

DETECT 0

CGA 1

MCGA 2

EGA 3

EGA64 4

EGAMONO 5

IBM8514 6

HERCMONO 7

ATT400 8

VGA 9

PC3270 10

The graphics driver can be detected automatically by using the macro DETECT. The macro
DETECT, defined in the header file graphics.h, requests the function initgraph to automatically
determine which graphics driver to load in order to switch to the highest resolution
graphics mode.

3. The argument *graphmode is an integer that specifies the graphics mode. If the macro
DETECT has been used to determine the graphics driver, the function initgraph sets *graphmode
to the highest resolution available for the detected driver.

4. The argument pathtodriver is a string that specifies the directory path where the function
initgraph initially looks for the graphics driver (.BGI files). BGI stands for Borland Graph-
ics Interface. If the drivers are not present in the listed directory, the drivers are searched
in the current working directory. If the BGI files are present in the current working di-
rectory, an empty string, i.e. “” can be given as an argument for this parameter.

5. The function initgraph loads the graphics driver from the disk and initializes the graphics
mode. Once the graphics mode is initialized, the coordinate system (with the resolution
depending upon the given graphics mode) is established and the screen is cleared. The
origin of the established coordinate system is at the top left corner. The x-coordinates
increase towards the right and the y-coordinates increase in the downward direction.

6. The initgraph function also resets all graphics settings (color, palette, current position,
viewport, etc.) to their defaults. Whether the function initgraph has successfully initial-
ized the graphics mode or not can be determined by checking the value returned by
the function graphresult. The function graphresult returns 0 if the graphics mode is success-
fully initialized, otherwise it returns a negative value ranging from -1 to -18 to indicate
a graphics error. Various graphics error constants along with their values have been
enumerated in the header file graphics.h.

Appendix E 711

7. Another way to check whether the graphics mode has been successfully initialized or
not is by looking at the screen. When the graphics mode is successfully initialized, there
will be no cursor blinking on the screen as it blinks in the text mode. This is one of the
major differences between the text mode and the graphics mode.

E.3 Drawing Basic Shapes
After the graphics mode has been successfully initialized, the basic shapes can be drawn by
using the standard library functions like line, circle, rectangle, ellipse, sector, drawpoly, etc. The com-
plex two-dimensional and three-dimensional scenes can also be created by making use of
these primitive functions in an intelligent manner. This section describes how to draw basic
shapes using these primitive functions.

E.3.1 Simple Line Drawing
The functions line, linerel and lineto can be used to draw the lines according to the current color,
line style and thickness settings. The prototypes of these functions are available in the header
file graphics.h. The important points about the line-drawing functions available in the graphics
library are as follows:

1. The prototype of the function line is void line(int x1, int y1, int x2, int y2);. It draws a line from the
coordinate (x1,y1) to the coordinate (x2,y2) using the current color, line style and thickness.
It does not update the value of the current position (CP).

2. The prototype of the function linerel is void linerel(int dx, int dy);. It draws a line from the coor-
dinate position described by CP to the coordinate that is relative distance (dx,dy) apart
from CP. The value of CP is advanced by (dx,dy).

3. The prototype of the function lineto is void lineto(int x, int y);. It draws a line from the coordi-
nate position described by CP to the coordinate (x,y). The value of CP becomes (x,y).

Program E.1 illustrates the use of the line-drawing functions to draw a triangle.

Line Prog E-1.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

//Line drawing functions
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
main()
{
 //request auto detection
 int gdriver=DETECT, gmode, errcode;
 //initialize the graphics mode
 initgraph(&gdriver, &gmode, “d:\\tc\\bgi”);
 //read the result of initialization
 errcode=graphresult();
 //terminate if graphics mode is not properly initialized
 if(errcode!=0)
 {

Remarks:
•  The third argument to the initgraph

function is the path of the directory
where .BGI files are present. The path
of the directory containing .BGI files
may be different on your system

•  The initgraph function resets all the
graphics settings

•  The value of CP is set to (0,0) and the
color is set to white

•  The function moveto in line number 22
sets the value of CP

•  The prototype of the function moveto
is void moveto(int x, int y);. It moves the
current position to (x,y)

(Contd...)

712 Programming in C—A Practical Approach

Line Prog E-1.c Output window

16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31

 printf(“Graphics error: %s\n”, grapherrormsg(errcode));
 printf(“Cannot continue. Press any key to terminate”);
 getch();
 exit(1);
 }
 line(100,100,50,150);
 moveto(50,150); //See remarks for explanation
 linerel(100,0);
 lineto(100,100);
 outtextxy(110,100,”(100,100)”); //See remarks for explanation
 outtextxy(20,155,”(50,150)”);
 outtextxy(120,155,”(150,150)”);
 getch();
 closegraph();
 return 0;
}

•  A variant of the function moveto that
can be used to manipulate the value
of CP is moverel. The function moverel
moves the CP by a relative distance.
The prototype of the function moverel
is void moverel(int dx, int dy);

•  A string in a graphics mode can be
printed by using the function outtextxy.
The prototype of the function outtextxy
is void outtextxy(int x, int y, char *string);. It
prints the string string with the default
text characteristics (i.e. font, direction
and character size) at the coordinate
position (x,y)

•  The text characteristics can be set by
using the function settextstyle

•  The function closegraph closes the
graphics mode. It then restores the
screen to the mode it was in before
the function initgraph was called

•  BGI graphics is not supported under
Windows. Therefore, the code will
not work with Turbo C 4.5 and MS-
VC++ 6.0

•  If there is a linker error, switch on the
graphics library by going to Option
menu>Linker>Libraries

Screenshot

Program E-1 | A program that illustrates simple line drawing using standard library functions

Appendix E 713

E.3.2 Stylish Line Drawing
Architectural, engineering and other graphical applications generally require the lines of differ-
ent styles (like dashed, center, dotted, etc.), thickness and colors to be drawn. For example, an
engineering drawing may require dashed lines to indicate the hidden edges of an object or cen-
ter lines to indicate axes of a hollow cylinder. The style and the thickness of the line can be set by
using the function setlinestyle, and the color of a drawing can be set by using the function setcolor.
After setting the line style and color, the functions line, linerel and lineto can be used to draw lines.
These functions draw lines according to the current color, style and the thickness settings.

E.3.2.1 Setting the Pattern and Thickness of the Line
The function setlinestyle can be used to set the line style and its thickness. The prototype of the
function setlinestyle is void setlinestyle(int linestyle, unsigned pattern, int thickness); and is present in the header
file graphics.h. The important points about the function setlinestyle are as follows:

1. The function setlinestyle sets the style for all the lines drawn by the functions line, lineto,
linerel, rectangle, drawpoly, etc.

2. The parameter linestyle specifies the line style. Various line style constants enumerated in
the header file graphics.h are listed in Table E.2.

Table E.2 | Line style constants and their values

Line style constant Value

SOLID_LINE 0

DOTTED_LINE 1

CENTER_LINE 2

DASHED_LINE 3

USERBIT_LINE 4

3. The second parameter pattern is applicable only for the user-defined lines, i.e. if the first
parameter is USERBIT_LINE or its equivalent value.

4. The thickness parameter can be one of the two enumerated constants NORM_WIDTH having
a value of 1 or THICK_WIDTH having a value of 3. The former corresponds to line thickness
of one pixel (normal lines) while the latter corresponds to line thickness of three pixels
(thick lines).

5. If invalid inputs are given to the function setlinestyle, the function graphresult returns -11 and
the current line style remains unchanged.

E.3.2.2 Setting the Color
The current drawing color can be set by using the function setcolor. The prototype of the function
setcolor is void setcolor(int color);. The important points about the function setcolor are as follows:

1. The function setcolor sets the current drawing color to color.
2. The parameter color can be one of the enumerated color constants or its equivalent value

listed in Table E.3.

714 Programming in C—A Practical Approach

Table E.3 | Color constants and their values

Color constant Value

BLACK 0

BLUE 1

GREEN 2

CYAN 3

RED 4

MAGENTA 5

BROWN 6

LIGHTGRAY 7

DARKGRAY 8

LIGHTBLUE 9

LIGHTGREEN 10

LIGHTCYAN 11

LIGHTRED 12

LIGHTMAGENTA 13

YELLOW 14

WHITE 15

Program E.2 illustrates the stylish line drawing.

Line Prog E-2.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20

//Stylish line drawing
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
main()
{
 //request auto detection
 int gdriver=DETECT, gmode, errcode, pattern=0xA;
 //initialize the graphics mode
 initgraph(&gdriver, &gmode, “d:\\tc\\bgi”);
 //read the result of initialization
 errcode=graphresult();
 //terminate if graphics mode is not properly initialized
 if(errcode!=0)
 {
 printf(“Graphics error: %s\n”, grapherrormsg(errcode));
 printf(“Cannot continue. Press any key to terminate”);
 getch();
 exit(1);
 }

Remarks:
•  The function getmaxx() and getmaxy()

returns the maximum x and y
coordinates, respectively

•  The function rectangle draws a
rectangle. It is declared as void
rectangle(int left, int top, int right, int
bottom); in the header file
graphics.h

•  The function rectangle draws the
rectangle in the current line
style, thickness and line color

(Contd...)

