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Preface v

Preface

As the title of the book ‘How to learn calculus of one variable’ Suggests we have tried to present the entire
book in a manner that can help the students to learn the methods of calculus all by themselves we have felt that
there are books written on this subject which deal with the theoretical aspects quite exhaustively but do not
take up sufficient examples necessary for the proper understanding of the subject matter thoroughly. The
books in which sufficient examples are solved often lack in rigorous mathematical reasonings and skip accurate
arguments some times to make the presentation look apparently easier.

We have, therefore, felt the need for writing a book which is free from these deficiencies and can be used as
a supplement to any standard book such as ‘Analytic geometry and calculus’ by G.B. Thomas and Finny which
quite thoroughly deals with the proofs of the results used by us.

A student will easily understand the underlying principles of calculus while going through the worked-out
examples which are fairly large in number and sufficiently rigorous in their treatment. We have not hesitated to
work-out a number of examples of the similar type though these may seem to be an unnecessary repetition. This
has been done simply to make the students, trying to learn the subject on their own, feel at home with the
concepts they encounter for the first time. We have, therefore, started with very simple examples and gradually
have taken up harder types. We have in no case deviated from the completeness of proper reasonings.

For the convenience of the beginners we have stressed upon working rules in order to make the learning all
the more interesting and easy. A student thus acquainted with the basics of the subject through a wide range
of solved examples can easily go for further studies in advanced calculus and real analysis.

We would like to advise the student not to make any compromise with the accurate reasonings. They should
try to solve most of examples on their own and take help of the solutions provided in the book only when it is
necessary.

This book mainly caters to the needs of the intermediate students whereas it can also used with advantages
by students who want to appear in various competitive examinations. It has been our endeavour to incorporate
all the finer points without which such students continually feel themselves on unsafe ground.

We thank all our colleagues and friends who have always inspired and encouraged us to write this book
everlastingly fruitful to the students. We are specially thankful to Dr Simran Singh, Head of the Department of
Lal Bahadur Shastri Memorial College, Karandih, Jamshedpur, Jharkhand, who has given valuable suggestions
while preparing the manuscript of this book.

Suggestions for improvement of this book will be gratefully accepted.

DR JOY DEV GHOSH

MD ANWARUL HAQUE
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Function 1

1

Function

To define a function, some fundamental concepts are
required.

Fundamental Concepts

Question: What is a quantity?
Answer: In fact, anything which can be measured or
which can be divided into parts is called a quantity.
But in the language of mathematics, its definition is
put in the following manner.

Definition: Anything to which operations of
mathematics (mathematical process) such as addition,
subtraction, multiplication, division or measurement
etc. are applicable is called a quantity.

Numbers of arithmetic, algebraic or analytic
expressions, distance, area, volume, angle, time,
weight, space, velocity and force etc. are all examples
of quantities.

Any quantity may be either a variable or a constant.

Note: Mathematics deals with quantities which have
values expressed in numbers. Number may be real or
imaginary. But in real analysis, only real numbers as

values such as –1, 0, 15, 2 , p etc. are considered.

Question: What is a variable?
Answer:
Definitions 1: (General): If in a mathematical discus-
sion, a quantity can assume more than one value,
then the quantity is called a variable quantity or sim-
ply a variable and is denoted by a symbol.
Example: 1. The weight of men are different for dif-
ferent individuals and therefore height is a variable.

2. The position of a point moving in a circle is a
variable.
Definition: 2. (Set theoritic): In the language of set
theory, a variable is symbol used to represent an
unspecified (not fixed, i.e. arbitrary) member (element
or point) of a set, i.e., by a variable, we mean an element
which can be any one element of a set or which can
be in turn different elements of a set or which can be
a particular unknown element of a set or successively
different unknown elements of a set. We may think of
a variable as being a “place-holder” or a “blank” for
the name of an element of a set.

Further, any element of the set is called a value of
the variable and the set itself is called variable’s
domain or range.

If x be a symbol representing an unspecified
element of a set D, then x is said to vary over the set
D (i.e., x can stand for any element of the set D, i.e., x
can take any value of the set D) and is called a variable
on (over) the set D whereas the set D over which the
variable x varies is called domain or range of x.

Example: Let D be the set of positive integers and x
Î  D = {1, 2, 3, 4, …}, then x may be 1, 2, 3, 4, … etc.

Note: A variable may be either (1) an independent
variable (2) dependent variable. These two terms have
been explained while defining a function.

Question: What is a constant?
Answer:
Definition 1. (General): If in a mathematical
discussion, a quantity cannot assume more than one
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vale, then the quantity is called a constant or a
constant quantity and is denoted by a symbol.
Examples: 1. The weights of men are different for
different individuals and therefore weight is a variable.
But the numbers of hands is the same for men of
different weights and is therefore a constant.
2. The position of a point moving in a circle is a
variable but the distance of the point from the centre
of the circle is a constant.
3. The expression x + a denotes the sum of two
quantities. The first of which is variable while the
second is a constant because it has the same value
whatever values are given to the first one.

Definition: 2. (Set theoritic): In the language of set
theory, a constant is a symbol used to represent a
member of the set which consists of only one member,
i.e. if there is a variable ‘c’ which varies over a set
consisting of only one element, then the variable ‘c’
is called a constant, i.e., if ‘c’ is a symbol used to
represent precisely one element of a set namely D,
then ‘c’ is called a constant.

Example: Let the set D has only the number 3; then
c = 3 is a constant.

Note: Also, by a constant, we mean a fixed element
of a set whose proper name is given. We often refer to
the proper name of an element in a set as a constant.
Moreover by a relative constant, we mean a fixed
element of a set whose proper name is not given. We
often refer to the “alias” of an element in a set as a
relative constant.

Remark: The reader is warned to be very careful
about the use of the terms namely variable and
constant. These two terms apply to symbols only not
to numbers or quantities in the set theory. Thus it is
meaningless to speak of a variable number (or a
variable quantity) in the language of set theory for
the simple reason that no number is known to human
beings which is a variable in any sense of the term.
Hence the ‘usual’ text book definition of a variable as
a quantity which varies or changes is completely
misleading in set theory.

Kinds of Constants

There are mainly two kinds of constants namely:

1. Absolute constants (or, numerical constants).
2. Arbitrary constants (or, symbolic constants).

Each one is defined in the following way:
1. Absolute constants: Absolute constants have the
same value forever, e.g.:
(i) All arithmetical numbers are absolute constants.
Since 1 = 1 always but 1 ¹ 2 which means that the
value of 1 is fixed. Similarly –1 = –1 but –1 ¹ 1 (Any
quantity is equal to itself. this is the basic axiom of
mathematics upon which foundation of equations
takes rest. This is why 1 = 1, 2 = 2, 3 = 3, … x = x and
a = a and so on).
(ii) p and logarithm of positive numbers (as log2, log
3, log 4, … etc) are also included in absolute constants.
2. Arbitrary constants: Any arbitrary constant is
one which may be given any fixed value in a problem
and retains that assigned value (fixed value)
throughout the discussion of the same problem but
may differ in different problems.

An arbitrary constant is also termed as a parameter.

Note: Also, the term “parameter” is used in speaking
of any letter, variable or constant, other than the
coordinate variables in an equation of a curve defined
by y = f (x) in its domain.

Examples: (i) In the equation of the circle x2 + y2 =
a2, x and y, the coordinates of a point moving along a
circle, are variables while ‘a’ the radius of a circle may
have any constant value and is therefore an arbitrary
constant or parameter.
(ii) The general form of the equation of a straight line
put in the form y = mx + c contains two parameters
namely m and c representing the gradient and y-inter-
cept of any specific line.

Symbolic Representation of Quantities,
Variables and Constants

In general, the quantities are denoted by the letters a,
b, c, x, y, z, … of the English alphabet. The letters from
“a to s” of the English alphabet are taken to represent
constants while the letters from “t to z” of the English
alphabet are taken to represent variables.

Question: What is increment?
Answer: An increment is any change (increase or
growth) in (or, of) a variable (dependent or
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independent). It is the difference which is found by
subtracting the first value (or, critical value) of the
variable from the second value (changed value,
increased value or final value) of the variable.

That is, increment
= final value – initial value = F.V – I. V.

Notes: (i) Increased value/changed value/final value/
second value means a value obtained by making
addition, positive or negative, to a given value (initial
value) of a variable.
(ii) The increments may be positive or negative, in
both cases, the word “increment” is used so that a
negative increment is an algebraic decrease.

Examples on Increment in a Variable

1. Let x1 increase to x2 by the amount ∆ x. Then we
can set out the algebraic equation x1 + ∆ x = x2 which
⇒ ∆ x = x2 – x1.
2. Let y1 decrease to y2 by the amount ∆ y. Then we
can set out the algebraic equation y1 + ∆ y = y2 which
⇒ ∆ y = y2 – y1.

Examples on Increment in a Function

1. Let y = f (x) = 5x + 3 = given value … (i)
Now, if we give an increment ∆ x to x, then we also

require to give an increment ∆ y to y simultaneously.
Hence, y + ∆ y = f (x + ∆ x) = 5 (x + ∆ x) + 3 = 5x +

5∆ x + 3 … (ii)
∴ (ii) – (i) ⇒ y + ∆ y – y = (5x + 5∆ x + 3) – (5x + 3)

= 5x + 5∆ x + 3 – 5x – 3 = 5∆ x
i.e., ∆ y = 5∆ x

2. Let y = f (x) = x2 + 2 = given value,
then y + ∆ y = f (x + ∆ x) = (x + ∆ x)2 + 2 = x2 +

∆ x2 + 2x ∆ x + 2
⇒ ∆ y = x2 + ∆ x2 + 2x ∆ x + 2 – x2 – 2 = 2x ∆ x +

∆ x2

Hence, increment in y = f (x + ∆ x) – f (x) where
f (x) = (x2 + 2) is ∆ y = x2 + ∆ x2 + 2x ∆ x + 2 – x2 – 2
= 2x ∆ x + ∆ x2

3. Let y
x

= 1
 = given value.

Then, y + ∆ y = 
1

x x+ ∆

Hence, increment in y = f (x + ∆x) – f (x) where

f (x) = 
1

x

⇒ ∆ y = 
1

x x+ ∆  – 
1

x
 = 

x x x

x x x

− +
+

∆
∆

a f
a f  =

–∆
∆
x

x x x+a f
4. Let y = log x = given value.

Then, y + ∆ y = log (x + ∆ x)

and ∆ y = log (x + ∆ x) – log x = log 
x x

x

+F
HG

I
KJ

∆
 =

log 1 +F
HG

I
KJ

∆ x

x

5. Let y = sin θ, given value
Then, y + ∆ y = sin (θ + ∆ θ)

and ∆ y = sin (θ + ∆ θ) – sin θ = 2cos 
2

2

θ θ+F
HG

I
KJ

∆
·

sin 
∆ θ
2

F
HG

I
KJ .

Question: What is the symbol used to represent (or,
denote) an increment?
Answer: The symbols we use to represent small
increment or, simply increment are Greak Letters ∆
and δ (both read as delta) which signify “an increment/
change/growth” in the quantity written just after it as
it increases or, decreases from the initial value to
another value, i.e., the notation ∆ x is used to denote
a fixed non zero, number that is added to a given
number x0 to produce another number x = x0 + ∆ x. if
y = f (x) then ∆ y = f (x0 + ∆ x) – f (x0).

Notes: If x, y, u. v are variables, then increments in
them are denoted by ∆ x, ∆ y, ∆ u, ∆ v respectively
signifying how much x, y, u, v increase or decrease,
i.e., an increment in a variable (dependent or
independent) tells how much that variable increases
or decreases.

Let us consider y = x2

When x = 2, y = 4
x = 3, y = 9
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∴ ∆ x = 3 – 2 = 1 and ∆ y = 9 – 4 = 5
⇒ as x increases from 2 to 3, y increases from 4

to 9.
⇒ as x increases by 1, y increases by 5.

Question: What do you mean by the term “function”?
Answer: In the language of set theory, a function is
defined in the following style.

A function from a set D to a set R is a rule or, law
(or, rules, or, laws) according to which each element
of D is associated (or, related, or, paired) with a unique
(i.e., a single, or, one and only one, or, not more than
one) element of R. The set D is called the domain of
the function while the set R is called the range of the
function. Moreover, elements of the domain (or, the
set D) are called the independent variables and the
elements of the range (or, range set or, simply the set
R) are called the dependent variables. If x is the
element of D, then a unique element in R which the
rule (or, rules) symbolised as f assigns to x is termed
“the value of f at x” or “the image of x under the rule
f” which is generally read as “the f-function of x” or, “f
of x”. Further one should note that the range R is the
set of all values of the function f whereas the domain
D is the set of all elements (or, points) whose each
element is associated with a unique elements of the
range set R.

Functions are represented pictorially as in the
accompanying diagram.

One must think of x as an arbitrary element of the
domain D or, an independent variable because a value
f of x can be selected arbitrarily from the domain D as
well as y as the corresponding value of f at x, a
dependent variable because the value of y depends
upon the value of x selected. It is customary to write
y = f (x) which is read as “y is a function of x” or, “y is
f of x” although to be very correct one should say
that y is the value assigned by the function f
corresponding to the value of x.

Highlight on the Term “The Rule or the
Law”.

1. The term “rule” means the procedure (or
procedures) or, method (or, methods) or, operation
(or, operations) that should be performed over the
independent variable (denoted by x) to obtain the
value the dependent variable (denoted by y).

Examples:
1. Let us consider quantities like

(i) y = log x (iv) y = sin x
(ii) y – x3 (v) y = sin–1x

(iii) y x= (vi) y = ex, … etc.

In these log, cube, square root, sin, sin–1, e, … etc
are functions since the rule or, the law, or, the function

f = log, ( )3, , sin, sin–1 or, e, … etc has been

performed separately over (or, on) the independent
variable x which produces the value for the dependent
variable represented by y with the assistance of the

rule or the functions log, ( )3, , sin, sin–1 or, e, …

etc. (Note: An arbitrary element (or point) x in a set
signifies any specified member (or, element or point)
of that set).
2. The precise relationship between two sets of
corresponding values of dependent and independent
variables is usually called a law or rule. Often the rule
is a formula or an equation involving the variables
but it can be other things such as a table, a list of
ordered pairs or a set of instructions in the form of a
statement in words. The rule of a function gives the
value of the function at each point (or, element) of the
domain.

Examples:

(i) The formula f x
x

a f =
+

1

1
2  tells that one should

square the independent variable x, add unity and then
divide unity by the obtained result to get the value of
the function f at the point x, i.e., to square the
independent variable x, to add unity and lastly to
divide unity by the whole obtained result (i.e., square
of the independent variable x plus unity).

D

x y f x = ( )

R
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(ii) f (x) = x2 + 2, where the rule f signifies to square
the number x and to add 2 to it.
(iii) f (x) = 3x – 2, where the rule f signifies to multiply
x by 3 and to subtract 2 from 3x.

(iv) C r= 2 π  an equation involving the variables C

(the circumference of the circle) and r (the radius of

the circle) which means that C r= 2 π  = a function

of r.

(v) y s= 64  an equation involving y and s which

means that y s= 64  a functions of s.

3. A function or a rule may be regarded as a kind of

machine (or, a mathematical symbol like , log, sin,

cos, tan, cot, sec, cosec, sin–1, cos–1, tan–1, cot–1,
sec–1, cosec–1, … etc indicating what mathematical
operation is to be performed over (or, on) the elements
of the domain) which takes the elements of the domain
D, processes them and produces the elements of the
range R.

Example of a function of functions:

Integration of a continuous function defined on some
closed interval [a. b] is an example of a function of
functions, namely the rule (or, the correspondence)
that associates with each object f (x) in the given set

of objects, the real number f x dx
a

b

� �	 .

Notes: (i) We shall study functions which are given
by simple formulas. One should think of a formula as
a rule for calculating f (x) when  x is known (or, given),
i.e., of the rule of a function f is a formula giving y in
terms of x say y = f (x), to find the value of f at a
number a, we substitute that number a for x wherever
x occurs in the given formula and then simplify it.

(ii) For x D f x R∈ ∈, � �  should be unique means

that f can not have two or more values at a given
point (or, number) x.
(iii) f (x) always signifies the effect or the result of
applying the rule f to x.

(iv) Image, functional value and value of the function
are synonymes.

Notations:

We write 1. " "f D R: →  or " "D R
f

→  for “f is a

function with domain D and range R” or equivalently,
“f is a function from D to R”.

2. f x y: →  or, x y
f

→  or, x f x→ � �  for “a

function f from x to y” or “f maps (or, transforms) x
into y or f (x)”.

3. f D R: →  defined by y = f (x) or, f D R: →  by

y = f (x) for “(a) the domain = D, (b) the range = R, (c)
the rule : y = f (x).
4. D (f) = The domain of the function f where D
signifies “domain of”.
5. R (f) = The range of the function f where R signifies
“range of”.

Remarks:
(i) When we do not specify the image of elements of
the domain, we use the notation (1).
(ii) When we want to indicate only the images of
elements of the domain, we use the notation (2).
(iii) When we want to indicate the range and the rule
of a function together with a functional value f (x), we
use the notation (3).
(iv) In the language of set theory, the domain of a
function is defined in the following style:

D (f): x x D: ∈ 1
 �  where, D1 = the set of

independent variables (or, arguments) = the set of all
those members upon which the rule ‘f ’ is performed
to find the images (or, values or, functional values).
(v) In the language of set theory, the range of a
function is defined in the following way:

R f f x x D f x R� � � � � �� = ∈ ∈: , = the set of all

images.
(vi) The function f n is defined by f n (x) = f (x) · f (x) …
n. times

= [f (x)]n, where n being a positive integer.
(vii) For a real valued function of a real variable both
x and y are real numbers consisting of.
(a) Zero
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(b) Positive or negative integers, e.g.: 4, 11, 9, 17,
–3, –17, … etc.

(c) Rational numbers, e.g.: 
9

5

17

2
, ,

−
 … etc.

(d) Irrational numbers e.g.: 7 14, ,−  … etc.

(viii) Generally the rule/process/method/law is not
given in the form of verbal statements (like, find the
square root, find the log, exponential, … etc.) but in
the form of a mathematical statement put in the form
of expression containing x (i.e. in the form of a formula)
which may be translated into words (or, verbal
statements).
(ix) If it is known that the range R is a subset of some
set C, then the following notation is used:

f D C: →  signifying that

(a) f is a function
(b) The domain of f is D
(c) The range of f is contained in C.

Nomenclature: The notation " "f D C: →  is read f

is a function on the set D into the set C.”

N.B: To define some types of functions like “into
function and on to function”, it is a must to define a

function " "f D C: →  where C = codomain and

hence we are required to grasp the notion of co-
domain. Therefore, we can define a co-domain of a
function in the following way:

Definition of co-domain: A co-domain of a function
is a set which contains the range or range set (i.e., set
of all values of f) which means R C⊆ ,  where R = the
set of all images of f and C = a set containing images
of f.

Remember:

1. If R C⊂  (where R = the range set, C = co-domain)

i.e., if the range set is a proper subset of the co-domain,
then the function is said to be an “into function”.

2. If R = C, i.e., if the range set equals the co-domain,
then the function is said to be an “onto function”.
3. If one is given the domain D and the rule (or
formula,) then it is possible (theoretically at least) to
state explicitly a function as any ordered pair and one
should note that under such conditions, the range
need not be given. Further, it is notable that for each

specified element ' ' ,a D∈  the functional value f (a)

is obtained under the function ‘f’.

4. If a D∈ ,  then the image in C is represented by f

(a) which is called the functional value (corresponding
to a)and it is included in the range set R.

Question: Distinguish between the terms “a function
and a function of x”.
Answer: A function of x is a term used for “an image
of x under the rule f” or “the value of the function f at
(or, for) x” or “the functional value of x” symbolised
as y = f (x) which signifies that an operation (or,
operations) denoted by f has (or, have) been performed
on x to produce an other element f (x) whereas the
term “function” is used for “the rule (or, rules)” or
“operation (or, operations)” or “law (or, laws)” to be
performed upon x, x being an arbitrary element of a
set known as the domain of the function.
Remarks: 1. By an abuse of language, it has been
customary to call f (x) as function instead of f when a
particular (or, specifies) value of x is not given only
for convenience. Hence, wherever we say a “function
f (x) what we actually mean to say is the function f
whose value at x is f (x). thus we say, functions x4, 3x2

+ 1, etc.

2. The function ‘f’ also represents operator like n ,

( )n, | |, log, e, sin, cos, tan, cot, sec, cosec, sin–1, cos–

1, tan–1, cot–1, sec–1 or cosec–1 etc.
3. Function, operator, mapping and transformation
are synonymes.
4. If domain and range of a function are not known, it
is customary to denote the function f by writing y = f
(x) which is read as y is a function of x.

Question: Explain the terms “dependent and
independent variables”.
Answer:
1. Independent variable: In general, an independent
variable is that variable whose value does not depend

fD
C

Rx1 y1x5 y5

y6x2 y2x6

x3 y3

x4 y4
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upon any other variable or variables, i.e., a variable in
a mathematical expression whose value determines
the value of the whole given expression is called an
independent variable: in y = f (x), x is the independent
variable.

In set theoretic language, an independent variable
is the symbol which is used to denote an unspecified
member of the domain of a function.
2. Dependent variable: In general a dependent
variable is that variable whose value depends upon
any other variable or variables, i.e., a variable (or, a
mathematical equation or statement) whose value is
determined by the value taken by the independent
variable is called a dependent variable: in y = f (x), y is
the dependent variable.

In set theoretic language, a dependent variable is
the symbol which is used to denote an unspecified
member of the range of a function.
e.g.: In A f r r= =� � π 2, r is an independent variable
and A is a dependent variable.

Question: Explain the term “function or function of
x” in terms of dependency and independency.
Answer: When the values of a variable y are
determined by the values given to another variable x,
y is called a function of (depending on) x or we say
that y depends on (or, upon) x. Thus, any expression
in x depends for its value on the value of x. This is
why an expression in x is called a function of x put in
the form: y = f (x).

Question: What are the symbols for representing the
terms “a function and a function of a variable”?
Answer: Symbols such as f, F, φ  etc are used to
denote a function whereas a function of a variable is
denoted by the symbols f (x), φ x f t� � � �, ,  F t� � ,
φ t� �  and can be put in the forms: y = f (x); y x= φ � � ;
y = f (t); y = F (t); y t= φ � � , that y is a function of
(depending on) the variable within the circular bracket
(  ), i.e., y depends upon the variable within circular
bracket.

i.e., y = f (x) signifies that y depends upon x, i.e., y
is a function of x.

S = f (t) signifies that s depends upon t, i.e., s is a
function of t.

C r= φ� �  signifies that c depends upon r, i.e., c is

a function of r.

Notes:

1. Any other letter besides f F, ,φ  etc may be used

just for indicating the dependence of one physical
quantity on an other quantity.
2. The value of f /functional value of f corresponding
to x = a / the value of the dependent variable y for a
particular value of the independent variable is
symbolised as (f (x))x = a = f (a) or [f (x)]x = a = f (a) while
evaluating the value of the function f (x) at the point
x = a.
3. One should always note the difference between
“a function and a function of”.
4. Classification of values of a function at a point x
= a.
There are two kinds of the value of a function at a
point x = a namely
(i) The actual value of a function y = f (x) at x = a.
(ii) The approaching or limiting value of a function y
= f (x) at x = a, which are defined as:
(i) The actual value of a function y = f (x) at x = a:
when the value of a function y = f (x) at x = a is
obtained directly by putting in the given value of the
independent variable x = a wherever x occurs in a
given mathematical equation representing a function,
we say that the function f or f (x) has the actual value
f (a) at x = a.
(ii) The approaching value of a function y = f (x) at x
= a: The limit of a function f (x) as x approaches some
definite quantity is termed as the approaching (or,
limiting) value of the function y = f (x) at x = a. This
value may be calculated when the actual value of the
function f (x) becomes indeterminate at a particular
value ‘a’ of x.
5. When the actual value of a function y = f (x) is

anyone of the following forms: 
0

0
,  0 0

0
, ,× ∞

∞
∞

∞ − ∞, ,  ∞ ∞0
1, ,  imaginary, 

any real number

0
for a particular value ‘a’ of x, it is said that the function
f (x) is not defined or is indeterminate or is meaningless
at x = a.
6. To find the value of a function y = f (x) at x = a
means to find the actual value of the function y = f (x)
at x = a.
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Pictorial Representation of a Function, its
Domain and Range.

1. Domain: A domain is generally represented by
any closed curve regular (i.e., circle, ellipse, rectangle,
square etc) or irregular (i.e. not regular) whose
members are represented by numbers or alphabets or
dots.
2. Range: A range is generally represented by
another closed curve regular or irregular or the some
closed curve regular or irregular as the domain.
3. Rule: A rule is generally represented by an arrow
or arc (i.e., arc of the circle) drawn from each member
of the domain such that it reaches a single member or
more than one member of the codomain, the codomain
being a superset of the range (or, range set).

Remarks:
1. We should never draw two or more than two arrows
from a single member of the domain such that it reaches
more than one member of the codomain to show that
the venn-diagram represents a function. Logic behind
it is given as follows.

If the domain are chairs, then one student can not
sit on more than one chair at the same time (i.e., one
student can not sit on two or more than two chairs at
the same time)

Fig. 1.1 Represents a function

Fig. 1.2 Represents a function

Fig. 1.3 Does not represent a function

Fig. 1.4 Represents a function

2. In the pictorial representation of a function the
word “rule” means.
(i) Every point/member/element in the domain D is

joined by an arrow →� �  or arc ∩� �  to some point in

range R which means each element x D∈

corresponds to some element y R C∈ ⊆ .

(ii) Two or more points in the domain D may be joined
to the same point in R C⊆  (See Fig. 1.4 where the

points x2 and x3 in D are joined to the same point y2 in

R C⊆ .

(iii) A point in the domain D can not be joined to two
or more than two points in C, C being a co-domain.
(See Fig. 1.3)
(iv) There may be some points in C which are not
joined to any element in D (See Fig. 1.4 where the
points y4, y5 and y6 in C are not joined to any point in
D.

Precaution: It is not possible to represent any
function as an equation involving variables always.
At such circumstances, we define a function as a set
of ordered pairs with no two first elements alike e.g.,   f
= {(1, 2), (2, 4), (3, 6), (4, 8), (5, 10), (6, 12), (7, 14)}
whose D = domain = {1, 2, 3, 4, 5, 6, 7}, R = range = {2,
4, 6, 8, 10, 12, 14} and the rule is: each second element
is twice its corresponding first element.

But f = {(0, 1), (0, 2), (0, 3), (0, 4)} does not define a
function since its first element is repeated.

D = domain

x y

R = range

f = rule =
a function

f = rule = a function

D = domain
C = codomain

R = range
x1 y1

y5

x2 y2

x3 y3

y4

D = domain
C = codomain

x1 y1

x2

y2

y3x3 y4 y6x4 y5

D = domain
C = codomain

R = range

x1 y1 y4

x2 y2 y5

x3

x4 y3 y6
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Note: When the elements of the domain and the range
are represented by points or English alphabet with
subscripts as x1, x2, … etc and y1, y2, … etc
respectively, we generally represent a function as a
set of ordered pairs with no two first elements alike,
i.e., f: {x, f (x): no two first elements are same} or, {x, f
(x): no two first elements are same} or, {(x, y): x D∈

and y f x R= ∈� � } provided it is not possible to
represent the function as an equation y = f (x).

Question: What is meant whenever one says a
function y = f (x) exist at x = a or y = f (x) is defined at
(or, f or) x = a?
Answer: A function y = f (x) is said to exist at x = a or,
y = f (x) is said to be defined at (or, f or) x = a provided
the value of the function f (x) at x = a (i.e. f (a)) is finite
which means that the value of the function f (x) at x =
a should not be anyone of the following forms

0

0
0 0

0
, , ,× ∞  

∞
∞

,  ∞ ∞– ,  ∞0
,  1

∞
,  imaginary

value, 
a real number

0
.

Remarks:
(i) A symbol in mathematics is said to have been
defined when a meaning has been given to it.
(ii) A symbol in mathematics is said to be undefined
or non-existance when no meaning is attributed to
the symbol.

e.g.: The symbols 3/2, –8/15, sin–1(1/2), log (1/2)
are defined or they are said to exist whereas the

symbols − ÷−
9 5 5 0

1
, , ,cos  log (–3), 52 are

undefined or they are said not to exist.
(iii) Whenever we say that something exists, we mean
that it has a definite finite value.

e.g.:
(i) f (a) exists means f (a) has a finite value.

(ii) lim
x a

f x
→

� �  exists means lim
x a

f x
→

� �  has a finite

value.
(iii) f ' (a) exists means f ' (a) has a finite value.

(iv) f x dx
a

b

� �	  exists means that f x dx
a

b

� �	  has a

finite value.

Classification of Functions

We divide the function into two classes namely:
(i) Algebraic
(ii) Transcendental which are defined as:

(i) Algebraic function: A function which satisfies
the equation put in the form:

Ao [f (x)] m + A1 [f (x)] m – 1 + A2 [f (x)] m – 2 + … + Am
= 0, where A0, A1, … Am are polynomials is called an
algebraic function.

Notes:
1. A function f: R →  R defined by f (x) = a0 x

n + a1 x
n

– 1 + … + am – 1 x + am where a0, a1, a2, … am are
constants and n is a positive integer, is called a
polynomial in x or a polynomial function or simply a
polynomial. One should note that a polynomial is a
particular case of algebraic function as we see on
taking m = 1 and A0 = a constant in algebraic function.
2. The quotient of two polynomials termed as a
rational function of x put in the form:

a x a x a x a

b b x b x

n n
m m

m
n

0 1
1

1

0 1

+ + + +

+ + +

−
–

...

...

is also an algebraic function. It is defined in every
interval only in which denominator does not vanish.
If f1 (x) and f2 (x) are two polynomials, then general

rational functions may be denoted by R x
f x

f x
� � � �

� �= 1

2

where R signifies “a rational function of”. In case f2
(x) reduces itself to unity or any other constant (i.e., a
term not containing x or its power), R (x) reduces
itself to a polynomial.
3. Generally, there will be a certain number of values
of x for which the rational function is not defined and
these are values of x for which the polynomial in
denominator vanishes.

e.g.: R x
x x

x x
� � =

− +

− +

2 5 1

5 6

2

2
 is not defined when x

= 2 or x = 3.
4. Rational integral functions: If a polynomial in x is
in a rational form only and the indices of the powers
of x are positive integers, then it is termed as a rational
integral function.



10 How to Learn Calculus of One Variable

5. A combination of polynomials under one or more
radicals termed as an irrational functions is also an

algebraic function. Hence, y x f x= = � �;  y =

x f x
5 3 = � �;  y

x

x
=

+2
4

 serve as examples for

irrational algebraic functions.
6. A polynomial or any algebraic function raised to
any power termed as a power function is also an

algebraic function. Hence, y x n R f x
n

= ∈ =, ;� � � �

y x f x= + =
2 3

1� � � �  serve as examples for power

functions which are algebraic.

Remarks:

1. All algebraic, transcendental, explicit or implicit
function or their combination raised to a fractional
power reduces to an irrational function. Hence,

y x f x= =5 3 � �;  y x x f x= + =sin� � � �
1
2  serve

as examples for irrational functions.

2. All algebraic, transcendental, explicit or implicit
function or their combination raised to any power is
always regarded as a power function. Hence, y = sin2

x = f (x); y = log2 | x | = f (x) serve as examples for power
functions.

Transcendental function: A function which is not
algebraic is called a transcendental function. Hence,
all trigonometric, inverse trigonometric, exponential
and logarithmic (symoblised as “TILE”) functions are
transcendental functions. hence, sin x, cos x, tan x,
cot x, sec x, cosec x, sin–1 x, cos–1 x, tan–1 x, cot–1 x,
sec–1 x, cosec–1 x, log |f (x) |, log | x |, log x2, log (a + x2),
ax (for any a > 0), ex, [f (x)]g (x) etc serve as examples
for transcendental functions.

Notes: (In the extended real number system)
(A)

(i) e
x = ∞  when x = ∞

(ii) ex = 1 when x = 0
(iii) ex = 0 when x = − ∞ .

(B) One should remember that exponential functions
obeys the laws of indices, i.e.,
(i) xe · ey = ex + y

(ii) xe / ey = ex – y

(iii) (ex)m = emx

(iv) e
e

x

x

− = 1

(C)
(i) log0 = − ∞
(ii) log 1 = 0
(iii) log ∞ = ∞

Further Classification of Functions

The algebraic and the transcendental function are
further divided into two types namely (i) explicit
function (ii) implicit function, which are defined as:

(i) Explicit function: An explicit function is a
function put in the form y = f (x) which signifies that a
relation between the dependent variable y and the
independent variable x put in the form of an equation
can be solved for y and we say that y is an explicit
function of x or simply we say that y is a function of x.
hence, y = sin x + x = f (x); y = x2 – 7x + 12 = f (x) serve
as examples for explicit function of x’s.
Remark: If in y = f (x), f signifies the operators (i.e.,
functions) sin, cos, tan, cot, sec, cosec, sin–1, cos–1,
tan–1, cot–1, sec–1, cosec–1, log or e, then y = f (x) is
called an explicit transcendental function otherwise it
is called an explicit algebraic function.

(ii) Implicit function: An implicit function is a
function put in the form: f (x, y) = c, c being a constant,
which signifies that a relation between the variables y
and x exists such that y and x are in seperable in an
equation and we say that y is an implicit function of x.
Hence, x3 + y2 = 4xy serves as an example for the
implicit function of x.
Remark: If in f (x, y) = c, f signifies the operators (i.e.,
functions) sin, cos, tan, cot, sec, cosec, sin–1, cos–1,
tan–1, cot–1, sec–1, cosec–1, log, e and the ordered
pain (x, y) signifies the combination of the variables x
and y, then f (x, y) = c is called an implicit algebraic
function of x, i.e., y is said to be an implicit algebraic
function of x, if a relation of the form:
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ym + R1 ym – 1 + … + Rm = 0 exists, where R1, R2, …
Rm are rational function of x and m is a positive integer.

Note: Discussion on “the explicit and the implicit
functions” has been given in detail in the chapter
“differentiation of implicit function”.

On Some Important Functions

Some types of functions have been discussed in
previous sections such as algebraic, transcendental,
explicit and implicit functions. In this section definition
of some function used most frequently are given.
1. The constant function: A function f: R → R
defined by f (x) = c is called the “constant function”.

Let y = f (x) = c
∴ y = c which is the equation of a straight line

parallel to the x-axis, i.e., a constant function
represents straight lines parallel to the x-axis.

Also, domain of the constant function = D (f) =
{real numbers} = R and range of the constant function
= R (f) = {c} = a singleton set for examples, y = 2; y = 3
are constant functions.

Remarks:
(i) A polynomial a0 x

n + a1 xn – 1 + … a m – 1 x + am
(whose domain and range are sets of real numbers)
reduces to a constant function when degree of
polynomial is zero.
(ii) In particular, if c = 0, then f (x) is called the “ zero
function” and its graph is the x-axis itself.

2. The identity function: A function f: R → R
defined by f (x) = x is called the “identity function”
whose domain and range coincide with each other,
i.e., D (f) = R (f) in case of identity function.

Let y = f (x) = x
∴ y = x which is the equation of a straight line

passing through the origin and making an angle of
45° with the x-axis, i.e., an identity function represents
straight lines passing through origin and making an
angle of 45° with the x-axis.

3. The reciprocal of identity function: A function

f: R – {0} → R defined by f x
x

� � =
1

 is called the

reciprocal function of the identity function f (x) = x or
simply reciprocal function.

Let y f x
x

= =� � 1

∴  xy = 1 which is the equation of a rectangular
hyperbola, i.e., the reciprocal of an identity function
represents a rectangular hyperbola.

Also, D (f) = {real number except zero} = R – {0}
and R (f) = {real numbers}

4. The linear function: A function put in the form: f
(x) = mx + c is called a “linear function” due to the fact
that its graph is a straight line.

Also, D (f) = {real numbers except m = 0} and R (f)
= {real number except m = 0}

Question: What do you mean by the “absolute value
function”?
Answer: A function f: R → R defined by f (x) = | x |

=
x x

x x

,

,

≥
− <
�
�
�

0

0
 is called absolute value (or, modulus or,

norm) function.
Notes: (A) A function put in the form | f (x) | is called
the “modulus of a function” or simply “modulus of a
function” which signifies that:

(i) | f (x) | = f (x), provided f x� � ≥ 0 ,  i.e., if f (x) is
positive or zero, then | f (x) | = f (x).
(ii) | f (x) | = –f (x), provided f (x) < 0, i.e., if f (x) is
negative, then | f (x) | = –f (x) which means that if f (x)
is negative, f (x) should be multiplied by –1 to make f
(x) positive.
(B) | f (x) | = sgn f (x) × f (x) where sgn

f x
f x

f x
f x� � � �

� � � �= ≠, 0

= 0, f (x) = 0
i.e., sgn f (x) = 1 when f (x) > 0

 = –1 when f (x) < 0
 = 0 when f (x) = 0

where ‘sgn’ signifies “sign of ” written briefly for the
word “signum” from the Latin. Also, domain of abso-
lute value function = D (f) = {real numbers} and range
of absolute value function = R (f) = {non negative real
numbers} = R+ ∪ {0}.

(C) 1. (i) | x – a | = (x – a) when x a− ≥� � 0

| x – a | = –(x – a) when x a− <� � 0
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(ii) | 3| = 3 since 3 is positive.
| –3 | = –(–3) since –3 is negative. For this reason,

we have to multiply –3 by –1.
2. If the sign of a function f (x) is unknown (i.e., we
do not know whether f (x) is positive or negative),
then we generally use the following definition of the
absolute value of a function.

f x f x f x� � � � � �= =2 2

3. Absolute means to have a magnitude but no sign.
4. Absolute value, norm and modulus of a function
are synonymes.
5. Notation: The absolute value of a function is
denoted by writing two vertical bars (i.e. straight lines)
within which the function is placed. Thus the notation
to signify “the absolute value of” is “|   |”.
6. | f 2 (x) | = f 2 (x) = | f (x) |2 = (–f (x))2

7. In a compact form, the absolute value of a function

may be defined as f x f x� � � �= 2

= f (x), when f x� � ≥ 0

= –f (x), when f (x) < 0

8. f x f x f x f x1 2 1 2� � � � � � � �= ⇔ = ±

e.g.: x x x x− = + ⇔ − = ± +2 3 2 3� � � �
which is solved as under this line. x − =2� �

x + ⇒ − =3 2 3� �  which is false which means this
equation has no solution and x x− = − + ⇒2 3� � � �
x x x x x− = − − ⇒ + = − ⇒ = − ⇒2 3 2 3 2 1

x = − 1

2
.

9. f x k k f x k� � � �≤ ⇔ − ≤ ≤  which signifies

the intersection of f x k� � ≥ −  and f x k� � ≤ ,

∀ >k 0 .

10. f x k f x k� � � �≥ ⇔ ≥  or f x k� � ≤ −  which

signifies the union of f x k� � ≥  and f x k� � ≤ − ,

∀ >k 0 .

11. | f (x) |n = (f (x)n, where n is a real number.

12. | |f x� � ≥ 0  always means that the absolute value

of a functions is always non-negative (i.e., zero or
positive real numbers)
13. | f (x) = | –f (x) |

14. | |f x f x� � � �≥
15. | f 1 (x) · f 2 (x) |

= | f 1 (x) | · | f 2 (x) |

16.
f x

f x

f x

f x
f x1

2

1

2
2 0

� �
� �

� �
� � � �= ≠,

17. f x f x f x f x1 2 1 2� � � � � � � �+ ≤ +

18. f x f x f x f x1 2 1 2� � � � � � � �− ≥ −
19. | 0 | = 0, i.e. absolute value of zero is zero.
20. Modulus of modulus of a function (i.e. mod of | f
(x) | ) = | f (x) |

Remarks: When

(a) | x | = x, when x x x≥ ⇔ =0 ,  ∀ ∈ ∞x 0 ,� �
and | x  | = –x , when x x x< ⇔ = −0 ,

∀ ∈ −∞x , 0� � .
(b) | x | = | –x | = x, for all real values of x

(c) x x=
2

(d) x a a x a≤ ⇔ − ≤ ≤  and x a≥ ⇔  x a≥

and x a≤ − .

Geometric Interpretation of Absolute Value
of a Real Number x, Denoted by | x |

The absolute value of a real number x, denoted by | x
| is undirected distance between the origin O and the
point corresponding to a (i.e. x = a) i.e, | x | signifies
the distance between the origin and the given point x
= a on the real line.

Explanation: Let OP = x
If x > o, P lies on the right side of origin ‘O’, then

the distance OP = | OP | = | x | = x

xx ′ P x ( )

–a a

P x ( )0
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If x = O, P coincides with origin, the distance OP =
| x | = | o | = o

If x > O, P lies on the left side of origin ‘o’, then the
distance OP = | OP | = | –OP | = | –x | = x

Hence, | x | =
x, provided x > o means that the absolute value
of a positive number is the positive number
itself.
o, provided x = o means the absolute value of
zero is taken to be equal to zero.
–x, provided x < o means that the absolute value
of a negative number is the positive value of
that number.

Notes:
1. x is negative in | x | = –x signifies –x is positive in |
x | = –x e.g.: | –7| = –(–7) = 7.
2. The graphs of two numbers namely a and –a on
the number line are equidistant from the origin. We
call the distance of either from zero, the absolute value
of a and denote it by | a |.

3. x a x a= ⇔ = ±

4. x a x a x a x
2 2 2 2

= ⇔ = ⇔ = ⇔ =

± ⇔ = ± ⇔ =a x a x a
2 2

.

5. x x=
2

 signifies that if x is any given number,

then the symbol x
2  represents the positive square

root of x2 and be denoted by | x | whose graph is
symmetrical about the y-axis having the shape of
English alphabet 'V '. which opens (i) upwards if y =
| x | (ii) downwards if y = – | x | (iii) on the right side if
x = | y | (iv) on the left side if x = – | y |.

An Important Remark

1. The radical sign " "n  indicates the positive root

of the quantity (a number or a function) written under

it (radical sign) e.g.: 25 5= + .

2. If we wish to indicate the negative square root of a
quantity under the radical sign, we write the negative

sign (–) before the radical sign. e.g.: − = −4 2 .

3. To indicate both positive square root and negative
square root of a quantity under the radical sign, we
write the symbol ±  (read as “plus or minus”) before
the radical sign.

e.g.: ± = ±1 1

± = ±4 2

± = ±16 4

Remember:
1. In problems involving square root, the positive
square root is the one used generally, unless there is

a remark to the contrary. Hence, 100 10= ;

169 13
2

= =; x x .

2. x y x y
2 2 2 2

1 1+ = ⇔ = − ⇔ x
2

=

1
2

− ⇔y  x y x y= − ⇔ = ± −1 1
2 2

e.g.: cos sin cos
2 2

1θ θ θ= − ⇔ =

1 1
2 2

− ⇔ = ± −sin cos sinθ θ θ

one should note that the sign of cosθ  is

determined by the value of the angle ' 'θ  and the

value of the angle ' 'θ  is determined by the quadrant

in which it lies. Similarly for other trigonometrical

functions of θ , such as, tan2 θ  = sec2 θ – 1 ⇔  tan

θ = ± − ⇔ = −sec tan sec
2 2

1 1θ θ θ

cot cosec cot
2 2

1θ θ θ= − ⇔ =

± − ⇔ = −cosec cot cosec
2 2

1 1θ θ θ

sec tan sec
2 2

1θ θ θ= + ⇔ =

± ⇔ =1 + tan sec 1 + tan
2 2
θ θ θ , w h e r e

the sign of angle ' θ ' is determined by the quadrant in
which it lies.
3. The word “modulus” is also written as “mod” and
“modulus function” is written as “mod function” in
brief.
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On Greatest Integer Function

Firstly, we recall the definition of greatest integer
function.

Definition: A greatest integer function is the function
defined on the domain of all real numbers such that
with any x in the domain, the function associates
algebraically the greatest (largest or highest) integer
which is less than or equal to x (i.e., not greater than
x) designated by writing square brackets around x as
[x].

The greatest integer function has the property of
being less than or equal to x, while the next integer is

greater than x which means x x x≤ < + 1 .

Examples:

(i) x x= ⇒ = �
��
�
��

=
3

2

3

2
1 is the greatest integer in

3

2
.

(ii) x = 5 ⇒ [x] = [5] = 5  is the greatest integer in 5.

(iii) x x= ⇒ = =50 50 7  is the greatest

integer in 50 .

(iv) x = 2.5 ⇒ [x] = [–2.5] = –3 is the greatest integer
in –2.5.
(v) x = 4.7 ⇒  [x] = [–4.7] = –5 is the greatest integer
in –4.7.
(vi) x = –3 ⇒  [x] = [–3] = –3 is the greatest integer
in –3.

To Remember:
1. The greatest integer function is also termed as
“the bracket, integral part or integer floor function”.
2. The other notation for greatest integer function is
� �  or [[ ]] in some books inspite of [ ].
3. The symbol [ ] denotes the process of finding the
greatest integer contained in a real number but not
greater than the real number put in [ ].

Thus, in general y = [f (x)] means that there is a
greatest integer in the value f (x) but not greater than
the value f (x) which it assumes for any x R∈ .

This is why in particular y = [x] means that for a
particular value of x, y has a greatest integer which is
not greater than the value given to x.
4. The function y = [x], where [x] denotes integral
part of the real number x, which satisfies the equality
x = [x] + q, where 0 1≤ <q  is discontinuous at every
integer x = ± ±0 1 2, , , ...  and at all other points, this
function is continuous.
5. If x and y are two arbitrary real numbers satisfying
the inequality n x n≤ < + 1 and n y n≤ < + 1 ,
where n is an integer, then [x] = [y] = n.
6. y = [x] is meaningless for a non-real value of x
because its domain is the set of all real numbers and
the range is the set of all integers, i.e. D [x] = R and R
[x] = {n: n is an integer} = The set of all integers, …
–3, –2, –1, 0, 1, 2, 3, …, i.e., negative, zero or positive
integer.
7. f x f x� � � �= ⇔ ≤ <0 0 1 . Further the solution

of 0 1≤ <f x� �  provides us one of the adjacent

intervals where x lies. The next of the a adjacent intervals
is determined by adding 1 to the left and right end
point of the solution of 0 1≤ <f x� � . This process
of adding 1 to the left and right end point is continued
till we get a finite set of horizontal line segments
representing the graph of the function y = [f (x)]

More on Properties of Greatest Integer
Function.

(i) x n n x n I x R+ = + ∈ ∈, and

(ii) − = − ∈x x x I,

(iii) − = − − ∉x x x I1,

(iv) x n x n n I≥ ⇒ ≥ ∈,

(v) x n x n n I≤ ⇒ < + ∈1,

(vi) x n x n> ⇒ ≥

(vii) x n x n n I x R< ⇒ < ∈ ∈, and

(viii) x y x y x y R+ ≥ + ∈, ,

(ix)
x

n

x

n
n N x R

�
�
�
�
�
� = �
��
�
��

∈ ∈, and
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(x) x = [x] + {x} where { } denotes the fractional part

of x x R, ∀ ∈
(xi) x x x x R− < ≤ ∀ ∈1 ,

(xii) x x x≤ < + 1  for all real values of x.

Question: Define “logarithmic” function.
Answer: A function f R: 0 , ∞ →� �  defined by f (x) =
loga x is called logarithmic function, where
a a≠ >1 0, . Its domain and range are 0 , ∞� �  and R
respectively.

Question: Define “Exponential function”.
Answer: A function f: R → R defined by f(x) = ax,
where a ≠ 1 , a > 0. Its domain and range are R and
0 , ∞� �  respectively.

Question: Define the “piece wise function”.
Answer: A function y = f (x) is called the “piece wise
function” if the interval (open or closed) in which the
given function is defined can be divided into a finite
number of adjacent intervals (open or closed) over
each of which the given function is defined in different
forms. e.g.:

1. f x x x� � = + ≤ <2 3 0 1,

f (x) = 7, x = 1

f x x x� � = < ≤2
1 2,

2. f (x) = x2 – 1, 0 < x < 2

f x x x� � = + ≥2 2,

3. f x x x� � = + − ≤ <1 1 0,

f (x) = x2 – 1, 0 < x < 2

f x x x� � = ≥2 2,

Notes:
1. Non-overlapping intervals: The intervals which
have no points in common except one of the end
points of adjacent intervals are called non overlapping
intervals whose union constitutes the domain of the

piece wise function. e.g.: 0
1

3

1

3

2

3
, , ,�
��

�
��
�
��

�
��  and 

2

3
1,�

��
�
��

serve as an example of non-overlapping intervals
whose union [0, 1] is the domain of the piece wise
function if it is defined as:

f x x x� � = + ≤ ≤2 1 0
1

3
,

f x x x� � = + ≤ ≤2
2

1

3

2

3
,

f x x x� � = − ≤ ≤4 1
2

3
1

2
,

2. A function y = f (x) may not be necessarily defined
by a single equation for all values of x but the function
y = f (x) may be defined in different forms in different
parts of its domain.
3. Piecewise function is termed also “Piecewise defined
function” because function is defined in each piece.
If every function defined in adjacent intervals is linear,
it is termed as “Piecewise linerar function” and if every
function defined in adjacent intervals is continuous,
it is called  “piecewise continuous function.”

Question: What do you mean by the “real variables”?
Answer: If the values assumed by the independent
variable ‘x’ are real numbers, then the independent
variable ‘x’ is called the “real variable”.

Question: What do you mean by the “real function
(or, real values of function) of a real variable”?
Answer: A function y = f (x) whose domain and range
are sets of a real numbers is said to be a real function
(or more clearly, a real function of a real variable) which
signifies that values assumed by the dependent
variable are real numbers for each real value assumed
by the independent variable x.

Note: The domain of a real function may not be
necessarily a subset of R which means that the domain
of a real function can be any set.

Examples:
1. Let A a b a b= θ , , , ,
 � 
 � 
 ��   and B = {1, 2, 3,
4, 5}

∴ =f a b a bθ , , , , , , , ,1 2 4 3� � 
 �� � 
 �� � 
 �� �� �  is
a real function since B is a subset of the set of real
numbers.
2. If f R R: →  such that f x x x R� � = − ∀ ∈2 1 , ,
then f is a real function.

Remarks:
1. In example (i) The domain of f is a class of sets and
in example (ii) The domain of f is R. But in both
examples, the ranges are necessarily subsets of R.
2. If the domain of a function f is any set other than
(i.e. different from) a subset of real numbers and the
range is necessarily a subset of the set of real
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numbers, the function must be called a real function
(or real valued function) but not a real function of a
real variable because a function of a real variable
signifies that it is a function y = f (x) whose domain
and range are subsets of the set of real numbers.

Question: What do you mean by a “single valued
function”?
Answer: When only one value of function y = f (x) is
achieved for a single value of the independent variable
x = a, we say that the given function y = f (x) is a
single valued function, i.e., when one value of the
independent variable x gives only one value of the
function y = f (x), then the function y = f (x) is said to
be single valued, e.g.:
1. y = 3x + 2
2. y = x2

3. y = sin –1 x, − ≤ ≤
π π
2 2

y

serves as examples for single valued functions be-
cause for each value of x, we get a single value for y.

Question: What do you mean by a “multiple valued
function”?
Answer: when two or more than two values of the
function y = f (x) are obtained for a single value of the
independent variable x = a, we say that the given
function y = f (x) is a multiple (or, many) valued
function, i.e. if a function y = f (x) has more than one
value for each value of the independent variable x,
then the function y = f (x) is said to be a multiple (or,
many) valued function, e.g.:

1. x y x x y
2 2 2

9 9+ = ⇒ = ± − ⇒  has two

real values, ∀ <x 3 .

2. y x y x
2 = ⇒ =  is also a multiple valued

function since x y y y= ⇒ = ⇒ = =9 9
2 2

9 3⇒ = ±y   (∴ | y | = y
2

 = y for y > 0 and | y |

= y
2

 = –y for y > 0).

Question: What do you mean by standard functions?
Answer: A form in which a function is usually written
is termed as a standard function.

e.g.: y = xn, sin x, cos x, tan x, cot x, sec x, cosec x,
sin–1 x, cos–1 x, tan–1 x, cot–1 x, sec–1 x, cosec–1 x, log
ax, log ex, ax, ex, etc. are standard functions.

Question: What do you mean by the “inverse
function”?
Answer: A function, usually written as f 

–1 whose
domain and range are respectively the range and
domain of a given function f and under which the
image f 

–1 (y) of an element y is the element of which y
was the image under the given function f, that is,

f y x f x y
− = ⇔ =1 � � � � .

Remarks:
1. A function has its inverse ⇔  it is one-one (or,
one to one) when the function is defined from its
domain to its range only.
2. Unless a function y = f (x) is one-one, its inverse
can not exist from its domain to its range.
3. If a function y = f (x) is such that for each value of
x, there is a unique values of y and conversely for
each value of y, there is a unique value of x, we say
that the given function y = f (x) is one-one or we say
that there exists a one to one (or, one-one) relation
between x and y.
4. In the notation f 

–1, (–1) is a superscript written at
right hand side just above f. This is why we should
not consider it as an exponent of the base f which

means it can not be written as f
f

−
=

1 1
.

5. A function has its inverse ⇔  it is both one-one
and onto when the function is defined from its domain
to its co-domain.

x
y f x = ( )

D

f
R

y
y f  x = ( )–1

D

f –1

R
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Pictorial Representation of Inverse
Function

To have an arrow diagram, one must follow the
following steps.

1. Let f D R: →  be a function such that it is one-

one (i.e. distinct point in D have distinct images in R
under f).
2. Inter change the sets such that original range of f
is the domain of f–1 and original domain of f is the
range of f–1.
3. Change f to f–1.

Therefore, f D R: →  defined by y = f (x) s.t it is
one-one ⇔ →−

f R D
1

:  defined by f–1 (y) = x is an
inverse function.

On Intervals

1. Values and range of an independent variable x: If
x is a variable in (on/over) a set C, then members
(elements or points) of the set C are called the values
of the independent variable x and the set C is called
the range of the independent variable x, whereas x
itself signifies any unspecified (i.e., an arbitrary)
member of the set C.
2. Interval: The subsets of a real line are called
intervals. There are two types (or, kinds) of an interval
namely (i) Finite and (ii) Infinite.
(i) Finite interval: The set containing all real numbers
(or, points) between two real numbers (or, points)
including or excluding one or both of these two real
numbers known as the left and right and points is
said to be a finite interval. A finite interval is classified
into two kinds namely (a) closed interval and (b) open
interval mainly.
(a) Closed interval: The set of all real numbers x

subject to the condition a x b≤ ≤  is called closed

interval and is denoted by [a, b] where a and b are
real numbers such that a < b.

In set theoretic language, [a, b] = {x: a x b≤ ≤ , x

is real}, denotes a closed interval.

Notes:
1. The notation [a, b] signifies the set of all real
numbers between a and b including the end points a
and b, i.e., the set of all real from a to b.
2. The pharase “at the point x = a” signifies that x
assumes (or, takes) the value a.
3. A neighbourhood of the point x = a is a closed
interval put in the form [a – h, a + h] where h is a
positive number, i.e.,

[ a – h, a + h] = { x a h x a h: − ≤ ≤ + ,   h is a

small positive number}
4. All real numbers can be represented by points on
a directed straight line (i.e., on the x-axis of cartesian
coordinates) which is called the number axis. Hence,
every number (i.e. real number) represents a definite
point on the segment of the x-axis and conversely
every point on the segment (i.e., a part) of the x-axis
represents only one real number. Therefore, the
numbers and points are synonymes if they represent
the members of the interval concerned.(Notes 1. It is
a postulate that all the real numbers can be represents
by the points of a straight line. 2. Neigbourhood
roughly means all points near about any specified
point.)
(b) Open interval: The set of all real numbers x subject
to the condition a < x < b is called an open interval
and is denoted by (a, b), where a and b are two real
numbers such that a < b.

In the set theoretic language, (a, b) = {x: a < x < b,
x is real}

Notes:
1. The notation (a, b) signifies the set of all real
numbers between a and b excluding the end points a
and b.
2. The number ‘a’ is called the left end point of the
interval (open or closed) if it is within the circular or
square brackets on the left hand side and the number
b is called the right end point of the interval if it is
within the circular or square brackets on the right h
and side.

a b

a b
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3. Open and closed intervals are represented by the
circular and square brackets (i.e., ( ) and [ ] )
respectively within which end points are written
separated by a comma.
(c) Half-open, half closed interval (or, semi-open, semi
closed interval): The set of all real numbers x such

that a x b< ≤  is called half open, half closed interval

(or, semi-open, semi closed interval), where a and b
are two real numbers such that a < b.

(a, b) = {x: a x b< ≤ , x is real}

Note: The notation (a, b] signifies the set of all real
numbers between a and b excluding the left end point
a and including the right end point b.

(d) Half closed, half open (or, semi closed, semi open
interval): The set of all real numbers x such that

a x b≤ <  is called half-closed, half open interval

(or, semi closed, semi open interval), where a and b be
two real numbers such that a < b.

In set theoretic language, [a, b) = {x: a x b≤ < , x

is real}

Note: The notation [a, b) signifies the set of all real
numbers between a and b including the left end point
a and excluding the right end point b.

2. Infinite interval

(a) The interval −∞ ∞,� � : The set of all real numbers

x is an infinite interval and is denoted by −∞ ∞,� �  or

R.

In set theoretic language,

R = −∞ ∞,� �  = {x: −∞ < < ∞x , x is real}

(b) The interval a , ∞� � : The set of all real numbers x
such that x > a is an infinite interval and is denoted

by a , ∞� � .

In set theoretic language,

a , ∞� �  = {x: x > a, x is real}

or, a , ∞� �  = {x: a x< < ∞ , x is real}

(c) The interval a , ∞� : The set of all real numbers

x such that x a≥  is an infinite interval and is denoted

by a , ∞� .

In set theoretic language,

a , ∞�  = {x: x a≥ , x is real}

or, a , ∞�  = {x: a x≥ > ∞ , x is real}

(d) The interval −∞ , a� � : The set of all real numbers
x such that x < a is an infinite interval and is denoted

by −∞ , a� � .

−∞ , a� �  = {x: x < a, x is real}

or, −∞ , a� �  = {x: −∞ < <x a , x is real}

(e) The interval −∞ , a� : The set of all real numbers

x such that x a≤  is an infinite interval and is denoted

by −∞ , a� .

In set theoretic language,

−∞ , a�  = {x: x a≤ ,  x is real}

−∞ , a�  = {x: −∞ < ≤x a ,  x is real}

Remember:
1. In any finite interval, if a and/b is (or, more) replaced

by ∞  and / − ∞ , we get what is called an infinite
interval.

a b

a b

0 ∞– ∞

∞a

∞a

a– ∞

a– ∞
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2. a x b≤ ≤  signifies the intersection of the two

sets of values given by x a≥  and x b≤ .

3. x a≥  or x b≤  signifies the union of the two

sets of values given by x a≥  and x b≤ .

4. The sign of equality with the sign of inequality
(i.e., ≥ ≤or ) signifies the inclusion of the specified

number in the indicated interval finite or infinite. The
square bracket (i.e., [,)also (put before and/after any
specified number) signifies the inclusion of that
specified number in the indicated interval finite or
infinite.
5. The sign of inequality without the sign of equality
(i.e. > or <) signifies the exclusion of the specified
number in the indicated interval finite or infinite. The
circular bracket (i.e. ( , ) also (put before and/after any
specified number) signifies the exclusion of that
specified number indicated interval finite or infinite.

6. (i) : x a b a x b∈ ⇔ ≤ ≤,  and x a b∉ ,

⇔ ∈ ⇔ ∈x a b xc,  −∞ ∪ ∞, ,a b� � � �  where [a,

b]c = R  – [a , b] complement of [a , b] =

−∞ ∪ ∞, ,a b� � � � .
(ii) : x a b a x b∈ ⇔ < <,� �  and x a b∉ ⇔,� �
x a b∈ −∞ ∪ ∞, ,� � .
7. Intervals expressed in terms of modulus: Many
intervals can be easily expressed in terms of absolute
values and conversely.
(i) | x | < a ⇔  –a < x < a ⇔ ∈x  (–a, a), where ‘a’ is

any positive real number and x R∈ .

(ii) x a a x a x a a≤ ⇔ − ≤ ≤ ⇔ ∈ − ,  where

‘a’ is any positive real number and x R∈ .

(iii) | x | > a ⇔ ∉x  [–a, a] ⇔ ∈ −∞ − ∪x a,� �
a , ∞ ⇔� �  either x <–a or x> a, a being any positive

real number and x R∈ .

(iv) x a≥ ⇔  either x a x a x≤ − ≥ ⇔ ∈or

−∞ − ∪ ∞, ,a a� � .

Evaluation of a Function at a Given Point

Evaluation: To determine the value of a function y =
f (x) at a given point x = a, is known as evaluation (or,
more clearly evaluation of the function y = f (x) at the
given point x = a)

Notation: [f (x)]x = a = (f (x))x = a = f (a) is a notation to
signify the value of the function f at x = a.

Type 1: To evaluate a function f (x) at a point x = a
when the function f (x) is defined by a single expression,
equation or formula.

Working rule: The method of finding the value of a
function f (x) at the given point x = a when the given
function f (x) is defined by a single expression,
equation or formula containing x consists of following
steps.

Step 1: To substitute the given value of the
independent variable (or, argument) x wherever x
occurs in the given expression, equation, or formula
containg x for f (x)
Step 2: To simplify the given expression, equation or
formula containg x for f (x) after substitution of the
given value of the independent variable (or, argument)
x.

Solved Examples

1. If f (x) = x2 – x + 1, find f (0), f (1) and f
1

2
�
�
�
� .

Solution: ∴ f (x) = x2 – x + 1
∴ f (0) = 02 – 0 + 1 = 1

0– a ax

0– a ax

0– a a x

0– a a
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f (1) = 12 – 1 + 1 = 1

and f
1

2

1

2

1

2
1

2�
�
�
� = ��

�
� − ��

�
� +

= − + =
1

4

1

2
1

3

4

2. If f x
x

� � = 1
,  find 

f h f

h

1 1+ −� � � �
.

Solution: ∴ =f x
x

� � 1
...(1)

∴ + =
+

f h
h

1
1

1
� � ...(2)

f 1
1

1
1� � = = ... (3)

∴ + − =
+

− = −
+

f h f
h

h

h
1 1

1

1
1

1
� � � � ...(3)

∴ =
+ −4 1 1� � � � � �

h

f h f

h

=
− +

=
+

h h

h h

/ 1 1

1

� �

Type 2: (To evaluate a piecewise function f (x) at a
point belonging to different intervals in which different
expression for f (x) is defined). In general, a piece wise
function is put in the form

f (x) = f1 (x), when x > a
= f2 (x), when x = a

f3 (x), when x < a, ∀ ∈x R

and one is required to find the values (i) f (a1) (ii) f
(a) and (iii) f (a0), where a, a0 and a1 are specified (or,
given) values of x and belong to the interval x > a
which denote the domains of different function f1 (x),
f2 (x) and f3 (x) etc for f (x).

Note: The domains over which different expression
f1 (x), f2 (x) and f3 (x) etc for f (x) are defined are intervals

finite or infinite as x > a, x < a, x a≥ , x a≤ , a < x <

b, a x b≤ < , a x b< ≤  and a x b≤ ≤  etc and

represent the different parts of the domain of f (x).

Working rule: It consists of following steps:

Step 1: To consider the function f (x) = f1 (x) to find
the value f (a1), provided x = a1 > a and to and to put
x = a1 in f (x) = f1 (x) which will provide one the value
f (a1) after simplification.
Step 2: To consider the function f (x) = f2 (x) to find
the value f (a), provided x = a is the restriction against
f2 (x) and put x = a in f2 (x). If f (x) = f2 (x) when the

restrictions imposed against it are x a≥ , x a≤ ,

a x b≤ < , a x b< ≤ , a x b≤ ≤  or any other

interval with the sign or equality indicating the
inclusion of the value ‘a’ of x, we may consider f2 (x)
to find the value f (a). But if f (x) = f2 (x) = constant,
when x = a is given in the question, then f2 (x) = given
constant will be the required value of f (x) i.e. f (x) =
given constant when x = a signifies not to find the
value other than f (a) which is equal to the given
constant.
Step 3: To consider the function f (x) = f3 (x) to find
the value f (a2) provided x = a2 < a and x = a2 in f (x) =
f3 (x) which will provide one the value f (a2) after
simplification.

Remember:

1. f (x) = f1 (x), when (or, for, or, if) a x a≤ < 2  signifies

that one has to consider the function f (x) = f1 (x) to
find the functional value f1 (x) for all values of x (given
or specified in the question) which lie in between a1
and a2 including x = a1.

2. f (x) = f2 (x), when (or, for, or, if) a x a2 3< ≤ ,

signifies that one has to consider the function f (x) =
f2 (x),to find the functional value f2 (x) for all values of
x (given or specified in the question) which lie in
between a2 and a3 including x = a3.
3. f (x) = f3 (x), when (or, for, or, if) a4 < x < a5 signifies
that one has to consider the function f (x) = f3 (x) to
find the functional value f3 (x) for all values of x (given
or specified in the question) which lie in between a4
and a5 excluding a4 and a5.

Solved Examples
1. If f R R: →  is defined by

f (x) = x2 – 3x, when x > 2
= 5, when x = 2

= 2x + 1, when x < 2, ∀ ∈x R
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find the values of (i) f (4) (ii) f (2) (iii) f (0) (iv) f (–3)
(v) f (100) (vi) f (–500).

Solution: 1. �4 2> ∴,  by definition, f (4) = (x2

– 3x) for x = 4 = 42 – 3 (4) = 16 – 12 = 4
(ii) � 2 = 2, ∴  by definition, f (2) = 5
(iii) 0 < 2, ∴ by definition, f (0) = 2 (0) + 1 = 1
(iv) –3 < 2, ∴ by definition, f (–3) = 2 (–3) + 1 = –5
(v) 100 > 2, ∴ by definition, f (100) = (100)2 – 3

(100) = 10000 – 300 = 9700
(vi) –500 < 2, ∴ by definition f (–500) = 2 (–500) +

1 = –1000 + 1 = –999

2. If f (x) = 1 + x, when − ≤ <1 0x

= x2 – 1, when 0 < x < 2

2x, when x ≥ 2

find f f f3
1

2

1

2
� � , ,�

�
�
� −��

�
�

Solution: �  f (x) = 2x for x ≥ 2

∴ f (3) = 2 ×3 = 6 (� x = ≥3 2 )

� f x x x� � = + − ≤ <1 1 0, for

∴ −��
�
� = + −��

�
� =f

1

2
1

1

2

1

2

� x = − ∈ −�
�

�
�

1

2
1 0[ ),

�  f  (x) = x2 – 1, for 0 < x < 2

∴ �
�
�
� = ��

�
� − = − + = −f

1

2

1

2
1 1

1

4

3

4

2

� x = ∈�
�

�
�

1

2
0 2,� �

Refresh your memory:
1. If a function f (x) is defined by various expressions
f1 (x), f2 (x), f3 (x) etc, then f (a0) denotes the value of
the function f (x) for x = a0 which belongs to the
domain of the function f (x) represented by various

restrictions x > a, x < a, x a≥ , x a≤ , a < x < b,

a x b≤ ≤ , a x b≤ < , and a x b< ≤  etc.

2. Supposing that we are required to find the value
of the function f (x) for a point x = a0 which does not

belong to the given domain of the function f (x), then
f (a0) is undefined, i.e., we cannot find f (a0), i.e., f (a0)
does not exist.

f (x) = x2 – 1, when 0 < x < 2

= x + 2, when x ≥ 2

find f (–1)
Solutions: − ∉1  domain of f (x) represented by the
union of the restrictions 0 < x < 2 and x ≥ 2  (i.e., 0 <
x < 2 or x ≥ 2 ). For this reason f (–1) is undefined

(i.e., f (x) is undefined at x = –1).
3. Sometimes we are required to find the value of a

piecewise function f (x) for a h0 ±  where h > 0, in

such cases, we may put h = 0.0001 for easiness to
guess in which domain (or, interval) the point

represented by x a h= ±  lies.

e.g.: If a function is defined as under

f (x) = 1 + x, when − ≤ <1 0x

= x2 – 1, when 0 < x < 2

2x, when x ≥ 2

find f (2 – h) and f (–1 + h)
(Footnotes: 1. f (a) exists or f (a) is defined ⇔  ‘a’

lies in the domain of f. 2. f (a) does not exist or f (a) is
undefined ⇔  ‘a’ does not lie in the domain of f.)
Solution: 1. Putting h = 0.001, we get 2– h = 2 – 0.001
= 1.999 and 1.999 ∈ (0, 2) = 0 < x < 2

∴  f (2 – h) = (2 – h)2 – 1 = 22 + h2 – 4h – 1 = 4 + h2

– 4h – 1
= 3 + h2 – 4h = h2 – 4h + 3
2. Putting h = 0.001, we get –1 + h = –1 + 0.001 =

0.999 and 0.999 ∈ [–1, 0) = − ≤ <1 0x

∴ f (–1 + h) = (1 + x)x =–1 + h = 1 + h – 1 = h

Domain of a Function

Sometimes a function of an independent variable x is
described by a formula or an equation or an expression
in x and the domain of a function is not explicitly
stated. In such circumstances, the domain of a function
is understood to be the largest possible set of real
numbers such that for each real number (of the largest
possible set), the rule (or, the function) gives a real
number or for each of which the formula is meaningful
or defined.
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Definition: If f D R: →  defined by y = f (x) be a

real valued function of a real variable, then the domain
of the function f represented by D (f) or dom (f) is
defined as the set consisting of all real numbers
representing the totality of the values of the
independent variable x such that for each real value
of x, the function or the equation or the expression in
x has a finite value but no imaginary or indeterminate
value.

Or, in set theoretic language, it is defined as:

If f D R: →  be real valued function of the real

variable x, then its domain is D or D (f) or dom (f)

= { x R f x∈ : � �  has finite values }

= { x R f x∈ : � �  has no imaginary or indeterminate

value.}

To remember:
1. Domain of sum or difference of two functions f (x)

and g (x) = dom f x g x� � � �±  = dom (f (x)) ∩  dom

(g (x)).
2. Domain of product of two functions f (x) and g (x)

g (x) = dom f x g x� � � �⋅  = dom (f (x)) ∩  dom (g (x)).

3. Domain of quotient of two functions f (x) and g (x)

=
�
��

�
��

= ∩ ∩dom dom dom
f x

g x
f x g x

� �
� � � � � �� �

x g x: � �� ≠ 0

= ∩ −dom domf x g x� �� � � �� �  x g x: � �� ≠ 0  i.e.,

the domain of a rational function or the quotient
function is the set of all real numbers with the exception
of those real numbers for which the function in
denominator becomes zero.

Notes: 1. The domain of a function defined by a
formula y = f (x) consists of all the values of x but no
value of y (i.e., f (x)).
2. (i) The statement “f (x) is defined for all x” signifies

that f (x) is defined in the interval −∞ ∞,� � .
(ii) The statements “f (x) is defined in an interval
finite or infinite” signifies that f (x) exists and is real
for all real values of x belonging to the interval. Hence,

the statement “f (x) is defined in the closed interval
[a, b]” means that f (x) exists and is real for all real
values of x from a to b, a and b being real numbers
such that a < b. Similarly, the statement “f (x) is defined
in the open interval (a, b)” means that f (x) exists and
is real for all real values of x between a and b (excluding
a and b)

3. (i) f x g x
f x

g x
� � � � � �

� �⋅ = ⇔
=
=

�
��

0
0

0
, or

(ii) f x g x

f x

g x
f x

g x

� � � �

� �
� �
� �
� �

⋅ ≥ ⇔

≥
≥

�
�
�

≤
≤

�
�
�

�

�

�
�
�
�

0

0

0
0

0

, or

(iii) f x g x

f x

g x
f x

g x

� � � �

� �
� �
� �
� �

⋅ ≤ ⇔

≥
≤

�
�
�

≤
≥

�
�
�

�

�

�
�
�
�

0

0

0
0

0

, or

(iv)
f x

g x

f x

g x
f x

g x

� �
� �

� �
� �
� �
� �

≥ ⇔

≥
<

�
�
�

≤
>

�
�
�

�

�

�
�
�
�

0

0

0
0

0

, or

(v)
f x

g x

f x

g x
f x

g x

� �
� �

� �
� �
� �
� �

≤ ⇔

≥
<

�
�
�

≤
>

�
�
�

�

�

�
�
�
�

0

0

0
0

0

, or

4. (i) x a a x a
2 2

0− < ⇔ − < <� �

(ii) x a a x a
2 2

0− ≤ ⇔ − ≤ ≤� �

(iii) x a x a x a
2 2

0− > ⇔ < − >� � or

(iv) x a x a x a
2 2

0− ≥ ⇔ ≤ − ≥� � or
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5. (i) x a x b a x b a b− − < ⇔ < < < ⇔1 1 1 1 1 10� � � � � �
x a b∈ 1 1,� �
(ii) x a x b a x b a b− − ≤ ⇔ ≤ ≤ < ⇔2 2 2 2 2 20� � � � � �
x a b∈ 2 2,

They mean the intersection of
(a) x > a1 and x < b1

(b) x a x b≥ ≤2 2and

(iii) x a x b x a x b a b− − > ⇔ < > <� � � � � �0 or

⇔ ∈ −∞ ∪ ∞x a b, ,� � � �
(iv) x a x b x a x b a b− − ≥ ⇔ ≤ ≥ <� � � � � �0 or

⇔ ∈ −∞ ∪ ∞x a b, ,� �
They mean the union of

(a) x < a and x > b

(b) x a x b≤ ≥and

Question: How to represent the union and
intersection on a number line?
Answer: Firstly, we recall the definitions of union and
intersection of two sets.
Union: The union of two sets E and F is the set of
elements belonging to either E or F.
Intersection: The set of all elements belonging to
both sets E and F is called intersection of E and F.

Method of Representation of
Union and Intersection on Real Lines

If the set of the points on the line segment AB be the
set E and the set of the point on segment CD be the
set F, then the union of E and F is the segment AD =
AB + BD = sum or union and the intersection of E and
F is the segment CB = common segment.

Now some rules to find the domain of real valued
functions are given. They are useful to find the
domain of any given real valued function.

Finding the Domain of
Algebraic Functions

Type 1: Problems based on finding the domains of
polynomial functions.

Working rule: One must remember that a polynomial
in x has the domain R (i.e., the set of the real numbers)
because any function f of x which does not become
undefined or imaginary for any real value of x has the
domain R. Hence, the linear y = ax + b; the quadratic
y = ax2 + bx + c; and the square functions y = x2 have
the domain R.

Solved Examples
Find the domain of each of the following functions:
1. y = 11x – 7
Solution:  y = 11x – 7 is a linear function and we know
that a linear function has the domain R.

Hence, domain of y (= 11x – 7) = R = −∞ + ∞,� �
2. y = x2 – 3x + 7
Solution: y = x2 – 3x + 7 is a quadratic function and
we know that a quadratic function has the domain R.

Hence, domain of y = (= x2 – 3x + 7) =
R = −∞ + ∞,� �

3. y = x2

Solution: y = x2 is a square function and we know
that a square function has the domain R.

Hence, domain of y = (= x2) = R = −∞ + ∞,� �
Type 2: Problems based on finding the domain of a
function put in the form:

(i) y
f x

g x
g x= ≠

� �
� � � �, 0

or, (ii) y
g x

g x= ≠1
0� � � �,

Working rule: It consists of following steps:
1. To put the function (or, expression in x) in the
denominator = 0, i.e., g (x) = 0
2. To find the values of x from the equation g (x) = 0
3. To delete the valued of x from R to get the required

domain, i.e., domain of 
f x

g x g x

� �
� � � �or

1
 = R – {roots of

the equation g (x) = 0}, where f (x) and g (x) are
polynomials in x.

– ∞ ∞DB

common
segment

CA
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Note: When the roots of the equation g (x) = 0 are
imaginary then the domain of the quotient function

put in the form: 
f x

g x g x

� �
� � � �or

1
 = R

Solved Examples
Find the domain of each of the following functions:

1. y
x x

x x
=

− +

+ −

2

2

3 2

6

Solution: y
x x

x x
= − +

+ −

2

2

3 2

6

Now, putting x2 + x – 6 = 0
⇒  x2 + 3x – 2x – 6= 0

⇒  x (x + 3) –2 (x + 3) = 0

⇒  (x + 3) (x – 2) = 0

⇒  x = 2, –3
∴  domain = R – {2, 3}

2. y
x x

x x
=

− +

+ +

2

2

2 4

2 4

Solution: y
x x

x x
=

− +

+ +

2

2

2 4

2 4

Now, putting, x2 + 2x + 4 = 0
⇒  x2 + 2x + 4 = 0

⇒  (x + 1)2 + 3 = 0

⇒  (x + 1)2 = –3

⇒ + = ± −x 1 3� �

⇒ = − ± −x 1 3  imaginary or complex numbers.

∴  domain = R

3. y
x

x
=

−5

Solution: y
x

x
=

−5

Now, putting, 5 – x = 0
⇒  x = 5

∴ domain = R – {5}

4. y
x

x
=

−
+

2 4

2 4

Solution: y
x

x
=

−
+

2 4

2 4

Now, putting, 2x + 4 = 0

⇒ − ⇒ =
−

= −2 4
4

2
2x x

∴ domain R – {2}

5. f x
x x

� � � � � �
=

− −
1

1 2

Solution: f x
x x

� � � � � �
=

− −
1

1 2

Now, putting (x – 1) (x – 2) = 0
⇒  x = 1, 2
∴ domain = R – {1, 2}

6. y
x

=
−

1

1
2

Solution: y
x

=
−

1

1
2

Now, putting, x2 – 1 = 0

⇒ = ⇒ = ±x x
2

1 1

∴ domain = R – {–1, 1}

7. y
x

=
1

Solution: y
x

= 1

Now, putting x = 0 ⇒  x = 0 i.e. y is undefined at x
= 0

∴ domain = R – {0}

8. y
x x

x x
=

− +

+ −

2

2

3 2

6

Solution: y
x x

x x
=

− +

+ −

2

2

3 2

6
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Now, putting, x2 + x – 6 = 0 ⇒  x2 + 3x – 2x – 6 = 0
⇒  x (x + 3) –2(x + 3) = 0 ⇒  (x – 2) (x + 3) = 0 ⇒  x =
2, –3

∴ domain = R – {2, –3}

9. y
x

=
−
1

2 6

Solution: y
x

=
−
1

2 6

Now, putting 2x – 6 = 0

⇒ = =x
6

2
3

∴  domain = R − = −∞ ∪ + ∞3 3 3
 � � � � �, ,

10. y
x x

=
− +

1

5 6
2

Solution: y
x x

=
− +

1

5 6
2

⇒  x2 – 5x + 6 = 0

⇒  x2 – 3x – 2x + 6 = 0

⇒  x (x – 3) –2 (x –3) = 0

⇒  (x – 3) (x – 2) = 0

⇒  x = 2, 3

∴  domain = R − = −∞ ∪ ∪2 3 2 2 3, , ,
 � � � � �
3 , ∞� �

Type 3: Problems based on finding the domain of the
square root of a function put in the forms:

(i) f x� �

(ii)
f x

g x

� �
� �

(iii)
1

g x� �

(iv)
f x

g x

� �
� �

Now we tackle each type of problem one by one.

1. Problems based on finding the domain of a function

put in the form: f x� � .

It consists of two types when:
(i) f (x) = ax + b = a linear in x.
(ii) f (x) = ax2 + bx + c = a quadratic in x.
(i) Problems based on finding the domain of a

function put in the form: f x� � , when f (x) = ax + b.

Working rule: It consists of following steps:

Step 1: To put a x b+ ≥ 0

Step 2: To find the values of x for which a x b+ ≥ 0

to get the required domain.
Step 3: To write the domain = [root of the inequation

a x b+ ≥ + ∞0 , )

Notes: 1. The domain of a function put in the form

f x� �  consists of the values of x for which

f x� � ≥ 0 .

2. x c x c≥ ⇔ ∈ + ∞, � .
Solved Examples
Find the domain of each of the following fucntions:

1. y x=

Solution: y x=

Now, putting x x≥ ⇒ ≥0 0

∴  domain = + ∞0 , �
2. y x= −2 4

Solution: y x= −2 4

Now, putting 2 4 0
4

2
2x x− ≥ ⇒ ≥ =

∴ domain = + ∞2 , �
3. y x x= + − 1

Solution: y x x= + − 1

Putting y x1 =  and y x2 = , we have

y = y1 + y2
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∴  domain of y y y= ∩dom dom1 2� � � �

Now, domain of y x D1 1 0= = = + ∞� � � � �say ,

[from example 1.] again, we require to find the domain

of y x2 1= −� � .

Putting x x− ≥ ⇒ ≥ ⇒1 0 1  domain y2

= − = = + ∞x D1 12� � � � �say ,  Hence, domain of

y = D (say) = dom (y1) ∩ dom y2� �
= ∩D D1 2

= + ∞ ∩ + ∞0 1, ,� �
= ∞1, �

(ii) Problems based on finding the domain of a
function put in the form:

y f x= � � ,  when f (x) = ax2 + bx + c and α β,

are the roots of ax2 + bx + c = 0 α β<� �
working rule: It consists of following steps:

Step 1: To put a x b x c
2

0+ + ≥

Step 2: To solve the in equation a x b x
2 + +  c ≥ 0

for x by factorization or by completing the square.

Step 3: To write the domain of ax bx c
2

+ + =

α β≤ ≤x  only when the coefficient of x2 = a = – ve

and ax2 + bx + c = a x x− −α β� � � �  and to write the

domain of ax bx c R
2

+ + = − α β,� �  only when

the coefficient of x2 = a +ve and ax2 + bx + c =

a x x− −α β� � � � .
Notes: (i) a = coefficient of x2 = –ve (and, ax2 + bx +

c = a x x− − ≥ ⇒α β� � � � 0)  x lies between α  and

β ⇒  domain of ax bx c x
2

+ + = ≤ ≤α β

α β<� � .
(ii) a = coefficient of x2 = + ve (and, ax2 + bx + c =

a x x− − ≥ ⇒α β� � � � 0) x does not lie between α

and β ⇒  domain of ax bx c R
2

+ + = − =α β,� �
−∞ ∪ + ∞, ,α β� � � � .

(iii) x x+ +α β� � � �  should be written as

x − −α� �� � , x − −β� �� �  while finding the domain of

the square root of ax2 + bx + c = a x x+ +α β� � � � .
Solved Examples
Find the domain of each of the following functions:

1. y x x= − +
2

3 4

Solution: y x x= − +
2

3 4

Now x x
2

3 4 0− + ≥

⇒ − + − ≥x x x
2

4 4 0� �

⇒ − + − ≥x x x4 4 0� � � �
⇒ + − ≥x x1 4 0� � � �
⇒ − − − ≥ ⇒x x4 1 0� � � �� � x does not lie be-

tween –1 and 4 1⇒ ≤ −x  or x ≥ 4 .

∴ domain = R – (–1, 4)

2. y x x= − −2 5� � � �

Solution: y x x= − −2 5� � � �
Now, (x – 2) (x – 5) ≥ ⇒0 x  does not lie between

2 and 3.

⇒ ≤ ≥x x2 5or

∴ domain = R – (2, 5)

3. y x x= − +
2

5 6

Solution: y x x= − +
2

5 6

∞

shaded portion = D1  D2∩

10
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Now, x x
2

5 6 0− + ≥

⇒ − − ≥x x2 3 0� � � �
⇒ ≤ ≥x x2 3or

∴ domain = R – (2, 3)

4. y x x= − + −
2

5 6

Solution: y x x= − + −
2

5 6

Now, − + − ≥x x
2

5 6 0

⇒ − + ≤x x
2

5 6 0

⇒ − − ≤x x2 3 0� � � �
⇒  x lies between 2 and 3

⇒ ≤ ≤2 3x

∴ domain = [2, 3]

5. y x x= − −16 24
2

Solution: y x x= − −16 24
2

Now, − − ≥16 24 0
2

x x

⇒ − − ≥2 3 0
2

x x

⇒ + ≤2 3 0
2

x x

⇒ + ≤x x2 3 0� �
⇒ − − ≤x x2 3 0� �� �

⇒  x lies between − 3

2
 and 0

⇒ − ≤ ≤3

2
0x

∴  domain = −�
��

�
��

2

3
0,

6. y x x= − − −5 6
2

Solution: y x x= − − −5 6
2

Now, − − − ≥5 6 0
2

x x

⇒ + + ≤x x
2

6 5 0

⇒ + + + ≤x x x
2

5 5 0

⇒ + + + ≤x x x5 5 0� � � �
⇒ + + ≤x x5 1 0� � � �
⇒ − − − − ≤ ⇒x x1 5 0� �� � � �� �  x lies between –5

and − ⇒ − ≤ ≤ −1 5 1x .

∴ domain = [–5, –1]

7. y x x= − +1 3� � � �

Solution: y x x= − +1 3� � � �
Now, 1 3 0− + ≥x x� � � �
⇒ − − + ≥x x1 3 0� � � �
⇒ − + ≤x x1 3 0� � � �
⇒ − − − ≤x x1 3 0� � � �� �
⇒ − ≤ ≤3 1x

∴  domain = [–3, 1]

8. y x= −1
2

Solution: y x= −1
2

Now, 1 0
2− ≥x

⇒ − − ≤1 0
2

x� �

⇒ − ≤x
2

1 0

⇒ − + ≤ ⇒ − − − ≤x x x x1 1 0 1 1� �� � � � � �� �
0 ⇒ x  lies between –1 and +1

⇒ − ≤ ≤1 1x

∴ domain = [–1, 1]

9. y x= − −4
2

Solution: y x= − −4
2
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Now, putting 4 0
2− ≥x

⇒ − ≤x
2

4 0

⇒ − + ≤x x2 2 0� � � �
⇒ − − − ≤x x2 2 0� � � �� �
⇒  x lies between –2 and 2 ⇒ − ≤ ≤2 2x

∴ domain = [–2, 2]

10. y x= −1

2
4

2

Solution: y x= −1

2
4

2

Now, putting 4 0
2− ≥x

⇒ − ≤x
2

4 0

⇒ − + ≤x x2 2 0� � � �
⇒ − − − ≤x x2 2 0� � � �� �
⇒  x lies between –2 and 2 ⇒ − ≤ ≤2 2x

∴ domain = [–2, 2]

11. y x= − −
1

2
4

2

Solution: y x= − −
1

2
4

2

Now, putting 4 0
2− ≥x

⇒ − ≤x
2

4 0

⇒ − + ≤x x2 2 0� � � �
⇒ − − − ≤x x2 2 0� � � �� �
⇒ − ≤ ≤2 2x

∴ domain = [–2, 2]

12. y x x= − +
2

4 3

Solution: y x x= − +
2

4 3

Now, x x2 4 3 0− + ≥

⇒ − − + ≥x x x
2

3 3 0

⇒ − − − ≥x x3 3 0� � � �
⇒ − − ≥x x1 3 0� � � �
⇒  x does not lie between 1 and 3

⇒ ≤ ≥x x1 3or

∴ domain = R – [1, 3] = −∞ ∪ + ∞, ,1 3� �

13. y x x= − −2 3� � � �

Solution: y x x= − −2 3� � � �

Now, x x− − ≥2 3 0� � � �
⇒ ≥ ≥x x2 3or

⇒  x does not lie between 2 and 3

∴ domain = R – [2, 3] = −∞ ∪ + ∞, ,2 3� �

14. y x x= + +
2

2 3

Solution: � y x x= + +
2

2 3

Now, x x
2

2 3 0+ + ≥

⇒ + + ≥ ∀x x1 2 02� � ,

⇒ + ≥ −x 1 22� � , which is true for all x R∈

∴ domain = R = −∞ ∞,� �
Type (ii): Problems based on finding the domain of

a function put in the form : y
f x

g x
=

� �
� �

While finding the domain of the square root

of a quotient function (i.e; y
f x

g x
=

� �
� � ) one must

remember the following facts:

+ ∞+ ∞ 1 30
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1. The domain of y
f x

g x
( )=

� �
� �  consists of those

values of x for which 
f x

g x

� �
� � ≥ 0

2.
f x

g x
f x g x

� �
� � � � � �≥ ⇔ ≥ >0 0 0, , or f x� � ≥ 0 ,

g (x) < 0.

3.
x

x
x

−
−

�
��

�
�� ≤ ⇔ ≤ <

α
β

α β0  or β α< ≤x  ac-

cording as α β β α< <or .

4.
x

x
x

−
−

�
��

�
�� ≥ ⇔ ≥

α
β

α0  or x < β  if β α< ⇔and

x ≤ α or x > β  if α β< .

5. The function in the denominator ≠ 0  always.

Solved Examples
Find the domain of each of the following functions:

1. y
x

x
=

−
+

3 2

2 6

Solution: y is defined for those x for which

3 2

2 6
0

x

x

−
+

≥

⇔  (1) 3 2 0

2 6 0

2

3

x

x
x

− ≥
+ >

�
�
�

≥
� �
� � , i.e;

or, (2) 3 2 0

2 6 0
3

x

x
x

− ≤
+ <

�
�
�

< −
� �
� � , i.e;

(1) and (2) ⇒ ≥x
2

3
, or x x< − ⇔ ∈3

−∞ − ∪ + ∞�
��

�
�, ,3

2

3
� �

Hence, domain = R − −�
��

�
� = −∞ − ∪3

2

3
3, ,� �

2

3
, + ∞�

��
�
�

or, alternatively:

3 2

2 6
0

2
3
3

0 3
x

x

x

x
x

−
+

≥ ⇔
−

+
≥ ⇔ < −  or

x x≥ ⇔ ∈ −∞ − ∪ + ∞�
��

�
�

2

3
3

2

3
, ,� �

Hence, domain = −∞ − ∪ + ∞�
��

�
�, ,3

2

3
� �

2. y
x

x
=

−
+

1

1

Solution: y is defined for all those x for which

x

x

x

x
x

−
+

≥ ⇔
−

− −
≥ ⇔ < −

1

1
0

1

1
0 1� �  or x ≥ ⇔1

x ∈ −∞ − ∪ + ∞, ,1 1� � �
Hence, domain = −∞ − ∪ + ∞, ,1 1� � �

3. y
x

x
=

−
+

2

2

Solution: y is defined for all those x for which

x

x

x

x
x

−
+

≥ ⇔
−

− −
≥ ⇔ < −

2

2
0

2

2
0 2� �

 or, x ≥ 2

⇔ ∈ −∞ − ∪ + ∞x , ,2 2� � �
Hence, domain = −∞ − ∪ + ∞, ,2 2� � �

Type (iii): Problems on finding the domain of a

function put in the form: y
g x

=
1

� �

Working rule: It consists of following steps:
1. To put g (x) > 0
2. To find the values of x for which g (x) > 0

0– 3 ∞−∞

α β

2
3
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3. To form the Domain with the help of the roots of
the in equation g (x) > 0.

Note: The domain of a function put in the form

y
g x

=
1

� �
 consists of all those values of x for which

g (x) > 0.

Solved Examples
1. Find the domain of each of the following functions:

y
x x

=
− +

1

2 3� � � �
Solution: y is defined for all those values of x for
which (2 – x) (x + 3) > 0 ⇔  (x – 2) (x + 3) < 0 ⇔  x lies

between –3 and 2 ⇔  –3 < x < 2 ⇔ ∈ −x 3 2,� �  hence,

domain = (–3, 2)

2. y
x x

=
− +

1

1 2� � � �
Solution: y is defined for all those values of x for
which (1 – x) (x + 2) > 0 ⇔  (x – 1) (x – (–2)) < 0 ⇔  x

lies between –2 and 1 ⇔  –2 < x < 1 ⇔ ∈ −x 2 1,� �
hence, domain = (–2, 1).

3. y
x x

=
− +

1

5 6
2

Solution: y is defined for all those values of x for
which x2 – 5x + 6 > 0 ⇔  x2 – 3x – 2x + 6 > 0 ⇔  (x –
3) x – 2 (x – 3) > 0 ⇔  (x – 3) (x – 2) > 0 ⇔ x < 2 or x >

3 ⇔ ∈ −∞ ∪ + ∞x , ,2 3� � � �
Hence, domain = R − = −∞ ∪2 3 2, ,� �

3 , + ∞� �

4. y
x

=
−
1

Solution: y is defined for all those values of x for

which –x > 0 ⇔  x < 0 ⇔ ∈ −∞x , 0� �
Hence, domain = −∞ , 0� � .

Type (iv): Problems on finding the domain of a

function put in the form: y
f x

g x
=

� �
� �

.

Working rule: The rule to find the domain of a

function of the form y
f x

g x
=

� �
� �

 is the same as for

the domain of a function of the form y
g x

=
1

� �
which means.
1. To put g (x) > 0 and to find the values of x from the
in equality g (x) > 0.
2. To form the domain with the help of obtained values
of x.

Solved Examples
Find the domain of each of the following functions:

1. y
x

x x
=

− +2
3 2

Solution: y is defined when x2 – 3x + 2 > 0 ⇔  x2 – 2x
– x + 2 > 0 ⇔  x (x – 2) – (x – 2) > 0 ⇔  (x – 1) (x – 2)
> 0 ⇔  x < 1 or x > 2.

Hence, domain = R – [1, 2] = −∞ ∪ + ∞, ,1 2� � � �

2. y
x

x x
=

− −1 2� � � �
Solution: y is defined when (1 –x) (x – 2) > 0 ⇔  (x –
1) (x – 2) < 0 ⇔  x lies between 1 and 2 ⇔  1 < x < 2

⇔ ∈x 1 2,� � .
Hence, domain = (1, 2)

Finding the Domain
of Logarithmic Functions

There are following types of logarithmic functions
whose domains are required to be determined.
(i) y = log f (x)

(ii) y f x= log � �
(iii) y = log | f (x) |
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(iv) y
f x

g x
=

�
��

�
��

log
� �
� �

(v) y
f x

g x
=

� �
� �log

(vi) y = log log log f (x)
Now we tackle each type of problem one by one.

Type 1: Problems based on finding the domain of a
function put in the form: y = log f (x).

Working rule: It consists of following steps:
Step 1: To put f (x) > 0 and to solve the in equality f
(x) > 0 for x.
Step 2: To form the domain with the help of obtained
values of x.

Notes: 1. The domain of the logarithmic function y =
log f (x) consists of all those values of x for which f (x)
> 0.
2. Log f (x) is defined only for positive f (x).

Solved Examples
Find the Domain D of each of the following functions:
1. y = log (4 – x)
Solution: y is defined when 4 – x > 0 ⇔  –x > –4 ⇔
x < 4.

∴ = −∞D y� � � �, 4

2. y = log (8 – 2x)
Solution: y is defined when (8 – 2x) > 0 ⇔  –2x > –8

⇔  x < 4.

∴ = −∞D y� � � �, 4

3. y = log (2x + 6)
Solution: y is defined when (2x + 6) > 0 ⇔  2x > –6

⇔  x > –3 ⇔ ∈ − + ∞x 3 ,� �
Hence, D y� � � �= − + ∞3 ,

4. y = log {(x + 6) (6 – x)}
Solution: y is defined when (x + 6) (6 – x) > 0 ⇔  (x +
6) (x – 6) < 0 ⇔  x lies between –6 and 6 ⇔  –6 < x <

6 ⇔ ∈ −x 6 6,� �
Hence, D (y) = (–6, 6)

5. y = log (3x2 – 4x + 5)

Solution: Method (1)
y is defined when (3x2 – 4x + 5) > 0 ⇔

3
4

3

5

3
0

2
x x– +�
�

�
� >

⇔ + ��
�
� − ��

�
� +

�
��

�
��

�

�
�
�

�

�
�
�

>3
4

3

4

6

4

6

5

3
0

2
2 2

x x–

⇔ �
�

�
� + −�

�
�
�

�
�
�
�

�
�
�
�

>3
2

3

5

3

4

9
0

2

x –

⇔ �
�

�
� + �

�
�
� >3

2

3
3

11

9
0

2

x – � �

⇔ −�
�

�
� > −3

2

3

11

9

2

x  which is true ∀ ∈x R

∴ = = −∞ + ∞D y R� � � �,

Notes: 1. Imaginary or a complex numbers as the

roots of an equation a x b x c
2

0+ + = ⇔  domain

of log f x R� � � �= = −∞ + ∞,  as in the above

example roots are complex.
2. The method adopted in the above example is called
“if method”.
3. A perfect square is always positive which is greater
than any negative number.

Method 2. This method consists of showing that

a x b x c x
2

0+ + > ∀,  if a > 0 and discriminant = b2

– 4ac < 0 here 3 > 0, and discriminant = 16 – 60 = – 34
< 0

∴  y is defined ∀ ∈x R

Therefore, D y R� � � �= = −∞ + ∞,

6. y = log (x3 – x)
Solution: y is defined when (x3 – x) > 0 ⇔  x (x2 – 1)
> 0 ⇔  x (x + 1) (x – 1) > 0 ⇔  (x – 0) (x + 1) (x – 1) >
0 ⇔  (x – (1)) (x – 0) (x – 1) > 0

Now let f (x) = (x – (–1)) (x – 0) (x – 1)
If x < –1, then f (x) < 0 as all the three factors are

< 0.
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If –1 < x < 0, then f (x) > 0
If 0 < x < 1, then f (x) < 0 and if x > 1, then f (x) > 0

Hence, f(x) > 0 ⇔ ∈ − ∪ ∞x 1 0 1, ,� � � �
∴ = − ∪ ∞D y� � � � � �1 0 1, ,

Type 2: Problems based on finding the domain of a

function put in the form y f x= log � �

Working rule: One must remember that the function

y f x= log � �  is defined when y f x= >� � 0,

i.e., f (x) > 0 which means the domain of the function

y f x= log � �  consists of all those values of x for

which f (x) > 0.

Solved Examples
Find the domain of each of the following functions:

1. y x= −log 4

Solution: y x= −log 4  is defined when

x x− > ⇔ >4 0 4� �
∴ = ∞D y� � � �4 ,

2. y x= −log 6

Solution: y x= −log 6  is defined when (6 – x) >

0 ⇔  6 > x ⇔  x < 6

∴ = −∞D y� � � �, 6

3. y x x= − + −log 4 6� �

Solution: y x x= − + −log 4 6� �  is defined

when x x− + − >4 6 0� �  ⇔ −x 4� �  and

6 0 4− ≥ ⇔ ≥x x� �  and x x≤ ⇔ ≤ ≤6 4 6

∴ =D y� � 4 6,

Type 3: Problems based on finding the domain of a
function put in the form: y = log | f (x) |

Working rule: It consists of following steps:
1. To put f (x) = 0 and to find all the values of x from
the equation f (x) = 0.

2. To form the domain of y which is the set of all real
values of x excluding those values of x at which y is
undefined , i.e.,

D (y) = R – {values of x at which f (x) =0}

Note: While finding the domain of a function of the
form: y = log | f (x) |, one must find all those values of
x at which the function f (x) (i.e., the function under
the symbol of absolute value) becomes zero and then
those values of x should be deleted from R (i.e., the
set of all real numbers).

Solved Examples
Find the domain of each of the following functions:
1. y = log | x |
Solution: log | x | is undefined only when | x | = 0, i.e.,
x = 0

∴ = −D y R� � 
 �0
2. y = log | 4 – x2 |
Solution: log | 4 – x2 | is undefined only when | 4 – x2

| = 0; i.e., 4 – x2 = 0 ⇔ x2 – 4 = 0 ⇔  (x – 2) (x + 2) = 0
⇔  (x – 2) (x – (–2)) = 0 ⇔  x = 2 or x = –2

∴ = − −D y R� � 
 �2 2,

Type 4: Problems based on finding the domain of a

function put in the form: y
f x

g x
=

�
��

�
��

log
� �
� � .

Working rule: It consists of following steps:

1. To put 
f x

g x

� �
� � > 0  and to solve the in equalities f

(x) > 0 and g (x) > 0 or f (x) < 0 and g (x) , 0 seperately.
2. To form the domain of y with the help of obtained

values of x for which 
f x

g x

� �
� � > 0 .

Notes: 1. The domain of a logarithmic function of

the form y
f x

g x
=

�
��

�
��

log
� �
� �

 consists of all those

values of x for which 
f x

g x

� �
� � > 0 .

2. One must test whether g (x) is positive or negative
by the following scheme:
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(i) If a > 0 and the discriminant (i.e.; D = b2 – 4ac) of
g (x) = ax2 + bx + c is < 0 (i.e., D = –ve), then g (x) = ax2

+ bx + c is positive ∀ x  and in such case, one must

consider only the function in numerator = f (x) > 0 to

find the solution set of y
f x

g x
= >
� �
� � 0 .

Solved Examples
Find the domain of each of the following functions:

1. y
x x

=
−�

�
�

�

�
�log

5

4

2

Solution: y is defined when 
5

4
0

2
x x−�

�
�

�

�
� > ⇔ 5x –

x2 > 0 ⇔  x (5 – x) > 0 ⇔  (x – 0) (x – 5) < 0 ⇔  0 < x

< 5 x ∈ 0 5,� �
∴ =D y� � � �0 5,

2. y
x

= �
�
�
�log

10

Solution: y is defined when 
x

10
0�

�
�
� > ⇔ x > 0 ⇔

x ∈ + ∞0 ,� �
∴ = + ∞D y� � � �0 ,

N.B.: In the above two examples the functions in
denominator are positive. This is why considerable
function to be greater than zero is only the function
in numerator.

3. y
x x

x x
=

− +

+ +

�

�
�

�

�
�log

2

2

5 6

4 6

Solution: y is defined when 
x x

x x

2

2

5 6

4 6

− +

+ +

�

�
�

�

�
� > 0 ⇔

x2 – 5x + 6 > 0 ⇔  x2 – 3x – 2x + 6 > 0 ⇔  x (x – 3) –2

(x – 3) > 0 ⇔  (x – 2) (x – 3) > 0 ⇔  x does not lie

between 2 and 3 ⇔  x < 2 or x > 3 ⇔ ∈ −∞ ∪x , 2� �
3 , + ∞� � .

∴ = −∞ ∪ + ∞D y� � � � � �, ,2 3

N.B.: In the above example (3), the discriminant D =
16 – 4 × 1 × 6 = 16 – 24 = –ve for the function x2 + 4x +
6 in denominator which ⇒  x2 + 4x + 6 > 0. For this
reason, we considered only the function x2 – 5x + 6 in
numerator > 0.

4. y
x

x x
=

−

− +

�

�
�

�

�
�log

5

10 24
2

Solution: Method (1)

y  is defined when x

x x

−

− +

�

�
�

�

�
� =

5

10 24
2

x

x x

−
− −

>
5

4 6
0

� �
� � � �

 ⇔  (x – 4) (x – 5) (x – 6) > 0

(multiplying both sides by (x – 4)2 (x – 6)2)
But (x – 4) (x – 5) (x – 6) > 0 when (a) all the above

factors > 0 (b) one of the three factors > 0 and each of
the other two factors < 0.

Hence, we have the following four cases:

Case (i): When (x – 4) > 0 and (x – 5) > 0 and (x – 6)
> 0

⇒  x > 4 and x > 5 and x > 5 ⇒ ∈ ∞x 6 ,� �
Case (ii): When (x – 4) > 0 and (x – 5) < 0 and (x – 6)
< 0

⇒  x > 4 and x < 5 and x < 6 ⇒  4 < x < 5 ⇒
x ∈ 4 5,� �
Case (iii): When (x – 4) < 0 and (x – 5) > 0 and (x – 6)
< 0

⇒  x < 4 and x > 5 and x < 6 ⇒  5 < x < 6 ⇒  x ∈ φ
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Case (iv): When (x – 4) < 0 and (x – 5) < 0 and (x – 6)
> 0

⇒  x < 4 and x > 5 and x > 6 ⇒  x ∈φ

∴ = ∪ ∞D y� � � � � �4 5 6, ,

Method (2)

x

x x

x

x x

−

− +
> ⇔

−
− −

>
5

10 24
0

5

4 6
0

2

� �
� � � �

If x < 4, then (x – 4) < 0, (x – 5) < 0, (x – 6) < 0
If 4 < x < 5, then (x – 4) > 0, (x – 5) < 0, (x – 6) < 0
If 5 < x < 6, then (x – 4) > 0, (x – 5) > 0, (x – 6) < 0
and if x > 6, then (x – 4) > 0, (x – 5) > 0, (x – 6) > 0

Hence, 
x

x x

−
− −

> ⇔
5

4 6
0� � � �  4 < x < 5 or x > 6

∴ = ∪ ∞D y� � � � � �4 5 6, ,

Method (3)
For y to be defined

(i) x x x x
2

10 24 0 4 6 0− + ≠ ⇒ − − ≠ ⇒� � � �
x x≠ ≠4 6, (A1)

(ii)
x

x x

−

− +
> ⇒

5

10 24
0

2

(a) x – 5 > 0 and x2 – 10x + 24 > 0 or
(b) x – 5 and x2 – 10x + 24 < 0

from (a), x – 5 > 0 and (x – 4) (x – 6) > 0
⇒  x > 5 and (x < 4 or x > 6)

⇒  (x > 5 and x < 4) or (x > 5 and x > 6)
But x > 5 and x < 4 is not possible
∴ x > 5 and x > 6 ⇒  x > 6 (A2)
from (b), x < 5 and (x – 4) (x – 6) < 0
⇒  x < 5 and (x > 4 and x < 6)

⇒  x < 5 and (4 < x < 6)

⇒  4 < x < 5 (A3)
Now, combining (A2) and (A3), we get

x > 6 or 4 < x < 5 which ⇒ ∈ ∪ ∞x 4 5 6, ,� � � �
∴ = ∪ ∞D y� � � � � �4 5 6, ,

N.B.: On must note that in the above example
discriminant of the function x2 – 10x + 24 in the
denominator is 102 – 4 × 1 × 24 = 100.96 = 4 = + ve. For

this reason both the functions (x – 5) and (x2 – 10x +
24) simultaneously are considerable.

Type 5: Problems based on finding the domain of a
function put in the form:

y
f x

g x
=

� �
� �log

working rule: one must remember that a function

having the form y
f x

g x
=

� �
� �log  is defined when g (x)

> 0 and g x� � ≠ 1 which means that domain of y

consists of all those values of x for which g (x) > 0

and g x� � ≠ 1 i.e., D (y) = D + (g (x)) – {roots of

g x� � = 1}, where D + (g (x)) signifies the solution

set of g (x) > 0.

Note: log logf x f x� � � �≠ ⇔ ≠1 1

Solved Examples
Find the domain of each of the following functions:

(i) y
x

x
=

+log 1� �
Solution: y is defined when (1 + x) > 0 and log (1  +

x) ≠ 0 . 1 0 1+ > ⇔ > − ⇔x x� � x ∈ − + ∞1,� � .
log log log1 0 1 1+ = ⇔ + ≠x x� � � �  (∴log 1= 0)

⇔ + ≠1 1x

⇔ ≠x 0

∴ = − + ∞ −D y� � � � 
 �1 0,

Type 6: Problems based on finding the domain of a
function put in the form: y = log log log f (x)

To remember: One must remember the following facts:
1. Inequalities of the form log a x > c, log a x < c, where

a > 0 and a ≠ 1  are called simplest logarithmic

inequalities.

2. loga

c

c

x c

a

x a
a

x a

> ⇔

> ⇒
>

�
�
�
< < ⇒
< <

�
�
�

�

�

�
�
�
�

1

0 1

0
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3. loga

c

c

x c

a

x a
a

x a

< ⇔

> ⇒
< <

�
�
�

< < ⇒
>

�
�
�

�

�

�
�
�
�

1

0
0 1

4. log logf x f xg x g x

g x

g x

f x

g x g x
f x

g x g x

� � � �� � � �

� �
� �
� �
� � � �
� �
� � � �

1 2

1

2

1 2

1 2

0

0

1

0 1

> ⇔

>
>

�
�
�

> ⇒
>

�
�
�

< < ⇒
<

�
�
�

�

�

�
�
�
�

�

�

�
�
�
�
�
�
�

Working rule: There are following working rules to
find the domain of a function put in the forms:

(i) y = log a log b f (x) a a b> ≠ >0 1 1, ,� �
(ii) y = log a log b log c f (x)

a a b c c> ≠ > > ≠0 1 1 0 1, , , ,� �
Rule 1: log a log b f (x) exists

⇔  log b f (x) > 0

⇔  log b f (x) > log 1

⇔  f (x) > 1 and solve for x
Rule 2: log a log b log c f (x) exists

⇔  log b log c f (x) > 0

⇔  log b log c f (x) > log 1

⇔  log c f (x) > 1

⇔  f (x) > c1 if c > 1; f (x) < c if c < 1 and solve for x.

Aid to memory: To find the domain of a given function
put in the above mentioned form.
1. One must remove first log operator from left hand
side of the functions of the forms: y = log a log b log c
f (x) or log a log b f (x) and the rest log of a function
(i.e., log b log c f (x) or log b f (x)) should be put > 0.
2. Use the rules:

(a) loga

c

c

x c

a

x a
a

x a

> ⇔

>
>

�
�
�

< <
< <

�
�
�

�

�

�
�
�
�

1

0 1

0

(b) loga

c

c

x c

a

x a
a

x a

< ⇔

>
< <

�
�
�

< <
>

�
�
�

�

�

�
�
�
�

1

0
0 1

Solved Examples
Find the domain of each of the following functions:
1. y = log2 log3 (x – 4)
Solution: y = log2 log3 (x – 4) exists only for log 3 (x –
4) > 0

⇔  (x – 4) > 3º
⇔  x – 4 > 1
⇔  x > 5
∴ = + ∞D y� � � �5 ,

2. y = log2 log3 log4 (x)
Solution: y = log2 log3 log4 (x) is defined when log3
log4 (x) > 0

⇔  log3 log4 (x) > log3 1

⇔  log4 x > 1

⇔  x > 41 ⇔  x > 4

∴ = + ∞D y� � � �4 ,

3. y = log10 [1 – log10 (x
2 – 5x + 16)]

Solution: y = log10 [1 – log10 (x
2 – 5x + 16)] is defined

when [1 – log10 (x
2 – 5x + 16)] > 0

⇔  – log10 (x
2 – 5x + 16) > – 1

⇔  log10 (x
2 – 5x + 16) < 1

⇔  x2 – 5x + 16 < 101 (� loga x < c ⇔  x < ac when
a > 1)

⇔  x2 – 5x + 16 – 10 < 0

⇔  x2 – 5x + 6 < 0

⇔  (x – 2) (x – 3) < 0

⇔  2 < x < 3 ⇔ ∈x 2 3,� �
∴ D (y) = (2, 3)

Domain of Trigonometric Functions

Question: Find the domain and range of the following
functions:

1. y = sin x 2. y = cos x 3. y = tan x
4. y = cot x 5. y = cosec x 6. y = sec x

Answer: 1. y = sin x
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Since we know that the value of the function y =
sin x is undefined and imaginary for no real value of x.
Hence, the domain of y = sin x is the set of all real
numbers. Again we know that | sin x | ≤ ⇔ −1 1

sin x ≤ 1 for any real value of x which means that the

range of y = sin x is the closed interval [–1, 1].

Aid to memory:

D (sin x) = −∞ + ∞,� �  = R = the set of all real numbers.

R ( sin x) = [–1, 1]

2. y = cos x
since we know that the value of the function y =

cos x is undefined and imaginary for no real value of
x. Hence, the domain of y = cos x is the set of all real
numbers, again we know that | cos x | ≤ ⇔ −1 1

cos x ≤ 1  for any real value of x which means that the

range of y = cos x is the closed interval [–1, 1].

Aid to memory:

D (cos x) = −∞ + ∞,� �  = R = the set of all real numbers.

R (cos x) = [–1, 1]

3. y = tan x
since we know that the value of the function y =

tan x = 
sin

cos

x

x
 is undefined for those values of x for

which the function cos x in denominator is zero (i.e.,
for those values of x for which the function cos x in

denominator is zero (i.e.; for cos x x= ⇔ =0

2 1
2

n + =� � π  odd multiple of 
π
2

,  n being an integer).

Hence, the domain of y = tan x is the set of all real

numbers excluding 2 1
2

n +� � π ,  n being an integer.

Again, we know that tan x can assume any value
however large or small for real value of x which means
that −∞ < < ∞tan x  is the range of y = tan x.

Aid to memory:

D (tan x) = R = { x: x = 2 1
2

n +� � π ,  n being an integer}

R (tan x) = R = −∞ ∞,� �  = the set of all real numbers.

4.  y = cot x
since, we know that the value of the function y =

cot x = 
cos

sin

x

x
 is undefined for all those values of x

for which the function sin x in denominator is zero
(i.e.; for sin x = 0 ⇔ = =x nπ  any integral multiple

of π , n being an integer). Hence, the domain of the
function y = cot x is the set of all real numbers
excluding nπ ,  n being an integer. Again, we know

that cot x can assume any value however large or
small for real value of x which means that
−∞ < < ∞tan  is the range of the function y = cot x.

Aid to memory:
D (cot x) = R – {x: x =  nπ ,  n being an integer}

R ( cot x) = R = −∞ ∞,� �  = the set of all real

numbers.

5. y = cosec x
Since we know that the value of the function y =

cosec x = 
1

sin x
 is undefined for those values of x for

which the function sin x in denominator is zero (i.e.,
for sin x = 0 ⇔ = =x nπ  any integral multiple of π ,

n being an integer). Hence, the domain of y = cosec x
is the set of all real numbers excluding n π , n being an

integer. Again we know that | cosec x | ≥ ⇔1  cosec

x ≥ 1or cosec x ≤ − 1 , ∀ ≠x nπ . Thus, ∀ ≠x nπ ,

we have cosec x ≥ 1  or cosec x ≤ − 1 . Hence, the

range of y = cosec x is the set of all real numbers not
in the open interval (–1, 1).

Aid to memory:
D (cosec x) = R –{x: x = n π , n being an integer}

R (cosec x) = R – (–1, 1)

6. y = sec x
Since we know that the value of the function y =

sec x = 
1

cos x
 is undefined for those values of x for

which the function cos x in the denominator is zero
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(i.e., for cos x = 0 ⇔ = +x n2 1
2

� � π , n being an

integer). Hence, the domain of y = sec x is the set of all

real numbers excluding 2 1
2

n n+� � π ,  being an

integer. Again we know that | sec x | ≥ ⇔ ≥1 1sec x

or sec x ≤ − 1, , ∀ ≠ +x n2 1
2

� � π ,n being a integer.

Thus ∀ ≠ +x n2 1
2

� � π ,  we have sec x ≥ 1 or sec x

≤  –1. Therefore, the range of y = sec x is the set of all
real numbers not in the open interval (–1, 1).

Aid to memory:

D (sec x) = R – {x: x = 2 1
2

n n I+ ∈� � π , } I = the set

of integers = { 0 1 2 3, , , ,± ± ± ...}

R (sec x ) = R – (–1, 1)

Refresh your memory:

1. sin
sin

cosecx
x

x≤ ⇔ ≥ ⇔ ≥1
1

1 1

2. cos
cos

secx
x

x≤ ⇔ ≥ ⇔ ≥1
1

1 1

Now we consider different types or problems
whose domains are required to be determined.

Type 1: Problems based on finding the domain of a
function put in the form: y = sinn x ±  coxm x (n and m
being integers) = sum or difference of power of sin x
and cos x;

Working rule:  One must remember that domain of

the function y = sinn x ± cosm x is R = −∞ ∞ =,� �
−∞ +∞,  since sin x and cos x are real valued

functions of the real variables x ⇔  sinn x and cosm x
are real valued functions of the real variable x ⇔  the
sum of sinn x and cosm x are real valued functions of
the real variable x.

Solved Examples

Find the domain of the following:
1.  y = sin2 x + cos4 x

Solution: Since, domain of sin2 x = R = {x: x R∈ }

and domain of cos4 x = R = {x: x R∈ }

∴ = ∩ =D y R R R� �
Type 2: Problems based on finding the domain of a
function put in the form: y = a sin x ±  b cos x or, y =

a cos x ±  b sin x, where a, b, x R∈ .

Working rule: One must remember that the domain
of the function of the form: y = a sin x ±  b cos x or y
= a cos x ±  b sin x is the set of all real numbers since

a sin x or b cos x is defined for all a, b, x R∈  as well

as a cos x or b cos x is defined for all a, b x R∈
which means that this sum and/difference is (or, are)

defined for all a, b, x R∈ .

∴ = = −∞ +∞ = − ∞ +∞D y R� � � �, ,

Solved Examples

Find the domain of each of the following functions:
1. y = sin x – cos x

Solution: y = sin x – cos x is defined for x R∈  since

sin x and cos x are defined for x R∈

∴ = = −∞ + ∞D y R� � � �,

2. y = 3 cos x + 4 sin x

Solution: y = 3 cos x + 4 sin x is defined for all x R∈

since 3 cos x and 4 sin x are defined for all, x R∈

∴ = = −∞ ∞D y R� � � �,

Type 3: Problems based on finding the domain of
trigonometric rational functions:

Working rule: It consists of following steps:
Step 1: To put the functional value (or, simply
function) in denominator = 0 and to find the valued of
the independent variable.
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Step 2: To delete the values of the independent
variable from R to get the required domain, i.e., domain
of trigonometric rational functions = R – { real values
of the argument for which functional value in
denominator = 0}.

Notes: 1. If no real solution is available after putting
the functional value in denominator = 0, then domain

of trigonometric rational functions is R = −∞ + ∞,� � .

We face this circumstances generally when we obtain
cos m x or sin mx = k; | k | > 1, (after putting the
functional value in denominator = 0) from which it is
not possible to find out the values of x since maximum
and/minimum value of sin m x and/cos m x = +1 and –
1 respectively.

2. sinθ θ π= ⇔ =0 n , n I∈

cosθ θ
π

= ⇔ = +0 2 1
2

n� � , n I∈

sin sinθ α θ π α= ⇔ = + −n n1� � , n I∈

cos cosθ α θ π α= ⇔ = ±2n , n I∈

3.

sin sin

cos cos

tan tan

2 2

2 2

2 2

θ α
θ α
θ α

θ π α
=
=
=

�
�
��

�
��
⇒ = ±n  (n  being an

integer)

4. cosn nπ = −1� � ,  n being an integer.

sinnπ = 0 ,  n being an integer.

5. The domain of the function put in the form:

y f x
f x

g x g x

f x

g x
= � � � �

� � � �
� �
� �

, , ,
1

 where f

(x) and g (x) denote trigonometric functions, is
obtained by the same working rule as the case when
f (x) and g (x) are algebraic functions.

Solved Examples

Find the domain of each of the following functions:

1. y
x

=
+

1

1 cos

Solution: Putting 1 + cos x = 0

⇒ = − ⇒ = +cos x x n1 2 1� �π
∴ = − + ∈D y R n n I� � � �� �2 1 π:

2. y
x

=
−

1

2 3cos

Solution: Putting 2 – cos 3 x = 0
⇒  cos 3x = 2 which is not true for any real x

∴ = = −∞ + ∞D y R� � � �,

3. y
x

=
−

1

2 3sin

Solution: Putting 2 – sin 3x
⇒  sin 3x = 2 which is not true for any real x

∴ = = −∞ ∞D y R� � � �,

Domain of Inverse Trigonometric Functions

Before studying the method of finding the domain of
inverse trigonometric (or, arc) functions, we discuss
the domain on which each trigonometric functions is
reversible.

1 . y x y x x y= ⇔ = ∈ −	
�
�
� ∈ −

−
sin sin

1

2 2
1 1, , , ,

π π

which signifies that the function y = sin x defined on

the interval −	
�
�
�

π π
2 2

,  has an inverse function defined

on the interval [–1, 1].

Notes:

(i) D y R ysin sin
− −

= − = −	
�
�
�

1 1
1 1

2 2
� � � �, , ,

π π

(ii) sin sin
−

= ∀ ∈ −
1

1 1y y y� � , ,  and sin
−1

(sin x)

= x x, ,∀ ∈ −	
�
�
�

π π
2 2 .

(iii) The notation of the inverse of the sine function
is sin–1 (or, arc sin).
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(iv) y = sin x, x∈ −	
�
�
�

π π
2 2

, ,  is one-one and onto

functions. this is why it is possible to define its inverse
on the interval [–1, 1].

2. y = cos x ⇔  cos–1 y = x, x∈ 0 , π , y∈ −1 1,

which signifies that the functions y = cos x is defined

on the interval 0 , π  has an inverse function x =

cos–1 y defined on the interval [–1, 1].

Notes:

(i) D y R ycos cos
− −

= − =
1 1

1 1 0� � � �, , , π .

(ii) cos cos
−

= ∀ ∈ −
1

1 1y y y� � , ,  and cos
−1

(cos x)

= x x, ,∀ ∈ 0 π .

(iii) The notation of the inverse of the cosine function
is cos–1 (or, arc cos).

(iv) y x x y= ∈ ∈ −cos , , , ,0 1 1π  is a one-one

and on-to function. this is why it is possible to define
its inverse on the interval [–1, 1].

3. y x y x x y R= ⇔ = ∈ −��
�
� ∈

−
tan tan

1

2 2
, , ,

π π

which signifies that the function y = tan x defined on

the interval −��
�
�

π π
2 2

,  has an inverse function x =

tan–1 y defined on the set of all real numbers (i.e.; R)

Notes:

(i) D y R R ytan tan
− −

= = −∞ + ∞ =
1 1� � � � � �, ,

−��
�
�

π π
2 2

, .

(ii) tan tan
−

= ∀ ∈
1
y y y R� � ,  and tan tan

− =1
x� �

x x, ,∀ ∈ −��
�
�

π π
2 2 .

(iii) The notation of the inverse of the tangent
function is tan–1 (or, arc tan).

(iv) y x x= ∈ −��
�
�tan , ,

π π
2 2

 is a one-one and on-to

function. This is why it is possible to define its inverse
on the set of al real numbers (i.e.; R).

4. y x y x x y R= ⇔ = ∈ ∈−
cot cot

1
0, , ,π� �  which

signifies that the function y = cot x defined on the

interval 0 , π� �  has an inverse function x = cot–1 y

defined on the set of all real numbers.

Notes:

(i) D y R R ycot cot
− −

= = −∞ + ∞ =
1 1

0� � � � � � � �, , ,π

(ii) cot cot
−

= ∀ ∈
1

y y y R� � ,  and cot cot
− =1

x� �

x x, ,∀ ∈ 0 π� �
(iii) The notation of the inverse of the contangent
function is cot–1 (or, arc cot).

(iv) y x x y R= ∈ ∈cot , , ,0 π� �  is a one-one and on-

to function. this is why it is possible to define its

inverse on the interval −∞ ∞,� � .

5. y x y x x y R= ⇔ = ∈ −���
���

∈ −−
sec sec

1
0

2
, , ,π π

−1 1,� �  which signifies that the function y = sec x is

reversible on the interval 0
2

, π
π

− ���
��� , that is, it has

an inverse function x = sec–1 y defined on the interval
R = (–1, 1).

Notes:

(i) D y R R ysec sec
− −

= − − = −
1 1

1 1 0� � � � � �, , , π

π
2

���
��� .

(ii) The notation of the inverse of the secant function
is sec–1 (or, arc sec).
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(iii) sec sec ;sec
− −

= ∀ ∈ − −
1 1

1 1y y y R� � � �, ,

sec x x x� � = ∀ ∈ − ���
���

, ,0
2

π π
.

(iv) y x x y R= ∈ − ���
��� ∈ − −sec , , , ,0

2
1 1π

π � �  is

a one-one and on-to function, this is why it is possible
to define its inverse in the interval R – (–1, 1).

6 . y x x y x= ⇔ = ∈ −	
�
�
� −

−
cosec cosec

1

2 2
, ,

π π

0 1 1� � � �, ,y R∈ − −  which signifies that the function

y = cosec x is reversible on the interval −	
�
�
� −

π π
2 2

,

0� �  that is, it has an inverse function x = cosec–1 y

defined on the interval R – (–1, 1).

Notes:

(i) D y R R ycosec cosec
− −

= − − =
1 1

1 1� � � � � �, ,

−	
�
�
� −

π π
2 2

0, � �

(ii) cosec cosec
−

= ∀ ∈ − −
1

1 1y y y R� � � �, ,  and

cosec cosec
−

= ∀ ∈ −	
�
�
� −

1

2 2
0x x x� � � �, ,

π π
.

(iii) The notation of the inverse of the cosecant
function is cosec–1 (or, arc cosec).

(iv) y x x y R= ∈ −	
�
�
�− ∈ − −cosec , , , ,

π π
2 2

0 1 1� � � �  is

a one-one and on-to function. This is why it is possible
to define its inverse on the interval R – (–1, 1).

Now we discuss the method of finding the domain
of different types of problems.

Type1: Problems based on finding the domain of a
function put in the form: y = sin–1 (f (x)) or, y = cos–1

(f (x)).

Working rule: It consists of following steps:
1. To put f (x) in between –1 and 1, i.e., to form the

inequality − ≤ ≤1 1f x� �  and to solve two

inequalities f x� � ≥ −1  and f x� � ≤ 1.

2. To find the intersection of the solution set of the

inequalities f x� � ≥ −1  and f x� � ≤ 1 to form the

domain of the function of the form: y = sin–1 (f (x)) or,
y = cos–1 (f (x)).

Notes:

(i) sin x n x n≥ ⇔ ≤ ≤ +0 2 2 1π π� � ,  n being an

integer.

(ii) sin x n x n> ⇔ < < +0 2 2π π π ,  n being an

integer ⇔  x lies in the first or second quadrant.

Solved Examples

Find the domain of each of the following functions:

1. y
x

=
+

�
��

�
��

−
cos

sin

1 2

2

Solution: y is defined when − ≤
+

≤1
2

2
1

sin x

⇔ − − ≤ ≤ +2 2 2sin sinx x

⇔ − − ≤2 2sin x ...(i)

and 2 2≤ + sin x ...(ii)

(i) ⇒ − − ≤ ⇔ − ≤ ⇔ ≥ −2 2 4 4sin sin sinx x x

which is true ∀ ∈ ⇔ = − ∞ < < ∞ =x R D x R1 .

( i i ) ⇒ ≤ + ⇔ ≤ ⇔ ≥ ⇔2 2 0 0sin sin sinx x x

2 2 1 2 2 12n x n D n nπ π π π≤ ≤ + ⇔ = +� � � �,

∴ = ∩D y D D� � 1 2

= +2 2 1n nπ π, � � , n being an integer.

2. y = cos–1 (2x + 3)

Solution: y is defined when − ≤ + ≤1 2 3 1x

⇔ − ≤ +1 2 3x ...(i)

and 2 3 1x + ≤ ...(ii)



Function 41

Now,(i) ⇒ + ≥ − ⇔ ≥ − − ⇔ ≥2 3 1 2 1 3x x x

− ⇔ ≥ − ⇔ = − ∞4

2
2 21x D , �

( i i ) ⇒ ≥ + ⇔ − ≥ ⇔ − ≥ ⇔1 2 3 1 3 2 2 2x x x

−
≥ ⇔ − ≥ ⇔ ≤ − ⇔ = −∞ −

2

2
1 1 12x x x D ,�

∴ = ∩D y D D� � 1 2

= − −2 1,

3. y = cos–1 (1 – 2x)

Solution: y is defined when − ≤ − ≤1 1 2 1x

⇔ − ≤ −1 1 2x ...(i)

and 1 2 1− ≤x ...(ii)

Now, (i) ⇒ − ≤ − ⇔ − − ≤ − ⇔ −1 1 2 1 1 2x x

2 2 1 11≤ − ⇔ ≤ ⇒ = −∞x x D ,�
(ii) ⇒ − ≤ ⇔ − ≤ ⇔ ≥ ⇒ =1 1 2 0 0 2x x x D

0 , ∞�
∴ = ∩D y D D� � 1 2

= [0, 1]

4. y = sin–1 (log2 x)

Solution: y is defined when − ≤ ≤1 12log x

⇔ − ≤1 2log x ...(ii)

and log
2

1x ≤ ...(i)

Now, (i) ⇒ − ≤ ⇔ ≤ ⇔ ≤ ⇔
−

1 2
1

22
1

log x x x

x D≥ ⇔ = ∞	

�

�
�

1

2

1

21 , .

(ii) ⇒ ≤ ⇔ ≥ ⇔ ≤ ⇔ =log2
1

21 2 2x x x D

−∞ , 2�

∴ = ∩D y D D� � 1 2

= 	

�

�
�

1

2
2,

Remember:

1. log ifa
c

x c x a a> ⇔ < < <, 0 1 .

2. log ifa
cx c x a a> ⇔ < >, 1.

Type 2: Problems based on finding the domain of a
function put in the form:

y f x=
−

sin
1 � �

or y f x= −
cos

1 � �
Working rule: It consists of following steps:

1. To put f x� � ≥ 0  and to solve for x.

2. To consider sin y y≤ ⇔ ≤ ⇔1 1
2

sin

sin sin
− ≤ ⇔ ≤ ⇔1 2 2

1 1f x f x f x� �� � � �� � � �

≤ 1 and to solve for x.

3. (1) and (2) ⇔ ≤ ≤0 1f x� � , domain of y is the

intersection of the solution set of (1) and (2).

Note: f x� �  is defined for f x� � ≥ 0

∴ = −
y f xsin

1 � �  or cos
−1

f x� �  is defined

for 0 1≤ ≤f x� �  and f x f x� � � �≥ ⇒ ≤ ≤0 0 1 ,

i.e.; domain of the function put in the form

y f x=
−

sin
1 � �  or cos

−1
f x� �  consists of all

those values of x for which f x� � ≥ 0  and

0 1≤ ≤f x� � .

Solved Examples

Find the domain of the following:

1. y x= −
sin

1

– ∞ + ∞

D 2

–2 –1 0 1 2
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Solution: Method (1)

x  is defined for x ≥ 0

∴ y is defined for 0 1≤ ≤x  and x ≥ 0 .

⇒ =D y� � 0 1,

∴ D (y) = [0, 1]
Method (2)

(1) Putting x D≥ ⇔ = ∞0 01 , �

2. sin sin sin siny y x≤ ⇔ ≤ ⇔ ≤−
1 1

2 1 2

1 1 12⇔ ≤ ⇔ = −∞x D ,�
∴ = ∩D y D D� � 1 2

= 0 1,

Type 3: Problems based on finding the domain of a
function put in the form: y = tan–1 (f (x)) or y = cot–1 (f
(x)).

Working rule: It consists of following steps:
1. To put f (x) in between −∞  and +∞  i.e., to form

the inequality −∞ < < +∞f x� � .

2. To find the solution set of the inequality

−∞ < < +∞f x� �  to form the domain of the

function of the form y = tan–1 (f (x)) or y = cot–1 (f (x)).

Note: y = tan–1 (f (x)) or y = cot–1 (f (x)) defined for all

those real values of x for which −∞ < < +∞f x� �
i.e.; the domain of the function of the form y = tan–1 (f
(x)) or y = cot–1 (f (x)) consists of all those real values

of x for which −∞ < < +∞f x� � .

Solved Examples

Find the domain of the following:
1. y = tan–1 (2x + 1)

Solution: � y is defined when −∞ < + < +∞2 1x

⇔ −∞ < < ∞2x

⇔ −∞ < < ∞
2 2

x

⇔ −∞ < < ∞x

∴ = −∞ + ∞ =D y R� � � �,

Type 4: Problems based on finding the domain of a
function put in the form:

y = sec–1 (f (x)) or y = cosec–1 (f (x))

Working rule:

1. To form the inequalities −∞ < ≤ −f x� � 1 and

1 ≤ < +∞f x� � .

2. To solve the inequalities −∞ < ≤ −f x� � 1 and

1 ≤ < +∞f x� �  for x to form the domain of the

function of the form y = sec–1 (f (x)) or y = cosec–1

(f (x)).

Domain of a Function Put in the Form

y f x f x= ±1 2� � � �
Working rule: It tells to find the domains of two
functions, say f1 (x) and f2 (x) separately whose
intersection is the domain of this sum or difference.

Notes: By considering the two domains (i.e., intervals)
on the scale, we find their intersection (i.e., the interval
of common points).

Solved Examples

Find the domain of each of the following functions:

1. y x
x

x
= − +

−
+

1
3

2 1

2

Solution: Let f x x1
2

1� � = −

�  f1 (x) is defined when 1 0
2− ≥x

⇔ ≤ ⇔ ≤ ⇔ − ≤ ≤x x x
2

1 1 1 1

∴ = − =D f x D1 11 1� � ! ,  (say)

– ∞ + ∞0 1

D 2
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Again, let f x
x

x2
3

2 1
� � = −

+

�  f2 (x) is defined when 2 1 0x + ≠

⇔ ≠ −x
1

2

∴ = − −���
��� =D f x R D2 2

1

2
� � !  (say)

= −∞ −�
�

�
� ∪ − ∞�

�
�
�, ,

1

2

1

2

Thus, D y D D� � = − −	

�

�
� ∪ −��

�
� = ∩1

1

2

1

2
1 1 2, ,

2. y x x= − + −4 5

Solution: Let f x x1 4� � = −

and f x x2 5� � = −

f1 (x) is defined when 4 0 4− ≥ ⇔ ≤x x

∴ = −∞ =D f x D1 14� � ! � ,

f2 (x) is defined when x x− ≥ ⇔ ≥5 0 5

∴ = ∞ =D f x D2 25� � ! � � �, say

Thus, D y D D� � = ∩ = ∅1 2

3. y
x

x

x

x
=

−
+

+
−
+

2

2

1

1

Solution: Let f x
x

x1
2

2
� � = −

+

and f x
x

x2
1

1
� � = −

+

� f x1 � �  is defined when 
x

x

−
+

�
��

�
�� ≥

2

2
0

⇔ ≠ − − + ≥ ⇔x x x2 2 2 0and  ! !
x x x≠ − − − − ≥2 2 2and � � � � !
0 2 2⇔ ≥ < −x xor

∴ = −∞ − ∪ +∞ =D f x D1 12 2� � ! � � � � �, , say

f2 (x) is defined when 
1

1
0

−
+

�
��

�
�� ≥

x

x

⇔ ≠ − − + ≥x x x1 1 1 0and � � � �
⇔ ≠ − − + ≤x x x1 1 1 0and � � � �
 ⇔ − − − ≤ ⇔ − < ≤ ≠−x x x x1 1 0 1 1 1� � � � ! � ��

∴ = − =D f x D2 21 1� � ! � � �, say

Thus, D y D D� � = ∩ = ∅1 2

4. y x
x

= − +
−�

��
�
��

−
3

2

3

1
cos

Solution: Let f x x1 3� � = −

and f x
x

2
1 2

3
� � = −�

��
�
��

−
cos

�  f1 (x) is defined when 3 0 3− ≥ ⇔ ≤x x

∴ = −∞ =D f x D1 13� � ! � � �, say

f2 (x) is defined when − ≤ − ≤1
2

3
1

x

⇔ − ≤ − ≤3 2 3x
⇔ − + ≤ − + ≤ +3 2 2 2 3 2x
⇔ − ≤ ≤1 5x

– ∞ + ∞–1 0 11
2

–

– ∞ + ∞0 2–2

– ∞ + ∞0 1–1

D 2

– ∞ + ∞0 4 5
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∴ = − =D f x D2 21 5� � ! � �, say

Thus, D y D D� � = ∩1 2

= −∞ ∩ −, ,3 1 5�
= [–1, 3]

Domain of a Function Put in the Forms

(i) y = | f (x) |

(ii) y f x g x= ±� � � �

(iii) y
f x

f x f x f x f x
=

± ±
1

2 3 2 3

1� �
� � � � � � � �or ,

Working rule: To find the domain of a function
involving absolute value function, one must remember
that:

(i) y f x g x= ±� � � �  is the sum or difference of

two functions. Hence, its domain is the intersection
of domains of the functions f (x) and | g (x) |.

(ii) y
f x

f x f x f x f x
=

± ±
1

2 3 2 3

1� �
� � � � � � � �or ,  is

a rational function. Hence, its domain is dom f1 (x) ∩
dom f2 (x) ∩  dom | f3 (x) | – {x: f2 (x) ±  | f3 (x) | = 0}.

Notes:
1. When the sum of two non-negative numbers (or,
functions) is zero, then both the numbers (or,
functions) are separately zero.

e.g: x x x
2 2

0 0+ = ⇒ =  and x x= +0; | |

x x
3

0 0= ⇒ =| |  and | x3 | = 0.

2. (x – 1) (x – 2) (x – 3) (x – 4) is > 0 for x > 4, or 2 < x
< 3 or x < 1; and < 0 for 3 < x < 4 or 1 < x < 2.

(+ always at right end and then alternatively +
and –)
3. | x | = x for x > 0; | x | = –x for x < 0 (where x ve= − ⇔
− = +x ve ,  i.e; x < 0 ⇔  –x > 0).
4. | f (x) | = f (x) for f (x) > 0; | f (x) | = – f (x) for f (x) < 0
(where f (x) = –ve ⇔  –f (x) = + ve, i.e; f (x) < 0 ⇔  0 –
f (x) > 0).

5. x a a x a x a a< ⇔ − < < ⇔ ∈ − ,� �
6. x a x a x a x R a a> ⇔ < − > ⇔ ∈ − −or ,

7. f x a a f x a� � � �> ⇔ − < <

8. f x a f x a f x a� � � � � �> ⇔ > < −or

9. x a x b x R a b x a< > ⇔ ∈ − ⇔ ∈ −∞or , ,� �
∪ + ∞b ,� �

e.g.: x
x

x

x

x
− > ⇔

− < −
− >

⇔
< −
>

⇔	

�

	

�

4 5
4 5

4 5

1

9

x R x∈ = − ⇔ ∈ −∞ − ∪ ∞1 9 1 9, , ,� � � �

Solved Examples

Find the domain of each of the following functions:
1. y = | sin x |
Solution: � y = | sin x | is defined for every real value

of x (i.e.; for any value of x R∈ )

∴ = ∈ = −∞ +∞D y R x x R� � � � � �: ,

2. y = 1 – | x |
Solution: y = 1 – | x | is defined for every real value of

x (i.e.; for any value of x R∈ ).

∴ = ∈ = −∞ +∞D y R x x R� � � � � �: ,

3. y
x

x x
=

+

+

2

2

3

| |

Solution: y
x

x x
=

+
+

2

2

3

| |
 a rational function.

Putting x2 + | x | = 0
⇒  x2 = 0 and | x | = 0 and from each equation, we

get

x = 0 (� x x= ⇔ =0 0
2  and x = 0  ⇔  x = 0)

– ∞ + ∞0 1 2 3 4 5–1

1 2 3 4

+ +– –+
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∴ = −D y Ra f k p0

4. y
x x

=
−
1

Solution: y
x x

=
−
1

 a rational function

Putting x – | x | = 0
⇔  | x | = x

⇔ ≥x 0  (∵ x x=  provided x > 0)

∴ = − ≥D y R x xa f k p: 0

Domain of a Function
Containing Greatest Integer Function

Rule: Domains of functions involving greatest integer
function are obtained by using different properties of
greatest integer function.

Solved Examples

1. Find the domain of y = sin–1 [x]
Solution: y = sin–1 [x] is defined when –1 < [x] < 1

Now –1< [x] < 1

⇔ − ≤ <1 2x

⇔ ∈ −x 1 2, f
⇔  D (y) = [–1, 2]

2. Find the domain of y = sin–1 [2 – 3x2].
Solution: y = sin–1 [2 – 3x2] is defined when

− ≤ − ≤1 2 3 1
2

x

Now − ≤ − ≤1 2 3 1
2

x

⇔ − ≤ − <1 2 3 2
2

x

Again, 2 – 3 x2 < 2
⇒  –3x2 < 0

⇒  –x2 < 0

⇒ > ⇒ ∈x x R
2

0 ...(i)

Next, 2 3 1
2− ≥ −x

⇒ − ≥ −3 3
2

x

⇒ ≤x
2

1

⇒ ≤ ⇒ ∈ −x x1 1 1, ...(ii)
on finding the intersection of (i) and (ii), it is

obtained D (y) = − ∪1 0 0 1, ,f a .

Problems on the Range of a Function

As discussed earlier, the range of a function defined
by y = f (x) in its domain is the set of values of f (x)
which it attains at points belonging to the domain.
For a real function, the codomain is always a subset
of R, so the range of a real function f is the set of all

points y such that y = f (x), where x D f∈ =a f  domain

of f.
In general, a function is described either by a single

expression in x in its domain or by various expressions
defined in adjacent intervals denoting different parts
of the domain of the function and neither its domain
nor range is mentioned. In such cases, it is required
to be found out the domain and the range of the given
function.

Already, how to find out the domains of different
types of functions has been discussed. Now the
methods of finding the range of a given function will
be explained.

Firstly, domains and range sets of standard
functions will be put in a tabular form.

Funtion defined Domain Range
by an expression

1. y = kx, k ≠ 0 (–∞, ∞) (–∞, ∞)
2. y = kx + l (–∞, ∞) (–∞, ∞)

3. y = 
k

x
, k ≠ 0 R – {0} R – {0}

4. y = x2n (–∞, ∞) (0, ∞)
5. y = x2n + 1 (–∞, ∞) (–∞, ∞)

6. y = x [0, ∞) [0, ∞)

7. y = ax2 + bx + c, (–∞, ∞) − + ∞L
NM

I
KJ

D

a4
, ,

a > 0 D = b2 – 4ac

8. y = ax2 + bx + c, (–∞, ∞) −∞
−F

HG
I
KJ,

D

a4
,

a < 0 D = b2 – 4ac
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Now the methods to find the range of a given
function are provided, when its domain is an infinite
interval.

How to Find the Range of Function

Step 1: Put y = f (x)
Step 2: Solve the equation y = f (x) for x to obtain x =
g (y).
Step 3: Find the values of y for which the values of x
obtained from x = g (y) are in the domain of f, i.e. find
the domain of g (y) in the same way as the domain of
f (x) is obtained considering g (y) as inverse of f (x).
Step 4: The set of all values of y obtained in step (3)
is the required range, i.e. the domain of g (y) is the
required range of the given function y = f (x).

Remarks:
1. The method mentioned above is fruitful only when
the domain of a given function is infinite, i.e. the
domain of a given functions is not a closed interval

[a, b], a b R, ∈ =  the set of reals.

2. When a function defined by a single formula y = f
(x) does not become imaginary or undefined for any
value of independent variable x, the domain of the
function y = f (x) is the set of all real numbers denoted
by R. To obtain its range, one should consider the
domain −∞ < < ∞x  using the axioms of inequality

in −∞ < < ∞x .

3. When it is possible to put a function in the form of
Px2 + Qx + R, where P, Q and R are linear expressions
in y, one should use the rule of discriminat, i.e.,

D b ac= − ≥2
4 0  for real x.

4. In case the domain of a function y = f (x) is a finite
set D = {a1, a2, a3, …, an}, then its range is obtained
by forming the set whose members are the values of [f
(x)] x = a1, a2, a3, …, an.

Type 1: Functions put in the forms: (i) y = ax + b (ii) y
= ax2 + bx + c whose domains are not given.

Rule: When the domain of a function is not given
and the question says to determine the range of a
functions, one is required to find out its domain at
first in the following way:

It should be checked whether the given function
becomes imaginary or undefined for any value of

x R∈  i.e. given function y = f (x) does not become

imaginary or undefined for any value of x R∈ ⇒
domain of the given function is the set of all real
numbers denoted by R.

Lastly, one should find the range of the given
functions using the axioms of inequality in
−∞ < < ∞x .

Example worked out:
1. Find the domain and range of each of the following
functions:
(i) y = x (ii) y = x + 2
Solution: (i) y = x does not become imaginary or

undefined for any x R∈ ⇒  y = x is defined for all

x R∈ .

⇒ = ⇒ −∞ < < ∞ ⇒ −∞ < < ∞D y R x y� �
(�  y = x is given)

⇒ = =R y R� �  the set of reals.

(ii) y = x + 2 does not become imaginary or undefined

for and x R∈ ⇒  y = x + 2 is defined for all x R∈ ⇒

D (y) = R Now, D y R x� � = ⇒ −∞ < <

∞ ⇒ −∞ < + < ∞x 2  (on using the axiom of

inequality) ⇒ −∞ < < ∞ ⇒y  R ( y) = R = the set of

reals.

Note:
In case one is required to find out the range of linear
function y = ax + b whose domain is a given subset of
the set of reals namely R, the range of y = ax + b is
obtained with the help of given domain and the use
of various axioms of inequality.
Examples: (i) Find the range of f (x) = 4x – 5 for

− ≤ ≤6 3x .

Solution: − ≤ ≤6 3x

⇒ − ≤ ≤24 4 12x

⇒ − − ≤ − ≤ −24 5 4 5 12 5x

⇒− ≤ − ≤29 4 5 7x

⇒ ∈ −f x� � 29 7,

⇒ = − ≤ ≤R f y y� � � �: 29 7  where y = f (x)
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Similarly, the range of each of the following
functions:

(ii) f1 (x) = 2x + 3 for − ≤ ≤1 7x  is

y y1 11 17: ≤ ≤� � , where y1 = f1 (x).

(iii) g (x) = 5 – 6x for − ≤ ≤3 4x  is

y y2 219 23: − ≤ ≤� � , where y2 = g (x).

(iv) h (x) = 5x – 6 for − ≤ ≤2 5x  is

y y3 316 19: − ≤ ≤� � , where y3 = h (x).

2. Find the domain and range of each of the following
functions:

(i) y = x2 (ii) y = x2 – 4.
Solution: (i) y = x2 does not become imaginary or

undefined for any x R y x∈ ⇒ = 2  is defined for all

x R∈ ⇒  D (y) = R Now, y x x y= ⇒ − = ⇒2 2
0

D y y D b ac= − × × − = ≥ = −0 4 1 4 0 4
2� � � ��

⇒ ≥ ⇒ ∈ ∞ ⇒ = ∞y y R y0 0 0, ,� � � � .

(ii) y = x2 – 4 does not become imaginary or undefined

for any x R y∈ ⇒  is defined for all

x R D y R∈ ⇒ =� � .

Now, y = x2 – 4
⇒  x2 – 4 – y = 0

⇒  x2 – (y + 4) = 0

⇒ = − × × − + = + ≥D y y0 4 1 4 4 4 0� �� � � �
⇒ + ≥y 4 0

⇒ ≥ −y 4

⇒ ∈ − ∞y 4 , �
⇒ = − ∞R y� � �4 ,

Type 2: Functions put in the forms:

(i) y f x= � � (ii) y
f x

=
1

� �
Rule: Find the domain of y and then express x in
terms of y. Lastly put g (y) in the domain of y and
solve it to find the range of y.

Solved Examples

1. Find the range of the following functions:

(i) y x=  (ii) y x= − 3  (iii) y x= −3 2

(iv) y
x

=
+

1

2

Solution: (i) y x=

⇒ ≥x 0

Again y x=

⇔ = ≥y x y
2

0, �� �
but x ≥ 0

⇔ ≥y
2

0

⇔ ≥y 0

⇔ ≥y 0  if y is non-negative which is given

(since y x= ).

⇔ ∈ ∞y 0 ,� �
⇒ = ∞R y� � �0 ,

(ii) y x= − 3

⇒ − ≥x 3 0

⇒ ≥x 3

Again y x= − 3

⇔ = − ≥y x y
2

3 0, �� �

⇔ + =y x
2

3

but x ≥ 3

⇔ + ≥ = +y x y
2 2

3 3 3�� �

⇔ ≥y
2

0

⇔ ≥y 0

⇔ ≥y 0  if y is non-negative which is given.

⇒ ∈ ∞ ⇒ = ∞y R y0 0, ,� � � �
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(iii) y x= −3 2

⇒ − ≥3 2 0x

⇒ − ≥ −2 3x

⇒ ≤2 3x

⇒ ≤x
3

2

Again y x= −3 2

⇔  y2 = 3 – 2x, � y ≥ 0� �
⇔  y2 – 3 = –2x

⇔  3 – y2 = 2x

⇔
−�

�
�

�
�
� =

3

2

2
y

x

but x≤ 3

2

⇒
−�

�
�

�
�
� ≤

3

2

3

2

2
y

⇒ − ≤3 3
2

y

⇒ − ≥y
2

0

⇒ ≥y 0

⇒ ≥y 0  if y is non-negative which is given.

⇒ ∈ ∞ ⇒ = ∞y R y0 0, ,� � � �

(iv) y
x

=
+

1

2

⇒ + > ⇒ > −x x2 0 2

Again y
x

=
+

1

2

⇔ =
+

≥y
x

y
2 1

2
0, �� �

⇔ + =x
y

2
1
2

⇔ = −x
y

1
2

2

But x > –2

⇔ − > −
1

2 2
2

y

⇔ >1
0

2
y

⇔ > ⇒ >y y
2

0 0| |

⇔  y > 0 if y is non-negative which is given

⇒ ∈ ∞ ⇒ = ∞y R y0 0, ,� � � � � �
Type 3: Functions put in the forms:

(i) y
C

Ax B
=

+
(ii) y

ax b

Ax B
=

+
+

Rule: Express x in terms of y by cross multiplication
and simplification. Lastly use the rule:

R y R
f y

f y
� � � �

� �= − =
�
�
�

�
�
�

roots of deminator of 1

2

0

Solved Examples

1. Find the range of the following functions:

(i) y
x

=
1

(ii) y
x

=
−
1

1
(iii) y

x

x
=

+ 2

(iv) y
x

x
=

−5
(v) y

x

x
=

−
+

1

3

Solutions:

(i) y
x

=
1

⇔ = ≠x
y

y
1

0,

⇒  R (y) = R – {0}

(ii) y
x

=
−
1

1

⇔ − = ≠x
y

y1
1

0,
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⇒  R (y) = R – {0}

(iii) y
x

x
x=

+
≠ −

2
2,

⇔  yx + 2y = x

⇔  2y = x – xy = x (1 – y)

⇔ =
−

≠x
y

y
y

2

1
1,

⇒  R (y) = R – {1}

(iv) y
x

x
x=

−
≠

5
5,

⇔  5y – xy = x

⇔  5y = x + xy = x (1 + y)

⇔ =
+

≠ −x
y

y
y

5

1
1,

⇒  R (y) = R – {–1}

(v) y
x

x
x=

−
+

≠ −
1

3
3,

⇔  xy + 3y = x – 1

⇔  3y + 1 = x – xy = x (1– y)

⇔ =
+
−

≠x
y

y
y

3 1

1
1,

⇒  R (y) = R – {1}

Type 4: Functions put in the forms:

(i) y
D

Ax Bx C
=

+ +
2

(ii) y
ax b

Ax Bx C
= +

+ +
2

(iii) y
ax bx c

Ax Bx C
=

+ +

+ +

2

2

Rule: Cross multiply and obtain Px2 + Qx + R = 0
where P, Q and R are functions of Y (i.e. an expression
in y). Lastly use the rule D > 0, where D = b2 – 4ac.
Remark: The above rule is valid in

y
ax bx c

Ax Bx C
=

+ +

+ +

2

2  provided its numerator and

denominator do not have one common factor.

Solved Examples

(1) Find the range of the following functions:

(i) y
x

=
−

1

4
2

(ii) y
x

x
=

+1
2

(iii) y
x x

x x
=

− +

+ +

2

2

2 4

2 4

(iv) y
x x

=
− +

1

3 2
2

Solutions:

(i) y
x

x=
−

≠ ±1

4
2

2
,

⇔  x2 y – 4y = 1

⇔ =
± +

≠x
y y

y
y

0 1 4
0

� �
,

Now, D > 0
⇒  y (1 + 4y) > 0

⇒ ≤ − ≥y y
1

4
0or

⇒ ≤ −y
1

4
 or y > 0 since y ≠ 0

⇒ = −∞ −�
�

�
� ∪ ∞R y� � � �, ,

1

4
0

(ii) y
x

x
=

+1
2

⇔  y + yx2 = x
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⇔  yx2 – x + y = 0

⇔ =
± − − × ×

≠x
y y

y
y

1 1 4

2
0

2 !
,

=
± −

≠
1 1 4

2
0

2
y

y
y,

Now, D > 0

⇒ − ≥1 4 0
2

y

⇒ + − ≥1 2 1 2 0y y� � � �
⇒ + − ≤2 1 2 1 0y y� � � �

⇒ − ≤ ≤ ≠
1

2

1

2
0y y,

Also, y = 0 ⇔  x = 0. Hence, R (y) = −	
�
�
�

1

2

1

2
,

(iii) y
x x

x x
=

− +

+ +

2

2

2 4

2 4

⇔  y (x2 + 2x + 4) = x2 – 2x + 4

⇔  x2 y – x2 + 2xy + 2x + 4y – 4 = 0

⇔  (y – 1) x2 + 2 (y + 1) x + (4y – 4) = 0

⇔ =
− + ± + − − −

−
x

y y y y

y

2 1 4 1 4 1 4 4

2 1

2� � � � � �� �
� � ,

y ≠ 1

Now, D > 0

⇒ + − − − ≥4 1 4 1 4 4 02y y y� � � �� �

⇒ + − − ≥4 1 16 1 02 2y y� � � �

⇒ + − − ≥y y1 4 1 02 2� � � �
⇒ + + − + − − ≥y y y y1 2 1 1 2 1 0� �� � � �� �
⇒ + + − + − + ≥y y y y1 2 2 1 2 2 0� � � �
⇒ − − ≥3 1 3 0y y� � � �
⇒ − − ≥3 1 3 0y y� � � �

⇒ ≤ ≤
1

3
3y

Also y = 1 ⇔  x = 0

∴ = 	

�

�
�R y� � 1

3
3,

(iv) y
x x

x=
− +

≠1

3 2
1 2

2
, ,

⇔  yx2 – 3yx + 2y – 1 = 0

⇔  yx2 – 3yx + (2y – 1) = 0

⇔ =
− − ± − − −

≠x
y y y y

y
y

3 3 4 2 1

2
0

2� � � � � �
,

Now, D > 0

⇒ − + ≥9 8 4 0
2 2

y y y

⇒ + ≥y y
2

4 0

⇒ + ≥y 2 2

⇒  either y y= ≤ − + ≥2 2 2 2or

⇒  either y y≤ − ≥4 0or  but y ≠ 0

⇒ = −∞ − ∪ ∞R y� � � � �, ,4 0

Type 5: Functions put in the forms:

(i) y
ax b

Ax Bx C
=

+

+ +2

(ii) y
Ax Bx C

ax b
=

+ +
+

2

(iii) y
ax bx c

Ax Bx C
=

+ +

+ +

2

2

(iv) y
x a

x a

n n

=
−
−

 whose numerator and denomina-

tor contain a common factor.

Rule: Cancell the common factor present in numerator
and denominator. After cancellation of common factor,
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(i) If y = mx + c (linear in x), then R (y) = R – { value of
y = mx + c at the zero of common factor}, where R =
the set of reals.
(ii) If y = a1 x

2 + b1 x + c1 (quadratic in x), then R (y)
= range of y = a1 x

2 + b1 x + c – {value of y = a1 x2 + b1
x + c1 at the zero of the common factor}

(iii) If y
a x b

a x b
=

+
+

1 1

2 2
 (linear rational in x), then R (y)

= R – { zero of the denominator of x
f y

f y
= 1

2

� �
� �  and

the value of y
a x b

a x b
=

+
+

1 1

2 2
 at the zero of common

factor}.

Solved Examples

1. Find the range of the following functions:

(i) y
x

x
=

−
−

2
1

1

(ii) y
x

x
=

−
−

3
8

2

(iii) y
x x

x x
=

− +

+ −

2

2

3 2

6

Solutions: (i) y
x

x

x x

x
x=

−
−

=
− +

−
≠

2
1

1

1 1

1
1

� � � �
� � ,

⇒  y = x + 1, x ≠ 1

⇒  x = y – 1

⇒  x is defined for all y R∈ − 2� �
⇒  R (y) = R – {2}

since x + 1 = 2 for x = 1 and y = 2 ⇒  x = 1

(ii) y
x

x

x x x

x
x= −

−
=

− + +

−
≠

3
2

8

2

2 2 4

2
2

� � � �
� � ,

⇒  y = x2 + 2x + 4

⇒  x2 + 2x – y + 4 = 0

⇒  x2 + 2x – (y – 4) = 0

⇒ =
− ± − × − −

=x
y2 4 4 1 4

2

� �� �

− ± + −2 4 4 4

2

y� �

Now, D > 0

⇒ + − ≥4 1 4 0y� �� �
⇒ − ≥y 3 0

⇒ ≥y 3

⇒ = ∞R y� � �3 ,  since (x2 + 2x + 4) for x = 2 = 4 +

4 + 4 = 12 and

y = 12 gives a point x D f= − ∈4 � �
Since 12 – 4 = x2 + 2x ⇒  x2 + 2x – 8 = 0 ⇒  x =

− ± − × −
= − ± ⇒ = −

2 4 4 1 8

2

2 6

2
2 4

� �
x ,

(iii) y
x x

x x

x x x

x x x
=

− +

+ −
=

− − +

+ − −

2

2

2

2

3 2

6

2 2

3 2 6

=
− − −
+ − +

=
− −
− +

x x x

x x x

x x

x x

2 2

3 2 3

1 2

2 3

� � � �
� � � �

� � � �
� � � �

⇒  yx + 3y = x – 1, x ≠ 2

⇒  3y + 1 = x – xy = x (1 – y)

⇒ =
+
−

≠x
y

y
y

3 1

1
1,

Again, 
x

x x

−
+

�
��

�
�� =

=

1

3

1

5
2

 and x = 2 for y = 1, or y = 1

5

Hence, R y R� � = − ���
���

1
1

5
,

(iv) Find the domain and range of the function defined
as

y
x x x

x x x
=

+ − −

+ − +

2 2

2

3 4 9

12 3

� � � �

� � � �
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Solution: y
x x x x

x x x
=

+ − − +
+ − +

4 1 3 3

4 3 3

� � � � � � � �
� � � � � �

= (x – 1) for x ≠ − −4 3 3, ,

One should note that denominator is zero for x = –
4, –3 or +3. This means that y is undefined for these

three values of x. for values of x ≠ − 4 , –3 or 3, one

may divide numerator and denominator by common

factors and obtain y = (x – 1) if x ≠ − 4 , –3 or 3.

Therefore, the domain of y is the set of all real numbers
except –4, –3 and +3, i.e. D (y) = R – {–4, –3, +3} and
the range of y is the set of all real numbers except
those values of y = (x – 1) obtained by replacing x by
–4, –3 or 3, i.e. all real numbers except –5, –4 and 2, i.e.
R (y) = R – {–5, –4, 2}.

Type 6: Functions put in the form: y = log f (x).

Rule: y f x a f xa
y= ⇔ = >log � � � � 0

i.e. change the given logarithmic form into the
exponential form and then solve it using the in

equation: a b a a
y > > ≠ ⇔0 1,� �

(i) y > loga b for a > 1, b > 0
(ii) y < loga b for 0 < a < 1, b > 0

(iii) y R∉  for a > 0, b < 0.

Remark: For, a > 1 a a y g x
y g x
> ⇔ >� � � �  ...(A)(say)

i.e. when it is possible to change ay + f (x) > 0 into
the form ay > ag (x), one should use (A).

Solved Examples

1. Find the range of the function y = log (3x2 – 4x + 5).
Solution: y = log (3x2 – 4x + 5) where 3x2 – 4x + 5 > 0

⇒ = − + = − +�
�

�
� =e x x x x

y
3 4 5 3

4

3

5

3

2 2

3
4

3

4

6

4

6

5

3

2
2 2

x x− + �
�

�
� − �

�
�
� +

�
��
��

�
��
��

⇒ = −�
�

�
� +

�
��
��

�
��
��
= −�

�
�
� +e x x

y
3

2

3

11

9
3

2

3

11

3

2 2

⇒ − = −�
�

�
� ≥e x

y 11

3
3

2

3
0

2

⇒ ≥e
y 11

3

⇒ ≥ �
�

�
�y log

11

3

⇒ ∈ ∞	

�

�
�y log

11

3
,

⇒ = ∞	

�

�
�R y� � log

11

3
,

2. Find the range of the function

y x x= − + −log2 4 6� �

Solution: y x x= − + −log2 4 6� �

⇒ = − + −2 4 6
y

x x� �

⇒ = − + − + − −2 4 6 2 4 6
2 y

x x x x� � � �
...(i) (on squaring)

⇒ − = − − ≥2 2 2 4 6 0
2 y

x x� � � � � � ...(ii)

⇒ − ≥2 2 0
2 y

⇒ ≥ ⇒ ≥ ⇒ ≥
1

2 2 2 1
2

2 1y
y y

Again from (ii) 2 1 10 24
2 1 2y

x x
−

− = − + −

⇒ − = − + −
−

2 1 10 24
2 1 2 2y

x x� � � �

⇒ − + + − =
−

x x
y2 2 1 2

10 24 2 1 0� � ,  which is

a quadratic in x and whose D = b2 – 4ac is

10 4 24 2 1 02 2 1 2
� � � �− + −���

���
≥−y

 which

⇒ − ≤
−

2 1 1
2 1 2y� �
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⇒ − ≤2 1 1
2 y

⇒ − ≤ − ≤−
1 2 1 1

2 1y

⇒ ≤ − ≤−
0 2 1 1

2 1y  (from (ii))

⇒ ≤ ≤−
1 2 2

2 1y

⇒ ≤ ≤−
2 2 2

0 2 1 1y

⇒ ≤ − ≤0 2 1 2y

⇒ ≤ ≤1 2 2y

⇒ ≤ ≤
1

2
1y

⇒ = 	

�

�
�R y� � 1

2
1,

Type 7: Functions put in the form: y = a cos x + b sin
x.

Rule: The range of y = a  cos x + b sin x is

− + +	

�

�
�a b a b

2 2 2 2
,

Solved Examples

1. Find the range of y = sin x – cos x
Solution: y = sin x – cos x

= −	

�

�
�

2
1

2

1

2
sin cosx x

= �
�

�
� − �

�
�
�

	

�

�
�

2
4 4

cos sin sin cos
π π

x x

= −�
�

�
�2

4
sin x

π

Again, it is know that

− ≤ −�
�

�
� ≤1

4
1sin x

π

i.e. − ≤ −�
�

�
� ≤2 2

4
2sin x

π

Hence, range of y R y= = −� � 2 2,

Note: Range of a cos x + b sin x

= − + +	

�

�
�a b a b

2 2 2 2
,

a b a b= − = ⇒ + =1 1 2
2 2

,

∴ = −R y� � 2 2,  in the above question.

2. Find the range of y = +cos sinθ θ3

Solution: y = +cos sinθ θ3

= +
	


�

�

�2

1

2

3

2
cos sinθ θ

= �
�

�
� + �

�
�
�

	

�

�
�

2
6 6

sin cos cos sin
π θ π θ

Again it is known that

− ≤ −�
�

�
� ≤1

6
1sin θ

π

i.e. − ≤ −�
�

�
� ≤2 2

6
2sin θ

π

Hence, R (y) = [–2, 2]

Note: In this question, a = 1, b = ⇒ + =3 1 3 4

hence, range of cos sinθ θ+ = −3 2 2,  on using,

range of a a bcos sinθ θ+ =

− + +	

�

�
�

a b a b
2 2 2 2

, .

Type 8: Functions put in the forms:

(i) y a b x= ± sin (ii) y a b x= ± cos

(iii) y
C

a b x
=

± sin
(iv) y

C

a b x
=

± cos
, where a,

b and c are constants.

Rule: Start from sin or cosx x≤ ≤1 1  and form:

(i) k a b x L≤ ± ≤sin

(ii) k a b x L≤ ± ≤cos
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(iii) k
C

a b x
L≤

±
≤

sin

(iv) k
C

a b x
L≤

±
≤

cos
 where k and L are con-

stants, by using the axioms of inequality.

Solved Examples

1. Find the range of y = 2 + sin x.

Solution: − ≤ ≤1 1sin x

⇒ − ≤ + ≤ +2 1 2 1 2sin x

⇒ ≤ ≤1 2 3sin x

⇒ ≤ ≤1 3y

⇒ ∈y 1 3,

⇒ =R y� � 1 3,

2. Find the range of y
x

=
−

1

2 3sin

Solution: − ≤ ≤1 3 1sin x

⇒ − ≤ − ≤1 3 1sin x

⇒ − ≤ − ≤ +2 1 2 3 1 2sin x

⇒ ≤ − ≤1 2 3 3sin x

⇒ ≥
−

≥1
1

2 3

1

3sin x

⇒ ≤
−

≤1

3

1

2 3
1

sin x

⇒ ≤ ≤
1

3
1y

⇒ ∈ 	

�

�
�y

1

3
1,

⇒ = 	

�

�
�R y� � 1

3
1,

Type 9: Finding the range of a function containing
greatest integer function.

Rule: Range of those functions containing greatest
integer function is obtained by using different
properties of greatest integer function.

Solved Examples

1. Find the range of y = [cos x]
Solution: − ≤ ≤1 1cos x

⇒ = =
− − ≤ <

≤ <
=

�
��

��
y x

x

x

x

cos

for cos

for cos

for cos

1 1 0

0 0 1

1 1

,

,

,

⇒ = −R y� � 1 0 1, ,

2. Find the range of y = 1 + x – [x – 2]
Solution: On using the property:

t t t≤ < + 1,  it is seen that

x x x− ≤ − < − +2 2 2 1

⇒ − − − ≤ − − − <x x x x2 2 2 2

x x− − − +2 2 1

⇒ ≤ − − − <0 2 2 1x x

⇒ ≤ − + − − < +3 2 3 2 1 3x x  (adding 3 to

each side)

⇒ ≤ + − − <3 1 2 4x x

⇒ ≤ <3 4f x� �
⇒  R (y) = [3, 4)

Type 10: Finding the domain and range of a piecewise
defined functions.
1. y = f1 (x), when x < a

= f2 (x), when x > a
i.e. two or more functions of an independent

variable namely x defined in adjacent intervals.
2. y = c1, when x < a

= c2, when a < x < b
= c3, when b < x

i.e. two or more different functions defined in
adjacent intervals.
3. y = f1 (x), when x a≠

= f2 (x), when x = a
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Now, it will be discussed in detail how to find the
domain and range of each type of piecewise function.

Rule: The domain of each type of a piecewise
function is the union of each given interval whereas
the range of each type of a piecewise function is the
union of different range of each given function
determined by considering each different given
intervals and applying the axioms of inequality to
obtain the different given functions in the form of
inequalities.

Note: The range of a piecewise function put in the
form:

y = c1, when x < a
= c2, when a < x < b
= c3, when b < x

i.e. the range of a piecewise function defined by
different constants in adjacent intervals is the set
whose members are given constants (constant
functions) defined in given adjacent intervals, i.e. R
(y) = {c1, c2, c3}, where c1, c2 and c3 are different
constants defined in adjacent intervals.

Solved Examples

1. Find the domain and range of the function defined
by

y
x x

x x
=

− <
≤

���
3 2 1

1
2

,

,

if

if

Solution: x x< ⇒ ∈ −∞1 1,� �
x x≥ ⇒ ∈ ∞1 1 , �
∴ = −∞ ∪ ∞ = −∞ ∞D y� � � � � � �, , ,1 1

Again, x < 1
⇒  3x < 3

⇒  3x – 2 < 3 – 2

⇒  3x – 2 < 1 ...(i)
Also, x > 1
⇒  x2 > 1 ...(ii)
Hence, from (i) and (ii), it is concluded that

R (y) = −∞ ∪ ∞ = −∞ ∞, , ,1 1� � � � �

2. Find the domain and range of the function defined
by

y
x x

x x
=

− <
+ ≤

���
1 3

2 1 3

,

,

if

if

Solution: x x< ⇒ ∈ −∞3 3,� �
x x≥ ⇒ ∈ ∞3 3 , �
∴ = ∞ ∪ ∞ = −∞ ∞D y� � � � � � �, , ,3 3

Again, x x x< ⇒ − < − ⇒ − <3 1 3 1 1 2 ...(i)

Also, x x x≥ ⇒ ≥ ⇒ + ≥3 2 6 2 1 7 ...(ii)

Hence, (i) and (ii) ⇒  R (y) = −∞ ∪ ∞, ,2 7� � �  =

R – [2, 7) i.e. all real numbers not in [2, 7).

3. Find the domain and range of the function defined
as

y
x x

x
=

+ ≠
=

���
3 3

2 3

, when

, when

Solution: x ≠ 3

⇒  x > 3 or x < 3 ⇒

x R∈ −∞ ∪ ∞ = −, ,3 3 3� � � � � �
Next, y = 2, when x = 3

∴ = − ∪ =D y R R� � � � � �3 3

Now, x ≠ 3

⇒ + ≠x 3 6

⇒ ≠ = −R y x R| 3 6 ! � �
Also, y = 2, when x = 3

⇒ = =R y x| 3 2 ! � �
∴ = − ∪ = −R y R R� � � � � � � �6 2 6

i.e. the range of the given function consists of all
real numbers except y = 6.

4. Let there be a function defined as

y x x

x
= ≠

=

�
��
��

2
2

7 2

,

,

if

if

find its domain and range.

Solution: x ≠ 2
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⇒  x < 2 or x > 2

⇒ ∈ −∞ ∪ ∞ = −x R, ,2 2 2� � � � � �
Next, y = 7, for x = 2

∴ = − ∪ =D y R R� � � � � �2 2

Now, x ≠ 2

⇒ ≠x
2

4

⇒ ≠R y x| 2 !

= − ∪ ≥+
R x4 0 0

2� � � � ,�

Also, y = 7, for x = 2

⇒ = =R y x| 2 7 ! � �

∴ = − ∪ ∪+
R y R� � � � � � � �4 7 0

= − ∪+
R 4 0� � � �

i.e. the range consists of all non-negative real
numbers except y = 4.

Note: One should note that y = c, for x = a, where c
and a are constants, represents a point P (a, c), i.e. a
point whose abscissa is ‘a’ and whose ordinate is ‘c’.

5. If the domain of a function is A = {x: x R∈ , -1 < x

< 1} and the function is defined as

f x

x

x

x

� � =
>
=

− <

�
��

��

1 0

0 0

1 0

,

,

,

when

when

when

Find the range of f (x).
Solution: The range of a piecewise function whose
each function is constant defined in its domain is the
union of different constants.

Therefore, R (y) = [–1, 0, 1}
Type 11: A function y = f (x) whose domain s a finite
set.
Rule: If the domain D of y = f (x) is a finite set, i.e. D =
{ a1, a2, a3,…, an}, then its range R (f) = {f (a1), f (a2),
f (a3), …, f (an)}.

Solved Examples

1. If A = {1, 2, 3, 4, 5}, B = {a, b, c, d, e} and f = {(1, b),
(2, d), (3, a), (4, b), (5, c)} be a mapping from A to B,
find f (A).

Solution: f (A) = {f (1), f (2), f (3), f (4), f (5)}
= (b, d, a, c}

2. If A = {0, 1, –1, 2} and f A R: →  is defined by f

(x) = x2 + 1, find the range of f.
Solution: f (x) = x2 + 1

⇒  f (0) = 1
f (1) = 2
f (–1) = 2
f (2) = 5
∴ f (A) = {f (0), f (1), f (–1), f (2)}
= (1, 2, 5}

3. If A = {0, 1, 2, –3} and f (x) = 3x – 5 is a function
from A on to B, find B.
Solution: f (x) = 3x – 5

⇒  f (0) = –5
f (1) = –2
f (2) = 1
f (–3) = –14
∴ f (A) = B = {1, –2, –5, –14}

4. If A = {1, 2, 3, 4} and f (x) = x2 + x – 1 is a function
from A on to B, find B.
Solution: f (x) = x2 + x – 1

⇒  f (1) = 1
f (2) = 5
f (3) = 11
f (4) = 19
∴ f (A) = B = {1, 5, 11, 19}

Type 12: A function y = f (x) defined in an open
interval (a, b).

Rule 1: a < x < b ⇒  f (a) < f (x) < f (b) if f (x) is
increasing in (a, b).
Rule 2: a < x < b ⇒  f (a) < f (x) < f (b) if f (x) is
increasing in [a, b].
Rule 3: a < x < b ⇒  f (b) < f (x) < f (a) if f (x) is
decreasing in (a, b).
Rule 4: a < x < b ⇒  f (b) < f (x) < f (a) if f (x) is
decreasing in [a, b].

Notes:
1. When y = f (x) is an increasing function in the
open interval (a, b) or in the closed interval [a, b],
then f (a) = L (say) is least and f (b) = G (say) is
greatest value of the given function y = f (x) in (a, b)
or [a, b].
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2. When y = f (x) is a decreasing function in the open
interval (a, b) or in the closed interval [a, b], then f (a)
= G (say) is greatest and f (b) = L (say) is least value of
the function y = f (x) in (a, b) or [a, b].
3. Range of y = f (x) = R (f) = (least f (x), greatest f (x))
if the domain of f (x) is an open interval (a, b) where f
(x) is continuous and increasing or decreasing for
x D f a b∈ =� � � �,

In the same fashion, R (f) = [least f (x), greatest f
(x)] if the domain of f (x) is a closed interval [a, b]
where f (x) is continuous, and increasing or decreasing

for x D f a b∈ =� � , .

4. In case a function y = f (x) is defined in its domain
is neither increasing nor decreasing but it is
continuous in its domain then its range is also
determined by the rule of finding greatest and least
value of the given function f (x) which will be explained
in the chapter namely maxima and minima of a function.

Solved Examples

1. Find the range of the function f (x) = x3 whose

domain is D x x R x= ∈ − < <: , 2 2� � .

Solution: f (x) = x3 is increasing in (–2, 2)
∴ f (–2) = (–2)3 = –8
and f (2) = (2)3 = 8
Therefore, R (y) = (f (–2), f (2) = (–8, 8)

2. If y = tan x defined in −��
�
�

π π
2 2

, , find its range.

Solution: y = tan x is increasing in −��
�
�

π π
2 2

,  ∴− <
π
2

x x< ⇒ −∞ < < ∞
π
2

tan  since L x
x →

= ∞
π
2

tan

and L x
x →

−��
�
�

= −∞tan
π
2

.

3. If A x x= ≤ ≤���
���

:
π π
6 3

 and f (x) = cos x – x (1 +

x), find f (A).

Solution: f (x) = cos x – x (1 + x), is decreasing in

0
2

,
π	


�
�
�

 and so in 
π π
6 3

,	

�

�
�

∴ �
�

�
� ≤ ≤ �

�
�
�f f x f

π π
3 6

� �

Now, f
π π π π π
3 3 3

1
3

1

2 3
�
�

�
� = �

�
�
� − +�

�
�
� = −cos

π
2

9

f
π π π π π π
6 6 6

1
6

3

2 6 36

2�
�

�
� =

�
�

�
� − +�

�
�
� = − −cos

∴ = − − − −
	


��

�

��

f A ! 1

2 3 9

3

2 6 36

2 2π π π π
,

Note: If y = f (x) is a continuous function whose
domain D = [a, b] = [a, c) ∪ [c, b] where a < c < b and
f (x) increasing in (a, c) and decreasing in [c, b), then
to find its range R (f), one is required to find out f (a),
f (b), f (c) and

R (y) = (greatest f (x), least f (x))
In the same way, R (y) = [ greatest f (x), least f (x)] if

y = f (x) is defined in the domain D = [a, b] = [a, c)
∪ [c, b] such that f (x) is decreasing in [a, c) and
increasing in [c, b].

Solved Examples

1. Find the range of the function f (x) = x2 + 1 in the
domain (–5, 2).
Solution: f (x) = x2 + 1 with its domain (–5, 2) and  f (x)
is decreasing in (–5, 0) and increasing in [0, 2).

f (–5) = 26
f (0) = 1
f (2) = 5
Therefore, it is clear that f (x) lies between 1 and 26.
∴ R (f) = (1, 26)

2. Find the range of the function f (x) = x2 in (–2, 2).
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Solution: f (x) = x2 with its domain (–2, 2) f (x) is
decreasing in (–2, 0) and increasing in [0, 2).

f (–2) = 4
f (0) = 0
f (2) = 4
Therefore, it is seen that f (x) between 0 and 4.
∴ R (f) = (0, 4)

Composite Function

Definition: If given functions are f D C: 1 1→  and

g D C: 2 2→  such that f D D1 2� � ⊂ , then the

composite function gof is the function from D1 to D2

defined by (gof) (x) = gof (x) = g (f (x)), ∀ ∈x D1  and

f x D� �∈ 2 .

N.B.: (i) f D D1 2� � ⊂  means that range of f ⊂
domain of g.

(ii) D x x D f x Dgof f g= ∈ ∈: and � �" #  where gof

represents the composite of f and g defined by (gof)
(x) = g (f (x)) having the domain Dgof = D (gof).

(iii) A function does not exist whenever its domain
is an empty set.

Remember: One must remember that g (f (x)) = gof (x)
means that g is a function of f (x) which is itself a
function of x. This is why gof (x) = g (f (x)) is called a
function of a function of the independent variable x.
Further, one should note that gof (x) signifies the
value of the function g at f (x) = given analytic
expression in x (or, simply given expression in x).

Type 1: Formation of composite of two functions of
x whose analytic expressions in x are given.

Working rule: The rule to compute gof (x) for two
analytic expressions in x for f (x) and g (x) says.
1. Firstly to replace f (x) by its given analytic
expression in x.
2. Secondly, in the given analytic expression in x for
g (x), to replace each x by the function f (x) and then
to put f (x) = analytic expression in x for f (x).

Thus, gof (x)
= value of g at f (x)
= [analytic expression for g (y)]y = f (x) ,which

signifies that the independent variable x in the analytic
expression for g (x) should be replaced by the analytic
expression in x for f (x) whereas the constant in the
analytic expression in x for g (x) remains unchanged.

Note: Very often the law establishing the relationship
between the independent variable and dependent
variable is specified by means of a formula. This
method of representation of function is called
analytical. Further, the expression in x is called analytic
expression.

Solved Examples

1. If f (x) = x2 and g (x) = x + 1, find (gof) (x).
Solution: On applying the definition,

(gof) (x) = gof (x)

= g x
2� �

=
=

g y
y x

� �] 2

= + = +=y xy x1 12
2� �

2. If f (x) = x + 3 and g x x� � =  find (gof) (7).

Solution: (gof) (7) = gof (7)
= g (3 + 7)
= g (10)

= x� �
10

= 10

3. If f (x) = x3 and g x x� � = 3  find g (f (x).

Solution: g (f (x)
= g (x3)

= x
x

3
3� �

f x ( )

x gof x g f x ( ) =  (  ( ))

gof

f g
D1

C2

C2

D2

f D D ( ) < 21
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= x
33

= x

4. If f (x) = x + 1 and g (x) = x  find g (f (x)).

Solution: g (f (x)) = gof (x)
= g ((x+1))

=
+

x
x

� �� �1

= +x 1

5. If f (x) = sin x and g (x) = x2, find (gof) (x).
Solution: (gof) (x) = g (f (x)) = g (f (x)) = g (sin x)

= (sin x)2

6. If f x
x

x
� � =

−1
 find f (f (f (x))).

Solution: Given f x
x

x
x� � =

−
≠

1
1, ...(i)

On replacing x by f (x) in (i) , we have

f f x
f x

f x

x

x

x

x

� � ! � �
� �=

−
=

−
�
��

�
��

−
−

�
��

�
��
=

1

1

1
1

x

x

x

x

x

x
x

1

1 2

1

1 2
1

1

2

−
�
��

�
��

−
−

�
��

�
��
=

−
≠ ���

���
, ,

Again, replacing x by f (f (x)) in (i), we get

f f f x
f f x

f f x
� � ! ! � � !

� � !=
−1

=
−

�
��

�
��

−
−

�
��

�
��

x

x

x

x

1 2

1
1 2

=
−

≠ ���
���

x

x
x

1 3
1

1

2

1

3
, , ,

N.B.: Whenever f (x) = an analytic expression in x
and we are required to find f [f {f (x) }], we adopt the
following procedure:
1. We replace x by f (x) in the given expression in x
which provides us f {f (x)}.
2. Again we replace x by f {f (x)} in the given
expression in x which provides us f [f {f (x)}].

7. If f x
x

x
� � = +

−
3 1

3
 and ∅ =

−
+

x
x

x
� � 3

3 1
 find

f xφ � � !  and φ f x� � ! .

Solution: Given

f x
x

x
x x

x

x
x� � � �=

+
−

= =
−
+

≠ −
3 1

3
3

3

3 1

1

3
, , ,φ

∴ =
+
−

f x
x

x
φ

φ
φ

� � � �
� �

3 1

3

=

−
+

�
��

�
�� +

−
+

�
��

�
�� −

=
−

− −
=

−
+

3
3

3 1
1

3

3 1
3

6 8

8 6

4 3

3 4

x

x

x

x

x

x

x

x
,  for

x ≠ − −1

3

3

4
3, ,

Now to find φ  {f (x)}, we consider the given

function φ x
x

x
� � = −

+
1

3 1
 whose independent

variable x is replaced by f (x).

∴ =
+
−

− +
−

�
��

�
�� +φ f x

x

x

x

x
� � 3 1

3
3 3

3 1

3
1

=
+ − −
+ + −

= = ≠ −
3 1 3 3

3 3 1 3

10

10

1
1 3 0

x x

x x x x
x

� �
� � � � , , ,

N.B.: To find f { φ  (x)}, we replace x by φ  (x) in the

given function for f (x) and to find φ  {f (x)}, we replace

x by f (x) in the given expression for φ  (x). Further we

should note that f { φ  (x)} means the value of f at φ

(x) and φ  {f (x)} means the value of φ  at f (x).
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Refresh your memory: If given functions are

f D C g C C: and :1 1 1 2→ → ,  then the composite

function gof is the function from D1 to C2 defined by

(gof) (x) = gof (x) for every x in D1 and f x C� � ∈ 1

domain of g.

Note: The working rule to fund (gof) is the same
provided the given functions are:

(i) f D C: 1 1→  and g D C: 2 2→  such that

f D D1 2� � ⊂ .

(ii) f D C: 1 1→  and g C C: 1 2→

Solved Examples

1. If the mapping f D C: 1 1→  is defined by f (x) =

log (1 + x) and the mapping g C C: 1 2→  is defined

by g (x) = ex find (gof) (x).
Solution: (gof) (x) = g (log (1 + x)); x > – 1 (�  f (x) =
log (1 + x))

= elog (1 + x) (�  g (x) = ex)
= (1 + x); x > – 1 (�  elog f (x) = f (x))

2. If f D C: 1 1→  is defined by f (x) = x + 1, x R∈

and g C C: 1 2→  is defined by g (x) = x2, find (gof) (x).

Solution: (gof) (x) = g (f (x)) = g (1 + x) (� f (x) = 1 +x)

= + = ⇒ =1 2 2 2x g x x g f x f x� � � � � � ! � �� ��

3. If f R R: →  is defined by f (x) = 2x2 – 1 and

g R R: →  is defined by g (x) = 4x – 3, x R∈ ,

compute (gof) (x) and (gof) (3).
Solution: (gof) (x) = g (f (x)) = g (2x2 – 1) (� f (x) = 2x2

– 1)

= 4 (f (x)) –3 (� g x x g f x� � � � != − ⇒ =4 3

4 3f x� � − )

= 4 (2x2 – 1) – 3

= 8x2 – 4 – 3
= 8x2 – 7
∴ (gof) (2) = (8x2 – 7)2
= 8 (2)2 – 7
= 8 × 4 – 7
= 32 – 7 = 25

Notes: (i) If we are required to find (fog) (x) and (fog)
(–1) for the just above defined functions, then (fog)
(x) = f (g (x)) = f (4x – 3) (�  g (x) = 4x – 3)

= 2 (4x – 3)2 – 1(�  f (x) = 2x2 – 1 ⇒  f (g (x)) = 2 (f
(x))2 – 1)

= 2 (16x2 – 24x + 9) –1
= 32x2 – 48x + 17
∴ (fog) –1 = 32 (–1)2 – 48 (–1) + 17
= 32 + 48 + 17 = 97

(ii) In general gof x fog x� � � � � � � �≠

5. If the mapping f R R: →  be given by f (x) = x2 +

2 and the mapping g R R: →  be given by

g x
x

� � = −
−

1
1

1
 compute (gof) (x) and (fog) (x) and

show that gof x fog x� � � � � � � �≠ .

Solution: (gof) (x) = g (f (x))
= g (x2 + 2)

= −
− +

= −
− −

= +
+

1
1

1 2
1

1

1
1

1

1
2 2 2

x x x� �
...(i)

(fog) (x) = f (g (x))

= −
−

�
��

�
�� =

− −
−

�
��

�
�� =

−
−

�
��

�
��f

x
f

x

x
f

x

x
1

1

1

1 1

1 1

= −
−

�
��

�
�� + =

−
+x

x

x

x1
2

1
2

2 2

2� � ...(ii)

In the light of (i) and (ii), it is clear that
(gof) (x) ≠  (fog) (x)

Note: The operation that forms a single function from
two given functions by substituting the second
function for the argument of the first fucntion (for the
independent variable of the first function) is also
termed as composition. It is only defined when the

f x ( )
x g f x ( )

gof

f g
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range of the first is contained in the domain of the
second. Repeated composition is denoted by a
superscript numeral as f (n); so far example f o f o f o f =
f (4).

6. Find f o f o f if f x
x

x
� � =

+1
2

Solution: � f x
x

x
� � =

+1
2

∴ =
+

=
+

+
+

f o f x
f x

f x

x

x

x

x

� � � �
� �1

1

1
1

2

2

2

2

=
+

+ +

+

x

x

x x

x

1

1

1

2

2 2

2

=
+

+

+

=
+

x

x

x

x

x

x

1

1 2

1

1 2

2

2

2

2
 = G (x) (say)

and f o f o f (x) = f o
x

x1 2
2

+

�

�
�
�

�

�
�
�

= f o G (x) =
+

G x

G x

� �
� �1

2

=
+

+
+

x

x

x

x

1 2

1
1 2

2

2

2

=
+

+ +

+

x

x

x x

x

1 2

1 2

1 2

2

2 2

2

=
+

x

x1 3
2

Type 2: Problems based on finding the composite of
two functions whenever the domains are mentioned
in the form of intervals:

Question: Define the composite of two functions
namely f and g whose domains are D1 and D2
respectively.
Answer: 1. If f and g are two functions whose domains
are D1 and D2 respectively, then gof is the composite
of two functions namely f and g defined by (gof) (x) =
g (f (x)).

Further, we should note that the domain of gof is

the set of all those x D∈ 1  (domain of f) for which

f x D� � ∈ 2  (domain of g). But if the range of f is a

subset of the domain of g, then the domain of gof is

the same as the domain of f Dgof, i.e  =

x x D f x gf: and∈ ∈� �" #  and Dgof = Df when

R Df g⊂ .

2. If f and g are two functions whose domains are D1,
and D2 respectively, then fog is the composite of two
functions namely f and g defined by (fog) (x) = f (g
(x)).

Further, we should note that the domain of fog is

the set of all those x D∈ 2  (domain of g) for which

g x D� �∈ 1  (domain of f). But if the range of g is a

subset of the domain of f, then the domain of fog is
the same as the domain of i.e; Dfog =

x x D g x Dg f: and∈ ∈� �" #  and Dfog = Dg when

R Dg f⊂ .
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Notes: 1. If f (x) = f1(x), x > a and g (x) = f2 (x), x > b
then f is defined for x > a and gof (x) is defined for f (x)
> b which is solved for x to find the domain of (gof) (x)
i.e; domain of (gof) (x) is the intersection of the solution
sets of the inequalities x > a and f (x) > b. Similarly, g
is defined for x > b and fog (x) is defined for g (x) > a
which is solved for x to find the domain of (fog) (x),
i.e; domain of (fog) (x) is the intersections of the
solution sets of the inequalities x > b and g (x) > a.
2. If f (x) = f1 (x), a < x < b and g (x) = f2 (x) , c < x < b
then f is defined for a < x < b and gof (x) is defined for
c < f (x) < d which is solved for x to find the domain of
gof (x), i.e; domain of (gof) (x) is the intersection of
the solution sets of the inequalities a < x < b and c <
f (x) < d. Similarly, g is defined for c < x < d and fog (x)
is defined for a < g (x) < b which is solved for x to find
the domain of (fog) (x), i.e; domain of (fog) (x) is the
intersection of the solution sets of the inequalities c
< x < d and a < g (x) < b.
3. In general fog gof≠  which ⇒ ≠fog x� � � �

gof x� �� � .

4. It should be noted that the notations fog and fg
represent two different functions namely a function f
of a function g and the product of two functions f and
g respectively.

Now we explain the rules of finding the composition
of two functions of x’s whenever their domains are
mentioned as intervals.

Working rule to find (gof) (x): It consists of following
steps:
Step 1: Finding gof (x) (i.e; value of g at f (x) as usual.
Step 2: (i) Considering the inequality obtained on
replacing x by f (x) in the domain of g which is given
in the form of an interval finite or infinite.
(ii) Considering the inequality which represents the
domain of f.
Step 3: Finding the intersection of the inequalities (i)
and (ii) to get the domain of (gof) (x).

Working rule to find (fog) (x): It consists of following
steps:
Step 1: Finding (fog) (x) (i.e; value of f at g (x) as
usual.
Step 2: (i) Solving the inequality obtained on
replacing x by g (x) in the domain of f which is given
in the form of an interval.

(ii) Solving the inequality which represents the
domain of g.
Steps 3: Finding the intersection of inequalities (i)
and (ii) to get the domain of (fog) (x).

Solved Examples

1. If f (x) = x x+ ≥ −4 4,  and g (x) x − 4 ,

x ≥ 4  find (gof) (x).

Solutions:
(i) (gof) (x) = gof (x)

= − ≥f x f x� � � �4 4,  and x ≥ − 4

= + − + ≥x x4 4 4 4,

(ii) We solve the inequality x + ≥4 4  for x:

∴ + ≥x 4 16

⇔ ≥ −x 16 4

⇔ ≥x 12

(iii) D (gof) = − ∞ ∩ ∞ = ∞4 12 12, , ,� � �

(iv) (gof) (x) = x
x

x
+ −

≥ −
≥

���
4 4

4

12
,

and
, i.e. x  >

12 or, (gof) (x) = x+ −4 4 , ∀ ∈ ∞x 12 , �
2. If f (x) = 1 + x, 0 < x < 1 and g (x) = 2 – x, 1 < x < 2 find
(gof) (x).
Solutions:
(i) (gof) (x) = gof (x)

= 2 – f (x), 1 <  f (x) < 2 and 0 < x < 1
= 2 – (1 + x), 1 < 1 + x < 2 and 0 < x < 1
( �  f (x) = 1 + x)
= 1 – x, 1 < 1 + x < 2 and 0 < x < 1

(ii) We solve the inequality 1 < 1 + x < 2 for x:

1 1 2≤ + ≤x

⇔ − ≤ + − ≤ −1 1 1 1 2 1x

⇔ ≤ ≤0 1x

(iii) D (gof) = [0, 1] ∩  [0, 1] = [0, 1]
(iv) (gof) (x) = 1 – x, 0 < x <

3. If f (x) = x2, 0 < x < 1 and g (x) = 1 – x, 0 < x < 1 find
(gof) (x).
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Solutions:
(i) (gof) (x) = gof (x)

= 1 – f (x), 0 <  f (x) < 1 and 0 < x < 1
= 1 – x2, 0 < x2 < 1 and 0 < x < 1 (�  f (x) = x2)

(ii) We solve the inequality 0 < x2 < 1 for x

∴ ≤ ≤0 1
2

x

⇔ − ≤ ≤1 1x

(iii) D (gof) = [–1, 1] ∩  [0, 1]

(iv) (gof) (x) = 1 – x2, x∈ − ∩1 1 0 1, , , i.e;

x∈ 0 1,

4. If f : 0 1 0 1, ,→  be defined by f x
x

x
� � = −

+
1

1 ,

0 1≤ ≤x  and g : 0 1 0 1, ,→  be defined by g (x)

= 4x (1 – x), 0 < x < 1, find (gof) (x).
Solutions:
(i) (gof) (x) = gof (x)

=
−
+

�
��

�
�� ≤

−
+

≤g o
x

x

x

x

1

1
0

1

1
1,  and 0 < x < 1

=
−
+

�
��

�
�� −

−
+

�
��

�
��

	

�

�
�

≤
−
+

≤4
1

1
1

1

1
0

1

1
1

x

x

x

x

x

x
,  and 0

< x < 1

=
−
+

�
��

�
�� +

�
��

�
�� ≤

−
+

≤4
1

1

2

1
0

1

1
1

x

x

x

x

x

x
,  and 0 < x <

1

(ii) We solve the inequality 0
1

1
1≤

−
+

≤
x

x

0
1

1
1≤

−
+

≤ ⇔
x

x
 0

1

1

1

1
1≤

−
+

−
+

≤
x

x

x

x
and

Now considering the inequality 
1

1
1

−
+

≤
x

x
,

1

1
1 1 1 0 2

−
+

≤ ⇔ − ≤ + ⇔ ≤ ⇔
x

x
x x x

0 ≤ x ...(a)

Again considering the inequality 
1

1
0

−
+

≥
x

x
,

1

1
0 1 0 0 1

−
+

≥ ⇔ − ≥ ≤ ≤ ⇔
x

x
x x !  !�

− ≥ − ⇔ ≤x x1 1 ...(b)
Hence, (a) and (b)

⇒ ∈x 0 1, , i.e. 0 1≤ ≤x .

(iii) D (gof) = [0, 1] ∩  [0, 1] = [0,1]

(iv) (gof) (x) = 4
1

1

2

1
0 1

−
+

�
��

�
�� +

�
��

�
�� ≤ ≤

x

x

x

x
x,

Type 3: Problems based on finding the composite of
two piecewise functions.

Rule: For finding gof (x) defined as under:

f x
f x a x b

f x b x c
� � � �

� �=
< <
< <

���
1

2

,

,

and

g x
g x x

g x x
� � � �

� �=
< <
< <

���
1

2

,

,

α β
β δ

one must put y = f (x) and hence to find g (y) when

α β< <y  and β δ< <y  for which it is required to
be determined the intersection of each two intervals
given below:

(i) a < x < b and α β< <y  where y = f1 (x) defined in
the given interval namely a < x < b.

(ii) b < x < c and α β< <y  where y = f2 (x) defined
in the given interval namely b < x < c.

(iii) a < x < b and β δ< <y  where y = f1 (x) defined
in the given interval namely a < x < b.

(iv) b < x < c and β δ< <y  where y = f2 (x) defined in
the given interval namely b < x < c.

If the intersection of any two intervals mentioned
from (i) to (iv) is finite, then g (y) = gof (x) is defined

and if their intersection is φ , then g (y) = gof (x) is not

defined.
The union of finite intersection of any two

intervals mentioned from (i) to (iv) is the required



64 How to Learn Calculus of One Variable

domain of the composite of two given piecewise
functions.

Similarly for finding fog (x), one must put y = g (x)
and so to find f (y) where a < y < b and b < y < c for
which it is required to be determined the intersection
of the intervals given below:

(i) α β< <y  and a < y < b where y = g1 (x) defined

in the given interval α β< <y .

(ii) β δ< <y  and a < y < b where y = g2 (x) defined

in the given interval β δ< <y .

(iii) α β< <y  and b < y < c where y = g1 (x) defined

in the given interval α β< <y .

(iv) β δ< <y  and b < y < c where y = g2 (x) defined

in the given interval β δ< <y .
If the intersection of any two intervals mentioned

from (i) to (iv) is finite, then f (y) = fog (x) is defined
and if their intersection is Ø, then f (y) = fog (x) is not
defined.

Solved Examples

1. Two functions are defined as under:

f x
x x

x x
� � = + ≤

+ < ≤
���

1 1

2 1 1 2

,

,  and

g x x x

x x
� � = − ≤ <

+ ≤ ≤

�
��
��

2
1 2

2 2 3

,

,  find fog and gof.

Solution: f (g (x)) = f (y) where y = g (x)
f (y) = y + 1, y < 1 ...(a)

= 2y + 1, 1 < y < 2 ...(b)
g (x) = x2, – 1 < x < 2 ...(c)
= x + 2, 2 < x < 3 ...(d)

Case (i): Considering the intervals in (a) and (c),

− ≤ <1 2x  and y < 1

⇒ − ≤ <1 2x  and g x� � ≤ 1

⇒ − ≤ <1 2x  and x
2

1≤
(�  g (x) = x2 in –1 < x < 2)

⇒ − ≤ <1 2x  and − ≤ ≤1 1x

⇒ − ∩ − = − = − ≤ ≤1 2 1 1 1 1 1 1, , ,� x

∴For − ≤ ≤ = = +1 1 1x f g x f y y, � � ! � �
= g x� � + 1

= + = − ≤ <x g x x x
2 2

1 1 2� � �� �in

Case (ii): Considering the intervals in (a) and (d),

2 3≤ ≤x  and y ≤ 1

⇒ ≤ ≤2 3x  and g x� � ≤ 1

⇒ ≤ ≤2 3x  and x + ≤2 1  (�  g (x) = x + 2 in

2 3≤ ≤x )

⇒ ≤ ≤2 3x  and x ≤ −1

⇒ ∩ −∞ − =2 3 1, ,� φ

⇒ =f y f g x� � � � !  is not defined

Case (iii): Considering the intervals in (b) and (c),

− ≤ <1 2x  and 1 2< ≤y

⇒ − ≤ <1 2x  and 1 2
2< ≤x  (�  g (x) = x2 in

− ≤ <1 2x )

⇒ − ≤ <1 2x  and {1 2< <x  or

− ≤2  x < −1}

⇒ − ∩ = = < <1 2 1 2 1 2 1 2, , ,� � � � x

In 1 2 2 1< < = = +x f g x f y y� � � ! � �,  for

1 2< ≤y

= + = +2 1 2 1
2

g x x� �
Case (iv): Considering the intervals in (b) and (d),

2 3≤ ≤x  and 1 2< ≤y

⇒ ≤ ≤2 3x  and 1 2< ≤g x� �
⇒ ≤ ≤2 3x  and 1 2 2< + ≤x  (�  g (x) = x + 2

in 2 3≤ ≤x )

⇒ ≤ ≤2 3x  and − < ≤1 0x
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⇒ ∩ − = ∅2 3 1 0, ,�
⇒  f (g (x)) = f (y) is not defined.

Hence fog (x) = x2 + 1, for − ≤ ≤1 1x , = 2x2 + 1 for

1 2< ≤x .

Next, g (f (x)) = g (y) where y = f (x)
f (x) = x + 1, x < 1 ...(a)

= + < ≤2 1 1 2x x, ...(b)

g y y y� � = − ≤ <2
1 2, ...(c)

= + ≤ ≤y y2 2 3, ...(d)

Case (i): Considering the intervals in (a) and (c), x ≤ 1

and − ≤ <1 2y

⇒ ≤x 1 and − ≤ <1 2f x !
⇒ ≤x 1 and − ≤ + <1 1 2x

⇒ ≤x 1 and − ≤ <2 1x

⇒ −∞ ∩ −, ,1 2 1�  = [–2, 1] = − ≤ <2 1x

In − ≤ <2 1x ! ,  g (f (x)) = g (y) for − ≤ <1 2y

= y
2

= (x + 1)2 (�  y = f (x) = x + 1 in x ≤ 1).

Case (ii): Considering the intervals in (a) and (d),

x ≤ 1 and 2 3≤ ≤y

⇒ ≤x 1 and 2 3≤ ≤f x� �
⇒ ≤x 1 and 2 3≤ ≤f x� �  (� f (x) = x + 1 in

x ≤ 1)

⇒ ≤x 1 and 1 2≤ ≤x

⇒ −∞ ∩ =, ,1 1 2 1� � �
∴ when x = 1, g (f (x) = g (y)

= y + 2 for 2 3≤ ≤y

= x = 1 + 2 ( ∴ y = x + 1 in x ≤ 1)

= x + 3 = 4 for x = 1
Case (iii): Considering the intervals in (b) and (c),

1 2≤ ≤x  and − ≤ ≤1 2y

⇒ ≤ ≤1 2x  and − ≤ ≤1 2f x� �

⇒ ≤ ≤1 2x  and − ≤ + ≤1 2 1 2x  (�  f (x) = 2x +

1 in 1 2≤ ≤x )

⇒ ≤ ≤1 2x  and − ≤ ≤2 2 1x

⇒ ≤ ≤1 2x  and − ≤ ≤1
1

2
x

⇒ ∩ −	
�
�
� =1 2 1

1

2
, , φ

⇒ =g f x g y� � ! � �  is not defined.

Case (iv): Considering the intervals in (b) and (d),

1 2< ≤x  and 2 3≤ ≤y

⇒ < ≤1 2x  and 2 3≤ ≤f x� �
⇒ < ≤1 2x  and 2 2 1 3≤ + ≤x  (� f (x) = 2x + 1

in 1 2≤ ≤x )

⇒ < ≤1 2x  and 
1

2
1≤ ≤x

⇒ ∩ 	

�

�
� = ∅1 2

1

2
1, ,�

⇒  g (f (x)) = g (y) is not defined.

Hence gof (x) = (x + 1)2 for − ≤ <2 1x  and = 4 for

x = 1.

2. If f (x) = x3 + 1 , x < 0

= + ≥x x
2

1 0,

and g x x x� � � �= − <1 1
1
3 ,

= − ≥x x1 1
1
2� � ,

compute gof (x).
Solution: g (f (x)) = g (y) where y = f (x)

g (y) = − <y y1 1
1
3� � , ...(a)

= − ≥y y1 1
1
2� � , ...(b)

and f x x x� � = + <3
1 0, ...(c)

= + ≥x x2 1 1, ...(d)
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Case (i): Considering the intervals in (a) and (c),
x < 0 and y < 1
⇒  x < 0 and f (x) < 1
⇒  x < 0 and x3 + 1 < 1 (�  f (x) = x3 + 1 in x < 0)
⇒  x < 0 and x3 < 0

⇒  common region = −∞ = <, 0 0� � x

∴  in (x < 0), g (f (x)) = g (y)

= −y 1
1
3� �  for y < 1

= −f x� � !1
1

3

= + −x
3

1

31 1� � , (� f x x� � = +3
1  in x < 0)

= x
Case (ii): Considering the intervals in (b) and (c),

x < 0 and y ≥ 1

⇒ x < 0 and f x� � ≥ 1

⇒ x < 0 and x
3

1 1+ ≥  (� f (x) = x3 + 1) in x < 0)

⇒ x < 0 and x
3

0≥

⇒ x < 0 and x ≥ 0

⇒ −∞ ∩ ∞ =, ,0 0� � � φ
⇒  g (y) = g (f (x)) is not defined.

Case (iii): Considering the intervals in (a) and (d),

x ≥ 0  and y < 1

⇒ ≥x 0  and f (x) < 1

⇒ ≥x 0  and x2 + 1 < 1 (� f (x) = x2 + 1 in x ≥ 0 )

⇒ ≥x 0  and x2 < 0

⇒ ≥x 0  and x < 0

⇒ ∞ ∩ −∞ =0 0, ,� � � φ
⇒  g (y) = g (f (x)) is not defined.

Case (iv): Considering the intervals in (b) and (d),

x ≥ 0  and y ≥ 1

⇒ ≥x 0  and f x� � ≥ 1

⇒ ≥x 0  and x
2

1 1+ ≥  (�  f (x) = x2 + 1 in

x ≥ 0 )

⇒ ≥x 0  and x
2

0≥

⇒ ≥x 0  and x ≥ 0

⇒  common region = ∞ ⇒ ≥0 0, � x

∴ in (x > 0), (g (f (x)) = g (y)

= −y 1
1
2� �  for x ≥ 0

= −f x� � !1
1

2

= + −x
2

1

21 1� �  (�  f (x) = x2 + 1 in x ≥ 0 )

= x, Hence gof (x) = x for all x.
3. If f (x) = x2 – 4x + 3, x < 3

= x – 4, x > 3
and g (x) = x – 3, x < 4
= x2 + 2x + 2, x > 4
describe the function fog.

Solution: fog (x) = f (y), where y = g (x)
f (y) = y2 – 4y + 3, y < 3 ...(a)
= y – 4, y > 3 ...(b)
g (x) = x – 3, x < 4 ...(c)

= x2 + 2x + 2, x > 4 ...(d)

Case (i): Considering the intervals in (a) and (c), x <
4 and y < 3

⇒  x < 4 and g (x) < 3
⇒  x < 4 and x – 3 < 3 (�  g (x) = x – 3 in x < 4)
⇒  x < 4 and x < 6

⇒ −∞ ∩ −∞ = −∞ ⇒ <, , ,4 6 4 4� � � � � � x

∴ in (x < 4), fog (x) = f (y)

= y2 – 4y + 3 for y < 3

= (x – 3)2 – 4 (x – 3) + 3

(�  y = g (x) = x – 3 in x < 4)

= − +x x
2

10 24
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Case (ii): Considering the intervals in (a) and (d),

x ≥ 4  and y < 3

⇒ ≥x 4  and g (x) < 3

⇒ ≥x 4  and x2 + 2x + 2 < 3 (�  g (x) = x2 + 2x + 2

in x ≥ 4 )

⇒ ≥x 4  and (x2 + 2x – 1) < 0

⇒ ≥x 4  and (x + 1)2 – 2 < 0

⇒ ≥x 4  and (x + 1)2 < 2

⇒ ≥x 4  and x + <1 2

⇒ ≥x 4  and − < + <2 1 2x

⇒ ≥x 4  and − − < < −2 1 2 1x

⇒ ∞ ∩ − − − =4 2 1 2 1, ,� � � φ

⇒  f (g (x)) = f (y) is not defined.

Case (iii): Considering the intervals in (b) and (d),

x ≥ 4  and y ≥ 3

⇒ ≥x 4  and g x� � ≥ 3

⇒ ≥x 4  and x x
2

2 2 3+ + ≥

⇒ ≥x 4  and x x
2

2 1 0+ − ≥� �

⇒ ≥x 4  and x + − ≥1 2 02� �
⇒ ≥x 4  and x + ≥1 22� �
⇒ ≥x 4  and x + ≥1 2

⇒ ≥x 4  and { x + ≥1 2  or x + ≤ −1 2 }

⇒ ≥x 4  and { x ≥ −2 1 or x ≤ − −2 1 }

⇒ ≥x 4  and x ≥ −2 1

or x ≥ 4  and x ≤ − −2 1

⇒ ∞ ∩ − ∞ = ∞4 2 1 4, , ,� � �

or 4 2 1, ,∞ ∩ −∞ − − =� � φ

∴ in x f g x f y≥ =4� � � � ! � �,

= y – 4 for y ≥ 3

= x2 + 2x + 2 – 4 (�  y = x2 + 2x + 2 in x ≥ 4 )

= x2 + 2x + 2

Case (iv): Considering the intervals in (b) and (c), x

< 4 and y ≥ 3

⇒  x < 4 and g x� � ≥ 3

⇒  x < 4 and x − ≥3 3  (�  g (x) = x – 3 in x < 4)

⇒  x < 4 and x ≥ 6

⇒ −∞ ∩ ∞ = ∅, ,4 6� � �
⇒  f (g (x)) = f (y) is not defined
Hence fog (x) = x2 – 10x + 24 for x < 4 and x2 + 2x

+ 2 for x > 4.

4. Find f (f (x)) if f x
x x

x x
� � = + ≤ ≤

− < ≤
���
1 0 2

3 2 3

,

,
.

Solution: Given:

f x
x x

x x
� � = + ≤ ≤

− < ≤
���
1 0 2

3 2 3

, ...

, ...

(a)

(b)

To find: f (f (x)).

Let y = f x
x x

x x
� � = + ≤ ≤

− < ≤
���
1 0 2

3 2 3

,

,

∴ =
+ ≤ ≤
− < ≤

���
f y

y y

y y
� � 1 0 2

3 2 3

, ...

, ...

(c)

(d)

Case (i): Considering the intervals in (a) and (c),

0 2≤ ≤x  and 0 2≤ ≤y

⇒ ≤ ≤0 2x  and 0 1 2≤ + ≤x
⇒ ≤ ≤0 2x  and − ≤ ≤1 1x

⇒ ∩ − =0 2 1 1 0 1, , ,

∴ in [0, 1], f (y) = f (f (x)) = 1 + y
= 1 + 1 + x
= 2 + x

Case (ii): Considering the intervals in (a) and (d),
0 2≤ ≤x  and 2 3< ≤y

⇒ ≤ ≤0 2x  and 2 1 3< + ≤x
⇒ ≤ ≤0 2x  and 1 2< ≤x
⇒ ∩ =0 2 1 2 1 2, , ,� �
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∴ f (y) = f (f (x) = 3 – y = 3 – 1 – x = 2 – x for

1 2< ≤x

Case (iii): Considering the intervals in (b) and (c),

2 3< ≤x  and 0 3 2≤ − ≤x

⇒ < ≤2 3x  and − ≤ − ≤ −3 1x

⇒ < ≤2 3x  and 1 3≤ ≤x

⇒ ∩ =2 3 1 3 2 3, , ,� �
∴  in (2, 3], f (y) = f (f (x)) = 1 + y = 1 + 3 – x = 4 – x

Case (iv): Considering the intervals in (b) and (d),

2 3≤ ≤x  and 2 3≤ ≤y

⇒ ≤ ≤2 3x  and 2 3 3≤ − ≤x

⇒ ≤ ≤2 3x  and − ≤ − ≤1 0x

⇒ ≤ ≤2 3x  and 0 1≤ ≤x

⇒ ∩ = ∅2 3 0 1, ,

⇒  f (y) = f (f (x)) is not defined.
Hence,

f f x

x x

x x

x x

� � ! =
+ ≤ ≤
− < ≤
− < ≤

�
��

��

2 0 1

2 1 2

4 2 3

,

,

,

Type 4: Determination of domain and range of
composite function

Rule: Determination of domain of composite function
namely gof consists of following steps:
1. Determination of the interval namely

S = domain of outer function namely g (x)
∩ range of inner function namely f (x).

2. Determination of all the elements present in the
domain of f (x) whose images form the interval ‘S’ is
the determination of all the elements forming the set
which is the required, domain of the composite
function namely ‘gof’ i.e. the solution set of the
interval ‘S’ where f (x) lies (i.e. the solution set of f (x)

∈S ) is the required domain of the composite function

namely ‘gof’.
Next to determine the range of the composite

function ‘gof’ one should use the rule:

a f x b g a g f x g b≤ ≤ ⇒ ≤ ≤� � � � � � ! � �  if g (x)

is increasing in [a, b] = D (gof)

Note: One should note that the rule mentioned in
type (4) holds true to determine the domain and range
of the composite function if the given composite
function is defined by a single formula y = gof (x).

Solved Examples

Find the domain and range of each of the following
functions:
(i) y = sin cos x (ii) y = tan cos x (iii) y = cos tan x

(iv) y x= tan cos (v) y = log sin x

Solutions: (i) y = sin cos x
R (cos x) = [–1, 1]
D (sin x) = R

∴ = ∩S R  [–1, 1] = [–1, 1]

and so cos cosx S x∈ ⇔ − ≤ ≤1 1

⇔ ∈x R

Again, x R x∈ ⇒ − ≤ ≤1 1cos

⇒ − ≤ ≤sin sin1 1� � � �y  since sin x is continuous

and increasing in [–1, 1].
(ii) y = tan cos x

R (cos x) = [–1, 1]
D (tan x) = R
∴ = ∩S R  [–1, 1] = [–1, 1]
and so cos cosx S x∈ ⇔ − ≤ ≤1 1
⇔ ∈x R
Again, x R x∈ ⇒ − ≤ ≤1 1cos

⇒ − ≤ ≤tan tan cos tan1 1� � x

(iii) y = cos tan x

R (tan x) = −∞ ∞,� �
D (cos x) = −∞ ∞,� �

gof

gof x ( )f x ( )

D f ( ) D g ( ) R f ( ) R gof ( )

f g
x
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∴ ∈ ⇒ −∞ < < ∞tan tanx S x

⇒ ∈x R

Again, x R x x R∈ ⇒ −∞ < < ∞ ⇒ ∈tan tan

⇒ − ≤ ≤1 1cos tan x� �
∴ = −R xcos tan� � 1 1,

(iv) y x= tan cos

R xcos� � = 0 1,

D (tan x) = R

∴ = ∩ =S R 0 1 0 1, ,

∴ ∈ ⇒ ≤ ≤cos cosx S x0 1

⇒ ≤ ≤0 1cos x

⇒ − ≤ ≤ +2
2

2
2

n x nπ π π π

⇒ ∈ − +	

�

�
�x n n2

2
2

2
π π π π

,

Again, 2
2

2
2

n x nπ π π π− ≤ ≤ +

⇒ ≤ ≤0 1cos x

⇒ ≤ ≤0 1cos x

⇒ ≤ ≤tan tan cos tan0 1x  as tan x is continu-

ous and increasing in [0, 1].

∴ =R xtan cos tan� � 0 1,

(v) y = log sin x
R ( sin x) = [–1, 1]

D xlog� � � �= ∞0 ,

∴ = ∞ ∩ − =S 0 1 1 0 1, , ,� � �
∴ ∈ ⇒ < ≤sin sinx S x0 1

⇒ < ≤ +2 2 1n x nπ π� �
⇒ ∈ +x n n2 2 1π π, � � 
Again 2 2 1n x nπ π< ≤ +� �
⇒ < ≤0 1sin x

⇒ −∞ < ≤logsin x 0  as log x is continuous and

increasing in (0, 1] and lim log
∈→ +

∈ = −∞
0

 !

∴ = −∞R xlog sin� � � , 0

Even and Odd Functions

Firstly, the definitions of even and odd functions are
provided.

(i) Even function: ∀ ∈ = −x D f f x f x� � � � � �:

⇒ f x� �  is even, i.e. for x = a = any real number

belonging to the domain of definition of f (x), f (x) is

defined at x = a ⇒ f x� �  is also defined at x = –a and

f (a) = f (–a) ⇒ f x� �  is even or more simply, it is the

function of an independent variable, changing neither
the sign nor absolute value when the sign of the
independent variable is changed.

e.g: x4 + 2x2 + 1; cos ;
sin

x
t

t
 etc.

Notes:
1. Any algebraic function (or, expression) which
contains only even power of x is even.
2. n is even ⇒  xn is even.
3. y = cosn x is even whether n is odd or even.
4. y = sinn x is even only when n is even.
5. y = | x | is an even function.

(ii) Odd function ∀ ∈ = − −x D f f x f x� � � � � �:

⇒ f x� �  is odd, i.e. for x = a = any real number

belonging to the domain of definition of f (x), f (x) is

defined at x = a ⇒ f x� �  is also defined at x = –a and

f (a) = –f (–a) ⇒ f x� �  is odd, or more simply, it is the

function of an independent variable changing the sign
but not absolute value when the sign of the
independent variable is changed.

Notes:
1. Any algebraic function (or, expression) which
contains only odd power of x is an odd function.
(Note: The constant function f (x) = c is even and
when c = 0, i.e. y = 0 which is also termed as zero
function representing the x-axis is an even function).
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2. x2n + 1 = an odd function.
3. y = sin(2n + 1) x is an odd function.

(iii) Properties of even functions: The sum difference,
product and quotient of two even functions is again
an even function, i.e. f (x) and g (x) are even

⇒ ±f x g x� � � � , f (x) · g (x) and 
f x

g x

� �
� �  are even.

(iv) Properties of odd functions: 1. The sum and
difference of two odd functions is again an odd

function, i.e. f (x) and g (x) are odd ⇒ ±f x g x� � � �
2. The product and quotient of two odd functions is
again an even function; i.e. f (x) and g (x) are odd

⇒ ⋅f x g x� � � �  and 
f x

g x

� �
� �  are even.

How to test whether a given function y = f (x) is
odd or even.

Working rule: The rule to examine (or, test) a given
function y = f (x) to be odd and even is (i) to replace x
by (–x) in the given function f (x) and (ii) to inspect
whether f (x) changes its sign or not. It f (x) changes
its sign, one must declare it to be odd and if f (x) does
not change its sign, one must declare it to be even.

Notes:

1. f x f x f x� � � � � �≠ ± ⇒  is neither even nor odd.

e.g: If the oddness and eveness of the function f
(x) = e2x sin x is examined, it is seen that f (–x) = e–2x +

sin (–x) ≠ ± f x� �  which means that f (x) is neither

odd nor even.
2. Any function y = f (x) can be uniquely expressed
as the sum of an even and odd function as follows:

f x f x f x f x f x� � � � � � � � � �= + − + − −1

2

1

2
3. A piecewise function is even if each function
defined in its domain is even and a piecewise function
is odd if each function defined in its domain is odd.
4. f and g are two functions such that
(i) f is even and g is also even ⇒  fog is an even
function.
(ii) f is odd and g is also odd ⇒  fog is an odd
function.

(iii) f is even but g is odd ⇒  fog is an even function.
(iv) f is odd but g is even ⇒  fog is an even function.

Solved Examples

Examine the oddness and eveness of the following
functions.
1. f (x) = x4 + 2x2 + 7
Solution: f (x) = x4 + 2x2 + 7

⇒  f (–x) = (–x)4 + (–x)2 + 7
= x4 + 2x2 + 7
= f (x)

Therefore, f (x) is an even function.

2. g x x x x
x

� � = − + −
5 3

16 11
92

Solution: g x x x x
x

� � = − + −5 3
16 11

92

⇒ − = − − − + − −
−

g x x x x
x

� � � � � � � � � �
5 316 11

92

= − − + −�
��

�
��x x x

x
5 316 11

92

= –g (x)
Therefore, g (x) is an odd function.

3. f (x) = x2 – | x |
Solution: f (x) = x2 – | x |

⇒  f (–x) = (–x)2 – | –x |
= x2 – | x |
= f (x)

Therefore, f (x) is an even function.

4. f x x x� � = + +�
��

�
��log

2
1

Solution: f x x x� � = + +�
��

�
��log

2
1

⇒ − = − + − +�
�

�
�f x x x� � � �log 2 1

=
− + +

+ +
⋅ + +

�

�
�
�

�

�
�
�

log
x x

x x
x x

2

2

21

1
1
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=
− + +

+ +

�

�
�
�

�

�
�
�

log
x x

x x

2 2

2

1

1

=
+ +

�

�
�
�

�

�
�
�

log
1

1
2

x x

= − + +�
��

�
��log log1 1

2
x x

= − + +�
��

�
��log x x

2
1

= –f (x)
So, f (x) is an odd function.

5. f x x
a

a

x

x� � = −

+

�

�
�

�

�
�

1

1

Solution: f x x
a

a

x

x� � = −

+

�

�
�

�

�
�

1

1

⇒ − = −
−

+

�

�
�

�

�
�

−

−f x x
a

a

x

x� � � � 1

1

= −
−

+

�

�

�
�
�

�

�

�
�
�
= −

−

+

�

�
�

�

�
�x

a

a

x
a

a

x

x

x

x

1

1

1

1

1

1

=
−

+

�

�
�

�

�
� =x

a

a
f x

x

x

1

1
� �

So, f (x) is an even function.

6. f (x) = sin x + cos x
Solution: f (x) = sin x + cos x

⇒  f (–x) = sin (–x) + cos (–x)
= –sin x + cos x which is clearly neither equal to f

(x) nor equal to –f (x).
Therefore, f (x) is neither even not odd.

7. f x

x x x

x x x

x x x

� � =
≤ −

+ + − − < <
− ≥

	

�

��

,

,

,

1

1 1 1 1

1

Solution: The given function can be rewritten as
under:

f x

x x

x x x

x x

� � =
− ≤ −
+ + − − < <

− ≥

	


��

�
��

2

2

1

2 1 1

1

,

,

,

since [1 + x] = 1 + [x] and [1 – x] = 1 + [–x]
Also, it is known that [x] + [–x] = 0 when x is an

integer and [x] + [–x] = –1 when x is not an integer.
Hence, again in the light of above facts, the given

function can be rewritten as:

f x

x x

x

x

x

x x

� � =

− ≤ −

− < <

=

< <

− ≥

	




�
�
�
�

�

�
�
�
�

2

2

1

1 1 0

2 0

1 0 1

1

,

,

,

,

,

which is clearly an even function.

Periodic Functions

Definition: When f (x) = f (x + P) = f (x + 2P) = … = f (x
+ nP), then f (x) is said to be periodic function of x, for
its values repeat, its period being P (where

P x≠ ∈0 ,  domain of definition of f) which is the

smallest positive number satisfying the above
property f (x) = f (x + P) = f (x + 2P) = … = f (x + nP)

where n Z n∈ ≠, 0 .

Notes:
1. The numbers of the form nP, n Z n∈ ≠, 0  are also
called period of the function. But generally the smallest
positive number P is called the period of the function
(or, fundamental period of the function) unless
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nothing is mentioned about the period of the function.
2. The smallest positive period for sine and cosine is
equal to 2π  and for the tangent and cotangent, it is

equal to π . Since, sin x = sin x + =2π� �
sin x + =4π� � ...,  is periodic , its period being 2π .

Similarly, cos x is periodic, its period being 2π . Hence,
the periodicity property of the trigonometric functions
can be expressed by the following identities.

sin sinx x n n Z= + ∈2 π� � ,
cos cosx x n n Z= + ∈2 π� � ,
tan tanx x n n Z= + ∈π � ,

cot cotx x n n Z= + ∈π � ,
3. The following formulas of the trigonometric
functions to find out fundamental period of the
trigonometric functions are very useful.

If we have an equation of the form y = T (Kx), aT
(Kx), aT (Kx + b), where a = amplitude of trigonometric
function, K = any constant, b = any other constant, T
= any trigonometric function sin, cos, tan, cot, sec,
cosec, then the fundamental period P of the
trigonometric function having the form:
(i) y = sin (Kx), a sin (Kx) or a sin (Kx + b) is given by

the formula P
K

=
2π

,  where K is any constant.

(ii) y = cos (Kx), a cos (Kx) or a cos (Kx + b) is given

by the formula P
K

=
2π

,  where K is any constant.

(iii) y = tan (Kx), a tan (Kx) or a tan (Kx + b) is given

by the formula P
K

=
π

,  where K is any constant.

(iv) y = cot (Kx), a cot (Kx) or a cot (Kx + b) is given

by the formula P
K

= π
,  where K is any constant.

(v) y = sec (Kx), a sec (Kx) or a sec (Kx + b) is given

by the formula P
K

=
2π

,  where K is any constant.

(vi) y = cosec (Kx), a cosec (Kx) or a cosec (Kx + b) is

given by the formula P
K

=
2π

,  where K is any

constant.

Remember:
1. Period of any trigonometric function, its co-
function and its reciprocal is the same. Thus,

(i) The period of sin x and cosec x = 2π .

(ii) The period of cos x and sec x = 2π .

(iii) The period of tan x and cot x = π .

2. Only those trigonometric functions are periodic
whose angles are linear expressions in x (i.e. angle =
ax + b). For examples, sin3 x, cos4 x, tan (4x + 5), etc.
3. Those trigonometric functions are not periodic
whose angles are not linear expressions in x (i.e., angle

≠ +ax b ). For examples, sin cos
1

x
x�

�
�
� , ,  etc.

4. No periodic function other than a constant can be
algebraic which means that algebraic functions can
not be periodic excepting a constant function.
5. If the function f1 (x) has the period P1, and the
function f2 (x) has the period P2, then the function

y a f x b f x= ±1 2� � � �  a and b being given numbers,

has the period equal to least common multiple (i.e.;
l.c.m) of numbers of the set {P1, P2}

e.g.: y = 2 sin x – 3 tan x has the period 2π  since

period of sin x = 2π
period of tan x = π

∴ L.c.m of 2 2π π π,� � =
6. A function of trigonometric periodic function is
also periodic provided the angle = ax + b; i.e.; f (T (ax

+ b)) is periodic where f signifies n ,  (...)n, |...|, log,

etc and T signifies sin, cos, tan, cot, sec and cosec.

e.g.: tan cos sinx x x b, , ,
2

+� �  etc are functions

of sin x, cos x and tan x and are periodic.
7. The sum and difference of periodic and non
periodic function is non-periodic. Moreover, the
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product of a periodic and non-periodic function is
non-periodic. e.g.,

(i) f (x) = sin x + cos x  is non-periodic since sin x is

periodic and cos x  is non-periodic.
(ii) f (x) = x cos x is non-periodic since x being an
algebraic function is non-periodic and cos x is
periodic.

8. Whenever, we use the term period, we always mean
the fundamental period which is the smallest positive
value of P for which the relation:

f (x) = f (x + P) holds true for all values of x, P being
a constant, i.e.; the values of f (x) at the points x and
(x + P) are same.(Note: If f (x) is a periodic function
with period T and g (x) is any function such that
domain of f is a proper subset of domain g, then gof is
period with period T).

e.g.: y = sin (x – [x]) is periodic with period 1,
because (x– [x]) is periodic with period 1.

Working rule to fund the period: It consists of
following steps: (Trigonometric functions)
1. To denote the desired period by P and to replace x
by (P + x).
2. To put T [a (x + P) + b] = T (ax)
3. To put aP = a constant multiple of P = 2π πor

according as the given function is sin, cos, tan, cot
sec or cosec.
4. To solve a P = 2π πor  to get the required (or,

desired) period of the trigonometric periodic function.

Solved Examples

Find the period of each of the following functions:
1. y = sin 3x
Solution: Method (1)

On denoting the period of the function y = sin 3x
by P, we get  y = sin 3 (x + P) = sin 3x

⇒  sin (3x + 3P) = sin 3x

⇒ =3 2P π

⇒ =P
2

3

π

Method (2)
On using the formula of period of trigonometric

function, we get P
K

= 2π
 where K = multiple of x.

=
2

3

π

2. y
x

= �
�
�
�cos

2

Solution: Method (1)
On, denoting the period of the function

y
x

= �
�
�
�cos

2
 we get y

x
= �

�
�
�cos

2

⇒
+�

��
�
�� =

�
�
�
�cos cos

x P x

2 2

⇒ = ⇒ =P
P

2
2 4π π

Method (2)
Using the formula of period of trigonometric

function, we get P K= 2π / ,  where K = =1

2

multiple of x = =2
1

2
4π π/ .

3. y = sin 2x + cos 3x
Solution: Method (1)

We are required to find out the period of each
addend of the given sum function y = sin 2x + cos 3x

Now, sin 2 (x + P1) = sin 2x

⇒ + = ⇒ = ⇒ =sin sin2 2 2 2 21 1 1x P x P P� � π π
similarly, cos 3 (x + P2) = cos 3x

⇒ + = ⇒ = ⇒ =cos cos3 3 3 3 2
2

32 2 2x P x P P� � π π

∴  L.c.m of π
π π

π,
2

3

2

1
2	
�

���
= =

Hence, period of y = sin 2x + cos 3x = 2π
Method (2)
On using the formula of period of trigonometric

function sin (Kx), P
K1
2= π

, where K = 2 = a constant

multiple of x.

     = =
2

2

π
π
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Again using the formula of period of trigonometric

function cos (Kx), P
K2
2

=
π

, where K = 3 = a constant

multiple of x.

=
2

3

π

∴ L.c.m of π
π

π,
2

3
2	
�

���
=

Hence, the required period of the given sum
function = 2π

4. y
x x

= �
�
�
� +

�
�
�
�sin sin

3

2

2

3

Solution: Method (1)
We find the period of each addend of the given

sum function.

sin sin
3

2

3

21x P
x

+�
��

�
��
= �

�
�
�� �

⇒ +�
�

�
� =

�
�
�
� ⇒ = ⇒sin sin

3

2

3

2

3

2

3

2
21

1x P
x P

π

P1
4

3
=

π

Similarly, sin sin
2

3

2

32x P
x

+�
��

�
��
= �

�
�
�� �

⇒ +�
�

�
� =

�
�
�
� ⇒ =sin sin

2

3

2

3

2

3
32 2

x
P

x
P π

∴ L.c.m of 
4

3
3

12

1
12

π
π

π
π,	
�

���
= =

(Note: f (x) = x – [x] ⇒  f (x + 1) = x + 1 – [x + 1] =
x + 1 – ([x] + 1) = x – [x] = f (x) ⇒  f (x) is periodic with
period 1).

Method (2)
On using the formula of period of trigonometric

function sin (Kx), P
K1
2

=
π

,  where K =
3

2

      = = × =2
3
2

2
2

3

4

3

π π π

and P
K2
2

=
π

,  where K =
2

3

   = = × =2
2
3

2
3

2
3

π π π

∴ L.c.m of 
4

3
3 12

π
π π,	
�
���
=

Remember:
L.c.m of two or more fractions

=
l.c.m of numerators

h.c. f of denominators

Question: How to show the following function to be
not periodic:
Answer: To show that a given trigonometric function
f (x) is not periodic, we adopt the rule consisting of
following steps.

Step 1: Replacing x by (T + x) in the given function
and equating it to f (x) which means one should write
f (T + x) = f (x).
Step 2: Considering the general solution of

(i) sin [f (x + T)] = sin [f (x)], where f x� � ≠  ax + b and

f signifies the operators � �n n, ,  etc, is

f x T n f xn+ = + −� � � � � �π 1  (�  sin x = sinα ⇒

x n nn= + − = ± ±π α1 1 2� � � �, ,... )

(ii) cos [f (x + T)] = cos [ f (x)], where f x� � ≠  ax + b

and f signifies the operators � �n n, ,  etc, is

f x T n f x+ = ±� � � �2 π  (�  cos x = cosα ⇒

x n n= ± = ± ±2 1 2π α , ,...� � )
(iii) tan [f (x + T)] = tan [ f (x)], where f x� � ≠  ax + b

and f signifies the operators � �n n, ,  etc, is

f x T n f x+ = +� � � �π  (�  tan x = tanα ⇒

x n n= + = ± ±π α 1 2, ,...� � )
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Step 3: If T F x= � �   f (x) is not periodic which means

that if there is a least positive value of T not
independent of x, then f (x) will not be a periodic
function with period of T.

Or, T F x= � �  ⇒ ≠f x� �  periodic. (Note: A

monotonic function can never be periodic and a
periodic function can never be monotonic. That is,
monotoncity and periodicity are two properties of
functions which can not coexist).

Solved Examples

Show that each of the following functions is not
periodic.

1. f x x� � = sin

Solution: f x x� � = sin

∴ + = ⇒ + = ⇒f x T f x x T x� � � � sin sin

T x n xn+ = + −π 1� �  which does not provide

us the value of T independent of x. Hence, f (x) is not
a periodic function.

2. f (x) = cos x2

Solution: f (x) = cos x2

∴ + = ⇒ + =f x T f x x T x� � � � � �cos cos2 2

⇒ + = ±x T n x� �2 2
2 π

⇒ + = ±x T n x2
2

π

⇒ = ± −T n x x2
2

π
which does not provide us the value of T

independent of x. Hence, f (x) is not periodic.

Question: Explain what you mean when we say “two
functions are equal”.

Answer: Two functions f D C: →  and g D C: →
are said to be equal (written as f = g) if f (x) = g (x) for

all x D∈  which signifies that two functions are equal

provided their domains are equal as well as their
functional values are equal for all values of the

argument belonging to their common domain, i.e.; two
functions f and g are equal ⇔  the following two
conditions are satisfied.

(i) f and g have the same domain D.
(ii) f and g assume the same (or, equal) value at each
point of their common domain, i.e.; f (x) = g (x),

∀ ∈x D .

Notes:
1. The above two conditions are criteria to show that
given two functions namely f and g are equal.

2.
x

x
= 1,  provided x ≠ 0

3.
f x

f x

� �
� � = 1,  provided f x� � ≠ 0

Working rule to show two functions to be equal: It
consists of following steps:
1. To find the domain of each function f and g.
2. To inspect whether dom (f) = dom (g) as well as f

(x) = g (x), ∀ ∈x D , D being the common (or, same)

domain of each function f and g, i.e.; if dom (f) = dom

(g) and f (x) = g (x), ∀ ∈x D , then we say that f = g

and if any one of the two conditions namely dom (f) =

dom (g) and f (x) = g (x), ∀ ∈x D  is not satisfied, we

say that f g≠ .

Solved Examples

Examine whether the following functions are equal or
not:

1. f x x g x x� � � �= =
2

,

Solution: f x x g x x� � � �= =
2

,

x
2  is defined for all real values of x

⇒  dom (f) = R = the set of all real numbers ...(i)
Again, �  g (x) = | x |
| x | is defined for all real values of x
⇒  dom (g) = R = the set of all real numbers ...(ii)
Also, we inspect that f (x) = g (x) = | x | for every

real values of x ...(iii)
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(i), (ii) and (iii) ⇒
= =

= ∀ ∈
	


�
dom domf g R

f x g x x R R

� � � �
� � � � , ,

being the common domain
⇒  f = g

2. f x
x

x
g x� � � �=

+

+
=

2

2

1

1
1,

Solution: f x
x

x
g x� � � �= +

+
=

2

2

1

1
1,

Now, we find the domain of f:

Putting x x x i
2 2

1 0 1+ = ⇒ = − ⇒ = ± =  imaginary

⇒  f (x) is defined for all real values of x

⇒  dom (f) = R = the set of all real numbers ...(i)
Again, g (x) = 1 is defined for all real values of x
⇒  dom (g) = R = the set of all real numbers ...(ii)

Also, we inspect that f (x) = g (x), ∀ ∈x R ...(iii)

(i), (ii) and (iii) ⇒
= =

= ∀ ∈
	


�

dom domf g R

f x g x x R R

� � � �
� � � � , ,

being the common domain
⇒  f = g

Note: To find the values of the argument x for which
two given functions f and g may be equal (i.e.;
whenever f (x) and g (x) may be equal by performing
any operation or rule like cancellation, extracting the
root, etc on any one of the given functional value)
means to find the common domain of each function f
and g over which they are defined.

Working rule: We have the rule to find for what
values of the argument given functions are identical.
It says to find the common domain of each function f
and g to examine whether their functional values are
equal for all values of the argument belonging to the
common domain of f and g, i.e.; whether f (x) = g (x),

∀ ∈x D D,  being the common domain of each

function f and g should be examined.

Solved Examples

Find for what values of x following functions are
identical.

(i) f x x g x x� � � �= =,
2

(ii) f x
x

x
g x x� � � �= =

2

,

(iii) f (x) = log10 x
2, g (x) = 2 log10 x

Solution: (i) f (x) = x ⇒  dom (f) = R ...(a)

g x x x x� � = = ≥
2

0for  and = –x for x < 0

⇒  g (x) is defined for all real values of x

⇒  dom (g) = R ...(b)

Hence, (a) and (b) ⇒  f (x) = g (x), ∀ ∈ ∞x 0 , �

(ii) f x
x

x
x� � = =

2

,  provided x ≠ 0

⇒  dom (f) = R – {0} ...(a)
g (x) = x
⇒  dom (g) = R ...(b)

Hence, (a) and (b) ⇒  f (x) = g (x), ∀ ∈ −x R 0� �
(iii) f (x) = log10 x

2, g (x) = 2 log10 x, provided x > 0
and 2 log (–x) for x < 0

⇒  f (x) is defined for all real values of x

⇒  dom (f) = R ...(a)
g (x) = 2 log10 x, provided x > 0
⇒  g (x) is defined for all positive values of x

⇒ = = ∞+
dom g R� � � �0 , ...(b)

Hence, (a) and (b) ⇒  f (x) = g (x), ∀ ∈ ∞x 0 ,� �

Problems on one-to-one Function

Firstly, we recall the definition of one-to-one (or,
simply one-one) function.

Definition 1: It the given function f D R: →
defined by y = f (x) is such that there is unique y in the
range R for each x in the domain D and conversely
there is a unique x in the domain D for each y in the
range R, then it is said that given function y = f (x) is
one-to-one.
Definition 2: (Set theoretic): If different elements of
domain of the function have different images (or,
values) in the range (or, codomain), then it is said that
the function is one-to-one.
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Remark: It the domain of f (x) = sin2 x is extended to

0 , π  then its range is same, i.e. [0, 1], but f (x) = sin2

x is not one-one, because for two different points

namely 
π
6

 and 
5

6

π
,  f (x) = sin2 x has the same value,

as it is clear from the following:

f
π π
6 6

1

2

1

4

2
2�

�
�
� =

�
�
�
� =
�
�
�
� =sin

f
5

6

5

6 6

2 2π π
π

π�
�
�
� =

�
�
�
� = −��

�
�sin sin

= sin
2

6

1

4

π�
�
�
� =

(ii) � − ∈ −2 2 3 3, ,

∴ f (–2) = (–2)2 = 4

and f (2) = (2) = 4

⇒ = −f f2 2� � � �
Hence, f (x) = x2 is not one-one because for two

different values of x in [–3, 3], f (x) = x2 has the same
value 4.

(iii) For x x R1 2, ∈ +
,

f x f x1 2� � � �=

⇒ =x x1 2

⇒ =x x1 2

Hence f is one-one in R+.

(iv) For x x1 2 2 2
, ,∈

−�
�

�
�

π π
; ,

f x f x1 2� � � �=

⇒ =tan tanx x1 2

⇒ =x x1 2

Hence f is one-one in 
−�
�

�
�

π π
2 2

, .

Problems on on-to Functions

Before doing the problems on on-to functions, we
recall its definition. On-to function: If
f D R C: → ⊆  is a function such that every element

in C occurs as the image of at least one element of D,
then f D R C: → ⊆  is called an on-to function from
D to C.

In other words, f D R C: → ⊆  is called on-to
function when the range (or, the range set) of f equals
the co-domain, i.e., range set = co-domain (i.e., R = C)
signifies that a function f D R C: → ⊆  is on-to
function. Hence, f D R C: → ⊆  is on-to function
⇔ =f D C� � ,  where f (D) is called the image of D
signifying the set of images of all elements in D and is
defined as:

f D f x x D� � � �� �= ∈:  = range set = R (f) = R
(simply)

Notes:
1. If a function is not on-to, it is called “into

function”, i.e., if the function f D R C: → ⊆  is

such that certain elements of the set C are left out,
which are not the images of an element of the set D,
then f is called “into function”.

In other words f D R C: → ⊆  is said to be into,

if f D C� � ⊆ ,  i.e; when the range set ≠  co-domain,

then the function is said to be into function.

2. A one-to-one function may be into or onto. i.e.,
there are two types of one-one function namely (i)
one-one onto (ii) one-one into, which are defined as:

(i) one-one (symbolised as 1–1) function is called
onto provided there is no-element in the range set R
which does not appear as an image of a certain element

fD R C = 

⇒ on-to function
x1 y1

x2 y2

⇒ into function
x1 y1

x2

x3

y2

y3
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of the domain D or, simply, a function which is both
one-one and onto is called one-one onto. Shortly, we
write one-one onto ≡  one-one + onto. Further it is
notable that one-one onto function satisfies the
following properties.

(a) No two element of the domain have the same
image.
(b) Every element of the range (or, co-domain) is the
image of some element of the domain which means
alternatively there is no element on the range (or, co-
domain) which is not the image of any element of the
domain.

one-one on-to function which is symbolised as

f D R:
on to

one one

−

−
 → .

(ii) one-one into function: A one-one function is
called into provided the range set is contained in the
co-domain (i.e., R C⊂ ) such that co-domain

contains at least one element which is not an image of
any one element in the domain D, then the function is
called one-one into, or simply a one-one function is
called into provided it is not onto. Shortly we write
one-one into ≡  one-one + into. It is notable that one-
one into function satisfies the following properties.

(a) No two elements of domain have the same image.
(b) There is at least one element in co-domain which
is not the image of any element of the domain.

One-one in-to function which is symbolised as:

f D R C:
in to

one one

−

−
 → ⊂ .

Remark: When we say that a function is one-one
and onto, it is assumed that number of elements of
domain and range are equal such that each member of
the domain has a different image in the range set
whether the domain is a finite set or an infinite set.

Question: How would you show that a given function
defined by a single formula y = f (x) in its domain is
onto.
Answer: There are mainly two methods to examine
whether a given function defined by a single formula
y = f (x) in its domain is onto or not.
Method 1: If the range of the function = codomain of
the function, then given function f is onto. If the range
is proper subset of codomain of the function f, then f
is into.
Note: Method (1) is fruitful to examine whether a
given function is onto or not only when the domain
of the given function is finite and contains a very few
elements.

Method 2: To show that f is onto, it is required to be

shown that ∀ ∈ ∃ ∈y B x A,  such that y = f (x), where

A = domain of f and B = codomain of f.
i.e. one should assume y B∈  and should show

that ∃ ∈x A  such that y = f (x).

Step 1: Choose an arbitrary elements y in B
(codomain).
Step 2: Put f (x) = y.
Step 3: Solve the equation y = f (x) for x, say x = g (y).
Step 4: If x = g (y) is defined for each y∈ codomain

of f and x = g (y) ∈ domain of f for all y∈ codomain of
f, then f is declared to be on to.

If this requirement is not fulfilled by at least one
value of y in the codomain of f, then f is decalred to be
into (i.e. not onto).

i.e. to show that f is not onto (i.e. in to), one should
point out a single element in the codomain of f which
is not the image of any element in the domain.

Notes:
1. Method (2) is fruitful to examine whether a given
function is onto or not only when the domain of the

fD R

x1 y1

x2

x3

y2

y3

⇒ one-one on-to
function which is
symbolized as

f D: R
one-one

on-to

fD C R C (   )⊂

R
x1 y1

x2 y2

y3

⇒ one-one on-to
function which is
symbolized as

f D: R
one-one

on-to
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given function is infinite or finite but containing very
large number of elements.
2. When either domain or codomain or both is not
mentioned, it is always understood to be R while
examining a given function to be onto or into.
3. An into function can be made onto by redefining
the codomain as the range of the original function.

4. Any polynomial function f R R: →  is onto if its

degree is odd and any polynomial function

f R R: →  is into if its degree is even.

Solved Examples

1. A function f R R: →  is defined by f (x) = 2x + 3

examine whether f is onto.
Solution: In this question,

domain of f = R
codomain of f = R

Let y R∈

Now y f x x x y x
y

= = + ⇔ = − ⇔ =
−� � 2 3 2 3

3

2

∴ =
−

∈x
y

R
3

2

Thus, ∀ ∈y R  (codomain), ∃ =
−

∈x
y

R
3

2
(domain) such that y = f (x).

Hence, f is onto.

2. A function f R R: − 	
�
���
→ −

3

2
0� �  is defined

by f x
x

� � =
−

5

2 3
. Show that f is onto.

Solution: In this question,

domain of f R= − 	
�
���

3

2

codomain of f = R – {0}

Let y R y R∈ − ∴ ∈0� � ,  and y ≠ 0

Now y f x
x

x
y

= =
−

⇔ − = ⇔� � 5

2 3
2 3

5

2
5

3
5

2

3

2
x

y
x

y
= + ⇔ = +

Again, y R∈  and y
y

R≠ ∴ + ∈0
5

2

3

2
,

Also, 
5

2
0

5

2

3

2

3

2y
y

y
≠ ∀ ⇒ + ≠,

∴ = + ∈ − 	
�
���

x
y

R
5

2

3

2

3

2

Thus, ∀ ∈ − ∃ = + ∈ − 	
�
���

y R x
y

R0
5

2

3

2

3

2
� � ,  such

that y = f (x).

3. Show that the function f R R: − → −3 1� � � �

defined by f x
x

x
� � = −

−
2

3
 is onto.

Solution: Let y R y R∈ − ∴ ∈1� � ,  and y ≠ 1

Now y f x
x

x
= =

−
−

� � 2

3

⇒ − = − ⇒ − = −y x y x x y x y3 2 2 3

⇒ − = − ⇒ =
−
−

=x y y x
y

y
g y1 2 3

2 3

1
� � � �  (say)

Now y R∈  and y ≠ 1

∴ =
−
−

x
y

y

2 3

1
 is defined ∀ ∈ −y R 1� �

Also, x
y

y
R y R=

−
−

∈ − ∀ ∈ −
2 3

1
3 1� � � �,

Hence, f is onto.

4. A function f Z N: →  is defined by f (x) = x2 + 3.

Test whether f is onto.
Solution: In this question,

Domain of f = the set of integers = Z
Codomain of f = the set of natural numbers = Z

Let y N∈
Now, y = x2 + 3
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⇒ = − ⇒ = ± −x y x y
2

3 3  which is not

defined for y < 3, i.e. x y g y= ± − =3 � �  is not

defined ∀ ∈y N

Hence, x y Z= ± − ∉3  if y < 3

For example I N∈  is not the f-image of any x Z∈
and hence f is not onto.

5. Let A x x B= − ≤ ≤ =: 1 2� �  and a function

f A B: →  is defined by f (x) = x2. Examine whether

f is onto.
Solution: In this question,

Domain of f = codomain of f x= − ≤ ≤1 2

Let x B∈ − =1 2,

Now y x x y= ⇒ = ±2
 which is not defined

for y < 0.

Clearly, x A∉ − =1 2,  for all y B∈ − =1 2,

For example − ∈1

2
B  is not the f-image of any

x A∈  and hence f is not onto.

6. If f R R: →  be defined f (x) = cos (5x +2), show

that f (x) = cos (5x + 2) is not onto.
Solution: Since it is known that

− ≤ + ≤1 5 2 1cos x� �  which ⇒  range of cos (5x

+ 2) = [–1, 1]

∴  range of f R= − ≠1 1,  = codomain of f

⇒ →f R R:  defined by f (x) = cos (5x + 2) is not

onto.

7. Let A x x B= − ≤ ≤ =: 1 1� �  and a function

f A B: →  is defined by (i) f (x) = | x | (ii) f (x) = x | x |.

Examine whether it is onto or not.
Solution: (i) In this question,

Domain of f = codomain of f x= − ≤ ≤1 1

Let y B∈ − =1 1,  and y = f (x) = | x |

Now y x y= ⇒  is always non-negative

⇒  range of f = [0, 1] which is ⊂ B

⇒  f is not onto.

(ii) � y = x | x |

∴ y = x · x for x ≥ 0

⇒  y = x2 for x∈ 0 1, , according to question.

⇒ =x y

⇒ =x y  for x ≥ 0

⇒  x is defined for y ≥ 0

⇒  x is defined for y∈ 0 1,  according to

question. ...(a)

Again, � y = x | x |

∴  y = x (–x) for x < 0

⇒  x2 = –y for x < 0

⇒ = −x y

⇒ = − −x y  for x < 0

⇒ = − −x y  for x∈ −1 0, �
⇒  x is defined for y < 0

⇒  x is defined for y∈ −1 0,  according to

question. ...(b)
From (a) and (b), it is concluded that range of f =

[–1, 0] ∪ [0, 1] = [–1, 1] = B = codomain of f which

⇒  f is onto.

8. Check whether the function f R R: →  defined

by f x
x

x
� � =

+1
 is onto or into. Also find R (f).

Solution: Let y R∈  = codomain of f

and y f x
x

x
= =

+
� �

1

Now, y
x

x
=

+1

⇒ =
+

y
x

x1
 for x > 0
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⇒  y + yx = x

⇒  y = x – yx = x (1 – y)

⇒ =
−

≠ −x
y

y
y

1
1, �� �

Now, x > 0

⇒
−

≥y

y1
0

⇒ − ≥y y1 0� �
⇒ − ≤y y 1 0� �
⇒ ≤ ≤0 1y  but y ≠ 1

⇒ ∈y 0 1, � ...(a)

Again, y
x

x
=

+1

⇒ =
−

y
x

x1
 for x < 0

⇒  y – yx = x

⇒  y = x + yx = x (1 + y)

⇒ =
+

≠ −x
y

y
y

1
1, �� �

Now, x < 0

⇒
+

<y

y1
0

⇒  y ( y + 1) < 0

⇒  y (y – (–1)) < 0

⇒  –1 < y < 0 ⇒ ∈ −y 1 0,� � ...(b)

From (a) and (b), it is concluded that range of f =

(–1, 0) ∪ = − ≠0 1 1 1, ,� � � R  = codomain of f

Hence, f is not onto

9. Prove that the function f R: − →1 1,� �  defined

by
f x

x

x
x� � =

+
− < <

1
1 0,

= 0, x = 0

=
−

< <x

x
x

1
0 1,  is onto.

Solution: Onto test:

Case 1: To show that for any y < 0, there is x∈ −1 0,� �
such that f (x) = y.

Now, y
x

x
=

+1

⇒  y + xy = x

⇒  x (1– y) = y

⇒ =
−

≠x
y

y
y

1
1, �� �

Now if y is negative (i.e. y = –z), then x
z

z
= −

+1

(negative) and x
z

z
=

+1

∴ < < ⇒ − < <0 1 1 0x x

Hence, for y x< ∃ ∈ −0 1 0, ,� �  such that f (x) = y.

Case 2: y = 0 for x = 0.

Case 3: To show that for any y > 0, there is x∈ 0 1,� �
such that f (x) = y

Now,   y
x

x
=

−1

⇒  y – yx = x

⇒  x (1 + y) = y

⇒ =
+

≠ −x
y

y
y

1
1, �� �

∴ for y > 0, 0 < x < 1

⇒  for any y > 0, ∃ ∈x 0 1,� �  such that f (x) = y

Hence, for any y x∈ −∞ ∞ ∃ ∈ −, , ,� � � �1 1  such that f

(x) = y.
Hence, the given function is onto.

Notes:
1. In fact this function is bijective whose one-
oneness can be shown in the following way.
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To test whether f is one-one, different possible
cases are as follows:

Case 1: When x x1 2 1 0, ,∈ −� �
f (x1) = f (x2)

⇒
+

=
+

x

x

x

x
1

1

2

21 1

⇒  x1 + x1 x2 = x2 + x1 x2

⇒  x1 = x2

Case 2: When x x1 2 0 1, ,∈ � �
f (x1) = f (x2)

⇒
−

=
−

x

x

x

x
1

1

2

21 1

⇒  x1 – x1 x2 = x2 – x1 x2

⇒  x1 = x2

Case 3: When x1 = 0 and x2 0≠  then f x f x1 2� � � �≠

as f (x1) = 0, f x2 0� � ≠
Case 4: When x1 1 0∈ − ,� �  and x2 0 1∈ ,� �  then in

this case clearly x x f x f x1 2 1 2≠ ⇒ ≠� � � �,  as

f x
x

x1
1

11
0� � =

+
<  and f x

x

x2
2

21
0� � =

−
> .

Hence, the given function is one-one.

2. A piece-wise function is one-one ⇔  each
function defined in its respective sub domains is one-
one.
3. A piece-wise function is on-to ⇔  each function
defined in its respective sub domains is on-to.

1. Finding the Value of a Given Function
Type 1: When the given function is not a piecewise
function.

Exercise 1.1

1. If f (x) = 3x – 2, find f (–1).
2. If f (x) = 3x2 – 5x + 7, find f (–2).
3. If f (x) = x4 – 3x2 + 7, find f (–1) and f (2).

4. If f x x� � = −1
2

, find f (sin x) and f
x

x

1

1

2

2

−

+

�

�
�

�

�
� .

5. If f (x) = sin x + cos x, find f
π
4
�
�
�
� .

6. If f (x) = x3 – 2x2 + x – 1, find f (0), f (1), f (–1) and f (2).
7. If f (x) = x4 – x3 + 2x2 + 4, find f (0), f (–1) and f (2).
8. Given the function s (t) = t2 – 6t + 8, find s (0), s (2)
and s (–1).

9. Given the function f x
x

x
� � = −

+
3 5

7
, find f (–3) and

f (2).
10. If f (x) = 2x2 – 4x + 1, find f (1), f (0), f (2), f (–2), f (a)
and f (x + 8).
11. If f (x) = (x – 1) (x + 5), compute f (2), f (1), f (0) f (a

+ 1), f
a

1�
�
�
�  and f (–5).

12. If f (x) = cos x, find f f f f
π π π
2

0
3 6

�
�
�
�

�
�
�
�
�
�
�
�, , ,� �

and f π� � .

13. If f x
x x

x x
� � = −

+
sin cos

sin cos
, find f

π
3
�
�
�
� .

14. If f x
x x

x x
� � = − +

+ +

2

2

1

1
, find f (1 + h).

15. If f x
x

x
� � = +

−
1

1
, find f (x2) and (f (x))2.

16. When f x
x

� � =
+

9

3
2  determine f (0), f (3) and

f
x

1�
�
�
� .

17. A function f is defined on R as follows

f (x) = c, c being a constant, x R∈

find f (–1), f (1) and f
3

2
�
�
�
� .

Answers:
1. f (–1) = –5
2. f (–2) = 29
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3. f (–1) = 5, f (2) = 11

4. f x x f
x

x

x

x
sin cos� � = −

+

�

�
�

�

�
� =

+
,

1

1

2

1

2

2 2

5. f
π
4

2�
�
�
� =

6. f (0) = –1, f (1) = –1, f (–) = –5, f (2) = 1
7. f (0) = 4, f (–1) = 8, f (2) = 20
8. s (0) = 8, s (2) = 0, s (–1) = 15

9. f f− = =3 3
1

2
2

1

9
� � � �,

10. f (1) = –1, f (0) = 1, f (2) = 1, f (–2) = 17, f (a)
= 2a2 – 4a + 1, f (x + 8) = 2x2 + 28x + 97
11. f (2) = 7, f (1) = 0, f (0) = –5, f (a + 1) = a2 + 6a,

f
a

a a

a
f

1 1 4 5
5 0

2

2
�
�
�
� =

+ −
− =, � �

12.  f
π
2

0�
�
�
� = ,  f (0) = 1, f f

π π
3

1

2 6
�
��
�
�� =

�
��
�
��,

= 3

2
, f π� � = −1

13. f
π
3

2 3�
�
�
� = −

14. f h
h h

h h
1

1

3 3

2

2
+ =

+ +

+ +
� �

15. f x
x

x
f x

x

x

2
2

2

2
2

1

1

1

1
� � � � �=

+

−
=

+
−

�
��

�
��and

16. f f f
x

x

x
0 3 3

3

4

1 9

3 1

2

2� � � �= = �
�
�
� = +

, ,

17. f c f c f− = = �
�
�
� =1 1

3

2
2� � � �, ,

Type 2: When the given function is a piecewise
function.

Exercise 1.2

1. If f (x) = 1 + x, when − ≤ <1 0x

= x2 – 1, when 0 < x < 2
= 2x, when x > 0

find f (3), f (–2), f (0), f
1

2
�
�
�
� , f (2 – h), f (–1 + h),

f f
1

2
�
�
�
�

�
��

�
�� , where h > 0 is sufficiently small.

2. If f (x) = 2 + 3x, when –1 < x < 1
= 3 – 2x, when 1 < x < 2

find f (0), f (1), f (1 +h), f (2 – h), f (2), f (f (1.5)
3. If f (x) = 3x, when –1 < x < 0

= 4, when 0 < x < 1
= 3x –1, when 1 < x < 3

find f (2), f (0), f (0.5), f (–5), f (3) and f f −��
�
�

�
��

�
��

1

2

4. If f x
x

x
� � = ,  when x ≠ 0

= 1, when x = 0
find f (0), f (2), f (–2)

5. If f (x) = x, when x < 0
= x2, when x < x < 2
= 2x, when 2 < x

find f (3), f (–2) and f
1

2
�
�
�
�

6. If f x
x

x
� �= sin

, when x ≠ 0

= 0, when x = 0

find f
π
3
�
�
�
� , f (0) and f −��

�
�

π
6

7. If f R R: →  where

f (x) = 2x + 5, when x > 4

= x2 – 1, when x∈ −9 9,

= x – 4, when x < –9
find f (–15) and f (f (5))
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8. A function f is defined on R is follows:
f (x) = 0 if x is rational

= 1 if x is irrational

find f f−��
�
�

1

3
2, � �  and f (0)

9. If f (x) = x2 + 2, when 0 < x < 2
= 5, when x = 2
= x – 1, when 2 < x < 5
= x + 1, when x > 5

find f (–1), f (0), f (2), f (3), f (5), f (7), f (2 + h), f (5 + h)
and f (2 – h).
10. A function f is defined as follows:

f (x) = 2x + 6 for –3 < x < 0
= 6 for 0 < x < 2
= 2x – 6 for 2 < x < 5

find f (–1), f
1

2
�
�
�
�  and f (4)

Answers:
1. f (3) = 6, f (–2) = not defined, f (0) = not defined

f f f
1

2

3

4

1

2

1

4
�
�
�
� = − �

�
�
�

�
��

�
�� =, ,  f (–1 + h), f (2 – h) =

h2 – 4h + 3.
2. f (0) = 2, f (1) = not defined, f (1 + h) = 1 – 2h,
f (2 – h) = 2h – 1, f (2) = –1, f (f (1.5)) = 2.
3. f (2) = 5, f (0) = 4, f (0.5) = 4, f (–5) = not defined, f (3)

= 8, f f f f−��
�
�

�
��

�
�� =

�

�
��
�

�
�� =

�
��
�
�� < <�
��

�
��

−1

2
3

1

3
0

1

3
1

1

2 as

4. f (0) = 1, f (2) = 1, f (–2) = –1.

5. f (3) = 6, f (–2) = –2, f
1

2

1

4
�
�
�
� = .

6. f f f
π

π
π

π2

2
0 0

6

3�
�
�
� = = −��

�
� =, ,� � .

7. f (–15) = –19, f (f (5)) = 53.

8. f f f
−�
�
�
� = = =

1

3
0 2 1 0 0, ,� � � � .

9. f (–1) not defined, f (0) = 2, f (1) = 3, f (2) = 5, f (3) =
2, f (5) = not defined, f (7) = 8, f (2 + h) = (2 + h) –1, f (5
+ h) = (5 + h) –1, f (2 – h) = (2 – h)2 + 2.

10. f (–1) = 4, f
1

2
6�

�
�
� = ,  f (4) = 2

Type 3: Problems on showing f (a) = f (b).

Exercise 1.3

1. Given the function f (x) = x4 – x2 + 1, show that f (1)
= f (–1).
2. Given the function f (x) = x4 + x2 + 5, show that f (2)
= f (–2).
3. Given the function f (x) = x3 + x, show that f (1) = –
f (–1).
4. Given the function f (x) = x5 + x3, show that f (2) =
–f (–2).
5. If f (x) = x4 – x2 + 1, show that f (–x) = f (x).
6. If f (x) = sin x + tan x, show that f (–x) = –f (x).
7. Given that f (t) = at, show that f (x) · f (y) = f (x + y).

8. If f x
x

x
� � = +1

2

,  show that f
x

f x
1�
�
�
� = � � .

9. If f x
x

x
� � =

−

2

2
1

,  show that f sin tanθ θ� � = 2
.

10. If f x
x

x
� �= −

+
1

1
,  show that f cos tanθ θ� �= �

�
�
�

2

2
.

11. If f x
x

x
� � = +

−
1

1
,  show that f tanθ� � =

tan
π θ
4
+�

�
�
� .

12. Given that f x
x

x
� � = −

+
1

1
 show that

(i) f
x

x x

−
+

�
��

�
�� = −

1

1

1

(ii)
f a f b

f a f b

a b

a b

� � � �
� � � �
−

+ ⋅
=

−
+1

13. If f t
t

a
t

t� � =
−

+
1

1

2
,  show that f (t) ≠  f (–t).
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14. If f (x) = log x, show that f (x · y) = f (x) + f (y) and
f (xm) = mf (x).

15. If f x
a a

a a

x x

x x� � = −

+

−

− ,  show that f x y+� �

 =
f x f y

f x f y

� � � �
� � � �
+

+ ⋅1
.

16. If f x
x x

x x
� � � � � �

=
− −

− +

2 1 2

2 1
2

,  show that f
c

1�
�
�
� =

f c� � .
17. If f (x) = sec x + cos x, show that f (–x) = f (x).
18. If f (x) = x4 + x2 – 2 cos x, show that f (–x) = f (x).

19. If y f x
x

x
= =

−
−

� � 2 1

2
,  show that f (y) = x.

20. If y f x
x

x
= =

+
+

� � 1

2 3
,  show that

f y� � =  
3 4

8 11

x

x

+
+ .

21. If y f x
ax b

cx a
= =

+
−

� � ,  show that f (y) = x.

22. If y f x
x

x
= =

−
−

� � 4 3

3 4
,  show that f (y) = x.

23. If f x b
x a

b a
a

x b

a b
� � = ⋅

−
−

�
��

�
�� +

−
−

�
��

�
�� ,  show that

f (a) + f (b) = f (a + b).
24. If f (x) = log x, x > 0, show that
(i) f (x · y) = f (x) + f (y)

(ii) f
x

y
f x f y

�
��
�
�� = −� � � �

(iii) f (e · x) = f (x) + 1
(iv) f (xn) = nf (x)

25. If f (x) = cos x, g (x) = sin x, show that
(i) f (x + y) = f (x) · f (y) – g (x) · g (y)
(ii) g (x + y) = g (x) · f (y) + g (y) · f (x)

2. Examining the Existance of a Function.

Exercise 1.4

1. Show that f x
x x

x x
� � = + +

+ −

2

2

2 3

4 5
 is non-existent

for x = 1.

2. Show that f x
x x

x
� � = + +

+

2
5 9

1
 is not defined

for x = –1.

3. Show that f x
x x

x x
� � = + +

− +

2

2

3 1

4 4 1
 is undefined for

x =
1

2
.

4. Show that f x
x x

x x
� � = − +

+ −

2

2

3 5

2 5 3
 is indeterminate

at x = ∞ .

5. Show that f x
x x

� � =
− +

1

5 6
2  is not defined for

x = 2 and for x = 3.

6. Show that f x x x� � � � � �= − −2 3  is non-

existent for any value of x lying between 2 and 3.

7. Prove that f x
x x x

� �
� � � � � �

=
− − −

1

1 2 3
 is

not defined for 1 < x < 2.

8. Prove that f x x x x� � � � � � � �= − − −1 2 3  is

not defined for any value of x lying between 1 and 2
but defined for any value of x lying between 2 and 3.

9. Prove that f x
x x

x
� � = −

−
sin cos

tan1
 is not defined

for x = π
4

.

10. Show that f x
x

x
� � =

−
sin

cos1
 is not defined for

x = 0.
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11. Show that f x
x x

x
� � = −

−
sin cos

cos1
2

 does not exist

for x =
π
4

.

12. Show that f x
x x

x
� � = −

−
sin cos

tan1
 is non-existent

for x = π
4

.

13. Show that f x
x

x� � = −1

cos
tan  is undefined at

x =
π
2

.

14. Show that f x
x

� � = 1
 is not defined at x = 0.

15. Examine whether f x
x x

x
� � = −

+
cos sin

cos1 2
 exists at

x = π
4

 and x = 3

4

π
.

16. Find x for which the following functions are not
defined.

(i) y
x

x
=

+
−

5

3 4

(ii) y
x

=
2

(iii) y
x

x
=

−
−

1

2 5

(iv) y
x

x
=

+
+

2
1

1

(v) y
x x

x
=

+ +
−

2
3 2

2

(vi) y
x x

x
=

+ +
+

2
4 3

3

(vii) y
x

x x
=

+

− +

2

2

2

3 2

(viii) y = tan x
(ix) y = sec x
(x) y = cosec x

Hint: To find the points at which rational functions
of x are not defined, one should put denominator of
rational function of x equal to zero and solve for x.

Answers:

15. f (x) exists at x = π
4

 and f (x) does not exist at

x = 3

4

π
.

16. (i) x = 4

3
(ii) x = 0 (iii) x = 5

2
(iv) x = –1

(v) x = 2 (vi) x = –3 (vii) x = 1, 2 (viii) x = π
2

 or

x = 3

2

π
 and in general x = any odd multiple of 

π
2

.

(ix) x n n Z= + ∈2 1
2

� � π , (x) x n n Z= ∈π ,

3. Finding the Domain of a Given Function

3.1. Finding the domain of a given algebraic
function

Type 1: When the given function is a polynomial
in x.

Exercise 1.5

Find the domain of each of the following functions:
1. y = x2

2. y = x2 – 1
3. y = x3 + 1

Answers:

1. −∞ ∞,� �  2. −∞ ∞,� �  3. −∞ ∞,� �
Type 2: When the given function is a rational
function of x.
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Exercise 1.6

Find the domain of each of the following functions:

1. y
x

=
−
1

4 2

2. y
x

x
=

+
−

2

2 8

3. y
x

x
=

−
+

2
4

2

4. y
x

=
−

1

1
2

5. y
x x

=
− −

1

12
2

6. y
x

x x
= −

− −

4 1

3 5 2
2

7. y
x

x x
= −

− +

1

9 20
2

8. y
x

x x
=

− +2
3 2

9. y
x x

x x
=

− +

+ −

2

2

3 2

6

10. y
x x

x x
=

− +

+ +

2

2

4 9

4 9

11. y
x

x
=

+
−

5

3 4

12. y
x

= 2

13. y
x

x
=

−
−

1

2 5

14. y
x

x
=

+
+

2
1

1

15. y
x x

x
=

+ +
−

2
3 2

2

16. y
x x

x
=

+ +
+

2
4 3

3

17. y
x

x x
=

+

− +

2

2

2

3 2

Answers:

1. −∞��
�
� ∪ +∞�
�

�
�, ,

1

2

1

2

2. −∞ ∪ + ∞, ,4 4� � � �
3. −∞ − ∪ − + ∞, ,2 2� � � �
4. −∞ − ∪ − ∪ + ∞, , ,1 1 1 1� � � � � �
5. −∞ − ∪ − ∪ +∞, , ,3 3 4 4� � � � � �

6. −∞ −�
�

�
� ∪ −��

�
� ∪ +∞, , ,

1

3

1

3
2 2� �

7. −∞ ∪ ∪ + ∞, , ,4 4 5 5� � � � � �
8. R − 1 2,� �
9. −∞ − ∪ − ∪ +∞, , ,3 3 2 2� � � � � �
10. R

11. R − 	
�
���

4

3

12. R – {0}

13. R − 	
�
���

5

2

14. R – {–1)
15. R – {2}
16. R – {–3}
17. R – {1, 2}.
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Type 3: When the given function is put in the form:

y f x= � � , where f (x) = ax + b.

Exercise 1.7

Find the domain of each of the following functions:

1. y x= −1

2. y x= −18 6

3. y x= −3 12

4. y x= − 3

5. y x= −3 2

6. y x= −2 3

Answers:

1. −∞ , 1� 2. −∞ , 3� 3. 4 , + ∞� 4. 3 , + ∞�

5. −∞��
�
��

,
3

2
6.

3

2
, + ∞�

��
�
� .

Type 4: When the given function is put in the form:

y f x= � � , where f (x) ax2 + bx + c.

Exercise 1.8

Find the domain of each of the following functions:

1. y x= −9 4
2

2. y x= −
2

1

3. y x x= − −
2

2 8

4. y x x= + +
2

8 15

5. y x x= − +2 5� � � �

6. y x x= − +
2

4 3

7. y x x= − +3 4 5
2

8. y x x= − +
2

3 2

9. y x x= −2
2

Answers:

1. −�
��

�
��

3

2

3

2
,

2. x ≥ 1

3. −∞ − ∪ +∞, ,2 4� �
4. −∞ − ∪ − +∞, ,5 3� �
5. [–5, 2]

6. −∞ ∪ + ∞ = −, , ,1 3 1 3� � R

7. −∞ ∞,� �
8. −∞ ∪ + ∞, ,1 2� � .
Type 5: When the function is put in the form:

y
f x

=
1

� �
,  where f (x) = ax + b or ax2 + bx +c.

Exercise 1.9

Find the domain of each of the following functions:

1. y
x

=
+

1

2

2. y
x

=
−

1

16 9
2

3. y
x x

=
− +

1

3 2
2

4. y
x x

= −
− + −

1

4 8 3
2

5. y
x x

=
+ −

1

3 2
2
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6. y
x x

=
− −

1

1 2� � � �

7. y
x

=
−
1

6

Answers:

1. − + ∞2 ,� �

2. −��
�
�

4

3

4

3
,

3. −∞ ∪ + ∞, ,1 2� � � �

4.
1

2

3

2
,��
�
�

5. (–1, 3)
6. (1, 2)

7. −∞ , 6� � .
Type 6: When the given function is put in the form:

y
f x

g x
=

� �
� �

Exercise 1.10

Find the domain of each of the following functions:

1. y
x

x
=

−
+

1

1

2. y
x

x
=

−
−

8

12

3. y
x

x
=

−
−

4 8

3 6

4. y
x x

x
=

+ −
−

1 3

2

� � � �
� �

Hint:
x x

x
x

+ −
−

≥ ≠
1 3

2
0 2

� � � �
,

⇔ + − − ≥x x x1 2 3 0 �  �  � , x ≠ 2

⇔ = −D y� � �1 2,  ∪ ∞3 , �

5. y
x

x
=

−
−

1

3

6. y
x

x x
=

+
− −

3

2 5

� �
� � � �

Hint: x x x+ − − ≥3 2 5 0� � � � � �
⇔ ≥ − ≠x x3 2 5 2 5, , ,but

⇔ = −∞ − ∪D y� � � � � �, ,3 2 5

Answers:

1. −∞ − ∪ ∞, ,1 1� � �
2. [8, 12)

3. 
1

2
2,��
�
��

4. − ∪ +∞1 2 3, ,� �
5. −∞ ∪ ∞, ,1 3� � �

6. −∞ − ∪, ,3 2 5  �
Type 7: When the given function is put in the form:

y
f x

f x
= 1

2

� �
� �

Exercise 1.11

Find the domain of the following:

1. y
x

x x
=

− +2
3 2

– ∞ ∞

0

1 2 3–1–2–3

– ∞ ∞

0 1 2 3–1–2–3
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Answer:
1. R – [1, 2]

3.2. Problems based on finding the domain of a given
logarithmic function:

Type 1: When the given function is put in the form: y
= log f (x).

Exercise 1.12

Find the domain of each of the following functions:
1. y = log (6 – 4x)
2. y = log (4x – 5)
3. y = log (x + 8) + log (4 – x)
4. y = log (x – 2)
5. y = log (3 – x)
6. y = log (3x2 – 4x + 5)
7. y = log (x2 – x – 6)
8. y = log (5x – x2 – 6)

Answers:

1. −∞��
�
�,

3

2

2. 5

4
, +∞�

�
�
�

3. −8 4,� �
4. 2 , ∞� �
5. −∞ , 3� �
6. −∞ ∞,� �
7. −∞ − ∪ ∞, ,2 3� � � �
8. (2, 3).

Type 2: When the given function is put in the form; y
= log | f (x) |.

Exercise 1.13

Find the domain of each of the following functions:
1. y = log | x |
2. y = log | x – 2 |
3. y = log | 4 – x2 |

Answers:
1. R – {0} 2. R – {2} 3. R – {–2, 2}

Type 3: When the given function is put in the form: y
= loga logb logc f (x).

Exercise 1.14

1. y = log2 log3 log 4 x

2. y
x= log log
2

Answers:

1. 4 , ∞� � 2. 2 , ∞� �
3.3. Finding the domain of inverse circular functions

Type 1: When the given function is put in the form: y
= sin–1 f (x) or cos–1 f (x).

Exercise 1.15

Find the domain of each of the following functions:
1. y = sin–1 (1 – 2x)

2. y
x= 2�

�
�
�

−
sin

1

3

3. y = cos–1 4x

4. y
x

= �
�
�
�

−
cos

1

2

5. y = cos–1 (3x – 1)
6. y = cos–1 2x
7. y = sin–1 (x – 2)

Answers:
1. [0, 1]

2. −�
��

�
��

3

2

3

2
,

3. −�
��

�
��

1

4

1

4
,

4. [–2, 2]

5. 0
2

3
,�

��
�
��  6. Find 7. [1, 3].

3.4. Finding the domain of a sum or difference of
two functions:
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Exercise 1.16

Find the domain of each of the following functions:

1. y x x= − + −3 1

2. y x x= − + −4 5

3. y x x= − + −1 6

4. y x
x x

= − +
− +

2

2
1

1

3 2

5. y x x
x x

= − +
− −

2
1

8 4 3

2

2

Hint: Domain of 2
2

x x−  = [0, 2] = D1 (say) and

domain of 
1

8 4 3

1

2

3

22
x x− −

= ��
�
�,  = D2 (say)

∴ = ∩ = ��
�
�D y D D� � 1 2

1

2

3

2
,

6. y x x x= − + − + +1 2 1 1
2

7. y x x
x x

= − + +
+ −

2

2
3 2

1

3 2

8. y
x

x

x

x
=

−
+

+
−
+

2

2

1

1

9. y
x

x x=
−

+ −3

4
2 10

3
log � �

10. y x
x

x= +
−

− −1

2
2 310log � �

Answers:

1. φ 2. φ 3. [1, 6] 4. −∞ − ∪ ∞, ,1 2� � �

5.
1

2

3

2
,��
�
� 6. {1} 7. − ∪1 1 2 3, , �

8. Defined no where

9. − ∪ ∪ ∞1 0 1 2 2, , ,� � � � � � 10. 2 , ∞� � .
3.5. Finding the domain of a function put in the
forms:
1. y = | f (x) |

2. y f x g x= ±� � � �

3. y
f x

f x f x
=

±
1

2 3

� �
� � � �

Exercise 1.17

Find the domain of each of the following functions:
1. y = | x – 2 |

2. y
x

x
=

3. y = cos–1 [x]

Answers:

1. R 2. R – {0} 3. [–1, 2)

3.6. Finding the range of a function:

Exercise 1.17.1

Find the range of the following functions:
1. y = x | x |
2. y = 11 – 7 sin x
3. y = 3 sin x + 4 cos x

4. y
x

x
=

−
−

�

�
�
�

�

�
�
�

	

�

��

�
��

��
sin log

4

1

2

5. y
x

x
=

6. y
x

=
−

1

3 2cos

7. y
x

=
−

1

2 3cos

8. y = log3 (5 + 4x – x2)
9. y = x – [x]
10. y = [x] – x
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Answers:

1. −∞ ∞,� � 2. [4. 18] 3. [–5, 5] 4. [–1, 1] 5. {–1,

1} 6.
1

4

1

2
,�

��
�
�� 7.

1

3
1,�

��
�
�� 8. −∞ , log39� � 9. [0, 1)

10. (–1, 0].

Hint for (2): − ≤ ≤1 1sin x
⇒ − ≤ − ≤7 7 7sin x
⇒ − ≤ − ≤ +11 7 11 7 7 11sin x
⇒ ≤ − ≤4 11 18sin x

Hint for (8): y x x
y

= + − ⇔ = +log3
2

5 4 3 5� �

4
2

x x−

= − − >9 2 02x� �
∴ < ≤0 3 9

y

∴−∞ < ≤y log3 9

Exercise 1.17.2

Find the domain and range of each of the following
functions:

1. y
x

x
=

− ≤
>

	
�
2 3

2 3

,

,

if

if

2. y

x

x

x

=
− < −
− − ≤ ≤

>

	

�

��

4 2

1 2 2

3 2

,

,

,

if

if

if

3. y
x x

x
=

− ≠
=

	
�
2 1 3

0 3

,

,

if

if

4. y x x

x x
= − ≤

− ≥

	

�
��

25 5

5 5

2
,

,

if

if

5. y x x

x x
= − <

− ≥

	

�
��

2
4 3

2 1 3

,

,

if

if

6. y
x x

x x
=

+ ≤ −
− > −

	

�
6 7 2

4 2

,

,

if

if

Answers:
1. D (y) = R;

R (y) = {–2, 2}
2. D (y) = R

R (y) = {–4, –1, 3}

3. D (y) = R
R (y) = R – {3}

4. D (y) = R

R y� � �= ∞0 ,

5. D (y) = R

R y� � �= − ∞4 ,

6. D (y) = R

R y� � � �= −∞ , 6

4. Finding the composite of two function

Exercise 1.18

1. If f (x) = tan x, x∈ −��
�
�

π π
2 2

,  and g x x� � = −1
2

,

find (gof) (x).

2. If f x x� � =  and g (x) = | x |, find (gof) (x).

3. If f (x) = e2x and g x x� � = log , x > 0 find (gof) (x).

4. If f x
x

x
x� � = +

+
≠ −

1

2
2,  x being real and g (x) =

x2, find (gof) (x).

5. If f x
x

x
� � =  and g x

x
� � = 1

 find (gof) (x).

6. If f R R: →  is defined by f (x) = sin x, x R∈  and

g R R: →  is defined by g (x) = x2, compute (gof) (x)

and (fog) (x).

7. If f R R: →  is defined by f (x) = 2x2 –1 and

g R R: →  by g (x) = 4x – 3, x R∈  compute (gof) (x)

and (fog) (x). Also find (gof) (2) and (fog) (–1).

8. If f R R: →  is defined by f (x) = x2 – 3x + 2 and

g R R: →  by g (x) = 4x + 3, x R∈  compute (gof) (x)

and (fog) (x). Hence find the values of (gof) (3) and
(fog) (3).



94 How to Learn Calculus of One Variable

9. If f A B: →  is defined by f (x) = x + 1, x R∈  and

g B C: →  by g (x) = x2, find (gof) (x).

10. If f (x) = cos x, g (x) = x3, x R∈ , find (gof) (x) and

(fog) (x).
11. If f (x) = x2 + 2 and g (x) = x – 1, x R∈ , find (fog)

(x) and (gof) (x). Hence, find (fog) (–2) and (gof) (–2).
12. If f (x) = 2x + 3 and g (x) = 3x2 – 2, x R∈ , find (gof)

(x) and (fog) (x). Hence, find the values of (gof) (2)
and (fog) (2).

13. If the mapping f A B: →  is define by f (x) = log

(1 – x) and the mapping g B C: →  is defined by g (x)

= e2x, find (gof) (x).

14. If the mapping f R R: →  be given by

f x
x

� � = +
−

1
1

1
 and the mapping g R R: →  be

given by g (x) = x2 + 1, show that gof x� �� � ≠ (fog)

(x).

15. If f is defined as f x
x

� � =
−
1

1
, show that f [f {f

(x)}] = x, x ≠ 0 1, .

16. If f (x) = | x |, find f [f (x)].

Answers:

1. 1
2

− tan x

2. x x=

3. log e
x2

 = x

4.
x

x

+
+

�
��

�
��

1

2

2

5.
x

x
, x ≠ 0

6. (gof) (x) = sin2 x and (fog) (x) = sin x2

7. (gof) (x) = 8x2 – 7, (fog) (x) = 32x2 – 48x + 17, (gof)
(2) = 25 and (fog) (–1) = 97
8. (gof) (x) = 4x2 – 12x + 11, (fog) (x) = 16x2 + 12x + 2,
(gof) (3) = 11 and (fog) (3) = 182
9. (1 + x)2

10. (gof) (x) = cos3 x (fog) (x) = cos x3

11. (fog) (x) = x2 – 2x + 3; (gof) (x) = x2 + 1; (fog) (–2)
 = 11 and (gof) (–2) = 5

12. (gof) (x) = 12x2 + 36x + 25; (fog) (x) = 6x2 – 1; (gof)
(2) = 145 and (fog) (2) = 23
13. (gof) (x) = (1 – x)2

16. | x |.

Exercise 1.19

Find the domain and range of each of the following
ones:
1. sin (1 + cos x)

2. sin cos x� �

3. cos sin x

4. tan sin
2

x

5. log 1
2

− x

6. log 1
2

− x

7. log
1

1

−
+

�
��

�
��

x

x

8. sin log
1

1

−
+

�
��

�
��

x

x

9. tan (sin x + cos x)
10. tan (sin x + 2cos x)
11. cos | sin–1 x |
12. loge loge x
13. loge loge loge x
14. loge loge loge loge x
15. sec–1 sin x
16. sin sec–1 sin x
17. log (1 + sin sec–1 sin x)
18. cos sin–1 x

Answers:

1. D R= −∞ ∞ =, ,� �; 0 1

2. D n n n Z R= − +�
��

�
��

∈ =2
2

2
2

0 1π
π

π
π

, ,; sin

3. D n n R= + =2 2 1 1 1π π, ,� � ; cos
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4. D R= −∞ ∞ =, ,� �; tan0 1

5. D R= − = −∞1 1 0, ,� � � �;

6. D = {0}, R = {0}

7. D R= − = −∞ ∞1 1, ,� � � �;

8. D = (–1, 1); R = [–1, 1]

9. D R= −∞ ∞ = −, ,� �; tan tan2 2

10. D R= −∞ ∞ = −∞ ∞, ,� � � �;

11. D R= − =1 1 0 1, ,;

12. D R= ∞ = −∞ ∞1, ,� � � �;

13. D e R= ∞ = −∞ ∞, ,� � � �;

14. D e R
e

= ∞ = −∞ ∞, ,� � � �;

15. D n R= + =2 1
2

0� � � �π π; ,

16. D n R= + =2 1
2

0� � � �π
;

17. D n R= + =2 1
2

0� � � �π
;

18. D R= − =1 1 0 1, ,;

Exercise 1.20

1. If the functions f, g and h are defined from the set
of real numbers R to R such that f (x) = x2 – 1,

g x x� � = +
2

1

h x
x

x x
� � = ≥

<
	

�
0 0

0

,

,

when

when

then find composite function hofog.
2. (i) Find f (f (x)) if

f x x x

x x
� � = ≥

<

	

�
��

2
0

0

,

,

(ii) Find g (g (x)) if

g x
x x

x x
� � = + ≥

− <
	

�
2 0

2 0

,

,

(iii) Find h (h (x)) if

h x
x x

x x
� � =

+ ≤
− >

	


�

1 1

5 1
2
,

,

(iv) Find i (i (x)) if

i x

x x

x x

x x

� � =
− <

≤ ≤
− >

	

�

��

,

,

,

0

0 1

2 1

Answers:

1. Hint: fog (x) = f (g (x)) = f x
2

1+�
��

�
��

= +�
��

�
�� − = + − =x x x

2
2

2 2
1 1 1 1

∴  hofog (x) = h (x2) = 0

2. (i) f f x x x

x x
� � � = ≥

<

	

�
��

4
0

0

,

,

(ii) g g x
x x

x when x
� � � =

+ ≥
− <

	
�
4 0

4 0

,

,

when

(iii) h h x

x x

x x

x x

x x

� � �
� �

� �
=

+ ≤
− + ≤

− − < <

− ≥

	



�
�

�
�
�

2 0

5 1 0 1

5 5 1 2

6 2

2

2 2

2

,

, ,

,

,

(iv) i i x

x x

x x

x x

x x

x x

� � �

� �

=

+ < −
− − ≤ <

≤ ≤
− < ≤

− − >

	




�
��

�

�
�
�

2 1

1 0

0 1

2 1 2

2 2

,

,

,

,

,

5. Eveness and oddness of y = f (x).

Exercise 1.21

(A) By considering f (–x), discover which of the
following are even functions, which are odd functions
and which are neither even nor odd.



96 How to Learn Calculus of One Variable

1. f (x) = x4 + 7x2 + 9

2. f x x x
x

� � = + +3

3

1

3. f x x� � = +
4

16

4. f x
x

� � =
+

1

4 9
2

5. f (x) = sin x
6. f (x) = cos x
7. f (x) = tan x
8. f (x) = sin x + cosec x
9. f (x) = sin x + tan x
10. f (x) = cosec x + tan x
11. f (x) = tan2 x
12. f (x) = tan3 x
13. f (x) = sin x + cos x

14. f x x
x

x
� � = +

cos

(B) Express the following functions as the sum of an
even and odd functions.
1. f (x) = ex

2. f (x) = (1 + x)100

3. f x s x
x

x� � = + �
�
�
� +in cos tan2

2

4. f (x) = x2 + 3x + 2
5. f (x) = 1 – x3 – x4 – 2x5

(C) Let f R: − →2 2,  be a function. If for

x∈ 0 2, ,

f x
x x x

x x
� �

� �
=

≤ ≤

< ≤

	


�

�
�

sin ,

,

0
2

2 2
2

π

π π

define f for x∈ −2 0,  when

(i) f is an odd function.
(ii) f is an even function.

Answers:
(A) 1. Even 2. Odd 3. Even. 4. Even 5. Odd
6. Even 7. Odd 8. Odd 9. Odd 10. Odd 11. Even

12. Odd 13. Neither even nor odd 14. Odd

(B) 1. e e e e e
x x x x x
= + + −

− −1

2

1

2

2. 1
1

2
1 1100 100 100+ = + + − +x x x� � � � � �

1

2
1 1100 100+ − −x x� � � �

3. sin cos tan2
2

x
x

x+ �
�
�
� +

= + �
�
�
� + + − +

1

2
2

2
2[sin cos tan sinx

x
x x� �

cos tan ]−��
�
� + −

x
x

2
� �

+ [sin cos tan {sin
1

2
2

2
2x

x
x x+ �

�
�
� + − − +� �

+ −��
�
� + −cos tan }]

x
x

2
� �

4. x x x x x x
2 2 2

3 2
1

2
3 2 3 2+ + = + + + − + +

1

2
3 2 3 2

2 2
x x x x+ + − + −

5. 1 2
1

2
1 2

3 4 5 3 4 5− − − = − − − +x x x x x x[

1 2
1

2
1 2

3 4 5 3 4
+ − + + − − − −x x x x x x� �] [

( )]1 2
3 4 5+ − +x x x

(C) For oddness,

f x
x x

x x x
� �

� �
=

− − ≤ ≤ −

− − ≤ ≤

	


�

�
�

π π

π
2

2
2

2
0

,

,sin

for eveness,
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f x
x x

x x x
� �

� �
=

− ≤ < −

− ≤ ≤

	


�

�
�

π π

π
2

2
2

2
0

,

,sin

5. Periodic Functions

Type 1: Finding the periods of trigonometric
functions.

Exercise 1.22

(A) Find the periods of the following functions:
1. f (x) = cos 3x

2. f x
x� � = �
�
�
�cos

4

3. f (x) = tan 2x
4. f (x) = tan 3x

5. f x
x� � = �
�
�
�cot

5

6. f x
x� � = �
�
�
�cot

2

7. f (x) = sin 10x
8. f (x) = 10 sin 3x

9. f x x� � = +�
�

�
�2 3

10
sin

π

10. f x x� � = +�
�

�
�4 3

4
sin

π

11. f x x� � = tan

12. f (x) = | cos x |
13. f (x) = | sin x |
14. f (x) = tan–1 (tan x)
15. f (x) = cos2 x
16. f (x) = sin2 x
17. f (x) = sin3 x
18. f (x) = log (2 + cos 3x)
19. f (x) = ecot3x

(B) Find the periods of the following functions:
1. y = sin 5x cos 4x + 1

2. y
x x

= �
�
�
� −

�
�
�
�sin sin

4
3

3

3. y
x x

= �
�
�
� −

�
�
�
� −tan cot

2

3
4

3

2
2

4. y
x x

x= �
�
�
� −

�
�
�
� +sin cos cos

3

4
3

5

8
5

5. y = 2 sin x + 3 cos 2x

6. y a x b x= +sin cosλ λ

7. y
x x

= �
�
�
� +

�
�
�
�3

2
2

3
cos sin

8. y = 3 sin x – 4 cos 2x
9. y = 1 + tan x
10. y = tan 2x – cos 3x

(C) The periods of f (x) = | sin x | + | cos x | will be

(a) π (b)
π
2

(c) 2π (d) none of these

Answers:

(A) 1.
2

3

π
2. 8π 3.

π
2

4.
π
3

5. 5π 6. 2π

7.
π
5

8.
2

3

π
9.

2

3

π
10.

2

3

π
11. π 12. π

13. π 14. π 15. π 16. π 17. 2π 18.
2

3

π

19.
π
3

(B) 1. 2π 2. 24π 3. 6π 4. 16π 5. 2π 6.
2π
λ

7. 12π 8. 2π 9. π 10. 2π

(C) (b)
π
2

Type 2: Problems on showing that a given function
is not periodic.

Exercise 1.23

1. Show that the following functions are not periodic:

(i) f x x� � = sin
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(ii) f x
x

x f� � � �= �
�
�
� ≠ =sin

1
0 0 0, ,

(iii) f (x) = sin x2

(iv) f x x� � = cos

(v) f (x) = cos x2

2. Show that the following functions are not periodic:
(i) f (x) = x cos x

(ii) f x x
x

� � = �
�
�
�sin

1

(iii) f (x) = cos x2 + sin x2

(iv) f x x x� � = +sin cos

(v) f (x) = x + sin x
(vi) f (x) = x + cos x

3. Examine which of the following functions are
periodic:
(i) f (x) = [x] (ii) f (x) = 5 (iii) f (x) = x [x]

Answers:
3. (i) Non-periodic (ii) Periodic but has no
fundamental period (iii) Not periodic.

7. Examining a one-one and on-to function

Exercise 1.24

1. Is the function f x
x x

x x
� � = − +

+ +

2

2

8 18

4 30
 a one-one

function?

2. Verify whether the functions f x
x x

� � =
+ +

1

1
2

is one-one.
3. Let f R R: →  be defined by f (x) = ax + b, a, b
being fixed real numbers and a ≠ 0 ,  show that f is
one-one and on-to.

4. If f x
x

x
� � =

+

2

2
1

 is the function one-to-one?

5. If f : 0 2 1 1, ,π → −  be given by f (x) = sin x,

show that f is onto but not one-one.

6. If f : 0 2 1 1, ,π → −  be defined by f (x) = sin x,

show that f is on-to but not one-one.
7. Show that the following functions f R R: →  are
both one-one and on-to:
(i) f (x) = x3 (ii) f (x) = 3x + 4

8. Let D1 = R – {3}, D2 = R – {1} and f D D: 1 2→  be

given by f x
x

x
� � = −

−
2

3
 is f bijective? Give reasons.

9. Let D x x D1 21 1= − ≤ ≤ =:� �  for each of the

following functions from D1 to D2, find whether it is
surjective, injective or bijective:

(i) f x
x� � =
2

(ii) h (x) = x | x | (iii) k (x) = x2

(iv) φ πx x� � = sin (v) g (x) = | x |

10. Let f R R: →  be defined by f x
x

x
� � =

+

2

2
1

.

Is f one-one-onto?
11. Show that the mapping

(i) f R R: →  defined by f (x) = x, ∀ ∈x R  is one-

one-onto.

(ii) f R R: →  defined by f (x) = x3, ∀ ∈x R  is one-

one-onto.

(iii) f Q Q: →  defined by f (x) = 2x + 3, ∀ ∈x Q  is

one-one-onto.
(iv) f R R: →  defined by f (x) = 4x + 3, ∀ ∈x R  is
one-one-onto.

12. Is the map f R R: →  defined by

f x
x x

x x
� � = + +

− +

2

2

4 30

8 18
 one-one?

13. Let D D1 22 2
1 1= −�

��
�
��

= −
π π

, , , , show that the

map f D D: 1 2→  defined by f (x) = sin x is bijective.

Answers:

1. No 2. No 4. No
8. Yes, since f x f x x x1 2 1 2� � � �= ⇒ =  and

x
y

y
f y=

−
−

=
3 2

1
� �  which is true, ∀ ∈ −y R 1� �

which means f is onto.
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9. (i) Injective but not surjective (ii) bijective (iii)
Neither injective nor surjective (iv) surjective but not
injective (v) Neither injective nor surjective
10. Not 12. Not

On the Graph of a Function

First of all we would like to define domain and range
of a function in terms of projection of the graph of y =
f (x) on axes.
1. Domain of a function: The projection of the graph
of y = f (x) on the x-axis is called the domain of the
function y = f (x).
2. Range of a function: The projection of the graph
of y = f (x) on the y-axis is called the range of the
function y = f (x).

We speak of the graph of a point P (x, y) meaning the
point representing the ordered pair (x, y).We also
speak of graphing a point P (x, y), meaning to construct
and locate the point P on a coordinate plane (a plane
with axes).

Now we define what is the graph of a function.
Definition: The graph of a function f defined on its
domain in a coordinate plane is the graph of the set

G {(x, f (x): x is in the domain of f}
or, equivalently, the graph of a function f (x) defined

on its domain is the graph of the equation y = f (x).
That is, the point P (a, b) is on the graph of y = f (x)

⇔  b = f (a).

If the domain of a function f is a finite interval, the
graph of f can be explicitly plotted in a plane, but if the
domain of f is an infinite set, it is not possible to plot
all these points. In such case, we plot enough point to
get an idea of the general shape of the graph of y = f (x).

The following characteristics of a graph of a
function are worth noting.
1. The graph of a function is a subset of the plane
and it is uniquely determined by the function.
2. For each ‘a’ in the domain of f, there exists exactly
one point (a, f (a)) on the graph of the function f,
since by our definition of the function, the value of f
at ‘a’ is uniquely determined. Geometrically, it means
that a D f∈ ⇔� �  the vertical line x = a meets the
graph of f in one point only. again, a D f∉ ⇔� �  the
vertical line x = a does not meet the graph anywhere
at all, i.e. the point (a, f (a)) is missing (absent) on the
graph of f, i.e. there is a hole in the graph of f at a, i.e.
the graph of f is broken (not unbroken) at x = a since
there is a point on the graph of f whose abscissa is a
but there is no ordinate corresponding to the abscissa
x = a and such points with no ordinate at an abscissa
x = a can not be located on the graph of a function.

On the Method of Graphing a Function

Mainly there are two methods of graphing a function
which are:
1. The method of plotting a graph “point by point”.
2. The method of plotting a graph “by derivative”.

Hence, we use “point by point” method to draw
the graph of a function defined by the formula y = f (x)
in its domain unless we learn how to find the
derivative of a function.

How to Draw the Graph Using
“Point by Point” Method

1. Find the domain of the given function y = f (x)
2. Find the zeros of the given function, i.e. solve the
equation f (x) = o whose solutions divide its domain
into intervals where the function has the constant sign.
3. Examine whether the given function passes
through the origin, i.e. check whether (o, o) satisfied
the equation y = f (x).
4. Find the intercepts on the axes, i.e. the points where
the given curve cuts the x-axis and/y-axis.

B

D

A

C
X

Y

O

y f x
 =  ( )

D f CD ( ) = 

B

D A

C

X

Y

O

y f x =  ( )
R f CD ( ) = 
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5. Find whether the given function is odd or even.
6. Find whether the given function is periodic.
7. Plot a few additional points to get an idea of the
general shape of the graph of y = f (x).

Notes:
1. If the function is periodic, it is sufficient to investigate
the behavior of the function on any closed interval
whose length is equal to the period of the function
and then constructing the graph on that interval,
extend it to the whole of the domain of the function.
2. The position of a straight line is determined if any
two points on it are known. Consequently in the case
of straight lines, it is advised to find two points only
instead of many to economise time, only with this
care that the points are not very close to each other.
3. One should give such values to x as will enable
him to get integral values of y since it is easier to plot
integral units than the fractional units.
4. The graph of an even function is symmetric with
respect to the axis of ordinates (i.e. y-axis) and the
graph of an odd function is symmetric with respect to
the origin.

On What is Symmetry of a
Curve with Respect to a Line

A curve is said to be symmetric with respect to a line
or symmetrical about a line) when all chords of the
curve drawn perpendicular to the line are bisected by
it. The lines of most importance in our “discussion”
of an algebraic curve are the x-axis, the y-axis the
lines bisecting the first and second quadrants which
are y = x and y = –x.

If the curve is symmetric with respect to x-axis,
y = o, two points on the curve with the same abscissa,
x, will have the ordinates y and –y. That means that
substitution of –y for +y in the equation y = f (x) will
result in an equation that is same as or can be reduced
to the original equation. Thus, in an algebraic equation,
if only even powers of y are present, or every term of
the equation contains an odd power of y, the locus of
the equation is symmetric with respect to the x-axis.

Examples: The loci of the following equations are
symmetric with respect to the x-axis:

x2 + y2 = 25 (circle)
y2 = x (parabola)
y2 = x3 (semi-cubical parabola)

xy – y3 = 0
A similar discussion will bring us to the conclusion

that if only even powers of x are present in the equation
y = f (x), or every term of the equation y = f (x) contains
an odd power of x, its locus is symmetric with respect
to the y -axis.
Examples: The loci of the following equations are
symmetric with respect to the y-axis:

x2 + y2 = 25 (circle)
x2 = y (parabola)
y3 – x2 y = 0
If the curve is symmetric with respect to the line y

= x, a pair of symmetric points, lying on opposite
sides of this line will have their coordinates reversed.
This can be shown geometrically. It means that we
should be able to interchange the x and y in the
equation y = f (x) and obtain an equation that can be
reduced to the original one. Hence, if the x and y in an
algebraic equation can be interchanged without
producing an essentially different equation, the locus
of the equation will be symmetric with respect to the
line y = x.
Examples: The loci of x2 + y2 = 25 and xy = 1 are
symmetric with respect to the line y = x.

Similarly, if the subsitution of –y for x and –x for y
gives an equation that is essentially the same as the
original one, the locus of the equation y = f (x) is
symmetric with respect to the line y = –x.

On What is Symmetry with
Respect to the Origin

A curve is said to be symmetric with respect to a
point (about a point) when the point bisects all chords
of the curve drawn through it. Such a point of
symmetry is called the centre of the curve. The most
important point for our study is, perhaps, the origin.
If the curve is symmetric with respect to the origin
and the point (x, y) is on the curve, then the point
(–x, –y) will be on the curve, a fact that is made
apparent by a figure. Hence, if substitution in an
algebraic equation of –x for x and –y for y results in
an equation that can be reduced to the original, the
locus of the equation is symmetric with respect to the
origin.

Examples: The loci of the following equations are
symmetric with respect to the origin.
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x2 + y2 = 25 (circle)
xy = 5 (hyperbola)
x2 – y2 = 25 (hyperbola)
y = x3 (cubical parabola)

N.B.: A parabola is a U-shaped curve which cups
(curves into the shape of a cup) up or cups down.

The Graphs of y = f (x)

1. y = k

N.B.: A graph of a constant functions y = k is a line.
(i) Parallel to the x-axis.
(ii) Above the x-axis at a distance k from it if k > o.
(iii) Below the x-axis at a distance | k | from it if k > o.
(iv) On the x-axis if k = o.

2. y = x

N.B.: A graph of the identity function y = x is a line
which
(i) Passes through the origin.
(ii) Bisects the angle between first and third quadrant
or it is a line with slope 1.

3. y = –x

N.B.: The graph of the function y = –x is a line
(i) Passing through the origin and
(ii) bisecting the angle between the second and the
fourth quadrants, i.e. it is a line with slope –1.

4. y = mx + c.

x y

k
k
k

–1 k
0 k
1 k
2 k

x y

–1 –1
0 0
1 1
2 2

x y

–1 1
–2 2

1 –1
2 –2

x y

0 1

1

y K = 

K

2

3

4

2 3 4–1

–1

–2

–3

–4

–2–3–4
x

y

0 1

1

y x = 

2

3

4

2 3 4–1

–1

–2

–3

–4

–2–3–4
x

y

0 1

1

y x = –

2

3

4

2 3 4–1

–1

–2

–3

–4

–2–3–4
x

y

m 0
C 0

 < 
 < 

y m x C =  + C

C
0

x

y

m 0
C 0

 < 
 = 

y m x = 

0
x

y
m 0
C 0

 = 
 > 

C

y C = 

0
x

y
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5. y x=

⇒ =y x
2

6. y = sin2 x + cos2 x

7. y = x2

8. y = –x2

N.B.:
1. The curve y = x2 is symmetric with respect to the
y-axis since f (–x) = f (x), ∀ ∈x R . Also, it lies on and
above the x-axis passing through the origin.
2. The curve y = –x2 is symmetric with respect to the
y-axis since f (–x) = f (x), ∀ ∈x R . Also, it lies on and
below the x-axis passing through the origin.

On the Graphs of y = | f (x) |

The graphs of y = | f (x) | is the graph of the union
of two functions defined by

y = f (x), when f (x) > 0
or y = –f (x), when f (x) < 0

Note: The conditions f (x) > 0 and f (x) < 0 imposed on
y = f (x) and y = –f (x) determine the intervals where f
(x) is positive or negative whereas the condition f (x)
= 0 on f (x) > 0 determines the points where two curves
y = f (x) and y = –f (x) intersect the x-axis.

How to Draw the Graph of y = | f (x) |

The method of procedure is to determine firstly the
intervals where f (x) is positive and negative and
secondly the points where y = f (x) and y = –f (x)
intersect the x-axis.

The graph of a function y = | f (x) | is always ob-
tained from the graph of the function y = f (x) whose
portion lying above the x-axis remains unchanged for
positive part of y = f (x) and the portion lying below
the x-axis as a plane mirror is taken as the image of
negative part of y = f (x) on and above the x-axis in the
required interval.

x y x=

0 0
1 1
4 2
9 3

16 4

x y = x2

1 1
2 4
3 9

0 1

1

2

3

4

5

2 3 4 5 6–1

–1

–2

–2
x

y

y x=

x y = –x2

1 –1
2 –4
3 –90

y –x  = 2

x

y
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How to Determine the Intervals
Where f (x) is Positive or Negative

1. Find the zeros of f (x), i.e. the roots of f (x) = o.
2. Partition the real line by zeros of f (x).
3. Consider the intervals:

−∞ , ,x1� �  (x1, x2), (x2, x3) ... (xn–1, xn), xn , ,∞� �  if
x1, x2, x3, …, xn are the zeros of f (x) such that x1 = the
smallest number among all the zeros of f (x). xn = the
greatest number among all the zeros of f (x).

4. Check the sign (i.e. positivity and negativity) of
f (x) in each interval determined by the zeros of f (x).

How to Check the Sign of
f (x) in Different Intervals

1. Take one particular point ‘c’ belonging to each of
the adjacent intervals.
2. Put the particular point c in f (x).
3. Use the facts:
(i) : f c f x� � � �> ⇔0  i.e. y is positive for every x
in that interval where c belongs.
(ii) : f c f x� � � �< ⇔0  i.e. y is negative for every x
in that interval where c belongs.

For example, let us consider
y = x2 – 4x and y = 4x – x2

In −∞ , 0� �
f (x) = x2 – 4x > 0 for every x ∈ −∞ , 0� �
since f (–1) = 5 > 0 where –1 ∈ −∞ , 0� �
In 4 , ∞� � :
f (x) = x2 – 4x > 0 for every x∈ ∞4 ,� �
since f (5) = 5 > 0 where 5 4∈ ∞,� �
In (0, 4):
f (x) = –x2 + 4x > 0 for every x ∈ 0 4,� �
since f (1) = 3 > 0 where 1 ∈ 0 4,� �

Notes:
1. y = f (x) is positive in an interval

⇒  is positive in its subinterval.
2. y = f (x) is negative in an interval

⇒  is negative in its subinterval.

3. The graph of y = | f (x) | always lies on and above
the x-axis.
4. The graph of y = – | f (x) | always lies on and below
the x-axis.

5. The same method of procedure is applicable to
draw the graph of those functions containing absolute
value function.

The Graph of y = | f (x) |

1. y = | x |
The graphs of y = | x | is the graphs of the union of

two functions defined by
y = x and x > 0
or y = –x and x < 0
on using the slope-intercept method, we graph y =

x where the domain of y is {x: x > 0}.

The equation y = –x where x < 0 defines a function
whose domain is {x: x < 0}. Again using the slope-
intercept method, we graph y = –x.

Also, {(x, y): y = | x |} = [(x, y): y = x and x > 0] ∪  [(x,
y): y = –x and x < 0]

Now, we combine the last two graph to obtain the
graph as under:

0 1

1

2

3

4

2 3 4
x

y

y
x

 =
 

0 1

1

y
–x

 = 
2

3

4

2 3 4–1
–1

–2

–3

–4

–2–3–4
x

y
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Note: A table of ordered pairs also easily can be
constructed and the absolute value function y = | x |
can be graphed as given below:

2. y
x

x
=

⇒  y = 1 for x > 0
or y = –1 for x < 0

∴ = −∞ ∪ ∞ = −∞ ∞D y� � � � � � �, , ,0 0

R (y) = {–1, 1}

3. y
x

=
− 2

2

⇒ =
−

y
x 2

2
 for x > 2

or y
x

= −2

2
 for x < 2

∴ = −∞ ∪ ∞ = −∞ ∞D y� � � � � � �, , ,2 2  and

R y� � �= ∞0 ,

4. y
x x

=
−2

3

⇒ =y
x

3
 for x > 0

and y = –x for x < 0

∴ = −∞ ∪ ∞ = −∞ ∞D y� � � � � � �, , ,0 0

R y� � �= ∞0 ,

5. y = | x2 –4x |

⇒ = −y x x
2

4  for x x
2

4 0− ≥ , i.e. x (x – 4) > 0

i.e. x < 0 or x > 4
and y = – (x2 – 4x) for x2 – 4x < 0, i.e. x (x – 4) < 0,

i.e. 0 < x < 4

∴ = −∞ ∪ ∪ ∞ = −∞ ∞D y� � � � � � � �, , , ,0 0 4 4

and

R y� � �= ∞0 ,

x y = | x |

–4 4
–2 2

0 0
1 1
3 3

0 1

45°

135°
1

y
–x

 = y
x

 =
 

2

3

4

2 3 4 5 6–1–2–3–4–5–6
x

y

0 1 2 3 4 5 6
x

y = 1

y = –1

y

0 1

1

2

3

4

2 3 4 5 6–1–2–3–4–5–6
x

y

y = x – 2
2

y = 2 – 
2

x

0 1

1

2

3

4

2 3 4 5 6–1–2–3–4–5–6
x

y

y = x
3

y x = –
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The Graph of y = | f1 (x) | + | f2 (x) |

1. y = | x | + | x – 1 |
x = 0 and x = 1 are the zeros of x and (x – 1)

⇒ −∞ , 0� � , [0, 1] and 1, ∞� �  are required intervals

whose union is the domain of the given function y =
| x | + | x – 1 |.

in −∞
= + −

, 0

1

� �
y x x

⇒  y = –x – (x –1) = –x – x + 1 = –2x + 1

in 0 1

1

,

y x x= + −

⇒  y = x – (x – 1) = x – x + 1 = 1

in 1

1

, ∞
= + −
� �

y x x

⇒  y = x + x – 1 = 2x – 1

2. y = | x + 1 | + | x – 1 |
x = – 1 and x = 1 are the zeros of (x + 1) and (x – 1).

⇒ −∞ −, 1� � , [–1, 1] and 1, ∞� �  are the required
intervals whose union is the domain of the given
function y = | x + 1 | + | x – 1 |.

in −∞ −
= + + −

, 1

1 1

� �
y x x

⇒  y = – (x + 1) – (x – 1) = –x – 1 – x + 1 = –2x

since (x + 1) < 0 and (x – 1) < 0 in −∞ −, 1� �

in −
= + + −

1 1

1 1

,

y x x

⇒  y = (x + 1) – (x – 1) = x + 1 – x + 1 = 2
since (x + 1) > 0 and ( x – 1) < 0 in (–1, 1)

in 1

1 1

, ∞
= + + −

� �
y x x

⇒  y = x + 1 + x – 1 = 2x

since (x + 1) > 0 and (x – 1) > 0 in 1, ∞� �

Notes:
1. x + 1 > 0 and x – 1 > 0 ⇒  x > 1 ⇒  y > 2 since x >
1 ⇒  2x > 2 ⇒  y > 2.
2. x + 1 < 0 and x – 1 < 0 ⇒  x < –1 ⇒  y > 2 since x
< –1 ⇒  –2x > 2 ⇒  y > 2.
3. The range of y = | x + 1 | + | x – 1 | is the set of all real
numbers greater than or equal to 2, i.e. the semi-closed

interval 2 , ∞� .

3. y = 2 | x – 2 | – | x + 1 | + x
x = –1 and x = 2 are the zeros of (x – 2) and (x + 1)

⇒ −∞ −, 1� � , [–1, 2] and 2 , ∞� �  are the intervals

whose union is the domain of the given function y =
2 | x – 2 | – | x + 1 | + x.

in :−∞ −
= − − + +

, 1

2 2 1

� �
y x x x

⇒  y = –2 (x – 2) + (x + 1) + x = 5

in :−
= − − + +

1 2

2 2 1

,

y x x x

⇒  y = –2 (x – 2) – (x + 1) + x = –2x + 3

1

y = 1

y x = –2  + 1 y x = 2  – 1

0
x

y 1

1

2

–1

y x = –2 y x = 2

0
x

y
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in :2

2 2 1

, ∞
= − − + +

� �
y x x x

⇒  y = 2 (x – 2) – (x + 1) + x = 2x – 5

Hence, the given function can be rewritten as
under:

y x

x

x

x

x

= − +
−

< −
− ≤ ≤
>

	

�

��

5

2 3

2 5

1

1 2

2

Therefore, the graph of y = 2 | x – 2 | – | x + 1 | + x is
a polygonal line as above.

On the Graph of y = [f (x)]

The graph of y = [f (x)] is a set of horizontal line
segments (i.e. a set of line segments, each being
parallel to x-axis), each of which includes the left end
point but excludes its right end point. A small shaded
circle is put at the left end point of a horizontal line to
show the inclusion of that point and a small unshaded
circle o is put at the right end point of a horizontal line
to show the exclusion of that point as

Moreover one should note that each horizontal
line representing the graph of y = [f (x)] always lies on
and below a straight line.

The graph of a function y = [f (x)] is always
obtained from the graph of y = f (x) where y = [f (x)]∈ I
is marked on the y-axis of unit length such as [–2, 1),
[–1, 0), [0, 1), [1, 2) etc. for which horizontal lines are
drawn through integers till they intersect the graph.

Further, one should note that on y-axis for the form
[n, n + 1), y = n if y increases in its domain.

The graph of y = [f (x)]
1. y = [x]

∴ = = ⇔ ≤ − <y x x x0 1

N.B.: The graph of y = [x] lies on and below the line y
= x.

2. y = [–x]

∴ = − = ⇔ ≤ − < ⇔ ≥ > −y x x x0 0 1 0 1

⇔ − < ≤1 0x

0 1

1

2

3 y x = –2  + 3

y = 5

y x = 2  – 5

4

5

2 3 4–1
–1

x

y

x [x] = y

0 1≤ <x 0

1 2≤ <x 1

2 3≤ <x 2

− ≤ <1 0x –1

− ≤ < −2 1x –2

0 1

1

2

3

4

2 3 4–1
–1

–2

–3

–4

–2–3–4
x

y

0 1
1

2

3

4

2 3 4

–1
–1

–2

–3

–4

–2–3–4
x

y

n n + 1
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N.B.: The graph of y = [–x] lies on and below the line
y = –x.

3. y
x

= �
��
�
��2

 + 1

y
x x

x= �
��
�
��
= ⇔ ≤ < ⇔ ≤ <

2
0 0

2
1 0 2

N.B.: The graph of y
x

= �
��
�
��
+

2
1  lies on and below

the line y = x + 1.
4. y = 2 [x] – 1

N.B.: The graph of y = [2x] – 1 lies on and below the
line y = x – 1.

On the Graph of y = | [x] |

The graph of y = | [x] | consists of all parallel line
segments each being parallel to x-axis which lie on
and above the x-axis such that all parallel line segment
on the right side are on and below the line y = x and all
the parallel line segments on the left are on and above
the line y = –x.

1. y = | [x] |

∴ = = ⇔ = ⇔ ≤ <y x x x0 0 0 1

x [-x] = y

− < ≤ −2 1x 1

− < ≤1 0x
0

0 1< ≤x –1

1 2< ≤x –2

x
x

2
�
��
�
��

x
y

2
1�

��
�
��
+ =

0 2≤ <x 0 1

2 4≤ <x 1 2

− ≤ <2 0x –1 0

− ≤ < −4 2x –2 –1

x 2 [x] [2x] – 1 = y

0 1≤ <x 0 –1

1 2≤ <x 2 1

2 3≤ <x 4 3

0 1

1

2

3

4
x + 1

2 3 4–1
–1

–2

–3

–4

–2–3–4
x

y

0 1

1

2

3

4

2 3 4–1
–1

–2

–2–3–4
x

y
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Exercise on Graphing the Functions

1. Graph the following functions:

(i) f x
x x� � = +

2
(ii) f (x) = | x – 3 | – 4
(iii) f (x) = 2x – [x], where [x] = greatest integer
function.
(iv) f (x) = [x – 2] + 2, where [x – 2] = greatest integer
function.
(v) f (x) = 2x2 – 12x + 20
(vi) f (x) = –x2 + 8x – 16

2. Construct graphs for the following functions.

(i) y x=

(ii) f (x) = | 2x – 1 |

(iii) f (x) = 2x | x – 1|

(iv) f x
x� � = +�
��

�
��

4

2

(v) f x x
x

� � = − 1

Answers:
1. (i)

(ii)

(iii)

x | [x] | = y

− ≤ < −2 1x 2

− ≤ <1 0x 1

0 1≤ <x 0

2 3≤ <x 2

0 1

1

2

3

4

2 3 4–1
–1

–2

–3

–4

–2–3–4
x

y

0
x

y

f x ( ) = x x
2

 + | |

0 1

1

2

3

4

2 3 4–1
–1

–2

–3

–4

–2–3–4
x

f x x x ( ) = 2  – [ ]

y

0 1

1

–1

–2

–3

–4

2

2 3 4 5 6 7
x

f x x ( ) = |  – 3| – 4

(3, –4)

y
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(iv)

(v)

(vi)

2. (i)

(ii)

(iii)

(iv)

(v)

0 1

1

2

3

4

2 3 4–1
–1

–2

–3

–4

–2–3–4
x

f x x ( ) = [  – 2] + 2

y

0 1

1

2

3

4

2 3 4
x

f x x ( ) = 2(  – 3)  + 22

(3, 2)

y

0 1 2 3 4
x

f x x ( ) = –(  – 4)2

y

0 1½

1

2

3

4

2 3 4
x

f x x ( ) = |2  – 1|

y

0

1

2

1 2
x

f x x x ( ) = 2  |  – 1|

y

0

2

4

2–4 –2 4
x

y

f x ( ) =
x +

�� ��
4

2

0

1

2

1–2 –1 2
x

y
f x ( ) is undefined for 0  x < 1≤

f x ( ) = |x| – 1
[ ]x

y x=

0
x

y

y x=
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On the Inverse of a Function

Before defining the inverse of a function with respect
to different aspects, one must know the following
facts:

1. A function f A f A: → � �  is always on-to

function.

2. f A B: →  is one-one function ⇒ →f A:

f A B� � ⊂  is a bijection, where

A = domain of f
B = codomain of f
f (A) = range of f, also denoted by R (f).

3. If A and B are finite sets and f A B: →  is a

bijection, then n (A) = n (B), i.e. number of elements in
domain = number of elements in co-domain.
4. When there is only one value of the function y = f
(x) for every value of x = a in its domain, then the
function y = f (x) is said to be single valued function
in its domain.

The polynomial, the rational fraction, exponential
and logarithmic functions are important functions
which are single valued.
5. When there are two values of the function y = f (x)
for each value x = a in its domain, the function y = f (x)
is said to be two valued (or, double valued) function
in its domain.

Examples of double valued functions are:

(i) y a x a x a x a no
n n

n n
2

1
1

1 1= + + + ≥−
− +... � �

(ii) y
N

D

2 =  where N and D are polynomials in x.

6. When both y = f (x) and x = f–1 (y) obtained by
solving y = f (x) for x in terms of y, are single valued
functions, then the function f establishes a bijection
(or, a one-to-one correspondence) between its domain
and range.

Now, the definition of the inverse of a function is
provided.

Definition 1: (In terms of one-one function): The
inverse of a one-one function f, denoted by f–1 is the
function which is defined for every y = f (x) in the
range of f by f –1 (y) = x, i.e. if f is a function which is
one-one in a part D of its domain and R is the set of

values taken by f at points of D, then the function f–1

with domain R and range D, denoted by f–1 (y) = x if y

= f (x) for every y R∈  is said to be the inverse of the

function f on D.
Notes:

1. In some cases when the given function f is not
one-one function in the entire domain, a part D of its
domain is selected where the function f is one-one
and the inverse of a function will exist over f (D) for
the new domain of f.
2. A function has an inverse ⇒  it is a one-one
function in its domain and the equation y = f (x) can
be solved for x in terms of y, i.e. x = f –1 (y) which must
be single valued. For an example, y = 3x + 2 is a 1-1
function.

⇒ =
−

x
y 2

3
 is a single valued function.

3. It may or may not be possible to find the inverse of
a given function in the following cases:
If the given equation y = f (x) gives x = f–1 (y) which is
double valued function or the given equation is
double valued function, then in both cases, the given
function (or, equation) y = f (x) has no inverse, as for
an example,

y x x y= + ⇒ = ± −2
9 9  which determines

two different values of x for each value of y ≠ 9  in

the range of f.

4. When it is said that the inverse x = f–1 (y) of the
function y = f (x) is single valued for y = b in range of
the original function y = f (x), it is meant that for each
member y = b of the range of the original function y =
f (x), there is exactly only one element in the domain
of the original function y =f (x).

Definition 2: In terms of one-one and on-to
function: If f is a one-one and onto from A to B, then
there exists a unique function f B A

− →1
:  such

that for each y B∈  there exists exactly only one
element x A∈  such that f (x) = y, then f–1 (y) = x. The
function f–1 so defined is called the inverse of f.

Further, if f –1 is the inverse of f, then f is the inverse
of f–1 and the two functions f and f –1 are said to be the
inverse of each other.
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Notes:

1. A function f A B: →  has an inverse

f f A B
− ⇔ →1

:  is one-one and on-to.

