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A Call to Action1

A
s the popularity of the Internet has grown, so has the number of individuals
who use it to attack others. Most targeted attacks, viruses, and worms have
been made possible by vulnerabilities in software that read untrusted data

from the network. For years, consumers have ignored the existence of software
flaws, and the response to their existence by the IT industry has been the creation
of defenses at the perimeter of the network. These defenses have taken the form of
firewalls, routers, antivirus software, patch update applications, e-mail filters, and
other applications that attempt to protect the user from external attackers. The
standard practice has been to draw a line in the sand, with the bad guys on one side
and critical information assets on the other. This is the paradigm that has driven the
network security market for years, but it makes one fatal assumption: that we can
detect and prevent malicious actions at the network level. Despite the onslaught of
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new products and marketing literature from network security vendors, though,
security is not a problem that can be solved completely with better firewalls and
antivirus software.

SECURITY AS A CALL TO ACTION FOR DEVELOPERS

The key issue is that data used to exploit these flaws is usually completely indistin-
guishable from legitimate application data when viewed at the network level and
out of context. Consider, for example, the following hexadecimal values:

6A0068B0FB110068D5FB11006A00FF1588204000

If these characters are interpreted as ASCII values (text), we have the following
string:

jh°ûhÕûjÿˆ @

If these characters are a part of an image, an audio file, an executable, or a data
file, these values can be interpreted as almost anything. The reason our data is not
immediately recognizable as something is that what it is depends on the context in
which it’s interpreted. Without exact knowledge of the expected inputs of an ap-
plication, a firewall can’t determine whether this input is intended or unintended,
malicious or benign. If the applications themselves cannot determine correct from
incorrect input in some cases, how can an outside appliance?

In one context, our code is actually quite malicious. When supplied in exactly
the right place, as part of a long string passed to an unchecked buffer on the stack,
it can be interpreted as machine instructions that cause a Windows message box to
appear within the affected application (see Figure 1.1). Maybe a message box is not
that malicious. However, similar sized snippets of machine code can do some very
malicious things, including formatting the disk drive or bootstrapping additional
functionality.

FIGURE 1.1 A Windows message box
created with our shell code.



Without specific knowledge of the buffer overflow vulnerability and in-depth
knowledge of the state of the application reading this data, a firewall has no hope of
protecting the vulnerable system. The same holds true of many other add-on soft-
ware protections that have the near impossible task of generically patching against
flaws in software.

Our only hope then is to address vulnerabilities at their root: in software. Se-
curity is a problem that needs to be wholeheartedly addressed by software develop-
ers and testers and it is a problem that must be addressed by the development
organization and not just pushed to operations. But, obstacles exist. The software
development community has seen a rash of new programming paradigms, method-
ologies, and development environments, and still the number of security flaws in
software has risen substantially over the last several years. Figure 1.2 shows the
number of new vulnerabilities reported to CERT from 1999 to 2003. 

A Call to Action 5

ANATOMY OF A SHELLCODE

Our code from the first example is really a tiny program, sometimes called a
shellcode, within the security community. Shellcode is malicious code that is
intended to execute inside an exploited application. This particular block of
code (see Table 1.1 for an interpretation of the block) launches a Windows
message box,

In the strictest sense, this is not “shellcode” because it doesn’t launch a
shell. The term has evolved, however, to be used interchangeably with hexa-
decimal machine instructions that are executed through a vulnerability like a
buffer overflow. 

TABLE 1.1 Shell Code Interpretation

6A 00 Push x00 Parameter describing type
of message box.

68 B0 FB 11 00 Push x0011FBB0 Pointer to the message box
caption text.

68 D5 FB 11 00 Push x0011FBD5 Pointer to message box
body text.

6A 00 Push x00 Handle to a window.

FF 15 88 20 40 00 Call User32.MessageBoxA Calling the Windows
message box function. In
this case we are calling
indirectly through a pointer.
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The graph in Figure 1.2 shows the number of new vulnerabilities reported in
software doubling yearly from 1999 to 2002, and software vulnerabilities were reach-
ing epidemic proportions. In 2002 the biggest names in the commercial software de-
velopment industry—companies like Microsoft and IBM—shifted the way they
were building software in response to the need for security. They began pushing se-
curity into all stages of the development lifecycle, and books emerged such as
Michael Howard and David LeBlanc’s Writing Secure Code [Howard02] that finally
offered a roadmap for developers to make more secure software. Perhaps the biggest
push came from Microsoft, who invested heavily in training for developers and
testers and implemented their Trustworthy Computing Security Development Life-
cycle (published publicly in December 2004 [Lipner04]). This security push by the
large vendors ignited an industry-wide awareness of security that had immediate im-
pact in rapid production environments such as e-commerce sites, thus lowering the
number of new vulnerabilities reported. The expectation is that this trend will con-
tinue to be felt as old products are replaced with newer versions that have had the
benefit of this paradigm shift. Corporations, governments, and vendors have begun
to realize that we need to look at software bugs, requirements, and development dif-
ferently to adapt to the new security-savvy consumer. We wrote this book to help
both software developers and testers better understand the underlying security flaws
in software and to be an easy reference guide to security bugs in software.

Why Care about Security

For many corporations, security now has a better understood business case. Soft-
ware vendors are witnessing the emergence of the security-aware consumer, one

FIGURE 1.2 The number of new vulnerabilities reported to CERT from
1999 to 2003. Data compiled by CERT [Cert04].

Number of New
Vulnerabilities
Reported in

Software

Year
*Source: CERT/CC



who makes purchasing decisions not just on initial price and utility, but who also
demands proof that vendors have done a reasonable job of security testing their
products. Corporations are now starting to consider the “total cost of ownership”
of an application instead of just the cost to purchase and deploy it. They are start-
ing to realize that downtime, data theft, and cyber-vandalism made possible by se-
curity flaws in software are part of the cost incurred by deploying vulnerable
software. Technology analyst firms now advise their clients to demand some proof
of security due diligence from their software vendors. What does this mean for de-
velopment organizations? Certainly no generally accepted certifications or stan-
dardized test suites exist to verify an application or a solution as secure. Business
consumers, though, are likely to be the first to ask the tough questions. How well
versed are your developers on security? How was this product tested? What secure
coding practices did you follow? What methods, processes, techniques, out-
sourcers, and people did you devote to making sure this product isn’t riddled with
security holes? In competitive software markets, such as databases, how well a ven-
dor is prepared to answer these questions might be the single biggest factor in who
wins the contract. Software security is more than a vendor problem, though. Most
corporations write a significant amount of software for internal use or for the Web.
Now, more than ever, this software needs to be developed with security in mind
and tested for resilience to inevitable attack.

A Call to Action 7

VALIDATE ALL INPUT!

Nearly half of all the attacks in this book are the result of malicious user input
that has a security side effect. Part III of this book deals with this problem in de-
tail. Poor input validation is the cause of most of the vulnerabilities described
in Part VI of this book as well. The classic user input vulnerability, the buffer
overflow, results from copying data past the end of a buffer on the stack, which
can overwrite the return pointer (the address to which control flow returns
when a procedure is exited) with arbitrary data. If this occurs in data that
comes from a remote system (such as a request to a server application), an at-
tacker can use this side effect behavior to take control of the application. Con-
sider the following two snippets of C++ code:

char buf[BUF_SIZE];

char* input = getRemoteUserInput();

strcpy(buf, input);



Thinking Differently about Security

In a typical development project we move from requirements and specifications to
design and code. Requirements tell programmers what an application, component,
or function should do. They are usually pretty good at describing how component
interfaces should work, the type of data (or inputs) these components will receive,
the manipulation that should be done on data, and the eventual outputs of a mod-
ule. Developers are then tasked with writing components, and testers create tests that
feed the application data and look for the presence of correct output. Requirements
are great to test against because the verification process boils down to translating
specifications of what a product is designed to do and then running test cases that
check to see if actual behavior matches specified behavior. The problem with secu-
rity defects is that the focus of the process has been on creating the correct result
without focusing on how the application produces that result.

It’s the “how” and the “what else did the application do” that are important to
security. Consider a simple function that accepts a string of five characters and is
expected to return a string, also five characters long but with the characters in re-
verse order. Therefore, if you were to supply the string “12345”, you would expect
the output to be “54321”. These are very simple requirements for a very basic func-
tion. It’s easy to imagine test cases for this function, a series of strings with varying

8 The Software Vulnerability Guide

and

char buf[BUF_SIZE];

char* input = getRemoteUserInput();

strncpy(buf, input, BUF_SIZE-1);

For user inputs of lengths less than BUF_SIZE-1, the two snippets behave
similarly. However, if the user supplies an input that is BUF_SIZE or greater, the
two snippets behave differently. strcpy continues copying the user-supplied
data until it finds a null character in the input, overwriting whatever data fol-
lows buf in memory. strncpy copies only the first BUF_SIZE bytes, truncating the
input but preserving the integrity of the stack, diminishing the chances of a
buffer overflow. For this reason, strncpy, and bounded copying generally, is
preferred over unbounded copying. If this doesn’t make sense, don’t worry.
Part III of this book explains this in great detail. In the mean time, though, stop
using strcpy!



characters, all with verifiable results. The astute functional tester would certainly try
to vary the length of the input by applying strings of zero length up to hundreds or
thousands of kilobytes, expecting to receive an error message if the string was not
exactly five characters long. Different developers might choose to implement this
function in different ways, possibly using arrays, structures, or temporary files.
Each implementation of our simple function might be functionally correct and
might pass the test cases discussed. Now, imagine that some other, unspecified se-
curity concerns were at play. What if this string were a password or an encryption
key? In this case, the requirements would undoubtedly be the same, but the imple-
mentation that stores the string in a temporary file would be grossly insecure. In
this case, for example, the functionally correct option of writing the string out to 
a temp file obviously wouldn’t be a good idea. We see then that there can be a 
discrepancy between secure and correct. This is because security is contextual—it
depends on the totality of circumstances, and this can be different for different ap-
plications. It can also be different from what the developer expected. This is why se-
curity understanding by developers is so important; no add-on tool or technology
can adequately determine this context.

Partly this is due to a lack of education. It is rare that a software developer
knows how easy it is to exploit a buffer overflow or that a Web developer under-
stands how to use SQL injection to gain control of a Web server and its data. Yet, a
motivated teenager can learn these skills in a matter of days in the back alleys of the
information superhighway. It isn’t difficult then to understand why attackers are
often so successful at breaking applications and breaking into networks. To build
applications that are more resistant to attackers, software developers and testers
need to understand these techniques. For each vulnerability discussed in this book,
we provide some insight into the attacker mindset and the techniques that are used
every day to find and exploit software security flaws. To build and deploy secure
systems we must know the tools and techniques of our adversaries.

Entering the Era of Software Security

The new focus of consumers on security has forced vendors to commit to produc-
ing more secure software. Developers are starting to become more attuned to the
security implications of their code. Also we have a new breed of software tester, one
who is focused exclusively on security. Organizations are also beginning to realize
the limitations of network defenses when it comes to preventing attack. When we
have this in mind, we can see that the responsibility to make their products more
secure falls squarely on the shoulders of designers, architects, developers, and
testers. As corporations realize that firewalls and other perimeter defenses are ulti-
mately an incomplete defense for their organization, they are now starting to ask

A Call to Action 9



software vendors the tough questions about security: Do you have a dedicated team
to assess and respond to security vulnerability reports in your products? What
process improvements have you made as a result of vulnerabilities reported in your
software? What training does your development and testing organizations receive
on security? What percentage of your test team is focused on security? For many
software vendors, the answers to these questions can be concerning.

Security, though, has become a significant market discriminator for software
products. The result is a strong push for vendors to fortify their applications and
the critical need for information to help developers and testers make the products
they ship more secure. However, the development, design, and test communities
still have a fundamental lack of knowledge of security. This need is especially acute
given that until recently there was no course on secure programming techniques or
security testing in any Computer Science curriculum at any university in the United
States. Some progress is being made in this area. Professor Daniel J. Bernstein
recently taught an experimental vulnerability course at the University of Chicago.
The students in this class were told to use techniques taught in the class to find vul-
nerabilities in open source software. The exercise resulted in 44 bugs [Lemos04]. In
addition, the NSA’s Center of Excellence program provides a unified computer
security curriculum to universities that adopt it. While this curriculum is focused
on security primarily from a U.S. government perspective, its goal of introducing
security topics into all of the major undergraduate Computer Science courses (data
structures, compilers, etc.) is a welcome step in the right direction [NSA05].

However, novel education methods will do little to cure the security problem
in the short term. Thousands of unaware developers and millions of existing pro-
grams must be dealt with. Helping current developers with existing programs is our
major motivation for writing this book.

WHY WE WROTE THIS BOOK AND WHY YOU SHOULD READ IT

Our business is helping software vendors ship more secure code. We’ve been in-
volved in dozens of security testing projects from leading software vendors and the
U.S. government. We’ve also served as consultants to software vendors to help
them build more secure code, taught courses on secure coding and security testing,
and attended more conferences than either of us can count. While several good
books have been written on secure coding, such as Writing Secure Code mentioned
earlier in the chapter, we found that there were still open questions in the develop-
ment and testing community. In 2003, we addressed some of these needs with the
publication of the book How to Break Software Security [Whittaker03], which was
the first book on application security testing. The book explored security testing

10 The Software Vulnerability Guide



techniques to help software testers find software flaws before their applications
shipped. We had an outpouring of support from the software testing community,
and that book, along with the accompanying courses and lectures, has helped tens
of thousands of software testers to find security vulnerabilities.

Why then another book on software security? The idea for this book came
from our own internal security testing needs. Beyond applying the techniques in
How to Break Software Security, we found that we needed a field guide to security
vulnerabilities themselves. We needed this guide to educate both new security
testers coming into the company and as a reference for us as we developed our own
software. The result was a thorough study of all the reported security vulnerabilities
we could find in software. Our search spanned not only vulnerabilities we had ex-
posed through our own testing projects but those in public databases as well, like
BugTraq, CVE (the Common Vulnerabilities and Exposures list), CERT (the Com-
puter Emergency Response Team, located at Carnegie-Mellon), and many others.
We then started the painstaking process of classifying these vulnerabilities into
groups that would be helpful both for finding and fixing vulnerabilities. Some of
them clustered naturally, while others had more complicated relationships. At first,
the result was an internal pamphlet that we used to help guide our development
and testing efforts. Over time, this pamphlet grew into a full-blown guide to secu-
rity vulnerabilities in software. The material made its way into talks we’ve given at
conferences, and later into our tutorials and magazine articles. Eventually, the de-
mand rose to the level that we felt this information should be disseminated widely
in a book. This book is our final product. 

A Call to Action 11

TOP FIVE THINGS YOU CAN DO TO IMPROVE 
YOUR PRODUCT’S SECURITY

1. Validate all user input. The previous sidebar within this chapter and Part III
of the book explain why this is important.

2. Assume the principle of least privilege. When dealing with a multi-user
system or other system with roles and permissions, limit the privilege of an
application or routine to just those permissions needed to accomplish its
task. Don’t, for example, require that your program be run as a superuser
because you don’t want to worry about file permissions. When you must
elevate privilege, limit the privileged application only to the task required.

3. Don’t trust the source of your information. Too often, programmers as-
sume that because they wrote both the client and server software, or because
they are using a mechanism like SSL to encrypt communication, that they
are effectively in control of both sides of a communication. It is possible to
ensure trust between two applications communicating over the network,
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but it requires a more nuanced solution than just protecting the data in
transit or creating an obfuscated protocol.

4. Learn from the mistakes of others. Online vulnerability databases like Secu-
rityFocus (www.securityfocus.com) or CERT (www.cert.org) are a treasure
trove of information about bad practices and past mistakes. These sites cover
a whole range of software from commercial applications, popular Web sites,
and even hardware appliances. System administrators commonly check
these sites to see what patches are required to maintain (relative) security
within their networks. Developers can benefit from these sites by learning
about the mistakes other programmers have made in applications similar to
theirs. You might even want to download an exploit or two and try it out on
a test system. (Remember, never test against a system that does not belong to
you!) By studying an exploit in a hex editor or debugger, you might gain a
better understanding of the underlying problem than you can by reading the
vulnerability posting, which is often written for a general audience.

5. Think about security as a process, not as a goal or an afterthought. During
each stage of the development process (whatever that might be for you; we
make no claim that one development model is better than another in pre-
venting security vulnerabilities), consider how vulnerabilities can be avoided.
For example, while no programming language is free of vulnerabilities, 
developers should be aware during the language selection process that if C 
or C++ is chosen, additional safeguards such as the use of safe copy routines
are required.

Embedded in these pages are the experiences and knowledge of countless secu-
rity testers, based on tens of thousands of real software vulnerabilities. While such
a guide can never be complete, we focus on the most important security flaws in
software and the methods to find, fix, and prevent them. Each chapter deals with
one specific class of vulnerability. In addition to detailed explanations and exam-
ples, we also provide a summary sheet at the end of each chapter that can be
thumbed to and referenced quickly. 

The vulnerabilities, techniques, and strategies presented in this book span soft-
ware in all forms and on multiple operating systems. While most of the examples
provided in the chapters are given on the Windows, Linux, and Unix platforms, the
underlying vulnerabilities transcend these platforms. The book also addresses vul-
nerabilities that result from applications that were written in a wide variety of pro-
gramming languages. While the risk of certain vulnerabilities might be reduced by
specific programming languages (such as the unlikely event of a buffer overrun for

www.securityfocus.com
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an application written entirely in Java or C#), most of the vulnerabilities discussed
are language independent. Where appropriate, we talk about the differences in pro-
gramming languages and the risks of a particular vulnerability occurring in appli-
cations written in those languages.

Many of the chapters contain source code to illustrate how to find, fix, or pre-
vent a specific vulnerability. For most vulnerabilities the source code examples are
written in C, C++, or Java because of the popularity of these languages in the soft-
ware development community. The exception is Part VI, where HTML, VBScript,
JavaScript, PHP, and Perl dominate the examples. The source code for most of the
book’s examples is included on the CD-ROM that ships with this book.

In many of the chapters we also discuss tools that make the task of finding or
fixing vulnerabilities easier. Most of these tools are freely available for download,
and where possible we have included them on the CD-ROM that comes with this
book.

HOW THIS BOOK IS STRUCTURED

This book was designed to be a reference for developers and testers. Our recom-
mendation is to read it through, cover to cover, once and then keep it handy to ref-
erence as you need it. The book is divided into seven major parts. Part I provides
background material on software security along with information on security tools
that will be used in the book. Parts II through VI are devoted to specific vulnera-
bilities in software with one chapter devoted to one vulnerability class. Part VII
offers some guidance on where we think software security is headed and what types
of vulnerabilities are likely to be on the near horizon.

In many of the chapters we have included example source code. Most of this
code can be found on the CD-ROM that comes with this book. The CD-ROM also
contains free or trial versions of several security tools discussed in the book. 

Whenever a chapter points to a resource included on the accompanying CD-
ROM the CD icon to the left will appear.

The book also contains note icons. 
Note icons like the one on the left highlight common coding mistakes, errors,

or other important information. 
As previously indicated, Parts II through VI of the book are focused on the soft-

ware vulnerabilities themselves, with one chapter devoted to each vulnerability.
Each chapter takes an in-depth look at the vulnerability and discusses techniques
that can be used to find and fix these types of flaws. The general format for each
chapter in these sections is as follows:
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Describing it: We talk about the vulnerability, give examples of the vulnera-
bility in released software, and talk about the types of software that you are
likely to find the vulnerability in. 

Finding it: We talk about the tools and testing techniques you can apply to
find this problem in software.

Fixing this problem: We discuss techniques that developers can use to fix
these flaws in software. In many cases we provide both vulnerable source code
and a fixed version of that code. Where appropriate, we also discuss architec-
tural decisions that are likely to prevent this particular class of vulnerability.

At the end of each chapter we also provide a Summary Sheet. This is designed
to be an easy to refer to distillation of information about the vulnerability. The for-
mat for the Summary Sheet is as follows:
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Summary Sheet—Vulnerability

Problem:

This section contains a single paragraph that summarizes the vulnerability.

Potential Impact:

The possible consequences of this type of vulnerability.

Habitat:

In what types of software and under what conditions this vulnerability is likely
to be found.

Tools You Need to Find It: 

A list or brief description of the tools that aid in finding this class of vulnerability.

How to Look for It: 

A one- or two-paragraph description of the testing techniques that can be used
to find this type of vulnerability.

Symptoms of Failure: 

This section summarizes the symptoms of this vulnerability in software.

Famous Failures/Exploits:

A summary of one to three famous instances of this vulnerability in released
software with references.



The bullet list that follows contains a brief description of each part of this book.

Part I—Introduction: The first part of this book provides the tools you need
to fully take advantage of the information presented in the rest of the book.
Chapter 2 talks about the fundamentals of software security and the looming
threat from attackers. This chapter also discusses the fundamentals of network
communications and how data is often manipulated to exploit vulnerabilities
in network-enabled applications. Chapter 3 discusses the tools that you need to
find and fix many of the security problems in your applications. Many of the
tools described in this chapter are used in the discussion of the specific security
vulnerabilities in Parts II–VI.

Part II—System-Level Attacks: This part talks about vulnerabilities that
occur at the system level and usually stem from poor configuration and archi-
tectural decisions made during design and development. Four vulnerabilities
are discussed in this part, each with its own chapter. We discuss issues related
to dynamic linking and loading, as well as common mistakes in the handling of
external resources such as files. We also talk about password and script issues
that allow attackers to enter a system and exploit application logic flaws.

Part III—Data Parsing: Arguably one of the most severe software security
issues in software is the improper parsing of user data. This part takes an in-
depth look at data parsing vulnerabilities and considers the parsing of data that
comes directly from the user (through the user interface [UI]) and also data
from software’s other interfaces, such as the file system and application pro-
gramming interfaces (APIs). Chapter 8 deals with the notorious buffer over-
flow. Buffer overflows have traditionally accounted for a significant number of
security vulnerabilities [Cowan99], and this chapter discusses how this type of
vulnerability can be found, prevented, and fixed. In this part we also discuss
format string vulnerabilities and other errors related to the parsing of data.

Part IV—Information Disclosure: This part deals with coding practices that
leave sensitive data visible to an attacker. We cover vulnerabilities associated
with temporary files, incomplete deletes, exposed data in memory, and visibil-
ity through external software components. This part is particularly important
for applications that must process sensitive data in any form. Applications that
are particularly at risk to the vulnerabilities presented in this part are those that
support digital rights management for the protection of documents or other
media.

Part V—On the Wire: This part addresses vulnerabilities that can be ex-
ploited by either intercepting or tampering with data in transit. Specifically, we
look at spoofing vulnerabilities, race conditions, and applications that reveal
too much information to an attacker through network-based error messages.

A Call to Action 15



Part VI—Web Sites: This, the longest part in the book, deals exclusively with
vulnerabilities that affect Web applications. Web-based applications, be they
intranet or Internet facing, must be protected against malicious users. This
part presents the most common security issues with Web applications by ex-
amining the nine most common vulnerabilities found in applications that run
on the Web.

Part VII—Conclusion: The last part (and chapter) of the book takes a look at
the emerging trends in software development and where future vulnerabilities
are likely to be concentrated. There is a massive push in the industry to try to
fix some classes of software vulnerabilities generically at the operating system
level. In the Linux world, for example, several flavors of the operating system
such as Immunix now have compiled-in stack protection [Cowan99] to guard
against stack-based buffer overflows in applications. Similarly, Microsoft
(starting in Windows XP SP2) is including stack protection at the operating
system level to try to diminish the application buffer overflow threat. Compiler
writers are also taking up the challenge by including compiler options to reduce
the risk of string-related code flaws resulting in application vulnerabilities. Still
others are taking the virtual machine approach to protecting applications such
as the Java Virtual Machine (JVM) and Microsoft’s push to move applications
toward Managed Code. Hardware vendors have even gotten into the game:
AMD’s 64-bit processor is capable of marking memory pages with a flag that
prevents execution of code. While these efforts will hopefully close the door on
some types of vulnerabilities, new technologies will undoubtedly open others.

We have chosen not to cover a number of topics,  but are worth mentioning.
Physical security, when discussed in terms of computer security, covers access
control by means of locks, badges, cameras, tamper-proofing and tamper-evident
systems, etc. While these are without a doubt important mechanisms for protect-
ing information, we are of the view that if an attacker gains unmonitored, unre-
stricted physical access to your computer, it’s not your computer anymore. As a
result, there aren’t a lot of things a developer can do to prevent or protect against
these kinds of attacks. If you’re interested in this aspect of security, Ross Anderson’s
Security Engineering [Anderson01] covers these issues in detail and is well worth
reading. (We especially enjoyed Chapter 11, “Nuclear Command and Control,”
which is a fascinating discussion of security when failure would have unthinkable
consequences.)

Social engineering is the term computer security professionals use to describe
circumventing security through psychological manipulation of a user, or through
outright trickery. Mass-mailing the customers of a bank and asking them to re-
enter their account information into a bogus Web site is a good example of social
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engineering. (It’s actually a variation of social engineering called phishing, which is
discussed in Chapter 22.) So is lying to an administrator in an attempt to have a
password reset. Some safeguards can be applied to prevent social engineering (such
as the “mother’s maiden name” technique used by some banks), but no clear-cut
technological solution exists.

We also don’t discuss design of secure networks. While 90 percent of all vul-
nerabilities over the next several years will be related to flaws in software (accord-
ing to Joe Pescatore of Gartner Group, [Pescatore03]), most of the books about
computer security are oriented towards securing networks. We feel that while
knowledge of secure networks is useful, it is much more important that developers
be aware of the underlying causes of security vulnerabilities: bugs in software.

Finally, we have not made this a how-to manual for writing securing software.
It is not a code cookbook, though code examples are found throughout our chap-
ters. We have made this decision for two reasons. First, examples are dangerous in
the hands of an unknowledgeable developer. They tend to create a false sense of
security, because it is assumed that an example is safer than writing your own code.
You might have nuances to your system that we cannot anticipate; they might
render the protections demonstrated in the example useless, or might conceal a
more serious underlying vulnerability. Second, we know many developers who are
just now beginning to think about security, but might already have a significant
amount of legacy code developed. In this circumstance, understanding and identi-
fying existing vulnerabilities is much more important than having implementation
examples. If the reader does need secure programming examples that are reason-
ably free of errors, we recommend several books. The aforementioned Michael
Howard and David Leblanc’s Writing Secure Code [Howard02] (now in its second
edition) and John Viega and Gary McGraw’s Building Secure Software [McGraw01]
contain a wealth of source examples a developer can use to implement pieces of a
secure application. Neither of these books contains many examples of Web appli-
cations, however. Web developers should consider Sverre Huseby’s Innocent Code
[Huseby04].

WHO WE ARE

Herbert Thompson is Director of Security Technology at Security Innovation
(www.securityinnovation.com) and also serves on the Graduate Faculty of the
Florida Institute of Technology. Herbert is co-author (with James Whittaker) of
How to Break Software Security: Effective Techniques for Security Testing (Addison-
Wesley 2003) [Whittaker03] and is the author of numerous papers on software se-
curity and testing. At Security Innovation, he works on developing and teaching
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security testing techniques, and in this role he has taught security testing to 
developers at over 50 companies and is frequently booked to give courses to the
U.S. military.

Scott Chase is Security Architect at SI Government Solutions (www.sigovs.com)
and manages key research projects for the U.S. government. As a result, he spends
much of his time in the laboratory, developing and using the techniques described
in this book to uncover vulnerabilities in a variety of critical software systems. He
has also worked as a university researcher in information security and as a software
tester in industry.
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Security Background2

T
o the average programmer, there’s something mysterious about security.
Perhaps it’s because, unlike most other aspects of the software industry,
computer security is a shadowy, lawless discipline. Movies, TV, books, and

the Internet are captivated by the romance of the “hacker,” a uniquely twenty-first
century villain, with near absolute powers in a realm that is foreign and frustrating
to the average person. In the television world, legions of these loosely associated
miscreants wage war every day against the government, banks and financial insti-
tutions, giant corporations, and authority in general. Hackers, in this world, are 
always loosely associated; that kind of antisocial, loner type who could never form
close associations with anyone.

The make-believe world of cyber-wars and hacker heroes does not entirely
overlap with reality. Several reasons exist for this. First, like police work or soldier-
ing, hacking is a lot more glamorous in books and TV than in real life. Passwords
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Computer Security
Legal and Ethical Issues Surrounding Computer Security
Networking Basics
Networking References
References



20 The Software Vulnerability Guide

cannot often be guessed in three tries. (See Chapter 5.) Though there have been
several attempts to create “Hacker GUIs” (the most famous being the BackOrifice
interface for Windows NT), these have been poor copies of the art they are trying
to imitate. Second, though most hackers feel that they are making a political state-
ment against the establishment by their actions, they don’t frequently succeed
against their main adversaries; folks at the Department of Defense or CIA have se-
rious systems and information to protect, and don’t leave it exposed to the casual
hacker. In fact, the WarGames notion that nuclear missiles can be launched by
computer seems to conflict with the Crimson Tide notion that they must be
launched with mechanical keys. The result is that the most frequent victims of
hackers are the “weak” of cyberspace: universities and libraries committed to aca-
demic freedom, small businesses that cannot afford to upgrade to the latest soft-
ware, and unsuspecting end users. The recent rise in “phishing” attacks, in which an
attacker attempts to trick a victim into giving up a credit card number or other in-
formation, is a testimony to this. It is also disturbingly reminiscent of telephone
scams directed at the elderly. Hardly the stuff of television.

Stripped of its Hollywood glamour, hacking makes use of the same skills,
knowledge, and technology as any other kind of programming. For this reason, we
feel that the ordinary programmer can learn how to prevent exploitation of his own
software without much difficulty. This chapter is meant to be an introduction to
some of the concepts of computer security that will be important to understanding
later chapters. Grasping these basics, along with an understanding of the individual
vulnerabilities described in the rest of the book, will enable you to compete with the
wily attacker (TV or otherwise) and use the advantage you have by virtue of the su-
perior understanding you have of your own application. One final note: some of
our readers who are not programmers might feel that they are in over their heads.
Don’t worry; many of the techniques outlined in this book do not require advanced
programming skills. If you feel you need to do some catching up to understand the
rest of this book, the references section at the end of the chapter contains some
good places to start.

HACKER VERSUS CRACKER VERSUS ATTACKER: 
THE LANGUAGE OF COMPUTER SECURITY

Like any technical field, security has its own jargon. It borrows heavily from the rest
of the computer science world, as well as the physical security (safe and lock) do-
main and some military vernacular. This section is our mini-glossary of terms you
need to understand to follow the rest of this book.



We use attacker to mean someone who attempts to bypass the security of a
piece of software to gain advantage over it. This person might be a hacker or cracker,
both of which have different meanings from the one we intend. A hacker is any per-
son who “hacks”; that is to say, writes computer programs, especially in an undis-
ciplined, disorganized way. Most programmers pride themselves on being hackers
in this sense and take offense to the lovable pejorative for our profession being ap-
plied to criminals and ne’er-do-wells. Most would prefer that these folks be referred
to as crackers, because they “crack” through the security surrounding applications.
However, we avoid this term because we tend to think of only certain types of at-
tackers as crackers. Cracking a program usually means bypassing the licensing or
copy protection in a program, one kind of application security. It can also mean
discovering the encryption key or password associated with a piece of data, through
brute force means, akin to safe cracking. Meanwhile, a script kiddie is a person who
fancies himself a hacker, but prefers to download other people’s exploits and use
them. Script kiddies talk in leetspeek, which is a way of obfuscating words using
numbers as letters. “H4x0r” is pronounced “hacker” in leetspeek. Leetspeakers have
their own search engine; check out www.google.com/intl/xx-hacker/.

A vulnerability is a bug in software that enables an attacker to bypass security.
Programmers, not attackers, are responsible for vulnerabilities, usually due to poor
security knowledge. On the other hand, an attack is a technique attackers have de-
veloped to identify whether a vulnerability exists in a particular piece of software.
An exploit is a method or piece of code that takes advantage of a vulnerability to ac-
complish an attacker’s goal. Sound confusing? Often, the terms are used inter-
changeably, especially in situations where only one attack exists for a given
vulnerability, and one exploitation of that attack. We have tried to keep the dis-
tinctions as clear as possible, even when some vulnerabilities are more commonly
referred to as attacks (e.g., cross-site scripting).

Spoofing means impersonating a user, a machine, or some other entity as a
means of tricking the security logic in an application. Much of security depends on
trust, and often an application trusts that an entity is who (or what) it says it is, or
that the entity cannot change in the middle of a session. Hijacking means an attacker
takes control of one side of a two-sided transaction in the middle of that transaction.
Hijacking is frequently accomplished by means of a man-in-the-middle attack, in
which the attacker manages to gain control of a location (such as a function or a net-
work node) that lies between the two parties in the transaction.

Information disclosure means an attacker is able to see information belonging to
another user or that he shouldn’t otherwise see. One of the main principles of
security is protecting the privacy of information; information disclosure would
violate this principle. Escalation of privilege refers to an attacker gaining a higher
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level of access to information or functionality than he is authorized; for example,
from an ordinary user to an administrator. Denial of service, on the other hand,
means preventing other users from accessing a piece of information or a resource,
without necessarily gaining any privilege. Causing service applications to crash
irrecoverably is a frequent means of accomplishing a denial-of-service attack.

Cracking, as we mentioned previously, means circumventing the copy or
license protection associated with a piece of software. “Cracks,” programs that
allow the software to be installed or copied in an unlicensed manner, are often
posted alongside exploits on underground security Web sites. Reverse engineering
means partially recovering the design or algorithms of a program to make modifi-
cations to it. Reverse engineering techniques are often required both for cracking
and development of exploits. Cracking can also mean recovering a password or en-
cryption key that protects an application.

A virus is a piece of software that is capable of causing malicious damage while
at the same time spreading itself. Viruses work by attaching themselves to a file,
usually an executable. Viruses typically spread when the infected file is shared. A
worm, on the other hand, spreads by sending copies of itself to other users or ma-
chines. Many folks use these terms interchangeably. A Trojan horse is made to look
like a benign program, but actually implements malicious functionality. Attackers
will often “Trojan” applications like the system login program to obtain usernames
and passwords. If the Trojan permits an attacker to regain access to the system at a
later time, it is called a back door.

Some attacks rely on human psychology rather than technology to accomplish
their purpose. Social engineering refers to the process of tricking a user into volun-
teering information that an attacker can use to his advantage. Bribery and fictitious
login screens are both examples of social engineering. When social engineering is
employed on a large scale to obtain passwords, credit cards or other personally
identifiable information, it is called phishing. Notice that phishing is essentially the
same word as fishing, with a more exotic spelling. This is because a “phisherman”
casts out many lines in the form of a spam e-mail or instant message, in the hopes
of catching a few of the gullible “phish.”

There’s some constructive terminology within security as well. A firewall is an
application or appliance that limits the flow of information into or out of a system
to diminish the risk of a successful attack. An intrusion detection system, like a mon-
itored burglar alarm, actively monitors a system for signs that an attack is under
way. Penetration testing or red teaming refers to the act of simulating an attack to de-
sign safeguards. An ethical hacker often carries out penetration tests. We do not
consider ourselves ethical hackers. Ethical considerations aside, we call ourselves se-
curity testers because we perform the function that a tester would in any software
development process, though we specifically focus on security. If you have a soft-



ware company, you should hire programmers or testers with security knowledge, or
train your existing folks, rather than hire hackers who have reformed (or are look-
ing to reform) their ways.

LEGAL AND ETHICAL ISSUES SURROUNDING 
COMPUTER SECURITY

To certain narrow-minded folks, this is a book about hacking. Without a doubt,
some of the techniques taught in this book can be used to gain unauthorized access
to another person’s computer system. Our position is that such action is always
ethically wrong, and can be illegal in some circumstances. This section summarizes
some of the specific legal issues surrounding security testing. But first, we owe an
explanation as to why we feel it is appropriate to include such techniques in a book
written for developers. The fact is that all of the best attackers out there are famil-
iar with some or all of these techniques, and many of the not-so-good ones are as
well. The “black hat” community (the attackers who are interested in engaging in
illegal or malicious activity) has a wealth of information about attack techniques
available through Web sites, newsgroups, and online magazines such as Phrack
(www.phrack.org) and 2600 (www.2600.com). Developers who write the software
that is being exploited by these groups have fewer resources available in this respect.
We spend a good part of our time educating developers through online and onsite
training, presentations at trade shows and conferences, and in private consulting.
However, we feel that books are necessary to reach an audience broad enough to
bring about real change. It is a risk that enterprising attackers will take advantage of
our techniques to compromise unsuspecting victims. However, the upside that
these techniques will cease being effective because of increasing developer aware-
ness and testing is worth that risk.

Federal Laws Related to Illegal Computer Use

Using a vulnerability to gain unauthorized access to a computer system is illegal
under Title 18, Sec. 1030 of the United States code. Other countries and many
states have similar laws. Sec. 1030 [USC05a] defines unauthorized access as:

(5)(A)(i) knowingly causes the transmission of a program, information, code,
or command, and as a result of such conduct, intentionally causes damage
without authorization, to a protected computer;

(ii) intentionally accesses a protected computer without authorization, and as
a result of such conduct, recklessly causes damage; or
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(iii) intentionally accesses a protected computer without authorization, and as
a result of such conduct, causes damage;

Damage is defined as:
(i) loss to 1 or more persons during any 1-year period (and, for purposes of an
investigation, prosecution, or other proceeding brought by the United States
only, loss resulting from a related course of conduct affecting 1 or more other
protected computers) aggregating at least $5,000 in value;

(ii) the modification or impairment, or potential modification or impairment, of
the medical examination, diagnosis, treatment, or care of 1 or more individuals;

(iii) physical injury to any person;

(iv) a threat to public health or safety; or

(v) damage affecting a computer system used by or for a government entity in
furtherance of the administration of justice, national defense, or national
security.

Additional portions of Sec. 1030 make provisions for theft of government and
defense information and information relating to banking activity such as account
numbers, and other sections of the code deal with illegal computer activity directed
at communication systems such as the national telephone network or Internet.
This statute covers most kinds of illegal computer activity, and it is reasonable to
suspect that most unauthorized access could be prosecuted under this law.

The Economic Espionage Act, Title 18, Sec. 1831–9, makes it illegal to sell a
company’s proprietary information. Intellectual property, such as confidential doc-
uments, plans, and source code, falls under this provision. So does personal infor-
mation about a business’ customers [USC05b].

The Digital Millennium Copyright Act [DMCA98] makes it illegal to reverse
engineer software for the purposes of circumventing copy protection. Many people
erroneously believe that this prohibits all reverse engineering, or at any rate, reverse
engineering to circumvent security. Because the DMCA (as it is often called) is in-
tended to protect intellectual property rights owners from illegal copying, many
kinds of reverse engineering (such as creating a video game cheat) are not covered
by DMCA. In fact, reverse engineering for security testing is expressly permitted by
the DMCA:

(j) Security Testing.— 

(1) Definition.— For purposes of this subsection, the term “security testing”
means accessing a computer, computer system, or computer network, solely
for the purpose of good faith testing, investigating, or correcting a security flaw
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or vulnerability, with the authorization of the owner or operator of such com-
puter, computer system, or computer network. 

(2) Permissible acts of security testing.— Notwithstanding the provisions of
subsection (a)(1)(A), it is not a violation of that subsection for a person to en-
gage in an act of security testing, if such act does not constitute infringement
under this title or a violation of applicable law other than this section, includ-
ing section 1030 of title 18 and those provisions of title 18 amended by the
Computer Fraud and Abuse Act of 1986. 

(3) Factors in determining exemption.— In determining whether a person
qualifies for the exemption under paragraph (2), the factors to be considered
shall include— 

(A) whether the information derived from the security testing was used solely
to promote the security of the owner or operator of such computer, computer
system, or computer network, or shared directly with the developer of such
computer, computer system, or computer network; and 

(B) whether the information derived from the security testing was used or
maintained in a manner that does not facilitate infringement under this title or
a violation of applicable law other than this section, including a violation of pri-
vacy or breach of security. 

(4) Use of technological means for security testing.— Notwithstanding the pro-
visions of subsection (a)(2), it is not a violation of that subsection for a person
to develop, produce, distribute, or employ technological means for the sole
purpose of performing the acts of security testing described in subsection (2),
provided such technological means does not otherwise violate section (a)(2).

Some software license agreements prohibit reverse engineering. However, the
enforceability of these agreements is limited by two factors. First, because copyright
law is constitutional law, it is not clear to what extent a vendor can limit constitu-
tionally protected fair use, especially if no malicious intent exists on the part of the
reverser. Additionally, in the case of “clickwrap” licenses (where a user simply
presses “yes” to continue or something similar) it is questionable whether a bind-
ing contract exists between the vendor and the consumer. This is especially true of
mass-market software when the vendor might not be aware of the identity of the
consumer. Cem Kaner and David Pels discuss this topic in great detail in their book
Bad Software [Kaner98].

We are not attorneys and do not know the laws in every jurisdiction in the
world. The laws in your jurisdiction might be more or less strict. Our advice is that
if you suspect what you want to do is illegal, you probably shouldn’t do it.
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Ethical Reporting of Security Vulnerabilities

To our knowledge, U.S. law does not require individuals to report vulnerabilities
that are discovered to the vendor of a software application, or to the owner of an
affected system. This might be different in other jurisdictions. The law notwith-
standing, it is good practice to do this in as discreet and timely manner as possible.
Most reputable security researchers have adopted an ethical disclosure policy, in
which vulnerabilities are reported first to the vendor whose software contains the
vulnerability and to the rest of the community only when that vulnerability is
patched.

We do not approve of “full disclosure.” This practice, observed by some black
hats and pseudo-black hats (sometimes called “gray hats,” these individuals engage
in both legal and illegal computer security research), entails reporting a vulnerabil-
ity to the whole software community before a vendor has the opportunity to release
a fix. Full disclosure proponents believe that consumers of software have a right to
know about vulnerabilities in their own systems as soon as they are discovered. Ad-
ditionally, full disclosure forces recalcitrant vendors to fix vulnerabilities in a timely
fashion. However, this kind of disclosure invariably leads to unsuspecting users
being compromised. Because the cost of viruses and worms facilitated by vulnera-
bilities can be staggering, we feel full disclosure is irresponsible. 

Akin to full disclosure is the “ticking time bomb” approach. In this situation, a
researcher keeps a vulnerability private for a set amount of time and then releases
it to the public regardless of whether a patch has been issued. While this is intended
to force the vendor to patch quickly, it is essentially delayed full disclosure.

One of the worst practices is that of researchers who find a vulnerability and
then ask for money, either in the form of a testing contract or an outright bribe, to
keep a vulnerability quiet. This ugly practice does happen from time to time in our
industry. We view this as extortion and, insofar as the vulnerability was found
specifically to blackmail the vendor, it might constitute racketeering as well. You
should never pay for security testing from a company that engages in these prac-
tices. How do you know that they will keep your secrets even after they are paid?

On the other hand, we think that the practice of some vendors of silently patch-
ing vulnerabilities, without providing subsequent notification to the user, is also ir-
responsible. By failing to disclose that a vulnerability exists, the vendor is effectively
hiding the real security of their product from their users. 

NETWORKING BASICS

To understand quite a bit of this book, a working knowledge of TCP/IP network-
ing is needed. Skip this section if you feel you have an intimate knowledge of how
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TCP/IP and protocols such as HTTP operate. The information presented here is by
no means complete; volumes can be written about just the basic architecture. (The
late W. Richard Stevens did write five volumes on the subject under the titles,
TCP/IP Illustrated, Vol. 1–3 and Unix Network Programming, Vol. 1 and 2 [Stevens93],
[Stevens98], [Stevens03]. These are must-haves in the security and networking
world.)

The underlying premise of the TCP/IP family of protocols is its multilayer
model. Though the OSI officially recognizes seven layers, in practice there are only
five, and we worry about only four of them. Each layer performs a particular func-
tion, and is independent of both the layer above and below it. This means protocols
can run over a wide variety of hardware and software configurations under differ-
ent conditions, without apparent differences to the programmer or end user. Each
higher level protocol is encapsulated within the lower protocol—that is to say, the
“data” portion of the lower protocol contains the whole packet from the higher
protocol, much like the matryoshka nesting dolls from Russia. Figure 2.1 shows a
typical TCP/IP encapsulation.
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FIGURE 2.1 Typical TCP/IP encapsulation.

SOME (PHYSICAL) THINGS YOU MIGHT FIND ON A NETWORK

A hub is a device that repeats physical layer packets among multiple devices.
Most computers are connected to other computers by means of a hub. When a
packet is transmitted by the Ethernet (or other protocol) card on a host to the
hub, it is rebroadcast to all the other nodes on the hub. The other hosts gener-
ally ignore traffic that is not addressed to them. 



The physical layer (that’s the one we don’t concern ourselves with) refers to the
way in which communication protocols are electrically and logically implemented
in hardware. Manufacturers of networking hardware including routers, hubs,
switches, and Ethernet cards have to worry with these Layer 1 issues, which include
voltage levels, physical timeouts, maximum distances, etc.

The data link layer refers to the software that frames data to be transmitted over
the physical medium. These mediums include Ethernet, ATM, FDDI, and Token
Ring; the device drivers for these pieces of hardware implement the data link layer.

28 The Software Vulnerability Guide

A switch is similar to a hub, except that it has software that knows the hard-
ware (MAC) address of each machine connected to it. As a result, it is able to
transmit a packet only to the host for which it is destined. This reduces noise on
the network and also improves security because an attacker does not by default
receive all of the network’s traffic through his machine. (Some techniques
taught in Chapter 16 make this an imperfect solution, though.)

A router routes traffic between two networks. Host systems are configured
with a default route—an IP address to which packets destined for to another
network or to the Internet are sent. These hosts send traffic destined for the re-
mote network to the router using the remote system’s IP address but the
router’s physical address. It then passes the traffic to the other side. A router
might also use masquerading, sometimes called Network Address Translation. In
this configuration, individual systems on the network have private IP addresses,
which are not routable via the Internet. The router then disguises the traffic
from all of these systems as though it came from a single host, the router. This
preserves privacy and security, because host systems are not directly address-
able via the Internet, and also preserves IP addresses.

A firewall is a filter for network traffic. Firewalls are generally configured to
block protocols or individual ports, but some can do more sophisticated filter-
ing based on the contents of the traffic. For example, we might permit incom-
ing traffic to our network only via port 80. In this case, a user would not be able
to access systems within our network via FTP, SMTP, or any other protocol.
The best practice is to limit traffic to as few ports as possible, enabling only
those that are needed for specific purposes.

Intrusion detection systems are systems that attempt to alert an administra-
tor to a possible attack on the network. Because this is not an easy thing to de-
tect, these systems tend to have many false positives (cases where no attack
occurs but the system reports an attack anyway) and false negatives (cases
where an attack occurs but the system is unable to recognize it).



This is the lowest level a programmer would concern herself with. Ethernet is by far
the most common data link layer protocol in an end-user environment. In an Eth-
ernet, each device connected to the network has a unique Media Access Control
address, commonly called a MAC address. This 6-byte hexadecimal number is sup-
posed to be different on every machine because each manufacturer is assigned pre-
fix codes by the Internet Assigned Numbers Authority (IANA), the same agency
that also regulates IP addresses and port numbers. Each manufacturer might make
cards beginning only with assigned range of prefix codes. However, some manu-
facturers occasionally recycle MACs, while others allow the MAC to be changed in
software. As a result, you can’t count on MACs being unique for security purposes.

The format of an Ethernet packet is very basic and is shown in Figure 2.2. Its
fields are:

The 6-byte destination MAC address
The 6-byte source MAC address
A 2-byte type code
The data, which can be between 46 and 1500 bytes long
A 4-byte checksum
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FIGURE 2.2 Format of an Ethernet frame.

If the actual data size is less than 46 bytes, the data area is padded with zeroes.
The type code is used to describe the protocol encapsulated within the data field.
The most common values of this field are 0 × 0806, the code for an Address Reso-
lution Protocol (ARP) request, and 0 ×0800, the code for IP.

Address Resolution Protocol is a Layer 3, or network layer, protocol that runs
over Ethernet. This protocol is used to map MAC addresses to IP addresses within
the local network. Each time a machine wants to send an IP packet to another ma-
chine, it must first learn the MAC address in order to correctly compose the Ether-
net frame. It does this by broadcasting an ARP packet to every machine on the
network. Only the machine with the corresponding correct IP address should reply
to the ARP request. If a packet is destined for a machine outside the local LAN, an
ARP request would be sent instead to the address of the local gateway, which must
be specified in advance. ARP cache poisoning occurs when a malicious ARP daemon



on the local network responds to every request as though it were its own. By spoof-
ing ARP replies in this manner, an attacker can use his machine as a “man in the
middle” between the sender and receiver.

The Internet Protocol (IP) is the main networking layer protocol. It functions
like the postman, delivering packets to different machines based on their IP ad-
dress. On the “real” Internet, IP addresses are also unique thanks to the IANA.
Often, private IP addresses are used along with masquerading, which translates
these private IPs to real addresses and vice versa. An IP packet is quite a bit more
complicated than an Ethernet packet, because it is intended to work in a much
wider variety of circumstances. Figure 2.3 shows the format of an IP packet. The
fields of an IP packet are:
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FIGURE 2.3 Format of an IP packet.

The 4-bit protocol version. This is always “4” in IPv4, the most common kind
of IP that is used by the Internet. In IPv6, this value is, you guessed it, “6.”
The 4-bit header length. This also never varies in IPv4.
The type of service byte. This can have one of several values; routers sometimes
prioritize traffic based on the type of service.
The total length of the packet in 2 bytes.



The 2-byte IPID, which pseudo-uniquely identifies this packet to the receiver.
This eliminates duplication and out of order problems.
The flags and fragmentation offset, 2 bytes. These are used if the data is too
large to be contained in one packet.
The 1-byte Time To Live. This is decremented by each router a packet passes
through to prevent infinite loops.
The 1-byte protocol number. This is 6 for TCP and 17 (11 hex) for UDP.
The header checksum, 2 bytes.
The 4-byte source IP address.
The 4-byte destination IP address.
Miscellaneous options.
The data.

Machines are able to transmit a packet to its final destination by means of rout-
ing rules. These rules, contained within each gateway, describe which machine to
forward a packet on to in order to try to reach the destination host. On an end-user
machine, typically you have four rules. First, packets destined for the loopback in-
terface (127.0.0.1) and the local IP address are not routed; the networking stack
within the machine handles these. Packets destined for machines on the local net-
work are routed directly to them by resolving their MAC addresses using ARP. Fi-
nally, all other packets are routed to the default gateway, which is a machine on the
local network. This machine presumably knows the address of another gateway
downstream, as well as any peer local area networks to ours.

The process for determining what machines are on the local network and what
machines are beyond the gateway is called subnetting. A subnet mask specifies how
many bits of the IP address are held in common by all the machines on a local net-
work. A subnet mask of 255.255.255.0 means all machines on the local network will
have the same first 3 bytes as our machine. Subnets can be as small as one machine,
for point-to-point networks, or as large as 16 million machines for a class A net-
work. In practice, subnets larger than 255.255.0.0 are not used outside the main In-
ternet backbones.

This organization of machines has proved very practical for the Internet, but
has some limitations. For example, you cannot know with certainty whether a ma-
chine exists when a packet is sent to it. To compensate for this, the final gateway
that cannot route the packet further returns an error message to the sender. This
ICMP_UNREACHABLE message is akin to the “no such addressee” notice you
would write to the mailman if you received someone else’s mail. Additionally, you
have no way to certify the authenticity of a packet when it reaches its destination.
This, combined with the use of rerouting gateways, opens the possibility for a vari-
ety of spoofing and man-in-the-middle attacks. Additionally, IP addresses are hard
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to remember and might change. For this reason, the Domain Name Server (DNS)
protocol is used to map logical names (like www.whitehouse.gov) to their corre-
sponding IP addresses.

As the network layer protocol, IP can transmit packets only between nodes on
the network. A network node is typically represented by a single machine. The next
layer up, the transport layer, manages the reliability of connections, as well as en-
sures that the packet is received by the application it is destined for. The Transmis-
sion Control Protocol, TCP, is the main transport layer protocol in the Internet
scheme. TCP is capable of synchronizing communication between the two appli-
cations to ensure that data is received in the correct order with no missing infor-
mation. It does this by means of a sequence number and acknowledge number. With
each transmission, an application increases its own sequence number, and re-
sponds with 1 + the remote host’s acknowledge number. If any packets are trans-
mitted out of sync, the sequence and acknowledge numbers will not match. TCP
also uses a system of state flags to initially synchronize the two applications. When
an application first tries to connect to another, it sends a packet with an initial
sequence number and the synchronize (SYN) flag set. The remote application
acknowledges this with both the SYN and acknowledge (ACK) flag set, along with
its own initial sequence number and acknowledgement. The original sender then
sends a packet with the ACK flag only set, along with an acknowledgement of the
remote initial sequence number. This is called the three-way handshake.