Appendix E 715

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

 rectangle(0, 0, getmaxx(), getmaxy()); //See remarks for explanation
 setlinestyle(SOLID_LINE, pattern, 3);
 setcolor(RED);
 line(40, 40, 40, 240);
 outtextxy(10,250,”Solid Thick”);
 setlinestyle(DOTTED_LINE, pattern, 1);
 setcolor(MAGENTA);
 line(170, 40, 170, 240);
 outtextxy(130,250,”Dotted Thin”);
 setlinestyle(CENTER_LINE, pattern, 1);
 setcolor(YELLOW);
 line(300, 40, 300, 240);
 outtextxy(250,250,”Center Thin”);
 setlinestyle(DASHED_LINE, pattern, 1);
 setcolor(BLUE);
 line(430, 40, 430, 240);
 outtextxy(380,250,”Dotted Thin”);
 setlinestyle(USERBIT_LINE, pattern, 1);
 setcolor(GREEN);
 line(560, 40, 560, 240);
 outtextxy(500,250,”Userdefined Thin”);
 getch();
 closegraph();
 return 0;
}

Screenshot

Program E-2 | A program that illustrates stylish line drawing

716 Programming in C—A Practical Approach

E.3.3 Drawing Other Basic Shapes
Basic shapes other than line such as circle, rectangle, ellipse, polygon, arc, sector, pie, etc. can
be drawn by using the functions circle, rectangle, ellipse, drawpoly, arc, sector, pieslice, respectively. Pro-
gram E.3 illustrates the use of these functions.

Line Prog E-3.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

//Drawing other basic shapes
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
main()
{
 //request auto detection
 int gdriver=DETECT, gmode, errcode;
 int poly[12]={350,450,350,410,430,400,350,350,300,430,350,450};
 //initialize the graphics mode
 initgraph(&gdriver, &gmode, “d:\\tc\\bgi”);
 //read the result of initialization
 errcode=graphresult();
 //terminate if graphics mode is not properly initialized
 if(errcode!=grOK)
 {
 printf(“Graphics error: %s\n”, grapherrormsg(errcode));
 printf(“Cannot continue. Press any key to terminate”);
 getch();
 exit(1);
 }
 rectangle(0, 0, getmaxx(), getmaxy());
 circle(100,100,50);
 outtextxy(75,170, “Circle”);
 rectangle(200,50,350,150);
 outtextxy(240, 170, “Rectangle”);
 ellipse(500, 100,0,360, 100,50);
 outtextxy(480, 170, “Ellipse”);
 arc(100,270,0,110,40);
 outtextxy(95,280,”Arc”);
 pieslice(375,270,0,180,40);
 outtextxy(345,280,”Pieslice”);
 sector(150, 400, 30, 300, 100,50);
 outtextxy(120, 460, “Sector”);
 drawpoly(6, poly);
 outtextxy(340, 460, “Polygon”);
 getch();
 closegraph();
}

Remarks:
•  The function circle draws a circle in

the current color. The prototype of
the function circle is void circle(int x, int y,
int radius);

•  The prototype of the function ellipse
is void ellipse(int x, int y, int stangle, int endangle,
int xradius, int yradius);. It draws an ellip-
tical arc with xradius as the radius of
major axes and yradius as the radius of
minor axes. The elliptical arc extends
from stangle to endangle

•  The prototype of the function arc is
void arc(int x, int y, int stangle, int endangle, int
radius);. It draws a circular arc with
radius radius and the arc extends from
stangle to endangle

•  The function pieslice draws and fills a
circular pieslice. It is declared as void
pieslice(int x, int y, int stangle, int endangle, int
radius);.

•  The function sector draws and fills an
elliptical pieslice. It is declared as void
sector(int x, int y, int stangle, int endangle, int
xradius, int yradius);

•  The function drawpoly is declared as
void drawpoly(int numpoints, int *polypoints);. It
draws a polyline with numpoint-1 edges.
The parameter polypoints should have
2*numpoint entries, which are x and y
coordinate pairs of the vertices of the
polyline

•  The closed polygon can be drawn
by providing the last coordinate pair
entry the same as the first coordinate
pair entry in polypoints

•  Refer the coordinate sequence given
in line number 9. The last coordinate
pair 350, 450 is the same as the first co-
ordinate pair. Thus, the figure drawn
in the output is a closed polygon

(Contd...)

Appendix E 717

Screenshot

Program E-3 | A program that illustrates the basic shape drawing

E.4 Region Filling
Many graphical applications like bar charts, pie charts, depth maps, etc. require the generation
of the filled regions. Closed regions like circle, ellipse, rectangle, polygon, etc. (bounded by a
single color solid boundary) can be filled by using the functions like fillellipse, fillpoly, floodfill, etc.
Filled rectangles can also be generated by using the functions bar and bar3d. Program E.4 illus-
trates the use of the bar function to generate a bar chart of runs scored in a cricket match.

Line Prog E-4.c Output window

1
2
3
4
5
6
7
8

//Bar chart
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
main()
{
 //request auto detection
 int gdriver=DETECT, gmode, errcode,i;

Remarks:
•  The function settextstyle is used

to set the text font, the direc-
tion and the size of the char-
acters

(Contd...)

718 Programming in C—A Practical Approach

Line Prog E-4.c Output window

9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

 int scores[10]={10,22,5,12,14,8,12,17,2,9};
 //initialize the graphics mode
 initgraph(&gdriver, &gmode, “d:\\tc\\bgi”);
 //read the result of initialization
 errcode=graphresult();
 //terminate if graphics mode is not properly initialized
 if(errcode!=0)
 {
 printf(“Graphics error: %s\n”, grapherrormsg(errcode));
 printf(“Cannot continue. Press any key to terminate”);
 getch();
 exit(1);
 }
 settextstyle(TRIPLEX_FONT,0,2);
 outtextxy(230,10,”BAR CHART”);
 line(200,400,400,400);
 line(200,100,200,400);
 settextstyle(SMALL_FONT,0,4);
 outtextxy(270,410,”OVERS”);
 settextstyle(SMALL_FONT,1,4);
 outtextxy(180,240,”SCORES”);
 for(i=0;i<9;i++)
 {
 bar(210+20*i, 400-scores[i]*10, 220+20*i,400);
 }
 getch();
 closegraph();
}

•  The prototype of the function
settextstyle is
void settextstyle(int font, int direction,
int charsize);.
The parameter font can be one
of the font names DEFAULT_FONT,
TRIPLEX_FONT, SMALL_FONT, SANS_
SERIF_FONT, GOTHIC_FONT enu-
merated in the header file
graphics.h

•  The parameter direction can be
one of the enumerated constants
HORIZ_DIR, i.e. 0 or VERT_DIR, i.e. 1

•  The size of each character can
be magnified by using the pa-
rameter charsize

•  The function bar draws a two-
dimensional filled-in rectan-
gular two-dimensional bar.
Its prototype is
void bar(int left, int top, int right, int
bottom);

•  The bar is filled using the cur-
rent fill pattern and fill color.
The generated bar will not
have any outline

•  The outlined bars can be gener-
ated by using the function bar3d

Screenshot

Program E-4 | A program that illustrates the use of the function bar

Appendix E 719

E.4.1 Filling Regions with Different Patterns and Colors
The functions fillellipse, fillpoly and floodfill fill the region with the standard fill pattern and the
set color. The filling pattern and the color of the filling can be changed by using the function
setfillstyle. The prototype of the function setfillstyle is void setfillstyle(int pattern, int color);. The important
points about the function setfillstyle are as follows:

1. The function setfillstyle sets the current fill pattern and fill color.
2. The parameter pattern can be one of the enumerated fill pattern constants listed in Table

E.4.

Table E.4 | Fill pattern constants and their values

Fill pattern constant Value Fills with

EMPTY_FILL 0 Background color

SOLID_FILL 1 Solid fill

LINE_FILL 2 ---

LTSLASH_FILL 3 ///

SLASH_FILL 4 ///, thick lines
BKSLASH_FILL 5 \\\, thick lines

LTBKSLASH_FILL 6 \\\

HATCH_FILL 7 Light hatch

XHATCH_FILL 8 Heavy crossed hatch

INTERLEAVE_FILL 9 Interleaving lines

WIDE_DOT_FILL 10 Widely spaced dots

CLOSE_DOT_FILL 11 Closely spaced dots

USER_FILL 12 User-defined fill pattern

3. If the pattern is EMPTY_FILL or its equivalent value, the region will be filled with the cur-
rent background color, otherwise the region will be filled with the pattern in the current
drawing color. The background color can be set by using the function setbkcolor and the
drawing color can be set by using the function setcolor.

4. If invalid input is passed to the function setfillstyle, the function graphresult returns -11, and
the current fill pattern and the color remain unchanged.

Program E.5 illustrates the use of the function setfillstyle in filling the regions with different
patterns.