2. If a function f is continuous, monotonic and
defined on a real interval working as a domain of the
given function f, then a continuous monotonic inverse
f–1 exists. For example, f (x) = y = 2x + 3 where 0 < x <

1, has an inverse f y x y
−

= = −
1 1

2
3� � � �  where 3 <

y < 5.
The variables x and y are often interchanged in the

inverse function, so that in this example f (x) = y = 2x
+ 3 is said to have the inverse.

f x y x
−

= = −
1 1

2
3� � � �

This can be written

f x x: on→ +2 3 0 1,

f x x
−

→ −
1 1

2
3 3 5: on� � ,

How to Find f–1 as a Function of x

Step 1: The equation y = f (x) should be solved for x
in terms of y.
Step 2: x and y should be interchanged. The resulting
equation will be y = f–1 (x).

Solved Examples

1. Find the inverse of y x= +1

2
1 .

Solution:
Step 1: On solving for x in terms of y:

y x= +
1

2
1

⇒  2y = x + 2

⇒  x = 2y – 2
Step 2: On interchanging x and y:

y = 2x – 2

Hence, the inverse of the function f x x� � = +
1

2
1

is the function f–1 (x) = 2x – 2.

2. Find the inverse of the function y = x2, for x > 0.
Solution:
Step 1: On solving for x in terms of y:

y = x2

⇒ = = =y x x x
2  (� | x | = x because x >

0)
Step 2: On interchanging x and y:

y x=
The inverse of a function y = x2, x > 0 is the

function y x= .

One should note that, unlike the restricted function
y = x2, x > 0 the unrestricted function y = x2 is not one-
one and on-to and therefore has no inverse.

On the Criteria to Test Whether
a Given Function f has its Inverse

There are following criteria to test whether a given
function y = f (x) from its domain D to its co-domain C
has an inverse.

Criterion 1: One-oneness and ontoness of the
function, i.e. one should show that the given function
y = f (x) from its domain D to its codomain C is a one-
one and on-to function.

Note:
Criterion 1: Is fruitful to test the existance of an
inverse of the function y = f (x) whose domain D and
whose codomain C are known.
Criterion 2: Single valuedness of both the function
f and f–1, i.e. one should show that both the given
function y = f (x) defined on its domain and x = f–1 (y)
defined on the range of y = f (x) are single valued.

Criterion 3: One-oneness and single valuedness of
a function, i.e., one should show that the function y =
f (x) from its domain D to its range R (in case range is
known but its codomain is not known) is one-one
and then show that the function x = f–1 (y) obtained
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by solving the given function y = f (x) for x in terms of
y is a single valued function.

Notes:
1. In case of function whose domain and range are
known but whose codomain is not known, one should
suppose that range is coincident with codomain and
then use any one of the criteria to show whether the
given function has the inverse.
2. In case of a function whose domain and range are
known, one can use either the criterion (2) or the
criterion (3) which is easy.

Criterion 4: One should see whether a given function
y = f (x) is continuous, monotonic and defined on a
real interval working as a domain of the given function
f.

Note: Criterion (4) is fruitful to test the existance of
an inverse of the function y = f (x) whose domain is
known and its range can be determined by using any
mathematical manipulation.

To remember:
1. The domain of the inverse of a function f–1 is the
set of all values of y for which x = f–1 (y), i.e. the range
of the function f, i.e. the domain of f–1 is the range of
f.
2. The range of the inverse of a function f–1 is the set
of all values of x for which y = f (x), i.e. the domain of
f, i.e. the range of f–1 is the domain of f.
3. A function which has an inverse is said to be
invertible.
4. The symbol denoted by f–1 is read as “eff inverse”.

Solved Examples

1. Test whether the function f x y: →  defined by

f x
x

x
� � = −

−
1

3
 where.

x = R – {3} and Y = R – {1}, R being the set of reals,
has its inverse.

Solution: For x x R1 2 3, ,∈ − � �
f (x1) = f (x2)

⇒
−
−

=
−
−

x

x

x

x
1

1

2

3

1

3

1

3

⇒  (x1 – 1) (x2 – 3) = (x1 – 3) (x2 – 1)

⇒  –3x1 – x2 + 3 = –3x2 – x1 + 3

⇒  2x2 = 2x1

⇒  x1 = x2

∴  f is 1 – 1

Also, any y Y∈ , y
x

x
=

−
−

1

3

⇒  y (x – 3) = x – 1

⇒  x (y – 1) = –1 + 3y

⇒ =
−
−

≠x
y

y
y

3 1

1
1,

∴ ∈ ⇒ ∃ =
−
−

∈y Y x
y

y
x

3 1

1
 such that y = f (x)

⇒  all the elements of y are f-images of an element in
x, i.e., f is on-to.

Hence, f is one-one and on-to ⇒  f has an inverse.
Let the inverse of f be g, i.e. g = f–1

Then g y x
y

y
x f y

y

y
� � � �= =

−
−

⇒ = =
−
−

−3 1

1

3 1

1

1
.

Thus f y
y

y

− =
−
−

1 3 1

1
� �  ⇒ =

−
−

−
f x

x

x

1 3 1

1
� �  is

the inverse function of f.

2. Test whether the function f : −�
��

�
��
→ −

π π
2 2

1 1, ,

defined by f (x) = sin x, x∈ −�
��

�
��

π π
2 2

,  has its inverse

if so, find f–1.

Solution: x x1 2≠  and x x1 2 2 2
, ,∈ −�

��
�
��

π π

⇒ ≠ ⇒ ≠sin sinx x f x f x1 2 1 2� � � � � � � �
⇒ f is one-one.

Again any y x∈ − ⇒ ∃ ∈ −�
��

�
��

1 1
2 2

, ,
π π

 such

that f (x) = y, i.e. y = sin x ⇒  f is on-to.
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Hence, f is one-one and on-to ⇒  f has its inverse
which is given by

f
−

− → −�
��

�
��

1
1 1

2 2
: , ,

π π

defined by

f y y y
− −= ∈ −1 1

1 1� � � �sin , ,

⇒ = ∈ −− −
f x x x

1 1
1 1� � � �sin , ,  is the required

inverse of the given function.
3. Does the function y = x2 have an inverse in the
interval [–1, 1]?
Solution: y = f (x) = x2 is the given function whose

domain is R and − ⊆1 1, R

–1 < x < 1
⇒  –1 < x < 0 and 0 < x < 1

⇒  1 > x2 > 0 and 0 < x2 < 1

⇒  0 < x2 < 1

⇒  0 <  f (x) < 1

⇒  Range of f is [0, 1]

Now y x x y= ⇒ = ±2  for y∈ 0 1,

∴ = ±x y

⇒  for each value of y in [0, 1], the range of f, x
does not have a unique value.

⇒ = ±x y  is not a single valued function.

Hence, f has no inverse.
4. Show that y = | x | has no inverse. Restrict its domain
suitably so that f–1 may exist and find f–1.
Solution: y = | x |

⇒ =
≥

− <
	
�

y
x x

x x

,

,

0

0

Clearly, D (y) = R and R y R� � � � �= ∪ = ∞+
0 0 ,

now, for every x D f∈ � � ,  a unique value of y R y∈ � �
is determined ⇒ =y x  is a single valued function

for every x D f∈ � � .
Now, y = | x | for y∈ ∞0 , �

⇔ =y x
2 2

⇔ = ±x y  which is a double valued function for

every y R∈ ∪+
0� � .

⇒  y = | x | has no inverse.

However, if the domain of f is restricted to 0 , ∞�
or −∞ , 0� � , f will have the inverse.

Case 1: When the restricted domain is 0 , ∞�  then y

= | x | = x, x > 0

⇒ = = ∞y x D f, ,� � �0  and R f� � �= ∞0 ,

Now, for every value of x D f∈ � � , a unique value

of y R f∈ � �  is determined.

⇒  y = x is a single valued function ∀ ∈x D f� � .
Again, y = f (x) = x

⇒ = ⇒ = =−
x y f y x y

1� �

⇒ = = ∞
−

D f R f
1

0� � � � �,

⇒  For ever value of y R f∈ � � , a unique value of

x D f∈ � �  is determined.

⇒  x = y is a single valued function for every

y R f∈ � � .
Hence, y = f (x) = x is single valued function for

every x D f∈ � �  as well as x = f–1 (y) = y is a single

valued function for every y R f∈ � � .
⇒  y = f (x) has its inverse in its restricted domain

0 , ∞� .
Now, since x = f–1 (y) = y
⇒  y = f–1 (x) = x is the required inverse for y = f (x)

= x.

Case 2: When the restricted domain is −∞ , ,0� �  then

y = –x, x < 0

⇒ =− = −∞y x D f, ,� � � �0  and R f� � � �= ∞0 ,

Now, it is observed that for every x D f∈ � � ,  a

unique value of y R f∈ � �  is determined.
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⇒  y = f (x) = – x is a single valued function for

every value of x D f∈ = −∞� � � �, 0 .

Again, y = f (x) = –x, D f� � � �= −∞ , 0  and

R f� � � �= ∞0 ,  which

⇒ − = ⇒ = −x y x y

⇒ = = −−
f y x y

1� �

⇒ = −−
f y y

1� �  which is a single valued

function for every y R f∈ � � .
⇒  Both y = –x in its domain and x = –y in the

range of f are single valued functions.
⇒  y = –x has its inverse which is x = f–1 (y) = –y,

i.e., f–1 (x) = –x, D f R f
−

= = ∞
1

0� � � � � �, .

5. Does the function f (x) = 1 – 2–x have an inverse?
Solution: f (x) = 1 – 2–x is defined for every value of

x R∈
Further, f (x) = 1 – 2–x

⇒  y = 1 – 2–x where y = f (x)

⇒  y – 1 = – 2–x

⇒  1 – y = 2–x

⇒  x = –log2 (1 – y) which is defined for y < 1

R y� � � �= −∞ , 1

Now, for every value of x D f R∈ =� � ,  a unique

value of y R f∈ = −∞� � � �, 1  is determined.

⇒  f (x) = 1 – 2–x is single valued in its domain.

Also, for every value of y R f∈ � � ,  a unique value of

x D f∈ � �  is determined from the equation x = f–1 (y) =

–log2 (1 – y) is a single valued function in the range of
the given function y = 1 – 2–x.

Hence, y = 1 – 2–x exhibits a one-one correspon-
dence between its domain and range.

⇒  y = 1 – 2–x has an inverse.
Now, f–1 is found in the following way:
x = f–1 (y) = –log (1 – y)
⇒  f–1 (x) = –log (1 – x) which is the required

inverse of the given function f (x) = 1 – 2–x.

6. Find the inverse of the function defined as:

f x

x x

x x

x x

� � =
<
≤ ≤
>

	

�

��

,

,

,

1

1 4

8 4

2

Solution: The given function is piecewise function
defined as:

f x

x x

x x

x x

� � =
<
≤ ≤
>

	

�

��

,

,

,

1

1 4

8 4

2

Now, y f x x f y= ⇒ = −� � � �1

y = x, x < 1
⇒  x = y, y < 1

y x x= ≤ ≤2
1 4,

⇒ = ≤ ≤x y y, 1 16

�1 4 1 16
2

≤ ≤ ⇒ ≤ ≤x x� �

y x x= >8 4,

⇒ = >x
y

y
2

64
16,

� x x x> ⇒ > ⇒ >4 2 8 16� �
Hence,

x

y y

y y

y
y

=
<
≤ ≤

>

	



�
�

�
�
�

,

,

,

1

1 16

64
16

2

⇒ =
<
≤ ≤

>

	



�
�

�
�
�

−
f y

y y

y y

y
y

1

2

1

1 16

64
16

� �
,

,

,
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⇒ =
<
≤ ≤

>

	



�
�

�
�
�

−
f x

x x

x x

x
x

1

2

1

1 16

64
16

� �
,

,

,

is the required inverse of the given piecewise
function.

Note: While finding the inverse of a piecewise
function, one should find the inverse of each function
defined in its respective sub domain.

Exercises on finding the inverse of a function

Exercise 1.25

Find the inverse of the given function, if there is one
and determine its domain.
1. f (x) = x3

2. f (x) = x2 + 5

3. f x
x

� � = 1
2

4. f (x) = (x + 2)3

5. f x
x

x
� � = −2 1

6. f x
x

x
� � = +

−
4

2 3

7. f x
x

� � =
+

8

1
3

8. f x
x

� � =
−

2

8 1
2

9. f (x) = 2 | x | + x

10. f x
x

� � =
+
3

1

Answers:

1. f x x
− =1 3� �

domain: −∞ ∞,� �

2. No inverse
3. No inverse

4. f x x
− = −1 3 2� �

domain: −∞ ∞,� �

5. f x
x

− =
−

1 1

2
� � � �

domain: R – {2}

6. f x
x

x

−
= −

+
−

�
��

�
��

1 3 4

1 2
� �

domain: R − 	
�
���

1

2

7. f x
x

x

− = −1
3

8� �

domain: R – {0}

8. f x
x

x

− = +1 2

8
� �

domain: x < –2 or x > 0
9. No inverse
10. No inverse

Exercise 1.26

Perform each of the following steps on the given
function:
(a) Solve the equation for y in terms of x and express
y as one or more functions of x:
(b) For each of the functions obtained in (a), determine
if the function has an inverse, and if it does, determine
the domain of the inverse function.
1. x2 + y2 = 9
2. x2 – y2 = 16
3. xy = 4
4. y2 – x3 = 0
5. 2x2 – 3xy + 1 = 0
6. 2x2 + 2y + 1 = 0

Answers:

1. (a) f x x f x x1
2

2
2

9 9� � � �= − = − −, ;

(b) Neither has an inverse.
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2. (a) f x x f x x1
2

2
2

16 16� � � �= − = − −, ;

(b) Neither has an inverse.

3. (a) f x
x

� � = 4

(b) f x
x

− =1 4� � , domain: R – {0}.

4. (a) f x x f x x1
3

2
33� � � �= = −,

(b) f x x1
1 23−

=� � ;  domain: R

f x x2
1 23−

=� � ;  domain: R.

5. (a) f x
x

x
� � = +2 1

3

2

(b) No inverse.

6. (a) f x
x� � = −

+2 1

2

2

(b) No inverse.

Exercise 1.27

Determine if the given function has an inverse, and if
it does, determine the domain and range of the given
function.

1. f x x� � = − 4

2. f (x) = (x + 3)3

3. f x x
x

x� � = − >
2 1

0,

4. f x
x

x� � =
+

≤1

4
0

2
,

5. f (x) = x5 + x3

6. f (x) = x3 + x

Answer:

1. domain of f
− ∞1

0: , �  range of f
− ∞1

4: , �

2. domain of f R
−1

:  range of f–1: R

3. domain of f–1: R; range of f
− ∞1

0: ,� �

4. domain of f
− �
�

�
��

1
0

1

4
: , ; range of f

− −∞1
0: ,�

5. domain of f–1: R; range of f–1: R

6. domain of f–1: R; range of f–1: R
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2

Limit and Limit Points

These two concepts are defined based on the
following concepts.

1. Open εεεεε-neighbourhood of a Given Point

The set of all points (on the number line, or in a plane,
or in an n-dimensional space, or in any space where
the distance between any two points can be measured)
whose distances from a given point are less than a given
positive number ‘ε’ is called an open ε-neighbourhood
of a given point.

In notation, we express an open ε-neighbourhood
of a given point x0 on the number line as:

Nε (x0 ) = {x ∈ R : | x – x0 | < ε, ε > 0}

Notes: 1. x ∈ Nε (x0 ) ⇔ | x – x0 | < ε
⇔ x ∈ (x0 – ε, x0 + ε )′

2. (i) on the real line, an open e-neighbourhood of a
given point is a line segment (a part of the real line)
without (not counting) the end points whereas the given
point whose open e-neighbourhood is sought is the
midpoint of the line segment, i.e., an open interval with
a midpoint x0 and without left end point x0 – e and
right end point x0 + e represented as (x0 – e, x0 + e ) is
an e-neighbourhood of a given point x0.

(ii) In two dimensional space (in the real plane or
complex plane), an open ε-neighbourhood of a given
point is the set of all those points excluding the

circumference which is also termed as boundary of
the circle in real analysis. In other words, a circle
centred at a given point (whose open ε-
neighbourhood is sought) and whose radius is the
given number ∈ is an open ε-neighbourhood of the
given point if we exclude all those points whose
distances from the center equal the radius. In real
analysis, a circle in a plane is termed as circular
neighbourhood of the given point.

(iii) In three dimensional space, it is the set of all
those points inside the sphere. A sphere is also
termed as spherical neighbourhood of a given point.

3. An open ε-neighbourhood of a given point is also
termed as:
(i) Open sphere (centred at the given point with a given
radius ε) and it is symbolized as Sε (x0 ) or S (ε, x0 ).
(ii) Open ball (centred at the given point with a given
radius ε ) and it is symbolized as Bε (x0 ) or B (ε, x0 ).

2. A Closed εεεεε-neighbourhood of
a Given Point

The set of all points (in any space) whose distances
from a given point are less than or equal to a given
positive number ‘ε’is called a closed ε-neighbourhood
of a given point.

–∞ +∞x0 + εx0 – ε

ε ε

x0

∈

x 0x 0
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2. The world “every, each or all” used before ε-
neighbourhood or neighbourhood emphasizes
firstly that the said properly must hold even if the
ε-neighbourhood or neighbourhood of the given point
P is arbitrarily small and secondly that if there exists
even one ε-neighbourhood or neighbourhood of the
point P which does not contain at least one point of
the set which is not P, P can not be said to be a limit
point of the set A.

Notes: 1. The limit points of a set may or may not
belong to the set.
2. The limit point of a set is also termed as:
(i) Limiting point
(ii) Accumulating point and
(iii) Cluster point.
3. The set of all the limit points of a set A is called the
derived set which is denoted by A′ or D (A), i.e.,
(i) A′ = D (A) = {x0 ∈ R : Nε (x0) – {x0} ∩ A ≠ φ,
∨ Nε (x0)} = {x0 ∈ R : x0 is the limit point of A} on the
number line R.
(ii) A′ = D (A) = {x0 ∈ X : Sε (x0) – {x0} ∩ A ≠ φ,
∨ Sε (x0)} in a metric space X.
(iii) A′ = D (A) = {x0 ∈ X : N (x0) – {x0} ∩ A ≠ φ,
∨ N (x0)} in a topological space X.
4. x0 ∈ D (A) ⇔ x0 is a limit point of A.

⇔ Sε (x0) – {x0} ∩ A ≠ φ in a metric space
⇔ ((x0 – ε, x0) ∪ (x0, x0 + ε)) ∩ A ≠ φ on the real line
⇔ N (x0) – {x0} ∩ A ≠ φ in a topological space

5. We may divide a limit point of a set into two halves
namely.
(a) Left limit point and
(b) Right limit on the number line R.

Now we define each one on the number line R in
the following way:
(a) Left limit point of a set: A point x0 ∈ R is a limit
point of the set A ⊆ R ⇔ ∨ ∈ > 0, there is at least one
point x ∈ A such that 0 < x0 – x < ε (x0 – ε < x < x0).
i.e. (i) A point x0 ∈ R is right limit point (or right hand)
limit point of the set A ⇔ x0 is a limit point of the
subset of A lying to the right of the point x0.
(b) Right limit point of a set: A point x0 ∈ R is a right
limit point of a set A ⊆ R ⇔ ∨ ε > 0, there is at least
one point x ∈ A such that 0 < x – x0 < ε (x0 < x < x0 +

ε ) Further, one should keep in mind that x0 ∈ R is a
limit point of a set A ⊆ R ⇔ x0 ∈ R is a left limit point
or a right limit point of the set A ⊆ R.

i.e. (ii) A point x0 Î R is left limit point (or left hand)
limit point of he set A Û x0 is a limt point of the subset
of A lying to the left of the point x0.
6. A set A is closed ⇔ each limit point of the set A is
a member (point) of the set A ⇔ A point x is a limit
point of a set A and x ∈ A ⇔ the set A contains all its
limit points ⇔ D (A) ⊂ A.
7. x0 ∉ D (A) ⇔ x0 ∉ closure of A – {x0} ⇔ x0 is not
a limit point of the set A.
8. More on closure point and closure of a set: A
closure point or closure of a set is also defined in
terms of the limit point of a set.
(i) Closure point of the set (in terms of the limit
point): A point x0 in a space X is called a closure
point of the set A contained in the space X (A ⊆ X) ⇔
x0 ∈ A or x0 is a limit point of A.
(ii) Closure of a set: Closure of a set denoted by • is
the set of all points of A together with all those points
(in space) which are arbitrarily close to A. That is, the
closure of A, denoted by •, is the union of the set A
and the set of all its limits points, i.e., • = A ∪ D (A).

Now, we give the definition of an isolated point of
a set.

2. Isolated Point of a Set

It is also defined with respect to different aspects.

Definition (i): (In terms of neighbourhood): A point
of a set is called an isolated point of the set ⇔ there
exists a neighbourhood of that point in which there is
no other point of the set. That is, a point of the set
whose one neighbourhood includes in itself
(contains) no other point of the set, i.e., Nx0

 = {x0},
is called an isolated point of the set.

Definition (ii): (In terms of deleted neighbourhood):
A point of a set whose one deleted neighbourhood
does not intersect the given set is called an isolated
point of the set. That is, a point belonging to the set

–∞ +∞x0 + εx0 – ε x0

N xε ( )0
A
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A

X

N x( )
ε0

A

N x( )

x0

which is not the limit point of the set is called an
isolated point of the set.

Hence, in notation we can express the definition
of an isolated point of the set in different spaces in
the following ways:
(a) A point x0 ∈ A ⊆ R is called an isolated point of
the set A ⇔ Nε (x0) – {x0} ∩ A = φ ⇔ Nε (x0) ∩ A =
{x0} for some Nε (x0).
(b) A point x0 ∈ A ⊆ X, where X is a metric space, is
called an isolated point of the set A ⇔ Sε (x0) – {x0} ∩
A = φ ⇔ Sε (x0) ∩ A = {x0} for some Sε (x0).
(c) A point x0 ∈ A ⊆ X, where X is a topological
space, is called an isolated point of the set A ⇔ N x0

{x0} ∩ A = φ ⇔ Nx0
 ∩ A = {x0}, for some Nx0

Notes: 1. An isolated point of a set is a point of the
set.
2. x0 is an isolated point of the set A ⇔ x0 is not a
limit point of the set A ⇔ x0 ∉ D (A).
3. Roughly speaking, an isolated point of a set is a
point x0 of the A around which there is no point of the
set A which is different from (distinct  from, or other
than) the point itself namely x0.

Kinds of the Limit Point of a Set

There are two types of the limit point of a set namely:
(a) Interior point of a set.
(b) Boundary point of a set.

Each one is defined with respect to different aspects:
(a) Interior point:
Definition (i): (In terms of the limit point): An interior
point of the set is a point of the set which is not the
limit point of the complement of the set. That is, a
limit point x0 of the set A is an interior point of the set
A ⇔ there are only the points of the set A in some
neighbourhood of the point x0.

Definition (ii): (In terms of neighbourhood): A point
x0 in a space X is called the interior point of the set A
contained in the space X (A ⊆ X) ⇔ There is a
neighbourhood of the point x0 which is a subset of
the set A whenever the point x0 is in the set A ⇔ x0 ∈
A and ∃ a Nx0

 such that Nx0
 ⊆ A.

Hence, in notation, we can express the definition
of the interior point of a set in different spaces in the
following ways:

(i) On the number line, a point x0 in a set A ⊆ R is
called an interior point of the set A ⇔ x0 can be en-
closed in an interval (x0 – ε, x0 + ε), ∈ > 0, such that all
the point of this interval are the points of the set A,
e.g: every point of a line segment other than (not
counting, or without) the end points of the line seg-
ment is the interior point of the set composed of all
points of the line segment.
(ii) In a metric space X, a point x0 in a set A ⊆ X is
called an interior point of the set A ⇔ x0 can be en-
closed in an ε-neighbourhood Nε (x0) such that all the
points of this ε-neighbourhood Nε (x0) are the points
of the set A.

(b) Boundary point:

Definition (i): (Intuitive concept): A point x0 in a
space X is called a boundary point of the set A
contained in a space X (A ⊆ X) ⇔ x0 is arbitrarily
close to both the set A and its complement AC. That
is, the points which are arbitrarily close to both the
set and the complement of the set are called boundary
points of the set.

Definition (ii): (In terms of limit point): A point x0 in
a space X is called a boundary point of the set A
contained in a space X (A ⊆ X) ⇔ x0 is the limit point
of both the set A and its complement AC.

Definition (iii): (In terms of neighbourhood): A point
x0 in a space X is called boundary point of the set A
contained in a space X (A ⊆ X) ⇔ every
neighbourhood of the point x0 intersects both the set
A and the complement of the set A (AC ) at some points
⇔ x0 is a point of closure of both the set A and its
complement AC.
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Hence, in notation we can express the definition
of the boundary point of a set in different spaces in
the following ways:
(i) A point x0 on the number line R is a boundary
point of the set A contained in a space R (A ⊆ R) ⇔ ∨
Nε (x0), Nε (x0) ∩ A ≠ φ, Nε (x0) ∩ AC ≠ φ.
(ii) A point x0 in a metric space X is a boundary point
of the set A contained in the space X (A ⊆ X) ⇔ ∨
Sε (x0), Sε (x0) ∩ A ≠ φ, Sε (x0) ∩ AC ≠ φ.
(iii) A point x0 in a topological space X is a boundary
point of the set A contained in a space X (A ⊆ X) ⇔ ∨
Nx, Nx ∩ A ≠ φ, Nx ∩ AC ≠ φ.

Besides these, in connection with the interior points
of the set and the boundary points of the set, there
are two more sets namely:
1. Interior of a set and
2. Boundary of a set

Which are defined in the following ways.

1. Interior of a set: A set whose members are all the
interior points of the set is called interior of the set,
that is, the set A = {x: x ∈ A and some Nx ⊆ A} is
called the interior of the set A.

The symbol to denote the interior of a set A is int
(A), Ai or A0.
2. Boundary of a set
Definition (i): (intuitive concept): The boundary of
a set A is the set of all those points which are arbitrarily
close to both the set A and its complement AC.
Definition (ii): A set of all those points which are
boundary points of a set A is called the boundary of
a set A.

The boundary of a set A is symbolized as:
b (A), Ab or ∂ (A)
Hence, in terms of interior point and boundary

point of a set, we can say,
A set is closed ⇔ all the limit points (interior and

boundary points both) of a set belong to the set.
Similarly, in terms of the interior and the boundary

of a set, we can express the closure of a set A as:

A  = int (A) ∪ b (A)
Now we define one more important concept know

as “open set” in the following way:

Open set: A set A of points (on the number line, or in
the plane, or in ordinary space, or in n-space or in any
space) is called open if, whenever it contains a point

P, it also contains all points (on the number line, or in
the plane, and so forth) near P, that is, all points of
some interval with midpoint P. That is, a set A
contained in a space X (A ⊆ X) is called open ⇔
every point of the set A is an interior point of the set
A (i.e., A = int (A)), or in other words, A set A contained
in a space X (A ⊆ X) is called open given any point x
in A, ∃ a neighbourhood of the point x (Nx) such that
Nx ⊆ A.

Notes: 1. Roughly speaking, the ‘boundary’ of a
region (a set of points which is either a non empty
open set or such a set together with some or all of the
points forming its boundary), if it exists, is the set of
points in the region from those not in (Simply to avoid
clumsiness of language we often say ‘points are in a
region’ instead of ‘the points are points of region’.
All the regions considered by us will be what are known
as ‘open region’; so that in the cases in which we use
it, our definition of boundary agrees with the usual
definition, in which points of the region may also be
the points of the boundary).
2. In 3-pace, the closure of a set A is the set A together
with all its skin, whether the skin is part of the set or
not. The interior of the set A is the set A minus any
part of the skin which it contains. The boundary of a
set A is its skin.

3. End points of any interval on the number line are
the boundary points of the interval.
4. A boundary point may belong to either the set A
or its complement AC but the boundary point is the
limit point of both of them.
5. Every point of an open set is an interior point lying
in the set itself.
6. x0 is a limit point of A x A⇒ ∈0  and x A0 ∉ .
7. x A x0 0∈ ⇒  is a closure point of the set A
trivially.
8. Every limit point of the set A is also a point of
closure of the set A but not conversely.

A A0 b A( )A
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9. Every interior point of the set A is also a limit point.

Dense Set

We consider three kinds of sets:
1. Dense set or dense in itself set.
2. Everywhere dense set in a space.
3. Non-dense set or nowhere dense set.

Each one is defined in the following ways:
1. Dense set (dense in itself set)
Definition (i): (Intuitive concept): A set in a space is
said to be dense in itself (or simply dense set) Û  For
any two distinct arbitrary points in the set, there is at
least one distinct point between the two given points.
Definition (ii): (In terms of neighbourhood): A set A
in a space X is said to be dense in itself Û  Every
neighbourhood of every point x of the set contains at
least one point of the set which is not x.
Definition (iii): (In terms of the limit point): A set A
in a space X is said to be dense in itself Û  Every point
of the set A is the limit point of the set A.
2. Everywhere dense set in a space
Definition (i): (Intuitive concept): A dense set A in a
space X means that the points of the set A are distrib-
uted ‘thickly’ throughout the space X. In other words,
the set A contains points as near as we like to each
point of the space X Û  No neighbourhood of any point
in the space X is free from the points of the set A Û
The set A is dense (or, every where dense) in a space X.
Definition (ii): (In terms of distance): A set A in a
space X A X⊆� �  is said to be dense (or, every-
where dense) in the space X ⇔  Given any point x in
the space X x X∈� �  and any small number ε > 0 ,
there is at least one an other number x0 in the set
A x A0 ∈� �  such that the distance between the point

x in the space X and the point x0 in the set A is less
than the given small positive number ε , i.e.,
(a) x x− <0 ε  on the number line
(b) d x x, 0� � < ε  in a metric space
(c) x x− <0 ε  in a normed space

Definition (iii): (In terms of neighbourhood): A set
A in a space X is dense (or, everywhere dense) in the
space X ⇔  Every neighbourhood of every point
P N P� �� �  in a space X contains at least one point of

the set A.

Definition (iv): (in terms of closure point): A set A in
a space X is dense (or, everywhere dense) in the space
X ⇔  Every point of the space X is a point of closure

of the set A ⇔  Every point of the space X is a point
of the set A or a limit point of the set A (i.e.
X A A D A= = ∪ � � ).

Definition (v): (In terms of limit point): A set A in a
space X A X⊆� �  is said to be dense (or everywhere
dense) in the space X ⇔  Every point of the space
X – A is a limit point of the set A).

3. Nowhere dense (or, non-dense) set in a space

Definition (i): (In terms of neighbourhood): A set A
in a space X A X⊆� �  is said to be nowhere dense
(non-dense) in the space X ⇔  Every neighbourhood
of every point in a space X contains a certain
neighbourhood of a point in a space such that this
certain neighbourhood is free from the points of the
set A ⇔  For every point x in the space X x X∈� �
and each neighbourhood of x (N (x)), there is a
neighbourhood of an other point y (N (y)) in the
space X y X∈� �  such that N y N x� � � �⊂  and
N y A� � ∩ = ⇔φ  interior of the closure of the set

A is empty (i.e., A A� � � ��

= =int φ ).

Definition (ii): (In terms of dense exterior): A set with
dense exterior is said to be a non-dense set, i.e., A set
A in a space X A X⊆� �  is said to be nowhere dense
(or, non-dense) in the space X ⇔  The complement
of the closure of the set A is dense in the space X.

Definition (iii): (In terms of closure and boundary):
A set whose closure is a boundary set is a non-
dense set.

Notes: 1. The statement :The interior of the closure
of the set A is empty” means that the closure of the
set A has no interior point.
2. The complement of the closure of a set is its
exterior.
3. One should note that nowhere dense sets are
closed sets with no interior points, i.e., nowhere dense
sets are closed sets with only boundary points
whereas more generally closed sets are sets with in-
terior points and boundary points. A nowhere dense
set is thought of as a set which does not cover very
much of the space.
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4. A set A is nowhere dense in R (real line) ⇔
For each x and each neighbourhood N x� �
= − +x xε ε,� � , there is another neighbourhood
N y y y y X� � � �= − + ∀ ∈ε ε, ,  such that
N y N x� � � �⊂  and N y A� � ∩ = φ .

Perfect set: A set A in a space X is perfect ⇔  The
set A is dense in itself and closed ⇔  Every point of
the set A is a limit point of the set A and every limit
point of the set A belongs to the set A D A A⇔ =� � .

Sequence and Its Related Terms

A sequence is nothing but a special kind of the
function whose domain is the set of all natural numbers
and the range is a set contained in a space, i.e., A
function f N S: →  is called a sequence, where

N = the set of natural numbers,
S = a set contained in a space X, i.e.,

S X⊆ , where

X = any space, namely, a real line, a metric space, a
normed spaced or a topological space, etc.

S R R= ⊆ ⇒1  the sequence is real sequence, i.e.,
A real sequence is a function from the set N of natural
numbers into the set R1 of real numbers where
R R1 ⊆ .

Hence, 1. S X⊆  where X = a metric space ⇒
the sequence is said to be in a metric space.
2. S X⊆ , where X = a normed space ⇒  the
sequence is said to be in a normed space.
3. S X⊆ , where X = a topological space ⇒  the
sequence is said to be in a topological space.

One should understand real sequence wherever
the term sequence is used (as we will consider them
only).

Notation: A sequence with general term xn is written
as: {xn}, (xn) or <xn>

Nomenclature of Terms of the Sequence

The term written on the extreme left is called ‘first
term’ next to it ‘second term’ and so on and a term
whose subscript is n, i.e., xn = nth term which is a
function of n always.

Different Ways of Describing a Sequence

Generally, there are two ways to describe a sequence.
1. A sequence is described by listing its first few
terms till we get a rule for writing down the other
different terms of the sequence, e.g.

1
1

2

1

3

1

4
, , , ,�
���

�	

 is the sequence whose nth term is

1

n
.

2. An other way of representing the terms of the
sequence is to specify the rule for its nth term, e.g: the

sequence 1
1

2

1

3

1

4
, , , ,�
���

�	

 can be written as {xn}

where x
n

n Nn = ∀ ∈
1

,  gives a rule for the nth term

of the sequence.

Different Types of Sequence

1. Constant sequence: The sequence {xn} where
x c R n Nn = ∈ ∀ ∈,  is called a constant sequence.

In this case x c c c cn� � � �= , , , ,� .
2. Cauchy sequence: A sequence {xn} is called
cauchy sequence ⇔  After a certain term of the
sequence, the numerical difference between any two
terms of the sequence is less than any given small
positive number ε .

In notation, a sequence {xn} is a cauchy sequence
⇔  given any small number ε > 0 , there is an integer
N  depending on ε εi.e. N� �  such that

x x i Ni j− < ∀ >ε, , j > N, i.e. after a certain term
namely the Nth term, the difference or the distance
between any two terms of the sequence is less than ε .

Notes: (i) It is not necessary that all the terms of a
sequence should be different from each other.
(ii) Care must be taken to distinguish between the
range of the sequence and the sequence itself, e.g. the
sequence {xn}, where x n Nn

n= ∀ ∈– ,1� �  is given

x1

1 2 3 4 i j

x2 x3 x4 xi xj
xNε

Nε
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by xn� � � �= − −1 1 1 1, , , ,�  whose range is −1 1,� � ,
i.e. the range of this sequence {xn} is a finite set
whereas the sequence is an infinite set.
(iii) A sequence, by definition, is always infinite while
the range of the sequence need not be infinite, e.g:
The sequence {xn} for which x n Nn = ∀ ∈1, , i.e.

xn� � � �= 1 1 1 1, , , ,�  is an infinite sequence whose
range is {1} which is a finite set.
(iv) One should always remember that whenever it is
written “a term (or, terms) of a sequence”, it always
means a member (or, members) of the sequence.

Boundedness and Unboundedness

In the light of definitions of a bounded set and an
unbounded set, boundedness and unboundedness
of a sequence and a function are defined. This is why
firstly the definition of a bounded set is presented.

Boundedness of a Set

1. Bounded below set (or a set bounded on the left)

Definition: A set D is said to be bounded below or
bounded on the left ⇔ ∃  a number m such that no
member of the set is less than the number m ⇔ ∃  an
m R x m x D∈ ≥ ∀ ∈ ⇔ ∃: ,  a point m such that no
point of the set lies to the left of m.

Where x x xα β γ, , , ...  are points of the set D.

2. Bounded above set (or a set bounded on the right)

Definition: A set D is said to be bounded above or
bounded on the right ⇔ ∃  a number k such that all
the members are less than or equal to the number
⇔ ∃  a k R x k x D∈ ≤ ∀ ∈ ⇔ ∃: ,  a point k such
that no points of the set lie to the right of k.

Where x x xα β γ, , , ...  are points of the set D.

3. Bounded set

Definition: A set D is bounded ⇔  it is bounded
above and below ⇔ ∃  two numbers k and m such
that all the members of the set are contained in the
closed interval [k, m], i.e., k x m x D≤ ≤ ∀ ∈,  and
k m≤ ; or, in other words: A set D is bounded ⇔ ∃
an m > 0 such that x m x D≤ ∀ ∈, .

Where x x xα β γ, , , ...  are points of the set D.

Unboundedness of a Set

1. Unbounded above set (or, a set unbounded on the
right)

Definition: A set D is said to be unbounded above
or unbounded on the right ⇔  whatever the number
k is chosen (or taken) however large, some member of
the set D is > k.

2. Unbounded below set (or, a set unbounded on the
left)

Definition: A set D is said to be unbounded below
or unbounded on the left ⇔  however large a number
m is chosen (or taken), there is some member of the
set D which is < –m.

3. Unbounded Set

Definition: A set D is said to be unbounded (not
bounded) if it is not a bounded set, i.e., for any m > 0,
∃ ∈x D  such that | x | > m.

Boundedness of a Sequence

1. Bounded above sequence (or a sequence bounded
on the right)
Definition: A sequence {xn} is said to be bounded
above or bounded on the right ⇔  the range of a
sequence is a set bounded above ⇔ ∃  a
k R x kn∈ ≤: , ∀ ∈ ⇔ ∃n N  a point k such that
no terms of the sequence lie to the right of k.

xα x β x
x  m≥

xα x β x γ

xα x β x rxα x β x r x  k≤

x α x β x γx α x β x
x  K= x  m=
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Where x1, x2, x3, … are terms of the sequence.
2. Bounded below sequence (or a sequence bounded
on the left)

Definition: A sequence {xn} is said to be bounded
below or bounded on the left ⇔  the range of a
sequence is a set bounded below ⇔ ∃  an
m R x m m Nn∈ ≥ ∀ ∈ ⇔ ∃: ,  a point m such that
no terms of the sequence lie to the left of m.

Where x1, x2, x3, … are terms of the sequence.
3. Bounded sequence

Definition: A sequence {xn} is said to be bounded
⇔  the range of the sequence is bounded ⇔  the
range of a sequence is a set bounded above and below
both at the same time ⇔ ∃  a positive number m such
that x m n Nn ≤ ∀ ∈ ⇔,  in other words, the
sequence is bounded by two number –m and m, i.e.
x m m n Nn ∈ − ∀ ∈ ⇔, ,  geometrically, all the
terms of the sequence lie in a certain neighbourhood
(m-neighbourhood) of the point x = 0

Where x1, x2, x3, … xn, … are points of the
sequence.

Unboundedness of a Sequence

1. Unbounded above sequence (or a sequence
unbounded on the right)

Definition: A sequence {xn} is said to be unbounded
above or unbounded on the right ⇔  whatever the
number k is chosen, however large, there is some
member of the sequence > k ⇔  the range of the
sequence is unbounded above or unbounded on the
right.

2. Unbounded below sequence (or a sequence
unbounded on the left)

Definition: A sequence {xn} is said to be unbounded
below or unbounded on the left ⇔  how large a number
m is taken, there is some member of the sequence
< –m ⇔  the range of the sequence is unbounded
below or unbounded on the left.
3. Unbounded sequence

Definition: A sequence {xn} is unbounded ⇔  the
range of the sequence is unbounded ⇔ ∀ > ∃m 0,
an n x mn: > .

Boundedness of a Function

1. Bounded above function (or a function bounded
on the right)

Definition: A function y = f (x) defined on its domain
D is said to be bounded above or bounded on the
right ⇔  the range of the function f is bounded above
or bounded on the right ⇔ ∃  a real number m such
that f x m� � ≤  for all x D∈ , where the number m
itself is termed as an upper bound of the function f.
2. Bounded below function (or a function bounded
on the left)

Definition: A function y = f (x) defined on its domain
D is said to be bounded below or bounded on the left
⇔  the range of the function f is bounded below or
bounded on the left ⇔ ∃  a real number k such that
f x k� � ≥  for all x D∈ , where the number k itself is

termed as a lower bound of the function f.
3. Bounded function

Definition: A function y = f (x) defined on its domain
D is bounded ⇔  the range of the function f is
bounded ⇔  the range of the function f is bounded
above and bounded below ⇔ ∃  two real numbers k
and m such that k f x m≤ ≤� �  for all x D∈  and
k m≤ . In other words there exists M > 0 such that

f x M x D � ≤ ∀ ∈, .
In the language of geometry, a function y = f (x)

whose domain is D is bounded ⇔  the curve (the
graph of the function) y = f (x) defined on its domain
D is situated between two horizontal lines.

x1x2

x   kn ≤
x3

x1 x2

x   kn ≥
x3

x1–m m
x2 x3 x4 xn
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Unbounded Function

1. Unbounded above function (or a function
unbounded on the right)

Definition: A function y = f (x) defined on its domain
D is said to be unbounded above or unbounded on
the right ⇔  whatever the number k is chosen,

however large, f (x) > k for some x D∈ ⇔  the range

of the function is unbounded above or unbounded
on the right.
2. Unbounded below function (or a function un-
bounded on the left):

Definition: A function y = f (x) defined on its domain
D is said to be unbounded below or unbounded on
the left ⇔  however large a number m is taken, f (x) <
–m for some x D∈  ⇔  the range of the function f is
unbounded below or unbounded on the left.
3. Unbounded function (The function f (x) is said to
be unbounded ⇔  one or both of the upper and lower
bounds of the function are infinite)

Definition: A function y = f (x) defined on its domain
D is unbounded ⇔  the range of the function is
unbounded ⇔  the range of the function is
unbounded above or unbounded below or both at
the same time.

i.e. ∀ >M 0,  f x M � > ,  for some x D∈ .

Notes: 1. One should note that the set, the variable,
the sequence or the function is said to be bounded
above, bounded below or bounded whereas the
constant or the number which bounds (keeps on the
left or on the right side of itself) the set, the variable,
the sequence or the function is termed as lower bound,
upper bound or simply bound (plural bounds) of
these.
2. The fact that a sequence, a function, a variable or
a set is bounded by two numbers k and m (k ≤  m)
geometrically means that all the terms of the sequence,
all the values of a function or a variable or all the
members of the set are contained in a closed interval
[k, m].
3. If the domain of a bounded function is restricted,
the function remains bounded.
4. The restriction of an unbounded function may or
may not be bounded.

For example, f (x) = x2 is unbounded on R but if the
function f is restricted to the closed interval [0, 1], it
becomes bounded. But when the function f is
restricted to the positive real numbers, it remains
unbounded.

Illustrations:

1. f x
x

x
x� � = ≠, 0

⇒ = =f x
x

x
� � 1  when x > 0

and f x
x

x
� � = − = −1 when x < 0

∴ The range of the function f is [–1, 1] which is a
finite set containing only two members –1 and 1.

Therefore f is a bounded function.

2. f x
x

x� � =
−

< ≤1

2
2 5,

� 2 5< ≤x

∴ < − ≤0 2 5x

Now, x
x

x− > ⇒
−

→ + ∞ →2 0
1

2
2as

Also, x
x

− ≤ ⇒
−

≥2 3
1

2

1

3

� x a b
a b

− > ≥ > ⇒ ≤�
��

�
��

2 0 0
1 1

and

∴ < ≤ ⇒
−

≥ ⇒ ≥2 5
1

2

1

3

1

3
x

x
f x� �

∴ The range of the function f is bounded below

and 
1

3
 is its greatest lower bound and f is not

bounded above.

3. f x
x

x� � = < < ∞1
0,  is unbounded because by

choosing x sufficiently small, the function f x
x

� � =
1

can be made as large as required, i.e., infinitely great
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also 1
0

x
>  in 0 , ∞ � . Hence this function is bounded

below but not bounded above.

4. f (x) = x sinx defined on domain 0 < < ∞x  takes

positive and negative values and is unbounded below
and above, because by choosing sufficiently large
values of x, f (x) can be made sufficiently large and
positive or large and negative.

Note: One must remember that a mathematical
quantity or entity is called bounded ⇔  its absolute
value does not exceed some constant positive number
M. For example, cosx is bounded for all real values of
the variable x because cos x ≤ 1.

Limit of a Sequence

It is defined in various ways:

Definition (i): (In terms of ε -neighbourhood): A
fixed number ‘l’ is the limit of a sequence {xn} ⇔
Any ε -neighbourhood of that fixed number ‘l’
denoted by N lε � �  contains all the terms of the
sequence {xn} after a certain term namely the Nth
term (xN) of the sequence {xn} N depending on ε .

Definition (ii): ( ε – N definition): A fixed number ‘L’
is the limit of a sequence {xn} ⇔  Given any small
positive number ε , it is possible to find out a term
namely xN such that all the terms after the Nth term
(xN) of the sequence differ from the fixed number ‘l’
by a number which is less than ε ⇔  Given a small
number ε > 0 , ∃  an integer N such that x lr − < ε
for every value of r which is greater than N (i.e.
∀ >r N ).

Notes: (i) when a variable takes on the values of a
sequence which has a limit ‘l’, it is said that the variable
has the limit ‘l’. If x is a variable and ‘L’ is the limit of
the sequence {xn} defined by x = xn, n = 1, 2, 3, …, one
must indicate that x has the limit l by the notation
x l→  instead of x ln →  as n → ∞ , where the

notation n → ∞  means that the numbers of the terms
of the sequence {xn} becomes very great. Hence, a
constant ‘l’ is the limit of the variable x defined by x =
xn, n = 1, 2, 3, … ⇔  Any given small number ε > 0 ,
there exists a positive integer Nε  (N depends on ε )
so that for all values of n greater than Nε , x differs
from L in absolute value by a number less than ε .

Further, the definition is symbolized as follows:
Given x = xn, n = 1, 2, 3, …, then ‘l’ is the limit of the
variable x ⇔  Given any small number ε > 0 , an
integer Nε  exists such that x l− < ε  for all
n N> ε .
(ii) To indicate that N is a function of ε  or N depends
on ε , it is usual to write Nε  instead of merely N.
(iii) When a sequence has a limit, it is said to be
convergent.
(iv) Already the terms limit point of a set, and limit of
a sequence have been discussed. But there is a little
difference among them. One should note that a set
has a limit point whereas a convergent sequence has
a limit which is unique. There is another term ‘limit
point of a sequence’ which is used and discussed in
real analysis. By limit point (limit points) of a sequence,
one means the limit (limits) of a convergent
subsequence (convergent subsequences) of a
sequence. In case the sequence itself is convergent,
to the limit l, any sub-sequence also converges to the
same limit l.

Note: The limit of a convergent sequence may or may
not by a member (or, term) of the sequence itself. For

example, if there is a sequence {xn} where x
nn = 1

,

then lim
n nx

→ ∞
= 0  but it can be seen that there is no

member (or, the term) of the sequence whose value is
zero.

Use of ε − N� �  Definition

The ε − N �  definition of the limit of a sequence does
give us a criterion to check whether a given fixed
number obtained by any mathematical manipulation
or method is the limit of the sequence or not.

How to show that a given number is the limit of a
sequence?

x1

1 2 3 4 r

x2 x3 x4 xr
xNε

Nε
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Solve the inequality x Ln − < ε , where L = a
given number which is required to be shown the limit
of the sequence and xn = nth term of the sequence,
and obtain the inequality n f> ε� �  using if method.
Examples: 1. Show that the sequence {xn} where

x
n

n Nn = ∀ ∈1
,  converges to ‘0’.

Solution: In order to show that {xn} converges to 0,
it is required to be shown that for an ε > 0 , it is
possible to obtain a positive integer Nε  such that

xn − <0 ε  for all n N> ∈ .

Now xn − <0 ε

If 
1

0
n

− < ε

or, if 
1

n
< ε

or, if 
1

n
< ε

or, if n > 1

ε

or if n N> ∈  where N∈ =
∈
�
��
�
��

+
1

1, i.e., whatever

ε  is chosen, the absolute difference between the nth
term and 0 can be made as small as one likes after a

certain term namely xNε , i.e., by definition

lim
n nx

→ ∞
= 0 , i.e. {xn} converges to 0.

2. Show that the sequence {xn} where x
n

n
n = +

+

2

2

1

2 5
,

∀ ∈n N  converges to 
1

2
.

Solution: To show that {xn} converges to 
1

2
, one is

required to show that for an ε > 0 , it is possible to

obtain an Nε  such that x n Nn − < ∀ >
1

2
ε .

Now x
n

n
n Nn =

+
+

∀
2

2

1

2 5
, ε

and x
n

n n
n − =

+
+

− =
−

+

1

2

1

2 5

1

2

3

2 2 5

2

2 2� �

∴ − = −
+

=
+

<x
n n

n
1

2

3

2 2 5

3

2 2 52 2� � � �
ε

if, 
3

4 102n +
< ε

or, if, 
4 10

3

12n +
>

ε

or, if, 4 10
32n + >
ε

or, if, 4
3

102n > −
ε

or, if, 4
3 102n > − ε

ε

or, if, n2 3 10

4
>

− ε
ε

or, if, n >
−3 10

4

ε
ε

 = f (say)

or if n N> ∈  where N f∈ = + 1

Hence, for any ε > 0 , ∃  a positive integer Nε

such that x n Nn − < ∀ > ∈
1

2
ε, .

⇒  by definition lim
n nx

→ ∞
= 1

2

⇒  {xn} converges to 
1

2
.
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How to Find Nε  Algebraically
for a Given Epsilon

Solve the inequality x ln − < ε  for n  after
substituting the given expression in n for xn using if
method.

Examples: 1. Find N if xn n� � = −���
�	


1
1

2
 and

ε =
1

128
.

Solution: lim
n nx

→ ∞
= 1

∴ − <xn 1 ε  where xn n
= −1

1

2
 and ε = 1

128

if 1
1

2
1

1

128
− − <

n

or, if − <
1

2

1

128n

or, if 
1

2

1

128n
<

or, if 2 27n >

or, if n N> =7 ε  (or, simply N = 7)

Hence, for a given ε =
1

128
, an integer N = 7 was

found such that xn − <1 ε  for n N> = 7 � N

depends on the choice of ε and so N is a function
of ε .

Theorems of the Limit of a Sequence

The following results can be proved by making use
of the ε δ−� �  definition of the limit of a sequence
and use of these can be made in working out problems
of finding the limits of the given sequences.

1. lim
n n→ ∞

=1
0

2. lim
n p

a

n→ ∞
= 0 , where a is any real number and p is

positive.

3. lim
sin

n

n

n→ ∞

�
��

�
�� = 0 ; lim

cos
n

n

n→ ∞

�
��

�
�� = 0

The following theorems on limits of sequences are
also stated without proofs and can be made use of
them in working out examples while finding the limits
of given sequences.

If lim
n

nx l
→ ∞

=  and lim
n ny m

→ ∞
= , then

Theorem 1: lim
n n nx y

→ ∞
+� �

= + = +
→ ∞ → ∞
lim lim

n
n

n
nx y l m

Theorem 2: lim
n n nx y

→ ∞
−� �

= − = −
→ ∞ → ∞
lim lim

n n x nx y l m

Theorem 3: lim
n n nx y

→ ∞
⋅� �

= ��
�
� ⋅ ��

�
� = ⋅

→ ∞ → ∞
lim lim

n n n nx y l m

Theorem 4: lim
n

n

n

x

y→ ∞

�
��
�
��

=

�
�

�
�

�
�

�
�

= ≠→ ∞

→ ∞

lim

lim
if

n
n

n
n

x

y

l

m
m, 0

Theorem 5: lim
n

nc x
→ ∞
� �

= �
��

�
�� = ⋅

→ ∞
c x c l

n
nlim , where c is a constant.

Note: To find the limit of a sequence whose nth term

is given means that one is required to find out the
limit of its nth term as n → ∞  which can be determined
by using the same method of evaluation of lim

x
f x

→ ∞
 �

replacing x by n which will be explained in methods of
finding the limit of a function y = f (x) at a point x = c.
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Geometrical Meaning of the
Limit of a Sequence

Geometrically lim
n nx l

→ ∞
=  means that however close

the horizontal lines y = l + ε  and y = l – ε  are taken,
there exists a vertical line at x = N such that all the
points (n, xn) to the right of the vertical line x = N lie
within the horizontal lines Y l= ± ε .

On the Relation Between the Limit of
a Sequence and Limit Point of the Range
Set (or, Simply Range) of the Sequence

One should note that there is no term limit point of a
sequence because in fact only an infinite set which is
dense has a limit point whereas a finite set has no limit
point. But there is a theorem which described the
relationship in between the terms “limit of a sequence
and the limit point of the range of the sequence in a
space”.

Statement of the theorem: Let {xn} be a sequence in

a space such that lim
n nx x

→ ∞
= . Let A be the range

of the sequence {xn}. Then
(a) If A is a finite set, then xn = x for infinitely many
‘n’.
(b) If A is an infinite set, then ‘x’ is the limit point
of A.

Remarks: 1. the limit points of a sequences {xn} are
either the points of the range of the sequence or the
limit points of the range of the sequence.
2. If a point is a limit point of the range of a sequence,
then it is also a limit point of the sequence but the
converse may not always be true.
3. If a sequence has a limit ‘l’, then it is the limit point
of the sequence but converse is not usually true.

Examples: 1. The constant sequence x cn = ,
∀ ∈n N  has only one limit point namely c in the
sense that c c c∈ − +ε ε, � , i.e. any ε -
neighbourhood of C contains at least one term of the
sequence which is not necessarily different from ‘C’.
Further one should note that the constant sequence
x c n Nn = ∀ ∈,  has its range {c} which is a finite
set and so the range of the constant sequence has no
limit point.

2. The sequence x
n

n Nn = ∀ ∈1
,  has ‘0’ as a

limit point which is also a limit point of its range

1
1

2

1

3

1

4
, , , ,�
���

�	

.

3. The sequence xn = 1 + (–1)n, n N∈  has only two

limit points namely ‘0 and 2’ whereas its range {0, 2}
has no limit point.

4. The sequence x
nn

n= − +���
�
��1 1

1� � , ∀ ∈n N  has

only two limit points namely 1 and –1 which is also the

limit points of its range − − −���
�	


2 2
3

2

3

2

4

3

4

3
, , , , , ,� .

Definition of Limit Point of a Sequence

In the above, the meaning of the term ‘limit points of
a sequence’ has been explained. Now the definitions
available in connection with ‘limit points of a
sequence’ are provided.

The concept of the limit points of a sequence is
defined in two ways.

Definition 1: (In terms of neighbourhood): A point p
is the limit point of the sequence ⇔  For any given
small number ε > 0  and any given integer N, ∃  an
other integer n N x pn≥ − <such that ε .

Or, in words, a limit point of a sequence is a point
p such that for any given integer N, each
neighbourhood of p contains at least one term of the
sequence after the Nth term.

Or, it can be said that a limit point of a sequence is
a point p such that for any given integer N, each
neighbourhood of p contains infinite number of terms

N x

y l =  + ε

y l =  – ε

( , )n xn

10 2

l  – ε

l  + ε

N
x

 =
 

2εl
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of the sequence after the Nth term in the sense that
the terms having the same value are counted as often
as they occur as terms of the sequence.

Remarks: 1. One should note that elements of the
sequence need not be distinct appearing in definite
order as various distinct terms of the sequence like
first term, second term, a third term and so on. As a
consequence, all the infinitely many terms xn of this
definition may be the same number and so any number
that occurs an infinite number of times in a given
sequence or in a subsequence (subsequences) of a
sequence is a limit point of the sequence according
to the definition 1 since what the definition 1 requires
is that there should be at least one term, i.e., an infinite
number of terms of the sequence in the sense that the
same element is counted as often as it occurs as a
term of the sequence.
2. A constant sequence x c n Nn = ∀ ∈,  has only
one limit point namely the constant ‘c’.

Example: Let there be a sequence defined by

xn
n= −1� � , ∀ ∈n N , i.e.

xn� �  = − −1 1 1 1, , , ,�� � . This sequence has 1 and

–1 as limit points. The reason for which is that every
neighbourhood of 1 contains an infinite number of
terms x2, x4, x6, … and every neighbourhood of –1
contains an infinite number of terms x1, x3, x5, … in
the sense that the same element is counted as often
as it occurs as terms (first term, second term, third
term and so on) of the sequence.

Moreover one should note that each of the terms
x2 = second term, x4 = fourth term, x6 = sixth term, …
is 1 and each of the terms x1 = first term, x3 = third
term, x5 = fifth term, … is –1.

Lastly one should note that the sequence

x n Nn
n= − ∀ ∈1� � ,  is itself not convergent.

Definition 2: (in terms of limit of a subsequence):
The limit (limits) of a convergent subsequence
(convergent subsequences) of a sequence is (are)
called the limit point (limit points) of the sequence.
Remarks: 1. There is a convergent sequence ⇒
The limit and the limit point of the sequence both are
same.

2. A sequence may contain one or more convergent
subsequences.

Examples: 1. The sequence {xn} where x
n

n =
1

,

∀ ∈n N  has only one limit point namely the real

number ‘0’ since x
nn = 1

 is a convergent sequence.

2. The sequence {xn} for which xn
n= −1� � ,

∀ ∈n N , i.e. {xn} = {–1, 1, –1, 1, –1, …} has got two

limit points namely 1 and –1 since there are two

subsequences x n
n

2
21= −� �  and x n

n
2 1

2 1
1+

+= −� � � � ,

∀ ∈n N , whose limits are 1 and –1 respectively.

3. The sequence {xn} for which x
n

n = +1
1

,

∀ ∈n N , has got only one limit point namely 1 since
it is a convergent sequence.
4. The sequence {xn} where xn = 1, ∀ ∈n N  has only
one limit point namely 1 since it is a convergent
sequence.
5. The sequence {xn} where xn = n, ∀ ∈n N  has no
limit point since it is not a convergent sequence.

Difference Between Limit and
Limit Point of a Sequence

There are some distinctions between a limit point and
the limit of a sequence.
1. If all the members of the sequence {xn} from a
certain term xN ε� �  onwards (i.e. x xN N+ +2 3, ,� )
lie within the interval l l− +ε ε,� � , then l is the limit
of the sequence. But when l is the limit point of the
sequence {xn}, then it is sufficient that at least one
term of the sequence (not necessarily different from
‘l’) lie within the interval l l− +ε ε,� � . e.g.: For any
ε > 0 , xn = ∈ − +1 1 1ε ε,� � , ∀ ∈n N . This is
why 1 is the limit point of the constant sequence.
Further it should be noted that 1 is also limit of the
constant sequence xn = 1.
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2. Limit of a sequence is unique if it exists whereas a
limit point of a sequence is not unique since a limit
point (limit points) of a sequence is the limit (limits)
of a convergent subsequence (convergent
subsequences) of a sequence which means that there
may be one or more than one limits according as there
is one or more than one convergent subsequences of a
sequence whereas the sequence whose convergent
subsequence (convergent subsequences) is (are)
considered, need not be convergent and in case the
sequence is convergent, its limit and limit point both
are same, e.g.: The sequence defined as xn

n= −1� � ,

∀ ∈n N  is divergent, i.e. it has no limit. But it has

two subsequences ′ = −xn
n

1
2� �  and ′′ = − +

xn
n

1
2 1� �

whose limits are 1 and –1 respectively which are
termed as the limit points of the sequence
xn

n= −1� � , ∀ ∈n N  noting that the sequence
( xn

n= −1� � , ∀ ∈n N ) itself has no limit but it has
got two limit points namely 1 and –1 respectively
accordingly as n is even or odd.

Limit of a Function

The concept of the limit of a function is defined in
various ways:

Definition (i): (In terms of neighbourhood): we say
that a fixed point p is a limit of the function f at a limit
point ‘a’ of the domain of the function f if there is a
fixed point ‘p’ such that if we choose any ε -
neighbourhood of the point ‘p’ denoted by N pε � � , it
is possible to find a ε -neighbourhood of the limit
point ‘a’ of the domain of the function f denoted by
N aδ � �  such that the values of the function lie in
N pε � �  for every value of the independent variable x

which lies in δ -deleted neighbourhood of the limit
point ‘a’ of domain of the function denoted by

′ = < − <N a x aδ δ� � 0 , i.e. There is a fixed point ‘p’
such that for every N pε � � , ∃  a N aδ � � such that
f x N p� � � �∈ ε  for all x N a∈ ′ ⇔δ � �  The fixed point

‘p’ is the limit of the function f at the limit point ‘a’ of
the domain of the function f.

Definition (ii): ( ε - δ -definition): A fixed point ‘p’ is
the limit of a function f at a limit point ‘a’ of the domain
of the function f ⇔ ∀ >ε 0 , ∃ >a δ 0  ( δ  depends
on ε ) such that for every value of x in the deleted
neighbourhood 0 < − <x a δ , the value of the
function f (x) lies in the neighbour-
hood p p− +ε ε,� �  i.e. ∀ >ε 0 , ∃ >δ 0  ( δ
depends on ε ) such that ∀ < − <x x a0 δ
⇒ − <f x p� � ε  ⇒ =

→
lim

x a
f x p� � . Which

means p is the limit of the function f at x = a, where a

is a limit point of the domain of the function.

Note: It is common to say that y = f (x) has a limit p at
a point x = a instead of saying that y = f (x) has a limit
p at the limit point x = a of its domain.

Explanation of ε δ−� �  definition

The following example as an explanation of ε δ−� �
definition of the limit of a function is presented.

f x
x

x
� �

� �
� �

=
−

−

5 4

2

2

 is not defined at x = 2

Now f x
x x

x
� � � �� �

� �
=

− +
−

5 2 2

2
 = +5 2x� �  when

x ≠ 2

[∴ =x 2  ⇒  f 2 5 2 2� � � �= + , i.e. f 2 20� � ≠ ]

In fact, f x x� � � �− = + −20 5 2 20 , for

x ≠ 2

= − = −5 10 5 2x x , x ≠ 2

∴ < − <0 2
1

50
x  ⇒ − <f x� � 20

1

10

Similarly, 0 2
1

500
< − <x

⇒ − <f x� � 20
1

100

0 2
1

5000
< − <x  ⇒ − <f x� � 20

1

1000
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Hence, we see that for every small positive
number ε ,

0 2
1

5
< − <x

ε  ⇒ − <f x� � 20 ε

In other words, for any small ε > ∃0,  a δ

( = 1

5ε
in this example) such that

f x� � − <20 ε   whenever 0 2< − <x δ .

This fact is expressed by saying that 20 is the limit

of f x
x

x
� �

� �
� �

=
−

−

5 4

2

2

 as x tends to 2. it is written as

lim
x

x

x→

−

−
=

2

25 4

2
20

� �
� �

Note: The ε δ−� �  definition does not provide a
technique to calculate the limit which is a fixed number
‘l’. What the ε δ−� �  definition does is supply a
criterion which one uses to test a number ‘l’ to see
whether it is actually the limit of a function f as x tends
to a, where ‘a’ is the limit point of the domain of the
function.

How to find a δ > 0  for a given f, l, a
and ε > 0  algebraically

The process of finding a δ > 0  such that for all x

0 < − < ⇒ − <x a f x lδ ε �
Consists of the following steps:

Step 1: Firstly, one should suppose that
f x l u � − =  and simplify it.

Step 2: Secondly, on supposing that ‘k’ is a small
positive number and letting x a k− = , i.e.,
x a k= ± , one should make the substitution x = a +
k and x = a – k respectively in f x l u� � − =  and
simplify it which gives two expressions in K namely

f1(k) and f2(k) (say).

Step 3: Thirdly, out of the two expressions f1(k) and
f2(k) obtained after simplification, one should choose
that one which is greater.
Step 4: Fourthly, one should form the inequality
f k1 � � < ε , where f k f k1 2� � � �>  and lastly solve
f k1 � � < ε  for k.

Note: When f1 (k) = f2 (k), anyone can be chosen to
form the in equality f k1 � � < ε .

Solved Examples

1. Show that lim
x

x
→

+ =
2

3 2 8� �
Proof:

Method 1: Let 3 2 8x u+ − = … (i)

and x k− =2 , i.e., x k= ±2

∴ = + ⇒ = + + −x k u k2 3 2 2 8� � ,  from

(i).

= + + −6 3 2 8k  = + −3 2 2k  = 3k

= 3k  � k > 0� �

and x k= −2  ⇒ = − + −u k3 2 2 8� � , from (i)

= − + −6 3 2 8k

= + −– 3 2 2k

= – 3k  = 3k  � k > 0� �

Now, 3
3

k k< ⇔ < =ε ε δ  (say)

∴ − < =x 2
3

δ ε

⇒ + − <3 2 8x� � ε ⇔ + =
→

lim
x

x
2

3 2 8� � ,

Hence proved.

Method 2: lim
x

x
→

+ =
2

3 2 8� �

if 3 2 8x + − < ε

or, if 3 6x − < ε
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or, if 3 2x − < ε

or, if x − < =2
3

ε δ  (say)

Thus 0 2
3

< − < =x δ ε

⇒ + − <3 2 8x� � ε

∴ + =
→

lim
x

x
2

3 2 8� � . Hence, proved.

2. Show that lim
x

x

x→

−
+

�
��

�
��

=
2

2 3

3 4

1

10

Proof: Let 
2 3

3 4

1

10

x

x
u

−
+

− =

and x k x k− = ⇒ = ±2 2

Now, u
x

x
=

−
+

−
2 3

3 4

1

10

=
− − −

+
20 30 3 4

3 4 10

x x

x� �
 =

−
+

17 34

3 4 10

x

x� �

=
−

+
17 2

3 4 10

x

x� �
... (i)

∴ = + ⇒ =
+

x k u
k

k
2

17

10 3 10� �

and x k u
k

k
= − ⇒ =

−
2

17

10 3 10� �

But 
17

10 3 10

17

10 3 10

k

k

k

k−
>

+� � � �

Now, 
17

10 3 10

k

k−
<

� �
ε , for sufficiently small k.

⇔ < −17 10 10 3k kε � �
⇔ < −17 100 30k kε ε

⇔ + <17 30 100k kε ε

⇔ + <17 30 100ε ε� �k

⇔ <
+

=k
100

17 30

ε
ε

δ  (say)

∴ < − <
+

=0 2
100

17 30
x

ε
ε

δ

⇒
−
+

− <
2 3

3 4

1

10

x

x
ε

⇔
−
+

�
��

�
��

=
→

lim
x

x

x2

2 3

3 4

1

10
 Hence, proved.

3. Show that lim
x

x

x→

−
−

�
��

�
��

=
2

2 4

2
4

Proof:

Method 1: Let 
x

x
u

2 4

2
4

−
−

�
��

�
��

− = … (i)

and x k− =2 , i.e., x k= ±2

Now u
x

x
=

−
−

�
��

�
��

−
2 4

2
4 , from (i).

=
− +

−
− = + −

x x

x
x

2 2

2
4 2 4

� �� �
� � � �

= −x 2

∴ = + ⇒ = + − =x k u k k2 2 2

and x k u k k= − ⇒ = − − =2 2 2

∴ < =k ε δ  (say)

Hence, 0 2< − < =x ε δ

⇒
−

−
�
��

�
��

− <
x

x

2 4

2
4 ε
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⇔
−

−
�
��

�
��

=
→

lim
x

x

x2

2 4

2
4 . Hence, proved.

Method 2: lim
x

x

x→

−
−

�
��

�
��

=
2

2 4

2
4

If 
x

x

2 4

2
4

−
−

�
��

�
��

− < ε

or, if 
x x

x

− +
−

− <
2 2

2
4

� �� �
� �

ε

or, if x + − <2 4� � ε

or, if x − < =2 ε δ  (say)

∴ < − < =0 2x ε δ

⇒
−

−
�
��

�
��

− <
x

x

2 4

2
4 ε

⇔
−

−
�
��

�
��

=
→

lim
x

x

x2

2 4

2
4 . Hence, proved.

4. Show that lim
x

x
→

=
2

2 4

Proof:

Method 1: Let u x= −2 4 … (i)

and x k− =2 , i.e., x k= ±2

∴ = +x k2  ⇒ = + −u k2 4
2� �

= + + − = +4 4 4 42 2k k k k

= + >k k k2 4 0�� �

and x k u k= − ⇒ = − −2 2 4
2� �

= − + − = −4 4 4 42 2k k k k

= 4k – k2 for small k,

But k k k k2 24 4+ > −

Now, k k2 4+ < ε

⇔ + − <k k2 4 0ε

⇔ <
− + +

=
− + +

k
4 16 4

2

4 2 4

2

ε ε

= − + + =2 4 ε δ  (say)

Thus, 0 2 2 4< − < − + + =x ε δ

⇒ − <x2 4 ε

⇔ =
→

lim
x

x
2

2 4 . Hence, proved.

Method 2: lim
x

x
→

=
2

2 4 *

(* � x x x2 2
4 2 4 4 4− = − + − −� �

= − + −x x2 4 8
2� �

∴ − = − + −x x x2 2
4 2 4 8� �

= − + −x x2 4 2
2� � )

x2 4− < ε

if x x− + − <2 4 2
2� � ε

or, if x x− + − − <2 4 2 0
2 ε

or, if x − <
− + +

2
4 16 4

2

ε

or, if x − <
− + +

2
4 2 4

2

ε

= − + + =2 4 ε δ  (say)

Thus, x2 4− < ε

if 0 2< − <x δ  = − + +2 4 ε
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⇔ =
→

lim
x

x
2

2 4 . Hence proved.

5. Show that lim
x

x x
→

− + =
3

22 3 4 13� � .

Proof:

Method 1: Let 2 3 4 132x x u− + − = … (i)

and x k− =3 , i.e., x k= ±3

Now u x x= − + −2 3 4 132

= − −2 3 92x x , from (i)

∴ = + ⇒x k u3

= + − + −2 3 3 3 9
2

k k� � � �

= + + − − −2 9 6 9 3 92k k k� �

= + + − −18 12 2 3 182k k k

= + = + >2 9 2 9 02 2k k k k k�� �

and x k= −3

⇒ = − − − −u k k2 3 3 3 9
2� � � �

= − + − + −2 9 6 9 3 92k k k� �

= − + + −18 12 2 3 182k k k

= − = −2 9 9 22 2k k k k , for small k.

But 2 9 2 92 2k k k k+ > −

Now 2 92k k+ < ε

⇔ + − <2 9 02k k ε

⇔ <
− + +

k
9 81 8

4

ε
 = δ  (say)

∴ < − < =
− + +

0 3
9 81 8

4
x δ

ε

⇒ − + − <2 3 4 92x x� � ε

⇔ − + =
→

lim
x

x x
3

22 3 4 13� � . Hence, proved.

Method 2: Here f x x x l� � = − + =2 3 4 132 ,  and

a = 3

f x l x x x x� � − = − + − = − −2 3 4 13 2 3 92 2

= − + −2 3 2 3
2

x x� � � �

∴ for any ε ε> − <0, f x l� �

if 2 3 9 3
2

x x− + − <� � � � ε

or, if 2 3 9 3
2

x x− + − < ε

or, if 2 3 9 3 02
x x− + − − <ε

or, if x − <
− + +

=3
9 81 8

4

ε
δ  (say)

∴ < − < =
− + +

0 3
9 81 8

4
x δ

ε

⇒ − + − <2 3 4 92x x� � ε

⇔ − + =
→

lim 2x2

x
x

2
3 4 13� �

The use of ε δ−� �  Definition
to Prove Theorems

The ε δ−� �  definition does not only give a criterion
to check the value obtained whether it is limit or not
but also it enables us to prove many theorems and
many useful results.

Theorem 1: lim lim
x a x a

f x f a f x
→ →

= ⇒� � � � � �

= f x� �

Proof: f x f x f x f a� � � � � � � �− ≤ − … (i)
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Also, lim
x a

f x f a
→

=� � � �

⇒  for any given

ε > ∃0,  a δ > 0  s.t f x f a� � � �− < ε , ∀ x  for

which 0 < − <x a δ … (ii)

∴ (i) and (ii) ⇒ ∀ > ∃ε 0,  a δ > 0  s.t

f x f a� � � �− < ∈ , ∀ x  for which

0 < − <x a δ

∴ =
→

lim
x a

f x f a� � � �

Theorem 2: Show that lim
x a

c c
→

=

Proof: Here, f (x) = c and l = c

∴ − = − =f x l c c� � 0

∴ ∀ > − <ε ε0, f x l� �  for

0 < − <x a δ , where δ > 0  is any number.

Theorem 3: lim
x a

x a
→

=

Proof: = − = −f x l x a �

∴ − <f x l � ε  when 0 < − <x a δ
Hence, the result.
Now, we state (without proof) some results on limits

Let lim
x a

f x l
→

= �  and lim
x a

g x m
→

=� �
And let C be any constant. Then

(i) lim
x a

f x g x
→

+� � � �

= + = +
→ →

lim lim
x a x a

f x g x l m� � � �

(ii) lim
x a

C f x
→

� �  = �
��

�
��

= ⋅
→

C f x C l
x a
lim  �

(iii) lim
x a

f x g x
→

⋅� � � �

lim lim
x a x a

f x g x l m
→ →

�
��

�
��

⋅ �
��

�
��

= ⋅ �  �

(iv) lim
lim

limx a

x a

x a

f x

g x

f x

g x

l

m→

→

→

�
��

�
��

= =
 �
 �

 �

 � , provided

m ≠ 0

(v) For any positive integer n = 1, 2, 3, …

lim lim
x a x a

n
n

f x x l
→ →

= �
��

�
��

= � .

[If follows that lim lim
x a

n

x a

n
nx x a

→ →
= ���

�
�� = ]

(vi) When m and n are positive integers, then

(a) if m is even lim
x a

x a
n
m

n
m

→
=  for 0 < < ∞a

(b) if m is odd lim
x a

x a
n
m

n
m

→
=  for − ∞ < < ∞a

(vii) If f x f x f x1 2 3� � � � � �≤ ≤  for all x in an

open interval containing ‘a’ except possibly at

x = a and if lim lim
x a x a

f x f x l
→ →

= =1 3 �  � , then

lim
x a

f x l
→

=2  �

(This theorem is called ‘Sandwitch Theorem or
Pinching Theorem’)

Note: The expression ‘except possibly at x = a’ means
that f (x) may or may not be defined at x = a.

Now, we can make use of these results in evaluating
limits of polynomials, rational functions and powers
of such functions.

Examples: Evaluate

1. lim
x

x x x
→

− + +
2

3 22 3 6 5� �

Solution: lim
x

x x x
→

− + +
2

3 22 3 6 5� �

= − + +
→ → → →

lim lim lim lim
x x x x

x x x
2

3

2

2

2 2
2 3 6 5� � � � � � � �

= − + +
→ → →

2 3 6
2

3

2

2

2
lim lim lim
x x x

x x x� � � �  � lim
x → 2

5� �

= ⋅ − ⋅ + ⋅ +2 2 3 2 6 2 53 2
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= − + +16 12 12 5

= 21

Note: We see in the above example that if

f x x x x� � = − + +2 3 6 53 2 , then, lim
x

f x
→ 2

� �  = 21

Also, f (2) = 21

Hence, lim
x

f x
→ 2

� �  = value of f (x) at x = 2 = f (2).

However, lim
x a

f x f a
→

=� � � �  is not in general

true. We have already seen that if

f x
x

x
� �

� �
� �

=
−

−

5 4

2

2

, then lim
x

f x
→

=
2

20� �

But f (2) is undefined. We will see in the
definition of the concept of continuity that if

lim
x a

f x f a
→

=� � � � , then f (x) is said to be continuous

at x = a.
As seen above, f (x) = 2x3 – 3x2 + 6x + 5 is

continuous at x = 2.
In fact, any polynomial function is continuous for

each value of x R∈ .

2. lim
x

x x

x x→

− +
+ +

�
��

�
��3

2

2

2 3 4

5

Solution: Limit of the denominator is

lim
x

x x
→

+ +
3

2 5� �

= + +
→ → →

lim lim lim
x x x

x x
3

2

3 3
5� � � � � �

= 32 + 3 + 5 = 17 which is not zero.

∴
− +
+ +

�
��

�
��→

lim
x

x x

x x3

2

2

2 3 4

5

=
− +

+ +
→

→

lim

lim

x

x

x x

x x

3

2

3

2

2 3 4

5

� �

� �

=
− +

→ → →
lim lim lim
x x x

x x
3

2

3 3
2 3 4

17

� � � � � �

=
− +

=
2 3 33 4

17

13

17

2. .� �

3. lim
x

x x
→

+ −
4

2 3
2 5� �

Solution: lim
x

x x
→

+ −
4

2 3
2 5� �

= + −�
��

�
��→

lim
x

x x
4

2
3

2 5� �

= + + −�
��

�
��→ → →

lim lim lim
x x x

x x
4

2

4 4

3

2 5� � � � � �

= + −4 2 4 52 3
.� �

= 193

4. lim
x

x x x
→

+ −
−

64
5 3 2

3
2

5
4� �

Solution: lim
x

x x x
→

+ −
−

64
5 3 2

3
2

5
4� �

= + −
→ → →

−
5 3 2

64 64 64

1
2

3
2

5
4lim lim lim

x x x
x x x

= + ⋅ − ⋅5 64 3 64 2
1

64

1
2

3
2

5
4

� � � �
� �

= ⋅ + ⋅ − ⋅ = + −5 8 3 8 2
1

4
40 1536

2

1024
3

5

= − = × −
1576

2

1024

1576 1024 2

1024

=
1613822

1024

5. Prove that lim sin
x

x
→

=
0

0

Proof: From the figure, for − < <π π
2 2

x

sin
length of

x
MP

OP
=
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=
MP

1

= MP

≤  length of AP

≤  length of arc AP

∴ ≤sin x x

∴ − = ≤ −sin sinx x x0 0

∴ For any ε > ∃0,  a δ > 0  s.t sin x − <0 ε

for 0 0< − <x δ

Hence, lim sin
x

x
→

=
0

0

6. Prove that lim sin
x

x
x→

�
��
�
�� =

0

1
0

Proof: � 0
1 1≤ �
��
�
�� ≤ �

��
�
�� ≤x

x
x

x
sin sin

x x⋅ =1

∴ ≤ �
��
�
�� ≤0

1
x

x
xsin

Now, since lim
x

x
→

=
0

0

∴  By the Pinching theorem

lim sin
x

x
x→

�
��
�
�� =

0

1
0 … (i)

Again,

− �
��
�
�� ≤ �

��
�
�� ≤ �

��
�
��x

x
x

x
x

x
sin sin sin

1 1 1

∴  By Pinching theorem and (i), we get

lim sin
x

x
x→

�
��
�
�� =

0

1
0

Note: The above result (results) can be shown in
various ways which is (are) shown in this book.

7. Prove that lim cos
x

x
→

=
0

1

Proof: For − < <π π
2 2

x ,

cos sin sinx x x= − ≥ −1 12 2

(� − < < ⇒ < <
π π
2 2

0 1x xcos  and

0 1≤ ≤ ⇒ ≤a a a )

Hence, we have for − < <π π
2 2

x ,

1 12− ≤ ≤sin cosx x ... (i)

Since, lim sin lim sin
x x

x x
→ →

− = − ��
�
�0

2

0

2

1 1� �

= − =1 0 1 , It follows from Pinching theorem and (i)

that lim cos
x

x
→

=
0

1 .

8. lim
sin

x

x

x→

�
��

�
�� =

0
1

Note 1: This limit plays a significant role in
mathematical analysis. It is often called first remarkable
limit.
Note 2: A strict proof of this limit depends upon
defining sin x as a power series in x and upon certain
properties of power series. Therefore, its proof by
geometrical argument will be presented in the chapter
to find the limits of trigonometrical function using
practical methods.

One Sided Limits

It is recalled that in the definition of the limit of f (x) as
x tends to a, it was required that the function f (x)
should be defined in some deleted neighbourhood of

B

x

M

P

A0
1
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‘a’ (i.e., a is an interior point of an open interval where
f (x) is defined and f (x) may or may not be defined at
x = a).

Now, let us consider the function f (x) = x − 2

clearly, f (x) is not defined for x < 2. Hence, f (x) is not
defined in any deleted neighbourhood of 2.

Hence, lim
x

x
→

−
2

2  does not exist.

Similarly, lim
x

x
→ 0

 and lim
x

x
→

−
3

2 9  do not

exist.

Note: If f x
x

x

� � =

�
��
�
��

�
��
�
��

sin

sin

π

π
, then lim

x
f x

→ 0
� �  does not

exist. In fact for x
n

= 1
 (where n = any nonzero

integer) sin
π
x
�
��
�
�� = 0  and so f (x) is not defined.

Hence, in any deleted neighbourhood of x = 0, we
have points where f (x) is undefined.

Definition (i): (Right hand limit): (In terms of
neighbourhood):
(a) A fixed point ‘p’ is a right hand limit of the function
f at the right limit point ‘a’ of the domain of the function
f if there is a fixed point p such that if we choose any
ε -neighbourhood of p denoted by N pε � � , it is
possible to find a δ -neighbourhood of the right limit
point ‘a’ of the domain of the function f denoted by
N pδ � �  such that the values of the function f (x) lie in
N pε � �  for every value of independent variable x

which lies in a right hand δ -deleted neighbourhood
of the right limit point ‘a’ of the domain of the function
f denoted by ′N aδ � �  = 0 < x – a < δ .
(b) (In terms of ε − p� �  definition): A fixed point ‘p’
is the right hand limit of a function f at the right limit
point ‘a’ of the domain of the function f ⇔ ∀ >ε 0 ,
∃  a δ > 0  ( δ  depends on ε ) such that for every
value of x in the right hand δ -deleted neighbourhood

0 < x  < δ , the value of the function f (x) lies in the ε -
neighbourhood p p− +ε ε,� �  i.e. given any ε > 0 ,
it is possible to find a δ > 0  such that 0 < − <x a δ
⇒ − <f x p� � ε  that is a x a< < + δ

⇒ − < < +p f x pε ε� � .

Notation: lim
x a

f x f a
→

+
+
� � � �, and f a + 0� �  are

available notations for the right hand limit of a
function f at x = a, where ‘a’ is right limit point of the
domain of the function f.

Definition (ii): (left hand limit): (In terms of
neighbourhood)
(a) A fixed point p is the left hand limit of the func-
tion f at the left limit point ‘a’ of the domain of the
function f if there is a fixed point p such that if we
choose any ε -neighbourhood of p denoted by N pε � � ,
it is possible to find a δ -neighbourhood of the left
limit point ‘a’ of the domain of the function f denoted
by N pδ � �  such that the values of the function f (x) lie
in N pε � �  for every value of the independent variable
x which lies in the left hand δ -deleted neighbourhood
of the left limit point ‘a’ of the domain of the function

f denoted by ′N aδ � �  = < <0 a x– δ  i.e., a x a− < <δ .

(b) (In terms of ε δ−� �  definition): A fixed point ‘p’
is the left hand limit of a function f at the left limit
point ‘a’ of the domain of the function f ⇔ ∀ >ε 0 ,
∃  a δ δ ε> 0 depends on� �  such that for every value
of x in the left deleted δ -neighbourhood 0 < a – x <

δ , the value of the function f (x) lies in the ε -
neighbourhood p p− +ε ε,� � .

That is, given ε > 0 , it is possible to find δ > 0

such that

0 < < ⇒ − <a x f x p– δ ε� �

or, a x a p f x p− < < ⇒ − < < +δ ε ε� �

Notation: lim
x a

f x f a
→

−
−
� � � �,  and f (a – 0) are

available notations for the left hand limit of a function
f at x = a, where ‘a’ is the left limit point of the domain
of a function.
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Notes: 1. Limit of a function f is said to exist at an
interior point of its domain or at the limit point not in
its domain ⇔  left hand limit and right hand limit of
the function are finite and equal at the interior point
of the domain of the function.
2. Limit of a function f is said to exist at the right limit
point of its domain ⇔  right hand limit of the function
f is finite at the right limit point of the domain of the
function f.
3. Limit of a function f is said to exist at the left limit
point of its domain ⇔  left hand limit of the function
f is finite at the left limit point of the domain of the
function f.
4. The δ -neighbourhood of a point ‘a’ excluding
the point ‘a’, is divided into two parts by the point ‘a’
on the real line. These are intervals a a– ,δ� �  and
a a, + δ� �  where it is required to restrict x to lie to

find the left hand limit and right hand limit respectively.

Limit of a Function as x → ∞

Cauchy definition: (Also, termed as “( ε  – M)
definition): To define the limit of a function f as x → ∞ ,
first of all the domain of a function f is fixed.

Let a function f be defined out side of some interval
[c, d], or it can be said that the function f is defined in
the neighbourhood of infinity (symbolized as ∞ ), i.e.
the function f is defined for all x satisfying the
inequality | x | > K,  (i.e. x > K or x < –K, where K > 0),
i.e. the domain of the function f is not bounded.

∴  A number L f x
x

= ⇔ ∀ > ∃
→ ∞
lim � � ε 0,  a

number M M Kε > >0 � �  such that x M>

⇒ − <f x L� � ε .

It is sometimes of interest to consider two separate
cases of seeking the limits of a function f, viz., when x
tends to + ∞  and when x tends to − ∞ . We define
each one in the following way.

Limit of a Function f as x → + ∞ : Let the function

f be defined on the interval a, + ∞� � , then it is said

that a number L f x
x

=
→ + ∞
lim � �  ⇔ ∀ >ε 0 , ∃  a

number M ε > 0  such that ∀ > ∈x M

⇒ − <f x L� � ε .

Limit of a function f as x → − ∞ : Let the function f

be defined on the interval − ∞, a� � , then it is said

that a number L f x
x

=
→ −∞
lim � �  ⇔ ∀ > ∃ε 0,  a

number M ε > 0  such that

∀ < − ⇒ − <x M f x L � ε

Notes: 1. One must note that if lim
x

f x L
→∞

= � , then

lim
x

f x
→ ∞

� �  =
→ + ∞
lim

x
f x� �  = =

→ − ∞
lim

x
f x L� �

2. (i) One must use lim
x

K

x→ +

�
�
�
� = + ∞

0
 (K is a

positive number)

(ii) lim
x

K

x→ −

�
�
�
� = − ∞

0
 (K is a positive number)

(iii) lim
x

K

x→

�
��
�
��

= ∞
0

 (K is a positive number)

(iv) lim
x

K

x→ +∞

�
�
�
� = 0  (K is a positive number)

(v) lim
x

K

x→ −∞

�
�
�
� = 0  (K is a positive number)

(vi) lim
x

K

x→ ∞

�
��
�
��

= 0  (K is a positive number),

lim
x

K

x→∞
= 0

(vii) The notation

lim
x a

f x
→

� �  = ∞ ⇔  lim
x a

f x
→

= ∞� �

(viii) A function f for which lim
x a

f x
→

=� � 0  is called

infinitesimal as x a→  i.e. a function whose limit is

zero at the limit point ‘a’ of the domain of a function f
is called infinitesimal.
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Solved Examples

1. Prove that lim
x x→ ∞

=
1

0

Proof: Let f x
x

� � − 1
 and it is given L = 0

∴ − <f x L� � ε ,

i.e., ⇒ − <
1

0
x

ε

if 
1

x
< ε

or, if 
1

x
< ε

or, if x M> =1

ε
 (say)

Hence, 
1

0
x

− < ε  for x > 1

ε

⇒ =
→ ∞
lim

x x

1
0

2. Prove that lim
x

x

x→ ∞

+
+

�
��

�
��

=
5

2
1

Proof: Let f x
x

x
� � =

+
+

5

2
 and it is given L = 1

∴ − <f x L� � ε ,

i.e., ⇒
+
+

− <
x

x

5

2
1 ε

if 
x x

x

+ − −
+

<
5 2

2
ε

or, if 
3

2x +
< ε

or, if 
3

2| |x −
< ε

or, if 3 2< −ε ε| |x

or, if ε ε| |x > +3 2

or, if | |x M> + =
3 2ε

ε
 (say)

Hence 
x

x

+
+

− <
5

2
1 ε  for x > +3 2ε

ε

⇒
+
+

�
��

�
��

=
→ ∞
lim

x

x

x

5

2
1

Remark: 1. lim lim
x x

f x f x
→ + ∞ → − ∞

≠� � � �

⇔
→ ∞
lim

x
f x� �  does not exist.

Question: Prove that lim
x

x

x→∞

+
+

�

�
�
�

�

�
�
�

2 3

4 2

2

 does not

exist.

Proof: lim
x

x

x→ + ∞

+
+

�

�
�
�

�

�
�
�

2 3

4 2

2

=
+

+�
��

�
��

=
→ +∞
lim

x

x
x

x
x

2
3

4
2

2

4

2

… (i)

and lim
x

x

x→ − ∞

+
+

�

�
��

�

�
��

2 3

4 2

2

=
− +

+�
��

�
��

�

�

�
�
�
�

�

�

�
�
�
�

= −
→ − ∞
lim

x

x
x

x
x

2
3

4
2

2

4

2
… (ii)
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Hence, (i) and (ii) ⇒
+

+

�

�
��

�

�
��→ ∞

lim
x

x

x

2 3

4 2

2

 does not

exist.

2. The notation lim
x a

f x
→

= ∞� �  means that

lim
x a

f x
→

= + ∞� � .

Examples: (i) lim
x x→

�
��
�
�� = ∞

0

1
 since lim

x x→
= + ∞

0

1

(ii) lim
x x→ −

�
��

�
��

= ∞
2

1

2
 since lim

x x→ −
= + ∞

2

1

2

3. lim
x

f x
→ ∞

= ∞ ⇔� �  for every positive number M,

however large, there exists a positive number P such

that f x M� � >  whenever x P> .

In other words lim
x

f x
→ ∞

= + ∞� � , i.e.

lim
x

f x
→ + ∞

= + ∞� � .

Example: lim
x

x

x→ ∞ +

�
��

�
��

= ∞2

1

2

2

Since 
2

1

3

2

x

x +

=
+

�
��

�
��

x
x

x

2

1

2

2

= ⋅
+

�

�

�
�
�

�

�

�
�
�

→ + ∞x

x

2

1
1
2

 as x → + ∞

N.B: lim
x

f x
→ ∞

= ∞� �  is possible for the function y =

f (x) whose domain is a subset of R and the range is
unbounded.

Hein’s Definition of the Limit of a Function

Let f X R X R: ,→ ⊆ , and supposing that ‘a’ is a

limit point of the set X which is the domain of the
function f.

Definition: (Hein’s): A number l is the limit of the

function f at a limit point ‘a’ of the domain of the
function f, i.e., lim

x a
f x L

→
= ⇔� �  For any sequence

of values of x converging to the number ‘a’

(x1, x2, x3, … xn, … belonging to the domain of
definition of the function and being different from a,
i.e., x Xn ∈ , x an ≠ ).

The corresponding sequence of values of y

y f x1 1= � � , y f x2 2= � � , y f x3 3= � � , ...,

y f xn n= � � , ... has a limit, which is the number L.

Notes: (i) It is emphasized that the concept of the
limit of a function at a point ‘a’ is possible only for a
limit point ‘a’ of the domain of the function.

(ii) Hein’s definition of the limit of a function is
conveniently applied when it is required to show
that a function f (x) has no limit. For this it is

sufficient to show that there exist two sequences

′xn  and ′′xn  such that lim lim
n n n nx x

→ ∞ → ∞
′ = ′′  = a

but the corresponding sequences f xn′� �� �  and

f xn′′� �� � do not have identical limits, i.e. if

lim lim
′ → ′′ →

′ ≠ ′′
x n x n

n n

f x f x
0 0

� �� � � �� � , then lim
x

f x
→ 0

� �

does not exist and if lim
x

f x L
→

=
0
� � , then

lim
x n

n

f x L
→

=
0
� �  for every sequence xn → 0 .

Example: 1. Show that lim sin
x x→

�
��
�
��0

1
 does not exist.

Solution: On choosing two sequences ′ =x
nn
1

2 π

and ′′ =
+

x
n

n
1

2
2

π π  (n = 1, 2, 3, …)



148 How to Learn Calculus of One Variable

We get

′ → ≡ → ∞x nn 0

′′ → ≡ → ∞x nn 0

Now,

lim sin
x x→

�
��
�
��0

1

=
′

�
��
�
��′ →

lim sin
x nn x0

1
 �

= =
→ ∞
lim sin

n
n2 0π� �� �

Also, lim sin
x x→

�
��
�
��0

1

=
′′

�
��
�
��′′ →

lim sin
x nn x0

1
 �

= +�
��

�
��

�
��

�
�� =

→ ∞
lim sin

n
n2

2
1π π

Hence, lim
′ →

′ =
x n

n

f x
0

0� �  and lim
′′ →

′′ =
x n

n

f x
0

1� �

∴ �
��
�
��→

lim sin
x x0

1  does not exist.

Limit of The Product of an Infinitesimal
and a Bounded Function

Definition (i): A function f is bounded in a δ -

neighbourhood of a point x a= ⇔ ∃  a real number

‘m’ such that f x m x� � ≤ ∀,  in x a− < δ .

Definition (ii): A function f is bounded in a deleted

δ -neighbourhood of a point x a= ⇔ ∃  a real
number m such that f x m� � ≤ , ∀ x  in
0 < − <x a δ .

Now an important theorem which provides us a
relation between an infinitesimal and a bounded
function.

Theorem: lim
x a

f x
→

=� � 0  and g (x) is bounded

in a deleted neighbourhood of the point

⇔ ⋅ =
→

lim
x a

f x g x� � � � 0 .

Solved Examples

Evaluate the following ones:

(i) lim sin
x

x
x→

⋅ �
��
�
��0

1

(ii) lim cos
x

x
x→

⋅ �
��
�
��0

1

Solution: (i) Let f (x) = x and g x
x

� � = �
��
�
��sin

1

Now, lim lim
x x

f x x
→ →

= =
0 0

0� �

and g x
x

x x� � = �
��
�
�� ≤ ∀ ≠sin

1
1 0, ,

⇒ g x� �  is bounded in a deleted neighbourhood

of the point ‘0’.

Hence, lim sin
x

x
x→

�
��
�
�� =

0

1
0

(ii) Let f (x) = x and g (x) = cos 
1

x
�
��
�
��

Now lim lim
x x

f x x
→ →

= =
0 0

0� �

and g x
x

� � = �
��
�
�� ≤cos

1
1 , ∀ ≠x x, 0 .

⇒ g x� �  is bounded in a deleted neighbourhood

of the point ‘0’.

Hence, L cos
x

x
x→

�
��
�
�� =

0

1
0

Geometrical Meaning of the
Limit of a Function

On the Limit: In the language of geometry, the limit of
a function y = f (x) at a point x = c, where c is a limit
point of the domain of the function f, can be stated as:

“If  given any ε > 0 , ∃  a δε > 0 (i.e. a positive
real number δ  depending upon ε ): such that a part
(i.e. a portion) of the graph of the function y = f (x) lies

in the rectangle bounded by the lines
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x c x c= − = +δ δ,  (vertical lines)

y l y l= − = +ε ε,  (horizontal lines)

then ‘L’ is the limit of the function y = f (x) at the point
x = c.

That is, a portion of the graph of the function y = f
(x) can be obtained in a rectangle whose height can
be taken as small as one pleases by choosing the
width as small as one requires.

Left (or left hand) Limit

Geometrically, the left limit of the function y = f (x) at a
point x = c, where ‘c’ is the left limit point of the
domain of the function f, can be stated as:

“Given an ε > 0 , ∃  a δε > 0 : a portion of the

graph of the function y = f (x) lies in the rectangle
bounded by the lines

x c x c= − =δ,  (vertical lines)

y l y l= − = +ε ε,  (horizontal lines)

then it is said that f (x) has the left limit at the point
x = c.

That is, a portion of the graph of the function y = f
(x) can be obtained in a rectangle whose height is
arbitrarily small by choosing the width (on the left of
the point x = c) as small as one requires.

Right (or right hand) Limit

In the point of the view of geometry, the right limit of
the function y = f (x) at a point x = c, where c is the
right limit point of the domain of the function f, is
narrated as:

“Given any ε > ∃0,  a δε > 0 : a portion of the

graph of the function y = f (x) lies in the rectangle
bounded by the lines

x c x c= = +, δ

y L y L= − = +ε ε,

then f (x) is said to have the right limit at x = c.
That is, a portion of the graph of the function y = f

(x) can be obtained in a rectangle whose height is
arbitrarily small by choosing the width (on the right of
the point x = c) as small as one requires.

c – δ

x
c

 =
 

 +
 δ

x
c

 =
 

 –
 δ

x
c

 =
 

δ δ

c + δc x

y l  = + ε

y f x = ( )

y l = 

y l  = – ε

0

l – ε

l + ε

Y

ε
2ε

ε
l

l
N lε( )

Nδ(c)

c – δ

δ

c x

y f x = ( )

0

l – ε

l + ε

Y

ε
2ε

ε
l

l
N lε( )

Nδ   (c)

x
c

 =
 

 +
 δ

x
c

 =
 

δ

c  + δc x

y l   = + ε

y f x = ( )

y l = 

y l   = – ε

0

l  – ε

l  + ε

Y

ε
2ε

ε
l

l
N lε( )

Nδ(c )
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A Short Review on the Limit and the
Value of a Function y = f (x) at a Point x = c

In connection with the limit and the value of a function
y = f (x) at a point x = C, the following points should
be noted.

1. While finding the limit of a function y = f (x) at a
point x = c, one is required to consider the values of
the function at values of x in the deleted
neighbourhood of the point x = C which are arbitrarily
close to a fixed number l named as the limit of the
function y = f (x) at the point x = c.

2. The value of the function y = f (x) at the point x = c
is left out of the discussion. This (i.e. f (a)) may or
may not exist. Even if f (a) exists, f (a) need not be
equal to or even close to the limit l of the function f
at c.

For example,

Let f x
x

x
x� � =

−
−

≠
2 4

2
2,

= =6 2, x

In this example f (2) = 6 is given but the limit of f (x)
at x = 2 is 4.

Difference Between the Limit and the
Value of a Function y = f (x) at a Point x = c

The main difference between the limit and the value
of function y = f (x) at a point x = c is the following:
The limit of a function y = f (x) at a point x = c is a fixed
number L in whose ε -neighbourhood lie the values
of the function f (at each value of the independent
variable x situated in the δ -deleted neighbourhood
of the limit point of the domain of the functions f)
which are arbitrarily close to (i.e. at little distance from
l, i.e. little less or little more in absolute value) to the
fixed number l while the value of the function y = f (x)
at a point x = c represented by f (c) is a number obtained
by use of the substitution x = c in the given function

y = f (x), i.e. (f (x))x = c  = f (c) or in brief, lim
x c

f x
→

� �  is a

fixed number close (near) to which there are values of
the function f for each value of x lying in the deleted
neighbourhood of the limit c of the domain of the
function f whereas f (c) is the value of the function f
(x) at x = c which is a number obtained from the rules
defining the function by making the use of
substitution x = c in it.
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3

Continuity of a Function

In general, the Limit of a function y = f (x) at a limit
point of its domain namely x = a need not be equal to
the value of the given function y = f (x) at the limit
point x = a which means that the limit of the given
function may or may not be equal to the value of the

given function, i.e. lim ( )
x a

f x
→

 is not necessarily equal

to f (a).
However, there is an important class of functions

for which the limit and the value are same. Such
functions are called continuous functions.

Definition: If x = a is a limit point in the domain of a
given function y = f (x) and the limit y = f (x) at x = a is
f (a), then the function y = f (x) is said to be continuous
at the given limit point x = a and ‘a’ is termed as the
point of continuity of the given functions y = f (x), i.e.
f (x) is continuous at the limit point x = a of its domain

⇔
→

lim
x a

f (x) = f (a). Hence, in words, the continuity

of a given function at a given limit point in the domain
of the given function ⇔  limit of the same function at
the given limit point = value of the given function at
the given limit point.

Notes: 1. The definition of continuity says that given
function should be defined both for the limit point x =
a D f∈ � �  and for all other points near x = a (near x = a
means in the open interval (a – h, a + h), where ‘h’ is
a small positive number) in D (f).
2. In more abstract form, the definition of continuity
of a function at the limit point in its domain tells us
that a function f is continuous at the limit point
x a= ⇔

(i)  f (a) is defined, i.e., the limit point ‘a’ lies in the
domain of f.

(ii) lim ( )
x a

f x
→

 exists

(iii) lim
x a→  f (x) = f (a)

3. One should note that

(i) The definition of lim
x a

f x p
→

=� �  requires that ‘a’

is the limit point of D (f) where ‘a’ is not necessarily in
D (f) while the definition of continuity of a function at
the limit point ‘a’ requires that the limit point ‘a’ must
be in D (f) which means that it is a must for ‘a’ to be an
interior point of D (f).
(ii) By definition of continuity given above it is pos-
sible for a function to be continuous at a limit point in
its domain D (f) but not to have a limit as x a→ .
Situation arises in the case of a function that is con-
tinuous at an isolated point of its domain D (f).

 ( )ε − δδ  Definition of Continuity of a

Function at the Limit Point of its Domain

It says that a function y = f (x) is continuous at the
limit point x a= ⇔ ∀  given ε δ ε> ∃0 , ( )  such
that x a f x f a− < ⇒ − <δ ε( ) ( ) .

The definition of continuity of a functions y =
f (x) at the limit point x = a of its domain, given
above, implies that, if any neighbourhood
( ( ) ( ) )f a f a− +ε ε,  is chosen of the number f (a),
of arbitrary length, 2ε  where ε  is any positive
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number, however small, then for this ε -neighbourhood
of f (x), there is always a δ -neighbourhood

a a− +δ δ,� �  of the limit point ‘a’ such that for
every value of x in the δ -neighbourhood, the
value of f (x) lies in ε -neighbourhood
( ( ) ( ) )f a f a− +ε ε, .

Remarks: In connection with ε δ−� �  definition of
limit and continuity of a function at the limit point of
(and in) its domain, one should note that
(i) ε δ−� �  definition of continuity is same as ε δ−� �
definition of limit of a function in which “l = limit of f
(x) at the limit point x = a” is replaced by f (a) = value
of the function f (x) at x = a.
(ii) ε > 0 ,  however small, means that one may take
ε = 01. ,  0.01, 0.001, 0.0001 and so on according to
degree of accuracy which one proposes to adopt.
The key point is that ε  is an arbitrary (not fixed)
number of our own selection, and that it may be taken
as small as we please.
(iii) It is common to say that y = f (x) is continuous at
a point x = a ∈D f� �  instead of saying that y = f (x)
is continuous at a limit point x = a in the domain of the
given function y = f (x).

Continuity of a Function at a Limit Point in
its Domain in the Language of a Sequence

In the language of sequences, the definition of
continuity of a function at a point may be stated in
the following way:

“A function y = f (x) is continuous at the point x =
a if for any sequence of the values of the independent
variable x = a1, a2, a3, …, an, … which converges to
‘a’, the sequences of the corresponding values of
the function f (x) = f (a1), f (a2), f (a3), …, f (an), …
converges to f (a).

Theorems on continuous functions at a point: Some
theorems on continuous functions at a point of its
domain are direct results of definition of continuity of
a function and theorems on limits at a point.

A. The sum, difference, product and quotient of two
continuous functions at any point x = a in their
domain is continuous at the same point x =a, provided
in the case of quotient, the divisor (the function in
denominator) at the same point x = a is not zero, i.e. if

f (x) and g (x) are two functions continuous at any
point x = a, then the functions (i) y = f (x) + g (x) (ii) y =

f (x) – g (x) (iii) y = f (x) · g (x) (iv) y
f x

g x
=

( )

( )
,

g a( ) ≠ 0  are also continuous at the same point x = a.

B. The scalar multiple, modulus and reciprocal of a
function continuous at a point in their domain are
continuous at the same point, provided in case of
reciprocal of a functions, the function in denominator
is not zero at the point where continuity of  y is required
to be tested, i.e., if f (x) is a function continuous at a
point x = a and k is any constant, then the functions

(i) y = k f (x), (ii) y = 1 f (x)1, (iii) y
f x

= 1

( )
, f a( ) ≠ 0

are also continuous at the same point x = a.
C. Continuity of a composite function at a point: If
the inner function of a composite function is
continuous at a point a in its domain and the outer
function is continuous at the point representing the
value of the inner function at the point a, then the
composite function is continuous at the point a of
continuity of the inner function, i.e. if y = f (x) is
continuous at the point x = a and the function u = g
(y) is continuous a the point f (a) = b (s a y), then the
composite function u = g (f (x)) = F (x)
(say) is continuous at the point x = a. i.e.,

lim
x a

g f x
→

� �� � = g {f (a)}.

Remember: 1. Every point at which the given function
is continuous is called a point of continuity of the
function.
2. Every point at which the condition of continuity of
the given function is not satisfied is called a point of
discontinuity of the function.

Question: When a given function y = f (x) is
continuous or discontinuous at a point x = a? Mention
the commonest functions continuous or
discontinuous at a point (points).

Answer: 1. On continuity: A function y = f (x) is

continuous at x a f x f a
x a

= ⇔ =
→

lim ( ) ( )
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The Commonest Functions
Continuous at a Point(s)

(i) All standard functions (algebraic polynomial, ra-
tional, irrational, trigonometric, inverse trigonomet-
ric, exponential, logarithmic and constant functions
(symbolised as APRL-CIT E functions) at each point

of their domain Hence, lim sin sin
x a

x a
→

=  for all real

numbers in the domain of sin x which means sin x is
continuous at every point which lies in its domain.

(ii) lim cos cos
x a

x a
→

=  for all real numbers in the

domain of cos x which means cos x is continuous at
every point which lies in its domain.

(iii) lim tan tan
x a

x a
→

=  where ‘a’ is a real number

other than 2 1
2

n +� � π  odd multiple of

π
2

0 1 2n = ± ±, , , ...� �  which means tan x is con-

tinuous for all real values of x excepting

x n= +2 1
2

� � π ,  n being an integer.

(iv) lim cot cot
x a

x a
→

=  where a is a real number other

than (different from) nπ , multiple of

π n = ± ±0 1 2, , , ...� � , which means cot x is

continuous for all real values of x excepting x n= π ,

n being an integer.

(v) lim sec sec
x a

x a
→

=  where a is real number

other than 2 1
2

n +� � π  = odd multiple of

π
2

0 1 2n = ± ±, , , ...� �  which means sec x is

continuous for all real values of x excepting

x n= +2 1
2

� � π ,  n being an integer.

(vi) lim cosec cosec
x a

x a
→

=  where ‘a’ is a real number

other than nπ , multiple of π n = ± ±0 1 2, , , ...� � ,

which means cosec x is continuous for all values of x

excepting x n= π ,  n being an integer.

(vii) lim sin sin–1 –1

x a
x a

→
=  where – | < a < | which

means sin–1 x is continuous for every value of x from

–1 to +1.

(viii) lim cos cos–1 –1

x a
x a

→
=  where – | < a < | which

means cos–1 x is continuous for every value of x from

–1 to +1.

(ix) lim tan tan–1 –1

x a
x a

→
=  for all real number in the

domain of tan–1 x which means tan–1 x is continuous

for all real values of x.

(x) lim cot cot–1 –1

x a
x a

→
=  for all real numbers which

means cot–1 x is continuous for all real values of x.

(xi) lim sec sec–1 –1

x a
x a

→
=  where a is a real number

> 1 or < –1, which means sec–1 x is continuous for all
values of x which do not belong to the open interval
(–1, 1).

(xii) lim cosec cosec–1 –1

x a
x a

→
=  where a is a real >1

or < –1 which means cosec–1 x is continuous for all
real values of x which do not belong to the open
interval (–1, 1).

(xiii) lim
x a

x a
→

=
n n

 for all real number, provided

n ≥ 0  and for all real numbers other than zero,

provided n < 0 which means xn is continuous for all
real values of x when n (i.e., index or exponent of the
base of power function xn) is non-negative and xn is
continuous for all real values of x excepting zero when
n is negative.

(xiv) lim
x a

e e
→

=x a , for all real numbers which means

ex is continuous for all real values of x.

(xv) lim
x c

a a a
→

= >
x c

0� �  for all real number which

means a x (a > 0) is continuous for all real values of x.

(xvi) lim log log
x a

x a
→

=  provided a > 0 which means

log x (x > 0) is continuous for all positive values of x.

(xvii) lim log log
x a

x a
→

=  provided a ≠ 0  which

means log |x|  (x > 0 or x < 0) is continuous for all
positive and negative values of x but not at x = 0.

(xviii) lim
x a→

=α α ,  for all real numbers which means

a constant function α  is continuous for all real values
of x.
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2. Discontinuity: A function y = f (x) is discontinuous

at a point x a f x f a
x a

= ⇔ ≠
→

lim ( ) ( ) ,  i.e., a

function y = f (x) is discontinuous at a point x = a (or,
a function y = f (x) has a point of discontinuity namely
‘a’) if and only if limit and value of the function are
not equal at the same point x = a.

The Commonest Functions
Discontinuous at a Point(s)

1. One of the commonest cases of discontinuity which
occurs in practice is when a function is defined by a

single formula y
f x

g x
=
� �
� �

 with a restriction

g x� � ≠ 0  y assumes the form a fraction with a zero

denominator for a value (or, a set of values) of x
provided by the equation g (x) = 0, e.g.:

(i) f x
x

x� � = ≠1
0,  i.e., it is discontinuous at x = 0.

(ii) f x
x

x
x� � = ≠

sin
, 0  i.e., it is discontinuous at x

= 0.

(iii) f x
x

x� � = �
�
	

 ≠sin

1
0,  i.e., it is discontinuous

at x = 0.

2. All standard and non-standard functions defined
by a single formula y = f (x) are continuous at each
point of their domain excepting a finite set of points
at which they are undefined which means all standard
and non-standard functions are discontinuous at a
point (or, a set of points) at which they are not defined,
e.g.:

(i) f x
x

x
x� � =

−
≠

2
1

1
1

–
,  is discontinuous at x = 1.

(ii) f (x) = tan x and sec x are discontinuous at

x n= ±2 1
2

� � π ,  and continuous at all other values

of x.
(iii) f (x) = cot x and cosec x are discontinuous at x =
n n Iπ ε, � �  and continuous at all other values of x.
3. When a function is a piecewise function, then it
has a chance of having both a point of continuity and

a point of discontinuity at a common point (points) of
adjacent intervals, e.g.:

(i) f x x x

x x
� �= − ≤

>

�
�
�

2 3

3 3

2
,

,

for

for
is discontinuous at x = 3.

(ii) f x

x x

x x

x x

� �
� �

=
+ − ∞ < ≤

− < <
− ≤ < ∞

�

�


�



1
5

2
2 3 1

6 5 1 3

3 3

for

for

for

is continuous at x = 1 and discontinuous at x = 3.
4. Whenever a function is defined by

f x f x x a� � � �= ≠1 , if

= a constant, if x = a (i.e. f (a) = constant)
then there is a chance of having, a point of continuity
or a point of discontinuity at x = a, e.g.:

(i) f x x x� � = + ≠2 2, if

= 3, if x = 2
has a point of discontinuity at x = 2.

(ii) f x x x� � = + ≠2 2,

= 4, x = 2
has a point of continuity at x = 2.

Remember: 1. A function of undefined quantity is

always undefined. For this reason sin cos
1 1

x x
�
�
	



�
�
	

,

and tan
1

x
�
�
	

  are undefined at x = 0.

On Limits of a Continuous Function

1. The limit of a continuous function of variable =
that function of the limit of the variable, i.e.

lim lim
x a x a

f x f x
→ →

= �
��

	

�� �  where f (x) is a continuous

functions at x = a.
2. The limit of a continuous function of a continuous
function of an independent variable = outer
continuous function of the limit of the inner
continuous function of the independent variable, i.e.,

lim lim
x a x a

f g x f g x
→ →

= �
�

	

� �� � � �  provided y = g (x)

is continuous at the point x = a and the function u =
f (y) is continuous at the point g (a) = b (say).
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x0 x
x

x a = 

f a( )

P a f a( , ( ))
Q x y( , )

Q x y( , )

y

P  a′ ( , 0)

Remember: 1. Finding the limit of a continuous
function may be replaced by finding the value of the
function of the limit of the independent variable, i.e.,

if f (x) is continuous function, then lim
x a

f x
→

=� �

f x
x a
lim
→

�
�

	

 . This is sometimes expressed briefly

thus: the limit sign of a continuous function can be
put before the independent variable, e.g.:

(i) lim
x a

x a
→

=

(ii) lim sin sin lim sin
x a x a

x x a
→ →

= �
�

	

 = , etc.

2. The concept of continuity of a function can be
used to find its limit, i.e., if the function f (x) is con-
tinuous at x = a, then in order to find its limit

lim
x a

f x
→

� � ,  it is sufficient to calculate its value at the

point x = a since lim
x a

f x f a
→

=� � � � .

Example: Evaluate: lim
sin

cosx

x

x x→

+
+

�
��

	

�π

2

1 2

3

Solution: The functions in numerator and denomi-
nator are continuous for all positive values of x. so

the quotient function y
x

x x
=

+
+

�
��

	

�

1 2

3

sin

cos
 is also con-

tinuous for all positive values of x which means it is

continuous at x =
π
2

 and hence,

lim
sin

cos

sin

cosx

x

x x→

+
+

�
��

	

�
=

+ �
��
	

�

�
��
	

� +

�
��
	

�
=

π

π

π π π
2

1 2

3

1 2
2

3
2 2

2

3. A function y = f (x) defined in an interval is said to
be piecewise continuous if the interval (in which given
function f (x) is defined) can be divided into a finite
number of non overlaping open subintervals over
each of which the functions f (x) is continuous.

Geometrical Meaning of Continuity
of a Function y = f (x) at a given
Point x = a in its Domain

From the point of view of geometry, a function y = f (x)
is continuous at a given point x = a in its domain
means that the graph of the functions y = f (x) is
unbroken at P (a, f (a)) ⇔
1. The point P (a, f (a)) lies on the graph of the function
y = f (x), i.e. f (x) is defined at x = a.
2. If Q (x, y) is a point on the graph of y = f (x) and
nearer to the point P (a, f (a)), then on which ever side
of the point P, the point Q may be, it must be possible
to make the distance between P and Q as small as one
wants along the graph of the function by making the
distance between x and a small accordingly.

If a function y = f (x) is continuous throughout an
interval (a, b), the graph of the function in this interval
is without any gap, break or jump, i.e. the graph of the
function is unbroken in this interval, i.e. the graph of
the function has no point missing corresponding to
each value of the independent variable in this interval.
In rough language, if the point of a pencil is placed at
one end of the graph, we can move the pencil on the
graph to the other end of the graph without ever
having to lift the pencil off the paper. Further, if a line
is drawn across the graph, it will pass through at least
one point on the graph.

Note: It is better to say that f is continuous at a point
x = a ⇔  the graph of the function y = f (x) is unbroken
at and in the neighbourhood of the point (a, f (a)).

If a function is discontinuous at a point x = a, then
it is a must that the graph of the function has a gap, a
break, or hole at the point whose abscissa is x = a, i.e.
the point (a, f (a)) will be missing on the graph of y =
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f (x). If the function y = f (x) is not defined at x = a, then
there is a gap, a break or a hole in the graph as there is
no point on the graph whose abscissa is x = a.
Moreover, if a function is defined by different formulas
(different expression in x) in different intervals whose
left and right end points are same known as adjacent
intervals in succession, there is usually a possibility
of discontinuity at the common points of the adjacent
intervals. Thus, if we have one functional formula y =

f1 (x) for x a≥  and another y = f2 (x) for x < a we have

the possibility of a discontinuity at x = a.

In case the point of the pencil is made to move on
the graph of the function, then at the point of the
discontinuity, the point of pencil will have to be lifted
off the paper and will jump from one part of the curve
to the other. i.e., while drawing a graph when the point
of the pencil leaves contact with the paper, the function
becomes discontinuous at the point where contact is
left.

Illustrations on Discontinuity
of a Function at a Given Point

1. f x

a x

a x

a x

� � =
<
=
>

�
�

�

,

,

,

when

when

when

0

2 0

3 0

The function f (x) has a discontinuity at x = 0.

2. f x
x a

x a
x a� � = −

−
≠

2 2

,

Here the function f (x) is discontinuous at x = a.

Remember: If a function y = f (x) is not defined (has
no finite value) for any particular value of its
independent variable, then the corresponding point on
the graph of the function will be missing and the graph
will have a hole (a break) at that point.

Two Sided Continuity
of a Function at a Point

In general, a function y = f (x) defined on its domain is
right continuous (continuous from the right) at the right

limit point x = c in its domain ⇔
→ +
lim

x c
f x� �  = f c� �

and it is left continuous (continuous from the left) at

the left limit point x = c, in its domain ⇔
→ −
lim

x c
f x� �

= f c� � .
Hence, a function y = f (x) is continuous at the limit

point x = c in its domain ⇔ . It is both right continuous
and left continuous at x = c.

0
x

( , )a 0

y f  x = ( )2

y f  x = ( )1

y

0

2a

x

y

0
x

cc–

c – δ c + δc+

( , ( ))c f c y = f x( )

y

0
x

y

2a

f x a( ) = 3

f x a( ) = 
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0
x

x a = x a = + x b = – x b = 

y f x = ( )

f b( )

f a( )

y

Continuity of a Function
in an Open Interval

A function y = f (x) is said to be continuous in an
open interval (a, b) ⇔  it is continuous at every point
of the interval (a, b) ⇔  Geometrically, the graph of
the function y = f (x) is unbroken between the points
(a, f (a)) and (b, f (b)).

Continuity of a Function
in a Closed Interval

A function y = f (x) is said to be continuous in a
closed interval [a, b] ⇔  it is continuous in the open
interval (a, b) and is continuous at the left end point
x = a from the right and is continuous at the right end
point x = b from the left.

Geometrically, a function y = f (x) is continuous in
a closed interval (a, b) ⇔  The graph of the function
y = f (x) is an unbroken line (curved or straight) from
the point (a, f (a)) to the point (b, f (b)).

Furthers, one should note that a function y = f (x)
defined over [a, b] is continuous at the left end point

x = a from the right ⇔ =
→ +
lim

x a
f x f a� � � �  and the

function y = f (x) defined over (a, b) is continuous at
the right end point x = b from the left

⇔ =
→ −
lim

x b
f x f b� � � � .

Continuity of a Function

A function y = f (x) is called continuous ⇔  It is
continuous at every point on its domain, e.g.: ex, sin
x, cos x, any polynomial function in x are continuous

functions, i.e., these are functions continuous at every
point on its domain.

Classification of Points of
Discontinuity of a Function

Let x = a be the limit point of the domain of the
function y = f (x). The point ‘a’ is a point of
discontinuity of the function f (x) if at this point, f (x)
is not continuous.

Let f (x) be defined in a deleted neighbourhood of
the point ‘a’ then ‘a’ is

1. A point of removal discontinuity of the function f

(x) if there is a limit lim
x a

f x b
→

=� � ,  but either f (x) is

not defined at the point a or f (a) ≠  b. If we set f (a)
= b, then the function f (x) becomes continuous at the
point ‘a’, i.e., the discontinuity will be removed.

2. A point a of discontinuity is of the first kind of the

function f (x) if there are lim
x a

f x
→ +

� �  and lim
x a

f x
→ −

� �

but lim lim
x a x a

f x f x
→ →+ −

≠� � � � .

3. A point a of discontinuity is of the second kind of
the function f (x) if at least one of the one sided limits
of the function f (x) does not exist at the point x = a,

i.e., either or both of lim
x a

f x
→ +

� �  and lim
x a

f x
→ −

� �  do

not exist.

4. A point a is of mixed discontinuity if one of the one
sided limits exists, i.e., if one of the limits namely

lim
x a

f x
→ +

� �  or lim
x a

f x
→ −

� �  exists.

5. A point is of infinite discontinuity of the function
f (x) if either or both of the one sided limits are infinite,

i.e., if either or both of lim
x a

f x
→ +

� �  and lim
x a

f x
→ −

� �

are infinite.

Notes: One should note that ‘a’ is
(i) A point of discontinuity of the first kind from the

left at a if a lim
x a

f x
→ −

� �  exists but lim
x a

f x
→ −

≠� � f (a).
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(ii) A point of discontinuity is of the first kind

from the right at a  if lim
x a

f x
→ +

� �  exists but

lim
x a

f x f a
→ +

≠� � � � .

(iii) A point of discontinuity is of the second kind

from the left at a if lim
x a

f x
→ −

� �  does not exist.

(iv) A point of discontinuity is of the second kind

from the right at a if lim
x a

f x
→ +

� �  does not exist.

Properties of Continuous Functions

Now we state without proof some important proper-
ties of continuous functions.
1. If f (x) is continuous in a closed interval [a, b], then
range of f (x) is bounded. In other words, if f (x) is
continuous in [a, b], then we can find two numbers m

and M such that m f x M x a b< < ∀� � , ,ε

Note: This property may not be true if the domain of
f (x) is not a closed interval or if f (x) discontinuous
even at a single point in its domain. For example, if

f x
x

� � = 1
,  then f (x) is continuous in the open

interval (0, 1), its range consists of all real numbers

> 1  and evidently no number M can be found such

that 
1

x
M<  for all x in 0 < x < 1. Again consider the

function f (x) defined in (–1, 1) as follows:

f x
x

� � = 1
,  when x f≠ =0 0 1, � � . Then f (x) is

defined in (–1, 1) and continuous at every point in
this interval except at x = 0. Evidently no two fixed

numbers can be found such that m
x

M< <1
 for all x

in (–1, 1)

2. If f (x) is continuous and positive at x = c in its
domain, then for all sufficiently small values of h, f (c
+ h) and f (c – h) are both > 0. In other words, if f (x) is
continuous and positive at x = c, then a h-
neighbourhood of the point ‘c’ can be found
throughout which f (x) is positive.

Similarly, if f (x) is continuous and negative at x = c
in its domain, then f (c + h) and f (c – h) are both,
negative for all sufficiently small values of h.

Note: If h > 0, the symbol f (c + h) indicates the value
of the function f (x) for a value of x greater than c,
whereas the symbol f (c – h) indicates the value of the
functions f (x) for a value of x less than c.

0
x

a b

y f x = ( )

m

M

y

0
x

c h – 

f c h(  – ) f c h(  + )f c( )

y f = (x)

c c h + 

y

0
x

y

c (  + )c h(c – )h

f h(c – )

y = f x( )

f(c) f c h(  + )
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4

Practical Methods of
Finding the Limits

Practical Methods on Limits of a Function
f (x) as x→ a, where f (x) is Expressed in a
Closed Form

In practice, the classical definition or ε δ−� �
definition of the limit of a function at x = a (or, as
x a→ ) is not used in finding out the limit of a
function at x = a (or, as x a→ ) whenever a single
function whose limit is required to be found out is
provided to us. This is why for most practical
purposes, we can adopt the following method to find
the limit of the function f (x) at x = a (or, as x a→ ), in
many examples.

1. lim
x a

f x f a
→

=� � � �  if  f (a) is finite (where f (a) =

value of the given function f (x) at x = a). But when f
(a) = any indeterminate form, then

2. lim lim
x a x a

f x g x g a
→ →

= =� � � � � �  if g (a) is finite

(where g (a) = value of the function g (x) at x = a)
where f (x) is simplified to avoid its in determinate
form and g (x) is the simplified form of the given
function f (x).

⇒  The above method (1) tells us in words that

whenever we are required to find out lim
x a

f x
→

� � , we

first put x = a in the given function f (x) and find f (a).
If f (a) does not assume meaningless form, then this is
the required limit.

Similarly, the above method (2) tells us that if
f (a) assumes any meaningless form, then various
mathematical techniques are applied to simplify f (x)
such that when we put x = a in the simplified form of
the given function, it does not assume any
meaningless form and so we get the required result
having a finite value obtained by putting x = a in the
simplified form of the given function f (x).

N.B.: Simplified form g (x) of f (x) is obtained by using
any mathematical manipulation (or, technique) like
factorization, rationalization, substitution, changing
all trigonometric functions in terms of sine and cosine
of an angle or using any formula of trigonometry or
algebra, etc. whichever we need.

Problems based on the limit when the value of the
function is not indeterminate:

Working rule: To evaluate lim
x a

f x
→

� � , firstly, we

check on putting x = a in the given function whether
it assumes a meaningless form or not. If f (a) does not
assume indeterminate form, this will be required limit,

i.e., lim
x a→

 f (x) = f (a) if f (a) is finite.

Examples:

1. lim
x→0

 (3x2 + 4x2 – 5x + 6) = 3.0 + 4.0 – 5.0 + 6 = 6

2. lim
x

x x

x x→

+
+

=
+ ×
+ ×

=
2

2

2

2

2

3 2

2 3

3 2 2 2

2 2 2 3

3

5

–

–

–

–
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3. lim
x

x

x→

−
+

=
−
+

=
−

= =
2

3 38

2

2 8

2 2

8 8

4

0

4
0

4. lim
x

x x

x x→

+ +
+

=
+ × +

+
= = ∞

0

2

3

5 6 0 5 0 6

0 0

6

0| | | |

5. lim
sin

cos

sin

cos
x

x

x→

+
−

=
+ ⋅���

�
��

− ⋅�
��

�
��

π

π

π2

1 2

1 4

1 2
2

1
4

4

=
+
−

1

1

sin

cos

π
π  =

+
− −

=
1 0

1 1

1

2� �

To evaluate lim
x a

f x

f x→
1

2

� �
� �

 where both f (x) and g (x)

are zero when x = a is put in the given function:

Working rule:
1. Reduce the indeterminate form to a determinate
form by using various mathematical techniques
namely:

(i) Method of factorization or method of division.
(ii) Method of substitution or differential method.
(iii) Method of rationalization.
(iv) Method of expansion.
(v) Method of simplification by using any
mathematical manipulation which are generally use
by trigonometrical formulas, algebraic formulas or
changing all trigonometrical ratios in terms of sine
and cosine of an angle.

2. Put x = a in the determinate form of the function

f x

f x
1

2

� �
� �

.

Remember:
1. For most practical purposes, we can obtain the
limit in case of an indeterminate form as the value
which is obtained by reducing the indeterminate form
into a determinate form by some algebraic operations
like removing common factor or using expansion such
as binomial, exponential, logarithmic or trigonometric
substitution, etc.

2. All the indeterminate form can be reduced to 
0

0

or 
∞
∞

.

3.
0

0
 or any indeterminate form may contain a

common factor which makes the given function
indeterminate whose removal by various techniques
provides us a determinate form.

Question: When to use which method?
Answer: 1. Method of factorization is generally used
when given function is in the quotient form whose
numerator and denominator contains algebraic or
trigonometric functions which can be factorized.
2. Method of rationalization is generally used when
the given function is in the quotient form whose
numerator and denominator contains algebraic or
trigonometric expression under the square root

symbol .
3. Method of substitution or differential method is
generally used when given function can not be
factorized easily or factorization of the given function
is difficult or not possible. The given function may be
algebraic or trigonometric expression in the quotient
form.
4. Method of simplification is generally used when
the given function contains trigonometric functions.
This method tells us to modify the given trigonometric
function by simplification in such a fashion that when
we put x = given limit of the independent variable, we
must get a finite value. This method is also used when
given function is in the difference form like

1 1

1 2f x f x� � � �−
	


��

�

��

 providing us ∞ − ∞  form at

x = a.
5. Expansion method is applied when given function
contains trigonometric functions like sin x, cos x, tan
x, exponential function ex, logarithmic functions like
log x, log (1 + x) or binomial expression like (x + a)n,
etc., whose expansion is known to us and it is quite
possible to remove the common factor from numerator
and denominator after expansion.
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Problems based on algebraic functions

Form: 
f x

f x
1

2

� �
� �  where f1 (x) and f2 (x) are polynomials

in x and x a→ .
The above form is evaluated in the following way.

Rule 1: If g (a) = value of the function appearing in

denominator ≠  0, then lim
g xx a

f x f a

g a→
=

� �
� �

� �
� �

 which

means we put x = a = limit of given independent
variable in the numerator and denominator of the given
fraction (or, rational function) provided the value of
the denominator at x = a is not equal to zero.

Rule 2: If f (a) = g (a) = 0 ⇒  value of the function at
x = a in Nr = value of the function at x = a in Dr = 0,
then we adopt the following working rule.

Working rule to evaluate the limit if 
f x

f x
x a

1

2

� �
� �

	


��

�

�� =

= 0

0
.

1. Numerator and denominator are divided by the
common factor appearing in numerator and
denominator of the given fraction.
2. Remove the common factor from numerator and
denominator by the rule of cancellation.
3. Put x = a = given limit of the given independent
variable in the simplified form of the function (i.e., the
function free from common factor appearing in Nr
and Dr directly or indirectly) which gives us the
required limit of the function as x a→ .

Facts to know:

1. When f (x) assumes the indeterminate form 
0

0
 for

x = a, it does so on account of (x – a) or power of
(x – a) occurring as a factor in both numerator and
denominator of the given function f (x) under
consideration. Such a common factor which produces

0

0
 form or any indeterminate form is called “The

vanishing factor” because this factor always vanishes.

In order to find the limit of f (x) in such a case, our first
aim is to remove the vanishing factor from the
numerator and denominator of f (x) with under-
standing that (x – a) is not zero, however small it may
be and then in the resulting expression, which is
determinate, we put x = a = limit of the independent
variable. Thus the required limit is obtained.
2. If we put x = + a and the given function becomes

0

0
, then (x – a) is a common factor appearing in

numerator and denominator of the given function (or,
rational algebraic function) under consideration.
3. If we put x = –a and the given function becomes

0

0
, then (x + a) is a common factor appearing in both

numerator and denominator of the given function
under consideration.
4. The vanishing factor (x – a) ≠  0 because x a→

⇒ ≠x a  ⇒ − ≠x a� � 0 .

5. The phrase “at the point x = a or for the value
x = a” means “when x assumes or takes the value a”

Remember:

1. Let f x
f x

f x
� � � �

� �= 1

2
 and we require lim

x a

f x

f x→
1

2

� �
� � .

f1 (a) = f2 (a) = 0 ⇒  (x – a) is a common factor of the
given function appearing in numerator and
denominator of the given function f (x).

2. Simplification of the expression 
f x

f x
1

2

� �
� �  is done

whenever it assumes the form 
0

0
 or 

∞
∞

 on putting

‘a’ for x while finding the limit of f (x) as x a→ .

Problems Based on Method of Factorization

Examples worked out:

Find (or, evaluate)

1. lim
x

x x

x x→

− +
− +1

2

2

4 3

5 4
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Solution: �

x x

x x
x

2

2
1

4 3

5 4

1 4 3

1 5 4

− +
− +

	


��

�

��

=
− +
− +

=

=
−
−

4 4

5 5
 =

0

0
.

∴  (x – 1) is a common factor in Nr and Dr of the

given fraction. Dividing Nr and Dr by the common
factor (x – 1), we get

x x

x x

x x

x x

x

x
x

2

2

4 3

5 4

1 3

1 4

3

4
1

− +
− +

=
− −
− −

=
−
−

≠
� �� �
� �� � � �;

∴
− +
− +

	


��

�

��
=

−
−

	

�

�
�
=

−
−→ →

lim lim
x x

x x

x x

x

x1

2

2 1

4 3

5 4

3

4

1 3

1 4

=
−
−

=
2

3

2

3
.

2. lim
x

x x x

x x→

− − +
− −4

3 2

2

2 9 4

2 8

Solution: �

x x x

x x
x

3 2

2
4

2 9 4

2 8

− − +
− −

	


��

�

�� =

=
− − +

− −
=

−
−

=
64 32 36 4

16 8 8

68 68

16 16

0

0

∴ (x – 4) is a common factor in Nr and Dr of the
given fraction. Dividing Nr and Dr by the common
factor (x – 4), we get

x x x

x x

x x x

x x

3 2

2

2
2 9 4

2 8

4 2 1

4 2

− − +
− −

=
− + −

− +

� �� �
� �� �

=
+ −
+

≠
x x

x
x

2 2 1

2
4; � � .

Now taking the limits on both sides as x → 4

since both sides are equal (i.e., if two functions are
equal, their limits are equal), we get,

lim lim
x x

x x x

x x

x x

x→ →

− − +
− −

=
+ −
+4

3 2

2 4

22 9 4

2 8

2 1

2

=
+
+

=
−

=
16 8 1

4 2

24 1

6

23

6

–
.

Alternative method: By direct division

=
− − +

− −
= −

−
− −

x x x

x x
x

x

x x

3 2

2 2

2 9 4

2 8

4

2 8

= x
x

x x
x

x
x−

−
− +

= −
+

≠
4

4 2

1

2
4

� �
� �� � � � � �� .

Now, taking the limits on both sides as x → 4 , we

get

lim
x

x x x

x x→

− − +
− −4

3 2

2

2 9 4

2 8

= −
+

	

�

�
�→

lim
x

x
x4

1

2

lim lim
x x

x
x→ →

−
+4 4

1

2

= −
+

= − =
−

=4
1

4 2
4

1

6

24 1

6

23

6 .

3. lim
x

x x x

x x x→

− + −
− − −

	


��

�

��3

3 2

3 2

5 7 3

5 3

Solution:
x x x

x x x
x

3 2

3 2
3

5 7 3

5 3

0

0

− + −
− − −

	


��

�

��

=
=

⇒  Nr has (x – 3) as a factor and Dr has (x – 3) as
a factor.

Now, dividing Nr and Dr by the common factor
(x – 3), we get

x x x

x x x

x x x

x x x

3 2

3 2

2

2

5 7 3

5 3

3 2 1

3 2 1

− + −
− − −

=
− − +

− + +

� �� �
� �� �

=
− +

+ +
≠

x x

x x
x

2

2

2 1

2 1
3; � �
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∴
− + −

− − −

	



�
�

�


�
�→

lim
x

x x x

x x x3

3 2

3 2

5 7 3

5 3

=
− +
+ +

	


��

�

��→

lim
x

x x

x x3

2

2

2 1

2 1

=
− × +
+ × +

= =
3 2 3 1

3 2 3 1

4

16

1

4

2

2

4. lim
x

x x

x x→

− +
− +1

7 5

3 2

2 1

3 2

Solution: �

x x

x x
x

7 5

3 2
1

2 1

3 2

0

0

− +
− +

	


��

�

��

=
=

∴ (x – 1) is a common factor in Nr and Dr of the
given fraction.

Now, dividing Nr and Dr by (x – 1) we get

x x

x x

7 5

3 2

2 1

3 2

− +
− +

=
− + − − − − −

− − −

x x x x x x x

x x x

1 1

1 2 2

6 5 4 3 2

2

� �� �
� �� �

=
+ − − − − −

− −
≠

x x x x x x

x x
x

6 5 4 3 2

2

1

2 2
1; � �

Now taking the limits on both sides as x → 1

lim
x

x x

x x→

− +
− +

	


��

�

��1

7 5

3 2

2 1

3 2

=
+ − − − − −

− −

	


��

�

��→

lim
x

x x x x x x

x x1

6 5 4 3 2

2

1

2 2

=
+ − − − − −

− −
1 1 1 1 1 1 1

1 2 2

=
−
−

=
2 5

1 4
1

5. lim
x

x

x x→

−
− +1

2

2

1

3 2

Solution:
x

x x
x

2

2
1

1

3 2

0

0

−
− +

	


��

�

��

=
=

⇒  (x – 1) is a common factor in Nr and Dr of the
given fraction.

Now, dividing Nr and Dr by (x – 1), we get

x

x x

x x

x x

2

2

1

3 2

1 1

1 2

−
− +

=
+ −
− −

� �� �
� �� �

=
+
−

≠
x

x
x

1

2
1; � � .

Now taking the limits on both sides as x → 1 , we

get

lim lim
x x

x

x x

x

x→ →

−
− +

=
+
−

	

�

�
�1

2

2 1

1

3 2

1

2

=
+
−

=
−

= −
1 1

1 2

2

1
2

6. lim
x

x x

x→

− +
−

	


��

�

��2

2 3 2

2

Solution:
x x

x
x

2

2

3 2

2

0

0

− +
−

	


��

�

��

=
=

⇒  Nr has (x – 2) as a factor and Dr has (x – 2) as
a factor

Now dividing Nr and Dr by the common factor
(x – 2), we have

x x

x

x x

x
x

2 3 2

2

1 2

2
1

− +
−

=
− −

−
= −

� �� �
� � � �;

x ≠ 2� �
Now, taking the limits on both sides as x → 2 , we

have

lim
x

x x

x→

− +
−2

2 3 2

2
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= − = − =
→

lim
x

x
2

1 2 1 1� �

7. lim
x

x x x

x x→

− + −
− −3

3 2

2

3 5 15

12

Solution:
x x x

x x
x

3 2

2
3

3 5 15

12

0

0

− + −
+ −

	


��

�

��

=
=

⇒  Nr has (x – 3) = a factor and Dr has (x – 3) = a
factor: ⇒  (x – 3) is a common factor in Nr and Dr.

Now, dividing Nr and Dr by the common factor
(x – 3), we get

x x x

x x

x x

x x

3 2

2

2
3 5 15

12

3 5

3 4

− + −
− −

=
− +

− +

� �� �
� �� �

x

x
x

2 5

4
3

+
+

≠; �� �

∴
− + −

− −

	


��

�

��→

lim
x

x x x

x x3

3 2

2

3 5 15

12

∴
+
+

	


��

�

��→

lim
x

x

x3

2 5

4

=
+

+
→

→

lim

lim
x

x

x

x

3

2

3

5

4

� �
� �

=
+
+

=
+

= =
3 5

3 4

9 5

7

14

7
2

2

8. lim
x

x

x→

−
−2

2 4

2

Solution:
x

x
x

2

2

4

2

0

0

−
−

	


��

�

��

=
=

⇒  Nr has (x – 2) as a factor and Dr has (x – 2) as
a factor: ⇒  (x – 2) is a common factor of Nr and Dr of
the given fraction.

Now dividing Nr and Dr by the common factor
(x – 2), we get,

x

x

x x

x

2 4

2

2 2

2

−
−

=
− +

−
� �� �
� �

= + ≠x x2� � � �; 2�

∴
−
−

= +
→ →

lim lim
x x

x

x
x

2

2

2

4

2
2� �

= 2 + 2 = 4.

9. lim
x

x

x→−

+
+1

3 1

1

Solution:
x

x
x

3

1

1

1

0

0

+
+

	


��

�

��

=
= −

⇒  Nr has (x + 1) as a factor and Dr has (x + 1) as
a factor: (x + 1) is a common factor in Nr and Dr of the
given fraction.

Now, dividing Nr and Dr by the common factor
(x + 1), we get

x

x

x x x

x

3 2
1

1

1 1

1

+
+

=
+ − +

+

� � � �

= x x x2 1 1− + ≠ −for� �

∴
+
+

= − +
→− →−
lim lim

x x

x

x
x x

1

3

1

21

1
1� �

= 1 – (– 1) + 1 = 1 + 1 + 1 = 3.

Exercise 4.1

Problems set on method of factorization or division

Find the limits of the following functions:
Answers

1. L
x

x x

x x→

− +
− +1

7 5

3 2

2 1

3 2
 (Bhag—65A) (1)

2. L
x

x

x x→

−
− +1 3 2

1

3 2� �
 (I.I.T.—1976) −���

�
��

1

3
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3. L
x

x x

x x→

− +
− +2

2

2

2 7 6

5 11 2
 (Bombay—65)

1

9
�
��
�
��

4. L
x

x x

x→

− +
−4

2

3

7 12

64
 (Bombay—69, 70)

1

48
�
��
�
��

5. L
x a

x a

x a→

−
−

4 4

 (R.U.—65) (4a3)

6. L
x

x x

x x→

− +

− +3

2

2

4 3

2 11 15
(2)

7. L
x

x

x→−

+
+3

3

5

27

243

1

15
�
��
�
��

8. L
x

x

x→−

+
+3 3

3

27

1

27
�
��
�
��

9. L
x

x

x→

−
−1

2

1 32

1 8

5

3

5

3
�
��
�
��

Type 2: Limits of irrational functions as x a→ .

Form 1: f x� �  or f x
m
n� �

Form 2: f x f x1 2� � � �±  occurring in the Nr or

in Dr or in both Nr and Dr.

Working rule for form 1:
If the given function has the form 1 mentioned above,
we adopt the following working rule:

Use the following formulas:

1. lim lim
x a x a

f x f x
→ →

=� � � �

2. lim lim
x a x a

f x f x
m
n

m
n

→ →
= 	
�

�
�� � � �

Working rule for from 2:
1. If only Nr contains the radical of the above form,
rationalize Nr  by multiplying Nr  and Dr by
rationalizing factor of Nr.
2. If only Dr contains the radical of the form
mentioned above, rationalize Dr by multiplying Nr
and Dr by rationalizing factor of Dr.
3. If Nr and Dr both contain radicals of the above
type, rationalize Nr and Dr both separately by
multiplying and dividing Nr and Dr by rationalizing
factor of Nr and Dr.

Facts to know about rationalizing factor:

(a) a b+� �  and a b−� �  are rationalizing factors

of each other.

(b) a b+� �  and a b−� �  are rationalizing

factors of each other.

(c) p a q b+� �  and p a q b−� �  are rationa-

lizing factors of each other.

N.B.:

1. Any one of a b+� � , a b+� �  or

p a q b+� �  may be provided in the question

whose limit is required to find out where a and b
indicate a function of x.
2. Our main aim is to remove the common factor by
rationalization of Nr or Dr or both Nr and Dr.
3. After removing the common factor, we put x = a =
limit of the independent variable x in the irrational
function free from the common factor known as
simplified form.

4. The above rule is valid when f x f x1 2� � � �±

becomes 
0

0
 at x = a.

Problems based on the form 1 f x� �  or f x
m
n� �

Solved Examples

Evaluate:

1. lim
x

x

x→

+
+1

8 1

3

Solution: lim
x

x

x→

+
+1

8 1

3

= +
+

�
��

�
��→

lim
x

x

x1

8 1

3
 =

+

+
→

→

lim

lim
x

x

x

x
1

1

8 1

3

� �
� �
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=
+

+
→ →

→ →

lim lim

lim lim
x x

x x

x

x

1 1

1 1

8 1

3
 =

+
+

8 1 1

1 3

� �

= 9

4
 =

3

2
.

Exercise 4.2

On the form f x� �  or f x
m
n� �

Find the limit of the following:
Answers

1. L
x

x
→

+
1

2
2 1 3� �

2. L
x

x
→

−
1

2
16 15� �

3. L
x

x x
→−

− −
1

4 1 3� � (–10)

Problems based on the form 2 f x f x1 2� � � �±

Examples worked out:
Evaluate:

1. lim
x

x x

x
→

− + −

−1

2

2

1 1

1

Solution:
x x

x
x

2

2

1

1 1

1

0

0

− + −

−

	



�
�

�


�
� =

=

Now, 
x x

x

2

2

1 1

1

− + −

−

=
− + + −

− +

x x x

x x

1 1 1

1 1

� �� �
� �� �

=
− + +

− +

x x

x x

1 1 1

1 1

� �
� �

=
+ +

+

x

x

1 1

1� �  ; (for x ≠ 1 )

Hence, lim
1

x

x x

x→

− + −

−1

2

2

1

1

=
+ +

+→
lim
x

x

x1

1 1

1

=
+ +

+

1 1 1

1 1  =
+2 1

2

2. lim
x

x x

x→

− − −

−1

3 1 1

1

� �

Solution:
x x

x
x

3

1

1 1

1

0

0

− − −

−

	



�
�

�


�
� =

=

� �

Now, 
x x

x

3 1 1

1

− − −

−
� �

=
− + + − −

−

x x x x

x

1 1 1

1

2� �� � � �

=
− + + − −	

�

�
�

−

x x x x

x

1 1 1

1

2

= + + − − ≠x x x2 1 1; for 1x� �

Hence, lim
x

x x

x→

− − −

−1

3 1 1

1

� �

= + + − −	

�

�
�→

lim
x

x x x
1

2 1 1

= + + − − = − =1 1 1 1 1 3 0 3
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Note: The above examples gives as a hint that we
should not rationalize the given irrational function
blindly but we must check whether it is possible to
remove the common factor (or, not) by factorization
which is present in Nr and Dr of the given irrational
function, i.e., if it is possible to remove the common
factor from the numerator and denominator of
irrational function after factorization and then using
cancellation, we must remove it.

3. lim
x a

x a

x a→

−
−� �

Solution:
x a

x a
x a

−
−

	


�
�

�

�
�

=
=

� �
0

0

Now, 
x a

x a

−
−� �  =

−

−

x a

x a� � � �
2 2

=
−

+ −

x a

x a x a� � � �

=
+

≠1

x a
x a; for� �

Hence, lim
x a

x a

x a→

−
−� �

=
+→

lim
x a x a

1

=
+

=1 1

2a a a

4. lim
x

x

x→

− −

−5 2

2 1

25

Solution:
2 1

25

0

02

5

− −
−

	



�
�

�


�
�

=
=

x

x
x

 and Nr contains

as irrational expression which means rationalizing of
Nr is required.

Hence, 
2 1

252

− −

−

x

x

� �
� �

=
− −

−
×

+ −

+ −

2 1

25

2 1

2 12

x

x

x

x

=
− −
− +

×
× −

2 1

5 5

1

2 1

2 x

x x x

� �
� �� �

= − +

+ − + −

4 1

5 5 2 1

x

x x x� �� �� �

=
− −

+ − + −

x

x x x

5

5 5 2 1

� �
� �� �� �

= −

+ + −

1

5 2 1x x� � � �

∴
− −

−→
lim
x

x

x5 2

2 1

25

= −
+ + −→

lim
x x x5

1

5 2 1� � � �

= −

+ − +

1

5 5 5 1 2� � � �

= −

+

1

10 4 2� �
 =

−
× +

1

10 2 2� �

=
−
×
1

10 4
 = − 1

40

5. lim
x

x

x→

− +

− −4

3 5

1 5

Solution:
3 5

1 5

0

0
4

− +

− −

	



�
�

�


�
�

=
=

x

x
x

Since Nr and Dr both contain radicals whose
factorization is not possible which means we are
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required to rationalize Nr and Dr both separately on
multiplying and dividing by the rationalizing factor.

Nr x= − +3 5� �

=
− + + +

+ +

3 5 3 5

3 5

x x

x

� �� �
� �

=
− +

+ +

3 5

3 5

2 2
� � � �
� �

x

x

= − −

+ +

9 5

3 5

x

x� �

= −

+ +

4

3 5

x

x� �

Dr x= − −1 5� �

=
− − + −

+ −

1 5 1 5

1 5

x x

x

� �� �
� �

=
− −

+ −

1 5

1 5

2 2
� � � �
� �

x

x

=
− −

+ −

1 5

1 5

x

x

� �

= −
+ −

x

x

4

1 5

Now, given expression = Nr

Dr

=

−

+ +

−

+ −

4

3 5

4

1 5

x

x

x

x

� �
� �
� �

� �

=
− + −

− − + +

4 1 5

4 3 5

x x

x x

� �� �
� �� �

 for x ≠ 4

= −
+ −

+ +

1 5

3 5

x

x

� �
� �

∴ Required limit =
− + −

+ +→
lim
x

x

x4

1 5

3 5

� �
� �

= −
+ −

+ +

�
��

�
��

1
1 5 4

3 5 4
� �

=
− +

+
=
−

= −
1 1 1

3 3

2

6

1

3

� �� �
� �

6. lim
x

x x

x x→

− −

− +1

2

2

2

2 2 2

Solution: lim
x

x x

x x→

− −

− +1

2

2

2

2 2 2

Now on rationalizing the Nr and Dr with the help
of rationalizing factor of Nr and Dr.

=
− − + +

− +�
�

�
� + −�
�

�
� + +�
�

�
�

→
lim
x

x x x x

x x x x x x
1

2 2 2

2 2 2

2 2 2 2

2 2 2 2 2 2 2

� �� �� �

=
− − + +

− + + −→
lim
x

x x x x

x x x x
1

2 2 2

2 2 2

2 2 2 2

4 2 2 2

� �� �� �

� �� �� �

=
− + +�
�

�
�

− + −�
�

�
�

→
lim ;
x

x x x

x x x1

2 2

2 2

2 2 2 2 2

2 2 2

� �

� �
 (for x ≠ 1)
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=
+ +

+ −→
lim
x

x x

x x1

2

2

2 2 2

2
 [on removing the common

factor]
= 2

7. lim
x

x

x
→

−

− +2

2

2

4

3 5

Solution: lim
x

x

x→

−

− +2

2

2

4

3 5

� �

Now on rationalizing the Dr only since radical
appears in Dr only

=
− + +�

�
�
�

− +�
�

�
� + +�
�

�
�

→
lim
x

x x

x x
2

2 2

2 2

4 3 5

3 5 3 5

� �

=
− + +�

�
�
�

−→
lim ;
x

x x

x2

2 2

2

4 3 5

4

� �

� �
 (for x ≠ 2 )

= + +�
�

�
�→

lim
x

x
2

23 5

= 6.

Problems based on method of rationalization

Exercise 4.3

Find the limit of the following Answers

1. L
x

x

x→

− −
−1

2 1

1
 (M.U. 68)

1

2
�
��
�
��

2. L
x

x

x x
→

−

− + −1 2

1

1 1
(0)

3. L
x

x

x→

−
−4

2

4
1

4
�
��
�
��

4. L
x

x x

x→

−
−1

2

1
(3)

5. L
x

x x

x x
→

+ − −

+ − −1

2 2

2 2

8 10

3 5

2

3
�
��
�
��

6. L
x

x

x→

− −
−2

3 1 1

2� �
1

3
�
��
�
��

7. L
x

x x

x x→

− −

+ −1 2

2 3 1

2 3

� �� �
� �

−���
�
��

1

10

8. L
x

x

x→

+ −
+1

2
3 1

2� �
1

3
�
��
�
��

9. L
x

x

x→

+ −
−3

2 3 3

6� �
(0)

10. L
x

x

x→

+ −
−1

4 5

1� �
1

2 5

�
��

�
��

11. L
x

x

x→

− +
− −4

3 5

1 5
−���
�
��

1

3

Type 3:

Form: f x f x x a1 2� � � �− = ∞ − ∞ →as

Working rule: To evaluate f x f x1 2� � � �− =

∞ − ∞ →as x a  our main aim is to reduce the form

∞ − ∞� �  to the form 0

0
 which can be explained in

the notational form in the following way:

1. Write f x f x

f x f x

1 2

1 2

1
1

1
1

� � � �
� � � �

− = −
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2. Write 1 =
−

⋅
=

1 1

1 1
0

0
2 1

1 2

f x f x

f x f x

� � � �

� � � �
 whose limit is

found by the method already explained.

Note: 1. In practice, to reduce the form ∞ − ∞� �  to

the form 
0

0
, we generally simplify the given

expression by using any mathematical operation (like
taking l.c.m or changing all trigonometric functions in
to sin and cosine of an angle, etc.). After obtaining

the form 
0

0
, we are able to find its limit, e.g.:

(i) lim tan sec form
x

x x
→

− = ∞ − ∞
π
2

� � � �,

tan sec
sin

cos cos
x x

x

x x
− = − 1

=
−

= →
sin

cos
as

x

x

1 0

0 2

π

(ii) lim
cos

form
2θ

θ
θ→

−�
��

�
�� = ∞ − ∞

0

1
, � �

1 1 1 2
2

2

2

−
=

− +cos sin

2

θ
θ

θ

θ

= = →
2

2 0

0
0

2sin
as

2

θ

θ
θ .

(iii) 2

1

1

1
1

2−
−

−
	


��

�

��
= ∞ − ∞ →

x x
xform as� �

=
+ −

−
−

2

1 1

1

1x x x� �� � � �

=
− +

−
=

−
− +

= →
2 1

1

1

1 1

0

0
1

2

x

x

x

x x
x

� �
� �

� �
� �� � as

Note 2: If lim
x a f x f x→

±
	


��

�

��
= ∞ ± ∞1 1

1 2� � � �
, we take

first l.c.m and then we subtract. Taking l.c.m and

subtracting reduces the form ∞ − ∞� �  to the form 
0

0
for which we adopt the usual method of removing
common factor of Nr and Dr as factorization of
cancellation, etc.

Problems based on the form:

1 1

1 2f x f x
x a� � � � � �±

	


��

�

��
= ∞ ± ∞ →as

Examples worked out:
Evaluate

1. lim
x x x→ −

+
−

	


��

�

��1 2

2

1

1

1

Solution:
2

1

1

12−
+

−
	


��

�

��x x

=
−

−
−

	


��

�

��

= ∞ − ∞ →2

1

1

1
1

2x x
x, as� �

Now, 
2

1

1

12−
−

−x x

=
− +
− +

2 1

1 1

x

x x

� �
� �� �

=
−

− +
1

1 1

x

x x

� �
� �� �  = +

1

1 x� �

Thus, 2

1

1

1

1

12−
+

−
	


��

�

��
=

+x x x
… (1)

Now taking the limit on both sides of (i) as x → 1 ,

we get

lim
x x x→ −

+
−

	


��

�

��1 2

2

1

1

1
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=
+

=
+

=
→

lim
x x1

1

1

1

1 1

1

2

2. lim
x x x→ −

−
−

	


��

�

��1 2 4

1

1

2

1

Solution: 1

1

2

1
1

2 4x x
x

−
−

−

	


��

�

��

= ∞ − ∞ →; as� �

Now, 
1

1

2

12 4x x−
−

−  =
+ −

− +

x

x x

2

2 2

1 2

1 1� �� �

=
−

− +
=

+

x

x x x

2

2 2 2

1

1 1

1

1

� �
� �� �

Thus, 
1

1

2

1

1

12 4 2x x x−
−

−

	


��

�

��
=

+
… (1)

Now taking the limits on both sides of (1) as

x → 1 , we have

lim lim
x xx x x→ →−

−
−

	


��

�

��
=

+

	


��

�

��1 2 4 1 2

1

1

2

1

1

1

=
+

=1

1 1

1

2

3. lim
x a

a

x a x a→ −
−

−
	


��

�

��

2 1
2 2

Solution:
2 1

2 2

a

x a x a
x a

−
−

−
	


��

�

��

= ∞−∞ →, as� �

Now, 
2 1 2

2 2 2 2

a

x a x a

a x a

x a−
−

−
	


��

�

��
=

− −
−� �

=
−
−

= −
+

a x

x a x a2 2

1
… (1)

Now taking the limits on both sides of (1) as x a→

lim lim
x a x a

a

x a x a x a→ →−
−

−
	


��

�

��
= −

+
	

�

�
�

2 1 1
2 2

= −
+

= −
+

=
−

→
lim
x a x a a a a

1 1 1

2

4. lim
x x x→ −

−
−

	


��

�

��2 2

1

2

4

4

Solution: 1

2

4

4
2

2x x
x

−
−

−

	


��

�

��
= ∞ − ∞ →as� �

Now, 
1

2

4

4

2 4

42 2x x

x

x−
−

−

	


��

�

��
=

+ −
−

=
−
−

=
−

+ −
x

x

x

x x

2

4

2

2 22

� �
� �� �

=
+
1

2x� � ; (for x ≠ 2 )

Thus, 
1

2

4

4

1

22x x x−
−

−

	


��

�

��
=

+ … (1)

Now taking the limits on both sides of (1) as

x → 2 , we have

lim lim
x xx x x→ →−

−
−

	


��

�

��
=

+2 2 2

1

2

4

4

1

2

=
+

=1

2 2

1

4

5. lim
x x x x→ −

−
− +

	


��

�

��2 2

1

2

1

3 2

Solution:
1

2

1

3 22x x x−
−

− +

	


��

�

��
= ∞ − ∞ form� �

as x→2
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Now, 
1

2

1

3 22x x x−
−

− +

	


��

�

��

=
−

−
− −

1

2

1

2 1x x x� �� �

=
−

− −
−

− −
x

x x x x

1

2 1

1

2 1� �� � � �� �

=
−

− −
x

x x

2

2 1� �� �

=
−

≠1

1
2

x
x; for� �

Thus, 
1

2

1

3 2

1

12x x x x−
−

− +

	


��

�

��
=

−
... (1)

Now, taking the limits on both sides of (1) as

x → 2 , we have

lim
x x x x→ −

−
− +

	


��

�

��2 2

1

2

1

3 2

=
−

	

�

�
�
=

−
=

→
lim
x x2

1

1

1

2 1
1

Problems based on the form:

1 1

1 2f x f x� � � �−
	


��

�

��
→  

1

0

1

0
− ∞−∞ →or, as� � x a

Exercise 4.4

Find the limit of the following Answers

1. L
x x x→ −

−
−

	



�
�

�


�
�1 3

1

1

3

1
(–1)

2. L
x x x x→ − +

−
+

	

�

�
�1

1

1

1

3

2

3 5

1

32
�
��
�
��

3. L
x

x

x

x

x→

−
−

−
+

−

	



�
�

�


�
�1

2

2

2

8 3

2 1

4 1

4 1

7

2
�
��
�
��

4. L
x x x x→ −

−
−

	



�
�

�


�
�3 2

1

3

3

3

1

3
�
��
�
��

5. L
x x

x

x→ −
+

−

	


��

�

��2 3

1

2

6

8 (0)

6. L
x x x x x→ −

−
− −

	

�

�
�2

1

2

2

1 2� �� �
3

2
�
��
�
��

7. L
x x x x→ −

−
−

	


��

�

��8 2

1

8

8

8

1

8
�
��
�
��

8. L
x a x a

a

x a x→ −
−

−

	



�
�

�


�
�

1
2

1

a
�
��
�
��

Problems based on the formulas:

(i) lim
x a

n n
nx a

x a
n a

→
−−

−
= 1 ; (where n is an integer > 1)

(ii) lim
x a

m m

n n
m nx a

x a

m

n
a

→
−−

−
= ; (where m and n are

integers > 1)

(i) To show: lim
x a

n n
nx a

x a
n a

→
−−

−
= 1  provided n is

an integer > 1
Proof: � we know that

x an n−

= − + + + +− − − −x a x a x a x an x n n� �� �1 2 2 3 1...

… (1)
on dividing both sides of (1) by (x – a), we get

x a

x a

n n−
−
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=
− + + + +

−

− − − −x a x a x a x a

x a

n n n n� �� �
� �

1 2 2 3 1...

= + + + +− − − −x a x a x an n n n1 2 2 3 1...� �   … (2)

Now, on taking the limits on both sides of (2) as
x a→ , we get

lim
x a

n nx a

x a→

−
−

= + + + +
→

− − − −lim
x a

n n n nx a x a x a1 2 2 3 1...� �

= + +
→

−
→

−lim lim
x a

n

x a

nx a x1 2� �

lim lim
x a

n

x a

na x a
→

−
→

−+ +2 3 1...

= + ⋅ + ⋅ + +− − − −a a a a a an n n n1 2 2 3 1...

= + + + +− − − −a a a an n n n1 1 1 1... (up to n terms)

= −n an 1

N.B.: This relation is true for n = any rational number
whose proof is provided with the help of binomial
expansion.

x = a + h ⇒  x – a = h and as x a→ , h → 0

∴ + −a h a
n n� �

a
h

a
a a

h

a
n

n
n n

n

1 1 1+���
�
��

�
��
��

�
��
��
− = +���

�
�� −

�
��
��

�
��
��

= + �
��
�
�� +

− �
��
�
�� +

�
��
��

�
��
��
−

	



�
�

�


�
�

a
n h

a

n n h

a
n 1

1

1

2
1

2


 

� �

...

= ⋅ ⋅ +
−

 ⋅ +	


�
a n

h

a

n h

a
n 1

1

2

terms containing high powers of h
�
�

… (1)

On dividing both sides of (1) by h, we get

x a

h

n n−

=
⋅ ⋅ + −


 ⋅ +	

�

�
�

a n
h

a

n h

a
h

h

n 1
1

2
terms containing higher powers of

… (2)
On putting x – a = h on the l.h.s of (2), we get

x a

x a

n n−
−

a n
h

a

n h

a
h

h

n ⋅ ⋅ + −

 ⋅ +	


�
�
�

1
1

2
terms containing higher powers of

… (3)
Lastly on taking the limits on both sides of (3) as

h → 0

lim
h

n nx a

x a→

−
−0

=
⋅ ⋅ + −


 ⋅ +	

�

�
�

→
lim

terms containing higher powers of

h

na n
h

a

n h

a
h

h0

1
1

2

= ⋅ ⋅ = −a n
a

n an n1 1

∴
−
−

= → ⇔ →
→

−lim
x a

n n
nx a

x a
n a x a h1 0�� �

(ii) To show: lim
x a

m m

n n
m nx a

x a

m

n
a

→
−−

−
=  where m and

n are integers > 1

Proof:
x a

x a

x a

x a

x a

x a

m m

n n

m m

n n

−

−
=

−

−

−

−

� �
� �
� �
� �

=
− + + +

− + + +

− − −

− − −

x a x a x a

x a x a x a

m m m

n n n

� �� �
� �� �

1 2 1

1 2 1

...

...
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=
+ + +
+ + +

− − −

− − −
x a x a

x a x a

m m m

n n n

1 2 1

1 2 1

...

...
… (1)

Now, on taking the limits on both sides of (1) as
x a→ , we get

lim
x a

m m

n n

x a

x a→

−
−

=
+ + +

+ + +→

− − −

− − −lim
x a

m m m

n n n

x a x a

x a x a

1 2 1

1 2 1

...

...

= =
−

−
−ma

na

m

n
a

m

n
m n

1

1

N.B.: This relation holds true even if m and n are
rational numbers.

Aid to memory: 1. lim
x a

n nx a

x a→

−
−

 = index of power

‘an’ times base ‘a’ raised to the power n minus 1.

2. lim
x a

m m

n n

x a

x a→

−
−

=
=
=

×
m Nr

n Dr

index of the power of the contant appearing in

index of the power of the contant appearing in
the

constant raised to the power m minus n.

Problems based on the formulas

(i) L
x a

n n
nx a

x a
n a

→

−−
−

=
1

(ii) L
x a

m n

n n

m nx a

x a

m

n
a

→

−−

−
=

Working rule: We should use the formulas (i) and
(ii) directly provided that given function has the form

either (i) 
x a

x a

n n−
−

, or (ii) 
x a

x a

m m

n n

−
−

 and we are

required to find the limit of these functions as x a→ .

Examples worked out:
Evaluate:

1. lim
x a

x a

x a→

−
−

	


��

�

��

5 2 5 2

1 2 1 2

/ /

/ /

Solution: lim
x a

x a

x a→

−
−

5 2 5 2

1 2 1 2

/ /

/ /

=
−5 2

1 2

5 2 1 2/

/

/ /a � �

= 5
4
2a

= 5 2a

2. lim
x

x

x
→

−

−
64

1

6

1

3

2

4

Solution: lim
x

x

x
→

−

−
64

1
6

1

3

2

4

 =
−

−
→
lim

x

x

x
64

1

6
1

6

1

3
1
3

64

64

� �

� �

=
⋅

−�
��

�
��1

6
1
3

1

6

1

3a
 (using formula)

= × × =
−�

��
�
��

−�
��

�
��1

6

3

1

1

2

1

6

1

3

1 2

6a a

= = ⋅
−1

2

1

2

1
1

6
1

6

a

a

=
1

2

1
6 a

= ⋅ =
1

2

1

64
64

6
as a� �

= ⋅ = × =1

2

1

2

1

2

1

2

1

4
6

1

6� �
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3. lim
x a

x a

x a→

−
−

4 4

Solution: lim
x a

x a

x a
a

→
−−

−
=

4 4
4 14  (using the formula)

4. lim
x a

x a

x a
a

→

−
−

	




�
�
�

�



�
�
�
=

3

2

3

2

2 2
34

Solution: lim
x a

x a

x a

a

→

−�
��

�
��

−
−

�

�

�
��

�

�

�
��
=

⋅
3

2

3

2

2 2

3

2
23

2
2

= × ×
−�

��
�
��3

2

1

2

3 4

2a

= = × =
−���
�
��3

4

3

4

1 3

4

1
2a

a a

5. lim
x

x

x→

−

−

	



�
�

�


�
�1

1

1
1
4

Solution: lim
x

x

x→

−

−

	



�
�

�


�
�1

1

1
1
4

 =
−
−

→
lim
x x

x

1

1

1

1

1
4

1
4� �

=
⋅ −

1
1
4

1
1
4

1� �� �

=
× −

1
1
4

1
3
4� �� �

=
×

1
1
4

1

= ×1
4

1
= 4

or alternatively,

lim
x

x

x→

−−

−
=

1

11

1

1
1
4

1
1
4

1
4� �� �

 = ⋅ −1
1
4

1
3
4� �� �  (�  Here,

m = 1, n = 
1

4
) (according to formula)

= ⋅4
1

1
3
4� �

= 4

1
= 4

Problems based on the form

(i)
x a

x a

m m

n n

−
−

(ii)
x a

x a

n n−
−

Exercise 4.5

Find the limit of the following: Answers

1. L
x a

x a

x a→

−

−

3 3

5 5

3

5
2a−�

��
�
��

2. L
x

x

x→

−

−2

5

3

32

8

20

3
�
��
�
��

3. L
x

x

x x→

−
−2

2
4

2 2

4 2

3

4. L
x

x

x→

−
−2

5
32

2
(80)

5. L
x

x

x→

−

−2

5

4

32

16

5

2
�
��
�
��

6. L
x

x

x→

−
−2

2

2

1

2 2

�
��

�
��

7. L
x

x

x→

−
−3

3

3

1

2 3

�
��

�
��
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8. L
x

x

x→

−
−1

7
1

1
(7)

9. L
x

x

x→

+
+–2

3
8

2
(12)

Problems based on types of functions mentioned
earlier but x → 0  instead of x a→
Working rule: When x → 0  (zero) and types of the
functions are same as mentioned earlier when x a→
(any constant)
Rule: When x → 0 , the same rule is applied to find
out the limit of a function as x a→  which means
rule to find out the limit of a function as x a→
(constant) = rule to find out the limit of a function as
x → 0  (zero).
Theorem: If f (x)

= a polynomial in x = + + +−a x a x an n
n0 1

1 ...

(where a0, a1, a2, … an are constants and n is a +ve

integer) then lim
x nf x a
→

=
0
� �  = the constant present

in the given polynomial in x which is free from the
variable raised to any +ve index.

Examples worked out:

Evaluate: 1. lim
x

x x x
→

+ − +
0

2 23 4 5 6� �

Solution: lim
x

x x x
→

+ − +
0

2 23 4 5 6� �

= + − +
→ → → →

lim lim lim lim
x x x x

x x x
0

2

0

2

0 0
3 4 5 6

⇒ + − +
→

lim
x

x x x
0

2 23 4 5 6� �

= + − +
→ → →

3 4 5 6
0

2

0

2

0
lim lim lim
x x x

x x x

= + − +30 4 0 5 0 6. . .

= 6.

2. lim
x

x x

x→

+	


��

�

��0

2 5

4

Solution:
x x

x
x

2 5

4

0

0
0

+	


��

�

��
= → ⇒form as  (x – 0)

is a factor of Nr and Dr on dividing Nr and Dr by
(x – 0) = x, we get

x x

x

x x

x

x
2

5

4

5

4

5

4

+
= / +

/
=

+� �
... (1)

On taking the limits on both sides of (i) as x → 0 ,

we get

lim lim
x x

x x

x→ →

+	


��

�

��
= +	


�
�
�
= + =

0

2

0

5

4

0 5

4

0 5

4

5

4

3. lim
x

x

x→

+ −
0

1 1

Solution:
x

x
x

+ −	



�
�

�


�
�
= →

1 1 0

0
0form as  on rati-

onalizing the Nr, we get

lim
x

x

x→

+ −
0

1 1

=
+ −

×
+ +

+ −

	



�
�

�


�
�→

lim
x

x

x

x

x0

1 1 1 1

1 1

=
+ −

+ +
=

+ +→ →
lim lim
x x

x

x x

x

x x0 0

1 1

1 1 1 1

� �
� � � �

=
+ +→

lim
x x0

1

1 1� �

=
+ +

=
+

=
1

0 1 1

1

1 1

1

2

4. lim
x

x a a

x→

+ −
0

Solution:
x a a

x
x

+ −	



�
�

�


�
�
= →

0

0
0form as  on,

rationalizing the Nr, we get
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lim
x

x a a

x→

+ −
0

=
+ −

×
+ +

+ +

	



�
�

�


�
�→

lim
x

x a a

x

x a a

x a a0

⇒
+ −

→
lim
x

x a a

x0

=
+ −

+ +→
lim
x

x a a

x x a a0

� �
� �

=
+ +

=1

0

1

2a a a

5. lim
x

x

x→ − −0 1 1

Solution:
x

x
x

1 1

0

0
0

− −

	



�
�

�


�
�
= →form as , on

rationalizing the Dr, we get

lim
x

x

x→ − −

	



�
�

�


�
�0 1 1

=
− −

×
+ −

+ −

	



�
�

�


�
�→

lim
x

x

x

x

x0 1 1

1 1

1 1

=
+ −

→
lim
x

x x

x0

1 1� �

⇒
− −

�
��

�
��
= + −

→ →
lim lim
x x

x

x
x

0 01 1
1 1� �

= + −1 1 0

= 1 + 1 = 2.

6. lim
logx

x

x→

+ −
+0

1 1

1� �

Solution:
x

x
x

+ −
+

	



�
�

�


�
�
= →

1 1

1

0

0
0

log
form as� �

� log 1 0=� �  on rationalizing the Nr, we get

lim
logx

x

x→

+ −
+

	



�
�

�


�
�0

1 1

1� �

=
+ −

+
×

+ +

+ +

	



�
�

�


�
�→

lim
logx

x

x

x

x0

1 1

1

1 1

1 1� �

=
+ + +→

lim
logx

x

x x0 1 1 1� � � �

⇒
+ −
+

	



�
�

�


�
�→

lim
logx

x

x0

1 1

1� �

=
+ ⋅ + +→

lim
logx x xx0

1

1 1 1
1

� � � �

=
+ +

×
1

0 1 1

1

� � loge e

⇒
+ −

+

	



�
�

�


�
�
= ×

→
lim

logx

x

x0

1 1

1

1

2
1� �

� lim
x

x ex

→
+ =�

�
�
�0

1
1

� �

⇒
+ −

+

	



�
�

�


�
�
=

→
lim

logx

x

x0

1 1

1

1

2� �

7. lim
x

x

x→

+
−

	

�

�
�0

5 3

7 2

Solution:
5 3

7 2

0

0

+
−

	

�

�
�
≠

x

x
 which ⇒  given function

5 3

7 2

+
−

�
��

�
��

x

x

� �
� �  does not assume 

0

0
�
��
�
��  form at x = 0

∴
+
−

	

�

�
�
=

+

−→

→

→

lim
lim

limx

x

x

x

x

x

x0

0

0

5 3

7 2

5 3

7 2

� �
� �
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=
+

−
=

+
−

=→ →

→ →

lim lim

lim lim
x x

x x

x

x
0 0

0 0

5 3

7 2

5 3 0

7 2 0

5

7

.

.

Some Important Forms

First important form:

a x a

x
x

n n± −
=

→
� �

( independent variable)
as 0

Working rule:
1. Put a x z± =
2. Change the limit as x z a→ ⇔ →0
3. The above substitution transforms the given
problem in to the form:

z a

z a
z a

n n−
−

→as

4. Use the formula: lim
z a

n n
nz a

z a
n a

→
−−

−
= 1

Examples worked out:
Evaluate:

1. lim
x

x

x

n

→

+ −
0

1 1
1

� �

Solution:
1 1 0

0
0

1

+ −	



�
�

�


�
� = →

x

x
x

n� �
form as

We put 1 + x = z

Now, 1 1 0+ = ⇒ → →x z z xas

∴
+ −
+ −

=
−
−

	



�
�

�


�
�→ →

lim lim
x z

x

x

z

z

n n n

0 1

1 1

1 1

1

1

1 1 1 1
4� � � �

� �
� �

= × =−1
1

11 1

n n
n� �

2. lim
x

x

x→

+ −
0

1 1
1
5� �

Solution:
1 1 0

0
0

1
5+ −	



�
�

�


�
� = →

x

x
x

� �
form as

We put 1 + x = z

Now, 1 1 0+ = ⇒ → →x z z xas

∴
+ −

=
+ −
+ −→ →

lim lim
x x

x

x

x

x0 0

1 1 1 1

1 1

1
5

1
5� � � �

� �

=
−
−→

lim
z

z

z1

1
5

1
51

1

= =−1

5
1

1

5

1
5

1� �

3. lim
x

x

x→

+ −
0

1 1

Solution: We put 1 + x = z

Now, 1 1 0+ = ⇒ → →x z z xas

∴
+ −	



�
�

�


�
�
=

+ −
+ −→ →

lim lim
x x

x

x

x

x0 0

1 1 1 1

1 1� �

=
−
−→

lim
z

z

z1

1
2

1
21

1

= ⋅ −1

2
1

1
2

1� �

= 1

2

4. lim
h

x h x

h→

+ −
0

1
2

1
2� �

Solution: We put x + h = z

Now, x h z z x h+ = ⇒ → →as 0

∴
+ −

= −
−→ →

lim lim
h z x

x h x

h

z x

z x0

1
2

1
2

1
2

1
2� �

(� h = x + h – x = z – x)

= = =−1

2

1

2

1

2

1
2

1
2

x
x x
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5. lim
h

x h x

h→

+ −
0

2 2� �

Solution: We put x + h = z

Now, x h z z x h+ = ⇒ → →as 0

∴
+ −

=
+ −
+ −→ →

lim lim
h h

x h x

h

x h x

x h x0

2 2

0

2 2� � � �
� �

=
−
−

=
→

lim
z x

z x

z x
x

2 2

2

Second important form: A rational function in x
whose Nr and Dr consist of a polynomial of fractional

indices and the independent variable x → 0 .

Working rule: Divide Nr and Dr (each term of Nr
and Dr) by the lowest power of x occurring in the
given function

Examples worked out:
Evaluate

1. lim
x

x x x

x x x→

+ +

+ +0

7
10

4
5

1
3

2
3

1
5

3 2

4 2

Solution:
x x x

x x x
x

7
10

4
5

1
3

2
3

1
5

3 2

4 2

0

0
0

+ +

+ +

	



�
�

�


�
�
= →form as .

Now, on dividing Nr and Dr by the lowest power

x
1
5 , we get

x x x

x x x

x x x

x x

7
10

4
5

1
3

2
3

1
5

1
2

3
5

4
5

2
15

7
15

3 2

4 2

3 2

4 2

+ +

+ +
=

+ +

+ +
… (1)

Lastly, on taking the limits on both sides of (1), as

x → 0 , we get

lim lim
x x

x x x

x x x

x x x

x x→ →

+ +

+ +
=

+ +

+ +0 0

7
10

4
5

1
3

2
3

1
5

1
2

3
5

4
5

2
15

7
15

3 2

2

3 2

4 2

=
+ +
+ +

= =
0 0 0

0 0 2

0

2
0

Problems based on limits of a function as x → 0

Exercise 4.6

Find the following limits: Answers

1. lim
x

x x x
→

+ − +
0

4 39 7 4� � (4)

2. lim
x

x

x→0
(1)

3. lim
x

x

x→0

3

3

5

3

5

3
�
��
�
��

4. lim
x

x

x→0

2

(0)

5. lim
x

x

x→0
(0)

6. lim
x x→0

1
does not exist

7. lim
x

x

x→0 3 does not exist

8. lim
x

x

x→

+
+0

3 4

5 6

2

3
�
��
�
��

9. lim
x

x x

x x→

+ −
− +0

2

2

2 2

3 1
(–2)

10. lim
x

x x

x x→

− +

+0

2

3 2

6 2 5
∞� �

11. lim
x

x x

x x→

− +
+ −0

1 2 3

5 3 2

� �� �
� �� �

3

10
�
��
�
��

12. lim
x

x x

x x→

− +
+ −0

2

2

3 2

6
−���
�
��

1

3

13. lim
x

x x

x x→

+
−0

2

2

2 3

3 5
−���
�
��

3

5

14. lim
x

x x

x x→

− −
+ −0

2

2

4 5

2

5

2
�
��
�
��
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15. lim
x

x x

x x→

+
+0

2

2

5
(5)

16. lim
x

x x

x→

+ − −
0

1 1
(1)

17. lim
x

x x

x x→

+ − −
+0

1 2 1 3

1� �
5

2
�
��
�
��

18. lim
x

x x

x x
→

+ − +

− − −0

4

4

1 1

1 1
(1)

19. lim
x

x

a a x
→ − −0

2

2 2
(a + |a| )

20. lim
x

x

x→

+ −

+ +0 3

1 1

1 1

3

2
�
��
�
��

21. lim
x

x

x→

− −
0

9 3 1

6
�
��
�
��

22. lim
x

x

x
→ − −0

2

21 1
(2)

23. lim
x

x

x→0

2

5
does not exist

24. lim
x

x

x→

− −
0

1 1 1

8
�
��
�
��

25. lim
h

x h x

h→

+ −
0

3 3 1

3 23 x

�

�
��

�

�
��

26. lim
h

x h x

h→

+ −
0

1

2 x

�
��

�
��

To evaluate lim
x

f x

f x→∞

1

2

� �
� � , where f1 (x) and f2 (x) are

polynomials in x.

Working rule: One should:
1. Divide f1 (x) and f2 (x) by the highest power of x
occurring in the given fraction, i.e., divide each term

of the numerator and denominator of the given
fraction by the highest power of x occurring either in
numerator or in denominator. After division by
highest power of x present either in numerator or in
denominator of the given fraction, each term of the
numerator and denominator of the given fraction will
be reduced to the forms:

a
b

x

c

x

d

x
, , ,

2 3
, …, etc. where a, b, c, d, …, are

constants.
2. Take the limits of each term of numerator and
denominator both as x → ∞  noting that

b

c

c

x

d

x
, ,

2 3 , …, etc. (appearing in numerator and

denominator) all → 0  excepting a constant ‘a1’ in

numerator and another constant ‘a2’ in denominator

whose quotient 
a

a
1

2

�
��
�
��  will give us the required limit

of the given fraction, if a2 0≠ .

Notes: 1. Highest power of x may be present in either
numerator or in denominator.
2. Highest power of x of numerator and denominator
may be the same.
3. The determination of limit of a function y = f (x) as
x → +∞  and x → −∞  are also sometimes used to
find out the range of y = f (x) when x ∈ −∞ +∞,� �
and f (x) is continuous in R.

Explanation: 1. f (x) = x

⇒ = = −∞
→−∞ →−∞
lim L

x x
f x x� � � �

and lim L
x x

f x x
→ +∞ → ∞

= = +∞� � � �

Hence, R f� � � �= −∞ +∞, , since f (x) is

continuous.
2. f (x) = x2

⇒ = +∞
→ −∞
L

x
x

2� �  and L
x

x
→ +∞

= +∞2� �

Further x2 0≥  and x2 0=  for x = 0

Hence, R f� � �= +∞0, , since f (x) is continuous.
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3. f (x) = x3

⇒ = −∞
→ −∞
L

x
x

3� �  and L
x

x
→∞

= +∞3� �

Hence, R f� � � �= −∞ ∞, , since f (x) is continuous.

4. f x
e ex x

� � = −�
��

�
��

−

2

⇒ = −∞
→ −∞
L

x
f x� �  and L

x
f x

→ ∞
= +∞� �

Hence, R f� � � �= −∞ ∞, , since f (x) is continuous.

Problems based on the form:

lim
x

f x

f x→∞
1

2

� �
� � , where f1 (x) and f2 (x) are polynomials

in x.

Examples worked out:
Evaluate:

1. lim
x

x x

x x→ ∞

− +
+ −

2 3 5

3 27 29

2

2

Solution: lim
x

x x

x x→ ∞

− +
+ −

2 3 5

3 27 29

2

2

=
− +

+ −→ ∞
lim

x

x x

x x

2
3 5

3
27 29

2

2

 (on dividing Nr and Dr

by the highest power of x, i.e., x2 )

= 2

3

N.B.: As x
x x

→ ∞ → →, ,
1

0
1

0
2

2. lim
x

x

x

x

x→ ∞ −
−

+
	

�

�
�

2

1 1

Solution: lim
x

x

x

x

x→ ∞ −
−

+
	

�

�
�

2

1 1

=
−

	

�

�
�
−

+
	

�

�
�→∞ → ∞

lim lim
x x

x

x

x

x

2

1 1

=
−

	




�
�
�

�



�
�
�
−

+

	




�
�
�

�



�
�
�→∞ → ∞

lim lim
x x

x
x x

2
1

1

1
1

= 2 – 1 = 1

3. lim
x

x x

x x

e e

e e→ ∞

−

−
+
−

3 2

4

2 2

2 2

Solution: lim
x

x x

x x

e e

e e→ ∞

−

−
+
−

3 2

4

2 2

2 2

=
⋅ +

⋅ +→ ∞
lim

x

x
x

x
x

e
e

e
e

3
2

4
1

2
2

2
2

=
+

+→ ∞
lim

x

x

x

e

e

3
2

4
1

4

2

=
+
+

3 0

4 0

= 3

4

[N.B.: � as x → ∞ , e
e

x
x

4
4

2
0→ ∞ ⇒ → ]

Problems based on the form:

lim
x

n n n

n n n

a x a x a x a

b x b x b x b→ ∞

− −

− −
+ + + +
+ + + +

0 1
1

2
2

0 1
1

2
2

...

...

Exercise 4.7

Find the following limits: Answers

1. lim
x

x x

x x→ ∞

− +
− +

6 5 4

4 4 7

3 2

3

3

2
�
��
�
��
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2. lim
x

a x b x c

l x m x n→ ∞

+ +

+ +

2

2

a

l
�
��
�
��

3. lim
x

x x

x x→ ∞

− +
+ +

4 2

2

3

5 13
∞� �

4. lim
x

x x x

x→ ∞

+ + +
+

3 2

5

1

1
(0)

5. lim
x

x

x→∞

−
+

5 3

7 8
5

7
�
��
�
��

6. lim
x

a x b

c x→ ∞

+ a

c
�
��
�
��

7. lim
x

x x

x x→ ∞

+ +
− −

5 1

6 3 5

2

2

5

6
�
��
�
��

8. lim
x

x x

x→ ∞

− +
+

2 100

4 2

2

3 (0)

9. lim
x

x x

x x→ ∞

+ +
+ +

1 2 3

2 3 4

� �� �
� �� �

2

3
�
��
�
��

Problems based on rationalization when x → ∞
Remember:
1. If only Nr contains radical, rationalize Nr by its
rationalizing factor (rationalizing factor is also known
as conjugate).
2. If only Dr contains radical, rationalize Dr by its
conjugate.
3. If Nr and Dr both contain radicals, rationalize Nr
and Dr both by its conjugate.
4. After rationalization, we have

Nr = an expression in x
Dr = an expression in x with radical or without

radical, then we divide the rationalized function by
the square root of highest power of x (i.e.

highest power of x ) seeing the power of x under
the radical sign of the radical signs in Nr and Dr
contain an expression in x, i.e. the process of division
of rationalized function by highest power of x

makes the coefficient of highest power free from
highest power of x in the following examples.

5. Remember that lim
x n

a

x→ ∞
 = 0 if n > 0

Examples worked out:

Evaluate:

1. lim
x

x x

x→∞

+ − −4 41 1

=
+ − −

+ + −�
�

�
�

→∞
lim

x

x x

x x x

4 4

4 4

1 1

1 1

� �
;

(on rationalizing Nr)

= + − +

+ + −�
�

�
�

→∞
lim

x

x x

x x x

4 4

4 4

1 1

1 1

=
+ + −�

�
�
�

→∞
lim

x
x x x

2

1 14 4

= 0

2. lim
x

x x
→ ∞

+ − −	

�

�
�

2 21 1

Solution: x x2 21 1+ − −	

�

�
�

=
+ − −

+ + −
× + + −

x x

x x
x x

2 2

2 2

2 21 1

1 1
1 1

=
+ − −

+ + −

x x

x x

2 2

2 2

1 1

1 1

� �

=
+ + −

2

1 12 2x x

∴ + − −�
�

�
�→ ∞

lim
x

x x2 21 1



Practical Methods of Finding the Limits 183

=
+ + −→ ∞

lim
x

x x

2

1 12 2

=
+ + −

→ ∞
lim

x

x

x x

2

1
1

1
1

2 2

(dividing by x x2 = )

= 0

3. lim
x

x x x
→ ∞

− +�
�

�
�

2 1

Solution: lim
x

x x x
→ ∞

− +�
��

�
��

2
1

=
− +�

�
�
� × + +�
�

�
�

+ +�
�

�
�

	




�
�
�

�



�
�
�→∞

lim
x

x x x x x

x x

2 2

2

1 1

1

=
− +

+ +	

�

�
�

→∞
lim

x

x x x

x x

2 2

2

1

1

� �

=
−

+ +
	



�
�

�


�
�

→∞
lim

x

x

x
x

x x

1

1
12

2 2

� �

(dividing by x x2 = )

=
−

+ +
	


��

�

��

→ ∞
lim

x

x

1

1 1
1
2

� �

=
−

+ +
= −

1

1 1 0

1

2

� �

4. lim
x

x x x
→ ∞

+ − −�
�

�
�

2 21 1

Solution: lim
x

x x x
→ ∞

+ − −�
�

�
�

2 21 1

=
+ − −�

�
�
� × + + −�
�

�
�

+ + −�
�

�
�

	




�
�
�

�



�
�
�→ ∞

lim
x

x x x x x

x x

2 2 2 2

2 2

1 1 1 1

1 1

=
+ − +

+ + −�
�

�
�

→∞
lim

x

x x x

x x

2 2

2 2

1 1

1 1

� �

=
+ + −�

�
�
�

→∞
lim

x

x

x x

2

1 12 2

*

=
+ + −

→ ∞
lim ;

x

x

x

x x

2

1
1

1
1

2 2

 (dividing by x x2 = )

=
+
2

1 1

= 2

2
= 1

Note: * Highest power of x in Nr = x

Highest power of x in Dr = x x2 =
This is why we divide each term of Nr and Dr by x

5. lim
x

x x x x

x→ ∞

− + − + −
−

16 9 5 9 5 7

2 3

2 2

� �

Solution: lim
x

x x x x

x→ ∞

− + − + −
−

16 9 5 9 5 7

2 3

2 2

� �

lim ;
x

x x x x

x

→ ∞

− + − + −

−���
�
��

16
9 5

9
5 7

2
3

2 2
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 (dividing by x x2 = )

=
− + − + −

−
16 0 0 9 0 0

2 0

=
−4 3

2

= 1

2

N.B.: �

1 1
0

2x x
x, → → ∞	


�
�
�

as

6. lim
x

x x x

x→ ∞

+ + − +
+

3 4 5 2 3

3 7

2 2

� �

Solution: lim
x

x x x

x→ ∞

+ + − +
+

3 4 5 2 3

3 7

2 2

� �

Note that highest power of x in Nr = x2  = x and
highest power of x in Dr = x.

lim
x

x x x

x→ ∞

+ + − +
+

3 4 5 2 3

3 7

2 2

� �

=

+ +
�
��

�
��

− +
�
��

�
��

+�
��

�
��

→ ∞
lim

x

x

x

x

x x
x

x

x x
x

x
x
x x

3 4 5 2 3

3 7

2

2 2 2
2

2

2 2
2

=
+ + − +

+���
�
��

→ ∞
lim

x

x
x x

x
x

x
x

3
4 5

2
3

3
7

2 2

=
+ + − +

+���
�
��

→∞
lim

x

x x x

x

3
4 5

2
3

3
7

2 2

=
+ − − +3 0 0 2 0

3

=
−3 2

3

Some Miscellaneous Problems

Evaluate:

1. lim
n

n n

n→ ∞

− − +

+

3 1 2 1

4 3

2 2� � � �

Solution: Let us put n
x

= 1

∴ → → ∞x n0 as

Making this substitution and after simplification,
we get

lim
n

n n

n→ ∞

− − +

+

3 1 2 1

4 3

2 2� � � �

lim
x

x x

x→

− − +

+0

2 23 2

4 3

� � � �

=
−3 2

4

= −1

4
3 2� �

An important form:

Form: 
f x

f xn

1

2

� �
� �

 or 
f x

f x

1

1

� �
� �

Examples Worked Out:
Evaluate:

1. lim
x

x

x
→ ∞

−

+

2

33

3

1� �

Solution: lim
x

x

x
→ ∞

−

+

2

33

3

1� �
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=

−�
��

�
��

+�
��

�
��

→∞
lim

x

x
x

x

x
x

x

2
2

2

3
3

3
3

3

1

=
−

+
→ ∞
lim

x

x
x

x
x

1
3

1
1

2

3
3

=
−���

�
��

+���
�
��

→ ∞

→ ∞

lim

lim

x

x

x

x

1
3

1
1

2

2
3

=
−

+

1 0

1 03

= 1

1
= 1

2. lim
x

x

x→ ∞ +

4

2 12

Solution: lim
x

x

x→ ∞ +

4

2 12

= ⋅

+
→ ∞
lim

x

x

x
x

4

2
1
2

=
+

→ ∞
lim

x

x

4

2
1
2

=
+

→∞

→∞

lim

lim

x

x x

4

2
1
2

� �

=
+���

�
��→∞

4

2
1
2

lim
x x

=
+

4

2 0

=
4

2

= 2 2

Problems on irrational functions when x → ∞

Exercise 4.8

Find the following limits: Answers

1. lim
x

x x
→∞

+ − −1 1� � ∞� �

2. lim
x

x x x x
→∞

+ − − + +�
�

�
�

2 28 7 2 5 (3)

3. lim
x

x

x→∞ + −1 12
Find

4. lim
x

x x

x x
→∞

+ − +

+ − +

2 2

2 2

4 1

16 9

3

7
�
��
�
��

5. lim
x

x x c x
→∞

+ −� �  (P.U. 66) c

2
�
��
�
��

6. lim
x

x x x x
→∞

+ − −�
�

�
�

2 24 4  (L.N. 86) (4)

7. lim
x

x x x x x
→∞

+ − −�
�

�
�

3 34 4  (M.U. 86) (4)

8. lim
x

x x x
→∞

− +�
�

�
�

2  (I.I.T 75) −���
�
��

1

2

Problems based on summation of series 
∞
∞

form�
��

�
��

Working rule:
1. Use the formulas for the sum of n-natural number,
square of n-natural numbers or cube of n-natural
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numbers for which the following formulas are very
fruitful.
(i) 1 + 2 + 3 + … + n = sum of n-natural numbers

= 
n

n
2

1⋅ +� �
(ii) 12 + 23 + 32 + … + n2 = sum of square of n-natural

numbers =
+ +n n n1 2 1

6

� �� � .

(iii) 13 + 23 + 33 + … + n3 = sum of cube of n-natural

numbers =
+	


�
�
�

n n 1

2

2� �
.

(iv) ∑ −a rn 1  = a + ar + ar2 + … + arn – 1 =
−

−

a r

r

n1

1

� �
� �

Refresh your memory: Method of finding the limit of
f (n) as n → ∞ .

We divide the numerator and denominator by the
highest power of n-occurring in f (n) an then use the

idea that 
1 1

2n n
, , … all → → ∞0 as n

Examples worked out:
Evaluate

1. lim
n n n n

n

n→∞
+ + + +

�
��

�
��

1 2 32

3

2

3

2

3

2

3...

Solution: lim
n n n n

n

n→∞
+ + + +

�
��

�
��

1 2 32

3

2

3

2

3

2

3
...

=
+ + + +�

��
�
��→∞

lim
n

n

n

1 2 32 2 2 2

3

...

=
+ +�

��
�
��→∞

lim
n

n n n

n

1 2 1

6 3

� � � �

=
+���
�
�� +���

�
�� ⋅

→∞
lim

n

n
n n

n

n

1
1

2
1

6 2

=
+���
�
�� +���

�
��
= =

→∞
lim

n

n n
1

1
2

1

6

2

6

1

3

2. lim
n

n

n→∞ + + + +1 2 3 ...

Solution: lim
n

n

n→∞ + + + +1 2 3 ...

=
+

→∞
lim

n

n
n

n
2

1� �

=
+→∞

lim
n n

2

1� �  =
+���
�
��

→∞
lim

n

n

n

2

1
1  =

+
=0

1 0
0

3. Show that lim
n

n

n

n

n→∞

=
∑
	




�
�
�
�
�

�



�
�
�
�
�
=

3

1

4

1

4

Solution: We know that n
n n

n

n
3

2 2

1

1

4
=

+

=
∑ � �

  … (i)

∴ =

+
=
∑n

n

n n

n

n

n
3

1

4

2 2

4

1

4

� �

⇒

	




�
�
�
�
��

�



�
�
�
�
��

→ ∞

=
∑

lim
n

n

n

n

n

3

1

4

=

+�
��
��

�
��
��→∞

→

lim

lim

n

n

n n

n

2 2

4

1

4

� �
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=
+�

��
��

�
��
��→∞

lim
n

n n

n

2 2

4

1

4

� �

= +���
�
��

�
��
��

�
��
��→∞

lim
n n

1

4
1

1 2

= +���
�
��→∞

1

4
1

1
2

lim
n n

=
1

4
.

Problems based on the limits of f (n) as n → ∞

Exercise 4.9

Find the limits of the following functions:
Answers

1. lim
n

n

n→ ∞

∑ 3

4

1

4
�
��
�
��

2. lim
n

n

n→ ∞

+ + + +1 2 3
2

... 1

2
�
��
�
��

3. lim
n

n n n n

n n n n→ ∞

− − −
− − − −

1 2 3

4 5 6 7

� �� �� �
� �� �� �� � (1)

4. lim
n

n

n→ ∞

+ + + +
+

1 2 3

1

3 3 3 3

4

... 1

4
�
��
�
��

5. lim
( )n

n n n

n n n→ ∞

+ + −
+ −

4 2

2 2

5 7 3

2 7
(1)

6. lim
n

n

n→ ∞ + + + +1 2 3 ...
(0)

7. lim
n

n n n

n n→ ∞

+ − +
+ +

6 7 5

7 6

5 4 3

5 3
(6)

Limits of trigonometric functions as x a→

Form: 0

0
or

∞
∞

 at x = a

Type 1: To find lim lim
x a x a

f x
t x

t x→ →
=� � � �

� �
1

2
Where f (x) = a trigonometric function whose

Numerator = Nr = t1 (x) = a trigonometric function or
trigonometric expression and denominator = Dr = t2
(x) = a trigonometric function or trigonometric
expression.

Moreover, x = the angle of trigonometric function
which tends to a finite number.

Working rule: When numerator and denominator
both are trigonometric functions or trigonometric
expressions which can be expressed in terms of sin θ
and cos θ  and cancellation of common factor from
Nr and Dr is possible, we adopt the following
procedure.
1. Express all trigonometrical terms into sin θ  and
cos θ  and cancel the common factor from numerator
and denominator.
2. Put x = a = given limit of the independent variable
in the expression free from common factor (i.e., a factor
which makes f (a) meaningless) which gives us the
required limit of the given function f (x) as x a→ ,

where a = 
π π π π π
2 6 4 3

, , , , , or 1, etc., for example.

Facts to know:
1. We may face the circumstances where changing
given function in terms of sin x and cos x to remove
the common factor does not provide us a common
factor which means further modification is required
which is done by using formulas of trigonometrical
ratios of submultiple angle. Thus firstly changing of
t-ratios in terms of sin x and cos x and secondly using
the formulas of t-ratios of submultiple angles, we are
able to find out the common factor which is cancelled
from numerator and denominator.
2. After cancellation of common factor from numerator
and denominator, we get the determinate value of the
simplified function at a given value x = a = limit of the
independent variable.
3. Modification of the given function is not stopped
unless we get a determinate value of the simplified
function which provides a finite value = required limit
of the given function as x a→ .
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4. Various mathematical manipulations can be
adopted to remove the common factor which is not
apparent directly in the given function.

Remember: When the methods discussed above fail
to give the limit of a function, a general method of
evaluation known as method of substitution or h-
method or differential method is adopted. All
questions solved by various methods can be solved
with the help of this method too.

Method of substitution:

1. Put x a h= ±  (when x a→ ) where h → 0
through +ve values.

2. Find lim
h

f a h
→

±
0
� �  when y = f (x) = algebraic or

trigonometric or mixed transcendental functions or
any type of function.
N.B.: 1. We always put x a h= ±  so that when
x a→ , h → 0  through +ve values [but for simplicity
of calculation we put x = a + h (or x = a – h)] because
the limit of f (x) is said to exist at x = a if right hand

limit (or, right limit) lim
x a
x a

f x
→
>

� �  and left hand limit

(or, left limit) lim
x a
x a

f x
→
<

� �  exist and are equal, e.g.:

(i) Evaluate lim
x

x

x→

+
+0

2

1

Solution: Put x h= ±0 , then for h > 0, we have

lim
lim

limx

h

h

x

x

h

h→

→

→

+
+

=
± +

± +
=

0

0

0

2

1

0 2

0 1
2

� �
� �

(ii) Evaluate lim
x → π

2

 (sec x – tan x)

Solution: Put x h= ±
π
2

, then for h > 0, we have

lim sec tan lim
sin

cosx x
x x

x

x→ →
− =

−�
��

�
��π π

2 2

1� �

=
− ±�

��
�
��

±�
��

�
��

= −
±→ →

lim
sin

cos
2

lim
cos

sinh h

h

h

h

h0 0

1
2 1
π

π � �

= ±
⋅

= ±

�
��
�
��

�
��
�
��

⋅ ���
�
��→ →

lim
sin

sin cos
lim

tan

h
2

h h

h

h h

h
h

0

2

0

2
2

2
2 2

2
2

= ± × =1 0 0 .

2. We never put x = a while finding the limit of

f x
f x

f x
� � � �

� �
= 1

2
 as x a→  but we always put the limit

of the independent variable x = a in the simplified

form of the function f x
f x

f x
� � � �

� �
= 1

2

 whose limit is

required as x a→ , when f1 (a) = f2 (a) = 0.

Problems based on type 1
Examples worked out:
Evaluate:

1. lim
sin

1 – cos4x

x

x→

+
π
4

1 2

Solution:
1 2

4

0

0

+�
��

�
��

⇒ ≠
sin

1 – cos4
for

x

x
x

π
 (i.e., given

function does not assume meaningless form as

x →
π
4

)

Hence, lim
sin

1 cos4

sin

1 cos
4

x

x

x→

+�
��

�
��
=

+ ⋅�
��

�
��

⋅�
��

�
��

π

π

π
4

1 2
1

4
2

4
–

–

=
+ �

��
�
��
= +

− −
= =

1
2 1 1

1 1

2

2
1

sin

1 – cos

π

π � �
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2. lim
tan cot

tan cotx

x x

x x→

+
−π

2

Solution:
tan cot

tan cot

x x

x x
x

+
−

�
��

�
��

= ∞
∞
⇒

→π
2

 form is

meaning-less

Now, tan cot

tan cot

sin

cos

cos

sin
sin

cos

cos

sin

;
x x

x x

x

x

x

x
x

x

x

x

x
n

n z
+
−

=
+

−
≠ ∈,

π
4

=

+

−

sin cos

sin cos

sin cos

sin cos

2

2 2

2

x x

x x

x x

x x

=
+ × ⋅

⋅ × −

sin cos sin cos

sin cos sin cos

2 2

2 2

x x x x

x x x x

	 
 � �
� � 	 


=
−

= −
1 1

2 2sin cos cos2x x x	 


Thus, we get, 
tan cot

tan cot cos

x x

x x x

+
−

= − 1

2
for

x
n

≠
π
4

… (i)

Now, on taking the limits on both sides of (1) as

x → π
2

, we get

lim
x →

π
2

 (given function) =
→
lim

x
π
2

 (simplified form

of the given function)

⇒
+
−

�
��

�
��→

lim
tan cot

tan cotx

x x

x xπ
2

= −
�
��

�
��
= − =

−
−

=
→
lim

cos cosx xπ π
2

1

2

1 1

1
1

3. lim
sin

cos2
tan

x

x

x
x

→

−�
��

�
��π

2

1

Solution:
1

2
0

2

−
⋅

�
�



�
�
�
�

= × ∞ ⇒
→

sin

cos
tan

x

x
x

x

� �
π

form is meaningless.

Now, 1 1−�
��

�
��
⋅ =

−�
��

�
��
⋅

sin

cos2
tan

sin

cos2

sin

cos

x

x
x

x

x

x

x

=
+ − ⋅�

��
�
��

+�
��

�
�� −�
��

�
��

sin cos sin cos sin

cos sin cos sin cos

2 2

2 2
2

2 2

2 2 2 2
2

x x x x
x

x x x x
x

=
−�

��
�
�� ⋅

+�
��

�
�� −�
��

�
�� ⋅

cos sin sin

cos sin cos sin cos

x x
x

x x x x
x

2 2

2 2 2 2
2

2

=
−�

��
�
�� ⋅

+�
��

�
�� ⋅

cos sin sin

cos sin cos

x x
x

x x
x

2 2

2 2
2

 for x
n≠ +π π
2 4

or n n zπ π+ ∈
2

;

Thus, we get,

1 −�
��

�
��
⋅

sin

cos2
tan

x

x
x  =

−�
��

�
�� ⋅

+�
��

�
��

cos sin sin

cos sin cos

x x
x

x x
x

2 2

2 2
2

which does not give us meaningless form at

x = ⇒
π
2

 This is required simplified form    … (i)

Now, on taking the limits on both sides of (1) as

x → π
2

, we get lim
x → π

2

 (given function) = lim
x → π

2

(simplified form of the given function)
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⇒
−�

��
�
��
⋅

→
lim

sin

cos2
tan

x

x

x
x

π
2

1

=
−�

��
�
�� ⋅

−�
��

�
�� ⋅

→
lim

cos sin sin

cos sin cos
x

x x
x

x x
x

π
2

2 2

2 2
2

=
−�

��
�
�� ⋅

⋅ +�
��

�
��

cos sin sin

cos cos sin

π π π

π π π
2 4 2

4 4

⇒
−�

��
�
��
⋅

→
lim

sin

cos2
tan

x

x

x
x

π
2

1

=
−

�
��

�
�� ⋅

− +
�
��

�
��
=

1

2

1

2
1

1
1

2

1

2

0

� �

4. lim
cosec

cot2x

x

x→

−�
��

�
��π

2

1

Solution:
cosec

cot
form

2

x

x
x

−�
��

�
��

=
→

1 0

0
2

π

Now, 
cosec

cot

cosec

cosec2 2

x

x

x

x

−
=

−
−

1 1

1

=
−

− +
cosec

cosec cosec

x

x x

1

1 1

� �
� �� �

=
+

1

1cosec x� �  for x
n

n z≠ ∈
π
2

;

which does not give us a meaningless form at 
π
2
⇒

this is the required simplified form …(i)

Now, taking the limits on both sides of (i) as

x →
π
2

, we get lim
x → π

2

 (given function) =
→

lim
x π

2

(simplified form of the given function).

⇒
−�

��
�
��
=

+
�
��

�
��→ →

lim
cosec

cot
lim

cosec2x x

x

x xπ π
2 2

1 1

1

=
+

=
+

=1

2
1

1

1 1

1

2cosec
π

5. lim
sin

1 – sin2x

x

x→

−�
��

�
��π

2

1 3

Solution:
1 0

0

3

2

−�
��

�
��

=
→

sin

1 - sin
form

2

x

x
x

π

Now, 
1 1 1

1 1

3 2
−

=
− + +

− +
sin

1 – sin

sin sin sin

sin sin2

x

x

x x x

x x

� �	 

� �� �

=
+ +

+
1

1

2sin sin

sin

x x

x
 for x n n z≠ + ∈2 1

2
� � π ,

Now, on taking the limits on both sides of (i), we
get

lim
x → π

2

 (given function) = lim
x → π

2

 (simplified form

of the given function)

⇒ −
−

�
��

�
��→

lim
sin

sinx

x

xπ
2

1

1

3

2

=
+ +�

��
�
��→

lim
sin sin

1 + sinx

x x

xπ
2

1 2

=
+ + ���

�
��

�

�

�
�
�
�

�

�

�
�
�
�

1
2 2

2

2

sin sin

1 + sin

π π

π
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=
+ +
+

=
1 1 1

1 1

3

2

6. lim
sin

cosθ π

θ
θ→

�
��

�
��2

2

Solution: sin

cos
form

2 0

0
2

θ
θ θ π

�
��

�
��

=
→

Now, 
sin

cos

sin cos

cos
sin

2 2
2

θ
θ

θ θ
θ

θ=
⋅

=  for

θ π
π

≠ +n
2

… (i)

Now, on taking the limits on both sides of (i), we
get

lim
θ π→

2

 (given function) = lim
θ π→

2

 (simplified form

of the given function)

⇒
�
��

�
��
=

→ →
lim

sin

cos
lim sin

θ θπ π

θ
θ

θ
2 2

2
2� �

= = =2
2

21 2sin
π

.

7. lim
cos

tanx

x

x→

+�
��

�
��π

1
2

Solution:
1 0

02

+�
��

�
��

=
→

cos

tan

x

x
x π

Now, 
1 1

1

1

1
1

2

+ = +
−

=
+

−
�
��

�
��

cos

tan

cos

sec

cos

cos

2 2

x

x

x

x

x

x

� �
;

x
n

≠
π
2

=
+

−
=

+

−

1

1

1

12

2

2

2

cos

cos

cos

cos cos

cos

x

x

x

x x

x

� �
	 


� �
	 


=
+

− +
=

−
1

1 1 1

2 2cos cos

cos cos

cos

cos

x x

x x

x

x

� �
� �� �

Thus, we get 
1 2+

=
−

cos

tan

cos

1 cos2

x

x

x

x
 for

x
n

n z≠ ∈
π
2

, … (i)

Now on taking the limits on both sides of (i) as
x → π , we get

lim
x → π

 (given function) = lim
x → π

 (simplified form

of the given function)

i.e., lim
cos

tan
lim

cos

1 cos

2

x x

x

x

x

x→ →

+�
��

�
��
=

−
�
��

�
��π π

1
2

=
−

=
−
− −

=
cos

1 cos

2 2
1

1 1

1

2

π
π

� �
� �

8. lim
sin cos

cos2x

x x

x→

−�
��

�
��π

4

Solution:
sin cos

cos

x x

x
x

−�
��

�
��

=
→2

0

0
4
π

Now, 
sin cos

cos

sin cos

cos sin2

x x

x

x x

x x

− = −
−2 2 ; x

n
≠ +

π π
2 4

= −
−

− +
= −

+
sin cos

sin cos sin cos sin cos

x x

x x x x x x

� �
� �� � � �

1

Thus, we get, 
sin cos

cos sin cos

x x

x x x

−
=

−
+2

1

� �…(i)

Now, on taking the limits on both sides of (i) as

x → π
4

, we get

lim
x → π

4

 (given function) = lim
x → π

4

 (simplified form

of the given function)
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i.e., lim
sin cos

cos
lim

sin cosx x

x x

x x x→ →

−�
��

�
��
=

−
+

�
��

�
��π π

4 42

1

=
−

+
=

−

+

1

4 4

1
1

2

1

2
sin cos

π π

=
−
�
��
�
��
= − = −

1

2

2

2

2

1

2

9. lim
sin cos

cos sinx

x x

x x→

− +
−

�
�



�
�
�
�π

4

2 1 2� �

Solution:
sin cos

cos sin

2 1 2 0

0
4

x x

x x
x

− +
−

�
�



�
�
�
�

=
→

� �
π

Now, 
sin cos

cos sin

2 1 2x x

x x

− +
−
� �

=
−

−
2 2 2sin cos cos

cos sin

x x x

x x ; x
n

n z≠ ∈
π
4

,

=
− −

−
= −

2
2

cos cos sin

cos sin
cos

x x x

x x
x

� �
� �

Thus, we get, 
sin cos

cos sin

2 1 2x x

x x

− +
−
� �

 = −2cosx

… (i)
Now, on taking the limits on both sides of (i) as

x → π
4

, we get

lim
x → π

4

 (given function) = lim
x → π

4

 (simplified form

of the given function)

i.e., lim
sin cos

cos sinx

x x

x x→

− +
−

�
�



�
�
�
�π

4

2 1 2� �

= − = −
→

lim cos cos
x

x
π

π

4

2 2
4

� �

= − × = −2
1

2
2

10. lim
x → π

2

 (sec x – tan x)

Solution: (sec x – tan x)

= −
�
��

�
��
=

−�
��

�
��

1 1

cos

sin

cos

sin

cosx

x

x

x

x ; x n≠ +π π
2

∴ − = −�
��

�
��

==
=

sec tan
sin

cos
x x

x

xx
x

� � π
π2

2

1 0

0

Now, 
1 2 2

2
2 2

2 2

2 2

2 2

− =
+ −

−

sin

cos

sin cos sin cos

cos sin

x

x

x x x x

x x

=
−�

��
�
��

−�
��

�
��

cos sin

cos sin2 2

x x

x x
2 2

2 2

2

=
−�

��
�
�� −�
��

�
��

−�
��

�
�� +�
��

�
��

cos sin cos sin

cos sin cos sin

x x x x

x x x x
2 2 2 2

2 2 2 2

=
−�

��
�
��

+�
��

�
��

cos sin

cos sin

x x

x x
2 2

2 2

Thus, we get, (sec x – tan x) =
−1 sin

cos

x

x

=
−

+

cos sin

cos sin

x x

x x
2 2

2 2
… (i)

Now, on taking the limits on both sides of (i) as

x →
π
2

, we get
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lim
x → π

2

 (given function) = lim
x → π

2

 (simplified form

of the given function), i.e. lim
x → π

2

 (sec x – tan x)

=
−

+

�

�

�
�
�

�

�

�
�
�
=

−

+→
lim

cos sin

cos sin

cos sin

cos sin
x

x x

x xπ

π π

π π
2

2 2

2 2

4 4

4 4

=
−

+
=
�
��
�
��
=

1

2

1

2
1

2

1

2

0

2

2

0

Notes: We observe from the just above solution that
(i) Firstly sec x and tan x are changed into sin x and
cos x to remove the common factor but on changing
sec x and tan x in terms of sin x and cos x, no common
factor is cancelled which means further modification
is required.
(ii) Secondly, using formulas of t-ratios of submultiple
angles, we are able to find out the common factor and
after cancellation of common factor, we get a finite
value ‘0’ for the simplified form (of the given function)

at the given value x = π
2

. (i.e. at the limit of the

independent variable x).

Problems based on type 1

Exercise 4.10

Evaluate Answers

1. lim
sin cos

sin cosx

x x

x x→

−
−

�
��

�
��π

4

2 2

2	 


2. lim
tan cot

sec cosecx

x x

x x→

−
−

�
��

�
��π

4

2 2

2 2	 


3. lim
2 - cosec

1 cotx

x

x→

�
��

�
��π

4

2

–
(2)

4. lim
cos sin

cosx

x x

x→

−�
��

�
��π

4

2 2

2

2

(1)

5. lim
sin cos

tan cotx

x x

x x→

−
−

�
��

�
��π

4

1

2 2

�
��

�
��

6. lim
sin

cosθ π

θ
θ→

−

2

1
2

� � 1

2
�
��
�
��

7. lim
cot cos

cosx

x x

x→

−
π
2

3

� � 1

2
�
��
�
��

8. lim
sin

cosx

x

x→

−
π
2

1 3

2

3

2
�
��
�
��

9. lim
cos

sinx

x

x→ −π
2

2

21
(1)

10. lim
cosec

cotx

x

x→

−
π
2

1
2

1

2
�
��
�
��

11. lim
cos

1 + cosx

x

x→

=
π

1 3

(3)

12. lim
sec

1 tanx

x

x→

−
π
4

2 2

–
(2)

13. lim
cos

sin2x

x

x→

+
π

1 3 3

2
�
��
�
��

14. lim
sin cos

cosx

x x

x→

− −
−

�
��

�
��π

3

3 2

1 2

2 2

(2)

15. lim
cos

tan2x

x

x→

+
1

1 π
π

1

2
�
��
�
��

16. lim
cos cos

cot cotx

x

x→

−
−

�
��

�
��α

α
α

sin3 α	 


Type 2: To find lim
x a

f x
→

� �  where f (x) = a

trigonometrical function (or expression) mixed with
an algebraic function in any way (generally algebraic
function appears as addend, subtrahend, minuend,
multiplicand or divisor of trigonometric function or
expression) i.e.; to find
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(i) lim lim
x a x a

f x
a x t x

a x t x→ →
=

±
±

� � � � � �
� � � �

1 1

2 2

(ii) lim lim
x a x a

f x
a x t x

t x→ →
=

⋅
� � � � � �

� �
1 1

2

 or lim
x a

t x

a x t x→ ⋅
1

1 2

� �
� � � �

(iii) lim lim
x a x a

f x
t x

a x→ →
=� � � �

� �
1

1

or lim
x a

a x t x
→

⋅1 1� � � �

(iv) lim lim
x a x a

f x
a x

t x→ →
=� � � �

� �
1

1

Where a1 (x) and a2 (x) = algebraic functions (or,
expression)

t1 (x) and t2 (x) = trigonometric functions (or,
expression)

a = a finite value

= π π π π π
2 6 4 3

1, , , , or  for instance

We adopt the following working rule:

Working rule:
1. Put x = a + h (or, a – h) (where h → 0 ) in the given
function.
2. Modify the given function obtained after
substitution x = a + h or x = a – h and remove the
common factor if it occurs.
3. Take the limit of the modified form which is a

function of h  as h → 0  since lim
x a

f x
→

� �
= +

→
lim

h
f a h

0
� �  (where h → 0 ).

Question: When to use method of change of limit,
method of substitution, h-method or differential
method?
Answer: Method of change of limit is used when
1. The given trigonometric function can not be
simplified easily.
2. The factorization of the given trigonometric
function is not possible or difficult.

3. A trigonometric function is provided which does
not contain a common factor.

Facts to Know:
1. If there exists a factor of t-ratios of angle θ  as

sinθ , cosθ , tanθ  or cotθ , etc, we are required to
write it as

sin
sin

θ θ
θ

θ= ⋅

tan
tan

θ θ
θ

θ= ⋅  so that standard results of

limits of t-ratios may be used.
2. Standard results of limits of t-ratios are following

(i) lim
sin

x

m x

x
m

→
=

0

(ii) lim
tan

x

m x

x
m

→
=

0

(iii) lim cos
x

m x
→

=
0

1

(iv) lim
sin

x

x

x→
=

0
1

(v) 1
0

=
→

lim
tan

x

x

x

(vi) lim cos
x

x
→

=
0

1

Remember:

1. θ θ θ→ ⇒ → ⇒ →0 2 0
2

0

In general, θ θ θ→ ⇒ → ⇒ →0 0 0m
m

 where

m = any integer
2. Modification of the function obtained after
substitution x = a + h in the given function is done by
simplification using various trigonometrical formulas
and mathematical manipulations so that standard
formulas of limits of trigonometrical function
mentioned above may be applied.
3. f (a + h) = a function obtained by putting the
independent variable = x = a + h in the given function
where h → 0 .
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4. The method of substitution is sometimes termed
as substitution and modification method since firstly
we substitute x a h= ±  in the given function and
then we modify the function containing a h±� � .
Problems based on type 2
Examples worked out:
Evaluate

1. lim sec tan
x

x x
→

−
π
2

� �

Solution: lim sec tan
x

x x
→

−
π
2

� �

= −
�
��

�
��→

lim
cos

sin

cosx x

x

xπ
2

1

=
−�

��
�
��→

lim
sin

cosx

x

xπ
2

1

=
− +�

��
�
��

+�
��

�
��

→
lim

sin

cos
h

h

h
0

1
2

2

π

π

=
−

→
lim

cos

-sinh

h

h0

1

� �

= −
⋅

→
lim

sin

2sin cos
h

h

h h0

22
2

2 2

= −

�
��
�
��

�
��
�
��

⋅ ���
�
��→

lim
tan

h

h

h

h
0

2

2
2

= 1 × 0 = 0

2. lim sin tan
x a

x a x

a→

−�
��

�
�� ⋅

�
��
�
��2 2

π

Solution: Putting x = a + h where h → 0  as x a→

∴
→

lim given function
x a

� �

= ⋅ +�
��

�
��

�
�

�
��→

lim sin tan
h

h h

a0 2 2 2

π π

= ⋅ −���
�
��

�
�

�
��→

lim sin cot
h

h h

a0 2 2

π

=
−���

�
��

�
��
�
�� ⋅
�
��
�
��

�
��
�
��

�

�












�

�

�
�
�
�
�
�
�
�
�
�

→
lim

sin

tan
h

h

h

a

h

a
h

a

0

2

2 2

2

π π

π

=

−

�
��
�
��

�
��
�
��

�
��
�
��

�
��
�
��

⋅ ���
�
��

→

→

lim
sin

lim
tan

h

h

h

h

h

a
h

a
a

0

0

2

2

2

2

π

π
π

=
−
�
��
�
��
=
−

× = −
1 1

1π π π
a

a a

3. lim
cos

2
x

x

x
→ −�
�

�
�

π π2

Solution: Putting x h h= + ⇒ →
π
2

0  as x →
π
2

∴
−�

��
�
��

→
lim

cos

2

x

x

x
π π2  

=
+�

��
�
��

− +�
��

�
��

→
lim

cos

2

h

h

h
0

2

2

π

π π
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=
−�
��

�
��→

lim
sin

–h

h

h0  = =
→

lim
sin

h

h

h0
1

N.B.: Here we observe that Nr = a trigonometric
function while Dr = an algebraic function. Hence, they
can not have any factor in common. This is why we
must make use of method of substitution.

4. lim
cosx

x

x→

−�
��

�
��π

π
2

2

Solution: Putting x h x h= + ⇒ − =
π

π
2

2 2

∴
−�

��
�
��→

lim
cosx

x

xπ

π
2

2
 =

+�
��

�
��

�

�

�
�
��

�

�

�
�
��

→
lim

cos
h

h

h
0

2

2
π

= −
�
��

�
��→

2
0

lim
sinh

h

h

= − × = −2 1 2 .

N.B.: Here we observe that Dr = a trigonometric
function while Nr = an algebraic function. Hence, they
can not have any factor in common. This is why we
must make use of method of substitution.

5. lim
sin

x

x

x
→

−

−�
��

�
��

π π2

1

2

2

� �

Solution: Putting x h h= + ⇒ →π
2

0  as x → π
2

∴
−

−�
��

�
��

→
lim

sin

x

x

x
π π2

1

2

2

� �

=
− +�

��
�
��

−

�

�






�

�

�
�
�
�

→
lim

sin

h

h

h0 2

1
2

π

� �  =
−�

��
�
��→

lim
cos
2h

h

h0

1

=
− +�

�

�
�
�

�

�

�
�
�→

lim
sin

h

h

h0

2

2

1 1 2
2

 =

�
��
�
��

→
lim

sin

2h

h

h0

22
2

=

�
��

�
��

⋅ ���
�
��

→
2

2

4
2

0

2

2
lim

sin

h

h

h

=
�
�



�
�
�
�→

2

4

2

20

2

lim
sin

h

h

h

/

/

� �

=

�

�





�

�

�
�
�

= ⋅ =
→

1

2
2

2

1

2
1

1

20

2

2lim
sin

h

h

h
� �

6. lim
cos cos

2 -x

x x

x→

+�

�



�

�
�
�π π2

3 3
2� �

Solution: Putting x h h= + ⇒ →
π
2

0  as x →
π
2

∴
+�

�



�

�
�
�→

lim
cos cos

2x

x x

xπ π2

3 3
2–� �

= + −

−

�

�



�

�
�
�→

lim
cos cos cos

x

x x x

x
π π2

3 4 3

2

3

2� �

=
→

lim
cos

2 –x

x

x
π π2

4 3

2� �

=
+�

��
�
��

+�
��

�
�� −

�
�

�
��

→
lim

cos

2
2

h

h

h
0

3

2

4
2
π

π π

=
−

⋅
→

4
40

3

3
lim

sin
h

h

h
h
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= − �
��

�
��

�
�

�
��

⋅
→ →

lim
sin

lim
h h

h

h
h

0

3

0

= − × =1 0 0

7. lim
cos sin

x

x x

x→

− −

−π π4

2

4
2� �

Solution: Putting x h= +π
4

 where h → 0  as

x →
π
4

∴
→

lim given function
x π

4

� �

=
− +�

�
�
� + +�

�
�
�

�
�

�
��

+�
�

�
� −

�
�

�
��

→
lim

cos sin

h

h h

h
0 2

2
4 4

4
4

π π

π π

=
− ⋅ − ⋅ + +�
�

�
��

→
lim

cos cos sin sin sin cos cos sin

h

h h h h

h0 2

2
4 4 4 4

16

π π π π

=
− − + +

→
lim

cos sin cos sin

h

h h h h

h0 2

2
1

2
16

� �

=
−

=
−

→ →
lim

cos
lim

cos
h h

h

h

h

h0 2 0 2

2 2

16

2 1

16

� �

=
× �

��
�
��

�
�

�
��

→
lim

sin

h

h

h0

2

2

2 2
2

16

= ⋅

�
��
�
��
×

→
lim

sin

h

h

h0

2

2

2

8

2

4

1

4

= × × =2

8
1

1

4

2

32

8. lim
sin cos

x

x x

x
→

−

−

�

�

�
�
�

�

�

�
�
�

π π
4

4

Solution: Putting x h= +π
4

 where h → 0  as

x → π
4

Now, given function =
−sin cos

–
4

x x

x
π

=
+�

��
�
�� − +�

��
�
��

+ −

sin cos

4

π π

π π
4 4

4

h h

h

=
⋅ + ⋅ − ⋅ −�

�
�
��

sin cos cos sin cos cos sin sin
π π π π
4 4 4 4

h h h h

h

= + − +2 2 2 2

2

cos sin cos sinh h h h

h

= 2 2

2

sinh

h
 = simplified form of the given

function.

Now, lim
x → π

4

 (given function =
→

lim
h 0

 (simplified

form of the given function)

⇒ −

−

�

�

�
�
�

�

�

�
�
�→

lim
sin cos

x

x x

x
π π
4

4

 =
→

lim
sin

h

h

h0

2

= = ⋅ =
→

2 2 1 2
0

lim
sin

h

h

h

9. lim tan
x

x
x

→
− �

��
�
��

�
�

�
��1

1
2

� � π

Solution: Method 1
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Putting x h h= + ⇒ →1 0  as x → 1

∴  given function = − �
��
�
��1

2
x

x� � tan
π

= − +h h� � � �tan
π
2

1

�1 1 1 1 1− = − + = − − = −x h h h� �� �

= − −�
�

�
��
=h h h

h� � cot cot
π π
2 2

=
�
��
�
��

h

h
tan

π
2

= ×
�
��
�
��

= × ×�
�

�
��

2 2

2

2

2π

π

π π
π

h

h
h h

tan
�

∴ − �
��
�
��

�
�

�
��→

lim tan
x

x
x

1
1

2
� � π

= �
��
�
�� ⋅

�
��
�
��

�
��
�
��
= × =

→ →
lim lim

tan
h h

h

h0 0

2 2

2

2
1

2

π

π

π π π

or, alternatively:
Putting x = 1 – h in the given function, we have

1
2

1 1
2

1− �
��
�
�� = − − ⋅ −�

�
�
��

x
x

h h� � � � � �tan tan
π π

= −�
��

�
��h

h
tan

π π
2 2

= �
��
�
�� = �

��
�
��
=

× ×

�
��
�
��

�

�






�

�

�
�
�
�

h
h h

h

h

h
cot

tan

π
π

π
π

π2
2

2
2

2
tan

∴ − �
��
�
��

�
�

�
��→

lim tan
h

x
x

1
1

2
� � π

= ×
⋅

�
��
�
��

�

�

�
�
��

�

�

�
�
��
= ⋅ =

→ →
lim lim

tan
h h

h

h0 0

2 2

2

2
1

2

π

π

π π π

N.B.: 1. This example gives us light that we may put
x a h= ±  in the given function while adopting h-
method, the result is same. But when (a – x) appears
in the question, we prefer to put x = a – h for easiness.

2. The above function = (1 – x) tan 
π x

2
�
��
�
��  whose

limit is required can be done by expressing it in sin x
and cos x.
Method 2:

lim tan
x

x
x

→
− �

��
�
��

�
�

�
��1

1
2

� � π

= − ⋅

�
��
�
��

�
��
�
��

�

�






�

�

�
�
�
�

→
lim

sin

cos
x

x

x

x1
1

2

2

� �

π

π

We get,

lim tan
2x

x
x

→
− �

��
�
��

�
�

�
��1

1� � π

=
− +

+
→

lim
sin

cos
h

h h

h
0

2
1

2
1

� � � �

� �

π

π

=
− �

��
�
��

− �
��
�
��

→
lim

cos

sin
h

h
h

h0

2

1
2

� �

� �

π

π

� cos sin90 + = −θ θ� �� �

=

�
��
�
��

�
��
�
��

→
lim

cos

sin
h

h
h

h0

2

2

π

π
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= �
��
�
�� ⋅ �

��
�
��

→ →
lim cos lim

sin
h h

h h

h0 02
2

π
π

= �
��
�
�� ⋅

× ���
�
��

�
��
�
��

→ →
lim cos lim

sin
h h

h
h

h0 02

2
2

2

π π
π

π

= �
��
�
�� ⋅ ×

�
��
�
��

�
��
�
��

→ →
lim cos lim

sin
h h

h
h

h0 02

2 2

2

π
π

π

π

= × × =1
2

1
2

π π

Problems based on type 2

Exercise 4.11

Evaluate Answers

1. lim
cos

sinx

x

x→

+
−π

1

1
(0)

2. lim
cos

x

x

x→

+
−π π

1
(0)

3. lim
cos

–x

x

x→

+
π π

1
2� �

1

2
�
��
�
��

4. lim
cos

1 –x

x

x→

�
��
�
��

1

2
π

π� �

5. lim
sec tan

2
x

x x

x→

−

−
π π
2

1

2
�
��
�
��

6. lim tan
x

x x
→

−�
��

�
��π

π

2
2

(1)

7. lim
sin sin

x

x x

x→

−

−π π

3 3
3� �

(–4)

8. lim
sin

cosx

x x

x→

−
π

π

2

2
(–2)

9. lim
sin

- 2x

x

x→

−
π π
2

2

1

� �
1

8
�
��
�
��

10. lim
cos

sinx

x

x→

−
�
��

�
��

π π
3

1 2

3
–

3	 


11. lim
cos sin

x

x x

x→

− −

−π π
6

2

2 3

6� �
1

36
�
��
�
��

12. lim
cos cos

x

x x

x→

+

−π π
2

3

3 3

2� � −���
�
��

1

2

13. lim
cos

x

x

x→

+ −

−π π

2 1
2� �

1

4
�
��
�
��

14. lim
sin cos

4
θ

π

θ θ

θ π→

−

−���
�
��4

2	 


15. lim
tan

3x

x

x→

−
−π π

3

3 4

3
�
��
�
��

16. lim
sinx

x

x→

−
1

2
1� �

π
(0)

17. lim
cos

1x

x

x→

+
1 2

1 π

–� �
π2

2

�
��
�
��

18. lim
sin

x

x

x→ −1 1

π
� � − π� �
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19. lim
cos sin

x

x
x

x→

+ �
��
�
��

−1 2

2

1

π π

� �
3

8

2π�
��

�
��

20. lim
sinx

x x

x x x→

− +
− + −1

2

2

3 2

1� � −���
�
��

1

2

21. lim
sin

x

x

x→

−

−1

2 1

1

	 

� �

(2)

Special types of functions:

1. F x
x f a a f x

x a
� � � � � �

=
−
−

 whose limit as x a→

is required

2. F x
f x f y

x y
� � � � � �

=
−
−

 whose limit as x y→  is

required or F x
f x f y

x y
� � � � � �

=
−
−

  =
−
−

f y f x

y x

� � � �

whose limit as y x→  is required.

Remember:
Definition:

1. If lim
x a

f x f a

x a→

−
−

� � � �
 = L = a fixed value then L is

called the differential coefficient of f (x) and it is
denoted as ′f x� � .

2. If lim
h

f x h f x

h→

+ −
0

� � � �
, = L = a fixed value, then

L is called the differential coefficient of f (x) and it is
denoted as ′f x� � .
Note:
1. In the above definition of ′f a� � , we denote a
particular value of the independent variable x by a
while in the definition of ′f x� � , we denote a particular
value of x by itself x instead of a. Thus, we observe x
has to play two roles at a time, one of which is of the
independent variable and the second is of a particular
value of the independent variable, i.e.; the first role is
of a variable while the other role is of a constant.

2. L
x f a a f x

x ax a
=

−
−→

lim
� � � �

… (i)

∴ =
− − −

−→
L

x f a a f a a f x f a

x ax a
lim

� � � � � � � �

=
−

−
−

−
−→ →

lim lim
x a x a

f a x a

x a
a

f x f a

x a

� � � �
� �

� � � �

= − ′f a a f a� � � �
= value of the function f (x) at x = a – a times d.c of

f (x) at x = a, e.g.:

1. lim
sin sin

sin cos
x a

x a a x

x a
a a a

→

−
−

= −

Type 1: F x
x f a a f x

x a
� � � � � �

=
−
−

 whose limit is

required as x a→ .

Working rule:

1. Put x a h x a h= + ⇒ − =� �  where h → 0

(h > 0 or h < 0).
2. If f = sin or cos, use C D±  formulas to convert it
into product form and if f = tan, cot, sec or cosec, then
we are required to transform tan, cot, sec or cosec
into sin and cos and then use C D±  formulas to
convert it into product form.

Examples working out:
Evaluate:

1. lim
sin sin

x a

x a a x

x a→

−
−

Solution: Putting x = a + h ⇔  (x – a) = h ⇔
(x – a) →  0 as x →  a.

Now, lim
sin sin

x a

x a a x

x a→

−
−

=
+ − +

+ −→
lim

sin sin
h

a h a a a h

a h a0

� � � �

=
+ − +

→
lim

sin sin
h

a h a a a h

h0

� � � �
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=
− + +�

�



�

�
�
�→

lim
sin sin sin

h

a a a h h a

h0

� �� �

=

⋅ +�
��

�
�� ⋅

−���
�
��

−���
�
��

⋅ −���
�
�� +

→
lim

cos
sin

2

sin

h

a
a h

h

h
h

h a

h0

2
2

2
2

2

using C D±  formula

= ⋅ +�
��

�
�� ⋅

−���
�
��

−���
�
��

⋅ −���
�
�� +→

lim cos
sin

sin
h

a
a h

h

h
h

a
0

2
2

2

2

2
2

= – a cos a + sin a = sin a – a cos a.
Notes: 1. When we put x a h= ± , then h → 0
through positive values which means h > 0 and
–h < 0 and when we put x = a + h, then h → 0  means
h > 0 or h < 0 (both possibilities remain).
2. In questions, in case a function is given defined
by a single formula:
(i) y = f (x)

(ii) y
f x

f x= ≠1
0

� � � �,

(iii) y
f x

g x
=
� �
� �

, g x� � ≠ 0  and one is required to find

its limit at a given point, there is no need to calculate
the right hand and left hand limit separately, i.e. it is
sufficient to use the substitution either x = a + h or x
= a – h in the given function to obtain a function h
and put h = 0 after simplification.
3. In case a function is defined by a single formula
into its domain, it is turmed as uniform function.
4. When a given function is a non uniform function
or a piecewise function and the question says to
examine the existence of the limit of the function, then
it is a must to calculate the right hand and left hand
limit separately, i.e. it is necessary to use the
substitution x = a + h and x = a – h both in the given
function to obtain a function of h and lastly put h = 0
in the function of h after simplification.

Type 2: F x
f x f y

x y
� � � � � �

=
−
−

 whose limit is required

as x y→  or,

F x
f x f x

x y
� � � � � �

=
−
−

=
−
−

f y f x

y x

� � � �

whose limit is required as y x→ .

Working rule:
First method:
1. If f = sin or cos, we use C D±  formula to convert
the sum or difference into the product form and if
f = tan, cot, sec or cosec, we are required to transform
tan, cot, sec or cosec into sin and cos and then use
C D±  formula to convert it into product form.

N.B.: as x a→ , x a− →
2

0

Second method:
1. Put x = a + h ⇔  (x – a) = h where h → 0 .

2. If f = sin or cos, we use C D±  formula to convert
the sum or difference into the product form and if
f = tan, cot, sec or cosec, we are required to transform
tan, cot, sec or cosec into sin and cos and then use
C D±  formula to convert it into product form.

Examples worked out:
Evaluate:

1. lim
sin sin

x a

x a

x a→

−
−

Solution: First method:

sin sin cos sinx a
x a x a

− =
+

⋅
−

2
2 2

⇒
−
−

sin sinx a

x a

=

+�
��

�
�� ⋅

−�
��

�
��

−�
��

�
��

⋅
2

2 2

2

1

2

cos sin
x a x a

x a

⇒
−
−→

lim
sin sin

x a

x a

x a
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=

+�
��

�
�� ⋅

−�
��

�
��

−�
��

�
��

→
lim

cos sin

x a

x a x a

x a

2 2

2

= +�
��

�
�� ⋅

−�
��

�
��

−�
��

�
��

→ →
lim cos lim

sin

x a x a

x a
x a

x a2
2

2

=
+�

��
�
�� ⋅cos

a a

2
1 � as x a

x a→
−

→�
��

�
��,

2
0

= �
��
�
��cos

2

2

a

= cos a.
Second method:

Putting x = a + h ⇒  x – a = h →  0

⇒ → ⇒ − → ⇒ →x a x a h0 0

Now, 
sin sinx a

x a

−
−

=
+ −sin sina h a

h

� �

=

+ +�
��

�
�� ⋅

+ −�
��

�
��2

2 2
cos sin

a h a a h a

h

=
+���
�
�� ⋅

�
��
�
��2

2 2
cos sina

h h

h

=

+���
�
�� ⋅

�
��
�
��

�
��
�
��

⋅ ���
�
��2

2
2

2
cos

sin

h

2

a
h

h
h

h

=

+���
�
�� ⋅

�
��
�
��

�
��
�
��

⋅cos
sin

a
h

h

h
h

h

2
2

2

� �

= +���
�
�� ⋅

�
��
�
��

�
��
�
��

cos
sin

a
h

h

h2
2

2

… (i)

Now taking the limit on both sides of (i) as h → 0 ,

we get

lim
sin sin

x a

x a

x a→

−
−

= +���
�
�� ⋅

�
��
�
��

�
��
�
��

→ →
lim cos lim

sin

2

h h
a

h
h

h0 02
2

= ⋅ =cos cosa a1 .

2. lim
cos cos

x a

x a

x a→

−
−

Solution: lim
cos cos

x a

x a

x a→

−
−

=
− +�

��
�
�� ⋅

−�
��

�
��

−→
lim

sin sin

x a

x a x a

x a

2
2 2

� �

= − +�
��

�
�� ⋅

−�
��

�
��

−�
��

�
��

⋅
→ →

lim sin lim
sin

x a x a

x a
x a

x a
2

2
2

2

1

2

= − × × →
−

→�
��

�
��2 1

1

2 2
0sin asa x a

x a
� ,
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= × −
1

2
2� � sina

= – sin a

3. lim
tan tan

x y

x y

x y→

−
−

Solution: Putting x = y + h ⇒  h = (x – y)

∴ → ⇒ − → ⇒ →x y x y hgiven� � 0 0

Now, lim
tan tan

x y

x y

x y→

−
−

=
+ −
+ −→

lim
tan tan

h

y h y

y h y0

� �

=
+

−
�
�



�
�
�
�→

lim
sin

cos +

sin

cosh h

y h

y h

y

y0

1 � �
� �

=
+ − +

+ ⋅
�
�



�
�
�
�→

lim
sin cos cos sin

cos cosh h

y h y y h y

y h y0

1 � � � �
� �

=
+ −
+

�
�



�
�
�
�→

lim
sin

cos cosh h

y h y

y h y0

1 � �
� �

= ⋅ ⋅
+

⋅
�
�



�
�
�
�→

lim sin
cos cosh h

h
y h y0

1 1 1

� �

= �
��

�
�� ⋅ +

⋅
→ → →

lim
sin

lim
cos

lim
cosh h h

h

h y h y0 0 0

1 1

� �

= ⋅1
1
2cos y

= sec2 y .

Exercise 4.12

Evaluate Answers

1. lim
sin sin

x a

x a

x a→

−
−

�
��

�
�� cosa� �

2. lim
cos cos

x a

x a

x a→

−
−

�
��

�
�� − sina� �

3. lim
tan tan

x a

x a

x a→

−
−

�
��

�
�� sec2 a	 


4. lim
sec sec

x a

x a

x a→

−
−

�
��

�
�� sec tana a⋅� �

5. lim
cosec cosec

x a

x a

x a→

−
−

�
��

�
�� − ⋅cosec cota a� �

6. lim
cot cot

x a

x a

x a→

−
−

�
��

�
�� −cosec2 a	 


Method of Rationalization

Whenever a square root of a trigonometrical function
appears in the given function whose limit is required
as x a→ , we adopt the following working rule:

Working rule:
1. Rationalize the Nr or Dr or both whose square
root appears.

2. Put x = a + h where h → 0

3. Simplify the function of (a + h) and put h = 0 in the
simplified function of h.

Examples worked out:
Evaluate:

1. lim
cos

x

x

x→

+ −

−π π

2 1
2� �

Solution: Given function =
+ −

−

2 1
2

cos x

xπ� �
Or rationalizing the Nr, we get

2 1
2

+ −

−

cos x

xπ� �

=
+ − + +

− + +

2 1 2 1

2 1
2

cos cos

cos

x x

x x

	 
	 

� � 	 
π
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= +

+ −

1

1
2

cos

2 + cos

x

x x� �� �π

Now, we put x h= +π , where h → 0  as x → π
then the above expression becomes

=
+ +

+ ⋅

1

1 2

cos

2 + cos + h

π

π

h

h

� �
� �� �

= −

− + ⋅

1

2 1 2

cos

cos

h

h h� �� �

∴ Required limit =
+ −

−→
lim

cos
x

x

xπ π

2 1
2� �

=
−

− + ⋅→
lim

cos

cosh

h

h h0 2

1

2 1

� �
� �� �

� π π π− = − − =x h h� � � �2 2 2

=
−

⋅
− +→ →

lim
cos

lim
cosh h

h

h h0 2 0

1 1

2 1

� �
� �� �

=
⋅ �

�
	


⋅

− +→ →
lim

sin
lim

cosh h

h

h h0

2

2 0

2
2 1

2 1� �� �

=

�
�
	



�

�

�
�
�

	




�
�
�

⋅ ⋅
− +→

2
2

2

1

4

1

2 1 10

2

lim
sin

h

h

h

= ⋅ ⋅ ⋅ =2 1
1

4

1

2

1

4
.

To find the limits of trigonometric functions of an
angle θ  as θ → 0

We have already derived the lim sin
x

x
→

=
0

0  and

lim cos
x

x
→

=
0

1 on pages 142 and 143 but here we are

going to provide the same results with different
methods and some more results on limits.
Derivation: Let us consider a circle OAP and
PN ⊥  drawn form P to the radius OA.

Now, letting ∠ = >POA θ 0

As θ → 0 , then P A→
PN → 0 (zero)
ON OA→

But length OP = r = radius remains constant.
Now,

lim sin lim lim
θ θ θ

θ
→ → →

= = = =
0 0 0

0
p

h

PN

OP

O

OP
 (zero)

lim cos lim lim
θ θ θ

θ
→ → →

= = = =
0 0 0

1
b

h

ON

OP

OA

OA
 (�  OA

= OP = r)

lim tan lim lim
θ θ θ

θ
→ → →

= = = =
0 0 0

0
p

b

PN

ON

O

OA
.

Notes:

1. When θ < 0 ,  let θ θ= ∠ = − ′POA  (i.e;

′ = −θ θ )

∴ → ⇔ ′ →θ θ0 0

As θ → 0 , , then P A→
PN → 0 (zero)
ON OA→

But length OP = r = radius remains constant.

∴ − ′ = = =
−

′→ → → →
lim sin lim sin lim lim
θ θ θ θ

θ θ
0 0 0 0
� � p

h

PN

OP

= − =O

OP
0  (zero)

θ
O N

A

P

O
N

A

P
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lim cos lim cos lim lim
′→ → → →

− ′ = = =
θ θ θ θ

θ θ
0 0 0 0

� � b

h

ON

OP

= =
→

lim
θ 0

1
OA

OA

lim tan lim tan lim lim
′→ → → →

− = = = −
θ θ θ θ

θ θ
0 0 0 0
� � p

b

PN

ON

=
−

=
O

OA
0  (zero)

2. The limits of trigonometric functions of an angle
θ  as θ → 0  can also be found by noting that (i) sin
x, cos x and tan x are continuous functions at x = 0 (ii)

lim
x c

x
→  = C (iii) the limit sign of a continuous function

can be referred to the independent variable (or,
argument)

i.e; lim lim
x c x c

f x f x f c
→ →

= �
�

	

 =� � � �  provided f (x) is a

continuous function of x at x = c.

Hence, lim sin sin lim sin
θ θ

θ θ
→ →

= �
�

	

 = =

0 0
0 0

lim cos cos lim cos
θ θ

θ θ
→ →

= �
�

	

 = =

0 0
0 1

lim tan tan lim tan
θ θ

θ θ
→ →

= �
�

	

 = =

0 0
0 0

3. lim cos lim sin lim sin
θ θ θ

θ θ θ
→ → →

= − = −
0 0

2

0

2
1 1� �

= lim lim sin
θ θ

θ
→ →

− = − =
0 0

2
1 1 0 1

4. When θ  is very small, vertical segment drawn
from one end point of the radius of the circle = arc of
the circle opposite to the central angle.
5. When θ → 0 , vertical segment → 0

Remember:

1. If lim
x a

f x

f x→
=1

2

1
� �
� � , then f1 (x) and f2 (x) are called

equivalent functions as x a→  which means

lim
x a

f x

f x
f x f x

→
= ⇔ ≡1

2
1 21

� �
� � � � � �  as x a→

2. As θ → 0 , we have

(i) sinθ θ≡ (ii) tanθ θ≡ (iii) log 1 + ≡x x� �

2. To show that lim
sin

θ

θ
θ→0

, where θ  is measured in

circular measure (or, radian measure)
Proof: Let us consider a circular arc AB of radius ‘r’
which subtends a positive acute angle θ  at the
center C.

Now we draw
1. the chord AB
2. the tangent AD at A and extend it until it meets

CB at D. Then AD is perpendicular to the radius CA = r

We have

A1 = area of ∆CAB CA CB r= ⋅ =1

2

1

2

2
sin sinθ θ  … (i)

A2 = area of the sector CAB = 
1

2

2
r θ … (ii)

A3 = area of the ∆ CAD = 
1

2

1

2
⋅ ⋅ = ⋅AD CA CA

tan tanθ θCA r=
1

2
2

… (iii)

(�∠ = ∴ =ACD
AD

AC
θ θ, tan  in ∆ ACD  which

is a right angled triangle since AD being a tangent is

⊥  to the radius OA = r)
Again we have, area of ∆ CAB < area of the sector

CAB < area of ∆ CAD … (iv)
On putting the values of (i), (ii) and (iii) in (iv), we

get A1 < A2 < A3

CC A

D

B

r

r
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⇒ < <
1

2

1

2

1

2

2 2 2
r r rsin tanθ θ θ … (v)

On dividing (v) by 
1

2

2
r sinθ , we get

1
1< <θ

θ θsin cos

⇒ > >1
sin

cos
θ

θ
θ

⇒ > >
→ → →

lim lim
sin

lim cos
θ θ θ

θ
θ

θ
0 0 0

1

⇒ ≥ ≥
→

1 1
0

lim
sin

θ

θ
θ

⇒ =
→

lim
sin

θ

θ
θ0

1,  ( 0 < <θ π  i.e.; θ  is positive)

If θ  is negative, let ′ = −θ θ , , i.e. θ θ= − ′

∴ → ⇔ ′ →θ θ0 0

∴ =
− ′

− ′
=

− ′
− ′

=
→ ′→ ′→

lim
sin

lim
sin

lim
sin

θ θ θ

θ
θ

θ
θ

θ
θ0 0 0

� �
� �

� �
� �

lim
sin

′→

′
′

=
θ

θ
θ0

1  (by previous result)

∴ = = =
→ →

>
→
<

lim
sin

lim
sin

lim
sin

θ θ
θ

θ
θ

θ
θ

θ
θ

θ
θ0 0

0
0
0

1

Remember:
1. When θ  is small, sinθ θ=  (approximately)

2. lim
sinθ

θ
θ→
=

0
1

Proof: lim
sin

lim
sin

lim
sinθ θ

θ

θ
θ θ

θ
θ

θ
→ →

→

= �
�

	


= �

�
	


= =

0 0

0

1 1 1

1
1

3. Prove that lim
tan

θ

θ
θ→

=
0

1

Proof: lim
tan

lim
sin

cosθ θ

θ
θ

θ
θ θ→ →

= ×
�
��

	

�0 0

1

= ×
�
��

	

� = × =

→ →
lim

sin
lim

cosθ θ

θ
θ θ0 0

1
1

1

1
1

∴ = =�
��

	

�→ →

lim
sin

and lim cos
θ θ

θ
θ

θ
0 0

1 1

4. lim
tanθ

θ
θ→0

Proof: lim
tan

lim
tan

lim
tanθ θ

θ

θ
θ θ

θ
θ

θ
→ →

→

= �
�

	


= �

�
	


= =

0 0

0

1 1 1

1
1

N.B.: Limit of the reciprocal of a function = reciprocal
of its limit provided that the limit of the function is not
equal to zero.

Limits of trigonometric functions as x → 0

Form 1: To find lim lim
θ→ →

=
0 0

1

2

f x
t x

t xx
� � � �

� �  where f (x)

= a trigonometric function whose numerator = t1 (x) =
trigonometric function or trigonometric expression.

And denominator = t2 (x) = a trigonometric function
or trigonometric expression.

Working rule: To find the limit of a trigonometric
function (whose both Nr and Dr are trigonometric
functions or trigonometric expressions) as the
independent variable tends to zero, we adopt the
following working rule:
1. We express all trigonometric functions in Nr and
Dr in terms of sinθ  and cosθ  or in terms of product
of sinθ  and cosθ  by using C D±  formulas of trigo-
nometry or we may use any formula which is required
for simplification and cancel the common factor
(which makes f (0) meaningless) from Nr and Dr.
2. Lastly, we use the results gives below:

(i) lim
sin

θ

θ
θ→

=
0

1

(ii) lim
tan

θ

θ
θ→

=
0

1

(iii) lim cos
θ

θ
→

=
0

1

Note:
1. Never forget to write:

(a) sin
sin

θ
θ

θ
θ= ⋅
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(b) tan
tan

θ
θ

θ
θ= ⋅  so that we may use the

standard formulas of limits of trigonometrical ratios
mentioned above.

Problems based on the form 1
Examples worked out:
Evaluate:

1. lim
sin

tanx

x

x→0

3

4

Solution: lim
sin

tanx

x

x→0

3

4

= ⋅



�

�
�
�

�

�

�
�
�→

lim

sin

tanx

x

x0

3

4

3

3
4

4

= ⋅

�
�

	



�
�

	





�

�
�
�
�

�

�

�
�
�
�

→

→

3

4

3

3
4

4

0

0

lim
sin

lim
tan

x

x

x

x
x

x

= ×3

4

1

1

= 3

4

2. lim
sin

2x

x

x→0

2

Solution: lim
sin

2x

x

x→0

2
 = 2 � lim

sin
x

m

m
m

→
=

�
��

	

�0

θ
θ

3. lim
sin

x

ax

x→0

Solution: lim
sin

x

ax

x→


��

�
��0

= ⋅
��

�
��→

lim
sin

x

ax

ax
a

0

= 
��

�
�� = ⋅ =

→
a

ax

ax
a a

x
lim

sin
0

1

4. lim
sin

sin5x

x

x→0

3

Solution: lim
sin

sin5x

x

x→0

3

= ⋅ ⋅

��

�
��→

lim
sin

sinx

x

x

x

x0

3

3

5

5

3

5

= ���
	

� ⋅
�
��

	

� ⋅

�
�
	

→ → →

lim
sin

3
lim

5

sin5
lim

x x x

x

x

x

x0 0 0

3 3

5

= ⋅ ⋅1 1
3

5

=
3

5

5. lim
tan

x

x

x→0

5

Solution: lim
tan

x

x

x→0

5

=
⋅→

lim
sin

cosx

x

x x0

5

5

= ⋅ ⋅
→ →

lim
sin

lim
cosx x

x

x x0 0

5

5
5

1

5

= 1 · 5 · 1
= 5

6. lim
sin

x

n

n

x

x→0

6

Solution: lim
sin

x

n

n

x

x→0

6

=

�
�

	

 ⋅

→
lim

sin

x

n
n

n

x

x
x

x0

6

6
6� �

= �
��

	

� ⋅

⋅�
�
�

	


�

→ →
lim

sin
lim

x

n

x

n n

n

x

x

x

x0 0

6

6

6
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= ���
	

� ⋅

→
lim

sin
x

n
nx

x0

6

6
6

= ⋅ =1 6 6
n n

7. lim
tan

tanx

x

x→0

α
β

Solution: lim
tan

tanx

x

x→0

α
β

= ⋅

��

�
��→

lim
sin

cos

cos

sinx

x

x

x

x0

α
α

β
β

= ⋅ ⋅ ⋅ ⋅

��

�
��→

lim
sin

cos
cos

sinx

x

x x
x

x

x

x

x0

1α
α α

β
β
β

α
β

= ⋅ ⋅ ⋅ ⋅

��

�
��→

lim
sin

cos
cos

sinx

x

x x
x

x

x0

1α
α α

β
β
β

α
β

= �
��

	

� ⋅

�
��

	

� ⋅

�
��

	

� ⋅


��

�
��→ → → →

α
β

α
α α

β
β

βlim
sin

lim
1

cos
lim

sin
lim cos

x x x x

x

x x

x

x
x

0 0 0 0
� �

= ⋅ ⋅ ⋅ ⋅ =
α
β

α
β

1 1 1 1 .

8. lim
sin

sinx

x

x→0

α
β

Solution: lim
sin

sinx

x

x→0

α
β

= ⋅ ⋅

��

�
��→

lim
sin

sinx

x

x

x

x0

α
α

β
β

α
β

=
�
��

	

� ×
�

�

�
�
�

	




�
�
�
⋅



�

�
�
�
�

�

�

�
�
�
�

→ →
lim

sin
lim

sin
x x

x

x

x

x0 0

1
α

α
β

β
α
β

= × × =1
1

1

α
β

α
β

9. lim
tan sin

cosx

x x

x→

−
−0 1

Solution: lim
tan sin

cosx

x x

x→

−
−

�
��

	

�0 1

=
−

−

�

�

�
�
�

	




�
�
�
=

−

−

�

�

�
�
�

	




�
�
�→ →

lim

sin

cos
sin

cos
lim

sin sin cos

cos

cosx x

x

x
x

x

x x x

x

x0 01 1

= ⋅
−
−

�
��

	

�


��

�
��
=

→ →
lim

sin

cos

cos

cos
lim

sin

cosx x

x

x

x

x

x

x0 0

1

1

lim
sin

lim cos

lim
sin

lim

lim cos
x

x

x x

x

x

x
x

x

x

x
x

x
→

→

→ →

→

⋅
=

�
�

	

 ⋅0

0

0 0

0

=
⋅

= =�
�

	

→

1 0

1
0 0

0
� lim

x
x

10. lim
cos cos

cos cosx

x x

x x→

−
−0

7 9

3 5

Solution: lim
cos cos

cos cosx

x x

x x→

−
−0

7 9

3 5

=
⋅
⋅

=
→ →

lim
sin sin

sin sin
lim

sin

sinx x

x x

x x

x

x0 0

2 8

2 4

2 8

2 4

=
⋅ /

⋅ /

�

�

�
��

	




�
��
= =

→
lim

sin

sinx

x

x
x

x

x
x

0

8

8
8

4

4
4

8

4
2

11. lim
sin sin

sinx

x x

x→

−
0

7

6

Solution: lim
sin sin

sinx

x x

x→

−
0

7

6

=
⋅

→
lim

cos sin

sin cosx

x x

x x0

2 4 3

2 3 3

=
→

lim
cos

cosx

x

x0

4

3
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=
1

1
= 1

Problems based on the form 1

Exercise 4.13

Find the limits of the following functions as x → 0 .

Answers

1.
sec sec

sec sec

4 2

3

x x

x x

−
−

3

2
�
�
	



2.
1

1

−
−

cos

cos

ax

bx

a

b

2

2

�
��
	

�

3.
sin sin

sin sin

2 4

4 6

x x

x x

−
− Find

4.
cos cos

sin

2 8

3

x x

x

−
Find

5.
tan sin

sin

x x

x

−
3

1

2
�
�
	



6.
sin tan

sin

x x

x

−
3 −��

	



1

2

7. sin cosx
x

⋅ 1
(0)

8.
1

1

−
+

cos

cos

x

x
(0)

9.
1 2

2 8

−
−
cos

cos cos

x

x x
1

15
�
�
	



10.
tan sin

sin sin

x x

x x

−
−3 3

−��
	



1

8

11.
1

2
2

− cos

sin

x

x� �
1

8
�
�
	



12.
sin sin

sin

7

6

x x

x

−
(1)

13.
sin sin

sin

5

4

x x

x

−
(1)

14.
sin sin

cos cos

α α
α α
+ − −
+ − −

x x

x x

� � � �
� � � � −cotα� �

15.
tan sin

cos

x x

x

−
−1

(0)

16.
1 2

1 5

−
−

cos

cos

θ
θ

4

25
�
�
	



Form 2: To find lim
x

f x
→0

� �  where f (x) = a trigono-

metrical expression mixed with an algebraic function
in any way (generally algebraic function appears as
addend, subtrahend, minuend, multiplicand or divisor
of trigonometric function or expression), i.e.’ To find

(i) lim lim
x x

f x
a x t x

a x t x→ →
=

±
±0 0

1 1

2 2

� � � � � �
� � � �

(ii) lim lim
x x

f x
a x t x

t x→ →
=

⋅
0 0

1 1

2

� � � � � �
� �  or lim

x

t x

a x t x→0

1

1 2

� �
� � � �

(iii) lim lim
x x

f x
t x

a x→ →
=

0 0

1

1

� � � �
� �

(iv) lim lim
x x

f x
a x

t x→ →
=

0 0

1

1

� � � �
� �

where a1 (x) and a2 (x) = algebraic functions
t1 (x) and t2 (x) = trigonometric function

We adopt the following working rule:

Working rule: Modify the given function by using
trigonometric formulas if required so that standard
results of limits of trigonometric functions may be
used.

N.B.: Standard results of limits of trigonometric
functions

1. lim
sin

x

x

x→
=

0
1
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2. lim
tan

x

x

x→
=

0
1

Problems based on the form 2
Examples worked out
Evaluate:

1. lim
cos cos

sinx
x

x x

x→

+�
��

	

�0

2

Solution: lim
cos cos

sinx
x

x x

x→

+�
��

	

�0

2

=
�
��

	

� ⋅ +


��

�
��→

lim
sin

cos cos
x

x

x
x x

0
2� �

=
+
�
�

	





�

�
�
�
�

�

�

�
�
�
�

→
lim

cos cos

sinx

x x

x

x

0

2� �

=
+

�
�

	



→

→

lim cos cos

lim
sin

x

x

x x

x

x

0

0

2� �

= + =
1 1

1
2

2. lim
sin sin

x

x x

x→

−
0 3

2 2

Solution: lim
sin sin

x

x x

x→

−
0 3

2 2

=
−

→
lim

sin sin cos
x

x x x

x0 3

2 2

=
−

→
lim

sin cos

x

x x

x0 3

2 1� �

= ⋅
→

lim sin
sin

x
x

x

x0

2

3
2

2
2

= ⋅ �
��

	

� ⋅
�

�

�
��

	




�
��

⋅



�

�
�
�
�

�

�

�
�
�
�

→
4 2

2

1

40

2

lim
sin sin

x

x

x

x

x

= �
��

	

� ⋅
�

�

�
��

	




�
��→ →

lim
sin

lim
sin

x x

x

x

x

x0 0

2

2

2

= 1 × (1)2

= 1

3. lim
tan sin

x

x x

x→

−
0 3

Solution: lim
tan sin

x

x x

x→

−
0 3

=
−

��
�
��→

lim
tan cos

x

x x

x0 3

1� �

� tan cos tan sinx x x x1 − = −� �

= �
��

	

� ⋅
�

�

�
��

	




�
��



�

�
�
�

�

�

�
�
�→

lim
tan sin

x

x

x

x

x0

2

2

2
2

= �
��

	

� ⋅ ⋅

⋅

�

�

�
�
��

	




�
�
��

→ →
lim

tan
lim

sin

x x

x

x

x

x0 0

2

2
2 2

4
4

= ⋅ ⋅

�

�

�
��

	




�
��



�

�
�
�

�

�

�
�
�
⋅

→
1 2 2

2

1

40
lim

sin

x

x

x

= ⋅ ⋅1 2
1

4

= 1

2
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4. lim
tan sin

x

x x

x→

−
0 3

2 2

Solution: lim
tan sin

x

x x

x→

−
0 3

2 2

=
−

�
��

�
�
��→

lim
tan cos

x

x x

x0 3

2 1 2� �

=
⋅

→
lim

tan sin
x

x x

x0

2

3

2 2

= �
��

	

� ⋅ ⋅ �

��
	

� ⋅

→ →
lim

tan
lim

sin
x x

x

x

x

x0 0

2
2

2
2 2

= 2 · 1 · 2 (1)2

= 4.

5. lim
cos

x

k x

x→

−
0 2

1

Solution: lim
cos

x

k x

x→

−
0 2

1

=

�
�
	



→
lim

sin

x

k x

x0

2

2

2
2

= ⋅

�
��
	

�

�
��
	

�



�

�
�
�
�

�

�

�
�
�
�

⋅
→

2
2

2
40

2

2

lim
sin

x

k x

k x

k

= ⋅ ⋅
�
��
	

�

2 1
4

2
2

� � k

=
k

2

2
.

6. lim
cos

x

x

x→

−
0

5 1

Solution: lim
cos

x

x

x→

−
0

5 1

=
−

→
lim

sin

x

x

x0

2
2

5
2

=
⋅ −

�
�
	



⋅ ��
	

 ⋅



�

�
�
�
�

�

�

�
�
�
�

→
lim

sin

x

x

x
x

0

2

2

2
5

2
2

5
2

5

2

� �

=

�
�
	



�
�
	





�

�
�
�
�

�

�

�
�
�
�

⋅ − ⋅ ��
	

 ⋅


�
��

�
�
��→ →

lim
sin

lim
x x

x

x
x

0

2

0

2
5
2

5
2

2
5

2
� �

= 1 × 0 = 0

7. lim
tan

x

x x

x→

−
0

Solution: lim
tan

x

x x

x→

−
0

= ⋅ −

��

�
��→

lim
sin

cosx

x

x x0

1
1

= �
��

	

� ⋅

�
��

	

� −→ → →

lim
sin

lim
cos

lim
x x x

x

x x0 0 0

1
1� �

= 1 × 1 – 1 = 0

8. lim
cos cos

sin sinx

x x

x x x→

−
−0

3

3

� �
� �

Solution: lim
cos cos

sin sinx

x x

x x x→

−
−0

3

3

� �
� �

=
⋅ +�

�
	

 ⋅

−�
�

	



⋅ ⋅
+�

�
	

 ⋅

−�
�

	



→
lim

sin sin

cos sin
x

x x x x

x
x x x x0

2
3

2

3

2

2
3

2

3

2

=
⋅

⋅ ⋅→
lim

sin sin

cos sinx

x x

x x x0

2 2

2 2

=
⋅→

lim
sin

cosx

x

x x0

2

2
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= �
��

	

� ⋅

�
��

	

�→ →

lim
sin

lim
cosx x

x

x x0 0

2 1

2

= �
��

	

� ⋅ ⋅

�
��

	

�→ →

lim
sin

lim
cosx x

x

x x0 0

2

2
2

1

2

= 1 × 2 × 1 = 2

9. lim
tan

sinx

x x

x x→

−
−0

2

3

Solution:
tan

sin

2

3

x x

x x

−
−

=

�
�

	

 ⋅ −

− ��
	

 ⋅

=
⋅ −�

�
	



−��
	



tan

sin

tan

sin

2
2

2

3

2
2

2 1

3

x

x
x x

x
x

x
x

x
x

x

x
x

x

=
⋅ −�

��
	

�

−���
	

�

≠

tan

sin
for

2

2
2 1

3
0

x

x
x

x

x

Now, lim
tan

sinx

x x

x x→

−
−


��

�
��0

2

3

=
⋅ −�

�
	



−��
	





�

�
�
�
�

�

�

�
�
�
�

→
lim

tan

sinx

x

x
x

x

0

2

2
2 1

3

=

�
��

	

� −

−
=

−
−

=
→ →

→ →

2
2

2
1

3

2 1

3 1

1

2

0 0

0 0

lim
tan

lim

lim lim
sin

x x

x x

x

x
x

x

10. lim
cosec cot

x

x x

x→

−�
��

	

�0

Solution: lim
cosec cot

x

x x

x→

−�
��

	

�0

= −
�
��

	

�


��

�
��→

lim
sin

cos

sinx x x

x

x0

1 1

=
−�

��
	

�


��

�
��→

lim
cos

sinx x

x

x0

1 1

= ×



�

�
�
�

�

�

�
�
�→

lim
sin

sin

x

x

x

x

x0

2

2

2
2

= × ⋅

�

�

�
��

	




�
��



�

�
�
�
�

�

�

�
�
�
�

→
lim

sin

sin

x

x

x

x

x0

2
2

2

4
2

2

= × ×1
2

4
1

= 1

2

Problems based on form 2

Exercise 4.14

Find the limits of the following functions as x → 0

Answers

1.
1

2

− cos x

x

1

2
�
�
	



2.
1 − cos x

x
(0)

3.
cosec cotx x

x

− 1

2
�
�
	



4.
1 2− cos x

x
(0)

5.
sin tanx x

x

−
(0)

6.
cos secx x

x

−
2 (–1)
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7.
x x

x

tan

cos1 − (2)

8.
1 2

2

− cos x

x
(2)

9.
x m x

m x

1 + cos

sin

� � 2

m
�
�
	



10.
x

bx ax

2

cos cos−

2
2 2

a b−

�
�
�

	


�

11.
cos cosx x

x

− 2
2

3

2
�
�
	



12.
sin cos cos2 2 3

3

x x x

x

−� �
(5)

13.
8

1
2 4 2 43

2 2 2 2

x

x x x x⋅ − − + ⋅


�
�
�

�

�
�
�

cos cos cos cos
1

32
�
�
	



14.
x x x x

x x x

2 3 2

2 2 3

3 2

2 5

+ + −

−

sin

cos

� �
(1)

15.
2 2

2

4

cos x x

x

− + 1

12
�
�
	



Form 3: Limits of irrational trigonometric functions

as x → 0 .

To find the limits of irrational trigonometrical

functions when it assumes an indeterminate form 
0

0
�
�
	



at x = 0, we adopt the following working rule:
Working rule: Method of rationalization is adopted
to find the limit of irrational trigonometric functions
which means removal of radical sign ( ) from
numerator or denominator or both which may be done
by using trigonometrical substitution or multiplying
and dividing by the conjugate of irrational trigo-
nometric expressions.

Note: When given irrational trigonometric functions

doe not assume 
0

0
�
�
	

  form at x = 0, we find the limit of

irrational trigonometric functions by directly putting
x = 0 in the given function, e.g.:

1. lim
cos

cos
lim

cos

cosx x

x

x

x

x→ →

−
+

= −
+

�
��

	

� = =

0 0

1

1

1

1

0

2
0

2. x
x

m
m x→ ⇒ → ⇒ →0 0 0

3. After rationalization, we put x = 0 in the rationalized
form of the given irrational function provided
independent variable ‘x’ tends to zero.

4. If we have f x f x
2 � � � �= , we should find l.h.l

and r.h.l and we should remove mod symbol by using
the definition

f x f x f x� � � � � �= ≥if 0

and f x f x f x� � � � � �= − <if 0

and lastly if l.h.l = r.h.l, we say limit of the given
irrational trigonometric function exists and if l.h.l ≠
r.h.l, we say that limit of irrational trigonometric
function does not exist.

Examples worked out:
Evaluate:

1. lim
cosx

x

x→ −0 1

Solution: lim

sin
x

x

x→
− +

0 2
1 1 2

2

=
→

lim

sin
x

x

x0 2
2

2

=
→

lim
sin

x

x
x0

2
2
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l.h.l = lim
sin

lim
sin

x
x

x

x
x

x
x→

<
→

=
−��

	



0
0

0
2

2
2

2

= −

�

�

�
��

	




�
��→

1

2
2

0
lim

sin
x

x
x

= −
⋅�

�

�
��

	




�
��→

1

2
2

2

2
0

lim
sin

x

x

x

= − ⋅

�

�

�
��

	




�
��
= − × = −

→

2

2
2

2

2

2
1 2

0
lim

sin
x

x

x

r.h.l = lim
sin

x
x

x
x→

<
0
0 2

2

= �
�

	


=

⋅

�
�

	



→ →
lim

sin
lim

sin
x x

x
x

x

x0 0
2

2

2
2

2
2

=

�

�

�
��

	




�
��→

2

2
2

2
0

lim
sin

x

x

x

= ⋅ =
2

2
1 2

Hence, l.h.l ≠  r.h.l

Which ⇒
−→

lim
cosx

x

x0 1
 does not exist.

Note:

(i) r.h.l = lim
x
x

f x
→
>

0
0

� �  means the variable x in f (x) is

restricted only to positive value of x.

(ii) l.h.l = lim
x
x

f x
→
<

0
0

� �  means the variable x in f (x) is

restricted only to negative values of x.

2. lim
cos

sinx

x

x→

−
0

1

Solution: Let y
x

x

x

x
=

−
=

− +1 1 1 2
2

cos

sin

sin

sin

= =
2 2

2
sin

sin

sin

sin

x

x

x

x

l.h.l = lim
sin

sinx
x

x

x→
<

0
0

2

=
−

→
lim

sin

sinx

x

x0

2� �

= −
�
��

	

�→

2
0

� � lim
sin

sinx

x

x

= − ×2 1� �

= − 2

r.h.l = lim
sin

sinx
x

x

x→
>

0
0

2

=
→

lim
sin

sinx

x

x0

2

=
→

2
0

lim
sin

sinx

x

x

= ×2 1

= 2

Hence, l.h.l ≠  r.h.l which ⇒
−

→
lim

cos

sinx

x

x0

1

does not exist.
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3. lim
cos

sinx

x

x→

− +
0 2

2 1

Solution: Let y
x

x
=

− +2 1
2

cos

sin

∴ =
− + + +

+ +
y

x x

x x

2 1 2 1

2 1
2

cos cos

sin cos

� � � �
� �

=
− +

− + + +

2 1

1 1 2 1

cos

cos cos cos

x

x x x

� �
� �� �� �

=
−

− + + +

1

1 1 2 1

cos

cos cos cos

x

x x x

� �
� �� �� �

=
+ + +

≠
1

1 2 1
0

cos cos
for

x x
x

� �� �

Thus, we get y
x x

=
+ + +

1

1 2 1cos cos� �� �
for x≠0  … (i)

Now, on taking the limits on both sides of (i), as

x → 0 , we get

lim lim
cos cosx x

y
x x→ →

=
+ + +0 0

1

1 2 1� �� �

=
+ + +

1

1 1 2 1 1� � � �

=
+

1

2 2 2� �

=
×

1

2 2 2

= 1

4 2

Problems based on form 3

Exercise 4.15

Find the limits of the following functions as x → 0

Answers

1.
x

x1 − cos
2� �

2.
1 1− + tan

tan

x

x
−��
	



1

2

3.
sin

sin

x

x1 1+ −
(2)

4.
sin x

x
(1)

5.
2 1

2

+ −

−
= −

cos
;

z

z
z x

π
π

� �
1

4
�
�
	



Limits of trigonometric functions as x → ∞
To find the limits a function involving a trigonometric
function as the independent variable tends to infinity,
we adopt the following working rule:

Working Rule:

1. Put x
t

t
x

= =1 1
or  where t → 0  when x → ∞

N.B.: 1. The rule of putting x
t

t
x

= =
1 1

or  is

known as reciprocal substitution.
2. Reciprocal substitution is useful when
independent variable x appears as a factor either in
numerator or denominator or when the angle of
trigonometrical function (or, ratio) is the reciprocal
of x.

Examples worked out:
Evaluate:

1. lim sin
x

x
x→∞

�
�
	



1



216 How to Learn Calculus of One Variable

Solution: Let y = x sin
1

x
�
�
	



On putting x
t

t
x

= ⇒ =1 1
, we have x→∞ ⇔

t → 0

∴ = ⋅ =y
t

t
t

t

1
sin

sin
… (i)

Now, on taking the limits on both sides of (i) as
x → ∞ , we get

lim lim
sin

x t
y

t

t→∞ →
= =

0
1  which

⇒ �
�
	

 =→∞

lim sin
x

x
x

1
1

2. lim cos sin
x

x
x x→∞

⋅ �
�
	

 ⋅

�
�
	




��

�
��

π π
4 4

Solution: Let y x
x x

= ⋅ �
�
	

 ⋅

�
�
	




��

�
��

cos sin
π π

4 4

= �
�
	

 ⋅

�
�
	


⋅



�

�
�
�
�

�

�

�
�
�
�

cos
sin

π
π

π
π

4
4

4
4x

x

x

Now, on putting t
x

= π
4

 where t → 0  as x → ∞ ,

we have

y t
t

t
= 

��
�
��
⋅cos

sin π
4

… (i)

Now, on taking the limits on both sides of (i) as
x → ∞ , we get

lim lim cos
sin

x t
y t

t

t→∞ →
= ⋅ ���

	

� ⋅


��

�
��0 4

π

= ⋅ �
��

	

� ⋅

�
�
	

→ → →

lim cos lim
sin

lim
t x t

t
t

t0 0 0 4

π

= × × =1 1
4 4

π π
 which

⇒ ⋅ �
�
	

 ⋅

�
�
	




��

�
��
=

→∞
lim cos sin
x

x
x x

π π π
4 4 4

An important fact to know:

Theorem: If f (x) < g (x) < h (x) and lim
x a

f x
→

� �  = L and

lim
x a

h x
→

� �  = L, then lim
x a

g x
→

� �  = L.

N.B.: The result of this theorem remains true of either
or both of the given strict inequalities are replaced
by <.

Many important results of limits can be easily
obtained with the help of above theorem.

Examples worked out:

1. − ≤ ≤1 1sin x

⇒ − ≤ ≤ >
1 1

0
x

x

x x
x

sin
for

⇒ −��
	

 ≤

�
��

	

� ≤

�
�
	

→∞ →∞ →∞

lim lim
sin

lim
x x xx

x

x x

1 1

⇒ ≤ �
��

	

� ≤ ±��

	

 =

�
��

	

�→∞ →∞

0 0
1

0lim
sin

lim
x x

x

x x
�

⇒ �
��

	

� =→∞

lim
sin

x

x

x
0

2. − ≤ �
�
	

 ≤1

1
1sin

x

⇒ − ≤ �
�
	

 ≤x x

x
xsin

1
 for x > 0,

and x x
x

x≤ �
��
	

� ≤ −sin

1
 for x < 0

⇒ ≤ ⋅���
	

� ≤ ± =�

��
	

�→ →

0
1

0 0
0 0

lim sin lim
x x

x
x

x� � �

⇒ �
�

	

 =→

lim sin
1

x
x

x0
0

3. − ≤ ≤1 1cosx

⇒ − ≤ ≤1 1 1

x x
x

x
cos  for x > 0
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⇒ −��
	

 ≤

�
�

	

 ≤

�
�
	

→∞ →∞ →∞

lim lim cos lim
x x xx x

x
x

1 1 1

⇒ ≤ ≤
→∞

0 0lim
cos

x

x

x

⇒ =
→∞
lim

cos
.

x

x

x
0

Examples:
Evaluate:

1. lim sin
n

n
n→∞

⋅ θ θ,  being measured in radian.

Solution: Let y n
n

= sin
θ

Now multiplying Nr and Dr by 
θ
n

 since we require

the same angle in denominator, we get

y n
n

n

n

n

n

= ⋅ ⋅

�

�

�
��

	




�
��
=

�

�

�
��

	




�
��

θ
θ

θ θ

θ

θ

sin sin
… (i)

Now, on taking the limits on both sides of (i) as
n → ∞ , we get

lim lim
sin

n n
y n

n
→∞ →∞

= ⋅

�

�

�
�
�

	




�
�
�

θ

θ

θ

= ⋅

�

�

�
�
�

	




�
�
�→

θ

θ

θθ
lim

sin

n

n

n
0

� n
n n

→∞⇒ → ⇒ →�
��

	

�

1
0 0

θ

= ⋅θ 1

= θ  which ⇒ ⋅ �
��
	

� =→∞

lim sin
n

n
n

θ
θ .

Problems based on finding the limits of trigonometric
functions as n → ∞

Exercise 4.16

Answers

1. lim sin
x

x
x→∞

⋅ �
�
	



1
(1)

2. lim tan
x

x
x→∞

⋅ �
�
	



1
(Find)

3. lim sin
x

x
→∞

(does not exist)

4. lim
sin

x

x

x→∞

�
�
�

	


�

2

2 (0)

5. lim
sin

x

x

x→∞

3

2
(0)

6. lim
tan

x

x

x→∞

�
��

	

� (does not exist)

7. lim sin
x

x
x→∞

⋅ �
�
	

3

1
(3)

8. lim sin
x

x
x→∞

⋅ �
�
	

2π

π
2

2
π� �

9. lim
cos

x

x

x→∞
(0)

Form 2: When the independent variable or its power
appears in the given function as an addend or
minuend, we adopt the following working rule.

Working rule: It consists of following steps.

Step 1: To divide Nr and Dr by the highest power of
x appearing in Nr and Dr.
Step 2: To take the limit as x → ∞  noting that

a

x

a

x

a

x

1 2
2

3
3

, , , …, etc. all → 0  as x → ∞ , provided

a1, a2, a3, …, etc. all are constants.
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Examples worked out
Evaluate:

1. lim
sin

cosx

x x

x x→∞

+

+
4 23

Solution: y
x x

x x
= +

+

sin

cos
4 23

=
+

+

1 1

1
1

3 4

4

2
3

x x
x

x
x

sin

cos
… (i)

Now, on taking the limits on both sides of (i) as
x → ∞ , we get

lim lim

sin

cosx x
y x x

x

x
x

→∞ →∞
=

+

+

1 1

1
1

3 4

4

2
3

=
+

+

�

�

�
�
�

	




�
�
�→∞

lim

sin

cos
x

x x
x

x
x

1 1

1
1

3 4

4

2
3

=

�
��
	

� +

�
��

	

�

+
�
��

	

�

→∞ →∞

→∞ →∞

lim lim
sin

lim lim
cos

x x

x x

x

x

x

x

x

1

1

3 4

2

23

� �

= +
+

�
��

	

� = =

0 0

1 0
0 03 3

Note: Now we state a theorem which has a wide use.

Theorem: If lim
x c

f x
→

=� � 0  and g (x) is bounded,

then lim
x c

f x g x
→

⋅ =� � � � 0 .

Which is expressed in the following way also.

“The product of a bounded quantity and an
infinitesimal is an infinitesimal”.

e.g. Let f x
x

� � = 1
4

∴
�
��
	

� =
�
�

	

 =

→∞ →∞
lim lim
x xx x

1 1
0

4

4

and let g (x) = sin x which is bounded since

− ≤ ≤1 1sin x

Hence, lim lim sin
x x

f x g x
x

x
→∞ →∞

⋅ = =� � � � 1
0

4

Remember: The above theorem is also true even if
g (x) is bounded in a deleted neighbourhood of c,
e.g.:

(i) lim sin
x

x
x→

�
�
	

 =0

1
0

(ii) lim cos
x

x
x→

�
�
	

 =0

1
0

(iii) lim sin
x

x a
x a→

−
−

�
��

	

� =α

� � 1
0

(iv) lim cos
x c

x c
x c→

−
−

�
��

	

� =� � 1

0

Problems based on the form 2

Exercise 4.17

Evaluate:
Answers

1. lim
sin

cosx

x x

x x→∞

+
+

(1)

2. lim
sin

cosx

x x

x x→∞

−

+
2 (1)

3. lim
sin

cosx

x x

x x→∞

−

+9
2 (0)
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On limits of a function containing are function

Type 1: When a single inverse circular function of
an independent variable (i.e. t–1 x, where t–1 stands
for sin–1, cos–1, tan–1, cot–1, sec–1, cosec–1) appears
in a given function whose limit is required as x → 0
or x a→ , then we adopt the following working rule:

Working rule:
1. Put the inverse circular function of an independent
variable which appears in the given function = θ  and
change the inverse circular function into circular
function, i.e.; put t–1 (x) = θ , where t–1 = sin–1, cos–1,
tan–1, etc. and write t xθ� � =  where t = sin, cos, tan,
cot, sec, cosec.
2. Change the limit of independent variable x in terms

of θ .

Note: 1. The general method of finding the limits of
a given function containing the inverse circular
function of an independent variable x consists of
changing the inverse circular function into the circular
function (direct trigonometric function) for which it is
better to substitute for an arc function (or, inverse
trigonometric function) or a relation a number ‘ θ ’.
2. Trigonometric function, trigonometrical functions
and circular functions are synonymus.
3. After changing inverse circular function into
circular function, we use the rule of trigonometric
function as x a→  if required, method of substitution
is adopted.

Examples worked out:
Evaluate:

1. lim
sin

x

x

x→

−

0

1

Solution: y
x

x
=

−
sin

1

We put sin sin
− = ∴ =1

x xθ θ,

∴ → ⇔ →x 0 0θ

∴ =y
θ
θsin

… (i)

Now taking the limits on both sides of (i) as θ → 0

⇒ =
→ →

lim lim
sinx

y
0 0θ

θ
θ

⇒ =
→

lim
x

y
0

1

2. lim
sinx

x

x→ −
−

−



�
�
�

�

�
�
�1 1

1

2π

Solution: Let y
x

x
=

−

− −
1

2
1π sin

We put sin sin− = ∴ = − ≤ ≤1

2 2
x xθ θ

π
θ

π
,

∴ → ⇔ → −x 1
2

θ π

∴ =
−
−

y
1

2

sinθ
π θ

… (i)

Now, taking the limits on both sides of (i) as

θ
π

→
2

⇒ =
−
−


��

�
��→ →

lim lim
sin

x
y

1 2

1

2θ π

θ
π θ

Again putting θ π θ π= − ⇒ → →
2

0
2

z z as

∴
− −�

��
	

�

− −�
��

	

�

→
lim

sin

z

z

z
0

1
2

2
2

π

π π

= −
−


��

�
��
=

+

�

�

�
�
�

	




�
�
�→ →

lim
cos

lim
sin

z z

z

z

z

z0 0

2
1

2

2
2

2

= ⋅

�

�

�
��

	




�
��

⋅ ��
	





�

�
�
�
�

�

�

�
�
�
�

→
lim

sin

z z

z

z
z

0

2

21 2

2
2

= 1 · 0 = 0
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3. lim
cos

x

x

x
→ −

−
1 1 2

1

� �

Solution: Let y
x

x
=

−
−

1
1 2

cos� �

We put cos cos− = ∴ = ≤ ≤1 0x xθ θ θ π,

∴ → ⇔ →x 1 0θ

∴ given limit =
−

→
lim

cos
θ

θ

θ0 2

1

=

�

�

�
��

	




�
��→

lim
sin

θ

θ

θ0

2

2

2
2

= ⋅ × ×



�

�
�
�

�

�

�
�
�→

lim
sin sin

θ

θ

θ

θ

θ0
2 2

2

2

2

1

4

= ×

�

�

�
��

	




�
��
⋅

�

�

�
��

	




�
��



�

�
�
�

�

�

�
�
�
= × × =

→ →

1

2
2

2

2

2

1

2
1 1

1

20 0
lim

sin
lim

sin

θ θ

θ

θ

θ

θ

4. lim
sin

x

x x

x x
→ −

− −�
��

	

�

−



�

�
�
�
�

�

�

�
�
�
�

0

2

2 1 3

1 1

1 � �

Solution: Let y
x x

x x
=

− −�
��

	

�

− −

1 1

1

2

2 1 3
sin� �

We put sin sin− = ∴ = − ≤ ≤1

2 2
x xθ θ

π
θ

π
,

∴ → ⇔ →x 0 0θ

∴ =
−

y
sin cos

cos

θ θ
θ θ

1
3

� �
 as 1 2− = =x cosθ

cosθ  in − ≤ ≤
π

θ
π

2 2

= ⋅ ⋅tan
sin

θ

θ

θ
2 2

2

3

= ⋅ ⋅

�

�

�
�
�

	




�
�
�

tan sinθ
θ

θ

θ
2 2

2

…(i)

Now taking the limits on both sides of (i) as x → 0

lim lim
tan sin

x
y

→ →
= × ×

�

�

�
��

	




�
��



�

�
�
�
�

�

�

�
�
�
�

0 0

2

1

2
2

2
θ

θ
θ

θ

θ

= 
��

�
��
× �

�
	

 ×

�

�

�
��

	




�
��→ → →

lim
tan

lim lim
sin

θ θ θ

θ
θ

θ

θ0 0 0

2

1

2
2

2

= × ×1
1

2
1

= 1

2

5. lim
cos

x

x

x
→ −

−


�

�
�
�

�

�

�
�
�1 1 2

1

� �

Solution: y
x

x
= −

−

1
1 2

cos� �

We put cos cos− = ∴ = ≤ ≤1 0x xθ θ θ π,

∴ → ⇔ →x 1 0θ
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∴ =
−

y
1

2

cosθ

θ

=
− +

⋅ +

1 1

1
2

cos cos

cos

θ θ

θ θ

� � � �
� �

= −

⋅ +
=

+

1

1

2
2

1
2

2

2

cos

cos

sin

cos

θ

θ θ

θ

θ θ� � � �
… (i)

Now, on taking the limits on both sides of (i) as

x → 1 , we get

lim lim
sin

cosx
y

→ →
=

+



�

�
�
�

�

�

�
�
�1 0

2

2

2
2

1θ

θ

θ θ� �

=
⋅ ��
	





�

�
�
�
�

�

�

�
�
�
�
×

+


�
�
�

�
�
�
�→ →

lim
sin

lim
cosθ θ

θ

θ θ0

2

2 0

2
2

4
2

1

1

⇒ = × ×
+

= × × =
→

lim
x

y
1

2

4
1

1

1 1

2

4
1

1

2

1

4� �

6. lim
tan

x

x

x→

−

0

1

Solution: Let y
x

x
=

−
tan

1

We put tan tan− = ∴ = − ≤ ≤1

2 2
x xθ θ

π
θ

π
,

∴ → ⇔ →x 0 0θ

∴ =y
θ
θtan

… (i)

Now, taking the limits on both sides of (i) as

x → 0 , we get

lim lim
tanx

y
→ →

= =
0 0

1
θ

θ
θ

Or, alternatively

y = = ⋅ = ⋅ = ×θ
θ

θ θ θ
θ
θ

θ
θ

θ
tan

cot
cos

sin sin
cos  …(i)

Now on taking the limits on both sides of (i) as

x → 0 , we get

lim lim
tan

lim
sin

cos
x

y
→ → →

= = ×

��

�
��0 0 0θ θ

θ
θ

θ
θ

θ

=
�
��

	

� × = × =

→ →
lim

sin
lim cos

θ

θ
θ

θ
0 0

1 1 1
x

7. lim
tanx

x

x→ −0 1

Solution: Let y
x

x
= −

tan
1

We put tan tan− = ∴ = − ≤ ≤1

2 2
x xθ θ

π
θ

π
,

∴ → ⇔ →x 0 0θ

∴ =y
tanθ
θ

… (i)

Now on taking the limits on both sides of (i) as

x → 0 , we get

lim lim
tan

x
y

→ →
= =

0 0
1

θ

θ
θ

Problems based on type 1

Exercise 4.18

Find the limits of the following functions
Answers

1. lim
sin

x

x

x→

−

0

1

(1)

2. lim
tan

x

x

x→

−

0

1

(1)
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3. lim
sin

sinx

x

x→

−

0

1

(1)

4. lim
sinx

x x

x→ −
+ − −

0 1

1 1
(1)

5. lim
sinx

x x

x x→ −

− −�
�

	



−0

2

2 1 3

1 1

1 � �

1

2
�
�
	



6. lim
sin

tan
x

x
x→

−

− �
�
	



0

1

1

2
π

2

π
�
��
	

�

7. lim
cos sin

cot sinx

x x

x→

−

−

−

−1
2

1

11

� �
� �

1

2

�
��
	

�

8. lim
tan

sinx

x

x→

−

0

1
2

3

2

3
�
�
	



9. lim
cos

x

x

x→

−

−1

1 2

1

� �
(2)

10. lim
sin

sin sin sin sin sin
x

x x

x x x
→

−

− − −

−

+ �
�

	

 − �

�
	



���
���

0

1

1 1 2 1

2

2
1
2

3 4
1
2

� �

−��
	



1

4

11. lim
cosx

x

x→ −

−
1 1 2

1

� �

1

4
�
�
	



12. lim
cos

x

x

x→−

−−
+1

1

1

π 1

2π

�
��

	

�

Hint: Put cos cos− = ∴ = ≤ ≤1 0x xθ θ θ π,

∴ → − ⇔ →x 1 θ π

∴ = −
+

=
−

⋅ +
y

π θ
θ

π θ
θ π θ1 2
2

cos cos

� �

� �
 as

cos cos in
θ θ

θ π
2 2

0= ≤ ≤

Again putting θ π θ π= + ⇒ → →z z 0 as

∴ −

+ + +→
lim

cosz

z

z z
0 2

1
2

π π π� � � �

= −

− �
��
	

� + +

→
lim

sin
z

z

z
z

0
2

2
π π� � ]

13. lim
cos sin

tan sinx

x x

x→

−

−

−

−1
2

1

1
1

� �

� �
−���

	

�

1

2

Type 2: If the given function contains a function of
the type t–1 [f (x)], where t–1 stands for sin–1, cos–1,
tan–1, cot–1, sec–1, cosec–1 and f (x) = an algebraic
function of x.

Remember: We should remember the following
formulas which gives the idea where to use which
substitution:

1. (a) 1
2

− =sin cosθ θ  (b) 1
2

− =cos sinθ θ

2. (a) 1
2

+ =tan secθ θ  (b) sec tan
2

1θ θ− =

3. (a) 1
2

+ =cot cosecθ θ  (b) cosec cot
2

1θ θ− =

4. (a) 1 2
2

2
+ =cos cosθ

θ
 (b) 1 2

2

2
− =cos sinθ

θ

5. (a) 1 2 2
2− =sin cosθ θ  (b) 2 1 2

2
cos cosθ θ− =

6. cos cos sin sin cos2 1 2 2 1
2 2 2 2θ θ θ θ θ= − = − = −

7. sin sin cos2 2θ θ θ=

8. sin
tan

tan
2

2

1
2

θ θ

θ
=

+
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9. cos
tan

tan
2

1

1

2

2
θ

θ

θ
=

−

+

10. tan
tan

tan
2

2

1
2

θ
θ

θ
=

−

11. sin sin sin3 3 4
3θ θ θ= −

12. cos cos cos3 4 3
3θ θ θ= −

13. tan
tan tan

tan
3

3

1 3

3

2
θ

θ θ

θ
=

−

−

14. (a) tan
tan tan

tan tan
θ φ

θ φ
θ φ

+ =
+

−
� �

1

(b) tan
tan tan

tan tan
θ φ

θ φ
θ φ

− =
−

+
� �

1

15. (a) tan
tan

tan

π θ
θ
θ4

1

1
+�

��
	

� =

+
−

(b) tan
tan

tan

π θ
θ
θ4

1

1
−�

��
	

� =

−
+

2. (i) sin–1 [sin x] = x for − ≤ ≤π π
2 2

x

(ii) cos–1 [cos x] = x for 0 ≤ ≤x π

(iii) tan–1 [tan x] = x for − < <
π π
2 2

x

Problems based on type 2
Examples worked out:
Evaluate:

1. lim sin
x x

x

x→

−

+

�
�
�

	


�

0

1

2

1 2

1

Solution: We put x = tanθ , − ≤ ≤π θ π
4 4

x → ⇔ →0 0θ

∴
+

�
�
�

	


�−1 2

1

1

2x

x

x
sin

⇒ ×
+

�
�
�

	


�−1 2

1

1

2tan
sin

tan

tanθ
θ

θ

⇒ × −1
2

1

tan
sin sin

θ
θ� �

⇒ ×1
2

tanθ
θ  as − ≤ ≤π θ π

2
2

2

⇒
2θ
θtan

∴
+

�
�
�

	


� = =

→

−

→
lim sin lim

tanx x

x

x0

1

2 0

1 2

1

2
2

θ

θ
θ

2. lim tan
x x

x

x→

−

−0

1

2

1 2

1

Solution: We put x = tan θ , − < <π θ π
4 4

x → ⇔ →0 0θ

∴
−

−1 2

1

1

2x

x

x
tan

⇒ ×
−

�
�
�

	


�−1 2

1

1

2tan
tan

tan

tanθ
θ

θ

⇒ × −1
2

1

tan
tan tan

θ
θ� �

⇒ ×1
2

tanθ
θ  as − < <π θ π

2
2

2

⇒
2θ
θtan

∴
−

=
→

−

→
lim tan lim

tanx x

x

x0

1

2 0

1 2

1

2
θ

θ
θ

= × = × =
→

2 2 1 2
0

lim
tanθ

θ
θ
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3. lim tan
x x

x x

x→

− −

−

�
�
�

	


�

0

1
3

2

1 3

1 3

Solution: we put x = tan θ , − < <
π

θ
π

6 6

x → ⇔ →0 0θ

∴
−

−

�
�
�

	


�−1 3

1 3

1
3

2x

x x

x
tan

⇒
−

−

�
�
�

	


�−1 3

1 3

1
3

2tan
tan

tan

tanθ
θ θ

θ

⇒ −1
3

1

tan
tan tan

θ
θ� �

⇒ ×1
3

tanθ
θ  as − < <

π
θ

π
2

3
2

⇒
3θ
θtan

∴
−

−

�
�
�

	


� =

→

−

→
lim tan lim

tanx x

x x

x0

1
3

2 0

1 3

1 3

3
θ

θ
θ

= ⋅ = × =
→

3 3 1 3
0

lim
tanθ

θ
θ

.

Problems based on type 2

Exercise 4.19

Evaluate Answers

1. lim sin
x x

x

x→

−

+

�
�
�

	


�

0

1

2

1 2

1
(2)

2. lim cos
x x

x

x→

− −

+

�
�
�

	


�

0

1
2

2

1 1

1
(2)

3. lim tan
x x

x

x→

−

+

�
�
�

	


�

0

1

2

1 2

1
(2)

4. lim tan
x x

x x

x→

− −

−

�
�
�

	


�

0

1
3

2

1 3

1 3
(3)

Type 3: If the given function contains the function
sin–1 [f (x)] or tan–1 [f (x)], where f (x) = an expression
in x s.t f (x) → 0  as x a→  for ‘a’ being a constant.

Working rule:
1. Replace sin–1 [f (x)] by f (x) and tan–1 [f (x)] by f (x)
in the given function provided f (x) → 0  as x a→ .

2. Find the limit of the modified form of the given
function (i.e.; the function obtained by substitution
sin–1 [f (x)] = f (x) or tan–1 [f (x)] in the given function)
as x a→ , where a = any constant = given limit of

the independent variable x.

Remember:
1. If f (x) is an infinitesimal as x a→ , then

(i) sin–1 [f (x)] ~ f (x) as x a→
(ii) tan–1 [f (x) ~ f (x) as x a→

2. The function f (x) is called an infinitesimal as x a→

if lim
x a

f x
→

=� � 0  which means lim
x a

f x
→ +

= =
0

0� �
lim

x a
f x

→ −0
� � .

i.e. r.h.l of f (x) at x = a is equal to the l.h.l of f (x) at
x = a.

From the definition of an infinitesimal, it follows

that if lim
x a

f x b
→

=� � , we may write f (x) = b + f1 (x)

where f1 (x) is an infinitesimal (i.e. lim
x a

f x
→

=� � 0 )

Now, we shall state some basic results in the form
of theorems.

Theorem 1: The algebraic sum or difference of two
or more infinitesimals is an infinitesimal function.
Theorem 2: The product of an infinitesimal function
(or simply infinitesimal) and a bounded function is an
infinitesimal. This is most important theorem on
infinitesimal which is widely used to find the limit of
bounded function times a function tending to zero as
the independent variable x a→ .
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Theorem 3: The product of a finite number of
infinitesimal function as x a→  are also infinitesimals
as x a→ .
Theorem 4: The quotient of an infinitesimal divided
by a variable quantity tending to a non-zero limit is an
infinitesimal.
N.B.: In particular, the product of a constant  quantity
by an infinitesimal is an infinitesimal.

Examples worked out
Evaluate:

1. lim
tan

x

x

x x→

− −

− +1

1 2

2

1

2 1

� �

Solution: lim
tan

x

x

x x→

−
−

− +1

1 2

2

1

2 1

� �
, x ≠ 1� �

=lim as
x

x

x x
f x x x

→

−

− +
= − → →

1

2

2
21

2 1
1 0 1

� � � � � ��

= lim
x

x x

x x→

− +

− +1

2

2

2 1

2 1

= lim
x→1

1

= 1

2. lim
sin

tan
x

x x

x
→

−

−

+ −�
��

	

�

0

2 1

1 3

1 1

� �

Solution: lim
sin

tan
x

x x

x
→

−

−

+ −�
��

	

�

0

2 1

1 3

1 1

� �

=
+ −�

��
	

�

→
lim
x

x x

x0

2

3

1 1
 [� sin

−1
x  and tan−1 x

are ~x as x→0 ]

=
+ −

→
lim
x

x

x0

2

2

1 1

= lim
x

x x

x x
→

+ −�
��

	

� + +�
��

	

�

+ +�
��

	

�

0

2 2

2 2

1 1 1 1

1 1

= lim
x

x

x x→

/ + − /

+ +�
�

	



0

2

2 2

1 1

1 1

= 
lim
x

x

x x
→

+ +�
��

	

�

0

2

2 2
1 1

= 
lim
x

x
→

+ +�
��

	

�

0 2

1

1 1

= 
1

1 1+

= 1

2

3. lim
tan

sin
x

x
x→

− −

−1

1 21

1
2

� �
π

Solution: lim
tan

sin
x

x
x→

− −

−1

1 21

1
2

� �
π

=
−

−→
lim

sin
x

x
x1

21

1
2

� �
π

We put x = 1 + h, x h→ ⇔ →1 0

Hence, lim
sin

x

x
x→

−

−1

21

1
2

� �
π
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=
+ −

− +�
�

	



→
lim

sin
h

h

h0

21 1

1
2 2

� �
π π

=
−→

lim
cos

h

h
h0

2

1
2
π

= �
�
	



→
lim

sin
h

h
h0

2

2
2

2
π  = �

�
	





�

�
�
�
�

�

�

�
�
�
�

→
lim

sin
h h

h

0 2

2

1

2
2
π

=
⋅ ⋅ �

�
	



⋅



�

�
�
�
��

�

�

�
�
�
��

→
lim

sin
h h

h

0 2
2

2 2

1

2
4 2

4

π π

π

= ⋅ �
�
	



�
�
	



→

1

2

1

2

2

2 1 2

2

π π

π

lim
sin

x h

h

= ×
�
�
	



�
�
��

�
��

�
�
��

�
��

→

1

2

1

2

2

2

0

2π π

πlim
sin

hh

h

= ×
1

2

1

12
π

= 2
2π

4. lim
sin sin

x a

x a

x a→

− −
−
−

1 1

Solution: sin sin
− −−1 1

x a

= − − −−
sin

1
1 1x a a x� �  as

x a> >0 0,

= − − −x a a x1 1� �  as x a→

� f x x a a x x a� � � �= − − − → →1 1 0as

∴
−
−→

− −

lim
sin sin

x a

x a

x a

1 1

=
− − −

−→
lim
x a

x a a x

x a

1 1� �

Now, 
x a a x

x a

1 1− − −
−

=
⋅ − − ⋅ − ⋅ − + −

− − + −

x a a x x a a x

x a x a a x

1 1 1 1

1 1

� � � �
� � � �

=
− − −

− − + −

x a a x

x a x a a x

1 1

1 1

2 2
� � � �
� � � �

=
− − −

− − + −

x a a x

x a x a a x

1 1

1 1

� � � �
� � � �

=
− − +

− − + −

x a x a a x

x a x a a x� � � �1 1

=
−

− − + −

x a

x a x a a x

� �
� � � �1 1

=
− + −

1

1 1x a a x� �
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Hence, lim
x a

x a a x

x a→

− − −
−

1 1

=
− + −→

lim
x a x a a x

1

1 1� �

=
− + −

1

1 1a a a a

=
⋅ −
1

2 1a a

5. lim
tan tan

x a

x a

x a→

− −
−
−

1 1

Solution: tan tan tan
− − −

− =
−
+


��

�
��

1 1 1

1
x a

x a

ax
 for

a x⋅ > −1

=
−
+

=
−
+

→ →
�
��

	

�

x a

ax
f x

x a

ax
x a

1 1
0� � � as

∴
−
−→

− −

lim
tan tan

x a

x a

x a

1 1

=
−
+

×
−

�
��

	

�→

lim
x a

x a

ax x a1

1

=
+→

lim
x a ax

1

1

=
+ ⋅

=
+

1

1

1

1
2a a a

Problems based on type 3

Exercise 4.20

Find the limits of the following functions:
Answers

1. lim
sin

tanx

x x

x x→

−

−
−

+0

1

1

2

2

1

3
�
�
	



2. lim
tan

x

x

x x→

−
−

− +1

1 2

2

1

2 1

� �
(1)

3. lim
tan tan

x

x a

x a→

− −
−
−1

1 1 1

1
2

+

�
�
�

	


�

a

4. lim
sin

tan
x

x x

x
→

−

−

+ −�
��

	

�

0

2 1

1 3

1 1

� �

1

2
�
�
	



5. lim
tan

sinx

x

x→

−

0

1
2

3

2

3
�
�
	



6. lim
sin sin tan

x

x x x

x→

− −+ −

0

1 2 1 2
2

3

� � � � 2

3
�
�
	



7. lim
sin

x

x

x→

−

0

1
3

2

3

2
�
�
	



8. lim
sin

x

x

x→

−

0

1
2

7

2

7
�
�
	



9. lim
tan

x

x

x→

−

0

1
5

3

5

3
�
�
	



10. lim
sin

tanx

x

x→

−

−0

1

1

2

3

2

3
�
�
	



On limits of exponential function

Evaluation of lim
x a

g x
f x

→
� �� � � � , where a = 0/any

constant/ ∞
One may adopt any one of the two methods to

find the limit of the exponential function (f (x))g (x) as
x a→ , a being either a constant or ∞ .

Method 1: It consists of following steps.
Step 1: Put y = (f (x))g (x)

Step 2: Use log y = log (f (x))g (x) = g (x)  · log f (x)

Step 3: Write lim
x a→

 log y = lim
x a→

 g (x) · log f (x) = b

(say)
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Step 4: Required limit of the given exponential function

= =
→

lim
x a

g x b
f x e� �� � � �

Notes: 1. The limit of logarithm of a function is the
logarithm of the limit of the function as logarithm is a

continuous function, i.e., lim log
x a

f x
→

� �� �

= ���
���→

log lim
x a

f x� �  as logarithmic function is a

continuous function.
2. a m x m

x
a= ⇔ = log , for a positive real number

“m” and a positive real number " a ≠ 1 ".
3. The method of expansion for evaluating limits is appli-
cable to the functions which can be expanded in series.
4. Method (1) is applicable commonly to find the limit
of an exponential function (f (x))g (x) as x a→  or
x → ∞ .
5. One must note that if f (x) is not throughout positive

in the neighbourhood of x = a, then lim
x a

g x
f x

→
� �� � � �

does not exist because in this case the function is not
defined in the neighbourhood of x = a.

Method 2: It consists of following steps.
Step 1: Put x = a + h in y = (f (x))g (x)

Step 2: Use log y = log (f (a + h))g (a + h) = g (a + h) · log
(f (a + h))

Step 3: Write lim
h→0

 log y = lim
h→0

 (g (a + h) · log f (a +

h)) = b (say)
Step 4: Required limit of the given exponential function

=  lim
x a

g x b
f x e

→
=� �� � � �

Notes: 1. One can use the following expansion if
required in step (2) in any method mentioned above.

(i) log 1
2 3 4

2 3 4

+ = − + − + ∞x x
x x x� � ...  for

− < ≤1 1x

(ii) log 1
2 3 4

2 3 4

− = − − − − + ∞x x
x x x� � ...  for

− ≤ <1 1x

(iii) e
x x x x= + � + � + � + ∞1

1 2 3

2 3

...

(iv) e
x x xx− = − � + � − � + ∞1
1 2 3

2 3

...

(v) a
x a x a x ax = + � + � + � + ∞1

1 2 3

2 2 3log log log3

...

2. Method (2) is applicable commonly to find the limit
of the exponential function (f (x))g (x) as x →  any
constant other than (different from) zero.

Examples worked out:
Evaluate the following:

1. lim
x

x x

→
+

0
1

1� �

Solution: Let y x x= +1
1� � ...(i)

On taking logarithm on both sides of (i), we get

log log logy x
x

xx= + = +1
1

1
1� � � �

= − � + � − � +
�
��

	

�

1

2 3 4

2 3 4

x
x

x x x
...

= − � + � − � +
�
��

	

�

1
2 3 4

2 3
x x x

... ...(ii)

On taking limit on both sides of (ii) as x → 0 , we

get

lim log lim
x x

y
x x x

→ →
= − � + � − � +

�
��

	

�
=

0 0

2 3

1
2 3 4

� � ...

1
0

2

0

3

2

− � + � +
�
��

	

�

...

⇒ �
�

	

 = = = =

→
log lim log log log

x
ey e e e

0
1 1�� �

⇒ =
→

lim
x

y e
0

⇒ + =
→

lim
x

x ex

0
1

1� �
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2. lim
x

x

x→∞
+��
	

1

1

Solution: Letting y
x

x

= +��
	

1

1

⇒ = +��
	

 = − + +

�
��

	

�log logy x

x
x

x x x
1

1 1 1

2

1

2
2 3

...

= − + +
�
��

	

�1

1

2

1

3
2x x

...

⇒ = − + +
�
��

	

� =→∞ →∞

lim log lim
x x

y
x x

� � 1
1

2

1

3
1

2
...

⇒ �
�

	

 = =

→∞
log lim log

x
y e1

⇒ =
→∞
lim
x

y e

⇒ +��
	

 =

→∞
lim
x

x

x
e1

1

Remark: One should note that

(i) lim
x

x ex

→
+ =

0
1

1� �

(ii) lim
x

x
e

x

→
− =

0
1

11� �

(iii) lim
x

x

x
e

→∞
+��
	

 =1

1  and

(iv) lim
x

x

x e→∞
−��
	

 =1

1 1
; Further we must note that

a function in x appearing as an index is always
reciprocal of the function in x within the bracket.

3. lim sin tan

x

x
x

→ π
2

� �

Solution: Letting y x x= sin tan� �  and putting

x h= +π
2

⇒ = +�
�

	



�
��

	

� =

+
−y h h

h
hsin cos

tan
cotπ

π

2

2� �
� �

⇒ = =− =−log log cos cot log coscoty h h hh� � � �

− ⋅1

tan
log cos

h
h� �

⇒ = − ⋅
�
��

	

�→ →

lim log lim
tan

log cos
x h

y
h

h
π
2 0

1� � � �

=

− − � +
�
��

	

�

+ + +

�

�

�
�
�
�
�

	




�
�
�
�
�

→
lim

log

h

h

h
h

h
0

2

3
5

1
2

3
2

15

...

...

=
+

+ + +

�

�

�
�
��

	




�
�
��

→
lim
h

h

h
h

h
0

2

3
5

2

3

2

15

...

...

� log 1
2 3

2 3

− = − − � − � −
�
��

	

�

x x
x x� � ...

= +
�
��

	

�

�

�
�
�

	



�
�→

−

lim
h

h
h

0

2 1
1

2
1

3

= 0

4. lim
x

x x

→
−

1

1
1� �

Solution: Putting x = 1+ h in x x� � 1
1− , we have

lim lim
x h

x h e x hx h

→ →
− = + = → ⇔ →

1 0

1
1

1

1 1 0� � � � � ��

Exercise 4.21

Evaluate the following:

1. lim
x

x x

→
+

0
1

1� �
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2. lim
x

x x

→
+

0
1

1

α� �

3. lim
x

x x

→
−��

	

0

1
3

2

4

4. lim sin cot

x

x
x

→
+

1
1 π π� �

5. lim cos
tan

x

x
x

x

→
−���

	

�1

1
2

π
π

6. lim cos 3sec

x

x
x

→
+

π
2

1� �

7. lim
x

x x

→
−

0
1

1� �

8. lim
x

m x
m
x

→
+

0
1� �

Answers:

1. e 2. e
α 3. e–6 4.

1

e
5.

1

e
6. e3 7.

1

e
8. e

m
2

Problems reducible to log (f (x))g (x)

Evaluate the following.

1. lim
log

x

x

x→

+
0

1� �

Solution: Let y
x

x
=

+log 1� �

∴ = +y x xlog 1
1� �

⇒ = +
→ →

lim lim log
x x

y x x

0 0
1

1� �� �

= +�
�

	

→

log lim
x

x x

0
1

1� �

= + =�
�

	

→

log lime x e
x

x
�

0
1

1� �

= = =1 1� log loge ee� �

2. lim
x

x
a

x→

−�
�
�

	


�

0

1
 for a > 0

Solution: let f x
a

x

x

� � = −�
�
�

	


�

1
...(i)

And ax = 1 + h, where h → 0  as x → 0

� a
0

1=� � … (ii)

On taking logarithm on both sides of (ii) with base
‘e’, we get

log e (a
x) = log e (1 + h)

⇒  x log ea = log e (1 + h)

⇒ =
+

x
h

a

log

log

1� �

⇒ = + −
+�

��
	

�
= ⋅

+
=

⋅ +
=f x

h

h

a

h a

h

a

h
h

� � � � � � � �
1 1

1 1 1
1log

log

log

log

log

log

log

log

a

h h1
1

+� �

⇒ =
+

�
�
�

	


� =

→ →
lim lim

log

log

log

logx h
f x

a

h

a

eh0 0 1
1� �� �

� �

� lim
h

h eh

→
+ =�

�
	

0

1
1� �

= = =log log loga e ee� 1� �

3. lim
x

x
e

x→

−�
�
�

	


�

0

1

Solution: Putting a = e in the above solution of (2),
we have

lim log
x

x
e

x
e

→

−�
�
�

	


� = =

0

1
1

Problems put in the form: y
m x

m x

m
x

= ±
±

�
��

	

�

1

1
1

2
 and

x → 0

Working rule: To evaluate lim
x

m x

m x

m
x

→

±
±

�
��

	

�0

1

2

1

1
, one

may adopt the rule consisting of following steps.



Practical Methods of Finding the Limits 231

Step 1: To put the given index 
m

x m x
m m= ⋅1

1
1  in

Nr and 
m

x m x
m m= ⋅1

2
2  in Dr.

Step 2: To evaluate lim
x

m m

m x m x

→

⋅

±���
���0

11
1

1

1

� �

… (A1) (say)

and lim
x

m m

m x m x

→

⋅

±���
���0

21
1
2

2

� � … (A2) (say)

Step 3: To find the quotient of (A1) and (A2) to obtain

the required limit, lim
x

m x

m x→

±
±

�
��

	

�0

1

2

1

1

� �
� �

Examples worked out:

Evaluate the following:

1. lim
x

x

x

x

→

+
−

�
��

	

�0

1

1

1

Solution: �

1

1

1

1

1 1

1

+
−

�
��

	

� =

+

−

x

x

x

x

x x

x

� �
� �

=
+

− − −

1

1

1

1 1

x

x

x

x

� �
� �� �� � � �

∴
+
−

�
��

	

� =

+

−
→ → − −lim lim

x x

x

x

x

x

x x

x
0 0 1

1

1

1

1

1 1

1

� �
� �� �� � � �

=
+

−

→

→

− −

lim

lim

x

x

x

x

x

x

0

0

1

1

1

1

1

� �

� �� �� � � �

=
−���

���

= =

→

−
− −

e

x

e

e
e

x

xlim
0

1 1

2

1
1� �� �
� �

2. lim
x

x

x

x

→

+
−

�
��

	

�0

1 2

1 2

1

Solution: �

1 2

1 2

1 2

1 2

1 2

1 2

1 1

1

1
2 2

1
2 2

+
−

�
��

	

� =

+

−
=

+

−

⋅

− −

x

x

x

x

x

x

x x

x

x

x

� �
� �

� �
� �

� �

� �� �

∴
+
−

�
��

	

� =

+

−→ →

⋅

− −
lim lim
x x

x

x

x

x

x x

x0 0

1 2

1 2

1 2

1 2

1 1
2 2

1
2 2

� �
� �

� �

� �� �

=
+���

���
−���

���

→

→

−
−

lim

lim

x

x

x

x

x

x

0

2

0

2

1 2

1 2

1
2

1
2

� �

� �� �
� �

= =−
e

e
e

2

2

4

3. lim
x

x

x

x

→

+
−

�
��

	

�0

2

2

1

Solution: �

2

2

1
2

1
2

1

1

+
−

�
��

	

� =

+

−

�

�

�
��

	




�
��

x

x

x

x

x

x

=
+��
	



−��
	



⋅

− −

1
2

1
2

2 1
2

2 1
2

x

x

x

x

� � � �

� �� �

∴
+
−

�
��

	

� =

+��
	



�
��
��

�
��
��

−��
	



�
��
��

�
��
��

→

→

→

− −
lim

lim

lim
x

x

x

x

x

x

x

x

x

x
0

0

0

2

2

1
2

1
2

1

2
1
2

2
1
2� � � �

= =
−

e

e
e

1
2

1
2

4. lim
x

x
x

→
+��

	

0

1
5

7

2
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Solution: � 1
5

7
1

5

7

2 7
5

10
7

+��
	

 = +��

	



⋅

x
xx x� � � �

∴ +��
	

 = +��

	



�
��
��

�
��
��→ →

⋅

lim lim
x x

x
xx x

0 0
1

5

7
1

5

7

2 7
5

10
7� � � �

= +��
	



�
��
��

�
��
��

=
→

lim
x

x
e

x

0
1

5

7

7
5

10
7

10
7

� � � �

5. lim
x

x x

→
−��

	

0

1
3

5

5

Solution: � 1
3

5
1

3

5

5 5
3 3

−��
	

 = −��

	



− −x xx x� �� �

∴ −���
	

� = −���

	

�

�
��
��

�
��
��→ →

− −

lim lim
x x

x xx x

0 0
1

3

5
1

3

5

5 5
3 3� �� �

= −��
	



�
��
��

�
��
��

=
→

− −
−

lim
x

x
e

x

0

3
3

1
3

5

5
3� � � �

Exercise 4.22

Evaluate the following;

1. lim
x

x x

→
+

0
1 2

1� �

2. lim
x

x

x

x

→

+
−

�
��

	

�0

1 3

1 3

1

3. lim
x

x x

→
−

0
1

4� �

Answers:

1. e2 2. e6 3. e−4

Problems put in the form:

y

m

x
m

x

m x

=
±

±

�

�

�
��

	




�
��

1

1

1

2
 and x→∞

Working rule: To evaluate lim
x

m x
m

x
m

x
→∞

±

±

�

�

�
��

	




�
��

1

1

1

2

, one

may adopt the rule consisting of following steps.

Step 1: To put the given index m x
x

m
mm=

�
��
	

� ⋅1

1� �

in Nr and m x
x

m
m m=

�
��
	

� ⋅ ⋅

2 2� �  in Dr.

Step 2: To evaluate lim
x

mm

m

x

x
m

→∞
±���

	

�

�
��
��

�
��
��

1 1 1

1� �
� �

…(A1)

(say)

and lim
x

mm

m

x

x
m

→∞
±���

	

�

�
��
��

�
��
��

1 2 2

2� �
� �

… (A2) (say)

Step 3: To find the quotient of (A1) and (A2) to obtain

the required limit, lim
x

m x
m

x
m

x
→∞

±

±

�

�

�
��

	




�
��

1

1

1

2

Examples worked out:
Evaluate the following:

1. lim
x

x
x

x→∞

−
+

�
��

	

�

2 1

2 1

Solution: �

2 1

2 1

1
1

2

1
1

2

2

2

x

x
x

x

x

x

x

−
+

�
��

	

� =

−��
	



+��
	



=
−��

	



+��
	



− −

1
1

2

1
1

2

2

2

1
2

1
2

x

x

x

x

� �� �

� �� �
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∴
−
+

�
��

	

� =

−��
	



�
��
��

�
��
��

+��
	



�
��
��

�
��
��

→∞

→∞

− −

→∞

lim

lim

lim
x

x x

x

x

x

x

x

x

x

2 1

2 1

1
1

2

1
1

2

2

2

1
2

1
2

� � � �

� � � �

= = =
−

− − −e

e
e e

1
2

1
2

1
2

1
2 1

2. lim
x

x
x

x→∞

+
+
+

�
��

	

�

2 3

2 1

1

Solution:
2 3

2 1

1
3

2

1
1

2

1

1

1

x

x
x

x

x

x

x

+
+

�
��

	

� =

+��
	



+��
	



+

+

+

=
+��

	

 ⋅ +��

	



+��
	

 ⋅ +��

	



1
3

2
1

3
2

1
1

2
1

1
2

x x

x x

x

x

=
+��

	

 ⋅ +��

	



+��
	

 ⋅ +��

	



⋅

1
3

2
1

3
2

1
1

2
1

1
2

2
3

3
2

2 1
2

x x

x x

x

x

� �� �

� � � �

∴
+
+

�
��

	

�→∞

+

lim
x

x
x

x

2 3

2 1

1

=

+��
	



�
��
��

�
��
��

⋅ +��
	



+��
	



�
��
��

�
��
��

⋅ +��
	



→∞ →∞

→∞ →∞

lim lim

lim lim

x x

x

x

x

x x

x x

x

1
3

2
1

3

2

1
1

2
1

1
2

2
3

3
2

1
22

� � � �

� �

=
×e

e

3
2

1
2

1

= e

3. lim
x

x
x

x→∞

+
−

�
��

	

�

4

3

Solution:
x

x
x

x

x

x

x

+
−

�
��

	

� =

+��
	



−��
	



4

3

1
4

1
3

=
+��
	



−��
	



− −

1
4

1
3

4

3

4

3

x

x

x

x

� �� �

� �� �

∴
+
−

�
��

	

� =

+��
	



�
��
��

�
��
��

−��
	



�
��
��

�
��
��

→∞

→∞

→∞

− −
lim

lim

lim
x

x x

x

x

x

x

x

x

x

4

3

1
4

1
3

4

3

4

3

� � � �

� � � �

= =−
e

e
e

4

3

7

4. lim
x

x
x

x→∞

+
+

�
��

	

�

3

2

Solution: �

x

x
x

x

x

x

x

x

x

x

x

+
+

�
��

	

� =

+��
	



+��
	



=
+��
	



+��
	



3

2

1
3

1
2

1
3

1
2

3 3

2 2

� �� �

� �� �

∴
+
+

�
��

	

� =

+��
	



�
��
��

�
��
��

+��
	



�
��
��

�
��
��

→∞

→∞

→∞

lim

lim

lim
x

x

x

x

x

x

x

x

x

3

2

1
3

1
2

3

2

3

2

� � � �

� � � �

= =
e

e
e

3

2
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5. lim
x

xa

x→∞
+��
	

1

Solution: � 1 1+��
	

 = +��

	



a

x

a

x

x ax
a� �� �

∴ +��
	

 = +��

	



�
��
��

�
��
��

=
→∞ →∞
lim lim
x

x

x

a
aa

x

a

x
e

x
a

1 1
� � � �

6. lim
x

x

x→∞
−��
	

1

5

Solution: � 1
5

1
5 5 5

−��
	

 = −��

	



− −

x x

x x� �� �

∴ −��
	

 = −��

	



�
��
��

�
��
��

=
→∞ →∞

− −
−

lim lim
x

x

xx x
e

x

1
5

1
5 5

5
5

� � � �

7. lim
x

x
x

x→∞ +
�
��

	

�1

Solution: �

x

x
x x

x

x

x1

1

1
1

1

1
1+

�
��

	

� =

+

�

�

�
��

	




�
��

=
+��
	



∴
+

�
��

	

� =

+��
	



= =
→∞

→∞

−
lim

lim
x

x

x

x

x

x

x

e
e

1

1

1
1

1 1

Exercise 4.23

Evaluate the following:

1. lim
x

x

x
R

→∞

+

+��
	

 ∈1

1 α

α, � �

2. lim
x

x

x
R

→∞
+��
	

 ∈1

1 α

α, � �

3. lim
x

x

x
R

→∞
+��
	

 ∈1

α α, � �

4. lim
x

x

x→∞
−��
	

1

1

5. lim
x

x
x

x→∞

+
+
−

�
��

	

�

3 2

3 1

2

6. lim
x

x
x

x→∞

+
+
+

�
��

	

�

2 3

2 1

2 5

7. lim
x

x
x

x→∞ +
�
��

	

�1

8. lim
x

x

x→∞

+

+��
	

1

1 5

Answers:

1. e 2. e
α

3. e
α

4. e–1 5. e 6. e2 7. e–1 8. e

Problems reducible to the form:

y
a

x
a

x

=
−

>
1

0, � �  and /
e

x

x − 1

Remember:

(i) lim log
x

x

e
a

x
a a

→

−�
�
�

	


� = >

0

1
0, � �  and

(ii) lim log
x

x

e
e

x
e

→

−�
�
�

	


� = =

0

1
1

which mean lim
any positive constant

x

x

x→

−
0

1� �

= loge (the same positive constant)

Examples worked out:
Evaluate the following ones.