The fields of the TCP packet are set up to accommodate this process. They are:

The 2-byte source port number
The 2-byte destination number
The 4-byte sequence number
The 4-byte acknowledge number
The 4-bit header, six 1-bit flags and a reserved area
The 2-byte window size
The 2-byte checksum
The 2-byte urgent pointer
Miscellaneous options
The data

Figure 2.4 shows the format of a TCP packet.
A TCP packet is routed to the correct application because only one application

at a time can use a port number on a particular machine. The lower value port
numbers are used for common services and are assigned to particular applications.
Historically, ports with numbers less than 1024 were considered “trusted.” A con-
nection originating from one of these port numbers was considered to be from a
previously authenticated user, because non-root users cannot open sockets on these
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ports. This technique was used by rlogin among other things. The flaw in this ap-
proach is that it is possible for an attacker to spoof the identity of a remote system,
as described in Chapter 16. For example, Web servers, which use the HTTP proto-
col, are typically assigned port 80. Mail servers that use the Simple Mail Transport
Protocol (SMTP) protocol listen on port 25. The higher port numbers are dynam-
ically assigned to client applications that do not need a dedicated port number.

A simpler network layer protocol, the Universal Datagram Protocol (UDP) is
also frequently used in networking. However, because it lacks the sophisticated
synchronization capability of TCP, it is more frequently used for local, system-
level protocols like remote procedure call (RPC) and DNS. (It is assumed that the
application, not the protocol implementation, takes care of retransmission of lost
UDP packets.) A UDP packet consists only of five fields, as shown in Figure 2.5:

The 2-byte source port number
The 2-byte destination port number
The 2-byte packet length
The 2-byte checksum
The data

The individual application layer protocols are transmitted over TCP/IP. Some
of these protocols are human-readable text, while others are binary. Many are
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documented through international standards or the Internet Engineering Task
Force’s Request for Comment (RFC) documents (online at www.ietf.org/rfc.html).
However, some protocols are undocumented and proprietary, or have proprietary
extensions. Table 2.1 lists some of the more common TCP application protocols
and their port numbers.
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FIGURE 2.5 UDP packet format.

Application Protocol Port Number

File Transfer Protocol (FTP) non-passive transfers 20

File Transfer Protocol (FTP) control stream 21

Secure Shell Protocol (SSH) 22

Telnet 23

Simple Mail Transfer Protocol (SMTP) 25

Domain Name Server Protocol (DNS) 53

HyperText Transfer Protocol (HTTP) 80

Post Office Protocol v.3 (POP3) 110

NetBIOS (Windows Networking) Name Service 137

NetBIOS (Windows Networking) Datagram 138

NetBIOS (Windows Networking) Session Protocol 139

Internet Message Access Protocol (IMAP) 143

Secure HTTP over Secure Sockets Layer (HTTPS/SSL) 443

TABLE 2.1 Common TCP Application Port Numbers

www.ietf.org/rfc.html


HTTP, used by Web servers and Web browsers, is among the most simple. An
HTTP request, destined for a Web server, is a simple text command such as

GET /index.html HTTP/1.0

followed by a carriage return and line feed character. The preceding command
would be used to fetch the file index.html from the root directory of the Web
server. Alternatively, we could have used GET / HTTP/1.0 and allowed the Web
server to select the default page to return. The Web server replies with the requested
file within the same connection. It first transmits the MIME type of the file, as well
as the length. The MIME type instructs the browser on how to handle the file. In a
typical HTTP response, this would look like

Content-type: text/html

Content-length: 308

<HTML><HEAD><TITLE>My web page</TITLE>

. . .

where the file was 308 bytes in length (this varies from file to file). Notice the actual
Web page follows the Content-length directive. Additional directives might appear
in the response. However, the body of the message is always separated from them
by a single blank line at the end.

Many additional protocols run over IP. Two of the more common are the In-
ternet Control Message Protocol (ICMP), which is used to communicate error,
control, and information messages (such as non-existent host errors) between ma-
chines, and  the Internet Group Management Protocol (IGMP), which is used by
hosts and routers to manage their multicast groups in situations where multicast-
ing is required.

NETWORKING REFERENCES

As we mentioned previously, the protocols that make up the TCP/IP family are far
too many to document here. We recommend that you get a separate book on net-
working. TCP/IP Illustrated by W. Richard Stevens [Stevens93] is considered one of
the best books for low-level TCP/IP. If you want a gentler book, Uyless Black’s
TCP/IP and Related Protocols [Black91] is a good introduction. 
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Some Useful Tools3

S
ecurity testing might seem like black magic. Many people assume that hackers,
white hat and black hat, possess some kind of mystical knowledge about the
internals of applications and systems that reveals security vulnerabilities to

them. Film and newspapers, and to a large extent the hackers themselves, seek to
perpetuate this image to preserve a notion of elitism and sophistication that sets
them apart from ordinary programmers and users. In fact, the hacker has an enor-
mous number of tools at his disposal that make finding and exploiting vulnerabil-
ities easy. Most of the tools are freely available from mainstream sources; it is no
longer necessary to have access to an underground bulletin board or Web site in
order to obtain them. Additionally, most programmers possess all of the knowledge
and skills to use these tools as effectively (if not more effectively) than hackers. The
reality is that the most destructive of “black hat” hackers are usually less techno-
logically savvy than the average professional software engineer.

In This Chapter

Security Scanners
Hacking and Cracking Tools
Reverse Engineering Tools
Commercial Tools
For More Information
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This chapter describes some of the tools a hacker uses in finding vulnerabilities.
If you scan the section headings, you’ll find that many of these tools are already
familiar to you. Where possible, we have selected open source or freeware tools as
examples in each category. The hacker doesn’t break the bank for software tools;
neither should you. At the end of the chapter, we describe some of the better com-
mercial tools on the market. Use these if you require support, if your company
prefers closed source or proprietary software, or if you’re looking to make an in-
vestment in security testing tools.

Most of the tools we’ve discussed are available online, and evaluation versions
are available for most of the proprietary tools. We’ve provided a list of URLs at 
the end of the chapter where you can download each tool, as well as get more 
information.

SECURITY SCANNERS

Scanners are the most commonly encountered kind of security tool. If you’ve
played around with a security tool, chances are it is one of these. Despite their
name, these tools frequently do a lot more than just “scan” or look for vulnerabil-
ities. System administrators use them to identify hosts on the network (authorized
and unauthorized), to test machines for vulnerabilities to apply patches, and to in-
spect incoming and outgoing traffic for signs of network intrusion. Hackers use
them to scan the network for available services, probe vulnerable machines, and
sniff passwords, cookies, and confidential data. Whether intended for a system ad-
ministrator or test engineer (like SAINT or EtherPeek) or a malicious hacker (like
Ettercap), these tools do pretty much the same thing.

Developers and testers can use these tools to find known vulnerabilities in their
host system or application platform and to learn about the protocols their applica-
tion uses. But do not expect that a big investment in a security scanner can fix your
application security problems; these scanners are intended for system administra-
tors and end users, not developers. Because they mainly find known problems, for
the most part, they might not be helpful in finding new bugs in your product.

Comprehensive Scanning Tools

These tools scan for known vulnerabilities and are developed with the system
administrator in mind. Typically, you give these tools an IP address or range of ad-
dresses, and they scan each port number successively looking for ones that are
open. They also look for version numbers and other specific responses that indicate
the software on the remote machine is vulnerable. Alternatively, some perform a



more exhaustive examination—checking file contents, permissions, application
versions, etc.—but are required to be installed on the local machine.

The most ancient and famous of these tools is SATAN, the Security Adminis-
trator Tool for Analyzing Networks. Originally, SATAN scanned for 10 vulnerabil-
ities in Unix systems that were popular among hackers at the time it was written.
Most of these were misconfigurations in Network File System (NFS) or FTP that
allowed an unauthenticated remote user to gain access to the filesystem of a ma-
chine. Medium and large sized Unix installations such as universities would often
leave these services open to anonymous access rather than deal with the headache
of configuring and maintaining a directory service like NIS. SATAN also scanned
for versions of the Unix sendmail software that were vulnerable to buffer overruns.
The results of these scans would be reported in a Web page produced by the tool.
The system administrator would then be expected to fix the vulnerabilities identi-
fied by making the appropriate changes to configuration files, upgrading the send-
mail version, etc. The hacker who used SATAN would use the results to carry out
his exploitation of the system. The modern Unix security scanner Nessus works on
the same principle as SATAN. However, it provides two features that make it more
versatile and maintainable in the modern security environment. First, it im-
plements individual scans in the form of plug-ins, with one or more plug-ins for
each known vulnerability. As of the time of this writing (February 2005), we know
of 2,035 Nessus plug-ins covering 1,504 unique vulnerabilities (source: www.
nessus.org). Second, it includes NASL2, the Nessus Attack Scripting Language. This
C-like language makes it easy to script new scans and vulnerability signatures to
create Nessus plug-ins. Some reports of new vulnerabilities include an NASL2
script that can be used to scan for the vulnerability.

Nessus can operate in two modes, a banner check mode, in which only signa-
tures are used to determine whether a host application is vulnerable, and destruc-
tive mode, in which an exploit itself is used to test for vulnerability. The advantage
to banner check mode is that it does not compromise a system to determine
vulnerability. However, banner checks are subject to both false positives (system is
determined to be exploitable when it is not) and false negatives (system is deter-
mined to be not exploitable when it is). In fact, some applications and network
appliances even manipulate banners to disguise potentially vulnerable services. De-
structive mode ensures an accurate test result, but with the side effect of accom-
plishing whatever malevolent actions are contained in the exploit. Figure 3.1 shows
the Nessus Scanner configuration.

Nessus is used primarily with Unix-based systems. For Windows, Microsoft
provides its own free comprehensive security scanner, the Baseline Security Ana-
lyzer. Microsoft is working to incorporate security scans for all of its major appli-
cations into this single tool. Because it is supplied by the software vendor, the tool
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has some advantages and disadvantages. It is actively maintained and updated by
Microsoft and is integrated with Windows Update, which means it is automatically
updated when new vulnerabilities are identified. However, it can find only vulner-
abilities for which Microsoft has written a plug-in. This means that, for the most
part, Baseline Security Analyzer can’t find a vulnerability until after a patch has
been released for that vulnerability. Additionally, Microsoft usually has a narrower
view of security vulnerabilities than the rest of the software community; so not all
published vulnerabilities are identified by Baseline Security Analyzer. Figure 3.2
shows Microsoft’s Baseline Security Analyzer.

FIGURE 3.1 Nessus Scanner configuration.



Nmap and Network Scanners

Network scanners examine a network to identify the hosts and applications avail-
able on that network. Rather than just looking for vulnerabilities, these tools help
the user gain a better understanding of the whole network: its topology, what hosts
make up the network, and what operating systems and applications are running on
the network. They essentially perform two functions.

Port scanning identifies all the network applications running on a particular
host by attempting to connect to the port number associated with that application.
For example, a system that allows an arbitrary connection to TCP port 80 is likely
running Web server software. Further inspection of the data returned by the con-
nection can be used to determine what version of the application is running; for ex-
ample, the response:

220 hq.se.fit.edu Microsoft ESMTP MAIL Service, Version: 

5.0.2195.6713 ready at Sat, 28 Feb 2004 14:17:20 -0500
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to a connection on port 25 reveals that the Microsoft ESMTP Service (used by Ex-
change) is running on this machine. From this one connection, we have not only
found out that a mail server is running on the scanned machine, but also that it is
likely a Windows server running Exchange.

OS fingerprinting aggregates the data from connections to multiple ports in an
attempt to determine the hardware platform and operating system version that
correspond to a machine. The previous scan of port 25 revealed that Microsoft Ex-
change was running; examination of additional ports would reveal that our system
is in fact a Windows 2000 Server running IIS and SQL Server as well as Exchange.
OS fingerprinting is also possible because, even when banners are spoofed, operat-
ing systems respond differently to subtle probing and to packets containing inten-
tional errors. Together with determination of open services, it is usually possible to
make a pretty accurate guess of what OS is running on a machine.

The simple network program ping uses an ICMP echo request message to
determine whether a host is responsive. If the host exists, is reachable, and has a
network stack that is responsive to ICMP messages, it replies to an echo request
when its IP address is contacted via ping. If it does not respond, the ping program
reports a variety of error codes, including “request timed out” and “destination
unreachable.”

Nmap, an open source tool made available by Fydor of insecure.org, is the de
facto standard network scanner. Nmap is supported on most platforms and has an
enormous number of options related to scanning, OS fingerprinting, IDS evasion,
and stealth operation. Nmap is freely available at www.insecure.org/nmap/nmap_
download.html, where you can select your platform.

Pinging and Port Scanning to Determine Whether a Test Has Crashed the Machine

Network scanners and the ping program can be used to determine whether a host
or application service crashed as the result of a test case. If the system stops re-
sponding when it ordinarily would (or responds differently), the test case has likely
put the system in that non-responsive state. In fact, many commercial security
scanners, cracking tools, and protocol testers use this technique to determine
whether their exploit or test case was successful. We use both ping and an Nmap
SYN scan of the application’s port after each test case during protocol testing.

Packet Sniffing and Spoofing

These tools record all traffic associated with a particular host or network. They
work because, in an unswitched network, all data is transmitted to all hosts. Each
host must determine which data is intended for it and then pass that data to the
correct application. Sniffers intercept this data passively by opening the network
access layer device (usually the Ethernet card) in promiscuous mode, meaning it
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intercepts all traffic regardless of whether it is destined for the hardware address
associated with the device. This allows the sniffer to “see” all of the traffic on the
network independent of the operating system’s networking stack. The sniffer then
reconstructs the data as it would appear to the application, usually with the aid of
helper libraries built for that purpose.

Ethereal is the most popular sniffer program with a graphical user interface. It
is freely available from www.ethereal.com/. Ethereal decodes all of the traffic on the
network and presents it in table form, organized by protocol field. According to the
Web site, Ethereal contains decoders for 472 protocols including all of the most
common ones, meaning it can further decompose application layer data (inside of
a TCP stream). This feature is not found in many sniffers. Ethereal also allows fil-
tering of the results based on a rich, object-oriented filter language. For example,
the filter expression: 

ip.dst eq www.mit.edu

would display only packets whose IP destination address was www.mit.edu.
Tcpdump is a command-line packet sniffer and network analyzer. Tcpdump is

the favorite of network programmers, test engineers and serious hackers because it
is easily scriptable and can be used remotely and on systems that cannot display a
graphical user interface. Many of the tasks that can be performed visually in Ethe-
real can be performed programmatically through Tcpdump.

Both Ethereal and Tcpdump use the Libpcap library for packet capturing and
decoding. Libpcap is for Unix but has been ported to Windows (WinPcap) and Java
(Jpcap). This library abstracts the task of opening and managing the hardware de-
vice and decoding the captured packets. The user can set up a callback function that
is called each time a packet is intercepted, and then decode it using the built-in
functions. Libpcap is useful for programming custom sniffers in situations where
Ethereal or Tcpdump won’t do.

Some sniffers can do more than just passively record network traffic. The
Ettercap sniffer from Alberto Ornaghi and Marco Valleri (http://ettercap.source
forge.net/) can sniff on switched networks, decode SSL and SSH transaction data,
perform man-in-the-middle attacks, and inject data into a stream. These features
are essential in doing security testing involving more complicated protocols; how-
ever, Ettercap is somewhat more difficult to use than other sniffers and works less
reliably. It is better to use it only when you require one of its unique features.

Packet Sniffing to Determine the Results of a Security Test

Network sniffers are extremely useful in functioning as the oracle in security test
cases. An oracle is a program that determines whether a test passed or failed. The
sniffer can be used to create a baseline data set about a protocol; this baseline can
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be compared against recorded results during testing. If a significant difference is
found, the difference can be reported as an anomaly. Sniffers can also make a pas-
sive record of the traffic associated with a test session, which can be used in fault
isolation and test reproduction. Figure 3.3 shows an Ethereal network analyzer.
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FIGURE 3.3 The Ethereal network analyzer.

HACKING AND CRACKING TOOLS

Unlike network scanners, these tools are designed primarily with hacking in mind.
Some of them (packet replay tools and network fuzzing) are useful in finding new
vulnerabilities in network-based applications. Web test tools are useful in finding
common Web site application vulnerabilities. The primary legal uses of these tools
are to educate people on the relative weakness of certain kinds of passwords and to
recover your own (or your associate’s, if you’re the administrator) lost password.
These tools help you find novel vulnerabilities in your own application as well as
demonstrate how a hacker finds new vulnerabilities.



Password Crackers

Most password-cracking tools rely on brute force dictionary attacks. This kind of
attack assumes that the hacker has access to an encrypted or encoded version of the
password database and a dictionary of commonly used usernames and passwords.
The program systematically encrypts each username and password combination
using the same algorithm as the operating system and tests the encrypted result
against the password database. When a match is found, the tool has “cracked” one
password. This technique is successful because modern computers can try many
username and password combinations in a relatively short period of time, and
many systems have at least one common username. For example, almost all Win-
dows computers have a user named “Administrator.” Passwords that are made up
of relatively short dictionary words or personal names are easiest for a password
cracker to crack; exceptionally long passwords (13 letters or more) and passwords
with non-alphanumeric characters are especially difficult to crack.

John the Ripper is a relatively simple and commonly used password cracker for
Unix. John relies on the fact that the Unix crypt() function, used to encrypt and
decrypt passwords, can be called by any program. The format of a Unix password
database entry is:

secret:$1$lYyNg9Do$nW7FpiK7o3Bof4.dwJ8dn/:12477:0:99999:7:::

John can read the encrypted password string (beginning $1$ and ending dn/)
and compare it to the results returned by a call to crypt() with a dictionary pass-
word. If the strings match, the password is cracked. Because crypt() is callable di-
rectly, no failed authentication attempt is recorded in the log.

L0phtcrack (now LC4) from @Stake, Inc., performs a similar function on
Windows. L0phtcrack is able to deal with the idiosyncrasies of the Windows SAM
password database format, which is more complicated than Unix’s.

Packet Generation and Replay

In security testing, it is often necessary to write packet data directly onto the wire.
It is certainly possible to open up a socket in your favorite programming language
to accomplish this, and in many cases, that’s the best way. However, lots of tools
exist to help with packet generation and replay. Some are able to open more diverse
kinds of connections, or connections at a lower level, than a high-level language
networking library like BSD Sockets or Winsock. Others are designed to make
packet injection easier for people without networking knowledge.

The simplest of these programs, Chris Wysopal’s Netcat, (www.atstake.com/
research/tools/) functions similar to the cat command in Unix or type command in
Windows. Netcat reads data from standard in, which can be piped from a file, and
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writes it out on a network socket. It can be used to send arbitrary data to a TCP or
UDP application listening on a particular port. The command:

echo –en "GET / HTTP/1.0\r\n\r\n" | nc www.myserver.com 80 > 

page.html

retrieves the home page of www.myserver.com and stores it in the file page.html.
When used in listen mode, Netcat can bind to a specific port and output any data
written to that port by a remote host. This allows the user to simulate a remote
server when testing a client application.

Nemesis, and the library it is based on, libnet, enables you to create packets that
are not easily created using an operating system’s TCP/IP stack. For example, it is
not easy to send “spoofed” packets, packets that appear to come from a different IP
than the sending machine, using a conventional BSD or Winsock socket. Nemesis
and libnet can overcome this; they are able to write to the network access layer
device (Ethernet card) in the same way that a sniffer can listen to the device. As a
result, they can send fragmented packets, packets with corrupt headers, packets
with invalid checksums; in short, anything can make it to the live wire. They are es-
pecially useful in testing router and network appliance implementations, which
have to deal with a broader set of protocols and tolerances than an end-user system.

Two companion tools to Tcpdump useful in generating and sending packets
are tcpslice and tcpreplay. tcpslice is used to cut, paste, and reassemble packet se-
quences captured with a sniffer like Ethereal or Tcpdump. It is possible to extract
one particular TCP session, or multiple sessions, from out of a sniffer capture file
based on port number, source address, etc. tcpreplay allows captured data to be
played back onto the wire, with or without timing adjustments. The problem with
tcpreplay is that it plays the data back without correcting IP checksums, and with-
out correcting timestamps that appear in some application layer protocols, so the
remote host you are testing might not respond appropriately to the replayed data.

The teardrop attack, a popular denial-of-service attack used by hackers in 1998, re-
sulted from sending an overlapping set of fragmented IP packets. When the net-
working stack of Windows and Linux machines tried to reassemble the fragments,
a pointer error caused the stack to crash irrecoverably. This packet sequence, which
could not be created by a normal socket() call, was trivially easy to generate and
test with libnet.

Network Fuzzing

Fuzzing involves sending random data to a network port or application in an at-
tempt to find buffer overruns and denial-of-service vulnerabilities from incorrect
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parsing of the data. Fuzzing is useful in binary protocols and any other protocols
that lack documentation. It is also useful in forcing exception handling code within
an application to be invoked that could not be easily reached otherwise. One way of
doing this is to use the urandom device in Linux to generate some random data, and
Netcat to send it. The command:

cat /dev/urandom | nc 192.168.1.1 80

accomplishes this nicely.
Spike, written by Dave Aitel of Immunity, Inc., (www.immunitysec.com/) is 

a fuzzer creation kit. It allows you to create a fuzzer customized to the protocol 
you are studying, handles checksums, and length field markers and is capable of
inserting interesting “fuzz strings.” These strings include directory traversal attack
strings (e.g., ../../../../../../../../), long strings that can be used to find buffer
overruns, and names of system files (e.g., /etc/passwd).

Web Site Test Tools

Because they are designed to permit users from anywhere on the Internet, Web-
based applications are particularly vulnerable to attack. In addition, the stateless na-
ture of Web pages, heavy use of server- and client-side scripting, and the emergence
of application server software have created some security issues unique to the Web
application paradigm. Some attacks, such as cross-site scripting, are unique to the
Web. Others, like SQL injection or OS command injection, are occasionally found
elsewhere, but are common in Web applications. SANS (www.sans.org) maintains a
“top ten” list of these bugs at their Web site. A similar list for Web applications can
be found at OWASP, the Open Web Application Security Project (www.owasp.org).

Nikto, an open source Web site scanner, is capable of finding these vulnerabil-
ities. In addition to the “top ten” Web site bugs, Nikto can find version specific
vulnerabilities in major application server platforms, unsafe CGI and server-side
scripts, and known vulnerabilities in major Web servers. Nikto works by “spider-
ing” a Web site—successively following links from one page to the next, perform-
ing its tests on each page. 

REVERSE ENGINEERING TOOLS

Security testing requires an understanding of the inner workings of a program. If
you’re the sole developer of an application, or have ready access to understandable
source code, these tools won’t help very much. If you don’t, however, reverse engi-
neering tools can help you learn more about the application you’re testing.
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As we mentioned in Chapter 2, some legal issues surround reverse engineering.
You should be conscious of these if you decide to employ one of the tools in this
section.

Source and Binary Scanners

Many security vulnerabilities are the result of programming errors that are easily
detectable by inspecting the source code. Programmers might use unsafe versions
of library functions, such as strcpy or strcat, and security objects like encryption
keys might be freed in memory without overwriting their contents. Source scanners
attempt to identify these potential vulnerabilities by searching a source file for the
signature of the programming error.

RATS, the rough auditing tool for security, is a source scanner for C, C++, Perl,
PHP, and Python. RATS contains signatures of 484 vulnerable functions and other
programming errors. However, the algorithm RATS uses to scan code is not very
sophisticated, and it cannot find certain categories of vulnerabilities like signed/un-
signed bugs.
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WHY NOT JUST SCAN EVERYTHING?

Source scanners and binary scanners are part of a family of tools called static
analyzers. Static analyzers attempt to make assertions about a program without
observing the program in a running state. As a result, they are good at identi-
fying potential vulnerabilities, but not in determining whether those vulnera-
bilities actually exist in the running program. 

Consider the following piece of C code:

char* newStr(char* oldStr)

{  char* tmp;

tmp = (char*) malloc(strlen(oldStr) + 1);

if(!tmp) return NULL;

strcpy(tmp, oldStr);

return tmp;

}

This function creates a new dynamic character array and copies the string
oldStr into it. A single line source scanner would report the strcpy as unsafe,
even though tmp is allocated with the same number of bytes as oldStr.



BugScan, developed by HBGary (www.hbgary.com) but recently acquired by
LogicLibrary (www.bugscan.net/) is a commercial tool that scans binaries (exe-
cutable programs and DLLs) to find vulnerabilities. While we have not used
BugScan, the tool looks promising. Binary scanning has an advantage over source
scanning in situations where you do not have access to the source code, or it is writ-
ten in a language that is not supported by available source scanners. However,
binary scanning programs have even less information to work with than source
scanners.

Specialty Editors

A variety of tools exist to help in decoding proprietary file formats, including the
executable file formats of programs. Simplest among these are hex editors like Win-
Hex. WinHex allows you to edit files in ASCII, Unicode, hexadecimal, and binary
format, as well as directly edit disk sectors and memory pages. It also accommo-
dates searches in multiple data formats, which is useful in backtracking from de-
bugger to the data’s source within a file.

PE file editors allow you to directly edit files of the Windows EXE (portable
executable) file format. Many of these editors also allow you to edit and manage
exports (functions exported for use by other programs), imports from DLLs, and
Windows resources embedded within these files. Heaventools’ PE Explorer is a PE
file editor that supports all of these features.

The freeware tool Resource Hacker by Angus Johnson (www.users.on.net/johnson/
resourcehacker/) can inspect, modify, and delete Windows resources within an EXE
or DLL file. Many applications store their strings, dialog, and Web page informa-
tion in resources; inspecting and modifying these aids in reverse engineering.

API and System Monitors

API and system monitors are used to inspect the “boundary” between an applica-
tion and the operating system that surrounds it. The information that is passed on
this boundary is very useful; with few exceptions an application cannot open a file,
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connect to the network, or create a child process without making an operating sys-
tem call. In fact, most any data that is passed into or out of an application involves
a system call of some kind. Many system calls, when called incorrectly, are as unsafe
as strcpy or sprintf. API monitoring tools allow you to watch an application mak-
ing those calls and inspect the data it passes.

strace for Unix prints out the names and parameters of all system calls made
by an application. These include file, network, and process calls. strace can do this
because most system calls are made by calling a kernel function with the system call
number; a single dispatcher is used to intercept and handle system call events.
strace intercepts all calls within the kernel at this location. strace does not inter-
cept library calls, so common functions like printf, which is part of libc, are seen
by strace as a write() call to the console device.

Sysinternals.com publishes a number of freeware utilities for API monitoring in
Windows. These tools have self-explanatory names: Diskmon, Regmon, Filemon,
Pmon, and Portmon. The Sysinternals tools have a graphical interface and are more
concrete than strace, because many Windows programs call the Win32 API func-
tions directly. They are invaluable in finding a number of vulnerabilities involving
temporary files, data stored in the registry, and undocumented network protocols.
Figure 3.4 shows Regmon.

Disassemblers

Disassemblers are programs that translate binary executable files into their assembly
source code. While they do not recover the original code as it was written, they make
it easier to view some of the structure and algorithms that make up the program.
IDA, the interactive disassembler from DataRescue, Inc., is a very powerful disas-
sembler that supports multiple architectures and file formats. IDA is able to detect
the source language and compiler using code profiling, does code flow analysis to
determine relationships among blocks, and is capable of producing call flow graphs
of the program. It also supports custom-written plug-ins—many folks in the reverse
engineering community rely on IDA to do the upfront work of disassembly and code
flow analysis and implement their proprietary tools as IDA plug-ins.

Using Debuggers for Security Testing

Conventional software debuggers have a number of unconventional uses in secu-
rity testing and can help quite a bit with program understanding. Because they in-
teract with the program while it’s running, you can follow data as it is passed from
one function to another, search the memory space for values such as passwords and
encryption keys, and observe the effect of fuzzing data on a program. You can even
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use a debugger as an “oracle” for file and network corruption testing. We take ad-
vantage of the fact that a program running in a debugger traps into the debugger
when an exception is raised by using this fact to know when our corrupted data has
“crashed” the program we’re testing. By looking at the values of registers and the
stack, we can determine whether this crash is exploitable.

Our favorite debugger for Windows is the shareware OllyDbg. OllyDbg is an as-
sembly level debugger, so you won’t be able to single-step source code if you have
it. However, its exception management, use of the processor debug registers, data
breakpoints, and plug-ins mean it can work around standard anti-debugging tricks
used by some programs. OllyDbg is shown in Figure 3.5.

The NT Symbolic Debugger (NTSD) is bundled with Windows NT, 2000, and
Windows XP. While NTSD does not have the pretty interface of OllyDbg, it is the
debugger Microsoft uses internally on most application projects and as a result is
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able to debug Windows applications with less difficulty than other debuggers. We
especially like the command-line interface and advanced features, including han-
dling of crash dumps and Dr. Watson info, as well as its capability to debug services.

Another favorite of the reverse engineering community is Compuware’s Soft-
ICE. SoftICE is a system level debugger originally written for use in device driver
testing. It is useful in debugging kernel functions, drivers, and other components
that are not ordinarily accessible in “user” space. However, SoftICE’s system level
perspective means you’re debugging the whole computer at once, which can be cum-
bersome when you’re only concerned with one application.

For Linux, there really is no better debugger than GDB. GDB can work as both
a source and system level debugger, and is highly scriptable. Its only drawback is
its awkward, command-line interface, necessitated by the number of platforms it
supports.
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FIGURE 3.5 OllyDdg.



COMMERCIAL TOOLS

Most of the tools we have presented in this chapter are free for the taking; the tools
in this section are not. They do, however, represent reasonable attempts by their re-
spective vendors to make high-quality security testing tools for developers. Part of
the appeal of these tools is support; the vendors are experts in the use of them, and
security in general. Most offer training and maintenance contracts that ensure the
tool is properly integrated into your development cycle. They are well worth the
price if your company is making an investment in security testing.

Retina

Retina is a comprehensive security scanner like Nessus. Its main advantages are that
it is developed and supported by the eEye Digital Security Team, who keep the tool
very up to date with the latest vulnerabilities, and its speed compared to other scan-
ners. It is also relatively inexpensive and easy to use if you have only a small network
to scan. Licensing is on a per-IP address basis.

AppScan

AppScan is a Web security scanner based on the AppShield technology from Sanc-
tum, Inc. AppScan spiders a site and finds OWASP top ten vulnerabilities. It has a
very well-designed user interface based on a custom Web browser. It injects faults
into the underlying HTTP traffic destined for the Web server and then compares
the results page to a page with no injected vulnerability as well as known error
pages.

WebProxy

WebProxy from @stake, Inc., is a different kind of Web testing tool that can find
OWASP vulnerabilities as well as common Web and application server bugs. Rather
than working as a browser/spider, it actually acts as a proxy server between the client
and the Web server. This means hidden fields, cookies, authentication tokens, and
other Web page elements can be modified in the middle of a transaction. Because it
includes a “fuzzing” component, it is also capable of finding buffer overflows.

Holodeck

Holodeck is an API level fault injection and analysis tool offered by Security Innova-
tion®. It goes beyond traditional API monitoring tools in its capability to inject faults
into the application it is testing. Holodeck can simulate latent error conditions that
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occur in software, such as low memory conditions, disk failures, and loss of network
connectivity, and measure the application’s response to those failures. It can also in-
ject user-created faults into the application, both through the user interface and a
COM API. The Holodeck main window is illustrated in Figure 3.6.
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FIGURE 3.6 Holodeck main window.

Don’t be discouraged if you don’t understand everything about each of these
tools from what is written in this chapter. Tools are only part of what you need to
find security vulnerabilities. The remainder of this book describes techniques for
finding specific kinds of vulnerabilities using these tools. The “For More Informa-
tion” section has links to the documentation and downloads for each of these tools.



FOR MORE INFORMATION

SATAN: www.fish.com/satan
Nessus: www.nessus.org
Microsoft Baseline Security Analyzer: www.microsoft.com/technet/treeview/
default.asp?url=/technet/security/tools/mbsahome.asp
Nmap: www.insecure.org/nmap/index.html
Ethereal: www.ethereal.com
Tcpdump and Libpcap: www.tcpdump.org
Ettercap: ettercap.sourceforge.net/
John the Ripper: www.openwall.com/john/
L0phtcrack, Netcat, and WebProxy: www.atstake.com
Spike: www.immunitysec.com/resources-freesoftware.shtml
Nikto: www.cirt.net/code/nikto.shtml
RATS: www.securesoftware.com/resources/tools.html
BugScan: www.bugscan.net/
WinHex: www.x-ways.net/winhex/index-m.html
PE Explorer: www.heaventools.com
Resource Hacker: www.users.on.net/johnson/resourcehacker/
Filemon, Regmon, etc.: www.sysinternals.com
IDA: www.datarescue.com
OllyDbg: home.t-online.de/home/Ollydbg/
SoftICE: www.compuware.com
Retina: www.eeye.com
AppScan: www.sanctuminc.com
Holodeck: www.securityinnovation.com/holodeck/
Open Web Application Security Project: www.owasp.org
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Problems with Permissions4

M
ost traditional writing about computer security, especially works prior to
the popularization of the Internet in the late 1990s, was concerned pri-
marily with access control, and for a good reason. When computers first

came about, we had no need for security in a software sense; the first major com-
puters were large enough to require dedicated rooms, and access was secured by
some physical means—a door lock, a premise alarm, etc. The advent of multi-user
systems led to a need to protect users from each other, and protect the system so
that it could remain a shared resource. Originally we had no concept of protection
from remote attack, because typically no remote users existed. (Occasionally a
modem left attached by a system administrator facilitated a remote attack.) As a 
result, security was primarily about limiting the access of a user to only those 
resources appropriate to him. Numerous models have been developed based on
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geometric concepts: the ring model, the hierarchical model, the superuser model,
etc. They all follow the same basic principles, though. These principles are as fol-
lows:

A system is made up of a number of objects or resources, and a number of sub-
jects or users. Most typically these objects are files and directories, though other
objects, such as pages of memory, devices, pipes, and semaphores might also be
subject to access control.
Each of these objects has a number of access modes, typically, read, write, and
execute. Some systems include other access modes such as create and delete,
while others treat these as the same as a write.
Users have permission to access an object in one or more of these modes
through a permission scheme.

In addition, most permission schemes are hierarchical, meaning some users
have more access rights than others, and these users can typically access more re-
sources than the others. Some schemes have a concept of ownership, in which the
primary rights of access rest with one particular user, who can grant or revoke these
rights from others.

THE BELL-LAPADULA MODEL

The Bell-Lapadula model [Bell73] is one of the older and more recognized models
for implementing access control. It is based on the hierarchy used to protect classi-
fied information within the U.S. government and is organized as follows:

It has multiple, ordered security levels: top secret, secret, confidential, and 
unclassified.
Each object is assigned a security level, as is each subject.
A subject can read or write objects at his level. For example, a subject with a top
secret level can create, read, or write files with a level of top secret.
A subject can “read down.” This means a subject can read, but not write, files
at a level below his. For example, a top secret subject can read any secret or un-
classified objects within a system.
A subject can “write up,” meaning create and write to objects at a level higher
than his. This is because anyone with a higher level has permission to read it
anyway.



Though it is the model most frequently taught regarding access control, in
practice, the Bell-Lapadula model poses some significant problems. First, you have
the issue of privacy. Any user with top secret credentials can read any file at the top
secret level; you have no means of segregating files among users. Second, no well-
defined mechanism exists for changing the level associated with objects. Because no
user can “write down,” you cannot downgrade the level of a file. Figure 4.1 illus-
trates the Bell-Lapadula model.
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FIGURE 4.1 The Bell-Lapadula model.

As a result of these limitations, operating systems cannot simply implement the
Bell-Lapadula model. In practice, their schemes can be relatively simple (systems
that permit only one “superuser” such as the “root” user in classic Unix imple-
mentations have only two kinds of privilege, ordinary user and superuser, to worry
about) or quite elaborate (systems that support access control lists, or ACLs, such
as Windows NT, allow many functions within the operating system to be assigned
multiple levels of privilege based on defined roles). The ACL approach is strongly
preferred by security professionals, because it allows the administrator to have
more fine-grained control over individual privileges than the superuser model, but
both approaches have drawbacks. In the superuser model, because the privilege of
writing to arbitrary files or adding and removing users is reserved for the superuser,
applications that need to make use of those functions must be run as superuser. As
a result, that application has all the other privileges that a superuser has, in addition
to those it really needs. Misconfiguration of the application might result in a user
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being able to access some of those additional privileges. On the other hand, the ACL
approach requires the application developer or system administrator to be familiar
with, and correctly define, the appropriate roles for each action an application
wants to perform. The more “fine-grained” the access controls can be, the more
likely it is that a developer or end user can make a mistake that exposes a vulnera-
bility. Complexity sometimes is the enemy of security.

This chapter deals with several issues surrounding multiprivilege systems:

Permission misconfigurations occur when an application ships with the default
permissions set incorrectly, allowing an attacker to use the application to cir-
cumvent security. 
Escalation of privilege bugs, sometimes called suid bugs, in which an application
running as a privileged user can be exploited to escalate privilege, is found pri-
marily in Unix, but can also occur in other operating systems.
De-escalation bugs take advantage of shared special purpose accounts designed
to avoid the first two categories of bugs. For example, a user who “de-escalates”
from himself to “nobody” might be able to kill processes running as nobody, a
problem in shared environments.

DESCRIPTION

Support for multiple users was one of the “killer apps” that made Unix a main-
stream operating system during the 1970s and 1980s. While other systems could be
used by only one user at a time or required a dedicated CPU for each simultaneous
user, Unix’s timesharing meant that CPU resources could be alternated between
multiple users, giving the appearance that it could perform multiple simultaneous
operations. Unix borrowed its user concept from many other systems of the day in-
cluding MULTICS, and the same basic concept underlies modern Unix variants
such as Solaris or Linux. Each user in Unix has an account that is accessed by means
of a username and password. All resources within the system have a corresponding
ownership; that is, they belong to one and only one user, who can assign permis-
sions to others to use it. The Unix permission scheme is implemented by means of
a permissions mode number, with each bit in the mode corresponding to a per-
mission assigned or denied to a particular category of user. The exact permissions
vary slightly from one Unix implementation to another, but the basic idea is as 
follows:

You have three categories of users: the owner, the group owner associated with
the resource, and “everyone.” Permission numbers are made up of three digits,
one each for owner, group, and everyone. In the permission number of 654, 



6 corresponds to the owner, 5 to the group, and 4 to everyone. Historically,
group permissions were not used extensively in Unix. Some modern applica-
tions, such as MySQL, rely on them extensively, though.
You have three kinds of permission: read, write, and execute. These values
form a 3-bit mode as shown in Table 4.1.
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Bit Meaning

100 User has read permission to the resource.

010 User has write permission to the resource.

001 User has execute permission to the resource.

TABLE 4.1 Permission Mode Bits in Unix

For example, a resource with a permission mode of 755 would mean the 
following:

Owner has read, write, and execute permission (all three bits are 1).
Group has read and execute permission, but not write permission (first and
third bits are 1, but second bit is 0).
Everyone has read and execute permission (same as previous).

In addition to these ordinary permissions, a special flag called the supervisor bit
can be set on a file. This bit tells the operating system to execute the program as
though it were being executed by the owner, with all the permissions associated
with that user. The operating system uses the setuid() family of functions to do
this. Many operating system commands and services have the supervisor bit set so
that they can be run as an ordinary user but perform a function that requires “root”
access to accomplish a task. For example, the passwd command needs to update the
password file, owned by “root,” in order to successfully change a user’s password.
Likewise, several applications within X Windows deal with logging in and out as
different users; the X server and some of these applications need to have the super-
visor bit set.

Remember, because the user ID of the process is effectively changed to that of
the owner when the program is executed, whatever actions can be performed by the
program can be performed as the owner. So a program owned by root with the su-
pervisor bit set could conceivably do anything that root could do. This is because,



as we explained previously, the access control model of Unix is too simple to dif-
ferentiate between a superuser who needs to perform a specific task and a general
purpose administrator. For example, it is not, generally speaking, possible to give a
user only rights to add and delete users or change passwords without giving him all
other rights to the system.

An attacker can exploit this model a number of ways. One way would be to find
a piece of side-effect functionality within the program that performs the task he
wants. For example, an attacker who knew that the program deleted a file might be
able to use that functionality to delete an arbitrary file. Alternately, the program
might fail to process commands or input correctly, meaning that the attacker can
pass arbitrary commands to the program. Finally, an attacker might be able to find
a buffer overrun in the program, allowing the arbitrary code to be executed as the
superuser.

It should be noted that while the preceding description is generally true of Unix
systems, a considerable amount of variation exists from system to system. For
example, Linux is presently implementing Posix capabilities as a mechanism for
providing more fine-grained access control.

Finding Programs with the Supervisor Bit Set

Finding out whether a program has the supervisor bit set is relatively easy. The 
-l option to ls lists additional details about a file, including its ownership, per-
missions, and the date it was created. The first 10 columns of each line is the
permission mode; an s in the fourth column means the program has the super-
visor bit set. Figure 4.2 shows the programs in the /usr/bin directory of Linux that
have the supervisor bit set.

Searching for supervisor-enabled programs on the system is just as easy. The
regular expression ^…s matches all lines that have an s in the fourth column, so we
could search the whole file system for supervisor-enabled files with the command:

find –perm +4000 -print

Attacking Supervisor Mode Programs by Finding Side-Effect Functionality

Many supervisor-enabled programs exist to bypass conventional operating system
security measures. When implemented correctly, they perform only the function
specified and guard against potential exploitation by carefully processing all input
and anticipating potential misuse. The side effects of specific functions within the
program might leave the software open for vulnerability.

Consider a vulnerability that existed in many FTP clients, including the default
clients packaged in Linux and Solaris. These clients had an undocumented feature
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that would allow the contents of a downloaded file to be filtered through a local
program. The command:

get foo |more

would retrieve the contents of the file foo from the remote server and display it
using the more (pager) program. The programmers of these FTP clients failed to an-
ticipate the side effect of this feature when coupled with another feature: default
local filenames. This feature allows a user to omit the name by which the retrieve
file is saved; the client defaults to saving the file with the same name as the remote
file. The result is that when the command:

get |sh

is executed in the client, the contents of a remote file named |sh are retrieved and
then passed to the sh program as input. As a result, a malicious FTP server could
use this technique to execute arbitrary commands on a client.

This vulnerability existed because the programmers failed to anticipate that
files with a pipe (|) as the first character in the name could be placed on the server,
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FIGURE 4.2 Programs with supervisor bit set in /usr/bin.



and what the side effect of such a filename would be. Pipes and other forms of redi-
rection are a common cause of escalation of privilege vulnerabilities. A very simi-
lar vulnerability existed in the Apache Web server running under Windows. When
a normal CGI program is executed in Apache, the executable is invoked directly by
the Web server with no intermediary command interpreter. However, to support
CGIs that were written in DOS batch file language, special functionality was added
to invoke cmd.exe (the command interpreter) when a CGI with a .BAT or .CMD ex-
tension was encountered. CMD was passed the batch file as an argument; subsequent
arguments processed off the request URL were also passed to CMD so that they could
be interpreted by the batch file.

When a request URL contained a pipe as the first character in the first parame-
ter, interesting side-effect functionality in cmd.exe was invoked. cmd interpreted the
pipe as a redirection command, just as it would if it were typed on the command
line. Consider the effect of this command, supplied as an example by Ory Segal in
his description of the bug:

http://TARGET/cgi-bin/test-cgi.bat?|echo+Foobar+>>

+..\htdocs\index.html

When cmd is passed the string |echo as its first argument, rather than passing it
along to the test-cgi.bat program, it invokes test-cgi.bat with no arguments
and pipes the result to the echo command. The remainder of the arguments define
the behavior of echo; in this case, it appends the string Foobar to the root index.html
document. Such a technique could easily be used to overwrite the .htaccess and
.htpasswd files or execute any other command on the server.

Environment variables are another source of privilege escalation vulnerabili-
ties. Consider a program that relies on a script to do setup or configuration for it,
as is the case with many X Windows programs. The script might be read-only,
meaning the attacker cannot modify it. However, if the script processes environ-
ment variables in an unsafe manner, he might still be able to execute arbitrary com-
mands. Say, for example, an application uses a shell script to delete a temporary
directory within a user’s home directory. The user’s home directory can be safely
obtained by searching /etc/passwd for the line corresponding to the username.
However, the HOME environment variable is set to the directory name and is more
convenient to use within a shell script. The shell script line to delete the temporary
directory might look like this:

rm -rf $HOME/.temporary_directory

While this might look innocuous, it is actually a very dangerous way of em-
ploying a temporary directory. The reason is that the user can control the value of
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the HOME environment variable. Because of this, an attacker can specify another
user’s home directory as the location of the temporary directory. However, a more
serious side effect of this is that rm can remove more than one file with a single com-
mand. Files are separated with a space. If the attacker sets his HOME environment
variable to be /, the script deletes the entire contents of the hard drive.

Problems with Permissions 67

THE dtappgather VULNERABILITY

This problem arose from a poor implementation choice in creating a tempo-
rary directory associated with the generic display device in Solaris’ Common
Desktop Environment 1.0.2, found in Solaris 2.5. CDE needed to change the
permissions on this directory so that its ownership corresponded to the user
that was presently logged in on the X console. To do this, it used the Unix
chown() function, which changes file ownership from one user to another. Be-
cause chown() can be called only by root, the application that performed this
function, dtappgather, had the suid bit set.

The permissions on the directory /var/dt/appconfig/appmanager, where
the file was located, were 777, the mode for universal access. The result was that
a local user could create a symbolic link from generic-display-0 to a file of his
choice; for example, /etc/passwd. When dtappgather was invoked (it was not
necessary to log in on the console to do this), the file symbolically linked to
generic-display-0 had its ownership changed.

Attacking Supervisor Mode Programs by Exploiting a Buffer Overrun

Implicit side-effect behavior is not the only way to exploit a supervisor mode pro-
gram. Certain kinds of bugs that result from improper processing of input, includ-
ing buffer overflows, can also lead to privilege escalation in supervisor mode
programs. In this case, an attacker could take advantage of a buffer overflow to ex-
ecute arbitrary code as the privileged user. The traditional use of these vulnerabili-
ties is to give the user a “root shell,” the equivalent of the shell prompt a user would
get when logging in as root. This is accomplished by forcing the app to execute code
that invokes the shell interpreter, /bin/sh. Because the attacker is already logged
into the system as an ordinary user, he can type commands in the shell as though
he were the root user.

For a while, both Linux and Solaris were full of vulnerabilities of this kind. They
were especially popular in university environments, where shell accounts on Unix
machines were relatively easy to come by. Some high-profile ones include:



fingerd

dip

mount

uucp

admintool

lpr

lpstat

ld.so

fontfile

Chapter 8 deals with finding these vulnerabilities in more detail.

Windows: Not Immune From, but Less Prone to, Escalation of Privilege

The bulk of this chapter has concentrated on escalation of privilege in Unix. While
privilege vulnerabilities do exist under Windows, they occur less frequently. Several
reasons for this exist. First, Windows uses role-based access control, rather than a
supervisor model. This means that a user or application can be assigned elevated
privileges to access several resources without giving arbitrary access to the system.
The operating system itself makes extensive use of ACLs, even for non-file resources
such as registry keys, pipes, and interprocess communication channels. It also pro-
vides a rich set of roles (called Security IDs or SIDs) ranging from “Administrators”
to “Everyone,” including special roles for guests, built-in users, power users, ser-
vices, and anonymous users. The result is that programs do not have to escalate all
the way to “Administrator” or “System” to accomplish a task.

How much difference the role-based access controls make in Windows is not
really clear, though. First, Windows provides backward compatibility, both in code
and philosophy, to the Windows 95 family of operating systems. These systems had
no multi-user concept, and programs written for them could create files in any di-
rectory, add and delete registry keys, and perform a variety of “unsafe” functions.
To preserve compatibility with these programs, the ordinary user must be logged 
in as “Administrator” even when he is not performing administrative tasks. In fact,
on many versions Windows automatically creates an administrator-equivalent
account in the primary user’s name; this user is automatically logged in when the
system boots. So, in practice, most users are already “administrator” when they sit
down at the machine. For this reason, attackers would not benefit by focusing on
finding vulnerabilities that escalate local privilege in Windows. Second, Windows
is primarily deployed in two configurations: single-user desktop and standalone
server. This “client-server” model negates the need for local privilege escalation. On
his own machine, the attacker already has full access. On the central server, where
information is stored and shared with other users, he is not “local”; a local privilege
exploit would do no good.

68 The Software Vulnerability Guide



We are not suggesting that one system (Unix or Windows) should be selected
over the other solely on the basis of access controls. Part of the mess we’re in today
in security is the failure of security architects to see beyond access controls when
these products were created in the 1980s and early 1990s. However, support for
ACLs is one of the bright spots of Windows security.

FIXING THIS VULNERABILITY

The best solution to this problem is to avoid the supervisor bit completely. Many
services that previously ran as “root” now run as “nobody”; this account potentially
provides a higher level of security because the system can restrict some actions
from being performed using the “nobody” account, including changing the ac-
count’s password, logging in for an interactive session, and spawning a shell. If
“root” access is required, follow these guidelines:

Remove the supervisor bit from programs that don’t need it. This can be done
by chmod a–s <program-name>.
Limit the functionality of the supervisor-set program to the function it is in-
tended to perform. If a program needs to be suid solely to copy a file or change
permissions, consider isolating that functionality into a separate executable
and setting the suid bit only on that program.
Avoid writing suid programs that can write to arbitrary files or spawn shell
programs.
Don’t trust any data, especially from the non-suid portions of your own
program. These can be manipulated by the attacker. Avoid arbitrary length
strings, complicated data structures, and environment variables.
Avoid assigning the suid bit for convenience or for superfluous reasons—
e.g., to directly manipulate the video pages or sound device. Controlled APIs
such as DirectX and OpenGL exist to do this.

The setuid() and seteuid() System Calls

The setuid() function allows a suid process to change the user ID associated with
that process, effectively dropping privilege. This technique is used by programs like
getty that allow a user to log in and launch a shell. Once setuid() is called, the pro-
gram cannot “go back” to having “root” privileges. This side effect is convenient for
services that might need to be started as “root” at boot time, but for which the full
privilege set is undesirable. The setuid() function allows such a program to “drop
down” to “nobody,” where escalation of privilege is not as serious a concern.
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The seteuid() function (Linux only) allows a program to set its effective user
ID. Only a program with “root” privileges can call this function; doing so tem-
porarily switches the user ID of the program from the privileged user to an unpriv-
ileged user. Thus, a program that needs suid permissions for a small piece of
functionality can “switch” right away back to the user ID of the user who invoked
it. Because the program controls at what points it has effective root permissions, a
buffer overflow or similar attack would have to occur in the critical (euid=root)
portion of the program in order to escalate privilege.
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DE-ESCALATION: KILLING THE WEB SERVER

An odd side effect of the de-escalation technique is that child processes running
as “nobody” can be killed by other processes running as “nobody.” Server-side
includes in the Apache Web server allow arbitrary commands to be executed as
“nobody.” The result is that these SSIs can kill Apache’s child processes, which
also run as “nobody.” Running the kill command in a loop results in a local
denial-of-service attack against the Web server.

Summary Sheet—Running with Elevated Privilege

Problem:

Applications that operate at multiple levels of operating system privilege are
prone to privilege elevation vulnerabilities. An attacker manipulates function-
ality within the application or causes a buffer overflow to force an elevation of
privilege within the system.

Potential Impact:

An attacker might, in the worst case, gain complete administrative control of a
system.

Habitat:

Applications that run in multi-user environments or need administrative priv-
ileges to accomplish a function are particularly prone to this vulnerability.

Tools You Need to Find It:

Ordinary OS tools such as find and ls can be used to identify potentially vul-
nerable applications.
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How to Look for It:

The best way to identify these vulnerabilities is to review the source code sur-
rounding the privilege escalation need.

Symptoms of Failure:

The application does “too much” in a privileged mode. The application fails to
adequately constrain inputs. The application allows for programmatic or shell
access in privileged mode.

Famous Failures/Exploits:

• dtappgather—A vulnerability in CDE (Solaris, AIX, HPUX) that allowed an
arbitrary file to be copied.

• uucp—A buffer overflow permitted local execution of arbitrary code as a
privileged user.

• sendmail—The “mother” of all buggy suid programs, sendmail has had
several exploitable buffer overflows.
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Permitting Default or 
Weak Passwords

5

W
eak passwords have been called the biggest problem with information se-
curity. As passwords become more and more pervasive, users are com-
pelled to remember more and more of them, meaning they are either

choosing very simple ones, or using the same password over and over. Danger lies
in either of these scenarios—simple passwords based on usernames, dictionary
words, or four-digit numbers are very simple for an automated password cracker to
discover; using a strong password that is the same on numerous systems dramati-
cally increases the risk of all systems being compromised if that password is dis-
covered. You might ask, “Why is password safety a developer concern and not a
user concern?” The answer is that an attacker could use your application’s lax
security to recover passwords and attack other applications with them, or spread a
virus or worm based on your application.

In This Chapter

Finding Default and Weak Passwords
Fixing This Vulnerability
References



74 The Software Vulnerability Guide

Passwords are common enough to be almost forgotten about. Whether it’s a
secret handshake, an ATM pin, or a bicycle lock combination, shared secrets are,
perhaps with the exception of mechanical keys, the most common way of authen-
ticating a person or thing to permit or deny access. When we think of computer
usernames and passwords, we usually think of the logon authentication feature
provided by the operating system—Unix’s trademark login: prompt or Windows’
login dialog. However, many applications besides the operating system offer au-
thentication. Database applications, enterprise resource planning (ERP) systems,
Web sites, and financial applications are all examples of applications that “roll their
own” authentication; that is, they implement authentication within their applica-
tion separate from the operating system. The selection of passwords is typically left
to the user; this creates trust between the user and provider of the software because
as long as the system permits arbitrary passwords, you have a lessened risk that
someone with knowledge of the authentication algorithm could circumvent it.
However, it is generally not wise to permit all possible passwords. Some are, for
mathematical reasons, better choices than others.