720 Programming in C—A Practical Approach

Line Prog E-5.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

//Filling regions with different patterns
 #include<stdio.h>
#include<conio.h>
#include<graphics.h>
char *patternnames[]=
{
“EMPTY_FILL”, “SOLID_FILL”, “LINE_FILL”, “LTSLASH_FILL”, “SLASH_FILL”,
“BACKSLASH_FILL”, ”LTBACKSLASH_FILL”, “HATCH_FILL”, “XHATCH_FILL”,
“INTERLEAVE_FILL”
};
main()
{
 int gdriver=DETECT, gmode, errcode;
 int xinitial, yinitial, xcent, ycent, xinc, yinc, xl, yl, xr, yr, pttrn=0, i, j;
 initgraph(&gdriver, &gmode, “d:\\tc\\bgi”);
 errcode=graphresult();
 if(errcode!=0)
 {
 printf(“Graphics error: %s\n”, grapherrormsg(errcode));
 printf(“Cannot continue. Press any key to terminate”);
 getch();
 exit(1);
 }
 xinc=getmaxx()/5; yinc=getmaxy()/2;
 for(i=0; i<2; i++)
 {
 xinitial=0; yinitial=i*yinc;
 for(j=0; j<5; j++)
 {
 xl=xinitial+j*xinc; yl=yinitial;
 xr=xl+xinc; yr=yl+yinc;
 xcent=(xl+xr)/2; ycent=(yl+yr)/2;
 rectangle(xl, yl, xr, yr);
 setfillstyle(pttrn, BLUE);
 floodfill(xcent, ycent, WHITE);
 outtextxy(xl+5, ycent, patternnames[pttrn]);
 pttrn++;
 }
 }
 getch();
 closegraph();
 return 0;
}

Remarks:
•  The function floodfill fills a bounded

region according to the pattern
and the color set by the function
setfillstyle

•  If the function setfillstyle is not used
to set the filling pattern and color,
the function floodfill fills the re-
gion with the default pattern, i.e.
SOLID_FILL and the current drawing
color

•  It is declared as
void floodfill(int x, int y, int border);

•  The (x, y) is the coordinate of the
seed point from where the flood
fill function starts filling. The third
parameter border is the color of the
boundary enclosing the region

•  If the seed point is within the en-
closed region, the inside will be
filled

•  If the seed point is outside the en-
closed region, the exterior will be
filled

•  If the boundary is not closed, the
entire area will be filled

(Contd...)

Appendix E 721

Screenshot

Program E-5 | A program that illustrates the region filling with different patterns

E.5 Pattern Drawing Based on Regular Polygons
Some of the patterns commonly encountered in computer graphics can be drawn by making
use of regular polygons. A polygon is said to be regular if it is simple (i.e. no two edges cross
each other), all of its edges are of equal length and all of its interior angles are equal. An n-gon
is a regular polygon with n sides. The code snippet listed in Program E.6 draws n-gons for
various values of n.

Line Prog E-6.c Output window

1
2
3
4
5
6
7

//Drawing n-gons
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
#include<math.h>
#define PI 3.14159265
#define N 30

Remarks:
•  The user-defined type struct

point is defined to store x and y
coordinates of a point

(Contd...)

722 Programming in C—A Practical Approach

Line Prog E-6.c Output window

8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

struct point
{
 int x;
 int y;
};
typedef struct point POINT;
drawnpoly(int R, int n, int xc, int yc)
{
 POINT pts[N];
 int i, j;
 for(i=0; i<n; i++)
 {
 pts[i].x=xc+R*cos(2*PI*i/n);
 pts[i].y=yc+R*sin(2*PI*i/n);
 }
 for(i=0; i<n; i++)
 line(pts[i].x, pts[i].y, pts[(i+1)%n].x, pts[(i+1)%n].y);
}

main()
{
 int gdriver=DETECT, gmode, errcode;
 initgraph(&gdriver, &gmode, “d:\\tc\\bgi”);
 errcode=graphresult();
 if(errcode!=0)
 {
 printf(“Graphics error: %s\n”, grapherrormsg(errcode));
 printf(“Cannot continue. Press any key to terminate”);
 getch();
 exit(1);
 }
 drawnpoly(30, 3, 30, 60);
 outtextxy(10, 100, “n:”);
 outtextxy(30, 100, “3”);
 drawnpoly(30, 4, 120, 60);
 outtextxy(120, 100, “4”);
 drawnpoly(30, 5, 210, 60);
 outtextxy(210, 100, “5”);
 drawnpoly(30, 6, 300, 60);
 outtextxy(300, 100, “6”);
 drawnpoly(30, 8, 390, 60);
 outtextxy(390, 100, “8”);
 drawnpoly(30, 12, 480, 60);
 outtextxy(475, 100, “12”);
 drawnpoly(30, 30, 560, 60);
 outtextxy(555, 100, “30”);
 getch();

•  The coordinates of a vertex of
a polygon can be generated by
substituting the value of a as 0
in the equation mentioned in
the following figure:

R
a

xc+Rcos(a), yc+Rsin(a)

xc, yc

•  The coordinates of other ver-
tices of the polygon can be
determined by successively
incrementing the value of a by
2π/n, where n is the number of
the vertices, and substituting
the value of a in the equation
mentioned in the above figure

(Contd...)

Appendix E 723

55
56
57

 closegraph();
 return 0;
}

Screenshot

Program E-6 | A program that illustrates n-gon drawing

E.5.1 Drawing Rosettes
A rosette is an n-gon with each vertex joined to every other vertex. Rosettes can be easily
drawn by drawing n-gons and connecting each vertex to every other vertex. Program E.7
presents rosette drawing.

Line Prog E-7.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25

//Drawing rosettes
#include<stdio.h>
#include<conio.h>
#include<math.h>
#include<graphics.h>
#define PI 3.14159265
struct point
{
 int x;
 int y;
};
typedef struct point POINT;
rosette(int R, int n, int xc, int yc)
{
POINT pts[30];
int i, j;
for(i=0;i<n;i++)
{
 pts[i].x=R*cos(2*PI*i/n)+xc;
 pts[i].y=R*sin(2*PI*i/n)+yc;
}
for(i=0;i<n;i++)
 for(j=i+1; j<n; j++)
 {
 moveto(pts[i].x, pts[i].y);

(Contd...)

724 Programming in C—A Practical Approach

Line Prog E-7.c Output window

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

 lineto(pts[j].x, pts[j].y);
 }
}
main()
{
 int gdriver=DETECT, gmode, errcode;
 initgraph(&gdriver, &gmode, “d:\\tc\\bgi”);
 errcode=graphresult();
 if(errcode!=0)
 {
 printf(“Graphics error: %s\n”, grapherrormsg(errcode));
 printf(“Cannot continue. Press any key to terminate”);
 getch();
 exit(1);
 }
 settextstyle(DEFAULT_FONT, 0, 0);
 rosette(40, 5, 100, 200);
 outtextxy(30, 250, “5-Rosette: size 40”);
 rosette(60, 11, 250, 200);
 outtextxy(180, 270, “11-Rosette: size 60”);
 rosette(120, 21, 480, 200);
 outtextxy(400, 330, “21-Rosette: size 120”);
 getch();
 closegraph();
 return 0;
}

Screenshot

Program E.7 | A program that illustrates rosette drawing

Appendix E 725

E.5.2 Swirling Polygons
Interesting patterns can be drawn by swirling polygons. Program E.8 illustrates pattern gen-
eration by polygon swirling.

Line Prog E-8.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

//Swirling polygons
#include<stdio.h>
#include<conio.h>
#include<math.h>
#include<graphics.h>
#define PI 3.14159265
swirlingpoly(int n, float xc, float yc, float R, float rangle)
{
 double angle=rangle*PI/180;
 double angleinc=2*PI/n;
 int i;
 moveto(R*cos(angle)+xc, R*sin(angle)+yc);
 for(i=0; i<n; i++)
 {
 angle+=angleinc;
 lineto(R*cos(angle)+xc, R*sin(angle)+yc);
 }
}
main()
{
 int gdriver=DETECT, gmode, errcode;
 int i;
 initgraph(&gdriver, &gmode, “d:\\tc\\bgi”);
 errcode=graphresult();
 if(errcode!=0)
 {
 printf(“Graphics error: %s\n”, grapherrormsg(errcode));
 printf(“Cannot continue. Press any key to terminate”);
 getch();
 exit(1);
 }
 for(i=0; i<50; i++)
 swirlingpoly(6,180,200, i*3,i*2);
 outtextxy(110, 360, “Swirling Hexagon”);
 for(i=0; i<50; i++)
 swirlingpoly(8,480,200, i*3,i*2);
 outtextxy(410, 360, “Swirling Octagon”);
 getch();
 closegraph();
 return 0;
}

(Contd...)

726 Programming in C—A Practical Approach

Screenshot

Program E.8 | A program that generates swirling polygons

E.6 Motif and Tiling
Laying copies of the same pattern side by side to cover the region is called tiling. The pattern
that is replicated and copied at different positions is known as a motif. Program E.9 illustrates
tiling.