1. lim
x

a x
e

x→

−�
�
�

	


�

0

1

Solution: �

e

x

e

x

a x
a x

− =
−1 1� �



Practical Methods of Finding the Limits 235

∴ −�
�
�

	


� =

−

→ →
lim lim
x

a x

x

a x

e

x

e

x0 0

1 1� �

= = = ⋅ =log loge
a

ee a e a a1

2. lim
x

x
e

x→

− −�
�
�

	


�

0

1

Solution: �

e

x

e

x

x
x

−
−

−
=

−1 1
1� �

∴
−�

�
�

	


� =

−

→

−

→

−

lim lim
x

x

x

x

e

x

e

x0 0

1

1 1� �

= = − ⋅ = −−
log loge ee e

1
1 1� �

3. lim
x

x
a

x→

−�
�
�

	


�

0

2
1

Solution: �

a

x

a

x

x
x

2
2

1 1− =
−� �

∴ −�
�
�

	


� =

−

→ →
lim lim
x

x

x

x

a

x

a

x0

2

0

2

1 1� �

= = =log log loge ea a a
2

2 2

4. lim
x

mx
a

x→

−�
�
�

	


�

0

1
for a > 0

Solution: �

a

x

a

x

mx
m x

−
=

−1 1� �

∴ −�
�
�

	


� =

−

→ →
lim lim
x

mx

x

m x

a

x

a

x0 0

1 1� �

= = =log log loge
m

ea m a m a

5. lim
x

x

x→

−�
�
�

	


�

0

5
3 1

Solution: �

3 1 3 15
5

x
x

x x

− =
−� �

∴ −�
�
�

	


� =

−

→ →
lim lim
x

x

x

x

x x0

5

0

5

3 1 3 1� �

= = =log log loge e3 5 3 5 3
5

6. lim
x

ax a
e e

x→

−�
�
�

	


�

0

Solution: �

e e

x

e e e

x

e e

x

ax a a x a
a x

− = ⋅ − =
−1� �

∴ −�
�
�

	


� =

−

→ →
lim lim
x

ax a

x

a x

e e

x

e e

x0 0

1� �

=
−

=
→

e
e

x
e

a

x

x
a

lim
0

1

7. lim
x

m x m
a a

x→

+
−�

�
�

	


�

0
 for a > 0

Solution:
a a

x

a a a

x

a a

x

m x m m x m
m x

+ − = ⋅ − =
−1� �

∴
−�

�
�

	


� =

−
=

−�
�
�

	


�

→

+

→ →
lim lim lim
x

m x m

x

m x

m

x

x
a a

x

a a

x
a

a

x0 0 0

1 1� �

= =a a a a
m

e
m

log log
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Exercise 4.24

Evaluate the following:

1. lim
x

x

x→

−�
�
�

	


�

0

5 1

2. lim
x

mx
e

x→

−�
�
�

	


�

0

1

3. lim
x

x

x→

−�
�
�

	


�

0

7 1

4. lim
x

x

x→

−
−�

�
�

	


�

0

2 1

5. lim
x

x
e

x→

−�
�
�

	


�

0

3
1

6. lim
x

x

x→

−�
�
�

	


�

0

2 1

Answers:
1. log 5
2. m
3. log 7
4. – log 2
5. 3
6. log 2
Problems put in the form:

y
a b

g x

x x

=
−�

�
�

	


�� �  and x→0 , where a > 0, b > 0.

Working rule: The rule to evaluate lim
x

x x
a b

g x→

−�
�
�

	


�

0 � �

says to write 
a b

g x

a b

x

x

g x

x x x x−
=

−
⋅� � � �

=
− − −

⋅
a b

x

x

g x

x x
1 1� � � �

� �  =
− − −�

��
	

�
⋅
�
��

	

�

a

x

b

x

x

g x

x x
1 1

� �
whose limit as x → 0  is the required limit.

Notes: (i) lim
x

x x

e
a b

x

a

b
a b

→

−�
�
�

	


� = �

�
	

 >

0
0log , ,� �

(ii) lim
x

x x x
n
x

a a a a n

x→

+ + + + −�
�
�

	


�

0

1 2 3 ...

= >log a a a a a an n1 2 3 1 0... , , ...,� � � �
Examples worked out:

1. lim
x

x x
a b

x
a b

→

− −�
�
�

	


� >

0

2
0, ,� �

Solution: �

a b

x

a b

x

x x
x x

+ − =
− + −2 1 1� � � �

= − + −a

x

b

x

x x
1 1

lim lim lim
x

x x

x

x

x

x
a b

x

a

x

b

x→ → →

+ −�
�
�

	


� = −�

�
�

	


� + −�

�
�

	


�

0 0 0

2 1 1

= + =log log loga b ab� � .

2. lim
x

x x x
a b c

x→

+ + −�
�
�

	


�

0

3
, (a, b, c > 0)

Solution: �
a b c

x

a b c

x

x x x
x x x

+ + − =
− + − + −3 1 1 1� � � � � �

=
−

+
−

+
−a

x

b

x

c

x

x x x
1 1 1

∴
+ + −�

�
�

	


�

→
lim
x

x x x
a b c

x0

3

=
−�

�
�

	


� + −�

�
�

	


� + −�

�
�

	


�

→ → →
lim lim lim
x

x

x

x

x

x
a

x

b

x

c

x0 0 0

1 1 1
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= + + =log log log loga b c a b c� �

3. lim
x

x x
a b

x→

−�
�
�

	


�

0

Solution: �

a b

x

a b

x

x x
x x

− =
− − −1 1� � � �

=
−

−
−a

x

b

x

x x
1 1� � � �

∴
−�

�
�

	


� =

−�
�
�

	


� −

−�
�
�

	


�

→ → →
lim lim lim
x

x x

x

x

x

x
a b

x

a

x

b

x0 0 0

1 1

= − = �
�
	

log log loga b

a

b

4. lim
sinx

x x
a b

x→

−�
�
�

	


�

0

Solution: �

a b

x

a b

x

x

x

x x x x
−

=
−

⋅
sin sin

∴
−�

�
�

	


� = −�

�
�

	


� ⋅

�
��

	

�→ → →

lim lim lim
sinx

x x

x

x x

x

a b

x

a b

x

x

x0 0 0

= �
�
	

 ⋅ = �

�
	

log log

a

b

a

b
1

5. lim
sinx

x x
a a

x x→

− −

0

2
1 1� � � �

 for a > 0

Solution: �

a a

x x

x x2
1 1− −� � � �
sin

=
−

⋅
−

⋅
a

x

a

x

x

x

x x2
1 1

sin

∴
−�

�
�

	


�

→
lim
x

x
a

x0

2
1

=
−�

�
�

	


� ⋅ −�

�
�

	


� ⋅

�
��

	

�→ → →

lim lim lim
sinx

x

x

x

x

a

x

a

x

x

x0

2

0 0

1 1

= log a2 · log a · 1
= 2 log a · log a = 2 log2 a

6. lim
tanx

x x
e e

x x→

− −

0

2
1 1� � � �

Solution: �

e e

x x

x x2
1 1− −� � � �
tan

=
−

⋅
−

⋅
e

x

e

x

x

x

x x2
1 1

tan

∴
− −

→
lim

tanx

x x
e e

x x0

2
1 1� � � �

=
−�

�
�

	


� ⋅ −�

�
�

	


� ⋅

�
��

	

�→ → →

lim lim lim
tanx

x

x

x

x

e

x

e

x

x

x0

2

0 0

1 1

= log e2 · 1 · 1
= 2 log e = 2

7. lim
sin

x

x
a

x→

−�
�
�

	


�

0

1
 for a > 0

Solution: �

a

x

a

x

x

x

x xsin sin

sin

sin−
=

−
⋅

1 1

∴
−�

�
�

	


�

→
lim

sin

x

x
a

x0

1

=
−�

�
�

	


� ⋅ �

��
	

�→ →

lim
sin

lim
sin

sin

x

x

x

a

x

x

x0 0

1
… (i)

Now putting sin x = h so that as x h→ →0 0, ,

we have from (i)

lim lim
sin

x

x

x

h
a

x

a

h→ →

−�
�
�

	


� = −�

�
�

	


� ⋅

0 0

1 1
1
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= ⋅ = �
��

	

� =

�
��

	

�→

log log lim
sin

a a
x

xx
1 1

0
�

8. lim
x

ax bx
e e

x→

−�
�
�

	


�

0

Solution: �

e e

x

e e

x

ax bx
ax bx

− =
− − −1 1� � � �

= − − −e

x

e

x

ax bx1 1

∴
−�

��
	

�
=

−�
��

	

�
−

−�
��

	

�→ → →

lim lim lim
x

ax bx

x

ax

x

bxe e

x

e

x

e

x0 0 0

1 1

= loge e
a – loge e

b = a loge e – b loge e = a – b

� log loge e e= = 1� �

9. lim
x

x x

x x→

−

−

�
�
�

	


�

0

5 3

4 2

Solution: �

5 3

4 2

5 3

4 2

x x

x x

x x

x x

x

x

−

−
=

−�
��

	

�

−�
��

	

�

∴
−

−

�
�
�

	


� =

−�
��

	

�

−�
��

	

�

→

→

→

lim

lim

lim
x

x x

x x

x

x x

x

x x

x

x

0

0

0

5 3

4 2

5 3

4 2

=

�
�
	



�
�
	


=

�
�
	

log

log

log

log

5
3
4
2

5
3
2

10. lim
x

x x x
a b

x→

+
+ −�

�
�

	


�

0

1
2

 for a > 0, b > 0.

Solution: �

a b

x

a b

x

x x x x x x+ −
=

+ − ⋅+
2 2 2

1

=
− + − − −a b

x

x x x1 1 2 2 1� � � � � �

= − + − −
−a

x

b

x x

x x
x

1 1 2 2 1� �

∴
+ −�

�
�

	


�

→

+

lim
x

x x x
a b

x0

1
2

=
−�

�
�

	


� + −�

�
�

	


� − −�

�
�

	


�

→ → →
lim lim lim
x

x

x

x

x

x
a

x

b

x x0 0 0

1 1
2

2 1

= log a + log b – 2 log 2 = log a + log b – log 22

= log a + log b – log 4 = log 
ab

4
�
�
	



11. lim
sin

x x x

x x

e e→ −+ −0 2

Solution: �

x x

e e

x x

e
e

x x x

x

sin sin

+ −
=

+ −
−

2 1
2

=
+ −

=
−

x e x

e e

x e x

e

x

x ex

x

x

sin sin
2 2

1 2 1� �

= ⋅
−

�
�
�

	


� ���

	

�e

x

e

x

x

x

x
1

2
sin

∴
+ −

�
�
�

	


�

→ −lim
sin

x x x

x x

e e0 2

= ⋅
−

�
�
�

	


� ⋅ �

��
	

�→ → →

lim lim lim
sin

x

x

x x x
e

x

e

x

x0 0

2

01

= ⋅ ⋅ =e
0 21 1 1� �



Practical Methods of Finding the Limits 239

Exercise 4.25

Evaluate the following ones:

1. lim
x

x
e

→0

2. lim
logx

x
e

x→0

3. lim
x

t x
e

x→

−
0

1

4. lim
x

a x b x
e e

x→

−
0

5. lim
sinx

a x
e

x→

−
0

1

6. lim
sin

x

x
e

x→

−
0

1

7. lim
h

x h xe e

h→

+ −
0

2 2� �

8. lim
tan

tanx

x

x

e

e→

−

+π
2

1

1

9. lim
sin

x

x
a

x→

− −
0

1
, a > 0

10. lim
sinx

x
e

x→

−
0 2

2

1

11. lim
x

x
e

x→

−
0

3
1

12. lim
x

x

x→

−
0

2 1

13. lim
x

x x
e e

x→

−−
0

14. lim
x

x
e x

x→

− −
0 2

1

15. lim
x

x x
a b

x→

−
0

, a > 0, b > 0

16. lim
x

x

x→

−

−0

3 1

2 1

17. lim
x

x x

x→

−
0

7 3

18. lim
sin

sin

x

x
a

x→

−
0

1
, a > 0

19. lim
sin

sin

x

x
e x

x→

− −
0 2

1

20. lim
x

x

x→

−

+ −0

2 1

1 1
1
2� �

21. lim
cosx

x
x x

x→

−
−0

2

1

22. lim
h

x h xe e

h→

+ −
0

Answers:
1. 1
2. 0
3. t
4. (a – b)
5. a
6. 1

7. 2
2

x e
x

8. Does not exist
9. – log a
10. 1
11. 3
12. log 2
13. 2
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14.
1

2

15. log
a

b
�
�
	



16. log
3

2

17. log
7

3
�
�
	



18. log a

19.
1

2
20. Hint: Divide Nr and Dr by x. Answer: 2 log 2
21. 2 log 2
22. ex

Problems on R (ex)
Working rule: The rule we may adopt to evaluate

lim
x

xR e
→0

� �  is (1) to change R (ex) into the

combination (sum, difference, product and/quotient)

of (i) xn (ii) emx (iii) 
e

x

mx − 1
 by using the method of

rationalization or any mathematical manipulation and
(2) to find the limit of the combination of (i), (ii) and
(iii) respectively.

Notes: (a) one should write 
1

e
m x  for e–mx whenever

it occurs in the given rational functions of ex.
(b) R (ex) is the notation for rational function of ex.

Examples worked out:
Evaluate the following:

1. lim
x

x x

x x

e e

e e→

−

−
−
+

�
��

	

�0 2 2

Solution: lim
x

x x

x x

e e

e e→

−

−

− − −

− − −0 2 2

1 1

1 1

� � � �
� � � �

=

−
−

−

−
−

−→

−

−lim
x

x x

x x

e

x

e

x
e

x

e

x

0 2 2

1 1

1 1

=
−
−

−

−
log log

log log

e e

e e

1

2 2

=
+
+

log log

log log

e e

e e2 2

=
1

2

2. lim
x

x x

x x

e e

e e→∞

−

−
+

−

�
�
�

	


�

3 2

4

2 2

2 2

Solution: lim
x

x x

x x

e e

e e→∞

−

−
+

−

�
�
�

	


�3 2

4

2 2

2 2

=
+

−

�

�

�
�
�

	




�
�
�→∞

lim
x

x

x

x

x

e
e

e
e

3
2

4
1

2

2

2

2

=
+

−

�

�

�
�
�

	




�
�
�
= +

+
=

→∞
lim
x

x

x

e

e

3
2

4
1

3 0

4 0

3

4

4

4

N.B.: As x e
m x→ ∞ → ∞,  if m > 0.

Exercise 4.26

Evaluate the following ones:

1. lim
x

x x

x x

a e b e

e e→

−

−
⋅ + ⋅

+0

2. lim
x

x x

x x

a e b e

e e→∞

−

−
+

+

3. lim
x

x x

x x

a e b e

e e→∞

−

−
+

+

4. lim tan
x

x x

x x

e e

e e x→∞

−

−
−

+

�
�
�

	


� + �

�
	



�
��
��

�
��
��

1
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Answers:

1.
a b+

2
2. a
3. b
4. 2

On Limits of function of a function

Evaluation of lim
x a

g f x
→

� �� � , where a = 0, any

constant other than zero and/∞
Theorem: (Calculus by Burkey)

Let lim
x a

f x L
→

=� �  exists and g be continuous at

L, then

(i) lim lim
x a x a

g f x g f x g L
→ →

= �
�

�
� =� �� � � � � �

(ii) lim lim
x a x a

g f x g f x g L
→ →+ +

=
�
�	

�
�
 =� �� � � � � �

(iii) lim lim
x a x a

g f x g f x g L
→ →

− −
=

�
�	

�
�
 =� �� � � � � �

Working rule: One may adopt the following

procedure to evaluate lim
x a

g f x
→

� �� � , a being zero,

any constant different from zero and/infinity.

Step 1: Put the inner function = f (x) and find lim
x a→

(inner function) = lim
x a

f x
→

� �  = L (say)

Step 2: Put the outer function = g (x) and find lim
x L→

(outer function) = lim
x L

g x
→

� �  = g (L) which will be the

required limit of the given composition of two
functions, say g (f (x)) as x a→ .

Examples worked out:
Evaluate the following ones:

1. lim cos sin
x

x
→0

� �
Solution: Let f (x) = sin x and g (x) = cos x

∴ = = =
→ →

lim lim sin sin
x x

f x x
0 0

0 0� �  and

lim lim cos cos
x x

g x x
→ →

= = =
0 0

0 1� �

Hence, lim cos sin cos lim sin
x x

x x
→ →

=
0 0

� � � �
= cos 0 = 1

2. lim sin cos
x

x
→0

3� �
Solution: Let f (x) = cos3 x and g (x) = sin x

Note: g is continuous at L ⇔
→

lim
x L

 g (x) = g (L) which

means the functional value of g (x) for x = L and the
limit of g (x) as x tends to L are equal.

∴ = = �
�

�
� = =

→ → →
lim lim cos lim cos
x x x

f x x x
0 0

3

0

3
31 1� � � �

and lim lim sin sin
x x

g x x
→ →

= =
1 1

1� �

Hence, lim lim sin cos sin
x x

g f x x
→ →

= =
0 0

3
1� �� � � �

3. lim sin
x

x
e

→−1
� �

Solution: Let f (x) = ex and g (x) = sin x

∴ = = =
→− →−

−
lim lim

x x

x
f x e e

e1 1

1 1� �

and lim lim sin sin
x x

e e

g x x
e→ →

= = �
�

�
�1 1

1� �

Hence, lim lim sin sin
x x

x
g f x e

e→− →−
= = �

�
�
�1 1

1� �� � � �

4. lim sin
x a x

a
→

�
�

�
� ≠1

0,

Solution: Let f x
x

� � = 1
 and g (x) = sin x

∴ = �
�

�
� =

→ →
lim lim
x a x a

f x
x a

� � 1 1

and lim lim sin sin
x x

a a

g x x
a→ →

= = �
�

�
�1 1

1� �
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Hence, lim lim sin sin
x a x a

g f x
x a→ →

= �
�

�
� = �

�
�
�� �� � 1 1

5. lim
x

x x
e

→

+ +�
�	

�
�
2

1 2
2

Solution: Let f (x) = 1 + x + 2x2 and g (x) = ex

∴ =
→ →

lim lim
x x

f x
2 2

� �  (1 + x + 2x2) = 1 + 2 + 2 × 4 = 11

and lim lim
x x

x
g x e e

→ →
= =

11 11

11� �

Hence, lim lim
x x

x x
g f x e e

→ →

+ +
= �

�	
�
�
 =2 2

1 2 11
2

� �� �

Exercise 4. 27

Evaluate the following ones: Answers

1. lim sin
x

x
→

�
�

�
�0 2

0

2. lim sin
x c

a x b
→

+� � sin (ac + b)

3. lim
x

x
e

→0

2
1

4. lim
cos

x

x
e

→0
e

5. lim
x c

x c I
→

∉2 , [c]2

6. lim sin
x

x
→π

4
0

7. lim cos
x

x
→ π

4
1

8. lim
x c

x
a a

→
>� � , 0 ac

9. lim when lim
x c x c

f x f x l
→ →

=� � � �, | l |

10. lim cos
x

x
→0

1

11. lim
x

x
e

→

−

0
1

Method of Expansion

Question: Where to use expansion method for
evaluating limits?
Answer: The method of expansion for evaluating
limits of a given function at a given point is applicable
to the function (or, functions) which can be expanded
in series, i.e., if the given function (whose limit is
required to be found out) contains some function (or,
functions) whose expansion in series is known to us,
then firstly we make proper expansion for those
functions which are capable of being expanded.

Working rule:
Step 1: We write the expanded form of the function
(or, the functions present in the given whose limit is
required) whose expansion is known to us.
Step 2: After expansion in series, we simplify and
cancel the common factor (or, factors) present in the
numerator and denominator of the given quotient
function if any one common factor exists. If there is
no common factor in the expanded form of the given
quotient function (or, functions), we leave the given
quotient function in the expanded form.
Step 3: Lastly, i.e., after expansion and simplification,
we put the limit of the independent variable (since

x a→  means lim
x a→

 x = a, or lim x = a) to find the

value of the limit of the given function in the quotient
form (or, in the product form).

Remember: Following expansions are widely used
for evaluating limits by method of expansion.

1. sin x x
x x x= −  +  −  + ∞

3 5 7

3 5 7
...

2. cos x
x x x

= −  +  −  + ∞1
2 4 6

2 4 6

...

3. tan x x
x

x= + + + ∞
2

5

3

2

15
...

4. log 1
2 3

1 1
2 3

+ = −  +  + ∞ − < ≤x x
x x

x� � � �... ,

5. log 1
2 3

1 1
2 3

− = − −  −  − ∞ − ≤ <x x
x x

x� � � �... ,
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6. e
x x xx

= +  +  −  + ∞1
1 2 3

2 3

...

7. e
x x xx−

= −  +  −  + ∞1
1 2 3

2 3

...

8. 1 1
1

2

2
+ = + +

−
 + ∞x n x

n n
x

n� � � �
... , (–1 < x

< 1), where n is a negative integer, a fraction and/any
real number.

9. a e x a
x ax x a

= = + +  + ∞
log

log
log

1
2

2� �
...

10. For positive integer, 1 1 1+ = + +x nc x
n� �

nc x nc xn
n

2
2 + +...

N.B.: 1. We put (–x) in (1 + x)n to obtain the expansion
of (1 – x)n.
2. The method of expansion is also widely used when
(a) the given function is the product of reciprocal of

power function xn (i.e. 
1 1

2x x
, ,..., etc.) and a

trigonometric, logarithmic or exponential function of
x which can be expanded in a series of power of x.

(b) the integrand contains (a + x)n or 1 ± x n� �  and a

function of x.
(c) all the expansions are valid even if x is replaced
by any other variable or a function of x, e.g.

(i) log sin sin
sin sin

1
2 3

2 3

+ = −  +  + ∞x x
x x� � ... , (–1

< sin x < 1)

( i i ) log sin sin
sin sin

1
2 3

2 3

− = − −  −  − ∞x x
x x� � ... ,

 (–1 < sin x < 1)

Examples worked out:
Evaluate the following ones:

1. lim
x

x

x x→

+ −

+0

5

2

1 1

3 5

� �

Solution: lim
x

x

x x→

+ −
+0

51 1

3 5

� �
� �

=
+ + ⋅ ⋅ + +

�
�	

�
�

−

+→
lim
x

x
x

x

x x0

2
51

5

1

5 4

2
1

3 5

  ...

� �

=
+ + + +

+
=

→
lim
x

x x x x

x x0

2 45 10 10

3 5

5

3

...� �
� �

2. lim
x

x

x

n

→

+ −
0

1 1
1� �

Solution: lim
x

x

x

n

→

+ −
0

1 1
1� �

=
+ ⋅ +�

�
�
� −

→
lim

terms having higher powers of

x

n
x x

x0

1
1

1

=
+�

�

	
		

�

�





→

lim
terms having higher powers of 

x

n
x x

x0

1

= +�
�

�
� =

→
lim terms having  and its power
x n

x
n0

1 1

3. lim
tan

x

x

x
x

→

�
�	

�
�
0

3
2

Solution: lim
tan

x

x

x
x

→

�
�	

�
�
0

3
2

=
+ + + ∞

�

�

	
	
		

�

�









→
lim
x

x
x

x

x

x

0

2
5

3
2

15

3
2

...

= +
�
�	

�
�


=
→

lim
x

x
e

x

0

2

1
3

3
2

1
3



244 How to Learn Calculus of One Variable

4. lim
sinx x x→

−
�
�	

�
�
0

1 1

Solution: lim
sin

lim
sin

sinx xx x

x x

x x→ →
−

�
�	

�
�
 =

−�
�	

�
�
0 0

1 1

=

− −  +  − ∞
�
�	

�
�


−  + ∞
�
�	

�
�


�

�
�
��

�
�
��

�

�
�
��

�
�
��

→
lim
x

x x
x x

x x
x0

3 5

3

3 5

3

...

...

=  −  + ∞

−  + ∞

�

�
��

�
�
�

�

�
��

�
�
�

→
lim
x

x x

x
x0

3 5

2
4

3 5

3

...

...

=
 −  + ∞

�
�	

�
�


−  + ∞
�
�	

�
�


�

�
�
��

�
�
��

�

�
�
��

�
�
��

→
lim
x

x
x

x
x0

3
2

2
2

1

3 5

1
3

...

...

=
 −  + ∞

�
�	

�
�


−  + ∞
�
�	

�
�


�

�
�
��

�
�
��

�

�
�
��

�
�
��

=
→

lim
x

x
x

x0

2

2

1

3 5

1
3

0

...

...

5. lim
sin sin

sinx

x x

x x→

−
−

�
�	

�
�
0

3 3

Solution: lim
sin sin

sinx

x x

x x→

−
−

�
�	

�
�
0

3 3

=

−  +  − ∞
�
�	

�
�

− −  + ∞

�
�
	

�
�



− −  + ∞
�
�	

�
�


→
lim
x

x
x x

x
x

x x
x0

3 5 3

3

3
3 5

3
3

3

3

... ...

...

� �

=  − + ∞

 + ∞

=
→

lim
x

x

x0

3
2

3
3

3 3

3

24
� � ...

...

6. lim
log

sinx

x
e x

x→

− + −�
�
		

�
�


0 3

1 1� �

Solution: lim
log

sinx

x
e x

x→

− + −�
�
		

�
�


0 3

1 1� �

=

+ +  +  +
�
�	

�
�

−

�
��
��

�
��
��
+ − − −

�
�	

�
�


−  +  −
�
�	

�
�


→
lim
x

x
x x

x
x x

x
x x

0

2 3 2 3

3 5 3

1
2 3

1
2 3

3 5

... ...

...

=
−�

�
�
� +

−  +  −
�
�	

�
�


�

�

�
��

�

�
�
�

�

�

�
��

�

�
�
�

= −
→

lim
x

x

x
x x

0

3

3
2 4 3

1
6

1
3

1
3 4

1

6

...

...

7. lim
tan sin

sinx

x x

x→

−�
�
	

�
�



0 3

Solution: lim
tan sin

sinx

x x

x→

−�
�
	

�
�



0 3

=

+ + + ∞
�
�	

�
�

− −  +  − ∞

�
�	

�
�


−  +  + ∞
�
�	

�
�


→
lim
x

x
x

x x
x x

x
x x

0

3
5

3 5

3 5 3

3

2

15 3 5

3 5

... ...

...

=
+�

�	
�
�
 + −  + ∞�

�	
�
�


−  +  + ∞
�
�	

�
�


→
lim
x

x x

x
x x0

3 5

3 5 3

1
3

1
6

2
15

1

5

3 5

...

...
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=
+�

�
�
� + −  + ∞�

�
�
�

−  +  − ∞
�
�	

�
�


→
lim
x

x x

x
x x

0

3 5

3
2 4 3

1
3

1
6

2
15

1

5

1
3 5

...

...

=
+�

�
�
� + − 

�
�

�
� − ∞

−  +  − ∞
�
�	

�
�


→
lim
x

x

x x
0

2

2 4 3

1
3

1
6

2
15

1

5

1
3 5

...

...

= +�
�

�
� =

1

3

1

6

1

2

8. lim
x

x x
e e

x→

−
−�

�
	

�
�



0

Solution: lim
x

x x
e e

x→

−
−�

�
	

�
�



0

=

+ +  +  + ∞
�
�	

�
�

− − +  −  + ∞

�
�	

�
�


→
lim
x

x
x x

x
x x

x0

2 3 2 3

1
2 5

1
2 3

... ...

=

+  +  + ∞
�
�	

�
�


→
lim
x

x
x x

x0

2 5

2
3 6

...

= +  +  + ∞
�
�	

�
�

=

→
lim
x

x x
0

2 4

2 1
3 5

2...

9. lim
x

x x
e e

x→

−+ −�
�
	

�
�



0 2

2

Solution: lim
x

x x
e e

x→

−
+ −�

�
	

�
�



0 2

2

=

+ +  + ∞
�
�	

�
�

+ − +  − ∞

�
�	

�
�

−

→
lim
x

x
x

x
x

x0

2 2

2

1
2

1
2

2... ...

=
 +  + ∞

�
�	

�
�


→
lim
x

x x

x0

2 4

2

2
2 4

...

=  +  +  + ∞
�
�	

�
�
→

lim
x

x x
0

2 4

2
1

2 4 6
...

=  + +�
�	

�
�
 =  =2

1

2
0 0

2

2
1

10. lim
x

x
a

x→

−�
�
	

�
�



0

1
 for a > 0.

Solution: lim
x

x
a

x→

−�
�
	

�
�



0

1

=
−�

�	
�
�
→

lim
log

x

x ae

x0

1

=

+ +  +  + ∞ −
�
�	

�
�


→
lim

log log log

x

x a
x

a
x

a

x0

2
2

3
31

2 3
1� � � � ...

= +


+ ∞�
�	

�
�
→

lim log log
x

a
x

a
0 2

2� � ...

= log a

11. lim
x

x e ex x

→∞

−
−�

�
�
�

1 1

Solution: lim
x

x e ex x

→∞

−
−�

�
�
�

1 1
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= +

�
�

�
�

 +

�
�

�
�

 +

�
�

�
�

 + ∞

�

�

	
	
		

�

�








−

�

�
��

�
�
�

→∞
lim
x

x
x x x1

1

1

1

2

1

3

2 3

...

1

1

1

1

2

1

3

2 3

−

�
�

�
�

 +

�
�

�
�

 −

�
�

�
�

 + ∞

�

�

	
	
		

�

�









�

�
��

�
�
�

x x x
...

= ⋅  +

�
�

�
�

 +

�
�

�
�

 + ∞

�

�

	
	
		

�

�









→∞
lim
x

x x x x2

1

1

1

3

1

5

2 5

...

= ⋅ ⋅ + 
�
�	

�
�
 + 

�
�

�
� + ∞

�
�	

�
�

=

→∞
lim
x

x
x x x

2
1

1
1

3

1 1

5

1
2

2

4

...

12. lim
x

x
e x

x→

− −�
�
	

�
�



0 2

1

Solution: lim
x

x
e x

x→

− −�
�
	

�
�



0 2

1

=

+  +  +  + ∞
�
�	

�
�

− −

→
lim
x

x x x
x

x0

2 3

2

1
1 2 3

1...

=  +  + ∞�
�

�
�
=  =

→
lim
x

x
x

x0

2

2

1

2 3 1

2

1

2

...

13. lim
sin

sin

x

x
e x

x→

− −�
�
	

�
�



0 2

1

Solution: lim
sin

sin

x

x
e x

x→

− −�
�
	

�
�



0 2

1

=  +  + ∞�
�

�
�

→
lim

sin
sin

x

x
x

x0

2

2

1

2 3
...

= �
�	

�
�
 ⋅  +  + ∞�

�	
�
�
 =  =

→
lim

sin sin
x

x

x

x
0

2 1

2 3

1

2

1

2
...

14. lim
log

x

x

x→ −1 1

Solution: Method 1

lim
log

lim
log

x x

x

x

x

x→ →−
=

+ −
−1 11

1 1

1

� �� �
� �

=
− −

−
+

−
− ∞

−

�

�
��

�
�
�

�

�
��

�
�
�

→
lim
x

x
x x

x1

2 2

1
1

2

1

3
1

� � � � � �

� �
...

= −
−

+
−

− ∞
�
��
��

�
��
��→

lim
x

x x

1

2

1
1

2

1

3

� � � �
...

= 1 – 0 + 0 = 1

Method 2

Let x = 1 + h where h → 0  as x → 1

∴
−

=
+

+ −
=

+
→ → →

lim
log

lim
log

lim
log

x h h

x

x

h

h

h

h1 0 01

1

1 1

1� � � �

=
− + − ∞

→
lim
h

h
h h

h0

2 3

2 3
...

=

− + − ∞
�
�	

�
�


→
lim
h

h
h h

h0

3

1
2 3

...

= − + − ∞
�
�	

�
�

=

→
lim
h

h h
0

2

1
2 3

1...

15. lim
log

x e

x

x e→

−
−

�
�	

�
�


1

Solution: Let x = e + h, where h → 0  as x e→
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∴
−

−
�
�	

�
�
 =

+ −
→ →

lim
log

lim
log

x e h

x

x e

e h

h

1 1

0

� �

=
+ −

=
→

lim log
h

e h e

h
e

0
1

log log� � � ��

=

+�
�

�
�
= +�

�
�
�→ →

lim
log

lim log
h h

e h

e
h

h

e

h

0 0
1

1

= +�
�

�
�

�
��
��

�
��
��→

lim log
h

h

e

e
h

e

0
1

1

= + ′
′→

′lim log
h

h h
e

0
1

1
1

� �� � ,  where ′ =h
h

e

= = = + =�
�

�
�→

log log lime
e

e
e

x ee h

x

1 11 1
1

0
� � �

Exercise 4.28

Evaluate the following ones: Answers

1. lim
log

t

x t

t→

+
0

1� �
(x)

2. lim
log

sinx

x
e x

x→

− +

0

1 1� � � �
(0)

3. lim
sinx

x
e

x→

−
0

1
α

α� �

4. lim
logx

x

x→

−
−4

7
2

7
24

3� � (112)

5. lim
sinx

x
e

x→

−
0 2

2

1
(1)

6. lim log sin
θ θ

θ
→

+
0

1
1 2� � (2)

7. lim
log

x e

x

x e→

−
−

2 1 2

e

�
�	

�
�


8. lim
log

x

x

x→ −1 1 (1)

9. lim
log sin

x

x

x→

+
0

1� �
(1)

10. lim
sin

logx

x

x→ +0 1� � (1)

11. lim
cos

logx

x

x x→

−
+0

1

1� �
1

2
�
�

�
�

On existence of the limit of a function at a given point

Before one knows how to examine the existence of
the limit of a function y = f (x) defined on its domain at
an indicated point, it is required to be known some
more concepts given below.
1. Adjacent intervals: Two intervals are said to be
adjacent ⇔  The left end point of one is the same as
the right end point of the other.

Hence, the intervals
(i) x < 0 and x > 0
(ii) 0 < x < 1 and 1 < x < 2
(iii) 1 < x < 2 and 2 < x < 3
(iv) 1 < x < 3 and x > 3, etc.
are examples of adjacent intervals because their left
and right end points are same.
2. Nonadjacent intervals: Two intervals are said to
be nonadjacent ⇔  The left end point of one is
different from the right end point of the other.

Hence, the intervals
(i) x < 0 and x > 1
(ii) 0 < x < 1 and 2 < x < 3
(iii) 0 < x < 2 and x > 3
(iv) x < 3 and x > 4, etc.
are examples of nonadjacent intervals because their
left and right end points are different (not same)

How to examine the existence of the limit of a function
at a given point
To examine the existence of the limit of a function f at
a given point in its domain, one is required to use the
following rule:
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Left hand limit (L.H.L or l.h.l) at a given point =
Right hand limit (R.H.L or r.h.l) at a given point ⇔
the limit of a given function at a given (indicated in
the question) point exists.

How to examine the nonexistence of the limit of a
function at a given point

To examine the nonexistence of the limit of a function
f at a given point in its domain, one is required to use
the following rule:

Left hand limit at a given point ≠  Right hand limit
at a given point ⇔  The limit of a given function at a
given point does not exist.
Notes: 1. In case, a function f is defined by a single
formula y = f (x) in a δ -neighbourhood of a point x =
c, there is no need to find out the left hand and right
hand limits separately for the given function f at a
given point ‘c’ where the given function f may or may
not be defined while evaluating the limit of a function
at a given point ‘c’ but while examining the existence
of the limit in the case of functions denoted by a
single formula y = f (x) defined in a δ -neighbourhood
of a given point ‘c’, it is a must to calculate both the
limits at a given point ‘c’ where the given function
may or may not be defined.
2. In case, a function f is defined by two or more than
two formulas (different forms or expressions in x) in
adjacent intervals, it is necessary to find out both the
left hand limit (for the expression in x which is one
form of the given function f defined in an interval
indicating the left end point) and the right hand limit
(for the expression in x which is an other form of the
given function f defined in an other interval indicating
the right end point) noting that the left and right end
points of adjacent intervals are same (common) where
the left and right hand limits are calculated whether
the question says to evaluate the limit or examine the
existence of the limit of a given function at the
common point of adjacent intervals.
3. In questions, where f (x) contains modulus or
greatest integer functions, one is required to find out
both the left and right hand limits at a given point or
at the point where |f (x)| = 0 or greatest integer function
is zero, i.e. [f (x)] = 0.
4. A piecewise function is always defined in adjacent
intervals with different forms (expressions in x).

5. General models of a piecewise function:
A:
1. f (x) = f1 (x), when x < a

f (x) = f2 (x), when x > a
f (x) = f3 (x), when x = a

2. f (x) = f1 (x), when x < a
f (x) = f2 (x), when x > a

3. f (x) = f1 (x), when x < a
f (x) = f2 (x), when x > a

B:
1. f (x) = f1 (x), when c < x < a, c < x < a or c < x < a

f (x) = f2 (x), when a < x < d, a < x < c or c < x < a
2. f (x) = f1 (x), when c < x < a

f (x) = f2 (x), when a < x < d
f (x) = f3 (x), when x = a

3. f (x) = f1 (x), when x ≠  a
f (x) = f2 (x), when x = a

Remarks: 1. f (x) = f1 (x), when x < a or c < x < a ⇒
The function f1 (x) is to be selected to find out left
hand limit as well as the value of the function f (x) at
x = a.

That is, in the case of piecewise function,
The left hand limit of a function at the right end

point of an interval = lim
x a→ −  (the function f1 defined in

an interval whose left end point is a) and the value of
the function f at x = a is (f1 (x))x = a.
2. f (x) = f2 (x), when x > a or a < x < d ⇒  The
function f2 (x) is to be selected to find out right hand
limit as well as the value of the function f (x) at x = a.

That is, in the case of piecewise function, the right
hand limit of a function f at the left end point of an

interval = lim
x a→ +  (the function f2 defined in an interval

whose right end point is a) and the value of the
function f at x = a is (f2 (x)) x = a.
3. f (x) = f3 (x), when x = a ⇒  The function f3 (x) is to
be selected to calculate the value of the function f (x)
at x = a.
4. f (x) = f2 (x) when x a≠ ⇒  The same function
f2 (x) is to be selected to find out the left and right
hand limits both since ⇔ <x a  and x > a.
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That is, (the left hand limit at x = a) = (the right

hand limit at x = a) = lim
x a→

 (the function of x opposite

to which x a≠  is written) = lim
x a

f x
→ 3 � � .

5. f (x) = a constant ‘c’ when x = a ⇒  The function
f (x) has the value ‘c’ at x = a, i.e., one is given the
value of a function f at x = a which is ‘c’ and for this
reason, there is no need to calculate the value of the
function.
6. The value of a function f (x) at a point x = a is not
required to be calculated while examining the existence
of the limit of a function at a given point.
7. The value of a function f (x) at a point x = a is
required to be calculated while testing or examining
the continuity of a function f at a given point x = a.

On existence and nonexistence of the value and the
limit of a function at a given point

The following possibility may arise.
1. The value of a function at a given point exists but
the limit of a function at a given point does not exist.
2. The limit of a given function at a given point exists
but the value of a given function at a given point
does not exist.
3. The value and the limit both of a function at a
given point exist but are not equal.
4. The value and the limit both of a function at a
given point exist and are equal.
5. The value and the limit both of a function at a
given point do not exist.

Notes: 1. When the value and the limit both of a
function at a given point exist and are equal, then the
function is said to be continuous at a given point and
in the rest cases, the function is said to be
discontinuous at a given point.
2. A function y = f (x) defined on its domain may not
always have a value for each value given to the
independent variable x. It is quite possible that for a
particular value or a set of values of x, there is no
value of the function y = f (x), (i.e. there is a value of

y = f (x) like ∞ ,
0

0
 or imaginary). In such a case, it is

said that y = f (x) is undefined, undetermined,
interminate, meaningless or does not exist for those
values of x.

Hence, the value of a function f at a point x = a
exists ⇔  the value of a function f at x = a is a finite
number.

How to find left hand limit of a piecewise function f at
a point x = a

Step I: Replace x by (a – h) in the given form of a
function f and also in an interval whose right end
point is a, where h → 0  through positive values (i.e.
h is a small positive number).
Step II: Simplify the function f (a – h), i.e. a function
in h and cancel out the common factor h (if any).
Step III: Substitute h = 0 in the simplified function
and its further simplification provides us the required
left hand limit of the given function f at the right end
point of adjacent intervals.

How to find right hand limit of a piecewise function f
at a point x = a

Step I: Replace x by (a + h) in the given form of a
function f and also in an interval whose left end point

is also a, where h → 0  through positive values (i.e.

h is a small positive number).
Step II: Simplify the function f (a + h), i.e. a function
in h and cancel out the common factor h (if any).
Step III: Substitute h = 0 in the simplified function
and its further simplification provides us the required
right hand limit of the given function f at the left end
point of adjacent intervals.

Notes: 1. In the case of modulus and greatest integer
functions, the above method of procedure is
applicable since indeed, it is these functions which
are piecewise functions.
2. In the case of functions defined by a single formula
in a neighbourhood of the given point, there is a need
to calculate left and right hand limit by making the
substitution x a h= ±  in the given single formula

(expression in x) defined in the neighbourhood of a
given point x = a.

Problems based on functions containing no modulus
function

1. Show that lim
cos

x

x

x→

�
�	

�
�
0

 does not exist.

Solution: Let h → 0  through positive values.
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∴  l.h.l = lim
cos

lim
cos

h h

h

h

h

h→ →

−
−

=
−

−0 0

0

0

� �
� �

� �
� �

=
−→

lim
cos

h

h

h0 � �

= −��	
�
�
 ⋅ = − ∞ ⋅ = − ∞

→ →
lim lim cos
h l ah

h
0

1
1� �

r.h.l = lim
cos

lim
cos

h h

h

h

h

h→ →

+
+

=
+

+0 0

0

0

� �
� �

� �
� �

=
→

lim
cos

h

h

h0

= �
�	

�
�
 ⋅ = ∞ ⋅ = ∞

→ →
lim lim cos
l lh

h
0 0

1
1� �

Hence, neither l.h.l nor r.h.l exists

⇒ �
�	

�
�
→

lim
cos

x

x

x0
 does not exist.

2. If f x
x e

e

x

x

� � = ⋅

+

1

1

1
, show that lim

x
f x

→0
� �  exists.

Solution: l.h.l = lim
h

h e

e

h

h→

− ⋅

+

−

−0

0

1

1
0

1
0

� � � �

� �
, h

=
− ⋅

+
=

+
=

→

−

−
lim
h

h e

e

h

h0

1

1

1

0

1 0
0

� � � �

� �

r.h.l = lim
h

h e

e

h
h

h→

+ ⋅

+
>

+

+0

0

1

0

1
0

1
0

� � � �

� �
,

=
+ ⋅

+→
lim
h

h e

e

h

h0

1

1

1

� � � �

� �

=
+→ −

lim
h

h

e h0
1

1
 (multiplying Nr and Dr by e h

− 1

)

=
+

= → →�
�

�
��

−0

0 1
0 0 0

1

e hh as

Hence, l.h.l = r.h.l = 0

⇒
→

lim
x

f x
0

� �  exists.

3. If f x
e

e

x

x

� � =
+

1

1

1
, show that lim

x
f x

→0
� �  does not

exist.

Solution: l.h.l = lim
h

e

e

h

h
→

−

−+
0

1
0

1
01

� �

� �

=
+

=
→

−

−
lim
h

e

e

h

h0

1

1

1
0

Let h > 0 r.h.l = lim
h

e

e

h

h
→

+

++
0

1
0

1
01

� �

� �

=
+→

lim
h

e

e

h

h0

1

1

1

=
⋅

⋅ + ⋅→

−

− −
lim
h

e e

e e e

h h

h h h0

1 1

1 1 1

1
 (multiplying Nr and

Dr by e h
− 1

)

=
+

=
→ −

lim
h e h0

1

1
1

1

Hence, l.h.l ≠  r.h.l

⇒
→

lim
x

f x
0

� �  does not exist.

5. If f x
e

e

x

x

� � = −

+

1

1

1

1
, show that lim

x
f x

→0
� �  does not

exist.

Solution: l.h.l = lim
h

e

e

h

h→

−

−
=

−

+
=

−
+0

1

1

1

1

0 1

0 1
, h > 0
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= − =�
�

�
��→

−
1 0

0

1

� lim
h

e h

r.h.l = lim
h

e

e

h

h→

−

+0

1

1

1

1
, h > 0

=
−

+→

−

−
lim
h

e

e

h

h0

1

1

1

1
 (multiplying Nr and Dr by

e h
− 1

).

=
−
+

=
1 0

1 0
1

∴ ≠l h l r h l. . . .

⇒
→

lim
x

f x
0

� �  does not exist.

6. If f x e xx� � = ≠
1

0,  then show that lim
x

f x
→0

� �
does not exist.
Solution: Let h > 0;

l.h.l = lim lim
h h

e e
h h

→ →

−− = =
0 0

1
0

1

0
� �  !

� e hh− → →�
�

�
�

1

0 0as

r.h.l = lim lim
h h

e e
h h

→ →

+ = = ∞
0 0

1
0

1� �  !

� e hh
1

0→ ∞ →�
�

�
�when

∴ ≠l h l r h l. . . .

⇒
→

lim
x

f x
0

� �  does not exist.

Problems based on modulus function

1. Examine the existence of lim
x

x
→0

.

Solution: y = | x |
⇒ =y x , when x > 0 and
y = –x, when x < 0

That is,

y
x x

x x
=

− <
≥

���
,

,

when

when

0

0

Now let h > 0;
∴ x = 0 – h ⇒  y = – (0 – h) = + h, and x = 0 + h ⇒

y = (0 + h) = h,
Further, x = 0 – h ⇒  h →  0 when x →  0– and x

= 0 + h ⇒  h →  0 when x →  0+

∴ = = =
→ + → + →
lim lim lim

x x h
x x h

0 0 0
0

lim lim lim
x x h

x x h
→ → →− −

= − = =
0 0 0

0

Hence, lim lim
x x

x x
→ →+ −

=
0 0

⇒
→

lim
x

x
0

 does exist.

2. Show that lim
x

x

x→0

2

 does not exist.

Solution: y
x

x

x

x
= =

2

⇒ = =y
x

x
1, when x > 0 and

y
x

x
=
−

= −1 , when x < 0

That is, y
x

x
=

− <
>

��
�

1 0

1 0

,

,

when

when

Now let h > 0;
∴  x = 0 – h ⇒  y = – 1, and x = 0 + h ⇒  y = 1
Further, x = 0 – h ⇒  h →  0 when x →  0– and x =

0 + h ⇒  h →  0 when x →  0+

∴ = = =
→ → →+ +
lim lim lim

x x h

x

x0 0 0
1 1 1� �

lim lim lim
x x h

x

x→ → →− −
= − = − = −

0 0 0
1 1 1� � � �
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Hence, lim lim
x x

x

x

x

x→ →+ −
≠

0 0

⇒
→

lim
x

x

x0
 does not exist.

3. Examine whether lim
x

x

x→0

3

 exists.

Solution: y
x

x

x

x

x

x
= = =

−
3

3 3� �
, when x < 0

= −
x

x

3

 = –x2, when x < 0

Also, y
x

x

x

x

x

x
= = =

3
3 3

, when x > 0

= x2, when x > 0

Hence y = 
x

x

3

 can be rewritten as

y
x x

x x
= − <

>

�
��
��

2

2

0

0

,

,

when

when

Now let h > 0;
∴  x = 0 – h ⇒  y = – (0 – h)2, = –h2, and x = 0 + h

⇒  y = (0 + h)2, = h2, when h > 0
Further x = 0 – h ⇒  h →  0 when x →  0– and x =

0 + h ⇒  h →  0 when x →  0+

∴ = = =
→ → →+ +
lim lim lim

x x h

x

x
x h

0

3

0

2

0

2
0

lim lim lim
x x h

x

x
x h

→ → →− −
= − = − =

0

3

0

2

0

2
0� � � �

Hence, lim lim
x x

x

x

x

x→ →+ −
=

0

3

0

3

⇒
→

lim
x

x

x0

3

 does exist.

4. Examine the existence of lim
x

x

x→

−

−2

2
4

2

� �

Solution: y
x

x
=

−

−

2
4

2

� �

⇒ =
− +

−
y

x x

x

2 2

2

� � � �
� � , when x – 2 > 0

= (x + 2), when x > 2

and y = 
x x

x

− +
− −

2 2

2

� � � �
� � , when x – 2 < 0

   = – (x – 2), when x < 2

That is, y
x x

x x
=

+ >
− + <

�
��
��

2 2

2 2

� �
� �

,

,

when

when

Now, x = 2 + h, h > 0
⇒  y = (2 + h + 2),

= (4 + h),
and x = 2 – h, h > 0

⇒  y = – (2 – h + 2),
= – (4 – h),

Further, x = 2 + h ⇒  h →  0, when x →  2+ and x
= 2 – h ⇒  h →  0, when x →  2–

∴
−

−
= + = + =

→ → →+ +
lim lim lim

x x h

x

x
x h

2

2

2 0

4

2
2 4 4

� �
� � � �

and lim lim lim
x x h

x

x
x h

→ → →− −

−

−
= − + = − − =−

2

2

2 0

4

2
2 4 4

� �
� � � �

Hence, lim lim
x x

x

x

x

x→ →+ −

−

−
≠

−

−2

2

2

24

2

4

2

� � � �

⇒
−

−→
lim
x

x

x2

2
4

2

� �
 does not exist.

5. Show that lim
sin

x

x

x→0
 does not exist.
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Solution: y
x

x
=

sin

⇒ =y
x

x

sin
, when sin x > 0 and

y
x

x
= −

sin
, when sin x < 0

That is, y

x

x
x x

x

x
x

=
≥ ≠

− <

�
�
�

�
�

sin
when sin

sin
when sin

, ,

,

0 0

0

Now x = 0 + h, h > 0 and sin h > 0

⇒ =
+

+
=y

h

h

h

h

sin sin0

0

� �
� � ,

and x = 0 – h, h > 0 and sin h > 0

⇒ =
− −

−
= −y

h

h

h

h

sin sin0

0

� �
� �

Again x = 0 + h ⇒  h →  0 when x →  0+ and
x = 0 – h ⇒  h →  0 when x →  0–

Hence, lim
sin

lim
sin

x h

x

x

h

h→ →+

�
�	

�
�
 = �

�	
�
�
 =

0 0
1

lim
sin

lim
sin

x h

x

x

h

h→ →−
−��	

�
�
 = −��	

�
�
 = −

0 0
1

∴ �
�	

�
�
 ≠ �

�	
�
�
 = −

→ →+ −
lim

sin
lim

sin

x x

x

x

x

x0 0
1

⇒
�
�	

�
�
→

lim
sin

x

x

x0
 does not exist.

6. Does lim
cos

x

x

x→

−
0

1 2
 exist?

Solution: y
x

x
=

−1 2cos

= =
2

2
2

sin sinx

x

x

x

⇒ = �
�	

�
�
y

x

x
2

sin
 when sin x > 0 and

y
x

x
= − �

�	
�
�
2

sin
 when sin x < 0

That is, y

x

x
x x

x

x
x

=

�
�	

�
�
 ≥ ≠

− �
�	

�
�
 <

�

�
��

�
�
�

2 0 0

2 0

sin
whensin

sin
when sin

, ,

,

Now, x = 0 + h, h > 0 and sin h > 0

⇒ = + �
�	

�
�
y

h

h
2

sin
, and x = 0 – h, h > 0 and sin

h > 0

⇒ = − �
�	

�
�
y

h

h
2

sin

Further, x = 0 + h ⇒  h →  0 when x →  0+ and
x = 0 – h ⇒  h →  0 when x →  0–

Hence, lim
sin

lim
sin

x h

x

x

h

h→ →+

�
�	

�
�
 =

�
�	

�
�
 =0 0

2 2 2

and lim
sin

lim
sin

x h

x

x

h

h→ →−

�
�	

�
�
 = − �

�	
�
�
 = −0 0

2 2 2

∴ �
�	

�
�
 ≠ − �

�	
�
�
→ →+ −

lim
sin

lim
sin

x x

x

x

x

x0 0
2 2

⇒
−

→
lim

cos

x

x

x0

1 2
 does not exist.

7. Examine the existence of lim
x

x
e

→

−

0

Solution: y e
x

=
−

⇒ = −
y e

x
, when x > 0 and y = ex, when x < 0

That is, y
e x

e x

x

x= ≥
<

�
��
��

−
,

,

when

when

0

0

Now, x = 0 + h, h > 0
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⇒ = −
y e

h , and x = 0 – h, h > 0

⇒ =y e
h

Further, x = 0 + h ⇒  h →  0 when x →  0+ and
x = 0 – h ⇒  h →  0 when x →  0–

∴ = = =
→

−

→

−
+

lim lim
x

x

h

h
e e e

0 0

0
1

lim lim
x

x

h

he e e
→ →−

= = =
0 0

0 1

Hence, lim lim
x

x

x

x
e e

→

−

→
+ −

= =
0 0

1

⇒
→

−
lim
x

x
e

0
 does exist and = 1

Problems based on piecewise function

1. Examine the existence of the limit of the function

f (x) as x → 0  if it exists where

f (x) = x, when x < 0
= 1, when x = 0
= x2, when x > 0

Solution: Let h > 0;

∴ x = 0 + h ⇒ f (x)
= f (0 + h) = (0 + h)2 = h2 = h2, and x = 0 – h⇒ f (x)
= f (0 – h) = (0 – h) = –h,
Further, x = 0 – h ⇒ →h 0  when x → 0 – and

x = 0 + h ⇒ →h 0  when x → 0 +

∴ = =
→ →+
lim lim

x h
x h

0

2

0

2
0

lim lim
x h

x h
→ →−

= − =
0 0

0� �

Hence, lim lim
x x

x x
→ →

+ −
= =

0

2

0
0

⇒
→

lim
x

f x
0

� �  does exist.

N.B.: The value of the function f (x) = 1 at x = 0 is not
required to be considered to show the existence of
the limit of a given function at the point x = 0.
2. Examine the existence of the limit of the function

f (x) as x → 2  if it exists where

f x
x x

x
� � = + < <

≥

�
��
��

2 1 0 2

5 0

,

,

when

when

Solution: Let h > 0;

∴ x = 2 + h⇒ f (x)
= f (2 + h) = 5, and x = 0 – h ⇒ f (x)
= f (2 – h) = (2 – h)2 + 1
= 4 – 4h + h2 + 1
= h2 – 4h + 5, when –2 < h < 0

Further x = 2 – h ⇒ →h 0  when x→ −2  and x =

2 + h ⇒ →h 0  when x→ +2

∴ = =
→ →+
lim lim

x h2 0
5 5 5

lim lim
x h

x h h
→ →−

+ = − + =
2

2

0

2
1 4 5 5� � � �

Hence, lim lim
x x

x
→ →

+ −
= +

2 2

2
5 1� �

⇒
→

lim
x

f x
2

� �  does exist.

3. Examine the existence of the limit of f (x) at x = a,

where f (x) = 
x a

x a

2 2−
−

, when 0 < x < a

= 2a, when x > a
Solution: Let h > 0;

∴ x = a – h

⇒ = − =
− −
− −

f x f a h
a h a

a h a
� � � � � �

� �

2 2

=
− + −

−
a ah h a

h

2 2 2
2

=
− +

−
2

2
ah h

h
 and x = a + h

⇒ f (x) = f (a + h) = 2a

Further, x = a – h ⇒ →h 0  when x a→ −  and
x = a + h ⇒ →h 0  when x a→ +

∴
−
+

�
�	

�
�

=

→ +
lim

x a

x a

x a
a

2 2

2 2
2

lim lim lim
x a h h

x a

x a

ah h

h
h

a h

h→ → →−

−
−

�
�
	

�
�

 =

− +
−

�
�
	

�
�

 =

− +
−

�
�	

�
�


2 2

0

2

0

2 2
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= − − + =
→

lim
h

a h a
0

2 2� �

=
−
−

�
�	

�
�

=

→ −
lim

x a

x a

x a
a

2 2

2

⇒
→

lim
x a

f x� �  exists.

Problems based on redefined function

1. Examine the existence of the limit of f (x) at x = 0, if

it exists where f (x) = 1, when x ≠ 0

= 2, when x = 0
Solution: The given function

f x
x

x
� � = ≠

=
���
1 0

2 0

,

,

when

when  can be rewritten as under:

f x

x

x

x

� � =
<
>
=

�
��

��

1 0

1 0

2 0

,

,

,

when

when

when

Let h > 0;
∴ x = 0 – h
⇒ f (x) = f (0 – h) = 1 and x = 0 + h
⇒ f (x) = f (0 + h) = 1

Further, x = 0 – h ⇒ →h 0  when x → −0  and x

= 0 + h ⇒ →h 0  when x → +0

∴ = =
→ →−
lim lim

x h
f x f h

0 0
1� � � �

and lim lim
x h

f x f h
→ →+

= =
0 0

1� � � �

⇒
→

lim
x

f x
0

� �  does exist.

Note: x a≠ ⇔  x > a or x < a, where a R∈ .

2. Examine the existence of the limit of f (x) at x = 1,
where f (x) = x2, when x ≠ 1

= 2, when x = 1
Solution: The given function

f x x x

x
� � = ≠

=

�
��
��

2
1

2 1

,

,

when

when
 can be rewritten as under:

f x

x x

x x

x

� � =
<
>
=

�
�
��

�
��

2

2
1

1

2 1

,

,

,

when

when

when

Let h > 0;
∴  x = 1 – h
⇒ f (x) = f (1 – h) = (1 – h)2

= (1 – 2h + h2)
and x = 1 + h

⇒ f (x) = f (1 + h) = (1 + h)2, when 1 + h > 1
= (1 + 2h + h2)

Further x = 1 – h ⇒ →h 0 when x → −0  and x =

1 + h ⇒ →h 0  when x → +0

Now lim lim
x h

x h h
→ →+

= + + =
1

2

0

2
1 2 1� �

and lim lim
x h

x h h
→ →−

− = − + =
1

2

0

2
1 2 1� �

∴ = =
→ →

+ −
lim lim

x x
x x

1

2

1

2
1

⇒
→

lim
x

f x
1

� �  does exist.

Exercise 4.29.1

Problems on functions defined by a single formula
with no modulus function

Do the limits of the following functions exist?

1. lim sin
x x→

�
�

�
�0

1
[Ans: Does not exist.]

2. lim cos
x x→

�
�

�
�0

1
[Ans: Does not exist.]

3. lim
x

e x

→0

1

[Ans: Does not exist.]

4. lim tan
x x→

− �
�

�
�0

1 1
[Ans: Does not exist.]



256 How to Learn Calculus of One Variable

5. lim
x

x

x→0

33

[Ans: Does exist.]

Exercise 4.29.2

Problems on functions defined by a single formula
with the modulus function

Examine the existence of the limit of each given
function.

1. lim
x

x

x→

−
−1

1

1� � [Ans: Does not exist.]

2. lim
cosx

x

x→ −0 1
[Ans: Does not exist.]

3. lim
cos

cosx

x

x→

+
0

1 2

2
[Ans: Does exist.]

4. lim
cos

sinx

x

x→

−
0

1 2
[Ans: Does not exist.]

Exercise 4.29.3

Problems on piecewise functions

Examine the existence of the limit of each function
defined as given below:

1. f (x) = x2 + x + 2, when x < 1
f (x) = x4 + 3, when x > 1 [Ans: Exists at x = 1]

2. f (x) = x3, when x < –1
f (x) = x5, when x > –1
f (x) = –1, when x = –1 [Ans: Exists at x = –1]

3. f (x) = x2 – 2x + 3, when x < 1
= x + 1, when x > 1 [Ans: Exists at x = 1]

4. f x
x x

x x
� � = − <

− ≥
���

3 4

5 4

,

,

when

when
[Ans. Exists at x = 4]

Exercise 4.29.4

Problems on redefined functions
Examine the existence of the limit of each function

defined by y = f (x) at the indicated point x a a R= ∈,

1. f x
x x

x
x

x

� � =
− +

−
≠

=

�
��

��

2

2

4 3

1
1

2 1

,

,

when

when

[Ans. Exists]

2. f x
x

x
x

x
� � = ≠

=

�
��
��

,

,

0

0 0
[Ans. Does not exists]

3. f x x
x

x� � = ⋅ �
�

�
� ≠sin when

1
0, [Ans. Exists]

= 0, when x = 0

4. f x
x

x
x� � = ≠

sin
, 0 [Ans. Exists]

= 0, x = 0

On existence of limit of greatest integer function

Firstly one should note the following key points:
1. [x] denotes the first integer less than or equal to x
(given real number) lying on the number line to the
left side of x (given real number) ⇔  The integer on
the number line which is nearest to x on the left side
of the given real number. Hence, to find [x] numerically
at any given real number for x, we always consider
the first integer (or, nearest integer) which is on the
left side of the given real number lying on the number
line. In the light of this explanation, we are able to
provide the following useful rules:

(a1) [x] = x provided x = an integer +ve, –ve or zero
i.e., 0, ± 1, ± 2, …, e.g.:
(i) [0] = 0
(ii) [5] = 5
(iii) [–3] = –3

(a2) [x] = an integer immediately to the left of x
provided x is positive or negative fraction (i.e., x is
not an integer), e.g.:
(i) [5/2] = 2
(ii) [–5/2] = –3
(iii) [–0.1] = –1
(iv) [(–0.75)] = –1
(v) [–6.35] = –7
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(a3) [x] = 0 for all positive real values of x just less
than unity (0 < x < 1), e.g.:

(i) x x= ⇒ = �
�

�
�� =

1

2

1

2
0

(ii) x x= ⇒ = �
�

�
�� =

3

12

3

12
0

(iii) x x= ⇒ = �
�

�
�� =

2

3

2

3
0

(a4) [x] = 1 for all positive real values of x just greater
than unity (1 < x < 2), e.g.:

(i) x x= ⇒ = �
�

�
�� =

3

2

3

2
1

(ii) x x= ⋅ ⇒ = ⋅ =1 1 1 1 1

(a5) [x] = –1 for all negative values of x whose absolute
value is first greater than unity (–1 < x < 0), e.g.:
(i) [–0.1] = –1
(ii) [–0.0001] = –1
(iii) [–0.0009] = –1
(iv) [–0.23.49] = –1
(v) [–0.9999] = –1

(a6) If n be any integer and m be any real number, then
for 0 < h < 1 (i.e. [h] does not exceed zero) and
0 < m h < 1 (i.e. [m h] does not exceed zero) where h is
sufficiently small positive number greater than zero,
we have
(i) [n + h] = n
(ii) [n + m h] = n as [8 + 12 h] = 8
(iii) [n – 1 + h] = n – 1
(iv) [n – 1 + m h] = n – 1
(v) [0 + h] = 0
(vi) [n – h] = n – 1
(vii) [n – m h] = n – 1 as [8 – 12 h] = 7
(viii) [n – 1 – h] = n – 1 – 1 = n – 2
(ix) [0 – h] = 0 – 1= –1

(a7) If n = an improper positive fraction and m be any
real number, then for 0 < h < 1, and 0 < m h < 1, where

h is sufficiently small positive real number > 0 then
we have

n h n mh± ±/  = integral part of the improper

fraction
= the whole number before the decimal

e.g.:
(i) [1.5 – h] = 1
(ii) [1.5 + h] = 1
(iii) [2.4 + h] = 2
(iv) [2.4 – h] = 2
(v) [2.000001 – h] = 2

(a8) If n = a negative improper fraction and m be any
real number, then for 0 < h < 1 and 0 < m h < 1, where
h is sufficiently small positive number > 0, then we
have [n – h]/[n – m h] = integral part of the proper
fraction –1

= the whole number before the decimal –1
e.g.:
(i) [–2.3 – h] = –2 – 1 = –3
(ii) [–5.0006 – h] = –5 – 1 = –6
(iii) [–7.00001 – 12 h] = –7 – 1 = –8
(iv) [–1.1234 – 2.3 h] = –1 – 1 = –2

Some important facts about the function y = [x].
(i) x x x I= ⇔ ∈

(ii) x x x I< ⇔ ∉

(iii) x k k I k= ∈ ⇔ ≤� � x < k + 1 , i.e. x k= ⇔

k < x < k + 1, k N∈  and x k I k= − + ⇔− + ≤� � � �1

x < –k, k N∈

2. To calculate arithmetically n h n mh± ±/

where n and m are any two arbitrary numbers and h
lies between 0 and 1 (i.e.; 0 < h < 1), we may adopt the
following working rule, in the problems on limits.
(i) Put h = any one of the numbers 0.1, 0.01, 0.001,
0.0001, 0.00001, …, etc. whose number of zeros =
number of digits after decimal in the given value of n
provided we calculate [x] = n h±  where x n h= ± .
(ii) Put h = any one of the numbers 0.1, 0.01, 0.0001,
0.001, 0.00001, …, etc. whose number of zeros = the
sum of number of digits in the integral part and decimal
part of m provided we calculate [x] = n mh±  where
x = n mh± .

–5/2 –2 –3/2 –1 –1/2 0 1/2 1 3/2 2 5/2
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(iii) Calculate ( n mh± ) arithmetically when n and m
are known particular numbers.

(iv) Use the fact: the integer on the number line which
is to the left side of n mh n h± ±� � � �/  will represent

n mh n h± ±/ .

Examples
(i) [1 + h] = [1 + 0.1] = [1.1] = 1
(ii) [1 – h] = [1 – 0.1] = [0.9] = 0
(iii) [1.5 + h] = [1.5 + 0.01] = [1.51] = 1
(iv) [1.5 – h] = [1.5 – 0.01] = [1.49] = 1
(v) [2.000001 – h] = [2.000001 – 0.0000001] = [2.000009]
= 2
(vi) [–2.201 – h] = [–2.201 – 0.0001] = [–2.2009] = –3
(vii) [–2 – h] = [–2 – 0.1] = [–2.1] = –3
(viii) [8 – 12 h] = [8 – 12 × 0.001] = [8 – 0.012] = [7.988]
= 7
(ix) [8 + 12 h] = [8 + 12 × 0.001] = [8 + 0.012] = [8.012]
= 8
(x) [0 – h] = [0 – 0.1] = [–0.1] = –1
(xi) [0 + h] = [0 + 0.1] = [0.1] = 0
(xii) [1 + h/2] = [1 + 0.5 h] = [1 + 0.5 × 0.01] = [1 + 0.005]
= [1.005] = 1
(xiii) [2.3 – 233.6 h] = [2.3 – 233.6 × 0.00001] = [2.3 –
0.002336] = [2.2977] = 2

Precaution

1. While calculating [ n h± ] arithmetically, ‘h’ should

be chosen so small that it does not increase or
decrease [n] by unity, n is not integer.
e.g.: If we choose h = 0.1 to calculate [2.000001 – h],
we get [2.000001 – 0.1] = [1.900001] = 1 as a greatest
integer contained in [2.000001 – h] = which is false
because [2.000001 – h] = 2.

2. While calculating [ n mh± ], h should be chosen
so small that ‘m h’ must be slightly greater than zero.
e.g.: If we choose h = 0.1 to calculate [2.3 – 299 h], we
get [2.3 – 299 h] = [2.3 – 299 × 0.1] = [2.3 – 29.1] = [–
26.8] = –27 which is false because [2.3 – 299 h] = 2.

Similarly, [2.3 + 299 h] = [2.3 + 299 × 0.1] = [2.3 +
29.1] = [31.4] = 31 which is false because [2.3 + 299 h]
= 2.
3. The above working rule is valid to find the limit of
n mh n h± ±/  as h → 0 .

Limit method to examine the existence of greatest
integer function

To evaluate (or, to find or to examine the existence of

lim lim
x n x n

f x
→ →

=� �  (greatest integer/bracket

function), where n = any real number, we adopt the
following working rules.

Working rule 1
1. Find the left hand limit using the following scheme:
(a) put x = n – 1 + h (where 0 < h < 1) in f (x)
(b) find the greatest integer in f (n – 1 + h) where
0 < h < 1 and remove the symbol of square bracket
from [f (n – 1 + h)]

(c) use lim
h→0

 (greatest integer) = greatest integer

2. Find the right hand limit using the following
scheme:
(a) put x = n + h' (where 0 < h' < 1) in f (x)
(b) find the greatest integer in f ( n + h') where
0 < h' < 1 and the symbol of square bracket be removed
from [f (n + h')]

(c) use lim
h→0

 (greatest integer) = greatest integer

Working rule 2
1. Find the left hand limit using the following scheme:

(a) Put x = n – h in f (x) where 0 < h < 1
(b) Find the greatest integer in f (n – h) and

remove the symbol of square bracket from
[f (n – h)]

(c) Use lim
h→0

 (greatest integer) = greatest integer.

2. Find the right hand limit using the following
scheme:

(a) Put x = n + h in f (x) where 0 < h < 1
(b) Find the greatest integer in f (n + h) and the

symbol of square bracket be removed from
[f (n + h)]

(c) Use lim
h→0

 (greatest integer) = greatest integer.

Note:
1. If we are asked to examine the existence of

lim
h n

f x
→

� � , we have to examine l.h.l and r.h.l. If they

are equal, it is declared that lim
h n

f x
→

� �  exists and of



Practical Methods of Finding the Limits 259

� [n – h] = n – 1 provided 0 < h < 1 and n = an
integer

�  [n + h] = n provided 0 < h < 1 and n = an
integer

�  [n – 1 + h] = n – 1 for any integer n

� [n + h'] = n for any integer n

[n – h] = n – 1 for any integer n

they are not equal, it is declared that lim
h n

f x
→

� �
does not exist.
2. We recall that

(i) [n – 1 + h] = n – 1, provided 0 < h < 1 and n is
an integer.

(ii) [n + h] = n, provided 0 < h < 1 and n is an
integer

(iii) [n – h] = (n – 1), provided 0 < h < 1 and n is
an integer

Examples
(i) [2 – 1 + h] = 2 – 1 = 1
(ii) [2 + h] = 2
(iii) [2 – h] = 2 – 1 = 1

Note: Existence of a function in limit ⇔  Existence of
a function in the sense of limiting value ⇔  Existence
of limit of a function for the limit of an independent
variable.
3. Method (1) is applicable only when we have
greatest integer function [f (x)] only whose limit is
required whereas method (2) is applicable in every
case and particularly when the given function is the
combination (sum, difference, product and /quotient)
of f1 (x) and [f2 (x)].
Type 1: To evaluate (or, to find or, to examine the
existence of)

lim
h n

f x
→

� � , where ‘n’ = an integer

Examples worked out:

Examine the existence of the following limits

1. lim
x

x
→1

Solution: Method 1

l.h.l = lim
x

x
→1

= − + = = − = =
→ → → →

lim lim lim lim
h h h h

h h
0 0 0 0

1 1 1 1 0 0

r.h.l = lim lim lim
x h h

x h
→ ′→ ′→−

= + ′ = =
1 0 0

1 1 1� �

∴ ≠ ⇒
→

l h l r h l x
x

. . . . lim
1

 does not exist

Method 2

l.h.l = lim
x

x
→ −1

= − = − = =
→ → →

lim lim lim
h h h

h
0 0 0

1 1 1 0 0� �

r.h.l = lim lim lim
x h h

x h
→ → →+

= + = =
1 0 0

1 1 1

∴ ≠ ⇒
→

l h l r h l x
x

. . . . lim
1

 does not exist

2. lim
x

x
→2

Solution: Method 1

l.h.l = lim lim lim
x h h

x h
→ → →−

= − + = − =
2 0 0

2 1 2 1 1� �

r.h.l = lim lim lim
x h h

x h
→ ′→ ′→+

= + ′ = =
2 0 0

2 2 2

∴ ≠ ⇒
→

l h l r h l x
x

. . . . lim
2

 does not exist.

Method 2

l.h.l = lim lim lim
x h h

x h
→ → →−

= − = =
2 0 0

2 1 1

r.h.l = lim lim lim
x h h

x h
→ → →+

= + = =
2 0 0

2 2 2

∴ ≠ ⇒
→

l h l r h l x
x

. . . . lim
2

 does not exist.

� [n – 1 + h] = n – 1 for 0 < h < 1 and n = an
integer

� [n + h'] = n for 0 < h < 1 and n = an integer

� [n + h] = n for any integer ‘n’
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3. lim
x n

x
→

 for any integer ‘n’.

l.h.l = lim lim lim
x n h h

x n h n n
→ → →−

= − + = − = −
0 0

1 1 1� �

r.h.l = lim lim lim
x n h h

x n h n n
→ = ′→ ′→

= + ′ = =
0 0

Thus, we observe that lim lim
x n x n

x x
→ − → +

≠ ⇔

l.h.l ≠  r.h.l.

∴ lim
x n

x
→

 does not exist for any integer ‘n’.

Method 2

l.h.l = lim
x n

x
→ −

= − = − = −
→ →

lim lim
h h

n h n n
0 0

1 1� �

r.h.l = lim lim lim
x n h h

x n h n n
→ + → →

= + = =
0 0

Thus, we observe, lim lim
x n x n

x x
→ − → +

≠ ⇔  l.h.l

≠  r.h.l.

∴
→

lim
x n

x  does not exist.

4. lim
x

x
→

−
1

1

Solution: l.h.l = lim
x

x
→ −

−
1

1

lim lim lim
h h h

h h h
→ → →

− − = = = =
0 0 0

1 1 0 0 0� � � ��

r.h.l = lim
x

x
→ +

−
1

1

= − + = − = − = − − = −
→ → →

lim lim lim
h h h

h h h
0 0 0

1 1 1 1 1� � � � � ��

Thus, we observe, l.h.l ≠  r.h.l which means

lim
x

x
→

−
1

1  doe not exist.

5. lim
x

x
→

−
1

1

Solution: l.h.l = lim
x

x
→ −

−
1

1

= − − = − = − = − − = −
→ → →

lim lim lim
h h h

h h h
0 0 0

1 1 1 1 1� � � ��

r.h.l = lim
x

x
→ +

−
1

1

= lim lim lim
h h h

h h h
→ → →

+ − = = = =
0 0 0

1 1 0 0 0� !

∴ l.h.l ≠  r.h.l which means lim
x

x
→

−
1

1  does not

exist.

6. lim
x

x
→ −2

3

Solution: lim
x

x
→ −2

3

= − = − + −
→ →

lim lim
h h

h h h h
0

3

0

2 3
2 8 12 6� �

= −
→

lim
h

h
0

8 12

= < − <
→

lim
h

h
0

7 7 8 12 8�� �
= 7

Type 2: To evaluate (or, to find or to examine the

existence of) lim
x n

f x
→

� �  when n ≠  an integer (i.e.,

n = a fraction +ve or –ve), we adopt the working rules
mentioned earlier in type 1.

Examples worked out:

Evaluate if the following limit exists.

1. lim
x

x
→ ⋅15

Solution: l.h.l = lim
x

x
→ ⋅ −15

= ⋅ − = = < ⋅ − <
→ →

lim lim
h h

h h
0 0

1 5 1 1 1 1 5 2�� �

�  [n – 1 + h] = n – 1 for 0 < n < 1 and n being
an integer

� [n + h'] = n for 0 < h' < 1 and n being an
integer

� [n – h] = n – 1 for 0 < h < 1 and n being an
integer

[n + h] = n for 0 < h < 1 and n being an
integer
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r.h.l = lim
x

x
→ ⋅ +15

= ⋅ + = = < ⋅ + <
→ →

lim lim
h h

h h
0 0

1 5 1 1 1 1 5 2�� �

Thus, we observe, l.h.l = r.h.l ⇒  limit exists and

lim
x

x
→ ⋅15

 = 1.

2. lim
x

x
→ ⋅2 4

Solution: l.h.l = lim
x

x
→ ⋅ −2 4

= ⋅ − = = < ⋅ − <
→ →

lim lim
h h

h h
0 0

2 4 2 2 2 2 4 3�� �

r.h.l = lim
x

x
→ ⋅ +2 4

= ⋅ + = = < ⋅ + <
→ →

lim lim
h h

h h
0 0

2 4 2 2 2 2 4 3�� �

∴ l.h.l = r.h.l ⇒  limit exists and lim
x

x
→ ⋅2 4

 = 2.

3. lim
x x

x
→ 0

, where n < x0 < n + 1 for some integer n.

Solution: l.h.l = lim lim
x x h

x x h n
→ − →

= − =
0 0 0

0

r.h.l = lim lim
x x h

x x h n
→ + →

= + =
0 0 0

0

(� for sufficiently small h n < x0 – h < n + 1 and n
< x0 + h < n + 1)

∴
→
lim

x x
x

0

 exists and = n.

4. lim
x

x
→ −1

2

2

Solution: lim
x

x
→ −1

2

2

= −�
�

�
�

�
�

�
��
= − = =

→ → →
lim lim lim
h h h

h h
0 0 0

2
1

2
1 2 0 0

� 0 1 2 1< − <h� �

5. lim
x

x x
→ +

+ +
1
2

1
2

Solution: lim
x

x x
→ +

+ +
1
2

1
2

= + +�
�

�
� + +�

�
�
�

�

��

�
�
��→

lim
h

h h
0

2

1
1

2

1

2

= + + + + ⋅ ⋅ +�
�

�
��→

lim
h

h h h
0

2
1

1

2

1

4

1

2
2

= + + +�
�

�
�� = +�

�
�
�� =→ → →

lim lim lim
h h h

h h h
0

2

0 0

3

2

1

4
2

7

4
2 1

�1
7

4
2 2< + <�

�
�
�h

6. lim
x

x
→ 2

2

Solution: Method 1
Let f (x) = x2 = z

� x x z→ ⇒ → ⇒ →2 2 22

∴ =
→ →

lim lim
Z x

z x
2 2

2

Now, let h > 0,

l.h.l = lim
Z

z
→ −2

= − =
→

lim
h

h
0

2 1  (� 1 < 2 – h < 2 for sufficiently

small h > 0)

r.h.l. = lim
Z

z
→ +2

= + =
→

lim
h

h
0

2 2  (� 2 < 2 + h < 3 for sufficiently

small h > 0)

Thus, we observe, l.h.l ≠  r.h.l ⇒
→

lim
Z

z
2

=
→
lim

Z
x

2

2
 does not exist.

Method 2

l.h.l = lim
x

x
→

−
2

2

= −�
�

�
�� = + −

→ →
lim lim
h h

h h h
0

2

0

2
2 2 2 2� �

= −
→

lim
h

h
0

2 2 2
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(� 2 2 2 2 2 2
2+ − ≡ −h h h  for sufficiently

small h > 0)

=
→

lim
h 0

1� �  (�  for sufficiently small h > 0,

2 2 2 1− =h )

= 1

r.h.l = lim
x

x
→

+
2

2

= +�
�

�
�� = + +

→ →
lim lim
h h

h h h
0

2

0

2
2 2 2 2� �

= +
→

lim
h

h
0

2 2 2

(� 2 2 2 2 2 2
2+ + ≡ +h h h  neglecting

higher powers of h for h being sufficiently small > 0)

=
→

lim
h 0

2  (� for small h > 0, 2 2 2 2+ =h )

= 2

∴  l.h.l ≠  r.h.l which means lim
x

x
→ 2

2
 does not

exist.

7. lim sin
x

x
→ π

2

Solution: l.h.l = lim sin lim sin
x h

x h
→ − →

= −�
�

�
�

�
�

�
��π

π
2

0 2

=
→

lim
h 0

0

= 0

r.h.l = lim sin lim sin
x h

x h
→ + →

= +�
�	

�
�


�
�

�
��π

π
2 0 2

=
→

lim
h 0

0

= 0

∴ =
→

lim sin
x

x
π
2

0

8. lim sin
x

x
→ −π

4

Solution: lim sin
x

x
→ −π4

= −�
�

�
�

�
�

�
��→

lim sin
h

h
0 4

π

=
→

lim
h 0

0

= 0

Note: The real number π  is approximately equal to
3.14.

Type 3: To evaluate (or, to find or to examine the
existence of) the function which is the combination
(i.e.; sum, difference, product or quotient) or
composition (i.e. a function of a function) of f1 (x)
and [f2 (x)] (i.e.; a function and greatest integer
function) as x a→  a real number.

� sin
π
2
−�

�
�
�

�
�

�
��

h  = 0 as h → 0  and h > 0 ⇒  –h < 0

⇒ < − <0
2 2

π π
h

⇒ < −�
�

�
� <0

2
1sin

π
h

sin
π
2
+�

�
�
�

�
�

�
��

h  = 0, as 0 < h ⇒  0
2

< +π
h

⇒ < +�
�

�
� ⇒ < +�

�
�
�sin sin sin0

2
0

2

π π
h h

⇒ < +�
�

�
� <0

2
1sin

π
h

� sin
π
4

0−�
�

�
�

�
�

�
��
=h , as 0

4 4
< − <π π

h

⇒ < −�
�

�
� <sin sin sin0

4 4

π π
h

⇒ < −�
�

�
� < <0

4

1

2
1sin

π
h
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Examples worked out:

Question 1: Prove that (i) lim
x x→ 0

 (x – [x]) does not

exist when x0 is an integer (ii) lim
x x

x x
→

−
0

� �  exists

when x0 is not an integer.
Solution: Let f (x) = x – [x]

(i) If x0 = n (an integer), then for h > 0 (h being
sufficiently small) f (x0 – h) = f (n – h) = n – h – [n – h]
= n – h – (n – 1) = 1 – h

∴ − = − =
→ →

lim lim
h h

f x h h
0

0
0

1 1� � � �
and f (x0 + h) = f (n + h) = n + h – [n + h] = n + h – n = h

∴ + = =
→ →

lim lim
h h

f x h h
0

0
0

0� �

∴ r.h.l. ≠  l.h.l.

∴
→
lim

x x0

 (x – [x]) does not exist

(ii) If n < x0 < n + 1 for some integer n, then for
some sufficiently small h > 0, f (x0 – h) = x0 – h – [x0 –
h] = x0 – h – n →  x0 – n as h →  0 and f (x0 + h) = x0

+ h – [x0 + h] = x0 + h – n →  x0 – n as h →  0
∴  r.h.l = l.h.l = x0 – [x0]

∴ the lim
x x→ 0

 (x – [x] ) exists and = x0 – [x0]

Now we will solve such problems which are all
particular cases of Q. no. (1) for the beginners
independently.
2. Evaluate (if it exists) the following

(i) lim
x

x x
→

−
0
 !

Solution: Let h > 0

l.h.l = lim
x

x x
→ −

−
0

� �

= − − − = − − −
→ →

lim lim
h h

h h h h
0 0

0 0� � � �

= − − − − = −
→

lim
h

h h
0

1 1� �� � � ��

= − + = + =
→ →

lim lim
h h

h
0 0

1 0 1 1� �

r.h.l = lim
x

x x
→ +

− −
0

� �

= + − + = −
→ →

lim lim
h h

h h h h
0 0

0 0 !  !

= − =
→

lim
h

h h
0

0 0� � � ��

= =
→

lim
h

h
0

0

∴ r.h.l ≠  l.h.l ∴ −
→

lim
x

x x
0
� �  does not exist.

(ii) lim
x

x x
→

−
2
� �

Solution: l.h.l = lim
x

x x
→

−
−

2
� �

= − − −
→

lim
h

h h
0

2 2� �
= − −

→
lim
h

h
0

2 1� �  (� [n – h] = n – 1 when n is an

integer)

= − =
→

lim
h

h
0

1 1� �

r.h.l = lim lim
x h

x x h h
→ →+

− = + − +
2 0

2 2� � � �

= + −
→

lim
h

h
0

2 2� �  (� [n + h] = n when n is an

integer)

= =
→

lim
h

h
0

0

∴ l.h.l ≠  r.h.l which means lim
x

x x
→

−
2
� �  does

not exist.

(iii) lim
x

x x
→

−
3
2

� �

Solution: l.h.l = lim
h

h h
→

− − −�
�

�
��

�
�	

�
�
0

3

2

3

2

= − −�
�

�
�→

lim
h

h
0

3

2
1

(�  for sufficiently small h > 0, 
3

2
1−�

�
�
�� =h )

= −�
�

�
� =

→
lim
h

h
0

1

2

1

2

r.h.l = lim
x

x x
→ +

−
3
2

� �

lim
h

h h
→

+ − +�
�

�
��

�
�	

�
�
0

3

2

3

2
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= + −�
�

�
�→

lim
h

h
0

3

2
1  (�  for sufficiently small

h > 0, 
3

2
1+�

�
�
�� =h )

= +�
�

�
� =

→
lim
h

h
0

1

2

1

2

∴ l.h.l = r.h.l =
1

2

∴ −
→

lim
x

x x
3
2

� �  exists and = 1

2
.

3. lim
x

x x
→ ⋅

+
2 3

� �

Solution: l.h.l = lim
x

x x
→ ⋅ −

+
2 3

� �

lim
h

h h
→

⋅ − + ⋅ −
0

2 3 2 3� �

= ⋅ − +
→

lim
h

h
0

2 3 2� �  (� for sufficiently small

h > 0, [2.3 – h] = 2)

= ⋅ −
→

lim
h

h
0

4 3� �  = 4.3

r.h.l = lim
x

x x
→ ⋅ +

+
2 3

� �

= ⋅ + + ⋅ +
→

lim
h

h h
0

2 3 2 3� �

= ⋅ + +
→

lim
h

h
0

2 3 2� �  (� for sufficiently small h

> 0, [2.3 + h] = 2)

= ⋅ + = ⋅
→

lim
h

h
0

4 3 4 3� �

Thus, we observe, l.r.l = r.h.l = 4.3 ⇒
→ ⋅
lim

x 2 3
 (x +

[x]) exists and = 4.3.

4. lim
x

x

x→3

Solution: l.h.l = lim
x

x

x→
−

3

=
−
−

=
−

=
→ →

lim lim
h h

h

h

h
0 0

3

3

3

2

3

2

(� for sufficiently small h > 0, [3 – h] = 2)

r.h.l = lim
x

x

x→ +3

=
+
+

=
+

→ →
lim lim
h h

h

h

h
0 0

3

3

3

3
 (� for small h > 0,

[3 + h] = 3)

= =
3

3
1

Thus, we observe, l.h.l ≠  r.h.l ⇒
→

lim
x

x

x3
 does

not exist.
5. Evaluate each of the following one sided limits

(i) lim
x

x
→ +

�
�

�
��2 0 2

(ii) lim
x

x

x→ −0 0

(iii) lim
x

x

x→ +

−
−1 0

1

1

(iv) lim
x

x x
→ −

− + +
2 0

2 2� �

(v) lim
x

x
x

x→ +
+

−
−

+
�
�	

�
�
1 0

1

1
2

(vi) lim
x

x
x→ +

�
�

�
��1

3

1

(vii) lim
x x x→− −

�
�

�
��1

3

1 1

(viii) lim
x k

x x
→ + −

+ − +�
�

�
��

�
�	

�
�
3

4 0

1

4

1

4
, where K is an

integer and [t] denotes the greatest integer less than
or equal to t.

Solutions: (i) lim
x

x
→ +

�
�

�
��2 0 2

=
+�

�
�
�� = +�

�
�
��→ →

lim lim
h h

h h
0 0

2

2
1

2
, h > 0
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� [–h] = –1 as [n – h] = n – 1 when n is an integer

� h = 0  as h → 0  and h h> ⇒ < <0 0 1

� [3 – h] = 2 as [n – h] = n – 1 when n = an
integer

� [1 + h] = 1 as [n + h] = n when n = an
integer

�  | h | = h as h > 0 and

h→ 0

=
→

lim
h 0

1

= 1

(ii) lim
x

x

x→ −0 0

=
−
−

=
−
−→ →

lim lim
h h

h

h

h

h0 0

0

0
, h > 0

=
−
−

�
�

�
�→

lim
h h0

1

= �
�

�
�→

lim
h h0

1

= ∞

(iii) lim
x

x

x→ +

−
−1 0

1

1

=
+ −
+ −

=
→ →

lim lim
h h

h

h

h

h0 0

1 1

1 1
, h > 0

=
→

lim
h h0

0

= =
→

lim
h 0

0 0

(iv) lim
x

x x
→ −

− + +
2 0

2 1� �

= − − + − +
→

lim
h

h h
0

2 2 2 1� � , h > 0

= − + − = − + −
→ → →

lim lim lim
h h h

h h h h
0 0 0

3 3� � � � � �

= +
→

0 2
0

lim
h

= 0 + 2 = 2

(v) lim
x

x
x

x→ +
+

−
−

+
�
�	

�
�
1 0

1

1
2

= + +
+ −
+ −

+
�
�	

�
�
→

lim
h

h
h

h0
1

1 1

1 1
2 , h > 0

= + +�
�	

�
�
→

lim
h

h

h0
1 2

= + +�
�

�
�→

lim
h

h

h0
1 2

= + +
→

lim
h 0

1 1 2� �

= =
→

lim
h 0

4 4

(vi) lim
x

x
x→ +

�
�

�
��1

3

1

= +�
�

�
� ⋅ +

�



�
�
�

�

�

�
�
�→

lim
h

h
h

0

1

3

1
1
3

, h > 0

= +�
�

�
� +

�
�

�
��→

lim
h

h
h0

1

3

3

1 3

= +�
�

�
� ⋅

+
�
�

�
��→ →

lim lim
h h

h
h0 0

1

3

3

1 3

= ×
→

1

3
2

0
lim
h

� �

= ×
1

3
2

=
2

3

�1
2

2 1 1
2

2+ < ⇒ < + <h h
 from the

definition of greatest integer function
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(vii) lim
x x x→− −

�
�

�
��1

3

1 1

=
− − − −

�



�
�
�

�

�

�
�
�

�
�
�

�
�

�
�
�

�
�→

lim
h

h h
0

1
1
3

1
1
3

, h > 0

= −
+

�
�	

�
�


−
+

�
�

�
��

�
�
�

�
�
�→

lim
h h h0

3

1 3

3

1 3

= −
+

�
�	

�
�
 ⋅ −

+
�
�

�
��→ →

lim lim
h hh h0 0

3

1 3

3

1 3

= −
+

�
�	

�
�
 ⋅ −

→ →
lim lim
h hh0 0

3

1 3
3� �

= (–3) × (–3)
= 9

(viii) lim
x k

x x
→ + −

+ − +�
�

�
��

���
���3

4 0

1

4

1

4

lim
h

k h k h
→

+ −�
�

�
� + − + −�

�
�
� +�

�
�
��

���
���0

3

4

1

4

3

4

1

4
,

h > 0

= − + −
→

lim
h

k h k
0

1" #

= − +
→

lim
h

h
0

1" #

= 1

6. Evaluate each of the following if it exists.

(i) lim cos
x

x
→0

(ii) lim
x

x
e

→ +0

(iii) lim cos
x

x
→ +π

4

Solutions: (i) r.h.l = lim cos
x

x
→ +

0

= + =
→ →

lim cos lim cos
h h

h h
0 0

0

=
→

lim cos
h 0

0

=
→

lim
h 0

1

= 1

l.h.l = lim cos
x

x
→ −0

= − = −
→ →

lim cos lim cos
h h

h h
0 0

0

= −
→

lim cos
h 0

1� �

=
→

lim cos
h 0

1

= cos 1

∴ ≠r h l l h l. . . .  and so the limit does not exist.

(ii) lim
x

x
e

→
+

0

= =
→

+

→
lim lim
h

h

h

h
e e

0

0

0

=
→

lim
h

e
0

0

=
→

lim
h 0

1 = 1

�

3

1 3
2

+
�
�

�
��
=

h
 as h→0  and h h> ⇒ + >0 1 3 1

⇒
+

< ⇒
+

<1

1 3
1

3

1 3
3

h h

�  [k + 1 – h] = k as [n – h] = n – 1 when n = an
integer

�

−
+

�
�

�
��
= −3

1 3
3

h
, as h → 0  and h h> ⇒ + >0 1 3 1

⇒
+

< ⇒ −
+

>−1

1 3
1

3

1 3
3

h h
,

∴− < −
+

<−3
3

1 3
2

h

� [h] = 0 as [n + h] = n when n = an
integer

�  [–h] = –1 as [n – h] = n – 1 when n
= an integer
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x b = x a = x c = 

(iii) lim cos lim cos
x h

x h
→ + →

= +�
�

�
��π

π
4 0 4

=
→

lim cos
h 0

0

=
→

lim
h 0

1

= 1
Note: In those problems which are the combination
or composition of functions whose one function is
the greatest integer function, we should consider two
necessary facts while finding their limits as h → 0

(i) find the greatest integer contained in [the function
of h] before putting h = 0
(ii) cancel the highest common power of h from the
numerator and denominator in the quotient of two
functions of h before putting h = 0

How to find the limit of a piecewise functions
containing greatest integer function

When the limit of a piecewise function containing at
any integral point x = a is sought, it must be redefined
in adjacent intervals whose left and right end points
are the same namely the integral point x = a.

How to find the adjacent intervals containing the
integral point x = a

Step 1: Start towards left from the integral point x = a
and stop at the first integer you arrive at (say b), i.e.,
obtain b < x < a where b = the integer just on the left
of the integral point x = a.
Step 2: Start towards right from the integral point
x = a and stop at the first integer you arrive at (say c),
i.e. obtain a < x < c, where c = the integer just on the
right of the integral point x = a.

Rule: To find the limit of a piecewise function
containing greatest integer function and redefined in
adjacent intervals [b, a) ∪  [a, c) is determined by
removing the symbol [ ] with the help of the definition.

[f (x)] = n, when n < f (x) < n + 1

[f (x)] = n – 1, when n – 1 < f (x) < n where n I∈

and lastly put x = a in each different forms of the
expression free from greatest integer function.

Examples worked out:

1. If f (x) = 
sin x

x
x, ≠ 0

= 0, [x] = 0

then lim
x

f x
→

=
0

� �
(a) 1 (b) 0 (c) –1 (d) none of them.

Solution: On redefining f, it is as under

f x
x

x
x� � = − ≤ <

sin
, 1 0

= ≤ <0 0 1, x

Again on using the definition for [x],
[x] = –1 when –1 < x < 0
[x] = 0 when 0 < x < 1

the function ‘f ’ becomes

f x� � � �
� �=
−

−
sin 1

1
, when –1 < x  < 0, i.e.

f x� � = −
−

=
sin

sin
1

1
1  for –1 < x < 0 and f (x) = 0,

when 0 < x < 1

Hence, lim lim sin sin
x x

f x
→ →− −

= =
0 0

1 1� �

and lim lim
x x

f x
→ →+ +

= =
0 0

0 0� �

Since lim lim
x x

f x f x
→ →− +

≠
0 0

� � � �

⇒  the limit of f (x) at x = 0 does not exist
Hence, (d) is true.

2. Examine the existence of limit of a function defined

by f x
x

x
x� � =

−

−
≠

2

2

2
1

1
1, for  = 0, for x2 = 1; at

x = 1.
Solution: It is given

f x
x

x
x� � =

−

−
≠

2

2

2
1

1
1, for

�

π
4

0+�
�

�
�� =h  as 0

4
1< + <π

h
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= 0, for x2 = 1
On redefining the given function f,

f x
x

x
� � =

−

−

2

2

1

1
, when 0 < x2 < 1

=
−

−
< <

x

x
x

2

2
2

1

1
1 2, when

= 0, when x2 = 1
Again on using the definition for [x2],

[x2] = 0 for 0 < x2 < 1

[x2] = 1 for 1 < x2 < 2

the function ‘f ’becomes

f x
x

� � = −

−

1

1
2 , for 0 < x2 < 1

= 0, for x2 = 1

= −

−

1 1

1
2

x
 = 0, for 1 < x2 < 2

Now, lim lim
x x

f x
→ →+ +

= =
1 1

0 0� �

and lim lim
x x

f x
x→ →− −

= −
−

�
�	

�
�

= ∞

1 1 2

1

1
� �

i.e. lim
x

f x
→ −

1
� �  does not exist

⇒
→

lim
x

f x
1

� �  does not exist.

alternative method

x z x z x z x z x2 2 0= ⇒ = ⇒ = ⇒ = ≥for

Also, x z→ ⇒ →1 1

Hence the given function becomes

f z
z

z
z� � =

−
−

≠
1

1
1, for

= 0 for z = 1
Which can be redefined as under:

f z
z

z� � = −
−

≤ <1

1
0 1, for

=
−
−

= < <
1 1

1
0 1 2

z
z, for

= 0, for z = 1

Now, lim lim
z z

f z
→ →+ +

= =
1 1

0 0� �

but lim lim
z z

f z
z→ →− −

=
−
−

�
�	

�
�
 = −∞

1 1

1

1
� �

⇒
→ −
lim

z
f z

1
� �  does not exist

⇒
→

lim
z

f z
1

� �  does not exist

⇒
→

lim
x

f x
1

� �  does not exist

Type 4: Problems based on finding the value of a
constant whenever the limit of a given function is
finite value/a finite number.

Examples worked out:

1. Find the value of k if

lim
x

kx
→

− =
2

5 3� �

Solution: lim
x→2

 (kx – 5) = k × 2 – 5 = 2k – 5 … (i)

and lim
x→2

 (kx – 5) = 3 …(ii)

Equating (i) and (ii), we have, 2k – 5 = 3

⇒ = ⇒ = =2 8
8

2
4k k

2. Find the value of K if lim
x k→

 (3x – 2) = 7

Solution: lim
x k

x k
→

− = −3 2 3 2� � … (i)

and lim
x k

x
→

− =3 2 7� � … (ii)

(1) and (2) ⇒  3k – 2 = 7 ⇒  3k = 7 + 2 = 9 ⇒  k =
9/3 = 3
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Problems based on existence of the limits of greatest
integer function/combination of a function and the
greatest integer function

Exercise 4.30.1

1. Examine the existence of the limits of the following

functions as x → 0

(i) f (x) = [x] + [1 – x], ∀  real x

(ii) f (x) = x + [x], ∀  real x

(iii) f (x) = [x] + [–x], when x ≠ 0

f (0) = 1
(iv) f (x) = x [x]
2. Examine the existence of the limits of the following
functions at the indicated points.
(i) f (x) = [1 – x] + [x – 1] at x = 1
(ii) f (x) = [x + 2] – | 2 + x | at x = 2

(iii) f (x) = 

1
2

1
2

2

2

+�
�

�
�� −x

x
 at x = 1

(iv) f (x) =
+�

�
�
��

x

x

1
2

 at x = −
1

2

3. Show that the function f defined by

f (x) = [x – 1] + | x – 1 | for x ≠ 1

f (1) = 0 has no limit at x = 1.
4. Show that the function f defined by f (x) = [x – 3] +
[3 – x], where [t] denotes the largest integer < t exists
at x = 3 and is equal to 0.

5. If f x
x

x
x� � = ≠

sin
, 0 ; = 0, [x] = 0 then find if

lim
x→0

 f (x) exists where [x] denotes the greatest integer

less than or equal to x.

Answers:

1. (i) exists and lim
x

f x
→

=
0

0� �  (ii) does not exist since

l.h.l = –1 and r.h.l = 0 (iii) exists and lim
x→0

 f (x) = –1

(iv) exists and lim
x→0

 f (x) = 0

2. (i) exists and lim
x→1

 f (x) = –1 (ii) does not exist since

l.h.l = –1 and r.h.l = 0 (iii) exists and lim
x→1

 f (x) = 
1

2
 (iv)

does not exist since l.h.l = 1 and r.h.l = 0.
5. As l.h.l ≠  r.h.l, so the given limit does not exist.

Hint: l.h.l = sin 1 and r.h.l = 0

Problems based on finding the value of a constant

Exercise 4.30.2

Find the value of k if Answers

1. lim
x

kx
→

− =
2

5 3� � (4)

2. lim
x

x k

x k→

−
−

= −
2

2 2

4 (–6)

3. lim
x

kx x
→

+ − =
1

2 5 3 4� � (2)

4. lim
sin

x

kx

x→
=

0
3 (3)

5. lim
x

kx x

x x→∞

+ −
− +

=
2

2

4 8

2 3 5
3 (6)

6. lim cos
x

k x
→

+ =
π
2

2 5� � (5)

7. lim
x k

x
→

− =3 2 7� � (3)

8. If f x
x

x
� � = sin 3

, when x < 0 =
tan b x

x
, when

x > 0 and lim
x

f x
→0

� �  exists, find the value of b.

Solution: lim
sin

x

x

x→0

3

l.h.l = lim
sin

x

x

x→
× =

0

3

3
3 3 … (i)

lim
tan

lim
tan

x x

b x

x

b x

b x→ →
=

0 0
 × b = b = r.h.l … (ii)
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lim exists
x

f x l h l r h l
→

⇔ = ⇔
0

� � . . . .  b = 3 Ans.

Objective problems

Exercise 4.30.3

(a) Choose the correct answer.

(i) The value of lim
x

x

x→ +0

2

5 3
 is …

(A)
2

3
(B)

2

5
(C) 0 (D) 2 [Ans. C]

(ii) The value of lim
sin

cosx

x

x→ +π
2 1

 is …

(A) 0 (B) 1 (C)
1

2
(D) ∞ [Ans. B]

(iii) The value of lim
sin

x

x

x→0

5
 is …

(A) 1 (B) 0 (C)
1

5
(D) 5 [Ans. D]

(iv) The value of lim
sin sin

x

x x

x→

−
0

5 3
 is …

(A) 2 (B) 0 (C) 1 (D) −
2

15
[Ans. A]

(v) The value of lim
sinx

x

x→0

2
 is …

(A) 1 (B) 2 (C)
1

2
(D) not possible [Ans. B]

(vi) The value of lim
x

x

x→∞

−3 5
2

 is …

(A) 0 (B) ∞ (C) 3 (D) –5 [Ans. B]

(b) State whether the following statements are true
or false

(i) lim
x

x
→

=
0

2
0 [Ans. T]

(ii) lim cos
x

x
→

+ =
π

1 0� � [Ans. T]

(iii) lim sin
x

x
→

− =
π
2

1 0� � [Ans. T]

(iv) lim
x

x x

x→

−
=

0

2
2 3

3
1 [Ans. F]

(v) lim
tanx

x

x→
=

0
1 [Ans. T]

(vi) lim
x

x

x→−

−
+

=
2

2
4

2
4 [Ans. F]

(vii) lim
x

x x

x→∞

−
=

2

2

1

2
[Ans. F]

(viii) lim
x

x x

x x→∞

+
+

=
2 5

1
2

2

� � [Ans. T]
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5

Practical Methods on
Continuity Test

A little more on how to test the continuity of a
function at x = a. To test whether f (x) is continuous at
x = the following procedure may be adopted:

1. Find f (a). If f (a) is undefined, the function f (x) is
discontinuous at x = a.
2. If the value of the function represented by f (a) at
x = a has a finite value, find the l.h.l and r.h.l

represented by lim lim
x a h

f x f a h
→ →−

= −� � � �
0

 and

lim lim
x a h

f x f a h
→ →+

= +� � � �
0

 respectively where

h→ 0 through positive values (i.e; h > 0 and –h < 0).
3. If both l.h.l and r.h.l are equal to f (a), f (x) is
continuous at x = a.
4. If either of the l.h.l and r.h.l is different from f (a),
f (x) is discontinuous at x = a.

Explanation

1. ⇒  Replace x by a f (x) and in the given expression
in x and find the value of the given function f (x) at
x = a. Now if the value of the function f (x) at x = a is
undefined the given function is declared to be
discontinuous.

2. ⇒  If the value of the function f (x) at x = a is a
finite value, we are required to find l.h.l and r.h.l
respectively by the method already explained.

3. ⇒  If all the three (a) value of the function at x = a,
i.e; f (a) (b) l.h.l and (c) r.h.l of the given function
obtained are equal, then f (x) is continuous at x = a

which means f (a) = l.h.l = r.h.l ⇒  f (x) is continuous
at x = a.
4. ⇒  If f a� � ≠  l h l r h l. . . .≠  or  l h l r h l. . . .≠  =
f (a) or r h l l h l. . . .≠  = f (a), we declare that the given
function f (x) whose test of continuity is required is
discontinuous at the given point x = a.

N.B.: The above method of testing a given function
to be continuous at x = a is applied when the given
function is defined by different equations on imposing
the conditions on the independent variables x by < or
< or > or > or = etc.

Aid to Memory

1. f a
x a

� � =
→

lim  [the function f1 (x) opposite to which

x < a / x < a / c < x < a /]

=
→

lim
x a

 [the function f2 (x) opposite to which

x > a / x > a / c > x > a / c > x > a]
⇔  f (x) is continuous at x = a.

2. f (x) = f3 (x), when x = a means we should consider
the function f3 (x) (i.e; an expression in x) to find out
the value of the function x = a.
3. f (x) = a constant, when x = a means we are
provided the value of the function which is the given
constant for the independent variable x = a and thus
further we are not required to find out the value of the
function f (x) at x = a.
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4. f (x) = f1 (x), when (or, if or, provided) x a≥  or
c x a> ≥  means we should consider f1 (x) for finding
r.h.l and the value of the function at x = a.
5. f (x) = f2 (x), when x a≤  or c x a< ≤  means we
should consider f2 (x) for finding l.h.l and the value of
the function at x = a.
6. f (x) = f1 (x) when x < a or c < x < a ⇒  we should
consider f1 (x) only for finding the l.h.l and not for the
value of the function f (x) at x = a as the sign of
equality does not appear in the given restrictions
against the given function f (x) = f1 (x).
7. f (x) = f2 (x) when x > a or c > x > a means we should
consider f2 (x) only for finding r.h.l and not for the
value of the function f (x) at x = a as the sign of
equality does not appear in the given restriction
against the given function f (x) = f2 (x).
8. f (x) = f4 (x), when x a≠  means the same function

f4 (x) should be considered for finding the l.h.l and
r.h.l.

Note:
1. In the light of above explanation, we may declare
that the sign of equality ‘=’ with the sign of
inequalities “> or <” retains the possibility to consider
the same function for the l.h.l as well as the value of
the function both or r.h.l as well as the value of the
function both whereas only the sign of inequality >
or < excludes the possibility to consider the same
function for the value of the given function opposite
to which > or < is written.
2. f (x) = f4 (x), when x a≠  means there is no need to

find out l.h.l and r.h.l separately but only to find out
the limit of f4 (x) at x = a and use the definition limit =
value of the function at the given point x = a to test
the continuity (or, to find the l.h.l and r.h.l by putting
x a h= ±  as h → 0  through positive values in the
given function f (x) = f4 (x) and then use the definition
l.h.l = r.h.l = value of the function (which is given at x
= a by imposing the condition x = a against the given
function f (x) as f (x) = a constant, when x = a) ⇔
continuity of the given function at x = a.
3. A function f (x) defined in an interval is called a
piecewise continuous function when the interval can
be divided into a finite number of non-overlapping
open sub intervals over each of which the function is
continuous.

4. All the points at which the function is continuous
are called points of continuities and all those points
at which the function is discontinuous are called
points of discontinuities (or, simply discontinuities
only).
5. f (x) is continuous at x = a ⇔  x = a is the point of
continuity of f (x) ⇔  f (x) has a point of continuity
namely x = a.
6. f (x) is discontinuous at x = a ⇔  x = a is the point
of discontinuity of f (x) ⇔  f (x) has a point of
discontinuity namely x = a.

A Highlight on Removal Discontinuity

Question: When a function is not defined for x = a, is
it possible to give the function such a value for x = a
as to satisfy the condition of continuity?
Answer: When a function is not defined for the
independent variable x = a as to satisfy the condition
of continuity if we arbitrarily suppose that value of
the function which must be the limit of the given
function ⇒  If the value of the function at a point =
limit of the function at the same point is supposed,
then the given function becomes continuous at that
point.

Example: y
x

x
=

−
−

2
9

3
 is not defined at x = 3 but for

any other value of x,

y
x x

x
=

+ −
−

3 3

3

� � � �
� �  = (x + 3)

and lim
x

x
→

+ =
3

3 6� �

∴
−
−

�

�
�

�

�
� =

→
lim
x

x

x3

2
9

3
6

Now, if we suppose f (3) = 6, i.e; the value of the
function to be 6 for x = 3, the function becomes
continuous.

Removal Discontinuity

If lim lim
x a x a

f x f x f a
→ →+ −

= ≠	 
 	 
 	 
 ,  then the

function f (x) as said to have removal discontinuity at
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x = a because the discontinuity can be removed by
making the value of the function f (x) at x = a equal to

lim
x a

f x
→

� � .

There are two types of discontinuities which can
be removed by assuming the value of the function
f (x) at a point (or, number) x = a = limit of the function
f (x) at a point (or, number) x = a.

1. If the function is not defined at x = a, then the
function is discontinuous at x = a.

2. If lim
x a

f x
→

� �  exists finitely but the value of the

function f a f x
x a

� � � �≠
→

lim , then the function f (x) is

discontinuous at x = a. Thus, there are two types of
discontinuities which can be removed by assuming
value = limit for the given point x = a.

Remember:
(A) A function is discontinuous at x = a if

1. f (x) is not defined at x = a ⇔  f (x) = meaningless

at x = a ⇔ = ∞
∞

× ∞f a� � 0

0
0/ / ...  etc.

2. When lim
x a

f x
→

= ∞� �

3. When lim
x a

f x f a
→

≠� � � �

4. When l h l r h l. . . .≠  = f (a)
5. When l h l r h l f a. . . .= ≠ � �
6. When r h l l h l f a. . . .≠ ≠ � �
7. Limit ≠  value of the function at the given point.

(B) A function f (x) is said not to exist at a point x = a

if f x
x a� � = = ∞  /meaningless/imaginary.

Examples:

1. Show that y
x

x
=

−
−

2
9

3
 is discontinuous at x = a.

Solution: lim lim
x x

y x
→ →

= + =
3 3

3 6� � ...(1)

� y f x
x

x
= =

−
−

=	 

2 9

3

0

0
 at x = 3 (undefined)

... (2)

∴ =
−
−

=
− +

−
y

x

x

x x

x

2 9

3

3 3

3

	 
 	 

	 
 , x ≠ 3

= (x + 3)

Thus, we see that f f x f x
x

3
3

� � � � � �≠ ⇒
→

lim  is

discontinuous at x = a.

N.B.: But y
x

x
=

−
−

2
9

3
 is continuous at x = 2

Since lim
x

x

x→

−
−

�

�
�

�

�
� =

2

2
9

3
5  and f (2) = 5

∴ = =
→

f f x
x

2 5
2

� � � �lim .

2. lim
lim

limx

x

x

x

x

x

x→

→

→
−

�
��

�
��
=

−
= ∞

3

3

3

5

6 2

5

6 2

	 


	 


⇒ =
−

f x
x

x
	 
 5

6 2
 is discontinuous at x = 3.

Now, we consider the continuity of the following
functions at the point x = a.

1. Continuity of rational functions.
2. Continuity of absolute value functions.
3. Continuity of exponential functions.
4. Continuity of logarithmic functions.
5. Continuity of trigonometric functions.

Type 1: When no condition is imposed on the
independent variable against the defined function,
i.e; when given function is not piecewise.

Highlight on the Working Rule

Limit of the given function as x a→ = value of the
given function at x = a, in the examples to follow.

Solved Examples

Test the continuity of the following functions at the
indicated points.
1. y = x2 + 3x at x = 2
Solution: y = x2 + 3
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⇒ = +
→ →

lim lim
x x

y x x
2 2

2
3� �

= 22 + 3 × 2 = 4 + 6 = 10
f (2) = 10 when f (x) = x2 + 3x

∴ =
→

f f x
x

2
2

� � � �lim

Hence, f (x) is continuous at x = 2.

2. y
x

x
=

−
−

2
9

3
 for x = 2

Solution: y
x

x
=

−
−

2
9

3

⇒ =
−
−

=
+ −

−→ → →
lim lim lim
x x x

y
x

x

x x

x2 2

2

2

9

3

3 3

3

� � � �
� �

= + = + =
→

lim
x

x
2

3 2 3 5� �

f 2
4 9

2 3

5

1
5� � = −

−
= −
−

=

∴ =
→

f f x
x

2
2

� � � �lim

Hence, f (x) is continuous at x = 2

Type 2: In case, f (x) = f1 (x), when x < a
          = f2 (x), when x > a
          = c, when x = a

i.e; when different functions are provided with
different restrictions imposed on the independent
variable x as x > a / x < a / x = a / x a x a≥ ≤/ / … etc
.against each function or in otherwords, when the
given function is a piecewise function, i.e. the given
function is defined adjacent intervals.

Highlight on the Working Rule

lim lim
x a x a

f x f x l
→ →+

= =	 
 	 
1 1 ,  where f1 (x) is a form

of the given function defined in an interval whose
right end point is ‘a’.

lim lim
x a x a

f x f x l
→ →+

= =	 
 	 
2 2 ,  where f2 (x) is a

form of the given function defined in an interval whose
left and point is also, ‘a’.

If l1 = l2 = c  then f (x) is said to be continuous at
x = a.

Solved Examples

1. If f (x) = 5x – 4, when 0 1< ≤x  = 4x3 – 3x, when

1 < x < 2 Show that f (x) is continuous at x = 1

Solution: lim lim
x x

f x x x
→ →+

= −
1 1

3
4 3� � � �

= 4 – 3 = 1

lim lim
x x

f x x
→ − →

= −
1 1

5 4� � � �

= 5 – 4 = 1
f (1) = 5 – 4 for f (x) = 5x – 4 when 0 1< ≤x

Hence, f f x f x f x
x x

1
1 1

� � � � � � � �= = ⇒
→ + → −
lim lim  is

continuous at x = 1.

2. If f x
x� � =

2

2
,  when 0 1≤ ≤x  = −2 32x x + 3

2
,

when 1 2≤ ≤x  test the continuity of f (x) at the

point x = 1.

Solution: lim lim
x x

f x
x

→ − →
= =

1 0 1

2

2

1

2
� �

lim lim
x x

f x x x
→ + →

= − +�
�

�
�1 0 1

2
2 3

3

2
� �

= − + = − + =2 3
3

2
1

3

2

1

2

f x
x� � =

2

2
 for 0 1 1 2≤ ≤ ⇒ =x f � �

Hence, f f x f x f x
x x

1
1 0 1 0

� � � � � � � �= = ⇒
→ + → −
lim lim

is continuous at x = 1.

Note: If f x
x� � =

2

2
,  when 0 1≤ ≤x

= − +2 3
3

2

2
x x ,  when 1 2≤ ≤x

then to find the value of the function f (x) at x = 1, we
may consider any one of the two pieces. Hence, in
the above example if we consider
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f x x x� � = − +2 3
3

2

2  for 0 1≤ ≤x , then f (1) =

2 3
3

2
1

3

2

2 3

2

1

2
− + = − + =

− +
=  so, in general,

when the condition (or, restriction) imposed on an
independent variable x contains x a x a≥ ≤/ /
c x a c x a> ≥ < ≤/ ,  then we may consider any one
of both functions to find the value of the function at
x = a because both functions provided us the same
value.

3. Test the continuity of the function f (x) at x = 2

f (x) = 2x + 1 for x ≤ 2

= x2 – 1 for x > 2

Solution: l h l x
x

. . = + =
→ −
lim

2 0
2 1 5� �

r h l x
x

. . = − = − =
→ +
lim

2 0

2
1 4 1 3� �

∴ ≠ ⇒
→

l h l l h l f x
x

. . . . lim
2

� �  does not exist ⇒

f (x) is discontinuous at x = 2.
4. Show that the function defined as

f x
x

a
a� � = −

2

, 0 < x < a

= 0, x = a

= −a
a

x

3

2 , x > a is continuous at x = a.

Solution: f (a) = 0 [�  f (x) = 0 when x = a is given in
the problem]    …(1)

lim lim
x a x a

f x a
a

x→ →+
= −

�

�
�

�

�
�� �

3

2

= − = − =a
a

a
a a

3

2
0 …(2)

lim lim
x a x a

f x
x

a
a

→ − →
= −

�

�
�

�

�
�� �

2

= − = − =
a

a
a a a

2

0 …(3)

(1), (2) and (3) ⇒ = =
→ + → −
lim lim

x a x a
f x f x� � � �

f a f x� � � �⇒  is continuous at x = a

5. Show that the function for f (x) defined by

f (x) = x + 1

2
,  when 0

1

2
< <x

= 1

2
,  when x = 1

2

= −�
�

�
�x

1

2
,  when 

1

2
1< <x  is discontinuous

at x = 1

2

Solution: f
1

2

1

2
�
�

�
� = …(1)

lim lim
x x

f x x
→ + →

= −�
�

�
�1

2

1

2

1

2
� �

= −�
�

�
� =

1

2

1

2
0 …(2)

lim lim
x x

f x x
→ − →

= +�
�

�
�1

2

1

2

1

2
� �

= + =
1

2

1

2
1 …(3)

(1), (2) and (3) ⇒ = ≠
→ + → −
lim lim

x x

f x f x
1
2

1
2

� � � �

f
1

2
�
�

�
� ⇒ f (x) is discontinuous at x =

1

2
.

N.B.: In fact, the in-equality of any two of (1), (2) and
(3) ensures discontinuity of the given function at

x = 1

2
.

6. Test the continuity of the function f (x) at x = 2

f x
x

x
� � = −

−

2
4

2
, when 0 < x < 2

f (x) = x + 2, when 2 5≤ ≤x
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Solution: l h l f x
x

xx x
. . = =

−
−→ →−

lim lim
2 2

2
4

2
� �

= + = + =
→

lim
x

x
2

2 2 2 4� �

r h l f x x
x x

. . = = + = + =
→ →+
lim lim

2 2
2 2 2 4� � � �

f (2) = (x + 2)x = 2 = 2 + 2 = 4
Hence, l.h.l = r.h.l = f (2) ⇒  f (x) is continuous at

x = 2.
7. Test the continuity of the given function at x = 1

f (x) = 2x + 3, when x ≤ 1 …(1)

= 8 – 3x, when 1 < x < 2 …(2)
Solution: f (1) = 2 × 1 + 3 = 2 + 3 = 5 …(1)

lim lim
x x

f x x
→ + →

= − = − =
1 1

8 3 8 3 5� � � � …(2)

lim lim
x x

f x x
→ − →

= + = + =
1 1

2 3 2 3 5� � � � …(3)

(1), (2) and (3) ⇒  f (x) is continuous at x = 1.
8. Test the continuity of the given function f (x) at
x = 2

f x
x

x
� � = −

−

2
4

2
,  when 0 < x < 2

f (x) = x + 1, when 2 5≤ ≤x

Solution: l h l f x
x

xx x
. . = =

−
−→ − →

lim lim
2 2

2
4

2
� �

= + = + =
→

lim
x

x
2

2 2 2 4� � …(1)

r h l f x x
x x

. . = = +
→ + →
lim lim

2 2
1� � � �

= 2 + 1 = 3 …(2)

(1) and (2) ⇒ ≠ ⇒
→

l h l r h l
x

. . . . lim
2

 f (x) does not

exist ⇒  f (x) is discontinuous at x = 2.
9. Test the continuity of the given function f (x) at
x = 1.

f x
x

x
� � =

+
9

2
,  when 0 1< ≤x

= +x

x

2
,  when 1 2< ≤x

Solution: l h l f x
x

xx x
. . = =

+→ →−
lim lim

1 1

9

2
� �

=
+

= =9

1 2

9

3
3 …(1)

r h l f x
x

xx x
. . = =

+
=

+
=

→ →+
lim lim

1 1

2 1 2

1
3	 
 …(2)

f
x

x x

1
9

2

9 1

1 2

9

3
3

1

� � =
+

�
��

�
�� =

×
+

= =
=

…(3)

(1), (2) and (3) ⇒  l.h.l = r.h.l = f (1) ⇒  f (x) is
continuous at x = 1.
10. Test the continuity of the given function f (x) at
x = 1 and x = 3 f (x) = x + 2, when x < 1

= 4x – 1, when 1 3≤ ≤x

= x2 + 5, when x > 3
Solution: f (x) = [f (x)]x = 1 = (4x – 1)x = 1

= 4 × 1 – 1 = 3 …(1)

lim lim
x x

f x x
→ + →

= −
1 1

4 1� � � �

= 4 × 1 – 1 = 3 …(2)

lim lim
x x

f x x
→ − →

= +
1 1

2� � � �

= 1 + 2 = 3 …(3)
(1), (2) and (3) ⇒  f (x) is continuous at x = 1
Now, we test the continuity at x = 3
f (3) = [f (x)]x = 3 = (4x – 1)x = 3

= 4 × 3 – 1 = 12 – 1 = 11 …(1)

l h l x
x

. . = −
→ −
lim

3
4 1� �

= 4 × 3 – 1 = 12 – 1 = 11 …(2)

r h l x
x

. . = +
→ +
lim

3

2
5� �

= 32 + 5 = 9 + 5 = 14 …(3)
(2) and (3) ⇒ ≠ ⇒r h l l h l. . . .  f (x) is discontinu-

ous at x = 3.
11. Test the continuity of the given function f (x) at

x = 0, 1 defined as f (x) = 2, when x ≤ 0 .
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= 3x + 2, when 0 1< ≤x

=
−
x

x 1
,  when x > 1

Solution: (a) Continuity test at x = 0

r h l f x x
x x

. . = = + =
→ + →
lim lim

0 0
3 2 2	 
 	 
 …(1)

l h l f x
x x

. . = = =
→ − →
lim lim

0 0
2 2	 
 	 
 …(2)

f (0) = [f (x)]x = 0 = 2 …(3)
(1), (2) and (3)

⇒ = =
→ + → −

f f x f x
x x

0
0 0

� � � � � �lim lim

∴  f (x) is continuous at x = 1
(b) Test of continuity at x = 1

lim lim
x h

f x f h
→ + →

= +
1 0 0

1� � � � , h > 0

=
+

+ −
=

+
= +∞

→ →
lim lim
h h

h

h

h

h0 0

1

1 1

1

∴ + = + ∞f 1 0� �
∴

→
lim
x

f x
1

� �  does not exist

Hence, f (x) is not continuous at x = 1
∴ f (x) has a discontinuity of second kind at x = 1.

Type 3: When a function is defined as
f (x) = f1 (x), when x a≠

= a constant ‘c’ (say), when x a≠

Remember:
1. A point of removable discontinuity/removable
discontinuity: If the limits of a function from the right
and left exists and are equal but is not equal to the
value of the function at a point, then the function is
said to have (or, contain) a point of removable
discontinuity (or, simply a removable discontinuity)
at the considered point.
Or, more explicitly,
A point of discontinuity (or, simply a discontinuity)
namely x = a is called removable discontinuity if the
limit of the function exists but the function either is
not defined at x = a or has a value different from the

limit x = a (i.e; lim
x a

f x f a
→

≠� � � � )

Or, in the notational form,

If at x = a, lim lim
x a x a

f x f x f a
→ + → −

= ≠� � � � � �,  then

f (x) is said to have (or, to contain) a point of removable
discontinuity (or, simply a removable discontinuity)
namely x = a (or, at x = a), e.g:

(i) f x
x x

x
� � = +2

 for x ≠ 0

= undefined, for x = 0
(ii) f (x) = | x |

f (0) = 3 are the functions having removable
discontinuity at x = 0.
2. A function having removable discontinuity at a
point x = a can be made continuous by giving the
function a new value ‘c’ equal to the limit of the
function at the point x = a.
3. A discontinuity is called a removable discontinuity
because it can be removed from the function and the
function becomes continuous whereas a non-
removable discontinuity is any discontinuity which
is not removable.
4. A function f (x) having (or, containing) removable
discontinuity is also said to be redefined at x = a if the
function f (x) is made continuous by assuming (or,
setting) the value of the function f (x) at x = a to be
equal to the limit of the function at x = a.
5. Jump discontinuity: A function f (x) is said to have
a jump discontinuity at x = a if the left hand limit and
right hand limit of the function f (x) at x = a exist and
are finite but are not equal.
Or, in the notational form,

If lim
x a

f x L
→ −

=� � 1  and lim
x a

f x L
→ +

=� � 2  but

L L1 2≠ ,  then we say that the function f (x) has a

jump discontinuity namely x = a or we say that f (x)
has a jump discontinuity at x = a or a discontinuity of
the first kind (or, a point of jump discontinuity or, a
point of discontinuity of the first kind) at x = a. e.g:,

(i) f (x) = 1, when x > 0
= –1, when x < 0

is a function having a jump discontinuity (or,
discontinuity of the first kind) at x = 0 or we can say
x = 0 is a point of jump discontinuity or a point of
discontinuity of the first kind of f (x).
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6. A function f (x) is said to have a discontinuity of
the second kind at a point x = a if at least one of one
sided limit fails to exist at the considered point x = a.
Or, in the notational form,

If at least one of the limits lim lim
x a x a

f x f x
→ − → +

� � � �/

does not exist, we say that the function f (x) has a
discontinuity of the second kind at x = a. e.g.,

(i) f x
x

x� � = �
�

�
� ≠sin

1
0,

f (0) = 0
is the function having a discontinuity of the second
kind at x = 0 or we can say x = 0 is a point of
discontinuity of the second king of f (x).

Highlight on the Working Rule

(l.h.l = r.h.l at x = a) = lim
x a→

 [the function opposite

which x a≠  is written] and see whether l.h.l = r.h.l =

lim
x a→

 [the function written before x a≠ ]

= = =
→

lim
x a

f x f a1 � � � �  given value = c

N.B.:
1. f (a + 0) and f (a – 0) are the notations used for l.h.l
and r.h.l at x = a.
2. x a≠ ⇔  either x > a or x < a ⇔ →x a

Solved Examples

1. Show that the function f (x) is discontinuous at
x = 1

f (x) = x2, when x ≠ 1

= 2, when x = 1
Solution: (l.h.l at x = 1)

= = =
→ − →
lim lim

x x
f x x

1 1

2
1� � …(i)

(r.h.l at x = 1)

= = =
→ + →
lim lim

x x
f x x

1 1

2
1� � …(ii)

f (1) = 2 (given) …(iii)

(i), (ii) and (iii) ⇒ = ≠ ⇒l h l r h l f f x. . . . 1� � � �  is

discontinuous at x = 1.
2. Test the continuity of the function f (x) at x = 1
defined by

f x
x x

x
x� � = − +

−
≠

2

2

4 3

1
1,

= 2, x = 1
Solution: (l.h.l = r.h.l at x = 1)

=
− +

−

�

�
�

�

�
�

→
lim
x

x x

x1

2

2

4 3

1

=
− − +

+ −→
lim
x

x x x

x x1

2
3 3

1 1

� �
� � � �

=
− − −
+ −→

lim
x

x x x

x x1

3 3

1 1

� � � �
� � � �

=
− −
+ −→

lim
x

x x

x x1

3 1

1 1

� � � �
� � � �

=
−
+→

lim
x

x

x1

3

1

� �
� �

=
−
+

= − = −
1 3

1 1

2

2
1

f (1) = 2 (given)

Hence, (l.h.l = r.h.l at x = 1) ≠ ⇒f f x1� � � �  is

discontinuous at x = 1.

3. If f x
x x

x x
x� � = − +

− +
≠

2

2

3 2

4 3
1,

= 2, x = 1 show that given function is discontinuous
at x = 1.
Solution: (l.h.l = r.h.l at x = 1)

=
− +

− +

�

�
�

�

�
�

→
lim
x

x x

x x1

2

2

3 2

4 3

=
− − +

− − +

�

�
�

�

�
�

→
lim
x

x x x

x x x1

2

2

2 2

3 3
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=
− −
− −→

lim
x

x x

x x1

1 2

1 3

� � � �
� � � �

=
−
−→

lim
x

x

x1

2

3

� �
� �

=
−
−

= −
−

=
1 2

1 3

1

2

1

2

f (1) = 2 (given)

Hence, (l.h.l = r.h.l at x = 1) ≠ ⇒f f x1� � � �  is

discontinuous at x = 1.

4. If f x
x x

x
x	 
 =

+ − −
≠

4 4
0, and f 0

1

2
	 
 = ,

test the continuity at x = 0.
Solution: l.h.l = r.h.l at x = 0

=
+ − −

→
lim
x

x x

x0

4 4

=
+ − −

×
+ + −
+ + −

�
��

�
��→

lim
x

x x

x

x x

x x0

4 4 4 4

4 4

=
+ − +

+ + −→
lim
x

x x

x x x0

4 4

4 4

� �
� �

=
+ + −→

lim
x

x

x x x0

2

4 4� �

=
+ + −→

lim
x x x0

2

4 4� �

=
+ + −

=
+

=2

4 0 4 0

2

2 2

1

2

f 0
1

2
� � =  (given)

Thus, l.h.l = r.h.l = f (0) = 
1

2
⇒  continuity of the

function f (x) at x = 0.

5. Test the continuity of the given function at x = 1

f x
x

x
x� � = + −

−
≠

3 2

1
1

3
,

=2, x = 1
Solution: f (1 – 0) = f (1 + 0)

=
+ −

−→
lim
x

x

x1 3

3 2

1

=
+ −

−
×

+ +
+ +

�

�
�

�

�
�

→
lim
x

x

x

x

x1 3

3 2

1

3 2

3 2

=
+ −

− + + + +→
lim
x

x

x x x x1 2

3 4

1 1 3 2� � � � � �

= −

− + + + +→
lim
x

x

x x x x1 2

1

1 1 3 2� � � � � �

=
+ + + +→

lim
x x x x1 2

1

1 3 2� � � �

=
+ + + +

1

1 1 1 1 3 2
2

� � � �

=
+

=1

3 2 2

1

12� �
f (1) = 2 (given)

Thus, l.h.l = r.h.l ≠ ⇒f 1� �  discontinuity of the

function at x = 1.
6. Test the continuity of the function f (x) at x = 1

f x
x

x
x� � = + −

−
≠

2
1 2

1
1,

= =
1

2
1, x

Solution: f (1 – 0) = f (1 + 0)
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=
+ −
−→

lim
x

x

x1

2
1 2

1� �

=
+ −
−

×
+ +

+ +

�

�
�
�

�

�
�
�→

lim
x

x

x

x

x
1

2 2

2

1 2

1

1 2

1 2

=
+ −

− + +�
��

�
��

→
lim
x

x

x x
1

2

2

1 2

1 1 2� �

=
−

− + +�
��

�
��

→
lim
x

x

x x
1

2

2

1

1 1 2� �

=
+

+ +�
��

�
��

→
lim
x

x

x
1 2

1

1 2

� �

=
+
+

1 1

2 2

= =2

2 2

1

2

f 1
1

2
� � =  (given)

Hence, f (1 – 0) = f (1 + 0) = f f x1� � � �⇒  is

continuous at x = 1
7. Show that the function f defined as

f x
x

x
� � = + −3 3

 is discontinuous at x = 0, and

then determine if the discontinuity is removable.
Solution: (a) (i) f or f (x) is not defined at x = 0 as

f x
x

	 

=

=
0

0

0
 (undefined)

∴  f (x) has discontinuity at x = 0.

(ii) lim lim
x x

f x
x

x→ →
=

+ −�
��

�
��0 0

3 3� �

=
+ −

×
+ +
+ +

�
��

�
��→

lim
x

x

x

x

x0

3 3 3 3

3 3

=
+ −

+ +→
lim
x

x

x x0

3 3

3 3� �

=
+ +→

lim
x

x

x x0 3 3� �

=
+ +→

lim
x x0

1

3 3� �

=
+

=1

3 3

1

2 3

(b) The discontinuity is removable if we define the
function as follows

f x
x

x
x� � = + −
≠

3 3
0,

= =1

2 3
0, x

8. A function is defined as under

f x
x x

x x
x� � = − −

− −
≠

2

2

6

2 3
3, at

=
5

3
,  at x = 3

show that f (x) is discontinuous at x = 3

Solution: lim lim
x x

f x f x
→ + → −

=
3 3 0

� � � �

= lim
x

x x

x x→

− −

− −

�

�
�

�

�
�

3

2

2

6

2 3

=
− +
− +→

lim
x

x x

x x3

3 2

3 1

� � � �
� � � �

=
+
+

=
+
+

=
→

lim
x

x

x3

2

1

3 2

3 1

5

4
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f 3
5

3
� � =  (given)

∴ ≠ ⇒
→

lim
x

f x f f x
3

3	 
 	 
 	 
  has discontinuity

at x = 3.

Type 4: Problems based on continuity of an absolute
value function (or, modulus function)

Firstly, we recall the definition of absolute value
function.

Definition: An absolute value function is a function
defined on the domain of all real numbers such that
with any number x in the domain, the function
associates algebraically the non-negative number

x
2

,  which is designated by writing two vertical

lines around x as | x |. Therefore the value of the
function at x is

x x x= =
2

,  when x ≥ 0

x x x= = −
2

,  when x < 0

which means an absolute value function (or, modulus
function or, simply mod function) maps every positive
real number onto its positive number, zero onto zero
and every negative real number onto its negative,
which is the corresponding positive number. Thus | x
| is never negative. Hence, an absolute value function
represented by the symbol ‘| |’ designated by writing
two vertical lines is like an electric current rectifier
that converts either positive or negative current into
positive. Further we should note that the domain of
an absolute value function is the set of all real numbers
and the range is the set of all positive real number
including zero which can be written in the following
notational form.

Function Image Domain Range

| | | x |  R R
+ ∪ 0 �

Remember:

1. | f (x) | = f (x), when f x� � ≥ 0

= –f (x), when f (x) < 0
2. | x – a | = (x – a), when (x – a) ≥ ⇒ ≥0 x a ;

= a – x, when (x – a) < 0 ⇒  x < a

3. x x x= =
2

, when x ≥ 0

= –x, when x < 0

4. x x=
2

5. x a x a− = −� �2

6. | x | = | –x | = x, when x is positive

7. lim
x c

x c
→

= ,  for any real c lim
x c

f x
→

=	 


lim
x c

f x
→

	 


8. f x f x� � � �	 
= 2

9. x x≠ ⇒ >0 0  and x < 0

10. | ( | f (x) | ) | = mod of a mod function f (x) = | f (x)| =

mod of f (x) since x x x2 2= = .

Method to test the continuity of an absolute value
function
To test the continuity of an absolute value function,
we may adopt the following working rule.
(Note: (i) | x | is read as modulus of x / mod of x/simply

mod. x. (ii) R+∪ 0 �  means a set of all positive real

numbers including zero).

Working rule:
1. Convert the given mod problem in f (x) and –f (x)
on imposing the condition (or, restriction)  which
becomes the problem for finding the l.h.l and r.h.l by
using the mod function definition ⇒  when we are
required to find l.h.l, we should put | f (x) | = – f (x)
which involves no mod symbol as well as we should
put | f (x) | = +f (x) which involves no mod symbol | |.
2. Find the l.h.l and r.h.l.
3. See whether l.h.l and r.h.l are equal or not.
4. If l.h.l = r.h.l, then we declare the existance of limits
for the given mod function at the given point x = a.
5. Find the value of the function at the given point
x = a.
6. If l.h.l = r.h.l = value of the given function at a
given point x = a then we declare that continuity of
the given mod function | f (x) | holds at the given point
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x = a and if l h l r h l. . . . ,≠  we declare that
discontinuity of the given mod function | f (x) | holds
at the given point x = a.

Solved Examples

1. Discuss the continuity of the function f (x) at x = 8

f x
x

x
� � = −

−
8

8 .

Solution: l h l
x

xx x
. . =

− −
−

= − = −
→ →

lim lim
8 8

8

8
1 1

� �
� � � �

r h l
x

xx x
. . =

−
−

= =
→ →

lim lim
8 8

8

8
1 1

� �

Thus, l h l r h l. . . .≠ ⇒  given function is
discontinuity at x = 8 or, alternatively, the function

f x
x

x
� � = −

−
8

8
 is not defined at x = 8 and so

discontinuity at x = 8.
2. Discuss the continuity of the function f (x) at x = 0

f x
x x

x
� � � �

=
+ 1

 for x ≠ 0  and f (0) = –1.

Solution: l h l
x x

xx
. . =

+
−→

lim
0

1� �
 (�  | x | = –x when

x < 0)

= − + = − + = −
→

lim
x

x
0

1 0 1 1� �� � � �

r h l
x x

xx
. . =

+
→

lim
0

1	 

 (�  | x | = x when x > 0)

= + =
→

lim
x

x
0

1 1� �

∴ ≠ ⇒l h l r h l. . . .  given function is disconti-

nuous at x = 0.
3. Discuss the continuity of the function f (x) at x = 0

f x e
x� � = − .

Solution: l h l e
x

x
. . =

→

− −
lim

0

� �

= = =
→

lim
x

x
e e

0

0
1

r h l e
x

x
. . =

→

−
lim

0

= = =−
e e

0 0
1

f e0 1
0� � = =−

∴ = = ⇒l h l r h l f. . . . 0� �  given function has a

continuity at the origin (x = 0).
4. Discuss the continuity of the function f (x) at x = 0.

(i) f x
x

x
� � =

(ii) f x
x

x
� � =

Solution: (i) The function f x
x

x
� � =  is not de-

fined at x = 0 and so it is discontinuous at x = 0.

(ii) The function f x
x

x
� � =  is not defined at x = 0

and so it is discontinuous at x = 0.

5. Discuss the continuity of the function f (x) at

x = –2 f x x
x

x
� � = +

+
+

2

2
.

Solution: The function f x x
x

x
� � = +

+
+

2

2
 is not

defined at x = –2 and so discontinuous at x = –2.

6. Show that f (x) = | x | is continuous at the origin.
Solution: f (x) = | x |

l h l x
x

. . = − =
→

lim
0

0� �

r h l x
x

. . = =
→

lim
0

0� �

f 0 0 0� � = =

∴ = = ⇒l h l r h l f. . . . 0� �  given function f (x) is

continuous at x = 0.
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7. Discuss the continuity of the function f (x) at x = 8

f x
x

x
x	 


	 

=

−

−
≠

8

8
8

3

3
, ; and f (8) = –1.

Solution: f x
x

x
x	 


	 

=

−

−
≠

8

8
8

3

3
,

∴ =
− −

−→
l h l

x

xx
. . lim

8

3

3

8

8

	 

	 


= − = −
→

lim
x 8

1 1� �

r h l
x

xx
. . = −

−
�
��

�
��→

lim
8

3
8

8

= =
→

lim
x 8

1 1

Hence, l h l r h l. . . .≠ ⇒  given function is discon-

tinuous at x = 8.

Note
1. Any polynomial function, ex, sin x, cos x, | x | are
functions which are continuous everywhere.
2. Log x is continuous everywhere except x ≤ 0
where it is not defined.

3. Ratio of two polynomials 
p x

q x

� �
� �  is continuous

everywhere except at those points (or, those values
of x) which make q (x) = 0.
4. | f (x) | is continuous everywhere provided f (x) is
continuous everywhere.

Problems on | f (x) |

1. Discuss the continuity of | x | + | x – 1 | at x = 0, 1.
Solution: Since x is continuous everywhere ⇒ x
is continuous everywhere similarly, (x – 1) being a
polynomial is continuous everywhere ⇒ −x 1  is
continuous everywhere.

Hence, | x | + | x – 1 | is continuous everywhere

⇒ x  + | x – 1 | is continuous at x = 0, 1

2. A function is defined as
f (x) = | x | + | x – 1 | + | x – 2 |

Solution: Since we know that | x |, | x – 1 | and | x – 2 |
are continuous everywhere ⇒ x  + | x – 1 | + | x – 2 |
is continuous everywhere

⇒ x  + | x – 1 | + | x – 2 | is continuous at x = 0, 1

Examples on redefined functions which is the
combination of f (x) and | f (x) |
1. Discuss the continuity of the function f (x) at x = 2

f x
x

x
� � =

3

,  when x ≠ 0  = 0, when x = 0.

Solution: l h l
x

x
x

x x
. . =

−�

�
�

�

�
� = − =

→ →
lim lim

0

3

0

2
0� �

r h l
x

x
x

x x
. . =

�

�
�

�

�
� = =

→ →
lim lim

0

3

0

2
0� �

f (0) = 0

∴ = = = ⇒l h l r h l f f x. . . . 0 0� � � �  is continu-

ous at x = 0.
2. Discuss the continuity of the function f (x) at x = 0

f x
x

x
� � = ,  when x ≠ 0  = 0, when x = 0.

Solution: l h l
x

xx
. . =

−�
�

�
� = −

→
lim

0
1

r h l
x

xx
. . = �

�
�
� =→

lim
0

1

∴ ≠ ⇒l h l r h l. . . .  f (x) is discontinuous at x = 0.

3. If f (x) = | x | + 1, x ≠ 0 = 1, at x = 0 test the continuity
of f (x) at x = 0.
Solution: f (x) = | x | + 1

l h l x
x

. . = − + = − + =
→

lim
0

1 0 1 1� � � �

r h l x
x

. . = + = + =
→

lim
0

1 0 1 1� � � �

f (0) = | 0 | + 1 = 0 + 1 = 1
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∴ = = ⇒l h l r h l f. . . . 0� �  given function f (x) is

continuous at x = 0.
4. Discuss the continuity of f (x) at x = 0

f x
x x

x
� � = −

,  when x ≠ 0  = 2, when x = 0.

Solution: l h l
x x

xx
. . =

− −�
��

�
�� =

→
lim

0

� �

= =
→

lim
x

x

x0

2
2

r h l
x x

xx
. . =

−�
��

�
�� =→

lim
0

0

∴ ≠ ⇒l h l r h l. . . .  f (x) is discontinuous at x = 0.

Examples on trigonometrical and inverse trigono-
metrical functions redefined

Remember:

1. lim
sin

x

x

x→

−

=
0

1

1

2. lim
tan

x

x

x→

−

=
0

1

1

3. lim
sin

x

x

x→
=

0
1

4. lim
tan

x

x

x→
=

0
1

5. lim cos
x

x
→

=
0

1

Now we come to the problems.
1. Test the continuity of the function f (x) at x = 0
where

f x
x

x
x� � = ≠

sin 3

2
0,

= 2

3
,  x = 0

Solution: l h l r h l
x

xx
. . . .= = �

��
�
��→

lim
sin

0

3

2

= × ×�
��

�
��→

lim
sin

x

x

x
x

x0

3

3
3

1

2

= ×�
��

�
��→

lim
sin

x

x

x0

3

3

3

2

= × �
��

�
�� = ×

→

3

2

3

3

3

2
1

0
lim

sin
x

x

x

=
3

2

f 0
2

3
	 
 =  (given)

∴ = ≠ ⇒l h l r h l f. . . . 0� �  the given function f (x)

is discontinuous at x = 0
2. Test the continuity of f (x) at x = 0, if

f x
x

x
x� � = ≠

sin
, 0

= 1, x = 0

Solution: l h l
x

xx
. . =

−
−→

lim
sin

0

� �
� �

=
−
−

�
��

�
�� =→

lim
sin

x

x

x0
1

r h l
x

xx
. . = �

��
�
�� =→

lim
sin

0
1

f (0) = 1

Hence, l h l r h l f. . . .= = ⇒0� �  f (x) is continuous

at x = 0.
3. Test the continuity of the function f (x) at x = 0
defined as under

f x x
x

x

x
� � = ≠

=

�
��
��

−
sin cos when

when

1 1
0

0 0

,

,

Solution: f x
x

x
x

x
x

x
� � =

⋅ >

− ⋅ <

�
�
�

�
�

−

−

sin cos when

sin cos when

1

1

1
0

1
0

,

,

� sin sin
− −

− = −
1 1

x x� �� �
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l h l x
xx

. . = − ⋅�
�

�
�→

−
lim sin cos

0

1 1

= = ≤ ≠�
��

�
��→

−
0 0

1
1 0

0

1
� lim sin and cos for

x
x

x
x

r h l x
xx

. . = ⋅�
�

�
� =→

−
lim sin cos

0

1 1
0

f (0) = 0 (given)
Thus, l.h.l = r.h.l = f (0) ⇒  given function is

continuous at x = 0.
4. Examine whether the following function is
continuous at x = 0

f x
x x x

x
x� � = + +
≠−

4 3 2

1

2
0

tan
,  and f (0) = 0.

Solution: l.h.l = r.h.l = + +
→ −lim

tanx

x x x

x0

4 3 2

1

2

=
+ +

→
lim

tan tan tan
θ

θ θ θ
θ0

4 3 2
2

[on putting x = tanθ  x → →0 0, θ ]

=
�

�
�

�

�
� +

�

�
�

�

�
� +

→ → →
lim

tan
lim

tan
lim tan

θ θ θ

θ
θ

θ
θ

θ
0

4

0

3

0

2
2� �

= × + ×
→ → → →

lim
tan

lim tan lim
tan

lim tan
θ θ θ θ

θ
θ

θ
θ

θ
θ

0 0

3

0 0

2

+ lim
tan

lim tan
θ θ

θ
θ

θ
→ →

×
0 0

2� �

= 1 × 0 + 1 × 0 + 1 × 0 = 0
f (0) = 0 (given)

Hence, lim
x

f x f
→

= ⇒
0

0� � � �  the given function

f (x) is continuous at x = 0. (Note: (i) If lim
x a

f x
→

=� � 0

and g x m� � ≤ , , then lim
x a

f x g x
→

⋅ =	 
 	 
 0 .

(ii) If lim
x a

f x
→

=� � 0 , then f (x) is said to be an

infinitesimal (or, infinitely small)).

Examples on redefined exponential function of x or
defined function of x
1. Test the continuity at x = 0 of the following function

f x e xx� � = ≠
−

1

0,  f (0) = 0.

Solution: For h > 0,

f f h f h
h h h

0 0 0
0 0 0

+ = + = =
→ → →

� � � � � �lim lim lim

e h
−

=
1

0

f f h f h
h h h

0 0 0
0 0 0

− = − = − =
→ → →

� � � � � �lim lim lim

e h

1

= +∞

∴  f (x) has infinite discontinuity at x = 0.

2. Test the continuity of y e
x

=
−

 at the origin (i.e.

x = 0).

Solution: l h l e e e
x

x

x

x
. . = = = =

→

− −

→
lim lim

0 0

0
1

� �

r h l e
e ex

x

x x
. . = = = = =

→

−

→
lim lim

0 0 0

1 1 1

1
1

f
e

0
1 1

1
1

0
� � = = =

Thus, l.h.l = r.h.l = f (0) ⇒  given function f (x) is
continuous at x = 0 (or, origin).

Problems based on greatest integer function/
combination of two greatest integer function/
combination of a function and a greatest integer
function defined or redefined
1. Discuss the continuity of the following functions
at x = 0.
(i) f (x) = [x] + [1 – x] for all real x
(ii) f (x) = x + [x] for all real x
(iii) f (x) = [x] + [–x] if x ≠ 0 , f (0) = –1

(iv) f (x) = x [x]
where [t] denotes the largest integer less than or equal
to t.
Solution: (i) f (x) = [x] + [1 – x] for all real x
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l h l f x x x
x x

. . = = + +
→ − → −
lim lim

0 0 0 0
1� � 	 


= − + − −
→

lim
h

h h
0

0 1 0� �� �

= − + +
→

lim
h

h h
0

1	 


= − + =
→

lim
h 0

1 1 0� �

r h l f x x x
x x

. . = = + −
→ + → +
lim lim

0 0 0 0
1� � 	 


= + + − −
→

lim
h

h h
0

0 1 0	 


= + −
→

lim
h

h h
0

1	 


= + =
→

lim
h 0

0 0 0� �

∴ =
→

lim
x

f x
0

0� � and f (0) = [0] + [1 – 0] = 0 + 1 = 1

Hence, lim
x

f x f
→

= ≠ =
0

0 0 1� � � �  f (0) = 1 which

means f (x) is discontinuous at x = 0.
(ii) f (x) = x + [x] for all real x

l h l f x
x

. . =
→ −
lim

0 0
� �

= +
→ −
lim

x
x x

0 0
	 


= − + −
→

lim
h

h h
0

0 0	 


= − − = − = −
→

lim
h

h
0

0 1 0 1 1	 


r h l f x
x

. . =
→ +
lim

0 0
� �

= +
→ +
lim

x
x x

0 0
	 


= + + +
→

lim
h

h h
0

0 0	 


= +
→

lim
h

h h
0
	 


= + =
→

lim
h

h
0

0 0� �

f (0) = (0 + [0] ) = 0

∴ ≠l h l r h l. . . .  which means f (x) is discontinuous

at x = 0
(iii) f (x) = [x] + [–x] if x = 0

f (0) = –1

l h l x x
x

. . = + −
→ −
lim

0 0
	 


= − + − −
→

lim
h

h h
0

0 0� �� � , h > 0

= − + − +
→

lim
h

h h
0

0 0	 


= − +
→

lim
h

h h
0
	 


= − + = −
→

lim
h 0

1 0 1� �

r h l x x
x

. . = + −
→ +
lim

0 0
	 


= + + − +
→

lim
h

h h
0

0 0� �� �

= + −
→

lim
h

h h
0
	 


= − = −
→

lim
h 0

0 1 1� �

f (0) = –1 (given)

∴ = = = − ⇒l h l r h l f. . . . 0 1� �  f (x) is continu-

ous at x = 0
(iv) f (x) = x [x]

r h l x x
x

. . =
→ +
lim

0 0
	 


=
→

lim
h

h h
0
� � , h > 0

= ⋅ =
→

lim
h

h h
0

0 0� �� � 	 
�

= =
→

lim
h 0

0 0

l h l x x
x

. . =
→ −
lim

0
	 


= − −
→

lim
h

h h
0

0 0� �� � , h > 0

�1 0> > ⇒h

1 < 1 + h < 2
and –1 < –h < 0
∴ [–h] = –1
[1 + h] = 1 and [1 – h] = 0

�  [–h] = –1 and [h] = 0



Practical Methods on Continuity test 287

= − −
→

lim
h

h h
0

� �� �

= − − − = −
→

lim
h

h h
0

1 1� �� �� � 	 
�

= =
→

lim
h

h
0

0

f (0) = 0 [0] = 0
∴ l.h.l = r.h.l = f (0) = 0 which means the function

f (x) is continuous at x = 0.
2. Discuss the continuity of the following functions
at the indicated points.
(i) f (x) = [1 – x] + [x – 1] at x = 1
(ii) f (x) = [x + 2] + [2 – x] at x = 2

(iii) f x
x

x
� � =

+�
��

�
��
−1

2
1
2

2

2
 at x = 1

(iv) f x
x

x
� � =

+�
��

�
��

1
2  at x = −

1

2

Solution: f (x) = [1 – x] + [x – 1]

l h l f x
x

. . =
→ −
lim

1 0
� �

= − + −
→ −
lim

x
x x

1 0
1 1	 


= − + + − −
→

lim
h

h h
0

1 1 1 1	 
 , h > 0

= + −
→

lim
h

h h
0
	 


= + −
→

lim
h 0

0 1� �	 


= −
→

lim
h 0

1� �

= –1

r h l x x
x

. . = − + −
→ +
lim

1 0
1 1	 


= − − + + −
→

lim
h

h h
0

1 1 1 1� � , h > 0

= − +
→

lim
h

h h
0
� �

= + −
→

lim
h 0

0 1� �	 


= −
→

lim
h 0

1� �

= –1
f (1) = [1 – 1] + [1 – 1] = [0] + [0] = 0

∴ = ≠ ⇒l h l r h l f. . . . 1� �  f (x) is discontinuous

at x = 1
(ii) f (x) = [x + 2] + [2 – x]

l h l x x
x

. . = + + −
→ −
lim

2 0
2 2	 


= − + + − −
→

lim
h

h h
0

2 2 2 2� �� � , h > 0

= − +
→

lim
h

h h
0

4� �

= + =3 0 3

r h l x x
x

. . = + + −
→ +
lim

2 0
2 2	 
 , h > 0

= + + + − +
→

lim
h

h h
0

2 2 2 2� �� �

= + + −
→

lim
h

h h
0

4� �

= 4 + (–1) = 3
f (2) = [2 + 2] + [2 – 2] = [4] + [0] = 4 + 0 = 4

Hence, l h l r h l f f x. . . .= ≠ ⇒2	 
 	 
  is discon-

tinuous at x = 2

(iii) f x
x

x
� � =

+�
��

�
��
− 11

2 2

2

2

r h l
x

xx
. . =

+�
��

�
��
−

→ +
lim

1 0

2

2

1
2

1
2

=
+ +�

��
�
��
−

+→
lim
h

h

h0

2

2

1
2

1
1
2

1

� �

� �
, h > 0

=
+ + +�

��
�
��
−

+ +→
lim
h

h h

h h0

2

2

1
2

1 2
1
2

1 2

0 < h < 1 and -1 < –h < 0 ⇒  [h] = 0
and [–h] = –1
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=
+ +�

��
�
��
−

+→
lim
h

h

h0

1
2

1 2
1
2

1 2

=
+�

��
�
��
−

+→
lim
h

h

h0

3
2

2
1
2

1 2

=
−

+→
lim
h h0

1
1
2

1 2

=
+

=
→

lim
h h0

1
2

1 2

1

2

l h l
x

xx
. . =

+�
��

�
��
−

→ −
lim

1 0

2

2

1
2

1
2

=
+ −�

��
�
��
−

−→
lim
h

h

h0

2

2

1
2

1
1
2

1

� �

� �
, h > 0

=
−�

��
�
��
−

−→
lim
h

h

h0

3
2

2
1
2

1 2� �
 [on neglecting higher

power  of h].

=
−

−→
lim
h h0

1
1
2

1 2

=
−

=
→

lim
h h0

1
2

1 2

1

2

f 1

1

2
1

1

2
1

1
1

2

1

2
� � =

+�
��

�
��
−

= − =

∴ = = ⇒l h l r h l f f x. . . . 1� � � �  is continuous at

x =1.

(iv) f x
x

x
� � =

+�
��

�
��

1
2

l h l
x

xx

. . =
+�

��
�
��

→− −
lim

1

2
0

1
2

=
− − +�
��

�
��

− −�
��

�
��

→
lim
h

h

h
0

1
2

1
2

1
2

, h > 0

=
−

− −�
��

�
��

→
lim
h

h

h
0 1

2

= −
−→

lim
h 0

1

1

=
→

lim
h 0

1

= 1

r h l
h

h
h

. . =
− + +�
��

�
��

− +�
��

�
��

→
lim

0

1
2

1
2

1
2

, h > 0

=
− +�
��

�
��

→
lim
h

h

h
0 1

2

∴ +�
��

�
��
=

3

2
2 1h  as

1
3

2
2 2< + <h  for

h being sufficinetly
small > 0

� − −�
��

�
��
= −

1

2
1h  and [–h] = –1 as 0 < h < 1 ⇒

–1 < –h < 0 ⇒ − < − − <1
1

2
0h

�

3

2
2 1−�

��
�
��
=h  as 1

3

2
2 2< − <h  for h

being suffuciently small > 0
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� h = 0  and [–h] = –1 as 0 < h < 1 ⇒
–1 < –h < 0

� h = 0  and [–h] = –1 as 0 < h < 1 ⇒
–1 < –h < 0

�  | –h | = | h | = h as h > 0 and 0 < h < 1
⇒  –1 < –h < 0 ⇒  [–h] = –1

=
−→

lim
h 0

0

1

= =
→

lim
x

0 0

f −��
�
� =

− +�
��

�
��

−�
��

�
��

=
−�
��

�
��

1

2

1
2

1
2

1
2

0
1
2

=
−

=
0

1
0

∴ ≠ = ⇒l h l r h l f. . . . 0� �  f (x) is discontinuous

at x = − 1

2
.

3.  Show that the function f defined by f (x) = [x – 3] +
[3 – x], where [t] denotes the largest integer < t, is
discontinuous at x = 3. Modify the definition of f so
as to make it continuous there.
Solution: f (x) = [x – 3] + [3 – x]

l h l f x
x

. . =
→ −
lim

3 0
� �

= − + −
→ −
lim

x
x x

3 0
3 3	 


= − − + − +
→

lim
h

h h
0

3 3 3 3	 
 , h > 0

= − +
→

lim
h

h h
0
	 


= − + = −
→

lim
h 0

1 0 1� �

r h l f x
x

. . =
→ +
lim

3 0
� �

= − + −
→ +
lim

x
x x

3 0
3 3	 


= + − + − −
→

lim
h

h h
0

3 3 3 3� �

= = + −
→

lim
h

h h
0

� �

= − + = −
→

lim
h 0

1 0 1� �

f (3) = [3 – 3] + [3 – 3] = [0] + [0] 0 + 0 = 0

∴ = ≠ ⇒l h l r h l f. . . . 3� �  f (x) is discontinuous

at x = 3

Further, l h l r h l f. . . .= ≠ ⇒3� �  f (x) has a re-

moval discontinuity at x = 3. This is why to remove
the discontinuity at x = 3, are must modify the defini-
tion of f as follows.

f (x) = [x – 3] + [3 – x], when x ≠ 3

= –1, when x = 3

4. Show that the function f defined by f (x) = [x – 1] +
| x – 1| for x ≠ 1 , and f (1) = 0 is discontinuous at
x = 1. Can the definition of f at x = 1 be modified so as
to make it continuous there?

Solution: f (x) = [x – 1] + | x – 1| for x ≠ 1

f (1) = 0 (given)

l h l f x
x

. . =
→ −
lim

1 0
� �

= − + −
→ −
lim

x
x x

1 0
1 1� �

= − − + − −
→

lim
h

h h
0

1 1 1 1� � , h > 0

= − + −
→

lim
h

h h
0
� �

= − +
→

lim
h

h
0

1� �

= –1 + 0 = –1

� − +�
��

�
��
= −

1

2
1h  and [h] = 0 as 0 < h < 1 ⇒

–1 < –h < 0 ⇒ − < − + <1
1

2
0h

−�
��

�
��
= −1

2
1 as − < − <1

1

2
0
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r h l f x
x

. . =
→ +
lim

1 0
� �

= − + −
→ +
lim

x
x x

1 0
1 1� �

= + − + + −
→

lim
h

h h
0

1 1 1 1� � , h > 0

= +
→

lim
h

h h
0
� �

= +
→

lim
h

h
0

0� �

= 0 + 0 = 0

∴ ≠ = = ⇒l h l r h l f. . . . 1 0� �  f (x) is discontinu-

ous at x = 1. Further, l h l r h l f x
x

. . . .≠ ⇒
→

lim
1

� �  does

not exist which ⇒  we can not modify the definition
of f at x = 1 in any way to make it continuous at x = 1.

Type 5: Problems based on finding the value of a
constant ‘k’ if the given function it continuous at a
given point x = a.

Working rule: To find the value of a constant ‘k’ if
the given function is continuous at a given point
x = a, we adopt the following procedure.
1. Find the l.h.l and r.h.l
2. Equate l.h.l = r.h.l = f (a) = a constant given in the
question and solve the equation for k.

Solved Examples

1. A function f is defined as

f x
x

x
x� � = −

+
≠ −

2
25

5
5,  and f (–5) = k, x = –5 if f (x)

is continuous at x = –5, find K.

Solution: l h l r h l
x

xx
. . . .= =

−
+

�

�
�

�

�
�

→−
lim

5

2
25

5

=
+ +

+→−
lim

x

x x

x5

5 5

5

� � � �
� �

= − = − − = −
→−
lim

x
x

5
5 5 5 10� � � �

Now, since, f (x) is continuous at x = –5 (given in
the problem)

∴ l.h.l = r.h.l = f (–5) … (i)
But f (–5) = k … (ii)

(i) and (ii) ⇒ − = ⇒ = −10 10k k Ans.

2. If f x
x x x

x
x� �

� �
= + − +

−
≠

3 2

2

16 20

2
2,

= k, when x = 2 and f (x) is continuous at x = 2, find the
value of K.

Solution: l h l r h l
x x x

xx
. . . . ,= = + − +

−→
lim

2

3 2

2

16 20

2� �

=
− + −

− −→
lim
x

x x x

x x2

2
2 3 10

2 2

� � � �
� � � �

=
− +

−→
lim
x

x x

x2

2 5

2

� � � �
� �

= + = + =
→

lim
x

x
2

5 2 5 7� �

Now, since f (x) is continuous at x = 2 (given in the
problem)

∴ l.h.l = r.h.l = f (2) … (i)
But f (2) = k (given in the problem) … (ii)

Hence, (i) and (ii) ⇒ =7 k ,  i.e; k = 7 Ans.

3. Find the value of k if the following function is
continuous at x = 0

f x
kx

x x
x	 
 = −
≠

1
0

cos

sin
,  and f (0) = 2.

Solution: l h l r h l
kx

x xx
. . . .= =

−
→

lim
cos

sin0

1

=

�
��

�
��

→
lim

sin

sinx

kx

x x0

22
2

=

�
��

�
��

�
��

�
��

⋅ ⋅

�

�

�
�
�
�
�

�

�

�
�
�
�
�

⋅
→

lim
sin

sinx

kx

k x

k x

x0

2

2 2

22

4

4
2

� [h] = 0 as 0 < h < 1
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= × ×2 1
4

2
2

	 
 k

= k 2

2
Now, that given function f (x) is continuous at

x = 0 ⇒  l.h.l = r.h.l = f (0) ...(i)
But f (0) = 2 (given) …(ii)
(i) and (ii) ⇒  l.h.l = r.h.l = f (0)

⇒ =k 2

2
2

⇒ =k 2 4

⇒ = ±k 2

4. Find the value of k if the following function f (x) is
continuous at x = 0

f x
kx

x
x	 
 = ≠

sin
, 0

f (x) = 4 + x, x = 0

Solution: l h l r h l
kx

xx
. . . .= = �

��
�
��→

lim
sin

0

= ⋅�
��

�
��→

lim
sin

x

kx

kx
k

0

= ⋅
→

lim
sin

x

kx

kx
k

0

= k × 1 = k
Also,  f (0) = 4 + 0 = 4
Now, f (x) is continuous at x = 0 ⇒  l.h.l = r.h.l =

f (0) …(i)
But f (0) = 4 … (ii)
(i) and (ii) ⇒  k = 4 Ans.

5. A function f (x) is defined as follows

f x
a x x

x
� � � �

=
+ +sin sin1 , for x < 0

= c, for x = 0

=
+ −x bx x

bx x

2

, for x > 0

Find the values of a, b, c if f (x) is continuous at
x = 0
Solution:

l h l f x
a x x

xx x
. . = =

+ +�
��

�
��→ →

lim lim
sin sin

0 0

1� � � �

=
+

+
�
��

�
��→

lim
sin sin

x

a x

x

x

x0

1� �

= +
+
+

+
�
�
�

�
�
�

→
lim

sin sin
x

a
a x

x a

x

x0
1

1

1
� � � �

� �

= +
+

+
+

→ →
lim

sin
lim

sin
x x

a
a x

a x

x

x0 0
1

1

1
� � � �

� �
= (a + 1) · 1 + 1 = a + 1 + 1 = a + 2 ...(1)

r h l f x
x bx x

bx xx x
. . = =

+ −
→ →

lim lim
0 0

2

� � , x > 0

=
+ −

×
+ +

+ +

�

�
�
�

�

�
�
�→

lim
x

x bx x

bx x

x bx x

x bx x
0

2 2

2

= + −

+ +�
��

�
��

�

�

�
�
�
�

�

�

�
�
�
�

→
lim
x

x bx x

bx x x bx x
0

2

2

=
+ +�

��
�
��

�

�

�
�
�
�

�

�

�
�
�
�

→
lim
x

bx

bx x x bx x
0

2

2

=
+ +�

��
�
��

�

�

�
�
�
�

�

�

�
�
�
�

→
lim
x

x

x x bx x
0 2

= ⋅

+ +�
��

�
��

�

�

�
�
�
�

�

�

�
�
�
�

→
lim
x

x x

x x bx x
0 2
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=
+ +�

��
�
��

�

�

�
�
�
�

�

�

�
�
�
�

→
lim
x

x

x bx x
0 2

=
+ +

�

�
�
�

�

�
�
�
=

→
lim
x bx0

1

1 1

1

2 ...(2)

f (0) = c (given)
f (x) is continuous at x = 0 ⇔  l.h.l = r.h.l = f (0)

⇔ + = =a c2
1

2

⇔ = − = −a
1

2
2

3

4  and c = 1

2

Thus, we get a = −
3

2

c = 1

2

Again, no restriction is imposed on b ⇒  it can
have any non-zero finite value (�  b = 0 makes f (x)
undefined)

Thus, we conclude

a

c

b

= −

=

=

�

�

�
��

�

�
�
�

3

2
1

2
any non-zero finite value

6. The function

f x
ax bx

x
� � � � � �

=
+ − −log log1 1

 is not do find at

x = 0.
Find the value which should be assigned to f at

x = 0 so that it is continuous at x = 0 is
(a) a – b (b) a + b (c) log a + log b (d) none of

these.
Solution:

lim lim log log
x x

f x
x

ax
x

bx
→ →

= + − −�
��

�
��0 0

1
1

1
1� � � � � �

= ⋅ ⋅ + + ⋅
−

⋅ −�
��

�
��→

lim log log
x

a
ax

ax b
bx

bx
0

1
1

1
1� � � �

= ⋅ + + −�
��

�
��→

−lim log log
x

ax bxa ax b bx
0

1 1
1 1� � � �

= + + −
→ →

−a ax b bx
x

ax
x

bxlim log lim log
0

1

0

1

1 1� � � �

= a (1) + b (1) = a + b
Now, for f (x) to be continuous at x = 0,

lim
x

f x f
→

=
0

0� � � �

⇒  f (0) = a + b
Thus, the correct answer is (b).

Note: Problem (6) is a problem of a point of removable
discontinuity of the function f (x) which tells x = a is
a point of removable discontinuity of the function

f (x) if there is a limit lim
x a

f x b
→

=� �  but either f (x) is

not defined at the point x = a or (f (x) at x = a) ≠  b and
if we set f (a) = b, then the function f (x) becomes
continuous at the point x = a, i.e; the discontinuity is
removed.

7. If f x x x	 
 	 
= +1
1

,  when x ≠ 0  = k, when x = 0

find the value of k if f (x) is continuous at x = 0.

Solution: y x x= +1
1

� �  (where y = f (x))

⇒ = +log logy x x1
1

� �

⇒ = +log logy
x

x
1

1� �

⇒ = ⋅ + =
→ →

lim log lim log
x x

y
x

x
0 0

1
1 1� �

⇒ = =
→

lim
x

y e e
0

1

Now, l h l r h l y e
x

. . . .= = =
→

lim
0

… (i)

(� x ≠ ⇒0  x > 0 and x < 0)



Practical Methods on Continuity test 293

Now, f (x) is given to be continuous at x = 0
⇒  l.h.l = r.h.l = f (0)

⇒  e = k, i.e; k = e. Ans.

Continuity in an Interval

1. A function f or f (x) defined in the open interval
(a, b) is said to be continuous in the open interval
(a, b) ⇔  f (x) is continuous at any arbitrary point
x = c where a < c < b. Hence, to test the continuity in
an open interval (or, for all x), we simply consider an
arbitrary point x = c s.t a < c < b = (a, b) and we show

that lim
h

f x f c
→

=
0

� � � �

or, lim lim
h h

f c h
→ →

+ =
0 0

� �  f (c – h) = f (c), where h→0

through +ve values

or lim lim,
x c
x c

x c
x c

f x f x f c
→
<

→
>

= =� � � � � �

Note: We must remember that it is not possible to
test the continuity of the function at every point of
an interval, however small it may be. This is why to
test the continuity of a function f (x) in an interval
(a, b), we always consider an arbitrary point

x = c s.t a < c < b and we show that lim
x c

f x f c
→

=� � � � .

This rule is applicable when the given function is not
a piecewise function or when the given function is
not redefined.

Explanation
1. Test the continuity of the function

f x
x x x

x x
� � = − + −

−

3

2

7 3 1

3
 in the interval

0 < x < 3, i.e; x∈ 0 3,� �
Solution: Let x = a be any arbitrary point in (0, 3) s.t
0 < a < 3

Now,

lim lim
x a
x a

h
f x

a h a h a h

a h a h→
>

→
=

+ − + + + −

+ − +
� � � � � � � �

� � � �0

3

2

7 3 1

3

(putting x = a + h)

=
− + −

−

a a a

a a

3 2

2

7 3 1

3
… (i)

Similarly, lim
x a
x a

f x
a a a

a a→
<

=
− + −

−
	 


3 2

2

7 3 1

3    …(ii)

and f (a) = − + −

−

a a a

a a

3 2

2

7 3 1

3
… (iii)

Hence, (i), (ii) and (iii)

⇒ = = ⇒
→
>

→
<

lim lim
x a
x a

x a
x a

f x f x f a� � � � � �  the given

function f (x) is continuous at x = a but ‘a’ is any
arbitrary point in (0,3), so the given function f (x) is
continuous in 0 < x < 3.
Or, alternatively,

f a
a a a

a a
� � = − − −

−

3 2

2

7 3 1

3

lim
x a

f x
a a a

a a→
=

− − −

−
� �

3 2

2

7 3 1

3

Hence, f (a) = ⇒
→

lim
x a

f x� �  continuity of f (x) at

any arbitrary point x = a ⇒  continuity of f (x) in the
given interval (0, 3).
2. Some-times taking some points in the given interval
(open or closed), we test the continuity of the function
at each such point separately belonging to the given
interval (open or closed). This is the case when the
given function is a piecewise function, i.e; if a function
is defined by different formulas for different ranges
of values of x, then there is a possibility of
discontinuity at the values where the two ranges of x
meet. Thus if we have one expression f1 (x) for x > a
and another expression f2 (x) for x < a, then the
probable point of discontinuity of the function given
to us is x = a. Similarly, if we have one expression f3 (x)
for x a≤ '  and another expression f4 (x) for x a> ' ,
then the probable point of the discontinuity of the
function f (x) given to us is x = a'.
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Explanation
1. Consider the function f (x) defined as under

f (x) = 0 for all values of x > 1
f (x) = 1 for all values of x < 1

f x� � = 1

2
 for x = 1

where, we can see that only probable point of the
function f (x) at which it may be discontinuous is
x = a since f (x) (or, the value of the function ‘f ’)
changes its expression in the neighbourhood of x = 1.
2. Consider the function f (x) defined as under

f (x) = (2x – 1), when x < 0
f (x) = 2x, when x ≥ 0

where by inspecting the behaviour of the given
function f (x), we can see that only probable point of
f (x) at which it may be discontinuous is x = 0 since
the function f (x) (or, the value of the function ‘f ’)
changes its expression in the neighbourhood of x = 0.
3. The functions which we face in elementary
applications of the calculus are usually either
continuous for values of x or have discontinuities
only for a number of values which makes the function
undefined/imaginary/infinite.

Explanation

(i) y
x

=
1
⇒  this function is discontinuous at x = 0.

(ii) y x= ⇒tan  this function is discontinuous at

x = π
2

.

(iii) y
x

x
=

−
⇒

2
4� �

 this function is discontinuous

at x = ± 2 .

4. If the continuity fails to exist for some value of x
between a and b in case the interval is open, we say
that the function is discontinuous in (a, b).

5. If the continuity fails to exist for some value of x
between a and b (including a and b) in case the interval
is closed, we say that the function is discontinuous
in [a, b].

Solved Examples

1. At what points of the interval, shown against each
function are the following functions discontinuous?

(i) f (x) = x if x ≠ 0

f (0) =1, in the interval [–1, 1]
(ii) f (x) = 4x + 7 for x ≠ 2

f (2) = 3, in the interval [–4, 4]

(iii) f x
x

x
� � = −

−

9 16

27 64

2

3 , when x ≠ 4

3

f
4

3

2

3
�
�

�
� = , in the interval [–1, 3]

Solutions: (i) By inspecting the behaviour of the
given function, we can see that the only probable
point of the interval [–1, 1] at which the given function
may be discontinuous is x = 0 because the function
f (x) changes its expression in the neighbourhood of

x

x

f x x
f

=
≠

=
=

�

�

�
�
�

�

�

�
�
�

0

0

0 1

i.e; when the value of

the function and

,

	 

	 


Thus, l h l r h l f x x
x x

. . . .= = = =
→ →

lim lim
0 0

0� �

f (0) = 1 (given)

(i) and (ii) ⇒ = ≠ ⇒l h l r h l f. . . . 0� �  f (or, f (x)) is

discontinuous at x = 0.
(ii) we can see that only probable point of the interval
[–4, 4] at which the function may be discontinuous is
x = 2 since the value of the function f (or, f (x)) changes
its expression in the neighbourhood of x = 2

[� f x xx� � ≠ = +2 4 3  and f x
x� �	 
 = =

2
3 ]

Thus, l h l r h l x
x

. . . .= = +
→

lim
2

4 7� �  = 8 + 7 = 15

[f (x)]x = 2 = f (2) = 3

∴ = ≠ ⇒l h l r h l f. . . . 2� �  f (or, f  (x)) is

discontinuous at x = 2.
(iii) The only probable point of discontinuity of the

function is x = 4

3
 since the function f or  f (x) changes
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its expression in the neighbourhood of x =
4

3
, i.e.

f x
x

xx
	 


≠
=

−
−

4

3

2

3

9 16

27 64

f x
x� � = =4

3

2

3

Thus l h l r h l
x

xx

. . . .= =
−
−→

lim
4

3

2

3

9 16

27 64

=
− +

− + +→
lim
x

x x

x x x4

3

2

3 4 3 4

3 4 9 12 16

� � � �
� � � �

= +

+ +→
lim
x

x

x x4

3

2

3 4

9 12 16

=

�
�

�
� +

�
�

�
� + �

�
�
� +

= =
3

4
3

4

9
4
3

12
4
3

16

8

48

1

62

But f
4

3

2

3
�
�

�
� =

Hence, l h l r h l f. . . .= ≠ �
�

�
�

4

3

⇒ ≠ �
�

�
�→

lim
x

f x f
4

3

4

3
� �

⇒  f (or, f (x)) is not continuous at x = 4

3
2. Discuss the continuity of f in [0, 2] if

f (x) = x + 1, 0 1≤ <x

= 2x + 1, 1 2≤ ≤x

Solution: l h l f x x
x x

. . = = +
→ − →
lim lim

1 1
1� � � � = 1 + 1 = 2

r h l f x x
x x

. . = = +
→ + →
lim lim

1 1
2 1� � � �  = 2 × 1 + 1

= 2 + 1 = 3

f (1) = 2 + 1 = 3
∴  f (x) is discontinuous at x = 1.
Therefore, f (x) is discontinuous in the given closed

interval [0, 2].
3. Show that the function

f x

x x

x x

x x

� � =
+ − < < −
− − ≤ <
+ < <

�
��

��

2 3 3 2

1 2 0

2 0 1

,

,

,

when

when

when

is discontinuous in the open interval (–3, 1).

Solution: l h l x
x
x

. . = +
→−
<−

lim
2

2

2 3� �  = 2 × (–2) + 3

= – 4 + 3 = –1

r h l x
x
x

. . = −
→−
>−

lim
2

2

1� �  = –2 – 1 = –3

Thus, ( l h l r h l. . . .≠  at x = –2) ⇒  f  (x) is

discontinuous is [–3, 1]

Note: There is no need to test the continuity at x = 0
where

l h l f x x
x
x

x
. . = = − = −

→
<

→
lim lim

0
0

0
1 1� � � �

r h l f x x
x
x

x
. . = = + = + =

→
>

→
lim lim

0
0

0
2 0 2 2� � � �

Hence, l h l r h l. . . .≠  at x = 0 which means f (x) is
discontinuous at x = 0 and so discontinuous in the
given open interval (–3, 1).

Continuity at the End
Points of a Closed Interval

Definition: Set a function f (x) be defined on (or, over

or, in) the closed interval a x b a b≤ ≤ = ,  where

a = left end point and b = right end point.
1. The function f (x) is said to be continuous at the
left end point ‘a’ of a closed interval a x b≤ ≤  iff

r.h.l of f (x) at x = a is = f (a) , i.e.; lim
x a
x a

f x f a
→
>

=� � � �

/ lim
x a

f x f a
→ +

=� � � � ,  where f (a) = value of the

function at x = a.
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2. The function f (x) is said to be continuous at the
right end point ‘b’ of a closed interval a x b≤ ≤  iff

l.h.l of f (x) at x = b is f (b), i.e; lim
x a
x a

f x f b
→
<

=� � � �  /

lim
x b

f x f b
→ −

=� � � � , where f (b) = value of the

function at x = b.

Note:
1. Continuity at the left end point of closed interval
is required only when a given function is not defined
for x < a, where a = left end point ⇒  If we are not
provided f (x) = φ x� �  for x < a and we are provided
f x x x a� � � �= ≥ ⇒φ1 for  we are required to test

the continuity at x = a = l.e.p for which only r.h.l is
required to find out.
2. Continuity at the right end point of a closed interval
is required only when a given function is not defined
for x > b, where b = right end point ⇒  if we are not
provided f (x) = φ x� �  for x > b and we are provided
f x x x b� � � �= ≤ ⇒φ1 for  we are required to test

the continuity at x = b = r.e.p for which only l.h.l is
required to find out. This is why we do not need to
find out the right hand limit of the given function.

Now, we come to the model of the questions which
are provided to us. Generally the model of the
question is the following:

1. f x
f x a x b

f x b x c
� � � �

� �=
≤ ≤
≤ ≤

�
�
�

1

2

,

,

when

when

and the interval is [a, c]

2. f x
f x a x b

f x b x c
� � � �

� �=
< <
≤ ≤

�
�
�

1

2

,

,

when

when

and the interval is (a, c]

3. f x
f x a x b

f x b x c
� � � �

� �=
≤ <
≤ ≤

�
�
�

1

2

,

,

when

when

and the interval is [a, c]

4. f x
f x a x b

f x b x c
� � � �

� �=
≤ <
≤ <

�
�
�

1

2

,

,

when

when

and the interval is [a, c)
In all above types of problems ‘b’ may be regarded

as the common point where the two ranges of values
of the independent variable x meet when a given
function f (x) is defined by various formulas for
different ranges of x as well as a and c may be regarded
as the end point of a closed interval or semi (or, half)
open and semi closed or semi closed and semi open
interval as (a, c] or [a, c).

Now, a question arises how to test the continuity
at x = a, b, c when the given function is a piecewise
function.

Question: How to test the continuity at x = b =
common point where the two ranges of x meet?
Answer: Continuity at the common point where the
two ranges of x meet requires to find out l.h.l, r.h.l
and the value of the function at x = b for which we
should consider both given functions f1 (x) and f2 (x)
against which the restriction.

x > b and x b≤
or, x b≥  and ≤ b
or, x > b, x < b and x = b
or, x b≥  and x < b is imposed.
Question 2: How to test the continuity at x = l.e.p of

[a, c] = a x c≤ ≤ ?

Answer: Continuity at x = l.e.p of [a, c] or, [a, c)
requires to find the r.h.l of the function f (x) = f1 (x)
against which x a≥  is written and the value of the
function f (x) at x = a and the other function f (x)
= f2 (x) against which the restriction x < a is imposed
is not defined (or, given). This is why l.h.l of f (x) = f2
(x) as x a→  is not required which means that

lim
x a

f x
→ − 2 � �  is not required to find out. While testing

the continuity at l.e.p of the closed interval [a, c] or
semi closed and semi open interval [a, c).

Question 3: How to test the continuity at x = r.e.p of

[a, c] = a x c≤ ≤ ?

Answer: Continuity at x = r.e.p of [a, c] or, (a, c]
requires to find out l.h.l of the function f (x) = f2 (x)
against which x < c is written and the value of the

Aid to memory

r e p l h l. . . .needs →

l e p r h l. . . . →



Practical Methods on Continuity test 297

function f (x) = f2 (x) at x = c and the other function f
(x) = f1 (x) against which x > c is imposed is not defined
(or, given). This is why r.h.l of f (x) = f1 (x) as x c→

is not required which means lim
x c

f x
→ + 1 � �  is not

required to find out while testing the continuity at
r.e.p of the closed interval [a, c] or semi open and
semi closed (a, c] interval.

Solved Examples

1. A function f (x) is defined as follows
f (x) = 0, when x = 0

= 3x – 1, when 0 < x < 1
= 2x, when x = 1

Test the continuity at x = 0 and x = 1.
Solution: At x = 0

r h l x
x

. . = −
→

lim
0

3 1� �  = 3 · 0 – 1 = –1 …(i)

[f (x)]x = 0 = f (0) = 0 …(ii)

(i) and (ii) ⇒ ≠r h l. .  value of the function at x = 0

⇒  discontinuity of the given function at the left end
point of the closed interval [0, 1] at x = 1

l h l x
x

. . = −
→

lim
1

3 1� �  = 2 …(i)

[f (x)]x = 1 = f (1) = [2x]x = 1 = 2 × 1 = 2 …(ii)
(i) and (ii) ⇒  l.h.l = value of the function ⇒

continuity of the given function f (x) at the right end
point of the closed interval [0, 1] = 0 1≤ ≤x .
2. Test the continuity of f (x) at x = 2, when

f (x) = x2 + x + 1, 0 1≤ ≤x

= x2 + 2, 1 2≤ ≤x

Solution: Here f (x) is defined on the closed interval
[0, 2] = 0 2≤ ≤x  Hence, to test the continuity of
f (x) at x = 2 only l.h.l is required since x = 2 is a right
end point of the closed interval [0. 2].

l h l x
x

. . = +
→

lim
2

3
2� �  = 8 + 2 = 10 …(i)

[f (x)]x = 2 = (x3 + 2) = 8 + 2 = 10 …(ii)
(i)  and (ii) ⇒  l.h.l = f (2) ⇒  continuity of the

given function at the right end point of the closed
interval [0, 2].

Note: f (x) is continuous at x = 0 as r.h.l at x = 0 is
= f (0).

Also lim lim
x x

f x f x f
→ − → +

= =
1 0 1 0

1� � � � � �

∴ f (x) is continuous at x = 0.
Hence f (x) is continuous in [0, 2]

3. A function f (x) is defined by

f (x) = (x + 2), 0 2≤ ≤x

= ≤ ≤8 2 4x x,

test the continuity at x = 0, 2, 4
Solution: (1) At x = 2

l h l
x

. . =
→

lim
2

 (x + 2) = 4 …(i)

f x x xx x x
� � � �= = =

= + = =
2 2 2

2 8 4 …(ii)

r h l x
x

. . = = × =
→

lim
2

8 8 2 4 …(iii)

(i), (ii) and (iii) ⇒  l.h.l = r.h.l = value of the function
at x = 2.
(2) At x = 0 = left end point of the closed interval
[0, 4]

r h l x
x

. . = + =
→

lim
0

2 2� � …(i)

f x x
x x� � = == + =

0 0
2 2 …(ii)

(i) and (ii) ⇒  the function f (x) is continuous at
x = 0 = left end point of the closed interval [0, 4].
(3) At x = 4 = right end point of the closed interval
[0, 4]

l h l x
x

. . = = × =
→

lim
4

8 8 4 4 2� �

f x xx x
� � = =

= = × = =
4 4

8 8 4 32 4 2

(1) and (2) ⇒  continuity at x = 4 since l.h.l = value
of the function at x = 4

4. A function f is defined in the following way:
f (x) = 0, when x = 0

= 2x – 1, when 0 < x < 1
= 2 – x, when x ≥ 1

is f (x) continuous at x = 0 and x = 1?
Solution: At x = 0

We inspect that f (x) is not defined for x < 0 since
f (x) = =φ x� �  an expression in x when x < 0 is not
provided.
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r.h.l = f (0 + 0) = lim lim
x x

f x x
→ →

= − = −
0 0

2 1 1� � � �

f x f
x� � � � � �= = =

0
0 0given

(i) and (ii) ⇒  f (x) is not continuous at x = 0 = left
end point (l.e.p) of the closed interval [0, 1] at x = 1

l h l f x
x

. . = − = − = − =
→

1 0 2 1 2 1 1
1

� � � �lim

r h l f x
x

. . = + = − = − =
→

1 0 2 2 1 1
1

� � � �lim

f x x
x x

� � � �= == − = − =
1 1

2 2 1 1

Hence, f (1 –0) = f (1 + 0) = f (1) ⇒  continuity at
x = 1.

Facts to Know

We end this chapter by mentioning some facts about
continuity which the students must remember.
1. Criterion of continuity at a real number: The
function y = f (x) is continuous at the point x = a
provided (i) it is defined at this point (ii) there is a limit

namely lim
x a

f x L
→

=� �  (iii) this limit is equal to the

value of the function at the point (or, real number)
x = a.
Or, alternatively,

A function y = f (x) is continuous at the real number
x = a / x = a is a point of continuity of f (x) ⇔  (i) f (a)

exists (ii) lim
x a

f x
→

� �  exists (iii) lim
x a

f x f a
→

=� � � �

If one or more of these three conditions fail to hold
good at x = a, we say that f (x) is discontinuous at
x = a or x = a is a point of discontinuity of the function
y = f (x).
2. Criterion of continuity in an interval: The
function which has continuity at every point of an
interval is continuous throughout that interval.
3. Criterion of continuity in an open interval: The
function y = f (x) is continuous in an open interval (a,
b) provided f (x) is continuous at each point of (a, b)
and the function y = f (x) is discontinuous in (a, b) if
f (x) is discontinuous atleast at one point of (a, b).

Or, alternatively,
The function y = f (x) is continuous in an open

interval (a, b) provided lim
x c

f x f c
→

=� � � �  where

x = c is an arbitrary point (or, number) s.t.
4. Criterion of continuity in a closed interval: The
function y = f (x) is continuous in a closed interval [a,
b] ⇔  (i) f (x) is continuous at each point of (a, b)

(ii) lim
x a

f x f a
→ +

=� � � �  (iii) lim
x b

f x b
→ −

=� �  hold

good .
Or, alternatively,
If the domain of a real valued function (or, real
function) f or f (x) is a closed interval [a, b], then f or
f (x) is continuous in (or, over/on/) closed interval ⇔
(i) lim

x c
f x f c

→
=� � � �  where x = c is any arbitrary

point s.t a < c < b (ii) lim
x a
x a

f x r h l
→
>

=� � . .  at the l.e.p =

f (a) = value of the function at the l.e.p (i.e; left end

point) (iii) lim
x a
x b

f x
→
<

=� �  l.h.l at the r.e.p = f (b) = value

of the function y = f (x)  at r.e.p (i.e; right end point)
5. Criterion at the left end point of a closed interval
[a, b]: f1 (x) is continuous at x = a = left end point of
the closed interval

a b f x f x f a
x a x a

x a

, ⇔ = = ⇔
→ →

>
+

lim lim1 1� � � � � �

(r.h.l at x = a) = value of the function at x = a.
6. Criterion at the right end point of a closed interval
[a, b]: f1 (x) is continuous at x = b = right end point of
the closed interval

a b f x f x f b
x b x b

x b

, ⇔ = = ⇔
→ →

<
−

lim lim1 1� � � � � �

(l.h.l at x = b) = value of the function at x = b.

N.B.: (i) To test the continuity at right end point of a

closed interval, l.h.l = lim
x a
x a

f x
→
<

2 � �  is not required

since the function f2 (x) is not given (or, defined) for
x < a where y = f (x) is a piecewise function defined in
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a closed interval which is divided into a finite number
of non-overlapping sub intervals over each of which
different functions are defined.
(ii) To test the continuity at the left end point of a

closed interval, r h l f x
x b
x b

. . =
→
>

lim 2 � �  is not required to

find out since the function f2 (x) is not given (or,
defined) for x > b where y = f (x) is a piecewise function
defined in a closed interval which is divided into a
finite number of non-overlapping sub intervals over
each of which different functions are defined.
(iii) If the interval is closed one, the limit at the left
end will mean right hand limit and the limit at the right
end will mean the left hand limit.

6. If functions f1 (x) and f2 (x) are continuous in an
interval (a, b) or [a, b], then the function
(i) c1 f1 (x) + c2 f2 (x)
(ii) f1 (x) × f2 (x)

(iii)
f x

f x
1

2

� �
� �

, provided f2 (x) ≠ 0  for any value of x

belonging to the interval (open or closed), are also
continuous in the open interval (a, b) or in the closed
interval [a, b].

7. The continuity of the function can be used to
calculate its limits which means if the function y = f (x)
is continuous at the point x = a, then, in order to find

out its limit lim
x a

f x
→

� � ,  it is sufficient to calculate the

value of the function at x = a  because

lim
x a

f x f a
→

=� � � �  when y = f (x) is continuous at

x = a.
8. While testing the continuity of a redefined function

we use (l.h.l = r.h.l at x = a) = lim
x a

f x
→ 1 � � ,  where f (x)

= f1 (x) for x a≠  provided f1 (x) is not a mod function

(or a combination or composition of mod function) or
a greatest integer function.
9. When a given function is a piecewise function,
then to find the l.h.l at a point x = a, we consider a
function defined in an interval (or, sub interval)
containg all those values of x which are less than (or,
less than or equal to) a and to find the r.h.l at a point

x = a, we consider another function defined in an
interval (or sub interval) containing all those values
of x which are greater than (or, greater than or equal
to) a.

Problems

Type1: When the function is defined.

Exercise 5.1

Examine each function for the continuity defined by

1. f x
x

x
� � = −

−

2
9

3
,  when x ≠ 3

f (x) = 6, when x = 3 [Ans: cont. at x = 3]

2. f x
x x

x
� � = + −

−

2
2 9

1
,  when x ≠ 1

f (x) = 4, when x = 1 [Ans: discont. at x = 0]

3. f (x) = 4x + 3, when x ≠ 4

f (x) = 3x + 7, when x = 4 [Ans: cont. at x = 4]

4. f x x x	 
 	 
= +1
1

,  when x ≠ 0

f (x) = e, when x = 0 [Ans: cont. at x = 0]

5. f x
ax bx

x
� � = −cos cos

2
,  when x ≠ 0

f x
b a� � = −2 2

2
 when x = 0 [Ans: cont. at x = 0]

6. f x
x

x
� � =

3

,  when x ≠ 0

f (x) = 0, when x = 0 [Ans: cont. at x = 0]

7. f x x
x

� � = �
�

�
�

2 1
sin , when x ≠ 0

f (0) = 0 [Ans: cont. at x = 0]

8. f x
x

x
� � = −1

2

cos
, when x ≠ 0

f x� � = 1

2
 when x = 0 [Ans: cont. at x = 0]



300 How to Learn Calculus of One Variable

9. f x

mx

nx
x

m

n
x

� � =

−
−

≠

=

�

�
��

�
�
�

1

1
0

0
2

2

cos

cos
when

when

,

,

[Ans: cont. at x = 0]

10. f x
x

x
x

x
� � = ≠

=

�
��

��

−
sin

when

when

1

0

1 0

,

,

[Ans: cont. at x = 0]

11. f x
x

x
x

x
� � =

�
�

�
� ≠

=

�
��

��
sin when

when

1
0

0 0

,

,

[Ans: cont. at x = 0]

12. f x

x x

x
x

x
� � =

−
≠

=

�
�
��

�
��

tan sin
when

when

3
0

1

2
0

,

,

[Ans: cont. at x = 0]

13. f x
x x

x
� �

� �
= −

−
sin sin3 3

3π
, when x ≠ π

f (x) = 4, when x = π [Ans: cont. at x = π ]

14. f x
x x

x
� � =

−
tan

cos1
,  when x ≠ 0

f (x) = 2, when x = 0 [Ans: cont. at x = 0]

15. f x
x x

x
� � = + − −1 1

2 2

2  when x ≠ 0

f (x) = 2, when x = 0 [Ans: discont. at x = 0]
16. Show that f (x) = | x – 5 | is continuous at x = 5.
17. Show that

f x
x a

x a
x a

x a
� � =

−
−

≠

=

�
��

��
,

,1

is discontinuous at x = 1.
18. Examine the continuity of f (x) = | x – b | at x = b.

[Ans: cont. at x = b]

19. Examine the continuity of the function f (x) at

t =
π
2

f t
t

t
t� � =

−
≠

cos
π

π

2
2

,

f t t� � = =1
2

,
π

[Ans: continuous at =
π
2

]

20. Discuss the continuity of the function

f x
x

x
x

x
x

� � = ≠

= =

�
 
��

!
��

=

tan

sin
for

for
at

7

4
0

7

4
0

0
,

,

[Ans: cont. at x = 0]

Type 2: Problems on piecewise function:

Exercise 5.2.1

Examine the continuity of the function f (x) defined
by
1. f (x) = 2x – 1, when x < 2

f (x) = x2 – 4x + 5, when x ≥ 2

[Ans: discont. at x = 2]
2. f (x) = x – 3. when x < 4

f (x) = 5 – x, when x ≥ 4

[Ans: cont. at x = 4]

3. f (x) = 3 – 2x, when x ≤ 2

f (x) = x – 1, when x > 2
[Ans: discont. at x = 2]

4. f x
x� � =

3

16
,  when x < 4

f (x) = 1 – 2x – x2, when x ≥ 4

[Ans: discont. at x = 4]

5. f (x) = x2 – 2x + 3, when x ≤ 1

f (x) = x + 1, when x > 1 [Ans: cont. at x = 1]
6. f (x) = x2, when 0 < x < 1

f (x) = x, when 1 2≤ <x
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f (x) = –6 + x3, when 2 3≤ <x

[Ans: cont. at x = 1, 2]
7. f (x) = 1, when x < 0

f (x) = 0, when x = 0
f (x) = –1, when x > 0 [Ans: discont. at x = 0]

8. f x
x� � =

2

2
,  when 0 1≤ ≤x

f x x x� � = − +2 3
3

2

2
,  when 1 2≤ ≤x

[Ans: cont. at x = 1]

9. f (x) = 5x – 4, when 0 1≤ ≤x

f (x) = 4x3 – 3x, when 1 2< ≤x

[Ans: cont. at x = 1]

10. f (x) = x, when 0
1

2
≤ <x

f (x) = 1 – x, when 
1

2
1≤ <x

[Ans: cont. at x = 
1

2
]

11. f (x) = x3 + 1, when 0 1≤ <x

f (x) = 3x2 – 1, when 1 2≤ ≤x

[Ans: cont. at x = 1]

Exercise 5.2.2

1. If f (x) = 0, when x = 0

f x x	 
 = −1 ,  when 0
1

2
< <x

f x� � = 1

2
,  when x =

1

2

then test the continuity of f (x) at x = 0 and x = 1

2
.

[Ans. cont. at x = 0 and x =
1

2
]

2. If f x
x x

x
� � = − +

−

2
4 3

4
, when 0 5≤ ≤x

f x
x

x
� � = +

−

2
1

1
, when 5 7< ≤x

then test the continuity of f (x) at x = 5.
[Ans: discont. at x = 5]

3. If f (x) = x3 + 1, when 0 1≤ <x

f (x) = 3x2 – 1, when 1 2≤ ≤x

then test the continuity of f (x) at x = 0, 1 and 2.
[Ans: cont. at x = 0, 1, 2]

4. The function f (x) is defined as under

if f x

x x

x x

x x

� � =
− ≤

< <
− ≥

�
��

��

,

,

,

for

for

for

0

0 1

2 1

is the function f (x) continuous at x = 0 and x = 1
[Ans: cont. at x = 0 and x = 1]

5. Examine the continuity of f (x) at x = 0 and x = 1 if

f x

x

x x

x

� � =
=

− < <
=

�
��

��

1 0

1 0 1

0 1

,

,

,

when

when

when

[Ans: discont. at x = 0 and cont. at x = 1]
6. Examine the continuity of f (x) at x = 1 and x = 2 if

f x

x x

x x

x x

	 
 =
≤ <

− ≤ <
+ ≤

�
�
�

�
�

2 0 1

2 1 1 2

1 2

,

,

,

when

when

when

[Ans: cont. at x = 1 and x = 2]
7. The function f is defined in the following way

f x

x x

x x

x x

� � =

+ − ≤ <

− ≤ <

− − ≥

�

�

�
��

�

�
��

3 2
3

2
0

3 2 0
3

2

3 2
3

2

,

,

,

when

when

when

Prove that f (x) is continuous at x = 0 and

discontinuous at x = 3

2
.
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Problems on greatest integer function

Exercise 5.2.3

1. Test the continuity of the function f (x) at

x = 2

3
 if f (x) = [x], where [x] is the greatest integer

function.
2. If f (x) = (x – [x]), where [x] is the greatest integer

function, test the continuity of f (x) at x =
3

2
.

3. Test the continuity of the function f (x) at x = 4

f x
x

x
� � =

− 2 .

4. Show that f (x) = x – [x] is discontinuous at x = –1.
5. Test for continuity of f (x) = [x] at x = 2.5.

Answers:

1. Cont. at x = 2

3

2. Limit =
1

2
, find f

3

2
�
��

�
��  and examine whether limit

= value cont. at
3

2
�
��

�
�� .

3. l.h.l = 2 and r.h.l =
3

2
; (discont. at x = 4)

5. (l.h.l = r.h.l at x = 2.5) = 2; find f (2.5) and examine
whether limit = value.

Type 3: Problems based on finding the value of a
function at a point where the function is continuous.

Exercise 5.3

1. f x
x a

x a
x a	 
 = −

−
≠

3 3
,  is continuous at

x = a. Find f (a). [Ans: 3
2
3a ]

2. f x
x x

x
x� � =

−
≠

tan

cos1
0,  is continuous at x = 0.

Find f (0). [Ans: 2]

3. f x
x

x
x� �

� �
= −

−
≠1

2 22

sin

π
π

,  is continuous at

x = π
2

. Find f
π
2

�
�

�
� . [Ans: 1

8
]

4. f x
x

x
x� � = − ≠

sin

cos

1

22
,

π
 is continuous at

x = π
2

. Find f
π
2

�
�

�
� . [Ans: −

1

2
]

5. f x
x a

x a
x a� � = −

−
≠

3 3

2 2
,  is continuous at x = a.

Find f (a). [Ans: 3

2

a ]

6. A function f (x) is defined by

f x
x

x
� � = −1

2

cos
, when x ≠ 0

f (x) = A, when x = 0
Find A so that f (x) is continuous at x = 0.

[Ans: A = 1

2
]

7. If f (x) is continuous at x = 3 and is defined as

f x
x

x x
a� � = −

− +
+

2

2

9

4 3
,  when x < 3

= 2, when x = 3

=
−

− −
+

x x

x x
b

2

2

3

2 3
,  when x > 3

Find a and b [Ans: a = 1 and b = 5

4
]

8. f (x) is continuous at x =
π
4

 and is defined as

f x
x x

x
a� � = −

−
+

cos sin
π
4

,  when 0
4

< <x
π

= 2, when x = π
4

= x2 + b, when x >
π
4
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Find a and b.

[Ans: a = +2 2  and b = −2
16

2
π ]

9. f (x) is continuous at x = 0, where

f x
kx

x
	 
 = sin

,  for x ≠ 0

= 4 + x, for x = 0
Find the value of k. [Ans: k = 4]

Type 4: Problems based on finding the value of a
constant when the given function is continuous at a
point.

Exercise 5.4

1. Find the value of k for which the functions defined
below is continuous at x = 1.

(a) f x
x

x
� � = −

−

2
1

1
,  for x ≠ 1

f (1) = k [Ans: k = 2]
(b) f (x) = 5x – 3k, if x ≤ 1

= 3x2 – kx, if x > 1 [Ans: k = 1]
(c) f (x) = 3x – 4k, when x ≥ 1

= 2kx2 – 3, when x < 1 [Ans: k = 1]

2. If f x
x x

x
� � = − +

−

2
3 2

2
,  when x ≠ 2

= p, when x = 2
and f (x) is continuous at x = 2, find the value of p.

[Ans: p = 1]

3. If f x
a x

x
� � = sin 2

,  when x > 0

= 2, when x = 0

=
+ −2 1 1b x

x

� �
,  when x < 0

and f (x) is continuous at x = 0, find the values of a
and b. [Ans: a = 1 and b = 2]

4. f x
x x

x
� � = − −

−
3 2

1

2

,  for x ≠ 1

f (1) = k
If f (x) is continuous at x = 1, find k.

[Ans: k = 5]
5. A function f (x) is defined as under

f (x) = x2 + A, when x ≥ 0

f (x) = –x2 – A, when x < 0
what should be A so that f (x) is continuous at

x = 0. [Ans: A = 0]

Type 5: Problems based on test for continuity at one/
both end points (l.e.p / r.e.p / l.e.p and r.e.p both) of a
closed interval [a, b] or semi open-semi closed (a, b]
or semi closed and semi open [a, b).

Exercise 5.5

1. If f (x) = 0, when x = 0

= −1

2
x ,  when 0

1

2
< <x

= 1

2
,  when x = 1

2

then test the continuity of f (x) at x = 0 and x = 1

2
.

[Ans: discont. at x = 0 and x = 1

2
]

2. If f (x) = x2 + 1, when 0 1≤ <x

= 3x2 – 1, when 1 2≤ ≤x

then test the continuity of f (x) at x = 0, 1 and 2
[Ans: cont. at x = 0, 1 and 2]

3. A function f (x) is defined as follows
f (x) = 0, when x = 0

= 3x – 1, when 0 < x < 1
= 2x, when x = 1

Is f (x) continuous at x = 0 and x = 1?
[Ans: discont. at x = 0 and cont. at x = 1]

4. Test the continuity of f (x) at x = 0, 1, 2 where
(i) f (x) = 1 + x, when 0 1≤ <x

= 2 – x, when 1 2≤ ≤x

[Ans: cont. at x = 0 and 2;
discont. at x = 1]



304 How to Learn Calculus of One Variable

(ii) f (x) = x2, when 0 1≤ <x

= 2x – 1, when 1 2≤ <x

= x + 3, when x ≥ 2

[Ans: cont. at x = 0 and x = 1
and discont. at x = 2]

5. A function f (x) is defined as follows:
f (x) = 0, when x = 0

= −1

2
x,  when 0

1

2
< <x

= 1

2
,  when x = 1

2

= −3

2
x ,  when 

1

2
1< <x

= 1, when x = 1, discuss the continuity of the

function for x = 0, 
1

2
 and 1.

[Ans: discont. at all points x = 0, 
1

2
,  1]
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6

Derivative of a Function

Question: What is differential Calculus?
Answer: Differential Calculus provides us rules and
methods for computing the limit:

lim lim
∆ ∆

∆
∆

∆
∆x x

y

x

f x x f x

x→ →
=

+ −
0 0

� � � �
, for a large

class of functions where, ∆ ∆y f x x f x= + −� � � � is
the increment in the value of the function
y f x= � � (or in dependent variable y),
∆ ∆x x x x= + −� �  is the increment in independent
(or in the valueof independent) variable and

∆
∆

y

x
= increment (or incremental) ratio

=
increment in functional value dependent variable

increment in independent variable

� �

Question: What is the derivative of a function?
Answer: The derivative of a function f is that function,
denoted by ′f , whose function (functional) value at
any limit point x of the domain of the function f which
is in the domain of the function f, denoted by ′f x� � ,
is given by the limit of the incremental ratio as the
increment in the independent variable tends to zero.
That is in notation,

′ =
+ −

=
→ →

f x
f x x f x

x

y

xx x
� � � � � �

lim lim
∆ ∆

∆
∆

∆
∆0 0

,

provided that this limit exists at each limit point x of
the domain of the function f which is in the domain of
the function f defined by the equation y = f (x).

Notes:
1. The derivative ′f  of a function f is also termed as:
(i) slope function (ii) derived function (iii) differential
coefficient of the function f.
2. Instead of saying that there is a derivative ′f  of
the function f at a point x = a in the domain of the
function f which is also a limit point in the domain of
the function ′f  it is common to say that there is a
derivative ′f  of the function f at a point x = a in the
domain of the function f defined by the equation
y = f (x).

The Domain of a Derivative

The domain  of a derivative is defined with respect to
different aspects:
Definition 1. (In terms of limit points):
f D R: →  is a function defined by y = f (x), where D

is a subset of reals ⇒  domain of the derivative ′f

of the function f D D D= ∩ ′⊆ , where ′D is the set
of all limit points of the domain D of the function f.
Definition 2. (In terms of existance of the limit of
incremental ratio):
D f x D f f x′ = ∈ ′� � � � � �� �: exists , i.e. the domain
of a derived function y f x= ′ � �  is a subset of the
domain of the function f because it (domain of ′f )
contains all points x in the domain of the function f

where lim
∆

∆
∆x

y

x→ 0
 exists but does not contain those

exceptional points where lim
∆

∆
∆x

y

x→ 0
 does not exist.
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The Range of a Derivative

The range of a derivative is the set of all values of the
derivative ′f (of a function f ) at values of x in the
domain of the function.

Thus, range of ′ = ′ = ′ ∈f f D f f x x D f� �� � � � � �� �: .

Notes:
1. Derivatives at isolated points are not defined.
2. A function is always continuous at an isolated
point of the domain of the function.
3. In fact, if the domain of a function has an isolated
point, then the function would be continuous there
without being differentiable.
4. If the limit point of the domain D of the function f
lying in D at which derivative is sought is not
mentioned, it is understood that it is required at any
limit point x of the domain of the function f which is in
the domain of f.
5. Instead of saying to determine the functional value
′f (x) of the derivative ′f  of a function f at

x D f∈ � � , it is common to say to determine the
derivative ′ = ′y f x� � of the function  y = f (x)

Question: What is differentiation of a function?
Answer: It is the process of finding the derivative

′ =
→

f x
y

x
� � lim

x 0∆

∆
∆ .

Question: How is the derivative of a function
generally determined?
Answer: The derivative of a function of the
independent variable x, say f (x), is determined by the
general process indicated in the limit of increment
ratio as the increment in the independent variable
tends to zero, i.e. indicated in:

d y

d x

y

x

d

d x
f x

f x x f x

xx x
= =

+ −
→ →

lim or lim
∆ ∆

∆
∆

∆
∆0 0

� � � � � �
.

Question: What are the symbols to express the
derivative of a function with respect to an independent
variable?
Answer: D is the most common notation for
indicating the operation of obtaining the derivative
of a function with respect to an independent variable
with the attentions: (i). Functional letter or functional
value of the function is written on the right side of the

symbol D. (ii) the independent variable with respect
to which differentiation is to be carried out is written
at the bottom and on the right side of the symbol D.
Thus Dx y, Dx f, Dx f (x) or Dx (f (x)) if f (x) is the
expression containing more than one term or f (x) is
the sum of a finite number of function.

Note: The phrase “with respect to x” is shortly written
as “w.r.t x”.

An other notation 
d

d x
 is also in frequent use when

either it is mentioned or obvious in the problem that x
is the independent variable of the function y = f (x).

When the symbol 
d

d x
 is used to indicate the

derivative of a function having x as its independent
variable, the function or the functional value is written

on the right side of the symbol 
d

d x
. Thus:

d f

d x

d

d x
f x

d y

d x

d

d x
f x, , or� � � �� �  if f (x) is the

expression containing more than on term or f (x) is the
sum of a finite number of function.

Hence in the light of above explanation, Dx and

d

d x
 are the most common notations for indicating

the operation of obtaining the derivative of a function
with respect to x. These are notations which are
prefixed to the functional letter or functional value as:

(i) D yx ,  D y
d y

d x

d

dx
yx � � � �, and

(ii) D f D f xx x, ,� �  
d f

d x

d

d x
f xand � �  Lastly, the

third notation employed for indicating the operation
of obtaining the derivative is to put a dash or prime at
the top and on the right of the functional letter as
′ ′ ′f x f y� �, or , but it is noteable that the notation
′ ′f yor has the disadvantage of not indicating the

variable with respect to which the differentiation is to
be carried out. This is why ′ ′f x y x� � � �or is also
written if the independent variable is x.
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Remark:
d

d x
� � , Dx (  ) or D (  ) is termed as operator

which tells what operation should be carried on with
the function put in the bracket to get an other function
named as derivative but D (  ) alone is ambiguous
when the expression in x representing the functional
value contains constant as well as an independent
variable both put after the operator “D” as D (x2 + x +
K) which has a possibility or ambiguity of being which
one of the letters namely x and K is constant. This is
why D (f (x)) is also sometimes used instead of Dx
(f (x)) when there is no ambiguity of the letter used as
an independent variable.

Note:
d

d x
, Dx or simply D is also called differential

operatir.
Therefore, there are following identical symbols

frequently used:

(i) ′ = = = = =y
d y

d x

d

d x
y

d

d x
f x

d

d x
f x� � � � � �� �

D f x f xx � � � �= ′ , when y = f (x) or

(ii) ′ =f
d f

d x
to denote the derivative as an other

function ′f of a function f.

The Nomenclature of the Symbols

Notation Read as

lim
x a→

� � limit as eKs tends to a, of (  )

or limit of (  ) as eKs tends to a.

lim
∆ x → 0

� � limit as delta-eKs tends to zero,

of (  ) or limit of (  ) as delta-eKs
tends to zero.

Dx � � x-derivative of (  ) or derivative

or
d

d x
� � of (  ) with respect to x.

′f f  prime or f dash

Notation Read as

′y y prime or y dash

′f x� � f prime of x or f dash of eKs.

D fx dee - eKs of f

D fx (x) dee - eKs of f of eKs

d f

d x dee - dee - eKs of f or  d f over dx

d

d x
f x� � dee–dee–eKs of f of x or dee– f of

eKs over dee - eKs

d y

d x dee - y over dee - eKs

Note: The notation ′ =f x x a� �  or (f (x)) x = a or

′f a� � signifies the value of the derivative ′f  of the
function f at x a D f= ∈ � � .
Question : What do you mean by  ab-initio
differentiation?
Answer: Differentiation ab-initio (or ab-initio
differentiation), differentiation from the first principle
or differentiation from the delta method means that
the theorems on differentiation or the results on
differentiation of standard forms of the function are
not to be applied for obtaining the derivatives of given
functions.

Or, alternatively, finding the derivative of a function
of an independent variable using the definition in
terms of limit, theorems on limits and standard results
on limits is called differentiation from the definition.
This process has no practical utility but a knowledge
of it is required.

Now there is illustration of ab-initio differentiation
consisting of five steps before working out problems
on different typed of functions.

Question: Explain the general method of finding
differential coefficient of a function.
Answer : The general method of finding the
differential coefficient of a function is indicated in

(Contd.)



308 How to Learn Calculus of One Variable

d

d x
f x

f x x f x

xx
� � � � � �

=
+ −

→
lim

∆

∆
∆0

, ∀ ∈x D f� �

or, 
d

d x
y

y

xx
� � =

→
lim

∆

∆
∆0

 which means

Step 1: To put y = f (x) = given function
Step 2: To add ∆ y  to y and ∆ x  to x wherever it is
present in the given function, i.e., to obtain
y y f x x+ = +∆ ∆� � .

Step 3: To find ∆ y  by subtracting the first value (y)
from the second value y y+ ∆� � , i.e., to obtain

y y y f x x f x+ − = + −∆ ∆� � � � � �
⇒ = + −∆ ∆y f x x f x� � � �

Step 4: To divide ∆ ∆y f x x f x= + −� � � �  by ∆ x,

i.e., to obtain  
∆
∆

∆
∆

y

x

f x x f x

x
=

+ −� � � �

Step 5: To take the limit as ∆ x → 0  on both sides of

∆
∆

∆
∆

y

x

f x x f x

x
=

+ −� � � �
 to find 

d

d x
y� � , i.e., to

obtain lim lim
∆ ∆

∆
∆

∆
∆x x

y

x

f x x f x

x

d

d x
y

→ →
=

+ −
=

0 0

� � � � � �

respectively.
Remember: 1. The above method (or, process) to
find the derivative of a function is what the delta–
method says to one to find the derivative of a function.

2. lim
∆

∆
∆x

y

x→ 0
 means that the ratio 

∆
∆

y

x
 tends to a

definite value which is unique as ∆ x → 0 and hence
it is to be carefully noticed that on the above definition,

we speak of limiting value of a certain ratio 
∆
∆

y

x
 and

not of the ratio of the limiting values of ∆ y and ∆ x
which is indeterminate put in the form

0

0
�
�
	

 ( i.e.

lim

lim

∆
∆

y

x
= 0

0
 since ∆ y→0  as ∆ x→0

means lim ∆ y → 0  when lim )∆ x = 0
(Note: The differential coefficient is shortly written
as d.c.)

3. x being regarded as fixed, the ratio 
∆
∆

y

x  will be a

function of ∆ x .

Question: How to simplify the last step in delta
method?
Answer: (a) In case of algebraic power, logarithmic
or exponential function, we go on simplifying till ∆ x,
some power of ∆ x  and/a term containing ∆ x  comes
as a common factor if we use expansion method.
(b) On using binomial expansion for any index for a

power function 1 1
1

2

2

+ = + +
+
�

∆ ∆
∆

x n
n n xn� � � � � �

+ ... , we consider only two terms of the series viz
“1 + n x∆ ” that will serve our purpose while finding
limit.

N.B.: (i) The common factor being ∆ x,  some power
of ∆ x and/a term containing ∆ x  must be separated
out of the bracket provided we use expansion method
to find the limit .
(ii) If we do not use expansion method to find the
limit of power (algebraic) logarithmic and/exponential
function, there is no need of taking  ∆ x , some power
of ∆ x  and/the terms containing ∆ x  as a common
factor.

(iii) f x f x x
n n� �� � � �� �= + ∆  when ∆ x → 0

(Note: If y be a function of x (i.e. y = f (x)) and the
value of x changes, then the value of y will also
change.)

(c) In case of trigonometric functions, we go on

simplifying till we get 2 sin 
∆ x

2
 except for tan x and

cot x where we get sin ∆ x  and then we divide both
sides of the equation defining ∆ y  by ∆ x  and lastly
we take the limit as ∆ x → 0  on both sides of the

equation defining 
∆
∆

y

x
.

(d) In case of inverse circular functions, we find ∆ x
instead of ∆ y , i.e. in case of inverse circular functions,
first of all we remove inverse operators (or, notations)
and we proceed as in case of trigonometrical functions
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and lastly we take limit as ∆ y → 0  (instead of limit
as ∆ x → 0  in case of direct functions or
trigonometrical functions) on both sides of the

equation defining 
∆
∆

y

x
 since ∆ ∆x y→ ⇔ →0 0 .

N.B.: (i) we use

(a)  lim
sin

θ

θ
θ→

=
0

r
r  and

(b) lim
tan

θ

θ
θ→

=
0

r
r  which mean limit of sin (or, tan)

of any constant multiple of an angle over the same
angle when that angel tends to zero, is the same
constant which is the multiple of the angle or, we use

(a1) lim
sin

θ

θ
θ→

=
0

1   (b1) lim
tan

θ

θ
θ→

=
0

1  which mean

limit of sin (or, tan) of any angle over the same angle
when that angle tends to zero, is unity. e.g.,

′a� � lim
2sin

lim
sin

∆ ∆

∆

∆

∆

∆x x

x

x

x

x→ →

�
�
	


=

�
�
	


=

0 0

2 2

2

1

′b� � lim
sin

∆

∆

∆x

x

x→

�
�
	


=

0

2 1

2
 or lim

sin

∆

∆

∆x

x

x→

�
�

	



0

2

=

�
�
	



�
�
	



=

�
�
	



�
�
	



= ⋅ =
→ →

lim
sin

lim
sin

∆ ∆

∆

∆

∆

∆x x

x

x

x

x0 0

2

2
2

1

2
2

2

1

2
1

1

2

′c� � lim
sin

∆

∆
∆x

x

x→
=

0

3
3

� �
 or, lim

sin

∆

∆
∆x

x

x→ 0

3� �

= = = ⋅ =
→ →

lim
3sin

3 lim
sin

∆ ∆

∆
∆

∆
∆x x

x

x

x

x0 0

3

3

3

3
3 1 3

� �
� �

� �
� �

′d� � lim
tan

∆

∆
∆x

n x

x
n n R

→
= ∈

0

� �
, , or

lim
tan

lim
n tan

∆ ∆

∆
∆

∆
∆x x

n x

x

n x

n x→ →
=

0 0

� � � �
� �

= =
→

n
n x

n x
n

x
lim

∆

∆
∆0

tan � �
� �

′e� � ∆ ∆x yand  are increments in x and y and they
are regarded as single quantity like x, y, z, ... etc. This
is why they may be added, subtracted, multiplied and
divided like the numbers. e.g.,

(i)
∆
∆

∆ ∆ ∆
∆

x

y
= ÷ =x y x

y

1

(ii)
∆
∆

∆
∆

x

y
⋅ =

y

x
1

(iii)
∆
∆ ∆

∆

x

y y

x

=
�
��

	



1

Derivatives of Elementary Functions

Algebraic Functions

1. Find the derivative of a constant function y = c by

∆ – method. (or by first principles)
Solution: Let y = f (x) = c …(i)

∴ = + =y y f x x c+ ∆ ∆� � …(ii)

Hence, (i) – (ii) ⇒ = − =∆ y c c 0

⇒ =
∆
∆

y

x
0

⇒ = = = =�
�

	

→ → →

d

d x
y

y

x
c c

x x x a
� � lim lim lim

∆ ∆

∆
∆0 0

0 0 �

⇒  derivative of a constant is zero.

⇒ = =d

d x
y

d

d x
c� � � � 0 , provided y = c = any

constant, D f R′ =� � .

2. Find the derivative of an independent variable w.r.t
itself by delta method (or ab-initio).
Solution: Let y = f (x) = x …(i)
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∴ + = + = +y y f x x x x∆ ∆ ∆� � ...(ii)

Hence, (i) – (ii) ⇒ = + − =∆ ∆ ∆y x x x x� �

⇒ =
∆
∆

y

x
1

⇒ = = = =�
�

	

→ → →

d

d x
y

y

x
c c

x x x a
� � lim lim lim

∆ ∆

∆
∆0 0

1 1 �

⇒ derivative of an independent variable w.r.t itself

is unity ⇒ =d

d x
x� � 1,  provided y = x = identity

function, D f R′ =� � .

3. Find the derivative of a constant multiple of an
independent variable w.r.t the same independent
variable.
Solution: Let y = f (x) = ax …(i)

∴ + = + = +y y f x x a x x∆ ∆ ∆� � � � …(ii)

Hence, (i) – (ii)

⇒ = + − = + − =∆ ∆ ∆ ∆y a x x a x a x a x a x a x� �

⇒ =
∆
∆

y

x
a

⇒ = = = =�
�

	

→ → →

d

d x
y

y

x
a a c c

x x x a
� � lim lim lim

∆ ∆

∆
∆0 0

�

⇒  derivative of a constant mulitple of the
independent variable w.r.t the same independent
variable is constant times d.c. of the independent

variable w.r.t itself ⇒
d

d x
y� �  = d

d x
a x� �

= = ⋅ =a
d

d x
x a a� � 1 , provided  y = a x, where a is

any constant and x is the independent variable,

D f R′ =� � .

4. Find the derivative of a power function w.r.t its
base.
Solution: Method 1

Let y = xn, n Q∈ …(i)

∴ + = +y y x x n∆ ∆� � …(ii)

Hence, (i) – (ii) ⇒ = + −∆ ∆y x x x
n n� �

⇒ =
+ −
+ −

= + −
∆
∆

∆
∆

∆ ∆
y

x

x x x

x x x
x x x x

n n� �
� � � ��

⇒ = =
+ −
+ −→ →

d

d x
y

y

x

x x x

x x xx x

n n

� � � �
� �

lim lim
∆ ∆

∆
∆

∆
∆0 0

Now substituting z = x + ∆ x , we have z →  x as

∆ x → 0  and 
d

d x
y

x x x

x x xx

n n

� � � �
� �=
+ −
+ −→

lim
∆

∆
∆0

=
−
−

=
→

−
lim
z x

n n
nz x

z x
n x

1
  (By limit theorem)

⇒ derivative of a power function w.r.t its base is
the power function whose index is decreased by unity
times the original (given) index of the given base

⇒ = = −d

d x
y

d

d x
x n x

n n� � � �
1

, provided y = xn,

n Q∈ .

Method 2
Let y = xn, (n is any rational number) …(i)

∴ + = +y y x x n∆ ∆� � …(ii)
Hence, (i) – (ii)

⇒ = + − = +���
	

 −

�
��
��

�
��
��

∆ ∆
∆

y x x x x
x

x
n n n

n

� � 1 1 …(iii)

Now on using binomial theorem because

∆ x

x
< 1 and n is a +ve or –ve integer or fractions,

we have

(iii) = = + ⋅ +
−
�

⋅ ���
	

 +

�
��

	


−

�

�
�
�

�

�
�
�

∆
∆ ∆

y x n
x

x

n n x

x
n 1

1

2
1

2� �
...

which ⇒ = +
−
�

⋅
�
��

	



�
�
�

∆
∆

∆y

x
x

n

x

n n x

x

n 1

2 2

� �
 + terms

having higher powers of ∆ x
�
��

⇒ =
→

d

d x
y

y

xx
� � lim

∆

∆
∆0
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= +
−
�

�
��

�
��
	


+
�
�
�

→
lim

∆

∆
x

n
x

n

x

n n x

x0 2

1

2

� �
...

= +
−
�

⋅ ���
	

 +

�
��

�
��→

−
lim

∆

∆
x

n
n x

n x

x0

1
1

1

2

� �
...

= ∈−n x n Qn 1 ,

Remark: 
d

dx
x nxn n� � = −1

 for x > 0, n R∈  also holds

true noting that for x < 0, xn may not be real as

− = − ∉3 3
1
2� � R .

Logarithmic and Exponential Functions
1. Find the derivative of logarithm of an independent
variable w.r.t the same independent variable, the
independent variable being positive (d.c. of
logarithmic function) by delta method.
Solution: Method 1.

Let  y = log x, x > 0 …(i)

∴ + = +y y x x∆ ∆log � � …(ii)

Hence, (i) – (ii) ⇒ = + −∆ ∆y x x xlog log� �

=
+�

��
	

 = +���

	

 = +���

	

log log log

x x

x

x

x

x

x

x

x

∆ ∆ ∆
1

⇒ = +���
	

 = ⋅ ⋅ +���

	



∆
∆ ∆

∆
∆

∆y

x x

x

x x
x

x

x

x

1
1

1 1
1log log

= +���
	



1
1

x

x

x

x

x
log

∆ ∆

⇒ = +���
	



�

�
�
��

�

�
�
��→

d

d x
y

x

x

xx

x

x� � lim log
∆

∆∆
0

1
1

= �
�
	

 ⋅ +���

	

→ →

lim lim log
∆ ∆

∆∆
x x

x

x

x

x

x0 0

1
1

= �
�
	

 +���

	

→ →

lim log lim
∆ ∆

∆∆
x x

x

x

x

x

x0 0

1
1  (on using

composit function rule on limits)

= = ⋅ = ⋅
1 1 1

1
x

e
x

e
x

elog log

� lim and log log
x

x ex e e e
→

+ = = =�
��

	

0

1
1 1� �

=
1

x
 which ⇒ derivative of logarithm of an

independent variable w.r.t the same independent
variable, the independent variable being positive, is
reciprocal of the independent variable, the

independent variable being positive ⇒ =d

d x
y� �

d

x
x

x
log� � = 1

,  x > 0  provided y = log x, x > 0 ,

D f R′ = +� � .

Remember:
(i) n log m = log mn

(ii) ∆
∆

x
x

x
→ ⇒ →0 0

(iii) lim
x → 0  log f (x) = log lim

x → 0  f (x)

(iv) lim
∆

∆∆
x

x

x

xx

x
e

→
+���

	

 =

0

1

(v) log e = log e e = 1, where e lies between 2 and 3.
These are facts which have been used to find the

d.c. of y = log x, x > 0, w.r.t x.
Method 2

Let y = log x , x > 0 …(i)

∴ + = +y y x x∆ ∆log � � …(ii)

Hence, (i) – (ii) ⇒ = + −∆ ∆y x x xlog log� �

=
+�

��
	

 = +���

	

log log

x x

x

x

x

∆ ∆
1

⇒ = − �
��

	

 + �

��
	

 −∆

∆ ∆ ∆
y

x

x

x

x

x

x

1

2

1

3

2 3

...

⇒ = −
�
��

	



∆
∆

∆y

x x

x

x

1 1

2 2  + terms having higher

powers of ∆ x .
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⇒ = = −
�
��
	


+

�
�
�

�
�
�

→ →

d

d x
y

y

x x

x

xx x
� � lim lim

∆ ∆

∆
∆

∆
0 0 2

1 1

2
...

⇒ = =
→

d

d x
y

y

x xx
� � lim

∆

∆
∆0

1

⇒ = = >d

d x
y

d

d x
x

x
x� � � �log

1
0,

Cor: Derivative of log a x (a > 0, ≠ 1), x > 0

Using log a x = 
log

log

x

a
, we have 

d

d x
xalog� �

=
�
��

	

 = = ⋅d

d x

x

a a

d

d x
x

a x

log

log log
log

log

1 1 1� �

= 1

x alog
,  (x > 0)  (�  log a is a constant)

Notes: 1. log
log

loga f x
f x

a
� � � �

=  where as

log10 f (x) = log10 e ⋅  loge f (x) and  log10 e = 0.4344
2. If the base of the logarithm of a function is e, then
the logarithm of the function is called natural
logarithmic function and is denoted as ‘lnx’ without
the base ‘e’. Hence, loge x = lnx.
3. Meaning of e : ex means the infinite series (or,

infinite power series) 1
1 2 3

2 3

+
�
+
�

+
�

+ ∞x x x
...   where

e = +
�

+
�

+
�

+ ∞1
1

1

1

2

1

3
...  and x is a real number;

e is also defined as lim
n

n

n→∞
+��
	

1

1
.

Remark: e is a transcendental irrational number.
2 < e < 3 and e = 2.718 nearly.

2. Find the derivative of the function y = log |x|,
(x ≠ 0) w.r.t x ab–initio.

Solution: y x x x= = =log log log
2 21

2

⇒ + = +y y x x∆ ∆1

2
2log � �

⇒ = + −∆ ∆y x x x
1

2
2 2

log log� �

= +�
��

	



1

2

2

log
x x

x

∆

� log log log
f x

g x
f x g x

� �
� � � � � �= −

�
��

	



∴ = ⋅ ⋅
+�

��
	



∆
∆ ∆

∆y

x x

x x

x

1

2

1 2

log

= ⋅ ⋅ ⋅
+�

��
	



1

2

1 2x

x x

x x

x∆
∆

log

= ⋅ ⋅
+�

��
	



�
��

��

�
��

��
1

2

1
2

x

x x

x

x

x
log

∆ ∆
  and lim

∆

∆
∆x

y

x→ 0

= ⋅ ⋅
+�

��
	



�
��

��

�
��

��

�

�

�
�
�

�

�

�
�
�→

lim log
∆

∆∆
x

x

x

x

x x

x0

2

1

2

1

= ⋅ �
�
	

 ⋅

+�
��

	



�
��

��

�
��

��
→ →

1

2

1
0 0

2

lim lim log
∆ ∆

∆∆
x x

x

x

x

x x

x

= ⋅ ⋅ +�
��

	



�
��

��

�
��

��
→

1

2

1
0

2

x

x x

xx

x

x
log lim

∆

∆∆

= ⋅ ⋅ +�
��

	



�
��

��

�
��

��
→

1

2

1
0

2

x

x x

xx

x

x
log lim

∆

∆∆

= ⋅ ⋅ +���
	



�
��

��

�
��

��
→

1

2

1
1

0

2

x

x

xx

x

x
log lim

∆

∆∆

= ⋅ ⋅ + =�
��

	

→

1

2

1
12

0

1

x
e x e

x
xlog lim� � � ��



Derivative of a Function 313

= ⋅
1

2

1 2

x
elog = ⋅

1

2

1
2

x
elog = ⋅ ⋅ ⋅

1

2

1
2 1

x

= ≠ ′ = −1
0 0

x
x D f R, , � � � �

Notes: A.

(i) log logf x f x� � � �= 2  =
1

2

2
log f x� �

(ii) log log logx x x= =
2 21

2
B.: (i) The logarithm of the product of positive
numbers is equal to the sum of the logarithms of the
factors:

loga (mn) = loga m + loga n
(ii) The logarithm of the quotient of two positive
numbers is equal to the logarithm of the dividend
minus the logarithm of the divisor:

loga 
m

n
�
�
	

  = loga m - loga n

(iii) The logarithm of the power of a positive number
is equal to the exponent times the logarithm of the
base:

loga mn = n loga m, n R∈
(iv) The logarithm of a root of a positive number is
equal to the logarithm of the number divided by the
index of the root:

log loga
n

am
n

m=
1

.

Remark: log x2 ≠  2 log x for all x ≠ 0, because x ≠ 0

⇒  either x > 0 or x < 0 whereas log x2 = 2 log x only
when x > 0 as (B) (iii) Says. This is why log e2 = 2 log
e since e>0.

Cor: Derivative of loga |x|, (a > 0, ≠ 1), x ≠ 0 on using

log
log

loga x
x

a
= ,  we have 

d

d x
xalog� �

=
�
��

	



d

d x

x

a

log

log

= ⋅ = ⋅1 1 1

log
log

loga

d

d x
x

a x
� �

= ≠1
0

x a
x a

log
log is a constant, � � � ��

2. Find the derivative of an exponential function w.r.t
the index, the index being an independent variable
(d.c. of exponential function) by delta method.
Solution: (a) Method 1

Let y = ex …(i)

∴ + = +
y y e

x x∆ ∆ …(ii)

Hence, (i) – (ii)

⇒ = − = ⋅ − = −
+

∆
∆ ∆ ∆

y e e e e e e e
x x x x x x x x

1� �

⇒ = −�

�
�

	





∆
∆ ∆

∆
y

x
e

e

x

x
x

1

⇒ = =
−�

�
�

	





→ →

d

d x
y

y

x
e

e

xx x

x
x

� � lim lim
∆ ∆

∆
∆
∆ ∆0 0

1

⇒ = ⋅
−�

�
�

	





→ →

d

d x
y e

e

xx

x

x

x

� � lim lim
∆ ∆

∆

∆0 0

1

= ⋅
−�

��
	


= =

�
��

	

→

e
e

x
ex

x

x

1
1

1
0

� lim log

= ex which ⇒  derivative of an exponential function
with base e w.r.t the index, the index being an
independent variable, is itself the exponential function
without any change in the given form

⇒ = = =d

d x
y

d

d x
e e

x x� � � � ,  provided y = ex .

Notes to Remember: One must remember that terms

having no ∆ x  must be regarded as constants when

∆ x → 0 . This is why we write

(i) lim
∆ x → 0  ex = ex

(ii) lim
∆ x → 0 xn-1 = xn-1, etc

Method 2
Let y = ex …(i)
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∴ + = +
y y e

x x∆ ∆ …(ii)

Hence, (i) – (ii)

⇒ = − = ⋅ − = −
+

∆
∆ ∆ ∆

y e e e e e e e
x x x x x x x x

1� �

⇒ = + +
�

+
�

+ −
�
��

	



∆
∆ ∆

∆
∆ ∆y

x

e

x
x

x x
x

1
2 3

1
2 3� � � �

...

⇒ = +
�

+
�

+
�
��

	



∆
∆ ∆

∆
∆ ∆y

x

e

x
x

x x
x � � � �2 3

2 3
...

⇒
∆
∆

y

x

= +
�

+�
��

	

e

x
x

x
1

2

∆
∆terms having higher powers of .

⇒ = = +
�

+�
��

	

 =→ →

d

d x
y

y

x
e

x
e

x x

x x� � lim lim
∆ ∆

∆
∆

∆
0 0

1
2

...

(b) Let  y = ax, x R∈ , a > 0 …(i)

∴ + = +
y y a

x x∆ ∆ …(ii)

Hence, (i) – (ii)

⇒ = − = ⋅ − = −
+

∆
∆ ∆ ∆

y a a a a a a a
x x x x x x x x

1� �

⇒ =
−�

�
�

	





∆
∆ ∆

∆
y

x
a

a

x

x
x

1

 ⇒ = =
−�

�
�

	





→ →

d

d x
y

y

x
a

a

xx x

x
x

� � lim lim
∆ ∆

∆
∆
∆ ∆0 0

1

= ⋅
−�

�
�

	





→ →
lim lim

∆ ∆

∆

∆x

x

x

x

a
a

x0 0

1

=
−

=
�

�
�

	





→
a a

a

x
a

x
e

x

x

elog lim log�

0

1

= =a l na a l nax
e� log� �

Which ⇒  derivative of an exponential function
with base a > 0 w.r.t the index, the index being an

independent variable, is the exponential function with

the same base a > 0 times “ell – en a” ⇒
d

d x  (y) =

d

d x  (ax) = ax ln a, provided y = ax,  x R∈ , a > 0 and

Remember: (i) The function f (x) = ax, where a is any
positive real number and x is any real number (i.e.
a > 0, x R∈ ) is called the general exponential function
with base a.
(ii) The function f (x) = ex for all x R∈  is called
natural exponential function or simply exponential
function.
(iii) f (x) = ln x is called ell – en (,y – ,u) function or
natural logarithmic function which is alternation to
log x.
(iv) We should note that d.c. of

(a constant) independent variable

= (the constant) the independent variable

times log (the constant), where ‘constant’ stands for
any positive real number (i.e.; e or a)

Hence, 
d

d x  (ex) = ex loge e = ex log e = ex ⋅1 = ex and

d

d x (ax)  =  ax loge a = ax log a

(Note: In calculus, when no base of logarithmic
function is mentioned, it is always understood to be
"e". Hence, loge x = log x = lnx)

Trigonometrical Functions

1. Find the derivatives of all elementary trigonometri-
cal functions w.r.t their independent variables by delta
method.
Solution: 1. Differential coefficient of sin x w.r.t x

Let y = sin x …(i)

∴ + = +y y x x∆ ∆sin � � …(ii)

Hence, (i) –(ii) ⇒ = + −∆ ∆y x x xsin sin� �

=
+ +�

��
	

 ⋅

+ +�
��

	

2

2 2
cos sin

x x x x x x∆ ∆

⇒ = +���
	

 ⋅

�
��
	

∆

∆ ∆
y x

x x
2

2 2
cos sin
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⇒ = +���
	

 ⋅ ⋅

∆
∆

∆ ∆
∆

y

x
x

x x

x
2

2 2

1
cos sin

= +���
	

 ⋅

�
�

	



cos
sin

x
x

x

x
∆

∆

∆2
2

2

⇒ d

d x
y� �

= = +���
	

 ⋅

�
�
	



→ →
lim lim cos

sin

∆ ∆

∆
∆

∆
∆

∆x x

y

x
x

x
x

x0 0 2
2

2

= +���
	

 ⋅

�
�
	



→ →
lim cos lim

sin

∆ ∆

∆
∆

∆x x
x

x
x

x0 02
2

2

= cos x ⋅  1 = cos x which ⇒  derivative of sine of
an angle w.r.t the same angle is cosine of the same

angle ⇒ = =d

d x
y

d

d x
x x� � � �sin cos .

Notes to Remember: 1. While finding the d.c. of
trigonometrical functions using delta method, one
must remember that trigonometrical function which
becomes zero on putting ∆ x = 0  is modified by
writing

(i) sin
sin

θ θ
θ

θ= ⋅ (ii) tan
tan

θ θ
θ

θ= ⋅  so that

standard formulas of limits of trigonometrical
functions.

(a) lim
sin

θ

θ
θ→

= =
0

1 (b) lim
tan

θ

θ
θ→

= =
0

1  may be

used

2.  sin C – sin D = 2 cos 
C D C D+�
��

	

 ⋅

−�
��

	

2 2

cos   is

used to find ∆ y in simplified form while finding d.c.
of trigonometrical functions (particularly sin of an
angle and co sine of an angle).

(ii) Differential coefficient of cos x w.r.t x
Let  y = cos x …(i)

∴ + = +y y x x∆ ∆cos � � …(ii)

Hence, (i) –(ii), ⇒ = + −∆ ∆y x x xcos cos� �

=
+ +�

��
	



− −�
��

	

2

2 2
sin sin

x x x x x x∆ ∆

⇒ = +���
	

 ⋅ −���

	

∆

∆ ∆
y x

x x
2

2 2
sin sin

= − +���
	



�
��

	

2

2 2
sin sinx

x x∆ ∆

⇒ = − +���
	

 ⋅

�
�

	

∆

∆
∆

∆

∆
y

x
x

x
x

x
2

2
2

sin
sin

= − +���
	



�
�

	



�
�

	



sin
sin

x
x

x

x
∆

∆

∆2
2

2

⇒ =
→

d

d x
y

y

xx
� � lim

∆

∆
∆0

⇒ − +���
	

 ⋅

�
�

	



→ →
lim sin lim

sin

∆ ∆

∆
∆

∆x x
x

x
x

x0 02
2

2

= − × = −sin sinx x1  � lim
sin

∆

∆

∆x

x

x→

�
�
	



�
�
	



=

�

�

�
�
�

	






0

2

2

1

which ⇒  derivative of cosine of an angle w.r.t the
same angle is negative of sine of the same angle

⇒ = = −d

dx
y

d

dx
x x� � � �cos sin .

Notes: One must remember that

(i) cos cos sin sinC D
C D C D

− = −
−�

��
	

 ⋅

+�
��

	

2

2 2
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(ii) sin sin− = −θ θ� �  are used to find ∆ y in
simplified form while finding d.c. of cos x w.r.t x.
(iii) Differential coefficient of tan x w.r.t x

Let y = tan x , x n≠ +π
π
2

…(i)

∴ = +∆ ∆y x xtan � � …(ii)

Hence, (i) – (ii)

⇒ = + −∆ ∆y x x xtan tan� �

=
+
+

−
sin

cos

sin

cos

x x

x x

x

x

∆
∆

� �
� �

⇒ =
+ − +

+
∆

∆ ∆
∆

y
x x x x x x

x x x

cos sin sin cos

cos cos

� � � �
� �

=
+ −
+

sin

cos cos

x x x

x x x

∆
∆

� �
� �

⇒ =
+

∆
∆
∆

y
x

x x x

sin

cos cos� �

⇒ =
+

∆
∆

∆
∆ ∆

y

x

x

x x x x

sin

cos cos� �

⇒ =
→

d

d x
y

y

xx
� � lim

∆

∆
∆0

= ⋅ ⋅
+

�
�
�

�
�
�

→
lim

sin

cos cos∆

∆
∆ ∆x

x

x x x x0

1 1

� �

=
�
��

	


⋅

�
��

	


⋅

+
�
��

	

→ → →

lim
sin

lim
1

cos
lim

cos∆ ∆ ∆

∆
∆ ∆x x x

x

x x x x0 0 0

1

� �

= ⋅ ⋅ =�
��

	

→

1
1 1

1
0cos cos

lim
sin

x x
�

θ

θ
θ

= =1
2

2

cos
sec

x
x    which ⇒  derivative of

tangent of an angle w.r.t the same angle is square of

secant of the same angle  ⇒ = =d

d x
y

d

dx
x� � � �tan ,

sec2 x  provided  y = tan x

Notes to Remember: One must remember that (i) sin
(A – B) = sin A . cos B – cos A sin B is used to find ∆ y
in simplified form while finding d.c. of tan x w.r.t. x

(iv) Differential coefficient of cot x w.r.t. x
Let  y = cot x, x n≠ π …(i)

∴ + = +y y x x∆ ∆cot � � …(ii)

Hence, (i) – (ii)

⇒ = + −∆ ∆y x x xcot cot� �

=
+
+

−
cos

sin

cos

sin

x x

x x

x

x

∆
∆

� �
� �

⇒ =
+ − +

+
∆

∆ ∆
∆

y
x x x x x x

x x x

cos sin sin cos

sin sin

� � � �
� �

=
− −
+

sin

sin sin

x x x

x x x

∆
∆

� �
� �

⇒ =
−

+
= −

+
∆

∆
∆

∆
∆

y
x

x x x

x

x x x

sin

sin sin

sin

sin sin

� �
� � � �

⇒ = −
+

∆
∆

∆
∆ ∆

y

x

x

x x x x

sin

sin sin� �

⇒ =
→

d

d x
y

y

xx
� � lim

∆

∆
∆0

= − ⋅ ⋅
+

�
�
�

�
�
�

→
1

1 1
0

� � � �
lim

sin

sin sin∆

∆
∆ ∆x

x

x x x x

= −
�
��

	

 ⋅

�
��

	

 ⋅→ → →

1
0 0 0

� � lim
sin

lim
1

sin
lim

∆ ∆ ∆

∆
∆x x x

x

x x

1

sin x x+
�
��

	

∆� �

= − ⋅ − ⋅
�
��

	

 ⋅
�
��

	

1 1

1� � � �
sin

1

sinx x

= −
�

�
�

	



 = −1

1 2� �
sin

cosec
2

x
x
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which ⇒  derivative of cotangent of an angle w.r.t
the same angle is minus one times square of

cosecant of the same angle ⇒
d

d x
y� �  = d

d x
xcot� �

= –cosec2 x, provided  y = cot x.

Remember: (i) sin (A – B) = sin A cos B – cos A sin
B is used to find ∆ y  in simplified form while finding
d.c. of cot x w.r.t. x.

(v) Differential coefficient of sec x w.r.t. x

Let y = sec x, x n≠ +π
π
2

…(i)

∴ + = +y y x x∆ ∆sec � � …(ii)

Hence, (i) – (ii)

⇒ = + −∆ ∆y x x xsec sec� �

=
+

−1 1

cos cosx x x∆� �

⇒ =
− +
+

∆
∆

∆
y

x x x

x x x

cos cos

cos cos

� �
� �

=
+��

	

 ⋅

+ −�
�

	



+

2 sin sin

cos cos

x
x x x x

x x x

∆ ∆

∆
2 2
� �

⇒ =
+��

	

 ⋅

�
�
	



⋅ +
∆
∆

∆ ∆

∆ ∆
y

x

x
x x

x x x x

2
2 2

sin sin

cos cos� �

=
+��

	



�
�

	



+ ⋅ ��
	

 ⋅

2 sin sin

cos cos

x
x x

x x x
x

∆ ∆

∆
∆

2 2

2
2� �

⇒ =

�
�
	



�
�

	



�

�

�
�
�

	







⋅

+��
	



+

�

�

�
�
�

	








∆
∆

∆

∆

∆

∆
y

x

x

x

x
x

x x x

sin sin

cos cos
2

2

2
� �

⇒ =
→

d

d x
y

y

xx
� � lim

∆

∆
∆0

= lim
sin

lim
cos

lim
sin

cos∆ ∆ ∆

∆

∆

∆

∆x x x

x

x x

x
x

x x→ → →

�

�

�
��

	






⋅

�
��

	

 ⋅

+��
	



+

�

�

�
�
�

	






0 0 0

2

2

1 2
� �

=
cos

sin

cos
sec tan1

1� � ⋅ ���
	

 ⋅
�
��

	

 = ⋅

x

x

x
x x  which

⇒  derivative of secant of an angle w.r.t the same
angle is secant of the same angle times tangent of the

same angle ⇒
d

d x
y� �  = d

d x
xsec� �  sec x tan x,

provided y = sec x.

Remember: 1.  cos C – cos D =
−�

��
	

 ⋅2

2
sin sin

D C

C D+�
��

	

2

 is used to find ∆ y  in simplified form while

finding d.c. of   sec x w.r.t x.

(vi) Differential coefficient of cosec x w.r.t. x
Let y = cosec x, x n≠ π …(i)

 ∴ + = +y y x x∆ ∆cosec � � …(ii)

Hence, (i) –(ii)

⇒ = + −∆ ∆y x x xcosec cosec� �

=
+

−1 1

sin sinx x x∆� �

⇒ =
− +
+

∆
∆

∆
y

x x x

x x x

sin sin

sin sin

� �
� �

⇒ =
+��

	

 ⋅

− −�
�

	



+
∆

∆ ∆

∆
y

x
x x x x

x x x

2
2 2

cos sin

sin sin� �

⇒ =
+��

	

 ⋅ −��

	



+
∆

∆ ∆

∆
y

x
x x

x x x

2
2 2

cos sin

sin sin� �

⇒ =
− +��

	



�
�

	



+ �
�

	

 ⋅

∆
∆

∆ ∆

∆
∆

y

x

x
x x

x x x
x

2
2 2

2
2

cos sin

sin sin� �
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⇒ =
+��

	

 ⋅

�
�
	



+ �
�

	



∆
∆

∆ ∆

∆
∆

y

x

x
x x

x x x
x

cos sin

sin sin

2 2

2
� �

⇒ d

d x
y� �

= lim
sin

lim
sin

lim−

�

�

�
��

	






⋅

�
��

	

 ⋅→ → →∆ ∆ ∆

∆

∆x x x

x

x x0 0 0

2

2

1

cos

sin

x
x

x x

+��
	



+

�

�

�
�
�

	








∆

∆
2

� �

=
sin

cos

sin
− ⋅ − ⋅

�
��

	

 ⋅
�
��

	

1 1

1� � � �
x

x

x

= − ⋅cosec cotx x  which ⇒  derivative of
cosecant of an angle w.r.t the same angle is minus one
times cosecant of the same angle times cotangent of

the same angle ⇒ d

d x
y� �  =

d

d x
xcosec� �  =

– cosec x · cot x, provided  y = cosec x.

Recapitulation: The derivative of every co-function
(i.e., cos, cot, cosec) can be obtained from the
derivative of the corresponding function (i.e., sin, tan,
cos) by (i) introducing a minus sing, and (ii) Replacing
each function by its co-function. Hence applying this

rule to = d

d x
 (sec x) = sec x tan x, we get =

d

d x
(cosec x) = –cosec x · cot x, and so on.

Inverse Circular Functions

Question: Find the derivatives of inverse circular
functions with respect to their independent variables.
Answer: The derivatives of inverse circular functions
with respect to their independent variables have been
derived and discussed in the chapter “Derivatives of
Inverse Circular Functions” in detail and the formulas

for finding their derivatives have been recapitulated
in the chapter “Chain rule for the derivatives”. This is
why it is advised to consult those chapters.

Remarks: 1. In particular, if x = a is a point in the
domain of a function defined by a single formula

y = f (x), then lim
h

f a h f a

h→

+ −
0

� � � �
, h is a small

positive number, is called the differential coefficient
of f (x) at x = a provided this limit exists and is denoted

by ′f a� � . Hence, if  f x
x

� � = 1

2
3 , then ′f 2� �

=
+ −

=
+

−�

�

�
�
��

	








→ →
lim lim
h h

f h f

h

h

h0 0

32 2

1

2 2

1
16� � � � � �

=
− +

+ ⋅→
lim

h

h

h h0

3

3

8 2

16 2

� �
� �

=
− + + +

⋅ ⋅ +→
lim

h

h h h

h h0

2 3

3

8 8 12 6

16 2� �

=
− + +

+→
lim

h

h h h

h h0

2

3

12 6

16 2

� �
� �

=
− + +

+→
lim

h

h h

h0

3

3

12 6

16 2

� �
� �

 =
−
×

=
−12

16 8

3

32

2. In the case of functions defined by a single formula
(rule or expression in x) in a neighbourhood of a point
belonging to their domains, there is no need to
calculate left hand derivative (symbolised as L ′f a� �
or f a−

′ � � ) and right hand derivative (symbolised as

R ′f a� �  or f a+
′ � � ) separately about which, there

is discussion in the chapter “differentiability at a point
in the domain of the function”. Further, in the case of
piecewise functions defined in adjacent intervals
(Intervals whose left end point and right end point
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are same), it is necessary to calculate both the left
hand and the right hand derivatives at the common
point of the adjacent intervals.

3. The domain of ′f x� �  is a subset of points in the

domain of  f (x) where the =
+ −

→
lim

h

f x h f x

h0

� � � �
,

( h > 0 ) exists excluding all those points where this
limit fails to exist, i.e. excluding all those points where
f ' (x) is undefined.

Exercise 6.1

Problems on algebraic functions

Differentiate by ∆ – method (read as delta method)
the following functions w.r.t their independent
variables.

1. (i) 2 x (ii) x2 (iii) 5 x3 (iv) x (v)
3

x

(vi)
1

x
(vii) x

−3
2

2. 7 x3 – 5 x2 + 4 x +13
3. ( 2 x + 3 ) ( 3 x – 7 )

4.
x

x

2
1

1

+
−

5.
1

1x +

6.
1

2 1x −

7.
x

x

+
−

5

3

8. 2 3x −

9. a x b+

10. x a
2 2
+

11.
1

x a+

12.
1

x x

Answers: 1. (i) 2, (ii) 2 x, (iii) 15 x2,

(iv)
1

2 x , (x > 0) (v) – 3 x –2, (x > 0)

(vi) −
−1

2

3

2x , (x > 0) (vii) −
−3

2

5
2x , (x > 0)

2. 21 x2 – 10 x + 4 3. 12 x –5

4.
x x

x
x

2

2

2 1

1
1

− −

−
≠

� �
� �, 5.

−
+

1

1 2x� � , x ≠ −1� �

6.
−

−
>���
	



1

2 1

1

21
2x

x
� �

, 7.
−

−
≠

8

3
3

2
x

x
� �

� �,

8.
1

2 3

3

2x
x

−
>���
	

, 9.

a

a x b
x

b

a2 +
> −�

��
	

,

10.
x

x a
2 2+ 11. − + + >−1

2
0

3
2a x x a� � for

12. − >3

2
0

5
2x

x� �

Exercise 6.2

Problems on trigonometric functions

Find the derivatives of the following functions w.r.t x
ab - initio.

1. sin x 2. cos x 3. sin 2x 4. sin
x

2

�
��
	



5. sin x 6. cos x 7. cos2 x 8. sin2 x

9. sin x2 10. cos
x

2

�
��
	

 11. tan x 12. tan 2 x

13. cot
x

2

�
��
	

 14. sec x 15. cosec2 x

16. tan 4x 17. cosec 3x 18. cot 2x 19. tan ax
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20. sec (2x + 5) 21. sin (x2 + 1) 22. cos (ax2 +bx +c)
23. x2 cos x  24. tan2 ax

Answers:

1. cos x 2. – sin x 3. 2 cos 2x

4.
1

2 2
cos

x�
�
	



5.
cos

sin

x

x
n x n

2
2 2 1π π< < +� �� �

6.
– sin

cos

x

x
n x n

2
2

2
2

2
π

π
π

π
− < < +�

��
	



7. – sin 2x
8. sin 2x
9. 2x cos x2

10.
− �

��
	



1

2 2
sin

x

11. sec2

2
x x n≠ +�
��

	

π π

12. sec2 2
2 4

x x
n≠ +�

��
	



π π

13. − �
��
	

 ≠

1

2 2
2cosec for2 x

x nπ

14.
1

2
2

2
2

2
⋅ ⋅ − < < +�

��
	

sec tanx x n x nπ

π
π

π

15. –2 cosec2 x ⋅cot x, x n≠ π� �

16. sec ;2 4
4 8

x x
n

≠ +�
��

	



π π

17. –3 cosec 3x ⋅cot 3x; x
n

≠���
	



π
3

18. –2 cosec2 2x; x
n

≠���
	



π
2

19. a sec2 ax; ax n≠ +�
��

	

π

π
2

20. a sec (2x + 5) tan (2x + 5); 2 5
2

x n+ ≠ +�
��

	

π

π

21. 2x cos (x2 + 1)
22. –(2ax + b) · sin (ax2 + bx + c)
23. 2x cos x – x2 sin x

24. 2a tan ax sec2 ax; ax n≠ +�
��

	

π

π
2

Exercise 6.3

Problems on logarithmic functions

Find from the first principle the derivatives w.r.t x of:

1. log (3x + 2) 2. loga x a a> ≠0 1,� �
3. log (ax + b) 4. loga (5x + 3)
Answers:

1.
3

3 2

2

3x
x

+
> −�

��
	



2.
1

x alog (x > 0)

3.
a

a x b
x

b

a+
> −�

��
	



4.
1

5 3

3

5x a
x

+
>
−�

��
	

� � log

Exercise 6.4

Problems on exponential functions

Find from the definition the derivatives of the
following:

1. e2x 2. emx 3. e–x 4. e
x 5. e4x 6. a5 x (a > 0)

7. asin x 8. atan x (a > 0) 9. esin2x

Answers: 1. 2e2x 2. m em x 3. –e–x

4.
e x

x2
, (x > 0) 5. 4 e4x 6. 5a5x log a

7. a sin x cos x ⋅  log a 8. a tan x sec2 x  log a
9. 2esin2x · cos 2x.
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7

Differentiability at a Point

To clear the concepts of differentiability of a function
at a limit point in the domain of a function. The
definitions of some other concepts connected with it
are required to be provided.

1. Difference function f D R: on to → defined by
y = f (x)  is a function and there is an attention on a δ –
neighourhood of a limit point x a D= ∈  such that
for each value of  x  in δ –  neighbourhood of the limit
point x a D= ∈ ⇒  there is a number  f (x) – f (a)
which is called the value of the difference function
for the given function f and a given limit point namely
a, in the domain of the function f. The difference f (x)
– f (a) is the algebraic increment in  f (a) for the
increment (x – a) in the value of x at the limit point
x = a. It is customary to denote the difference function
by the symbol ∆ ∆f f f f= + −� � .

Further, domain of the difference function ∆ f  is
the same as the domain of the function f, i.e.
D f D f� � � �= ∆ .
2. Difference quotient (or increment – ratio) function:

f D R: on to →  defined by  y = f (x)  and there is
an attention on a δ – neighbourhood of a limit point
x a D= ∈  such that for each x in δ – deleted

neighbourhood of the limit point x a D= ∈ ⇒  there

is a number 
f x f a

x a

� � � �−
−

 which is called the value

of a difference – quotient function or the value of an
increment ratio function for a given function f.
Moreover, the domain of increment ratio function is
of course the domain D of the function f with  the

exception of the limit point x = a at which the
increment – ratio function is not defined. Now, it can
be readily guessed that if  f (x) is continuous at the
limit point x = a, then limit of the difference function
at the limit point x = a is the number zero whereas the
increment ratio function is not defined at the limit
point x = a. We are to find out whether the left-hand
and the right-hand limits of the increment-ratio
function at the limit point x = a exist or not.

The concept of the derivative of a function at a
limit point x = a in the domain of a function is defined
in various ways:

Definition 1: (In terms of neighbourhood): we say
that a fixed number ′f a� �  is the derivative of the
function   y = f (x) at a limit point  x = a  in the domain
of the function   f ⇔There is a fixed number ′f a� �
such that if we choose any∈- neighbourhood of the
fixed number  ′f a� �  denoted by N f aε ′ � �� � , it is
possible to find out a δ -neighbourhood of the limit
point ‘a’ in the domain of the function  f denoted by
N aδ � �  such that the values of the increment-ratio

function g (x) = 
f x f a

x a

� � � �−
−

 lies in N f aδ ′ � �� �
for every value of x which lies in the δ-deleted
neighbourhood of the limit point a in the domain of f
denoted by ′ = < − <N a x aδ δ� � 0 .

That is a number denoted by ′f a� �  is called the
derivative of a function f at a limit point x = a in the
domain of the function  f ⇔  There is a number
′f a� �  such that for every ε - neighbourhood  N of

a number ′f a� �  denoted by N f aε ′ � �� � , ∃ a δ -
neighbourhood of the limit point a in the domain of
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the function f denoted by N aδ � �  such that g (x)

=
−
−

∈ ′
f x f a

x a
N f a

� � � � � �� �δ  for every

x N a∈ ′δ � � = < − < = − ∪ +0 x a a a a aδ δ δ, ,� � � �
= δ -deleted neighbour-N of the limit point a in the
domain of the function f.

Notes: 1. The definition of the derivative of a
function can be redefined in short in terms of δ -
deleted neighbourhood N of a limit point ‘a’ in the
domain of the function f.

Definition 2: (In terms of deleted neighbourhood):
A number denoted by ′f a� �  is called the derivative
of function f at a limit point  x a D f= ∈ ⇔ ∀� �  ε -
neighbourhood N of a number ′f a� �  denoted by
N f aε ′ � �� �,  ∃ −a δ  deleted neighbourhood ′N  of

the limit point x a D f= ∈ � �  denoted by ′N aδ � �
= − ∪ +a a a aδ δ, ,� � � �  such that g x� �

=
−
−

∈ ′
f x f a

x a
N f a

� � � � � �� �ε , ∀ ∈ ′x N aδ � � .

2. One should keep in mind that the definitions of
the limit of a function  y = f (x) at a limit point
x a D f= ∈ � �  and the derivative of function y =  f
(x) at a limit point x a D f= ∈ � � are similar in the
following sense.
(a) The derivative of a function f at a limit point x =
a D f∈ � �  is the limit of the increment ratio function

g x
f x f a

x a
� � � � � �

=
−
−

 at a limit point x a D f= ∈ � � .

(b) In the definition of the limit of a function f at a limit
point x a D f= ∈ � � , the functional values lies in
N L x N aε δ� � � �, ∀ ∈ ′  whereas in the definition of

the derivative of a function  f at a limit point
x a D f= ∈ � � , the values of an increment ratio

function g x
f x f a

x a
N f a� � � � � � � �� �=

−
−

∈ ′ε ,

∀ ∈ ′x N aδ � �
Definition 3: ( ε δ− definition): A number ′f a� �  is
the derivative of the function f at a limit point
x a D f= ∈ ⇔ ∀ >� � ε 0 , ∃ >δ 0  ( δ depends on
ε )  such that for all points x,

0 < − < ⇒
−
−

′ <x a
f x f a

x a
f aδ ε

� � � � � �

On one Sided Derivatives

There are two types of derivatives namely  (i) right
hand derivative and (ii) left hand derivative.
1. Right hand derivative:
Definition (a): In terms of neighbourhood: A function
f is said to have the right hand derivative at a point
x a D f= ∈ � � , which is also the right hand limit point
of D (f), denoted by ′ ⇔ ∀+f a� � ε -neighbourhood
N of  ′+f a� � denoted by N f a a∈ +′ ∃� �� � ,  δ -
neighbourhood N of the right hand limit point ‘a’ of
the domain of the function which is in the domain of
the function f denoted by N aδ � �  such that the

functional values g x
f x f a

x a
� � � � � �

=
−
−

∈ ′ ∀+N f a xε � �� � ,  which lies in a right deleted
neighbourhood ′N  of the right hand limit point ‘a’
of  the domain of the function f denoted by
′ = < − < = < < +N a x a a x aδ δ δ� � 0

Definition (b): (In terms of ε δ−� � definition):
′+f a� �  is called right hand derivative of function f at

the right hand limit point x = a  of the domain of the
function f which is in the domain of the function
f ⇔ ∀ > ∃ >ε δ0 0,  ( δ depends on ε ) such that

0 < − < ⇒
−
−

− ′ <+x a
f x f a

x a
f aδ ε

� � � � � �

i.e. a x a
f x f a

x a
f a< < + ⇒

−
−

− ′ <+δ ε
� � � � � �

Note: One should keep in mind that ′+f a� �  is a
notation for a finite number.

(ii) Left hand derivative:
Definition (a): In terms of neighbourhood: A function
f is said to have the left hand derivative at a point
x a D f= ∈ � �  which is also the left hand limit point
D (f) denoted by ′ ⇔ ∀f a� � ε - neighbourhood N
of  ′−f a� �  denoted by N f aε ′− � �� � , ∃ a δ -
neighbourhood N of the left hand limit point ‘a’ of
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the domain of function f which is in the domain of the
function f denoted by N aδ � � , such that the

functional values g x
f x f a

x a
� � � � � �

=
−
−

N f a xε ′ ∀− � �� � ,  which lies in a left deleted
neighbourhood ′N  of the left hand limit point ‘a’ of
the domain of the function f  denoted by
′ = < − < = − < <N a a x a x a∂ ∂ ∂� � 0 .

Definition (b):  In terms of ε ∂− definition: A fixed
number ′−f a� �  is called left hand derivative of a
function f at the left hand limit point x = a of the
domain of the function f which is in the domain of the
function f a⇔ ∀ > ∃ >ε ∂0 0,  ( ∂ depends on
ε ) such that

 0 < − < ⇒
−
−

− ′ <−x a
f x f a

x a
f a∂ ε

� � � � � �

i.e. a x a
f x f a

x a
f a− < < ⇒

−
−

− ′ <−∂ ε
� � � � � �

On other forms: To find the derivative of a function f at
a limit point x = a in its domain, one should avoid making
use of neighbourhood definition or ( ε ∂− ) definition
for the reason that these definitions have no practical
utility. This is why other forms are used in terms of
which the derivative of a function f at a limit point x =
a  in its domain is defined in the following ways.
1. Right hand derivative: If the function f is defined
at a right hand limit point x = a, then the right hand
derivative of the function f at x = a, denoted by

′+f a� � , is defined by ′ =
−
−+

→ +
f a

f x f a

x ax a
� � � � � �

lim

or equivalently if x = a + h , then

′ =
+ −

>+ →
f a

f a h f a

h
h

h
� � � � � � � �lim

0
0,

2. Left hand derivative: If the function f is defined
at a left hand limit point x = a, then the left
hand derivative of the function f at x = a, denoted by

′−f a� � , is defined by ′ =
−
−−

→ −
f a

f x f a

x ax a
� � � � � �

lim

or equivalently if x = a – h , then

′ =
− −
−− →

f a
f a h f a

hh
� � � � � �

lim
0

, h > 0� � .

3. Derivative of a function at a limit point in its domain:
If a function f is defined at a limit point x = a, then the
derivative of f at x = a, denoted by  ′f a� � , is defined

by ′ =
−
−→

f a
f x f a

x ax a
� � � � � �

lim or equivalently if x =

a + h , then  ′ =
+ −

→
f a

f a h f a

hh
� � � � � �

lim
0

. Hence, to

find the derivative of f at x = a, one should first of all

find the difference quotient 
f a h f a

h

+ −� � � �
 and

f a h f a

h

− −
−

� � � �
 ,(h  >  0) and then proceed to find

its limit as h → 0 .  In finding out this limit, one can
make use of all the theorems on limits.
Note: The symbols L ′f a� �  for ′−f a� �  and R
′f a� �  for ′+f a� �  are also in use.

Question: When is a function  y = f  (x)  is said to be
differentiable at a limit point  x a D f= ∈ � � ?
Answer: The function y = f (x) is differentiable at a
limit point x a D f= ∈ ⇔� �  ‘a’ lies in the domain
of the derived function ′f x� � , i.e. ′f a� �  exists, i.e.

′ =
+ −

+
→

f a
f a h f a

hh
� � � � � �

lim
0

, (h > 0) = f ' (a); and

′ =
− −

>−
→

f a
f a h f a

h
h

h
� � � � � � � �lim

0
0, = ′f a� �

 = a finite number.

Question: When is a function differentiable in an
interval?
Answer: A function y = f (x) is said to be differentiable
in an open interval (finite or infinite)  ⇔  The function
y = f (x) has a derivative at each limit point in between
the left and right end points of the open interval.

Also, a function y = f (x) is said to be differentiable
in a closed interval ⇔  The function y = f (x) is
differentiable at and in between the left and right end
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limit points of the closed interval, i.e. a function f (x) is
differentiable on a closed interval [a, b] ⇔  it is
differentiable on the interior (a,b) and if the limits

′ =
+ −

>+ →
f a

f a h f a

h
h

h
� � � � � � � �lim

0
0,  = right

hand derivative at the left end point of the closed

interval, ′ =
− −
−

>− →
f b

f b h f b

h
h

h
� � � � � � � �lim

0
0,  =

left hand derivative at the right end point of the closed
interval, exist.

Lastly, a function is said to be differentiable if it is
differentiable at each limit point of its domain.*

Notes: 1. If a function  y = f (x) is defined on a closed
interval [a, b], then the value of its left hand derivative
on the right end point and the value of its right hand
derivative on the left end point are taken, respectively,
as the values of its derivatives at the end points of
the closed interval.
2. A function which has a continuous derivative is
called continuously differentiable.

How to test differentiability of a function at a point?

A simple rule to test the differentiability of a function
f at a point x = a in its domain is to find its derived
function ′f x� �  of the function  f (x) using the
definition of the derivative ′f  of a function  f at any
limit point x in the domain of the function, i.e.

′ =
+ −

→
f x

f x x f x

xx
� � � � � �

lim
∆

∆
∆0

 and then to

check whether ′f x� �  is defined (continuous) or
undefined (discontinuous) at the given limit point x =
a, i.e. (i) ′f x� �  is defined at limit x a f x= ⇒ � �  is
differentiable at limit point x = a  (ii) ′f x� �  is
undefined at limit point x a f x= ⇒ � �  may or may
not be differentiable at x = a for which one must make
use the definition of the left hand and right hand
derivative at the given point x = a whose equal finite
value confirms the differentiability of f (x) at the limit
point x = a and whose unequal finite (or, infinite)
value confirms the non-differentiability of  f (x) at the
limit point x a D f= ∈ � � .

Note: If one is asked to test the differentiability of  a
function f at a limit point x = a in its domain with the
use of the definition of the derivative of a function f at
a limit point a D f∈ � �  the above method should
not be adopted.

Non-differentiability of a function at a point

Question: When a function f (x) is said to be non-
differentiable at a limit point x a D f= ∈ � � ?
Answer: A function f (x) is said to be non-differentiable
at a limit point x a D f= ∈ � � ⇔ f a' � �  does not
exist. For instance,

1. ′ ≠ ′+ −f a f a� � � �  or

2. ′ = ′ = ∞+ −f a f a� � � �  or

3. ′ = ′ = − ∞+ −f a f a� � � �  or

4. ′ = + ∞+f a� �  and ′ = − ∞−f a� �  or

5. ′ = ∞+f a� �  or

6. ′ = − ∞−f a� � or

7. f (a) is undefined or imaginary.
That is, in words, a function f (x) is non-

differentiable (not differentiable) at a limit point
x a D f= ∈ ⇔� �  'a' does not lie in the domain of
′f x� � , i.e. ′f a� �  does not exist, i.e.,

1. Either  left hand derivative or right hand derivative
or both left hand derivative and right hand derivative
do not exist at the limit point x a D f= ∈ � �.
2. right hand derivative and left hand derivative exist
but are unequal at the limit point x a D f= ∈ � �.
3. f (x) is undefined or imaginary at the limit point
x D f∉ � � .
4. In most cases a modulus function  y = | f (x) | or a

radical function y f x
mn= � �  is non-differentiable

at a point x a D f= ∈ ⇔� �  x = a  makes f (x) zero,

i.e. f x f x
x a� �� � � �= = ⇔0  or f x

mn � �  is non-

differentiable at x a D f= ∈ � � , m n R, ∈� � .
Notes: 1. Points of discontinuity of a function f (x)
are also points of non-differentiability of the function.
2. Points at which f (x) is non-differentiable are called
points of non-differentiability of f (x).

* All standard functions are differentiable in their domains.
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3. The function y = f (x) defined for real x, by

f x x
x

x
p� � = �

�
�
� ≠sin

1
0,

f (0) = 0
has the following properties:
(i) ′f 0� � does not exist if  p = 1

(ii) ′f 0� �  exists but ′f x� �  is not continuous at

x = 0, if p = 2

(iii) ′f x� �  is continuous at  x = 0 if  p > 2.

4. The set of all those points where f (x) is differen-
tiable is called domain of differentiability.
5. Derivatives at isolated points are not defined whereas
a function is always continuous at an isolated point.

Question: Explain the cases where to use the concepts
of left and right hand derivative to test the
differentiability of a function at a point on its domain?
Answer: There are mainly four cases where the
concepts of one sided derivative (left hand derivative
and right hand derivative ) are used.
1. When a function is defined as under:

f x
f x x a

c x a
� � � �=

≠
=

	


�

1 ,

,

2. When a function f (x) is a piecewise function, i.e.
when a function f (x) is defined by more than two
formulas (different expression in x) in adjacent
intervals.
3. When a function contains modulus, radical or
greatest integer function.
4. When the question says to examine the
differentiability of a function f (x) at a point x = a in its
domain or to examine whether ′f a� �  exists.

On methods of finding one sided derivatives

Method 1:
How to find left hand (or left side) derivative of
piecewise function f (x) at a common point x = a in the
adjacent intervals.
Step 1. Find f (a) from a form (expression in x) of the
function f (x) defined in a semiclosed or closed interval
whose left or right end point is 'a' or from a form of the
function f (x) with a restriction x = a.
Step 2. Replace x by (a – h) in a given form of the
function f (x) and also in an interval whose right end
point is ‘a’. This is f (a – h), for  – h < 0.

Step 3. Simplify the function 
f a h f a

h

− −
−

�
�

�
��

� � � �

and cancel out the common factor h (if any).

Step 4. Find  lim
h

f a h f a

h→

− −
−

�
�

�
��0

� � � �
 which is the

required left side derivative at the right end point of
the adjacent intervals where a given function f (x) is
defined.

How to find right hand ( or right side) derivative of a
piecewise function f (x)at a common point x = a in the
adjacent intervals.
Step 1. Find f (a) from a form ( expression in x) of the
function f (x) in a semiclosed or closed interval whose
left or right end point is ‘a’ or from a form of the
function f (x) with a restriction x = a.
Step 2. Replace x by  (a + h ) in the given form of a
function f (x) and also in an interval whose left end
point is ‘a’. This is f (a + h), for h > 0.

Step 3. Simplify the function 
f a h f a

h

+ −�
�

�
��

� � � �

and cancel out the common factor h ( if any).

Step 4. Find lim
h

f a h f a

h→

+ −�
�

�
��0

� � � �
 which is the

required right side derivative at the left end point of
the adjacent intervals where a given function f (x) is
defined.
Notes: 1. In the case of functions containing modulus
or greatest integer function, the above method of
procedure is applicable since indeed, it is these
functions which are piecewise functions.
2. When a function f (x) is redefined, one should put
x a h= ±  in the same expression and in a restriction
x a≠   to find f ( a + h ) and f ( a – h ) and then it
remains to find f (a) from the expression with a
restriction x = a and lastly ′+f a� � and ′−f a� �  are

determined, i.e. f x
f x x a

f x x a
� � � �

� �=
≠
=

	
�
1

2

,

,

when

when

should be changed into the form:
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f a h
f h h

f h h
± =

≠
=

	
�
� � � �

� �
1

2

0

0

,

,

when

when   and finally it

requires the use of the definitions:

′ =
+ −

>+ →
f a

f a h f a

h
h

h
� � � � � � � �lim

0
0,

 ′ =
− −
−

>− →
f a

f a h f a

h
h

h
� � � � � � � �lim

0
0, .

Method 2:
1. Find f (a) by putting x = a in one of the given
function f1 (x), f2 (x), f3 (x) or  f4 (x) against which the
sign of equality with the sign of inequality in the
given restrictions in the form of different intervals
whose union provides us the domain of the given
function f (x). i.e;

Find f (a) by putting x = a  in that function (one of
f1 (x), f2 (x), f3 (x) or f4 (x) … etc) against which any one
of the restrictions x a x a≥ ≤, ,  x a a x c= ≤ <, ,
c x a< ≤ , ... etc  is imposed.

2. Find f (a + h) by putting x = a + h in the different
given functions f1 (x), f2 (x), f3 (x), … etc. and in the
different intervals  ( i.e.; x a x a≥ ≤, ,  x a= ,
a x c c x a≤ < < ≤, , ... etc.) as the restrictions ( or,
the conditions) imposed against each different
functions f1 (x),  f2 (x),  f3 (x) … etc i.e;

Put x = a + h  in all the different functions f1 (x), f2
(x), f3 (x) … etc. and in all different given intervals
which are imposed as a restriction against each
different function f1 (x), f2 (x), f3 (x) … etc as well as in
f (x) to find f (a + h).
3. Solve the restrictions only to have a function
[f1 (a + h),  f2 (a + h),  f3 (a + h), … etc] for  h > 0 and
a function [f1 (a + h), f2 (a + h), f3 (a + h), ... etc for
h < 0.
4. Use the definition:

L lim′ = ′ =
+ −

−
→ −

f a f a
f a h f a

hh
� � � � � � � �

0
,

for   h < 0

R lim′ = ′ =
+ −

+
→ +

f a f a
f a h f a

hh
� � � � � � � �

0
,

for  h > 0 which ⇒
(i) Put f1 (a + h),  f2 (a + h), or  f3 (a + h), which is an
expression in h for h < 0 (already determined) by

replacing  f (a + h) in the definition of  L ′f a� �  i.e.;
put f (a + h) = proper one of  f1 (a + h), f2 (a + h), or  f3
(a + h) which is an expression in h for h < 0 in L ′f 0� � .
(ii) Put f1 (a + h), f2 (a + h), or f3 (a + h), which is an
expression in h for h > 0 (already determined) by
replacing f (a + h) in the definition or R ′f a� �  i.e.;
put f (a + h) = proper one of  f1 (a + h),  f2 (a + h),  f3 (a
+ h) or f4 (a + h) etc. already determined which is an
expression for h > 0 on R ′f 0� � .
(iii) Put f (a) already determined in the definition of

L ′f 0� �  and R ′f 0� � .

(iv) Simplify   
f a h f a

h

+ −� � � �
  for   h < 0    and h > 0

(v) Find the limit of  
f a h f a

h

+ −� � � �
 for h < 0 and

h > 0 as  h → 0  after simplifying  
f a h f a

h

+ −� � � �

for h < 0 and h > 0

Note: 1. Method 2 (or, the second method) is
applicable when we can obtain various functions
f1 (h), f2 (h), f3 (h) … etc. (i.e. functions or expressions
in h) against which h > 0 and h < 0 are imposed as the
restrictions if we put x = a + h in various functions
f1 (x), f2 (x), f3 (x), … etc. and in the intervals
x a x a x a≥ ≤ >, , . ,  x a< , a x b≤ < ,  … etc.
which ⇒  if f (a + h) = f1 (h), h ≥ 0

= f2 (h) , h < 0

are obtained by putting x = a + h  in the given functions
and in the given intervals.

2. Inequalities  x a a> ≡ ∞,� �
x a a< ≡ −∞ ,� �
x a a≥ ≡ ∞,
x a a≤ ≡ −∞ ,

N.B.: (i) An inequality in x only means an interval
(ii) We put x = (a + h) every where in the given
function i.e., in
(a) f (x)
(b) f1 (x),  f2 (x),  f3 (x), … etc.
(c) The restrictions  x a x a x a x a> ≥ < ≤, , , ,
c x a c x a c x a c x a< < ≤ < < ≤ ≤ ≤, , , , ... etc.
Whenever we follow the method 2.
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A Theorem

Theorem: If a function possesses a finite derivative
at a point, then it is continuous at that point.

Or, if a function f (x) is derivable ( or, differentiable)
at x = a, then f (x) is continuous at x = a.

Or, the function f (x) is continuous at x = a  if its
derivative ′f x� �  at x = a i.e.; ′f a� �� �  is finite.

Or, ′f a� �  is finite ⇒  f (x) is continuous at x = a .

Proof: Hypothesis is lim
x a

f x f a

x a→

−
−

� � � �  = ′f a� �

which is finite [from the definition] …(i) Now,

f x f a
f x f a

x a
� � � � � � � �

− =
−
−  × −x a� �

Now, taking the limit as x a→ ,  we get

lim lim
x a x a

f x f a
f x f a

x a
x a

→ →
− =

−
−

× −
	


�

�
�
�

� � � � � � � �
� � � �

⇒ − =
−
−

	


�

�
�
�→ →

lim lim
x a x a

f x f a
f x f a

x a
� � � � � � � �

� �

× −	
�
���→

lim
x a

x a� �

⇒ − = ′ ×
→

lim
x a

f x f a f a� � � � � � 0  � lim
x a

x a
→

−�
� � �

= ′ =
−
−

�
��→

0 and from (1) , limf a
f x f a

x ax a
� � � � � �

⇒ − =
→

lim
x a

f x f a� � � � 0

⇒ − =
→ →

lim lim
x a x a

f x f a� � � � 0

⇒ = =
→ →

lim lim
x a x a

f x f a f a� � � � � �

⇒ =f x x a� � is continuous at

Hence, the theorem is proved.

Remark: But the converse of the theorem is not true.
We cite the following example.
Let f (x) = | x |

We claim that f (x) is continuous at the origin (i.e.;
x = 0) but not differentiable at the origin.

Now, because,
f (0) = | 0 | = 0,

f f h f h
h h

0 0 0
0 0

− = − = −
→ →

� � � � � �lim lim

= − = =
→ →

lim lim
h h

h h
0 0

0� � , ...(i)

f f h f h
h h

0 0 0
0 0

+ = + =
→ →

� � � � � �lim lim

= = =
→ →

lim lim
h h

h h
0 0

0� � ...(ii)

Thus,  from (i) and (ii), we get

lim lim
h h

f h f h
→ →

− = + =
0 0

0 0 0� � � �    which  ⇒

f (x) is continuous at x = 0
Now, test of differentiability:

L lim′ =
− −
−→

f
f h f

hh
0

0 0

0
� � � � � �

=
− −

−→
lim

h

f h f

h0

0� � � �
� �

⇒ ′ =
− −
−

=
−

�
��

�
�� = −

→ →
L lim limf

h

h

h

hh h
0

0
1

0 0
� � � �

...(iii)

R lim′ =
−

→
f

f h f

hh
0

0

0
� � � � � �

⇒ ′ =
−

= =
→ → →

R lim lim limf
h

h

h

h

h

hh h h
0

0

0 0 0
� � � �

= 1 ...(iv)

Thus, from (iii) and (iv), we get, L f ' (0) = –1
≠ = ′ ⇒ ′1 0 0R whichf f� � � �  does not exist.

Conclusion:
1. Differentiability at a point ⇒  continuity at the
same point.
2. Continuity at a point /⇒  differentiability at the
same point.
Note: 1. We say that f (x) is differentiable at the left
end point ‘a’ of an interval [a, b] or [a, b), we mean
that ′+f a� �  exists.
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Similarly, we say that f (x) is differentiable at the
right end point ‘b’ of an interval (a, b] or [a, b] we
mean that ′−f b� �  exists.
2. By a closed interval [a,b] or a x b≤ ≤� � , we mean
that the end points a and b of the interval are also to
be considered while by an open interval (a,b) (or, ] a,
b [ or, a < x < b) we mean that end points a and b are
not to be considered in any problem.

Important deductions based on the definition of
derivative of a function f (x) at a point x = a

(i) If y
x f a a f x

x a
=

−
−

� � � �
,

then lim
x a

x f a a f x

x a
f a a f a

→

−
−

= − ′
� � � � � � � �

= value of  f (x) at x = a – a times d.c of f (x) at x = a.

Proof: lim
x a

x f a a f x

x a→

−
−

� � � �

=
− − −

−→
lim

x a

x f a a f a a f x f a

x a

� � � � � � � �

[adding and subtracting a f (a) in Nr]

=
−

−
−

−
−→ →

lim lim
x a x a

f a x a

x a
a

f x f a

x a

� � � �
� �

� � � �

= − ′f a a f a� � � �
= value of f (x) at x = a – a times d.c. of f (x) at x = a

= −
�
�

�
��=

=

f x a
d y

d xx a
x a

� �

e.g: a lim
sin sin

sin cos� �
x

x x

x→

−
−

= −
α

α α
α

α α α

2. If   y
f x f y

x y

f y f x

y x
=

−
−

−
−

�
��

�
��

� � � � � � � �
or, = ,

then =
−
−

= ′
→

lim
y x

f x f y

x y
f x

� � � � � � e.g.,

(a) lim
sin sin

cos
sin

y x

x y

x y
x

d x

d x→

−
−

= =

(b) lim
tan tan

sec
tan2

y x

x y

x y
x

d x

dx→

−
−

= =

3. If y
f x f y

x y
=

−
−

� � � �
,

then lim
x y

f x f y

x y
f y

→

−
−

= ′
� � � � � �

e.g.: (a) lim
tan tan

sec
tan2

x y

x y

x y
y

d y

d y→

−
−

= =

(b) lim
sin sin

cos
sin

x y

x y

x y
y

d y

d y→

−
−

= =

N.B.: (i) Remember that when x y→  we get ′f y� �
and when y x→ , we get ′f x� �  as  in (2) and (3) i.e.;
after ′f , converging point is written.
(ii) On the left side of the symbol " "→  independent
variable of he function is mentioned and the right
side of the symbol " "→  the constant quantity  (i.e.;
the limit of independent variable) is mentioned. i.e.;

lim ,
a b

f a
→

� �  a = independent variable,  b = lim a

Types of the problem

Type A
1. To find l.h.d and r.h.d or ′f a� �  by using the
definition of d.c
2. Existence and non-existence of ′f x� �  at a point
x = a .
3. To show whether a given function is differentiable
or not at a given point.
4. Examination of differentiability at a given point or,
discussion of differentiability at a given point.

All above types of problems have the following
working rule.
1. Find L.H.D or  R.H.D
2. Observe whether L.H.D and R.H.D are equal or
not.
3. Conclude ′f x� �  at a point to be differentiable or
not according to the observation.

Type B
1. To find the value of constants.

Type 1: Problems based on piecewise function.
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Examples worked out:

1. If  f (x) = 3x – 4, x ≤ 2

f (x) = 2 (2 x – 3 ),  x  >  2 examine ′f 2� � .

Solution: Method 1
f (x) = (3 x – 4), for x < 2
⇒   f (2 – h) = 3 (2 – h) – 4, for h > 0 [�2 – h < 2]
= 6 – 3 h – 4 = 2 – 3 h …(1)
∴   f (2) = 3 × 2 – 4 = 6 – 4 = 2 …(2)
∴   (1) – (2)  =  f (2 –h) – f (2) = 2 – 3 h – 2 = – 3 h

…(3)
Again,  f (x) = 4 x – 6 for x > 2
⇒   f (2 + h) = 4 (2 + h ) – 6 = 8 + 4 h – 6 = 2 + 4 h

…(4)
[2 + h > 2]
∴ (4) – (2)  ⇒  f (2 + h) – f (2) = 2 + 4 h –2 = 4 h

… (5)

Now, R.H.D lim=
+ −

→h

f h f

h0

2 2� � � �
, h > 0

= =
→

lim
h

h

h0

4
4 …(6)

L.H.D lim=
− −
−→h

f h f

h0

2 2� � � � , h > 0

=
−
−

=
→

lim
h

h

h0

3
3 …(7)

From (6) and (7), we see that ′ ≠ ′− +f f2 2� � � �
⇒ ′f 2� � does not exist.

Method 2: Given is

f (x) = 3x – 4,  x ≤ 2

f (x) = 2 (2 x – 4), x > 2
By definition of function f (x),
f (2 + h) = [3 (2 + h) – 4], 2 + h≤  2

= 2 [2 (2 + h) – 3], 2 + h > 2
⇒   f (2 + h) = [ 6 + 3 h – 4], h ≤  0

= 2 [4 + 2h – 3], h > 0
⇒  f (2 + h) = 2 + 4h  when h > 0 …(1)

= 2 + 3 h  when  h≤  0 …(2)
and f (2) = 2 …(3)

Now,

L.H.D lim=
+ −

→h

f h f

h0

2 2� � � �
   for   h < 0

=
+ −

= =
→ →

lim lim
h h

h

h

h

h0 0

2 3 2 3
3  …(4)

R.H.D lim=
+ −

→h

f h f

h0

2 2� � � �
, for   h > 0

=
+ −

= =
→ →

lim lim
h h

h

h

h

h0 0

2 4 2 4
4 …(5)

Hence, from (4) and (5), we see that l.h.d. ≠ r.h.d

which ⇒ ′f 2� �  does not exist.

2. Test the differentiability of the function

f x
x x

x x
� � = ≤ ≤

− <
	
�

,

,

0 1

2 1 1
 at x = 1.

Solution: By using method (2),
from the definition of the function f (x),

f h
h h

h h
1

1 0

2 1 1 0
+ =

+ <
+ − >

	
�
� � � �

,

,

when

when

f (1) = 1 (considering f (x) = x for the value of the
function f (x) at x = 1)

 L lim′ =
+ −

→
f

f h f

hh
1

1 1
0

� � � � � �
 , h < 0

=
+ −

=
→

lim
h

h

h0

1 1
1  and

R lim′ =
+ −

→
f

f h f

hh
1

1 1

0
� � � � � �

, h > 0

=
+ −

=
→

lim
h

h

h0

2 1 1
2

thus, L R′ ≠ ′ ⇒ ′f f f1 1 1� � � � � �  does not exist ⇒
f (x) is not differentiable at x = 1
3. A function f (or, f (x)) is defined by f (x) = x + 2,
when 0 2≤ <x

= 8 x , when  2 4≤ ≤x ,

find the left hand derivative and right hand derivative
of f at x = 2.
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Solution:

l.h.d lim= ′ =
− −
− −− →

f
f h f

hh
2

2 2

2 20
� � � � � �

, h > 0

=
− −
−→

lim
h

f h f

h0

2 2� � � �
…(A)

Now,  f (x) = x + 2 for x < 2
⇒   f (2 – h) = 2 – h + 2 = 4 – h …(1)

� 2 2− <h

f x
x

2 8 16 4 4 4
2

� � = = = × =
=

…(2)

Putting (1) and (2) in (A), we get

′ =
− −
−

=
−
−

=−
→ →

f
h

h

h

hh h
2

4 4
1

0 0
� � lim lim …(3)

Again,

r.h.d lim= ′ =
+ −
+ −+ →

f
f h f

hh
2

2 2

2 20
� � � � � �

, h > 0

=
+ −

→
lim

h

f h f

h0

2 2� � � �
…(B)

and  f x x x� � = >8 2for

⇒ + = + = +f h h h2 8 2 16 8� � � � ... (4)

� 2 2+ >h

Putting (2) and (4) in (B),

′ =
+ −

+ →
f

h

hh
2

16 8 4

0
� � lim

=
+ − × + +

+ +→
lim

h

h h

h h0

16 8 4 16 8 4

16 8 4

� � � �
� �

=
+ −

+ +→
lim

h

h

h h0

16 8 16

16 8 4� �

=
/

/ + +→
lim

h

h

h h0

8

16 8 4� �

=
+ +→

lim
h h0

8

16 8 4� �

=
+ +

=
+

= =8

16 0 4

8

4 4

8

8
1

� � …(4)

thus, (3) and (4) ⇒ ′ = ′ =− +f f2 2 1� � � �  ⇒ ′f 2� �
exists and = 1.

4. If  f x

x x

x x

x x x

� � =
− <

≤ ≤
− + >

	

�

��

,

,

,

0

0 1

1 1

2

3

test the differentiability at x = 0 and x = 1
Solution: At x = 0

f (x) = x2 …(1)
⇒   f (0) = 0 when x > 0,
f (x) = x2 when x < 0, …(2)
f (x) = – x …(3)
∴  f (0 + h) = (0 + h)2 = h2, h > 0
f (0 – h) = – (0 – h) = h

Now,  ′ =
− −
−−

→
f

f h f

hh
0

0 0

0
� � � � � �

lim , h > 0

=
− −

−→
lim

h

f h f

h0

0� � � �
 =

−
−

= −
→

lim
h

h

h0

0
1…(4)

′ =
+ −

+
→

f
f h f

hh
0

0 0

0
� � � � � �

lim , h > 0

=
−

→
lim

h

f h f

h0

0� � � �

=
−

= = =
→ → →

lim lim lim
h h h

h

h

h

h
h

0

2

0

2

0

0
0

Thus, ′ ≠ ′ ⇒ ′− +f f f0 0 0� � � � � �  does not exist

⇒ f x� � is not differentiable at x = 0

Similarly,  we can test the differentiability at x = 1

5. If  f x
x x

x x
� � = + ≤

− ≥
	
�
2 7 3

16 3

, when

, when
 test the differ-

entiability at x = 3.
Solution:  Let   h > 0.

R.H.D lim= ′ =
+ −

+
→

f
f h f

hh
3

3 3

0
� � � � � �

, h > 0
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=
− + −

→
lim

h

h

h0

16 3 13� �
 =

−�
�

�
��→

lim
h

h

h0

= − = −
→

lim
h 0

1 1 …(1)

L.H.D lim= ′ =
− −
−−

→
f

f h f

hh
3

3 3

0
� � � � � �

, h > 0

=
+ − −

−→
lim

h

h

h0

7 2 3 13� �
 =

−
−

�
�

�
��→

lim
h

h

h0

2

= =
→

lim
h 0

2 2 …(2)

Thus, (1) and (2) ⇒  L.H.D ≠  R.H.D⇒  f (x) is not
differentiable at x = 3
Second method:

f (3) = [2x + 7]x = 3 = 2 × 3 + 7 = 13 …(1)
Now, using the definition of the function,

f (3 + h) = [2 (3 + h) + 7],  3 + h ≤  3

⇒  f (3 + h) = 6 + 2 h + 7,   h ≤  0 …(2)
f (3 + h) = [16 – (3 + h)],  3 + h ≥  3

⇒  f (3 + h) = 13 – h, h ≥  0 ... (3)
Now, using the definition,

L L ,′ =
+ −

<
→

f
f a h f a

h
h

h
3 0

0
� � � � � �

=
+ −

→
L

h

h

h0

13 2 13
 =

→
L

h

h

h0

2

= =
→
L

h 0
2 2 …(4)

R L ,′ =
+ −

>
→

f
f a h f a

h
h

h
3 0

0
� � � � � �

=
− −

=
−

→ →
L L

h h

h

h

h

h0 0

13 13

= − = −
→
L

h 0
1 1� � …(5)

Thus, (4) and (5) ⇒ ′ ≠ ′ ⇒ ′− +f f f3 3 3� � � � � �
does not exist ⇒ f x� �  is not differentiable at x = 3

Remember: If f (x) = f1 (x), when x a≤

f (x) = f2 (x), when x a≥ ,

then we may consider any one of f1 (x) and f2 (x) for
considering the value of f (x) at x = a because both
give the same value.

6. If  f x
x

x
� � = sin

 when x > 0

= 1 – x cos x , when x ≤ 0 ,

show that the function f (x) is not differentiable at x = 0.

Solution: ′ =
+ −

+
→

f
f h f

hh
0

0 0

0
� � � � � �

lim , h > 0

=
−

= − =�
�

�
��→ →

lim

sin

lim
sin

form is
h h

h

h
h

h h

h0 0 2

1 0

0

=

−  + 
�


�
�

�

�
�
�
−

→
lim

h

h
h h

h

h0

3 5

2

3 5
...

= −  +  +
�


�
�

�

�
�
�
=

→
lim

h

h h
0

3

3 5
0... ...(1)

Again,  ′ =
+ −

−− →
f

h h

hh
0

1 1

0
� � � �

lim
cos

= − = −
→

lim cos
h

h
0

1 …(2)

Thus, we see that ′ ≠ ′ ⇒ ′+ −f f f0 0 0� � � � � �  does
not exist ⇒ f x� �  is not differentiable at x = 0.
Type 2: Problems based on the function which are
redefined.

Examples worked out:

1. If  f x
x

x x
� � = −

− +

1

2 7 5
2 ,  when  x ≠ 1  and

= −
1

3
,  when  x = 1 find ′f 1� � .

Solution: f x
x

x x
� � = −

− +

1

2 7 5
2

∴ ′ =
+ −

→
f

f h f

hh
1

1 1

0
� � � � � �

lim
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=

+ −
+ − + +

− −��
�
�

→
lim

h

h

h h

h0

2

1 1

2 1 7 1 5

1
3

� �
� � � �

=
−

+

→
lim

h

h

h h

h0

2
2 3

1
3

=
−

+

→
lim

h

h

h0

1
2 3

1
3

=
+ −

−→
lim

h

h

h h0

3 2 3

3 2 3� �

=
−

= −
→

lim
h h0

2

3 2 3

2

9� �
Note: Problems where f (x) = f1 (x), when x a≠  =
constant, when x = a are provided and we are required
to find ′f a� � , we use the definition,

′ =
+ −

→
f a

f a h f a

hh
� � � � � �

lim
0

 which ⇒  we are

not required to find l.h.d. and r.h.d. separately but
when we have to examine ′f a� �  or to test the
differentiability of the given function f (x) at x = a
which is redefined, it is a must to find l.h.d  and r.h.d.
for the same function f (x) = f1 (x), when x ≠  by
putting  (a + h) and (a – h) separately  since x a≠
means x > a and x < a which ⇒  we have to consider
the same function f (x) whose independent variable is
replaced by (a – h) while finding l.h.d. and the
independent variable x in f (x) is replaced by (a + h)
while finding r.h.d.

2. If  f x
x

x x
� � = −

− +

2

3 2
2 ,  x ≠ 2  and = 1,   x = 2

examine the differentiability at x = 2.

Solution: ′ =
+ −

+
→

f
f h f

hh
2

2 2

0
� � � � � �

lim

=

+ −

+ − + +
−�



�
�
�
�
�

�

�

�
�
�
�
�

→
lim

h

h

h h

h0

2

2 2

2 3 2 2
1

� �
� � � �

=
− + + + −

+ − − + +→
lim

h

h h h

h h h0

2

2

2 3 2 2

2 3 2 2

� � � �
� � � �� �

=
− + + + + −

+ + − − +→
lim

h

h h h h

h h h h0

2

2

4 4 6 3 2

4 4 6 3 2

� �

� �

=
− + + + + −

+ + − − +→
lim

h

h h h h

h h h h0

2

2

4 4 6 3 2

4 4 6 3 2

� �

� �

=
− + + + + −

+ + −→
lim

h

h h h h

h h h0

2

2

4 4 6 3 2

6 6

� �

� �

= − − − + + −

+→
lim

h

h h h h

h h h0

2

2

4 4 6 3 2

� �

= − − − +

+→
lim

h

h h h

h h h0

2

2

6 6

� �

=
−

+→
lim

h

h

h h0

2

2
1� �

=
−
+

= −
→

lim
h h0

1

1
1� �

′ =
− −
−− →

f
f h f

hh
2

2 2

0
� � � � � �

lim

=

− −
− − − +

−

−→
lim

h

h

h h

h0

2

2 2

2 3 2 2
1

� �
� � � �
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=
− − − − + − −

− − − − +→
lim

h

h h h

h h h0

2

2

2 2 2 3 2 2

2 3 2 2

� � � � � �
� � � �� �

=
− − − + − + − −

− + − −→
lim

h

h h h h

h h h0

2

2

2 2 4 4 6 3 2

6 6

� �

� �

= − − − + + − −

− + − −→
lim

h

h h h h

h h h0

2

2

4 4 6 3 2

6 6� �

= − − − + +

− −→
lim

h

h h h

h h h0

2

2

4 6 4 6

� �

= −

− −
=

−
=

−
= −

→ →
lim lim

h h

h

h h h0

2

2 01

1

1

1

0 1
1

� � � �
∴ ′ = ′ = −+ −f f1 2 2 1� � � �  which⇒ gives function

f (x) is differentiable at x = 2.

3. If  f x

x

e
x

x

x� � = +
≠

=

	

�

��
1

0

0 0

1
,

,
 test the differen-

tiability at x = 0.

Solution: Given that f x
x

e
x� � =

+1
1

, when x > 0

f x
x

e
x� � =

+1
1 , when x < 0

f (x) = 0 , when x = 0

Now, � f x� � = 0  when x = 0

⇒  f (0) = 0 …(1)

f x
x

e
x

x� � =
+

>
1

0
1

, when

∴ For  h > 0,

f h
h

e

h

eh h

0
0

1 1

1

0

1
+ =

+

+

=

++

� �
…(2)

∴   (2) – (1)

⇒ + − =
+

− =
+

f h f
h

e

h

eh h

0 0
1

0
1

1 1� � � � …(3)

Again, (when )� f x x
x

e x

� � < =

+

0

1
1

∴ − =
−

+

=
−

+−
−

f h
h

e

h

eh h

0
0

1 1

1

0

1
� �

…(4)

Now, using the definition,

′ =
+ −

+
→

f
f h f

hh
0

0 0

0
� � � � � �

lim ;    h > 0

=
+

=

+

=
∞

=
→ →

lim lim
h

h

h
h

h

e

h
e

0

1

0 1

1 1

1

1
0 …(5)

′ =
− −
−− →

f
f h f

hh
0

0 0

0
� � � � � �

lim , h > 0

=

−

+
−→

−

lim
h

h

h

e

h0

1

1

� �

� �

=

+
→ −

lim
h

he
0 1

1

1

=
+

=1

1 0
1 …(6)

Thus, we see that ′ ≠ ′ ⇒ ′+ −f f f0 0 0� � � � � �  does
not exist ⇒ ′f x� �  is not differentiable at x = 0

Remember: For h > 0 (i) lim
h

he e
→

− −∞= =
0

1

0

(ii) lim
h

he e
→

∞= = ∞
0

1
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4. Show that  f x x
x

x

x
� � = ≠

=

	

�
��

2 1
0

0 0

sin , when

, when

is differentiable at x = 0.

Solution: Given that  f (x) = x2 sin 
1

x
, when x > 0

� x x x≠ ⇒ > <0 0 0and� �

f (x) = x2 sin 
1

x
, when x < 0

f (x) = 0 , when x = 0
Now, f (x) = 0, when x = 0
⇒   f  (0) = 0 …(1)

f (x) (when x > 0) = x2 sin 
1

x

∴  For h > 0, f h h
h

0 0
1

0
2+ = + ⋅

+
�
��

�
��� � � � sin

= �
�

�
�h

h

2 1
sin …(2)

∴ − ⇒ + − = �
��

�
�� −2 1 0 0

1
02� � � � � � � �f h f h

h
sin

= �
�

�
�h

h

2 1
sin …(3)

Again, f (x) (when x < 0) =x2 sin 
1

x

∴  For h > 0

f h h
h

0 0
1

0
2− = − ⋅

−
�
��

�
��� � � � sin

= −��
�
�h

h

2 1
sin …(4)

Now, using the definition,

′ =
+ −

+
→

f
f h f

hh
0

0 0

0
� � � � � �

lim , h > 0

=

�
�

�
�

→
lim

sin

h

h
h

h0

2 1

= �
�

�
� =

→
lim sin

h
h

h0

1
0 …(5)

′ =
− −
−− →

f
f h f

hh
0

0 0

0
� � � � � �

lim , h > 0

=
−��

�
� −

−→
lim

sin

h

h
h

h0

2 1
0

=
− �

��
�
��

−→
lim

sin

h

h
h

h0

2 1

= �
�

�
� =

→
lim sin

h
h

h0

1
0 …(6)

∴ (5) and (6)⇒ ′ = ′ =+ −f f0 0 0� � � � which means
that ′f 0� �  exists. i.e.; ′f x� �  exists at x = 0 ⇒  f (x) is
differentiable at x = 0.

5. If   f (x) = x sin 
1

x
�
�

�
� , when x ≠ 0  = 0 , when x = 0.

Show that the function f (x) does not have the
derivative at the point x = 0.

Solution: �   f (x) = x sin 
1

x
�
�

�
� , when x ≠ 0

f (0) = 0

∴ ′ =
+ −

→
f

f h f

hh
0

0 0
0

� � � � � �
lim

=
+

+
�
��

�
�� −

→
lim

sin

h

h
h

h0

0
1

0
0� �

=

�
�

�
�

→
lim

sin

h

h
h

h0

1

= �
�

�
�→

lim sin
h h0

1
 which has no finite value

which means that ′f x� �  does not exist at x = 0.
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6. If    f (x) = x2, when x ≥ 1, and   f (x) = – x, when
x < 1, show that the function f (x) does not have
derivative x = 1.
Solution: f (x) = x2, when x > 1

⇒  f (1 + h) = (1 + h)2, when  1 + h > 1,  i.e. h > 0
= (1 + h)2, when h > 0 and f (x) = – x, when x < 1
⇒  f (1 + h) = – (1 + h), when  1 + h < 1, i.e.;  h < 0
= – (1 + h), when h < 0, f (1) = 1

∴ ′ =
+ −

+
→

f
f h f

hh
1

1 1

0
� � � � � �

lim , h > 0

=
+ −

→
lim

h

h

h0

21 1� �
 =

+ + −
→

lim
h

h h

h0

2
1 2 1

=
+

→
lim

h

h h

h0

2
2

 =
+

→
lim

h

h h

h0

2� �

= + = +
→ → →

lim lim lim
h h h

h h
0 0 0

2 2� �
= 0 + 2 = 2 …(1)

′ =
+ −

−
→

f
f h f

hh
1

1 1

0
� � � � � �

lim , h < 0

=
− + −

→
lim

h

h

h0

1 1� �
 =

− − −
→

lim
h

h

h0

1 1

=
− −

→
lim

h

h

h0

2
 = −��

�
� − �

�
�
�→ →

lim lim
h hh

h

h0 0

2

= −∞ − = −∞1 …(2)

∴   (1) and (2) ⇒ ′ ≠ ′+ −f f1 1� � � � which ⇒ ′f 1� �
does not exist which means that  f (x) has no finite
derivative at x = 1.

Type 3: Problems based on a mod function  | f (x) |.

Whenever we want to test the differentiability of a
mod function | f (x) | at a point x = a at which f (x) = 0 or
f  (x) ≠  0, we are required to find the l.h.d. and r.h.d at
a given point x = a because a mod function | f (x) | can
be expressed as a piecewise function in the following
way.

| f (x) | = f (x), when f (x) ≥  0
= – f (x) , when f (x) < 0

This is why a mod function |  f (x) | also is called the
piecewise function.

Note: 1. Generally, we are asked to test the
differentiability of a mod function | f (x) | at a point
x = a at which f (x) = 0.
2. In most cases of | f (x) |, point x = a at which
f (x) = 0, we have l.h.d ≠  r.h.d which ⇒ in most cases,
the mod function  | f (x) |  is not differentiable at a point
x = a at which f (x) = 0.
3. To find the derivative or existence of a derivative
of a mod function at a point x = a where x = a is a point
at which f (x) = 0, we are required to find the l.h.d and
r.h.d separately,
4. If x = a be a point at which  f (x) ≠  0 in   |  f (x) |, then
we use the following formula to find the value of the
derivative of | f (x) | at x = a.

d

d x
f x

f x

f x
f x

x a x a

� � � �
� � � ��

�
�
��

= × ′
�
�

�
��= =

5.  | h | = | – h | = h and | h2 | = h2 = | h |2

Examples worked out:

1. If f (x) = | x |, show that the function f (x) does not
have derivative at x = 0
Solution: �   f (x) = | x |

R lim′ =
+ −

→
f

f h f

hh
0

0 0

0
� � � � � �

, h > 0

=
+ −

=
→ →

lim lim
h h

h

h

h

h0 0

0 0

= = =
→ →

lim lim
h h

h

h0 0
1 1 …(i)

L lim′ =
− −
−→

f
f h f

hh
0

0 0

0
� � � � � �

=
− −
−

=
−
−→ →

lim lim
h h

h

h

h

h0 0

0 0

=
−

= − = −
→ →

lim lim
h h

h

h0 0
1 1� � ...(ii)

(i) and (ii) ⇒ ′ ≠ ′R Lf f0 0� � � �which ⇒ ′f 0� �
does not exist i.e.; f (x) has no finite derivative at x = 0.
2. Examine the differentiability of f (x) at the indicated
points.
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(i) f (x) = | cos x | at x =
π
2

(ii) f (x) = | x3 | at x = 0
Solution: (i) f (x) = | cos x |

∴ ′���
�
�� =

+�
��

�
�� −

→
R lim

cos cos

f

h

hh

π
π π

2

2 2

0

, h > 0

=
− −

→
lim

sin

h

h

h0

0
 =

− −
→

lim
sin

h

h

h0

1 0

= =
→

lim
sin

h

h

h0
1 …(i)

L lim
cos cos

′��
�
� =

−�
�

�
� −

−→
f

h

hh

π
π π

2
2 2

0
, h > 0

=
−�

�
�
� −

→
lim

cos

h

h

h0

2
0

π

=
−

−
=

−→ →
lim

sin
lim

sin
h h

h

h

h

h0 0

0

= −
→

1
0

� � lim
sin

h

h

h

= − × = −1 1 1� � � �  …(ii)

From (i) and (ii), we see that R L′ ��
�
� ≠ ′��

�
�f f

π π
2 2

∴ ′ ��
�
�f

π
2 does not exist which ⇒ f x� � is not

differentiable at x = π
2

.

(ii) f (x) = | x3 |

∴ ′ =
+ −

→
R limf

h

hh
0

0 0

0

3

� �
� �

, h > 0

=
−

→
lim

h

h

h0

3
0

= = =
→ → →

lim lim lim
h h h

h

h

h

h

h

h0

3

0

3

0

3

= =
→

lim
h

h
0

2
0 …(i)

L lim′ =
− −

−→
f

h

hh
0

0 0

0

3

� �
� �

, h > 0

=
− −

−
=

−

−→ →
lim lim

h h

h

h

h

h0

3

0

3
0 1

=
−

= −
→ →

lim lim
h h

h

h

h

h0

3

0

3

1� �

= − ⋅ = − × =
→

1 1 0 0
0

2� � � �lim
h

h  …(ii)

Thus from (i) and (ii), we see that

R L′ = ′f f0 0� � � �  which ⇒ ′f 0� �  exists.

∴   f  (x)  is differentiable at  x = 0.

3. If f (x) = | log x | , find ′+f 1� �  and ′−f 1� � .

Solution: �    f (x) = | log x |

∴ ′ = ′ =
+ −

+ →
R limf f

f h f

hh
1 1

1 1

0
� � � � � � � �

, h > 0

=
+ −

→
lim

log log

h

h

h0

1 1� �

=
+ −

→
lim

log

h

h

h0

1 0� �

=
+ −

→
lim

log

h

h

h0

1 0� �

=
+

=
→

lim
log

h

h

h0

1
1

� �

L lim′ = ′ =
− −
−− →

f f
f h f

hh
1 1

1 1

0
� � � � � � � �

, h > 0

=
− −
−→

lim
log log

h

h

h0

1 1� �
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=
− −

→
lim

log

h

h

h0

1 0� �

=
− −
−→

lim
log

h

h

h0

1 0� �

=
−

−
=

−
−→ →

lim
log

lim
log

h h

h

h

h

h0 0

1 1� � � �

= −
−

→
1

1

0
� � � �

lim
log

h

h

h
 = − ×1 1� � � �  =  –1

4. If f x x� � � �= + −1 2 23 , find ′+f 2� �  and ′−f 2� � .

Solution: � f x x� � � �= + −1 2 23

∴ ′ = ′ =
+ −

+
→

R limf f
f h f

hh
2 2

2 2

0
� � � � � � � �

, h > 0

=
+ + − −

→
lim

h

h

h0

231 2 2 1� �

= =
→ →

lim lim
h h

h

h

h

h0

23

0

2
3

 =
→

−�
�

�
�

lim
h

h
0

2

3
1

= = = = ∞
→

−�
��

�
��

→

−��
�
�

→
lim lim lim

h h h
h h

h0

2 3

3

0

1

3

0 3

1

L lim′ = ′ =
− −
−− →

f f
f h f

hh
2 2

2 2

0
� � � � � � � �

, h > 0

=
+ − − −

−→
lim

h

h

h0

231 2 2 1� �

=
−
−

=
−→ →

lim lim
h h

h

h

h

h0

23

0

2
3� �

= − = −
→

−�
��

�
��

→

−
1 1

0

2 3

3

0

1

3� � � �lim lim
h h

h h

= − × = − ⋅ ∞ = −∞
→

1
1

1
0 3

� � � �lim
h h

5. f (x) = 1 + | sin x |. Examine differentiability at x = 0.

R lim
sin sin

′ =
+ + − +

→
f

h

hh
0

1 0 1 0

0
� �

� � � �
,

h > 0

=
+ − +

→
lim

sin

h

h

h0

1 1 0� �

=
+ −

=
→ →

lim
sin

lim
sin

h h

h

h

h

h0 0

1 1

= =
→

lim
sin

h

h

h0
1 …(i)

L lim
sin sin

′ =
+ − − +

−→
f

h

hh
0

1 0 1 0

0
� � � � � �

,

h > 0

=
+ − − +

−→
lim

sin

h

h

h0

1 1 0� � � �

=
+ − −

−
=

−→ →
lim

sin
lim

sin

h h

h

h

h

h0 0

1 1 1

=
−

= − ⋅
→ →

lim
sin

lim
sin

h h

h

h

h

h0 0
1� �

= − × = −1 1 1� � � � …(ii)

Thus, from (i) and (ii), we see that
R L′ ≠ ′f f0 0� � � �  which ⇒ ′f 0� �  does not exist.
∴  f (x) is not differentiable at x = 0.

6. f (x) = | x – 2 |. Examine differentiability at x = 2.

R lim
2 + h 2

′ =
− −

→
f

hh
0

0

0
� � , h > 0

= = = =
→ → →

lim
h

lim lim
h h hh

h

h0 0 0
1 1  …(i)

L lim
2 h 2

′ =
− − −

−→
f

hh
0

0

0
� � , h > 0

=
− −
−

=
−
−→ →

lim
h

lim
h hh

h

h0 0

0 1
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=
−

= − = −
→ →

lim lim
h h

h

h0 0
1 1� �  …(ii)

Thus, from (i) and (ii) we see that f (x) is not
differentiable at x = 2 caused by R L′ ≠ ′f f2 2� � � � .

Type 4: To find the values of the constants so that a
given function f (x) becomes differentiable at a given
point x = a.

To find the values of the constants so that a given
function f (x) becomes differentiable at a given point
x = a, the following two conditions must be satisfied.
1. f (x)should be continuous at a given point x = a for
which we must have L.H.L = R.H.L at athe same point
x = a = value of the function at x = a = f (a).

L.H.D at x = a = R.H.D at x = a
Hence, we adopt the following working rule to find

the values of the constants so that a given function
f (x) becomes differentiable at a given point x = a

Working rule:

1. Find L L
x a x a

f x f x f a
→ →+ −

= =� � � � � �  from the

definition of continuity of a function at a point x = a
2. Find left hand derivative and right hand derivative
at the same point x = a by definition and then put
L.H.D = R.H.D since differentiability at a point means

′ = ′+ −f a f a� � � � .

Remember: Differentiability at a point x = a ⇒
continuity at the same point x = a  which is used to
find the values of the constants so that a given
function f  (x) becomes differentiable at a given point
x = a.

Examples worked out:

1. If f (x) = 3 x2 + 5 x, when  x≤  0 and f (x) = a x + b,
when x > 0 find a and b so that f (x) becomes
differentiable at x = 0.
Solution: For continuity of  f (x) at x = 0

Lim Lim
x x

f x f x f
→ →+ −

= =
0 0

0� � � � � �

∴ + = +
→ →

Lim Lim
x x

x x a x b
0

2

0
3 5� � � �

⇒ = ⇒ =0 0b b …(A)

L.H.D lim′ =
− −
−− →

f
f h f

hh
0

0 0

0
� � � � � �

, (h > 0)

=
− + − −

−→
lim

h

h h

h0

23 0 5 0 0� � � �

=
−

−
= − + =

→ →
lim lim

h h

h h

h
h

0

2

0

3 5
3 5 5� � …(B)

R.H.D lim′ =
+ −

+
→

f
f h f

hh
0

0 0

0
� � � � � �

, (h > 0)

=
+ + −

=
+ −

→ →
lim lim

h h

a h b

h

a h b

h0 0

0 0 0� �

= =
→

lim from (A)
h

a h

h
b

0
0�� �

= =
→

lim
h

a a
0 …(C)

Now equating (B) and (C), we get a = 5
(�differentiability at x = a ⇔L.H.D = R.H.D) and
b = 0 (from (A))

Thus, 
a

b

=
=

���
5

0  is the required answer.

2. For what values of a and b is the function

f x x x

a x b x
� � = ≤

+ >

�

�
�

2
1

2 1

when

when
   differentiable at

x = 1.
Solution: For continuity of f (x) at x = 1

f (1) = 12 = 1    ( �  f (x) = x2 when x = 1)

L.H.L lim lim= = =
→ →−

x x
f x x

1 1

2
1� �

R.H.L lim lim= = + = +
→ →+

x x
f x a x b a b

1 1
2 2� � � �

Now, since f (x) should be continuous at x = 1
∴  L.H.L = R.H.L = f (1)
∴  2 a + b = 1 which ⇒  2 a + b = 1 …(A)

L.H.D lim=
− −
−→h

f h f

h0

1 1� � � �
,  (h > 0)
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=
− −
−

=
−
−→ →

lim lim
h h

h

h

h h

h0

2

0

2
1 1 2� �

= − =
→

lim
h

h
0

2 2� � …(B)

R.H.D lim=
+ −

→h

f h f

h0

1 1� � � �
,  (h > 0)

=
+ + −

→
lim

h

a h b

h0

2 1 1� �

=
+ + −

→
lim

h

a h a b

h0

2 2 1� �

=
+ −

→
lim

h

a h

h0

2 1 1
 (�  2a + b = 1 from (A))

= = =
→ →

lim lim
h h

a h

h
a a

0 0

2
2 2 …(C)

Now, equating (B) and (C), we get
2a = 2 (�  differentiability at x = 1 ⇔  L.H.D =

R.H.D at the same point x = a)
⇒  a = 1
Now, putting this value of a = 1 in (A), we have

b = − ⋅ = −1 2 1 1     ( �  2a + b = 1)

Hence,  
a

b

=
= −

�
�
�

1

1
⇒  f (x) would be differentiable

at x = 1 only if a = 1 and b = – 1.

On continuity and differentiability of a function at a
point x = a.

Question: Explain the cases where l.h.l at a point
x = a = r.h.l at the same point x = a is used to test the
continuity of a given function   f (x)  at a given point
x = a.
Answer: There are following cases where the concept
of l.h.l at a point x = a = r.h.l at the same point x = a is
used to test the continuity of a given function f (x) at
a given point x = a.
(i) When a function f (x) is redefined.
(ii) When a function f (x) is a piecewise function.
(iii) When a function f (x) is a mod function.

Note: 1. Whenever we want to find the limit of a
mod function | f (x) | at a point x = a, we are required to
find the l.h.l and r.h.l at the same given point x = a
because a mod function is also a piecewise function.
2. To examine the continuity and differentiability in
an  interval, we are required to check the given
function at the following points.
(a) The point on both sides of which two different
functions  f1 (x) and f2 (x) are defined in two different
subinterval (or, part of the domain of the given
function). These points are termed as turning points
of the definition or interior points of the interval if the
given function f (x)is a piecewise function.
(b) Points (including the end points of the closed
interval) at which the given function becomes infinite,
imaginary, or indeterminate.
(c) The end points of the closed interval where it has
one sided limiting values or derivatives. i.e.;

(i)  lim
x a

f x f a
→ +

=� � � �  and lim
x b

f x f b
→ −

=� � � �

where a and b are the end points of the closed interval
[ a, b]

(ii) lim
x a

f x f a

x a
a

→ +

−
−

=
� � � �

 finite value and

lim
x b

f x f b

x b
a

→ −

−
−

=
� � � �

 finite value. Where a and b

are the end points of the closed interval [a, b].

working rule to test the continuity and differentiability
of the given function at the same point x = a.

To test the continuity and differentiability of the
given function at the same point x = a, we should test
the continuity at the point x = a and differentiability
at the same point x = a separately. i.e.;
(i) To test the continuity at x = a, we are required to
show that l.h.l of the given function at the point x = a
= r.h.l of the given function at the point x = a = value
of the function at x = a.
(ii) To test the differentiability at x = a, we are required
to show that l.h.d of the given function at a  point
x  =  a  =  r.h.d of the given function at a point x = a.

Remember: Whenever a function is redefined in an
interval (open or closed) i.e.;
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f x f x x c

d x c

� � � �= ≠
= =

�
�
�

1 ,

,
 in the interval (a,b) or

[a, b] where a, b, c are constants.
Then only probable point of the interval (a, b) or

[a, b], at which the given redefined function may be
discontinuous or non-differentiable is x = c. For this
reason, we test the continuity and differentiability at
x = c, e.g.,
(i) f (x) = x if   x ≠ 0

f (0) = 1 in the interval [– 1, 1]
The only probable point of the interval [– 1, 1], at

which the function may be discontinuous or non-
differentiable is x = 0.
(ii) f (x) = 4 x + 7 if   x ≠ 2

f (2) = 3  in the interval at [ – 4, 4]
The only probable point of the interval [ – 4, 4], at

which the function may be discontinuous or non-
differentiable is x = 2.

(iii) f x
x

x
x� � = −

−
≠

9 16

27 64

4

3

2

3
for

f
4

3

2

3
�
�

�
� =  in the interval [ – 1, 3]

The only probable point of the interval [ – 1, 3], at
which the redefined function may be discontinuous

or non-differentiable is  x =
4

3
.

(iv) f x
x

x

x� � = −

−�
�

�
�

≠1

2

22

sin
for

π
π

f
π
2

1

2
�
�

�
� =  in the interval 0

3

2
,

π�
�

�
�� .

 The only probable point of the interval 0
3

2
,

π�
�

�
�� ,

at which the redefined function may be discontinuous

or non-differentiable is x = π
2

.

Worked out examples on continuity and
differentiability at a given point x = a.

Type 1: Problems based on piecewise functions:

Questions: 1. A function f is defined as follows:

f (x) = – x for x ≤ 0

f (x) = x for x ≥ 0 .