Consider the Unix password scheme. Traditionally, a Unix password is be-
tween three and eight characters, and the permitted characters are printing charac-
ters between 21 and 7E hex. This creates a theoretical password space of 948 possible
passwords. However, an early study by the creators of Unix [Morris79] discovered
that a dictionary attack (trying all dictionary words as password candidates) was
able to discover a third of their 3,289 sample passwords, and that an algorithm that
tried one-, two-, three-, and four-letter alphanumeric combinations and five- and
six-letter combinations, in conjunction with a dictionary attack, was able to obtain
86 percent of the sample passwords. So in practice, of the 6,095,689,385,410,816
possible passwords, the most common 322,671,313 combinations make up 86 per-
cent of actual passwords. That’s a 108 reduction in the password space.

TESTING THE SECURITY OF YOUR PASSWORD

Use this table to determine how many tries (in the worst case) it would take a
brute force algorithm and dictionary attack to determine your password:

One-, two-, three-, or four-letter English word 2,263 tries

Five- or six-letter English word 8,226 tries

One, two, three, or four random alphanumeric characters 1,874,161 tries

Five or six random letters 320,797,152 tries

Six to eight random alphanumeric and non- 23,811,286,661,761 tries
alphanumeric characters



Permitting Default or Weak Passwords 75

Another problem exists when application developers ship their product with a
vendor-supplied default password or no password. Many users do not change the
default password. This happens regardless of how security conscious the intended
users are, and how large and bold the warnings are in the manual. Some users don’t
trust authentication, especially during the install process. It becomes one more
thing that can “go wrong” with the install. Shipping your product with an empty or
default password ensures that the default password bubbles to the top of the list in
password-cracking software dictionaries. These lists are updated frequently on the
Internet and in hacker magazines like Phrack and 2600.

Numerous vulnerabilities and incidents have resulted from the tendency of
administrators to leave default passwords in place. Products ranging from the SAP
enterprise resource planning software to consumer DSL routers have had this vul-
nerability reported in them. In the mid-1990s, a common hacker technique was to
modify access control rules and routes in the networking hardware of their victims;
many networking hardware vendors shipped their products with the default pass-
word “public.” The SQLSnake vulnerability, which caused major havoc for corpo-
rations and backbone providers, took advantage of the default password setting
shipped with earlier versions of Microsoft SQL Server. All of these vulnerabilities
could have been prevented if the user had only been required to set a password to
make the software operational. (The current version of Microsoft SQL Server does
force users to set an “sa” password on install.)

FINDING DEFAULT AND WEAK PASSWORDS

Password crackers have some limitations. Most are advertised as a way to recover
lost or otherwise unrecoverable passwords, though in order to use them for this
purpose you must have some direct access to the password database. In short, you
must already be “in”to use one of these. Another legitimate use of password crack-
ers is to ensure that an operating system shipped as part of an integrated application
did not contain any back door users or empty passwords.

Under Windows, one of the best programs for password cracking is the com-
mercial application LC4 from @stake, Inc. (available at www.atstake.com). LC4 can
automatically recover passwords from four sources: the local machine’s password
database, a remote machine on a domain to which you have administrator access,
a recovery disk made when the operating system was installed, or passwords sniffed
off the network. The last feature (passwords sniffed off the network) seems to be at
odds with any legitimate use of LC4.

You can also select the strength of the audit, varying from a simple dictionary at-
tack to an intensive combinatorial one. Selecting one of these retrieves the password
database and begins trying candidates. Figure 5.1 illustrates the output of LC4.

www.atstake.com
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On Linux, you can use the John the Ripper password auditing tool. John can
crack Unix, DOS, Windows NT, and Windows 95 passwords and operates from the
command line. You need to have access to, and supply to John, the password file
you want to crack. A sample John session looks like this:

./john -users:simon /etc/shadow

Loaded 1 password (FreeBSD MD5 [32/32])

says       (simon)

guesses: 1 time: 0:00:08:16 (3) c/s: 3925 trying:

says

In this case, we “audited” the password for the user named simon. After 8 min-
utes and 16 seconds, John correctly guessed our four-letter password says.

Building a Password Cracker

It is relatively easy to build your own password cracker. We have built one for the
companion CD-ROM included with this book, in the Source Examples\Chapter 5

FIGURE 5.1 LC4 output.



directory. Our tool performs a simple dictionary attack against Unix and Windows
passwords. We make no claim that it is optimal; several improvements could be
made, including precomputation of hashes, trying variations on words and names
(such as “scott1” for “scott”), etc. Our purpose is to demonstrate the techniques for
testing the validity of passwords and the functions used within operating systems to
do this.

As we mentioned previously, one technique operating systems use to prevent
brute force password attacks is to make the password database unavailable to an or-
dinary user. This was not true on older variations of Unix and continues to be true
in some instances. Because the password database (/etc/shadow on Linux) is owned
by root and is not readable, you can use our technique only on systems on which
you already have administrator access. To use it on other kinds of systems, you
must first gain root privileges. Figure 5.2 shows a typical Linux shadow file.
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FIGURE 5.2 A typical Linux shadow file.

Windows passwords are located in the SAM database, which can be read via a
mounted Windows share. Phil Staubs’ pwdump3 utility (obtainable from www.
openwall.com/passwords/nt.shtml) is capable of doing this.

Once the password database is obtained, test passwords can be run against it.
This need not be done on the same machine that the password database resided 
on, because our routines do not attempt to actually authenticate on the machine.
Figure 5.3 shows the output of pwdump3.

www.openwall.com/passwords/nt.shtml
www.openwall.com/passwords/nt.shtml


Using a Dictionary Helper

To generate candidate hashes, it is necessary to have a dictionary of common pass-
words. We obtained a number of word lists including the most common English
words, most common proper names, and other popular password choices, includ-
ing names of pets and animals, names of sports teams, etc. We combined these
word lists into a single file, all.txt, and eliminated duplicates. We wrote a small
dictionary helper class that allows us to interact with the dictionary. 

#define MAX_WORD_LEN 80

class pwDictionary {

public:

FILE* fv;
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FIGURE 5.3 The output of pwdump3.



pwDictionary();

void setFile(char* fname);

int nextWord(char* word);

};

void pwDictionary::pwDictionary()

{

fv = 0;

}

void pwDictionary::setFile(char* fname)

{

fv = fopen(fname,"r");

}

int pwDictionary::nextWord(char* word)

{

if(!fv) return -1;

char theWord[MAX_WORD_LEN];

if(feof(fv))

{    fclose(fv);

return -1;

}

fgets(theWord, MAX_WORD_LEN-1, fv);

theWord[MAX_WORD_LEN-1]=0;

if(strlen(theWord) >= MAX_WORD_LEN-2)

return -1;

if(feof(fv))

{

fclose(fv);

return -1;

}

if(strchr(theWord,'\n'))

*(strchr(theWord,'\n')) = 0;
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strcpy(word,theWord);

return strlen(word);

}

The class has two methods: setFile() and nextWord(). (The constructor 
pwDictionary() simply sets the file pointer to zero.) setFile() opens a file given by
the filename. If this call fails, subsequent calls to nextWord() also fail.

nextWord() obtains the next word in the file. Words are by themselves on a
single line. Some error handling is required in case of an inadvertent blank line or
missing carriage return within the file.

The basic idea is that the password cracking routine can call nextWord() to
obtain the next candidate password to try. If need be, it can load multiple dictio-
naries by calling setFile() multiple times.

Writing the Main Crack Routine

Our main routine, crack(), is written to handle both Unix and Windows style
hashes. This is because the behavior of the cracking routine is the same regardless
of the platform; only the mechanism for computing the candidate hash is different.

crack() takes three arguments. The first is the key (encrypted hash of the real
password) that we are attempting to crack. The second is the name of a dictionary
file to be passed to pwDictionary::setFile(). Finally, it takes a predefined con-
stant, either CRACK_UNIX_CRYPT or CRACK_W_MD4, which determines whether the Unix
style (DES/MD5) or Windows (MD4) style hashing algorithm is used.

void crack(char* key, char* dictionary, int alg)

{

pwDictionary dict;

dict.setFile(dictionary);

int res = 0;

char candidate[80];

bool b;

int ct=0;

while(res!=-1)

{

res = dict.nextWord(candidate);

if(res==-1) break;
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if(alg==CRACK_W_MD4)

b = try_one_windows_password((unsigned char*) candidate,

(unsigned char*) key);

else if(alg==CRACK_UNIX_CRYPT)

b = try_one_unix_password((unsigned char*) candidate,

(unsigned char*) key);

if(b)

{

printf("password is `%s'\n",candidate);

return;

}

ct++;

}

printf("failed after %d guesses\n",ct);

}

crack() loops through each word in the dictionary, calling either try_one_unix_
password or try_one_windows_password, which both return true if the hashes match.

The Windows hashing function is easier to write, because it is just an MD4
hash. We obtained the MD4 hashing function included in the open source Samba
package for Linux (www.samba.org), which contains the function E_md4hash. Writ-
ing your own MD4 hashing function is an exercise in mathematics, not security,
and it is better to obtain one of the freely available ones.

bool try_one_windows_password(unsigned char* passwd, unsigned char* key)

{

unsigned char p16[16];

char temp[3];  // for the two digits of hex, plus a trailing \0

char res[64];

E_md4hash(passwd, p16);

strcpy(res,"");

for(int i=0;i<=15;i++)

{

sprintf(temp,"%02X",p16[i]);

strcat(res,temp);

}
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return !strcmp(res, (char*) key);

}

Some formatting is needed to convert the results of E_md4hash() into the
human readable format we are using. To do this, we effectively “print” each byte
using sprintf and compare the results.

Building the Unix function is more difficult, because modern Unix systems
accommodate both traditional DES and modern MD5 hashes. The first two char-
acters of the hash are a two-character salt, used to perturb the DES algorithm one
of several different ways. The salt "$1" is a special code that indicates the password
was hashed using MD5 rather than DES. Depending on this value, we call either
crypt() or md5_crypt().

bool try_one_unix_password(unsigned char* passwd, unsigned char* key)

{

char salt[14];

salt[0]=key[0];

salt[1]=key[1];

salt[2]=0;

if(strcmp(salt,"$1")) // DES; easy case!

{

char* hash = crypt( (char*) passwd, (char*) salt);

return !(strcmp( (char*) hash, (char*) key));

}

else // MD5; kind of hard!

{

strncpy(salt,(char*)key,14);

char* p = strchr(&salt[4],'$');

if(p) *(p+1) = 0;

char* hash = md5_crypt( (char*) passwd, (char*) salt );

return !(strcmp( (char*) hash, (char*) key));

}
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return 0;

}

The salt for MD5 can be up to 14 characters long and is contained at the be-
ginning of the key following the "$1". It begins and ends with a $. This salt must be
separated from the key proper before calling md5_crypt().

Putting It Together

To crack simon’s password, we call

crack("$1$mZj0NKxX$mxjiH7ICh5AsOarsgVKgr.", "all.txt",

CRACK_UNIX_CRYPT);

One of two results occurs. If the password is obtainable, the program outputs
password is: followed by the correct password. Otherwise, it outputs failed after
<n> guesses where <n> is the number of words in the dictionary.

In fact, it correctly guesses simon’s password to be says (as John did in the pre-
vious example) and does so in 65 seconds on our modest 1 GHz machine. As we
mentioned previously, significant improvements could be made including pre-
hashing and indexing of candidates, though LC4 performs adequately and is rec-
ommended should the need for a password cracker arise.

FIXING THIS VULNERABILITY

Applying a few simple rules can prevent your application from becoming vulnera-
ble to a password attack.

Don’t ship with a default password or blank password. Require a password be
entered prior to operation, preferably at install, and ensure that the software
does not allow the administrator to set a blank password.
Limit direct access to the password database and lock the system for a period of
time after an unauthorized access. This period of time does not need to be very
long to inhibit automatic password cracking tools.
Enforce strong password selection on the user. Don’t permit the user to select
an arbitrary password, or if you must, require that the administrator change the
default security settings for the application before you accept a weak password.
Consider automatically generating a password and supplying it to the user, or
requiring two credentials, such as an automatically generated password and
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user selected PIN number to gain access. To succeed in gaining access, an at-
tacker would have to guess both of these correctly.
If your system supports very long (e.g., up to 128) characters, encourage users
to choose a short phrase or sentence rather than a single word password.
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GENERATING PASSWORDS A USER CAN REMEMBER

This routine generates a password composed of two four- or five-letter words,
separated by a non-alphanumeric character. The standard Linux dictionary
has 5,049 four- and five-letter words, so it has a password space of more than
254,000,000 combinations. The companion CD-ROM contains the code to this
routine along with the passgen.in file containing the dictionary words.

/* program to generate secure, easy to use passwords */

#include <stdio.h>

#include <sys/time.h>

/* passgen.in has 5049 entries */

#define wordct 5049

char words[wordct][7];

char* separator = "+-=*$#%@&!";

void main()

{

FILE* wordfile;

int i, word1, word2, sep;

wordfile = fopen("passgen.in","r");

if(!wordfile) exit(-1);

for(i=0;i<=wordct-1;i++)

{

fscanf(wordfile,"%s\n",words[i]);

}

fclose(wordfile);

srand(time(NULL));
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word1 = rand() % wordct;

word2 = rand() % wordct;

sep = rand() % strlen(separator); 

printf("Your system-generated password is ");

printf("%s", words[word1]);

printf("%c", separator[sep]);

printf("%s", words[word2]);

printf(".\n");

}

Summary Sheet—Permitting Default and Weak Passwords

Problem:

Users are overwhelmed with the number of passwords they must remember on
a daily basis. Whenever possible, users select short, easy to remember pass-
words. This tendency makes it easy for an attacker to apply a brute force attack
that recovers the password.

Potential Impact:

An attacker could gain access to confidential data or execute commands he is
not authorized to access.

Habitat:

Any application that uses a password to control access to or otherwise protect
data and application functionality could potentially be at risk for a brute force
password attack.

Tools You Need to Find It:

A password cracking tool and access to the password database. A memory
search tool, such as the search feature of OllyDbg, is useful for finding pass-
words in memory.

How to Look for It:

Look for passwords that are too short, contain only letters or numbers, or are
composed of dictionary words.
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Symptoms of Failure:

Password cracking software can recover the password in a relatively short pe-
riod of time. The period of time depends on the sensitivity of the information
and the willingness of the attacker to apply resources to the problem.

Famous Failures/Exploits:

The Morris Internet worm, the Internet’s first major security incident, worked
because some Unix machines had empty root passwords. Don Sealy wrote an
analysis of the worm, which is preserved at SecurityDigest. [Seely89]
SecurityFocus describes the cause and effects of the SQLSnake worm. (www.
securityfocus.com/news/429)
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Shells, Scripts, and Macros6

F
or most of the history of computing, including the early days of personal
computers, the ordinary user was a programmer. Whether it was preparing
punch cards for use on an IBM mainframe or tinkering with BASIC on the

Apple II and Commodore 64, programming was at the core of computing for the
user as well as the software maker.

The ability to program a computer in its native hardware language or a high-
level language is not required of today’s user. However, even today’s sophisticated
applications don’t necessarily offer all of the features that a user requires, or the
ability to do repetitive tasks efficiently. Because of this, many applications provide
scripting or macro languages that can be used to program them beyond the func-
tionality available from the pull-down menus and other user interface functions.
Some of these languages are quite simple and are confined to record and playback

In This Chapter
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of user interface (UI) sequences or application functions. Others, such as the Mi-
crosoft Office scripting environment, are really high-level languages in their own
right, adapted to suit application programming. Often times these applications
embed macros or scripts within the application’s document or data file. The result
is a document that contains both data and executable logic.

Convenient as it is to the user, the problem with this programmatic access to
applications is that an attacker can use it as well. Consider the example of a word
processor that can embed Visual Basic code within the document and execute code
when the document is opened. A user does not typically think of word-processing
documents as malicious programs. The result is that a user might unsuspectingly
open the document and have arbitrary commands executed on his machine. This
is the root cause of most macro viruses, and while the application programmer
might blame the user for foolishly opening the document, these viruses have been
one of the most costly kinds of security problems in recent history.

In this chapter, we discuss programs that provide command shell access,
macros, or scripting capability. As we’ll see, the macro virus represents only one
prospective security problem arising from this programmatic access.

DESCRIPTION

Shell, script, and macro vulnerabilities have been among the most destructive and
expensive security flaws to date. Consider the following examples:

The Melissa virus, a Visual Basic macro virus, is estimated to have cost $80 mil-
lion to repair and clean up. [Festa00]
“I Love You,” a virus similar to Melissa that reached a much larger number of
users, might have ultimately cost businesses $2.6 billion in lost productivity, re-
pair cost, and lost business. [Festa00]
Browser-based “phishing” attacks, facilitated by scripting bugs in Web browsers
like Internet Explorer, were responsible for a significant portion of the $2 billion
consumers lost to electronic theft and fraud in 2002–2003. [Sullivan04]

These vulnerabilities have numerous variants and continue to circulate, mean-
ing the real costs will never be known. The problems are not confined to Microsoft,
either. Macintosh and Linux users, and users of alternate browsers such as Firefox,
have also been subjected to phishing attacks.

An attacker needs two things to make a scripting attack successful. First, the in-
tended target must have the vulnerable application, and the attacker must be able
to get the script to execute within the application. This might be through embed-
ding it in an otherwise innocuous file, tricking the user into executing it by using



deceptive naming or social engineering, or exploiting a mechanism that forces the
application to execute the script automatically. One virus copied itself over every
image file on the machine and renamed that file filename.JPG.vbs, knowing that by
default Windows Explorer hides file extensions for known types. In this way, it was
able to propagate every time a user tried to open the image. Other attacks have
taken advantage of an application’s event model, hijacking the OnLoad or OnExit

events to ensure that the macro is automatically executed if the file is opened (or
closed).

Second, the script provider (the application in concert with its macro language)
needs to provide functionality of interest to the attacker. A macro language for a
presentation tool that allowed the user to script only the timing between slides, for
example, would not generally be useful to a virus writer. An application that had a
Visual Basic (or Perl, Scheme, REXX, etc.) back end or allowed a user to execute
shell commands would be much more dangerous. Even without a rich command
set, it is still possible for an attacker to exploit the system. The script might be able
to gather seemingly innocuous information like the names of recent documents or
the version of the software, which can be combined with another attack. (Some-
times this data, especially if it contains financial information, is what the attacker is
looking for.) Depending on how the script language is implemented, the attacker
might be able to intentionally code an exploitable buffer overrun into his code, or
import an OS function that has one in it. A macro that is executed by a program in
a shared environment (such as a Web server) might be able to crash the application
for all its users. Finally, sometimes macros have access to test APIs or functions that
cannot be reached through the user interface. This is because QA testers at the
company that wrote the software frequently use the application’s own scripting
language to test it. These features might be able to bypass some security within the
application.

Shell, script, and macro vulnerabilities occur in many forms; document-based
macro viruses are only one example. Each kind of macro implementation lends it-
self to its own set of potential vulnerabilities.

Embedded Script Languages and Command Interpreters

These problems result from applications that link to a general-purpose program-
ming language or provide limited shell script access in order to accomplish a func-
tion.  Examples include Visual Basic for Applications embedded within Microsoft
Office or applications that support scripting in TCL or Python. To provide maxi-
mum flexibility, or because they are relying on the script language as an add-on
library, these applications don’t limit the functionality of the interpreter enough to
prevent malicious code from running.
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Document Markup

Sometimes macro commands can be embedded within a document. When the user
opens the document, the commands are automatically executed. Server Side Includes
(SSIs) within Web pages are commonly implemented this way. A user embeds a
command within the HTML document in what looks like an HTML comment:

<!—#command tag1="value1" tag2="value2" —>

The exec command allows execution of an arbitrary shell command in
the command interpreter.

<!—#exec cmd="ls" —>

would execute the ls command and include the results within the Web page. While
SSIs are often thought of as safe, they can, for example, read and write files belong-
ing to the user “nobody.” They can also be used as a vector for deploying a known
local privilege escalation exploit by a user who does not have shell access, or for cre-
ating a denial-of-service attack by running the system out of resources.

Earlier versions of the Acrobat Distiller program could execute shell commands
embedded within a PostScript document. PostScript is a language spoken by many
printers and is the default printing format in the Unix and Macintosh communi-
ties. Academic publications and business forms are also frequently laid out in Post-
Script. Some of the same features that made PostScript appealing as a printer
control language made it undesirable from a security point of view. For example, a
PostScript file can contain a command such as:

%!

(myfile.txt) deletefile

showpage

%%EOF

If an attacker could get a user to open a file with this command embedded in
it, the effect would be to delete the file named myfile.txt.  Because PostScript can
also create files, the attacker could place a Trojan executable in the Windows
startup path, or overwrite a security-relevant file.

JavaScript

JavaScript, the embedded script language that, along with its feature-for-feature
cousin VBScript, can be used to script the Web browser has been plagued by secu-
rity issues since it was introduced by Netscape in 1995. JavaScript is unique among



script hosts in that it is specifically designed to be used by “someone else” to ma-
nipulate an application on your computer. Because of this, JavaScript’s designers
had to make tradeoffs as to what should be allowed and what should be prohibited
to the script host. Previous versions could read and write files, obtain information
from the document object model, and repost that information to another site, and
overload events to prevent windows from closing or being resized.

JavaScript manipulation represents a danger to any application that is hosted in
the browser. This is especially true as browser-based applications running purely on
the client have emerged, notably HTML help. Additionally, the new version of the
Windows client, “Avalon,” to be released with the “Longhorn” version of Win-
dows, will blur the line between conventional and browser-hosted applications
[Arar03]. Chapter 18 describes one way that a malicious user can force JavaScript
to execute within someone else’s application.

Safe for Scripting ActiveX Controls

As their name implies, these are ActiveX controls that are marked “safe” to be exe-
cuted in the browser environment, where they can be manipulated by JavaScript.
The “safe for scripting” attribute is intended to be used by controls that are primar-
ily designed to be run in the browser environment: the Macromedia Flash plug-in is
a good example of one. However, due to the flexible nature of ActiveX, any script
marked safe can be invoked, regardless of the functionality contained in that control.
Nothing within the browser prevents a control marked “safe for scripting” from ma-
nipulating the local filesystem or exercising any part of the Win32 API. The CERT
and CVE databases are full of ActiveX controls that are marked safe that shouldn’t
have been.

Database Stored Procedures

Some database packages contain stored procedures that can be used to perform
tasks beyond those supported by the standard SQL query language, notably Mi-
crosoft SQL Server’s xp_cmdshell() stored procedure, which allows for execution
of arbitrary DOS shell commands from within the database application. Applica-
tions that use a database need to be careful when processing user input and form-
ing commands to ensure that calls to stored procedures cannot be inadvertently
made.

Macro Expansion in Logs and Messages

Some logging components of applications allow for macro processing. For exam-
ple, an application that wanted to log an error message with the current user’s user-
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name might pass just %u to the logging application; the logging application would
then look up the username and expand it into the log file.

While these applications typically do not provide a very rich macro language,
they might be susceptible to buffer overflow attacks if they allow expansion of
arbitrary length strings. The syslog-ng product from Balabit had this problem. It 
allowed arbitrarily long constant character strings to be expanded in the syslog; an
exploitable buffer overflow resulted from this (www.securityfocus.com/bid/5934).

FIXING THIS PROBLEM

Each kind of script and macro vulnerability calls for its own solution. However, a
few general-purpose solutions fix this problem across different kinds of vulnerabil-
ities and applications:

Some application scripting languages have features that reduce the risk of script
injection. For example, Perl 5 has the “taint” option, -T, that treats all user-
supplied input as suspicious. When Perl is invoked with this option, it prevents
a number of “risky” scenarios such as invoking a shell with user data as a para-
meter. Another Perl feature, “use strict,” forces the developer to declare all
variables before using them, which prevents misinterpretation of the source of
potentially malicious data.
If your application must support programmatic access, turn it off by default.
Most users won’t require macro functionality because it requires some pro-
gramming knowledge to use in most cases. By turning macro functionality off
by default, you are significantly reducing the chances of any given installation
of the application being vulnerable to attack. Alert users to the security risks of
macros both at install time and when the user selects/unselects macro func-
tionality. Better yet, consider whether your application needs macro support at
all. Why do you support macros? Because the programmers wanted part of the
application to be programmable, even if the users don’t. (This is often the main
reason why macro support is found within applications.) Can you accomplish
the same goal another way (such as record/playback within the UI or exten-
sions to the file format)?
When in doubt, use a visual prompt to warn the user of potential malicious ac-
tion. Sometimes this is all that is needed. However, this solution is not perfect.
A user can be “socially engineered” to ignore these messages either by too-
frequent prompting or when the user has sufficient desire to continue (offer of
free money, etc.).
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The prevalence of viruses like “I Love You” has shown that users ignore warn-
ings that macros might be insecure. One way to limit the effect of these viruses
is to prevent macro functionality from accessing the network. For example, a
word processing program with built-in e-mail capability could disable the e-
mail functionality while the macro interpreter is running. Thus, regardless of
how much damage the macro can cause to the individual’s machine, it cannot
spread itself. This takes away the user’s ability to script the sending of e-mail
messages, but isn’t that the point? This solution does have some limitations.
For example, an attacker could manipulate the timing of the script by, say,
scheduling an operating system event to send the e-mail later.
Ensure only “white” data is passed from the network to a macro processing ap-
plication. Data should be free of embedded commands and excessively long
strings. Chapter 18 describes ways to sanitize HTML documents to remove
script and macro code.
Use a “sandbox” to prevent malicious behavior. Do not allow scripts or macros
to have complete access to the filesystem. You can use a “chroot jail” in Unix to
prevent access to the regular filesystem; in Windows this would have to be built
into the application via selective filtering of filenames. Assume any script lan-
guage that can launch a shell command or create an arbitrary file can be used
to exploit a system.
Avoid implementing scripting through a “full-fledged” programming language
like Visual Basic, Perl, or Tcl. Unless you have a way to lock these down so they
can’t perform most OS functions, you’re giving the user way too much power
here.
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Summary Sheet—Shells, Scripts, and Macros

Problem:

Code and data are often packaged together. This code can take the form of
scripts or macros that are executed by the application. Because some users
might open a file containing macros or scripts despite all warnings, measures
have to be taken to ensure that no malicious side effects can result from macros.

Potential Impact:

An attacker could execute arbitrary commands on the system.

Habitat:

Applications that support macros, programmable components, extensibility,
scripting languages—in short, any program that interprets data as though it
were code.
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Tools You Need to Find It:

Macros and scripts are vulnerabilities at the design level. Design inspection is
the best way to find macro vulnerabilities.

How to Look for It:

Examine the file format and menus of an application for evidence of script or
macro capability. Examine the log files an application produces.  Do they con-
tain user-supplied data? Does the documentation call out macros as a feature of
the application? Watch for applications that install known scripting hosts such
as Visual Basic for Applications, Perl, or Tcl.

Symptoms of Failure:

Try finding a way to write a file to an arbitrary location or to execute a shell
command. These are good indicators that the system is vulnerable.

Famous Failures/Exploits:

The Melissa virus and I Love You virus were the result of malicious scripts in
the Microsoft Office package.
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Dynamic Linking 
and Loading

7

W
hen we develop software, we often assume that the same functions we in-
tended to call are actually called by our program. That is to say, if we
choose to call printf with a certain set of arguments, we expect the real,

standard C library version of printf is called. If we include all of the functions that
our application uses within the executable—a method known as static linking—this
is indeed the case, and the result is a large, monolithic executable. We have some
advantages in this approach; namely, we can deploy and install applications easily,
by just moving a single executable. More typically, however, applications ship with
multiple libraries, and they also rely on libraries from the operating system and
third parties. When the application is invoked, it loads some of these libraries im-
mediately and loads others when needed. This process is referred to dynamic link-
ing and loading.

In This Chapter
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We certainly find advantages to this model, too. The application is highly mod-
ular, meaning that updates and patches can be significantly easier to deploy. Also,
the application can take advantage of updates to the contents of operating system
functions and third-party libraries.

With this modularity, however, comes risk—a risk that a user can replace a
legitimate library with one modified by an attacker. Sometimes an attacker can es-
calate his privilege by forcing a privileged process to execute attacker commands by
fooling the process into loading the attacker library instead of the intended library.

This attack is usually facilitated by library search order. When a library is loaded
by name—such as a call to load the library kernel32.dll in Windows—the applica-
tion follows a set search sequence when it looks for that file. In many incarnations
of Windows, for example, the OS searches the following locations [Microsoft03] (in
order) for the library: 

1. The directory from which the application loaded
2. The current directory
3. The system directory
4. The 16-bit system directory
5. The Windows directory
6. The directories that are listed in the PATH environment variable

Windows Server 2003, Windows XP SP1: The default value of HKLM\System\Cur-
rentControlSet\Control\Session Manager\SafeDllSearchMode is 1 (current di-
rectory is searched after the System and Windows directories). Windows XP: If
HKLM\System\CurrentControlSet\Control\Session Manager\SafeDllSearchMode

is 1, the current directory is searched after the System and Windows directories, but
before the directories in the PATH environment variable. The default value is 1
(current directory is searched after the System and Windows directories). Note
that this value is cached on a per-process basis at load time.

An attacker could create a library that the application finds and loads instead of
the intended library, possibly forcing a privileged process to execute instructions
placed in an imposter library by a less privileged user. In addition to executing
arbitrary instructions, the impostor library might allow an attacker to overwrite
methods in the application under test. 

While this is obviously a concern for processes that run with higher privileges
than the user, several other risks exist. Consider, for example, the risk of having a
key logger installed on a system that is publicly used. Methods for checking for key-
stroke loggers exist, and most detection methods assume that the logger is running
as a separate application that is visible through the process list. However, imagine



the functionality to manage Internet forms for a particular Internet browser were
implemented in a DLL. If an attacker were to Trojan that library, password data
from all forms could be siphoned off and sent to an attacker’s Web site with no de-
tectable key logger running.

Applications that implement anti-debugging are also at great risk of dynamic
linking and loading attacks. Consider applications that enforce Digital Rights Man-
agement (DRM). Many of these applications include code to search for the presence
of tools that are trying to inspect the running process like debuggers. If care is not
taken, an attacker can replace one of the libraries loaded by this application with
ones that inspect memory and save its contents off without the need of a debugger.

Dynamic linking and loading also raises the need to ensure that libraries actu-
ally load. Consider, for example, the “Content Advisor” feature in Microsoft’s In-
ternet Explorer® Web browser. It allows a user to control the type of sites that
others who use the machine have access to on the Internet by password protecting
individual sites, categories of sites, or unrated sites, as shown in Figure 7.1. The se-
curity risk here is allowing access to a prohibited site. 
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FIGURE 7.1 Security in terms of access restriction is implemented in Internet
Explorer.
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Internet Explorer loads several libraries at runtime. Figure 7.2 shows an obser-
vation tool called Holodeck that lists the libraries loaded by Internet Explorer at
runtime. Several Windows operating system libraries are loaded, too, including
Kernel32.dll, User32.dll, and UxTheme.dll. Among those libraries is the file MSRat-
ing.dll. Holodeck is available for trial download from Security Innovation® at
www.securityinnovation.com/holodeck/.

FIGURE 7.2 Security Innovation’s Holodeck observation tool looks for the libraries
loaded by Internet Explorer.

Once we notice that an external dependency to determine whether or not to
grant access to a site exists, this signals a potential point of failure that should be in-
vestigated. We can use Holodeck to block access to the MSRating.dll by forcing the
LoadLibraryA and LoadLibraryW system calls made by Internet Explorer to fail
when they attempt to load Msrating.dll (Figure 7.3).

In this environment we then navigate to a blocked Web site. Internet Explorer
opens the page without prompting for a password. Figure 7.4 shows that if we then
go into the Internet Options menu, we are now unable to alter the content settings
and the relevant buttons are not selectable; security measures have been bypassed
and the user is now free to explore the Internet unchecked.

www.securityinnovation.com/holodeck/


In this case we were able to bypass security controls by simply denying an 
application the capability to load a library dynamically. A more common attack
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FIGURE 7.3 We can block Internet Explorer’s
access to the MSRating.dll library using Holodeck’s
Scheduled Test feature.

FIGURE 7.4 Blocking the return value 
of MSRating.dll completely subverts the
content rating feature of Internet Explorer.



vector is to replace the target library with one of an attacker’s choosing and force
the application to execute some of the instructions in the impostor DLL. If such a
vulnerability exists, the likely consequence is being able to escalate privilege over an
application or the system.

FINDING THIS VULNERABILITY

You have several techniques for finding dynamic linking and loading issues
through testing. A first approach is to examine how an application handles a fail-
ure to load particular libraries. From a security standpoint, our goal is to deprive
the application of either security or validation functionality by depriving the appli-
cation of external libraries that provide this service. One of the easiest ways to test
this is to use Security Innovation’s Holodeck, available at www.securityinnovation.
com/holodeck. Holodeck allows a user to observe all of the library loads made by an
application (as shown in Figure 7.2). Figure 7.3 illustrates the process of blocking a
library load with Holodeck’s Scheduled Test feature. If the application does not
raise an error message or crash after the library load has been blocked, chances are
it is not aware that it has been deprived of this functionality. Similar results can be
obtained on other operating systems by simply deleting the library. Failures here
are likely to take the form of some security or validation routine not being per-
formed, so pay special attention to the security restrictions while the application is
running normally and then verify that these restrictions still hold with blocked ac-
cess to the library. A common failure is not encrypting data because an encryption
library is unavailable. The result might be sensitive data being sent in plain text over
the network or being stored unencrypted in files.

Another scenario that must be tested is attacking the application by forcing it
to load an imposter library. This can be done by either leveraging the library search
order or simply replacing the original library with a contrived one. This can be a
powerful attack technique to escalate privilege. To be successful, the prototypes of
the functions exported by the impostor library might need to match those of the
original library. Also, some weak validation check of the library might be circum-
ventable, such as storing a checksum of the library in a file or in the registry. Addi-
tionally, replacing system libraries can be protected by the Windows System File
Protection, which silently restores any system files that have been marked as pro-
tected if a user or untrusted process attempts to overwrite them.

It is critical to test for this vulnerability in applications that have anti-debug-
ging controls (common in applications that support Digital Rights Management).
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Implementing anti-debugging in an application usually means that some sensitive
data is passing through memory that an attacker should not be able to observe. If
the application can be tricked into loading an impostor library, however, it is often
the case that functions in the library can siphon off data in memory.

FIXING THIS VULNERABILITY

If an application must load libraries dynamically, several coding practices can re-
duce or eliminate the risk of library manipulation. One of the easiest is to check the
return values of calls to the operating system to load a library. Applications that
store validation code in a library might rely on the library performing some func-
tions automatically on load (such as commands contained in DLLMain). In these
cases, some problems can be avoided by checking the return value of the library
load function to make sure it succeeded. This, of course, does nothing to protect
against tampering with the DLL. 

Rather than allowing the dynamic linker to resolve links to functions within a
DLL, you can always link against a DLL explicitly. Explicit linking is when the pro-
gram itself calls operating system functions to obtain the DLL and function handle.
This prevents the problem of Trojan DLLs in the current or SystemRoot directory.
However, it does not protect against one of those DLLs being replaced.

Another option is to perform a checksum, a hash, or other validation checks on
the library. Before the library is loaded, the application can first validate that it has
not been tampered with by comparing a value computed by analyzing the library
(such as a hash) with a stored value. Care must be taken, however, to protect the
“key” with which the library’s hash or checksum is compared. In cases where the
library must be loaded at invocation, the library can be validated (by comparing a
checksum or hash) before its functionality is actually used. Chapter 12 shows exam-
ples of hashing functions that can be used to protect data. These same functions can
be used to create a checksum of a DLL that can be checked when the program is
started. However, this presents a different problem. Static verification of a checksum
makes it significantly more difficult to patch a vulnerability (or any bug for that mat-
ter) in a DLL once that checksum is “set in stone.” VeriSign® offers an Authenticode
signing capability that overcomes this problem. Authenticode is described at
www.verisign.com/products-services/security-services/code signing/index.html.
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Explicit Linking and Loading of a DLL

It is relatively easy to link against a DLL explicitly. In Windows, the LoadLibrary
and GetProcAddress functions are used to do this.

The first thing we need to do is declare a function pointer of the same type as
the function we want to explicitly link. The prototype for the strcpy function in the
standard C library is:

char *strcpy(char *dest, const char* src);

The declaration of a function pointer that matches this prototype would look
like this:

char * (*myStrcpy) (char *, char *);

The LoadLibrary function is used to obtain a handle to the DLL we want to link
against. Because strcpy is contained in msvcrt.dll, we call LoadLibrary with this
argument:

HMODULE pMsvcrt;

char msvcrtName[256];

char* systemRoot;

systemRoot=getenv("SystemRoot");

strcpy(msvcrtName,systemRoot);

strcat(msvcrtName,"\\system32\\msvcrt.dll");

pMsvcrt = LoadLibrary(msvcrtName);

We use the value of the SystemRoot environment variable to find the true copy
of msvcrt.dll. This is because LoadLibrary uses the same default search path when
explicitly loading a DLL as the runtime linker does when it implicitly loads one.

Once we have obtained a handle to the DLL explicitly, we must retrieve a
pointer to the function we want to call. GetProcAddress is used to do this. In our
example,

myStrcpy = (char* (*)(char*,char*)) 

GetProcAddress(pMsvcrt,"strcpy");

would set the function pointer myStrcpy to the location of the real strcpy function.
Our function pointer can now be called in the same manner as the real strcpy.
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Summary Sheet—Dynamic Linking and Loading

Problem:

Libraries provide applications access to functionality not contained in the exe-
cutable. Applications often ship with multiple libraries but applications also load
operating system libraries as well and libraries from third-party components.
Loading libraries dynamically creates the potential for an attacker to either deny
the application access to the library or force the application to launch a potential
malicious library in its place to gain control over the application’s process.

Potential Impact:

Escalation of privilege, application functionality manipulation, and possible
disclosure of sensitive information.

Habitat:

Desktop and server applications, that load libraries dynamically.

Tools You Need to Find It: 

For Windows applications, Holodeck can be used to inspect the application’s
environment and library activity. For other platforms, debuggers can be used to
list the modules loaded. 

How to Look for It: 

The first step is to identify which libraries are loaded by the application. This
information can be retrieved using a debugger or a process inspection tool
such as Holodeck. The next step is to see how the application responds when
the application is deprived of these libraries and also test to see if the applica-
tion can be forced into loading a different library than the one intended.

Symptoms of Failure:

When a library load is failed, application security failure takes the form of some
security or validation function not being performed. When an application is
forced to load an impostor library, and no overt error or crash indicates that
the application is unaware that it has loaded an impostor library, this is a symp-
tom of a dynamic linking and loading vulnerability.

Famous Failures/Exploits:

Bugtraq ID 72086: Executable path-searching vulnerability in Windows NT/
2000. The default directory search order in Windows NT/2000 potentially 
allowed the local or remote execution of Trojan programs in other user accounts
including Administrator (www.securityfocus.com/archive/1/72086).

www.securityfocus.com/archive/1/72086
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Buffer Overflow
Vulnerabilities

8

B
uffer overflow vulnerabilities account for a significant portion of all exploited
security flaws in software. Many of the world’s most devastating viruses and
worms such as Code Red, Linux.Slapper.Worm, SQL.Slammer, and MS-

Blaster have exploited buffer overflows in network enabled software or platforms to
attack systems and spread. These flaws are among the most dangerous in software
because many can be used (and have been) to completely take over a victim’s ma-
chine by executing arbitrary instructions.

The consequences can be dire. Imagine the ability to steal all document files on
a machine by sending a few network packets, or formatting a Web server by enter-
ing data through a Web form.  In fact, frameworks such as the Metasploit Project
(www.metasploit.org) exist to enable attackers (as well as security researchers) to au-
tomatically inject shellcodes that produce a desired behavior into newly discovered
exploits. Figure 8.1 shows the Metasploit console.

In This Chapter

Stack Overflows
Exploiting Stack Overflows
Heap Overflows
Exploiting Buffer Overflows: Beyond the Stack
Finding This Vulnerability
Fixing This Vulnerability
Endnotes
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Buffer overflows occur in software written in programming languages that do
not strictly enforce bounds checking on arrays. The basic concept of a buffer over-
flow is that we provide an application with more data to be stored in a particular
variable than the programmer set up space for. When this happens, it is likely that
the application writes past the bounds of the variable buffer, allowing an attacker to
change the values of other data stored in memory. A buffer overflow can occur in
several places in memory. The most common—and easiest for an attacker to ex-
ploit—are buffer overflows that occur on the stack, the location in memory where
local variables and return pointer information are stored. Overflows can also occur
in other areas of memory such as the heap, but these are generally more difficult to
exploit because minor changes in the application’s execution environment can
change the location of data in memory. 

Many functions in the C and C++ programming languages (a sampling of the
common offenders is shown in Table 8.1) do not do bounds checking on data.
These functions begin to place data in memory at the starting address of the target
buffer but continue to store the data in subsequent addresses, essentially ignoring
the bounds of the buffer. If the space set aside to store this data is on the stack, the
result is that data can overwrite the return address of the current function or sub-
routine. When this happens, an attacker can take control of the application. In the
sections that follow, we take a closer look at stack and heap overflows.

FIGURE 8.1 Metasploit, a framework for automatically exploiting buffer
overflow vulnerabilities.



STACK OVERFLOWS

Stack overflows are the most exploited class of buffer overflows because they are the
easiest to exploit. The concept of a stack buffer overflow is that data placed on the
stack overflows the space allocated for it, often overwriting the return address of the
current function in memory. The return address is the address at which the appli-
cation begins executing instructions once the current function is done executing.
After the function returns, the value in the return address is placed in the EIP (Ex-
tended Instruction Pointer) register, which holds the memory address of the next
instruction to be executed. 

To understand how stack overflows work let’s take a look at a specific example. The
source code that follows is taken from HexDump, an application included on 
the CD-ROM for illustrative purposes at Source Examples\Chapter 8\Listing 1-
hexdump.cpp.

int main(int argc, char* argv[])

{

.

.

.

FILE* fp = fopen(fileName, "rb");

if (!fp)

{

MessageBox(NULL, "Invalid file", "Error", MB_ICONSTOP|MB_OK);

return 0;

}
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Some Common Functions in C and C++ Vulnerable to Buffer Overflows

gets() vsprintf()

sprintf() fscanf()

strcat() Scanf()

strcpy() getopt()

streadd() getpass()

strtrns() fread()

index() realpath()

TABLE 8.1 Sampling of C and C++ Functions Prone to Buffer Overflows When 
Given Untrusted Data
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DoHexDump(fp);

.

.

.

}

void DoHexDump(FILE* file)

{

if (file != NULL){

int len;

unsigned char data[512]; //Buffer declared to hold the data in the

file

FILE* fp = file;

fseek(fp, 0, SEEK_END);

len = ftell(fp);

fseek(fp, 0, SEEK_SET);

fread(data, 1, len, fp); //reads the file data and places

//it into the data variable

fclose(fp);

DumpHex(data, len); //function to output the data

}

else{

printf("Failed to open file!");

}

}

When run, main calls the DoHexDump function, which in turn calls the function
DumpHex. After the DumpHex function is executed, the application then attempts to
exit from the DoHexDump function. When the DoHexDump function is called from main,
the return address is pushed onto the stack. This address points to the instructions
in main to be executed after DoHexDump has finished executing. 

Within the DoHexDump function, the array data is declared as 512 bytes. After the
array is declared, the data stack of the application likely looks like Figure 8.2. 

Depending on how the stack is ordered, if we read in more than 512 bytes from
the file, the 513th through 516th bytes [1] are going to overwrite the return address
of the function DoHexDump. The result is that the application executes normally (pro-
vided other critical data was not overwritten also) until it reaches the end of the 
DoHexDump function. Once this function is done executing, the application attempts
to return control to main by placing the return address (which was saved on the
stack when the DoHexDump function was called) into the EIP register. In the 32-bit
x86 architecture, the Extended Instruction Pointer (EIP) register holds the memory



address of the next instruction to be executed. When a function returns, the return
address is popped into the EIP register, which tells the application the location of
the next instruction is to execute. 

Going back to the HexDump example, if we were to create a file containing 516
“a” characters (512 to fill up the allocated buffer for data and then 4 to overwrite
the return address), we would overwrite the return address of the function DoHex-
Dump with the value 61616161 (note that 61 is the ASCII value of “a”). This means
that this value would be placed into the EIP register after the DoHexDump function is
finished executing, and the application would then try to execute the command
stored at memory address 61616161, which contains no executable instructions (see
Figure 8.3). 

In Windows XP SP1 the result is an application crash (see Figure 8.4).
If we run HexDump under a debugger (Figure 8.3), we can see that the reason

it crashed is because it is trying to execute instructions at address 61616161 where
there are no instructions. What we have just described is a stack-based buffer over-
flow. If an attacker can gain control over the instruction pointer (EIP), then he can
manipulate it to execute instructions of his choice, which are usually also contained
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FIGURE 8.2 Data stack after array is declared.
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in the data that causes the overflow to occur. Buffer overflows can also occur in the
heap. Many heap-based overflows (that will be discussed later) are also exploitable
using different techniques. The implications of having an exploitable buffer over-
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FIGURE 8.3 The EIP has been overwritten with “61”s, the ASCII equivalent of “a”s.

FIGURE 8.4 The application then tries to execute the instructions at address
61616161 and promptly dies.



flow in an application that accepts data from untrusted users are dire. An attacker
can often gain complete control over a machine. 

If a stack overflow occurs with random data, the application is likely to crash
because some data that the application depends on is altered randomly by a user.
Therefore, a crash after entering a long data string into a data field, API parameter,
file field, or network parameter is a good indicator of a buffer overflow vulnerabil-
ity. In some cases, however, buffer overflows can have more subtle symptoms, such
as application instability or the corruption of other variables. 

EXPLOITING STACK OVERFLOWS

Many stack overflows are exploitable by inserting enough data into the buffer so
that the return address of the current function is overwritten. The strategy is to
change the value of the return address so that it points to other user-supplied data
on the stack. An attacker can then enter data values into the application that are in-
terpreted as machine instructions. These instructions are commonly referred to as
either shellcode or op-code. In our running HexDump example, we now illustrate
how an attacker might take advantage of this buffer overflow. Our goal is to make
HexDump launch Microsoft Notepad on the local machine. This is not something
the application was designed to do. We are faced with the challenge of manipulat-
ing the application’s execution through data. 

We already know that we can overwrite the return address of the function Do-
HexDump and thus ultimately control the value of EIP. Our next step is to find a lo-
cation in memory that contains some more of our data; data that we can then point
EIP to that essentially tells the application to interpret this data as machine code.
After an overflow has occurred, the most common place to look for our data in
memory is at the top of the stack. The Extended Stack Pointer (ESP) register always
points to the top of the stack. If we look at the application in the ntsd debugger, we
can see that data contained in the text file—in this case a bunch of “a”s—is indeed
at the top of the stack, as shown in Figure 8.5.

By changing the values in the text file to a non-repeating character like “abcde-
fghi…” it is fairly easy to determine which “a”s in our file are the ones at the top of
the stack. In this case, they are the ones at position 517, 518, and so on, right after
the “a”s that overwrite the return address.

Our next step is to find a function that we can call that executes a command
string so we can launch Notepad. HexDump loads the MSVCRT.DLL library, which
exports a function called system that can do the trick. In cases where we need func-
tions from other operating system libraries that are not loaded by the application,
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we would need to load the libraries ourselves using the KERNEL32.DLL function
LoadLibrary.

We now need a space in memory to store our command string notepad.exe.
The memory address of that string is then passed to the system function. To find the
address of the system function we first look up the address of that function in the
MSVCR70.DLL library. In the ntsd debugger this is done with the command:

x msvcr70!system 

which gives the address 0x7c021de4 (Figure 8.6). It would be unwise for us to call
this address directly because if this library is provided by the OS or a third party, the
library might be updated with a patch or service pack and the address of system is
likely to change. Instead, we call the function through a pointer to this address,
which is stored in our module. ntsd shows that our module is loaded in the range
0x00400000–0x00404000. The command for this in ntsd is: 

s 00400000 00404000 e4 1d 02 7c

which returns the address 0x00402030. 
It is fairly trivial to find a spot in memory to store our string given the sea of

“a”s on top of the stack. We’ve decided to put them at offset 545 in our text file,
which ends up 545 – 517 = 28 decimal (1C hex) away from the top of the stack.
Adding 1C to the address of ESP at the time of the overflow gives the address
0x0011fb5c + 0x0000001c = 0x0011fb78. 
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FIGURE 8.5 A look at the memory pointed to by ESP (the Extended Stack Pointer) reveals
that data from the input file—in this case a bunch of “a”s—is at the top of the stack.



Now that we have the address of the string notepad.exe and the address of the
system function, we want to execute the following code:

SHELL CODE ASSEMBLY DESCRIPTION
68 78 fb 11 00 Push 0x0011fb78 Push the location of the 

string notepad.exe.

FF 15 30 20 40 00 Call Msvcr70.System Call the system function in
msvcr70.dll. In this case
we are calling indirectly
through a pointer.

Our attack file now contains the address of ESP at offset 513–516 followed im-
mediately by our shellcode. The final file is shown in Figure 8.7.

When we launch HexDump.exe and pass in the filename of our file through the
command line, HexDump launches Notepad. 

HexDump as well as our exploit is included on the CD-ROM in the Source 
Examples\Chapter 8 folder. We encourage you to play with the values in the text
file to change the behavior of this application.

What we’ve just walked you through is the process that an attacker might fol-
low to exploit a stack overflow. Understanding how an attacker views our software
places us in a much better position to defend our applications and find these types
of problems through testing. In the next section we will take a look at buffer over-
flows that occur in the heap.

Buffer Overflow Vulnerabilities 115

FIGURE 8.6 The ntsd debugger reveals the address of the MSCVR70.system function.



HEAP OVERFLOWS

Buffer overflows can also occur in the application heap. The heap is an area of
memory where storage is dynamically allocated and freed during execution as nec-
essary. The heap is a very awkward memory structure due to its dynamic nature. It
is filled with interspersed blocks of allocated and free memory, as shown in Figure
8.8. Various platforms and compilers keep track of heap data in different ways.
Typically, each block of data is encased with headers that point to the next allocated
block of memory in the heap using a linked list. In some architectures, the free
space interspersed between allocated blocks also contains a linked list structure
pointing to the next free block of memory. When memory is allocated or freed, the
pointers contained in these structures are updated appropriately. 
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FIGURE 8.7 WinHex shows our final exploit file. The value that overwrites the return
address is at offset 512, followed immediately by our shellcode.



In many instances using heap variables is essential, namely when the size of
data to be read from a user cannot be specified statically. A good example would be
reading data from a file. Here, we might need to declare the size of the variable to
hold the file data based on some runtime properties (such as the size of the file).
Heap variables can be declared by using the new operator:

char *pCharArray = new char[256];

The preceding statement allocates 256 bytes of memory in the heap, at the ad-
dress stored in pCharArray. The same result can be accomplished using the C func-
tion malloc, as shown here:

char *pCharArray = (char *)malloc(256);

Applications are made vulnerable to heap overflows by using the same sorts of
unsafe string manipulation functions that cause stack overflows (see Table 8.1).
When an overflow in a heap variable occurs, typically some of the linked list struc-
ture that keeps track of allocated and free memory blocks is corrupted, and the re-
sults can be unpredictable. Sometimes, the result is that data in a contiguous block
is overwritten and application execution continues normally. In other instances the
application might crash as it references the corrupt structure. 
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FIGURE 8.8 An illustration of what a typical heap
structure looks like.
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The code listing that follows demonstrates a heap overflow. The variables
buffer1 and buffer2 (both on the heap and both allocated to be 16 bytes) are ini-
tially filled with “A”s. The user is then prompted to enter text and that text is put
into buffer1 using the gets function. (As we warned the reader in Chapter 1 about
strcpy, we should point out that gets is unsafe and should never be used.) gets
does not do bounds checking on the destination buffer, and thus if a user enters
more than 16 characters, user data is written past the bounds of the buffer and
corrupts data immediately after the buffer in the heap.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "stdafx.h"

#define BUFSIZE 16

int main(int argc, _char* argv[])

{

char *buffer1 = (char *)malloc(BUFSIZE);

if (buffer1 == NULL)

return 0

char *buffer2 = (char *)malloc(BUFSIZE);

if (buffer2 == NULL)

return 0

memset(buffer1, 'A', BUFSIZE-1);

buffer1[BUFSIZE-1] = '\0';

memset(buffer2, 'A', BUFSIZE-1);

buffer2[BUFSIZE-1] = '\0';

printf("buffer1 pointer = %p, buffer2 pointer = %p", buffer1,

buffer2);

printf("\n\nValue in buffer1: %s", buffer1);

printf("\nValue in buffer2: %s", buffer2);

printf("\n\nEnter new value to be placed in buffer1 with gets():

");

gets(buffer1);

printf("buffer1 pointer = %p, buffer2 pointer = %p", buffer1,

buffer2);

printf("\n\nValue in buffer1: %s", buffer1);

printf("\nValue in buffer2: %s", buffer2);
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printf("\n\nPress enter to (try) and free buffer1...");

getchar();

free(buffer1);

printf("\n\nPress enter to (try) and free buffer2...");

getchar();

free(buffer2);

return 0;

}

We compiled this code with Microsoft Visual C++ .NET. Figure 8.9 shows that
buffer1 is located at address 0x00320850 and buffer2 is at address 0x00320890. Fig-
ure 8.9 also illustrates that when we enter 15 “c”s (the last character in the allocated
memory is automatically set to NULL to indicate the end of a string) as input, the 
application stores them appropriately in buffer1, overwriting the “A”s. The two
buffers are then freed, and the application exits normally because no overflow has
occurred.