Line Prog E-9.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

//Motif and Tiling
#include<stdio.h>
#include<conio.h>
#include<graphics.h>
motif(int x,int y,int size)
{
 rectangle(x,y,x+size,y+size);
 arc(x,y+size,0,90,size);
 arc(x+size,y+size,90,180,size);
 arc(x+size,y,180,270,size);
 arc(x,y,270,360,size);
}
main()
{
 int gdriver=DETECT, gmode, errcode;
 int i, j, xinitial=150, yinitial=150;
 int rows=3, cols=5, size=60;

(Contd...)

Appendix E 727

18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

 initgraph(&gdriver, &gmode, “d:\\tc\\bgi”);
 errcode=graphresult();
 if(errcode!=0)
 {
 printf(“Graphics error: %s\n”, grapherrormsg(errcode));
 printf(“Cannot continue. Press any key to terminate”);
 getch();
 exit(1);
 }
 motif(30,30,50);
 outtextxy(35,85, “Motif”);
 //Tiling
 for(i=0;i<rows;i++)
 {
 xinitial=200;
 for(j=0; j<cols;j++)
 motif(xinitial+j*size,yinitial,size);
 yinitial=yinitial+size;
 }
 outtextxy(320,335,”Tiling”);
 getch();
 closegraph();
 return 0;
}

Screenshot

Program E.9 | A program that illustrates tiling

728 Programming in C—A Practical Approach

E.7 Viewport and clipping
A viewport specifies a rectangular area on a display device for graphical output. The view-
port can be set by using the function setviewport. The prototype of the function setviewport is void
setviewport(int left, int top, int right, int bottom, int clip);. The important points about the function setviewport
are as follows:

1. The function setviewport establishes a new viewport for the graphical output.
2. The viewport’s coordinates are given in absolute screen coordinates by (left, top) and

(right, bottom).
3. The function setviewport sets the CP to (0,0) in the viewport.
4. The parameter clip determines whether the drawings are clipped at the current viewport

boundaries. If it is a non-zero value, all the drawings will be clipped against the current
viewport boundaries.

5. If the function setviewport is not used to change the view settings, the entire screen area is
the default viewport.

6. If invalid input is passed to the function setviewport, the function graphresult returns -11 and
the current view settings remain unchanged.

Program E.10 illustrates the use of the function setviewport for viewport setting.

Line Prog E-10.c Output window

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26

//Setting viewport
#include<stdio.h>
#include<conio.h>
#include<math.h>
#include<graphics.h>
#define PI 3.14159265
#define CLIP_ON 1
swirlingpoly(int n, float xc, float yc, float R, float rangle)
{
 double angle=rangle*PI/180;
 double angleinc=2*PI/n;
 int i;
 moveto(R*cos(angle)+xc, R*sin(angle)+yc);
 for(i=0; i<n; i++)
 {
 angle+=angleinc;
 lineto(R*cos(angle)+xc, R*sin(angle)+yc);
 }
}
main()
{
 int gdriver=DETECT, gmode, errcode;
 int i;
 initgraph(&gdriver, &gmode, “d:\\tc\\bgi”);
 errcode=graphresult();
 if(errcode!=0)

(Contd...)

Appendix E 729

27
28
29
30
31
32
33
34
35
36
37
38
39

 {
 printf(“Graphics error: %s\n”, grapherrormsg(errcode));
 printf(“Cannot continue. Press any key to terminate”);
 getch();
 exit(1);
 }
 setviewport(200, 100, 400, 300, CLIP_ON);
 for(i=1; i<100; i++)
 swirlingpoly(9, 100, 100, i*2, i*5);
 getch();
 closegraph();
 return 0;
}

Screenshot

Program E.10 | A program that illustrates the use of the function setviewport for making viewport settings

Chapter 1: Data Types, Variables and Constants
1. a. Dennis Ritchie; b. letter or an underscore; c. data type; d. definition; e. l-value; 

f. modifiable l (ell); g. const; h. escape sequences; i. string; j. double; k. functions; 
l. semicolon; m. format specifiers, format string; n. sizeof; o. l-value. 

2. a. True.
b. True.
c. True.
d. False. Comments are to increase the readability of the program. They are not pro-

cessed by the compiler.
e. True.
f. False. It is an example of shorthand declaration.
g. False. Type modifier modifies the base type to yield a new type.
h. False. Constants do not have a modifiable l-value. In general, we say that constants

do not have an l-value and have only r-value.
i. True. A character constant can have two characters enclosed within single quotes

e.g. ‘\n’, ‘\t’, etc.
j. False. The function scanf can read more than one value at a time.

3. a. Valid; b. Valid; c. Valid; d. Valid; e. Invalid. + is a special character and cannot
be a part of an identifier.; f. Valid; g. Invalid. An identifier name cannot start with a
digit.; h. Valid; i. Invalid. & is a special character and cannot be a part of an identi-
fier.; j. Valid; k. Valid.

Appendix F

ANSWERS TO TEST YOURSELF
QUESTIONS

Appendix F 731

4. a. Valid; b. Valid; c. Invalid. It is an identifier name.; d. Invalid. Comma is not
allowed.; e. Valid;  f. Invalid. Exponent cannot have a decimal point.; g. Invalid. G
is not a valid hexadecimal digit.; h. Valid; i. Valid; j. Valid; k. Valid.

5. a. int a=10; int b=20;
b. int a=10; float b=2.5;
c. int a=23u, b=0x2f;
d. Cannot modify constant object. Remove statement number=500;
e. printf(“%d %d %d”,1,2,3);
f. printf(“To err is human”);
g. printf(“%d %d”, no1, no2);
h. printf(“Humans learn by making mistakes”);
i. scanf(“%d %d”, &no1, &no2);
j. sum_of_values=first_value+second_value;

Chapter 2: Operators and Expressions
1. a. operand; b. simple expression; c. right to left; d. integer; e. Boolean constant; 

f. higher; g. precedence, associativity; h. type conversion; i. sizeof; j. Comma.

2. a. True.
b. True.
c. False. It depends only upon the sign of the numerator.
d. False. The knowledge of associativity is also required.
e. False. It is a ternary operator.
f. True.
g. True.
h. True.
i. False. It cannot be assigned a value, but it can be initialized with a value.
j. True.

3. a. 1; b. 1; c. 0; d. 2; e. 1; f. 1; g. 1; h. 0; i. -6; j. -1.600000

4. a. Invalid. l-value required error. The r-value cannot be placed on the left side of as-
signment operator.

b. Valid. The expression evaluates to 0 and the values of a and b after evaluation of
expression are 0 and 15, respectively.

c. Invalid. l-value required error. The r-value cannot be placed on the left side of the
assignment operator.

d. Invalid. The operand of the modulus operator must of integer type.
e. Invalid. l-value required error. The r-values cannot be placed on the left side of the

assignment operator.
f. Invalid. The operands of the bitwise operator must be of char, short, int or long type.
g. Invalid. l-value required error. The expression a+++++b will be interpreted as a++ ++ +b,

which is an erroneous expression.

732 Programming in C—A Practical Approach

h. Invalid. The operator ~ is a unary operator.
i. Valid. The expression evaluates to 15 and the values of a and b after the evaluation of

expression are 15 and 5, respectively.
j. Invalid. Two binary operators cannot come next to each other without having any

operand in between.

Chapter 3: Statements
1. a. statement; b. semicolon; c. block; d. identifier-labeled, case-labeled and default-

labeled statements; e. integral; f. definite repetition looping; g. sentinel value; 
h. indefinite repetition loop; i. non-executable statements; j. flow control; k. continue; 
l. expression; m. do-while; n. break; o. dangling else.

2. a. True.
b. True.
c. True.
d. False. An exit-controlled loop is executed at least once. The body of an entry-con-

trolled loop will not be executed even once if the loop-controlling expression
is initially false.

e. False. An identifier-labeled statement does not alter the flow of control.
f. False. A continue statement can appear inside, or as a loop body but not inside, or as a

switch body.
g. True.
h. False. A break statement is used to terminate the loop.
i. False. A switch selection expression must be of integral type.
j. True.

3. a. if(count>10) printf(“Count is greater than 10);
b. a=b=c=10;
c. stud=var+=10;
d. (num&1)==1?a=10:a=20;
e. for(fact=1,i=1;i<=n;i++) fact*=i;

Chapter 4: Arrays and Pointers
1. a. homogenous; b. zero; c. contiguous; d. integral; e. subscript; f. dereference; 

g. *(*(arr+5)+4); h. direct indexing; i. address; j. 1.

2. a. True.
b. False. It can also be zero.
c. True.
d. True.
e. False. A void pointer cannot be assigned to a pointer variable without explicit type

casting.
f. False. The name of the array refers to the address of the first element of the array.
g. True.

Appendix F 733

h. False. It is imperative that one mentions the size specifier if the array is not explicitly
initialized.

i. False. Multi-dimensional arrays in C are stored the memory using row major order
of storage.

j. False. The declaration statement int* a[10]; declares a as an array of 10 integer pointers.