Test the continuity and differentiability  of the
given function at x = 0.
Solution: (i) Continuity test at  x = 0.

l.h.l at limx f x
x

= =
→ −

0
0

� �

= − = − × = × −
→ →

lim lim
x x

x x
0 0

1 0 1� � � �
= 0 …(a1)

r.h.l at lim limx f x x
x x

= = =
→ →+

0
0 0

� � � �

= 0 …(a2)
f (0) = 0 …(a3)

(a1), (a2) and (a3) ⇒  l.h.l at x = 0 = r.h.l at x = 0 =
value of the function at x = 0 = 0.

∴   f (x) is continuous at x = 0.
(ii) Differentiability test at x = 0.

l.h.d at L limx f
h

hh
= = ′ =

− − −
−→

0 0
0 0

0
� � � �

=
−
−

�
��

�
�� = = −

→ →
lim lim

h h

h

h0 0
1 1 …(b1)

r.h.d at R limx f
h

hh
= = ′ =

+ −
→

0 0
0 0

0
� � � �

= =
→

lim
h

h

h0
1 …(b2)

(b1) and (b2) ⇒ ′ ≠ ′L Rf f0 0� � � �
∴   f (x) is not differentiable at x = 1.

2. Examine the following function for continuity and
differentiability:

f (x) = x2 for  x ≤ 0
f (x) = 1 for 0 < x ≤ 1

f (x) = 
1

x
  for x > 1
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Solution: Considerable points at which we are
required to test the continuity and differentiability
are x = 0 and x = 1.
(i) Continuity and differentiability test at x = 0

f (0) = 0 …(a1)

l.h.l at limx f x
x

= =
→ −

0
0

� �

= =
→

lim
x

x
0

2
0 …(a2)

r.h.l at limx f x
x

= =
→ +

0
0

� �

= =
→

lim
x 0

1 1� � …(a3)

(a2) and (a3) ⇒  l.h.l at x = 0 ≠  r.h.l at x = 0  which

⇒ given piecewise function is discontinuous at
x = 0. Caused by this, given piecewise function is
non-differentiable at x = 0.
(ii) Continuity and differentiability test at x = 1

Now,  f (1) = 1 …(b1)

l.h.l at limx f x
x

= =
→ −

1
1

� �

= =
→

lim
x 1

1 1� � …(b2)

r.h.l at limx f x
x

= =
→ +

1
1

� �

= �
�

�
� =

→
lim
x x1

1
1 …(b3)

(b1), (b2) and (b3) ⇒ l.h.l at x = 1 = r.h.l at x = 1 =
value of the function at x = 1 which ⇒  f (x) is
continuous at x = 1

Again,

l.h.d at L limx f
f h f

hh
= = ′ =

− −
−→

1 1
1 1

0
� � � � � �

,

h > 0

=
−
−

=
→

lim
h h0

1 1
0 …(b1)

r.h.d at R limx f
f h f

hh
= = ′ =

+ −
→

1 1
1 1

0
� � � � � �

,

h > 0

=
+

−
=

/ − / −
+→ →

lim lim
h h

h

h

h

h h0 0

1
1

1
1 1

1� �

=
−
+

= − ⋅
+

�
��

�
��→ →

lim lim
h h

h

h h h0 01
1

1

1� � � �

= − ×
+

�
��

�
��1

1

1 0
� � = – 1 ...(b2)

(b1) and (b2) ⇒ L R′ ≠ ′f f1 1� � � �  which
⇒  given piecewise function is non-differentiable at
x = 1.

3. Discuss the continuity and differentiability of the
following function:

f (x) = x2 for x < – 2

f (x) = 4 for − ≤ ≤2 2x

f (x) = x2 for x > 2
Solution: Considerable points at which we are
required to test the continuity and differentiability of
the given piecewise function f (x) are x = – 2 and 2.

(i) Continuity and differentiability test at x = – 2
f (– 2) = 4 …(a1)

l.h.l at limx f x
x

= − =
→ − −

2
2

� �

= =
→ −
lim

x
x

2

2
4� � …(a2)

r.h.l at limx f x
x

= − =
→ − +

2
2

� �

= =
→ −
lim

x 2
4 4 …(a3)

(a1), (a2) and (a3) ⇒ l.h.l at x = – 2 = r.h.l at x = – 2
= value of the function at x = – 2 which ⇒  f (x) is
continuous at x = – 2

Again,

L lim
2 h

′ − =
− − − −

−→
f

f f

hh
2

2

0
� � � � � �

, (h > 0)

=
− − −

−
=

+ + −
−→ →

lim lim
h h

h

h

h h

h0

2

0

2
2 4 4 4 4� �

= − − = −
→

lim
h

h
0

4 4� � …(b1)
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R lim lim′ − =
−

= =
→ →

f
h hh h

2
4 4 0

0
0 0

� � …(b2)

(b1) and (b2) ⇒ ′ − ≠ ′ −L Rf f2 2� � � � .

Caused by this, the given function is non-
differentiable at x = – 2.
(ii) Continuity and differentiability test at x = 2

l.h.l at limx f x
x

= =
→ −

2
2

� �

= = =
→ →−
lim lim

x x2 2
4 4 4 …(c1)

r.h.l at limx f x
x

= =
→ +

2
2

� �

= =
→

lim
x

x
2

2 4� � …(c2)

f (2) = 4 …(c3)
(c1),  (c2)  and   (c3)  ⇒  l.h.l at x = 2 = r.h.l at x = 2

= f (2) which ⇒  given piecewise function is
continuous at x = 2.

Again,

L lim
2 h

′ =
− −
−→

f
f f

hh
2

2

0
� � � � � �

, (h > 0)

=
/ − /
−

=
−

�
��

�
��→ →

lim lim
h hh h0 0

4 4 0
= 0 …(d1)

R lim
2 h

′ =
+ −

→
f

f f

hh
2

2

0
� � � � � �

, (h > 0)

=
+ −

=
/ + + − /

→ →
lim

2 h
lim

h hh

h h

h0

2

0

24 4 4 4� �

=
+

= +
→ →

lim lim 4 h
h h

h h

h0 0

4� � � �

= +
→ →

lim lim h
h h0 0

4 � �  =  4 + 0 =  4 …(d2)

(d1)  and  (d2)  ⇒ ′ ≠ ′R Lf f2 2� � � �   which ⇒
f (x) is not differentiable at x = 2.

4. Examine the continuity and differentiability of the
following function in the interval −∞ < < ∞x .

f (x) = 1 in −∞ < <x 0

f (x) = 1 + sin x in  0
2

≤ <x
π

f x x x� � = + −�
�

�
� ≤ < ∞2

2 2

2π π
in

Note: In this question we are required to examine the
continuity and differentiability in an interval
−∞ < < ∞x .

Hence, we adopt the rule to examine the continuity
and differentiability in an interval.
Solution: Considerable points at which it is required
to test the continuity and differentiability of the given

piecewise function f (x) are x = 0, 
π
2

.

(i) Continuity  and differentiability at x = 0.

l.h.l at lim limx f x
x x

= = = =
→ →−

0 1 1
0 0

� � ...(a1)

r.h.l at limx f x
x

= =
→ +

0
0

� �

= + + =
→

lim sin
h

h
0

1 0 1� �� � …(a2)

f (0) = 1 + sin 0 = 1 …(a3)

(a1), (a2) and (a3) ⇒ lim lim
x x

f x f x
→ →− +

=
0 0

� � � �

= f 0� �  which ⇒  given piecewise function f (x) is

continuous at x = 0 ...(A)

Again, L lim
h

′ =
− −
−→

f
f f

hh
0

0 0

0
� � � � � �

, (h > 0)

=
−
−

=
−

=
→ →

lim lim
h hh h0 0

1 1 0
0 ...(b1)

R lim
h

′ =
+ −

→
f

f f

hh
0

0 0

0
� � � � � � , h > 0

=
+ + −

→
lim

sin h

h h0

1 0 1� �

= =
→

lim
sin

h

h

h0
1 ...(b2)

(b1) and (b2) ⇒ ′ ≠ ′L Rf f0 0� � � �  which ⇒
given piecewise function  f  (x)  is not differentiable

at x = 0. ...(B)
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(ii) Continuity and differentiability test at x =
π
2

f
π π π
2

2
2 2

2
2�

�
�
� = + −�

�
�
� = …(c1)

l.h.l at lim lim sinx f x x
x x

= = = +
→ →

−

π
π π2

1

2 2

� � � �

= +1
2

sin
π

 =  1 + 1 = 2 …(c2)

r.h.l at limx f x
x

= =
→

+

π
π2
2

� �

= + −�
��

�
��

	

�
��

�
��
��
=

→
lim

x

x
π

π

2

2

2
2

2 ...(c3)

(c1), (c2) and (c3)

 
⇒ = = �

�
�
�

→ →
− +

lim lim
x x

f x f x f
π π

π

2 2
2

� � � �

which ⇒ f x� � is continuous at x = π
2

…(C)

Again,

L lim
h

′ =
− −

−→
f

f f

hh

π
π π

2 0

2 2� �
� � � �

, (h > 0)

=
+ − −

−
=

−
→ →

lim
sin h

lim
cos

h hh

h

h0

2

0

1 2 1
π� �

=

�
�

�
�
=

�
�

�
�

�
�

�
�

⋅ �
�

�
�→ →

lim
sin

lim
sin

sin

2

h h

h

h

h

h
h

0 0

2
2 2

2
2

= × =1 0 0 …(d1)

R lim′ =
+ −

→
f

f h f

hh

π
π π

2 0

2 2� �
� � � �

, (h > 0)

=
+ + − −

→
lim

h

h

h0

2 2

2
2 2π π� �

= = =
→ →

lim lim
h h

h

h
h

0

2

0
0 …(d2)

(d1) and (d2) ⇒ ′ = ′L Rf fπ π
2 2� � � �  which

⇒ the given piecewise function f (x) is differentiable

at  x =
π
2

...(D)

In the light of the results (A), (B), (C) and (D), we
observe and declare that f (x) is continuous in the
interval − ∞ ∞,� �  but it is not differentiable in
− ∞ ∞,� � .

5. If f x
x

x� � = ≤ <
2

2
0 1, ,

= − + ≤ ≤2 3
3

2
1 22x x x,  discuss the continuity

of  f, ′f , and ′′f on [0, 2].

Solution: (i) Given is

f x
x

x� � = ≤ <
2

2
0 1, ...(a1)

= − + ≤ ≤2 3
3

2
1 2x x x, ...(a2)

∴ ′ = ≤ <f x x x� � , 0 1 ...(a3)

= − ≤ ≤4 3 1 2x x, ...(a4)

′′ = ≤ <f x x� � 1 0 1, ...(a5)

= < ≤4 1 2, x ...(a6)

(ii) Continuity test at x = 1 for   f (x),

f x x
x

1 2 3
3

2

2

1

� � = − +�
�

�
�� =

= × − × + = − + =2 1 3 1
3

2
1

3

2

1

2
...(b1)

l.h.l at limx f x
x

= =
→ −

1
1

� �
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=
�
��

�
��
=

→
lim
x

x
1

2

2

1

2 ...(b2)

r.h.l at limx f x
x

= =
→ +

1
1

� �

= − +�
�

�
� = − + =

→
lim
x

x x
1

2
2 3

3

2
2 3

3

2

1

2 ...(b3)

(b1), (b2) and (b3) ⇒ l.h.l at x = 1 = r.h.l at x = 1 =
value of the function f (x) at x = 1 which ⇒  f (x) is

continuous at x = 1 for ′f x� � ,

′ = − =f x x1 4 3 1� �
= × − = − =4 1 3 4 3 1 ...(c1)

l.h.l at lim limx f x x
x x

= = ′ = =
→ →−

1 1
1 1

� � � � ...(c2)

r.h.l at lim limx f x x
x x

= = ′ = −
→ →+

1 4 3
1 1

� � � �

= (4 – 3) = 1 ...(c3)

(c1), (c2) and (c3) ⇒ ′f x� �  is continuous at x = 1

for ′′f x� �
l.h.l at lim limx f x

x x
= = ′′ = =

→ →−
1 1 1

1 1
� �  …(d1)

r.h.l at lim limx f x
x x

= = ′′ = =
→ →+

1 4 4
1 1

� � …(d2)

∴  (d1) and (d2) ⇒ ′′f x� �  is discontinuous at
x = 1.

Hence, in the light of above observation and the
results, we declare that the function f and ′′f are
continuous in [0, 2] but ′′f  is discontinuous in [0, 2]
since ′′f  is discontinuous at x = ∈1 0 2, .

Note: ′′f (x) does not exist at x = 1.

6. A function f is defined as follows:

f (x) = x  for  0 1≤ ≤x  and f (x) = 2 – x for  x ≥ 1.

Test the character of the function at x = 1 as regards
its continuity and differentiability.

Solution: (i) Continuity test at x = 1
f (1) = 1 …(a1)

l.h.l at limx f x
x

= =
→ −

1
1

� �

= =
→

lim
x

x
1

1 …(a2)

r.h.l at limx f x
x

= =
→ +

1
1

� �

= − =
→

lim
x

x
1

2 1� �  …(a3)

(a1), (a2) and (a3)

⇒ = =
→ →− +
lim lim

x x
f x f x f

1 1
1� � � � � �  which ⇒

given piecewise function is continuous at x = 1
(ii) Differentiability test at x = 1

L lim
h

′ =
− −
−→

f
f f

hh
1

1 1

0
� � � � � �

, (h > 0)

=
− −
−

=
−
−→ →

lim lim
h h

h

h

h

h0 0

1 1� �

= =
→

lim
h 0

1 1  …(b1)

R lim
h

′ =
+ −

→
f

f f

hh
1

1 1

0
� � � � � �

, (h > 0)

=
− + −

=
−

→ →
lim

h
lim

h hh

h

h0 0

2 1 1� �

= − = −
→

lim
h 0

1 1� � …(b2)

(b1) and (b2) ⇒ ′ ≠ ′L Rf f1 1� � � � which ⇒
given piecewise function is not differentiable at  x = 1

Type 2: Problems based on redefined functions:

Questions: (i) If f x
x

e

x

x

� � =
+

≠

1

0
1

,  f (x) = 0 ,

x = 0 show that f is  continuous at x = 0 but ′f 0� �
does not exist.
Solution: (i) Continuity test at x = 0

r.h.l at limx f x
x

= =
→ +

0
0

� �

=
+

+
> =

+
=

→ →+

lim lim
h h

h

e

h
h

eh h0 0

0

1

0
1

0
1

0
1

� �
� �

, …(a1)
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l.h.l at limx f x
x

= =
→ −

0
0

� �

=
−

+
> =

−

+
=

→ → −
−

lim lim
h h

h

e

h
h

eh h0 0

0

1

0
1

0
1

0
1

� �
� �  !

, …(a2)

f (0) = 0 …(a3)
(a1), (a2) and (a3) ⇒  l.h.l at x = 0 = r.h.l at x = 0 =

value of the function at x = 0  which ⇒ given redefined
function f (x) is continuous at x = 0.
(ii) Differentiability test at x = 0

R lim
h

′ =
+ −

→
f

f f

hh
0

0 0

0
� � � � � �

, h > 0

=
+

−

=

+
�

�
��

�

�
��

→ →
lim lim

h

h

h
h

h

e

h

h

h e
0

1

0 1

1

0

1

=

+
→

lim
h

he
0 1

1

1

= 0 …(b1)

L lim
h

′ =
− −
−→

f
f f

hh
0

0 0

0
� � � � � � , h > 0

=

−

+

−

−
= −

− +
�

�
��

�

�
��

→

−

→ −
lim lim

h

h

h
h

h

e

h

h

h e
0

1

0 1

1

0

1

=

+

=
+

=
→ −

lim
h

he
0 1

1

1

1

1 0
1

…(b2)

∴  (b1) and (b2) ⇒ ′ ≠ ′R Lf f0 0� � � �   which

⇒ ′f 0� �  does not exist.

2. If  f x
x

x x� � = ≠1
0

2
sin ,  f (x) = 0 , x = 0 discuss

the continuity and differentiability of f (x) at x = 0.

Solution: 1. Continuity  test at x = 0
f (0 ) = 0 …(a1)

r.h.l at lim lim
sin

x f x
h

h
h

x h
= = =

+
+

>
→ →+

0
0

0
0

0 0

2

� � � �
� � ,

= ⋅ = × =
→

lim
sin

h

h

h
h

0

2

2
1 0 0  …(a2)

l.h. l at lim lim
sin

x f x
h

h
h

x x
= = =

−
−

>
→ →−

0
0

0
0

0 0

2

� � � �
� � ,

= ⋅ −
	

�
��

�
��
��→

lim
sin

h

h

h
h

0

2

2
� �

=
�
�
�

�
�
� × − = × =

→ →
lim

sin
lim

h h

h

h
h

0

2

2 0
1 0 0� � …(a3)

(a1), (a2) and (a3) ⇒  f (x) is continuous at x = 0
(ii) Differentiability test at x = 0

R lim

sin

′ =

+
+

−
�
��

�
��

+

	



��

�
�
�

�

�
��

�
�
�

→
f

h

h

hh
0

0

0
0

00
� �

� �
� �

� � , h > 0

= =
→

lim
sin

h

h

h0

2

2
1 …(b1)

L lim

sin

′ =

−
−

−
�

�
��

�

�
��

−

	




�
��

�

�
�
�

�

�

�
��

�

�
�
�

→
f

h

h

hh
0

0

0
0

0

2

� �

� �
� �

� � , h > 0

= =
→

lim
sin

h

h

h0

2

2
1 …(b2)

(b1) and (b2) ⇒ ′ = ′R Lf f0 0� � � � which
⇒ redefined function f (x) is differentiable at x = 0
and ′ =f 0 1� � .
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3. If f (x) = x2 sin 
1

x
�
�

�
�   for  x ≠ 0  f (x) = 0 for x = 0

show that
(i) f (x) is continuous at x = 0
(ii) ′ =f 0 0� �
(iii) ′f x� �  is discontinuous at x = 0
Solution: (i) Continuity test at  x = 0

l.h.l at limx f x
x

= =
→ −

0
0

� �

= − ⋅
−

�
��

�
��→

lim sin
h

h
h0

20
1

0
� � , h > 0

= − ⋅ ⋅ �
�

�
� =

→
lim sin

h
h

h0

2
1

1
0� � � �  …(a1)

r.h.l at limx f x
x

= =
→ +

0
0

� �

= + ⋅
+

�
��

�
��→

lim sin
h

h
h0

20
1

0
� � , h > 0

= �
�

�
� =

→
lim sin

h
h

h0

2 1
0� � …(a2)

f (0) = 0 …(a3)

(a1), (a2) and (a3)  ⇒ =
→ →− +
lim lim

x x
f x f x

0 0
� � � �

= f 0� �  which ⇒  redefined function f (x) is

continuous at x = 0

(ii) To find ′f 0� � :

R lim

sin

′ =
+ ⋅

+
�
��

�
�� −

→
f

h
h

hh
0

0
1

0
0

0

2

� �
� �

, h > 0

= ⋅ �
�

�
� =

→
lim sin

h
h

h0

1
0 ...(b1)

L lim

sin

′ =
− ⋅

−
�
��

�
�� −

−→
f

h
h

hh
0

0
1

0
0

0

2

� �
� �

, h > 0

=
−��

�
�

−→
lim

sin

h

h
h

h0

2 1

= − − �
�

�
�

	
�
���→

lim sin
h

h
h0

1 1
1� � � � � �

= =
→

lim sin
h

h
h0

1
0 ...(b2)

(b1) and (b2) ⇒ ′ = ′ =L Rf f0 0 0� � � � which

⇒ ′ =f 0 0� �
(iii) To show that ′f x� �  is discontinuous at x = 0.

� ′ = �
�

�
� − �

�
�
� ≠f x x

x x
x� � 2

1 1
0sin cos at

′ =f 0 0� �  (already determined) …(c1)

Now,  r.h.l at limx f x
x

= = ′
→ +

0
0

� �

= +
+

�
��

�
�� −

+
�
��

�
��

	

�
��

�
��
��→

lim sin cos
h

h
h h0

2 0
1

0

1

0
� � , h > 0

= �
�

�
� − �

�
�
�

	
�
���→

lim sin cos
h

h
h h0

2
1 1

= �
�

�
� − �

�
�
�→ →

2
1 1

0 0
lim sin lim cos

h h
h

h h

= − �
�

�
�→

0
1

0
lim cos

h h

= − �
�

�
�→

lim cos
h h0

1
  which does not exist ⇒ r.h.l at

x = 0  of the function ′f x� �  does not exist. …(c2)

Again, l.h.l at limx f x
x

= = ′
→ −

0
0

� �

= −
−

�
��

�
�� −

−
�
��

�
��

	

�
��

�
��
��→

lim sin cos
h

h
h h0

2 0
1

0

1

0
� � , h > 0

= − �
�

�
� − −��

�
�

	
�
���→

lim sin cos
h

h
h h0

2
1 1� � � �
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= − �
�

�
� − �

�
�
�→ →

lim sin lim cos
h h

h
h h0 0

2
1 1� � � �

� cos cos− =θ θ� �� �

= − �
�

�
� − �

�
�
�→ →

2
1 1

0 0
� � � �lim sin lim cos

h h
h

h h

= − × − �
�

�
�→

2 0
1

0
� � lim cos

h h

= − �
�

�
�→

lim cos
h h0

1
 which does not exist ⇒  l.h.l at

x = 0 of the derived function f ' (x) does not exist
…(c3)

Hence, (c2) or (c3) ⇒  the derived function ′f x� �
is discontinuous at x = 0, (of second kind).

4. If sin logf x x x x� � � �= +	
�
��� ≠1

1

3
0

2
,

f (x) = 0 , x = 0. Test the continuity and differentiability
at x = 0
Solution: (i) Continuity test at x = 0

f ( 0) = 0 …(a1)

l.h.l at limx f x
x

= =
→ −

0
0

� �

= − +	
�
���→

lim sinlog 0 -
h

h h
0

20 1
1

3
� � � � , h > 0

= − − ⋅�
�

�
��→

lim sinlog
h

h h h
0

21

3

= − − ⋅
→ →

lim lim sin log
h h

h h h
0 0

21

3
� �

= − ⋅
→

0
1

3 0

2
lim sinlog

h
h h  = − ⋅0

1

3
0

(�  Product of an infinitesimal and a bounded
function = 0, in the limit)

= 0 – 0 = 0 …(a2)

r.h.l at limx f x
x

= =
→ +

0
0

� �

= + + +	
�
���→

lim sin log 0 h
h

h
0

20 1
1

3
� � � � , h > 0

= +	
�
���→

lim sin log
h

h h
0

2
1

1

3

= +	
�
���→

lim sin log
h

h h h
0

21

3

= +
→ →

lim lim sin log
h h

h h h
0 0

21

3
 = 0 + 0

= 0 …(a3)
(a1), (a2) and (a3) ⇒  l.h.l at x = 0 = r.h.l. at x = 0

= value of the function at  x = 0 which ⇒  f (x) is
continuous at x = 0.
(ii) Differentiability test at x = 0

L lim
sin log

′ =
− + −	
�

��� −
−→

f
h h

hh
0

0 1
1
3

0 0

0

2

� �
� � � �

,

h > 0 � f 0 0� �� �=

= +	
�
���→

lim sin log
h

h
0

2
1

1

3

= +
→ →

lim lim sin log
h h

h
0 0

2
1

1

3

= +
→

1
1

3 0

2
lim sin log

h
h

but lim sin log
h

h
→ 0

2  oscillates between +1 and –1.

∴ ′L f 0� �  does not exist. …(b1)

R lim
sin log

′ =
+ + +	
�

��� −
→

f
h h

hh
0

0 1
1
3

0 0

0

2

� �
� � � �

,

h > 0

= +	
�
���→

lim sin log
h

h
0

2
1

1

3

= +
→ →

lim lim sin log
h h

h
0 0

2
1

1

3
 but  lim sin log

h
h

→ 0

2

oscillates between +1 and – 1.

∴ ′R f 0� �  does not exist. …(b2)

(b1) or (b2)⇒  f (x) is not differentiable at  x = 0.
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On Derivative of   y = [x]

Let y = f (x) = [x], where D ( f ) = R, i.e.; x R∈
∴  there are two cases:

Case 1. When x is an integer.
considering  f (x) = [x] at x = N, it is seen that for

h > 0

lim lim + lim
h h h

N h N h
→ → →

+ =
0 0 0

= N + 0 = N   � x n x n I+ n = + ∈,� �
lim lim + lim

h h h
N h N h

→ → →
− = −

0 0 0

= −
→ →

lim + -1 lim
h h

N h
0 0

1� �

� − = − − ∉x x x I1 if� �
= + − ⋅ − = −N N1 0 1 1� �

f  (N) = N
Hence, the function y = [x] is discontinuous at

x = N; through it is right continuous at this point ⇒
y = [x] can not have derivative at any integral value of x.

Case 2: When x is non-integer (or, non-integral).
Considering  f (x) = [x] at x = N + h, where  0 < h < 1, it
is seen that for ∆ x > 0

= + +
→

lim
∆

∆
x

N h x
0

= +
→ →

lim + lim
∆ ∆

∆
x x

N h x
0 0

= N + 0 = N (�[x + n] = n + [x], n I∈  ) …(i)

lim
∆

∆
x

N h x
→

+ −
0

= + −
→ →

lim lim
∆ ∆

∆
x x

N h x
0 0

= N + 0 = N  as h x− <∆ 1 …(ii)

f (N + h) = [N + h] = N …(iii)
Hence, (i), (ii) and (iii) ⇒  the function y = [x] is

continuous at a non-integer point x = N + h.
Again, we know that continuity of a function y =

f (x) at any point x = a /⇒ differentiability of the
function y = f (x) at the same point x = a.

Hence, the derivative test of y = [x] at a non-integer
point namely  x = N + h,  (0 < h < 1), is required.

′ + =
+ + − +

+ →
f N h

f N h x f N h

xx
� � � � � �

lim
∆

∆
∆0

=
+ + − +

→
lim

∆

∆
∆x

N h x N h

x0

=
+ + − −

→
lim

∆

∆
∆x

N h x N h

x0

=
+ − −

→
lim

∆ ∆x

N N

x0

0 0

=
−�

��
�
�� =

→
lim

∆ ∆x

N N

x0
0

′ − =
+ − − +

−− →
f N h

f N h x f N h

xx
� � � � � �

lim
∆

∆
∆0

=
+ − − +

−→
lim

∆

∆
∆x

N h x N h

x0

=
+ − − −

−→
lim

∆

∆
∆x

N h x N h

x0

=
+ − −
−→

lim
∆ ∆x

N N

x0

0 0

=
−

−
�
��

�
�� =

→
lim

∆ ∆x

N N

x0
0

∴ ′ + = ′ − = ∀ ∉+ −f N h f N h x I� � � � 0 ,

⇒  y = [x] has the derivative zero at any non-
integral  point namely x = N + h, where N = an integer
and h is small positive number such that 0 < h < 1.

On Differentiability

Type 1. Problems based on piecewise functions.

Exercise 7.1

1. Test the differentiability of the following functions
at the indicated points.
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(i) f x

x

x x

x x

� � =
<

+ ≤ <

+ −�
�

�
� ≤

	




�
��

�

�
�
�

1 0

1 0
2

2
2 2

2

,

,

,

when

sin when

when

π

π π

at x= π
2

 and x = 0.

Answer: Differentiable at x= π
2

 and non-

differentiable at  x = 0.

(ii) f x

x

x x

x x

� � =
<

+ ≤ <

− −�
��

�
�� ≥

	




�
��

�

�
�
�

1 0

1 0
2

2
2 2

,

,

,

when

sin when

when

π

π π

at x = 0 and x=
π
2

.

Answer: Non-differentiable at both points x= π
2

 and

x = 0.

(iii) f x

x x

x x

x x x

� � =
< <

− ≤ ≤

− >

	



��

�
�
�

,

,

,

when

when

when

0 1

2 1 2
1

2
22

at  x = 1 and  x = 2.
Answer: Non-differentiable at  x = 1 and differentiable
at x = 2

(iv) f x

x x

x x

x x x

� � =
− <

≤ ≤
− + >

	

�

��

,

,

,

when

when

when

0

0 1

1 1

2

2

at  x = 0  and  x = 1.
Answer: Non-differentiable at both point x = 0 and
x = 1

(v) f x
x x

x x
� � = ≤ ≤

− >
	
�

,

,

when

when

0 1

2 1 1

at  x = 1.
Answer: Non-differentiable at x = 1

(vi) f x
x x x

x x x
� � � �=

≤ <
− ≤ <

	

�

,

,

when

when

0 2

1 2 3

at x = 1 and  x = 2. Where [x] is the greatest integer not
greater than x.
Answer: Not differentiable at both points x = 1 and
x = 2.

2. If the function f (x) is defined by

f x
x x

x x
� � =

+ − < ≤

− < <

	

�

��

3 2
3

2
0

3 2 0
3

2

,

,

when

when

show that D f (0) does not exist.
3. If the function f (x) is defined by

f x x x

x x
� � = ≥

<

	

�
��

2
0

0

,

,

when

when

then find left hand derivative and right hand derivative
at  x = 0. Is f (x) differentiable at x = 0?
Answer: Non-differentiable at x = 0
4. Does the differential coefficient of the following
function exist at x = 0 and x = 1

f x

x x

x x

x x x

� � =
− <
+ ≤ ≤
− + >

	

�

��

1 0

1 0 1

2 1

2

2

,

,

,

when

when

when

Answer: Non-differentiable at both points  x = 0  and
x = 1.

Type 2: Problems based on redefined  functions:

Exercise 7.2

1. If   
sin when

when
f x

x
x

x

x
� � =

�
�

�
� ≠

=

	

�
��

1
0

0 0

,

,
 test the

differentiability at x = 0.
Answer: Non-differentiable at x = 0
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2. Show that  f x
x

x
x

x
� � =

�
�

�
� ≠

=

	

�
��

2 1
0

0 0

sin for  

for  

,

,

 is differentiable at x = 0.

3. If  
sin when

when

f x
x

x
x

x

� � � �= −
−

�
��

�
�� ≠

=

	

�

��
2

1

2
2

0 2

2 ,

,

test the differentiability at  x = 2.
Answer: Differentiable at x = 2.

4. If   
cos when

when
f x

x
x

x

x
� � =

�
�

�
� ≠

=

	

�
��

4 3 1
0

0 0

,

,

test the differentiability  at x = 0
Answer: Differentiable at x = 0.

5. If   
when

when

f x

x

x x
x

x
� � =

−
− +

≠

− =

	


��

�
��

1

2 7 5
1

1

3
1

2
,

,

test the differentiability at x = 1
Answer: Differentiable at x = 1.

6. If   
sin

f x x
x

x
� � =

�
��

�
�� ≠

=

	

�

��

1
0

0 0

,

,

test the differentiable at x = 0
Answer: Non-differentiable at x = 0

7. If tan whenf x
x

x� �=
−

�
��

�
�� ≠

−1 1

1
1, ; f 1

2
� � = π

and if g x x f x� � � � � �= − ⋅1 2 for all x, test the

differentiability of g (x) at x = 1.
Answer: g (x)  is differentiable at  x = 1

8. If  f x
x

x x� � = ≠1
0

2
sin when, = 0, when x = 0

test the differentiability at x = 0.
Answer: Differentiable at x = 0.
9. Discuss the differentiability of the function

f x x
x

x� �= �
��

�
�� ≠cos for

1
0,  f (0) = 0 at the point x = 0.

Answer: Not differentiable at x = 0.
10. Test the differentiability of the function

f x e xx� � = −
�

�
��

�

�
�� ≠

−
−

1 0

1 1

for

f (0) = 0 at the point x = 0.
Answer: Not differentiable at x = 0.
11. Examine the differentiability of the function

f x
x a x a

x a� � � �=
− −

�
��

�
�� ≠1 1

cosec ,

f (a) = 0 at the point x = a.
Answer: Find.

12. Test the function f x
x

a x x� � = ≠1
0sin for

f (0) = 1 for differentiability at x = 0 where ‘a’ is a

positive constant such that a ≠ 1 .

Answer: Find.
13. Discuss the differentiability of the function

f x e
x

xx� � = ⋅ �
�

�
� ≠

− 1
2 1

0sin when,  f (0) = 0 at

the point x = 0.
Answer: Differentiable at x = 0
14. The function f  is defined as follows

f x e xx� �= ≠
−

1

0,  f (0) = 0 test the differen-

tiability at x = 0
Answer: Differentiable at x = 0.

Type 3: Problems based on mod functions:

Exercise 7.3

1. Is  | x |  differentiable at x = 0?
Answer: Not differentiable at x = 0.
2. Test the differentiability of the function f (x) =
| x – 1 | at x = 0 and x = 1.
Answer: Differentiable at x = 0 and non-differentiable
at x = 1.
3. Show that f (x) = | x – 1 | +  | x + 1 | is differentiable
at all points except x = 1 and x = – 1.
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4. Test the differentiability of the function f x
x

x
� �=

at x = 1.
Answer: Differentiable at  x = 1.
5. Is | x – 1 | differentiable at x = 1?
Answer: Non-differentiable at x = 1.

6. Is f x e
x� � = −

 differentiable at x = 0?
Answer: Non- differentiable at  x = 0.

Type 4: To find the values of the constants so that a
given function becomes differentiable at a given point
x = a.

Exercise 7.4

1. For what choices of a, b, c if any does the function

f x

x x

a x b x

c x

� � =
≤

+ < ≤
>

	

�

��

2 0

0 1

1

,

,

,

becomes differentiable at x = 0 and x = 1.
Answer: a = b = c = 0.
2. For what choice of a, b, c if any does the function

f x

a x b x c x

b x c x

c x

� � =
− + ≤ ≤

− < ≤
>

	

�

��

2 0 1

1 2

2

,

,

,

when

when

when

becomes differentiable at x = 1 and x = 2.
Answer: a = b = c = 0.
3. If f (x) = x2 + 2x,  when x < 0, = a x  +  b,  when  x >
0 find a and b so as to make the function f (x)
continuous and differentiable at x = 0.
Answer: a = 2  and  b = 0.
4. Find the constants a and b so as to make the
following function f (x) continuous and differentiable
for all x where

(i) f (x) = x2  , when  x K≤
= a x   +  b  , when x > K

Answer: a = 2K and  b = – K2

(ii) f x
x

x� �= ≥1
1, when

= a x2 + b , when  | x | < 1

Answer: a b= − =1

2

3

2
and .

(iii) f x
x� � � �

=
−

2

1

1
,  when x < 1

= a x2  +  b x , when x ≥ 1.

Answer: a = b = 0.

On Continuity and Differentiability

Type 1: Problems based on piecewise functions:

Exercise 7.5

1. Test the differentiability of the function

f x
x x

x x
� � = ≤ ≤

− <
	
�

,

,

when

when

0 1

2 1 1

at  x = 1. Is the function continuous at x = 1.
Answer: Non-differentiable at x = 1 but continuous
at x = 1.
2. Prove that the function f (x) defined by

f x
x x

x x
� � =

+ − < ≤

− < <

	

�

��

3 2
3

2
0

3 2 0
3

2

,

,

when

when

is continuous at x = 0 but D f (0) does not exist.
Answer: Continuous but non-differentiable at
x = 0.

3. If   f (x) = 1 + x, when x ≤ 2

= 5 – x, when x > 2
test the continuity and differentiability of the function
f (x) at x = 2.
Answer: f (x) is continuous every where and
differentiable every where except  x = 2.
4. Discuss the continuity and differentiability of the
function where f (x) = x2, when  x < – 2

= 4, when  − ≤ ≤2 2x

= x2, when x > 2.
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Answer: f (x) is continuous every where and
differentiable everywhere except x = 2 and x = – 2.
5. A function f (x) is defined as follows

f (x) = 1 for −∞ < <x 0

= + ≤ <1 0
2

sin forx x
π

= + −�
�

�
� ≤ < ∞2

2 2

2

x x
π π

for .

Discuss the continuity and differentiability of f (x)

at x = 0 and x= π
2

.

Answer: Non-differentiable at x = 0 and differentiable

at x=
π
2

 but it is continuous at both points x = 0 and

x= π
2

.

6. Prove that the function f defined by f (x) = 3 – 2x ,
when x < 2 = 3 x – 7, when x ≥ 2  is continuous but
not differentiable at x = 2.
7. A function f is defined by

f x
x x

x x
� � = − ≤

− >
	
�

5 4 1

3 2 1
2

,

,

when

when

is the function f (x) continuous and differentiable at
x = 1?

8. If   

when

sin when

cos when

f x

x

x x

x x

� � =
<

≤ ≤

>

	



�
��

�
�
��

0 0

0
4

4

,

,

,

π

π

show that f (x) is continuous but not differentiable at
x = 0.
9. A function f (x) is defined as follows:

f (x) = 1 + x,  when x ≤ 2 , = 5 – x , when x > 2. Test

the character of the function at x = 2 as regards its
continuity and differentiability.
Answer: Continuous but non-differentiable at
x =2.
10. Examine whether f (x) is continuous and has a
derivative at the origin when f (x) = 2 + x , when x ≥ 0
f (x) = 2 x , when x < 0.

Answer: Continuous but not differentiable at x = 0.
11. A function f (x) is defined as follows

f (x) = x  for 0 1≤ ≤x , f (x) = 2 – x for x ≥ 1. Test
the character of the function at x =1 regarding its
continuity and differentiability.
Answer: Continuous but non-differentiable at
x = 1.
12. Show that the function f (x) defined by
f (x) = x2 – 1, when x ≥ 1 = 1 – x , when x < 1 is
continuous but not differentiable at x = 1.

Type 2: Problems based on redefined functions:

Exercise 7.6

1. If   f x
x

x� � = 1 2sin , when x ≠ 0

= 0 ,  when  x = 0
discuss the continuity and differentiability of f (x) at
x = 0.
Answer: Continuity and differentiable at x = 0.

2. If  f x x
x

x� � = �
�

�
� ≠

−
tan when

1 1
0,

= 0 , when  x = 0
examine the continuity and differentiability at
x = 0.
Answers: Continuous but bot differentiable at
x = 0.

3. If  f x e
x

xx� � = ⋅ �
�

�
� ≠

− 1
2 1

0sin when,

= 0 ,  when x = 0
show that f (x) is differentiable at x = 0.

4. If   whenf x
x

e

x
x

� � =
+

≠

1

0
1

,

f (0) = 0

show that f (x) is continuous at x = 0 but ′f 0� �  does

not exist.

5. Show that f x x
x

x� � = ⋅ �
�

�
� ≠

2 1
0sin ,   for

f (0) = 0 is differentiable at x = 0.
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6. If  ,f x

x e e

e e

x

x x

x x

� � =
−

�
�
�

�
�
�

+
�
�
�

�
�
�

≠

−

−

1 1

1 1
0

    = 0 ,  x = 0
show that f (x) is continuous but not differentiable at
x = 0.

Type 3: Problems based on mod functions:

Exercise 7.7

1. Let f (x) = | x – 2 |. Is the function continuous and

differentiable at x = 2?
2. Examine the continuity and differentiability of the
following functions at the indicated points:

(i) f (x) = | cos x |  at  x=
π
2

Answer: Continuous at x= π
2

 but non-differentiable

at x= π
2

.

(ii) f (x) = | x3 |  at   x = 0
Answer: Continuous at x = 0 and also differentiable
at x = 0.
(iii) f (x) = 1 + | sin x |  at  x = 0
Answer: Continuous at   x = 0 but  non-differentiable
at x = 0.
(iv) f (x) = | x – 2 |  at  x = 2
Answer: Continuous at x = 2 but non-differentiable
at x = 2.

(v) f x
x

x
� � =    at   x = 0

Answer: Discontinuous and non-differentiable at
x = 0.
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8

Rules of Differentiation

Before we gather the rules of differentiation, let us
recapitulate some phrases and concepts frequently
used in calculus.

1. Differentiation at any limit point (or, simply
differentiable): A function f is said to be differentiable
at any limit point x (or, simply differentiable), where x
is assumed to have any finite value in D(f)

⇔
+ −

→
lim
h

f x h f x

h0

� � � �
 is finite when

x∈ + ∈D f x h D f� � � � � �and   is the same whether

h → 0  through positive values or through negative
values. The value of this limit for every finite value of
x is called derivative of the function f at x and is

denoted as ′f x� � ,  i.e.,

′ =
+ −

→
f x

f x h f x

hh
� � � � � �

lim
0

,  where x is sup-

posed to have any finite value in D (f), whether h → 0
through positive values or through negative values.
2. Differentiability at a point: A function f is said to
be differentiable at a point x = a, a being a particular

finite value ∈D f� �  ⇔ + −
→

lim
h

f a h f a

h0

� � � �
 is

finite for the finite given value of x ∈ D (f) and is the
same whether h → 0  through positive values or
through negative values. The value of this limit is
called derivative of the function f at x = a and is

denoted as ′f a� � ,  i.e.,

′ =
+ −

→
f a

f a h f a

hh
� � � � � �

lim
0

,  where a  is a

particular finite value given for x∈D f� �  and h → 0
through positive values or through negative values.

Remark:
1. The result obtained after the evaluation of the limit,

lim
h

f x h f x

h→

+ −
0

� � � �
,  for the function f at the limit

point x is called derivative of f at any limit point x (or,
simply at x or at the point x) or derived function of f at
any limit point x because it is derived from the function
f at the limit point x and is symbolised as f ´(x) for
every finite value of x in its domain (whereas the
derivative or derived function is symbolised as f ́  for
the function f) while the function f at the limit point x
is said to be derivable or differentiable at any point x
(or, simply, at x) provided the limit,

lim
h

f x h f x

h→

+ −
0

� � � �
 is finite for every finite value

of x and is the same whether h → 0  through positive
values or through negative values.
2. Instead of saying that the function f is differentiable
at any limit point x (or, at a point, or, at a particular
point x = a), we also say that the function f has a
derivative at any limit point x (or, at a point, or, at a
particular point x = a) in D (f).
3. If the function f is written as y = f (x), then its
derived function is also symbolised as

′ = = =y
d

dx
y

d

dx
f x

d

dx
f x� � � �� � � � .
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4. By an abuse of language, it has been customary to
call f (x) as function instead of f.
5. It is also said that a function y = f (x) is differentiable
at some point x (or, at a particular point x = a, or, at
any point x) instead of the function f is differentiable
at some point x (or, at a particular point x = a, or, at
any point x) or f (x) is a differentiable function of the
independent variable x.

Now we explain the general rules of differentiation
which are actually the fundamental theorems on
differentiation.
1. Show that the function which is a constant times a
differentiable function is differentiable and the
derivative of a constant times a differentiable function
is the constant times the derivative of the function.
Solution: Let y = a f (x), where a is a constant and f
(x) is a differentiable function of the independent
variable x. It is required to show that y = a f (x) is

differentiable and 
d

dx
y a f x� � � �= ′ .

� y a f x= � �
⇒ + = +y y a f x x∆ ∆� �
⇒ = + −∆ ∆y a f x x a f x� � � �

⇒ =
+ −∆

∆
∆
∆

y

x

a f x x a f x

x

� � � �

⇒ =
→

d

dx
y

y

xx
� � lim

∆

∆
∆0

=
+ −

→
lim
∆

∆
∆x

a f x x a f x

x0

� � � �

=
+ −

→
a

f x x f x

xx
lim
∆

∆
∆0

� � � �

⇒ = ′
d

dx
y a f x� � � �

Hence, y = a f (x) is a differentiable function and

d

dx
y

d

dx
a f x a f x� � � �� � � �= = ′  which means while

differentiating a constant times a differentiable

function, the constant (or, numerical factor) may be

taken out of the differentiation symbol 
d

dx
� � .

2. Show that the sum of two separate functions
differentiable on a common domain is differentiable
on the same common domain and the derivative of
the sum of two differentiable functions is the sum of
the derivatives of the separate functions.
Solution: let y = f (x) + g (x) be the sum of two
functions, say f (x) and g (x) differentiable on a
common domain (or, interval) I. It is required to show
that the sum function y = f (x) + g (x) is also
differentiable on the same common domain I and

d

d x
y f x g x� � � � � �= ′ + ′

� y f x g x= +� � � �
⇒ + = + + +y y f x x g x x∆ ∆ ∆� � � �
⇒ = + + + − +∆ ∆ ∆y f x x g x x f x g x� � � � � � � �� �

⇒ =
+ + + − +∆

∆
∆ ∆

∆
y

x

f x x g x x f x g x

x

� � � � � � � �� �

⇒ =
→

d

dx
y

y

xx
� � lim

∆

∆
∆0

= lim
∆

∆ ∆
∆x

f x x g x x f x g x

x→

+ + + − +
0

� � � � � � � �� �

=
+

+
+

→ →
lim lim
∆ ∆

∆
∆

∆
∆x x

f x x

x

g x x

x0 0

� � � �

− −
→ →

lim lim
∆ ∆∆ ∆x x

f x

x

g x

x0 0

� � � �

=
+ −

+
→

lim
∆

∆
∆x

f x x f x

x0

� � � �

lim
∆

∆
∆x

g x x g x

x
f x g x

→

+ −
= ′ + ′

0

� � � � � � � �

Hence, y = f (x) + g (x) is differentiable on the
interval I and
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d

dx
y

d

dx
f x g x f x g x� � � � � �� � � � � �= + = ′ + ′

Cor: The sum of a finite number of functions
differentiable on a common domain is differentiable
on the same domain and the derivative of the sum of
a finite number of differentiable functions is the sum
of their derivatives, i.e.

If f1, f2, f3, .. fn be differentiable functions at the
same point x, then y = f1 (x) + f2 (x) + …+ fn (x) is also
differentiable at the same point x and
d

dx
y� � =  ′ + ′ + + ′f x f x f xn1 2� � � � � �...  which is

known as extension rule (or, formula) for the derivative
of the sum of a finite number of a differentiable
functions.

3. Show that the product of two functions
differentiable on a common domain is differentiable
on the same common domain and the derivative of
the product of two differentiable functions is the first
function times the derivative of the second function
plus the second function times the derivative of the
first function.
Solution: Let y = f (x) · g (x), where f (x) and g (x) are
functions differentiable on a common interval I. It is
required to show that the product function y =
f (x) · g (x) is differentiable on the same common
interval I and

d

dx
f x g x f x g x g x f x� � � �� � � � � � � � � �⋅ = ⋅ ′ + ⋅ ′

� y f x g x= ⋅� � � �
⇒ + = + ⋅ +y y f x x g x x∆ ∆ ∆� � � �
⇒ = + ⋅ + − ⋅∆ ∆ ∆y f x x g x x f x g x� � � � � � � �

⇒ =
+ ⋅ + −∆

∆
∆ ∆

∆
y

x

f x x g x x f x g x

x

� � � � � � � �

Now adding and subtracting f x g x x� � � �⋅ + ∆
in numerator, we have

∆
∆

y

x
=

f x x g x x f x g x x f x g x x f x g x

x

+ + − + + + − ⋅∆ ∆ ∆ ∆
∆

� � � � � � � � � � � � � � � �

⇒ =
+ −

⋅ +
�
�
�
�

�
	




+

→

d

dx
y

f x x f x

x
g x x

x
� � � � � � � �lim

∆

∆
∆

∆
0

lim
∆

∆
∆x

g x x g x

x
f x

→

+ −
⋅

�
�
�
�

�
	



0

� � � � � �

=
+ −

⋅ + +
→ →

lim lim
∆ ∆

∆
∆

∆
x x

f x x f x

x
g x x

0 0

� � � � � �

lim lim
∆ ∆

∆
∆x x

g x x g x

x
f x

→ →

+ −
⋅

0 0

� � � � � �

= ′ ⋅ + ′ ⋅ = ⋅ ′ +f x g x g x f x f x g x� � � � � � � � � � � �
g x f x� � � �⋅ ′

Hence, y = f (x) · g (x) is differentiable on the
common interval I and

d

dx
y

d

dx
f x g x f x g x� � � � � �� � � � � �= ⋅ = ⋅ ′ +

g x f x� � � �⋅ ′

Note: It is immaterial to consider any function of the
two given functions as the first function and the
second function, i.e., any one of the two given
functions may be considered as the first function and
the other one as the second function. This is why we
are at liberty to consider any one of the two given
functions as the first function and the other one as
the second function.

Cor: The product of a finite number of functions
differentiable on a common domain is differentiable
on the same domain and the derivative of the product
of a finite number of differentiable functions is the
sum of the n terms obtained by multiplying the
derivative of each one of the factors by the other (n –
1) factors undifferentiated, i.e. if f1, f2, …, fn be separate
functions differentiable on a common interval I (or, at
any point x), then y = f1 · f2 · f3 … fn is also differentiable
on the same common interval I (or, at the same point
x) and
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d

dx
y f f f f

d

dx
fn n� �  � � �= ⋅ ⋅ +−1 2 3 1...

f f f f
d

dx
x f f f

d

dxn n n n1 2 1 1 2 3⋅ + + ⋅− −... ... ... �  � � �

(f1), where each product within the bracket contains
(n – 1) factors undifferentiated. This is known as the
extension rule for the derivative of the product of a
finite number of differentiable functions.

Question: Find 
d

dx
x

n
� �  using the extension rule for

the derivative of the product of a finite number of
differentiable functions, n being a positive integer.
Solution: Let y = x be a differentiable function

∴ = = =
→

d

dx
y

d

dx
x

x

xx
� � � � lim

∆

∆
∆0

1

Now, xn = x · x · x ... x (upto ‘n’ factors) is
differentiable and using the extension rule for the
derivative of product of a finite number of
differentiable functions, we have

d

dx
x x x x

d

dx
x x x x

d

dx
xn� � � � � � � � � �= ⋅ + ⋅ +... ...

... ...+ ⋅x x x
d

dx
x� � � �  [each product within the

bracket contains (n – 1) factors undifferentiated.]

= + +
− −

x
d

dx
x x

d

dx
x

n n1 1� � � �...  (upto n-times)

= −
x

n 1  (1 + 1 + … upto n-times) = n x
n−1

�

d

dx
x� � =�

�
�
�1

4. Show that the quotient of two functions
differentiable on a common domain is differentiable
on the same common domain excepting the points (or
common domain) where the function in denominator
is zero and the derivative of the quotient of two
differentiable functions is the function in denominator
times the derivative of the function in denominator
minus the function in numerator times the derivative
of the function in denominator, all divided by the
square of the function in denominator.

Solution: Let y
f x

g x
g x= ≠

� �
� � � �, ,0  where f (x) and

g (x) are functions differentiable on a common domain

I. It is required to show that y
f x

g x
g x= ≠

� �
� � � �, 0  is

differentiable on the same common domain I and

d

dx

f x

g x

g x f x f x g x

g x

� �
� �

� � � � � � � �
� �� �

�
��

�
��
=

′ − ′
2

� y
f x

g x
g x= ≠

� �
� � � �, 0

⇒ + =
+
+

y y
f x x

g x x
∆

∆
∆

� �
� �

⇒ =
+
+

−∆
∆
∆

y
f x x

g x x

f x

g x

� �
� �

� �
� �

=
f x x g x g x x f x

g x x g x

+ − +
+

∆ ∆
∆

� � � � � � � �
� � � �

⇒ =
+ − +

+
∆
∆

∆ ∆
∆ ∆

y

x

f x x g x g x x f x

x g x x g x

� � � � � � � �
� � � �

Now adding and subtracting f (x) · g (x) in
numerator, we have

∆
∆

y

x
=

f x x g x f x g x f x g x f x g x x

x g x x g x

+ − + − +
+

∆ ∆
∆ ∆

� � � � � � � � � � � � � � � �
� � � �

⇒ = =
+→ →

d

dx
y

y

x g x x g xx x
� � � � � �lim lim

∆ ∆

∆
∆ ∆0 0

1

f x x f x

x
g x

g x x g x

x
f x

+ −
⋅ −

+ −
⋅

�
��

�
	


∆
∆

∆
∆

� � � � � � � � � � � �

=
⋅

⋅ ′ − ′
1

g x g x
f x g x g x f x

� � � � � � � � � � � �� �

=
g x f x f x g x

g x

� � � � � � � �
� �� �

′ − ′
2
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Hence, the quotient function y
f x

g x
=
� �
� �  is

differentiable at every point of the common domain I
excepting only those points (of common domain) at
which the function in denominator is zero and

d

dx
y

d

dx
f x g x� � � � � �� �= ⋅

=
g x f x f x g x

g x
g x

� � � � � � � �
� �� �

� �′ − ′
≠

2
0,

Notes:
1. We should note that in the formula of the derivative
of quotient of the two functions differentiable on a
common domain (or, at any point x), the derivative of
the function in denominator occuring in numerator is
always with negative sign.

2.
d

dx f x

f x

f x

1
2� �

� �
� �� �

�
��

�
��
= −

′

3. The quotient y
f x

g x
=
� �
� �  of two functions

differentiable at the point x = a, is a function which is
differentiable at the same point x = a, provided

g a� � ≠ 0 .

4. The quotient y
f x

g x
=
� �
� �  of two functions

differentiable at every value of x is a function which
is differentiable at every value of x, provided g x� � ≠ 0
at those values of x at which g (x) is differentiable.
5. One can differentiate a function at only those
points at which it is defined. e.g.

(i) f x
g x

d

dx
f x

d

dx g x
� � � � � �� � � �= ⇒ =

�
��

�
��

1 1

= −
′g x

g x

� �
� �� �2

,  but this is not valid when g (x) = 0 for

any value of x since 
1

g x� �  is undefined when g (x)

= 0 for any value of x. So it is better to write

d

dx
f x

d

dx g x

g x

g x
g x� �� � � �

� �
� �� �

� �=
�
��

�
��
= − ≠1

2

'
,  for

any x.

(ii) f x g x
d

dx
f x

d

dx
g x� � � � � �� � � �� �= ⇒ = =log log

′g x

g x

� �
� � ,  but this is not valid when g x� � ≤ 0  for any

value of x because log g (x) is not defined when
g x� � ≤ 0 . So, it is proper to write

d

dx
f x

d

dx
g x

g x

g x
g x� �� � � �� � � �

� � � �= =
′

>log , 0 .

(iii) f x x
d

dx
f x

d

dx
x x� � � �� � � �= ⇒ = =tan tan sec2 ,

but this is not valid when x n= +2 1
2

� � π  because

tan x is not defined for x n= +2 1
2

� � π . Hence, it is

proper to write 
d

dx
x x x ntan sec� � � �= ≠ +2

2 1
2

,
π

.

6. Even if a function is defined at a point, its
derivative need not exist at that point. e.g.

(i) f x x� � =  exists (i.e., it is defined) for x > 0 but

its derivative 
d

dx
x

x
� � =

1

2
 does not exists at

x = 0. So, it is proper to write 
d

dx
x

x
x� � = >1

2
0, .

(ii) f x x� � = −
sin

1
 exists (i.e., it is defined) for

| x | < 1 but its derivative 
d

dx
x

x
sin

− =
−

1

2

1

1
� �

and does not exist for x = ±1. So, it is proper to write

d

dx
xsin

−
=

1
� �  

1

1
1

2−
<

x
x, .

7. One function can not have two different derivatives
at a point while two different functions can have the
same derivative. e.g.,

(i) d

dx
x

x
sin

− =
−

1

2

1

1
� �  and d

dx
x−

−
cos

1
� �
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=
1

1
2− x

, for | x | < 1.

8. A function or its derived function (or, derivative)
may not exist at all points of an interval. e.g.,

(i) f x
x

� � = 1
 does not exist at x = 0 in [–1, 1].

(ii) f x x� � =  has no derivative (or, derived

function) at x = 0 because lim
h

h

h→

+ −
0

0 0
 does

not exist at x = 0 in [–1, 2].

9. When a function or its derived function (or,
derivative) does not exist atleast at one point
belonging to the interval being open or closed, we
say that the function or its derived function does not
exist over (or, in, or on) that interval open or closed.
e.g.,

(i) f x
x

� � =
−

1

1
2  does not exist in [–1, 1] because

f (x) does not exist at x = ± ∈ −1 1 1, .

(ii)
d

dx
x� �  does not exist in [–1, 1] because

lim lim lim
h h h

h

h

h

h

h

h→ → →

+ −
= =

0 0 0

0 0
 (� | h | =

h for h > 0)

= =
⋅

= �
��
�
�� =∞→ → →

lim lim lim
h h h

h

h

h

h h h0 2 0 0

1
 which

means f x x� � =  has no derivative at the point

x = ∈ −0 1 1,� �  or [–1, 1].

10. The domain of the derived function ′f x� �  is a
subset (of the domain of f) which contains all elements
x (in the domain of f (x)) at which the

lim
h

f x h f x

h→

+ −
0

� � � �
 exists, whether h → 0

through positive values or negative values, but does
not contain those exceptional points x where the
derivative (or, derived function) fails to exist or is
undefined. e.g.,

(i) f x x f x
x

x
x� � � �= ⇒ ′ = − < ≤cos

sin

2
0 1,

which means domain of the derived function ′f x� �
in the set of all 0 < x < 1.

11. f x ax bx c f x� � � �= + + ⇒ ′cos 2

=
− + + +

+ +

2

2

2

2

ax b ax bx c

ax bx c

� � sin
,  which means the

domain of the derived function ′f x� �  is the set of all

real numbers, for which 0 < ax2 + bx + c < 1.

Important Facts to Know

In connection with the function, differentiation of the
function or integration of the function at any finite
value of the independent variable, the following key
points must be kept in one’s mind.

1. One must consider the restriction that the function
in denominator ≠ 0  for any finite value of the
independent variable against the fractional form of
the function, the derivative or integral even if this
restriction is not stated (or, written) explicitly because
one must never divide by zero. e.g.,

(i) f x
x

x
� � � �

=
− 2

 means f x
x

x
x� � � �

=
−

≠
2

2,

(ii) f x x f x
x

x
� � � �= ⇒ ′ =  means ′f x� �

=
x

x
x, ≠ 0

(iii) sec tan sec means sec tanx x dx x x x dx= ��
=sec x x n, ≠ +2 1

2
� � π

2. We say that a function, its derivative or its integral
does not exist (or, we say that the function, its
derivative or its integral is discontinuous) at any finite
value of the independent variable when the function,
its derivative or its integral assumes the form of a
“fractional with a zero denominators” at any
considered finite value of the independent variable.
e.g.,
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(i) f x
x

x
x

� � = ≠ ⇒1
0

1
,  is discontinuous at x = 0.

(ii) f x x x f x
x

x
x

� � � �= ≥ ⇒ ′ = ≠ ⇒, ,0
1

2
0

1

2
is discontinuous at x = 0.

(iii) sec tan2 2 1
2

x dx x x n= ≠ + ⇒� , � � π  the

integral is discontinuous at x n= +2 1
2

� � π .

3. By using the relations

(i) ′ =
+ −

+ →
f a

f a h f a

hh
� � � � � �

lim
0

, (h > 0)

(ii) ′ =
− −

− →
f a

f a h f a

hh
� � � � � �

lim
0

, (h > 0),

One can show the non-differentiability of the
function y = f (x) at a finite value of the independent
variable x = a when its derivative assumes the form of
a “fraction with a zero denominator” at the same
considered finite value ‘a’ of the independent variables
‘x’. e.g.,

(i) Show that the function f x x� � = , for x ≥ 0 ,

f x x� � = − ,  for x < 0, is non-differentiable at x = 0.
Solution: For differentiability, we have

′ =
+ −

>+
→

f
f h f

h
h

h
0

0 0
0

0
� � � � � � � �lim ,

=
−

=
→ →

lim lim
h h

h

h

h

h0 0

0

= = >
→

lim for
h

h

h
h h h

0 2
0�� �

=
⋅

= = ∞
→ →

lim lim
h h

h

h h h0 0

1
...(i)

′ =
− −
−

>−
→

f
f h f

h
h

h
0

0 0
0

0
� � � � � � � �lim ,

=
−

−
= −

→ →
lim lim
h h

h

h

h

h0 0

0

=
−

= >
→

lim for
h

h

h
h h h

0 2
0�� �

=
− ⋅

= −���
�
�� = −∞

→ →
lim lim
h h

h

h h h0 0

1
...(ii)

Hence, (i) and (ii) ⇒  non-differentiability of the

function defined by f x x� � = , for x f x≥ 0 , � �
= −x� � ,  for x < 0, at the point x = 0.
4. When the denominator of a function, derived
function or the integral of a function does not vanish
for any real value of the independent variable, we
state (or, write) that the function, derived function
(or, simply derivative) or integral of the function exists
for all real values of the independent variable. e.g.,

(i) f x
x x

x� � =
+ +

∀1

4 7 9
2

,

(ii) tan
− ′

=
+

∀1

2

1

1
x

x
x� � ,

(iii) x dx
x

x
2 2 2

2
1

1

1
+ =

+
∀

−� � � ,

Recapitulation

(A) One must remember that power, exponential,
logarithmic, trigonometric and inverse trigonometric
functions are differentiable on any interval on which
they are defined and their derivatives can be found
from the formulas.

(i) d

dx
c� � = 0 ,  c being any constant.

(ii) d

dx
x nx n Qn n� � = ∈−1 ,

(iii) d

dx
a a a

x x
� � = log , a > 0

(iv) d

dx
e e

x x
� � =

(v) d

dx
x

x
xlog� � = >1

0,
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(vi) d

dx
x xsin cos� � =

(vii) d

dx
x xcos sin� � = −

(viii) d

dx
x xtan sec

2� � = , x n≠ +π π
2

(ix) d

dx
x xcot cosec

2� � = − , x n≠ π

(x) d

dx
x x xsec sec tan� � = ⋅ , x n≠ +π π

2

(xi) d

dx
x x xcosec cosec cot� � = ⋅ , x n≠ π

(B) The following rules of finding the derivatives are
valid for differentiable functions.

(i) d

dx
a f x a

d

dx
f x� �� � � �� �= ,  a being any constant.

(ii) d

dx
f x g x

d

dx
f x

d

dx
g x� � � �� � � �� � � �� �± = +

(iii) d

dx
f x g x g x

d

dx
f x f x

d

dx
g x� � � �� � � � � �� � � � � �� �⋅ = ⋅ ±

(iv) d

dx

f x

g x

g x
d

dx
f x f x

d

dx
g x

g x

� �
� �

� � � �� � � � � �� �

� �
�
��

�
��
=

− ⋅
2

,

g x� �� �≠ 0

Notes:
1. If the question does not say to find the limits,
derivatives and integrals by using their definitions,
one can use their formulas derived by using their
definitions.
2. If a constant appears as a constant multiple of the
differentiable function, the constant can be taken out

of the symbol 
d

dx
� � .

3. If a constant appears as an additive quantity in a
differentiable function, it vanishes while
differentiating that function since d.c. of a constant
is zero.

Solved Examples

Form 1: y = any constant

Differentiate the following w.r.t. x.
1. 1995

2. 3

7
3. a2, a being a constant.

Solutions: (i) d

dx
1995� � = 0

(ii) d

dx

3

7
�
�
�
� = 0

(iii) d

dx
a

2
0� � =

Form 2: y = a f (x), where f (x) = an algebraic
expression in x and the value of the function sin, cos,
tan, cot, sec, cosec, sin–1, cos–1, tan–1, cot–1, sec–1,
cosec–1, log, e, | |, etc. at any point x.

Differentiate the following w.r.t. x.

1. 28
3
4x

Solution: d

dx
x

d

dx
x28 28

3
4

3
4�

�
�
� =

�
�
�
�

= × × ��
�
� = =

− −
28

3

4
21

213
4

1
4

1
4

1
x x

x
; x > 0

2. 3x2

Solution:
d

dx
x

d

dx
x x x3 3 3 2 6

2 2
� � � �= = × =

3. 6 sin x

Solution:
d

dx
x

d

dx
x x6 6 6sin sin cos� � � �= =

4. a sin–1 x

Solution:
d

dx
a x a

d

dx
xsin sin

− −
=

1 1
� � � �

= ⋅
−

=
−

a
x

a

x

1

1 1
2 2 ; | x | < 1

5. m log x

Solution:
d

dx
m x m

d

dx
x

m

x
log log� � � �= = ; x > 0.
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6. x

m

2

Solution:
d

dx

x

m m

d

dx
x

2
21�

�
�
�

�
� = ⋅ � �

= ⋅ =1
2

2

m
x

x

m

Form 3: y a f x b f x= ±1 2� � � � ,  where a and b are

constants and f1 (x) and f2 (x) are algebraic expressions
in x or the values of the functions sin, cos, tan, cot,
sec, cosec, sin–1, cos–1, tan–1, cot–1, sec–1, cosec–1,
log, e, | |, etc. at the same point x.

Differentiate the following w.r.t. x.
1. (lx2 + mx + c)

Solution:
d

dx
lx mx c

2 + +� �

= + +
d

dx
lx

d

dx
mx

d

dx
c

2
� � � � � �

= + +l
d

dx
x m

d

dx
x

2
0� � � �

= l · 2x + m · 1 + 0 = 2lx + m

2. 5 2
3 3

2x x−�
�

�
�

Solution:
d

dx
x x5 2

3 3
2−�

�
�
�

= − �
�

�
�

d

dx
x

d

dx
x5 2

3 3
2� �

= − �
�
�
�5 2

3 3
2d

dx
x

d

dx
x� �

= × − × ×
−

5 3 2
3

2

2 13
2x x
� �

= −15 3
2 1

2x x

3. y x
x

= +
1

Solution: y x
x

= +
1

⇒ = +�
��

�
��

d

dx
y

d

dx
x

x
� � 1

= + �
��

�
��

d

dx
x

d

dx x
� �

1

= + −��
�
�
�
�

�
�

− −1

2

1

2

1
2

3
2x x

�

1 1 11
2

1
2

x
x x x= + ��

�
� +

�
��

�
��

− − −
� �

= −
− −1

2

1

2

1
2

3
2x x ; for x > 0.

4. y = sec x + tan x
Solution: y = sec x + tan x

⇒ = +d

dx
y

d

dx
x x� � � �sec tan

= +
d

dx
x

d

dx
xsec tan� � � �

= sec x · tan x + sec2 x

= sec x (sec x + tan x); x n≠ +π π
2

5. y = x2 + 5 sin x + tan x
Solution: y = x2 + 5 sin x + tan x

⇒ = + +
d

dx
y

d

dx
x x x� � � �

2
5sin tan

= + +
d

dx
x

d

dx
x

d

dx
x

2
5� � � � � �sin tan

= 2x + 5 cos x + sec2 x; x n≠ +π π
2

6. y
x

a

b

x
= +

Solution: y
x

a

b

x
= +

⇒ = +�
�

�
� =

�
�
�
� +

�
�
�
�

d

dx
y

d

dx

x

a

b

x

d

dx

x

a

d

dx

b

x
� �

= 1 1

a

d

dx
x b

d

dx
x� � � �+
−
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= + − = −
−1 12 2

a
b x

a
b x� � ; for x ≠ 0

Form 4: y = f1 (x) × f2 (x), where f1 (x) and f2 (x) are
algebraic expressions in x or the values of the
functions sin, cos, tan, cot, sec, cosec, sin–1, cos–1,
tan–1, cot–1, sec–1, cosec–1, log, e, | | etc. at the same
point x.

Differentiate the following w.r.t. x:
1. y = (2x + 1) (x – 1)2

Solution: y = (2x + 1) (x – 1)2 = (2x + 1) (x2 – 2x + 1)

⇒ = + − +�
��

�
	


d

dx
y

d

dx
x x x� � � � � �2 1 2 1

2

= + − + + − + +2 1 2 1 2 1 2 1
2 2

x
d

dx
x x x x

d

dx
x� � � � � � � �

= (2x +1) (2x – 2)+ (x2 – 2x + 1) · 2
= 4x2 – 2x – 2 + 2x2 – 4x + 2 = 6x2 – 6x = 6x (x – 1)

Note: On multiplying term by term, the product of
two or more than two algebraic polynomial functions
of x’s can be always put in the form of the sum of a
finite number of terms, each term having the form xn

and / axn and then it can be differentiated using the
rule of the derivative of the sum of a finite number of
differentiable functions of x’s. Hence, applying this
rule to the above given function, one can have its
differential coefficient given below:

y = (2x + 1) (x – 1)2 = (2x + 1) (x2 – 2x + 1) = 2x3 –
4x2 + 2x + x2 – 2x + 1 = 2x3 – 3x2 + 1

⇒ = − +
d

dx
y

d

dx
x x� � � �2 3 1

3 2

= − + = −d

dx
x

d

dx
x

d

dx

d

dx
x2 3 1 23 2 3� � � � � � � �

3 0
2d

dx
x� � +

= 2 × 3x2 – 3 × 2x = 6x2 – 6x = 6x (x – 1)

2. y = (x2 + 1) (x3 +2)
Solution: y = (x2 + 1) (x3 +2)

⇒ = + +�
��

�
	


d

dx
y

d

dx
x x� � � � � �

2 3
1 2

= + + + + +x
d

dx
x x

d

dx
x

2 3 3 2
1 2 2 1� � � � � � � �

= (x2 + 1) (3x2 + 0) + (x3 + 2) (2x + 0)
= 3x2 (x2 + 1) + (x3 + 2) · 2x
= 3x4 + 3x2 + 2x4 + 4x
= 5x4 + 3x2 + 4x

3. y = (1 – x)2 (1 – 3x2 + 5x3)
Solution: y = (1 – x)2 (1 – 3x2 + 5x3) = (x2 – 2x + 1)
(5x3 – 3x2 + 1)

⇒ = − + − + +d

dx
y x x

d

dx
x x� � � � � �2 3 22 1 5 3 1

5 3 1 2 1
3 2 2

x x
d

dx
x x− + − +� � � �

= (x2 – 2x + 1) (15x2 – 6x) + (5x3– 3x2 + 1) (2x–2 + 0)
= (x2 – 2x + 1) (15x2 – 6x ) + 2 (x – 1) (5x3 – 3x2 + 1)
= 3x (1 – x)2 (5x – 2) –2 (1 – x) (5x3 – 3x2 + 1)
= (1 – x) {3x (1 – x) (5x – 2) –2 (5x3 – 3x2 + 1)}

4. y = x4 log x
Solution: y = x4 log x

⇒ =d

dx
y

d

dx
x x� � � �

4
log

= +x
d

dx
x x

d

dx
x

4 4
log log� � � �

= ⋅ ��
�
� + ⋅x

x
x x

4 31
4log � �

= x3 + 4x3 log x
= x3 (1 + 4 log x); for x > 0.

5. y = sin x · log x
Solution: y = sin x · log x

⇒ =
d

dx
y

d

dx
x x� � � �sin log

= +sin log log sinx
d

dx
x x

d

dx
x� � � �

= ⋅ + ⋅sin log cosx
x

x x
1

= +
sin

cos log
x

x
x x ; for x > 0

6. y = cot x · cos–1 x
Solution: y = cot x · cos–1 x

⇒ = ⋅
−d

dx
y

d

dx
x x� � � �cot cos

1
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= +
− −

cos cot cot cos
1 1

x
d

dx
x x

d

dx
x� � � �

= ⋅ − + ⋅ −

−

�

�
�
�

�

�
�
�

−
cos cosec cot

1 2

2

1

1
x x x

x
� �

= − ⋅ −
−

−
cosec cos

cot2 1

2
1

x x
x

x
; for 0 < | x | < 1

7. y = x3 tan x
Solution: y = x3 tan x

⇒ = = +d

dx
y

d

dx
x x x

d

dx
x� � � � � �3 3tan tan

tan x
d

dx
x

3
� �

= x3 sec2 x + tan x · (3x2) = x3 sec2 x + 3x2 tan x

= x2 (3 tan x + x sec2 x); x n≠ +π π
2

8. y = ex sin x
Solution: y = ex sin x

⇒ =
d

dx
y

d

dx
e x

x� � � �sin

= +e
d

dx
x x

d

dx
e

x x
sin sin� � � �

= ex · cos x + sin x · ex

= ex (sin x + cos x)

9. y = ex log | x |
Solution: y = ex log | x |

⇒ =d

dx
y

d

dx
e x

x� � � �log

= +log logx
d

dx
e e

d

dx
x

x x
� � � �

= ⋅ + ⋅log x e e
x

x x 1

= +�
�

�
�e x

x

x
log

1
; x ≠ 0

10. y = sin x log | x |
Solution: y = sin x log | x |

⇒ = +d

dx
y x

d

dx
x x

d

dx
x� � � � � �sin log log sin

= ⋅ + ⋅sin log cosx
x

x x
1

= + ⋅
sin

cos log
x

x
x x ; x ≠ 0

11. y = cos x · cot x
Solution: y = cos x · cot x

⇒ = ⋅d

dx
y

d

dx
x x� � � �cos cot

= ⋅ + ⋅cos cot cot cosx
d

dx
x x

d

dx
x� � � �

= cos x · ( – cosec2 x) + cot x (–sin x)
= –cosec2 x · cos x – cot x sin x; x n≠ π

12. y = sin x · cos x
Solution: y = sin x cos x

⇒ = ⋅d

dx
y

d

dx
x x� � � �sin cos

= + ⋅sin cos cos sinx
d

dx
x x

d

dx
x� � � �

= sin x · (–sin x) + cos x · cos x
= –sin2 x + cos2 x
= cos2 x – sin2 x = cos 2x

13. y = sin2 x
Solution: y = sin2 x = sin x · sin x

⇒ = + ⋅d

dx
y x

d

dx
x x

d

dx
x� � � � � �sin sin sin sin

= sin x · (cos x) + sin x · (cos x)
= sin x cos x + sin x cos x = 2 sin x cos x

14. y = sec x · tan x
Solution: y = sec x · tan x

⇒ = ⋅d

dx
y

d

dx
x x� � � �sec tan

= ⋅ +sec tan tan secx
d

dx
x x

d

dx
x� � � �

= sec x · (sec2 x) + tan x · (sec x · tan x)
= sec3 x + tan2 x · sec x
= sec x (sec2 x + tan2 x)
= sec x (1 + tan2 x + tan2 x)
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= sec x (1 + 2 tan2 x); x n≠ +π
π
2

15. y = xn cot x
Solution: y = xn cot x

⇒ =d

dx
y

d

dx
x x

n� � � �cot

= +x
d

dx
x x

d

dx
x

n n
cot cot� � � �

= xn (–cosec2 x) + cot x ( n xn – 1)
= n xn – 1 cot x – xn cosec2 x = xn – 1 (n cot x –

x cosec2 x); x n≠ π

Form 5: y = f1 (x) × f2 (x) × f3 (x), where f1 (x), f2 (x) and
f3 (x) are algebraic expressions in x or the values of
the functions sin, cos, tan, cot, sec, cosec, sin–1,
cos–1, tan–1, cot–1, sec–1, cosec–1, log, e, | | etc. at the
same point x.

Refresh your memory:
d

dx
 (1 × 2 × 3) = (2 × 3) 

d

dx
 (1)

+ (1 × 3) 
d

dx
 (2) + (1 × 2) 

d

dx
 (3) which means one

should differentiate separately each function of x
marked as 1, 2, 3 (standing for the first, second and
third function considered at our liberty) and multiply
each differentiated function of x by two remaining
functions of x’s undifferentiated and lastly add each
product to get the differential coefficient of the product
of three differentiable functions of x’s.

Find the differential coefficient if
1. y = (2x2 – 5) cot x · log | x |
Solution: y = (2x2 – 5) cot x · log | x |

⇒ = − ⋅ +
d

dx
y x x

d

dx
x� � � � � �2 52 cot log

cot logx x
d

dx
x x⋅ − + −2 5 2 5

2 2
� � � �

log | x | · 
d

dx
xcot� �

= − ⋅ ���
�
�� + ⋅ ⋅ +2 5

1
42x x

x
x x x� � � �cot cot log

2 5
2 2

x x x− −� � � �log cosec

=
−

+ ⋅ − −
2 5

4 2 5

2

2
x x

x
x x x x x

� �
� �

cot
cot log log

cosec2 x; for x n≠ π
2. y = ex log | x | sec x
Solution: y = ex log | x | sec x

⇒ = + +
d

dx
y x x

d

dx
e x e

d

dx
xx x� � � � � �log sec sec log

log secx e
d

dx
x

x � �

= ⋅ + ⋅ ⋅ + ⋅log sec sec logx x e x e
x

x
x x 1

e x x
x ⋅ ⋅sec tan

= + +�
�

�
�e x x

x
x x

x
sec log log tan

1
; for

x ≠ 0 , nπ
π+
2

3. y = 2x3 sin x log x
Solution: y = 2x3 sin x log x

⇒ = + ⋅d

dx
y x x

d

dx
x x x� � � �sin log log2 2

3 3

d

dx
x x x

d

dx
xsin sin log� � � �+ 2

3

= + + ⋅sin log log cos sinx x x x x x x x
x

6 2 2
12 3 3

� �
= 6x2 sin x log x + 2x3 log x cos x + 2x2 sin x; for

x > 0

4. y x e x
x= ⋅ ⋅ tan

Solution: y x e x
x= ⋅ ⋅ tan

⇒ = ⋅ +d

dx
y x e

d

dx
x e x

d

dx
x

x x� � � � � �tan tan +

x x
d

dx
e

x
tan � �

= ⋅ + ⋅ + ⋅ ⋅x e x e x
x

x x e
x x x

sec tan tan
2 1

2
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= + + ⋅
�
��

�
��

e x x
x

x
x x

x
sec

tan
tan

2

2
; for

x > 0 and ≠ +nπ
π
2

Form 6: y
f x

f x
= 1

2

� �
� � ,  where f1 (x) and f2 (x) are

algebraic expressions in x or the values of the
functions sin, cos, tan, cot, sec, cosec, sin–1, cos–1,
tan–1, cot–1, sec–1, cosec–1, log, e, | | etc. at the same
point x.

Refresh your memory:
d

dx

d

dx

1

2
1 2 1� �

� � � � � �� �
�
��
�
��
= × −

=
2 1 1 2

2

� � � � � � � �
� �

× ′ − × ′

′  which means one should

express the function in denominator in the form of a
power function with negative index before
differentiating the quotient of two differentiable
functions x’s by using the rule of the derivative of the
product of two differentiable functions of x’s noting
that (1) and (2) represent functions of x’s in Nr and Dr
respectively.

Note: (i) 
d

dx

d

dx
2 1 2 2

1 2� �� � � � � � � �� �− −= − × ×  which

has been explained in the chapter “chain rule for the
derivative”.

(ii) 
df g x

dx

df g x

dg x

d g x

dx

� �� � � �� �
� �

� �
= ×  (proved later)

Differentiate the following w.r.t. x:

1. y
bx c

x a
bx c x a= +

+
= + +

−5

2

5 2 1

� � � �

⇒ = + +�
�

�
� +

−d

dx
y bx c

d

dx
x a� � � � � �5 2 1

x a
d

dx
bx c

2 1 5+ +
−

� � � �

= + × − × + × + +
−

bx c x a
d

dx
x a5 2 2 21� � � � � � � �

x a b x
2 1 4

5+ ×
−

� � � �

= − + × + × + + ×
− −

bx c x a x x a5 2 2 2 1
2� � � � � � � �

5
4

b x� �

= + − + +
− −

5 2
4 2 1 5 2 2

b x x a x bx c x a� � � � � �

=
+

−
+

+

5 24

2

5

2 2

b x

x a

x bx c

x a� �

� �

� �

=
+ − + +

+

5 2
4 2 5 2

2 2

b x x a x bx c x a

x a

� � � � � �

� �

= + − −

+

5 5 2 26 4 6

2 2

b x ab x b x c x

x a� �

=
+ −

+

3 5 2
6 4

2 2

b x ab x c x

x a� �
Or, alternatively,
Directly using the rule of the derivative of the quotient
of two differentiable functions of x’s , the d.c. of the
given function of x w.r.t. x is

d

dx
y� �=

x a
d

dx
bx c bx c

d

dx
x a

x a

2 5 5 2

2 2

+ + − + +

+

� � � � � � � �

� �

=
+ + − + ⋅

+

x a b x b x c x

x a

2 4 5

2 2

5 0 2� � � � � �

� �
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=
+ − −

+

5 5 2 2
6 4 6

2 2

b x ab x b x c x

x a� �

= + −

+

3 5 2
6 4

2 2

b x ab x c x

x a� �

2. y
x

x

n

=
log

Solution: y
x

x

n

=
log

⇒ =
−d

dx
y

x
d

dx
x x

d

dx
x

x

n n

� �
� � � �

� �

log log

log 2

=
− ⋅

−
n x x x

x
x

n n1

2

1
log

log� �

= ⋅
−−

x
n x

x

n 1

2

1log

log
; for x > 0 and ≠ 1

3. y
x

x
=

sin
3

Solution: y
x

x
=

sin
3

⇒ =
−d

dx
y

x
d

dx
x x

d

dx
x

x
� �

� � � �

� �

3 3

3 2

sin sin

=
−x x x x

x

3 2

6

3cos sin� � � �

=
−x x x

x

cos sin3
4

; for x ≠ 0 .

4. y
x

x
=

sin

log

Solution: y
x

x
=

sin

log

⇒ =
−d

dx
y

x
d

dx
x x

d

dx
x

x
� �

� � � �

� �

log sin sin log

log
2

=
− ⋅log cos sin

log

x x x
x

x

1

2

=
−x x x x

x x

cos log sin

log
2 ; for x ≠ 0 , and –1.

5. y
x

x
=

−
sin

sin

1

Solution: y
x

x
=

−
sin

sin

1

⇒ =
⋅ −

− −

d

dx
y

x
d

dx
x x

d

dx
x

x
� �

� � � �

� �

sin sin sin sin

sin

1 1

2

=

⋅
−

− ⋅
−

sin sin cos

sin

x
x

x x

x

1

1
2

1

2

=
− ⋅ −

− ⋅

−sin sin cos

sin

x x x x

x x

1 2

2 2

1

1
; for | x | < 1

and x ≠ 0

6. y
e

x

x

=
+1

2

Solution: y
e

x

x

=
+1

2
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⇒ =
+ − ⋅ +

+

d

dx
y

x
d

dx
e e

d

dx
x

x

x x

� �
� � � � � �

� �

1 1

1

2 2

2 2

=
+ − ⋅

+

1 2

1

2

2 2

x e e x

x

x x
� � � �

� �

=
+ −

+

e x x

x

x
1 2

1

2

2 2

� �

� �

=
−

+

e x

x

x
1

1

2

2 2

� �

� �

Form 7: y
z

z
=

1

,  where

z = f1 (x) = any single algebraic or transcendental
function of x

or, z f x f x= ±1 1� � � �  = sum of two algebraic or

transcendental functions of x’s.
or, z = f1 (x) · f2 (x) = product of two algebraic or

transcendental functions of x’s.
similarly, z1 = g1 (x) = any single algebraic or

transcendental function of x.

or, z g x g x1 1 2= ±� � � �  = sum of two algebraic or

transcendental function of x’s.
or, z1 = g1 (x) · g2 (x) = product of two algebraic or

transcendental functions of x’s.

Working rule: One can find the d.c. of the function
of x put in the form (7) using the rule which consists
of following steps.

Step 1: Put z f x f x f x f x= ± ⋅1 1 1 2� � � � � � � �/  and

z g x g x g x g x1 1 2 1 2= ± ⋅� � � � � � � �/

Step 2: Find 
dz

dx
 and 

dz

dx
1  using the rules for the

derivative of the sum, difference or product of two
differentiable functions of x’s.

Step 3: Use the formula: 
d

dx

z

z

z
dz

dx
z

dz

dx
z1

1
1

1
2

�
��
�
�� =

−

� �

Step 4: Put 
dz

dx
 and 

dz

dx
1  in (4)

Note: One should do the problems directly without
making substitutions z and z1 for the functions of x’s
(in Nr and Dr) put in the form of the sum, difference or
product function after practising the above working
rule.

Differentiate the following w.r.t. x:

1. y
e x

x x

x

=
+

−

log

sin 5
3

Solution: y
e x

x x

x

=
+

−

log

sin 5
3

Putting z = ex + log x, we have

d

dx
z

d

dx
e x

d

dx
e

d

dx
x

x x� � � � � � � �= + = +log log

= e
x

x
+ 1

; for x > 0 …(1)

Again, putting z1 = sin x – 5x3, we have

d

dx
z

d

dx
x x

d

dx
x

d

dx
x1

3 3
5 5� � � � � � � �= − = −sin sin

= cos x x−15
2

   …(2)

Now using the formula 
d

dx

z

z

z
dz

dx
z

dz

dx
z1

1
1

1
2

�
��
�
�� =

−

� �
,

we have

d

dx
y

d

dx

z

z
� � = �

��
�
�� =1

sin cos log

sin

x x ex
x

x x e x

x x

x− +�
��

�
�� − − +

−

5
1

15

5

3 2

3 2

� � � � � �

� �
, for

x > 0 and 5 3x x≠ sin
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� y
z

z
=

�
��

�
��1

2. y
x x

e x
x

=
+

log

sec

Solution: y
x x

e x
x

=
+

log

sec

Putting z = x log x, we have

d

dx
z

d

dx
x x� � � �= log

= + = ⋅ + ⋅x
d

dx
x x

d

dx
x x

x
xlog log log� � � � 1

1

= 1 + log x    …(1)

Again, putting z1 = ex + sec x, we have

d

dx
z

d

dx
e x

d

dx
e

d

dx
x

x x
1� � � � � � � �= + = +sec sec

= e x x
x + ⋅sec tan ...(2)

Now, using the formula 
d

dx

z

z

z
dz

dx
z

d

dx
z

z1

1 1

1
2

�
��
�
��
=

− � �

� �
,

we have

d

dx
y

d

dx

z

z
� � = �

��
�
��1

=
+ + − +

+

1

2

log sec sec tan log

sec

x e x e x x x x

e x

x x

x

� � � � � �

� �
,

for x > 0 and ≠ +nπ
π
2

3. y
x e

x

x

=
+1 log

Solution: y
x e

x

x

=
+1 log

⇒ =
+

�

�
�

�

�
�

d

dx
y

d

dx

x e

x

x

� �
1 log

=
+ − +

+

1 1

1 2

log log

log

x
d

dx
x e x e

d

dx
x

x

x x� � � � � �

� �

=
+ + − ⋅ ⋅

+

1 1
1

1 2

log

log

x x e x e
x

x

x x� � � �

� �

=
+ + −

+

e x x

x

x
1 1 1

1 2

log

log

� � � �
� �

, for x > 0.

4. y
x e

x

x

=
+

+1 log

Solution: y
x e

x

x

=
+

+1 log

⇒ =
+

+

�

�
�

�

�
�

d

dx
y

d

dx

x e

x

x

� �
1 log

=
+ + − + +

+

1 1

1 2

log log

log

x
d

dx
x e x e

d

dx
x

x

x x� � � � � � � �

� �

=
+ + − + ⋅

+

1 1
1

1 2

log

log

x e x e
x

x

x x� � � � � �
� �

=

+ + − +
�
�
�

�
�
�

+

1 1 1

1 2

log

log

x e
e

x

x

x
x

� � � �

� �

=
/ + + + − / −

+

1 1

1
2

log log

log

x e e x
e

x

x

x x
x

� �
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=
+ − +

+

e x x x x x

x x

x log log

log

1

1
2

� �
� �

; for x > 0.

5. y
x

x
=

−
+

1

1

cos

cos

Solution: y
x

x
=

−
+

1

1

cos

cos

⇒ =
−
+

�
��

�
��

d

dx
y

d

dx

x

x
� � 1

1

cos

cos

=
+ − − − +

+

1 1 1 1

1 2

cos cos cos cos

cos

x
d

dx
x x

d

dx
x

x

� � � � � � � �

� �

=
+ ⋅ + −

−

1 1

1 2

cos sin sin cos

cos

x x x x

x

� � � �
� �

=
+ + −

+
sin cos cos

cos

x x x

x

1 1

1

� �
� �

=
+

≠ +
2

1
2 1

2

sin

cos
;

x

x
x n

� �
� �π .

6. y
x

x
=

+

2

1 cos

Solution: y
x

x
=

+

2

1 cos

⇒ =
+

�

�
�

�

�
�

d

dx
y

d

dx

x

x
� �

2

1 cos

=
+ − +

+

1 1

1

2 2

2

cos cos

cos

x
d

dx
x x

d

dx
x

x

� � � � � �

� �

=
+ +

+
≠ +

x x x x

x
x n

2 2

1
2 1

2

cos sin

cos
;

� �
� �

� �π .

7. y
x

x
=

−
+

1

1

sin

cos

Solution: y
x

x
=

−
+

1

1

sin

cos

⇒ =
−
+

�
��

�
��

d

dx
y

d

dx

x

x
� � 1

1

sin

cos

=
+ − − − +

+

1 1 1 1

1 2

cos sin sin cos

cos

x
d

dx
x x

d

dx
x

x

� � � � � � � �

� �

=
+ − − − −

+

1 1

1
2

cos cos sin sin

cos

x x x x

x

� � � � � � � �
� �

= − − + −
+

cos cos sin sin

cos

x x x x

x

2 2

21� �

=
− − +

+

sin cos cos sin

cos

x x x x

x

� � � �
� �

2 2

21

= − −

+
≠ +

sin cos

cos
;

x x

x
x n

1

1
2 1

2� �
� �π

8. y
x x

x
=

+

cos

1
2

Solution: y
x x

x
=

+

cos

1
2

⇒ =
+

�

�
�

�

�
�

d

dx
y

d

dx

x x

x
� � cos

1
2

=
+ − +

+

1 1

1

2 2

2 2

x
d
dx

x x x x
d
dx

x

x

� � � � � � � �

� �

cos cos

=
+ +�

�
�
� − ⋅

+

1 2

1

2

2 2

x x
d

dx
x x

d

dx
x x x x

x

� � � � � � � � � �

� �

cos cos cos
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=
+ − + −

+

1 2

1

2 2

2 2

x x x x x x

x

� � � �

� �

sin cos cos

=
− + − + −

+

x x x x x x x x x

x

sin cos sin cos cos
3 2 2

2 2

2

1� �

=
− − +

+

1 1

1

2 2

2 2

x x x x x

x

� � � �

� �

cos sin

Form 8: y
z

z= ≠
1

0, � �  where z = a single function

of x, sum, difference or product of two or more than
two differentiable functions of x ≠ 0  for any finite
value of the independent variable x.

Working rule: To find the d.c. of y
z

z= ≠
1

0, � �  one

can adopt the rule which consists of following steps,
provided dz f x≠ =1 � �  a single function of x.
Step 1: Put z f x f x= ±1 2� � � � ,  or f1 (x) · f2 (x)
whichever is given.

Step 2: Find 
d

dx
z� �

Step 3: Use 
d

dx
y

d

dx z

d

dx
z

z
� �

� �
= �

�
�
� = −

1
2

Notes:
1. When z = f1 (x) = a single function of x, one should
use directly the formula:

d

dx z

1�
�
�
�  =

d

dx f x

f x

f x

1

1

1

1
2� �
� �
� �

�
��

�
��
= −

′
 which means the

d.c. of a reciprocal of a function of x is negative of the
d.c. of the function of x in numerator divided by the
square of the function in denominator.
2. One should do the problems without making a
substitution z for the given sum, difference and
product functions of x in denominator after practising
the above given working rule.

Differentiate the following w.r.t. x.

1. y
x x

= 1
4

sec

Solution: y
x x

= 1
4

sec

Putting z = x4 sec x, we have

d

dx
z

d

dx
x x� � � �= 4

sec

= ⋅ +x
d

dx
x x

d

dx
x

4 4
sec sec� � � �

= +x x x x x
4 3

4sec tan sec

∴ = �
��
�
�� =

d

dx
y

d

dx z
� � 1 − d

dx
z

z

� �
2

=
− +x x x x x

x x

4 3

4 2

4sec tan sec

sec

� �

� �

=
− +x x x x x

x x

3

8 2

4sec tan sec

sec

� �

=
− +sec tan

sec

x x x

x x

4
5 2

� �

=
− +x x

x x

tan

sec

4
5

� �

=
− +

≠
x x x

x
x

sin cos4
0

5

� � � �,  and

x n≠ +π
π
2

or, alternatively, it can be done in the following way:

y
x x

x

x
= =1

4 4
sec

cos
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⇒ =
�
��

�
��

d

dx
y

d

dx

x

x
� � cos

4

=
−x

d

dx
x x

d

dx
x

x

4 4

4 2

cos cos� � � �

� �

=
− −x x x x

x

4 3

8

4sin cos

=
− +x x x x

x

3

8

4sin cos� �

=
− +x x x

x

sin cos4
5

� �

2. y
x x

= 1

sin cos

Solution: y
x x

= 1

sin cos

⇒ =
�
��

�
��

d

dx
y

d

dx x x
� � 1

sin cos

= −

d

dx
x x

x x

sin cos

sin cos

� �

� �2

= −
+�

�
�
�sin cos cos sin

sin cos

x
d
dx

x x
d
dx

x

x x

� � � �

� �2

=
− − +

=
− −sin cos

sin cos

cos sin

sin cos

2 2

2 2

2 2

2 2

x x

x x

x

x x

� � � �

= − −
�

�
�

�

�
�

cos

sin cos

sin

sin cos

2

2 2

2

2 2

x

x

x

x x

= − −
�

�
�

�

�
�

1 1
2 2

sin cosx x

= – (cosec2 x – sec2 x) = sec2 x – cosec2 x;

x ≠
π
2

.

3. y
x a x b x c

=
− − −

1

� � � �� �

Solution: y
x a x b x c

=
− − −

1

� � � �� �
Putting z = (x – a) (x – b) (x – c), we have

d

dx
z� � = (x – b) (x – c) 

d

dx
 (x – a) + (x – a) (x – c)

d

dx
 (x – b) + (x – b) (x – a) 

d

dx
 (x – c)

= (x – b) (x – c) + (x – a) (x – c) + (x – b) ) (x – a)

∴ = �
�
�
� = −

d

dx
y

d

dx z

d

dx
z

z
� �

� �1
2

= −
− − + − − + − −

− − −

x b x c x a x c x b x a

x a x b x c

� �� � � �� � � �� �
� �� �� � 2

;

x a b c≠ , , .

4. y
x

= 1

cos

Solution: y
x

= 1

cos

⇒ =
�
��

�
��

d

dx
y

d

dx x
� � 1

cos

= −

d

dx
x

x

cos

cos

� �

� �2

= −
−sin

cos

x

x

� �
2
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= = ⋅
sin

cos

sin

cos cos

x

x

x

x x2

1

= tan x · sec x = sec x · tan x, x n≠ +π
π
2

.

Form 9: y = sum of a finite number of terms such that
each term is the product and/quotient function, i.e.

y f x f x g x g x f x= × ± × ×1 2 1 2 1� � � � � � � � � �/

f x
g x

g x2
1

2

� � � �
� �±  or y f x g x g x= ± ×1 1 2� � � � � � /

f x
g x

g x1
1

2

� � � �
� �±

Working rule: To find the d.c. of the sum of a finite
number of terms such that each term is the product
and/quotient function, one may adopt the rule
consisting of following steps:
Step 1: Use the rule for the derivative of the sum of a
finite number of differentiable functions of x’s
regarding each product and/quotient function as a
single function of x.
Step 2: Find the d.c. of the product and quotient
function.

Differentiate the following w.r.t. x:
1. y = x sin x + sin x cos 3x
Solution: y = x sin x + sin x cos 3x

⇒ = +d

dx
y

d

dx
x x x x� � � �sin sin cos3

= +
d

dx
x x

d

dx
x xsin sin cos� � � �3

= + + +x
d

dx
x x

d

dx
x x

d

dx
xsin sin sin cos� � � � � �3

 cos sin3x
d

dx
x� �

= x cos x + sin x – 3 sin x · sin 3x + cos 3x · cos x.

2. y x x
x

x
= +

2
sin

cos

Solution: y x x
x

x
= +

2
sin

cos

⇒ = +�
��

�
��

d

dx
y

d

dx
x x

x

x
� � 2

sin
cos

= + ⋅ + �
��

�
��sin sin

cos
x

d

dx
x x

d

dx
x

d

dx

x

x

2 2
� � � �

= + +
− −

2
2

2
x x x x

x x x

x
sin cos

sin cos� �

= + − −2
2

2
x x x x

x

x

x

x
sin cos

sin cos
; x ≠ 0.

3. y x
x

x
= +

cot

Solution: y x
x

x
= +

cot

⇒ = +�
��

�
��

d

dx
y

d

dx
x

x

x
� � cot

= + �
��

�
��

d

dx
x

d

dx

x

x
� �

cot

= +
− −1

2

2

2x

x x x

x

cosec cot� �

= −
+1

2

2

2x

x x x

x

cosec cot� �
; x n≠ π .

4. y = sin x + x cos x
Solution: y = sin x + x cos x

⇒ = +
d

dx
y

d

dx
x x x� � � �sin cos

= +d

dx
x

d

dx
x xsin cos� � � �

= + +cos cos cosx x
d

dx
x x

d

dx
x� � � �

= + − +cos sin cosx x x x� �
= cos x – x sin x + cos x

5. y = 2x sec x – 2 tan x · sec x
Solution: y = 2x sec x – 2 tan x · sec x
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⇒ = −
d

dx
y

d

dx
x x x x� � � �2 2sec tan sec

= + − −2 2 2sec sec sec tanx
d

dx
x x

d

dx
x x

d

dx
x� � � � � �

tan secx
d

dx
x� �

= 2 sec x + 2x sec x tan x – 2 sec x · sec2 x – tan x ·
sec x tan x

= sec x (2 + 2x tan x – 2 sec2 x – tan2 x)

Form 1: Problems on constant functions, i.e., y = c, c
being a constant.

Exercise 8.1

Differentiate w.r.t. x if
1. y = e
2. y = π
3. y = log e
4. y = 1993

Note: Since ∆ -method is not mentioned by which
one has to do the problems which means one is free
to do them by any other method also (i.e. one can use
the method of applying directly the formulas obtained
from ∆ -method.
Answers:
1. 0, 2. 0, 3. 0, 4. 0.

Form 2: Problems on power function and/a constant
multiple of power function, i.e., y = xn and y = cxn, c
being a constant.

Exercise 8.2

Differentiate the following w.r.t. x
1. y = x9

2. y
x

= 8
9

3. y x= 15
1
2

4. y x=
−

7
2
3

5. y x=
3

6. y x=
−3

7. y x=
−

6
27

8. y
a b

x
=

8

7 27

2 2

3

9. y
x

x
=
�
��

�
��

−7

5

3

7

1
2

10. y
x=

4
3

7

Answers:
1. 9x8

2. − ≠72
0

10x
x; .

3.
15

2
0

x
x; > .

4. − ≠−14

3
0

5
2x x; .

5.
3

2
0x x; ≥ .

6. − >−3

2
0

5
2x x; .

7.
− ⋅ ≠

−12

7
0

9
7x x; .

8. −
⋅ ≠

−8

63
0

2 2
4
3

a b
x x; .

9. − ⋅ ≠−35 07x x x, .

10.
4

3 7
3

x
.

Form 3: Problems on a constant multiple of
transcendental functions of x’s, i.e., y = c × any one of
the functions of x’s say sin x, cos x, tan x, cot x, sec x,
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cosec x, sin–1 x, cos–1 x, tan–1 x, cot–1 x, sec–1 x,
cosec–1 x, log x and ex, c being a constant.

Exercise 8.3

Find the differential coefficients of the following
functions w.r.t. x:
1. 7 ex

2.
8

1log x� �−

3. 2 sin x

4. 3

2
sec x

5.
tan

−1

4

x

Answers:
1. 7 ex

2.
8

0 1
x

x; > ≠,

3. 2 cos x

4.
3

2 2
sec tanx x x n n Z, ,≠ + ∈π π

5.
1

4

1

1
2

+

�

�
�

�

�
�

x

Form 4: Problems on the sum of a finite number of

differentiable functions of x’s, i.e., y f x f x= ± +1 2� � � �
... ± f xn � � and/ a f x a f x an1 1 2 2� � � �± ± ±...  fn (x),

a1, a2, …, an being constants.

Exercise 8.4

Differentiate the following functions w.r.t. x:
1. ax2 + bx + c

2. x
x

+
1

3.
17 42 14 11

5

2 7 4

3

x x x

x

− + +

4. 15 16
13

2
87

3 1 4 8

3
x x

x

⋅ ⋅− − +

5. 4x3 + 3 sin x + 5 cos x – 2ex

6. 2 sin x – 5 cos x

7. x
x

4 5
3− +

sec

8.
x a

x a

3 3−
−

9.
1

2

x
x+�

��
�
��

10. 6log x x− − 7

Answers:
1. 2ax + b

2.
1

2

1

2
3
2x x

− ; x > 0

3.
− − − +17 168 33 14

5

2 7 2

4

x x x

x
; x ≠ 0

4. 45 5 76 8
39

2

2 1 3 8

4
⋅ − ⋅ −⋅ ⋅

x x
x

; x ≠ 0

5. 12x2 + 3 cos x – 5 sin x – 2ex

6. 2 cos x – 5 sin x

7.
1

4
5

3
4x x

−
+ sin ; andx n≠ + ≠π π

2
0

8. 2x + a ; x a≠

9.
x

x

2

2

1−
; x > 0

10.
6 1

2x x
− ; x > 0
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Form 5: Problems on the product of two differentiable
functions of x’s, i.e., y = f1 (x) × f2 (x).

Exercise 8.5

Differentiate the following w.r.t. x:
1. (x + 4) (5x – 6)

2. x
x

x
x

+��
�
� +�
��

�
��

1 1

3.
e x

x
log

7
4. ex log x

5. 9 x xlog

6. 4x5 · ex

7. 11
9

sin x
e

x

⋅

8. sin x · log x
9. 2x cos x
10. (3x + 1) ex

11. cos x log x
12. x3 tan x
13. sin x tan x
14. ex · tan–1 x
15. ex sin–1 x

Answers:
1. 10x + 14

2.
x x x

x x
x

− + +
>

1 3 4 3

2
0

2

2

� � � �
;

3.
e

x
x

x
x

7

1
0⋅ +�

��
�
�� >log ;

4.
e

x
x e

x
x+ (log ) ; x > 0

5.
9 9

2x x
x+ log ; x > 0

6. (4x5 + 20x4) ex

7.
11

9
 (sin x + cos x) ex

8.
sin

cos log
x

x
x x+ ; x > 0

9. 2 cos x – 2x sin x
10. 3ex + (3x + 1) ex

11.
cos

sin log
x

x
x x− ; x > 0

12. 3x2 tan x + x3 sec2 x ; x n n Z≠ + ∈π
π
2

,

13. sin x · sec2 x + tan x · cos x ; x n n Z≠ + ∈π π
2

,

14. Find
15. Find

Form 6, 7 and 8: Problems on quotient function such
that the function in the numerator and denominator is

either the sum or the product function, i.e., y
z

z
=

1

,

where z f x f x f x f x f x= ± ×1 1 2 1 2� � � � � � � � � �/ / /

unity and z g x g x g x g x g x1 1 1 2 1 2= ± ×� � � � � � � � � �/ /

Exercise 8.6

Find 
d

dx
y� �  if

1. y
ax b

cx d
=

+
+

2. y
x

x
=

+
−

3

3

3

5

3. y
x x

x x
=

+ +

− +

2

2

9 10

7 12

4. y
a x

a x
=

+
−

; a > 0.

5. y
x

x
=

log

sin
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6. y
x

x
=

cos

log

7. y
x

x

n

=
log

8. y
x

x
=

cos

9. y
x

x
=

2

tan

10. y
x

x x
=

+
+

3 4
2

sin cos

11. y
x

x
=

+
+

5

8 9

tan

12. y
x x

x
=

+tan cot

log

13. y
e

x

x

=
+1

14. y
x

x e
x

=
+

tan

15. y
e x

x x

x

n
=

+

−

tan

cot

16. y
x

= 1

sin

17. y
x

= 1

log

18. y
x

x
=

2

sin

19. y
x

x
=

cot

20. y
e x

x
=

⋅

1

tan

21. y
x x

x x
=

+
−

sec tan

sec tan

22. y
x

x
=

−
+

1

1

cos

cos

23. y
x

x
=

−
+

1

1

tan

tan

24. y
x x

x
=

+
+

2

1

sec

tan

25. y
x x

x
=

+

cos
2

4

26. y
x x

x x
=

+
−

sin cos

sin cos

27. y
x

e
x

=
log

28. y
x

x
=

log

cos

29. y
x

x
=

log

Answers:

1.
ad bc

cx d
x

d

c

−

+
≠ −

� �2
;

2.
−

−
≠24

5
5

2

3 2
3x

x
x

� �
;

3.
− + +

− +
≠16 4 178

7 12
3 4

2

2 2

x x

x x
x

� �
; ,

4.
a

x a x
x a

−
> ≠

� �
2

0; ,

5.

1 −
≠ >x

x x x

x
x n x

sin cos log

sin
;

2
0π ,

6.
− −sin log cos

log

x x
x

x

x

1

2
; x > 0

7.
n x x x

x

n n− −
−

1 1

2

log

log
; x > 0
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8.
− +x x x

x

sin cos
2 ; x ≠ 0

9.
2

2

2 2

2

x x x x

x
x

n
n Z

tan sec

tan
;

−
≠ ∈π

,

10.
6 3 4

2

2

x x x x x x

x x

sin cos cos sin

sin cos

+ − − +

+

� � � � � �
� �

,

x n≠ −π π
4

.

11.
8 9 8 40

8 9

9

8

2

2

x x x

x
x

+ − −

+
≠ −� �

� �
sec tan

;

12.
sec cosec log tan cot

log

2 2

2

1
x x x

x
x x

x

− − +� � � �
;

x x
n

> ≠0
2

,
π

13.
x e

x
x

x

1
1

2+
≠ −

� �
;

14.
sec tan2

2

1

2

x x e e x

x e
x n e

x x

x

x
+ − +

+
≠ + −

� � � �

� �
; ,π

π

15.
e x x x x n x e x

x x

x n n x

n

+ − + + +

−

−
sec cot cosec tan

cot

2 2 1

2

� �� � � �� �

� �
;

x
n

x xn≠ ≠π
2

and cot

16.
−

≠
cos

sin
;

x

x
x n

2
π

17.
− >1

0
2x x

x
log

;

18.
2 2

2

x x x x

x
x n

sin cos

sin
;

−
≠ π

19.
− − ≠x x x

x
x n

cosec cot2

2
; π

20.
− − ⋅

≠e x x e

e x
x

nx x

x

tan sec

tan
;

2

2 2� �

π

21. Find
22. Find
23. Find
24. Find
25. Find
26. Find

27.
1

0
−

>
x x

x e
x

x

log
;

28.
cos sin log

cos
;

x x x x

x x
x n

+
> ≠ +

2
0

2
, π

π

29.
1

0
2

−
>

log
;

x

x
x

Form 9: Problems on the sum of a finite number of
terms such that term is the product and/quotient
function, i.e.,

y f x f x g x g x f x= × ± × ×1 2 1 2 1� � � � � � � � � �/

f x
g x

g x2
1

2

� � � �
� �± or, y f x g x g x= ± ×1 1 2� � � � � � /

f x
g x

g x

f x

f x

g x

g x1
1

2

1

2

1

2

� � � �
� �

� �
� �

� �
� �± ±/

Exercise 8.6

Differentiate the following functions of x’s w.r.t. x:
1. x sin x + sin x cos x

2. x x
x

x

2
sin

cos
+

3.
c x

c x

+
−

3

3

4. x x
x

x

x

x

2
3

1
1

1

2 1

2 1
+ + +

−
−

+
+
−� �
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Hint: 
x

x
x x

3
21

1
1

−
−

= + +

2 1

2 1
1

2

2 1

x

x x

+
−

= +
−

5.
sin

cos

x

x1 +

6.
x x

x x

−
+ +

2

1 4

� �
� � � �

7.
x

x2 + cos

8.
sin x

x
x e

x

1
5

2+
− ⋅ +

9.
e x x

x

x
sec tan

tan

−
+1

10.
x x

x x

sin

cos sin−

11.
x x

x x

tan

sec tan+

12.
x x

x x

sin

sin cos+

13.
e

x

x

1
2

+

14.
1

1
2

+
+

x
e x

x
sec

15. x x
x

x

2
2

1
sec

sin
+

+

16.
x x

e x
x

log

tan

17.
e x

x

x
+
+

sin

log1

18.
e x

e x

x

x

+

−

log

log

19.
sec tan

sec tan

x x

x x

+
−

20.
1

1

−
+

cos

cos

x

x

21.
1

1

−
+

tan

tan

x

x

22.
x x

x

2

1

+
+

sec

tan

23.
x x

x

cos
2

4+

24.
sin cos

sin cos

x x

x x

+
−

25.
tan

sin

x

x x+

26.
x x

x

2

1

+
+

cosec

cot

27.
x x

x

2

1

sin

tan+

28.
cot

sin

x

x x
2
+

29.
sin cosx x

x

+

30.
1

1

+
−

sin

sin

x

x

31.
1

1

+
+

sin

cos

x

x

32.
log x e

x

x
−
2

33.
x x

e x
x

log

tan

34. x x
e

x

x
3

1
tan

cos
+

+

Answers:
1. sin x + x cos x + cos2 x – sin2 x
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2. 2 02
2

x x x x
x

x

x

x
xsin cos

sin cos
;+ − − ≠

3. Find

4. 2 1 2 1
4

2 1 2
x x

x
+ + + −

−
� � � �

� �
; x ≠ 1

1

2
,

5.
1

1 + cos x
; x n≠ +2 1� �π

6.
7 8 8

1 4

2

2 2

x x

x x

+ −
+ +� � � �

; x ≠ − −1 4,

7.
2

2 2

+ +
+

cos sin

cos

x x x

x� �

8.
1 2

1 2
2 1

2

2 2

+ −

+
− +

x x x x

x

e

x
x

x� �

� �
� �

cos sin

9.
2

1

2

2

e x x x

x

x
sec tan sec

tan

−
+� �

, x n≠ −π π
4

10.
x x x x

x x

+ −

−

sin cos sin

cos sin

� �
� �2

, x n≠ +π π
2

11.
x x x x

x

cos sin sin

sin

+ +

+

1

1 2

� �
� �

, x n≠ +π
π
2

12.
x x x x

x x

+ +

+

sin sin cos

sin cos

� �
� �2

; x n≠ −π π
4

13.
e x

x

x
1

1

2

2 2

−

+

� �

� �

14. 
−

+
+ +2

1
1

2 2

x

x
e x x

x

� �
� �sec tan , x n≠ +π π

2

15. x x x x x
x x x x

x

2
2

2
2

2 1

1
sec tan sec

sin cos

sin
+ +

+ −

+
� �
� �

,

x n≠ +π π
2

16.
e x x x x x x

e x

x

x

tan log log tan sec

tan

1
2

2 2

+ − +�
��

�
	
� � � �

,

x n≠ +π π
2

 and x > 0.

17.
1

1 2

+ + − −

+

log cos sin

log

x x e x e x

x x

x x� � � �
� �

; x > 0

18.
2

1

2

e
x

x

e x

x

x

−�
�

�
�

−

log

log� �
; x > 0

19.
2 sec sec tan

sec tan

x x x

x x

+
−

� �
� � ; x n≠ +π

π
2

20.
2

1 2

sin

cos

x

x+� �
; x n≠ +2 1� �π

21. −
+
2

1

2

2

sec

tan

x

x� �
, x n≠ −π π

4

22.
1 2

1

2 2

2

+ + − +

+

tan sec tan sec sec

tan

x x x x x x x

x

� �� � � �
� �

x n x n≠ − ≠ +π π π π
4 2

and

23.
4 4

4

2 2

2 2

− − +

+

x x x x x

x

� � � �

� �

cos sin

24.
−

−
≠ +2

1 2 4sin
;

x
x nπ π

25.
x x x x x

x x

sec tan sec sin

sin

2

2

1+ − −

+
� �

� � ; x ≠ 0

26.
2 1

1

2 2

2

x x x x x x x

x

− + − +

+

cosec cot cot cosec cosec

cot

� �� � � �
� �

;

x n n≠ ≠ −π π
π

and
4
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27.
2

1 1

2 2

2

x x

x

x x x x

x

sin

tan

cos sin tan

tan+
+

−

+

� �
� �

;

x n n≠ + ≠ −π π π π
2 4

and

28.
− + − +

+

cosec cosec cot cos

sin

x x x x x

x x

2

2 2

1 2� � � �

� �
;

x n x x≠ + ≠ −π π
2

2and sin

29.
2 1 2 1

2

x x x x

x x

− − +� � � �cos sin
, x > 0

30.
2

1 2

cos

sin

x

x−� �
; x n≠ +2

2
π π

31.
1

1 2

+ +
+

sin cos

cos

x x

x� �
; x n≠ +2 1� �π

32. e x x

x

x
− + −2 1 2

3

� � log ; x > 0

33.
e x x e x x x x

e x

x x

x

tan log log sec tan

tan

1
2

2

+ − +� � � �

� �
;

x x n x n> ≠ ≠ +0
2

, π π
π

and

34. x x x x
e x x

x

x
2 2

2
3

1

1
sec tan

sin cos

cos
+ +

+ +

+
� �

� �
� �

;

x n x n≠ + ≠ +π π π
2

2 1and � �
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9

Chain Rule for the Derivative

Firstly, we recall the basic ideas of composition of
differentiable functions.

1. Composition of two differentiable functions:
If y = f1 (z1) is a differentiable function of z1 and z1

= f2 (x) is a differentiable function of x, then y = f1 f2 (x)
is a differentiable function of a differentiable function
of x or composition (or, composite) of two
differentiable functions f1 and f2 whose composition
in the arrow diagram can be expressed as

x f x f f x
f f2

2
1

1 2 →  →� � � �
In practice, a differentiable function of a

differentiable function of x is obtained by replacing
the independent variable x in the differentiable
function by another differentiable function of x.
Explanation
(i) y = ex is a differentiable function of x replacing x by
another differentiable function log x (x > 0), we have
(ii) y = e log x which is a composition of two
differentiable functions e and log.

2. Composition of a finite number of differentiable
functions:

If y = f1 (z1) is a differentiable function of z1;
z1 = f2 (z2) is a differentiable function of z2;
z2 = f3 (z3) is a differentiable function of z3;
z3 = f4 (z4) is a differentiable function of z4;
…
…
zn – 2 = fn – 1 (zn – 1) is a differentiable function of

zn – 1;
zn – 1 = fn (zn) is a differentiable function of zn;

zn = f (x) is a differentiable function of x;
then y = f1 f2 f3 … for f (x) is a differentiable function

of a differentiable function of a differentiable function
… of a differentiable function of x (or, composite/
composition of (n + 1) number of differentiable
functions f1, f2, … fn and f) whose composition in the
arrow diagram is expressed as

x f x f f x f f xf fn
n

fn
n →  →

−
 → −� � � � � �1

1 ...

f
nf f f f x1

1 2 → ... � � . But if zn = x = identity function
being differentiable, we get the composition of n-
number of differentiable functions f1, f2, f3, …, fn
represented by the notation:

y = f1 f2 f3 … fn (x) whose arrow diagram of the

composition is x f x f
fn

n

fn
n →

−
 → −� � 1

1

f x f f f xn
f

n� � � � →  →... ...1
1 2 .

In practice, if the process of replacing the
independent variable x in the preceeding differentiable
function by another differentiable function of x is
continued upto (n + 1) or n- number of times, we get
what is called the composition of (n + 1)or n-number
of differentiable functions or composite of (n + 1) or
n-number of differentiable functions of a differentiable
function … of a differentiable function of x.
Explanation
1. y = sin x is a differentiable function of x, replacing
x by a differentiable function of x, say ex, we get
2. y = sin (ex) which is a differentiable function of x
being the composition of two differentiable functions
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namely sin and e. Replacing x by a differentiable
function x x > 0� � , , we get

3. y e
x

= sin  which is a differentiable function of x

being the composition of three differentiable functions
namely sin, e and . Replacing x by a differentiable
function of x, say sec–1 x, we get

4. y e
x

=
�
��

�
��

−

sin
sec

1

 which is a differentiable

function of x being the * or, alternatively, y = f1 (z1) is
a differentiable function of z1; z1 = f2 (z2) is a
differentiable function of z2 and so on; zn–1 = fn (x) is
a differentiable function of x y⇒ = f1  f2  f3 ... fn (x) is

a differentiable function of x composition of four
differentiable functions namely sin, e,  and sec–1

and this composition of four differentiable functions
can be expressed in the following way.

x x x
x

e
e

sec

sec
sec sec

−
 →

−
 →  →

−
−

1 1 1
1

sin
sin sec → −1 x

Remember: Composition of two or more than two
differentiable functions is a differentiable function.

Question: What is the chain rule for the derivatives?
Answer: It is a rule (or, a theorem) which is used to
find the derivatives of composite (or, composition) of
two or more than two differentiable functions.
1. Chain rule for the derivatives of composite of two
differentiable functions:

The chain rule for the derivatives of composite of
two differentiable functions states that if y is a
differentiable function of z and z is a differentiable
function of x, then the derivative of a differentiable
function y is the product of the derivative of y with
respect to z and the derivative of z with respect to x.
Or, more explicitly,

If y = f (z) is a differentiable function of z and
z = f (x) is a differentiable function of x, then
y = F (f (x)) = G (x) (say) is a differentiable function of

x and 
dy

dx

dy

dz

dz

dx
= ⋅ .

This is known as the chain rule of differentiation
since the derivative with respect to x of y = F (f (x))
involves the following chain of steps. Firstly
differentiation with respect to z of the whole differen-
tiable function y = F (f (x)). Secondly differentiation
with respect to x of inner differentiable function z = f

(x) lastly, the product of these gives 
dy

dx
.

2. The chain rule for the derivative of a finite number
of differentiable functions:

The chain rule for the derivative of a finite number
of differentiable functions is the generalised form of
chain rule for the derivatives of the composite of two
differentiable functions. It states that

If y = f1 (z1) is a differentiable function of z1;
z1 = f2 (z2) is a differentiable function of z2;
z2 = f3 (z3) is a differentiable function of z3;
…
…
zn – 1 = fn (zn) is a differentiable function of zn and zn

= f (x) is a differentiable function of x, then, y = f1 f2 f3
… fn f (x) is a differentiable function of x, and

dy

dx

dy

dz

dz

dz

dz

dz

dz

dz

dz

dx
n

n

n= ⋅ ⋅ ⋅−

1

1

2

2

3

1
...  and if y = f1

(z1) is a differentiable function of z1; z1 = f2 (z2) is a
differentiable function of z2, and so on; zn – 1 = fn (x) is
a differentiable function of x; then y = f1 f2 f3 … fn (x) is

a differentiable function of x and 
dy

dx

dy

dz
= ⋅

1

dz

dz

dz

dz

dz

dz

dz

dx
n1

2

2

3

3

4

1⋅ −
... .

Theorem: Show that y = F (z) and z f x y= ⇒ ′ =� �
′ ⋅ ′F z f x� � � �  provided F (z) and f (x) are

differentiable functions.

Proof: y = F (z)

⇒ + = +y y F z z∆ ∆� �
⇒ = + −∆ ∆y F z z F z� � � �

⇒ =
+ −∆

∆
∆
∆

y

x

F z z F z

x

� � � �
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⇒ =
+ −

⋅
∆
∆

∆
∆

∆
∆

y

x

F z z F z

x

z

z

� � � �

⇒ =
+ −

⋅
∆
∆

∆
∆

∆
∆

y

x

F z z F z

z

z

x

� � � �

⇒
→

lim
∆

∆
∆x

y

x0

=
+ −

⋅
�
��

�
��→

lim
∆

∆
∆

∆
∆x

F z z F z

z

z

x0

� � � �

=
+ −�

��
�
�� ⋅

�
��
�
��→ →

lim lim
∆ ∆

∆
∆

∆
∆x x

F z z F z

z

z

x0 0

� � � �

= ⋅ =
d F z

dz

dz

dx
y F z

� � � �	 
�

= ′ ⋅ ′F z f x� � � �
Remember:
(A): The following rules of finding derivatives are
valid for the differentiable functions.

1. f x f x f x f x1 2 1 2� � � �	 
 � � � �+ ′ = ′ + ′

2. k f x k f x1 1	 
� � 	 
′
= ′ ,  k being a constant

3. f x f x f x f x f x f x1 2 1 2 2 1� �	 
 � � � � � � � � � �⋅ ′ = ′ ⋅ + ′ ⋅

4. 
f x

f x

f x f x f x f x

f x

1

2

1 2 2 1

2
2

� �
� �

� � � � � � � �
� �

�
��

�
��
′
=

′ ⋅ − ′ ⋅
;

f x2 0� �	 
≠

5. f f x f z f x1 2 1 2� �	 
 � � � �′ = ′ ⋅ ′ ,  where z = f2 (x)

(B): Power, exponential, logarithmic, trigonometric and
inverse trigonometric functions are differentiable on
any interval on which they are defined and their
derivatives with respect to the inner differentiable
function f (x) are found from the following formulas
provided their composition is represented as

y = F (f (x)), where F and f represent ( )n, e, log, sin,
cos, tan, cot, sec, cosec, sin–1, cos–1, tan–1, cot–1,
sec–1, cosec–1, etc.
1. (c)' = 0, where c is any constant
2. f x n f x f x

n n� �	 
 � �	 
 � �= ⋅ ⋅ ′−1

3. sin cosf x f x f x� �	 
 � � � �′ = ⋅ ′
4. cos sinf x f x f x� �	 
 � � � �′ = − ⋅ ′
5. tan secf x f x f x� �	 
 � � � �′ = ⋅ ′

2

6. cot cosecf x f x f x� �	 
 � � � �′ = − ⋅ ′
2

7. sec sec cosecf x f x f x� �	 
 � � � �′ = ⋅
8. cosec cosec cotf x f x f x� �	 
 � � � �′ = − ⋅

9. sin
− ′

=
−

⋅ ′
1

2

1

1
f x

f x
f x� � �

� �
� �

10. cos
− ′

=
−

⋅ ′1

2

1

1
f x

f x
f x� � �

� �
� �

11. tan
− ′

=
+

⋅ ′
1

2

1

1
f x

f x
f x� � �

� �
� �

12. cot
− ′

= −

+
⋅ ′1

2

1

1
f x

f x
f x� � �

� �
� �

13. sec
− ′

=
−

⋅ ′1

2

1

1
f x

f x f x
f x� � �

� � � �
� �

14. cosec
− ′

=
−

⋅ ′
1

2

1

1
f x

f x f x
f x� � �

� � � �
� �

15. log ;f x
f x

f x
f x� �	 
 � �

� � � �′ =
′

> 0

16. e e f x
f x f x� � � � � ��

�
�
�
′
= ⋅ ′

(C): If y is a function of x then

1.
dy

dx
n y

dy

dx
n Q

n
n= ⋅ ⋅ ∈−1 ,

2.
d

dx
e e

dy

dx
y y= ⋅

�

∆
∆

z

z
= 1

shifting the place of ∆ z  and ∆ x

in the denominator

using the product rule of limits
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3.
d

dx
y

y

dy

dx
ylog = ⋅ >

1
0,

4.
d y

dx
y

dy

dx

sin
cos= ⋅

5.
d y

dx
y

dy

dx

cos
sin= − ⋅

6.
d y

dx
y y

dy

dx

tan
sec tan= ⋅ ⋅

7.
d y

dx
y

dy

dx

cot
cosec2= − ⋅

8.
d y

dx
y y

dy

dx

sec
sec tan= ⋅ ⋅

9.
d y

dx
y y

dy

dx

cosec
cosec cot= − ⋅ ⋅

10.
d y

dx y

dy

dx

sin−
=

−
⋅

1

2

1

1

11.
d y

dx y

dy

dx

cos− = −

−
⋅

1

2

1

1

12.
d y

dx y

dy

dx

tan−
=

+
⋅

1

2

1

1

13.
d y

dx y

dy

dx

cot −
=

−
+

⋅
1

2

1

1

14.
d y

dx y y

dy

dx

sec− =
−

⋅
1

2

1

1

15.
d y

dx y y

dy

dx

cosec− = −

−
⋅

1

2

1

1
Note: All the formulas for the derivatives of the
differentiable power, exponential, logarithmic,
trigonometric and inverse trigonometric of a
differentiable function f (x) can be expressed in words
in the following way.

1.
d

dx
 (any function of x)n , n Q∈

= index · (that function of x used as a base)n – 1 =

given index minus one

⋅
d

dx
 (base), where the base must be a differentiable

function of x.

2.
d

dx
 (t-function having another function of x at

the place of the angle)

=
�
�

�
�

�
�

�
�

d t
x

d x t

- function having another function
of  at the place of the angle

the function of the independent variable
 after removing - operator

· 
d

dx
 (the function of the independent variable x after

removing t-operator) where t or t-operator, means all
the sex trigonometric functions namely sin, cos, tan,
cot, sec, and cosec.

3.
d

dx
 (t–1-function having another function as an

inner function of x)

=
�
��

�
��

−
d t x

d x

t

1
- inner function of 

inner function of  after

removing - operator
–1

 �
 · 

d

dx
 (inner

function of the independent variable x after removing
t–1-opertor)

4.
d

dx
 (ea function of x = index of the base ‘e’)

= eindex without any change · 
d

dx
 (index given as a

function of x)

5.
d

dx
 log (any function of x)

= ⋅
1

given function of x

d

dx
 (given function of x

after removing log-operator)
(Note: (any function of x)n is read as ‘n’ power of any
function of x/any function of x to the power ‘n’/any
function (or, any function of x) raised to the power
‘n’.)
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On method of finding the derivative of composite (or,
composition) of two differentiable functions

A differentiable function f1 of a differentiable function
f2 of the independent variable x is symbolically
represented as y = f1 f2 (x), where

f1 = outer differentiable function (or, outside
differentiable function) which means sin, cos, tan,
cot, sec, cosec, sin–1, cos–1, tan–1, cot–1, sec–1,
cosec–1, ( )n, log, , or, e, etc.

f2 = inner differentiable function (or, inside
differentiable function) which means also sin, cos,
tan, cot, sec, cosec, sin–1, cos–1, tan–1, cot–1, sec–1,

cosec–1, ( )n, log, , or, e, etc
f1 f2 (x) = given function/whole function/

dependent variable f2 (x) = inner differentiable
function of x/insider differentiable function of x.

There are two methods of finding the derivative of
the composite of two differentiable functions.
(A): Method of substitution
(B): Method of making no substitution

(A): On method of substitution: This method
consists of following steps:
Step 1: Put a new variable z for the function of x
whose differential coefficient can be found from the
formulas.

1.
d

dx
c� � = 0

2.
d

dx
x n x

n n
 � =

−1

3.
d

dx
x xsin cos� � =

4.
d

dx
x xcos sin� � = −

5.
d

dx
x xtan sec� � = 2

6.
d

dx
x xcot cosec� � = 2

7.
d

dx
x x xsec sec tan� � = ⋅

8.
d

dx
x x xcosec cosec cot� � = − ⋅

9.
d

dx
x

x
sin

− =
−

1

2

1

1
 �

10.
d

dx
x

x
cos

− =
−

1

2

1

1
 �

11.
d

dx
x

x
tan

− =
+

1

2

1

1
 �

12.
d

dx
x

x
cot

− = −

+

1

2

1

1
 �

13.
d

dx
x

x x
sec

− =
−

1

2

1

1
 �

14.
d

dx
x

x x
cosec

− = −

−

1

2

1

1
 �

15. d

dx
x

x
xlog� � = >1

0,

16. d

dx
e e

x x
 � =

N.B: The formulas for the derivatives of inverse
trigonometric functions have been derived in the
chapter containing inverse circular functions but we
have mentioned here their derivatives because their
application is required here.

Note: All these results remains valid even if x is
replaced by any other variable z, u, v, w or t etc.

Explanation

1.
d

dz
z n z

d

du
u nu

n n n n
 �  �= =

− −1 1
, ,

d

dt
t n t

n n
 � =

−1

2.
d

dz
z z

d

du
u usin cos sin cos� � � �= =, ,

d

dt
t tsin cos� � =

3.
d

dz
z z

d

du
u ucos sin cos sin� � � �= − = −, ,

d

dt
t tcos sin� � = −
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4.
d

dz
z z

d

du
u utan sec tan sec

2 2� � � �= =, ,

d

dt
t ttan sec

2� � =

5.
d

dz
z z

d

du
u ucot cosec cot cosec

2 2� � � �= − = −, ,

d

dt
t tcot cosec

2� � = −

6.
d

dz
z z z

d

du
u u usec sec tan sec sec tan� � � �= ⋅ = ⋅, ,

d

dt
t t tsec sec tan� � = − ⋅

7. 
d

dz
z z z

d

du
ucosec cosec cot cosec� � � �= − ⋅ ,

=− ⋅ = − ⋅cosec tan cosec cosec cotu u
d

dt
t t t, � �

8 .
d

dz
z

z

d

du
u

u
sin sin

− −=
−

=
−

1

2

1

2

1

1

1

1
 �  �, ,

d

dt
t

t
sin

− =
−

1

2

1

1
 �

9.
d

dz
z

z

d

du
u

u
cos cos

− −= −

−
= −

−

1

2

1

2

1

1

1

1
 �  �, ,

d

dt
t

t
cos

− = −

−

1

2

1

1
 �

10 .
d

dz
z

z

d

du
u

u
tan tan

− −=
−

=
−

1

2

1

2

1

1

1

1
 �  �, ,

d

dt
t

t
tan

− =
−

1

2

1

1
 �

11 .
d

dz
z

z

d

du
u

u
cot cot

− −= −

+
= −

+

1

2

1

2

1

1

1

1
 �  �, ,

d

dt
t

t
cot

− =
+

1

2

1

1
 �

12. 
d

dz
z

z z

d

du
usec sec

− −=
−

1

2

11

1
 �  �,

= 
1

1

1

1
2

1

2
u u

d

dt
t

t t−
=

−

−
, sec �

13.
d

dz
z

z z

d

du
ucosec cosec

− −= −

−

1

2

11

1
 �  �,

= 
−

−
= −

−

−1

1

1

1
2

1

2
u u

d

dt
t

t t
, cosec �

14.
d

dz
z

z
z

d

du
u

u
ulog log� � � � � �= > = >1

0
1

0, , , ,

d

dt
t

t
tlog� � � �= >1

0,

15.
d

dz
e e

d

du
e e

d

dt
e e

z z u u t t
 �  �  �= = =, ,

Step 2: Put y = f1 (a new variable z) = f1 (z)
Step 3: Use the formula:

dy

dx

d f z

d z

d z

dx
= ⋅1 new variable 

new variable 

new variable 	 
� �
	 


	 


= ⋅
d f z

dz

dz

dx
1 � �

Step 4: Express the result in terms of x by using the
relation z = f2 (x) established in step (1).

Problems on Composition of Two Differentiable
Functions

Solved Examples

Method of substitution

Find the derivative of the following
1. y = tan 3x2

Solution: y = tan 3x2

x x x

z y

2 3 2 2

1

3 3multiply by tan tan →  →
� �
= =
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∴ = ⋅dy

dx

dy

dz

dz

dx1

1 ,  where z1 = 3x2

= ⋅ =
d x

d x

d x

dx
x x

tan
sec

3

3

3
6 3

2

2

2

2 �

 �

 �

2. y e
x
x=

+
−

1
1 �

Solution: y e
x
x=

+
−

1
1 �

1
1

1
1

1

1
1+

+
−

�
��

�
��

� �
= =

−
 →  →

+
−

x
x

x
e

z y

x e
x
x� � � �  �divide by

∴ = ⋅ =
+
−

�
��

�
��

dy

dx

dy

dz

dz

dx
z

x

x1

1
1

1

1
, where

=
+
−

�
��

�
��
⋅ +

−
�
��

�
��

+
−

d e

d
x

x

d

dx

x

x

x
x

1
1

1
1

1

1

 �

= ⋅
− + − + ⋅ −

−

+
−

e
x

d

dx
x x

d

dx
x

x

x
x

1
1

1 1 1 1

1 2

 � � � � � � � � �

� �

= ⋅
− ⋅ − + −

−

+
−e

x x

x

x
x

1
1

1 1 1 1

1
2

 � 	 
 	 
	 

	 


= ⋅
− + +

−

�
��

�
��

+
−

e
x x

x

x
x

1
1 1 1

1 2

 �

� �

=
−

⋅
+
−2

1 2

1
1

x
e

x
x

� �
 �

3. y = sec–1 x2

Solution: y = sec–1 x2

x x x

z y

square sec sec →  →
−−

� �
= =

2 1 2

1

1

∴ = ⋅ =dy

dx

dy

dz

dz

dx
z x

1

1
1

2
, where

= ⋅

−
d x

d x

d x

dx

sec
1 2

2

2
 �

 �

 �

=
−

⋅1

1

2
2 2 2

x x

x

 �
� �

=
−

= =�
�

�
�

2

1
2 4

2 2 2x

x x
x x x�

=
−

2

1
4

x x

(B) On method of making no substitution while
finding the derivative of composite (or, composition)
of two differentiable functions

A composite (or, composition) of two differentiable
functions f1 and f2 is symbolically represented as
y = f1 f2 (x) and its derivative making no substitution
is found using the following working rule.

Working rule: The differential coefficient of the
differentiable function f1 of the differentiable function
f2 of the independent variable x is equal to the product
of the differential coefficient of the whole function y
= f1 f2 (x) with respect to the inner differentiable
function f2 (x) and the differential coefficient of the
inner differentiable function f2 (x) with respect to the
independent variable x; i.e. if y = f1 f2 (x) , then

dy

dx

d f f x

d f x

d f x

dx
f f x f x= ⋅ = ′ ⋅ ′1 2

2

2
1 2 2

� �
� �

� � � � � �

which tells us to apply the formulas as discussed in
(B) after the theorem for the chain rule.

Note:

1. y f f x= ⇒1 2 � �  (any differentiable function of

x)n, provided f2 (x) = any differentiable function of x
means algebraic function and/transcendental function
of x and f1 means to raise the base (being any
differentiable function of x) to the n th power.

2. y f f x f f x a f ax b= ⇒ ′ = ′ +1 2 1 2 1� � � �	 
 � � ,
provided f2 (x) = a linear algebraic function of x. e.g.,

(i) sin cosax b a ax b+ ′ = +� �	 
 � �
(ii) cos sinax b a ax b+ ′ = − +� �	 
 � �
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(iii) tan sec
2

ax b a ax b+ ′ = +� �	 
 � �
(iv) cot cosec

2
ax b a ax b+ ′ = − +� �	 
 � �

(v) sec sec tanax b a ax b ax b+ ′ = + ⋅ +� �	 
 � � � �
(vi) cosec cosec cotax b a ax b ax b+ ′ = − + ⋅ +� �	 
 � � � �
(vii) ax b na ax b

n n+
′
= + −� � � � � 1

 and so on.

Problems on composition of two differentiable
functions

Solved Examples

Making no substitution

Find the differential coefficient of the following.
1. y = sin x3

Solution: y = sin x3

⇒ = = ⋅dy

dx

d

dx
x

d x

dx

dx

dx
sin

sin
3

3

3

3

 �
 �

= cos cosx x x x
3 2 2 3

3 3⋅ = ⋅

2. y x= tan

Solution: y x= tan

⇒ = = ⋅ =dy

dx

d x

dx

d x

d x

d x

dx

x

x

tan tan

tan

tan

tan

 �
	 


sec2

2

3. y = cos ex

Solution: y = cos ex

⇒ = = ⋅dy

dx

d e

dx

d e

d e

de

dx

x x

x

xcos cos �  �

 �

= − ⋅ = − ⋅sin sine e e x
x x x

 �
4. y = tan 4x
Solution: y = tan 4x

⇒ = = ⋅dy

dx

d x

dx

d x

d x

d x

dx

tan tan4 4

4

4� � � �
� �

� �

= ⋅ =sec sec
2 2

4 4x x

5. y = sec (log x)
Solution: y = sec (log x)

⇒ = = ⋅dy

dx

d x

dx

d x

d x

d x

dx

sec log sec log

log

log� � � �
� �

=
⋅sec log tan logx x

x

� � � �

6. y = tan (sin–1 x)
Solution: y = tan (sin–1 x)

⇒ = ⋅�
�

�
�

−dy

dx

d

dx
xtan sin

1
 �

=
�
�

�
�
⋅

−

−

−d x

d x

d x

dx

tan sin

sin

sin
1

1

1 �

 �

=
−

−
sec sin

2 1

2
1

x

x

 �

7. y x=
−

sec tan
1

 �

Solution: y x=
−

sec tan
1

 �

⇒ =
�
�

�
�

−

dy

dx

d x

dx

sec tan
1

 �

=
�
�

�
�
⋅

−

−

−
d x

d x

d x

dx

sec tan

tan

tan
1

1

1 �

 �

 �

= ⋅ ��
�
� ⋅ +

�

�
�

�

�
�

− −
sec tan tan tan

1 1

2

1

1
x x

x
 �  �

=
+

=�
�

�
�

−
−

x x

x
x x

sec tan
tan tan

1

2

1

1

 �
 ��

8. y = tan–1 (sin x)
Solution: y = tan–1 (sin x)

⇒ =

−
dy

dx

d x

dx

tan sin
1 � � �
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= ⋅ =
+

−
d x

d x

d x

dx

x

x

tan sin

sin

sin cos

sin

1

2
1

� �
� �

� �

9. y = sin (cos–1 x)
Solution: y = sin (cos–1 x)

⇒ =
�
�

�
�

−

dy

dx

d x

dx

sin cos
1

 �

=
�
�

�
�
⋅

−

−

−
d x

d x

d x

dx

sin cos

cos

cos
1

1

1 �

 �

 �

=
−

−

−
cos cos

1

2
1

x

x

 �

= −

−
≠ ± =�

�
�
�

−x

x
x x x x

1
1

2

1
; cos cos�  �

10. y x= −
tan

1

Solution: y x= −
tan

1

⇒ =

−
dy

dx

d x

dx

tan
1

 �

= ⋅

−
d x

d x

d x

dx

tan
1

 �

=
+

⋅ =
+

1

1

1

2

1

2 1
2 2

x x x x �  �
11. y = sin sin–1 x
Solution: y = sin sin–1 x

⇒ =

−
dy

dx

d x

dx

sin sin
1

 �

= ⋅ =
−

−

−

− −
d x

d x

d x

dx

x

x

sin sin

sin

sin cos sin
1

1

1 1

2
1

 �

 �

 �  �

Note:
cos sin

−

−

1

2
1

x

x

 �
 may also simplified in the

following way.

� sin sin
− = ⇔ = − ≤ ≤�

�
�
�

1

2 2
x xθ θ π θ π

,

∴ = = − = −cos cos sinθ θ θ1 1
2 2

x

Hence, 
dy

dx

x

x

x

x
=

−
=

−

−
=

−
cos sin

1

2

2

2
1

1

1
1

 �

12. y = sin–1 (sin x)
Solution: y = sin–1 (sin x)

⇒ =

−
dy

dx

d x

dx

sin sin 
1 � � �

= ⋅ =

−
d x

d x

d x

dx

x

x

sin sin

sin

sin cos

cos

1

2

� � �
� �

� �

= ≠
cos

cos
; cos

x

x
x 0

13. y = cosec (4 – 3x)
Solution: y = cosec (4 – 3x)

⇒ =
−dy

dx

d x

dx

cosec 4 3� �	 


=
−

−
⋅

−d x

d x

d x

dx

cosec 4 3

4 3

4 3� �	 

� �

� �

= –cosec (4 – 3x) · cot (4 – 3x) · (–3) = 3cosec (4 –
3x) cot (4 – 3x)

On method of substitution for the differential
coefficient of composition (or, composite) of a finite
number of differentiable functions

A differentiable function f1 of a differentiable function
f2 of … of a differentiable function fn on a differentiable
function f of the independent variable x (or,
composite/composition of a finite number of
differentiable functions namely f1, f2, … fn and f) is
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symbolically represented as y = f1 f2 f3 … fn f (x), where
f1 f2 f3 … fn f (x) = given function/whole function/
dependent variable.

f2 f3 … fn f (x) = inner differentiable function/ inside
differentiable function/inner function/inside function/
independent variable.

f1, f2, f3, …, fn or f, each = constituent differentiable
function/constituent function.

f (x) = inner most differentiable function/inner most
function.

There are two methods of substitution for finding
the derivatives of composition of a finite number of
differentiable functions.
Method 1: The first method of substitution for finding
the derivatives of composition of a finite number of
differentiable functions consists of the following
steps.
Step 1: Start from the left hand side introducing a
new variable whenever a new function occurs untill
we get a simple function of x (or, simply an identity
function x) whose derivatives can be found by using
the rules for the differential coefficient of power,
trigonometric, inverse trigonometric, logarithmic,
exponential, sum, difference, product or quotient of
two (or, more than two) differentiable functions of x;
i.e.;

Separate the first function and put the rest function
= z1

Separate the second function and put the rest
function = z2

…
…
We continue the process of separating the function

and putting the rest = a new variable unless we get a
simple function of x having the standard form which
can be differentiated by using the rules for the
derivatives of power, trigonometric, inverse
trigonometric, logarithmic, exponential, sum,
difference, product or quotient of two (or, more than
two) differentiable functions of x.
Step 2: Differentiate separately each function
supposed as z1, z, z3, …, zn with respect to the
independent variable x of the given function and
multiply all these derivatives thus obtained to have

dy

dx

dy

dz

dz

dz

dz

dz

dz

dx
n

n

n= ⋅ ⋅−

1

2

3

1
...

Step 3: Express the result in terms of x using the
relations

f2 f3 f4 … fn f (x) = z1,
f3 f4 … fn f (x) = z2,
f4 … fn f (x) = z3
…
fn f (x) = zn – 1
f (x) = zn which are stablished in step (1)

Note: Generally in practice, we put z1 for the inner
most function which is simply an identity function x
or a simple function of x, say f (x) having the standard
form xn, sin x, cos x, tan x, cot x, sec x, cosec x, sin–1

x, cos–1 x, tan–1 x, cot–1 x, sec–1 x, cosec–1 x, log x, ex

etc. starting from the right hand side which means we
may start introducing a new variable from the right
hand side whenever a new function occurs linked in a
chain unless we get the first function in the left hand
side.

Explanation
(A) If the given function y = f1 f2 f3 … fn f (x), then

z1 = f (x)
z2 = fn (z1)
z3 = fn – 1 (z2)
…
…
zn = f2 (zn – 1)
y = f1 (zn) = given function

dy

dx

dy

dz

dz

dz

dz

dz

dz

dz

dz

dxn

n

n

n

n

= ⋅ ⋅ ⋅
−

−

−1

1

2

2

1

1... ,  provided

we start making substitutions from right hand side.
(B): If the given function y = f1 f2 f3 … fn f (x), then

z1 = f2 (z2) = f2 f3 f4 … fn f (x)
z2 = f3 (z3) = f3 f4 … fn f (x)
z3 = f4 (z4) = f4 … fn f (x)
…
…
zn – 2 = fn – 1 (zn – 1)
zn – 1 = fn (zn)
zn = f (x)

dy

dx

dy

dz

dz

dz

dz

dz

dz

dx
n

n

n= ⋅ ⋅−

1

1

2

1
... ,  provided we start

making substitutions from left hand side.
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Remember:
1. Total number of function in y = f1 f2 f3 … fn f (x)
= n n N+ ∈1	 
 ,  including f whereas total number of
substitutions made = n.
2. Total number of the derivatives of all the
constituent differentiable functions f1, f2, f3 ,…, fn and

f n n n= + ∈1� � .

3. We make no substitution for the given function
y = f1 f2 f3 … fn f (x), since it is already given equal to y.
4. We must make a substitution for the expression
(or, the function) in x under the radical whenever we

have an expression in x .

5. The reader should mind that the method of
substitution becomes lengthy when the chain of the
intermediate variable is more than one. This is why
the reader is advised to derive the differential
coefficient of the composition of a finite number of
differentiable functions without making substitutions
since method of substitution is easy to handle only
in elementary cases.

Method 2: To make the substitution z1, z2, …, zn etc
while finding the derivative of composite of a finite
number of differentiable functions, we may adopt the
following procedure also.
Step 1: Start with a function of x (or, simply x) which
can be differentiated by using the rules for the
differential coefficient of power, trigonometric, inverse
trigonometric, logarithmic, exponential, sum,
difference, product or quotient of two (or, more than
two) differentiable functions.
Step 2: Seek the way how to reach y = f1  f2 … fn  f (x)
= the whole given function from x (or, the power,
trigonometric, inverse trigonometric, logarithmic,
exponential, sum, difference, product or quotient of
two (or, more than two) two differentiable function
(or, functions) of x.
Step 3: Name each of these steps as the variable z1,
z2, z3 …, zn etc. and differentiate these all with respect
to x.
Explanation:

x f x f f x f f x

x z z z

f fn
n

fn
n n⋅ →

� � � �
= = = =

 →  → − → −� � � � � �

� � � � � � � �

1
1

1 2 3

...

f
nf f f f x

y

1
1 2 →

�
=

... � �

� �

Solved Examples

1. Let y = [sin (log x)]2

Here, starting from x and reaching y in successive
steps can be explained in the following way.

x x x

x z z y

take log take sin squarelog sin log sin log →  →  →

� � � �
= = = =

� �

� � � � � � � �

2

1 2

Remark: We put the variables for the function of x
as last one = given composite differentiable function
= y before y = z2

before sin log x = z1
before log x = x

and in this way we reach x. Further we should note
that total number of functions = 3, (log, sin, (…)2)
whereas the substitution made = 2 in number.

2. Let y e
x

=
−

sin tan
1

2 �

Here, again starting from x and reaching y in
successive steps can be explained as below

x x x

x z z

⋅
� � �
= = =

 →  →
−

 →
−

doulble take tan take sintan2 2
1 1

1 2

� �

� � � � � �

sin tan take exponential sin tan−
 →

−

� �
= =

1 2

3

2
1

x e

z y

x
 �

� � � �

� �

Remember: In each successive step while finding
the derivative of a differentiable function of a
differentiable function … of a differentiable function
of x, we differentiate each constituent differentiable
function regarding the rest as an inner differentiable
function using the rule of composite of two
differentiable functions; i.e.,

d

dx
f f x

d f f x

d f x

d f x

dx

dx

dxm n
m n

n

n� �	 
 � �
� �

� �
= ⋅ ⋅
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On method for the derivative of composition of a finite
number of differentiable functions without making
any substitution

To find the derivative of the composition of a finite
number of differentiable functions namely f1, f2, f3, …,
fn represented as y = f1 f2 f3 … fn f (x), we have a rule
known as the chain rule for the derivative of composite
(or, composition) of (n + 1) number of differentiable
functions.
Rule: The derivative of a differentiable function f1 of
a differentiable function f2 … of a differentiable
function fn of a differentiable function f of the
independent variable x

= ′
�

�

�
�
�
�

�

�

�
�
�
�=

∏ f i

i

n

1

operand = all the remaining successive
differentiable functions excepting
the preceeding differentiable
function or, functions  which
has have  been differentiated.

� �
� �

= ′ ⋅ ′ ⋅f f f f f x f f f f f xn n1 2 3 2 3 4... ...� �	 
 � �	 

f f f f f x f f f f f xn n3 4 5 4 5 6
′ ⋅ ′... ... ...� �	 
 � �	 


f f x f xn
′ ⋅ ′� �	 
 � �
The above working rule may be expressed in the

following way.

1. Start from left to find the derivative of each
successive (following in order/coming one after
another) functions coming near and near to x with
respect to the remaining all other function (or,
functions) (excepting the differentiated function or
functions) till we arrive at x or an expression in x
being power, trigonometric, inverse trigonometric,
logarithmic, exponential, sum, difference, product or
quotient of two (or, more than two) differentiable
function (or, functions).
2. Find the product by multiplying all the results being
the derivative of each constituent differentiable
function. We may express in words the facts in (1)
and (2) in the following way.

f

x

f

f

x

f f

1

1

2

1 2

′

�

�

�
�
�
�
��

�

�

�
�
�
�
��

⋅ ′

�

�

�
�
�
�
��

�

�

�
�
�
�
��

⋅

operand = the rest

function upto 

without any

change excepting

 

operand = the rest

function up to 

without any

change excepting

and

 
f

x

f f

f

f n3

1 2

3

′

�

�

�
�
�
�
��

�

�

�
�
�
�
��

′ ⋅

operand =  the rest

function up to 

without any change

excepting  and

last operand

,

... 	 


last operand	 
′ .

Where fn
′  (last operand) means the derivative of

the last function fn whose last operand is simply an
identity function x or a simple function of x being
differentiable whose derivative can be found by using
the rule for the derivatives of sum, difference, product
or quotient of two or more than two differentiable
functions.
Notes: 1. If the last operand = identity function = x,

then 
dx

dx
x= ′ =� � 1 which is generally ignored while

finding the derivative.

2.
d

dx
 may be thought as an operator which changes

the form of only that function (or, operator like sin,
cos, tan, cot, sec, cosec, sin–1, cos–1, tan–1, cot–1,
sec–1, cosec–1, log, e, etc) before which it is put
excepting the exponential operator ‘e’ which does
not change its form before and after the differentiation.
e.g.,

1.
d

dx
⋅ ⋅ =

⋅ ⋅
⋅ ⋅ ⋅ ′ � � �1

2

2. d

dx
nn n⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ′−� � � � � �1

3. d

dx
sin cos⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ′� �	 
 � � � �

4. d

dx
cos sin⋅ ⋅ = − ⋅ ⋅ ⋅ ⋅ ⋅ ′� �	 
 � � � �

5. d

dx
tan sec

2⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ′� �	 
 � � � �

6. d

dx
cot cosec

2⋅ ⋅ = − ⋅ ⋅ ⋅ ⋅ ⋅ ′� �	 
 � � � �

7. d

dx
sec sec tan⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ′ ⋅ ⋅ ⋅� �	 
 � � � � � � '
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8. d

dx
cosec cosec cot⋅ ⋅ = − ⋅ ⋅ ⋅ ⋅ ⋅ ′ ⋅ ⋅ ⋅ ′� �	 
 � � � � � �

9.
d

dx
sin

−
⋅ ⋅ =

− ⋅ ⋅
⋅ ⋅ ⋅ ′

1

2

1

1
� � �

� �
� �

10.
d

dx
cos

−
⋅ ⋅ = −

− ⋅ ⋅
⋅ ⋅ ⋅ ′

1

2

1

1
� � �

� �
� �

11.
d

dx
tan

−
⋅ ⋅ =

+ ⋅ ⋅
⋅ ⋅ ⋅ ′

1

2

1

1
� � �

� �
� �

12.
d

dx
cot

−
⋅ ⋅ =

−
+ ⋅ ⋅

⋅ ⋅ ⋅ ′
1

2

1

1
� � � � �

� �

13.
d

dx
sec

−
⋅ ⋅ =

⋅ ⋅ ⋅ ⋅ ⋅ −
⋅ ⋅ ⋅ ′

1

2

1

1
� � �

� �
� �

14.
d

dx
cosec

−
⋅ ⋅ = −

⋅ ⋅ ⋅ ⋅ −
⋅ ⋅ ⋅ ′

1

2

1

1
� � �

� �
� �

15. d

dx
log ⋅ ⋅ ⋅ =

⋅ ⋅
⋅ ⋅ ⋅ ′� �	 
 � � � �

1

16. d

dx
e e
⋅ ⋅ ⋅ ⋅�

�
�
� = ⋅ ⋅ ⋅ ′

� � � � � �
where dots within circular brackets/absolute value
sign denote the operand being the same in the l.h.s
and r.h.s. Further, we should note that it is only the
operator ‘e’ which remains unaltered before and after
the differentiation.

Remember: The above explanation throws light
upon the fact that only function (or, operator) is
differentiated successively till we get x when the given
function is y = f1  f2 … fn f (x), where each constituent
function f1, f2, …, fn or f being differentiable represents
sin, cos, tan, cot, sec, cosec, sin–1, cos–1, tan–1, cot–1,
sec–1, cosec–1, log, e, ( )n, n ,  | |, etc.

Problems on the composition of a finite number of
differentiable functions

Different types of problems in the composition of a
finite number of differentiable functions may be
guided only by the problems appearing in different
forms which are
(i) y = f1 f2 f3 …fn f (x) or, y = (f1 f2 f3 … fn f (x))n

(ii) y f f f f x= 1 2 3 ... � �

(iii) y f f f f xn= + + + +1 2 3 ... � �

(iv) y f x= ... � �

(v) (a) y f x f x g x g x= ⋅ ± ⋅1 2 1 2� � � � � � � �

(b) y f x f x
g x

g x
= ⋅ ±1 2

1

2

� � � � � �
� �

(c) y f x g x g x= ± ⋅1 1 2� � � � � �

(d) y f x
g x

g x
= ±1

1

2

� � � �
� �

(e) y f x f x= ±1 2� � � �
Now we consider each one by one

Form: (i) →  y = f1 f2 f3 …fn f (x)
(ii) →  y = (f1 f2 f3 … fn f (x))n

whenever we are given the problems in the above
forms, we find their derivatives using the following
working rule.
Working rule: To find the derivative of differentiable
function having the form (1), we use directly the rule
for the derivative of the composition of a finite number
of differentiable functions and the derivative of a
differentiable function having the form (2) is found
using the following rule:

(a) Use the formula: F x n F x
n n� �	 
 � �	 

′
= ⋅ ⋅−1

′F x� �  where F (x) = f1 f2 … fn f (x).

(b) Find the derivative ′F x� �  using the rule for  the

derivative of the composition of a finite number of a
differentiable functions.

Do not forget

1. f f x x f x f x f f x
n

f
n

f
n

n

1 1

1

� �	 
 � � � �	 
 � �	 

� �

⇒ → → →

2. f f x x f x f f x f f x
n f f n

n

1 1 1

1

� �	 
	 
 � � � �	 
 � �	 
	 

� �

⇒ → → →

where f (x) = f1 f2 f3 … fn f (x)/sum/difference/
product or quotient of two or more than two
differentiable functions.
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Solved Examples

Without substitution

Find the differential coefficients of the following.

1. y x= tan 2

Solution: y x= tan 2 , defined for tan 2x > 0

⇒ =dy

dx

d x

dx

tan 2

= ⋅ ⋅
d x

d x

d x

d x

d x

dx

tan

tan

tan2

2

2

2

2

� �
� �
� �

� �

=
sec 

tan

2
2

2

x

x

2. y x= sin
2

Solution: y x= sin
2

⇒ =
dy

dx

d x

dx

sin
2

= ⋅ ⋅
d x

d x

d x

d x

d x

dx

sin

sin

sin2

2

2

2

2

 �

 �

 �

 �

= x x

x

cos

sin

2

2
; sin x2 > 0

3. y x= sin

Solution: y x= sin

⇒ =dy

dx

d

dx
xsin

= ⋅ ⋅
d x

d x

d x

d x

d x

dx

sin

sin

sin

 �
 �
 �

= >cos

sin
sin

x

x x
x

4
0;

4. y x x= + +tan 1
2

Solution: y x x= + +tan 1
2

⇒ = + +�
��

�
�� ⋅

+ +

+ +
⋅dy

dx

d

dx
x x

d x x

d x x
tan 1

1

1

2
2

2
 �

d x x

dx

1
2+ + �

=
+ + +

+ +

1 2 1

2 1

2 2

2

x x x

x x

� � sec

5. y x= tan tan� �

Solution: y x= tan tan� �

⇒ =
dy

dx

d

dx
xtan tan� � �

= ⋅ ⋅
d x

d x

d x

d x

d x

dx

tan tan

tan tan

tan tan

tan

tan� �
� �

� �

=
⋅sec sec tan

tan tan

2 2

2

x x

x

� �
� �

; tan (tan x) > 0

Remember: sin changes into cos, while
differentiating.

Note: That f1 = tan, f2 =

f x x x3
2

1� � = + +

f f f x x x1 2 3
2

1� � = + +tan

Remember: tan changes into sec2

 changes into 
1

2
1 2, + +x x �

changes into 1 2+ x� �

Remember:  changes into 
1

2
, tan 2x changes

into sec2 2x, 2x changes into 2 while differentiating.
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6. y = cos–1 (tan x2)
Solution: y = cos–1 (tan x2)

⇒ =
�
�

�
�

−

dy

dx

d x

dx

cos tan
1 2
 �

=
�
�

�
�
⋅ ⋅

−
d x

d x

d x

d x

d x

dx

cos tan

tan

tan
1 2

2

2

2

2 �

 �

 �

 �

 �

= −

−
⋅ ⋅1

1
2

2 2

2 2

tan
sec

x
x x

= −

−

2

1

2 2

2 2

x x

x

sec

tan
,

tan x2 1< .

7. y = tan–1 (a · ex · x2)
Solution: y = tan–1 (a · ex · x2)

⇒ =
⋅ ⋅�

�
�
�

−

dy

dx

d a e x

dx

x
tan

1 2
 �

=
⋅ ⋅�

�
�
�

⋅ ⋅
⋅

⋅ ⋅
−

d a e x

d a e x

d a e x

dx

x

x

x
tan

1 2

2

2 �

 �

 �

=
⋅ + ⋅

+ ⋅ ⋅

a e x x e

a e x

x x

x

2

2 2

2

1

 �

 �

=
⋅ +

+ ⋅ ⋅

a e x x

a e x

x

x

2

1

2

2 2

 �

 �

8. y x=
−

sec
1 2

Solution: y x=
−

sec
1 2

⇒ = �
��

�
��

−dy

dx

d

dx
xsec

1 2

=

�
��

�
��
⋅ ⋅

−

−

−d x

d x

d x

dx

dx

dx

sec

sec

sec
1 2

1 2

1 2

2

2

 �

 �

=
�
��

�
��
⋅

−
�
��

�
��
⋅

−

1

2

1

1

2
1 2 2 2 2

sec x x x

x

 �

=
�
��

�
�� −�
��

�
��

−

x

x x x
2 1 2 4

1sec

� x x x
2 2 2= =�

�
�
�

=
�
��

�
�� −�
��

�
��

−

1

1
1 2 2

x x xsec
, | x | > 1

Form 2:

f f f f x1 2 3 ... � �
i.e. the form of the composite function being
differentiable obtained by the operation of applying
a differentiable function (sin, cos, tan, cot, sec, cosec,
sin–1, cos–1, tan–1, cot–1, sec–1, cosec–1, log, e, | |, etc.)
and the operation of taking the square root is
successively performed more than once upon a
differentiable function of x.

Working rules: 1. Method of substitution:

(a) Put z f x= � �  which may be regarded as the

inner most function

(b) Use z
z

z
dz

dx
 � � �′

= ⋅ ′ ⋅1

2
(c) Lastly express z in terms of x.

Note: That f1

1
2= = � � ,

f2 = tan,  f3 = tan,  f4 = x,

f1  f2  f3  f4 = tan tan x� �

Note: f1 = cos–1

f2 = tan
f3 = (  )2

f3 (x) = (x)2

f1 f2 f3 (x) = cos–1 tan x2

Note: Here, f1 = tan–1,
 f2 (x) = a · ex · x2
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2. Method of making no substitution:
The above type of problems may be differentiated by
using directly the formula for the derivative of a finite
number of differentiable functions regarding firstly

 as f1 and secondly  f2 as any function being
differentiable like trigonometric, inverse trigonometric,
power, logarithm i.e., mod or exponential in every
successive step i.e. we have to use the formula:

f f f f f xn1 2 3 ... � � ′

= ′ ⋅ ′f f f f f x f f f f f xn n1 2 3 2 3 4... ... ...� �	 
 � �	 


f f x f xn
′ ⋅ ′� �	 
 � � ,  regarding each successive

differentiable function as  and trigonometric,
inverse trigonometric, logarithmic, mod or exponential
etc. in every step.

Solved Examples

Find the differential coefficient of the following.

1. y x= +sin 1
2

Method 1:

Solution: y x= +sin 1
2

Putting z x= +1
2

,

⇒ =dy

dx

d

dx
zsin

⇒ = ⋅ ⋅
dy

dx z

d z

dx

dz

dx

1

2 sin

sin

=
+

⋅ ⋅
+

1

2 1

2

2 12 2
sin

cos

x

z
x

x

=
+

⋅
+�

�
�
�

+
+ >x

x

x

x
x

2 1

1

1
1 0

2

2

2

2

sin

cos
; sin �

Method 2:

d

dx
y

d

dy
x� � = +

�
��

�
��

sin 1
2

=
+�

��
�
��

+�
�

�
�
⋅

+�
�

�
�

+�
�

�
�

⋅
+�

�
�
�
⋅

d x

d x

d x

d x

d x

dx

sin

sin

sin1

1

1

1

1
2

2

2

2

2

d x

dx

1 2+ �

=
+

⋅ +�
��

�
�� ⋅ +

⋅1

2 1

1
1

2 1
2

2

2

2
sin

cos

x

x
x

x� �

=
+�

��
�
��

+
�
��

�
��

+�
��

�
��

x x

x x

cos

sin

1

2 1 1

2

2 2

2. y x= cos sin

Solution: y x= cos sin

dy

dx

d x

dx
=
�
�

�
�cos sin

=

�
�

�
�

�
�

�
�

⋅

�
�

�
�
⋅ ⋅

d x

d x

d x

d x

d x

d x

cos sin

sin

sin

sin

sin

 �
 �
 �

d x

dx

 �

= − ⋅ ⋅ ⋅sin sin
sin

cosx
x

x
x

1

2

1

2

=
−��

�
� ⋅

�
�

�
� ⋅

>
sin sin cos

sin
sin

x x

x x
x

 �

 �4
0,

3. y x= sin

Solution: y x= sin
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⇒ =
�
�

�
�dy

dx

d x

dx

sin

=
�
�

�
�
⋅ ⋅

d x

d x

d x

d x

d x

dx

sin

sin

sin

 �
 �
 �

 �

=
�
�

�
�
⋅ ⋅1

2

1

2sin
cos

x
x

x
 �

=
�
�

�
� ⋅

>
cos

sin
sin

x

x x
x

 �

 �4
0,

4. y x= sin cos

Solution: y x= sin cos

⇒ =dy

dx

d x

dx

sin cos �

= ⋅ ⋅
d x

d x

d x

d x

d x

dx

sin cos

cos

cos

cos

cos �
 �

 �
	 


	 


= ⋅ ⋅ −cos cos
cos

sinx
x

x
1

2
	 


=
⋅

>
–sin cos cos

cos
for cos

x x

x
x

2
0,

5. y x x= + +tan 1
2

Solution: y x x= + +tan 1
2

⇒ = + +�
��

�
��

dy

dx

d

dx
x xtan 1

2

=
+ +�

��
�
��

+ +�
��

�
��

⋅
+ +�

��
�
��

+ +
⋅

+ +d x x

d x x

d x x

d x x

d x x

dx

tan 1

1

1

1

1
2

2

2

2

2

 �

 �

=
+ + ⋅ +

+ +�
�

�
�

sec2 2

2

1 2 1

2 1

x x x

x x

	 


=
+ +�

�
�
�

+ +
⋅

+sec2 2

2

1

1

2 1

2

x x

x x

x

Form 3:

f x f x f x f xn1 2� � � � � � � �+ + +...

where each function of x is either a constant or a
differentiable function of x excepting the inner most
differentiable function of x which can never be a
constant; the form of the composite function obtained
by performing the operation of taking square root
and addition of a differentiable function of x or a
constant successively more than once upon a
differentiable function of the independent variable x
which can be expressed in the arrow diagram as

f x f x f x f x
fn x

n� � � � � � � �� �
 →

+
 →  →+

f x f xn

fn x
� � � �

� �
+

+ −
 →

1 ...

The method of finding the derivative of the
composite differentiable function of the above form
is explained by the examples done below using the
method of substitution.

Solved Examples

Find the differential coefficient of the following.

1. y a a a x= + + +
2

Solution: y a a a x= + + + 2

Putting a x u+ =
2

,  we have y a a u= + +
and

du

dx

d

dx
a x= +�

��
�
��

2
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=
+�

��
�
��

+
⋅

+d a x

d a x

d a x

dx

2

2

2

 �

 �

=
+

x

a x
2 ...(1)

� y a a u= + +

Again putting a u v+ = ,  we have

y a v= +  and

dv

du

d a u

du
=

+ �

=
+

+
⋅

+d a u

d a u

d a u

du

 �
� �

� �

=
+

1

2 a u ...(2)

� y a v= +

Lastly, putting a v w+ = ,  we have

dw

dv a v

d a v

dv
=

+
⋅

+1

2

� �

=
+

1

2 a v ...(3)

∴ = × × = ⋅ ⋅dy

dx

dw

dv

dv

du

du

dx
1 2 3� � � � � �

=
+

⋅
+

⋅
+

1

2

1

2 2a v a u

x

a x

=
+ +�

�
�
�
⋅

+ +
�
��

�
��
⋅

+�
��

�
��

1

2

1

2
2 2a a u a a x

x

a x

� v a u= + �

=
+ +�

�
�
� ⋅ + +
�
��

�
��
⋅ +�
��

�
��

x

a a u a a x a x4
2 2

=

+ + +
�
��

�
��
⋅ + +�
��

�
�� ⋅ +�
�

�
�

x

a a a x a a x a x4 2 2 2

� u a x= +�
��

�
��

2

Note: The above procedure of finding the derivative
of the composite differentiable function having the
form mentioned above is fruitful only when f1 (x), f2
(x), …, fn (x) are all constants excepting the inner most
differentiable function ‘f ’ of x but when f1 (x), f2 (x),
…, fn (x) are all constants besides the inner most
differentiable function ‘f ’ of x, we directly use the
chain rule for the derivative without making any
substitution.
Form 4:

... f x� �
i.e. the form of the composition of a finite number of
differentiable functions obtained by performing the
operation of taking the square root more than once
upon a differentiable function of the independent
variable x which can be expressed in the arrow diagram

as x f x f x f xf
 →  →  →  →� � � � � �

... ... → f x� � . The method of finding the

derivative of the composite differentiable function
having the above form is explained by the examples
done below using the method of substitution.

Solved Examples

Find the differential coefficient of the following.

1. y x= + 1

Solution: y x= + 1

Putting x z+ =1 ,  we have y z=  and

dz

dx

d x

dx
=

+ 1 �
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=
+

+
⋅

+d x

d x

d x

dx

1

1

1 �
� �

� �

dy

dz z

dz

dx
= ⋅1

2

= ⋅
+

1

2

1

2 1z x

=
+�

�
�
�
⋅

+
1

2 1

1

2 1x x �

=
+�

�
�
� ⋅ +

> −1

4 1 1
1

x x
x

 �
,

Form 5: (a) y f x f x g x g x= ⋅ ± ⋅1 2 1 2� � � � � � � �

(b) y f x f x
g x

g x
= ⋅ ±1 2

1

2

� � � � � �
� �

(c) y f x g x g x= ± ⋅1 1 2� � � � � �

(d) y f x
g x

g x
= ±1

1

2

� � � �
� �

(e) y f x f x= ±1 2� � � �
where anyone or all of f1 (x), f2 (x) , g1 (x) and /g2 (x)
may be a differentiable function of a differentiable
function of the independent variable x.

Working rule: The working rule consists of following
steps.
Step 1: Put each addend, subtrahend and minuend
equal to u, v and w respectively and then y becomes
equal to u v w± ± ;  i.e. y u v w= ± ± .

Step 2: Take the differential operator 
d

dx
�
�
�
�  on both

sides of the equation defining y as a function of the
independent variable x. i.e.,

dy

dx

d

dx
u v w

du

dx

dv

dx

dw

dx
= ± ± = ± ±� �

Step 3: Use the rules for the derivative of the product,
quotient and/composite of two or more than two

differentiable functions of x’s for finding 
du

dx

dv

dx
,  and

dw

dx
.

Note: The given problem may be the combination
(sum, difference, product and/quotient) of composite
differentiable functions of x’s or it may be the
combination of a differentiable x and a differentiable
function of a differentiable function of x.

Solved Examples

Find the differential coefficient of the following

1. y
x

x
x= + −�

��
�
��

cot
1

2

Solution: y
x

x
x= + −�

��
�
��

cot
1

2

Putting u
x

x
=

cot
 and v x= −1

2
,  we have y

= u + v and 
dy

dx

du

dx

dv

dx
= +  which means we have to

find 
du

dx
 and 

dv

dx
 separately and then their sum is to

be found out.

Now, 
du

dx

x x x

x
=
− +cosec cot

2

2

 �
…(i)

and dv

dx

x

x
= −

−

2

2 1 2
…(ii)

∴ = + = +dy

dx

du

dx

dv

dx
1 2� � � �

=
− +

−
−

< <
x x x

x

x

x
x

 cosec cot2

2 21
0 1

 �
,

2. y
x

x
x x= + −

tan
1

2

Solution: y
x

x
x x= + −

tan
1

2
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Putting u
x

x
=

tan
 and v x x= −1

2
,  we have

y = u + v and 
dy

dx

du

dx

dv

dx
= +

Now, 
du

dx

x x x

x
=

−sec tan
2

2 …(i)

and 
dv

dx
x

x
x x= − + − ⋅ −

�
��

�
��

−
1

2
1 2

2 2
1
2

 � � �

= − −
−

�

�
�
�

�

�
�
�1

1

2
2

2
x

x

x

=
−

−

�

�
�
�

�

�
�
�

1 2

1

2

2

x

x
...(ii)

∴ = + = +dy

dx

du

dx

dv

dx
1 2� � � �

=
−

−
−

−

�

�
��

�

�
�� < <

x x x

x

x

x
x

sec tan2

2

2

2

1 2

1
0 1,

3. y x x x= − +sin cos1 4
2 2

Solution: y x x x= − +sin cos1 4
2 2

Putting sin 1
2

− =x u  and x x v
2

4cos = ,  we

have y = u + v and 
dy

dx

du

dx

dv

dx
= +

Now, 
du

dx
x x x= −�

�
�
� ⋅ ⋅ − ⋅ −

−
cos 1

1

2
1 22 2

1
2 � 	 


=
− −

−

x x

x

cos 1

1

2

2 ...(i)

and 
dv

dx
x x x x= + − ⋅2 4 4 4

2
cos sin� �

= −2 4 4 4
2

x x x xcos sin ...(ii)

�

dy

dx

du

dx

dv

dx
= + = +1 2� � � �

=
− −

−
+ − <

x x

x
x x x x x

cos
cos sin

1

1
2 4 4 4 1

2

2

2 ,

4. y ax bx c ax bx c= + + + + +�
��

�
��cos sin

2 3 2
 �

Solution: y ax bx c ax bx c= + + + + +�
��

�
��cos sin

2 3 2
 �

Putting cos (ax2 + bx + c) = u  and

sin ax bx c
2

3

+ +�
��

�
��  = v, we have y = u + v and

dy

dx

du

dx

dv

dx
= +

Now, 
du

dx

d ax bx c

d ax bx c

d ax bx c

dx
=

+ +

+ +
⋅

+ +cos
2

2

2
 �

 �

 �

= –sin (ax2 + bx + c) · (2ax + b)
= – (2ax + b) sin (ax2 + bx + c) ...(i)

and 
dv

dx
=

d ax bx c

d ax bx c

d ax bx c

d ax bx c

sin

sin

sin2
3

2

2

2

+ +�
�

�
�

+ +�
�

�
�
⋅

+ +�
�

�
�

+ +�
�

�
�

⋅

d ax bx c

dx

2 + +�
��

�
��

= + + ⋅ + + ⋅3 2 2 2sin cosax bx c ax bx c

1

2
2

2
ax bx c

ax b
+ +

⋅ +� �
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=
+ ⋅ + +�
��

�
�� ⋅ + +�
��

�
��

+ +

3 2

2

2 2 2

2

ax b ax bx c ax bx c

ax bx c

� � sin cos

...(ii)

∴ = +dy

dx
i ii� � � �

= – (2ax + b) sin (ax2 + bx + c) +

3 2

2

2 2 2

2

ax b ax bx c ax bx c

ax bx c

+ + +�
�

�
� ⋅ + +�
�

�
�

+ +

	 
 sin cos
,

for ax2 + bx + c > 0.

Exponential Functions

We recall that exponential functions are differentiable
on any interval on which they are defined and their
derivatives are obtained by using the formula

d

dx
e e f x

f x f x� � � � � �= ⋅ ′

where the derivative ′f x� �  is obtained by using the
rule for differential coefficient or power, exponential,
logarithmic, inverse trigonometric, sum, difference,
product, quotient or composite of two or more than
two differentiable functions.

Note: If f (x) = x = an identity function,

d

dx
e e

x x
= ⋅

Solved Examples

Find the differential coefficient of the following.

1. y e
x

=
+

2
1

Solution: y e
x

=
+

2
1

⇒ =
+dy

dx

d

dx
e

x
2

1

⇒ =
+

⋅
+�

��
�
��

+
⋅ +

+
dy

dx

d e

d x

d x

d x

d

dx
x

x
2

1

2

2

2

2

1

1

1
1

 �
 �

= ⋅
+

⋅
+

e
x

x
x

2
1

2

1

2 1
2

=
⋅

+

+x e

x

x2 1

2 1

2. y e
x x

=
−

2
 �

Solution: y e
x x

=
−

2
 �

⇒ =
−dy

dx

d

dx
e

x x
2

 �

=
−

⋅ −
−

d e

d x x

d

dx
x x

x x
2

2

2
 �

 �
 �

= ⋅ −
�

�
�

�

�
�

−
e

d x

dx

dx

dx

x x
2 2 �

= ⋅ −
�
��

�
��

−
e

x
x

x x
2

1

2
2

 �
 for x > 0.

3. y e
x

=
cot� �2

Solution: y e
x

=
cot� �2

⇒ =
dy

dx

d

dx
e

xcot� �2

⇒ = ⋅ ⋅dy

dx

d e

d x

d x

d x

d x

dx

xcot

cot

cot

cot

cot	 


	 

	 


2

2

2

= ⋅ ⋅ −e x x
xcot

cot cosec
� �

 �
2

2
2
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= − ⋅ ⋅ ≠2
2

2cot coseccotx e x x nx	 
 , π

4. y e
x

=
−

sin
1 2

 �

Solution: y e
x

=
−

sin
1 2

 �

⇒ =
−

dy

dx

d

dx
e

xsin
1 2

 �

⇒ = ⋅ ⋅

−

−

−

−

−
dy

dx

d e

d x

d x

d x

d x

dx

xsin

sin

sin

sin

sin
1 2

1 2

1 2

1

1 �

 �

 �

= ⋅ ⋅
−

−
−

e x
x

xsin

sin

1 2

2
1

1

1

2

 �
 �

= ⋅

−
<

−
−

2sin
sin1

2

1 2

1
1

x e

x
x

x �
,

Logarithmic Functions

We recall that logarithmic functions are differentiable
on any interval on which they are defined and their
derivatives are

1.
d

dx
x

x
xlog� � = >1

0,

2.
d

dx
x

x
xlog	 
 = ≠

1
0,

3.
d

dx
f x

f x

f x
f xlog � �	 
 � �

� � � �=
′

>, 0

4.
d

dx
f x

f x

f x
f xlog � �	 
 � �

� � � �=
′

≠, 0

i.e. of some positive differentiable function of x, say f
(x) is under the sign of logarithm, its derivative found
using the chain rule for the derivative of the composite
differentiable function is

d

dx
f x

f x

f x
f xlog � �	 
 � �

� � � �=
′

>, 0

and if some differentiable function | f (x) |, provided
f x� � ≠ 0  at any point belonging to any interval on

which f (x) is defined is under the sign of logarithm,
its derivative found using the chain rule for the
derivative of the composite differentiable function is

d

dx
f x

f x

f x
f xlog � �	 
 � �

� � � �=
′

≠, 0 .

Remember: 1. The derivative 
d

dx
f xlog � �	 
  for

f (x) > 0 and/  
d

dx
f xlog � �	 
  for  f x� � ≠ 0  is called

logarithmic derivative of the function f (x). Further we

should note that either the derivative log f x� �	 
′

for f (x) > 0or the derivative log f x� �	 
′  for

f x� � ≠ 0  is equal to the ratio of the derivative
′f x� �  to the value of the function f (x); i.e. if y = f (x)

is a positive differentiable function of x and / y = f (x)
is a differentiable function of x such that f (x) may be

positive and negative both, then the ratio 
′f x

f x

� �
� �  is

obtained on finding the first derivative 
dy

dx
 and then

dividing it by the given value of the differentiable
function represented at f (x).
2. If some differentiable function of x is under the
sign of logarithm, it is pre-assumed (or, understood)
that f (x) is positive (i.e. f (x) > 0 is pre-assumed or
understood) or we have to mention that f (x) > 0 while
finding the logarithmic derivative, i.e. to differentiable
the function of x that can be put in the form:

log f (x) = a logarithm of the function of the
independent variable x, it is pre-assumed (or,
understood) that f (x) is a positive differentiable
function of x whenever no restriction (or, condition)
which makes f (x) positive is imposed on the
independent variable x or we have to mention that
f (x) > 0.
3. Logarithm of a function of x (or, logarithmic
function of x) put in the form log f (x) is not defined
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for f (x) < 0 at any point x belonging to any interval on
which it is defined. This is why we take the modulus
of the value of the function f (x) if the value of the
function concerned f (x) is negative at any point x
while finding the logarithmic derivative of the
differentiable function of x.
4. Sometimes we are given a differentiable function
of x under the sign of logarithm along with the interval
(or, the quadrant) in (or, on, or, over) which the value
of the differentiable function f (x) > 0 or the condition
imposed on the independent variable x (like x > a, x <
a, x a≥  etc.) which makes f (x) positive is given.

Notes: 1. If the value of the function f (x) is both
positive and negative in the interval (or, the quadrant)
in which it is defined, we take the modulus (or,
absolute value) of the value of the function f (x) only
when the function f concerned at x is to be positive as
in case of logarithmic differentiation.
2. By using the rules for differentiating the power,
exponential, logarithmic, trigonometric, inverse
trigonometric, sum, difference, product, quotient or
composite of two or more than two differentiable
functions, we are able to find the differential coefficient
of the value of the differentiable function f (x) written
under the sign of logarithm.

3. f x f x� � � �≠ ⇒ >0 0

On Types of Problems

In general there are two types of logarithmic functions
whose derivative is required to find out.
1. The value of a differentiable function f (x) written
under the sign of logarithm with or without an interval
(or, quadrant) in which f (x) is positive.
2. A differentiable function | f (x) | written under the
sign of logarithm.

Further we should note that type (1) has the
following forms:
(i) y = log f (x) and / y = log log … log f (x)
(ii) Power of logarithmic function, i.e. y = [log f (x)]n

and / y = [log log log … log f (x)]n

(iii) A logarithmic function with base other than ‘e’,

i.e. y f xx= logφ� � � � .

On Language

1. It is common to say “the function f (x) and / the
value of the function f (x) for the function f at (or, of)
x, the value of the function f at (or, of) x and / the
function of x namely (or, say) f (x)”.

Hence, we say 
′f x

f x

� �
� �  is the ratio of the derived

function ′f  at (or, of) x to the function f at x instead

of saying 
′f x

f x

� �
� �  is the ratio of the derived function

(or, derivative) ′f x� �  to the function (or, the value of
the function) f (x).
2. Plural of “a function of x” is functions of x’s. This
is why whenever we want to mention more than one
function of x, we write (or, say) functions of (or, at )
x’s. however, if f1 (x) is a differentiable function of x
and f2 (x) is also a differentiable function of x, we
write f1 (x) and f2 (x) are differentiable functions of x’s.

Problems based on first type

Form 1: Problems on the form
y = log f (x)

or, y = log log log …log f (x); f (x) > 0

Solved Examples

Find the differential coefficient of the following.

1. y
x

x
x=

+
−

�
��

�
�� < <log

tan

tan

1

1
0

4
,

π

Solution: y
x

x
=

+
−

�
��

�
��log

tan

tan

1

1

= + − −log tan log tan1 1x x� � � �

⇒ = + − −
dy

dx

d

dx
x

d

dx
xlog tan log tan1 1� � � �

=
+

+
−

sec

tan

sec

tan

2 2

1 1

x

x

x

x

=
− + +
+ −

�
�
�

�
�
�sec

tan tan

tan tan

2 1 1

1 1

x x

x x� � � �
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=
−

=

�

�
�

�

�
�

−�

�
�

�

�
�

2

1

2
2

2

2

2 2

2

sec

tan

cos

cos sin

cos

x

x

x

x x

x

=
−

=2 2

22 2
cos sin cosx x x

= < <2 2 0
4

sec x x,
π

2. y
x

x
x=

−
−

�
��

�
�� < <log

2 6

5
3 5,

Solution: y
x

x
x x=

−
−

�
��

�
��
= − − −log log log

2 6

5
2 6 5	 
 	 


⇒ = − − −dy

dx

d

dx
x

d

dx
xlog log2 6 5� � � �

=
−

− −
−

=
−

−
−

2

2 6

1

5

1

3

1

5x x x x

= −
− −

2

3 5x x� � � �

3. y x x= < <log cos , 0
2

π

Solution: y x= log cos

⇒ =
dy

dx

d

dx
xlog cos

= ⋅ −1

cos
sin

x
x� �

= – tan x

4. y x x x= + −�
��

�
�� >log

2
1 1,

Solution: y x x= + −�
��

�
��log

2
1

⇒ = + −�
��

�
��

dy

dx

d

dx
x xlog

2
1

=
+ −

⋅ + − ⋅
�
��

�
��

−1

1
1

1

2
1 2

2

2
1
2

x x
x x �

=
+ −

+
−

�

�
�
�

�

�
�
�

1

1
1

1
2 2

x x

x

x

=
+ −

− +

−

�

�
�
�

�

�
�
�

1

1

1

1
2

2

2
x x

x x

x

5. y x x a= + +�
�

�
�log 2 2

Solution: y x x a= + +�
��

�
��log

2 2

⇒ =
+ +

⋅ + + ⋅
�
��

�
��

−dy

dx x x a
x a x

1
1

1

2
2

2 2

2 2
1
2

 �

=
+ +

⋅ +
+

�

�
�
�

�

�
�
�

1
1

2

2
2 2 2 2

x x a

x

x a

=
+ +

⋅
+ +

+

�

�
�
�

�

�
�
�

1
2 2

2 2

2 2
x x a

x a x

x a

=
+

1
2 2

x a

6. y = log [log (cot x)]
Solution: y = log [log (cot x)]

⇒ = ⋅ ⋅ −dy

dx x x
x

1 1 2

log cot cot
cosec �

=
−

⋅
>

cosec

cot log cot
; cot

2

1
x

x x
x� �
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7. y = log [log (log x)]
Solution: y = log [log (log x)]

⇒
dy

dx

= ⋅ ⋅
d x

d x

d x

d x

d x

dx

log log log

log log

log log

log

log� �
� �

= ⋅ ⋅1 1 1

log log logx x x� �

= ⋅ ⋅1 1 1

x x xlog log log
;

� �  for x > 0 i.e. when y is

defined.
8. y = log log log log log x5

Solution: y = log log log log log x5

⇒ =
dy

dx

d x

dx

log log log log log
5

= ×
d x

d x

log log log log log

log log log log

5

5

d x

d x

log log log log

log log log

5

5
×

d x

d x

log log log

log log

5

5
×

d x

d x

log log

log

5

5
×

d x

d x

log 5

5
× d x

d x

5

=
⋅ ⋅ ⋅

5
4

5 5 5 5

x

x x x x xloglogloglog logloglog loglog log �  �  �

=
⋅ ⋅ ⋅

5
5 5 5

x x x x xloglogloglog logloglog loglog log �  �  �
for all those values of x at which y is defined.

Form 2: Problems on the form
y = [log f (x)]n

or, y = [log log log … log f (x)]n

Solved Examples

Find the differential coefficient of the following.
1. y = (log x)3; x > 0
Solution: y = (log x)3

⇒ = = ⋅dy

dx

d

dx
x

d x

d x

d x

dx
log

log

log

log� � � �3
3

⇒ = ⋅ =dy

dx
x

x

x

x
3

1 32
2

log
log� � � �

=
3

2
log x

x
.

2. y = [log (cos x)]4

Solution: y = [log (cos x)]4

⇒ =
dy

dx

d

dx
xlog cos� � 4

= ⋅ ⋅
d x

d x

d x

d x

d x

dx

log cos

log cos

log cos

cos

cos� �
� �

� �4

= ⋅ ⋅ −4
13

log cos
cos

sinx
x

x� � � �

= − ⋅4
3

log cos
sin

cos
x

x

x
� �

= − ⋅4
3

log cos tan ;x x� �  where cos x > 0.

3. y x x= − < <log cos3 �
2

2 2
,

π π

Solution: y = [log (cos3 x)]2

⇒ =
dy

dx

d

dx
xlog cos3 �

2

= ⋅ ⋅ ⋅
d x

d x

d x

d x

d x

x

d x

dx

log cos

log cos

log cos

cos

cos

cos

cos
3

3

3

3

3 �

 �
 �

2

= ⋅ ⋅ −2
3 2 2

log cos
cos

cos
sin3

3
x

x

x
x � 	 


= − ⋅6log cos
sin

cos
3 x

x

x
 �

�cot x > 1 ⇒  log cot x > 0

⇒  log log cot x is defined
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= − ⋅ − < <�
��

�
��6

2 2
log cos tan ;3 x x x �

π π

Remember:
f (x) · f (x) · f (x) … up to n times = [f (x)]n = f n (x).

Problems on Second Type

Form 1: Problems on the form
y = log | f (x) | and y = log log log … log | f (x) |;

f x	 
≠0

Solved Examples

Find the differential coefficient of the following

1. y
a b x

a b x
x

a

b
=

+
−

≠log
tan

tan
; tan

Solution: y
a b x

a b x
=

+
−

log
tan

tan

⇒ =
+
−

�
��

�
��

dy

dx

d

dx

a b x

a b x
log

tan

tan

=
−
+

⋅
a b x

a b x

tan

tan

� �
� �

a b x b x a b x b x

a b x

− − + −

−

tan sec tan sec

tan

� � � � � �
� �

2 2

2

=
−
+

⋅
a b x

a b x

tan

tan

� �
� �

 
a b x b x a b x b x

a b x

− + +

−

tan sec tan sec

tan

� � � � � �
� �

2 2

2

=
−
+

⋅
− + +

−

a b x

a b x

b x a b x a b x

a b x

tan

tan

sec tan tan

tan

� �
� �

� �
� �

2

2

=
+ −

2
2

a b x

a b x a b x

sec

tan tan� �� �

=
−

2
2

2 2 2

a b x

a b x

sec

tan

2. y = log log | x |, | x | > 1
Solution: y = log log | x |

⇒ =
dy

dx

d

dx
xlog log	 


= ⋅ =1 1 1

log logx x x x

3. y = log | (x3 + 1) |
Solution: y = log | (x3 + 1 ) |

⇒ = +�
�

�
�

dy

dx

d

dx
xlog

3
1

=
+

⋅ =
+

≠ −
1

1
3

3

1
1

3
2

2

3x
x

x

x
x

 �  �
for

4. y = log | tan (1 – x2) |, | x | < 1
Solution: y = log | tan (1 – x2) |

⇒ = −�
�

�
�

dy

dx

d

dx
xlog tan 1

2
 �

=
−

⋅ − ⋅ −
1

1
1 2

2

2 2

tan
sec

x
x x

 �
 � � �

=
− −

−

2 1

1

2 2

2

x x

x

sec

tan

 �
 �

= − −2 1 12 2x x xsec cosec �  �
5. y = log | sin x|, x a≠  multiple of π
Solution: y = log | sin x |, x n n Z≠ ∈π ,

⇒ =dy

dx

d

dx
xlog sin	 


= ⋅1

sin
cos

x
x

= = ≠ ∈
cos

sin
cot

x

x
x x n n Z, ,π

Form 3: Problems on the form:

y f xx= logφ� � � �
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Working rule: To differentiate a logarithm of function
of x whose base is another function of x, we adopt
the following working rule.

Step 1: Write y
f x

x

f x

x
e

e

= =
log

log

log

log

� �
� �

� �
� �φ φ

Step 2: Differentiate y
f x

x
=

log

log

� �
� �φ

 w.r.t. x by using

the rule for differentiating the quotient of two
differentiable functions.

i.e. ′ = ′ − ′
y

D N N D

D
2

Remember: log
log

log

log

logb
e

e

a
a

b

a

b
= =

Solved Examples

Find the differential coefficient of the following.

1. y x xx= + < <log tan ;sin 1 0
2

	 
 π

Solution: y xx= +log tansin 1� �

⇒ =
+

y
x

x

log tan

log sin

1� �

⇒ dy

dx

=
⋅ + − + ⋅logsin log tan log tan logsin

logsin

x
d

dx
x x

d

dx
x

x

1 1

2

� � � �

� �

=
+
�
��

�
��⋅ − + ⋅ ⋅ −logsin

tan
sec log tan

sin
cos

log sin

x
x

x x
x

x

x

1
1

1
12

2

� � � �

=

⋅
+

+
⋅ +sec log sin

tan

cos log tan

sin

log sin

2

2

1

1x x

x

x x

x

x

� �
� �

2. y = logx (1 + x), x > ≠0 1,

Solution: y = logx (1 + x)

⇒ =
+

y
x

x

log

log

1� �

⇒ =
+

−
+

dy

dx

x

x

x

x

x

log log

log

1

1

2

� �

� �

= ⋅
+

−
+�

��
�
��

1

1

1
2log

log log

x

x

x

x

x� �
� �

Exercise Set on

Composition of two differentiable functions
Form: y = (any differentiable function of x)n

or, y = f1 f2 (x)

Exercise 9.1.1

Find 
dy

dx
 of each of the following functions.

1. y = (3x + 1)4

2. y = (7x2 + x)2

3. y x= −1
2

4. y x ax a= + + <2 21 4;

5. y = (x3 + 1)5

6. y x x= + +7 11 39
2

3
2

 �

7. y a bx= −

8. y
p qx

=
−

1
3
4� �

9. y
l mx

n Zn
=

−
∈1

	 

,

10. y = (3x – 7)12

11. y = (5x5 – 3x)24

12. y = (4x + 3)–5

13. y = (3x2 + 2x + 1)8
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14. y x
x

= +��
�
�

1 2

15. y x= +3 4
2

5
2

 �

16. y x= +3 5
2

17. y = (1 – x)6

18. y
x x x

x=
+ − +

>1

3 4 5 7 6
0

3 2
;

19. y x x x x= + + + > −1 2 3 1	 
	 
	 
 ;

Answers
1. 12 (3x + 1)3

2. 2 (7x2 + x) 14 + 1

3.
−

−
<2

2 1
1

2

x

x
x;

4.
2

2 1
2

x a

x ax

+

+ +

� �

5. 5 (x3 + 1)4 · 3x2

6. 3

2
7 11 39 14 11

2
1
2

x x x+ + ⋅ + � � �

7.
−
−

<
b

a bx
x

a

b2
;

8.
3

4

7
4⋅ ⋅ − <−

q p qx x
p

q
	 
 ;

9.
m n

l mx
x

l

m
n

n

⋅

−
≠ >+	 
 1

0; if

10. 36 (3x – 7)11

11. 24 (10x – 3) (5x2 – 3x)23

12. –20 (4x + 3)–6, x ≠ −4

3

13. 16 (3x + 1) (3x2 + 2x + 1)7

14. (2x – 2x–3) x ≠ 0

15. 15 3 4
2

3
2

x x + �

16.
3

3 5
2

x

x +

17. –6 (1 – x)5

18.

− + −�
��

�
��

+ − +�
�

�
�

4
10
3

7
3

2 4 5 7 6

2

3 2
3

x x

x x x

19.
3 12 11

2 1 2 3

2
x x

x x x

+ +

+ + +� � � �� �

Exercise 9.1.2

Find 
dy

dx
 of each of the following.

1. y = sin x3

2.  y = tan x2

3. y = sin (cot x)
4. y= sin (sec x)
5. y = sin 5x
6. y= cos 2x
7. y = sin x2

8. y x= sin

9. y
x

= �
�
�
�sin

2

10. y = cot 2x
11. y = cot (1 – 2x2)
12. y = cos (1 – x2)

13. y x=
−

sin
1

14. y x=
−

cos
1

15. y x=
−

tan
1

16. y
x

x
x=

−
+

�
��

�
��

≤ <cosec
1

1
0 1,
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17. y
x

x
=

+
−

�
��

�
��sin

2 7

1 2

18. y
x

= �
��
�
��sin

1

Answers
1. 3x2 cos x2

2. 2x sec2 x2, x n n Z2

2
≠ + ∈π π

,

3. –cos cot x · cosec2 x, x n≠ π

4. cos (sec x) (sec x · tan x); x n≠ +π π
2

5. 5 cos 5x
6. –2 sin 2x
7. 2x cos x2

8.
cos x

x2
, x > 0

9. −

�

�

�
�
�

�

�

�
�
�

≠
2

2

0
2

cos
x

x
x,

10. –2 cosec2 2x, x
n

≠
π
2

11. –4x cosec2 (1 – 2x2)
12. 2x sin (1 – x2)

13.
1

2

1

1
0 1

1 2sin−
⋅

−
< <

x x
x,

14.
1

2

1

1
1

1 2cos
;

−
⋅ −

−

�

�
��

�

�
�� <

x x
x

15.
1

2

1

1
0

1 2
tan

;
−

�

�
��

�

�
�� +

�
��

�
��

>
x x

x

16.
2

1

1

1

1

12x

x

x

x

x+
⋅

−
+

�
��

�
�� ⋅

−
+

�
��

�
��� �

cosec cot

17.
16

1 2

2 7

1 2

1

22−
⋅

+
−

�
��

�
��

≠
x

x

x
x

	 

cos ,

18. − ⋅
�
��
�
�� >

1

2

1
0

x x x
xcos ,

Exercise Set on

Composition of more than two differentiable functions
Form 1: y = f1 f2 f3 … fn f (x)
or, y = (f1 f2 f3 … fn f (x))n

Exercise 9.2.1

1. y x= +cosec 3 4 �

2. y x= cot sin �
3. y = cot (tan x)
4. y = sin2 x2

5. y = cos2 x2

6. y = tan3 x2

7. y = (log x2)2

8. y x=
−

sec
1 2

9. y x=
−

cosec
1 2

10. y x=
−

sin
1 3

11. y = (tan–1 x3)2

12. y = (sec–1 xm)n

13. y = (cos–1 xp)q

14. y x=
−

cot
1 3

1
3

 �

15. y e
x

=
−

cot
1

16. y = secn (ax2 + bx + c)

17. y x= +cos 3 4
2

 �
18. y = secn (m x)
19. y = tan–1 (4ex + 3)2

20. y = sec3 (m sin–1 x)
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21. y = cos5 (log tan2 x3)4

22. y x= sin sin �

23. y x= tan tan� �
24. y = (sin (log x))2

Answers (under suitable restrictions on x)

1. − + ⋅ +�
��

�
�� ⋅ +

3

2
3 4 3 4

1

3 4
cosec cotx x

x

2. − ⋅1

2

2

x
x xcosec sin cos �

3. –cosec2 (tan x) sec2 x
4. 4x sin x2 cos x2

5. –4x cos x2 sin x2

6. 6x tan2 x2 sec2 x2

7.
4 2

x
xlog

8. 1

2

1

1
2

1 2 2 4sec−
⋅

−
⋅

x x x
x

9.
−

⋅ −−

1

11 2 4x x xcosec

10.
3

2

1

1

2

1 3 6

x

x xsin
−

⋅
−

11.
6

1

2 1 3

6

x x

x

tan
−

+

12.
m n x x

x x

m m n

m m

⋅ ⋅ ⋅

−

− − −1 1 1

2 1

sec �

13.
−

−

− − −
pq x x

x

p p q

p

1 1 1

21

cos �

14.
−

+

− −
x x

x

2 1 3

6

2
3

1

cot �

15.
−

�
��

�
�� +−

e

e e

x

x x
2 1

1 2
cot  �

16. n (2ax + b) secn (ax2 + bx + c) tan (ax2 + bx + c)

17.
− +

+

3 3 4

3 4

2

2

x x

x

sin

cos

 �

 �

18. m · n secn (m x) tan m x

19.
8 4 3

1 4 3
4

e e

e

x x

x

+

+ +

 �

 �

20.
3

1

3 1 1

2

m m x m x

x

sec sin tan sin− −

−

 �  �

21. −120
2 4 2 3 4 2 3

x x xcos log tan sin log tan �  �

log tan
sec

tan
2 3

3 2 3

3
x

x

x
 � �

�
��

�
��

22.
cos cos sin

sin sin

x x

x x

⋅

⋅

 �

 �4

23.
sec

2 2

2

x x

x

sec tan

tan tan

� �
� �

24. 2
12

sin log cos logx x
x

� �	 
 � �⋅ ⋅

Exercise 9.2.2

Find 
dy

dx
 of each of the following functions.

1. y x= sin cos tan

2. y = sin cos tan cot x
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3. y x= +cos tan 1

4. y = cos sin log x

5. y e
x

=
−

sin tan
1

2 �

6. y = cot sin cos x
7. y = log log log x (x > 0)
8. y = log sin x2

9. y e
x

=
tan

10. y = log (tan–1 x2)

11. y e
x

=
−

tan
1 2

 �

12. y mx= sin cos tan , m > 0

13. y = sin cos tan sec x

Answers (under proper restrictions on x)

1. – cos cos tan sin tan secx x x
x

 � � ⋅ ⋅2 1

2

2. (–cos cos tan cot x) · (sin tan cot x) (sec2 cot x)
· cosec2 x

3. − + ⋅ + ⋅
+

sin tan secx x
x

1 1
1

2 1

2
 �  �

4. − ⋅ ⋅sin sin log cos logx x
x

� � � � 1

5. e x
x

xsin tan
cos tan

−

⋅ ⋅
+

−
1 2 1

2
2

2

1 4

 �  �

6. (cosec2 sin cos x) · (cos cos x) · sin x

7.
1 1 1

log log logx x x
⋅ ⋅

8.
2

2

2

x x

x

cos

sin

9.
1

2

2
sec cot

tan
x x e

x
⋅

10.
2

1
4 1 2

x

x x+
−

 � tan

11.
2

1

1 2

4

x e

x

xtan−

+

12.
−

⋅ ⋅
m

x
mx mx mx

2

2
sec sin tan cos cos tan �  �  �

13. –sec x · tan x · (sec2 sec x) · (sin tan sec x) · (cos
cos tan sec x)

Form 2:

f f f f x1 2 3 ... � �

Exercise 9.3

Find 
dy

dx
 of the following functions.

1. y ax= sin cos

2. y mx= sin cos tan

3. y x= sin

4. y x= cos

5. y x= tan

6. y x= log

Answers (under suitable restrictions on x)

1.
− ��

�
� ⋅

�
�

�
� ⋅

a ax ax

ax ax

cos cos sin

cos

 �

 �4

2.
− �
�

�
� ⋅

�
�

�
�

m mx mx mx

mx mx

cos cos tan sin tan sec

cos tan tan

 �

 �

2

4

3.
cos

cos

x

x x4
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4.
−sin

cos

x

x x4

5.
sec

tan

2

4

x

x x

6.
1

4x xlog

Form 3:

y f x f x f x= + + +1 2� � � � � �...

Exercise 9.4

Find 
dy

dx
 of each of the following functions

1. y x x x= + +sin sin sin

2. y x x x= + +cos cos cos

3. y x x x= + +

4. y x= +2 2

5. y ax= +a

Answers
Hint: In the above problems, we may use directly the
chain rule without making any substitution as

1.

d x x x

d x x x

sin sin sin

sin sin sin

+ +�
��

�
��

+ +�
�

�
�

⋅

d

dx
x

d x x

d x x

d x

dx
sin

sin sin

sin sin

sin� �
 �

+
+

+

�

�
��

�

�
��

�
��

��
⋅ +�
��

d x

d x

d x

dx

sin

sin

sin
⋅ �

��
���

Required Answer

1.
1

2
cos

sin sin sin
x

x x x

1

+ +

�

�

�
��

�

�

�
��
⋅

 
1

1

2

1

4
+

+
+

+�
�

�
�

�

�

�
��

�

�

�
��sin sin sin sin sinx x x x x

2. Find
3. Find

4.
1

2 2 2 2x x+ �

5.
a

ax a ax4 + �

Form 4:

... f x� � , f (x) being a differentiable function

of x.

Exercise 9.5

Find 
dy

dx
 of each of the following functions.

1. y x= sin

2. y x=

3. y x= 2

Answers (under suitable restrictions on x)

1.
cos

sin sin

x

x x4 ��
�
�  �

2.
1

4 x x�
�

�
� ⋅  �
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3.
x

x x2
2 2�

��
�
��
�
��

�
��

 or 
x

x x2  �

� x x x
x

x
x

2
0= ′ = ≠

�
��

�
��and ,

Form 5:

(a) y f x f x g x g x= ⋅ ± ⋅1 2 1 2� � � � � � � �

(b) y f x f x
g x

g x
= ⋅ ±1 2

1

2

� � � � � �
� �

(c) y f x
g x

g x
= ⋅ ±1

1

2

� � � �
� �

(d) y f x g x g x= ± ⋅1 1 2� � � � � �

Exercise 9.6

Find 
dy

dx
 of each of the following functions.

1. y = x sin log x – x cos log x, x > 0

2. y x x x x x x= + − − <−sin sin–1 �
2 2 12 1 2 1,

3. y x x x x x= − + −�
��

�
�� >

−
sec log

1 2
1 1,

4. y x x
x

x= + − �
�
�
� ∀

−
log tan

2 1
4

2
 � ,

5. y x x x x x= + + + +�
�

�
� ∀2 21 1log ,

6. y
x

x

x

x
=

+ −

+ +

�
�
�

�
�
� +

+
log

1 1

1 1 1

7. y
x

x
x=

−
+ +5

1
2 1

23

2
cos � �

8. y
x

a x
a

x x a= + + + +�
��

�
��2 2

2 2
2

2 2
log

9. y
x

x a
a

x x a= − − + −�
��

�
��2 2

2 2
2

2 2
log

10. y
x

x
x= − +

cos

sin
cot

3

3 3

11. y
x

x= − +1

2
2

sin
log tan

12. y
x x

x
= −1

2 2

1

2 2
log tan

cos

sin

Answers
1. 2 sin log x, x > 0

2. sin
− <1 2

1x x � ,

3. sec
− >1

1x x,

4. − �
�
�
� ∀

−
tan

1

2

x
x,

5. 2 1
2

x x+ ∀,

6.
1

1

1 1

2 1x x x x+
× +

+

�

�
�
�

�

�
�
�	 


7.
5 3

3 1
2 4 2

2

2
4
3

−

−
− +

x

x
x

 �

 �
	 
sin

8. a x
2 2
+

9. x a
2 2
−

10.
cos

sin

2
4

x

x

11.
1

3sin cosx x⋅

12.
1
3

sin x
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Form 5: continued
Problems based on combination composite
differentiable functions of x’s.

Exercise 9.6.1

Find dy

dx
 of each of the following functions.

1. y = sin log x – log sin x

2. y x x= +sin cos
2

3. y ax bx c ax bx c= + + + + +�
��

�
��cos sin

2 3 2
 �

4. y x e
x= −log log

5

5. y x x= −cot tan
3

Answers

1.
1

x
x xcos log cot−

2.
1

2
1 2

x
x xcos sin− �

3. − + + + + + + ⋅2
3

2

2 2 2
ax b ax bx c ax bx c� �  �sin sin

cos ax bx c
ax b

ax bx c

2

2

2
+ + ⋅

+

+ +

� �

4.
1

5
5

x x
e

x

log
−

5. − ⋅ − ⋅3
1

2

2 2 2
cot cosec secx x

x
x

Exercise 9.6.2

Find 
dy

dx
 of each of the following functions

1.  y = sin2 3x cos3 2x
2. y = x2 cot 2x

3. y = x2 sec2 x
4. y = x3 cosec3 x

5. y e xx= log cos

6. y x x= cos log sin �

7. y x x
m n= ⋅sin cosα β

8. y = sin (2x + 3) · cos2 (3x + 4)

9. y e x
x

= log cos �

10. y e x
x

= sin

Note: This type of problems can be done using the
rules of logarithmic differentiation.

Answers (under proper restrictions on x)
1. 6 sin 3x cos2 2x cos 5x
2. 2x (cot 2x –x cosec2 2x)
3. 2x sec2 x (1 + x tan x)
4. 3x2 cosec3 x (1 – x cot x)

5.
1

2 x
e x e x

x x
log cos tan−

6. cot cos sin log sinx x
x

x x− 1

2

7. sin cos cos cosm nx x m x x− − −1 1α β α α β	
n x xβ α βsin sin �
8. 2 cos (3x + 4) cos (2x + 3) – 3sin (2x + 3) sin (3x + 4)

9.
e x

x
x x

2
log cos tan− �

10.
1

2 x
e x x

x
cos sin+ �

Exercise 9.6.3

Find 
dy

dx
 of each of the following functions

1. y
x x

x
=

−2
3
2sin� �
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2. y
e

x

x

=
+

−
tan

1

1
2

3. y
x x

x e x
=

+ −

+

1 1

4

2

2

	 

	 


4. y
x

x
=

+
sin

cos

6

1 6

5. y
e

x

x

=
−

−
sin

1

1
2

6. y
m x

n x
=

sin

cos

7. y
x

x
=

sin

cos

4

5

8. y
x

x
=

−
+

cos

sin

3 2

3 2

� �
� �

9. y
ax

bx

m

n
=

cos

sin

	 

	 


10. y
x

x
=

+
tan

sec

2

1� �
Note: This type of problem can also be done using
the rules of logarithmic differentiation.

Answers

1.
1

2 3
x x

x x x x x x− + −cos sin sin� �

2.
e x

x

xtan
−

−

+

1

1 2

1
2 2

� �

 �

3.
x x

x e

x

x

x

xx

+ −

+ ⋅

−

−
−

+
+

�

�

�
�
�

�

�

�
�
�

1 1

4

5 3

2 1

6

4

2

2 2

� �
� �  �

4. 6 cosec 6x (cosec x – cot 6x)

5.

e x x

x

xsin
−

+ −�
��

�
��

−

1

3
2

1

1

2

2
 �

6. m cos mx sec nx + n sin mx sec nx tan nx
7. (4 sin3 x sec4 x + 5 tan5 x sec x)
8. [2 sin (3 – 2x) – 2cos (3 – 2x) cot (2x + 3)] cosec
(2x + 3)

9. − + ⋅
�

�
�

�

�
�

−

+ma a x b x bn b x a x
ax

bx

m

n
sin sin cos cos

cos

sin
� �

1

1

10. 2 sec2 2x cos (x + 1) – tan 2x sin (x + 1)

Exercise 9.6.4

Find 
dy

dx
 of each of the following functions.

1. y x x= − ⋅ +1 13 2	 
 	 


2. y x x= +1 2

3. y x x x= + +
5 2 3

3 2 �

4. y x x= −2 2
2

5. y x x= −3 2
2

6. y x x x= − − +1 2 2
2� �

7. y x x c= +
2 2

Answers

1. x x x+ + −1 5 1 1 2� �� �� �

2.
1 3

1 2

+
+

x

x

3. x x x x x4 2 2 23 2 11 24 10+ + + + �  �
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4.
x x

x

8 5

2

−
−

� �

5.
3 4

3 2

2

2

−

−

x

x

6.
2 4 3

2 2

2

2

x x

x x

− +

− +

7.
x

x e
x c

2

2 2

2 2

+
+ +

Exercise 9.6.5

Find 
dy

dx  of each of the following functions.

1. y
x

x
=

+ 1

2. y
x

x
=

− −
+ +

1 1

1 1

3. y
x

a x

=
−2 2

3
2

 �

4. y
x

x
=

−
+

1

1

5. y
x

x
=

+
+

1 3

1 2

6. y
x x

x
=

−
−

8 5

2

� �

7. y
x

x
= −

−

3 4

3 2

2

2

8. y
x x

x x
=

− +

− +

2 4 3

2 3

2

2

9. y
x

x
=

−
+

1

1

10. y
x

x
=

−1
2

11. y
x

x
=

−1 4
2

12. y
x

x
=

+

3

1 3
1
2	 


13. y
x

x
=

+
+

1

2

14. y
x

x
=

−
−

1

1

2

15. y
x x

x x
=

− −

− −

1 2

3 4

� �� �
� �� �

Answer (under proper restrictions on x)
1. Find
2. Find
3. Find

4.

−
+
−

+
−
+

�
�
�
�

�
�
�
�

+

1
2

1

1

1

1

1

x

x

x

x

x� �
5. Find
6. Find
7. Find
8. Find

9.
1

1 12x x+ −	 
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10.
1

1 2
3
2− x �

11.
1

1 4
2

3
2− x �

12.
3 2 3

2 1 3
3
2

−

+

x

x

	 

	 


13.
1

2 2 3 2
2+ + +x x x� �

14.
1

1 1
2− −x x� �

15.
− − +

− − ⋅ − −

2 10 11

3 4 1 2

2

3
2

1
2

x x

x x x x

 �

� �� � � �� �

Form 6: Problems based on exponential functions
of x’s having the form y = ef (x), where f (x) stands for
any one of the elementary functions of x’s (like sin x,
cos x, tan x, cot x, sec x, cosec x, sin–1 x, cos–1 x,
tan–1 x, cot–1 x, sec–1 x, cosec–1 x, xn log x, ex or their
combination) or composite of a differentiable function
of a differentiable function … of a differentiable
function of x.

Exercise 9.7

Find 
dy

dx
 of each of the following functions.

1. y e
x

=
− 2

2. y e
x

=
3

3. y e
x= sin

4. y e
x

=
−3

2

5. y e
x

=
+1

2

6. y e
x x

=
− +3 6 2

2
 �

7. y e
x= tan

8. y e
x

=
−

cos
1

9. y e
x

=
−

cot
1

10. y e
x

=
−

sin
1

11. y e
x

=
−

sec
1

12. y e
x

=
−

sin
1 2

 �

13. y e
x

=
cot

14. y e
x

=
cosec

2

15. y e
x

=

16. y e
x

= −

17. y e
x

=
2

18. y x e
x= ⋅ 2

Answers (Under proper restrictions on x)

1.
−

−
e

x
2

2

2. 3
2

3

x e
x

⋅

3. cos
sin

x e
x⋅

4. − ⋅
−

6
3

2

x e
x

5.
x

x
e x

1 2

1 2

+
⋅ +
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6. 6 1
3 6 2

2

x e
x x

−
− +

� �
 �

7. sec
tan2

x e
x⋅

8.
−

−

−

e

x

xcos
1

1
2

9.
−

+

−

e

x

xcot
1

1
2

10.
e

x

xsin
−

−

1

1
2

11.
e

x x

xsec
−

−

1

2
1

12.
2

1

1

2

21sin sin
−

−

�
��

�
��

−x

x
e

x

13.
− ⋅e x

x

xcot
cosec

cot

2

2

14.
− ⋅ ⋅cosec cot2 cosecx x e

x

x2

15.
e

x

x

2

16.
−e

x

x

2

17.
2

2
0

2

2

x e

x

x e

x
x

x x

or , ≠

18. e x
x2

2 1+� �

Form 7: Problems based on logarithmic functions of
x’s having the form:

y = log f (x), where f (x) stands for any one of the
elementary functions of x’s (like sin x, cos x, tan x,
cot x, sec x, cosec x, sin–1 x, cos–1 x, tan–1 x, cot–1 x,
sec–1 x, cosec–1 x, xn, log x, ex or their combination) or
composition of a differentiable function of a
differentiable function of … of a differentiable function
of x.

Exercise 9.7.1

Find 
dy

dx
 if

1. y x x= + +�
��

�
��log 1

2

2. y = log (x + 3)2

3. y = log sin2 x
4. y = log sin 3x

5. y
x

= �
�
�
�log tan

2

6. y = log 4x
7. y = log x2

8. y = log (5x – 14)
9. y = log (xn + a)
10. y = log (ex + 1)
11. y = log (ex + e–x)
12. y = log (cos x + 3)
13. y = log sin x
14. y = log tan x
15. y = log tan–1 x
16. y = log log tan–1 x

17. y
x

= +�
�

�
�log tan

π
4 2

18. y
x

x
=

+ −
+ +

�
��

�
��

log
4 9

4 9

19. y
x x

x x
= + +

− +
log

1

1

2

2
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20. y
a x b x

a x b x
=

−
+

log
cos sin

cos sin

21. y
x

x
=

−
+

log
1 4

1 4

22. y x x= − +�
��

�
��log 1

2

23. y x x= − −�
��

�
��log

2
1

24. y
x

x
=

−
+

log
cos

cos

1

1

25. y
x x

x x
=

+ −

− −

�

�
�
�

�

�
�
�log

2

2

1

1

26. y
ax

ax
=

+
−

log
1

1

27. y
x x

x x
=

+ − −
+ + −

�
��

�
��

log
1 1

1 1

28. y x x= ⋅log log
2

Answers (under proper restrictions on x)

1.
1

1
2+ x

2.
2

3x +
3. 2 cot x
4. 3 cot 3x

5.
1

2 2 2
sec cosec cosec

x x
x, =

6.
1

x

7.
2

x

8.
5

5 14x −

9.
n x

x a

n

n

−

+

1

10.
e

e

x

x
+ 1

11.
e e

e e

x x

x x

−

+

−

−

12.
−

+
sin

cos

x

x 3

13. cot x

14.
1

sin cosx x

15.
1

1
2 1

+
−

x x � tan

16.
1

1
2 1 1

+
− −

x x x � tan log tan

17. sec x

18.
9

77 4x x− +� �

19.
1

1

2

4 2

−

+ +

x

x x

20.
−

−

ab

a x b x
2 2 2 2

cos sin �

21.
4

16 1
2

x −

22.
−

−

1

1
2

x
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23.
−

−

1

1
2

x

24. cosec x

25.
2

1
2

x −

26.
a

a x1
2 2

−

27.
1

1
2

x x−

28.
2 log x

x

Exercise 9.7.2

Find 
dy

dx
 if

1. y = log ( 3x – 2)
2. y = log sec x
3. y = log cosec 2x

4. y x= +log
2

1

5. y = log log x
6. y = log (sec x + tan x)
7. y = log sin x
8. y = log (cosec x – cot x)
9. y = log sin–1 x
10. y = log cos x2

11. y = log cos–1 x4

12. y = log sin 2x
13. y = log log log x3

14. y ex= log sin
2

15. y = log sin (x2 + 1)

16. y x x= + +�
��

�
��log

2
1

17. y x x= + −�
��

�
��log

2
1

18. y
x

x
=

+
−

�
��

�
��log

sin

sin

1

1

19. y
a b x

a b x
=

+
−

�
��

�
��log

tan

tan

20. y
x

x
=

+
−

log
1

1

21. y
x x

x x
=

+ ⋅ +

+ ⋅ −

�

�
�
�

�

�
�
�

log
4 1 3 2

2 3 6 4

1
4

1
3

1
2

1
6

� � � �
� � � �

22. y
x x

x
=

− ⋅ −

−

�

�
�
�

�

�
�
�

log
1 2 3

2

2 3

5

� � � �
� �

23. y
e

e

x

x
= −

+

�

�
�

�

�
�log

1

1

24. y
x x

x
=

⋅ +

+

�

�
�
�

�

�
�
�

log
2 2

33

1

2

25. y
x x

x x
=

+ −

+ +

�

�
�
�

�

�
�
�

log
1

1

2

2

Answers (under proper restrictions on x)

1.
3

3 2x −
2. tan x
3. –2 cot 2x

4.
x

x
2

1+

5.
1

x xlog

6. sec x
7. cot x
8. cosec x
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9.
1

1
1 2

sin
− −x x

10. −2
2

x xtan

11.
−

−−

4

1

3

1 4 8

x

x xcos

12. 2 cot 2x

13.
3

3 3x x xlog log log

14.
2

2 2

2

x e e

e

x x

x

cos

sin

15.
2 1

1

2

2

x x

x

cos

sin

+

+

 �

 �

16.
1

1
2+ x

17.
1

1
2

x −

18. 2sec x

19.
2

2 2 2 2

ab

a x b xcos sin−

20.
1

1
2

− x

21.
1

4 1

1

3 2

1

2 3

1

6 4x x x x+
+

+
−

+
−

−

22.
2

1

6

2 3

5

2x x x−
+

−
+

−

23.
2

1
2

e

e

x

x
−

24.
2

1 2
2

2

3x

x

x

x

x
+

+
−

+

25.
−

+

2

1
2

x

Exercise 9.7.3

Find 
dy

dx
 if

1. y = log | cos (ax + b) |
2. y = log | x2 – 6 |
3. y = log | tan x |
4. y = log | x |

Answers

1. − + + ≠ +a ax b ax b ntan	 
 , π π
2

2.
2

6
6

2

x

x
x

−
≠ ±,

3.
sec

tan

2

2

x

x
x n, ≠

π

4.
1

0
x

x, ≠

Exercise 9.7.4

Differentiate the following w.r.t. x

1. y x x= < <�
�

�
�log cos , 0

2

π

2. y x x e= < <�
�

�
�tan log , 0 2

π

3. y x x= >sin log , 0� �

4. y
x

x x
x=

+
>

log

log1
0, � �

5. y
x x

x
x=

+
>

sin

log1
0, � �
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6. y x x= − < <�
�

�
�log cos� � 2

2 2
,

π π

7. y x x a= + +�
�

�
�log 2 2

Answers
1. –tan x

2.
1 2

x
xsec log� �

3.
1

x
xcos log� �

4.

1

1

2

2
x

x

x x

− log

+ log

� �

� �

5.
x x x x x

x

cos log sin log

log

1

1 2

+ +

+

� �
� �

6. −2 tan log cosx x� �

7.
1

2 2
x a+
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10

Differentiation of Inverse
Trigonometric Functions

Differentiation of Inverse Circular Functions

Before explaining the techniques of finding the
differential coefficient of inverse circular functions,
we recall the definition of an inverse of a function
which tells us that the mapping must be one-one and
onto in order that an inverse of a function should
exist. Hence, to make the trigonometric functions one-
one and onto, we restrict the domain of each
trigonometric function by the principal values of the
angle (i.e., the smallest positive value of the angle or
the smallest numerical value of the angle) because
each trigonometric function is a many valued function
and a many valued function has no inverse.

Definitions:

1. We define sin
−1

x  as an angle ‘ θ ’ measured from

− π
2

 to 
π π θ π
2 2 2

i.e., − ≤ ≤�
�

�
�  whose sin is x. The

angle ‘ θ ’ satisfying the inequality − ≤ ≤π θ π
2 2

 is

called the principal value of sin
−1

x . Hence, θ  =

sin
−1

x  is an angle representing an inverse circular

function whose domain is − ≤ ≤1 1x  and whose range

is  − ≤ ≤π θ π
2 2 . In the notational form, the inverse of

sin function is defined as  θ= −f x1 � �

= sin sin− ⇔ =1 x x θ  and θ π π∈ −�
�	



��

∈ −
2 2

1 1, , ,x

Note:

(i) sin sin
− =1 θ θ �  for θ π π∈ −�

�	


��2 2

,

(ii) sin sin
−

=
1

x x� �  for x∈ −1 1,

2. We define  cos
−1

x  as an angle ‘ θ’ measured from

0 to π i.e. 0 ≤ ≤θ π� �  whose cosine is x. The angle

‘ θ ’ satisfying the inequality 0 ≤ ≤θ π  is called the

principal value of cos
−1

x  . Hence, θ= cos
−1

x  is an

angle representing an inverse circular function whose

domain is [ – 1, 1] and whose range is 0,π . In the

notational form, the inverse of a cosine function is

defined as θ θ= = ⇔ =− −
f x x x

1 1 � cos cos  and

θ π∈ ∈ −0 1 1, , ,x .

Note:

(i) cos cos
− =1 θ θ �  for θ π∈ 0,

(ii) cos cos
−

=
1

x x� �  for x ∈ [– 1, 1]

3. We define tan
−1

x  as an angle ‘ θ ’ lying between

− π
2

 and 
π
2

 i.e;
− < <�

�
�
�

π θ π
2 2

whose tan gent is x.

The angle θ   satisfying  the inequality  − < <π θ π
2 2

 is

called the principal value of  tan
−1

x. Hence θ
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= tan
−1

x  is an angle representing an inverse circular

function whose domain is entire number line

( )i.e.− ∞ < < ∞x  and whose range is 
−�

�
�
�

π π
2 2

,

i.e; − < <�
�

�
�

π θ π
2 2  .

In  the notational form, the inverse of trigonometri-

cal tangent is defined as θ= =−
f x

1  �  tan− ⇔1 x x

= tanθ  and θ π π∈ −��
�
� ∈

2 2
, , x R .

Note:

(i) tan tan
− =1 θ θ � for θ π π∈ −��

�
�2 2

,

(ii) tan tan
− =1

x x� �  for x R∈

4. Some writers define cot
−1

x  as an angle ‘ θ ’

lying between  −
π
2

 and 
π
2

 excluding θ = 0  (i.e.,

− < <π θ π
2 2

,  θ ≠ 0 ) whose cotangent is x. The

angle  ‘θ ’ satisfying the inequality − <π θ π
2 2

,

θ ≠ 0  is called the principal value of  cot
−1

x . Hence,

θ = −
cot

1
x   is an angle representing  an inverse

circular function whose domain is entire number
line (i.e; − ∞ < < ∞x ) and whose range is

−��
�
� − = −��

�
�

π π π
2 2

0
2

0, ,� � ∪ �
�

�
�0

2
,
π

.

In the notational form, the inverse of cotangent

function is defined as θ = =−
f x

1  �  cot− ⇔1 x x� �

= cotθ  and θ
π π

∈ −��
�
� − ∈

2 2
0, ,� � x R .

An important remark: It is customary to take the

open interval  (as a domain) 0, π� �  in (or, on, or over)

which the function x = cotθ  has an inverse

θ = −
cot

1
x  because in this interval 0 < <θ π θ,

= −cot 1 x  is defined at all points. For this reason, it is

usual to take the interval  0 < <θ π  as the range for

θ = −
cot

1
x  for practical purpose instead of

considering the range −��
�
� ∪

�
�

�
�

π π
2

0 0
2

, ,  in which

θ = −
cot

1
x  is undefined  at θ = 0.

Hence, an alternative definition of cot−1 x  is also

available which is expressed in the notational form as

follows θ θ= = ⇔ =− −f x x x1 1 � cot cot  and

θ π∈ ∈0, ,� � x R . We shall follow this definition.

Note:

(i) cot cot− =1 x� � θ  for θ π∈ 0,� �

(ii) cot cot− =1 x x� �  for x R∈

5. We define sec
−1

x  as angle  ‘θ ’  measured from 0

to π  excluding θ
π=
2

 i.e; 0
2

, π
π

− ���
���

�
��

�
��  whose

secant is x. The angle θ  belonging to the interval

0
2

, π π− ���
��� is called the principal value of sec

−1
x .

Hence θ = −
sec

1
x  is an angle representing an

inverse circular function whose domain is

− ∞ − ∪ ∞, ,1 1� � � � and the range is 0
2

, π π− ���
���

i.e; 0
2 2

, ,
π π

π�
�	

�
��

�
�� ∪



��

�
��

�
�� .

In the notational form, the inverse of
trigonometrical secant function is defined as

θ θ= = ⇔ =− −
f x x x

1 1 � sec sec  and θ π∈ 0 ,

− ���
���

∈ − ∞ − ∪ ∞
π
2

1 1, , ,x  �  �  .

6. (i) f f x x− =1  �   for all x in the domain of f −1.
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(ii) f f x x− =1  �  for all x in the domain of  f.

Therefore these relations (i) and (ii)  hold for the
restricted trigonometric functions and their inverse.
Note:

(i) An angle denoted by sec
−1

x  given by the relation

θ = = �
�

�
�

− −
sec cos

1 1 1
x

x
   ,   x ≥ 1 is also accepted

as a definition of inverse trigonometrical  secant
function of an angle θ .

(ii) sec
−1

x  is not defined for x ∈ −1 1,� �

(iii) sec sec
− =1 θ θ �  for θ π π π∈ �

�	
�
� ∪

�
�



��

0
2 2

, ,

(iv) sec sec
−

=
1

x x� �  for x ≥ 1

6. We define cosec
−1

x  as an angle ‘θ ’ measured

from  −
π
2

  to  
π
2

 excluding θ = 0 whose cosecant

is x. The angle θ  belonging to the interval

−���
�
�� −

π π
2 2

0, ,� �  is called the principal value of

cosec
−1

x . Hence, θ = −
cosec

1
x  is an angle

representing an inverse circular function whose

domain is − ∞ − ∪ ∞, ,1 1� � � � and whose range is

−�
�	



��
−π π

2 2
0, � � i.e; −�

�	
�
� ∪

�
�



��

�
��

�
��

π π
2

0 0
2

, , .

In the notational form, the inverse of the
trigonometrical secant function is defined as

θ = = ⇔ =− −
f x x x x

1 1 � cosec cosec  and

θ π π∈ −�
�	

�
� ∪ �

�


��2

0 0
2

, ,   ,   x ∈ − ∞ − ∪ ∞, ,1 1� � � �
Note:

(i) An angle denoted by cosec
−1

x  given by the

relation θ = = �
�

�
�

−
cosec sin

1 1
x

x
,   x ≥ 1 is also

accepted as a definition of  inverse of  cosecant
function of  θ

(ii) cosec cosec
− =1 θ θ �  for θ

π π
∈ −�
�	

�
�∪

�
�



��2

0 0
2

, ,

(iii) cosec cosec
−

=
1

x x� �  for x ≥ 1

Remember:
1. The restricted domains and the ranges over which
each respective inverse circular function (defined
earlier) can be summarised in the chart.

Functions Domain Range(θ  may be a real
number or an angle)

sin
−1

x x x− ≤ ≤1 1�  θ π θ π− ≤ ≤���
���2 2

cos
−1

x x x− ≤ ≤1 1�  θ θ π0 ≤ ≤�  

tan
−1

x x x− ∞ < < ∞�  θ π θ π− < <���
���2 2

cot
−1

x x x− ∞ < < ∞�  θ π θ π θ− < < ≠���
���2 2

0,

(some writers)

or  θ θ π0 < <�  
(we adopt)

sec
−1

x x x− ∞ < ≤ −1;� θ θ π θ π
0

2
≤ ≤ ≠���

���
,

1 ≤ < ∞x �

cosec
−1

x x x− ∞ < ≤ −1 ;� θ π θ π θ− ≤ ≤ ≠���
���2 2

0,

1 ≤ ≤ ∞x �

2. The principal value of sin
−1

x  ,  cosec
−1

x ,

tan
−1

x   and  cot
−1

x  is the smallest numerical value
of the angle.

3. The principal value of cos
−1

x   and  sec
−1

x  is the

smallest positive value of the angle.
4. A circular function of an angle θ =  a number.
5. An inverse circular function of a number = an angle.

6. General value of sin
− = + −1

1x n
nπ θ �  whose

θ  stands for the principal value of  sin
−1

x .
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7. General value of cos
− = ±1

2x nπ θ  whose θ
stands for the principal value of  cos

−1
x .

8. General value of tan
− = +1

x nπ θ  where  θ
stands for the principal value of tan

−1
x .

N.B.:
1. The principal value of each circular function is
obtained by putting n = o in its general value.

Important Notes:
1. Unless otherwise stated by the value of each
inverse circular function, we mean its principal value.
2. If  y f x=  �, then the derivative of x with respect
to y is given by the formula:

dx

dy dy

dx

=
�
�

�
�

1
 , where  ‘ f ’  is assumed to be one-one

and onto as well as  
dy

dx
  is assumed to be finite and

non-zero i.e ;
dy

dx
f x= ′ ≠�

�
�
� � 0 or, alternatively,

let y = f  (x) be a single – valued monotonic and

continuous, and x f y g y= ′ = �  �  be the inverse

function, then if ′f x �  be finite and non – zero,

′ =
′

g y
f x

 �  �
1

 [ E.G. Philips ( p – q 4 ) ]

Proof: y f x=  � … (1)

x f y= −1  � …(2)

1. ⇒ + = +y y f x x∆ ∆� � … (3)

2. ⇒ + = +−x x f y y∆ ∆1 � � … (4)

Also, as ∆ x → 0 , ∆ y → 0 and as ∆ y → 0  ,

∆ x → 0  (� x f y= −1  �  is continuous)

Now, using the definition of derivative of a function,
we have,

f y g y− ′
= ′1 � � � �

=
+ −

→

− −

lim
∆

∆
∆y

f y y f y

y0

1 1� � � �

=
+ −
+ −→

− −

lim
∆

∆
∆y

f y y f y

y y y0

1 1 �  �
 �

[adding and subtracting y in denominator ]

=
+ −
+ −→

lim
∆

∆
∆y

x x x

f x x f x0

 �
 �  �

[� y y f x x+ = +∆ ∆� � from (3) and x x+ ∆

= +−f y y1 ∆� �  from (4)]

=
+ −→

lim
∆

∆
∆x

x

f x x f x0  �  �  [since ∆ x→0

when ∆ y → 0  ]

=
+ −�

��
�
��→

1

0
lim

∆

∆
∆x

f x x f x

x

 �  �  [Taking reciprocal]

=
′
1

f x �
N.B.: If y f x=  �  and x f y g y= =−1  �  �

Then ′ =f x
dy

dx
 �   and  ′ =g y

dx

dy
 �

∴ ′ =
′

g y
f x

 �  �
1

 ⇒ =
�
�

�
�

dx

dy dy

dx

1
   which  provides  us  a formula to

be very useful in the differentiation of inverse
functions.

Differential coefficients of inverse circular functions

If  y f x x f y= ⇔ =−1  �  �  , then y is called an

inverse function of x and x is called the direct function
of y.
Question: What is the rule for the derivative of the
inverse function ?
Answer: The rule for the derivative of the inverse
function is the    reciprocal of the derivative of the
original function (i.e. direct function) expressed as
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d

dx
y

d

dy
x

d

dx
y

d

dy
x� � � � � �= ⇔ ⋅ =1

1
( )

⇔ = ÷
d

dx
y

d

dy
x �  �1

Recapitulation of working rule to find d.c. of inverse
functions by ∆ - method

The rule to find d.c of inverse functions by ∆ - method
consists of following steps.
Step 1. Change inverse functions into direct functions

which means y f x= −1  � should be expressed as

x f y=  �, where f −1 stands for sin
−1

, cos
−1

, tan
−1

,

cot
−1 , sec

−1 , cosec
−1

 or any other inverse function
and f  stands for sin, cos, tan, cot, sec, cosec or any
other direct function.
Step 2. Add ∆ x  to x  and ∆ y to y whereever these
are present in the direct function which means forming

the equation x x f y y+ = +∆ ∆� � .

Step 3. Find ∆ x  by subtracting the first value x
= f ( y ) from the second value x x f y y+ = +∆ ∆� �
which means forming the equation ∆ x

= + −f y y f y∆� � � � .

Step 4. Divide ∆ ∆x f y y f y= + −� �  �  by  ∆  y

which means forming the equation

∆
∆

∆
∆

x

y

f y y f y

y
=

+ −� �  �
.

Step 5. Take the limit as ∆ y → 0  on both sides of

the equation 
∆
∆

∆
∆

x

y

f y y f y

y
=

+ −� � � �
 which means

forming the equation

d

dx
y

f y y f y

yy
� � � � � �

=
+ −

→
lim

∆

∆
∆0

.

Step 6. Express the direct function ( like sin, cos, tan,
cot, sec, cosec or any other direct function ) of y in
terms of x using the relation x = f ( y).

Step 7. Lastly find 
d

dx
y �  using the rule

d

dx
y

d

dx
x �  �⋅ = 1 which means taking the

reciprocal of 
d

dy
x �  to find 

d

dx
y � .

Notes: 1. In the process of finding the d.c of inverse
trigonometrical functions, we generally get

2
2

sin
∆

∆

y

y

�
�

�
�  except for  tan

−1
x   and cot

−1
x . In

order to find its limit as ∆ y → 0 , we can use any one
of the following  methods.

(i)
2

2
2

2 1

2

2
1

sin
∆

∆

∆

∆
∆
∆

y

y

y

y

y

y

�
�

�
�
=

⋅ ��
�
�
= ⋅

⋅
=

(�  when θ  is small, sin θ  = θ  )

(ii) lim
sin

lim
sin

θ θ

θ
θ

θ
θ→ →

�
��

�
�� =

�
��

�
��0 0

r r r

r

= r
r

r
r rlim

sin
θ

θ
θ→

�
��

�
�� = ⋅ =

0
1 , r being a constant.

(iii) lim
sin

lim
sin

∆ ∆

∆

∆

∆

∆y y

y

y

y

y→ →

�
�

�
�
=

�
�

�
�

⋅ ��
�
�

0 0

2
2

2
2

2
2

=

�
�

�
�

�
�

�
�

=
→

lim
sin

∆

∆

∆y

y

y0

2

2

1

2. ∆ ∆x y→ ⇔ →0 0

3. Finding d.c. by ∆ - method means finding d.c. of
the given function by making no use of rules of
differentiation and d.c. of standard functions but one
can use only fundamental theorems on limits and
standard results on limits.
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Practical methods of finding d.c. of inverse circular
functions
In practice, of the question says simply to find d.c. of
an inverse circular function, one can use the following
methods.
Method (A): It consists of following steps.
(i) Change the given inverse circular function in to
direct circular function ( called commonly circular

function), i.e. of y f x= −1  �   is given, it should be

changed into x = f ( y).
(ii) While differentiating, we must choose the variable
y as an independent variable (instead of usual variable
x as independent variable)  w.r.t. which the direct
circular function should be differentiated, i.e.,

x f y
d

dy
x

d

dy
f y f y= ⇒ = = ′ �  �  �! "  �

(iii) Now required derivative is 
d

dx
y �  which is

obtained by simply taking the reciprocal of  
d

dy
x �  ,

i.e; 
d

dx
y

d

dy
x

d

dy
x

d

dx
y

( ) = ⇔1 1

 �
 �

 �

Method B: It may be explained in the following way.

Let y f x x f y= ⇒ =−1 � � � �

 ⇒ = −x f f y1 � � � y f x= −1  � …(1)

or, x f y y f x y f f y= ⇒ = ⇒ =− − �  �  �1 1

…(2)

Hence, whenever, we have the form y f f y= −1  �,
it can be differentiated by using the chain rule, i.e,

d

dy
y

d

dy
f f y �  �� �=
−1

= ⋅−d

d f y
f f y

d

dy
f y �  �� �  �� �1

(using chain rule)

⇒ = ⋅−1 1d

dx
f x

d

dy
x �� �  �

�
d

dy
y f y x �  �= =

�
��

�
��1,

⇒ =
�
��

�
��

−d

dx
f x

d

dy
x

1 1 �� �
 �

⇒ =
�
��

�
��

d

dx
y

d

dy
x

 �
 �

1
     � f x y− =1  �� �

=
′

=
′ −

1 1
1f y f f x �  �� �

.

Standard formulas or d.c of inverse circular functions

1. If y x= −
sin

1
, y ∈ −���

�
��

π π
2 2

, , show that

dy

dx x
=

−

1

1 2

Proof : First method: (Derivation of d.c. Using the
definition)

Step 1. Let y x= −
sin

1
  , x ≤ 1! "

⇒ =x ysin   ,  − ≤ ≤�
�

�
�

π π
2 2

y ...(1)

Step 2. x x y y+ = +∆ ∆sin  � …(2)

Step 3. ∆ ∆x y y y= + −sin sin �  (subtracting (1)

from (2))

= +�
��

�
�� ⋅

�
��

�
��2

2 2
cos siny

y y∆ ∆

⇒ =
+�

��
�
�� ⋅

�
��

�
��

1 1

2
2 2

∆ ∆ ∆x
y

y y
cos sin

…(3)

Step 4:
∆
∆

∆
∆ ∆

y

x

y

y
y y

=
+�

�
�
� ⋅

�
�

�
�2

2 2
cos sin

(Multiplying both sides of  (3) by ∆ y )

=

+�
�

�
� ⋅

�
�

�
�

1

2
2

2

cos siny
y

y

y
∆

∆

∆

…(4)
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Step 5: lim
cos cos∆

∆
∆x

y

x y y→
=

⋅
=

0

1

1

1
    (Taking the

limits on both sides of (4) as ∆ x → 0)

Step 6: � cos cosy y=
2

 � f x f x �  �=�
��

�
��

2

= −1
2

sin y    = −1 2x     � sin y x= �

Now cos y is positive for y ∈ −���
�
��

π π
2 2

,

⇒ =cos cosy y  for y ∈ −���
�
��

π π
2 2

,

� f x f x f x� � � � � �� �= ≥for 0

∴ =
−

dy

dx x

1

1 2

� lim
∆

∆
∆x

y

x

dy

dx→
=

�
��

�
��0

,  x < 1.

Second method using the formula:

dy

dx dx

dy

=
�
��

�
��

1

1. y x= −
sin

1

⇒ =x ysin for − ≤ ≤π π
2 2

y

(from the definition of sin
−1

x )

⇒ =
dx

dy
ycos  (differentiating both sides w.r.t. y)

⇒ =
�
��

�
��
=

dy

dx dx

dy

y

1 1

cos
...(1)

Now, cos cosy y= 2

= − = −1 12 2sin y x ...(2)

and y y∈ −
�
��

�
��
⇒ >π π

2 2
0, cos  ⇒ =cos cosy y

 � f x f x f x �  �  �! "= >for 0 ...(3)

Equating (2) and (3), we have

cos cosy y x= = −1
2 ... (4)

Putting (4) in (1), we have

dy

dx x
=

−

1

1 2
, for x < 1

⇒ =
−

−
d x

dx x

sin
1

2

1

1
 for x < 1

Cor 1.: On replacing x by f (x) in the L.H.S. and R.H.S.
of the above formula, we get

d f x

dx f x
f x

sin
−

=
−

′
1

2

1

1

 �

 �
 �.

Cor 2.:
d f x

dx f x

d f x

dx

sin
−

=
−

×
1

2

1

1

| | | | �

 �

 �

� f x f x �  �2 2=

2. If y x y= ∈−cos 1 0, , ,π� �  show that

dy

dx x
= −

−

1

1 2 .

Proof: First method  (Derivation of D.C using the
definition)

Step 1.: Let y x x= ≤−
cos

1
1, � �

⇒ = ≤ ≤x y ycos , 0 π� � ...(1)

Step 2.: x x y y+ = +∆ ∆cos  � ...(2)

Step 3.: ∆ ∆x y y y= + −cos cos �  (subtracting

(1) from (2))

= − +�
��

�
��

�
��

�
��2

2 2
sin siny

y y∆ ∆
,
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⇒ = −
+�

�
�
� ⋅

�
�

�
�

1 1

2
2 2

∆ ∆ ∆x y
y y

sin sin
...(3)

Step 4.:
∆
∆

∆
∆ ∆

y

x

y

y
y y

= −
+�

�
�
�

�
�

�
�2

2 2
sin sin.

(multiplying both sides of (3) by ∆ y )

= −

+�
�

�
�

�
�

�
�

�
�

�
�

1

2
2

2

sin siny
y

y

y
∆

∆

∆
.

          ... (4)

Step 5.: lim
∆ x → 0

 
∆
∆

y

x y
= −

+
1

0 1sin  � .
     (Taking the

limit of both sides of (4) as ∆ x→0 )

= 1

sin y

Step 6.: sin siny y=
2  � f x f x �  �=�

�
�
�

2

= −1
2

cos y

= −1 2x    � cos y x= � ...(a)

Now sin y > 0 in 0, π� �

⇒ =sin siny y  for y∈ 0, π� �

� f x f x f x �  �  �� �= >for 0

Equating (a) and (b), we have ...(b)

dy

dx x
= −

−

1

1 2   � lim
∆

∆
∆x

y

x

dy

dx→
=

�
��

�
��0

, x < 1

Remark:
1. The derivatives of sin

−1
x  and cos

−1
x  become

undefined at x = ± 1.  For this reason we leave these
points out of our consideration.
2. The derivatives of the inverse trigonometric
functions are not transcendental but algebraic.

3. The domains of the derived functions of sin
−1

x
and cos

−1
x  are the open interval (– 1, 1).

Second method

Using the formula:
dy

dx dy

dx

=
�
�

�
�

1

2. y x= −
cos

1

⇒ =x ycos  for 0≤ ≤y π  (from the definition of

cos
−1

x )

⇒ =−
dx

dy
ysin  (differentiating both sides w.r.t. y)

⇒ =
�
��

�
��
=
−

dy

dx dx

dy

y

1 1

sin
...(1)

Now, sin y   = sin cos
2 2 2

1 1y x
y

= − = −
...(2)

and y y∈ ⇒ >0 0, π� � sin  for y being measured from

0 to π ⇒ =sin siny y

� f x f x f x �  �  �� �= >for 0 ...(3)

Equating (2) and (3), we have

sin siny y x= = −1
2 ... (4)

Putting (4) in (1), we have

dy

dx x
=
− −

1

1 2
, for  x < 1

⇒ =
− −

−
d x

dx x

cos
1

2

1

1
 , for  x < 1

Note: (i) sin cos
− −

+ = ∀ ≤
1 1

2
1x x x

π
,

⇒ + =
− −d

dx
x

d

dx
xsin cos

1 1
0� � � �

⇒ = −− −d

dx
x

d

dx
xsin cos1 1� � � �



432 How to Learn Calculus of One Variable

=
−

<1

1
1

2x
x; .

(ii)
d

dx
f xsin

−1  �

= − = −

−
⋅

−d f x

dx f x

d f x

dx

cos 1

2

1

1

� �
� �

� �

(iii)
d

dx
f x

f x

d f x

dx
cos

− =
−

−
⋅1

2

1

1
 �

 �

 �| |

3. If y x y= ∈ −��
�
�

−
tan

1

2 2
, ,

π π
, show that 

dy

dx

=
+
1

1 2x
.

Proof: First method: (Derivation of d.c using the
definition)

Step 1.: y x= −
tan

1
   ∀ ∈x R� �

⇒ =x ytan  , 
− < <�

�
�
�

π π
2 2

y ...(1)

Step 2.: x x y y+ = +∆ ∆tan � � ...(2)

Step 3.: ∆ ∆x y y y= + −tan tan� �  (subtracting (1)

from (2))

=
+
+

−
sin

cos

sin

cos

y y

y y

y

y

∆
∆

 �
 �

=
+ ⋅ − ⋅ +

+ ⋅
sin cos sin cos

cos cos

y y y y y y

y y y

∆ ∆
∆

 �  �
 �

=
+ −

⋅ +
=

⋅ +
sin

cos cos

sin

cos cos

y y y

y y y

y

y y y

∆
∆

∆
∆

 �
 �  �

⇒ =
⋅ +1

∆
∆

∆x

y y y

y

cos

sin

 �
...(3)

Step 4.:
∆
∆

∆ ∆
∆

y

x
y y y

y

y
= + ⋅cos cos

sin
� �   (Multiply-

ing both sides of (3) by ∆ y )     ...(4)

Step 5.: lim
∆

∆
∆x

y

x→ 0

= ⋅ + ⋅
�
�
�

�
�
�→

lim cos cos
sin∆

∆
∆
∆x

y y y
y

y0
 �

(on taking the limit of both sides of (4)) as ∆ x→0

= = =
+

cos
sec tan

2

2 2

1 1

1
y

y y

=
+
1

1 2x � tan y x= � ...(a)

∴ =
+

dy

dx x

1

1 2
.

Second method (using the formula):

 

dy

dx dx

dy

=
�
��

�
��

1

3. y x= −tan 1

⇒ =x ytan   for − < <π π
2 2

y

(from the definition of  tan
−1

x ).

⇒ =
dy

dx
ysec

2

(differentiating both sides of (1) w.r.t. y)

⇒ =
�
��

�
��
= =

+
=

+

dy

dx dx

dy
y y x

1 1 1

1

1

1
2 2 2

sec tan

� x y= tan �
Cor 1.: On replacing x by f (x) in the L.H.S. and R.H.S
of the above formula, we get

d f x

dx f x
f x

tan
−

=
+

⋅ ′
1

2

1

1

 �
 �

 �

Cor 2.:
d f x

dx f x

d f x

dx

tan
−

=
+

⋅
1

2

1

1

 �
 �

 �
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4. If y x= −
cot

1
, y ∈ 0, π� �  , show that

dy

dx x
= −

+
1

1 2 .

Proof: First method (Derivation of d.c using
definition)

Step 1.: Let y x= −
cot

1
, ∀ ∈x R

⇒ =x ycot  ,  y ∈ 0, π� � ...(1)

Step 2.: x x y y+ = +∆ ∆cot  � ...(2)

Step 3.: ∆ ∆x y y y= + −cot cot �   (subtracting (1)

from (2))

=
+
+

−
cos

sin

cos

sin

y y

y y

y

y

∆
∆

 �
 �

=
+ − ⋅ +

+
sin cos cos sin

sin sin

y y y y y y

y y y

∆ ∆
∆

 �  �
 �

=
− −

⋅ +
=

⋅ +
sin

sin sin

sin

sin sin

y y y

y y y

y

y y y

∆
∆

∆
∆

 �
 �  �

⇒ = −
⋅ +1

∆
∆

∆x

y y y

y

sin sin

sin

 �
...(3)

Step 4.:
∆
∆

∆ ∆
∆

y

x
y y y

y

y
= − ⋅ + ⋅sin sin

sin
� �

(Multiplying both sides of (3) by ∆ y ) ...(4)

Step 5.: lim
∆

∆
∆x

y

x→0

= − ⋅ + ⋅
�
�
�

�
�
�→

lim sin sin
sin∆

∆
∆
∆x

y y y
y

y0
 �

(On taking the limit of both sides of (4) as ∆ x→0 )

= − ⋅ = −sin sin siny y y
2

= − = −
+

= −
+

1 1

1

1

1
2 2 2

cosec coty y x ...(a)

� cot y x= �

∴ = −
+

dy

dx x

1

1 2

Note: The domains of the derived functions of

tan−1 x  and cot−1 x  are the open interval −∞ ∞,� �

because 
dy

dx x
= ±

+
1

1 2   is defined for all real values

of x.

Second method using the formula:

 

dy

dx dx

dy

=
�
��

�
��

1

5. y x= −
cot

1

⇒ =x ycot  for  0 < <y π  (from the definition

of  cot−1 x ) ...(1)

⇒ = −
dx

dy
ycosec

2
 (differentiating both sides of

(1) w.r.t. y)

⇒ =
�
��

�
��

dy

dx dx

dy

1

= − =
−

+
=

−
+

1 1

1

1

12 2 2cosec coty y x  � x y= cot �

Note: (i) tan cot
− −+ =1 1

2
x x

π
   ,   ∀ x

⇒ + =− −d

dx
x

d

dx
xtan cot

1 1
0

⇒ = − =
+

− −d

dx
x

d

dx
x

x
tan cot

1 1

2

1

1

(ii)
d

dx
f xtan

−1  �

= − =
+

⋅−d

dx
f x

f x

d f x

dx
cot

1

2

1

1
 �

 �
 �
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(iii)
d f x

dx f x

d f x

dx

cot
−

=
−

+
⋅

1

2

1

1

 �
 �

 �

6. If y x= −
sec

1
, y∈ − ���

���
0

2
, π π� � , show that

dy

dx x x
=

−

1

1 2
.

Proof: First method (derivation of the d.c. using the
definition)

Step 1.: Let y x= −
sec

1
, x >1! " ...(1)

⇒ =x ysec , 0
2

< < ≠�
�

�
�y yπ π

,

Step 2.: x x y y+ = +∆ ∆sec � ...(2)

Step 3.: ∆ ∆x y y y= + −sec sec �   (subtracting (1)

from (2))

=
+

− =
− +
⋅ +

1 1

cos cos

cos cos

cos cosy y y

y y y

y y y∆
∆
∆ �

 �
 �

2
2 2

sin sin

cos cos

y
y y

y y y

+�
�

�
� ⋅

�
�

�
�

⋅ +

∆ ∆

∆ �

⇒ =
⋅ +

+�
�

�
� ⋅

�
�

�
�

1

2
2 2

∆
∆

∆ ∆x

y y y

y
y y

cos cos

sin sin

 �
           ... (3)

Step 4.:
∆
∆

∆
∆

∆
∆

y

x

y y y

y
y

y
y

=
⋅ +

+�
�

�
�

⋅ �
�

�
�

cos cos

sin sin

 �

2
2 2

( Multiplying both sies of (3) by ∆ y )

=
⋅ +

+�
�

�
�

�
�

�
�

�
�

�
�

cos cos

sin
sin

y y y

y
y y

y

∆
∆ ∆

∆

 �

2

1

2

2

. ...(4)

Step 5.: lim
cos cos

sin∆

∆
∆x

y

x

y y

y→
=

⋅
0 1.

 (Taking the limits

of both sides of  (4) as ∆ x→0 )

=
⋅
1

sec tany y

Step 6.: sec tan sec tany y y y⋅ = .

= �
��

�
��sec tany y

2
  � f x f x �  �=�
�

�
�

2

= −�
��

�
��sec secy y

2
1

= ⋅ −x x 2 1

� sec y x= � ...(a)

Now, y∈ − ���
���

0
2

, π π� �

⇒ ∈ �
�

�
� ∪

�
��

�
��y 0

2 2
, ,
π π π

⇒ ∈�
�

�
�y 0

2
,
π

 or y∈
�
��

�
��

π π
2

,

Again,

y ∈ �
��

�
�� ⇒0

2
,
π

 sec y and tan y both are positive

⇒  The product sec y . tan y is positive ...(b)

and y∈ �
�

�
� ⇒

π π
2

,   sec y and tan y both are negative

⇒  the product sec y · tan y is positive ...(c)
Hence, from (b) and (c), we observe that the

product of sec y and tan y is positive in the first
quadrant and in the second quadrant for

y∈ − ���
���
⇒0

2
, π π� �  the product sec y · tan y is

positive for y ∈ − ���
���

0
2

, π
π� � . Which means that

sec tany y⋅  = ⋅sec tany y  for y ∈ − ���
���

0
2

, π
π� �
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(� f x f x �  �=  for f x � > 0) ...(d)

Equating (a) and (d), we have

sec tan sec tany y y y x x⋅ = ⋅ = −. 2 1

∴
dy

dx x x
=

−

1

12     � lim
∆

∆
∆x

y

x

dy

dx→
=

�
��

�
��0

,

for x > 1.

Second method using the formula:

 

dy

dx dx

dy

=
�
��

�
��

1

7. y x= −
sec

1

⇒ =x ysec   for 0
2

≤ ≤ ≠y yπ π
,  (from the

definition of sec
−1

x ) ...(1)

⇒ = ⋅
dx

dy
y ysec tan  (differentiating both sides

of (1) w.r.t. y) ...(2)
Now,

y∈ �
�	

�
� ∪

�
�



��

0
2 2

, ,
π π π

⇒  tan y and sec y both are positive for

0
2

< <y
π

 and tan y and sec y both are negative for

π
π

2
< <y

⇒ the product sec y . tan y is always positive for,

0
2

< < ≠y yπ π
,

Hence, sec tan sec tany y y y⋅ = ⋅

� f x f x �  �� �=

(for f x � > 0) ...(3)

and sec tan sec tanx y x y⋅ = ⋅

= x ytan
2      � tan tany y=�

��
�
��

2

= −x xsec
2

1

= −x x2 1 ...(4)

Equating (3) and (4), we have

sec tan sec tany y y y x x⋅ = ⋅ = ⋅ −2 1

∴ =
�
��

�
��
=

−
>dy

dx dx

dy
x x

x
1 1

1
1

2
, .

Third method

y x
x

x= = �
�

�
� ≥

− −
sec cos

1 1 1
1,

⇒ = = �
�

�
�

− −dy

dx

d

dx
x

d

dx x
sec cos

1 1 1
  ,  x ≥ 1

= −
−

⋅ �
��

�
��

1

1
1

1

2x

d

dx x
 ,  x > 1

= −
−

⋅ −��
�
�

1

1

1
2 2 2

x x x� � ,  x > 1

=
−�

�
��

�

�
��

⋅ ��
�
�

1

1

1
2

2

2
x

x

x   , x > 1

=
−

⋅
x

x x2 2
1

1

! "
 (� x x=

2  and x x
2 2= )

=
−

1

12x x
    , x > 1

Cor: On replacing x by f (x) in the L.H.S and R.H.S of
the above formula, we get

d f x

dx f x f x
f x

sec
−

=
−

⋅ ′
1

2

1

1

 �

 �  �
 �
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8. If y x= −
cosec

1
 , y∈ −��

�
� −π π

2 2
0, � � , show

that 
dy

dx x x
= −

−

1

12
, x > 1! " .

Proof: First method (derivation of d.c. using the
definition)

Step 1.: Let y x= −
cosec

1
  ,  x > 1! " ...(1)

⇒ =x ycosec  , 
− < < ≠π π
2 2

0y y,

Step 2.: x x y y+ = +∆ ∆cosec  � ...(2)

Step 3.: ∆ ∆x y y y= + −cosec cosec( )   (subtracting

(1) from (2) )

=
+

−1 1

sin siny y y∆ �

=
− +
+ ⋅

sin sin

sin sin

y y y

y y y

∆
∆

 �
 �

= −
+ ⋅ �

�
�
�

+ ⋅

2
2

cos sin

sin sin

y y
y

y y y

∆ ∆

∆

 �

 �

⇒ =−
+ ⋅

+ ⋅ �
�

�
�
⋅

1

2
2

∆
∆

∆
∆

∆
y

y y y

y y
y

y
sin sin

cos sin

 �

 �
  ...(3)

= −
⋅ +

+�
�

�
�

⋅
�
�

�
�

�
�

�
�

sin sin

cos
sin

y y y

y
y y

y

∆
∆ ∆

∆

 �

2

1

2

2

...(4)

Step 4.: lim
sin sin

cos∆

∆
∆x

y

x

y y

y→
= −

⋅
⋅0 1  (Taking the

limits of both sides of (4) as ∆ x→0 )

= −
⋅

1

cosec coty y
...(5)

Step 5.: cosec cot cosec coty y y y⋅ = ⋅

= cosec coty y
2   � f x f x �  �=�

�
�
�

2

= ⋅ −cosec cosecy y
2

1

= ⋅ −x x2 1    � cosec y x= � ...(a)

Now,

y∈ −��
�
� −

π π
2 2

0, � �

⇒ ∈ −��
�
� ∪ �

�
�
�y

π π
2

0 0
2

, ,

⇒ ∈ −��
�
�y

π
2

0,  or y∈
�
�

�
�0

2
,
π

Again,  y∈ −
�
��

�
��

π
2

0,

⇒  cosec y and cot y both are negative
⇒  The product cosec y . cot y is positive

and y ∈ �
�

�
�0

2
,
π

...(b)

⇒  cosec y and cot y both are positive
⇒   the product cosec y · cot y is positive
From (b) and (c), we observe that  the product of

cosec y and cot y is positive for y ∈ −��
�
� −π π

2 2
0, � �

⇒  The product cosec y · cot y is positive for

y ∈ −��
�
� −π π

2 2
0, � �  which means that

cosec cot cosec coty y y y⋅ = ⋅

(� f x f x �  �=  for f x � > 0 ...(d)

Equating (a) and (d), we have

cosec cot cosec coty y y y⋅ = ⋅

= ⋅ −x x2 1

and since, lim
∆

∆
∆x

y

x

dy

dx→
=

0
  , so (5) becomes equal

to 
dy

dx x x
= −

−

1

12
  ,  x > 1
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Second method using the formula:

dy

dx dx

dy

= 1

9. y x= −
cosec

1

⇒ =x ycosec , for − ≤ ≤ ≠π π
2 2

0y y, ... (1)

⇒ =− ⋅
dx

dy
y ycosec cot

(differentiating (1) w.r.t. y) ...(2)

Now, y∈ −�
�	



��
−

π π
2 2

0, � �

⇒ ∈ −�
�	

�
� ∪ �

�


��

y
π π
2

0 0
2

, ,

⇒  cosec y and cot y both are negative for

− < <π
2

0y  and cosec y and cot y both are positive

for 0
2

< <y
π

⇒ the product cosec y · cot y is always positive

for 
− < < ≠π π
2 2

0y y,

Hence, cosec cot cosec coty y y y⋅ = ⋅

(� f x f x �  �=  for  f x � > 0) ...(3)

and cosec cot cosec coty y y y⋅ = ⋅

= ⋅x ycot
2   � tan tany y=�

��
�
��

2

= ⋅ −x ycosec
2

1

= ⋅ −x x2 1 ...(4)

Equating (3) and (4), we have

cosec cot cosec coty y y y⋅ = ⋅

= −x x2 1

∴ (2) becomes equal to

dy

dx dx
dy

x x
x= =

−

−
>1 1

1
1

2.
, .

Third method

10. y x
x

= = �
��

�
��

− −cosec sin1 1 1
, x ≥ 1

⇒ = = �
�

�
�

− −dy

dx

d

dx
x

d

dx x
cosec sin

1 1 1
, x ≥ 1

⇒ =
−

�
�

�
�

dy

dx

x

d

dx x

1

1
1

1

2

.  ,  x > 1

=
−

−
−��

�
�

1

1

1
2 2 2

x x x
.  ,   x > 1

= −

−�

�
��

�

�
��

⋅1

1

1
2

2

2
x

x

x
 � x x

2 2=� �

= 
−

−

x

x x2 2
1

1
.  � x x2 =�

�
�
�

= −
−

>1

1
1

2x x
x,

Note: (i) sec cosec
− −+ =1 1

2
x x

π
, ∀ ≤ −x 1 or x≥1

⇒ + =
− −d

dx
x

d

dx
xsec cosec

1 1
0

⇒ = − =
−

− −
d x

dx

d x

dx x x

sec cosec
1 1

2

1

1

(ii)
d

dx
f x

d

dx
f xsec cosec

− −= −1 1 �  �

= 
1

12f x f x

d

dx
f x

 �  �
 �

−
⋅
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An important remark:

The domain of the derived function of sec
−1

x  and

cosec
−1

x   are defined for x > 1. According to the
convention we have adopted

(i)
d x

dx x x

sec
−

=
−

1

2

1

1

(ii)
d x

dx x x

cosec
−

=
−

−

1

2

1

1
 are inaccurate unless

we consider the restriction ‘x > 1’ against the derived
functions of inverse circular functions namely

sec
−1

x  and / coses
−1

x  because

d x

dx x x

sec
−

=
−

1

2

1

1
, x > 1! "

⇔ =
−

−
d x

dx x x

sec
1

2

1

1
, for x > 1

= −

−

1

12x x
,for x < –1

and
d x

dx x x

cosec
−

= −
−

1

2

1

1
, x > 1! "

⇔ = −

−

−
d x

dx x x

cosec
1

2

1

1
, for x > 1

=
−

1

12x x  , for  x < –1

Remember:

(i)
d

dx
x

d

dx x
sec cos

− −=
�
��

�
��

1 1 1

= −
−

⋅
�
��

�
��

1

1
1

1

2x

d

dx x
  � x x

2 2=� �

= −
−

⋅ − ⋅ ⋅−x

x
x

d

dx
x

2

2

2

1
1 � � �

=
+

−
⋅ ⋅

x

x x

x

x2 2
1

1

=
−

⋅
x

x x x

2

2 2 1

1

=
−

1

12x x

Cor:
d

dx
f x

f x f x

d

dx
f xsec

− =
−

⋅1

2

1

1
 �

 �  �
 �

=
−

⋅1

1
2

f x f x

d f x

dx �  �

 �

(ii)
d

dx
x

d

dx x
cosec sin

− −=
�
��

�
��

1 1 1

=
−

⋅1

1
1

1

2x

d

dx x  � x x
2 2=� �

=
−

⋅ −x

x

d

dx
x

d x

dx

2

2

1

1
.

=
−

⋅ − −x

x
x

x

x2
2

1
1� � � � .

=
−

−

x

x

x

x x2 2
1

1
. .

=
−

−

x

x x x

2

2 2 1. .

= −

−

1

12x x
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Cor: 
d

dx
f x

f x f x

d

dx
f x

cosec
−

=
−

−
⋅

1

2

1

1
 �

 �  �
 �

=
−

−
⋅

1

1
2

f x f x

d f x

dx �  �

 �

3. The differential coefficients of those trigonometric
and inverse trigonometric function which begin with
‘c’ are negative.
4. Method of remembering the d.c. of standard
inverse circular functions

Let y f x x f y
dx

dy
f y= ⇒ = ⇒ = ′−1 � � � � � �

⇒ =
�
��

�
��
=

′
=

′
−

dy

dx dx

dy

f y f f x

1 1 1
1 �  �

,  where

(i) f x− =1  � θ is required to put and simplify as well

as f xθ � =  is put in the last stage to get an algebraic
expression in x.
(ii) ′f =  d.c. of  f =  prime of  f
(iii) f  =  sin / cos / tan / cot / sec / cosec
(iv) ′f =  d.c. of  sin / cos / tan / cot / sec / cosec

= − − ⋅cos sin sec cosec sec tan // / / /
2 2 –cosec ·

cot whose operand is f x− =1  � given inverse

trigonometric function. Thus the d.c. of inverse
trigonometric function = reciprocal of the  derivative

of the direct trigonometric function (of the given t−1 –

function ) whose operand is the given function which
is put equal to θ  to get an algebric expression in x.

Thus:

1.
d x

dx x

sin

cos sin cos cos

−

−
= = =

1

1

1 1 1

� � θ θ

�
−

≤ ≤�
�	



��

π
θ

π
2 2

=
−

=
−

1

1

1

1
2 2

sin θ x
; x < 1

2. 
d x

dx x

cos

sin cos sin sin

1

1

1 1 1=
−

= − = −
−

� � θ θ

� 0 ≤ ≤θ π

=
−

−
= −

−

1

1

1

1
2 2

cos θ x
; x < 1

3.
d x

dx x

tan

sec tan

−

−
=

1

2 1

1

� �

= =
+

=
+

1 1

1

1

1
2 2 2

sec tanθ θ x

4.
d x

dx x x

cot

cosec cot

−

−
=

−1

2 1

1

� �

= −

+
= −

+

1

1

1

1
2 2

cot θ x

5.
d x

dx x x

sec

sec sec tan sec

−

− −
=

⋅

1

1 1

1

� � � �

=
⋅

=
⋅

1 1

sec tan sec tanθ θ θ θ

� 0 < <θ π

=
⋅

=
−

1 1

1
2sec tan secθ θ θx

=
−

1

1
2

x x
 ; x > 1

6.
d x

dx

cosec
−1

= − = −
⋅− −

1 1
1 1

cosec cosec cot (cosec ) cosec cotx x� � θ θ
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= −
⋅

1

cosec cotθ θ    � − ≤ ≤�
�	



��

π θ π
2 2

= − = −

−

1 1

1
2cosec cot cosecθ θ θx

=
−

−

1

1
2

x x
 ; x > 1

Note: 1. Insertion and removal of mod operator is
performed by considering the principal values of given
inverse circular function.
2. x < 1 means domains of derivatives of inverse

sine and cosine function are the same namely x < 1

whereas x > 1 means domains if derivatives of
inverse secant and cosecant function are the same

namely x > 1
3. On replacing x by f (x) in the L.H.S and R.H.S of the
above furmulas, we have

(i)
d f x

dx f x
f x

sin−

=
−

⋅ ′
1

2

1

1

� �
� �

� �

(ii)
d f x

dx f x
f x

cos−
=

−

−
⋅ ′

1

2

1

1

� �
� �

� �

(iii)
d f x

dx f x
f x

tan
−

=
+

⋅ ′
1

2

1

1

 �
 �

 �

(iv)
d f x

dx f x
f x

cot
−

=
−

+
⋅ ′

1

2

1

1

 �
 �

 �

(v)
d f x

dx f x f x
f x

sec
−

=
−

⋅ ′
1

2

1

1

 �

 �  �
 �

(vi)
d x

dx f x f x
f x

cosec
−

= −

−
⋅ ′

1

2

1

1

 �

 �  �
 �

Which are known as derivatives of inverse
trigonometric function of a function of x formulas.

4. On replacing f (x) by f x �  in the L.H.S and R.H.S
and retaining | f (x) | where it is in the above formulas,

we get

(i)
d f x

dx f x

d f x

dx

sin
−

=
−

⋅
1

2

1

1

 �

 �

 �

� f x f x �  �� �2 2=

(ii)
d f x

dx f x

d f x

dx

cos
−

= −

−
⋅

1

2

1

1

 �

 �

 �

(iii)
d f x

dx f x

d f x

dx

tan
−

=
+

⋅
1

2

1

1

 �

 �

 �

(iv)
d f x

dx f x

d f x

dx

cot
−

= −

+
⋅

1

2

1

1

 �

 �

 �

(v)
d f x

dx f x f x

d f x

dx

sec
−

=
−

⋅
1

2

1

1

 �

 �  �

 �

(vi)
d f x

dx f x f x

d f x

dx

cosec
−

=
−

−
⋅

1

2

1

1

 �

 �  �

 �

5. “ a T2 2 θ �  ” can be written equal to “a T θ �” , if

it is pre-assumed that ‘a’ is positive and the angle ‘θ ’
of any trigonometric function sin, cos, tan, cot, sec or
cosec is an acute angle.

N.B.: “ T ” in “ T (θ ) ” means the operator sin, cos,
tan, cot, sec or cosec indicating trigonometric
functions.

Type 1.: y t f x= −1  �

Where t
− − − − − − −=1 1 1 1 1 1 1

sin cos tan cot sec cosec/ / / / /

f x �=  
f x f x

f x f x

f x f x

f x f x
1 2

3 4

1 2

3 4

 �  �
 �  �

 �  �
 �  �

+
+

+
+

f x f x f x f x1 2 1 2 �  �  �  �× ×
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Where f x f x f x f x1 2 3 4 �  �  �  �, , and  are trigo-

nometric functions of x / algebraic expressions in x /
one or two of the four functions f x f x1 2� � � �, ,

f x f x3 4� � � �and  may be constant.

Working rule:
1. Change the inverse trigonometric function into
direct function

⇒ = ⇔ =
−

y t f x t y f x
1  �  �  �

2. Differentiate both sides w.r.t. x, i.e

d t y

dx

d f x

dx

 �  �=

⇒ ⋅ = ′
d t y

dy

dy

dx
f x

 �  �

⇒ = ′
�
��

�
��

dy

dx
f x

d t y

dy

 �
 �

3. Express the d.c. of t (y) in terms of  f (x) and simplify.
Note: The above method is known as general method
to differentiate an inverse trigonometric function of

the type : y t f x= −1  �  which can be used to

differentiate any type of inverse circular function
provided given function can be put in the form

y t f x= −1  � ⇔ =t y f x �  � .
Examples worked out on type (1) find the d.c. of the
following

1. y
x

x
=

+
+

�
��

�
��

−
cos

cos

cos

1 3 5

5 3

Solution: y
x

x
=

+
+

�
��

�
��

−
cos

cos

cos

1 3 5

5 3
...(i)

⇒ =
+
+

�
��

�
��cos

cos

cos
y

x

x

3 5

5 3 ...(ii)

Now differentiating both sides w.r.t. x

⇒ − sin y
dy

dx

=
+ − − + −

+

5 3 5 3 5 3

5 3 2

cos sin cos sin

cos

x x x x

x

 �  �  � �
 �

⇒ − sin y
dy

dx

=
− + − −

+

sin cos cos

cos

x x x

x

 � �
 �

25 15 9 15

5 3 2

⇒ =
+

⋅ ≠dy

dx x

x

y
y

16

5 3
0

2
cos

sin

sin
sin

� �
, .

� f x f x2 2 �  �� �= ...(iii)

Now, from (ii),

sin siny y=

= −
+
+

�
��

�
�� =

+
1

3 5

5 3

4

5 3

2
cos

cos

sin

cos

x

x

x

x �

� 0 0≤ ≤ ⋅ ∴ ≥y yπ sin �
Which gives for x n≠ π

sin

sin

cos sin

sin

x

y

x x

x
=

+5 3

4

 �
...(iv)

From (iii) and (iv), we get for x n≠ π

dy

dx

x

x x
=

+
4

5 3

sin

cos sin �

=
+

4

5 3

sin

cos sin

x

x x� �
Note: A direct method has been mentioned later.

2. y
x

x
=

+

�

�
�

�

�
�

−
sin

1

2

2

1

Solution: y
x

x
=

+

�

�
�

�

�
�

−
sin

1

2

2

1

⇒ =
+

sin y
x

x

2

1
2 ...(1)

⇒ =
+ ⋅ −

+

d y

dx

x x x

x

sin 1 2 2 2

1

2

2 2

� �  �

� �
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=
+ −

+

2 1 4

1

2 2

2 2

x x

x

� �

� �

⇒ =
−

+
=

−

+
cos y

dy

dx

x

x

x

x

2 2

1

2 1

1

2

2 2

2

2 2

� �

� �

� �

�
d y

dx

d y

dy

dy

dx

sin sin
= ⋅�

�	


��

⇒ =
−

+
⋅ ≠

dy

dx

x

x y
y

2 1

1

1
0

2

2 2

� �

� � cos
; cos ...(ii)

Now, cos cos siny y y= = −1
2

� − ≤ ≤ ⇒ ≥�
�

�
�

π π
2 2

0y ycos

= −
+

1
4

1

2

2 2

x

x� �
  [from (1)]

=
+ −

+

1 4

1

2 2 2

2 2

x x

x

� �

� �

=
+ + −

+
1 2 4

1

4 2 2

2

x x x

x� �

� 1 2+ x� �  is always + ⇒ + = +ve x x1 1
2 2

� �

=
+ −

+
1 2

1

4 2

2

x x

x� �

=
−

+

1

1

2 2

2

x

x

� �
� �

=
−

+

1

1

2

2

x

x

� �
� �  � f x f x2  �  �=�

�
�
�

Which gives

dy

dx

x

x

x

x
=

−

+
⋅

+

−

2 1

1

1

1

2

2 2

2

2

� �

� �

� �
� �

=
−

− +
≠ ±

2 1

1 1
1

2

2 2

x

x x
x

� �

� � � �
, .

3. y
x

x
=

+
−

�
��

�
��

−
tan

1 1

1

Solution: y
x

x
x=

+
−

�
��

�
��

≠−tan ,1 1

1
1

⇒ =
+
−

tan y
x

x

1

1 ...(i)

⇒ =
− ⋅ − + −

−
d y

dx

x x

x

tan 1 1 1 1

1 2

 �  �  �
 �

=
− + +

−

1 1

1 2

x x

x

 �  �
 �

⇒ ⋅ =
−

sec
2

2

2

1
y

dy

dx x �

⇒ =
−

⋅dy

dx x y

2

1

1
2 2 � sec ...(ii)

Now, sec tan
2 2

2

1 1
1

1
y y

x

x
= + = +

+
−

�
��

�
��

=
− + +

−

1 1

1

2 2

2

x x

x

� � � �
� �   [ from (1) ]

=
+ − + + +

−

1 2 1 2

1

2 2

2

x x x x

x� �

=
+

−

2 2

1

2

2

x

x� �

=
+

−

2 1

1

2

2

x

x

� �
� � ...(iii)
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Which gives

dy

dx x

x

x x
x=

−
⋅

−

+
=

+
≠2

1

1

2 1

1

1
1

2

2

2 2� �
� �
� � � �

;

4. y x= −
sin cos

1  �

Solution: y x= −
sin cos

1  �
⇒ =sin cosy x

⇒ =
d y

dx

d x

dx

sin cos

cos siny
dy

dx
x⋅ = −

⇒ =
−dy

dx

x

y

sin

cos  for y ≠ ± π
2

= −
sin

cos

x

y

� − ≤ ≤ ⇒ ≥π π
2 2

0y ycos

∴ =cos cosy y

∴ = − ≠ ±
dy

dx

x

y
y

sin

cos
,

2 2

π

=
−

−

sin

sin

x

y1 2

=
−

−
≠

sin

cos
;

x

x
x n

1 2
π

=
−

=
−

≠ ∈
sin

sin

sin

sin
, ,

x

x

x

x
x n n z

2
π

5. y x= −
sin sin

1  �

Solution: y x= −
sin sin

1  �
⇒ =sin siny x

⇒ =
d y

dx

d x

dx

sin sin

⇒ =cos cosy
dy

dx
x

⇒ =dy

dx

x

y

cos

cos    y ≠ ±�
�

�
�

π
2

=
cos

cos

x

y

∴ − ≤ ≤ ⇒ ≥ ∴ =�
�

�
�

π π
2 2

0y y ycos cos cos

=
−

cos

sin

x

x1
2  � sin siny x=

= =
cos

cos

cos

cos

x

x

x

x2   ; x n≠ +π π
2

6. y
x x

x x
=

−
+

�
��

�
��

−
tan

cos sin

cos sin

1

First method:

Solution: y
x x

x x
=

−
+

�
��

�
��

−
tan

cos sin

cos sin

1

⇒ =
−
+

tan
cos sin

cos sin
y

x x

x x ...(i)

⇒
d y

dx

tan

=
+ − − − − ⋅ − +

+

cos sin sin cos cos sin sin cos

cos sin

x x x x x x x x

x x

� �� � � � � �
� �2

Nr x x x x= − + + −�
�	



��cos sin cos sin

2 2� �  �

= − + = −2 2
2

cos sin
2

x x

⇒ = −
+

sec
sin cos

2

2

2
y

dy

dx x x �

⇒ = −
+

⋅dy

dx x x y

2 1
2 2sin cos sec � ...(ii)
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Now, from (i),

sec tan
cos sin

cos sin

2 2
2

1 1y y
x x

x x
= + = +

−
+

�
�
�

�
�
�

=
+ + −

+

cos sin cos sin

cos sin

x x x x

x x

 �  �
 �

2 2

2

= + + +
+

cos sin cos sin

cos sin

2 2 2 2

2

x x x x

x x �

=
+
2

2cos sinx x � ...(iii)

Which gives

dy

dx x x

x x
= −

+
×

+
= −2

2
1

2

2

sin cos

cos sin

 �
 �

 Ans.

Second method:

cos sin

cos sin

tan

tan
tan

x x

x x

x

x
x

−
+

=
−
+

= −�
�

�
�

1

1 4

π

∴ = −�
�

�
�

�
�	



��
= + −

−
y x n xtan tan

1

4 4

π
π

π

where ‘n’ is such that − ≤ + − ≤π π π π
2 4 2

n x

∴ = −dy

dx
1

7. y
x

x
=

+
�
��

�
��

−
tan

cos

sin

1

1

Solution: Method (1)

y
x

x
=

+
�
��

�
��

−
tan

cos

sin

1

1

⇒ =
+

tan
cos

sin
y

x

x1 ...(i)

⇒
d y

dx

tan

=
+ − +

+

1 1

1 2

sin cos cos sin

sin

x
d

dx
x x

d

dx
x

x

 �  �  �

 �

⇒ = − − −
+

sec
sin sin cos

sin

2
2 2

21
y

dy

dx

x y y

x �

⇒ =
− +

+
=

−
+

sec
sin

sin sin

2

2

1

1

1

1
y

dy

dx

x

x x

 �
 �  �

⇒ = −
+

⋅
dy

dx x y

1

1

1
2sin sec � ...(ii)

Now, sec tan
cos

sin

2 2
2

1 1
1

y y
x

x
= + = +

+
�
��

�
��

=
+ +

+

1

1

2 2

2

sin cos

sin

x x

x

 �
 �

= + + +
+

1 2

1

2 2

2

sin sin cos

sin

x x

x �

=
+
+

=
+

+
2 2

1

2 1

12 2

sin

sin

sin

sin

x

x

x

x �
 �

 �

=
+

2

1 sin x � ...(iii)

Which gives

dy

dx x

x
=

+
×

+
= −1

1

1

2

1

2sin

sin

 �
 �

  Ans.

Method (2)

cos

sin

cos sin

cos sin

x

x

x x

x x1
2 2

2 2

2 2

2+
=

−

+�
��

�
��

=
−

+�
��

�
��
=

−

+
= −�

��
�
��

cos sin

cos sin

tan

tan
tan

x x

x x

x

x
x2 2

2 2

1
2

1
2

4 2

π

∴ = + −y n
xπ π

4 2
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∴ = −dy

dx

1

2

8. y
x

=
−

tan
1 1

Solution: y
x

= −
tan

1 1

⇒ =tan y
x

1

⇒ = �
�

�
� = −

d y

dx

d

dx x x

tan 1 1
2

⇒ ⋅ = −sec
2

2

1
y

dy

dx x

⇒ = − ⋅dy

dx x y

1 1
2 2

sec

= − ⋅
+

�

�
�

�

�
�

1 1

1
2 2

x ytan

= − ⋅
+

�

�

�
�
�

�

�

�
�
�

1 1

1
12

2
x

x

  � tan y
x

=�
�	



��

1

= −
+�

��
�
��

�

�
#
#

�
#
#

�

�
#
#

�
#
#

= −
+

1 1

1

1

12 2

2

2x x

x

x

9. y
a b x

b a x
=

+
+

�
��

�
��

−
cos

sin

sin

1

Solution: y
a b x

b a x
=

+
+

�
��

�
��

−
cos

sin

sin

1

⇒ =
+
+

cos
sin

sin
y

a b x

b a x

⇒
d y

dx

cos

=
+ + − + +

+

b a x
d

dx
a b x a b x

d

dx
b a x

b a x

sin sin sin sin

sin

� � � � � � � �

� �2

⇒ − sin y
dy

dx

=
+ − +

+

b a x b x a b x a x

b a x

sin cos sin cos

sin

 �  �
 �2

⇒ = −
+

⋅
−

dy

dx

b x a x

b a x y

2 2

2

1cos cos

sin sin �

=
−

+
⋅ −

−

b a x

b a x y

2 2

2 2

1

1

� �
 �

cos

sin cos

� sin sin asy y y= ≤ ≤0 π� �

=
−

+
×

−

− +
+

�
��

�
��

b a x

b a x a b x

b a x

2 2

2 2

1

1

� �
 �

cos

sin sin

sin

=
−

+
×

b a x

b a x

2 2

2

� �
� �

cos

sin

− +

+ + − + +

| |b a x

b a x a b x a b x a b x

sin

sin sin sin sin

� �

� �2 2 2 2 2 22 2

� f x f x �  �� �2 2=

=
−

− + −�
�	



��
×

−
+

b a x

b a a b x
b a x

2 2

2 2 2 2 2

1� �  �

� �  �
cos

sin
sin

=
− −

− − −
×

+

cos

sin sin

x b a

b a b a x b a x

� � � �

� � � � � �

2 2

2 2 2 2 2

1
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=
− −

−�
��

�
�� −�
��

�
��
×

+

cos

sin
sin

x b a

b a x
b a x

 � � �
 �

2 2

2 2 2
1

1

=
− −�
��

�
��

+

b a x

b a x x

2 2
cos

sin cos

 �

Note:
dy

dx
  exists only when b a2 2> .

10. y
a b x

b a x
=

+
+

�
��

�
��

−
sin

cos

cos

1

Solution: y
a b x

b a x
=

+
+

�
��

�
��

−
sin

cos

cos

1

⇒ =
+
+

sin
cos

cos
y

a b x

b a x

⇒
d y

dx

sin

=
+ + − + +

+

b a x
d
dx

a b x a b x
d
dx

b a x

b a x

cos cos cos cos

cos

 �  �  �  �

 �2

⇒ cos y
dy

dx

=
+ − − + ⋅ −

+

b a x b x a b x a x

b a x

cos ( sin ) cos sin

cos

 �  �  �
 �2

⇒ =
− +

+
⋅dy

dx

b x a x

b a x y

2 2

2

1sin sin

cos cos� �

= − +
+

⋅b x a x

b a x y

2 2

2

1sin sin

cos cos �

� cos cos asy y y= − ≤ ≤�
�

�
�

π π
2 2

= 

a b x

b a x y

2 2

2 2

1

1

−

+
⋅

−

� �
 �

sin

cos sin

=
−

+
⋅

− +
+

�
��

�
��

a b x

b a x a b x

b a x

2 2

2 2

1

1

� �
 �

sin

cos cos

cos

=
−

+
⋅

+

+ − +

a b x

b a x

b a x

b a x a b x

2 2

2 2 2

� �

� �  �

sin

cos

cos

cos cos

     � f x f x f x f x2 2 2 �  �  �  �= =�
�	



��and

=
−

+
×

a b x

b a x

2 2
� �
 �

sin

cos

1

2 2
2 2 2 2 2 2

b a x a b x a b x ab x+ + − + +cos cos cos cos� �

=
−

+
⋅

− − −

a b x

b a x
b a b a x

2 2

2 2 2 2 2

1� �

� � � �

sin

cos
cos

=
−

+
⋅

− −

a b x

b a x
b a x

2 2

2 2 2

1

1

� �

� � � �

sin

cos
cos

=
− −

+
⋅

−
⋅

−

b a x

b a x b a x

2 2

2 2 2

1 1

1

� �sin

cos cos

=
− −
+

⋅
b a

b a x

x

x

2 2

cos

sin

sin

Type 2: Method of substitution and use of chain
rule.

Form A: y  =  a constant × −t f x1  �� �
or,   y  =  a constant × −

t
1  [ a constant times f (x)]

Where,  f (x)  =  a  function of  x / sin x / cos x/.... /
an expression in x etc.
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Working rule:

1. Put t f x−1  �� � or t−1 [  constant  f (x)  =  u and

differentiate w.r.t. x].

2. Put y
u=

constant
 or, (a constant × u) and differ-

entiate it by using chain rule, i.e. 
dy

dx

dy

du

du

dx
= ⋅ , where

dy

du
= 1

constant
 or, constant.

Solved Examples:

Find the d.c. of the following.

1. y
ab

b

a
x= ⋅ �

�
�
�

−1 1
tan tan

Solution: Let u
b

a
x= �

�
�
�

−
tan tan

1
...(i)

∴ =tan tanu
b

a
x

⇒ =sec sec
2 2
u

du

dx

b

a
x

⇒ = ⋅ = ⋅

+

du

dx

b

a
x

u

b x

a b

a
x

sec
sec

sec

tan

2

2

2

2

2

2

1 1

1

⇒ = ⋅
+

du

dx

b x

a

a

a b x

sec

tan

2 2

2 2 2

⇒ =
+

du

dx

ab

a x b x
2 2 2 2

cos sin
...(ii)

Now again, let y
u

ab
=

*
...(iii)

∴ = ⋅ = ⋅
+

dy

dx ab

du

dx ab

ab

a x b x

1 1
2 2 2 2

cos sin

[from (ii)]

=
+

1
2 2 2 2

a x b xcos sin

*  or alternatively,

dy

dx

dy

du

du

dx ab

ab

a x b x
= ⋅ = ⋅

+

1
2 2 2 2

cos sin

⇒ =
+

dy

dx a x b x

1
2 2 2 2

cos sin

Form B:

y a t f x= × −constant 1  �� �

where, f x
f x f x

f x f x
 �

 �  �
 �  �=

±1 2

1 2�
 a quotient of two

functions/an expression in x.

Working rule:

1. Put   
u f x

v f x

y a t u

u v
du

dv v

=

=

�
�#
�#
⇒

= ×

= ⇒ =

−
 �

 �

 �constant 1

1

2

.

2. Find 
du

dv
, 

dv

dx
 and 

dy

du
.

3. Use the chain rule:

dy

dx

dy

du

du

dv

dv

dx
= ⋅ ⋅

Note: 1. The constant may be unity. Similarly  any

one of  f x1  �  and f x2  �  may be unity.

2. The above method may be termed as u v−  method
just for easiness.

Solved Examples on form (B)

Find the d.c. of the following

1. y
x

x
= +

−
�
��

�
��tan

sin

sin

1 1

1

Solution: y
x

x
= +

−
�
��

�
��tan

sin

sin

1 1

1

Let u
x

x
= +

−
�
��

�
��

1

1

sin

sin
...(i)
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v
x

x
=

+
−

1

1

sin

sin ...(ii)

∴ = ⇔− −y v utan tan1 1 ...(iii)

Now, from (1),

u v=

⇒ = =
+
−

�
��

�
��

du

dv v x

x

1

2

1

2
1

1

sin

sin

and from (ii),

y u= −tan 1

⇒ =
+

dy

du u

1

1
2

=
+ +

−
�
��

�
��
=

− + +
−

�
��

�
��

1

1
1
1

1

1 1
1

sin
sin

sin sin
sin

x

x

x x

x

= −1

2

sin x
...(iv)

Hence,  
dy

dx

dy

du

du

dv

dv

dx
= ⋅ ⋅

= − ⋅ ⋅ −
+

�
��

�
�� ⋅

−
1

2

1

2

1

1

2

1 2

sin sin

sin

cos

sin

x x

x

x

x �

= ⋅
+ −

= ⋅
1

2 1 1

1

2

cos

sin sin

cos

cos

x

x x

x

x� � � �
,

x n≠ +π
π
2

2. y
x

x
= −

+
�
��

�
��

−
tan

cos

cos

1 1

1

Solution: y
x

x
= −

+
�
��

�
��

−
tan

cos

cos

1 1

1

Let u
x

x
v= −

+
�
��

�
�� =

1

1

cos

cos
...(i)

where v
x

x
=

−
+

1

1

cos

cos
...(ii)

∴ = −
y utan

1 ...(iii)

From (i),

u v
du

dv v x

x

= ⇒ = =
−
+

�
��

�
��

1

2

1

2
1

1

cos

cos

and from (ii),

v
x

x
=

−
+

1

1

cos

cos

⇒ = + + −
+

dv

dx

x x x x

x

sin ( cos ) sin ( cos )

cos

1 1

1 2 �

⇒ = + + −
+

dv

dx

x x x x x x

x

sin sin cos sin sin cos

cos1 2 �

Now, y u= −
tan

1

⇒ =
+

=
+ −

+
�
��

�
��

dy

du u x

x

1

1

1

1
1
1

2 cos
cos

=
+ + −

+
�
��

�
��
=

+
�
��

�
��

1

1 1
1

1

2
1

cos cos
cos cos

x x

x x

=
+1

2

cos x ...(iv)

Now,

dy

dx

dy

du

du

dv

dv

dx
= ⋅ ⋅

=
+

⋅ ⋅
+
−

⋅
+

1

2

1

2

1

1

2

1 2

cos cos

cos

sin

cos

x x

x x

 �
 �

= ⋅
−

= ⋅ ≠
1

2 1

1

22

sin

cos

sin

sin

x

x

x

x
x n, .π
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On Method of Trigonometric Substitution

Type 1: y t f x= −1 � �
where t− =1  sin–1 / cos–1 / tan–1 / cot–1 / sec–1 /

cosec–1

f (x) = a trigonometrical function of x / algebraic
function of x / an algebric expression in x.
Note: 1. In such types of problems mentioned above,
our main aim is to remove inverse trigonometric

operator sin cos tan cot sec cosec
− − − − − −1 1 1 1 1 1

/ / / / /  by

a trigonometric substitution x = sin θ / cosθ  / tan θ  /

cot θ  /sec θ  / cosec θ  or by any other means.

2. When y t f x= −1 � �   is  provided, where f (x) = an

expression in x, we substitute x = a trigonometrical
function of  θ  and t given expression in x becomes
the direct trigonometrical function (or, trigonometrical
function / circular function) of multiple angle of

θ θ θ⇒ =−f f m m1 � �   which is differentiated w.r.t.

x and lastly θ  is expressed in terms of x, where m = 1,
2, 3, .... etc.

⇔ (a) In sin
−1

f x� � , we put θ  = sin–1 x,

− ≤ ≤
π

θ
π

2 2
, then x = sin θ .

(b) In cos
−1

f x� � , we put θ θ π= ≤ ≤−
cos

1
0x,  ,

then x = cos θ

(c) In tan
−1

f x� � , we put θ = −
tan

1
x,

− <
π
2

 θ
π

<
2

 , then x = tan θ  etc.

3. Remember the following formulas which give us
idea of trigonometric substitution

(i) (a1) 1
2

− =sin cosθ θ

(a2) 1
2

− =cos sinθ θ

(b1) 1
2

+ =tan secθ θ

(b2) sec tan
2

1θ θ− =

(c1) 1
2

+ =cot cosecθ θ

(c2) cosec cot
2

1θ θ− =    , ... etc.

Where mod operator ‘ ....� �  ’ can be removed

from the trigonometric function by considering the
prinicipal values of θ = sin–1 x, cos–1 x, tan–1 x, cot–1

x, sec–1 x, cosec–1 x.

(ii) (a1) 1 2
2

2+ =cos cosθ θ

(a2) 1 2
2

2
− =cos sinθ

θ

(b1) 1 2
2 2− =sin cosθ θ

(b2) 2 1
2 2

cos cosθ θ− =

(iii) sin sin cos2 2θ θ θ= ⋅

(iv) cos cos sin sin2 1 2
2 2 2θ θ θ θ= − = −

= −2 1
2

cos θ

(v) sin
tan

tan
2

2

1
2

θ θ

θ
=

+

(vi) cos
tan

tan
2

1

1

2

2
θ

θ

θ
=

−

+

(vii) tan
tan

tan
2

2

1
2

θ θ

θ
=

−

(viii) sin sin sin3 3 4
3θ θ θ= −

(ix) cos cos cos3 4 3
3θ θ θ= −

(x) tan
tan tan

tan
3

3

1 3

3

2
θ

θ θ

θ
=

−

−

(xi) (a1) tan
tan tan

tan tan
θ φ

θ φ
θ φ

+ =
+

− ⋅
� �

1

(a2) tan
tan tan

tan tan
θ φ

θ φ
θ φ

− =
−

+ ⋅
� �

1

(xii) (a1) tan tan tan
− − −+

−
= +1 1 1

1

A B

A B
A B
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(b2) tan tan tan
− − −−

+ ⋅
= −1 1 1

1

A B

A B
A B

(xiii) tan
tan

tan

π θ
θ
θ4

1

1
+ =

+
−

�
��

�
	


(xiv) tan
tan

tan

π θ
θ
θ4

1

1
− =

−
+

�
��

�
	


N.B.: 1. In the given question, we are given an
expression in x which are obtained by replacing

x = sin cos tan cot cosec and secθ θ θ θ θ θ/ / / /  in
the above formulas in r.h.s. This is why the form of
the expression in x  gives us the idea of proper

substitution x = sin θ  / cos θ  / tan θ  / cot θ  / sec θ  /
cosec θ .
2. Remember:

(i) sin sin
− =1

x x� � , when − ≤ ≤π π
2 2

x ,

sin sin
−

≠
1

150 150
� �� �  (= 30�)

(ii) cos cos
− =1

x x� � , when 0 ≤ ≤x π ,

cos cos
− �
��

�
	
 =

1 2

3

2

3

π π

(iii) tan tan
− =1

x x� � , when − < <π π
2 2

x ,

tan tan
− �
�

�
	 =

1

6 6

π π
 , ... etc.

where we should note that sin–1 x, tan–1 x, and

cosec
−1

x  are angles which lie between −
π
2

 and +
π
2

denoting their principal  values and cos
−1

x , cot−1 x

and sec
−1

x  are angles lying between 0 and π  denot-

ing their principal values.

3. (A) If y x x x= − − −
sin cosec or tan

1 1 1
, ,  , then x

is negative means y is between −
π
2

 and 0. In this

case y = sin–1 (–x) = –sin–1 x, y = cosec–1 (–x)

= –cosec–1 x, y = tan–1 (–x) = –tan–1 x

Examples:

(i) sin sin
− −− = − = −1 1

1 1
2

� � � � π

(ii) tan tan
− −− = − = −1 1

1 1
4

� � � � π
 etc.

(B) If y x x= − −
cos sec

1 1
, ,  or cot

−1
x  , then x is

negative means y is between 
π
2

 and π . In this case

y x x= − = −− −π cos cos
1 1 � �

y x x= − = −− −π sec sec
1 1 � �

y x x= − = −− −π cot cot
1 1 � �

Examples:

(i) cos cos
− −

−��
�
	 = − �

�
�
	 = − =

1 11

2

1

2 3

2

3
π π

π π

(ii) sec sec
− −−�

�
�
	 = − = − =

1 12

3
2

3

2

3
π π

π π� �  etc.

(4) (i) sin sin
− =1

x x� �  for − ≤ ≤1 1x

(ii) cos cos
−

=
1
x x� �  for − ≤ ≤1 1x

(iii) tan tan
−

=
1
x x� �  for x R∈

(iv) cot cot
−

=
1

x x� �  for x R∈

(v) sec sec
−

=
1

x x� �  for x ≥ 1

(vi) cosec cosec
−

=
1

x x� �  for x ≥ 1

5. If   x ≥ 1 , then cosec sin
− −

= �
�

�
	

1 1 1
x

x
 or sin–1

x = cosec
− �
�

�
	

1 1

x .

(ii) If x > 0 ,  then tan cot
− −

= �
�

�
	

1 1 1
x

x
 or cot–1

x = tan
− �
�

�
	

1 1

x .

(iii) If x ≥ 1, then sec cos
− −= �

�
�
	

1 1 1
x

x
 or cos–1

x = sec
− �
�

�
	

1 1

x .
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Solved Examples put in the form: y t f x= −1 � �
Find the d.c. of the follwoing:

1. y x= −
−

cos
1 2

1 2� �

Solution: on putting x x= ⇔ = −
sin sinθ θ 1

,  where

− ≤ ≤π θ π
2 2

, 1 2 2
2− =sin cosθ θ  suggests to

put x = sinθ  in 1 2 2− x �  to get

y = − =− −
cos sin cos cos

1 2 1
1 2 2θ θ� � � �

= = −
2 2

1θ sin x  if 0
2

≤ ≤θ π
 ; i.e;  0 1≤ ≤x

= − = − −
2 2

1θ sin x  if − ≤ ≤π θ
2

0 ; i.e;

− ≤ ≤1 0x

∴ =
−

dy

dx x

2

1 2
if 0 1< <x

= −

−

2

1 2x      if − < <1 0x

Note: (i) y is defined for x ≤ 1

(ii)
dy

dx
  does not exist for x = −0 1 1, ,

(iii) (Chain rule): 
dy

dx x
x=

−

− −
−

1

1 1 2
4

2� �
� �

=
−

≠ ±2

1
0 1

2

x

x x
x, ,

2. y x x= −
−

sin
1 3

3 4� �

Solution: on putting  x x= ⇔ = −
sin sinθ θ 1

,

where − ≤ ≤π θ π
2 2

, 3 4 3
3

sin sin sinθ θ θ− =

suggests to put  x = sinθ  in 3 4 3x x− �  to get,

y = −
−

sin sin sin
1 3

3 4θ θ� �

= −
sin sin

1
3θ� �

= = −
3 3

1θ sin x  if − ≤ ≤π θ π
2

3
2

 , i.e;

− ≤ ≤π θ π
6 6

  i.e; − ≤ ≤1

2

1

2
x

∴ =
−

dy

dx x

3

1 2
 for x < 1

2

Now, y = − −π θ3  for − ≤ ≤ −π θ π
2 6

 and

y = −π θ3  for 
π θ π
6 2
≤ ≤

∴ =
−

−

dy

dx x

3

1 2
for

1

2
1< <x

Note: By chain rule

dy

dx

x

x x
x=

−

− −
≠ ± ±

3 1 4

1 1 4

1

2
1

2

2 2

� �
, , .

3. y x x= −
−

cos
1 3

4 3� �

Solution: on putting x x= ⇔ = −cos cosθ θ 1 , where

0 ≤ ≤θ π , 4 3 33cos cos cosθ θ θ− =  suggests to

put x = cosθ  to get,

y = −
−

cos cos cos
1 3

4 3θ θ� �

= −
cos cos

1
3θ� � = = −

3 3
1θ cos x  for 0

3
≤ ≤θ π

= −3 2θ π  for − < < −1
1

2
x

∴ = −

−

dy

dx x

3

1 2  for 
1

2
1< <x

Also y = −2 3π θ   for x < 1

2

∴ =
−

dy

dx x

3

1 2
  for  x < 1

2
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4. y
x

x
=

−

−
tan

1

2

2

1

Solution: on putting x x= ⇔ = −
tan tanθ θ 1  for

− < <π θ π
2 2

, 
2

1
2

2

tan

tan
tan

θ

θ
θ

−
=  suggests to put

x = tanθ .

∴ =
−

=− −y tan
tan

tan
tan tan1

2
12

1
2

θ
θ

θ� �

= + = + −n n xπ θ π2 2 1tan

where 
−

< <
π π

2 2
y .

∴ =
+

≠ ±dy

dx x
x

2

1
1

2
; .

5. y
x

x
=

+

−
sin

1

2

2

1
Solution: On putting x x= ⇔ = −

tan tanθ θ 1 ,

− < <π θ π
2 2

2

1
2

2

tan

tan
sin

θ

θ
θ

+
=  suggests to put

x = tanθ  in 
2

1 2

x

x+

∴ =
+

−y sin
tan

tan
1

2

2

1

θ
θ

=
+

�
�
�

�
	

 =

− −
sin

sin cos

cos sin
sin sin cos

1

2 2

12
2

θ θ

θ θ
θ θ� �

= −
sin sin

1
2θ� �

= = −
2 2

1θ tan x , if − ≤ ≤π θ π
4 4

i.e; x ≤ 1

 = −π θ2 for
π θ π
4 2
< < , i.e. x > 1

= − −π θ2 for − < < −
π

θ
π

2 4
  i.e;  x < –1

∴ =
+

<
dy

dx x
x

2

1
12 for

=
−
+

>
2

1
12x

xfor

Note: (i)
dy

dx
 does not exist at x = ± 1

(ii) To avoid different cases, we may differentiate
directly using chain rule as shown below in example
(6) and others

6. y
x

x
=

−

+

�
�
�

�
	

−

cos
1

2

2

1

1

Solution: y
x

x
= −

+

�
�
�

�
	



−
cos

1
2

2

1

1

⇒ =
−

− −
+

�
��

�
	


×
−
+

�
��

�
	


dy

dx
x

x

d

dx

x

x

1

1
1

1

1

12

2

2

2

2

=
− +

× −

+

1

4

4

1

2

2 2 2

x

x

x

x

 �
 �

=
+

≠
2

1
0

2

x

x x
x

� �
.      (very easy method)

7. y
x

x
=

−
+

�
��

�
	


−sin 1
2

2

1

1

Solution: y
x

x
=

−

+

�
�
�

�
	

−

sin
1

2

2

1

1

⇒ =

− −
+

�
��

�
	


×
−
+

�
��

�
	


dy

dx
x

x

d

dx

x

x

1

1
1

1

1

12

2

2

2

2
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=
+

× −

+

1

4

4

1

2

2 2 2

x

x

x

x

 �
 �

= −
+

≠2

1
0

2

x

x x
x

� �
,

8. y
x

x
=

+

�
��

�
	


−cos 1
2

2

1

Solution: y
x

x
y=

+

�
��

�
	


≤ ≤−cos ,1
2

2

1
0 π

⇒ =
+

cos y
x

x

2

1 2

⇒ =
+ × −

+

d y

dx

x x x

x

cos 1 2 2 2

1

2

2 2

� � � �

� �

=
+ −

+

2 1 4

1

2 2

2 2

x x

x

� �

� �

⇒ − =
−

+
=

−

+
sin y

dy

dx

x

x

x

x

2 2

1

2 1

1

2

2 2

2

2 2

� �

� �

� �

⇒ =
−

+
⋅ ≠

dy

dx

x

x y
y

2 1

1

1
0

2

2 2

� �

� � sin
, sin .

Now, sin cosy y= −1 2

= −
+

1
4

1

2

2 2

x

x �

=
+ −

+
=

+ + −

+

1 4

1

1 2 4

1

2 2 2

2 2

4 2 2

2 2

x x

x

x x x

x

� �

� � � �

=
+ −

+
=

−

+

1 2

1

1

1

4 2

2 2

2 2

2 2

x x

x

x

x� �

� �

� �

=
−

+

1

1

2

2

x

x

� �

� �
=

−

+

1

1

2

2

x

x

� �

� �

[� 1 1 1
2 2 2

+ = + +x x x� � � �because  is always

positive]

Hence, 
dy

dx

x

x

x

x
=

−

+
×

+

−

2 1

1

1

1

2

2 2

2

2

 �
 �

 �
 �

=
−

− +
≠ ±

2 1

1 1
1

2

2 2

x

x x
x

� �
� � � �

, .

Note: If we do the above problem by the method
of trigonometric substitution, we get complete
result provided different cases are properly
considered otherwise (i.e; if different cases are not
properly considered) , we get an incomplete result

dy

dx x
=

+
2

1 2   which is only possible when  x < 1

9. y
x

x
=

−

+

�
�
�

�
	

−

cos
1

2

2

1

1

Solution: y
x

x
=

−

+

�
�
�

�
	

−

cos
1

2

2

1

1

⇒ =
−

+
cos y

x

x

1

1

2

2

⇒ =
+ × − − − ×

+

d y

dx

x x x x

x

cos 1 2 1 2

1

2 2

2 2

� � � � � � � �

� �

= − − − +

+

2 2 2 2

1

3 3

2 2

x x x x

x �
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⇒ − =
−

+
sin y

dy

dx

x

x

4

1
2 2

� �

⇒ =
−

+
×
−

=
+

⋅dy

dx

x

x
y

x

x
y

4

1

1 4

1

1
2 2 2 2

� � � �sin sin

Now, sin cosy y= −1
2

� sin siny y y= ≤ ≤as 0 π� �

= −
−
+

�
��

�
	


1
1

1

2

2

2
x

x

=
+ − −

+

1 1

1

2 2 2 2

2 2

x x

x

 �  �
 �

=
+ + − + −

+

1 2 1 2

1

4 2 4 2

2 2

x x x x

x

 �
 �

=
+ + − − +

+

1 2 1 2

1

4 2 4 2

2 2

x x x x

x �

=
+

4

1

2

2 2

x

x� �

=
+

2

1 2

x

x �

Hence, 
dy

dx

x

x

x

x
=

+

+4

1

1

22

2

 �
 �

.

=
+

⋅
+4

1

1

22

2

x

x

x

x� �

� �

� 1 2+ x �� �is always positive

=
+ ⋅

≠2

1
0

2

x

x x
x

� �
;

10. y
x

x
=

−

+

�
�
�

�
	

−

sin
1

2

2

1

1

Solution: y
x

x
= −

+

�
�
�

�
	



−
sin

1
2

2

1

1

⇒ =
−

+

�
�
�

�
	

sin y

x

x

1

1

2

2

⇒ =
+ × − − − ×

+

d y

dx

x x x x

x

sin 1 2 1 2

1

2 2

2 2

� � � � � � � �

� �

⇒ =
− − − +

+
=

−

+
cos y

dy

dx

x x x x

x

x

x

2 2 2 2

1

4

1

3 3

2 2 2 2

� � � �

⇒ =
−

+
⋅

dy

dx

x

x
y

4

1

1
2 2

� � cos

Now, cos siny y= −1
2

� cos cos asy y y= − ≤ ≤�
�

�
	

π π
2 2

= −
−
+

�
��

�
	


1
1

1

2

2

2
x

x

=
+ − −

+

1 1

1

2 2 2 2

2 2

x x

x

 �  �
 �

=
+ + − + −

+

1 2 1 2

1

4 2 4 2

2 2

x x x x

x

 �
 �
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=
+

4

1 2 2

x

x �

=
+

=
+

2

1

2

12 2

x

x

x

x �

(� 1 1 1
2 2 2

+ = + +x x xfor � �  being always

positive)

∴ =−
+

×
+

=
−

+

dy

dx

x

x

x

x

x

x x

4

1

1

2

2

1
2

2

2� �

� �

� �

11. y x= −
−

sin
1 2

1

Solution: y x= −
−

sin
1 2

1

⇒ = −sin y x1
2

⇒ =
−

× − =
−

−

d y

dx x
x

x

x

sin 1

1
2

12 2
� �

⇒ =
−

−
cos y

dy

dx

x

x1 2

⇒ =
−

−
⋅

dy

dx

x

x y1

1
2 cos

� cos siny y= −1
2

� cos cos asy y y= − ≤ ≤�
�

�
	

π π
2 2

= − −�
��

�
	
 = − − = − +1 1 1 1 1 1

2
2

2 2
x x x� �

= =x x2

∴ = −
−

×dy

dx

x

x x1

1
2

= −
−

≠x

x x
x

1
0

2
, .

12. y
x x

x
=

−

−

�
�
�

�
	

−

tan
1

3

2

3

1 3

Solution: y
x x

x
=

−

−

�
�
�

�
	

−

tan
1

3

2

3

1 3

on putting x x= ⇔ = −
tan tanθ θ 1  for

− < <π θ π
2 2

, 
3

1 3
3

3

2

tan tan

tan
tan

θ θ

θ
θ

−

−
=  suggests

to put x
x x

x
=

−

−

�
�
�

�
	

tan inθ

3

1 3

3

2
; x ≠ ±

1

3

∴ =
−

−

�
��

�
	

=− −y tan

tan

tan
tan tan

3
1

2
13

1 3
3

θ θ
θ

θ� �

= + = +−3 3 1θ π πn x ntan

⇒ =
+

≠ ±dy

dx x
x

3

1

1

32
; .

13. y
x

x
=

−

�
�
�

�
	

−

tan
1

2

4

4

Solution: y
x

x
x=

−

�
��

�
	


≠ ±−tan ;1
2

4

4
2

=
− �
�

�
	

�

�

�
�
��

�

	








=

− �
�

�
	

�

�

�
�
��

�

	









− −
tan tan

1

2

1

2

1
2

2

2

1
2

x

x

x

x

Now on putting , 
x x

2 2

1
= ⇔ = �

�
�
	

−
tan tanθ θ for

− < <
π

θ
π

2 2
, we have
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y n=
−

�
��

�
	

= = +− −tan

tan

tan
tan tan1

2
12

1
2 2

θ
θ

θ θ π� �

where − < <π π
2 2

y

⇒ = +−y
x

n2
2

1tan π

⇒ = ⋅
+ �
��

�
	


⋅dy

dx x
2

1

1
2

1

22

=
+

≠ ±4

4
2

2x
x,

14. y x x= −�
��

�
	


−
sin

1 2
2 1

Solution: y x x= −�
��

�
	


−
sin

1 2
2 1

on putting, x x= ⇔ = −sin sinθ θ 1  for

− ≤ ≤
π

θ
π

2 2
, 1 2− =sin cosθ θ  suggests to put

x= sinθ  in 1
2

− x

∴ = −�
�

�
	

−y sin 2sin sin1 21θ θ

= −sin sin cos1 2 θ θ� �

� cos cos asθ θ π θ π= − ≤ ≤�
�

�
	2 2

⇒ = =−
y sin sin

1
2 2θ θ� �  for − ≤ ≤π θ π

4 4

i.e; − ≤ ≤1

2

1

2
x  or 2 12x ≤ ...(i)

y = −sin sin1 2θ� �  = − −π θ2 ,

when − ≤ <−π θ π
2 4

i.e; − ≤ < −1
1

2
x ...(ii)

and y = −
sin sin

1
2θ� �  = −π θ2 , when 

π
θ

π
4 2
< ≤

i.e; 
1

2
1< ≤x ...(iii)

Hence, from (i),

dy

dx

d

dx

d x

dx x
= = =

−

−
2 2 2

1

1

2

θ sin� �
 for 2 12x <

...(iv)
from (ii) and (iii),

dy

dx

d

dx x
= − = −

−

2 2

1
2

θ
 for 2 2 12> >x ...(v)

dy

dx
 does not exist for x2 1

1

2
= ,

or, alternatively,

y x x= −�
��

�
	


−
sin

1 2
2 1

⇒ = −sin y x x2 1
2

⇒ = − +
−

× −
d y

dx
x

x

x
x

sin
2 1

2

2 1
2

2

2
� �

⇒ = − −
−

cos y
dy

dx
x

x

x
2 1

2

1

2
2

2

=
− −

−

2 1 2

1

2 2

2

x x

x

 �

=
− −

−

�
��
��

�
��
��
=

−

−
2

1

1

2 1 2

1

2 2

2

2

2

x x

x

x

x

 �

⇒ =
−

−
×dy

dx

x

x y

2 1 2

1

1
2

2

� �
cos

Now, cos siny y x x= − = − −1 1 4 1
2 2 2� �
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� cos cos asy y y= − ≤ ≤�
��

�
��

π π
2 2

= − + = − = −1 4 4 1 2 1 2
2 4 2 2 2

x x x x� � � �

� f x f x2 � � � �=�
��

�
��

∴ =
−

−
×

−

dy

dx

x

x x

2 1 2

1

1

1 2

2

2 2

 �
 �

=
−

− −
≠ ≠

2 1 2

1 2 1
2 1 1

2

2 2

2 2
x

x x
x x

 �
 �

; ,

More about substitution

1. (a1) If a x2 2−   occurs , we put x a= sin θ  or

cosθ , i.e; θ = �
�

�
	

−
sin

1 x

a
, when  − ≤ ≤π θ π

2 2
 and

‘a’ is positive

(a2) If x a2 2−   occurs , we put x a= sec θ  or

cosecθ , i.e; θ = �
�

�
	

−
sec

1 x

a
, when 0 ≤ ≤θ π

θ
π

≠�
��

�
	
2  and ‘a’ is positive.

(a3) If a x2 2+   or , a x2 2+ �  occurs , we put

x a a= tan or cotθ θ , i.e; θ = �
�

�
	

−
tan

1 x

a
, when

− < <π θ π
2 2

 and ‘a’ is positive.

(a4) If a x−  or  a x+   or 
a x

a x

−
+   or

a x

a x

+
− occurs, we put x a= cos2θ .

2. The preceeding square roots are a cos θ , a sec θ
and a tan θ  when these quantities are not negative

and this will be true in particular when a is a positive
constant and θ  represents the principal values of

sin
−1

x  or sin,
−�

�
�
	

1 x

a , cos
−1

x  or cos,
−�

�
�
	

1 x

a
,

tan
−1

x  or tan,
−�

�
�
	

1 x

a
, cot

−1
x  or cot,

−�
�

�
	

1 x

a

(i) If x a= sinθ , then a x2 2−  = a a
2 2 2
− sin θ

= a acos cosθ θ= .

(ii) If x a= tanθ , then a x
2 2
+  = a a

2 2 2+ tan θ

= a
2 2

sec θ  = a asec secθ θ= .

(iii) If x a= secθ , then x a
2 2
− = a a

2 2 2
sec θ−

= a
2 2

tan θ  = a tanθ .

3. If we are not given the expression which can be
transformed into the trigonometric function of
multiple angle of θ , we should avoid this substitution
rule since it becomes complicated and gives no fruitful
result to find d.c.. For this reason we should use chain
rule to find d.c. when substitution method fails, i.e;
we should use the formula.

dy

dx dx

dy

= �
��

�
	


1
 or chain rule (i.e; function of a

function rule).

Remember: Generally, we are provided the following

form t f x a x x− ± ±�
� ± ±�

��
1 2 2 2 21 1  a

constant a x2 2+ ± �
	
�
��a constant  Whose differ-

ential coefficient is required to find out, where

t–1 = sin–1, cos–1, tan–1, cot–1, sec–1, and cosec–1.

Solved Examples:

Find the d.c. of the following inverse trigonometric
functions.
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1. y
x

x
=

+

�

�
�
�

�

�
�
�

−
sin

1

2
1

Solution: y
x

x
=

+

�

�
�
�

�

�
�
�

−
sin

1

2
1

Firstly, on simplification after putting

x x= ⇔ = −
tan tanθ θ 1

,  where − ≤ ≤π θ π
2 2

∴ =
+

�
�
�
�

�
�
�
�

−
y sin

tan

tan

1

1

θ
θ

⇒ =
�

�
�
�

�

�
�
�

−
y sin

tan

sec

1

2

θ

θ

∴ =
�
��

�
��

−
y sin

tan

sec

1 θ
θ

� sec sec forθ θ
π

θ
π

= − ≤ ≤�
�

�
	2 2

⇒ = ×
�
��

�
��

−
y sin

sin

cos
cos

1 θ
θ

θ

⇒ = −
y sin sin

1 θ

⇒ = = −
y xθ tan

1

⇒ =
+

dy

dx x

1

1 2

2. y
x

x
=

−

−
tan

1

2
1

Solution: Firstly, on simplification after putting

x x= ⇔ = −
sin sinθ θ 1   for  − ≤ ≤π θ π

2 2

∴ =
−

=
�
��

�
	


− −
y tan

sin

sin
tan

sin

cos

1

2

1

1

θ

θ

θ
θ

� for cos cos− ≤ ≤ ⇒ =�
�

�
	

π
θ

π
θ θ

2 2

⇒ = = =− −
y xtan tan sin

1 1θ θ� �

⇒ = =
−

≠ ±
−dy

dx

d x

dx x
x

sin
,

1

2

1

1
1.

3. y
x

a x
=

−

�

�
�
�

�

�
�
�

−
tan

1

2 2

Solution: Firstly, on simplification by putting

x a
x

a
= ⇔ = �

�
�
	

−
sin sinθ θ

1
  for  − ≤ ≤π θ π

2 2

and a a a> =0 i.e;� �

∴ =
−

�

�
�
�

�

�
�
� =

�
��

�
��

− −
y

a

a a

a

a
tan

sin

sin
tan

sin

cos

1

2 2 2

1θ

θ

θ
θ

� cos cos forθ θ
π

θ
π

= − ≤ ≤�
��

�
��2 2

⇒ = = = �
�

�
	

− −
y

x

a
tan tan sin

1 1
θ θ

⇒ =

−

⋅ =
−�

�
�
�

�

	





⋅dy

dx x

a

a
a x

a

a

1

1

1 1 1
2

2

2 2

=
−

⋅
a

a x a2 2

1

⇒ =
−

≠ ±dy

dx a x
x a

1
2 2

, .

4. y
x

x
=

+ −�

�
�
�

�

�
�
�

−
tan

1
2

1 1
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Solution: y is defined for all x ≠ 0 . Firstly on

simplification by putting

x x= ⇔ = −
tan tanθ θ 1  for − < <π θ π

2 2

∴ =
+ −�

�
�
�

�

�
�
�=

+ −�

�
�
�

�

�
�
�

− −
y

x

x
tan tan

tan

tan

1
2

1
2

1 1 1 1θ
θ

=
−�

��
�
��

≠ ≠−tan
sec

tan
; i.e;1 1

0 0
θ
θ

θ , x

� sec sec forθ θ
π

θ
π

= − < <�
��

�
	
2 2

=
−�

��
�
��
=

�

�

�
�
�
�

�

�

�
�
�
�
= �

�
�
	

− − −
tan

cos

sin
tan

sin

sin cos
tan tan

1 1

2

11
2

2
2

2 2
2

θ
θ

θ

θ θ
θ

= =
−θ

2

1

2

1
tan x

⇒ = ⋅
+

=
+

≠
dy

dx x x
x

1

2

1

1

1

2 1
02 2 �

� �,

5. y
x

x
=

+ −�

�
�
�

�

�
�
�

−
cot

1
2

1 1

Solution: y
x

x
=

+ −�

�
�
�

�

�
�
�

−
cot

1
2

1 1

The function is defined for all x ≠ 0 . Firstly, on
simplification by putting

x x= ⇔ = −
tan tanθ θ 1  for − < <π θ π

2 2
 ,  θ ≠ 0

y =
+ +�

�
�
�

�

�
�
�

−cot
tan

tan
1

21 1θ
θ

=
+�

��
�
��

−
cot

sec

tan

1 1θ
θ

� sec sec forθ θ
π

θ
π

= − < <�
�

�
	2 2

= +�
��

�
	

=

+ −

⋅

�

�

�
�
�

�

�

�
�
�

− −cot
cos

sin
cot

cos

sin cos

1 1

2
1 1 2

2
1

2
2 2

θ
θ

θ

θ θ

= �
�

�
	

−
cot cot

1

2

θ

= = < <−θ θ π
2

1

2
0

2

1
tan ifx

and y = +π θ
2

, if  − < <π θ
2

0

= +
−

π
1

2

1
tan x ,  if  − < <π θ

2
0

Hence, 
dy

dx x
x=

+
≠

1

2 1
0

2 �
� �; .

Type 2:

Form: A function having the form t t x
−1� �  or

t t x
n−�

��
�
��

1� �  where t  =  sin / cos / tan / cot / sec / cosec

and t–1 = sin–1 / cos–1 / tan–1 / cot–1 / sec–1 / cosec–1

is differentiated using the following working rule.

Working rule:

(1) Put x x= −
sin in sinθ 1

x x= −
cos in cosθ 1

x x= −
tan in tanθ 1

x x= −
cot in cotθ 1

x x= −
sec in secθ 1

x x= −
cosec in cosecθ 1

So that we may obtain t t− =1 θ θ� �  where θ

represents the principal values of sin
−1

x ,  cos
−1

x ,

tan
−1

x ,  cot
−1

x ,  sec
−1

x  and cosec
−1

x .
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2. Differentiate 
d t

dx

d t

d

d

dx

d t

d
dx

d

θ θ
θ

θ
θ
θ

θ

� � � �
� �

= ⋅ =

3. Express the required result in terms of x (or, in terms
of x and y both if required).

Note: The above types of problems also can be done

by using the chain rule ⇒ = ⋅
−

−

−
dy

dx

d t t x

d t x

d t x

dx

1

1

1 �
 �

 �

or, dy

dx

d t t x

d t t x

n

=
−

−

1

1

 �
 �

= − −
−

−

−

n t t x
d t t x

d t x

d t x

dx

n
1 1

1

1

1

 �
 �
 �

 �
. .

Solved Examples on the form: y t t x= −1 �
Find the d.c. of the following.