Buffer Overflow Vulnerabilities 119

FIGURE 8.9 Our compiled heap example is run and reveals the addresses of the two
buffers on the heap. When we input 15 characters into the 16-character buffer, no
overflow occurs.



Next, we rerun the application, this time entering 20 “c”s. The gets function
blindly places our data into buffer1 and writes past the 16 bytes originally allocated.
Figure 8.8 shows that the application indeed returns the 20 “c”s to us when we ex-
amine the contents of the buffer. That’s because when a string is referenced, many
functions—in this case printf—continue to read the string until they read a NULL
byte (0x00). Because the NULL byte was placed after the 20 characters, all characters
are read and displayed. Also, note that the data held in buffer2 is still the original
“A”s.

Where was the extra data put? When gets overwrote the bounds of the buffer
allocated to store that data, information on the heap that keeps track of block allo-
cations was corrupted. When our application then tries to “free” that buffer, an ex-
ception is thrown, as shown in Figure 8.10. Because it is a first chance exception, we
can choose to ignore it, and when we do, the application exits normally.
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FIGURE 8.10 Our overflow corrupts the heap structure that causes an ignorable first
chance exception.

Let’s take a look at the addresses that these buffers are stored at in the heap.
From Figure 8.9, buffer1 starts at address 0x00320850 and buffer2 starts at address
0x00320890. The variable buffer1 is allocated to be 16 bytes, but the difference



between the two start addresses is 40 hex, which translates (in decimal) into 64
bytes. If you use a different compiler and/or run the application on a different plat-
form, your results might be different. Why the extra space? Some of this space is
used for housekeeping information about the heap. In applications that dynami-
cally allocate and free memory multiple times during execution you might notice
seemingly random gaps between the address of heap variables. Aside from keeping
linked list type information on what areas of the heap are free or allocated, areas of
the heap are allocated based on the availability and size of contiguous free space. In
this particular instance, we have 64 bytes until our data starts to overwrite buffer2.
If we enter 65 “c”s into this application, the result is that buffer2 is overwritten with
1 “c”, as shown in Figure 8.11. 
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FIGURE 8.11 When we feed the application 65 “c”s, buffer2’s data is overwritten with
a single “c”.

Again, because of the way gets (a function that is inherently insecure and
should never be used) works, a NULL byte is placed immediately after the last “c” in
memory and thus our printf function reads the variable buffer2 as containing
only one letter. If we take a look at the memory at the starting address of buffer2
(Figure 8.12), we can see that the original “A”s are still there in memory after the
NULL (0x00) byte.



Freeing buffer1 causes several first chance exceptions that we can ignore. At-
tempting to free buffer2, however, results in a crash.

Several methods exist to exploit the way that free is implemented in many
compilers to use a heap overflow to eventually take control of an application by
forcing it to execute shellcode data supplied by the user. The next section talks
about some of the methods used to exploit non-stack buffer overflows.

EXPLOITING BUFFER OVERFLOWS: BEYOND THE STACK

Earlier in this chapter we illustrated a basic stack exploit. However, many other
types of buffer overflows can be exploited using different techniques. Consider the
following source code listing:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "stdafx.h"

int main(int argc, char **argv)

{

FILE *LogFileHandle;

static char buffer[16], *LogFile;

LogFile = "logfile.txt"; 

printf("\nPointer to ARGV[1] = %p", argv[1]);

printf("\nPointer to ARGV[2] = %p", argv[2]);

printf("\nPointer to buffer = %p", buffer);
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FIGURE 8.12 If we take a look at what’s actually stored in memory, we see that only the
first 2 bytes of buffer2 were overwritten.



printf("\n\nPointer to LogFile is stored at %p", &LogFile);

printf("\nValue of the LogFile pointer is %p", LogFile);

printf("\n\n\nWARNING! Only the file %s can be updated.\n",

LogFile);

printf("%s, please enter data to be placed into file %s: ",

argv[1],     LogFile);

gets(buffer);

printf("\nPointer to ARGV[1] = %p", argv[1]);

printf("\nPointer to ARGV[2] = %p", argv[2]);

printf("\nPointer to buffer = %p", buffer);

printf("\n\nPointer to LogFile is tored at %p", &LogFile);

printf("\nValue of the LogFile pointer is %p", LogFile);

printf("\n\n\nThank you. Log file %s will be updated.\n",

LogFile);

LogFileHandle = fopen(LogFile, "w");

if (LogFileHandle == NULL)

{

fprintf(stderr, "Log file %s currently unavailable.\n",

LogFile);

exit(-1);

}

fputs(buffer, LogFileHandle);

fclose(LogFileHandle);

}

This application illustrates a commonly exploitable buffer overflow with appli-
cations written in C. Here we have an application that, when run, asks the user to
enter some data that is placed into a log file named logfile.txt. The string log-
file.txt is stored in memory as a static variable with the pointer LogFile holding the
address to that string. The intent is for the user to not be able to alter the filename.

The variable buffer is declared to be 16 bytes and is created to store the input
provided by the user. This is declared as a global variable, and thus it is not stored
on the heap. Instead, we have the 16-byte buffer in memory, followed immediately
by the value of the LogFile pointer.
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We compiled the source in Visual Studio.NET 2003 and the sample output shown
was produced by the resulting executable.

We can see from Figure 8.13 that when we run the application, storage for the
variable buffer begins at address 0x0042b500 and the pointer LogFile is stored at
memory address 0x0042b58, which is 0x8 = 16 bytes after the beginning of buffer.

124 The Software Vulnerability Guide

FIGURE 8.13 Running our compiled application reveals the memory addresses where
our buffers are.

When we run the application, it prompts the user for the data to be written to
logfile.txt. The problem, however, is that the space allocated to store this data is
only 16 bytes long. If we enter 20 “a”s into this field, we end up overwriting the
value of the pointer LogFile with 61616161 (where 61 is the ASCII value of the let-
ter “a”). This also has the side effect of crashing the application when the program
tries to read data from this bogus memory address (0x61616161), as shown in Fig-
ure 8.14.



Buffer Overflow Vulnerabilities 125

FIGURE 8.14 If we enter more than 16 characters, the LogFile pointer is overwritten
with the hex values of the 17th–20th characters (in this case “a”s).

To exploit this ability to overwrite the LogFile pointer we are going to use the
fact that the application reads command-line parameters. The first parameter that
we feed to the application is intended for the user’s name, and it is stored in
argv[1]. The second command-line parameter (which isn’t used by the program)
is stored at argv[2], the third at argv[3], and so on. Our strategy here is to change
the file that the application writes to. We are going to attempt to force it to use the
filename password.dat.

An interesting strategy is to enter the name password.dat as a command-line
argument. This value is stored on the heap. When we execute the application with
this parameter, it is stored at address 0x00320d15. Ideally we would now like to use
the buffer overflow discovered earlier to change the value of the pointer LogFile



from 0x004261f4 (the address of logfile.txt) to 0x00320d15 (the address of pass-
word.dat). To do this, when prompted, we need to enter a string of 16 characters
followed by the ASCII characters representing 0x15, 0x0d, and 0x32. Note that the
byte values are entered in reverse order because addresses in the x86 architecture
are stored with the least significant byte first, a convention called little endian. Be-
cause the gets function places a 0x00 at the end of a string, this means that we
would overwrite the LogFile pointer so that it now points to argv[1] where we
have the string password.dat. The bytes that make up the address—0x15, 0x0d,
and 0x32—correspond to the characters CTRL-U, CTRL-M, and “2”, respectively.
This presents a challenge to the attacker because CTRL-M, the newline character,
would terminate our string. To get around this, we can increase the size of argv[1]
by inserting characters and thus move the value of argv[2] to a memory location
that can be entered more easily through command input. In this case, 231 “a”s in
argv[1] makes the address of argv[2] on the heap 0x00320e01. This means that we
must enter the ASCII values for 0x01, 0x0e, and 0x32, which are CTRL-A, CTRL-
N, and “2”. The result of entering these values in positions 17, 18, and 19 of the
input string is shown in Figure 8.15.
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FIGURE 8.15 We can manipulate the LogFile pointer so that it now
points to the string password.dat.



We have now changed the value of the LogFile pointer so that it references the
second parameter we entered through the command line. If the process has the ap-
propriate permissions, the result is that an attacker can now force the application
to overwrite any file on the system. 

Attackers have used techniques like this to escalate their privilege over a system.
Other attacks that exploit overflows elsewhere in memory are also possible, and if
a way to exploit a buffer overflow in a popular commercial application exists, some
attacker, somewhere, will eventually find it.
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FAMOUS FAILURES: THE $2 BILLON BUFFER OVERFLOW

In July of 2001, a new worm dubbed Code Red was identified as spreading
rapidly on the Internet. The worm affected Microsoft Windows machines run-
ning the Internet Information Server 5 (IIS5). IIS (as the default Web server
shipped with Windows server operating systems) is a widely used platform to
host Internet sites. Prior to the outbreak of this worm, many ordinary desktop
systems also had IIS turned on by default. The worm exploited a buffer over-
flow in the Indexing ISAPI of IIS and used it to take control of its victims. It
used this control to deface the Web sites running on that machine and made a
failed attempt at harnessing infected machines to attack the Web site of the
White House. Within days, variants of the worm emerged and the infection
spread rapidly to vulnerable hosts. The result was disastrous. Many corporate
networks ground to a halt as traffic from the worm trying to propagate con-
sumed bandwidth. The cost of lost productivity and cleanup is estimated at
$2.6 billion [Ryder02].

FINDING THIS VULNERABILITY

As an industry, we’ve learned a lot about buffer overflows in the past five years.
Scores of tools have been written to help testers and developers find these problems
earlier in the application development lifecycle with some success. Still, buffer over-
flows continue to dominate public vulnerability databases in not just old code but
new applications as well. You can use several approaches to find buffer overflows in
software. Given that this is a longstanding problem and that a fair amount of peo-
ple have tried to address it, we’ve broken this section up into code-based tools and
techniques and techniques that testers can apply on the running executable to track
these problems down.



White-Box Testing Techniques and Tools

From a white-box perspective, several functions in C and C++ can easily lead to
buffer overflows and should be replaced by their safer alternatives. In Table 8.1 we
presented some of the more common vulnerable APIs and functions in the C run-
time. A hand audit of the code for these functions is certainly an option but can be
time consuming. Once you’ve located one of these functions, it can be very difficult
to then track backwards through the code to find out if this code-level weakness ac-
tually translates into an application vulnerability. If, for example, data is truncated
before it is passed into a function that used a strcpy, then you have no immediate
vulnerability. We’ve heard the truncation argument numerous times for develop-
ers, but the larger issue is that code changes and later another module, written by
another developer, might call into the risky function. In general, it is cheaper to fix
a potential buffer overflow once it’s found than to fix it post release when someone
finds a route to exploitation.

Several automated source-scanning tools for C can make the process of search-
ing through your source code for vulnerable functions easier. RATS, the Rough Au-
diting Tool for Security, is a free source code scanner produced by Secure Software
(www.securesw.com) under active development that is capable of scanning C and
C++ source code for functions vulnerable to buffer overflows. The ITS4 security
scanner by Cigital, Inc., (www.cigital.com) is also free and can be used to scan C and
C++ for related problems. Flawfinder (www.dwheeler.com/flawfinder) is another
GPL vulnerability finder that scans C and C++ code for a variety of security prob-
lems including buffer overflows.

The biggest problem with using automated scanners is the amount of “noise”
or false positives they generate. Practitioners should be sensitive to the fact that not
all issues identified by scanners are exploitable, but again the rule of thumb should
be to nip potential buffer overflow issues in the bud. 

Black-Box Testing Techniques and Tools

The first step to finding these issues in the running application is to identify an in-
teresting input string as a target. From a security perspective, look for data that is
gathered from an untrusted user through Web interfaces, data files, API interfaces,
or the registry. Particular care should be taken when dealing with applications that
run at a higher privilege than their users. In these cases, input from the GUI must
be scrutinized. Successful attacks here would allow a user to execute commands at
the enhanced privilege level of the running application. 

Once you have identified a target, the technique is fairly straightforward: apply
long strings. When looking for this type of vulnerability, though, you must be cog-
nizant of any input filters that might be bypassable by an attacker. A common ex-
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ample is the client-side filtering that many Web applications do to constrain data.
An attacker, however, can easily bypass this control by posting data directly to the
server. The same is sometimes true of standalone applications. Several techniques
can bypass user interface filters, and testers should always be vigilant of alternate
ways to deliver data. 

Input files, registry data, and API parameters and return values can also be a
source of potentially harmful input. For a file that contains a series of numerical
data that the software reads, for example, you might want to use a text editor and
include letters and special characters. If successful, this attack usually results in de-
nial of service by either crashing the application or bringing down the entire system.
We have found random file corruption to be very effective at exposing buffer over-
flow problems in file parsing code.

At a high level, you need to be careful to check three interfaces for long string
inputs:

Network interface: If your application processes data that comes from a
remote source via some communications protocol, that input stream needs to
be carefully checked for long strings. The Nimda, Code Red, and Slammer
worms were all enabled over a network interface by vulnerable code that failed
to constrain strings embedded in the protocols. 

Filesystem interface: Files can act as proxies for a remote user. Many viruses
have spread through executable files and script files but surprisingly few have
taken advantage of a buffer overflow in the application used to create them.
Our own testing has found that an amazing number of widely used applications
are susceptible to buffer overflows in the files they read. BugTraq is loaded
with examples, as are many other public vulnerability databases. The reason
why buffer overflows are so concerning here is that it would be very difficult to
identify a file as potentially malicious until it’s too late. Random file corruption
is particularly effective here at exposing buffer overflow issues. The idea behind
random corruption is fairly simple: add long strings at random locations within
files. Admittedly, on several file types this techniques is ineffective (fields that
have specified lengths and are not delimited, for example), but our own testing
shows that this technique is effective a surprising number of times.

Programmatic interfaces: API calls to the application can contain long strings
in parameters, and thus these arguments must be validated by the application
under test. Also, API calls made by your application can contain long strings
through “in” parameters, return values and data pointed to by parameters. All
such data needs to be validated before it is used, and from a testing perspective,
this can provide a rich testing surface.
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FIXING THIS VULNERABILITY

C and C++ are powerful languages, and as a result, they offer the developer a
tremendous amount of power to manipulate system resources and memory. That
power, however, also makes it fairly easy to make mistakes and poor assumptions
when handling data. Special care must be taken when copying, moving, or storing
data in these languages. Any assumption regarding size must also be enforced in
code. Many buffer overflow issues can be resolved by replacing known dangerous
C and C++ string manipulation functions with their safer alternatives. Table 8.2
lists the common offenders and their safer, more constrained replacements.
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Function Description Safer Alternative Description

gets Takes input from stdin fgets Using the fgets 
stream until it gets a line- function, you can 
feed or carriage return. It specify the length of 
blindly stores this data in data received and 
the specified buffer. stored.

strcpy Copies data blindly from strncpy Allows a user to 
a source buffer to a specify the amount 
destination buffer. of data copied.

strcat Concatenates two strings by strncat Concatenates two 
copying and adding data strings with length 
from one buffer to another. specified.

sprintf This function takes the snprintf Formats the data 
contents of one buffer, from one buffer and 
formats it and stores it places it in another 
in a destination buffer. but allows the

developer to specify
the size of data.

scanf Reads formatted input scanf with bounded If scanf is used with 
from stdin. Can be format specifier a format specifier 
dangerous if used with that constrains 
an unbounded specifier length, then it can 
like %s. be safe.

TABLE 8.2 Unsafe C Routines and Safer Alternatives
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Summary Sheet—Buffer Overflows

Problem:

Buffer overflows are by far the most reported and exploited security vulnera-
bilities in software. A buffer overflow occurs when the data passed to an appli-
cation is larger than the space allocated to store that data in memory.
Languages like C and C++ make it easy for developers to make bad assump-
tions about the length of data supplied to an application. Sometimes, if the data
supplied is larger than the memory allocated to store it, that data can overwrite
other areas in memory, possibly allowing an attacker to execute arbitrary in-
structions. Buffer overflows can occur either on the stack or the heap. Stack
buffer overflows are the most common, and many are easy to exploit. Heap
overflows, however, are a serious concern and can also be exploitable.

Potential Impact:

Execution of arbitrary commands. Complete control of an application through
user-supplied data. Catastrophic failure.

Habitat:

Buffer overflows can occur in applications written in languages that do not en-
force bounds and type checking. Because C and C++ fall into this category and
most software is written in those languages, the problem is widespread. Even
applications written in “safe” languages such as Java and C# might be at risk be-
cause of external libraries called from those applications, which might be writ-
ten in C or C++.

Tools You Need to Find It: 

Typically, the application UI is a good place to start to enter long strings (no
tools needed). For buffer overflows that are exploitable through the filesystem,
network, or APIs, several “fuzzing” tools can help. See Chapter 9 for more
information.

How to Look for It: 

Feed long strings into data fields. A data field, however, might be through the
user interface, the filesystem, an API, or the network. Arbitrary long strings
might not be effective, however. The data might have to be in a certain format
or contain delimiters itself so that it is parsed into variables in a way to create
the overflow condition. Because buffer overflows are arguably the most preva-
lent (and one of the most dangerous) classes of software vulnerabilities, Chap-
ter 9 is dedicated to techniques that can be used to find these problems.



ENDNOTES

[1] This is dependant on several things, most importantly the compiler used. In
many compiled versions, the bytes that hold the return address might be different
because of other data stored on the stack like the Base Pointer (EBP). The version
shown in this example compiled with the Microsoft C++ compiler without the /GS
flag, which would have made exploitation significantly more difficult.
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Symptoms of Failure:

The most common symptom of failure is an application crash after a long
string has been entered into a field. The crash often results from user data over-
writing the return address of a function in memory with garbage. Application
instability and data corruption is also another common symptom as data from
one field overflows into other data storage areas and corrupts that data.

Famous Failures/Exploits:

Two very famous buffer overflows include the 1997 MIME-conversion buffer
overflow in sendmail and the 2001 buffer overflow in IIS indexing service,
which led to the Code Red worm.

www.securityfocus.com/infocus/1541
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Proprietary Formats 
and Protocols

9

W
e don’t give very much thought to the format of data stored or transmit-
ted by an application. This is because, as users, we rarely interact with
data in any sort of raw form; files and network communications are ma-

nipulated by applications—we open a Word file using Word, an HTML file using
a browser, etc. Relying on applications to store and manipulate data in their own
way is a fundamental concept of computing, one that has been preserved on as
many varied media formats as punched cards and paper tape, magnetic disks and
optical storage. Some changes over time, including the introduction of ASCII and
then Unicode to define the binary representation of ordinary text, as well as XML,
which is attempting to standardize the meta-format of data files, have meant that
programmers have had less freedom in the past to invent their own representations
of information. However, it is still pretty much up to the programmer to define his

In This Chapter

Description
Using “Fuzzing” to Find Vulnerabilities in File Formats and Protocols
Preventing Problems with Proprietary Formats and Protocols
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own format for storing and retrieving data. He might select formats that ease in-
teroperability both with other applications and later versions of his own applica-
tion, maximize readability, provide for protection from would-be attackers and
errors, or minimize space and retrieval time. Too often, however, selection of stor-
age and transmission formats is made based on other criteria: ease of programming,
at the expense of readability or interoperability; close resemblance to in-memory
data structures, at the expense of protection from errors and malicious modifica-
tions; or proprietary obscurity, to prevent interoperability with a competitor’s
product or to force upgrades to later versions.

Except for the occasional employment of encryption, security is not usually a
factor in the design of a file format or protocol. This presents a problem, because
though the application programmer might naively believe that only his program is
able to generate, modify, or read the data associated with his file or protocol format,
that is often not the case. An attacker can easily use techniques such as network
fuzzing to generate or modify this data in a way that is harmful to the application
and security. Additionally, an attacker with a basic knowledge of programming
and an ability to interact with the application by means of a debugger can often re-
verse engineer the protocol or file format, meaning he can generate arbitrary files
or even bypass some of the security measures inherent in them.

DESCRIPTION

File formats and protocols abound. A popular format description Web site for pro-
grammers contains links to 966 different file formats. Likewise, the IANA Port List,
which documents assigned port numbers for protocols based on TCP and UDP
only, contains over 13,000 lines. (For an up-to-date list of these port numbers,
refer to www.iana.org/assignments/port-numbers). These give no real estimate of
the number of file formats or protocols—in all likelihood the total number is close
to the total number of programs ever written, a number in the millions.

With each of these formats are the associated routines required to encode and
decode the format for use within the application. For well-defined, open protocols,
this code can be reused; however, each application that uses a proprietary protocol
likely has its own routines for encoding and decoding. These might be simple; if the
protocol is plain text, as is the case with Telnet, the terminal protocol for Unix, and
other timesharing systems, it simply passes the data on to other system functions
intact. Likewise, a text or hex editor is generally able to manipulate any file by read-
ing the raw bytes that make it up; no special processing of the file is required to
make the data usable for these applications. Other formats can be mind-bogglingly
complex. The (incomplete) documentation for the Word 8.0 format is half a
megabyte; code that correctly manipulates all of the objects in this format would be

www.iana.org/assignments/port-numbers


decidedly larger in size. Complexity, as we have stated many times previously, is the
enemy of security, so an implementer of a complicated format such as Word would
need to employ a great deal more caution in implementing it.

What difference does format make when it comes to security? After all, a file is
just a file, especially when it contains “ordinary” data with no expectation of con-
fidentiality or privacy. Likewise, a network application that is supplied bad data
likely just ignores that data, resets the connection, or processes it in a garbage-in,
garbage-out fashion, right? In practice, this is not the case. The more a format or
protocol is designed for obscurity, speed, or ease of programming, the less likely it
is to contain the extensive error-handling needed to ensure that the application
does not crash, expose a buffer overflow or format string vulnerability, or permit
unauthorized operations. This is because programmers of proprietary protocols es-
pecially assume that only their application can read and write files in their format.
If an attacker can force the application to accept a corrupt file, or a connection from
a malicious application, all bets are off.

Same Data, Many Formats

Images are a great example of data that is represented in a variety of formats based
on specific performance and compatibility factors. Figures 9.1, 9.2, and 9.3 show
three representations of the same image file. The image (not shown) is a simple
green arrow on a white background.

Figure 9.1 shows the image in the Windows bitmap (BMP) format. BMP is a
basic binary format—it contains a small header, and each pixel is represented by a
numeric value (1, 2, or 4 bytes depending on color depth) that describes its color.

The Encapsulated PostScript (EPS) format, shown in Figure 9.2, is a text for-
mat. EPS is designed to conform to the text-based PostScript language that is sup-
ported on a variety of printers and other devices. PostScript files are actually
computer programs written in the PostScript language.

Figure 9.3 shows the same image in JPEG format, a portable, compressed image
format. JPEG contains a mixture of text and binary data in the file.

Each of these formats represents different concerns. A program that parses the
bitmap image format is not very likely to encounter many security concerns. Be-
cause the bytes of the file represent only colors, and every numeric value represents
a valid color, any corruption of this file would likely result only in bad pixels in the
rendered image. Apart from the dimensions of the image, there isn’t really a
“buffer” to speak of and handling overruns and underruns of data are relatively
easy.

Encapsulated PostScript, on the other hand, presents an interesting set of prob-
lems. Because it is essentially a computer program, an attacker might sneak mali-
cious commands into the file that the interpreter might execute. Infinite loops,
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FIGURE 9.1 Arrow in BMP format.

FIGURE 9.2 Arrow in EPS format.



race conditions, and out of memory conditions caused by the code might result in
a denial-of-service attack against the device or application that attempts to render
the image. Finally, the language interpreter or file parsing routines might contain
buffer overflows that are exploitable when very long command names or data ele-
ment values are supplied.

Mixed text and binary formats, such as JPEG, present even more issues. Be-
cause the interpretation of a data element as text or binary is position-dependent,
corruptions could lead to text being interpreted as image data, or vice versa. This
kind of corruption often results in a crash that causes a denial-of-service attack and
possibly an exploitable buffer overflow.

The Microsoft Clipart Gallery file format (CIL) contained just such a vulnera-
bility, described in MS00-15. The CIL file format is used to download clipart from
the Internet for use in Microsoft applications. In older versions of the application,
a string that contained the destination filename of the compressed image was sup-
posed to be bounded in length, but an attacker could supply an arbitrary length
name. As a result, the application would crash and execute arbitrary code supplied
within the string.
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FIGURE 9.3 Arrow in JPEG format.



The CIL buffer overrun is a perfect example of a proprietary format vulnera-
bility. The file format was unique to Microsoft; as a result it was not intended to be
used except to exchange data between Microsoft applications. It contained both
text and binary data, and the length of the text was specified in the design of the for-
mat, but not enforced by the application. Finally, because the file was used to pack-
age clipart for transmission, it could be exchanged from one user to another or
downloaded from the Internet. In fact, CIL files could be downloaded in Internet
Explorer without prompting.

Similar vulnerabilities in proprietary protocols abound. The Tabular Data
Stream format (TDS) is used to communicate with various database server appli-
cations including Microsoft SQL Server. Microsoft SQL Server 2000 had a vulner-
ability in processing authentication requests using this protocol. Because the
vulnerability occurred in the packet that made the initial request for authentication,
it has been nicknamed the “Hello” bug. The database instance name, which was
supposed to be no more than eight characters in length, could in fact be arbitrary
length. Supplying an over-length name would cause the server to crash. In some
cases, an attacker could use the vulnerability to execute arbitrary code. Once again,
Microsoft assumed that only Microsoft applications (specifically, Query Analyzer)
would connect to the server using TDS. Because Query Analyzer’s user interface
limits the length of the instance name to eight characters, it was thought that the
user could not supply additional characters.

USING “FUZZING” TO FIND VULNERABILITIES IN 
FILE FORMATS AND PROTOCOLS

Fuzzing is the technique of corrupting data in files or protocols at random, in the
hope that one of the corruptions might cause the application to crash, hang, or ex-
pose a buffer overflow vulnerability. Few mainstream techniques exist for doing
fuzzing. Block-based fuzzing, as is done by Dave Aitel’s tool Spike (described in
Chapter 3 and available online at www.immunitysec.com/resources-freesoftware.
shtml) involves reverse engineering a proprietary protocol and organizing it into
basic message blocks. Scripts are created that play these blocks back to form a com-
munication stream. The user inserts corrupt data in the form of “spikes” by speci-
fying that some of the blocks should be substituted with garbage, with very long
strings, or out of order messages. You find several advantages and disadvantages to
the block-based approach and to tools like Spike. Because the user defines the play-
back script for Spike, it does not require automation to drive a client application in
order to perform testing. Tests are also generally reproducible because the script
generates Spike strings in a predictable manner. However, the user must reverse en-
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gineer the protocol to create the script; this might not work if the correct values for
all fields of a protocol are known, or if there are interdependencies such as lengths
or checksums.

The alternative to block-based fuzzing is proxy-based fuzzing. A piece of proxy
software between the client and server is used to perform corruption on the traffic.
This has the advantage of allowing the user to use the client software normally in an
attempt to generate traffic, which does not require reverse engineering of the pro-
tocol. This technique also works when challenge/response tokens and lengths are in
use, provided the proxy doesn’t inadvertently modify these. The disadvantage to
this approach is that it is somewhat more difficult to corrupt individual fields
within a protocol, because the proxy must be programmed to recognize these.

Building a proxy-based fuzzer is relatively easy; we have provided a sample
tool, SimpleFuzz, on the CD-ROM accompanying this book in the Source 
Examples\Chapter 9 folder. SimpleFuzz is written in Visual Basic and can perform
three different kinds of corruption. Random bytes corruption modifies bytes at ran-
dom within the communication stream, up to a percentage threshold. It does not
modify the length of any transmission. Random bytes corruption is good at finding
buffer overflows in binary protocols that depend on positions or sentinel characters
(such as “\0”) to delimit fields. By corrupting some of these, we might find a field
that we are able to overrun into the next. Likewise, if the lengths of certain fields are
calculated based on values within the stream, corrupting these might cause an over-
flow condition to occur.

Long string insertions, on the other hand, do modify the length of the commu-
nication stream. This corruption technique inserts a string of predefined length at
a certain position in the protocol. The idea is to supply too many characters in a
fixed-length field, in an attempt to cause an overrun. Long string insertions work
best with text-based protocols.

Substitution corruption searches for a particular string within the communica-
tion stream and substitutes it with a different one. This technique can be used to
supply long or corrupt values to particular fields within the protocol. For example,
protocols that contain text representations of numeric values, or fixed-length strings
such as filenames, sometimes are susceptible to buffer overflows when long strings
are applied in them.

SimpleFuzz works by being a connection proxy between the client and the
server. The client application connects to SimpleFuzz as though SimpleFuzz were
the server it was trying to communicate with. SimpleFuzz then opens a connection
to the real server and relays data between the two applications. Depending on set-
tings, data from the client to the server, or from the server to the client, is corrupted
using one of the corruption techniques. Figure 9.4 shows SimpleFuzz configured to
perform long string insertions.
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Suppose we wanted to test a Web application that we thought was susceptible
to buffer overflows in a particular CGI field. We can use the substitutions corrup-
tion technique to substitute the user-supplied value (entered into the browser) with
a long string. This allows us to evade client-side validation of parameters in the
browser. So if we wanted to find a buffer overflow in the username field, we might
type in a sentinel name—a name that the proxy then substitutes with the long
string, into the field. We then configure the proxy to substitute that name with the
long string. Figure 9.5 shows SimpleFuzz configured for substitution corruption.

Let’s take a closer look at what SimpleFuzz does. It has three main pieces of
functionality: the user interface, which just allows the user to set configuration pa-
rameters and start the server; the proxying routines; and the corruption routines.

To proxy between the two connections, SimpleFuzz must first set up a server to
accept connections from the client. The Start button’s click event handler does this:

Private Sub btnStart_Click()

' Check the remote server parameters

If tbRemoteHost.Text = "" Or Val(tbRemotePort.Text) <= 0 Then

lbLog.AddItem ("Remote host name or port number invalid.")

Exit Sub

End If
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FIGURE 9.4 SimpleFuzz configured for long string insertions.



' Start the server

If Val(tbLocalPort.Text) > 0 Then

'its a valid port number so connect to it

tcpServer.LocalPort = Val(tbLocalPort.Text)

tcpServer.Listen

lbLog.AddItem ("Listening on port " + tbLocalPort.Text + ".")

Else

' its not a valid port number; don’t connect

lbLog.AddItem ("Invalid local port number specified.")

Exit Sub

End If

End Sub

First, we check to see that valid-looking parameters are entered for the local
port number, remote host name, and remote port number. The local port number
value is used to set the port on which SimpleFuzz listens when the server is started.
The other values are used to initiate communication with the real server when a
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FIGURE 9.5 SimpleFuzz showing configuration for substitution
corruption.



connection is received from the client. We check these now though because there
is no sense starting one side of the proxy if the values for the other side are not sup-
plied. Starting a TCP server connection in Visual Basic is easy; setting the port
number and telling the Winsock control to “listen.” SimpleFuzz uses two separate
Winsock controls, one where SimpleFuzz is acting as the client (tcpClient) and one
where it is acting as a server (tcpServer).

When the “server” side of SimpleFuzz receives a connection, it must initiate 
a connection with the real server to start proxying. The code to do this is in the 
ConnectionRequest event handler for the tcpServer control.

Private Sub tcpServer_ConnectionRequest _

(ByVal requestID As Long)

' Check if the control’s State is closed. If not,

' close the connection before accepting the new

' connection.

If tcpServer.State <> sckClosed Then _

tcpServer.Close

' Accept the request with the requestID

' parameter.

tcpServer.Accept requestID

' Connect to the remote server when we receive this request

tcpClient.RemoteHost = tbRemoteHost.Text

tcpClient.RemotePort = Val(tbRemotePort.Text)

tcpClient.Connect

lbLog.AddItem ("Client connected.  Connecting to server.")

End Sub

We first check to see if the previous connection to the proxy correctly closed
the connection when it exited, because we reuse the same Winsock control for each
connection. After setting the control’s state to “accept” to complete the handshake
with the client, we attempt to contact the real server. We now have two open con-
nections, one to the real client and one to the real server. The proxy exchanges data
between them. To do this, we overload the dataArrival event for both Winsock
controls. Upon arrival of new data from the client, we corrupt the data and then
transmit it to the real server.

Private Sub tcpServer_DataArrival _

(ByVal bytesTotal As Long)

Dim strData As String

' get the data from the server

tcpServer.GetData strData

lbLog.AddItem ("Received data: " + strData)
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If cbCorruptFrom.Value = True Then

strData = Corrupt(strData)

lbLog.AddItem ("Retransmitted as: " + strData)

Else

lbLog.AddItem ("Retransmitted intact.")

End If

' send it to the client

tcpClient.SendData strData

End Sub

We pass the data to the corrupter only if the “direction” the user has indicated
matches the direction this data is traveling in. For the client-to-server direction, this
data should be corrupted if the cbCorruptFrom checkbox is checked. (All direc-
tions are described from the real client’s perspective.) The code to do server-to-
client transmission is identical except for direction:

Private Sub tcpClient_DataArrival _

(ByVal bytesTotal As Long)

Dim strData As String

'get the data from the client

tcpClient.GetData strData

lbLog.AddItem ("Received data: " + strData)

If cbCorruptTo.Value = True Then

strData = Corrupt(strData)

lbLog.AddItem ("Retransmitted as: " + strData)

Else

lbLog.AddItem ("Retransmitted intact.")

End If

'send it to the server

tcpServer.SendData strData

End Sub

The proxy is not configured to close connections on its own. It closes a con-
nection only if one of the two sides has closed its connection to the proxy. When
this happens, the proxy must close its connection to the other side. To do this we
overload the close events of both controls:
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Private Sub tcpClient_Close()

tcpServer.Close

lbLog.AddItem ("Client closed connection.  Closing connection to

server.")

End Sub

and

Private Sub tcpServer_Close()

tcpClient.Close

lbLog.AddItem ("Server closed connection.  Closing connection to

client.")

End Sub

Each corruptor is implemented differently, but conforms to a common speci-
fication. The corruptors take the data received from the client or server as a string
argument and return a string representing the modified data. The random bytes
corruption routine is the most complex, because it must decide how many corrupt
bytes to insert based on the user-defined threshold. It does this by selecting a
random number between 0 and 99 when copying each character. If the number it
selected is below the threshold, it substitutes the character it copies with a randomly
generated character. This way, the laws of probability are preserved without having
to select both a random location and random character.

Private Function CorruptRandomBytes(s As String) As String

' just in case s is empty

If s = "" Then

CorruptRandomBytes = s

Exit Function

End If

' compute corruption threshold

cThreshold = Val(tbCorruptPercent.Text)

' initialize return string

t = ""

For X = 1 To Len(s)

'initially set to an uncorrupted character

currentChar = Mid$(s, X, 1)
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' determine whether to corrupt

randomNumber = 100 * Rnd(1)

' if the random number is less than the corruption threshold

If (randomNumber < cThreshold) Then

' set currentChar to a random character

currentChar = Chr$(256 * Rnd(1))

End If

' append to return string

t = t + currentChar

Next X

CorruptRandomBytes = t

End Function

The long string insertions corruptor uses the substring functions Left$ and
Right$ to divide the connection data in half. In between these halves, it inserts a
string of “A”s of user-specified length.

Private Function InsertLongString(s As String) As String

' just in case s is empty

If s = "" Then

InsertLongString = s

Exit Function

End If

' select a random location to insert the string

inspos = Len(s) * Rnd(1) + 1

' set return string

t = Left$(s, inspos)

For X = 1 To Val(tbStringLength.Text)

t = t + "A"

Next X

t = t + Right$(s, inspos + 1)

InsertLongString = t

End Function
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The substitution corruptor must find a match for its source text within the data
stream to perform corruption. It does this by successively comparing substrings of
the data stream to the source text. When it finds a match, it replaces that substring
with the destination string:

Private Function SubstituteString(s As String) As String

' if s is shorter than the src string, there’s no chance

' of a match

If Len(s) < Len(tbSubstSrc.Text) Then

SubstituteString = s

Exit Function

End If

' if either the src or destination string is empty

' don’t substitute!

If tbSubstSrc.Text = "" Or tbSubstDest.Text = "" Then

SubstituteString = s

Exit Function

End If

' determine whether the src string is in our string

initialpos = -1

For X = 1 To Len(s)

If Mid$(s, X, Len(tbSubstSrc.Text)) = tbSubstSrc.Text Then

initialpos = X

End If

Next X

' if it is

If (initialpos > 0) Then

' replace it with the destination string

t = Left$(s, 1, initialpos) + tbSubstDest.Text + _

Right$(s, initialpos + Len(tbSubstSrc.Text))

SubstituteString = t

Else

' otherwise return the original string

SubstituteString = s

End If

End Function

Substitution corruption in SimpleFuzz has some serious limitations. It cannot
substitute more than one time in the same message. It also fails when the source
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string lies on the packet size boundary—in this instance, parts of the string would
be passed to SubstituteString in subsequent calls, but neither would completely
match it. It cannot match based on a wild card; a regular expression engine would
be needed to do this. However, with some creativity on the part of the user these
problems can be avoided.

SimpleFuzz dispatches to one or another of the corruptors based on the values
of the radio buttons in the UI. For this reason, a single Corrupt function is called by
the data event handlers. This function looks like this:

Private Function Corrupt(s As String) As String

If optRandomBytes.Value = True Then

t = CorruptRandomBytes(s)

End If

If optLongStrings.Value = True Then

t = InsertLongString(s)

End If

If optSubstitute.Value = True Then

t = SubstituteString(s)

End If

Corrupt = t

End Function

PREVENTING PROBLEMS WITH PROPRIETARY 
FORMATS AND PROTOCOLS

The best strategy is to assume all user input is suspect. Never assume that your
application is the only one that generates or modifies the data or assume that an
attacker cannot modify the data because the format is undocumented. Formats
and protocols that are implemented with these assumptions fall down easily when
supplied with random data.

A good example can be learned from the Portable Network Graphics (PNG) file
format. PNG file chunks each have their own checksum, and the file has an overall
checksum that preserves the integrity of the header and individual chunk check-
sums. PNG also uses a “magic number” technique to detect and correct the most
common kinds of corruption. As a result, random data corruptions would have lit-
tle effect on a PNG file decoder. An attacker would have to have knowledge of the
format and correctly specify checksums for each field, but doing this more or less
ensures correct data.
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Obviously, all data cannot be stored as PNGs. Instead, try to implement the fol-
lowing guidelines when designing a proprietary format or protocol:

Use a format such as XML, for which (relatively) bug-free parsers already exist.
This shifts the responsibility for parsing data to routines that have been de-
signed and tested for completeness.
Don’t rely on length fields or delimiters in protocols to allocate memory. If you
must, check that the length is reasonable and meets the maximum constraints
of the system including MAX_FILE_LEN.
Never use signed integers when decoding lengths within file formats and pro-
tocols. It’s too easy for an attacker to use these to find an integer overflow in
your parsing code.
If you’re implementing a documented protocol, check a security Web site or
mailing list for vulnerabilities in common implementations of the protocol. If
other programmers made mistakes in their implementation, you’re likely to
make the same mistakes. SMTP is the undisputed leader in re-implemented
security bugs.
Remember that the default action for registered file types in Windows is usually
to open them in the application that registered the type. As a result, an attacker
can trick a user into opening a file containing an exploit even if that file type is
not one that is commonly exchanged via e-mail or the Internet, and if the user
doesn’t understand what application corresponds to the type.
Remember that if the protocol or format is proprietary to your organization,
you are relying solely on your own developers and testers for quality control. If
your developers don’t know all the security implications of protocol imple-
mentation, this is probably best avoided.
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Summary Sheet—Proprietary Formats and Protocols

Problem:

Proprietary protocols and file formats rely on security through obscurity and the
assumption that attackers cannot modify data they don’t understand to prevent
security vulnerabilities. This is a false assumption. Even if an attacker does not
understand a protocol, unless the decoding routines take active steps to ensure
the integrity of data, these routines are commonly susceptible to buffer over-
flows, format string attacks, and other kinds of parsing vulnerabilities.

Potential Impact:

If an exploitable buffer overflow is found in a file format, any user who opens
the file might be susceptible to the exploitation. Common deployment scenar-
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ios for these kinds of vulnerabilities include e-mail, Web sites, and file-sharing
programs. If a vulnerability is found in a protocol, any application that imple-
ments that protocol runs the risk of being exploited remotely.

Even if a remotely exploitable vulnerability is not found, a crash can result
in a denial-of-service attack against the server application that implements the
protocol.

Habitat:

Hidden, undocumented, proprietary, and special-use protocols and formats
are the most likely to be exploited in this manner.

Tools You Need to Find It:

A file corruption utility or network fuzzing tool is used to find these vulnera-
bilities.

How to Look for It:

Performing corruption on the input data, including random corruption and
insertion of long strings, can cause vulnerabilities to manifest.

Symptoms of Failure:

Normal buffer overflow or denial-of-service behavior including crashes in an
attached debugger.

Famous Failures/Exploits:

MS00-15, the CIL buffer overflow vulnerability, is a good example of a
proprietary file format bug.
CAN-2002-1123, the “Hello” vulnerability in Microsoft SQL Server, is a
good example of a proprietary protocol that contained an exploitable
buffer overrun.
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Format String Vulnerabilities10

I
f you’re like most programmers out there, the first program you ever wrote
probably output something to a computer screen. In JavaScript, you might
choose to pop up a message box with the alert() function, or in Visual Basic

you might choose MsgBox(). Both of these do pretty much the same thing: print
whatever string is passed to them in a little pop-up box. If your language of choice
is C, chances are one of the first functions you used is printf(). printf is a fairly
basic function; it takes data, formats it, and prints it to stdout. The key word here
is formats. printf is part of a class of functions known as format functions. In C,
these functions take a variable number of arguments, one of which is called the for-
mat string, which describes the format of output. 

Here’s a simple example of printf in use:

In This Chapter

The Format Family
Exploiting Format String Vulnerabilities
Finding This Vulnerability
References
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//formatit.exe

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("%s", argv[1]);

return 0;

}

If we compile this program as formatit.exe, we can run it with the following
result:

>formatit hello

hello

In this example, the string in quotes is a format string and the format specifier %s
tells the function to read the next argument (in this case the argv[1], the first com-
mand-line argument) and print it as a string.

The danger with format functions is that input is often printed without a for-
mat specifier. For example, in the preceding code we could omit the "%s" specifier,
which would change the printf statement to:

printf(argv[1]);

Recompiling this program with this change as formatit2.exe:

//formatit2.exe

#include <stdio.h>

int main(int argc, char *argv[])

{

printf(argv[1]);

return 0;

}

then compiling and running this program yields the same result as the original
formatit:

>formatit2 hello

hello

The difference is that the second executable is vulnerable to something called a
format string attack. When input is printed with certain specifiers (or without any



specifiers), that input itself can be interpreted as a format string. The result can be
disastrous with the most extreme case being the creation of an exploitable buffer
overflow (see Chapter 9). Consider the following two results.

>formatit hello%s

hello%s

>formatit2 hello%s

hello??

The difference is that in the first instance we explicitly told the application to
treat hello%s as a string, and thus it was printed as entered. In the second case, the
application interpreted the user input hello%s as the string hello followed by the
format specifier %s. When compiled, pointers to the parameters that will be for-
matted by the specifiers in the format string are placed on the stack. Because in the
second case no valid address to a string on the stack exists, the %s specified essen-
tially printed (as text) whatever string that was pointed to by whatever memory
address was at the top of the stack.

This information might be of little value to an attacker. What would be more
helpful is for an attacker to actually read the data stored on the stack. This can be
accomplished using the %x specifier, which prints (in hex) the 32-bit address at the
top of the stack. For example, when printf is called, if the stack looks like:

a8 44 f9 77

c2 44 f9 77

10 fe 12 00

.

.

.

we would get the following result:

>formatit2 hello%x%x

hello77f944a877f944c2

Note that the values are in little endian order (least significant byte first). Using
multiple %x specifiers we can look at the contents of the stack. This is a relatively
simple attack to carry out, and the result can be the exposure of sensitive data in
memory including passwords, encryption keys, etc. Additionally, it is fairly easy to
crash the application and cause a denial of service by eventually reading protected
memory space or an invalid address (a few %s specifiers can usually do the trick).
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Several other specifiers perform similar functions. Table 10.1 presents a list of the
most important and widely supported ones.

Specifier Description

%d Signed decimal string (int)

%u Unsigned decimal string (unsigned int)

%i Signed decimal string

%o Unsigned octal string

%x or %X Unsigned hexadecimal string

%c Convert integer to the Unicode character it represents

%s No conversion; just insert string

%f Signed decimal string of the form xx.yyy

%e or %E Convert floating-point number to scientific notation 

%p Formats a pointer to an address

%n Number of bytes written so far

%% Just inserts %

TABLE 10.1 Common Specifiers for Format Functions

Format string attacks typically make use of the %x and %n specifiers, although
the others can be used to either crash the machine or advance through the stack.
Aside from %x, %n is one of the most interesting specifiers because it actually writes
something to memory. If we use %n without passing a variable, the application at-
tempts to write a value—the number of bytes formatted by the format function—
to the memory address stored at the top of the stack. It is this ability that can
ultimately allow an attacker to execute arbitrary commands by taking control of the
application’s execution path (see the “Exploiting Format String Vulnerabilities”
section later in this chapter).

Take a look at how this works. Running under the ntsd debugger with the com-
mand line:

ntsd formatit %x_%x_%x

yields the result shown in Figure 10.1. 



We can see by the output that the third address on the stack is 7ffdf000. Our
goal now is to write something to that address, namely the length of our string. The
result should be the length of our formatted string, as illustrated in Figure 10.2.
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FIGURE 10.1 This figure shows the result of reading three parameters
from the stack using the %x specifier. The third parameter, 7ffdf000, we
will target to overwrite its contents.

0  1  2  3  4  5  6  7  8  9  A  B  C

8  0  0  0  0  0  _  6  f  3  8  c  _

String printed = 800000_6f38c_

Position:

String:

Value that goes to address 0x7ffdf000 is 0x0C

FIGURE 10.2 The printed string ends at position 13 = 0x0c, and this is the
value that is placed at the address 0x7ffdf000.

We can write the length of the string (0x0c) to the address 0x7ffdf000 by using
the %n specifier. If we pass %x_%x_%n as our first argument, the result is shown in
ntsd in Figure 10.3.



Therefore, we can control the value at this address. While this seems like a
small accomplishment, an attacker can leverage this ability to overwrite the return
address of a function and ultimately execute arbitrary code.

THE FORMAT FAMILY

The printf function is a member of a wider class of functions that use format
strings for output. Functions such as sprintf and fprintf are also vulnerable to
these types of attack. Table 10.2 lists some other C functions that use format strings
and are vulnerable to format string attacks. 

Format functions are used to specify the format of output. They can perform
conversion so that data types in C are converted into printable form. Besides func-
tions that directly format data, however, a few others such as syslog also can
process user data and have been exploited through format specifiers.
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FIGURE 10.3 When we examine the data at address 0x7ffdf000, we see
that it is replaced with the value 0x0c (the length of our string) after
printf() is called.



Of the functions listed in Table 10.2, sprintf and vsprintf are particularly in-
teresting from a security standpoint because they “print” formatted data to a buffer.
Aside from the possibility of a format string vulnerability, using these particular
two functions can lead to buffer overflow vulnerabilities also and should usually be
replaced with their length-checking cousins snprintf and vsnprintf (see Chapters
8 and 9 for more information on buffer overflows).
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Function Purpose

fprintf Prints a formatted string to a file

printf Prints a formatted string to stdout

sprintf Prints a formatted string to a string buffer

snprintf Prints a formatted string to a string buffer and the
programmer can specify the length of data to be printed to
the destination buffer

vfprintf Prints a formatted string from a v_arg structure to a file

vprintf Prints a formatted string from a v_arg structure to stdout

vsprintf Prints a formatted string from a v_arg structure to a string
buffer

vsnprintf Prints a formatted string from a v_arg structure to a string
buffer and the programmer can specify the length of data
to be printed to the destination buffer

TABLE 10.2 Some Formatting Functions in C Vulnerable to Format String Attacks

While people have been publicly exploiting buffer overruns since the late 
1980s [Seeley89], string format attacks have been well known only since Pascal
Bouchareine’s 2000 article on BugTraq [Bouchareine00]. However, once the new
category was identified, a number of applications were determined to be vulnera-
ble. That year, the Common Vulnerabilities and Exposures database (CVE found at
cve.mitre.org) lists over 20 major applications and platforms that had been exploited
through these attacks, and reports of vulnerabilities continue to flood in up to the
present writing. 



EXPLOITING FORMAT STRING VULNERABILITIES

We’ve already seen how an attacker can use %x to read data off the stack, but vul-
nerabilities from format strings can have much more dire consequences. Consider
the code listing that follows:

#include "stdafx.h"

#include <stdio.h>

int printstr(char *a)

{

char buffer[512]="";

strncpy(buffer,a,500);

printf(buffer);

return 0;

}

int main(int argc, char *argv[])

{

char b[500];

gets(b);

printstr(b);

return 0;

}

This code takes in a value from the user and prints it to the screen. While this
executable is trivial, the code used here is typical of many large commercial appli-
cations. This particular bit of code is wide open to a format string attack because of
the vulnerable printf call in the printstr function. Here we see that the application
takes a string from the user (using fgets), passes it to printstr, and then prints it
using printf. Our first and most basic attack here could be to read information off
the stack using a variation of %x, which is %08x. In this case we are telling printf to
format the output as 8-digit padded (with 0s) hexadecimal numbers. The result is
shown in Figure 10.4.

We can take the output and paste it (as hex values) into a hex editor to get a
better idea of what the stack looks like (Figure 10.5).

In Figure 10.5 we see a few memory addresses at the top of the stack are followed
by quite a few “c”s and then our data (%08x) in hex. This is valuable information be-
cause it tells us how far from the top of the stack our data is located. We now have
several options; if our goal was to crash the application, we could simply insert a %s
appropriately to read from a bogus memory address causing an access violation. For
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FIGURE 10.4 Reading data from the stack using %x.

FIGURE 10.5 Putting the output of the data read from the stack into a hex
editor gives us a better idea of what the stack looks like.

example, if we wanted to force the application to read from 0xcccccccc, an obviously
illegal memory address, we could enter the value %08x%08x%08x%s. The result of doing
so is shown in Figure 10.6.

This alone can be an effective denial-of-service attack if delivered to an appli-
cation remotely. Our ultimate goal here, though, is to execute arbitrary code using
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FIGURE 10.6 By forcing the application to read from an uninitialized
memory address, we can cause the application to crash.

the format string vulnerability. To do this, we need to be able to write to a memory
address whose value eventually gets put into the instruction pointer register (EIP).
An obvious target then is to overwrite the return address of the function printstr,
which is stored somewhere on the stack. We can find out where this address is
stored in several ways. The most difficult is to try to “guess” its location based on
feedback we get from reading the stack and knowledge of how our application runs.
This can sometimes be a painful process, but several techniques have been devel-
oped by the hacking community to help. The reality is, though, that for most tar-
gets, attackers have access to a copy of the software they are trying to exploit on
someone else’s machine. For example, if an attacker were trying to exploit a vul-
nerability in the Apache Web server on a remote host, the attacker would likely set
up a mock environment themselves running Apache so that they could study it and
use that knowledge to exploit the same software on a different machine. Then the
use of a debugger or disassembler to find the likely location of the return address of
a function is a reasonable assumption to make in many cases.

Using OllyDbg on our application we can see that the return address to main
is stored at 0x0012FC0C (Figure 10.7).
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FIGURE 10.7 Using OllyDbg we can see that the return address to main is stored at
0x0012FC0C.

Now, we know what our target address is to write to. We saw in Figure 10.5 that
if we continue to walk the stack, eventually we get to the data we originally entered
that is stored there. Our strategy is to change the value of the return address so that
it points to the beginning of our data in memory. Thus, instead of beginning our
string with %x, we enter machine code to be executed by the application. To do this
we need a few things:

A space at the beginning of our string that is eventually replaced with instructions
The ability to write to arbitrary addresses in memory
The ability to write arbitrary values to those addresses

Quite a bit of shellcode can be written in 32 bytes. Under the right circum-
stances, one could, for example, execute an arbitrary application on a machine in
just 20 bytes. We therefore use 32 “a”s as a placeholder for our instructions (to be
filled in later) at the beginning of our string. The next task is to write to an arbitrary
memory location. This can be done by making the address we want to write to a
part of our input string and then working our way down the stack until we get to it. 