Chapter 5: Functions
1. a. Functions; b. main; c. actual arguments; d. by value, by address/reference; 

e. formal parameters; f. char*; g. double; h. an array type or a function type; i. Tail
recursion; j. int; k. activation record; l. stack; m. winding of recursion.

2. a. True.
b. False. main is a user-defined function.
c. False. There can be any number of return statements within a function body, but only

one return statement will get executed.
d. True.
e. True.
f. False. The return statement is used to terminate the execution of a function, and the

exit function is used to terminate the execution of a program.
g. False. A function cannot be defined within the body of another function.
h. False. Indirectly recursive functions are known as mutually recursive functions.
i. True.
j. True.
k. True.
l. True.
m. True.

Chapter 6: Strings and Character Arrays
1. a. empty string; b. a null character; c. 1 byte; d. char*; e. double quotes; f. concat-

enated; g. %s; h. strcmpi; i. ^ (caret); j. getch; k. command line arguments.

2. a. True.
b. False. The length of the empty string literal constant is zero.
c. True.
d. False. The number of bytes required to store a string literal constant is one more

than the number of characters present in it.
e. True.
f. True.
g. True.
h. True.
i. False. The first argument of the printf function must be of const char* type.
j. False. The string library function strrev reverses all the characters of a string except

the terminating null character.

734 Programming in C—A Practical Approach

k. False. A character array can be initialized with a string literal constant. For example,
int a[10]=”Hello”; is a valid declaration statement.

l. True.

Chapter 7: Scope, Linkage, Lifetime and Storage Classes
1. a. scope; b. Label name; c. extern; d. each object must have only one definition in

a scope; e. definition of an identifier in the immediate scope shadows/supersedes
the definitions of the identifier present in the enclosing scope; f. Name resolution; 
g. external; h. static; i. no; j. internal, external, no; k. lifetime; l. automatic; 
m. dynamic memory allocation; n. auto; o. typedef;

2. a. True.
b. False. Function scope terminates with the closing brace of the function definition.

Function prototype scope terminates with the end of the function declaration.
c. False. It is possible to declare an identifier with a same name and type more

than once in the same scope.
d. True.
e. False. It is not allowed to declare identifiers with a same name but different types

in different scopes. However, it is possible to define identifiers with a same
name but different types in different scopes.

f. True.
g. False. The variables declared with auto storage class specification are not implicitly

initialized. The variables declared with static storage class specification are im-
plicitly initialized.

h. True.
i. True.
j. True.
k. False. The value of an auto variable ceases to exist when control moves out of a func-

tion. However, the value of a static variable persists between the function calls
as it has a global lifetime.

l. False. size_t is not a type. It is a synonym for the type unsigned int.
m. False. The value of the memory space allocated by using the malloc function is not

initialized to zero. However, all the bits in the memory space allocated using
the function calloc are initialized to zero.

n. False. Careless allocation of the memory at the run time leads to memory leak.

Chapter 8: The C Preprocessor
1. a. compiler; b. execution character set; c. ??; d. x ++ ++ + y; e. Macro; f. symbolic

constants; g. pragma; h. null directive; i. Preprocessing token; j. biggest.

2. a. True.
b. True.
c. False. A new line character ends the preprocessor directive.
d. False. A preprocessor directive can appear anywhere within a program.

Appendix F 735

e. False. The concatenation operator must appear between two tokens.
f. True.
g. True.
h. False. A predefined macro cannot be undefined using the undef directive.
i. False. If the identifier specified with the undef directive is not currently defined as a

macro, the statement will be ignored and will have no effect.
j. False. The identifier defined as macro can be used from the point of its definition till a

corresponding undef directive is encountered or till the end of the translation unit.
k. False. No macro replacement is carried out if a name same as the macro name ap-

pears as a part of a string literal constant or as a part of some other name.

Chapter 9: Structures, Unions, Enumerations and Bit-fields
1. a. heterogeneous; b. self-referential structure; c. Arrays, structures; d. anonymous

structure; e. names; f. machine-word boundary; g. arrow; h. higher; i. largest
j. typedef.

2. a. True.
b. True.
c. False. Arrays and structures are collectively known as aggregate type.
d. False. A structure cannot have an instance of itself. A structure that contains a pointer

to an instance of itself is known as a self-referential structure.
e. True.
f. True.
g. False. Structure members cannot be initialized during the structure definition since

no memory is allocated at that time.
h. False. In C, the keyword struct along with the tag-name of the defined structure type

is used to create an object of the structure type.
i. False. The name of a structure does not refer to its base address. It refers to the entire

structure.
j. False. Padding bytes are not copied.
k. False. The padding can only appear in between two structure members or after the

last structure member.
l. True.
m. False. The typedef can only be used to create an alias name for the defined type.
n. False. Only the first member of a union can be initialized, while in structures all the

members can be initialized.

Chapter 10: Files
1. a. stream, file descriptor; b. stdin, stdout, stderr, stdaux and stdprn; c. screen; d. FILE; 

e. Text; f. the stream buffer gets full; g. “r+”; h. EOF; i. ftell, fgetpos; j. SEEK_SET; 
k. 512; l. unbuffered.

2. a. True.
b. False. Binary streams are uninterpreted. It happens in text streams.
c. True.

736 Programming in C—A Practical Approach

d. False. By default, the stream stdout is un buffered.
e. True.
f. False. The function ftell cannot be used to position the file position indicator within

the file.
g. True.
h. True.
i. False. The open streams are automatically closed when the program terminates

successfully.
j. True.

Index

__cplusplus macro 493
__DATE__ macro 491
__FILE__ macro 491
__FILE__ macro 496
__LINE__ macro 491
__LINE__ macro 496
__STDC__ macro 492
__TIME__ macro 492

A
absolute path 634
abstract parameter declaration 261
accumulator register 323, 575
activation 287
activation record 286, 287
active 287
actual arguments 268
addition operator 50
address-of operator 20, 64, 194, 202, 545, 569,

583, 589
advantages of arrays 211
aggregate operations 543
aggregate types 536, 592
alias 431
alias name 566
American National Standard Institute
see ANSI 2

American Standard Code for Information
Interchange see ASCII 38

angular brackets 23
anonymous structure type 538
ANSI 2
argument count 373
argument vector 373
arguments with a side-effect 486
arithmetic operators 50

arithmetic statement 106
arithmetic type(s) 62, 194
arithmetic-type conversion 51
Armstrong number 173, 530
array index out-of-bound check 189
array of character pointers 371
array of function pointers 295
array of pointers 209
array of strings 370
array of structures 556
array subscripting 203
array type derivation 189
array type see arrays 184
arrays 184
arrays of arrays see multi-dimensional arrays 203
arrow operator 555
ASCII 480
assembler 479
assembly-level code 510
assignment 60, 139, 442
assignment operators 50, 60
assignment statement 106, 107
associativity 49
auto storage class 426
auxiliary parameters 284

B
backspace character 39
backward jump 124
base case 283
base register 575
Basic Combined Programming Language
see BCPL 2

basic data types
character also char 6
 double precision floating point also double

738 Index

integer also int 6
 single-precision floating point also float 6
void 6

Basic Input Output System see BIOS 572
BCPL 2
binary files 652
binary mode 632
binary number system 24, 25
binary operators 50
binary recursion 287
binary search 335
binary stream 632, 666
binary tree 288
BIOS 572
bit-field 587, 586
bitwise operators 50
block 109
block input 652
block scope 412, 413
block-structured language 2
body of a function 16, 263
bottom-up development 258
braces 16
branching statements 107, 113, 114

conditional branching 114
unconditional branching 114

break statement 124, 134
bubble sort 243
buffer 347, 661
buffer level 658
buffer size 661
buffered input functions 347, 348
byte alignment of structure members 546
byte offset of a member 597

C
C character set

execution character set 3
source character set 3

C program file 630
C-style character strings 341
C.A.R Hoare partitioning strategy 333
call by address see also pass by address 274
call by reference see also pass by address 274
call by value see also pass by value 273
called function 265
calloc function 433
case label 112

case-labeled statements 111, 112
case-sensitive language 2, 23
character arrays 342
character input 637
character literal constant

 non-printable character literal
constants 12
 printable character literal constants 12

character output 638
character pointers 341
character set 480
character stuffing 39
closing streams 635
code redundancy 259
code reuse 259
code segment 227, 292, 538
codeblocks 440
column major order of storage 208
column size specifier 204, 209
comma operator 62, 268
command file 630
command line arguments 281, 373, 662
command line 373
command prompt 373
comments 15, 27

multi-line comment 15
single-line comment 15

common macro pitfalls 484
common type 51
compilation 503
compile-time initialization 442
compiler 478, 479
compiling a program 17
complete parameter declaration 261
complete type 536
composing a function see function definition 302
compound expression 48
compound statement 109
concatenation 490
concatenation operator 490
conditional branching see selection

statements 114
conditional compilation directives 482, 500
conditional operator 62
console input-output 630
constants 11, 54

literal constants 11
qualified constants 11
symbolic constants 11

Index 739

const qualifier 214
constant declarations 107
continue Statement 125, 136
count register 575
cplusplus program file 630
CPU registers

flag register 574
general-purpose registers 574
offset registers 574
segment registers 574