1. y x=
−

sec tan
1� �

Solution: Put x x= ⇔ =−
tan tanθ θ1  for − < <π θ π

2 2

∴ = =−y sec tan tan sec1 θ θ� �

⇒ = = ⋅ =dy

dx

d

dx

d

d

d

dx

d

d
dx

d

sec sec
sec

θ θ
θ

θ
θ

θ

θ

⇒ =
⋅dy

dx d

d

sec tan
tan
θ θ

θ
θ

  � x = tanθ

=
⋅

= ⋅ =
sec tan

sec

sin

cos
cos sin

θ θ

θ

θ
θ

θ θ
2

= =
+

tan

sec tan

θ
θ θ

x

1
2

� sec sec forθ θ
π

θ
π

= − < <�
��

�
��2 2

=
+

x

x1 2

2. y x=
−

tan sin
1� �

Solution: Put x x= ⇔ =
−

sin sinθ θ
1

 for − ≤ ≤�
�

�
	

π θ π
2 2

∴ = = =
− −

y xtan sin tan sin sin tan
1 1� � � �θ θ

⇒ = ⋅ = �
��

�
	

= =

dy

dx

d

dx dx

d

d

d

sec
sec sec

sin
sec

cos

2
2 2 2

θ
θ θ

θ

θ
θ

θ

θ
θ

= =sec
cos

3

3

1θ
θ    θ π≠ ±�

�
�
	2

=
−�

��
�
	


1

1
2

3

sin θ  
as cos > forθ π θ π

0
2 2

− < <

=
−

1

1 2 3 2
x �

/  for  x < 1.

Solved Examples on the form: y t t x
n

= −1 �
Find the d.c. of the following

1. y x=
−

sec cos
2 1� �

Solution: y x=
−

sec cos
2 1� � , x ≠ 0

⇒ = =
�
��

�
��

− −

dy

dx

d x

dx

d x

dx

sec cos sec cos
2 1 1 2

� � � �

Now, using chain rule, we have

dy

dy

d x

d x

d x

d x

d x

dx
=

�
��

�
��

�
��

�
��
⋅ ⋅

−

−

−

−

−sec cos

sec cos

sec cos

cos

cos
1 2

1

1

1

1� �

� �

� �
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= ⋅ ⋅ ⋅
−

−
− − −2

1

1

1 1 1

2
sec cos sec cos tan cosx x x

x
� � � � � �

� �
,

x < 1.

=
− �

��
�
�� ⋅

−

− −
2

1

1 2 1

2

sec cos tan cosx x

x

� � � �

= for , .− < ≠2
1 0

3x
x x

or, alternatively,

y x= −
sec cos

2 1� �

Put x x= ⇔ = ≤ ≤−
cos cos whereθ θ θ π1

0,

⇒ =y sec
2 θ

⇒ = = ⋅ ⋅ ⋅dy

dx

d

dx

d

dx
2 2sec

sec
sec sec tanθ

θ
θ θ θ

θ

= ⋅ ⋅
−

2
2

1

sec tan
cos

θ θ
d x

dx

=
−

−
< ≠

2

1
1 0

3 2

sin

cos
, ,

θ

θ x
x x .

=
− −

−

2 1

1

2

3 2

cos θ

x x

� sin sin forθ θ θ π= ≤ ≤0

=
− −

−
= − ≠ ±

2 1

1

2
0 1

2

3 2 3

x

x x x
xfor , .

Note:

 y x x= =− −sec cos sec cos2 1 1
2

� � � �

= �
��

�
	


�
��

�
��

−sec sec 1
2

1

x

=
1
2x

2. y x=
−

tan cos
2 1� �

Solution: y x=
−

tan cos
2 1� � = �

��
�
��

−
tan cos

1 2

x� �

Put x x= ⇔ = ≤ ≤−
cos cos whereθ θ θ π1

0,

∴ = ≠ ≠y xtan , , i.e.2

2
0θ θ π

.

⇒ =
dy

d

d

dxθ
θtan

2

= ⋅ ⋅2
2

tan secθ θ
θd

dx

=
⋅2

2
tan secθ θ

θ
dx

d

=
⋅2

2
tan sec

cos
θ θ

θ
θ

d

d

=
⋅

−
< ≠

2
1 0

2tan sec

sin
, ,

θ θ
θ

x x .

= − = −2 2
3 3

cos θ x
� x = cosθ� �  for

x x< ≠1 0,

3. y x=
−

cot tan
1� �

Solution: Put x x= ⇔ = −
tan tanθ θ 1 , 

− < <π θ π
2 2

∴ = = ≠−y cot tan tan cot ,1 0θ θ θ� � .

⇒ = = ⋅ =dy

dx

d

dx

d

d

d

dx

d

d
dx

d

cot cot

cot

θ θ
θ

θ
θ

θ

θ
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=
−

= − = − = −
cosec

tan
cosec

sec

cos

sin
cot

2 2

2

2

2
2θ

θ
θ

θ
θ

θ
θ

θ
d

d

= − = −1 1
2 2

tan θ x
,     x ≠ 0� �

4. y m x=
−

sin sin
1� �

Solution: Put x x= ⇔ = −
sin sinθ θ 1  for − ≤ ≤π θ π

2 2

∴ = = =
− −

y m x m msin sin sin sin sin sin
1 1� � � �θ θ

⇒ = = ⋅ = ⋅ ⋅dy

dx

d m

dx

d m

d m

d m

dx
m m

d

dx

sin sin
cos

θ θ
θ

θ θ θ

⇒ = =
−

−

dy

dx

m m
dx

d

m mcos sin

sin

θ

θ

θ

θ

1

1

2

2

if cos mθ ≥ 0  and θ
π≠ ±
2

⇒ =
+ −

−

dy

dx

m y

x

1

1

2

2
    � sin m yθ = ,  for

x < 1.

if 2
2

2
2

1
n m x nπ π π π− ≤ ≤ +−

sin

and ⇒ =
− −

−

dy

dx

m m1

1

2

2

sin

sin

θ

θ
 if cosmθ < 0

= −
−

−

m y

x

1

1

2

2
  for  x < 1.

� sin and sinθ θ= =x m y ,

if 2
2

2
3

2

1
n m x nπ

π
π

π
+ < < +

−
sin

or, alternatively,

y m x= −sin sin 1� �
Now

1. sin sin− −= +1 12y n m xπ

if − ≤ + ≤−π π π
2

2
2

1
n m xsin

2. sin sin− −= + −1 12 1y n m x� �π

if 
− ≤ + −π π π
2

2 1n m� �  sin
− ≤1

2
x

π

Hence,

dy

dx

m y

x
= +

−

−

1

1

2

2     in case (1), x < 1.

= −
−

−

m y

x

1

1

2

2    in case (2), x < 1.

5. y x=
−

cos sin2
1� �

Solution: Put x x= ⇔ =−
sin sinθ θ1

,  − ≤ ≤�
�

�
	

π
θ

π
2 2

∴ = =
−

y cos sin sin cos2 2
1

θ θ� �

⇒ = = ⋅ =− ⋅ ⋅dy

dx

d

dx

d

d

d

dx

d

dx

cos cos
sin

2 2

2

2
2 2

θ θ
θ

θ θ θ

⇒ =
−

=
−dy

dx dx
d

d

d

2 2 2 2sin sin
sin

θ

θ

θ
θ

θ

=
−

≠ ±
sin

cos

2

2

θ
θ

θ π
,

⇒ = −
× ⋅

= − = −dy

dx
x

2 2
4 4

sin cos

cos
sin

θ θ
θ

θ

for x < 1.

� x = sinθ
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6. y x=
−

cos cos2
1� �

Solution: using chain rule, we have

dy

dx

d x

d x

d x

d x

d x

dx
= ⋅ ⋅

−

−

−

−

−cos cos

cos

cos

cos

cos2

2

21

1

1

1

1� �
� �

� �

= − ⋅ ⋅ −

−
−

−

−sin cos
cos

cos
2 2

1

1

1
1

1 2
x

d x

d x x
� � ,

x < 1

= − ⋅ −

−

−
sin cos2

2

1

1

2
x

x
� �

=
−

−
2 2

1

1

2

sin cos x

x

� �

Let cos
−

= ≤ ≤
1

0x θ θ π,

=
−

=
⋅ ⋅

−
=

2 2

1

2 2

1

4
2 2

sin sin cos sin

sin

θ θ θ θ
θx x

x

= 4 x � sin sin forθ θ θ π= ≤ ≤0  for

x < 1.

Type 3:

Form 1: y t f x y= −1 ,� �
Where, t–1 = sin–1 / cos–1 / tan–1 / cot–1 / sec–1 /

cosec–1 f x y,� �   =  an algebraic implicit function of x

and y or f x y,� �   =  an algebraic expression in x and

y mixed together.

Working rule:
1. Change the given inverse trigonometric function
into direct trigonometric function.
2. Differentiate both sides implicitly w.r.t. x remem-
bering that y is a function of x.

3. Finally solve for 
dy

dx
.

Form 2: An algebraic implicit function ⇔ f x y1 ,� �

=
−

t f x y
1

2 ,� �  = −t 1  (an algebraic implicit function)

Working rule:
1. Change the given inverse trigonometric function
into direct trigonometric function.
2. Differentiate both sides implicitly w.r.t. x remem-
bering that y is a function of x.

3. Finally solve for 
dy

dx
.

Solved Examples on the form: y t f x y= −1 ,� �
Find the d.c. of the following.

1. y x y= +−
tan

1 � �

Solution: y x y= +−
tan

1 � �
⇒ = +tan y x y

⇒ =
+d y

dx

d x y

dx

tan � �

⇒ ⋅ = +
d y

dy

dy

dx

dx

dx

dy

dx

tan

⇒ ⋅ = +sec
2

1y
dy

dx

dy

dx

⇒ − =sec
2

1y
dy

dx

dy

dx

⇒ − =sec
2

1 1y
dy

dx
� �

⇒ =
−

= =
+

dy

dx y y x y

1

1

1 1
2 2 2

sec tan� � � �

2. y x y= +−
sin

1 � �

Solution: y x y= +−
sin

1 � �
⇒ = +sin y x y

⇒ =
+d y

dx

d x y

dx

sin � �
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⇒ ⋅ = +cos y
dy

dx

dx

dx

dy

dx

⇒ ⋅ − =cos y
dy

dx

dy

dx
1

⇒ − =cos y
dy

dx
1 1� �

⇒ =
−

dy

dx y

1

1cos� � .

Solved Examples out on the form:

f1 (x, y) = t f x y
−1

2 ,� �
Find the d.c. from the following.

1. x y x y+ = +−
sin

1 � �
Solution: x y x y+ = +−

sin
1 � �

⇒ + = +sin x y x y� �

⇒
+

=
+d x y

dx

d x y

dx

sin � � � �

⇒ + ⋅
+

= +cos x y
d x y

dx

dy

dx
� � � �

1

⇒ + +�
��

�
�� = +cos x y

dy

dx

dy

dx
� � 1 1

⇒ + + + − =cos cosx y x y
dy

dx

dy

dx
� � � � 1

⇒ + − = − +cos cosx y
dy

dx
x y� � � �1 1

⇒ =
− + −

+ −
= −dy

dx

x y

x y

cos

cos

� �
� �

1

1
1

2. x y x y+ = −−
sec

1 � �

Solution: x y x y+ = −−
sec

1� �

⇒
+

=
−d x y

dx

d x y

dx

sec� � � �

⇒ + ⋅ + ⋅
+

= −sec tanx y x y
d x y

dx

dy

dx
� � � � � �

1

⇒ + ⋅ + +�
��

�
�� = −sec tanx y x y

dy

dx

dy

dx
� � � � 1 1

⇒ + + + + ⋅ +sec tan sec tanx y x y x y x y
dy

dx
� � � � � � � �

= −1
dy

dx

⇒ + + +sec tanx y x y
dy

dx

dy

dx
� � � �

= − + ⋅ +1 sec tanx y x y� � � �

⇒ =
− + +
+ + +

dy

dx

x y x y

x y x y

1

1

sec tan

sec tan

� � � �
� � � �

3. xy x y= +−
sin

1 � �

Solution: xy x y= +−
sin

1 � �
⇒ = +sin xy x y� �

⇒ =
+d xy

dx

d x y

dx

sin � � � �

⇒ ⋅ = +cos xy
d xy

dx

dy

dx
� � � �

1

⇒ +�
��

�
��
= +cos xy x

dy

dx
y

dx

dx

dy

dx
� � 1

�
d xy

dx

d xy

d xy

d xy

dx

sin sin� � � �
� �

� �
= ⋅

�
��

�
��

⇒ + ⋅ = +x xy
dy

dx
y xy

dy

dx
cos cos� � � � 1 1

⇒ − = −x xy
dy

dx

dy

dx
y xycos cos� � � �1

⇒ − = −x xy
dy

dx
y xycos cos� � � �1 1

⇒ =
−

−
= −

−
−

dy

dx

y xy

x xy

y xy

x xy

1

1

1

1

cos

cos

cos

cos

� �
� �

� �
� �
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Type 4: Differentiation  of  inverse  trigonometric
function of  a  function of  x  w.r.t.  an other inverse
trigonometric function of a function of x / an other

function of x  ⇒  differentiate t f x−1 � �   w.r.t.

t g x−1 � �  or, differentiate t f x−1 � �   w.r.t. g (x)

where f (x)  =  a function of x
g (x)  =  an other function of x / sin x / cos x / tan x / cot
x / sec x / cosec x

t
− − − − − − −=1 1 1 1 1 1 1

sin cos tan cot sec cosec/ / / / /

t1
1− = another inverse trigonometric operator

excepting t−1 .

Working rule:

1. Put t f x y− =1 � �  [ The function put before

“w.r.t.”] ...(1)

and t g x z
−

=1 � �  [the function put after w.r.t.]   ...(2)

2. Find the  d.c. of (1) w.r.t. x using the rule of finding
d.c. of inverse trigonometric function. Similarly, find x
the d.c. of (2) w.r.t.  using the rule of finding the inverse
trigonometric function.
3. Divide the d.c of y by the d.c. of z regarding z as a

function of x

dy

dx
dz

dx

⇒   which is the required d.c.

Remember:

1.
d f y

dx
f y

dy

dx

� � � �= ′ ⋅

2.
d f z

dx
f z

dz

dx

� � � �= ′ ⋅

Solved Examples:

Find the d.c. of the following.

1. sin
−1

x  w.r.t. cos
−1

x

Solution: Let sin− =1x y

⇒ = − ≤ ≤sin y x y,
π π
2 2

... (1)

and cos cos− = ⇒ = ≤ ≤1 0x z z x z, π ... (2)

(1) ⇒ =
d y

dx

dx

dx

sin

⇒ =cos y
dy

dx
1

⇒ =dy

dx y

1

cos

⇒ =
−

dy

dx y

1

1
2

sin
 for x < 1.

� cos cos asy y y= − ≤ ≤�
��

�
��

π π
2 2

⇒ =
−

dy

dx x

1

1 2 ...(3)

(2) ⇒ =
d z

dx

dx

dx

cos

⇒ − =sin z
dz

dx
1

⇒ = −dz

dx z

1

sin

= −
−

= −

−

1

1

1

1
2 2

cos z x

� sin sin asz z z= ≤ ≤0 π ...(4)

Now,   
( )

( )

3

4
 ⇒ =

−

−

�

�

�
�
�
�
�

�

�

�
�
�
�
�

= −
dy

dz

x

x

1

1
1

1

1
2

2

for x < 1.
Or, alternatively,

sin cos
− −

= −
1 1

2
x x

π

⇒ = −

−

−

d x

d x

sin

cos

1

1
1

� �

� �
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2. tan
−

−

�

�
�
�

�

	





1

2
1

x

x
 w.r.t. cosec

−

−

�

�
�
�

�

	





1

2

1

1 x
.

Solution: Let tan−

−

�

�
��

�

	


 =1

21

x

x
y

⇒ =
−

tan y
x

x1 2 ... (1)

and cosec−

−

�

�
��

�

	


 =

1

2

1

1 x
z

⇒ =
−

cosec z
x

1

1 2
... (2)

0
2

< ≤�
�

�
	z

π

Now,

(1) ⇒ =
−

�

�
�
�

�

�
�
�

d y

dx

d

dx

x

x

tan

1
2

⇒ ⋅ =

− ⋅ − ⋅

−
⋅ −

−�
��

�
	


sec
2

2

2

2
2

1 1
1

2 1
2

1

y
dy

dx

x
x

x
x

x

� �

⇒ =

− +
−

− +

dy

dx

x
x

x

x y

1
1

1 1

2
2

2

2 2� � � �tan

=

−�� �	 + −
−

⋅

+
−

�

�
��

�

	




1
1

1

1

1
1

2
2

2

2

2

2

x
x

x

x x

x

 �

=
− +

−�� �	 ⋅ −
⋅

− +

−�� �	

�

�

�
�
�
�

�

�

�
�
�
�

1

1 1

1

1

1

2 2

2 2
2 2

2
2

x x

x x x x

x

 �
 �  �

=
− +

−�
��

�
	
 −

⋅
−x x

x x

x
2 2

2 2

2
1

1 1

1

1

� �

� �

� �

=
−

1

1 2x ...(3)

Again,

(2) ⇒ =
−

cosec z
x

1

1
2

⇒ =
−

�

�
�
�

�

	





d z

dx

d

dx x

cosec 1

1
2

= − ×
−

⋅
−

⋅
−

1
1

2 1

2

1

1

12 2
x

x

x

� �
� �

⇒ − ⋅ =
−�

��
�
	
 −

cosec cotz z
dz

dx

x

x x1 1
2 2� �

⇒ = −

−
⋅

−
⋅

⋅ −dz

dx x

x

x

x

z

1

1 1

1 1
2 2

2

� � cot

= −

−
⋅

−

x

z xcosec
2 2

1

1

1� �   � cot z > 0� �

=
−
−

⋅

−

�

�
��

�

	


 −

x

x

x

1

1

1

1
1

2

2

2 �
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= −
−

⋅

−
−

x

x

x

1

1

1

1
1

2

2
 �

 �

= −
−

⋅
− −

−

x

x x

x

1

1

1 1

1

2 2

2

 �  �
 �

=
− −

−

x x

x x

1

1

2

2 2 �

=
− −

−�� �	
⋅ = − ⋅

−

1

1

1

1

2

2
2 2

x

x

x

x

x

x x

Hence,

 
( )

( )

3

4  ⇒ = −
−

⋅ − ⋅

dy

dx
dz

dx
x

x
x

x

1

1
1

2

2

∴ =
−

<dy

dz

x

x
x, .1

On Method of Transformation

Type 1:

Form: 1. t
x

x

− ±1 1

1

sin

sin�
 or t

x

x

− ±1 1

1

cos

cos�

2. t
x

x

− ±
±

1 1

1

sin

cos
 or t

x

x

− ±
±

1 1

1

cos

sin

Working rule: Whenever 1 ± sin x  and / 1 ± cos x

appear ( or, appears) under the radical sign   , we
express the function within the radical as a square of

some function.

Solved Examples:

Find d.c. of the following

1. y
x

x
=

−
+

−
tan

cos

cos

1 1

1

Solution:
1

1

2
2

2
2

2

2

2

2

2

2

−
+

= =
cos

cos

sin

cos

sin

cos

x

x

x

x

x

x

∴ = =

�
�
��

�
��

�
�
��

�
��

− −
y

x

x

x

x
tan

sin

cos
tan

sin

cos

1

2

2

1

2

2

2

2

2

2

= ���
���

−
tan tan

1

2

x

⇒ =tan tany
x

2

⇒ = ⋅sec
tan

tan

sec
2

2

2

2

2
2

y
dy

dx

x

x

x

⇒ =
⋅

⋅

dy

dx

x x

x
y

1

2
2 2

2

2

2

tan sec

tan sec

= ⋅
⋅

+
�
��

�
	


1

2
2 2

2
1

2

2

2

tan sec

tan tan

x x

x x

=
⋅

⋅ +�
�

�
	
= ⋅

⋅

⋅

1

2
2 2

2
1

2

1

2
2 2

2 2

2

2

2

2

tan sec

tan tan

tan sec

tan sec

x x

x x

x x

x x

= ⋅ ≠1

2
2

2

tan

tan

x

x
x n, π

Or, alternatively,

tan
cos

cos
y

x

x
=

−
+

1

1
, Now using logarithmic differ-

entiation,
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⇒ =
−
+

=
−
+

�
��

�
	
log tan log

cos

cos
log

cos

cos
y

x

x

x

x

1

1

1

2

1

1

= − − +
1

2
1 1log cos log cosx x� � � �� �

⇒ ⋅1

tan

tan

y

d y

dx

=
−

⋅ −
+

⋅ −
���

���
1

2

1

1

1

1cos
sin

cos
sin

x
x

x
x� �

⇒ ⋅ ⋅ =
−

+
+

���
���

1 1

2 1 1

2

tan
sec

sin

cos

sin

cosy
y

dy

dx

x

x

x

x

⇒
+

⋅
1

2
tan

tan

y

y

dy

dx

=
+ + −

−

�
��
��

�
��
��
= ⋅

⋅1

2

1 1

1

1

2

2
2 2

sin
cos cos

cos

sin

sin
x

x x

x

x

x

⇒
+ −

+
−
+

⋅ =
1

1
1

1

1

1

cos
cos

cos

cos

sin

x

x

x

x

dy

dx x

⇒
+
−
+

⋅ =

2
1

1
1

1cos

cos
cos

sin

x

x

x

dy

dx x

⇒ =

−
+

⋅
+

�
��

�
	

=

−
+

+

dy

dx

x

x

x
x

x

x
x

x

1

1

2
1

1

1
2

1

cos

cos

sin
cos

cos

cos
sin

cos

=
−
+

⋅
+

=
+

⋅
−
+

1

1

1

2

1

2

1

1

cos

cos

cos

sin

cos

sin

cos

cos

x

x

x

x

x

x

x

x

� � � �

2. y
x

x
=

+
−

−
tan

sin

sin

1 1

1

Solution:
1

1
2 2

2 2

2

2

+
−

=
+�

�
�
	

−�
�

�
	

sin

sin

cos sin

cos sin

x

x

x x

x x

⇒ +
−

=
+�

�
�
	

−�
�

�
	

=
+

−

1

1
2 2

2 2

2 2

2 2

2

2

sin

sin

cos sin

cos sin

cos sin

cos sin

x

x

x x

x x

x x

x x

= +
−

=
+�

�
�
	

−�
�

�
	

1

1

1
2

1
2

sin

sin

tan

tan

x

x

x

x

� tan
tan tan

tan tan
A B

A B

A B
+ =

+
− ⋅

� �
1

⇒
+
−

= +�
�

�
	

− −
tan

sin

sin
tan tan

1 11

1 4 2

x

x

xπ

⇒ = +�
�

�
	

−
y

x
tan tan

1

4 2

π

⇒ = +�
�

�
	

−dy

dx

d

dx

x
tan tan

1

4 2

π

=

+ + +�
�

�
	

�
��
��

�
��
��

⋅
+�

�
�
	

+�
�

�
	

⋅
+�

�
�
	1

1
4 2

4 2

4 2

4 2
22

2

tan

tan

tan

sec

π π

π

π

πx

x

x

=
+ +�

�
�
	
⋅

+�
�

�
	

+�
�

�
	

⋅
+�

�
�
	1

1
4 2

4 2

4 2

4 2
22

2

tan

tan

tan

sec

π

π

π

π

x

x

x

x

=
+�

�
�
	
⋅

+�
�

�
	

+�
�

�
	

⋅
+�

�
�
	1

4 2

4 2

4 2

4 2
22

2

sec

tan

tan

sec

π

π

π

π

x

x

x

x
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= ⋅
+�

��
�
	


+�
��

�
	


1

2

4 2

4 2

tan

tan

π

π

x

x

Note:
d

dx
f x

f x

d f x

dx
tan

− =
+

⋅1

2

1

1
� �

� � !
� �

Type 2:

Form: t−1  (an expression in direct t −  function
involving sin x and cos x only)

Working rule:
1. Transform given trigonometrical expression in sin
x and cos x in such a way that it becomes equal to

t t
x x− ±�

�
�
	 = ±1

4 2 4 2

π π
  for which are required to

(i) Use sin cosx
x

= ±�
�

�
	

π
2 2

(ii) Use multiple and / submultiple angle formulas of
trigonometric functions.
Or alternatively,

Put y  = given function and change it into direct

function and then find 
dy

dx
 regarding y as a function

of x, i.e; find 
dy

dx
 implicitly.

Example: 1. y
x

x
=

+
�
��

�
	


−
tan

cos

sin

1

1

⇒ =
+

tan
cos

sin
y

x

x1  , Now find 
dy

dx
 implicitly

2. y
x

x
=

+�
��

�
	


−
tan

sin

cos

1 1

⇒ =
+

tan
sin

cos
y

x

x

1
. Now find 

dy

dx
 implicit

function rule:

Solved Examples:

Find the d.c. of the following.

1. y
x

x
=

+
�
��

�
	


−
tan

cos

sin

1

1

Solution: y
x

x
= tan

cos

sin
−

+
�
��

�
	


1

1

⇒ =
−�

�
�
	

+ −�
�

�
	

�

�

�
�
�

�

�

�
�
�
�

−
y

x

x
tan

sin

cos

1 2

1
2

π

π

⇒ =
−�

�
�
	 ⋅ −�

�
�
	

+ −�
�

�
	 −

�

�

�
�
�
�

�

�

�
�
�
�

−
y

x x

x
tan

sin cos

cos

1

2

2
4 2 4 2

1 2
4 2

1

π π

π

⇒ = −�
�

�
	

�
��

�
��

−
y

x
tan tan

1

4 2

π

⇒ = + −y n
xπ π

4 2
  such that  − < <π π

2 2
y

Now, differentiating both sides w.r.t. x

⇒ = − = −dy

dx
0

1

2

1

2

2. y
x

x
=

+�
��

�
	


−
tan

sin

cos

1 1

Solution: y
x

x
=

+�
��

�
	


−
tan

sin

cos

1 1

⇒ =
+ + +

−

�

�

�
�
�

�

�

�
�
�

−
y

x x x x

x x
tan

cos sin sin cos

cos sin

1

2 2

2 2

2 2
2

2 2

2 2

⇒ =
+�

�
�
	

+�
�

�
	 −�
�

�
	

�

�

�
�
�
�

�

�

�
�
�
�

−
y

x x

x x x x
tan

cos sin

cos sin cos sin

1

2

2 2

2 2 2 2

⇒ =
+

+

�

�

�
�
�

�

�

�
�
�

−
y

x x

x x
tan

cos sin

cos sin

1 2 2

2 2
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⇒ =
+

−

�

�

�
�
�

�

�

�
�
�

−
y

x

x
tan

tan

tan

1
1

2

1
2

⇒ =
+

− ⋅

�

�

�
�
�

�

�

�
�
�

−
y

x

x
tan

tan tan

tan tan

1 4 2

1
4 2

π

π

⇒ = +�
�

�
	

�
��

�
��
= + +

−
y

x
n

x
tan tan

1

4 2 4 2

π
π

π

such that  − < <π π
2 2

y

⇒ = + =dy

dx
0

1

2

1

2

Type 3:

Form: y
a b

a ab
=

±�
��

�
��

−
tan

1

�

The following points should be noted about the
bracketed expressions in the above.
(i) The signs connecting the two terms in the
numerator and denominator are opposite.
(ii) One of the two term in the denominator is 1 and
the other terms is the product of two terms in the
numerator.
(iii) Somtimes at the place of 1, another constant is
provided, then that constant should be changed into
1 by using the mathematical manipulation of dividing
numerator and denominator by that constant.

Example: y
x

x
=

+
−

�
��

�
	


−tan
tan

tan
1 2 3

3 2

=
+

−

�

�

�
�
�

�

	








−tan
tan

tan

1

2
3

1
2
3

x

x

⇒ =
+

−
�
��

�
	


−
y

x
tan

tan tan

tan tan

1

1

α
α   Where tanα = 2

3

⇒ = + = + +
−

y x n xtan tan
1 α π α� � � �  where

n is such that − < <π π
2 2

y

⇒ =dy

dx
1 ( α  being a constant )

Remember:

1. If y
K x

K x
=

−
+

�
��

�
	


−
tan

1

1  , find 
dy

dx

Solution: Let y n K x= + −− −π tan tan
1 1

⇒ = −
+

dy

dx x

1

1
2

Similarly, 
dy

dx
 can be obtained if

y
K x

Kx
=

+
−

�
��

�
	


−
tan

1

1

Solved Examples:

Find the d.c. of the following.

1. y
x a

x a
=

−
+

�
��

�
	


−
tan

1

Solution: y
x a

x a
=

−
+

�
��

�
	


−
tan

1

⇒ = �
��

�
	
 − +− −y

x

a
ntan tan1 1 1� � π

⇒ =
+

=
+

dy

dx
a

x

a

a

a x

1

1
2

2

2 2

2. y
a bx

b ax
=

+
−

�
��

�
	


−
tan

1

Solution: y
a bx

b ax

a

b
x

a

b
x

=
+
−

�
��

�
	
 =

+

− �
�

�
	

�

�

�
�
�
�

�

�

�
�
�
�

− −
tan tan

1 1

1
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Let 
a

b
= tanα    and  x B= tan

∴ =
+

−
�
��

�
��

−
y

B

B
tan

tan tan

tan tan

1

1

α
α

= + = + +
−

tan tan
1 α π αB n B� �

⇒ = + +− −
y n

a

b
xπ tan tan

1 1

⇒ = + +
+

=
+

dy

dx x x
0 0

1

1

1

12 2

3. y
x

x
=

+
−

�
��

�
	


−
tan

1 5 2

2 5

Solution: y
x

x
=

+
−

�
��

�
	


−
tan

1 5 2

2 5

⇒ =
+

− �
��

�
	


�

�

�
�
��

�

	









−y
x

x
tan 1

5
2

1
5
2

Let 
5

2
= tanα  and x B= tan

∴ =
+

−
�
��

�
��
= +

− −
y

B

B
Btan

tan tan

tan tan
tan tan

1 1

1

α
α

α� �

⇒ = + +y n Bπ α

⇒ = + +
− −

y n xπ tan tan
1 15

2
 Where − < <

π π
2 2

y

⇒ =
+

dy

dx x

1

1 2

4. y
x a

x a
=

+
− ⋅

�
�
�

�
�
�−

tan
1

1

Solution: y
x a

x a
=

+
− ⋅

�
�
�

�
�
�−

tan
1

1

Now, 
x a

x a

+
− ⋅1

  gives us an idea of the formula

tan
tan tan

tan tan
A B

A B

A B
+ =

+
− ⋅

� �
1

Hence, on putting , x A= tan

a B= tan , we get

y
A B

A B
A B=

+
− ⋅

�
��

�
��
= +− −

tan
tan tan

tan tan
tan tan

1 1

1
� �

⇒ = + + = + +− −
y n A B n x aπ π tan tan

1 1

⇒ =
+

⋅ +dy

dx x

d

dx
x

1

1
0

1
2

1
2

2

� �
� �

⇒ =
+

⋅ ⋅ =
+

−��
�
	dy

dx x
x

x x

1

1

1

2

1

2 1

1

2

� �

Note: tan cot
− −=1 1 1

x
x

 only for x > 0

∴
+
−

�
��

�
	
 ≠

−
+

�
��

�
	


− −
tan cot

1 15 2

2 5

2 5

5 2

x

x

x

x

for x x< − >
5

2

2

5
or .

Problems on inverse circular functions

Exercise 10.1

1. Prove the following results by ∆ _ method.

(i)
d

dx
x

x
cos

− = −
−

1

2

1

1
� � ,   x < 1� �

(ii)
d

dx
x

x
xcot

− = −
+

∀1

2

1

1
� � ,

(iii)
d

dx
x

x x
cosec

− = −
−

1

2

1

1
� � ,   x > 1� �

2. Find the differential coefficients of the following
functions w.r.t. their independent variables using
∆ _ method.
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(i) sin
−1

x (ii) tan
−1

x (iii) sec
−1

x

(iv) Log sin
−1

x

Problems based on type 1:

F o r m : t f x t f x f t f x
n− − −1 1 1� � � �� � � �� �

where t
− − − − − − −=1 1 1 1 1 1 1

sin cos tan cot sec cosec/ / / / /

 f  =  sin / cos / tan / cot / sec / cosec / log / e / .....

etc. in  f t f x−1 � �� �

Exercise 10.2

Find 
dy

dx
 of the following functions.

1. y x=
−

sin
1 3

� �

2. y x= −
tan

1
3

3. y x=
−

sin
1 2

� �

4. y x= −cos 1 φ� �

5. y x x= +−
tan sec tan

1� �

6. y x= cos tan
1 2� �

7. y x=
−

tan
1 3
2� �

8. y x= −
sec

1

9. y x= +
−

tan
1 2

1

10. y x=
−

sin cos
1� �

11. y x=
−

cos sin
1� �

12. y x= −
tan sin

1� �

13. y x=
−

tan sin
1� �

14. y x= −
tan

1

15. y a x=
−

sin sin
1 2� �

16. y x e
x

= ⋅
− −

tan
1 2� �

17. y e
x= �

��
�
	


− −

sin
tan1

1

18. y
x

x
=

−

�

�
�
�

�

	





−
tan

1

2
1

19. y x
x

= +
−

�

�
�
�

�

	





− −
tan sin

1 2 1

2
5

1

1
� �

20. y e x
x

= +−10 1 2
1tan � �

21. y x x= +− −
sin cos

1 1

22. y
x x

= − −
�
��

�
	


−
cos

1

2

1

2
1

1 1

23. y e x
x

= + +
−

tan log
1

1 2� �

24. y
x

a b x
=

− −

�

�
�
�

�

	





−
tan

1

2 2

25. y x= −
sec

1

26. y x= −
sin

1 2 2

� �

27. y x= −
tan

1 2
5� �

28. y x= −�
��

�
��

−
cos

1 2 2

2� �

29. y x= −
cot

1 2
1

3

30. y x=
−

tan
1 2
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31. y a m bx=
− −

cot tan
1 1 � �

32. y a
x

= �
�

�
	

�
��

�
��

−
cos sin

1 1

Type 2:

Problems based on substitution and change of form

Form: t f x−1 � �

Where t
− − − − − − −=1 1 1 1 1 1 1

sin cos tan cot sec cosec/ / / / /

and f ( x ) = algebraic function of x

Exercise 10.3

Find 
dy

dx
 of the following functions.

1. y x= −
−

sin
1 2

1

2. y
a x

a
=

−�

�
�
�

�

	





−
sin

1
2 2

3. y x x= −
−

sin
1 3

3 4� �

4. y
x a x

a
=

−�

�
�
�

�

	





−
sin

1
2 2

2

5. y
a x a x

a
=

+ − −�
��

�
	


−
sin

1

2

6. y x x x x= − − −�
��

�
	


−
sin

1 2
1 1

7. y
x

x
=

+

�
�
�

�
	

−

sin
1

2

2

1

8. y
x

x
=

−

+

�
�
�

�
	

−

sin
1

2

2

1

1

9. y
x

x
=

−
+

�
�
�

�
�
�− −

sin tan
1 1

2
1

1

10. y x= −
−

cos
1 2

1

11. y
a x

a
=

−�

�
�
�

�

	





−
cos

1
2 2

12. y x= −
−

cos
1 2

2 1� �

13. y
x

=
+−

cos
1

2
1

2

14. y
x

x
=

−

+

�

�
��

�

	




−
cos

1
2

2

1

1

15. y
x x

x x
=

−

+

�

�
��

�

	




−
−

−cos
1

1

1

16. y
x

x
=

−

�
�
�

�
	

−

tan
1

2

2

1

17. y
x

a x
=

−

�

�
�
�

�

	





−
tan

1

2 2

18. y
x

x
=

+ −�

�
�
�

�

�
�
�

−
tan

1
2

1 1

19. y
a x x

a x x
=

+ +

+ −

�

�
�
�

�

�
�
�

−
tan

1
2 2

2 2

20. y
a x

ax
=

−
+

�
��

�
	


−
tan

1

1
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21. y
x x

=
−

+

�

�

�
��

�

	







−
tan

1

1
3
2

22. y
x

x
=

+
−

�
��

�
	


−
tan

1 1

1

23. y
x x

x
=

−

+

�
�
�

�
	

−

tan
1

3

2

3

1 3

24. y
a bx

b ax
=

+
−

�
��

�
	


−
tan

1

25. y
x a

b x
=

−
−

−
tan

1

26. y
x x

x

= +

−

−
tan

1

3
21

27. y
x x

x

= −

+

−
tan

1

3
21

28. y
ax

a x
=

−

�

�
�
�

�

�
�
�

−
tan

1

2 2

3

2

Hint: dividing Nr and Dr by a2  , we have

y

x

a

x

a

x

a

x

a

=
⋅

− ⋅

�

�

�
�
�
�
�

�

�

�
�
�
�
�

=
⋅

− ⋅

�

�

�
�
�
�
�

�

�

�
�
�
�
�

− −
tan tan

1

2

2

1

2

2

3

1 2

3

1 2

y

x

a

x

a
x

a

x

a

x

a

x

a
=

+

− ⋅

�

�

�
�
�

�

�

�
�
�
= + =− − −

tan tan tan etc.
1 1 1

2

1
2

2
...

29. y
ax

a x
=

−

�
�
�

�
	

−

tan
1

2 2

5

30. y
a x x

a a x
=

−

−

�

�

�
�
�

�

�

�
�
�

−
tan

1
2 3

2 2

3

3� �

31. y
x

=
−

�

�
�
�

�

�
�
�

−
tan

1

2

1

1

32. y
x

x
=

−

�

�
�
�

�

	





−
tan

1

2
1

33. y
x

x
=

−

�
�
�

�
	

−

tan
1

2

4

4

34. y
x x

x x
=

+ − −
+ + −

�
�
�
�

�
�
�
�

−
tan

1 1 1

1 1

35. y
x

x
=

−
+

�
��

�
	


−
cot

1 2 5

5 2

36. y
x

x
=

+
−

�
��

�
	


−
cot

1 1

1

37. y
x

x
=

+

−

�
�
�

�
	

−

sec
1

2

2

1

1

38. y
x

=
−

�
�
�

�
	

−

sec
1

2

1

2 1

39. y
x

x
=

+�
�
�

�
	

−

cosec
1

2
1

2

Answers (under suitable restrictions on x):

1. −
−

1

1 2x
2. −

−

1
2 2a x

3.
3

1
2− x

4.
2

2 2
a x−

5.
1

2 1 2− x
6.

1

1 2− x
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7.
2

1 2+ x 8.
−
+

2

1 2x 9.
−

−

x

x1 2

10.
1

1 2− x
11.

1
2 2a x−

12.
−

−

2

1 2x

13.
−

−

1

2 1 2
1
2x �

14.
2

1 2+ x
15.

−
+

2

1 2x

16.
2

1 2+ x 17.
1

2 2a x−
18.

2

1 2+ x

19.
1

2 2a x−
20.

−
+

1

1 2x

21.
1

1

1

2

1

1 2+
⋅ −

+x x x 22.
1

1 2+ x

23.
3

1 2+ x 24.
1

1 2+ x 25.
1

2 x a x b− −� � � �

26.
1

2

1

1

1

1
2x x x

⋅
+

+
+

27.
1

1

1

2

1

1 2+
⋅ −

+x x x 28. − 1

29.
a x

a x a x

2 2

2 2 2 2

2 13

9 4

+

+ +

 �
 �  �

30.
3

2 2

a

a x+

31.
−

−

1

12x x
32.

1

1 2− x
33.

4

4 2+ x

34.
1

2

1

1 2− x
35.

1

1 2+ x 36.
−
+

1

1 2x

37.
−
+

2

1 2x 38.
−

−

2

1 2x
39.

2

1 2+ x

Type 2 continued

Problems based on substitution and change of form

Form: t t x−1 � �
Where t

− − − − − − −=1 1 1 1 1 1 1
sin cos tan cot sec cosec/ / / / /

t x� � = a trigonometrical function of x / a combination
of trigonometrical functions of x.

Exercise 10.4

Find 
dy

dx
 of the following functions.

1. y
a b x

b a x
=

+
+

�
��

�
	


−
cos

cos

cos

1

2. y
x

x
=

−
�
��

�
	


−
tan

sin

cos

1

1

3. y
x

x
=

−
+

−
tan

cos

cos

1 1

1

4. y x x= +−
tan sec tan

1 � �

5. y x x= −−
cot cosec cot

1 � �

6. y
a x b x

b x a x
=

−
+

�
��

�
��

−
tan

cos sin

cos sin

1

Hint: Put a r b r
a

b
= = ⇒ =sin and cos tanα α α

∴ =
−
+

�
��

�
��

−
y

r x x

r x x
tan

sin cos cos sin

cos cos sin sin

1 α α
α α

� �
� �

=
−
−

�
��

�
��
= −− −

tan
sin

cos
tan tan

1 1α
α

α
x

x
x

� �
� � � �

= − = −
−

α x
a

b
xtan

1

7. y
x x

x x
=

−
+

�
��

�
��

−
tan

cos sin

cos sin

1

8. y
a b x

a b x
=

−
+

�
��

�
��

−
tan

tan

tan

1

9. y x x= +−
tan tan sec

1

10. y
x

x
=

−
+

−
tan

sin

sin

1 1

1

11. y
x

x
=

+
�
��

�
��

−
tan

cos

sin

1

1
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12. y
b

a
x= �

��
�
��

−
tan tan

1

13. y x x= +−
cot cosec cot

1

14. y x= −
tan sec

1 � �

15. y x= −
cot cosec

1� �

16. y x= −
sec tan

1 � �

17. y
a b x

b a x
=

+
+

�
��

�
��

−
sec

cos

cos

1

18. y
x

x
=

+
−

−
tan

cos

cos

1 1

1

Answers (under suitable restrictions on x):

1.
− −
+

b a

b a x

2 2

cos
2. − 1

2
3.

1

2
4.

1

2
5. − 1

2

6. − 1 7. − 1 8. − 1 9.
1

2
10. − 1

2
11. − 1

2

12.
ab x

a b x

sec

tan

2

2 2 2
+

13.
1

2
14.

sin

cos

x

x1
2

+

15.
cos

sin

x

x1
2+ 16.

1
2 2

sin sin cosx x x−

17.
− −
+

b a

a b x

2 2

cos� � 18. − 1

2

Type 3:

Differentiation of a function w.r.t. an other function

Form: t f f x−1
1 2 � �� �   w.r.t.   t t g g x−1

1 2 � �� �" #  or,

t t f x−1 � �� �   w.r.t.  t t x−1� �
where t = sin / cos / tan / cot / sec / cosec

t
− − − −=1 1 1 1

sin cos tan/ /  / cot–1 / sec–1 /  cosec–1

 f (x) =  a function of x.

Exercise 10.5

Differentiate:

1. sec tan w.r. t
2 1 2

1
−

−x x� � � �

2. tan w.r.t tan
− −

+ −�
��

�
	


1 2 1
1 x x x

3. cot w.r. t cot
− −+ −�

�
�
�

�

�
�
�

1
2

11 1x

x
x

4. 2
2

1

1

1

1

2

1
2

2
sin w.r. t sin

− −

+

�
�
�

�
	

 +

−

�
�
�

�
	

x

x

x

x

5. cosec cot w. r. t sec tan
− −1 1

x x� � � �

6. tan w.r.t cos
− −−

+

1
2

2

1 21

1

x

x
x

7. tan w.r. t sin
− −

−

�
�
�

�
	



+

�
�
�

�
	

1

2

1

2

2

1

2

1

x

x

x

x

8. tan w.r.t cos
− −+�

�
�
�

�

	





+ +

+

1
2

1
2

2

1 1 1

2 1

x

x

x

x

9. sec w. r. t
−

−

�
�
�

�
	

 −

1

2

21

2 1
1

x
x

10. tan w. r. t cos
− −

−

�
�
�

�
	

 −

+

�
�
�

�
	

1

2

1
2

2

2

1

1

1

x

x

x

x

11. tan w.r. t sin
− −

−
�
��

�
	
 +

�
��

�
	


1 12

1

2

1

x

x

x

x

12. sin w. r. t
− −

+
�
��

�
	


1 1

1

x

x
x
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13. tan w.r. t tan
− −+ −�

�
�
�

�

	





1
2

11 1x

x
x

14. sin w.r.t cos
− −

+

�
�
�

�
	



−

+

�
�
�

�
	



1

2

1
2

2

2

1

1

1

x

x

x

x

15. tan w.r. t cos
− −−�

�
�
�

�

	





1
2

11 x

x
x

16. tan w.r.t sin
− −+ −�

�
�
�

�

	



 +

�

�
�
�

�

	





1
2

1

2

1 1

1

x

x

x

x

Answers: 1. −1 2. − 1

2
3.

1

2
4. 2 5. 1 6.

1

2

7. 1 8. 1 9. 4 10. 1 11. 1 12.
2

1 + x
13.

1

2

14.
1

2
15. 1 16.

1

2
.
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11

Differential Coefficient
of Mod Functions

Differentiation of Mod Functions

Definition: f x f x� � � �� �= 2

Formulas:

1.
d

dx
f x

f x

f x
f x f x� � � �

� � � � � �= ⋅ ′ ≠; for 0

2.
d

dx
f x

n f x

f x
f x f x n Q

n
n

� �
� �
� � � � � �= ⋅ ′ ≠ ∈; 0 ,

3.
d x

dx

x

x
x= ≠; 0

4.
d x

dx

n x

x
x n Q

n n

= ≠ ∈; 0 ,

Proof:

1.
d

dx
f x

d

dx
f x� � � �= 2

= =�
��

�
	


d

dx
f x f x f x

2 2� � � � � ��

= ⋅ ≠
1

2
0

2

2

f x

d f x

dx
f x

� �
� � � �; when

= ⋅ = ⋅ ′
2

2 2

f x

f x

d f x

dx

f x

f x
f x

� �
� �

� � � �
� � � �

= × ′
f x

f x
f x

� �
� � � �  which is the general formula

of (or, for) d.c. of mod function f (x) (at the point x
where f x� � ≠ 0 ).

Note: At the points where f (x) = 0, the value of

d f x

dx

� �
 is to be found out by first principles. It may

or may not exist at such a point because generally
“mod functions” are not differentiable at their roots
i.e. at the roots of | f (x) | = 0.

2. d f x

dx
n Q

n� �
, ∈

f x z f x z
n n� � � �= ⇒ =

Now dz

dx
n z

dz

dx

n
n

= ×
−1

⇒ = ×−d f x

dx
n f x

d f x

dx

n
n� � � � � �1

= × × ′−
n f x

f x

f x
f x

n� � � �
� � � �1

= × ′ ≠
n f x

f x
f x f x

n� �
� � � � � �when 0
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3. d x

dx

d x

dx
=

2

= ⋅ ≠1

2
0

2

2

x

dx

dx
xfor

= ×
2

2
2

2

2

x

x

x

x

=
2

2
2

x x

x

= ≠
x

x
x 0� �

Further, ′ = ′ = −+ −f f0 1 0 1� � � �,  where f (x) = | x |

∴ ′f 0� �  does not exist.

4.
d x

dx
n Q

n

, ∈

x z x z
n n= ⇒ =  which means on differen-

tiating

dz

dx
n z

dz

dx

n
n

=
−1

⇒ = ⋅−d x

dx
n x

d x

dx

n
n 1

= ⋅−n x
x

x
n 1

= ≠
n x

x
x

n

0� �

Further, ′ =f 0 0� �  for n > 1 where f x x
n� � = .

Remember:

d f x

dx

f x

f x
f x

� � � �
� � � �= × ′  for f x� � ≠ 0

or,
d f x

dx

f x

f x
f x

� � � �
� � � �= × ′  for f x� � ≠ 0

Problems based on algebraic functions

Solved Examples

Find the d.c. of
1. y = | x3 |
Solution: y = | x3 |

∴ =dy

dx

d x

dx

3

= ⋅
d x

dx

dx

dx

3

3

3

= ⋅
x

x
x

3

3

2
3

= ≠ = ≠
3

0 3 0

2 3

3

x x

x
x x x x; ,

Further,

′ = ′ =+ −f f0 0 0� � � �

∴ = =
dy

dx
x0 0for

2. y = | x |2 – 4 | x | + 2
Solution: y = | x |2 – 4 | x | + 2

∴ = − +
dy

dx

d

dy
x x2 4 2

= − +d

dx
x

d x

dx

d

dx

2
4

2� �

= ⋅ − ≠2
4

0x
d x

dx

x

x
x,

= ⋅ −2 4x
x

x

x

x

= −
2 4

2
x

x

x

x

= − ≠2
4

0x
x

x
x; � �

Further y' (0) does not exist.
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3. y = x | x |
Solution: � y = x | x |

∴ =
dy

dx

d

dx
x x

= +x
d x

dx
x

dx

dx

= ⋅ + ≠x
x

x
x x, 0� �

= +x x

= ≠2 0x x,

Also, ′ = ′ =+ −f f0 0 0� � � �

∴ =dy

dx
x2  for all x.

Problems based on transcendental functions

Solved Examples

Find d.c. of
1. y = log | f (x) |
Solution: y = log |f (x) | which is defined for f (x) ≠ 0

For f x
dy

dx

d

dx
f x� � � �≠ =0 , log

= ×
d f x

d f x

d f x

dx

log � �
� �

� �

= × × ′1

f x� �
� �
� � � �

f x

f x
f x

=
′

≠
f x

f x
f x

� �
� � � �; 0

2. y = log | x – 1 |

Solution: y = log | x – 1 |; which is defined for x ≠ 1

∴ For x
dy

dx

d x

d x

d x

dx
≠ =

−
−

⋅
−

1
1

1

1
,

log

=
−

⋅
−
−

⋅ −1

1

1

1
1

x

x

x

d

dx
x

� � � �

=
−
1

1x� �
3. y = log | x |

Solution: y = log | x | which is defined for x ≠ 0

∴ For x
dy

dx

d x

dx
≠ =0;

log

= ⋅
d x

d x

d x

dx

log

= ⋅1

x

x

x

= ≠1
0

x
x x;

4. y = | log x |
Solution: y = | log x |, which is defined for x > 0

∴ For x > 0, 
dy

dx

d x

dx
=

log

= ⋅
d x

d x

d x

dx

log

log

log

= ⋅ ≠
log

log
; for

x

x x
x

1
1� �

Also ′ =
+ −

>+
→

f
h

h
h

h
1

1 1
0

0
� � � �

lim
log log

;

= 1

′ =
− −

>− →
f

h

h
h

h
1

1 1
0

0
� � � �

lim
log log

;

=
−

→
lim

log

h

h

h0

1� �

= –1

∴
dy

dx
 does not exist at x = 1

5. y = | sin x |
Solution: y = | sin x |

⇒ =
dy

dx

d

dx
xsin
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= ⋅ ≠ ≠
sin

sin

sin
; sin i.e.;

x

x

d x

dx
x x n0 , π� �

= ⋅
sin

sin
cos

x

x
x

= ⋅sin cotx x

Also, ′ =
+ −

+ →
f n

n h n

hh
π

π π� � � �
lim

sin sin
;

0

h > 0

=
→

lim
sin

h

h

h0

=
→

lim
sin

h

h

h0

= 1

′ =
−
�
�

�
�� >−

→
f n

h

h
h

h
π� � lim

sin
0

0,

= –1

∴
dy

dx
 does not exist for x n= π

6. y = | cos x |
Solution: y = | cos x |

⇒ =
dy

dx

d x

dx

cos

= ⋅ ≠
cos

cos

cos
; cos

x

x

d x

dx
x 0� �

= ⋅ −
cos

cos
sin

x

x
x� �

= ⋅ − ≠ +�
�

�
�cos sin ;x x x n� � � �2 1

2

π

Also, ′ +�
��

�
	
+f n2 1

2
� � π

=
+ +�

�
�
� − +�

�
�
�

→
lim

cos cos
;

h

n h n

h0

2 2
π π π π

(h > 0)

=
→

lim
sin

h

h

h0

= 1

′ +���
���
=

−
= −−

→
f n

h

hh
2 1

2
1

0
� � π lim

sin

∴ dy

dx
 does not exist for x n= +2 1

2
� � π

7. y = sin | x |
Solution: y = sin | x |

⇒ =
dy

dx

d x

dx

sin

= ⋅ ≠
d x

d x

d x

dx
x

sin
; 0� �

=
⋅

≠
cos

for
x x

x
x 0

Also, ′ =
−

>+ →
f

h

h
h

h
0

0
0

0
� � � � � � � �lim

sin sin
;

= 1

′ =
−

>− →
f

h

h
h

h
0 0

0
� � � �lim

sin
,

= –1

∴ dy

dx
 does not exist for x = 0

8. y
x

= cos
2

Solution: y
x= cos
2

⇒ =
dy

dx

d
x

dx

cos
2

= ⋅ �
�

�
�

cos

cos
cos

x

x
d

dx

x2

2
2
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= ⋅ −��
�
� ⋅

�
�
�
�

≠ +
cos

cos
sin ;

x

x
x

d
x

dx
x n

2

2
2

2
2 1� �� �π

=
−

⋅
sin cos

cos

x x

x
2 2

2

1

2

=
−

≠ +
sin cos

2cos
;

x x

x
x n

2 2

2

2 1� �� �π

Also, 
dy

dx
 does not exist for x n= +2 1� �π .

9. y = sin | x – 2 |
Solution: y = sin | x – 2 |

⇒ =
−dy

dx

d x

dx

sin 2

= − −cos x
d

dx
x2 2

= − ⋅
−
−

⋅
−

≠cos ;x
x

x

d x

dx
x2

2

2

2
2� �

� � � �

= − ⋅
−
−

⋅ ≠cos ;x
x

x
x2

2

2
1 2� � � �

=
− −

−
≠

x x

x
x

2 2

2
2

cos
;� � � �

dy

dx
 does not exist at x = 2

10. y = tan | x |
Solution: y = tan | x |

⇒ =
dy

dx

d x

dx

tan

= ⋅sec
2

x
d x

dx

= ⋅ ≠sec ;
2

0x
x

x
x� �

=
⋅

≠
x x

x
x

sec
;

2

0� �

Also, ′ = >+ →
f

h

h
h

h
0 0

0
� � � �lim

tan
;

= 1

′ =
−

>− →
f

h

h
h

h
0 0

0
� � � �lim

tan
,

= –1

∴ dy

dx
 does not exist at x = 0

11. y = sin–1 | x |

Solution: y = sin–1 | x | which is defined for x ≤ 1

⇒ =
−dy

dx

d

dx
xsin

1

= ⋅
−

d x

d x

d x

dx

sin
1

=
−

⋅ ≠ ≠ ±1

1
0 1

2
x

x

x
x x

� �
; ,

=
−

= = ≠ <
x

x x
x x x x x

1
0 1

2

2 2
�� �; ,

′ = >+ →

−
f

h

h
h

h
0 0

0

1

� � lim
sin

;

= 1

and ′ =
−− →

−

f
h

hh
0

0

1

� � lim
sin

, h > 0

= –1

∴
dy

dx
 does not exist at x = 0

The derivative is +∞  at x = 1; −∞  at x = –1

12. y = | sin–1 x |
Solution: y = | sin–1 x |

⇒ =

−
dy

dx

d x

dx

sin
1
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= × ≠

−

−
−

sin

sin
sin ;

1

1

1
0

x

x

d

dx
x x� � � �

= ×
−

≠ <
−

−

sin

sin
;

1

1 2

1

1
0 1

x

x x
x x,� �

dy

dx
 does not exist at x = 0 and the derivative is

+∞  and −∞  at x = 1, –1 respectively.

13. y = tan–1 | x |
Solution: y = tan–1 | x |

⇒ =
−dy

dx

d

dx
xtan

1

=
+

⋅1

1
2

x

d

dx
x

� �
� �

=
+

⋅ ≠ = =�
�

�
�

1

1
0

2

2 2 2

x

x

x
x x x x; �

=
+

x

x x1
2

� �

dy

dx
 does not exist for x ≠ 0

14. y
x= �

�
�
��log tan

2

Solution: y
x

= �
�

�
��log tan

2
 which is defined for

x n≠ π

∴ ≠For x n
dy

dx
π ,

= ⋅ �
�

�
� =

′�
�
�

�
	



1

2
2tan

tan
log

x
d

dx

x d f x

dx

f x

f x
�

� � � �
� �

= ⋅ �
�
�
� ⋅

�
�
�
�

1

2
2 2

2

tan
sec

x
x d

dx

x

= ⋅ ⋅
cos

sin cos

x

x x
2

2

1

2

1

22

=
⋅

1

2
2 2

sin cos
x x

= 1

sin x

= cosec x
15. y = log (log | x |)
Solution: y = log (log | x |) is defined for | x | > 1

∴ > =For
log log

x
dy

dx

d x

dx
1,

� �

= ⋅1

log
log

x

d

dx
x� �

= ⋅1 1

log x x

�
d f x

dx

f x

f x

d x

dx x

log
and

log� � � �
� �=
′

=
�
�
�

�
	



1

= 1

x xlog

16. y
a b x

a b x
=

+
−

log
tan

tan

Solution: y
a b x

a b x
=

+
−

log
tan

tan  which is defined for

a b x≠ ± tan  i.e. a b x
2 2 2≠ tan

∴ ≠For tana b x
2 2 2

,

dy

dx

d

dx

a b x

a b x
=

+
−

log
tan

tan
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=
−
+

×
a b x

a b x

tan

tan

� �
� �

b x a b x b x a b x

a b x

sec tan sec tan

tan

2 2

2

− − − +

−

�

�

�
�
�

�

	








� � � �� �

� �

= − + +

−

ab x b x x ab x b x x

a b x

sec sec tan sec sec tan

tan

2 2 2 2 2 2

2 2 2

=
−

2
2

2 2 2

a b x

a b x

sec

tan

17. y e
x

=
−

Solution: y e
x

=
−

⇒ =
−dy

dx

d

dx
e

x

= ⋅−d

d x
e

d d x

dx
x � �

= × − ⋅
−

e
d x

dx

x
1� �

= × − ×
−

e
x

x

x
1� �

=
− ⋅

=
−

≠
− −

e x

x

x e

x
x

x x

; 0� �

Remember: Rule to differentiate mod function
a bcos sinθ θ+ . To differentiate mod of a function

a bcos sinθ θ+ ,  we may adopt the following working
rule:

1. Express a bcos sinθ θ+  (or, a bsin cosθ θ+ ) as

a single cosine (or, single sine).

2. Use 
d f x

dx

f x

f x
f x f x

� � � �
� � � � � �� �= × ′ ≠; 0

Question: How to express a bcos sinθ θ+  or
a bsin cosθ θ+  as a single cosine (or, single cosine)

Answer: (i) Multiply and divide the expression
( a bcos sinθ θ+ ) or ( a bsin cosθ θ+ ) by

a b
2 2
+  which means to multiply and to divide the

given expression ( a bcos sinθ θ+ ) or
( a bsin cosθ θ+ ) by

coefficient of cos coefficient of sinθ θ� � � �2 2+

(ii) Use the “A + B or A – B” formula as the case may
require.

Solved Examples

Find the d.c. of

1. y = | cos x – sin x |
Solution: y = | cos x – sin x |

=
−2

2

cos sinx x� �

= −2
1

2

1

2
cos sinx x

= −2 45 45cos cos cos sin
� �

x x

= + = +��
�
�2 45 2

4
cos cosx x

�

� �
π

Now differentiating both sides w.r.t. x, we get

dy

dx

d

dx
x= +��

�
�

���
���

2
4

cos
π

= +��
�
�2

4

d

dx
xcos

π

=
+��
�
�

+��
�
�
⋅

+��
�
�

+��
�
�

⋅
+��
�
�

2
4

4

4

4

4
d x

d x

d x

d x

d x

dx

cos

cos

cos
π

π

π

π

π

= +��
�
�� ⋅ − +��

�
��

�
�
�

�
�
�
⋅ ⋅

+��
�
��

2
4 4

1
1

4

cos sin
cos

x x
x

π π
π
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= −
+��
�
� ⋅ +��

�
�

+��
�
�

2
4 4

4

cos sin

cos

x x

x

π π

π

for cos x +��
�
� ≠

π
4

0

Further, y is not differentiable at x when

cos x +��
�
� =

π
4

0

Or, alternatively,
by using general method

dy

dx

d x x

dx
=

−cos sin

Now, putting (cos x – sin x) = f (x)

⇒ =
dy

dx

d f x

dx

� �

= × ′ ≠
f x

f x
f x f x

� �
� � � � � �, for 0

=
−
−

×
−cos sin

cos sin

cos sinx x

x x

d x x

dx� �
� �

when cos sinx x≠

=
−
−

× − −
cos sin

cos sin
sin cos

x x

x x
x x� � � �

=
−
−

× − × +
cos sin

cos sin
sin cos

x x

x x
x x� � � � � �1

=
− − ⋅ +

−
cos sin sin cos

cos sin

x x x x

x x

� �
� �  for tan x ≠ 1

i.e. x n≠ =π π
4

Further y is not differentiable at x n= +π π
4

2. y = | sec x – tan x |

Solution: � y = | sec x – tan x | which is defined for

x n≠ +π
π
2

For x n≠ =π π
2

,

dy

dx

d f x

dx

d f x

d f x

d f x

dx
= = ×

� � � �
� �

� �

= × ′
f x

f x
f x

� �
� � � �

=
−
−

⋅ −
sec tan

sec tan
sec tan

x x

x x

d

dx
x x� � � �

=
−
−

⋅ ⋅ −
sec tan

sec tan
sec tan sec

x x

x x
x x x� � � �

2

=
− ⋅ − ⋅ −

−
sec tan sec sec tan

sec tan

x x x x x

x x

� � � �
� �

= (–sec x) | sec x – tan x |

Problems based on the substitution | f ( x) | = f x
2� �

Refresh your memory: In calculus while differentiat-
ing a given function under the square root symbol,
when we simplify a given function under the square
root symbol and after simplification, we get

f x f x� � � �2 2
= , this should be replaced by

| f (x) | and then we should find 
d f x

dx

� �
.

Solved Examples

Find the d.c. of

1. y x= −1
2

cos

Solution: y x x= − =1
2 2

cos sin

⇒ =y xsin

⇒ =
dy

dx

d x

dx

sin



486 How to Learn Calculus of One Variable

= ⋅
sin

sin

sinx

x

d x

dx

= ⋅ ≠ ∈
sin

sin
cos

x

x
x x n n Z, ,π

y' (x) does not exist for x n= π .

Precaution: It is a common mistake to write down

y x x x= − = =1
2 2

cos sin sin

⇒ =
dy

dx
xcos  which is completely wrong.

2. y x= −1
2

sin

Solution: y x x x= − = =1
2 2

sin cos cos

⇒ =
dy

dx

d x

dx

cos

= ⋅
cos

cos

cosx

x

d x

dx

= − ⋅sin
cos

cos
x

x

x

= − ≠ + ∈tan cosx x x n n Z, ,π π
2

3. y
x

x
=

−
+

1

1

sin

sin

Solution: y
x

x
=

−
+

1

1

sin

sin
, defined for

x n≠ + +2 1
2

� � π π

Rationalizing the denominator, we get

=
− × −
+ × −

=
−

−

1 1

1 1

1

1

2

2

sin sin

sin sin

sin

sin

x x

x x

x

x

� � � �
� � � �

� �

=
−1 2

2

sin

cos

x

x

� �

=
−�

�
�
�� = −

1
2

2sin

cos
sec tan

x

x
x x� �

= −sec tanx x

∴ = −dy

dx

d

dx
x xsec tan

=
−
−

⋅ −
sec tan

sec tan
sec tan

x x

x x

d

dx
x x� � � �

=
−
−

× −
sec tan

sec tan
sec tan sec

x x

x x
x x x� � � �

2

=
−
−

⋅ − ⋅ −
sec tan

sec tan
sec sec tan

x x

x x
x x x� � � � � �

= − − ≠ +sec sec tanx x x x n, π π
2

.

4. y
x

=
+�

�
�
��

1

2

cos

Solution: y
x= +�

�
�
��

1

2

cos

= = =
2

2
2 2 2

2

2
cos

cos cos

x
x x

⇒ =
dy

dx

d

dx

x
cos

2

= ⋅ �
�

�
�

cos

cos
cos

x

x
d

dx

x2

2
2

= −��
�
� ⋅

�
�
�
�

cos

cos
sin

x

x
x d

dx

x2

2
2 2
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=
−

⋅
sin cos

cos

x x

x
2 2

2

1

2

=
−

≠ +
sin cos

cos

x x

x
x n

2 2

2
2

2 1, � � π

5. y x x= + − −1 2 1 2sin sin

Solution: y x x= + − −1 2 1 2sin sin

⇒ = + − −y x x x xcos sin cos sin� � � �2 2

⇒ = + − −y x x x xcos sin cos sin

⇒ =
+

−
−dy

dx

d x x

dx

d x x

dx

cos sin cos sin

=
+
+

× − +
−
−

×
cos sin

cos sin
cos sin

cos sin

cos sin

x x

x x
x x

x x

x x� � � � � �

sin cosx x+� �

=
− +

+
+

cos sin cos sin

cos sin

x x x x

x x

� �
� �

sin cos cos sin

cos sin

x x x x

x x

+ −
−

� �
� �

,

 for x n n Z≠ ± ∈π
π
4

,

Problems based on differentiation of mod of a function

Exercise 11.1

Find the differential coefficients of the following
functions.
1. | 5x + 3 |
2. | x2 – a2 |
3. | x + 1 |
4. | x – 1 |
5. x + | x |

6. | x | + cos x
7. sin x – | x |

8.
sin x

x

9.
x

xsin

10.
x

x

−
−

1

1

11.
x

x

12.
x x

x

−
−
2

2

� �

13.
x x

x

−
−

1

1

� �

14.
1

x

15. x | x |
16. log | x |
17. | log x |

18.
1 2+ cos

2 cos

x

x

19.
x

x1 − cos

20. 1 1+ − −sin sinx x

21.
1 2

1 2

+
−

cos

cos

x

x

22. log | sin x |
23. log | cos (ax + b) |
24. | sin x |
25. | cos x |
26. | tan x |
27. | cot x |
28. | sec x |
29. | cosec x |
30. sin | x |
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31. cos | x |
32. tan | x |
33. cot | x |
34. sec | x |
35. cosec | x |

Answers (with suitable restrictions on x).

1.
5 5 3

5 3

x

x

+
+� �

2.
2

2 2

2 2

x x a

x a

−

−� �

3.
x

x

+
+

1

1� �

4.
x

x

−
−

1

1� �

5. 1 +
x

x

6.
x

x
x− sin

7. cos x
x

x
−

8.
x x x x x

x x

cos sin−
2

9.
sin cos

sin

x x x x x

x x

−

� �2

10. 0

11. 0

12.
x x x x x x x x

x

− + − − −

−

2 2 2

2 2

� �� �

13.
x x x x

x

− − − −

−

1 2 1 1

1 2

� �

14.
− x

x
3

15. 2 x

23. − +a ax btan � �

24.
sin

sin
cos

x

x
x⋅

25.
cos

cos
sin

x

x
x⋅ −� �

26.
tan

tan
sec

x

x
x⋅

2

27.
cot

cot
cosec

x

x
x⋅ −

2
� �

28.
sec

sec
sec tan

x

x
x x⋅ ⋅� �

29.
cosec

cosec
cosec cot

x

x
x x⋅ − ⋅� �

30. cos x
x

x
⋅

31. − ⋅sin x
x

x

32. sec
2

x
x

x
⋅

33. − ⋅cosec
2

x
x

x

34. sec tanx x
x

x
⋅ ⋅

35. cosec cotx x
x

x
⋅ −

�
�

�
��

Change of Form before Differentiation

In certain cases the given function can be reduced
into a simple form before it is differentiated so that
process of differentiation becomes simple and easier.
Notable cases are those of fractions whose
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denominator is a surdic quantity, which are simplified
by rationalizing the denominator.
Type 1
Form:

1.
f x g x

f x g x

� � � �
� � � �

±

�

2.
1

f x g x� � � �±

3.
f x g x

f x g x

� � � �
� � � �

±

�

4.
f x

f x a f x a

� �
� � � �+ ± −

5.
f x

f x f x

� �
� � � �1 2±

⇔  If numerator and denominator are irrational
functions of x, rationalization helps to get the d.c. in
easy way.

N.B.: Irrational function is always rationalized by
substitution or rationalization while finding limit/d.c./
integral/value of the function at a particular point/ …
etc.

Working rule: To find the d.c. of the forms mentioned
above, we rationalize the denominator.

Type 2: t f x
−1 � �

Where t
− − − − − − −=1 1 1 1 1 1 1

sin cos tan cot sec cosec/ / / / /
f (x) = a quotient of trigonometrical functions of x/
algebraic function of x which can be reduced into a
simple and easy form by simplification or substitution
before differentiation.

N.B.: The second type has been explained in the
chapter of d.c. of inverse circular functions.

Solved Examples on rationalization

Find the d.c. of the following

1. y
x a x a

x a x a
=

+ + −
+ − −

Solution: y
x a x a

x a x a
=

+ + −
+ − −

, defined for

x > | a | > 0

=
+ + −
+ − −

×
+ + −
+ + −

x a x a

x a x a

x a x a

x a x a

[Rationalizing the denominator]

=
+ + −

+ − −

x a x a

x a x a

� �
� � � �

2

=
+ + − + −x a x a x a

a

2

2

2 2

=
+ −�

�
�
��x x a

a

2 2

∴ = + −
�
�
�

�
�
�

dy

dx a

d

dx
x a

1
1

2 2
1
2

� �

⇒ = +
−

×
�
��
��

�
��
��

dy

dx a x a
x

1
1

1

2
2

2 2
,

⇒ = +
−

�
��

��

�
��

��
dy

dx a

x

x a

1
1

2 2
for x > | a | > 0.

2. y
x a x a

x a x a
=

+ + −

+ − −

2 2 2 2

2 2 2 2

Solution: y
x a x a

x a x a
=

+ + −

+ − −

2 2 2 2

2 2 2 2
, defined for

x2 > a2 > 0

=
+ + −

+ − −
×

+ + −

+ + −

x a x a

x a x a

x a x a

x a x a

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2
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=
+ + − + + ⋅ −

+ − −

x a x a x a x a

x a x a

2 2 2 2 2 2 2 2

2 2 2 2

2� � � �
� � � �

=
+ −

+ − +

2 2
2 4 4

2 2 2 2

x x a

x a x a

=
+ −2 2

2

2 4 4

2

x x a

a

=
+ −x x a

a

2 4 4

2

= +
−x

a

x a

a

2

2

4 4

2

Now, differentiating both sides w.r.t. x.

⇒ dy

dx

= + − −
−2 1

22 2
4 4 1 4 4

1
2x

a a
x a

d

dx
x a� � � �

� �

⇒ = +
−�

�
�
��

dy

dx

x

a

x

x a a

2 4

2
2 4 4 2

⇒ = +
−�

�
�
��

dy

dx

x

a

x

a x a

2 2
2

3

2 4 4
 for x2 > a2.

3. y
x x a

x x a
=

+ +

− +

2 2

2 2

Solution: y
x x a

x x a
=

+ +

− +

2 2

2 2

=
+ +�

�
�
�� × + +�
�

�
��

− +�
�

�
�� × + +�
�

�
��

x x a x x a

x x a x x a

2 2 2 2

2 2 2 2

=
+ +�

�
�
��

− −

x x a

x x a

2 2
2

2 2 2
� �

=
+ + + +

− −
x x a x x a

x x a

2 2 2 2 2

2 2 2

2

=
+ + +

−
2 22 2 2 2

2

x a x x a

a
Now, differentiating both sides w.r.t. x.

⇒ = − ⋅ + + − +�
�

�
��

�
�
�

�
�
�

dy

dx a
x

d

dx

x

a
x a

2
2 0

2
2 2

2 2

⇒ =
−

− + −
×

+
×

dy

dx

x

a a
x a

x

x a

x

a

4 2 1 2

2

2
2 2

2 2

2 2 2

= − + + +
+�

�
�
�

�

�





�

�

�
�
�

4 2 2
2 2

2 2

2 2 2

x

a a
x a

x

x a a

4. y
x a x b

=
+ + +

1
2 2 2 2

Solution: y
x a x b

=
+ + +

1
2 2 2 2

=
+ − +

−

x a x b

a b

2 2 2 2

2 2
 [Rationalizing the

denominator]
Now, on differentiating both sides w.r.t. x.
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⇒ =
−

⋅ + + −
�
��

−dy

dx a b
x a

d

dx
x a

1 1

22 2

2 2 1 2 2
1
2

� �
� � � �

� �

1

2

2 2 1 2 2
1
2

x b
d

dx
x b+ +

�
	


−
� � � �

� �

⇒ =
−

⋅
+

−
+

�

�
�
�

�

	





dy

dx a b

x

x a

x

x b

1 2

2

2
2 2 2 2 2 2� �

=
−

⋅
+

−
+

�

�
�
�

�

	





x

a b x a x b
2 2 2 2 2 2

1 1

� �

5. y
a x a x

a x a x
=

+ − −
+ + −

, a > 0.

Solution: y
a x a x

a x a x
=

+ − −
+ + −

, defined for | x | < a.

=
+ − − ⋅ + − −

+ − −
≠

a x a x a x a x

a x a x
x

� � � �

� � � �
2 2

0,

=
+ + − − + ⋅ −

+ − −
a x a x a x a x

a x a x

� �
� �
2

=
− −
+ − +

=
− −2 2 2 2

2

2 2 2 2
a a x

a x a x

a a x

x

=
− −�

�
�
��2

2

2 2
a a x

x

= −
−a

x

a x

x

2 2

⇒ =− − ⋅
−

−
− ⋅ −

�

�
�
�

�

	





dy

dx

a

x x

x

a x x
a x

2 2 2 2

2 21

2

2 1� �

= − +
−

+
−�

�
�
�

�

	



 ≠

a

x a x

a x

x
x

2 2 2

2 2

2

1
0, .

6. y
x x

x x
=

+ + −
+ − −

1 1

1 1

Solution: y
x x

x x
=

+ + −
+ − −

1 1

1 1
, defined for x > 1

=
+ + −

+ − −

x x

x x

1 1

1 1

2

2 2

� �

� � � �
 [Rationalizing the

denominator]

=
+ + − + −

+ − −
x x x

x x

1 1 2 1

1 1

2

� �

=
+ −
+ − +

2 2 1

1 1

2
x x

x x

=
+ −�

�
�
��2 1

2

2
x x

= + −x x
2

1

⇒ = +
−

× −dy

dx x

d

dx
x1

1

2 1
1

2

2
� �

= +
−

= +
−

1
2

2 1
1

1
2 2

x

x

x

x
, x > 1.

7. y
x

x x
=

+ + −2 2

Solution: y
x

x x
=

+ + −2 2
, defined for x > 2

=
⋅ + − −

+ − −

x x x

x x

2 2

2 2
2

� �

� � � �
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=
⋅ + − −

+ − −

x x x

x x

2 2

2 2

� �
� � � �

=
+ − −x x x2 2

4

� � ...(i)*

⇒ dy

dx

= + − − + + − − ⋅�
��

1

4
2 2 2 2x

d

dx
x x x x� � � �

d

dx
x �
	


=
+

−
−

�
�

�
��
+

+ − −�

�
�
�

�

	





1

4

1

2 2

1

2

2 2

2
x

x x

x x

x

� �
,

for x > 2

Note:

* Or, alternatively (1) ⇒ = + − −�
�

�
��y x x x x

1

4
2 2

2 2

⇒ =
⋅ +

+
−

⋅ −

−

�

�
�
�

�

	





dy

dx

x

x x

x

x x

1

4

1 2 2

2 2

1 2 2

2 2
2 2

� � � �

⇒ = ×
+

+
−

−

−

�

�
�
�

�

	





dy

dx

x

x x

x

x x

1

4

1

2

2 2

2

2 2

2
2 2

� � � �

=
+

+
−

−

−

�

�
�
�

�

	





1

8

2 2

2

2 2

2
2 2

x

x x

x

x x

� � � �

=
+

+
−

−

−

�

�
�
�

�

	



 >

1

4

1

2

1

2
2

2 2

x

x x

x

x x
x

� � � �
for .

8. y
x

a a x
a=

− −
≠

2 2
0,

Solution: y
x

a a x
=

− −2 2
, defined for x2 < a2

Now rationalizing the denominator, we have

y
x a a x

a a x a a x
x=

⋅ + −�
�

�
�

− −�
�

�
� + −�
�

�
�

≠

2 2

2 2 2 2
0,

=
+ −�

�
�
��

− +

x a a x

a a x

2 2

2 2 2

=
+ −a a x

x

2 2

⇒ dy

dx

=
⋅ + −�
�

�
�� − + −�
�

�
��x

d

dx
a a x a a x

dx

dx

x

2 2 2 2

2

=
− × − − + −�

�
�
��

−1
2

2
2 2 2 2

2

1
2

a x x a a x

x

� � � �

=

−

−
− − −

�

�
�
�

�

	





x

a x
a a x

x

2

2 2

2 2

2

=
− − − − +�
��

�
	


−

x a a x a x

x a x

2 2 2 2 2

2 2 2

=
− + −�
�

�
�

−
≠ <

a a a x

x a x
x x a

2 2

2 2 2

2 20; ,

9. y
x a x

x a x
=

− −

+ +

2 2

2 2
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Solution: y
x a x

x a x
=

− −

+ +

2 2

2 2
, defined for x2 > a2

=
+ −�

�
�
��

+ +�
�

�
�� + −�
�

�
��

x a x

x a x x a x

2 2
2

2 2 2 2

=
+ − +2 2

2 2 2 2

2

x a x x a

a

⇒ dy

dx

= − + − ⋅
+

⋅
�

�
�
�

�

	





1
4 2 2

1

2
2

2

2 2

2 2a
x x a x

x a
x

= −
+ +

+

�

�

�
�
�

�

	








1
4

2 2

2

2 2 2

2 2a
x

x a x

x a

� �

= −
+

+

�

�
�
�

�

	





2
2

2
2

2 2

2 2a
x

x a

x a
for x2 > a2.

Problems based on Trigonometical Transformation

Type 1: Whenever 1 ± cos x  appears under the
radical sign , we always express the function
within the radical as a square of some function.
Type 2: Wherever 1 ± sin x  appears under the

radical sign , we always express the function
within the radical as a square of some function.

N.B.: The above method may be remembered as
“expressing the function within the radical as a square
of some function”.

Solved Examples

Find the d.c. of the following.

1. y
x

x
=

−
+

1

1

cos

cos

Solution: y
x

x
x n=

−
+

≠ +
1

1
2 1

cos

cos
defined for � �π

=
2

2

2
2

2

2

sin

cos

x

x

= =
sin

cos
tan

x

x
x2

2
2

⇒ =dy

dx

d

dx

x
tan

2

= ⋅ ⋅
tan

tan

x

x
x2

2
2

1

2

2
sec

= ⋅ ≠ ∈1

2 2
2

2

2sec
tan

tan
;

x
x

x
x n n Zπ ,

Note: (i) This problem can be done by substitution
method also but that method becomes lengthy.

y
x

x
u=

−
+

=
1

1

cos

cos
 where ‘u’ =

−
+

1

1

cos

cos

x

x

⇒  We are required to find

du

dx

du

dx
u

du

dx u

du

dx
= = ⋅ = ⋅

−
1
2 1

21

2

1

2

1� �

(ii) This problem also can be done by logarithmic
differentiation.

log log
cos

cos
log

cos

cos
y

x

x

x

x
= −

+
�
�

�
�� = −

+
�
�

�
��

1

1

1

2

1

1

1
2

⇒ =
−
+

�
�

�
��2

1

1
log log

cos

cos
y

x

x

= − − +log cos log cos1 1x x� � � �
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⇒ = − − +2 1 1
d y

dx

d

dx
x

d

dx
x

log
log cos log cos� � � �

⇒ ⋅ =
−

+
+

2
1

1 1y

dy

dx

x

x

x

x

sin

cos

sin

cos

=
+ + −

−

�

�


�

�
� = ⋅sin

cos cos

cos
sin

sin
x

x x

x
x

x

1 1

1

2
2 2

⇒ = × =dy

dx x

y y

x

2

2sin sin

= ×
−
+

≠1 1

1sin

cos

cos
;

x

x

x
x nπ

2. y
x

x
=

−
+

1

1

sin

cos

Solution: y
x

x
x n=

−
+

≠ +
1

1
2 1

sin

cos
defined for, � �π

=
−�

�
�
�sin cos

cos

x x

x

2 2

2
2

2

2

=
−sin cos

cos

x x

x
2 2

2
2

⇒ =
−

y

x x

x
1

2
2 2

2

sin cos

cos

= −
1

2 2
1tan

x

⇒ = −
dy

dx

d

dx

x1

2 2
1tan

= ⋅
−

−�
�

�
��
⋅ −�
�

�
��

1

2

2
1

2
1

2
1

tan

tan
tan

x

x

d

dx

x
,

x n≠ +2
2

π
π

=
−

−�
�

�
�
⋅ ⋅

1

2

2
1

2
1 2

1

2

2
tan

tan
sec

x

x
x

= ⋅
−

−�
�

�
�

1

2 2 2
2

1

2
1

2
sec

tan

tan
;

x
x

x

x n x n≠ + ≠ +�
�

�
�

�
�

�
��2 1 2

2
� �π π

π
and

3. y x= −1 sin

Solution: y x= −1 sin

= −�
�

�
�sin cos

x x

2 2

2

= −sin cos
x x

2 2

⇒ =
−

dy

dx

d
x x

dx

sin cos
2 2

=
−

−�
�

�
�
⋅ ⋅ +�

�
�
�

sin cos

sin cos
sin cos

x x

x x
x x2 2

2 2

1

2 2 2

= ⋅
+�

�
�
� −

−�
�

�
�

1

2
2 2 2 2

2 2

sin cos sin cos

sin cos
;

x x x x

x x
 for

x n≠ +2
2

π π
.
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4. y x= +1 cos

Solution: y x= +1 cos

= =2
2

2
2

2
cos cos

x x

⇒ =dy

dx

d
x

dx
2

2
cos

= ⋅ ⋅ −��
�
� ⋅2

2

2
2

1

2

cos

cos
sin

x

x
x

= − ⋅ ⋅ ⋅1

2
2

2
2

2

sin
cos

cos

x
x

x

= − ⋅ ≠ +1

2 2
2

2

2 1sin
cos

cos

x
x

x
x n, � � π

N.B.: The above problem also can be done by using
the chain rule for u , where u = given function
x = f (x) or by using logarithmic differentiation.

5. y
x

x
=

−
+

−
tan

cos

cos

1 1

1

Solution: y
x

x
=

−
+

−
tan

cos

cos

1 1

1

= ≠ +
−

tan
sin

cos
;

1

2

2

2
2

2
2

2 1

x

x
x n� �π

⇒ =

�

�
��

�
��

�

�
��

�
��
= ���

���
− −

y

x

x
x

tan
sin

cos
tan tan

1 1
1

2

2
2

⇒ =tan tany
x

2

⇒ =d y

dx

d
x

dx

tan
tan

2

⇒ ⋅ = ⋅ ≠sec
tan

tan

sec
2

2

2

2

2
2

y
dy

dx

x

x

x

x n, π

⇒ = ⋅dy

dx

x

x

x

y

tan

tan

sec

sec

2

2

2

2

2

2

= ⋅
+��

�
�

=
�
��
��

�
��
��

tan

tan

sec

tan
tan tan

x

x

x

x
x x2

2

2

2 1
2

2 2

2

2

2
2

�

⇒ = ⋅dy

dx

x

x

x

x

tan

tan

sec

sec

2

2

2

2
2

2

2

= ≠1

2
2

2

tan

tan

x

x
x n, π

or, alternatively,

tan
cos

cos
y

x

x
=

−
+

1

1

⇒ =
−
+

≠log tan log
cos

cos
y

x

x
x n

1

1
, π

=
−
+

�
�

�
��

1

2

1

1
log

cos

cos

x

x

= − − +
1

2
1 1log cos log cosx x� � � �
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⇒ ⋅ =
−

+
+

�
��

�
	


1 1

2 1 1tan

tan sin

cos

sin

cosy

d y

dx

x

x

x

x

=
+ + −

−

�

�
�
�

�

	





sin cos cos

cos

x n x e x

x2

1 1

1
2

⇒ ⋅ ⋅ = ⋅1

2

22

2tan
sec

sin

siny
y

dy

dx

x

x

⇒
+

⋅ =
1 1

2
tan

tan sin

y

y

dy

dx x

⇒
+

−
+

�
�

�
��

−
+

⋅ =
1

1

1

1

1

1

cos

cos

cos

cos

sin

x

x

x

x

dy

dx x

⇒
+
−
+

⋅ =

2
1

1
1

1cos

cos
cos

sin

x

x

x

dy

dx x

⇒ =

−
+

⋅
+

�
�

�
��

dy

dx

x

x

x
x

1
1

2
1

cos
cos

sin
cos

=

−
+

+
�
�

�
��
=

−
+

⋅
+

1

1

2

1

1

1

1

2

cos

cos

sin

cos

cos

cos

cos

sin

x

x

x

x

x

x

x

x

� �

⇒ =
+

⋅
−
+

≠
dy

dx

x

x

x

x
x n

1

2

1

1

cos

sin

cos

cos

� �
, π

Note: The first method is more simple than the second
method. But a general method to find differential
coefficient of

1. y f
g x

g x
= 1

2

� �
� �

2. y f
g x

g x
=

−1 1

2

� �
� � , where f –1= sin–1, cos–1, tan–1,

cot–1, sec–1, and cosec–1.

3. y f
x

x
=

±−1 1

1

sin

sin�
, f

x

x

− ±1 1

1

cos

cos�
,

f
x

x

− ±
±

1 1

1

sin

cos
,  f

x

x

− ±
±

1 1

1

cos

sin

4. y
x

x
=

−
+

1

1

sin

sin
,  

1

1

+
−

sin

sin

x

x
,  

1

1

+
−

cos

cos

x

x
,

1

1

±
±

sin

cos

x

x
,  

1

1

±
±

cos

sin

x

x
,

5. y x x= ± ±1 1sin cos,  is logarithmic

differentiation.

6. y
x

x
=

+
−

log
sin

sin

1

1
,

Solution: First method:

y
x

x
=

+
−

log
sin

sin

1

1
, defined for x n≠ +π

π
2

= + − −1

2
1 1log sin log sinx x� � � �� �

⇒ =
+

−
−
−

�
�
�

�
�
�

dy

dx

x

x

x

x

1

2 1 1

cos

sin

cos

sin

� �

= −
+

+
−

�
�
�

�
�
�

1

2 1 1

cos

sin

cos

sin

x

x

x

x

= ⋅ ⋅
− + +

−

�
��
��

�
��
��

1

2

1 1

1
2

cos
sin sin

sin
x

x x

x

= ⋅ ⋅ = ≠ +1

2

2 1

22
cos

cos cos
x

x x
x n, π π

Second method

1

1
2 2

2 2

+
−

=
+

−

sin

sin

sin cos

sin cos

x

x

x x

x x
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∴ = +
−

=
+

−
y

x

x

x x

x x
log

sin

sin
log

sin cos

sin cos

1

1
2 2

2 2

= + − −log sin cos log sin cos
x x x x

2 2 2 2

⇒ =
+�

�
�
�
⋅ ⋅ − ⋅�
�

�
� −

dy

dx x x
x x1

2 2

1

2 2

1

2 2sin cos
cos sin

 

1

2 2

1

2 2

1

2 2sin cos
cos sin

x x
x x

−�
�

�
�
⋅ +�
�

�
�

=
−�

�
�
�

+�
�

�
�
−

+�
�

�
�

−�
�

�
�

�

�
��

�
��

�

�
��

�
��

1

2
2 2

2 2

2 2

2 2

cos sin

sin cos

cos sin

sin cos

x x

x x

x x

x x

=
−�

�
�
�

+�
�

�
�
+

+�
�

�
�

−�
�

�
�

�

�
��

�
��

�

�
��

�
��

1

2
2 2

2 2

2 2

2 2

cos sin

sin cos

cos sin

cos sin

x x

x x

x x

x x

=
−�

�
�
�� + +�

�
�
��

−�
�

�
��

�

�
��

�
�
�

�

�
��

�
�
�

1

2
2 2 2 2

2 2

2 2

2 2

cos sin cos sin

– sin cos

x x x x

x x

=
− + +�

�
�

�
�

�
�
�

�
�

1

2

1 2
2 2

1 2
2 2

sin cos sin cos

cos

x x x x

x

= ⋅ = ≠ +1

2

2 1

2cos cosx x
x n, π π

Remark: The above problem has not been solved
by logarithmic differentiation.

Problems based on Change of Form before
Differentiation

Exercise 11.2

Find the differential coefficients of

1.
1

x a x b+ + +

2.
1 1

1 1

+ + −

+ − −

x x

x x

� � � �
� � � �

3.

a x a x

a x a x

2 2 2 2

2 2 2 2

+ + −

+ − −

� � � �

� � � �

4. x

a x1
2 2− −

5.
x

x x+ + −2 2

6.
x

x + −2 1

7.
a bx a bx

a bx a bx

+ + −

+ − −

� � � �
� � � �

8.
2

2

2

2

+ +

+ −

x x

x x

Hint:
2

2

2 2 2

2

2
2

2 2

2 2 2+ +�
�

�
�

+ −
=

+ + + +
�

�

�
�
�
�

�

	










x x

x x

x x x x

Answers (with proper restrictions on x)

1.
1

2

1 1

a b x a x b−
⋅

+
−

+

�

�
�
�

�

	



� �
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2. −
−

−1

1

1
2 2 2

x x x

3. − +
−

�
��

��

�
��

��
2

1
2

3

2

4 4

a

x

a

a x

4. Find
5. Find

6. − +
+

�
�
��

�
��

�
�
��

�
��

1
1

1

1
2 2x x� �

7. − +
−

�
��

��

�
��

��
a

bx

a

a b x
2 2 2 2

1

Exercise 11.3

Differentiate the following functions.

1. y x x= + − −1 2 1 2sin sin

2. y
x

x
=

−
+

−
tan

cos

cos

1 1

1

3. y
x

x
=

+
−

1

1

sin

sin

Answers (with proper restrictions on x)

1.
sin cos

sin cos
cos sin

sin cos

sin cos

x x

x x
x x

x x

x x

+
+

⋅ − −
−
−

⋅
� �
� � � � � �

� �

cos sinx x+� �

2. y
x=
2

 if tan
x

2
0> ,  then tan

x

2

= ∴ =tan
x dy

dx2

1

2

or, 
dy

dx

x

x
x n= ≠1

2
2

2

tan

tan
, π� �

3.
1

2 2 2
2

1

2
1

2
sec

tan

tan

x
x

x
⋅

+

+�
�

�
�
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12

Implicit Differentiation

Firstly, we recall the basic definitions in connection
with implicit differentiation.

1. Explicit function: Whenever it is possible to
equate the dependent variable y directly to a function
of the independent variable x as y = f (x) , we say that
the dependent variable y is an explicit function of the
independent variable x. Here f (in the equation y =
f (x)) stands for all elementary functions (sin, cos, tan,
cot, sec, cosec, sin–1, cos–1, tan–1, cot–1, sec–1,
cosec–1, log, e, ( )n, n , | |, etc.). examples,

(i) y = x2 – 1
(ii) y = sin x3, etc.

N.B.: All algebraic, trigonometric, inverse
trigonometric, logarithmic and exponential functions
of x’s are explicit functions of x’s.

2. Implicit function: Whenever it is not possible to
equate the dependent variable y directly to a function
of the independent variable x as y = f (x), we say that
the dependent variable y is an implicit function of the
independent variable x.

Examples:
(i) x3 y4 = (x + y)7

(ii) x y = c
(iii) xy + x2 y2 = c
(iv) xm ym = (x + y)m + n

(v) y = cos (x – y)
(vi) y = tan (x + y)
(vii) cot xy + xy = 3
(viii) sin (x + y) + sin (x – y) = 1

Notation: The notation for the implicit function is
either

1. F (x, y) = c, c being a constant, or, (Note: Implicit
function is also defined in the following way: If the
dependence of the dependent variable y on the
independent variable x is expressed by the equation:
F (x, y) = c or F (x, y) = 0 not solvable for y, then y is
called an implicit function of x.)
2. F (x, y) = 0 where F (x, y) denotes
(i) A rational integral function of x and y, i.e. it is the
sum of a finite series of the terms Cm,n x

m, yn, where m,
n may have the values 0, 1, 2, 3, ….
(ii) A function (sin, cos, tan, cot, sec, cosec, sin–1,
cos–1, tan–1, cot–1, sec–1, cosec–1, log, e, ( )n, n , | |,
etc.) of a rational integral function of x and y.
(iii) A combination of (i) and (ii) and the equation F
(x, y) = c or F (x, y) = 0 denotes the dependence of the
dependent variable y on the independent variable x
not solvable for y.

Remember:
1. The equation F (x, y) = c or, F (x, y) = 0 determines
one or more values of y to be associated with the given
value of the independent variable x provided a definite
number from some domain is substituted for x.
2. If the set {(x, y) | F (x, y) = c} or, {(x, y) | F (x, y) = 0}
is the graph of a function (or, union of graphs or more
than one function), we say that the equation F (x, y)
= c or F (x, y) = 0 defined implicitly y as a function x.
Further we should note that if y = f (x) is a function of
x, then F (x, y) = F (x, f (x)) = c or F (x, y) = F (x, f (x))
= 0 is an identity, i.e. F (x, f (x)) is a constant function.
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Kinds of Implicit Function

1. Implicit algebraic function: y is said to be an implicit
algebraic function of x if a relation of the form:

Ym + R1 Y
m – 1 + … + Rm = 0 exists, where R1, R2, …,

Rm are rational functions of x’s and m is a positive
integer. e.g.,
(i) y2 – 2xy + x = 0

(ii) y
x

x
y

2

1
1 0−

−
+ =

2. Implicit transcendental function: y is said to be an
implicit transcendental function of x if a relation of
the form: T (x, y) = 0 exists, where T denotes
trigonometric, inverse trigonometric, logarithmic and
exponential functions and the ordered pair (x, y)
denotes a rational integral function of x and y. e.g.,
(i) tan (x, y) = 0
(ii) cos (x + 2y) = 0
(iii) sin (a + y) = 0
(iv) ey – x = 0
(v) tan–1 (x + y) = 0
(vi) log (xy) = 0

Question: What is implicit differentiation?
Answer: Differentiation of an implicit function is called
implicit differentiation, or more explicitly it is defined

as “Finding the derivative 
dy

dx
 of an implicit function

put in the form F (x, y) = 0 or F (x, y) = c without
explicitly determining the function y = f (x) is called
the implicit differentiation.

N.B.: Whenever we differentiate an implicit function
put in the form F (x, y) = c or, F (x, y) = 0, we assume
that the given implicit function is differentiable and y
is a differentiable function of x.

Facts to Know:
1. Whenever we differentiate the algebraic implicit
function of x (or, the rational integral function of x
and y), we simply need do is to differentiate each term
of it with respect to x remembering that y is itself a
differentiate function of x, say g (x) and the derivative
of any function of y, say ∅ y� �  with respect to x is
equal to its derivative with respect to y multiplied by

dy

dx
, i.e. 

d y

dx

d

dx
y

dy

dx

∅
= ∅ ⋅

� � � �

Hence, 
d y

dx

d y

dx

dy

dx

n n

= ⋅ , provided y is a

differentiable function of x.
2. The derivative of a function (sin, cos, tan, cot, sec,
cosec, sin–1, cos–1, tan–1, cot–1, sec–1, cosec–1, log, e,
( )n, | |, etc.) of a rational integral function of x and y
with respect to the independent variable x is equal to
the derivative of the whole given implicit function
with respect to the rational integral function of x and
y times the derivative of the rational integral function
of x and y with respect to the independent variable x

only, i.e. 
d

dx
T x y

d T x y

d x y

d x y

dx
,

,

,

,� � � �
� �

� �
= ⋅  pro-

vided denotes sin, cos, tan, cot, sec, cosec, sin–1,
cos–1, tan–1, cot–1, sec–1, cosec–1, log, e, ( )n, | |, etc
and the ordered pair (x, y) denotes the rational inte-
gral function of x and y. e.g.,

(i)
d

dx
x y

d x y

d x y

d x y

dx
sin

sin
+ +

+
+

⋅
+� � � �

� �
� �

= + ⋅ +��
�
�cos x y

dy

dx
� � 1

(ii)
d

dx
xy

d xy

d xy

d xy

dx
log

log� � � �
� �

� �
= ⋅

= +�
�

�
� >

1
0

xy
x

dy

dx
y xy,

3. Question: When would you differentiate as an
implicit function?
Answer: (i) When it is neither convenient nor
possible to find y (dependent variable) in terms of x
only, i.e. if it is convenient or impossible to write y =
an expression in x only or y = f (x), where ‘f’ stands for
sin, cos, tan, cot, sec, cosec, sin–1, cos–1, tan–1, cot–1,
sec–1, cosec–1, log, e, etc. then we differentiate the
given function as an implicit function of x. e.g.,

x3 + y3 + 3axy = 0
sin (x2 + y2) = y

sin
− �
��
�
�� =

1 x

y
y

log (x + y) = y
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e y
x x

y

2 +
=

x · log y = y, etc.
(ii) Whenever we would like to find out the derivatives
of an implicit function of x without solving its given
equation for y, we differentiate the given relationship
between the variables x and y as an implicit function
of x. e.g.,

x2 + y2 = a2

tan (x + y) = 0

log
x

y

�
��
�
�� = 0

e
x
y = 0 ,  etc.

4. In the implicit function, y is said to be defined
implicitly as the function of x or x is said to be defined
implicitly as a function of y.
5. An implicit function expresses always an unsolved
relationship between the variables. e.g.,

x

y

x y a

Z y x a

=

+ =
+ =

	




�
�
�
�
�
�

tan

tan

are functions expressing unsolved

relationship between variables.

60

2 2 2

2

�

6. An explicit function expresses always a solved
relationship between the variables. One variable is
solved in terms of the other. e.g.,

y y= ⇒tan 60
�  is an explicit function of x.

x
y

x= ⇒
tan60

�
 is an explicit function of y.

x a y= ± − ⇒
2 2  x is an explicit function of y.

Z a y x Z= − ⇒2
tan  is an explicit function of

y and x.
The dependent variable is therefore the value of

the explicit function.

Problems on Implicit Algebraic Functions

To find the derivative of an implicit algebraic function
of x without solving its given equation for y, we adopt
the rule which consists of following steps.

Step 1: Take 
d

dx
� �  on both sides of the given

equation.
Step 2: Differentiation each term of the given equation
with respect to the independent variable x using the
rules for the derivatives of sum, difference, product,
quotient, composite of differentiable functions and a
constant multiple of the differentiable function
remembering that

d F y

dx

d F y

dy

dy

dx

� � � �
= ⋅

which means wherever with respect to the
independent variable x, we differentiate a differentiable
algebraic, trigonometric, inverse trigonometric,
logarithmic and exponential function of y being
preassumed (or, understood) to be a differentiable
function of x, we should multiply the differential
coefficient of the differentiable function of y with

respect to y by 
dy

dx
.

Step 3: Collect the terms involving 
dy

dx
 on the left

hand side and the terms without 
dy

dx
 on the right

hand side.

Step 4: Finally, solve the equation for 
dy

dx
.

Notes: 1. The final result for 
dy

dx
 is an expression in

terms of both x and y.
2. While finding the derivatives of an implicit
algebraic function of x, often required derivatives

obtained from d F y

dx

d F y

dy

dy

dx

� � � �
= ⋅  are the

following.

(i)
d

dx
y ny

dy

dx

n n
− −1

(ii)
d

dx
x y

dx

dx

dy

dx

n n
n n

± = +� 

= +− −
n x n y

dy

dx

n n1 1
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(iii)
d

dx
x y x

dy

dx
y

dx

dx

n n n
n

n
n

�  = +

= +
− −

n x y
dy

dx
n x y

n n n n1 1

(iv)
d

dx

x

y

y
dx

dx
x

dy

dx

y

n

n

n
n

n
n

n

�
��
�
��
=

−

� 
2

=
−

− − − −
n y x n x y

dy

dx
y n

n n n n1 1 1 1

2� �

Solved Examples

Find 
dy

dx
 if

1. y8 – 5x2 y6 + x8 = 11
Solution: y8 – 5x2 y6 + x8 = 11

⇒ − + =d

dx
x x y y

d

dx
8 2 6 85 11�  � �

⇒ − + =d

dx
x

d

dx
x y

d

dx
y8 2 6 85 0�  �  � 

⇒ − − + =8 10 30 8 0
7 6 2 5 7

x x y x y
dy

dx
y

dy

dx

⇒ − = −8 30 10 87 2 5 6 7y x y
dy

dx
x y x� 

⇒ =
−

−
dy

dx

x y x

y y x

5 4

4 15

6 6

5 2 2

� 
� 

2. x2 + y2 = a2

Solution: x2 + y2 = a2

⇒ + =
d

dx
x y

d

dx
a

2 2 2�  � 

⇒ + =
dx

dx

dy

dx

2 2

0

⇒ + ⋅ =2 0
2

x
dy

dy

dy

dx

⇒ + ⋅ =2 2 0x y
dy

dx

⇒ = −2 2y
dy

dx
x

⇒ =
−

=
−dy

dx

x

y

x

y

2

2

3. xy + x2 y2 = c
Solution: xy + x2 y2 = c

⇒ + =d

dx
xy x y

d

dx
c

2 2�  � �

⇒ + =d

dx
xy

d

dx
x y� � � 2 2

0

⇒ +�
�

�
� + +
�
��

�
��
=x

dy

dx
y

dx

dx
x

dy

dx
y

dx

dx

2
2

2
2

0

⇒ + + + ⋅ =x
dy

dx
y x y

dy

dx
y x2 2 02 2

⇒ +�
��

�
�� = − +x

dy

dx
x y

dy

dx
y x y2 22 2� 

⇒ + = − +x x y
dy

dx
y x y2 2

2 2�  � 

⇒ =
− +

+
=
− +

+
= −dy

dx

y xy

x x y

y x y

x x y

y

x

2

2

1 2

1 2

2

2

� 

� 
� �
� �

4. x5 + x4 y2 – y = 4
Solution: x5 + x4 y2 – y = 4

⇒ + − =d

dx
x x y y

d

dx

5 4 2
4�  � �

⇒ + − =d

dx
x

d

dx
x y

dy

dx

5 4 2
0�  � 

⇒ + + ⋅�
�

�
� − =5 2 4 0

4 4 2 3
x x y

dy

dx
y x

dy

dx
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⇒ − = − +
dy

dx
x y x x y2 1 5 4

4 4 3 2�  � 

⇒ =
− +

−

dy

dx

x x y

x y

5 4

2 1

4 3 2

4

5. ax2 + by2 + 2hxy + 2gx + 2fy + c = 0
Solution: ax2 + by2 + 2hxy + 2gx + 2fy + c = 0

⇒ + + + + + =d

dx
ax by hxy gx f y c

2 2
2 2 2 0� 

⇒ + + + +d

dx
ax

d

dx
by

d

dx
hxy

d

dx
gx

2 2
2 2�  �  � � � �

d

dx
f y

d

dx
c2 0� � � �+ =

⇒ + + + + + =2 2 2 2 2 2 0ax by
dy

dx
hx

dy

dx
hy g f

dy

dx

⇒ + + + + + =ax by
dy

dx
hx

dy

dx
hy g f

dy

dx
0

⇒ + + = − + +by hx f
dy

dx
ax hy g� � � �

⇒ =
− + +

+ +
dy

dx

ax hy g

hx by f

� �

6. x y y x1 1 0+ + + =

Solution: x y y x1 1 0+ + + =

⇒ + + + =d

dx
x y y x1 1 0� 

⇒ + + + +x
d

dx
y y

dx

dx
1 1� 

y
d

dx
x x

dy

dx
1 1 0+ + + =� 

⇒ ⋅
+

⋅ ���
�
�� + + ⋅ +

+
+x

y

dy

dx
y

y

x

1

2 1
1 1

2 1
� 

1 0+ ⋅ =x
dy

dx

⇒
+

⋅ + + +
+

+
x

y

dy

dx
y

y

x2 1
1

2 1

1 0+ =x
dy

dx

⇒
+

+ +
�
��

�
��
+ + +x

y

dy

dx
x

dy

dx
y

2 1
1 1

y

x2 1
0

+
=

⇒
+

+ +
�
��

�
��

x

y
x

dy

dx2 1
1

⇒ − + +
+

�
��

�
��

1
2 1

y
y

x

⇒ =

− + +
+

�
��

�
��

+
+ +

�
��

�
��

dy

dx

y
y

x

x

y
x

1
2 1

2 1
1

7. x y+ = 1

Solution: x y+ = 1

⇒ + =
d

dx
x y

d

dx
�  � �1

⇒ + =d

dx
x

d

dx
y 0

⇒ + =1

2

1

2
0

x y

dy

dx

⇒ = −1

2

1

2y

dy

dx x

⇒ =
−

=
−dy

dx

y

x

y

x

2

2
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Problems based on the combination of implicit
algebraic and transcendental functions

To find the derivatives of problems being the
combination of implicit algebraic and transcendental
functions of x’s, we adopt the rule consisting of
following steps.

Step 1: Take 
d

dx
� �  on both sides of the given

equation.
Step 2: Differentiate the transcendental functions of
rational integral functions of x’s and y’s and implicit
algebraic functions of x’s with respect to x’s using
the rules for the derivatives of sum, difference,
product, quotient, composite of differentiable
functions and a constant multiple of the differentiable
function remembering that

(i)
d F x

dx

d F x

dy

dy

dx

� � � �
= ⋅

(ii)
d

dx
F (a · r · i · f · o · x and y)

=
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅
⋅ ⋅ ⋅ ⋅ ⋅d F a r o f o x y

d a r i f o x y

d a r i f o x y

dx

and

and

and� �
� �

� �

Where “F” stands for “power, trigonometric,
inverse trigonometric, logarithmic, exponential, etc,
function”.

“a · r · e · f · o · x and y” stands for “a rational
integral function of x and y; and y is pre-assumed (or,
understood) to be a differentiable function of x, say g
(x).

Step 3: Collect the terms involving dy

dx
 on the left

hand side and the terms without 
dy

dx
 on the right

hand side.

Step 4: Solve the equation for 
dy

dx
 on the right hand

side.

Notes:

1. The final result for 
dy

dx
 is an expression either (i) in

terms of both x and y only or (ii) interms of both x and
y with one (or, more than one) transcendental function

(or, functions) of the rational integral function (or,
functions) of x and y (or, x’s and y’s).
2. While finding the derivatives of an implicit function
being the combination of implicit algebraic and
transcendental functions of x’s, often required
derivatives from:

(i)
d F y

dx

d F y

dy

dy

dx

� � � �
= ⋅

(ii)
d

dx
F (a · r · i · f · o · x and y)

=
⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅

⋅
⋅ ⋅ ⋅ ⋅ ⋅d F a r o f o x y

d a r i f o x y

d a r i f o x y

dx

and

and

and� �
� �

� �

are the following ones.

(a)
d y

dx
n y

dy

dx

n
n

=
−1

(b)
d

dx
x y n x y

dy

dx
n n+ = + +��

�
�

−� � � � 1 1

(c)
d

dx
F y

d F y

d y

dy

dx

n

n

n

n

� 
� 

� 
= ⋅

= ′ ⋅ ⋅ ⋅
−

F y n y
dy

dx

n n�  1

(d)
d

dx
F x y

d F x y

d x y

d x y

dx

n n

n n

n n

n n

± =
±

±
⋅

±
� 

� 

� 

� 

(e)
d

dx
F x y

d F x y

d x y

d x y

dx

n n

n n

n n

n n

� 
� 

� 

� 
=

⋅
⋅

Solved Examples

Find 
dy

dx
 if

1. y = sin (x + y)
Solution: y = sin (x + y)
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⇒ =
+

=
+

+
⋅

+dy

dx

d x y

dx

d x y

d x y

d x y

dx

sin sin� � � �
� �

� �

⇒ = + +��
�
�

dy

dx
x y

dy

dx
cos� � 1

 = + + +cos cosx y x y
dy

dx
� � � �

⇒ − + ⋅ = +dy

dx
x y

dy

dx
x ycos cos� � � �

⇒ − + = +1 cos cosx y
dy

dx
x y� �� � � �

⇒ =
+

− +
dy

dx

x y

x y

cos

cos

� �
� �1

2. xy = sin (x + y)
Solution: xy = sin (x + y)

⇒ = + =
+

+
⋅

+dy

dx
xy

d

dx
x y

d x y

d x y

d x y

dx
� � � � � �

� �
� �

sin
sin

⇒ + ⋅ = + ⋅ +�
�

�
�x

dy

dx
y

dx

dx
x y

dx

dx

dy

dx
cos� �

⇒ + = + +��
�
�x

dy

dx
y x y

dy

dx
cos� � 1

⇒ + = + + +x
dy

dx
y x y x y

dy

dx
cos cos� � � �

⇒ − + = + −x
dy

dx
x y

dy

dx
x y ycos cos� � � �

⇒ − + = + −x x y
dy

dx
x y ycos cos� �� � � �

⇒ =
+ −

− +
dy

dx

x y y

x x y

cos

cos

� �
� �

3. x3 y3 = cos (xy)
Solution: x3 y3 = cos (xy)

⇒ =d

dx
x y

d

dx
xy

3 3�  � �cos

⇒ + = ⋅x
dy

dx
y

dx

dx

d xy

d xy

d xy

dx

3
3

3
3

cos� �
� �

� �

⇒ + = − +�
�

�
�3 3

3 2 2 3
x y

dy

dx
x y xy x

dy

dx
ysin

⇒ + = − −3 3
3 2 2 3

x y
dy

dx
x y x xy

dy

dx
y xysin sin

⇒ + = − −3 3
3 2 2 3

x y x xy
dy

dx
x y y xysin sin� 

= − +y x y xy3
2 2

sin� 

⇒ = −
+

+

dy

dx

y x y xy

x y x xy

3

3

2 2

3 2

sin

sin

� 

= −
+

+
= −

y x y xy

x x y xy

y

x

3

3

2 2

2 2

sin

sin

� 

� 

4.
x

y
xy= cosec

Solution:
x

y
xy= cosec

⇒ =x y xycosec

⇒ =
dy

dx

d

dx
y xycosec� �

= + ⋅y
d

dx
xy xy

dy

dx
cosec cosec� � � �

⇒ = ⋅ + ⋅1 y
d xy

d xy

d xy

dx
xy

dy

dx

cosec
cosec� �

� �

⇒ = − +�
�

�
� +1 y xy xy x

dy

dx
y

dx

dx
cosec cot� �

cosec xy
dy

dx
⋅

⇒ = − + −1 yx xy xy
dy

dx
xy

dy

dx
cosec cot cosec� �

y xy xy
2

cosec cot
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⇒ − +yx xy xy xy
dy

dx
cosec cot cosec� �

 = +1
2

y xy xycosec cot

⇒ =
+

−
dy

dx

y xy xy

xy yx xy xy

1
2

cosec cot

cosec cosec cot� �
5. y = tan–1 (x + y)
Solution: y = tan–1 (x + y)

⇒ =
+

=
+

+
⋅

+
− −

dy

dx

d x y

dx

d x y

d x y

d x y

dx

tan tan
1 1� � � �

� �
� �

⇒ =
+ +

⋅ +��
�
�

dy

dx x y

dy

dx

1

1
1

2� �

=
+ +

+
+ +

⋅
1

1

1

12 2x y x y

dy

dx� � � �

⇒ −
+ +

�
��
�
�� = + +

dy

dx x y

dy

dx x y

1

1

1

1
2 2� � � �

⇒ −
+ +

�
��

�
��

=
+ +

1
1

1

1

12 2x y

dy

dx x y� � � �

⇒
+ + −

+ +
⋅ =

+ +

1 1

1

1

1

2

2 2

x y

x y

dy

dx x y

� �
� � � �

⇒
+

+ +
=

+ +

x y

x y

dy

dx x y

� �
� � � �

2

2 21

1

1

⇒ =
+ +

⋅
+ +

+
=

+
dy

dx x y

x y

x y x y

1

1

1 1
2

2

2 2� �
� �
� � � �

6. y = log (x + y)
Solution: y = log (x + y)

⇒ = + =
+

+
⋅

+dy

dx

d

dx
x y

d x y

d x y

d x y

dx
log

log� � � �
� �

� �

⇒ =
+

⋅ +��
�
� = +

+
+

⋅dy

dx x y

dy

dx x y x y

dy

dx

1
1

1 1

� � � � � �

⇒ −
+

=
+

dy

dx x y

dy

dx x y

1 1

� � � �

⇒ −
+

�
��

�
�� =

+
1

1 1

x y

dy

dx x y� � � �

⇒
+ −
+

⋅ =
+

x y

x y

dy

dx x y

1 1

� � � �

⇒ =
+

⋅
+

+ −
=

+ −
dy

dx x y

x y

x y x y

1

1

1

1� �
� �
� � � �

7. y = exy

Solution: y = exy

⇒ = = ⋅dy

dx

d

dx
e

d e

d xy

d xy

dx

xy

xy

� 
� 
� �

� �

⇒ = ⋅ +�
�

�
� = ⋅ + ⋅�

�
�
�

dy

dx
e x

dy

dx
y

dx

dx
e x

dy

dx
y

xy xy
1

⇒ = ⋅ + ⋅dy

dx
xe

dy

dx
y e

xy xy

⇒ − ⋅ = ⋅
dy

dx
x e

dy

dx
y e

xy xy

⇒ − = ⋅1 xe
dy

dx
y e

xy xy� 

⇒ =
− ⋅

dy

dx

y e

x e

xy

xy
1

8. x2 + y2 = log (xy)
Solution: x2 + y2 = log (xy)

⇒ + =d

dx
x y

d

dx
xy

2 2�  � �� �log

= ⋅
d xy

d xy

d xy

dx

log � �� �
� �

� �

⇒ + = ⋅ + ⋅�
��

�
��

dx

dx

dy

dx xy
x

dy

dx
y

2 2 1
1

⇒ + ⋅ = ⋅ +2 2
1 1

x y
dy

dx y

dy

dx x
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⇒ − = −2
1 1

2y
dy

dx y

dy

dx x
x

⇒ −�
��

�
�� =

−
2

1 1 2
2

y
y

dy

dx

x

x

� 

⇒
−

⋅ =
−2 1 1 2

2 2
y

y

dy

dx

x

x

�  � 

⇒ =
−

⋅
−

=
−�
��
�
�� ⋅

−
−

�
��

�
��

dy

dx

x

x

y

y

y

x

x

y

1 2

2 1

1 2

1 2

2

2

2

2

� 
� 

9. exy = log (xy)
Solution: exy = log (xy)

⇒ =d

dx
e

d

dx
xy

xy�  � �� �log

⇒ ⋅ = ⋅
d e

d xy

d xy

dx

d xy

d xy

d xy

dx

xy� 
� �

� � � �� �
� �

� �log

⇒ + ⋅�
�

�
� ⋅ = ⋅ +x

dy

dx
y e

xy

dy

dx

y

xy

xy
1

1

⇒ ⋅ − ⋅ = −x e
dy

dx y

dy

dx x
y e

xy xy1 1

⇒ −�
��

�
�� ⋅ =

−
x e

y

dy

dx

x y e

x

xy
xy

1 1

⇒ =
−

⋅
−

dy

dx

x y e

x

y

x y e

xy

xy

1

1

� 

� 

= −�
��
�
�� ⋅

−
−

�
��

�
��
= − ���

�
��

y

x

x y e

x y e

y

x

xy

xy

1

1

10. y = x log y
Solution: y = x log y

⇒ = = + ⋅
dy

dx

d

dx
x y x

d y

dx
y

dx

dx
log

log
log� �

⇒ = ⋅ + ⋅
dy

dx
x

d y

dy

dy

dx
y

log
log 1

= ⋅ ⋅ +x
y

dy

dx
y

1
log

⇒ − =
dy

dx

x

y

dy

dx
ylog

⇒ −���
�
�� =1

x

y

dy

dx
ylog

⇒
−�

��
�
�� =

y x

y

dy

dx
ylog

⇒ =
−

�
��

�
��

dy

dx

y y

y x

log

11. exy = cos (x2 + y2)
Solution: exy = cos (x2 + y2)

⇒ = +�� ��
d

dx
e

d

dx
x y

xy�  � cos
2 2

⇒ ⋅ =
+�� ��

+
⋅

+d e

d xy

d xy

dx

d x y

d x y

d x y

dx

xy
� 
� �

� � � 

� 

� cos
2 2

2 2

2 2

⇒ ⋅ +�
��

�
��e x

dy

dx
yxy

= − + ⋅ +�
�

�
�sin x y x y

dy

dx

2 2
2 2� 

⇒ ⋅ + ⋅�
�

�
�x e

dy

dx
y e

xy xy

= − + − + ⋅2 2
2 2 2 2

x x y y x y
dy

dx
sin sin�  � 

⇒ ⋅ + ⋅ + ⋅x e
dy

dx
y x y

dy

dx

xy
2

2 2
sin � 

= − + − ⋅2
2 2

x x y y e
xy

sin � 

⇒ + +�� ��x e y x y
dy

dx

xy
2

2 2
sin � 
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= − + −2
2 2

x x y y e
xy

sin � 

⇒ = −
+ +

+ +

�

�
�
�

�

�
�
�

dy

dx

x x y y e

y x y x e

xy

xy

2

2

2 2

2 2

sin

sin

� 

� 

Problems based on implicit algebraic functions

Exercise 12.1

Find 
dy

dx
 if

1. y2 = 5x2 + 1
2. y2 = 4ax
3. x2 + y2 = 9
4. 2x2 + 3y3 = a2

5.
x

a

y

b

2

2

2

2
1+ =

6.
x

a

y

b

2

2

2

2
1− =

7. xn + yn = an

8. ax2 + by2 = (x + y)
9. xy = a
10. 3x2 y = 16
11. x2 + y2 – xy = a
12. ax2 + 2hxy + by2 = 1
13. x2 + y2 + 2hxy + 2gx + 2fy + c = 0
14. x3 + y3 = 3axy

15. x y a+ =

16. x y a
3
2

3
2

3
2+ =

17. x y y x+ = 1

18. x3 + y3 = xy
19. x + y = xy2

20. xy + x2 y2 = c
21. x2 y + xy2 = c3

22. x2 y + xy2 = 3x3 + 4y3

23. y = (x + y)2

24. x2 y = (x + 2y)3

25. x3 y = (2x + 3y)2

26. (x3+ y3) xy = x5 – y5

27. x5 + y5 –5x2 y3 – 5x3 y2 = 0
28. x2 y = (2x + 3y)2

29. x2 y3 = (2x + y)5

30. x3 y4 = (x + y)7

31. x5 y4 = (x + y)9

32. x4 y5 = (x – y)9

33. xa yb = (x – y)a + b

Answers

1.
5x

y

2.
2a

y

3. −
x

y

4. −
2

3

x

y

5. −
b x

a y

2

2

6.
b x

a y

2

2

7. −���
�
��

−
x

y

n 1

8.
1 2

2 1

−
−
ax

by

9. − y

x

10. − 2y

x

11.
y x

y x

−
−
2

2

12. −
+
+

�
��

�
��

ax hy

hx by
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13. −
+ +
+ +

�
��

�
��

g x hy

f hx y

14.
ay x

y ax

−

−

2

2

15. − y

x

16. − x

y

17.
y

x

x y

y x

2

2

+
+

�
��

�
��

18.
y x

y x

−

−

3

3

2

2

19.
y

xy

2
1

1 2

−
−

20. − y

x

21. −
+
+

�
��

�
��

y

x

y x

x y

2

2

22.
9 2

2 12

2 2

2 2

x xy y

x xy y

− −

+ −

23.
2

1 2

x y

x y

+
− +
� �
� �

24. −
+ +

+ +

�
�
�

�
�
�3 10 12

5 24 6

2 2

2 2

x xy y

x xy y

25.
8 12 3

12 18

2

3

x y x y

x x y

+ −

− −

26.
5 4

4 5

4 3 4

4 3 4

x xy y

x xy y

− −

+ −

27. −
− −

− −

�
�
�

�
�
�x x y xy

y x y x y

4 2 2 3

4 2 2 3

3 2

3 2

28.
− + +

+ +

28 54 70

35 81 108

2 2

2 3

x y xy

x y xy

29.
10 2 2

3 5 2

4 3

2 2 4

x y xy

x y x y

+ −

− +

� �
� �

30.
y

x

31.
y

x

32.
y

x

33.
y

x

Problems based on the combination of implicit
algebraic and transcendental functions

Exercise 12.2

Find 
dy

dx
 if

1. y = sin (x + y)
2. y = tan (x + y)
3. y = cot (x + y)
4. y = sec (x + y)
5. y = cos (x – y)
6. sin (x + y) + sin (x – y) = 1
7. x = 2 cos y + 3 sin y

8. x y y= +sin cos

9. x y y= −2 3 4sin cos

10. cos (x + y) = y sin x
11. tan (x + y) + tan (x – y) = 1
12. x = (2 cos–1 y)2
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Answers

1.
cos

cos

x y

x y

+
− +
� �
� �1

2. −
+

− +

sec

sec

2

2
1

x y

x y

� �
� �

3. −
+

+ +

cosec

cosec

2

2
1

x y

x y

� �
� �

4.
sec tan

sec tan

x y x y

x y x y

+ +
− + +
� � � �
� � � �1

5.
sin

sin

x y

x y

−
− −
� �
� � 1

6. 2cot cotx y⋅

7.
1

3 2cos siny y−

8.
2 sin cos

cos sin

x y

y y

+
−

9.
3 4

3 4

sin cos

cos sin

y y

y y

−
+

10. −
+ +
+ +

y x x y

x y x

cos sin

sin sin

� �
� �

11.
sec sec

sec sec

2 2

2 2

x y x y

x y x y

+ + −

− − +

� � � �
� � � �

12.
− −

−

1

4

2

1

y

ycos

Exercise 12.3

Find 
dy

dx
 if

1. x + y = sin (xy)

2. x + y = sin (x + y)
3. x + y = tan (xy)
4. xy = tan (xy)
5. xy = sin (x + y)
6. xy = cos (x + y)
7. xy = sin (2x + 3y)
8. x – y = sec (x + y)
9. xy = sec (x + y)
10. x2 y = sin y
11. x2 y2 = sin (xy)
12. x3 y3 = cos (xy)
13. x3 + y3 = sin (x + y)
14. xy = sin2 (x + y)

15. xy y x= −tan 2� �
16. y2 = tan (2y + x)

17. y x y
x

= + �
�
�
�

2 3

2
sin

18. x cos y + y sin x = 0
19. x sin y + y cos x = 0
20. x cos y + y cos x = tan (x + y)
21. y3 = (x + sin x) (x – cos x)
22. log (xy) = x2 + y2

23. exy = log (xy)
24. log y = exy

25. exy + xy = 0
26. x = y log (xy)
27. exy + log (xy) + xy = 0
28. log | xy | = x2 + y2

29. y log x = x – y
30. x + y = tan–1 (xy)
31. exy = cos (x2 + y2)
32. x = y log | xy |

33. y x
y

a bx
=

+
�
��

�
��log

34. y
x y e

x

x

2

3
=

+ +log sin� � � 

35. xy = log (x2 + y2)
36. x2 + y2 = log (x + y)

Answers

1.
y xy

x xy

cos

cos

� �
� �
−

−
1

1



Implicit Differentiation 511

2. –1

3.
1

1

2

2

−

⋅ −

y xy

x xy

sec

sec

� �
� �

4. −
y

x

5. −
− +
− +

y x y

x x y

cos

cos

� �
� �

6. −
+ +
+ +

y x y

x x y

sin

sin

� �
� �

7.
2 2 3

3 2 3

cos

cos

x y y

x x y

+ −
− +
� �
� �

8.
1

1

− + +
+ + +

sec tan

sec tan

x y x y

x y x y

� � � �
� � � �

9. −
− + ⋅ +
− + ⋅ +

y x y x y

x x y x y

sec tan

sec tan

� � � �
� � � �

10.
2

2

xy

y xcos −

11.
y xy xy

x y x xy

cos

cos

� �
� �

−

−

2

2

2

2

12.
3

3

2 3

3 2

x y y xy

x y x xy

−

+

sin

sin

� �
� �

13.
cos

cos

x y x

y x y

+ −

− +

� �
� �

3

3

2

2

14.
sin

sin

2

2

x y y

x x y

+ −
− +
� �
� �

15. −
+ − −

− − −

�

�
��

�

�
��

y y x y x

x y x y x

2 2 2

4 2 2

2

2

tan sec

tan sec

� � � �
� � � �

16.
sec

sec

2

2

2

2 2 2

y x

y y x

+
− +
� �
� �

17.

1
3
2 2 2

1 2
2

2 2

3

+ �
��

�
��

−

sin cos

sin

x x
y

y
x

18.
y x y

x y x

cos cos

sin sin

+
−

19.
y x y

x y x

sin sin

cos cos

−
+

20.
sec cos sin

cos sin sec

2

2

x y y y x

x x y x y

+ − +

− − +

� �
� �

21.
x x x x x x

y

+ + − + +sin cos sin cos� � � �1

3
2

22.
y

x

x

y
⋅

−

−

�
�
�

�
�
�2 1

1 2

2

2

23.
y

x

x y e

x y e

xy

xy
⋅

−

−

�
�
�

�
�
�1

1

24.
y e

x y e

xy

xy

2

1 −

25. − y

x

26.
x y y

x x y

x y

x xy

−
+

−
+

� �
� � � �or

log1

27. −
y

x

28.

y x

x y

2 1

1 2

2

2

−

−

� 

� 

29.
log

log

x

x1 2+� �
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30.
y x y

x y x

− +

+ −

sec

sec

2

2

� �
� �

31. −
+ +

+ +

�

�
�
�

�

�
�
�

y e x x y

x e y x y

xy

xy

2

2

2 2

2 2

sin

sin

� 

� 

32.
y x y

x x y

−
+

� �
� �

33.
− + −

− +

y ay bxy bx

x x y a bx

2� 
� � � �

34.
1 3

2 1

2 2

3

+ − +

+ −

e e x y x y

x y x y

x xcos� � � � �
� �

35.
2

2

2 3

3 2

x yx y

x xy y

− −
+ −

36.
1 2 2

2 2 1

2

2

− −

+ −

x xy

xy y

Conditional identities based on a given explicit
function of x

Whenever we have to form a differential equation
with the help of a given explicit function of x, we
adopt the following working rule provided the
required differential equation contains only first
derivative.

Working rule: Find the first derivative (i.e. 
dy

dx
) of

the given explicit function of x and use mathematical
manipulations to put the first derivative into the
required differential equation.
Notes:
1. In successive differentiation, we have discussed
in detail the methods of procedure of forming
differential equation whenever a function of x is given.
2. A given function x or an equation defining y as a
function of x can put into different forms according
to our need.

3. When a function of x under the radical sign appears
defining y as a function of x, we should try to remove
the radical sign by squaring or raising the same power
both sides of the equation defining y as a function of
x under the radical sign.
4. Whenever we are given a function of x put in the
forms:

(i) y f x f x= 1
2� � � �

(ii) y
f x f x f x

f x f x f x

g x g x g x

g x g x g x
=

⋅ ⋅

′ ⋅ ′′ ⋅ ′′′′ ′′ ′′′
1 2 3

1 2 3� � � � � �
� � � � � �

� � � � � �

� � � � � �
...

...

the bases f 1 (x), f 2 (x), f 3 (x) …, ′ ′′f x f x� � � �, ,

′′′f x� � , ...  are assumed to be positive before taking
the logarithm of both sides of the equation defining y
as a function of x provided it is not mentioned in the
problems that the bases are positive (i.e. > 0).
5. If we are given a function of x put in the form:

y
f x f x f x

f x f x f x

m m m

m m m
=

⋅ ⋅

′ ⋅ ′′ ⋅ ′′′′ ′′ ′′′
1 2 3

1 2 3� �� � � �� � � �� �
� �� � � �� � � �� �

...

...

where the bases f 1 (x), f 2 (x), f 3 (x), …;

′ ′′f x f x� � � �, ,  ′′′f x� � , ...  are functions of x’s where

the indices m1, m2, m3, …; ′ ′′ ′′′m m m, , , ...  are

constants, it is differentiated taking the logarithm of
both sides of the given equation defining y as a
function of x.

Solved Examples

1. y x
x

= +
1

,  show that 2 x
dy

dx
y x+ = 2 .

Solution: y x
x

x x= + = +
−1 1

2
1
2, …(i)

⇒ = −
− −dy

dx
x x

1

2

1

2

1
2

3
2

⇒ = −
�
��

�
��
= −

− − −
2 2

1

2

1

2

1
2

3
2 1

2
1
2x

dy

dx
x x x x …(ii)

Adding (i) and (ii), we have

y x
dy

dx
x x+ = =2 2 2

1
2
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2. If y x
x

= +
1

,  show that x
dy

dx
y x+ = 2 .

Solution: y x
x

= + 1
…(i)

⇒ = +
y

x

x

2
1

⇒ =
+ − +dy

dx

x
d

dx
x x

d

dx
x

x

2 2

2

1 1�  �  � �

=
× − +x x x

x

2 1
2

2

� 

⇒ =
− +

= − +�
�
�

�
�
�

dy

dx

x x

x

x

x

2 1
2

1
2 2

2

2

2

� 

⇒ +
+�

�
�

�
�
� =dy

dx

x

x

2

2

1
2

⇒ + ×
+�

�
�

�
�
� = ×x

dy

dx
x

x

x
x

2

2

1
2

⇒ +
+�

�
�

�
�
� =x

dy

dx

x

x
x

2
1

2

⇒ + +
�
��

�
��
=x

dy

dx

x

x x
x

2
1

2

⇒ + +��
�
� =x

dy

dx
x

x
x

1
2

⇒ + =x
dy

dx
y x2  (From (1))

3. If y x= +1
6

,  show that y
dy

dx
x= 3

5
.

Solution: y x= +1
6

⇒ = +y x
2 6

1

⇒ =2 6
5

y
dy

dx
x

⇒ =y
dy

dx
x3

5

4. y
x

=
1

,  show that 
dy

x

dx

y1 1
0

4 4+
+

+
= .

Solution: y
x

=
1

⇒ = −dy

dx x

1
2

Now, 
1

1

1
1

1

1

1

1
4

4

4

4

4

2

4 2

+

+
=

+

+
=

+

+
= = −

y

x

x

x

x

x

x x

dy

dx

⇒
+

+
= −

1

1

4

4

y

x

dy

dx

⇒
+

= −
+

dx

x

dy

y1 1
4 4

⇒
+

+
+

=dx

x

dy

y1 1
0

4 4

Remark: Since the derivative is a limit of the quotient

as ∆ x → 0  (i.e. lim
∆

∆
∆x

y

x→0
) which is symbolised as

dy

dx
 which does not indicate a quotient of dy and dx

but dx and dy are so defined as to consider 
dy

dx
 as a

quotient of dy and dx which may be seperated as dy ÷

dx or dy
dx

×
1

. The above example (4) provides us a
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fruitful example for regarding 
dy

dx
 as a quotient of dy

and dx which are known as differential of y and
differential of x respectively.

Conditional identities based on a given implicit
function of x

Now, we will learn how to form a differential equation
with the help of a given implicit function of x. The rule
to form a differential equation with the help of a given
implicit function of x consists of following steps
provided the required differential equation contains
only first derivative.

Step 1: Find the first derivative (i.e. 
dy

dx
) of the given

implicit function of x.
Step 2: Use mathematical manipulations to put the
first derivative into the required differential equation.

Refresh your memory:
1. Whenever we have functions put in the forms (i)

f x f y
1

2� � � �  (ii) f y f x
1

2� � � �  (iii) f x f yf x f y
1 1

2 2� � � �� � � �=

(iv) f x f yf y f x
1 1

2 2� � � �� � � �= , we should assume the

bases to be positive to use logarithmic differentiation.
2. Whenever we are given product or quotient of
functions put in the form f1 (x) and f2 (y), we should
take firstly modulus to use logarithmic differentiation.
3. Logarithmic differentiation is only possible when
the given function is positive. This is why we take
the modulus of the given function or equation if it
has the possibility of being negative.
4. log f (x) always means f (x) is preassumed to be
positive similarly log f (y) means f (y) is preassumed to
be positive.

Solved Examples

1. x y y x1 1 0+ + + = ,  show that

dy

dx
x= − + −1 2� � .

Solution: x y y x1 1 0+ + + =

⇒ + = − +x y y x1 1 …(i)

⇒ + = +x y y x2 21 1� � � �
⇒ − + − =x y x y y x2 2 2 2 0

⇒ + − + − =x y x y xy x y� �� � � � 0

⇒ − + + =x y x y xy� �� � 0

⇒ + + =x y xy 0  (� x y− ≠ 0  since x and y

have opposite signs from (i))
Now differentiating both sides w.r.t. x, we have

1 0+ + + =
dy

dx
x

dy

dx
y

⇒ + = − +1 1x
dy

dx
y� � � �

⇒ = −
+
+

dy

dx

y

x

1

1

� �
� � …(ii)

Again, � x y xy y x+ + = ⇒ +0 1� �

= − ⇒ = −
+

⇒ + = −
+

x y
x

x
y

x

x1
1 1

1

⇒ + =
+

1
1

1
y

x …(iii)

Putting (iii) in (ii), we have

dy

dx x
x= −

+
= − + −1

1
1

2

2

� �
� �

2. If y x x x
2 2

1 1+ = + +�
��

�
��log ,  show that

x
dy

dx
xy

2
1 1 0+ + − =�  .

Solution: y x x x
2 2

1 1+ = + +�
��

�
��log

Now differentiating both sides w.r.t. x, we have

y
d

dx
x x

dy

dx
⋅ +�
��

�
�� + + ⋅

2 2
1 1

=
+ +

⋅ + +�
��

�
��

1

1
1

2

2

x x

d

dx
x x
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⇒ ⋅
+

⋅ + + ⋅y
x

x x
dy

dx

1

2 1
2 1

2

2

=
+ +

⋅ +
+

⋅
�

�
�
�

�

�
�
�

1

1
1

1

2 1
2

2 2
x x x

x

⇒
+

+ + ⋅xy

x
x

dy

dx2

2

1
1

=
+ +

⋅
+ +

+
=

+

1

1

1

1

1

1
2

2

2 2
x x

x x

x x

⇒ + + =xy x
dy

dx

2
1 1�   (multiplying both sides

by x
2

1+ )

⇒ + + − =x
dy

dx
xy

2
1 1 0� 

3. xy = yx, show that 
dy

dx

xy y y

xy x x
=

−
−

log

log

2

2 .

Solution: Firstly supposing that the bases x and y
both are positive and then taking the log of both
sides of the given equation.

xy = yx we have
y log x = x log y

⇒ ⋅ + ⋅y
d

dx
x x

dy

dx
log log� �

= ⋅ +x
d

dx
y ylog log� �

⇒ + ⋅ =
�
��
�
�� +y

x
x

dy

dx

x

y

dy

dx
ylog log

⇒ + − =y xy x
dy

dx
x

dy

dx
xy y2 2log log

(multiplying both sides by xy)

⇒ − = −xy x x
dy

dx
xy x ylog log

2 2� 

⇒ =
−

−

dy

dx

xy y y

xy x x

log

log

2

2

4. If sin y = x sin (a + y), show that

dy

dx

a y

a
=

+sin

sin

2 � �

Solution: sin y = x sin (a + y)

⇒ = +sin siny x a y� �
⇒ = + +log sin log log siny x a y� �

⇒ ⋅ ⋅ = +
+
+

⋅1 1

sin
cos

cos

siny
y

dy

dx x

a y

a y

dy

dx

� �
� �

⇒ −
+
+

�
��

�
�� =

cos

sin

cos

sin

y

y

a y

a y

dy

dx x

� �
� �

1

⇒
+ − +
⋅ +

�
��

�
�� =

cos sin sin cos

sin sin

y a y y a y

y a y

dy

dx x

� � � �
� �

1

⇒
+ −

+
⋅ =

sin

sin sin

a y y

y a y

dy

dx x

� �
� �

1

⇒
+

⋅ =
sin

sin sin

a

y a y

dy

dx x� �
1

⇒ = ⋅
⋅ +dy

dx x

y a y

a

1 sin sin

sin

� �

= ⋅
+ ⋅ +1

x

x a y a y

a

sin sin

sin

� � � �
 (�  sin y = x

sin (a + y) is given)

=
+sin

sin

2
a y

a

� �

5. If 1 1
2 2

− + − = −x y a x y� � ,  show that

dy

dx

y

x
=

−

−

1

1

2

2
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Solution: Given is 1 1
2 2

− + − = −x y a x y� �

Putting x C C= − ≤ ≤�
�

�
�sin ,

π π
2 2

y D D=
−

≤ ≤�
��

�
��sin ,

π π
2 2

 in the hypothesis, we

have

1 12 2− + − = −sin sin sin sinC D a C D� �
⇒ + = −cos cos sin sinC D a C D� �
⇒ + = −cos cos sin sinC D a C D� �

⇒
+�

��
�
�� ⋅

−�
��

�
��2

2 2
cos cos

C D C D

=
+�

��
�
�� ⋅

−�
��

�
��

�
��

�
��a

C D C D
2

2 2
cos sin

⇒
−�

��
�
�� =

−�
��

�
��cos sin

C D
a

C D

2 2

⇒

−�
��

�
��

−�
��

�
��
= ≠ ⇒ ≠ −

cos

sin
or

C D

C D
a x y C D D

2

2

� π� �

⇒
−�

��
�
�� =cot

C D
a

2

⇒
−

=
−C D

a
2

1
cot

⇒ − = −
C D a2

1
cot

⇒ − =− − −
sin sin cot

1 1 1
2x y a

⇒ − =− − −d

dx
x y

d

dx
asin sin cot

1 1 1
2�  � 

⇒ − =− −d

dx
x

d

dx
ysin sin

1 1
0�  �   (� 2 cot–1 a =

constant)

⇒
−

−
−

=1

1

1

1
0

2 2
x y

dy

dx

⇒ −
−

= −
−

1

1

1

1
2 2

y

dy

dx x

6. Show that x2 + y2 = 3xy  ⇒ ⋅ =
dy

dx

dx

dy
1 .

Solution: x2 + y2 = 3xy

⇒ + =d

dx
x y

d

dx
xy

2 2
3�  � �

⇒ + = + ⋅�
�

�
�2 2 3 1x y

dy

dx
x

dy

dx
y

⇒ − = −2 3 3 2y
dy

dx
x

dy

dx
y x

⇒ − = −2 3 3 2y x
dy

dx
y x� �

⇒ =
−
−

dy

dx

y x

y x

3 2

2 3
…(i)

Again x2 + y2 = 3xy

⇒ + =
d

dy
x y

d

dy
xy2 2 3�  � �

⇒ + = +���
�
��2 2 3x

dx

dy
y x y

dx

dy

⇒ − = −2 3 3 2x
dx

dy
y

dx

dy
x y

⇒ − = −2 3 3 2x y
dx

dy
x y� �

⇒ =
−
−

dx

dy

x y

x y

3 2

2 3
...(ii)

Hence, (i) × (ii) ⇒ ⋅
dy

dx

dx

dy

=
−
−

�
��

�
�� ×

−
−

�
��

�
�� =

3 2

2 3

3 2

2 3
1

y x

y x

x y

x y
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7. Show that y x
y

x y
dy

dx
= + ⇒ − + =

1
3 1

2 2�  .

Solution: y x
y

= +
1

⇒ − =y x
y

1

⇒ + − =y x xy
y

2 2

2
2

1
…(i)

Again y x
y

= +
1

⇒ =
+

y
xy

y

1

⇒ − =y xy
2

1

⇒ − =2 2 2
2

y xy

⇒ − = −2 2 2
2

y xy …(ii)

Now, y x
y

= +
1

⇒ = − ⋅
dy

dx y

dy

dx
1

1
2

⇒ + =
dy

dx y

dy

dx

1
1

2

⇒ +
�
��

�
��

=1
1

1
2

y

dy

dx

⇒ + + − =1 2 1
2 2

y x xy
dy

dx
�   (using (i))

⇒ + + + − =1 2 2 1
2 2 2

y x y
dy

dx
�   (using (ii))

⇒ − + =x y
dy

dx

2 2
3 1� 

8. Show that e e e
dx

dy
e

x y x y y x
+ = ⇒ = −

+ −

Solution: e e e
x y x y+ = +

Dividing both sides of the given equation by ex + y,
we have

e e
y x− −+ = 1

⇒ + =− −d

dx
e e

d

dx
y x�  � �1

⇒ − − =− −
e

dy

dx
e

y x
0

⇒ − =
− −

e
dy

dx
e

y x

⇒ = − = −
−

−
−dy

dx

e

e
e e

x

y

x y

Conditional identities based on a given implicit
function of x

Exercise 12.4

1. If y = x sin y, show that x
dy

dx

y

y
=

−1 cos
.

2. If cos y = x cos (a + y), show that

dy

dx

a y

a
=

+cos

sin

2 � �
.

3. If sin y = x  sin (a + y), show that

dy

dx

a y

a
=

+sin

sin

2 � �
.

4. If y x
x

= +
1

, show that x
dy

dx
y x+ = 2 .

5. If y x
x

= + 1
,  show that 2 2x

dy

dx
y x+ = .

6. If y
x

=
1

,  show that 
dy

y

dx

x1 1
0

4 4+
+

+
= .

7. If 1 1
2 2

+ + + = −x y a x y� � ,  show that

dy

dx

y

x
=

+

+

1

1

2

2 .
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8. If y
x

x
=

−
+

1

1
, show that 1 0

2
− + =x

dy

dx
y�  .

9. If y x x= − +1 1� �� � , show that

1 0
2− + =x

dy

dx
xy�  .

10. If y x x=
1

, show that 
dy

dx
 vanishes when x =e.

11. If y x
y

= +
1

, show that x y
dy

dx

2 2
3 1− + =�  .

12. 1 1
2 2

− + − = −x y a x y� � , show that

dy

dx

y

x
= −

−

1

1

2

2 .

13. If xm yn = (x + y)m + n, show that 
dy

dx

y

x
= .

14. If y = ex – y, show that 
dy

dx

y

y
=

+1 .

15. If exy – 4xy = 2, show that 
dy

dx

y

x
= − .

16. If x = y log (xy), show that 
dy

dx

y

x

x y

x y
=

−
+

�
��

�
�� .

17. If y = x log (xy), show that 
dy

dx

y

x

y x

y x
=

+
−

�
��

�
�� .

18. If xy – log (xy) = log 2, show that 
dy

dx

y

x
= − .

19. If xy = ex – y, show that 
dy

dx

x

x
=

+
log

log1 2� � .

20. If y
x

x
=

+
�
��

�
��

−
tan

sin

cos

1

1
, show that 

dy

dx
= 1

2
.

21. If x b
y

b
by y=

�
��

�
��
+ −−

cos
1 2

1
2�  , show that

dy

dx

by y

y
=

− 2

.

22. If x y y x1 1 0+ + + = , show that

dy

dx
x= − + −1 2� � .

23. If y
x

x
= −

+

−
tan

1
2

2

1

1
, and t = cos–1, x2, show

that 
dy

dx
= 1

2
.

24. If xy = e–x + y, show that 
dy

dx

x

x
= −

−
2

1 2

log

log� � .

25. If y x x x
2 2

1 1+ = + −�
��

�
��log , show that

x
dy

dx
xy

2
1 1 0+ + + =�  .

26. If sin y = x sin (x + m), show that

dy

dx

m y

m
=

+sin

sin

2 � �
.

27. If u = sin–1 (x – y), x = 3t, y = 4t3, show that

du

dt
t= −

−
3 1

2
1
2�  .

28. If y = sin (2 sin–1 x), show that 
dy

dx

y

x
= −

−
2

1

1

2

2 .

29. If p
x

x
=

+
+

�
��

�
��

−
cos

cos

cos

1 3 5

5 3
, show that (5 + 3 cos

x) 
dp

dx
 = 4.
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30. If y
x a

x a
=

−
�
��

�
��

−
tan

sin

cos

1

1
, show that (1 – 2x cos

a + x2) 
dy

dx
 =sin a.

31. If 
x

a

y

b

m n�
�
�
� + ��

�
� = 1, show that 

dy

dx

b

a
= −  at

(a, b).
32. If x = a sin 2t (1 + cos 2t), y = a cos 2t (1 – cos 2t),

show that 
dy

dx
= 1, when t =

π
4

.

33. If y x x x= − + − +�
��

�
��log 3 6 1

2
, show that

dy

dx
x x= − +

−2
6 1

1
2�  .

Parametric Differentiation

Firstly, we recall the basic definitions in connection
with parametric differentiation.
1. Parametric differentiation: The equations put in
any one of the following forms:

(i) x f t y f t t T T= = ∈1 2 1 2� � � �, ,;

(ii) x f t y f t t T T= = ∈1 2 1 2� � � �, ,;

(iii) x f t y f t= =1 2� � � �,

which tells x and y are seperately differentiable
functions of (depending upon) the same variable ‘t’
(called the parameter) are said to be parametric
equations of the curve or simply parametric
equations. e.g.,
(i) x = t, y = t2; t being a parameter.
(ii) x = ct2, y = ct; where c is a constant and t is a
parameter.
(iii) x r y r= =cos sin ;θ θ,  r being a constant and

θ  being a parameter.

(iv) x a y b a b= = ∈ ��
�
� > >sec tanθ θ θ

π
, , , ,0

2
0

(v) x e t t y e t t t
t t

= + = − ∈ −��
�
�sin cos sin cos� � � �, , ,

π π
4 4

(vi) x a t t y a t t= − = − ∈sin cos� � � �, , ,1 0 2π

Notes:
1. Actually parametric equations x = f1 (t), y = f2 (t);
represents the x and y co-ordinates of a variable point
p on a given curve.
2. When the parameter ‘t’ is eliminated by any process
from the parametric equations x = f1 (t), y = f2 (t); the
cartesian equation of the curve put in the form
F (x, y) = c or F (x, y) = 0 is obtained. e.g.,
1. If we have the equations x = r cos θ , y = r sin θ ;
where r is a constant and θ  is a parameter, these

equations can be expressed in cartesian equation by
the eliminating ' θ ' using the mathematical

manipulation of squaring and adding the separate
equations for x and y, i.e. (Note: x = f1 (t) and y = f2 (t)
must be differentiable on a common domain.)

x r x r= ⇒ =cos cosθ θ2 2 2 …(1)

y r y r= ⇒ =sin sinθ θ2 2 2 …(2)

∴ + ⇒ + = + =1 2
2 2 2 2 2 2� � � � � x y r rsin cosθ θ

which is the cartesian equation of the circle.
2. The point of the curve x = f1 (t), y = f2 (t); found by
giving a special value, say t1, to the parameter t is
called shortly “the point t1” whereas it is not unusual
for the letter ‘t’ itself to be used instead of t1 for a
special point.
3. Any other letter θ , s, u, etc can be used to
represent the parameter instead of t in parametric
equations.

Question: What is parametric differentiation?
Answer: Finding the derivative of the parametric
equations is called parametric differentiation.
Or, more explicitly,

“Finding the derivative 
dy

dx
 of the given parametric

equations put in the form (i) x f t y f t= =1 2� � � �, ;
(ii) x f t y f t t T T= = ∈2 2 1 2� � � � � �, , ,  (iii) x = f1 (t), y
= f2 (t); t T T∈ 1 2,  without eliminating the parameter

‘t’ (or, any other parameter θ , s, y, etc given the
parametric equations) by any process is called
parametric differentiation”.
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Question: Using the definition, find the differential
coefficient of parametric equations

x = f (t)
y = g (t);

where x and y are differentiable functions (depending
upon) a single variable ‘t’ (called parameter)

Solution: x f t x x f t t= ⇒ + = +� � � �∆ ∆ …(1)

y g t y y g t t= ⇒ = = +� � � �∆ ∆ …(2)

(1) ∆ ∆x f t t f t= + −� � � � …(3)

(2) ⇒ = + −∆ ∆y g t t g t� � � � …(4)

Now dividing (3) by ∆ t , we obtain

∆
∆

∆
∆

x

t

f t t f t

t
=

+ −� � � �
…(5)

and dividing (4) by ∆ t , we obtain

∆
∆

∆
∆

y

t

g t t g t

t
=

+ −� � � �
…(6)

Again dividing (6) by (5), we obtain

∆
∆

∆
∆
∆
∆

∆
∆
∆
∆

y

x

y

t
x

t

g t t g t

t

f t t f t

t

= =

+ −

+ −

� � � �

� � � � …(7)

lastly, taking the limit as ∆ ∆x t→ →0 0, ,

∆ y → 0 ,  we have form (7),

lim

lim

lim
∆

∆

∆

∆
∆

∆
∆
∆
∆

x

t

t

y

x

y

t
x

t

→

→

=
0

0

=

+ −

+ −
→

→

lim

lim

∆

∆

∆
∆
∆
∆

t

t

g t t g t

t

f t t f t

t

0

0

� � � �

� � � �

⇒ = =dy

dx

dy
dt
dx

dt

d
dt

f t

d

dt
f t

� �� �

� �� �

=
′
′

′ ≠
g t

f t
f t

� �
� � � �, 0

Hence, the general rule for the differential

coefficient of g (t) with respect to f (t) is 
dy

dx

g t

f t
=

′
′
� �
� �

being valid for all values of t such that ′ ≠f t� � 0
which can be stated in words in the following way:

Derivative of y with respect x is equal to the
quotient of the derivative of y with to t and the
derivative of x with respect to t.

Working rule of find the differential coefficient of
parametric equations

To find the differential coefficient of the given
parametric equations put in any one of the forms:

(i) x f t y f t t T T= = ∈1 2 1 2� � � � � �, ,;

(ii) x f t y f t t T T= = ∈1 2 1 2� � � � � �, ,:

(iii) x f t y f t= =1 2� � � �,  we have the rule which

consists of the following steps.

Step 1: Find the derivative of ‘y’ with respect to ‘t’.
Step 2: Find the derivative of ‘x’ with respect to the
same parameter ‘t’.
Step 3: Divide the derivative of ‘y’ with respect to ‘t’
by the derivative of x with respect to ‘t’.
Step 4: The quotient obtained in step (3) is the
required derivative of y with respect to x.

Solved Examples

Find 
dy

dx
 from the following equations.

1. x = 3cosθ

y = 4sinθ
Solution: y = 4sinθ

⇒ =dy

dθ
θ4cos ...(i)

⇒ = −
dx

dθ
θ3sin ...(ii)
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∴ ⇒ = − = −
1

2

4

3

4

3

� �
� �

dy

dx

cos

sin
cot

θ
θ

θ

2. x = −2 3sinθ

y = +3 2cosθ

Solution: y
dy

d
= + ⇒3 2cosθ

θ

= + − = −0 2 2sin sinθ θ� � ...(i)

x
dy

d
= − ⇒2 3sin

θ
= − = −0 3 3cos cosθ θ ...(ii)

∴ ⇒ =
−
−

=
1

2

2

3

2

3

� �
� �

dy

dx

sin

cos
tan

θ
θ

θ

3. x = a (t + sin t)
y = a (1 – cos t)

Solution: y a t
dy

dt
= − ⇒1 cos� �

= − − =a t a t0 sin sin� �� � ...(i)

x a t t
dx

dt
a t= + ⇒ = +sin cos� � � �1 ...(ii)

∴ ⇒ =
+

=
+ −�
�

�
�

1

2 1 1 2
2

1
2

� �
� � � �

dy

dx

a t

a t

a t

a
t

sin

cos

sin

cos

=
⋅ ⋅

⋅ ⋅
=

a
t t

a
t t

t2
2 2

2
2 2

2

sin cos

cos cos
tan

4. x = log t + sin t
y = et + cos t

Solution: y e t
dy

dx
e t

t t
= + ⇒ = −cos sin ...(i)

x t t
dx

dt t
t= + ⇒ = +log sin cos

1
...(ii)

∴ ⇒ =
−

+

1

2 1
� �
� �

dy

dx

e t

t
t

t
sin

cos

= −
+�

�
�
�
= − ⋅

+
e t

t t

t

e t
t

t t

t
tsin

cos
sin

cos1 1
�  � �

=
−

+

t e t

t t

t
sin

cos

� 
� �1

5. x
t

t
y

t

t
=

+
= −

+

2

1

1

1
2

2

2
,

Solution: y
t

t
=

−

+

1

1

2

2

⇒ =
+ −�

��
	

�
− − +�

��
	

�

+

d

dt
y

t
d

dt
t t

d

dt
t

t
� �

�  �  �  � 

� 

1 1 1 1

1

2 2 2 2

2 2

=
+ − − − ⋅

+

1 2 1 2

1

2 2

2 2

t t t t

t

� � � � 

� 

=
− − − +

+
= −

+

2 2 2 2

1

4

1

3 3

2 2 2 2

t t t t

t

t

t�  � 
...(i)

d

dt
x

t
d

dt
t t

d

dt
t

t
� �

�  � � � 

� 
=

+ ⋅ − ⋅ +

+

1 2 2 1

1

2 2

2 2

=
+ ⋅ − ⋅

+
=

+ −

+

1 2 2 2

1

2 2 4

1

2

2 2

2 2

2 2

t t t

t

t t

t

�  � �

�  � 

=
−

+
=

−

+

2 2

1

2 1

1

2

2 2

2

2 2

t

t

t

t� 

� 

� 
...(ii)

Note: Here x f= 1 θ� �  and y f= 2 θ� �  where

f1 3θ θ� � = cos  and f2 4θ θ� � = sin .
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∴ ⇒ = −

+
×

+

−

1

2

4

1

1

2 12 2

2 2

2

� �
� � � 

� 
� 

dy

dx

t

t

t

t

= −
−

= −
−

4

2 1

2

1
2 2

t

t

t

t�  � 

6. x
t

t
y

t

t
=

+
=

−

+

− −
sin cos

1

2

1
2

2

2

1

1

1
,

Solution: y
t

t
=

−

+

�
�
�

�
�
�−

cos
1

2

2

1

1

⇒ =
−

+
cos y

t

t

1

1

2

2

⇒ =
+ − − − +

+

d

dt
y

t
d
dt

t t
d
dt

t

t
cos� �

�  �  �  � 

� 

1 1 1 1

1

2 2 2 2

2 2

⇒ − ⋅ =
+ − − − ⋅

+
sin y

dy

dt

t t t t

t

1 2 1 2

1

2 2

2 2

� � � � 

� 

⇒ − ⋅ = − − − +

+
= −

+
sin y

dy

dt

t t t t

t

t

t

2 2 2 2

1

4

1

3 3

2 2 2 2

�  � 

⇒ =
+

⋅ =
+

⋅
−

dy

dt

t

t
y

t

t y

4

1

1 4

1

1

1
2 2 2 2 2

�  � sin cos

=
+

⋅

−
−

+

�
��

�
��

4

1

1

1
1

1

2 2
2

2

2

t

t t

t

� 

=
+

⋅

+ − −

+

4

1

1

1 1

1

2 2
2 2 2

2 2

t

t t t

t

�  �  � 

� 

=
+

⋅
+4

1

1

4
2

2

2

t

t

t

t� 

� 

=
+

⋅
+

=
+

≠
4

1

1

2

2

1
0

2 2

2

2

t

t

t

t

t

t t
t

� 

� 
� 

,  ...(i)

Again x
t

t
=

+

−
sin

1

2

2

1

⇒ =
+

sin x
t

t

2

1
2

⇒ =
+ − +

+

d

dt
x

t
d

dt
t t

d

dt
t

t
sin� �

�  � � � 

� 

1 2 2 1

1

2 2

2 2

=
+ − ⋅

+

2 1 2 2

1

2

2 2

t t t

t

� 

� 

⇒ =
+ −

+
=

−

+
=

−

+
cos x

dx

dt

t t

t

t

t

t

t

2 2 4

1

2 2

1

2 1

1

2 2

2 2

2

2 2

2

2 2

�  � 

� 

� 

⇒ =
−

+
⋅ =

−

+
⋅

−

dx

dt

t

t
x

t

t x

2 1

1

1 2 1

1

1

1

2

2 2

2

2 2 2

� 

� 

� 

� cos sin

=
−

+
⋅

−
+

�
��

�
��

2 1

1

1

1
2

1

2

2 2

2

2

t

t t

t

� 

� 
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=
−

+
⋅

+ + −

+

2 1

1

1

1 2 4

1

2

2 2 4 2 2

2 2

t

t t t t

t

� 

� 
� 

=
−

+
⋅

+

−
≠

2 1

1

1

1

1

2

2 2

2

2 2

2
t

t

t

t

t
� 

� 

� 

� 
,

=
−

+
⋅

+

−
=

−

+ −

2 1

1

1

1

2 1

1 1

2

2 2

2

2

2

2 2

t

t

t

t

t

t t

� 

� 

� 

� 

� 

�  � 
  ...(ii)

∴ ⇒ =
+

⋅
+ −

−

1

2

2

1

1 1

2 12

2 2

2

� �
� � � 

�  � 
� 

dy

dx

t

t t

t t

t

=
−

−
≠ ±

t t

t t
t

1

1
0 1

2

2

� 
� 

, ,

7. x = et (sin t + cos t), y = et (sin t – cos t),

t∈ −��
�
�

π π
4 4

,

Solution: y = et (sin t – cos t)

⇒ =dy

dx

d

dt
 (et (sin t – cos t)) = et (cos t + sin t) +

(sin t – cos t) et

= et (cot t + sin t + sin t – cos t) = 2 sin t · et        …(1)
and x = et (sin t + cos t)

⇒ = +
dx

dt

d

dt
e t t

t
sin cos� �� 

= et (cos t – sin t) + (sin t + cos t) et

= et (cos t – sin t + sin t + cos t)
= 2 cos t · et ...(2)

∴ ⇒ =
⋅

⋅
= ∈ −��

�
�

1

2

2

2 4 4

� �
� �

dy

dx

t e

t e
t t

t

t

sin

cos
tan , ,

π π

8. x a t
a t

y a t
t

= + �
��

�
��

=
∈ ���

�
��

cos log tan

sin
2 2 0

2

2

,
π

Solution: y a t
dy

dt
= ⇒sin

= =d

dt
a t a tsin cos� � ...(1)

x a t
a t

= + �
�

�
�cos log tan

2 2

2

⇒ =− + ⋅ ⋅ �
��

�
��

dy

dt
a t

a
t

t t
sin

tan
tan sec

2

1

2

2
2 2

1

22

2

= − + = − +a t
a

t

t
a t

a
t t

sin
sec

tan
sin

sin cos

2

2

2
2

2
2 2

= − +a t
a

t
sin

sin

= −
�
��

�
�� =

−
=a

t
t a

t

t

a t

t

1 1
2

2

sin
sin

sin

sin

cos

sin

� 
    ...(2)

∴ ⇒ =
⋅

= = ∈��
�
�

1

2
0

22

� �
� �

dy

dx

a t t

a t

t

t
t t

cos sin

cos

sin

cos
tan , ,

π

9.
x a t t

y a t
t

= −
= −

∈
sin

cos

� �
� �1

0 2, π

Solution: y a t
dy

dt
a t= − ⇒ =1 cos sin� � ...(1)

x a t t
dx

dt
a t= − ⇒ = −sin cos� � � �1 ...(2)

∴ ⇒ =
−

1

2 1

� �
� � � �

dy

dx

a t

a t

sin

cos
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=

�
��
�
��

�
��
�
��

− + �
��
�
��

�
��

�
��
=

�
��
�
��

�
��
�
��
= �

��
�
��

2
2 2

1 1 2
2

2

2
22

sin cos

sin

cos

sin
cot

t t

t

t

t

t
,

for t ≠ 0 2, π

Problems based on parametric equations

Exercise 12.5

Find 
dy

dx
 from the following equations.

1. x a= +�
�

�
�cos log tanθ θ

2

y = a sin θ
2. x = 2 cos θ  – cos 2 θ

y = 2 sin θ  – sin 2 θ
3. x = a cos ∅

y = b sin ∅
4. x = a sec ∅

y = b tan ∅
5. x = a cos3 θ

y = b sin3 θ
6. x = a sec2 θ

y = a tan3 θ
7. x = a (cos t + t sin t)

y = a (sin t – t cos t)
8. x = a ( θ  – sin θ )

y = a (1 + cos θ )

9. x = a ( θ  – sin θ )

y = a (1 – cos θ )

10. x = 2 cos2 θ
y = 3 sin2 θ

11. x = a log t
y = b sin t

12. x = tan–1 t
y = t sin 2t

13. x = at2

y = 2at

14. x a
t

t
=

−

+

�
�
�

�
�
�1

1

2

2

y b
t

t
=

+

�
�
�

�
�
�2

1
2

15. x
at

t
=

+

3

1
3

y
at

t
=

+

3

1

2

3

16. x
t

t
=

+

2

1
2

y
t

t
= −

+

1

1

2

2

17. x t= −1

y t= +1

18. x = u2

y
u u

u
=

− +

+

3

2

3 5

1

19. x
a

m
=

2

y
a

m
= 2

20. x a
t

t
=

−
+

1

1

y a t
t

t
= ⋅ ⋅

−
+

1

1
21. x = 2t – | t |

y = t2 + t | t |

22. x a= +sin cosθ θ� �
y a= −sin cosθ θ� �
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23. x a
t

t
= −

+

2

2

1

1

y a t
t

t
= ⋅ ⋅ −

+

2

2

1

1

Answers (with proper restrictions on the parameters)
1. tan θ

2. tan
3

2

θ

3. − b

a
cotφ

4.
b

a
cosecφ

5. − b

a
tanθ

6.
3

2
tanθ

7. tan t

8. −cot
θ
2

9. cot
θ
2

10. −
3

2

11.
b

a
t tcos

12. (2t cos 2t + sin 2t) (1 + t2)

13.
1

t

14. − ⋅
−�

��
�
��
= − ⋅
�
��

�
��

b

a

t

t

b

a

x

y

1

2

2 2

2

15.
t t

t

2

1 2

3

3

−

−

� 

� 

16.
−
−
2

1 2

t

t

17. −
−
+

1

1

t

t

18.
u u u

u u

4 2

2 2

6 10 3

2 1

+ − −

+� 
19. m

20. t t
2

1+ −

21.
2 2

2

t t

t t
t

+
−

⋅
� �

22.
cos sin

cos sin

θ θ
θ θ
+
−

23.
t t

t

4 2
2 1

2

+ −

Exercise 12.6

Find 
dy

dx
 from the following equations.

1.
x a t t

y a t
t a

= −
= −

∈ ≠
sin

cos

� �
� �1

0 2 0, ,π

2.
x a t

y a t
t a

=
=

∈ ≠
cos

sin
0 0, ,π� �

3.
x a

y b
a b

=
=

∈ ��
�
� > >

sec

tan

θ
θ

θ π
0

2
0, ,

4.
x e t t

y e t t
t

t

t

= +
= −

∈ −�
��

	

�

sin cos

sin cos

� �
� �

π π
4 4

,

5.
x

y

= +
= −

∈ −
θ θ

θ
θ π π

sin

cos1
,� �
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6.
x a t

y a t
t a

=
=

∈ �
��

�
�� ≠cos

sin

3

3
0

2
0, ,

π

7.
x at

y at
t a

=
=

> ≠
2

2
0 0,

8.

x
t

t

y
t

t

t

= −

+

=
+

>

1

1
2

1

0

2

2

2

9.
x a

y a
a

= +
= −

∈ ���
�
�� ≠

cos sin

sin cos

θ θ θ
θ θ θ

θ π π
� �
� � 2

0, ,

Answers

1. cot
t

t
2

0 2
�
��
�
�� ∈, , π� �

2. –cot t t, ,∈ 0 π� �

3.
b

a
cosecθ θ

π
, ,∈ ��

�
�0

2

4. tan t t, ,∈ −���
	

�

π π
4 4

5. tan
θ

θ π π
2
�
��
�
�� ∈ −, ,� �

6. − ∈ ���
�
��tan t t, ,0

2

π

7.
1

0
t

t, >

8. −
−

>
1

2
0

2
t

t
t,

9. tanθ θ
π

π, ,∈ ���
	

�2

To find the differential coefficient of a function with
respect to an other function

Question: Using the definition, find the differential
coefficient of a function f (x) with respect to another
function g (x), where f (x) and g (x) both are
differentiable functions having the same independent
variable x.
Solution: Let y = f (x) be a differentiable function of x

…(1)
and z = g (x) be another differentiable function of x

…(2)

Now, y y f x x+ = +∆ ∆� � …(3)

and z z g x x+ = +∆ ∆� � …(4)

From (3), we have ∆ ∆y f x x f x= + −� � � � ...(5)

and from (4), we have ∆ ∆z g x x g x= + −� � � � …(6)

Dividing (5) by ∆ x ,  we obtain

∆
∆

∆
∆

y

x

f x x f x

x
=

+ −� � � �
…(7)

Dividing (6) by ∆ x ,  we obtain

∆
∆

∆
∆

z

x

g x x g x

x
=

+ −� � � �
…(8)

Dividing (7) by (8), we obtain

∆
∆

∆
∆
∆
∆

∆
∆
∆
∆

y

z

y

x
z

x

f x x f x

x

g x x g x

x

= =

+ −

+ −

� � � �

� � � �

lastly, taking the limit as ∆ ∆x y→ →0 0, ,

∆ z→0 ,  we obtain from (9),

lim

lim

lim
∆

∆

∆

∆
∆

∆
∆
∆
∆

x

x

x

y

z

y

x
z

x

→

→

→

=
0

0

0

=

+ −

+ −
→

→

lim

lim

∆

∆

∆
∆
∆
∆

x

x

f x x f x

x

g x x g x

x

0

0

� � � �

� � � �
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⇒ = = =
′
′

= ⋅dy

dz

dy

dx
dz

dx

d f x

dx
d g x

dx

f x

g x

dy

dx

dx

dz

� �

� �
� �
� �

Hence, the general rule for the differentiable
coefficient of a differentiable function f (x) with respect
to another differentiable function g (x) is

d f x

d g x

d f x

dx
d g x

dx

� �
� �

� �

� �=

which can be stated in words in the following way.

d

d

the function given to be differentiated

the function w.r. t which we have to find the d.c

� �
� �

=
differential coefficient of the given function w.r. t 

differential coefficient w.r. t  of the function w. r.t which 

x

x

we have to find the d.c. of the given function

Remark: We must note that the function to be
differentiated and the other function with respect to
which we have to differentiate, both have the same
independent variable.

Working rule to differentiate f (x) w.r.t. g (x)

To find the differential coefficient of a function f (x)
w.r.t. another function g (x), where f (x) and g (x) both
are differentiable functions having the same
independent variable x, we adopt the rule consisting
of following steps.

Step 1: Find the differential coefficient of the given
function with respect to the independent variable x
which the function to be differentiated has.
Step 2: Find the differential coefficient with respect
to the same independent variable x of the other
function w.r.t. which d.c. of the given function is
required.
Step 3: Divide the differential coefficient obtained in
step (1) by the differential coefficient obtained in step
(2). And obtain the required differential coefficient of
f (x) w.r.t. g (x).

Remember:

Although 
dy

dx
 is not a quotient we may interpret 

dy

dx
as a quotient which means we are able to write.

(i)
dy

dx
dy dx= ÷

(ii)
dy

dx
dy

dx
dy

dy

dx
dx= × ⇔ = ×1

(iii)
dy

dx

dy

dx

dz

dx

dy

dx

dx

dz
= ÷ = ×

Solved Examples

1. cos2 x w.r.t. (log x)3

Solution: Putting y = cos2 x …(1)
and z = (log x), x > 0 …(2)

We have

dy

dx

d

dx
x

d x

d x

d x

dx
= = ⋅cos

cos

cos

cos2
2

� 
� �

= cos · (–sin x) = –2 sin x cos x = –sin 2x …(3)

and 
dz

dx

d x

d x

d x

dx
= ⋅

log

log

log� �3

= ⋅ =3
1 32

2

log
log

x
x

x

x
� � � �

…(4)

Hence, 
3

4

2

3
0

2

� �
� � � �

⇒ = =
−

>
dy

dx

dz

dx

dy

dz

x x

x
x/ ,

sin

log

Or, alternatively,

d

dx
x

d x

d x

d x

dx
xcos

cos

cos

cos
sin

2
2

2� 
� �

= ⋅ = −     …(i)

d x

dx

d x

d x

d x

dx

x

x

log log

log

log log� � � � � �3 3 23
= ⋅ =  …(ii)

Hence, 
d x

d x

x x

x

cos

log

sin

log

2

3 2

1

2

2

3

� 
� �

� �
� � � �

= =
− , x > 0
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2. log x w.r.t. x3

Solution: Putting y = log x…(1)
and z = x3 …(2)

We have

dy

dx

d x

dx x
= =

log� � 1
, x > 0 …(3)

and 
dz

dx

d x

dx
x= =

3

2
3

� 
…(4)

Hence,
3

4

1 1

3

1

32 3

� �
� �

⇒ = = = ⋅ =dy

dx

dz

dx

dy

dz x x x
,

x > 0.

3. e xx w.r.t.

Solution: Putting y = ex …(1)

and z x= …(2)

We have

dy

dx

d

dx
e e

x x
= =�  …(3)

and 
dz

dx

d

dx
x

x
= =�  1

2
, x > 0 …(4)

Thus, 
3

4

2

1
2 0

� �
� � ⇒ = = >

dy

dx

dz

dx

e x
e x x

x
x/ ,

4. sin w.r.t1 1
2 2 2+ +x x�  � 

Solution: Putting y x= +sin 1
2 2

�  …(1)

and z = (1 + x2) …(2)
We have

dy

dx

d x

dx
=

+
�
��

�
��

sin 1
2 2

� 

=

+
�
��

�
��

+�
��

�
��

⋅
+�

��
�
��

+
⋅

d x

d x

d x

d x

sin

sin

sin1

1

1

1

2 2

2 2

2 2

2 2

� 

� 

� 

� 

 

d x

d x

d x

dx

1

1

1
2 2

2

2
+

+
⋅

+� 

� 

� 

=

+

⋅ + ⋅ + ⋅1

2 1

1 2 1 2
2 2

2 2 2

sin

cos

x

x x x

� 
�  � 

=
+ +

+

2 1 1

1

2 2 2

2 2

x x x

x

�  � 

� 

cos

sin
…(3)

and 
dz

dx

d x

dx
x=

+
=

1
2

2� 
…(4)

∴ ⇒
⋅ + ⋅ +

+
≠

3

4

2 1 1

1

2 0

2 2

2 2

� �
� �

�  � 

� 

x x x

x

x x
cos

sin

/ ,

⇒ =
+ +dy

dz

x x x

x

2 1 1

2

2 2 2

�  � cos

=
+ +

+
≠

1 1

1

0

2 2 2

2 2

x x

x

x
�  � 

� 

cos

sin

,

5. e xxsin w.r. t. sin
− −1 1

Solution: Putting y e
x

=
−

sin
1

…(1)

and z = sin–1 x …(2)
We have

dy

dx

d e

dx

x

=

�
��

�
��

−
sin

1

=

�
��

�
��
⋅

−

−

−d e

d x

d x

dx

xsin

sin

sin

1

1

1

� 
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=
−

≠ ±
−

e

x
x

xsin 1

1
1

2
, ...(3)

and 
dz

dx

d x

dx x
x= =

−
≠ ±

−sin
;

1

2

1

1
1 …(4)

∴ ⇒ ⋅ =
−

⋅ −�
�

�
�

−
3

4 1
1

1

2

2� �
� �

dy

dx

dx

dz

e

x
x

ssin

⇒ = ≠ ±
−dy

dz
e xxsin ;

1

1

Problems on differentiation of a function with respect
to another function

Exercise 12.7

Differentiable:
1. x5 w.r.t. x3

2. x2 + x + 3 w.r.t. x3

3. sin x w.r.t. cos x
4. tan–1 x w.r.t. x2

5. sin–1 x w.r.t. cos–1 x

6. x xsin−1

 w.r.t. tan–1 x

7. e xx w.r.t.

8. e xxsin w.r. t. sin
− −1 1

9. sin x w.r.t. x3

10. sin x w.r.t. tan x
11. tan x w.r.t. sin x
12. cosec x w.r.t. cot x
13. cot x w.r.t. cosec x
14. tan x w.r.t. sec x
15. tan x w.r.t. cot x
16. cosec x w.r.t. sec x
17. sin x w.r.t. cos2 x
18. cos2 x w.r.t. sin x

19.
x

x1
2+

 w.r.t. tan x

20.
1 2

1 2

+
−

cos

cos

x

x
 w.r.t. x

21.
1

1

2

2

−

+

tan

tan

x

x
 w.r.t. x

22.
x

xsin
 w.r.t. sin x

23. ex w.r.t. log x
24. log x2 w.r.t. ex

25. e
xsin

−1

 w.r.t. log x

26. sin 1
2 2

+ x�   w.r.t. (1 + x2)

27. e
xsin

−1

 w.r.t. cos–1 x
28. tan–1 x w.r.t. sin–1 x
29. log sin x w.r.t. sin–1 x

30.
1

1

1

1

−
+

+
−

cos

cos
w.r.t.

sin

sin

x

x

x

x

Answers

1.
5

3

2
x

2.
2 1

3
0

2

x

x
x

+
≠,

3. − ≠cot x x n, π

4.
1

2 1
0

2x x
x

+
≠

� 
,

5. − ≤1 1for x

6. 1
1

0 12

2

1
1

+
−

+
�

�
��

�

�
�� < <

−
−

x x
x

x

x

x
xx�  sin log sin

,

7. 2 0x e xx , ≠

8. e xxsin− ≤
1

1,

9.
cos x

x
x

3
0

2
, ≠

10. cos3 x , x n≠ +π π
2
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11. sec3 x , x n≠ +π
π
2

12. cos x , x n≠ π
13. sec x , x n≠ π

14. cosec x , x
n

≠
π
2

15. –tan2 x , x n≠ +π π
2

16. –cot3 x , x
n≠ π
2

17. − ≠
1

2
cosec x x n, π

18. –2 sin x for all x

19.
cos2

21 23
2

x

x
x n

+
≠ +

� 
, π π

20.
2

2 1 2cos

cot

cotx

x

x
x

n

−
⋅ ≠,

π

21.
−

−
≠ ±

2

1 44

tan

tan

x

x
x n, π

π

22.
sin cos

sin cos

x x x

x x
x

n−
⋅

≠
2 2

,
π

23. x · ex, x > 0

24.
2

0
x e

x
x

, >

25.
x e

x
x

x⋅

−
< <

−sin 1

1
0 1

2
,

26.
1 1

1

2 2 2

2 2

+ +

+

x x

x

�  � 

� 

cos

sin

27. − ≤
−

e xxsin 1

1,

28.
1

1
1

2

2

−
+

≤
x

x
x,

29. cot x x x� � 1 0 12− < ≤,

30. tan
sin

cos
x

x

x

1

1

2
−
+

�
��

�
��

Differentiation of infinite series (or, continued
fraction which →∞ )

Before we find the derivatives of the problems on in
finite series or continued fraction which tends to
infinity, we must know the definitions of the following
terms.

1. Infinite series: A series having the number of terms
infinite (i.e. not finite) is called an infinite series. An
infinite series is written in any one of the following
forms.

(i) x1 + x2 + x3 + … + xn + …, where dots denote the
existance of similar terms obeying the same rule as its
previous terms.

(ii) xn∑

(iii) xi

i =

∞

∑
0

 or, more briefly xi

i
∑ , where xn and xi

are the general term or nth term of the infinite series.
2. Continued fraction: A continued fraction is a
fraction expressed as a number plus a fraction whose
denominator is a number plus a fraction, i.e.

a continued fraction
⇒  a number + a fraction whose denominator = a

number + a fraction

⇒
+

+
+

+ ∞

a
b

a
b

a
b

a
b

a

1
2

2
3

3
4

4
5

5 ...
Notes:
1. A continued fraction may have either a finite or in
finite number or terms. A continued fraction having
finite number of terms is called terminating continued
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fraction. A continued fraction having infinite number
of terms is called non-terminating continued fraction.
If a certain sequence of the a’s and b’s occurs
periodically, the continued fraction is recurring or
periodic. The terminating continued fraction

a a
b

a
b

a

1 1
2

2
3

3

, ,+
+

 etc are convergents of the

continued fraction whereas the quotients 
b

a

b

a
2

2

3

3

,

etc are partial quotients. The continued fraction is a
simple continued fraction if bi = 1, i = 2, 3, ... .
2. For the sake of saving space, it is usual to write a
simple continued fraction in the more compact forms
as:

a
b c a b c

+
+ + + + +

1 1 1 1 1
... , ...or  instead of

writing

a
b

c
a

a
b

c

+
+

+
+

+
+

+

1
1

1
1

1
1

...

,

...

or , where

it is to be noticed that the letters a, b, c, … all denote
integral numbers, the signs are all positive and each
of the numerator is unity.

We are now prepared to find the ways of
differentiating the non-terminating continued fraction
of the form

f x
f x f x f x

� � � � � � � �+ + + +1 1 1
...

1. If  y f x
f x f x

= + + +� � � � � �
1 1

...  then

y f x
y

= +� � 1
.

2. Find 
dy

dx
 using the method of  differentiating

implicit functions.

Remember:
1. In the given series being infinite, we firstly inspect
what expression in x terminates or converges and
then we retain only one terminating (or, converging)
expression in x as it is and the rest same terminating
expression is put equal to y (= l.h.s). e.g.,

y x x x= +
←→

+ + ∞
←−−−−−−→

� �
2 2 ...

retain the first and put the first = y

∴ = +y x y2

2. If we are given y = a non-terminating continued
fraction put in the form:

y f x
f x

f x
f x

f x

= +
+

+
+

+ ∞

� �
� �

� �
� � � �

1
1

1
1

... ,

we retain f (x) as it is and the rest is put equal to 
1

y ,

i.e. reciprocal of l.h.s.

∴ = +y f x
y

� � 1

3. Differentiation of a non terminating continued
fraction is also termed as differentiation of explicit
functions in an “ad infinitum” form and “…∞ ” is
replaced by “ad in f”.

e.g.: y x
x

x
x f

= +
+

+
+

1
1

1

ad in

4. Differentiation of explicit functions in any “ad
infinitum” form becomes differentiable after
transformation to finite implicit form which is possible
as under.

Note: We inspect that x + 2  is the expression

which terminates.
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(i) y x y x
x y

x

= ⇒ =
∞...

(ii) y e y e
x x ye

x

= ⇒ =

∞...

� 

(iii) y x y x
x y

x

= ⇒ =
∞...

�   etc.

Problems based on "ad infinitum" form.

Solved Examples

Find 
dy

dx
 if

1. y e
x e

x e
x e

x

=
+ +

+
∞...

Solution: y e
x e

x e
x e

x

=
+

+
+

∞...

⇒ = +
y e

x y

⇒ = = + ⋅ = ++log log logy e x y e x yx y
e�  � � � �

� log loge ee= = 1� �

⇒ = +
d

dx
y

d

dx
x ylog� � � �

⇒ = +
1

1
y

dy

dx

dy

dx

⇒ − =
1

1
y

dy

dx

dy

dx

⇒ −�
��

�
�� =1

1 1
y

dy

dx

⇒
−�

��
�
�� =

1
1

y

y

dy

dx

⇒ =
−

�
��

�
�� ≠ ≠ −

dy

dx

y

y
y x

1
1 1for i.e.,

2. y x x x= + + + ∞cos cos cos ...

Solution: y x x x= + + + ∞cos cos cos ...

⇒ = +y x ycos

⇒ = +y x y
2

cos

⇒ = +
d

dx
y

d

dx
x y

2�  � �cos

⇒ = − +2y
dy

dx
x

dy

dx
sin

⇒ − = −2y
dy

dx

dy

dx
xsin

⇒ − = −2 1y
dy

dx
x� � sin

⇒ =
−

−
=

−
≠ ≠

−dy

dx

x

y

x

y
y x

sin sin
; i.e. cos

2 1 1 2

1

2

1

4� � ,

3. y x x x= + + + ∞sin sin sin ...

Solution: y x x x= + + + ∞sin sin sin ...

⇒ = +y x ysin

⇒ = +y x y
2

sin

⇒ = +d

dx
y

d

dx
x y

2�  � �sin

⇒ = +2y
dy

dx
x

dy

dx
cos

⇒ − =2y
dy

dx

dy

dx
xcos

⇒ − =2 1y
dy

dx
x� � cos

⇒ =
−

≠ ≠ −
dy

dx

x

y
y x

cos
; i.e. sin

2 1

1

2

1

4� � ,

4. y x x x= + + + ∞2 2 ...
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Note: y e
x

y

=

/⇒ =log logy y e
x

Solution: y x x x= + + + ∞2 2 ...

⇒ = +y x y2

⇒ = +y x y
2

2

⇒ = +d

dx
y

d

dx
x y

2
2�  � �

⇒ = +2 1 2y
dy

dx

dy

dx

⇒ − =2 2 1y
dy

dx

dy

dx

⇒ − =2 1 1y
dy

dx
� �

⇒ =
−

=
−

≠ ≠ −
dy

dx y y
y x

1
; i.e.

2 2

1

2 1
1 1� � � � ,

5. y x
x

xx

=

∞...

Solution: y x xx xx

= >
∞...

, 0

⇒ =y x
y

⇒ =log logy y x

⇒ =
d

dx
y

d

dx
y xlog log� � � �

⇒ = +
1

y

dy

dx

y

x
x

dy

dx
log

⇒ −
�
��

�
�� =1

y
x

dy

dx

y

x
log

⇒
−

=
1 y x

y

dy

dx

y

x

log

⇒ =
−

dy

dx

y

x y x

2

1 log� �

6. y e
x

exex

=

∞...

Solution: y e
x

exex

=

∞...

, x > 0

⇒ = =
�� ��

y e e
x

y e
y

⇒ = =log logy x e x
y y

⇒ =log log logy y x

⇒ =d

dx
y

d

dx
y xlog log log� � � �

⇒ ⋅ ⋅ = ⋅ ≠1 1

log
log log

y y

dy

dx
y

d

dx
x x

dy

dx
� �

= +
y

x
x

dy

dx
log

⇒ ⋅ − =1

y y

dy

dx
x

dy

dx

y

xlog
log

⇒
−�

��
�
�� =

1 y x y

y y

dy

dx

y

x

log log

log

⇒ = ⋅
−

�
��

�
�� = −

dy

dx

y

x

y y

y x y

y y

x y x y

log

log log

log

log log1 1

2

� �
Remark:

3
3
3

 means 3
3
3�

�
�
�

y e
x

y

=  means y e e e
x

y
x y x y

= ≠ =
�� �� ⋅� 

7. x y
y

yy

=

∞...

Solution: x y
y

yy

=

∞...

, y > 0

⇒ =x y
x

⇒ = −log log logx x x yx

⇒ =
d

dx
x

d

dx
x ylog log� � � �
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⇒ = ⋅ + ⋅
1

x
x

d

dx
y y

dx

dx
log log� �

= ⋅ ⋅ +x
y

dy

dx
y

1
log

⇒ = ⋅ +
1

x

x

y

dy

dx
ylog

⇒ − = ⋅
1

x
y

x

y

dy

dx
log

⇒
−

= ⋅
1 x y

x

x

y

dy

dx

log

⇒ =
−�

��
�
�� ⋅ =

−dy

dx

x y

x

y

x

y x y

x

1 1
2

log log� �

8. y x x x= + + + ∞...

Solution: y x x x= + + + ∞...

⇒ = +y x y

⇒ = +y x y
2

⇒ = +
d

dx
y

d

dx
x y

2�  � �

⇒ ⋅ = +2 1y
dy

dx

dy

dx

⇒ ⋅ − =2 1y
dy

dx

dy

dx

⇒ − =2 1 1y
dy

dx
� �

⇒ =
−

�
��

�
��

dy

dx y

1

2 1

9. y x
x

x

=
+

+ ∞...

Solution: y x
x

x

=
+

+ ∞...

, x > 0

⇒ = +
y x

x y

⇒ = = ++log log logy x x y xx y� � � �

⇒ = +d

dx
y

d

dx
x y xlog log� � � �� �

= + + +x y
d

dx
x x

d

dx
x y� � � � � �log log

⇒ ⋅ = + ⋅ + +���
�
��

1 1
1

y

dy

dx
x y

x
x

dy

dx
� � log

=
+

+ +
x y

x
x x

dy

dx

� �
log log

⇒ ⋅ − =
+

+1

y

dy

dx
x

dy

dx

x y

x
xlog log

� �

=
+ +x y x x

x

� � log

⇒
−�

��
�
�� =

+ +1 y x

y

dy

dx

x y x x

x

log log� �

⇒ =
+ +�

��
�
��
⋅

−
�
��

�
��

dy

dx

x y x x

x

y

y x

� � log

log1

= ⋅
+ +
−

y

x

x y x x

y x

log

log1

10. y x
x

x

=
∞...

Solution: y x
x

x

=
∞...

, x > 0

⇒ = =y x x
y

y

� 
� 2

⇒ = = ���
�
��log log logy x

y
x

y
2

2
� 

⇒ = ⋅�
��

�
��

d

dx
y

d

dx

y
xlog log� �

2

= ⋅ + �
��
�
��

y d

dx
x x

d

dx

y

2 2
log log� �
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⇒ ⋅ = ⋅ + ⋅
1

2

1 1

2y

dy

dx

y

x
x

dy

dx
log

= +
y

x
x

dy

dx2

1

2
log

⇒ ⋅ − ⋅ =
1 1

2 2y

dy

dx
x

dy

dx

y

x
log

⇒ −
�
��

�
�� =1 1

2 2y
x

dy

dx

y

x
log

⇒
−�

��
�
�� ⋅ =

2

2 2

y x

y

dy

dx

y

x

log

⇒ = ���
�
�� ⋅ −
�
��

�
��

dy

dx

y

x

y

y x2

2

2 log

=
−

y

x y x

2

2 log� �

11. y x x x= − − − ∞cos cos cos ...

Solution: y x x x= − − − ∞cos cos cos ...

⇒ = −y x ycos

⇒ = − =
−

−
⋅ −dy

dx

d

dx
x y

d x y

d x y

d

dx
x ycos

cos

cos
cos� 

� 
� � � �

⇒ =
−

⋅ − −�
��

�
��

dy

dx x y
x

dy

dx

1

2 cos
sin

= −
−

−
−

sin

cos cos

x

x y x y

dy

dx2

1

2

⇒ +
−

⋅ = −
−

dy

dx x y

dy

dx

x

x y

1

2 2cos

sin

cos

⇒
− +

−

�
��

�
��

= −
−

2 1

2 2

cos

cos

sin

cos

x y

x y

dy

dx

x

x y

⇒ = −
−

�
��

�
��
⋅

−

− +

�
��

�
��

dy

dx

x

x y

x y

x y

sin

cos

cos

cos2

2

2 1

= −
− +

= −
+

= +sin

cos

sin
cos

x

x y

x

y
y x y

2 1 2 1
�� 

=
+

–sin x

y1 2

12. y x x
x

=
∞

cos cos cos
� �� �� 

...

Solution: y x x
x

=
∞

cos cos cos
� �� �� 

...

; cos x > 0

⇒ =log log cosy y x

⇒ ⋅ = ⋅ ⋅ − + ⋅1 1

y

dy

dx
y

x
x x

dy

dxcos
sin log cos� �

= − +y x x
dy

dx
tan log cos

⇒ −
�
��

�
�� = −1

y
x

dy

dx
y xlog cos tan

⇒ = −
−

dy

dx

y x

y x

2

1

tan

log cos� �

13. y x x x= + + + + + ∞2 2 ...

Solution: y x x x= + + + + + ∞2 2 ...

⇒ = + +y x y2

⇒ = + +y x y
2

2

⇒ − = +y x y
2

2

⇒ − = +y x y
2 2

2�  � �

⇒ −�
��

�
�� = +d

dx
y x

d

dx
y

2 2
2�  � �
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⇒ − −�
�

�
� =2 2 1

2
y x y

dy

dx

dy

dx
� 

⇒ − − − =4 2
2 2

y y x
dy

dx
y x

dy

dx
�  � 

⇒ − −�
��

	

� = −4 1 2

2 2
y y x

dy

dx
y x�  � 

⇒ =
−

− −
=

+

+ −
dy

dx

y x

y y x

y

y y

2

4 1

2 2

4 2 1

2

2

� 
� 

14. y x x x x= − − − − ∞2 2 2 2 ...

Solution: y x x x x= − − − − ∞2 2 2 2 ...

⇒ = −y x y2

⇒ = −y x y2 2

⇒ + =y y x2 2

⇒ + =2 2 1y
dy

dx

dy

dx

⇒ + =2 1 1y
dy

dx
� �

⇒ =
+

dy

dx y

1

2 1� �
Problems based on non-terminating continued
fraction

Solved Examples

Find 
dy

dx
 if

1. y x
x

x
x

= +
+

+
+ ∞

1
1

1
...

Solution: y x
x

x
x

= +
+

+
+ ∞

1
1

1
...

⇒ = +y x
y

1

⇒ = +y xy
2

1

⇒ = +2y
dy

dx
x

dy

dx
y

⇒ − =2y
dy

dx
x

dy

dx
y

⇒ − =2y x
dy

dx
y� �

⇒ =
−

dy

dx

y

y x2� �

2. x y
y

y
y

= +
+

+
+ ∞

1
1

1
...

Solution: x y
y

y
y

= +
+

+
+ ∞

1
1

1
...

⇒ = +x y
x

1

⇒ = +x xy
2

1

⇒ = +2x x
dy

dx
y

⇒ − =2x y x
dy

dx

⇒ =
−�

��
�
��

dy

dx

x y

x

2
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3. y
x

a
x

b
x

a
x

b

=
+

+
+

+ ∞...

or, y
x

a

x

b

x

a

x

b

x

a

x

b
=

+ + + + + +
∞...

Solution: y
x

a
x

b
x

a
x

b

=
+

+
+

+ ∞...

⇒ =
+

+

y
x

a
x

b y

⇒ =
+ +
+

y
x

a b y x

b y

� �
� �

⇒ =
+
+ +

y
b y x

a b y x

� �
� �

⇒ + + = +aby y xy bx yx
2

⇒ + =ab
dy

dx
y

dy

dx
b2

⇒ =
+

dy

dx

b

ab y2� �

4. y
x

x
x

x

=
+

+
+

+ ∞

sin
cos

sin
cos

1
1

1
1 ...

Solution: y
x

x
x

x

=
+

+
+

+ ∞

sin
cos

sin
cos

1
1

1
1 ...

⇒ =
+

+

y
x

x

y

sin
cos

1
1

⇒ =
+
+ +

y
y x

y x

1

1

� � sin

cos

⇒ + + = +y y y x y x
2

1cos sin� �

⇒ + + = +d

dx
y y y x

d

dx
y x

2
1cos sin�  � �� �

⇒ + + −2y
dy

dx

dy

dx
x

dy

dx
y xcos sin

= + +dy

dx
x y

d

dx
xsin sin1� �

⇒ + + − = + +2 1 1y x x
dy

dx
y x y xcos sin sin cos� � � �

⇒ =
+ +

+ + −
dy

dx

y x y x

y x x

sin cos

cos sin

1

1 2

� �
� �

5. y
x

x
x

x
x

x

=
+

+
+

+
+

+ ∞

tan
cot

tan
cot

tan
cot

1
1

1
1

1
1 ...

or, y
x x

=
+ + + + +

∞tan cot tan cot tan

1 1 1 1 1
...

Solution: y
x

x
x

x
x

x

=
+

+
+

+
+

+ ∞

tan
cot

tan
cot

tan
cot

1
1

1
1

1
1 ...
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⇒ =
+

+

=
+ +

+
�
��

�
��

y
x

x

y

x

y x

y

tan
cot

tan

cot1
1

1
1

⇒ =
+
+ +

y
y x

y x

1

1

� �
� �

tan

cot

⇒ + + = +y y x y x1 1cot tan� � � �

⇒ + + = +y y y x y x
2

1cot tan� �

⇒ + + = +
d

dx
y y y x

d

dx
y x

2
1cot tan�  � �� �

⇒ + + −2 2y
dy

dx

dy

dx
x

dy

dx
y xcot cosec

= +��
�
� + +0 1

dy

dx
x y

d

dx
xtan tan� � � �

⇒ + + −2y
dy

dx

dy

dx
x

dy

dx
x

dy

dx
cot tan

= + +y x y xcosec sec
2 2

1� �

⇒ + + −1 2y x x
dy

dx
cot tan� �

= + +y x y xcosec sec
2 2

1� �

⇒ =
+ +

+ + −
dy

dx

y x y x

y x x

cosec sec

cot tan

2 2
1

1 2

� �
� �

6. y x
x

x
x

= +
+

+
+ ∞

1
1

1

...

Solution: y x
x

x
x

= +
+

+
+ ∞

1
1

1

...

⇒ = +y x
y

1

⇒ = −
dy

dx x y

dy

dx

1

2

1
2

⇒ + =
dy

dx y

dy

dx x

1 1

22

⇒ +
�
��

�
��

=1
1 1

22
y

dy

dx x

⇒ =
+

dy

dx

y

y x

2

2
2 1� 

Conditional identities on non-terminating continued
fraction or 'ad infinitum' form.

To form a differential equation with the help of a given
equation, we adopt the rule which consists of
following steps.

Step 1: Take the given and express it as an implicit
function of x.
Step 2: Find the derivative of the implicit function of x.
Step 3: Use mathematical manipulations to put the
first derivatives (or, the derivative involved in the
required differential equation) in to the required form
of the differential equations.

Solved Examples

1. If y a
x

axax

=

∞...

 show that

dy

dx

y y

x y x y
=

−

2

1

log

log log� �

Solution: y a
x

axax

=

∞...

, a > 0, x > 0

⇒ =y a
x

y

⇒ =log logy x a
y

⇒ = +log log log log logy y x a
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⇒ ⋅ ⋅ = ⋅ +1 1

log
log

y y

dy

dx

dy

dx
x

y

x

⇒ −
�
��

�
�� =1

y y
x

dy

dx

y

xlog
log

⇒ =
−

dy

dx

y y

x y x y

2

1

log

log log� �

2. If y x
x

x

=
∞...

, show that x
dy

dx

y

y x
=

−

2

1 log

Solution: y x
x

x

=
∞...

, x > 0

⇒ =y x
y ...(1)

⇒ log y = y log x

⇒ ⋅ = +
1

y

dy

dx
x

dy

dx

y

x
log

⇒ −�
��

�
�� =1

y
x

dy

dx

y

x
log

⇒ =
−

dy

dx

y

x y x

2

1 log� � ...(2)

∴ =
−

x
dy

dx

y

y x

2

1 log� �

3. If y x x x= + + + ∞sin sin sin etc to... ,

show that 
dy

dx

x

y
=

−
cos

2 1 .

Solution: y x x x= + + + ∞sin sin sin ...

⇒ = +y x ysin

⇒ = +y x y
2

sin

⇒ − =y y x
2

sin

⇒ − =2y
dy

dx

dy

dx
xcos

⇒ − =2 1y
dy

dx
x� � cos

⇒ =
−

dy

dx

x

y

cos

2 1� �

4. If y x x x= + + + ∞log log log ... , show

that 2 1
1

y
dy

dx x
− =� � .

Solution: y x x x= + + + ∞log log log ... , x > 0

⇒ = +y x ylog

⇒ = +y x y
2

log

⇒ = +2
1

y
dy

dx x

dy

dx

⇒ − =2 1
1

y
dy

dx x
� �

5. If y
x

x
x

x

=
+

+
+

+ ∞

1
1

1
1 ...

, show that

dy

dx y
=

+
1

2 1

Solution: y
x

x
x

x

=
+

+
+

+ ∞

1
1

1
1 ...

⇒ =
+

y
x

y1

⇒ + =y y x
2
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⇒ + =2 1y
dy

dx

dy

dx

⇒ + =2 1 1y
dy

dx
� �

⇒ =
+

dy

dx y

1

2 1

6. If x y
y

y
y

= +
+

+
+

∞

1
1

1
1

...

, show that

dy

dx
x y xy= + −

2
2 3

2
.

Solution: x y
y

y
y

= +
+

+
+

∞

1
1

1
1

...

⇒ = +x y
x

1
...(1)

⇒ = −1
1
2

dy

dx x

⇒ = +dy

dx x
1

1
2

= + −1 2x y� �  (from (1))

= + + −1 2
2 2

x y xy

= − + + −x xy x y xy
2 2 2

2  (� x y
x

− =
1
⇒  x2

– xy = 1 from (1))

= + −2 3
2 2

x y xy

∴ = + −
dy

dx
x y xy2 3

2 2

Remark: Special care must be taken when implicit
function or a function defined by an infinite process
are differentiated for the function y = F (x) or
F (x, y) = 0 at which it is undefined. e.g.,

y x x x= + + +sin sin sin ...

⇒ = +y x ysin

⇒ = +y x y
2

sin

⇒ − =2 1y
dy

dx
x� � cos

⇒ =
−

dy

dx

x

y

cos

2 1� �  which means that we can find

dy

dx
 when ever y ≠

1

2
.

Conditional identities based on explicit function of x

1. If y
x

x
=

−
+

�
��

�
��

−
tan

1 2 3

1 6
, show 

dy

dx x
+

+
=3

1 9
0

2 .

2. If  and f x
x

x
� � =

+

−
sin

1

2
1

 and g (x) = tan–1

1

1

+
−

�
��

�
��

x

x , | x | < 1, show that ′ = ′f x g x� � � � .

3. If f (x) = sec x + tan x, show that 
′

=
f x

f x
x

� �
� � sec .

4. If y
x

x
=

+ 5
, show that x

dy

dx
y y= −1� � .

5. If y = x–3, show that x
dy

dx
y+ =3 0 .

6. If y = x3, show that x
dy

dx
y x= ∀3 , .

7. If y x
x

= +
1

, show that x
dy

dx
y x+ = 2 .

8. If y x x= + −
− −

sin sin
1 1 2

1 , show that 
dy

dx
= 0 .

(Hint: Put x = − ≤ ≤sinθ
π

θ
π

,
2 2

)
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9. If x
u

u
=

+

−
sin

1

2

2

1
 and y

u

u
=

−

−
tan

1

2

2

1
, show

that 
dy

dx
= 1.

10. If y
x x

x x
=

+
−

cos sin

cos sin , show that 
dy

dx
x= +��

�
�sec

2

4

π
.

11. If y
x

x
=

−
cos

cos

cos

1

3

3
, show that 

dy

dx
=

3

3cos cosx x .

12. If y
x

x
=

−

−
sin

1

2
1

,m show that (1 – x2) 
dy

dx
– xy = 1

13. If y
x

x
=

+
+

�
��

�
��

−
cos

cos

cos

1 3 5

5 3
, show that cos x =

4 5

3
1

1

− y

y
, where y

dy

dx1 = .

14. If y
x

x
=

+
−

log
tan

tan

1

1 , show that 
dy

dx
x= sec2 .

15. If y = e–x, show that 
dy

dx
y+ = 0

16. If y = eax sin (bx + c), show that

dy

dx
a b e bx c

b

a

a x
= + + +�

��
	

�

−2 2 1
sin tan� �

Problems based on infinite series

Exercise 12.8

Find 
dy

dx
 if

1. y e
x e

x e
x

=
+

+ + ∞...

2. y x
x

x

=
∞...

3. y x x x= + + + ∞sin sin sin ...

4. y x x x= + + + ∞cos cos cos ...

5. y x x x= + + + ∞...

6. y x
x

x

=
∞...

7. x y
y

y

= +
+

+ ∞

1
1
...

8. y
x

x
x

=
+

+
+ ∞

1
1

1
...

9. x y
y

y

=
∞...

Answers

1.
y

y1 −

2.
1

1

2

x

y

y x−

�
��

�
��log

3.
cos x

y2 1−

4.
sin x

y1 2−

5.
1

2 1y −

6.
y

x y x

2

2 − log� �

7. 1
1
2

+
x

8. −
+

y

y

2

2
1
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9.
y x y

x

1
2

− log� �

Conditional problems

Exercise 12.9

1. If y x
x

x

=
∞...

, show that y x y x
dy

dx

2
1= − log� � .

(Hint: Here y = xy)

2. If y x x x= + + + ∞sin sin sin ... , show that

2 1y
dy

dx
x− =� � cos .

(Hint: y x y y x y= + ⇒ = +sin sin
2 )

3. Show that 
dy

dx

x

y
=

−
sin

1 2
, when

cos cos cosx x x+ + + ∞... .
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13

Logarithmic Differentiation

Question: What is logarithmic differentiation?
Answer: Taking logarithm of both sides of an identity
before differentiation is known as logarithmic
differentiation.

Question: Where to use logarithmic differentiation?
Answer: Logarithmic differentiation is used when
1. The given function defining y as a function of x is
the product of two differentiation functions of x’s,
one (or both) of which may be quotient, power (or,
under radical), implicit function or composite of two
(or, more) functions; i.e. when y = f1 (x) · f2 (x) where f1
(x) and f2 (x) are differentiable functions of x’s.
2. The given function defining y as a function of x is
the product of a finite number of differentiable
functions of x’s, some of which may be quotients,
powers (or, under radicals), implicit functions or
composite of two (or, more) functions; i.e. when y = f1
(x) · f2 (x) · f3 (x) … fn (x), where f1 (x), f2 (x) … fn (x) are
differentiable functions of x’s.
3. The given function defining y as a function of x is
the quotient of two differentiable functions of x’s
whose numerator and denominator may be a power
function (or, a function under radical), implicit function
or composite of two (or, more) functions; i.e. when

y
f x

f x
= 1

2

� �
� � ,  where f1 (x) and f2 (x) are differentiable

functions of x’s.
4. The given function defining y as a function of x is
the quotient whose numerator and denominator
contain a finite number of differentiable functions of
x’s some of which may be powers or, under radicals),

implicit function or composite of two (or, more)

functions; i.e. when y
f x f x f x f x

g x g x g x g x
n

n

=
⋅ ⋅
⋅ ⋅

1 2 3

1 2 3

� � � � � � � �
� � � � � � � �

...

...
,

where f1 (x), f2 (x), …, fn (x) and g1 (x) , g2 (x), … , gn (x)
are differentiable functions of x’s.
5. The given function defining y as a function of x is
a power of the function of x whose base is an implicit
or explicit function of x whereas the index is a real
number; i.e. when y = [f1 (x)]n, where f1 (x) is a
differentiable functions of x whereas the index is a
real number.
6. The given function defining y as a function of x is
composite exponential function which is a function
whose both the base and the exponent are
differentiable functions of x’s; i.e. when

y f x
f x= 1

2� � � �
, where f1 (x) and f2 (x) are

differentiable functions of x’s. (Note: Logarithmic
differentiation may be defined as “differentiation after
taking logarithm of both sides of an identity”.

Remember:
1. Logarithmic differentiation is practically useful
when the given function defining y as a function of x
is a complicated one consisting of products, quotients
and powers (or, radicals) of differentiable functions
whose derivatives can not be found easily by using
the rule of differentiating the products, quotient or
power of the functions being differentiable.
2. We take logs throughout to avoide repeated
applications of the rules for the differentiation of
products and quotients of functions of x’s.
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3. We can use logarithmic differentiation only when
the function concerned is positive in its domain.
Example

y = sinn x⇒ =log siny x
n

⇒ = ⇒ =log log sin
cos

sin
y n x

y

dy

dx

n x

x

1

⇒ = −dy

dx
n x xnsin cos1

This result is valid when n is an integer > 1, whether
sin x is positive or negative.

Question: What are the rules of logarithmic
differentiation?
Answer: There are two rules of logarithmic
differentiation.
Rule 1: When y = f (x), f (x) being differentiable
positive function (i.e. f (x) > 0),

d

dx
y

d

dx
f xlog log� � � �� �=

⇒ ⋅ = ⋅ >1 1
0

y

dy

dx f x

d

dx
f x f x

� � � � � �,

Rule 2: When y = f (x), f (x) being differentiable and

f x� � ≠ 0

d

dx
y

d

dx
f xlog log= � �

⇒ ⋅ = ⋅ ≠1 1
0

y

dy

dx f x

d

dx
f x f x

� � � � � �,

Notes: (A)

(i) y f x= � �
(ii) y = ef (x)

(iii) y = | f (x) |
(iv) y = log f (x)

(v) log∅ =x f x y� � � �
(vi) y = log log log … log f (x) are differentiable
functions where f (x) > 0 is pre assumed but in y = | f (x) |,
f (x) may be greater than zero or less than zero
remaining the possibility of being zero also whereas
| f (x) | means always > 0. For this reason wherever

f (x) < 0, we multiply f (x) by minus one (i.e. –1) to make
f (x) > 0.

(B)
d

dx
f x

f x

f x
log � � � �

� �=
′

 which means the

derivative of the function log | f (x) | is a logarithmic
derivative of the function f (x). To simplify the notation
in logarithmic differentiation, the sign of absolute
value of the function f (x) is usually omitted only
when the function f (x) concerned is positive. Hence,

this is why we write 
d

dx
f x

f x

f x
log � � � �

� �=
′

.

(C) Logarithmic differentiation simplifies finding the
derivative of the given function.

On working rule of problems belonging to first type

When we are given the interval or the quadrant in
which f (x) = given function of x is positive or the
condition imposed on the independent variable x
makes f (x) > 0, we adopt the following rule to find the
differential coefficient of the given function by using
logarithmic differentiation.
Step 1: Take logarithm on both sides of the equation
defining y as a function of x, i.e. log y = log f (x).
Step 2: Differentiate the equation log y = log f (x)
using the rule:

(i)
d

dx
y

y

dy

dx
log = ⋅

1
, y > 0

(ii)
d

dx
f x

f x

d f x

dx
log � � � �

� �
= ⋅1

, f (x) > 0

(iii) dy

dx
y

d

dx
f x= ⋅ log � �

Remember: (a) After taking logarithm, we are
required to use the following formulas.
(i) log u · v = log u + log v, u > 0, v > 0.

(ii) log log log
u

v
u v= − , u > 0, v > 0.

(iii) log uv = v log u, u > 0, v ∈ 0.

(iv) log logu n u n R
n = ∈, , u > 0.

where u and v are functions of x.
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(b) The above working rule may be remembered as
“GLAD”, the letters being in order which means

G = given function
L = take the logarithm
A = apply the logarithmic formulas
D = differentiate.

(c) We take logarithm on both sides of the equation
defining y as a function of x only when the given
function is positive because logarithmic differen-
tiation is applicable only when the function concerned
is positive.
(d) The above working rule is applicable to the

composite exponential function f x
f x

1
2� � � �

 provided

the function in the base is positive and for this reason
the above working rule is applicable to ef (x) since
e = 2.718 … > 0.
Remarks: To take the logarithm of any quantity, we
have to be sure that it is positive.

Problems based on first type

Form 1: Problems based on irrational functions.

Solved Examples

Find the differential coefficient of the following.

1. y x=

Solution: y x x= = � � 1
2 , defined for x > 0

⇒ =log logy x
1

2

⇒ ⋅ = ⋅
1 1

2

1

y

dy

dx x

⇒ =dy

dx

y

x2

⇒ = > = >dy

dx

x

x
x

x
x

2
0

1

2
0, , .

2. y
x x

x
=

⋅ +

+

2 1

1
2
3� �

Solution:
| |

| |
y

x x

x
=

⋅ +

+

2 1

1
2
3� �

⇒ = + + − +log log log logy x x x
1

2
1

2

3
12� � � �

⇒ ⋅ = + ⋅
+

⋅ − ⋅
+

⋅1 1 1

2

1

1
2

2

3

1

1
1

2y

dy

dx x x
x

x

⇒ = ⋅ +
+

−
+

�

�
	




�
�

dy

dx
y

x

x

x x

1

1

2

3 12 � �

=
⋅ +

+
⋅ +

+
−

+
�
�	



��

x x

x x

x

x x

2

2

1

1

1

1

2

3 12
3� � � �

3. y x x= − < <�
�



�cos ,

π π
2 2

Solution: y x= cos� � 1
2

⇒ =log log cosy x
1

2

⇒ ⋅ = ⋅ ⋅ −1 1

2

1

y

dy

dx x
x

cos
sin� �

⇒ = − ⋅ ⋅dy

dx
y x

1

2
tan

= − ⋅1

2
cos tanx x

4. y x= log3

Solution: y x= log� � 1
3 , defined for x > 0

⇒ =log log log| | | |y x
1

3

⇒ ⋅ = ⋅ ⋅ =1 1

3

1 1 1

3y

dy

dx x x x xlog log

⇒ =dy

dx

y

x x3 log
, x > 0

Form 2: Problems based on product of two or more
than two differentiable functions.

Solved Examples

Find the differential coefficient of the following.
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1. y x e xx= ⋅ ⋅2 2 3sin

Solution: y x e x
x= ⋅ ⋅2 2

3sin

⇒ | | | |y x e xx= ⋅2 2 3sin

⇒ = + +log log log log sin| | | |y x e xx2 2 3

⇒ = + + =log log log sin log| | | | | |y x x x e2 2 3 1�� �

⇒ ⋅ = + +1 2
2

3 3

3y

dy

dx x

x

x

cos

sin

⇒ = ⋅ + +�
�



�

dy

dx
y x

x
2 3 3

2
cot

= ⋅ ⋅ + +�
�	



��x e x x

x
x2 2 3 2 3 3

2
sin cot

2. y e x
x= ⋅ log

Solution: y e x
x= ⋅ log , defined for x > 0

⇒ = + = +log log log log log log| | | | | |y e x x xx

� loge=1� �

⇒ ⋅ = +1
1

1

y

dy

dx x xlog

⇒ = +
�
�	



��

dy

dx
y

x x
1

1

log

= ⋅ +
�
�	



��e x

x x

x
log

log
1

1

3. y x x= ⋅ log3

Solution: y x x x x= ⋅ =log log3
1
3� � , x > 0

⇒ = +log log log log| | | |y x x
1

3

⇒ ⋅ = + ⋅ ⋅ = +1 1 1

3

1 1 1 1

3y

dy

dx x x x x x xlog log

⇒ = +
�
�	



��

dy

dx
y

x x x

1 1

3 log

= ⋅ ⋅ +
�
�	



��x x

x x x
log

log
3 1 1

3 , x > 0

Form 3: Problems based on quotient of two or more
than two differentiable functions

Solved Examples

Find the differential coefficient of the following.

1. y
x

= 4

log

Solution: y
x

= 4

log
, x > 0

⇒ = −log log log log| | | |y x4

⇒ ⋅ = −1 1

y

dy

dx x xlog

⇒ = − = − = −
dy

dx

y

x x x x x x xlog log log log

4 4
2� �

= −
⋅

4
2

x xlog
, x > 0

2. y
x

x
x= >

log
, 0

Solution: y
x

x
=

log

⇒ = −log log log logy x x

⇒ ⋅ = − = ⋅ −
�
�	



��

1 1 1 1 1

y

dy

dx x x x
y

x x xlog log

=
−�

�	


�� =

−log log

log

logx

x

x

x x

x

x

1 1
2

3. y
e e

e e

x x

x x
=

−

+

−

−

Solution: y
e e

e e

x x

x x
=

−

+

−

−

⇒ = − − +− −log log log| |y e e e ex x x x� � � �
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⇒ ⋅ =
+

−
−

−

+

−

−

−

−
1

y

dy

dx

e e

e e

e e

e e

x x

x x

x x

x x

=
+ − −

+ −

− −

− −

e e e e

e e e e

x x x x

x x x x

� � � �

� � � �

2 2

∴ =
+ + − − +

−

�
�	



��

− −

−
dy

dx
y

e e e e

e e

x x x x

x x

2 2 2 2

2 2

2 2

= −

+
⋅

− +

−

− − −
e e

e e e e e e

x x

x x x x x x

4

� � � �

=
+ −

4
2

e e
x x
� �

Form 4: Problems based on exponential composite
functions. y = f (x)g (x) which is defined only when the
base f (x) > 0.
Note: Whether the questions says or does not say
about the base f (x) of the exponential composite
function y = f (x)g (x) to be positive, it is understood
always that the base f (x) > 0 since y = f (x)g (x) is
defined only when f (x) > 0.

Solved Examples

Find the differential coefficient of the following.
1. y = (sin x)sin x, sin x > 0
Solution: y = (sin x)sin x

⇒ = =log log sin sin logsinsiny x x xx� �

⇒ ⋅ = ⋅ ⋅ + ⋅1 1

y

dy

dx
x

x
x x xsin

sin
cos cos log sin

⇒ = + ⋅dy

dx
y x x xcos cos logsin� �

2. y = (1 + x)2x

Solution: y = (1 + x)2x, defined for x > –1

⇒ = +log logy x x2 1� �

⇒ ⋅ = ⋅
+

+ +

��

�
��

1
2

1
1

y

dy

dx

x

x
xlog � �

⇒ = ⋅ ⋅
+

+ +

��

�
��

dy

dx
y

x

x
x2

1
1log � �

= ⋅ + ⋅
+

+ +

��

�
��

2 1
1

12x
x

x
x

x� � � �log , x > –1

3. y x x=
1

Solution: y x x=
1

, defined for x > 0

⇒ =log logy
x

x
1

⇒ ⋅ = − + ⋅ =
−1 1 1 1 1

2 2y

dy

dx x
x

x x

x

x
log

log

⇒ =
−

��
�
��

dy

dx
y

x

x

1
2

log

4. y x
x= +1� �log

Solution: y x x= +1� �log
, defined for x > –1

⇒ = ⋅ +log log logy x x1� �

⇒ ⋅ =
+

+
+1

1

1

y

dy

dx

x

x

x

x

log log � �

⇒ = ⋅
+

+
+

��
�
��

dy

dx
y

x

x

x

x

log log

1

1� �

= + ⋅
+

+
+

��
�
��

1
1

1
x

x

x

x

x
x� � � �log log log

5. y x x
x

x

= >
� �

, 0

Solution: y x
x

x

=
� �

...(i)

⇒ = ⋅log logy x x
x
� �

⇒ =log logy x xx ...(ii)
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Again taking logarithm on both sides of the
equation (ii), we have log | log y| = log [(xx) | log x |] =
x log x + log | log x |

⇒ ⋅ ⋅ = ⋅ + + ⋅1 1 1 1 1

log
log

logy y

dy

dx
x

x
x

x x

= + +1
1

log
log

x
x x

⇒ = ⋅ + +

��

�
��

dy

dx
y y x

x x
log log

log
1

1
...(iii)

Now, putting (i) and (ii) in (iii), we have

dy

dx
x x x x

x x

x x
x

= ⋅ ⋅ + +

��

�
��

� �
� � log log

log
1

1

Remember: The operation of taking logarithm on
both sides of the equation defining y as a function of
x (i.e. y = f (x) may be performed more than once if we
go on having an exponential composite function just
before the differentiation and we differentiate the
logarithmic function only when the occurrence of
exponential composite function in any intermediate
step is over as a factor of logarithmic function or,
alternatively we make the substitution for the
exponential composite function occuring in any
intermediate step after differentiation which is
explained in the following way.

y x
x

x

=
� �

⇒ = =log log logy x x xx xx

� � � �� � ...(i)

⇒ ⋅ = ⋅ +
1 1

y

dy

dx
x

x
x

d

dx
x

x x
log � �

⇒ = ⋅ + ⋅�
�



�

dy

dx
y x

x
x

d

dx
x

x x1
log � � ...(ii)

Now on supposing that z = xx, x > 0, we have

log log logz x x x
x

= +� �

⇒ ⋅ = ⋅ + ⋅
1 1

1
z

dz

dx
x

x
xlog

⇒ = +
dz

dx
z x1 log� �

= ⋅ +x x
x
� � � �1 log ...(iii)

Now on putting (iii) in (ii) , we have

dy

dx
y x

x
x xx= ⋅ ⋅ + +�

�	


��� �

1 2log log

= ⋅ ⋅ + +�
�	



��x x

x
x xx xx 1 2log log

Form 5: Problems based on the sum of two more
than two exponential composite (or, other) functions.
One should note that logarithmic differentiation of
the sum of two or more than two exponential
composite functions are performed by using the
theorem of differential coefficient of the sum of two
or more than two differentiable functions and the
differential coefficient of each addend being the
function of x is obtained seperately by using the rule
of logarithmic differentiation and lastly adding the
differential coefficient of each addend, we get the
differential coefficient of the whole function which is
given as the sum of two or more than two exponential
composite functions.

Note: We should remember that while finding the
differential coefficient of each addend being the
function of x, we must make the substitution u, v, w, ...
for each addend and then operation of taking logarithm
should be performed.

Solved Examples

Find the differential coefficient of the following.

1. y x x xx x= + < <�
�	



��

tan cot
tan� � , 0

2

π

Solution: y = xtan x + (tan x)cot x, defined for x > 0, tan
x > 0

⇒ = +
dy

dx

d

dx
x

d

dx

x xtan cottan� � � �� � ...(i)

Now, on letting u = xtan x, we have
log u = log (xtan x) = tan x · log x
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⇒ ⋅ = ⋅ + ⋅
1 1 2

u

du

dx
x

x
x xtan log sec

⇒ = + ⋅�
�	



��

du

dx
u

x

x
x x

tan
sec log

2

= + ⋅�
�	



��x

x

x
x x

xtan tan
sec log

2
...(ii)

Again, on letting v = (tan x)cot x, we have
log v = log (tan x)cot x = cot x · log tan x

⇒ ⋅ = ⋅ − ⋅1 2 2

v

dv

dx

x

x
x x x

cot

tan
sec cosec log tan

⇒ = ⋅ ⋅ − ⋅
�
�	



��

dv

dx
v

x

x
x x x

cot

tan
sec cosec log tan

2 2

= ⋅ ⋅ − ⋅
�
�	



��tan

cot

tan
sec cosec log tancotx

x

x
x x xx� � 2 2

...(iii)
Putting (ii) and (iii) in (i), we have

dy

dx
x

x

x
x x x

x x= + ⋅�
�	



�� + ⋅

tan cottan
sec log tan

2 � �

cot

tan
sec cosec log tan

x

x
x x x⋅ − ⋅

�
�	



��

2 2

2. y = (sin x)tan x + (tan x)sin x, 0
2

< <�
�



�x

π

Solution: y = (sin x)tan x + (tan x)sin x

⇒ = +dy

dx

d

dx
x

d

dx
xx xsin tantan sin� � � � ...(i)

Now, on letting u = (sin x)tan x, we have
log u = tan x · log sin x

⇒ ⋅ = ⋅ ⋅ +1 1 2

u

du

dx
x

x
x x xtan

sin
cos logsin sec� �

= tan x · cot x + sec2 x · log sin x

⇒ = + ⋅
du

dx
u x x1

2
sec log sin� �

= ⋅ + ⋅sin sec log sintanx x xx� � � �1
2

...(ii)

Again, on letting v = (tan x)sin x, we have

log v = sin x log tan x

⇒ ⋅ = ⋅ ⋅ +1 1 2

v

dv

dx
x

x
x x xsin

tan
sec log tan cos� �

= sec x + cos x · log tan x

⇒ = ⋅ + ⋅dv

dx
v x x xsec cos log tan� �

= ⋅ + ⋅tan sec cos log tansinx x x xx� � � �   ...(iii)
Putting (ii) and (iii) in (i), we have

dy

dx
x x x xx x= ⋅ + ⋅ + ⋅sin sec logsin tantan sin� � � � � �1

2

sec cos log tanx x x+ ⋅� �

3. y x x x
x

= + < <
sin

sin� � 3
2 0

2
,

π

Solution: y x x
x= +sin

sin� � 3
2

⇒ = +dy

dx

d

dx
x

d

dx
x

xsin
sin� � � � 3

2 ...(i)

Now on letting u = xsin x, we have
log u = sin x · log x

⇒ ⋅ = ⋅ +1 1

u

du

dx
x

x
x xsin log cos� �

⇒ = + ⋅�
�	



��

du

dx
u

x

x
x x

sin
cos log

= ⋅ + ⋅�
�	



��x

x

x
x x

xsin sin
cos log ...(ii)

Again, on letting v x= sin� � 3
2

⇒ = ⋅dv

dx
x x

3

2

1
2sin cos� �

⇒ =dv

dx
x x

3

2
cos sin ...(iii)

Putting (ii) and (iii) in (i), we have

dy

dx
x

x

x
x x x x

x
= + ⋅�

�	


�� + ⋅sin sin

cos log cos sin
3

2

4. y = (sin x)x + x sin–1 x, 0 < x < 1
Solution: y = (sin x)x + x sin–1 x
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⇒ = +
−dy

dx

d

dx
x

d

dx
x x

x
sin sin� � � �

1
...(i)

Now on letting u = (sin x)x, we have
log u = x log sin x

⇒ ⋅ = ⋅ ⋅ + ⋅1 1
1

u

du

dx
x

x
x x

sin
cos log sin

⇒ = +du

dx
u x x xcot log sin� �

= (sin x)x (x cot x + log sin x) ...(ii)
Again on letting v = x sin–1 x, we have
log v = log x + log sin–1 x

⇒ ⋅ = + ⋅
−

−
1 1 1 1

1
1 2v

dv

dx x x xsin

⇒ = ⋅ +
−

�

�
	
	




�
�
�−

dv

dx
v

x x x

1 1

1
1 2

sin

= +
−

�

�
	
	




�
�
�

−

−
x x

x x x
sin

sin

1

1 2

1 1

1

= +
−

−
sin

1

2
1

x
x

x
...(iii)

Putting (ii) and (iii) in (i), we have

dy

dx
x x x x x

x

x

x= ⋅ + + +
−

−sin cot logsin sin� � � � 1

21

5. y
x

x x
x

x= ��


� + >1

0
1

,

Solution: y
x

x
x

x= ��


� +1 1

⇒ = �
�


� + �

�


�

dy

dx

d

dx x

d

dx
x

x
x1 1

...(i)

Now on letting u
x

x

= ��


�

1
, we have

log log log logu x
x

x x x x= ⋅ �
�


� = = −

−1 1
� �

⇒ ⋅ = − ⋅ + − = − +
1 1

1 1
u

du

dx
x

x
x xlog log� � � �

⇒ = − +du

dx
u xlog 1� �

⇒ = − ��	


�� +du

dx x
x

x
1

1log� � ...(ii)

Again on letting v x x=
1

, we have

log logv
x

x=
1

⇒ ⋅ = ⋅ − = −1 1 1 1 1 1
2 2 2v

dv

dx x x x
x

x x
xlog log

=
−1

2

log x

x

� �

⇒ =
−dv

dx

v x

x

1
2

log� �

=
⋅ −x x

x

x
1

1
2

log� �

Putting (ii) and (iii) in (i), we have

dy

dx x
x

x x

x

x x

= − ��


� + +

−1
1

1
1

2
log

log� � � �

6. y = x2x + (2x)x, x > 0
Solution: y = x2x + (2x)x

⇒ = +dy

dx

d

dx
x

d

dx
x

x x2
2� � � � ...(i)

Now on putting u = x2x, we have
log u = log (x2x) = 2x log x

⇒ ⋅ = ⋅ ⋅ + = +
1

2 1
2

2 2
u

du

dx
x

x

x
xlog log

⇒ = + = ⋅ ⋅ +du

dx
u x x x

x
2 2 2 1

2
log log� � � � ...(ii)

Again, on putting v = (2x)x, we have
log v = log (2x)x = x log 2x

⇒ ⋅ = ⋅ ⋅ + = +1 1

2
2 2 1 2

v

dv

dx
x

x
x xlog log� �
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⇒ = + = +
dv

dx
v x x xx1 2 2 1 2log log� � � � � � ...(iii)

Putting (ii) and (iii) in (i), we have

dy

dx
x x x x

x x= ⋅ + + ⋅ +2 1 2 1 2
2

log log� � � � � �

7. y = xlog x + (log x)x, x > 1
Solution: y = xlog x + (log x)x

⇒ = +dy

dx

d

dx
x

d

dx
x

x xlog
log� � � � ...(i)

Now, on putting u = xlog x, we have
log u = log x · log x = (log x)2

⇒ ⋅ = ⋅
1

2
1

u

du

dx
x

x
log

⇒ = ⋅ ⋅ =
⋅du

dx
u x

x

x x

x

x

2
1 2

log
log

log

...(ii)

Again on putting v = (log x)x, we have
log v = x log log x

⇒ ⋅ = ⋅ + = +1 1 1

v

dv

dx

x

x x
x

x
x

log
log log

log
log log

⇒ = +
�
�	



��

dv

dx
v

x
x

1

log
loglog

= +
�
�	



��log

log
log logx

x
xx� � 1

...(iii)

Putting (ii) and (iii) in (i), we have

dy

dx

x x

x
x

x
x

x
x=

⋅ ⋅
+ ⋅ +

�
�	



��

2 1
log

log
log

log
log log� �

Form 6: Miscellaneous problems

Solved Examples

1. If x e x x
e

y x y= > ≠− , ,0
1

, show that

dy

dx

x

x
=

+
log

log1 2� � .

Solution: xy = ex – y

⇒ =
−

log logx e
y x y

� � � �

⇒ = − = − =y x x y e x y elog log log� � � � � �� 1

⇒ + =y x y xlog

⇒ + =y x xlog 1� �

⇒ =
+

y
x

x1 log

⇒ =
+

�
�	



�� =

+ ⋅ − +��


�

+
dy

dx

d

dx

x

x

x x
x

x1

1 1 0
1

1 2log

log

log

� �

� �

 =
+ −
+

1 1

1 2

log

log

x

x� �

⇒ =
+

dy

dx

x

x

log

log1 2� �
2. If xm · yn = (x + y)m + n, x > 0, y > 0, show that

dy

dx

y

x
nx my= ≠, .

Solution: xm yn = (x + y)m + n

⇒ = + +log logx y x y
m n m n� � � �

⇒ + = + +m x n y m n x ylog log log� � � �

⇒ + ⋅ =
+
+

�
�	



�� ⋅ +��



�

m

x

n

y

dy

dx

m n

x y

dy

dx
1

⇒
+
+

−
�
�	



�� ⋅ = −

+
+

=
+ − −

+
m n

x y

n

y

dy

dx

m

x

m n

x y

mx my mx nx

x x y� �

⇒
+ − −

+
⋅ =

−
+

my ny nx ny

y x y

dy

dx

my nx

x x y� � � �

⇒
−
+

⋅ =
−
+

my nx

y x y

dy

dx

my nx

x x y� � � �

⇒ = ≠
dy

dx

y

x
nx my, ,since

Note: The result holds for x y≠ ≠0 0,  (shown later)
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3. If y
x

x
x=

+
�
�	



�� ∉ −log

1
1 0, , , find its derivative.

Solution: y
x

x
=

+
�
�	



�� ≠log

1
 log x – log (1 + x) for

x∉ −1 0,

When x x
x

x
> + > > ⇒

+
>0 1 1 0

1
0,  which means

y is defined for x > 0.

Again when x x
x

x
<− + < ⇒

+
>1 1 0

1
0,  which

means y is defined for x < –1.

∴ y is defined for x R∈ − − =1 0, −∞ −, 1� �
∪ ∞0 ,� �
i.e. y is defined for x∉ −1 0,

Hence, 
dy

dx

d

dx

x

x
=

+
�
�	



��

�
�	



��

log
1

=
+

⋅
+ ⋅ − ⋅

+



�

�
�
�

�

�

�
�
�
=

+
⋅

+ −

+



�
�
�

�

�
�
�

x

x

x x

x

x

x

x x

x

1 1 1 1

1

1 1

12 2 2

� �

� �

� �
� �

=
+

∉ −1

1
1 0

x x
x

� �
, ,

Remark:

1. In the above problem log log
x

x
x

1+
�
�	



�� ≠ − log

(1 + x)  since log x is undefined for x < 0 and also log
(x + 1) is undefined for x ≤ −1 .
2. x x R∉ − ⇔ ∈ − −1 0 1 0, ,

On working rule of problems belonging to second
type

When the interval or the quadrant in which f (x) =
given function of x is positive is not given or the

condition imposed on the independent variable x
which makes f x� � ≠ 0  is given (or, not given), we
adopt the following working rule to find the differential
coefficient of the given problems by using logarithmic
differentiation.

Step 1: Take the modulus on both sides of the
equation defining y as a function of x , i.e.

y f x y f x= ⇔ =� � � �
Step 2: Take the logarithm on both sides of the
equation defining modulus of y as modulus of f (x),
i.e. log | y | = log | f (x) |
Step 3: Differentiate the equation log | y | = log | f (x) |
using the rule:

(i)
d

dx
y

y

dy

dx
ylog ;= ⋅ ≠

1
0 .

(ii)
d

dx
f x

f x

d f x

dx
f xlog ;� � � �

� � � �= ⋅ ≠1
0.

(iii)
dy

dx
y

d

dx
f x f x= ⋅ ≠log ;� � � � 0.

Remember: (a) After taking logarithm, we are
required to use the following formulas.

1. log | u · v | = log | u | + log | v | ; u v≠ ≠0 0, .

2. log log log ;
u

v
u v u v= − ≠ ≠0 0, .

3. log | uv | = log | u |v = v log | u | ; u v R> ∈0, .

4. log log logu u n u n R un n= = ∈ >, , 0.

where u and v are functions of x.
(b) The above working rule may be remembered as
“MLAD” the letters being in order which means

M = take mod
L = take log
A = apply logarithmic formulas
D = differentiate.

(c) We take the modulus of given function only when
the function may be negative because we can use
logarithmic differentiation only when the function
concerned is positive in its domain; i.e. the sign of
absolute value is written only when the expression
standing under the sign of logarithm may have a
negative value in its domain.

– 1 0−∞ ∞
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(d) It should be noted that the derivative of any

function of y, say F (y), w.r.t. x is 
d

dy
F y

dy

dx
� � ⋅  i.e.

′ ⋅F y
dy

dx
� �  obtained by the rule of differentiating a

function of a function.

Problems based on second type

Form 1: Problems based on irrational functions.

Solved Examples

Find the differential coefficient of the following.

1. y x= −1 23

Solution: y x x= − = −1 123 2
1
3� �

⇒ = − = −y x x1 12 2
1
3

1
3

� � � �

⇒ = −log logy x
1

3
1 2� �

⇒ ⋅ = −
−

1 2

3 1 2y

dy

dx

x

x� �

⇒ = − ⋅
−

dy

dx

y x

x

2

3 1 2� �

⇒ =
−

−
= − ⋅

−
≠

dy

dx

x x

x

x

x
x

2 1

3 1

2

3

1

1
1

23

2 2

2
2
3� � � �

,

2. y
x

x
= +

−
�
�	



��

1

1

Solution: y
x

x
= +

−
�
�	



��

1

1

1
2

⇒ = +
−

y
x

x

1

1

1
2

⇒ =
+
−

= + − −log log log logy
x

x
x x

1

2

1

1

1

2
1

1

2
1� � � �

⇒ ⋅ =
−

−
= −

−

1 2

2 1

1

1
2 2y

dy

dx x x� � � �

⇒ = −
−

dy

dx

y

x
2

1� �

= +
−

�
�	



��
⋅ −

−
>x

x x
x

1

1

1

1
1

2� �
,

3. y x= cos3

Solution: y x x= =cos cos3
1
3� �

⇒ =y xcos
1
3

⇒ =log log cosy x
1

3

⇒ ⋅ = ⋅
−

= −1 1

3

1

3y

dy

dx

x

x
x

sin

cos
tan

� �

⇒ = − ⋅ ⋅ = − ⋅ ⋅dy

dx
y x x x

1

3

1

3
3tan cos tan

4. y
x

x
=

−
+

1

1

cos

cos

Solution: y
x

x
= −

−
�
�	



��

1

1

1
2cos

cos

⇒ =
−
+

= = =
⋅

y
x

x

x x x1

1 2 2 2

1
2

1
2

1
22

2cos

cos
tan tan tan

⇒ =log log tany
x

2

⇒ ⋅ = ⋅ ��


� ⋅

1 1

2
2

1

2

2

y

dy

dx x
x

tan
sec
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= ⋅ ⋅ =1

2
2

2

1

2

1

2
2 2

2

cos

sin cos sin cos

x

x x x x

⇒ = ⋅ =
−
+

⋅ ≠dy

dx
y

x

x

x
x x n

1 1

1sin

cos

cos
cosec , π

5. y
x x

x x
=

−
+

cos sin

cos sin

Solution: y
x x

x x
= −

+
�
�	



��

cos sin

cos sin

1
2

⇒ = −
+

y
x x

x x

cos sin

cos sin

1
2

⇒ =
−
+

log log
cos sin

cos sin
y

x x

x x

1

2

= − − +1

2

1

2
log cos sin log cos sinx x x x

⇒ ⋅ =
− +

−
−

−
+

1

2 2y

dy

dx

x x

x x

x x

x x

cos sin

cos sin

cos sin

cos sin

� �
� �

� �
� �

=
− + − −

−

sin cos cos sin

cos sin

x x x x

x x

� � � �
� �

2 2

2 22

=
− + − −

= −1 2 1 2

2 2

2

2 2

sin cos sin cos

cos cos

x x x x

x x

� � � �

= –sec 2x

⇒ = − ⋅dy

dx
y xsec2

= −
−
+

⋅
cos sin

cos sin
sec

x x

x x
x2

6. y = | cos x – sin x |
Solution: y = | cos x – sin x |

⇒ = −log log cos siny x x

⇒ ⋅ =
− −

−
=
− +

−
1

y

dy

dx

x x

x x

x x

x x

sin cos

cos sin

sin cos

cos sin

� �
� �

� �
� �

⇒ = − ⋅
+
−

dy

dx
y

x x

x x

sin cos

cos sin

� �
� �

=
− − ⋅ +

−
− ≠

cos sin sin cos

cos sin
cos sin

x x x x

x x
x x

� �
� � � �, 0

Note: Differentiation of mod of a function can be
performed easily by logarithmic differentiation.

Form 2: Problems based on product of two or more
than two differentiable functions.

Solved Examples

Find d.c. of y from the following.
1. xm yn = (x + y)m + n , nx my≠
Solution: xm yn = (x + y)m + n

⇒ ⋅ = + +x y x y
m n m n� �

⇒ ⋅ = + +x y x ym n m n

⇒ + = + +m x n y m n x ylog log log� �

⇒ + ⋅ =
+
+

⋅ +��


�

m

x

n

y

dy

dx

m n

x y

dy

dx
1

⇒ −
+
+

�
�	



�� ⋅ =

+
+

−n

y

m n

x y

dy

dx

m n

x y

m

x

⇒
+ − +

⋅ +
⋅

nx ny my ny

y x y

dy

dx

� � � �
� �

=
+ − +

+
mx ny mx my

x x y

� � � �
� �

⇒
−
+

⋅ =
−
+

nx my

y x y

dy

dx

nx my

x x y� � � �

⇒ = ≠ ≠dy

dx

y

x
x y; 0 0,

2. y = x (x2 + 1)
Solution: y = x (x2 + 1)

⇒ = ⋅ + = ⋅ +y x x x x
2 2

1 1� � � �

⇒ = ⋅ +y x x
2

1� �
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⇒ = + +log log logy x x
2

1� �

⇒ ⋅ = +
+

= +

+

1 1 2

1

1 3

1
2

2

2y

dy

dx x

x

x

x

x x� �

⇒ = ⋅ +

+



�

�
�
�

�

�

�
�
�
= ⋅ + ⋅ +

⋅ +



�

�
�
�

�

�

�
�
�

dy

dx
y

x

x x
x x

x

x x

1 3

1
1

1 3

1

2

2

2
2

2
� �

� �
� �

⇒ = +
dy

dx
x1 3

2
� �

Note: The above problem (2) can be differentiated in
a much simpler way by using directly the product
formulas but above method has been used only to
show the procedure of logarithmic differentiation is
also applicable.
3. y = x log x
Solution: y = x log x, x > 0

⇒ = = ⋅y x x x xlog log

⇒ = +log log log logy x x

⇒ ⋅ = + =
+

⋅
1 1 1 1

y

dy

dx x x x

x

x xlog

log

log

⇒ = ⋅
+

��
�
��
= ⋅

+
��

�
��
= +dy

dx
y

x

x x
x x

x

x x
x

log

log
log

log

log
log

1 1
1

4. y = x log y
Solution: y = x log y

⇒ = ⋅y x ylog

⇒ = +log log log logy x y

⇒ ⋅ = + ⋅1 1 1

y

dy

dx x y y

dy

dxlog

⇒ −
�
�	



�� =1 1 1

y y y

dy

dx xlog

⇒ = ⋅
⋅
−

�
�	



�� = −

=
−

2
dy

dx x

x y y

y

y

y

y

y

1

1 1 1

2
log log

log

log

log

log

log

� �

Note: The problems (1) and (4) belong to problems
of implicit function which can be done by using the
rule of implicit differentiation but above method has

been used only to show that the procedure of
logarithmic differentiation is also applicable in that
case.
5. y = sin x · sin 2x · sin 3x · sin 4x
Solution: y = sin x · sin 2x · sin 3x · sin 4x

⇒ = ⋅ ⋅y x x x xsin sin sin sin2 3 4

⇒ = + +log log sin log siny x x2  log | sin

3x | + log | sin 4x |

⇒ ⋅ = + + +1 2 2

2

3 3

3

4 4

4y

dy

dx

x

x

x

x

x

x

x

x

cos

sin

cos

sin

cos

sin

cos

sin

⇒ dy

dx
 = y · (cot x + 2 cot 2x + 3 cot 3x + 4 cot 4x)

⇒ dy

dx
 = (sin x · sin 2x · sin 3x sin 4x) · (cot x +

2 cot 2x + 3 cot 3x + 4 cot 4x)
6. y = x · | x |
Solution: y = x · | x |

⇒ = ⋅y x x

⇒ = +log log logy x x

⇒ ⋅ =
1 2

y

dy

dx x

⇒ = ⋅ =
⋅

=
dy

dx

y

x

x x

x
x2

2
2

Precaution:
1. Whenever we have to find the differential
coefficient of mod of a function by logarithmic
differentiation, the operation of taking the modulus
on both sides of the equation defining y as a function
of x is not performed but directly the operation of
taking logarithm on both sides of the equation defining
y as a function of x is performed just before the
differentiation.
2. Whenever we have to find the differential
coefficient of a function using the mod of a function,
the operation of taking the modulus and logarithm on
both sides of the equation just defining y as a function
of x must be performed respectively before the
differentiation.
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3. Whenever we have to find the differential
coefficient of a logarithmic function (i.e. y = log f (x) or
log log log … f (x)), we have not to perform both the
operation of taking the modulus and logarithmic
function of x but simply, we have to use the formula:

d

dx
f x

f x

f x
f xlog � � � �

� � � �=
′

>, 0 .

Examples
Find the differential coefficient of the following.
1. y = | x |
Solution: y = | x |

⇒ =log logy x

⇒ ⋅ =
1 1

y

dy

dx x

⇒ = =
dy

dx

y

x

x

x
, x ≠ 0

2. y
x

x
=

Solution: y
x

x
= , x ≠ 0

⇒ = =y
x

x
1  (� mod of a mod of a function

= mod of a function)

⇒ = = =log log logy 1 0 1 0�� �

⇒ ⋅ =
1

0
y

dy

dx

⇒ =
dy

dx
0

3. y = log (x2 + 1)
Solution: y = log (x2 + 1)

⇒ =
+

�

�
	




�
� ⋅ =

+

dy

dx x
x

x

x

1

1
2

2

1
2 2

Form 3: Problems based on quotient of two or more
than two differentiable functions.

Solved Examples

Find the differential coefficient of the following.

1. y
x x

e xx
=

⋅ +

⋅ +

sin3 2

4 3

1

5
1
3� �

Solution: y
x x

e xx
=

⋅ +

⋅ +

sin3 2

4 3

1

5
1
3� �

⇒ = + + − −log log sin logy x x x3
1

2
1 4

2
� �

1

3
5

3
log x +

⇒ ⋅ = +
+

− −
+

1
3

2

2 1
4

3

3 5
2

2

3y

dy

dx

x

x

x

x

x

x

cos

sin � � � �

⇒ = ⋅ +
+

− −
+

�

�
	




�
�

dy

dx
y x

x

x

x

x
3

1
4

5
2

2

3
cot

=
⋅ +

⋅ +
⋅ +

+
− −

+

�
�	



��

sin
cot

3 2

4 3
2

2

3

1

5
3

1
4

5
1
3

x x

e x
x

x

x

x

xx � �

2. y
x x

x x
=

− ⋅

+ ⋅

−

−

2 1

2 2

1

2 13
3
2

sin

tan� �

Solution: y
x x

x x
x=

− ⋅

+ ⋅
>

−

−

2 1

2 2

1

2

1

2 13
3
2

sin

tan� �
,

⇒ = − + −
−

log log log siny x x
1

2
2 1

1� �

3

2
2

1

3
2

2 1
log log tanx x+ − −
� �
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⇒ ⋅ =
−

+
−

−
−

1 2

2 2 1

1

11 2y

dy

dx x x x� � � �sin

3 2

2 2

2

3 2 1 4
2 1 2

⋅

⋅ +
−

+−

x

x x x� � � �tan

⇒ = ⋅
−

+
−

−
+

−
�

�
	
	 −

dy

dx
y

x x x

x

x

1

2 1

1

1

3

21 2 2
sin� �

2

3 2 1 4
1 2

tan
− +




�
�
�x x� �

=
− ⋅

+ ⋅
⋅

−

−

2 1

2 2

1

2 13
3
2

x x

x x
k

sin

tan� �

where k
x x x

x

x
=

−
+

⋅ −
−

+
−

�

�
	
	 −

1

2 1

1

1

3

21 2 2
sin� �

2

3 2 1 4
1 2

tan
− +




�
�
�x x� �

3. y
x x

x
=

⋅ +
+

2 22 1

1

� �

Solution: y
x x

x
=

⋅ +
+

2 22 1

1

� �

⇒ = + + − +log log log logy x x x2 2 2 1
1

2
1� � � �

⇒ = ⋅ +
+

−
+

�
�	



��

dy

dx
y

x x x

2 4

2 1

1

2 1� �

⇒ =
⋅ +

+
⋅ +

+
−

+
�
�	



��

dy

dx

x x

x x x x

2 22 1

1

2 4

2 1

1

2 1

� �
� �

4. y
x x x

x x
=

+ ⋅ + ⋅ +

⋅ +

1 3 7

2

3
4

5
3

4
3

2 3 7

� � � � � �

� �

Solution: y
x x x

x x
=

+ ⋅ + ⋅ +

⋅ +

1 3 7

2

3
4

5
3

4
3

2 3 7
� � � � � �

� �
, x > 0

⇒ = + + + +log log logy x x
3

4
1

5

3
3

2� � � �

7 7
1

2

4

3
23log log logx x x+ − − +� �

⇒ ⋅ =
+

+ ⋅ ⋅

+
+ ⋅

+
−1 3

4 1

5 2

3 3

7 3

7
2

2

3y

dy

dx x

x

x

x

x� � � � � �

1

2

4

3 2 2x x x
−

+ ⋅� �

⇒ = ⋅
+

+
+

+
+

−
�

�
	
	

dy

dx
y

x

x

x

x

x

3

4 1

10

3 9

21

7
2

2

3� � � � � �

1

2

2

3 2x x x
−

⋅ +




�
�
�� �

⇒ =
+ ⋅ + ⋅ +

⋅ +
⋅dy

dx

x x x

x x

1 3 7

2

3
4

5
3

4
3

2 3 7
� � � � � �

� �

3

4 1

10

3 9

21

72

2

3x

x

x

x

x+
+

+
+

+
−

�

�
	
	 � � � � � �

1

2

2

3 2x x x
−

+




�
�
�� �

5. y
x e ax

x x

mx

=
+ ⋅ ⋅

− ⋅ +

−
1

1 2

3
4

7
3

5
7

1� � � �
� � � �

sin
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Solution: y
x e ax

x x

mx

=
+ ⋅ ⋅

− ⋅ +

−
1

1 2

3
4

7
3

5
7

1� � � �
� � � �

sin

⇒ = + + +log logy x mx
3

4
1� �

log sin log
− − − − +1 7

3
1

5

7
2ax x x� � � �

⇒ ⋅ =
+

+ + ⋅

−
−

−

1 3

4 1

1

11 2 2y

dy

dx x
m

a

ax a x� � � �� �sin

7

3 1

5

7 2x x−
−

+� � � �

⇒ = ⋅
+

+ +
−

−
�

�
	
	 −

dy

dx
y

x
m

a

ax a x

3

4 1 11 2 2� � � �� �sin

7

3 1

5

7 2x x+
−

+


��� � � �

⇒ =
+ ⋅ ⋅

− ⋅ +
⋅

−
dy

dx

x e ax

x x

mx
1

1 2

3
4

7
3

5
7

1� � � �
� � � �

sin

3

4 1 1

7

3 1

5

7 21 2 2x
m

a

ax a x x x+
+ +

−
−

−
−

+

�

�
	
	




�
�
�−� � � � � � � �sin

Form 4: Miscellaneous problems.

Solved Examples

1. If log | xy | = x2 + y2, show that 
dy

dx

y x

x y
=

−

−

2 1

1 2

2

2

� �

� �
.

Solution: log | xy | = x2 + y2

⇒ ⋅ = +log x y x y� � 2 2

⇒ + = +log logx y x y
2 2

⇒ + ⋅ = + ⋅
1 1

2 2
x y

dy

dx
x y

dy

dx

⇒ −�
�	



�� = −1

2 2
1

y
y

dy

dx
x

x

⇒
−�

�
	




�
� ⋅ =

−1 2 2 1
2 2

y

y

dy

dx

x

x

⇒ =
−

−

dy

dx

y x

x y

2 1

1 2

2

2

� �

� �

2. If y = x sin y, show that 
dy

dx

y

x x y
=

−1 cos� � .

Solution: y = x sin y

⇒ = = ⋅y x y x ysin sin

⇒ = +log log log siny x y

⇒ ⋅ = + ⋅ ⋅1 1 1

y

dy

dx x y
y

dy

dxsin
cos

⇒ ⋅ − =1 1

y

dy

dx

y

y

dy

dx x

cos

sin

⇒ −
�
�	



�� =1 1

y

y

y

dy

dx x

cos

sin

⇒
−�

�	


�� =

sin cos

sin

y y y

y y

dy

dx x

1

⇒ =
−

=
−

dy

dx

y y

x y y y

y y

x y x y y

sin

sin cos

sin

sin sin cos� � � �

=
−

y y

x y x y

sin

sin cos1

=
−

y

x x y1 cos

Problems belonging to type (1)

(i): Problems based on irrational functions

Exercise 13.1.1

Find the differential coefficient of each of the
following.
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1. y
x

x
x=

−
+

>
2 1

2 1

1

2
, | |

2. y x x= + >1 1
3
2� � , –

3. y
x

x
x=

+
−

≠
1

1
13 , | |

4. y
x x x

x x
x=

+ −

+ +
>

1 2

1 2 3
2

23

� � � �
� � � �

,

Answers

1.
2

4 12

y

x −� �

2.
3

2 1
⋅

+
y

x� �

3.

−

−

2

3 1
2

y

x� �

4.
y

x x x

x

x x3

1 1

1

1

2

2

1

2

2 32
+

+
+

−
−

+
−

+



�
�
�

�

�
�
�

(ii) Problems based on product and quotient of
functions

Exercise 13.1.2

Find the differential coefficient of each of the
following.
1. y2 = x (x + 1) , x > 0

2. y
x x

x x
x

2
3

1
2

2

2
5

1 3 4

2 3 4
2=

+ ⋅ +

− −
>

� � � �

� � � �
,

3. y
x x

x
x=

⋅ +

+
>

2
1

1
0

2
3� �

,

4. y x
x

x
x

x=
−
+

�
�	



�� >

2 1

2 1

1

2
,

Answers

1.
y x

x x

2 1

2 1

+
+

� �
� �

2.
3

2

2

1

3
2

3 4

2
5

2 3

2
5

4
2 2

y x

x x x

x

x+
+

+
−

−
−

−



�

�
�
�

�

�

�
�
�

3. y
x

x

x x

1

1

2

3 12
+

+
−

+



�
�
�

�

�
�
�� �

4. y x
x

1
4

4 1
2

+ +
−



�
�
�

�

�
�
�

log

(iii) Problems based on exponential composite
functions

Exercise 13.1.3

Find the differential coefficient of each of the
following.
1. y = xsin x, x > 0
2. y = (sin x)tan x, sin x > 0
3. y = xlog x, x > 0
4. y = xx, x > 0
5. y = (ax)bx, x > 0
6. xy = e y – x, x > 0
7. y = etan x

8. y e
x

x

= , x > 0

9. y e
e

x

=
10. y = elog sin x, sin x > 0
11. xy = ex – y, x > 0

12. y e
x x

=
1

, x > 0

Answers

1. y
x

x
x x

sin
cos log+ ⋅

��
�
��
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2. y x x⋅ + ⋅1 2sec log sin

3.
2y x

x

log

4.
2

x
x x

x
⋅ ⋅

log
log� �

5. b ax axbx� � ⋅ +1 log , a > 0

6.
2

1 2

−
−

log

log

x

x� �
7. Find

8. e x x
x

x
x

⋅ ⋅ +1 log� �

9. e e
e

x
x

⋅
10. cos x

11.
y x

x x

log

log1 +� �

12. e x x
x x x

x

1
1 2

1
�

�
	



�
� ⋅ ��	



�� ⋅ −

−

log� �

(iv) Problems based on the sum of two differentiable
functions

Exercise 13.1.4

Find the differential coefficient of each of the
following.

1. y
x

x x
x

x= ��	


�� + >1

0
1

,

2. y x x x
x x= + < <

tan cottan� � , 0
4

π

3. y x x xx x= + < <sin tantan sin� � � � , 0
2

π

4. y x x x
x x= + >2

2 0� � ,

5. y x x x
x x= + >log

log� � , 1

6. y x x x
x

= + < <
sin

sin� � 3
2 0

2
,

π

7. y x x xx= + −
sin sin� � 1

Answers

1. −��	


�� ⋅ + + ⋅

−�
�	



��

1
1

11

2x
x x

x

x

x

xlog
log� �

2. x
x

x
x x x

x xtan cottan
sec log tan⋅ + ⋅�

�	


�� +

2 � �

cosec log tan2 1x x⋅ −� �

3 . sin sec log sin tantan sinx x x xx x� � � � � �⋅ + ⋅ + ⋅1
2

sec cos log tanx x x+ ⋅� �

4. 2 1 2 1 22x x x xx x⋅ + + ⋅ +log log� � � � � �

5. 2
1

x
x

x
x

x
xx xlog log

log
log

log log⋅ ��	


�� + ⋅ +

�
�	



��� �

6. x
x

x
x x x xxsin sin

cos log cos sin⋅ + ⋅�
�	



�� +

3

2

7. sin cot log sin sinx x x x
x

x
xx� � � �⋅ + +

−
+ −

1
2

1
,

0 < x < 1.

(v) Miscellaneous problems.

Exercise 13.1.5

1. If x e
x
y= , show that 

dy

dx

x y

x x
=

−
log

.

2. If xp yq = (x + y)p + q, x > 0, y > 0, show that

dy

dx

x

y
qx py= ≠, .

3. If ex + y = ex + ey, show that 
dy

dx
e

e

e
y x

y

x
=

−
−

− 1

1
.

4. If xy = ex – y, show that 
dy

dx

x

x
x=

+
>

log

log1
0

2� �
, .
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Problems belonging to type (2)

(i) Problems based on square root of functions

Exercise 13.2.1

Find the differential coefficient of each of the
following.

1. y x x= + +1 2� �� �

2. y
x a

x a
=

+
−

3. y
a x

a x
= −

+

2 2

2 2

4. y ax= 2
23

5. y x= −5
2

1
2

� �

6. y x= 5
3

7. y x x= − +
2

7 4

8. y x= −2 9

9. y x=

10. y x=

11. y x= sin

12. y x= sin3

13. y x= tan 3

Answers (with proper restrictions on x)

1.
1

2

2 3

1 2
⋅

+

+ +

x

x x� �� �

2.
a

a x

x a

x a2 2
−

�

�
	




�
� ⋅

+
−

�
�	



��

3.
2

2

4 4

2 2

2 2

a x

x a

a x

a x−

−

+

�

�
		




�
��

4. Find
5. Find

6. Find
7. Find
8. Find
9. Find
10. Find
11. Find
12. Find
13. Find

(ii) Problems based on the product of two or more
than two differentiable functions

Exercise 13.2.2

Find 
dy

dx
 of each the following.

1. y = cos x · cos 2x · cos 3x · cos 4x

2. y x x x= − ⋅ + ⋅ −�
�	



��
−

3 2 12 2
1

� �

3. y x x e x x
x x= ⋅ ⋅ ⋅tan log � �

4. y = (sin–1 x) · (cos x)x

5. y x x x
x= ⋅ +�
�	



�� ⋅sin sin� � 1

2

6. y = xx · log x · sin x
7. y = sin x · sin 2x · sin 3x · sin 4x

Answers
1. –cos x · cos 2x · cos 3x · cos 4x · (tan x + 2 tan 2x +
3 tan 3x + 4 tan 4x)

2 . x x x x x− ⋅ + ⋅ ⋅ + ⋅ + − ⋅
−

3 2
1

2
1 2 3

2 2 2
3
2� � � � � �

x x
x

x
x

2
1

2
1

1

2
2

2

1
2 3

1
2+�

�	


�� ⋅ ⋅ + +

+

+
⋅ −

−
−� � � �

and simplify.

3. y x
x x x

⋅ + + +

�
�

�
�
�2

2 3

2
log

sin log

4. y
x x

x x x⋅
−�

�	


��

+ −



�

�
�
�
�

�

�

�
�
�
�

−

1

1
2 1

sin
log cos tan
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5. y x x x
x

x
x⋅ + +

+
+


�
�
�

�
�
�
�

logsin cot cot
1 2

6. 1
1+ + +

�
�	



�� ⋅ ⋅


�
�

�
�
�log cot

log
log sinx x

x x
x x x

x

7. sin x · sin 2x · sin 3x · sin 4x (cot x + 2 cot 2x + 2 cot
3x + 4 cot 4x)

(iii) Problems based on quotient of two or more than
two differentiable functions

Exercise 13.2.3

Find 
dy

dx
 of each of the following.

1. y
x x

x
=

−2
3
2sin� �

2. y
x x

x e
x

=
+ ⋅ −

+ ⋅

1 1

4

2

2

� �
� �

3. y
x x

x
=

+ ⋅ +

+

2 3 5

3 1

1
3

1
22

2 2

� � � �

� �

4. y
x x x

x x
=

+ ⋅ − ⋅ +

− ⋅ +

3 4 2 3 4

2 3 4 1

1
2

1
3

1
3

2
3

2� � � �
� � � �

5. y
x

x x
=

−

+ ⋅ −

5 2

5 3 5 4

3
2

5
2 2

� �
� � � �

6. y
x x

x

x

= ⋅ ⋅10

2

2 1
3cot

sin

Answers (with proper restrictions on x)

1.
2 3x x x x x x

x x

− + ⋅ −cos sin sin� � � �

2.
x x

x e

x

x

x

xx

+ ⋅ −

+ ⋅
⋅

−

−
−

+
+



�

�
�
�

�

�

�
�
�

1 1

4

5 3

2 1

6

4

2

2 2

� �
� � � �

3. y
x

x

x

x

x
⋅

+
+

+
−

+



�
�
�

�

�
�
�

2

3 2 3 5

12

3 1
2 2� �

4. y
x x

x

x x x
⋅

+
−

−
+

+
+

−
−

+



�

�
�
�

�

�

�
�
�

3

2 3 4

3

2 2 3

2

3 4

1

2 3

8

3 4 12� � � � � � � � � �

5.
5 2

5 3 5 4

3

5 2

15

2 5 3

8

5 4

3
2

5
2 2

−

+ ⋅ −
−

−
−

+
+

−

�
�

�
�
�

x

x x x x x

� �
� � � � � �

6. 10

2
10 4 2

1

3
2 2

2
2

1
3x

e
x x

x
x x

x
x

⋅ ⋅
⋅ − ⋅ + −

cot

sin
log cosec cot� �

(iv) Problems based on exponential composite
functions

Exercise 13.2.4

Find 
dy

dx
 of each of the following.

1. y = (sin x)sin x

2. y = (log x)x

3. y = (tan–1 x)sin x

4. y x
x

=
2

5. y = (log x)log x

6. xy = ysin x

7. y = xx

8. y x x=
−sin 1

9. y = (1 + x)log x

10. y = (sin x)tan 3x

11. y x
x

x

=
12. y = (tan x)sin x

13. y = xy

14. y = (cos x)log x

15. ysin x = xsin y

16. y x
x

=
−

cot
1

1

� �
17. ytan x = xtan y

18. (sec x)y = (tan y)x
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19. y = (x log x)log log x

20. y = xtan x

21. y x
y

x

=
Answers
1. (sin x)sin x · [cos x · (1 + log sin x)]

2. log
log

log logx
x

xx� � ⋅ +

��

�
��

1

3. tan
sin

tan
cos log tan

sin−
−

−⋅
+

+ ⋅


�
�
�

�

�
�
�

1

1 2
1

1
x

x

x x
x x

x

� �
� �

4. x x x
x
2

1 2⋅ ⋅ + log� �

5. log log loglogx
x

x
x� � � �⋅ ⋅ +

1
1

6.
y

x

y x y

x y x
⋅

− ⋅
−


��

�
��

cos log

sin log

7. xx · (1 + log x)

8. x
x

x

x

x

xsin log sin−

−
+



�
�
�

�

�
�
�

−1

1
2

1

9. 1
1

1
+ ⋅

+
+

+

��

�
��

x
x

x

x

x
x� � � �log log log

10. (sin x)tan 3x · [3 sec2 3x log sin x + tan 3x · cot x]

11. x x x
x

x
x

⋅ ⋅ +1 log� �

12. Find

13.
y

x y x

2

1 − log� �

14. cos
log cos

log tanlogx
x

x
x x

x� � ⋅ − ⋅
��

�
��

15.
x y x y

y x y x

y

x

log cos sin 

log cos sin

−
−


�
�

�
�
� ⋅

16. cot
logcot

cot

−
−

−
⋅ − −

+



�

�
�
�

�

�

�
�
�

1
1

2 2 1

1 1

1
x

x

x x x x

x

� �
� �

17.

sec log tan

sec log tan

2

2

1

1

x y
x

y

y x
y

x

⋅ − ⋅

⋅ −

18.
log tan tan

log sec cosec sec

y y x

x x y y

−
− ⋅

19. x x
x x

x x

x x

x x
xlog

log log

log

log loglog

log
loglog� � � � � �

⋅ +
+ ⋅

�
�
�

1

20. x x x
x

x

xtan
sec log

tan
⋅ ⋅ +
��

�
��

2

21.
y

x

y

x

x x y

x y
�
�


� ⋅
�
�	



�� ⋅

+
−

�
�	



��

log

log

log log

log

1

1

(v) Problems based on the sum of two or more than
two exponential composite (or, other) functions

Exercise 13.2.5

Find 
dy

dx
 of each of the following.

1. y = x1 + x + log x
2. y = xcos x + sin log x
3. y = xx + etan x

4. y = log log x + 2sin x

5. y = xx + xsin x

6. y x x
x x= +

1

7. y = xsin x + (sin x)x

8. y = xtan x + (sin x)cos x

9. y = xx + (log x)x

10. y = xsin x = 107

11. y e x x= sin 3

12. y = xsin x + 5x2

13. y = (sin x)cos x + (cos x)sin x

14. y = (log x)tan x + (tan x)log x
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15. y = xn · log x + x (log x)n

16. y = x3 + (log x)x

Answers

1. x x
x

x x
x1 1 1+ +

+
��

�
��
+log

2. x x x
x

x

x

x

xcos
sin log

cos coslog
− ⋅ +
��

�
��
+

3. x x e x
x x

1
2+ + ⋅log sec

tan� �

4.
1

2 2
x x

x
x

log
log cos

sin+ ⋅ ⋅

5. x x x
x

x
x x

x x
1 + + + ⋅

��
�
��

log
sin

cos log
sin� �

6. x x x xx x1 1
1 2+ + ⋅ −−log log� � � �

7. x x x
x

x
x x x xx xsin cos log

sin
sin logsin cot⋅ + �

��
+ ⋅ +


��

�
��

� � � �

8. x x x
x

x
x

x xtan cossec log
tan

sin
2

⋅ +
��

�
��
+ ⋅� �

(cos x · cot x – sin x · log sin x)

9. x x x x
x

x x1
1+ + ⋅ +

�
�	



��log log log log

log
� � � �

10. x
x

x
x x

xsin sin
cos log+ ⋅

��
�
��

11. e x x x
x xsin

sin cos
3

3 3 3
3+ +� �  (tan x)x [log

tan x + x cot x · sec2 x]

12. x x x
x

x
x

xsin
cos log

sin
⋅ +
��

�
��
+ 10

13. sin sin log sin
cos

sin
coscos sinx x x

x

x
xx x� � � �− +

�

�
	




�
� + ⋅

2

cos log cos
sin

cos
x x

x

x
⋅ −

�

�
	




�
�

2

14. log
tan

log
log log sec tan

tan log
x

x

x x
x x x

x x� � � � � �+ ⋅

�
�

�
�
�+ ⋅2

sec log cosec
log tan

x x x
x

x
⋅ ⋅ +

��
�
��

15. x n x x x n
n n− −⋅ + + ⋅ +1 11log log log� � � � � �

16. 3
12

x x
x

xx+ +

��

�
��

log
log

log log� � � �

(vi) Miscellaneous problems

Exercise 13.2.6

1. If sin y = x sin (a + y), show that

dy

dx

a y

a
=

+sin

sin

2 � �

2. If y ey = x, show that 
dy

dx

y

x y
=

+1� � .

3. If y = x ey, show that 
dy

dx

y

x y
=

−1� � .

4. If y x x= − +1 1� �� � , show that

1 0
2

− + =x
dy

dx
xy� �

5. If y
x

x
=

−
+

1

1
, show that

1 0
2− + =x

dy

dx
y� �

6. If y x x=
1

, show that 
dy

dx
 vanishes when x = e.

7. If x = cos (xy), show that dy

dx

y x

x x
=
− + −�
�	



��

−

1 1

1

2

2
;

for 0 < <xy π .
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8. If y = xexy, show that 
dy

dx

y xy

x xy
=

+
−

1

1

� �
� � .

9. If ex = xy, show that 
dy

dx

x

x
= −log

log

1
2� � .

Problems on Binomial Coefficients

One can find many equalities with the help of a given
binomial expansion in terms of binomial coefficients.

Working rule: It consists of following steps:

Step 1: Differentiate both sides of the given condition
(1 + x)n = c0 + c1 x + c2 x2 + … + cn x

n w.r.t. x
Step 2: Either put x = 1, 2, 3, … etc if each term is
positive in the required result or put x = –1, –2, –3, …
etc. if term are for each term being alternatively positive
and negative in the required result.

Solved Examples

1. (1 + x)n = c0 + c1 x + c2 x
2 + … + cn x

n, show that c1
+ 2c2 + 3c3 + … + n cn = n 2n – 1

Solution: Given condition is (1 + x)n = c0 + c1 x + c2 x
2

+ … + cn xn differentiating both sides of the given
condition w.r.t. x, we have n (1 + x)n – 1 (1 + 0)=0 + c1 ·

1 + c2 2x + … + n xn–1 cn � c0 1=� � …(i)

Now, putting x = 1 in (i), we have

n c c c n cn
n1 1 2 31

1 2 3+ = + + + + ⋅−� � ...

⇒ ⋅ = + + + +−
n c c c nc

n
n2 2 3

1
1 2 3 ...  which is

the required result.

2. If (1 + x)n = c0 + c1 x + c2 x2 + … + cn x
n, show that

c c c n cn
n1 2 3

12 3 1 0− + + + − ⋅ ⋅ =−... � �
Solution: Given condition is (1 + x)n = c0 + c1 x + c2 x

2

+ … + cn xn differentiating both sides of the given
condition w.r.t. x, we have

n x c c x nx cn n
n1 0 1 21

1 2
1

+ = + ⋅ + ⋅ + +− −� � ...  …(i)

Now putting x = –1 in (i) (� terms in the required
result are alternatively +ve and –ve), we get

n c c c c nn
n

n1 1 2 3 11
1 2 3

1− = − + + + ⋅ −− −� � � �...

⇒ = − + − + ⋅ − −0 2 3 11 2 3
1c c c c nn

n... � �  which

is the required result. (Note: Positive and negative
are shortly written +ve and –ve respectively.

Notes: (A): When the last term of the given equality
to be proved contains kn + r, where k, r and n are
positive integers, then one should note that (1) x is to
replaced by xk on both sides of the given condition, k
being the coefficient of n. (2) the expression obtained
after x being replaced by xk should be multiplied by
xr, where r is the addend in kn + r (3) the expression
obtained in step (2) should be differentiated w.r.t.
x and lastly either the substitution x = 1, 2, 3, …etc or
x = –1, –2, –3, … etc is made accordingly as whether
terms in the required equality to be proved are positive
or alternatively positive and negative.

(B): When the last term in the equality to be proved
has n2, one should multiply both sides of the equality
(obtained after differentiating the given condition)
by x.

3. If (1 + x)n = c0 + c1 x + c2 x
2 + … + cn xn, show that

c1 + 22 c2 + 32 c3 + … + n2 cn = n (n + 1) 2n – 2

Solution: Given condition is (1 + x)n = c0 + c1 x +
c2 x2 + … + cn x

n whose last term is n2 cn.
Now, differentiating both sides of the given

condition w.r.t. x, we get
n (1 + x)n–1 = c1 x + 2x c2 + 3 x2c3 +… + nxn–1 cn …(i)

Multiplying both sides of (i) by x, we get
n (1 + x)n–1 · x = c1 x + 2x2 c2 + 3 x3c3 +… + nxn cn …(ii)

Again differentiating both sides of (ii), w.r.t. x, we
get
n [1 · (1 + x)n–1 + n (n – 1) (1 + x)n – 2 · 1] = c1 +
      22x c2 + 32 x2c3 +… + n2 xn–1 cn …(iii)

Lastly, putting x = 1 (iii), we get

c c c n cn1
2

2
2

3
2

2 3+ + + + ⋅...

= + − = ⋅ + −
− − −

n n n n
n n n

2 1 2 2 2 1
1 2 2� � � �

= + −
n n

n
1 2

2� �  which is the require result.

Remark: On putting x = –1 in (iii), we get

c c c c n c nn
n1

2
2

2
3

2
4

1 2
2 3 4 1 0 0 0− + − + + − = + =−... � � � �

4. If (1 + x)n = c0 + c1 x + c2 x
2 + c3 x

3 +  … + cn x
n,

show that c0 + 2c1 + 3c2 + … + (n + 1) cn = 2n – 1 (2 + n).
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Solution: Given condition is (1 + x)n = c0 + c1 x +
c2 x

2 +  … + cn xn whose last term has (nk + r) = n + 1
for k and r = 1 multiplying both sides of the given
condition by x, we get

x (1 + x)n = c0 x + c1 x2 + c2 x3 + … + cn x
n + 1  …(i)

Now, differentiating both sides of (i) w.r.t. x, we get
1· (1 + x)n x + n · (1 + x)n – 1 = c0 + 2x c1 + 3x2 c2 +

… + cn (n + 1) xn …(ii)
Putting x = 1 in (ii), we get the required result
2n + 1· n + 2n –1 = c0 + 2c1 + 3c2 + … + (n + 1) cn =

2n – 1 (2 + n)

5. If (1 + x)n = c0 + c1 x + c2 x2 + … + cn x
n, show that

c0 + 3c1 + 5c2 + … + (2n + 1) cn = 2n (n + 1).
Solution: Given condition is (1 + x)n = c0 + c1 x +
c2 x

2 + … + cn x
n whose last term has (nk + r) = 2n + 1

for k = 2 and r = 1 on replacing x in each term of the
given condition by x2, we get
(1 + x2)n = c0 + c1 x2 + c2 x

4 + … + cn x2n …(i)
on multiplying both sides of (i) by x (since additive

constant in 2n + 1 is 1), we get
x (1 + x2)n = c0 x + c1 x3 + c2 x

5 + … + cn x2n + 1    ...(ii)

Now, differentiating both sides of (ii) w.r.t. x, we
get

1 · (1 + x2)n + x · n · (1 + x2)n – 1· 2x
= c0 + c1 · 3 · x2 + c2 · 5 · x4 + ... + cn (2n + 1) x2n

…(iii)
Lastly, on putting x = 1 in (iii), we get the required

result c0 + 3c1 + 5 · c2 + … + (2n +1) cn
= 2n + n · 2n – 1 · 2 = 2n (1 + n)

Exercise 13.3

1. If (1 + x)n = 1 + c1 x + c2 x
2 + c3 x

3 + … + cn xn, show
that
(i) c0 + 2c1 + 2c2 + 4c3 + … + (n + 1) cn = (n + 2) · 2n – 1

(ii) c0 – 2c1 + 3c2 – 4c3 + … + (–1)n (n + 1) cn = 0
(iii) c1 – 2c2 + 3c3 – … + (–1)n – 1 · n  cn = 0
(iv) c1 – 22c2 + 32c2 – 42c4 + … + (–1)n – 1 · n2  cn = 0

2. If (1 + x)n = 1 + c1 x + c2 x2 + c3 x3 + … + cn x
n, find

the values of
(i) c0 + 2c1 x + 3c2 x

2 + … + (n + 1) cn xn

(ii) c1 + 22c2 + 32c3 + 42c4 … + n2 cn



Successive Differentiation 567

14

Successive Differentiation

Question: What do you mean by successive
differentiation?
Answer: The process of finding derivatives of the
derivatives in succession is called successive
differentiation.

Explanation: A function may be differentiated more
than once in the following way.

We know that differential coefficient of a function
f (x) in general is itself a function of x known as derived
function of x or first derivative of the function f (x)
symbolised as ′f x� �  indicating f (x) has been
differentiated the first time, the first derivative ′f x� �
can be differentiated to obtain the second derivative
of the function f (x) symbolised as ′′f x� � indicating f
(x) has been differentiated two times. After the derived
function ′f x� � having been differentiated second
time, the second derivative ′′f x� �   can be
differentiated third time providing us again a function
of x knwon as third derivative symbolised as ′′′f x� �
indicating f (x) has been differentiated three times.
This process of getting a derived  function may go on

indefinitely and after the derived function f xn − 2� �� �
is differentiated n − 1� � th derivative f xn − 1� �  is
obtained which again can be differentiated providing
us again a function of x known as nth derivative symbo-
lised as f xn � �  indicating f (x) has been differentiated
n-times. This process of differentiation of a function
f (x) repeated more han one successively or the process
of finding derivatives one after the other from a given
function f (x) is known as successive differentiation.

Remember:
1. If y be a function of x, the derived function ′f x� �
will be in general itself  a differentiable function of x
except perhaps at those points at which derived
function ′f x� � becomes undefined.
2. Points at which f (x) or ′f x� � are undefined are
knwon as points of discontinuities of f (x) or ′f x� �
respectively.
3. Points of discontinuities of the function f (x) are
also the  points of  discontinuities of the given

function ′f x� �.
Question : How would you differentiated

successively y x= 6 ?

Answer: � y x= 6

First derivative= = = =−y
dy

dx
x x1

6 1 56 6� �

Second derivative

= = �
�
�
� = = × × =−y

d

dx

dy

dx

d y

dx
x x2

2

2
5 1 46 5 30� �

Third derivative

= =
�

�
	

�

�

 =y

d

dx

d y

dx

d y

dx
3

2

2

3

3

= × × = ⋅−30 4 1204 1 3
x x� �� �

Fourth derivative

= =
�

�
	

�

�

 =y

d

dx

d y

dx

d y

dx
4

3

3

4

4
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= × × = ⋅−120 3 3603 1 2
x x� �� �

Fifth derivative

= =
�

�
	

�

�

 =y

d

dx

d y

dx

d y

dx
5

4

4

5

5

= × × = =−360 2 720 7202 1 1
x x x� �� �

Sixth derivative

= =
�

�
	

�

�

 =y

d

dx

d y

dx

d y

dx
6

5

5

6

6

= × × = = ⋅ =−720 1 720 720 1 7201 1 0
x x� �� �

Seventh derivative

= =
�
�	

�
�

= =y

d

dx

d y

dx

d y

dx
7

6

6

7

7 0

Eighth, 9th , . . . . . . . nth derivative = 0

Question: How would you differentiate successively

y x= sin ?

Answer: � y x= sin

∴ =y x1 cos = +�
�

�
�sin

π
2

x

y x2 = − sin y x x2 2
2

2
= +�

�	
�
�
 = ⋅ +�

�	
�
�
cos sin

π π

y x3 = − cos y x x3 2
2

3
2

= ⋅ +�
�

�
� = ⋅ +�

�
�
�cos sin

π π

y x4 = sin :
y x5 = cos :
y x6 = − sin :
y x7 = − cos :

y x8 = sin y n xn = ⋅ +�
�

�
�sin

π
2

N.B.: We inspect (1) y y1 3, ....., y xn2 1+ = ± cos ,
alternatively +ve and –ve  (2) y y2 4, ,.....,
y xn2 = ± sin ,  alternatively + ve and – ve provided
y x= sin .

Notation: If y f x= =� �  a function of independent
variable x, then the differential coefficient (or,
derivatives or derived function) of  first, second, third,

fourth, fifth, and higher orders can be denoted by
any one of the following notations.

1.
dy

dx
,  

d y

dx

2

2 ,  
d y

dx

3

3 , 
d y

dx

4

4 ,  ..., 
d y

dx

n

n  denoting that a

function y f x= � � has been differentiated one time,
two times, three times, four times, ..., n times as well as
first, 2nd, 3rd, 4th derivative, ..., n th derivative of
some function y f x= � �. Hence to differentiate a
function  y f x= � �  n-times means to find n th
derivative of the function y f x= � �
2. Dy, D y2 , D y3 ,  D y4 , ..., D yn , (n being any + ve
integer) which is known as capital  D - notion..

3. ′f x� � ,  ′′f x� � , ′′′f x� � ...... , f xn � �  (n being any +

ve integer)

4. ′y , ′′y , ′′′y , ...... , yn  (n being  + ve integer)

5. y1 , y2 , y3 ,  ....... , yn  (n being  + ve integer)

6. f x1� � � �, f x2� � � �, f x3� � � �, ...... f xn� � � � ,    (n being  +

ve integer)

7. D yx , D yx
2 , D yx

3 ,  ...... D yx
n  (n being any + ve

integer)

Nomenclature: Read as (Nomenclature)
Notation
dy

dx
dee wy over dee eks

or, dee wy by dee eks
d y

dx

2

2 dee two wy over dee eks two

or, dee two wy by dee eks squared
d y

dx

3

3 , dee three wy over dee eks three

or, dee three wy by dee eks cubed

�

d y

dx

n

n dee en wy over dee eks en

or, dee en wy  by dee eks en

Note: 1. The first notation 
dy

dx
,  

d y

dx

2

2 ,  
d y

dx

3

3 ,  ..., 
d y

dx

n

n

is in common use.
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2. The capital D-notation or dash notation

i.e;  dy,  d or
2

y d y d y y y y y
n n

, ,..., , , ,...,
3

′ ′′ ′′′� �
is used when the independent variable w.r.t which we
differentiate is understood. The capital D or dash
notation has the disadvantage of not indicating the
variable with respect to which the differentiation is
carried out. This is why it is convenient to use the

symbol  
dy

dx
 to mean the operation of finding the

derivative with respect to x.

3.
d y

dx

d

dx

dy

dx

d

dx
y

d y

dx

2

2

2 2

2= �
�
�
� =
�
�
�
� ⋅ =� �

. . .

. . .

d

dx

d

dx

d

dx

d

dx

n n

n
�
�
�
� = ⇔ �

�
�
�  (... upto n times)

which requires the operand y = a function of an
independent variable x f x= � �  put in the last of the
operator.
4. The derivative of a function of an independent
variable = First derivative of the given function of an
independent variable or simply first derivative.

Derivative of first derivative = second derivative
of the original function or simply second derivative.

Derivative of second derivative = third derivative
of the original (or, given) function or simply third
derivative.

Derivative of third derivative = Fourthond
derivative of the original function or simply fourth
derivative.

. . .

. . .

Derivative of n − 1� �  derivative = nth derivative

of the original function or simply nth derivative.
5. Second and higher order derivatives of a function
are called higher derivatives and the process of finding
them is called successive differentiation.

6. Care must be taken to distinguish between 
d y

dxn

2

and 
dy

dx

n�
�
�
� ·

d y

dx

n

n   means the nth differential coefficient

of function of x  whereas 
dy

dx

n�
�
�
� means the nth power

of the first differential coefficient of function of x.

Problems based on finding higher derivatives

Examples worked out:

1. Differentiate y x x x= + − +3 25 7 2  four times.

Solution: � y x x x= + − +3 25 7 2

∴ = + −y x x1
23 10 7

y x

y

y

2

3

4

6 10

6

0

= +
=
=

2. Differentiate y e x
x= + log  three times.

Solution: � y e x
x

= + log , x > 0

∴ = +y e
x

x
1

1

y e
x

x
2 2

1
= −

y e
x

xx
3 3

2
0= + >,

3. If y x= log  find y4 .

Solution: � y x= log , x > 0

∴ =y
x1
1

y
x

2 2

1
= −

y
x

3 3

2=

y
x x

4 4 4

2 3 6
= − = −

. , x > 0

4. If y emx= , find y2 .

Solution: � y emx=

∴ =y m emx
1

y m me m emx mx
2

2= ⋅ =
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Working rule to find second derivative from the
equations of a curve given in parametric form:

x x t y y t= =� � � �,

1. Find 
dy

dx

dy

dt
dx

dt

=

2.
d y

dx

d

dt

dy

dx

dt

dx

2

2
= 

��
�
��
⋅   should be used

3. Write 
dt

dx dx

dt

= 1
 and simplify.

Examples worked out on finding second derivative
of parametric equations of a curve

Question: 1. Find 
d y

dx

2

2   provided

x a= cosθ

y a= sinθ
Solution:

d x

d

d a

d

d

d

d

d
a

2

2

2

2
θ

θ

θ θ θ
θ= =


��

�
��

cos
cos

� � � �

= − = −d

d
a a

θ
θ θsin cos ...(1)

d y

d

d a

d

d

d

d

d
a

2

2

2

2
θ

θ

θ θ θ
θ= =


��

�
��

sin
sin

� � � �

= − = −d

d
a a

θ
θ θcos sin ...(2)

dx

d

d a

d
a

θ
θ

θ
θ= = −

cos
sin

� �
...(3)

Now, using the formula,

d y

dx

d y

d

dx

d

d x

d

dy

d

dx

d

2

2

2

2

2

2

3
=

⋅ − ⋅


��
�
��

θ θ θ θ

θ

=
− ⋅ − − −

−
≠

a a a a

a
n

sin sin cos cos

sin

θ θ θ θ

θ
θ π

� � � � � �
� �3

,

=
+

−
=
−

=
−a a

a

a

a a

2 2 2 2

3 3

2

3 3 3

1sin cos

sin sin sin

θ θ

θ θ θ

Or, alternatively,

dy

dx

dy

d
dx

d

a

a
= =

−
= −

θ

θ

θ
θ

θ
cos

sin
cot ...(1)

d

dx

dy

dx

d

d

d

dx

��
�
��
= − ⋅

θ
θ

θ
cot

= ⋅cosec
2 1θ

θ
dx

d

= ⋅
−

cosec
sin

2 1θ
θa � �

= − ≠1
3a

n
sin θ

θ π,

2. If x = −2 2cos cosθ θ , y = −2 2sin sinθ θ ,

find 
d y

dx

2

2 .

Solution: x = −2 2cos cosθ θ

           y = −2 2sin sinθ θ
dx

d θ
θ θ θ θ= − − × = −2 2 2 2 2sin sin sin sin� �   ...(1)

dy

d θ
θ θ θ θ= − = −2 2 2 2 2cos cos cos cos( ) � �

...(2)

dy

dx

dy

d
dx

d

= =
−
−

θ

θ

θ θ
θ θ

2 2

2 2

cos cos

sin sin

� �
� � [ using (1) and (2)]
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=
−
−

cos cos

sin sin

θ θ
θ θ

2

2

=
⋅

⋅
= �

�	
�
�


2
3

2 2

2
3
2 2

3

2

sin sin

cos sin
tan

θ θ

θ θ
θ

...(3)

∴ = �
�
�
� =

�
�
�
� ⋅

d y

dx

d

dx

dy

dx

d

d

dy

dx

d

dx

2

2 θ
θ

= �
�	

�
�
 ⋅

d

d

d

dxθ
θ θ

tan
3

2

= �
�	
�
�
 ⋅ �
�	
�
�


3

2

3

2

12
sec

θ

θ
dx
d

= ⋅ �
�	
�
�
 ⋅ −

3

2

3

2

1

2 2

2
sec

sin sin

θ
θ θ� �    [ using (1)]

= ⋅

�
�
�
�

−
3

2

3

2
2 2

2
sec

sin sin

θ

θ θ� �

= ⋅

�
�
�
�

⋅
= ⋅

⋅

3

4

3

2

2
3
2 2

3

8

1

2
3
2

2

2

sec

cos sin sin cos

θ

θ θ θ θ
,

for θ π
π

≠ +2 2 1
3

n n, � �

3. If x a= sec3 θ  y a= tan
3 θ  find 

d y

dx

2

2 .

Solution: x a= sec3 θ

y a= tan
3 θ

dx

d
a

θ
θ θ θ= ⋅ ⋅ ⋅3 2sec sec tan� � ...(1)

dy

d
a

θ
θ θ= ⋅ ⋅3

2 2
tan sec� � ...(2)

dy

dx

dy

d
dx

d

a

a
= =

⋅
⋅

= =
θ

θ

θ θ
θ θ θ

θ
θ

θ
3

3

2 2

2

tan sec

sec sec tan

tan

sec
sin

� �

...(3)

d y

dx

d

d

d

dx dx
d

2

2

1= ⋅ = ⋅sin
cos

θ
θ

θ θ

θ

=
⋅ ⋅ ⋅ ⋅

=
⋅

≠
cos

sec sec tan

cos cotθ
θ θ θ

θ θ
θ π

a a

n

n3 32

4

,

4. If x a= −θ θsin� �  y a= −1 cosθ� � , Find 
d y

dx

2

2

Solution: x a= −θ θsin� �
y a= −1 cosθ� �

dx

d
a

d

dx aθ
θ

θ
θ

= − ⇒ =
−

1
1

1
cos

cos
� � � � ,

θ π≠ 2n ...(1)

dy

d
a

θ
θ= sin ...(2)

(1) and (2)

⇒ = ⋅ =
−

=
−

dy

dx

dy

d

d

dx

a

aθ
θ θ

θ
θ
θ

sin

cos

sin

cos1 1� � � �

∴ =
−


��

�
��
⋅d y

dx

d

d

d

dx

2

2 1θ
θ
θ

θsin

cos

=
− − ⋅

−
⋅

−
1

1

1

12

cos cos sin sin

cos cos

θ θ θ θ

θ θ
� �

� � � �a

= −

−
= −

−
≠

cos

cos cos

θ

θ θ
θ π

1

1

1

1
2

3 2
a a

n
� � � �

,

5. If x a= +cos sinθ θ θ� �  y a= −sin cosθ θ θ� � ,

where 0
2

< <θ π
 prove that 

d y

dx a

2

2

3

= sec θ
θ .
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Solution: If x a= +cos sinθ θ θ� �
y a= −sin cosθ θ θ� �
dx

d
a a

θ
θ θ θ θ θ θ= − + + =sin cos sin cos� �

...(1)

dy

d
a a

θ
θ θ θ θ θ θ= − − + =cos sin cos sin� �

...(2)

(1) and (2) ⇒ = = =dy

dx

dy

d
dx

d

a

a

θ

θ

θ θ
θ θ

θ
sin

cos
tan

∴ = �
�	
�
�
 ⋅ = ⋅d y

dx

d

d

dy

dx

d

dx

d

d

d

dx

2

2 θ
θ

θ
θ

θ
tan� �

= ⋅sec
2 1θ

θ
dx

d

= ⋅sec
cos

2 1θ
θ θa

=
sec

3
θ
θa

6. If x at= 2 , y a t= 2  find 
d y

dx

2

2 .

Solution: x at= 2

y a t= 2

dx

dt
at= 2 ...(1)

dy

dt
a= 2 ...(2)

(1) and (2) ⇒ = = = ≠dy

dx

dy

dt
dx

dt

a

a t t
t

2

2

1
0,   ...(3)

Now, 
d y

dx

d

dt

dy

dx

dt

dx

d

dt t

dt

dx

2

2

1
= 

��
�
��
⋅ = 

��
�
��
⋅

= − ×1 1

22t a t

=
−

≠
1

2
0

3a t
t,

Problems based on showing that a given function
y f x= � � satisfies a differential equation

Question: What is a differential equation?
Answer: An equation containing one (or, more
derived functions) is called a differential equation. or,
in more explicit form, an equation containing the
independent variable x, the function y and its
derivatives or differentials is called a differential
equation.

Notation: A differential equation is symbolised as
follows.

1. F x y y, , ′ =� � 0  or F x y
dy

dx
, ,�

�
�
� = 0

2. F x y y, , ′′ =� � 0  or F x y
d y

dx
, ,

2

2 0
�
�	

�
�

=

3. F x y y y, , ,′ ′′ =� � 0  or F x y
dy

dx

d y

dx
, , ,

2

2 0
�
�	

�
�

=

4. F x y y y y yn, , , , , ......′ ′′ ′′′ =� � 0   . . . . . . etc

Examples: 1.
dy

dx
= 5

2. 4 7 5 0
2

2

d y

dx

dy

dx
+ − =

3. y
dy

dx
x

dy

dx
y�

�
�
� + − =2 0

Note: 1. The general type of differential equation of

the first order is  
dy

dx
p y Q+ =  where P and Q are

given functions of x.
2. The general type of differential equation of the

second order is 
d y

dx
a

dy

dx
b y f x

2

2 + + = � �
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Now we come to our main problem.
If y f x= � � , then we are required to show that

1. F x y y, , ′ =� � 0

2. F x y y, , ′′ =� � 0

3. F x y y, , ′′′ =� � 0

4. F x y y y, , ,′ ′′ =� � 0

5. F x y y y y, , , ,′ ′′ ′′′ =� � 0

We adopt the following working rule:

Working rule: We proceed from the given function

y f x= � �  in general finding those all derivatives
appearing in the given differential equation by using
successive differentiation and using various
mathematical manipulations, we show that

1. F x y y, , ′ =� � 0

2. F x y y, , ′′ =� � 0

3. F x y y, , ′′′ =� � 0

4. F x y y y, , ,′ ′′ =� � 0

5. F x y y y y, , , ,′ ′′ ′′′ =� � 0

or we show L.H.S  = R..H.S

About Mathematical Manipulation

1. If the differential equations are

(i) F x y y, , ′ =� � 0

(ii) F x y y, , ′′ =� � 0

(iii) F x y y, , ′′′ =� � 0

(iv) F x y y, , ′′′′ =� � 0   i.e; only one derivative, then

we find that derivative only by successive
differentiation and putting its value in the given
differential equation, we show that

(i) F x y y, , ′ =� � 0

(ii) F x y y, , ′′ =� � 0

(iii) F x y y, , ′′′ =� � 0

(iv) F x y y, , ′′′′ =� � 0

2. If the differentail equation is F x y y y, , ,′ ′′ =� � 0 ,

then we find ′y  and ′′y  by successive differentiation

and then putting the expressions obtained for ′y  and
′′y  in the left hand side of differential equation, we

show that F x y y y, , ,′ ′′ =� � 0
3. If the differential equation is
F x y y y f x, , ,′ ′′ =� � � � , then we find ′y  and ′′y  by
successive differentiation and then using various
techniques, we show that L.H.S. = R.H.S.
4. If y f x a= =� �  rational function, inverse circular
function, a function containing inverse circular
function or logarithm of a function (i.e; a function
whose first derivative is a fractional expression in x
rational or irrational) and we are required to show

(i) F x y y, , ′ =� � 0

(ii) F x y y, , ′′ =� � 0

(iii) F x y y y, , ,′ ′′ =� � 0

(iv) F x y y y y, , , ,′ ′′ ′′′ =� � 0

Then firstly we find first derivative and then in
most cases using the rule of cross multiplication, we
change the quotient into product form so that the
rule of d.c. of  product of two functions

i.e;
d

dx
f x f x f x f x f x f x1 2 1 2 2 1� � � �� � � � � � � � � �⋅ = ⋅ ′ + ⋅ ′�

�
�
�

should be applied. But this method is not always
fruitful.
5. If the given differential equation
F x y y y, , ,′ ′′ =� � 0  or, F x y y y f x, , ,′ ′′ =� � � �
does not contain radical sign and the first derivative
of the given function contains the radical sign, then
both sides of the equation containing the first
derivative may be raised to the same*.

*Power in any stage to remove the radical symbol
or sometimes rationalization is also fruitful device
provided the given function is irrational or the first
derivative of the given function is irrational.

Remember: 1.
d

dx

dy

dx

dy

dx

d

dx

dy

dx
�
�
�
�

�
��
��

�
��
��
= �
�
�
� ⋅

�
�
�
�

2

2

= ⋅2
2

2

dy

dx

d y

dx
 in which 

dy

dx
 is regarded as a symbol

z which is differentiated w.r.t. x which

⇒ =d

dx
y y y1

2
1 2� �  which is generally used when
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f x� � =  a rational function of x, inverse circular
function of x, a function involving inverse circular
function of x, logarithm of a function of x.

2. Whenever we have y f x× � �  or ′ ×y f x� �
we are required to square both sides provided given
differential equation to be proved does not contain
the square root symbol.
3. Sometimes a modification in the form of a given
function is also fruitful device before finding the first
derivative to get the required differential equation.

4. y y
dy

dx1 = ′ =

y y
d y

dx
2

2

2= ′′ =

. . .

y y
d y

dx
n

n
n

n= =

5.
d y

dx
y y f a

n

n
x a

n x a n a
n

�
�

�
�
�

=
=

,
, ,

,� �

d y

dx
y y

n

n
x a

n x a n a

�
�	

�
�
 =

=
,

� � � �or  etc. denotes the

value of the nth derivative ( or, nth differential
coefficient) of the given function y f x= � � at (or,
for) x a= .

6. In general 
d y

dx
f x y

dy

dx

2

2 = �
�

�
�, ,

 
d y

dx
f x y

dy

dx

d y

dx

3

3

2

2=
�
�	

�
�


, , ,

. . .

. . .

d y

dx
f x y

dy

dx

d y

dx

d y

dx

n

n

n

n
=
�

�
	

�

�



−

−, , , , ...
2

2

1

1

are second, third, fourth . . . and nth differential
equation.
7. A given function y f x= � � is said to satisfy a
differential equation if we can find (or, derive) that
differential equation by differentiating the given
function y f x= � � and using various mathematical
manipulations.

Type 1: To show that a given explicit function satisfies
a given differential equation.

Examples worked out:

1. If y x= sin ,  show that 
d y

dx
y

4

4 =

Proof: y x= sin

⇒ =dy

dx
xcos

d y

dx
x

2

2
= − sin

d y

dx
x

3

3
= − cos

d y

dx
x

4

4
= sin

∴ =d y

dx
y

4

4

2. If  y a n x b n x= +cos sin , show that

d y

dx
n y

2

2
2 0+ =

Proof: y a n x b n x= +cos sin

⇒ = − +dy

dx
na n x nb n xsin cos

d y

dx
n a n x n b n x

2

2

2 2= − −cos sin

= − +n a n x b n x
2

cos sin� �
= − n y2

∴ + = − + =
d y

dx
n y n y n y

2

2
2 2 2 0

∴ + =
d y

dx
n y

2

2
2 0

3. If y ae bemx mx= + − , show that 
d y

dx
m y

2

2
2 0− =
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Proof: y ae b emx mx= + −

⇒ = ⋅ + ⋅ − = −
− −dy

dx
a e m be m m a e be

mx mx mx mx� �

d y

dx
m a e m b e m

mx mx
2

2
= ⋅ − ⋅ −− � �

= + =
−

m a e b e m y
mx mx2 2

∴ − = − =
d y

dx
m y m y m y

2

2
2 2 2 0

∴ − =
d y

dx
m y

2

2
2 0

4. If y x x= + +�
�	

�
�
log 1

2
, show that

1 02
2

2+ + =x
d y

dx
x

dy

dx
� � .

Proof: y x x= + +�
�	

�
�
log 1

2

⇒ =
+ +

⋅ + +
��

�
��

dy

dx x x

d

dx
x x

1

1
1

2

2

=
+ +

⋅ +
+

×


�
�
�

�

�
�
�

1

1
1

1

2 1
2

2 2x x x
x

=
+ +

×
+ +

��
�
��

+

1

1

1

12

2

2x x

x x

x

=
+

1

1 2x

d y

dx

x

x

x

2

2

2

2
2

1

2

2

1

1
=

− ×
+

+�� ��

�
d

dx f x

f x

f x

1
2� �

� �
� �� �

�
�	

�
�

= −

′

�
�
�

�

�
�
�

=

−

+
+

x

x

x

1

1

2

2� �

Putting the values of 
dy

dx
 and 

d y

dx

2

2  in the L.H.S of

the differential equation,

x
d y

dx
x

dy

dx

x

x

x

x

x

x

2
2

2

2

2 2 2
1

1

1 1 1
+ + =

+

+
⋅ −

+
+

+
� �

� �

� �

= −

+
+

+

x

x

x

x1 12 2  = 0

5. If y e b x c
a x= +sin � �  show that

d y

dx
a

dy

dx
a b y

2

2
2 22 0− + + =� �

Proof: y e b x c
a x= +sin � �

⇒ = + + +
dy

dx
a e b x c e b b x ca x a xsin cos� � � �

= + +a y b e b x c
a x

cos � �

d y

dx
a

dy

dx
be bx c b e bx c

a x a x
2

2

2
= + + − +cos sin� � � �

= + −�
�

�
� −a

dy

dx
a

dy

dx
a y b y2

� y e bx c
a x

= +sin � �  = given function

= − −2 2 2a
dy

dx
a y b y

= − +2 2 2a
dy

dx
a b y� �

Putting the value of 
d y

dx

2

2  in L.H.S of the differential

equation,
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d y

dx
a

dy

dx
a b y

2

2

2 2
2− + +� �

= − + + + −2 2
2 2 2 2

a
dy

dx
a b y a b y a

dy

dx
� � � �

= 0

6. If a bx e x

y

x+ =� � ,  show that x
d y

dx
x

dy

dx
y

3
2

2

2

= −�
�

�
�

Proof: We have a bx e x
y
x+ ⋅ =� � ...(1)

Now taking log of both sides of (1),

log loga bx e x
y

x+ ⋅ =� �

⇒ + + =log log loga bx
y

x
e x� �

⇒
+ + ⋅

=
x a bx y

x
x

log
log

� � 1

⇒ ⋅ + + =x a bx y x xlog log� �

⇒ = − +y x x x a bxlog log � �

= − +x x a bxlog log � � ...(2)

Now, differentiating both sides of (2) w.r.t. x,

dy

dx
x a bx x

x

b

a bx
= ⋅ − + + −

+

�
�

�
�
�1

1
log log � �

⇒ = − + +
+ −

+


�
�
�

�

�
�
�

dy

dx
x a bx x

a bx bx

x a bx
log log � � � �

⇒ = − + +
+

dy

dx
x a bx

a

a bx
log log � � ...(3)

Again differentiating both sides of  (3) w.r.t. x,

d y

dx x

b

a bx

ab

a bx

2

2 2

1
= −

+
−

+� �

=
+ − + −

+
=

+

a bx xb a bx x ab

x a bx

a

x a bx

� � � �
� � � �

2

2

2

2

Now L.H.S. = x
d y

dx
3

2

2

= ⋅
+

=
⋅

+
=

+
�
�	

�
�
x

a

x a bx

x a

a bx

ax

a bx
3

2

2

2 2

2

2

� � � �

R.H.S. = ⋅ −
��

�
��

x
dy

dx
y

2

= ⋅
+

�
�	

�
�

+

+

�
��
��

�
��
��
−

+
�
�	

�
�




�
�
�

�

�
�
�

x
x

a bx

a

a bx
x

x

a bx
log log

2

=
+

�
�	

�
�


ax

a bx

2

Hence, L.H.S. = R.H.S

7. If y a bx e nx= + −� � , show that

d y

dx
n

dy

dx
n y

2

2
22 0+ + =

Proof: we are given y a bx e nx= + ⋅ −� �

∴ = + ⋅ − ⋅ +− −dy

dx
a bx n e benx nx� � � �

= − + +− −n a bx e b enx nx� �
= − + −n y be nx ...(1)

� y a bx e nx= + −� �
Now, differentiating (1) again w.r.t. x,

d y

dx
n

dy

dx
n y n

dy

dx
bne n

dy

dx
n y

n x
2

2

2 2
2 2+ + = − − + +−

= − +−n
dy

dx
bn e n ynx 2

= − + − +− −n n y b e bn e n ynx nx� � 2

= 0

8. If y x x
n

= + +
��

�
��1 2 , show that

1 2 2
2

2 2+ ⋅ ��	
�
�
 =x

dy

dx
n y� � .

Proof: y x x
n

= + +
��

�
��1 2
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⇒ = + +
��

�
��

⋅ + +
��

�
��

−dy

dx
n x x

d

dx
x x

n

1 1
2

1
2

� �

= + +
��

�
�� ⋅ +

+



�
�
�

�

�
�
�

−
n x x

x

x

n

1 1
2

2 1

2
1

2

� �

= + +
��

�
�� ⋅ + +

��
�
��

− +
n x x x x

n x

1 12
1

2
1 2� �

=
+

n y

x1 2  � y x x
n

= + +�
�

�
�


��

�
��

1 2

⇒ + ⋅ =1 2x
dy

dx
n y

Now, squaring both sides,

1 2
2

2 2+ ⋅ ��
�
� =x

dy

dx
n y� �

9. If  y x x
m

= + +
��

�
��1 2 , show that

1 02
2

2
2+ + − =x

d y

dx
x

dy

dx
m y� � .

Proof: � y x x
m

= + +
��

�
��1 2 ...(1)

Now, differentiating the given function (1) w.r.t x

dy

dx
m x x

x

x

m

= + +
��

�
�� +

+



�
�
�

�

�
�
�

−
1 1

1

2
1

2

� �
.

=
+ +

��
�
��

+

m x x

x

m

1

1

2

2

=
+

m y

x1 2

⇒ + ⋅ =1 2x
dy

dx
m y ...(2)

Now, squaring both sides of (2), we get

1 2
2

2 2+ ⋅ ��
�
� =x

dy

dx
m y� � ...(3)

Now, differentiating both sides of (3) again w.r.t x

1 2 2 22
2

2

2
2+ ⋅ ⋅ + ��

�
� ⋅ = ⋅x

dy

dx

d y

dx

dy

dx
x m y

dy

dx
� �

...(4)

Now, dividing  the equation (4) by 2
dy

dx
 we get

1 2
2

2
2+ ⋅ + ⋅ =x

d y

dx
x

dy

dx
m y� �

⇒ + ⋅ + ⋅ − =1 02
2

2
2x

d y

dx
x

dy

dx
m y� �

10. If y A x x B x x
n n

= + −
��

�
�� + − −

��
�
��

2 21 1

show that x y xy n y2
2 1

21 0− + − =� � .

Proof: y A x x B x x
n n

= + −
��

�
�� + − −

��
�
��

2 21 1   ...(1)

Now, differentiating both sides of (1), we get

dy

dx
n A x x

x

x

n

= + −
��

�
��

⋅ +
−



�
�
�

�

�
�
�

−
2

1

2
1 1

1

� �

+ − −
��

�
��

−
−



�
�
�

�

�
�
�n B x x

x

x

2

2
1 1

1

=
+ −

��
�
��

−
−

− −
��

�
��

−

n A x x

x

n B x x

x

n n
2

2

2

2

1

1

1

1

=
+ −

��
�
�� − − −

��
�
��

−

n A x x n B x x

x

n n
2 2

2

1 1

1

⇒ −x
dy

dx

2
1

= + −
��

�
��
− − −

��
�
��

n A x x n B x x
n n

2 2
1 1 ...(2)

Again differentiating (2) w.r.t x to get

x
d

dx

dy

dx

x

x

dy

dx

2

2
1

1
− ⋅ �

�
�
� +

−
⋅
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=
+ −

��
�
��

−
+

− −
��

�
��

−

n A x x

x

n B x x

x

n n
2 2

2

2 2

2

1

1

1

1

⇒ − ⋅ +
−

⋅x
d y

dx

x

x

dy

dx

2
2

2 2
1

1

=
+ −

��
�
��
+ − −

��
�
��

−

n A x x n B x x

x

n n
2 2 2 2

2

1 1

1

⇒ − + ⋅x
d y

dx
x

dy

dx

2
2

2
1� �

= + −�
�	

�
�
 + + −�

�	
�
�




�
�
�

�

�
�
�
=n A x x B x x n y

n n
2 2 2 2

1 1

⇒ − + =x y x y n y2
2 1

21� �

⇒ − + − =x y x y n y2
2 1

21 0� �

11. If y y xm m

1 1

2+ =
−

 show that

x y xy m y2
2 1

21 0− + − =� �

Proof: Let us suppose that  y Zm

1

= ...(1)

y
z

m

−

=
1

1
...(2)

Now, adding (1) and (2)

⇒ + =Z
Z

x
1

2

⇒ + − =Z x Z2 1 2 0

⇒ =
± −

Z
x x2 4 4

2

2

⇒ = ± −Z x x2 1 ...(3)

⇒ = ± −�
�

�
�y x x

m
2 1 ...(4)

Now, differentiating both sides of (4) w.r.t x

⇒ = ± −
��

�
�� ⋅ ±

−



�
�
�

�

�
�
�

−dy

dx
m x x

x

x

m
2

1

2
1 1

1

� �

= ± ± −
��

�
�� ⋅

± −

−



�
�
�

�

�
�
�

−
m x x

x x

x

m
2

1 2

2
1

1

1

� �

= ±
± −

��
�
��

−

m x x

x

m
2

2

1

1

= ±
−

m y

x2 1
...(5)

Now, squaring both sides of  (5)

x
dy

dx
m y2

2
2 21− �

�
�
� =� � ...(6)

on differentiating (6) w.r.t. x

⇒ − ⋅ ⋅ + ��
�
� ⋅x

dy

dx

d y

dx

dy

dx
x

2
2

2

2

1 2 2� �

= ⋅2
2

m y
dy

dx
...(7)

Now,  Dividing (6) by 2 ⋅ dy

dx
 ,

⇒ − ⋅ + − =x
d y

dx
x

dy

dx
m y2

2

2
21 0� �

⇒ − ⋅ + − =x y x y m y2
2 1

21 0� �
Note: In some cases the form of the function suggests
simplification. For these functions, we modify the form
of the function using mathematical manipulation
before differentiation to save labour and time.

Now, we shall do harder and tricky problems on
the explicit functions having rational, trigonometric,
inverse trigonometric and logarithmic functions which
satisfy the given differential equation.

Examples worked out:

1. If y
ax b

cx d
= +

+  , show that 2 31 3 2
2y y y=
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Solution: y
ax b

cx d
x

d

c
=

+
+

≠ −,

⇒ =
+ − +

+
=

−
+

y
a cx d ax b c

cx d

ad bc

cx d
1 2 2

� � � �
� � � �

⇒ =
− −

+
y

c ad bc

cx d
2 3

2 � �
� �

⇒ =
−

+
y

c ad bc

cx d
3

2

4

6 � �
� �

Now, L.H.S = 2 1 3y y

=
−

+
⋅

−

+
2

6
2

2

4

ad bc

cx d

c ad bc

cx d

� �
� �

� �
� �

=
−

+

12 2 2

6

c ad bc

cx d

� �
� �

R.H.S.  = 3 2
2y

= ⋅
−

+
3

4 2 2

6

c ad bc

cx d

� �
� �

=
−

+
12 2 2

6

c ad bc

cx d

� �
� �

Hence, 2 31 3 2
2y y y=

Second method:

 y
ax b

cx d
cx d y ax b= +

+
⇒ + = +� � � �

⇒ + = +d

dx
cx d y

d

dx
ax b� � � �

⇒ + + =cx d y y c a� � 1

⇒ + + =d

dx
cx d y y c

d

dx
a� � � �1

⇒ + + + =cx d y y c y c� � 2 1 1 0

⇒ + + =cx d y y c� � 2 12 0 ...(1)

⇒ + + =
d

dx
cx d y y c� � 2 12 0

⇒ + + + =cx d y y c y c� � � �3 2 22 0

⇒ + + =cx d y y c� � 3 23 0 ...(2)

Now, (1) ⇒ + = −cx d y y c� � 2 12 ...(3)

(2) ⇒ + = −cx d y y c� � 3 23 ...(4)

Dividing (3) by (4),

cx d y

cx d y

y c

y c

y

y

+
+

=
−
−

→
� �
� �

2

3

1

2

1

2

2

3

2

3

⇒ = ⋅
y

y

y

y
1

2

1

2

2

3

⇒ =3 22
2

1 3y y y

2. If y
x

x

= ��
�
�

1
, show that y x2 1at =  is equal to zero.

Solution: y
x

x

= ��
�
�

1
, x > 0

⇒ = �
�	
�
�
 = �

�	
�
�
 = −log log log log logy

x
x

x
x x

x
1 1

1

⇒ = − = −log log logy x x x x0 ...(1)

Now differentiating (1) w.r.t. x, we get

1 1
1

y

dy

dx
x x

x
x⋅ = − − ⋅ = − −log log

⇒ = − +
dy

dx
y xlog 1� �

⇒ = − +y y x1 1log� �

⇒ = − + − ⋅y y x y
x2 1 1
1

log� �

∴ = − + − ⋅
��

�
��=

=
y y x y

xx
x

2 1 1
1

1
1

log� � ...(2)

But − + − ⋅
��

�
�� =

y x y
x x

1
1

1
1

log� �

= − ⋅ + ⋅ 
��
�
��= =

=
y x

y

xx x
x

1 1 1
1

1 log� �
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− = − − += =
y y x

x x1 1 1
1log� �

= ⋅ += =y x
x x� � � �1 1

1log

= + =1 0 1 1� � ...(a)

1 1 1 1 0 1
1

+ = + = + ==log logx
x� � � � � � ...(b)

y

x
y

x
x


��
�
��

= =
=

=
1

1
1� � ...(c)

Putting  the values of (a), (b) and (c) in (2) , we
have

yz x� � = = ⋅ − =
1

1 1 1 0

Note: If  
d y

dx
f x y

dy

dx

2

2 = �
�

�
�, ,  and  we are required

to find out the value of 
d y

dx

2

2  at a point x =  a, we are

required to find the value of (i) 
dy

dx
 at  x = 1  (ii) The

value of y at x = 1 (iii) The value of function of x at

x = 1 i.e; the value of each term of 
d y

dx

2

2  at  x = a

3. If y x x= + +�
�	

�
�



��

�
��

log 1
2

2

 show that ,

1 22
2 1+ + =x y x y� �

Proof: y x x= + +�
�	

�
�



��

�
��

log 1
2

2

⇒ =dy

dx
y1

= + +�
�	

�
�



��

�
��
⋅ + +�

�	
�
�



��

�
��

2 1 1
2 2

log logx x
d

dx
x x

= + +�
�	

�
�



��

�
��
×

+ +�
�	

�
�

×2 1

1

1

2

2
log x x

x x

1
1

2 1
2

2
+

+
×



�
�
�

�

�
�
�

x
x

= + +�
�	

�
�



��

�
��
×2 1

2
log x x

1

1

1

1
2

2

2
x x

x x

x+ +�
�	

�
�

×

+ +�
�	

�
�


+



�

�
�
�
�

�

�

�
�
�
�

= + +�
�	

�
�



��

�
��
⋅

+
2 1

1

1

2

2
log x x

x

Now we square both sides to get

y x x
x

1
2 2

2

2
4 1

1

1
= + +�

�
�
�


��

�
��
⋅

+
log

� �

=
+

4

1
2

y

x

⇒ + =1 42
1

2x y y� � ...(1)

Now differentiating again to get the second
derivative from (1), we have

d

dx
x y

d

dx
y1 42

1
2+ =� � � �

⇒ + + ⋅ + = ⋅1 1 42 1
2

1
2 2x

dy

dx
y

d

dx
x

dy

dx
� � � �

⇒ + ⋅ ⋅ + ⋅ = ⋅1 2 2 42
1

1
1

2x y
dy

dx
y x

dy

dx
� �

⇒ + ⋅ ⋅ + ⋅ =1 2 2 42
1 2 1

2
1x y y y x y� �

Now, dividing both sides of (2) by 2 1y  we have

1 22
2 1+ + =x y x y� �

4. If y x x x1 12 2+ = + +�
�

�
�log  show that

1 12
1+ + =x y x y� �

Proof: y x x x1 12 2+ = + +�
�

�
�log ...(1)

Now differentiating both sides of (1) w.r.t. x , we
have
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dy

dx
x

d x

dx
y× +�

�	
�
�
 +

+
×1

12
2

=
+ +�

�	
�
�

⋅ +

+



�
�
�

�

�
�
�

1

1
1

2

2 1
2 2

x x

x

x

⇒ ⋅ +�
�

�
� + +

=
+

dy

dx
x

x y

x x
1

1

1

1

2

2 2 ...(2)

Now multiplying both sides of (2) by 1 2+ x  we

have

1 12+ ⋅ + =x
dy

dx
x y� �

⇒ + ⋅ + =1 12
1x y x y� �

5. If y a x= sin log , show that x y x y y2
2 1 0+ + =

Proof: y a x= sin log� �

⇒ = ⋅dy

dx
a x

x
cos log� � 1

⇒ ⋅ =x
dy

dx
a xcos log� � ...(1)

Now, differentiating (1) w.r.t. x, we get

⇒ ⋅ �
�
�
� + ⋅ = − ⋅x

d

dx

dy

dx

dy

dx

dx

dx
a x

x
sin log� � 1

⇒ ⋅ + =
−

x
d y

dx

dy

dx

a x

x

2

2

sin log

⇒ ⋅ + ⋅ = −x
d y

dx
x

dy

dx
y2

2

2

� a x ysin log =� �
⇒ + + =x y x y y2

2 1 0

6. If x y= cos log� � , show that 1
2

2 1− − =x y x y y� �

Proof: x y= cos log� �

⇒ = −
log cosy x

1 ...(1)

Now, differentiating both sides of (1) w.r.t x, we
have

1 1

1 2y

dy

dx x
⋅ = −

−

⇒ − = −1 2x
dy

dx
y ...(2)

Now squaring both sides of (2), we have

1 2
2

2− ⋅ ��
�
� =x

dy

dx
y� � ...(3)

Again differentiating (3) w.r.t. x ( to get second
derivative)

d

dx

dy

dx
x

dy

dx
x y

dy

dx

��
�
��
⋅ − + ��

�
� − = ⋅

2
2

2

1 2 2� � � �

⇒ ⋅ ⋅ �
�
�
� ⋅ − − ⋅ ��

�
�2 1 2

2
2dy

dx

d

dx

dy

dx
x x

dy

dx
� �

= ⋅2 y
dy

dx

⇒ ⋅ − − ⋅ =2 1 2 21 2
2

1
2

1y y x x y y y� � ...(4)

Now, dividing both sides of (4) by y1 , we have

2 1 2 22
2

1y x x y y− − =� �

⇒ − − =1 2
2 1x y x y y� �

7. If y x= sin sin� � , show that

d y

dx
x

dy

dx
y x

2

2

2
0+ ⋅ + =tan cos .

Proof: y x= sin sin� � ...(1)

⇒ = ⋅ = ⋅
dy

dx
x x x xcos sin cos cos cos sin� � � �   ...(2)

⇒ = − ⋅ + ⋅ −d y

dx
x x x x x

2

2
cos sin sin cos cos sin sin� � � � � �

= − −cos sin sin sin cos sin
2

x x x x� � � � ...(3)

∴ = + ⋅ +L.H.S tan cos
d y

dx
x

dy

dx
y x

2

2

2
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= − − +cos sin sin sin cos sin
2

x x x x� � � �

sin

cos
cos cos sin cos

x

x
x n y x⋅ +� � 2

= − − ⋅ +cos sin sin sin cos sin
2

x x x x� � � �

sin cos sin cosx x y x⋅ +� � 2

= − +cos sin sin cos
2 2

x x y x� �
� y x= sin sin� �� �

= =0   R.H.S

8. If  y a x b x= +cos log sin log� � � � , show that

x y x y y2
2 1 0+ + =

Proof: � y a x b x= +cos log sin log� � � � ...(1)

Now, differentiating (1) w.r.t x, we have

dy

dx
a x

x
b x

x
= − ⋅ + ⋅sin log cos log� � � �1 1

...(2)

⇒ = − +x
dy

dx
a x b xsin log cos log� � � � ...(3)

Again differentiating the equation (3) ( to get
second derivative), we have,

x
d

dx

dy

dx

dy

dx

dx

dx
�
�
�
� + ⋅

= − ⋅ + − ⋅a x
x

b x
x

cos log sin log� � � �� �1 1

⇒ + ⋅ = − −x
d y

dx
x

dy

dx
a x b x

2
2

2
cos log sin log� � � �

⇒ + =− +x y x y a x b x
2

2 1 cos log sin log� � � �

⇒ + = −x y x y y2
2 1

⇒ + + =x y x y y2
2 1 0

9. If y m x=
−

sin sin
1

� �  prove that

1 0
2

2 1
2

− − + =x y x y m y� � .

Proof: y m x=
−

sin sin
1

� �

⇒ = 
��

�
��

−dy

dx

d

dx
xsin sin

1
� �

= ⋅ ⋅
−

−
cos sinm x m

x

1

2

1

1
� �

⇒ − ⋅ =
−

1
2 1

x
dy

dx
m m xcos sin� �

⇒ − ⋅
��

�
��

= −
1

2
2

2 2 1
x

dy

dx
m m xcos sin� �

⇒ − ⋅ ��
�
� = −��

�
��

−
1 1

2
2

2 2 1
x

dy

dx
m m x� � � �sin sin

⇒ − ⋅ ��
�
� = −1 12

2
2 2x

dy

dx
m y� � � � ...(1)

Now again differentiating both sides of equation
(1) to get second derivative,

1 2 2
2

2

− ⋅ ⋅ ⋅ ��
�
� +
�
�
�
� −x

dy

dx

d

dx

dy

dx

dy

dx
x� � � �

= − �
�

�
�m y

dy

dx

2
2

⇒ − ⋅ − = −1 2 2 22
1 2 1

2 2
1x y y x y m y y� �

⇒ − − = −2 1 2 22
2 1

2x y x y m y� �

⇒ − − = −1 2
2 1

2x y x y m y� �

10. If y x= −
tan

1  prove that

1 2 02
2 1+ + =x y x y� � .

Proof: � y x= −tan 1 ...(1)
Now differentiating both sides of (1) w.r.t. x, we

have,

dy

dx x
=

+
1

1 2

⇒ + =1 12x
dy

dx
� �
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Again differentiating (2) w.r.t.x to get the second
derivative,

1 1 02 2+ �
�
�
� + ⋅ + =x

d

dx

dy

dx

dy

dx

d

dx
x� � � �

⇒ + ⋅ + ⋅ =1 2 02
2

2x
d y

dx

dy

dx
x� �

⇒ + ⋅ + =1 2 02
2 1x y x y� �

11. If y x= −
tan

1 2

� � show that

1 2 1 22 2 2

2
2+ + + =x

d y

dx
x x

dy

dx
� � � �

Proof: y x= −
tan

1 2

� �

⇒ = −dy

dx

d

dx
xtan

1 2

� �

= ⋅ =
+

−
− −

2
2

1

1
1 1

2
tan

tan tan
x

d x

dx

x

x

⇒ + =
−

1 2
2 1

x
dy

dx
x� � tan ...(1)

⇒ + ⋅ ��
�
� = −

1 4
2 2 2

1 2
x

dy

dx
x� � � �tan

⇒ + ⋅ ��
�
� =1 42 2

2

x
dy

dx
y� � ...(2)

Now again differentiating both sides of (2) w.r.t. x,
we have

1 1
2 2 2 2

2 2
+ �

�
�
�


�
�
�

�
�
�
�
+ ��

�
� +
��

�
��

x
d

dx

dy

dx

dy

dx

d

dx
x� � � �

=
d y

dx

4� �

⇒ + ⋅ ⋅ ⋅ �
�
�
�


��

�
��
+1 2

2
x

dy

dx

d

dx

dy

dx
� �

dy

dx
x x

dy

dx
�
�
�
� + ⋅
��

�
�� =

2
2

2 1 2
4

� �

⇒ + ⋅ ⋅


�
�
�

�

�
�
�
+1 2

2 2 2

2
x

dy

dx

d y

dx
� �

dy

dx
x x

dy

dx
�
�
�
� +
��

�
�� = ⋅

2
2

4 1 4� � ...(3)

Now dividing equation (3) by 2
dy

dx
 we have

1 2 1 22 2 2

2
2+ + + =x

d

dx
x x

dy

dx

y

� � � �

⇒ + + + =1 2 1 22 2 2

2
2x

d

dx
x x

dy

dx

y

� � � �

12. If y em x= sin–1

, prove that

1 2
2 1

2− − =x y x y m y� �

Proof: y em x= sin–1

⇒ =dy

dx

d e

dx

m xsin–1

= ⋅
×

−
=

−

−
e

m

x

m y

x

m xsin 1 1

1 12 2

⇒ − ⋅ =1 2x
dy

dx
m y ...(1)

(We square both sides of  (1) so that square root
symbol may be removed)

1 2
2

2 2− ⋅ ��
�
� =x

dy

dx
m y� � ...(2)

Again differentiating both sides of (2) to get
second derivative,

1 12
2 2

2− ⋅ �
�	
�
�




�
�
�

�

�
�
�
+ ��	

�
�
 ⋅ −x

d

dx

dy

dx

dy

dx

d

dx
x� � � �

= d

dx
m y

2 2
� �

⇒ − ⋅ ⋅ �
�
�
� +
�
�
�
� × −1 2 2

2
2

x
dy

dx

d

dx

dy

dx

dy

dx
x� � � �
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= m
d y

dx

2
2

⇒ − ⋅ ⋅ − �
�
�
�1 2 2

2
2 2

x
dy

dx

d y

dx
x

dy

dx
� �

= ⋅m y
dy

dx

2
2

⇒ − ⋅ − =2 1 2 22
1 2 1

2 2x y y x y m y� �

⇒ + − =1 2
2 1

2x y x y m y� �
13. If y x x x x= +sin log log� � , Show that

x
d y

dx
x

dy

dx
y x x

2
2

2
2− + = log

Proof: We are given y x x x x= +sin log log� �     ...(1)

Now differentiating each terms of both sides w.r.t.
x of (1), we have

dy

dx
x x

x
x= ⋅ +

��
�
��
+cos log sin log� � � �1

x
x

x⋅ +
��

�
��

1
log

⇒ = + + +y x x x1 1cos log sin log log� � � � ...(2)

Now, multiplying both sides of (2) by x, we have

x y x x x x x x x1 = + + +cos log sin log log� � � �
...(3)

⇒ = + +x y x x y x1 cos log� � , (by using (1) in

(3) ) ...(4)
Now, differentiating again both sides of (4) w.r.t x

to get y2 ,

x y y x x
x

x y2 1 1
1

1+ = − ⋅ + + +sin log cos log� � � �

⇒ =− + +x y x x2 1sin log cos log� � ...(5)

Now multiplying both sides of (5) by x, are get

x y x x x x x
2

2 = − + +sin log cos log� � � � ...(6)

⇒ = − + − − +x y x x xy y x x
2

2 1sin log� �

⇒ = − − + −x y y x x x y y
2

2 1log� �

⇒ = − + −x y x x y x y y
2

2 1log

⇒ = + −x y x x x y y
2

2 1 2log

⇒ − + =x y x y y x x
2

2 1 2 log

14. If y
x

a bx

x

=
+

�
�	

�
�
log , prove that

x y y x y
3

2 1
2= −� � .