We know the address we want to write to; it is the one we found earlier that
holds the return address to main, 0x0012FC0C. The problem is that this address con-
tains a NULL byte, 0x00. Null bytes are usually used to signal the end of a string;
therefore, we can’t feed the application a null byte through stdin. What we can do,



though, is take advantage of the fact that the function that reads our data into
memory—in this case fgets—puts a null byte at the end of our string for us. This
means that our target address in memory has to be at the end of our input string,
and we have to end our string with the hex values 0c fc 12. We now run into an-
other problem. The value “0c” represents the ASCII character “backspace.” If we try
to enter it through the command line with its control character (CTRL-M), the OS
interprets it as a backspace, and it deletes the previous character. We can get around
this problem by piping the data to the application through a file using:

C:>formats < infile.dat

where infile.dat is the file containing our input values. 
Recall before that we used %08x to read 4 bytes from the stack. The problem

with using this specifier is that we place 4 bytes (the 4 characters %, 0, 8, and x) on
the stack, too. Using this method we can never get to the end of our string. If we go
back to our original %x, however, we get a 2 for 1 move: for every 2 bytes (% and x)
we put on the stack we can advance 4 bytes (the 4 bytes read with %n). Our first at-
tempt at an input file then is shown in Figure 10.8.
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FIGURE 10.8 We make a first attempt at our input file to get to the end of our
data on the stack.



Figure 10.9 shows the result of executing our application with this data.
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FIGURE 10.9 On our first attempt to get to the end of our input string we overshoot
it by several bytes, as can be seen by the trailing 0s.

By removing a few of the %x specifiers from our file we get the last %x to read the
value at the end of our string from memory (Figure 10.10).

FIGURE 10.10 Now that we have removed a few of the %x specifiers, we are exactly
where we want to be: the last %x is pointing to our data.

We can now replace the last %x with a %n. This causes the value of the number
of bytes written by the printf function to be stored at the address 0x0012FC0C: the
return address of the printstr function. The modified input file is shown in Figure
10.11.



When we execute the application with this input file, the application crashes
and has the value 0x3df in the instruction pointer (Figure 10.12). 

This value, 0x3df, is equivalent to 991 (decimal) which is the number of char-
acters printed by printf. We need to manipulate this value so that it is equal to the
address of the beginning of our string in memory. Again we turn to a debugger to
find out the address of the start of our string on the stack. Figure 10.13 shows that
our string is stored at 0x0012fce4.

If we convert the hex value 0x12fce4 to decimal, we get 1244388. This is the
total number of characters we need to be printed. We can force additional blank
characters to be printed using the %nx specifier where n represents the number of
characters to print. For example, the specifier %300x would cause 4 bytes (8 charac-
ters) to be printed from the stack preceded by 292 spaces. We are going to use this
to our advantage to drastically increase the value of the number written by %n.
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FIGURE 10.11 We change the last %x to a %s in the input file, which forces our application
to write a value to the memory address 0x0012FC0C, which holds the return address of our
printstr function.



The number of bytes we currently need is 1244388 – 991 = 1243397 spaces,
which means that the value needs to be 1243397 + 8 = 1243405. Replacing the last
%x with %1243405x increases the length of our string by 7 bytes. Because each %x gives
us a net move of 2 bytes through the stack, we need to add 4 more %x specifiers and
one character to compensate (in this case, we’ve added the letter “a”). After tweak-
ing the number of spaces slightly to compensate for the added characters, we arrive
at the input file shown in Figure 10.13. Notice that we have changed the first sev-
eral bytes in the file to 0x90. This is a special value in the x86 instruction set, which
is interpreted as NOP: no operation. When the application tries to execute this
value it simply bypasses it and moves on to the next instruction. Using NOPs is a
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FIGURE 10.12 We have managed to overwrite the return address of our function with
the number of bytes printed by format command (0x3df).



powerful technique if we are not sure exactly where in our code the application will
land after we overwrite a return address. It is commonly referred to as a “NOP sled”
because essentially the application can land anywhere in the sea of NOPs and then
“slide” down to our shellcode. Also notice that after the NOPs, we have inserted the
hex value 0xCC. This is another special value in the x86 instruction set, which is in-
terpreted as INT 3 (interrupt 3), and when executed, the result is that we break into
a debugger.

The value 0xCC is used often by debuggers and represents the INT 3 instruction.
When you set a breakpoint in a debugger, what usually happens is that the debug-
ger saves whatever instruction was at the location that you set the break point and
replaces it with 0xCC. 
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FIGURE 10.13 This shows our exploit file, which forces the application to execute the
instruction CC stored at the beginning of the file.



Now we know we can execute code through our data. This is by far the hardest
part of the exploit—setting up the injection vector. The only thing that would re-
main for an attacker is to write shellcode to perform an attack of his choosing. Our
goal here, however, is to illustrate the potential severity of this type of vulnerabil-
ity. These types of bugs must be found and fixed in your software.
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FIGURE 10.14 When we feed the application the data from our modified file, we get a
crash at address 0x0012fce8, which is where we have inserted our CC value in memory. 

After feeding this file into our application, we again get a crash (Figure 10.14).
Debugging the application reveals that the reason for the crash was that FormatS

was executing our code (in this case CC), which it interpreted as a user breakpoint!



FINDING THIS VULNERABILITY

The good thing about format string vulnerabilities is that they are relatively easy to
find in code. Any variable that contains data that is either directly or indirectly in-
fluenced by the user should contain a format string that dictates how that data is in-
terpreted. A hand analysis of code can usually find most of the vulnerabilities here.
It is important, though, to be familiar with functions that use formatted output.
Table 10.2 is a good starting point, but some OS specific functions like syslog()
must also be scrutinized.

Also, some automated source-scanning tools for C can make the process of
searching through your source code easier. RATS, the Rough Auditing Tool for Se-
curity, is a free source code scanner produced by Secure Software (www.securesw.
com) under active development that is capable of scanning C and C++ source code
for format string issues. The ITS4 security scanner by Cigital, Inc. (www.cigital.
com) is also free and can be used to scan C and C++ for related problems. Flawfinder
(www.dwheeler.com/flawfinder) is another GPL vulnerability finder that scans C and
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FIGURE 10.15 Indeed, if we then check the crash in a debugger, we see that the
application terminated because it executes our breakpoint in memory.

www.dwheeler.com/flawfinder
www.securesw.com
www.securesw.com
www.cigital.com
www.cigital.com


C++ code for a variety of security problems including format strings. If your focus
is just finding format string vulnerabilities, the pscan tool (www.striker.ottawa.on.ca/
~aland/pscan) is an open source tool that focuses exclusively on finding format
string vulnerabilities in C code. 

The biggest problem with using automated scanners is the amount of “noise”
or false positives they generate. Practitioners should be sensitive to the fact that not
all issues identified by scanners are exploitable. Manual code reviews should look
for functions of the form xxprintf() wherever the template is not hard-coded. 

From a black-box testing perspective these vulnerabilities can be unearthed by
including specifiers such as %x, %s, and %n in input fields. The symptom of failure
when using a string of %xs is likely to be “garbage” data returned to the user in a
message that quotes the input string. A more drastic approach is to place several %ss
into the input string. If a format string vulnerability exists, this causes the applica-
tion to read from successive addresses at the top of the stack. Because some of the
data on the stack is likely to be the contents of other variables (like a string), trying
to convert this data to a memory address and then read from that address is likely
to result in an “Access Violation” error or core dump, which causes the application
to crash.

The key to finding and preventing these vulnerabilities is a keen awareness of
the problem.

We encourage you to play with the examples on the CD-ROM that comes with this
book to reproduce the specific vulnerabilities discussed in this chapter.

Some of the freely available source scanning tools can identify format string
vulnerabilities in applications if you have the source code. These tools include:

RATS: www.securesw.com/

ITS4: www.cigital.com/its4/

Flawfinder: www.dwheeler.com/flawfinder/

Pscan: www.striker.ottawa.on.ca/~aland/pscan

Fixing This Vulnerability

Fixing format string vulnerabilities is easy: use a format specifier to format data. For
example, vulnerable calls are likely to look something like this:

printf(user_data);

fprintf(stdout, user_data);

snprintf(dest_buffer, size, user_data);
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If we want user data to be output, processed, or saved, all the preceding func-
tions can be fixed using %s as shown in the following:

printf("%s", user_data); 

fprintf(stdout, "%s", user_data);

snprintf(dest_buffer, size, "%s", user_data);

Summary: Format user data before your users format it for you. To put it even
simpler, never let the bad guy supply the template.
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Summary Sheet—Format String Vulnerabilities

Problem:

When data from a user is printed with a format function in C or C++, the
potential exists that a user can include formatting characters in his data to read
memory, crash the application, or execute arbitrary commands. Many com-
mon C functions are vulnerable to this attack, including printf, fprintf,
sprintf, snprintf, and many others. These vulnerabilities can have dire im-
plications but they are relatively easy to find and fix in code. 

Potential Impact:

Reading sensitive data from memory, remote DOS resulting from an applica-
tion crash, and the execution of arbitrary instructions.

Habitat:

Format string vulnerabilities (of the type discussed in this chapter) can be
found in applications written in C and C++.

Tools You Need to Find It: 

At the source level, scanners like RATS, ITS4, and Flawfinder. Code reviews by
good humans.

How to Look for It: 

Source scanners such as the ones mentioned previously can be very helpful for
finding these vulnerabilities in an automated fashion. For by-hand source code
analysis, look for format functions that do not explicitly use a format string to
specify how output is to be produced. In most cases these can be fixed fairly
easily by adding a format string. For example, instead of printing user data
using printf(user_data), use printf("%s", user_data). For black-box testing,
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try inserting several %s values into strings. If a format string vulnerability exists,
this is likely to cause the application to crash. 

Symptoms of Failure:

If a user string that is processed by a vulnerable format function contains
several %s or %n characters, then the application is likely to crash. Multiple %x
characters are likely to result in “garbage” being added to the user string when
printed or saved.

Famous Failures/Exploits:

CVE-2000-0699: Format string vulnerability in ftpd in HP-UX 10.20
allows remote attackers to cause a denial of service or execute arbitrary
commands via format strings in the PASS command.
CVE-2000-0733: Telnetd Telnet server in IRIX 5.2 through 6.1 does not
properly clean user-injected format strings, which allows remote attackers
to execute arbitrary commands via a long RLD variable in the IAC-SB-
TELOPT_ENVIRON request.
CAN-2004-0354: Multiple format string vulnerabilities in GNU Anubis
3.6.0 through 3.6.2, 3.9.92, and 3.9.93 allow remote attackers to execute
arbitrary code via format string specifiers in strings passed to (1) the info
function in log.c, (2) the anubis_error function in errs.c, or (3) the
ssl_error function in ssl.c.

www.securityfocus.com/archive/1/70552
http://securitydigest.org/phage/resource/seely.pdf
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Integer Overflow
Vulnerabilities

11

I
n a typical buffer overflow, the problem is that developers have allocated a cer-
tain amount of space to store data and then the data received is larger than the
space allocated. In Chapter 8 we showed how an attacker can leverage this flaw

to overwrite arbitrary data in memory and often eventually take control over the
application. In this chapter, we deal with an overflow of a different sort: integer
overflows. Integer overflows occur when we try to store a number in a variable that
is larger than that variable’s type can handle. For example, depending on the archi-
tecture, for the variable declared:

unsigned short int num1;

most C++ compilers allocate 2 bytes for num1. Table 11.1 shows the typical sizes of
integer variables.

In This Chapter

Exploiting Integer Overflow Vulnerabilities
Finding This Vulnerability
Fixing This Vulnerability
References



174 The Software Vulnerability Guide

For most C and C++ compilers a header file called limits.h defines the size of stan-
dard data types.

Type Name Bytes Other Names Range of Values

bool 1 None false or true

char 1 signed char –128 to 127

unsigned char 1 None 0 to 255

short 2 short int

signed short int –32,768 to 
32,767

unsigned short 2 unsigned short 0 to 65,535
int

int * signed

signed int System dependent

unsigned int * unsigned System dependent

long 4 long int

signed long int –2,147,483,648 to 
2,147,483,647

long long 8 none –9,223,372,036,
854,775,808 to 
9,223,372,036,
854,775,807

unsigned long 4 unsigned long 0 to 4,294,967,295
int

TABLE 11.1 Names and Ranges of Common Data Types (C and C++) 

Thus, if a variable is declared as a 2-byte integer, this means that it can take in-
teger values in the range 0 to 65,535. When a value is placed into this variable larger
than 65,535, the ISO/IEC 9899:1999 Standard for C compilers states the following:

“The range of nonnegative values of a signed integer type is a subrange of the
corresponding unsigned integer type, and the representation of the same value in
each type is the same. A computation involving unsigned operands can never over-
flow, because a result that cannot be represented by the resulting unsigned integer
type is reduced modulo the number that is one greater than the largest value that
can be represented by the resulting type.” [ISO99]



Translated into English, this means that for an unsigned integer type, an ISO
compliant C compiler saves the value of the number to be saved modulus one plus
the largest value that type can hold. So, for example, consider the following code:

#include "stdio.h"

int main(int argc, char* argv[])

{

unsigned short int num1 = 65534;

unsigned int good_num1 = 65534;

printf("\nSize of num1 \t\t= %d bytes", sizeof(num1));

printf("\nSize of good_num1 \t= %d bytes", sizeof(good_num1));

printf("\n\nTrue Value (good_num1)\t\tValue Stored in num1\n");

for(int i=0;i<10;i++){

printf("\n%d\t\t\t\t%d", good_num1, num1);

num1++;

good_num1++;

}

return 0;

}

which yields what we see in Figure 11.1.
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FIGURE 11.1 Overflows in stored values in Standard C.
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Here we see that when one tries to store a value in an unsigned integer type that
is larger than the maximum value, only the modulus remains, which leads to results
like 65535 + 1 = 0. The value essentially “wraps around” to 0. This can cause some
unusual behavior if the resultant value is used in a computation. Before we consider
some of the consequences, let’s see what happens when a signed integer overflows. 

For signed integers, the ISO/IEC 9899:1999 standard says that an integer over-
flow results in behavior “for which this International Standard imposes no re-
quirements” [ISO99]. What this means is that any result is acceptable, including an
application crash. Most compilers, however, treat signed integers in much the same
way as unsigned integers. Consider the following program:

#include "stdio.h"

int main(int argc, char* argv[])

{

short int num1 = 32766;

int good_num1 = 32766;

printf("\nSize of num1 \t\t= %d bytes", sizeof(num1));

printf("\nSize of good_num1 \t= %d bytes", sizeof(good_num1));

printf("\n\nTrue Value (good_num1)\t\tValue Stored in num1\n");

for(int i=0;i<10;i++){

printf("\n%d\t\t\t\t%d", good_num1, num1);

num1++;

good_num1++;

}

return 0;

}

which produces what we see in Figure 11.2.
As with most compiler implementations, here we see a “wraparound effect”

where 32767 + 1 = -32766. This conversion occurs not only when the number is in-
cremented, but also when too large a value is stored, as well.

While integer overflows do not allow a user to modify parts of memory directly
as many buffer overflows do, the consequences of an integer overflow can be severe.
Sometimes the impact of an integer overflow is limited to unusual arithmetic re-
sults. In other circumstances, integer overflow vulnerabilities can be leveraged to
crash the system or create an exploitable buffer overflow condition.

Consider, for example, the following code listing:

int save_vals(long* array, int number_of_values)

{

long* savedarray;

savedarray = malloc(number_of_values * sizeof(long));



for(int i = 0; i < number_of_values; i++){

savedarray[i] = array[i];

}

output_array(savedarray);

return 0;

}

}

This function has an insidious integer overflow. Imagine that a user enters a set
of values into the main program; these values were saved into an array, and the
number of values was recorded. Then both the array and number of values were
passed into the function save_vals in the preceding code. If there were only five
values in the array, for example, the function would work as intended. Consider,
however, if we had a large number of values. On the line:

savedarray = malloc(number_of_values * sizeof(long));

a computation is being performed with number_of_values. Assume the size of a
long is 4 bytes. This would mean that the result of the computation would be four
times the number of values stored. Problems occur, however, when the product is
larger than 2,147,483,647, the maximum value of a 4-byte integer. The result is an
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FIGURE 11.2 “Underflow” or “wraparound effect” in signed numbers.



integer overflow that could be used to force the application to allocate a small
amount of space for savedarray and write past its bounds within the for loop. The
result is a buffer overflow on the heap that is likely to be exploitable.

Integer overflows can also happen when we perform arithmetic operations on
pointers. A pointer is simply an unsigned integer that stores a memory address.
Often in the course of writing an application we need to move forward and back-
ward through an array, and sometimes this is done in a loop. If pointer values
aren’t checked it’s easy to make a mistake here and overflow the pointer variable.
The results can be unpredictable, but typically the application crashes from a mem-
ory access violation.

Beyond pointers, special care must be taken when converting between signed
and unsigned integers. The problem here is that it’s easy to make the mistake of de-
claring a variable as an int (allowing both negative and positive values) and then
later make the assumption that this variable contains only positive values. We ran
into a particularly interesting example of this recently in the Firefox Web browser.
When you think about downloading files from the Web, you usually think in kilo-
bytes or megabytes. Ask yourself then, how would you declare a variable that is
meant to hold the number of kilobytes remaining in a particular file download?
First, you would make it fairly large, and, second, such a variable should contain
only positive values and thus should be declared as an unsigned integer. Figure 11.3
shows what happens in the Firefox download manager when we try to download an
exceptionally large file. Here we see that the number of kilobytes remaining in a
download is negative. We also see that a computation is performed on this value to
calculate the download rate in kilobytes per second, also yielding a negative value.
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FIGURE 11.3 Download dialog showing an integer underflow.



A closely related issue to integer overflows is integer underflows. An underflow
occurs when the number we are attempting to store in an integer variable is smaller
than the lower bound of that variable type. For unsigned integers, for example, sub-
tracting 1 from an integer with the value 0 stored can result in a very large number.
For signed integers, this “wraparound” effect can mean that subtracting 1 from an
integer that has its minimal value stored can lead to a positive number as the result.

EXPLOITING INTEGER OVERFLOW VULNERABILITIES

Exploiting integer overflows can be tricky. No cookie cutter method exists that an
attacker can use such as the ones used to exploit buffer overflows. The extent of
exploitability is very contextual, based on what the errant value produced by the
integer overflow is to be used for. Sometimes, it is enough to manipulate a single
value to escalate privilege and control the result of some protected or critical value.
An example would be an e-commerce application that allows the user to enter the
quantity of a particular item that the user wants to buy. If the variable used to store
the quantity is of a type whose maximum value is smaller than the quantity entered,
the user might be able to make it so that the price charged is a negative amount,
which might credit his credit card. Other simple exploits are also possible. You
might be able to force a variable to take a value that later results in a failed compu-
tation (such as dividing by zero) that crashes the application. 

Under the right conditions, integer overflows can create exploitable buffer
overflow conditions. For example, if the affected variable or calculation is used to
compute the size of data or space allocated for that data, an attacker might be able
to manipulate this value to create a discrepancy between the amount of space allo-
cated to store data and the actual size of that data. If an attacker can force an inte-
ger that holds the size of input to be stored into a variable, for example, safety
checks to make sure that the data to be stored is smaller than the buffer size can be
circumvented. In many cases, dynamic allocation of space is done incorrectly, and
the result can be a heap overflow. When this happens, an attacker can then use stan-
dard buffer overflow exploitation techniques to attack the application.

FINDING THIS VULNERABILITY

Some integer overflow vulnerabilities can be incredibly difficult to find. From a
white-box testing perspective, one must not only check integer computations but
also the source of values and the context that these values are used in. An integer
overflow can occur during an arithmetic operation, a cast, or a copy/read. Few
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source scanning tools are adept at finding these sorts of problems. The low hang-
ing fruits are casts or conversions from a larger integer type to a smaller one. These
are usually brought up as warnings in the compiler. For arithmetic operations that
cause an integer overflow to occur, it is often exceedingly difficult to locate the fault
in code. You must check all operations performed on an integer-type variable and
then determine what the bounds are on the operands. Then, given the maximal (or
in some cases minimal) value of the operands, determine if the result could be
larger (or smaller) than the resulting integer type.

From a black-box perspective, testing for integer overflows can also be chal-
lenging. Ideally, you should reason about the use of all input variables and then
speculate as to what calculations might be performed on those variables. Sometimes
signs of potential vulnerability appear in error messages returned to the user. Con-
sider, for example, the error message shown in Figure 11.4. This message occurs
when we try to insert a table with an obscene number of rows. The result is an error
message that tells us the valid range for number of rows is between 1 and 32,767: the
maximum value of a short int. This means that the number of rows is likely to be
stored in this type of variable. From a testing standpoint, it is interesting to force
that variable to take its maximal value and then find an operation that causes it to
increment. In the Figure 11.4 example, we could simply right-click on a cell in the
table and insert another row. This causes Word to hang on most future operations
with that table. 
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FIGURE 11.4 Duplicating cells in Word.



If we were correct that the variable used to store the number of rows was of type
short int, adding an additional row would force the stored value to become –32766,
which would lead to some strange computational results as we manipulate the
table. The problem with finding integer overflows generally is that the application
rarely offers such overt clues. We often have to make assumptions about how a
particular input value will be stored and used. The following are a couple specific
techniques that have proven useful:

Try long strings in input fields. While this is the primary technique for locating
plain old buffer overflows, it can often be used to find integer overflow issues,
too. For example, if the length of the input string is computed, and its value is
larger than the integer type it is stored in, the result is an integer overflow. This
value can then be used to dynamically allocate memory for the input string and
would likely create a buffer overflow condition. When that happens, the result
is usually a crash (see Chapter 8 for more information on buffer overflows). 
Try very large (small) values in numeric fields and try to force the application
to use these values in a computation. Often, individual values might be appro-
priately constrained, but calculations might be performed on these values to
force the results beyond the appropriate integer range. 

FIXING THIS VULNERABILITY

Integer overflows can be fixed by ensuring that the results of computations or the
value of inputs are within the appropriate range of the integer type. While the prin-
cipal is simple, actually constraining values so that they are within the range can be
difficult. You must understand the range of operands and then determine the range
of the resulting computation. Often this is time consuming. The easiest way to pre-
vent an integer overflow is to test variable values before they are stored or used.
Some questions to consider are:

Should this variable legitimately contain a negative value? If not, declare it as an
unsigned int.
When you compare two integers, are they of the same type (unsigned/signed)?
When performing arithmetic operations on an integer, can the result be larger
or smaller than the maximum and minimum values of that integer type?
Are sanity checks done before a variable is used in a computation or comparison?
Are you making trust assumptions about an integer that is being passed into
your function (always greater than zero, always positive, etc.)?
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Summary Sheet—Integer Overflows

Problem:

Integer data types store values in a specific range. If the application attempts to
place a value in a variable of integer type that is larger or smaller than the max-
imal or minimal value of that type, an “overflow” occurs, and an inaccurate
value gets stored. For example, if the value stored in a variable of short int is
32,767 (the maximum value for a short int) and if we increment this value, the
variable “wraps around” and the result is –32,766. Aside from inaccurate com-
putations, this might lead to inaccurate length calculations of data and might
result in a buffer overflow.

Potential Impact:

Inaccurate computations, application crash, or the creation of a buffer overflow
condition that might allow the execution of arbitrary instructions.

Habitat:

Can be found in applications written in a variety of languages but are common
in software written in C and C++.

Tools You Need to Find It: 

Compiler is good at catching inappropriate integer conversions by giving warn-
ings. Otherwise, finding these vulnerabilities requires hand analysis of the code
(white-box) or boundary value testing (black-box).

How to Look for It: 

We have two approaches to find integer overflows: code inspection and testing.
During code inspection, carefully examine each operand in integer calculation.
Determine the range of the operands, the range of the resulting calculations,
and the range of the integer variable that is being used to store the computation
result. Also, pay particular attention to conversions between integer types and
casts. During testing, the goal is to try values at the boundaries of legal values
for a particular input field. The goal is to then force the application to use these
values in computations, which might precipitate an integer overflow.

Symptoms of Failure:

When an integer overflow occurs, the result is an inappropriate value being
used by the application. The failure symptoms can range from overtly wrong
calculations to an application crash.
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Famous Failures/Exploits:

CAN-2003-0357: Multiple integer overflow vulnerabilities in Ethereal
0.9.11 and earlier allow remote attackers to cause a denial of service and
possibly execute arbitrary code via the (1) Mount and (2) PPP dissectors. 
CAN-2004-0062: Integer overflow in the rnd arithmetic rounding func-
tion for various versions of FishCart before 3.1 allows remote attackers to
“cause negative totals” via an order with a large quantity. 
CAN-2004-0431: Description Integer overflow in Apple QuickTime
(QuickTime.qts) before 6.5.1 allows attackers to execute arbitrary code via
a large “number of entries” field in the sample-to-chunk table data for a
.mov movie file, which leads to a heap-based buffer overflow.
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Storing Passwords 
in Plain Text

12

M
any applications and operating systems need to store authentication in-
formation to validate username and password data supplied by users.
You have various strategies to implement this. Chapter 5 describes Unix

passwords in detail. Many of the Microsoft Windows operating systems, for exam-
ple, store password data in an encrypted file. Aside from being encrypted, the file
itself is accessible only to an administrator. Most variants of Linux and Unix use
similar strategies. This is arguably a reasonable protection strategy: make password
storage accessible only by an administrator and encrypt its contents. Many appli-
cations, however, are more frivolous with password storage. When passwords are
stored in plain text the possibility exists for an attacker or another user to steal this
information. A common error is to store passwords in plain text in authentication
files, configuration files, or the Windows registry. Consider the following examples:

In This Chapter

Finding This Vulnerability
Fixing This Vulnerability
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Nullsoft Winamp Version 2.8: Winamp is a popular media player that allows
a user to play both files locally stored and streaming media. When a remote file
is streamed through a Web URL that requires HTTP authentication, the user is
prompted to enter a username and password. This username and password is
then stored as plain text in the file winamp.ini [Bugtraq02]

WinMySQLadmin 1.1: MySQLAdmin, the GUI manager for the Microsoft
Windows implementation of the popular MySQL database engine, stores the
MySQL password in plain text in the my.ini file. The vulnerability exists in ver-
sion 1.1 of the application. This exposure allows local users to obtain unautho-
rized access to the MySQL database. [CVE01].

Aside from exposure in files, storing passwords in plain text in the registry can
also leave sensitive user data exposed and thus leave the system or specific applica-
tions vulnerable, especially if access control lists are not properly used.

During development, care must be taken to adequately protect user authenti-
cation information. A common approach is to use a hash function. Implementa-
tions such as SHA-1 and MD5 allow developers to store a hash calculated from the
user’s password. This hash is easy to compute for a particular password, but it is sig-
nificantly and measurably difficult to calculate the password given the hash. When
a user enters his password, a hash is computed based on that password, and it is
compared with the stored hash calculated when the password was originally set.
Using a hash has the benefit of not having a user’s data stored on the machine.
Thus, even if a machine storing authentication information is compromised, an at-
tacker would still not have access to authentication information.

FINDING THIS VULNERABILITY

Several strategies to test for plain text passwords exist. One of the most basic is to
set a password that is complex and unlikely to occur randomly as a string in other
files on the systems. Utilities can then be used to search the contents of files in spec-
ified directories for a specific string. For Windows systems, the registry should also
be searched.

Finding passwords stored in the registry is relatively easy with the help of an
API monitoring tool like Regmon from Sysinternals.com. Regmon monitors all 
calls made to the registry by any application on the system. (Figure 12.1 shows our
application’s screen.) To do this, we created a small application that prompts a user
for a password and looks in the registry for this password. Take a look at what hap-
pens when we use Regmon on our demo application. 



1. First we add an account with an easily distinguishable password. We chose
the password “SECRET.” 

2. We identify the executable name of our program and launch Regmon. We
immediately turn off capturing (using the magnifying glass button) and
clear the log (using the eraser button).

3. Regmon allows us to set a filter expression, so we enter the password, “SE-
CRET.” Figure 12.2 shows this.
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FIGURE 12.1 Application screen.

FIGURE 12.2 Regmon allows us to set a filter expression, so we enter the
password, “SECRET.”
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4. We start our application. We enter our candidate password and turn on
capturing. Then we click “Authorize.”

Figure 12.3 shows the results of our capture. The password was read out of the
registry in plain text. We can now browse to this location in regedit, the Windows
registry editing tool, and change the password if we want, as shown in Figure 12.4.

FIGURE 12.3 The results of our capture.

While this kind of password storage might seem foolish, it is quite common. In
fact, it is one of the most common vulnerabilities we encounter in non-retail ap-
plications. Even some retail applications have had this problem.

A second, more involved approach to discovering password storage is to watch
the application execute using a debugger. When a user attempts to authenticate to
an application, some comparison must be done between to validate these creden-
tials. In some of the more trivial schemes, the password hash is calculated based on
the username. If this is the case, you are likely to find a severe vulnerability that is
exploitable through other methods. If, however, a user-supplied password (or some
value calculated based on it) is compared with a stored value on the system, you can



usually identify the source of this stored data by single-stepping through the appli-
cation with a debugger once a user has made a login attempt, looking for a “sen-
tinel” password, a known string that “jumps” out in memory. In assembly this
usually ends up being a compare statement with a conditional jump afterwards
based on the result of the compare. Note that if the password is stored in plain text,
the comparison might be character by character.

OllyDbg is an ideal application for this approach because it has a memory
search capability. To search the memory of an application with OllyDbg, first load
it within the debugger. The application is paused on startup. If you’re not sure
whether a particular piece of data is in memory at load time, set a breakpoint near
where you think the data is used. Note: most constant values (such as hard-coded
passwords) are present in memory at load time.

The memory map of the application can be opened by selecting View>Memory
or by pressing Alt-M. Right-clicking in this view exposes the Memory context
menu. Select “Search.” OllyDbg  quickly searches the mapped memory associated
with an application and finds the first occurrence. Figure 12.5 shows the search
dialog box within OllyDbg. Figure 12.6 shows the results of a memory search for
the string, “SECRET.”

The debugger is also useful in identifying insecure encryption or hashing algo-
rithms associated with passwords. Often times, a password is secured in the registry
in a hashed, but easily guessable fashion. We have created a sample application to
demonstrate this. This application inputs a username and password and compares it
to a hashed password to determine success or failure. Let’s look at its implementation.
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FIGURE 12.4 We can now browse to this location in regedit, the Windows registry
editing tool, and change the password.
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FIGURE 12.5 The search dialog box within OllyDbg.

FIGURE 12.6 The results of a memory search for the string.



We launch the application in OllyDbg. Right away we can see a few things.
First, the text for the username and password prompts is visible and is being passed
to an output function. Because we can see these, we can easily identify the area of
code where the password input, and potentially computation, takes place. Figure
12.7 shows this.
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FIGURE 12.7 Identifying the area of code where the password input, and potentially
computation, takes place.

We set a breakpoint on the input routine for the username and allow the de-
bugger to run to this breakpoint. From here on out, we single step through the code
to see what’s going on. After stepping through the inputting of usernames and
passwords, we see the values we just entered for the username and password being
iterated across in the loop. Each pass through the loop, ECX has one of the charac-
ters of the username and EDX one of the characters of the password. In Figure 12.8,



which illustrates this, ECX has the value of 6D, the “m” in “simon,” and EDX the
value 79, the “y” in “says.”
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FIGURE 12.8 Looping through username and password in OllyDbg.

Notice what is being done at instruction 040DBCE: they’re being added to-
gether to form a new string. Letting the loop complete, we follow the code to the
comparison with the hashed value. Instruction 040DBED is a call to strcmp(); the
parameters that have been passed are the new string we just formed and the hashed
value from the beginning. The results of this strcmp() determine whether the au-
thentication is a success or failure.

Because we’ve stepped through from start to finish, we can conclude what the
algorithm is for password hashing. A hashed password value is formed by adding
the bytes of the username and the bytes of the correct password sequentially. This
is not strong cryptography and is easy to reverse engineer.



Many applications hash passwords, license keys, and serial numbers using a rel-
atively easy to reverse function. (We would suspect most do, but we don’t have any
data to back that up.) This kind of protection is almost as bad as storing passwords
in plain text, because insecure hashes pose no obstacle to the determined attacker. 
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USING HASH FUNCTIONS

An increasingly popular way to verify passwords is to use hash functions. A
hash function is a function that takes a relatively arbitrary amount of input and
produces a large number. This number (called the hash value, or just hash) can
be extremely useful because it has the following characteristics:

Most hashing functions are “one way,” meaning that if you know the com-
puted hash value, you cannot transform that value back into the original
data.
Small changes in the original data can produce large (and essentially ran-
dom) changes in the hash value.
Hash values are fairly evenly distributed across the range of possible values
making things like brute forcing attacks very difficult.
Given the same input data to a hash function, the computed hash value is
the same.

Hashing functions are often used to verify that a particular document or
character string has not been modified. For example, if we can ensure that the
hash value of document A has been kept safe, then we can later compute the
hash of document A and compare it with the stored hash value to ensure that
the document has not been tampered with. 

Hash functions are particularly useful for storing passwords. If instead of
storing actual user passwords on a machine, we store hashes computed from
the passwords; then even if the machine is compromised, the passwords are not
exposed to the attacker. When a user logs in, a hash is computed on the pass-
word he entered and is compared with the hash value stored on the system that
was originally computed when the password was set.

Several hash functions are widely used; the two most common are the Mes-
sage Digest version 5 (MD5) and the Secure Hash Algorithm (SHA-1). Both
MD5 and SHA-1 are cryptographic hash functions that have the properties
outlined previously. Table 12.1 shows the hash values of two strings. As you can
see, changing one letter in the string (Text to Taxt) produces radically different
hash values.



FIXING THIS VULNERABILITY

The solution to this problem is simple: don’t store passwords in plain text. A good
alternative to storing passwords in plain text is to use hash functions (see “Using
Hash Functions” sidebar). To use hashes effectively you must first compute and
save the hashed value of the password when set. While MD5 uses a 128-bit value,
some implementations of SHA can have much larger representations and thus
prove more difficult to attack. Storing hashes and then taking to precautions to
protect these hashes enables you to preserve user passwords in a more secure form.
The tradeoff, of course, is that the original password set by the user is not readily
retrievable from the stored values. In practical cases this assumption is made by de-
fault; i.e., if a user forgets his password, an administrator cannot tell that user what
his password was, but he can reset it.

Hashes alone cannot protect passwords, however. An attacker can easily pre-
compute hashes for common passwords; this is essentially the same as a wordlist for
plain text passwords. To fully protect a hashed password, it must be combined with
a salt, a string that is used to perturb the hashing algorithm slightly to prevent pre-
computation of hashes, or at least increase its complexity.
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TABLE 12.1 Comparing Hash Values of Slightly Different Strings

“ThisIsTextThatIsGoingToBeHashed” “ThisIsTaxtThatIsGoingToBeHashed”

MD5 (128 Bit) b2647ad639b91b318- 73fe54f04bf0187-

fb38b273761e5a7 ef2a14719c9a80042

SHA-1 (160 Bit) b67aeff241d314c29a90 cf7f47fd5bf9f3d6dd9d3-

a97c8b463453b3c4208d f18420568428703b159

SHA-1 (256 Bit) c024c667120cd5a737f222- e2d279a955d771cc38609b72

d1e69fb01d6a8923bfabad82- aae86d641dc4651ec1a32-

a93f03d093e592d0ae cd16da4a14dd1d468d2

By our storing hash values instead of actual user passwords, even if a ma-
chine is compromised, an attacker is forced to use brute forcing techniques to
compare the hash values of millions of strings with the hashed values before a
password can be recovered. While several hacking tools exist to automate this
process, tools such as L0phtcrack and John the Ripper, using hash values with
significant password complexity requirements has obvious advantages over
storing actual user passwords on disk.



For example, say that we included a checksum based on the username in the
hashed password string. It’s easy to combine the username and password together
at authentication time to perform the compare. However, an attacker now has to
precompute hashes for all username-password combinations, which is much less
practical. Further, if the salt is based on a system parameter that is unobtainable to
an attacker, precomputation becomes theoretically impossible.

Using the Unix Password Hashing Functions

Unix has built-in support for storing and comparing hashed versions of passwords.
The crypt function uses conventional 56-bit DES encryption to create a 13-byte
hash of a password 8 bytes or fewer in length. Crypt uses a two-character salt value,
which is used to perturb the DES algorithm. The salt is prepended to the password
hash so that the same salt can be used in later password comparisons. To compare
two passwords, you call crypt on the candidate password using the salt value from
the hashed true password and compare the resulting hashes. If they match, the
passwords were the same. The code for this is given as follows:

char* candidatePassword;

char* hashedCandidate;

/* Constant hashed password value */

/* (the first two characters, "Lr", are the salt) */

char* truePasswordHash = "Lrc1U9A0k0EyW";

char salt[3];

candidatePassword = getpass("Enter your password:");

salt[0] = truePasswordHash[0];

salt[1] = truePasswordHash[1];

salt[2] = 0;

hashedCandidate = crypt(candidatePassword, salt);

if(!strcmp(hashedCandidate, truePasswordHash))

printf("Success");

else

printf("Access denied.");

Crypt has a number of limitations that make it a less-than-ideal choice for all
password applications. The relatively small key length (56 bits) means it can be
cracked with a minimal amount of effort by a determined adversary. However,
combining password hashing with a lockout after a number of failed attempts can
limit brute-forcing of the password. Most versions of Linux support the stronger
MD5 family of hashing functions as part of the OpenSSL library. These functions
are not as easy to use as crypt(), nor are they as widely supported.
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Using CryptCreateHash and CryptHashData in Windows

The Windows Cryptographic API supports secure hashing of data using a variety of
algorithms, including MAC, MD5, and SHA, and is relatively simple to use. First,
it is necessary to acquire a handle to the cryptographic provider that will be used.
This is because Windows supports multiple cryptographic provider families.
CryptAcquireContext is used to do this. In our example, we choose the RSA_FULL
provider, which supports the MD5 checksum algorithm.

HCRYPTPROV theCryptoProvider;

CryptAcquireContext(&theCryptoProvider, 0, 0, PROV_RSA_FULL,

CRYPT_VERIFY_CONTENT);

The function CryptCreateHash creates a new hashing object associated with a
particular hashing algorithm; this object is used by subsequent calls to functions
that actually perform the hashing. To create a hash object that uses the MD5 algo-
rithm, we call:

HCRYPTHASH hashingObject;

CryptCreateHash(theCryptoProvider, CALG_MD5, 0, 0, &hashingObject);

To actually hash a password, we would call CryptHashData. CryptHashData takes
four arguments: a pointer to the hashing function object, the data to be hashed, the
data length, and a set of flags, which is ignored. To hash our sample password, “SE-
CRETPASSWORD,” we would call:

char* password = "SECRETPASSWORD";

CryptHashData(hashingObject, password, strlen(password), 0);
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Summary Sheet—Storing Passwords in Plain Text

Problem:

When user authentication information such as passwords is stored in plain
text, this information is at high risk of theft. Applications, however, routinely
store this information in configuration files, databases, or the Windows registry
in unencrypted form. Care must be taken to protect passwords from attacker
access. One way to do this is through the use of hash functions. Using these
functions, only a one-way computed value is stored based on the password.
When a user supplies a password, a hash is computed and compared with the
one stored.
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Potential Impact:

Escalation of privilege, data disclosure, and the compromise of user, applica-
tion, domain, and system accounts.

Habitat:

Applications that require authentication or applications that manage or use
user credentials to authenticate to another application or system.

Tools You Need to Find It: 

Binary and text file search tools, such as grep. Debuggers, especially ones with
a memory search feature like ntsd.

How to Look for It: 

If passwords are stored in plain text in files, databases, or structures (such as the
registry), one method is to set a password that is unlikely to occur as a string in
other files and search all files, databases, and structures touched by the appli-
cation under test for this string. A more involved option is to use a debugger
and analyze application instructions and data as the application reads in the
user-supplied password. If the password is stored in plain text, it is likely that
analysis under a debugger can reveal the source of the data that the application
is comparing the user supplied password against.

Symptoms of Failure:

File, database, or structure containing user password information unencrypted.
This is a difficult symptom to detect, but one that is likely to be uncovered
using the techniques outlined previously.

Famous Failures/Exploits:

CAN-1999-1322: The installation of 1ArcServe Backup and Inoculan AV
client modules for Exchange create a log file, exchverify.log, which con-
tains usernames and passwords in plain text. 

CAN-2001-1253: Description Alexis 2.0 and 2.1 in COM2001 Inter-
netPBX stores voicemail passwords in plain text in the com2001.ini file,
which could allow local users to make long distance calls as other users. 
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Creating Temporary Files13

M
any applications write data to the filesystem fairly frequently during
execution, and many legitimate reasons exist for doing this. Imagine, for
example, sorting a long list of names alphabetically. An application might

be limited in the amount of memory it has access to, and it might be more efficient
for it to use an algorithm that writes some of the data to the filesystem during exe-
cution. The end result, however, is likely to be a single file with the desired data, and
those temporary files that are no longer needed are then likely to be deleted. In
these circumstances, temporarily storing data to the filesystem is not only accept-
able, it might be essential.

Programming for efficiency and ease of use, though, sometimes runs directly
counter to secure programming practices. On some occasions, exposing data to
users through the filesystem is a serious security problem. Imagine, for example, an

In This Chapter

Finding This Vulnerability
Fixing This Vulnerability
References
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Internet company whose business model is to sell encrypted music files over the In-
ternet cheaply. The company has convinced music producers to sell their music at
heavily reduced rates because each music file will be cryptographically bound to the
purchasing user’s player. The implication here is that the purchaser can play the
music on one and only one machine and that distributing the files to another user
would be useless because only the purchaser’s player could decrypt the files during
playback. From a development perspective, the team responsible for writing the
player could either decide to dynamically decrypt the music file during playback—
an option that is likely to cause playback to be choppy due to memory demands—
or first decrypt the music file temporarily, play the decrypted file, and then delete
it after playback. The second option exposes “sensitive” information—in this case
the music file—to an attacker. All an attacker would have to do is capture the de-
crypted file during playback and then distribute it freely. The result is a temporary
file vulnerability—which can be exploited easily through automation—that threat-
ens the entire business model of the company.

Products that support any type of Digital Rights Management (DRM) face the
same threats. In these cases, the application has access to data that must be protected
even from an administrator. For applications that enforce DRM, the implications of
information disclosure to the filesystem are obvious. Many applications, however,
maintain user or system data that must be protected from other users. Consider, for
example, a vulnerability in the RDISK utility in Microsoft Windows NT. The RDISK
utility makes a backup of critical system information that can be used to restore the
system state. Among the information stored is a complete enumeration of the Win-
dows registry. In Windows NT, the registry contains configuration information,
sensitive user data, application data, and, often, application-level passwords. This
data could provide a detailed roadmap for an attacker and thus most registry entries
are viewable only by an administrator. The RDISK utility, therefore, can only be
used by a user with administrative privileges. Figure 13.1 shows the RDISK user 
interface.

FIGURE 13.1 The RDISK user interface.



Depending on the memory of the machine and the size of the registry, this
process can take anywhere from 10 seconds to several minutes. The file, therefore,
exists for only a short period of time and its creation would be noticed only acci-
dentally or by someone explicitly looking for files being created with a utility such
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FIGURE 13.2 Checking permissions on sensitive files in the repair folder shows that
only administrators have access.

Before a recovery disk can be made, the user must first run the “Update Repair
Info” utility. This utility extracts information from the registry and saves it to files
in the “Repair” subdirectory of the System32 directory. After we run the update util-
ity, we see that several files now exist in this directory. These files contain sensitive
system information including registry data and should be accessible only by an ad-
ministrator. Indeed, if we check the permissions on these files, as shown in Figure
13.2, we see that only an administrator has access to them.

Consider the process, however, that takes place when the repair information is
being updated. If we leave the repair folder open and then run “Update Repair
Info,” we see that a file named $$hive$$ is created and then immediately deleted
when the process is done (see Figure 13.3).
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as Security Innovation’s Holodeck (available from www.securityinnovation.com/
holodeck) or Sysinternals’ Filemon (available from sysinternals.com). This file con-
tains a complete enumeration of the registry, which would not pose a security risk
if permissions on the file were set similar to other files in the folder—administra-
tor access only. Figure 13.4 reveals, however, that permissions on this file are set so
that it can be read by any user on the system. This represents a severe security prob-
lem. An attacker could create a process that continuously polls for the $$hive$$ file
and then snags it once created. This might require patience in that the attacking
process would have to wait until an administrator launched the RDISK utility. As
we know though, applications can be very, very patient.

Although data disclosure is the most common consequence of this vulnerabil-
ity, developers and testers should consider the implications of a user’s modifying
data contained in a temporary file. For example, a user might be able to take ad-
vantage of the fact that a privileged process creates temporary files with improper
permissions that contain data that is eventually used by that process. An attacker

FIGURE 13.3 Watching the repair folder while RDISK is backing up information reveals
the creation of the temporary file $$hive$$.

www.securityinnovation.com/holodeck
www.securityinnovation.com/holodeck


might be able to alter that data to either manipulate the behavior of the privileged
process or privileged data or cause the application to crash.

These types of failures can be avoided by paying particular attention to the
permissions set on files created by your application. Often, we make assumptions
about the permissions on files created. Common assumptions are either that the file
is created with permissions equivalent to the process’s privilege or that temporary
files exist for only such a short period of time that we don’t care what permissions
they are created with. Both are dangerous and both can expose application, user, or
system data inappropriately. From a prevention standpoint, developers should en-
sure that file permissions are set commensurate to the data contained in those files.
If no one should have access to certain data (as in many DRM applications), then
that data should not be exposed to the file system unencrypted.

Overall, temporary file vulnerabilities represent a small portion of the vulner-
ability types typically discovered in software. They can, however, pose significant
data exposure risks and should be considered during both development and testing. 
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FIGURE 13.4 File permissions for $$hive$$ used by RDISK utility.



FINDING THIS VULNERABILITY

From a testing point of view, temporary file vulnerabilities can be difficult to find
using a strictly UI-based strategy. The biggest issue is that when these types of fail-
ures occur during testing, they are often not noticed because interactions between
the application under test and the filesystem are not readily visible through the UI.
To find these types of problems, we need tools that bring these interactions into
plain view during testing. For the Windows platform, we have several options. Se-
curity Innovation’s Holodeck and Sysinternals’ Filemon both allow testers to ob-
serve interactions between an application and the filesystem. For Linux and Unix,
tools such as strace provide similar capabilities. Identifying file writes is the first
step. The next is to investigate their contents and permissions and ask critical ques-
tions. Does this file contain information that should be protected from certain sys-
tem users? Are the permissions on this file commensurate with the users who
should be allowed access to this data? Answering these questions might require
pausing an application or terminating it with a debugger. For many applications,
this can be done using a debugger.

206 The Software Vulnerability Guide

FAMOUS FAILURES: TEMPORARY FILES IN PINE 4.3

Pine, the popular e-mail program for Linux and Unix, had an interesting tem-
porary file vulnerability in version 4.3. If a user configured pine in the follow-
ing way [SecurityFocus01] (a popular configuration given the widespread use
of the vi editor):

[x]  enable-alternate-editor-cmd

[x]  enable-alternate-editor-implicitly

editor = /usr/bin/vi

pine would create a file in the /tmp directory with the name pico.pid where
pid is the process id of pine. The file contains the contents of the currently
edited e-mail. 

Several vulnerabilities were found here, all related to using the symbolic
link (symlink) operating system feature that essentially creates a placeholder
“shortcut” to a file that can be accessed both through the filesystem and pro-
grammatically. First, a user could replace one file with a symbolic link to
another file so that an attempt to open the original file actually opens the file
pointed to by the link. With pine, an attacker could leverage this in two ways.
Because by default all users have write permissions to the /tmp directory, an 



FIXING THIS VULNERABILITY

Temporary files can be used efficiently and securely. The key is to ensure that sen-
sitive data is protected from users who should not have access to it. The following
should be considered before data is exposed in a temporary file:

Permissions should always be set on temporary files created by the applications
to reflect the data contained in those files. These permissions should not allow
anyone to access this information who could not access it through other means. 
Particular care must be taken with applications that support Digital Rights
Management. In these cases, storing document or media data to a temporary
file is not acceptable even if the permissions on temporary files are set so that
only administrators can read them.
Error handlers need to be in place so that if a critical failure were to take place
in the application, the temporary files would not be left on disk. Precaution
should also be taken that the application cannot be suspended indefinitely
while an attacker copies the temporary file.
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attacker could attempt to predict the process id of pine being run by another
user. Take a specific example. Attacker A is targeting user B, and user B is run-
ning pine with a process id of 1234. Attacker A would create a link in place of file
/tmp/pine.1234 and point it to a file of his choosing. The attacker could have
several objectives. The first is to overwrite some file on the system that B has ac-
cess to and A does not. For example, if victim B has root access, attacker A could
then create the symbolic link appropriately and overwrite any file on the system. 

A more insidious use of this vulnerability is to create the link to some file
created by attacker A that both A and B have write access to. Then, A could hi-
jack B’s e-mail message and read or modify its contents.

Summary Sheet—Creating Temporary Files

Problem:

Temporary files are often created by applications in the course of getting their
work done. Usually this does not present a security problem. If, however, these
temporary files contain sensitive application, system, or user data, care must be
taken so that these files are accessible only by authorized users. The most com-
mon mistake is creating temporary files that contain privileged data with file
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permissions that allow less privileged users access. For applications that sup-
port Digital Rights Management, protected document or protected media data
should never be exposed to the filesystem unencrypted because even an ad-
ministrator is an untrusted user.

Potential Impact:

Exposure of sensitive data. Possible privilege escalation.

Habitat:

Desktop applications, server applications. Specifically, any applications that
manage or use sensitive data.

Tools You Need to Find It: 

Environmental monitoring tools such as Security Innovation’s Holodeck or
Sysinternals’ Filemon for Windows and strace for Linux/Unix.

How to Look for It: 

Temporary file vulnerabilities can be difficult to find by just looking for on-
screen symptoms. Using tools that watch an application’s interactions with the
filesystem is a must. Several tools such as Security Innovation’s Holodeck or
Sysinternals’ Filemon exist for the Windows platform and equivalent tools like
strace can be used on Linux/Unix. The key is to use these tools to watch for file
writes and then manually examine file contents for sensitive data. Sometimes,
inspecting the files contents might require you to pause or stop execution of
your application abruptly so that the file itself is not deleted. You have several
options here. The most common is to run your application under a debugger.
A less elegant (but effective) option is to kill the application process before it
has a chance to delete the file. Once file contents have been examined, the next
step is to look at the permissions set on the file. Are they commensurate with
who should be allowed access to the data? Generally speaking, temporary files
should have permissions that are as restrictive as the most sensitive piece of
data that is exposed to the file system.

Symptoms of Failure: 

Symptoms are subtle. Might require an observation tool (described previously)
to look for application file writes.
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Leaving Things in Memory14

A
s programmers we are frequently reminded to initialize variables before they
are used. Most compilers now alert programmers when a variable is used be-
fore it is initialized; others safely initialize variables to null. However, with

the exception of free and delete, and occasional destructors added to classes, we do
not often think of unititializing a variable. In the procedural programming para-
digm, most variables go out of scope at the end of the function they are declared in;
Java’s reference-counting garbage collection actually frees the memory associated
with these variables when they go out of scope. The cheapness of memory means
that we don’t have to be too careful with small memory leaks unless they are in a
loop that is executed many times. The vulnerabilities in this chapter are the result
of failing to uninitialize data structures when it is essential to do so. Security tokens,
passwords, cryptographic keys, and handles to files are among those things that
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Endnote
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need to be cleared after they are used. When we fail to overwrite or otherwise de-
stroy these data structures, we make them available for an attacker to exploit.

DESCRIPTION

High-level languages play a trick on us. We fall into the old trap of misunderstand-
ing the difference between what something is called and what it really is—the fact
that we lose a reference (or all references, for that matter) to an object in memory
does not necessarily mean that the data that represented that object is no longer
accessible [1].  Take the following example:

void f()

{

char* x;

x = (char*) malloc(6);

if(x)

strcpy(x,”HELLO”);

}

Any programmer worth his salt can spot the memory leak this snippet causes.
He’ll also tell you that without some trickery, we have no way to “get back” x now
that we’ve lost our reference to it, because the pointer was allocated on the stack
after f() was called, and the stack is very quickly overwritten by the next function
call after f(). But how long does “HELLO” live in memory after x is gone? The answer
might be a very long time. Because we lost the pointer to “HELLO” before we explic-
itly freed it, and it was allocated on the application’s heap, it lives at least as long as
the application does. Even if we had explicitly freed it using free() or delete, it
probably would have stayed right where it was in memory. These operations only
make the memory available for garbage collection; they do not destroy the contents.
When the application dies, it does not overwrite the data on the heap with zeroes.
This would be a woefully inefficient task for an application that consumes a large
amount of memory. Instead, the physical pages of memory are released to the op-
erating system, which marks them as unused. When it comes time to use those
pages again, the OS might overwrite them with zeroes (Windows does this to com-
ply with Department of Defense (DOD) orange book standards), or it might not. In
the worst case, “HELLO” stays in memory until another program actually overwrites
it. With 512 MB or more of memory these days, that might be a long time.