C standards
ANSI C/Standard C/C89 Standard 2
C99 Standard 2
ISO C/C90 Standard 2
Kernighan & Ritchie (K&R)

C Standard 2
current active pointer 661

D
dangling else problem 118
data file 630
data object also object 9
data register 575
data segment 227, 443, 538
data structure 185
data type 6, 25
debugging 259, 265
declaration of a function pointer 293
declaration of a single-dimensional array 186
declaration of a three-dimensional array 209
declaration of a two-dimensional array 204
declaration of array of strings 370
declaration of library functions 297
declaration statement 5, 110
declaring objects of an enumeration type 581
declaring pointer to a structure 554
declaring structure objects 539
declaring union objects 568
decrement operator 50, 54
default arguments 278
default-labeled statements 111, 113
define directive 14, 483
defining a structure 534
defining a union type 568
definition of an enumeration type 580
definition repetition loops see counter-controlled

loops 126
definition statement 7, 110

delay function 144
demotion 52
dereference operator 195
dereferencing a pointer 194
derived data types 189, 212
derived data types

array type 6
function type 6
pointer type 6

determination of scope of an identifier 412
device files 630
digraph sequences 504, 520
direct indexing 211, 445
direct member access operator also dot

operator 543
direct recursion 282
directive handling 479
Disk Operating System see DOS 572
divide-and-conquer strategy 258, 330, 333, 335
division operator 50, 54
do clause 131
DOS 572
do-while body 131
do-while statement 131
dummy operator 95
dup function 665
dynamic array 470
dynamic link 287
dynamic memory allocation 425, 432, 444
dynamically allocated array 448

E
EBCDIC 480
element type 185
ellipses 301
else body 116
else clause 116
empty string 341
end of file 646
end-of-file character 646, 666
entry-controlled loops 147
enumeration constants 580, 600
enumeration set 580
enumeration tag-name 580
enumerators 580
EOF character 646
EOF macro 493
equivalent types 414

740 Index

error directive 482, 496
escape sequences 12, 479
evaluating arithmetic expressions 51
executable file 630
executable statements 16, 107, 263
executing a program 17
execution character set 480
execution of C program 265
exit-controlled loops 147
explicit initialization 442
explicit type casting 200
explicit-type conversion 67, 68
exponent 30
expression 48
expression statement 106, 110
expression syntax error 70
extern storage class specifier 420, 425
extern storage class 430
external identifier 412
external linkage 420
extra segment 227, 443

F
far pointer 227
fdopen function 665
feof function 646
ferror function 648
fflush function 657
fgetc function 637
fgetpos function 642
fgets function 648
Fibonacci series 174, 285, 472
fields see structure members 536
file descriptor 630, 660
file handle 665
file I/O 630
file pointer 633
file position indicator 638, 641
file scope 412, 413
file status flags 658
file type 657
fileno function 665
files 630
fixed argument functions 299
floating point literal constant 11
floating point mode arithmetic 52
floating point number 30
flow control statements 113

branching statements 113

selection statements 113
jump statements 113
iteration statements 113

Floyd’s triangle 178
flushall function 657
flushing the streams 654
for body 127
for header 127
for statement 127
formal parameters 268
format specifier(s) 18, 19, 28
format string 18
formatted input 650
formatted output 650
forward jump 124
fprintf function 650
fputc function 638
fputs function 648
fread function 652
free function 436
free-flow language 2
freopen function 665
fscanf function 650
fseek function 643
fsetpos function 644
ftell function 641
full expression 66, 85
full path see absolute path 634
fully buffered stream 632
function call operator 265
function call see function invocation 264, 265
function call statement 107, 265
function declaration 260, 263
function designator 194, 261, 294
function implementation see function

definition 263
function invocation see function call

statements 110, 264
function pointer 293
function prototype scope 412, 414
function prototype see function

declaration 261
function scope 412, 414
function type 293
function type derivation 293
function use see function invocation 264
function with inputs and no output 267
function with inputs and one output 269
function with inputs and outputs 273
function with no input-output 264

Index 741

function-like macros 483, 484, 507
functions 14, 258, 507
fwrite function 652

G
garbage value 28
Gauss-Jordan elimination method 251
general-purpose language 2
generic pointer 200
getc macro 637, 661
getchar function 346
gets function 346
global declaration 14, 15
global identifier 412
global namespace pollution problem 449
global scope 412
global variable 107
goto statement 123
Greedy Tokenizer 86

H
harmonic mean 529
header of a function 16, 263
heap 436, 443
heterogenous data 215
high-level language 2
hold character 660
holes 546
homogeneous data 184
huge pointer 227

I
I/O using streams 633
identifier-labeled statement 111
identifiers 4, 54
IEEE 754 30
if-else statement 116
if body 114, 116
if controlling expression 114
if header 114
if ladder 118
if statement 114
if-else controlling expression 116
if-else header 116
illegal pointer operations 200

implicit initialization 442
implicit-type conversion 51, 68
improved maintainability 259
inactive 287
include directive 22, 495
incomplete type 536
increment operator 50, 53
indefinite repetition loops see sentinel-controlled

loops 132
index see also subscript 185
indexed variable see also subscripted

variables 185
indirect member access operator also arrow

operator 543, 555
indirect recursion 282
indirection operator 195
infinite recursion 283, 327
information hiding 259
initialization 60, 442
initialization list 139, 187, 541
initializer 187
insertion sort 240
Institute of Electrical and Electronics Engineers
see IEEE 30

Instruction Pointer see IP 312
integer literal constant 11
integer mode arithmetic 51
integral data type 25, 38
Integrated Development Environment
see IDE 23

inter-segment access 227
interactive files 630
internal linkage 422
internal padding 549, 596
International Organization for Standardization
see ISO 2

interpreter 479
interrupt programming 575
interrupts

hardware interrupt 572
software interrupt 572

Interrupt Service Routine see ISR 572
Interrupt Vector Table see IVT 573
intra-segment access 227
inverted search set 345
invertible matrix 251
ISO 646 480
ISO8859 480

742 Index

ISO8859-1 480
ISO8859-2 480
ISO8859-16 480
ISR 572
iteration statements

do-while statement 126
for statement 126
while statement 126

IVT 573

J
jump statement 109, 114, 123

break statement 123
continue statement 123
goto statement 123
return statement 123

jumping see unconditional branching

K
keywords also reserved words 5, 146

L
L-value

modifiable l-value 9
non-modifiable l-value 9

L-value required error 53, 69
label name 111
labeled statements 111
Least Significant Bit see LSB 169
length of a string 341
length of a data type 8
lexical analyzer 86
library functions 297
library of mathematical functions 298
library of standard input/output functions 299
library of string processing functions 299
lifetime 424, 425

allocated 425
automatic also local 425
static also global 425

limitation of enumeration type 586
limitations of arrays 211
line buffered stream 632, 654
line directive 482, 496
line input 648
line output 648

line splicing 39, 479, 481
linear arrays see one-dimensional arrays 186
linear recursion 286
linear search 239
linkage

external linkage 420
internal linkage 420
no linkage 420

linked list 537, 554
linking 503
list of strings 369
literal constant

character literal constant 11
floating point literal constant 11
integer literal constant 11
string literal constant 11

little-endian format 92
loading 503
local declaration 412
local scope 412
local variables 287
logical AND 57
logical data streams 631
logical NOT 57
logical operators 50
logical OR 57
logical source lines 481
longhand declaration 6
loop counter 126
looping statement 107
lower triangular matrix 250

M
machine code 137
machine-word boundary alignment of structure

members 546
macro 483
macro expansion 479, 484, 505
macro name 483
macro replacement directive 482, 483
magic number 30
magical white space 484
malloc function 432
mantissa 30
matrix see two-dimensional arrays 203
matrix addition 246
matrix inverse 251
matrix multiplication 246

Index 743

matrix transpose 248
member-by-member copy 545
memory allocation 8
memory leak 436
memory representation of multi-dimensional

arrays
column major order of storage 208
row major order of storage 208

merge sort 330
miscellaneous operators 50, 61

address-of operator 61
array subscript operator 61
comma operator 61
conditional operator 61
function call operator 61
indirection operator 61
member select operator 61
direct member access operator also

dot operator 61
indirect member access operator also

arrow operator 61
sizeof operator 61

mixed mode arithmetic 52
modifiable l-value 53
modularization 258
modulus operator 50, 55, 169
Most Significant Bit see MSB 24
mouse programming 579
multi-line comments 27, 510
multiplication operator 50
mutually recursive functions 282