Proof: y
x

a bx

x

=
+

�
�	

�
�
log , defined for 

x

a bx+ > 0

⇒ =
+

�
�	

�
�


y x
x

a bx
log

⇒ = − + + −
+


�
�

�
�
�y x a bx x

x

b

a bx1
1

log log| | � �

⇒ =
+

+
+ −

+

�
�

�
�
�y

x

a bx
x

a bx bx

x a bx1 log
� �

=
+

+
+

log
x

a bx

a

a bx� �

= +
+

y

x

a

a bx� �

⇒ = +
+

x y y
ax

a bx1

⇒ − =
+

x y y
ax

a bx1 ...(1)

� x y x x y x1 = + +cos log� �    from (4)

⇒ − − =x y y x x x1 cos log� �

� y x x x x= +log sin log� �  from (1)

⇒ − =y x x x xlog sin log� �
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Again differentiating (1) to get y2

x y y y
a bx a ax b

a bx
2 1 1 2+ − =

+ − ⋅

+
� �
� �

⇒ =
+

x y
a

a bx
2

2

2� � ...(2)

Now squareing (1), we get

x y y
x a

a bx
x x y1

2
2 2

2
2

2− =
+

=� �
� �

  [from (2)]

⇒ = −x y x y y3
2 1

2� �  Which was required to be

proved.

15. If  y e
x

=
−

tan
1

 show that 1 2 1 0
2

2 1+ + − =x y x y� � � �

Solution: y e
x

=
−

tan
1

⇒ = ⋅ =
+

−
−

−dy

dx
e

d

dx
x

e

x

x
x

tan
tan

tan
1

1

1

2
1

� �

⇒ + = =−
1

2 1
x

dy

dx
e x y� �

tan
...(1)

Differentiating both sides of (1) w.r.t x, we have

1 22
2

2+ + ⋅ =x
d y

dx

dy

dx
x

dy

dx
� �

⇒ + + − =1 2 1 02
2

2x
d y

dx
x

dy

dx
� � � �

⇒ + + − =1 2 1 02
2 1x y x y� � � �

Second method after having

dy

dx

e

x

x

=
+

−
tan

1

1
2

We may straight way (or, directly), find

d y

dx

x e
x

e x

x

x x

2

2

2

2

2 2

1
1

1
2

1

1 1

=

+ ⋅
+

�

�
	

�

�

 − ⋅

+

− −

� �

� �

tan tan

=
−

+

−

e x

x

xtan
1

1 2

1
2 2

� �

� �

∴ L.H.S. = + + −1 2 12
2 1x y x y� � � �

=
+ ⋅ −

+
+ − ⋅

+

−
−

1 1 2

1
2 1

1

2

2 2 2

1
1

x e x

x
x

e

x

x
x� � � �

� �
� �

tan
tan

=
−

+
+ − ⋅

+

− −

e x

x
x

e

x

x xtan tan
1 1

1 2

1
2 1

1
2 2

� � � �

=
−

+
−

− ⋅

+

− −

e x

x

x e

x

x xtan tan
1 1

1 2

1

1 2

1
2 2

� � � �

= 0
= R.H.S

N.B.: The first method is more convenient in
comparision to the second method.

Type 3: Problem based on finding a differential
equation when the given function is in the implicit
form f x y c,� � =  (where c = any constant and c = 0
in particular) or givin a function having the form
x f f y= 1 2 � �
Working rule: Proceed as usual i.e finding the
derivatives involved in the given differential equation
to be satisfeid by the given function .

Example worked out:

1. If x y= sin log� �  show that

1 2
2 1− − =x y x y y� �

Proof: � x y= sin log� �

⇒ = −log siny x1 ...(1)

⇒ ⋅ =
−

1 1

1 2y

dy

dx x
 (on differentiating (1)

w.r.t. x)
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⇒ =
−

y

y x

1

2

1

1

⇒ − =y x y1
21 ...(2)

⇒ − =y x y1
2 2 21� � � �  (on squaring both sides

of (2) )

⇒ − =d

dx
y x

dy

dx1
2 2

2

1� � � �

⇒ − + − =y x y y x y y1
2

1 2
2

12 2 1 2� � � �

⇒ − + − =x y x y y1
2

21� �

⇒ − − =1 2
2 1x y x y y� �

2. If x y y x+ =4 3  find 
d y

dx

2

2

Proof: x y y x+ =4 3 ...(1)
Now, differentiating (1) w.r.t x

x
dy

dx
y

dy

dx
⋅ + ⋅ + ⋅ =1 4 3

⇒ + ⋅ = −x
dy

dx
y4 3� � ...(2)

⇒ = =
−
+

y
dy

dx

y

x1

3

4

� �
� � ...(3)

Now considering (2),

x
d y

dx

dy

dx

dy

dx
+ + ⋅ = −4 1

2

2� � � �

⇒ + ⋅ + + =x y y y4 02 1 1� �
⇒ + ⋅ + =x y y4 2 02 1� �

⇒ =
−
+

= −
+

×
−
+

y
y

x x

y

x2
12

4

2

4

3

4� � � �
� �
� �  (by using

(3) )

=
−

+
=

+
⋅

+
�
�	

�
�
 −


�
�

�
�
�

2 6

4

1

4
2

3

4
6

2 2

y

x x

x

x� � � �

=
+

⋅ − −1

4
6 6 24

3
x

x x
� �

=
+

× − =
−

+
1

4
24

24

4
3 3

x x� �
� �

� �

Note: y
x

y
x

= −
+

⇒ = −

+
3

12

4

24

4
2 3� �

3. If log log siny x x= −� � 2 , show that

d y

dx
y

dy

dx
x y

2

2
24 4 3 0+ + + =� �

Proof: log log siny x x= −� � 2

⇒ = −log log sin logy x ee
x� �

2

� log loge
x

ee x e x x
2 2 2 21= = ⋅ =

⇒ =


�
�
�

�

�
�
�

log log
sin

y
x

e
x

2 ...(1)

Now, taking anti log of both sides of (1) y
x

e
x

=
sin

2

⇒ ⋅ =y e x
x

2

sin ...(2)

[N.B.: Product rule of derivative is easier than the
quotient rule. This is why we cross multiply]

Now differentiating (2) w.r.t x to find y1,

e y x e y xx x2 2

1 2⋅ + ⋅ = cos ...(3)

Again differentiating (3) w.r.t x to find y2

e y x e y x e y x e y e yx x x x x2 2 2 2 2

2 1 1
22 2 2+ + ⋅ + +

= − = −sin x e y
x

2

 (from (2) ) ...(4)

Now dividing the equation (4) by e x2
 and then

transposing,

y x y x y x y y y2 1 1
22 2 4 2 0+ + + + + =

⇒ + + + =y x y x y2 1
24 4 3 0� �

4. If cos log
− �
�
�
� =

�
�
�
�

1 y

b

x

n

n

, show that
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x y x y n y2
2 1

2 0+ + = .

Proof: cos log since− �
�	
�
�
 =

�
�	
�
�
 >1 0

y

b

x

n

x

n

n

⇒ �
�	
�
�
 =

�
�	
�
�
 = −−cos log log log1 y

b
n

x

n
n x n� �

...(1)
Now differentiating the equation (1) w.r.t. x

−

− ��
�
�

⋅ =1

1
2

1

y

b

y

b

n

x

⇒ −
⋅ −

=
y b

b b y

n

x
1

2 2 ...(2)

Now on cross multiplying the equation (2) and
then squaring, we get

x y n b y2
1

2 2 2 2= −� � ...(3)

Now, again differentiating the equation (3) w.r.t x

d

dx
x y

d

dx
n b y2

1
2 2 2 2� � � �= −

⇒ ⋅ ⋅ ⋅ + = −x y y x y n y y2
1 2 1

2 2
12 2 2 ...(4)

Now dividing (4) by 2 1y  , we get

x y x y n y2
2 1

2 0+ + =

Type 4: Problems based on finding a differential
equation when the given function is in parametric

form 
x f t

y f t

=

=
�
�
�

1

2

( )

� �

Working rule: We proceed directly for finding the

first derivative using the formula 
dy

dx

dy

dt
dx

dt

=  and then

we find other derivatives (2nd ,  3rd , .... etc) involved
in the given differential equation using various

mathematical manipulation performed on 
dy

dx
 or

directly from 
dy

dx
 according to the need of the problem

of differential equation. Lastly by simplification,
cancellation, transposition and using axioms of an
equation, we arrive at our target (i.e., we find the
required differential equation)

Examples worked out:
1. If  y pt x t= =sin sin, , show that

1 02
2

2
2− − + =x

d y

dx
x

dy

dx
p y� � .

Proof: y pt= sin

x t= sin

⇒ = =dy

dx

dy
dt
dx

dt

p pt

t

cos

cos

⇒ �
�
�
� = =

−

−

dy

dx

p pt

t

p pt

t

2 2 2

2

2 2

2

1

1

cos

cos

sin

sin

� �

� �

=
−

−
≠

p y

x
x

2 2

2

1

1
1

� �
for

⇒ − �
�
�
� = −1 12

2
2 2x

dy

dx
p y� � � �

⇒ − ⋅ ��
�
�


�
��

�
�
��
= −d

dx
x

dy

dx

d

dx
p y1 12

2
2 2� � � �

⇒ − ⋅ ⋅ + − �
�	
�
�
1 2 22

2

2

2

x
dy

dx

d y

dx
x

dy

dx
� � � �

= ⋅ −��	
�
�
p y

dy

dx
2 2

Dividing by 2
dy

dx
 , we have for x y≠ ≠1 1, ;

1 02
2

2− − + =x
d y

dx
x

dy

dx
p y� �  proved.
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2. If x a= +cos sinθ θ θ� �  and y a= −sin cosθ θ θ� �

where 0
2

< <θ π
 prove that tan− =

+
1

1
1
2

2

1
3
2

y
y

a y
� �

� �

Proof: x a
dx

d
= + ⇒cos sinθ θ θ

θ
� �

= − + ⋅ + ⋅ =a asin sin cos cosθ θ θ θ θ θ1� � ...(1)

y a= −sin cosθ θ θ� �

⇒ = − ⋅ − − =
dy

d
a a

θ
θ θ θ θ θ θcos cos sin sin1 � �� �

...(2)

Now, 
dy

dx

dy

d
dx

d

a

a
= = =

θ

θ

θ θ
θ θ

θ
sin

cos
tan ...(3)

Differentiating both sides of (3) w.r.t. x, we get

d

dx

dy

dx

d

dx
�
�
�
� = tanθ� �

⇒ = ⋅ = ⋅
⋅

d y

dx

d

dx a

2

2

2 2 1
sec sec

cos
θ

θ
θ

θ θ

�
dx

d
a

θ
θ θ=

�
�	

�
�
cos

⇒ =
d y

dx a

2

2

3
sec θ

θ

=
+

=
+
−

1 12
1
2

1
1

3
2

3
2tan

tan

θ

θ
� � � �

� �a

y

a y
 hence the result.

3. If  x t= cos , y t= log , show that

d y

dx

dy

dx

2

2

2

0+ ��
�
� =  at  t =

π
2

.

Solution: x t
dx

dt
t= ⇒ = −cos sin

y t
dy

dt t
= ⇒ =log

1

∴ = =
−

= −dy

dx

dy
dt
dx

dt

t
t t t

1
1

sin sin
...(i)

⇒ �
�
�
� = −

�
�	

�
�


d

dx

dy

dx

d

dx t t

1

sin

⇒ = ⋅ + ⋅d y

dx t t
t t t

dt

dx

2

2 2

1

sin
sin cos

� �
� �

=
+

⋅
−
�
�	

�
�


sin cos

sin sin

t t t

t t t2 2

1

=
− +sin cos

sin

t t t

t t

� �
2 3 ...(ii)

Now, squaring both sides of (1) , we get

dy

dx t t

�
�
�
� = +

2

2 2

1

sin
...(iii)

Adding (ii) and (iii), we get

d y

dx

dy

dx

t t t

t t t t

2 2

2 3 2 2

1
+ ��

�
� = −

+
+

sin cos

sin sin

� �

∴ + ��
�
�



�
�
�

�

�
�
�

=

d y

dx

dy

dx
t

2

2

2

2

π

=
− +

+


�
�
�

�

�
�
�

=

sin cos

sin sin

t t t

t t t t t

� �
2 3 2 2

2

1

π

=
−

+



�

�
�
�

�

�

�
�
�

1
2

4

1
2

4
π π

= 0
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Type 1: Problems based on finding second derivative
(A) Algebraic functions

Exercise 14.1

Find  
d y

dx

2

2  of the following functions.

1. y x= −2 3

2. y x x= − +2
2

32 3� �

3. y
x

=
−
1

3 4� �

4. y
a x

=
−
1

� �

5. y x= − −
3 2

1
2� �

6. y x=

7. y
x

=
1

8. y
a x

a x
= −

+

9. y
x

=
+
1

42

10. y x= −2 9

11. y x= +2 3
2

3� �
12. y x x= +3 2

7 1� �

13. y
x

x
=

+3 4

Answers:

1. −
−

1

2 3
3
2x� �

2.
4 2 7

9 2 3

2

2
4

3

x x

x x

− +

− +

� �

� �

3.
18

3 4
3

x −� �
4.

2
3

a x−� �
5. 3 3 2

5

2−
−

x� �

6.
−1

4x x
7.

3

4 2x x 8.
4

3

a

a x+� �

9.
6 8

4

3

2 3

x

x

−

+� �
10. − −

−
9 92

3

2x� �

11. − + −8

9
2 3

4
3x� �

12. 6 7 1 84 7 1 98
2 2 3x x x x x+ + + +� � � �

13. Find

Type 1: (continued)

(B) Trigonometric function:

Exercise 14.2

Find  
d y

dx

2

2  of the following functions.

1. y x= sec 2

2. y x= −cosec
2

3� �

3. y x x= ⋅sin cos3

4. y x x= ⋅sin cos
4 2

5. y
x

x
= +

+
sin

cos

2

2 3
Answers:

1. y x x⋅ +2 2 22 2sec tan� �

2. 2 2 3 2 3
2 2 2 2 2 2

y x x x y xcot cot− + − −
��

�
��� � � �

3. − +8 4 2 2sin sinx x� �

4.
1

8
2 8 4 9 6cos cos cosx x x+ −� �

5.
8 16 12 12 10

2 3

2 2

3

cos sin sin cos cos sin

cos

x x x x x x

x

+ + + −

+� �
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Type1: (continued)

(C) Inverse Trigonometric functions:

Exercise 14.3

Find  
d y

dx

2

2  of the following functions

1. y x= −
sin

1

2. y x= −
tan

1
2

3. y x= −
sec

1

4. y x x= − ⋅
−

1
2 1

sin

Answers:

1.
x

x1 2
3

2−� �

2.
−

+

16

1 4 2 2

x

x� �

3.
− −

−

2 1

1

2

3 2
3

2

x x

x x

� �

� �

4.
− − −

−

−x x x

x

1

1

2 1

2
3

2

sin

� �

Type 1: (continued)

(D) Exponential functions:

Exercise 14.4

Find  
d y

dx

2

2  of the following functions.

1. y e x= +2 3

2. y e
x= sin

3. y e
m x

=
−

sin
1

Answers:
1. 4 y

2. y x xcos sin2 −� �

3. y
m y x y

x
2

2
1

21
= +

−� �

Type 1: (continued)

(E) Logarithmic functions:

Exercise 14.5

Find  
d y

dx

2

2  of the following functions

1. y x= +log 2 3� �
2. y x= log sin

3. y x= log cos

4. y x x= + −log 2 3 3 5� � � �� �

5. y
a x

a x
=

+
−

�
�	

�
�
log

6. y
ax b

cx d
=

+
+

�
�	

�
�
log

Answers:

1. −
+
4

2 3
2

x� �

2. −cosec
2

x

3. −sec
2

x

Type 1: (continued)

(F) Implicit functions:

Exercise 14.6

Find  
d y

dx

2

2  of the following functions.

1. x x y y a2 2 2+ + =
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2. x y xy2 2 3 7 0+ + − =

3. x y a+ =
4. cos cosx y c⋅ =

5. y x y= +tan � �
6. y x2 3 25+ =

7.
x

a

y

b

2

2

2

2 1+ =

Answers:

1.
−
+
6

2

2

3

a

x y� �

2.
10 3

2 3

2 2

3

x x y y

y x

+ +

+

� �
� �

3.
1

2 3

a

x

4. −
+ + ⋅tan tan tan tan

tan

2 2 2 2

3

2x y x y

y

5. − ⋅
+

+
2

3

2

cot

sin

x y

x y

� �
� �

6. − ⋅ − −9

4
25 3

3
2x� �

7.
−b

a y

4

2 3

Type 1: (continued)

(G) Parametric functions:

Exercise 14.7

Find  
d y

dx

2

2  of the following functions.

1. x a= cos
3 θ

y b= sin
3 θ

2. x
t

t
=

+
3

1 3

y
t

t
=

+
3

1

2

3

3. x a t= 2

y at= 2

4. x a= cosθ

y b= sinθ

5. x a= +θ θsin� �
y a= −1 cosθ� �

6. x a= sec
2 θ

y a= tan
3 θ

7. x = −3
3

cos cosθ θ

y = −3
3

sin sinθ θ

8. x t= 2

y t= − 1
2� �

9. x
t

= 1

y
t

=
+
1

1

10. x
a t

t
=

−

+

1

1

2

2

� �

y
at

t
=

+
2

1 2

11. x a t= cos

y a t= sin

12. x a t= +sin 2 3� �
y a t= +cos 2 3� �

13. x t= −2 1 sin� �
y t= 4 cos
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14. x a= cos
2 θ

y a= sin
2 θ

15. x a= cos
3 θ

y a= sin
3 θ

16. x a= tanθ

y a= 1

2

2
sin θ

17. x a= cosecθ

y a= cotθ
Answers:

1.
b

a3 2
4sec cosecθ θ⋅ 2.

2 1

3 1 2

3 4

3 3

+

−

t

t

� �

� �

3.
− 1

2 3a t 4. − b

a
cosec3 θ 5.

1

4 2
4

a
sec

θ�
�	
�
�


6.
3

4 a
cotθ 7. − ⋅cot cosec2 5θ θ

8.
1

2 3t
9.

−

+

2

1

3

3

t

t� �
10. −

+1

8

2 3

3

t

a t

� �

11. − cosec t

a

3

12. −
+sec3 2 3t

a

� �

13. − sec3 t 14. 0 15.
sec cos4

3

θ θ⋅ ec

a

16.
cos cos4 24 3θ θ −� �

a
17. − tan3 θ

a

Type 2: Problems based on finding the value of at
the indicated points

Exercise 14.8

Find 
d y

dx

2

2   at the indicated points for the following

functions.

1. x a= +θ θsin� �

y a= −1 cosθ� �  at θ
π=
2

2. x a= −1 2cos θ� �

y a= −2 2θ θsin� �  at θ
π=
4

3. x t t= −2 2cos cos

y t t= −2 2sin sin  at θ
π=
2

4. If x t= 2

y t= 3  at t = 1

5. If x
t

=
1
3

y t= 2 at  t =
1

2
Answers:

1.
1

a
2.

1

a
3. − 3

2
4.

3

4
5.

5

1152

Type 3: To show that a given function satisfies a
differential equation

(A) Problems based on showing that an algebraic
function satisfies a differential equation

Exercise 14.9

1. If y x x2 22 3 5= + + , show that

d y

dx
x x

2

2
2

3

2

31

4 2 3 5

=
+ +� �

2. If x y x3 3 23+ = , show that 
d y

dx

x

y

2

2

2

5

2
0+ =

3. If x xy y2 22 5 0− + − = , show that

d y

dx

x xy y

x y

2

2

2 2

3

14 2

4
=

− +

−

� �
� �
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4. If y x x= − +2 3 5, show that

d y

dx x

dy

dx

2

2 3

32

2 3
=

−
⋅ ��	

�
�
� �

5. If y x x= − +�
�

�
�1 2

3

, show that

1 9 02
2

2+ + − =x
d y

dx
x

dy

dx
y� �

6. If 2 1 1y x x= + + − , Show that

4 1 4 02
2

2x
d y

dx
x

dy

dx
y− + − =� �

7. If y y xm m+ =− 2 , show that

x
d y

dx
x

dy

dx

y

m
2

2

2 21 0− + − =� �

8. If y x x= + + −2 1 2 1, show that

4 1 4 02
2

2x
d y

dx
x

dy

dx
y− + − =� �

9. If x y a x y3 3 3+ = , show that

y
a xy

y ax
2

3

2 3
2= − ⋅

−� �

10. If y x x
n

= + +�
�

�
�1 2 , show that

1 02
1

2+ + − =x y xy n y� �

11. If y x x
m

= + −�
�

�
�

2 1  show that

x y xy m y2
2 1

21 0− + − =� �

12. If y y x
1
5

1
5 2+ =

−
, show that

x y xy y2
2 11 25 0− + − =� �

13. If Z
x

= 1
, show that x

d y

dx
x

dy

dx

d y

dZ
4

2

2
3

2

22+ =

14. If  x y y x c+ + − = , show that y
c

2 2

2
=

15. If ax h xy b y2 22 1+ + = , show that

d y

dx

h ab

hx by

2

2

2

3=
−
+� �

16. If y x= −1 2
3

2� � , show that

1 3 02
2 1− + + =x y xy y� �

17. If y A x x B x x
m n

= + −�
�	

�
�
 + − −�

�	
�
�


2 2
1 1 ,

show that x y xy n y2
2 1

21 0− + − =� �

18. If y ax
b

x
= + , show that x y x y y2

2 1 0+ − =

19. If y ax b= +2 , show that y y ab2
3 =

20. If y
ax b

cx d
= +

+ , show that 2 31 3 2
2y y y=

21. If y
ax b

a bx
= −

− , show that 2 31 3 2
2y y y=

22. If y
ax bx c

x
= + +

−

2

1
, prove that

1 33 2− =x y y� �

23. If y
ax b

a bx
= +

+  , show that 2 31 3 2
2y y y=

24. If y ax
b

x
= +2

3
, show that x y x y y2

2 1 0+ − =

25. If y ax b= +2 2 , show that y y ab2
3 2=

26. If y
ax b

cx d
=

−
− , show that 2 31 3 2

2y y y=

27. If y
ax b

a bx
=

−
−2

, show that 2 31 3 2
2y y y=

28. If y
ax bx c

x
=
− + +

−

2

1 , prove that

1 33 2− =x y y� �
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29. If y
ax b

a bx
=

+
+

4

2
, show that 2 31 3 2

2y y y=

30. If x y= sin log� � , show that

1 2
2 1− − =x y xy y� �

Type 3: (continued)
(B) Problems based on showing that a trigonometric
function satisfies a differentiatial equation

Exercise 14.10

1. If y = sin (ax + b) show that

d y

dx

ax b ax b

a

2

2

2

=
+ +sec tan� � � �

2. If y = 2 sin 3x – 5 cos 3x, show that 
d y

dx
y

2

2
9 0+ =

3. If y = sin (m cos–1 x), show that

1 0
2

2

2

2
+ − + =x

d y

dx
x

dy

dx
m y� �

4. If y = a sin (log x), show that

x y xy y
2

1 1 0+ + =
5. If y = a cos (log x), show that

x y xy y
2

1 1 0+ + =
6. If y = sin (sin x), show that

y y x y x2 1
2

0+ + =tan cos

7. If y = cos (m sin–1 x), show that

1 0
2

2 1
2

− − + =x y xy m y� �
8. If x = sin (log y), show that

1
2

2 1+ − =x y xy y� �

9. If x y= cos log� � , show that

1 2
2 1− − =x y xy y� �

10. If y x x= +2 3cos log sin log� � � � , show that

x
d y

dx
x

dy

dx
y2

2

2 0⋅ + + =

11. If y x= −
tan

1
, show that 1 2 02

2 1+ + =x y xy� �

12. If y x x
2 2 2

4 9= +cos sin , show that

y
d y

dx y
+ =

2

2 3

36

13. If y A mx B mx= +cos sin , show that

y m y2
2 0+ =

14. If y x= −
sin

1
, show that 1 02

2 1− − =x y xy� �

15. If y x= −
sin

1 2

� � , show that

1 22
2 1− − =x y x y� �

16. If y x= −
tan

1 2

� � , show that

x y x x y2 2

2
2

11 2 1 2+ + + =� � � �

17. If y x= −
cos

1 2

� � , show that

1 22
2 1− = +x y xy� �

18. If p a b
2 2 2 2 2= +cos sinθ θ , show that

p
d p

d

a b

p
+ =

2

2

2 2

3θ

19. If y P x Q x= −sin cos2 2 , where P and Q are

constant, show that
d y

dx
y

2

2 4 0+ =

20. If y a x b x= +sin cos  show that 
d y

dx
y

2

2 0+ =

21. If y a x b x= +cos log sin log� � � �  show that

x y xy y2
2 1 0+ + =
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22. If y
x

x
=

−

−
sin

1

2
1

 show that

1 3 02
2 1

2− − + =x y xy m y� �

23. If y m x=
−

sin sin
1 2

� �  show that

1 02
2 1

2− − + =x y xy m y� �
Type 3: (continued)

(C) Problems based on showing that an exponential
or a logarithmic function satisfies a differential
equation

Exercise 14.11

1. If y Ae Benx nx= + − , show that y n y2
2=

2. If  y e ex x= +− −2 33 2 , Show that

d y

dx

dy

dx
y

2

2 5 6 0+ ⋅ + =

3. If y e
x

=
−

2
1

sin
 show that

1 4 02
2

2
− − − =x

d y

dx
x

dy

dx
y� �

4. If x y ex y+ = − , show that 
d y

dx

x y

x y

2

2 2

4

1
=

+

+ +
� �

� �

5. If y e
m x

=
−

tan
1

 show that

1 2 02
2

2+ + − =x
d y

dx
x m

dy

dx
� � � �

6. If y e
x

=
−

tan
1

 show that

x y x y2
2 11 2 1 0+ + − =� � � �

7. If  y e
x= tan

, show that

cos sin
2

11 2 0x y x y� � � �− + =

8. If y x x= + +�
�	

�
�
log

2
1 , show that

1 02
2

2+ + =x
d y

dx
x

dy

dx
� �

9. If y x x= + +�
�	

�
�



��

�
��

log
2

2

1  show that

1 22
2

2+ + =x
d y

dx
x

dy

dx
� �

10. If y e
a x

=
−

sin
1

, show that

1 2
2

2
2− − =x

d y

dx
x

dy

dx
a y� �

11. If y x= log sin� � ,

show that y y2 1
2

1 0+ + =� �

12. If  y x a x= + +�
�	

�
�
log

2 2
, Show that

a x y xy2 2
2 1 0+ + =� �

Type 3: (continued)

(D) Problems based on showing that parametric
functions satisfy differential equations

Exercise 14.12

1. If x a= +θ θsin� �  y a= +1 cosθ� � , show that

d y

dx

a

y

2

2 2= − .

2. If x = +2 3cos sinθ θ  y = −2 3sin sinθ θ  show

that 
d y

dx y

2

2 3

13= − .

3. If x a= +cos sinθ θ θ� �  y a= −sin sinθ θ θ� � ,

0
2

< <�
�

�
�θ π

 show that 
d y

dx a

2

2

3

=
sec θ

θ
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4. If x
t

t
=

−

+

�

�
	

�

�



−
cos

1
2

2

1

1
 y

t

t
=

+

�

�
	

�

�



−
sin

1

2

2

1
 show

that 
d y

dx

2

2  is independent of t.

Hint: If x
t

t
t=

−

+

�

�
	

�

�

 =

− −
cos tan

1
2

2

11

1
2

y
t

t
t=

+

�

�
	

�

�

 =

− −
sin tan

1

2

12

1
2

5. If x t= cos  y t= log  show that

d y

dx

dy

dx

2

2

2

0+ ��
�
� = at  t =

π
2

Type 3: (continued)

(E) Problems based on showing that product of any
two functions satisfy a differential equation

Exercise 14.13

1. If y x x= ⋅ sin  Show that

x y xy x y2
2 1

22 2 0− + + =� �

2. If y x x= ⋅ −
tan

1
 show that 

d y

dx x

2

2 2 2

2

1
=

+� �

3. If  y e a
v

x b
v

x

x

= ⋅ +�
�

�
�

−
2 3

2

3

2
cos sin , show

that 
d y

dx

dy

dx
y

2

2 0+ + = .

4. If x a bx e
y

x= + ⋅� �  show that

x
d y

dx
x

dy

dx
y3

2

2

2

⋅ = −�
�

�
�

5. If y e bx
ax= ⋅ cos  show that

y a y a b y2 1
2 22 0− + + =� �

6. If y Ae bx c
ax

= ⋅ +−
cos � �   show that

y a y a b y2 1
2 22 0+ + + =� �

7. If y x x
n= ⋅− 1

log  show that

x y n x y n y2
2 1

2
3 2 1 0+ − + − =� � � �
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15

L’Hospital’s Rule

Question: What is L’Hospital’s rule?
Answers: L’Hospital’s rule is a rule permitting the
evaluation of an indeterminate quotient of functions
as the quotient of the limits of their derivatives.

Example: 1. lim
sin

x

x

x→ 0
 is an indeterminate of the

form 
0

0
 but it can be evaluated as lim

cos
x

x
→

=
0 1

1

Indeterminate Forms

There are eight indeterminate forms involving
difference, product, quotient or power of 0 and ∞  ( in
connection with finding limit) which we face in practice

which are (1) 
0

0
 (2) 

∞
∞  (3) 0 × ∞

(4) ∞ − ∞  (5) 0
∞  (6) ∞

0   (7) 00  (8) 1
∞  which we face

in practice are the expressions known as indeterminate
forms of the given functions for the limit.

Remember: 10 = 1, 
0

0
0∞

=
∞

= ∞or  is the

determinate form having a meaning for the given
expression for the limit.

Statement of L’Hospital’s Rule

If lim lim
x a x a

f x F x
→ →

= =� � � � 0  and 
′
′

f x

F x

� �
� � , where

′f  and ′F  are the derivatives of  f and F, approaches

a limit as x approaches a, then 
f x

F x

� �
� �  approaches the

same limit.

Proof: lim
x a

f x

F x→

� �
� �

=

−
−
−
−

→
lim
x a

f x f a

x a

F x F a

x a

� � � �

� � � �

[Since f (a) = F (a) = 0]

=
′
′

′ ≠
f a

F a
F a

� �
� � � �, 0

e.g. If  f x x� � � �= −
2

1

F (x) = (x – 1)
a = 1

then  
f a

F a

� �
� � =

0

0  and   lim lim
x x

f x

F x

x
→ →

′
′

= =
1 1

2

1
2

� �
� �

which is lim
x

x

x→

−

−1

2
1

1

� �
� � .

Method of Evaluating Limits in
Indeterminate Forms

1. Evaluation of 
0

0
 and 

∞
∞

 forms:

If  lim
x a

f x

g x→
=

� �
� �

0

0
 or, lim

x a

f x

g x→
= ∞
∞

� �
� �

then we adopt the following working rule:
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Working rule: 1. Go on differentiating numerator and
denominator separately till we get a definite value at
x = a. This working rule may be expressed in the
symbolic form in the following way

lim lim lim
x a x a x a

f x

g x

f x

g x

f x

g x→ → →
=

′
′

=
′′
′′

� �
� �

� �
� �

� �
� �

=
′′′
′′′

=
→

lim
x a

f x

g x

� �
� � ...  = a definite value

N.B.: Any one of the 
′
′

�
�	



�� =

f x

g x
x a

� �
� � ,  

′′
′′

�
�	



�� =

f x

g x
x a

� �
� � ,

′′′
′′′

�
�	



�� =

f x

g x
x a

� �
� � , ...etc  which first provide us a

definite value (i.e.; not meaningless form) will give us
the answer.

2. Working rule to evaluate 0 ⋅ ∞  at x  = a

lim
x a

f x g x
→

⋅ = ⋅ ∞
��

�
��� � � � 0  For this indeterminate

form, we are required to change f g
f

g
⋅ =

1
 which

⇒ ⋅lim f g� �  should be changed into  lim
f

g1
  or

to  lim
g

f1
, then apply L’Hospital’s rule.

3. Working rule to evaluate lim
x a

g xf x
→

� � � �   which

provides us 1 0
0 0∞ ∞, ,  at x = a .

For these indeterminate forms, we are required to

change f g into e

f

g

log

1


��

�
��

  or  e

g

f1 log


��

�
�� , then we apply

L’Hospital’s rule.

4. lim
x a

f x g x
→

− = ∞ − ∞� � � �� �  form:

Working rule to evaluate ∞ − ∞� � .
For this indeterminate form, we write

f g
g f

f g

− =
−

��
�
��

⋅
��

�
��

1 1

1 1   and then we use L’Hospital’s

rule which provide us the required answer.

The above types of indeterminate forms and the
working rule for these indeterminate forms may be
put in the chart form in the following way.

Types of indeterminate working rules
froms at x = a

1. lim
f

g
= 0

0
lim lim lim

f

g

f

g

f

g
= ′

′
= ′′

′′

2. lim
f

g
= ∞
∞ = ′′′

′′′
=lim

f

g
...  then any one of

these which is not meaningless
at x = a will give the required
answer.

3. lim f g⋅ =∞⋅0 lim or
f

g

g

f
1 1

 and then use

L’Hospital’s rule

4. lim f
g = ∞

1 lim
log

or lim

log

f

g

g

f

1 1
 then

use L’Hospital’s rule. If

5. lim f
g = 0

0 L’Hospital’s rule. If L’Hospital’s

rule applied to one of these give

6. lim f
g =∞0

'b' = a finite value for the limit,

then answer to the original
problem in exponential form is eb.

7. lim f g− =∞−∞� � lim

1 1

1 1
g f

g f

−

⋅
, then use

L’Hospital’s rule which will
directly give us the answer.

Remember: 1.  Some times L’Hospital’s rule may fail
to lead to any fruitful result. In such situation, we use
the usual method of finding limit of the given
function.

Example: Let as
f x

g x

x

x
x

� �
� � = +

→ ∞
1

2
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Here , lim lim
x x

f x

g x

x

x

→∞ → ∞
=

+
=

� �
� �

1
1

1

2

But L’Hospital’s rule gives us

′
′

=

+

=
+f x

g x x

x

x

x

� �
� �

1

1

1

2

2

′′
′′

=
+

=
+

=
f x

g x

x x x

x

f x

g x

� �
� �

� �
� �

1

1 1

2

2

= original function which ⇒  limiting value can
not be obtained by L’Hospital’s rule.
2. Generally, functions involving surds should be
avoided for application of L’Hospital’s rule.

For example, to evaluate lim
x

x a x a

x a x a→

− + −
+ − +0

2 2

3 2
,

we first go for rationalization instead of L’Hospital’s

rule though it has the form 
0

0
.

3. L-Hospital rule is applicable only when the

indeterminate expression has the form 
0

0
 or 

∞
∞  in

the limit.

4. If the indeterminate expressions of the given

functions as x a→  do not assume 0

0

�
�
�  or 

∞
∞

�
�
� ,

we are required first to change that form into 
0

0

�
�
�  or

∞
∞

�
�
�  by simplification or using any mathematical

manipulation.

5. The two indeterminate forms 0 × ∞� � and
∞ − ∞� �  can be easily evaluated by reducing them

to the form 
0

0

�
�
�

∞
∞

�
�
�or .

6. The three indeterminate exponential forms 00,
1

0∞ ∞,   can easily be evaluated by first taking
logarithm. By taking logarithm, all these three forms

can be reduced to the indeterminate form 0 × ∞� �

which can be further  reduced to 
0

0

�
�
�

∞
∞

�
�
�or  form.

7. The students must not differentiate 
f x

g x

� �
� �   as a

fraction. The numerator and the denominator have to
be differentiated separately.
8. Differentiation of numerator and denominator is
performed w.r.t. the variable which converges
9. L’Hospital’s rule involves differentiating the
functions. This is why it is useful only when the
functions are easily differentiable.
10. L’Hospital’s rule may be applied repeatedly till we
get a definite value  value at x = a  or when x a→
(i.e.; lim x = a).
N.B.: 1. To evaluate limit of a function whose value
at x a→  is  00 , ∞ ∞0

1or  (in exponential form), we
are required to take the logarithm first and then
proceed.

e.g.  lim form
x

xx
→

=
0

00� �

� y x y x x
x

x

x
= ⇒ = =log log

log
1

⇒ = =
−→ → →

lim log lim
log

lim
x x x

y
x

x

x

x

0 0 0
2

1

1

1

= − = ⇒ = =
→ →

lim which lim
x x

x
x x e

0 0

0
0 1

2.  lim log lim
x x

x
x e

→ → +∞+
= − ∞ = + ∞

0
,

log lim1 0 0= =
→ −∞

,
x

x
e

lim log
x

x
→ +∞

= ∞

3. log log loga b am m b= ⋅

= log
logb

b

m
a

⋅ 1
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=
log

log
b

b

m

a  � log logb aa b⋅ = 1� �

=
log

log

m

a
  (� when the base is same in numerator

and in denominator, the base may be omitted for
easiness of computation)

This formula may be remembered by the equality:

m

a

m

b
a

b

=

 (This formula is known as changing into the same
base formula or base changing formula)

Type 1: Problems based on indeterminate form  
0

0

�
�
� .

Examples worked out:

1. Evaluate  lim
sin

x

x

x→ 0

Solution: � lim
sin

form
x

x

x→
= �

�
�0

0

0

∴ = =
→ → →

lim
sin

lim

sin

lim
cos

x x x

x

x

d

d x
x

d

d x
x

x
0 0 0 1� �

= = ==cos cosx
x 0

0 1

∴ = =
→ →

lim
sin

lim cos
x x

x

x
x

0 0
1

2. Evaluate lim
sin sin

x a

x a a x

x a→

−
−

.

Solution: � lim
sin sin

form
x a

x a a x

x a→

−
−

= �
�
�

0

0

∴
−
−→

lim
sin sin

x a

x a a x

x a

=
−

−→
lim

sin sin

x a

d

d x
x a a x

d

d x
x a� �

=
−

→
lim

sin cos
x a

a a x

1

= − = −=sin cos sin cosa a x a ax a α

∴
−
−→

lim
sin sin

x a

x a a x

x a

= −sin cosa a α

3. Evaluate lim
tan tan

x y

x y

x y→

−
−

Solution: � lim
tan tan

form
x y

x y

x y→

−
−

= �
�
�

0

0

∴
−
−

=
−

−→ →
lim

tan tan
lim

tan tan

x y x y

x y

x y

d

d x
x y

d

d x
x y� �

=
−

=
→ →

lim
sec

lim sec
2

2

x y x y

x
x

0

1

sec sec
2 2

x y
x y=

=

∴
−
−

=
→

lim
tan tan

sec
x y

x y

x y
y2 .

4. Evaluate lim
sin tan

-1 -1

x

x x

x→

−
0 3

Solution: � lim
sin tan

form
-1 -1

x

x x

x→

−
= �

�
�0 3

0

0

∴
−

→
lim

sin tan
-1 -1

x

x x

x0 3
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=
−

→
lim

sin tan
-1 -1

x

d

d x
x x

d

d x
x

0 3
� �

=
−

−
+

= �
�
�→

lim form
x

x x

x0

2 2

2

1

1

1

1

3

0

0

=
−

−
+

�

�
	
	




�
�
�

→
lim
x

d

d x x x

d

d x
x

0

2 2

2

1

1

1

1

3� �

=
−

+
+

→
lim
x

x

x

x

x

x0

2 3 2 2 2

2

2 1

2

1

6

� � � �

=
−

+
+

�

�

	
	
	




�

�
�
�→

lim
x

x x
0 2 3 2 2 2

1

6

1

1

2

1� � � �

=
−

+
+

�

�

	
	
	




�

�
�
�

=

1

6

1

1

2

1
2 3 2 2 2

0
x x

x
� � � �

= × + = =
1

6
1 2

3

6

1

2

which lim
sin tan-1 -1

⇒ − =
→x

x x

x0 3

1

2

5. Evaluate lim
sin

x

x x
x

x→

− +
�

�

	
	
	
	




�

�
�
�
�

0

3

5
6

Solution: � lim
sin

form
x

x x
x

x→

− +
�

�

	
	
	
	




�

�
�
�
�
= �

�
�0

3

5
6 0

0

∴
− +



�

�
�
��

�

�

�
�
��

→
lim

sin

x

x x
x

x0

3

5
6

=

− +

�
�

�
�
�

→
lim

sin

x

d

d x
x x

x

d
d x

x
0

3

5

6

� �

=
− +

= �
�
�→

lim
cos

form
x

x x

x0

2

4

1
1
2

5

0

0

=
− +

�
�
�

→
lim

cos

x

d

d x
x x

d

d x
x

0

2

4

1
1
2

5� �

=
+

�
�

�

�
� = �

�
�→

lim
- sin

form
x

x x

x0 3
20

0

0

=
+

→
lim

- sin

x

d

d x
x x

d

d x
x

0 3
20

� �

� �

=
− +

= �
�
�→

lim
cos

form
x

x

x0 2

1

60

0

0

=
+

→
lim

- cos

x

d

d x
x x

d

d x
x

0 2
60

� �

� �

= = �
�
�→

lim
sin

form
x

x

x0 120

0

0
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= = = �
�	



��→ → =

lim

sin

lim
cos cos

x x x

d

d x
x

d

d x
x

x x
0 0 0120 120 120� �

= =
cos 10

120 120

which lim
sin

⇒
− +



�

�
�
�

�

�

�
�
�
=

→x

x x
x

x0

3

5
6 1

120

6. Evaluate lim
cos sin

sinx

x x x

x x→

−
��

�
��0 2

Solution:  � lim
cos sin

sin
form

x

x x x

x x→

−

�
�

�

�
� = �

�
�0 2

0

0

∴
−

�
�

�

�
�

→
lim

cos sin

sinx

x x x

x x0 2

=
−

→
lim

cos sin

sin
x

d

d x
x x x

d

d x
x x

0 2

� �

� �

=
⋅ − −

+
= �

�
�→

lim
cos sin cos

sin cos
form

x

x x x x

x x x x0 2

1

2

0

0

=
−

+→
lim

sin

sin cosx

x x

x x x x0 2

� �
� �

=
−
+

= �
�
�→

lim
sin

sin cos
form

x

x

x x x0 2

0

0� �

=
−

+ ⋅→
lim

sin

sin cos
x

d

d x
x

d

d x
x x x

0
2

� �

� � � �� �

=
−

+ ⋅ −→
lim

cos

cos cos sinx

x

x x x x0 2 1

=
−

−
�
�	



��

= −
=

cos

cos sin

x

x x x x3

1

30

which lim
cos sin

sin
⇒

−�
�
	
	



�
�
�
= −

→x

x x x

x x0 2

1

3

N.B.: In practice, differentiation of numerator and
denominator is done separately mentally as below
just for saving time.

lim
cos sin

sinx

x x x

x x→

−

�
�

�

�
�

0 2

=
⋅ − −

+→
lim

cos sin cos

sin cosx

x x x x

x x x x0 2

1

2

=
−
+→

lim
sin

sin cosx

x

x x x0 2

=
−
+ −→

lim
cos

cos cos sinx

x

x x x x0 2

=
−

−
= −

→
lim

cos

cos sinx

x

x x x0 3

1

3

Type 2: Problems based on indeterminate form 
∞
∞

�
�
� .

Examples worked out:

1. Find   lim
log

cotx

x

x→ 0

Solution: y
x

x
= = ∞

∞

�

�
�

log

cot
form

⇒ =
→ →

lim lim
log

cotx x
y

x

x0 0
 =

−→
lim

cosec
2x

x

x0

1

=
−

= �
�
�→

lim
sin

form

2

x

x

x0

0

0

� �
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=
−

= =
→

lim
sin cos

x

x x
0

2

1

0

1
0

2. Find lim
log

cotx

x

x→ 0

2

2

Solution: y
x

x
= =

∞
∞

�

�
�

log

cot
form

2

2

⇒ =
→ →

lim lim
log

cotx x
y

x

x0 0

2

2

=


��
�
�� ⋅

− ⋅→
lim

cosec2x

x
x

x x0

2

2

1
2

2

� �

� � � �

=
−

= �
�
�→

lim
sin

form
x

x

x0

2 2

2

0

0

� �

=
− ⋅ ⋅

→
lim

sin cos

x

x x x

x0

2 2
2 2

2

� �

= − ⋅ = − ⋅ ⋅ =
→

lim sin cos
x

x x
0

2 2
2 2 0 1 0� � � � � � � �

3. Find lim
log

logx a x a

x a

e e→

−

−

� �

� �

Solution: y
x a

e e
x a

=
−

−
= ∞

∞

�

�
�

log

log
form

� �

� �

⇒ =
−

−→ →
lim lim

log

logx a x a x a
y

x a

e e

� �
� �

=
−


��

�
��

−



�
�

�

�
� ⋅

=
∞
∞

�

�
�→

lim form
x a

x a

x

x a

e e
e

1

1

= −

−
= �

�
�→

lim form
x a

x a

x

e e

e x a� �
0

0

=
⋅ + −

=
+

=
→

lim
x a

x

x x

a

a

e

e x a e

e

e1 0
1

� �

4. Find lim
log

2
tan

2
x

x

x→

−�
�
�

π

π

Solution: lim
log

2

tan
form

2
x

x

x→

−��
�
��
= ∞

∞

��

�
��π

π

⇒
−��
�
��

→
lim

log
2

tan
2

x

x

xπ

π

=
−�
�
�
= ∞

∞

�

�
�→

lim 2

sec
form

2

2
x

x

xπ

π
1

=
−�
�
�
= �

�
�→

lim
cos

2

form

2

2

x

x

x
π π

0

0

=
⋅ −

=
−

=
→ →
lim

2 cos sin
lim

sin 2

2 2
x x

x x x
π π

� � � �
1 1

0

5. Find lim sin log
x

x x
→

⋅
0

Solution: y x x
x

x
= ⋅ =sin log

log

cosec

⇒ = = ∞
∞

��

�
��→ →

lim lim
log

cosec
form

x x
y

x

x0 0

=


�
�
�

− ⋅→
lim

1

cosec cotx

x
x x0 � �     (by L-Hospital rule)
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= −
⋅

�

�
	
	




�
�
�→

lim
sin

cosx

x

x x0

2

= − ⋅ ��
�
�� ⋅→

lim
sin

tan
x

x

x
x

0
1� � � �

= − ⋅ ⋅ =1 1 0 0� � � � � �
6. Find lim log tantan

x
x x

→0
2� �

Solution: y x
x

xx= =log tan
log tan

log tantan 2
2� �

by base changing formula

log
log

loga
b

b

m
m

a
=

�

�
	
	




�
�
�

⇒ =
→ →

lim lim
log tan

log tanx x
y

x

x0 0

2
=

∞
∞

�

�
�form

=
⋅ ⋅


��

�
��

⋅

��

�
��

→
lim

tan
sec

tan
sec

[by L- Hospital rule]
x

x
x

x
x

0

2

2

1

2
2 2

1

=
⋅


��

�
��


��

�
��

=
⋅→ →

lim
sin cos

sin cos

lim
2 sin cos

sin cosx x

x x

x x

x x

x x0 0

2

2 2

1 2 2

= = �
�
�→

lim
2 sin

sin
form

x

x

x0

2

4

0

0

=
⋅
⋅

= ⋅ ⋅
⋅

=
→

lim
2 cos

cos

    
x

x

x0

2 2

4 4

2 1 2

1 4
1

Type 3: Problems based on the indeterminate form

0 × ∞� � .
Examples worked out:

1. Determine lim log
x

x x
→ 0

Solution: y x x= log

⇒ = = × ∞
→ →

lim lim log form
x x

y x x
0 0

0� � � �

=

�
�
�

= ∞
∞

�

�
�→

lim
log

form
x

x

x

0 1

=
−

��

�
��
= − =

→ →
lim lim
x x

x

x

x
0

2

0

1

1
0� �

2. Determine lim tan
x

x
x→ ∞

⋅ 
�
�
�

1

Solution: y x
x

= ⋅ 
��
�
��tan

1

⇒ = ⋅ 
��
�
�� = × ∞

→ ∞ → ∞
lim lim tan form

x x
y x

x

1
0� �

=


�
�
�
= �

�
�→ ∞

lim
tan

form
x

x

x

1

1
0

0

=


�
�
� ⋅ −

��

�
��

−

��

�
��

→∞
lim

sec
2

x

x x

x

1 1

1

2

2

= 
�

�
� =→ ∞

lim sec
2

x x

1
1

3. Determine lim tan
2x

x
x

→
− 

��
�
��1

1� � π

Solution: y x
x= − 

��
�
��1� � tan

2

π

⇒ = − 
��
�
�� = ×∞

→ →
lim lim tan

2
form

x x
y x

x
1 1

1 0� � � �π

=


��
�
��

−
→

lim
tan

2
x

x

x
1 1

1

π

� �
 
=


��

�
�� ⋅

��
�
��

−
→

lim
sec

2 2
2

x

x

x

1

2

1

1

π π

� �
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=
⋅ �
�
�


�
�
�

= �
�
�→

lim
-

2

cos
2

form
x

x

x1

2

2

1
0

0

� � π

π

=
⋅ − ⋅ ��

�
��


��

�
�� ⋅ −��

�
�� ⋅

��
�
��

→
lim

-
2

2 cos
2

  sin
2 2

x

x

x x1

2 1 1� � � � π

π π π

= =
−

→ →
lim

-

sin
lim

cosx x

x

x x1 1

2 1 2� � � �
� � � �π π π

=
−

=
2 2

π π� � � �- 1

Type 4: Problem based on the indeterminate form

∞ − ∞� � .
Examples worked out:

1. Evaluate  lim cosec cot
x

x x
→

−
0
� �

Solution: y = (cosec x – cot x)

⇒ = − ∞ ∞
→ →

lim lim cosec cot = – form
x x

y x x
0 0

� � � �

=
−

= �
�
�→

lim
cos

sin
form

x

x

x0

1 0

0

� �

= = =
→

lim
sin

cosx

x

x0

0

1
0

2. Evaluate lim
1

cot
x x

x
→

−
�

�
�0

Solution: y
x

x= −
��

�
��

1
cot

⇒ = −
��

�
�� = ∞ − ∞

→ →
lim lim

1
cot form

x x
y

x
x

0 0
� �

=
−

��
�
�� =

�

�
�→

lim
sin cos

sin
form

x

x x x

x x0

0

0

=
+

= �
�
�→

lim
sin

cos sin
form

x

x x

x x x0

0

0

=
+

− +→
lim

sin cos

sin cosx

x x x

x x x0 2

� �
� �   

=
+
+

= =
0 0

0 2

0

2
0

3. Evaluate  lim
cot

1

x

x
x

x→

−

�

�
��

�

�

�
��0

Solution: y
x

x

x
=

−
��

�
��cot

1

⇒ =
−

�
�
�

→ →
lim lim

cot
1

x x
y

x
x

x0 0

=
−

��
�
��
⋅

��

�
��→

lim
cos sin

sinx

x x x

x

x

x0 3

=
−

��
�
��
⋅ = �

�
�→

lim
cos sin

form
x

x x x

x0 3
1

0

0

=
−

=
−

= �
�
�→ →

lim
sin

lim
sin

form
x x

x x

x

x

x0 2 03 3

0

0

� � � �

=
−

= −
→

lim
cos

x

x
0 3

1

3

Type 5: Problems based on indeterminate form

∞ ∞0 0
1 0, ,  etc.

Examples worked out:

1. Find  lim sec

2

cot

x

xx
→

π
� �

Solution: Let  y = (sec x)cot x = ∞ →
��

�
��

0 form as  
2

x
π

∴ = ⋅log cot log secy x x

⇒ =
→ →
lim log lim cot log sec

2 2
x x

y x x
π π
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= = ⋅

→ →
lim

log sec

tan
lim

sec tan sec

sec
2 2

2
x x

x

x

x x x

xπ π

(by L’Hospital’s rule)

= = ⋅
→ →
lim

tan

sec
lim

sin

cos
cos

2

2

2
x x

x

x

x

x
x

π π

2

= =
→
lim sin cos

2
x

x x
π

0

⇒


�
�
�

�

�
�
� = =

→
log lim log

2
x

y
π

0 1

as log x a is continuous  function for x > 0.

⇒ =
→
lim

2
x

y
π

1

2. Find   lim sin cot

x

x
x

→
+

0
1� �

Solution: Let  y = (1 + sin x)cot x

∴  log  y = log (1 + sin x)cot x = cot x log (1 + sin x)

log sin

tan

1 + x

x

� �

⇒ =
+

=
→ →

lim log lim

cos
sin

secx x
y

x

x

x0 0 2

1
1

� �

⇒ =
→

lim log log
x

y e
0

⇒ 
�

�
� = ⇒ =

→ →
log lim log lim

x x
y e y e

0 0

3. Find   lim
sin

x

xx

x→


��

�
��0

1
2

Solution:  y
x

x
x

x= ��
�
�� = →∞sin

form as 0

1
2

1� �

⇒ = 
��

�
�� =log log

sin
log

sin
y

x

x x

x

x

x

1

2

2 1

⇒ =
−

→ →
lim log lim

log sin log

x x
y

x x

x0 0 2

⇒ =
−

→ →
lim log lim

cot

x x
y

x
x

x0 0

1

2

⇒ =
−

→ →
lim log lim

tan
x x

y
x x

x0 0

1 1

2

=
−

=
−

⋅
→ →

lim
tan

tan
lim

tan

tanx x

x x

x x

x x

x

x

x0 2 0 3
2 2

= − ⋅ = −
→ →

lim
tan

lim
sec

2

x x

x x

x

x

x0 3 0 2
2

1
1

6

=
−

= −��
�
��

��

�
�� = −

→ →
lim

tan
lim

tan 2

x x

x

x

x

x0 2 0

2

6

1

6

1

6

which lim log⇒ = −
→x

y
0

1

6

⇒ 
�

�
� = − ⇒ =

→ →

−
log lim lim

x x
y y e

0 0

1
61

6

⇒ 
��

�
�� =

→

−
lim

sin
x

xx

x
e

0

1 1

6
2

4. Find  lim cos

2

cos

θ
π

θθ
→
� �

Solution: y = = →
��

�
��cos from as 

2
cosθ θ

πθ� � 00

⇒ = =log log cos cos log coscosy θ θ θθ� �

⇒ =
→ →
lim log lim cos log cos

2 2
θ

π
θ

π
θ θy � �

⇒ =
→ →
lim log lim cos log cos

2 2
θ π θ π

θ θy
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= = ∞
∞

�

�
�→

lim
log cos

sec 
form

2
θ π

θ
θ

=
−

⋅
= −�

�	


��→ →

lim
tan

sec tan
lim

sec 
2 2

θ
π

θ
π

θ
θ θ θ

1

= − =
→
lim cos 

2
θ

π
θ 0

⇒ =
→

log lim

2
θ

π
y 0

 
⇒ = =

→
lim

2
θ π

y e
0

1

5. Find  lim cos
x

xx
→ 0

1
2

� �

Solution: y x xx= = →∞cos form as 0� � � �
1
2 1

⇒ =log log cosy x x� �
1
2

= 1
2x

xlog cos

⇒ = 
��

�
�� = ×∞

→ →
lim log lim log cos form
x x

y
x

x
0 0 2

1
0� �

= = �
�
�→

lim
log cos

form
x

x

x0 2

0

0

=
−
��

�
�� =

�

�
�→

lim
tan

form
x

x

x0 2

0

0

=
−

= −
→

lim
sec

2

x

x
0 2

1

2

⇒ 
�

�
� = −

→
log lim

x
y

0

1

2

⇒ =
→

−
lim
x

y e
0

1

2

6. Find lim
x

x x

→
−

1

1
1

Solution: y x xx= = →− ∞
1

1 1� � � �form,  as 1

⇒ = ���
���
=

−
⋅−log log logy x

x
xx

1
1 1

1
� �

� �

⇒ =
−

= �
�
�→ →

lim log lim
log

form
x x

y
x

x1 1 1

0

0� �

⇒
−

= −�
�
� = −

→ →
lim lim
x x

x
x1 1

1

1

1
1� �

⇒ 
�

�
� = −

→
log lim

x
y

1
1� �  which ⇒ = =

→

−
lim
x

y e
e1

1 1

7. Find lim
x

x
x

→0

Solution: y = xx = (00 form in the limit)

⇒  log  y = log xx = x log x = ( 0 × ∞ form� � )

⇒ =
→ →

lim log lim log
x x

y x x
0 0

� �

=

�
�
�
= ∞

∞

�

�
�→

lim
log

form
x

x

x

0 1

=
−

��

�
��

→
lim
x

x

x

0

2

1

1  (by L-Hospital rule)

= − =
→

lim
x

x
0

0� �

8. Find lim
x

xa

x→∞
+�
�
�1

Solution: y
a

x

x

= +��
�
�� = ∞1 1 form in the limit� �

⇒ = +��
�
�� = +��

�
�� = ×∞log log log formy

a

x
x

a

x

x

1 1 0� �

⇒ = +�
�
�

�
�	



��→∞ →∞

lim log lim log
x x

y x
a

x
1
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=
+�
�
�


�
�
�

= �
�
�→∞

lim
log

form
x

a

x

x

1

1
0

0

=
+�
�
�
⋅ −
��
�
��

−

��

�
��

→∞
lim
x

a

x

a

x

x

1

1

1

2

2

=
+�
�
�

→∞
lim
x

a
a

x
1

= a

⇒ 
�

�
� =→∞

log lim
x

y a

⇒ =
→∞
lim
x

a
y e

Type 6: Problems based on finding the values of
constants occuring in f (x) from the known limiting
value.

Working rule: To find the values of the constants
from the given finite limit, we adopt the following
working rule:
1. find the limit using L’Hospital’s rule for the given
function in case of indeterminate form.
2. Equate the limit of the given function determined
by using L’Hospital’s rule to the given value of the
limit of the given function and form an equation
involving constants only.
3. Observe whether limit should assume
indeterminate forms

0

0
0 0 0 1

0 0 0
, , , , , , ,
∞
∞

⋅∞ ∞−∞ ∞
∞� �  etc or not.

4. If the limit is 
0

0
, , ...
∞
∞

 etc., we have a relation

between the constants we again use L’Hospital’s rule
and find the limit which is equatied to given limit of
the given function and form another equation
involving constants.

Solve the simultaneous equations involving
constants.
5. That the given limit is finite may give a relation
between the constants.

Examples worked out:

1. Find the values of a and b such that

lim
cos sin

x

x a x b x

x→

+ −
=

0 2

1
1

� �

Solution: Limit =
+ + − −

→
lim

cos sin cos

x

a x x a x b x

x0 2

1

3

� �

[by L-Hospital rule]
This limit = ∞ + − ≠if 1 0a b

But limit = 1 (given)

∴ + ⋅ =1 0a b …(i)

∴ =
+ − −

= �
�
�→

limit lim
cos cos sin

form
x

a x b x ax x

x0 2

1

3

0

0

=
+ − −

→
lim

cos sin

x

a b x ax x

x0 2

1

3

� �

=
− − − +

→
lim

sin sin cos

x

a b x a x x x

x0

0

6

� � � �
 [by

using L-Hospital rule]

=
−

⋅ − ⋅ −
�
�	



��→

lim
sin sin

cos
x

b a x

x

a x

x

a
x

0 6 6 6

� �

=
−

− − =
−b a a a b a� � � �

6 6 6

3

6

which ⇒  limit =
−b a3

6

� �
…(ii)

But this limit is given to be equal to 1 …(iii)
Equation (ii) and (iii), we get

b a
b a

−
= ⇒ − =

3

6
1 3 6

� � � � …(iv)

solving (i) and (iv) ⇒ + − =
− =
− =

1 0
3 6

1 2 6

a b
b a

a

⇒ − = −2 6 1a
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⇒ = −a
5

2
...(v)

Now, putting a =−
5

2
 in (1),

⇒ − − =1
5

2
0b

⇒ = − = −b 1
5

2

3

2

Thus, a b= − = −
5

2

3

2
,

Note: The following argument to have 1 + a – b = 0 is
wrong.

Limit =
+ + − −

→
lim

cos sin cos

x

a x x a x b x

x0 2

1

3

� �

[using L’ Hospital rule]

= + −1

0

a b
…(i)

but this limit is given to be equal to 1 …(ii)
equating (i) and (ii), we get

1

0
1

+ −
=

a b

⇒ + − = ×1 0 1a b

⇒ + − =1 0a b  (inaccurate reasoning)

Type 1: Form: 
0

0
 and 

∞
∞

Problems based on algebraic functions

Exercise 16.1

Evaluate (using L’Hospital’s rule)

1. lim
x

x x

x x→∞

+ +

− +

3 4 5

7 5 7

3 2

3

2. lim
n

n n

n n→∞

+ +

+ −

3 4 5

4 6 7

2

2

3. lim
x

x x x x

x x→

− + − +

− +2

2 2

3 2

5 6 3 2

3 4

� � � �

4. lim
x

x

x→

−
−3

2
9

3

5. lim
x

x

x x→

+ −

+0

5

2

1 1

3 5

� �

6. lim
x

x x

x x→

− −

+ −2

2

2

2

6

7. lim ;
x a

a x x

a x x
a

→

+ −

+ −
>

2 3

3 2
0� �

Answers:

1.
3

7
2.

3

4
3. − 1

3
4. 6

5.
5

3
6.

3

5
7.

2

3 3

Type: continued

Problems based on a combination of algebraic and
trigonometric functions

Exercise 16.2

Evaluate (using L-Hospital rule)

1. lim
cos

x

x

x→

−
0 2

1

2. lim
sin cos

x

x x

x
→

−

−
π π
4

4

3. lim
tan

sinx

x x

x x→

−
−0

2

3

4. lim
cos

x

x

x→

−
0 2

1
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5. lim
tan

x

x x

x→

−
0 3

6. lim
sin

x

x x

x→

−
0 3

7. lim
tan sin

sinx

x x

x→

−
0 3

8. lim
cosx

x

x→ −0

2

1

9. lim
sin sin

x

x x

x→

−
−0

α α
α

10. lim
tan sin

x

x x

x→

−
0 3

11. lim
sin

tanx

x x

x x→

−

−
−

+0

1

1

2

2

12. lim
sin

x

x

x→

−

0

1

13. lim
tan

x

x

x→

−

0

1

14. lim
sec tan

cosx

x x

x→

−
+π

4

2
2

1 4

15. lim
sin

x

x x

x→

−
0 3

16. lim
tan

tanx

x x

x x→

−
0 2

17. lim
cos sin

θ π

θ θ

θ π→

− −

−4

2

4
2� �

18. lim
cos sin

x

x a x b x

x
a b

→

+ −
> −

0 3

1
1

� � � �,

19. lim
sin sin

h

a h a h a a

h→

+ + −
0

2 2� � � �

20. lim
cos

x

x

x→

−
0 2

1 2

21. lim
cos

x

x

x→ −π π2 2

22. lim
cos

y

y

y→

−

−1

1

1

23. lim
sec tan

cosx

x x

x
x

→

−
+

⋅
π
4

2 2

1 4

24. lim
sin

sinx

x x

x x→

+
−0

π
π

25. lim
sin

x

x

x→0

26. lim
sin

x

x

x→

−
−π

π
π
� �

Answers:

1.
1

2
2. 2 3.

1

2
4. −

1

2
5.

1

3

6.
1

6
7.

1

2
8. 2 9. sin cosα α α−

10.
1

2
11.

1

3
12. 1 13. 1 14.

1

2

15.
1

6
16.

1

3
17.

1

4 2
18. ∞

19. 2
2

a a a asin cos+ 20. 2

21.
1

2
22. −∞ 23.

π
8

24.
1

1

+
−
π
π 25. 0 26. 0



L’Hospital’s Rule 611

Type 1: Continued.

Problems based on a combination of algebraic,
exponential, logarithmic, trigonometric or inverse
trigonometric functions

Exercise 16.3

Evaluate (using L’Hospital’s rule)

1. lim
log

x

xx e x

x→

− +
0 2

1� �

2. lim
cos log

x

x x x

x→

− +
0 2

1� �

3. lim
cos

sinx

x x
e x e

x x→

−− +
0

2

Hint: lim
cos

sinx

x x
e x e

x x→

−
− +

0

2

lim
cos

sinx

x x
e x e

x

x

x→

−
− +

⋅

��

�
��0 2

2

4. lim
log log

h

x h x

h→

+ −
0

� �

5. lim
h

x

x→

+ −
−1

4 5

1

6. lim
log

x

x

x→ −1 1� �

7. lim
x

x
a

x→

−
0

1

8. lim
x

x x
a b

x→

−
0

9. lim
log

cosx

k x

x→

+

−0

2
1

1

� �

10. lim
x

x x
e e

x→

−
− −

0 2

2

11. lim
log

cosx

x x

x→

+
−0

1

1

� �

12. lim
log

x

x
x e x

x→

− +
0 2

1� �

13. lim
cos log

x

x x x

x→

− +
0 2

1� �

14. lim
sin

x

x x x

x→

− +

0

3

5

1
6

15. lim
cos

sinx

x x
e e x

x x→

−
+ −

0

2

16. lim
sinx

x x
e e

x→

−−
0

17. lim
cosx

x
x e

x→

−

−0

1

1

α

α

� �

Answers:

1.
3

2
2.

1

2
3. 2 4.

1

x
5.

1

2 5 6. 1

7. log a 8. log
a

b

�
�
� 9. 2 k 10. 1 11. 2

12. 2 13.
1

2
14.

1

120
15. 2 16. 2 17.

2

α

Type 1: Continued

Problems based on only on the form: 
∞
∞

Exercise 16.4

Evaluate

1. lim
log

logx a x a

x a

e e→

−

−

� �

� �
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2. lim
log

tanx

x

x→

−�
�
�

π

π

2

2

3. lim
log

cotx

x

x→0

2

2

4. lim
x

x

x→∞

−

+

2

2

2

3 1

5. lim
x

x
e

x→∞ 8

Answers:

1. 1 2. 0 3. 0 4.
1

3
5. ∞

Type 2: Form: 0 ⋅ ∞  and ∞ − ∞� �
Problems based on the form: 0 ⋅ ∞

Exercise 16.5

Evaluate

1. lim tan
x

x
x

→
− ⋅ 

��
�
��1

1
2

� � π

2. lim log
x

x x
→0

3. lim tan
x

x
x→∞

⋅ 
�
�
�

1

4. lim cos cot
x

x x
→

+ ⋅
1

2
1 π π� �

5. lim
x

x
x e

→∞

−2 2

6. lim
x

x
x e

→∞

−⋅

Answers:

1.
2

π 2. 0 3. 1 4.
1

2
5. 0 6. 0

Type 2: Continued

Problems based on the form: ∞ − ∞� �

Exercise 16.6

Evaluate

1. lim
sinx x x→

−
�

�
	
	




�
�
�0 2 2

1 1

2. lim
sinx x x→

−
�

�
	
	




�
�
�0 2 2

1 1

3. lim cot
x x

x
→

−�
�	



��0

1

4. lim
logx

x

x x→ −
−

�
�	



��1 1

1

5. lim sec tan
θ π

θ θ
→

−
2

6. lim cosec cot
x

x
→

−
0

θ

7. lim cot
x

a

x

x

a→
−�

�	


��0

8. lim
logx x

x

x

x

x→
−

−
�
�
	



�
� ⋅

−
��

�
��1

1

1

2

9. lim
logx x

x

x→
−

−
�
�	



��1

2

1

2

2

2 1

10. lim
x x x→ −

−
−

�

�
	
	




�
�
�1 2

2

1

1

1

11. lim
x

x x
→∞

− −�
�	



��

2
1

12. lim log
x

x x
x→∞

− +�
�
�

�
�	



��

2
1

1

Answers:

1. −
1

3
2.

1

3
3. 0 4.

1

2
5. 0 6. 0
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7. 0 8.
1

2
9. − 1

2
10. − 1

2
11. 0 12.

1

2

Type 3: Problems based on the form: 0 0 1
0 0∞ ∞∞, , ,

Problems based on the form : 0 ∞ 0∞ 0 0, ,
(exponential form of 0 and ∞ )

Exercise 16.7

Evaluate

1. lim
tan

x

x

x→


�
�
�0

1

2. lim cosec log

x
x x

→0

1� �

3. lim
x

x x

→∞
+1

1� �

4. lim
log

x
x

x

→
−

−

1

2
1

1
1

� �
� �

5. lim
x

x

a x

→∞
−

�
�
�

1

1

Answers:

1. 1 2.
1

e
3. 1 4. e 5. log a

Type 3: Continued

Problems based on the form: 1 ∞∞ 0,

Exercise 16.8

Evaluate

1. lim sin tan

x

x
x

→π
2

� �

2. lim cot log

x
x x

→0

1� �

3. lim
x

x

x

x

→

+
+


��

�
��0

2 1

1

1

4. lim cos
x

x

x→∞


�

�
�

1

5. lim
sin

x

x

x

x

→


��

�
��0

1

6. lim cos cot

x

x
x

→0

2

� �

7. lim
tan

x

x

x

x

→


��

�
��0

1

8. lim sec cot

x

x
x

→π
2

� �

9. lim tan cos

x

x
x

→π
2

� �

10. lim
x

x x

→
−

1

1
1� �

11. lim sin
x

x x

→
+

0
1

1� �

12. lim cosec sin

x

x
x

→0
� �

13. lim cos sin
x

x a b x x

→
+

0

1� �

14. lim cos
m

mx

m→∞


�

�
�

15. lim
tan

x

x

x
x

→


��

�
��0

1
2

16. lim
x

x

x

x

→∞

−
+

�
�	



��

+

3 4

3 2

1
3

� �

17. lim
x

x

x x

x x→∞

− +

− +

�

�
	
	




�
�
�

2

2

2 1

4 2

18. lim cos cot

x

x
x

→π
2

� �

19. lim log sin

x

x
x

→1
� � π

20. lim cot sin

x

x
x

→0
� �

21. lim cos cot

x

x
x

→0
� �

22. lim
sin

x

x

x
x

→


��

�
��0

1
2
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23. lim sin
x

x x

→
+

0
1

1� �

24. lim
tan

x

x

x→


��
�
��0 2

1

25. lim log log

x
x x

→
−

0

1
1� �

26. lim
x

x
a x

x

→
+

0

1

� �
Answers:

1. 1 2.
1

e
3. e 4. 1 5. 1 6. e−

1
2 7. 1 8. 1 9. 1

10. e 11. e 12. 1 13. e
ab

14. 1 15. e
1
3

16. e
− 2

3 17. e2 18. 1 19. 1 20. 1 21. 1

22. e
− 1

6 23. e 24. 1 25. 1 26. a · e

Type 4: Problems based on finding the values of the
constants from the given limit of the function of
independent variable.

Exercise 16.9

Evaluate

1. If lim
tan sin

x

x a x

x→

−
0 3  be finite, find a.

2. If lim
x

x x
ae e b

x→

+ −
=

0

2
3

8 , find a and b.

3. If lim
cos sin

x

x a x b x

x→

+ +
=

0

1

2
1

� �
, find a relation

between a and b.

Hint: Limit = lim
cos sin

form
x

x a x b x

x→

+ +
= �

�
�0

1

2

0

0

� �

= + − +
→

lim
cos sin cos

x

a x ax x b x
0

1

2

= + +
1

2
1 a b� � ...(i)

But this limit = 1 (given) ...(ii)

4. If lim
sin sin

x

x a x

x→

+
0 3

2
 be finite, find the value of

‘a’ and the limit.
5. Find the values of a, b and c so that

lim
cos

sinx

x x
ae b x ce

x x→

−
− +

=
0

2

Answers:
1. a = 1 2. a = 2 and b = 5 3. a + b = 1
4. a = – 2 and limit = – 1 5. a = 1, b = 2 and c = 1
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16

Evaluation of Derivatives for
Particular Arguments

Evaluation means to find the value of or to fix the
value of a quantity, e.g.
1. to evaluate 8 3 4+ −  means to reduce it to 7.
2. to evaluate x x2 2 2+ +  for x = 3  means to
replace x by 3 and collect the result which is 17.

3. to evaluate lim
x

x
→ 2

2
 means to find the limit of x 2

as x → 2 which is 4.
4. to evaluate an integral � f x dx� �  means to carry
out integration.

5. to evaluate a definite integral �
a

b

f x dx� �  means to

carry out integration and then substitute the limits of
integration a and b.  Now we shall learn the process
of finding the value of a derived function at a given
number or point x = a

Defination of a derived function of an independent
variable x: The derivative of a function f (x) is a
function of x represented as ′f x� � which is derived
from the original function f (x) through a limiting
process or various techniques. In this sense, the
derivative ′f x� � is called the derived function and
the graph representing it is called the derived graph.

Notation for the value of the derived function

′f x� � at x = a.

Just as the value of f x� � for (or, at) x = a is

symbolised as f x f a
x a

� � � �= =  , a D f∈ � �
The value of a derivative (or, derived function)

′f x� �  for ( or, at) x = a is symbolised as

′ = �
��
�
�	

= 
�
�
 = ′=

= =
f x

dy

dx

dy

dx
f a

x a
x a x a

� � � � , a D f∈ ′� �

Question: How to find ′ =f x
x a

� �  ?

Answer: To find  the derivative values ( or, the values
of the derivative) at x = a (i.e. ′f a� �), we must first
differentiate the given function f x� � by using the
formulas to get the derived function (or, derivative)
′f x� � and then put x = a in ′f x� � if 'a' belongs to the

domain of ′f x� � obtained by using general formula
or, in other words, to find ′f a� � , we adopt the
following working rule.
1. Find the derived function ′f x� � by using the
formulas
2. Put x = a in ′f x� � provided ′f a� � is not undefined

i.e;
a

0
etc., ,

0

0


�

�
 and lastly simplify to get the

required answer.

3. If ′f a� � cannot be obtained thus then we should
find ′f a� �  directly from  the defination [ provided
f a� �  is defined i.e. a D f∈ � �]

′ =
+ −

→
f a

f a h f a

hh
� � � � � � � �lim if exists

0
.

Note: The process of finding ′f a� � by differenting a
function y f x= � � with the help of known formulas
and then putting x = a in ′f x� � is fruitful and gives
right answer when ′f x� � is continuous at x = a.
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Let  f x x

x
x

x

� � =
�
��

��
=



�
�
 ≠

0 0

1
0

2

,

,sin

Now ′ = 

�
�
 −


��

�
�
+ 


�
�
f x x

x x x
x� � � �2

2

1 1 1
2cos sin

= − 

�
�
 +



�
�
cos sin

1
2

1

x
x

x
 and lim

x
f x

→
′

0
� �

= − 

�
�
 +



�
�




��

�
�→

lim cos sin
x x

x
x0

1
2

1
 does not exist

(because lim cos
x x→



�
�
0

1
 does not exist ) , so ′f x� � is

not continuous at x = 0. It is not possible to find

′f 0� �  by putting x = 0 in ′f x� �
However

′ =
− ′

=



��
�
� −

→ →
f

f h f

h

h
h

hh h
0

0
1

0

0 0

2

� � � � � �
lim lim

sin

lim sin
h

h
h→



�
�
 =0

1
0

Remember:
1. To substitute specific values ( or, particular values)

for x = 1, 2, 3, . . . a etc. into the original function f x� �
before differentiation is not permissible.
2. Original (or, given function) is also termed as

primitive function denoted as f x� � without dash.

3.
d

dx
f x f x

d f x

dxx a x a
1 2

1� � � �� � � �
±�

��
�
�	

= �
��

�
�	= =

± �
��

�
�	
= ′ ± ′

d f x

dx
f a f a2

2
� � � � � �

4.  
d

dx
f x f x

x a
1 2� � � �� �×�

��
�
�	 =

= ′ ⋅ ′ + ′ ⋅ ′f a f a f a f a1 2 2 1� � � � � � � �

5. d

dx

f x

f x

d

dx

N x

D x
x a x a

1

2

� �
� �

� �
� �

�
�
��

�
�
	
	

=
�
�
��

�
�
		= =

=
⋅ ′ − ⋅ ′D a N a N a D a

D a

� � � � � � � �
� � 2

Where N x� �  means a function of  x in Nr  and

D x� �  means a function of x in Dr

6.
d f x

dx x x

� ��
��

�
�	 =

=  The value of the derivative at a

general point x D f∈ ′� �

7.
d f x

dx x a

� ��
��

�
�	 =

=  The value of the derivative, not at

a general point x, but at some definite point namely

a D f∈ ′� �

8. Letting F x
f x

g x
� � � �

� �=  where F x� �  and g x� � are

any two differentiable functions, the derivative of
such  a  function  is  another  function  of x as

g x f x f x g x

g x

� � � � � � � �
� �� �

′ − ⋅ ′
2  and this derivative exists

at x = 0 provided that denominator is not zero at x = 0
i.e., g 0 0� � ≠
9. In general f x g x� � � �=  has no derivative at the

point where g x� � = 0 , e.g.
(i) f x x f� � � �= − ⇒ ′1 1  does not exist
(ii) f x x f� � � �= + ⇒ ′1 sin π  does not exist
10. If F x f x g x� � � � � �= ⋅  then ′F a� �  may exist

even if ′f a� �  or ′g a� � does not exist.

e.g.: f x x
x

x� � = −
2

cos

⇒ ′ +

�

�
 = +

+

�

�
 − +
�

�


→
f

h h

hh

π
π π π

2

2 2 2
0

lim
cos

= +
�
�
 =→

lim cos
h

h
0 2

0
π

and ′ −

�

�
 = −

+
�
�

=

→
f

h h

hh

π
π

2
2 0

0
lim

cos
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Hence, ′ +

�

�
 = ′ −


�
�
 = ⇒ ′ 
�

�
 =f f f

π π π
2 2

0
2

0

11. lim
x a

f x f x
→

′ = ±∞ ⇒� � � � is not differentiable at

x = a, where ‘a’ is the root of f x f a� � � �= ⇒ ′0
does not exist.

e.g.: f x x� � � �= −2 1
1
2

⇒ ′ =
−

= +∞
→ →

+ +
lim lim

x x
f x

x1
2

1
2

1

2 1� � � �
� �

⇒ f (x) is not differentiable at x = 1

2

⇒ ′
��
�
�f

1

2
 does not exist.

Type 1: To find the value of the derived function
(obtained by using the power, sum, difference,
product or quatient rule of d.c.) at the indicated point.

Examples worked out:

1. Find 
dy

dx
 at x = 1

2
 if (or, when or, for)

y x x= +3 22

Solution: � y x x= +3 22

∴ = +dy

dx
x6 2

⇒ �
��
�
�	

= +
=

=
dy

dx
x

x
x1

2

1

2
6 2

= × + = + =6
1

2
2 3 2 5

2. Find 
dy

dx
 at x = 2 when y x x= + +3 2 3

Solution: � y x x= + +3 2 3

∴ = +dy

dx
x3 22

⇒ �
��
�
�	

= + = × + =
= =

dy

dx
x

x
x

2

2

2
3 2 3 4 2 14

3. Find 
dy

dx
 at x = π

2
 when y x= 5sin

Solution: � y x= 5sin

∴ =
dy

dx
x5cos

⇒ �
��
�
�	

= ⋅ = × =
=

dy

dx x
π

π

2

5
2

5 1 5cos

4. Find 
dy

dx
 at x t=  when y x= +2 tan

Solution: � y x= +2 tan

∴ = +dy

dx
x0

2
sec

⇒ �
��
�
�	

=
=

dy

dx
t

x t

sec
2

5. Find 
dy

dx
 at x = π

2
 when y x x= + +2

cos

1

2
log x

Solution: � y x x x= + +
2 1

2
cos log

∴ = − + ⋅ >dy

dx
x x

x
x2

1

2

1
0sin ; � �

⇒ �
��
�
�	

= ⋅ − + ×
=

dy

dx x
π

π π
π

2

2
2 2

1

2

2
sin

⇒ �
��
�
�	

= − +
=

dy

dx x
π

π
π

2

1
1

6. If f x x x� � = −− −
5 3

1 1
sin cos , find ′



��
�
�

f
3

2

Solution: � f x x x� � = −− −
5 3

1 1
sin cos

∴ =
−

+
−

=
−

<
d f x

dx x x x
x

� � 5

1

3

1

8

1
1

2 2 2

2; .

⇒ �
��

�
�	

=
−=

d f x

dx x
v

� �
3

2

8

1
3
4

=
−

= = = × =8

4 3
4

8

1
4

8
1
2

8

1

2

1
16

7. Find the derivative of f x
d f x

dx
� � � �

i.e.  
�
��

�
�	

=
−
1

2x  at x = 1 and x = 3.
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Solution: � f x
x

� � =
−
1

2

⇒ ′ = − − ×
−− −f x x

d x

dx
� � � � � �

1 2
21 1

= − − ×−
1 2 1

2
x� �

= −

−
≠

1

2
2

2
x

x
� �

, .

Now, ′ = −
+ −

= −
−

= − = −f 1
1

1 2

1

1

1

1
12 2� �

� � � �

′ = −

−
= − = −f 3

1

3 2

1

1
1

2� �
� �

Note: While applying the result 
d

dx
f x

n� � =

derivative of a power function rule to a radical or to
the reciprocal of a function, it is useful to put the
radical or reciprocal function into a power function
whose index is negative or fraction as we require. e.g.

1.
1

5x
 should be put into the form x

− 5
2

2.
1

x a+  should be put into the form x a+ −� � 1 and

then apply the power function rule

⇒
�

�
�
�

�

�
	
	
= ⋅−d f x

dx
n f x

d f x

dx

n
n� �� � � � � �1

8. Find the derivative of f x x a� � = +2 2  at the

point x = a

Solution: � f x x a x a� � � �= + = +2 2 2 2
1

2

⇒ ′ = + ×
+−

f x x a
d x a

dx
� � � �

� �1

2
2 2

1

2
1

2 2

⇒ ′ =
+

×f x
x a

x� � 1

2
2

2 2

=
+

x

x a2 2

Now, ′ =
+

= = >f a
a

a a

a

a v
a� � � �

2 2 2

1

2
0if

9. Find the derivative of f x x� � = −2 3   at x = 2

Solution: � f x x x� � � �= − = −2 3 2 3
1

2

⇒ ′ =
−

× =
−

≠
�
�
f x

x x
x� � 1

2 2 3
2

1

2 3

3

2

⇒ ′ =
× −

=
−

= =f 2
1

2 2 3

1

4 3

1

1
1� �

10. Find 
dy

dx
 at x = 0 when y

x x

x
=

+
+

cos

cos1

Solution: � N x x= + cos

∴ ′ = −N x1 sin

and D x= +1 cos

∴ ′ = − = −D x x0 sin sin

∴ = ′ − ′dy

dx

DN ND

D
2

=
+ − − + −

+

1 1 0

1 2

cos sin cos sin

cos

x x x x x

x

� � � � � � � �
� �

⇒ = + − +

+

dy

dx

x x x x

x

1

1
2

cos sin sin

cos� �

⇒ �
��
�
�	

= +

+
=

=

dy

dx x 0
2

1 1

1 1

1

2� �

11. Find 
dy

dx
 at x = 1 when  y

x e

x e

x

x
=

+

log � �

Solution: y
x e

x e

x

x
=

+

log � �

Now, N x e x e
x x

= = +log log log� �
= + = +log log logx x x xe

e
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⇒ ′ = +N
x

1
1

Again, D x ex= +

⇒ ′ = +D ex1

∴ =
′ − ′dy

dx

DN ND

D2

⇒ =
+ +
�

�
 − +

+

dy

dx

x e
x

x e e

e

x x x

x

� � � � � �

� �

1
1 1

1
2

log

⇒ =
+ + + − + +

+

dy

dx

e

x
x e x x e

e

x
x x

x

1 1

1
2

log � �

� �

⇒ =
+ + + − − − − ⋅

+

dy

dx

e

x
x e x x e x e x

e

x
x x x

x

1

1
2

log log

� �

Hence, 
dy

dx

e e e e

ex

�
��
�
�	

= + + + − − − ⋅ −
+=1

2

1 1 0 1 0

1� �

=
+

+
=

+
1

1

1

12

e

e e

� �
� � � �

12. Find 
dy

dx
 at x = 1 when y

x

x
ex=

+
−

⋅
2

2

Solution: � y
x

x
ex=

+
−

⋅
2

2

Taking log ,

log log log logy x e xx= + + − −2 2� � � �

⇒ ⋅ =
+

× + × −1 1

2

1

2

1

y

dy

dx x x e
e

x
x

1

2

1

2−
× −


��

�
�x x

⇒ ⋅ =
+

+ +
−

1 1

2 2
1

1

2 2 2y

dy

dx x x x� � � �

⇒ =
× − + − + +

+ −

�

�
�
��

�

�
	
		

dy

dx
y

x x x x

x x x

1 2 2 4 2

2 2 2

� � � � � �
� � � �

⇒ =
+
−

�

�
�
�

�

�
	
	
⋅ ⋅

+ −
−

�

�
�
�

�

�
	
	

dy

dx

x

x
e

x x

vx x
x2

2

4 2 4

2 4

� �
� �

Hence, 
dy

dx
e

x

�
��
�
�	

=
+
−

⋅ ×
⋅ ⋅ −

�
�
�
�

�
�
	
	= 1

2 1

2 1

10

2 1 4 1� �

= ⋅ ⋅
×

�
�
�

�
�
	 =

3

1

10

2 3
5e e

13. If f x x( ) =
1
3 , find ′f 0� �

Solution: � f x x� � =
1
3

∴ ′ = ≠f x

x

x� � 1

3

0
2

3

, .

Since 0 does not belong to the domain of 
1

3
2
3x

,

we find ′f 0� �  using definition of derivative at x = 0.

∴ ′ =
+ −

→
f

f h f

hh
0

0 0

0
� � � � � �

lim

=
+ −

→
lim
h

h

h0

1

30 0� �

lim lim lim
h h h

h

h
h

h
→ →

−

→
= = = ∞

0

1

3

0

2

3

0 23

1

Remember: The use and meaning of the expression

a

0
 must become clear in the mind of ours.
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1. If a function  f x� � is an infinitesimal as x a→

i.e; if lim
x a

f x
→

=

�

�
� � 0  then the function 

1

f x� �  is

infinitely large which is symbolically represented as

∞  and we say that 
1

f x� �  has no limit or infinite limit

as x a→  i.e., lim
x a f x→

= ∞1

� �
(no limit or infinite

limit) if lim
x a

f x
→

=� � 0 .

2. The expression 
a

0
 is undefined since division by

zero is not allowed in mathematics. The expression 
a

0

always should be written as 
a

0
 = undefined for the

value of the expression 
a

x
 for x = 0  which provides

us the following sense.
If a function f x� �  is zero for any value of x, then

the function 
1

f x� �  is undefined or meaningless for

that value x at which f x� � = 0

Thus 
a

0
 = undefined should be used in the sense

of the actual value (or, simply  value) of the function
f x� �  at a point at which f x� � = 0  and

lim
x a

a

f x

a
→

= = ∞
� � 0

 if lim
x a

f x
→

=� � 0  in the sense

of limiting value of 
1

f x� �  as x a→ , e.g.,

1. The symbols , lim tan
x

x
→ −

= + ∞
π
2

lim tan
x

x
→

+
= − ∞

π
2

 tan tanx x = = =π
π

2 2
 undefined.

Type 2: To find the value of the derivative of a
composite of two or more than two functions at the
indicated point.

Working rule:
1. Find the differential coefficient (i.e. d.c.) of a
composite of two or more than two functions by using
the chain rule.
2. Put x = a in the derived function and see whether

′f a� � is defined or undefined.

3. If ′f a� � is defined, then simplify to get the required
answer and if ′f a� � is undefined, then we should
find ′f a� � directly from the defination provided f a� �
is defined.

Examples worked out:

1. If  f x xx� � � �= log log , find  ′f x� � at x = e

Solution: f x x
x

xx
e

e
x� � � � � �= = >log log

log

log
;

log
1

⇒ =f x
x

x
� � log log

log
  (� f x� � is defined only

for x >1)

Now, 
dy

dx

d f x

dx
f x= = ′

� � � �

=
× × − ⋅1 1 1

2

log
log log log

log

x x
x

x
x

x

� �

� �

=
−1 1

2
x x

x

x

log log

log� �

= −1
2

log log

log

x

x x� �

Hence, 
dy

dx

x

x xx e
x e

�
��
�
�	

= −�

�
�
�

�

�
	
	= =

1
2

log log

log� �

=
−1

2

log log

log

e

e e� �

=
−

=
1 0

1

1
2e e� �
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Note: Derivative of a function of the form
log f x g x� � � �  is alwasy obtained by first changing

log f x g x� � � �  into 
log

log
e

e

g x

f x

� �
� �

 and then we use the

quotient rule to find the d.c.

2. If y a
x

x
x= + +

−
1

1  , find d.c. at x = 0

Solution: � y a
x

x
x= +

+
−

1

1

Now, differentiating both sides w.r.t. x, we obtain

dy

dx

d a

dx

d

dx

x

x

x

= + +
−



��

�
�

1

1

Now, 
d a

dx
a a

x
x= log  and 

d

dx

x

x

1

1

+
−

�
�
�

�
�
	

=
−

+

�
�
�
�

�
�
	
	
− +

−
−

�
�
�
�

�
�
	
	

−

1
1

2 1
1

1

2 1
1

1
2

x
x

x
x

x

� �

� �

=
−

+

�
�
�
�

�
�
	
	
− +

−
−

�
�
�
�

�
�
	
	

−

1 0
1

2 1 0
1 0

1

2 1 0
1

1 0
2

� �

� �
;

for x = 0

=
+

= =

1
2

1
2

1

1

1
12� �

Hence, 
dy

dx
a a

x

x

x

�
��
�
�	

= +
= =0 0

1log

⇒ �
��
�
�	

= +
=

dy

dx
a a

x 0

0 1log

⇒ �
��
�
�	

= +
=

dy

dx
a

x 0

1log

Type 3: To find the value of d.c of mod of a function
at x = a working rule:
1. Find d.c of f x� �
2. Put x = a in the d.c of  f x� �  and see whether

′f a� � is defined or undefined.
3. If ′f a� � is defined, then put x = a in  ′f x� �  to get
the required answer and if ′f a� � is not obtained thus,

then we should find ′f a� � directly from the defination.
Provided f a� �  is defined.

Remember:
d

dx
f x

f x

f x
f x f x� � � �

� � � � � �� �= × ′ ≠; 0

Examples worked out:

1. If f x x� � = cos  , find ′ 
�
�
f

3

4

π

Solution: f x x� � = cos

∴ ′ = = × − ≠f x
d

dx
x

x

x
x x� � � �cos

cos

cos
sin cos, 0

∴ ′ 
��
�
� =



�
�

× −
��

�
�f

3

4

3
4

3
4

3

4

π
π

π
π

cos

cos
sin

=
−

⋅ −


��

�
�

1
2
1
2

1

2

v

v
v

= 1

2v

2. If f x x x� � = −cos sin , find ′ 
�
�
f

π
2

Solution: � f x x x� � = −cos sin

∴ ′ =
−
−

× −f x
x x

x x

d

dx
x x� � � � � �cos sin

cos sin
cos sin

⇒ ′ =
−
−

− −f x
x x

x
x x� � � � � �cos sin

cos sin
sin cos

 for x n≠ +π π
4
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∴ ′ 
�
�
 =

−

−

�

�

⋅ − −�
��

�
�	

f
π

π π

π π
π π

2
2 2

2 2
2 2

cos sin

cos sin
sin cos

=
−
−

× − −
0 1

0 1
1 0

� � � �

=
−
−

× −
1

1
1

� � � �

= 1

3. If y x x= − +2
4 2  , find 

dy

dx
 at x = 3

Solution: � y x x= − +2
4 2

∴ = − +dy

dx

d

dx
x x

2 4 2

= − +
d x

dx

d x

dx

d

dx

2

4
2� �

= − +d x

dx

x

x

2

4 0 � x x2 2=

= − ≠2 4 0x
x

x
x,

∴ �
��
�
�	

= ⋅ −
=

dy

dx x 3

2 3
4 3

3

= −6 4
= 2

4. f x x f x x� � � �= ′ =sin find at3 0,

Solution: ′ = ⋅f x
x

x
x� �

sin

sin
cos

3

 for x n≠ π

∴  This formula can not give us the value of

′f x� �  at  x n= π  and so at x = 0.

Hence we find this value by definition:

′ =
−

→
f

f h f

hh
0

0

0
� � � � � �

lim

=
→

lim
sin

h

h

h0

3

= ⋅
→

lim sin
sin

h
h

h

h0

2� �

= 0.1
= 0

Type 4: To determine the value of d.c of implicit
function defined by f x y c,� � =  at x a y b= =;

Working rule:

1. Find 
dy

dx
 from f x y c,� � =

2. Put y b
x a
=
=  in  

dy

dx
  to find 

dy

dx
y b
x a

�
��
�
�	

=
=

Remember: In the derived function of y in
f x y c,� � = ,  x - coordinate and y - coordinate both
may be provided at which we require the value of
derived function obtained from the given implicit
function f x y c,� � =
Examples worked out:

1. Find d.c. of y from xy + =4 0, at x y, ,� � � �= −2 2

Solution: xy + =4 0

⇒ + =y
dx

dx
x

dy

dx
0

⇒ + =y x
dy

dx
0

⇒ = −dy

dx

y

x

⇒ �
��
�
�	

=
−�
��

�
�	

=
− −

=
= − −

dy

dx

y

xx y, , ,� � � � � �

� �
2 2 2 2

2

2
1

2. Find 
dy

dx
 for x y a= +  at (a, 0)

Solution: y a x+ =

⇒ = −y x a

⇒ = −dy

dx

d x

dx

d a

x
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⇒ = >dy

dx x
x

1

2
0, .

⇒ �
��
�
�	 =

dy

dx x y a, ,� � � �0
=
�

�
�
�

�

�
	
	

=1

2

1

2
0

x a
a ,� �

N.B.: Since y does not appear  in the derived function
of f x y c,� � = , there  is  no question  of  putting
y = 0 in the derived function.

3. Find 
dy

dx
 for x y2 =  at the point (1, 1)

Solution: y x= 2

⇒ =dy

dx
x2

⇒ �
��
�
�	

= = × =dy

dx
x

1 1
1 12 2 1 2

,
,

� �
� �

4. Find 
dy

dx
 when x xy y2 2 3− + =  and find its

value at  1 1, −� �
Solution: x xy y2 2 3− + =

Now, differentiating both sides of the equation
w.r.t x, we get,

2 2 0x y x
dy

dx
y

dy

dx
− − + =

⇒ − = −dy

dx
y x y x2 2� �

⇒ = −
−

dy

dx

y x

y x

2

2

Now, the value of 
dy

dx
 at

1 1
1 2 1

2 1 11 1

,
, ,

� �
� � � �

= �
��
�
�	

=
− × − ×
− × × −= −

dy

dx x y

⇒ �
��
�
�	

= −
−

=
−

dy

dx 1 1

3

3
1

,� �

5. Find 
dy

dx
 when x xy y2 2 1+ − =  at (2, 3) and at

(1, 2)

Solution: Given function is x xy y2 2 1+ − =
Now, differentiating both sides of the equation

w.r.t x, we get,

2 2 0x y x
dy

dx
y

dy

dx
+ + − ⋅ =

⇒ − = − −dy

dx
x y x y2 2� �

⇒ =
− −

−
=

+
−

dy

dx

x y

x y

x y

y x

2

2

2

2� �

∴ �
��
�
�	

= × +
× −

=dy

dx 2 3

2 2 3

2 3 2

7

4,� �

(1, 2) does not satisfy the given equation and so

the question of finding 
dy

dx
 at (1, 2) does not arise.

Type 5: To find the value of  differential coefficient
of a given function w.r.t. another given function at
x = a
Working rule: To find the value of differential
coefficient of a given function w.r.t. another given
function at a point x = a, we adopt the following
working rule:

1.
d f x

d f x

d

dx
f x

d

dx
f x

f x

f x
1

2

1

2

1

2

� �
� �

� �

� �
� �
� �

= =
′
′

  where f x1 � �  =

the function whose differential coefficient is required
and f x2 � � = the function with respect to which
differential coefficient is required.

2. Put  x = a in 
′
′

f x

f x
1

2

� �
� �

Examples worked out:

1. Find d.c. of  sec w.r.t 1 at
−

−
− =1

2

21

2 1

1

2x
x x

Solution: Let f x
x

1
1

2

1

2 1
� � =

−




�
�

�


�

−
sec

and f x x2
21� � = −



624 How to Learn Calculus of One Variable

∴ =
−




�
�

�


�

−d f x

dx

d

dx x

1 1

2

1

2 1

� �
sec

=

−



��

�
�
⋅

−



��

�
�

−

×
−



��

�
�

1

1

2 1

1

2 1
1

1

2 1

2 2

2 2

x x

d

dx x

=
−

−
× −

−
×

2 1

4 4

1

2 1
4

2 2

2 4 2 2

x

x x x
x

� �

� �

= −

−

4

4 42 4

x

x x

d f x

dx

x

x

2

2

1 2

2 1

� � � �=
× −

−

= −

−

x

x1 2

Hence, 
d f x

d f x

d

dx
f x

d

dx
f x

x

x x

1

2

1

2

2

2 4

4 1

4 4

� �
� �

� �

� �
= =

−

−

=
−

−

2 1

1

2

2

x

x x

= 2

x

∴
�
�
�

�
�
	 =

�
�
�
�
�
	 = =

= =

d f x

d f x x
x x

1

2 1

2
1

2

2 2
1
2

4
� �
� �

Type 6: To find the value of differential coefficient of
parametric equations at a particular value of the given

parameter t aor , θ� � = .

Working rule:
1. Let x x t y y t= =� � � �and

2. Find 
dx

dt
 and 

dy

dt

3. Divide 
dy

dt
 by 

dx

dt
 to have 

dy

dx

dy

dt
dx

dt

=

4. Find 
dy

dx x a

�
��
�
�	 =

Examples worked out:

1. If x a= −θ θsin� �  y a= −1 cosθ� � , Find 
dy

dx

when θ π=
2

.

Solution: y a= −1 cosθ� � ...(1)

x a= −θ θsin� � ...(2)

(1) ⇒ = − − =dy

d
a a

θ
θ θ0 sin sin� � ...(3)

(2) ⇒ = −dx

d
a

θ
θ1 cos ...(4)

∴ = =
−

=
−

dy

dx

dy

d
dx

d

a

a

θ

θ

θ
θ

θ
θ

sin

cos

sin

cos1 1� � � �

Hence, 
dy

dx
�
��
�
�	

=
−

= =
=θ π

π

π
2

2

1
2

1

1
1

sin

cos

2. If x a t= −1 cos� �  y a t t= + sin� �  Find

dy

dx
tat = π

2

Solution: y a t t= + sin� � ...(1)

x a t= −1 cos� � ...(2)

(1) ⇒ = +dy

dt
a t1 cos� � ...(3)

(2) ⇒ = +
dx

dt
a t0 sin� �
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= a tsin ...(4)

∴ =
+dy

dx

a t

a t

1 cos

sin

� �

Hence, 
dy

dx

a

a
t n

t

�
��
�
�	

=
+
��

�
�

≠
= π

π

π π
2

1
2

2

cos

sin
, .

=
+
⋅

= =
a

a

a

a

1 0

1
1

� �

3. If x a= cos
3 θ  y a= sin

3 θ  Find 
dy

dx
 when

θ π=
4

Solution: y a= sin
3 θ ...(1)

x a= cos
3 θ ...(2)

(1) ⇒ =dy

d
a

θ
θ θ3

2
sin cos ...(3)

(2) ⇒ = −dx

d
a

θ
θ θ3 cos sin2 � �

= − ⋅3
2

a sin cosθ θ ...(4)

∴ =
−

=− ≠
dy

dx

a

a

n3

3 2

2

2

sin cos

sin cos
tan

θ θ
θ θ

θ θ
π

, .

Hence, 
dy

dx x

�
��
�
�	

= −�
��

�
�	
= −

=
π

π

4
4

1tan

4. If x = −3 2
3

cos cosθ θ , y = −3 2
3

sin sinθ θ

Find 
dy

dx
 when θ

π=
4

.

Solution: y = −3 2
3

sin sinθ θ ...(1)

x = −3 2
3

cos cosθ θ ...(2)

(1)  ⇒ = −dy

d θ
θ θ θ3 6

2
cos sin cos

= −3 1 2
2

cos sinθ θ� �

⇒ = ⋅dy

d θ
θ θ3 2cos cos ...(3)

(2) ⇒ = − − −dx

d θ
θ θ θ3 6

2
sin cos sin� �

⇒ = − −dx

d θ
θ θ3 1 2

2
sin cos� �

= −3 2 1
2

sin cosθ θ� �

⇒ =dx

d θ
θ θ3 2sin cos ...(4)

∴ = =dy

dx

3 2

3 2

cos cos

sin cos
cot

θ θ
θ θ

θ

when sin cosθ θ≠ ≠0 2 0, .

Hence we cannot put θ π=
4

 to have

dy

dx
�
��
�
�	

= =
=θ π

π

4
4

1cot  (an erroneous process since

for θ
π

=
4

, cos2 0θ ≠ )

However applying L’Hospital’s rule we have

= 
��
�
� =

= →

dy

dx

y

xθ θπ
π

4
4

lim
∆
∆

=
− 

��
�
�

− 

��
�
�

→

lim
θ π

θ π

θ π
4

4

4

y y

x x

� �

� �

=
′
′

= =
→ →

lim lim cot
θ π θ π

θ
θ

θ
4 4

1
y

x

� �
� �

Type 7: To determine the value of d.c of a function
found by taking first logarithm at a point  x = a
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Working rule:
1. APPLY  the rule “GLAD” to find derived function.
2. Put  x = a in the derived function .

Remember: Derivative of  a function raised to the
power another function as y f x

g x= � � � �  is found
only with the help of logarithmic differentiation.

Examples worked out:

1. If y
xx x

x
= ���

�
�	 + �

��
�
�	

2
4

2
2

4
log

tan
π π

 Find 
dy

dx
 at x = 1

Solution: Let u
x x

= ���
�
�	2 2

2log � �
...(1)

⇒ =u x x2  � a Na Nlog
=

Now taking the log of both sides, we get

log logu x
x= 2

⇒ =log logu x x2

Now, differentiating w.r.t. x, we get

1
2

1
1 2 1

u

du

dx
x

x
x x⋅ = ⋅ + ⋅�

��
�
�	
= +log log� �

⇒ = + =du

dx
x x u x

x x
2 1

2 2
log �� �

∴ �
��
�
�	

= ⋅ + = ⋅ + =
=

du

dx x 1

2 1 1 1 2 1 1 0 2log � �

Again, let v
x x

= �
��

�
�	

tan
π π

4

4

Now, taking log of both sides, we get

log log tanv
x

x
= �

��
�
�	

4

4π
π

Now, differentiating both sides w.r.t. x , we get

1

v

dv

dx
⋅

= ⋅ 

��

�
� + 


��
�
� −
��

�
�

4 1

4
4 4

4

4

12
2π π

π π
π

π
x x

x x

xtan
sec log tan

⇒ = ⋅ ⋅ − 

��
�
�

�

�
�
�

�

�
	
	

dv

dx
v

x

x x

x

x1

4 4

4

4

2

2
cot sec log tan

π π

π

π

∴ �
��
�
�	

= �
��

�
�	

⋅ ⋅ −�
��

�
�	=

dv

dx x 1

4
2

4

1

1 4 4

4

4
tan cot sec log tan

π π π
π

ππ

� y u v= +

∴ = +dy

dx

du

dx

dv

dx

Hence, 
dy

dx

du

dx

dv

dxx x x

�
��
�
�	

= �
��
�
�	

+ �
��
�
�	= = =1 1 1

= +2 2
= 4

Type 8: To find the value of x for which d.c of a
function is a constant:

Working rule:
1. Find d.c of the given function f x� �
2. Write ′f x� � ,  i.e. d.c. of the given function = The
given constant
3. Solve ′f x� � = the given constant. This provides
us the required value or values of x.

Examples worked out:

1. If f x x x� � = − +2 4 3, Find the value of x for
which the derivative is 2.

Solution: f x x x� � = − +2 4 3

⇒ ′ = −f x x� � 2 4

∴ ′ = ⇒ − =f x x� � 2 2 4 2

⇒ = +2 2 4x

⇒ = =x
6

2
3

2. If f x x x� � = − +2 3 2  Find the value of x for
which the derivative is zero.

Solution: � f x x x� � = − +2 3 4

∴ ′ = −f x x� � 2 3

∴ ′ =f x� � 0

⇒ − =2 3 0x

⇒ =2 3x
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⇒ =x
3

2
Type 9: Problems based on existance of a derived
function at a point x a=

Whenever we say that something exists, we mean
that it (something) has a finite value in the world of
mathematics which implies that whenever we say that
f x� � or ′f x� � at x a=  exists, we mean that f a� �  or

′f a� � has a finite value and whenever f x
x a

� � =  or

dy

dx x a

�
��
�
�	 =

 has an infinite value or meaningless or

undetermined value i.e;
a

0
etc, ,

0

0


�

�
  we say that

f x� �  at  x a=  or ′f x� �  at x a=  does not exist.

Question: How to guess the existance of a derived
function at a point x a=  ?
Answer: A simple rule to guess the existance of ′f x� �
at x a=  is the following :
1. Differentiate the given function f x� � w.r.t the
independent variable x by using the formulas of d.c.
of a power function, sum, difference, product, quotient,
function of a function etc.

2. Find ′ =f x
x a

� �
3. If ′f a� � is finite, we expect that ′f x� � exists at
x a=  and if ′f a� � is undefined, we expect that ′f x� �
does not exist at x a=

Question: How to test that existance of a derived
function ′f x� � at a point x a=  ?
Answer: Whenever we are required to test (or,
examine) whether ′f x� � exists at x a=  or ′f x� � does
not exist at x a= , we adopt the following working
rule.
1. Find the left hand derivative = ′ = =−f a L a� � 1

where ‘a’ is a fininte number and the right hand
derivative = ′ = =+f a L a� � 2  where ‘a’ is a finite
number.
2. If  L L1 2=  , then ′f a� � is said to exist (or, we say
that ′f x� � exists at x a= ) and if L L1 2≠ , then ′f a� �
is said not to exist ( or, ′f x� � is said not to exist at
x a=  or we say that ′f x� � does not exists at x a= )

Remember:
1. ′f a� �  exists ⇔ ′ = ′ =− +f a f a a� � � �  a finite
number.
2. ′f a� �  does not exists ⇔ ′ ≠ ′ ≠− +f a f a a� � � �  a
finite number.
or ′f a� � does not exist

⇔ ′ = ′ = ∞ − ∞− +f a f a� � � � , ;

or  ′f a� � does not exists

⇔ ′ = + ∞ ′ = − ∞− +f a f a� � � �and 

Examples worked out:

1. If y
x

x
= −

−
2 3

3 4  , examine the existance of  
dy

dx
 at

x = − 4

3

Solution: Let f x
x

x
� � = −

−
2 3

3 4

∴ −
�
�
 =

× −
�
�
 −

× −
�
�
 −

f
4

3

2
4
3

3

3
4
3

4

=

− −

− −
=
− −
− ×

=

8
3

3

4 4

8 9

8 3

17

24

f h
h

h
− +

�

�
 =

− +

�

�
 −

− +

�

�
 −

4

3

2
4

3
3

3
4
3

4

=

− + −

− +

�

�
 −

=

− +

− + −

8
3

2 3

3
4

3
4

17
3

2

4 3

h

h

h

h h

=

− +

− +

17
3

2

8 3

h

h

∴ − +

�

�
 − −
�

�
 =

− +

− +
−f h f

h

h

4

3

4

3

17
3

2

8 3

17

24



628 How to Learn Calculus of One Variable

= − +
− +

−17 6

3 8 3

17

24

h

h� �         =
− +
− +

−17 6

24 9

17

24

h

h

=
− + − × − +

− + ×
24 17 6 17 24 9

24 9 24

h h

h

� � � �
� �

=
− + + −

− × + ×
408 144 408 153

24 24 9 24

h h

h� �

=
−

− × + ×
=

−
− × + ×

144 153

24 24 9 24

9

24 24 9 24

h h

h

h

h

∴ ′ −

�
�
 =

− +

�

�
 −

−

�
�


>+
→

f
f h f

h
h

h

4

3

4
3

4
3 0

0
lim ; � �

=

−
− × + ×

→
lim
h

h

h

h0

9
24 24 9 24

=
−

− × + ×→
lim
h

h

h h0

9

24 24 9 24� �

= −
− ×

=9

24 24

1

64
Similarly,

∴ ′ −
�
�
 =

− −

�

�
 −

−

�
�


−−
→

f
f h f

hh

4

3

4
3

4
3

0
lim

= 1

64

∴ −
�
�
 = ′ −


�
�
 =+ −f f

4

3

4

3

1

64

Hence, ′f x� �, i.e; 
dy

dx
 exists at x = − 4

3

2. If y x=  examine the existance of 
dy

dx
 at x = 0

Solution: � f x x� � =

′ =
+ −

>+
→

f
f h f

h
h

h
0

0 0
0

0
� � � � � �

lim ;

=
−

→
lim

h

h

h0

0

=
→

lim
h

h

h0

= 1

′ =
− −
−

>− →
f

f h f

h
h

h
0

0 0
0

0
� � � � � � � �lim ;

=
− −
−→

lim
h

h

h0

0

=
−→

lim
h

h

h0

=  – 1

∴ ′ = ′+ −f f0 0� � � �
Hence, f x x� � =  is not differentiable at x = 0 i.e;

dy

dx
 does not exist at x = 0

To find ′f a� � or some special types of functions:

Type 1: When a function is defined in the following
way y f x= 1 � �  , x a≠ ; = c , x a=  then for finding
′f a� �  we have to calculate the derivative at

x a= directly from its defination.

Examples worked out:

1. If  y
x

x
x

x
=



�
�
 ≠

=

�
��

��

2 1
0

0 0

sin for

for

Solution: For x ≠ 0  the derivative may be calculated
by the formulas and the rules of differentiation (as y
is the product of two differentiable functions)

∴ ′ = 

�

�
f x

d

dx
x

x
� � 2 1

sin

= ⋅ + 

��

�
�

dx

dx x
x

d

dx x

2
21 1

sin sin

= ⋅ 

�
�
 −



�
�
 ≠2

1 1
0x

x x
xsin cos for
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[we can not use the expression for x = 0. At the
point x = 0, we can calculate the derivative using the
defination of the derivative]

∴ ′ =
+ −

>+
→

f
f h f

h
h

h
0

0 0
0

0
� � � � � � � �lim ,

= ⋅ =
→

lim sin
h

h
h0

1
0

[� The product of an infinitesimal function and
a bounded function is an infinitesimal]

′ =
− −
−

>−
→

f
f h f

h
h

h
0

0 0
0

0
� � � � � � � �lim ,

= =
→

lim sin
h

h
h0

1
0

∴ ′ =−f 0 0� �
Hence ′ =f 0 0� � .

2. If y x
x

x= − ⋅
−



��

�
� ≠1

1

1
12� � sin , ,  = 0 , when

x = 1 Find ′f 1� �.

Solution: ′ =
+ −

>+
→

f
f h f

h
h

h
1

1 1
0

0
� � � � � � � �lim ;

=
+ − ⋅

+ −


��

�
� −

→
lim

sin

h

h
h

h0

21 1
1

1 1
0� �

=



�
�

= =

→ →
lim

sin
lim sin

h h

h
h

h
h

h0

2

0

1
1

0

[� The product of an infinitesimal function and
a bounded function is an infinitesimal]

Similarly, ′ =−f 1 0� �
∴ ′ =f 1 0� �

Type 2: When a function is defined on both sides of
x = a by different formulas in various intervals of its
domains of defination and we are required to find

′f x� � and ′f a( ), e.g.,

1. f x f x x a� � � �= <1 , when

f x f x x a� � � �= ≥2 , when  and we are required to
find ′f x� � and ′f a( )

Working rule:
1. Find ′ ′f x f x1 2� � � �, , ... etc. by using the formulas
of d.c. of a power function, sum, difference, product,
quotient etc and retain the same intervals (or,
restrictions or, conditions) against ′ ′f x f x1 2� � � �,  ...

etc. This provides us ′ ′f x f x1 2� � � �, , ... etc. in various
given intervals.
2. Find left hand derivative = ′ =−f a L� � 1 and right
hand derivative = ′ =+f a L� � 2  by using the
defination.

3. If L L1 2= , then ′ = =f a L L L L� � � �1 1 2or, 2 �

Examples worked out:
1. If f x x x� � = +2 32  when x < 0 , = −3 2x x ,
when 0 1≤ ≤x  = +x 1 , when x > 1  Find
′ ′f x f� � � �, 0  and ′f 1� � .

Solution: (1) To find ′f x� �
When x < 0,

′ = + = ⋅ + ⋅ = +f x
d

dx
x x x x� � 2 3 2 2 3 1 4 3

2
...(i)

When, 0 1< <x

′ = − = ⋅ − = −f x
d

dx
x x x x� � 3 3 1 2 3 22

...(ii)

When, x > 1,

′ = + =f x
d

dx
x� � � �1 1 ...(iii)

(2) It remains to find ′ ′f f0� � � �and 1

′ =
− −

−
=

− −

−−
→ →

f
f h f

h

h h

hh h
0

0 2 3 0

0 0

2

� � � � � � � �
lim lim

= − + =
→

lim
h

h
0

2 3 3� �

′ =
−

=
− −

+
→ →+

f
f h f

h

h h

hh h
0

0 3 0

0 0

2

� � � � � � � �
lim lim
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= − =
→

lim
h

h
0

3 3� �

∴ ′ =f 0 3� � ...(iv)

′ =
− − − − −

−−
→

f
h h

hh
1

3 1 1 3 1

0

2

� �
� � � � � �

lim

=
− − − + −

−→
lim

h

h h h

h0

2
3 3 1 2 2

=
− − − −

−→
lim

h

h h

h0

2
3 1 2

=
− − −

−→
lim

h

h h

h0

2
2 2

=
− +

−
= + =

→ →
lim lim
h h

h h

h
h

0 0

1
1 1

� � � �

Again ′ =
+ −

+
→

+
f

f h f

hh
1

1 1

0
� � � � � �

lim

=
+ + − −

→
lim
h

h

h0

1 1 3 1� �

=
→

lim
h

h

h0

=
→

lim
h 0

1

= 1

∴ ′ + ′ =− +f f1 1 1� � � �
∴ ′ =f 1 1� � ...(v)

Hence ′ =f 0 3� �  and ′ =f 1 1� �
Type 3: To examine the existance of a derived function
′f x� � at a point at which the given function f x� �

is undefined.

Working rule: Regarding derivative ′f x� � at a point
x a=  at which the given function f x� �  is

undefined i.e;
0

etc.
a

, , ,
0

0

∞
∞



�

�
  we use the

following facts:

A function f x� �  is undefined at a point x a=
⇒ The function f x� �  is discontinuous at x a=

⇒ The function f x� �  is not differentiable at
the same point x a=

⇒ ′f x� � does not exist at the same point x a=
⇒ ′f x� � can not be obtained at x a=  finitely.

Note:
1. We should remember that evaluating indeterminate
form means finding its limits or showing that its limit
does not exist.
2. The derivative is not defined at the points of
discontinuities of the function.
3. When the function y f x= � � is not defined for
(or, at or when) x a= , this function f x� �  can not
be said to take any value at x a= . Therefore its
derivative ′f x� � also can not be said to take any
value at x a=

4. The function sin cos and tan
1 1 1

x x x


�
�




�
�




�
�
,  are

undefined at x = 0
Examples worked out:

1. If f x
x

x
� � = −

−
1

1

cos

sin
 , does ′ 
�

�
f

π
2

 exist ?

Solution: � f x
x

x
� � = −

−
1

1

cos

sin

∴ 

�
�
 =

− 

�
�


− 

�
�

=

−
−

= =f
π

π

π2

1
2

1
2

1 0

1 1

1

0

cos

sin

undefined

f x� �  is undefined at x = π
2

⇒  f x� �  is discontinuous at x = π
2

⇒ ′f x� � does not exist at  x = π
2

2. If  y
x

x
=

− 4

2
, does 

dy

dx
 at x = 0 exist ?
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Solution: Let f x
x

vx
� � = − 4

2

∴ =
−

=
−

=f 0
0 4

2 0

4

0
� �  undefined.

∴ f x� �  is undefined at x = 0

⇒  f x� �  is discontinuous at  x = 0

⇒ ′f x� � does not exist at x = 0

Type (1) , (2) , (3) and (4)

Problems based on evalution of  
dy

dx
 at x a=

Exercise 15.1

Find 
dy

dx
 at the indicated points if

1. y
x

x=
+

=1

5
2at

2. y
x

x=
+

=1

3
12 at

3. y x x x= + + = −3 5
1 1� � at

4. y x x c= =cos at
3

5. y x x y xy xy x y= − + − + −3 2 2
2 4 8 6 3 at = 2

6. y x y xy x x= + −3 3 1at =

7. y x x= +

�

�
cos at =2

2 3

π π

8. y x x= cos sin at =
2

2
� �

π

9. y x x x= +sin cos at = 0,4 2 4 2

2

π

10. y x x x x= + + =cosec tan cot at
2 7

4
� �

π

11. y x x x= − =sec tan at
4 4

3

π

12. y x x= =5
2

sin at
π

13. y x x t= + =2 tan at

14. y x x x= − =− −cos cot at1 1 3

2

15. y x
x

x= + − =2
2

4 43
3 at

16. y
x x

x
x=

+
+

=
cos

cos
at

1
0

17. y
x e

x e
x

x

x
=

+
=

log
at

� �
1

18. y
x

x
e xx=

+
−

⋅ =
2

2
1at

19. y x x
x= =tan atsin� � π

4

20. y
x

x x
x=

+

+ ⋅ −
=

4 1

2 5 2 3
12

3

4

5

3

� �

� �
at

21. y x
x

x

x
x= − + +

−
=2

2 4

4
2at

22. y x
x

x

x
x= − +

+
−

=4
4 4

4
4at  

23. y
x

x
x=

+
=−

tan
cos

sin
at

1

1
0

24. y x x x= ⋅ −���
���

=
−

sin at
1 2

1
1

2

25. y
x x

x
x=

−

−
=

−
tan at

1
3

2

3

1 3
1

26. x y x y+ = = =3 1 4at ,

27. x y2 2 10 1 3+ = at ,� �
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28. x a xy y x
a

y
a3 33 0

3

2

3

2
− + = = =at ,

29. Find 
dy

da
 if  y

x x a
a=

+
1

cos cos
at =

2

π

30. If y x= cos , find 
dy

dx
xat = π

31. If y x= sin , find 
dy

dx
xat = 0

32. If f x x x f� � � �= − ′
− −

3 2 2
1 1

tan cot find,

33. f x x x f� � = + ′


��
�
�

− −2
2

2
1 1sin cos find,

34. f x x x f� � = + ′
��
�
�

− −4
1

2
1 1sin cos find,

35. If f x x f� � � �= ′−tan find1 3,

Answers:

1. − 1

49
2. − 1

8
3. 20 4. −3

2
cos sinc c

5. Find  6. – 1  7. 1 8. 0 9. 0, 0 10. – 114688

11. 16 3 12. 0 13. sec
2

t 14. − 10

7

15.
189

64
2⋅ 16.

1

2
17.

1

1 + e 18. 5e

19. 2 20. − 77

16
21.

11

4
22.

9

8
23. − 1

2

24.
4

39
25.

3

2
26. –2 27. − 1

3
28.

4

5

29. x xsec2 30. 0 31. does  not exist 32. 1

33. 2 34. 2 3 35.
1

4
Type 5: To find the value of d.c of a given function
w.r.t another given function at x = a

Exercise 15.2

1. Find differentiation of

y x
x

x
x= +

−
=2

16
1

3w.r. t at

2. Find differentiation of

y
x

x=
−




�
�

�


� −

−
sec w.r. t

1

2

21

2 1
1  at x =

1

2
.

Answers:

1. − 12

5
2. 4

Type 6: Evalution of d.c. of parametric equations (or,
functions) at a point (or, parameter t , θ θor  etc)

Exercise 15.3

Find 
dy

dx
 for the parametric equations at the indicated

points.

1.
x a

y a

= +

�

�


=

�
��

��
cos log tan

sin
at =

3
θ θ

θ
θ

π
2

2.
x

y

= −
= −

���
2 2

2 2

cos cos

sin sin
at =

2

θ θ
θ θ

θ π

3.
x a

y a

= +
= −

�
�
�

cos sin

sin cos
at =

4

θ θ θ
θ θ θ

θ π� �
� �

4.

x
at

t

y
at

t

=
+

=
+

�

�
�
�

�
�
�

=

3

1

3

1

1

2

3

2

3

at

5.
x

y

= −
= −

�
��
��

2 2

2 2

3

3

cos cos

sin sin
at =

4

θ θ
θ θ

θ π

6.
x a

y a

=
=

�
��
��

cos

sin
at =

4

3

3
θ
θ

θ π
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7.
x a t t t

y a t t t
t

= +
= −

�
�
�

=
cos sin

sin cos
at

� �
� �

π
3

8.
x a t t

y a t
t

= +
= −

�
�
�

=
sin

cos
at

� �
� �1 2

π

9.
x a

y a

= −
= −

�
�
�

=
θ θ

θ
θ

πsin

cos
at

� �
� �1 2

10.
x a t

y a t t
t

= −
= +

�
�
�

=
1

2

cos

sin
at

� �
� �

π

11.
x at

y at
t=

=

�
��
��

=
2

2
2at

Answers:

1. 3 2. – 1 3. 1 4.
5

4
5. Find 6. – 1

7. 3 8. 1 9. 1 10. 1 11.
1

2

Miscellaneous problems on evaluation:

Exercise 15.4

1. If  y
x

x
= +

−
1

1  ,  evaluate ′f 1� �  if possible.

2. If f x
x

x
� � = +3 1

 , evaluate ′f 1� �

3. If  f x
x

x
� � = +

+

3

2

1

1
 , evaluate ′f 0� �

4. If  f x
x x

� � =
+ +

1

3 22  , evaluate ′f 0� �

5. If  s t t= + 3   ,evaluate ′f 4� �

6. If  y
x x

= −
2 3

3  ,evaluate ′f 4� �

7. If  f x
x

x
� � = + 1

 , evaluate ′f 4� �

8. If  f x
x

x
� � = +

−
4

4
 , evaluate ′f 1� �

9. If  f t t tm n� � � �= +
3
, evaluate ′f 1� �

10. If  y
x

x
= −

+
�
��

�
�	

1

1

2

 , evaluate ′f 3� �

11. If y
x

x
=

−
3

3 1

2

3� �  , evaluate ′f 3� �

12. If f x x x� � � �= − ⋅ +2 21 1 , evaluate ′f 3� �

13. If f u u� � = +2 2  , compute ′f 2� �

14. If f x x x� � = + +5 2 12 , compute ′ −f 1� �

15. If y
ax

ax
=

+
−

1

1  , compute ′f 5� �

16. If f z
z

z
� � = +4 2

 , compute ′f 5� �

17. If f x
x

x
� � =

+

3

38
 , compute ′f 1� �

18. If f x
x

x
� � = −

−
1

1
 , evaluate ′f 4� �

19. If f x
x

x x
� � =

+ +1 2  , evaluate ′f 3� �

20. If f x
x x x

x x x� � = − + + +
2 8 6

2 6
23

2
 ,

find ′f 1� �

21. If  f x x x� � � �= − +2 22 1    , find ′f 3� �

22. If  f Z
Z

Z
� � =

+

9

12
 , find ′f 2 2� �

23. If f x
x x x

x x x� � = + − + −1 3

2

4
3 22 23

2
 ,

find ′f 1� �
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24. If  f u u u� � � �= + ⋅ −2 23 1  , find ′f 2� �

25. If f x
x

x
� � =

− +1 12
 , find ′f 3� �

26. If f x e x
x� � = 2 2

log  , find ′f 1� �

27. If  f x e x
x� � = ⋅ log

2  , find ′f 1� �

Answer:

1. Does not exist 2. 1 3. 0 4. − 3

4

5.
1

2

1

3

1

2

2

3

4



��
�
� + 
��

�
�

�

�
�
�

�

�
	
	

− −

=

t t

t

6. x x

x

− −

=

−
�

�
�
�

�

�
	
	

4

3
3
2

4

7. − 1

16
8.

4

9
9. 12 (m + n)

10.
4 1

1
3

3

x

x
x

−

+

�

�
�
�

�

�
	
	

=

� �
� � 11.

−

−

�

�
�
�

�

�
	
	

=

9

3 1

2

3

3

x

x
x

� �

12. 18 3 13.
1

8
14. – 2

15.
a ax

ax
x v

1

1

3

2

1

2
5

−

+

�

�

�
�
�

�

�

	
	
	

−

−
=

� �

� � 16. − 4

5

17.
17

18
18.

v3

36
19.

7 4 3

2

− v
20. 15

21.
9 3

2

v
22.

1

3
23. – 3 24. 7 2v

25.
1

2
26. 2 2e 27. 2 e

Special types of  functions:

Type 1: Problems based on finding the derivative of
function having the form:

y f x= 1 � � , when x a≠
= c  , when x a=

Exercise 15.5

1. If f x e
x

x� �= ⋅ 

�
�


− 1
2 1

sin , when x ≠ 0 , f 0 0� � = ;

find ′f x� � at x = 0 and x ≠ 0 .

2. If f x
x

� �= 

�
�
sin

1
, x ≠ 0 , f 0 0� � =  find ′f x� � at

x = 0 and x ≠ 0

3. If  f x x
x

� � � �= −
−



��

�
�1

1

1
2 sin  , when x ≠ 1, = 0

when x = 1; find  ′f x� � at  x = 1 and at x ≠ 1

4. If f x
x

x� � = ⋅1
2sin  for x ≠ 0 , = 1 for x = 0  find

′f x� � at  x = 0  and at x ≠ 0

5. If f x x
x

� � = 

�
�
sin

1
, x ≠ 0 , f 0 0� � = ; find

′f x� � at  x = 0  if derivative of  f x� � exists and ′f x� �
at x ≠ 0

6. If  f x

e

x
x

� � =
−

≠
−

1

1

01 , , f 0 0� � = ; find

′f x� � at  x = 0  and ′f x� � at x ≠ 0

7. If  f x e x� � =
− 1

 ,  when x ≠ 0 , f 0 0� � = ; find

′f x� � at  x = 0  and ′f x� � at x ≠ 0

8. If f x x
x

� � = 

�
�
cos

1
, for x ≠ 0 , f 0 0� � = ; find

′f x� � at  x = 0  and ′f x� � when x ≠ 0

Type 2: Problems based on  the function defined on
both sides of  x a=  by various formulas in different
intervals of its domains of definition and we are
required to find ′f x� �  as well as ′f a� �.    Exercise set:

Exercise 15.6

1. If f x x� � = − ≤3 4, when x 2
f x x x� � � �= − >2 2 3 2, when , Find ′f 2� �
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2. If f x x x� � = − ≤ <2 1 0 1,

f x x x� � = − ≤ ≤2 1 3,  Find  ′f 1� �

3. If f x
x

x
x� � =

+
≥

1
0, when

f x
x

x
x� � =

−
<

1
0, when  Find  ′f 0� �

4. If f x x x x� � = +2 7 02 , when <

f x x x� � = − >3 4 0, when  Find ′ −f 1� � .
Answers:
1. Does not exist
2. Does not exist
3. 1 4. 4

Type 3: Problems based on finding the value of d.c of
the function which is undefined at a point  x a=

1. If  y
x

x
=

− 4

2  , can the value of  
dy

dx
 be obtained

at x = 0 ?

2. If  y
x

x
= −

+
1

1 , can the value of  
dy

dx
 be obtained at

x = – 1 ?

3. If  y
x

x
= −

+
2 3

3 4  can the value of  
dy

dx
 be obtained at

− 4

3
 ?

4. If  f x
x

x
� � =  , can the value of  

dy

dx
 be obtained

at  x = 0 ?

5. Prove that the function f x
x

x
� � =

−
sin

cos1
 has no

derivative at x = 0

6. Prove that the function f x
x

x� � = −1

cos
tan   has

no derivative at x = π
2

.

7. Prove that the function  f x
x x

x x
� � = − +

+ −

2

2

3 5

2 5 3
 has

no derivative at x = − 3 .

8. Prove that the following functions have no
derivative at the indicated points.

(i) f x
x

x� � = =sin at
1

0

(ii) f x
x

x� � = =cos at
1

0

(iii) f x
x

x� � = =tan at
1

0

Answers:
1. No, as the function is not defined at the indicated
point.
2. No, as the function is not defined at the indicated
point.
3. No, as the function is not defined at the indicated
point.
4. No, as the function is not defined at the indicated
point.
5. No, as the function is not defined at the indicated
point.
6. No, as the function is not defined at the indicated
point.
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17

Derivative as Rate Measurer

General definition: If a variable z is a function of
another variable y, then the rate of change of z with

respect y is 
dz

dy
.

That is, z = f (y) ⇒ =
dz

dy

d f y

dy

� �
 which is known

as rate of change of z with respect to y or rate at which
z changes with y.

A case of great practical importance occurs when
the independent variable represents time.

That is, we may have y = f (t) and we wish to find
the rate of change of y with respect to time ‘t’. It is

sufficient to calculate 
dy

dt
f t= ′ � �  directly.

Again, we may have y = f (x) and x = g (t). This is
often the case in problems of physics. If we have

been given 
dx

dt
, th time rate of change of x, we can

calculate 
dy

dx
 from the formula.

dy

dt

dy

dx

dx

dt
f x

dx

dt
= ⋅ = ′ ⋅� �

Moreover, we may have y = g (t), x = f (t).

Then 
dy

dx

dy

dt
dx

dt

g t

f t
f t= =

′
′

′ ≠
� �
� � � �, 0

Thus, the rate of change of one variable can be
calculated if the rate of change of the other variable is
known.

Notes:

1. If 
dy

dx
 is positive, then the rate of change of y with

respect to x is positive. This means that if x increase,
then y also increases and if x decreases, then y also
decreases.

2. If 
dy

dx
 is negative, then the rate of change of y with

respect x is negative. This means that if x increases,
then y decreases and if x decreases, then y increases.

Remember:
1. The pharase “rate of change or rate of variation or
rate of increase” of a variable quantity is often used
in reference to ‘time’ and the words “with respect to
‘t’ ” are omitted. This is why when no special mention
is made of the variable with respect to which the rate
is calculated, it is assumed that the rate is taken w.r.t
time ‘t’.
2. By the rate of change or rate of variation or rate of
increase of a variable quantity is meant the change in
the value of a quantity per unit of time.

3. Whatever be the quantity ‘Q’ its derivative 
dQ

dt
gives how fast Q is changing with ‘t’.
4. If the quantity Q increases with time ‘t’, its

derivative 
dQ

dt
 is positive.

5. One important point to be remembered is to use
the same units of measurements for the same variable.
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If in a problem, some distances are given in feet and
others in inches, we may convert them into inches. If
the rates are given as feet per minute as well as feet
per second, then we may convert them all into feet
per second.

Examples

Units of rate 
dQ

dt
 = units of ‘Q’ / units of ‘t’.

Where Q = volume, area, distance, … etc.
T = time

Units of 
dr

dt
 (= rate increase of radius w.r.t time ‘t’

where r = radius) is cm/sec, (r is in cm and t is in secs).

Units of 
dS

dt
 (=rate of increase of S w.r.t time ‘t’

where S = surface) is cm2/sec, (if distance is in cm and

time is in secs) and Units of 
dv

dt
 (= rate of increase of

volume w.r.t time ‘t’ where v = volume) is cm3/sec.
6. When one quantity changes or grows or varies,
we like to know the rate of change or rate of growth or
rate of variation of another related quantity. This is
why it is some times called related rates. We are
concerned with the rate of changes of one quantity
relative to other with which it is connected by some
given relation.
7. If y is a function of x and x is varying with time ‘t’,

then 
dy

dt

dy

dx

dx

dt
= ⋅  which ⇒  rate of change of y =

rate of change of x times d.c of y w.r.t x. which in turn

can be written as 
dy

dx

y

x

dy
dt

dy
dt

= =
rate of chage of

rate of change of

which means that 
dy

dx
 compares the rate of change of

both y and x.
8. If the rate of change of a quantity is not w.r.t time,
it must be mentioned in the problem (question). e.g.,
(i) If y2 = 4x, find the rate at which y is changing with
respect to x when x = 4.
Solution: y2 = 4x

⇒ =2 4y
dy

dx

⇒ = =
dy

dx y y

4

2

2

Now, from y2 = 4x, when x = 4, y2 = 16 or y = ±4

which ⇒  the rate = value of 
dy

dx
 (at the point x = 4),

i.e., (4, 4); (4, –4) =
1

2
; −

1

2
 (The negative sign shown

y is decreasing with increase in x at (4, – 4).
(ii) The radius of a spherical soap bubble is uniformly
increasing. Find the rate at which the volume of the
bubble is increasing with radius, when its radius ‘r’ is
8 cm.
Solution: Volume ‘v’ of a sphere of a radius ‘r’ is

given by v r= 4

3

3π .

Rate of increase with respect to ‘r’ is given by

dv

dr
r= 4 2π .

dv

dr r

�
��
�
	
 = =

=8

2 3
4 8 256π π cm cm/

Note:
1. Increases with, varies with or changes with means
varies increase or changes w.r.t.
2. A quantity ‘Q’ increase with uniform rate

⇒ = =dq

dt
k  constant.

3. If x and y are two variables, then the rate of change
of y with respect to x at (or, when) x = a means the

value of 
dy

dx
 at x = a = ���

�
	
 = ′ = ′

=

dy

dx
f x f a

x a

� � � � .

4. Change in a quantity, a variable or a variable
quantity = final value of the quantity (or, variable) –
initial value of the quantity (or, variable).

5. If 
dy

dt

dy

dx

dx

dt
= ⋅ , then we can find 

dy

dx
 provided

dy

dt
 and  

dx

dt
 are known or we can find 

dx

dt
 provided

dy

dt
 and 

dy

dx
 are known.
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On Language of Mathematics

1. Language of rate problems:

dr

dt
 = a cm/sec means rate of increase of radius is

a cm/sec where r = radius.

dv

dt
 = a cm3/sec means rate of increase (or change

or variation or growth … etc) of volume is a cm3/sec
where v = volume.

dS

dt
 = a cm2/sec means rate of increase (or change

or variation or growth … etc) of surface area or simply
area is a cm2/sec where S = surface.

... and so on

2. Language of variation:
(i) Direct variation: When the ratio of two variables
equals a constant, the variables are said to vary
directly.

If we let y and x represent any two variables, then

we may state that they vary directly by writing 
y

x
k=

where k represents a constant.

Thus, 
y

x
k=  is also symbolised as

y x y∝ ⇔  = kx.
(ii) Inverse variation: When the product of two
variables equals a constant, then the variables are
said to vary inversely.

If we let x and y represent any two variables, we
may state that they vary inversely by writing x y = k
where k represents a constant.

The relationship may also be expressed as y
k

x
=

or x
k

y
=  or alternatively we may say

y is inversely proportional to x i.e;

y
x

y
k

x
∝ ⇔ =

1
 or x is inversely proportional

to y i.e: x
y

x
k

y
∝

1
⇔ = .

N.B.: We can always replace the sign '∝ ' by the sign
of equality ‘=’ provided we introduce a multiplying
constant on one side of the equation. This constant
is often termed as constant or proportionality. The
symbol '∝ ' is termed as sign of variation, moreover,
instead of ‘is proportional to’ or ‘varies as’ the symbol
'∝ ' if often used.
3. Joint variation: When a variable varies directly as
the product of two or more than two variables, it is
said to vary jointly as these variables.
If x varies jointly as y and z, then x ∝  y · z or x = k · y
· z where k is any constant.

4.
dQ

dt
 is constant = Q increases or decreases with a

constant rate respectively where Q = any quantity
and t = time.

5.
dQ

dt
 tells us at what rate a physical quantity Q

changes or increases or decreases if Q be a certain
quantity varying with time.

Or, alternatively, if Q be a certain quantity varying

with time 
dQ

dt
 represents the rate at which that

quantity Q is changing.

Type 1: Problems based on finding the rate of physical
quantities like volume, area, perimeter etc.

Working rule: In such problems where time rate of
change (rate of change w.r.t. time) of certain variable
(variables) is (are) given and time rate of change of
some other variable (variables) is (are) to be found
out, we use the rule described in following four steps:
1. Find the relation by mensuration formulas (between
the two variables) between that quantity whose rate
of change is required and whose rate of change w.r.t
time is given. The following relations are very helpful.

A = area of a square = x2, its perimeter = 4x
A = area of rectangle = x y, its perimeter = 2 (x + y)

Area of trapezium =
1

2
 (sum of parallel sides). ×

distance between them.

A = area of a circle = π r
2

, its perimeter = 2πr .
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V = volume of right cone = 
1

3

2
π r h , its total

surface = π r r l+� �  whereas its curved surface is
π r l  only.

V = volume of a cylinder = π r h
2

, its total surface
= 2π r r h+� � . Whereas its curved surface is

= 2π r h .

V = volume of a box = x y z and its surface or
surface area = 2 (xy + yz + zx)

V = volume of a cube = x3.
2. Differentiate the equation (between the quantities
whose rate of change is required and whose rate of
change w.r.t. time is given which exists at any instant
or time during which the condition of the problem
holds) w.r.t time ‘t’. Generally we differentiate any
one of the formula of area, volume or perimeter etc of
a substance having a geometrical shape like square,
rectangle, circle cylinder or cone etc with respect to
time ‘t’ provided that time rate of change of a certain
variable is given in the problem.
3. Substitute the known quantities in the differenti-
ated result.
4. Solve for the required unknown.
N.B.: 1. We may draw the figure for convenience.
2. Formulas for volumes, areas, perimeters of a
substances having geometrical regular shape like
square, rectangle, trapezium, circle, cone, cylinder or
cube etc must be remembered.
3. While working out problems of rate measurer, we
must note the two variables, one whose rate of change
is given and the other one whose rate of change is to
be found. Then we express either variable in terms of
the other by means of an equation. (or known formula)
and lastly we differentiate through out with respect
to time t.

Worked out
Problems based on type (1)
1. At what rate is the area increasing when the side
of an equilateral triangle is 10 ft, if the side of an
equilateral triangle increases uniformly at the rate of 3
ft/sec.
Solution: Let A = area of an equilateral triangle.

=
3

4

2
x

, (x = length of a side) ...(1)

Now, differentiating both sides of (1) w.r.t ‘t’, we
get

dA

dt
x

dx

dt
= ⋅ ⋅3

4
2

= ⋅ ⋅ =�
�


�

3

4
2 3 3x

dx

dt
� is given

⇒ ���
�
	
 = ⋅ × ×

=

dA

dt x 10

3

4
2 10 3

= 15 3  sq. ft/sec.

2. A spherical balloon is inflated and the radius is

increasing at 
1

3
 inches/minutes. At what rate would

the volume be increasing at the instant when its radius
is 2 inches.
Solution: let V = volume of a spherical balloon

= 4

3

3π r , radius = r). ...(1)

Now, differentiating (1) w.r.t ‘t’ we get

dv

dt
r

dr

dt
= ⋅ ⋅

4

3
3

2
π

= ⋅ ⋅ ⋅ =�
��


��

4

3
3

1

3

1

3
2π

r
dr

dt
� is given

⇒ �
��
�
	


= ⋅�
��

�
	


=
= =

dv

dt
r

r r2

2

2

4

3

16

3

π π
 inch3 /minute.

A

B C

x = 10 x = 10

x = 10

r
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3. A spherical balloon is pumped at the rate of 10
cubic inches per minute. Find the rate of increase of
its radius when its radius is 15 inches.

Solution: v r=
4

3

3
π  (when r and v represent radius

and volume respectively)

⇒ = �
�


� = × × × ×

dv

dt

d

dt
r r

dr

dt

4

3

4

3
3

3 2
π π

⇒ = ⋅ =�
��


��10 4 102π r

dr

dt

dr

dt
�

⇒ =
× ×

dr

dt r

10

4
2

π

⇒ ���
�
	
 × ×

= =
=

dr

dt r 15
2

10

4 15

10

900

1

90π π π� �  inch/

minute.
4. The circular waves in a tank expand so that the
circumference increases at the rate of a feet per
second. Show that the radius of the circle increases

at the rate of 
a

2π  feet per second.

Solution: let p = perimeter of the circular wave at
time ‘t’ from the start.

= 2π r  (where r is the radius of circular wave at
time t from the start)

⇒ =
dP

dt

d r

dt

2π� �

⇒ = =�
�


�a

dr

dt

dP

dt
a2π �

⇒ =dr

dt

a

2π  ft/sec.

5. A cylindrical vessel is held with its axis vertical.
Water is poured into it at the rate of one unit per
second. Given that one unit is equal to 34.66 cu. Inch.
Find the rate at which the surface of water is rising in
the vessel when the depth is x inches.
Solution: let A = are of cross section of cylindrical
vessel.

x = height of cylindrical vessel.
V = volume = A · x

⇒ = ⋅dv

dt

d

dt
A x� �

⇒ = ⋅
dv

dt
A

dx

dt

⇒ =dx

dt A

34 66.

(�  Given 
dv

dt
 = 34.66 cu. inch/sec)

⇒ =dx

dt A

34 66.
 inch/sec.

dx

dt
�
��  = rate of change of x = rate of rising of the

surface of water in the vessel

�� .

6. A balloon which always remains spherical has a
variable radius. Find the rate at which its volume is
increasing with radius, when the latter is 7 cm.
Solution: Let the radius of the balloon = r

and the volume of the balloon = v

∴ =v r
4

3

3π

rate of increase in volume with radius r

= = × ×
dv

dr
r

4

3
3 2π

∴ �
��
�
	


= × × =
=

dv

dr r 7

2
4 7 196π π� � cm /cm.3

r

r
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7. The volume v and the pressure p of a gas under
constant temperature are connected by pv = c, where

c is a constant, show that 
dp

dv

c

v
= −

2 .

Solution: � pv c=

∴ ⋅ + ⋅ =p v
dp

dv
1 0

⇒ = − = −

�
��

��
= −dp

dv

p

v

c

v

v

c

v2  (proved)

8. A sphere of metal is expanding under the action of
heat. Compare the rate of increase of its volume with
that of its radius. At what rate is the volume increasing
when the radius is 2 inch and increasing at the rate of

1

3
 inches per minute.

Solution: let v = volume of the metalic sphere at time
‘t’

r = radius at time ‘t’

∴ =v r
4

3

3
π

⇒ =
dv

dt
r

dr

dt
4

2
π ...(1)

given that 
dr

dt
= 1

3
 inches/minute where r = 2 inches

∴ ��

� =

×�
�
�


�
�

=

dv

dt r 2

2
4 2

3

π
 cube inch/minute

= ��

�

16

3

π
 cube inch/minute

Comparison: 

dv
dt
dr

dt

r= 4
2π

9. The volume of spherical soap bubble is denoted
by v, its surface by s, the radius being r, show that

(1)
dv

dt
r

dr

dt
= 4

2π (2)
ds

dt

dv

dt
= 2

3

Solution: Let v, x and r denote the volume, surface
and radius of the spherical soap bubble respectively
at time ‘t’ from the start.

� v r=
4

3

3
π …(1)

s r= 4 2π …(2)

Differentiating (1) w.r.t ‘t’, we get

dv

dt
r

dr

dt
= 4

2π …(3)

Again differentiating (2) w.r.t ‘t’, we get

ds

dt
r

dr

dt
= ⋅8π

= ⋅�
�


�

2
4

2

r
r

dr

dt
π

= ⋅2

r

dv

dt
 [from (3)]

Problems based on cylinder, cone, cube, … etc.
1. A cone is 10 inches in diameter and 10 inches deep
water is poured into it at 4 cubic inches per minute. At
what rate is water level rising at the instant when the
depth is 6 inches.
Solution: Let A B C = a cone

A D = depth of the cone = 10²
B C = diameter = 10²

α = ∠CAD

tanα = = =CD

AD

5

10

1

2

D
B C

A

P

x

α
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Let A P = depth of water = x and
v = volume of water at time ‘t’

∴ = ⋅v x x
1

3
2π αtan� �

⇒ =v x
1

3

3 2π αtan ...(1)

Now, differentiating both sides of (1) w.r.t ‘t’,

dv

dt
x

dx

dt
= ⋅ ⋅ ⋅ ⋅1

3
3

2 2π αtan

⇒ = ⋅ ⋅ ⋅ ⋅ ���

�� ⋅ ���


�� =

4
1

3
3 6

1

2
2

2

6

π dx

dt x

⇒ ��

� =

×
×

=
=

dx

dt x 6

4 4

36

4

9π π
 inch/min.

2. Water is being poured at the rate of one cubic foot
per minute into a cylindrical tube. If the tube has a
circular base of radius a ft, find the rate at which
water is rising in tube.
Solution: Let at any time t,

the height of water level = x ft and volume = v

∴ =v a xπ 2

∴ = ⋅
dv

dt
a

dx

dt
π

2

⇒ = ⋅ =�
�


�1 1

2
πa

dx

dt

dv

dt
� Given

⇒ =dx

dt a

1
2π

 ft/minute.

3. Water runs into a circular conical tank at the
constant rate of 2 cubic ft per minute. How fast is the
water level rising when the water is 6 ft deep? It being
given that the radius of the circular base of the cone
= 5 ft and height of the cone = 10 ft.
Solution: let at any time ‘t’

O P = h = height of water level
P R = r = radius of water surface
v = volume of water at any time ‘t’.

Given that O N = 10 ft
N M = 5 ft
dv

dt
= 2

then to find 
dh

dt
 when h = 6

v r h= 1

3

2π

⇒ = �
�

� ⋅v

h
h

1

3 2

2

π

⇒ = ⋅ ⋅ =v
h

h
1

3 4

1

12

3
3

π π

⇒ = ⋅ ⋅dv

dt
h

dh

dt

3

12

2π

�

PR

NM

OP

ON

r h
r

h h
= ⇒ = ⇒ = =

5 10

5

10 2

From is ∆
s

x

N
L M

PT

O

R
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⇒ = ⋅ ⋅ ���

�� =

2
4

62

6

π dh

dt h

⇒ ���

�� = =

=

dh

dt h 6

8

36

2

9π π  = 0.071 ft/min.

4. A hallow cone whose semi vertical angle is 30º is
held with its vertex downwards and axis vertical and
water is poured into it at the steady rate of 3 c. ft/min.
Find the rate at which the depth (measured along the
axis) of the water is increasing when the depth of the
water is 3 ft.
Solution: Let v = volume of water at any time ‘t’

α = 30º  = semi vertical angel (given)

Now, tanα = r

x
 (from rt ∠d OPR∆ )

⇒ =tan30
r

x

⇒ =
1

3

r

x

⇒ =r
x

v3
...(1)

Again � v r x= 1

3

2π  = volume of water at any

time ‘t’

∴ = ⋅ ⋅ =v
x

x x
1

3 3

1

9

2
3π π  (putting from (1)

r
x

=
3

)

which ⇒ = ⋅ ⋅ =
dv

dt
x

dx

dt
x

dx

dt

1

9
3

1

3

2 2
π π

⇒ = ⋅3
1

3

2
π x

dx

dt

⇒ =9
2

π x

dx

dt

⇒ �
��
�
	


=
�
�
��

�
	


= =

dx

dt xx x3
2

3

9

π

=
×

=9

9

1

π π
 ft/min. = the rate at which depth of

water is increasing when the depth of water = 3 ft.
5. An inverted cone has a depth of 10 cm and a base
of radius 5 cm. Water is poured into it at the rate of
2.5 c.c per minute. Find the rate at which the level of
the water in the cone is rising when the depth of the
water is 4 cm.
Solution: Let the depth of the water at time ‘t’ minutes
from the start in x cm. If the radius of the surface of
water at this time is r, then from the similar triangles
COQ and COB, we have

r x

5 10
=

⇒ =r
x

2
…(1)

Again � v r=
1

3

2
π  = volume of water at any

time ‘t’

N
L M

P

x

=
 α

30
°

T

O

R
r

O 5

x

r

A B

P

C

Q

10 cm

O´
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h

h

⇒ = �
�

� ⋅ ⋅ =v

x
x x

1

3 2

1

12

2
3π π

(� r
x

=
2

 from (1))

⇒ = ⋅dv

dt
x

dx

dt

1

12
3

2π

⇒ =dv

dt
x

dx

dt

1

4

2π ...(2)

but we are given 
dv

dt
=

5

2
 c.c. per minute.

Putting this value in (2), we get

dx

dt x
=

×
×

4 5

22π

⇒ ���
�
	
 =

×

⋅
⋅

�

�
�
�

�

	



=

dx

dt x 4
2

4 5

4

1

2π

= ���
�
	


5

8π
 cm/minute

= rate of rising water when the depth of water is
4 cm.
6. The temperature of metal cube is being raised
steadily so that each edge expands at the rate of .01
inch per hour. At what rate is the volume increasing
when the edge is 2 inches.
Solution: let x = length of the edge of the metal cube

A B C D E F G H at the time ‘t’
Given that

dx

dt
= .01 inch/hour

Let v = volume of the metal cube when the edge is
x inches at any time ‘t’

∴ =v x
3

which ⇒ = ⋅
dv

dt
x

dx

dt
3

2

= ⋅3 012x .� �  cube inch/hour

= .03 2x  cubic inch/hour

∴ �
��
�
	


= × =
=

dv

dt x 2

03 4 12. .  cubic inch per hour

7. A right circular cylinder has a constant height h
but the radius r of its base varies. If v be the volume
and S the curved surface of the cylinder, prove that

dv

dr
S= .

Solution: let r = radius of right circular cylinder and v
is its volume at time ‘t’ from the start, then

v r h= π 2

⇒ =dv

dt
r h

dr

dt
2π� �

= =S
dr

dt
S r h� 2π� � ...(1)

⇒ = ⋅dv

dr

dv

dt

dt

dr

=
dv dt

dr dt

= S (from (1))
(proved)

E

F

H

G

C
D

A Bx
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Problems based on proportionality
1. If the area of the circle increases at a uniform rate,
then the rate of increase of the perimeter varies
inversely as the radius.

Solution: let the area of the circle A r= π 2
…(1)

Now, differentiating both sides of (1) w.r.t ‘t’, we

get 
dA

dt
r

dr

dt
= 2π

⇒ =k r
dr

dt
2π

(�
dA

dt
 = uniform rate = k (say) = given)

⇒ =
2πd r

dt

k

r
...(2)

Again perimeter of the circle P r= 2π …(3)

Differentiating both sides of (3) w.r.t ‘t’, we get

dP

dt

dr

dt
= 2π …(4)

Putting (2) in (4), we get

dP

dt

k

r
=

⇒ ∝
dP

dt r

1
 (proved)

2. Prove that if a particle moves so that the space
described is proportional to the square of the time of
description, the velocity will be proportional to the
time and rate of increase of the velocity will be
constant.
Solution: letting S = the space described by the
particle in time ‘t’.

S t∝ 2  (given)

⇒ =S k t
2

, where k = a constant

⇒ =dS

dt
k t2

⇒ =v k t2  (�
dS

dt
 = v = velocity of the particle)

…(1)
⇒ ∝v t

⇒  v is proportional to time ‘t’

Again 
dv

dt
k= 2

⇒ dv

dt
 = a constant

⇒  rate of increase in velocity = constant (proved).
3. A spherical ball of salt is dissolving in water in
such a manner that the rate of decrease in volume is
proportional to the surface. Prove that the radius is
decreasing at a constant rate.
Solution: let v and S denote the volume and surface
of the spherical ball of salt respectively when the
radius is r at time ‘t’.

We know that v r= 4

3

3π …(1)

S r= 4
2π …(2)

dv

dt
S∝  (given) …(3)

⇒ = −
dv

dt
u S  [�  v decreases with increase in

‘t’], u > 0 (constant)    …(4)

Now, 
dv

dt
r

dr

dt
S

dr

dt
= ⋅ = ⋅4

2π

⇒ − =u S S
dr

dt
 (using (4))

⇒ = −
dr

dt
u  (constant)

⇒  radius is decreasing at a constant rate (–ve
sign signifies the decreasing of r)
4. The diameter of an expanding smoke ring at time t
is proportional to t2. If the diameter is 6 cm after 6 sec,
find at what rate it is then changing.

r
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Solution: let D denote the diameter of an expanding
smoking then according to question, D t∝ 2

∴ =D k t
2 , (where k is a constant) …(1)

∴ =dD

dt
k t2 …(2)

Now, since, it is given D = 6, when t = 6

∴ from (1), 6 36
6

36

1

6
= ⋅ ⇒ = =k k …(3)

Putting the value of k from (3) in (2), we have

dD

dt
t t= × × = ×2

1

6

1

3
lastly, when t = 6, the rate of change of

D
dD

dt

t

t t

= ���
�
	
 = ���

�
	
= =6 63

=
6

3
  = 2 cm/sec.

Type 2: Problems based on right angled triangle
In such types of problems, we adopt the following
working rule.
1. An question given in x and y stated in words should
be translated into symbolic equation in x and y or we
form an equation in x and y by using the properties
of ∆

s
.

2. Then differentiate both sides of the equation
determined w.r.t time ‘t’ which provides us a relation

(or equation) between 
dy

dt
 and 

dx

dt
.

3. Use the given value for 
dy

dt
 or 

dx

dt
 which ever is

given.

4. Find the other rate by solving the equation

involving 
dx

dt
 and 

dy

dt
.

Notes:
1. Figures must be drawn for convenience, for doing
rate problems based on right angled triangle as well
as formulas for volume, area, perimeter of regular
geometrical figures (as triangle, rectangle, square,
cylinder, cone, sphere or cube etc) must be
remembered.
2. We substitute the given quantities and rates in
the differentiated results to get the required rate.

3.
dQ

dt x a

�
��
�
	
 =

 = the rate of Q when (or, at) x = a where

Q = any quantity.
4. Rate at which two bodies are nearing (or being
separated) is the rate of distance ‘r’ between them

denoted 
dr

dt
.

Worked out
Problems based on type (2)
1. A man 6 ft tall walks away along a straight line
from the foot of a light post 24 ft high at the rate of 3.
m. p. h. How fast does the end of his shadow move?
Find the rate at which the length of his shadow
increases.
Solution: LP = height of the lamp post = 24 ft

MN = height of the man = 6 ft
PN = x = the distance between the foot of light

post and the position N obtained after t second, when
the man is x feet away from the foot P of light post.

PR = y
NR = PR – PN = y – x

Now from similar ∆ LPR  and ∆ MNR , we have

PL

MN

PR

NR
=

which ⇒ =
−

24

6

y

y x

⇒ =
−

4
y

y x

⇒ − =4 y x y� �
⇒ =3 4y x …(1)

D
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Now, differentiating both sides of (1) w.r.t ‘t’, we
have

3 4
dy

dt

dx

dt
= ⋅

⇒ = ⋅dy

dt

dx

dt

4

3

⇒ = ⋅ =�
��

�
	


dy

dt

dx

dt

4

3
3 3� given

∴ =
dy

dt
4  miles/hour

∴ The end of the shadow moves at the rate 3 miles/

hour.
The rate at which the shadow lengthens

= =
−d NR

dt

d y x

dt

� � � �

= − = −dy

dt

dx

dt
4 3� �  m.p.h. = 1 m.p.h.

2. A point source of light is hung a meter directly
above a straight horizontal path on which a bot b
meter in height is walking. How fast is the boy’s
shadow lengthening when he is walking away from
the light at the rate of c meter per minute.
Solution: let y = length of the shadow in meter and x
= the distance of the boy after time ‘t’

∆ ∆ECD EBAis

⇒
+

=y

x y

b

a

⇒ = +ay bx by

⇒ − =a b y bx� �

⇒ =
−

y
bx

a b

⇒ =
−

⋅dy

dt

b

a b

dx

dt ...(1)

But we are given 
dx

dt
 = c = velocity of the boy

∴ rate of lengthening in the boy’s shadow

= = ⋅
dy

dt

dy

dx

dx

dt

=
−

�
��


�� ⋅ =

−
=

�
��

�
	


b

a b
c

dy

dx

b

a b

dx

dt
c� and

=
−

�
��


��

bc

a b  meter/minute.

3. A lamp is at a height 376 cm from the ground. A
man 188 cm tall is walking on the ground steadily at
the rate of 10 cm/sec, in a straight line passing through
the lamp post. Find the rate at which the end of his
shadow is moving.
Solution: let A be the lamp

BC, the man
D, the point where AC produced meets OB

produced,

then we are required to find out the rate at which D is
moving.

Again let us suppose that
OB = x
OD = y

L

P N

M

R( )y – xx

24 ft 6 ft

90° 90°

A

B C

D

Eyx

a b

90° 90°

A

O B

C

Dx

376 188
x ( ) y – x 

 y – x 

90° 90°
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A

B

P

C Q7 ft

25 ft

y

x
90°

then 
dx

dt
 = 10 (given)

and we have to find 
dy

dt
.

From similar triangles AOD and CBD, we have
BD

OD

BC

OA
=

which ⇒
−

= =
y x

y

188

376

1

2

⇒ − =2 2y x y

⇒ =y x2

⇒ =dy

dt

dx

dt
2  = 2 × 10 = 20 cm/sec.

 (�
dx

dt
 = 10 is given in the question)

4. A man 5 ft tall walks away from a lamp post 12
1

2
 ft

high at the rate of 3 miles per hour. Find how fast is
his shadow lengthening.

Solution: let AB = lamp post = 12
1

2
 ft

MN = height of the man = 5 ft
BN = x ft = distance of a man at any time ‘t’ from

the lamp post.
NC = y = length of the shadow

given

then to find

dx

dt
dy

dt

= �
��

��

3

Now from the similar ∆
s

 ABC and MNC, we have

AB

MN

BC

NC
=

⇒ =
+25 2

5

x y

y

⇒ = +5 2 2y x y

⇒ =3 2y x

⇒ =dy

dt

dx

dt

2

3

= ⋅2

3
3

= 2 miles/hour.
5. A ladder 25 ft long reclines against a wall. A man
begins to pull the lower extremity which is 7 ft distant
from the bottom of the wall along the ground outwards
at the rate of 3 ft/sec. At what rate does the other end
begin to descend along the wall?
Solution: let AB = wall

AC = ladder
BC = 7’ = 7 feet (given)

Let after t second, the foot ‘c’ be at ‘Q’
and let CQ = x

BP = y
AC = 25 feet

From ∆ PBQ

PB PQ BQ
2 2 2= −

⇒ = − +y x
2 2 225 7� � � � ...(1)

Now differentiating both sides of (1) w.r.t ‘t’, we
have,

A

B N C

M

yx

5´5½´

90° 90°
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2 2 7y
dy

dt
x

dx

dt
⋅ = − +� �

⇒ =
− +

×dy

dt

x

y

dx

dt

7� �

= −
+

× =�
��


��

7
3 3

x

y

dx

dt

� �
� is given ...(2)

Now, we know that when x = 0, y = 24 feet (when
t = 0)

Again from (2) , we have

dy

dt t

�
��

�� = − = −

=0

21

24

7

8
 feet/sec.

(–ve sign shows that y decreases with t i.e. the
other end descends and the rate at which it descends

= 7

8
 ft/sec)

6. The top of ladder, 20 feet long, is resting against a
vertical wall and its foot on a level pavement, when
the ladder begins to slide outwards. At the moment
when the foot of the ladder is 12 feet from the wall, it
is sliding away from the wall at the rate of 2 feet per
second. How fast is the top sliding downwards at
this instant? How far is the foot from the wall when it
and the top are moving at the same rate.
Solution: let at any time t

AB be the position of the ladder having the length
= 20 feet where

OA = x
OB = y where O represents the foot of the wall.
Now, from the right angled triangle, we have,

OA2 + OB2 = AB2

⇒ + = =x y AB
2 2 220 20� � � �� feet

⇒ + =
d

dt
x y

d

dt

2 2
400� � � �

⇒ + ⋅ ⋅ =2 2 0x
dx

dt
y

dy

dt

⇒ + ⋅ =x
dx

dt
y

dy

dt
0 ...(1)

Now, again from the relation x2 + y2 = 400, when
x = 12, we have

(12)2 + y2 = 400

⇒ + =144 400
2

y

⇒ = − =y
2

400 144 256

⇒ =y 256

⇒ =y 16

Also we are given x = 12, as well as 
dx

dt
 = 2 ft/sec.

Substituting these values in (1), we have

12 2 16 0⋅ + ⋅ =
dy

dx

⇒ = − = −
dy

dx

24

16

3

2
 ft/sec.

Hence B is sliding downwards (as the negative

sign shows) as the rate of 
3

2
 ft/sec at the instant

under consideration.
If, at a particular instant, A and B are sliding at the

same rate, then

dx

dt

dy

dt
= −  and then (2) provides us x = y

and for the reason, x2 + y2 = 400

⇒ =2 400
2

x

⇒ = =x
2 400

2
200

⇒ =x 10 2  feet.

7. A ladder is inclined to a wall making an angle of
30º with it. A man is ascending the ladder at the rate
of 3 ft/sec. How fast is he approaching the wall.

O

B

A

20 feety

x
90°
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M

K

A

100 feet

90°

y

x

Solution: AB is the position of the ladder inclined to
a wall OB having the length ‘L’ feet.

x = distance moved along the ladder and y =
distance from the wall at time t

Now, sin 30º = =
−

CD

BD

y

L x� �
⇒ = − °y L x� � sin30

⇒ = − ⋅y L x� � 1

2

⇒ = −
dy

dt

dx

dt

1

2
 (� L is a constant)

⇒ = − ⋅dy

dt

1

2
3  (�

dx

dt
= 3  feet/sec is given)

⇒ = −
dy

dt

3

2
 ft/sec

Hence, y decreases (as the –ve sign shows) at the

rate of 
3

2
 ft/sec.

8. A ladder 26 ft long leans against a vertical wall.
The foot of the ladder is drawn away from the wall at
the rate of 4 ft per second. How fast is the top of the
ladder sliding down the wall when the foot of the
ladder is 10 ft away from the wall.
Solution: let AB = ladder = 26 ft

OA = x and
OB = y at time t
Now from the right angled triangle, we have
x2 + y2 = (26)2 …(1)

Given that 
dx

dt
= 4  ft/sec

x = 10 ft ⇒ = − =y 26 10 242 2  ft,

to find: 
dy

dt
 when x = 10 ft.

From (1), 2 2 0x
dx

dt
y

dy

dt
+ =

⇒ = − ⋅
dy

dt

x

y

dx

dt

⇒ ���

�� = − × = −

=

dx

dt x 10

10

24
4

5

3  ft/sec.

which ⇒  the top of the ladder is sliding down at the

rate of 
5

3
 ft/sec.

9. A kite is 100 ft high and a length of 260 ft of the
string is out. If the kite is moving horizontally at the

rate of 6
1

2
 m.p.h directly away from the person who

is flying it, how fast the string (or, cord) is being paid
out.
Solution: let k be kite which is flying in the horizontal
direction in the height of 100 ft.

M is the point where the man is standing and is
flying the kite. Let at time t,

MK = the length of the string (or, cord) which is
out = y (say)

MA = the horizontal distance of the kite from M at
time ‘t’ = x (say)

Now, from ∆ AKM  we have

y2 – 1002 = x2 …(1)
since, the height of the kite is same always = 100 ft

Now, differentiating (1), we get

O

B

C D

30°

A

y
x

O

B

A

y

x

26 feet

90°
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2 2y
dy

dt
x

dx

dt
⋅ = ⋅

⇒ ⋅ =y
dy

dt
x

dx

dt
...(2)

y x= ⇒ = − =260 260 100 240
2 2

Substituting these values of x and y in (2), we
have

260 240
13

2

dy

dt
= ×

⇒
dy

dt
 = 6 m.p.h = the required rate.

Second method:

x MA MK AK= = −
2 2

= − =260 100 2402 2� � � �

MN = Z

KN t= ⋅6
1

2
 (� velocity = 

distance

time
 i.e, v

S

t
= )

= =
13

2
t AO

MO MA AO t= + = +240
13

2

and Z MN MO ON t
2 2 2 2

2
2

240
13

2
100= = + = +�

�

� + � �

⇒ = +�
�


� ⋅ +2 2 240

13

2

13

2
0Z

dZ

dt
t

⇒ =
+�

�

�dZ

dt

t

Z

13 240
13
2

2

Initially, when t = 0, Z = OA = 260

Hence, 
dZ

dt
=

×
×

13 240

2 260

= 6 m. p. h
= the require rate

10. A kite is moving horizontally at a height of 151.5
meters. If the kite is moving horizontally directly away
from the boy who is flying it at the rate of 10 meter/
sec, how fast is the string being let out when the kite
is 250 meters from the boy who is flying the kite, the
height of the boy being 1.5 meters.
Solution: Let AB = x and

AC = y at time t.
AE = 1.5
DC = 151.5 m
BC = 150 m

Also 
dx

dt
 = 10 m/sec (given)

Then we find 
dy

dt
,  when y = 250 ft.

Clearly, y2 = x2 + 1502 ...(i)

⇒ = ⋅2 2y
dy

dt
x

dx

dt

⇒ = ⋅
dy

dt

x

y

dx

dt

When y = 250 ft, x = 200 ft, from (i)

∴ ���

�� = ×

=

dy

dt y 250

200

250
10  ft/sec

= 8 ft/sec.

M

K

A O

N

Z

= 100 feet
y = 260 feet

x
90° 90°

B

DE

C

A

150

1.5 m

Ground

y

x

90°

90°
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11. If the side of an equilateral triangle increases at
the rate of 3  ft/sec and its area at the rate of 12 sq.
ft/sec find the side of the triangle.

Solution: let x = each side of the equilateral ∆  at
time t and A = area of ∆ PQR , then

A x= ⋅3

4

2
...(1)

∴ = ⋅ ⋅ ⋅dA

dt
x

dx

dt

3

4
2 ...(2)

Given that 
dA

dt
= 12  and 

dx

dt
= 3  which when

substituted in (2), we have 12
3

4
2 3= × × ×x

which ⇒ =x 8  ft (Ans.)

12. A balloon rising from the ground at 140 ft/minute
is tracked by range finder at a point A located 500 ft
from the point of lift off. Find the rate at which the
angle at A and the range ‘r’ are changing when the
balloon is 500 ft above the ground.
Solution: let the range finder be at A.

AC = r, BC = y, ∠ =CAB θ  at time t.

Given that 
dy

dt
 = 140 ft/min

AB = 500 ft

Then we have to find (i) 
d

dt

θ
 (ii) 

dr

dt
 when y = 500 ft

Now, tanθ =
y

500

⇒ = ⋅sec
2 1

500
θ

θd

dt

dy

dt

⇒ = ×

+
�
��


��
×

d

dt y

dy

dt

θ 1

500

1

1
500

2

2� �

= ×

+
�
��


��
×

1

500

1

1
500

140
2

2

y

� �

⇒ ���

�� = × ×

=

d

dt y

θ

500

71

500

1

2
140

⇒ ���

�� =

=

d

dt y

θ

500

7

5

.
 = 0.14 radian/minute

Also, r2 = y2 + (500)2

⇒ ⋅ = ⋅2 2r
dr

dt
y

dy

dt

⇒ = ⋅
dr

dt

y

r

dy

dt
 ⇒
�
��

�� =

dr

dt y 500

= ×500

500 2
140  = 70 2.  ft/min.

12. Two bodies start from O, one traveling along OX
at the rate of 3 miles per hour and the other along OY
(which is perpendicular to OX) at the rate of 4 mile per
hour. Find the rate at which the distance between
them is increasing at time ‘t’.
Solution: let r be the distance between two bodies
after t hours.

P

Q L R
60

xy

90°

A B

C

r
y

500 feet

θ 90°
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OA = 3t � velocity
distance

time
= = =�

�

�i e v

S

t

OA

t
. .

OB = 4t � velocity
distance

time
= = =�

�

�i e v

S

t

OB

t
. .

Now, from the right angled triangle, we have

r2 = (3t)2 + (4t)2

⇒ = +r t t
2 2 2

9 16

⇒ =r t5

⇒ =
dr

dt
 5 miles/hour which is the required rate at

which the distance AB increasing.
13. Two cars started from a place, one going due
north and the other due west with equal uniform speed
v, find the rate at which they were being separated
from each other.
Solution: let P and Q denote the position (place) of
the cars after time ‘t’

OP = OQ = x (�  speed is same)
PQ = y

Now from the right angled triangle, we have

y2 = x2 + x2

⇒ =y x
2 2

2      ⇒ =y x 2

⇒ = = =�
�


�

dy

dt

dx

dt
v

dx

dt
v2 2 �

⇒ =dy

dt
v2

Second method:

OP vt v
S

t

OP

t
= = =�
�


��

PQ vt v
S

t

PQ

t
= = =�
�


��

y2 = v2 t2 + v2 t2

⇒ =y v t
2 2 2

2

⇒ = ⋅y v t2 � �

∴ =dy

dt
v2

14. Obtain the rate at which the distance between
two cyclists is widening out after an hour given that
they start simultaneously from the junction of two
roads inclined at 60º, one in each road and that they
cycle with the same speed v miles per hour.
Solution: Let the distance travelled after t-second
from the junction = x now, according to the question,

x vt v
x

t
= =�
��

�
	


�    …(1)

It is clear from the data that joining the junction
and the position of two cyclist, we get an equilateral
triangle ⇒  the distance between two cyclist = x

Now, differentiating (1) w.r.t, we have
dx

dt
 = v which is the rate at which distance between

two cyclists is winding.

O

B

A

4 t

3 t

r

90

W

N

P

Ox

x
y

Q
90°

W

N

P

O

y

Q vt

vt
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O

B

D

C

b

s

A
s

a

(  – )a s

(  – )b s

P1

P2

r

90

15. Two cars start with the same velocity v miles/
hour from distances a miles and b miles from the
junction of two roads inclined at 90º and travel towards
the junction. Prove that after 2 hours, they are nearing
each other at the rate of

4

4 8

2

2 2 2

v a b v

a b v a b v

− +

+ − + +

� �
� �

 miles per hour.

Solution: let us suppose that A and B be the initial
positions of two cars and P1 and P2 be their positions
at time t.

Given: OA = a, OB = b, ∠ =AOB 90º  velocities

of two cars are same ⇒ =v
S

t
 which ⇒ =vt S

for both cars    …(1)
CD = r, AC = s, BD = s

∴ = −OP a s1

OP2 = b – s

To prove: 
dr

dt

v a b v

a b v a b vt

�
��

�� =

− +

+ − + +=2

2

2 2 2

4

4 8

� �
� �

Proof: In the right angled ∆ P P1 20 ,

r a s b s= − + −� � � �2 2

⇒ =
− + −

×dr

dt a s b s

1

2
2 2� � � �

 2 2a s b s
ds

dt
− + − × −���


��� � � �

=
− +

+ − + +

2

2 2
2 2 2

s a b v

a b a b s s

� �
� �

⇒ ���

�� =

× − + ⋅

+ − + × + ×=

dr

dt

v a b v

a b a b v vt 2 2 2 2

2 2

2 2 2 2

� �
� � � �

� S vt vt t= = =2 2 2 1from � �� �

=
− +

+ − + +

4

4 82 2 2

v a b

a b a b v v

� �
� �

ν
 miles/hour

Note: They are nearing each other at the rate of …
means the rate of distance between them is….

Problems based on velocity and acceleration as a rate
measure
To investigate generally the motion (velocity,
acceleration or the position of a particle at any
time ‘t’)of a particle (or, body) moving in a straight
line according to a law of motion give by y = f (t)

Where y = distance or velocity of the moving body
represented by S or v at any time ‘t’.

The procedure to be followed may be summarised
as follows.

1. Find the expression for v
dy

dt
=  and a

dv

dt
=  by

differentiation.
2. We perform the operations on the expression

obtained for v
dy

dt
=  and a

dv

dt
=  to arrive at out

target accordingly as the question says.

Remember:
1. If we are required to find out the time when the
velocity vanishes (or becomes, zero) or we are required

B

O A
60
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to find out the acceleration at a point at which the
velocity of the body becomes zero (or vanish) and
y = f (t), a given law of motion, then we put v = 0 in the

expression for 
dy

dt
.

2. Initial given conditions determine the values of
the constants appearing in the law of motion given
by y = f (t).
3. If we are given a law of motion y = f (t) as well as
initial values of velocity k1 and acceleration k2 and
we have to find out the velocity and acceleration at

time t, then we put t = 0, 
dv

dt
k

dS

dt
= =2 0  to

determine the constants appearing the give law of
motion y = f (t).
4. Initial values of velocity and acceleration means
the values of velocity and acceleration when t = 0 or
alternatively, the initial position, initial velocity and
initial acceleration correspond to time t = 0.
5. Uniform velocity (acceleration) means that the
velocity (acceleration) is constant.

6.
ds

dt

dt

ds
× = 1 which ⇒ =ds

dt dt ds

1

7.
dv

ds

ds

dt
⋅  = a = acceleration.

8. a
d s

dt

d

dt

ds

dt

dv

ds

ds

dt
v

dv

ds
= = �

�

� = ⋅ = ⋅

2

2

9.
ds

dt t c

�
�

� =

 means the value of velocity at time t = c

or after time t = c or at the end of time t = c or when
time is t = c.

10.
d s

dt
t c

2�
��


�� =

 means the value of acceleration when

the time is t = c or after time t = c or at the end of time
t = c or at time t = c.
11. In the problems considered if the path s is
expressed in meters (m), time t in seconds (s), velocity
is v in metres per second (m/s) and acceleration a in
metres per second per second (m/s2) which is read
“meter per second squared”.

12. If a point move in a straight line, the velocity v at
a given instant of time t = t0 (called the instantaneous

velocity) is defined as the derivative 
ds

dt
 of the path

s with respect to time t evaluated for t = t0.
13. The acceleration a at a given instant of time t = t0

is the derivative 
dv

dt
 of the velocity v with respect to

time t calculated for t = t0.
14. The particle or body comes to rest at a point
where v = 0.

15. It should be noted that 
ds

dt
 is positive when s is

increasing and 
ds

dt
 is negative when s is decreasing.

16. It should be noted that 
dv

dt
 is positive when the

velocity is increasing and negative the velocity is
decreasing.

Worked out problems

Based on velocity and acceleration as a rate measurer
1. A stone projected vertically upwards with initial
velocity 112 ft/sec moves according to the law s =
112 t – 16 t2, where s is the distance from the starting
point. Find the velocity y and acceleration when t = 3
and when t = 4.
Solution: s = (112 t – 16 t2) ft

⇒ = −ds

dt
t112 32� �  ft/sec …(1)

⇒ = −d s

dt

2

2
32  ft/sec2 …(2)

Now, 
ds

dt t

�
��
�
	
 =3

 = 112 – 96 = 16

and 
d s

dt t

t

2

2

3

332 32
�

�
�
�

�

	





= − = −
=

=

Again 
ds

dt t

�
��
�
	
 =4

 = [112 – 32 × 4] = 112 – 128 = –16
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and 
d s

dt t

t

2

2

4

432 32
�

�
�
�

�

	





= − = −
=

=

2. The position of a particle in motion is given by s =
180 t – 10 t2. What is its velocity at the end of t
second? At what instant would its velocity be zero.
Solution: s = 180 t – 10 t2

Velocity at the end of t second, 
ds

dt
 = 180 – 20t

∴ = ⇒ − =ds

dt
t0 180 2 0

⇒ = =t
180

20
9  sec

∴ The volocity is zero when t = 9 sec.

3. A body moves in a straight line according to the
law of motion s = t3 – 4t2 – 3t. Find its acceleration at
the instant (time) when the velocity is zero.
Solution: s = t3 – 4t2 –3t

⇒ ds

dt
 = 3t2 – 8t – 3 …(1)

⇒ = −
d s

dt
t

2

6 8 …(2)

Now, we are required to find out the value of t.

when 
ds

dt
v= = 0 . Now v = 0

⇒ − − =3 8 3 0
2

t t

⇒ − + − =3 9 3 02t t t
⇒ + − =3 1 3 0t t� �� �
⇒ =t 3secs

∴ The acceleration when the velocity is zero

=
�
��


�� =

d s

dt
t

2

2
3

= 6.3 – 8
= 10 units.

Note: To find the acceleration when velocity is zero
⇔ .

(i) First find t by putting 
ds

dt
= 0  and solve the

equation for t.

(ii) Put the value of t in the expression in t for 
d s

dt

2

2

4. A point moves in a plane according to the law

x = t2 + 2t and y = 2t3 – 6t. Find 
dy

dx
 when t = 0, t = 2

and t = 5.

Solution:
dx

dt
t= +2 2 …(1)

dy

dt
t= −6 6

2
…(2)

Now, 
dy

dx

dy dt

dx dt

t

t
= =

−
+

6 6

2 2

2

=
−

+
=

−

+
= −

6 1

2 1

3 1

1
3 1

2 2t

t

t

t
t

� �
� �

� �
� � � �

∴ ���

�� = −

=

dy

dx t 0

3 0 1� �

= – 3 units

dy

dx t

�
��

�� = −

=2

3 2 1� �

= 3 units

dy

dx t

�
��

�� = −

=5

3 5 1� �

= 12 units.
5. Find the velocity and acceleration of a moving
point after 10 sec if its position is given by s = 5t2 + 5t
– 3 if s is measured in centimeters.
Solution: s = 5t2 + 5t –3 cm

⇒ = +ds

dt
t10 5� �  cm/sec …(1)

⇒ =
d s

dt

2

2
10  cm/sec2 …(2)

Now, ds

dt
t

t
t

�
��
�
	
 = + =

=
=

10
10

10 5 105  cm/sec
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d s

dt t

t

2

2

10

1010 10
�

�
�
�

�

	





= =
=

=  cm/sec2.

Remember: To find the velocity and acceleration at
time t = c or after time t =c or at the end of time t = c.
We find

ds

dt t c

�
��
�
	
 =

 and 
d s

dt t c

2

2

�

�
�
�

�

	





=
.

6. If s represents the distance which a body moves in
time ‘t’, determine its acceleration if s = 250 – 40t –
16t2. Determine the acceleration and time when the
velocity vanishes and the value of s then.
Solution: s = 250 – 40t – 16t2

⇒
ds

dt
 = –40 – 32t units …(1)

⇒ = −
d s

dt

2

2
32  units …(2)

Now, we are required to find out the time and
acceleration when velocity = 0

ds

dt
�
��
�
	
 = 0

⇒ − − =40 32 0t

⇒ = −t
5

4
 sec ...(3)

Now, 
d s

dt
t

t

2

5
4

5

4
32 32

�

�
�
�

�

	





= − = −
=−

=−  units

Lastly, the value of S at t = −
5

4
 sec

= = − × −���

�� − ×=−s

t
5

4
250 40

5

4
16

25

16

= 250 + 50 – 25 = 275 units

Note: Here negative time −
5

4
 secs points that mea-

surement of time is started from the position where

s = 250 and the motion started − 5

4
 secs earlier.

7. An aeroplane moves a distance of (3t2 + 2t) ft in
t-seconds. Find its velocity when it has flown for
5 minutes.
Solution: let the distance moved by the aeroplane in
t-seconds be s.

∴ = +s t t3 22

⇒ = × × + = +
ds

dt
t t3 2 2 6 2

∴  velocity of the aeroplane when it has flown for

5 minutes i.e. 300 seconds = the value of 
ds

dt
 when

t = 300.

= ���
�
	
 = +

=
=

ds

dt
t

t
t

300
300

6 2  = 1802 ft/sec.

8. A point moves in accordance with the law v = a +
bt + ct2 and the initial values of the velocity and
acceleration are 3 ft/sec and 2 ft/sec2 respectively
and at the end of the first second the acceleration is
12 ft/sec2.
Find: (i) the velocity at the end of 3 seconds:
(ii) the acceleration at the end of 4 seconds.
Solution: we are given v = a + bt + ct2 …(1)

Differentiating both sides of (1) w.r.t t we have the

acceleration =
dv

dt
 = b + 2ct    …(2)

Now we will find the values of constants a, b and
c from the given initial conditions of the problem.

Initial velocity = 3 ft/sec2 which ⇒ ==v t 0 3  …(3)

Initial acceleration = 2 ft/sec2 which ⇒ �
��
�
	


=
=

dv

dt t 0

2

…(4)

(3) ⇒ = + + == =
v a bt ctt

t
0

2

0
3

⇒ =a 3

s = 0 s = 250 s = 275

(  = 0)v

t = 0 t = –5
 4
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(4) ⇒ ���
�
	
 = +

=
=

dv

dt
b ct

t
t

0
0

2

= b = 2
Again, acceleration = 12 ft/sec2 at the end of first

second
⇒  acceleration = 12 ft/sec2 when t = 1 which

⇒ �
��
�
	


=
=

dv

dt t 1

12    …(5)

(5) ⇒ ���
�
	
 = + = + =

=
=

dv

dt
b ct b c

t
t

1
1

2 2 12 …(6)

Now putting the value of b in (6), we have
2 + 2c = 12 which ⇒ = − = ⇒ =2 12 2 10 5c c

∴ Required velocity when t = 3 =[v]t = 3

= + +
=
=
=
=

a bt ct
t
c
b
a

2

3
5
2
3

= [3 + 2t + 5t2]t = 3

= [3 + 2 × 3 + 5 × 9]

= [3 + 6 + 45] = 54 ft/sec.

Required acceleration when t = 4 = 
dv

dt t

�
��
�
	
 =4

= + =
=
=

b ct t
c
b

2 4
5
2

=2 + 2 × 5 × 4

= 42 ft/sec2.

Conditional Problems

When a law of motion of a particle (or, body) is given
by a formula y = f (x) (or the law of motion stated in
words be written in the symbolic form) and we have
to show that distance, velocity or acceleration of the
particle (or, body) obeys a differential equation of
motion we adopt the following working rule.

1. Find 
dy

dx
 and 

d y

dx

2

2
 by differentiating the given

formula given in words translated into symbolic from
or the given law y = f (x) with respect to the given
independent variable.

2. After obtaining 
dy

dx
 and 

d y

dx

2

2
, we arrive at our

target (required law or formula) using various
mathematical manipulations (like simplification,
cancellation or substitution etc) performed upon the

expression obtained for 
dy

dx
 and 

d y

dx

2

2
.

Examples worked out
1. If a body moves according to the law s = a + bt +
ct2, show that its acceleration is constant.
2. If s2 = at2 + 2bt + c, show that acceleration varies

as 
1
3

s
.

Solution: 1. s = a + bt + ct2

⇒ = +ds

dt
b ct2

⇒ �
�

� =

d

dt

ds

dt
c2

⇒ d s

dt

2

2  = acceleration = 2c = k (say) = constant

(proved).

2. Given that s2 = at2 + 2bt + c

⇒ = +2 2s
ds

dt
at b

⇒ = +s
ds

dt
at b …(1)

⇒ ⋅ + ⋅ =
ds

dt

ds

dt
s

d s

dt
a

2

2

(differentiating (1) w.r.t ‘t’)

⇒ ��

� + =

ds

dt
s

d s

dt
a

2 2

2

⇒ = − ��

� = −

+
s

d s

dt
a

ds

dt
a

at b

s

2

2

2 2

2

� �

�

ds

dt

at b

s
=

+�
��


��from 1� �
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⇒ =
− +

s
d s

dt

as at b

s

2

2

2 2

2

� �

=
+ + − + +a at bt c a t abt b

s

2 2 2 2

2

2 2� � � �

� s at bt c
2 2

2= + +� �

=
−ac b

s

2

2

⇒ =
−d s

dt

ac b

s

2

2

2

3

⇒ =
d s

dt

k

x

2

2 3  (where k = ac – b2 (say))

⇒ ∞
d s

dt x

2

2 2

1
 (proved).

3. If the law of motion of a point moving in a straight

line be ks
v

= log
1

, prove that acceleration f is given

by f = –kv2; s and v represent distance and velocity
respectively.

Solution: ks
v

= log
1

 = log 1 – log v = – log v (�  log

1 = 0)

⇒ = −
v e

ks …(1)

⇒ = − = −
−dv

ds
ke kv

ks
 (from (1) …(2)

⇒ = −v
dv

ds
kv

2
 (multiplying both sides of (2)

by v)

⇒ = − =�
��


��f kv f

v dv

ds

2
�

4. If the velocity of a point moving in a straight line is
given by v2 = ses, prove that the acceleration is

1

2
1

1 2
+��

� ⋅s

v , where x is a constant.

Solution: v2 = ses …(1)

⇒ = ⋅ = ⋅ + ⋅ = +
d v

dt

d

ds
s e s

d

ds
e e

ds

ds
se e

s s s s s

2� �
� �

⇒ = + ⋅ =
�
��


��

2 1 1
2 2

v
dv

ds
s

v

s
e

v

s

s� � � �� from

⇒ = +��

� ⋅v

dv

ds s
v

1

2
1

1 2

5. If the law of motion is t = as2 + 2bs + c, show that
the acceleration varies as v3 and has a sign opposite
to that of a.
Solution: t = as2 + 2bs …(1)

⇒ = +
dt

ds
as ab2 2

⇒ = =
+

= + −v
ds

dt as b
as b

1

2 2

1

2
1� � …(2)

⇒ = �
�

� = − ⋅ + ⋅ ��


�

−dv

dt

d

dt

ds

dt
as b a

ds

dt

1

2
1 2� � � �

⇒ = = − + ⋅ ⋅ +− −dv

dt

d s

dt
as b a as b

2

2
2 11

2

1

2
� � � �

�

ds

dt
as b= +�

�

�

−1

2
21� � � �from

= − + = − ⋅ ⋅ +− − ×1

4

1

4
3 1 3a as b a as b� � � �� �� � � � � �

= − ⋅1

4
2 3a v� �� �

= −
1

4
2 3a v� �  (from (2))

= − ⋅ ⋅1

4
8

3
a v

= –2av3

= –kv3 (where k = 2a)

which ⇒
dv

dt
 varies as v3

Also, it is clear that if a is +ve, the acc. is –ve and
if a is –ve, the ecc. is +ve, i.e., the acc. is opposite to
the sign of a. (proved).
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6. If the equation of a rectilinear motion be s t= +1

where s is the displacement and t the time, show that
the acceleration is negative and proportional to the
cube of velocity.

Solution: s t= +1

⇒ = = + −v
ds

dt
t

1

2
1

1
2� � …(1)

⇒ = = �
�

� =
�
�

� −��


� ⋅ + −a

dv

dt

d

dt

ds

dt
t

1

2

1

2
1

3
2� �

= − 1

4
2 3v� �  [from (1)

= –2v3 which is negative

= –kv3 (where k = 2)
which ⇒  acceleration = a varies as cube of velocity
and is negative.
7. Prove that if a particle moves so that the space
described is proportional to the square of the time of
description, the velocity will be proportional to the
time and the rate of increase of the velocity will be
constant.
Solution: let s = the space described by the particle
in time ‘t’.

s t∝ 2

⇒ =s kt
2  where k = a constant

⇒ =ds

dt
kt2

⇒ =v kt2  (
ds

dt
v= =  velocity of the particle)

…(1)
⇒ ∝v t

Again, 
dv

dt
k= 2  (differentiating (1) w.r.t ‘t’)

⇒ dv

dt
 a constant

⇒  rate of increase in velocity = constant.
8. Prove that if a particle moves so that the space
described is proportional to the cube of the time of
description, the velocity will be proportional to the
square of the time and acceleration will be
proportional to the time.

Solution: According the given law

s t∝ 3

⇒ =s kt 3  (where k = constant) …(1)

⇒ =ds

dt
kt3 2

…(2)

⇒ ∝
ds

dt
t2

and 
d s

dt
kt

d s

dt
t

2

2

2

2
6= ⇒ ∝ .

9. A moving body describes a distance x which is
proportional to sin at in time ‘t’. prove that the
acceleration will be proportional to the distance
travelled by the body.
Solution: let x = distance described in time ‘t’

Given that x ∝  sin at

⇒ =x k atsin …( 1)

⇒ =dx

dt
ak atcos

⇒ = − = −
d x

dt
a k at a x

2

2

2 2
sin  (from (1))

⇒ ∝
d x

dt
x

2

 (proved).

N.B.: The motion is simple harmonic.

Type 1: Problems based on area, perimeter and
volume

Exercises 17.1

(A) Problems based on triangle
1. If the side of an equilateral triangle increases
uniformly at the rate of 3 ft/sec, at what rate is the area
increasing when the side is 10 ft?

(Ans. 15 3  sq. ft/sec)

2. If the side of an equilateral triangle increases at

the rate of 3  ft per second and its area at the rate of
12 sq. ft per second, find the side of the triangle.

(Ans. x = side of the ∆=8  ft)
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3. The area of an equilateral triangle is expanding.
How many time, as fast as each of its sides is the area
increasing at any instant? What is the rate of increase
of the area when each of the equal sides is 15 inches
long and increasing at the rate of 10 inches a second.

(Ans. 
3

2
 times as fast as each of its sides;

75 3  square inches per sec)

4. A triangle whose sides are varying with time is
always equilateral. The rates at which the area and
the height increase simultaneously at an instant at an
instant are 6 m2/sec and 3 m/sec respectively. Find
the rate of increase of the side at that instant.

(Ans. 2 m/sec)

(B) Problems based on square and rectangle
1. The side of a square sheet of metal is increasing at
3 cm/minute. At what rate is the area increasing when
the side is 10 cm long.

(Ans. 60 cm per minute)
2. The sides of a square plate of metal are expanding
uniformly at the rate of 0.3 cm per second. Find the
rate at which its area is (i) 30 cm (ii) 50 cm.

(Ans. (i) 18 sq cm/sec (ii) 30 sq cm/sec)
3. A square plate of metal is expanding and each of
its sides is increasing at a uniform rate of 2 inches per
minute. At what rate is the area of the plate increasing
when the side is 20 inches long?

(Ans. 60 sq. cm per second)
4. A rectangle is of given perimeter p. Find the rate of
change of the area at the instant when the length
equals the breadth.

(Ans. 0 = zero)
5. The breadth of a rectangle is increasing at the rate
of 2 cm per second and its length is always 3 times its
breadth. When the breadth is 5 cm, at what rate is the
area of the rectangle increasing.

(Ans. 60 sq. cm per second)

(C) Problems based on circle
1. A balloon which always remains spherical has a

variable diameter 
3

2
 (2x + 3). Determine the rate of

change of its volume with respect to x.

2. The radius of a circle is increasing uniform by at
the rate of 3 cm/sec. At what rate is the area increasing
when the radius is 10 cm.

(Ans. 60π  cm/sec2)

3. If the radius of a circle increase at a uniform rate of
6 cm per second, find the rate of increase of its area
when the radius is 50 cm.

(Ans. 600π  cm2/sec)

4. If the radius of a circle is increasing at the constant
rate of 2 ft per second, find the rate of increase of its
area when the radius is 20 ft.

(Ans. 80π  ft2/sec)

5. If the circular waves in a tank expand so that the
circumference increases at the rate of a ft/sec, show
that the radius of the circle is increasing at the rate of

a

2π
 ft/sec.

6. The area of a circle is increasing at the uniform rate
of 5 sq. cm per minute. Find the rate in cm per minute
at which the radius is increasing when the
circumference of the circle is 40 cm.

(Ans. 
1

8
 cm/minute)

7. A spherical balloon is inflated and the radius is

increasing at 
1

3
 inches/minute. At what rate would

the volume be increasing at the instant when its radius
is 2 inches.

(Ans. 
16

3

π
 inch3/minute)

8. A spherical balloon is pumped at the rate of 10
cubic inches per minute. Find the rate of increase of
its radius when its radius is 15 inches.

(Ans. 
1

90π  inch/minute)

9. If the area of a circle increase at a uniform rate,
show that rate of increase of the perimeter varies
inversely as the radius.
10. A spherical ball of salt is dissolving in water in
such a manner that the rate of decrease in volume is
proportional to the surface. Prove that the radius is
decreasing at a constant rate.
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11. The volume of a spherical soap bubble is denoted
by v, its surface by S, the radius being r. Prove that

(i)
dv

dt
r

dr

dt
= ⋅4

2
π (ii)

ds

dt r

dv

dt
= ⋅

2
.

12. A sphere of metal is expanding under the action
of heat. Compare the rate of increase of its volume
with that of its radius. At what rate is the volume
increasing when the radius is 2 inches and increasing

at the rate of 
1

3
 inches per minute.

(Ans. 8 π  cubic inch/sec)

(D) Problems based on cube
1. An edge of a variable cube is increasing at the rat
of 3 cm/sec. how fast is the volume of the cube
increasing when the edge is 10 cm long?

(Ans. 900 cm3/sec)
2. When a cubical block of metal is heated, each edge
increases .1 percent per degree of rise in temperature.
Show that the surface increases .2 percent and the
volume .3 percent per degree.
3. A metal cube is heated so that its edge increases
at the rate of 2 cm/minute. At what rate the volume of
the cube increases when the edge is 10 cm long?

(Ans. 2400 cubic cm/minute)
4. The volume of a cube increases at a constant rate.
Prove that the increase in its surface varies inversely
as the length of the side.
5. The temperature of a metal cube is being raised
stead by so that each edge expands at the rate of .01
inch per hour. At what rate is the volume increasing
when the edge is 2 inches.

(Ans. 12 cu. in per hour)

(E) Problems based on cylinder
1. A cylindrical vessel is held with its axis vertical.
Water is poured into it at the rate of one point per
second. Given that one point is equal to 34.66 cubic
inches, find the rate at which the surface of water is
rising in the vessel when the depth is x inches.

(Ans. 
34 66.

A
 inch per second where A is

the area of cross-section)
2. Water is running out of cistern in the form of an
inverted right circular cone of semi vertical angle 45º
with its axis vertical. Find the rate at which the water

is flowing out at the instant when the depth of water
is 2 ft; given that at that instant, the level of the water
is diminishing at the rate of 3 inches per minute.

(Ans. π  ft3 /minute)
3. The volume of a right circular cone is constant. If
the height decreases at a constant rate of 8 cm/minure,
how fast is the radius of the base changing at the
instance when the height is 8 cm and the radius of the
base is 4 cm.

(Ans. 2 cm/min)

Type 2: Problems based on right angled triangle

Exercises 17.2

(A) Problems based on the height of a man
1. A man of height 6 ft walks directly away from a
lamp post of height 15 ft at the rate of 3 miles per hour.
At what rate does his shadow lengthen?

(Ans. 2 miles/hour)
2. A man 1.6 m high walks at the rate of 50 meters per
minute away from a lamp which is 4m above the
ground. How fast is the man’s shadow lenghtning?

3. A man of height 5
1

2
 ft approaches directly towards

a lamp-post along a horizontal road. If the light is 8 ft
above the level of the road, show that the length of

this shadow decreases at a rate of 
11

25
 times the rate

at which be approaches the lamp-post.
4. A man 6ft tall walking away along a straight line
from the foot of the light post, 30 ft high at the rate of
4 ft per second; find how fast be is approaching the
wall.

(Ans. 
5

4
 miles/hour)

5. A man of height 5
1

2
 ft walks directly away from a

lamp-post of height 120’ at the rate of 4
1

2
 miles per

hour; find how fast is his shadow lenthening.

(Ans. 
96

58
 miles/hour)
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6. A man 160 cm tall walks from a lamp-post 4m high
at the rate of 3 km/hr. Find the rate at which the shadow
of his head moving on the pavement and the rate at
the which his shadow is lengthening.

(Ans. (i) 5 km/hr (ii) 2 km/hr)
7. A man 6 ft tall walking away along a straight line
from the foot of light-post, 30 ft high at the rate of 5
miles per hour. How fast does the end of this shadow
move?

(Ans. 
5

4
 miles/hour)

8. A man 6 ft tall walks at the rate of 5 ft/sec towards
street light 16 ft above the ground. At what rate is the
tip of his shadow moving? At what rate is the length
of his shadow changing when ne is 10 ft from the foot
of the light?

(Ans. 8 ft/sec and decreasing at 3 ft/sec)

(B) Ladder problems
1. A ladder 13 ft long slides down from a vertical wall
remaining in a vertical plane all the time. What is the
velocity of the upper end when the lower end is at a
distance of 5 ft from the wall and has a velocity of 2 ft
per second?

(Ans. 5 ft/sec)
2. A ladder is inclined to a wall making an angle of
30º with it. A man is ascending the ladder at the rate
of 3 ft/sec. how fast is he approaching the wall.

(Ans. 
2

3
 ft/sec)

3. A ladder is inclined to a wall making an angle of
45º with it. If a man is ascending the ladder at the rate
of 4 ft/sec; find how fast he is approaching the wall.

(Ans. 2 2  ft/sec)

4. A ladder 26 ft in length is resting on a horizontal
plane inclined against a vertical wall. It slips away
from the wall at the rate of 5 ft/sec. Find the velocity
of the top of the ladder down the wall when it is at a
height of 24 ft.

(Ans. 
25

12
 ft/sec)

5. A ladder 5 meter long standing on a horizontal
floor leans against a vertical wall. If the top of the
ladder slides downwards at the rate of 10 cm/sec.

Find the rate at which the angle between the floor and
the ladder is decreasing when the lower end of the
ladder is 2 meter from the wall.

(Ans. 
1

20
 radius/sec)

6. A ladder 25 ft long slides down from a vertical wall
remaining in a vertical plane all the time. What is the
velocity of the upper end when the lower end is at a
distance of 15 ft from the wall and has a velocity of 3
ft/sec.

(Ans. 
9

4
 ft/sec)

(C) Kite problems
1. A kite is 45 ft high and there is 117 ft cord out. If
the kite is moving horizontally at the rate of 13 m.p.h
directly away form the position who is flying it, find
how fast the cord is being paid out.

(Ans. 19 m.p.h)
2. A kite is 100 ft high and there is 260 ft of cord out.

if the kite is moving horizontally at the rate of 3
1

4
miles per hour directly away from the person who is
flying it; how fast is the cord being paid out.

(Ans. 3 miles/hour)
3. A kite is moving horizontally at a height of 151.5
meters. If the speed of the kite is 10 meters/sec, how
fast is the string being paid out when the kite is 250
meters from the boy who is flying the kite, the height
of the boy being 1.5 meters.

(Ans. 8 m/sec)
4. A girl flies a kite at a height of 300 ft; the wind
carrying the kite horizontally away from her at a rate
of 25 ft/sec. How fast must she let out the string when
the kite is 500 ft away from her.

(Ans. 20 ft/sec)

(D) Rod Problems
1. A rod 13 ft long moves with its ends A, B on two
perpendicular lines OX and OY respectively. If the

end A is 12 ft from O and is slipping away at 2
1

2
 ft/

sec; find how fast end B is moving?
(Ans. –6 ft/sec)
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2. Two rods AB and AC are inclined to each other at
an angle of 120º. A car starts from B towards A with a
velocity of 40 miles an hour and an other can starts
from C towards the same place with an equal velocity
at the same. If AB = AC, find the rate at which each is
approaching the other.

(Ans. 40 3 m/h)

3. Two straight rods OA and OB cross each other at
O at right angles; If OA = 10 miles and OB = 8 miles, a
man starts at the rate of 3 miles per hour from O to B.
Find the rate at which his distance from A is altering.

(Ans. 
3

10
2

x

x x+
)

4. A rod AB of length 10 ft slides with ends A and B
on two perpendicular OX and OY respectively. If the
end A on OX moves with a constant velocity 2 ft/
minute, find the velocity of its med-point at the time
the rod makes an angle of 30º with OX.

(Ans. 2 ft/minute)

Problems based on velocity and acceleration

Exercise 17.2.1

1. A point moves in a straight line according to the
law:

S = 2t3 + t2 – 4
Find its velocity and acceleration at the instant of

time t = 4.
(Ans. (i) v (4) 104 m/s (ii) a (4) = 50 m/s2)

2. A point moves in a straight line as given by the
equation:

S = 6t – t2

At what instant of time will the velocity of the
point be equal to zero?

(Ans. t = 3 second)
3. Find the velocity and acceleration at the indicated
instants of time for a point moving in a straight line if
its motion is described by the following equations.
(i) S = t3 + 5t2 + 4, t = 2

(ii) S t t= =, 1
(iii) S = t2 + 11t + 30, t = 3

(Ans. (i) 32 m/s; 22 m/s2 (ii) 0.5 m/s; –0.25 m/s2

(iii) 17 m/s; 2 m/s2)

4. At time t, the distance x of a particle moving in a
straight line is given by x = 4t2 + 2t. Find the

velocity and acceleration when t =
1

2
.

(Ans. 6, 8)
5. The distance S, at the time t, of a particle moving in
a straight line is given by the equation S = t4 – 18t2.
Find its speed at t = 10 seconds.

(Ans. 340 units/sec)
6. A particle is moving in a straight line in such a way
that its distance in cm from a fixed point on the line
after t seconds is given by 4t3 + 2t + 5. Find the
distance, velocity and acceleration at the end of 3
seconds.

(Ans. (i) 119 cm (ii) 100 cm/sec
(iii) 72 cm/sec2)

7. The distance S meters moved by a particle
travelling in a straight line in t seconds is given by S
= 45t + 11t2 – t3. Find the time when the particle comes
to rest.

[Hint: solve 
ds

dt
 = 0]

(Ans. 9 seconds)
8. A particle is moving on a line where its position S
in meters is a function of time t in seconds given by S
= t3 + at2 + bt + c, where a, b, c are constants. It is
known that t = 1 second, the position of the particle is
given by S = 7 meters, velocity is 7 m/sec and the
acceleration is 12 m/sec2. Find the values of a, b and
c.

(Ans. a = 3, b = –2, c = 5)
9. Find the acceleration of a moving point at the
indicated instants of time if the velocity of the point
moving in a straight line is given by the following
equation:
(i) v = t2 + t – 1, t = 3
(ii) v = t2 + 5t + 1, t = 3

(Ans. (i) 7 m/s2 (ii) 11 m/s2)
10. A point moves in a straight line according to the
law S = t2 – 8t + 4. At what instant of time will the
velocity of the point turn out to be equal to zero?

(Ans. t = 4s)
11. A point moves in a straight line according to the
law:

S = sin2 t
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Find the instant of time at which its acceleration is
equal to 1.

(Ans. t k k z= ± + ∈
π

π
6

, )

12. A point moves in a straight line according to the
law:

S = sin2 t
Find the instant t at which its acceleration is equal

to zero.

(Ans. t
k

k z= + ∈
π π
4 2

, )

13. If S t t= −1

3
16

3
, find the acceleration at the

time when the velocity vanishes.
(Ans. 8 units/sec2)

Conditional problems

Exercise 17.2.2

1. If a particle vibrates according to the law:
y = a sin (Pt – e), show that the velocity and

acceleration at any instant are aP cos (Pt – e) and –
P2 y respectively.
2. The motion of a particle moving in a straight line is
given by x = 3 cos 2t with usual symbols. Show that
its acceleration is proportional to the distance
travelled by the particle and determine the distance x
when the speed is zero.
3. If a particle moves so that the space described
varies as the square of the time of description, prove
that the velocity varies as the time and the acceleration
is constant.
4. If the law of motion is t = s2 + s – 1, show that
acceleration varies as v3.
5. If the law of motion is t = as2 + bs + c, show that

the rate of change of velocity is proportional to the
cube of the velocity and has a sign opposite to that
of a.
6. If t = 2s2 + 3s + 1, show that acceleration is
proportional to the cube of the velocity.

More problems on physical application of derivatives

Exercise 17.2.3

1. The law of change of temperature T of a body with
time is given by T = 0.2t3. At what rate does this body
get warm at the instant of time t = 10?
2. A body of mass 10 kg moves in a straight line
according to the law:

S = 3t2 + t + 4

Find the kinetic energy of the body 
mv

2

2

�
��


��  four

seconds after it started.

[Hint: (i) v
ds

dt
t

t
t4 6 1 25

4
4� � � �= ���

�
	
 = + =

=
=  m/sec

(ii) Determine the kinetic energy of the body at t = 4

which is 
mv

J
2 2

2
10

25

2
3125= × = � � ]

3. The strength of current I changes with time ‘t’
according to the law:

I = 0.4t2, (I is expressed in amperes, t in seconds)
Find the rate of change in strength of current after

expiry of the 8th second.

[Hint: 
dI

dt
t

t
t

�
�

� = = =

=
=

8
80 8 0 8 8 6 4. . . .� �  A/m]

4. The temperature T of a body changes with time t
obeying the law:

T = 0.5t2 – 2t
At what rate does this body get warm at the instant

of time t = 5?
(Ans. 3 deg/s)

5. A body of mass 100 kg moves in a straight line
according to the law:

S = 5t2 –2
Find the kinetic energy of the body in two seconds

after the beginning of motion.
(Ans. 20,000 J)

6. The change in the strength of current I with time t
is given by the equation I = 2t2 – 5t (I is amperes, t in
seconds). Find the rate of change in the strength of
current after the expiry of 10th second.

(Ans. 25 A/S)
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18

Approximations

Let y = f (x)

(A) We should recall that 
dy

dx

y

xx
=

→
lim
∆

∆
∆0

…(1)

when ∆ x  is very small , we write,

dy

dx

y

x
=
∆
∆  (nearly) …(2)

∴ = ⋅∆ ∆y
dy

dx
x  (when ∆ x  is small) …(3)

(B) Again we should recall 
dy

dx

y

xx
=

→
lim
∆

∆
∆0

…(1)

when ∆ x  is not sufficiently small, then 
∆
∆

y

x
 will in

general differ from ′f x� � . If ∈ is the difference

between
∆
∆

y

x
 and 

dy

dx
, we have

∆
∆

y

x

dy

dx
− = ∈  which implies

∆
∆

y

x

dy

dx
− + ∈

⇒ = ′ + ∈
∆
∆

y

x
f x� �

(where ∈→ 0  as ∆ x → 0 ) …(2)

⇒ = ′ ⋅ + ∈∆ ∆ ∆y f x x x� � …(3)

where the second term on the r.h.s of the equation (3)
of (B) is very small and can be neglected (since ∈→ 0
and ∆ ∆x x→ ⇒ ∈⋅ →0 0  on using the product
theorems on limits) and the first term ′f x x� � ∆  is
the larger part of ∆ y  (in equation (3) of (B)) which is
known as the principal part. The principal part ∆ y  is
called the differential of y and is denoted by dy i.e.

But if we let dy = ′f x x� � ∆ …(4)

∴ =∆ x dx , using this result in (4) for y = x, we
have, therefore, dy f x dx= ′ � �  which tells the
differential of y is obtained by differentiating the given
function f (x) w.r.t its independent variable x and then
multiplying d.c of that function ′f x� �  by the
differential of x (i.e. dx).

(C) We know that 
dy

dx

y

xx
=

→
lim
∆

∆
∆0

…(1)

and when ∆ x  is very small,

dy

dx

y

x
=
∆
∆

 (approximately)

⇒ = ⋅∆ ∆y
dy

dx
x  (nearly, approximately, approx)

⇒ + − = ⋅f x x f x
dy

dx
x∆ ∆� � � �

Mathematics is a language.

J. Willard Gibbs
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⇒ + = + ⋅f x x f x
dy

dx
x∆ ∆� � � �  which pro-

vides us an approximate formula and can be written in
following way:

f a h f a f a h+ = + ′ ⋅� � � � � �
where x = a and ∆ x h=  are given numerical values.

Remember:
1. If the increament of the variable on which y depends

(i.e. ∆ x ) is small enough then ∆ y dy~ .

2. The fact that differential dy is the approximation of

∆ y  when dx is small may be used to approximate

errors.

3.
∆
∆

y

x

dy

dx
=  (nearly) if the increament of the variable

on which y depends is very small (or small enough).

4. ∆ ∆y f x x f x= + − ≠� � � �  dy in general.

5. Relative error in y; let y = f (x), then relative error in
y at x = a is

=
′

⋅
f a

f a
h

� �
� �

=

=

=

derivative of the function at
times the increament

value of the function at 

f x x a

x a

� �

Now we shall explain different types of problems
on approximations and errors besides their techniques
to solve them.

Type A
To find the approximate value of a function of an
independent variable x when the independent variable
x is replaced by a number, we adopt the following
working rule:

First working rule:
1. For finding f (c) we choose a and h such that f (c)
= f (a + h) where f (a) is easily obtainable and h is
small

2. Find ′f x� �  by differentiating f (x)

3. Find f (a) and ′f a� �

4. Use the formula f a h f a h f a± = ± ′� � � � � �
when f (a), ′f a� �  and h are known. h is a small number

which is positive or negative and a h±� �  = given
number for the independent variable. f a h±� �
= a hn ± , a h n±� � , log a h±� � , sin a h±� � , cos

a h±� � , tan a h±� � , cot a h±� � , sec a h±� � ,

cosec a h±� � , sin–1 a h±� � , cos–1 a h±� � , tan–1

a h±� � , cot–1 a h±� � , sec–1 a h±� � , cosec–1

a h±� � , log a h±� � , e a h±� � ,  …etc. some examples.
Which provides us the required approximate value

of the function for the given value of the independent
variable.

Second working rule:
1. In finding the value of f (c) approximately we
express the given number c as a n±� �  to choose
x = a s.t f (a) can be determined as a rule as a whole
number b where a = any number whose nth root,
power n, t-ratio, inverse t-ratio, log, e, etc are known
to us and n x= ∆  = h = any number +ve or –ve. After
this step, we

2. Use the formula ∆ ∆y
dy

dx
x f a h

x a

= �
��
�
	


⋅ = ′ ⋅
=

� � .

3. Lastly are find the required approximate value using
the formula:

y y f a f a h+ = + ′ ⋅∆ � � � �
where y y+ ∆  = f (a + h)

Note:
1. There are two types f notations for the approximate
value of a function of an independent variable.

(i) y y+∆  (ii) f x x+ ∆� �  or f (a + h) where ∆ x h=

is written for easiness and ∆ ∆y
dy

dx
x

x a

= �
��
�
	


⋅
=

= ′ ⋅f a h� � .

2. Generally h = a decimal fraction +ve or –ve or an
integer +ve or –ve like ± 0.001, ± 0.002, ± 0.003,

± 0.009  incase of given number c is a decimal fraction
and ± 1, ± 2, … etc in case of given whole number c.
3. If h = –ve integer or –ve decimal fraction, we use
the formula:
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f a h f a h f a− = − ′� � � � � �
and if h = +ve integer or +ve decimal fraction, we use
the formula:

f a h f a h f a+ = − ′� � � � � �
4. Usually incase of decimal fraction c the value of a
is taken as the nearest integer. a = 2 is to be considered
so that a + h = 1.999 gives us h = – 0.0001 (� 2 – 0.001
= 1.999), if c = 1.999.
5. Usually incase of whole number a  to be
considered, we express the given number c as a n±
where x = a is s.t. f (a) is known to us already where

f n⇒ , ( )n, sin, cos, sin–1, cos–1, log, e or any

other operator.
6. When y = f (x), then ∆ x dx=  and ∆ y dy=
provided that ∆ x  is small enough (or, provided that
∆ x  is nearly equal to zero which means ∆ x → 0 ).

7.
∆ y

y

dy

y
=  nearly ∆ x  is small enough.

8. Notation = , ~ , =  or ≈  means approximately
equal to.

Some useful hints to find the values of a and h in
some problems

1. If a given number c b
n

= + 1

10
 or b

k
n

+
10

 where

k = digits from 1 to 9, b = any whole number, n = +ve
integer, then b = a = x.

∆ x
k

n n
= 1

10 10
or  and given number = x x+ ∆

where ∆ x = + ve

e.g.: 3 003 3
3

10
. = + = +

n
x x∆  or a + h if x a= = 3

and ∆ x  = h = 0.003

Given number = 3.003 = 3 + 0.003

2. If a given number c b= + ⋅9
.
...  where dots after

recurring decimal ⋅9
.

 denote any one or more than

one digit from 1 to 9, then x = a = b + 1 and ∆ x h=
= given decimal fraction – (b + 1)

= + ⋅�
�

�
��b 9

.
... − +b 1� �

given number = + +b x1� � ∆  where ∆ x = − ve
e.g.: 31.98 + 31 + .98 ⇒  x = a = b + 1 = 31 + 1 = 32
(where b = 31) and ∆ x  = 31.98 – 32 = –0.002 = –ve

decimal fraction given number 32 + ∆ x  = 32 – 0.002

3. If a given number =
⋅9

10

k l m
n

...
 where k, l, m, …

= digits from 1 to 9 then x = 1

∆ x h
k l m

n
= =

⋅
−

9

10
1

...

given number = 1 + ∆ x  where ∆ x  = –ve
e.g.: ⇒  x = a = 1 and ∆ x  = 0.998 – 1 = –0.002

given number = 1 + ∆ x  = 1 – 0.002

N.B.: Type (A) has two types of problems which are
explained below

Type 1: To find the approximate value of a function
when the independent variable x is replaced by a
whole number, decimal fraction or a whole number +
decimal fraction.

Type 2: Conditional problems.
Problems based on finding the approximate value of
logarithmic, trigonometric, inverse trigonometric
function of an independent variable replaced by a
number.

Examples worked out:
1. Given loge 2 = 0.6931, find the approximate value of
loge 2.01.
Solution: 2.01 = 2 + 0.001

∴ x = 2 (= a) …(1)

∆ x  = 2.01 – 2 = 0.01 …(2)

Now on letting y = loge x, we have

dy

dx

d x

dx x
= =

log 1

′ = �
��
�
	


= �
��
�
	


=
= =

f a
dy

dx xx a x

� � 1 1

22

Now, ∆ ∆ ∆y
dy

dx
x f a x

x

= �
��
�
	


⋅ = ′ ⋅
=2

� �
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= ×
1

2
0 01.  (from (2))

hence, required approximate value = y y+ ∆

= + ×log 2
1

2
0 01.

= 0.6931 + 0.005
= 0.6981

2. Given 10 = 0.0175C, find the approximate value of
cos 610.
Solution: letting, f (x) = cos x where given number

= 60 + 1 = x + 1 which ⇒ = =∆ x 1 0 01750 . ,

x a= =π
3
� �

Further, ′ = −f x x� � sin

f a� � = °cos60

′ = − °f a� � sin60

now, ∆ ∆y f a x= ′ ⋅� �
= –sin 60 × 0.0175

= 
− ×3

2
0 0175.

Hence, required approximate value

= + = + −
�
�

�
��
×=y y x x a∆ cos

3

2
0 0175.

= − ×1

2

3

2
0 0175.

= − ×1

2
1 3 0 0175.� �

3. Find the approximate value of tan–1 (0.99).
Solution: y = f (x) = tan–1 x

⇒ ′ =
+

f x
x

� � 1

1
2

now expressing 0.99 as 1 – 0.01, we have

a = 1, and h = ∆ x  = –0.01

∴ = = =−
f a f� � � � � �1 1

4

1
tan

π

′ =
+

⇒f a
a

� � 1

1
2

 ′ =
+

=
+

=f 1
1

1 1

1

1 1

1

2
� �

Hence, f (a + h) = tan–1 (0.99) = f a f a h� � � �+ ′ ×

= + × −π
4

1

2
0 01.� �

= −π
4

0 005. .

Derivation of a formula for approximate calculation
of powers
To compute the approximate value of the function

f (a + h) = (a + h)n

On applying the formula f (a + h) = f (a) + h f a′ � � ,
we have

f a h a h f x x f a nan n n
+ = + = ′ = −� � � � � � � �; ,

1 ,

Hence, (a + h)n = an + nan–1 h  (approx)
Where x = a = a whole number which is nearly

equal to (or, approximately equal to) given number
which means a may be slightly (or, alittle) greater than
or less than the given number.
and h = given number – a.

Hence, in the light of above explanation, we provide
the following working rule for approximate calculation
of powers.

Working rule: For finding  f (c)
1. Express the given number c as ‘a + h’. i.e., given
number c = a + h (proper a)
2. Put f (x) = xn and find f (a). Moreover differentiate
the function f (x) = xn and find ′f a� � .
3. Find h from the formula:

h = given number – a
4. Lastly, we use the formula

f a h f a h f a+ = + ′� � � � � �
i.e.; a h a nan n n

+ = + −� � 1  to get the required
approximate value of the power of the given number
used as base of the power.

Problems based on approximate calculations of
powers

Examples worked out:
1. Find the approximate value of (0.998)8

Solution: 0.998 = 1 – 0.002 = a + h
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Let f (x) = x8

∴ ′ =f x x� � 8
7

taking x = a = 1 and h = –0.002

f (1) = (1)8 and ′f 1� �  = 8 × (1)7 = 8 × 1 = 8

(0.998)8 = (1 – 0.002)8 = f (1 – 0.002)
on using the formula

f a h f a h f a− = − ′� � � � � �  i.e. (a + h)n = an + n

an – 1, we have

f f f. .998 1 002 1� � � � � �= − × ′  (approx)

= − ×1
2

1000
8

= 1 – 0.016
= 0.9840 (approx).

2. Find the approx value of (0.9999)6

Solution: � 0.9999 = 1 – 0.0001

∴ (0.9999)6 = (1 – 0.0001)6

Let f (x) = x6

∴ ′ =f x x� � 6
5

taking x = a = 1 and h = –0.0001

f (a) = f (1) = 16 = 1

and ′ = ′ = × =f a f� � � � � �1 6 1 55

now, using the formula

f a h f a h f a− = − ′� � � � � �  i.e. (a + h)n = an + n

an–1, we have
f (1 – 0.0001) = (1 – 0.0001)6

= (1)6 – 0.0001 × 6
= 1- 0.0006
= 0.9994 (approx).

Note: 1 is the integer nearest to .999.

3. Find the approximate value of (1.999)6.
Solution: First method:

� 1.999 = 2 – 0.001

∴ (1.999)6 = (2 – 0.001)6

let f (x) = x6 ∴ ′ =f x x� � 6
5

Taking a = 2 and h = –0.001

f (a) = f (2) = 26 = 64

′ = ′f a f� � � �2  = 6 × 25 = 6 × 32 = 192

now, using the formula
f (a – h) = f (a) – h ′f a� �  i.e. (a – h)n = an – n an–1

h, we have

(2 – 0.0001)6 = (2)6 – 0.001 × 192
= 64 – 0.192
= 63.808

Second approach
Let y = x6

∴ =dy

dx
x6

5

∴ ′ = ′ = × =f a f� � � �2 6 2 192
5

again a + ∆ x  = 1.999

∴ +2 ∆ x  = 1.999

∆ x  = 1.999 – 2 = –0.001

now, on using the formula

∆ ∆y f a x= ′ ⋅� �
= 192 × (–0.001)
= –0.192

∴ Required approximate value = +y y∆
= 26 – 0.192
= 192 – 0.192
= 63.808

4. Find the approximate value of (4.012)2

Solution: � 4.012 = 4 + 0.012
∴ (4.012)2 = (4 + 0.012)2

let f (x) = x2 ∴ ′ =f x x� � 2

taking x = a = 4 and h = 0.012, f (4) = 42 = 16 and ′f 4� �
= 2 × 4 = 8. Hence approximate value of f (a + h) = f (a)

+ h ′f a� �  i.e.; (a + h)2 = a2 + 2ah

∴  (4.012)2 = (4 + 0.012)2 = 42 + 2 × 4 × 0.012

= 16.096 (approx).

Deriving formula for approximate solution of
equation
Let a root of the equation f (x) = 0 be approximately
equal to ‘a’.

We are able to obtain a better value of the root by
using the concept of derivative and differential.
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Let ' a a+ ∆ ' be the exact root,

Then f a a+ =∆� � 0 …(1)

Again, ∆ ∆ ∆ ∆f x f x x y f x x� � � � � �� �= ′ ⋅ = ′or

⇒ + − = ′f a a f a f a a∆ ∆� � � � � � …(2)

[since the increament in the function is

f a a f a+ −∆� � � �
as x changes from a to a a+ ∆ ]

now putting f a a+ =∆� � 0 , from (1), into (2), we

have

0 − = ′ ⋅f a f a a� � � � ∆

⇒ − = ′ ⋅f a f a a� � � � ∆

⇒ =
−
′

∆a
f a

f a

� �
� � …(3)

on adding ‘a’ to both sides of (3), we have the re-

quired formula a a a
f a

f a
+ = −

′
∆

� �
� �  which ⇒  a

better approximation of the root ' a a+ ∆ ' is

a
f a

f a
−

′
� �
� � …(4)

This formula a a a
f a

f a
+ = −

′
∆

� �
� �  is fruitful for

approximate computation of roots.
Hence, in the light of above explanation, we can

provide a rule to find the nth approximate root of a
given number.

Working rule:

1. Let x = (given number) 1
n  and x = a, a whole number

whose nth power is approximately equal to the given
number.
2. Solve the equation xn = given number
3. Put f (x) = xn and differentiating it (i.e. f (x)),find

′f x� �  and ′f a� � . Moreover we find f (a) from f (x).

4. Last we use the formula

a
f a

f a
−

′
� �
� �  which provides us the required

approximate value of the root of the given number.

N.B.: The above method is practically more easier
than any other method to find the nth (approximate
value of the) root of a given number.

Second method:
By the use of the formula:

f (a + h) = f (a) + h ′f a� �  also, we can find

approximate nth root of the given number where

f n⇒  and hence f (a + h) = f (a) + h ′f a� �  can be

written as

(given number)
1 1

1

n na a a
h

n x

n

nn
= + = +

−
∆� �

where h = given number – a = increament and a = a
whole number approximately equal to the given num-
ber which means a whole number which is a little (or,
slightly) greater than or less than the given number
and which can be expressed as nth power (or, perfect
square incase of square root)
Remember: In the formula f (a + h) = f (a) + h ′f a� �
1. h ′f a� �  denotes the differential of a function at
the value ‘a’ of the independent variable x. Thus to
obtain the value of the differential of a function, it is
necessary to know two numbers: the value of the
independent variable x and its increament h.
e.g.: Calculate the differential of the function y = x2

for a change in x from 3 to 3.1.

Solution: dy f x x h f a= ′ ⋅ = ⋅ ′� � � �∆
= ⋅=2x hx a

= =2
3

x
x  (the independent variable = a = 3 and h

= final value – initial value = 3.1 – 3 = 0.1)
∴  dy = 2 × 3 × 0.1 = 6 × 0.1 = 0.6

2. ‘a’ always denotes the approximate value of an
independent variable ‘x’ obtained as a result of
measurement and (a + h) denotes its true or given
value. then ‘a’ determines the approximate value of
the function f (x) and ‘(a + h)’ gives the value of the
function f (x + h).
3. Given value indicates the changed value or final
value of the independent variable so it must be
expressed as (a + h) so that we may have the initial
value as well as the increament of independent
variable.
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4. Increament may be positive or negative. If the final
value is greater than initial value, increament is
positive. If the final value is smaller than initial value,
increament is negative. Increament is always
determined by the formula h = final value – initial
value = given number – a.

Problems based on approximate calculation of roots

Examples worked out:

1. Find the approximate value of 3198
1
5.� �  with the

help of calculus.
Solution: First method:

Let x x= ⇒ =3198 2
1
5.� �  (approximately) = a

(say)
Now we have to solve the equation

x5 = 31.98

⇒ − =x
5

3198 0.

again let f (x) = x5 – 31.98

∴ ′ =f x x� � 5
4

f (2) = 32 – 31.98 = 0.02

′ = × = × =f 2 5 2 5 16 80
4� �

∴ Required approximate value of the root

= −
′

a
f a

f a

� �
� �

= −2
0 02

80

.

=
−160 0 02

80

.

= 159 98

80

.

= 15998

8

.

= 1.99975
Second method:

31.98 = (32 – 0.02)

⇒ = −3198 32 0 02
1
5

1
5. .� � � �

Now on letting f (x) = x
1
5

′ = =
⋅

−
f x x

x
� � 1

5

1

5

4
5

4
5

Now, taking x = a = 32 and h = –0.02
f (a) = f (32) = 2

′ =
×

=f a� � 1

5 16

1

80

∴ Required approximate value of the root

= f (a – h) = f (a) – h ′f a� �

= − ⋅
×

2 0 02
1

5 16
.

= −2
2

8000

= −2
1

4000
= 2 – 0.00025
= 1.99975

2. Find the approximate value of 80 999
1
4.� �

Solution: First method:

Let x x= ⇒ =80 999 3
1
4.� �  (approximately) = a

(say)
Now we have to solve the equation

x4 = 80.999

⇒ − =x
4

80 999 0.

again let f (x) = = x4 – 80.999

∴ ′ =f x x� � 4
3

f (3) = 34 – 80.999 = 81 – 80.999 = .001

′f 3� �  = 4 × 33 = 4 × 27 = 108

∴ Required approximate value of the root

= −
′

a
f a

f a

� �
� �

= −3
0 001

108

.

= −324 0 001

108

.

=
323999

108

.
 = 2.9999
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Second method:
80.999 = (81 – 0.001)

Let ′ =f x x� �
1
4

′ = ⋅ =
⋅

−
f x x

x
� � 1

4

1

4

3
4

3
4

Now putting a = 81, h = –.001 in

f (a – h) = f (a) – h ′f a� � , we have

80 999 81 0 001 814 . .= − ⋅ ′f f� � � �

= − ×3
1

1000

1

108
= 3 – 0.00009259
= 2.99990741

3. Find the approximate value of 145 .

Solution: First method:

Let x x= ⇒ =145 12
1
2� �  (approximately) = a

(say)
Now we have to solve the equation
x2 = 145

⇒ − =x
2

145 0

again let f (x) = x2 – 145

∴ ′ =f x x� � 2

f (12) = 144 – 145 = –1

′f 12� �  = 2 × 12 = 24

Required approximate value of the root

= −
′

a
f a

f a

� �
� �

= −
−

12
1

24

� �

= +12
1

24

=
+288 1

24

= 289

24
= 12.04

Second method:

145 144 1= +  = f (a + h) where f (x) = x , a

= 144, h =1

∴ ′ =f x
x

� � 1

2

Now using the formula,

f (a + h) = f (a) + h ′f a� �

⇒ + = + ×f 144 1 12 1
1

2 144
� �

⇒ = +
×

f 145 12
1

2 12
� �

= +12
1

24
= 12 + 0.04
= 12.04.

4. Find the approximate value of 33
1
5� � .

Solution: First method:

Let x x= ⇒ =33 2
1
5� �  (approximately) = a (say)

Now we have to solve the equation:
x5 = 33

⇒ − =x
5

33 0

Again let f (x) = x5 – 33

∴ ′ =f a x� � 5
4

f (2) = 32 – 33 = –1

′f 2� �  = 5 × 2 × 4 = 80

∴ Required approximate value of the root

= −
′

a
f a

f a

� �
� �

= −
−
′

2
1

2

� �
� �f

= −
−�
�
�
�2

1

80

= +2
1

80
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= +160 1

80

=
161

80
= 2.0125

Second method:

33 32 1
1
5

1
5� � � �= +  and 32 2

1
5� � =

Hence, if we write f (x) = x
1
5 , then 33

1
5  = f (a + h) for

a = 32, h = 1

∴ = =f 2 2 2
1
5� �

′ = =
−

f x x
x

� � 1

5

1

5

4
5

4
5

′ =
×

f 2
1

5 32
4
5

� �
� �

Now, using the formula

f (a + h) = f (a) + h ′f a� �

⇒ + = + ×f 32 1 2
1

5

1

32
4
5

� �
� �

= +
×

2
1

5 24

= +
×

2
1

5 16

= +2
1

80

=
+160 1

80

= 161

80

=
161

8

.

= 2.0125.

5. Find the approximate value of 215
1
3� �

Solution: First method:

Let x = ⇒215
1
3� �  x = 6 (approximately) = a (say)

Now we have to solve the equation
x3 = 215

⇒ − =x
3

215 0

Again we let f (x) = x3 – 215

∴ ′ =f x x� � 3
2

f (6) = 23 – 215 = 216 – 215 = 1

′ = × =f 6 3 36 108� �
∴ Required approximately value of the root

= −
′

a
f a

f a

� �
� �

= −
′

6
6

6

f

f

� �
� �

= −6
1

108

= −648 1

108

=
647

108
= 5. 9907

Second method:

f x x� � =
1
3

′ = × =
−

f x x
x

� � 1

3

1

3

2
3

2
3

Now, we write

f (a + h) = 215
1
3� �

where f (x) = x3 , a = 216, h = –1

f (a) = f (216) = f (63) = 6
3

1
3

� �  = 6

′ =
×

=
×

f a� �
� �

1

3 6

1

3 63
22

3

=
×

=1

3 36

1

108
Now, using the formula,

f (a + h) = f (a) + h ′f a� �
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∴ − = −
×

=
−

=f 216 1 6
1

1 108

648 1

108

647

108
� �

= 5.9907 (approx)

6. Find the approximate value of 127
1
3� � .

Solution: First method:

Let x = 127
1
3� �

⇒ =x
3

127

⇒ =x 5  (approximately) = a (say)

Now we have to solve the equation
x3 = 127

⇒ − =x
3

127 0

Again we let f (x) = x3 – 127

∴ ′ =f x x� � 3
2

f (5) = 125 – 127 = –2

′f 5� �  = 3 × 25 = 75

∴  Required approximate value of the root

= −
′

a
f a

f a

� �
� �

= −
′

5
5

5

f

f

� �
� �

= −
−

5
2

75

� �

= +5
2

75

= +375 2

75

=
377

75
= 5.0266

Second method:
Expressing given number = 127 = 125 + 2 = 53 + 2
On letting x = 53 = 125 = a (say)

f x x� � =
1
3

⇒ ′ = × = ⋅
− −

f x x x� � � �1

3

1

3

1
3

2
3

1

∴ = = =f a� � � � � �125 5 5
1
3

1
33

′ = ′ = × = × =f a f� � � �
� �

125
1

5

1

3

1

3

1

5

1

753
22

3

Now, using the formula,

f (a + h) = f (a) + h ′f a� � , we have

f 125 2 5 2
1

75
5

2

75
50266+ = + × = + =� � .

Third method:

Let y f x x= = = =� � � �
1
3

1
3

5 5
3

∆ ∆ ∆y
dy

dx
x f a x= ⋅ = ′ ⋅ = ×� � 1

75
2

∴  Required approximate value

= +y y∆  = 5 + .0266 = 5.0266

7. Find approximately 6274 .
Solution: First method:

Let x x= ⇒ =627 5
1
4� �  (approximately) = a

(say)
Now we have to solve the equation

x4 = 627

⇒ − =x
4

627 0

Again on setting f (x) = x4 – 627

⇒ ′ =f x x� � 4
3

∴ f (a) = f (5) = 625 – 627 = –2

′ = ′ = × = × =f a f� � � �5 4 5 4 125 5003

∴ Required approximate value

= −
′

a
f a

f a

� �
� �

= −
′

5
5

5

f

f

� �
� �

= +5
2

500
= +5

1

250
= 5.004
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If α  is small, then we can use the formula:

1 1
2

+ ≅ +α α
.

Second method:
We observe that 627 is close to 625 of which fourth
root is 5.

� 627 = 625 + 2
on setting x = a = 625, h = 2

f x x� � � �=
1
4

we have, ′ =
−

f x x� � � �1

4

3
4

∴ = = = =f a f� � � � � � � �625 625 5 5
1
4

1
44

′ = ′ = −f a f� � � � � �� �625
1

4
625

3
4

= × = ×
− −1

4
5

1

4
5

4 3
3
4

� � � �
� �

=
×

=
×

= =1

4 5

1

4 125

1

500
0 002

3
.

Now, using the formula: f (a + h) = f (a) + h ′f a� �
We have: f (625 + 2) = f (625) + 2 625⋅ ′f � �

= 5 + 2 × 0.002 = 5 + 0.004 = 5.004

8. Find the approximate value of 1006. .
Solution: First method:

Let x x= ⇒ =1006 1
1
2.� �  (approximately) = a

(say)
Now, we have to solve the equation

x2 = 1.006

⇒ −x
2

1006.

Again, let f (x) = x2 – 1.006

∴ ′ =f x x� � 2

f (1) = 1 – 1.006 = – .006

′ = × =f 1 2 1 2� �

∴  Required approximate value of the root

= −
′

a
f a

f a

� �
� �

= −
−

1
0 006

2

.� �

= +1
0 006

2

.

= =2 006

2
1003

.
.

Second method:

(1.006) = 1 + 0.006 = f (a + h) where f (x) = x , a = 1,

h = 0.006

∴ ′ =f x
x

� � 1

2

f (a) = f (1) = 1

′ = ′ =f a f� � � �1 1

2
Now, using the formula,

f (a + h) = f (a) + h ′f a� �

= + ×1 0 006
1

2
.

=
+

=
2 0 006

2
1003

.
.

Remember: The formula:

a a a
f a

f a
+ = −

′
∆

� �
� �

is also applicable to find the approximate root of the
equation f (x) = 0 which is nearly equal to a given root
x = a.

Examples based on approximate solution of the
equation

1. Find the root of the equation x4 – 12x + 7 = 0 which
is near to 2.
Solution: � f (x) = x4 – 12x + 7 and a = 2

∴ ′ = −f x x� � 4 12
3

f (2) = 24 – 12 × 2 + 7 = –1

′ = × − =f 2 4 2 12 20
3� �

∴ Required root = −
′

a
f a

f a

� �
� �  (approx)
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= −
′

2
2

2

f

f

� �
� �

= −
−

2
1

20

� �

= + = + = =2
1

20

40 1

20

41

20
2 05.

2. Find the root of the equation x4 – 12x2 – 12x – 3 = 0
which is approximately 4.

Solution: Let f (x) = x4 – 12x2 –12x – 3 and a = 4

∴ ′ = − −f x x x� � 4 24 12
3

′f 4� �  = 4 × 43 – 24 × 4 – 12

= 256 – 108

= 148

f (4) = 44 – 12 × 42 – 12 × 4 – 3

= 256 – 192 – 48 – 3

= 256 – 243 = 13

∴ Required approximate root

= −
′

a
f a

f a

� �
� �

= −
′

4
4

4

f

f

� �
� �

= −4
13

148

= −592 13

148

=
579

148
= 3.91

Derivation of a formula for approximate calculation
of reciprocal quantities
Let us consider the function:

f x
x

� � = 1
…(1)

We let the argument x receive a small increament

∆ x , then

f x x
x x

+ =
+

∆
∆

� � 1
…(2)

′ = −f x
x

� � 1
2

⇒ ′ = −
×

=f x x
x

x

x

x
� � ∆ ∆ ∆1

2 2 …(3)

Now using the formula:

f x x f x f x x+ = + ′∆ ∆� � � � � � , we have

1 1
2x x x

x

x+
≈ −

∆
∆

[i.e.; f a h f a h f a+ ≈ + ′� � � � � � ]
Problems based on approximate computation of
reciprocal quantities

Examples worked out:

1. Find the approximate value of 
1

1004.
.

Solution: 1.004 = 1 + 0.004

On setting x = a = 1, h = ∆ x  = 0.004

f x
x

� � = 1

′ = −f x
x

� � 1
2

f (a) = f (1) = 1

′ = ′ = −f a f� � � �1 1

Now, using the formula,

f (a + h) = f a h f a� � � �= ′ , we have

1
1 0 004 1 0 996

a h+
= − × =. .

2. Find the approximate value of 
1
4

x
 when x = 2.04.

Solution: Let f (x) = 1
4

x
x = 2.04 = 2 + 0.04

on setting, x = a = 2, h = ∆ x  = 0.004

� f x
x

� � = 1
4



678 How to Learn Calculus of One Variable

′ = −f x
x

� � 4
5

f 2
1

16
� � =

′ = − = −f 2
4

2

1

85� �

Now, using the formula:

f a h f a h f a+ = + ′� � � � � �
= + ′f h f2 2� � � �

= + × −��
�
�

1

16
0 04

1

8
.

= −
1

16
0 005.

=
− ×1 0 005 16

16

.

=
−1 0 080

16

.

= 0 920

16

.

= 0.0575

Conditional Problems

When x a
k

n
= +

10
 is provided where a = an integer

= x1 (say) and h x
k

a
n

= = =∆
10

a decimal fraction,

and the expression in x is to be approximated, we
adopt the following working rule.
Working rule:
1. Let y = given expression in x
2. Suppose a = x1 = a given integer before decimal

and h x
k

n
= =∆ 1

10
 the decimal fraction (the number

after the decimal).
3. Use the formula:

f x x f x f x x1 1 1 1 1+ = + ′∆ ∆� � � � � �
or, f a h f a f a h+ = + ′ ⋅� � � � � �

N.B.: Sometimes ∆ x  = h is provided in the given
problems to be approximated which means there is no

need of finding ∆ x .

Remember:
1. Approximate change in

y
dy

dx
x

x x

= �
��
�
	


⋅
=approx value of the given value for 

∆

= ′ ⋅f a h� �
2. Approximate value of y y dyx a= +=  = f (a) +

dy, when x = given value
3. Given number (or value of x) may be whole number
or simply pure decimal fraction like 26, 65, 0.9993 etc,
then to find a and h we should consult the hints
given earlier in the topic on finding the approximate
value of a function of an independent variable replaced
by a number (i.e. in type (A)).
4. Given value of x always requires a result of
applying increament or changed value or final value
of the argument x in the problems of approximation.

Worked out example on conditional problems

1. Find the approximate value of  (1.001)5 –

2 1001 3
4
3.� � +  by considering y x x= − +

5
2 3

4
3 .

Solution: Since, x = 1.001 which can be expressed as
1 + 0.001 on setting x1 = a = 1

h x= =∆ 1 0 001.

f x x x� � = − +
5

2 3
4
3

We have, f (1) =

f (a) = 1 – 2 + 3 = 2

′ = −f x x x� � 5
8

3

4 1
3

′ = ′ = − =f f a1 5
8

3

7

3
� � � �

Hence, f (1 + 0.001) = f (a + h) = f (a) + ′ ⋅f a h� �

= + ×2
7

3
0 001.� �

= 2.0023
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2. Find the approximate value of y y+ ∆ .

When y = 2x2 – 3x + 5, x = 3 and ∆ x  = 0.1

Solution: y = 2x2 – 3x + 5, a = 3

⇒ = −dy

dx
x4 3

∴ ��
�
� = ′ = −

=
=

dy

dx
f a x

x a
x� � � �4 3 3

= 4 × 3 – 3 = 12 – 3 = 9

and ∆ ∆y
dy

dx
x

x

= �
��
�
	


⋅
=3

= 9 × 0.1 = 0.9
Hence, the required approximate value

= + = +=f a y y y
x� � � �∆ ∆

3

= 14 + .9
= 14.9 (approx)

3. Evaluate 3x2 – 7x + 5 when x = 3.02
Solution: f (x) = 3x2 – 7x + 5

∴ ′ = −f x x� � 6 7

on setting x1 = a = 3

h x= =∆ 002.

we have  f (a + h) = f (a) + h ′f a� �  which ⇒

f ( 3.02) = f (3 + 0.02) = f (3) + 0.02 × ′f 3� �
f (3) = 11 and ′f 3� �  = 11

∴ f (3.02) = 11 + 0.02 × 11
= 11.22 (approx)

4. Find the approximate value of a function by using
differential when f (x) = 5x3 – 2x + 3 and x = 2.01.
Solution: f (x) = 5x3 – 2x + 3

′ = −f x x� � 15 2
2

on setting x1 = a = 2 and ∆ x h1 0 01= = . , we have

f (a) = f (2) = 5 × 23 – 2 × 2 + 3 = 39

′ = ′f a f� � � �2  = 15 × 22 – 2 = 60 – 2 = 58

Now using the formula:

f a h f a f a h+ = + ′ ⋅� � � � � �
we find

f f f2 01 2 2 0 01. .� � � � � �= + ′ ×

= 39 + 58 × 0.01
= 39 + 0.58
= 39.58

N.B.: Exact value of the function for x = 2.01
= 5 × (2.01)3 – 2 × 2.01 + 3
= 39.583005

5. Find the approximate value of y = x3 – 3x2 + 2x – 1
when x = 1.998.
Solution: f (x) = x3 – 3x2 + 2x – 1

′f x� �  = 3x2 – 6x + 2

Now on setting 1.998 = 2 – 0.002
Where x1 = a = 2 and ∆ x1  = h = –0.002

( � ∆ x  = given value of x – a)

∴  f (2) = f (a) = 23 – 3 × 22 + 2 × 2 – 1
= 8 – 12 + 4 – 1
= –1

′ = ′f f a2� � � �  = 3 × 22 – 6 × 2 + 2
= 12 – 12 + 2
= 2

Now, using the formula:

f (a + h) = f (a) + h f a⋅ ′ � �
we find

f (1.998) = f (2 – 0.002) = f (2) + (–0.002) × ′f 2� �
= –1 – 0.002 × 2
= –1 – 0.004
= –1.004

N.B.: To check the closeness of this method, we
substitute 1.998 in the given (original) function to get
the exact value for this point and hence we get

y y f a h+ = +∆ � �  = – 1.003988008

Which shows that the method of approximation
by differentials holds very closely (or nearly).
6. Find the approx value of x3 + 5x2 – 3x + 2 when
x = 3.003.
Solution: f (x) = x3 + 5x2 – 3x + 2

⇒ ′ = +f x x x� � 3 10 3
2

–

on setting x = a = 3 and h = 0.003, we have
f (3) = 33 + 5 (3)2 – 3 (3) + 2 = 65

′f x� �  = 3 × (3)2 + 10 (3) – 3 = 54

Now, using the formula of approximation

f (a + h) = f a h f a� � � �+ ′
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we find

f (3.003) = f (3) + 0.003 × ′f 3� �
= + ×65

3

1000
54

= +65
162

1000
= 65.162

7. Find the approximate value of the increament in

the function y = 2x3 + 5 for x = 2 and ∆ x  = 0.001.

Solution: We have ∆ y =  dy = 6x2 dx = 6x2 ∆ x
= 6 × 22 × 0.001

= .024
∴  The exact value of the increament:

∆ ∆y x x x= + + − −2 5 2 53 3� �
= + +6 6 2

2 2 3x x x x x∆ ∆ ∆� � � �
= 6 × 4 × 0.001 + 6 × 2 × 0.000001 + 2 × 0.000000001
= 0.024012002

(� ∆ ∆y f x x f x= + −� � � �  =  ′f x� �  dx = dy)
8. Given that 45 = 1024, find the approximate value of
fifth root of 1028.

Solution: let y x f x= =
1
5 � �

Since 45 = 1024, we set x = a = 1024 and ∆ x  = final

value – a
= 1028 – 1024
= 4 = h

� f x x� � =
1
5

∴ ′ =
−

f x x� � 1

5

4
5

f f a1024 1024
1
5� � � � � �= =

′ = ′ = × −f f a1024
1

5
1024

4
5� � � � � �

Now, using the formula:

f (a + h) = f a f a h� � � �+ ′
we find

f f h f1024 4 1024 1024+ = + ′� � � � � �

= + × −1024 4
1

5
1024

1
5

4
5� � � �

= + × −4
1

5
4 3� �

�1024 4 1024 4 4
5 51

5

1
5= ⇒ = =�

�
�
��

/ /� � � �� �

= +
×

4
1

5 4
3

= 4 + 0.0031
= 4.0031

Verbal problems on approximation

The formula ∆ ∆Q f q q= ′ � �  is practically fruitful
for calculating approximate change or simply change
in the function Q (i.e. dependent variable Q) due to
small change in the independent variable q, i.e. if
Q = f (q) be a functional relation between q and Q and
∆ q  is the small change in q, then the consequent
change in Q is given by the formula:

∆ ∆Q f q q= ′ � � ,

Where, Q = any dependent quantity, dependent
variable or dependent physical quantity like volume,
area, perimeter, … etc.

q = independent quantity, independent variable or
independent physical quantity like radius, length,
height, thickness, … etc.

∆ q q qf i= −

qf = final value of independent variable
qi = initial value of independent variable

′ =
�
��
�
	
 =

f q
dQ

dqi
q q

� �
2

Working rule:

1. Find 
dQ

dq
 and ∆ q q qf i= −

2. Compute 
dQ

dq
q qi

�
��
�
	
 =

3. Lastly use the formula:

= =
�
��
�
	


×
=

∆ ∆Q
dQ

dq
q

q qi
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which gives us the required change or approximate
change in the dependent physical quantity Q.
Note:
1. Approximate change in a quantity Q or change in
a quantity Q due to a small change in q.

= =
�
��
�
	


×
=

∆ ∆Q
dQ

dq
q

q qi

Thus, (i) approximate change in volume V, change
in volume V due to small change in r

= = �
��
�
	


×
= =

∆ ∆V
dV

dr
r

r ri rinitial value of 

(ii) Approximate change in area A, change in area A

= = �
��
�
	


×
= =

∆ ∆A
dA

dr
r

r ri initial value of radius r

2. In example 3 thickness suggests change (or,
increament) in the argument (or, independent vari-
able) q. Hence, ∆ q  = thickness provided q is the
independent variable.
3. If we have
volume of a circular cylinder V = π r h

2

surface area of a right circular cone

A = π r r h
2 2
+

i.e. a function of two variables, then any one of the
two variables whose increament is given or can be
determined should be regarded as a variable w.r.t
which differentiation is performed. Moreover in the
function of two variables, the variable which is a con-
stant is always mentioned by stating that it remains
fixed or by giving its numerical value.
e.g. (1) What is the approximate volume of a thin cir-
cular cylinder with fixed height h?

Explanation: The problems says h remains fixed
which means h is a constant.
Remark:
1. The approximate value of a dependent physical
quantity

= + = + ′ ⋅f a h f a f a h� � � � � �
whereas approximate change in a dependent physi-
cal quantity

= = ′ ⋅∆ ∆Q f q q� �
2. Whenever, we have a formula of a physical
quantity like volume, area, perimeter etc, differentiation
is performed w.r.t the variable whose increament in
the problems of approximate is given to us.

Verbal problems on approximate change of a quantity

Examples worked out:
1. If the radius of the sphere changes from 3 cm to
3.01 cm, find the change in the volume.

Solution: Volume of the sphere = =V r
4

3

3π …(1)

Change in the radius = increament in the radius

= 3.01 – 3 = 0 01 cm = ∆r

Now, differentiating (1) w.r.t the variable involved
in it (i.e. r)

dv

dr
r= × × ×4

3
3

2π

⇒ = × ×dv

dr
r4

2π …(2)

dv

dr r

�
��
�
	


= × × = × × =
=3

2
4 3 4 9 36π π π

lastly, using the formula:

∆ ∆V V
dV

dr
r

r

= = �
��
�
	


⋅
=

change in
3

we have

∆V = ×36 0 01π .

⇒ =∆V 0 36
3

. π cm

N.B.: r1 = r

r2 = r + ∆ r

r r1 =

∆r

r r1 + ∆
r r1

r

r r1
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2. Find the approximate increase in the area of circular
ring of inner radius 4 cm and outer radius 4.04 cm.

Solution: � A r= π 2

∴ =
dA

dr
r2π

and 
dA

dr
r

r
r

�
��
�
	


= = × =
=

=
4

4
2 2 4 8π π π� �

Now change in radius = change in r = ∆ r

= 4.04 – 4 = 0.04
lastly approximate increase in the area

= = �
��
�
	


⋅
=

∆ ∆A
dA

dr
r

r 4

⇒ = × × =∆ A 8 0 04 0 32
2π π. . cm

3. Find approximately the volume of a metal in a hallow
cylindrical pipe 60 cm in length, 7.5 cm inside radius
and 0.25 cm thick.

Solution: Volume of the hallow sphere = V r h= π 2

...(1)
Where h = height = 60 cm (given)

⇒ =V r60
2π …(2)

⇒ = =dV

dr
r r60 2 120π π

⇒ ��
�
� = × × = × × =

=

dV

dr r 7 5

120 7 5 12 75 900
.

.π π π

and ∆ r  = thickness = 0.25 cm

∴ Required approximate volume

= ∆ ∆V
dV

dr
r

r

= ��
�
�� =7 5.

= × ×0 25 900. π

= 225
3π cm

On small errors

Question: What do you mean by error?
Answer: Errors are increaments or changes in the
values of x and y and are taken as ∆ x  and ∆ y
respectively,

Where y = dependent quantity, dependent variable
or dependent physical quantity.

And x = independent quantity, independent
variable or independent physical quantity.

Derivation of formula for calculation of small errors

The result:

∆ ∆ ∆y f x x x= ′ ⋅ + ∈� �
obtained in the beginning of this chapter shows that

∆ ∆y f x x= ′ ⋅� �  approximately

this fact is symbolically expressed by writing

∆ y f x dx= ′ � �
which is useful for finding small errors in dependent
variable.
Use of the formula:

∆ ∆Q f q qi= ′ � �
The formula:

∆ ∆Q f q qi= ′ � �
is practically fruitful for calculating small errors in the
dependent physical quantity Q due to small errors in
the independent quantity q, i.e. if Q = f (q) be a func-
tional relation between q and Q and ∆ q  is the small
errors in q, then the consequent small error in Q in
given by the formula:

∆ ∆Q f q qi= ′ � �
where, Q = any dependent quantity like volume, area,
perimeter, temperature, … etc.

q = any independent quantity like radius, length,
height, thickness, … etc.

cm
0.25

15 cm
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∆ q  = qf – qi

qf = final value of independent quantity
qi = initial value of independent quantity

′ =
�
��
�
	
 =

f q
dQ

dqi
q qi

� �

∆Q  = approximate error in Q or simply error in Q.

Remember:
1. In the problems of small errors, the approximate
error (or, value) of a dependent physical quantity like
volume, area, … etc is subjected to an error in the
independent physical quantity like radius, length,
thickness, height, … etc.

The error in independent quantity like radius and
length = ∆ r  and ∆ L  respectively are generally given
in the problem and we are required to find dV, dA, …
etc.
2. The approximate error (or, change) of a dependent
physical quantity Q subjected to an error independent
physical quantity q

∆ ∆Q
dQ

dq
q

q qi

=
�
�
�
�� =

3. Error in Q Q= ∆
4. Approx error in Q dQ q= = ∆
5. The error to which a variable q is subject (or,
subjected) means the error in q which is symbolised
as ∆ q  = dq.
6. Max error, possible error or greatest error in
dependent quantity is to be determined means we are
required to find the error in dependent physical
quantity, i.e. ∆Q .
7. ∆ q  is also called absolute error or total error in
independent variable q.
8. q is not measured correctly to the extent or q is
measured with uncertainty, … etc means the
increament in q, where q = independent quantity or
which a physical quantity Q depends.

Verbal problems on errors

Examples worked out:
1. A box in the form of a cube has an edge of length
= 4cm with a possible error of 0.05. what is the possible
error in volume V of the box.

Solution: Volume of the cube = (a side)3 = s3 …(1)

⇒ =V s
3

⇒ =
dV

ds
s3

2

⇒ ��
�
�� × = × =

=

dV

ds x 4

23 4 3 16 48cm /cm3

…(2)

and we are given ∆ s = 0 05.  cm …(3)

Putting (2) and (3) in the formula:

dV
dV

ds
s

x

= ��
�
� ×

=4

∆

We have ∆V  = 48 × 0.05 = 2.40 cm3 = possible

error in the volume.
2. The volume of a cone is found by measuring its
height and the diameter of a base as 7" and 5"
respectively. It is found that diameter is not correctly
measured to the extent 0.03. Find the consequent error
in the volume approximately.

Solution: The volume of a cone = V r h= 1

3

2π

(where h is a constant)

= �
�
�
� ×1

3 2

2

π R
h  (where R = diameter = 2r)

= π
12

2
h R ...(1)

Now, differentiating (1) w.r.t R, we have
dV

dR
R h= × × ×

1

6
π

⇒ ��
�
� = × × ×

=

dV

dR
h

R 5

1

6
5 π

and ∆ R  = 0.03" as well as h = 7"

Putting these values of ∆ R , h and 
dV

dR R

�
�
�
� =5

 in

the formula:

∆ ∆V
dV

dR
R

R

= ��
�
�� ×

=5
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we have

∆V = × × ×
π
6

5 7 0 03 3. inch

= × × × ×22

7

1

6
5 7

3

100

= ×
×22

6

5 3

100

= ×22

2

5

100

=
×

= =110

2 100

55

100
55 3. inch� �

= error in the volume.
3. The altitude of a right circular cone is 6 cm. The
measurement of the radius of the base is 2 cm with an
uncertainly of 0.02 cm. Find approximately the greatest
possible error in the computed lateral surface area.
Solution: The lateral surface area of a right circular
cone with base radius r and height

h A r r h= = ⋅ ⋅ +π
2 2

Here h = 6 cm (a constant)

∴ = +A r rπ
2

36

which ⇒ = ⋅ ⋅
×

+
+ +

dA

dr
r

r

r
rπ π

1 2

2 36
36

2

2

…(1)

⇒ =
+

+ +dA

dr

r

r
r

π π
2

2

2

36
36

∴ ��
�
�� =

×
+

+ +
�

�
�
�

�

	



=

dA

dr r 2

4

4 36
4 36

π
π

= +
�
��

�
	


π
π

40
4

40
…(2)

and we are given ∆ r = 0 02.  cm …(3)

Putting the values of (2) and (3) in the formula:

∆ ∆A
dA

dr
r

r

= �
��
�
	


⋅
=2

We have:

∆ A = +
�
��

�
	

×π π

40
4

40
0 02.� �

⇒ =
× +�

��
�
	

×∆ A

π π40 4

40
0 02.� �

= ×
44

40
0 02 2π
.� �cm

Verbal problems on relative errors

If Q = f (q) be a functional relation between two

quantities Q and q and ∆ q  is a small error in q, then

dQ

Q  is called the relative error in Q and 
∆q

q  is called

the relative error in q. But since we use dy for an

approximate value of ∆ y , for this reason 
∆Q

Q
suggests the convenience of finding first log Q and

then calculating d (log Q) = 
dQ

Q
.

h = 6 cm

r = 2 cm

h = 7”

d = 5”
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Hence, in the light of above explanation, we can
provide the following working rule to find the relative
error in Q.

First working rule:
Let Q = f (q) be a functional relation between two
quantities Q and q
1. Take first log of both sides of Q = f (q).

2. Differentiate both sides of log Q = log f (q).
3. Multiply both sides of the simplified form of the

equation: 
d

dq
Q

d

dq
f qlog log= � �  by dq.

Which provides us the required relative rate in Q.

4. Put the given values of q and ∆ q dq=  in the

expression obtained for the relative error in Q.

Second working rule:
To find the relative error in Q = f (q) at q = qi = initial
value of a quantity q, we proceed in the following
way:

1. Find ′f qi� �  and then multiply it by

h q q qf i= = −∆

2. Divide the product ′ ⋅f q qi� � ∆  by the value of

the function at q = qi (i.e. by f (qi)) which provides us
the required relative rate, i.e.

dQ

Q

f q q

f q
i

i

=
′ ⋅� �
� �

∆

Remember:

1. Relative error in y is defined by 
∆ y

y
 if ∆ y  is the

error in y and 
∆ y

y
 may by approximated by 

dy

y
 if the

increament of the variable (the quantity being
measured) on which y depends is small enough.
2. Method (1) (or first method) is convenient.
Whenever we have a formula for volume, area or
perimeter etc in the form of power of an independent
variable or in the form of product, whereas method (2)
or, second method is applicable in all cases.

Verbal problems on relative errors

Examples worked out:
1. The radius of a sphere is found to be 10 cm with a
possible error 0.02 cm, what is the relative error in the
computed volume?
Solution: First method:

We have V r= 4

3

3π …(1)

Taking log of both sides of (1), we have

log log logV r= +4

3

3π

= +log log
4

3
3π r …(2)

Now, differentiating both sides of (2) w.r.t r, we get

1
3

1

V

dV

dr r
⋅ = ⋅ …(3)

Multiply both sides of (3) by dr, we obtain

dV

V

dr

r
=

3
…(4)

Putting the given values r = 10 cm and ∆ r  = dr =

0.02 in (4), we have the required relative rate in V.

dV

V
= × = =3

0 02

10

0 06

10
0 006

. .
.

Second method:

V r V rr
r

= ⇒ = × ×�
�

�
�=

=

4

3

4

3

3

10

3

10

π π� �

= × ×
4

3
1000π …(1)

dV

dr
r r r= × × × = × × × =4

3
3

4

3
3 4

2 2 2π π π   …(2)

dV

dr
r

r r

�
�
�
� = = × ×

= =10

2

10
4 4 100π π� � …(3)

and we are given dr = 0 02. …(4)

Putting the values of (1), (3) and (4) in the formula:

dQ

Q

f q

f q
qi

i

=
′

×
� �
� � ∆  where Q = V and q = r} in

this problem
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i.e. 
dV

V

f r

f r
ri

i

=
′

⋅ =
× × × ×

× ×
� �
� �

∆
4 100 02 3

4 1000

π
π

.

=
0 06

10

.

= 0.006
2. Show that the relative error in xn is n times the
relative error in x.
Solution: First method:

y = xn

⇒ = =log log logy x n x
n

⇒ =d

dx
y n

d

dx
xlog log

⇒ = ⋅
1 1

y

dy

dx
n

x

⇒ =
dy

y

ndx

x

Second method:
Let y = xn

⇒ = −dy

dx
n x

n 1
…(1)

Now, we are required to show

∆ ∆y

y
n

x

x
= ⋅ …(2)

Now, using the definition

∆ ∆ ∆y f x x n x x
n= ′ ⋅ = −� � 1 …(3)

(applying for small ∆ x  and using (1))

∴ =
⋅

=
−

−
∆ ∆ ∆y

y

n x x

x x
n

x

x

n

n

1

1

N.B.: If y is a function of x, then y = f (x) and

dy

dx

d f x

dx
=

� �
 or ′f x� � .

Moreover, ∆ ∆y f x x= ′ ⋅� � (approximately)

And dy f x dx= ′ ⋅� �  (accurately)

3. What is the relative error in the area of a circle if
the diameter is found by measurement to be 10 inches,
with a maximum error of 0.01 inch?

Solution: A r A d= ⇒ =π π
2 21

4

� d r r
d

r= = ⇒ =�
�

�
��2

2

=
1

4

2
π x  (where x = diameter) …(1)

Taking log of both sides of (1), we have

log logA x= �
�

�
�

π
4

2

= +log log
π
4

2
x

= +log log
π
4

2 x

⇒ =d

dx
A

d

dx
xlog log2� �

⇒ ⋅ = ⋅ =1
2

1 2

A

dA

dx x x

⇒ =
dA

A

dx

x
2 …(2)

Now, putting the given values: x = 10 and ∆ x  =

dx = 0.01 inch in (2), we have,

dA

A
= × = =2

0 01

10

0 02

10
0 002

. .
.

Verbal problems on percentage errors

Definition: Percentage error in a quantity means 100
times relative error in that quantity, i.e.

1. 100
dx

x
=  percentage error in x

= k1 (say)
= a number written before the percentage symbol

%

which ⇒  dx = error in x =
×x k1

100
= k1 % of x (or k1 % in the value of x)

where x = an independent variable

2. 100
dy

y
 = percentage error in y
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= k2 (say)
= a number to be determined

which ⇒  dy = error in y = ×y k2

100
= k2 % of y (or k2 % in the value of y)

where y = dependent variable (i.e. a quantity being
measured).

Note:
1. If y = f (x) be a functional relation between x and y,
then percentage error in dependent variable y is
caused by the percentage error in independent
variable x or in other words;

Let y = f (x) be a functional relation between two
quantities x and y.

If ∆ x  is k1 per cent (or, k1 %) error in x (or, in the

value of x), then ∆ y  will be k2 per cent (or, k2 %)

error in y (or, in the value of x).
Now in the light of above explanation, we can

provide the following working rule to find the
percentage error or percentage increase, … etc in a
function (i.e. dependent quantity) = y.

To find the percentage error in a dependent
quantity Q implies we are required to use the formula

which is = ×
dQ

Q
100  where Q = f (q) = y = a

dependent quantity, a dependent physical quantity
like volume, area, etc.

And q = independent quantity on which Q
depends like length, radius, height or thickness etc.

First working rule:

1. Find 
dQ

dq

dy

dx
=  by differentiating the given

function, the formula for volume, formula for area, …
etc obtained by mensuration formula, … etc w.r.t the
independent variable involved in the formula or given
function.

2. Use the formula ∆ ∆Q
dQ

dq
q= ⋅

which ⇒ = ⋅ =dQ
dQ

dq
q Q dQ∆ ∆�� �

3. Apply the percentage error formula

which ⇒ × =
⋅

×dQ

Q

dQ

dq
q

Q
100 100

∆

Second working rule:

1. Find 
dQ

dq
 by differentiating w.r.t the independent

variable q.

2. Use 
dQ

dq

Q

q
=
∆
∆

3. Divide ∆ ∆Q
dQ

dq
q= ⋅�

��
�
	


 by Q (both sides be

divided by Q)

which ⇒ =
⋅

∆
∆

Q

Q

dQ

dq
q

Q

where ∆ q  = error in q = k % of q (or, k % in the value

of q)

Remember:

1. Error in Q Q= ∆  and error in q q= ∆

2. Relative error in Q =
∆Q

Q
 and relative error in

q
dq

q
= .

3. Percentage error in Q
Q

Q
= ×
∆

100  and percentage

error in q is = ×
∆ q

q
100 .

4. ∆Q dQ=  and ∆ q dq=

Verbal problems on percentage

Examples worked out:

1. If the radius of a spherical balloon increases by 0.1
% find approximately the percentage increase in the
volume.
Solution: The volume of a sphere of radius r is

V r= 4

3
3π …(1)
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⇒ = × × ×
dV

dr
r

4

3
3

2
π

But 
dV

dr

V

r
r~

∆
∆

= 4 2π

⇒ ×∆ ∆V r r~ 4 2π …(2)

There is a percentage increase in r of

01
01

100
. %

.
=

×
=

r
r∆

⇒
×

=
× ×

× ×
×

100 100 4
4
3

2

3

∆
∆

V

V

r

r
r

π

π

= × × =
400 3

4 1000
0 3

r

r
.

2. The time period for one complete oscillation
of a simple pendulum of length L is given by

T L
g= ×2π . Find the approximate error in T

corresponding to an error of .5 % in the value of L, g
is a constant.
Solution: The time for one comple oscillation is T

(Which means) 
T

2
 units of time i.e. 

T

2
 second for

“tick” and 
T

2
 second for “tock”)

And T L
g= ×2π …(1)

dL

L
k× = =100 5.  (say) …(2)

(given in the problem)

since (1) consists of product, so taking logarithm of
both sides

log log log logT L g= + −2
1

2

1

2
π …(3)

Now differentiating both sides of (3) w.r.t ‘L’ noting
that g is constant

⇒ = + ⋅ −
1

0
1

2

1
0

T

dT

dL L

⇒ = ⇒ ×
dT

T

dL

L

dT

T2
100

= ×dL

L2
100

= =.
.

5

2
0 25  (from (2))

= percentage error in T.
3. If p is a small percentage error in measuring the
radius of a sphere, find the percentage error in the
calculated value of volume and surface.

Solution: V r=
4

3

2
π …(1)

dr

r
p× =100  (given) …(2)

Now differentiating both sides of (1) w.r.t r after
taking the logarithm of both sides, i.e.

log log log log logV r= − + +4 3 3π

⇒ =
1

3
1

V

dV

dr r

⇒ =dV

V

dr

r
3

⇒ × = ×
dV

V

dr

r
100 3 100 …(3)

= 3p (on putting (2) in (3))

2nd part:

surface area = =S r4
2π …(1)

dr

r
p× =100 …(2)

Taking logarithm of both sides of (1),

log log logS r= +4 2π …(3)

Differentiating both sides of (3) w.r.t ‘r’ we get

1
0 2

1

S

dS

dr r
= + ⋅

⇒ =dS

S

dr

r
2

⇒ × = ×
dS

S

dr

r
100 2 100 …(4)
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= 2p (on putting (2) in (4))
= percentage error in calculated value of required

surface area.
4. Find the percentage error in x3 corresponding to a
small error of r % in the value of x.
Solution: Let y = x3 …(1)

error of r % in the value of x ⇒ × =
dx

x
r100       …(2)

y = x3

⇒ =log logy x3

⇒ =
1 3

y

dy

dx x

⇒ =
dy

y

dx

x
3

⇒ × = ×
dy

y

dx

x
100 3 100

= 3r (from (2), 
dx

x
r× =100 )

Verbal problems on percentage errors continued:
5. If b and c are measured correctly. A = 36º with a
possible error of 3’, find the possible % error in ∆ .

Solution: ∆ = 1

2
 bc sin A

∆  = area of triangle has been given as a product,
we use logarithmic differentiation.

log log log log logsin∆ = + + +1

2
b c A

Now differentiating w.r.t A, we have

d

d

d

dA

d A

d A

d A

dA

log log sin

sin

sin∆
∆

∆
⋅ = + + + ⋅0 0 0

⇒ ⋅ = ⋅1 1

∆
∆d

dA A
A

sin
cos

⇒ = ⋅
d A

A
dA

∆
∆

cos

sin
 = cot A · dA = relative error

in A.

⇒ × = × ×
d

A dA
∆
∆

100 100cot

= × × ×cot º36
3

60 180
100

π

=0.12 %

Type 1: Problems based on finding the approximate
values of numbers:

(A) Problems based on finding the approx values of
numbers.

Exercise 18.1

1. Find approximately

(i) 6274

(ii) 663

(iii) 1223

(iv) 2524

(v) 824

(vi) 28
1
3� �

(vii) 63
1
3� �

(viii) 126
1
3� �

(ix) 401

(x) 15
1
4� �

(xi) 235
1
4� �

2. Find the approximate values of the following
number

(i) 0 0037.

(ii) 0 0093 .
(iii) (0.998)8

(iv) 3198
1
2.� �

(v) 80 9994 .

(vi)
1

100 5.

error A = dA = ′ = ×3
3

60 180

π
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(vii) 4 08.

(viii) 653

(ix) 10001
1
3.� �

(x) 3 998
3
2.� �

(xi) (02.97)3

(xii) .82

(xiii) 6 23.

(xiv) 8 013 .

(xv)
1

2 001 2.� �
3. By use of differentials, calculate approximately the
values of the following:
(i) 792

(ii) 1032

(iii) (9.06)2

(iv) (1.012)3

(v) (9.95)3

(vi) (1.005)10

(vii) (0.975)4

4. Calculate approximately the reciprocal of 997 and
102.
5. Find the approximate values of the following
quantities:

(i)
1

0 99.

(ii)
1

9 93.

(iii)
1

1004 2.� �
Answers
1. (i) 5.004
(iii) 4.96
(v) 3.009

(vi)
82

27

(vii)
191

48

(viii)
376

75
(ix) 20.025
(x) 1.96875
(xi) 3.9961

2. (i) 0.060833
(ii) 0.208
(iii) 0.9840
(iv) 1.99975
(v) 2.99990741
(vi) 0.09975
(vii) 2.02
(viii) 4.02083
(ix) 10.0003
(x) 7.994
(xi) 26.19
(xii) 0.956
(xiii) 2.496
(xiv) 2.00083
(xv) 0.24975

3. (i) 6240
(iii) 82.08
(iv) 1.036
(v) 985
(vi) 1.05
(vii) 0.9

4. Approximate value of reciprocal of 102 = 0.0098.

5. (i) 1.01
(ii) 0.1007
(iii) 0.992

(B) Conditional problems

Exercise 18.2

1. Find the approximate values of the following
quantities:
(i) sin 31º when 1º = 0.175 radians
(ii) cos 29º when 1º = 0.175 radians
(iii) sin 60º 2' given sin 60º = 0.86603 and 1' = 0.00029
radians
(iv) tan 44º given 1º = 0.0175 radians
(v) tan 45º 30' when 1º = 0.0175 radians
(vi) cos 30º 1' when 1º = 0.01745 radians
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(vii) tanº when 1º = 0.01745 radians
(viii) loge 10.01 when loge 10 = 2.3026
(ix) loge (3.0001) when loge

3 = 1.0986
(x) loge (3.001) when loge

3 = 1.0986
2. Find the approximate value of the function

f (x) = x3 – 2x2 + 1 when x = 1.0001
3. Find the approximate value of the function

f (x) = x3 + 5x2 – 3x + 1 when x = 3.003
4. Find the approximate value of the function

f (x) = sin x + 2 cos x when x = 46º
5. Find the approximate value of the function

f (x) = 3x2 – 8x + 11 when x = 8.007
6. Find the approximate value of the function

f (x) = x4 + 2x2 + 5 when x = 1.998

Answers:
1. (i) 0.5152

(ii) 3

2
(iii) 0.86632
(iv) 0.965
(v) 1.0175
(vi) Find
(vii) Find
(viii) 2.3036
(ix) 1.098633
(x) 1.0989
2. –0.0001
3. 65.162
4. Find
5. 139.28
6. 28.92

Verbal problems on approximations and errors

Exercise 18.3

1. The radius of a circle is 10 inches and there is an
error of 0.1 inch in measuring it. Find the consequent
error in the area.

2. What is approximate error in the volume and
surface of a cube of edge 8 inches, if an error of 0.03
inch is made in measuring the edge?
3. Find the approximate error in the curved surface of
a cylinder of diameter one foot and height 4 feet, if
there is a possible error of 1 inch in the height.
4. The radius of a sphere is found by measurement

to be 10 inches with a possible error of 
1

10
 of an inch.

Find the consequent errors possible in (i) the surface
area and (ii) the volume as calculated from the
measurement.
5. The time of oscillation ‘T’ of a simple pendulum of

length ‘L’ is given by T L
g= 2π . If L is creased

by 1 % (one per cent), show that the percentage error
in T is 0.5.
6. The angle of elevation of the top of a tower at a
point 200 ft away from its base is 45º. Find the
approximate error in the height of the power due to an
error of 2 % in the angle of elevation.
7. Find the percentage error in calculating the area of
a triangle when one of its angles has been measured
as 45º with an error of 1'.
8. A metal cube of side 3 cms is heated. Find the
approximate increase in its volume if its side becomes
3.0001 cms.
9. Find the percentage error in x3 corresponding to
small error of r % in the value of x.

Answers
1. 2 π  sq inch
2. 5.76 cu in and 2.88 sq in
3. π  in
4. (i) 8 π  sq inch (ii) 40 π  cu. in.
5. 2 π  ft
6. 0.029
8. 0.002700
9. 3r
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19

Tangent and Normal to a Curve

The concepts of tangent and normal are based on the
following concepts.

1. Inclination: The inclination of a line is the angle
between the line (or its extension) and the positive
direction of the x-axis (the direction from a point on
the left (the point of intersection of the line and the
x-axis) to an other point on the right situated on the
x-axis) measured by convention in the anticlockwise
direction from the x-axis to the part of the line
(intersecting the x-axis) above the x-axis.

Notation: An angle of inclination is generally denoted
by the symbol ‘i’ or ‘ θ ’.

Explanation:

(i) The inclination of the line CD is the angle XNC.
(ii) The inclination of the line AB is the angle XMA.

2. Slope of a line. The slope of a line is the tangent
(or trigonometric tangent) of its inclination.
Notation: The slope of a line is represented by

m
y

x
i= =

∆
∆

tan ,  where ∆ y y y= −2 1  difference of

y-coordinates of two points x y1 1,� �  and x y2 2,� �
on the line whose slope is sought.

A Y

O XB

M il

C Y

O XD

N il

Give me a place to stand on and I will move the earth.
Archemedes (287–212 BC)

CY

O XD

N il

X

Y

O

A

B

M il
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(b) The slope of the line AB is negative.

Now, let us procede to have a clear idea of the
concepts of tangent and normal to a point on the
curve. Ordinarily, it is known that a line l cuts a circle
in two points, but a tangent line cuts it in one point
only.

From this special case, we are led to describe a
tangent as a line which cuts the curve at only one
point.

Now this above description is all right in case of a
circle, but it is not applicable to a tangent to a curve in
general.

For example, in the figure given below, the tangent
line to the curve at a point namely P intersects the
curve at another point namely Q. This is why in
Calculus “a tangent to a curve is a straight line which
cuts the curve at only one point” is not applicable as
a definition. But it is endeavored to arrive a suitable
definition of the tangent line at a point on the graph
of the function f defined by y = f (x).

∆ x x x= −2 1  difference of x-coordinates of two

points x y1 1,� �  and x y2 2,� �  on the line whose slope

is sought.

Nomenclature: ∆ y  = delta y

∆ x  = delta x

Explanation: The slope of the line FG = tan i

= SR

TS
= m

To remember:
(a) When the inclination of a line is an acute angle,
the slope of a line is positive.
(b) When the inclination of a line is an obtuse angle,
the slope of a line is negative.
(c) The inclination is acute (0º < θ  < 90º) or obtuse

(90º < θ  < 180º) accordingly as the line leans to the
right or to the left of the point of intersection of the x-
axis and the line. Further, the inclination of a line
parallel to the axis is 0º and the inclination of a line
parallel to the y-axis is 90º.

Explanation:
(a) The slope of the line CD is positive.

CY

O XG S

R

T il

F

CY

O XD

N il

X

Y

O

A

M
B

il

B
l

TP

90

O

A

Y
Q

TO

P



694 How to Learn Calculus of One Variable

Definitions of “Tangent and
Normal to a Curve”

It is common to define a tangent line (or simply a
tangent) at a point P in two ways:
Definition I: (In terms of the limit of a secant line of a
curve): The limit or the limiting position of a secant
line (or simply a secant) of a curve y = f (x) through a
fixed point P and a variable point Q on the curve
when the variable point Q moves from either side of P
arbitrarily close to P, but never coincident with the
fixed point P (i.e., the distance between the fixed point
P and the variable point Q is non-zero and less than
any given small positive number ∈) is called the tangent
to a curve y = f (x) at a fixed point P on the curve.

Let P be a fixed point and Q be a variable point on
the same curve y = f (x). Then the line PQ is called a
secant line of the curve y = f (x). Now, when the variable
point Q is made to move along the curve y = f (x),
towards the fixed point P, the positions of the secant
line PQ changes. The different positions of the secant
line are shown in the figure by dotted lines when the
variable point Q is made to move to the point Q´, Q´´,
etc. The limiting position of the secant line PQ when
the variable point Q moves from either side of P
indefinitely close to but never coincident with the
fixed point P is called the tangent at the fixed point P
on the curve y = f (x).
Definition II: (In terms of slope of a curve):  A tangent
line to a curve y = f (x) at a point P (x, y) on the curve

is a line through P (x, y) with a slope 
dy

dx
 at P (x, y).

i.e., the tangent to a curve y = f (x) at a point P (x, y) on
the curve is the line which passes through P (x, y)

and which has the same slope 
dy

dx
 as the curve at

P (x, y).
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In accordence with earlier discussion, its limit as
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which is said to be the slope of the tangent line at
(x, y) and consequently the tangent is defined to be
the line through P (x, y) with the slope given by (2).
Length of the tangent to a curve: It is the segment (or
part or portion) of the tangent joining the point of
tangency (the point where the tangent touches the
curve) and the point of intersection of the tangent
with the x-axis.

Thus, PT is the length of the tangent.

Normal to a curve at a given point: The normal at
any given point P on (to or of) a curve defined by
y = f(x) is a line which passes through P and is
perpendicular to the tangent at P on the curve
y = f(x). The point P is called the foot of the normal.
Length of normal to a curve: It is the segment (or
part or portion) of the normal (or normal line) joining
the point of tangency on the curve and the point of
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intersection of the normal with the x-axis. Thus PN is
the length of the normal. Thus PN is the length of the
normal.

Subtangent: The projection on the x-axis, of the part
(or portion or the segment) of the tangent joining the
point of tangency on the curve and the point of
intersection of the tangent with the x-axis is called
the subtangent or length of the subtangent, i.e. the
projection of the length of the tangent is called the
length of subtangent. Thus, TG is the subtangent.

Subnormal: The projection on the x-axis, of the
segment (or part or portion of the normal joining the
point of tangency on the curve and the point of
intersection of the normal with the x-axis is called the
subnormal or length of subnormal, i.e. the projection
of the length of the normal is called the length of the
subnormal or simply the subnormal. Thus, GN is the
subnormal or the length of subnormal.

Remark: The slope of the tangent line to a curve at a

point is equal to the slope of the curve, i.e. m
dy

dx
=

at (x, y) = slope of the tangent at (x, y) on the curve
= slope of the curve defined by y = f (x) at a given
point (x, y) where x = a point on the domain of f.

Geometrical meaning of 
dy

dx
: Supposing that P (x, y)

is a point on the continuous curve C whose equation
is y = f (x). Again supposing that Q is a point on the
given curve y = f (x), whose co-ordinates are

x x y x+ +∆ ∆,� � .
Construction: We draw perpendiculars PL, QM upon
OX and PN QM⊥ . We join PQ and produce it to
meet OX at R.

Let PQ make (or, QR) make an angle θ  with OX.

Now, NQ = QM – MN

= QM – LP = ∆ y
= QM – LP

= + −y y y1 1∆
= ∆ y

Again, PN = LM = OM – OL = ∆ x
�OM x x OL x= + =∆ ,

= x1 + ∆ x  – x1

Since, PN is parallel to OX ⇒ ∠ =NPQ φ

∴ = =tan tanφ NPQ
NQ

PN

=
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−
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=
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Let the tangent T´ PT at P intersect the x-axis at T
and makes an angle ψ  with the positive direction of
the x-axis.

∴∠ =XTP ψ
We observe that as Q moves along the curve

C towards P, then the chord QP tends to the tangent
PT ⇒  If we suppose that ∆ x → 0 , then M L→
(i.e., Q P→  along the curve C) ⇒  The chord QP
tends to the tangent at P PQ PT⇒ → ′.  Hence

∆ ∆x y→ →0 0,  ⇒ → ⇒ =φ ψ φ ψtan tan
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Hence, lim tan lim
φ ψ

φ
→ →
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=tan ψ dy

dx x y1 1,� �
 value of 

dy

dx
 at the point

(x1, y1).

But tan ψ  represents the slope of the tangent PT.

Hence, 
dy

dx
 at P (x, y) represents the gradient of the

tangent at that point i.e., 
dy

dx
 gives the value of the

slope of the tangent at P (x, y) or the slope of the
curve at (x, y).

Facts to know:

1.
dy

dx
 = 0 at a point ⇒ = ⇔tan ψ 0  The tangent

at that point is parallel to the x-axis.

2. If 
dx

dy
= 0  then ψ = ⇔90  the tangent is parallel

to the y-axis.

3. Notation: The slope of the curve at a point
P (x1, y1) is denoted by

dy

dx p
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�
��
�
	


1 1,� �
 or 
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dx x y
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or for the purpose of simplicity, we write ′f x1� � .

Note: 1. In general, if the function f (x) has a finite
derivative at every point x X∈ , then we can write
the derivative ′f x� �  as a function of x which is also
defined on x.

2. ′ = �
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�
	
 =

f x
dy

dx x x
1

1

� �

3. We also use the symbol ′ = ′y f x� � , the dash

indicating that it is the derived function.

To find the equation of the tangent and normal at
(x1, y1) of the curve C = y = f (x).

Refresh your memory:
Definition of normal to a curve at a point P (x1, y1) on
the curve:
The normal to a curve at the point A (x1, y1) on it is the
line through the point A perpendicular to the tangent
at the point.

Remember:
1. If the slope of the tangent is m, then the slope of

the normal is −
1

m
.

2. Equation of a line passing through (x1, y1) and

having the slope m is 
y y

x x
m y y m x x

−
−

= ⇔ − = −1

1
1 1� �

which is the point slope form of the equation of a
straight line.
3. The normal is a line passing through a point
(x1, y1) lying on the curve and having the slope
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the equation of the normal (a line) passing through
(x, y).
4. Two lines are perpendicular to each other if the
product of their slopes is

− ⇒1  if m1 m2 = –1, then lines having the slopes

m1 and m2 respectively are perpendicular to each other
⇔  Slope of one line is equal to the negative re-

ciprocal of the slope of the other line means two lines
are perpendicular to each other.
N.B.: Normal and tangent to a curve are
perpendiculars to each other. Derivation of the
equation of the tangent and normal at (x1, y1) lying on
the curve C = y = f (x).

TAT ' and NAN ' are respectively tangent and normal

at A (x1, y1) to the curve C, y = f (x).

∴ By the geometrical meaning of 
dy

dx
,

dy

dx x y
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1 1,� �
 = The slope m of the tangent TAT '

∴  Now we know that the equation of the straight
line passing through (x1, y1) and having a slope m is
y – y1 = m (x – x1)    …(1)

A tangent is a line passing through (x1, y1) and

having a slope m
dy

dx x y

= �
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…(2)

∴  Putting (2) in (1), we get the required equation

of the tangent, y y
dy
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Again since the normal is perpendicular to the
tangent, slope ‘m’ of the normal

= −
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Therefore, the normal has the equation
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Alternative proof based on definition of tangent to a
curve at a point.

Let us suppose that the equation of the curve is
y = f (x)    …(1)

Let P (x1, y1) be a point lying on the curve C given

by (1) and Q x x y y1 1+ +∆ ∆,� �  be any point
adjacent to P on C.

Then by the co-ordinates geometry, the equation

of the secant line PQ is y y
y

x
x x− = −1 1� � � �∆

∆
   …(2)

Now, the slope of the tangent is the limit of the
slope of the secant ⇒ the equation of the tangent is

given by y y
y

x
x x

x
− = −

→1
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which is the required equation of tangent where

dy

dx p x y
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1 1,� �
 = value of 

dy

dx
 at (x1, y1).

Angle between two curves: The angel between two
intersecting curves is the angle between the tangents
at their common point of intersection.
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Derivation of the formula: Supposing that
y = f1 (x)
y = f2 (x) are the two equations of the two curves

C1 and C2 respectively intersecting at P (x1, y1). Let
the tangents PT1 and PT2 to the curves C1 and C2

make angles i1 and i2 with OX.
Let the angle < T1PT2 between the tangents be θ .

Now, tan i
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= Value of d.c. of f2 (x) at the point of intersection
P (x1, y1).

Orthogonal Curves: Two curves are said to be
orthogonal if they intersect each other at right angles.

Thus, for the curves C1 = y = f1 (x) and C2 = y
= f2 (x) to be orthogonal, they must make at an angle

π
2

 at their point of intersection

∴ = +i i2 12

π

⇒ = −tan coti i2 1

⇒ ⋅ = −tan tani i1 2 1
⇒ ⋅ = −m m1 2 1
⇒  derivative of f1 (x) at (x1, y1) × derivative of

f2 (x) at (x1, y1) = –1.

Remember: 1. Angle between two curves or angle
between two intersecting curves at a point of
intersection or angle of intersection of two curves are
synonyms by which we mean the angle between their
tangents at the point of intersection of two curves.
2. If the angle between the tangents to the two curves

at the point of intersection of two curves is 
π

θ
2
= ,

then the two curves are said to be orthogonal or to
cut orthogonally.
3. ‘Ortho’ means right and gonal means angular.

4. Tangent of an angle between two curves

=

Difference of slopes at their
common point of intersection

1+ product of slopes at their
common points of intersection 

5. When the two curves touch at (x1, y1), θ = 0
⇒ =tan θ 0  ⇒ = ⇒m m1 2  when the slopes of
the tangents (or curves) at their common point of
intersection are same, the curves touch each other.
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6. The equations of the curves may be explicit or
implicit. When the given equation is explicit function
of x only, the derived function contains only x and
when the given equation is implicit function of x and
y, the derived function contains both x and y. This is
why we put only x-coordinate of point of intersection
in the derived function of explicit function while
finding the slopes at the point of intersection of two
given curves while we put x co-ordinate and y co-
ordinate both of point of intersection in the derived
function of implicit function while finding the slopes
at the point of intersection of two given curves.
Types of the problem:
1. Finding the inclination or slopes when x1 and /y1
is given.
2. Finding the equation of the tangent and normal
when x1 and /y1 is given.
3. Finding intercepts and proving the result based
on equation of tangent and normal.
4. Finding (x1, y1) = co-ordinates of the point where
the tangent … and finding the length of perpendicular.
5. Finding the angle of intersection or proving
orthogonal or touch … etc.
6. Proving the equation of tangent and normal to the
curve y = f (x) at any point (x1, y1) to a straight line ax
+ bx + c = 0.
7. Finding the angle between two tangents to a curve
at two given points.
8. Finding the area of a triangle.
9. Finding the length of subtangent and subnormal.

Refresh your memory: In every type of problem, the
equation of the curves in planes may be given in
three forms:
(i) Explicit form: y f x= � � .
(ii) Implicit form: f x y,� � = 0  or constant
(iii) Parametric form: x f t= 1� �

           y f t= 2 � �
Problems based on finding inclination:

Working rule:
1. Find y1  i.e. find d.c of the given equation of the
line.

2. Find ′ =
=

�
�


�

f x x x
y y

� � 1

1

 which is the slope of the

tangent line.
= tan i

3. Find the angle of inclination using tan i = tan α
which ⇒ =i α .

Note: 1. Actually (x1, y1) is taken to be the point of
contact of the tangent and the curve which is given
in the problem.

2. ′ = ==

=

�

�
�
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f x ix x

y y
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1

tan tan α

3. If 
dy

dx
 = an expression in x only, we put only the

value of x coordinate of the given point and if 
dy

dx
 =

f (x, y), we put x coordinate and y coordinate both of
the given point in f (x, y).

4. ′ =

=

�

�
�
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f x x x

y y

� � 1

1

 = value of f ́  (x) at x = x1 and y = y1

which are the coordinates of the point of contact of
the curve and the tangent.

Examples worked out:
Question 1: Find the inclination of the tangent at the

point where x = 1 to the curve y
x

x= − +
3

2

3
2 .

Solution: Given equation of the curve is

y
x

x= − +
3

2

3
2 …(1)

Now, differentiating both sides of (1) w.r.t x, we get

dy

dx

x
x x x= − + = −3

3
2 0 2

2
2

…(2)

Now, ′ = − = − = − =−= =
f x x x

x x
� �

1

2

1

2
2 1 2 1 2 1

⇒ = − = ⇒ =tan tan ºi i1 135 135

Note: If ′ = − ⇒=
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f x x x
y y
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is an obtuse angle.
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Question 2: Find the inclination of the tangent at
(1, 1) lying on the curve y = x2 – x + 1.
Solution: Given equation is y = x2 – x + 1 …(1)

Now, differentiating both sides of (1) w.r.t x

⇒ = − + = −dy

dx
x x2 1 0 2 1

Now, ′ = − = ⋅ − = − =
= =f x x

x x� �
1 1

2 1 2 1 1 2 1 1

⇒ =tan i 1    ⇒ =tan tan ºi 45
⇒ =i 45º

Question 3: Find the inclination of the tangents at the
points (1, 0) and (2, 0) to the curve y = (x – 1) (x – 2).
Solution: Given equation of the curve is y = (x – 1)
(x – 2) …(1)

Now, differentiating both sides of (1) w.r.t x, we get
dy

dx
 = ( 2x – 3)

Now, ′ =
=

f x x
y

� � 1
0

 = The value of 
dy

dx
�
�

�  at (1, 0)

=[2x – 3]x = 1 = 2 – 3 = –1

⇒ =tani –1
⇒ =tan tan ºi 135
⇒ =i 135º ...(2)

Again, ′ ==
=

f x x
y

� � 2
0

 value of 
dy

dx
�
�

�  at (2, 0)

=[2x – 3]x = 2 = 2 × 2 – 3 = 1

⇒ =tan tan ºi 45

⇒ =i 45º …(3)

Hence, the inclinations of the two tangents to the
curve at the points (1, 0) and (2, 0) are 135º and 45º
respectively.

Problems based on finding the slope of a curve at a
given point

Working rule:

1. Find 
dy

dx
 by differentiating both sides of the given

equation w.r.t x.

2. Find ′ =
=

�
�


�

f x x x
y y

� � 1
1

 = Value of 
dy

dx
 at the point

(x1, y1) which is given in the problem.
The slope of the curve = The slope of the tangent.

Remember:
1. Slope of the given curve = the slope of the tangent
at the same point.
2. If x a y b= ⇒ = ±  and tangents are required to

find out at x = a then (x1, y1) = (a, b) and (x2, y2)
= (a, – b) are the two points on the curve where the
tangents are to be found out.

3. If y c x a b= ⇒ = , ,  then (x1, y1) = (a, c), (x2, y2)

= (b, c) are two points on the curve where tangents
are required to find out.

Hence, we see that common x-coordinate or y co-
ordinate is included in both points.

Note:

1. If ′ =f x� �  a function containing only x terms

and no y terms, then we put only the x coordinate of

the given point in derived function ⇒ �
��
�
	
 =

=
�
�


�

dy

dx x a
y b

= �
��
�
	
 =

dy

dx x a
.

2. If ′ =f x� �  a function containing only y terms

and no x terms, then we put only the y coordinate of
the given point in the derived function
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⇒ �
��
�
	
 =

=
�
�


�

dy

dx x a
y b

= �
��
�
	
 =

dy

dx y b
.

3. If ′ =f x� �  derived function = a function con-

taining both x terms and y terms, then we put x-
coordinate and y-coordinate of the given point in the
derived function.

∴ �
��
�
	
 =

=
�
�


�

dy

dx x a
y b

 = ′ =
=

�
�


�

f x x a
x b

� �

4. If ′f x� �  = derived function = a function
containing only constant but no x and y terms, then
we do not put x-coordinate and y-coordinates of the
given point in the derived functions.

Question: How to find the x-coordinate or y-
coordinate of the point lying on the curve whose
equation is given and only one coordinate of the x-
coordinate and y-coordinate is given?
Solution: Since the point lies on the curve, equation
of the curve will satisfy the given equation, i.e. we
put x-coordinate or y-coordinate in the given equation
of the curve and solve for x or solve for y which will
provide us the value of x or value of y representing x-
coordinate or y-coordinate of the points lying on the
curve.
Example: In the curve y2 = 4x, obtain the slope of
the curve at the point where y = 2.
Solution: Before finding the slope of the curve at a
point whose y-coordinate is provided in the question
as y = b (Use y = 2) x-coordinate should be determined
first.

Hence, y x y x
2 2 2

4 4 2= ⇒ = ⇒  or 4x ⇒  4

⇒  x = 1
Therefore, required point of the curve y2 = 4x is (x,

y) = (1, 2)

Notation:
dy

dx x x
y y

�
��
�
	
 =

=
�
�


�1

1

 = value of derived function at

x = x1 and y = y1.

Examples worked out:
Type 1: Finding the slope of a curve at a given point
whose x and /y-coordinate is produced.

N.B.: In such type of problems, we must find the
missing coordinate of the point by putting its value
in the given equation of the curve provided that
derived function does not contain the variable whose
coordinate is given.

Question: In the curve y2 = 4x, obtain the slope of
the curve at the point where y = 2.

Solution: Given equation is y2 = 4x …(1)
Now, differentiating both sides of (1) w.r.t x, we get

2 4y
dy

dx
⋅ �
��
�
	

=

⇒ = = ≠
dy

dx y y
y

4

2

2
0; � �

⇒ �
��
�
	


=
�
��
�
	


= =
= =

dy

dx yy y2 2

2 2

2
1

which is the required slope.

Question: Find the slope of the curve y2 = 4x at the
point where x = 1.
Solution: Given equation is y2 = 4x …(1)

x y y= ⇒ = ⋅ ⇒ = ± = ±1 4 1 4 22

Now, differentiating both sides of (1) w.r.t x, we get

2 4y
dy

dx
⋅ =

⇒ = =
�
��
�
	

⇒ �
��
�
	
 =

=
�
��


��

dy

dx y y

dy

dx x

y

4

2

2
1

2

=
�
��
�
	


= =
=

=

�

�
�



�
�

2 2

2
1

1

2

y x

y

...(2)

O
x

y

P (1, 2)
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and ⇒
�
��
�
	


=
�
��
�
	


=
−

= −=

=

�

�
�



�
�

=

=−

�

�
�



�
�

dy

dx yx

y

x

y

1

2

1

2

2 2

2
1

–

        ...(3)

Hence (2) and (3) are the required slopes.

Question: What is the slope of the curve y = 2x2 –
6x + 3 at the point in the curve where x = 2?

Solution: Given equation of the curve is

y = 2x2 – 6x + 3    …(1)
Now, differentiating both sides of (1) w.r.t x, we get

dy

dx
x= −4 6

Now, the slope of the curve at the point x = 2

∴ �
��
�
	


= − = × − = − =
=

=
dy

dx
x

x
x

2
2

4 6 4 2 6 8 6 2

Question: Find the slope of the ellipse 
x

a

y

b

2

2

2

2
1+ =

at the point where (i) x = a and (ii) y = b.
Solution: � Given equation of the ellipse is

x

a

y

b

2

2

2

2
1+ = …(1)

When x = a, y = 0 [from the given equation]
When y = b, x = 0 [from the given equation]

� Given coordinates are (a, 0) and (0, b)

Now, differentiating both sides of (1) w.r.t x, we get

2 2
0

2 2

x

a

y

b

dy

dx
+ =

or
x

a

y

b

dy

dx2 2
0+�

��

�� =

⇒ = −
�
��


��
⇒
�
��
�
	


=
=
=

�
��


��

dy

dx

b x

a y

dx

dy x a

y

2

2

0

0

⇒ =cot i 0

⇒ =i
π
2

.

⇒  tangent at (a, 0) is perpendicular to x-axis.

Similarly, 
dy

dx
ix

y b

�
��
�
	


= ⇒ ==

=

�

�
�



�
�

0 0 0  which

⇒  Tangent at (0, b) is parallel to x-axis.

Question: Find the slope of the tangent to the curve
y = 2x2 + 3 sin x at x = 0.

What is the slope of the normal at x = 0?
Solution: Given equation is y = 2x2 + 3 sin x …(1)

P

O T
x

y

i

P

O T
x

y

i

O x

y
O

x

y

(0, )b

( , 0)a
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P

O T
x

y

i

P

O T
x

y

i

P

O T
x

y

i

⇒ = +dy

dx
x x4 3 cos

⇒ �
��
�
	


= +
=

=
dy

dx
x x

x
x

0
0

4 3 cos

= 4 · 0 + 3 cos 0 = 0 + 3 · 1 = 3

⇒ �
��
�
	


= =
=

dy

dx x 0

3  Slope of the tangent to the

curve at x = 0.
Now again, we know that slope of the normal is

negative reciprocal of the slope of tangent at the
same point which means slope of the normal

= −
�
��
�
	


= −

=

1 1

3

0

dy

dx x

.

Question: Find the slope of the curve y2 = x at the
point x = 1.
Solution: (1) Given equation is y2 = x

When x =1, y = ± ⇒1  Points are (1, 1) and(1, –1).

(2) Differentiating the given equation w.r.t x, we get

2 1
1

2
y

dy

dx

dy

dx y
= ⇒ =

(3) Slope at (1, 1) = �
��
�
	


=
⋅

=
=
=

dy

dx x
y

1
1

1

2 1

1

2

Slope at (1, –1) = �
��
�
	


=
⋅ −

= −
=
=−

dy

dx x
y

1
1

1

2 1

1

2� �

Question: Find the slope and inclination of the curve
y = x3 + x2 – 4x at the point (1, –2) lying on the curve.
Solution: Given equation of the curve is

y = x3 + x2 – 4x …(1)

Now, differentiating both sides of (1) w.r.t x, we get

dy

dx
x x f x= + − = ′3 2 4

2 � �

⇒ ′ = + − ==
=−

f x x
y

� � 1
2

3 2 4 1

⇒ =tan ψ 1
⇒ =tan tan ºψ 45

⇒ = ⇒ψ 45º  inclination = 45°.

Question: Find the slope of the curve y2 = 4x at the
point (1, 2).
Solution: Given equation of the curve is

y2 = 4x …(1)
Now, differentiating both sides of (1) w.r.t x

⇒ ⋅ = ⋅2 4 1y
dy

dx

⇒ = =
dy

dx y y

4

2

2

⇒ �
��
�
	


= �
��
�
	


= �
��
�
	


= =
=
=

=
= =

dy

dx y yx
y

x
y y

1
2

1
2 2

2 2 2

2
1

Question: Given the curve y = 6x – x2, find the slope
of the curve at (x1, y1) and (0, 0).
Solution: Given equation of the curve is y = 6x – x2
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⇒ = −
dy

dx
x6 2

⇒ �
��
�
	


= − = −
=
=

=
=

dy

dx
x x

x x
y y

x x
y y1

1

1
1

6 2 6 2 1

⇒  The slope of the tangent at (x1, y1)= 6 – 2x1

⇒  The slope of the given curve at (x1, y1)
= 6 – 2x1

Now, the slope of the tangent at (0, 0)

= �
��
�
	


= − =
=
=

=
=

dy

dx
x

x
y

x
y0

0

0
0

6 2 6

(Slope of the curve at P is the slope of the tangent
at P).

Question: Find the slope of y
x

x
=

−
2

1
 at the origin.

Solution: Given equation of the curve is

y
x

x
=

−
2

1
…(1)

Now, differentiating both sides of (1) w.r.t x, we get

dy

dx

x x

x

x

x
=

− −

−
=
− +

−

2 2

2 2

2

2 2

1 2

1

1

1� �

� �

� �

∴ The slope of the curve at the origin (0, 0)

= �
��
�
	


=
− +

−

�

�

�
�
�

�

	








=
− +

−
= − = −=

=
=

=

dy

dx

x

x
x

y
x

y

0

0

2

2 2
0

0

2

1

1

1 0

0 1

1

1
1

� �

� �

� �
� �

Question: Find the slopes of the curve x = y2 – 4y at
the point where it crosses the y-axis.

Solution: Given equation of the curve is x = y2 –4y
…(1)

Now, differentiating both sides of (1) w.r.t x, we get

1 2 4= − ⋅y
dy

dx

dy

dx

⇒ =
−

dy

dx y

1

2 4 …(2)

Since the curve x = y2 – 4y cuts the y-axis where
x = 0

∴ = ⇒ − = ⇒ − = ⇒ =x y y y y y0 4 0 4 0 0 4
2 � � ,

⇒  The two points are (0, 0)and (0, 4) where the
curve crosses the y-axis.

Now, the slope of the curve at (0, 0)

= �
��
�
	


=
−

�
��

�
	

=

⋅ −=
=

dy

dx yx
y

0
0

1

2 4

1

2 0 4

= −1

4
...(3)

Again the slope of the curve at (0, 4)

= �
��
�
	


=
−

�
��

�
	
=

=
=
=

dy

dx yx
y

x
y

0
4

0
4

1

2 4

=
× −

1

2 4 4

=
−

=1

8 4

1

4 ...(4)

Important results to be committed to memory:

1. The geometrical meaning of differential coefficient

dy

dx
 at the point (x, y) of a curve is the tangent of the

angle which the tangent line to the curve at (x, y)
makes with the positive direction of the x-axis.

P

O T
x

y

i

O
x

y

(–4, 2)

(0, 4)

V
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2. (i) The equation of the tangent to the curve y = f (x)

at the point (x1, y1) is y y
dy

dx
x x

p x y

− = �
��
�
	


−1 1
1 1,� �
� � ,

where 
dy

dx p x y

�
��
�
	


1 1,� �
 stands for the value of 

dy

dx
 at the

point P whose x-coordinate = x1 and y-coordinate
= y1.
(ii) If the tangent line to the curve y = f (x) at the point

(x1, y1) is parallel to the x-axis, then 
dy

dx p x y

�
��
�
	


1 1,� �
 = 0.

(iii) If the tangent line to the curve y = f (x) at the
point (x1, y1) is perpendicular to the x-axis, then

dx

dy p x y

�
��
�
	


1 1,� �
 = 0.

3. The angle of intersection of two curves is defined
to be the angle between the tangent lines to the curves
at their points of intersection.
4. We know from coordinates geometry that:
(i) If two lines are parallel, their slopes are equal.
(ii) If two lines are perpendicular, the product of their
slopes = –1 ⇒ = −m m1 2 1  where m1 and m2 are
slopes of two lines perpendicular to each other if m1 =
slope of the tangent line at (x1, y1) to C1

m2 = Slope of the tangent line at (x2, y2) to C2.
(iii) Given equation y = f (x) = an expression contain-
ing only x terms ⇒  Explicit function.
(iv) Given equation  f (x, y) = 0 or c (c = any constant)
= an expression containing both x and y terms ⇒
Implicit function.

N.B.: Generally tangent means trigonometrical
tangent which is written in short tan. Whereas tangent
line means geometrical tangent which represents a
line to a curve at a point. Moreover, whenever we say
the tangent to a curve y = f (x) at the point P (x, y), we
understand geometrical tangent or the tangent line to
a curve at a point.

Type 2: Working rule to find the equation of the
tangent to any curve y = f (x) at the point (x1, y1) of
the curve whose x-coordinate x1 = a is given and y-
coordinate is absent.

Step 1: Find y1 if it is not given in the following way:
Put the given x-coordinate of the point P (x1, y1)

on the curve y = f (x) in the given equation of the
curve y = f (x) i.e., y1 = f (x1).

Step 2: Find 
dy

dx
 by differentiating the equation of

the given curve w.r.t x using the rule of explicit and
implicit function provided the given equation is explicit
or implicit.

Step 3: Find the value of 
dy

dx
 at the given point

P (x1, y1). This gives us the slope ‘m’ of the tangent
line at the given point.
Step 4: Now put the value ‘m’ in the equation of the
tangent line y – y1 = m (x – x1) where x1, y1 are the
given coordinates of the point where tangent line is
drawn to the curve.

Note: 1. The equation of the tangent line must be
simplified as much as possible.
2. If x-coordinates and y-coordinate both of a point
P are given which is generally represented as P (x1, y1)

or (x1, y1), then we directly find 
dy

dx
 by differentiating

the equation of the given curve w.r.t x and we follow
the steps (3) to (4).
3. How to find the slope or the gradient of a given
curve y = f (x) at a point P (x1, y1) of the curve where
x-coordinate = x1 = a is given.
Method: (i) Find y1 if it is not given.

(ii) Find 
dy

dx

(iii) Find 
dy

dx
m

x x a
y y f a

�
��
�
	


=
= =
= =

1

1 � �

4. Remember:

(i) If 
dy

dx p

�
��
�
	


= 0 , then tan ψ ψ= ⇒ =0 0  at P.

This means that the tangent line at P is parallel to the
x-axis.

(ii) If 
dx

dy
p

�
��
�
	


= 0  then the tangent line at P is

perpendicular to the x-axis and parallel to y-axis.
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Notation: 1. Slope of the tangent line at P of the

curve y = f (x) is 
dy

dx p

�
��
�
	
 .

2. The slope of the normal at P of the curve y = f (x)

is −
�
��
�
	


1
dy

dx p

.

3. Equation of the tangent to the curve y = f (x) at the

point (x, y) is Y – y = 
dy

dx
 (X – x) since (x, y) is given

point, so we use X and Y for current coordinates.
N.B.: 1. In question generally (x1, y1) notation are
used instead of (x, y) so we have

y y
dy

dx
x x

x x
y y

− = �
��
�
	


−
=
=

1 1
1

1

� �  for the equation of the

tangent. This notation in tangent line equation is
common in use.

2. The value of 
dy

dx
 at P (x, y) is denoted by 

dy

dx

itself, 
dy

dx x x
y y

�
��
�
	


=
=
=

dy

dx
.

3. The value of 
dy

dx
 at P (x1, y1) is given by

dy

dx
m

x x
y y

�
��
�
	


=
=
=

1
1

About the figure
Draw the figure provided it is easily possible to do

so even though drawing a rough sketch of the figure
is not necessary.

Working rule to find the equation of the normal at
the point P (x1, y1) whose x-coordinate x1 = a is given
( P lies on the curves y = f (x)).
1. Find y1 by putting x1 in the given equation of the
curve y = f (x) i.e., y1 = f (x1).

2. Find 
dy

dx
 by differentiating the equation of the

given curve w.r.t x using the rule of explicit and implicit
function provided the given equation is explicit or
implicit function.

3. Find the value of 
dy

dx
 at the given point P (x1, y1).

This gives the slope ‘m’ of the tangent line at the
given point.
4. Now put the value ‘m’ in the equation of the normal

y y
m

x x− = − −1 1
1 � � .

Note: 1. If x-coordinate and y-coordinate both of a

point P are given, then we directly find 
dy

dx
 by

differentiating the equation of the curve w.r.t x and
we follow the steps (3) and (4).
2. The derivative of the function y = f (x) at the point
x0 is equal to the slope of the tangent line to the
graph of the function y = f (x) at the point M (x0, f (x0)).

Question: What is the slope of the normal to the curve
y = 2x2 – 6x – 3 at the point in the curve where x = 2.
Solution: Given equation of the curve is

y = 2x2 – 6x – 3 …(i)
Now, differentiating both sides of (i) w.r.t x, we get

dy

dx
 = 4x – 6

Now, 
dy

dx x

�
��
�
	


=
=2

 slope of the tangent line to the

graph of the function y = f (x) at the point (2, –7)
= (x0 , f (x0)).

[�  y = 2x2 – 6x – 3
⇒  [y]2 = 2 × 4 – 6 × 2 – 3

= 8 – 12 – 3
= –7]
= [4x – 6]x = 2
= 4 × 2 – 6
= 8 – 6
= 2

∴  slope of the normal at (2, –7) is − 1

2
.

P 
x , f (x
(2, –1)

= ( ))  0 0

O
x

y
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Examples worked out:

Question: Find the equation of the tangent to the

curve y x= −10
2

 at the point whose x-coordinate

is 1.
Solution: (1) Given equation of the curve is

y x= −10
2

∴ = ⇒ = − = =x y1 10 1 9 3

∴ =x y1 1 1 3, ,� � � �
(2) Now, differentiating both sides of the given

equation y x= −10
2

 w.r.t x

⇒ =
−

× −dy

dx x
x

1

2 10
2

2
� �

.

(3) m
dy

dx x

= �
��
�
	


=
−
−

= −
=1

1

10 1

1

3

(4) Equation of the tangent is (y – y1) = m (x – x1)

i.e., y x− = − −3
1

3
1� � � �

Question: Find the equation of the normal to the curve
y = ex at the point where x = 0.
Solution: (1) Given equation of the curve is y = ex

� x y e= ⇒ =0 º = 1

∴ = ⇒ =x y1 10 1

(2) y e
dy

dx
e

x x
= ⇒ =

(3) m
dy

dx
e e

x
y

x

x
y

= �
��
�
	


= = =
=
=

=
=

0
1

0
1

1º

∴− = −
�
��
�
	


= −

=
=

1 1
1

0
1

m dy

dx x
y

(4) Equation of the normal at (0, 1) is ( y – y1)

=
−

−
1

1m
x x� �

⇒ − = − −y x1 1 0� � � � � �
⇒ − = −y x1 1 � �
⇒ − = −y x1
⇒ + − =y x 1 0

Question: Find the equation of the tangent to the

curve y = sin x at x = =π
6

30º .

Solution: Given equation of the curve is y = sin x
…(1)

� x y= ⇒ = =π π
6 6

1

2
sin

∴ = ⇒ =x y1 16

1

2

π

∴ = ��

�x y1 1 6

1

2
, ,� � π

Now 
dy

dx
x= cos

⇒ �
��
�
	


= =
=
=

dy

dx x
y

π

π
6

1 2
6

3

2
cos

∴  The equation of the tangent at (x1, y1) is

y y
dy

dx
x xx x

y y

− = �
��
�
	


−=

=

1 1
1

1

� �

⇒ −�
�


� = −��


�y x

1

2

3

2 6

π

⇒ − = − × ⇒ − = −y x y x
3

2

1

2

3

2 6

3

2

1

2

3

12

π π

Question: Find the equation of the normal to the curve
y = 2x + 3x3 at the point where x = 3.
Solution: Given equation is y = 2x + 3x3 …(1)

� x y= ⇒ = × + × =3 2 3 3 3 87
3

∴ = =x y1 13 87,

(x1, y1) = (3, 87)
Now, we are required to find out the equation of

the normal at (3, 87).
Differentiating (1) w.r.t x, we get
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dy

dx
x x= + × = +2 3 3 2 9

2 2

Now, m
dy

dx
xx x

y y

x

y

= �
��
�
	


= +=

=

=

=
1

1

2 9 2 3

87

= [2 + 9 × 32] = [2 + 9 × 9] = 83

∴  Slope of the normal = − = −
1 1

83m
∴  Equation of the normal is

y y
m

x x− = − −1 1
1� � � �

⇒ − = − −y x87
1

83
3� � � �

⇒ − = − +83 7221 3y x

⇒  x + 83y = 7224

Question: Find the equation of the normal to the curve
2x2 – 3x + 2y2 – xy = 0 at the point where x = 1.
Solution: Given equation of the curve is

2x2 – 3x + 2y2 – xy = 0 …(1)
Now, differentiating (1) w.r.t x, we get

2 2 3 2 2 1 0⋅ − + ⋅ ⋅ − ⋅ − × =x y
dy

dx
x

dy

dx
y

⇒ − = − + +
dy

dx
y x x y4 4 3� �

⇒ =
− + +

−
dy

dx

x y

y x

4 3

4� �
Now putting x =1 in the equation of the curve, we

get

2 3 2 02 2

1
x x y xy

x
− + − =

=

∴ ⋅ − × + × − ⋅ =2 1 3 1 2 1 0
2

y y

⇒ − − =2 1 0
2

y y

⇒ + − =2 1 1 0y y� � � �

⇒ = = −y y1
1

2
or

∴  x = 1 corresponds to two points whose

coordinates are (1, 1) and 1
1

2
, −�
�


� .

Now, slope of the tangent to the curve at the point
(1, 1).

= �
��
�
	


=
− +

−
�
��

�
	
=

=
�
�


� =

=

dy

dx

x y

y xx
y

x
y

1
1

1
1

3 4

4

=
− +
−

= =
3 4 1

4 1

0

3
0 …(2)

Slope of the tangent to the curve at the point

1
1

2
, −�
�


� .

= �
��
�
	


=
− +

−
�
��

�
	
=

=−
�
�


� =

=−

dy

dx

x y

y xx
y

x
y

1
1 2

1
1 2

3 4

4

=
− −

− −
=

3 4 1
2

2 1

1

2
…(3)

(2) ⇒  The tangent at (1, 1) is parallel to x-axis

since 
dy

dx x x
y y

�
��
�
	


=
=
=

1

1

0 ⇒  tangent is parallel to x-axis

through (1, 1).
⇒  the normal is parallel to y-axis through (1, 1)

⇒  The equation of this normal is x = 1.

(3) ⇒  The slope of the tangent at 1
1

2

1

2
, −�
�


� =

⇒  The slope of the normal is negative reciprocal

of 
1

2
2= − .

⇒  Equation of the normal at 1
1

2
, −�
�


�  is

y y
dy

dx

x x

x

y

− = − �
��
�
	


⋅ −

=

=−

1

1

1 2

1
1 � �

∴ − −��

� = − −y x

1

2
2 1� �

∴ + = − −y x
1

2
2 1� �
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∴ + = − +y x
1

2
2 2

∴ + + − =y x
1

2
2 1 0� �

∴ + =y x2
3

2
.

Question: Find the equation of the tangent and
normal to the curve y2 (2a – x) = x3 at points on it
where x = a.
Solution: Given equation of the curve is

y2 (2a – x) = x3 …(1)
Put x = a in (1), we get y2 (2a – a) = a3

⇒ ⋅ = ⇒ = ⇒ = ±y a a y a y a
2 3 2 2

⇒  Two points (a, +a) and (a, –a) correspond to x
= a

Now, differentiating the equation of the curve (1)

w.r.t x, we get 2 2 3
2 2

y
dy

dx
a x y x⋅ − − =� �

⇒ =
+
−

2
3

2

2 2

y
dy

dx

x y

a x

⇒ = ⋅
+
−

dy

dx y

x y

a x

1

2

3

2

2 2

⇒ �
��
�
	


= − ⋅ ==

=

dy

dx a

a

ax a

y a

1

2

4
2

2

⇒  The slope of the tangent = 2 at (a, a)

⇒  The slope of the normal = − 1

2
 at (a, a)

Similarly,
The slope of the tangent = –2 at (a, – a)

⇒  The slope of the normal = − −��

� =

1

2

1

2
 at

(a, –a).
Now, the equation of the tangent at (a, a) is

(y – a) = +2 (x – a) ⇒  y – 2x + a = 0
Equation of the normal at (a, a) is

y a x a− = − −� � � �1

2

⇒ + − =2 3 0y x a

Similarly, the equation of the tangent at (a, –a) is

y a x a y x a+ = − − ⇒ + − =� � � �2 2 0

and the equation of the normal at (a, –a) is

y a x a y x a+ = − ⇒ − + =� � � �1

2
2 3 0

Question: Find the equation of the tangent to the
curve y = x3 – 2x2 + 4 at (2, 4).
Solution: y = x3 – 2x2 + 4 is the equation of the curve.

…(1)
Differentiating both sides of (1) w.r.t x, we get

dy

dx
x x= −3 42

∴  The slope of the tangent at (2, 4)

= �
��
�
	


= − = − ==

=
=

dy

dx
x xx

y

x2

4

2

2

2
3 4 3 2 4 2 4� � � �

Now, the equation of the tangent to the curve at
(2, 4) is

y x y x− = − ⇒ − + =4 4 2 4 4 0� �
Question: Find the equation of the tangent to the

curve xy = 1 at the point 3
1

3
,��

� .

Solution: xy = 1 is the given equation of the curve.
…(1)

Differentiating both sides of this equation (1) w.r.t

x, we get y x
dy

dx
+ = 0

⇒ = −
dy

dx

y

x

∴ The slope of the tangent at 3
1

3
,��

�  is

dy

dx

y

xx
y

x
y

�
��
�
	


=
−�
��
�
	


=
−

= −
=
=

=
=

3
1 3

3
1 3

1
3

3

1

9

∴  The equation of the tangent at 3
1

3
,��

�  is

y x−��

� = − −1

3

1

9
3� �

⇒ + − =x y9 6 0
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Question: Find the equations of the tangent and
normal at (1, 4) to the curve y = 2x2 – 3x + 5.
Solution: y = 2x2 – 3x + 5 is the given equation of the
curve. …(1)

Now, differentiating both sides of the equation (1)

w.r.t x, we get 
dy

dx
 = 4x – 3

Now, the slope of the tangent at (1, 4)

= = �
��
�
	


= − = − =
=
=

=m
dy

dx
x

x
y

x1
4

1
4 3 4 3 1

∴  Negative reciprocal of the slope of the tangent

= − = −1
1

m

∴ Equation of the tangent to the curve at (1, 4) is

y y m x x− = −1 1� � � �  ⇒ − = −y x4 1 1� �
⇒ − − =y x 3 0

Equation of the normal to the curve at (1, 4) is

y y
m

x x y x− = − − ⇒ − = − −1 1
1

4
1

1
1� � � � � �

⇒ − = − −y x4 1� �
⇒ − = − + ⇒ + − =y x x y4 1 5 0

Question: Obtain the equation of the tangent to the
curve 3y = x3 – 3x2 + 6x at the point (3, 6) on it.
Solution: Given equation is 3y = x3 – 3x2 + 6x    …(1)

Now, differentiating the equation (1) w.r.t x we get

3 3 6 6 2 2
2 2dy

dx
x x

dy

dx
x x= − + ⇒ = − +

∴ The slope of the tangent at (3, 6) on the curve

= �
��
�
	
 =

=

dy

dx x
y

3
6

= [x2 – 2x + 2]x = 3 = 32 – 2 × 3 + 2 = 9 – 6 + 2 = 5

∴  Equation of the tangent is y – 6 = 5 (x – 3)

⇒  y – 6 = 5x – 15 ⇒  y – 5x = –15 + 6

⇒ y – 5x = –9 ⇒  y – 5x + 9 = 0 ⇒  5x – y – 9 = 0
Question: Find the equation of tangents to the curve
y = (x3 – 1) (x – 2) at the points where the curve cuts
the x-axis.