Consider a simple password check inside an application. The programmer has
been careful not to store the password in plain text on the disk and compares the
hashed values instead of decrypting the correct password. 



char* someusername = “nobody”;

struct passwd* pwrec;

char* clearpass;

char* cryptedpass;

char* salt[3];

clearpass = getpass(“Password:”);

pwrec = getpwnam(someusername);

bzero(salt,3);

memcpy(salt, pwrec->pw_passwd, 2);

cryptedpass = crypt(clearpass, salt);

if(!strcmp(cryptedpass, pwrec->pw_passwd + 2))

printf(“Access Granted.’);

else printf(“Access Denied.”);

The programmer might think this code is safe, but that is not entirely true. No-
tice that getpass() returns a pointer to the clear text password obtained from the
user. Because getpass() does not know when we’ll be done using this pointer, 
it can never explicitly free or overwrite the memory associated with the input 
obtained by the user.

So how unsafe is it really to leave this piece of data lying around in memory?
After all, the password would be visible in memory only if the user is authenticated
(otherwise, the password lingering in memory would not be the right password).
The answer is it depends on whether you trust every application that runs on your
machine. Chapter 22 describes some of the techniques Web browsers use to prevent
malicious code from one domain from accessing data belonging to another do-
main; spyware, viruses, and worms are further examples of executable programs
that have access.

It’s also important to remember that users tend to use the same password over
and over. A password for a user’s account on the source code tracking system might
be the same as his network password, which might be the same as his local ma-
chine’s Administrator password. As long as one of these is plainly visible to an at-
tacker, the first thing that attacker will do is to try the now-discovered password in
as many places as possible, hoping to get lucky. Remember, the odds of one known
password working on other machines are significantly higher than the chances of
being able to successfully crack a password, because people often use the same pass-
word on multiple machines.

This problem is especially acute in the area of Digital Rights Management. A
rights managed application is one that restricts some of the ways a user can use data
within the application. For example, a digital movie application might permit a user
to play a movie downloaded off the Internet, but not permit saving that movie to
the local hard drive. In a situation such as this, the application cannot trust even a
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user who has full access to the local machine, because a motivated user could
“crack” the Digital Rights Management to illegally distribute the movie.

Digital Rights Management relies heavily on credentials, which are encrypted
descriptions of the rights a user has to the data. These credentials must be heavily
protected in memory, because they are the “keys” to the protected content. Because
we don’t have encrypted video cards (yet!), the movie’s video data must be de-
crypted somehow to be played to the screen. What prevents an attacker from steal-
ing the decryption key and using it to steal the movie? Short of specialized hardware
that prevented exposure of the decryption key (as Microsoft is proposing with its
Next-Generation Secure Computing Base (NGSCB) initiative), very little.

FAMOUS FAILURES: WINDOWS 98 CREDENTIAL CRASHING

Sometimes passwords and credentials are intentionally left in memory. This
was the case with netlogon usernames and passwords in Windows 95 and Win-
dows 98. In the early days of Windows networking, local machine security was
less of an issue than it is today. Windows for Workgroups did not implement
secure logon and did not do very much to protect applications from accessing
another program’s memory. So rather than force a user to re-authenticate each
time a share was accessed, Windows for Workgroups implemented a plain text
cache of usernames and passwords, which would be tried before asking a user
to re-enter his credentials. When credential caching was re-implemented for
Windows 95, the “legacy” cache was carried forward. As a result, a malicious at-
tacker could find these usernames and passwords in memory. The credential
cache was not even cleared when a user logged off.

Microsoft Security Bulletin MS99-052 (available from Microsoft at
www.microsoft.com/technet/security/bulletin/ms99-052.mspx) describes this 
vulnerability.

Finding Exposed Data in Memory

Memory protection, introduced to prevent applications from causing other appli-
cations or the operating system from crashing, limits our ability to “peek” and
“poke” around in other processes’ memory. Each process implements its own “vir-
tual” address space that is not the same from process to process. However, because
reading another process’ memory is essential to the function of debuggers, both
Windows and Linux contain workarounds to accommodate debugging. What’s
more, both platforms provide a debugging interface that can be used by any pro-
gram—no debugger black magic is required to access the other process’ informa-

www.microsoft.com/technet/security/bulletin/ms99-052.mspx


tion. In Windows we can prevent a process’ memory from being read by using se-
curity tokens; in practice a debugger can attach to most any process if it is launched
as Administrator, and most Windows users are logged on as Administrator all the
time. In Linux, a debugger can attach only to processes owned by the same user as
the debugger, unless the user is logged in as “root.”

Searching Memory with a Custom Debugger: Windows

Memsrch.cpp is a memory search tool for Windows included on the companion
CD-ROM. Memsrch.cpp searches through the entire process space of an applica-
tion looking for a given string. Memsrch.cpp works because the Windows Debug-
ging API exposes a function, DebugActiveProcess(), that allows you to attach to an
already running process as a debugger. To attach to a process, we need to know its
process ID, which is obtainable via the Task Manager. The MSDN article “Taking
a Snapshot and Viewing Processes” [MSDN05] describes how to do this.

The basic design of this program is as follows:

Identify what process and string we want to search for.
Attach to the running process and suspend it so that we can inspect its mem-
ory contents.
Loop through all of the mapped pages of memory, looking for the search string.
Continue debugging the application. (This is necessary in all operating systems
besides Windows XP, because it is not possible to detach the debugger. In Win-
dows XP, a routine called DebugActiveProcessStop exists that is able to detach
the debugger.)

Our program is as follows. The first several lines include header files, set up the
command-line arguments, etc.

#include “stdafx.h”

#include <windows.h>

#include <stdlib.h>

int main(int argc, char* argv[])

{

if(argc!=3)

{

fprintf(stderr, “%s: Usage: %s process-id string\n”, argv[0],

argv[0]);

return 0;

}
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// argument one is the process id

int pid = atoi(argv[1]);

// throw it away if it’s not a number

if(pid == 0)

{

fprintf(stderr, “%s: process-id must be a number\n”, argv[0]);

return 0;

}

Once we have the process ID, we can call DebugActiveProcess on it to attach the
debugger and suspend it. We then loop until we get an EXCEPTION_BREAKPOINT ex-
ception, meaning the running process has been intercepted and is suspended in the
debugger.

int success = DebugActiveProcess(pid);

// abort if we can’t successfully debug the process (bad pid or

debugging disabled)

if(!success)

{

fprintf(stderr, “%s: could not debug process %d\n”, argv[0],

pid);

return 0;

}

DEBUG_EVENT DebugEv; // needed for WaitForDebugEvent

while(1) // loop until we get a breakpoint event 

{

WaitForDebugEvent(&DebugEv, INFINITE); 

if (DebugEv.dwDebugEventCode == EXCEPTION_DEBUG_EVENT &&

DebugEv.u.Exception.ExceptionRecord.ExceptionCode ==

EXCEPTION_BREAKPOINT )

break;

// otherwise keep getting events
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ContinueDebugEvent(DebugEv.dwProcessId,

DebugEv.dwThreadId, DBG_CONTINUE); 

}

This is the main memory search loop. First, we need to call OpenProcess to get
a handle to the process, which is used to read the memory. We call this with
PROCESS_ALL_ACCESS, which gives us all available rights to the process.

// gain access to the process

HANDLE hProc = OpenProcess(PROCESS_ALL_ACCESS, true, pid);

It would be too inefficient to search every possible address in memory. (It’s also
not possible, because not every address corresponds to physical memory, and 
because of memory security.) Instead, we search only those pages that are mapped
within an application. To do this, we need to first obtain the page size of the 
operating system, which is a member of the SYSTEM_INFO structure returned by 
GetSystemInfo.

// obtain the page size, minimum address and maximum address

SYSTEM_INFO sysinfo;

GetSystemInfo(&sysinfo);

// set up the search string

char* search_string = (char*) malloc(strlen(argv[2]));

strcpy(search_string, argv[2]);

// this buffer will hold the string obtained from the remote

// process

char* tmp_buffer = (char*) malloc(strlen(search_string));

// this is a temporary variable that stores the number of bytes 

// read by ReadProcessMemory

unsigned long bytes_read;

The SYSTEM_INFO structure also tells us the minimum and maximum addresses
of the application address space. We use these as the bounds of our search. The 
VirtualQueryEx function returns a MEMORY_BASIC_INFORMATION structure, which tells
us information about the mapping of a particular page within an application. One
of the members, meminfo.State, is the state of the memory page; it is MEM_COMMIT if
the page is mapped (or committed) to the application.
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// search the memory space

for(unsigned long address =

(unsigned long)sysinfo.lpMinimumApplicationAddress; 

address <= 

(unsigned long)sysinfo.lpMaximumApplicationAddress;

address += (unsigned long) sysinfo.dwPageSize )

{

MEMORY_BASIC_INFORMATION meminfo;

int res = VirtualQueryEx(hProc, 

(void*) address, 

&meminfo,

sizeof(meminfo));

if(!res)  // security violation

continue;

if(meminfo.State != MEM_COMMIT)  // the page isn’t mapped 

continue;

for(unsigned long p = address; 

p < address + sysinfo.dwPageSize - strlen(search_string) ; 

p ++ )

{

ReadProcessMemory ( 

hProc,

(void*) p, 

tmp_buffer,

strlen(search_string),

&bytes_read);

if( !memcmp( 

tmp_buffer,

search_string,

strlen(search_string)))

{

printf(“Search string %s found at address %08x\n”,

search_string, p);

}

}

}
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If we have a valid page, we search the page looking for a matching string. We do
this by calling ReadProcessMemory successively on each location from the beginning
to the end of the block, being careful not to go over the block boundary. (We could
use more efficient ways to do this, but they make the code much more difficult to
understand.) If the block copied by ReadProcessMemory matches the search string,
we output the match.

Finally, we should resume the process we’re debugging once we’re done read-
ing memory. Do this using the ContinueDebugEvent() function. It might also be
possible to detach from the debugged process; however, we don’t recommend this
as the process might terminate unexpectedly. 

// reanimate the suspended process

ContinueDebugEvent(DebugEv.dwProcessId,

DebugEv.dwThreadId, DBG_CONTINUE);

while(1) // loop until we get a terminate event 

{

WaitForDebugEvent(&DebugEv, INFINITE); 

if (DebugEv.dwDebugEventCode == EXIT_PROCESS_DEBUG_EVENT)

break;

// otherwise keep getting events

ContinueDebugEvent(DebugEv.dwProcessId,

DebugEv.dwThreadId, DBG_CONTINUE); 

}

// discontinue reading the process

CloseHandle(hProc);

return 0;

}

Figure 14.1 shows the completed memory search tool.
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Searching Memory with a Custom Debugger: Linux

The Linux in process debugging features are all implemented through a single func-
tion interface: ptrace(). Ptrace takes a command argument that performs the de-
sired debugging action. To attach to a running process, we would use:

ptrace(PTRACE_ATTACH, theProcessID, NULL, NULL);

(The process ID in Linux can be obtained via ps.) The first argument to ptrace()
is the debugger command to execute. The second is always the process ID of the
process we’re debugging. The remaining two arguments are pointers that can be
used to pass in and pass back parameters to the command; in this case we have no
arguments, so we pass NULLs. When ptrace() is called with the ATTACH command,
a STOP signal is sent to the child. To wait for the child to stop, use the wait()

system call:

wait(theProcessID);

Once the child has stopped, you can read its memory with the PTRACE_PEEKDATA
command. This command can read only one 32-bit word of data at a time, so it
must be called successively for each piece of data to be read. To read the heap data
in the same way as the Windows example, we would successively call:

result = ptrace(PTRACE_PEEKDATA, theProcessID, address, NULL);

with address set to each address we wanted to read. 
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FIGURE 14.1 Completed memory search tool.



Similar to GetThreadContext(), PTRACE_GETREGS enables you to get the context
of the debugged process, including its register values. Likewise, PTRACE_CONT re-
sumes the debugged process in the same way ContinueDebugEvent() does.

FIXING THIS PROBLEM

The simplest way to cure this problem is to delete security-relevant data in 
memory as quickly as possible after it’s used. The functions bzero() in Linux 
and ZeroMemory() in Windows accomplish this. Microsoft recommends using 
SecureZeroMemory() instead of ZeroMemory() in secure applications, because compil-
ers might optimize out calls to ZeroMemory() without the programmer’s knowledge.
You can always explicitly memset() data structures to zero as well. The real problem
lies in system calls that do not securely overwrite memory after it is used, or cannot
because of design limitations. Functions like getpass() fall into this category. Most
folks would assume that getpass() is more secure than a function they could write
themselves. The contrary is true. Whenever possible, avoid using these functions
without carefully reading the documentation and considering your potential appli-
cation. Don’t assume.
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Summary Sheet—Leaving Things in Memory

Problem:

Data can persist in memory for long periods of time after it is used. Even ex-
plicitly freeing memory using a free() or delete() function will ensure that it
is no longer accessible. Certain data structures, such as passwords, can become
the target of attackers through the use of malicious programs running on your
machine.

Potential Impact:

An attacker might recover an important piece of confidential data such as a
password or encryption key.

Habitat:

Any environment where all of the running programs cannot be trusted is a target.

Tools You Need to Find It:

A debugger that can search memory (OllyDbg is a good one for this) or a cus-
tom-written memory search tool.



ENDNOTE

[1] The “White Knight’s Song” in Lewis Carroll’s Through the Looking Glass is
about the difference between what something is and what it’s called.  This song is
sometimes used to teach computer science students about pointers. In addition to
being a children’s author, Carroll taught mathematics and logic at Oxford Univer-
sity. For information about Lewis Carroll, you can visit http://lewiscarrollsociety.
org.uk/.
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[MSDN05] “Taking a Snapshot and Viewing Processes.” Microsoft Developer 
Network (MSDN). Available online at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/perfmon/base/taking_a_snapshot_and_
viewing_processes.asp. Accessed April 3, 2005.
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How to Look for It:

Probe the heap area of running applications for the signatures of passwords,
encryption keys, etc.

Symptoms of Failure:

Try scanning for a known password and see if you can see it within memory.

Famous Failures/Exploits:

MS99-052 “Legacy Credential Caching in Windows 95 and Windows 98.”
The sidebar in this chapter describes this vulnerability in detail.
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The Swap File and
Incomplete Deletes

15

B
oth vulnerabilities in this chapter are a result of differences between the ab-
stract behavior a programmer expects from the operating system and its real
behavior. In the simplified view we are taught in programming classes, mem-

ory is memory and files are files. Additionally, we tend to think that objects cease to
exist if we can no longer reference them. The reality of finite storage (disk and
memory) is that it always contains something, even if we think of it as containing
nothing. The thing it contains might be your application’s confidential data—an
unencrypted copy of a now-encrypted file, the password to a network share or
database, or cryptographic key material. An attacker can use techniques to recover
this material if careful steps are not taken to prevent it from being exposed.

Our first vulnerability deals with a feature that has been present in a multitude
of operating systems dating back to the early days of computing. Virtual memory
(sometimes called a virtual store, paging file, or swap file) allows applications to

In This Chapter

Using a Disk Editor to Find Confidential Data Fragments
Fixing This Problem
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make use of more memory than is physically present in the system by copying data
in the physical memory into secondary storage (such as a hard disk) and reassign-
ing that physical memory to another application. The data can be moved back into
a new piece of physical memory later when it is needed. The OS accomplishes this
by means of a memory map, a table that the CPU or memory management unit
(MMU) uses to translate the virtual addresses applications use into physical ad-
dresses. The virtual memory manager software in the operating system interacts
with the MMU to do the swapping to and from disk in a way that is transparent to
applications.

As a result, data that looks like it is only resident in memory from an applica-
tion’s point of view might have actually spent some time on the disk. This is dan-
gerous if this information is something you are trying to prevent a user from
accessing, such as an encryption key or password. To make matters worse, because
the OS must move data in and out of memory as quickly as possible, it does not
delete the remnants of your data on the disk after it is swapped back into memory.
Instead, it remains until that page in the page file is overwritten, or the page file is
cleared and recreated.

A malicious user with access to the local machine can use “efficiency” of the oper-
ating system to steal the confidential data directly out of the page file. The real risk of
this depends significantly on the application and the environment in which the soft-
ware is running. In most cases an attacker would have to have direct physical access to
the machine in order to read the page file, and might have to boot it using a boot image
from a different operating system; i.e., boot a Windows system with a Linux CD. As a
result, this is not a security risk for ordinary applications. However, some applications
have secrets well worth hiding even from a user with physical access.

Consider an application that uses a password and salt to create a symmetric en-
cryption key that is used to protect data stored on the disk. We could use the
OpenSSL Blowfish algorithm to do this:

#include <openssl/blowfish.h>

#include <stdio.h>

#define DATALEN 8

void main(int argc, char* argv[])

{

FILE* infile;

FILE* outfile;



char in[DATALEN+1];

char out[DATALEN+1];

char* password;

BF_KEY key;

infile = fopen(argv[1],"r");

fread(in,DATALEN,1,infile);

fclose(infile);

password = getpass("Password:");

BF_set_key(&key,DATALEN,password);

BF_ecb_encrypt(in,out,&key,1);

bzero(in,DATALEN);

bzero(key,sizeof(BF_KEY));

outfile = fopen(argv[2],"w");

fwrite(out,DATALEN,1,outfile);

fclose(outfile);

}

This example was selected in order to illustrate a vulnerability; Blowfish is gener-
ally not considered secure unless it has a 128-bit key. 

The structure key points to the result of the set_key() function, which con-
tains the key used to encrypt the data. What happens if the portion of this applica-
tion’s memory that contains this array is swapped out in the middle of execution?
The answer is that the key is written out to the page file, where an attacker could
find it and use it to decrypt the data. While this might require physical access to the
machine (the page file can usually be read only when the machine is booted with an
alternate boot device), in some circumstances this is still a concern; for example,
sensitive national security information. 

It’s also possible that the page containing in could be swapped out between
calling fread() and calling bzero(); this would mean that though the unencrypted
text is destroyed in memory, the original unencrypted data would be left behind in
the page file.

A related vulnerability exists because of the way operating systems read, write,
and delete files. In most disk systems, data can be randomly accessed only in fixed
sized blocks. This is at odds with the idea of arbitrary-length files, which are a
fixture of most applications. To disguise this to both the user and applications, the
operating system divides a file into several blocks of the appropriate size and stores
them on the disk, keeping track of their location using an indexing system or set of
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pointers. Files are most efficiently read and written by the disk hardware when they
are contiguous; that is, all the blocks that make up a file follow one after another on
the disk. So when a new file is created, the OS tries first to find a sequence of blocks
large enough to fit the whole file contiguously before reusing empty blocks on the
disk. This has two consequences. One is fragmentation, a performance issue that
arises from not having enough large sequences of blocks to go around, resulting in
each large file being split up and spread over the disk. The other consequence is one
of insecurity and might allow an attacker to recover portions of confidential data
even after it is deleted.

We mentioned that the OS wants to store files in contiguous blocks. What hap-
pens if you delete a small file? While the OS marks the file as deleted in its index (or
perhaps just removes the reference to it), it does not necessarily overwrite the
blocks that once contained that file. Consider the Blowfish example we gave previ-
ously. What will the user do with the file pointed to by infile that contains the un-
encrypted data? If he’s smart, he’ll delete it; there isn’t much point in encrypting
something and leaving the unencrypted copy around to be read. But whether the
file is deleted by the user through the operating system, or the programmer through
the encryption application, in all likelihood an OS function such as Unix’s remove()
or Windows’ DeleteFile() will be used. These functions do the unlinking from the
index, but do not overwrite the data in a secure manner. Unlike the page file vul-
nerability, in which there’s just a small chance the key or unencrypted data is left
behind where someone can access it, the data from the deleted file almost certainly
remains on the disk, at least for a while. In fact, the undelete feature of operating
systems relies on this to recover a user’s accidentally deleted file with a high chance
of success.

USING A DISK EDITOR TO FIND CONFIDENTIAL 
DATA FRAGMENTS

Raw disk editors are special hex editors that are designed with knowledge of the
filesystem’s format and layout. Norton’s Disk Doctor, which has been around since
the earliest days of the IBM PC, is one of these. Some ordinary hex editors, includ-
ing WinHex, have this feature built into them. The standard utility debugfs can be
used to edit ext2 filesystems under Linux.

Most tools (and most OSes) don’t allow raw editing of disks while they’re in use
by the operating system, so it is handy to have another means of booting the com-
puter besides the main OS partition. Once this is accomplished, make a copy of
what you want to edit, even if you don’t plan to change anything. Raw editing of
disks is inherently dangerous to the data on them, especially if you’re not careful.



Most of the safeguards against accidental deletion of important data (like the file
indexes) are turned off in these programs.

In Windows NT, 2000, and XP, the page file is called pagefile.sys and is usu-
ally located in the root directory of the main partition, though the user can change
the partition he wants to use. It is a hidden file; use the command: dir /a:h to find
it. In Linux, the operating system swaps to a specially made partition. Look in fdisk
for a partition with the ID number set to 82 hex. Once you have identified it, you
can use the dd command to copy it to a file. For example, if your swap partition was
located on the device /dev/hda2, the command would be:

dd if=/dev/hda2 of=tmpfile

The contents of the swap partition would be copied to the file tmpfile.
Finding deleted files is a little bit more tricky, though some disk editors can do

this. If you don’t have one of these, you might have to search the whole partition,
which can take some time given the large size of today’s hard drives. One of the best
ways to access a whole partition in raw mode is to boot with a Linux live CD—
Knoppix from Knoppix.net is a good source for this. Live CDs allow you to run the
entire OS from off a CD without touching any of the hard drives installed in the
machine. They typically creates a RAMDISK scratch area where you can edit files,
etc., but this data is lost upon reboot. Once you have booted with the live CD, you
can access the hard drives in raw mode. To back up the main partition (usually
hda1) you can mount a remote share and copy the data over the network:

mount –t nfs myserver:/myshare /mnt

dd if=/dev/hda1 of=/mnt/tmpfile

Finding deleted data on a disk is relatively easy if you know what you’re look-
ing for. We created a simple text file containing the word NORMANDY. Using the Blow-
fish program, we encrypted this file and saved the result as ENCRYPTED.TXT. After
encrypting, we deleted the original. Figure 15.1 shows the floppy drive contents in
Explorer showing only the ENCRYPTED.TXT file.

WinHex supports direct disk editing. We used the Disk Editor feature under
Tools and selected “00h Floppy Disk 1.” The raw contents of the floppy are brought
up in the editor window. You can see in Figure 15.2 the skeleton bootloader Win-
dows places on the floppy to tell a user the disk is not bootable. 

Scrolling down, we can see the File Allocation Table, the index that maps file-
names to blocks on the disk. We can see several filenames that we couldn’t see in
Windows Explorer: each of these filenames begins with hex character E5. This is
how the FAT filesystem marks a file as deleted. Our original file, SECRET.TXT, is
there, with the “S” changed to an E5. Notice that even the New Text Document.txt
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FIGURE 15.1 Explorer showing encrypted text file.

FIGURE 15.2 Disk editor showing skeleton bootloader.



filename, which Windows creates and prompts you to rename when you create a
new text document, is still present in the index. Figure 15.3 shows these “ghosts” in
the File Allocation Table.
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FIGURE 15.3 Ghosts of deleted files in the File Allocation Table.

Knowing the format of the index, we can follow the pointers to our original,
unencrypted file. The index formats for commonly used filesystems are easily found
on the Internet; even the officially undocumented NTFS filesystem is relatively
well-understood. Lo and behold, at location 16880 we find our original, unen-
crypted text, as illustrated in Figure 15.4.



FIXING THIS PROBLEM

Later versions of Linux and Windows both implement page locking as a way of fix-
ing the page file vulnerability. In Windows, the VirtualLock() API function can be
used to protect a page segment from being swapped to the disk. When an address
and range are passed to VirtualLock(), any associated pages are not swapped until
VirtualUnlock() is called on them or the process terminates. Once a process termi-
nates, the page is marked as free, and the OS attempts to reuse it. However, because
Windows zeroes dirty pages before they are given to another process, it is unlikely
that the page will be swapped out with the confidential data on it after process ter-
mination. VirtualLock() has one limitation: for performance reasons, Windows
limits the number of pages that can be protected with VirtualLock(). Therefore, in
a high memory usage situation where pages are likely to be swapped, VirtualLock()
might be unable to lock a page. Short of using VirtualLock(), an end-user solution
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FIGURE 15.4 Original, uncencrypted text found in disk editor.



would be to cause Windows to delete the page file upon shutdown. To do this, edit
the registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Control\Session Manager\Memory Management and add the attribute ClearPage-
FileAtShutdown = 1. This forces Windows to delete the page file when it is shut down
properly. No user-level protection exists in the event of an improper shutdown.

Linux implements memory locking in a very similar fashion to Windows. The
mlock() system call is used to lock memory, and the munlock() call is used to unlock
it. Look at our example code again, this time using mlock() to protect the impor-
tant memory elements from being swapped.

#include <sys/mman.h>

#include <openssl/blowfish.h>

#include <stdio.h>

void main(int argc, char* argv[])

{

FILE* infile;

FILE* outfile;

char in[9];

char out[9];

char* password;

BF_KEY key;

infile = fopen(argv[1],"r");

mlock(in,8); /* lock the in buffer in memory */

fread(in,8,1,infile);

fclose(infile);

password = getpass("Password:");

mlock(key,sizeof(BF_KEY)); /* lock the key in memory */

BF_set_key(&key,8,password);

BF_ecb_encrypt(in,out,&key,1);

bzero(in,8);

bzero(key,sizeof(BF_KEY));

/* unlock only after we’ve zeroed all the data 

structures */

munlock(in,8);

munlock(key,sizeof(BF_KEY));
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outfile = fopen(argv[2],"w");

fwrite(out,8,1,outfile);

fclose(outfile);

}

From a practical point of view, our augmentations might be excessive. Because
in, password, and key are all on main()’s stack, they almost certainly reside on the
same page, so a call to lock any one of them locks all three data structures. Likewise,
all pages are unlocked when the application terminates, which it does shortly after
the munlock() calls. However, in a more complicated program this might not be the
case. To be safe, we lock each data structure we don’t want written to the disk, and
unlock it only after we’ve zeroed the data structures in memory.

Fixing the deleted file problem is much more difficult. No API is provided for
this on either platform. Windows does zero the disk blocks when they are reallocated
to another application; however, this does nothing to protect the data between dele-
tion and reallocation, which can be a very long time. Because neither Windows nor
Linux allows you to access the disk in raw mode without a great deal of dangerous
hacking and patching, it might not be possible to do this programmatically. A num-
ber of utilities exist to do this, but they are generally GUI-driven and of no use to
developers. The safest bet is to avoid writing sensitive data to the disk in an unen-
crypted fashion whenever possible.

Windows provides an easy mechanism to encrypt data stored on the disk—the
FILE_ATTRIBUTE_ENCRYPTED attribute, which can be passed to CreateFile. An en-
cryption routine for already existing files, EncryptFile, and a decryption routine,
DecryptFile, also exist.

232 The Software Vulnerability Guide

Summary Sheet—The Swap File and Incomplete Deletes

Problem:

The operating system can swap portions of memory containing secure data out
to the disk. It does not overwrite this data when the memory is freed or the
process owning it is terminated. Additionally, the data contained in a file is not
completely removed from the disk when the file is deleted. The same tech-
niques that can be used to recover an accidentally deleted file can recover this
data. As a result, confidential data might be stored on the disk without the pro-
grammer’s knowledge.

Potential Impact:

An attacker might recover an important piece of confidential data such as a
password or encryption key.
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Habitat:

Applications that guard important secrets such as passwords or perform en-
cryption are most at risk. The risk is also elevated in multi-user environments
where one user might be able to recover another user’s data.

Tools You Need to Find It:

A disk editor or hex editor that is able to do raw disk access.

How to Look for It:

Identify critical sections of an application that have data that should not be
swapped to a disk or left behind after deletion. Inspect the swap file and deleted
filesystem nodes for evidence of this data.

Symptoms of Failure:

Obvious indications of “ghost” data, such as large blocks of unencrypted text or
the signatures of key material data structures.

Famous Failures/Exploits:

On older versions of Red Hat, the swap file was world-readable.
www3.ca.com/securityadvisor/vulninfo/Vuln.aspx?ID=3607
SecurityFocus has a good description of this problem on Mac OS X 10.3.
securityfocus.com/archive/1/367116/2004-06-24/2004-06-30/0

www3.ca.com/securityadvisor/vulninfo/Vuln.aspx?ID=3607
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Spoofing and Man-in-the-
Middle Attacks

16

S
ecure communication is about trust. Unlike access control and privilege,
which are intended to allow only an authorized user to gain access to pro-
tected information, communication implies that two parties are involved. Ide-

ally, those parties have a mechanism in place to ensure that the information can be
passed only to the known, intended recipient. Such a mechanism could take several
forms: a shared secret (such as an encryption key), knowledge of the characteristics
of the other party (such as a hardware address), or a dedicated communication
channel (physical or virtual such as IPSec). Not all communications can take this
form, however. The Internet and networks like it work the way they do in part be-
cause the participants do not need to know about each other in order to commu-
nicate—a publicly available Web page can be downloaded from any machine with
a Web browser; likewise, someone with knowledge of another person’s e-mail ad-
dress can send him mail without first exchanging any kind of credential. This
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“open” nature of communication ensures maximum participation is possible on
the Internet; however, such a model of communication has inherent problems. In
addition, in the early days of the Internet, security of communications was not a
significant concern because the networks were not open to wide, public use.

This chapter deals with two security problems that arise from the way infor-
mation is handled and exchanged via the Internet: spoofing and man-in-the-mid-
dle attacks. These vulnerabilities allow an attacker other than the intended recipient
to gain access to information during communication. In spoofing, the attacker dis-
guises (or “spoofs”) his identity or other characteristics to match that of the in-
tended recipient. In a man-in-the-middle attack, an attacker uses his unique
location on the network, either between the two communicating hosts or sharing a
common network path with one of them, to surreptitiously obtain information.

FINDING SPOOFING AND MAN-IN-THE-MIDDLE ATTACKS

Spoofing is possible in any communications mechanism that relies on the identity
of the remote communicator to be secure but doesn’t provide a means for posi-
tively asserting that communicator’s identity. It is also possible whenever that iden-
tity is not periodically checked or rechecked with each successive communication.
The most common kind of spoofing people think of is IP spoofing, in which an at-
tacker makes his machine appear as though he has an IP address other than the one
assigned to him. This is useful to him in several circumstances. First, in communi-
cations that do not require a reply from the recipient to reach the sender, any IP
address can be used. All the attacker needs to do is to create an IP packet with the
correct checksum by hand and write it out to his Ethernet device with the MAC
address of the router as the destination MAC. The router routes the packet to the
real destination, but the packet shows the spoofed source if it is inspected at any
point along the way.

Though spoofing through a router has very few uses (especially now that most
of the low-level networking bugs have been found in major operating systems), the
same technique can be used for a variety of purposes on a local network. If the
attacker shares a LAN where sniffing is possible, he can engage in full two-way
communication with the victim host. This is because the victim attempts to reply
to the spoofed address by sending a response through the router. Because the
attacker is on the same LAN, he can see the response and reply again as though he
were the spoofed system. He needs to do this faster than the router can determine
that the “spoofed” system does not exist and broadcast an “ICMP Unreachable”
message to the victim; however, because of the relatively fast speed of local LANs
compared to routed networks and the Internet, this is usually not a problem. Fig-
ure 16.1 illustrates this kind of spoofing.



This kind of spoofing is successful at evading one kind of security limitation
imposed on communications—host-based inclusion and exclusion. Inetd, the net-
working daemon in Unix, uses two files, hosts.allow and hosts.deny, to limit con-
nections to network services to specific hosts. A system administrator who wanted
to allow connections only from a specific host could “deny all” and allow only that
specific host to be connected. Many network services such as FTP, Samba, and NFS
implement similar host-based restriction lists. Worse still, protocols such as
RLOGIN and RSH allow shell access and arbitrary command execution to be
granted to a remote user based on his host identity. This means that an attacker can
execute arbitrary commands on another host configured in such a manner, as long
as he is on the same network as that host.

Using a technique known as ARP cache poisoning, an attacker can accomplish
a man-in-the-middle attack using IP spoofing. Like the previous example, this at-
tack relies on the fact that an attacker is on the same LAN as the victim. This attack
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FIGURE 16.1 Local IP spoofing.
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is possible because the Address Resolution Protocol (ARP), used to associate IP ad-
dresses with Ethernet addresses, does not authoritatively check the identity of a host
before storing a cache entry. Even though IP-to-Ethernet associations rarely
change, ARP does not take this into consideration, so an attacker can send spoofed
ARP packets to make himself the middleman in communication between a local
machine and the router. Here’s how it’s done:

1. First, an attacker sends a spoofed ARP packet with his own MAC address
to the router, effectively telling the router that he is the owner of the vic-
tim’s IP address. The router updates its cache to reflect this, meaning in-
coming packets destined for the victim’s IP address are transmitted over
Ethernet frames destined for the attacker.

2. Second, the attacker sends a similar spoofed ARP packet to the victim with
his own MAC address and the router’s IP address, fooling the victim into
thinking that he is the router. Outgoing packets destined for the router’s IP
address from the victim’s machine are sent to the attacker’s machine in-
stead.

3. When the victim attempts to transmit something to a machine that is not
on the local network, all of its traffic is redirected through the attacker’s
machine. As long as the attacker periodically responds to ARP requests in
the correct manner, and correctly routes all traffic from the router to the
victim and vice versa, this is transparent to the victim.

The result is that any plain text data transmitted to the Internet from the vic-
tim’s machine is visible to the attacker, regardless of whether a switched network is
in place. Worse, the attacker can use this technique to perform session hijacking
attacks and to spoof the identities of other machines on the network from the
victim’s point of view. For example, the attacker could make it appear as though a
Telnet server actually running on his own machine is instead a server that the vic-
tim logs into to check e-mail. When the victim types his password into the fake
server, the attacker now has that password. This technique works with a variety of
protocols that use unencrypted transmission, including some of the major database
server and file sharing protocols. Figure 16.2 illustrates ARP cache poisoning as a
means of accomplishing a man-in-the-middle attack.

Connection Hijacking

Connection hijacking is when an attacker gains control of a communication mid-
stream and uses that control to either disrupt or resume the communication. The
simplest way to gain control of a connection is, you guessed it, spoofing. Simple
TCP connection hijacking can be used as a denial-of-service attack on local net-



works and networks where a man-in-the-middle attack is possible. To reset a con-
nection, all an attacker needs to do is send a packet with the reset (RST) flag set with
the correct sequence and acknowledge numbers and the spoofed source IP of one
of the communicating parties. The other party immediately closes the connection
in response.

TCP connection hijacking works because, even if the data between two end-
points is encrypted, the TCP headers are not. Thus, the source and destination IPs
as well as sequence and acknowledge numbers are always visible to the attacker if he
can see the traffic. This same technique can be used to gain control of a connection
without closing it. As long as the attacker can prevent the victim from communi-
cating any more responses, he can effectively trick the remote computer into think-
ing he is the victim’s computer. Two methods are used to do this. In the past, when
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FIGURE 16.2 ARP cache poisoning.



vulnerabilities such as teardrop allowed an attacker to crash the victim’s TCP stack,
effectively silencing the machine on the network, an attacker would use an exploit
such as this to cease communication from the victim. He was then free to resume
the connection by spoofing the victim’s IP. Because not very many machines are
vulnerable to this kind of attack anymore, another method, SYN flooding, can also
be employed. The victim’s TCP stack can accommodate only a limited number of
SYN connections (connections in a half-open state) before it has to stop accepting
connections to process replies. Because the attacker is on the same local network as
the victim, he can typically send many more of these half-open connections than a
victim can respond to. This process is called SYN flooding. By SYN flooding the vic-
tim, he can make the victim stop responding to the remote system long enough to
resume control of the communication. Figure 16.3 illustrates connection hijacking.
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FIGURE 16.3 Connection hijacking.



Connection hijacking can be used for a number of purposes. By hijacking a Tel-
net connection, an attacker gets a shell that is already logged in as the victim user.
This shell can be used to change the user’s password, install root kits and back
doors, or for any other malicious purpose. By hijacking an HTTP connection, an
attacker can insert malicious JavaScript into the HTML stream from a remote
server. He can also modify executable files downloaded via HTTP, FTP, or a file-
sharing protocol to contain viruses or Trojans. By hijacking a database server con-
nection, an attacker might be able to run queries against the system for information
he otherwise wouldn’t have access to. Needless to say, any of these techniques can
be used to steal information, modify or delete files, and cause miscellaneous havoc.

Hijacking an SSL Session with Ettercap

Ettercap, by Alberto Ornaghi and Marco Valleri, is a utility that can perform a wide
variety of cache poisoning, session hijacking, and man-in-the-middle attacks. Et-
tercap is available for download from http://ettercap.sourceforge.net/. The Ettercap
user interface was rewritten for version 0.7 in July 2004; however, we use version
0.6.b in our example.

In its simplest form, Ettercap works by ARP cache poisoning the victim and the
victim’s gateway. By making the victim think that the machine Ettercap is running
on is the router, and by making the router think that the Ettercap machine is the
victim, traffic between the two (essentially all Internet-bound traffic from the vic-
tim) can be sniffed or modified by Ettercap. Ettercap works best on Linux, and in
our example we installed it on a Linux machine on the same network as our victim
machine. Ettercap can work in either a hub or switch environment. 

You might have considerable difficulty if you try to reproduce this example by run-
ning Ettercap on the victim machine or on the gateway.

When Ettercap is launched, via the ettercap command, it scans the local sub-
net for active IP addresses. It identifies all of the machines within the local LAN,
provided they are on the same subnet as the Ettercap machine. The first step in SSL
hijacking is to select a source and destination IP address. Ettercap performs ARP
cache poisoning on both systems in an attempt to “connect” them through itself.

The Ettercap user interface presents two columns of IP addresses. The left
column is used to select the source machine, and the right column the destination
machine. Using the arrow keys to navigate, we select the victim machine (the ma-
chine whose secrets we want to steal) as the source machine. This is because the vic-
tim is initiating the connection to the remote, SSL-protected server. When we press
“Enter,” the source selection appears in the top window. Figure 16.4 shows source
selection within the Ettercap user interface.
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Once the source is selected, we select the IP address of the border router as the
destination IP address. This is typically an IP address ending in either 1 or 254, but
can be another address. To find out, you can use the netstat command in Win-
dows or Linux:

C:\>netstat -rn

Route Table

=======================================================================

====

Interface List

0x1 ........................... MS TCP Loopback interface

0x2 ...00 50 56 c0 00 08 ...... VMware Virtual Ethernet Adapter

(Network Address

Translation (NAT) for VMnet8)

0x3 ...00 50 56 c0 00 01 ...... VMware Virtual Ethernet Adapter (basic

host-only

support for VMnet1)
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FIGURE 16.4 Ettercap source selection. 



0x4 ...00 20 ed 58 a0 52 ...... Realtek RTL8139 Family PCI Fast

Ethernet NIC -

Packet Scheduler Miniport

=======================================================================

====

=======================================================================

====

Active Routes:

Network Destination        Netmask          Gateway       Interface

Metric

0.0.0.0          0.0.0.0      192.168.0.1   192.168.0.126

20

127.0.0.0        255.0.0.0        127.0.0.1       127.0.0.1

1

192.168.0.0    255.255.255.0    192.168.0.126   192.168.0.126

20

192.168.0.126  255.255.255.255        127.0.0.1       127.0.0.1

20

192.168.0.255  255.255.255.255    192.168.0.126   192.168.0.126

20

Default Gateway:       192.168.0.1

=======================================================================

====

Persistent Routes:

None.

The default router is the IP indicated as Default Gateway, which is also the gate-
way for destination 0.0.0.0.

We select the destination IP address from the second column in the same man-
ner we selected the source address. The destination IP address also appears in the
top window in Ettercap. Figure 16.5 shows this.

Once the source and destination are selected, we can ask Ettercap to perform
the ARP cache poisoning. To do this, simply type the letter “A.” Ettercap injects
and, after the poisoning is complete, begins sniffing traffic on the network. In the
meantime, we proceed to open an SSL-protected Web site in the browser on the
victim’s machine. Immediately we notice a difference: the browser provides us with
an SSL man-in-the-middle warning. This is because the browser is capable of de-
tecting when an improper certificate is used to establish trust between the client and
server. A well-educated victim might notice this and choose not to proceed. How-
ever, even advanced users are sometimes “conditioned” to ignore these messages, as
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SSL certificates often expire or are configured incorrectly. Additionally, some sys-
tems use valid, unsigned certificates to avoid paying the registration fee for a signed
certificate. Figure 16.6 shows the results of our browsing attempt in Firefox.

Assuming the user proceeds, the login page for our SSL-protected mail server
loads, as is shown in Figure 16.7. The user can type in his username and password
as usual. However, Ettercap is now brokering the communication between the vic-
tim and the remote server. It can also record everything the victim is transmitting.

To view the contents of the SSL-protected session, we scroll in the Ettercap
sniffer view until we find the connection. In our example, we attempted to connect
to the remote host, mail.sisecure.com, whose IP address is 69.44.157.137. Figure
16.8 shows the Ettercap sniffer interface, with the session directed toward port 443
(HTTPS) of this system.

By pressing Enter, Ettercap shows the recorded contents of the SSL session. No-
tice that the text of the session (in this case, our mailbox) is plainly visible in the
right-hand window, as shown in Figure 16.9.
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FIGURE 16.5 Ettercap destination selection.



Name Server Cache Poisoning

The attacks we’ve looked at so far involve spoofing at the IP layer. IP spoofing, as
we’ve seen, usually requires adjacency to the victim on the network to work. It also
requires that the attack be carried out on a specific victim, with knowledge of the
victim’s IP and sometimes MAC address. Name server spoofing, on the other hand,
can be used to trick whole domains of systems that are dependent on the same
name server for address resolution. Remember, most services and users access
remote systems by domain name, not IP; this name is resolved to an IP address
before the sender initiates communication. By spoofing the domain name of a re-
mote system, we can make the victim think the attacker’s IP is the IP of the system
he is trying to communicate with.
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FIGURE 16.6 Browser spoofing attempt in Firefox. 
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FIGURE 16.7 SSL-protected mail login screen.

FIGURE 16.8 Ettercap sniffer interface.



DNS spoofing relies on the victim performing lookups from a name server that
is vulnerable. A vulnerable server is one that allows updates from its root name
server without verifying the identity of that server. Anybody can push DNS updates
to a vulnerable server. Because not every server is vulnerable (many ISPs require
their downstream name servers to use secure DNS), this vulnerability is more likely
to be used by an attacker looking for a target of opportunity such as a spammer or
a person trying to carry out a “phishing” attack.

Spoofing and Man-in-the-Middle Attacks 249

FIGURE 16.9 Mailbox text visible in Ettercap.

SPOOFING DOMAIN NAMES AND “PHISHING”

“Phishing” (pronounced identically to “fishing”) is a social engineering attack
in which the attacker impersonates a bank, credit card company, or other le-
gitimate authority to extract passwords or financial information from a victim.
“Phishermen” cast out a net in the form of a mass e-mail appearing to be from 
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Spoofing at the Application Level

Vulnerability to spoofing is not confined to the IP layer only. Application-level
protocols are subject to spoofing as well. Perhaps the most famous example of this
is Simple Mail Transport Protocol (SMTP), which provides no mechanism for ver-
ifying that the sender address of an e-mail is legitimate. (Modern SMTP clients can
verify the host from which the connection originated, but this can be spoofed by
any of the techniques in this chapter and provides no protection against one user in
the same domain spoofing another. For example, anyone at sisecure.com can send
e-mail as anyone else at sisecure.com.) This vulnerability has led to the greatest se-
curity menace of the Internet age: spam. If you’re like the average e-mail user,
you’ve probably received an unsolicited e-mail message since you started reading
this chapter. Spammers spoof the sender address of the mail to disguise its real ori-
gin—if the real domain name a spam originated from were known, it would
quickly be blocked. Spammers use an open relay, a mail server that does not vali-
date hostnames, to accomplish this spoofing.

Spoofing the sender on an open relay is simple—just supply a bogus e-mail ad-
dress. It’s that easy. Really. Figure 16.10 illustrates communication with an open
relay e-mail server.

the bank, asking the users to e-mail their account information, go to a Web site
and re-enter it, or other such scam. Those who fall for the scam become targets
of opportunity for the scammer.

Spoofing of domain names lends tremendous legitimacy to phishing
scams. If an attacker can make his fake login page appear to be in a subdomain
of the bank he is impersonating, for example, the user has no reason to believe
(apart from common sense) that the e-mail’s claims are illegitimate. Likewise,
having a spoofed e-mail server to respond to inquiries allows the scammer to
comfort a “mark” that might initially raise questions.

Because DNS cache poisoning can be used to spoof IPs to multiple users, it
increases the likelihood that the scam attempt will succeed in at least one
instance. Because the cost of perpetrating one of these scams is very low, an
attacker does not have to have many successes to prevail. 

Presently, bugs in the Internet Explorer Web browser that incorrectly
display partial URLs, or overlay those URLs with other text, are the main mech-
anism phishermen use to spoof the domain name to their victims. However, as
these bugs begin to be fixed, we expect to see DNS cache poisoning become a
more popular means of perpetrating these scams.
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FIGURE 16.10 Spoofing the sender (SMTP).

The Common Gateway Interface (CGI) mechanism used for Web application
programming supports a number of environment variables including the HTTP_
REFERRER variable, which is used to indicate the previous URL that “referred” the
user to the requested page. While this variable was intended to be used primarily to
track which external links to a page were used to reach it, Web designers have been
using the variable to prevent forceful browsing and other state-based attacks on
Web pages. This is dangerous, because CGI relies on information supplied by the
client browser to set the HTTP_REFERRER variable. An attacker with access to a modi-
fied browser (easy to do via the MSHTML object in Windows) or a Web proxy can
change this variable to any value he wants. As a result, CGIs should not depend on
the referrer to determine whether a request has been securely and legitimately made.

Other Kinds of Man-in-the-Middle Attacks: DHCP and 802.11

It is considerably easier to accomplish man-in-the-middle attacks in an environment
where IPs are dynamically assigned. For example, the Dynamic Host Configuration
Protocol (DHCP) is used to dynamically assign IP addresses to machines within a local
area network. By spoofing MAC addresses, the attacker can obtain all of the available
IP addresses for a LAN, effectively blocking additional machines from being able to get
on the network. Additionally, he could set up a rogue DHCP server that sets the default
gateway of its clients to his own IP, permitting man-in-the-middle attacks.

802.11 networks are even more susceptible to man-in-the-middle attacks. This
is because on 802.11 access points, all systems are within the same collision do-
main—that is to say, an 802.11 network looks like one big hub. Even with Wired
Equivalent Privacy (WEP) this is possible because it is necessary only that we be



able to broadcast data to an arbitrary node on the collision domain to perform ARP
cache poisoning; it is not necessary that we be able to sniff the traffic. Access points
can even propagate these vulnerabilities to the wired network to which the system
is attached. This is especially serious because it solves the “adjacency” problem. A
machine no longer needs to be plugged into the same switch as its victim; it can be
located anywhere the wireless network is accessible.

PREVENTING SPOOFING AND MAN-IN-THE-MIDDLE ATTACKS

The key to preventing spoofing and man-in-the-middle attacks is to successfully
authenticate the remote system. Secure Sockets Layer (SSL) does this by taking in-
formation we can know about a transaction, such as the IP address and hostname
of the remote system, and encrypting it with a private key. These keys are known
only to the certificate authorities that issue SSL certificates—VeriSign is the largest
of these in the United States. The public key associated with the certificate is pub-
lished and is known by every browser that provides SSL support. A Web site owner
is issued a certificate only for his own hostname and IP address; it is not portable to
other systems. If the certificate information does not match the actual information
for the host, a warning message is produced in the browser.

As we have said previously, HTTP is not the only protocol on the Internet, and
SSL is not the solution to every problem. Many other applications, such as SSH, the
Secure Shell protocol, are implemented similarly, though. Just as strong cryptogra-
phy is the only solution for protecting data from being read, certificates are the only
foolproof solution for preventing man-in-the-middle attacks. Implementing a cer-
tificate system is relatively challenging, and we do not recommend it to the reader.
An interested person should check out some of the better cryptography books,
such as Bruce Schneier’s Applied Cryptography [Schneier95], before undertaking
such a task.
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Summary Sheet—Spoofing and Man-in-the-Middle Attacks

Problem:

TCP/IP does not provide built-in capability to positively identify a remote sys-
tem. Because a packet passes through many networks from source to destina-
tion, an attacker in the middle of this route, or adjacent to one of the endpoints,
might be able to exploit this problem to steal information or to hijack an in-
process connection.
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Potential Impact:

An attacker could, using these attacks, view a communication that he is not au-
thorized to view. In addition, he might be able to “hijack” or take control of one
side of a communication and impersonate one of the communicating parties.

Habitat:

This problem occurs frequently in software where data must be protected in
transit. Examples include programs that exchange usernames and passwords,
encryption keys, or personally identifiable information, such as a credit card
number, over an open network.

Tools You Need to Find It:

One of the best tools out there for session hijacking and man-in-the-middle at-
tacks is Ettercap (http://ettercap.sourceforge.net/). It is capable of sniffing on
switched and unswitched networks; hijacking common plain text protocols
such as telnet, SMTP, POP, and NNTP; and intercepting SSL-encrypted Web
traffic.

How to Look for It:

Identify all of the protocols associated with an application. Are they plain text?
Do they exchange authentication information? If so, do they do so in the clear?
How is the remote system positively identified?

Symptoms of Failure:

The protocol does not use encryption or challenge/response to determine the
authenticity of the remote system. The protocol does not have any facility to re-
port whether a man-in-the-middle attack has taken place.

Famous Failures/Exploits:

www.securityfocus.com/bid/3460 describes a man-in-the-middle vulnera-
bility in the 802.11 wireless protocol. 
www.thoughtcrime.org/ie-ssl-chain.txt describes a vulnerability in Internet
Explorer that could allow an attacker to perform a man-in-the-middle 
attack without the user’s knowledge.

www.securityfocus.com/bid/3460
www.thoughtcrime.org/ie-ssl-chain.txt
http://ettercap.sourceforge.net/
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Volunteering Too Much
Information

17

W
henever an application must respond to an error condition, the devel-
oper has several critical choices to make, such as what information about
the error message should be revealed to the user and what information

about the application or system configuration and state it should contain. On its
face, this appears to be a pretty straightforward decision for the developer: if the
cause of the error is known to the error handler, then include it in the error mes-
sage. If the error was caught by some global error handler and the specific cause is
unknown, return a general error message. These guidelines make sense from a
development point of view because the more diagnostic information returned to
diagnose the problem the better. This holds true for “planned” failure scenarios
such as the failure to connect to a remote server, failure to authenticate, and so on.
Problems arise, however, when error messages reveal information about a system
or application that can be leveraged by an attacker. The problem here is that often

In This Chapter

Finding This Vulnerability
Fixing This Vulnerability
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an application reveals too much information about itself, its state, user data, its host
system, or the network. In many cases, an attacker can gain a significant advantage
by interpreting and using the information gained from application and system
error messages. 

As an example, consider the default configuration of many Web servers with an
insecure Web application running. One of the most common attacks against Web
applications that interact with a database is SQL injection. With SQL injection, an
attacker attempts to enter SQL commands into an input field with the hopes of
changing the database query that is constructed at the server end. If the server-side
code is written so that the query is constructed directly from user data (a common
practice—see Chapter 21 for more details) and has no error handling code, an at-
tacker might be able to modify the SQL query. In most cases, an attacker must make
assumptions about what the server-side query looks like, and thus launching a suc-
cessful attack can involve a fair amount of trial and error while refining the input
string. When the SQL statement is syntactically incorrect, the default behavior in
many cases is for the Web server to return an error message that contains impor-
tant details about the server. Figure 17.1 shows one such error message.

FIGURE 17.1 Web site showing ODBC error.



In the highlighted portion of Figure 17.1 we see that several important details
about the server are revealed. First, we now know that Microsoft SQL server is run-
ning, which means that an attacker can try to exploit older vulnerabilities on that
system that might have been carelessly left unpatched. The error message also re-
veals some of the server query string and lets us know, for example, that one of the
table column names is “password,” which can be incredibly valuable for future
SQL injection attacks. The most important information revealed, however, is that
this Web application is indeed open to SQL injection. Figure 17.2 shows another
error message that was generated from a different input string that was provided to
the application. This error message is actually telling the attacker how to fix his at-
tack string so that it works.
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FIGURE 17.2 ODBC error showing results of SQL injection.
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Error messages such as these give valuable information to a developer who is
trying to debug his code, which would certainly make the behavior appropriate
during testing of the application. For production systems, however, this informa-
tion is of little use to the legitimate user and is grossly insecure in the information
it reveals to a would-be attacker. These types of information leakages abound in
software. Some of the more interesting instances are where information can be 
inferred from a series of messages. One interesting example can be found in the
Quick ‘n Easy FTP Server 1.77 published by Pablo Software Solutions (www.osvdb.
org/displayvuln.php?osvdb_id=3574). The software allows users to connect remotely
and upload and download files. A security vulnerability exists, however, in the way
it returns error messages using the del (delete) command. Assuming that the user
has no delete permissions on the server, when a specified file exists, the application
returns the error message “550 Permission Denied.” When the file does not exist,
the software returns the error message “550 File not Found.” Using this disclosure,
an attacker can not only determine the existence of a specified file, but also can use
it to gain valuable information about the target system, such as the underlying OS
and which patches are installed (through the existence of specific fix logs or files).

Another interesting example comes from the popular file sharing utility Samba
(available from www.samba.org). Samba has a Web management interface called
SWAT that requires a user to authenticate to it, as shown in Figure 17.3. 