N
n-ary recursion 291
n-D array 203
name resolution 418, 419
named structure type 540
near pointer 227
negative integral numbers 24
nested if statement 118
nested if-else statement 118
nested loop 134, 146, 207
nested structures 560
new line character 39
newly created data type 535
no linkage 424
non-executable statements 16, 107, 263
non-printable character literal constant 12

non-tail recursion 284
NULL 201
null character 340, 351
null directive 482, 502
null macro 493
null pointer 196, 201
null statement 109, 110

O
object-like macros 483
offset address 195
offsetof macro 597
one definition rule 416
one’s complement 24, 97
opening a stream 633
operand 48
operations on structures

aggregate operations 543
segregate operations 543

operations on void pointer 200
operator 48, 54
operator precedence problems 485
out-of-bound index 189

P
pack size 547
padding 552
padding bytes 546
palindrome 172, 404
parameter list 261
parameter-type list 261
parameters 287
parentheses 18
parity 586
parity checking 586
partitioning 333
pass by address 273
pass by value 273
passing a structure object to a function 561
passing arrays to functions 275
passing one-dimensional arrays to

functions 276
passing two-dimensional arrays to

functions 277
perfect number 172
phases of translation 479
phonebook application 619

744 Index

physical source lines 481
pivot element 333
plane size specifier 209
pointer 192
pointer arithmetic 197
pointer subtraction 198
pointer to a pointer 193, 210
pointer to a stream 633
pointer to an array 210
pointer type see pointer 184
pointers to functions 292
pointers to structures 554
portable language 2
post-decrement operator 54
post-increment operator 53
practical application of unions 571
pragma directive 482, 497, 550
#pragma exit 499
#pragma option 497
#pragma startup 499
#pragma warn 498
pre-decrement operator 54
pre-defined functions see library

functions 297
pre-increment operator 53
precedence 49
precision specifier 37
predefined macros 491
preprocessing 503
preprocessing token 481
preprocessor 478, 479
preprocessor directive(s) 14, 15, 107, 478, 482
primitive data types see basic data types 6
principal diagonal elements 248
printable character literal constant 12
printf function 349
printing strings on the screen 349
procedural language 2
processor see microprocessor 572
programmer-defined functions see user-defined

functions 259
promoted 51
putc macro 638, 662

Q
qualified constants 13, 60, 96
qualifiers see type qualifier 7
quick sort 333

R
R-value 9
random access files 643
range 8, 26
Read Only Memory see ROM 572
readability 259
reading strings from the keyboard 343
realloc function 434
recurrence relation 283
recursion 282
recursive case 283
recursive function 282
reference type 192, 194
referencing a bit-field 588
referencing operation 194
register storage class 428
registers 312
register window 323
relational operators 50, 56

equal to operator 56
greater than operator 56
greater than or equal to operator 56
less than operator 56
less than or equal to operator 56
not equal to operator 56

relationship between arrays and pointers 202
relative path 634
reserved word(s) 5, 54, 146
return expression 270
return statement 126, 270
rewind function 646
role of ellipses 301
role of header files 297
row major order of storage 208
row size specifier 204, 209
run-time initialization 442

S
same scope 414
saved state 287
scalar types 62
scope 412
scope of macro definitions 494
search set 344
segment address 195
segregate operations 553
selection see conditional branching 114

Index 745

selection sort 242
selection statements

if-else statement 114
if statement 114
switch statement 114

self-referential structure 536
sentinel value 132
separators 54, 81, 82
sequence point 487
sequential access files 643
setbuf function 656
setvbuf function 654
shadowing 418
shorthand assignment operators 60
shorthand declaration 6, 261
side-effect 486
sign-two’s complement representation 24
simple expression 48, 108
single-dimensional array see also one-dimensional

array 186
single subscripted variables see one-dimensional

arrays 186
size specifier(s) 187, 204, 209
sizeof operator 21, 63, 202, 548, 568, 583, 589
sleep function 144
solution to dangling else problem 118
source character set 480
source file inclusion directive 482, 495
source language 478
splicing 481
stack 287, 443, 558
stack segment 443
standard input streams 381
standard streams 631, 664
statement 106
static array 470
static local variable 439
static memory allocation 425, 444
static storage class specifier 422
static storage class 429
statically allocated array 448
stepwise refinement 258
storage classes 425
storage class specifiers

auto 425
extern 425
register 425
static 425
typedef 425

storage duration 424

storing flag values 601
strcat function 354
strchr function 361
strcmp function 355
strcmpi function 357
strcpy function 353
stream 380, 630, 631, 664
stream buffering

full buffering 654
line buffering 654
no buffering 654

stream redirection 664, 665
stricter alignment 547
strictly aligned member 547
strictly upper triangular matrix 250
string library functions 352
string literal see string literal constant 340
string literal constant 13, 340
string type 341
string variable 343
stringification 488
stringizing operator 488
strlen function 353
strlwr function 358
strncat function 365
strncmp function 367
strncmpi function 368
strncpy function 364
strnset function 369
strongly typed language 304
strrchr function 362
strrev function 358
strset function 360
strstr function 363
struct BYTEREGS 575
struct WORDREGS 575
structure declaration-list 534
structure members 536
structure object 541
structure of a C program 14
structure padding 546
structure programming language 123
structure tag-name 534
structure type 535
structured-type definition see structure

definition 534
structures 534
strupr function 359
sub-expression 66, 85
subtraction operator 50

746 Index

subscript 189
subscript operator 189
subscripting 191
switch body 118, 119
switch header 118
switch selection expression 118
switch statement 118
symbolic constants see also object-like

macro 14, 483, 600
symmetric matrix 249

T
tab character 39
tagged structure type 540
tail recursion 284
target language 478
temporary storage 287
termination of scope of an identifier 413
terminator 82, 109
testing 259
text file(s) 630, 652
text mode 632
text stream 632, 666
three-dimensional arrays 208
token 54, 481
tokenization 479, 481
tokenizer 86, 481
token concatenation 490
token pasting 490
token replacement 488
top-down design 258
Tower of Hanoi problem 288
tracing 265, 323
tracking union field 599
trailing padding 549
translation limits 536
translation unit 413
translators 478, 503
trigraph replacement 479, 480
trigraph sequence(s) 480, 504, 520
truncation 52
two’s complement 24, 89, 97
two-dimensional arrays 203
type see data type 6

basic data types 6
derived data types 6
user-defined data types 6

type cast operator 67, 97

type checking 262, 301
type modifiers

long 7
short 7
signed 7
unsigned 7

typedef storage class specifier 540, 566
typedef storage class 431
type qualifiers

const qualifier 7
volatile qualifier 7

U
unary minus operator 50, 52
unary operators 50
unary plus operator 50, 52, 95
unbuffered input functions 347, 348
unbuffered stream(s) 632, 654
unconditional branching see jump

statements 114
undef directive 492, 493
undesirable semicolon 487
union REGS 575
unions 568
unnamed bit-field 587, 590, 601
unnamed structure type 538
unstructured jumping 123
unwinding of recursion 287
upper triangular matrix 250
usage of a two-dimensional array 205
usage of single-dimensional array 188
use of library functions 298
user-defined data types 534

enumeration 7
structure 7
union 7

user-defined functions 259

V
value-at operator 195
variable argument functions 300, 301
variables 10
va_arg 300
va_end 300
va_start 300
vectors see one-dimensional arrays 186
visibility of an identifier 417

Index 747

void functions 265
void pointer 197, 200

W
warning 307
while body 129
while clause 131
while controlling expression 129
while header 129

while statement 129
white space characters 67

blank space character 4
carriage return 4
form feed character 4
horizontal tab space character 4
new line character 4

width specifiers 36
winding of recursion 286
wrap around 26, 37

	Cover
	Programming in C
	Copyright
	Contents
	About the Author
	Preface
	1 Data Types, Variables and Constants
	1.1 Introduction
	1.2 C Standards
	1.2.1 Kernighan & Ritchie (K&R) C Standard
	1.2.2 ANSI C/Standard C/C89 Standard
	1.2.3 ISO C/C90 Standard
	1.2.4 C99 Standard

	1.3 Learning Programming Language and Natural Language: An Analogy
	1.4 C Character Set
	1.5 Identifiers and Keywords
	1.5.1 Identifiers
	1.5.2 Keywords

	1.6 Declaration Statement
	1.7 Data Types
	1.7.1 Basic/Primitive Data Types
	1.7.2 Derived Data Types
	1.7.3 User-defined Data Types

	1.8 Type Qualifiers and Type Modifiers
	1.8.1 Type Qualifiers
	1.8.2 Type Modifiers

	1.9 Difference Between Declaration and Definition
	1.10 Data Object, L-value and R-value
	1.10.1 Data Object
	1.10.2 L-value
	1.10.3 R-value

	1.11 Variables and Constants
	1.11.1 Variables
	1.11.2 Constants

	1.12 Structure of a C Program
	1.12.1 Comments
	1.12.2 Section1: Preprocessor Directive Section
	1.12.3 Section 2: Global Declaration Section
	1.12.4 Section 3: Functions Section

	1.13 Executing a C Program
	1.14 More Programs for Startup
	1.15 Summary
	Exercise Questions
	Conceptual Questions and Answers
	Code Snippets
	Multiple-choice Questions
	Outputs and Explanations to Code Snippets
	Answers to Multiple-choice Questions
	Programming Exercises
	Test Yourself