Solution: Given equation is y = (x3 – 1) (x – 2)    …(1)
The curve cuts the x-axis where y = 0 and y = 0

⇒  (x3 – 1) (x – 2) = 0

⇒  either (x – 2) = 0 or (x3 – 1) = 0

⇒  x = 2 or x3 = 1

⇒  x = 2 or x = 1 ⇒  x = 1, 2
Thus, the points are (1, 0) and (2, 0).
Now, differentiating both sides of (1) w.r.t x, we get

dy

dx
x x x x x= − + − ⋅ = − −3 2 1 1 4 6 1

2 3 3 2� � � �

⇒ �
��
�
	


= − −
=
=

=

dy

dx
x x

x
y

x1
0

3 2

1
4 6 1

= 4 – 7 = – 3

and dy

dx
x x

x
y

x

�
��
�
	


= − −
=
=

=2
0

3 2

2
4 6 1

= 4 × 8 – 6 × 4 – 1 = 7
Now, the equation of the tangents at (1, 0) is

y
dy

dx
x

x
y

− = �
��
�
	


−
=
=

0 1
1
0

� � � �

⇒ − = − −y x0 3 1� � � �
⇒ = − +y x3 3

⇒ + − =y x3 3 0

The equation of the tangents at (2, 0) is

y
dy

dx
x

x
y

− = �
��
�
	


−
=
=

0 2
2
0

� � � �

⇒ − = −y x0 7 2� � � �
⇒ = −y x7 14

⇒ − + =y x7 14 0

Question: Find the equation of the tangent to the
curve x2 + 4y2 – 4x = 0 at the point (4, 0).

Solution: Given equation is x2 + 4y2 – 4x = 0 …(1)
Now, differentiating both sides of (1) w.r.t x, we get

dy

dx

x

y
=

−2

4
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∴
�
��

��

=
=
=

dx

dy x

y

4

0

0

⇒  The tangent is perpendicular to x-axis or
parallel to y-axis.

⇒  In this case the tangent line is the line through
the point (4, 0) parallel to y-axis.

⇒  Its equation is x = 4.

Question: Find the equation of the tangent at the
point (1, –1) on the curve x3 – xy2 – 4x2 – xy + 5x + 3y
+ 1 = 0.
Solution: Given equation of the curve is x3 – xy2 –
4x2 – xy + 5x + 3y + 1 = 0 …(1)

Now, differentiating both sides of (1) w.r.t x, we get

3 2 8 5 3 0
2 2

x xy
dy

dx
y x x

dy

dx
y

dy

dx
− − − − − + + =

⇒ − − + − − − + =dy

dx
x xy x y x y3 2 3 8 5 0

2 2� �

⇒ =
− + + −

− −
dy

dx

y x x y

x xy

2 2
3 8 5

3 2

∴  The slope of the tangent to the curve at (1, –1)

= �
��
�
	


=
− + − −

− +
= =

=
=−

dy

dx x
y

1
1

1 3 8 1 5

3 1 2

0

4
0

Hence, the required equation of the tangent to the

curve at (1, –1) is y
dy

dx
x

x
y

− − = �
��
�
	


× −
=
=−

1 1
1

1

� �� � � �

⇒  y + 1 = 0 · (x – 1)

⇒  y + 1 = 0
Question: Find the equations of the tangent and
normal to the curve y2 = x at the point (1, 1).

Solution: Given equation of the curve is y2 = x
…(1)

and (x1, y1) = (1, 1)

Differentiating both sides of (1) w.r.t x, we get

2 1
1

2
y

dy

dx

dy

dx y
= ⇒ =

Now, the slope of the tangent at (1, 1)

= �
��
�
	


= �
��
�
	


=
=
=

=
=

dy

dx yx
y

x
y

1
1

1
1

1

2

1

2

The slope of the normal at (1, 1) = negative
reciprocal of slope of tangent = –2

∴ Equation of the tangent is

(y – y1) =
�
��
�
	


× −
=
=

dy

dx
x x

x
y

1
1

1� �

⇒ − = − ⇒ − + =y x x y1
1

2
1 2 1 0� � � �

Again equation, of the normal to the curve at (1, 1)
is

y y x x− = − × −1 1
1� � � �

Slope of the tangent

⇒ − = − × − ⇒ − = − −y x y x1
1
1
2

1 1 2 1� � � � � � � �

⇒  (y – 1) = –2 (x – 1)

⇒  (y – 1) = –2x + 2

⇒ 2x + y – 3 = 0

Question: Find the equations of tangents and normals
to the curve yx2 + x2 – 5x + 6 = 0 where it cuts the axis
of x.

Solution: The curve yx2 + x2 – 5x + 6 = 0 …(1)
Cuts the axis of x at the points where y = 0
y = 0 ⇒  0 · x2 + x2 – 5x + 6 = 0 ⇒  x2 – 5x + 6 = 0

⇒  (x – 2) (x – 3) = 0 ⇒  x = 2, 3
Thus, the given curve cuts the x-axis at the points

(2, 0) and (3, 0).
Now, differentiating both sides of (1) w.r.t x, we get

y x x
dy

dx
x⋅ + + − =2 2 5 0

2

(4, 0)O

90

x

y

p
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⇒ =
− −dy

dx

x xy

x

5 2 2
2

Now, the slope of the tangent at (2, 0)

= �
��
�
	


= − −�
��

�
	
=

=
=
=

dy

dx

x xy

xx
y

x
y

2
0

2
2
0

5 2 2

=
− × − × ×

=
−

=
5 2 2 2 2 0

2

5 4

4

1

42

again, the slope of the tangent at (3, 0)

=
− × − × ×

= −
5 2 3 2 3 0

3

1

92

∴ The equation of the tangent to the curve at
(2, 0) is

y
dy

dx
x

x
y

− = �
��
�
	


−
=
=

0 2
2
0

� � � �

⇒ − = −y x0
1

4
2� �

⇒ = −4 2y x

Again the tangent to the curve at (3, 0) is

y x− = − −0
1

9
3� �

⇒  9y = –x + 3

⇒  x + 9y = 3
Now, the slopes of the normal at (2, 0) and (3, 0) are

– 4 and 9 respectively.
Normal at (2, 0) is y – 0 = – 4 (x – 2) ⇒  y + 4x = 8
And normal at (3, 0) is y – 0 = 9 (x – 3)

⇒  y = 9x – 27

Question: Find the equation of the tangent to the

curve y
x

x
=

+2
1

 at (0, 0).

Solution: Given equation of the curve is

y
x

x
=

+2
1

…(1)

Now differentiating both sides of the equation (1)
w.r.t x, we get

dy

dx

x x

x

x

x
=

+ −

+
=

−

+

2 2

2 2

2

2 2

1 2

1

1

1� � � �

Now, the slope of the tangent to the curve at (0, 0)

= �
��
�
	


=
−

+

�

�

�
�
�

�

	








=
−

+

�

�
�
�

�

	




=

=
=

=

dy

dx

x

x
x
y

x

0
0

2

2 2

0

2

1

1

1 0

0 1
1

� � � �

Now, the equation of the tangent at (0, 0) is

y
dy

dx
x

x
y

− = �
��
�
	


× −
=
=

0 0
0
0

� � � �

⇒  y – 0 = 1 (x – 0)

⇒  y = x

Question: Find the equation of the normal to the curve
y = ex at the point (0, 1).
Solution: Given equation is y = ex …(1)

Now, differentiating both sides of (1) w.r.t x, we get

dy

dx
e

x
=

Now, m
dy

dx x
y

= �
��
�
	


=
=
=

0
1

 the value of 
dy

dx
 at (0, 1)

= = ==
=

e e
x

x
y

0
1

1º

⇒  Slope of the tangent passing through (0, 1) = 1
Hence, the equation of the normal to the curve at

(0, 1) is

y y
m

x x− = − −1 1
1� � � �

⇒ − = − −y
m

x1
1

0� � � �

⇒  (y – 1) = –1 (x – 0)

⇒  y + x – 1 = 0

Question: Find the equation of the normal to the curve
9x2 – 4y2 = 108 at the point (4, 3).
Solution: Given equation of the curve is 9x2 – 4y2

= 108 …(1)
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Now, differentiating both sides of (1) w.r.t x, we get

9 2 4 2 0⋅ − ⋅ =x y
dy

dx

⇒ =
dy

dx

x

y

9

4

Now, m
dy

dx x
y

= �
��
�
	
 =

=
4
3

 = The value of 
dy

dx
at (4, 3)

= �
��
�
	


=
×
×

=
=
=

9

4

9 4

4 3
3

4
3

x

y x
y

⇒  The slope of the normal at (4, 3) = − = −1 1

3m
Hence, the required equation of the normal is

y x− = − −3
1

3
4� � � �

⇒ − = − +3 9 4y x

⇒ + =x y3 13

Question: Find the equations of the tangent and
normal to the circle x2 + y2 = a2 at the point (x1, y1).
Solution: The point (x1, y1) lies on the curve

x2 + y2 = a2 …(1)

⇒ + =x y a1
2

1
2 2 …(2)

Now, differentiating both sides of the given
equation of the circle (1) w.r.t x, we get

d

dx
x y

d

dx
a

2 2 2+ =

⇒ + ⋅ = ⇒ = −2 2 0x y
dy

dx

dy

dx

x

y

Now m
dy

dx x x
y y

= �
��
�
	


=
=
=

1

1

 The value of 
dy

dx
 at the

point (x1, y1)

= −�
��
�
	


= −
=
=

x

y

x

yx x
y y

1
1

1

1

∴ Required equation of the tangent to the curve

at the point (x1, y1) is y y
x

y
x x− = − −1

1

1
1� � � �

⇒  y y1 – y1
2 = –x x1 + x1

2 ⇒  x x1 + y y1 = x1
2 + y1

2

= a2 from (2)
Again the slope of the normal at (x1, y1) negative

reciprocal of the slope of tangent
∴  Required equation of the normal to the curve at

(x1, y1) is y y
y

x
x x− = −1

1

1
1� � � �  ⇒ x1 y – x1 y1

= xy1 – x1 y1 ⇒  xy1 – x1 y = 0

Question: Find the equation of the tangent and normal

to the ellipse 
x

a

y

b

2

2

2

2
1+ =  at the point (x1, y1).

Solution: Equation of the curve is

b2 x2 + a2 y2 = a2 b2 …(1)
Differentiating both sides of (1) w.r.t x, we get

2 2 02 2b x a y
dy

dx
+ =

⇒ = −dy

dx

b x

a y

2

2

∴ The value of 
dy

dx
 at the point (x1, y1)

= �
��
�
	


= − ==

=

dy

dx

b x

a y
mx x

y y

1

1

2
1

2
1

∴  Required equation of the tangent is

y y
b x

a y
x x− = − −1

2
1

2
1

1� � � �

⇒ − = − +a y y a y b x x b x2
1

2
1
2 2

1
2

1
2

⇒ + = +b x x a y y b x a y
2

1
2

1
2

1
2 2

1
2

Now, dividing both sides by a2b2, we get

x x

a

y y

b

x

a

y

b

1
2

1
2

1
2

2
1
2

2
1+ = + =

[� x y1 1,� �  lies on the ellipse]
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Now, the slope of the normal = Negative reciprocal
of the slope of the tangent

=
a y

b x

2
1
2

2
1
2

∴ Required equation of the normal to the curve at
(x1, y1) is

y y
a y

b x
x x− = −1

2
1

2
1

1� � � �

⇒
−

=
−a x x

x

b y y

y

2
1

1

2
1

1

� � � �

⇒ − = −a x

x
a

b y

y
b

2

1

2
2

1

2

⇒ − = −a x

x

b y

y
a b

2

1

2

1

2 2

Question: Find the equation of the normal to the

curve
x

a

y

b

2

2

2

2
1− =  at the point (x1, y1).

Solution: Given equation of the curve is

x

a

y

b

2

2

2

2
1− = …(1)

Now, differentiating both sides of the equation of
the curve (1) w.r.t x, we get,

(i)
2 2

0
2 2

x

a

y

b

dy

dx
− =

⇒ =dy

dx

b x

a y

2

2

∴  The value of 
dy

dx
 at the point (x1, y1)

= �
��
�
	


==

=

dy

dx

b x

a yx x

y y

1

1

2
1

2
1

∴ The slope of the normal at (x1, y1)

= −
a y

b x

2
1

2
1

Hence, the equation of the normal at (x1, y1) is

y y
a y

b x
x x− = − −1

2
1

2
1

1� � � �

⇒
−

=
− −b y y

y

a x x

x

2
1

1

2
1

1

� � � �

⇒
−
�
��

��
=

−

−

�
��


��

x x

x

a

y y

y

b

1

1
2

1

1
2

Question: Find the equation of the tangent and
normal to the curve y (2a – x) = x2 at the point (a, a).
Solution: The equation of the curve is

y (2a – x) = x2 …(1)

Now, differentiating both sides of the equation (1)
w.r.t x, we get,

y a x
dy

dx
x0 1 2 2− + − =� � � �

⇒ =
+
−

dy

dx

x y

a x

2

2

∴ �
��
�
	


= +
−

=
=
=

dy

dx

a a

a ax a
y a

2

2
3

∴ The slope of the normal at (a, a) = − 1

3

Hence, the equation of the tangent at (a, a) is
y – a = 3 (x – a)

⇒  y = 3x – 2a and the equation of the normal is

y – a = −
1

3
 (x – a)

⇒  3y – 3a = –x + a

⇒  x + 3y = 4a

Question: Prove that the normal to the curve 9x2 –
4y2 = 128 at the point (4, 2) lying on it intersects the x-
axis at a distance 13 from the origin.
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Solution: Given equation of the curve is
9x2 – 4y2 = 128 …(1)

Differentiating both sides of the equation (1) w.r.t
x, we get,

9 2 4 2 0× − × =x y
dy

dx

⇒ =
dy

dx

x

y

9

4

Now, the slope of the tangent at (4, 2)

= �
��
�
	


=
�
��
�
	
=

=

=

=

dy

dx

x

yx

y

x

y

4

3

4

2

9

4

=
×
×

=
9 4

4 2

9

2

and the slope of the normal at (4, 2)

= − = −
1 2

9slope of tangent

∴ Required equation of the normal at (4, 2) to the
curve 9x2 – 4y = 128 is

y y x x− = − −1 1
2

9
� � � �

⇒ − = − −y x2
2

9
4� � � �

⇒  9y – 18 = –2x + 8

⇒  2x + 9y = 26

⇒  x = 13  when  y = 0

Problems based on finding the constants present in
the equation of the curve.

Working rule:

1. Obtain the equation of the tangent to the curve.
2. Write the given equation of the tangent to the
curve.
3. Equate the coefficients of x in both the equations
of the curve which will given us the value of one
constant.
4. Put this value of one constant in the equation of
the curve which contains another constant passing
through the given point (x1, y1).

N.B.: Given conditions provide us the value of
required constants.

Examples worked out:

Question: The equation of the tangent at the point
(2, 3) on the curve y2 = ax2 + b is y = 4x – 5, find the
values of a and b.
Solution: Given equation of the curve is

y2 = ax2 + b …(1)
On differentiating both sides of (1) w.r.t x, we get

2 2y
dy

dx
ax=

⇒ = = ⋅
dy

dx

ax

y
a

x

y

⇒ �
��
�
	


= ⋅
�
��

�
	
=

=

=

=

dy

dx
a

x

yx

y

x

y

2

3

2

3

= =2

3
a  slope of the tangent at (2, 3)

Now, the equation of the tangent is y = 4x – 5
which tells us the slope of the tangent = 4 …(3)

∴ Equating equations, (2) and (3), we get

2

3
4a =

⇒ = × =a 4
3

2
6

Again equation of the curve is y2 = ax2 + b which
passes through (2, 3).

∴ = × +3 6 22 2 b

⇒  9 = 6 × 4 + b

⇒  9 – 24 = b

⇒ b = –15
Hence, a = 6, b = –15

Note:

y y
dy

dx
x xx x

y y

− = �
��
�
	


−=

=

1 1
1

1

� � � �

⇒ − = −y a x3
2

3
2� � � �

⇒ − = −y ax
a

3
2

3

4

3
� �
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⇒ = − +y ax
a2

3

4

3
3

⇒ = −�
��


��y ax

a2

3

4

3
3– …(1)

Comparing this equation (1) with the given
equation of the tangent y = 4x – 5 and equating the
coefficients of x in both equations, we get

2

3
4

4 3

2
6a a= ⇒ =

×
= .

We see that 
4

3
3

a −  = − =4 6

3
3 5

.
, as it should

be.

Question: If the equation of the normal to the curve
y = x3 + x – 2 at the point (1, 0) on it is y = ax + b, then
find the value of a and b.
Solution: Given equation of the curve is

y = x3 + x – 2 …(1)
Differentiating (1) w.r.t. x, we get

dy

dx
x= +3 12

∴  Slope of the tangent at (1, 0)

= �
��
�
	


= + = + =
=
=

=
=

dy

dx
x

x
y

x
y

1
0

2

1
0

3 1 3 1 4

∴ Slope of the normal at (1, 0) = −
1

4
The equation of the normal to the curve at (1, 0) is

y y x x− = × −1 1
1� � � �

Slope of tangent

⇒ − = − −y x0
1

4
1� � � �

⇒ = − +y x
1

4

1

4
…(2)

Also the equation of the normal is y = ax + b
Comparing eqn (2) with the given equation of the

normal y = ax + b and equating the coefficients of x,

a = − 1

4
 and b = 1

4
…(3)

Note:

Putting this value of a = −
1

4
 in y = ax + b, we get,

y b= − +1

4

and this line passes through (1, 0) ⇒ = − +0
1

4
b

⇒ + =0
1

4
b

⇒ =b
1

4

Question: If there are two values of a such that the
tangents at x = 1 and x = 3 to the curve

y = ax2 – 2x – 1
are perpendicular, find the two values of a.
Solution: Given equation of the curve is

y = ax2 – 2x – 1 ...(1)

Differentiating (1) w.r.t. x, we get

dy

dx
 = 2ax – 2

⇒ �
��
�
	
 =

dy

dx x 1
 = 2a – 2 = m1 (say) …(2)

and 
dy

dx x

�
��
�
	
 =3

 = 2 × 3a – 2 = 6a – 2 = m2 (say) …(3)

The tangents at x = 1 and x = 3 are perpendicular.

⇒  m1 m2 = –1

⇒  (2a – 2) × (6a – 2) = –1

⇒  12a2 – 16a + 5 = 0

⇒  (2a – 1) (6a – 5) = 0

⇒ = =a a
1

2

5

6
or

Problems based on perpendicularity and touching.

Working rule to show that two curves intersect at
right angles:

1. Find the point of intersection of two curves by
solving the given equations simultaneously provided
the point of intersection is not given.
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2. Find the differential coefficient 
dy

dx
 from each given

equation.

3. Find the value of 
d

dx
f x� �  and 

d

dx
g x� �  at the

point of intersection which will represent m1 and m2
respectively.
4. If m m1 2 1= − , then two curves cut orthogonally
or they intersect at right angles at the point of
intersection.

Note: 1. To show that two curves are perpendicular
to each other at a given point (x1, y1) means (x1, y1) is
the point of intersection of two given curves whose
equations are given. This is why there is no need to
find the point of intersection of two curves.
2. To show that two tangents to a curve y = f (x) at a
given point x0 are perpendicular to each other means

we have to show m m1 2 1= − , where

m
dy

dx x x
y f x

1
0

0

= �
��
�
	
 =

= � �

m
dy

dx x x

y f x

2
0

0

= �
��
�
	
 =

= � �

x0 = given x-coordinate of the point where the

tangents are perpendicular and f x f x
x x0

0
� � � �=

=

is required to find out.

Working rule to show that two curves touch each
other
1. Find the point of intersection of two curves by
solving simultaneously by the given equations of
the curves (or, the curve and a line) provided the
point of intersection is not given.

2. Find the differential coefficient 
dy

dx
 from each given

equation.

3. Find the values of 
d

dx
f x� �  and 

d

dx
g x� �  at the

point of intersection which will represent tan ψ1  and

tan ψ2  respectively.

4. If tan tan i.e.ψ ψ ψ ψ1 2 1 2= =  then two
curves touch each other.
Note: 1. To show that two curves touch each other
at a given point (x1, y1) means (x1, y1) is the point of
intersection. This is why there is no need to find the
point of intersection of two curves.

Question: What is the criteria to show that two curves
touch each other?
Solution: The two curves touch each other provided

d

dx
f x

d

dx
g x

p p

� � � ��
��

�
	


= �
��

�
	


� tan tanψ ψ ψ ψ1 2 1 2= ⇒ =
Where P is the point of intersection determined

by solving the given equation if it is not given.

Examples worked out:

Question: Show that the curves 2y = 3x + x2 and
y2 = 2x + 3y intersect at right angles at the origin (0, 0).
N.B.: Here the point of intersection (0, 0) º origin is
given.

∴  There is no need to determine the point of
intersection.
Solution: The curves are 2y = 3x + x2 …(1)
and y2 = 2x + 3y …(2)

Now, differentiating (1) w.r.t x, we get

2 3 2
dy

dx
x= +

⇒ = +
dy

dx
x

3

2
…(3)

Again differentiating (2) w.r.t x, we get

2 3 2+ =
dy

dx
y

dy

dx

⇒ − =dy

dx
y2 3 2� �

⇒ =
−

dy

dx y

2

2 3 …(4)

Now, from (3), m
dy

dx
x

x
y

x
y

1
0
0

0
0

3

2

3

2
= �
��
�
	


= +�
��

�
	


=
=
=

=
=

Again, from (4),
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m
dy

dx yx
y

x
y

2
0
0

0
0

2

2 3

2

3
= �
��
�
	


=
−

�
��

�
	


= −
=
=

=
=

Now, m m1 2
2

3

3

2
1× = − × = −

⇒  Two curves are perpendicular to each other at
the origin.

Question: Show that the curves y = x3 and 6y = 7 – x2

intersect orthogonally.
Solution: Given equations of the curve are

y = x3 …(1)
and 6y = 7 – x2 …(2)

Now, from (1) and (2), we get

6x3 = 7 – x2

⇒ + − =6 7 03 2x x

⇒ − + + =x x x1 6 7 7 0
2� � � �

⇒ − = + + =x x x1 0 6 7 7 0
2� � � �or

⇒  x = 1
[� The quadratic equation 6x2 + 7x + 7 = 0 has

imaginary roots, therefore the only root under
consideration is x = 1]

Again, differentiating both sides of (1) w.r.t x, we
get

dy

dx
x= 3

2
…(3)

and differentiating both sides of (2) w.r.t x, we get

6 2
2

6 3

dy

dx
x

dy

dx

x dy

dx

x= − ⇒ = − ⇒ = −

…(4)

Now, m
dy

dx
x

x x
1

1

2

1
3 3= �

��
�
	


= =
= =

 from (3).

m
dy

dx

x

x x
2

1 13

1

3
= �
��
�
	


= −�
��
�
	


= −
= =

 from (4).

Hence, m m1 2 3
1

3
1= × − = −

⇒  The curves intersect orthogonally.

Question: Show that the tangents to the curves

y2 = 2px at the points where x p=
1

2
 are at right

angles.
Solution: Given equation of the curve is

y2 = 2px …(1)

Putting x
p=
2

 in (1), we get

y p p p y p2 22
1

2
= ⋅ = ⇒ = ± …(2)

⇒  Points are 
1

2
p p,�

�

�  and 

1

2
p p, −�

�

�

corresponding to x p= 1

2
Now, differentiating both sides of (1) w.r.t x, we get

2 2 1y
dy

dx
p= ⋅ ⋅

⇒ =
dy

dx

p

y

Now, m
dy

dx

p

px p
y p

1 1
2

1= �
��
�
	


= =
=
=

m
dy

dx

p

px p
y p

2 1
2

1= �
��
�
	


= − = −
=
=−

Hence, m m1 2 1 1 1= × − =� �
⇒  Two tangents are perpendicular to the curve

y2 = 2px at the points 
1

2
p p,�

�

�  and 

1

2
p p, −�

�

� .

Question: Prove that the normals to the curve
y2 = 4ax at the point where x = a are perpendicular to
each other.
Solution: Given equation of the curve is

y2 = 4ax …(1)

Putting x = 1 in (1), we get  y2 = 4a2 ⇒ = ±y a2

∴ Points are (a, 2a) and (a, –2a).
Now, we have to show that tangents at (a, 2a) and

(a, – 2a) are perpendicular.
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Now, differentiating given equation (1) w.r.t x, we

get 2 4
4

2

2
y

dy

dx
a

dy

dx

a

y

a

y
= ⇒ = =

⇒ �
��
�
	


= = =
=
=

dy

dx

a

a
m

x a
y a2

1
2

2
1

and
dy

dx

a

y

a

a
m

x a
y a y a

�
��
�
	


= �
��
�
	


=
−

= − =
=
=− =−2 2

2
2 2

2
1

Hence, m1 m2 = –1
⇒  Tangents are perpendicular to each other.

⇒  Normals are perpendicular to each other.

Question: Show that the normals to the curve

y2 = 3x at x =
3

4
 are at right angles to each other.

Solution: Given equation of the curve is y2 = 3x   …(1)

∴ From (1), when x y= ⇒ = ⋅ =3

4
3

3

4

9

4
2

⇒ = ±y
3

2

∴ Given points are 
3

4

3

2
,��

�  and 

3

4

3

2
, −�

�

�

Now, differentiating both sides of eqn (1) w.r.t x,
we get

2 3 1
3

2
y

dy

dx

dy

dx y
= ⋅ ⇒ =

Now, 
dy

dx
m

y

�
��
�
	


=
⋅

= =
= 3

2

3

2
3
2

1 1 ...(2)

and 
dy

dx
m

y

�
��
�
	


=
⋅ −���


��
= − =

=− 3
2

3

2
3
2

1 2 …(3)

Hence −
�
��


��
−
�
��


��
= −

1 1
1

1 2m m
.

∴  The normals are at right angles.

Alternative Method:

dy

dx x
y

�
��
�
	


= = = ⇒
=
=

3
4

3
2

1 11 45tan tan º tanψ ψ

= ⇒ =tan º45 451ψ

Again, 
dy

dx x
y

�
��
�
	


= = =
=
=−

3
4
3

2

2 1 135tan tan ºψ

⇒ = ⇒ =tan tan º ºψ ψ2 2135 135

Now θ ψ ψ= −2 1

= 135º – 45º = 90° ⇒  the two tangents are
perpendicular to each other.

Hence the normals are also perpendicular to each
other.

Question: Show that the curves y2 = 4x and x2 + y2 –
6x + 1 = 0 touch each other at the point (1, 2).
Solution: Here the point of intersection of the curves
= (1, 2)

y2 = 4x …(1)
and x2 + y2 – 6x + 1 = 0 …(2)

Now, differentiating both sides of eqn (1) w.r.t x,
we get

2 4y
dy

dx
=

⇒ = =
dy

dx y y

4

2

2
…(3)

Again, differentiating both sides of eqn (2) w.r.t x,
we get

2 2 6 0x y
dy

dx
+ − =

O

135°
45°

y

3

4

3

2
,

�� ��

3

4

3

2
,
−

�� ��

x
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⇒ =
−

=
−dy

dx

x

y

x

y

6 2

2

3
…(4)

Now the slope of the tangent at (1, 2) from eqn (3)
to the curve (1),

m
y x

y

1
1
2

2 2

2
1= �

��
�
	


= =
=
=

…(5)

And the slope of the tangent at (1, 2) from (4) to
the curve (2),

m
x

y x
y

2
1
2

3 3 1

2

2

2
1=

−�
��

�
	


=
−

= =
=
=

…(6)

∴ =m m1 2

⇒  The two curves touch each other at (1, 2).

Question: Show that the curves xy = 4 and x2 + y2 = 8
touch each other.
Solution: The equations of the given curves are

xy = 4 …(1)
x2 + y2 = 8 …(2)

Differentiating (1) w.r.t x, we get

1 0⋅ + =y x
dy

dx

⇒ = −dy

dx

y

x
...(3)

Differentiating eqn (2) w.r.t. x, we get

2 2 0x y
dy

dx
+ =

⇒ = −
dy

dx

x

y ...(3)

Now, we are required to find the point of
intersection.

� xy y
x

= ⇒ =4
4

Putting y
x

=
4

 in x2 + y2 = 8, we get

x
x

x x2
2

4 216
8 16 8+ = ⇒ + =

⇒ − + = ⇒ − =x x x4 2 2 2
8 16 0 4 0� �

⇒ − = ⇒ = ⇒ = ±x x x
2 2

4 0 4 2

From (1), when x y= = =2
4

2
2,

When x y= − = − = −2
4

2
2,

Hence, the point of intersection of the two curves
are (2, 2) and (–2, 2).

∴ The slope of the tangent to the curve xy = 4 at
(2, 2)

= = �
��
�
	


= −�
��
�
	


= − = −
=
=

=
=

m
dy

dx

y

xx
y

x
y

1
2
2

2
2

2

2
1 …(5)

The slope of the tangent to the curve x2 + y2 = 8 at
(2, 2)

= = �
��
�
	


= −
�
��
�
	


= − = −=

=

=

=

m
dy

dx

x

yx

y

x

y

2 2

2

2

2

2

2
1 …(6)

Thus, we get m1 = m2 = –1 ⇒  The two curves
touch each other at (2, 2). Similarly, we can show that
the two curves touch each other at (–2, 2).

Hence, the two curves xy = 4 and x2 + y2 = 8 touch
each other.

Question: Show that the curve 
x

a

y

b

n n�
�

� + ��


� = 2

touches the straight line 
x

a

y

b
+ = 2  at the point

(a, b) whatever be the value of n.
Solution: Given equations of the curves are

x

a

y

b

n n�
�

� + ��


� = 2 …(1)

x

a

y

b
+ = 2 ..(2)

Now, differentiating the equation (1) w.r.t x, we get

n
x

a
n

y

b

dy

dx

n

n

n

n
⋅ + ⋅ ⋅ =

− −1 1

0

⇒ = − ⋅
−

−
dy

dx

b

a

x

y

n

n

n

n

1

1

∴ = �
��
�
	
 =

=

m
dy

dx x a
y b

1
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= − ⋅ = −
−

−
b

a

a

b

b

a

n

n

n

n

1

1 …(3)

Again, differentiating the equation (2), w.r.t x, we
get

1 1
0

a b

dy

dx
+ =

⇒ = −dy

dx

b

a
 (constant) …(4)

Thus, we see from (3) and (4), m1 = m2

⇒  The curve touches the line at (a, b) for any n.

Question: Show that the curve y2 = 2x touches the
straight line 2y – x = 2. Also find the point of
intersection.
Solution: Given equation of the curves are

y2 = 2x …(1)
2y – x = 2 …(2)

Now, differentiating eqn (1) w.r.t x, we get

2 2
2

2

1
y

dy

dx

dy

dx y y
= ⇒ = = …(3)

Again, differentiating eqn (2) w.r.t x, we get

2 1 0
1

2

dy

dx

dy

dx
− = ⇒ = …(4)

Now, we are required to find the point of
intersection where, they intersect by solving the
equations of the given curves.

2y = x + 2 [from eqn (2)] ⇒ = +
y

x 2

2
…(5)

Putting (5) in (1), we get

x
x x x

+�
��

�
	

= ⇒ + =

2

2
2 2 8

2
2� �

⇒ − + =x x2 4 4 0

⇒ − =x 2 02� �
⇒ =x 2

∴ =
+

=
+

=y
x 2

2

2 2

2
2

Thus, we get P (x, y) = (2, 2)
Now, for the curve (1),

m
dy

dx yx
y

x
y

1
2
2

2
2

1 1

2
= �
��
�
	


= �
��
�
	


=
=
=

=
=

…(6)

And for the curve (2), m
dy

dx x
y

2
2
2

1

2
= �
��
�
	


=
=
=

     …(7)

From (6) and (7), we see that m m1 2
1

2
= =

⇒  The given curves touch each other at (2, 2).

Question: Show that the curve y be
x

a=
−

 touches

the straight line 
x

a

y

b
+ = 1  at the point (0, b).

Solution: Differentiating y be
x

a=
−

 w.r.t x, we get

dy

dx
be

a

b

a
e

x
a

x
a= −���


�� = −

− −1
…(1)

Again differentiating 
x

a

y

b
+ = 1  w.r.t x, we get

1 1
0

1

a b

dy

dx

dy

dx a
b

b

a
+ = ⇒ = − × = − …(2)

Now, from (1), m
dy

dx x
y b

1
0

= �
��
�
	
 =

=

= − = − ⋅ = −
b

a
e

b

a

b

a
a

0

1 …(3)

And from eqn (2), m
dy

dx x
y b

2
0

= �
��
�
	
 =

=

= −�
��
�
	


= −
=
=

b

a

b

ax
y b

0
…(4)

Eqns (3) and (4) ⇒  m1 = m2

⇒  Both the curves touch each other at (0, b).

Question: Show that the curve

2 2
1

2

2

2

2

x

a

x

b

y

b
+ + =

touches the curve y be
x

a=
−

 at the point where the
curve crosses the axis of y. Find the equation of the
common tangent.
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Solution: The point where the curve cuts (or crosses)
the y-axis ⇒  x = 0

Now, we are required to find out y

⇒ = ⋅ = ⋅ = ⋅ = ⋅ =
− −

y b e b e b e b b
x

a a
0 0

1

Hence, required where the curve crosses the axis
of y = (0, b)

Again given equations of the curves are

2 2
1

2

2

2

2

x

a

x

b

y

b
+ + = …(1)

y be
x

a=
−

…(2)

Differentiating the equation (2) w.r.t x, we get

dy

dx
b

a
ex

y b

x

y b

x
a

�
��
�
	


= −���

��

�
��

�
	
=

=

=

=

−

0 0

1

⇒ = −��

�

�
��

�
	

= −�
��

�
	

= −

−

m b
a

e b
a

e
b

a
a

1
01 10

   …(3)

Differentiating the equation (1) w.r.t x, we get

2 4 2
2 2a

x

b

y

b

dy

dx
+ +

= 0

∴ + +2 4 22b ax ay
dy

dx
= 0

∴ = −
+dy

dx

b ax

ay

2 4

2

2� �

clearly (0, b) is a point on (1) and from (1),

dy

dx x

y b

�
��
�
	
 =

=
0

= − =b

a
m2

∴ =m m1 2

Hence the curves touch at (0, b). The equation of
the common tangent is

y b
b

a
x− = − −� � � �0

∴ + =x

a

y

b
1.

To find the equation of the tangent and normal to the
curve whose equation is given in parametric form
x f t= 1 � � , y f t= 2 � �  at a point ‘t’.

Working Rule:

1. Find 
dy

dx
 using the formula.

dy

dx

dy

dt

dt

dx

dy
dt

dx
dt

f t

f t
= ⋅ = =

′
′

2

1

� �
� �

2. The equation of the tangent at the given point ‘t’
is

y f t
f t

f t
x f t− =

′
′

⋅ −2
2

1
1� � � �

� � � �

The equation of the normal at the given point t is

y f t
f t

f t
x f t− = −

′
′

⋅ −2
1

2
1� � � �

� � � �

where the slope of the normal = negative reciprocal of
the slope of the tangent

= − = −
′
′

1 2

1Slope of the tangent

f t

f t

� �
� �

Examples worked out:

Question: Find the equation of the tangent and
normal to the ellipse x a y b= =cos sinθ θ,  at the
given point θ .

Solution: Here 
dx

d
a

θ
θ= − sin  and 

dy

d
b

θ
θ= cos

∴ = = −dy

dx

dy
d

dx
d

b

a
θ

θ

θ
θ

cos

sin
…(1)

Now, the equation of the tangent at θ  is

y b
b

a
x a− = − ⋅ −sin

cos

sin
cosθ

θ
θ

θ� � � �

∴ − = − +ay ab bx absin sin cos cosθ θ θ θ2 2

⇒ + = + =bx ay ab abcos sin sin cosθ θ θ θ2 2� �
⇒ + =x

a

y

b
cos sinθ θ 1
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Again, the slope of the normal at the given point

θ
θ
θ

is
sin

cos

a

b
.

The equation of the normal θ  is

y b
a

b
x a− = ⋅ −sin

sin

cos
cosθ

θ
θ

θ� � � �

⇒ − = −by b ax acos sin cos sin sin cosθ θ θ θ θ θ
2 2

⇒ − = −ax by a bsin cos sin cosθ θ θ θ
2 2
� �

⇒ − = −ax by
a b

cos sinθ θ
2 2

Question: Find the equation of the tangent and

normal at θ
π=
2

 to the cycloid x a= −θ θsin� � ,

y = a 1− cosθ� � .

Solution: Given equations x a

y a

= −
= −

�
�
�

θ θ
θ

sin

cos

� �
� �1

    …(1)

∴ = − =dx

d
a a

θ
θ θ

1 2
2

2
cos sin� � …(2)

dy

d
a a

θ
θ θ θ= = ⋅sin sin cos2

2 2
…(3)

Eqns (2) and (3) ⇒ = =dy

dx

dy
d

dx
d

θ

θ

θ
cot

2

∴ = ⇒ �
��
�
	


= =
=

dy

dx

dy

dx
at cotθ

π π

θ π2 4
1

2

Also for θ
π π

= = −�
�


�2 2

1, x a  and y = 1.

Equation of the tangent at the point a a
π
2

1−�
�


�

�
��

�
	


,

is y a x a x y
a

a− = − −�
�


�

�
��

�
	

⇒ − = −� � 1

2
1

2
2

π π

and the equation of the normal is

(y – a) = –1 x a− −��

�

�
��

�
	


π
2

1

which implies x + y = 
1

2
aπ  [Slope of the normal

= = −
1

1
Slope of the tangent

]

Question: Find the equation of the tangent and
normal to the parallel x = at2, y = 2at at the point ‘t’.

Solution:

dx

dt
at

dy

dt
a

dy

dx

dy
dt

dx
dt

a

at t

=

=

�
�
�

�
�
⇒ = = =

2 1

2 2

2

2

1...

...

� �

� �

∴  Equation of the tangent at any point ‘t’ is

y at
t

x at− = −2
1 2
� �

⇒ − = − ⇒ = +yt at x at ty x at2
2 2 2

Slope of the normal at the given point ‘t’

= −
1

Slope of the tangent

Hence, the required equation of the normal is

y at t x at− = − −2
2

� �

⇒ − = − +y at tx at2 3

⇒ + = +y tx at at2
3

Question: Find the equation of the tangent to the

curve x t y t
t

= = −,
1

 at the point t = 4.

Solution:

dx

dt t
dy

dx t

dy

dx

dy
dt

dx
dt

=

= +

�

�
��

�
�
�

⇒ =

1

2
1

1
1

2
2

3
2

...

...

� �

� �
� �

 which implies
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dy

dx

t

t

t t

t

t

t
=

+

=
+�

��
�
	
 ⋅ =

+
1

1

2
1

2

2 1 2

2

2 1
3
2

3
2

3
2

3
2� � � �

� �
� �

∴  Slope of the tangent at t = 4 is 
2 4 1

4

17

4

3
2� � +

=

⇒  The equation of the tangent at t = 4 is

y x−�
��

�
	

= −

7

2

17

4
2� �

⇒ − − =17 4 20 0x y

Problems based on proving the equation of the tangent
to a curve at any point (x1, y1) to be a linear equation
y = ax + b or finding the condition for a given line to
touch a given curve.

Working rule to show the equation of the tangent
line to a curve at any point (x1, y1) to be a linear
equation y = ax + b.

1. First of all find 
dy

dx
. This gives the slope of the

curve or the slope of the tangent at the general point
(x, y).

2. Find 
dy

dx x x
y y

�
��
�
	
 =

=
1

1

3. Afterwards apply the slope form equation

y y
dy

dx
x x

x x
y y

− = �
��
�
	


−
=
=

1 1
1
1

� � � �

which on simplification gives the required equation
of the tangent or the straight line which touches the
curve.

Question: How would you find the condition for a
given line to touch a given curve?
Solution: 1. Let the line be tangent to the given curve
at (x, y).
2. Write the equation of the tangent at (x, y) as

Y y
dy

dx
X x− = �

��
�
	


−� � � �  where 
dy

dx
=  d.c of the

equation of the curve.

3. Compare Y y
dy

dx
X x− = �

��
�
	


−� � � �  with the given

line ax + by + c = 0 and then eliminate x and y.
On intercepts:
The equation of the tangent of the curve y = f (x) at
the point P = (x1, y1) is

y y
dy

dx
x x

p

− = �
��
�
	


−1 1� � � � …(1)

The intercept OA made by the tangent on the axis
of x is obtained by putting y = 0 in (1) and solving
for x.

∴− = �
��
�
	


−y
dy

dx
x x

p
1 1� �

x x
y

dy

dx p

− = −
�
��
�
	


1
1� �

⇒ = = −
�
��
�
	


OA x x
y

dy

dx p

1
1

Similarly, to obtain the intercept on y-axis, we put

x = 0 in eqn (1) to have y y
dy

dx
x

p

− = �
��
�
	


−1 1� �

⇒ = �
��
�
	


=y y x
dy

dx
OB

p
1 1–

The portion of the tangent intercepted between
the axis

= = +AB OA OB
2 2

= +Intercept on -axis Intercept on -axisx� � � �2 2
y

ψ
O

X

y

B
L

A

y f x = ( )

P
x , y

 (
)

1
1
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Substituting the values of OA and OB, we can find
the length AB.

Facts to know:
1. Length of the perpendicular from the origin upon
the tangent to the curve y = f (x) at any point (x1, y1) is

OL y= ×- intercept of the tangent cosψ

= − �
�

�

�

�
�
�

�

	



 + ��


�

�

�
�
�

�

	



=

=
=
=

y x
dy

dx

dy

dxx x
y y

x x
y y

1 1

2

1
1

1
1

1

=

− �
�

�

+ ��

�

�

�
�
�

�

	





=
=

=
=

y x
dy

dx

dy
dx

x x
y y

x x
y y

1 1

2

1
1

1
1

1

2. Length of tangent:

The portion of the tangent intercepted between
the point of contact and the axis of x is called the
length of the tangent.

In ∆ PTN ,

Length of tangent

= = ⋅PT PN cosecψ

= +PN 1
2

cot ψ

= +PN 1
1
2

tan ψ

= ⋅

�
�

�

�

�
�
�

�

	



 +

�
�

�

=
=

=
=

y

dy

dx

dy

dx

x x
y y

x x
y y

1
1

1
1

2

1

= ⋅

�
�

�

�
�
�

�
	

 +

�
�

�

y

dy

dx

dy

dx

p

p

2

1

3. Length of the normal: The portion of the normal
at any point on the curve intercepted between the
curve and the axis of x is called the length of normal.

∴  In ∆ NGP

∴ Length of the normal = PG

= PN ⋅ = +sec tanψ ψy 1
2

= ⋅ + ��

�

�
�
�
�

�
	





y
dy

dx p

1

2

� y PN
dy

dx
m

p

= �
�

� = =

�
�
�
�

�
	





and tanψ1 1

4. Angle of intersection between two curves: The
angle of intersection of two curves is the angle
between the tangents drawn to the two curves at the
common point of intersection of two curves.

Examples worked out:

Question: Show that the equation of the tangent
to the curve y = 2x3 + 2x2 – 8x + 7 at the point (1, 3) is
2x – y + 1 = 0.
Solution: Equation of the curve is

y = 2x3 + 2x2 – 8x + 7 …(1)

ψ
O

X

B
L

A

y f x = ( )

P
x , y

 (
)

1
1

θ

ψ

ψ

O T N
X

Y

G

y
f 

x
 = ( )

P x , y ( )1 1
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Now differentiating (1) w.r.t x, we get

dy

dx
x x x x= ⋅ + ⋅ − ⋅ + = + −2 3 2 2 8 1 0 6 4 8

2 2

⇒ �
��
�
	


= + − = ⋅ + ⋅ − =
=
=

=

dy

dx
x x

x
y

x1
3

2

1

2
6 4 8 6 1 4 1 8 2

Hence, the equation of the tangent to the curve at
(1, 3) is

y y
dy

dx
x x

x
y

− = �
��
�
	


⋅ −
=
=

1
1
3

1� � � �

⇒  y – 3 = 2 (x – 1)

⇒  y – 3 = 2x – 2

⇒  2x – y + 1 = 0.

Question: Show that the equation of the tangent to
the curve 3ay2 = x2 (x + a) at (2a, 2a) is 3y = 4x – 2a.
Solution: We have 3ay2 = x2 (x + a) …(1)

Now, differentiating (1) w.r.t x, we get

6 3 2
2

ay
dy

dx
x ax= +

⇒ = +dy

dx

x ax

ay

3 2

6

2

⇒ �
��
�
	


=
=
=

dy

dx x a
y a

2
2

 slope of the tangent at (2a, 2a)

= +�

�
�
�

�

	





= ⋅ + ⋅
⋅

= =
=
=

3 2

6

3 4 2 2

6 2

16

12

4

3

2

2
2

2 2

2

x ax

ay

a a a

a a

a

ax a
y a

Now, the equation of the tangent at (2a, 2a) is

y y
dy

dx
x x

x a
y a

− = �
��
�
	


⋅ −
=
=

1
2
2

1� � � �

∴ − = −y a x a2
4

3
2� � � �

⇒  4x = 3y + 2a

⇒  4x – 2a = 3y.
Question: Show that the equation of the tangent at a

point a bcos sinθ θ,� �  on the curve 
x

a

y

b

2

2

2

2
1+ =

is 
x

a

y

b
cos sinθ θ+ = 1 .

Solution: Differentiating the given equation of the

curve 
x

a

y

b

2

2

2

2
1+ =  w.r.t x, we get

2 2
0

2 2

2

2

x

a

y

b

dy

dx

dy

dx

b x

a y
+ = ⇒ = − …(1)

Now, 
dy

dx

b

a

a

bx a
y b

�
��
�
	


= − ⋅
=
=

cos
sin

cos

sinθ
θ

θ
θ

2

2

= −
b

a

cos

sin

θ
θ …(2)

The equation of the tangent at a bcos sinθ θ,� �

is y b
b

a
x a− = − −sin

cos

sin
cosθ

θ
θ

θ� � � �

⇒ − = − +
y

b

x

a
sin sin

cos
cosθ θ

θ
θ2 2

⇒ + = + =
x

a

b

y
cos sin cos sinθ θ θ θ

2 2
1

⇒ + =x

a

y

b
cos sinθ θ 1

which is the required equation of the tangent to the
curve

x

a

y

b

2

2

2

2
1+ =  at a bcos sinθ θ,� � .

Question: If the normal to the curve x y a
2
3

2
3

2
3+ =

makes an angle θ  with the axis of x, show that its
equation is y x acos sin cosθ θ θ− = 2 .

Solution: Given equation of the curve is

x y a
2
3

2
3

2
3+ = …(1)

Now, differentiating the equation (1) w.r.t x, we
have

2

3

2

3
0

1
3

1
3

1
3

1
3

x y
dy

dx

dy

dx

y

x

− −
+ = ⇒ = −
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Now, slope of the normal at x y1 1,� �

= − =
�
�
�
�
	



1 1

1

1
3

Slope of the tangent

x

y
…(2)

Again, as the normal makes an angle θ  with x-
axis,

∴ tanθ  = Slope of the normal …(3)

Equating (2) and (3) tanθ =
x

y

1

1

1
3

1
3

⇒ =
sin

cos

θ
θ

x

y

1

1

1
3

1
3

⇒ = =
+

+

x y
x y

1 1

2 2

2 2

1
3

1
3

1
3

1
3

sin cos sin cosθ θ θ θ

� � � �

= = =
×

a a a
2
3

2
3

1
2

1
3

⇒ =x a1

1
3

1
3 sinθ

⇒ =x a1
3sin θ

and y a y a1 1
31

3
1
3= ⇒ =cos cosθ θ

Now, the equation of the normal at

a asin cos
3 3
θ θ,� �  is y y

x

y
x x− = ���


�� −1 1

1
3

� � � �

⇒ − = −y a x acos tan sin
3 3
θ θ θ� � � �

⇒ − = −y a x acos
sin

cos
sin

3 3θ
θ
θ

θ� �

⇒ − = −y a x acos cos sin sinθ θ θ θ4 4

⇒ − = −y x acos sin cos sinθ θ θ θ
4 4

� �

= − +a cos sin cos sin
2 2 2 2
θ θ θ θ� � � �

⇒ − =y x acos sin cosθ θ θ2

Question: If a tangent to the curve 
x

a

y

b
+ = 1

at any point on it makes the intercepts p and q along

the axes, then show that 
p

a

q

b
+ = 1 .

Solution: The point (x1, y1) is on the curve

x

a

y

b
+ = 1 …(1)

⇒  (x1, y1) must satisfy the equation (1)

⇒ + =
x

a

y

b

1 1

1
2

1
2

1
2

1
2

1 …(2)

Now, differentiating (1) w.r.t x, we have

1

2

1

2
0

1
2

1
2

1
2

1
2a x b y

dy

dx
+ =

⇒ = −
⋅

⋅

dy

dx

b y

a x

1
2

1
2

1
2

1
2

∴ The value of 
dy

dx
 at x y

dy

dx

b y

a x
x x
y y

1 1
1

1
1
1

1
2

1
2

1
2

1
2

,� �= �
��
�
	


= −
⋅

⋅=
=

Now, the tangent at (x1, y1) is

y y
dy

dx
x xx x

y y

− = �
��
�
	


−=

=

1 1
1

1

� � � �.

⇒ − =
− ⋅

⋅
⋅ −y y

b y

a x
x x1

1

1

1

1
2

1
2

1
2

1
2

� � � �

O (0, 0)
X

B

Y

A

y f x = ( )

P
x

, y
 (

)
1

1



728 How to Learn Calculus of One Variable

⇒
⋅

− = − +
⋅

y

b y

y

b y

x

a x

x

a x
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

1

1 1

1

1

⇒
⋅

+ = +x

a x

y

b y

x

a

y

b
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1

1 1

⇒
⋅

+ =x

a x

y

b y
1
2

1
2

1
2

1
2

1 1

1  [from (2)]

⇒  The intercepts of the above tangent along the

axis are a x
1
2

1
2

1  and b y
1
2

1
2
1 .

⇒  According to question, a x p x
p

a

1
2

1
2

1
2

1
2

1 1⋅ = ⇒ =

and b y q y
q

b

1
2

1
2

1
2

1
2

1 1= ⇒ =

But from (2),

x

x

y

b

1 1

1
2

1
2

1
2

1
2

1+ =

⇒
⋅

+
⋅

=p

a a

q

b b
1
2

1
2

1
2

1
2

1

⇒ + =p

a

q

b
1

Question: Prove that the points on the curve

y a x a
x

a

2
4= + �

�

�

���
���

sin  at which the tangents are

parallel to the axis of x lie on the parabola y2 = 4ax.

Solution: The point (x1, y1) is on the curve

y a x a
x

a

2
4= + �

�

�

���
���

sin …(1)

⇒  (x1, y1) must satisfy the equation (1)

⇒ = + �
��

��

���
���

y a x a
x

a1
2

1
14 sin …(2)

Now, differentiating (1) w.r.t x, we get

⇒ ⋅ = + �
�


�

���
���

2 4 1
1

y
dy

dx
a a

x

a a
cos

⇒ = +���
���

dy

dx

a

y

x

a

2
1 cos

∴ The value of 
dy

dx
 at x y1 1,� �

= +���

��

2
1

1

1a

y

x

a
cos

If the tangent at (x1, y1) is parallel to x-axis, then

dy

dx x x
y y

�
��
�
	


=
=
=

1

1

0

∴ +���

�� = ⇒ = −2

1 0 1
1

1 1a

y

x

a

x

a
cos cos

⇒ = ⇒ − =cos sin
2 1 2 11 1 0

x

a

x

a

⇒ = ⇒ =sin sin
2 1 10 0

x

a

x

a

Now, substituting the value of sin
x

a
1 0=  in (2),

we get

y a x a1
2

14 0= + ×� �
⇒ =y ax1

2
14

∴ x y1 1,� �  lies on y2 = 4ax.

Question: Tangents are drawn from the origin to the
curve y = sin x show that their points of contact lie on
x2 y2 = x2 – y2.

Solution: There is a point (x1, y1) on the curve
y = sin x …(1)

⇒  (x1, y1) satisfies the equation y = sin x

⇒  y1 = sin x1 …(2)
Now, differentiating the equation (1) w.r.t x, we get

dy

dx
x= cos

Again the value of 
dy

dx
 at

x y
dy

dx
x x

x x
y y

x x1 1 1
1

1

1
,� � = �

��
�
	


= =
=
=

=cos cos
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∴ Equation of the tangent at any point (x1, y1) on
the curve is given by

y y
dy

dx
x xx x

y y

− = �
��
�
	


−=

=

1 1
1

1

� � � �.

⇒ − = −y y x x x1 1 1� � � � � �cos

If this line passes through (0, 0), then

0 01 1 1− = −y x x� � � � � �cos

⇒ − = −y x x1 1 1cos� � � �
⇒ =y x x1 1 1cos

⇒ =y x x1
2

1 1
2cos� �

⇒ = −y x x1
2

1
2 2

11 sin� �

⇒ = −y x y1
2

1
2

1
21� � � y x1 1= sin� �

⇒ = −y x x y1
2

1
2

1
2

1
2

⇒ − = −y x x y1
2

1
2

1
2

1
2

⇒ − =x y x y1
2

1
2

1
2

1
2

∴ x y1 1,� �  lies on the curve x2 – y2 = x2 y2.

Question: Show that the sum of the intercepts of the

tangent to the parabola x y a
1
2

1
2

1
2+ =  on the co-

ordinate axis is constant and equal to a.
Solution: Given equation of the curve is

x y a
1
2

1
2

1
2+ = …(1)

Now, differentiating (1) w.r.t x, we get

1

2

1

2
0

1
2

1
2

1
2

1
2

1
2

1
2

x y
dy

dx

dy

dx

x

y

y

x

− −
−

−
+ = ⇒ = − = −

dy

dx

y

xP x y

�
��
�
	


= −
1 1

1
2

1
2

1

1
,� �

…(2)

Again since (x1, y1) is a point where the tangent
touches the curve.

∴  (x1, y1) satisfies the equation of the curve since

it lies on the curve.

∴ + =x y a1 1

1
2

1
2

1
2 …(3) [from (1)]

Now, the equation of the tangent at P (x1, y1) is

y y
y

x
x x− = − −1

1

1

1

1
2

1
2

� � � �

⇒ − = − +y x y x y x x y1 1 1 1 1 1

1
2

1
2

1
2

1
2

⇒ + = + = +x y y x x y x y x x y x y y1 1 1 1 1 1 1 1 1 1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

⇒ + = +�
�


� = ⋅x y y x x y x y x y a1 1 1 1 1 1 1 1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

� x y a1 1

1
2

1
2

1
2+ =�

��
�
	


⇒ + =x y y x x y a1 1 1 1 …(4)

Now, to find the intercepts on the axis, we put x = 0
and y = 0 respectively in the equation of the tangent
(4)

For intercepts on x-axis, we put y = 0.

y x y x y a= ⇒ = ���
�
	
0 1 1 1

1
2

1
2

1
2

1
2

⇒ =x x a1

1
2

1
2

⇒ =x x a1 …(5)

Again for the intercept on y-axis, we put x = 0.

x x y y x a= ⇒ =0 1 1 1

1
2

1
2

1
2

1
2

⇒ =y y a1

1
2

1
2

⇒ =y y a1 ...(6)

O
X

B

Y

A

y f x = ( )

P
x , y

 (
)

1
1
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Now, adding (5) and (6) ⇒  the sum of the
intercepts on the axes

x a y a a x y a a a1 1 1 1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2+ = +�

�

� = ⋅ =

Question: Show that 
x

a

y

b
�
�

� +
�
�

�  = 1 touches the

curve y be
x
a=

−
 at the point where the curve crosses

y-axis.
Solution: Given equation of the curve is

y be
x
a=

− …(1)

And the curve y be
x
a=

−
 meets y-axis at a point

where x = 0 (Since x = 0 is the equation of y-axis).
Now, to find the point of intersection, we put x = 0

in the equation of the curve (1), we get

y be ba= =
− 0

…(2)

Thus, (0, b) = The point of intersection of the curve
with y-axis.

Now, differentiating the given equation of the curve

y be
x
a=

−

⇒ = −��

� = −

− −dy

dx
be

x

b

a
e

x
a

x
a1

Now, the value of 
dy

dx
 at (0, b)

= �
��
�
	


= − = − = −=

=

−dy

dx

b

a
e

b

a
e

b

ax

y b

a
0

00

Hence, the tangent at (0, b)

⇒ − = �
��
�
	


⋅ −=

=

y y
dy

dx
x xx

y b

1 0 1� �

⇒ − = − − ⇒ − = −y b
b

a
x a

y

b

x

a
� � � � 1

⇒ + =x

a

y

b
1

Question: Show that the condition that the line

x y pcos sinθ θ+ =  touches the curves

x

a

y

b

m m�
��
�
	


+ �
��
�
	


=1  is

a b p
m

m
m

m
m

mcos sinθ θ� � � �− − −+ =1 1 1 .

Or, find the condition that the line

x ycos sinθ θ+  = p should touch the curve

x

a

y

b

m

m

m

m
+ = 1.

Solution: Given equation of the curve is

x

a

y

b

m

m

m

m
+ = 1 …(1)

Now, differentiating both sides of (1) w.r.t x, we get

mx

a

my

b

dy

dx

m

m

m

m

− −

+ =
1 1

0

⇒ = −
−

−
dy

dx

b x

a y

m m

m m

1

1

∴ Equation of the tangent at (x, y) is

Y y
b x

a y
X x

m m

m m
− = − −

−

−� � � �
1

1

⇒ + = + =
− −X x

a

Y y

b

x

a

y

b

m

m

m

m

m

m

m

m

1 1

1 …(2)

Now, since the equation of a straight line can be
written as

X Y pcos sinθ θ+ = …(3)

Thus, the equation (2) and (3) represents the same
straight line

⇒ = =
− −

x

a

y

b p

m

m

m

m

1 1
1

cos sinθ θ

⇒ =
�

�
�
�

�

	





=
�

�
�
�

�

	





− −

x
a

p
y

b

p

m mm m
cos sinθ θ

1
1

1
1

,

Since the point (x, y) lies on the curve

⇒
�
�
�
�

�
	





+
�
�
�
�

�
	





=
− −1 1

1
1 1

a

a

p b

b

pm

m

m

m
m

m
m

mcos sinθ θ
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⇒ + =− − −
a b p

m
m

m
m

m
mcos sinθ θ� � � �1 1

1

Hence proved.

Question: If X Y pcos sinα α+ =  touches the

curve 
x

a

y

b

n
n

n
n�

��
�
�� + �

��
�
�� =

− −1 1

1 , then prove that

a b p
n n n

cos sinα α� � � �+ = .

Solution: Given equation of the curve is

x

a

y

b

n
n

n
n�

��
�
�� + �

��
�
�� =

− −1 1

1 …(1)

Now, differentiating the equation of the curve, we
get

n

n

x

a a

n

n

y

b b

dy

dx

n n

−
	

�

�
�
	

�

�
� ⋅ +

−
	

�

�
� ⋅ ⋅ =

− −

1

1

1

1
0

1
1

1
1

⇒ = −
	

�

�
� ⋅ 	
�

�
�

− −dy

dx

x

y

b

a

n
n

n
1

1 1

Hence, the equation of the tangent at any point
(x, y) is

Y y
x

y

b

a
X x

n
n

n

− = − 	
�
�
� ⋅ 	


�
 −

− −

� � � �
1

1 1

⇒ −− − − −
Yy a y a

n
n

n
n

n
n

n
1

1 1 1 1

= − − ⋅�
��

�
��

− − − −
x b X x b

n
n

n
n

n
n

n
1

1 1 1 1
…(2)

Now, dividing both sides of (2) by a b
n

n
n

n− −⋅1 1 , we

get

x X

a

y Y

b

x

a

y

b

n

n
n

n

n
n

n
n

n
n

1
1

1

1
1

1

1 1

1
−

−

−

−

− −

+ = 	



�
 + 	



�
 = …(3)

Also, we are given cos sinα α⋅ + ⋅ =X Y p  is

the equation of the tangent. …(4)
Thus, eqns (3) and (4) represent the same straight

line. Comparing eqns (3) and (4), we have the
coefficients of x and y in (3) and (4).

⇒ = = =
−

−

−

−

cos sinα α

x

a

y

b

p
p

n

n
n

n

n
n

1
1

1

1
1

1

1

⇒
	



�


=
	



�


=
− −

a

x

a

b

y

b

p
n n

cos sinα α
1

1
1

1

⇒
	



�


=
	



�


=
− −

a

x

a

b

y

b

p
n n

n
n

n
n

n

cos sinα α� � � �
1 1

[Raising both sides to the nth power]

⇒
+

	



�
 + 	



�


=
− −

a b

x

a

y

b

p
n n

n
n

n
n

n

cos sinα α� � � �
1 1

⇒ + =a b p
n n n

cos sinα α� � � �

�
x

a

y

b

n
n

n
n	



�
 + 	



�
 =

�

�
�
�

�

�
�
�

− −1 1

1

which is the required condition.

Note: We should note while solving the problem
involving x and y that touching point has been
supposed to be (x, y) instead of (x1, y1) here. This is
why the necessity of substituting the coordinates of

the point in 
dy

dx
 does not arise.

Question: Show that the normal to the curve

x a= +cos sinθ θ θ� �
y a= −sin cosθ θ θ� �  at any point θ  is at a

constant distance from the origin.

Solution:
dy

dx

dy
d

dx
d

= θ

θ

Coefficient of X = 
x

a

n

n
n

1
1

1

−

−
 from (3)

Coefficient of X = cosα  from (4)
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⇒ =
− − + ⋅

− + ⋅ +
=

dy

dx

a

a

cos sin cos

sin sin cos
tan

θ θ θ θ

θ θ θ θ
θ

� �� �1

1

⇒  The equation of the normal at any point θ  on
the curve is given by

y a x a− − =− − +sin cos
cos

sin
cos sinθ θ θ θ

θ
θ θ θ� � � �

⇒ − −y asin sin cos sinθ θ θ θ θ� �
= + +x acos cos cos sinθ θ θ θ θ� �
⇒ + = + =x y a acos sin sin cosθ θ θ θ

2 2� �
⇒ + − =x y acos sinθ θ 0 …(1)

Now, the length of the perpendicular from the origin
to the normal (1)

=
⋅ + ⋅ −

+

0 0
2 2

cos sin

cos sin

θ θ

θ θ

a
= a = constant.

Note: Length of the perpendicular from the origin
upon the tangent to the curve at (x1, y1).

Since the equation of the tangent at (x1, y1) is

y y
dy

dx
x xx x

y y

− = �
��

�
��

⋅ −=

=

1 1
1

1

� � � �

⇒ �
��

�
�� − + − �

��
�
��

	



��

�


�� ==

=
=
−

x
dy

dx
y y x

dy

dxx x
y y

x x
y y

1
1

1
1

1 1 0

∴ The length of the perpendicular upon this line
from the origin whose coordinates are (0, 0) is

=

− �
��

�
��

+ 	

�

�
�

�

�

�
�
�

�

�

�
�
�

=

=

=

=

y x
dy

dx

dy

dx

x x

y y

x x

y y

1 1

2

1

1

1

1

1

Question: Find the equation of the tangent
and normal at the point ‘t’ on the curve x = a cos3 t,
y = a sin3 t. Show that portion of the tangent
intercepted between the axes is of constant length a.

Solution:
dx

dt
a t t= − 3

2
cos sin …(1)

dy

dx
a t t= 3

2
sin cos …(2)

Now, 
dy

dx

dy
dt

dx
dt

a t t

a t t

t

t
= = − = −

3

3

2

2

sin cos

cos sin

sin

cos

⇒  Slope of the tangent at any point ‘t’ = –tan t

⇒  Slope of the normal at any point ‘t’ = cotθ
∴ Equation of the tangent at ‘t’ is

y a t
t

t
x a t− = − −sin

sin

cos
cos

3 3� �

⇒ − =− +y t a t t x t a t tcos sin cos sin cos sin
3 3

⇒ + − ⋅ − =x t y t a t t a t tsin cos cos sin sin cos
3 3

0

ψ
O

X

y

B

L

A

y f x = ( )

P
x , y

 (
)

1
1

� The length of perpendicular from
(h, k) to any line ax + by + c = 0 is

ah bk c

a b

+ +

+2 2

O
X

y

B

L

A

y f x = ( )

P
x , y

 (
)

1
1
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⇒ + − + =x t y t a t t t tsin cos cos sin cos sin
2 2

0� �

⇒ + =x t y t a t tsin cos sin cos …(1)

Again, since the slope of the normal at the given

point 't' = 
cos

sin

t

t

∴ The equation of the normal at ‘t’ is

y a t
t

t
x a t− = −sin

cos

sin
cos

3 3� �

⇒ − = −y a t t x a t tsin sin cos cos
3 3� � � �

⇒ − = −y t a t x t a tsin sin cos cos
4 4

⇒ − = −x t y t a t tcos sin cos sin
4 4� �

= + −a t t t tcos sin cos sin
2 2 2 2� � � �

⇒ − =x t y t a tcos sin cos2
Now, since the tangent is x sin t + y cos t = a sin t

cos t (From eqn (1))    …(2)
To get the intercept on x-axis, we put y = 0 in the

equation (2) to have
x t a t t x a tsin sin cos cos= ⇒ =

To get the intercept on y-axis, we put x = 0 in the
equation (2), then y = a sin t

∴ The portion of the tangent intercepted between
the axes.

= +Intercept on x-axis Intercept on y-axis� � � �2 2

= +a t a t2 2 2 2cos sin

= = =a a
2  Constant which implies the

required result.

Note: This question may be asked as follows.

Question: Find the equation of the tangent to the

curve x y a
2
3

2
3

2
3+ =  and show that the portion of

the tangent intercepted between the coordinate axes
is constant and is equal to a.
Solution: Equation of the given curve is

x y a
2
3

2
3

2
3+ = …(1)

Now, differentiating both sides of the equation (1)
w.r.t x, we get

2

3

2

3
0

1
3

1
3

1
3

1
3

x y
dy

dx

dy

dx

y

x

− −
+ = ⇒ = −

Now, let the tangent touch the given curve at a
point P (x1, y1).

∴ �
��

�
�� =

=
=

dy

dx x x
y y

1
1

The slope of the tangent at

P (x1, y1) = −
y

x

1

1

1
3

1
3

∴ Equation of the tangent at (x1, y1) on the given
curve is

y y
y

x
x x− = − −1

1

1

1

1
3

1
3

� � � �

⇒ − = − +y x y x y x x y1 1 1 1 1 1

1
3

1
3

1
3

1
3

⇒ + = +y x y x x y y x1 1 1 1 1 1

1
3

1
3

1
3

1
3

= +	



�
x y x y1 1 1 1

1
3

1
3

2
3

2
3

⇒ + = 	



�
y x x y x y a1 1 1 1

1
3

1
3

1
3

1
3

2
3

…(2)

[� x y a1 1

2
3

2
3

2
3+ =  from the given equation since

(x1, y1) lies on the curve ⇒  It must satisfy given
equation of the curve]

⇒  To find the intercept on the x-axis, we put y = 0,

to have 0 1 1 1

1
3

1
3

1
3

2
3+ =x y x y a

⇒ =x x a1

1
3

2
3

and to find the intercept on y-axis, we put x = 0 in (2)
to have

y a y=
2
3

1
3

1
 [On putting x = 0 in (2)]

Hence, the length of intercept between the axes

= +x y
2 2
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= +Intercept on x-axis Intercept on y-axis� � � �2 2

= +	



�
 = =a x y a a

4
3

2
3

2
3 2

Question: Find the coordinates of the point on the
curve xy = 16, the normal at which intersects at the
origin of the coordinates.

Prove also that the portion of any tangent to the
curve intercepted between the coordinate axes is
bisected at the point of contact.
Solution: If (x1, y1) be any point on the curve
xy = 16 …(1)

Then (x1, y1) must satisfy the equation (1).

∴ =x y1 1 16 …(2)

Now differentiating both sides of the given
equation (1) w.r.t x, we get

x
dy

dx
y

dy

dx

y

x
⋅ + ⋅ = ⇒ = − ⇒1 0  the value of

dy

dx
 at x y

y

x1 1
1

1

,� � = −

⇒  The slope of the tangent at x y
y

x1 1
1

1

,� � = −

⇒  The slope of the normal at x y
x

y1 1
1

1

,� � =

Now, the equation of the normal at (x1, y1) is

y y
x

y
x x− = −1

1

1
1� � � �

The normal at (x1, y1) passes through (0, 0)

⇒ − = −0 01
1

1
1y

x

y
x� � � �

⇒ =y x1
2

1
2 ...(3)

From eqns (2) and (3) ⇒ =
×

y
y

1
2

1
2

16 16

� x y x
y1 1 1

1

16
16= ⇒ =

�
��

�
��

⇒ = × ⇒ = ±y y1
4

116 16 4

Again from eqn (2), x1 y1 = 16

⇒ = = =
±

= ±x
y y1

1 1

16 16 16

4
4

Hence, the required points are (4, 4) and (–4, –4).
Now the equation of the tangent at any point

(x1, y1) is (y – y1) = − −
y

x
x x1

1
1� � …(4)

Since the tangent meets the axis of x at the point
where y = 0, so to find x-intercept, we put y = 0 in the
equation (4) to have

0 1
1

1
1− = − −y

y

x
x x� � � �

⇒ − = − +y x y x y x1 1 1 1 1

⇒ − + =2 01 1 1y x y x

⇒ − + = ⇒ − + =y x x x x1 1 12 0 2 0� � � �
� y x x OA x1 1 10 2 2≠ ⇒ = ⇒ =� �
� x OA=

Thus, the tangent at (x1, y1) meets the x-axis at the
point (2x1, 0)

Again, the tangent at (x1, y1) meets y-axis at the
point where x = 0 ⇒  To find y-intercept we put x = 0

in eqn (4) to have y y
y

x
x− = − −1

1

1
10� � � �

⇒ − = ⇒ = = =y y y y y OB y OB1 1 12 �� �
⇒  The tangent meets y-axis at the point (0, 2y1)

Thus, we see that the tangent at (x1, y1) meets x-

axis at (2x1, 0) and the tangent at (x1, y1) meets y-axis

at (0, 2y1).

O
X

B

Y

A

y f x = ( )

P
x , y

 (
)

1
1
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⇒  The mid-point of the portion of the tangent to
the curve xy = 16 intercepted between the coordinate

axes is 
2 0

2

0 2

2
1 1x y+ +	


�
�
�,

⇒  Which is the point of contact.

Question: A normal is drawn to the curve y = x2 at
the point (1, 1) on it. Find the length of the part of the
normal intercepted between the coordinate axes. Also
find subtangent and subnormal.
Solution: We suppose that the tangent and the
normal at the point (1, 1) on the curve y = x2 (i) meet
the x-axis in T and G.

Now, differentiating the given equation y = x2

w.r.t x, we get 
dy

dx
x= 2

⇒  The slope of the tangent at (1, 1) = �
��

�
�� =

=

dy

dx x
y

1
1

= = × ==2 2 1 21x x

Similarly, the slope of the normal at (1, 1)

= − = −
1 1

2Slope of the tangent

∴ The equation of the normal at (1, 1) is

y x− = − −1
1

2
1� � � �

⇒ − + = −2 2 1y x

⇒  x + 2y = 3 …(2)

Now, the intercept x on x-axis is found by putting
y = 0 in eqn (2) i.e., x + 0 = 3 ⇒  x = 3

Again the intercept y on y-axis is found by putting

x = 0 in eqn (2) i.e., 0 2 3
3

2
+ = ⇒ =y y

Thus, the lengths of the intercepts made by the

normal on the axes are 3 and 
3

2
 unit.

∴  Length of the normal intercepted between the
coordinate axes is

x y- intercept - intercept� � � �2 2+

= + 	



�
 = +3

3

2
9

9

4

2
2

= +36 9

4
= =

45

4

3 5

2

TN = Subtangent = PN tanψ = =12 2.

NG = Subnormal = PN cotψ = =1
1

2
. .½

Question: In the curve x a t
t

= +	



�
cos log tan

2

y = a sin t
Show that the portion of the tangent between the

point of contact and the x-axis is of constant length.

Solution:
dx

dt
a t

t
t= − + ⋅

�
�
�

�
�

�
�
�

�
�

sin
tan

sec
1

2

1

2 2

2

∴ = − + ⋅

�
�
�

�
�

�
�
�

�
�

dx

dt
a t

t

t
sin

sec

tan

1

2
2

2

2

…(1)

dy

dt
a t= cos …(2)

Now on simplifying the equation (1),

dx

dt
a t

t

t
= − + ⋅

�
�
�

�
�

�
�
�

�
�

sin
sec

tan

1

2
2

2

2

= − +���
���a t

t t
sin sec cot

1

2 2 2

2

θ

π
2

ψ

ψ

O T N
X

Y

G

P x , y ( )1 1

2



736 How to Learn Calculus of One Variable

= − + ⋅ ⋅

�
�
�

�
�

�
�
�

�
�

a t
t

t

t
sin

cos

cos

sin

1

2

1

2

2

2

2

= − +
⋅

�
�
�

�
�

�
�
�

�
�

a t
t t

sin
sin cos

1

2
2 2

= − +
���

���
=

− +�
��
��

�
��
��

a t
t

a
t

t
sin

sin

sin

sin

1 1
2

=
a t

t

cos

sin

2

…(3)

Now the slope of the tangent at (x, y) is

dy

dx

dy

dt

dx

dt
= ÷

∴ = ÷tan cos
cos

sin
ψ a t

a t

t

2

= × = =a t
t

a t

t

t
tcos

sin

cos

sin

cos
tan

2

∴ =ψ t

Now from the figure

PT

NP
t= =cosec cosecψ

⇒ =PT NP  cosec t = y cosec t

⇒  PT = a sin t cosec t
[�  y = a sin t is given in the problem]

⇒ = × =PT a t
t

asin
sin

1
 which is a constant.

Question: (a) Show that the condition that the line

x y pcos sinα α+ =  touches the curve xm ym =

am + n is pm + n · mm · nn = (m + n)m + n · am + n ·

n cos sin
m nα α⋅ .

Or, find the condition that the line x cosα +
y psinα =  may be the tangent to the curve xm yn =

am + n.
(b) In the curve  xm yn = am + n, prove that the portion
of the tangent intercepted between the axes is divided
at its points of contact into segments which are in a
constant ratio.
Solution: Given equation is  xm yn = am + n …(1)

Now, differentiating both sides of eqn (1) w.r.t x,
we get

x n y
dy

dx
y m x

m n n m
⋅ + ⋅ ⋅ =− −1 1

0

⇒ =
− ⋅

⋅

−

−
dy

dx

m x y

n x y

m n

m n

1

1 …(2)

⇒ = − = −
− − − + −dy

dx

m

n
x y

m

n
x y

m m n n1 1 1

⇒ = − ⋅dy

dx

m

n

y

x
 = Slope of the tangent at (x, y)

Now the value of 
dy

dx
 at x y1 1,� �

= �
��

�
��

= −�
��

�
��=

=

=

=

dy

dx

m

n

y

xx x

y y

x x

y y

1

1

1

1

⇒  The value of 
dy

dx
 at (x1, y1) = Slope of the

tangent at x y
m y

n x1 1
1

1

,� � = −

O
x 1

y 1

AT

P

B

X

Y

(
)

x
, y

1
1

y f x = ( )

O T
Y

N
X

Y

P x , y ( )1 1

y f x = ( )

(  =  sin  is given in the problem)y a t

π
2
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∴ Equation of the tangent at (x1, y1) is

(y – y1) = �
��

�
�� −

=
=

dy

dx
x x

x x
y y

1

1

1� �

⇒ − = − ⋅ −y y
m

n

y

x
x x1

1

1
1� � � � ….(3)

⇒ − = − −
−

−y y
m x y

n x y
x x

m n

m n1
1

1
1

1 1
1 1� � � �

�
y

x

x y

x y

m n

m n
1

1

1
1

1

1 1
1

=
⋅

⋅

�

�
�
�

�

�
�
�

−

−

⇒  y · n · x1
m y1

n – 1 – y1 nx1
m y1

n – 1

= –mx1
m – 1 y1

n x + m x1
m–1 y1

n x1

⇒  y · nx1
m y1

n – 1 + mx1
m – 1 y1

n x

= mx1
m – 1 y1

n x1 + ynx1
m y1

n – 1

⇒  y · n · x1
m y1

n – 1 + mx1
m – 1 y1

n x

= mx1
m y1

n + nx1
m y1

n = (m + n) x1
m y1

n

⇒  m x x1
m – 1 yn + n y x1

m y1
n – 1

= (m + n) am + n

∴ Equation of the tangent is m x x1
m – 1 yn + n y x1

m

y1
n – 1 = (m + n) am + n …(4)

and the line x y pcos sinα α+ = …(5)

Thus, eqns (4) and (5) represent the same straight
line

⇒  Coefficients of x, y and constant terms are in
proportion

⇒ = =
+− − +

cos sinα α

mx y nx y

p

m n a
n n m n m n
1

1
1 1 1

1 � �

⇒ = =
+

+
x

m x y

y

n x y

p

m n a
m n m n m n

1

1 1

1

1 1

cos sinα α

� � � �

⇒ = =
+

+ + +
x

ma

y

na

p

m n a
m n m n m n

1 1cos sinα α

� � � � …(6)

� x y a
m n m n
1 1 =

+

⇒ =
⋅
+

x
p m

m n1 cosα � � …(7)

and cosy
pn

m n1 α =
+ …(8)

Eqn (7) ⇒ =
+

x
p m

m n

m m
m m

m1 cos α
� �

…(9)

Eqn (8) ⇒ = ⋅
+

y
p n

m n

n n
n n

n1 sin α
� �

…(10)

Now, multiplying these two results of eqns (9) and
(10) together, we get

x y
p m n

m n

m n n n
m n m n

m n1 1 cos sinα α = ⋅ ⋅
+

+

+� �

⇒ ++ +
a m n

m n m n n n� � cos sinα α

= ⋅ ⋅+
p m n

m n m n  which is the required condition.

Now, again letting that the tangent at (x1, y1) cuts
the axis in A and B.

To find the intercept x on x-axis of the tangent, we
put y = 0 in the equation of tangent eqn (4).

∴ Equation of tangent is

mx x y ny x y m n a
m n m n m n
1

1
1 1 1

1− − ++ = +� �

⇒ = +− +
mx x y m n a

m n m n
1

1
1 � �  (when y = 0)

⇒ =
+

⋅
=

+
+

−

+

x
m n a

m x y

m n a x

m x y

m n

m n

m n

m n

� � � �
1

1
1

1

1 1

=
+

⋅
=

+
=

+

+
m n a x

m a

m n x

m
OA

m n

m n

� � � �1 1

�  (x1, y1) lies on the curve xm yn = am + n

⇒  (x1, y1) satisfies the equation xm yn = am + n

⇒  x1
m y1

n = am + n
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Now, OT = x1 and OT + TA = OA
⇒  TA = OA – OT

⇒ =
+

−TA
m n x

m
x

� � 1
1

⇒ =
+ −

TA
m n x m x

m

� � 1 1

⇒ =TA
n x

m
1

In ∆ OAB ,

PT OB
AP

PB

AT

OT

n x

m
x

n

m
⇒ = = =

1

1

 which

proves the required.
Problems based on finding the coordinates of a point
P (x1, y1) where the tangent touches the given curve
y = f (x) / f (x, y) = 0 or constant.

Working rule: 1. We suppose that there is a required
point (x1, y1) on the given curve where the tangent
touches the curve y = f (x).

2. Find 
dy

dx
 by differentiating the given equation

w.r.t. x.

3. Find 
dy

dx x x
y y

�
��

�
�� =

=
1

1

4. Find 
dy

dx x x
y y

�
��

�
�� =

=
1

1

 from the given condition imposed

on tangential line (i.e., tangent to the given curve).
5. Solve the equation satisfied by (x1, y1) and the
equation in x1, and y1 obtained after imposing the

given condition on 
dy

dx x x
y y

�
��

�
�� =

=
1
1

.

N.B.: 1. Imposed condition on tangent to the curve
may be: tangential line is parallel to x-axis or parallel
to a line / tangential line passes through origin /
Tangential line passes through the point α β,� � , etc.

2.
dy

dx x x
y y

�
��

�
�� =

=
1

1

 found from the given condition on the

tangential line is generally constant or zero

⇒
dy

dx x x
y y

�
��

�
�� =

=
1

1

, an expression in x1 and y1 is equated

to zero or constant according to the given condition
imposed on the tangential line (i.e tangent to the curve
or slope of the curve).

3. dy

dx x x
y y

�
��

�
��

=
=
=

1
1

0  (Imposed condition) provided the

condition imposed on tangent tells that tangent is
parallel to x-axis.
4. We shall consider the problems on tangent at one
point of the curve/two or more tangents of the curve
making an angle with x-axis/y-axis/ parallel to x-axis/
y-axis.

Examples worked out:

Question: Find the points on the graph of the function
defined by y = x2 – 6x + 9 at which the tangents are
parallel to x-axis.
Solution: Let the required point on the curve y =
x2 – 6x + 9 be (x1, y1).

∴ (x1, y1) must satisfy y = x2 – 6x + 9 …(1)

∴ y1 = x1
2 – 6x1 + 9 …(2)

Now, differentiating the equation (1) w.r.t x, we get

dy

dx
x= −2 6

O

y 1

A

P

B

X

Y

(
)

x
, y

1
1

y f x = ( )

O (3, 0)
X

Y
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Now, the value of 
dy

dx
 at (x1, y1) = The slope of the

tangent at (x1, y1)

= �
��

�
�� = − = −

=
=

=
=

dy

dx
x x

x x
y y

x x
y y1

1

1
1

2 6 2 61

Now, since the tangent at (x1, y1) is parallel to
x-axis

∴ �
��

�
�� = ⇒ − = ⇒ = =

=
=

dy

dx
x x

x x
y y

1

1

0 2 6 0
6

2
31 1

Substituting this value of x1 in eqn (2), we get
y1 = 9 – 18 + 9 = 0
Hence, the required point = (x1, y1) = (3, 0).

Question: At what points on the curve x2 + y2 – 2x –
4y + 1 = 0, the tangent is parallel to (a) x-axis (b) y-axis.
Solutions: (a) Equation of the given curve is:

x2 + y2 – 2x – 4y + 1 = 0 …(1)
Letting the required point to be (x1, y1) on the curve
⇒  (x1, y1) must satisfy the given equation of the

curve.

⇒ + − − + =x y x y1
2

1
2

1 12 4 1 0 …(2)

Now, on differentiating the equation (1) w.r.t x, we
get

2 2 2 4 0x y
dy

dx

dy

dx
+ − − =

⇒ − = −2 4 2 2y
dy

dx

dy

dx
x

⇒ − = −dy

dx
y x2 4 2 2� �

⇒ =
−
−

=
−
−

dy

dx

x

y

x

y

2 1

2 2

1

2

� �
� �

Now, the value of 
dy

dx
 at x y1 1,� �

= �
��

�
��

= −
−

�
��

�
��

= −
−=

=

=

=

dy

dx

x

y

x

yx x

y y

x x

y y

1

1

1

1

1

2

1

2
1

1

= Slope of the tangent at (x1, y1)

Now, since the tangent is parallel to x-axis
∴ Slope of the tangent at (x1, y1) is zero.

∴ �
��

�
�� = ⇒ −

−
=

=
=

dy

dx

x

yx x
y y

1

1

0
1

2
01

1

⇒  1 – x1 = 0 ⇒  x1 = 1 …(3)

On putting x1 = 1 from eqn (3) in eqn (2), we get

1 2 1 4 1 01
2

1+ − ⋅ − ⋅ + =y y

⇒ − =y y1
2

14 0

⇒ − =y y1 1 4 0� �
⇒ =y1 0 4or …(4)

Equations (3) and (4) ⇒  (x1, y1) = (1, 0) and (1, 4)
where the tangent is parallel to x-axis.
(b) Since the tangent is parallel to y-axis

dx

dy x x

y y

�
��

�
��

=
=

=

1

1

0

⇒
−
−

= ⇒ − = ⇒ =
y

x
y y1

1
1 1

2

1
0 2 0 2 …(5)

Putting y1 = 2 from eqn (5) in eqn (2), we get,
x1

2 + 4 – 2x1 – 4 × 2 + 1 = 0

⇒  x1
2 + 4 – 2x1 – 8 + 1 = 0

⇒  x1
2 – 2x1 – 3 = 0

⇒  x1
2 – 3x1 + x1 – 3 = 0

⇒  x1 (x1 – 3) + (x1 – 3) = 0

⇒  (x1 – 3) (x1 + 1) = 0
Hence, required points where the tangent is parallel

are (x1, y1) = (–1, 2) and (3, 2).

O
X

Y
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Question: At what points on the following curve are
the tangents parallel to x-axis.

(a) y = sin x (b) y a x a
x

a
2 4= +���

���
sin

Solution: (a) Let the required points on the curve
y = sin x be (x1, y1).

∴ x y1 1,� �  must satisfy y = sin x …(1)

⇒ =y x1 1sin

Now, differentiating the equation (1) w.r.t x, we get

dy

dx
x�

��
�
�� = cos

Now, the value of 
dy

dx
 at x y1 1,� �

= �
��

�
��

==

=

dy

dx
xx x

y y

1

1

1cos  = Slope of the tangent at

(x1, y1).

Since the tangent at (x1, y1) is parallel to x-axis.

∴ �
��

�
�� = ⇒ =

=
=

dy

dx
x

x x
y y

1
1

0 01cos

⇒ = +x n1 2 1
2

� � π …(3)

where n is zero, positive or negative integer.

Substituting this value of x1 in eqn (1), we get

y n1 2 1
2

= +sin� � π

= 1 when n is even.
= –1 when is odd.

Hence, the required points (x1, y1) = 2 1
2

1n+�
��

�
��� � π ,

When n = 0, 2, 4

and 2 1
2

1n+ −�
��

�
��� � π ,  when n = 1, 3, 5

(b) Let (x1, y1) be the required point on the curve.

y a x a
x

a

2
4= +���

���
sin …(1)

∴ = +���
���y a x a

x

a1 1
14 sin …(2)

Now, differentiating eqn (1) w.r.t x, we get

2 4 1
1

4 1y
dy

dx
a a

x

a a
a

x

a
= + 	



�
 ⋅

���
���
= +	



�
cos cos

⇒ = +	



�


dy

dx

a

y

x

a

2
1 cos

⇒  The value of 
dy

dx
 at (x1, y1)

= +	

�

�
�

2
1

1

1a

y

x

a
cos  = Slope of the tangent at

(x1, y1)
Now, since the tangent at (x1, y1) is parallel to x-

axis.

⇒ �
��

�
�� = +	


�
�
� ==

=

dy

dx

a

y

x

ax x
y y

1

1

2
1 0

1

1cos

⇒ 	

�

�
� = − = ⇒ = ±cos cos

x

a

x

a
n1 11 2π π π

⇒ = ±
x

a
n1 2 1� � π  where n is zero, positive or

negative integer.

⇒ = +x n a1 2 1� � π
Now, substituting this value of x1 in eqn (2), we get

y a n a a n1
2

4 2 1 2 1= + + +� � � �� �π πsin

= + + = +4 2 1 0 4 2 1
2 2

a n a n� � � �π π

⇒ = ± +y a n1 2 2 1� � π
Hence, the required points

= = + ± +x y n a a n1 1 2 1 2 2 1, ,� � � � � �� �π π

where n is zero, positive or negative integer.

O
X

Y



Tangent and Normal to a Curve 741

Question: Find the coordinates of the point of contact
of tangent on the curve xy + 4 = 0 at which the tangent
makes an angle of 45º with x-axis. (Or, find the
equations of the tangents on the curve xy + 4 = 0
which are inclined at an angle of 45º with the axis
of x). Also find the coordinates of the points of
contact.
Solution: Let (x1, y1) be the required point on the
curve xy + 4 = 0 …(1)

Now, since (x1, y1) lies on the curve xy + 4 = 0

∴ x y1 1,� �  satisfies the equation (1)

⇒  x1 y1 + 4 = 0 …(2)
Now, differentiating (1) w.r.t x, we have

x
dy

dx
y

dy

dx

y

x
⋅ + = ⇒ = −0 …(3)

Now, the value of 
dy

dx
 at x y1 1,� �

= �
��

�
��

= −�
��

�
��

= −=

=

=

=

dy

dx

y

x

y

xx x

y y

x x

y y

1

1

1

1

1

1

Now, the tangents at (x1, y1) are inclined at an
angle of 45º with the axis of x.

⇒ − =
y

x
1

1

45tan º

⇒ − = ⇒ = −
x

y
y x1

1
1 11 …(4)

Now substituting y1 = – x1 from eqn (4) in eqn (2),
we get

− + = ⇒ = ±x x1
2

14 0 2 …(5)

Again from (4), y1 2= � …(6)

Hence, the required points are (2, –2) and (–2, 2).
∴  The tangent at (2, –2) is y + 2 = tan 45º

(x – 2) ⇒  y + 2 = 1 · (x – 2) ⇒  x – y = 4 and the
tangent at (–2, 2) is y – 2 = tan 45º (x + 2) ⇒  y – 2
= x + 2 ⇒  x – y + 4 = 0.

Question: At what points on the curve

y x x= +2

3

1

2

3 2
 are the tangents equally inclined

to the axis?
Solution: Let (x1, y1) be the required points on the

curve y x x= +
2

3

1

2

3 2
…(1)

∴ = +y x x1 1
3

1
22

3

1

2
…(2)

Now, differentiating (1) w.r.t x, we get

dy

dx
x x x x= ⋅ + ⋅ = +

2

3
3

1

2
2 2

2 2

⇒  The value of 
dy

dx
 at x y1 1,� �

= +2 1
2

1x x …(3)

The tangents at (x1, y1) are equally inclined to x-
axis and y-axis (i.e., axis)

⇒  The tangent at (x1, y1) makes an angle of 45º or
135º with x-axis.

Now, considering angle 45º
tan 45º = 2x1

2 + x1 ⇒  2x1
2 + x1 = 1

⇒  2x1
2 + x1 – 1 = 0 ⇒  2x1

2 + 2x1 – x1 – 1 = 0

⇒  2x1 (x1 + 1) – (x1 + 1) = 0

⇒  (x1 + 1) (2x1 – 1) = 0 ⇒  x1 = –1, 
1

2
…(4)

O

45o

45o
135 o

B

X

Y

P
x , y

 (
)

1
1

y f x = ( )

O
X

45o

Y

P
x

, y
 (

)
1

1

y
f 

x
 =

 
(

)
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On putting the values of x1 1
1

2
= − ,  from eqn (4)

in eqn (2), we get

y1
3 22

3
1

1

2
1

2

3

1

2

4 3

6

1

6
= − + − = − + =

− +
= −� � � �

when x1 = –1 and y1

3 22

3

1

2

1

2

1

2

2

3

1

8
= 	



�
 + 	



�
 = × +

1

4

1

2

2

24

1

8

2 3

24

5

24
× = + = + =  when x1

1

2
=

Thus, the required points are x y1 1
1

2

5

24
, ,� � = 	



�


and − −	



�
1

1

6
,

Again considering the angle of 135º, from (3), we
get 2x1

2 + x1 = tan 135º = –1

⇒ + + = ⇒ =
− ± −

2 1 0
1 1 8

41
2

1 1x x x  which

are imaginary, not to be included as the required point.

Hence, the required points are x y1 1
1

2

5

24
, ,� � = 	



�


and − −	



�
1

1

6
, .

Question: At what points on the curve y = (x – 2)
(x – 3) is the tangent parallel to the line 2y = 10x + 5?
Solution: Let (x1, y1) be the required point on the
curve whose equation is

y = (x – 2) (x – 3) …(1)
⇒  y1 = (x1 – 2) (x1 – 3) …(2)
[� Since (x1, y1) satisfies the equation (1) because

of lying on the curve y = (x – 2) (x – 3)]
Now, differentiating eqn (1) w.r.t x, we get

dy

dx
x x x= − ⋅ + − ⋅ = −2 1 3 1 2 5� � � �

∴ The value of 
dy

dx
 at x y1 1,� �

= �
��

�
��

= − = −
=
=

=
dy

dx
x x

x x
y y

x x
1
1

1
2 5 2 51

= Slope of the tangent at (x1, y1) …(3)

Now, since the tangent at (x1, y1) is parallel to the
line 2y = 10x + 5

∴ �
��

�
�� =

=

dy

dx x x
y y

1

1

 must be equal to the slope of the line

which is equal to the coefficient of x in y = mx + c

y x y x= + ⇒ = +�
��

�
��

10

2

5

2
5

5

2

⇒ �
��

�
�� =dy

dx x y1 1

5
,� �

⇒ − =2 5 51x

⇒ = =x1
10

2
5 …(4)

Now, putting x1 = 5 from eqn (4) in eqn (2), we get

y1 = (x1 – 2) (x1 – 3) = (5 – 2) (5 – 3) = 6

∴ Required point (x1, y1) = (5, 6)

Question: Find the points on the curves y = x3 at
which the tangent makes an angle of 60º with x-axis.
Solution: Let (x1, y1) be the coordinates of the
required point on the curve y = x3 …(1)

Then (x1, y1) satisfies the equation (1)

⇒ =y x1 1
3 …(2)

Now, differentiating (1) w.r.t x, we get
dy

dx
x= 3

2

⇒  The value of 
dy

dx
 at x y1 1,� �

= �
��

�
�� =

=

dy

dx x x
y y

1
1

= 3x1
2 ...(3)

O
X

Y

P
x , y

 (
)

1
1

y f x = ( )
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Now since, the tangent at (x1, y1) makes an angle
of 60º with x-axis.

dy

dx
x

x x
y y

�
��

�
�� = ⇒ =

=
=

1

1

60 3 31
2

tan º

⇒ = = ⇒ = −
x x1

2
1
23

3

1

3
3

1
2� �

⇒ = ± −x1 3
1
4

Now, on substituting x1 = ± 3–1/4 from (4) in

eqn (2), we get y1 3
3
4= ± −� �

Hence, the required points are (x1, y1) = 3 3
1
4

3
4

− −	



�
,

and 3 3
1
4

3
4

− −
−	



�
, .

Question: Determine the coordinates of the points
on the ellipse 4x2 + 9y2 = 40 at which the slope of the

curve is −
2

9
.

Solution: Let the required coordinates of the points
be (x1, y1) on the curve

4x2 + 9y2 = 40 …(1)

∴ + =4 9 401
2

1
2

x y …(2)

Now, differentiating both sides of (1) w.r.t. x, we get

8 18 0
4

9
x y

dy

dx

dy

dx

x

y
+ = ⇒ = − …(3)

Now, the value of 
dy

dx
 at x y1 1,� �

= �
��

�
�� =

=

dy

dx x x
y y

1
1

⇒  The slope of the tangent at x y1 1,� �

= −
�
��

�
��

= −
=
=

4

9

4

91
1

1

1

x

y

x

yx x
y y

…(4)

Again, the slope of the tangent = −
2

9
 (Given in

the problem) …(5)

Eqns (4) and (5) ⇒ �
��

�
�� = − = −

=
=

dy

dx

x

yx x
y y

1

1

4

9

2

9
1

1

⇒ − = −
4

9

2

9
1

1

x

y

⇒  y1 = 2x1 …(6)
Now, substituting (6) in (2), we get

4x1
2 + 9 · (2x1)

2 = 40

⇒  4x1
2 + 36x1

2 = 40

⇒  40x1
2 = 40

⇒ = ±x1 1

∴ = = ±y x1 12 2

∴ Required points are x y1 1 1 2, ,� � � �= ± ±

Question: Find the point on the curve x2 – y2 = 2 at
which the slope of the curve is 2.

Solution: Let the required point be (x1, y1).

Given equation of the curve is x2 – y2 = 2 …(1)

∴ − =x y1
2

1
2

2 …(2)
[�  Since (x1, y1) lies on the curve].

Now, differentiating both sides of the equation (1)
w.r.t x, we get

2 2 0x y
dy

dx
− =

⇒ =
dy

dx

x

y …(3)

O
X

Y

P
x

, y
1 (

)
1

1
P

x
, y

2
 (

)
2

2
O

y
f

x
 =

  
(

)

60o

X

Y
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Now, the value of 
dy

dx
 at x y

x

y1 1
1

1

,� � =  Slope of

the tangent …(4)
Now, according to question, the slope of the curve

at (x1, y1) = 2 …(5)
� The slope of the curve = The slope of the tangent

at (x1, y1).

⇒ = ⇒ =
x

y
x y1

1
1 12 2 …(6)

Now, putting (6) in (2), we get

4 2 3 2
2

31
2

1
2

1
2

1y y y y− = ⇒ = = ± …(7)

Now, from eqn (6), x y x1 1 12 2
2

3
= ⇒ = ±

∴ Required points are (x1, y1) = ± ±
	

�

�
�

2
2

3

2

3
,

=
	

�

�
�

2
2

3

2

3
,  and − −

	

�

�
�

2
2

3

2

3
,

Question: Find the coordinates of the point on
y = x3, where the tangents through the point (0, 54)
meet the curve.
Solution: Let (x1, y1) be the coordinates of the
required point on the curve y = x3 …(1)

∴ =y x1 1
3 …(2)

Now, differentiating (1) w.r.t x, we get 
dy

dx
x= 3

2

Now, the value of 
dy

dx
 at (x1, y1)

= �
��

�
��

=
=
=

dy

dx
x

x x
y y

1
1

3 1
2

…(3)

∴ The equation of the tangent at (x1, y1) is

(y – y1) = 3x1
2 (x – x1)

Since this line passes through (0, 54)

∴ (0, 54) will satisfy the equation of tangent

∴ 54 – y1 = 3x1
2 (0 – x1)

⇒  y1 – 54 = 3x1
2 · x1

⇒  y1 = 3x1
3 + 54 …(4)

Putting the value of y1 from eqns (4) in (2), we get

3x1
3 + 54 = x1

3 ⇒  2x1
3 = – 54

⇒ = − = −x1
3 54

2
27 ⇒ x1 = –3

∴ Required point is (x1, y1) = (–3, –27)

Question: Find the coordinates of the point where
the tangent to the curve y = x2 + 3x + 4 passes through
the origin.
Solution: Let (x1, y1) be the coordinates of the
required point on the curve y = x2 + 3x + 4 …(1)

Now, differentiating (1) w.r.t x, we get
dy

dx
x= +2 3

Now, the value of 
dy

dx
 at (x1, y1)

= �
��

�
��

= + = +
=
=

=
dy

dx
x x

x x
y y

x x
1
1

1
2 3 2 31

P
x , y

 (
)

1
1

O

y f x =  ( )

X

Y

P
x , y

 (
)

1
1

O

y
f x

 =  ( )

X

Y

P
x , y

 (

)
1

1

O

y
f x

 =  (
)

X

Y
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= Slope of the tangent
Again the equation of the tangent at (x1, y1) is

y y
dy

dx
x x

x x
y y

− = �
��

�
�� ⋅ −

=
=

1 1
1

1

� � � �

⇒ − = + −y y x x x1 1 12 3� � � � � � …(2)

Now, the tangent (2) passes through the origin
(0, 0)

⇒  (0 – y1) = (2x1 + 3) (0 – x1)

⇒  –y1 = (2x1 + 3) (–x1)

⇒  y1 = (2x1 + 3) · x1

⇒  y1 = (2x1 + 3) x1 = 2x1
2 + 3x1 …(3)

Again (x1, y1) lies on the curve y = x2 + 3x + 4
∴ y1 = x1

2 + 3x1 + 4 …(4)
Eqns (3) and (4) ⇒  2x1

2 + 3x1 = x1
2 + 3x1 + 4

⇒  2x1
2 – x1

2 = 3x1 – 3x1 + 4

⇒  x1
2 = 4 ⇒  x1 = ±2

Again, substituting the values of x1 in (4), we get
y1 = 14 for x = 2 and 2 for x = –2

Hence, the required points are (2, 14) and (–2, 2).

Question: Find the coordinates of the points at which
the tangents to the curve y = x2 + 2x pass through
origin.
Solution: Letting that there is a point (x1, y1) on the
curve y = x2 + 2x …(1)

We have, y1 = x1
2 + 2x1 …(2)

Now, differentiating both sides of eqn (1) w.r.t x,
we get

dy

dx
x= +2 2

∴ �
��

�
�� = +

=
=

dy

dx
x

x x
y y

1

1

2 21  = The slope of the tangent

at (x1, y1) …(3)
Now, the equation of the tangent at (x1, y1) is

y y
dy

dx
x x

x x
y y

− = �
��

�
�� ⋅ −

=
=

1 1
1

1

� � � �

⇒ − = + ⋅ −y y x x x1 1 12 2� � � � � � …(4)
Now, the tangent passes through (0, 0)

⇒ − = + −0 2 2 01 1 1y x x� � � � � �

⇒ = +y x x1 1
2

12 2

Now eqns (2) and (5) ⇒  2x1
2 + 2x1 = x1

2 + 2x1

⇒  2x1
2 – x1

2 = 0 ⇒  x1
2 = 0 ⇒  x1 = 0

Now putting x1 = 0 in (2), we get,

y1 = 2x1
2 + 2x1 = 0

∴ Required point = (x1, y1) = (x1, y1) = (0, 0)

Question: Find the coordinates of the points on the
curve y =  5 log (3 + x2) at which the slope is 2.
Solution: We are given y = 5 log (3 + x2) …(1)
(1) ⇒  y1 = 5 log (3 + x1

2) provided (x1, y1) lies on the
curve.

Now, differentiating (1) w.r.t x, we get

dy

dx x
x

x

x
= ⋅

+
⋅ + =

+
5

1

3
0 2

10

3
2 2

� � …(2)

Again since 
dy

dx
= =tanψ 2  (given) …(3)

Now let the required point be (x1, y1)

∴ �
��

�
��

=dy

dx x y1 1

2
,� �

and 10

3

10

32
1

1
2

1

x

x

x

x
x x

+

�
�
��

�
�
��

=
+=

…(4)

(3) and (4) ⇒
+

= ⇒ = +
10

3
2 10 6 21

1
2 1 1

2x

x
x x

P
x , y

 (
)

1
1

O

y
f x

 =  ( )

X

Y

θ

P
x

, y
 (

)
1

1

O

y
f

x
 =

  
(

)

X

Y
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⇒  5x1 = 3 + x1
2

⇒  x1
2 – 5x1 + 3 = 0

⇒ =
± −

= ±
x1

5 25 12

2

5 13

2

∴ Required points are x y1 1,� �

=
+ +	


�
�
�

�
��
��

�
��
��

5 13

2

5 13

2

2

, log

and 
5 13

2
5 3

5 13

2

2
−

+
−	


�
�
�

�
��
��

�
��
��

�
��

��

�
��

��
, log

Problems based on length of the perpendicular from
the origin upon the tangent at (x1, y1).

�  The equation of the tangent is

y y
dy

dx
x x

x x
y y

− = �
��

�
�� −

=
=

1 1
1

1

� � � �

∴ �
��

�
�� − + − �

��
�
��

	



��

�


�� =

=
=

=
=

x
dy

dx
y y x

dy

dxx x
y y

x x
y y

1
1

1
1

1 1 0

⇒  The length of the perpendicular upon this
tangential line from the origin whose coordinates are
(0, 0) is

=

− �
��

�
��

+ 	



�


�

�
�
�

�

�
�
�

=
=

=
=

y x
dy
dx

dy
dx

x x
y y

x x
y y

1 1

2

1
1

1
1

1

Examples worked out:

Question: Find the length of perpendicular from the
foot of the ordinate upon the tangent to the curve
y = f (x).

Solution: Let us draw PM ⊥  to x-axis MK⊥  to the

tangent PB.

The equation of the tangent at P (x1, y1) is

y y
dy

dx
x x

x x
y y

− = �
��

�
�� ⋅ −

=
=

1 1
1
1

� � � �

⇒ − �
��

�
�� − + �

��
�
�� =

=
=

=
=

y x
dy

dx
y x

dy

dxx x
y y

x x
y y

1

1

1

1

1 1 0

⇒ =MK  The length of the ⊥  from M (x, 0) on

the tangent at P

=

− �
��

�
�� − + �

��
�
��

+ 	



�


�

�
�
�

�

�
�
�

=
=

=
=

=
=

0

1

1 1 1

2

1
1

1
1

1

1

x
dy

dx
y x

dy

dx

dy

dx

x x
y y

x x
y y

x x
y y

N.B.: Since the length of perpendicular from
(x1, y1) to any line ax + by + c = 0 is

ax by c

a b

1 1

2 2

+ +

+
 since length is always

positive.

(

)

x
, y
1

1

O

y f x =  ( )

X
A

L

P

B

Y

(

)

x
, y
1

1

O

y f x =  ( )

X

K

M

P

B

Y
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=
−

+ 	



�


�

�
�
�

�

�
�
�

=

+ 	



�


�

�
�
�

�

�
�
�=

=
=
=

y

dy
dx

y

dy
dxx x

y y
x x
y y

1

2

1

2

1 1
1
1

1
1

Question: Show that the normal to the curve

x a= +cos sinθ θ θ� �
y a= −sin cosθ θ θ� �

at any point θ  is at a constant distance from the
origin.
Solution: Let (x1, y1) be any point on the given curve
where the parametric equation is

x a

y a

= +
= −

�
�
�

cos sin

sin sin

θ θ θ
θ θ θ

� �
� � …(1)

∴ = −
= −

�
��
��

x a

y a
1 1 1 1

1 1 1 1

cos sin

sin cos

θ θ θ
θ θ θ

� �
� � …(2)

for some value of θ θ= 1

dy

d

d a

d
a

d

d
a

d

dθ
θ θ θ
θ

θ
θ

θ θ
θ

=
−

= −
sin cos sin cos� � � �

= − ⋅ + −a acos cos sinθ θ θ θ1 � �
= − + =a a a acos cos sin sinθ θ θ θ θ θ ...(3)

Again 
dx

d

d

d
a

θ θ
θ θ θ= +cos sin� �

= ���
���
+

���
���

a
d

d
a

d

d

cos sinθ
θ

θ θ
θ

� �

= − + +a asin sin cosθ θ θ θ !
= – a sin θ  + a sin θ  + a θ  cos θ
= a θ  cos θ …(4)

∴ = ÷ = =dy

dx

dy

d

dx

d

a

aθ θ
θ θ
θ θ

θ
sin

cos
tan …(5)

dy

dx x x
y y

�
��

�
�� = =

=
=

=
1

1

1
1tan tanθ θθ θ …(6)

Now, the equation of the normal at any point θ  on
the given curve is given by

y y x x− = −
�
��

�
��
⋅ −1 1

1� � � �
Slope of the tangent

⇒ − −y a sin cosθ θ θ1 1 1� �

= − − +
cos

sin
cos sin

θ
θ

θ θ θ1

1
1 1 1x a � �

⇒ − −sin sin cosθ θ θ θ1 1 1 1y a � �
= − − +cos cos sinθ θ θ θ1 1 1 1x a � �

⇒ − +y a asin sin sin cosθ θ θ θ θ1
2

1 1 1 1

= − + +x a acos cos sin cosθ θ θ θ θ1
2

1 1 1 1

⇒ + = + =x y a acos sin cos sinθ θ θ θ1 1
2

1
2

1� � …(7)

Now, the length of ⊥  from (0, 0) to the normal (7)

is =
⋅ + ⋅ −

+

0 01 1

2
1

2
1

cos sin

cos sin

θ θ

θ θ

a

= | a | which is independent of the value θ θ1 of

and hence a constant for all values of θ .

Working rule to find the coordinates of a point on
the curve whose parametric equations are given and
the tangential line passes through that point such
that some condition is imposed on that tangent.

Working rule:

1. Find 
dy

dx
 using the formula 

dy

dx

dy

dx

dt

dx
= ÷

= =
′
′

dy
dt

dx
dt

f t

f t
1

2

� �
� �

2. Let (x1, y1) be a point on the curve corresponding
to the parameter θ  [or t, u, v etc. whichever is given
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in the problem x f y f= =1 2θ θ� � � �, ] = θ1  [or, t1,

u1, v1, etc.].

3. Find dy

dx
�
��

�
�� =

=θ θ1

 The slope of the tangent at θ1

[or, u1, t1, v1 etc.] from the given condition and solve

for θ1  [or, u1, t1, v1 etc.].

4. Find the values of x1 and y1 from the equations

x1 = f1 ( θ1 ), y1 = f2 (θ2 )

by putting the values of parameter θ1  [or, u1, t1, v1

etc.].

Problems based on finding the coordinates of a point
on the curve whose parametric equations are given.

Examples worked out:
Question: Find the coordinates of the point on the
curve

x = a ( θ  + sin θ ), y = a ( 1 – cos θ )

where the tangent is inclined at an angle of 
π
4

 to the

x-axis.
Solution: Equation of the curve is

x a

y a

= +
= −

�
�
�

θ θ
θ

sin

cos

� �
� �1 …(1)

Let (x1, y1) be a point on the curve corresponding
to θ  = θ 1

∴ = +
= −

�
�
�

x a

y a
1 1 1

1 11

θ θ
θ

sin

cos

� �
� � …(2)

Now, differentiating (1) w.r.t θ , we get

dx

d
a

dy

d
a

θ
θ

θ
θ

= +

=

�
��

��

1 cos

sin

� �

⇒ =
+

=
+ −	



�


dy

dx

a

a

a

a

sin

cos

sin

cos

θ
θ

θ
θ1 1 2
2

1
2� �

=
⋅ ⋅

⋅ ⋅
=

a

a

2
2 2

2
2 2

2

sin cos

cos cos
tan

θ θ

θ θ
θ

…(3)

Now, the value of 
dy

dx
 at P x y1 1 2

1

,� � = �
��

�
�� =

tan
θ

θ θ

= tan
θ1

2
 where θ1  is the parameter at P. …(4)

∴ The slope of the tangent at x y1 1
1

2
,� � = tan

θ

Let 
dy

dx P

�
��

�
�� = =tan

π
4

1 …(5)

[At (x1, y1), the tangential line makes 
π
4

 angle

with x-axis]

Eqns (4) and (5) ⇒ =tan tan
θ π1

2 4

⇒ = ⇒ =θ π θ π1
12 4 2

…(6)

From (2), for θ
π

1 2
=

x a a1 2 2 2
1= +	



�
 = +	



�


π π π
sin

y a a1 1
2

= −	



�
 =cos

π

∴ Required point is x y a a1 1 2
1,� � = +	


�
�
�

�
��

�
��

π
,

Question: Find the co-ordinates of the points where
the tangents to the curve given in parametric form

x = 2u4 + u

y = u4 – 2u2 +1 are parallel to x-axis.

P
x

, y
 (

)
1

1

O

y
f

x
 =

  
(

)

X

Y

4
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Solution: Let (x1, y1) be a point on the curve
corresponding to u = u1

∴  y = u4 – 2u2 + 1, x = 2u4 + u …(1)

⇒  y1 = u1
4 – 2u1

2 + 1, x1 = 2u1
4 + u1 …(2)

Now, differentiating the equation (1) w.r.t u, we get

dy

du
u u

dx

du
u= − = +4 4 8 1

3 3
, …(3)

∴ = ÷ =
−

+
dy

dx

dy

du

dx

du

u u

u

4

8 1

3

3

� �

Now, 
dy

dx x x
y y

�
��

�
�� =

=
1

1

=
−

+

�

�
�
�

�

�
�
� =

−

+
=

4

8 1

4

8 1

3

3

1
3

1

1
3

1

u u

u

u u

u
u u

� � � �
…(4)

Again since the tangents are parallel to x-axis

∴ �
��

�
�� =

=
=

dy

dx x x
y y

1

1

0
…(5)

Equating (4) and (5)

4

8 1
0 0 1 1

1
3

1

1
3 1 1 1

u u

u
u u u

−

+
= ⇒ = = = −

� �
or or

Now u1 = 0 ⇒  x1 = 2u1
4 + u1 = 0,

y1 = u1
4 – 2u1

2 + 1 = 1 ∴  (x1, y1) = (0, 1)

u1 = 1 ⇒  x1 = 3, y1 = 0 ∴ (x1, y1) = (3, 0)

u1 = –1 ⇒  x1 = 1, y1 = 0 ∴ (x1, y1) = (1, 0)

Thus, the required points are (0, 1), (3, 0) and (1, 0).

Question: Show that in the ellipse 
x

a

y

b

2

2

2

2
1+ = ,

the length of the normal varies inversely as the
perpendicular from the origin.

Solution: Let (x1, y1) be a point of the curve whose

equation is 
x

a

y

b

2

2

2

2
1+ = …(1)

Now, differentiating (1) w.r.t x, we get

2 2
0

2 2

2

2

x

a

y

b

dy

dx

dy

dx

b x

a y
+ = ⇒ = −

⇒  The slope at x y1 1,� �

= �
��

�
��

= −=

=

dy

dx

b x

a yx x

y y

1

1

2
1

2
1

…(3)

⇒  The slope of the normal at (x1, y1)

=
a y

b x

2
1

2
1

…(4)

∴ The equation of the normal is

y y
a y

b x
x x− = −1

2
1

2
1

1� � � �

⇒  b2 x1 y – b2 x1 y1 = a2 y1 x – a2 x1 y1

⇒  b2 x1 y + a2 x1 y1 = a2 y1 x + b2 x1 y1

⇒  x1 (b2 y + a2 y1) = y1 (a
2 x + b2 x1) …(5)

Now, the equation of the tangent is

y y
b x

a y
x x− = − ⋅ −1

2
1

2
1

1� � � �

⇒ − = − +a y y a y b x x b x2
1

2
1
2 2

1
2

1
2

⇒ + = +b x x a y y b x a y
2

1
2

1
2

1
2 2

1
2

[Dividing both sides by a2 b2]

P x , y1 ( )1 1 P x , y2 ( )2 2 P x , y3 ( )3 3

y f x =  ( )

O
X

Y

O
X

P

norm
al tangent

Y
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⇒ + = + =
x x

a

y y

b

x

b

y

a

1
2

1
2

1
2

2
1
2

2
1 ...(6)

[from (2)]
Thus, the equation of the tangent is

x x

a

y y

b

1
2

1
2

1 0+ − =

∴  Length of ⊥  from the origin (0, 0) upon the
tangent

=
+

constant term of equation of tangent

coefficient of coefficient of x y� � � �2 2

⇒ = −

	

�

�
� + 	


�
�
�

=

+

p
x

a

y

b

x

a

y

b

1 1

1
2

2
1
2

2
1
2

4
1
2

4

=
+

=
+

1 1

1
2 4

1
2 4

4 4
1
2 4

1
2 4

2 2

x b y a

a b

x b y a

a b

=
+

a b

x b a y

2 2

1
2 4 4

1
2 …(7)

Now, length of the normal

= + 	



�


�

�
�
�

�

�
�
� = +

=
=

y
dy

dx
y

b x

a yx x
y y

1

2

1

4
1
2

4
1
2

1 1
1

1

⇒ = + = ⋅ +l y
a y b x

a y

y

a y
a y b x1

4
1
2 4

1
2

4
1
2

1
2

1

4
1

4
1
2

⇒ = ⋅ +l
a

a y b x
1
2

4
1
2 4

1
2

Hence, l p
a b

x b a y a
a y b x× =

+
× ⋅ +

2 2

1
2 4 4

1

2

4
1

4
1
21

which is a constant.

∴ =l
b

p

2

∴ ∝l
p

1

Problems based on showing that two curves cut each
other orthogonally whose implicit equations are
f1 (x, y) = 0 or constant and f2 (x, y) = 0 or constant

Working rule:
1. Mark the given equations f1 (x, y) = 0 or constant
as first curve and f2 (x, y) = 0 or constant, second
curve.

2. Find 
dy

dx
 for the first curve and the second curve.

3. Let (x1, y1) be the point of intersection of two given
curves.

4. Find the values of 
dy

dx
 at (x1, y1) for each given

curves (i.e., for the first curve and second curve) which
will provide us m1 and m2 for the first and second
curve.
5. Check whether m1 · m2 = –1 or not.

Thus, m1 · m2 = –1 ⇒  Two curves cut each other
orthogonally and m1 · m2 ≠  –1 ⇒  Two curves do
not cut each other orthogonally.

N.B.: 1. When the given two equations can be solved
simultaneously by using simultaneous  equations
methods (i.e., by elimination/comparison of
coefficients of x and y/equating two equations/
additions and subtraction method/…etc), we should
first of all find the point of intersection of two given

curves at which are find the values of 
dy

dx
 for the first

curve and second curve and then we should check
whether m1 · m2 = –1 or not.
2. Whenever it is not possible to find the point of
intersection by using simultaneous equations method,

then we find the values of 
dy

dx
 for each given equation

at (x1, y1) which is supposed to be the point of
intersection of given curves (i.e., the first curve and
second curve).
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Examples worked out:

Question: Show that the curves x3 – 3x y2 = a and
3x2 y – y3 = b cut each other orthogonally where a
and b are constants.
Solution: Let (x1, y1) be the point of intersection of
two curves whose equations are

x3 – 3x y2 = a …(1)
3x2 y – y3 = b …(2)

Now, differentiating both sides of equation (1) w.r.t
x, we get

3 3 1 2 0
2 2

x y x y
dy

dx
− ⋅ + ⋅	



�
 =

⇒ − − =x y xy
dy

dx

2 2
2 0

⇒ = −dy

dx

x y

xy

2 2

2

⇒ �
��

�
�� =

−
=

=
=

dy

dx

x y

x y
m

x x
y y

1
1

1
2

1
2

1 1
12 …(3)

Again differentiating both sides of equation (2)
w.r.t x, we have

3 2 3 0
2 2

xy x
dy

dx
y

dy

dx
+	



�
 − =

⇒ − + =x y
dy

dx
xy

2 2
2 0� �

⇒ = −
−

dy

dx

xy

x y

2
2 2

⇒ �
��

�
��

= −
−

=dy

dx

x y

x y
m

x y1 1

2 1 1

1
2

1
2 2

,� �
…(4)

Now m m
x y

x y

x y

x y1 2
1 1

1
2

1
2

1
2

1
2

1 1

2

2
⋅ =

−

−
×

−
 = – 1 which

means given curves cut each other orthgonally.

Question: Show that the curves y = x3 and 6y = 7 – x2

intersect orthogonally.
Solution: Given equations of the curves are

y = x3    …(1)
6y = 7 – x2 …(2)

Solving the equations (1) and (2) simultaneously
by eliminating y, we get 6x3 = 7 – x2

⇒  6x3 + x2 – 7 = 0

⇒  (x – 1) (6x2 + 7x + 7) = 0

⇒  Either (x – 1) = 0 or (6x2 + 7x + 7) = 0
(x – 1) = 0 ⇒  x = 1
(6x2 + 7x + 7) = 0

⇒ =
− ± −

=
− ± − × ×

×
x

b b ac

a

2
4

2

7 49 4 6 7

2 6

=
− ± −7 49 168

12
 which are imaginary.

The above explanation implies only root under
consideration is x = 1 since imaginary root is not
considered ⇒  y = 1 (� y = x3 ⇒  y = 13 = 1)

∴  Required point of intersection = P (x1, y1)
= P (1, 1)

Now, m
dy

dx P
1

1 1

= �
��

�
�� ,� �

 from the first curve

=
�
�
��

�
�
��

dx

dx
P

3

1 1,� �
         = =

=
3 32

1
x

x

m
dy

dx P
2

1 1

= �
��

�
�� ,� �

 from the second curve

=

−
	

�

�
�

�

�

�
�
�
�
��

�

�

�
�
�
�
��

= −���
�
�� = −

=
=

d
x

dx

x

P

x
y

7
6 6 2

6

1

3

2

1 1

1
1

,� �

∴ ⋅ = × −	

�
 = −m m1 2 3

1

3
1 which means two

given curves cut orthogonally.

Question: Show that that curves x2 = 2y and

6y = 5 – 2x3 intersect orthogonally.
Solution: Letting (x1, y1) to be the point of intersection
of the given curves
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x2 = 2y …(1)
6y = 5 – 2x3 …(2)

and solving the equations of the given curves by

eliminating y from (1), (2) we find 6
2

2

×
x

 = 5 – 2x3

⇒  3x2 + 2x3 – 5 = 0 ⇒  2x3 + 3x2 – 5 = 0
2x3 + 3x2 – 5 = 0

⇒  2x3 – 2x2 + 5x2 – 5x + 5x – 5 = 0

⇒  (x – 1) (2x2 + 5x + 5) = 0

∴ = =
− ± −

x x1
5 24 40

4
or

which is imaginary.

Hence x = 1 and y
x

x

=
�

�
�
�

�

�
�
�

=
=

2

1
2

1

2

∴  Required point = = 	



�
x y1 1 1

1

2
, ,� �

Now, 2
2

2

2

2
2

y x y
x dy

dx

x
x= ⇒ = ⇒ = =

⇒ = ==
=

m x x
y

1 1
1
2

1

Again y
x

x=
−

= −
5 2

6

5

6

1

3

3
3

⇒ = − ⋅ = −dy

dx
x x0

1

3
3

2 2

∴ = − = −=
=

m x
x
y

2
2

1
1
2

1

∴ ⋅ = − × = −m m1 2 1 1 1 which means the given

curves cut each other orthogonally.
Question: Find the condition that the curves
ax2 + by2 = 1 and a1 x2 + b1 y

2 = 1 may intersect
orthogonally.
Solution: Letting (x1, y1) to be the point of intersection
of the curves

ax2 + by2 = 1 …(1)

a1 x
2 + b1 y

2 = 1 …(2)

we have, ax1
2 + by1

2 = 1 = a1 x1
2 + b1 y1

2

[�  lies on the curve]

⇒  ax1
2 – a1 x1

2 = b1 y1
2 – by1

2

⇒  x1
2 (a – a1) = y1

2 (b1 – b)

⇒ = −
−

x

y

b b

a a
1
2

1
2

1

1

Alternatively,
(x1, y1) lies on the curves
⇒  (x1, y1) satisfies the equations (1) and (2)
(1) ⇒  a x1

2 + b y1
2 – 1 = 0 …(3)

(2) ⇒  a1 x1
2 + b1 y1

2 – 1 = 0 …(4)
Now, solving eqns (3) and (4) simultaneously by

cross-multiplication rule:

⇒
−

=
−

=
−

x

b b

y

a a ab a b
1
2

1

1
2

1 1 1

1

⇒ = −
−

=
−
−

�
�
��

�
��
⇒ = −

−

x
b b

ab a b

y
a a

ab a b

x

y

b b

a a

1
2 1

1 1

1
2 1

1 1

1
2

1
2

1

1and
…(5)

Now, differentiating the equation (1) w.r.t x, we get

2 2 0ax by
dy

dx
+ =

⇒ = − ⇒ = −�
��

�
��

=
−

=
=

dy

dx

ax

by
m

ax

by

ax

byx x
y y

1
1

11
1

Similarly, differentiating the equation (2) w.r.t x, we
get

2 2 01 1a x b y
dy

dx
+ =

⇒ = −dy

dx

a x

b x
1

1

⇒ =
−�

��
�
��

=
−

=
=

m
a x

b y

a x

b yx x
y y

2
1

1

1 1

1 11
1

The two curves intersect orthogonally at (x1, y1)

⇒ ⋅ = − ⇒
−	


�
�
� × −

	

�

�
� = −m m

a x

b y

ax

by1 2
1 1

1 1

1

1

1 1

⇒ =− ⇒ = −a a x bb y
x

y

bb

a a1 1
2

1 1
2 1

2

1
2

1

1
…(6)
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Eqns (5) and (6)

⇒
−
−

=− ⇒
−
−

= −
b b

a a

bb

a a

a a

b b

a a

bb
1

1

1

1

1

1

1

1

⇒
−

=
−

−
a a

a a

b b

bb
1

1

1

1

⇒ − = −1 1 1 1

1 1a a b b
which is the required condition.

Remember: 1. The algebraic form of a condition is
always a relation (or, an equation) among the given
constant. Thus when we are asked to find the
condition, we mean to find the algebraic form of a
condition.
2. The student should know that by the conditions
under which a straight line touches a given curve is
meant the relation that must exist among the constants
occurring in the equations of the straight line and the
curve in order that they may touch each other.

Question: Find the angle between the curves y = f1 (x)
and y = f2 (x) at (x1, y1), the point of intersection of the
curves.

Or, find the angle between the curves f1 (x, y) = 0
constant and f2 (x, y) = 0 at (x1, y1), the point of
intersection of the curves.
Solution: Supposing that y = f1 (x) or f1 (x, y) = 0 and
y = f2 (x) or f2 (x, y) = 0 are the two equations of the
curves C1 and C2 respectively intersection at
P (x1, y1). Let the tangents PT1 and PT2 to the to the
curves C1 and C2 make angles of inclination i1 and i2
respectively with x-axis.

Again let the angle between the two tangents = θ
Now, the slope of the tangent to the curve y = f1 (x)

or f1 (x, y) = 0 at (x1, y1)

= �
��

�
�� = �

��
�
�� = =

=
=

dy

dx

dy

dx
i m

x x
y y C1

1
1

1 1tan

Again the slope of the tangent to the curve y = f2
(x) or f2 (x, y) = 0 at (x1, y1)

= �
��

�
�� = �

��
�
�� = =

=
=

dy

dx

dy

dx
i m

x x
y y C1

1
2

2 2tan

Now, angle of intersection of the curves

= = = +θ θi i i i2 1 2 1~ �

⇒ = =
+

tan tanθ i i
m m

m m2 1
2 1

1 21
~

~� �

⇒ =
+

�
��

�
��

≠ −−θ tan when
1 2 1

1 2
1 21

1
m m

m m
m m

~

Also tan tanπ θ θ− = − = −
+

�
��

�
��

� � m m

m m
1 2

1 21

~

Hence, the angles between the curves

= = ±
+

�
��

�
��

−
θ tan

1 1 2

1 21

m m

m m

~

Remember:
1. When the curves touch, the angle of intersection
= 0 ⇒  when the slopes of the tangents are same, the
curves touch each other.
2. When the angle between the tangents is a right
angle, the curves are said to cut each other
orthogonally ⇒  If m1 m2 = –1, then the curves are
said to cut each other orthogonally.
3. If either m1 or m2 (or both of them) is infinity, then
it is advisable to express m1 and m2 in the form of
tan θ . In other words,

If m1 = tan i1 and m2 = tan i2, then the angle between
the two tangents to the two intersecting curves at
(x1, y1) is

θ = − =i i1 2  absolute value of difference of i1
and i2 provided m1 or m2 is infinity or both of them are
infinity.

XO

P

i1
T1

i2
T2

C 2

C 1

C 2

C 1

Y

(
)

x
, y 1

1

θ
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4. In general 
dy

dx

dy

dxC x y

�
��

�
�� = �

��
�
�� =

1 1 1

0
,� �

 ⇒ =tanψ1 0

⇒ =ψ1 0  for the curve C1. …(i)

and dx

dy

dx

dyC x y

�
��

�
��

=
�
��

�
��

=
2 1 1

0
,� �

⇒ =ψ 2 90º  for the curve C2. …(ii)

Hence from (i) and (ii), we get the angle of
intersection between the two curves is

θ ψ ψ= − =2 1 90º .

In particular (a) If the slope of the tangent line
drawn to any curve y = f1 (x) at the point (0, 0) is zero,
then the tangent to the curve y = f1 (x) at the point
(0, 0) is x-axis (i.e., m1 = 0 ⇒  The tangent to the
curve is x-axis).

(b) If the slope of the tangent line drawn to the

curve y = f2 (x) at the origin (0, 0) is infinity (i.e., 
dx

dy
= 0

at origin) then the tangent to the curve y = f2 (x) at the
point (0, 0) is y-axis.

(a) and (b) ⇒  The curves y = f1 (x) and y = f2 (x) at

(0, 0) intersect orthogonally. Since m1 = 0 ⇒  tan ψ1

= 0 ⇒  ψ1  = 0 and 
dx

dy

	

�

�
� =

0 0

0
,� �

⇒ ψ2  = 90º

∴ = − =θ ψ ψ2 1 90º .

3. Angle between two curves/angle of intersection
of two curves implies the angle between their tangent
lines drawn to the curves at a common point known
as point of intersection of two curves.
4. When two curves intersect each other, at the point
of intersection, each curve has a tangent separate
and distinct (unless they touch there). The tangents

are always inclined to each other at some angle called
the angle of intersection of two curves. When the
angle between tangents is a right angle, the
intersection is called orthogonal.

Question: How to find the angle of intersection
between two curves y = f1 (x) or f1 (x, y) = 0 and
y = f2 (x) or f2 (x, y) = 0

Working Rule:

1. Let (x1, y1) be the point or intersection of two given
curves y = f1 (x) or f1 (x, y) = 0 and y = f2 (x) or
f2 (x, y) = 0

2. Find the coordinates of the point of intersection
of two given curves by putting (x1, y1) in the given
two equations of the curves and solving these two
equations to find (x1, y1).

3. Find 
dy

dx
 of both curves (differentiate both

equations of the curves w.r.t x).

4. Put the numerical values of the coordinates of the

point of intersection (x1, y1) of the curves in 
dy

dx
 for

both equations of the curve and call these values as
m1 and m2.

Where m1 = The value of 
dy

dx
 at (x1, y1)

= �
��

�
�� = �

��
�
�� =

=

dy

dx

dy

dxC x x
y y1

1

1

 for the first curve

m2 = The value of 
dy

dx
 at (x1, y1)

= �
��

�
�� = �

��
�
�� =

=

dy

dx

dy

dxC x x
y y2

1

1

 for the second curve

5. Use the formula θ =  Angle of intersection of two
intersecting curves at (x1, y1)

= ±
+

�
��

�
��

−
tan

1 2 1

1 21

m m

m m

~

Note: 1.
dy

dx

dy

dxP x y

�
��

�
��

= �
��

�
��

1 1,� �
, provided (x1, y1) is

supposed to be the point of intersection of the curves.

θ

O

y f x =  ( )1

y f x =  ( )2

X

Y
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2. If (x, y) is supposed to be the point of intersection
of the two intersecting curves, then (x, y) is found
directly by solving simultaneously the two given
equations of the curves y = f1 (x) and y = f2 (x).
3. The slopes m1 and m2 at the point of intersection
is always found by the derivatives calculated from
the two given equations at the known coordinates of
the point of intersection of the two given equations
for the curves.
4. Remember that the slopes m1 and m2 are always
calculated at a given point whose coordinates are
known represented as (x1, y1).
5. m1 and m2 are slopes of two tangents drawn to the
two curves at the same common point of intersection
of two curves.

Examples worked out:

Question: Find the angle of intersection of the curves
x2 + y2 = 8 and y2 = 2x.
Solution: (a) Let (x1, y1) be the point of intersection
of the given curves

∴  x1
2 + y1

2 = 8 …(1)

and y1
2 = 2x1 …(2)

Now, solving eqns (1) and (2) by eliminating y1
from (1), we have

x1
2 + 2 x1 = 8 ⇒  (x1 + 4) (x1 – 2) = 0 ⇒  x1 = 2, – 4

when x y1 12 2= = ±,

when x1 = – 4, y1 = imaginary for y1
2 = – 8

∴  Required points of intersection are (x1, y1)
= (2, 2) and (2, –2) …(3)

(b) The equations of the curves are
x2 + y2 = 8 …(4)
y2 = 2x …(5)
Differentiating eqn (4) w.r.t x, we get

dy

dx

x

y
= − =  Slope of the tangent to the curve

x2 + y2 = 8 at any point (x, y).
Again differentiating eqn (5) w.r.t x, we get

dy

dx y
= =

1  Slope of the tangent to the curve

y2 + 2x at any point (x, y).
(c) Now, the slope of the tangent to the curve

x2 + y2 = 8 at any particular point (x1, y1)

= �
��

�
��

= �
��

�
��

= −
�
��

�
��

= − = −
=
=

=
=

dy

dx

dy

dx

x

yC x x
y y

x
y1

1
1

1
1

1

1 2
2

2

2
1

= m1 = tan i1 …(6)
Similarly, the slope of the tangent to the curve

y2 = 2x at any particular point (x1, y1)

= �
��

�
��

= �
��

�
��

=
�
��

�
��

=
=
=

=
=

dy

dx

dy

dx yC x x
y y

x
y2

1
1

1
1

1 1

21 2
2

= m2 = tan i2 …(7)
Thus, at (2, 2) we get the slopes which are –1

= tan i1 and 
1

2 2= tan i

Again, we find the slopes of the tangents at (2, –2)
is

dy

dx

dy

dx

x

yC
x x

y y

x

y

�
��

�
��

= �
��

�
��

= −
�
��

�
��

= −
−

==

=

=

=−
1

1

1

1

1

1

1
2

2

2

2
1 …(8)

and 
dy

dx

dy

dx yC
x x

y y

x

y

�
��

�
��

= �
��

�
��

=
�
��

�
��

= −=

=

=

=−
2

1

1

1

1

1 1

21
2

2

…(9)

Thus, at (2, –2), we get the slopes which are

1 = tan i1 and −
1

2 2= tan i

(d) Hence, the angle of intersection at (2, –2) is

θ = ±
+

�
��

�
��

−tan 1 1 2

1 21

m m

m m

~

= ±
+

�
��

�
��

−
tan

difference of slopes

product of slopes

1

1

= ±
− −

+ −

�

�

�
�
�

�

�

�
�
�

−tan 1

1
2

1

1 1
1
2

� �

� �

= ±
+

−

�

�

�
�
�

�

�

�
�
�
= ±

�

�

�
�
�

�

�

�
�
�

− −
tan tan

1 1

1
2

1

1
1
2

3
2
1
2

= ±−
tan

1
3 …(10)
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Again, the angle of intersection at (2, –2)

= ±
− −	


�


+ −	

�


�

�

�
�
�
�

�

�

�
�
�
�
= ±

+

−

�

�

�
�
�

�

�

�
�
�

− −
tan tan

1 1
1

1
2

1 1
1
2

1
1
2

1
1
2

= ±

�

�

�
�
�

�

�

�
�
�
= ±− −

tan tan
1 1

3
2
1
2

3 …(11)

Thus, at (2, 2) and (2, –2), we get the angle of

intersection θ = ±−
tan

1
3

Question: Find the angle of intersection between the
parabolas y2 = ax and x2 = ay.
Solution: Letting (x1, y1) to be the point of intersection
of both given curves

y2 = ax ...(1) ⇒ y1
2 = ax1 …(3)

y
x

a
=

2

...(2) ⇒ =y
x

a1
1
2

…(4)

Now, solving eqns (3) and (4) by eliminating y1
first, we find that

x

a
a x

x

a
ax x a x1

2
2

1
1
4

2 1 1
4 3

1

	

�

�
�

�

�
�
�

�

�
�
�

= ⇒ = ⇒ =

⇒  x1
4 – a3 x1 = 0 ⇒  x1 (x1

3 – a3) = 0 ⇒  x1 = 0
or a

when x y
x

a a1 1
1
2

0
0

0= = = =,

and when x a y
x

a

a

a
a1 1

1
2 2

= = = =,

∴ Required points are (0, 0) and (a, a).
(b) Now considering eqns (1) and (2) differentiating

(1) first, we have

d

dx
y

d

dx
ax2 =

⇒ = ⇒ =2
2

y
dy

dx
a

dy

dx

a

y

= Slope of the tangent at point (x, y) …(3)

for y ≠ 0

Again differentiating (2) w.r.t x, we get

dy

dx

x

a
= 2

 = Slope of the tangent at any point

(x, y) …(4)
(c) Now the slope of the tangent to the curve

y2 = ax at any particular point (x1, y1) is

dy

dx

dy

dxC
x x
y y

�
��

�
��

= �
��

�
�� =

=1
1
1

� y ax y ax
2 = ⇒ =

∴ ′ = �
��

�
��

=
+ −

→
f

dy

dx

f h f

hh
0

0 0

0 0
0

� � � � � �
� �,

lim

=
+

= ∞
→

lim
h

a h

h0

0� �
  ∴ = °i1 90 …(5)

Again, the slope of the tangent to the curve

y
x

a
=

2

 at any particular point (x1, y1) is

dy

dx

dy

dxC
x x
y y

�
��

�
��

= �
��

�
�� =

=2
1
1

= �
��

�
�� = �

��
�
��

= ⋅
=
=

=
=

2 2 2 0

1

1
1
1

1

0
0

x

a

x

a ax x
y y

x
y

= 0 ∴ = °i2 0 …(6)
Similarly, we find the slopes of the tangents at

(a, a)

dy

dx

dy

dx

a

y

a

aC
x x
y y

x a
y a

�
��

�
��

= �
��

�
��

=
�
��

�
��

=
⋅=

=
=
=1

1
1

1
1

2 21

= =
1

2 1m …(7)

dy

dx

dy

dxC
x x
y y

�
��

�
��

= �
��

�
�� =

=2
1
1

 
= �
��

�
�� =

=

2 1

1
1

x

a x a
y a

= = =
2

2 2
a

a
m …(8)
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(d) Hence, the angle of intersection at (0, 0)

= = − = °θ i i1 2 90

Again, the angle of intersection at (a, a)

= = ±
+

�
��

�
��

−
θ tan

1 1 2

1 21

m m

m m

~

= ±
−

+ ⋅

�

�

�
�
�

�

�

�
�
�
= ±���

�
��

− −
tan tan

1 1
2

1
2

1 2
1
2

3

4

Question: Find the angle of intersection of the curves
x2 + y2 = 8 and xy = 4.
Solution: (a) Letting (x1, y1) to be the point of
intersection of the given curves

x2 + y2 = 8 …(1) ⇒  x1
2 + y1

2 = 8 …(3)
and xy = 4 …(2) ⇒  x1 y1 = 4 …(4)

Now, solving (3) and (4) simultaneous by
eliminating y1 first from (4), we get

x
x

1
2

1
2

16
8+ = ⇒  x1

4 + 16 = 8x1
2

⇒  (x1
2 – 4)2 = 0 ⇒  x1 = ± ⇒ = =2 2 21 1y x� �

= − = −2 21x� �
[from x1 y1 = 4 ...(4)]

Required points of intersection are (x1, y1) = (2, 2)
and (–2, –2)…(5)

(b) The equations of the curves are

x2 + y2 = 8 …(1)

xy = 4 …(2)

Now, differentiating (1) w.r.t x, we get

2 2 0
2

2
x y

dy

dx

dy

dx

x

y

x

y
+ = ⇒ = − = − …(6)

Again, differentiating (2) w.r.t x, we get

x
dy

dx
y

dy

dx

y

x x
⋅ + ⋅ = ⇒ = − = −1 0

4
2

� xy y
x

= ⇒ =�
��

�
��4

4
…(7)

(c) Now, the slope of the tangent to the curve
x2 + y2 = 8 at any particular point (x1, y1) = (2, 2) is

dy

dx

dy

dxC
x x
y y

�
��

�
��

= �
��

�
�� =

=1
1
1

= −�
��

�
��

= −�
��

�
��
= − = =

=
=

x

y
m i

x
y

1
1

2
2

1 1
2

2
1 tan …(8)

Similarly, the slope of the tangent to the curve
xy = 4 at any particular point (x1, y1)

= �
��

�
�� = �

��
�
�� =

=

dy

dx

dy

dxC x x
y y2

1

1

= −
�
��

�
��

= −�
��

�
��
= − = =

=
=

4 4

4
1

2
2
2

2 2
1
1

x
m i

x
y

tan …(9)

Thus, at (2, 2), we get the slopes which are

tan i1 = –1 and tan i2 = –1 ∴ =i i1 2

Again, the slope of the tangent to the curve
x2 + y2 = 8 at any particular point (x1, y1)

= − − �
��

�
��

= �
��

�
�� = −

=−

2 2
1

1
1

2
2

,� � is
dy

dx

dy

dxC
x
y

= −
�
��

�
��

= −�
��

�
��
= − =

=−
=−

x

y
m

x
y

1

1 2
2

1
1
1

2

2
1 …(10)

and the slope of the tangent to the curve xy = 4 at
any particular point (x1, y1)

= − − = �
��

�
�� = �

��
�
�� =−

=−

2 2
2

1

1

2
2

,� � dy

dx

dy

dxC x
y

= −
�

�
�
�

�

�
�
�

= −���
�
�� = − =

=−

4 4

4
1

1
2

2

2

1
x

m

x

…(11)

∴ =i i1 2

(d) Hence, the angle of intersection at (2, 2) and at
(–2, –2) is i1 – i2 = 0, as i1 = i2 at both the points.

Question: Find the angle at which the curves x2 – y2

= a2 and x2 + y2 = 2a2 intersect.
Solution: (a) Letting (x1, y1) to be the point of

intersection of the given cuves
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x2 – y2 = a2      …(1) ⇒  x1
2 – y1

2 = a2 …(3)
and x2 + y2 = 2a2 …(2) ⇒  x1

2 + y1
2 = 2a2 …(4)

Now, solving the above two equations (3) and (4)
x1

2 – y1
2 = a2

x1
2 + y1

2 = 2a2

2x1
2 = 3a2 ⇒ = ± = ±x

a
a1

2
3

2

3

2

� x y a1
2

1
2 2− =

⇒ − =
3

2
2

1
2 2a y a

⇒ = − =
−

=y
a

a
a a a

1
2

2
2

2 2 2
3

2

3 2

2 2

⇒ = ± = ±y
a a

1

2

2 2
∴  Required points of intersection are (x1, y1)

= ± ±
	

�

�
�

3

2 2
a

a
, , (four points).

(b) The given equations of the curves are
x2 – y2 = a2 …(1)
x2 + y2 = 2a2 …(2)
Now, differentiating (1) w.r.t x, we get

2 2 0x y
dy

dx

dy

dx

x

y
− = ⇒ = …(5)

Again, differentiating (2) w.r.t x, we get

2 2 0x y
dy

dx

dy

dx

x

y
− = ⇒ = − …(6)

(c) Now, the slope of the tangent to the curve
x2 – y2 = a2 at any particular point (x1, y1)

=
	

�

�
�

3

2 2

a a
,

is dy

dx

dy

dx

x

yC x y
x

y

a

a

�
��

�
��

= �
��

�
��

=
�
��

�
�� =

=
1 1 1

1
3

2

1 2

1

1,� �

= × = =
3

2

2
3 1

a

a
m …(7)

Similarly, the slope of the tangent to the curve
x2 + y2 = 2a2 at any particular point (x1, y1)

= �
��

�
��

= �
��

�
��

= −
�
��

�
�� =

=

dy

dx

dy

dx

x

yC x y
x

y

a

a2 1 1
1

3

2

1 2

1

1,� �

= − × ×
�
�
�

�
�
� = − =1

3

2

2
3 2a

a
m …(8)

Again, the slope of the tangent to the curve x2 – y2

= a2 at any particular point (x1, y1)

=
− −	


�
�
�

3

2 2

a a
,

is dy

dx

dy

dx

x

yC x y
x

y

a

a

�
��

�
��

= �
��

�
��

=
�
��

�
�� =−

=−1 1 1
1

3
2

1 2

1

1,� �

= − ×
−

= =3

2

2
3 1

a

a
m …(9)

Similarly, the slope of the tangent to the curve
x2 + y2 = 2a2 at any particular point (x1, y1)

= �
��

�
�� = �

��
�
�� = −

�
��

�
�� =

=−

dy

dx

dy

dx

x

yC x y
x

y

a

a2 1 1
1

3
2

1 2

1

1,� �

= − − × −
	

�

�
�

�
�
��

�
�
��
= − =3

2

2
3 2

a

a
m …(10)

(d) Hence, the angle of intersection at

3

2 2
a

a
,

	

�

�
�  is θ = ±

+
�
��

�
��

−
tan

1 1 2

1 21

m m

m m

~

= ±
− −

+ −

�

�
�
�

�

�
�
� = ±

+
−

�
�
�

�
�
�− −

tan tan
1 13 3

1 3 3

3 3

1 3

� �
� �

= ±
−

�
�
�

�
�
� =− −

tan tan
1 12 3

2
3�

= 120º and 60º
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Again, the angle of intersection at

− −
	

�

�
�

3

2 2
a

a
,  is θ = ±

+
�
��

�
��

−
tan

1 1 2

1 21

m m

m m

~

= ±
− −

+ −

�

�
�
�

�

�
�
� = ±

−
�
�
�

�
�
�− −

tan tan
1 13 3

1 3 3

2 3

1 3

� �
� �

= ±
−

�
�
�

�
�
� = ±− −

tan tan
1 12 3

2
3

= −
tan

1
3�  = 120º and 60º. Similarly the angles

of intersection at the points 
3

2 2

a a
,
−	


�
�
�

 and

−	

�

�
�

3

2 2

a a
,  are the same.

Question: Find the angle between the curves y = 4x2

and y = 8x3.
Solution: (a) If (x, y) be the point of intersection of
the given curves

y = 4x2 …(1)
y = 8x3, …(2)

then let us find the point of intersection of the given
curves by solving the given equations (1) and (2),

y x

y x

=
=

�
��
��
⇒4

8

2

3  8x3 = 4x2 ⇒  8x3 – 4x2 = 0

⇒  4x2 (2x – 1) = 0 ⇒  x = 0 or x = 
1

2
∴ Required points of intersection are (x, y) = (0, 0)

and 
1

2
1,	



�
 .

(b) The given equations of the curves are
y = 4x2 …(1)

and y = 8x3 …(2)
Now, differentiating (1) w.r.t x, we get

dy

dx
x= 8 …(3)

Again, differentiating (2) w.r.t x, we get

dy

dx
x= 24

2
…(4)

(c) The slope of the tangent to the curve y = 4x2 at
the point of intersection (x, y)

= (0, 0) is 
dy

dx
x m

C

�
��

�
��

= = =
1

8 0
0 0 1,� � …(5)

Similarly, the slope of the tangent to the curve
y = 8x3 at the point of intersection (x, y)

= (0, 0) is 
dy

dx
x m

C

�
��

�
��

= = =
2

24 02

0 0 2
,� �

…(6)

Again, the slope of the tangent to the curve y2 =
4x at the point of intersection (x, y)

= 	

�

�
�

�
��

�
��

= = ×1

2
1 8 8

1

2
1

1
2

1
,

,
is

dy

dx
x

C
" #

= 4 = m1 …(7)
Similarly, the slope of the tangent to the curve

y = 8x3 at the point of intersection (x, y)

= 	



�
 =

�
��

�
�� = �

��
�
��

1

2
1

2
1
2

1

,
,

dy

dx

dy

dxC $ %

= = × = =24 24
1

4
6

2

1
2

1
2

x m
,$ %

…(8)

(d) Hence, the angle of intersection of the curves
at the point of intersection (x, y)

= = ±
+

�
��

�
��

−0 0
1

1 1 2

1 2

,
~� � is tanθ

m m

m m

= ±
−

+ ⋅
�
��

�
��
= =

− −
tan tan

1 10 0

1 0 0
0 0

Again, the angle of intersection of the curves at
the point of intersection (x, y)

= 	

�

�
� = ±

+
�
��

�
��

−1

2
1

1
1 1 2

1 2

,
~

is tanθ
m m

m m

= ±
−
+

�
��

�
��
= ±���

�
��

− −
tan tan

1 16 4

1 24

2

25
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Question: Find the angle of intersection of the curves
2y2 = x3 and y2 = 32x.
Solution: (a) If (x, y) be the point of intersection of
the given curves

2y2 = x3 and …(1)
y2 = 32x, …(2)
then let us find the point of intersection of the

given curves by solving the above equations (1) and
(2), x3 = 64x [Eliminating y form (1)]

⇒  x3 – 64x = 0 ⇒  x (x2 – 64) = 0

⇒  x (x – 8) (x + 8) = 0 ⇒  x = 0, 8, – 8
Now, from (2), we have y2 = 32 × 0, 32 × 8, 32 × (–8)

⇒  y = 0, ± ± −16 16 1,

∴ Required points of intersection of the given
curves are (x, y) = (0, 0), (8, 16) and (8, –16).

(b) The given equations of the curves are
2y2 = x3 …(1)

and y2 = 32x …(2)
Now, differentiating (1) w.r.t x, we get

2 2 3 4 3
2 2⋅ = ⇒ ⋅ ⋅ =y

dy

dx
x y

dy

dx
x

⇒ =dy

dx

x

y

3

4

2

...(3)

for y ≠ 0

Again, differentiating (2) w.r.t x, we get

2 32 1
16

y
dy

dx

dy

dx y
⋅ = ⋅ ⇒ = …(4)

(c) The slope of the tangent to the curve 2y2 = x3 at
the point of intersection (0, 0)

= �
��

�
�� = �

��
�
�� =

=

dy

dx

dy

dxC x
y1

1

1

0
0

� 2
2

2 3
3

y x y
x

= ⇒ =

⇒ ′ = �
��

�
��

=
+ −

→
f

dy

dx

f h f

hh
0

0 0

0 0
0

� � � � � �
� �,

lim

′ =
+

= =
→

f
h

h
m

h
0

0
0

0

3

1� �
� �

lim

Similarly, the slope of the tangent to the curve
y2 = 32x at the point of intersection (0, 0)

= �
��

�
��

= �
��

�
��

= ∞ =dy

dx

dy

dx
m

C2 0 0
2

,� �

Again the slope of the tangent to the curve
2y2 = x3 at the point of intersection (8, 16)

= �
��

�
��

= �
��

�
��

=
�
�
��

�
�
��

dy

dx

dy

dx

x

yC1 8 16

2

8 16

3

4, ,� � � �

=
× ×
×

= =
3 8 8

4 16
3 1m

Similarly, the slope of the tangent to the curve
y2 = 32x at the point of intersection (8, 16)

= �
��

�
�� = �

��
�
�� = �

��
�
��

dy

dx

dy

dx yC2 8 16 8 16

16

, ,� � � �

= = =16

16
1 2m

Lastly the slope of the tangent to the curve 2y2 = x3

at the point of intersection (8, –16)

= �
��

�
��

= �
��

�
�� −

dy

dx

dy

dxC1 8 16,� �

=
×

× −
= − =

3 64

4 16
3 1� � m

and the slope of the tangent to the curve y2 = 32x at
the point of intersection (8, –16)

= �
��

�
�� =

�
��

�
�� − −

dy

dx yC2

16

8 16,� �

= −���
�
�� = − =

16

16
1 2m

(d) Now, we consider the angle of intersection at
(0, 0)

m i1 10 0= ⇒ =

m i2 2 2
= ∞ ⇒ =

π

∴ = − =θ
π

i i1 2 2
.
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Similarly, the angle between the curves at (8, 16)

= = ±
+

�
��

�
��

−
θ tan

1 1 2

1 21

m m

m m

~

= ±
−

+ ⋅
�
��

�
��

−
tan

1 3 1

1 3 1

� �
� �

= ±���
�
�� = ±���

�
��

− −
tan tan

1 12

4

1

2

Lastly, the angle between the curves at (8, –16)

= = ±
+

�
��

�
��

−
θ tan

1 1 2

1 21

m m

m m

~

= ±
− − −
+ − −

�
��

�
��
= ±

− +
+

�
��

�
��

− −
tan tan

1 13 1

1 3 1

3 1

1 3

� �
� � � �

= ±
−�

��
�
�� = ± −	


�


�
��

�
��

− −
tan tan

1 12

4

1

2

= ±�
��

�
��

−tan 1 1

2

Question: Find the angle of intersection of the curves
x2 + y2 – 4x – 1 = 0 and x2 + y2 – 2y – 9 = 0.
Solution: (a) Letting (x, y) to be the point of
intersection of the given curves

x2 + y2 – 4x – 1 = 0 …(1)

x2 + y2 – 2y – 9 = 0 …(2)
and solving these equations (1) and (2) simulta-
neously, we get

– 4x + 2y + 8 = 0 ⇒  y = 2x – 4 …(3)

Now, putting the value of y from (3) into (1), we get

x2 + (2x – 4)2 – 4x – 1 = 0

⇒  5x2 – 20x + 15 = 0

⇒  x2 – 4x + 3 = 0

⇒  (x – 1) (x – 3) = 0

⇒  x = 1, 3
Form (3), putting x = 1, 3 in (1), we get y = –2, 2
Hence, the required points of intersection are

(x, y) = (1, –2),  (3, 2)

(b) The given equations of the curves are

x2 + y2 – 4x – 1 = 0 …(1)

x2 + y2 – 2y – 9 = 0 …(2)

Now, differentiating (1) w.r.t x, we get

2 2 4 0
2

0x y
dy

dx

dy

dx

x

y
y+ − = ⇒ =

−
≠,

Again differentiating (2) w.r.t x, we get

2 2 2 0x y
dy

dx

dy

dx
+ − =

⇒ + − = ⇒ =
−

≠x y
dy

dx

dy

dx

x

y
y1 0

1
1� � , .

(c) The slope of the tangent to the curve x2 + y2 –
4x – 1 = 0 at the point of intersection (x, y)

= − �
��

�
��

= �
��

�
�� −

1 2
1 1 2

,
,

� �
� �

is
dy

dx

dy

dxC

=
−�

��
�
��

=
−
−

= − =
−

2 2 1

2

1

21 2
1

x

y
m

,� �

Similarly, the slope of the tangent to the curve
x2 + y2 – 2y – 9 = 0 at the point of intersection (x, y)

= − �
��

�
��

= �
��

�
��

=
−

�
��

�
��− −

1 2
1

2 1 2 1 2

,
, ,

� �
� � � �

is
dy

dx

dy

dx

x

yC

=
+

= =1

1 2

1

3 2m

Again the slope of the tangent to the curve
x2 + y2 – 4x – 1 = 0 at the point of intersection (x, y)

= �
��

�
��

= �
��

�
��

3 2
1 3 2

,
,

� �
� �

is
dy

dx

dy

dxC

=
−�

��
�
��

=
−

= − =
2 2 3

2

1

23 2
1

x

y
m

,� �

Similarly, the slope of the tangent to the curve
x2 + y2 – 2y – 9 = 0 at the point of intersection (x, y)

= �
��

�
��

= �
��

�
��

3 2
2 3 2

,
,

� �
� �

is
dy

dx

dy

dxC
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=
−

�
��

�
��

=
−

=
−

= − =
x

y
m

1

3

1 2

3

1
3

3 2
2

,� �

(d) Hence, the angle of intersection of the curves
at the point of intersection (x, y)

= − = ±
+

�
��

�
��

−1 2
1

1 1 2

1 2

,
~� � is tanθ

m m

m m

= ±
− −	


�


+ −	

�


�

�

�
�
�
�

�

�

�
�
�
�
= ±

− −
tan tan

1 1

1
3

1
2

1
1
3

1
2

1

⇒ =θ 45 135º or º

Again, the angle of intersection of the curves at
the point of intersection (x, y)

= = ±
+

�
��

�
��

−3 2
1

1 1 2

1 2

,
~� � is tanθ

m m

m m

= ±
− +

+

�

�

�
�
�

�

�

�
�
�
= ±− −tan tan1 1

1
2

3

1
3
2

1� �

= ° °45 135,

Type: To find the angle between two tangents to a
curve at two given points:

Supposing that there are two points P and Q lying
on the curve c1 represented by the equation

f1 (x, y) = 0 …(1)

PT1 = tangent at P

QT2 = tangent at Q

R = The point of intersection of the two tangents
PT1 and QT2.

Now, we are required to find out the angle between
these two tangents.

Now, we suppose that θ  = Angle between two
tangents to the single curve at two given points P
and Q.

P = (x1, y1)
Q = (x2, y2)

Now, differentiating the equation f1 (x, y) = 0   …(1)

w.r.t x, we get 
dy

dx
i m

P

�
��

�
�� = =tan 1 1  (say) …(2)

Similarly, 
dy

dx
i m

Q

�
��

�
�� = =tan 2 2  (say) …(3)

Now, required angle between the two tangents to

a curve at two given points = =θ i i2 1~

⇒ =tan tanθ i i2 1~� �

=
+ ⋅

=
+ ⋅

tan tan

tan tan

i i

i i

m m

m m
2 1

2 1

2 1

1 21 1

~ ~

⇒ =
+

�
��

�
��

−
θ tan

1 2 1

1 21

m m

m m

~

Also, tan tanπ θ θ− = − = −
+

� � m m

m m
2 1

1 21

~

∴θ  = Angle between the tangents

= ±
+

�
��

�
��

−
tan

1 2 1

1 21

m m

m m

~

Working Rule:

1. Find 
dy

dx
 by differentiating both sides of the given

equation w.r.t x.

2. Find 
dy

dx x y

�
��

�
��

1 1,� �
 = The value of 

dy

dx
 at (x1, y1) = m1

3. Find 
dy

dx x y

�
��

�
��

2 2,� �
 = The value of 

dy

dx
 at (x2, y2) = m2

XO

R

i1
T1

i2
T2

C 1 = f  x, y 1 ( ) = 0

C 1

Y

P x , y ( )1 1

Q x , y ( )2 2

θ
θ

π θ−
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4. Use θ = ±
+

�
��

�
��

−
tan

1 2 1

1 21

m m

m m

~
 or θ = −i i2 1 .

Note: 1. θ =
+

−tan 1 2 1

1 21

m m

m m

~
 is used to find the

acute angle between the tangents to a single curve at
two given points.

2. θ =
+

−tan 1 2 1

1 21

m m

m m

~
 is used to find the obtuse

angle between the tangents to a single curve at two
given points.
3. If ml = tan i1 and m2 = tan i2, then the angle between

the two tangents is θ = − =i i1 2  Absolute value

of difference of i1 and i2. (If i1  or i2 2
=
π

)

Examples worked out:
Question: Find the angle between the tangents to the

curve x2 = 8y + 6 at the points 0
3

4
, −	



�
  and 4

5

4
,	



�
 .

Solution: (a) Given equation of the curve is
x2 = 8y + 6 ⇒  8y = x2 – 6 …(1)
Now, differentiating the equation (1) w.r.t x, we get

8 2 0 8 2
dy

dx
x

dy

dx
x= − ⇒ =

dy

dx

x x= =2

8 4
…(2)

(b) The value of 
dy

dx
 at 0

3

4
,

	

�

�
�

= �
��

�
��

= �
��

�
��

=
	

�

�
�

	

�

�
�

dy

dx

x

0
3
4

0
3
4

4

0

4, ,

= 0 = m1 ...(3)

and the value of 
dy

dx
 at 4

5

4
,

	

�

�
�

= �
��

�
��

= �
��

�
��

=
	

�

�
�

	

�

�
�

dy

dx

x

4
5
4

4
5
4

4

4

4, ,

= 1 = m2 …(4)

∴ = ±
−
+

= ±tanθ
0 1

1 0
1

∴ =θ π
4

 (Acute angle between the tangents)

Alternatively,
�  m1 = 0 ⇒  tan i1 = tan 0 ⇒  i1 = 0 …(5)

and m2 = 1 ⇒  tan i2 = tan º
π π
4 4

452⇒ = =i    …(6)

∴  Angle between the tangents = = −θ i i2 1

= − = =45 0 45
4

� �º º
π

Question: Find the angle between the tangents to

the curve y = x2 + 1 at the points 
1

2

5

4
,	



�
  and

−
	

�

�
�

3

2

7

4
, .

Solution: (a) Given equation of the curve
y = x2 + 1 …(1)

Now, differentiating equation (1) w.r.t x, we get

dy

dx
x x= + =2 0 2 …(2)

(b) 
dy

dx
x

x
y

x
y

�
��

�
�� =

=
=

=
=

1
2
5
4

1
2
5
4

2

= × = =2
1

2
1 1m …(3)

and 
dy

dx
x

x
y

x
y

�
��

�
�� =

=−
=

=−
=

3
2

7
4

3
2

7
4

2

= × −
	

�

�
�
= − =2

3

2
3 2m …(4)

Now, m i i1 1 11
4 4

45= = = ⇒ = =tan tan º
π π

m i i2 2 23 120 120= = − = ⇒ =tan tan º º

∴  The acute angle between the tangents to the

curve is given by θ = − = − =i i2 1 120 45 75� � º º

Alternatively, θ  = Acute angle between the
tangents
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=
−
+

�
�
�

�
�
�−

tan
1 3 1

3 1

Question: Find the angle between the tangents to

the curve 
x

a

y

b

2

2

2

2
1+ =  at the points (a, 0) and (0, b).

Solution: (a) Given equation of the curve is

x

a

y

b

2

2

2

2
1+ = …(1)

Now, differentiating equation (1) w.r.t x, we get

dy

dx

b

a

x

y
= − ⋅

2

2 ...(2)

for y ≠ 0

(b) y f x b
x

a
x a= = − ≤� � 1

2

2
2 2, .

∴ ′ = �
��

�
��

=
+ −

→
f a

dy

dx

f a h f a

ha
h

� � � � � �
� �, 0

0
lim ,

h < 0

=
− +

= −∞ ∴ = °
→

lim
h

b h h a

ah
i

0 1

2
90

� �
…(3)

and 
dy

dx

b

a

x

y

b

ab x
y b

�
��

�
�� = −

�
��

�
��

= − ⋅
=
=

0

2

2 0

2

2
0

,� �

= 0 = tan 0º  ∴ = °i2 0 …(4)

∴ = − = − =θ i i1 2 90 0 90º º

Problems based on finding the area of a triangle
formed by the portion included between the axis and
the tangent to a curve.

Working Rule:
1. Let (x1, y1) be the point of contact of the tangent
to the given curve.
2. Put (x1, y1) in the given equation of the curve.

3. Find 
dy

dx x x
y y

�
��

�
�� =

=
1
1

4. Find the equation of the tangent, using the formula
at (x1, y1)

y y
dy

dx
x x

x y

− = �
��

�
�� ⋅ −1 1

1 1

� � � �
� �,

5. Find x-intercept of the tangent by putting y = 0 in
the equation of the tangent.
6. Find the y-intercept of the tangent by putting x = 0
in the equation of the tangent.
7. Use the formula of area of a triangle.

= − + − + −
1

2 1 2 3 2 3 2 3 1 2x y y x y y x y y� � � � � �

Examples worked out:
Question: Find the area of the triangle formed by the
portion included between the axis and the tangent to

the curve x y a
2
3

2
3

2
3+ = .

Solution: (a) Given equation of the curve is

x y a
2
3

2
3

2
3+ = …(1)

Letting (x1, y1) be the point of contact of tangent
to the given curve.

∴ x y a1 1
2
3

2
3

2
3+ = …(2)

O

(0, )b

( , 0)a

90°

X

Y

X
AO

B

Y

P x y
 ( , )1

1
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Now, differentiating (1) w.r.t x, we get

2

3

2

3
0

2
3

2
3

1 1
x y

dy

dx

− −
+ =

⇒ + =
− −

x y
dy

dx

1
3

1
3 0

⇒ = −
− −

y
dy

dx
x

1
3

1
3

⇒ = −
dy

dx

y

x

1
3

1
3

…(3)

Now, the value of 
dy

dx
 at (x1, y1)

= �
��

�
�� = −

=
=

dy

dx

y

x
x x
y y

1
1

1
3

1
3

1

1

…(4)

(b) Now, the equation of the tangent at (x1, y1) is

y y
y

x
x x− = − ⋅ −1

1

1

1

1
3

1
3

� � � �

⇒ − = − +x y x y y x x y1 1 1 1 1 1

1
3

1
3

1
3

1
3

⇒ + = +x y y x x y x y1 1 1 1 1 1

1
3

1
3

1
3

1
3

⇒ + = +	



�
x y y x x y x y1 1 1 1 1 1

1
3

1
3

1
3

1
3

2
3

2
3

= �
��

�
��x y a1 1 1

1
3

1
3

2
3

⇒ + =x y y x x y a1 1 1 1
3 231

3
1
3  [from (2)] …(5)

(c) x-intercept on x-axis is determined by putting y = 0
in (5)

∴ = ⇒ =y x x y a x x aa a1 1 1 1

1
3

1
3

1
3

2
3

1
3

2
3  = x-coordinate

of point A. And y-intercept on y-axis is determined by
putting x = 0 in (5)

∴ = ⇒ =x y x y a y y aa a1 1 1 1

1
3

1
3

1
3

2
3

1
3

2
3

= y-coordinate of B.

Thus, the coordinates of A x aa= 	
 �1

1
3

2
3 0,

= (x1, y1)

Coordinates of B y a x y= 	
 � =0 1 2 2

1
3

2
3, ,� �

Coordinates of origin ‘O’ = (0, 0) = (x3, y3)

(d) Area of ∆ OAB  having the vertices (x1, y1),

(x2, y2) and (x3, y3)

= − + − + −1

2 1 2 3 2 3 1 3 1 2x y y x y y x y y� � � � � �

= −	
 � + − + −	
 �
�
��

�
��

1

2
0 0 0 0 0 01 1 1 1

1
3

2
3

1
3

2
3

1
3

2
3x a y a y a� �

= �
��

�
�� =

1

2

1

21 1 1 1

1
3

2
3

1
3

2
3

1
3

1
3

4
3x a y a x y a

Note: Area = ⋅ ⋅ = ⋅ ⋅1

2

1

2 1 1

1
3

1
3

2
3OA OB x y a .

Question: Find the area of the triangle formed by the
x-axis the tangent and normal to the curve y (2a – x)
= x2 at the point (a, a).
Solution: (a) Given equation of the curve is

y (2a – x) = x2 …(1)
Now, differentiating equation (1) w.r.t x, we get

y a x
dy

dx
x0 1 2 2− + − =� �  ⇒ =

+
−

dy

dx

x y

a x

2

2

Now, the value of 
dy

dx
 at (x1, y1) = (a, a) is

dy

dx

x y

a x

a a

a a

a

ax y x y

�
��

�
��

= +
−

�
��

�
��

= +
−

= =
1 1 1 1

2

2

2

2

3
3

, ,� � � �

∴  Slope of the tangent at (a, a) = 3 and the slope

of the normal at (a, a) = − 1

3

Now, the equation of the tangent at (a, a) is
(y – y1) = slope of the tangent · (x – x1)

XO

Y

P
x

y
 (

, 
)

1

1

( ,  )x y22 ( ,  )x y11 

N
or

m
al Tangent
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⇒  (y – a) = 3 (x – a)

⇒  (y – a) = 3x – 3a

⇒  y – 3x = – 3a + a

⇒  y = 3x – 2a …(2)
Now, the equation of the normal at (a, a) is

(y – y1) = − −1

3 1x x� �

⇒ − = − −y a x a� � � �1

3

⇒  3y – 3a = –x + a

⇒  x + 3y = 4a …(3)
(b) Now, for the point of intersection of the tangent
and x-axis.

y = 0 in (2) ⇒  3x – 2a = 0 ⇒  3x = 2a ⇒  x = 
2

3

a

∴ 	



�
 =

2

3
0 1 1

a
x y, ,� �  = point of intersection of

tangent and x-axis …(4)
Again, for the point of intersection of normal and

x-axis.
y = 0 in (3) ⇒  x = 4a

∴ (4a, 0) = (x2, y2) = point of intersection of normal
and x-axis …(5)

Also we are given the point of intersection of the
tangent and normal = (a, a) = (x3, y3) …(6)
(c) Now, we are required to find out the area of the
triangle having the vertices (x1, y1), (x2, y2) and
(x3, y3).

∴ Area of the ∆ =
1

2
 [x1 (y2 – y3) + x2 (y3 – y1) +

x3 (y1 – y3)]

= − + − + −�
��

�
��

1

2
0 0

2

3
0 4 0a

a
a a a� � � � � �

= + −
	

�

�
�
+

�

�
�
�

�

�
�
�

1

2
0

2

3
4

2
2a

a

=
− +�

�
�
�

�

�
�
�

1

2

2 12

3

2 2
a a

= ⋅
1

2

10

3

2
a

 =
5

3

2
a

Refresh Your Memory:

Definitions: 1. Subtangent: The projection of the
tangent on x-axis is called the subtangent ⇒  the
subtangent to a curve at the point of tangency of a
tangent to a curve is the portion of the x-axis
intercepted between the tangent at the point and the
ordinate through the point.

In the figure, the tangent at P to the curve show
intersects x-axis at T and F is the foot of the
perpendicular from P to the x-axis. FT is then
subtangent to the curve at P.

2. Subnormal: The projection of the normal on
x-axis is known as the subnormal ⇒  Subnormal to
the curve at any point is the portion of the x-axis
intercepted between the normal and the ordinate
through that point.

Question: Find the expressions for the subtangent
and subnormal.
Solution: Let us suppose that P (x1, y1) be any point
on the curve APB whose equation is y = f (x) or f (x, y)
= 0.

X
F TO

Y

Tangent

Sub tangent

X

i

i
O

A

B

P
 

x
, y

(
)

1
1

N GT

Y

Ta
ngent Norm

al

Sub tangent

O
rd

in
at

e
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The tangent and the normal at P meet the x-axis in
T and G respectively. Draw the ordinate from P meeting
the x-axis in N.

Let i be the angle which the tangent at P makes
with the x-axis.

Then ∠ = ∠ =NPG NTP i

and tan i
dy

dx x x
y y

= �
��

�
�� =

=
=

1

1

 Value of 
dy

dx
 at (x1, y1)

Now, from the right angled ∆TPN  subtangent

NT = NP cot i

[� NP = y1 and tan i = 	



�


dy

dx x y1 1,� �
]

= NT

itan  = �
��

�
��

y
dy

dx x y

1

1 1,� �

Again, from the rt right angled ∆ NPG

Subnormal = NG = NP tan i

= y i1 tan

= �
��

�
�� =

=

y
dy

dx x x
y y

1
1

1

Working rule to find the length of subtantgent and
subnormal for a given curve at any point (x1, y1):

Steps: 1. Differentiate the given equation  w.r.t x.

2. Find 
dy

dx x x
y y

�
��

�
�� =

=
1

1

3. Use the formula for the subtangent and subnormal
Length of subtangent

= �
��

�
�� =

=

y
dy
dx x x

y y

1

1
1

= Ordinate of the given point

Value of  at the given point 
dy

dx
x y1 1,� �

and length of subnormal = y1 · 
dy

dx x x
y y

�
��

�
�� =

=
1

1

= Ordinate of the given point times the value of

dy

dx
 at (x1, y1).

Note: 1. When the point of contact of tangent and
curve is not provided, it is supposed (x1, y1).
2. Negative length is not considered. This is why we
take the absolute value as the length of subtangent
and subnormal to a curve at any point (if negative).
3. When the given equation of the curve is in
parametric form, it is better to use the following
notational form of the formula.

(i) Length of subtangent = �
��

�
��

y

dy
dx at  or any parameter

given in the equation
θ

(ii) Length of subnormal

= ⋅ �
��

�
��

y
dy

dx at  or any parameter
given in the equation
θ

(iii) At any point of the curve whose parametric

equation is given, we may suppose θ / / ...t , the

parameter given in the equation of the curve as
representing the given point.

(iv) When numerical value of θ  is not provided, 
dy

dx

serves as the value of 
dy

dx
 at any point θ .

Problems based on subtangent and subnormal.

Examples worked out:

Question: Find the lengths of subtangents and

subnormal for the curve 
x y

2 2

8 18
1+ =  at (2, –3)

Solution: Given equation of the curve is
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x y
2 2

8 18
1+ = …(1)

Now, differentiating the equation (1) w.r.t x, we
have

x y dy

dx4 9
0+ =

⇒ = −
dy

dx

x

y

9

4

⇒ �
��

�
��

= −�
��

�
��

= −
−

=
= =
= =−

= =
= =−

dy

dx

x

yx x
y y

x x
y y

1
1

1
1

2
3

2
3

9

4

18

12

3

2

∴ Length of subtangent at (2, –3)

= ÷ �
��

�
�� = − ÷ =

=
=

y
dy

dx x x
y y

1
1
1

3
3

2
2

and length of subnormal at (2, –3)

= × �
��

�
�� = − × =

=
=

y
dy

dx x x
y y

1
1
1

3
3

2

9

2

Question: Find the lengths of subtangent and
subnormal for the curve xy + 2x – y – 5 = 0 at the point
(2, 1).
Solution: Given equation of the curves is

xy + 2x – y – 5 = 0 …(1)

Now, differentiating the equation (1) w.r.t x, we
have

y x
dy

dx

dy

dx
+ + − =2 0

⇒ + + − =y
dy

dx
x2 1 0� �

⇒ = −
+
−

=
+
−

dy

dx

y

x

y

x

2

1

2

1

� �
� �

� �
� �

Again, 
dy

dx

y

x
�
��

�
�� =

+
−

�
��

�
��

=
+
−

= −
2 1 2 1

2

1

1 2

1 2
3

, ,� � � �

Now, the length of subtangent at (2, 1)

= ÷ �
��

�
�� = − =

=
=

y
dy

dx x x
y y

1
1
1

1

3

1

3

and length of subnormal at (2, 1)

= × �
��

�
�� = × − =

=
=

y
dy

dx x x
y y

1
1
1

1 3 3� �

Question: Find the lengths of subtangent and

subnormal for the curve y
x

= 3
2

sin  at the point

π
2

3 2

2
,

	

�

�
� .

Solution: Given equation of the curve is

y
x= 3
2

sin …(1)

⇒ =y
x

1
13

2
sin …(2)

Now, differentiating the given equation (1) w.r.t x,
we have

dy

dx

x
=

3

2 2
cos

⇒ �
��

�
��

= �
��

�
��

= ==

=

=

=

dy

dx

x
x

y

x

y

π π
π

2

3 2
2

2

3 2
2

3

2 2

3

2 4

3

2 2
cos cos

Now, the length of subtangent at the point

π
2

3 2

2
,

	

�

�
�

C x y x y⇒ + − − =2 5 0

XO

P (2, 1)

where  = curveC

Y

Ta
ngent Norm

al

Sub tangent

O
rd

in
at

e

C x y x y2 5 0
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= ÷ �
��

�
�� = ÷ =

=
=

y
dy

dx x x
y y

1
1
1

3 2

2

3

2 2
2

and the length of the subnormal at the point

π
2

3 2

2
,

	

�

�
�

= × �
��

�
�� = × =

=
=

y
dy

dx x x
y y

1
1
1

3 2

2

3

2 2

9

4

Question: Find the lengths of subtangent and
subnormal for the curve

x a= +θ θsin� �

y a= −1 cosθ� �  at the point θ
π

=
3

, a > 0.

Solution: Given equation of the curve is

x a= +θ θsin� � …(1)

y a= −1 cosθ� � …(2)

Now, differentiating (1) and (2) w.r.t θ , we have

dx

d

da

dθ
θ θ

θ
=

+ sin� �

= +���
��� = +a

d

d

d

d
a

θ
θ

θ
θ

θ
sin

cos1� � …(3)

and 
dy

d
a

d

dθ
θ

θ
=

−1 cos� �

= −���
���
=a

d

d

d

d
a

1� �
θ

θ
θ

θ
cos

sin …(4)

(3) and (4) ⇒ = ÷ =
+

dy

dx

dy

d

dx

dθ θ
θ
θ

sin

cos1

⇒ �
��

�
�� =

+
�
��

�
��= =

dy

dx θ θπ π

θ
θ

3 3
1

sin

cos

=
+

=
+

= × =
sin

cos

π

π
3

1
3

3

2

1
1
2

3

2

2

3

1

3

Now, required length of subtangent at θ
π

=
3

= ÷ �
��

�
��

= −	

�

�
� ÷=

y
dy

dx
a

θ π

π

3

1
3

1

3
cos

= −	

�

�
� = =a

a a
3 1

1

2

3

2

3

2

and the length of subnormal at θ
π

=
3

= × �
��

�
��

= −	



�
 ×=

y
dy

dx
a1

3

1
3

1

3θ π

π
cos

= −	



�
 × = −	


�
�
� × =a a

a
1

1

2

1

3

2 1

2

1

3 2 3

Question: Find the lengths of subtangent and
subnormal at any point of the curve

x a= +2 2cos cosθ θ� �
y a= +2 2sin sinθ θ� �

Solution: Given equation of the curve is

x a= +2 2cos cosθ θ� � …(1)

y a= +2 2sin sinθ θ� � …(2)

Now, differentiating (1) and (2) w.r.t θ , we have

dy

dx

dy

d
dx

d

a

a
= =

+
− −

θ

θ

θ θ
θ θ

2 2 2

2 2 2

cos cos

sin sin

� �
� �

= −
+
+

cos cos

sin sin

2

2

θ θ
θ θ

= −
⋅

⋅
= −

2
3
2 2

2
3
2 2

3

2

cos cos

sin cos
cot

θ θ

θ θ
θ

∴ The length of subtangent at (x, y)

= ÷ = ÷ = ⋅ 	



�
y

dy

dx
y ycot tan

3

2

3

2

θ θ

and the length of subnormal at (x, y)
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= × = × − = − ⋅y
dy

dx
y ycot cot

3

2

3

2

θ θ

where y a= +2 2sin sinθ θ� �  which is given in the

equation of the curve.

Question: Show that subtangent at any point of the
curve xm · yn = am + n varies as the abscissa.
Solution: Given equation is xm yn = am + n …(1)

Now, differentiating the given equation (1) w.r.t x,

we have m x y nx y
dy

dx

m n m n
⋅ ⋅ + =− −1 1

0

⇒ = − = −
−

−
dy

dx

mx y

nx y

my

nx

m n

m n

1

1

⇒ �
��

�
�� =

=

dy

dx x x
y y

1

1

 = Value of 
dy

dx
 at (x1, y1)

= −���
�
�� = −

=
=

my

nx

my

nxx x
y y

1

1

1

1

Hence, the subtangent at any point P (x1, y1)

= ÷ �
��

�
��

= ÷ −
�
��

�
��

y
dy

dx
y

my

nxP x y
1 1

1

11 1,� �

= ×
−�

��
�
��
=

−�
��

�
��

y
nx

my

nx

m1
1

1

1
 = kx1 which implies

that the length of subtangent varies as the abscissa
of the point (x1, y1) [� x y∝ ⇔  x = ay where a =
constant].

Question: Show that for the curve y = cx4, the
subtangent varies as its abscissa.
Solution: Given equation is y = cx4 …(1)

⇒ =
dy

dx
c x4

3

Again, y cx y cx= ⇒ =4
1 1

4 …(2)

[� (x1, y1) lies on the curve y = cx4]
∴ The subtangent for the point (x1, y1) on the

given curve

= ÷ �
��

�
��

= ÷y
dy

dx
cx cx

P x y
1 1

4
1
3

1 1

4
,� �

= =
c x

c x

x1
4

1
3

1

4 4

⇒  The subtangent varies as the abscissa of the
point (x1, y1).
Question: Show that for the curve y2 = 4ax, the length
of the subtangent varies as the abscissa of the point
of contact.
Solution: Let (x1, y1) be the point on the curve

y2 = 4ax ...(1)
⇒  y1

2 = 4a x1 …(2)
Now, differentiating (1) w.r.t. x, we have

2 4
4

2

2
y

dy

dx
a

dy

dx

a

y

a

y
= ⇒ = =

⇒ �
��

�
�� = �

��
�
��

=dy

dx

a

y

a

yP x y P x y1 1 1 1

2 2

1, ,� � � �
…(3)

∴ Length of the subtangent = ÷ �
��

�
��y

dy

dx P x y
1

1 1,� �

= ÷ = ×y
a

y
y

y

a1
1

1
12

2

= = =
y

a

a x

a
x1

2
1

12

4

2
2  [from (2)]

Thus, the length of subtangent at (x1, y1) on the
given curve = 2x1

⇒  Subtangent is twice the abscissa.

⇒  The subtangent varies as the abscissa.
[� Subtangent varies as the abscissa ⇔  Subtangent
= a constant × abscissa of the point]

Question: Show that in the curve y b e
x
a=  the

subtangent at any point is of constant length. Also
show that the subnormal varies as the square or ordi-
nate.
Solution: Let P (x1, y1) be the point of contact of the
tangent and normal to the given curve whose equation

is y b e
x
a= …(1)
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∴ =y b e

x

a
1

1

…(2)

Now, differentiating both sides of equation (1) w.r.t
x, we get

dy

dx

b

a
e

y

a

x

a= ⋅ =

⇒ �
��

�
�� = �

��
�
�� =

dy

dx

y

a

y

aP x y P x y1 1 1 1

1

, ,� � � �
…(3)

Now the subtangent at the point P (x1, y1) on the
curve

= ÷ �
��

�
�� = ÷y

dy

dx
y

y

aP x y
1 1

1

1 1,� �

= × =y
a

y
a1

1
  (constant)

and the subnormal at the point P (x1, y1) on the curve

= × �
��

�
��

= × =y
dy

dx
y

y

a

y

aP x y
1 1

1 1
2

1 1,� �

which implies that subnormal varies as the square of
the ordinate.

Question: Show that for the curve y x= +3 2 , the

subnormal is of constant length.
Solution: Let (x1, y1) be the point of contact of the
normal and the curve whose equation is

y x= +3 2 …(1)

∴ = +y x1 13 2 …(2)

Now, differentiating (1) w.r.t x, we get

dy

dx x
=

+
3

2 3 2

⇒ �
��

�
�� =

+
dy

dx xP x y1 1

3

2 3 21,� � …(3)

⇒  The length of subnormal

= × �
��

�
��

=y
dy

dx x y
1

1 1

3

2,� �
 which is a constant.

Summary of important facts of working rule of
different types of problems on tangent and normal:

1. Equation of the tangent to the curve y = f (x) at any
point P (x1, y1) of the curve is given by

(y – y1) = �
��

�
�� ⋅ −

dy

dx
x x

P x y1 1

1
,� �

� � .

2. Equation of the normal at P (x1, y1) to the curve

y = f (x) is y y− 1� �

= − �
��

�
��

⋅ −1

1 1

1dy

dx

x x

P x y,� �

� � .

3. Let us consider the tangent to be parallel or
perpendicular to the x-axis.

If the tangent is parallel to x-axis or normal is
perpendicular to the x-axis, then m = 0, so that

dy

dx
= 0 .

If the tangent is perpendicular to x-axis or normal
is parallel to x-axis

∴ = ∞ − ∞dy

dx
op� �  or, its reciprocal, 

dx

dy
= 0 and

we write m = ∞ −∞� �
4. Angle of intersection of the two curves:
By angle of intersection of two curves, we mean the
angle between the tangents to the curves at their
common point of intersection.

Hence, if θ  be the acute angle between the

tangents, then tanθ =
−

+
m m

m m
1 2

1 21

Where m
dy

dx

dy

dxC x x
y y

1
1

1
1

= �
��

�
�� = �

��
�
�� =

=

 = Value of 
dy

dx

at the common point of intersection (x1, y1) for the
first curve.

m
dy

dx

dy

dxC x x
y y

2
2

1

1

= �
��

�
�� = �

��
�
�� =

=
 = Value of 

dy

dx
 at the

common point of intersection (x1, y1) for the second
curve.
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5. Condition for orthogonal intersection:
Two curves are said to cut orthogonally if the angle
between them is a right angle i.e. θ = 90º

∴ − = ±i i2 1 2

π

∴ = −tan coti i2 1

∴ = −m
m2

1

1
 ⇒
�
��
�
��
⋅ �
��
�
��

= −dy

dx

dy

dx1 2

1

Where m
dy

dx1
1

= �
��
�
��

 = Value of 
dy

dx
 at the common

point of intersection for the first curve.

m
dy

dx2
2

= �
��
�
��

 = Value of 
dy

dx
 at the common point

of intersection for the second curve.
6. Condition for the two curves to touch:
If the two curves touch, then the angle θ  between

them is zero, i.e., θ θ= ⇒ =0 0tan

∴ − = ⇒ = ⇒ �
��
�
��
= �
��
�
��

m m m m
dy

dx

dy

dx1 2 1 2
1 2

0

7. Intercepts of tangent on axis:
Find the equation of the tangent. Put y = 0 find the
value of x which will be the intercept on axis of x
known as x-intercept. Then put x = 0 and find the
value of y which will be the intercept on y-axis known
as y-intercept.
8. Condition for a given line to touch a given curve:
Let the line be a tangent to the given curve at (x, y),
then write the equation of the tangent as

Y y
dy

dx
X x− = �

��
�
��
⋅ −� � � �

compare this equation of tangent with given line
ax + by + c = 0 and then eliminate x and y which will be
a relation involving the given constants only
representing the required condition for a given line to
touch a given curve.

Type 1: Problems based on inclination and slopes
when x1 and / y1 is given.

(A) Problems based on finding inclinations:

Exercise 19.1

1. Find the inclination of the following curves:
(i) y = x2 – x + 1 at (1, 1)

(ii) x3 + y3 = 3axy at the point 
3

2

3

2

a a
,	



�
�

(iii) y2 = 4ax at the point x = a

(iv) y
x

=
+
4

2  at the point x = 0

(v) y
x

= 1

(vi) y2 = 4x at the point x = 1
(vii) y = x2 + 2x + 3 at the point (0, 3)
(viii) y2 = 52 – x2 at x = 3

(ix) y x
x

= − 1
 at the point where x = 1

(x) 3y = x2 at the point (3, 3)
(xi) y = x2 – x + 1 at the point (1, 1)
(xii) 2x2 + 2y = 7 at the point where x = 2
(xiii) y2 = 9 – x2 at the point where x = 2
(xiv) y = x4 – 4x at the point x = 0.

2. Find the inclination of the tangent to the curve
y = x3 – x2 + 1 at the point (1, 1) on it.
3. Find the inclination to the x-axis of the tangent to

the parabola y2 = 4ax at the point α β,� �  and

determine the point at which the tangent makes an
angle of 45º with the axis.
4. Find the inclination of the tangents at the point
(1, 0) and (2, 0) to the curve y = (x – 1) (x – 2).

Answers:
1. (i) 45º (ii) 135º (iii) [45º, 135º] (iv) 135º
(v) 135 (vi) [45º, 135º] (vii) tan–1 2

(viii) tan
−

±�
��
�
��

1 3

4
(ix) tan–1 2 (x) tan–1 2

(xi) 45º (xii) tan–1 (– 4) (xiii) tan
− ±	


�
��

1 2

5

(xiv) tan–1 (– 4)

2.
π
2

3. [a, 2a] 4. 
5

12

π
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Type 1: (B) Problems based on finding slopes:

Exercise 19.2

1. Find the slope of the normal to the curve y = 3x2 at
the point whose x co-ordinate is 2.
2. Find the slopes of the tangents to the following
curves:

(i) y = 3x2 at x = 1

(ii) y = 2x2 – 1 at x = 1

(iii) y = x3 + 4x at x = –1
(iv) y = x3 – x at x = 2
(v) y = 2x3 + 3 sin x at x = 0

(vi) y2 = 4x at the point x = 1

3. Find the slope of the curve y = (1 + x) sin x at x = 
π
4

.

4. Show that the tangents to the curve y
x

x
=

+

−

2 5

6
2

at the points − −	



�
�3

1

2
,  and − −	



�
�2

1

2
,  are parallel

to x-axis.
5. Find the gradients of the following curves at the
given points on them.
(i) y = x2 + 2x + 5 at the points (0, 5), (1, 8) and (2, 13)
(ii) y = 3x2 + 7x + 5 at the point where it cuts the
y-axis.
(iii) y = x2 – 5x + 8 at the points where it cuts the
straight line y = x.

Answers:

1. − 1

12
 at x = 2

2. (i) 6 (ii) 4 (iii) 7 (iv) 11 (v) 3 (vi) Find

3.
1

2
2

4
+	

�
�

π

5. (i) 2, 4, 6 (ii) 7 (iii) –1, 3

Type 2: Problems based on finding the equation of
the tangent and normal when x1 and / y1 is given:

(A) Problems based on finding the equation of the
tangent:

Exercise 19.3

1. Find the equation of the tangent to the curve
y = x3 – 2x2 + x + 2 at the point (1, 2).
2. Find the equation of the tangent of the curve y = 2

sin x + sin 2x at x = π
2

.

3. Find the equations of the tangents to the curve

y = sin x at x =
π
4

.

4. Find the equation of the tangent to y = 4 + cos2 x at

x = π
4

.

5. Find the equation of the tangent to

y = sin2 x + cot2 x + 3 at x =
9

4

π
.

6. Find the equation of the tangent to the curve

y = x – sin x cos x at x = π
2

.

7. Find the equation of the tangent at x =
π
4

 to the

curve y = cot2 x – 2 cot x + 2.
8. Find the equation of the tangent to the curve

y = sec4 x – tan4 x at x = π
3

.

9. Find the equation of the tangent to the curve y = ex

at (0, 1).
10. Find the equation of the tangent to the curve

y2 sin x = 9 at x =
π
2

.

11. Find the equation of the tangent of the curve:
x = a cos3 t
y = a sin3 t at the point ‘t’.

12. Find the equation of the tangent of the curve:
x = a cos θ

y = a sin θ  at θ
π

=
4

.

13. Find the equations of the tangents drawn to the
curve y2 = 2x3 – 4y + 8 = 0 from (1, 2).
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14. Find the equation of the tangent to the parabola
y2 = 4ax at (at2, 2at).

Answers:
1. x + 2y + 1

2. 2 3 3y =

3. 4 2 1 4 2 2 3 2x y x y− + = − = −� � � � � �π π,

4. y – 4 = 0

5. 4 12 27 18 0y x+ − − =π

6. 2 4 0y x− + =π
7. y = 1

8. 3 48 3 16 3 21 0y x− + − =π
9. y = x + 1

10. y + 3 = 0

11. y – a sin3 t = –tan t (x – a cos3 t)

12.
x

a

y

b
+ = 2

13. y x− = ± −2 2 3 1� �

14. ty x at= + 2

Type 2: (B) Problems based on finding the equation
of the normal:

Exercise 19.4

1. Find the equation of the normal to y = cot x at

x =
π
4

.

2. Find the equation of the normal to the curve

y = sin2 x at x = π
2

.

3. Find the normal to the curve y = sin x + cos x at
x = 0.
4. Find the equation of the normal to the curve

y x= 2
2

3
sin  at x =

π
6

.

5. Find the equation of the normal to the curve

y = x + sin x cos x at x =
π
2

.

6. Find the equation of the normal to the curve

y
ax x

x
=

+

+

tan sin2

1
2  at x = π .

7. Find the equation of the normal to the curve

y
x

x
=

+1 sin

cos  at x = π
4

.

8. Find the equation of the normal to the curve

4x2 + y2 = 2 at the point where x =
1

2
.

9. Find the equation of the normal to the curve
x2 = 4y which passes through the point (1, 2).
10. Find the equation of the normal at the point
(am2, am3) for the curve ay2 = x3.
11. Find the equation of the normal to the curve
y = x3 – 2x2 + 4 at the point whose x-coordinate is 2.
12. Find the equation of the normal to

y = (sin 2x + cot x + 2)2 at x = π
2

.

13. Find the equation of the normal to y = cos (5x + 4)

at x =
−	



�
��

π 8

6
.

Answers:

1. 8 4 8 0y x− + − =π

2. x = π
2

3. x + y – 1= 0

4. x =
π
6

5. 2 0x − =π

6. 3 1 1
2 2

y x+ + = +π π π� � � �

7. x y+ + − − − =2 2 4 3 2
4

0� �
π

8. x y− + =2
3

2
0

9. x + y = 3

10. 2 2 23 32 4x my am am+ = +
11. 4y + 8x = 18
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12. y x y x− = −	

�
� ⇔ − + − =4

1

12 2
24 2 26 0

π
π

13. 18 6 8 0y x− + − =π
Type 2: (C) Problems based on finding the equation
of the tangent and normal simultaneously:

Exercise 19.5

1. Find the equations of the tangent and normal to
the curve y = x3 + 2x + 6 at (2, 18).
2. Find the equations of the tangent and normal to
the curve 16x2 + 4y2 = 144 at (x1, y1) where x1 = 2 and
y1 > 0.
3. Find the equations of the tangent and normal to
the curve y = x2 – 4x – 5 at x = –2.
4. Find the equations of the tangent and normal to
the curve y = x2 – 4x + 2 at (4, 2).
5. Find the equations of the tangent and normal to
the curve:

x = at2

y = 2at at the point ‘t’.
6. Find the equations of the tangent and normal at

the point (2, 5) of the curve y
x

x
=

+
−

2 1

3
.

7. Find the equations of the tangent and normal to
the curve y = x2 – 3x + 4 at the point where it cuts the
y-axis.
8. Find the equations of the tangent and normal to
the curve 3y = x2 – 6x + 17 at (4, 3).

Type 3: Problems based on intercepts of tangents
on the axis:

Exercise 19.6

1. Show that the sum of the intercepts of the tangent

at any point to the curve x y a
1
2

1
2

1
2+ =  on the axes is

constant and is equal to a.
2. Prove that the length intercepted by the coordinate

axes on any tangent to the curve x y c
2
3

2
3

2
3+ =  is

constant.

3. If the tangent to the curve x y a+ =  at any
point on it cuts the x and y-axes respectively at A and
B, prove that OA + OB = a.
4. In the curve xm yn = am + n, prove that the portion of
the tangent intercepted between the axes is divided
at its point of contact into segments which are in a
constant ratio.
5. Find the intercepts made upon the axes by the

tangent at (x1, y1) to the curve x y a+ =  and
show that their sum is constant.
6. Show that the portion of the tangent to the curve

x y a
2
3

2
3

2
3+ =  which is intercepted between the axes

is of constant length.
7. Find the equation of the tangent to the curve

x y a
2
3

2
3

2
3+ =  and show that the portion of the

tangent intercepted between the coordinate axes is
constant.

8. Find the normal to the curve xy a x= +  which
makes equal intercepts upon coordinate axes.
9. The tangent at any point on the curve x3 + y3 = 2a3

cuts off lengths p and q on the coordinate axes, show

that p a a
− − − −
+ =

2
3

3
2

1
2

3
22 .

10. If p and q be the intercepts on the coordinate

axes by the tangent to 
x

a

y

b

n n	


�
� + 	


�
� = 1, then show

that 
a

p

b

q

n
n

n
n	



�
�� + 	


�
�� =

− −1 1

1 .

11. Prove that, in the curve y
C

e e
x x

= +�
��

�
��

−

2
2 2  the

length of the perpendicular, from the foot of the
ordinate of a point p on the curve, upon the tangent
at p is constant.
12. Find the equation of the tangent at the point
determined by θ  on the ellipse x = acos θ ,

y = b sin θ . Also find the length of the portion of the
tangent intercepted between the coordinate axes.
13. Prove that the portion of the tangent of the curve
x = a cos3 θ , y = a sin3 θ  at the point θ , intercepted
between the coordinate axes is of constant length.
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Answers:

8. Normal at the point 
a a

a
2

3

2
2, +	



�
��  if

x – y + a 2 2 0+ =� �

12.
x

a

y

b
a b

cos sin
sec cosec

θ θ θ θ+ = +1
2 2 2 2

,

Type 4: Finding the points where the tangent …

Exercise 19.7

1. Find the points on the curve x2 – y2 = 2 at which
the slope of the tangent is 2.
2. Find at what points on the circle x2 + y2 = 13, the
tangent is parallel to the line 2x + 3y = 7.
3. At what points on the curve x2 + y2 – 2x – 4y + 1
= 0, the tangent is parallel to (i) x-axis (ii) y-axis.
4. Find the point on the curve y = x3 + 2x2 – 3x +1, the
tangent at which is parallel to the line 4x – y = 3.
5. Find the coordinates of the points on the curve

2x2 + 3xy + 4y2 = 9 at which the slope is −
7

9
.

6. At what point does the curve y = x2 – 4x have the
slope 2?
7. Find the coordinates of the points on the curve
5 = log (x2 + 3) at which the slope is 2.
8. Find the point on the curve y = 4 + x2 at which the
tangent is horizontal.
9. Find the point at which the tangent to the curve x2

+ y2 + 2x – 4y = 20 is parallel to the x-axis.
10. Find the point at which the tangent to the curve
y = x3 – 12x + 10 is parallel to x-axis.
11. Find the point on the curve y = x3 – x2 – x + 3
where the tangent is perpendicular to the y-axis.

12. At what point on the curve 
x

a

y

b

2

2

2

2
1+ =  is the

tangent perpendicular to the x-axis.
13. At what points on the curve y = x2 + 2x is the
tangent
(i) parallel to the x-axis
(ii) equally inclined to the axes
(iii) inclined at 30º to the x-axis.

14. Find the points at which the tangent is parallel to
the axis of x for the curve y = x3 – 6x2 – 15x + 5.
15. Find the coordinates of the point at which the
tangent to the curve xy + 4 = 0 make an angle of 45º
with the axis of x.
16. Find the points on the curve x2 – y2 = 2 at which
the slope of the tangent is 2.
17. At what point on the curve y = 2x2 – x + 1 is the
tangent parallel to the line y = 3x + 9.
18. (i) Find at what points on the circle x2 + y2 = 13,
the tangent is parallel to the line 2x + 3y = 0.
(ii) Find the points on the curve y = cos (x + y),

− ≤ ≤2 2π πx  at which the tangents are parallel to

the line x + 2y = x + 2y = 0.

19. Find at what points on the curve 
x

a

y

b
xy

3 3

+ = ,

the tangent is parallel to one of the coordinate axes.
20. Find the points on the curve y = x3 – 2x2 + x – 2,
where the gradient is zero.
21. (i) Find the point on the curve y = 4 + x2 at which
the tangent is horizontal.
(ii) Find the points on the curve y = x3 – x2 – x + 3
where the tangent is perpendicular to the y-axis.
22. (i) Find the points at which the tangent is parallel
to the axis of x for the curve y = x3 – 6x2 – 15x + 5.
(ii) Find the points on the curve y = x3, the tangents
at which cut the x-axis at an angle of 60º.
23. (i) Find the point on the curve y2 = 4ax, the
tangent at which is inclined at 45º to the x-axis.
(ii) At what point on the curve y = 2x2 – x + 1 is the
tangent parallel to the line y = 3x + 9.
(iii) Find at what points on the circle x2 + y2 = 13, the
tangent is parallel to the line 2x + 3y = 0.
(iv) Find the points on the curve 4x2 + 9y2 = 1 where
the tangents are perpendicular to the line 2y + x = 0.

Answers:

1.
2 2

3

2

3

2 2

3

2

3
, , ,

	



�
��

− −	



�
��

2. (2, 3) and (–2, 3)

3. (3, 2) and (–1, 2)

4.
−	



�
�

7

3

247

27
,
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5. (1, 1) and (–1, –1)

6. (3, –3)

7.
5 3

2
5

5

2
5 13

+
+

�
�
�

�
�
�

, ,log � �

5 3

2
5

5

2
5 13

−
−

�
�
�

�
�
�

, log � �

8. (0, 4)
9. (–1, 7) and (–1, –3)
10. (2, – 6)and (–2, 26)

11. (1, 2) and 
1

3
2

16

27
,	


�
�

12. (a, 0) and (– a, 0)
13. (i) (–1, 1)

(ii) − −	



�
�

1

2

3

4
,

(iii)
− −

−
−	



�
��

2 3 1

2 3

16 3 9

12
,

14. (–1, 13) and (5, –95)
15. (2, –2) and (–2, 2)

16. 2 3

3

2

3

2 3

3

2

3
, ,

	



�
��

− −
	



�
��

and

17. (1, 2)
18. (i) (2, 3) and (–2, –3)

(ii) −	

�
�

	



�
�

3

2
0

2
0

π π
, ,and

19.
1

3
2

1

3
2

2 2
1
3

2
3

a b a b� � � �,
�
�
�

�
�
�

and

1

3
2

1

3
2

2 2
2
3

2
3

b
ab ab� � � �,

�
�
�

�
�
�

20. 1 2
1

3

50

27
, ,−

−	



�
�� � and

21. (i) (0, 4)  (ii) (1, 2)
22. (i) (–1, 13) and (5, –95)

(ii) 3
1

4
3

2

3
− −	



�
�,

23. (i) (a, 2a) (ii) (1, 2)

(iii) (2, 3) and (–2, –3) (iv)
2

2 10

1

3 10
, ±

	



�
��

Type 5: (A) Problems based on finding angles of
intersection or angle between two curves:

Exercise 19.8

1. Find the angle of intersection of the curves y = x2

and y = x3.
2. Find the angle of intersection of the curves

y = 4 – x2 and y = x2.

3. Find the angle between the curves:

(i) y2 = x and x2 = y

(ii) y = x2 and y = 4 – x2

(iii) xy = 4 and x2 + y2 = 8

(iv) x2 – y2 = 2a2 and x2 + y2 = 4a2

(v) y = 6 – x2 and x2 = 4y at the point (2, 2).

4. (i) At what angle the parabolas y2 = x and x2 = 8y
cut each other.
(ii) Find the angle at which the curves y = sin x and
y = cos x intersect.

5. Find the angle of intersection of the parabolas
y2 = 2x and the circle x2 + y2 = 8.
6. Find the angle between the line y = x and the curve
2y = 7x – 5x2.
7. Find the angle between the curve y = x3 and the
straight line y = 9x at each of their point of intersection.
8. Find the angle between the curves:
(i) x2 + y2 = 5 and y2 = 4x + 8
(ii) xy = 2a2 and y2 = 4ax

9. Show that the curves y
x

x
= +

+

3

1
2  and

y
x x

x
=

− +
−

2
7 11

1
 cut each other at the point (2, 1)

at an angle 45º.
10. Show that the curves y = 2 sin2 x and y = cos 2x

intersect at x = π
6

. Find the angle of intersection.
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Answers:

1. tan and
− 	


�
�

1 1

7
0

2. tan
− 	



�
��

1 4 2

7

3. (i) 90º and tan
− 	


�
�

1 3

4
(ii) tan

− 	



�
��

1 4 2

7

(iii) 0º (iv) 60º (v) tan
− 	


�
�

1 7

11

4. (i) tan and º
− 	


�
�

1 3

5
90

(ii) tan
−1

2 2� �
5. tan–1 (3) at both common points (2, –2) and (2, –2)

6. at (0, 0), θ = ±	

�
��

−tan 1 5

9
 and at (1, 1),

θ = ±−
tan

1
5� �

7. Find

8. (i) tan
− 	


�
�

1 1

3
(ii) tan–1 (3)

10. Angle of intersection = 60º.

Type 5: (B) Problems based on finding the angle
between two tangents to a curve at two given points:

Exercise 19.9

1. Prove that the tangents to the curve y2 = 4ax at the
points where x = a are perpendicular to each other.
2. Prove that the tangents to the curve y2 = 2x at the

points where x = 1

2
 are at right angles.

3. Find the angle between the tangents to the curve

x2 = 8y + 6 at the points 0
3

4
, −	



�
�  and 4

5

4
,	

�
� .

4. Prove that the tangents to the curve y2 = x at the

points 
1

4

1

2
,	

�
�  and 

1

4

1

2
, −	



�
�  are at right angles.

5. Find the angle between the tangents to the curve

x

a

y

b

2

2

2

2
1+ =  at the points (a, 0) and (0, b).

6. Show that the tangents to the curve y2 = 2ax at the

points where x =
1

2
 are at right angles.

Type 6: (A) Problems based on finding the condition
for two curves for orthogonal intersection.

(B) Problems based on showing for two curves to
cut orthogonally.

(A) Firstly we set the problems on finding the
conditions for two curves for orthogonal intersection.

Exercise 19.10

1. Find the condition that the curves 
x

a

y

b

2 2

1+ =

and 
x y

2 2

1
α β
+ =  cut orthogonally.

2. Find the condition in order that the curves

x

a

y

b

2

2

2

2
1+ =  and 

x

a

y

b

2

1
2

2

1
2

1− =  should intersect at

right angles.
3. Find the conditions that ax2 + by2 = 1 and
a1 x2 + b1 y2 = 1 may cut right angles.

Type 6: (B) Problems based on showing for two
curves to cut orthogonally.

Exercise 19.11

1. Do the curves x2 + y2 = 2a2 and 2y2 – x2 = a2 cut
each other orthogonally?
2. Show that the curves x3 – 3xy2 + 2 = 0 and
3x2 y – y2 = 2 cut orthogonally.
[Hint: Show that m1 m2 = –1 at any point (x1 y1)]
3. Show that the curves x2 – y2 = 16 and xy = 25 cut
each other at right angles.
4. Prove that the curves 2y2 = x3 and y2 = 32x cut each
other at right angle at the origin.
5. Show that the curves x2 + 4y2 = 8 and x2 – 2y2 = 4
intersect orthogonally.
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6. If the curves 
x

a

y
2

2

2

4
1+ =  and y3 = 16x intersect at

right angles. Show that a
2 4

3
= .

7. Show that the curves x3 – 3xy2 = a and 3x2 y – y2

= b cut orthogonally.
8. Prove that the curves y2 = 4x and x2 + y2 – 6x + 1
= 0 touch each other at the point (1, 2).

9. Prove that for all values of n, the line 
x

a

y

b
+ = 2

touches the curve 
x

a

y

b

n n	


�
� + 	


�
� = 2  at any point

(a, b).

Type 6: (C) Problems based on condition for two
curves to touch.

Exercise 19.12

1. Prove that the curves y = 6 + x – x2 and y (x – 2) =
x + 2 touch each other at (2, 4). Also find the equation
of the common tangent.
2. Prove that the curves xy = 4 and x2 + y2 = 8 touch
each other.

3. Show that 
x

a

y

b
+ = 1  touches the curves

y be
x
a=

−
 at the point where the curve crosses the

axis of y.
4. Prove that the curves y2 = 4x and
x2 + y2 – 6x + 1 = 0 touch each other at the point (1, 2).
5. Prove that the curves y = e–ax and y = e–ax touch at

the points for which bx n= +2
2

π π
.

Type 7: Problems based on condition for a given line
to touch a given curve.

Exercise 19.13

1. Prove that 
x

a

y

b
+ = 1  touches the curve y be

x
a=

−

at the point where the curve crosses the y-axis.
[Hint: Show that equation of the tangent at

0 1, b
x

a

y

b
� �= + = ].

2. Prove that the condition that x y pcos sinθ θ+ =

should touch the curve: 
x

a

y

b

m

m

m

m
+ = 1  is

a
m

mcosθ� � − +1  b p
m

m

m
msinθ� � − −=1

1 .

3. Prove that the condition that

x y pcos sinα α+ =
should touch the curve xm yn

= am+n  is

p m n m n a
m n m n m n m n+ + +⋅ = +� �  cos sin

m nα α .

4. If x y pcos sinθ θ+ =  touches the curve

x

a

y

b

n
n

n
n	



�
� + 	


�
� =

− −1 1

1 , show that a b
n n

cos sinθ θ� � � �+

= p
n .

5. Show that the curve 
x

a

y

b

n n	


�
� + 	


�
� = 2  touches

the straight line 
x

a

y

b
+ = 2  at the point (a, b) for all

values of n.
6. Prove that the straight line y = 2x – 1 touches the

curve y x x= − +3
1 .

7. Prove that the straight line y = 2x – 1 touches the

curve y x x x x= + − − +4 3 2
2 3 2 3  at two distinct

points.

8. Prove that the curve 
x

a

y

b

n n	


�
� + 	


�
� = 2  touches

the straight line 
x

a

y

b
+ = 2  at the point (a, b) for all

value of n.

Type 8: (A) Problems based on length of
perpendicular:

Exercise 19.14

1. Find the length of the perpendicular from the origin
(0, 0) on the tangent of the following curve:

(i)
x

a

y

b

2

2

2

2
1+ =  at the point (x1, y1)
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(ii) y2 = 4ax at (am2, – 2am)

(iii) x = at2, y = 2at at 't'

(iv) x a y a= − = − =θ θ θ θ π
sin cos at� � � �, 1

2
2. Show that the normal at any point on the curve

x a a= +cos sinθ θ θ

y a a= −sin cosθ θ θ  is at a constant distance

from the origin.
3. Prove that the perpendicular drawn from the foot
of the ordinate to the tangent of a curve is

y

dy
dx

1
2

+ 	

�
�

[Hint: The equation of the tangent at P (x, y) is

X
dy

dx
Y y x

dy

dx
− + − = 0 , find the length of the per-

pendicular from the foot of the ordinate (x, 0) to the
tangent]

Answers:

1. (i)
a b

b x a y

2 2

4
1
2 4

1
2+

(ii)
am

m

2

2
1 +

(iii)
at

t

2

2
1 +

(iv)
a aπ − 4

2 2

Type 8: (B) Problems based on finding the area

Exercise 19.15

1. Show that the area of the triangle formed by a
tangent to the curve 2xy = a2 and the coordinate axes
is constant.

Type 9: Problems based on length of subtangent or
subnormal

Exercise 19.16

1. Find the lengths of the subtangent and subnormal
at the point (3, 4) of the rectangle hyperbola xy = 12.

2. Find the lengths of subtangents and subnormals

at the point ′ ′x y,� �  of the curves:

(i) x2 + y2 = a2 and (ii) 
x

a

y

b

2

2

2

2
1+ =

3. Find the length of subtangent, subnormal, tangent
and normal at the point ‘t’ of the cycloid:

x = a (t + sin t)

y a= −1 cosθ� �

4. Prove that in the curve y be
a
x=

− , the subtangent

varies as the square of the abscissa.

[Hint: Prove that 
subtangent

abscissa� �2
 = constant]

5. Prove that the subtangent is of constant length in
the curves:
(i) log y = x log a (ii) y = ax.
6. Show that the subtangents and subnormals of the

curve y n = a n–1 x are nx and 
y

nx

2

.

7. Find the subtangent and subnormal to the curve
y = 2x2 + 3x at the point (2, 14).
8. Find the lengths of subtangents, subnormal,
tangent and normal to the curve y = x3 at the point
(1, 1).

Answers:

1. − −3
16

3
,

2. (i) −
′
′

− ′
y

x
x

2

, (ii)
′ −

′
− ′x a

x

b x

a

2 2 2

2
;

3. a t
a

t

t
a

t a
t

t
sin

sin

cos
sin

sin

cos
, , ,

2
2

2

2
2

2
2

2

2

7.
14

11
154,

8.
1

3
3

10

3
10and ; and
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20

Rolle's Theorem and
Lagrange's Mean Value Theorem

Rolle's Theorem

Statement: If a function y = f (x) defined over [a, b] is
such that

(i) It is continuous over [a, b]
(ii) It is differentiable over (a, b)
(iii) f (a) = f (b)
then there exists at least one point x c a b= ∈ ,� �
such that ′ =f c� � 0 .
Proof: Given:

y = f (x) is continuous in the closed interval [a, b]
⇒  graph of y = f (x) is a continuous curve without
any break from the point x = a to the point x = b.

Again, y = f (x) is differentiable in the open interval
(a, b). ⇒  graph of y = f (x) has unique tangent at
each point in open interval (a, b).

Further given f (a) = f (b)
⇒  (ordinary at x = a) = (ordinate at x = b)
Now two possibilities arise.

Case 1: When y = f (x) is constant.
Let us suppose that f (x) = k, and c a b∈ ,� �

∴ ′ =
− −
−

�
��

�
��→

L f c
f c h f c

hh
� � � � � �

lim
0

, h > 0

=
−
−

�
��

�
�� =

→
lim
h

k k

h0
0

R f c
f c h f c

hh
′ =

+ −�
��

�
��→

� � � � � �
lim

0

=
−�

��
�
�� =

→
lim
h

k k

h0
0

∴ ′ = ′ = ⇔ ′ =L f c R f c f c� � � � � �0 0  for all

c a b∈ ,	 


Case 2: Let f (x) be not a constant function. Since in
[a, b] f (x) is continuous it attains its bounds in [a, b].
At least one of the bounds is different from f (a) =
f (b). For definiteness let the upper bound ≠ f a	 
 .

0 x

y

( ,  ( ))b f b
B

( ,  ( ))a f a
A

f a ( ) f b ( )

ba

0 x

y

x  b=

M

BCA

N

L

f a( ) f c( ) f b( )

x  a= x  c=
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Let the function f (x) attains its upper bound
(maximum) at x = c.

∴ ≤ ∀ ∈f x f c x a b� � � � , ,  and a < c < b

Now, f c h f c f c h f c+ ≤ ⇒ + − ≤	 
 	 
 	 
 	 
 0

⇒
+ −

≤ >
f c h f c

h
h

	 
 	 
 	 
0 0�

⇒
+ −

≤
→

lim
h

f c h f c

h0
0

	 
 	 


⇒ ′ ≤R f c	 
 0 …(i)

Again, f c h f c f c h f c− ≤ ⇒ − − ≤	 
 	 
 	 
 	 
 0

⇒
− −

≤ >
f c h f c

h
h

	 
 	 
 	 
0 0�

⇒
− −
−

�
��

�
��
≥

→
lim
h

f c h f c

h0
0

	 
 	 


� h h> ⇔ − <0 0� �
⇒ ′ ≥L f c	 
 0 …(ii)

As f (x) is differentiable over (a, b), hence f ' (c)
must exist.

∴ ′ = ′ = ′L f c R f c f c� � � � � �
∴ From (i) and (ii), we get

′ <f c� � 0  and ′ >f c� � 0 .

This means that ′ =f c� � 0 . A similar argument
can be used if the lower bound ≠ f a	 
 .

Remarks: 1. Converse of Rolle’s theorem is not true,
i.e. ′f x� �  may vanish (zero) at a point within (a, b)
without satisfying all the three conditions of Rolle’s
theorem.

2. The three conditions of Rolle’s theorem are
sufficient but not necessary for ′ =f x� � 0  for some
x in (a, b).
3. If a function y = f (x) defined over [a, b] does not
satisfy even one of the three conditions, then Rolle’s
theorem fails, i.e. there may or may not exist point
where ′ =f x� � 0 .

Geometrical Meaning of Rolle’s Theorem

If the graph of a function y = f (x) defined over [a, b] is
such that
1. It is a continuous curve without any break from a
point A (a, f (a)) to another point B (b, f (b)).
2. It has a unique tangent at each point in between
the two points A (a, f (a)) and B (b, f (b)) (i.e. f (x) is
differentiable in the open interval (a, b)).
3. It has equal ordinates f (a) and f (b) at two points A
(a, f (a)) and B (b, f (b)) (i.e. f (x) assumes equal values
at the end points of the closed interval [a, b ]), then
Rolle’s theorem provides that there is at least one
point C (c, f (c)) between A (a, f (a) and B (b, f (b)) on
the graph of the function y = f (x) defined over [a, b]
such that the tangent to the graph at C is parallel to
the x-axis.

Note: It is Rolle’s theorem which helps us to prove
Lagrange’s mean value theorem.

Lagrange’s Mean Value Theorem

Statement: If a function y = f (x) defined over a closed
interval [a, b] is such that
1. It is continuous in the closed interval [a, b].
2. It is differentiable in the open interval (a, b) then
there exists at least one point x c a b= ∈ ,� �  such

that ′ =
−
−

f c
f b f a

b a
� � � � � �

0 x

y

x  b=

M

BCA

N

L

f a( ) f c( ) f b( )

x  a= x  c=

0 x

y

B

C

A

f a( ) f c( ) f b( )

A a, 1 ( 0) C c, 1 ( 0) B b, 1 ( 0)

( ,  ( ))b f b

( ,  ( ))c f c

f a f b ( ) =  ( )( ,  ( ))a f a



Rolle's Theorem and Lagrange's Mean Value Theorem 783

Proof: Given: y = f (x) is a continuous function over
[a, b] and differentiable over (a, b).

To prove: There is at least one point x c a b= ∈ ,� �

such that ′ =
−
−

f c
f b f a

b a
� � � � � �

Main Proof: Let us consider a function defined as
F (x) = f (x) + Ax, …(1)
Where A is a constant whose value is to be

determined from the condition that is F (a) = F (b)
…(2) imposed on (1)

Now from (1),
F (a) = f (a) + Aa
F (b) = f (b) + Ab

∴ f (a) + Aa = f (b) + Ab (on using (2))
⇒  f (b) – f (a) = –A (b – a)

⇒ − =
−
−

A
f b f a

b a

� � � �
…(3)

Again, it is given that y = f (x) is continuous over
[a, b] and differentiable in (a, b) and Ax being a
polynomial is continuous over [a, b] and differentiable
over (a, b) since every polynomial in x is always
continuous as well as differentiable in −∞ ∞ ⇒,� �
F (x) = f (x) + Ax is continuous in [a, b] and
differentiable in (a, b).

Also, from (2), F (a) = F (b)
Therefore F (x) = f (x) + Ax is

(i) Continuous is [a, b]
(ii) Differentiable in (a, b) and also
(iii) F (a) = F (b)

Thus, F (x) satisfies all the three conditions of
Rolle’s theorem ⇒  there exists at least one value

x c a b= ∈ ,� �  such that ′ =F c� � 0  which

⇒ ′ + =f c A� � 0

⇒ − = ′A f c� � …(4)

∴ From (3) and (4), it is concluded that

′ =
−
−

f c
f b f a

b a
� � � � � �

Hence, the required is proved.

Remarks: 1. The statement “there exists at least one
point x c a b= ∈ ,� � ” means that the point ‘c’ is not

unique, i.e., there may exist more than one point c as
c1 and c2.
2. If a function y = f (x) defined over [a, b] does not
satisfy even one of the two conditions, then
lagrange’s mean value theorem fails for y = f (x), i.e.
there may or may not exists points where

′ =
−
−

f c
f b f a

b a
� � � � � �

.

On another form of Lagrange’s mean value theorem

On taking b = a + h, the closed interval [a, b] becomes
equal to [a, a +h] and the number ‘c’ which lies in
between a and a + h can be written as c = a h+ θ ,
where θ  is some proper fraction lying in (0, 1).

Thus, the result of Lagrange’s mean value theorem
becomes

′ + =
+ −
+ −

=
+ −

f a h
f a h f a

a h a

f a h f a

h
θ� � � � � � � � � �

,

where 0 1< <θ .

Therefore, the Lagrange’s mean value theorem can
be stated as under also:

If a function y = f (x) defined over a closed interval
[a, a + h] is such that
1. It is continuous over [a, a + h]
2. It is differentiable in (a, a + h),
then there exists at least one number θ ∈ 0 1,� �  such
that f a h f a h f a h+ − = ′ +� � � � � �θ
On geometrical meaning of Lagrange’s mean value
theorem

The hypothesis of Lagrange’s mean value theorem
provides that the graph of a function y = f (x) defined
over [a, b] is
1. A continuous curve without any break, gap or
jump from the point A (a, f (a)) to an other point B (b,
f (b)) and
2. Has a unique tangent at each point in between the
two points A (a, f (a)) and B (b, f (b)) (i.e f (x) is
differentiable in the open interval (a, b)).

The result of the Lagranges mean value theorem
provides that there is at least one point C (c, f (c)) on
the curve (i.e on the graph of the function y = f (x)
defined over [a, b]) where the tangent is parallel to
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the chord through the points A (a, f (a)) and B (b, f (b))

because the slope of the chord AB
f b f a

b a
=

−
−

� � � �

=
difference of ordinates

difference of abscissas
 and the slope of the

tangent at any point C (c, f (c)) is ′f c	 


[Let y = f (x) be the curve being continuous from A
(a, f (a)) to B (b, f (b)) and also possessing tangents to
the curve between A and B.

Let AA1 and BB1 be the perpendicular drawn to
the x-axis. Let us join the chord AB which makes an
angle θ  with the positive direction of the x-axis.

Again from A, a perpendicular AD on BB1 is drawn.
Then, BD = BB1 – DB1 = f (b) – f (a)

and AD = A1 B1 = OB1 – OA1 = b – a

∴ =
−
−

BD

AD

f b f a

b a

� � � �

⇒ =
−
−

tanθ
f b f a

b a

� � � �
, where θ = ∠BAD  =

slope of the chord AB.

But ′ =f c	 
  slope of the tangent at c.

That is, there is a point C (c, f (c)) where the
derivative has ′ =f c� � tanθ , i.e. the tangent at C (c,
f (c)) is parallel to the chord AB.]

Note: There may be more than one point namely C1,
C2 and C3 on the curve between A and B where the
tangents are parallel to the chord AB.

On continuity and differentiability of a function
y = f (x)

Readers should remember the following facts to
ensure the continuity and differentiability of a function
y = f (x) defined over an interval open or closed.

1. The domain of a derived function ′f x� �  is a subset

of the domain of the function f (x), because it contains
all the points x in the domain of f (x) such that the limit

lim
h

f x h f x

h→

+ −
0

� � � �
 exists, but does not contain

those points where the limit lim
h

f x h f x

h→

+ −
0

	 
 	 


does not exist.

2. A function y = f (x) which has a derivative is called
differentiable. The function y = f (x) is differentiable at
a point x = a, if ‘a’ lies in the domain of ′f x� �  i.e. if
′f a� �  exists, i.e.,

L f a
f a h f a

hh
′ =

− −
→

� � � � � �
lim

0

= ′ =
+ −

→
R f a

f a h f a

hh
� � � � � �

lim
0

, h > 0.

3. A function y = f (x) is continuous in an open interval
(a, b) ⇔  it is continuous at any point c a b∈ ,� � .
4. A function y = f (x) is continuous is a closed interval
[a, b] ⇔  it is continuous at any point c a b∈ ,� �  and
is continuous at ‘a’ from the right and continuous at
‘b’ from the left.
5. A function y = f (x) is differentiable in an open
interval (a, b) ⇔  it is differentiable at any point
c a b∈ ,� � .

0 x

y
B

C D
A

( ,  ( ))b f by f x =  ( )

( ,  ( ))c f c
( ,  ( ))a f a

A
a, 

1

 ( 0)
= C

c, 
1

 ( 0)
= B

b, 
1

 ( 0)
=

θ

θ

Tangent at C

o a

B

A
Tangent

Chord

C3

C2

C1

Tangent

b

f a ( ) f b ( )
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6. A function y = f (x) is differentiable in a closed
interval [a, b] ⇔  it is differentiable at any point
c a b∈ ,� �  and has a right derivative at x = a and a left
derivative at x = b.
7. All the discontinuities of a function y = f (x) are

also the discontinuities of the derived function ′f x� � .

8. All standard functions (i.e. as simple form in which
a function is commonly written, also termed as
elementary functions) can be discontinuous only at
points where they are not defined, i.e. all ‘LIATE’
(logarithmic, inverse, trigonometric, algebraic and
exponential) standard functions are continuous and
differentiable in whole of its domain.
9. A function y = f (x) is discontinuous at a point
x = c ⇒  the function y = f (x) is not differentiable
(non differentiable) at the point x = c.
10. A function y = f (x) is differentiable at a point
x = c ⇒  the function y = f (x) is continuous at the
point x = c.

11. ′f x� �  is continuous ⇒  f (x) is continuous.

12. Every positive power function y = xn is
continuous and differentiable in any interval open or
closed since it is continuous and differentiable for all
values of x in R.
13. Any polynomial function is continuous and
differentiable in any interval open or closed since it is
continuous and differentiable for all values of x in R.
14. Any rational algebraic or non algebraic function
is continuous and differentiable for all values of the
independent variable x excepting those point where
its denominator is zero, i.e. any rational function is
continuous and differentiable in any interval open or
closed excluding the points where its denominator is
zero.

Where to check the continuity and differentiability
of a function y = f (x) defined in a given closed interval
[a, b].

In order to check the continuity and differentiability
of a given function y = f (x) defined in a closed interval
[a, b] one must check them at the following points.
1. The points where the given function is undefined
or imaginary.

2. The point where the derived function ′f x� �  is

undefined or imaginary.

3. The common points of adjacent intervals where
different forms of a given function are defined.
4. The end points of a given closed interval.

Notes: 1. In order to show that a function is
discontinuous in a given interval open or closed, it is
sufficient to show that it is discontinuous at atleast
at one point belonging to the given interval.
2. If ′f x	 
  becomes undefined on putting x = c,
then it is wrong to conclude that f (x) is not
differentiable at x = c. In that case we find L f c′ 	 

and R f c′ 	 
  by first principles and test the
differentiability at c.

Illustrations: (Erroneous approach)
1. f (x) = | x |

⇒ ′ =f x
x

x
� �

⇒ ′ =f 0
0

0
� � , i.e. ′f 0� �  is undefined

⇒ ′f 0� �  does not exist, i.e. f (x) is not

differentiable at x = 0.

2. f x x� � =
2
3

⇒ ′ = = = ⋅
− −

f x x x
x

� � � �2

3

2

3

2

3

12
3

1
3

1

⇒ ′ =f 0
2

0
� � ,  i.e. ′f 0� �  is not a finite number

⇒ ′f 0� �  does not exist, i.e. f (x) is not differen-

tiable at x = 0.

Type 1: To establish the validity of Rolle’s theorem
when interval is given.

To verify Rolle’s theorem, we have to show
following conditions are satisfied.
1. Find f (a) and f (b) and show that f (a) = f (b).
2. Show the continuity of the given function in the
closed interval by using the facts that LIATE functions
are continuous at points where they have finite values
and theorems on continuity.
3. Show that differentiability of the given function in
the given interval by using theorems on
differentiability and the facts that LIATE functions
have finite derivatives at points where they are
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defined.
4. Put ′ =f x� � 0  and find the value of x or choose
the value of x from among roots of ′ =f x� � 0  which
is in the given interval [a, b].

N.B.:
1. LIATE ⇒  L = log function

I = Inverse circular function
A = Algebraic function
T = Trigonometric function
E = Exponential function

2. If a function is discontinuous in an interval, it must
have atleast one point of discontinuity (in the given
interval) where one or other condition for continuity
fails to satisfy. A function is not continuous if it
exhibits at least one point of discontinuity in the given
interval.

Note: That this (2) is practically fruitful to examine
the validity or applicability of Rolle;s theorem or
Lagrange’s mean value theorem for a given function
in a given interval.

Examples worked out:
1. Verify Rolle’s theorem for f (x) = x3 – 4x in the

interval − ≤ ≤2 2x .

Solution: (1) �  f (x) = x3 – 4x = a polynomial
∴ f (x) is differentiable in [–2, 2] and so continuous

in [–2, 2] as f (x) is a polynomial function.

(2) 
f

f
f f2 2 4 2 0

2 2 4 2 0
2 2

3

3
� � � �
� � � � � �

� � � �= − =
− = − − − =


��
��
⇒ = −

(1) and (2) ⇒  all the conditions of Rolle’s theorem
are satisfied.

Now ′ =f x� � 0

⇒ − =3 4 0
2

x

⇒ =3 4
2

x

⇒ = ± = ± =x c
4

3

2

3
Both the values of c lies in the open interval (–2, 2)

= ]–2, 2[ hence, the fact that ′ =f x� � 0  for atleast one
c∈ −2 2,� �  has been verified.
∴ Rolle’s theorem is verified.

2. Verify Rolle’s theorem for the function
f x x x e

x� � � � � �= − ⋅ − ⋅ −
1 4  in the interval (1, 4).

Solution: (1) � f x x x e
x� � � � � �= − ⋅ − ⋅ −

1 4

∴ f (x) is differentiable in [1, 4] as it is the product
of differentiable functions (x – 1), (x – 4) and e–x.

∴ It is differentiable in (1, 4) which ⇒  it is
continuous in (1, 4)

(2) f (1) = 0 = f (4)
(1) and (2) ⇒  all the conditions of Rolle’s theorem

are satisfied.

Now, ′ = ⇒ − − − +
− −

f x x e x x e
x x� � � � � �0 2 5 5 4

2

= ⇒ − − + =
−

0 7 9 0
2

e x x
x � �

⇒ − + =x x
2

7 9 0

⇒ =
±

x
7 13

2

⇒ =x  5.3, 1.7 approximately = c1, c2.

Since c2 1 4∈ ,	 
 ,

∴ Rolle’s theorem is verified.

3. Verify Rolle’s theorem for f x x x e
x� � � �= − +

2 2
4 3

in [1, 3].

Solution: (1) � f x x x e
x� � � �= − +

2 2
4 3

∴ f (x) is differentiable in [1, 3] as it is the product
of differentiable functions (x2 – 4x + 3) and e2x.

∴ It is differentiable in (1, 3) which ⇒  it is
continuous in (1, 3).

(2) 
f e

f e
f f

1 1 4 3 0

3 9 12 3 0
1 3

2

6
� � � �
� � � �

� � � �= − + =

= − + =


��
��
⇒ =

(1) and (2) ⇒  all the condition of Rolle’s theorem
are satisfied.

Now, ′ =f x	 
 0

⇒ − + ⋅ + − ⋅x x e x ex x2 2 24 3 2 2 4� � 	 


= ⇒ − + =0 2 3 1 0
2 2

x x e
x

� �

⇒ − + =x x
2

3 1 0
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⇒ =
± −

= ±
x

3 9 4

2

3 5

2

Since the value of x =
+

∈
3 5

2
 open interval

(1, 3)
∴ Rolle’s theorem is verified.

4. Show that the function f (x) = ex cos x satisfies

Rolle’s theorem in −���
�
��

π π
2 2

,

Solution: (1) � f x e x
x� � = ⋅ cos

∴  f (x) is differentiable in −���
�
��

π π
2 2

,  as it is the

product of differentiable functions ex and cos x which

⇒  it is continuous in −���
�
��

π π
2 2

, .

∴  It is differentiable in −��
�
�

π π
2 2

,  which ⇒  it is

continuous in −��
�
�

π π
2 2

, .

(2) 
f e e

f e

−��
�
� = ⋅ −��

�
� = ⋅ �

�
�
� =

�
�

�
� = ⋅ �

�
�
� =


�
��

�
��

− −π π π

π π

π π

π
2 2 2

0

2 2
0

2 2

2

cos cos

cos

⇒ −��
�
� = �

�
�
�f f

π π
2 2

(1) and (2) ⇒  all the conditions of Rolle’s theorem
are satisfied.

Now, ′ = ⇒ − = ⇒ −f x e x x xx	 
 	 
0 0cos sin cos

sin x ex= ≠0 0�� �
⇒ = ⇒ =cos sin tanx x x 1

⇒ = ⇒ = +tan tan ;x x n
π π π
4 4

n = ± ±0 1 2, , , ...� �

and x = ∈ −���
�
��

π π π
4 2 2

,

∴  Rolle’s theorem is verified.

5. Verify Rolle’s theorem for
(a) x2 in [–1, 1]
(b) x2 – x – 6 in [–2, 3]
Solution: (a) (1) f (x) = x2 = a polynomial in x

∴  f (x) is differentiable in [2, 3] and so continuous
in [2, 3] as f (x) is a polynomial function.

(2) f (1) = 1 = f (–1)
(1) and (2) ⇒  all the conditions of Rolle’s theorem

are satisfied.

Now ′ = ⇒ = ⇒ =f x x x� � 0 2 0 0  which is a

point in (–1, 1)
∴ Rolle’s theorem is verified.

(b) (1) f (x) = x2 – x – 6
∴ f (x) is differentiable in [–2, 3] and so continuous

in [–2, 3] as f (x) is a polynomial function.
(2) f (2) = f (3) = 0
(1) and (2) ⇒  all the conditions of Rolle’s theorem

are satisfied.

Now ′ = ⇒ − = ⇒ = ∈ −f x x x� � � �0 2 1 0
1

2
2 3,

∴ Rolle’s theorem is verified.

6. Verify Rolle’s theorem for the following functions:

(i) f x x a x b
m n	 
 	 
 	 
= − ⋅ −  on [a, b] where m, n

are positive integers.

(ii) f x e x
x� � = sin on 0 , π

Solution: (i) � f x x a x b
m n	 
 	 
 	 
= − ⋅ −  where m

and n are +ve integers.
= a polynomial in x
∴  f (x) is differentiable in [a, b] and so continuous

in [a, b] as f (x) is a polynomial function.
(2) f (a) = f (b) = 0
∴  All conditions of Rolle’s theorem are satisfied

Now ′f x� �
= − ⋅ − + − ⋅ −− −m x a x b n x a x bm n m n� � � � � � � �1 1

= − ⋅ − − + −− −x a x b m x b n x am n� � � � � � � �1 1
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∴ ′ =f x� � 0

⇒ − ⋅ − − + − =− −x a x b m x b n x am n� � � � � � � �1 1 0

Now equating each factor to zero.

⇒ − = ⇒ =−x a x am� � 1 0  (if m > 1)

or x b x bn− = ⇒ =−� � 1 0  (if n > 1)

or, m x b n x a x
mb na

m n
− + − = ⇒ =

+
+

� � � � 0

Thus, ′ = =
+
+

f x x
mb na

m n
	 
 0 for  and we see

that x
mb na

m n
=

+
+

 lies in (a, b).

∴ Rolle’s theorem is verified.

(ii) (1) � f x e x
x� � = sin

∴ f (x) is differentiable in 0 , π  as it is the product

of differentiable functions ex and sin x which ⇒  it is

continuous in 0 , π

(2) f f0 0� � � �= =π
∴ All conditions of Rolle’s theorem are satisfied.

Now, ′ = +f x e x e x
x x� � sin cos

= +�
�

�
�2

4
e x

x
cos

π

∴ ′ = ⇒ +�
�

�
� =f x e x

x� � 0 2
4

0cos
π

⇒ +�
�

�
� = ≠ ≠cos

π
4

0 2 0 0x e
x

� ,

⇒ +�
�

�
� =cos cos

π π
4 2

x

⇒ + = ± = ± ±x n n
π

π
π

4
2

2
0 1 2, , , ...

one value is x x= − ⇒ =
−

=
π π π π π
2 4

2

4 4

Now since 
π

π
4

0∈ ,� �
∴ Rolle’s theorem is verified.

7. Verify Rolle’s theorem for

(i)
sin

in
x

e
x

0 , π� �

(ii) log x ab a b x
2
+ +� � � �� �  in [a, b]; ab > 0

Solution: (i) (1) f x
x

e
x e

x

x� � = = ⋅ −sin
sin

∴ f (x) is differentiable in 0 , π  as it is the product

of differentiable functions sin x and e–x which ⇒  it is

continuous in 0 , π .

(2) 
f

e

f
e e

f f

0
0 0

1
0

0
0

0
0

� �

� �
� � � �

= = =

= = =


�
��

�
��
⇒ =

sin

sin
π

π π

π π

∴ All conditions of Rolle’s theorem are satisfied.

Now ′ =
−

=
−

f x
e x x e

e

x x

e

x x

x x
� � � �cos sin cos sin

2

∴ ′ =f x� � 0

⇒
−

=
cos sinx x

e
x

� �
0

⇒ − = ≠cos sinx x e
x

0 0�� �

⇒ =cos sinx x

⇒  1 = tan x

⇒ =tan tan
π
4

x

x n n= + = ± ±π π
4

0 1 2, , , ...� �

and x = ∈
π

π
4

0 ,� �
∴ Rolle’s theorem is verified.



Rolle's Theorem and Lagrange's Mean Value Theorem 789

(ii) (1) f x
x ab

a b x
� �

� �
� �=

+

+

�
��

��


��

��
log

2

∴  f (x) is differentiable on [a, b] as it is the log
function which ⇒  it is continuous on [a, b].

(2) 
f a

f b
f a f b

� �
� � � � � �=

=
��
⇒ =

0

0and

∴  All conditions of Rolle’s theorem are satisfied.

Now ′ =
+

− = −

+
f x

x

x ab x

x ab

x x ab
� �

� �
2 1

2

2

2

∴ ′ =f x� � 0

⇒ −

+
=x ab

x x ab

2

2
0

� �

⇒ − =x ab2 0

⇒ =x ab
2

⇒ = ±x ab

Now c ab=  lies in the open interval (a, b) being

geometric mean of a and b.
∴ Rolle’s theorem is verified.

8. Verify Rolle’s theorem for the function f (x) = (x – 1)
(x – 2) (x – 3) on [1, 3].
Solution: (1) f (x) = (x – 1) (x – 2) (x – 3)

∴ f (1) = f (3) = 0
(2) f (x) is differentiable on [1, 3] as it is a polynomial

function of x which ⇒  it is continuous in [1, 3].

∴ All conditions of Rolle’s theorem are satisfied.
Now f ' (x) = (x – 2) (x – 3) + (x – 1) (x – 3) + (x – 1)

(x – 2)
= x2 – 5x + 6 + x2 – 4x + 3 + x2 – 3x + 2
= 3x2 – 12x + 11

∴ ′ =f x� � 0

⇒ − + =3 12 11 0
2

x x

⇒ = − +x 2
1

3
2

1

3
,

Clearly both ∈ 1 3,� �
Hence, the fact that ′ =f x� � 0  for at least one

c∈ 1 3,� �  has been verified.
∴  Rolle’s theorem is verified.

9. Verify Rolle’s theorem for the function log (x2 + 2)
– log 3 on [–1, 1]
Solution: (1) f (x) = log (x2 + 2) – log 3

∴ − = − + − = =

= + − = − =


��
��
⇒

f

f

1 1 2 3 3 0

1 1 2 3 3 3 0

2

2

� � � �
� � � �

log log log

log log log log

f f− =1 1� � � �
(2) f (x) is differentiable on [–1, 1] as it is the

difference of two differentiable functions log (x2 + 1)
and log 3 (a constant function) which ⇒  it is
continuous in [–1, 1].

∴ All conditions of Rolle’s theorem are satisfied.

Now, ′ =
+

⋅ − =
+

f x
x

x
x

x
� � 1

2
2 0

2

2
2 2

∴ ′ =f x� � 0

⇒
+

=2

2
0

2

x

x

⇒ =2 0x
⇒ = = ∈ −x x0 0 1 1and ,� �
∴ Rolle’s theorem is verified.

10. Verify Rolle’s theorem for the function

f x x x� � = + − �
��

�
��sin cos on1 0

2
,
π

Solution: (1) f (x) = sin x + cos x – 1

∴ = + − = + − =
�
�

�
� =

�
�

�
� +

�
�

�
� − = + − =


��

��
⇒

f

f

0 0 0 1 0 1 1 0

2 2 2
1 1 0 1 0

� � sin cos

sin cos
π π π

f f0
2

� � = �
�

�
�

π

(2) f (x) is differentiable in 0
2

,
π�

��
�
��

 as it is the sum

of differentiable functions sin x, cos x and a constant

function ⇒  it is continuous in 0
2

,
π�

��
�
�� .
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∴ All conditions of Rolle’s theorem are satisfied.

Now, ′ = −f x x x� � cos sin

′ =f x� � 0

⇒  cos x – sin x = 0

⇒  cos x = sin x

⇒ =
cos

sin

x

x
1

⇒ = ⇒ = + ∈cot cotx x n n Z
π π π
4 4

,  and

⇒ = ∈ �
�

�
�x

π π
4

0
2

,

∴ Rolle’s theorem is verified.

Type 2: Verification of Rolle’s theorem when interval
is not given.

Working rule: Find the interval or intervals equating
the given function f (x) to c i.e. f (x) = c provides us
interval (where c = 0 in particular). We then proceed
as usual.

Examples worked out:

1. Verify Rolle’s theorem for the function f (x) = 2x3 +
x2 – 4x – 2.
Solution: To obtain some interval or intervals, we
put f (x) = 0

∴ − + =x x
2

2 2 1 0� � � �

⇒ = − −x 2
1

2
2, ,

Thus, we obtain two closed intervals − −�
��

�
��2

1

2
,

and −���
�
��

1

2
2,  such that the functional values at the

end points of each f these two intervals are equal and
is zero.

Now, f (x) is a polynomial ⇒  it is differentiable in

any interval ⇒  it is differentiable on − −�
�

�
�2

1

2
,

and −��
�
�

1

2
2,  and continuous on − −�

��
�
��2

1

2
,  and

−���
�
��

1

2
2, .

∴ All conditions of Rolle’s theorem are satisfied.

Now, ′ = + − = −f x x x x	 
 	 
6 2 4 2 3 22  (x + 1) = 0

⇒  x = –1 and x = 2

3

And we see that − ∈ − −�
�

�
�1 2

1

2
,

and 
2

3

1

2
2∈ −���
�
��,

Hence, the fact that ′ =f x� � 0  for at least one

c ∈ − −�
�

�
�2

1

2
,  and c ∈ −��

�
�

1

2
2,  has been

verified.
∴ Rolle’s theorem is verified.

2. Verify Rolle’s theorem f x x x e
x

� � � �= + ⋅
−

3 2

Solution: (1) � f x x x e
x

� � � �= + ⋅
−

3 2

Here it is not given in which interval Rolle’s theorem
is to be verified, so to obtain the interval we put
f (x) = 0

Now, f x x x e
x

� � � �= ⇒ + ⋅ =
−

0 3 02

⇒ + = ≠ ∀�
��

�
��

−
x x e x

x

3 0 02� � �

⇒ = −x 0 3,

Hence, we verify Rolle’s theorem in [–3, 0].
(2) f (x) is differentiable in [–3, 0] as it is the product

of differentiable functions x, (x + 3) and e
x− 2  which

⇒  it is continuous in [–3, 0]
(3) f (–3) = f (0) = 0
∴ All conditions of Rolle’s theorem are satisfied.
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Now,

′ = + + + + ⋅ −���
�
��

− −f x x x e x x e
x x	 
 	 
� � 	 
1 3 3

1

2
2 2

= + − ⋅−e x x
x
2 6

1

2
2 !

∴ ′ =f x� � 0

⇒ − + + =x x
2

6 0

⇒ − − =x x
2

6 0

⇒ =
− − ± − − × × −

⋅
x

1 1 4 1 6

2 1

2� � � � � �

=
±

=
±

= −
1 25

2

1 5

2
3 2or

Thus we get one c = − ∈ −2 3 0,� �
∴ Rolle’s theorem is verified.

N.B.: e
f x� �

≠ 0

Type 3: Verification of Rolle’s theorem when a
function is defined by various equations

f (x) = f1 (x), when x a≥

= f2 (x), when x a≤
or, f (x) = f1 (x), when x a≠

= f2 (x), when x = a
or, f (x) = f1 (x), when x > a

f2 (x), when x < a
f3 (x), when x = a

Examples worked out:

1. Verify that Rolle’s theorem applies to the function

given by f x x
x

� � = �
�

�
�sin

1
,  when x ≠ 0  and = 0,

when x = 0 on the interval 0 ,
1�

��
�
��π .

Solution: (1) f x x
x

� � = �
�

�
�sin

1
,  when x ≠ 0  and

= 0, when x = 0

∴ f (x) is continuous in any interval and hence it is

continuous in the closed interval 0 ,
1�

��
�
��π .

Again f (x) is differentiable every where except x =
0 and hence it is differentiable in the open interval

0
1

,
π

�
�

�
� .

(2) 
f

f
f f

0 0
1 1

0
0

1
� � � �

� �
=

�
�

�
� = =


��

��
⇒ = �

�
�
�

given

sin
π π

π π

∴  All conditions of Rolle’s theorem are satisfied.
Hence, Rolle’s theorem is applicable for the

function.

f x x
x

� � = �
�

�
�sin

1
,  when x ≠ 0

= 0, when x = 0 on the interval 0
1

,
π

�
��

�
�� .

Problems based on examining the truth of the
statement of Rolle’s theorem:

Refresh your memory:
1. If f (x) is not differentiable at the end points of
closed interval [a, b], then continuity of the function
f (x) is to be tested at the end point a and b of the
closed interval [a, b].

2. Rolle’s theorem is not applicable in 
f x

f x
1

2

� �
� �  a rational

function if x c I= ∈  (where I = given interval) makes
f2 (x) = denominator = 0

3. Rolle’s theorem does not hold good if one or more
of the following hold.
(i) f (x) is discontinuous at some point in the closed
interval [a, b].
(ii) f ' (x) does not exist at some point in the open
interval (a, b).

(iii) f a f b� � � �≠
4. All “PILET-RC” functions are continuous and
differentiable at points belonging to the domain of
definition of the function.
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Where P = Power function / polynomial function
I = Inverse trigonometric functions / Identity

function
T = Trigonometric functions
L = Linear function / Logarithmic function
E = Exponential function
R = Rational function
C = Constant function

(A) Highlight on discontinuity of trigonometric
functions:

(i) tan x is discontinuous at x n= +2 1
2

� � π  = odd

multiple of 
π
2

.

(ii) sec x is discontinuous at x n= +2 1
2

� � π  = odd

multiple of 
π
2

.

(iii) cosec x and / cot x are discontinuous at
x n= =π  multiple of π .

(B) Highlight on discontinuous of inverse
trigonometric function:
(i) tan–1 x and / cot–1 x have no discontinuity.

(ii) sin–1 x and cos–1 x are undefined ∀ ∉ −x 1 1,  =

closed interval.

(iii) sec–1 x and cosec–1 x are undefined ∀ ∈ −x 1 1,� �
= open interval.

(C) Differentiable and non differentiable functions:

(i) f x x
x

x f� � � �= ⋅ �
�

�
� ≠ =sin

1
0 0 0, ,  is continuous

in any interval.

(ii) f x x
x

x f� � � �= ⋅ �
�

�
� ≠ =sin

1
0 0 0, ,  is differen-

tiable everywhere except at x = 0. Similarly,

(iii) f x x
x

x f� � � �= ⋅ �
�

�
� ≠ =cos

1
0 0 0, ,  is continu-

ous in any interval.

(iv) f x x
x

x f� � � �= ⋅ �
�

�
� ≠ =cos

1
0 0 0, ,  is differ-

entiable everywhere except at x = 0.

(v) f x x a
x ar

r

n

r

� � � �= −
=

�
��

�
��=

∑
1

1
sin  has no deriva-

tive at n-points x = a1, a2, a3, ..., an.

(vi) f x a b x
n n� � � �=

∞

∑
0

cos π  where 0 < a < 1 and

b is an odd positive integer subject to the condition

ab > +1
3

2
π , for example, the functions,

f x x
n

n
1

0

2

3
15� � � �= �

�
�
�

∞

∑ cos π

f x x
n

n
2

0

5

6
7	 
 � �= �

��
�
��

∞

∑ cos π

are continuous for all x R∈  but have no derivative

for any value of x.

Remember: 1. Rolle’s theorem or Lagrange’s mean
value theorem is not applicable to the above functions

if points of non-differentiability ∈I  (where I = given

interval).

2. f x x
x

x
p� � = �

�
�
� ≠sin

1
0, , f (0) = 0 is continuous

for all values of x if p is positive (i.e. if p > 0).

Question: How to show Rolle’s theorem is not
applicable for a given function defined in a given
interval [a, b]?
Answer: One or more of the following is to be shown.

1. Show that f a f b� � � �≠
2. Show that f ' (x) does not exist at least at one point
of (a, b) which means that derivative of f (x) does not
exist for some value of x between a and b.
3. Show that f (x) is not continuous at some point
lying in the closed interval [a, b].

N.B.: To examine that the statement of the theorem
consisting of some particular conditions is untrue,
we are required to show by constructing requisite
examples that one or more of the conditions of the
theorem is (or, are) not fulfilled. e.g.,
(i) f (x) = x, x ∈ 0 1,  satisfied the conditions (1)
and (2) of Rolle’s theorem but does not satisfy the
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condition (3) f (a) = f (b) and there is no point c for it
such that f ' (c) = 0.

(ii) f (x) = | x |, x ∈ −1 1,  satisfied the condition (1)

and (3) but does not satisfy the conditions (2) [i.e.; f
(x) is differentiable on (a, b)]. Hence, there is no point
c for this function at which its derivative would vanish.
Type 1: When non differentiable points are the end
points of the given closed interval (one of the two
end points or both end points of the given closed
interval).

Examples worked out:

Question 1: Examine the validity of Rolle’s theorem

for the function f x c x� � = −
2 2

.

Solution: (i) In this problem, a closed interval in
which the given function is defined is not given, so
to obtain the interval or intervals, we put f (x) = 0.

∴ − =c x
2 2

0

⇒ − =c x
2 2

0

⇒ = ±x c

Thus, we obtain a closed interval [–c, c] such that
the functional values at the end points are equal and
is zero, i.e.

f (–c) = f (c)
(ii) f (x) is differentiable for –c < x < c which ⇒  it is
continuous for –c < x < c.

Now,

lim lim lim
x c x c x c

f x c x c x
→− + →− + →−

= − = −	 
 2 2 2 2

= = − ⇒0 f c� �  f (x) is continuous at x = –c

lim lim lim
x c x c x c

f x c x c x
→ − → − →

= − = − =� � 2 2 2 2

0 = ⇒f c� �  f (x) is continuous at x = c

Hence, f (x) is continuous in (–c, c)and at x = c, –c
which means f (x) is continuous in the closed interval
[–c, c].

∴ All conditions of Rolle’s theorem are satisfied.

Now, ′ = −

−
= −

−
≠ ±f x

x

c x

x

c x
x c	 
 2

2 2 2 2 2
,

∴ ′ =f x� � 0

⇒  x = 0 and 0 ∈ −c c,� �
∴  Rolle’s theorem holds good for the given

function in the given.

Note: (a) The domain of the definition of c x
2 2
−

is [–c, c]. If the domain of the definition of a function
is a closed interval a x b≤ ≤ , then such functions
are called continuous on [a, b] provided
(i) f (x) is continuous on the open interval (a, b) i.e.

lim
x a

f x f a
→

=
0

0� � � �  for a < a0 < b

(ii) lim
x a

f x f a
→ +

=� � � �

(iii) lim
x b

f x f b
→ −

=� � � �

N.B.: It may be noted that lim
x a

f x
→ −

� �  and lim
x b→ +

 are

not defined and this is why lim lim
x a x a

f x
→ + →

= � �  and

lim lim
x b x b

f x f x
→ − →

=� � � � .

(b) In the above problem,

′ − =
− − +

= ∞

′ =
− +

= − ∞



�
�
�

�
�
�
⇒→

→

f c
c c h

h

f c
c c h

h

h

h

	 

	 


	 

	 


lim

lim

0

2 2

0

2 2
f (x )

is not differentiable at x = –c and x = c which ⇒
continuity of the function must be tested at the end
points –c and c of the closed interval.

Question 2: Are all conditions of Rolle’s theorem
satisfied for the function f x x� � = −1  on [1, 3].
Answer: (i) f x x� � = −1

∴ f (x) is differentiable in (1, 3] which ⇒  f (x) is
differentiable at every value of x excepting x = 1.
Hence, continuity at x = 1 must be tested.

Now, r h l f x x
x x

. . = = − = −
→ + → +
lim lim

1 1
1 1 1� �

= 0 = f (1) which ⇒  continuity of the function

f x x� � = −1  at x = 1.
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N.B.: lim
x→ −1

 is not required since f x x� �= −1

becomes imaginary when x < 1, i.e.; lim
x→ −1

 is not

required since f x x� �= −1  is not defined when

x < 1.

Again lim lim
x x

f x x
→ →

= − = − =
3 3

1 3 1 2� �  = f

(3) which ⇒  continuity of the function f (x) at x = 3.

In the light of above explanation, we can say f (x)
is continuous on [1, 3] since it is continuous at the
end points x = 1 and x = 3 as well as in between 1 and
3 (i.e. in the open interval (1, 3) = (a, b)).

(ii) 
f

f
f f

1 1 1 0

3 3 1 2
1 3

� �
� � � � � �= − =

= − =


�
�
⇒ ≠

Hence, all above explanations provide us light to
say two conditions of Rolle’s theorem are satisfied
and one condition is not satisfied.

Type 2: When non differentiable point ∈ given open
interval:

Examples worked out:

Question 1: Give a reason why Rolle’s theorem does

not hold for the function defined by f x x� � = −1

on [–2, 2].

Solution: (i) f x x� � = −1

�  f (x) is not defined for x > 1 which ⇒  it is not
continuous for x > 1 which in turn ⇒  it is not
differentiable for x > 1. Hence, f (x) is not continuous
in [–2. 2] and hence, f (x) is not differentiable in [–2, 2].

∴  f (x) is not differentiable in (–2, 2).

(ii) f f− ≠2 2� � � �
∴ No condition of Rolle’s theorem is satisfied and

any one.
⇒  Rolle’s theorem is not applicable for the given

function f x x� � = −1  on [–2, 2].

Question 2: Does Rolle’s theorem apply to 
x x

x

−
−

2

1

� �

on [0, 2].

Solution: (i) f x
x x

x
� � � �

=
−
−

2

1

∴ f (x) is not defined at x = 1 which ⇒  it is not
continuous at x = 1 which in turn ⇒  it is not
differentiable at x = 1

∴ f (x) is not continuous in [0, 2] and f (x) is not
differentiable in (0, 2).

(ii) f 0
0 0 2

0 1
2� � � �

=
⋅ −
−

=

f 2
2 2 2

2 1

2 0

1
0� � � �

=
−
−

=
⋅

=

∴ ≠f f0 2� � � �
∴ No conditions of Rolle’s theorem is satisfied.
⇒  Rolle’s theorem is not applicable for the given

function in the given interval. In fact not satisfying of
only one condition leads to the conclusion.

Question 3: Does Rolle’s theorem apply to 
x x

x

−
+

2

1

� �

on [0, 2].

Solution: (i) f x
x x

x
� � � �

=
−
+

2

1

∴ f (x) is differentiable in [0, 2] since it is the
quotient of two differentiable functions (under the
conditions x+ ≠1 0 ) which ⇒  it is continuous in
[0, 2].

(ii) f 0
0

1
0� � = =

f 2
2 2 2

2 1

2 0

2
0� � � �

=
−
+

=
⋅

=

∴ f (0) = f (2)
∴ All conditions of Rolle’s theorem are satisfied.
∴ This is why Rolle’s theorem is applicable for

the given function in the given interval [0, 2].
Question 4: Does Rolle’s theorem apply to

f x
x

� � = 1
 on [–1, 2].

Solution: (i) f x
x

� � = 1

�  f (x) is not defined at x = 0 ⇒  f (x) is not
continuous at x = 0 which in turn ⇒  f (x) is not
differentiable at x = 0.
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Hence, f (x) is not continuous in [0, 2] and f (x) is
not differentiable in (0, 2).

(ii) 

f

f
f f

− =
−

= −

= =


��

��
⇒ − ≠

1
1

1
1

2
1

2

1

2

1 2
� �

� �
� � � �

∴ No condition of Rolle’s theorem is satisfied.
This is why Rolle’s theorem is not applicable for f (x)

= 1

x
 in [0, 2].

Question 5: Discuss the applicability of Rolle’s
theorem on the function f (x) = | x | on [–1, 1].
Solution: (i) f (x) = | x |

∴  f (x) is continuous for every value of x and
hence it is continuous in [–1, 1]

At x = 0, R.H.D = R f
f h f

hh
′ =

+ −
→

0
0 0

0
� � � � � �

lim

=
−

= = >
→ →

lim lim
h h

h

h

h

h
h

0 0

0
1 0� �

L.H.D = L f
f h f

hh
′ =

− −
−→

0
0 0

0
� � � � � �

lim

=
− −
−

=
−

= − >
→ →

lim lim
h h

h

h

h

h
h

0 0

0
1 0� �

∴ ≠L H D R H D. . . .

Hence, the given function is not differentiable at

x = 0 1 1∈ − ,� �  this is why given function f (x) is not

differentiable in (–1, 1).

(ii)
f

f
f f

− = − =
= =


�
�
⇒ − =

1 1 1

1 1 1
1 1

� �
� � � � � �

Thus we see that two conditions of Rolle’s theorem
are satisfied and one condition is not satisfied.

∴ Rolle’s theorem is not applicable for the given
function f (x) in the given interval [–1, 1].

Question 6: Is Rolle’s theorem applicable to the
function f (x) = | x – 1 | on [0, 2].
Solution: (i) f (x) = | x – 1 |

∴ f (x) is continuous for every value of x since
such a mod function is continuous for every value of
x which ⇒  it is continuous in [0, 2].

Again at x = 1

R.H.D = R f
f h f

hh
′ =

+ −
→

1
1 1

0
� � � � � �

lim

=
+ − −

= = >
→ →

lim lim
h h

h

h

h

h
h

0 0

1 1 0
1 0� �

L.H.D = L f
f h f

hh
′ =

− −
−→

1
1 1

0
� � � � � �

lim

=
− − −

−
=

−
−→ →

lim lim
h h

h

h

h

h0 0

1 1 0 | |

=
−

= >
→

lim
h

h

h
h

0
1 0� �

∴ ≠L.H.D R.H.D

Hence, the given function is not differentiable at

x = 1 ∈ 0 2,� �  this is why given function is not

differentiable in (0, 2).
(ii) f (0) = | 0 – 1 | = 1

f (2) = | 2 – 1 | = 1
Thus we see that two conditions of Rolle’s theorem

are satisfied and one condition is not satisfied.
∴ Rolle’s theorem is not applicable for the given

function f (x) in the given interval [0, 2].

Question 7: Discuss the applicability of Rolle’s
theorem to the function f (x) = | x |3 on [–1, 1].
Solution: (i) f (x) = | x |3

∴  f (x) is continuous on [–1, 1].

(ii) ′ = ⋅ = ⋅ =f x x
d x

dx
x

x

x

x

x
� � 3 3 32 2

3

∴  f (x) is differentiable for all values of x except
per haps at x = 0.

∴ ′ =
+ −

→
R f

f h f

hh
1

0 0

0
� � � � � �

lim

=
+ −

>
→

lim for
h

h

h
h

0

30 0
0

= = = =
→ → →

lim lim lim
h h h

h

h

h

h
h

0

3

0

3

0

2
0

L f
f h f

hh
′ =

− −
−→

0
0 0

0
� � � � � �

lim
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=
− −
−

>
→

lim for
h

h

h
h

0

30 0
0

=
−
−

=
−

= − =
→ → →

lim lim lim
h h h

h

h

h

h
h

0

3

0

3

0

2
0� �

∴ ′ = ′R f L f0 0� � � �
∴ ′f x� �  exists at x = 0 and ′ =f 0 0� �
∴ ′f x� �  exists for all values of x ∈ −1 1,� �
∴ f (x) is differentiable in (–1, 1).

(iii) f (–1) = | – 1 |3 = 1
f (1) = | – 1 |3 = 1
∴ f (–1) = f (1)
∴ All conditions of Rolle’s theorem are satisfied.
∴ Roll theorem is applicable in the given function

f (x) on [–1, 1].

Type 3: When x c= ∈ given open interval

Where c = critical point

Question: What do you mean by a critical point?
Answer: A critical point is a point at which a function
has the first derivative that is zero, infinite or
undefined.

Or in other words,
A critical point is a point c at which f ' (c) = 0 or

f ' (c) = infinite or f ' (c) does not exist.

Examples worked out:

Question 1: Discuss the applicability of Rolle’s
theorem for the function f (x) = x2 in [–1, 1].
Solution: Since y = x2 is a power function ⇒  it is
continuous and differentiable in any given finite
interval ⇒  it is continuous and differentiable in the
given finite interval [–1, 1] ⇒ two conditions of
Rolle’s theorem namely continuity in the closed
interval and differentiability in the open interval hold
good.

Again f (1) = f (–1) = 1 ⇒  f (a) = f (b) showing that
third condition of Rolle’s theorem is also satisfied.

Thus, all conditions of Rolle’s theorem are
satisfied.

∴ ′ = =f x x� � 2 0
⇒ =2 0x
⇒ =x 0  and 0 1 1∈ − ,� �  which is true.

∴ Rolle’s theorem is applicable to the function f
(x) = x2 in [–1,1].

Question 2: Are all the conditions of Rolle’s theorem
verified for the function f (x) = x2 in 2 3≤ ≤x .

Solution: (i) f (x) = x2

∴ f (x) is continuous and differentiable in any
finite interval as it is a power function which ⇒  it is
continuous and differentiable in [2, 3].

(ii)
f

f
f f

2 4

3 9
2 3

� �
� � � � � �=

=
��
⇒ ≠

Thus we see that two conditions of Rolle’s are
satisfied and one condition is not satisfied.

Question 3: Can Rolle’s theorem be applied to the
functions

(i) f (x) = sec x in 0 2, π

(ii) f (x) = tan x in 0 , π
Solution: (i) f (x) = sec x

∴ f (x) is discontinuous at x = π
2

 and x = 3

2

π

both of which belong to 0 2, π  since it is

discontinuous at x n n= + = ±2 1
2

0 1� � � �π
, , ...

∴ f (x) is not continuous in 0 2, π  which ⇒  it is
not differentiable in 0 2, π� � .

(ii) 
f

f
f f

0 0 1

2 2 1
0 2

� �
� � � � � �= =

= =
��
⇒ =

sec

secπ π
π

Thus we see that two conditions of Rolle’s theorem
are not satisfied and one condition is satisfied.

∴ Rolle’s theorem can not be applied to the given
function in the given closed interval.
(ii) f (x) = tan x

∴ f (x) is differentiable for all x ≠ π
2

 as f (x) is not

defined at x = π
2

 and 
π π
2

0∈ ,� � .

Hence, f (x) is neither continuous nor differentiable

at x = ∈π π
2

0 ,  which ⇒  it is not continuous in

0 , π  and it is not differentiable in 0 , π� � .



Rolle's Theorem and Lagrange's Mean Value Theorem 797

Again 
f

f
f f

0 0 0

0
0

� �
� � � � � �= =

= =
��
⇒ =

tan

tanπ π
π

Thus, we see that two conditions of Rolle’s theorem
are not satisfied and one condition is satisfied.

∴ Rolle’s theorem can not be applied.

Question 4: Is Rolle’s theorem applicable to the
function.

(i) f x
x

� � = �
�

�
�sin

1
 in the closed interval −���

�
��

1 1

π π
,

(ii) f x
x

� � = �
�

�
�cos

1
 in the closed interval [–1, 1].

Solution:

(i) f x
x

� � = �
�

�
�sin

1

�  f (x) is not defined at x = 0 and 0
1 1

∈ −���
�
��π π

,

∴ f (x) is neither continuous nor differentiable at x

= 0 ∈ −���
�
��

1 1

π π
,

∴  f (x) is neither continuous in −���
�
��

1 1

π π
,  nor

differentiable in the open interval −��
�
�

1 1

π π
, .

∴  Two conditions of Rolle’s theorem are not
satisfied.

∴  Rolle’s theorem is not applicable.

(ii) f x
x

� � = �
�

�
�cos

1

�  f (x) is not defined at x = 0
∴ f (x) is not continuous or differentiable at x = 0

∈ −1 1, .

∴  f (x) is neither continuous nor differentiable in
[–1, 1]

∴  f (x) is not differentiable in (–1, 1)
∴  Two conditions of Rolle’s theorem are not

satisfied.

∴ Rolle’s theorem is not applicable.

Question 5: Is Rolle’s theorem applicable on the

function f (x) = sin x in 0 , π .

Solution: (i) f (x) = sin x
∴ f (x) is continuous and differentiable for all

values of x which ⇒  it is continuous and differen-

tiable in 0 , π
Thus, two conditions of Rolle’s theorem are

satisfied.

(ii) f (0) = 0 = f π� �
Thus, we observe in the light of above explanation

that Rolle’s theorem is applicable.

Question 6: Is Rolle’s theorem applicable on the

function f x x� � = −1
4
5  in [–1, 1].

Solution: � f x x� � = −1
4
5

∴  f (x) is differentiable for x ≠ 0  and

′ = − ⋅ ≠f x
x

x� � � �4

5

1
0

1
5

;

Now, ′ =
+ −

→
f

f h f

hh
0

0 0
0

� � � � � �
lim

=
− −

= −
�
��

�
��
= −∞

→ →
lim lim
h h

h

h h0 0

1 1 1
4
5

1
5

; if h > 0

and =∞ ; if h < 0.

∴ f (x) is not differentiable at x = ∈ −0 1 1,

∴ f (x) is not differentiable in [–1,1]
∴ Rolle’s theorem is not applicable.

Question 7: Are all conditions of Rolle’s theorem

satisfied for the function f x
x

� � = �
�

�
�cos

1
 in [–1, 1].

Solution: (i) � f x
x

� � = �
�

�
�cos

1

∴ f (x) is neither continuous nor differentiable in

[–1, 1] since f (x) is not defined at x = ∈ −0 1 1,

∴ f (x) is not differentiable in (–1, 1)



798 How to Learn Calculus of One Variable

(ii)
f

f
f f

− = − =
= =

��
⇒ − =

1 1 1

1 1 1
1 1

� � � �
� � � � � � � �cos cos

cos cos

Thus, we observe in the light of (i) and (ii) that the
first two conditions of Rolle’s theorem are not
satisfied and the third condition is satisfied.

∴  All conditions of Rolle’s theorem are not
satisified.

N.B.: 1. When we are asked whether all conditions
of Rolle’s theorem are satisfied for the given function,
we are required to examine all the three conditions.
i.e; we examine.
(i) Continuity of the given function f (x) in the given
closed interval [a, b].
(ii) Differentiability of the given function f (x) in the
open interval (a, b).
(iii) Equality of value of the given function f (x) at
the end points a and b of the closed interval. i.e.; f (a)
= f (b).
2. When we are asked to show that Rolle’s theorem
is not applicable to the given function f (x) on [a, b],
then sometimes we are not required to examine all the
three conditions. i.e.

If any one condition is not satisfied, then that
shows non applicability of Rolle’s theorem for the
given function defined on the given closed interval
[a, b].

Question 8: Is Rolle’s theorem applicable to the

function f x x� � � �= − −1 1
3
2  on [0,2].

Solution: (i) � f x x� � � �= − −1 1
3
2

∴ = − − = − − =f 0 1 0 1 1 1
3
2

3
2� � � � � �  undefined

∴  f (x) is discontinuous at x = 0 and 0 0 2∈ ,

∴ Rolle’s theorem is not applicable.

Question 9: Discuss the applicability of Rolle’s

theorem for the function f x x� � � �= + −2 1
2
3  on the

interval [0, 2].

Solution: (i) f x x� � � �= + −2 1
2
3  is an irrational

function.
∴ f (x) is continuous function on [0, 2] for being

an algebraic function of x.

(ii) f (x) is differentiable for x ≠ 1  and

′ =
−

f x
x

� �
� �

2

3 1
1
3

∴ ′ = ∞ ′ = − ∞+ −f f1 1	 
 	 
,

∴ f (x) is not differentiable at x = 1 and 1 0 2∈ ,

(iii) f (0) = f (2) = 3
∴ All conditions of Rolle’s theorem are not

satisfied.
∴ Rolle’s theorem is not applicable to the given

function defined in a given closed interval.

Type 4: When we are provided a function f (x) defined
by various or (different) formulas (or, expression in x)
against which an interval is mentioned s.t union of
those intervals provides us a given closed interval
[a, b] on which Rolle’s theorem is to be verified.

Working rule: In such types of problems mentioned
above, we adopt the following working rule:
1. We test for continuity and differentiability at the
point ‘a’ if the function is defined by different formula
on the left and right of a. e.g.,

(i) f (x) = x2, when x ≤ 0

= 1, when 0 < x < 1

=
1

x
 when x ≥ 1

In the above function, we should test the continuity
and differentiability at x = 0 and x = 1.
(ii) f (x) = x2 + 1, when 0 1≤ ≤x

= 3 – x, when 1 2< ≤x

In the above problem, we should test the continuity
and differentiability at x = 1.
2. Use the theorems and facts for the continuity,
discontinuity differentiability or non differentiability
for the given function y = f (x) i.e.;
(a) Discontinuity at a point (or, number) x = a ⇒
non-differentiability at the same point (or, number) x
= a etc.

N.B.: (i) Continuity at x = a does not guarantee
differentiability at x = a. This is why the test for
differentiability is required if continuity at x = a is
examined.
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(ii) For testing the differentiability at x = a, we should
find l.h.d and r.h.d using the definition. i.e.

L f a
f a h f a

hh
′ =

− −
−→

� � � � � �
lim

0
, for (h > 0)

=
+ −

→
lim
h

f a h f a

h0

� � � �
, for (h > 0)

3. Find f (a) and f (b) and see whether f (a) = f (b).
4. In the light of (1), (2), (3), we conclude whether
Rolle’s theorem is applicable or not.

Remember:

1. When f (x) = f1 (x), when a x c≤ ≤ 2

= f2 (x), when c x b2 < ≤  is provided, then the

domain of f (x) is

= ∪ =a c c b a b, , ,2 2� �
Examples worked out:

Question 1: Discuss the applicability of Rolle’s

theorem on the function f (x) = x2 + 1, when 0 1≤ ≤x ,

= 3 – x, when 1 2< ≤x , on [0, 2]

Solution: (i) Continuity and differentiability test at
x = 1

lim lim
x x

f x x
→ + →

= − = − =
1 1

3 3 1 2� � � � � �

lim lim
x x

f x x
→ − →

= + = + = + =
1 1

2 21 1 1 1 1 2� � � � � �

f f x x
x

x
1 1 1 1 1 1 2

1

2

1

2� � � � � �= = + = + = + == =

∴ = =
→ + → −
lim lim

x x
f x f x f

1 1
1� � � � � �

∴  the function f (x) is continuous at x = 1 which
⇒  it is continuous in the closed interval [0, 2].

Now, for the differentiability at x = 1,

R f
f h f

hh
′ =

+ −
→

1
1 1

0
� � � � � �

lim ,  (h > 0)

=
− + −

→
lim
h

h

h0

3 1 2� �" #

=
− −

→
lim
h

h

h0

2 2

= − = −
→

lim
h 0

1 1� �

L f
f h f

hh
′ =

− −
−→

1
1 1

0
� � � � � �

lim

=
− + −

−→
lim
h

h

h0

21 1 2� �� �
,  (h > 0)

=
−

= − =
→ →

lim lim
h h

h h

h
h

0

2

0

2
2 2� �

∴ ′ ≠ ′R f L f1 1� � � �  which ⇒ ′f 1� �  does not

exist.
∴  The given function has no derive at x = 1

∈ 0 2,� �
∴  The given function is not differentiable in the

open interval (0, 2).

(ii) 
f

f
f f

0 0 1 1

2 3 2 1
0 2

2� �
� �

� � � �= + =
= − =


��
��
⇒ =

Thus we observe that two conditions of Rolle’s
theorem namely continuity in the closed interval and
equality of the values of the function f (x) at the end
points 0 and 2 of the closed interval [0, 2] are satisfied
but one conditions namely differentiability of the
function f (x) in the open interval (0, 2) is not satisfied.

∴  Rolle’s theorem is not applicable to the function
f (x) in [0, 2].

Question 2: A function f (x) is defined on [0, 2] s.t f
(x) = 1, when 0 1≤ <x

= 2, when 1 2≤ ≤x  then discuss the applicability

of Rolle’s theorem.
Solution: (i) Continuity and differentiability test at
x = 1.

lim lim
x x

f x
→ + →

= =
1 1

2 2� �

lim lim
x x

f x
→ − →

= =
1 1

1 1� �

∴ = = == =f f x
x x1 2 2

1 1� � � �

∴ = = ≠ =
→ + → −
lim lim

x x
f x f f x

1 1
2 1 1� � � � � �
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∴  f (x) is discontinuous at x = 1 and 1 0 2∈ ,

∴ f (x) is non differentiable at x = 1 and 1 0 2∈ ,

∴  f (x) is discontinuous and non differentiable in
[0, 2].

∴  f (x) is not differentiable in (0, 2).

(ii)
f

f
f f

0 1

2 2
0 2

� �
� � � � � �=

=
��
⇒ ≠

∴  No condition of Rolle’s theorem is satisfied.
∴  Rolle’s theorem is not applicable for the given

function f (x) in the given interval [0, 2].

Question 3: The function ‘f’ is defined in [0, 1] as
follows

f (x) = 1, when 0
1

2
< <x

= 2, when 
1

2
1≤ ≤x  show that f (x) satisfied none

of the conditions of Rolle’s theorem.
Solution: (i) Continuity and differentiability test at

x = 1

2
.

f f x
x x

x

1

2
0 1 1

1
2

1
2

1
2

−�
�

�
� = = =

→ − →
<

lim lim� � � �

f f x
x x

x

1

2
0 2 2

1
2

1
2

1
2

+�
�

�
� = = =

→ + →
>

lim lim� � � �

∴ −�
�

�
� ≠ +�

�
�
�f f

1

2
0

1

2
0  which ⇒  f (x) is

discontinuous at x =
1

2
 and 

1

2
0 1∈ , .

∴  f (x) is non-differentiable at x = ∈1

2
0 1,

∴  f (x) is discontinuous and non-differentiable in
[0, 2].

∴  f (x) is not differentiable in (0, 2)

(ii) 
f

f
f f

0 1

1 2
0 1

� � � �
� � � � � � � �=

=
��
⇒ ≠

given

given

Hence, each of the three conditions of Rolle’s
theorem are not satisfied by the given function f (x)
defined in the closed interval [0, 1].

Question 4: A function f (x) is defined on [0, 1] s.t

f (x) = x, when 0 1≤ <x

f (x) = 0, when x = 1 then discuss the applicability
of Rolle’s theorem.
Solution: (i) Continuity and differentiability test at
x = 1.

� lim lim
x
x

x
f x x

→
<

→
= =

1
1

1
1� �

and f (1) = 0 (given)

∴ ≠
→
<

lim
x
x

f x f
1

1

1� � � �

∴ f (x) is not continuous at one of the end point of
the given closed interval [0, 1] namely x = 1.

∴ f (x) is not continuous in [0, 1].
∴ Rolle’s theorem is not applicable to the given

function f (x) defined in the given interval [0, 1].

Note: In the above problem
(i) f (0) = 0

f (1) = 0 (given)
∴ f (0) = f (1)

(ii) Now to show the differentiability in the open

interval (0, 1) we take any c ∈ 0 1,� �  i.e.;

Let x = c ∈ 0 1,� �

∴ ′ =
+ −

→
R f c

f c h f c

hh
	 
 	 
 	 


lim
0

= / + − /
→

lim
h

c h c

h0

=
→

lim
h

h

h0

= =
→

lim
h 0

1 1

L f c
f c h f c

hh
′ =

− −
−→

	 
 	 
 	 

lim

0

=
− −
−→

lim
h

c h c

h0
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= −
−→

lim
h

h

h0

= +
→

lim
h 0

1� �
= 1

∴ ′ = ′L f c R f c� � � �
∴ ′f c� �  exists and c ∈ 0 1,� �
∴ f (x) is differentiable in (0, 1)
Thus we see that two conditions namely equality

of values of the function at the end points 0 and 1 of
the closed interval [0, 1] and the differentiability of
the given function f (x) defined by different parts of
the closed interval [0, 1] in the open interval (0, 1) are
satisfied but one condition namely continuity in the
closed interval [0, 1] is not satisfied which has been
shown in the above question 4.

Question 5: A function f (x) is defined on [0, 1] s.t
f (x) = 1, when x = 0

= x, when 0 1< ≤x  is Rolle’s theorem applicable?
Solution: (i) Continuity and differentiability test at
x = 0

� lim lim
x
x

x
f x x

→
>

→
= =

0
0

0
0� � � �

and f (0) = 1 (given)

∴ =
→
>

lim
x
x

f x f
0

0

0� � � �

∴  f (x) is discontinuous at one of the end points
of the given closed interval [0, 1] namely x = 0

∴  f (x) is not continuous in [0, 1]
∴  Rolle’s theorem is not applicable to the given

function f (x) defined in various parts of the closed
interval [0, 1].

Type 5: Problems based on finding the value of ‘c’
using Rolle’s theorem.

Working rule:
1. Differentiate the given function f (x).
2. Put x = c in the differentiated result (or, derived
function or, differentiated function) on both sides of
the sign of equality which ⇒  we put x = c in the
derived function and in the notation f ' (x) and equate

it to zero which ⇒ ′ = ′ ==f x f c
x c

� � � � 0  should
be solved for c.

3. Check whether c a b∈ ,� �  given open interval if

‘c’ lies in between a and b, them ‘c’ should be accepted
as the required value and if ‘c’ does not lie in between
a and b, then ‘c’ should be rejected i.e.; in the
notational form,

If a c b c a b< < ⇒ ∈ ,� �  should be accepted as
the required value and if c a b∉ ,	 
  it should be
rejected.

Examples worked out:

1. If f (x) = x3 – 27x on 0 3 3,  find the value of c in

Rolle’s theorem.

Solution: � f x x x f f	 
 	 
 � �= − =3 27 0 3 3,

and ′ = −f x x	 
 3 272

′ = − =f c c	 
 3 27 02

⇒ − =3 27 0
2

c

⇒ = =c
2 27

3
9

⇒ = ±c 3

Now accepting + 3 as the required value since

3 0 3 3∈ ,� �  and rejecting – 3 ∉ 0 3 3,� � , we see

that c = + 3 is the required value.

2. Find c of Rolle’s theorem when f (x) = x2 + 3x + 2 is
defined in [–2, –1].

Solution: � f x x x f f	 
 	 
 	 
= + + − = − =2 3 2 2 1 0,

and ′ = +f x x	 
 2 3

∴ ′ = + =f c c	 
 2 3 0

⇒ + =2 3 0c

⇒ = −2 3c

⇒ = − = −c
3

2
15.

Now c = –1.5 is s.t –2 < –1.5 < 1 which ⇒  – 1.5 ∈
(–2, 1) should be accepted as the required value.

∴ c = –1.5 is the required value.
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3. If f (x) = cos x be defined on −���
�
��

π π
2 2

, , find ‘c’ of

Rolle’s theorem.

Solution: � f (x) = cos x, f f
−�

��
�
�� =

�
��

�
�� =

π π
2 2

0

′ = −f x x	 
 sin

∴ ′ = − =f c c	 
 sin 0

⇒ − =sin sinc� � 0

⇒ = ∈ −���
�
��c 0 0

2 2
is one value and

π π
,

∴  c = 0 is the required value.

4. Find ‘c’ of Rolle’s theorem if f x
x

e
x� � = sin

 is

defined on 0 , π .

Solution: � f x
x

e
f f

x	 
 	 
 	 
= = =
sin

, 0 0π

′ = ⋅ − = −
f x

e x x e

e

x x

e

x x

x x	 
 cos sin cos sin
2

∴ ′ =
−

=f c
c c

ec	 
 cos sin
0

⇒ − =cos sinc c 0

⇒  cos c = sin c

⇒  cos c = cos (90 – c)

⇒  c = 90 – c (a particular solution)

⇒  c + c = 90

⇒  2c = 90

⇒ =c
90

2

⇒ = = ∈c º45 45
4

0and º ,
π

π� �

∴ =c
π
4

 is the required value.

Geometrical meaning of Rolle’s theorem

If the graph of the function
1. f (x) is continuous from a point A (a, f (a)) to another
point B (b, f (b)) [i.e.; f (x) is continuous on the closed
interval [a, b]].
2. f (x) is differentiable in between the two points A
(a, f (a)) and B (b, f (b)) [i.e.; f (x) is differentiable in the
open interval (a, b)].
3. f (x) has the equal ordinates f (a) and f (b) at the
two points A (a, f (a)) and B (b, f (b)) [i.e.; f (x) assumes
equal values at the end points of the closed interval
[a, b]]; then the graph of the function f (x) has at least
one point C (c, f (c)) in between A (a, f (a)) and B (b, f
(b)) (i.e., a < c > b) at which the tangent is parallel to x-
axis (i.e. f ' (c) = 0)

Refresh your memory:

1. Geometrical meaning of Rolle’s theorem tells that
if the graph of the function (i) which is continuous on
the interval [a, b] and differentiable in (a, b) (ii) which
assumes equal values at the end points a and b of [a,
b] (i.e. f (a) = f (b)), then the graph of the function has
a point (c, f (c) at which the tangent is parallel to x-
axis.
Or alternatively,

Under the given conditions
(a) Continuity of the function f (x) in [a, b]
(b) Differentiability of the function f (x) in (a, b)
(c) Equality of functional values at the end points a
and b of [a, b], there is at least one point ‘c’ which is
not the end point for the closed interval [a, b] such
that the tangent at that point is parallel to x-axis.

2.
dy

dx p

�
��

�
�� = ⇒ = ⇒ =0 0 0tanψ ψ  (where p is a

point on the curve, ⇒  the tangent at p is parallel to
x-axis.

0 x

y

B

C

A

f a( ) f c( ) f b( )

A a, 1 ( 0) C c, 1 ( 0) B b, 1 ( 0)

( ,  ( ))b f b

( ,  ( ))c f c

f a f b ( ) =  ( )
( ,  ( ))a f a
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3.
dy

dx p

�
��

�
�� = ∞ ⇒  the tangent at p is perpendicular

to y-axis.

Problems based on geometrical meaning of Rolle’s
theorem

Problems based on geometrical meaning of Rolle’s
theorem consists of
1. A function f (x) = an expression in x.
2. Two point (a, f (a)) and (b, f (b))
3. A third point (c, f (c)) between (a, f (a)) and (b, f (b))
is required to find out at which there is a tangent
parallel to x-axis.

Working rule to find (c, f (c)) = a third point in
between two given points (a, f (a)) and (b, f (b)) on the
graph of y = f (x) on using Rolle’s theorem.

We adopt the following procedure to find a third
point (c, f (c)).
1. Show that f (x) is continuous at all points lying
from (a, f (a)) to (b, f (b)).

Or, alternatively, show that f (x) is continuous on
[a, b].
2. Show that f (x) is differentiable at all points lying
between (a, f (a)) and (b, f (b)).

Or, alternatively; show that f (x) is differentiable
on (a, b).
3. Check whether f (a) = f (b)
4. If all conditions of Rolle’s theorem are satisfied,
then use the geometrical meaning of Rolle’ s theorem
which tells about the existance of a point (c, f (c)), or
(z, f (z)) in between two given point (a, f (a)) and (b, f
(b)) at which the tangent line is parallel to x-axis. i.e.;

f ' (z) = 0 or f ' (z) = 0 where z or ∈ a b,� �
5. Find c and f (c).

Question A: How to find ‘c’.
Answer: (a1) find f ' (x) and put f ' (x) = 0
(a2) substitute x = c (or, z) in f ' (x) and solve for c (or,
solve for z).

Question B: How to find f (c).
Answer: (b1) Put x = c (or, z) (i.e., the roots of the
equation f ' (c) = 0 or f ' (z) = 0) in f (x) which ⇒  put x
= c or z in the given function y = f (x) of the question.

Remember:
1. x-coordinates of the required third point is
obtained is obtained from f ' (x) = 0.
2. y-coordinates of the required point is obtained by
putting the root of f ' (x) = 0 which belongs to (a, b) in
the given function y = f (x).
3. Given point (a, f (a)) and (b, f (b)) form the closed
interval [a, b] and the open interval (a, b).
4. f ' (c) or f ' (z) = 0 for some ‘c’ (a < c < b or, a < z < b)
or for some ‘z’ ⇒  the tangent to the curve (the graph
of the given function y = f (x)) at x = c (or, z) is parallel
to x-axis.
Worked out examples on geometrical meaning of
Rolle’s theorem

Question 1: Using Rolle’s theorem, show that on the
graph of y = x2 – 4x + 3, there is a point between (1, 0)
and (3, 0) where the tangent is parallel to x-axis. Also
find the point.
Solution: (i) Since given function y = f (x) = x2 – 4x +
3 is a polynomial function and hence it is continuous
and differentiable in [1, 3].

∴  y = f (x) is differentiable in (1, 3).
(ii) f (1) = f (3) = 0

∴  All conditions of Rolle’s theorem are satisfied.

∴ ∃  a point (z, f (z)) between (1, 0) and (3, 0) at

which tangent is parallel to x-axis. i.e.; f ' (z) = 0

′ =f z	 
 0

⇒ − =2 4 0z

⇒ = =z
4

2
2 …(i)

and f z z z
z

z
� � = =

= − +
2

2

2
4 3

= 22 – 4 × 2 + 3 = 4 – 8 + 3 = 7 – 8 = –1 …(ii)
Thus, we get (z, f (z)) = (2, –1) which is the required

point.

0 x

y

(1, 0) (3, 0)

(2, –1)
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Question 2: Using Rolle’s theorem, prove that there
is a point between the points (1, –2) and (2, –2) on the
graph of y = x2 – 3x where the tangent is parallel to x-
axis. Also find the point.
Solution: (i) Given function y = f (x) = x2 – 3x is a
polynomial function of x and this is why it is
continuous and differentiable in [1, 2].

∴ f (x) is differentiable in (1, 2).
(ii) f (1) = f (2)

∴ All conditions of Rolle’s theorem are satisfied.
∴ According to geometrical meaning of Rolle’s

theorem, there is a point (c, f (c)) in between (1, –2)
and (2, –2) where the tangent is parallel to x-axis.

Now, ′ = ⇒ − = ⇒ =f c c c� � 0 2 3 0
3

2

∴ = �
�

�
� = −

=
f c f x x

x
� � 3

2
3

2

3
2

= �
�

�
� − ×3

2
3

3

2

2

= − = −9

4

9

2

9

4

∴ Required point = = −�
�

�
�c f c, ,� �	 
 3

2

9

4

Problems based on Rolle’s theorem

Type 1: Problems based on verification of Rolle’s
theorem

Exercise 20.1

Verify Rolle’s theorem for the following functions:

1. f x x x� � = − +2
5 4  in 1 4≤ ≤x

2. f (x) = sin 2x in 0
2

,
π�

��
�
��

3. f (x) = 4 sin x in 0 , π

4. f x x x e
x

� � � �= +
−

3 2  in [–3, 0]

5. f (x) = sin x in 0 , π

6. f (x) = x3 (x – 1)2 in the interval 0 1≤ ≤x

7. f x x
x

x� � = ⋅ �
�

�
� ≠sin

1
0,  and f (0) = 0 in  0

1
,
π

�
��

�
��

8. f (x) 2x3 + x2 – 4x – 2 when − ≤ ≤1

2
2x

9. f (x) = 2 (x + 1) (x – 2) defined in [–1, 2]
10. f (x) = x (x – 1) in [0, 1]
11. f (x) (x – 1)3 (x – 2)2 in [1, 2]

12. f (x) = (x – 1) (x – 2) (x – 3) when 0 4≤ ≤x

13. f (x) = | x | in [–1, 1]

14. f (x) = 3x – x3 in 0 3,

15. f (x) = x3 – 3x in − 3 0,

16. f (x) = x – 1 in −���
�
��

1

2

1

2
,

17. f x
x

e
x� � = sin

 in 0 , π

18. f x e x x
x� � � �= −sin cos  in 

π π
4

5

4
,�

��
�
��

19. f x x a x bm n� � � � � �= − − , where m and n are
integers, in [a, b]
20. f (x) = x2 – 4x + 3 in [1, 3]

Answers
1. Rolle’s theorem is true
2. Rolle’s theorem is true
3. Rolle’s theorem is true
4. Rolle’s theorem is true
5. Rolle’s theorem is true
6. Rolle’s theorem is true
7. Rolle’s theorem is true

0 x

y

(1, –2) (2, –2)

–2–2

21 3/2

–9/4
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8. Rolle’s theorem is true
9. Rolle’s theorem is true
10. Rolle’s theorem is true
11. Rolle’s theorem is true
12. Rolle’s theorem is true
13. Rolle’s theorem is true
14. Rolle’s theorem is true
15. Rolle’s theorem is true
16. Rolle’s theorem is true
17. Rolle’s theorem is true
18. Rolle’s theorem is true
19. Rolle’s theorem is true
20. Rolle’s theorem is true

Type 2: Problems based on verification of Rolle’s
theorem when interval is not given.

Exercise 20.2

Verify Rolle’s theorem for the following functions:
1. f (x) = 16x – x2

2. f (x) = x3 – x2 – 4x + 4
3. f (x) = sin x

4. f x
x� �= �

�
�
�sin

2
Type 3: Problems based on examining of Rolle’s
theorem ⇔  whether Rolle’s theorem is applicable or
not is required to test.

Exercise 20.3.1

Discuss the applicability of Rolle’s theorem for the
following functions:
1. f (x) = | x | in [–1, 1]
2. f (x) = | x – 1 | in [0, 2]

3. f x
x

� � = �
�

�
�sin

1
 in −���

�
��

1 1

π π
,

4. f (x) = sin x · cos x in 0
2

,
π�

��
�
��

5. f x x� � � �= − −1 1
3
2  in [0, 2]

6. f x
x ab

a b x
� � � �=

+
+

�

�
�
�

�

�
�
�

log
2

 in [a, b]

7. f (x) = ex sin x in 0 , π

8. f x x� � = −1  in [–1, 3]

9. f x x
x

� � = +2
1

 in 
1

4
2,�

��
�
��

10. f (x) = tan x in the interval [–1, 2]

11. f x
x

� � = 1
 in the interval [–1, 2]

12. f x
x x

x
� � � �

� �=
−
−

2

1
 in the interval [0, 2]

13. f (x) = 8x – x2 in the interval [0, 8]
14. f (x) = x3 – 6x2 + 11x – 6 in the interval [1, 3]
15. f (x) = (x + 1) (x – 2) in the interval [–1, 2]

Answers:
1. Not applicable since f (x) is not differentiable at
x = 0
2. Not applicable since f (x) is not differentiable at
x = 1
3. Not applicable as f (0) is not defined
4. Rolle’s theorem is applicable
5. Not applicable as f (0) is not defined
6. Rolle’s theorem is applicable
7. Rolle’s theorem is applicable
8. Not applicable since f ' (x) is does not exist
9. Applicable
10. Not applicable since f (x) is neither continuous

nor differentiable at x = π
2

11. Not applicable as f (x) is neither continuous nor
differentiable at x = 0
12. Not applicable as f (x) is neither continuous nor
differentiable at x = 1
13. Applicable
14. Applicable
15. Applicable

Exercise 20.3.2

Rolle’s theorem can not be applied in the following
functions in the interval specified. Explain why.

1. f (x) = x in − ≤ ≤1 1x
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2.
f x x x

f x x x
x

� �
� �

= ≤
= − >

≤ ≤
�
�
�

2 1

4 2 1
0 2

for

for
in

3. f x x� � = −1
2
3  in − ≤ ≤1 1x

4. f (x) = tan x in 0 ≤ ≤x π

Answers:

1. f f− ≠1 1� � � �
2. f (x) is not differentiable at x = 1

3. f (x) is not differentiable at x = ∈ −0 1 1,� �

4. f (x) is discontinuous at x = ∈
π

π
2

0 ,� �
Type 4: Problems based on verification of Rolle’s
theorem and finding the value of ‘c’.

Exercise 20.4

Verify Rolle’s theorem for the following functions and
find the value of ‘c’ provided Rolle’s theorem is true.

1. f x x x� � = −3 0 3
3

in ,

2. f x x x� � = − −
3

3 3 0in ,

3. f x x� � = sin in 0 , π

4. f x x x� � = + + − −2
3 2 2 1in ,

5. f x x� � = 4 0sin in ,π

6. f x x� � = �
��

	

�

sin in2 0
2

,
π

7. f x x x e
x

� � � �= + −
−

3 3 02 in ,

8. f x x a x x a� � = − ≤ ≤
2 2

0in

9. f x x x x x� � � � � �= − + ≤ ≤−2 1 0 21 in

10. f x e x x
x� � � �= − �

��
	

�

sin cos in
π π
4

5

4
,

11. f x x a x b a x bm n� � � � � �= − − ≤ ≤in , m and

n being positive integer.

12. f x x x x� � � �= − ≤ ≤1 0 1in

13. f x x x x x� � = + − − ≤ ≤2 4 2 2
3 2

in

Answers:
1. c = 1
2. c = –1

3. c = π
2

4. c = −
3

2

5. c =
π
2

6. c = π
4

7. c = –2

8. c
a

=
2

9. c = −3 1

10. c = π

11. c a b
mb na

m n
=

+
+

, ,

12. c=
1

2

13. c =
1

3

Lagrange’s Mean Value Theorem

Statement of Lagrange’s mean value theorem
Let y = f (x) a real function (or, real valued function)

defined on a closed interval [a, b]. If
(i) f (x) is continuous in (or, on or, over) the closed
interval [a, b].
(ii) f (x) is differentiable in (or, on or, over) the open
interval (a, b) then there is at least one point

x c a b= ∈ ,� �  at which the first derivative.

′ =
−
−

f c
f b f a

b a
� � � � � �

=
= − =value of at value of  at

difference of end points of the given interval

f x x b f x x a� � � �
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N.B.: 1. Rolle’s theorem has three conditions
whereas Lagrange’s mean value theorem (or,
sometimes called simply mean value theorem) has
only two conditions.
2. f (x) satisfies two conditions of Rolle’s theorem
except the condition f (a) = f (b) in mean value theorem
which is also termed as Lagrange’s mean value
theorem.

Type 1: Verification of Lagrange’s mean value
theorem.

Working rule: To verify Lagrange’s mean value
theorem, we have to show that following conditions
are satisfied.
1. Show that a given function is continuous in the
closed interval and differentiable in the open interval
which is provided by using the facts that all “PILET-
RC” functions are continuous and differentiable at
points where they have finite value and also
remembering that sin x, cos x, sin–1 x, cos–1 x, log x,
ex, polynomial, power, constant, identity functions
are continuous and differentiable in any give finite
interval.
2. Find f ' (x) as well as f (a) and f (b)

3. Then use the result ′ =
−
−

f c
f b f a

b a
� � � � � �

 and

solve it which will provide us the value of c such that

a < c , b i.e. c a b∈ ,� � .

Note: In short Lagrange’s mean value theorem is
written as L.M.V.T.

Examples worked out:

Question 1: Verify Lagrange’s mean value theorem

for the function f (x) = x (x – 1) (x – 2) in 0
1

2
,�

��
	

�

.

Solution: � f x x x x� � � � � �= − −1 2

⇒ = − +f x x x x� � 3 2
3 2

� f (x) is a polynomial in x
⇒  f (x) is continuous and differentiable in any

given interval
⇒  (i) f (x) is continuous on the closed interval

0
1

2
,�

��
	

�

(ii) f (x) is differentiable in the open interval 0
1

2
,�
�
�

Thus the two conditions of Lagrange’s mean value
theorem are satisfied.

Now (i) ′ = − +f x x x� � 3 6 2
2

⇒ ′ = − +f c c c� � 3 6 2
2

(ii) f (a) = f (0) = 0

(iii) f b f� �= �

�
� = − +

1

2

1

8

3

4

2

2

= − + =
1 6 8

8

3

8

(iv) b a− = − =
1

2
0

1

2
Now, using the result of Lagrange’s mean value

theorem, ∃  at least one c such that

′ =
−
−

f c
f b f a

b a
� � � � � �

⇒ − + =
−

= × =3 6 2

3
8

0

1
2

3

8
2

3

4

2
c c

⇒ − + =3 6 2
3

4

2
c c

⇒ − + −�
�
� =3 6 2

3

4
0

2
c c

⇒ − + =3 6
5

4
0

2
c c

⇒ =
− − ± − × ×

×
c

6 36 4 3
5
4

2 3

� �

=
± −6 36 15

6

= + ⋅ − ⋅1
1

6
21 1

1

6
21or ,

= 1.76 or, 0.24
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Thus, we get a value of c = 0.24 ∈ �
�
�0

1

2
,  and for

which the equation ′ =
−
−

f c
f b f a

b a
� � � � � �

 is true.

Hence, Lagrange’s mean value theorem is verified.

Note: (i) 1
21

6
176 0

1

2
+ = ∉ ��

�
�� ⇒. ,  This is why

it is rejected.

(ii) 1
21

6
0 24 0

1

2
− = ∈ ��

�
�� ⇒. ,  This is why its is

accepted.

Question 2: Verify Lagrange’s mean value theorem
for the function f (x) = (x – 1) (x – 2) (x – 3) on [0, 4]
Solution: �  f (x) = (x – 1) (x – 2) (x – 3)

= x3 – 6x2 + 11x – 6
∴  f (x) is a polynomial in x
⇒  f (x) is continuous and differentiable in any

given finite interval.
⇒  (i) f (x) is continuous in the closed interval [0, 4]
(ii) f (x) is differentiable in the open interval (0, 4)

∴ The two conditions of Lagrange’s mean value
theorem are satisfied.

Now, ′ = − +f x x x� � 3 12 11
2

′ = − + =
−
−=

f c x x
f f

x c
� � � � � �

3 12 11
4 0

4 0
2

⇒ ′ = − +f c c c� � 3 12 11
2

=
− − − − −

=
× × +4 1 4 2 4 3 6

4

3 2 1 6

4

� � � � � � � �

⇒ − + =4 3 12 11 12
2

c c� �

⇒ − + − =12 48 44 32 0
2

c c

⇒ − + =3 12 8 0
2

c c

⇒ =
± −

= ±
c

12 144 96

6

12 48

6

= ± = ±2
2

3
3 2 1155.

⇒ =c 3155 0845. , .or

But these values of c lie in the open interval (0, 4)
Hence, the theorem is verified.

Question 3: Verify Lagrange’s mean value theorem

for the function f x x x x� � = − + + ∀ ∈2
3 2 0 1, , .

Solution: � f x x x� � = − + +2
3 2

f (x) is a polynomial in x
⇒  f (x) is continuous and differentiable in any

given finite interval.
⇒  (i) f (x) is continuous on the closed interval [0, 1]
(ii) f (x) is differentiable in the open interval (0, 1)

∴ Two conditions of Lagrange’s mean value
theorem are satisfied.

Now, (i) ′ = − +f x x� � 2 3

⇒ ′ = − +f c c� � 2 3

(ii) f (a) = f (0) = 2
(iii) f (b) = f (1) = –1 + 3 + 2 = 4
(iv) b – a = 1 – 0 = 1

Now, using the result of Lagrange’s mean value
theorem,

′ =
−
−

=
−

= =f c
f b f a

b a
� � � � � � 4 2

1

2

1
2

⇒ − + =2 3 2c
⇒ − + − =2 3 2 0c
⇒ − + =2 1 0c
⇒ − = −2 1c

⇒ =c
1

2
 which belongs to (0, 1)

⇒ = ∈c
1

2
0 1,� �

Thus, we observe that we get a value of

c = ∈1

2
0 1,� �  and for which the equation

′ =
−
−

f c
f b f a

b a
� � � � � �

 holds good hence,

Lagrange’s mean value theorem is verified.
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Question 4: Verify Lagrange’s mean value theorem
for the function f (x) = x3 in [a, b].
Solution: (i) f (x) = x3

f (x) is a power function in x
⇒  f (x) is continuous and differentiable in any

given finite interval
⇒  (i) f (x) is continuous in the closed interval [a, b].
(ii) f (x) is differentiable on the open interval (a, b)

∴  Two conditions of Lagrange’s mean value
theorem are satisfied.

Now, (i) ⇒ ′ =f x x� � 3
2

⇒ ′ =f c c� � 3
2

(ii) f (b) = b3

(iii) f (a) = a3

(iv) b – a = b – a
Now, using the result of Lagrange’s mean value

theorem,

′ =
−
−

⇒ = −
−

= + +f c
f b f a

b a
c

b a

b a
b ab a� � � � � �

3
2

3 3
2 2

⇒ = + +3
2 2 2

c b ab a

⇒ =
+ +

<
+ +

<
�
�

�
��

c
b ab a

a
a ab b

b
2 2 2 2

3 3
,

Hence verified.
Question 5: Verify Lagrange’s mean value theorem
for the function f (x) = lx2 + mx + n on [a, b]

Solution: � f x lx mx n� � = + +2

∴ f (x) is a polynomial in x
⇒  f (x) is continuous and differentiable in any

given finite interval.
⇒  (i) f (x) is continuous on the closed interval [a, b]
(ii) f (x) is differentiable on the open interval (a, b).

∴ Two conditions of Lagrange’s mean value
theorem are satisfied.

Now, (i) ′ = +f x lx m� � 2

⇒ ′ = +f c lc m� � 2

(ii) f (a) = la2 + ma + n
(iii) f (b) = lb2 + mb + n
(iv) b – a = b – a

(v) f b f a

b a

l b a m b a

b a
l b a m

� � � � � � � �
� �−

−
=

− + −

−
= − +

2 2

Now, using the result of Lagrange’s mean value
theorem,

′ =
−
−

f c
f b f a

b a
� � � � � �

⇒ + = + +2 lc m l b a m� �

⇒ =
+

∈c
b a

a b
2

,� �

⇒  Lagrange’s mean value theorem is verified.

Question 6: Verify Lagrange’s mean value theorem

for the function f x x� � = −
2

4  on [2, 4].

Solution: � f x g x x� � � �= = −
2

4

Now, g (x) = x2 – 4, (g (x) > 0) is continuous and
differentiable on a given finite interval ⇒ g x� �  is
also continuous and differentiable on the same given
finite interval using the continuity and differentiability
theorem for a function of a function.
⇒  (i) f (x) is continuous on the closed interval [2, 4]
(ii) f (x) is differentiable on the open interval (2, 4)

∴  Two conditions of Lagrange’s mean value
theorem are satisfied.

Now, (i) ′ =
−

×f x
x

x� � 1

2 4
2

2

=
−

=
−

2

2 4 4
2 2

x

x

x

x

⇒ ′ =
−

f c
c

c
� �

2
4

(ii) f (a) = f (2) = 4 4 0− =

(iii) f (b) = f (4) = 16 4 12 2 3− = =
(iv) b – a = 4 – 2 = 2

Now, using the result of Lagrange’s mean value
theorem,
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′ =
−
−

⇒
−

f c
f f c

c
� � � � � �4 2

4 2 4
2

=
−

=
2 3 0

2
3 , (c > 0)

⇒
−

= ⇒ = − ⇒ − = −
c

c
c c c c

2

2

2 2 2 2

4
3 3 12 3 12

⇒ − = − ⇒ = ⇒ =2 12 6 62 2c c c  and

c = ∈6 2 4,� �

Thus, c = ∈6 2 4,� �  verifies the Lagrange’s

mean value theorem.
Question 7: Verify Lagrange’s mean value theorem
for the function f (x) = log x in [1, e]
Solution: � f (x) = log (x)

∴  f (x) is continuous and differentiable in a given
finite interval for being a log function.

⇒  log x is continuous in [1, e] and differentiable
in (1, e).

∴ Two conditions of Lagrange’s mean value
theorem are satisfied.

Now, (i) ′ =f x
x

� � 1
, (x > 0)

⇒ ′ =f c
c

� � 1
, (c > 0)

(ii) f (b) = f (e) = log e = 1
(iii) f (a) = f (1) = log 1 = 0
(iv) b – a = e – 1

Now, using the result of Lagrange’s mean value
theorem

′ =
−
−

f c
f b f a

b a
� � � � � �

⇒ =
−
−

1 1 0

1c e

⇒ =
−

1 1

1c e

⇒  c = e – 1 and 1 < e – 1 < e. Hence verified.

Question 8: Verify the hypothesis of mean value

theorem for the function f x x� � = + 2  on the
interval [4, 6] and find a suitable value for ‘c’ that
satisfied the conclusion of the theorem.
Solution: Having the fact that g (x) = x + 2 is a
continuous and differentiable on a given finite interval
and using the theorem for continuity and differen-
tiability for a function of a function, we conclude that

f x x� � = + 2  is continuous and differentiable on
a given finite interval (where f (x) > 0)

⇒ f x x� � = + 2  is continuous and
differentiable in the closed interval [4, 6].
⇒  (i) f (x) is continuous in the closed interval [4, 6]
(ii) f (x) is differentiable in the open interval (4, 6).

∴ Two conditions of Lagrange’s mean value
theorem are satisfied.

Now, using the result of Lagrange’s mean value
theorem, we get

′ =
−
−

f c
f b f a

b a
� � � � � �

⇒
+

=
+ − +

−
1

2 2

6 2 4 2

6 4c

⇒
+

=
−1

2 2

8 6

2c

⇒
+

= −
1

2
8 6

c

⇒
−

= +1

8 6
2c

⇒
−

= +1

8 6
2

2
� �

c

⇒
+ −

= +1

8 6 2 48
2c

⇒
−

= +1

14 2 48
2c

⇒
−

= +1

14 8 3
2c
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⇒
−

− =1

14 8 3
2 c

⇒
− +

−
=

1 28 16 3

14 8 3
c

⇒
− +

−
= <

−
−

<
27 16 3

14 8 3
4

16 3 27

14 8 3
6c and

Question 9: How to test the non-applicability of
Lagrange’s mean value theorem in a given interval I =
[a, b].
Solution: At least one of the following  is to be shown
for the non-applicability of Lagrange’s mean value
theorem.
1. Show that f (x) is not continuous at some point
lying in the given closed interval [a, b].
2. Show that ′f x� �  does not exist at least at one
point ‘c’ of the open interval (a, b) for which we are
required to show l h d r h d. . . .≠  or, we show

′ = ′ = ± ∞
=

f x f c
x c

� � � �  or undetermined by

using the defination.

R f c
f c h f c

hh
′ =

+ −
→

� � � � � �
lim

0

L f c
f c h f c

hh
′ =

− −
−→

� � � � � �
lim

0

Remember:
1. In some of the cases Lagrange’s mean value
theorem is not applicable for f x c I� � if ∃ ∈  s.t
f (c) = 0 as f ' (c) may not exist.
2. Lagrange’s mean value theorem is not applicable

in a rational function 
f x

f x
1

2

� �
� �  if f2 (c) = 0 for some

c I∈ .

3. The point at which given function is non-
differentiable may be the end points of the closed
interval or may be the mid point of the closed interval
or may belong to the open interval different from the
given closed interval.

4.
d x

dx
n x

x

x

n
n

2 1
22 1

+

= + ⋅
� �

� �

= + ⋅ ≠
+

2 1 0
2 1

n
x

x
x

n

� �
� �

for

5.
d x

dx
n x

x

x

n
n

2
2 1

2= ⋅ ⋅−� �

= ⋅ ≠2 0
2

n
x

x
x

n

for

Type 2: To test whether Lagrange’s mean value
theorem is applicable or not in a given interval I =
[a, b].

Examples worked out:

Question 1: Discuss the applicability of Lagrange’s

mean value theorem to the function f x
x

� � = 1
3

 in

[–1, 1].

Solution: (i) Given f x
x

� � = 1
3

∴ f (x) is continuous and differentiable for all
values of x ∈ −1 1,  except where x3 = 0 for being a
rational function in x which ⇒  f (x) is discontinuous
at x = 0 ∈ −1 1,  since f (x) is undefined at x = 0.

Hence, Lagrange’s mean value theorem is not
applicable to f (x) on [–1, 1].

Question 2: Are all the conditions of Lagrange’s
mean value theorem satisfied for the function

f x x� � = − 1  in [1, 3]. If so, find ‘c’ of the mean
value theorem.

Solution: (i) Given function f x x� � = − 1

∴ f (x) is continuous and differentiable for all
values of x belonging to the given interval [1, 3].

∴ f (x) is differentiable in (1, 3)
∴  All conditions of Lagrange’s mean value

theorem are satisfied.

Now, ′ =
−
−

=
−
−

f c
f b f a

b a

f f� � � � � � � � � �3 1

3 1
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=
−

=
2 0

2

1

2

⇒
−

= ⇒ = −1

2 1

1

2
1 2 1

c
c� �

⇒ − = ⇒ − = ⇒ = +2 1 1 1
1

2
1

1

2
c c c� �

⇒ = ∈c
3

2

3

2
1 3and ,

Question 3: Discuss the applicable of mean value
theorem to the function f (x) = | x | in [–1, 1].
Solution: � Given f (x) = | x |

∴ f (x) is continuous for all values of x ∈ −1 1,

for being a modulus function.

Now, ′ =f x
x

x
� �  which is differentiable for all

value of x except perhaps at x = 0.

R f
f h f

hh
′ =

+ −
→

0
0 0

0
� � � � � �

lim

=
−

= =
→ →

lim lim
h h

h

h

h

h0 0

0
1

L f
f h f

hh
′ =

− −
−→

0
0 0

0
� � � � � �

lim

=
− −
−

=
−

= −
→ →

lim lim
h h

h

h

h

h0 0

0
1  (for h > 0)

∴ ′ ≠ ′R f L f0 0� � � �
∴ The given function f (x) is not differentiable at

x = 0 and 0 1 1∈ − ,� � .
∴  One condition of Lagrange’s mean value

theorem is not satisfied.
∴  The mean value theorem is not applicable to

f (x) in [–1, 1].

Question 4: Examine the validity of the hypothesis
and the conclusion of Lagrange’s mean value theorem
for the function.

f x x� � = −in 2 1,

Solution: (i) � f (x) = | x |

∴ f (x) is continuous for all values of x ∈ −2 1,

for being modulus of a function which is continuous
for all values.

(ii) ′ =f x
x

x
� �  which is differentiable for all values

of x except perhaps at x = 0

R f
f h f

hh
′ =

+ −
→

0
0 0

0
� � � � � �

lim

=
−

= =
→ →

lim lim
h h

h

h

h

h0 0

0
1

L f
f h f

hh
′ =

− −
−→

0
0 0

0
� � � � � �

lim

=
− −
−

=
−

= −
→ →

lim lim
h h

h

h

h

h0 0

0
1

∴ ′ ≠ ′R f L f0 0� � � �
∴ The given function f (x) is not differentiable at

x = 0 and ∈ −2 1,� �
∴ f (x) is not differentiable in (–2, 1).
∴ One conditions namely differentiability of the

given function in the given open interval (–2, 1) is not
satisfied which ⇒  the hypothesis is not valid.

Now, we examine the result:
1. f (1) = | 1 | = 1 = f (b)
2. f (–2) = | –2 | = 2 = f (a)
3. b – a = 1 – (–2) = 1 + 2 = 3

4. ′ = ≠f c
c

c
c� � , 0

5.
f b f a� � � �−

+
=

−
= −

1 2

1 2

3

1

3

But 
c

c
= −

1

3
 is not true.

Thus, we observe neither the hypothesis nor the
conclusion is valid.

Question 5: Discuss the applicability of Lagrange’s
mean value theorem to the function f (x) = | x |3 on
[–1, 2].
Solution: (i) f (x) = | x |3

∴ f (x) is continuous in [–1, 2] as a mod function is
continuous in a given finite interval.
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(ii) ′ = ⋅ = ⋅ =f x x
d x

dx
x

x

x

x

x
� � 3 3

32 2
3

∴ f (x) is differentiable for all values of x except
perhaps at x = 0.

∴ ′ =
+ −

→
R f

f h f

hh
0

0 0

0
� � � � � �

lim

=
+ −

>
→

lim for
h

h

h
h

0

30 0
0

= = = =
→ → →

lim lim lim
h h h

h

h

h

h
h

0

3

0

3

0

2
0

L f
f h f

hh
′ =

− −
−→

0
0 0

0
� � � � � �

lim

=
− −
−→

lim
h

h

h0

30 0
 for h > 0

=
−
−

=
−

= − =
→ → →

lim lim lim
h h h

h

h

h

h
h

0

3

0

3

0

2
0� �

∴ ′ = ′R f L f0 0� � � �
∴ ′f x� �  exists a x = 0 and ′ =f 0 0� �
∴ ′f x� �  exists for all values of x ∈ −1 2,� �
∴ f (x) is differentiable in (–1, 2).
∴ All conditions of Lagrange’s mean values

theorem are satisfied.
∴ Lagrange’s mean values theorem is applicable

to the given function f (x) on [–1, 2].

Note: The above example shows that the statement
“Rolle’s theorem or Lagrange’s mean value theorem
is not applicable to mod of a function = | f (x) | if x = c
∈ given interval is one of the roots of f (x) = 0” is not
true.

Question 6: Is L.M.V.T applicable to the function

defined as f x x
x

� � = + 1
 on [1, 2]. Give reason.

Solution: (i) f x x
x

� � = +
1

∴ f (x) is continuous on [1, 2] as it is the sum of

two continuous function x and 
1

x
 for all values of

x≠0.

(ii) f (x) is differentiable in (1, 2) as it is the sum of two

differentiable functions x and 
1

x
 for all values of x≠0.

∴  All conditions of Lagrange’s mean value
theorem are satisfied.

∴  Lagrange’s mean value theorem is applicable to

the function f x x
x

� � = + 1
 on [1, 2].

Question 7: Give reason whether Lagrange’s mean
value theorem is applicable to the function

f x
x

x
x� � = ≠

sin
, 0 .

= 1, x = 0 for − ≤ ≤ ≡ −1 1 1 1x ,

Solution: f x
x

x
x� � = ≠

sin
, 0

∴ ′ =
−

≠f x
x x x

x
x� � cos sin

2
0,

∴  f (x) is differentiable for all values of x except
perhaps at x = 0.

R f
f h f

hh
′ =

+ −
→

0
0 0

0
� � � � � �

lim

=

+
+

−

→
lim

sin

h

h

h

h0

0

0
1

� �
� �  [� f (0) = 1 is given]

=
−

→
lim

sin

h

h

h
h0

1

=
−

⋅
→

lim
sin

h

h h

h h0

1

=
−

→
lim

sin
h

h h

h0 2

=
−

→
lim

cos
h

h

h0

1

2

=
→

lim
– sin

h

h
0 2

 (by L-Hospital's rule)

= 0
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∴ ′ =f 0 0� �
∴ f (x) is differentiable in [–1, 1] and so Lagrange's

mean value theorem is applicable and c = 0.
Question 8: Given reason whether Lagrange’s M.V.T

is applicable to function f (x) = x
x

x⋅ �

�
� ≠cos

1
0,  =

0, x = 0 for − ≤ ≤ ≡ −1 1 1 1x ,

Solution: x
x

x⋅ �

�
� ≠cos

1
0,

f (0) = 0
∴  f (x) is continuous in any interval but it is

differentiable every where except at x = 0 and
0 1 1∈ − ,� � . This is why f (x) is not differentiable in
(–1, 1).

∴ One of the two conditions of M.V theorem is
not satisfied. This is why L.M.V.T is not applicable to
f (x) on [–1, 1].

Question 9: Discuss the applicability of Lagrange’s

mean value theorem to the function f x
x

� � = 1
 in the

closed interval [–1, 1].

Solution: � f x
x

� � = 1

∴ f (x) is not defined at x = 0 while 0 1 1∈ − ,

⇒  f (x) is not continuous at x = 0.

⇒  f (x) is discontinuous in [–1, 1].

⇒  f (x) is non-differentiable in [–1,1].

⇒  f (x) is non-differentiable in (–1, 1)
∴  No conditions of Lagrange’s mean value

theorem is satisfied.
∴ Lagrange’s mean value theorem is not applicable

to the given function on the given closed interval.

Question 10: Discuss the applicability of Lagrange’s

mean value theorem for the function f x
x

� � = 1
 in

[1, 2].

Solution: (i) � f x
x

� � = 1

∴ f (x) is finite for every value of x ∈ 1 2,  which
⇒  it is continuous in [1, 2] for being a rational
function.

(ii) ′ = −f x
x

� � 1
2

 which is finite for every value of

x ∈ 1 2,

∴ f (x) is differentiable in [1, 2]
∴ All conditions of Lagrange’s mean value

theorem are satisfied.
∴ Lagrange’s mean value theorem is applicable.

Question 11: A function f (x) in [1, 2] is defined by
f (x) = 2, if x = 1

= x2 if 1 < x < 2
= 4, if x = 2

are all the conditions of Lagrange’s mean value
theorem satisfied in this case?
Solution: (i) Continuity and differentiability test at
x = 1 and 2 (i.e. at the end points).

� lim lim
x x

f x x
→ − →

= =
2 2

2
4� �

f (2) = 4

∴ =
→ −
lim

x
f x f

2
2� � � �

Again, lim lim
x x

f x x
→ + →

= =
1 1

2
1� �

f (1) = 2

∴ ≠
→ +
lim

x
f x f

1
1� � � �

∴ f (x) is not continuous at the end points x = 1 of
the closed interval [1, 2].

∴ f (x) is not continuous in the closed interval
[1, 2].

∴  One condition of Lagrange’s mean value
theorem is not satisfied and this is why Lagrange’s
mean value theorem is not applicable to the given
function f (x) defined in the closed interval [1, 2].

Question 12: Discuss the applicability of Lagrange’s

mean value theorem to the function f x x� � =
1
3  in

[–1, 1].

Solution: f x x� � = 3

 f (x) is not defined for x < 0
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⇒  f (x) is not continuous in the closed interval
[–1, 1]

∴ No condition of Lagrange’s mean value theorem
is satisfied.

∴ Lagrange’s mean value theorem is not applicable
to the given function f (x) in the given interval [–1, 1].

Question 13: A function f (x) is defined in [–1, 1] by

f x x
x

x� � = �

�
� ≠sin

1
0,  f (0) = 0, x = 0 are all the

conditions of first mean value theorem of differential
calculus satisfied in this case?

Solution: � f x x
x

x� � = �

�
� ≠sin

1
0,

f (0) = 0, x = 0
We know that the above function is continuous in

any given finite interval but it is differentiable every

where except x = 0 while 0 1 1∈ − ,� � .
∴ f (x) is continuous in [–1, 1] and f (x) is not

differentiable in (–1, 1).
∴ One condition namely differentiability of the

given function on the open interval (–1, 1) for
Lagrange’s mean value theorem is not satisfied which
⇒  M.V.T can not be applied to f (x) in the given
interval [–1, 1].

Question 14: Give a reason why the mean value
theorem does not hold in the function defined by

f x x� � = −1  on [–2, 2]

Solution: f x x� � = −1  is not defined for x > 1

∴ f x� �  is not continuous in [–2, 2].

Hence Lagranges mean value theorem does not
hold.

Type 3: Problems based on finding the value of ‘c’
using Lagrange’s mean value theorem.

Working rule:
1. Show the differentiability of the given function in
the given open interval and the continuity of the
given function in the given closed interval or, show
only the differentiability for the given function in the
given closed interval.