FIGURE 17.3 Samba SWAT login dialog.

www.osvdb.org/displayvuln.php?osvdb_id=3574
www.osvdb.org/displayvuln.php?osvdb_id=3574
www.samba.org


When an invalid username is entered, the Web server immediately returns the
error message “401 Bad Authorization: username/password must be supplied,” as
shown in Figure 17.4.
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FIGURE 17.4 “Bad Authorization” result from invalid username.

When a valid username is entered with an invalid password, after a short pause,
the error message “401 Authorization Required: You must be authenticated to use
this service” is returned, as shown in Figure 17.5.

In and of themselves, each error message is fairly good from a security point of
view: they are fairly generic and do not give an attacker any additional information
about the system. When taken together, however, an attacker can discriminate be-
tween a valid and invalid username. Using a dictionary attack, an attacker can now
enumerate all valid accounts for the application. An error as subtle as this can 
dramatically decrease the security of the system. An attacker can now concentrate
on what he knows to be valid accounts and focus on cracking or brute forcing those
accounts.



Information need not be disclosed solely through error messages, however.
Sometimes, information about a system can be inappropriately discovered from
handshakes, login prompts, or greetings. A careful balance must be drawn between
enhancing the user experience and creating a system weakness. 

FINDING THIS VULNERABILITY

We can broadly decompose an application into two kinds of code: functional code
that provides the core functionality of a system and error handling code that keeps
the functional code from failing. When we design a system, typically most of the
effort is put into architecting features and how those features and the functions that
support them interact. This functional code is usually exercised fairly extensively
through testing and many development paradigms focus on testing for the presence
of correct behavior. Now consider error handling code. Error handlers are sub-
jected to far less exposure to testing than the functional code they are designed to
protect. Error handlers are also frequently written in response to errors that occur
during use and are thus not given the same level of design scrutiny as functional
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FIGURE 17.5 “Authorization Required” message from invalid password.



code. Error handlers might, therefore, be written at different times to handle simi-
lar situations as errors occur. All of this adds up to code that is written with a very
narrow focus to handle very specific situations, and it is easy to understand mis-
takes such as two slightly different code paths yielding different error messages and
thus disclosing information about the software’s operation.

From a code review standpoint, enumerating application strings and scanning
them individually for parameters that might contain sensitive information can be
a good starting point for uncovering individual revealing error messages. Another
good code-based technique is to look for generic error message strings and then
find out which code paths reference them. The rule of thumb is that there should
be a minimal set of such error messages and all relevant error code should point to
the same strings as opposed to repeating those strings in multiple locations.

From a black-box testing perspective, it is critical to force applications to ex-
ercise their error handling code and traverse paths that expose messages to the
user. Errors that are returned to remote users are the most critical, but local errors
must be scrutinized based on where the risks for your particular applications lay.
For example, applications that run as a higher privilege level than their users might
be able to be manipulated into disclosing information about privileged system
files or user files. 

FIXING THIS VULNERABILITY

When writing error messages, creating welcome banners, or generally interacting
with users the inclination is to be as descriptive as possible. Descriptions that are
helpful to a user, such as error messages that identify common user errors or causes,
are appropriate and can help someone interact better with the system or diagnose
and fix a user entry problem. The rule of thumb, however, is to not disclose infor-
mation that is not available from other sources and is unnecessarily informative.
For example, a typical good error message for failed authentication contains com-
mon tips such as the use of CAPS lock. A bad error message might tell the user that
the username was correct but the password was wrong or what the system policy is
on passwords (e.g., passwords must contain a maximum of eight characters with
numbers and letters only). In the latter case, the benefit to an attacker far out-
weighs the benefit to the user of disclosing this information. When writing error
messages, or providing information to a user in general, you should consider the
following:

Does the user have the minimal information that he needs to take corrective
action? A good error message tells the user some potential remedies to the
problem. An authentication error message, for example, might suggest check-
ing to see if CAPS lock or NUM lock is on. 
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Does this message provide more information about the system than is available
from other legitimate sources? A secure error message should not reveal any
information that is not legitimately accessible from other sources. Consider, for
example, the error message returned by imagemap.exe on an old and unpatched
version of Microsoft Windows 98 with personal Web Server. Figure 17.6 shows
that the error reveals the path on the server to the Web root. While this is the de-
fault path, this information can be incredibly valuable to an attacker.
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FIGURE 17.6 Error message exposing information about the organization of the
filesystem on the server.

Is each piece of information disclosed necessary/helpful to the legitimate user?
Consider again the ODBC error message returned by a server in Figure 17.1.
Here the user is bombarded with information about the type and version of the
database server along with information about the SQL query that resides on the
server. This information is completely useless to a legitimate Web user entering
information into a Web form, but can be immensely helpful to an attacker. 

Does the corrective advice in the error message indirectly disclose sensitive in-
formation? Some error messages can reveal sensitive information by the
remedies they suggest. One example would be a failed login message that tells
a user that passwords are a maximum of eight characters, which are all alphanu-
meric. This information is mildly helpful to the user, but it is far outweighed by
the information it discloses to the would-be attacker.



When giving information to a user, careful consideration must be given to the
potential advantage this information could give to an attacker.
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Summary Sheet—Revealing Too Much Information

Problem:

Whenever we create an error message or provide information to a user, our ini-
tial inclination is to be as descriptive and prescriptive as possible. The problem
is that information about the system or other sensitive data might be disclosed
that can be useful to an attacker.

Potential Impact: 

Information leakage can be a serious security concern, especially when it gives
an attacker an inroad into a system. Error messages can be exceptionally help-
ful to an attacker, especially when they return information about the filesystem,
other user data, system configuration, or other data that the viewing user
should not have access to. 

Habitat:

Any application. The problem is especially severe in applications that are ac-
cessible through the network.

Tools You Need to Find It: 

A keen eye!

How to Look for It: 

Looking for information disclosure in source code entails tracking down error
strings and making sure that the information revealed to the user is informative
but minimal. From a black-box testing perspective, it is critical to expose error
handling code to testing and view each error message at least once to determine
if the information disclosed to the user is necessary and appropriate. In addi-
tion to single error messages, always check for information disclosed through
comparing different error messages.

Symptoms of Failure: 

Symptoms can be very subtle. Look for technical details in error messages and
banners that reveal information about the system or can give an attacker an ad-
vantage in breaking into a system.
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Famous Failures/Exploits: 

CAN-2004-0050: Verity Ultraseek before 5.2.2 allows remote attackers to
obtain the full pathname of the document root via an MS-DOS device
name in the Web search option, such as (1) NUL, (2) CON, (3) AUX, 
(4) COM1, (5) COM2, and others.
CAN-2003-0512: Cisco IOS 12.2 and earlier generates a “% Login invalid”
message instead of prompting for a password when an invalid username is
provided, which allows remote attackers to identify valid usernames on
the system and conduct brute force password guessing, as reported for the
Aironet Bridge.
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Cross-Site Scripting18

O
ur first Web site vulnerability, cross-site scripting, is presented because it is
one of the easiest to exploit. While some attacks require sophisticated
knowledge of system and assembly programming, or the ability to execute

many test cases before finding a vulnerability, cross-site scripting is literally ac-
complished by cut and paste. It is often the first attack a hacker tries against a Web
site to test the general security of the site. Fortunately, it is also one of the easiest at-
tacks to prevent. Despite this, cross-site scripting vulnerabilities continue to be
found in a number of sophisticated sites and Web-based applications.

Cross-site scripting is essentially injecting malicious HTML, including Web-
based scripting like JavaScript, into the input of a Web-based application, in the
hopes that the application might print that code back out again unparsed. When
the dynamic page with the malicious code is output by the Web server, the browser
attempts to render it as though it were HTML, complete with scripting capability.

In This Chapter

Finding Cross-Site Scripting Vulnerabilities
Fixing This Vulnerability
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Like format string attacks, the vulnerability results from the system allowing data,
in this case HTML, to be mixed and interpreted with code such as JavaScript. What
makes cross-site scripting worse than format string attacks is that the browser can
execute a broad set of arbitrary commands using JavaScript, so no complicated ex-
ploit string is required. 

Take a look at an example from “SI Jams and Jellies,” a mock e-commerce site
built using MySQL and Perl. The site contains a search page that allows patrons to
search for jams or jellies that match a certain keyword. Figure 18.1 shows the search
page.

FIGURE 18.1 SI Jams and Jellies search page.

When a patron types a keyword in the form field and clicks “Search Database,”
the data is passed to the searchJJ.pl CGI program. This program queries the data-
base and returns any hits associated with the keyword. Figure 18.2 shows the results
returned from a search for the keyword “mint,” which is rendered in a table show-
ing product, description, and price.



So far, we’ve looked at the result of a successful query. What happens when we
search for a keyword that isn’t likely to be found? Figure 18.3 shows the results of a
query for the keyword “dinosaur.”

No table is returned; the CGI simply responds, “No information for dinosaur.”
However, this result is more interesting than the previous one from the point of
view of cross-site scripting. Nowhere in the previous query (apart from in the rows
of the result set) did the keyword we search for appear in the dynamic page re-
turned by the CGI. However, searching with other erroneous keywords quickly
confirms that the CGI always prints the keyword upon an unsuccessful search.
What are the chances that this CGI is vulnerable to cross-site scripting? To be vul-
nerable, the CGI would have to respond blindly with whatever search term we sup-
plied it, even if that term contained HTML or JavaScript. If we can substitute
“dinosaur” with a malicious script, the system is vulnerable.

Most frequently, cross-site scripting vulnerabilities are used by an attacker to
obtain information, such as a cookie or session ID, which is available via the Doc-
ument Object Model. However, some cross-site scripting vulnerabilities might
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FIGURE 18.2 Results returned from search page.
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allow execution of arbitrary code on the victim’s machine, especially when the vul-
nerability is in a trusted site or Web-driven client application, or is combined with
an unsafe ActiveX control.

Cross-site scripting can also be used to:

Deface a Web site. By inserting script that modifies the content of a page, or
pops up an alert, an attacker can vandalize another person’s Web site.
Manipulate the Document Object Model. If scripts can be executed, any of the
functions available through the browser’s Document Object Model can be
called, including functions that read and write files (usually blocked in “unsafe”
domains, but cross-site scripting bugs are not confined to these), pop up win-
dows, or manipulate cookies and history.
“Poison” cookies by modifying them to suit an attacker’s purpose. Chapter 20
describes cookie poisoning in more detail.

FIGURE 18.3 Results for search of keyword “dinosaur.”



FINDING CROSS-SITE SCRIPTING VULNERABILITIES

Let’s take a look at a piece of JavaScript code. The <script> tag is used to embed
JavaScript (or another script language) within an HTML page. When the browser
encounters this tag during rendering of a page, it executes the JavaScript com-
mands contained within the tag. JavaScript works with a set of objects called the
Document Object Model. These objects can be used to manipulate elements of the
browser, document, and page within which the script is contained. For example,
the location attribute of the window object (window.location in JavaScript) is used
to manipulate the URL (Web site location) of the current page. Setting window.
location to a different address causes the browser to navigate that window to a 
new page. One useful feature of JavaScript is the alert() function, which causes a
message box (Windows MessageBox object) to appear with the text specified in the
argument. So the script:

<script>

alert(window.location);

</script>

would pop up a message box with the address of the current page loaded in the
browser.

Let’s assume that our search CGI is not vulnerable to cross-site scripting. In 
all likelihood, we see a message, “No information for <script>alert(window.
location);</script>,” or perhaps an error message. However, if it is vulnerable, when
we type the preceding script into the search field, it pop up a message box with the
address of the CGI page, “http://192.168.1.2/cgi-bin/sijj/searchJJ.pl.” Figure 18.4
shows the results of our malicious test query. As you can see, the message box with
the URL information is popped up immediately after rendering “No information
for,” even prior to loading the rest of the page. Clicking on the OK button within the
message box causes the rest of the page to load, as illustrated in Figure 18.4.

The effects of this cross-site scripting attack are relatively benign. In our exam-
ple, a user can inject the script only into a page that is returned to him in his own
browser. The real danger is that a malicious user could leave a cross-site script be-
hind for another user to stumble on; this would be the case if the script were posted
to a message board, Web log, or collaboration site. A cross-site script in the “User
Reviews” section of an online bookstore or in a posting on an auction Web site
would likely reach a broad audience. Because JavaScript can do a great deal besides
pop up a message box, an imaginative attacker could create scripts that carry out a
variety of malicious actions. For example, a vulnerability existed in an online auc-
tion site. (We do not suggest that any particular site is vulnerable; the folks at the
major auction companies are well aware of this problem.) It’s possible that the
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user’s identity is verified from page to page by means of a session cookie stored in
the user’s local cookie store. JavaScript is allowed to retrieve the value of cookies set
by pages in the same domain in which the script is running. An attacker could post
a cross-site script that retrieved this session cookie and posted it as a CGI parame-
ter to a third-party (malicious) Web site. When an ordinary user accesses the ma-
licious auction page, his session cookie is stolen and posted to the hacker’s site.
Armed with this cookie, the attacker can impersonate the user, making bids, pur-
chases, or changing personal information, for as long as the session cookie is valid.
If the auction is a particularly popular one (as auctions for Beanie Babies were in
the early days of eBay and Yahoo! Auctions), the attacker is continuously updated
with a fresh supply of session cookies, so he need only try the most recent ones in
hopes of finding a cookie that hasn’t expired.

The problem of cross-site scripting is even more serious in pages in older
browsers, that don’t have restrictions on execution of malicious ActiveX controls
like Scripting.FileSystemObject, and in pages that a user is automatically redi-
rected to. A vulnerability existed in Versions 4, 5, and 5.1 of Microsoft Internet
Information Server (IIS), one of the most popular Web server applications on the
Internet. A malicious user could craft a special URL that, when requested from any
IIS server, would inject a cross-site script into the 404 page returned by the server.
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FIGURE 18.4 Effect of cross-site scripting attack.



The “Famous Failures/Exploits” listing mentioned in the Summary Sheet section of
this chapter contains a pointer to this vulnerability. This means that a malicious site
could redirect a user to a page that executed arbitrary script as though it were in the
domain of the remote server. This could be used to steal cookies belonging to that
domain, or to execute ActiveX controls if that domain is a member of trusted sites.

Cross-Site Scripting 273

CIRCUMVENTING CLIENT-SIDE INPUT VALIDATION

Some developers think the solution to preventing malicious input is validation
within the JavaScript of the page itself. Don’t do this. It’s like having students
grade their own tests. The reason is that it’s relatively easy to undo client-side
input validation. A developer can validate input in an HTML form field in only
a few ways. They are:

MAXLENGTH: This sets the maximum number of characters that can be
typed into input fields. This is sometimes the only protection provided against
buffer overflows within Web applications.

onblur: This event fires when a user moves the mouse out of an input field or
presses the Tab key. This is the most common input validation routine.

onchange: This event fires when a user types anything within the input field.
It can be used to exclude certain undesirable characters.

onkeydown, onkeyup, onkeypress: These events occur when the user types a
key within the input field.

onfocusout: Similar to onblur, this fires after a user has performed an action
that changes focus (such as hitting the Tab key), but before focus is lost.

Any of these techniques can be disabled automatically by a skillful attacker.
The MAXLENGTH field cannot be disabled (easily) but can be set to any arbi-
trary length. A MAXLENGTH of 65,536 would likely permit buffer overflows
to be found in the server application, if there are any. The onblur event and
other events are relatively simple to disable. Here is some Visual Basic code that
disables all onblur events in a page:

For x = 0 To WebBrowser1.Document.Forms.length - 1

For y = 0 To WebBrowser1.Document.Forms(x).elements.length - 1

WebBrowser1.Document.Forms(x).elements(y).onBlur = ""

Next

Next



FIXING THIS VULNERABILITY

The root cause of a cross-site scripting vulnerability is usually in the CGI compo-
nent of the Web application. Let’s take a look at the portion of Perl code that
processes our search request:

$dbh = DBI-> connect(

"dbi:mysql:database=si;host=localhost;port=3306",

"root",

"sisecure")

or die("Couldn’t connect");

$query->import_names('R');

$search=$R::searchJJ;

$sth = $dbh->prepare("SELECT * FROM products where" . 

"products.pname like '$search%' or products.pname like" . 

"'%$search'")

or die("Error");

$sth->execute

or die("cannot execute");

if($sth->rows == 0)

{

print "No information for " . $R::searchJJ;

}

else # display the table of results

Based on our observations with the browser, the problem is in the line that
prints the “No information for X” message. The variable $R::searchJJ is obtained
directly from the name-value array passed into the program from the search page’s
form field; Perl performs no parsing on this apart from translating it from the
URL-encoded string transmitted on the wire back to the original source data. If
$sth->rows == 0, we print $R::searchJJ explicitly. When the browser attempts to
render our output, it interprets the contents of $R::searchJJ exactly as they were
supplied.

This problem can be avoided by parsing $R::searchJJ before printing it back
out. If our only concern is “breaking” cross-site scripting, Perl’s regular expression
capability can easily help in this. The easiest way would be to change the greater
than and less than symbols to their HTML literal entity equivalents:

$search =~ s/</&lt;/g;

$search =~ s/>/&gt;/g;
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Preventing More Advanced Cross-Site Scripting Vulnerabilities

Often times an attacker “encodes” a cross-site scripting vulnerability using an al-
ternate representation of the attack string. URL encoding, C, and Perl escape strings
and Unicode encoding are popular techniques for bypassing cross-site scripting fil-
ters. Depending on the language and stages of filtration, any of the following could
represent the <script> tag in HTML:

%3cscript%3e          (URL-encoded)

%u003cscript%u003e    (Unicode %u-encoded)

%%3cscript%%3e        (Double URL-encoded)

\074cscript\076       (C/Perl Octal Escape Characters)

\x3cscript\x3e        (C/Perl Hex Escape Characters)

The problem is even worse in applications that accept UTF-8 characters, be-
cause you have multiple ways to encode each character. Quickly, the number of
combinations that would need to be filtered becomes unmanageable. In this case,
it is better to delete characters that do not explicitly conform to a safe, allowable set.
The command:

$search =~ tr[_a-zA-Z0-9 ,./!?()@+*-][]dc; 

can be used to do this.

HTML-Encoding Output

Microsoft’s Active Server Pages has a function, Server.HTMLEncode(), that can be
used to encode output for safe display in HTML. HTMLEncode translates an arbitrary
string into the HTML representation of that string. Essentially, it translates the spe-
cial characters used to form tags, scripts, etc., in HTML into their literal printable
equivalents. By doing this, you can be assured that script code that made it through
as input cannot subsequently be output without first being converted to “safe” for-
matting. If you don’t use ASP, it’s relatively easy to write your own encoder. The
characters you need to translate are:

& should become &amp;
< should become &lt;
> should become &gt;
“ should become &quot;
( should become &#40;
) should become &#41;
# should become &#35;
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Summary Sheet—Cross-Site Scripting

Problem:

This problem arises from the reuse of input from HTML form fields as output
without parsing. A malicious user could insert script code into an HTML form
field, which gets interpreted by the browser when that data reappears as output
in a Web page.

Potential Impact:

An attacker could, in certain circumstances, execute arbitrary JavaScript code
on the client computer. This technique is most frequently used to steal cookies
that contain personally identifiable information or are used as tokens to gain
access to a Web site.

Habitat:

CGI programs running on a Web server are susceptible to this vulnerability. All
platforms and languages are vulnerable in one way or another, because all allow
arbitrary script code to be written back to the browser. Any user who permits
JavaScript to be executed in Web pages is vulnerable to this attack.

Tools You Need to Find It:

A Web browser and a sample JavaScript program, such as the alert(window.lo-
cation) script, are needed to find simple cross-site scripting bugs. More so-
phisticated forms of the attack might require the ability to encode Unicode,
UTF-8, or C-style escape strings.

How to Look for It:

Insert the sample JavaScript program into HTML form fields (including hid-
den ones) and observe the results.

Symptoms of Failure:

The program executes the script behavior at the point during page loading
where the output text is rendered.

Famous Failures/Exploits:

Numerous examples of cross-site scripting vulnerabilities in Web sites,
applications, and operating systems can be found on Securityfocus.com.
SecuriTeam.com has a description of the Internet Explorer universal 
cross-site scripting vulnerability at www.securiteam.com/windowsntfocus/
5QP0A206VK.html and the IIS vulnerability at www.securiteam.com/
windowsntfocus/5WP0J006UG.html.

www.securiteam.com/windowsntfocus/5QP0A206VK.html
www.securiteam.com/windowsntfocus/5QP0A206VK.html
www.securiteam.com/windowsntfocus/5WP0J006UG.html
www.securiteam.com/windowsntfocus/5WP0J006UG.html
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W
eb browsers, all things considered, are relatively simple programs. In
their most basic application, they listen on a specified port (port 80 for
regular HTTP; port 443 for HTTPS), receive requests for files, and trans-

mit the contents of those files back to the requestor on the same port. Where secu-
rity is needed, it comes in one of several forms. First, the Web server is typically
prevented from copying files for which it does not have appropriate permission. In
a multi-user system, files owned by a user other than the one that launched the Web
server are blocked unless the owner gives the Web server user permission to read
them. The Web server also accesses only pages reachable from its document root,
typically the htdocs directory in Apache and inetpub/wwwroot directory in IIS. So,
taken from the Web server’s point of view, the files it is able to serve are relatively
safe: an administrator must give permission for the Web server to read a file, and
even then it reads only files in directories that have been configured to be used with

In This Chapter

Description
Finding Forceful Browsing Vulnerabilities
Preventing Forceful Browsing
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the Web server. That is to say, unless a CGI program comes into play. And because
most all Web applications have the CGI interface at their core, it’s almost guaran-
teed to.

This vulnerability affects both traditional CGI programs (written in Perl or C) 
and applications written with an application server framework such as J2EE, 
ColdFusion, or ASP.NET.

DESCRIPTION

As we said before, the Web server accesses only files reachable from its document
root directory. However, CGI is intended to allow ordinary programs to interact on
the Web browser interface, and ordinary programs can access any part of the
filesystem, not just the document root. File permissions might prevent the access of
some important system files, such as the /etc/shadow file in Unix. However, many
important system files, such as the ordinary passwd file, are configured to be read by
an arbitrary user, including the Web server user. These files would not be auto-
matically off limits to a CGI program. To make matters worse, the Web server can
usually run only as one system user. This user is nobody on most Apache systems,
and IUSR on IIS. This is true regardless of the identity of the remote user requesting
the page. As a result, all human users, whether they are administrators, ordinary
users, or attackers, are grouped together as nobody for purposes of file permissions.
It is possible, via a set of HTTP configuration files separate from OS file-level per-
missions, to assign permission to a directory to a specific set of Web users. How-
ever, remember these permissions are not applied to files accessed via a CGI
program. The Web server can restrict access to a CGI to specific users, but cannot
limit the files that CGI can access.

This fact gives rise to a number of vulnerabilities, called forceful browsing vul-
nerabilities. They are called this because an attacker can, by manipulating values in
the data submitted to the CGI program via the browser, force the Web server to
return Web pages or other files that the attacker would not otherwise have permis-
sion to access in the application’s security model. Consider a simple example. In
our example Web site, SI Jams and Jellies, the administrator is allowed to update
the pricing in the product catalog by means of an admin page. The link to this page
is made visible only to the administrator when he logs in. Figure 19.1 shows the
admin page.
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What prevents an attacker from accessing this page to update the pricing for a
product in a way that benefits him? (A negative price might actually allow a credit
card to be charged back when the item is purchased.) Because a link to the admin
page is not displayed anywhere in the site visible to a normal user, he has to guess
the URL. But that isn’t too difficult considering what the page is named. If the at-
tacker guesses the name and browses directly to /admin.pl, he has a good chance
that he might be able to update the prices.

This scenario represents the simplest form of forceful browsing. Unfortunately,
it is one of the most commonly found vulnerabilities in Web sites. In this case, the
attacker would have been limited in the damage he could cause to the functional-
ity exposed by /admin.pl, and only if he guessed the name of the admin page. How-
ever, this same technique can be used to gain inappropriate access in situations
when the URL is known. Consider a scenario in which a user buys a trial subscrip-
tion to a Web site. If he saves the “deep” URLs made visible during the subscription

FIGURE 19.1 SI Jams and Jellies admin page.
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period, he might be able to cancel his subscription and still access the content. Or
imagine an e-commerce site that produces a temporary, intermediary URL during
the processing of a credit card refund. Will replaying this URL cause the card to be
refunded a second time?

If the attacker is able to cause the card to be refunded a second time, he has ac-
complished a session replay attack. Session replay attacks are a kind of forceful
browsing that exploits a fundamental problem in Web applications: state. Because
HTTP was designed primarily to serve arbitrarily requested files, the concept of
state was not very important to protocol designers. Even CGIs were not meant to
be accessed in a stateful fashion. The problem came when people wanted to imitate
the functionality of conventional interactive programs that can store stateful infor-
mation between inputs from the user. Because it doesn’t know the identity of the
next user who might access the CGI program, it can’t tailor the functionality based
on that user. Thus the user must supply the CGI all of the information needed to re-
spond to the request. To pass stateful information from CGI to CGI, hidden fields
and cookies are frequently used. However, both hidden fields and cookies are sub-
ject to tampering by the user.

In this way, the attacker can trick the CGI program into thinking that a trans-
action that has already happened hasn’t happened yet. He can also make the CGI
think he’s someone he’s not. Often, Web application programmers use a variable
called the session variable to associate an authenticated user with a particular ses-
sion within the Web site. Because the Web is not real time, these session variables
cannot immediately expire. If an attacker is able to obtain the session variable of
another user, he can impersonate that user without knowing his username or 
password, because the session variable makes the Web application think the user is
already logged in. Session variables are often easily obtained by attackers; they are
either stored in hidden fields within the HTML pages associated with the site, or are
transmitted on the URL. While SSL can be used to prevent attackers from access-
ing another user’s session variable, SSL isn’t always used on all portions of a site
where the session variable is visible. It also might not be useful in circumstances
where the session data is predictable. Additionally, cross-site scripting attacks
(Chapter 18) can be used to obtain the session variable from the user’s cookie cache
or browser history.

Forceful browsing needn’t be confined to URLs. URLs are certainly the easiest
places to inject forceful browsing information, as the injection mechanism, the
URL bar in the Web browser, is accessible to any user. However, forceful browsing
can also be accomplished through tampering with CGI parameters found in hidden
fields (or even unhidden ones). Suppose we had a CGI that dynamically included a
text file to present content to a user, as is sometimes done in sites with a large



amount of content. For example, a dictionary CGI might read the contents of “de-
finitions/dinosaur” to display a definition when the user requests one for the word
“dinosaur.” The actual URL might look like this:

http://www.dictionary.site/definition.cgi?word=dinosaur

and the CGI might be a C program that parsed the parameters and called 

char *env, *word, filename[1024];

FILE *fv;

env = getenv("QUERY_STRING");

word = strchr(env, "=") + 1;

snprintf(filename, 1024, "definitions/%s", word);

file = fopen(filename, "r");

to open the definition file. An attacker could pass the parameter

word=../../../../../../../../../../etc/passwd

and use this CGI to read the contents of the passwd file, or any other file for that
matter.

Consider this vulnerability that existed in ColdFusion Server 2.0 through 4.0
from Macromedia. ColdFusion is a popular Web application server platform. (For
more information about ColdFusion, you can visit www.macromedia.com.) A
utility CGI, exprcalc.cfm, which shipped with ColdFusion software, allowed a Web
developer to test ColdFusion expressions. However, this utility was accessible by an
ordinary user in many default installations of the product. The script relied on
another CGI, openfile.cfm, to access a file that had been uploaded for evaluation.
The filename of this file was passed to exprcalc.cfm, which evaluated the file and
then deleted it. However, exprcalc.cfm never checked that the source of the file-
name passed to it was openfile.cfm. As a result, an attacker could forcefully browse
to exprcalc.cfm to force it to delete an arbitrary file. To make matters worse, the
attacker could use exprcalc.cfm to delete exprcalc.cfm, meaning the uploaded file
was left permanently on the server.

FINDING FORCEFUL BROWSING VULNERABILITIES

Fortunately, finding forceful browsing vulnerabilities is a much easier for the de-
veloper than the attacker. The developer does not need to guess the names of admin
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pages and can roam around the filesystem as he pleases. The technique for finding
these vulnerabilities depends on the kind of forceful browsing we’re looking for.

To find hidden admin pages, first create a list of “safe” URLs that should be
accessible to the whole world, including users who haven’t logged in. Also, ask
yourself the questions, “how difficult is it for an attacker to get a minimally func-
tional user account? Does the application create a new account for anyone who
completes a form? Does any information supplied by the applicant actually get
verified?” It is typically much easier for an attacker to accomplish forceful brows-
ing if he has a minimal set of credentials for a system.

Log into the site as an administrator and manually walk through all of the
pages, noting each URL. A Web spider can also be used to do this automatically.
After this is done, log out of the site completely, and clear the browser cache to
ensure no pages are still cached. Do not log in as a regular user just yet. Attempt to
re-access each of the saved URLs. Are any accessible? If so, are they on the list of safe
URLs? Remember, these URLs can be accessed by anyone, not just an authenticated
user. Now repeat the process, this time logging in as an ordinary user. Again, try to
re-access the saved URLs. Are any of the administrator pages accessible?

Testing for session replay attacks is done in relatively the same way. Identify
how your application stores session information. Is it done via a hidden field in
each page? A parameter passed on the URL? Log in as an ordinary user and navigate
to a “deep” URL—one that is not accessible without logging in. Note the URL in
the navigation bar; does it contain any CGI parameters with names like “session,”
or very long strings of random numbers and letters? If so, this is likely the session
variable.

Save the current page to a file and log out. Open the saved file in the browser
and click on one of the links. Can you still navigate around the site? If so, you are
vulnerable to a session replay attack. What happens if you paste the URL into the
navigation bar? Will that allow you to access the site without logging in? Finally, test
your session replay attack from another machine. If you can still access the site
without logging in, it’s likely that an attacker can as well.

Identifying forceful browsing vulnerabilities in parameters is a bit more diffi-
cult. In our dictionary example, the attacker had no special knowledge that the de-
finitions were stored in files. They could have as easily been stored in a database, or
in a one big file that is parsed at runtime. But an attacker focuses his attention on
parameters that are obviously the names of files—parameters that contain directory
browsing characters like “/” and “\”, parameters that contain obvious file exten-
sions like .gif and .exe, and parameters associated with files a user can upload,
download, view, etc. Each place where this occurs in your application, test some
common path traversal strings such as “../” and “c:\” and see what the effect is. Be
sure to test the URL-encoded representations of these strings as well: “../” can also
be “%2e%2e%2f.”
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Building a Forceful Browsing Test Tool

Microsoft’s MSHTML object, which can be manipulated through an ActiveX in-
terface, makes it easy to build a forceful browsing test tool. The MSHTML object
gives a developer programmatic access to all of the common functions of Internet
Explorer. It is possible to request pages and respond to events, manipulate the Doc-
ument Object Model of pages loaded in the browser, etc. We chose to build our tool
in Visual Basic, because of the ease of manipulation of the MSHTML object using
Visual Basic’s WebBrowser control. Our tool is useful in finding both hidden admin
pages and session replay attacks.

Creating the User Interface

The user interface to ForcefulBrowse is relatively straightforward. It consists of 
a WebBrowser control (named WebBrowser1) with basic navigation buttons, an 
address bar, and a history list. The navigation buttons (Toolbar1) and address bar
(txtAddressbar) allow a user to interact with the browser control in the same way

GOOGLING FOR HIDDEN FILES

An interesting way to find hidden admin pages, password files and other force-
ful browsing targets is to actually search for them. Many sites support internal
searching, either through their own search CGI or through an external index
like Google® (www.google.com). Often, search CGIs are provided by the appli-
cation server software or are cut and paste from a Web master’s resource site,
and do not take security into consideration. As a result, sometimes the admin
pages are indexed along with the ordinary content—to the delight of the at-
tacker. Try searching for these keywords to see if they turn up any hidden
admin pages or interesting results:

admin.asp
config.asp
password.asp
admin.aspx
admin.pl
config.pl
admin.cfm
/etc/passwd
passwd

shadow
.htaccess
.htpasswd
root
Administrator
Webmin
miniserv.pl
password
username

www.google.com
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they would with Internet Explorer, by typing in a URL; going home, forward, and
back; and refreshing the loaded page. The history list (listHistory) records each
URL visited. If parameters were supplied via a GET method, those parameters are
encoded in the URL. (Our example tool doesn’t support POST parameters.)

Four buttons to the right of the history list control the testing. The “Gather
Links” button (btnGatherLinks) parses the page currently loaded into the browser
and adds all the links within that page to the history list. Because our tool doesn’t
have a crawler, this allows us to obtain links by manually navigating to a page 
and then harvesting them out of the Document Object Model for that page. Why
doesn’t our tool have a crawler? Crawlers are finicky—they must be able to get
around various kinds of authentication, follow links in the correct order to make
application logic work, and correctly supply parameters to form fields. In practice,
they don’t work too well for finding security bugs. (Imagine trying to find a nega-
tive total attack, in which an attacker supplies a negative price or quantity in an at-
tempt to cause a credit card to be refunded when there are no items in the shopping
cart.) Crawlers have another problem: they often navigate away from the site or
domain you’re testing. You have some serious legal and ethical implications if a
security testing tool follows a link to another person’s Web site and begins testing
their code for vulnerabilities.

The “Clear History” button (btnClearHistory) allows us to empty the history
list—pretty straightforward. Ideally we would have functionality to add and remove
items from the history list, reorder the list, etc. However, this would serve only to clut-
ter our example; the readers are free to add these features to the tool if they want. The
“Test!” button (btnTest) starts the testing by iterating through the URLs and forceful
browsing scenarios. Lastly, the “Stop” button (btnStop) stops the test prematurely if
this is necessary. Figure 19.2 illustrates the user interface for ForcefulBrowse.

In addition to the visible controls, a Timer control (Timer1) is used to throttle
the rate of requests for pages. Requesting pages too quickly can bog down both the
server and the test tool. The timer is set to 1000 milliseconds.

Building the Basic Browser Functionality

The basic browser functions are relatively easy to implement. By overloading the
Load event for the main form, we can navigate the browser to the user’s home page.
This ensures that the home page comes up when the application is launched.

Private Sub Form_Load()

' navigate the browser to the user’s home page

' (for appearance purposes)

WebBrowser1.GoHome

End Sub



Toolbar1 contains the navigation buttons. A single event handler, Toolbar1_
ButtonClick, handles a click event regardless of what button is pressed. As a result,
we take a different action based on the button index.

Private Sub Toolbar1_ButtonClick(ByVal Button As ComctlLib.Button)

' each button within the toolbar has a button index

' Button.Index tells us which one was pressed

Select Case Button.Index

Case 1:     ' back button was pressed

WebBrowser1.GoBack
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Case 2:     ' forward button was pressed

WebBrowser1.GoForward

Case 3:     ' refresh button was pressed

WebBrowser1.Refresh

Case 4:     ' stop button was pressed

WebBrowser1.Stop

Case 5:     ' home button was pressed

WebBrowser1.GoHome

End Select

End Sub

We want to navigate to a new address when the user presses Enter in the ad-
dress bar. Because the address bar is a regular text edit control, we can’t overload
the Change event, because this event is fired on every character typed and has no way
of discerning which key was pressed. Instead, we overload OnKeyPress, and navigate
if the key pressed was the Enter key.

Private Sub txtAddressbar_KeyPress(KeyAscii As Integer)

' 13 is the key code for carriage return (enter)

If KeyAscii = 13 Then

WebBrowser1.Navigate (txtAddressbar.Text)

End If

End Sub

Finally, we add the code to exit the application if the File>?Exit menu item is
selected.

Private Sub mnuFileExit_Click()

Unload Me

End Sub

Building the History Information

To capture the URLs navigated to by WebBrowser1, we overload its Navigate-
Complete2 event. This event occurs when Internet Explorer has successfully (or
unsuccessfully) finished trying to navigate to a page opened through the explicit
Navigate() method or by clicking on a link.

286 The Software Vulnerability Guide



Private Sub WebBrowser1_NavigateComplete2(ByVal pDisp As Object, URL As

Variant)

txtAddressbar.Text = URL

If Not testsRunning Then

listHistory.AddItem (URL)

End If

End Sub

We do not update the history list if the NavigateComplete2 event happened while
tests were running. If we did this, the history list would grow forever as test cases
added new URLs to the bottom of the list and then tried to navigate to variations of
those URLs using forceful browsing techniques. In addition, we update the address
bar’s text to contain the URL, because the browser does not do this automatically.

To “Gather Links” from the currently loaded page, we use the links collection
within the Document Object Model. This allows us to programmatically obtain all
of the links without parsing the HTML associated with the page. While this does
not get all links (specifically, dynamic links and those within Java applets and Ac-
tiveX controls), any static links within the page are contained in this collection. We
iterate across these links in response to the btnGatherLinks button press and add
them to the history list.

Private Sub btnGatherLinks_Click()

' Document.links is an array of all the links within

' the document

For x = 0 To WebBrowser1.Document.links.length - 1

listHistory.AddItem (WebBrowser1.Document.links(x))

Next

End Sub

Clearing the history list is relatively straightforward. We just overload the but-
ton’s click event and add the code to empty the list control.

Private Sub btnClearHistory_Click()

listHistory.Clear

End Sub

Running the Tests

Because our testing is event driven (individual tests are launched and analyzed in
response to Timer and DocumentComplete events), we need some global variables to
keep track of where we are in the testing.

Forceful Browsing 287



Dim browserReady As Boolean

Dim testsRunning As Boolean

Dim urlIndex As Integer

Dim testIndex As Integer

Dim resultsString As String

The browserReady variable is set to false each time we start to navigate to a new
page and set to true each time a document is completely loaded within the browser.
Because we can only communicate asynchronously with the Internet Explorer
control, this prevents the test apparatus from trying to start a new test before the
previous one is finished. The testsRunning variable is set to true if we’re running
tests and false if we’re not. The code associated with the “Test!” and “Stop” buttons
set and unset these, and the test code uses them to determine whether tests are run-
ning or not. urlIndex is an index into the history list. It tells us what item within the
history is currently being tested. Likewise, testIndex tells us which forceful brows-
ing technique is being tried. The resultsString string stores the results of the test-
ing in report form. This is displayed to the user when testing is completed.

Starting and stopping tests is relatively straightforward. The system launches
tests in response to a timer event. To start testing, we need to enable the timer. Once
the timer is running, it begins performing tests when the next Timer event occurs.
Because of this, all we need to do to start testing is clear the results string, reset the
indices urlIndex and testIndex, and set testsRunning to true.

Private Sub btnTest_Click()

ClearResults

Timer1.Enabled = True

testsRunning = True

urlIndex = 0

testIndex = 1

End Sub

To stop testing, we set testsRunning to false and disable the timer. We also need
to set browserReady to true, in case we were in the middle of a navigation when the
button was clicked. We use PrintResults to display the test results in the browser
window.

Private Sub btnStop_Click()

testsRunning = False

Timer1.Enabled = False

browserReady = True

PrintResults

End Sub
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Most of the action takes place in the timer event handler. This handler is called
once per second when tests are running. Within this one-second window, we need to
do two things: determine whether the last test passed or failed and queue the next test. 

Before doing this, we perform some “sanity” checks. If testsRunning is false, the
user clicked the “Stop” button in between timer events. In this case, we exit, with-
out waiting to analyze the results of the last test. If browserReady is false, Internet Ex-
plorer failed to completely navigate to the previously supplied URL within our one-
second window. If this is the case (and often is when remote servers are involved),
all we can do is wait another second and hope for the best.

For every test except the first one, we want to analyze the results of the previ-
ous test to determine whether it passed or failed. To do this, we obtain the HTML
code to the page from the Document Object Model. The property Document.
body.innerhtml contains this. We start by assuming that the navigation succeeded.
If it did, we don’t know what the page contents should look like. On the other hand,
if we failed to navigate to the page, we should get an HTML error message back. We
compare the page contents to the most common HTML error codes:

400 Bad Request
401 Unauthorized
403 Forbidden
404 Not Found
500 Internal Server Error
501 Not Implemented

If we find one of these codes in a page, navigation likely failed, and we report
this in the log. A successful navigation doesn’t necessarily imply a vulnerability, but
a failed one likely implies that there wasn’t one. 

The nextURL function obtains the next URL to be tested. If this function instead
returns the code string, “DONE,” we have evaluated the last test case. This is nec-
essary because we need to ensure we evaluated the results of the very last test case
before we print the results. If we’re “DONE,” we call PrintResults to display the re-
sults string. Otherwise, we queue the next URL to be tested.

Private Sub Timer1_Timer()

' if the tests aren’t running, don’t bother to

' handle this event

If Not testsRunning Then Exit Sub

' if the browser is not ready, we need more time

If Not browserReady Then Exit Sub

' determine whether the last test passed

Forceful Browsing 289



' note: we don’t need to do this if we’re on the

' very first test

If Not (urlIndex = 0 And testIndex = 1) Then

pageText = WebBrowser1.Document.body.innerhtml

succeeded = True

If InStr(pageText, "400") Or InStr(pageText, "Bad Request")

Then succeeded = False ' bad request

If InStr(pageText, "401") Or InStr(pageText, "Unauthorized")

Then succeeded = False ' unauthorized

If InStr(pageText, "403") Or InStr(pageText, "Forbidden") Then

succeeded = False ' forbidden

If InStr(pageText, "404") Or InStr(pageText, "Not Found") Then

succeeded = False ' not found

If InStr(pageText, "500") Or InStr(pageText, "Internal Server

Error") Then succeeded = False ' internal server error

If InStr(pageText, "501") Or InStr(pageText, "Not Implemented")

Then succeeded = False ' not implemented

If Not succeeded Then

RecordResult ("FAIL: " + WebBrowser1.LocationURL)

Else

RecordResult ("SUCCESS: " + WebBrowser1.LocationURL)

End If

End If

' fetch the next url

URL = nextURL

' if we’re done, stop the test

If URL = "DONE" Then

testsRunning = False

PrintResults

' otherwise, navigate to the next url

Else

browserReady = False

WebBrowser1.Navigate (URL)

txtAddressbar.Text = URL

End If

End Sub
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The nextURL function is responsible for composing the URL string to be tested.
To do this, it first truncates the working URL (obtained from the history list) to its
directory path name. The getURLPath (described in the following) does this. It then
appends one of the forceful browsing test strings, based on the test index number.
In the event that we’ve already tried the final test string for this URL, we move on
to the next URL. Likewise, if we’ve tried everything for every URL, we return
“DONE” as a code to the test event handler to stop testing and print the results. The
test strings are taken from the “Googling for Hidden Files” sidebar in this chapter.

Private Function nextURL() As String

' if testIndex > number of tests, get the next url

If testIndex > 16 Then

testIndex = 1

urlIndex = urlIndex + 1

End If

' if we found the last url, send a code to

' stop the test

If urlIndex > listHistory.ListCount - 1 Then

nextURL = "DONE"

Exit Function

End If

baseURL = getURLPath(listHistory.List(urlIndex))

Select Case testIndex

Case 1:

' try to browse up one level

nextURL = baseURL + ".."

Case 2:

' try to browse up two levels

nextURL = baseURL + "../.."

Case 3:

' try to browse up to the root

nextURL = baseURL + "../../../../../../../.."

Case 4:

' try to browse to admin.asp

nextURL = baseURL + "admin.asp"
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Case 5:

' try to browse to config.asp

nextURL = baseURL + "config.asp"

Case 6:

' try to browse to password.asp

nextURL = baseURL + "password.asp"

Case 7:

' try to browse to admin.aspx

nextURL = baseURL + "admin.aspx"

Case 8:

' try to browse to admin.pl

nextURL = baseURL + "admin.pl"

Case 9:

' try to browse to config.pl

nextURL = baseURL + "config.pl"

Case 10:

' try to browse to admin.cfm

nextURL = baseURL + "admin.cfm"

Case 11:

' try to browse to /etc/passwd

nextURL = baseURL + "../../../../../../../etc/passwd"

Case 12:

' try to browse to .htaccess

nextURL = baseURL + ".htaccess"

Case 13:

' try to browse to .htpasswd

nextURL = baseURL + ".htpasswd"

Case 14:

' try to browse to miniserv.pl

nextURL = baseURL + "miniserv.pl"

Case 15:

' try to browse to admin/

nextURL = baseURL + "admin"
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Case 16:

' try the URL itself (for replay attacks)

nextURL = listHistory.List(urlIndex)

End Select

testIndex = testIndex + 1

End Function

The getURLPath function truncates a URL to return only its path, without file-
name or CGI parameters. To do this, we search backward from the end of the
string, looking for the first “/” character. 

Private Function getURLPath(URL As String) As String

pos = Len(URL)

While pos > 0 And Mid$(URL, pos, 1) <> "/"

pos = pos - 1

Wend

getURLPath = Mid$(URL, 1, pos)

End Function

The remaining functions within ForcefulBrowse deal with processing the re-
sults. We have chosen to implement a very simple results report, which displays
“SUCCESS” or “FAILURE” and the URL name for each test case run. This report
is loaded into the WebBrowser control upon test completion for the user to review.

Private Sub RecordResult(s As String)

resultsString = resultsString + s + Chr$(13) + Chr$(10)

End Sub

Private Sub ClearResults()

resultsString = "Test Results" + Chr$(13) + Chr$(10)

resultsString = resultsString + "——————" + Chr$(13) + Chr$(10)

resultsString = resultsString + Chr$(13) + Chr$(10)

End Sub

Private Sub PrintResults()

WebBrowser1.Document.body.innertext = resultsString

End Sub
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Running ForcefulBrowse

To find replay attacks and hidden admin pages within your site, follow these steps
in ForcefulBrowse:

1. Navigate to each page within your application. Allow the history list to
record the URLs of each of these pages.

2. Press “GatherLinks” after navigating to a page. This stores the links within
the page in the history list.

3. Log out of your application. This should prevent replay attacks from work-
ing. If a URL within the site is still accessible after logging out, Forceful-
Browse catches this.

4. Click the “Test!” button. You then observe the browser control trying to
navigate to each of the pages within the application, as well as the hidden
admin pages, password files, etc.

5. Review the results. A “SUCCESS” means ForcefulBrowse succeeded in
navigating to the page.

Figure 19.3 illustrates the results of ForcefulBrowse on our test Web site, 
Flowerhacker.com. Note that it discovered the hidden admin page, admin/.

FIGURE 19.3 Using ForcefulBrowse on FlowerHacker.



PREVENTING FORCEFUL BROWSING

Here are some tips for avoiding forceful browsing attacks in your Web applications:

Check the HTTP_REFERER environment variable for a sane value, and return an
error on a referrer you’re not expecting. If a page or CGI is supposed to be ac-
cessible only by logging into your site, the referrer should be another page
within your site. Be sure to cancel the session variable and log the user out, just
to be safe. It is possible to spoof the HTTP_REFERER; a sophisticated attacker
knows how to do this. However, it is significantly more difficult to do this in an
SSL-encrypted session.
Whenever possible, use the Web server’s authentication, not your own. HTTP
basic and digest authentication (generally) prevent attackers from accessing a
CGI to which you haven’t given them permission. In Apache, you can have
your application’s add user routine dynamically update the .htaccess files
when a user is added. Keep all administrator pages in a directory that is not ac-
cessible to ordinary users. If possible, use the REMOTE_ADDR variable to limit ad-
ministrator CGIs to the IP addresses of legitimate administrators, or use a
firewall or virtual private network (VPN) to limit access.
Parse parameters if they are used to access a file. The best way to prevent force-
ful browsing to another directory is to remove directory characters (“/” and
“\”) from the parameters. Be sure to parse URL-encoded and Unicode-encoded
variations of these characters. If the parameter must contain directory names,
use chroot() to prevent browsing past the root directory of the Web site.
Avoid common names for admin pages. These include “admin.php,” “admin.
aspx,” “admin/,” “test/,” and variations.
Expire the session variable as quickly as is practical for your application. Con-
sider turning down the default value of half an hour or 24 hours on application
server platforms that have a default value. Keep track of the REMOTE_ADDR asso-
ciated with the session variable. If it changes, expire the session. Cancel session
variables when a user logs out.
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Summary Sheet—Forceful Browsing

Problem:

Unlike ordinary Web server requests, CGI programs have full access to the
filesystem of the machine on which they run. Tampering with the URL and CGI
parameters can be used to force the Web server to return a page to which the at-
tacker does not ordinarily have access. Additionally, the filesystem permissions
do not necessarily protect a non-administrative user of a Web application from
accessing administrative features of the site. It is the application’s responsibility
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to prevent this. Lastly, the use of session variables in hidden fields and URLs
could allow an attacker to “replay” that session from another machine.

Potential Impact:

An attacker could access the administrative functions of a Web site as a non-
administrative user. Additionally, he might be able to read arbitrary files on a
machine, or access functions of a Web site without logging in. In some cir-
cumstances, forceful browsing could be used to cause transactions to take place
multiple times, or to modify and delete files on the server.

Habitat:

CGI programs running on a Web server are susceptible to this vulnerability.
Homemade CGI platforms might be more vulnerable than commercial appli-
cation servers, though the potential exists for this vulnerability to occur on all
servers.

Tools You Need to Find It:

A Web browser is all that is needed to find forceful browsing vulnerabilities,
though a Web replay tool and spider make finding them easier.

How to Look for It:

Save the URLs from an administrative session and attempt to replay them. 
Insert directory browsing commands such as “../” and “\” into URLs and CGI
parameters. Replay URLs and saved pages using session variables from a dif-
ferent machine.

Symptoms of Failure:

The program allows a non-administrative user to access an administrative
page. The program allows a user to access protected content without logging in.
The program can access and return the contents of an arbitrary file.
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20

W
eb applications work by passing information from a Web browser on a
user’s machine back to a Web server and vice versa. To return the right
content, the Web server is often sent a wide array of information. The

first is the GET request in the HTTP header that instructs the server on which page
to retrieve. Quite a bit of information is encapsulated in this header, including the
page that referred the user to the requested page, the type of Web browser request-
ing the page, and several other pieces of information. In addition, if that Web
application has previously stored values on the client in a structure called a cookie,
then that information is sent to the server as well. Still, more data is being trans-
mitted. Parameters entered by a user on one Web page—through a Web form, for
example—are sent to another Web page by being transmitted to the Web server.

All of this data originates on the client’s machine, which means that the user has
complete control of these values and can change them arbitrarily before they are sent
back to the Web server. For example, consider the Web page shown in Figure 20.1.

In This Chapter

Cookie Values
Form Data
Query Strings
HTTP Header Tampering
Finding This Vulnerability
Fixing This Vulnerability
References



298 The Software Vulnerability Guide

FIGURE 20.1 We see a Web form that asks the user for a username and pin.

In this figure, we see a Web form that asks the user for a username and pin. If
we look at the source for the Web page, we can see that our responses are sent to the
page “loginprocess.asp” using the POST method:

<form name=”form0” method=”POST” action=”loginprocess.asp”>

You have two methods for passing form data to the server: GET and POST.
Using the GET method, the form data is actually contained within the URL and is
readily exposed to the user. Using POST, that information is sent in the HTTP



request to the server after the HTTP header and is not readily visible by the user
without the appropriate tools.

If we then enter the username “test” with pin “case”, the following information
is sent to the Web server:

POST /portfolio.asp HTTP/1.0

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-excel, application/vnd.ms-powerpoint,

application/msword, application/x-shockwave-flash, */*

Referer: http://192.168.135.129/index.html

Accept-Language: en-us

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR

1.0.3705; .NET CLR 1.1.4322)

Host: 192.168.135.129 

Cookie: PREF=ID=0d12a6f152d:Locale=815608

Content-Length: 18

Pragma: no-cache

Connection: keep-alive

Acct=test

Pin=case

Let’s take a minute to look at each line of this:

POST /portfolio.asp HTTP/1.0

tells the Web server what type or request—in this case, POST—is being made, the
page being requested, and the version of the HTTP (HyperText Transfer Protocol)
being used. Several types of requests can be made, namely GET, POST, PUT,
DELETE, HEAD, TRACE, CONNECT, and OPTIONS, along with non-universally
sanctioned extension methods. By far the most common used to request a page are
POST and GET. GET does what it sounds like—it requests, or “gets,” a specific
Web page. POST, on the other hand, is designed to “post” information back to a
specific page (from a Web form, for example). POST requests typically contain ad-
ditional information after the HTTP header, which contains data from the previous
page such as values from a form.

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-excel, application/vnd.ms-powerpoint,

application/msword, application/x-shockwave-flash, */*
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tells the Web server which media types are acceptable for response

Referer: http://192.168.135.129/index.html

tells the Web server which page (URI) this request was made from. This is the page’s
“referrer” although it is misspelled in the protocol. The Referer field is often used
to verify that form data was received from the appropriate Web page and not sim-
ply constructed by a Web page at a different location containing a modified version
of the form. While this is a common check done on the server side, it is trivially
bypassable by editing the header information of the request before it is sent. Re-
member, any data sent from the client can be manipulated.

Accept-Language: en-us

This limits the response of the Web server to a set of preferred languages—in
this case, U.S. English.

Content-Type: application/x-www-form-urlencoded

This field specifies the type of data being sent to the recipient. In this case, URL
encoded form data is being sent.