	2 Operators and Expressions
	2.1 Introduction
	2.2 Expressions
	2.2.1 Operands
	2.2.2 Operators

	2.3 Simple Expressions and Compound Expressions
	2.3.1 Precedence of Operators
	2.3.2 Associativity of Operators

	2.4 Classification of Operators
	2.4.1 Classification Based on Number of Operands
	2.4.2 Classification Based on Role of Operator

	2.5 Combined Precedence of All Operators
	2.6 Summary
	Exercise Questions
	Conceptual Questions and Answers
	Code Snippets
	Multiple-choice Questions
	Outputs and Explanations to Code Snippets
	Answers to Multiple-choice Questions
	Programming Exercises
	Test Yourself

	3 Statements
	3.1 Introduction
	3.2 Statements
	3.3 Classification of Statements
	3.3.1 Based Upon the Type of Action they Perform
	3.3.2 Based Upon the Number of Constituent Statements
	3.3.3 Based Upon their Role

	3.4 Summary
	Exercise Questions
	Conceptual Questions and Answers
	Code Snippets
	Multiple-choice Questions
	Outputs and Explanations to Code Snippets
	Answers to Multiple-choice Questions
	Programming Exercises
	Test Yourself

	4 Arrays and Pointers
	4.1 Introduction
	4.2 Arrays
	4.3 Single-dimensional Arrays
	4.3.1 Declaration of a Single-dimensional Array
	4.3.2 Usage of Single-dimensional Array
	4.3.3 Memory Representation of Single-dimensional Array
	4.3.4 Operations on a Single-dimensional Array

	4.4 Pointers
	4.4.1 Operations on Pointers
	4.4.2 void pointer
	4.4.3 Null Pointer

	4.5 Relationship Between Arrays and Pointers
	4.6 Scaling up the Concept
	4.6.1 Array of Arrays (Multi-dimensional Arrays)
	4.6.2 Array of Pointers
	4.6.3 Pointer to a Pointer
	4.6.4 Pointer to an Array

	4.7 Advantages and Limitations of Arrays
	4.8 Summary
	Exercise Questions
	Conceptual Questions and Answers
	Code Snippets
	Multiple-choice Questions
	Outputs and Explanations to Code Snippets
	Answers to Multiple-choice Questions
	Programming Exercises
	Test Yourself

	5 Functions
	5.1 Introduction
	5.2 Functions
	5.3 Classification of Functions
	5.3.1 Based Upon who Develops the Function
	5.3.2 Based Upon the Number of Arguments a Function Accepts

	5.4 Summary
	Exercise Questions
	Conceptual Questions and Answers
	Code Snippets
	Multiple-choice Questions
	Outputs and Explanations to Code Snippets
	Answers to Multiple-choice Questions
	Programming Exercises
	Test Yourself

	6 Strings and Character Arrays
	6.1 Introduction
	6.2 Strings
	6.3 Character Arrays
	6.4 Reading Strings from the Keyboard
	6.5 Printing Strings on the Screen
	6.6 Importance of Terminating Null Character
	6.7 String Library Functions
	6.7.1 strlen Function
	6.7.2 strcpy Function
	6.7.3 strcat Function
	6.7.4 strcmp Function
	6.7.5 strcmpi Function
	6.7.6 strrev Function
	6.7.7 strlwr Function
	6.7.8 strupr Function
	6.7.9 strset Function
	6.7.10 strchr Function
	6.7.11 strrchr Function
	6.7.12 strstr Function
	6.7.13 strncpy Function
	6.7.14 strncat Function
	6.7.15 strncmp Function
	6.7.16 strncmpi Function
	6.7.17 strnset Function

	6.8 List of Strings
	6.8.1 Array of strings
	6.8.2 Array of Character Pointers

	6.9 Command Line Arguments
	6.10 Summary
	Exercise Questions
	Conceptual Questions and Answers
	Code Snippets
	Multiple-choice Questions
	Outputs and Explanations to Code Snippets
	Answers to Multiple-choice Questions
	Programming Exercises
	Test Yourself

	7 Scope, Linkage, Lifetime and Storage Classes
	7.1 Introduction
	7.2 Scope
	7.2.1 Determination of Scope of an Identifier
	7.2.2 Termination of Scope of an Identifier
	7.2.3 Same Scope
	7.2.4 Visibility of an Identifier

	7.3 Linkage
	7.3.1 External linkage
	7.3.2 Internal Linkage
	7.3.3 No Linkage

	7.4 Storage Duration/Lifetime of an Object
	7.5 Storage Classes
	7.5.1 The auto Storage Class
	7.5.2 The register Storage Class
	7.5.3 The static Storage Class
	7.5.4 The extern Storage Class
	7.5.5 The typedef Storage Class

	7.6 Dynamic Memory Allocation
	7.6.1 Memory Leak

	7.7 Summary
	Exercise Questions
	Conceptual Questions and Answers
	Code Snippets
	Multiple-choice Questions
	Outputs and Explanations to Code Snippets
	Answers to Multiple-choice Questions
	Programming Exercises
	Test Yourself

	8 The C Preprocessor
	8.1 Introduction
	8.2 Translators
	8.3 Phases of Translation
	8.3.1 Trigraph Replacement
	8.3.2 Line Splicing
	8.3.3 Tokenization
	8.3.4 Preprocessor Directive Handling

	8.4 Summary
	Exercise Questions
	Conceptual Questions and Answers
	Code Snippets
	Multiple-choice Questions
	Outputs and Explanations to Code Snippets
	Answers to Multiple-choice Questions
	Programming Exercises
	Test Yourself

	9 Structures, Unions, Enumerations and Bit-fields
	9.1 Introduction
	9.2 Structures
	9.2.1 Defining a Structure
	9.2.2 Declaring Structure Objects
	9.2.3 Operations on Structures

	9.3 Pointers to Structures
	9.3.1 Declaring Pointer to a Structure
	9.3.2 Accessing Structure Members Via a Pointer to a Structure

	9.4 Array of Structures
	9.5 Structures within a Structure (Nested Structures)
	9.6 Functions and Structures
	9.6.1 Passing Each Member of a Structure Object as a Separate Argument
	9.6.2 Passing a Structure Object by Value
	9.6.3 Passing a Structure Object by Address/Reference

	9.7 typedef and Structures
	9.8 Unions
	9.9 Practical Application of Unions
	9.9.1 Calling DOS and BIOS Functions
	9.9.2 Interrupt Programming

	9.10 Enumerations
	9.11 Bit-Fields
	9.12 Summary
	Exercise Questions
	Conceptual Questions and Answers
	Code Snippets
	Multiple-choice Questions
	Outputs and Explanations to Code Snippets
	Answers to Multiple-choice Questions
	Programming Exercises
	Test Yourself

	10 Files
	10.1 Introduction
	10.2 Files
	10.3 Streams
	10.4 I/O Using Streams
	10.4.1 Opening a Stream
	10.4.2 Closing Streams
	10.4.3 Character Input
	10.4.4 Character Output
	10.4.5 File Position Indicator
	10.4.6 End of File and Errors
	10.4.7 Line Input
	10.4.8 Line Output
	10.4.9 Formatted Input
	10.4.10 Formatted Output
	10.4.11 Block Input
	10.4.12 Block Output
	10.4.13 Stream Buffering and Flushing the Streams

	10.5 File Type
	10.6 Files and Command Line Arguments
	10.7 Summary
	Exercise Questions
	Conceptual Questions and Answers
	Code Snippets
	Multiple-choice Questions
	Outputs and Explanations to Code Snippets
	Answers to Multiple-choice Questions
	Programming Exercises
	Test Yourself

	Appendix A: Number Systems
	A.1 Number systems
	A.2 Number System Conversions
	A.2.1 Conversion from Decimal Number System to any Other Number System
	A.2.2 Conversion from Any Other Number System to Decimal Number System
	A.2.3 Conversion from Binary Number System to Octal and Hexadecimal Number System
	A.2.4 Conversion from Octal and Hexadecimal Number System to Binary Number System

	Appendix B: Algorithms and Flowcharts
	B.1 Algorithm
	B.2 Flowcharts

	Appendix C: Translation Limits
	Appendix D: ROM-BIOS and DOS Services
	Appendix E: Graphics Programming
	E.1 Computer Graphics
	E.2 Initializing Graphics Mode in Turbo C 3.0
	E.3 Drawing Basic Shapes
	E.3.1 Simple Line Drawing
	E.3.2 Stylish Line Drawing
	E.3.3 Drawing Other Basic Shapes

	E.4 Region Filling
	E.4.1 Filling Regions with Different Patterns and Colors

	E.5 Pattern Drawing Based on Regular Polygons
	E.5.1 Drawing Rosettes
	E.5.2 Swirling Polygons

	E.6 Motif and Tiling
	E.7 Viewport and Clipping

	Appendix F: Answers to Test Yourself Questions
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