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR

1.0.3705; .NET CLR 1.1.4322)

The User-Agent request-header field contains information about the browser or
application making the request. The field can contain multiple product values and
also more specific sub-details about the requesting application. In this particular
request, the browser has included its type (Mozilla/4.0 compatible), its name and
version (MSIE 6.0), the type and version of the operating system (Windows NT
5.1), and the versions of the .NET Common Language Runtime (CLR) installed.

Host: 192.168.135.129 

The Host request-header field specifies the server and port number of the re-
source being requested. 

Cookie: ID=0d12a6f152d

Jnlnknl

Pragma: no-cache



The Pragma field has several options that relate to the content. The “no-cache”
directive tells the browser to not cache the page’s contents and always look to the
server for the current version of the page.

Connection: keep-alive

The Connection field allows the server to set options for a particular connection. 

Acct=test

Pin=case

This is the POST data entered into the form and passed along to the Web
server.

In each case, this data was generated by the browser on the client. Any data on
the client can be manipulated, and this should not be trusted to make security de-
cisions. Additionally, no data constraints enforced on the client should be assumed
to be in place, including header information, cookie values, and user-entered form
data. In this chapter we consider the four types of data transmitted to the Web
server—cookie values, form data, query strings, and HTTP header information—
and the security concerns with each.

COOKIE VALUES

Cookies are small text files that are saved on a user’s machine to store information
from a Web site. Cookies have become a popular way for a Web application to
maintain “state” and keep track of user-specific information. For example, a
common cookie use is to store a user ID for a specific Web site. This cookie value
is initially set by the site and stored on the user’s machine. From then on, every time
that user goes to that Web site, the browser checks the machine to see if a cookie has
been set for that domain, and if so, it sends the cookie data to the Web server as part
of the HTTP header. Several vulnerabilities can result here. The first and most ob-
vious is the storing of sensitive user information within the cookie itself. If another
user then has access to the client machine, this cookie data can be stolen. A simple
scenario to consider is a Web application that automatically logs users in based on
a user ID stored in a cookie. If this ID information is compromised, an attacker can
potentially impersonate that user and have access to his account.

A related issue is the tampering of data stored in cookies. Consider, again, the
example of a Web site that logs a user in based on an ID stored in the cookie. An at-
tacker could easily iterate through several combinations of possible user IDs and
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potentially gain unauthorized access to other user accounts. Another issue we ran
into recently involved storing the price of items for an e-commerce site in cookies.
This particular vendor would allow users to browse the site for items and then add
selected items to a virtual shopping cart. The application kept track of what items
were stored in the cart by storing their item IDs and corresponding prices on shop-
pers’ machines in cookies (a phenomenally bad idea). The attack vector here is
simple: set an arbitrary price for any item you want.

The issue here is trust. Data stored on the client should never be used to make
critical security or business logic decisions because of its inherent susceptibility to
manipulation.
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PROTECTING YOUR CUSTOMER’S INFORMATION: 
YOUR RESPONSIBILITY

In 2003, California passed an identity theft prevention law that, among other
things, requires companies that do business with California citizens to disclose
security breaches that might have resulted in loss of a customer’s confidential
information. Vendors that fail take reasonable precautions to protect confi-
dential information, including credit card numbers and other personally iden-
tifiable information, from access by unauthorized persons can be subject to
fines, lawsuits, and loss of business. 

In April of 2004, the State of New York fined New York City-based Barne-
sandNoble.com $60,000 for exposing customer data through a flaw in their Web
site. Personal information (but not credit card numbers) could be accessed,
and purchases could be made against another person’s account. As best we can
discern from descriptions of the bug (including an article on InternetNews.com
[Naraine04]), this flaw was a simple parameter tampering vulnerability.

FORM DATA

When a Web page accepts data from a user, it can go about filtering it in several
ways. A common approach is to use JavaScript running on the client machine to
validate data length, content, and type. For example, one could implement such
controls to attempt to prevent an attacker from launching a SQL injection attack
through the browser by writing the following JavaScript code:

checkval=new RegExp("[\-\'\;]");

function validate(){

if (checkval.test(form0.Acct.value)){ 



alert("Account names and passwords should only contain

numbers and letters");

event.returnValue=false;

}

if (checkval.test(form0.Pin.value)){ 

alert("Account names and passwords should only contain

numbers and letters");

event.returnValue=false;

}

}

and calling that function when the form is submitted:

<form name="form0" method="POST" onsubmit=validate();

action="loginprocess.asp">

Thus, whenever we enter the characters “;”, “’”, or “-”, an error message is
raised as shown in Figure 20.2.
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FIGURE 20.2 Whenever we enter the characters “;”, “’”, or “-”, an error
message is raised.



The issue here is that this check is done on the client side and can easily be
bypassed by an attacker. When ensuring the security of data being posted back to
the server, it is critical that validation be done on the server. Another issue is data
length. A form field can be constrained in HTML, but again this is a constraint
enforced by the client that can easily be removed.

Another potentially thorny issue with forms is the use of hidden fields. Hidden
fields are exactly what they sound like, form fields that hold values that are com-
pletely hidden from view of the user (unless we view the Web page source). Hidden
fields in and of themselves are not dangerous, but they are often used by Web de-
velopers to transmit values that are assumed to be unalterable by users. 

Consider the Web page shown in Figure 20.3. Here we see a “Testimonials”
page where users can share their experiences about the company. The testimonials
can later be reviewed by the company for possible posting on the Web site. If we
take a look at the source for this Web page, however, we can see the hidden field
“approved” with value “no” (Figure 20.4). 
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FIGURE 20.3 “Testimonials” page where users can share their
experiences about the company.

The data in the “comments” field is JavaScript and should obviously not be ap-
proved for posting. One could easily assume, however, that the data entered here is
stored in a database and that an approval flag exists that indicates whether or not a
particular testimonial has been reviewed and approved for publication on the Web



site. By saving the Web page and changing this value to “yes,” we can circumvent
this process and “approve” the testimonial, which then gets automatically posted to
the site, as shown in Figure 20.5.
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FIGURE 20.4 The hidden field “approved” with value “no”.

FIGURE 20.5 We can circumvent the process and “approve” the
testimonial, which then gets automatically posted to the site.



Public vulnerability databases such as BugTraq and CERT are rife with hidden
field manipulation vulnerabilities on commercial Web sites. Don’t let your site end
up there.

QUERY STRINGS

We’ve all seen those long URLs that have the name of a Web page followed by a se-
ries of “?”, “&”, and “%” characters. The following is an example from Google
when we did a search for “software vulnerability guide”:

http://www.google.com/search?hl=en&q=software+vulnerability+guide

The portion in boldface is referred to as the query string and contains informa-
tion sent from the Web page back to the server. On the server end, the data in this
string can easily be parsed and used to return the appropriate response. This URL
can be hard-coding on a Web page or constructed by some client-side script dy-
namically based on data a user has entered into a form. When using a form, all data
entered is automatically placed into a query string if the GET method is specified in
the form tag.

The query string is interesting from a security standpoint because again the
data here is completely at the mercy of the user. Consider the more complicated
query string shown here:

http://192.168.1.1/a.asp?option=C&V=4&ID=4987201&priv=u

A query string with a variety of options is ripe for an attacker to tamper with.
A common technique is to tamper with ID numbers and attempt to access another
user’s account. For some sites we’ve found that an amazing number of trust as-
sumptions are made on data sent via the query string. Remember, anything that
originates from the user should not be trusted.

HTTP HEADER TAMPERING

When a browser sends a request to a server for a Web page, it sends along with it a
significant amount of information from the client. Earlier in this chapter we looked
at some of the constituent parts of the HTTP header, but a few can have a big im-
pact on security. One of the most interesting is the Referer field. This field tells the
server which Web page is making the request for content. For example, if a user
clicks on a link on the page www.herbertthompson.com/index.htm that points to the
page www.scottchase.com/index.htm, the Referer tag would be www.herbertthomp-
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www.herbertthompson.com/index.htm
www.scottchase.com/index.htm
www.herbertthompson.com/index.htm


son.com/index.htm. If a user is required to go through a series of pages—filling out
a multi-part form for example—a common technique is to look at the Referer field
and check to make sure that the user is coming from the correct page. The issue
here is that the HTTP header information originates from the client and can easily
be manipulated. Thus, a Web page that is saved on the local machine and tampered
with—to remove some JavaScript validation, for example—can be made to look
like it’s on the server at its original location.

FINDING THIS VULNERABILITY

Finding these types of issues requires a thoughtful inspection of your Web site.
Every time data is passed back to the server, ask yourself what assumptions are
being made about that data and how are those assumptions enforced in code. The
only filtering mechanisms that can be trusted are those that are securely imple-
mented on the server. A tool called FuzzBrowse can help test for these issues quickly
and easily. FuzzBrowse is a Web browser that allows you to look at a Web page and
its source code and dynamically change the source code as you are browsing. We
developed FuzzBrowse for use internally at Security Innovation®, but have made a
version available at www.scottchase.net/FuzzBrowse/.

Consider Figure 20.6, which shows FuzzBrowse looking at an online flower
shop. This page allows users to pick from a variety of items and then specify and
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FIGURE 20.6 FuzzBrowse looking at an online flower shop.

www.herbertthompson.com/index.htm
www.scottchase.net/FuzzBrowse/
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order quantity. Figure 20.7 shows the source to this page. Highlighted is the
JavaScript validation code that is checking to see that the user has put in a positive
quantity less than 99. FuzzBrowse allows us to dynamically delete this JavaScript
code and then feed a bad value into the page such as a quantity of –50. This value
is then sent back to the server without the benefit of client-side validation, and we
can test to make sure that it is indeed restricted on the server. FuzzBrowse can also
be used to tamper with hidden fields and manipulate form restrictions. 

FIGURE 20.7 The source to the page from Figure 20.6.

FIXING THIS VULNERABILITY

Fixing these vulnerabilities boils down to extending minimal trust to the Web
browser and user. For example, no one should ever be allowed to gain access to sen-
sitive account information on a Web site based solely on an ID stored in a cookie.
Cookies are great for tailoring Web content to a user or for remembering prefer-
ences but should not be the sole means of authentication to a system. The rule of
thumb is, trust but verify. The same holds true for data that is obtained from a
query string or a form. Any client-side checks on that data must be backed up with
server-side validation.
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Summary Sheet—Parameter Tampering, Cookie Poisoning, 
and Hidden Field Manipulation

Problem:

Data sent from a Web page back to a server is often trusted by the server. This
trust might exist because of some client-side filtering done through JavaScript,
restrictions placed on a field in HTML, or hard-coded hidden form fields. The
issue is that any of these controls can be circumvented on the client, and data
must be constrained on the server-side. Problems also occur when sensitive
information is stored by the Web application in a user cookie. Two issues are
apparent here. The first is that this data is potentially exposed to any user on the
machine, and the second is that a malicious user can tamper with cookie data
to potentially escalate privilege in the Web application or exploit the applica-
tion’s trust of this data.

Potential Impact:

Information disclosure, privilege escalation, and the potential to circumvent
data restrictions that could lead to buffer overruns, SQL injection, and other
vulnerabilities.

Habitat:

A wide variety of Web applications.

Tools You Need to Find It: 

Most of the time these issues can be found by removing client-side validation
controls and then manipulating data sent back to the server (long strings, es-
cape characters, etc.). FuzzBrowse, a tool available from the author’s Web site
at www.scottchase.net/FuzzBrowse/, makes checking these types of issues easier.

How to Look for It: 

For Web pages, look for the use of hidden form fields to store data. Try to rea-
son about how this data is used and if any security relevant decisions are being
made based on its value. Also look for client-side validation scripts that might
check data type or length. Remove these controls, enter previously forbidden
values, and see if these restrictions are also enforced on the server. It is also im-
portant to be keenly aware of what data is being stored in cookies. This data
should be screened for sensitive user information as well as checked for values
that are used to automatically authenticate a user or in some business relevant
way (such as storing the price of an item for an e-commerce site). Be suspicious
of all data that originates from a user’s machine; it is under the user’s control.

www.scottchase.net/FuzzBrowse/
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Symptoms of Failure:

This is a broad class of vulnerabilities and as a result symptoms of failure can
vary wildly. When malicious data is entered into form fields, the results can
range from a server application crash to an ODBC error message (indicating
SQL injection potential). Once client-side validation has been removed, apply
the techniques in the other Web chapters of this book and look for their re-
spective failure symptoms.

Famous Failures/Exploits:

CAN-2004-1209: VeriSign Payflow Link, when running with empty Ac-
cepted URL fields, does not properly verify the data in the hidden
AMOUNT field, which allows remote attackers to modify the price of the
items that they purchase.
CAN-2003-0588: admin.php in Digi-News 1.1 allows remote attackers to
bypass authentication via a cookie with the username set to the name of
the administrator, which satisfies an improper condition in admin.php that
does not require a correct password. 
CVE-2000-0720: news.cgi in GWScripts News Publisher does not prop-
erly authenticate requests to add an author to the author index, which al-
lows remote attackers to add new authors by directly posting an HTTP
request to the new.cgi program with an addAuthor parameter and setting
the Referer to the news.cgi program.

www.internetnews.com/ec-news/article.php/3347761
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SQL Injection Vulnerabilities21

A
pplications that operate on the Web often interact with a database to persis-
tently store data. The way that Web application developers typically inter-
face with a database is by constructing “queries” that manipulate or retrieve

data stored in the database. For example, if an e-commerce application needs to
store a user’s credit card number, they typically retrieve the data from a Web form
(filled out by the customer) and pass that data to some application or script run-
ning on the company’s server. This application likely constructs a query to insert
this data into a database. The dominant language that these database queries are
written in is SQL, the Structured Query Language. (Table 21.1 describes some com-
mon commands in SQL. For a better reference, consult [Kline00].)

In This Chapter

Exploiting Sites Through SQL Injection
Finding This Vulnerability
Fixing This Vulnerability
References
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Consider again the e-commerce application that needs to store a user’s credit
card information into a database. In SQL, the query is likely constructed using 
the data entered by the user. If the names of the form input fields are UserName and
CreditCard for the user’s name and credit card number, respectively, the SQL query
to put that data into the Records table of the database might look something like
this:

Query1 = "INSERT INTO Records (Name, CardNum) VALUES ('" & \

Request.Form("UserName") & "','" & Request.Form("CreditCard") &

"')"

SQL Command Description

condition AND condition Used to intersect two conditions. Evaluates
to true if both conditions are true.

condition OR condition Evaluates to true if either condition is true.

EXEC master..stored_proceedure Executes a stored procedure.

SELECT columns FROM tables Retrieves data from a table where certain 
WHERE predicates conditions stated in predicates are met.

INSERT INTO table Appends data (adds new record) to a 
(column-1, column-2, ... column-n) table by putting the specified values into 
VALUES (value-1, value-2, ... value-n) the listed columns.

UPDATE table SET column = value Replaces the data in the record(s) defined 
WHERE predicates by predicates in the field specified by

column with the included value.

‘   ‘ Single quotes are used to hold individual
values.

; Semicolon is used to separate SQL queries
(for many database implementations).

— Used for several databases (e.g., MS SQL
Server) to treat everything after it as a
comment.

* Wildcard, meaning all.

TABLE 21.1 Common SQL Commands and Special Characters



Here we are using the syntax of VBScript to construct our query. The “&” sym-
bol concatenates our string, and Request.Form retrieves the value of the data entered
into the form by the user. This construction typically takes place on the server, out-
side of the reach of an attacker. If, for example, we entered the name “Joe Smith”
and a credit card number of “1234567890,” the preceding query would end up
looking like:

INSERT INTO Records (Name, CardNum) VALUES ('Joe Smith', 

'1234567890')

Consider, though, another rather odd credit card number a user might decide
to enter. If we were to enter a name, let’s say “Fred Smith”, with credit card num-
ber: “1'); EXEC xp_cmdshell 'del *.*'—”, our query would now read:

INSERT INTO Records (Name, CardNum) VALUES ('Joe Smith', '1'); EXEC 

xp_cmdshell 'del *.*'— ')

Those odd names, single quotes, and dashes that were entered are SQL com-
mands that have now been injected into the query string. Let’s take a look at what
this new query does when executed. First, the double dash (—) in SQL signals that
everything that follows it is a comment. Also, the semicolon concatenates two in-
dependent SQL queries. With this in mind, we are now executing two separate
queries. The first simply inserts a new record into the Records table with name “Joe
Smith” and credit card number “1”. The second, however,

EXEC master..xp_cmdshell 'del *.*'

executes the xp_cmdshell stored procedure, which in turn can execute arbitrary
commands on the server. In this case, our second query deletes all files in the
directory in which the database server’s key binaries are located. By default, in Win-
dows 2000 and XP running SQL Server, this is the \Program Files\ folder. We
could do much more devious things than this, however, like share out a directory
or spawn a remote shell. Even without using stored procedures, though, the fact
that we can directly manipulate the query string on the server is troubling. For
queries that return data to the user or check authentication, we can manipulate the
query string to access arbitrary records in a database or bypass authentication.
Table 21.2 describes some common table names that can be manipulated on dif-
ferent database servers.
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The key problem here is that user input is not validated on the server before it
is used in a query. Many Web developers rely on client-side validation to protect
against escape characters being entered by the user. Typically, a Web form is vali-
dated using JavaScript where characters such as single quotes are either stripped or
replaced using client-side routines before this data is passed back to the server. This
is the method of choice for many developers because the bulk of the work is done
on the client, thus increasing server performance. The following is a typical exam-
ple of JavaScript client-side validation of a form.

<SCRIPT>

checkval=new RegExp("[\-\'\;]");

function validate(){

if (checkval.test(form1.Acct.value)){ 

alert("Account names and passwords should not contain special

characters");

event.returnValue=false;

}

if (checkval.test(form1.Pin.value)){ 

alert("Account names and passwords should only contain numbers

and letters");

event.returnValue=false;

}

Microsoft SQL Server Microsoft Access Server Oracle

sysobjects MSysObjects SYS.ALL_TABLES

syscolumns MSysACEs
SYS.USER_TAB_COLUMNS

MSysQueries SYS.USER_OBJECTS

MSysRelationships SYS.TAB

SYS.USER_TABLES

SYS.USER_VIEWS

SYS.USER_CONSTRAINTS

SYS.USER_TRIGGERS

SYS.USER_CATALOG

TABLE 21.2 System Table Names in Some Common Database Servers
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}

.

.

.

<FORM name="form1" action="process.asp" method="post" 

onsubmit="validate();">

.

.

.

If illegal characters are included in either of the input fields, the user is pre-
sented with a warning and is forced to replace the offending characters. The criti-
cal flaw here is that this validation against SQL injection is done on the client. A
malicious user can easily circumvent this protection by saving the Web page and
commenting out the call to the validation routine. The attacker would then need to
include the full URL to the page that processes this data and simply reload saved
page in a browser. The modified HTML source is shown here:

<FORM name="form1" action="http://www.si-hackedbank.com/

process.asp">

Threats such as these can be avoided if user data is stripped of all SQL com-
mands and delimiters on the server side before it is used to construct a database
query.

A related problem that many Web sites have is the disclosure of information
through Open Database Connectivity Protocol (ODBC) error messages. Figure
21.1 shows a typical example. Once an attacker sees a screen such as this, he knows
it is likely that a SQL injection vulnerability exists. From this error message an
attacker gains a significant amount of information:

On the client or the server is some user-string validation or error-handling
routine that is either missing or incorrectly written. Conclusion: this weakness
can be exploited to change the SQL query on the server.
Database errors can reveal an amazing amount of information about the query
string that is being executed. By changing input to the form we can eventually
discover most or all of the query string on the server. The query string is likely
to include key table names and field names that can then be leveraged to mount
more complex and insidious SQL injection attacks.
Such errors reveal which database server is running on the back end and thus
make an attacker’s job easier by narrowing the techniques he uses. In this case,
we see that Microsoft’s SQL server is processing user data.



EXPLOITING SITES THROUGH SQL INJECTION

Typically, an attacker’s first clue that a Web site is vulnerable to SQL injection is an
error message being thrown. When a query is crafted so that a set of data is returned
to the user on a subsequent page, then an attacker can typically manipulate the SQL
query so that additional information can be returned through the browser. If an
ODBC error message is returned indicating that the server is running Microsoft’s
SQL, then an attacker is likely to attempt to run a stored procedure (discussed ear-
lier in the chapter). For example, consider the Web site shown in Figure 21.2 that
demonstrates a typical username and password field. 
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FIGURE 21.1 ODBC error messages like this one reveal information that is helpful to
attackers.



Entering the string ' and into the username field results in the error message
shown in Figure 21.1. An attacker could now proceed in several ways. By default,
SQL Server 2000 allows the execution of many stored procedures, and therefore,
one option is to execute one of these by appending an additional command to a
SQL statement. By entering the following string in the “Account” field, a user could
potentially do a directory listing of the C: drive and save it to a text file in a typically
accessible location.

'; EXEC master.dbo.xp_cmdshell 'cmd.exe /c dir c:\ >

C:\inetpub\wwwroot\dir_c.txt'--

Execution of the xp_cmdshell stored procedure requires that the Web applica-
tion is connecting to the database server as the “sa” user, which has full control over
the database. This is a common yet incredibly insecure practice for Web develop-
ers because it violates the principal of least privilege: connect with the minimum
privileges necessary to accomplish the task. All that would be required to view this
output is to browse to the file http://www.si-hackedbank.com/dir_c.txt. If stored
procedures are not enabled or if the target were a different database server, then the
next step would be to do some reconnaissance on the tables/fields of interest. Table
21.2 shows the names of the tables that typically contain names and associated
columns for various database servers. To display these names, we must union the
current query with one designed to return the information necessary.
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FIGURE 21.2 Information from login screens is usually validated against
information stored in a database.

http://www.si-hackedbank.com/dir_c.txt


To continue with the example application, if a legitimate username/pin is en-
tered, then all of the records are displayed from that user (see Figure 21.3). 
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FIGURE 21.3 When a correct username and password is
entered, this Web application shows the user’s account
information.

Now, instead, we want this page to return some data from the syscolumns table,
which contains information about other tables in the database. The names of the
tables are in the name column of the sysobjects table. To execute our query, we
must use the UNION command to join two SELECT commands: the one present
on the page originally and our new query on syscolumns. To use the UNION
operator, we have to select the same number and type of elements in each query.
For example, if we enter the string: 

' union all select name,0,0,0,0 from sysobjects--

into the “Account” field, the error message in Figure 21.4 is returned.
We can thus determine both the number and type of parameters in the 

original query. An attacker might be interested in many things. One of these is a list
of the tables and whether or not they were created by the user. The name column of
sysobjects contains table names, and the xtype column reveals which user created
the tables. In the running example, we can list the tables using the following input
in the “Account” field:

' union all select name,xtype,0,0 from sysobjects--



The result (Figure 21.5) is a list of all tables and their corresponding type. Of
particular interest is likely to be the Records table because it is the only one created
by a user (indicated by an xtype of U). 

By applying techniques similar to this, an attacker could now view all data con-
tained in the database. Using the INSERT and UPDATE commands, an attacker
can also make alterations to the data.

FINDING THIS VULNERABILITY

One of the most basic techniques for finding SQL injection vulnerabilities is to
enter SQL escape characters into input fields. A single quote is a good start. Next,
look for an error message to be returned. Messages like the one shown in Figure
21.4 mean that it’s highly likely that an attacker can manipulate the database or the
entire system by altering the SQL query. 
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FIGURE 21.4 This error message informs us that the number
of columns we entered needs to be different. Through trial
and error (usually within just a few attempts), these error
messages can reveal the combinations necessary to launch
our attack.
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The listing of Index.html shows the vulnerable implementation of client-
validated user inputs, which are then used directly in SQL queries shown in Process.
asp. Note that no validation of user input is performed on the server side (in
Process.asp). Such implementations can easily lead to server vulnerabilities because
a user can bypass client validation and thus manipulate the server-executed query
(see sidebar “Exploiting Sites Through SQL Injection” for details).

Index.html

<HTML>

<SCRIPT>

checkval=new RegExp("[\-\'\;]");

function validate(){

if (checkval.test(form1.Acct.value)){ 

alert("Account names and passwords should only contain numbers

and letters");

event.returnValue=false;

FIGURE 21.5 Manipulating the SQL query allows us to list
all tables in the database. This is usually all the information
we need to launch an effective attack.



}

if (checkval.test(form1.Pin.value)){ 

alert("Account names and passwords should only contain numbers

and letters");

event.returnValue=false;

}

}

.

.

.

<FORM name="form1" action="process.asp" method="post"

onsubmit="validate();">

.

.

.

<TD>Account</TD>

<TD><INPUT type="text" name="Acct" size="20"></TD>

</TR><TR>

<TD>Pin #</TD>

<TD><INPUT type="password" name="Pin" size="20"></TD>

.

.

.

</FORM>

</HTML>

Process.asp

<%@ LANGUAGE = VBScript %>

<%  Option Explicit %>

<%

.

.

.

QueryName = "SELECT * FROM Records WHERE Username = '" 

QueryName = QueryName & Request.Form("Acct") & "' and Pin = '" & 

Request.Form("Pin") & "'"

Set oRs = oConn.Execute(QueryName)

%> Your Records</p>

<TABLE border = 1>
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<%

Do while (Not oRs.eof) %>

<tr>

<% For Index=0 to (oRs.fields.count-1) %>

<TD VAlign=top><% = oRs(Index)%>&nbsp;</TD>

<% Next %>

</tr>

<% oRs.MoveNext 

Loop

%>

.

.

.

FIXING THIS VULNERABILITY

Index.html executes client-side validation and returns error messages to the user.
This is a good feature, but it is certainly not sufficient to protect this Web applica-
tion. Regardless of client-side validation, data must be validated on the server
before it is used in a query. In the following we show one example of how to im-
plement server-side validation in Process.asp.

Process.asp

<%@ LANGUAGE = VBScript %>

<%  Option Explicit %>

<%

.

.

.

'Create a parameterized command and set the active connection to the

'connection established

Set sqlcmd = CreateObject("ADODB.Command")

sqlcmd.CommandText ="SELECT * FROM Records WHERE Username=? and Pin

=?"

sqlcmd.ActiveConnection = conn

sqlcmd.CommandType = 1

sqlcmd.Prepared = true

'The CreateParameter function takes five parameters: name, type,

'direction, size, value 
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'type 200 is varchar string

'direction 1 is input parameter only

'for Username size is 32 and for Pin size is 8

Set sqlparam1 = sqlcmd.CreateParameter("Username", 200, 1, 32, "")

cmd.Parameters.Append sqlparam1

sqlparam1.Value = Request.Form("Acct")

Set sqlparam2 = sqlcmd.CreateParameter("Pin", 200, 1, 8, "")

cmd.Parameters.Append sqlparam2

sqlparam2.Value = Request.Form("Pin")

Set oRs = cmd.Execute

.

.

.

%>

The fixed example shows validation of form data on the server. Server-side val-
idation is essential for user-supplied data through the Web. By stripping escape
characters from user data, we can ensure that a user cannot manipulate the exe-
cuted SQL query.
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Summary Sheet—SQL Injection

Problem:

Web applications can be vulnerable to a malicious user crafting input that gets
executed on the server. One instance of this is an attacker entering Structured
Query Language (SQL) commands into input fields, and then this data being
used directly on the server by a Web application to construct a database query.
The result could be an attacker’s gaining control over the database and possi-
bly the server. Care should be taken to validate user input on the server side be-
fore user data is used.

Potential Impact:

End-user control over database information and possibly the database/Web
server.

Habitat:

Web applications that interface with a database. General applications that use
a database.
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Tools You Need to Find It: 

Web browser

How to Look for It: 

The idea is to get escape characters in data that is used by the Web application
to construct a database query. Queries are constructed usually to retrieve data
from a database, add data to a database, or change data in a database. Most of
the time, queries are created based on data entered by a user on a previous page.
To find this vulnerability, you need to force the Web application to construct
its query using user data in a way that can change how that query behaves. For
Web applications, data is passed from page to page or from a Web page to the
Web server using two primary methods: POST and GET. The GET method
shows user data in the URL, whereas POST passes data through the HTTP
header, which is not readily visible through a browser. Both methods are vul-
nerable and can be tested by entering SQL escape characters and watching for
database error messages. 

Symptoms of Failure: 

If you are successful at getting SQL delimiters into queries on the server, a good
indicator of application security failure is an error message being returned
through the browser that complains about bad syntax. Figure 21.1 shows an ex-
ample of what this might look like.

Famous Failures/Exploits:

CVE-2001-1053: AdLogin.pm in AdCycle 1.15 and earlier allows remote at-
tackers to bypass authentication and gain privileges by injecting SQL code
in the $password argument.
CVE-2002-0287: pforum 1.14 and earlier does not explicitly enable PHP
magic quotes, which allows remote attackers to bypass authentication and
gain administrator privileges via an SQL injection attack when the PHP
server is not configured to use magic quotes by default.
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Additional Browser
Security Issues

22  

A
s the Web browser has transformed from a simple hypertext tool into an
extensive application development platform, a number of features that
provide functionality outside the traditional “Web page” experience have

been added. The browser has been augmented even more as integration with the
operating system and windowing system has increased and as developers begin to
use the browser model even for purely client-side applications. This superset func-
tionality, which still contains HTML and its accessory technologies as its base, pre-
sents its own unique set of security issues.

In the previous chapters, we talked about vulnerabilities that are common to
most Web browsers and application programming paradigms. This chapter deals
with issues that are specific to a subset of browsers, especially Microsoft Internet
Explorer. Because that one application (IE) has, at the time of this writing, more

In This Chapter

The Domain Security Model
Unsafe ActiveX Controls
Spoofing of URLs in the Browser
MIME Type Spoofing
Uncommon URL Schemes
Browser Helper Objects



326 The Software Vulnerability Guide

than 90 percent of the market share for end user Web browsing, its special issues are
worth noting.

Since its original decision to integrate the Internet Explorer browser with Win-
dows 95, Microsoft has progressively increased interoperability between the
browser and the operating system and desktop programming paradigm. This has
lead to a number of developments that make it easier for programmers to program
using the Web browser as a base:

Through ActiveX controls accessible through JavaScript and VBScript,
browser-based applications can invoke any COM-compatible objects or appli-
cations present on the client system. This has several practical uses. First, Web
programmers can use these controls to launch common applications, such as
Word or Excel within the browser frame, creating a less “cobbled” appearance
and user experience when a Web application needs to interact with an object
associated with one of these applications. Because developers can write their
own controls, it also means that browser functionality can be extended by
pushing an ActiveX control down to the user’s machine and then invoking the
functionality within that control. Many common Web extensions such as
Macromedia Flash work in this fashion.
Because the MSHTML object has an exposed COM interface, application de-
velopers who want to integrate the browser into their desktop applications can
do this. As a result, many applications incorporate the browser into their 
application for file browsing, text viewing, online help, and easy to program 
dynamic forms.
Microsoft has added a number of proprietary URL monikers (for protocols
other than http://, ftp://, and mailto://) to accommodate online help, internal
browser functionality, and browser extensions. These monikers are generally
supported in the same fashion as the major ones within the browser.
Browser Helper Objects, designed to extend the functionality of Internet Explorer
for legitimate purposes, have been co-opted by spyware producers as a means of
controlling the victims’ browser and stealing their personal information.

Each of these extensions, together with numerous enhancements made to deal
with specific vulnerabilities, has made security within the modern browser decidedly
more complicated. In this chapter, we explore each of these issues in more detail.

THE DOMAIN SECURITY MODEL

One of the conveniences of browser programming in IE is its Document Object
Model (DOM). The DOM is a set of JavaScript objects that manipulate the browser
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and the pages loaded within it; it is generally possible to modify any attribute of a
page through the object model, as well as open, close, move, and resize windows;
prompt for input or file selection; and pop up message boxes. To protect against a
malicious page from one domain manipulating the objects of a page within another
domain, IE implements a domain security model. It is called the domain security
model because the security settings are determined based on the domain name en-
coded in the URL. The domain security model also protects against a variety of po-
tentially unsafe behaviors:

It prevents a malicious Web site from using “local” URLs, such as those with
the file:// moniker to manipulate local file system objects.
It limits the use of Java, JavaScript and ActiveX controls in certain domains
based on the user’s security settings.
It forces prompting for download of unsafe file types based on the user’s
settings.

The domain security model categorizes a URL as being in one of four “zones.” Fig-
ure 22.1 shows the settings dialog for these security zones within Internet Explorer.

FIGURE 22.1 The settings dialog for these security
zones within Internet Explorer.
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The “Local intranet” zone includes all URLs that reference files located on the
local machine or accessed through Windows networking within the same do-
main as the local machine. When the browser views a page in the local intranet
zone, its chief responsibility is to prevent the leakage of information accessible
through that zone back to the Internet. That way, a malicious script cannot be
used to steal user’s data off the drive.
The “Internet” zone is used for ordinary URLs that point to pages in other In-
ternet domains. The vast majority of sites are in the “Internet” zone. The key
security concerns of the browser in the Internet zone are to prevent access to
functionality that can read and retransmit contents of the local filesystem, and
to prevent manipulation of DOM objects across different domains.
The “Trusted sites” zone includes sites the user has given specific trust permis-
sions to bypass some of the domain security settings. These are typically either
intranet sites that don’t conform to the naming policy used by the domain se-
curity model that the user wants to give additional privileges to (for example,
if our own domain name were XYZLifeInsurance.com, we might assign URLs
belonging to our parent company, XYZHoldings.com the same behavior as in-
tranet sites, even though IE would see them as separate domains) or sites that
are used for automatic updates.
On the other hand, some sites might warrant extra precaution. IE gives the user
the ability to place these sites in a “Restricted sites” zone. The user can lock
down the security settings at a restricted site, for example, to prevent all Java,
JavaScript, and ActiveX, without imposing these restrictions on ordinary In-
ternet zone sites. The “Restricted sites” zone is typically used for untrustworthy
sites that a user needs to access anyway. For example, we use the “Restricted
sites” zone for some of the sites we use to download exploits and shellcode for
examination and testing. For some reason, we just don’t trust the people who
post exploits on the Internet with the ability to execute scripts on our machine.

A number of vulnerabilities are caused by Internet Explorer’s inappropriately
applying these security settings, or by attackers finding a way around them. An at-
tacker can often use these vulnerabilities to send a malicious e-mail or URL to a vic-
tim, which when opened, facilitates a file download, redirection to a malicious Web
site, or other such attack. The security researchers Liu Die Yu and Georgi Guninski
have discovered a number of these vulnerabilities, which are published on their Web
sites, http://umbrella.name/ (Die Yu) and www.guninski.com (Guninski).

UNSAFE ACTIVEX CONTROLS

As we mentioned previously, the browser has the capability to invoke any ActiveX
control installed on the system that has been marked “Safe for Scripting” or “Safe

www.guninski.com
http://umbrella.name/


for Initialization.” An ActiveX control, in turn, can perform any operation that is
allowable on the local computer, because it is just an executable program. Fre-
quently, vendors distribute ActiveX controls that are marked “Safe for Scripting”
but have the ability to programmatically access files on the local filesystem or con-
tain buffer overflow vulnerabilities. These controls essentially open a back door for
JavaScript running in the “Internet” zone to access the local filesystem and execute
arbitrary code. Controls should not be marked “Safe for Scripting” unless they do
not access the local filesystem in an arbitrary fashion and have been thoroughly
tested against buffer overflows and other kinds of input attacks.

SPOOFING OF URLS IN THE BROWSER

Remember how we said that the Document Object Model can be used to manipu-
late portions of the browser user interface as well as the documents within it? This
has led to a number of creative ways of “spoofing” URLs—making it appear as
though the URL in the address bar at the top of the page or in the status bar at the
bottom of the page is different from the URL that is actually loaded. An attacker
who wants to trick a user into entering personal information uses URL spoofing to
make his malicious site appear as though it is the legitimate site.

IE has contained a number of bugs over the years, many now fixed, that have
accommodated URL spoofing. The techniques include:

Embedding null characters or delimiters in the malicious URL. Older versions
of the browser would navigate to a URL such as http://www.anyonesbank.
com%01%00@hackerbank.com as though www.anyonesbank.com%01%00@
were just a username at hackerbank.com, but the user interface controls, after
converting the %01%00 to a Unicode null character, truncate the string to
www.anyonesbank.com. The result is that an attacker could fool an unsuspect-
ing user into thinking that hackerbank.com was really www.anyonesbank.com.
Using non-printable characters or spaces in URLs. A malicious Web site might
contain a URL that is composed of the “legitimate” site name (such as www.
ayonesbank.com) followed by many nonprinting characters and then the real
domain name (hackerbank.com).) In this case the browser UI displays the URL,
but it has so many spaces or nonprinting characters that the real domain name
is displayed outside the limits of the UI control.
Previously, a JavaScript could obtain a handle to the Document Object Model
of a page in a remote domain if that page was embedded in a frame within the
browser. In this case, the attacker’s site could actually load the legitimate site in
a frame, especially in a pop-up window that did not have a URL bar. JavaScript
within the attacker’s page could then read the values of form fields, such as
usernames and passwords, out of the child frame.
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Overloading of exit events. Overloading the exit event with code that causes an
infinite loop can prevent correct updating of the URL in the address bar. This
vulnerability existed in previous versions of the Opera Web browser.
Topographical attacks. A number of clever attacks involve creating images,
“chromeless” (borderless) windows, or Java applets that physically conceal the
real address bar with a fictitious one. These attacks work because the screen res-
olutions and browser geometry of many users are similar.

MIME TYPE SPOOFING

Multipurpose Internet Mail Extensions (MIME) is a standard means of encoding
attachments in e-mails so that they can be decoded and delivered to the proper ap-
plication. The MIME type is a string describing the data as text or binary, as well as
its contents. HTTP also uses MIME to transfer content contained in Web pages. For
example, the MIME type of an ordinary Web page is “text/html.” This type name
is transmitted along with the data in an HTTP reply.

Internet Explorer determines the default action for a file (displaying in browser,
saving to disk, launching a handling application, or launching the file as an exe-
cutable) based on a combination of MIME type and file extension. MIME spoofing
occurs when a malicious Web site tries to trick the browser into opening a file 
it shouldn’t by giving it a bogus MIME type. The attacker would usually try to
disguise a dangerous type, such as an .EXE, as a more innocuous type that can be
opened automatically in the browser. MS01-20 described a MIME spoofing
vulnerability in which IE incorrectly handled certain unusual MIME types; if an
attacker created an HTML e-mail containing one of these types, IE would launch
the attachment as though it were an executable without first prompting the user.

UNCOMMON URL SCHEMES

Internet Explorer supports a number of protocols and URL schemes beyond
HTTP. Sometimes these schemes, intended for use only by Microsoft or only on the
local machines, have unexpected consequences. Like ActiveX controls, they some-
times provide back doors that an attacker’s Web page can use to gain access to the
local filesystem or execute arbitrary commands.

Some of the more unusual ones include:

shell: This protocol is used by IE to load resources based on special “shell”
protocol names. A bug in the way IE handled security zones with this protocol
meant an attacker could execute malicious scripts in the local zone, where he
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could access arbitrary files. This bug has recently appeared in the Mozilla
browser as well.
mk: This protocol is used by IE to designate that the URL uses a protocol
moniker that is not in the default set and must be accessed by name. URL pars-
ing bugs with the mk: protocol could sometimes be used to execute malicious
scripts in the local zone.
hcp: This protocol is used by Microsoft Help and Support Center, the new
default Help application for the Windows shell. hcp: is implemented with
JavaScripts stored in resources within the application; some of these JavaScripts
contained errors that could allow an attacker who supplied a malicious URL to
execute arbitrary programs or delete files.
res: IE uses the res: protocol to access Windows resources within DLLs and
applications. Previously, some cross-site scripting vulnerabilities existed in
local JavaScripts accessible via res:, which an attacker could exploit.

All of the vulnerabilities described have been fixed previously or will be fixed
via Windows XP Service Pack 2. However, as IE has not removed support for these
protocols, and several more are undocumented, additional vulnerabilities might be
identified in the future.

BROWSER HELPER OBJECTS

Browser Helper Objects are used to extend the in-browser functionality of Internet
Explorer in a way that works across all pages. (Java, JavaScript, and ActiveX can
work only within the context of a single page or set of pages.) The Google Toolbar
Helper Object, for example, adds a search toolbar, context menus, and pop-up ad-
vertisement blocker to IE. Other BHOs have more nefarious uses; many spyware
creators use BHOs to record all of the URLs a victim accesses, to manipulate search
results, or to redirect error pages to advertisements. Prior to Service Pack 2, a user
did not have an easy way to see or remove Browser Helper Objects installed on his
computer.

Summary Sheet—Additional Browser Security Issues

Problem:

Modern Web browsers such as Internet Explorer provide additional function-
ality beyond the ability to browse hypertext pages. Some of this functionality is
well understood, but a number of lesser known and undocumented features
exist. Attackers with knowledge of some of these issues can use them to exploit
a user’s machine.



332 The Software Vulnerability Guide

Potential Impact:

The impact of browser security issues depends on the individual issue. In some
circumstances, the risk is confined to enumerating (but not accessing) the files
on a user’s local filesystem or stealing a cookie. On the other hand, in some
cases these vulnerabilities allow execution of arbitrary code or theft of a user’s
personal information.

Habitat:

Later versions of the Web browser, especially those that integrate tightly with
the operating system, are where these vulnerabilities are found.

Tools You Need to Find It:

A registry inspection tool such as regedit (supplied with Windows) or Regmon
(from Sysinternals.com) can be used to find some of these issues, including po-
tentially unsafe ActiveX controls and Browser Helper Objects. Others must be
found by hand or by trial and error.

How to Look for It:

The HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\ActiveX 

Compatibility\ registry branch contains the compatibility flags for ActiveX
controls.

A list of Browser Helper Objects installed on a machine can be found in
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Current Version\Explorer\

Browser Helper Objects.

Symptoms of Failure:

Look for controls without any obvious purpose, controls with no names, or
controls with known vulnerabilities.

Famous Failures/Exploits:

The “%01” bug in Internet Explorer 5 allowed an attacker to bypass do-
main security.
Liu Die Yu (http://umbrella.name/) and Georgi Guniski (www.guninski.
com/) have a wealth of information about browser security issues on their
Web site.

www.guninski.com/
www.guninski.com/
http://umbrella.name/
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Conclusion23

S
oftware security has become a critical issue for every business and nearly every
home user. Security is a complicated issue, though, and spans software, con-
figuration management, network perimeter security, people, and processes.

While non-software issues are important to manage, a recent survey by the leading
technology analyst firm Gartner estimates that 70 percent of vulnerabilities in a
system exist at the application layer [Pescatore03]. It is clear then that the tradi-
tional paradigm of fortifying the network perimeter for security is inadequate and
that there is a direct correlation between spending on network defenses and infor-
mation security. We are now beginning to understand that the point of diminish-
ing returns for network defenses is smaller than originally thought, and the types of
attacks that can be stopped by current network defenses is small in comparison to
the vulnerabilities that can exist on a system because of insecure applications.

In This Chapter

Learning from Vulnerabilities
Where to Go Next
References
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This is becoming a severe issue for corporate IT managers as the volume of
attempted intrusions continues to rise. Figure 23.1 shows how the number of secu-
rity incidents reported to the CERT Coordination Center has increased over the last
several years.

FIGURE 23.1 The number of security incidents reported to the CERT
Coordination Center has increased over the last several years.

With the limitations of network defenses in mind, the need to produce appli-
cations that are more resilient to attacks is acute, and the demand for developers
and testers who are security savvy continues to increase. This book presents a
roadmap for software security vulnerabilities, one that is designed to help develop-
ers, testers, and managers better understand the enemy. But we face significant ob-
stacles. The software industry continues to struggle with the functionality/security
tradeoff, and it is still clear that even if we build secure software we still don’t have
a handle on the human element of security. This is clear by the increased popular-
ity of phishing attacks that impersonate a legitimate business and goad users into
disclosing their usernames and passwords to an attacker. 

Consider Figure 23.2, an e-mail that purports to be from a major bank, alarm-
ing readers and telling them that they must click on the included link to “secure”
their account. Although the URL looks legitimate, the link actually transports the
user to the attacker’s site, which is a complete mock-up of the legitimate bank’s real
site, as shown in Figure 23.3. When the unsuspecting user clicks on the link, he is
transported to the mock-up, which asks for login credentials. This information is
then used by the attacker to compromise that user’s account on the real banking site.



These types of attacks illustrate the limits of secure coding. While both the 
e-mail application and the Web browser might be relatively secure, they must be
usable. This usability means that an attacker can exploit user naïveté and force
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FIGURE 23.2 E-mail of a fictitious “phishing” attack.

FIGURE 23.3 Attacker’s Web site similar to that of our fictitious bank.
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them to do something inherently dangerous. As developers and testers, we must be
the ones who are constantly evaluating the security, functionality, and security con-
tinuum and make best efforts to rid our applications of known security errors.

LEARNING FROM VULNERABILITIES

We can learn a tremendous amount by looking at the vulnerabilities in our applica-
tions and the mistakes of others. At our company, whenever we finish a develop-
ment or testing project, we bring everyone into a room for a day or several days and
go over the bugs we caught late in the process. Thoughtfully studying security mis-
takes can be one of the best ways to detect and prevent those issues in future projects.
These evaluations help refine the design, development, and testing process to ensure
that vulnerabilities are addressed earlier in the software development lifecycle. They
can also help a team highlight holes in its quality assurance process and sharpen
techniques to find certain classes of security failures. Such evaluations are best done
soon after the testing project ends, when bugs are still fresh in the testers’ minds.
These studies are also extremely valuable when performed periodically for released
or deployed products, particularly when bugs are uncovered in the field.

Many organizations have also found it valuable to study their competitors’
bugs to ensure that they have methods in place to keep similar bugs out of current
projects. Some fantastic free resources can be found on the Internet to get examples
of vulnerabilities in deployed applications. One of our favorites is BugTraq. The
BugTraq mailing list (available at www.securityfocus.com) provides a continuous
source of field-reported security vulnerabilities. We  encourage you to subscribe to
the list and spend a short period of time looking at the vulnerabilities that pass its
way. Another great source is the Common Vulnerabilities and Exposures repository
sponsored by the U.S. government and run by Mitre (cve.mitre.org). CVE is a great
reference for a variety of software vulnerabilities and is fairly easy to search by key-
word. Finally, the Computer Emergency Response Team (CERT) site at Carnegie-
Mellon is a good source of not just software vulnerabilities but of security related
incidents and statistics as well. CERT’s Web site is www.cert.org/.

WHERE TO GO NEXT

Security knowledge is dynamic, and to keep ahead of attackers requires a constant
knowledge refresher. Besides staying current on the latest vulnerabilities, you can
do a few other things to improve your knowledge of computer security:

www.securityfocus.com
www.cert.org/


Attend a conference for security-minded professionals. The most famous of
these is DEF CON, which bills itself as the “largest underground hacking event
in the world.” DEF CON is held annually in Las Vegas and is popular with both
security professionals and “black hat” types. DEF CON is somewhat more
focused on the culture of computer security, including the social habits of
traditional black hat hackers. Black Hat, which is held five times annually in
Seattle, Las Vegas, Washington D.C., and Japan, offers somewhat more techni-
cal presentations. Many of these are “cutting edge” and so might not be suitable
to the security beginner, but others are suitable for everyone. The RSA Confer-
ence, which also hosts events in the United States, Europe, and Asia, is the major
trade event for security vendors. While some of the tracts here are related to se-
curity from an IT or business perspective, many are also good for developers.
Attend an application security training course. Foundstone, based in Mission
Viejo, California offers “Ultimate Hacking” and “Ultimate Web Hacking,” as
well as a variety of other courses to developers. Security Innovation in Mel-
bourne, Florida offers “How to Break Software Security,” a two-day course
that covers the techniques described in this book. Black Hat, the company that
sponsors the conference by the same name, also offers application security
training.
Review the trade literature. Dr. Dobbs Journal, the largest circulation magazine
for developers, devotes one issue annually to security. The Institute for Electri-
cal and Electronics Engineers (IEEE), a major professional society for computer
scientists and engineers, has created a new magazine, Security and Privacy,
which is entirely devoted to information security. Information Security maga-
zine covers security issues including the latest vulnerabilities.
Get a security certification. The Certified Information Systems Security Pro-
fessional (CISSP) is the most prestigious of these. This certification is not just
for IT professionals and is widely respected in the industry. Information about
it can be found at www.cissp.com.

Whatever you do, don’t read this book and then give up on security. Ulti-
mately, it is up to individual developers to improve the security landscape. Happy
hunting!

REFERENCES
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T
he CD-ROM included with The Software Vulnerability Guide contains the
code and projects from the various examples found in the book. In addition,
it includes a number of open-source security testing tools discussed in Chap-

ter 3, “Some Useful Tools.”

CD-ROM FOLDERS

Companion Tools: This folder contains the open source security testing tools
described in Chapter 3 and used throughout the book. The individual tools in-
cluded are:

Libnet (www.packetfactory.net/libnet)
Ethereal (www.ethereal.com)
Ettercap (ettercap.sourceforge.net)
John the Ripper (www.openwall.com/john)
Nemesis (nemesis.sourceforge.net)
Nessus (www.nessus.org)
Nikto (www.cirt.net/code/nikto.shtml)
Nmap (www.insecure.org/nmap)
RATS (www.securesoftware.com)
SATAN (www.fish.com/satan)
Tcpdump (www.tcpdump.org)

Source Examples: Contains the source examples and project files included in
each of the chapters.

Images: The images from each chapter in the book.

About the CD-ROM

Appendix
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www.ethereal.com
www.packetfactory.net/libnet
www.openwall.com/john
www.nessus.org
www.cirt.net/code/nikto.shtml
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www.securesoftware.com
www.fish.com/satan
www.tcpdump.org
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OVERALL SYSTEM REQUIREMENTS

Windows 2000 or Windows XP (Windows Examples and Tools)
Linux for X86-family machines, Kernel Version 2.2 or Higher (Linux Examples
and Tools)
Pentium II Processor or greater
CD-ROM drive
Hard drive
128 MBs of RAM (Minimum 256 recommended for Windows)
Microsoft Visual Studio 6.0 or higher (Windows)
GNU GCC 2.8 or higher (Linux) 
50 MBs of hard drive space for the code examples and tools. 

You will need a compiler or development environment for Windows to com-
pile the code examples. Some examples have an associated project file; in order to
use these you will need Microsoft Visual Studio 6.0 or higher. In addition, you will
need Visual Basic 6.0 to compile the Visual Basic and ASP examples. Many of the
tools for Linux are provided in source form; you will need GCC in order to com-
pile these.

INSTALLATION INSTRUCTIONS

The source examples require no installation; simply open the project file (.vbp) or
individual source files in Visual Studio. Each of the companion tools should be
installed separately by following the instructions for that tool. The complete in-
structions for each tool are included on the CD-ROM.
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Open Source 
Software Licenses

Appendix

B

GNU GENERAL PUBLIC LICENSE

GNU General Public License
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public License is intended to guarantee your freedom to share and change free
software—to make sure the software is free for all its users. This General Public License applies to
most of the Free Software Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by the GNU Library General Pub-
lic License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Li-
censes are designed to make sure that you have the freedom to distribute copies of free software (and
charge for this service if you wish), that you receive source code or can get it if you want it, that you can
change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and passed
on, we want its recipients to know that what they have is not the original, so that any problems intro-
duced by others will not reflect on the original authors’ reputations.



Finally, any free program is threatened constantly by software patents. We wish to avoid the dan-
ger that redistributors of a free program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program,”
below, refers to any such program or work, and a “work based on the Program” means either the Pro-
gram or any derivative work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another language. (Here-
inafter, translation is included without limitation in the term “modification.”) Each licensee is ad-
dressed as “you.”

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer war-
ranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of Sec-
tion 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or
is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the Pro-
gram itself is interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in them-
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selves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on
the Program, the distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with
a work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a) Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for soft-
ware interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete ma-
chine-readable copy of the corresponding source code, to be distributed under the terms of Sec-
tions 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you re-
ceived the program in object code or executable form with such an offer, in accord with Subsec-
tion b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code distributed need not include any-
thing that is normally distributed (in either source or binary form) with the major components (com-
piler, kernel, and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have re-
ceived copies, or rights, from you under this License will not have their licenses terminated so long as
such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Pro-
gram (or any work based on the Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying the Program or works based on it.
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6. Each time you redistribute the Program (or any work based on the Program), the recipient auto-
matically receives a license from the original licensor to copy, distribute or modify the Program sub-
ject to these terms and conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing compliance by third par-
ties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other rea-
son (not limited to patent issues), conditions are imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this License, they do not excuse you from the condi-
tions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then, as a consequence, you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity
of the free software distribution system, which is implemented by public license practices. Many peo-
ple have made generous contributions to the wide range of software distributed through that system
in reliance on consistent application of that system; it is up to the author/donor to decide if he or she
is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or
by copyrighted interfaces, the original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding those countries, so that distribu-
tion is permitted only in or among countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and “any later version,” you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If
the Program does not specify a version number of this License, you may choose any version ever pub-
lished by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution con-
ditions are different, write to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of
our free software and of promoting the sharing and reuse of software generally.



NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS 
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARIS-
ING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIM-
ITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED
BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the
best way to achieve this is to make it free software which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright © 19yy name of author

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public 
License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.
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Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright © 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
‘show w’.

This is free software, and you are welcome to redistribute it under certain condi-
tions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomo-
vision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.
If your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public Li-
cense instead of this License.

MODIFIED BSD LICENSE

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. The names of the authors may not be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
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