2. Find f (a), f (b) and (b – a) where a and b are the left
end point and right end point of the given closed
interval [a, b].

3. Find ′f x� � .

4. Find ′f c� �  and equate it to 
f b f a

b a

� � � �−
−

.

5. Solve the equation ′f c� �= 
f b f a

b a

� � � �−
−

 which

will provide us one or more than one root of the

equation ′f c� �= 
f b f a

b a

� � � �−
−

.

6. The value of c s.t a < c < b should be accepted and
the value of c which does not satisfy a < c < b should
be rejected. In other words, c a b∈ ,� �  should be
accepted and c a b∉ ,� �  should be rejected.

Solved Examples

Question 1: Find ‘c’ of Lagrange’s mean value
theorem when the given function f (x) = x2 – 3x – 1 is
defined on [1, 3].
Solution: (1) �  f (x) = x2 – 3x – 1

∴  f (x) is differentiable for all values of x for being
a polynomial.

∴  f (x) is differentiable in [1, 3].
∴  f (x) is continuous in [1, 3] and differentiable in

(1, 3).
∴  All conditions of Lagrange’s mean value

theorem are satisfied.

∴  There is a point ‘c’ s.t ′ =
−
−

f c
f b f a

b a
� � � � � �

(2) �  f (x) = x2 – 3x – 1
∴  f (a) = f (1) = 1 – 3 – 1 = 1 – 4 = –3
f (b) = f (3) = 9 – 9 – 1 = –1
f (b) – f (a) = –1 – (–3) = –1 + 3 = 2
b – a = 3 – 1 = 2
Thus, in the light of above determined quantities,

we get

f b f a

b a

� � � �−
−

= =2

2
1 …(i)

Now, f ' (x) = 2x – 3 [from the given equation]

⇒ ′ = −f c c� � 2 3 …(ii)

Lastly equating (i) and (ii), we get
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′ =
−
−

f c
f b f a

b a
� � � � � �

⇒ − =2 3 1c
⇒ = + =2 1 3 4c

⇒ = =c
4

2
2  and 1 < 2 < 3

⇒ = ∈c 2 1 3,� �
Question 2: Find the value of c using L.M.V theorem
on the function f (x) = x2 + 2x – 1on [0. 1].
Solution: (1) � f (x) = x2 + 2x – 1

∴ f (x) is differentiable for all values of x for being
a polynomial.

∴ f (x) is differentiable in [0, 1].
∴  f (x) is continuous in [0, 1] and differentiable in

(0, 1)
∴  All conditions of Lagrange’s mean value

theorem are satisfied.

∴  There is a point ‘c’ s.t ′ =
−
−

f c
f b f a

b a
� � � � � �

(2) � f (x) = x2 + 2x – 1
f (a) = f (0) = –1
f (b) = f (1) = 1 + 2 · 1 – 1 = 2
f (b) – f (a) = f (1) – f (0) = 2 – (–1) = 3
Thus, in the light of above determined value of f

(x) at x = 1 and x = b as well as the difference of the
end points of the given closed interval, we find that

f b f a

b a

� � � �−
−

= =3

1
3 …(i)

Now, f ' (x) = 2x + 2 [from the given equation]

⇒ ′ = +f c c� � 2 2 …(ii)

lastly equating (i) and (ii), we get

′ =
−
−

f c
f b f a

b a
� � � � � �

⇒ + =2 2 3c

⇒ = − =2 3 2 1c

⇒ =c
1

2
 and 0

1

2
1< <

⇒ = ∈c
1

2
0 1,� �

Question 3: Find c of Lagrange’s mean value theorem
when the given function f (x) = (x – 1) (x – 2) (x – 3) is
defined on [0, 4].
Solution: (1) f (x) = (x – 1) (x – 2) (x – 3) which is a
polynomial in x.

∴ f (x) is differentiable in [0, 4].
∴ f (x) is continuous in [0, 4] and differentiable in

(0, 4).
∴ All conditions of Lagrange’s mean value

theorem are satisfied.
(2) � f (x) = x2 + 2x – 1
f (a) = f (0) = (–1) (–2) (–3) = –6
f (b) = f (4) = 3 · 2 · 1 = 6
b – a = 4 – 0 = 4

∴
−
−

= =
f b f a

b a

� � � � 12

4
3 …(i)

Now, ′ = − +f x x x� � 3 12 11
2

⇒ ′ = − +f c c c� � 3 12 11
2 …(ii)

lastly, we consider the equation formed by equating
(1) and (2),

′ =
−
−

f c
f b f a

b a
� � � � � �

⇒ − + =3 12 11 3
2

c c

⇒ − + − =3 12 11 3 0
2

c c

⇒ − + =3 12 8 0
2

c c

⇒ =
±

<
±

<c
6 2 3

3
0

6 2 3

2
4and

⇒ =
±

∈c
6 2 3

3
0 4,� �

Question 4: Find ‘c’ of Lagrange’s mean value

theorem. When the function f x x
x

� � = + 1
 is

defined on 
1

2
3,�

��
	

� .

Solution: (1) � f x x
x

� � = +
1
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∴ f (x) is differentiable in 
1

2
3,�

��
	

�

 since it is the

sum of two differentiable functions represented by x

and 
1

x
, for x ≠0 .

∴  f (x) is continuous in 
1

2
3,�

��
	

�

 as it is

differentiable in 
1

2
3,�

��
	

�

.

∴  All conditions of Lagrange’s mean value
theorem are satisfied.

∴  There is a point ‘c’ s.t ′ =
−
−

f c
f b f a

b a
� � � � � �

(2) f x x
x

� � = + 1

∴ = = + =f b f� � � �3 3
1

3

10

3

f a f� � = �

�
� = + =

1

2

1

2
2

5

2

f b f a� � � �= = − =
−

=
10

3

5

2

20 15

6

5

6

f b f a

b a

� � � �−
−

= = × =

5
6
5
2

5

6

2

5

1

3
…(i)

Now, ′ = − ⇒ ′ = − =
−

f x
x

f c
c

c

c
� � � �1

1
1

1 1
2 2

2

2  …(ii)

Lastly, equating (1) and (2), we get

c

c

2

2

1 1

3

−
=

⇒ − =3 3
2 2

c c

⇒ − =3 3
2 2

c c

⇒ =2 3
2

c

⇒ =c
2 3

2

⇒ = ± = ± = ±c
3

2
15 122. .  and 

1

2
122 3< <.

⇒ = ∈ �
�
�c 122

1

2
3. ,

Question 5: Find ‘c’ of Lagrange’s mean value
theorem when the function f (x) = log x is defined in
[1, e].
Solution: (1) � f (x) = log x which is differentiable in
[1, e]

∴ f (x) is continuous in [1, e] and differentiable in
(1, e)

(2) f (x) = log x
∴ f (b) = f (e) = log e = 1
f (a) = f (1) = log 1 = 0
f (b) – f (a) = 1 – 0 = 1
b – a = e – 1

f b f a

b a e

� � � �−
−

=
−
1

1
…(i)

Now, ′ = ⇒ ′ =f x
x

f c
c

� � � �1 1 …(ii)

Lastly, equating (i) and (ii), we get

1 1

1
1 2 73 1 173

c e
c e=

−
⇒ = − = − =. .  (� e =

2,73 approx)

⇒ = ∈c e173 173 1. . ,and � �
⇒ = ∈c e173 1. ,� �

Question 6: Find ‘c’ of mean value theorem for the

function defined as f x x x� � = ∀ ∈3
0 1, .

Solution: (1) x3 being a polynomial function is
continuous on [0, 1] and differentiable on (0, 1) ⇒  all

the conditions of L.M.V.T are satisfied ⇒ ∃  a number

‘c’ ∈ s.t ′ =
−
−

f c
f b f a

b a
� � � � � �

(2) Now, f (x) = x3

f (a) = f (0) = 0
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f (b) = f (1) = 1
b – a = 1 – 0 = 1

f b f a

b a

� � � �−
−

=
−

= =
1 0

1

1

1
1 …(i)

Again, ′ =f x x� � 3
2

⇒ ′ =f c c� � 3
2 ...(ii)

Lastly, equating (1) and (2), we get

3 1
2

c =

⇒ =c
2 1

3

⇒ = ± = ±c
1

3

1

3

Since c has to be in (0, 1) ⇒  the acceptable value

of c is 
1

3
 which ⇒ =c

1

3
 is the required value.

Question 7: Find ‘c’ of mean value theorem when the
function f (x) = x2 + 3x + 2 is defined on [1, 2].
Solution: (1) Since f (x) = x2 + 3x + 2 being a
polynomial in x is continuous on [1, 2] and
differentiable on (0, 1) ⇒  all conditions of L.M.V.T
are satisfied which ⇒ ∃  a number ‘c’ s.t

′ =
−
−

f c
f b f a

b a
� � � � � �

Now, f x x x� � = + +2
3 2

f (a) = f (1) = 1 + 3 + 2 = 6
f (b) = f (2) = 4 + 6 + 2 = 12
f (b) – f (a) = 12 – 6 = 6
b – a = 2 – 1 = 1

f b f a

b a

� � � �−
−

= =6

1
6 …(i)

Again, f ' (x) = 2x + 3

⇒ ′ = +f c c� � 2 3 …(ii)

Lastly, equating (i) and (ii), we get
2c + 3 = 6

⇒ = −2 6 3c

⇒ =2 3c

⇒ = = < <c
3

2
15 1 15 2. .and

⇒ = ∈c 15 1 2. ,� �
Problems based on Lagrange’s mean value theorem

Type 1: Problems based on verification of Lagrange’s
mean value theorem (i.e., L.M.V.T)

Exercise 20.5

Question: Verify Lagrange’s mean value theorem (or,
simply mean value theorem) for the following functions
in the interval specified.
1. f (x) = x (x – 2) (x – 4) in [1, 3]

2. f x
x

� � = −1
1 3

2
in ,

3. f x x� � = −
2

4 2 4in ,

4. f x x
x

� � = + +
−

−2
1

3
1 2in ,

5. f x x� � = −in 1 2,

6. f x x e� � = log in 1,

7. f x x x x� � � � � � � �= − − −1 2 3 0 4in ,

8. f x x
x

� � = + 1
1 2in ,

9. f x x� � = − 1 1 3in ,

10. f x x� � = 3
1 2in ,

11. f x x x� � = − + −3
2 4 1 2in ,

12. f x x x� � = − + −3
3 2 2 3in ,

13. f x e
x� � = −in 1 2,

14. f x x� � = �
��

	

�

log in
1

2
2,

15. f x x� � = sin in º º30 60,
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Type 2: Problems based on examination of Lagrange’s
mean value theorem ⇔  whether L.M.V.T is applicable
or not is required to test.

Exercise 20.6.1

1. Discuss the validity of the mean value theorem for

the function f x
x

� � = 1
 in [–1, 2].

2. Discuss the validity of the mean value theorem for

the function f defined by f x x� � � �= − 1
2
3  in the

interval [1, 2].
3. State whether the mean value theorem is applicable
to the function f defined by

(i) f x
x

x
x� � = ≠

sin
; 0  f (0) = 1 in [–1, 1]

(ii) f x x
x

x� � = �

�
� ≠cos

1
0,  = 0, x = 0 in [–1, 1]

(iii) f (x) = | x |3 in [–1, 2]

(iv) f x x� � = −
2

1  in [1, 3]

(v) f x x� � = −1
23

 in [–2, 1]

(vi) f (x) = log sin x in 
π π
6

5

6
,�

��
	

�

(vii) f (x) = | x | in [–1, 1].

(viii) f x
x x

x x
� � = + ≥

− < −

�
��
��
1 0

1 0 1 1

2

2
,

, ,in

Answers:

1. Valid and c = 1

2
2. Not valid as f (x) is not differentiable at x = 0

Exercise 20.6.2

Question: Given a reason in each of the following
why the mean value theorem does not hold in each of
the functions defined by

(i) f x x� � = −in 1 3,

(ii) f x x� � = −�
��

	

�

2
3 1

8

1

8
in ,

(iii) f x x� � = − −1 2 2in ,

(iv) f (x) = 2 if x = 1
= x2 if 1 < x < 2 in [1, 2]
= 1 if x = 2

Answers:
(i) Not differentiable at x = 0
(ii) Not differentiable at x = 0
(iii) Derivative does not exist at x = 1
(iv) f (x) is continuous in the open interval (1, 2) and
not in the closed interval [1, 2].

Type 3: Problems based on finding the value of ‘c’ of
Lagrange’s mean value theorem.

Exercise 20.7.1

1. Find the value of c of mean value theorem for the
function f (x) = x2 in the interval [1, 4].
2. Find ‘c’ of the mean value theorem for the function
f (x) = x3 in [1, 2].
3. Find ‘c’ of L.M.V.T for the function f (x) = (x – 1)
(x – 2) (x – 3) in 0 < x < 4.
4. Find ‘c’ of the mean value theorem for the function

f x
x

� � = 1
 in the interval [1, 9].

5. Find ‘c’ of L.M.V.T for the function f (x) = log x
defined in the interval [1. 2].
6. Find ‘c’ of the mean value theorem for the function
f (x) = ex in [0, 1].
7. Find ‘c’ of the mean value theorem for the function
f (x) = 2x – x2 in [0, 1].
8. Using Lagrange’s mean value theorem, find the
value of ‘c’ in the following cases.

(i) f x x x� � = − + +2
3 2  in [0, 1]

(ii) f x x x x� � = − ∀ ∈2
2 0 2, ,

(iii) f x x� � =  in [1, 9]

(iv) f x
x

x
� � � �

=
−3

 in [0, 2]
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θ
0 x

y

( ,  ( ))
c f c

a c b

f a( ) f c( ) f b( )

(v) f x
x

x
� � = − 1

 in [1, 4]

Answers:

1. c =
5

2

2. c = 7

3
3. c = 3.15 and 0.84
4. c = 3

5. c e= =log
log2

1

2

6. c = log (e – 1)

7. c = 1

2

8. (i) c = 1

2

(ii) c =
2

3

(iii) c = 4

(iv) 3 3−
(v) c = 2

Exercise 20.7.2

Find a point x = c such that the mean value theorem is
satisfied. If no such point exists, state what condition
of the mean value theorem is violated.

1. f x x� � = 2
, a = 1, b = 4

2. f x x x� � = − +2
5 7 , a = 2, b = 5

3. f x
x

� � = 1
, a = 1, b = 5

4. f x x x� � = =3
3 , a = 0, b = 4

5. f x
x

x
� � =

−
5

5
, a = 0, b = 4

6. f x x� � =
2
3 , a = –2, b = 2

7. f x x x� � = −6
2 3

, a = 0, b = 6

8. f x x x x� � = − − +3 2
3 6 8 , a = –2, b = 1

9. Is problem (8) an illustration of Rolle’s theorem or
of the mean value theorem.

Answers:

1.
5

2
3. 5 5. 5 5− 7. 4 9. Both

Geometrical meaning of Lagrange’s mean value
theorem

If the graph of the function
1. f (x) is continuous from a point A (a, f (a)) to another
point B (b, f (b)) [i.e. f (x) is continuous on the closed
interval [a, b]].
2. f (x) is differentiable in between the two points A
(a, f (a)) and B (b, f (b)) [i.e. f (x) is differentiable in the
open interval (a, b)] then there is a point ‘c’ such that
the tangent to the graph at the point (c, f (c)) is parallel
to the secant line (or, the chord) passing through (or,
joining) the end points (a, f (a)) and (b, f (b)) of the
curve.

Remember:

(i) The quantity f b f a

b a

� � � �−
−

 is the slope of the

secant which passes through the points A (a, f (a))
and B (b, f (b)) of the graph of the function y = f (x).
(ii) The quantity f ' (c) is the slope of the tangent to
the graph of the function y = f (x) at the point (c, f (c)).
(iii) Slope of the chord = slope of the tangent ⇒
The tangent line is parallel to the secant line (or, the
chord) i.e.
(iv) The co-ordinates of the extremities (or, the end
points) A and B of the curve f (x) are (a, f (a)) and (b,
f (b)).
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Problems based on geometrical meaning of
Lagrange’s mean value theorem

Problems based on geometrical meaning of Lagrange’s
mean value theorem consists of
1. A function y = f (x)
2. Two points (a, f (a)) and (b, f (b))
3. A third point (c, f (c)) in between (a, f (a)) and (b, f
(b)) is required to find out at which the tangent line to
the curve is parallel to the chord joining the end points
(a, f (a)) and (b, f (b)) of the curve.

Working rule to find (c, f (c)) = a third point in
between two given points (a, f (a)) and (b, f (b)) on the
graph of the function y = f (x) by using Lagrange’s
mean value theorem.

We adopt the following procedure to find a third
point (c, f (c)).
1. Show that all conditions of Lagrange’s mean value
theorem are satisfied for which we are required to
show
(a) Show that f (x) is continuous at all points lying
from (a, f (a)) to (b, f (b))

or, alternatively, show that f (x) is continuous on
[a, b].
(b) Show that f (x) is differentiable at all points lying
between (a, f (a)) and (b, f (b)).

Or, alternatively, show that f (x) is differentiable on
(a, b).

2. Use ′ =
−
−

f c
f b f a

b a
� � � � � �

 to find the value of c.

3. Find the value of f (c) on putting the obtained

value of c in f x f c
x c� � � �= =  from the given

function.
4. Required point will be (c, f (c)).

Worked out examples on geometrical meaning of
Lagrange’s mean value theorem

Question 1: Use the mean value theorem to find the
point at which the tangent to the curve y = 4 – x2 is
parallel to the chord joining the point A (–2, 0) and B
(1, 3).
Solution: (1) f (x) = 4 – x2

Now, f (x) being a polynomial in x is continuous in
[–2, 1] and differentiable in (–2, 1).

∴  All conditions of L.M.V.T are satisfied.
(2) f (x) = 4 – x2

⇒ ′ = −f x x� � 2

′ = −f c c� � 2

(a, f (a)) = (–2, 0) = A
(b, f (b)) = (1, 3) = B
∴  a = –2
b = 1
f (a) = 0
f (b) = 3
Now, using the result

′ =
−
−

=
−

− −
= =f c

f b f a

b a
� � � � � �

� �
3 0

1 2

3

3
1

⇒ − =2 1c

⇒ = − = − =c f c
1

2
4

1

4

15

4
and � �

∴ Required point c f c, ,� �� � = −�
�
�

1

2

15

4

Question 2: If A x y B x y1 1 2 2, ,� � � �and  be two

points on the curve y ax bx c= + +2
, then using

Lagrange’s mean value theorem, show that there will
be at least one point (x3, y3) where the tangent will be
parallel to the chord AB. Also show that

x
x x

3
2 1

2
=

+

Solution: (1) f x ax bx c� � = + +2
…(i)

⇒ ′ = +f x ax b� � 2 ...(ii)

Now, f (x) being a polynomial in x is continuous in
[x1, x2] and differentiable in (x1, x2).

0 x

y

(   ( ))b, f b
(   ( ))c, f c

(   ( ))a, f a

a c b
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∴ All conditions of L.M.V.T are satisfied.
∴ By geometrical meaning of Lagrange’s mean

value theorem, ∃  at least one point P (x3, y3) between
(x1, y1) and (x2, y2) where the tangent will be parallel
to the chord AB.

∴ ′ =
−
−

=
−
−

f x
f x f x

x x

y y

x x3
2 1

2 1

2 1

2 1

� � � � � �

⇒ + =
+ + − − −

−
2 3

2 2 1
2

1

2 1

ax b
ax bx c ax bx c

x x

� f x ax bx c
f x y
ax bx c etc

� �
� �

= + +
∴ =
= + +

�

�

�
�
�

	




�
�
�

2

2 2

2 2 ...

⇒ + =
− + −

−
2 3

2
2

1
2

2 1

2 1

ax b
a x x b x x

x x

� � � �

⇒ + =
− + +

−
2 3

2 1 2 1

2 1

ax b
x x a x x b

x x

� � � �� �

⇒ + / = + + /2 3 2 1ax b a x x b� �

⇒ / = / +2 3 2 1ax a x x� �

⇒ =
+

x
x x

3
2 1

2

θ -form of Lagrange’s mean value theorem

Lagrange’s mean value theorem ⇒

f b f a

b a
f c a c b

� � � � � �−
−

= ′ < <; …(1)

Now, b a h b a h− = ⇒ = + …(2)

and the interval (a, b) becomes equal to (a, a + h)

� b a h= +� �  as well as c a a h∈ + ⇔,� �  a < c < a

+ h …(3)
Again, a c b c a c b< < ⇔ < − < −0

⇔ <
−
−

<0 1
c a

c b

⇔ < <
−
−

=0 1θ θ, where
c a

b a

⇔ = + − = + < <c a b a a hθ θ θ� � , 0 1 …(4)

Also, a a h= + =θ θfor 0 …(5)

b a h= + =θ θfor 1 ...(6)

using (4), (5) and (6) in (1), we get,

f (b) = f (a + h) � θ = 1� �
f (a) = f (a) � θ = 0� �

(1) ⇒
+ −
+ −

= ′ + < <
f a h f a

a h a
f a h

� � � �
� � � �θ θ; 0 1

⇒
+ −

= ′ + < <
f a h f a

h
f a h

� � � � � �θ θ; 0 1

Statement of L.M.V.T in θ -form

Let y = f (x) = a real function defined on [a, a + h]
If (1) f (x) is continuous on [a, a + h]
(2) f (x) is differentiable on (a, a + h) then there

exists at least one point c a h= + θ  (where

0 1< <θ ) in the open interval (a, a + h) for which

f a h f a

h
f a h

+ −
= ′ +

� � � � � �θ  is valid.

Types of the problems:

We consider three types of the problems in finding θ
from L.M.V.T.
1. When any two of the constants namely a, b and h
as well as a function y = f (x) are given.
2. When only a function y = f (x) is given and no
constant namely a, b and h is provided.
3. Finding the limiting value of t of trigonometrical
ratios by using Lagrange’s mean value theorem.

Type 1: Problems based on finding ' θ ' of Lagrange’s
mean value theorem.

Working rule:
1. Find f (a) and f (b) as well as h using b = a + h.
2. Find f ' (x) and then f ' (a + θ h) on replacing x in f

' (x) by (a + θ h)
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3. Use 
f a h f a

h
f a h

+ −
= ′ +

� � � � � �θ  to find θ .

Remember:
1. a, b, h are constants.
2. Any two of three constants namely a, b, h are given.
3. a and b are the finite values of the end points of
the closed interval [a, b] = [a, a + h] where b = a + h.
4. Sometimes b is not given. b can be found from b =
a + h when a and h are given.

Solved Examples

Question 1: If a = 1 , h = 3 and f x x� � = , then find

'θ ' by mean value theorem.
Solution: Since we are given

a = 1, h = 3 and f x x� � =
∴ f (a) = f (1) = 1

�b a h b= + ⇒ = + =1 3 4

f b f a h� � � �= + = =4 2

Now, ′ =f x
x

� � 1

2
, x > 0

∴ ′ + =
+

=
+

f a h
a h

θ
θ θ

� � 1

2

1

2 1 3

=
+

=1

2 1 3
3

h
h�

Now, using the result

f a h f a

h
f a h

+ −
= ′ + < <

� � � � � �θ θ; 0 1,

We get, 
2 1

3

1

2 1 3

−
=

+ θ

⇒ =
+

1

3

1

2 1 3θ

⇒ =
+

2

3

1

1 3θ

⇒ =
+

4

9

1

1 3θ

⇒ + =1 3
9

4
θ

⇒ = − =
−

=3
9

4
1

9 4

4

5

4
θ

⇒ =θ 5

12

Question 2: If f x x� � = , a = 1, b = 4, find θ  by

L.M.V.T.
Solution: � we are given

a = 1
b = 4

∴ = + ⇒ = + ⇒ − = ⇒ =b a h h h h4 1 4 1 3

f (a) = f (1) = 1

f b f� � � �= = =4 4 2

f a h+ = =� � 4 2

Now, f x x� � =

⇒ ′ =f x� � 1

2 4

⇒ ′ + =
+

=
+

< <f a h
a h

θ
θ θ

θ� � 1

2

1

2 1 3
0 1;

Now, putting the above value θ  in

f a h f a

h
f a h

+ −
= ′ +

� � � � � �θ  we get

2 1

3

1

2 1 3

−
=

+ θ

⇒ =
+

1

3

1

2 1 3θ

⇒ =
+

2

3

1

1 3θ

⇒ =
+

4

9

1

3 1θ

⇒ = +9

4
3 1θ

⇒ = − = −
3

9

4
1

9 4

4
θ
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⇒ =3
5

4
θ

⇒ = ×θ 5

4

1

3

⇒ =θ 5

12
N.B.: We should mark that above two questions are
same except the following difference.

We are provided in question (1) a and h whereas
we are provided in question (2) a and b.

Type 2: To find ' 'θ  of Lagrange’s mean value theorem
provided that only the function is given.

Working rule:

1. Find f a f a h f x� � � � �, ,+ ′  and ′ +f a hθ� � .

2. Use the formula 
f a h f a

h
f a h

+ −
= ′ +

� � � � � �θ

where 0 1< <θ .

Solved Examples

Question 1: Given f (x) = mx2 + nx + p, find θ  of
L.M.V.T.

Solution: � f (x) = mx2 + nx + p
∴  f (a + h) = m (a + h) + n (a + h) + p
f (a) = ma2 + na + p

′ = +f x mx n� � 2

′ + = + +f a h m a h nθ θ� � � �2

Now, using the θ - form of Lagrange’s mean value
theorem, we get,

f a h f a

h
f a h

+ −
= ′ + < <

� � � � � �θ θ; 0 1

⇒
+ + + + + − + +m a h ah na nh p ma ma p

h

2 2 2
2� � � �

= + +2 2ma m h nθ

⇒ / + + / + / + / + / − / − / − /ma mh amh na nh p ma na p2 2 22

= / + +2 2 2amh m h nhθ

⇒ =mh m h
2 2

2 θ

⇒ = =2θ
mh

mh

2

2

1

2

Question 2: Find the value of ' θ ' by using Lagrange’s
mean value theorem for the function f (x) = x2.

Solution: � f x x� � = 2

∴ + = + = + +f x h x h x hx h� � � �2 2 2
2

= + +f x h x h� � � �2 …(1)

′ =f x x� � 2 …(2)

(2) ⇒ ′ + = +f x h x hθ θ� � � �2 …(3)

Now, 
f a h f a

h
f a h

+ −
= ′ +

� � � � � �θ …(4)

⇒
+ −

= ′ +
f x h f x

h
f x h

� � � � � �θ  [on replacing

a by x in (4)]

⇒ / + + − / = +
/ /x hx h x

h
x h

2 2 22
2 θ� �

⇒
+

= +
2

2
2

hx h

h
x hθ� �

⇒
+

= +
2

2
2

hx h

h
x hθ� �

⇒
/ +

/
= +

h x h

h
x h

2
2

� � � �θ

⇒ + = +2 2 2x h x hθ

⇒ =h h2θ

⇒ = =θ h

h2

1

2

Question 3: Find the value of ' θ ' by using Lagrange’s
mean value theorem for the function f (x) = log x
(x > 0).
N.B.: Here an interval has not been mentioned. This
is why we may take (or consider) the interval [a, a + h]
arbitrarily where a > 0.
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Solution: � f x x� � � �= log

∴ =f a a� � log

f (a + h) = log (a + h)

′ =f x
x

� � 1

′ + =
+

f a h
a h

θ
θ

� � 1

Now, 
f a h f a

h
f a h

+ −
= ′ +

� � � � � �θ  [using 'θ '

form of L.M.V.T]

⇒
+ −

=
+

log loga h a

h h

� � 1

1 θ

⇒ + − =
+

log loga h a
h

a h
� �

θ

⇒
+�

�
�
�� = +

log
a h

a

h

a hθ

⇒ + =
+�
�
�

a h
h

h

a

θ
log 1

⇒ =
+�
�
�
−θh

h
h

a

a
log 1

⇒ =
+��
�
��
− =

+��
�
��
−θ h

h
h
a

a

h h
a

a

h
log log1

1

1

Question 4: Find the value of 'θ ' using mean value

theorem f x h f x h f x h+ = + ′ + < <� � � � � � � �θ θ0 1

when f x e
x� � =

Solution: � f x e
x� � =

∴ ′ =f x e
x� � …(1)

Now, f x h f x h f x h+ = + ′ +� � � � � �θ …(2)

Hence, using (2), we get , e e he
x h x x h+ += + θ

⇒ = −h e e
h hθ

1

⇒ =
−

e
e

h

h
h

θ 1

Now, taking log of both sides, we get

log loge
e

h

h
h

θ
=

−�

�
�
�

	



�
�

1

⇒ =
−�

�
�
�

	



�
�

θh
e

h

h

log
1

⇒ =
−�

�
�
�

	



�
�

θ
1 1

h

e

h

h

log

Type 3:

Solved Examples

Question: If f (x) = sin x, find the limiting value of θ
when h → +

0  using Lagrange’s mean value theorem,

f x h f x h f x h+ = + ′ +� � � � � �θ  (where 0 < θ < 1).
Solution: (1) sin x is continuous and differentiable
for all finite values of x ⇒  All conditions of L.M.V.T
are satisfied.

(2) f (x) = sin x (given)

⇒ ′ =f x x� � cos

f (x + h) = sin (x + h)

′ + = +f x h x hθ θ� � � �cos

Now, using Lagrange’s mean value theorem, we
get

f x h f x h f x h+ = + ′ +� � � � � �θ

⇒ + = + +sin sin cosx h x h x h� � � �θ

⇒ + − = +sin sin cosx h x h x h� � � �θ

⇒ + +�
�

�
�� ⋅

+ −�
�

�
�� = +2

2 2
cos sin cos

x h x x h x
h x hθ� �

⇒ +�
�
� ⋅

�

�
� = ⋅ +2

2 2
cos sin cosx

h h
h x hθ� �
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⇒ +��
�
�� ⋅

�
�
�
��
= +2

2

2
cos

sin
cosx

h
h

h
x hθ� �

⇒ +�
�
� ⋅

�

�
�
= +cos

sin
cosx

h
h

h
x h

2
2

2

θ� �

⇒ ⋅ − ⋅�
��

	

�

cos cos sin sin
sin

x
h

x
h

h

h2 2
2

2

= ⋅ − ⋅cos cos sin sinx h x hθ θ

⇒ − �
�
�
�� +

�
��
��

�
��
��
−

�

�
�
�
cos x

h
1

1

2 2

2

�
...

sin x
h h

2

1

3 2

3

− �
�
�
�� +

�
��
��

�
��
��
	



�
�
×

�
...

× − �
�
�
�� +

�

�
�
�

	



�
�

1
1

3 2

2

�
h

...

= − +
�
��
��

�
��
��
− − +

�
��
��

�
��
��

cos sinx
h

x h
h

1
2

2 3θ
θ

θ� � � �
� �3... ...

⇒ ⋅ −��
�
�� =→

lim sin
h

x
0

1

2
0� � θ

⇒ = ≠
→

lim for sin
h

x
0

1

2
0θ � �

Question 2: If f (x) = cos x, find the limiting value of

θ  when h → +
0  using Lagrange’s mean value

theorem, f x h f x h f x h+ = + ′ +� � � � � �θ  (where

0 1< <θ ).
Solution: (1) � f (x) = cos x which is continuous and
differentiable in any finite interval ⇒  all conditions
of L.M.V.T are satisfied.

(2) �  f (x) = cos x

⇒
+ −

= ′ +
f x h f x

h
f x h

� � � � � �θ

⇒
+ −

= − +
cos cos

sin
x h x

h
x h

� � � �θ

⇒
− + +�


�
� ⋅

+ −�


�
�
= − +

2
2 2

sin sin
sin

x h x x h x

h
x hθ� �

⇒ − +�
�
� ⋅

�

�
�
= − +2

2
2sin

sin
sinx

h
h

h
x hθ� �

⇒ +��
�
�� ⋅

�
�
�
��

�
�
�
��

= +2
2

2

2

sin
sin

sinx
h

h

h
x hθ� �

⇒ ⋅ + ⋅�
��

	

�
×

�
�
�

�
�

�
�
�

�
�

sin cos cos sin
sin

x
h

x
h

h

h2 2
2

2

= ⋅ + ⋅sin cos cos sinx h x hθ θ

⇒ − �
�
�
�� +

�
��
��

�
��
��
+

�

�
�
�
sin x

h
1

1

2 2

2

�
...

cos x
h h

2

1

3 2

3

− �
�
�
�� +

�
��
��

�
��
��
	



�
�
×

�
...

1
1

3 2

2

− �
�
�
�� +

�

�
�
�

	



�
��

h
...

= − +���
���
+ − +���

���
sin cosx h x h h1

1

2

12 3

� �3
θ θ θ� � � �... ...

⇒ −��
�
�� =→

lim cos
θ

θ
0

1

2
0x� �

⇒ = ≠
→

lim for cos
θ

θ
0

1

2
0x� �
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Question: In the mean value theorem f (h) = f (0) + h

′ < <f hθ θ� � , 0 1 show that the limiting value of

' 'θ  as h → +0 0  is 
1

2
 or 

1

3
 according as f (x) =

cos x or sin x.
(a) Solution: Let f (x) = cos x

∴ ′ = −f x x� � sin

′ = −f h hθ θ� � � �sin

f (0) = cos 0 = 1

f h f h h h0 0+ = = + =� � � � � �cos cos

Now, from the mean value theorem, f (h) = f (0) + h

′ < <f hθ θ� � , 0 1 we get,

f h f

h
f h

� � � � � �−
= ′

0
θ

⇒ − = ′
cos cosh

h
f h

0
θ� �

⇒
−

= −
cos

sin
h

h
h

1
θ� �

⇒
− −

= −
1 2

2
1

2
sin

sin

h

h
hθ� �

⇒
−

= −
2

2

2
sin

sin

h

h
hθ� �

⇒
⋅

=
sin sin

2

2

2

h

h
h

h

h

θ� �

⇒

�

�

�
�
�

	




�
�
�
= ⋅1

2
2

2

2

sin sin
h

h
h

h

θ
θ

θ
� �

⇒ ⋅

�

�

�
�
�

	




�
�
�

= ⋅
→ →

+ +
lim

sin
lim

sin

h h

h

h
h

h0

2

0

1

2
2

2

θ
θ

θ
� �

⇒

�

�

�
�
�

	




�
�
�
= ⋅

→ → →
+ + +

1

2
2

2
0

2

0 0
lim

sin
lim

sin
lim

h h h

h

h
h

h

θ
θ

θ
� �

⇒ ⋅ = ⋅
→

+

1

2
1 1

0
lim

h
θ

⇒ =
→

+
lim

h 0

1

2
θ

(b) If f (x) = sin x then
sin sin

cos
h o

h
h

−
= θ� �

∴ − +
�
�

�
��
= − +1

3
1

2

3 2 2

h
h

h h

� �
... ...

θ

∴ −
�
�

�
��
=

→
lim
h 0

21
0

�3 �2
θ

∴ =
→

lim
h 0

1

3
θ

Problems based on finding the value of ' θ ' using
L.M.V.T.

Exercise 20.8

1. Find ' 'θ  in the mean value theorem

f a h f a h f a h+ = + ′ +� � � � � �θ  where

(i) f (x) = log x, a = 1, h = e – 1
(ii) f (x) = 2x2 – 7x + 10 in [2, 5].
(iii) f (x) = 3x2 – 5x + 12 in [0, 1].

(iv) f x x� � =  in [1, 4]

2. In Lagrange’s mean value theorem

f a h f a h f a h+ = + ′ +� � � � � �θ  show that

lim
h→ +

=
0 0

1

2
θ  where f (x) = cos x or sin x.

3. In the mean value theorem

f a h f a h f a h+ = + ′ +� � � � � �θ .

(i) If a = 1, h = 1 and f (x) = x2, find θ .
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(ii) If a = 0, h = 3 and f x x x x� � = − +1

3

3

2
2

3 2
,

find θ .

(iii) If a = 2, h = 1 and f x
x

� � = 1
, find the value

of θ .

(iv) If f (x) = ex, express the value of θ  in terms of a
and h.
(v) If f (x) = sin x, find the limiting value of θ  when

h → 0 .

Answers:

1. (i) θ =
−
−

e

e

2

1
(ii) θ = 1

2

(iii) θ  = Find (iv) θ =
5

12

3. (i)
1

2
(ii)

3 3

6

±
(iii) − ±2 6

(iv)
1 1

h

e

h

h

log
−

(v)
1

2

Problems based on proving inequality by using
Lagrange’s mean value theorem

Working Rule:

1. Use 
f b f a

b a
f c

� � � � � �−
−

= ′  by L.M.V.T on [a, b]

or use 
f a h f a

a h h
f a h

+ −
+ −

= ′ +
� � � �
� � � �θ  where 0 < θ <

1 by L.M.V.T on [a, a + h].
2. Prove “Left hand expression < f ' (c) < right hand
expression of the required inequality with in the help
of a < c < b or 0 < θ < 1 and using mathematical
manupulations.
Note: 1. If we use the inequality 0 < θ < 1, firstly we
find θ .
2. When the restriction x ≥ 0  is given with the
required inequality, the interval [0, x] has been
considered.
3. When the restriction a < b is given with the
required inequality, the interval [a, b] has been
considered.

4. x y x y y x≠ ⇔ > <or

5. cos or sinx x≤ ≤1 1

6. x < y and y z x z< ⇒ <

7. x < y and y z x z≤ ⇒ <

8. x < y and y x x y≤ ⇒ =

Key point to prove inequality by L.M.V.T.
1. Application of L.M.V.T on continuous and
differentiable functions in a finite given interval [a, b]
or [0, x] as the case may be.
2. a < c < b if the interval is [a, b].
3. 0 < c < x if the interval is [0, x].

Examples Worked Out:

1. Show that 
x

x
x x x

1
0

2

1

+
< < ∀ >−

tan ,  by using

L.M.V.T.
Solution: Let f (x) = tan–1 x and x > 0

tan–1 x is continuous and differentiable for all
values of x.

⇒  tan–1 x is continuous and differentiable in any
finite interval.

⇒  L.M.V.T is applicable to the function tan–1 x
defined on [0, x].

⇒  There is a point ‘c’ s.t 
f x f

x
f c

� � � � � �−
−

= ′
0

0

where c x∈ 0 ,� �

⇒
−
−

=
+

− −
tan tan

1 1

2

0

0

1

1

x

x c
, 0 < c < x;

�
�� Since ′ =

+
⇒ ′ =

+

	


�
�

f x
x

f c
c

� � � �1

1

1

12 2

⇒ =
+

−
tan

1

2

1

1

x

x c

⇒ =
+

−
tan

1

2
1

x
x

c
…(1)

Now, x > c > 0

⇒ > >x c
2 2

0
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⇒ + > + >x c
2 2

1 1 1

⇒
+

>
+

> >
x

x

c

x x
x

2 2
1 1 1

0�� �

⇒
+

<
+

<x

x

x

c
x

1 12 2 …(2)

Now putting (1) in (2), we get

x

x
x x

2

1

1+
< <−

tan  which is the required

inequality.

Question 2: Show that 
x

x
x x

1
1

+
< + <log � �  for all

x > 0 by using L.M.V.T to the function f (x) = log
(1 + x).
Solution: Let f (x) = log (1 + x)

log (1 + x) is continuous and differentiable for all
values of x > 0.

⇒  L.M.V.T is applicable to the function log
(1 + x) defined on [0, x].

⇒  There is a point ‘c’ s.t 
f x f

x
f c

� � � � � �−
−

= ′
0

0

where 0 < c < x

⇒
+ −
−

=
+

log log1 1

0

1

1

x

x c

� �

Since,  ′ =
+

⇒ ′ =
+

�
�
�

	


�f x

x
f c

c
� � � �1

1

1

1

⇒ + =
+

< <log 1
1

0x
x

c
c x� � � � …(1)

Now, x > c > 0

⇒ + > + >1 1 1x c

⇒ + > + >
1 1 1x

x

c

x x

⇒
+

<
+

<x

x

x

c
x

1 1 …(2)

Putting (1) in (2), we get

x

x
x x

1
1

+
< + <log � �  which is the required

inequality.
Question 3: Find ' θ ' in Lagrange’s mean value
theorem for the function f (x) = ex over [a, a + h], then

show that 0
1 1

1<
−�


�

�

�
� <

x

e

x

x

log  when x > 0.

Solution: Let f (x) = ex (given)
ex is continuous and differentiable in any finite

interval
⇒  L.M.V.T is applicable to f (x) = ex defined on [a,

a + h]

⇒ ∃  a number ' θ ' lying between 0 and 1 such

that 
f a h f a

h
f a h

+ −
= ′ +

� � � � � �θ

⇒
−

=
+

+e e

h
e

a h a
a hθ

⇒ − =+ +
e e h e

a h a a hθ

⇒ = ++ +
e h e e

a h a h aθ

⇒ ⋅ = + ⋅e e e he ea h a a hθ

⇒ = +e h e
h h

1
θ

⇒
−

=
e

h
e

h
h1 θ

⇒
−�


�

�

�
� = = =log log log

e

h
e h e h

h
h

e
1 θ

θ θ

⇒
−�


�

�

�
� =

1 1

h

e

h

h

log θ …(1)

Now, using the inequality 0 1< <θ …(2)

Putting (1) in (2), we get

0
1 1

1 0<
−�


�

�

�
� < ∀ >

h

e

h
h

h

log , …(3)
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Now, replacing h by x in (3), we get

0
1 1

1<
−�


�

�

�
� <

x

e

x

x

log  for x > 0 which is the

required inequality.

Question 4: Prove by using Lagrange’s mean value
theorem that log (1 + x) < x when x > 0.
Solution: Let f (x) = log (1 + x) – x which is defined on
[0, x]

⇒ = − = =f 0 1 0 1 0� � log log

f x x x� � � �= + −log 1

∴ ′ =
+

− =
− −
+

= −
+

f x
x

x

x

x

x
� � 1

1
1

1 1

1 1

� h b a x
h x
= − = −

⇒ =
�
��

	

�

0
θ θ

⇒ ′ + = ′ + = ′ =
−
+

f a h f h f x
x

x
θ θ θ

θ
θ

� � � � � �0
1

Now f (x) = log (1 + x) – x is continuous and
differentiable on [0, x].

⇒  L.M.V.T is applicable on [0, x]

⇒
−
−

= ′
f x f

x
f x

� � � � � �0

0
θ  0 1< <θ

⇒
+ − −
−

=
−
+

log 1 0

0 1

x x

x

h

h

� � θ
θ

⇒
+ −

=
−
+

log 1

1

x x

x

x

x

� � θ
θ …(1)

Now, 
x

x x

x

xlog 1

1

+ −
= −

+
� �

θ
θ

⇒
+ −

= − −x

x x xlog 1

1
1

� � θ

⇒
+ −

+ = −x

x x xlog 1
1

1

� � θ

⇒
/ + + − /

+ −
= −

x x x

x x x

log

log

1

1

1� �
� � θ

⇒
+

+ −
= −

log

log

1

1

1x

x x x

� �
� � θ

⇒
+

+ −
= −

x x

x x

log

log

1

1

1� �
� � θ

⇒
+ −

+
= −

log

log

1

1

x x

x x

� �
� � θ

⇒
− +

+
=

x x

x x

log

log

1

1

� �
� � θ

Now since, 0 1< <θ

⇒ <
− +

+
0

1

1

x x

x x

log

log

� �
� �

⇒ < − + + >0 1 1 0x x x xlog log� � � �� ��

⇒  log (1 + x) < x which is the required inequality.
Question 5: Apply Lagrange’s mean value theorem
to the function f (x) = log (1 + x) to show that

0
1

1

1
1 0<

+
− < ∀ >

log x x
x

� �
, .

Solution: f (x) = log (1 + x)

⇒ = =f 0 1 0� � log

⇒ ′ =
+

f x
x

� � 1

1

⇒ ′ =
+

f c
c

� � 1

1

⇒ ′ + = ′ + = ′ = ′ =
+

f a h f h f h f x
x

θ θ θ θ
θ

� � � � � � � �0
1

1

Now, using L.M.V.T, we get

f b f a

b a
f c

� � � � � �−
−

= ′ ; a < c < b

⇒
+ −
−

=
+

=
+

>
log log

; for
1 1

0

1

1

1

1
0

x

x c x
x

� �
θ

0 1< <θ� �
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⇒
+ −

=
+

log 1 0 1

1

x

x x

� �
θ

⇒
+

=
+

log 1 1

1

x

x x

� �
θ

⇒ + =
+

log x
x

x
1

1
� �

θ

⇒
+

=
+1

1

1

log x

x

x� �
θ

⇒
+

= +x

x
x

log 1
1� � θ

⇒
+

− =x

x
x

log 1
1

� �
θ

⇒
+

− =x

x x xlog 1

1

� �
θ

⇒
+

− =1

1

1

log x x� � θ …(1)

Now, using the inequality 0 1< <θ …(2)

Putting (2) in (1), we get

0
1

1

1
1<

+
− <

log x x� �
 which is the required

inequality.

Question 6: Prove that 
b a

b
b a

−

+
< −− −

1
2

1 1
tan tan

< −

+

b a

a1
2  if a < b by using Langrange’s mean value

theorem.
Proof: Let f (x) = tan–1 x

∴ = −
f a a� � tan

1

f b b� � = −
tan

1

′ =
+

f x
x

� � 1

1
2

′ =
+

f c
c

� � 1

1
2

Now, tan–1 x being continuous and differentiable
on any finite interval implies that L.M.V.T is applicable
to tan–1 x on [a, b].

⇒
−
−

= ′
f b f a

b a
f c

� � � � � � , a < c < b

⇒
−
−

=
+

− −
tan tan

1 1

2

1

1

b a

b a c
…(1)

Now, since, a < c < b

⇒ > ⇒ > ⇒ + > +c a c a c a
2 2 2 2

1 1

⇒
+

<
+

1

1

1

1
2 2

c a
…(1)

Again, c b c b c b< ⇒ < ⇒ + < +2 2 2 2
1 1

⇒
+

>
+

1

1

1

1
2 2

c b
…(2)

(1) and (2) ⇒
+

<
+

<
+

1

1

1

1

1

1
2 2 2

b c a
…(3)

Putting (1) in (3)

⇒
+

<
−
−

<
+

− −
1

1

1

1
2

1 1

2
b

b a

b a a

tan tan
...(4)

Now, multiplying both sides of (4) by (b – a)

� b a− >� �� �0 , we have 
b a

b
b a

−

+
< −− −

1
2

1 1
tan tan

<
−

+

b a

a1
2  which is the required inequality.

Note: In establishing elementary functional
inequalities, a slight adjustment in the choice of f (x)
save many times much labour while using L.M.V.T.
⇒  1. Existance of t-function in the required
inequality
⇒  f (x) = t-function of x which is continuous and
differentiable in any finite interval.
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2. Existance of inverse t-function in the required
inequality
⇒  f (x) = t –1–function of x which is continuous and
differentiable in any finite interval.
3. Existance of log-function in the required inequality
⇒  f (x) = log x which is continuous and differentiable
in any finite interval.
4. Existance of exponential function in the required
inequality
⇒  f (x) = ex which is continuous and differentiable in
any finite interval.

Question 7: Prove by L.M.V.T

(b – a) sec2 a < tan b – tan a < (b – 1) sec2 b if

0
2

< < <a b
π

.

Solution: Let f (x) = tan x which is continuous and
differentiable on any closed interval [a, b] where

0
2

< < <a b
π

.

⇒  By applying L.M.V.T, 
f b f a

b a
f c

� � � � � �−
−

= ′ ;

(a < c < b)

⇒
−
−

=
tan tan

sec
b a

b a
c

2
…(1)

Now, a < c < b

⇒ < <sec sec sec
2 2 2

a c b …(2)

�  sec x is increasing in 0
2

,
π�

��
	

�

Now, putting (1) in (2), we get

sec
tan tan

sec
2 2

a
b a

b a
b<

−
−

<

⇒  (b – a) sec2 a < tan b – tan a < (b – a) sec2 b
which is the required inequality.

Question 8: Prove by L.M.V.T

b a

b

b

a

b a

a

− < < −
log  where 0 < a < b.

Solution: Let f (x) = log x which is continuous and
differentiable in any finite interval.

⇒  f (x) is continuous and differentiable in [a, b],
where 0 < a < b.

⇒  L.M.V.T is applicable on f (x) defined in the
closed interval [a, b].

⇒  There is a point c s.t. a < c < b satisfying the

equality 
f b f a

b a
f c

� � � � � �−
−

= ′

⇒
−
−

=
log logb a

b a c

1
…(1)

Now, a < c < b

⇒ > >
1 1 1

a c b
…(2)

Putting (1) in (2), we get

1 1

a

b a

b a a
>

−
−

>
log log

⇒
−

>
−
−

× − >
−b a

a

b a

b a
b a

b a

b

� �
� � � � � �log log

⇒
−

> − >
−b a

a
b a

b a

b

� � � �
log log  which is the

required inequality.

Question 9: Show that sin x < x for x > 0 by using
L.M.V.T.
Solution: Let f (x) = sin x

sin x is continuous and differentiable in any finite
interval.

⇒  sin x is continuous and differentiable in [0, x].

⇒  Lagrange’s mean value theorem is applicable
to f (x) = sin x on [0, x].

⇒ ∃  a number c s.t. 0 < c < x for which

f b f a

b a
f c

� � � � � �−
−

= ′

� f (x) = sin x

∴ f (0) = sin 0 = 0 = f (a)

f (x) = sin x = f (b)

′ =f x x� � cos

′ =f c x� � cos
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Hence, ′ =
−
−

f c
f b f a

b a
� � � � � �

⇒ =
−
−

cos
sin sin

c
x

x

0

0

⇒ =cos
sin

c
x

x
 for x <

π
2

…(1)

0 1< ⇒ <c ccos

⇒ <
sin x

x
1 [from (1)]

⇒ <sin x x

For x ≥ π
2

, the result.

sin x < x is obvious as sin x ≤ <1
2

π

Question 10: Using Lagrange’s mean value theorem,

show that tan
−

≤ ∀ ≥
1

0x x x, .

Solution: Let f (x) = tan–1 x
tan–1 x is continuous and differentiable in any

finite interval.
⇒  tan–1 x is continuous and differentiable in

[a, b] = [0, x]
⇒  L.M.V.T is applicable to f (x) = tan–1 x

⇒
−
−

= ′
f b f a

b a
f c

� � � � � � , for some ‘c’, a < c < b.

⇒
−
−

=
+

− −
tan tan

1 1

2

0

0

1

1

x

x c

⇒ =
+

−
tan

1

2

1

1

x

x c

⇒ =
+

−
tan

1

2
1

x
x

c
…(1)

Now, 
x

c
x x

1
0

2+
< ∀ ≥, …(2)

(Since, 1 + c2 > 1)
Putting (1) in (2), we get

tan
− ≤1

x x

⇒ ≤
−

tan
1

x x

⇒ ≤ = ≥
−

tan for
1

0x x x x x� ,� �  which

is the required result.

Question 11: If 0 < <x y , then show that

x – sin x < y – sin y by using L.M.V.T in [x, y].

Solution: Let f (x) = sin x

f y f x

y x
f c

� � � � � �−
−

= ′ , for some ‘c’, x < c < y

[� sin x is continuous and differentiable in any
finite interval]

⇒
−
−

=
sin sin

cos
y x

y x
c …(1)

Since 0 < c

∴ <cosc 1 …(2)

Putting (1) in (2), we get

sin siny x

y x

−
−

< 1

⇒ − < −sin siny x y x

⇒ − < −x x y ysin sin  which is the required

inequality.

Question 12: If ′ =
+

f x
x

� � 1

1
2  for all x and f (0) =

0, show that 0.4 < f (2) < 2.

Solution: � ′ =
+

f x
x

� � 1

1
2

⇒  f (x) is continuous and differentiable in any
finite interval.

⇒  f (x) is continuous and differentiable in [0, 2].

⇒  L.M.V.T is applicable to f (x) defined in [0, 2].
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⇒
−
−

= ′ =
+

f f
f c

c

2 0

2 0

1

1
2

� � � � � �

for some c, 0 < c < 2

⇒
−

=
+

f

c

2 0

2

1

1
2

� �

⇒ =
+

f
c

2
2

1
2

� � …(1)

Now, 0 < c < 2

⇒ < <0 2
2 2 2

c

⇒ < <0 4
2

c

⇒ < + < +1 1 4 1
2

c

⇒ >
+

>1
1

1

1

52
c

⇒ >
+

>2

1

2

1

2

52
c ...(2)

Putting (1) in (2), we get

2 2
2

5
> >f � �

⇒ > >2 2 0 4f � � .

⇒ < <0 4 2 2. f � �
which is the required inequality.
Question 13: Prove by the mean value theorem

sin sina b a b− ≤ −
Solution: Let b > a

f (x) = sin x
f (x) is continuous and differentiable in any finite

interval.
⇒  L.M.V.T is applicable to sin x in any interval

[a, b].
� f (x) = sin x
⇒  f (a) = sin a
f (b) = sin b
Again, f ' (x) = cos x
⇒  f ' (c) = cos c
Now, using L.M.V.T, we have

f b f a

b a
f c

� � � � � �−
−

= ′  for some ‘c’, a < c < b

⇒
−
−

sin sinb a

b a
 = cos c which can be further

written as

sin sin
cos

a b

a b
c

−
−

=

⇒
−
−

=
sin sin

cos
a b

a b
c …(1)

Again, since, cosc ≤ 1 …(2)

Putting (1) in (2), we get

sin sina b

a b

−
−

≤ 1

⇒ − ≤ −sin sina b a b …(3)

If a > b, then we can consider the interval [b, a] i.e.,

if a > b, ∃  a number c a b∈ ,� �  s.t.

′ =
−
−

f c
f a f b

a b
� � � � � �

⇒
−
−

=
sin sin

cos
a b

a b
c  and we prove as above

that

sin sina b a b− ≤ − …(4)

For a = b

sin sina b a b− = − = =0 0 …(5)

Hence, the result follows for any a, b.
Question 14: Using Lagrange’s mean value theorem,

show that cos cosa b a b− ≤ − .

Solution: � f (x) = cos x
f (a) = cos a
f (b) = cos b

′ = −f x x� � sin

′ = −f c c� � sin

f (x) = cos x = a continuous and differentiable
function in any finite interval.
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⇒  L.M.V.T is applicable to cos x in [a, b] if b > a.
Now, using L.M.V.T,

f a f b

a b

f b f a

b a
f c

� � � � � � � � � �−
−

=
−
−

= ′ , for some

c; a < c < b

⇒
−
−

= −
cos cos

sin
a b

a b
c

⇒
−
−

= − =
cos cos

sin sin
a b

a b
c c …(1)

Again, since sin c ≤ 1 …(2)

Putting (1) in (2), we get

cos cosa b

a b

−
−

≤ 1

⇒ − ≤ −cos cosa b a b …(3)

Similarly, if a > b, then considering the interval

[a, b], we have 
f a f b

a b
f c

� � � � � �−
−

= ′

∴ − =
−
−

sin
cos cos

c
a b

a b
 and we prove as above

that

cos cosa b a b− ≤ − …(4)

The result is obvious for a = b.
Hence, the result follows for any a, b.

Question 15: Prove that

tan tan
− −

− < − ∀ ≠
1 1

x y x y x y,

Solution: Let f (x) = tan–1 x

⇒ = −f y y� � tan 1

′ =
+

f x
x

� � 1

1
2

⇒ ′ =
+

f c
c

� � 1

1
2

Now, f (x) = tan–1 x which is continuous and
differentiable in any finite interval.

⇒  L.M.V.T is applicable to f (x) = tan–1 x in [x, y]
if y > x.

⇒ ∃  a number ‘c’; x < c < y such that

f y f x

y x

f x f y

x y
f c

� � � � � � � � � �−
−

=
−
−

= ′

⇒ −
−

=
+

− −
tan tan

1 1

2

1

1

x y

x y c

Now, taking the mod of both sides, we get

tan tan
− −

−
−

=
+

=
+

1 1

2 2

1

1

1

1

x y

x y c c
…(1)

Again, c c
c

> ⇒ + > ⇒
+

<0 1 1
1

1
1

2

2
   …(2)

∴ From (1) and (2),

tan tan
− −

−
−

<
1 1

1
x y

x y

∴ − < −
− −

tan tan
1 1

x y x y

If x > y, then considering L.M.V.T in [y, x], we have
the same result (3).

Hence, (3) is true ∀ ≠x y .

Problems based on, Cauchy's mean value theorem,
Lagrange’s mean value theorem and Rolle’s theorem

Statement of Cauchy's Mean Value Theorem:
If two functions f (x) and g (x) defined on [a, b] are

(i) continuous in the closed interval [a, b]
(ii) differentiable in the open interval (a, b).
(iii) ′ ≠g x� � 0  for any x a b∈ ,� �  then there exists
at least one real number c between a and b [i.e.,
c a b∈ ,� � ] such that

f b f a

g b g a

f c

g c

� � � �
� � � �

� �
� �

−
−

=
′
′

Note: 1. Cauchy's mean value theorem cannot be
deduced by applying Lagrange’s mean value theorem
separately to the two functions f (x) and g (x) and
then dividing them since then we get
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f b f a

g b g a

f c

g c

� � � �
� � � �

� �
� �

−
−

=
′
′

1

2

where c1 and c2 may not be equal.
2. Cauchy's mean value theorem is also known as
second mean value theorem whereas Lagrange’s mean
value theorem is known as first mean value theorem.

Examples Worked Out

Question 1: If f (x) and g(x) are differentiable on

0 1≤ ≤x  such that f (0) = 2, g (0) = 0, f (1) = 6, g (1) = 2
and ′ ≠g x� � � �0 0 1in ,  then show that there exists
c satisfying  0 < c < 1 and ′ = ′f c g c� � � �2 .
Solution: It is a question on Cauchy's mean value
theorem since it satisfies all the conditions of Cauchy's
mean value theorem.

Now, according to Cauchy's mean value theorem,
we have

f b f a

g b g a

f c

g c

� � � �
� � � �

� �
� �

−
−

=
′
′

 for some c, a < c < b

⇒
−
−

=
′
′

f f

g g

f c

g c

1 0

1 0

� � � �
� � � �

� �
� �  for some c, 0 < c < 1

⇒
−
−

=
′
′

6 2

2 0

f c

g c

� �
� �  [� f (1) = 6, g (1) = 2, … etc are

given]

⇒ =
′
′

⇒ =
′
′

⇒ ′ = ′4

2
2 2

f c

g c

f c

g c
f c g c

� �
� �

� �
� � � � � �

Alternative Method:
We suppose that h (x) = f (x) – 2g (x)
f (x) and g (x) are given differentiable on the closed

interval [0, 1].
⇒  f (x) and g (x) are continuous on the closed

interval [0, 1] and differentiable in the open interval
(0, 1).

⇒  h (x) being the difference of two differentiable
functions in [0, 1] is also differentiable in [0, 1].

⇒  h (x) is continuous in [0, 1] and differentiable
in (0, 1).

Now h (x) = f (x) – 2g (x)
∴  h (0) = f (0) – 2g (0) = 2 – 2 × 0 = 2

[� f (0) = 2, g (0) = 0]

h (1) = f (1) – 2g (1) = 6 – 2 × 2 = 6 – 4 = 2
[� f (1) = 6, g (1) = 2]

Hence, we observe that h (0) = h (1)
∴ All conditions of Rolle’s theorem are satisfied.
Therefore, there is at least one point x = c where

h ' (x) = 0, i.e.,

′ = ⇒ ′ = ′ − ′ == = =h x h x f x g x
x c x c x c

� � � � � � � �0 2 0

⇒ ′ − ′ ==f x g x
x c� � � �2 0

⇒ ′ − ′ =f c g c� � � �2 0

⇒ ′ = ′f c g c� � � �2  which is the required result.

Question 2: If f (x) and g (x) are continuous on [a, b]
and differentiable in (a, b), then show that

f a f b

g a g b
b a

f a f c

g a g c

� � � �
� � � � � � � � � �

� � � �= −
′
′

 where a < c < b.

Solution: (1) Let F x
f a f x

g a g x
� � � � � �

� � � �=

= f (a) g (x) – g (a) f (x) …(i)
where f (a) and g (a) are constants.

f (x) and g (x) are continuous on the closed interval
[a, b] and differentiable on the open interval (a, b).

∴ F (x) being the difference of two continuous
function in [a, b] and differentiable in the open interval
(a, b) is also continuous in [a, b] and differentiable in
(a, b). Which implies that all conditions of Lagrange’s
mean value theorem are satisfied by the function f (x)
defined on [a, b]. Therefore, by mean value theorem,

∃  at least one point c, a < c < b, such that

′ =
−
−

F c
F b F a

b a
� � � � � �

…(ii)

(2) � F x f a g x g a f x� � � � � � � � � �= −  (form (1))

∴ = − =F a f a g a g a f a� � � � � � � � � � 0 ...(iii)

F b f a g b g a f b� � � � � � � � � �= − ...(iv)

′ = ′ − ′F x f a g x g a f x� � � � � � � � � �
′ = ′ − ′F c f a g c g a f c� � � � � � � � � � …(v)

Now, putting (iii), (iv) and (v) in (ii), we get

f a g c g a f c
f a g b g a f b

b a
� � � � � � � � � � � � � � � �

′ − ′ =
⋅ − ⋅

−
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⇒ − ′ − ′b a f a g c g a f c� � � � � � � � � �
= ⋅ − ⋅f a g b g a f b� � � � � � � �

⇒ = −
′
′

f a f b

g a g b
b a

f a f c

g a g c

� � � �
� � � � � � � � � �

� � � �

Question 3: For all x in the interval [0, 1], let the second
derivative ′′f x� �  of a function f (x) exists and satisfy

′′ ≤f x� � 1.
If f (0) = f (1), show that | f ' (x) | < 1 for all x in the

interval [0, 1].

Solution: Given ′′f x� �  exists for all values of x in

[0, 1] …(1)
And also, f (0) = f (1) …(2)

′′ ≤f x� � 1 …(3)

To show: | f ' (x) | < 1

Proof: ′′f x� �  exists for all values of x in [0, 1].

⇒  f (x) and f ' (x) are differentiable in [0, 1]  …(4)
and we are given f (0) = f (1) …(5)
(4), (5)⇒  f (x) satisfy all conditions of Rolle’s theo-
rem on [0, 1] ⇒ ∃  at least one value of x = c in the
open interval (0, 1) s.t. ′ =f c� � 0 …(6)

Now we consider three cases, x < c, x > c, x = c
Case (i) When x = c

� ′ =f c� � 0  (from (6))

∴ ′ =f x� � 0

⇒ ′ = = <f x� � 0 0 1

⇒ ′ <f x� � 1 when x = c ...(7)

Case (ii) When x < c
Further, f' (x) is continuous on [0, 1] and differen-

tiable on (0, 1)
⇒  Lagrange’s mean value theorem is applicable

on f ' (x) in [x, c] if 0 < x < c.

⇒ ′′ =
′ − ′

−
f d

f c f x

c x
� � � � � �

 for some d,

0 1≤ < < <x d c

⇒ ′′ =
′ − ′

−
f d

f x f c

x c
� � � � � �

⇒ ′′ − = ′f d x c f x� � � � � �
[� ′ =f c� � 0  from (7)]

⇒ ′′ − = ′f d x c f x� � � � � �

⇒ ′′ ⋅ − = ′f d x c f x� � � �

⇒ ′′ =
′
−

f d
f x

x c
� � � �

…(8)

Now, 0 1 1≤ < ⇒ − <x x c …(9)

Again ′′ ≤ ⇒ ′′ ≤f x f d� � � � � �1 1given  (on

replacing x by d)  …(10)
Now, using (8) and (9) in (10), we get

′
−

≤ ′′ =
′
−

�
�
�

	


�

f x

x c
f d

f x

x c

� � � � � �
1 �

⇒ ′ ≤ −f x x c� � …(11)

and | x – c | < 1

∴ ′ <f x� � 1 Which is the required result.

Case (iii): When x > c

′ − ′
−

= ′′ < < ≤ <
f x f c

x c
f d c d x

� � � � � � , 0 1

⇒
′ −
−

= ′′ ′ =
f x

x c
f d f c

� � � � � �0
0�

⇒ ′ = − ′′f x x c f d� � � � � �

⇒ ′′ =
′

−
f d

f x

x c
� �

� �
…(a)

Now, 0 1 1≤ < < ⇒ − <c x x c …(b)

Again, ′′ ≤f x� � 1 (given)

⇒ ′′ ≤f d� � 1  (replacing x by d) ...(c)

On using (a) in (c), we get
′
−

≤
f x

x c

� �
1

⇒ ′ ≤ −f x x c� � …(d)

and | x – c | < 1 (from (b))
∴ ′ <f x� � 1 which is the required result.
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An important type of problem

When the values of one function at the end points of
the closed interval [a, b] are given as well as f ' (c) is
required to show to be a constant ‘d’ where a < c < b.

Note: 1. Values of a function at the end points are
not equal (i.e., f a f b� � � �≠ ) and the given function
is continuous in the closed interval and differentiable
in open interval or simply the given function is
differentiable in the closed interval means L.M.V.T is
applicable.
2. In this type of problem functions are not given as
an expression in x like x2, log x, ex etc but in notational
form y = f (x) or g (x) etc are given.
3. When the values of two functions f (x) and g (x) at
the end points of the closed interval [a, b] are given
as well as f ' (c) and g ' (c) are given besides f (x) and
g (x) are differentiable in the closed interval [a, b],
then we are required to Cauchy mean value theorem.
(where a < c < b).

Examples Worked Out

Question 1: If a function f (x) is differentiable in the
closed interval [2, 5] and f (2) = 5, f (5) = 11, then show
that there will be at least one ‘c’ where 2 < c < 5 such
that f ' (c) = 2.
Solution: � f (x) is differentiable in [2, 5]

⇒  f(x) is continuous in [2, 5] as well as differen-
tiable in (2, 5).

⇒  All conditions of L.M.V.T are satisfied.
⇒  According to L.M.V.T, ∃  at least one c,
2 < c < 5 s.t.

′ =
−
−

=
=

�
��

	

�f c

f f f
f� � � � � � � �
� �

5 2

5 2
2 5

5 11
�

are given

=
−
−

=
11 5

5 2
2  which was required to show.

Problems based on proving inequalities with the help
of Rolle’s theorem and Lagrange’s mean value
theorem

Exercise 20.9

1. If 0
2

< < <a b
π

, show that

(a) sin sinb a b a− < −

(b) a a b b− < −sin sin
2. Show that log (1 + x) < x, where x > 0.
3. Using the function f (x) = tan–1 x, show that

b a

b
b a

b a

a

−
+

< − <
−
+

− −

1 12
1 1

2
tan tan  where 0 < a < b.

4. If 0
2

< < <a b
π

, show that

(a) | cos b – cos a | < | b – a |
(b) tan–1 b – tan–1 a < b – a

(c)
tan

tan

b

a

a

b
>

5. If 0
2

≤ <x
π

, show that

(a) sin x < x
(b) tan x > x

(c) cos x
x

> −1
2

2

6. Show that 1 1 1
2 2+ + +�

�
�
�� ≥ +x x x xlog

if x > 0.
7. Show that

(a) b a

b

b

a

b a

a

− < < −
log  if 0 < a < b

(b)
b a

a
b a

b a

b

−
< − <

−

cos
tan tan

cos
2 2

 if 0
2

< < <a b
π

.

Problems based on an important type

Exercise 20.10

1. If f (x) is differentiable in the closed interval [–1, 2],
where f (–1) = 3, f (2) = 6, show that there exists a
number c, –1 < c < 2, for which f ' (c) = 1.
2. If a function f (x) is differentiable in the closed
interval [0, 3] and f (0) = 10, f (3) = 25, then show that
there exists at least one c, where 0 < c < 3 such that
f ' (c) = 5.
3. If f (x) is differentiable in [–1, 2] where f (–1) = 3,
f (2) = –3 then show that there exists a point c,
–1 < c < 2, for which f ' (c) = –2.
4. If f (x) is continuous in [–2, 2] and differentiable in
(–2, 2) where f (–2) = 3, f (2) = 1, then show that there

exists a number c, –2 < c < 2 such that ′ = −f c� � 1

2
.
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5. If the function f (x) and g (x) are differentiable in
[–1, 1], then show that there exists a point c,
–1 < c < 1 for which

f f

g g

f f c

g g c

−
−

=
− ′
− ′

1 1

1 1
2

1

1

� � � �
� � � �

� � � �
� � � � .

6. If the function f (x) and g (x) be differentiable in the
closed interval [1, 3], show that there exists at least
one point c, where 1 < c < 3, such that

f f

g g

f f c

g g c

1 3

1 3
2

1

1

� � � �
� � � �

� � � �
� � � �=

′
′ .
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Monotonocity of a Function

On Monotonocity of a Function

Definition 1: A function y f x= � � defined on its
domain D is called an increasing function in D if, for
any two different values of the independent variable
x in D, to the greater value of x, there is always a
greater value of the function ( i.e., value of the
dependent variable y).

That is, a function y f x= � � defined in an interval
D is said to be increasing or rising in D if y, i.e., f x� �
increases as x increase in the interval D. That is, if x1

and x2  are two values of x in the interval D where the
given continuous function f is defined by the formula
y f x= � � such that x x f x f x1 2 1 2< ⇒ <� � � � then
y f x= � � is said to be increasing in the interval D.
Geometrically, it means that as one moves from left to
right, values of the function f, i.e., values of the
dependent variable y increase.

Note: A function y f x= � � is an increasing function
in an interval D

⇔ f (x + h) > f (x)

for all x in the interval D, where h is any positive
number such that x h D+ ∈ .

Definition 2: A function y f x= � � defined on its
domain D is called a decreasing function in D if, for
any two different values of the independent variable
x in D, to the greater value of x, there is a always a
smaller value of the function (i.e., value of the
dependent variable y).

That is, a continuous function y f x= � � defined
on an interval D is said to be decreasing or falling in D
if y, i.e., f (x) decreases as x increases in the interval D.

That is, if x1 and x2  are any two values of x in the
interval D where a given continuous function f is
defined by the formula y f x= � �  such that
x x f x f x1 2 1 2< ⇒ >� � � � then y f x= � � is said to
be decreasing in the interval D.Geometrically, it means
that as one moves from left to right, values of the
function f , i.e. values of the dependent variable y
decrease.

Note: A function y f x= � � is a decreasing function
in an interval D.

⇔  f (x + h)  < f (x)

for all values of  x in the interval D, where h is any
positive number such that x h D+ ∈ .

y f x =  ( )

f
x

 (
)

 1

f
x

 (
)

 2

x2 xo

y

y f x =  ( )

f
x (

)
 1

f
x (

)
 2

x2 xo

y
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Remarks: 1. A function y f x= � �  is said to be
increasing at a point a if there is a h-neighbourhood
of the point a in which f x f a� � � �>  for x a> ,
f x f a� � � �<  for x a< .

That is, a function y f x= � � is said to be increasing
at a point x = a , if there exists an open interval
a h a h− +,� �  containing a i.e.,

a h a− ∪,�  a a h, + �  such that f x� �  is
increasing in the open interval a h a h− +,� � .

2. A function y f x= � � is said to be decreasing at a
point a if there is a h - neighbourhood of the point a
in which f x f a� � � �<  for x a f x f a> >, � � � �  for
x a< .

That is, a function y f x= � �  is said to be
decreasing at a point x = a if there exists an open
interval a h a h− +,� �  containing a i.e.,

a h a− ∪,�  a a h, + �  such that f x� �  is
decreasing in the open interval a h a h− +,� � .
3. The statement “ a function is increasing or
decreasing ” is not precise unless it is clearly
mentioned in the problem “ the point or the interval ”
where it is increasing or decreasing.
4. One should take notice carefully in the language
of definition where x is always supposed to be
increasing while the function may be increasing or
decreasing.
5. It is not necessary that a function must be either
increasing or decreasing on its domain, i.e., the same
function may be increasing in some interval and
decreasing in other interval.

Hence, such a function which is increasing in
certain interval and decreasing in another interval is
termed as a mixed function.

In the adjoining figure, f x� � is increasing in a b,
and decreasing  in b c,  .

6. The symbol �  stands for increasing or increasing
functions whereas the symbol � stands for decreasing
or decreasing functions.

On the Use of Terminology

According to some authors, a function y f x= � � is
monotonically increasing, non decreasing or simply
increasing in an interval, if, for any x x1 2,  belonging
to the interval x x f x f x1 2 1 2< ⇒ ≤� � � �  and strictly
increasing in the interval if x x f x f x1 2 1 2< ⇒ <� � � � .

That is, a nondecreasing or increasing function
differs from a strictly increasing function, i.e., in a
nondecreasing function, two values of the function
(at different values of the independent variable) may
be equal while this is not possible in the case of a
strictly increasing function. Likewise, they define
monotonically decreasing, nonincreasing or simply
decreasing functions in the intervals, i.e., a function
y f x= � � is monotonically decreasing, nonincreasing
or simply decreasing in an interval if, for any x x1 2,
belonging to the interval x x f x f x1 2 1 2< ⇒ ≥� � � �
and strictly decreasing in the interval if x x1 2<

⇒ >f x f x1 2� � � � .

That is, a monotonically decreasing, nonincreasing
or simply decreasing differs from a strictly increasing
function, i.e., in a nonincreasing function, two values
of the function (at different values of the independent
variable) may be equal while this is not possible in
the case of a strictly decreasing function.

Moreover, a function which is either nondecrea-
sing or nonincreasing is termed as monotone or
monotonic function and a function which is either
strictly increasing or strictly decreasing is termed as
strictly monotone or monotonic function.

On first derivative for increasing and
decreasing functions

Theorem 1: A differentiable function y f x= � � is
increasing on an open interval a b f x,� � � �⇔ ′ > 0
for all x in (a, b).
Proof: A function y f x= � � is increasing on (a, b)

⇔ + >f x h f x� � � � for all x in (a, b), where h is

small positive number such that x h a b+ ∈ ,� �xo

y

A
C

B

x = cx = bx = a
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⇔ + − >f x h f x� � � � 0  for all x in (a, b)

⇔
+ −

>
f x h f x

h

� � � �
0  for all x in (a, b)

⇔
+ −

>
→

lim
h

f x h f x

h0
0

� � � �
 for all x in (a, b)

⇔ ′ >f x� � 0   for all x in (a, b).

Theorem 2: A differentiable function y f x= � � is
decreasing on an open interval a b f x,� � � �⇔ ′ <0
for all x in (a, b).

Proof: A function y f x= � � is decreasing on (a, b).

⇔ + <f x h f x� � � � for all x in (a, b), where h is a

sufficiently small positive number.

⇔ + − <f x h f x� � � � 0  for all x in (a, b)

⇔
+ −

<
f x h f x

h

� � � �
0  for all x in (a, b)

⇔
+ −

<
→

lim
h

f x h f x

h0
0

� � � �
 for all x in (a, b)

⇔ ′ <f x� � 0   for all x in (a, b).

Theorem 3: If y f x= � � is a continuous function on
[a, b] and differentiable on (a, b) then ′ >f x� � 0  for
all x in (a, b) ⇒ =y f x� �  increases on [a, b].

Proof: Let x x a b1 2, ,∈ such that a x x b≤ < ≤1 2 .
As y f x= � �  satisfies both the conditions of
Lagrange’s mean value theorem in x x1 2, , this is
why ∃ a real number c in x x1 2,� �  such that

f x f x

x x
f c2 1

2 1

� � � � � �−
−

= ′  which further

⇒ − = − ′ >f x f x x x f c2 1 2 1 0� � � � � � � � ,

since x x2 1>  and ′ >f c� � 0 .

⇒ − >f x f x2 1 0� � � �
⇒ > >f x f x x x2 1 2 1� � � � for

⇒ =y f x� �  is increasing in [a, b].

Theorem 4: If y f x= � � is a continuous function in
[a, b] and differentiable in (a, b), then ′ <f x� � 0  for
all x in (a, b) ⇒ =y f x� �  decreases in [a, b].

Proof: Let x x a b1 2, ,∈  such that a x x b≤ < ≤1 2 .
As y = f (x) satisfies both the conditions of Lagrange’s
mean value theorem ∃ a real number ‘c’ in x x1 2,� �
such that

f x f x

x x
f c2 1

2 1

� � � � � �−
−

= ′

⇒ − = − ′ <f x f x x x f c2 1 2 1 0� � � � � � � �
since x x2 1>  and ′ <f c� � 0 .

⇒ − = + − = − <f x f x ve ve ve2 1 0� � � � � � � � � �
⇒ − <f x f x2 1 0� � � �
⇒ <f x f x2 1� � � �
⇒ f x� �  is decreasing in [a, b]

Note: in the right hand side of the equality

f x f x f c x x2 1 2 1� � � � � � � �− = ′ − ,

the sign of x x2 1−� �  is always positive whereas the

sign of ′f c� �  is positive or negative according to the
hypothesis. This is why the right hand of the equality
f x f x f c x x2 1 2 1� � � � � � � �− = ′ −  has the same sign

as the sign ′f c� �  because x x2 1−� �  is always
positive.

How to know that a given monotonic function
y f x= � �  defined in an interval satisfies the

condition x x1 2<  ⇒ <
>f x f x1 2� � � �

1. Take any two particular numbers namely c c1 2, ∈
given interval such that c c1 2< .
2. Substitute c1 and c2  in the monotonic functions
and see whether f c f c f c f c1 2 1 2� � � � � � � �> <or .

How to know that a derived function ′ <
>f x� � 0  in an

interval where a given function y f x= � �  is defined

1. Take any particular number namely c ∈  given
interval.
2. Substitute c in the derived function ′f x� � .
3. See whether ′ > ′ <f c f c� � � �0 0or  for all c.

′ > ⇒ ′ > ∀ ∈f c f x x� � � �0 0 ,   given interval
and ′ < ⇒ ′ < ∀ ∈f c f x x� � � �0 0 ,  given interval.
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On the methods of examining monotonocity in a
given interval

There are two methods of examining or showing a
function y f x= � �  to be increasing or decreasing in
an interval.
1. Method of definition.
2. Method of first derivative test.

On method of definition

It consists of following steps:
1. Let x x1 2and  be any two real values of x in the
given interval such that x x x x1 2 1 2< >or
2. Find the difference

f x f x1 2� � � �−  or f(x2) – f(x1).
3. f x f x x x f x1 2 1 20� � � � � �− > > ⇒for

is increasing in the given interval

Also,  f x f x x x1 2 1 20� � � �− < >for
⇒ f x� � is decreasing in the given interval

is decreasing in the given interval.)

Note: All that is necessary in the method of definition

is to examine the sign of the difference f x f x1 2� � � �−
if  x x1 2>  where x x1 2, ∈ given interval.

On the method of first derivative test

It consists of the following steps:

1. Find ′f x� �
2. See whether ′ ∀ ∈<

>f x x� � 0 , given  interval.
3. ′ > ∀ ∈f x x� � 0 , given  interval.

⇒  f x� �  is increasing in the given interval and
′ < ∀ ∈f x x� � 0 , given  interval.

⇒  f x� �  is decreasing in the given interval.

Note: 1. All that is necessay in the method of first
derivative test is to examine the sign of the first
derivative ′f x� � in the given interval.
2. When no method is mentioned in the problem,
there may be the use of first derivative test.
3. Show that the given function y f x= � �  is
increasing or decreasing in the whole of its domain
when the interval ( where f x� � is defined) is not given
in the problem.

Now problems are divided in different categories
to explain their method of procedure.

Category A:

Problems based on showing a function y f x= � � to
be increasing or decreasing when ever any one of the
following restrictions is imposed on it ( by using
definition of increasing and decreasing function )

(i) x a≤ ± (ii) x a< ± (iii) x a≥ ±
(iv) x a> ± (v) x < 0 (vi) x ≤ 0

(vii) x > 0 (viii) x a≠ ±
(ix) ∀ x

Examples worked out:

1. Show that f x
x

x
� � =

+1
 is monotone increasing ,

x > 0 , without the use of derivative.

Solution: Let x1 and x2  be any two values of x s.t.
x x1 > >2 0

Now, f x
x

x1
1

11
� � =

+

f x
x

x2
2

21
� � =

+

∴ − =
+

−
+

f x f x
x

x

x

x1 2
1

1

2

21 1
� � � �

=
− − +
+ +

x x x x

x x
1 2 2 1

1 2

1 1

1 1

� � � �
� � � �

=
−

+ +
> > >

x x

x x
x x1 2

1 2
1 21 1

0 0� � � � since

which ⇒ − >f x f x1 2 0� � � �
⇒ >f x f x1 2� � � � when x1 > x2  which means

f x� �  is an increasing function for x > 0
Hence, proved.

2. Show that f x x� � = 2  for x ≥ 0 is an increasing
function without the use of derivative.
Solution: Let x1 and x2 be any two values of x, such
that x x1 2 0> ≥

Now, f x x1 1
2� � =

f x x2 2
2� � =

∴ − = − >f x f x x x1 2 1
2

2
2 0� � � �  when

x x1 2 0> ≥
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 ⇒ − >f x f x1 2 0� � � �
 ⇒ >f x f x1 2� � � � when x x1 > 2  which means

f x� �  is an decreasing function for x ≥ 0.
Hence, proved.

3. Show that f x x� � = 2
 for x ≤ 0 is a decreasing

function.

Solution: Let x1 and x2  be any two values of x s.t
x x2 < ≤1 0

Now f x x1 1
2� � =

f x x2 1
2� � =

∴ − = − <f x f x x x1 2 1
2

2
2 0� � � �  when

x x2 1 0< ≤
which ⇒ − ≤f x f x1 2 0� � � �

⇒ <f x f x1 2� � � � when x x2 < <1 0

Hence , f x� �  is a decreasing function for x ≤ 0

4. Show that f x x x x� � = + + −3 23 3 100
in increasing for all x R∈ .

Solution: Let x1 and x2  be any two values of x R∈

s.t. x x1 > 2

Now, f x x x x1 1
3

1
2

13 3 100� � = + + −

f x x x x2 2
3

2
2

23 3 100� � = + + −

∴ − = − + −f x f x x x x1 2 1
3

1
2

13 3 100� � � � � �
− + + −x x x2

3
2

2
23 3 100� �

= − + − − + − +x x x x x x1
3

1
2

1 2
3

2
2

23 3 100 3 3 100

= − + − + − >x x x x x x1
3

2
3

1
2

2
2

1 23 3 0	 
 	 
 � �

when x x1 > 2

Which ⇒ − >f x f x1 2 0� � � �   when  x x1 > 2 .

⇒ >f x f x1 2� � � �   when  x x1 > 2

Hence, f x� �  is an increasing function for all values
of x R∈ .
5. Show that f x x� � = +3 1  is an increasing func-
tion on R without using derivative.
Solution: Let x1 and x2  be any two values of x R∈
(i.e. x1,  x2 ∈R ) s.t x x1 > 2

Now f x x1 13 1� � = +

f x x2 23 1� � = +

∴ − = + − −f x f x x x1 2 1 23 1 3 1� � � �
= − >3 01 2x x� �  when x x1 > 2 .

Which ⇒ − >f x f x1 2 0� � � �   when  x x1 > 2

⇒ >f x f x1 2� � � �   when  x x1 > 2 .

Hence, f x� �  is an increasing function on R.

6. Show that  f x ax b� � = +  where a and b are
constants and  a > 0  is an increasing function of x
(without using the derivative) ∀ x

Solution: Let x1 and x2  be any two values of x R∈

(i.e. x1,  x2 ∈ R ) s.t x x1 > 2

Now, f x a x b1 1� � = +

f x a x b2 2� � = +

∴ − = + − −f x f x a x b a x b1 2 1 2� � � �
= − = −a x a x a x x1 2 1 2� �
⇒ − = − >f x f x a x x1 2 1 2 0� � � � � �  when  x x1 > 2

⇒ − >f x f x1 2 0� � � �  when  x x1 > 2

⇒ >f x f x1 2� � � �  when  x x1 > 2

Hence, f x� �  is an increasing function ∀ x .

Category B:

Type 1: Problems based on showing a function

y f x= � � to be increasing or decreasing at a point
x a=  by using derivative test.

Working rule:

1. Find 
dy

dx
f x= ′ � �

2. Find 
dy

dx
f x f a

x a
x a

�
�

�
��

= ′ = ′
=

=
� � � �

3. If ′ = +f a� � ve  number, then f x� � is an increasing

function at the point x a=
4. If ′ = −f a� � ve  number, then f x� �  is   decreasing
said function at  point x a= .
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Note :  ′ =f a� � 0 , then f x� �  is said to be  stationary
at the point x a=

Examples worked out:
1. Show that the function y x x= − +2 3 13  is
increasing at x = 1 and decreasing at x = 0

Solution : y x x= − +2 3 13

⇒ = −
dy

dx
x6 32

Now , 
dy

dx
x

x
x

�
�

�
��

= −
= =

1

2

1
6 3

= × − = − = = +6 1 3 6 3 3 ve  number

Hence, y x x= − +2 3 13  is an increasing

function at x = 1

Next, 
dy

dx
x

x
x

�
�

�
��

= −
= =

0

2

0
6 3

= × − = − = −6 0 3 3 ve  number

Hence, y x x= − +2 3 13  is a decreasing func-

tion at x = 0

Type 2: Problems based on showing that a given
function y f x= � � is increasing or decreasing when
any one of the following restrictions are imposed on
it.

(i) x a> ± (ii) x a≥ ± (iii) x a< ±
(iv) x a≤ ± (v) x > 0 (vi) x ≥ 0

(vii) x < 0 (viii) x ≤ 0 (ix) x a≠
(x) ∀ x  (where a is any + ve number) by  using

the derivative

Examples worked out:
1. Show that the function  y x x= − +4 4 1  is a
decreasing function when x < 1 and is an increasing
function when x > 1

Solution: y f x x x= = − +� � 4 4 1

⇒ ′ = − = −f x x x� � � �4 4 4 1
3 3

Now we have to determine the sign of x3 1−	 

with the help of given restriction:

� x < 1

⇒ <x3 1

⇒ − <x3 1 0  which ⇒ − = −x3 1 ve

⇒ ′ = −f x� � ve  , i.e;  ′ <f x� � 0  which means

that  f x� �  is a decreasing function when x < 1

2. Show that f x
x

x
� � = log

 is a decreasing function

for x > 3 .

Solution: f x
x

x
x� � � �= >

log
0

⇒ ′ =
⋅ − ⋅

=
−

f x
x

x
x

x

x

x
� �

1
1 1

2 2

log log

Now, we are required to determine the sign of

1
2

− log x

x
 with the help of given restriction :

� �x e e> = ⋅3 2 718281and 3 > � �
⇒ >x e

⇒ >log logx ee

⇒ >log x 1

⇒ − >log x 1 0

⇒ − <1 0log x

⇒
−

<
1

0
2

log x

x
 which means

1
2

−
= −

log
ve

x

x

∴ ′ = −f x� � ve  , i.e;   ′ <f x� � 0  which  ⇒  f x� �
is decreasing function when x > 3 .

3. Show that y x
x

x
= + −

+
log 1

2

2
� � � �  is an

increasing function of x for all values of  x > − 1

Solution: y f x x
x

x
= = + −

+
� � � � � �log 1

2

2

⇒ ′ =
+

−
+ −

+

�
��
��

�
��
��

f x
x

x x

x
� � � �

� �
1

1

2 2 2

2
2
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=
+

−
+

=
+ − +
+ +

1

1

4

2

2 4 1

1 22

2

2x x

x x

x x� �
� � � �
� � � �

=
+ + − −

+ +
=

+ +
4 4 4 4

1 2 1 2

2

2

2

2

x x x

x x

x

x x� � � � � � � �
Now we have to determine the sign of

x

x x

2

21 2+ +� �� �  whose sign depends only on the

factor 1+ x� �  in denominator because x 2  and

2 2+ x� �  are always + ve for being perfect squares.

Now we determine the sign of  1 + x� � with the help

of given restriction:

� x > − 1

⇒ + >1 0x   which means 1 + x� � = + ve

Hence, each term in the numerator and

denominator of  
x

x x

2

21 2+ +� � � �   is + ve.

∴ ′ =
+ +

= +f x
x

x x
� �

� �� �

2

2
1 2

ve  which means

that ′ >f x� � 0

Hence, f x� � is an increasing function for x > −1.

Note : Whenever the derived function ′f x� � contain
a linear factor along with factors which are perfect
squares, we examine the sign of  the linear factor only
with the help of given restriction.

4. Show that f x x x� � = + −6 9 2  is decreasing for

x ≥ 9

2
.

Solution: f x x x� � = + −6 9 2

⇒ ′ = −f x x� � 9 2
Now, we are required to determine the sign of

9 2− x� � with the help of given restriction :

� x ≥ 9

2

⇒ ≥2 9x

⇒ − ≥2 9 0x

⇒ − ≤9 2 0x  which means that 9 2− x� � = –ve

...(i)

which  ⇒  f x� � is decreasing function for x ≥ 9

2

5. Show that f x x x� � = − + −7 11 92  is decreas-

ing for x > 1.

Solution: f x x x� � = − + −7 11 92

⇒ ′ = − +f x x� � 14 11

Now we are required to determine the sign of

− +14 11x� �  with the help of given restriction:

� x > ⇒1

⇒ − < −14 14x

⇒ − + < − +14 11 14 11x
⇒ − + < − <14 11 3 0x

⇒ − + <14 11 0x  which means that (–14x + 11)

= –ve
This is why ′ = −f x� � ve , i.e;   ′ <f x� � 0  for

x > 1 which  ⇒  f x� �  is decreasing function for

x > 1.

6. Show that y x x x= + − +2 3 12 7
3 2  is increasing

and positive for  x > 1.

Solution: y f x x x x= = + − +� � 2 3 12 73 2

⇒ ′ = + − = + −f x x x x x� � 	 
6 6 12 6 22 2

Now we are required to determine the sign of
x x2 2+ −	 
  with the help of given restriction:

� x > 1

⇒ >x2 1

⇒ + > +x x x2 1

⇒ + − > + −x x x2 2 1 2

⇒ + − > − > >x x x x2 2 1 0 1�� �  which

⇒ + − = +x x2 2� � ve

′ = +f x� � ve , i.e;   ′ >f x� � 0  which  means that

f x� � is an increasing function when x > 1
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Next we are required to show  f x� � to be positive.

f 1 0� � =
and x f x f f x> ⇒ > ⇒ >1 1 0� � � � � �  (� f (1) = 0)

which means that f x� �  is positive.

Hence,  f x� � is increasing and positive for x > 1

Note: The following is a sufficient test for positivity
of a function for x > 0. If

(i) The function f x� � is continuous in 0 ≤ <x b

(ii) f 0� �  is non negative.

(iii) ′ >f x� � 0, when 0 < <x b  then f x� � > 0 in
0 < x < b.

This test remains valid even when ‘ b ’  is replaced
by ∞ . Hence these conditions are sufficient for  f x� �
to be positive for x > 0.

7. Show that the function y x
x

x
= + −

+
log 1

2

2
� �

is an increasing function for x > 0.

Solution: y f x x
x

x
= = + −

+
� � � �log 1

2

2

⇒ ′ =
+

−
⋅ + − ⋅

+
f x

x

x x

x
� � � � � �

� �
1

1

2 2 1 2

2 2

=
+

− + −
+

1

1

4 2 2

2 2x

x x

x� �
=

+
−

+
1

1

4

2
2x x� �

=
+ − +

+ +
=

+ + − −

+ +

2 4 1

1 2

4 4 4 4

1 2

2

2

2

2

x x

x x

x x x

x x

� � � �
� � � � � � � �

=
+ +

x

x x

2

2
1 2� � � �

Now we have to determine the sign of

x

x x

2

2
1 2+ +� � � �

 whose sign depends only on the

factor (1 + x) in denominator because x2 and (2 + x)2

are always positive for being perfect squares.

x > 0 ⇒ + > >1 1 0x

Hence, each term in the numerator and denomi-

nator of 
x

x x

2

21 2+ +� � 	 
  is +ve. This is why

′ =
+ +

= +f x
x

x x
� �

� � 	 


2

21 2
ve    which means that

′ >f x� � 0.

Hence, f x� � is an increasing function for x > 0

8. Examine the monotonocity of the function

f x
x

x� � =
+

≤1

1
02 for .

Solution: f x
x

� � =
+
1

1 2

⇒ ′ = −

+
f x

x

x
� �

	 

2

1 2 2

Now we are required to determine the sign of

−

+

2

1 2 2

x

x	 

 with the help of given restriction:

x ≤ 0

− ≥2 0x

∴ ′ =
−

+
≥f x

x

x
� �

� �
2

1
0

2 2

∴ ′ = +f x� � ve  , i.e; ′ >f x� � 0 ...(1)

and ′ =f 0 0� � ...(2)

Hence, (1) and (2) ⇒ f x� �  in an increasing

function when x ≤ 0.

9. Show that f x x� � = 2  is a decreasing function for

x ≤ 0.

Solution: f x x� � = 2

⇒ ′ =f x x� � 2
Now, we are required to determine the sign of 2x

with the help of given restriction:

� x ≤ 0
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∴ ≤ ⇒ −2 0x xwhich 2 = ve

∴ ′ = −f x� � ve  , i.e; ′ <f x� � 0 ...(1)

and ′ =f 0 0� � ...(2)

Hence, (1) and (2)  ⇒ f x� �  is a decreasing

function when x ≤ 0.

10. Show that f x x� � = 2  is an increasing function

for x ≥ 0.

Solution: f x x f x x� � � �= ⇒ ′ =2 2
Now we have to determine the sign of 2x with the

help of given restriction:

� x ≥ 0

∴ ≥ ⇒ +2 0x xwhich 2 = ve

∴ ′ = +f x� � ve  , i.e; ′ >f x� � 0 ...(1)

and ′ =f 0 0� � ...(2)

Hence,  (1) and (2) ⇒ f x� �  in an increasing

function when x ≥ 0.

11. Show that f x
x

x
� � =

+1
 is an increasing function

for x ≠ − 1.

Solution: f x
x

x
� � =

+1

⇒ ′ =
+ ⋅ − +

+
f x

x x

x
� � � � � �

� �
1 1 1 0

1 2

=
+ ⋅ − +

+

x x

x

1 1 1 0

1 2

� � � �
� �

=
+ −

+
=

+
>

x x

x x

1

1

1

1
0

2 2� � � �
 for x ≠ −1 .

∴ ′ = +f x� � ve , i.e;   ′ >f x� � 0 for x ≠ −1 .

Moreover, ′f x� � is undefined at x = −1

Hence, f x� � is an increasing function for every
value of x excluding x = −1 , i.e; f x� � is an increas-
ing function for every value of x ≠ −1 , i.e. in

−∞ − ∪ − ∞, ,1 1� � � � .

12. Show that  y x x x= + +6 3 2 3  is an increasing

function of x, ∀ x

Solution: y f x x x x= = + +� � 6 3
2 3

⇒ ′ = + + = + +f x x x x x� � � �6 6 3 3 2 1
2 2

= + > ∀3 1 0
2

x x� �
∴ ′ = +f x� � ve  ∀ x  , i.e;   ′ >f x� � 0 , ∀ x

Hence, f x� � is an increasing function ∀ x , i.e;

f x� � is increasing in −∞ + ∞,� � .

13. f x
x

� � = 1
,  Examine the monotonocity.

Solution: f x
x

x� � � �= ≠1
0,

⇒ ′ = − ≠ <f x
x

x� � � �1
0 0

2
,  for x ≠ 0 .

′ <f x� � 0 , ∀ ≠x 0

Hence, f x� �  is a decreasing function, ∀ x  exclud-

ing x = 0  which means f x� � is  a decreasing function
in −∞ , 0� �  and in  0, ∞� �.
14. Examine the monotonocity of the function

f x x� � = +2 7, ∀ x .

Solution: f x x f x� � � �= + ⇒ ′ =2 7 2 which is +ve

∀ x

Hence, f x� � is an increasing function ∀ x .

15. Show that f x x� � = − +5 1 is a decreasing

function, ∀ x .

Solution: f x x f x� � � �= − + ⇒ ′ = −5 1 5 which is

– ve which means ′ < ∀f x x� � 0 .

Hence, f x� �  is an decreasing function ∀ x .

16. Show that the function y x x= +3  increases
every where.

Solution: y f x x x= = +� � 3

⇒ ′ = +f x x� � 3 12  which is > ∀0, x
∴ ′ = +f x� � ve

Hence, f x� � increases every where.
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17. Show that the function y x x= −−
tan

1
 decreases

every where.

Solution : y f x x x= = −−� � tan 1

⇒ ′ =
+

− =
− −
+

f x
x

x

x
� � 1

1
1

1 1

12

2

2

=
−
+

< ∀
x

x
x

2

21
0,

∴ ′ = −f x� � ve

Hence, f x� � decreases every where.

Type 3: Problems based on showing  y f x= � � to be
increasing or decreasing in an open interval (a, b) by
using derivative.

Definations: 1. A  function f x� � is called  increasing
in  an  open interval  (a, b) if  it is increasing at every
point within this interval (a, b).
2. A function f x� � is called decreasing in an open
interval of it is decreasing at every point within this
interval (a, b).

Test for monotonocity in an open interval:

An increase and decrease of a function y f x= � � is
tested by the sign of its derivative ′f x� �. If in some
interval (a, b) , ′ >f x� � 0  , then the function
y f x= � �  increase in this open interval (a, b) and if
′ <f x� � 0 , then the function decrease in this interval

(a, b).

Working rule:
1. Find ′f x� �
2. Determine the sign of ′f x� � with the help of given
interval  (a, b).

3. If ′ = +f x� � ve in  (a, b) then y f x= � � increases

in (a, b) and if ′ = −f x� � ve in (a, b) then y f x= � �
decreases in (a, b)

Note: If ′ =f x T f x� � � �� �
Where T = any trigonometric function sin, cos tan,

cot, sec and cosec.
And f x� �  = an expression in x for the angle of

trigonometric function which is generally linear in x
(i.e ax b+ ).

Then from the given interval, we derive the angle
f x� �  by using various mathematical manipulations
s.t. it determine in which quadrant f x� � lies from which
we observe the + ve or – ve  sign of trigonometric
derived function using the rule of

Remember: 1. Whenever we need to know the sign
of a trigonometric function of any angle, we consider
the quadrant in which its terminal (moving) side lies.
e.g.: (i) Since the terminal side of 120�  is in the first
quadrant, therefore, sin 120�  =  + ve
(ii) Since the terminal side of 220�  lies in the third
quadrant, therefore cos 220 = – ve

(iii) The terminal side of  − 60�	 
  lies in the fourth

quadrant, therfore, sin − 60�	 
  = – ve and cos (– 60 )
= + ve
2. Let f x� �  = angle of any trigonometric function
sin, cos etc. then,

(i) 0
2

< <f x� � π
 means the angle f x� � lies in the

Ist quadrant.
(ii) 0 < <f x� � π  means the angle f x� � lies in the
Ist  and 2nd quadrant.

(iii) π π< <f x� � 3

2
 means the angle f x� � lies in

the 3rd quadrant.
(iv) π π< <f x� � 2 means the angle f x� �  lies in the
3rd or 4th quadrant.

(v) − < <π π
2 2

f x� � means the angle f x� � lies in the

Ist or 4th quadrant.

Type 3: Problems based on showing y f x= � � to be
increasing or decreasing in an open interval.

Examples worked out:

1. Show that: f x
x

x
� � = +4 12

sin all

costan
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is a decreasing function in the interval 
1

4

1

2
,�

�
�
�  and

an increasing function in the interval 
1

2
1,�

�
�
� .

Solution: f x
x

x
x

x
� � = + = +4 1

4
12

⇒ ′ = − = −
f x

x

x

x
� � 4

1 4 1
2

2

2

Now we have to determine the sign of  
4 12

2

x

x

−

with the help of given intervals.
1

4

1

2

1

4
4 12 2< < ⇒ < ⇒ <x x x

⇒ − < ⇒ − = −4 1 0 4 1
2 2

x x ve ...(1)

and x 2  being a perfect square, it is always + ve, i.e;

x 2 = + ve     ...(2)

From (1) and (2), we conclude,  
4 12

2

x

x

−
= − ve

∴ ′ = −f x� � ve  which means that f x� �  is a

decreasing function in the given interval 
1

4

1

2
,�

�
�
�

Next, we consider the interval 
1

2
1,�

�
�
�  with the help

of which we determine the sign of  
4 12

2

x

x

−

x x x> ⇒ > ⇒ >1

2

1

4
4 1

2 2

⇒ − > ⇒ − = +4 1 0 4 1
2 2

x x ve ...(1)

and x 2  being a perfect square, it is always + ve, i.e;

x 2 = + ve     ...(2)

From (1) and (2), we conclude,  
4 12

2

x

x

− = + ve

∴ ′ = +f x� � ve  which means that f x� �  is a

increasing function in the given interval 
1

2
1,�

�
�
�

2. Show that f x x
x

� � = +3
1

3
 is a decreasing

function in the interval 
1

9

1

3
,�

�
�
�  and an increasing

function in the interval 
1

3
1,�

�
�
�

Solution: f x x
x

� � = +3
1

3

⇒ ′ = + −
�
��

�
�� = −f x

x x
� � 3

1

3

1
3

1

3
2 2

Now we have to determine the sine of

3
1

3

9 1

32

2

2− =
−

x

x

x
 =

+ −3 1 3 1

3 2

x x

x

� � � �

1

9

1

3

1

9
9 12 2< < ⇒ < ⇒ <x x x

⇒ − < ⇒ − = −9 1 0 9 1
2 2

x x ve ...(1)

∴ ′ = −f x� � ve  which means that f x� �  is a

decreasing function in the given interval 
1

9

1

3
,�

�
�
�

Next, we consider the interval 
1

3
1,�

�
�
�  with the help

of which we consider the sign of  
9 1

3

2

2

x

x

−

x x x> ⇒ > ⇒ >1

3

1

9
9 1

2 2

⇒ − >9 1 02x

∴ ′ = +f x� � ve  which means that f x� �  is an

increasing function in the given interval 
1

3
1,�

�
�
� .

3. Show that the function y x x x= + − +2 3 12 13 2

decreases in the interval − 2 1,� �
Solution: y f x x x x= = + − +� � 2 3 12 13 2
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⇒ ′ = + − = + −f x x x x x� � � �6 6 12 6 2
2 2

= + − −6 2 2
2

x x x !

= + − +6 2 2x x x� � � �" #
= − +6 1 2x x� � � �

Now we have to determine the sign of

6 1 2x x− +� � � �  with the help of given interval.

− < <2 1x

⇒ < > −x x1 2and

x > − 2

⇒ + > ⇒ + = +x x2 0 2 ve ...(i)

x x x< ⇒ − < ⇒ − = −1 1 0 1 ve ...(ii)

and 6 = +a ve number ...(iii)
From (i) , (ii) and (iii), we conclude that

6 1 2 0x x− + <� � � �
∴ ′ = −f x� � ve

Hence, f x� � decreases in the interval − 2 1,� �
4. Show that the function y x x= −2 2  increases

in the interval 0 1,� � and decreases in the interval

1 2,� �.

Solution: y f x x x x= = − ≤ ≤� � 2 0 22 ,

⇒ ′ =
−

× −f x
x x

x� � � �1

2 2
2 2

2

=
−

−
=

−

−
=

−

−

2 1

2 2

1

2

1

22 2

x

x x

x

x x

x

x x

� � � � � �
� �

Now, we have to determine the sign of

1

2

−

−

x

x x

� �
� �

 with the help of given interval.

′ = < <f x x� � ve for 0 1 , since 1 0− >x� �
Hence, f x� � increases in interval 0 1,� �
For 1 < x < 2,

1

2
0

−

−
<

x

x x

� �
� �

 since 1− = −x� � ve

∴ ′ = −f x� � ve

Hence,  f x� � decreases in  1 2,� �.
5. Show that f x x� � = cos  is a decreasing function

on 0
2

,
π�

�
�
� .

Solution: f x x� � = cos

⇒ ′ = −f x x� � sin

Now, we have to determine the sign of – sin x with
the help of given interval.

0
2

< <x
π

 which means x lies in the first quadrant

where sin x > 0  which further ⇒ − <sin x 0 .

Thus ′ = −f x� � ve on 0
2

,
π�

�
�
� which ⇒ f x� �  is

decreasing on 0
2

,
π�

�
�
� .

6. Show that cos 2 x is decreasing on 0
2

,
π�

�
�
� .

Solution: f x x f x x� � � �= ⇒ ′ = −cos sin2 2 2

Now, we have to determine the sign of  −2 2sin x� �
with the help of given interval.

0
2

< <x
π

 which ⇒ < <0 2x π  which further

means 2x lies in the Ist or 2nd quadrant where

sin 2 0x >  which ⇒ − < ⇒ − <sin sin2 0 2 0x x

which means −2 2sin x� �  = – ve

Hence, ′ = −f x� � ve on 0
2

,
π�

�
�
�  which ⇒ f x� �

is a decreasing function on 0
2

,
π�

�
�
�

7. Show that f (x) = tan x is an increasing function

on 0
2

,
π�

�
�
� .
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Solution: f x x f x x� � � �= ⇒ ′ =tan sec
2

Now, we have to determine the sign of  sec
2

x

with the help of given interval.

0
2

< <x
π

 which menas x lies in the first quadrant

where sec x > 0  which further ⇒ >sec
2

0x  i.e;

sec ve
2

x = +

Hence, ′ = +f x� � ve  on 0
2

,
π�

�
�
�  which ⇒ f x� �

is increasing on 0
2

,
π�

�
�
� .

8. Show that f x x� � = +�
�

�
�cos 2

4

π
 is an increasing

function for 
3

8

7

8

π π< <x

Solution: f x x� � = +�
�

�
�cos 2

4

π

⇒ ′ = − +�
�

�
�f x x� � 2 2

4
sin

π

Now we have to determine the sign of

− +�
�

�
�2 2

4
sin x

π
 with the help of given interval.

f ' (x) will be +ve when sin 2
4

x +�
�

�
�

π
 is –ve which

is only possible when 2
4

x +�
�

�
�

π
 lies in the 3rd or 4th

quadrant.
Now consider the given interval.

3

8

7

8

π π< <x

⇒ < <3

4
2

7

4

π π
x

⇒ + < + < +3

4 4
2

4

7

4 4

π π π π π
x

⇒ < + < =π π π π2
4

8

4
2x

⇒ < + <π π π2
4

2x   which means 2
4

x +�
�

�
�

π

lies in the 3rd or 4th quadrant where sin 2
4

x +�
�

�
�

π  is

–ve, ie; sin 2
4

0x +�
�

�
� <

π
 which ⇒ − +�

�
�
� >2 2

4
0sin x

π

Hence, ′ = +f x� � ve  on  
3

8

7

8

π π
,

�
��

�
��  which

⇒ f x� �  is an increasing function on 
3

8

7

8

π π
,

�
��

�
��

9. Show that f x x� � = − +
π
2

sin  is an increasing

function on −��
�
�

π
3

0, .

Solution: f x
x

x� � = − +
2

sin

⇒ ′ = − +f x x� � 1

2
cos

Now we have to determine the sign of

− +�
�

�
�

1

2
cos x  for x in the given interval.

− < < ⇒ −��
�
� < <

π π
3

0
3

0x xcos cos cos

⇒ − < <1

2
1cos x

⇒ − < − + < −
1

2

1

2

1

2
1

1

2
cos x

⇒ < − + <0
1

2

1

2
cos x

Which means that cos x −�
�

�
� >

1

2
0  i.e;

cos vex −�
�

�
� = +1

2
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Hence, ′ = +f x� � ve on −��
�
�

π
3

0, ⇒ f x� �  in

increasing on −��
�
�

π
3

0, .

10. Show that f x x� � = +�
�

�
�cos 2

4

π
 is an increas-

ing function on the interval  
3

8

5

8

π π
,�

�
�
� .

Solution: f x x� � = +�
�

�
�cos 2

4

π

⇒ ′ = − +�
�

�
�f x x� � 2 2

4
sin

π

Now we have to determine the sign of

− +�
�

�
�2 2

4
sin x

π
 for x in the given interval.

′f x� � will be +ve when sin 2
4

x +�
�

�
�

π
 is –ve.

Which is possible only when 2
4

x +�
�

�
�

π
 lies in the

3rd or 4th quadrant , i.e; 2
4

x +�
�

�
�

π
 lies on the interval

π π, 2� �  or  π π
,

3

2
�
�

�
� .

Now we consider the given interval.

3

8

5

8

π π< <x

⇒ < <3

4
2

5

4

π π
x

⇒ + < + < +3

4 4
2

4

5

4 4

π π π π π
x

⇒ < + <π π π
2

4

3

2
x  which means 2

4
x +�

�
�
�

π

lies in the 3rd quadrant where sin 2
4

0x +�
�

�
� <

π

which ⇒ − +�
��

�
�� >sin 2

4
0x

π

Hence, ′ = +f x� � ve  on  
3

8

5

8

π π
,�

�
�
�  which means

f x� �  is an increasing function on 
3

8

5

8

π π
,�

�
�
�

11. Show that 
sinθ
θ

 is a decreasing function of  θ

for 0
2

< <θ π
.

Solution: y f= =θ θ
θ

� � sin

⇒ ′ = −f θ
θ

θ θ θ� � � �1
2

cos sin

= −
cos

tan
θ

θ
θ θ

2
� �

on letting Z g= − =θ θ θtan � �

′ = = − <g
dz

d
θ

θ
θ� � 1 0

2
sec

� sec for
2

1 0
2

θ θ
π

> < <�
�

�
�

Which ⇒ Z  is a decreasing function for

0
2

0 0 0
2

≤ ≤ ⇒ < = < <θ π θ θ π
g g� � � � ,     ...(1)

Also 
cosθ

θ2
0>  for 0

2
< <θ π

...(2)

From (1) and (2) we conclude that ′ <f θ� � 0  for

0
2

< <θ π

Hence, f θ� �  is a decreasing function of θ  for

0
2

< <θ π

12. Show that 
x

xsin  is an increasing function of x in

the interval  0
2

< <x
π
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Solution: f x
x

x
f x

x x x

x
� � � �= ⇒ ′ =

−
sin

sin cos

sin
2

Now, sin for
2

0 0
2

x x> < <
π

...(i)

and tan forx x x> < <0
2

π

Now since tan
sin

cos
x x

x

x
x> ⇒ > ⇒  sin x > x

cos x

⇒ − >sin cosx x x 0

� cos > 0 forx x0
2

< <�
�

�
�

π
...(ii)

From (1) and (2) we conclude that ′ = +f x� � ve in

the given interval 0
2

< <x
π

Thus  f x
x

x
� � =

sin
 is an increasing function in

0
2

,
π�

�
�
� .

13. Prove that y =
+

−
4

2

sin

cos

θ
θ

θ� �  is an increasing

function of  θ  in the interval 0
2

,
π�

�
�
� .

Solution: y =
+

−
4

2

sin

cos

θ
θ

θ� �
Now differentiating y w.r.t θ  and then simplifying,

we get 
dy

dθ
θ θ

θ
=

−

+
>

cos cos

cos

4

2
0

2

� �
� �

 for  θ π∈ �
�

�
�0

2
,

Hence, y =
+

−
4

2

sin

cos

θ
θ

θ  is an increasing func-

tion of  θ  in 0
2

,
π�

�
�
� .

14. Show that f x x x� � � �= +−
tan sin cos

1
,  x > 0

is an increasing function in 0
4

,
π�

�
�
� .

Solution: f x x x� � � �= +−
tan sin cos

1

⇒ ′ =
+ +

× −f x
x x

x x� �
� �

� �1

1 2sin cos
cos sin

⇒ ′ = −

+ + +
f x

x x

x x x x
� � cos sin

sin cos sin cos1 2
2 2

=
−

+
cos sin

sin

x x

x2 2

Now we have to determine the sign of

cos sin

sin

x x

x

−
+2 2

 for x in the given interval.

0
4

< < ⇒x
π

  0 2
2

< <x
π

 which  ⇒ 2x  lies in

the first quadrant where sin 2x   is positive and for

this reason 2 2 0+ >sin x

Now again x x< ⇒ <π π
4 4

tan tan

⇒ <tan x 1

⇒ <
sin

cos

x

x
1

⇒ <sin cosx x , 0
4

< <x
π

⇒ − <sin cosx x 0

⇒ − >cos sinx x 0

Thus, we see that Nr and Dr both > 0  seperately

of the derived function ′f x� �  which means

′ = +f x� � ve in the interval 0
4

,
π�

�
�
�

Hence, f x� � is an increasing function of x in the

interval 0
4

,
π�

�
�
� .
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Type 4: Problems based on showing y f x= � � to be

increasing or decreasing in a closed interval a b,

by using derivative.

Question: How to test monotonocity of a function

y f x= � � in a closed interval a b, .

Answer: we have the following rule to test for

monotonocity in a closed interval a b, .

1. If  ′ ≥f x� � 0 in a b,  , then f x� �  is said to be

non-decreasing on a b,  and if ′ ≤f x� � 0 in closed

interval a b,  then f x� �  is said to be non-increasing

in closed interval a b,  for all x a b∈ ,� � .

2. If  ′ >f x� � 0 in a b,  , then f x� �  is said to be

increasing in a b,  and if ′ <f x� � 0 in the interval

a b,  , then f x� � is said to be decreasing in the

interval a b,  for all x a b∈ ,� � .

Working Rule:

1. Find ′f x� � .
2. Determine the sign of ′f x� � for x in the given

closed interval a b,  .

3. If ′ = +f x� � ve , then y f x= � � increases in the

closed interval a b,  and if ′ = −f x� � ve  , then

y f x= � � decreases in the closed interval a b, .

Type 4: Problems based on showing y f x= � �  to be

increasing or decreasing in a closed interval   a b,

by using derivative.

Examples worked out:

1. Show that f x x� � = sin  is increasing for

− ≤ ≤π π
2 2

x .

Solution: f x x� � = sin

⇒ ′ =f x x� � cos

Now, we have to determine the sign of  cos x  with

the help of given interval:

− < <
π π
2 2

x  which ⇒ x  lies in the 4th or Ist

quadrant where  cos x  is + ve

∴ ′ = +f x� � ve   i.e; ′ >f x� �� �0   and ′ −��
�
�f

π
2

= −��
�
� = ′ ��

�
� = �

�
�
�cos cos

π π π
2

0
2 2

, f  = 0

Hence, f x� �  is increasing in the closed interval

−��
�
��

π π
2 2

, .

2. Show that f x x� � = cos   is decreasing for

0 ≤ ≤x π .

Solution: f x x� � = cos

⇒ ′ = −f x x� � sin

Now, we have to determine the sign of −sin x� �
with the help of given interval .

0 < <x π  which ⇒ x  lies in the first and

second quadrant whose sin x  is + ve , i.e; sin x > 0
⇒ − <sin x 0

∴ ′ = −f x� � ve   and ′ = −f 0 0� � sin  = ′0 , f π� �
= − =sinπ 0

Hence,  f x� � is decreasing on  0 , π .

3. If y x x x x= − − + +�
��

�
��

−
2 1

1 2
tan log  Show

that y is increasing in 0 , + ∞� .

Solution: y x x x x= − − + +�
��

�
��

−
2 1

1 2
tan log

dy

dx x x
= −

+
−

+
2

1

1

1

1
2 2	 


= −
+

−
+

�

�
�
�

�

�
�
� > < <+∞2

1

1

1

1
0 0

2 2x x
xfor

and 
dy

dx x

�
�

�
� = − + =

= 0

2 1 1 0� �
Hence, y is increasing on 0 , + ∞� .



856 How to Learn Calculus of One Variable

Type 5: Problems based on finding the interval of
increasing and decreasing function y f x= � �.
Question: What do you mean by “ interval of
increasing and decreasing of the function y f x= � �”.

Answer: (i) The interval in which ′f x� � is positive

i.e; ′ >f x� �� �0  is called the interval of increasing of

the function y f x= � �.
(ii) The interval in which ′f x� �  is negative

i.e; ′ <f x� �� �0   is called the interval of decreasing

function y f x= � �.
Working rule: To find the interval of increasing or
decreasing function or the values of x for which the
given function y f x= � � is increasing or decreasing,
we adopt the following working rule :
1. Find ′f x� �
2. Put ′ >f x� � 0 to find the interval of an increasing

function and solve ′ >f x� � 0 for x whose values
determine the required interval of increasing of

y f x= � �.
3. Put ′ <f x� � 0 to find the interval of decreasing

and solve ′ <f x� � 0 for x whose values determine

the required interval of decreasing of y f x= � �.
Remember: If ′ =f x a� �  quadratic equation in x

(i.e algebraic quadratic in x) then the following hints
to solve the quadratic inequality  ′ >f x� � 0   or

′ <f x� � 0   or ′ ≥f x� � 0  or ′ ≤f x� � 0  are very
helpful.

1. x a a x a x a2 2 0− < ⇔ − < < ⇔ <

or x a a x a x a2 2 0− ≤ ⇔ − ≤ ≤ ⇔ ≤

2. x a x b a x b b a− − < ⇔ < < >� � � � � �0

or x a x b a x b b a− − ≤ ⇔ ≤ ≤ >� � � � � �0

3. x a x a x a2 2 0− > ⇔ < − >or  ⇔ >x a

which means x lies outside − a a,  i.e;

x a a∈ − ∞ − ∪ + ∞, ,� � � �
or x a a x a x a

2 2− ≥ ⇔ ≤− ≥or  ⇔ ≥x a

which means x lies outside − a a,� �  i.e;

x a a∈ − ∞ − ∪ + ∞, ,� �
4. x a x b x a x b b a− − > ⇔ < > >� �� � � �0 or ,  which

means x lies outside the interval a b,  i.e;

x a b∈ − ∞ ∪ + ∞, ,� � � �
or x a x b x a x b− − ≥ ⇔ ≤ ≥� �� � 0 or , (b > a) which

means x lies outside the interval a b,� �  i.e;

x a b∈ − ∞ ∪ + ∞, ,� �
Note: 1. If a function is increasing ( or, decreasing)
in an open interval, then it is also increaing (or,
decreasing) in the corresponding closed interval i.e;
if f x� �  is an increasing (or decreasing) in the open

interval a x b< <  then it is also increasing (or

decreasing) in the closed interval a x b≤ ≤
respeectively.

Type 5: Problems based on finding interval in which
a given function y f x= � � increases or decreases.

Examples worked out:

1. Find the interval in which f x x� � = 2   increases or
decreases.

Solution: f x x f x x� � � �= ⇒ ′ =2 2

Now, for f x� � to be increasing , ′ >f x� � 0

⇒ > ⇒ > ≡ ∞2 0 0 0x x ,� �
Hence, the required interval for f x x� � = 2  to be

increasing is x ≥ = ∞0 0 , �
Next, for f x� �  to be decreasing, ′ <f x� � 0

⇒ < ⇒ < ≡ −∞2 0 0 0x x ,� �
Hence, the required interval for f x x� � = 2  to be

decreasing is x ≤ ≡ −∞0 0,� .

2. Find the interval in which f x x x� � = −2 2
increases or decreases.

Solution: f x x x f x x� � � �= − ⇒ ′ = −2 2 2 2

Now, for f x� � to be increasing , ′ >f x� � 0

⇒ − > ⇒ − > ⇒ > = ∞2 2 0 1 0 1 1x x x� � � �,
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Hence, the required interval for f x x x� � = −2 2

to be increasing is x ≥ = ∞1 1, �
Next, for f x� �  to be decreasing, ′ <f x� � 0

⇒ − < ⇒ < = − ∞x x1 0 1 1� � � �,

Hence, the required interval for f x x x� � = −2 2

to be decreasing is x ≤ = −∞1 1,� .

3. Find the interval in which the function f x� �
= − + −2 15 36 573 2x x x  is an increasing function
of x and a decreasing function of x.

Solution: f x x x x� � = − + −2 15 36 573 2

⇒ ′ = − +f x x x� � 6 30 362

= − +6 5 62x x	 

= − −6 2 3x x� � � �

Now, for f x� � to be increasing , ′ >f x� � 0

⇒ − − >6 2 3 0x x� � � �
⇒ − − >x x2 3 0� � � �
⇒ < >x x2 3or  which means x lies outside

the interval [2, 3] i.e; x∈ − ∞ ∪ ∞, ,2 3� � � �
Hence, the required interval for

f x x x x� � = − + −2 15 36 573 2

to be increasing is −∞ ∪ ∞, ,2 3� �
Next, for f x� �  to be decreasing, ′ <f x� � 0

⇒ − − <x x2 3 0� � � �
⇒ < < =2 3 2 3x ,� �

Hence, the required interval for

f x x x x� � = − + −2 15 36 573 2

to be decreasing is 2 3 2 3≤ ≤ =x ,

4. Find the interval in which the function

f x x x x� � = − + +3 26 9 1 is increasing or decreas-
ing.

Solution: f x x x x� � = − + +3 26 9 1

⇒ ′ = − +f x x x� � 3 12 92

Now, f x� � will be increasing provided ′ >f x� � 0

⇒ − + >3 12 02x x

⇒ − + >x x2 4 3 0

⇒ − − + >x x x2 3 3 0

⇒ − − − >x x x1 3 3 0� � � �
⇒ − − >x x1 3 0� � � �
⇒ <x x1 3or >

which means x lies outside the interval [1, 3] i.e;

x∈ − ∞ ∪ ∞, ,1 3� � � �
Hence, the required interval for

f x x x x� � = − + +3 26 9 1

to be increasing is −∞ ∪ ∞, ,1 3� �
Next, f x� � will be decreasing provided ′ <f x� � 0

⇒ − − <x x1 3 0� � � �
⇒ < < =1 3 1 3x ,� �

Hence, the required interval for

f x x x x� � = − + +3 26 9 1

to be decreasing is 1 3 1 3< < =x ,

5. Find the interval in which the function f x� �
= − −tan x x4 1� �  is increasing and decreasing,

− < <π π
2 2

x .

Solution: f x x x� � � �= − −tan 4 1

⇒ ′ = −f x x� � sec
2

4

Now for f x� �  to be increasing , ′ >f x� � 0

i.e;  sec2 4 0x − >

⇒ >sec
2

4x

⇒ >sec x 2  as − < <
π π
2 2

x .

⇒ <− >x x
π π
3 3

or   which means x lies outside

the interval −�
�

�
��

π π
3 3

,  i.e;

x∈ − −�
��

�
��∪

�
��

�
��

π π π π
2 3 3 2

, ,
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Hence, the required interval for

f x x x� � � �= − −tan 4 1

to be increasing is  − −�
��

�
�� ∪

�
��

�
��

π π π π
2 3 3 2

, ,

Next, f x� � will be decreasing provided ′ <f x� � 0

⇒ − <sec
2

4 0x

⇒ <sec
2

4x

⇒ <sec x 2

⇒ − < < = −��
�
�

π π π π
3 3 3 3

x ,

Hence, the required interval for

f x x x� � � �= − −tan 4 1

to be decreasing is −�
�

�
��

π π
3 3

, .

Type 6: Important facts: The following facts based
on the rule of testing of monotonocity of a function
are useful to find the interval in which a given function
y f x= � � increases or decreases (If ′f 0� �  does not
exist).
1. If  ′ < ∀ ≠f x x x� � 0 0, , then f x� �  decreases in

− ∞ ∪ ∞, ,0 0� � � �
2. If ′ > ∀ ≠f x x x� � 0 0, , then f x� � increases in

− ∞ ∪ ∞, ,0 0� � � �
3. If f x� �  is undefined for x ≤ 0, then ′f x� � is also

undefined for x ≤ 0 and hence only test for ′ >f x� � 0

is required to find the interval in which f x� � increases

for x� 0.

4. If ′ > ∀f x x� � 0, , then f x� �  increases in the
entire number line − ∞ ∞,� �
5. If  ′ < ∀f x x� � 0, , then f x� �  decreases in the

entire number line − ∞ ∞,� �.
These facts are illustrated by the following

examples:

Examples worked out:

1. Find the interval in which f x
x

x� � � �= ≠1

2
0,

decreases.

Solution: f x
x

� � = 1

2

⇒ ′ = −f x
x

� � 1

2 2

Now f x� � will be decreasing provided ′ <f x� � 0

i.e; 
−

<
1

2
02x

 which is true (because x 2 = + ve

for all  +ve and  –ve values of x) except x = 0 where the
function is undefined.

Hence, f x� � decreases in − ∞ ∪ + ∞, ,0 0� � � �
2. Find the interval in which f x

x

x
� � = −

+
2

1
,

x ≠ −1� �  increases.

Solution: f x
x

x
� � = −

+
2

1

⇒ ′ =
+ ⋅ − − ⋅

+
=

+
f x

x x

x x
� � � � � �

� � � �
1 1 2 1

1

3

12 2

Now, f x� � will be increasing provided ′ >f x� � 0

i.e; 
3

1
02

x +
>

� �
 which is always true for all +ve and

–ve values of x ≠ −1� � .

Hence, the function  f x� �   increases in

− ∞ − ∪ − ∞, ,1 1� � � � .

3. Find the interval in which the function

f x x x� � � �= >log , 0  increases.

Solution: f x x� � = log ⇒ ′ = >f x
x

x� � � �1
0,

Now, f x� � will be increasing provided  ′ >f x� � 0

i.e; 
1

0 0
x

x> ⇒ >  which is true since we are given

x > 0.

Hence, f x� � increases in the interval  0 , + ∞� � .

Note: ′f x� �  is undefined for x ≤ 0  because

f x x� � = log is undefined for x ≤ 0.
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4. Find the interval in which the function f x� �
= >e aax , 0� �  increases.

Solution: f x eax� � =   ⇒ ′ =f x a eax� �
Now, f x� � will be increasing provided  ′ >f x� � 0

i.e; aeax > 0  which is always true for all +ve and –ve

values of x and a > 0 .

Hence, the function f x� �   increases in the entire

number line − ∞ ∞,� �.
5. Find the interval in which the function f x� �
= >−e aax , 0� �  decreases.

Solution: f x e ax� � = −   ⇒ ′ = − −f x a e ax� �
Now, f x� � will be decreasing provided  ′ <f x� � 0

i.e; − <−a e ax 0 which is  true because e ax−  is

always  + ve for all  +ve and –ve values of x and
a > 0.

Hence, the function f x� �  decreases in the entire

number line − ∞ + ∞,� �.
Category C:

Problems based on proving inequality:

Type 1: To show f x f x1 2� � � �>  or f x f x1 2� � � �<  in
a given interval.

Working Rule:
1. Let f x f x f x� � � � � �= −1 2

2. Examine whether ′ >f x� � 0 or ′ <f x� � 0
3. Use the following facts:
(a) If  ′ >f x� � 0, then f x f a� � � �>  for x a>  and

f x f a� � � �<  for x a<
(b) If  ′ <f x� � 0, then f x f a� � � �<  for x a>  and

f x f a� � � �>  for x a<

Examples worked out:

1. Show that log 1
2

2

+ > −x x
x� �  if  0 1< <x

Solution: Let f x x x
x� � � �= + − +log 1
2

2

∴ ′ =
+

− + =
+

f x
x

x
x

x
� � 1

1
1

1

2

Now , 
x

x

2

1
0

+
>  for every value of  x > 0

which ⇒ ′ >f x� � 0  for 0 1< <x

⇒ = + − +f x x x
x� � � �log 1
2

2

 is an increasing

function in the interval 0 1≤ ≤x

∴ >f x f� � � �0  for 0 1< <x

⇒ + − + >log 1
2

0
2

x x
x� �

� f 0 1 0 0 0 0� � � �$ %= + − + =log

⇒ + > −log 1
2

2

x x
x� �  for all x in ( 0 , 1 ).

2. Show that 1 1 1
2 2

+ + +���
���
≥ +x x x xlog  for

x≥0 .

Solution: Let f x x x x x� �= − + + + +���
���

1 1 1
2 2

log

∴ ′ = −

+
+ ⋅

+ +
+

+

�
��
��

�
��
��
+f x

x

x
x

x x

x

x
� � 2

2 1

1

1
1

2

2 12 2 2

log x x+ +1 2 !

=
−

+
+

+
+ + +

x

x

x

x
x x

1 1
1

2 2

2log  !

= + +�
�

�
� >log x x1 02  for all x > 0

∴ ≥ =f x f� � � �0 0

⇒ + + +���
���
− + ≥1 1 1 0

2 2
x x x xlog

⇒ + + +���
���
≥ + ∀ ≥1 1 1 0

2 2
x x x x xlog

3. Show that 2 3sin tanx x x+ ≥  when 0
2

≤ <x
π

.
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Solution: Let f x x x x� � = + −2 3sin tan

∴ ′ = + −f x x x� � 2 32cos sec

=
− +2 3 1

3 2

2

cos cos

cos

x x

x

Now, we have to determine the sign of

2 3 1
3 2

cos cosx x− +  because cos
2

x  being a

perfect square it is always +ve.

 � 2 3 1 1 2 13 2 2
cos cos cos cosx x x x− + = − +� � � �

which is +ve for all values of x lying in the given

interval  0
2

< <x
π

∴ ′ =
− +

≥f x
x x

x
� � 2 3 1

0
3 2

2

cos cos

cos
 for 0

2
≤ <x

π

Which ⇒ ′ ≥f x� � 0  when 0
2

≤ <x
π

∴ ′ ≥f x� � 0  for  0
2

≤ <x
π

 ⇒ ≥f x f� � � �0

∴ + − ≥2 3 0sin tanx x x

� f 0 2 0 0 3 0 0� �� �= + − × =sin tan

⇒ + ≥2 3sin tanx x x  for 0
2

≤ <x
π

4. Show that sin tanx x x+ > 2  for 0
2

< <x
π

Solution: Let f x x x x� �= + −sin tan 2  when

0
2

≤ <x
π

∴ ′ = + −f x x x� � cos sec2 2

=
− +

>
cos cos

cos

3 2

2

2 1
0

x x

x

 when 0
2

< <x
π

 because cos
2

x  being a perfect

square it is always +ve and cos cos
3 2

2 1x x− +

= − + −cos cos cos
2

1 1x x x� � � �
= − + −cos cos cosx x x1 12� � ! � �

and cos cosx x< ⇒ − >1 1 0       � − < <1 1cos x� �

Thus each factor cos cosx x− +1 2� � !  and

cos x − >1 0� �  for 0
2

≤ <x
π

∴ ′ >f x� � 0  which  ⇒ f x� �   is an increasing

function in  0
2

≤ <x
π

.

∴ >f x f x� � � �0 for 0 <

⇒ + − >sin tanx x x2 0

� f 0 0 0 2 0 0� �$ %= + − × =sin tan

⇒ + >sin tanx x x2 .

Type 1:

5. Show that tan x x>  whenever 0
2

< <x
π

Solution : f x x x� � = −tan

⇒ ′ = − = >f x x x� � sec tan2 21 0  for

 0
2

< <x
π

⇒ ′ >f x� � 0

⇒ = −f x x x� � tan  is an increasing function for

0
2

< <x
π

⇒ >f x� � 0 � f 0 0 0 0� �� �= − =tan

⇒ − >tan x x 0

⇒ >tan x x  for  0
2

< <x
π

Type 2: To show f x f x f x1 2 3� � � � � �> >  in a given
interval

Working rule: It consists of two parts:

First Part:
1. Let f x f x f x� � � � � �= −1 2

2. Examine whether ′ >f x� � 0 for the values of x in
the given interval.
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3. If ′ >f x� � 0 , f x� �  is increasing in the given
interval  and then use the following fact:

f x f a x a� � � �> >for  and put f (x) = f1 (x) – f2

(x) in f x f a� � � �>  which will provide us the inequality

f x f x1 2� � � �>   provided that f a� � = 0

Second part:

Similarly we show f x f x2 3� � � �>
From first and second part, we have

f x f x f x1 2 3� � � � � �> >  in the given interval

Examples worked out:

1. Show that 
x

x
x x

1
1

+
< + <log � �  for  x > 0

Solution: Let f x x
x

x
� � � �= + −

+
log 1

1

∴ ′ =
+

−
+

=
+

>f x
x x

x

x
� �

� � � �
1

1

1

1 1
02 2

for  x > 0

⇒ ′f x� �  is + ve for all x > 0

⇒ = + −
+

f x x
x

x
� � � � � �log 1

1
  is an increasing

function for all x ≥ 0

⇒ > = =f x f� � � �0 1 0log  for  x > 0

⇒ + −
+

>log 1
1

0x
x

x
� �

⇒ + >
+

log 1
1

x
x

x
� �

⇒
+

< +x

x
x

1
1log � � ...(1)

Again let g x x x� � � �= − +log 1

∴ ′ = −
+

= + −
+

g x
x

x

x
� � 1

1

1

1 1

1

=
+

>x

x1
0  for all x > 0

Which ⇒ g x� �  is an increasing function for all

x ≥ 0  ⇒ >g x g� � � �0  for x > 0

⇒ >g x� � 0    � g 0 0 1 0� �� �= − =log

⇒ − + > ⇒ > +x x x xlog log1 0 1� � � � ...(2)

From (1) and (2) we declear

x

x
x x

1
1

+
< + <log � �  which is the required

inequality.

2. Show that if 0
2

< <x
π

, then tan x > x > sin x.

Solution : f x x x� � = −tan

⇒ ′ = − = > ∀ ∈ �
�

�
�f x x x x� � sec tan

2 2
1 0 0

2
,
π

⇒ = −f x x x� � tan  is an increasing function in

0
2

,
π�

�
�
��

⇒ >f x f x� � � �0 0
2

for < <
π

⇒ f x� � is +ve in 0
2

,
π�

�
�
�

� f 0 0 0 0� �� �= − =tan

⇒ − > < <tan forx x x0 0
2

π
...(1)

Again g x x x� � = − sin

⇒ ′ = − >g x x x� � 1 0cos for 0 < <
2

π

� − < < ⇒ < ⇒ − >1 1 1 1 0cos cos cosx x x� �
⇒ ′ >g x� � 0

⇒ = −g x x x� � sin  is an increasing function in

the interval 0
2

,
π�

�
�
��

⇒ >g x g x� � � �0 0
2

for < <
π

⇒ >g x� � 0 � g 0 0 0 0� �� �= − =sin
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⇒ − > ∀ ∈ �
�

�
�x x xsin 0 0

2
,
π

⇒ >x xsin ...(2)
From (1) and (2), we have,

tan sinx x x> >  for 0
2

< <x
π

 which is the

required inequality.

3. If x > 0 show that x
x

x x− < <
−

3
1

3
tan .

Solution: f x x x� � = − −
tan

1

⇒ ′ = −
+

=
+

f x
x

x

x
� � 1

1

1 12

2

2

⇒ ′ >f x� � 0   for every value of  x > 0

⇒ = − −
f x x x� � tan

1
 is an increasing function

∀ ≥x 0

⇒ >f x f� � � �0  for  x > 0

⇒ >f x� � 0  � f 0 0 0 0
1� �� �= − =

−
tan

⇒ − >−
x xtan

1
0

⇒ > ∀ >−
x x xtan

1
0, ...(1)

Again g x x x
x� � = − +

−
tan

1
3

3

⇒ ′ =
+

− + =
+

>g x
x

x
x

x
� � 1

1
1

1
0

2

2
4

2   for x > 0

⇒ = − +
−

g x x x
x� � tan

1
3

3
  is an increasing

function for x ≥ 0

⇒ > ∀ >g x g x� � � �0 0,

⇒ >g x� � 0     � g 0 0 0
0

3
0

1� � = − + =�
�

�
�

−
tan

⇒ − + >
−

tan
1

3

3
0x x

x

⇒ > −
−

tan
1

3

3
x x

x
...(2)

From (1) and (2), we have

x x x
x

> > −
−

tan
1

3

3

⇒ − < <
−

x
x

x x
3

1

3
tan   for all x > 0 which is the

required inequality.

4. Show that for x x x x x> − < + <0
1

2
1

2
, log � �

Solution: f x x x x� � � �= − − +1

2
1

2
log

⇒ ′ = − −
+

=
− −
+

=
−
+

f x x
x

x

x

x

x
� � 1

1

1

1 1

1 1

2 2

⇒ ′ <f x� � 0  if  x > 0

⇒ f x� �  is a decreasing function for x ≥ 0

⇒ <f x f� � � �0  x > 0

⇒ <f x� � 0  � f 0 0 0 1 0� �� �= − − =log

⇒ − < +x x x
1

2
1

2
log � � ...(1)

Again, g x x x� � � �= + −log 1

⇒ ′ =
+

− = − −
+

= −
+

g x
x

x

x

x

x
� � 1

1
1

1 1

1 1

⇒ ′ <g x� � 0 if   x > 0

⇒ g x� �  is a decreasing function for  x > 0

⇒ <g x g� � � �0  for  x > 0

⇒ <g x� � 0

� g 0 1 0 0 1 0� � � �� �= + − = =log log

⇒ + − <log 1 0x x� �
⇒ + <log 1 x x� � ...(2)

From (1) and (2), we have

x x x x− < + <1

2
1

2
log� �  which is the required

inequality.
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Type 3: Problems based on choosing a specified
function to prove a given inequality in a given interval

When in the given inequality to be proved in a given
interval, an independent variable is not x but the
independent variable is α β θ, or  ect. we adopt the
following working rule:

Working rule:
1. Choose a specified function y f x= � � where x is
in a given interval.

2. Find ′f x� �.
3. Examine whether f x� �  is an increasing function
or a decreasing function in the given interval.
4. If  f x� � is an increasing function, then the same
function of given independent varibale α β θ, or
etc is also an increasing function i.e; ,f fθ α� � � ��
or f (β ) is also increasing corresponding to increasing
function f x� � in the given interval ) and if f x� � is a
decreasing function, then the same function of given
independent variable α β θ, or  etc. is also a
decreasing function i.e or; ,f f fα β θ� � � � � ��  is
also decreasing corresponding to decreasing function
f x� � in the given interval.)
5. Lastly using various mathematical manipulations,
we prove the required inequality in the given interval.

Examples worked out:

1. If 0
2

< < <α β
π

, show that α α β β− < −sin sin .

Solution: f x x x x� � = − ∈ �
�

�
�sin , ,0

2

π

⇒ ′ = −f x x� � 1 cos ...(1)

We know that if  0
2

0 1< < ⇒ < <x x
π

cos

⇒ − > ⇒ ′ >1 0 0cos x f x� �
Thus, f x� � is an increasing function in the interval

0
2

,
π�

�
�
� .

∴ ∈ �
��

�
��α

π
, ,B 0

2
 and α β α β< ⇒ <f f� � � �

⇒ − < −α α β βsin sin  which is the required

inequality.

2. Prove that if 0
2

< <θ
π

, then

cos sinθ� �  > sin cosθ� �

Solution: f x x x x� � = − ∈ �
�

�
�sin , ,0

2

π

⇒ ′ = −f x x� � 1 cos

We know that 0
2

0 1< < ⇒ < <x x
π

cos

⇒ − > ⇒ ′ >1 0 0cos x f x� �

∴ f x� �  is an increasing function in 0
2

,
π�

�
�
��

∴ f θ� �  is also increasing for 0
2

≤ ≤θ π

∴ >f fθ θ� � � �0 for > 0

∴ >f θ� � 0  � f 0 0 0 0 0 0� �� �= − = − =sin

⇒ − >θ θsin 0

⇒ < ⇒ >sin cos sin cosθ θ θ θ� �
⇒ − < −cos sin cosθ θ� � ...(2)

again  f (x) > f (0) = 0 for x > 0 or,∀ ∈��
�
�

�
��

�
��x 0

2
,
π

∴ > ∀ ∈ �
��

�
��f forcosθ θ

π� � 0 0
2

,

⇒ − >cos sin cosθ θ� � 0

⇒ <sin cos cosθ θ� � ...(3)

(3) – (2) = − < −sin cos cos sin cos cosθ θ θ θ� � � �
= − <sin cos cos sinθ θ� � � � 0  which

⇒ <sin cos cos sinθ θ� � � �

3. Prove that 2
1

x

x

x
< <

sin  whenever 0
2

< <x
π

.

Solution: Let a continuous function f x� � be defined
in the following way.
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f x
x

x
x� � = ≠

sin
if, 0

= =1 0, if x

When x ≠ 0 , we get ′ =
−

f x
x x x

x
� � cos sin

2

= − ⋅x x x
x

tan cos� � 1
2

Now, we have to examine the sign of

′ =
−

f x
x x x

x
� � � �tan cos

2

x 2  being a perfect square, it is always + ve and
cos x is + ve in the first quadrant. Moreover, if

0
2

< <x
π

 ,

tan tan tanx x x x x x> ⇒ − > ⇒ − <0 0

which means x x− tan� �  is negative in 0
2

< <x
π

.

Hence, ′ < ⇒f x f x� � � �0  is a decreasing

function in 0
2

< <x
π

∴ > > �
��

�
��f f x f0

2
� � � � π

 for 0
2

< <x
π

⇒ > >1
2sin x

x x
    � f f0 1

2

2� � = �
�

�
� =���

���
π

π

⇒ < <
2

1
π

sin

x
 which is the required inequality.

Type 1: Problems based on examining or showing a
function of an independent variable to be increasing
or decreasing at a point x = a. (Category B)

Exercise 21.1

1. Examine whether the following functions is
increasing or decreasing at the points indicated.

(i) f (x) = 2x + 3, at x = 0

(ii) f (x) = 5 – 3x, at x = –1

(iii) f (x) = x3, at x = 2

(iv) f (x) = x3, at x = –2

(v) f x
x

� � = 1
,  at x = –1

(vi) f x x
x

� � = + 1
,  at x = 1

2

2. Prove that y x x= +1

2

2
cosπ  is increasing at

x = 1 while decreasing at x = –1.

Answers:
1. (i) Increasing (ii) Decreasing (iii) Increasing
(iv) Increasing (v) Decreasing (vi) Decreasing

Type 2: Problems based on showing the function
y = f (x) to be increasing or decreasing in the infinite
interval

(i) x a> ± (ii) x a< ± (iii) x a≥ ±

(iv) x a≤ ± (v) x > 0 (vi) x < 0 (vii) x ≥ 0

(viii) x ≤ 0 (ix) x a≠ ± (x) ∀ x

Exercise 21.2

1. Show that following functions are increasing in
the indicated intervals:

(i) f x
x

x� � =
+

≤1

1
0

2
,

(ii) f x a x b a x R� � = + > ∀ ∈, ,0

(iii) f x x x x� � 6 9
9

2

2+ − ≥,

2. Show that following functions are decreasing in
the indicated intervals:

(i) f (x) = –7x2 + 11x – 9, x > 1

(ii) f x x x x� � = + + >− −5 31

2
1 0,

3. Show that y
x

x
=

log
 decreases for x > e.

4. Show that the function y x
x

x
= + −

+
log 1

2

2
� �

is an increasing function of x for all values of x > 0.
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5. Prove that the function y = 2x3 – 15x2 + 36x + 10 is
an increasing function of x for x > 3 and a decreasing

function of x for x < 2.

6. Show that the function y
x

x
x=

−
− +

1
1log � �

increases for all values of x > 0.
7. Prove that y = 2x3 + 3x2 – 12x – 7 is an increasing

fucntion when x > 1.

8. Show that f x
x

x
� � =

+1
 increases for all x ≠ −1.

9. Show that f x
x

x
� �

� �
=

−2
1

 increases for all

x ≠ 0 .

Type 3: Problems based on determination of values
of x for which the given function y = f (x) is increasing
or decreasing.

Exercise 21.3

1. Determine the values of x for which the function

y
x

x
x=

−
+

≠ −
2

1
1,  is increasing or decreasing.

2. Determine the values of x for which the function

f x x x� �= −5 3
3
2

5
2 , x > 0 is increasing or decreasing.

3. Determine the values of x for which the following
functions are increasing and for which they are
decreasing.
(i) f (x) = 6x2 – 2x + 1
(ii) f (x) = –3x2 + 12x + 8
(iii) f (x) = x8 + 6x2

(iv) f x x
x

x� � = + ≠
1

0,

4. Find the values of x for which the following
functions are
(i) increasing (ii) dDecreasing (iii) stationary
(a) 3 – x + x3 (b) x3 – 3x + 2 (c) x4 – 2x2 + 1

Type 4: Problems based on showing (or, examining)
the given function to be increasing or decreasing in
the interval (a, b) or [a, b].

Exercise 21.4

1. Show that

(i) f (x) = sin x is increasing for − ≤ ≤π π
2 2

x .

(ii) f (x) = cos x is decreasing for 0 ≤ ≤x π .

2. Show that the function f x x
x

� � = +3

3

1
 is

decreasing in 0 < x < 1.
3. Prove that the function f (x) = log sin x is increasing

on 0
2

,
π�

�
�
�  and decreasing on 

π
π

2
,�

�
�
� .

4. Prove that the function f (x) = sin x is increasing in

the interval 0
2

,
π�

�
�
�  and decreasing in the interval

π
π

2
,�

�
�
� .

5. Show that the function f x
x

x
� � = +4 1

2

 is a

decreasing function in the interval 
1

4

1

2
,�

�
�
� .

6. Show that f (x) = tan–1 (sin x + cos x), x > 0 is

always increasing in the interval 0
4

,
π�

�
�
� .

7. Show that f x
x

x
� � =

sin
 is an increasing function

in the interval 0
2

< <x
π

.

8. Find the least value of ‘a’ such that the function
f (x) = x2 + ax + 1 is increasing on [1, 2].
9. Determine whether the following functions are
always increasing or decreasing in the indicated
interval.

(i) f x
x

x x� � = − + − < <
2 3 3

sin in
π π

(ii) f x x x� � = +�
�

�
� − < <cos in2

4

3

8

5

8

π π π
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(iii) f x x x x� � = − − < <tan in4
3

0
π

10. Determine whether f x x� �= +�
�

�
�cos 2

4

π
 is

increasing or decreasing for 
3

8

7

8

π π< <x .

11. Prove that y = log x – tan–1 x increases in 0 , ∞� � .

12. Show that y
x

x
=

sin
 is decreasing function from

0 to 
π
2

.

13. Show that y
x

x
=

tan
 is an increasing function

in the range 0
2

< <x
π

.

14. Prove that the function f (x) = x2 – x + 1 is neither

increasing nor decreasing in the interval (0, 1).
15. Show that the function f (x) = log x is increasing
for 0 < < ∞x .

16. Show that f x x
x

� � = +2

3

1
 is decreasing in

0 < x < 1.
17. One of which the following intervals is the

function f (x) = x100 + sin x – 1 in creasing?

(a) (–1, 1) (b) (0, 1) (c)
π π
2

,�
�

�
� (d) 0

2
,
π�

�
�
� .

18. Which of the following functions are increasing

on 0
2

,
π�

�
�
� .

(a) cos x (b) cos 2x (c) cos 3x (d) tan x

Answers:

8. Least value of a = –4 for f (x) = x2 + ax + 1 to be

increasing on [1, 2].

17. (a) f (x) is neither increasing nor decreasing in

(–1, 1).

(b) f (x) is an increasing function in (0, 1).

(c) f (x) is increasing in 
π

π
2

,�
�

�
� .

(d) f (x) is increasing on 0
2

,
π�

�
�
� .

18. The function in parts (a) and (b) are decreasing.

Type 5: Problems based on finding the intervals in
which the given functions increase or decrease.

Exercise 21.5

1. Find the intervals on which the following functions
are increasing and those in which the functions are
decreasing.

(i) f x x x� � = − + +2
3 4

(ii) f x x x� � = +4 3
2

(iii) f x x x� � = +�
�

�
�

2
3

1
31

3

(iv) f x x x� � = −3
1
2

3
2

(v) f x x x� � = − +3
3 2

(vi) f x x
x

� � = + 1

(vii) f x x x� � � � � �= − +2 32

(viii) f x x x� � = −4 2
18

(ix) f x
x

x
x� � = −

+
≠ −

2

2
2,

(x) f x x x x� � � � � �= + +1 2

(xi) f x
x

x
� � =

+1
2

(xii) f x
x x

x x
� � = + ≤ −

+ > −
���
2 9 2

1 2
2

,

,

when

when

(xiii) f x x x� � � �= ∈sin , ,0 π
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(xiv) f x x x x� � = + ∈ �
�

�
�sin cos , ,0

2

π

(xv) f x x x� � � �= +3
1

2. Find the intervals in which the function
 f (x) = x4 – 2x2 decreases.

3. Find the intervals in which the function

f (x) = x3 + 2x2 – 1 decreases.
4. Find the intervals in which the function

f (x) = x3 – 3x increases and decreases.

5. Determine the intervals in which the function
f (x)  = 2x3 – 24x + 7 increases or decreases.

6. Determine the intervals where f (x) = sin x – cos x,

0 2≤ ≤x π  is increasing or decreasing.

7. Find the intervals in which f (x) 6x2 – 2x + 1
increases or decreases.

8. Determine the intervals in which the function
 f (x) 5x2 + 7x – 13 is increasing or decreasing.

9. Find the intervals in which the function

f (x) = cos 2
4

x +�
�

�
�

π
, 0 ≤ ≤x π  is increasing or

decreasing. Find also the points on the graph of the
function at which the tangents are parallel to x-axis.
10. Determine the intervals in which the function
f (x) = (x – 1) (x + 2)2 is increasing or decreasing. At
what points are the tangents to the graph of the
function, parallel to x-axis?

11. Find the intervals in which the function

f x
x x

x� � = + − +
3 2

3 2
2 1  is increasing or decreas-

ing. At what points are the tangents to the graph of
the function parallel to x-axis.
12. Find the interval in which the function f (x) =
2x3 – 9x2 + 12x + 30 is increasing or decreasing.

Answers:

1. (i) −∞�
�

�
�,

3

2
 increasing, 

3

2
, ∞�

�
�
�  decreasing.

(ii) −∞ −�
�

�
�,

3

2
 decreasing, − ∞�

�
�
�

3

2
,  increasing.

(iii) −∞ −�
�

�
�,

2

9
 decreasing, − ∞�

�
�
�

2

9
,  increasing.

(iv) −∞ , 1  increasing, 1 , ∞�  decreasing.

(v) Increasing when x < –1 and x > 1, decreasing in

–1 < x < 1.

(vi) Increasing when x < –1 and x > 1, decreasing in

–1 < x < 1.

(vii) Increasing when x < − 4

3
 and x > 2, decreasing

in − < <
4

3
2x .

(viii) Increasing when –3 < x < 0 and x > 3, decreasing

when x < –3 and 0 < x < 3.
(ix) Increasing in the domain of definition.

(x) Increasing in x + >1
1

3
, decreasing for

x + <1
1

3
.

(xi) Increasing in –1 < x < 1, decreasing in x < –1 or

x > 1.

(xii) Increasing for x ≤ − 2  and x ≥ 0 , decreasing

in –2 < x < 0.

(xiii) Increasing in 0
2

,
π�

�
�
� , decreasing in 

π
π

2
,�

�
�
� .

(xiv) Increasing in 0
4

,
π�

�
�
� , decreasing in 

π π
4 2

,�
�

�
� .

(xv) Increasing when x > −
3

4
, decreasing when

x < − 3

4

2. f (x) is increasing for –1 < x < 0, x < 1 and decreasing

for x < –1, 0 < x < 1.
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3. f (x) is increasing for x < − 4

3
, x > 0 and decreasing

for − < <�
�

�
�

10

3
0x  as well as f (x) is decreasing in

−��
�
�

4

3
0, .

4. f (x) is increasing for x . 1 or x < –1; Decreasing for

–1 < x < 1.

5. f (x) is increasing for x ≥ 2  and for x ≤ − 2 ; f (x)

is decreasing for − ≤ ≤2 2x .

6. f (x) is increasing when 0
3

4
≤ ≤x

π
 or 

7

4

π
; f (x)

decreases when 
3

4

7

4

π π≤ ≤x .

7. Increasing for x ≥ 1

6
; Decreasing for x ≤ 1

6
.

8. Increasing for x ≥ − 7

10
; Decreasing for

x ≤ − 7

10
.

9. Increasing for 
3

8

7

8

π π
≤ ≤x ; Decreasing for

−
≤ ≤

π π
8

3

8
x  as well as the required points at

x = 3

8

π
 and x = 7

8

π
.

10. Increasing for x x≥ ≤ −0 2or ; Decreasing for

− ≤ ≤2 0x  as well as the required points at (0, –4)

and (–2, 0).

11. Increasing for x ≤ − 2  or x ≥ 1; Decreasing for

− ≤ ≤2 1x .
12. Increasing for x ≤ 1 or x ≥ 2 ; Decreasing for

1 2≤ ≤x .

Type 6: Problems based on showing the function
y = f (x) to be increasing or decreasing for all values
of x (or, in every interval).

Exercise 21.6

1. Show that the function f defined on R by f (x)

= x3 + 3x2 + 3x – 8 is increasing in every interval.
2. Prove that y = 2x3 + 4x is increasing for all values
of x.

3. Show that the exponential function y = ex is
increasing for all x.
4. Show that y = tan–1 x is an increasing function of x

for all x.
5. Determine whether the following functions are
increasing or decreasing for stated values of x.

(i) f (x) = x – cos x, for all x.
(ii) f (x) = x + sin x, for all x.
6. Show that f (x) = 3x + 1 is an increasing function

on R.
7. Prove that f (x) = ax + b is an increasing function
for all real values of x, where a and b are constant and

a > 0.
8. Prove that the function f (x) = x3 –3x2 + 3x – 100 is
increasing on R.

9. Show that the function y = x3 – 3x2 + 6x – 8 increases
while the function y = 3 – x3 decreases for all x.
10. If y = 3x – 3x2 + x3, show that y always increases

whatever the value of x.

11. Show that the function y
x

x= + −
3

3

4

3
 is an

increasing function for all values of x.

12. If f (x) = (x – 1) ex + 1, show that f (x) is positive for

all positive values of x.

Type 7: Problems based on proving an inequality a
given interval. (Category C)

Exercise 21.7

1. If f x x x� � = − −1
1

2

2
cos , show that when x is

positve , ′f x� � in negative. Hence, deduce  that for a

positive values of x, 1
1

2
1

2
− < <x xcos
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2. Show that when x is positive, x x−
1

6

2
 < sin x < x.

Hint f x x x x

f x

f

: Take sin and

prove that is negative ; note that

� �
� �

� �

= − −
′

=

�

�






�

�

�
�
�
�

1

6

0 0

2

3. Prove that cos x
x

− + >1
2

0
2

 for  x > 0. Is this

true for  x < 0 ?

4. Show that for all x x R x x, ,∈ + >3 3 2

Hint f x x x

f x x x

: � �
� �

= − + ⇒
′ = − >

�
�



�
�
�
�

3

2
2 3

3 2 0 for every value of

5. If  x > 0 Show that

(a) loge x x1 + <� �

(b) loge x
x

x
1

1
+ >

+
� �

Hint :(a) log

log

then find for a and b which will

be positive for

f x x x x

b f x x
x

x
x

f x

x

e

e

� � � �
� � � � � �

� � � � � �

= − + >

= + −
+

>

′
>

�

�







�

�

�
�
�
�
�

1 0

1
1

0

0

,

,

6. Show that

(i) tan if
− ≤ ≥1

0x x

(ii) 2 1 0
1 2

x x x xetan log if
−

> + >� �

(iii) x ex− + >1 1 0� �  for all x

(iv) log
tan

ife x
x

x
x1

1
0

1

+ >
+

>
−

� � ,

7. Show that 1 1 1
2 2+ + +�

��
�
�� ≥ +x x x xlog

for all x ≥ 0

8. If 0
2

< <x
π

 , show that cos x
x

> −1
2

2

9. If ax
b

x
c2 + ≥  , for all positive x, where a > 0

and b > 0  show that  27 42 3ab c≥ .

10. Prove the following :

(i) log
tan

1
1

0
1

+ >
+

>
−

x
x

x
x� � � �,

(ii) e x xx − > ≠1 0, � �

(iii) sin tanx x x x+ > < <�
�

�
�2 0

2

π

(iv) cot cot
x

x x
2

1 0≥ + < < π� �

(v) 2
1

3 1vx
x

x+ > >� �

(vi) log x
x

x
x>

−
+

>
2 1

1
1

� � � �

(vii) x
x

x x x− < < < ≤�
�

�
�

3

3
0

2
sin

π

(viii) tan x x
x

x> + < <�
�

�
�

3

3
0

2

π

(ix) x x x x
2 21 1 0> + + >� � � � � �log

(x) 0
2

< < < ⇒ >α β π β
α

α
β

tan

tan

(xi) ax
b

x
c x ab

c+ ≥ ∀ > ⇒ ≥, 0
4

2

� �   where a,

b, c are constants.
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22

Maxima and Minima

Maxima and Minima of a Function

We shall define:

1. Local (or relative) maxima and local (or relative)
minima.
2. Absolute (or global) maxima and absolute (or
global) minima.

Each one is defined in various ways:

1. Local (or regional or relative) maxima of a function:

Definition (i): (In terms of neighbourhood): A
function f defined by y = f (x) on its domain D is said
to have local (or relative) maximum value (or simply a
local (or relative) maximum) at an interior point x = c of

the domain of the function f namely D⇔ ∃ N cδ � �:
∀ ∈ − ⇒ >x N c c f c f xδ � � � � � � � �
That is, there is a δ -neighbourhood of the interior

point x =c of the domain of the function f denoted by
N cδ � �  such that the value of the function f at the

interior point x = c denoted by f (c) is greater than the
values of the function f at all values of the independent
variable x which lie in the δ -deleted neighbourhood
of the interior point x = c of the domain of the function

denoted by N c cδ � � � �− .

Definition (ii): (In terms of distance): A function f
defined by y = f (x) on its domain D is said to have a
local (or relative) maximum value (or simply a local (or
relative) maximum) at an interior point x = c of the
domain of the function f namely D a⇔ ∃ >δ 0 :

0 < − < ⇒ >x c f c f xδ � � � �

That is, there is a positive number δ  such that the
value of the function f at an interior point x = c denoted
by f (c) is greater than the values of the function f at
every value of the independent variable x whose
distance (or difference) from the interior point x = c of
the domain of the function f is non zero and less than
the positive number δ .

2. Local (or regional or relative) minima of a function:

Definition (i): (In terms of neighbourhood): A
function f defined by y = f (x) on its domain D is said
to have a local (or relative) minimum value (or simply
a local (or relative) minimum) at an interior point x = c
of the domain of the function f  namely

D a N c⇔∃ δ � �:
∀ ∈ − ⇒ <x N c c f c f xδ � � � � � � � �
That is, there is a δ -neighbourhood of the interior

point x = c of the domain of the function f denoted by
N cδ � �  such that the value of the function f at the

interior point x = c denoted by f (c) is less than the
values of the function f at all the values of the
independent variable x which lie in the δ -deleted
neighbourhood of the interior point x = c of the
domain of the function f denoted by N c cδ � � � �− .
Definition (ii): (In terms of distance): A function f
defined by y = f (x) on its domain D is said to have a
local (or relative) minimum value (or simply a local (or
relative) minimum) at an interior point x = c of the

domain of the function f namely D a⇔ ∃ >δ 0 :

0 < − < ⇒ <x c f c f xδ � � � �
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That is, there is a positive number δ  such that the
value of the function f at an interior point x = c denoted
by f (c) is less than the values of the function f at
every value of the independent variable x whose
distance (or difference) from the interior point x = c of
the domain of the function f is non zero and less than
the positive number δ .

Now the definitions of absolute (or global) maxima
and absolute (or global) minima of a function are
presented.

1. Absolute (or universal or global) maxima of a
function:

Definition: A function f defined by y = f (x) on its
domain D is said to have an absolute (or global)
maximum value (or simply a maximum) at a point x = c

∈ ⇔ ∀ ∈ ⇒ ≥ ∀ ∈D x C f c f x x D f� � � � � �,
That is, the value of the function f at the point

x = c in its domain D denoted by f (c) is not less than
the values of the function f at any value of the
independent variable x which is not c and is in its
domain D.

2. Absolute (or universal or global) minima of a
function:

Definition: A function f defined by y = f (x) on its
domain D is said to have an absolute (or global)
minimum value (or simply a minimum) at a point x = c

∈ ⇔ ∀ ∈ ⇒ ≤ ∀ ∈D x D f c f x x D f� � � � � �,

That is, the value of the function f at the point
x = c in its domain D denoted by f (c) is not greater
than the value of the function f at any value of the
independent variable x which is not c and is in its
domain D.

Notes: A: (i) Maximum and / minimum values are
often termed as extrema (plural of extermum).
(ii) Plural of maximum is either maxima or maximums.
(iii) Plural of minimum is either minima or minimums.
(iv) Plural of extremum is only extreme.

(B): (i) It is not necessary that the given function y
= f (x) should always have the maxima and / minima.

e.g. y = x3, y = cot x, y = ax and y = ax + b do not
have either a maximum and / a minimum.
(ii) There may be several local maxima and local
minima which occur alternatively in case of a

continuous function, i.e. the maximum and /minimum
values occur alternatively in a continuous function.
e.g. y = sin x and y = cos x have the maximum and the
minimum points alternatively.

But in a discontinuous function, the local maximum
and the local minimum points may or may not occur
alternatively.
(iii) A function y = f (x) may have only one maximum
value.
e.g.: y = 60x – x2

(iv) A function y = f (x) may have only one minimum
value.

e.g.: y x
x

= +2
72

(v) A function y = f (x) may have both the maximum
and the minimum values.
e.g.: y = x3 – x2 – 8x + 2

On Points of Local Exterma

1. The point of local maximum: A point x = c in the
domain of the function y = f (x) at which the value of
the function is a local maximum value of the function
is called the point of local maximum (or simply the
point of maximum or maximum point) of the function
y = f (x).
2. The point of local minimum: A point x = c in the
domain of the function y = f (x) at which the value of
the function is a local minimum value of the function
is called the point of local minimum (or, simply the
point of minimum or minimum point) of the function
y = f (x).

x
o

y

P1

f 
c(
)

x  c=
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Geometrically, a point x = c in the domain of a func-
tion y = f (x) is a point of local maxima or local minima
according as the graph of the function f has a peak
(crest) or cavity (trough) at the point x = c.

Here P1 is a min. point and P2 is a max. point.

Local Extreme Values at Critical Points

In fact, to find out local extreme values of a function
defined in its domain, critical points are considered
which are of two kinds:

1. Points at which the first derivative does not exist:
If x = c is a critical point where ′f c� �  is undefined
and x = c is a point of local maximum, then f is
increasing in the left δ -neighbourhood of c (i.e. f is
increasing ∀ ∈ −x c cδ , ]� �  and f is decreasing in
the right δ -neighbourhood of c (i.e. is decreasing
∀ ∈ +x c c, δ �� , i.e., δ  changes sign from positive
to negative as x passes through ‘c’.

In the same fashion, if x = c is a point of local
minimum, then f is decreasing in the left δ -
neighbourhood of c (i.e. f  is decreasing
∀ ∈ −x c cδ , ]� �  and f is increasing in the right δ -
neighbourhood of c (i.e. f is increasing
∀ ∈ +x c c, δ�� , i.e. ′f x� �  changes sign from
negative to positive as x passes through ‘c’.

2. Points at which the first derivative is zero: If x = c
is a critical point at which ′f c� �  exists and ′f c� � = 0
and x = c is a point of local maximum, then f is
increasing in the left δ -neighbourhood of c and f is
decreasing in the right δ -neighrbourhood of c, i.e.
′f x� �  changes sign from positive to negative as x

passes through c.

In the same fashion, if x = c is a point of local
minimum, then it is decreasing in the left δ -
neighbourhood of c and f is increasing in the right δ -
neighbourhood of c, i.e. f ' (x) changes sign from
negative to positive as x passes through ‘c’.

Notes: 1. ymax = max · f (x)  = maximum value of f (x)
= [y]x =c , where ‘c’ = a point of maximum

2. ymin = min · f (x) = minimum value of f (x)
= [y]x =c , where ‘c’ = a point of minimum.

Necessary condition for the maximum or the
minimum value

Theorem: If y = f (x) defined on its domain has a
maximum value at x = c and ′f c� �  exists, then
′f c� � = 0 where c is an interior point of the domain

of the function f.
Proof: Let y = f (x) be a real valued function of the
independent variable x whose domain is the interval
D.
Hypothesis: 1. f (x) has the maximum value at the
interior point x = c in the domain D, i.e.,

∃ ∀ ∈ − ⇒ <a x N c c f x f cδ δ: � � � � � � � �
∃ − < < ⇒ <a c x c f x f cδ δ: � � � � …(i)

and ∃ < < + ⇒ <a c x c f x f cδ δ: � � � � …(ii)

2. ′f c� �  exists ⇒ ′ = ′ = ′L f c R f c f c� � � � � �
To prove: ′f c� �  = 0

x
o

y

P2

f 
c(
)

x  c=

c −δ� � c +δ� �
xo

y

x  c=c −δ c +δ

c −δ� � c +δ� �
x

o

y

x  c=c −δ c +δ
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Main proof: From (i), it is seen that

f (x) < f (c) for c x c− < <δ

i.e., f (x) – f (c) < 0 for c x c− < <δ

⇒
−
−

>
f x f c

x c

� � � �
� � 0

[Since c x c x c− < < ⇒ − < − <δ δ 0 ]

⇒
−
−

�
�
	



�
� ≥

→
lim
x c

f x f c

x c

� � � �
� � 0

⇒ ′ ≥L f c� � 0 …(A)

From (ii), it is seen that
f (x) < f (c) for c < x < c + δ

i.e., f (x) – f (c) < 0 for c < x < c + δ

⇒
−
−

<
f x f c

x c

� � � �
� � 0

[Since c x c x c< < + ⇒ < − <δ δ0 ]

⇒
−
−

�
�
	



�
� ≤

→
lim
x c

f x f c

x c

� � � �
� � 0

⇒ ′ ≤R f c� � 0 …(B)

On putting L f c R f c f c′ = ′ = ′� � � � � �  [from the

hypothesis (2)] in (A) and (B), it is found that

′ ≥f c� � 0 …(A1)

and ′ ≤f c� � 0 …(B1)

Hence, from (A1) and (B1), it is concluded that and

′ ≥
′ ≥


�
�
⇔ ′ =

f c

f c
f c

� �
� � � �0

0
0  which was required to be

proved.

Notes: 1. The above theorem is also true when
y = f (x) has a minimum value at x = c in the domain of

f and ′f c� �  exists.

2. ′f c� �  exists ⇔  l.h.d = r.h.d ⇔  a common finite
value, i.e. ′f c� �  exists ⇔ ′ = ′ = ′L f c R f c f c� � � � � �
3. x y≤  and x > y ⇔ />x y  and x y x y/< ⇔ =

On the Language of Calculus

Let y = f (x) be a function of the independent variable
x whose domain contains a point x = c.

If there exists an ∈> 0  such that

c x c f x f x−∈< < ⇒ > ′ >� � � �0 0/ / ′′ >f x� � 0  and
c x c f x f x< < +∈⇒ < ′ <� � � �0 0/ / ′′ <f x� � 0  then

it is said that f (x) / ′f x� � / ′′f x� �  changes sign from
positive to negative at x = c as (when or while) x
passes through c from left to right.

Similarly, if there exists an ∈> 0  such that

c x c f x f x−∈< < ⇒ < ′ <� � � �0 0/ / ′′ <f x� � 0  and
c x c f x f x< < +∈⇒ > ′ >� � � �0 0/ / ′′ >f x� � 0  then
it is said that f (x) / ′f x� � / ′′f x� �  changes sign from
negative to positive at x = c as (when or while) x
passes through c from left to right.

Sufficient criteria for the maxima and minima

Theorem (first derivative test or rule of change of
sign of first derivative): If a function y = f (x) defined
in its domain is differentiable in a δ -deleted

neighbourhood of the point x = c (i.e. in N c cδ � � � �−
and ′ =f c� � 0 , then
(a) ∀ ∈ − < ⇒ ′ >x N c c x c f xδ � � � � � �, 0  and x > c

⇒ ′ <f x� � 0  i.e. f (x) changes sign from positive to
negative (i.e. from plus to minus) ⇔  f (x) has a
maximum at x = c.
(b) ∀ ∈ − < ⇒ ′ <x N c c x c f xδ � � � � � �, 0  and x > c

⇒ ′ >f x� � 0  i.e. f (x) changes sign from negative to
positive (i.e. from minus to plus) ⇔  f (x) has a
minimum at x = c.
Proof: Verse part:

It is given that ′ =f c� � 0 , then of course ‘c’ is a

critical point of the function.
x c= −δ x c= +δ

f c +δ� �f c −δ� �

′ ≥f c� � 0 ′ ≤f c� � 0
′ =f c� � 0

x
o

(c, f c( ))

y

f c( )

x  c=x c x c

f c +δf c −δ

′f c 0 ′f c 0
′f c 0
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Also, in (a), it is given that x c f x< ⇒ ′ >� � 0

which further
⇒  f (x) is increasing on the left of c

⇒  f (x) is increasing in a left δ -deleted
neighbourhood of c.

⇒  f (x) is increasing in (c – δ , c).

⇒ ≤ ∀ ∈ −f x f c x c c� � � � � �, ,δ …(i)

Again, in (a), it is given that x c f x> ⇒ ′ <� � 0

which further
⇒  f (x) is decreasing on the right of c.

⇒  f (x) is decreasing in a right δ -deleted
neighbourhood of c.

⇒  f (x) is decreasing in (c, c + δ )

⇒ ≤ ∀ ∈ +f x f c x c c� � � � � �, , δ …(ii)

Hence, from (i) and (ii), it is concluded that

f x f c x c c c c� � � � � � � �≤ ∀ ∈ − ∪ +, , ,δ δ
i.e. f (c) is greater than every value of the function at

every value of x c c c c∈ − ∪ +δ δ, ,� � � �  which

⇒  f (c) is maximum in x c c c c∈ − ∪ +δ δ, ,� � � �
⇒  f (x) has a maximum at x = c.
Next, accordingly as in (b), it is given that

x c f x< ⇒ ′ <� � 0  which ⇒  f (x) is decreasing on

the left of c.

⇒  f (x) is decreasing on the left δ -deleted
neighbourhood of c.

⇒  f (x) is decreasing in (c –δ , c)

⇒ ≥ ∀ ∈ −f x f c x c c� � � � � �, ,δ …(iii)

Also, in (b), it is given that x c f x> ⇒ ′ >� � 0

which
⇒  f (x) is increasing on the right of c.

⇒  f (x) is increasing on the right δ -deleted
neighbourhood of c.

⇒  f (x) in increasing in (c, c + δ )

⇒ ≥ ∀ ∈ +f x f c x c c� � � � � �, , δ …(iv)

Thus, from (iii) and (iv), it is concluded that

f x f c c c c c� � � � � � � �≥ ∀∈ − ∪ +, , ,δ δ

i.e. f (c) is less than every value of the function at

every value of x c c c c∈ − ∪ +δ δ, ,� � � �
⇒  f (c) is minimum in c c c c− ∪ +δ δ, ,� � � �
⇒  f (x) has a minimum at x = c.

Converse part:
Hypothesis: f (x) has a local extrema at x = c.

To prove: ′f x� �  changes sign at x = c.

Main proof: The claim that ′f x� �  does not change

sign at x c a= ⇒ ∃ >δ 0  such that ′f x� �  has the

same sign in c c c c− ∪ +δ δ, ,� � � � , i.e. ′f x� �  is

either positive or negative ∀ ∈ −x c cδ ,� �
∪ +c c, δ� � . On supposing that ′ ∀ ∈f x x� �
c c c c− ∪ + ⇒δ δ, ,� � � �  f (x) increasing in c c−δ ,� �
∪ + ⇒ =c c x c, δ� �  is not an extreme point of y = f
(x) which is absurd because it is given that x = c is
extreme point, i.e. f (x) has an extrema at x = c.

Hence, the required is proved.

Theorem: (second derivative test of maxima and
minima): If a function y = f (x) defined on its domain is
twice differentiable in a δ -neighbourhood of the point

x = c (i.e. in N cδ � � ) such that
(i) ′f c� �  = 0 and ′′f c� �  > 0, then f (x) has a local
maximum at x = c.
(ii) ′f c� �  = 0 and ′′f c� �  < 0, then f (x) has a local
maximum at x = c.
Proof: (i) Hypothesis: y = f (x) is twice differentiable

in N cδ � � .
′f c� �  = 0 and ′′f c� �  > 0

To prove: f (x) has local minimum at x = c.
Main proof: ′ = ⇒f c c� � 0  is a critical point of
y = f (x). y = f (x) is twice differentiable in

N c f xδ � � � �⇒ ′  exists in c c− +δ δ,� � , for some

δ > 0 .

Further ′′f c� �  > 0

⇒ ′f x� �  is increasing in c c− +δ δ,� �
⇒ ′ < ′f x f c� � � �  for c x c− < <δ …(1)

and ′ > ′f x f c� � � �  for c x c< < + δ …(2)
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But it is given that ′f c� �  = 0.

Hence, from (1) and (2), it is concluded that

′ <f x� � 0  for c x c− < <δ …(3)

and ′ >f c� � 0  for c x c< < +δ …(4)

∴  (3) and (4) ⇒ ′f x� �  changes sign from –ve to

+ve as one moves from left to right in the δ -

neighbourhood of ⇒  f (x) has a local minima at x = c.
(ii) Hypothesis: y = f (x) is twice differentiable in

N cδ � �
′f c� �  = 0 and ′′f c� �  < 0

To prove: f (x) has a local maxima at x = c.

Main proof: ′ = ⇒f c c� � 0  is a critical point of f (x)

f (x) is twice differentiable in a N cδ � � .
⇒ ′′f x� �  exists in c c− +δ δ,� �
Further, ′′ <f c� � 0

⇒ ′f x� �  is decreasing in c c− +δ δ,� �
⇒ ′ > ′f x f c� � � �  for c x c− < <δ …(1)

and ′ < ′f x f c� � � �  for c x c< < +δ …(2)

But it is given that ′ =f c� � 0

Hence, from (1) and (2) it is concluded that

′ >f x� � 0  for c x c− < <δ …(3)

and ′ <f c� � 0  for c x c< < +δ …(4)

∴  (3) and (4) ⇒ ′f x� �  changes sign from +ve to

–ve as one moves from left to right in the δ -

neighbourhood of ⇒  f (x) has a maximum at x = c.

⇒ f c� �  is local minimum in (c –δ , c +δ ).

Hence, the required is proved.

Note: f x
n � �>0  for all x c c∈ − +δ δ,� � .

⇒
−

f x
n 1� � � �  is increasing for all x c c∈ − +δ δ,� � .

∴ ′ >f x� � 0  for all x c c∈ − +δ δ,� �
⇒ f x� �  is increasing for all x c c∈ − +δ δ,� �
′′f x� �  > 0 for all x c c∈ − +δ δ,� �

⇒ ′f x� �  is increasing for all x c c∈ − +δ δ,� �

Similarly, f x
n � �<0  for all x c c∈ − +δ δ,� �

⇒
−

f x
n 1� � � �  is decreasing for all

x c c∈ − +δ δ,� �
∴ ′ <f x� � 0  for all x c c∈ − +δ δ,� �
⇒ f x� �  is decreasing for all x c c∈ − +δ δ,� �
′′ <f x� � 0  for all x c c∈ − +δ δ,� �

⇒ ′f x� �  is decreasing for all x c c∈ − +δ δ,� �
On methods of finding the extrema of a function
y = f (x) whose domain is an open interval or not
mentioned.

There are three methods to find out the extreme
value (values) of a continuous function y = f (x) whose
domain is an open interval (a, b) or not mentioned.

1. Method of definition.
2. Method of first derivative test.
3. Method of second derivative test.

Now each method will be explained seperately.
1. On method of definition: It consists of following
steps:
Step 1: To locate the critical points, i.e. the points
where ′f x� �  = 0 or ′f x� �  is undefined.
Step 2: To consider one of the critical points say c
and to find f (c), f (c – h) and f (c + h).
Step 3: f (c) > f (c – h) and f (c + h) both for small
values of h > 0 ⇒ f x� �  has the maximum value at
x c a b= ∈ ,� � .

Similarly, f (c) < f (c – h) and f (c + h) both for small
values of h > 0 ⇒ f x� �  has the minimum value at
x c a b= ∈ ,� � .
Examples worked out:

1. Find the turning points on the curve f (x) = 4x3 –
3x2 – 18x + 6. Discriminate the maximum and minimum
points by definition.
Solution: f (x) = 4x3 – 3x2 – 18x + 6

⇒ ′ = − −f x x x� � 12 6 18
2

Now ′ = ⇒ − − =f x x x� � 0 12 6 18 0
2
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⇒ − − = ⇒ − + =2 3 0 2 3 1 0
2

x x x x� �� �

⇒ = = −x x
3

2
1or

 f (x) = 4x3 – 3x2 – 18x + 6

⇒ �
�
�
� = × − × − × +f

3

2
4

27

8
3

9

4
18

3

2
6

= 13.50 – 6.75 – 27 + 6 = – 14.25
and f (–1) = –4 – 3 + 18 + 6 = 17

Now for h > 0, f h f
3

2

3

2
+���
�
�� −

�
��
�
��

= 15h2 + 4h3 > 0

and f h f
3

2

3

2
−���
�
�� −

�
��
�
��

= 15h2 – 4h3 > 0 for sufficiently small h.

Hence, we observe that f f h
3

2

3

2
�
�
�
� < +��

�
�  and

f h
3

2
−��
�
� , for sufficiently small h > 0

∴ =x
3

2
 is a minimum point and f

3

2
�
�
�
�  = –14.25

is a minimum value.
Again f (x) = 4x3 – 3x2 – 18x + 6

⇒  f (–1) = –4 – 3 + 18 + 6 = 17
Now for sufficiently small h > 0,

f (–1 + h) – f (–1) = 4h3 – 9h2 < 0,
f (–1 – h) – f (–1) = –4h3 – 9h2 < 0

∴ x = –1 is a maximum point and f (–1) is the
maximum value of f (x) at x = –1.
2. On method of first derivative test: It consists of
following steps:
Step 1: To locate the critical points, i.e. the points
where ′f x� �  = 0 or ′f x� �  is undefined.
Step 2: To examine whether ′f x� �  changes sign at a
critical point, say, x = c.
Step 3: (i) ′ − >f c h� � 0  and ′ + <f c h� � 0  (i.e. from
plus to minus) ⇒  f (x) has the maximum value at
x = c.
(ii) ′ − <f c h� � 0  and ′ + >f c h� � 0  (i.e. from minus
to plus) ⇒  f (x) has the minimum value at x = c.

Similarly, the sign of each critical point c1, c2, … is
examined provided that there are more than one critical
point besides x = c.

The above method of procedure can be put in a
tabular form as given below (if f ' (c) exists)

x Little < c At c Little > c Nature of the
point c

′f x� � +ve 0 –ve Maximum

′f x� � –ve 0 +ve Minimum

Notes: (i) To find the critical points where ′f x� �  = 0
one should solve ′f x� �  = 0.
(ii) If ′f x� �  is a rational functions, one should put
numerator = 0 to see where ′f x� �  = 0 since
denominator of a rational function cannot be zero
and one should put denominator = 0 to see where
′f x� �  is undefined.

2. On method of second derivative test: Instead of
examining ′f x� �  for change of sign at a critical point
(critical points), one can use the second derivative
test to determine quickly the presence of a local
extreme value (local extreme values). It consists of
following steps (if f " (c) exists).
Step 1: To locate the critical points, where f ' (x)=  0.

Step 2: To find ′′f x� � .
Step 3: To examines the positivity and the negativity

of ′′f x� �  at all the critical points located. Let x = c be

any one of the located critical points. Then

′f c� �  = 0 and ′′ < ⇒f c� � 0  y = f (x) has a local

maximum at x = c.

′ =f c� � 0  and ′′ > ⇒f c� � 0  y = f (x) has a local

minimum at x = c.
Similarly, each critical point c1, c2, c3, … is examined

provided that there are more than one critical points
besides x = c.

The above method of procedure can be put in a
tabular form as given below (if f " (c) exists).

′f c� � ′′f c� � Nature of the critical point c

0 –ve Maximum

0 +ve Minimum
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Note: If c is a critical point, such that ′f c� �  exists
and ′ =f c� � 0 , and supposing that n ≥ 2  is the

smallest positive integer such that f c
n� � � � ≠ 0  then

method of procedure of the second derivative test is
put in the following tabular form:

n sign of f (n) (c) Nature of the critical
point c

odd +ve or –ve Neither maximum
nor minimum

even –ve Maximum
even +ve Minimum

where to apply which method to determine the extreme
value (or, values) of a given continuous function y =
f (x) on a given open interval (a, b) or whose domain
is not mentioned.

1. Method of definition: This method is practically
of no use because this method is lengthy and involves
tedious calculation.
2. Method of first derivative test: This method is
practically convenient in the following cases:

(i) When the given continuous function y = f (x) can
be factorised, the first derivative test is always used.
(ii) When it is difficult to find out the second
derivative a given continuous function y = f (x), the
first derivative test is used.
(iii) When the answer is given, the first derivative
test is used to save time.
(iv) When ′′f x� �  = 0 or ′′f x� �  does not exist at a
critical point x = c, the first derivative test is used.

3. Method of second derivative test: This method is
practically convenient for any given continuous
function y = f (x) which has a second derivative such
that ′′f x� �  exists at a critical point x = c and ′′ ≠f c� � 0 .

How the know that there is no maximum or minimum
points:

1. When ′f x� �  = 0 provides us an impossible or
imaginary result, then the given continuous function
y = f (x) on an open interval (a, b) or whose domain is
not mentioned, has neither the maximum nor the
minimum and one is required not to proceed further.

e.g. f x x x f x x� � � �= + + ⇒ ′ = +3 4 7 9 4
3 2

∴ ′ = ⇒ + = ⇒ = −f x x x� � 0 9 4 0
4

9

2 2
 ⇒  x

= ±
−4

9
 which are imaginary and hence f (x) has no

maximum or minimum points.
2. When ′f x� �  is undefined at a critical point x = c,
there is neither the maximum nor the minimum value
for a given continuous function y = f (x) at x = c.
3. When ′f x� �  is found to be positive (or negative)
for all real values of x, then it cannot change sign and
consequently, there is neither the maximum nor the
minimum values for the given continuous function
y = f (x).

Question: What is 
dy

dx
 (slope of the curve) at the

maximum or minimum f (x)?

Answer: At maximum or minimum x
dy

dx
= ⇔0  the

slope is zero ⇔  the tangent line is parallel to the
x-axis.

Remarks: 1. If the question says, “find the max. and
/ min. values of a continuous function y = f (x) defined
on its domain D,” then it is required to be found out
firstly where these values occur (i.e. the points of
maxima and / the points of minima) and then secondly
what are these values (i.e. the values of a continuous
function at the maximum and / the minimum points).
2. If the question says, “ examine for max. and / min.”,
then it is required to be found out the points only
where the max. and / min. value (values) occur, i.e. the
points of maxima and / the points of minima are
required to be determined.

x

B

A

o

y

f 
b(

)

f 
c(
)

f ’ b ( ) = 0

f ’ c ( ) = 0

x  b= x  c=
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3. The essential conditions for the existance of the
maximum and / the minimum value (values) of a
differentiable functions y = f (x) for x = c are (i) ′f x� �
must be zero for x = c and (ii) ′f x� �  must change
sign as x passes through the critical point x = c.

Problems Based on Algebraic
and Mod Function

Examples worked out on algebraic functions
1. Examine the max / min for the function y = x + 2.
Solution: y = x + 2

⇒ =
dy

dx
1  (constant)

Now, 
dy

dx
= 0  for extreme value of the function y =

x + 2
⇒  0 = 1 which is absurd / impossible

⇒ =
dy

dx
0  provides us an impossible result

⇒ =dy

dx
0  has no solution

⇒  y has no point of maximum or minimum.

2. Examine the max/min for the function y = x3 + x2 +
x + 1.
Solution: Let y = x3 + x2 + x + 1 = f (x)

⇒ ′ = + +f x x x� � 3 2 1
2

∴ ′ = + + =f x x x� � 3 2 1 0
2

⇒ + + =3 2 1 0
2

x x

⇒ =
− ± −

= − ±
x

i2 4 12

6

2 2

6
 which are

imaginary

⇒ ′ =f x� � 0  provides us imaginary values

⇒  f (x) has no point of maximum or minimum
3. Where is the minimum / maximum of the function y
= ax2 + bx + c.
Solution: y = f (x) = ax2 + bx + c

⇒ = ′ = +dy

dx
f x ax b� � 2 …(1)

⇒ = ′′ =
d y

dx
f x a

2

2
2� � …(2)

Now, ′ = ⇒ + = ⇒ = −f x ax b x
b

a
� � 0 2 0

2

On putting x
b

a
= −

2
 in (2), we have

′′ = ×=− =−f x ax xb
a

b
a

� �
2 2

2

⇒ ′′ −��
�
� =f

b

a
a

2
2  which is positive if a > 0.

Hence, if a > 0, then at x
b

a
= −

2
, the function f (x)

has a minimum and min. (maximum at x
b

a
= −

2
, if a < 0)

f (x) = −��
�
� = ⋅ − +f

b

a
a

b

a

b

a
c

2 4 2

2

2

2

= − + = +
−�

�
�

�

�
�

b

a

b

a
c c

b b

a

2 2 2 2

4 2

2

4

= −
�

�
�

�

�
�c

b

a

2

4

4. Where is the minimum / maximum of the function y
= 2x2 – 8x + 6.
Solution: y = 2x2 – 8x + 6 = f (x) (say)

⇒ = −dy

dx
x4 8 …(1)

⇒ =
d y

dx

2

2
4 …(2)

Now, 
dy

dx
= 0  in (1)

⇒ − =4 8 0x

⇒ = =x
8

4
2

Putting x = 2 in (2)
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⇒
�

�
	
	




�
�
�

= =
=

=
d y

dx x

x

2

2

2

24 4  which is positive

∴ At x = 2, the function y = f (x) has a minimum
and min. f (x) = f (2) = 2 × 22 – 8 × 2 + 6 = –2.

5. Where is the maximum / minimum of y = 2x2 – 3x.
Solution: y = 2x2 – 3x

⇒ = −dy

dx
x4 3

Now, 
dy

dx
x= ⇒ − =0 4 3 0

⇒ =x
3

4

Again, 
d y

dx

2

2
4=

⇒
�

�
	
	




�
�
�

=
=

d y

dx x

2

2
3
4

4  which is positive

∴ At x =
3

4
, the function has a minimum, and

min.

y y x= = ⋅ ��
�
� = ⋅ ��

�
� = −= 3

4
2

3

4
3

3

4

9

8

2

6. Find the extreme values of the function f (x) = x3 –
6x2 + 9x + 1.
Solution: f (x) = x3 – 6x2 + 9x + 1

⇒ ′ = − +f x x x� � � �3 4 3
2

Now, ′ =f x� � 0

⇒ − + = ⇒ =3 4 3 0 1 3
2

x x x� � ,

′′ = −f x x� � � �6 2

⇒ ′′ = −f 1 6� �  which is –ve

and ′′ =f 3 6� �  which is +ve

Hence, at x = 1, the function has a maximum and
max. f (x) = f (1) = 13 – 6 × 12 + 9 × 1 + 1 = 5, where as at
x = 3, the function has a minimum and min. f (x) = f (3)
= 33 – 6 × 32 + 9 × 3 + 1 = 1

7. Where is the max / min. of y
x x

x= − + +
3 2

3

5

2
6 4 ?

Solution: y
x x

x= − + +
3 2

3

5

2
6 4

⇒ = − + = − −dy

dx
x x x x

2
5 6 2 3� �� � …(1)

Now, 
dy

dx
x x x= ⇒ − − = ⇒ =0 2 3 0 2 3� �� � ,  …(2)

Now, 
d y

dx
x

2

2
2 5= − …(3)

⇒
�

�
	
	




�
�
�

= − = − = −
=

=
d y

dx
x

x

x

2

2

2

22 5 4 5 1  (–ve)

and 
d y

dx
x

x

x

2

2

3

32 5 6 5 1
�

�
	
	




�
�
�

= − = − =
=

=  (+ve)

∴ At x = 2, y has a maximum and

max. f x f
x x

x

x

� � � �= = − + +
�

�
	
	




�
�
�

=

2
3

5

2
6 4

3 2

2

= −
×

+ × +
2

3

5 2

2
6 2 4

3 2

= − + + =8

3
10 12 4

26

3
and at x = 3, y has a minimum and

min. f x f
x x

x

x

� � � �= = − + +
�

�
	
	




�
�
�

=

3
3

5

2
6 4

3 2

3

= − + +9
45

2
18 4  =

17

2
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8. Where is the maximum or minimum of y
x

x
=

−
+

3

3 − x

x
?

Solution: y
x

x

x

x
=

−
+

−
3

3

⇒ =
− − −

−
+

− − − ⋅dy

dx

x x

x

x x

x

3 1

3

1 3 1
2 2

� � � �
� �

� � � �

Now, 
dy

dx x x
= ⇒

−
− =0

3

3

3
0

2 2� �

⇒
−

− =
1

3

1
0

2 2x x� �

⇒
−

=1

3

1
2 2x x� �

⇒ − =3 2 2
x x� �

⇒ − + − =x x x
2 2

6 9 0

⇒ − + =6 9 0x

⇒ − =6 9 0x

⇒ = =x
9

6

3

2

Again, 
d y

dx

d

dx x x

2

2 2 2

3

3

3
=

−
−

�

�
	
	




�
�
�� �

=
−

+
6

3

6
3 3x x� �

d y

dx x

2

2 3 3
3
2

6
1

3
3
2

1

3
2

�

�
�

�

�
� =

−��
�
�

+
�
�
�
�

�

�

	
	
	
	




�

�
�
�
�=

 which is

positive

∴ At x =
3

2
, the function y has a minimum and

min y y
x

x

x

xx
x

= =
−

+ −�
��

�
�� ==

=

� � 3
2

3
2

3

3
2

9. Where is the maximum / minimum of the function

y x x= + + −2 2 .

Solution: y x x= + + −2 2  = f (x) (say)

⇒ =
+

−
−

dy

dx x x

1

2 2

1

2 2 , | x | < 2

dy

dx x x
= ⇒

+
−

−
=0

1

2 2

1

2 2
0

⇒
+

=
−

1

2 2

1

2 2x x

⇒ + = −2 2 2 2x x

⇒ + = −2 2x x

⇒ + = −2 2x x

⇒ =2 0x

⇒ =x 0

Now, 
d y

dx

d

dx x x

2

2

1

2 2

1

2 2
=

+
−

−

�

�
	
	




�
�
�

⇒ ′′ = − + ⋅�
�	



��

−f x x� � � �1

2

1

2
2 1

3
2

− − − −�
�	



��

−1

2

1

2
2 1

3
2x� � � �

= − + − −− −1

4
2

1

4
2

3
2

3
2x x� � � �

= −
+

−
−

1

4 2

1

4 23 3x x� � � �

∴ ′′ = − −f 0
1

4 2

1

4 2
3 3

� �  which is negative

quantity.
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Hence, at x = 0, the function f (x) has a maximum
and

max. f x� � = + =2 2 2 2

10. Find the extreme value of the function y = (x + 1)
(x + 2) (x + 3).
Solution: y = (x + 1) (x + 2) (x + 3)

= (x2 + 2x + x + 2) (x + 3)
= x3 + 2x2 + x2 + 2x + 3x2 + 6x + 3x + 6
= x3 + 6x2 + 11x + 6

⇒ = + +dy

dx
x x3 12 11

2
…(1)

∴ = ⇒ + + =
dy

dx
x x0 3 12 11 0

2

⇒ =
− ± − ⋅ ⋅

×
x

12 12 4 3 11

2 3

2� �

=
− ± −12 144 132

6

⇒ =
− ± ×

= − ±
x

12 4 3

6

12 2 3

6

⇒ =
− + − −

x
12 2 3

6

12 2 3

6
,

Now, differentiating (1) again w.r.t x, we get

′′ = = +f x
d y

dx
x� �

2

2
6 12

⇒ ′′ − +�
��

�
�� = − +�

��
�
�� +f 2

1

3
6 2

1

3
12

⇒ ′′ − +�
��

�
�� = − × + + =f 2

1

3
6 2

6

3
12

6

3

(Positive)

Again, ′′ − −
�
��

�
��
= − −
�
��

�
��
+f 2

1

3
6 2

1

3
12

⇒ ′′ − −�
��

�
�� = − − + = −f 2

1

3
12

6

3
12

6

3
(negative)

∴  At x = − +2
1

3
, the function y has a

minimum and min.

y y x= =− +� � 2 1
3

= −2

3 3

At x = − −2
1

3
, the function y has a maximum

and max.

y y x= =− −� � 2 1
3

= 2

3 3

11. Find the max / min. values of y on the curve y =
(x – 2) (x – 3).
Solution: y = (x – 2) (x – 3)

= x2 – 2x – 3x + 6
= x2 – 5x + 6

⇒ = −dy

dx
x2 5

∴ = ⇒ − = ⇒ =
dy

dx
x x0 2 5 0

5

2

Now, 
d y

dx

2

2
2=

⇒
�

�
	
	




�
�
�

= =
=

=
d y

dx x

x

2

2
5
2

5
2

2 2  (positive)

∴  At x = 5

2
, the function y has a minimum and

min.

y y x xx x
= = − −= =� � � �� �5

2
5
2

2 3

= −�
�

�
� −�
�

�
� = × −��

�
� = −

5

2
2

5

2
3

1

2

1

2

1

4

12. Find the extreme value of the function y = (x – 1)
(x – 2) (x – 3).
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Solution: y = (x – 1) (x – 2) (x – 3)
= x3 – 6x2 + 11x – 6

⇒ = − +dy

dx
x x3 12 11

2

∴ =dy

dx
0

⇒ − + =3 12 11 0
2

x x

⇒ =
± −

= ±x
12 144 132

6
2

1

3

Now, 
d y

dx
x

2

2
6 12= −

∴ ′′ +���
�
�� = − = +f x x2

1

3
6 12

2 1
3

⇒ ′′ +
�
��

�
�� = +

�
��

�
�� −

�
�
	



�
� =f 2

1

3
6 2

1

3
12

6

3

(positive)

and ′′ −���
�
�� = − = −f x x2

1

3
6 12

2 1
3

⇒ ′′ +���
�
�� = −���

�
�� −

�
�	



��

f 2
1

3
6 2

1

3
12

= − − = −12
6

3
12

6

3
 (negative)

Hence, at x = +2
1

3
 the function y has a

minimum and min.

y y x= = +� � 2 1
3

= − − − = +x x x
x

1 2 3
2 1

3

� �� �� �

= +���
�
�� −

�
�	



��

+���
�
�� −

�
�	



��

+���
�
�� −

�
�	



��

2
1

3
1 2

1

3
2 2

1

3
3

= +���
�
��
�
��
�
�� −�
��

�
��

�
�	



��

1
1

3

1

3

1

3
1

= −2

3 3

and at x = −2
1

3
, the function y has a maximum

and max.

y y x x xx x
= = − − −= − = −� � � �� �� �2 21

3
1
3

1 2 3

= −���
�
�� −

�
�	



��

−���
�
�� −

�
�	



��

−���
�
�� −

�
�	



��

2
1

3
1 2

1

3
2 2

1

3
3

= −���
�
�� −���

�
�� − −�
��

�
��

�
�	



��

1
1

3

1

3
1

1

3

= −���
�
��
�
��
�
�� +���

�
��1

1

3

1

3
1

1

3

= 2

3 3

To find the max / min values of the function with the
help of first derivative only

Examples worked out:

1. Find the max / min values of the function y = (x –
3)5 (x + 1)4.
Solution: y = (x – 3)5 (x + 1)4 …(1)

⇒ = −
+

+ +
−dy

dx
x

d x

dx
x

d x

dx
3

1
1

35
4

4
5

� � � � � � � �

= − ⋅ + + + ⋅ −x x x x3 4 1 1 5 35 3 4 4� � � � � � � �

= − + − ⋅ + + ⋅x x x x3 1 3 4 1 5
4 3� � � � � � � �

= − ⋅ + −x x x3 1 9 74 3� � � � � � …(2)

Now, 
dy

dx
= 0

⇒ − + − =x x x3 1 9 7 04 3� � � � � �

⇒ =
= −

=



�
��

�
�
�

x

x

x

3

1
7

9
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we now investigate the sign of 
dy

dx
 in the neigh-

bourhood of these points.
(1) for h > 0,

dy

dx x h

�
�	


�� = −3

= − − − + − −3 3 3 1 9 3 74 3h h h� �

= − − >h h h
4 34 20 9 0� � � �  for sufficiently small

values of h and 
dy

dx x h

�
�	


�� = +3

= + − ⋅ + + + −3 3 3 1 9 3 74 3h h h� �

= ⋅ + × + >h h h
4 34 20 9 0� � � �  for small values

of h

Thus, we observe 
dy

dx
 does not change sign in

moving from left to right through the point x = 3.
Hence, x = 3 is a point known as a point of inflection

(2) for h > 0,

dy

dx x h

�
�	


�� = − −1

= − − − − − + − − −1 3 1 1 9 1 74 3h h h� � � � � �

= − − − − − −4 9 9 74 3h h h� � � � � �

= − − − − − >4 16 9 04 3h h h� � � � � �  for small values

of h

and 
dy

dx x h

�
�	


�� = − +1

= − + − − + + − + −1 3 1 1 9 1 74 3h h h� � � � � �

= − + − + −4 9 9 74 3h h h� � � � � �

= − + − +4 16 94 3h h h� � � � � �  < 0 for suffi-

ciently small values of h.

Thus, we observe 
dy

dx
 changes sign from plus to

minus in moving from left to right through the point
x = –1. Hence, x = –1 is a point of maximum.

∴ max. y x x
x

= − ⋅ +
=−

3 15 4

1
� � � �

= (–1 – 3)5 · (–1 + 1)4 = 0
(3) For h > 0

dy

dx x h

�
�	


�� = −7

9

= − + −
= −

x x x
x h

3 1 9 74

7
9

� � � � � �

= − −�
�

�
� − +�
�

�
�

�
�
	
	



�
�
�

−��
�
� −

�
�	



��

7

9
3

7

9
1 9

7

9
7

4

h h h

= − −�
��

�
�� −�
��

�
��

�

�
	
	




�
�
�

− −
20

9

16

9
7 7

4

h h qh� �

= − −�
�

�
� −�
�

�
� −

�
�
	
	



�
�
�

20

9

16

9

4

h h h� �  < 0 for sufficeintly

small values of h and 
dy

dx x h

�
�	


�� = +7

9

= − + −
= +

x x x
x h

3 1 9 74

7
9

� � � � � �

= + −�
�

�
� + +�
�

�
�

�
�
	
	



�
�
�

+��
�
� −

�
�	



��

7

9
3

7

9
1 9

7

9
7

4

h h h

= − +�
��

�
�� +�
��

�
�� + −

�

�
	
	




�
�
�

20

9

16

9
7 9 7

4

h h h� �

= − +�
��

�
�� +�
��

�
��

20

9

16

9
9

4

h h h� �  > 0 for small

values of h

Thus, we observe 
dy

dx
 changes sign from minus

to plus in moving from left to right through the point

x = 7

9
.
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Hence, x =
7

9
 is a point of minimum.

∴ min. y x x
x

= − +
=

3 15 4

7
9

� � � �

Footnote: Whenever it is not specially asked to find
out the point of inflection but the point of inflection
occurs, it must be mentioned as in this question.

2. Find the extreme values of the function f (x) = (x –
1) (x + 2)2.
Solution: f (x) = (x – 1) (x + 2)2

⇒ ′ = − + + ⋅ +f x x x x� � � � � � � �2 1 2 1 2 2

= 2x2 + 2x – 4 + x2 + 4x + 4
=3x2 + 6x = 3x (x + 2)

∴ ′ =f x� � 0

⇒ + =3 2 0x x� �
⇒ = −x 0 2,

Now, we investigate the sign of 
dy

dx
 in the

neighbourhood of these points x = 0 and x = –2.

� ′ = +f x x x� � � �3 2

(1) for h > 0,

′ + = ′ = +f h f h h h0 3 2� � � � � �  > 0 for small h

′ − = ′ − = − − <f h f h h h0 3 2 0� � � � � �  for suffi-

ciently small h

∴ ′f x� �  changes sign from minus to plus in

moving from left to right through the point x = 0.
∴ At x = 0, the function f (x) has a minimum and

min. (y) = f (0) = –4.
(2) for h > 0

′ − − = − − − >f h h h2 3 2 0� � � � � �  for small h

′ − + = − + <f h h h2 3 2 0� � � �  for sufficiently

small h

∴ ′f x� �  changes sign from plus to minus in

moving from left to right through x = –2.
∴  At x = –2, the function f (x) has a maximum and

max. (y) = f (–2) = 0

Note: Whenever it is difficult to investigate (or,

determine) the sign of 
dy

dx
, one can calculate

arithmetically by taking for h a sufficiently small
positive number like h = 0.0001 for example, in the

above problem, we have ′ = +f x x x� � � �3 2

(1) for h > 0,

′ + = ′ = +f h f h h h0 3 2� � � � � �
= 3 × 0.0001 × (0.0001 + 2) = 0.0003 × 0.0002

= = ⊕0 000006.

and ′ − = ′ −f h f h0� � � �
= –3h (2 – h) = –3 × 0.0001 × (2 – 0.0001)

= − × =0 0003 19999. .� �
(2) ′ − −f h2� �  = 3 (–2 – h) (–h)

= 3 (–2 – 0.0001) (–0.0001)
= 3 (–2.0001) (–0.0001)
= (–6.0003) (–0.0001) =⊕

and ′ − +f h2� �  = 3 (–2 + h) (+h)

= 3(–2 + 0.0001) (+0.0001)
= 3 (–2 + 0.0001) (+0.0001)
= 3 (–1.9999) (0.0001) = 

Problems on Mod. Functions

While finding maxima and / minima of the given mod.
functions, we should remember the following facts.

1. A function f (x) may have a maximum / a minimum
at a point x = c without being differentiable at that
point x = c.
2. If ′f c� �  does not exist but ′f x� �  exists in the
neighbourhood of x = c, then ′ −−f c h� �  is positive
and ′ ++f c h� �  is negative ⇒ ′f x� �  changes sign
from plus to minus at x = c while passing through x = c
from left to right (i.e.; ′f x� �  changes sign from
positive to negative at x = c as we move from left to
right in the neigh-bourhood of x = c) ⇒ f x� �  has a
maximum at x = c.
3. If ′f c� �  does not exist but ′f x� �  exist in the
neighbourhood of x = c, then ′ −f c h� � is negative
and ′ +f c h� �  is positive ⇒ ′f x� �  changes sign
from minus to plus at x = c while passing through
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x = c from left to right (i.e.; ′f x� �  changes sign from
negative to positive at x = c as we move from left to

right in the neigh-bourhood of x = c) ⇒  f (x) has
minimum at x = c.

The above facts mentioned in (1), (2) and (3) may
be summarised in the tabular form which tells the
behaviour (or, nature) of the function f (x).

x Slightly Slightly at x = c Nature of the point
< c > c x = c / Nature of the

function f (x)

f ' (x) +ve –ve f ' (c) Maxima
does
not
exist

f ' (x) –ve +ve f ' (c) Minima
does
not
exist

Examples worked out in mod functions

1. Find the max / min value of the function f (x) = | x |.
Solution: f (x) is a continuous function

Also, 
d f x

dx

x

x
x

� �
= ≠, 0

∴
d f x

dx

� �
 is –ve for x < 0

and 
d f x

dx

� �
 is +ve for x > 0

∴
d f x

dx

� �
 changes sign from minus to plus while

passing through x = 0 from left to right
At x = 0, f (x) has the minimum

∴ min. f x x
x

� � = ==0
0

2. Find the max / min value of the function

f (x) = | x3 | + 1.
Solution: f (x) = | x3 | + 1

⇒ = ⋅ + ≠
d f x

dx

x

x
x x

� � 3

3
23 0 0,

⇒ = ≠
d f x

dx

x

x
x

� � 3
0

3

,

∴ =
−

= −
d f x

dx

x

x
x

� � 3
3

3
2

 when x < 0 …(1)

and 
d f x

dx

x

x
x

� �
= =

3
3

2
2

, when x > 0 …(2)

(1) and (2) ⇒
d f x

dx

� �
 changes sign from –ve to

+ve in passing through x = 0 from left to right ⇒  f (x)
has the minimum at x = 0.

∴ = +�
�	



�� =

=
min. f x x

x
� � 3

0
1 1

3. Find the max / min value of the function
f (x) = – | x + 1 | + 3.

Solution: f (x) = – | x + 1 | + 3

⇒ =
− +

+
+ ≠

d f x

dx

x

x
x

� � � �1

1
1 0,

⇒
d f x

dx

� �
 = +ve for x < –1

= –ve for x > –1

∴
d f x

dx

� �
 changes sign from plus to minus while

passing through x = –1 from left to right.
∴ At x = –1, f (x) has the maximum

Hence, max. f x x
x

� � = − + + ==−1 3 3
1

4. Find the max / min value of the function
f (x) = | sin 4x + 3 |.

Solution: f (x) = | sin 4x + 3 |

We know that − ≤ ≤1 4 1sin

⇒ − + ≤ + ≤ +1 3 4 3 1 3sin x

⇒ ≤ + ≤2 4 3 4sin x ...(i)

⇒  (sin 4x + 3) lies between 2 and 4

⇒  sin 4x + 3 is +ve
f (x) = | sin 4x + 3 |

= sin 4x + 3 (period being 
π
2

)
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∴ =
d f x

dx
x

� �
4 4cos

Now, 
d f x

dx

� �
= 0

⇒ =x
π π
8

3

8
,

d f x

dx
x

2

2
16 4

� �
= − sin

⇒ = − =
d f x

dx
x

2

2 8

� �
ve for

π

and ⇒ = + =
d f x

dx
x

2

2

3

8

� �
ve for

π

Hence, max. f x x x� � = + =sin4 3
8
π

= + = + =sin
π
2

3 1 3 4

and min. f x x x� � = + =sin4 3 3
8
π

= + = − + =sin
3

2
3 1 3 2

π

Note: From (i), max. f (x) = 4, min f (x) = 2.

Problems based on finding the maxima and / minima
of a function when the interval in which the given
function is defined is not mentioned:

While doing problems on finding the maxima and/
minima of a function when the interval in which the
given function is defined is not mentioned, we should
keep in mind the following facts.

1. If the interval in which a given function is defined
is not given, we should study throughout the domain
of definition of the given function in which it is defined.
2. Whenever the interval in which given trigonometric
function is defined is not mentioned, we consider the
general value of the angle for stationary points to
identify the maximum and / minimum value of the
function.
3. Whenever a particular value of the independent
variable is given at which we are required to
investigate the maxima and / minima of the function,

there is no need to consider the general value of the
angle for stationary points to identify the maximum
and / minimum value of the function. But only the
given particular value of the angle is to be considered
as a stationary point obtained from the equation
′ =f x� � 0  to identify the maximum and / minimum

value of the function.

Remember:

Equations Solutions

(α  = smallest +ve or –ve angle having the given
sin, cos and tan

θ  = any other angle having the same sin, cos and
tan

n = an integer.)

1. sin θ  = 0 θ π= n

2. cos θ  = 0 θ π= + ⋅2 1
2

n� �

3. tan θ  = 0 θ π= n

4. cos θ  = 1 θ π= 2n

5. cos θ  = –1 θ π= +2 1n� �

6. sinθ = − ≤ ≤k k, 1 1 θ π α= + −n n1� �
7. cosθ = − ≤ ≤k k, 1 1 θ π α= ±2n

8. tanθ = − ∞ < < ∞k k, θ π α= +n

9. a b ccos sinθ θ+ = θ π α β= + ±2n

     a b c
2 2 2+ ≥ tan andα =

b

a

cosβ =
+

c

a b2 2

Note: The following results are also worth noting.
1. sin nπ� � = 0
2. cos n nπ� � � �= −1
3. sin sinn nπ θ θ+ = −� � � �1
4. cos cosn nπ θ θ+ = −� � � �1
5. tan tannπ θ θ− = −� �
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6. sin sin2nπ θ θ+ =� �
7. cos cos2nπ θ θ+ =� �
8. tan tannπ θ θ+ =� �
9. cot cotnπ θ θ+ =� �
10. secθ  and cosec θ  can never be less than 1.

N.B.: 1. sin sin2nπ θ θ− = −� �
2. cos cos2nπ θ θ− =� �
Worked out examples on trigonometric functions

1. Find the maximum and / minimum values of the
function y = sin x.
Solution: y = sin x

⇒ =dy

dx
xcos

Now, for the extreme values of y, 
dy

dx
= 0

∴ = ⇒ = ⇒ = +
dy

dx
x x n0 0

2
cos π

π

Again, ′′ = = = −f x
d y

dx

d

dx
x x� �

2

2
cos sin

For even-n,

′′ +�
�

�
�f nπ

π
2

=
�

�
	
	




�
�
�

= +

d y

dx x n

2

2

2
π π

= − = +sin x x nπ π
2

= − +�
�

�
�sin nπ

π
2

= − −1
2

� �n sin
π

= (–1) (1) (1) = –1 =  which indicates maximum
value of y = f (x).

= sin x at x n= +π
π
2

 for even-n.

and for odd-n

′′ +�
�

�
�f nπ

π
2

=
�

�
	
	




�
�
�

= +

d y

dx x n

2

2

2
π π

= − = +sin x x nπ π
2

= − +�
�

�
�sin nπ

π
2

= − − ⋅1 1
2

� � � �n sin
π

= − − = = ⊕1 1 1 1� �� �� �  which indicates minimum

value of y = f (x)

= sin x at x n= +π π
2

 for odd-n

Hence, y has maximum at x n= +π π
2

 (n being

even integer) where ymax = 1

And y has minima at x n= +π
π
2

 (n being odd

integer) where ymin = −1

2. Find the maximum and / minimum values of the
function y = cos x.
Solution: y = cos x

⇒ = −dy

dx
xsin

Now for the extreme values of y
dy

dx
, = 0

∴ = ⇒ − = ⇒ = ⇒ =
dy

dx
x x x n0 0 0sin sin π

Again, ′′ = = − = −f x
d y

dx

d

dx
x x� � � �

2

2
sin cos

For even-n,

′′ =
�

�
	
	




�
�
�

= − = −
=

=f n
d y

dx
x n

x n

x nπ π
π

π� �
2

2
cos cos
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= − − = − + = − =1 1 1� � � �n   which indicates

maximum value of y = f (x) at x n= π  for even-n and

for odd-n, ′′ =
�

�
�
�

�

�
�
�

= −
=

=f n
d y

dx
x

x n

x nπ
π

π� �
2

2
cos

= − = − −cosn nπ 1 1� �
= − − = = ⊕1 1 1� �� �  which indicates minimum

value of y = f (x) at x n= π  for odd-n.

Hence, y has maxima at x n= π  (n being an even

integer) where ymax = +1

And y has minima at x n= π  (n being odd integer)

where ymin = −1

3. Show that the function f (x) = tan x has neither
maxima nor minima.

Solution: f x x f x x� � � �= ⇒ ′ =tan sec
2

,

x n≠ +π
π
2

.

Now, for extreme values of y, ′ =f x� � 0

∴ ′ = ⇒ = ⇒ =f x x
x

� � 0 0
1

0
2

2
sec

cos
 which

is not possible. (f (x) is undefined for x n= +π
π
2

)

Hence f (x) = tan x has neither maxima nor minima.
4. Discuss the extreme values of the function, y =
sec x.

Solution: y = sec x, x n≠ +π π
2

⇒ =dy

dx
x xsec tan

Now, 
dy

dx
= 0  (for extreme values)

⇒ ⋅ =sec tanx x 0

⇒ = =sec or tanx x0 0
But sec x ≠ 0  always and

tan x = 0 ⇒ =x nπ

∴
	

�

�
� =

d y

dx x n

2

2

π

= +
=

sec tan secx x x
x n

2 2� �� �
π

= +sec tan secn n nπ π π� � � �� �2 2

= 1 if n is even and = –1 if n is odd, which indicates

y has minima at x n= π  (n, even) and y f nmin = π� � ,

n even
= secnπ

= 1 and y has maxima at x n= π  (n odd) and y (max)

= –1.

5. Find the maximum values and / minimum values of
the function y = f (x) = a sec x + b cosec x (0 < a < b),

in 0
2

,
nπ	


�
�
� .

Solution: y = a sec x + b cosec x (defined for x
n≠ π
2

)

For, x
n dy

dx
≠ π

2
,  = a sec x tan x – b cosec x · cot x

Now, for the extremum values of y
dy

dx
, = 0

⇒ − ⋅ =a x b x xsec tan cosec cot 0

⇒
⋅
⋅

=
sec tan

cosec cot

x x

x x

b

a

⇒ = ⇒ = 	



�
tan tan

3
1
3

x
b

a
x

b

a
 (only real root is

considered)
dy

dx
a x x b x x= − ⋅sec tan cosec cot

⇒ d y

dx

2

2  = a sec x tan2 x + a sec3 x + b cosec x cot2

x + b cosec3 x

∴ + < <d y

dx
x

2

2
0

2
is ve if

π
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∴ = + =y a x b x x b
a

min tan
sec cosec� � � �

1
3

⇒ = + + +	

�

�
� =

y a x b x
x b

a

min
tan

tan cot1 1
2 2

1
3� �

= + + + 	



�
a

b

a
b

a

b
1 1

2
3

2
3

2
3

= + + +a a b b b a
2
3

2
3

2
3

2
3

2
3

2
3

= +	



�
a b

2
3

2
3

3
2

6. Find the maximum and / minimum values of the

function y = + + =sin sin where
2 2θ φ θ φ α .

Solution: y = +sin sin
2 2θ φ

= − + −1

2
1 2

1

2
1 2cos cosθ φ

= − +1
1

2
2 2cos cosθ φ� �

= − + − + =1
1

2
2 2 2cos cos asθ α θ θ φ α� �� �

⇒ = − −dy

d θ
θ α θsin sin2 2 2� �

For the extreme values of y
dy

dx
, = 0

⇒ − − =sin sin2 2 2 0θ α θ� �
⇒ = −sin sin2 2 2θ α θ� �
⇒ = − +2 2 2 2θ α θ πn

⇒ = +θ π αn

2 2

Now, 
dy

dθ
θ α θ= − −sin sin2 2 2� �

⇒ = + −
d y

dx

2

2
2 2 2 2 2cos cosθ α θ� �

= ⋅ −4 2cos cosα θ α� �

′′ +	

�

�
� = ⋅ >f

n
n

α π
α π

2 2
4 0cos cos  if n is even

and cos α  > 0.

And ′′ +	

�

�
� <f

nα π
2 2

0  if n is odd and cos α  > 0.

Now y = − + −1
1

2
2 2 2cos cosθ α θ� �

        = − ⋅ −1 2cos cosα θ α� �

∴ +	

�

�
� = − ⋅f

n
n

π π
α π

2 2
1 cos cos

  = 1 – cosα  if n is even
and   = 1 + cos α  if n is odd

Thus y has the minimum values for θ
π α= +n

2 2
for n = even integer and cos α  > 0, and

ymin = 1 – cos α  y has manima for θ
π α

= +
n

2 2
for odd n and cos α  > 0, and ymax = 1 + cos α

Similarly if cos α  < 0 then y has minima for

θ π α= +n

2 2
 (n odd) and maxima for θ

π α= +n

2 2
(n even),

ymin = 1 + cosα
ymax = 1 – cosα

7. Find the maximum and / minimum values of the
function y = sec x + cosec x.
Solution: y = sec x + cosec x (which is defined for

x
n

≠
π
2

)

Now for the extreme values of the function y,
dy

dx
= 0

∴ = ⇒ − ⋅ =
dy

dx
x x x x0 0sec tan cosec cot

⇒ ⋅ = ⋅sec tan cosec cotx x x x

⇒ =sin cos
3 3

x x
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⇒ =tan
3

1x

⇒ =tan x 1

⇒ = +x nπ π
4

Now, 
d y

dx
x x x x x

2

2

2= ⋅ + ⋅ −sec sec tan sec tan

 cosec cosec cot cosec cotx x x x x⋅ − − ⋅ − ⋅2� � � �

⇒ = + ⋅ + +
d y

dx
x x x x

2

2

3 3 3
sec sec tan cosec

cosec cotx x⋅ 2

= sec x (sec2 x + tan2 x) + cosec x (cosec2 x + cot2 x)

∴
�
�
��

�
�
�� = +

d y

dx
x m

2

2

4
π

π
 = –ve when n is odd …(1)

and 
d y

dx x m

2

2

4

�

�
�
�

�

�
�
�

= +π π
 = +ve when n is even …(2)

(1) and (2) ⇒  y = sec x + cosec x is maximum when

n is odd in x n= +π π
4

 and given function y = sec x

+ cosec x is minimum when n is even in x n= +π π
4

.

Hence, y has maxima at x n= +π π
4

 for n-odd

and y has minima at x n= +π π
4

 for n-even.

∴ =y� �max
2 2 and y� �min

= − 2 2 .

8. Find the minimum values of the function y = a2

sec2 x + b2 cosec2 x; (a > 0, b > 0).
Solution: y = a2 sec2 x + b2 cosec2 x which is defined

for x
n≠ π
2

⇒ = −dy

dx
a x x b x x2 2

2 2 2 2
sec tan cosec cot

∴ = ⇒ − =
dy

dx
a

x

x
b

x

x
0 2 2 02

3
2

3

sin

cos

cos

sin
 [for

max or min value of y]

⇒ =tan
4

2

2
x

b

a

⇒ =tan
2

x
b

a
 [� tan

2
x

b

a
≠ −  since a square

cannot be negative]

Now, 
dy

dx
a x x b x= + − +2 1 2 12 2 2 2tan tan cot� � � �

cot x

⇒ = + − −dy

dx
a x a x b x2 2 2

2 2 3 2
tan tan cot

2b2 cot3 x

⇒ d y

dx

2

2  = 2a2 sec2 x + 2a2 × 3 tan2 x sec2 x + 2b2

cosec2 x + 6b2 cosec2 x · cot2 x which being a sum of
squares is positive.

⇒ = + = ⇒d y

dx
x

b

a

2

2

2
ve at tan  y  has a

minimum value when tan
2

x
b

a
=

⇒ = = +f x y a x b x� � � �min min sec cosec
2 2 2 2

= + + +a x b x
2 2 2 2

1 1tan cot� � � �

= +	



�
 + +

	


�

�

�a

b

a
b

x

2 2

2
1 1

1

tan

= +	



�
 + +	



�
a

b

a
b

a

b

2 2
1 1

= a2 + ab + b2 + ab
= (a + b)2

9. Find the maximum and / minimum values of the
function of y = a cos x + b sin x; (a > 0, b > 0).
Solution: y = a cos x + b sin x
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⇒ = − +
dy

dx
a x b xsin cos

Now on putting 
dy

dx
= 0 , we get

–a sin x + b cos x = 0

⇒ =b x a xcos sin

⇒ =tan x
b

a

Now, when tan x = b

a
, then sin x = ±

+

b

a b
2 2

and cos x
a

a b
= ±

+2 2
 (both +ve or both –ve, as

tan x > 0)

Again, 
d y

dx

2

2  = –a cos x – b sin x

= –(a cos x + b sin x)

The positive values of sin x and cos x make 
d y

dx

2

2

negative and the negative values of sin x and cos x

make 
d y

dx

2

2  positive

⇒  The max. value =
⋅

+
+

⋅

+

a a

a b

b b

a b
2 2 2 2

=
+

+
+

a

a b

b

a b

2

2 2

2

2 2

= +

+
= +a b

a b
a b

2 2

2 2

2 2

and the min. value = −

+
−

+

a

a b

b

a b

2

2 2

2

2 2

= −
+

+
= − +

a b

a b
a b

2 2

2 2

2 2

10. Examines the function y = sin x + cos x for extreme
values.
Solution: y = sin x + cos x

⇒ = −
dy

dx
x xcos sin

∴ = ⇒ − =dy

dx
x x0 0cos sin

⇒ = ⇒ =cos sin tanx x x 1

⇒ = + = ± ±x n nπ
π
4

0 1 2, , , ...� �

Again 
dy

dx
x x= −cos sin

⇒ = − − = − +d y

dx
x x x x

2

2
sin cos sin cos� �

∴
	

�

�
�

=− +	

�

�
� + +	


�
�
�

���
���= +

d y

dx
n n

x n

2

2

4

4 4
π π

π
π

π
π

sin cos

= − − + −���
���

1
4

1
4

� � � �n n
sin cos

π π

= − × − +	



�
1 1

4 4
� � � �n sin cos

π π

= − +1 21� �n

Now, for even-n,

d y

dx x n

2

2

4

2
	

�

�
�

= −
= +π π

=  which indicates that y

has maximum for x n= +π π
4

 when n is even integer.

Again for odd-n,

d y

dx x n

2

2

4

2
	

�

�
�

= = ⊕
= +π π

which indicates that y
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has minimum for x n= +π
π
4

 when n is odd integer.

Hence, at x n= +π π
4

 when n is even integer

y f nmax = +	



�
π

π
4

= +	



�
 + +	



�
sin cosn nπ

π
π

π
4 4

= − + −1 1� � � �n nn nsin sinπ π

= − =1 2 2� �n  when n is even integer

and y f nmin = +	



�
π

π
4

= +	



�
 + +	



�
sin cosn nπ

π
π

π
4 4

= − + −1 1� � � �n nn nsin sinπ π

= − = −1 2 2� �n  when n is odd integer.

11. Find the maximum and / minimum values of the
function y = sin x (1 + cos x).
Solution: y = sin x (1 + cos x)

⇒ = +dy

dx

d

dx
x x xsin sin cos

= +�
��

�
��
= +�

��
�
��

d

dx
x x x

d

dx
x xsin sin cos sin sin

1

2
2

1

2
2

= + ⋅ ⋅ = +cos cos cos cosx x x x
1

2
2 2 2

Now, 
dy

dx
x x= ⇒ + =0 2 0cos cos  (for extreme

value)

⇒ + − =2 1 0
2

cos cosx x

⇒ =
− ± +

= − ± = −cos orx
1 1 8

4

1 3

4

1

2
1

Again cos cosx x n n I= = ⇒ = ± ∈
1

2 3
2

3

π
π

π
,

and cos cosx x n n I= − = ⇒ = + ∈1 2π π π� � � � ,

Further, 
dy

dx
 = cos x – cos 2x

⇒
d y

dx

2

2  = –sin x – 2 sin 2x = – (sin x + 2 sin 2x)

∴
	

�

�
� = ±

d y

dx x n

2

2

2 3π π

= − ±	



�
 + ±	



�
 ±	



�


���
���

sin sin cos2
3

2 2
3

2
3

n n nπ π π π π π

= − ±	

�
 + ±	


�
 ⋅ ±	


�


���
���

sin sin cos
π π π
3

2
3 3

= − +���
��� <sin sin cos

π π π
3

2
3 3

0

and sin sin cos
π π π
3 3 3

0+���
��� >

Hence, y has maxima at x n= +2
3

π
π

 and y has

minima at x n= −2
3

π
π

Where y f nmax = +	



�
2

3
π

π

= +	



�
 ⋅ + +	



�


���
���

sin cos2
3

1 2
3

n nπ
π

π
π

= +	

�

�
� = +	


�
�
� = ⋅ =sin cos

π π
3

1
3

3

2
1

1

2

3

2

3

2

3 3

4

and y f nmin = −	

�

�
�2

3
π π

= −	



�
 ⋅ + −	



�


���
���

sin cos2
3

1 2
3

n nπ
π

π
π

= −	

�
 + −	


�


���
���
= − +���

���sin cos sin cos
π π π π
3

1
3 3

1
3
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= − ⋅ +	



�
 = − × =3

2
1

1

2

3

2

3

2

3 3

4

Lastly, 
d y

dx x n

2

2

2 1

	

�

�
� = +� �π

= − + + + +sin sin cos2 2 2 2n n nπ π π π π π� � � � � �� �
= − +sin sin cosπ π π2�  
= − + × × − =0 2 0 1 0� �� �

and 
d y

dx
x x

x n

x n

3

3

2

24 2
	

�

�
�

= − −
= +

= +
π π

π π
� �

� �� �cos cos

= − + + +cos cos2 4 2 2n nπ π π π� � � �� �
= − + +cos cosπ π π4 4 2n� �� �
= − +cos cosπ π4 2�  
= − − + −1 4 1 2� � � �! "
= − − + = − ≠1 4 3 0�  � �
Therefore y has  a point of inflection at

x n= +2 π π� �  because at x n= +2 π π� � ,

d y

dx

2

2
0=  and 

d x

dx

3

3
0≠

Note: (i) Whenever we have a quadratic
trigonometric equations of the form:

a t x bt cf fn n
� � 2

0+ + =  where a ≠ 0  and t xfn
� �

represents a trigonometric function (sin x, cos x, tan
x, cot x, sec x, cosec x), we have two general values of
the angle x (if the interval in which a given
trigonometric function is defined is not mentioned in
the problem).
(ii) Whenever we have a linear trigonometric

equations of the form: at at x b afn
� � � �+ = ≠0 0,  we

have one general value of the angle x of the
trigonometric function of x (sin x, cos x, tan x, etc) for

the equation t x
b

a
fn
� � = −  if the interval in which

the given trigonometric function is defined is not
mentioned in the problem.

12. Show that the function y x x= +sin sin
1

2
2  has

a maximum value at x = π
3

 and find the

corresponding maximum value.

Solution: y x x= +sin sin
1

2
2

⇒ = +dy

dx
x xcos cos2

Now, 
dy

dx
= 0  (for extreme value)

⇒ + =cos cosx x2 0

⇒ + − =2 1 0
2

cos cosx x

⇒ =
− ± +

= − ± = −cos orx
1 1 8

4

1 3

4

1

2
1

Again, cos cosx x= = ⇒ =
1

2 3 3

π π

Further, 
dy

dx
x x= +cos cos2

⇒ = + = − −d y

dx

d

dx
x x x x

2

2
2 2 2cos cos sin sin

∴
	

�

�
�

= − −
=

=
d y

dx
x x

x

x

2

2

3

2 2
3π
πsin sin� �

= − −sin sin
π π
3

2
2

3

= − − ×3

2
2

3

2

= −
+	


�
�
�
= − =

3 2 3

2

3 3

2
 which

indicates y has a maximum at x =
π
3

 and at x =
π
3
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y x x
x

max sin sin= +�
��

�
�� =

1

2
2

3

π

= + ⋅ ×	



�
sin sin

π π
3

1

2
2

3

= + × =
+

=3

2

1

2

3

2

2 3 3

4

3 3

4

Note: When x
d y

dx
= =π ,

2

2
0

d y

dx
x x

x

x

3

3
4 2

	

�

�
�

= − −
=

=
π

πcos cos� �

= − − = − − − −cos cosπ π4 1 4 1� � � �
= + = ≠1 4 5 0

Hence, at x = π

d y

dx

2

2
0=  and 

d x

dx

3

3
0≠  which ⇒  at x = π ,

we get an inflection point

13. Discuss the extreme values of the function y =
sec x at the origin.
Solution: y = sec x

⇒ = ⋅dy

dx
x xsec tan

Now, 
dy

dx
= 0  (for extreme values)

⇒ ⋅ =sec tanx x 0
⇒ = =sec or tanx x0 0

But sec x ≠ 0

∴ =tan x 0  which ⇒ =x 0 is an extremum

∴
	

�

�
�

= +�
��

�
��

=
=

d y

dx
x x x

x
x

2

2

0

2 2

0
sec tan sec� � , i.e.,

1 (0 + 1)
= = ⊕1  which indicates y has a minimum at x = 0

i.e., origin and at x = 0 (i.e. at origin)

y fmin sec º= = =0 0 1� �
14. Discuss the extreme values of the function y = x
– sin x at the origin.
Solution: y = x – sin x

⇒ = −dy

dx
x1 cos  and 

d y

dx
x x

2

2
0= − − =sin sin� �

Now, 
dy

dx
= 0  (for extreme values)

⇒ − = ⇒ = = ⇒ =1 0 1 0 0cos cos cosx x x  is

an extremum

∴
	

�

�
�

= = =
=

=
d y

dx
x

x

x

2

2

0

0
0 0sin sin

and 
d y

dx
x

x

x

3

3

0

0
0 1 0

	

�

�
�

= = = ≠
=

=cos cos

Hence, we observe at x = 0,

dy

dx

d y

dx
= =0 0

2

2
,  and 

d y

dx

3

3
0≠  which ⇒  y has

an inflection point at the origin (i.e. at x = 0).

Problems based on logarithmic and exponential
functions.

1. Find the max and / min values of y = log x.
Solution: y = log x, x > 0

⇒ =
dy

dx x

1

Now, for the extreme values of y
dy

dx
, = 0

⇒ =
1

0
x

 which is not possible which ⇒  f (x)

does not have max and / min values.

2. Find the max and / min values of y = ex.
Solution: y = ex

⇒ =dy

dx
e

x
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Now, for the extreme values of y
dy

dx
, = 0

∴ =e
x

0  which is not possible (since e
x > 0

always) which ⇒  f (x) does not have max and / min
values.

3. Examine the following function for max and / min

y x x=
1

.

Solution: y x x=
1

, x > 0 …(1)

Taking log of both sides of the equation (1)

log log logf x x
x

xx� � � �= =
1 1

…(2)

Now, differentiating both sides of (2) w.r.t x

⇒ × ′ =
⋅ −

=
−1

1
1

2 2f x
f x

x
x

x

x

x

x� � � �
log log

⇒ ′ =
⋅ −

f x
f x x

x
� � � � � �1

2

log
…(3)

=
⋅ −x x

x

x
1

1
2

log� �
 [� f x x x� � = 1

 is given]     …(4)

Now, putting ′ =f x� � 0  in (4) for extreme values

⇒
−

=
x x

x

x
1

1
0

2

log� �

⇒ − =1 0log x� �  � f x x x� � = ≠
1

0

⇒ = ⇒ = ⇒ =log x x e x e1 1

Now, ′′ =
−

⋅ ′ + ⋅f x
x

x
f x f x� � � � � �1

2

log

 
x

x
x x

x

2

4

1
1 2−	


�
 − − ⋅log� � � �

⇒ ′′ =
−

⋅ ′ + ⋅ ⋅ −	
�
�
� −

���
f e

e

e
f e f e e

e
� � � � � �1 1

2
2log

(1 – log e) · (2e)
��
�
⋅ 1

4e

=
−

⋅ ′ + − − − ⋅ ⋅
1 1

1 2
1

2 4

� � � � � � � � � � � �# $
e

f e f e e e e
e

log

� loge e
f e

e
= = −1

3� � � �

= –ve (since e and e e
1

0> ) which ⇒  f (x) has

maximum at x = e.

Hence, y e e

max =
1

Problems based on combination of transcendental
functions

1. Find the max and / min values of the functions

y e x e
x x= + + −

2 cos .

Solution: y e x e
x x= + + −

2 cos

⇒ = − −
−dy

dx
e x e

x x
2sin

Now, for extreme values of y, 
dy

dx
= 0

∴ − − =−
e x e

x x
2 0sin  which is only possible

when x = 0 which means

e x e x
x x− − = ⇒ =−

2 0 0sin

Now, 
d y

dx
e x e

x x
2

2
2= − +

−
cos

⇒
�

�
�
�

�

�
�
�

= − −
=

d y

dx
e

e
x

2

2

0

2 0
1

º
º

cos � �

= − − = − =1 2
1

1
2 2 0
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⇒
�

�
�
�

�

�
�
�
= + −

d y

dx
e x e

x x
3

3
2 sin

⇒
�

�
�
�

�

�
�
�

= + − =
=

−

=

d y

dx
e x e

x

x x

x

3

3

0
0

2 0sin  (i.e.

again zero when x = 0)

⇒
�

�
�
�

�

�
�
�
= + +

−d y

dx
e x e

x x
4

4
2 cos

⇒
�

�
�
�

�

�
�
�

= + +
=

−

=

d y

dx
e x e

x

x x

x

4

4

0
0

2cos

= 4 > 0 = +ve
Hence, y is minimum at x = 0.

2. Find the max and / min for y
x

x
=

log
.

Solution: y
x

x
=

log
, x > 0

⇒ =
⋅ − ⋅

=
−dy

dx

x
x

x

x

x

x

1
1 1
2 2

log log

Now, for the extreme values of y, 
dy

dx
= 0

∴ − =
1

0
log x

x

⇒ − =1 0log x

⇒ = ⇒ =log x x e1

Again, 
dy

dx

x

x
=

−1
2

log

⇒ =
−	


�
 − −

d y

dx

x
x

x x

x

2

2

2

4

1
2 1 log� �

=
− − −x x x

x

2 1
4

log� �

=
− +3 2

3

log x

x

∴
	

�

�
�

=
− +

= − <
=

d y

dx

e

e ex e

2

2 3 3

3 2 1
0

log
 which

⇒  y has max. for x = e.

∴ =y
emax
1

3. Find the max and / min values of the function f (x)
= x2 ex.
Solution: f (x) = x2 ex

⇒ ′ = + ⋅f x x e e x
x x� � 2

2

⇒ ′ = +f x x x e
x� � � �2

Now for max and / min values of f (x), ′ =f x� � 0

∴ + ⋅ =x x e
x

2 0� �

⇒  x = 0 or (x + 2) = 0 � e x ≠ 0� �
⇒  x = 0 and x = –2

Now, ′′ = + + ⋅ +f x x e x e e x e
x x x x� � 2

2 2 2

= + +x e x e e
x x x2

4 2

∴ ′′ = = +f 0 2� � ve  which ⇒  f (x) has a minimum

at x = 0, and

y x e e
x

x
min = = ⋅

=

2

0

2 0
0� �  = 0 · 1 = 0

Again, ′′ − = + − + = −− − −
f e e e

e
2 4 4 2 2

22 2 2

2
� � � �

= –ve which again ⇒  f (x) has a maximum at
x = –2 and

ymax  = y x e e
e

x

x
min = ⋅ = − ⋅ =

=−

−2

2

2 2

2
2

4� �
4. Find the max or min value of the function y = sin 2x
– x.
Solution: y = sin 2x – x

⇒ = −
dy

dx
x2 2 1cos
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Now, for the extrema of y, 
dy

dx
= 0

⇒ − =2 2 1 0cos x

⇒ =cos2
1

2
x

⇒ = ±2 2
3

x nπ
π

⇒ = ± = ± ±x n nπ π
6

0 1 2, , , ...� �

Again 
d y

dx
x

2

2
4 2= − sin

⇒
	

�

�
�

= − ±	



�


���
���

= ±

d y

dx
n

x n

2

2

6

4 2
6

π π
π

π� �sin

= − ±	
�
�
�4

3
� � sin

π

= − < >4
3

4
3

0 0sin or sin
π π

⇒  y has maxima (or, minima) at x n= +π
π
6

 (or,

x n= −π π
6

) respectively,

where y n nmax sin= +	



�


�
��

�
��
− +	



�
2

3 6
π

π
π

π

= − − = − −sin
π π π π π
3 6

3

2 6
n n

and y n nmin sin= −	



�


�
��

�
��
− −	



�
2

3 6
π

π
π

π

= − − + = − − +sin
π π π π π
3 6

3

2 6
n n

5. Find the maximum and minimum values of the
function y = x – sin x.
Solution: y = x – sin x

⇒ = −dy

dx
x1 cos

⇒ = ⇒ − =dy

dx
x0 1 0cos  (for extrema of y)

⇒ − = ⇒ = ⇒ = =1 0 1 2cos cosx x x n nπ , 0,

± ±1 2, , ...

Now, 
dy

dx
x= −1 cos

⇒ =
d y

dx
x

2

2
sin

⇒
	

�

�
�

=
=

=
d y

dx
x

x n

x n

2

2

2

2

π
πsin� �

= sin2nπ = 0

Again, 
d y

dx
x

2

2
= sin

⇒ =d y

dx
x

3

3
cos

⇒
	

�

�
�

=
=

d y

dx
n

x n

3

3

2

2

π

πcos  = 1

Hence, at x n= 2 π

d y

dx

2

2
0=  and 

d y

dx
y

3

3
0≠ ⇒  has neither a

maximum nor minimum at x n= 2 π .

6. Find the maxima and minima of the function y = sec
x + log cos2 x.

Solution: y = sec x + log cos2 x, x n≠ +π π
2

⇒ = ⋅ + ⋅ ⋅ −dy

dx
x x

x
x xsec tan

cos
cos sin

1
2

2
� �

= sec x · tan x – 2 tan x
= tan x (sec x – 2)
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Now,

dy

dx
= 0  (for extrema)

⇒  tan x (sec x – 2) = 0

⇒  tan x = 0 or (sec x – 2) = 0

tan x x n= ⇒ =0 π

and sec sec secx x− = ⇒ = =2 0 2
3

� � π

⇒ = ±x n2
3

π
π

Again, 
dy

dx
x x= −tan sec 2� �

⇒ = − + ⋅d y

dx
x x x x x

2

2

2
2sec sec tan sec tan� � � �

= − + ⋅sec sec sec tan3 2 22x x x x

= − +sec sec sec tanx x x x2 22� �

∴
	

�

�
�

= − +�
��

�
��

=
=

d y

dx
x x x x

x n
x n

2

2

2 2
2

π
π

sec sec sec tan� �

= − +sec sec sec tann n n nπ π π π
2 2

2� �
= negative for all n, which indicates y has maxima

at x n= π  and y f nmax = π� �

= +sec log cosn nπ π� �2  = 1 (n even)

= –1 (n odd)

Further, 
d y

dx x n

2

2

2 3

	

�

�
� = ±π π

= − +�
��

�
�� = ±

sec sec sec tanx x x x
x n

2 2

2
2

3

� �
π π

= ±	



�
 ±	



�


���
���

− ±	



�
 +

�
�
�
�

sec sec sec2
3

2
3

2 2
3

2

n n nπ π π π π π

tan 2
3

2

nπ π±	



�


���
���

�
�
�
�

= ±	

�
 ±	


�


���
���

− ±	

�
 +

�
�
�
�

sec sec sec
π π π
3 3

2
3

2

tan ±	

�


���
���

�
�
�
�

π
3

2

= 	



�
 +

	



�
 − 	



�


�
��

�
��

2
3 3

2
3

2 2
sec tan sec

π π π

� cos cosθ θ= −� �� �

= + −�
��

�
��2 2 3 2 2

2 2
� � � �  = 2 [4 + 3 – 4] = 6 = ⊕

which indicates y has minima at x n= ±2
3

π π

Hence, at x n= ±2
3

π π
, we have

y f nmin = ±	



�
2

3
π

π

= ±	



�
 + ±	



�


���
���

sec log cos2
3

2
3

2

n nπ π π π

= ±	

�
 + ±	


�


���
���

sec log cos
π π
3 3

2

= + 	



�


���
���

− =sec log cos cos cos
π π θ θ
3 3

2

� � �� �

= +sec log cos
π π
3 3

2

= + 	



�
2

1

2

2

log

= +2 2
1

2
log

= 2 – 2 log 2 = 2 (1 – log 2)

Type 2: To find the maximum and / minimum values
of the function: (Trigonometric method)

y a b= +cos sinθ θ  and y a b= +sin cosθ θ
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Working rule: Express a bcos sinθ θ+  and

a bsin cosθ θ+  as a single cosine and / a single sin

of an angle θ α±� �  with the help of following rule:

1. Multiply and divide the given expression (both

sides) by a b
2 2
+  where a b

2 2
+

= +coefficient of cos coefficient of sinθ θ� � � �2 2

2. Use A B±� �  formulas as the case may require
which transforms the given function into

y a b= + −
2 2

cos θ α� �  and / a b
2 2
+ +sin θ α� � .

How to find the maximum and / minimum values of the
function: a cosθ  + b sin θ  and / a sin θ  + b sin θ .

� a b a bcos sin cosθ θ θ α+ = + −
2 2 � � …(1)

But the maximum value of cos θ α− =� � 1

�1 1≤ ≤ −cosθ

∴ +a bcos sin maxθ θ

= +max cos sina bθ θ

= + ⋅ = +a b a b
2 2 2 2

1 …(2)

And the minimum value of cos θ − = −1 1� �
⇒ +a bcos sin

min
θ θ

= + = − +min cos sina b a bθ θ
2 2 …(3)

Hence, remember:

1.

Maximum value of cos sin

Minimum value of sin cos

a b

a b
a b

a b

θ θ

θ θ

+

= +
+

= − +

�

�
%
%%

�
%
%%

�

�
%
%%

�
%
%%

2 2

2 2

2.

Maximum value of sin cos

Minimum value of sin cos

a b

a b
a b

a b

θ θ

θ θ

+

= +
+

= − +

�

�
%
%%

�
%
%%

�

�
%
%%

�
%
%%

2 2

2 2

3. Remember that maximum value of sin θ  (or, cos θ )

is 1 and the minimum value of sin θ  (or, cos θ ) is –1.
4. If the question is asked as: prove that the function
y = a cosθ  + b sinθ  and / y = a sin θ  + b cos θ  has
a max. and / min. value at some point, we use may also

d y

dx

2

2  method to find the extrem a at the indicated

point. (See example 2 to follow)

Worked out examples on the max and / min values of
t-functions whose form is y = a cos θ  + b sin θ  and /

a cos θ  + b sin θ .

1. Find the max. and / min. values of the function y =
3 sin θ  + 4 cosθ .

Solution: y = 3 sin θ  + 4 cos θ

⇒ = +
y

5

3

5

4

5
sin cosθ θ …(1)

Now, on supposing that cos x = 3

5
 and sin x= 4

5

(1) becomes 
y

x x
5
= ⋅ + ⋅cos sin sin cosθ θ  which

⇒ = + ⇒ = +
y

x y x
5

5cos cosθ θ� � � �

∴ = + =ymax max
sin cos3 4 5θ θ

∴ = + = −ymin minsin cos3 4 5θ θ

2. Find the max and / min value of y = 3  sin x + 3

cos x or, prove that max. value of y is at x = π
6

 and

min at 
7

6

π
.

Solution: y = 3  sin x + 3 cos x = a sin x + b cos x

a b2 2 2 2
3 3 3 9+ = + = +� � � �

= = × =12 4 3 2 3

⇒ = +y
x x

2 3

3

2 3

3

2 3
sin cos
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= +
⋅3

2 3

3 3

2 3
sin cosx x

⇒ = +y
x x

2 3

1

2

3

2
sin cos …(i)

Now, we know that cos º cos30
6

3

2
= =π

 and

sin sin
π
6

30
1

2
	



�
 = = .

Hence, (1) becomes equal to 
y

x
2 3 6

= 	



�
 +sin sin

π

cos cos
π
6

	



�
 x

⇒ = −	



�


y
x

2 3 6
cos

π

⇒ = −	



�
y x2 3

6
cos

π
…(ii)

⇒ − −	



�


dy

dx
x2 3

6
sin

π

and 
dy

dx
x= ⇒ − −	



�
 =0 2 3

6
0sin

π
 (for extreme

value)

⇒ −	



�
 = = =sin sin sinx

π
π

6
0 0 …(iii)

Therefore, on considering sin sinx −	



�
 = ⇒

π
6

0

x x− = ⇒ =
π π
6

0
6

 and considering sin x −	



�
 =

π
6

sinπ π π π π π⇒ − = ⇒ = + =x x
6 6

7

6

d y

dx
x

2

2
2 3

6
= − −	



�
cos

π
…(iv)

on putting x =
π π
6

7

6
and  in (iv)

⇒ ′′	

�
 = − −	



�
f

π π π
6

2 3
6 6

cos

= − = −2 3 0 2 3cos

⇒ ′′ 	

�
 = − =f

π
6

2 3  indicating max. at

x =
π
6

 and ′′	

�
 = − −	



�
f

7

6
2 3

7

6 6

π π π
cos

= − 	



�
 = −2 3

6

6
2 3cos cos

π
π

= = ⊕2 3  indicating min. at x =
7

6

π
 and

y x x
x

max sin cos= +
=

3 3
6
π

= +
⋅

3
6

3 3

2
sin

π

= + = =3

2

3 3

2

4 3

2
2 3

y x x
x

min sin cos= +
=

3 3
7
6
π

= + = − + −3
7

6
3

7

6
3 30 3 30sin cos sin cos

π π � � � �

= − −
⋅

= − = −3

2

3 3

2

4 3

2
2 3

Problems based on finding the extrema when a given
function is defined in an open interval.

To find the maximum and / minimum value of a given
function defined in an open interval, we should
remember the following facts.

1. A function defined in an interval (open) can have
maximum and / minimum values only for those value
of x which lie within this interval which means the
roots of ′ =f x� � 0  must lie within the interval.
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2. If ′ =f x� � 0  provides us the values of x which do
not lie within the given interval, we have not to
consider maximum and / minimum values at those value
of x (which do not lie within the given interval).
3. Let a function y = f (x) be differentiable in an open
interval (a, b). In order to find out all its maxima and /
minima in that open interval, we proceed as follows:
(a) Solve the equation ′ =f x� � 0 . The real values of
x (or, roots) of the equation ′ =f x� � 0  lying within
the interval (a < x < b) are considerable points. Among
these real values of x, we have to seek those values
of x which give us extrema (i.e. maxima and / minima)

of the function f (x) by using 
d y

dx

2

2  method (i.e., second

derivative test) or by using 
dy

dx
 method (i.e.; first

derivative test).
4. In fact, f (x) may have several maxima and minima
in an open interval (a, b) or in an closed interval.

1. Find the maximum and / minimum value of the
function y = sin x + cos 2x in 0 2 0 2, π π� � = < <x .
Solution: y = sin x + cos 2x

⇒ = + − ×dy

dx
x xcos sin2 2� �

∴ = ⇒ − =
dy

dx
x x0 2 2 0cos sin  (for extrema)

⇒  cos x – 4 sin x cos x = 0

⇒  cos x (1 – 4 sin x) = 0

⇒  cos x = 0 or (1 – 4 sin x) = 0

Now, cos cosx x n= = ⇒ = +0
2

2 1
2

π π� �

Putting n = 0, x = π
2

n x= =1
3

2
,

π

� 0 2≤ ≤x π

∴ =x
π π
2

3

2
or

and 1 4 0
1

4

1

4

1
− = ⇒ = ⇒ =

−
sin sin sinx x x� �

and π −
−

sin
1 1

4

Further, 
dy

dx
x x= −cos sin2 2

⇒ =− − × =− +d y

dx
x x x x

2

2
2 2 2 4 2sin cos sin cos� �

∴
	

�

�
�

= − + + ×	



�


�
��

�
��

=

d y

dx x

2

2

2

2
4 2

2
π

π π
sin cos

= − +�
��

�
��

sin cos
π

π
2

4

= = ⊕3  which indicates given function has a

minimum at x =
π
2

.

Again,

d y

dx
x x

x
x

2

2
3
2

3
2

4 2
	

�

�
�

= − −
=

=
π

πsin cos

= − − ×	



�


�
��

�
��

sin cos
3

2
4

3

2
2

π π

= + − − = = ⊕1 4 1 5� � � �  which indicates given

function has a minimum at x =
3

2

π

Now, 
d y

dx x

2

2
1 1

4

	

�

�
� =

−
sin

= − �
��

�
��
− − 	


�
�
�

�
��

�
��

− −sin sin sin sin1 2 11

4
4 1 2

1

4

= − − − ×�
��

�
��

1

4
4 1 2

1

16

= − − −	



�
 =

1

4
4 1

1

8
  which indicates given

function f (x) has a maximum at x = −
sin

1 1

4
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Similarly, 
d y

dx x

2

2
1 1

4

	

�

�
� = −

−
π sin

= − + = −
−sin cos

sin
x x x4 2 1 1

4
π

= − −	



�


�
��

�
��
+ − −	



�


	

�

�
�

− −
sin sin sin sinπ π1 2 11

4
4 1 2

1

4

= − + ⋅ − 	

�

�
�

	

�

�
�

�

�
�
�

�

�
�
�

− −sin sin sin sin1 1
2

1

4
4 1 2

1

4

= − + − ×	



�


�
��

�
��
= − + −	



�


�
��

�
��

1

4
4 1 2

1

16

1

4
4 1

1

8

= − + 	

�

�
�

�
��

�
��
= − +�

��
�
��
= −

+�
��

�
��

1

4
4

7

8

1

4

7

2

1 14

4

= − =
15

4
 which indicates given function has

maximum at x = − −π sin
1 1

4

∴ given function has minima at x = π
2

 and 
3

2

π

and given function has maxima at x =
−

sin
1 1

4
 and

x = − −π sin
1 1

4
.

At x = −sin 1 1

4
,

y x x x xmax sin sin
sin cos= + = ⇔ =

−2 1 1
4

1
4

= + −
=

sin sin
sin

x x
x

1 2
2

1
4

= + − 	

�

�
� = + − =1

4
1 2

1

4

1

4
1

2

16

9

8

2

At x = − −π sin 1 1

4

y x x xmax sinsin cos= + = − −2 1 1
4

π

= + −
= −

−sin sin
2

sin
x x

x
1 2

1 1
4π

= −	



�
 + − −	



�


���
���

− −
sin sin sinπ π

1 1
2

1

4
1 2

1

4

= + − 	



�


�
�%
�%

�
�%
�%

− −
sin sin sin sin

1 1
21

4
1 2

1

4

= + −	

�

�
� =

1

4
1

2

16

9

8

At x =
π
2

y x x xmin sin cos= + =2
2
π

= + ×sin cos
π π
2

2
2

= +1 cosπ

= 1 + (–1) = 0 and at x = 3

2

π

y x x xmin sin cos= + =2 3
2
π

= + ×sin cos
3

2
2

3

2

π π
= –1 – 1 = –2

2. Find the maximum and / minimum values of the

function y = x + sin 2x in 0 2, π� � .

Solution: y = x + sin 2x

⇒ = +dy

dx
x1 2 2cos

dy

dx
x= ⇒ + =0 1 2 2 0cos  (for extrema)

⇒ = − = =cos cos º cos2
1

2
120

2

3
x

π
 which ⇒

least value of 2x = 2

3

π
 and general value of 2x =

2
2

3 3
n x nπ

π
π

π
± ⇒ = ±
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Putting n = 0 in the general value of x, we get

x = −
π π
3 3

,

Putting n = 1 and 2 in the general value of x, we get

x = 4

3

2

3

π π
, , and 

5

3

7

3

π π
,

� 0 2≤ ≤x π

∴ =x
π π π π
3

2

3

4

3

5

3
, , and  are considerable

values for x ∈ 0 2, π

Now, 
dy

dx
x= +1 2 2cos

⇒ = −d y

dx
x

2

2
4 2sin

⇒
	

�

�
�

= − ×	

�

�
�

=

d y

dx
x

2

2

3

4 2
3π

π
sin

= − =2 3  which indicates given function has

maximum at x = π
3

d y

dx
x

2

2
2
3

4 2
2

3
4

4

3

	

�

�
�

= − × = −
= π

π π
sin sin

= = +2 3 ve ,

∴given function has minimum at x = 2

3

π
.

and 
d y

dx
x

x
x

2

2
4

3

4 2 4
3

	

�

�
�

= −
=

=π
πsin� �

= − ×	

�

�
� = − −4 2

4

3
2 3sin ve

π � �

d y

dx
x

2

2
5
3

4
10

3

	

�

�
�

= −
= π

π
sin

= +2 3 ve� �
which indicates given function has a maximum at

x =
4

3

π
 and mimum at 

5

3

π
.

Hence, y has maxima at x = π
3

 and 
4

3

π

Whereas y has a minima at x = 2

3

π
 and 

5

3

π

Therefore, at x =
π
3

,

y x x xmax sin= + =2
3
π

= +�
��

�
��

π π
3

2

3
sin

= +π
3

3

2

and at x = 4

3

π
,

y x x xmax sin= + =2 4
3
π

= + ×	



�
 = + 	



�


4

3
2

4

3

4

3

8

3

π π π π
sin sin

= + =
+4

3

3

2

8 3 3

6

π π
 at x =

2

3

π

y x x xmin sin sin= + = + ×	



�
=2

2

3
2

2

3
2
3
π

π π

= + −	

�
 = −2

3 3

2

3

3

2

π π π
sin

= −4 3 3

6

π
 and at x =

5

3

π

ymin = −5

3

3

2

π

3. Find the maximum and / minimum value of the

function y = x + cos 2x in 0 2 0 2, π π� � = < <x .
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Solution: y = x + cos 2x

⇒ = + − × = −dy

dx
x x1 2 2 1 2 2sin sin� �

dy

dx
x= ⇒ − =0 1 2 2 0sin  (for extrema)

⇒ = = 	



�
sin sin2

1

2 6
x

π

⇒ = + − ⋅2 1
6

x n nπ
π� �

⇒ = + − ⋅x
n nπ π
2

1
12

� �

Putting n = 0, x = π
12

Putting n = 1, x =
5

12

π

Putting n = 2, x = +π π
12

Putting n = 3, x = − =
−3

2 12

18

12

π π π π

= = +17

12

5

12

π π π

Now, 
dy

dx
x= −1 2 2sin

⇒ = − × = −d y

dx
x x

2

2
2 2 2 4 2cos cos

∴
	

�

�
�

= − ×	

�

�
�

=

d y

dx
x

2

2

12

4 2
12π

π
cos

= − = − × = −4
6

4
3

2
cos ve

π
 which indicates

given function has a maximum at x =
π

12
.

d y

dx
x

2

2
5
12

4
5

6
2 3

	

�

�
�

= − =
= π

π
cos  which indicates

given function has a minimum at x =
5

12

π
.

d y

dx x

2

2

12

	


�

�

�

= +π π� �

= − +	

�

�
� = − +	


�
�
�4 2

12
4 2

6
cos cosπ

π
π

π

= − = − × = − =4
6

4
3

2
2 3cos

π

which indicates given function has a maximum at

x = +	



�
π

π
12

 and

d y

dx
x

2

2
5
12

4 2
5

12

	

�

�
�

= − +	

�

�
�

= +π π

π π

& '
cos

= = +2 3 ve  which indicates given function

has minimum at x = +	



�
π

π5

12
.

Hence, given function has maxima at x = π
12

,

π
π

+	



�
12

 and given function has minima at

x = +	



�


5

12

5

12

π
π

π
, .

Lastly, at x = π
12

ymax cos= + ×	



�


π π
12

2
12

= +π π
12 6

cos

= +π
12

3

2
 at x = +	



�
π

π
12

,

ymax cos= +	



�
 + +	



�
π

π
π

π
12

2
12
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= +	



�
 + +	



�
π

π
π

π
12

2
6

cos

= +	



�
 +π

π π
12 6

cos

= +	



�
 +π π

12

3

2

at x = 5

12

π
,

ymin cos= + 	



�


5

12
2

5

12

π π

= +5

12

5

6

π π
cos

= −5

12

3

2

π

Similarly, we can find the minimum value of y at

x = +	



�
π π5

12  which is π
π+ −5

12

3

2
.

4. Investigate the maximum and / minimum values in
the interval 0 < <x π  of the function

f (x)  = + +sin sin sinx x x
1

2
2

1

3
3 .

Solution: f x x x x� � = + +sin sin sin
1

2
2

1

3
3 ⇒

⇒ ′f x� �  = cos 2x + 2 cos 2x · cos x (on using “C

+ D” formula)
= cos 2x (1 + 2 cos x)

Now, ′f x� �  (for an extreme values) = 0

⇒ + =cos cos2 1 2 0x x� �
⇒ = + =cos or cos2 0 1 2 0x x� �

⇒ = =− = 	

�

�
�cos cos or cos cos2

2

1

2

2

3
x x

π π

⇒ = + = ±2 2 1
2

2
2

3
x n x n� � π π π

or

⇒ = + = ±x n x n2 1
4

2
2

3
� � π π

π
or

x n= +2 1
4

� � π x n= ±2
2

3
π

π

Putting n = 0, x = π
4

Putting n = 0, x = ± 2

3

π

Putting n = 1, x = 3

4

π
Putting n = 1, x= ±2

2

3
π π

� 0 ≤ ≤x π

∴ =x
π π
4

3

4
,  and 

2

3

π
 are only considerable

values of x.

Again ′ = + +f x x x x� � cos cos cos2 3

⇒ ′′ = − − −f x x x x� � sin sin sin2 2 3 3

⇒ ′′ 	

�
 = − − −f

π π π π
4 4

2
2

3
3

4
sin sin sin

= − − − =
1

2
2

3

2
 which indicates f (x) as a

maximum at x = π
4

.

′′	

�
 = − − −f

3

4

3

4
2

3

2
3

9

4

π π π π
sin sin sin

= − + × − × = − + −
1

2
2 1 3

1

2

1

2
2

3

2

=
− + −1 2 2 3

2

=
− +

=
4 2 2

2
 which indicates f (x) has a

maximum at x =
3

4

π
 and

′′	

�
 = − − − =f x x x x

2

3
2 2 3 3 2

3

π
πsin sin sin� �

= − − −sin sin sin
2

3
2

4

3
3 2

π π π
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= − + × = − +1

2
2

3

2

1

2
3

= ⊕  which indicates f (x) has a minimum at

x = 2

3

π

Hence, at x =
π
4

, we have

max. f x f� � = 	



�


π
4

= + +	



�
 =

sin sin sinx x x
x

1

2
2

1

3
3

4
π

= + +sin sin
π π π
4

1

2 2

1

3

3

4
sin

= + +1

2

1

2

1

3 2

=
+ +

=
+3 2 3 2

6

4 2 3

6

at x =
3

4

π
, we have

max. f x f� � = 	



�


3

4

π

= + +	



�
 =

sin sin sinx x x
x

1

2
2

1

3
3

3
4
π

= + +sin sin
3

4

1

2

3

2

1

3

9

4

π π π
sin

= + − + × = − +1

2

1

2
1

1

3

1

2

1

2

1

2

1

3 2
� �

=
− +

=
−3 2 3 2

6

4 2 3

6

and lastly, at x = 2

3

π
, we have

min sin sin sin. f x x x x
x

� � = + +	



�
 =

1

2
2

1

3
3

2
3
π

= + +sin sin sin
2

3

1

2

4

3

1

3
2

π π
π

= −
−3

2

3

4

= 3

4

5. Find the maximum and / minimum value of the
function y x x= +3 cos sin  in the interval

0 2 0 2, π π� � = < <x .

Solution: y x x= +3 cos sin

⇒ = +y
x x

2

3

2

1

2
cos sin …(1)

� a b
2 2 2

3 12 3 1 4 2+ = + = + = =
�
��

�
��� �

⇒ = +
y

x x
2 6 6

cos cos sin sin
π π

⇒ = −	



�


y
x

2 6
cos

π

⇒ = −	



�
y x2

6
cos

π

⇒ = − −	



�


dy

dx
x2

6
sin

π

Now, 
dy

dx
= 0  (for an extreme value)

⇒ − −	



�
 =2

6
0sin x

π

⇒ −	

�

�
� =sin x

π
6

0

⇒ − =x n
π π
6

⇒ = +x nπ π
6

…(2)
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Putting, n = 0 in (2), we have x =
π
6

Putting, n = 1 in (2), we have x = +π π
6

� 0 2≤ ≤x π

∴ = +	



�
x

π
π

π
6 6

,  are only considerable values

of x

�

dy

dx
x= − −	



�
2

6
sin

π

∴ = − −	



�


d y

dx
x

2

2 6
cos

π

⇒ ′′ 	
�
�
� = − −	


�
�
�f

π π π
6

2
6 6

cos

= − =2  indicating max. at x =
π
6

 and

′′ +	



�
 =− + −	



�
 =− = − × −f π π π π π π

6
2

6 6
2 2 1cos cos � �

= × = = ⊕2 1 2  indicating min at x = +	



�
π

π
6

Hence, y x x
xmax cos sin= +
=

3
6
π

= +3
6 6

cos sin
π π

= × + = + = =3
3

2

1

2

3

2

1

2

4

2
2

y x x
xmin cos sin= +
= +

3
6π π� �

= +	



�
 + +	



�
3

6 6
cos sinπ

π
π

π

= −	

�
 + −	


�
3

6 6
cos sin

π π

= × −
	

�

�
�
−3

3

2

1

2

= − − =
−3

2

1

2

4

2
= –2

or, alternatively,

y
x

2 6
= −	



�
cos

π

⇒ = −	



�
y x2

6
cos

π

⇒ =ymax 2

and miny = − 2

6. Find the maximum and / minimum values of the

function y = sin 2x –x when − < <
π π
2 2

x .

Solution: y = sin 2x – x

⇒ = −
dy

dx
x2 2 1cos

Now, 
dy

dx
= 0  (for extrema)

⇒ − =2 2 1 0cos x

⇒ =cos2
1

2
x

⇒ = ±2 2
3

x nπ π

⇒ = ±x nπ
π
6

…(1)

Putting n = 0, in (1), we get x = ±
π
6

Putting n = 1, in (1), we get x = ±π π
6

� − < <π π
2 2

x

∴ = −x
π π
6 6

and  are only two considerable

values of x

Again, 
dy

dx
x= −2 2 1cos
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⇒ = −
d y

dx
x

2

2
4 2sin

∴
	

�

�
�

= − ×	

�

�
�

=

d y

dx
x

2

2

6

4 2
6π

π
sin

= − ⋅ =4
3

2
 indicates max. at x =

π
6

 and

d y

dx
x

2

2

6

4
2

6
4

2

6

	

�

�
�

= − −	
�
�
� = 	


�
�
�

=− π

π π
sin sin

= = = ⊕4 3

2
2 3  which indicates y has

minimum value at x = − π
6

Hence, y x x xmax sin sin= − = −=2
2

6 66
π

π π

= sin
π π π
3 6

3

2 6
− = −

and y x x xmin sin= − =−2
6
π

= −	

�
 +sin

2

6 6

π π

= − + = − +sin
π π π
3 6

3

2 6

7. Find the maximum and / minimum values of the

function y = sin x + cos x in the interval 0< <x π .

Solution: y = sin x + cos x

⇒ = − +
dy

dx
x xsin cos

Now, 
dy

dx
= 0  (for an extreme value)

⇒ − + =sin cosx x 0
⇒ =sin cosx x
⇒ =tan x 1

⇒ = +x nπ
π
4

… (1)

Putting, n = 0 in (1), we get, x = π
4

Putting, n = 1 in (1), we get, x = +π π
4

� 0 ≤ ≤x π

∴ =x
π
4

 is only one considerable value of x

again, 
dy

dx
x x= −cos sin

⇒ = − − = − +
d y

dx
x x x x

2

2
sin cos sin cos� �

⇒
	

�

�
�

= − +
=

=
d y

dx
x x

x

x

2

2

4

4
π

πsin cos� �

= − +	



�
sin cos

π π
4 4

= − +	

�

�
�

1

2

1

2

= − = − =
2

2
2  indicating max. at x =

π
4

Hence, at x =
π
4

, we have

y x x xmax sin cos= + = π
4

= +sin cos
π π
4 4

= + = =
1

2

1

2

2

2
2

8. Find the maximum value of the function y
x

x
=

log

in 0 < < ∞x .
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Solution: y
x

x
=

log
, x > 0

⇒ =
⋅ − ⋅

=
−dy

dx

x
x

x

x

x

x

1
1 1
2 2

log log

Now, 
dy

dx
= 0  (for an extreme value)

⇒
−

=
1

0
2

log x

x

⇒ − =1 0log x

⇒  log x = 1

⇒ = =x e e
1

Again, 
dy

dx

x

x
=

−1
2

log

⇒ =
⋅ −	


�
 − −

d y

dx

x
x

x x

x

2

2

2

4

1
2 1 log� �

=
− − −x x x

x

2 1
4

log� �

=
− +3 2

3

log x

x

∴
	

�

�
�

=
− +

=

d y

dx

e

ex e

e
2

2 3

3 2 log

=
− +3 2

3
e

= − < =1
0

3
e

 indicating maximum at x = e.

Hence, at x = e, y has maximum value and

y
e

e e
e

max
log

= =
1

9. Find the maximum and / minimum values of the

function y
x

x
= +

2

2
, x > 0.

Solution: y
x

x
x= + < < ∞

2

2
0; ,

⇒ = −dy

dx x

1

2

2
2

Now, 
dy

dx
= 0  (for an extreme value)

⇒ − =1

2

2
0

2
x

⇒ − = −2 1

22
x

⇒ − = −x
2

4

⇒ =x
2

4

⇒ = ±x 2

But x = − ∉ ∞2 0 ,� �  and x = ∈ ∞2 0 ,� �
Hence, only considerable stationary point is x = 2

at which we have to examine extrema.

Again, 
dy

dx x
= −1

2

2
2

⇒ = + =d y

dx x x

2

2 3 3
0

4 4

∴
	

�

�
�

= 	

�

�
� = = = ⊕

= =

d y

dx x
x x

2

2
2

2
2

4 4

8

1

2
 which

indicates y has a minimum value at x = 2.
Therefore. at x = 2, we have

y
x

x x
min = +�

��
�
�� =2

2

2

= + = +
2

2

2

2
1 1

= 2

Verbal problems on maximum and / minimum values
of a function

The problems have been divided into four types:
1. Problems on numbers.
2. Problems on perimeter and area.
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3. Problems on volume.
4. General problems

Working rule:
1. Find the function (if it is not given) of the quantity
whose maximum or minimum is required by expressing
the given conditions in symbols.
N.B.: It frequently appears (we observe / we see) as
a function of more than one variable, f (x, y) = c.

2. Then our next step is to express the quantity whose
max. and / min. is required in terms of a single variable
(we consider only such problems).
N.B.: By means of geometrical or other given relations
between the variables, all but one of these variables
must be eliminated.

3. The quantity (i.e., function) having thus been
expressed as a function of single variable, we put

dy

dx
= 0  and solve for the independent variable x

which will provide us roots x = a, b, c, … etc.

4. Find 
d y

dx

2

2  and 
d y

dx x a b c

2

2

�

�
�
�

�

�
�
�

= , , , ... etc

 to test where

max and / min y exist (exists).

Remember: Given or specified means fixed i.e. the
quantity (volume, area, length, angle, height, … etc)
which is given is a constant.

Explanation with the help of examples

Ex. 1: Given the length of an arc of a circle, find the
radius when the corresponding segment has maximum
or minimum area.

(Here, length of the arc is constant)
Ex. 2: Show that right circular cylinder of the given
surface and maximum volume is such that its height is
equal to the diameter of the base.

(Here, surface (area) is constant)
Ex. 3: Show that semi-vertical angle of the cone of
maximum volume and of given slant height is

tan
−1

2� � .

(Here, slant height is constant)
Ex. 4: Show that semi vertical angle of the right circular
cone of a given surface and maximum volume is

sin
− 	



�


1 1

3
.

(Here, surface area is constant)

N.B.: (i) Care should be taken to distinguish between
constants and variables.
(ii) To find the values of the independent variable at
which a differentiable function z f x y= 0 ,� �  can have
an extremum value, we must equate the derivative

dy

dx

d f x y

dx
= 0 ,� �

 to zero [where y is expressed as a

function of a single variable x (i.e. y = f (x))] which
provides us the values of x and to find the values of

y, we put x = a (one of the roots of 
dz

dx
= 0 ) in the

equation y = f (x).

Refresh your memory:
1. To be confirmed / to show the determined value of

the function z f x y= 0 ,� � , y = f (x) is max., show that

d z

dx x a

2

2

�

�
�
�

�

�
�
�

= −
=

ve .

2. To be confirmed / to show the determined value of

the function z f x y= 0 ,� � , y = f (x) is min., we are

required to show that 
d z

dx x a

2

2

�

�
�
�

�

�
�
�

= +
=

ve  when z is

expressed as a function of single variable x.
3. We are provided a single equation of condition
f1 (x, y) = c which is expressed as y = f (x) = a function
of single variable x.

4. We are required to remember the following
formulae.
(i) Sphere:

volume

surface
where radius

=

=

�

�
�
� =

4

3
4

3

2

π

π

r

r
r

(ii) Cylinder:
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Volume: π r
2

h

Curve surface: 2πr h

Total surface: 2 2π πrh r+� �  (�  area of each

plane surface = π r
2 )

Where, h = height
r = radius of circular surface

(iii) Cone: (Right circular cone)

Volume: 
1

3

2π r h

Curved surface: π πrl r r h= +
2 2

Semi vertical angle = α = 	



�


−
tan

1 r

h
Where h = height
l = slant height
r = radius of circular base.

(iv) Cube:
Volume: a3

Surface (area) = 6a2,
Where a = a side of a cube.

Examples worked out:

Type 1: Problems on numbers

1. Divide 10 into two parts such that the sum of thier
squares is minimum.
Solution: x and y be two numbers such that x + y = 10

∴ = −y x10

Again on letting S = sum of squares of x and y, we
have

S x y x x= + = + −2 2 2 210� �

= + + ≥2 20 100 0
2

x x x, � �

⇒ = −
dS

dx
x4 20

⇒ =
d S

dx

2

2
4

dS

dx
x x= ⇒ − = ⇒ =0 4 20 0 5

and 
d S

dx x

x

2

2

5

54 4
�

�
�
�

�

�
�
�

= = = +
=

= ve

∴  S reaches a minimum at x = 5. This is the only

extremum (minimum) in 0 , ∞� .

Hence, at x = 5, the function S attains the least (the
minimum) value.

∴ S is the minimum when x = 5, y = 5.
N.B.: We recall that a quantity reaches a minimum
means it may not be the least value whereas a quantity
reaches (or, attains) the minimum means it is the least
value necessarily.

2. The sum of two numbers is given. show that their
product will be maximum if each number is equal to
half of the sum.
Solution: Let the sum of two numbers x and y = x + y
= a

∴ = −y a x� �
 p = xy = product of x and y = x (a – x)

⇒ =dp

dx
0

⇒ − =a x2 0� �

⇒ =x
a

2

Again, 
d p

dx

2

2
0 2 2= − = −

∴
�
�
��

�
�
��

= − = − = −
=

=
d p

dx
x

x
a

a

2

2

2

2
2 2 ve

∴  p reaches a maximum at x
a=
2

.

α

r

L
h
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∴ This is the only extremum (maximum).
Hence, the maximum value of p is attained at

x
a

=
2

, i.e. when x
a

y
a

= =
2 2

, .

3. Divide the number 14 into two parts such that the
product of the two parts may be maximum or minimum.
Also find the maximum product.
Solution: Let x + y = 10

∴ = −y x14

and (x · y) = x (14 – x) = p (say)

Now, 
dp

dx

d

dx
x x= −14 2� �

= −14 2x

∴ = ⇒ − = ⇒ = −
−

=dp

dx
x x0 14 2 0

14

2
7� �

d p

dx

2

2
0 2 2= − = −

and 
d p

dx x

x

2

2

7

72 2
�

�
�
�

�

	





= − = − = −
=

= ve

∴  p reaches a maximum at x = 7.
Hence, maximum value of p is attained at x = 7

because this is the only extremum (maximum).

∴ = − =max. p x x
x

14
7

� �
= 7 (14 – 7) = 7 × 7 = 49

Type 2: Problems on perimeter
1. Show that among rectangles of the given area, the
square has the least perimeter.
Solution: Let x = length of the rectangle

y = breadth of the rectangle

Since, area is given, A = area = x · y = constant
…(1)

Perimeter = p = 2x + 2y = 2 (x + y) …(2)

Now, (1) ⇒ =y
A

x
…(3)

Putting (3) in (2), we have

p x
A

x
= +��

�
��2

⇒ = −
�
�

�
��

dp

dx

A

x
2 1

2

∴ =dp

dx
0

⇒ −
�
�

�
�� =2 1 0

2

A

x

⇒ =A

x
2

1

⇒ =x A
2

⇒ = >x A x� 0� � …(4)

Again, on putting x A=  in the equation of

condition which is (1)

A x y A y= ⋅ = ⋅

⇒ = =y
A

A
A …(5)

(4) and (5) ⇒ = =x y A

Now, to be confirmed whether p is maximum or

minimum, we need to know the sign of 
d p

dx

2

2

2
2 4

3 3

A

x

A

x
x A

�
�
�
�� = =when

Now
d p

dx

A

x

A

Ax A x A

2

2 3 3

4 4�
�
��

�
	




= �
��
�
	


=
×

= = � �

= = +
4

A
ve

x

y
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Hence, p reaches a minimum at x A= . This
being the only extremum (minimum), the maximum
value of p is attained at ⇒ , i.e., when the rectangle is
a square.
(*Note: An equation of condition (in this chapter) is
an equation between two variables x and y satisfying
a certain condition.)

2. Show that the perimeter of a right angled triangle
of a given hypotenuse is maximum when the triangle
is isosceles.

Solution: Let ∆ ABC  = a right angled triangle

b = base = BC
p = perpendicular = AC
h = hypotenuse = AB

P = perimeter of ∆ ABC

Given hypotenuse ⇒  given h ⇒  h = constant

Now, h b p
2 2 2= +  (by Pythogora’s theorem)

⇒ = −p h b2 2 2

⇒ = − >p h b p
2 2

0�� � …(1)

and perimeter = P = h + b + p …(2)

Putting (1) in (2), we have p h b h b= + + −
2 2

⇒ =p f b� �  a function of single variable b

⇒ = + +
−

× −dp

db h b
b0 1

1

2
2

2 2
� �

= −
−

1
2 2

b

h b
…(3)

∴ =
dp

db
0

⇒ −
−

= ⇒
−

=1 0 1
2 2 2 2

b

h b

b

h b

⇒ = − ⇒ = −b h b b h b
2 2 2 2 2

⇒ = ⇒ =h b b
h2 2

2
2

...(4)

Putting (4) in (1), we have, p h
h2 2

2

2
= −

⇒ =p
h

2
…(5)

(4) and (5) ⇒ = = ⇒p b
h

ABC
2

∆  is

isosceles ∆
Now, to be confirmed whether p is max., we need

to know the sign of 
d p

db

2

2  for b
h

=
2

d p

db

d

db

dp

db

d

db

b

h b

2

2 2 2
1= �

��
�
	

= −

−

�

�
�
�

�

	





=
− − − − −
�
��

�
	


−�
�

�
��

−
h b h b b b

h b

2 2 2 2

2 2
2

1
2

2
1
2� � � �

(using the quotient rule 
d

dx

u

v
�
�
�
� )

=

− − +
−

�

�
�
�

�

	





−�
�

�
��

h b
b

h b

h b

2 2
2

2 2

2 2
2

=
− − +

−�
�

�
� −�
�

�
�

h b b

h b h b

2 2 2

2 2 2 2
2

� �

90

p

A

h

bB C
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=
−

−�
�

�
��

h

h b

2

2 2
3

∴
�
�
��

�
	




= −

−
�
�

�
��

�

�

�
�
�
�
�
�

�

	














=

d p

db

h

h
hb h

2

2

2

2
2

2

3
2

2

= −

−�
�

�
��

= −

�
�
�
��

h

h h

h

h

2

2 2

2

2
2

2 2

3
2

3
2

=
−

= −
2

3
� �

h
ve

Hence, P reaches a maximum at b
h

p= =
2

⇒  P = perimeter of ∆ ABC  is max. when ∆  is

isosceles.

Type 3: Problems on perimeter and area

1. The perimeter of a triangle is 8 inches. If one of the
sides is 3 inches, what are other two sides for maximum
area of a triangle.
Solution: We know that

∆2 = − − −s s a s b s c� �� �� �

where S is the perimeter and a, b, c, the sides of the ∆ .
2s = P = a + b + c
⇒  8 = 3 + b + c

⇒  b = 5 – c

∴ = − − −∆2
4 4 3 4 4� � � � � �b c

= 4 · 1 · (4 – b) (4 –c)
= 4 · 1 · (4 – 5 + c) (4 – c)
= 4 · 1 · (c – 1) (4 – c)

⇒ = − −
d

dc

d

dc
c c

∆2

4 1 4� �� �

= − + −4 4 5 2d

dc
c c

= 4 (5 – 2c)
= 20 – 8c

Now, 
d

dc

∆2

0=

⇒  20 – 8c = 0

⇒ = =c
20

8

5

2

Again, 
d

dc

2 2

2
8

∆
= −

⇒
�

�
�
�

�

	





= − = − = −
=

=
d

dc c

c

2 2

2
5
2

5
2

8 8
∆

ve

∴∆2  and so ∆  is maximum when c = 5

2

∴ = − = −�
��

�
	

==b c

c
5 5

5

2

5

25
2

Thus, 
c

b

=
=

���
⇒

2 5

2 5

.

.
 The triangle must be isosceles

for the area to be maximum.

2. The sum of a perimeter of a circle and a square is l.
Show that when the sum of the area is least, the side
of the square is double the radius of the circle.
Solution: Let r = radius of the circle

a = a side of the square

b
c

a
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∴ =
=

���
⇒ + =

⇒ − =

Perimeter of the circle

Perimeter of the square

2

4
4 2

2 4

π
π

π

r

a
a r l

l r a

From the question,
Sum of the area of a circle and a square,

A r a= +π 2 2 …(1)

[In this expression, we observe there are two
variables which suggest us there should be (n – 1) =
(2 – 1) = 1 relation which must be provided.]

Here, given relation is 2 4πr a l+ =  from which,

we obtain a
l r

=
− 2

4

π
…(2)

Putting (2) in (1), we get

A r a r
l r= = + = + −�
�

�
��area π π π2 2 2

22

4

⇒ = ⋅ + ⋅ − −dA

dr
r l rπ π π2

1

16
2 2 2� � � �

= − −2
4

2π
π

πr l r� � …(3)

Now, for maxima and / minima,

dA

dr
= 0

⇒ − − =2
4

2 0π π πr l r� �

⇒ = −2
4

2π
π

πr l r� �

⇒ = ⋅2
4

4π π
r a

⇒ / = /2π πr a

⇒ = ⇒ =��
�
�2

2
r a r

a

Also, 
dA

dr
r a= − ⋅2

4
4π

π

= − = −��
�
�2 2

2
π π πr a r

a

∴
− <

+ >

�
��

��
dA

dr

r
a

r
a

is
ve when

ve when

2

2

∴ dA

dr
 changes sign from minus to plus in moving

from left to right through r
a=
2

.

∴ A has the minimum (least) value for r
a

=
2

, i.e.

when the side of the square is double the radius of
the circle.

3. Let ABC be a right angle triangle right angled at C.
Find the position of a point P on BC such that AP2 +
PB2 may be minimum.
Solution: Let P be a point on BC such that CP = x

Let BC = a and AC = b and also letting, y = AP2 +
PB2,

y b x a x= + + −2 2 2� � � �

= + − +a b ax x
2 2 2

2 2

⇒ = − +dy

dx
a x2 4

Now, 
dy

dx
= 0

b

x

p

a

B

CA

r

a

+
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⇒ − + =2 4 0a x

⇒ = =x
a a2

4 2

and ⇒ =d y

dx

2

2
4

∴
�

�
�
�

�

	





= = = +
=

=
d y

dx x

x
a

a

2

2

2

2
4 4 ve

⇒  y is min. at x
a=
2

Hence, AP2 + PB2 is min. when x
a=
2

4. A point in the hypotenuse of a right angled triangle
is distant a and b from the two sides. show that the

length of the hypotenuse is at least a b
2
3

2
3

3
2

+�
�

�
� .

Solution: Let ∠ = ∠ = ∠ABC MPCθ

PB a= cosecθ

PC b= secθ

Length of the hypotenuse = l = PC + PB

= +a bcosec secθ θ

⇒ = − +dl

d

a b

θ
θ

θ

θ

θ

cos

sin

sin

cos
2 2

∴ = ⇒ =
dl

d

a

bθ
θ

θ
0

3

3

sin

cos

⇒ = ⇒ ⇒ = ��
�
�tan tan

3
1
3

θ θa

b

a

b

a

b

Now, 
dl

d
a b

θ
θ θ θ θ= − +cot cosec tan sec

⇒ =
d l

d

2

2
θ

 b tan2θ  sec θ  + b sec3θ  + a cot2 θ

cosecθ + a cosec3 θ  which is positive for θ  being
acute.

⇒  l has the minimum value for θ1 , where

tanθ1

1
3

= ��
�
�

a

b
 and the minimum value of l

= +
�
�

�
�� = +

=

a b a b

sin cos sin cosθ θ θ θ
θ θ1

1 1

= + +a b a b
2
3

2
3

2
3

2
3� �

= +�
�

�
�a b

2
3

2
3

3
2

5. Two sides of a triangle are given. Find the angle
between them such that area shall be as great as
possible.
Solution: Let a and b be the sides (or a triangle) and
θ  = angle between them

Area = A a b= ⋅
1

2
sinθ

θ

θ

b

B L

P

a

M

C

A

θ

b
1
3

a b
2
3

2
3+ a

1
3

C

P

M1
3

a b
2
3

2
3+ 1

3

a

b
θ
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Area sin= = ⋅ ⋅A a b
1

2
θ

⇒ = ⋅dA

d
a b

θ
θ1

2
cos

∴ = ⇒ ⋅ =dA

d
a b

θ
θ0

1

2
0cos

⇒ = ⇒ =cosθ θ
π

0
2

Now, 
d A

d
a b

2

2

1

2θ
θ= − ⋅ ⋅ sin

⇒
�

�
�
�

�

	





= − �
�
�
� = − ⋅ = −

=

d A

d
a b a b

2

2

2

1

2 2

1

2θ

π

θ π
sin ve

∴  Area is max. at θ
π=
2

∴ Angle between them is a right angle for the area
to be greatest.

6. Show that maximum rectangle inscribed in a circle
is a square.
Solution: Let the equation of the circle be x2 + y2 = a2

Let PQRS be the rectangle inscribed in the circle
P, a point on the circle, = (x, y) = (a cos θ , a sin θ )

PQ = 2a cosθ
PS = 2a sinθ

∴  Area of PQRS = A = 2 2a acos sinθ θ×

⇒ = =A a a4 2 2
2 2

cos sin sinθ θ θ

⇒ =
dA

d
a

θ
θ4 2

2
cos

dA

d
a

θ
θ= ⇒ =0 4 2 0

2
cos

⇒ = ⇒ = ⇒ =cos2 0 2
2 4

θ θ π θ π

Now, 
d A

d
a

2

2
28 2

θ
θ= − sin

⇒
�
�
��

�
	




= − ×��
�
��

=

d A

d
a

2

2

4

28 2
4θ
π

θ π
sin

= − �
�
�
�� = − = −8

2
82 2a asin ve

π

∴  Area is max at θ
π=
4

Hence, if θ
π θ θ= =
4

2, P a cos

= =2
4

2

2
a

a
cos

π

PS a a
a

= = =2 2
4

2

2
sin sinθ

π

∴ = ⇒ =PQ PS PQRS  a square.

Thus, the required result.
Note: This problem also can be done by the
expression S = f (x) in the following way.

(Second method ⇒  S = f (x))
Letting ABCD = a rectangle inscribed in a circle

whose radius = a
AB = 2x
Now, on drawing from o, a perpendicular oL to AB,

it is evident from the figure

OL a x= −2 2 …(1)

θ

a

x

a

y

co s sinθ θ
,

�
��

�
��

R S

PQ

o x

ay

X

Y

a

x

a

y

co s sinθ θ
,

�� ��

A B

CD

o

x

a

L

a x
2 2
−
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BC OL a x= ⋅ = −2 2 2 2 …(2)

∴ Area of the rectangle = S = AB × BC

= × × −2 2 2 2x a x …(3)

⇒ = −S x a x4 2 2 …(4)

Now, differentiating (4) w.r.t x, we have

ds

dx
x

x

a x
a x= ⋅ ⋅

−

−
+ −

�

�
�
�

�

	



4

1

2

2

2 2

2 2� �

=
−

−
+ −

�

�
�
�

�

	



4

2

2 2

2 2x

a x
a x

=
− + −

−

�

�
�
�

�

	



4

2 2 2

2 2

x a x

a x

=
−

−

�

�
�
�

�

	



4

22 2

2 2

a x

a x

∴ =ds

dx
0

⇒ −

−
=a x

a x

2 2

2 2

2
0

⇒ − = ⇒ =a x a x2 2 2 22 0 2

⇒ = ⇒ =a x x
a

2
2

AB x
a

a= = × =2 2
2

2 ...(5)

BC a x a
a= − = −2 2
2

2 2 2
2

2 2

2

2

2
2

2 2 2a a a
a

−
= = …(6)

(5) and (6) ⇒ = = ⇔AB BC a2  ABCD = square

Thus the require result.

Note: To test the sign of 
d s

dx

2

2  at x
a

=
2

d s

dx

2

2
4=

a x x a x
x

a x

a x

2 2 2 2

2 2

2 2
2

2 2 2
2

2
− × − × − − ×

−

−

−�
�

�
�

�

�

�
�
�
�
�

�

	












� � � � � �

=
− − + −

−�
�

�
�

�

�

�
�
�
�

�

	










4
2 4 2 2

2

2 2 2 2

2 2
3
2

a x x a x x

a x

� � � � � �� �

= × /
− − + −

/ −

�

�

�
�
�

�

	








4 2
4 2

2

2 2 2 2

2 2
3
2

a x x a x x

a x

� �� � � �� �

� �

=
− − + −

−

�

�

�
�
�

�

	








4
4 22 2 2 2

2 2
3
2

x a x a x x

a x

� �� � � �

� �

Now, putting in this expression, x
a

=
2

, we have

d s

dx
x

a

2

2

2

�
�
��

�
	




=
=

− �
�
�
�� −

�
�
�
��

�
��
��

�
��
��
+ − ⋅
�
�

�
��
⋅

−
�
�
�
��

�
��
��

�
��
��

16
2 2

2
2

4

2

2

2
2

2
2

2
2

3
2

a
a

a
a

a a

a
a
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=
− −�
�
��

�
�
��

−�
�

�
��

=
−
�
�
�
��

�
�
�
��

= −a

a a

a a

a

a

a

2

16
2

2

2
2

16
2

2

2

2 2

2 2 3

2

2
3
2

ve

7. Show that among rectangles of given perimeter
the square has greatest area.
Solution: Let x and y be the sides of the rectangle

Perimeter = P = 2x + 2y = 2c (constant)

⇒  x + y = c

⇒  y = c – x …(1)
Area = A = x · y = x (c – x) = cx – x2

⇒ = −dA

dx
x x2

∴ =
dA

dx
0

⇒ =x c
1

2

Now, 
d A

dx
x

c
x c

2

2

2

2 2
2

�
�
��

�
	




= − = − = −
=

= ve

∴  A is greatest for x
c

=
2

Now, from (1), y c x c
c c

x xc c= == − = − =
2 2 2 2

∴ A is the greatest when x y
c

= =
2

i.e. when the rectangle is a square.

Type 4: Problems on volume

Note the following key point while working out the
problems on volume.

Whenever a figure is to be inscribed in another
solid figure, we are required to consider the central
section.

(i) Central section of a sphere = a circle
(ii) Central section of cone = a triangle
(iii) Central section of a cylinder = a rectangle

Examples worked out:

1. Prove that the height and the diameter of the base
of a right circular cylinder of given surface area and
maximum volume are equal.
Solution: Let r = radius of the base of the cylinder =
CB

h = height of the cylinder
v = volume of the cylinder
S = constant (given) = The surface area.

The sum of the areas of the base (circle) and top

(circle) = 2 2π r  area of the curves surface = 2π r h
Total surface of the cylinder
= sum of the areas of the base and top + area of the

curved surface

⇒ = +S r r h2 22π π  = (constant) …(1)

V r h= π 2
…(2)

Now, from 2 2 2π πr h S r= − ,

h
S r

r
=

− 2

2

2π
π

…(3)

From (2), V r
S r

r
r S r=

−�
�

�
��
= −π

π
π

π2
2

22

2

1

2
2� �

⇒ = − ⋅ + − ⋅dV

dr
r r S r

1

2
2 2 2 12π π� � � �� �

= − + −
1

2
4 22 2π πr S r� � � �� �

x

y

r
c

h

o
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= −
1

2
6 2S rπ� �

dV

dr
S r= ⇒ − =0

1

2
6 02π� �

⇒ =S r6 2π
putting this value of S in (1), we have

6 2 22 2π π πr r r h= +

⇒ =4 22π πr r h

⇒ =2 2r r h

⇒ =h b  (base = b = 2r)

Now, from (4) 
d v

dr
r r

2

2

1

2
0 6 2 6= − = −π π� � < 0.

Thus, we observe when r
s=

6π
, v = volume is

maximum and, when the volume of the cylinder is
maximum, h = 2r = b. Hence, the result.
2. Show that the semi vertical angle of a right circular
cone of a given surface and maximum volume is

sin− �
�
�
��

1 1

3
.

Solution: Let r = the radius of the base
h = OC = height
α = ∠ AOC  = semi vertical angle
surface of the cone which is given in the problem

= π πr rl2 +

(�  total surface of a cone = surface of the base +
area of the curve surface)

= A (constant), say …(1)

and volume = V r h= 1

3
2π …(2)

Now, l h r h l r2 2 2 2 2 2= + ⇒ = − …(3)

and A r rl l
A r

r
= + ⇒ =

−
π π

π
π

2
2

…(4)

Now, on putting (4) into (3), we have

h
A r

r
r2

2 2

2=
−�

�
�
��

−
π

π

⇒ = −
�
�

�
�� −h

A

r
r r2

2
2

π

= − ⋅ + −A

r

A

r
r r r

2

2
2 22

π π

= −A

r

A2

2

2

π π …(5)

2
1

9
2 2 4 2� � ⇒ =V r hπ …(6)

Again on putting (5) in (6), we get

V r
A

r

A2 2 4
2

2 2

1

9

2= −
�
�

�
��

π
π π

= ⋅
−

⋅

�
�

�
��

1

9

22 4
2 2

2 2
π

π
π

r
A Ar

r

= − =
1

9
22 4A Ar r f rπ� � � � …(7)

Now, differentiating (7) w.r.t r, we have

2
1

9
2 2 4 3V

dV

dr
f r A A r r⋅ = ′ = ⋅ − ⋅� � � �π

= −1

9
2 8 3A Ar rπ� �

⇒ ⋅ = + −2
1

9
2 82 3V

dV

dr
A r r rl rπ π π� �� �

= + −1

9
2 82 3A r r rl rπ π π� �� �

= −1

9
2 62 3A r l rπ π� �

r
A B

lh

C

h

o
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= −
1

9
2 32A r l rπ � � …(8)

dV

dr
A r l r= ⇒ − =0

1

9
2 3 02π � �

⇒ − = ⇒ = ⇒ =��
�
��l r r l r

l
3 0 3

3

Also, 
dV

dr
r

l> <0
3

for  and < >0
3

for r
l

∴ V has the max. value for r
l

=
3

 and from the

∆ AOC
AC

OA

r

l

r

r
, sinα = = =

3

⇒ = ⇒ = �
�
�
��

−sin sinα α
1

3

1

3
1

3. Show that semi vertical angle of the cone of
maximum volume and the given slant height is

tan−1 2� � .

Solution: v = volume of the cone = 
1

3
2π r h

Where r = radius of the base circle
h = height of the cone
Now, if l = slant height of the cone then

r l= sinθ …(1)
h l= cosθ …(2)

where θ = ∠BOC  semi vertical angle

� V r h=
1

3
2π …(3) (say)

Now, on putting (1) and (2) in (3), we get

V l l
l

= ⋅ =1

3 3
2 2

3
2π θ θ

π
θ θsin cos sin cos

⇒ = − + ⋅dV

d

l

θ
π θ θ θ θ θ

3
2

3
2sin sin cos sin cos� �

…(4)
dV

d θ
= 0

⇒ − + =
π

θ θ θ
l3

3 2

3
2 0sin sin cos

⇒ − + =sin sin cos3 22 0θ θ θ
⇒ =2 2 3sin cos sinθ θ θ
⇒ = ≠2 02 2cos sinθ θ θ�� �

⇒ = ≠�
�

�
��2

2
2tan θ θ

π
�

⇒ =tan2 0θ
⇒ =tanθ 2

⇒ = −θ tan 1 2

Note:
dV

d

l

θ
π

θ θ θ= −
3

2 2

3
2sin cos tan� �

⇒ > < −dV

d θ
θ0 21for tan

< > −0 21for tanθ
∴  V has the greatest value for θ = −tan 1 2

Local extreme values of a function in a closed interval
[a, b]:

Definitions: A function y = f (x) defined on a closed
interval [a, b] is said to have

A: 1. Local maximum at x = a (left end point) if f (a) >
f (a + h), h > 0.
2. Local minimum at x = a (left end point) if f (a) < f (a
+ h), h > 0.
B: 1. Local maximum at x = b (right end point) if f (b)
< f (b – h), h > 0.
2. Local minimum at x = b (right end point) if f (b) < f
(b – h), h > 0.

To find the local extreme values of a function f defined
by y = f (x) in a closed interval [a, b], one should
know:
1. How to find the local extreme values of a
continuous function f at the interior points of the
domain of the function f where the derivatives of the
function f denoted by f ' do not exist.
Rule: One should use the rule of the first derivative
test, i.e., one should find ′ −f c h� �  and f ' (c + h)

where x = c is an interior point where ′f  does not
exist and h is a small positive number and then use:
(i) ′ − >f c h� � 0  and ′ + <f c h� � 0 ⇒  local
maximum value at the interior point x = c of the domain
[a, b] of the function f.
(ii) ′ − <f c h� � 0  and ′ + >f c h� � 0 ⇒  local
minimum value at the interior point x = c of the domain
[a, b] of the function f.
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2. How to find the local extreme values of the
function f at the interior points of the domain of the
function f where the derivative of the function f

denoted by ′f  is zero.

Rule: One should use the rule of the first derivative
test or the rule of the second derivative test.

3. How to find the local extreme values of a function
f at the left and the right end points of a closed interval
[a, b].
Rule (a): One should find ′ +f a h� � , where h is a
small positive number, x = a is the left end point of the
given closed interval [a, b], where the given function

f is defined and ′ + =f a h� �  the value of the first
derivative of the function f for value of x little (just)
more than a and then use the rule:

(i) ′ + > ⇒f a h� � 0  local minimum value at the
point x = a.
(ii) ′ + < ⇒f a h� � 0  local maximum value at the

point x = a.
Rule (b): One should find ′ −f b h� � , where h is a
small positive number, x = b is the right end point of a
given closed interval [a, b] and ′ −f b h� � = the value

of the first derivative of the function f for a value of x
little (just) less than b and then use the rule:
(i) ′ − > ⇒f b h� � 0  local maximum value at the

point x = b.
(ii) ′ − < ⇒f b h� � 0  local minimum value at the
point x = b.
Notes: (A): The only possible points where a given
function f defined by y = f (x) in a closed interval [a, b]
can have local extreme values are

1. The critical points (also called stationary points or
turning points), i.e.,

(i) The interior points of the domain of the function f
where the derivative of the function f denoted by
f ' does not exist.
or (ii) The interior points of the domain of the function
f where the derivative of the function f denoted by f '
is zero.

2. The end points of a given closed interval [a, b],
where a given function f is defined.

This is why while finding the local extreme or global
extreme values of a function f defined by y = f (x) in a
closed interval [a, b], one should firstly locate the
critical points of the given function f.

(B) While finding the local extreme values at the end
points of a closed interval [a, b], one is required to
find out ′ +f a h� �  at the left end point namely x = a
and ′ −f b h� �  at the right end point namely x = b.

The rule to find out the local extrema at the end
points can be put in tabular form:

At the left end pint x = a:

x Little > a Nature of the point

′f x� � +ve Minima

′f x� � –ve Maxima

At the right end point x = b:

x Little < b Nature of the point

′f x� � +ve Maxima

′f x� � –ve Minima

(C) One should note that there may be more than
one local extrema of a function in a closed interval.
This is why the question says to find out:
(i) The local extreme values (or simply the extreme
values)
(ii) The local maxima and / the local minima (or simply
the maxima and / the minima).

i.e., the words “the extrema, the maxima and the
minima” are used in plural to signify the local extrema
of a function defined in a closed interval.

Examples worked out:

1. Find the point of local maxima and minima of a
function f defined by f (x) = 3x4 – 4x3 + 5 in [–1, 2].

Solution: f (x) = 3x4 – 4x3 + 5,∀ ∈ −x 1 2,

⇒ ′ = −f x x x� � 12 123 2

a h – 
x a = 

a h + b h – 
x b = 

b h + 
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⇒ ′′ = −f x x x� � 36 242

Now, ′ =f x� � 0

⇒ − =12 12 03 2x x
⇒ − =12 1 02x x� �
⇒  x = 0 and x = 1 which are the possible critical

points.
Hence, the only possible points where the extreme

values of the given function f defined in the closed
interval [–1, 2] may occur, are
(i) x = 0 and x = 1, where ′ =f x� � 0
(ii) x = –1 = the left end point and x = 2 = the right end
point of the given closed interval [–1, 2].

1. Local extrema at critical points namely x = 0, 1.
At x = 0, using the rule of the second derivative

test, it is seen that ′′f x� �  at x = 0, i.e.,

′′f 0� �  = 36 · 02 – 24 · 0 = 0 which does give us
inference to calculate ′′′f 0� � .

Now, ′′′ = −f x x� � 72 24

� ′′ = −f x x x� �� �36 242

⇒ ′′′ = ⋅ − = −f 0 72 0 24 24� �
⇒  f has no extremum value at x = 0.
Again, at x = 1,

′′ = ⋅ − ⋅ = − = >f 1 36 1 24 1 36 24 12 02� �
⇒  f has a local minimum at x = 1

2. Local extrema at the end points of the closed
interval:

(i) At the left end point x = –1
′ − + = − + − − +f h h h1 12 1 12 1

3 2� � � � � �
= − − + = − <12 12 0ve ve ve� � � �

∴ ′ − + < ⇒f h1 0� �  f has a local maximum at the
left end point x = –1
(ii) At the right end point x = 2.

′ − = − − −f h h h2 12 2 12 23 2� � � � � �
Now, for convenience h = 0.1 can be put in

′ −f h2� � , to know the sign of f ' (2 – h) for small h.

′ − = − − −f 2 01 12 2 01 12 2 013 2
. . .� � � � � �

= 12 (1.9)3 – 12 ( 1.9)2

= 12 (6.859) – 12 (3.61)

= +ve > 0

∴ ′ − > ⇒f h2 0� �  f has a local maxima at the

right end point x = 2.
Hence, at x = 0, f has neither a maximum or a

minimum.
At x = 1, f has a local minimum and at x = –1 and

x = 2, f has a local maxima.
2. Find the local maxima and minima of the function f

defined by f x x x� � = − ∀ ∈ −4 3 32 , ,

Solution: f x x x� � = − ∀ ∈ −4 3 32 , ,

⇒ ′ =
−

−
⋅ −f x

x

x
x� �

� �
� �

4

4
2

2

2
,

x x≠ ± ∈ −2 3 3, , …(i)

∴ ′ = − ∀ ∈ −f x x x� � � �2 2 2, , …(ii)

and ′ = ∀ ∈ − − ∪f x x x� � � � � �2 3 2 2 3, , , …(iii)

� ′ =
−

−
⋅ − − ≠f x

x

x
x x� �

� �
� �

4

4
2 4 0

2

2
2, ,  i.e.,

x x2 4 2≠ ≠ ±,

⇒ ′ = − ≤f x x x� � 2 2, for  but x ≠ ± 2  and

x∈ −3 3,

⇒ ′ = − ∀ ∈ − <f x x x x� � � �2 2 2 2, , , i.e. ,

Also,

′ =
−

−
⋅ − − ≠f x

x

x
x x� �

� �
� �

4

4
2 4 0

2

2
2, , i.e.,

x x2 4 2≠ ≠ ±,

= 2x, for | x | > 2, i.e., x < –2 and x > 2 but x∈ −3 3,

∴ ′ =f x x� � 2 ,  for x∈ − − ∪3 2 2 3, ,� � � �

Now, ′ =f x� � 0
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⇒
−

−
⋅ − = ≠ ± ∈ −

4

4
2 0 2 3 3

2

2

x

x
x x x

� �
� � , , ,

⇒  x = 0
Hence, the possible points where the extreme

values of the given function f defined in the closed
interval [–3, 3] may occur, are

(i) x = 0 where ′ =f x� � 0

(ii) x = –2 and x = 2 where ′f x� �  do not exist.

(iii) x = –3, the left end point x = 3, the right end point
of the given closed interval [–3, 3].

1. Local extrema at critical points:
At x = 0, using the rule of first derivative test,

′ + = − + = − >f h h h0 2 0 2 0� � � �
′ − = − − = − > >f h h h h0 2 0 2 0 0� � � � � ��

∴ ′f x� �  changes sign from +ve to –ve in Nh (0).

⇒  x = 0 is a point of local maximum.

∴ local maximum value of the function f (x) at x =
0, is f (0) = | 4 – 02 |= | 4 | = 4

At x = 2, using the rule of the first derivative test,

′ − = − − = − + <f h h h2 2 2 4 2 0� � � �
′ + = + = + >f h h h2 2 2 4 2 0� � � �

∴ ′f x� �  changes sign from –ve to +ve in Nh (2).

⇒  f has a local minimum at x = 2
∴  Local minimum value of the function f (x) at

x = 2 is f (2) = | 4 – x2 | = | 4 – 4 | = | 0 | = 0
At x = –2, using the rule of first derivative test,
′ − − = − − = − + <f h h h2 2 2 4 2 0� � � � � �

′ − + = − − + = − > >f h h h h2 2 2 4 2 0 0� � � � for

∴ ′f x� �  changes sign from –ve to +ve in Nh (–2).

⇒  f has a local minimum at x = –2

∴ Local minimum value of the function f (x) at
x = –2 is f (–2) = | 4 – (–2)2 | = | 0 | = 0

2. Local extreme at the end points of the closed
interval:
(i) At the left end point x = –3.

′ − + = − + =− + < >f h h h h3 2 3 6 0 0� � � � � �
⇒  f has a local maximum at x = –3
∴ local maximum value of the function f (x) at

x = –3 is f (–3) = | 4 – (–3)2 | | 4 – 9 | = | –5 | = 5
(ii) At the right end point x = 3

′ − = − = − > >f h h h h3 2 3 6 2 0 0� � � � � �
⇒  f has a local maximum at x = 3
∴ Local maximum value of the function f (x) at

x = 3 is f (3) = | 4 – 32 | = | 4 – 9 | = | –5 | = 5
3. Find the local maximum and local minimum values
of the function f defined by f (x) = sin 2x – x,

− ≤ ≤π π
2 2

x .

Solution: f (x) = sin 2x – x, − ≤ ≤π π
2 2

x

⇒ ′ = −f x x� � 2 2 1cos

⇒ ′′ = −f x x� � 4 2sin

Now, ′ =f x� � 0

⇒ =cos2
1

2
x

⇒ = =2
3 3

x
π π

or

⇒ =x
π
6

 or −
π
6

 since − ≤ ≤π π
2 2

x

Hence, the possible points where the extreme
values of the given function f defined in the closed

interval −�
��

�
	


π π
2 2

,  may occur, are

(i) x = − π
6

 and x = π
6

 where ′ =f x� � 0

(ii) x = −
π
2

 = the left end point and x = =π
2

 the

right end point of the given closed interval −�
��

�
	


π π
2 2

, .
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1. Local extreme at critical points x = −
π
6

 and

x = π
6

:

At x = π
6

, using the rule of second derivative

test, it is seen that

′′��
�
�� = − �

�
�
�� = − ⋅ = − <f

π π
6

4
3

4
3

2
2 3 0sin

⇒  f has a local maximum at x =
π
6

 and the local

maximum value of the function f (x) at x = π
6

 is

′ ��
�
�� =

�
�
�
�� = = −f

π π π π
6 3 6

3

2 6
sin

Also, at x = − π
6

′′ −��
�
�� = − −��

�
�� =

�
�
�
�� = >f

π π π
6

4
3

4
3

2 3 0sin sin

⇒  f has a local minimum at x = − π
6

 and the local

minimum value of the function f (x) at x = −
π
6

 is

f −��
�
�� = −��

�
�� − = − −π π π π

6 3 6

3

2 6
sin

2. Local extrema at the end points of the closed
interval:

(i) At the left end point x = − π
2

′ − +�
�

�
�� = − +�

�
�
��

�
�

�
�� −f h h

π π
2

2 2
2

1cos

= − + −2 2 1cos π h� �
= − − −2 2 1cos π h� �� �
= − −2 2 1cos π h� �

= − −2 2 1cos h

= − < >ve for small0 0h

⇒  f has a local maximum at x = −
π
2

 and the

local maximum value of the function f (x) at x = − π
2

is f −��
�
�� = − − −��

�
�� = + =

π
π

π π π
2 2

0
2 2

sin� � .

(ii) At the right end point x =
π
2

:

′ −�
�

�
�� = −�

�
�
��

�
�

�
�� −f h h

π π
2

2 2
2

1cos

= − −2 2 1cos π h� �
= − − <2 2 1 0cos h

⇒  f has a local minimum at x =
π
2

∴ Local minimum value of the function f (x) at

x = π
2

 is f
π

π
π π

2 2 2
�
�
�
�� = − = −sin � �

4. Find the local maxima and minima of the function f

defined f x x x x� � = + ∀ ∈4 2 0 2sin cos , , π . Also

find the absolute maximum and minimum values in

0 2, π .

Solution: f x x x x� � = + ∀ ∈4 2 0 2sin cos , , π

⇒ ′ = −f x x x� � 4 2 2cos sin

⇒ ′′ = −f x� � 4  (sin x + cos 2x)

∴ ′ =f x� � 0

⇒ − =4 2 2 0cos sinx x
⇒ − =4 1 0cos sinx x� �
⇒ = = ∈cos or sin butx x x0 1 0 2, π

⇒ = =x x
π π
2

3

2
or



926 How to Learn Calculus of One Variable

Hence, the possible points where the local extreme
values of the given function f defined in the closed

interval 0 2, π  may occur, are

1. x = π
2

 and x = 3

2

π
 where ′ =f x� � 0

2. x = 0 =  the left end point and x = =2π  the right

end point of the given closed interval 0 2, π

1. Local extrema at critical point x = π
2

 and x =
3

2

π
:

At x = π
2

, using the rule of second derivative

test, it is seen that

′′��
�
�� = − − =f

π
2

4 1 1 0� �  which does not given

any inference about extremum.

′′′ = − −f x x x� � � �4 2 2cos sin

and sin cos′′′′ = +f x x x� � � �4 4 2

∴ ′′′ ��
�
�� = − −�

�
�
�� = − − × =f

π π π
2

4
2

2 0 2 0 0cos sin � �

and ′′′′ ��
�
�� = +�

�
�
��f

π π
π

2
4

2
4sin cos  = 4 (1 – 4)

= –12 < 0

⇒  f has a local maximum at x = π
2

 and the local

maximum value of the function f (x) at x =
π
2

 is

f
π π

π
2

4
2

4 1 1 3
�
�
�
�� =

�
�
�
�� + = × − =sin cos

Also, at x = 3

2

π
:

′′��
�
�� = − �

�
�
�� +

�
�

�
��f

3

2
4

3

2
3

π π πsin cos

= –4 (–1 – 1) = 8 > 0

⇒  f has a local minimum at x = 3

2

π

∴ Local minimum value of the function f (x) at

x = 3

2

π
 is f

3

2
4

3

2
3

π π
π�

�
�
�� =

�
�
�
�� + =sin cos 4 (1) +

(–1) = –5

2. Local extrema at the end points of the closed
interval:
(i) At the left end point x = 0:

′ + = + − +f h h h0 4 0 2 2 0� � � � � �cos sin

= −4 2 2cos sinh h  = 4 cos h (1 – sin h)

= + ve, for small h > 0.

∴ ′ + > ⇒f h0 0� �  f has a local minimum at the

left end point x = 0 and the local minimum value of the
function f (x) at x = 0 is f (0) = 4 sin 0 + cos 0 = 4 · 0 + 1
= 1
(ii) At the right end point x = 2π :

′ − = − − −f h h h2 4 2 2 2 2π π π� � � � � �cos sin

= − − = +4 2 4 2 4 2 2cos sin cos sinh h h hπ� � =
+ve

∴ ′ − > ⇒f h2 0π� �  f has a local maximum at

the right end point x = 2π  and the local maximum
value of the function f (x) at x = 2π  is
f 2 4 2 4π π π� � = +sin cos = 4 · 0 + 1 = 1

Hence x = π
2

 and x = 2π  are points of local

maxima and x = 0 and x =
3

2

π
 are the points of local

minima

� f
π π π

π
2

4
2

2
2

4 1
�
�
�
�� =

�
�
�
�� + ⋅��

�
�� = × +sin cos cos

= 4 – 1 = 3

f
3

2
4

3

2
3 4 1 1 5

π π
π�

�
�
�� =

�
�
�
�� + = − + − = −sin cos � � � �

f 0 4 0 0 4 0 1 1� � = + = × + =sin cos

f 2 4 2 4 4 0 1 1π π π� � = + = × + =sin cos

∴ Absolute maximum value of the function
f (x) = 3 and absolute minimum value of the function
f (x) = –5.
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The absolute extreme values (or simply the absolute
extrema) of a continuous function in a closed interval:

There is a method to find out:

The absolute extreme values (or simply the absolute
extrema), i.e.,
the maximum and / minimum values (value) (or simply
the maximum and / minimum) of a continuous function
f in a given closed interval [a, b].

The method is to:
1. To find out the values of the given function defined
by y = f (x) at all critical points and the end points of
the given closed interval [a, b].
2. To take out:
(i) The greatest of the numbers of the set {values of
the given function at all critical points and end points
of the given closed interval} which is the required
absolute maximum value, the maximum value or simply
the maximum of the given continuous function in a
given closed interval.

That is, the absolute maximum value, the maximum
value or simply the maximum of a given continuous
function in a given closed interval [a, b] = the greatest
of the numbers of the set {f (a), f (b), f (c1), f (c2), f
(c3)}, where c1, c2 and c3 etc. are all critical points and
a and b are the end points of the closed interval where
the given function y = f (x) is defined.
(ii) the least of the numbers of the set {values of the
given function at all critical points and end points of
the given closed interval} which is the required
absolute minimum value, the minimum value or simply
the minimum of the given continuous function in a
given closed interval.

That is, the absolute minimum value, the minimum
value or simply the minimum of a given continuous
function in a given closed interval [a, b] = the least of
the numbers of the set {f (a), f (b), f (c1), f (c2), f (c3)},
where c1, c2 and c3 etc are all the critical points and a
and b are the end points of the closed interval [a, b]
where the given function y = f (x) is defined.

Notes: 1. One should note that there is only one
absolute maximum and / minimum value (value) of a
function in a closed interval. This is why the words
the maximum and / minimum (values) are used always
in singular to signify the absolute extrema of a
continuous function y = f (x) in closed interval [a, b]

whereas the words “the maxima and minima” are used
in plural always to signify the local extrema of a
continuous function f in a closed interval [a, b] since
there are several local maximums and / minimums of a
continuous function in an open or in a closed interval.
2. The absolute extrema of a function is always
determined only in a given closed interval whereas
local extrema of a function are determined in both
open and closed interval.
3. If a function is continuous in an open interval (a,
b) or in closed interval [a, b] and it has only one
extreme point in (a, b), then it is a point of absolute
maxima or a point of absolute minima accordingly it is
a point of local maxima or a point of local minima.
4. One should note the difference between the
absolute extrema and the local extrema of a function
which is presented in the following way:

If x = c is a point of an interval D such that f (c)
≥ f x� �  (or f (c) ≤   f (x) for all x in the interval D, then
f (x) is said to have an absolute maximum (absolute
minimum) value f (c) in the interval D at x = c.

That is, a value of the function f at point x = c in the
domain of its definition D represented by f (c) is an
absolute maximum (or an absolute) minimum) value
of the function f ⇔  f (c) is the greatest (or the least)
value of the function in its domain of definition D if
the values of the function f at x = c and other values
of the independent variable x which belong to its
domain of definition D are considered.

If x = c is a point of an interval D such that f (c) > f
(x) (or f (c) < f (x)) is true only for x in some deleted δ -
neighbourhood of the point x = c, where δ  > 0 (i.e. for
all x such that 0 < | x – c | < δ ), then f (x) is said to have
a local maximum (or local minimum) value f (c) at x = c.

That is, a value of the function f at a point x = c in
the domain of its definition D represented by f (c) is a
local maximum (or local minimum) value of the function
f ⇔  f (c) is the greatest (or the least) value in the δ -
deleted neighbourhood of the point x = c if the values
of the function f at x = c and other values of the
independent variable x which belong to the δ -deleted
neighbourhood of the point x = c are considered.

In short, an absolute extrema of a function at a
point of its domain of definition is the greatest or the
least value of the function in its domain of definition
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while a local extrema of a function is the greatest or
the least value of the function in a deleted
neighbourhood of a point in its domain of definition.

On points of absolute extrema

1. The point of absolute maximum: A point x = c in
the domain of the function y = f (x) at which the value
of the function f is the largest value of the function is
called the point of absolute maximum of the function
y = f (x).
2. The point of absolute minimum: A point x = c in
the domain of the function y = f (x) at which the value
of the function f is the smallest value of the function
is called the point of absolute minimum of the function
y = f (x).
3. The point of attainment of absolute extrema is either
(a) a point where f ' (x) = 0,
(b) a point at one end of the closed interval,
or (c) a point where y = f (x) is not differentiable. This
situation may occur also, but this will be more rare in
common practice.

Examples worked out:

(Problems on algebraic functions)

1. Find the maximum and / minimum of the function
f (x) = x3 – 12x2 + 36x + 17 in [1, 10].
Solution: f (x) = x3 – 12x2 + 36x + 17

⇒ ′f x� �= 3x2 – 24x + 36 = 3 (x2 – 8x + 12) = 3 (x –

6) (x – 2)

∴ ′ =f x� � 0 ⇒  3 (x – 6) (x – 2) = 0 ⇒  x = 2 and

x = 6
Now, f (1) = (1)3 – 12 (1)2 + 36 (1) + 17 = 1 – 12 + 36

+ 17 = 42
f (2) = (2)3 – 12 (2)2 + 36 (2) + 17 = 8 – 48 + 72 + 17

= 49
f (6) = (6)3 – 12 (6)2 + 36 (6) + 17 = 216 – 432 + 216 +

17 = 17
f (10) = (10)3 – 12 (10)2 + 36 (10) + 17 = 1000 – 1200

+ 360 + 17 = 177
∴ max. f (x) = 177
min. f (x) = 17

2. Determine the maximum and / minimum values
(value) of each of the following functions in stated
domains.

(i) f x x x� � � �= + ≤ ≤1 0 8
2
3 ,

(ii) f x x x x� � � �= − + ≤ ≤1 1 0 1
1
3 ,

(iii) f x
x

x
x� � = +

+
≤ ≤

1

1
0 2

2
,

Solution: (i) f x x x� � � �= + ≤ ≤1 0 8
2
3 ,

⇒ ′ = + =
+

≠ −−
f x x

x
x� � � �

� �
2

3
1

2

3 1
1

1
3

1
3

,

⇒ ′ ≠ ∀ ∈f x x� � 0 0 8, ,
Hence, this is why it is required to find out the

values of the given function only at the end points
namely 0 and 8 appearing in the given closed interval
[0, 8].

∴ = + = =f 0 0 1 1 1
2
3

2
3� � � � � �

f 8 8 1 9 3 3
2
3

2
3

2
3 4

32� � � � � � � � � �= + = = =

= =3 3 3 3
1
3 3� �

Therefore, max. f x� � = 3 33

Min. f (x) = 1

(ii): f x x x� � � �= − +1 1
1
3

⇒ ′ = − + ⋅ − +
−

f x x x
d

dx
x x� � � � � �1

3
1 1 1 1

2
3

2 1

3 1 1
2
3

x

x x

−

− +

� �
� �

∴ ′ =f x� � 0

⇒  (2x – 1) = 0

⇒ =x
1

2
Now, it is required to find out the values of the

given function at the points x = 0, x = 1

2
 and x = 1.

∴ =f 0 1� �

f
1

2

3

4

1
3�

�
�
�� =
�
�
�
�� ,  f (1) = 1

Hence, max. f (x) = 1

min. f x� � = ��
�
��

3

4

1
3
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(iii) f x
x

x
x� � = +

+
≤ ≤

1

1
0 2

2
,

⇒ ′ =
+ ⋅ − + ⋅ + ⋅

+�
�

�
�

−

f x
x x x x

x

� �
� � � � � �2 2

2
2

1 1 1
1
2

1 2

1

1
2

=

+ −
+

+

+

x
x x

x

x

2

2

2

1
1

1

1

� �

� �

=
+ − +

+

x x x

x

2

2

1 1

1
3
2

� � � �

� �

=
−

+

1

12
3
2

x

x

� �

� �

∴ ′ = ⇒
−

+
=f x

x

x
� � � �

� �
0

1

1
0

2
3
2

⇒  (1 – x) = 0

⇒  x = 1
Now, it is required to find out the values of the

function at x = 0, x = 1 and x = 2

f f0 1 1
2

2
2 1414� � � �= = = =, .

f 2
3

5

3 5

5

3 2 236

5

6 708

5
134� � = = =

×
= =

. .
.

Therefor, max. f (x) = 2
min. f (x) = 1

(Problems on trigonometric functions)

1. Examine the maximum and minimum of the function
f (x) = sin x + cos x, 0 ≤ ≤x π .

Solution: f (x) = sin x + cos x

⇒ ′ = −f x x x� � cos sin

∴ ′ =f x� � 0

⇒ − =cos sinx x 0

⇒  tan x = 1

⇒ =x
π
4

Now, f (0) = cos 0 + sin 0 = 1 + 0 =1

f
π π π
4 4 4
�
�	
�
�
 =

�
�	
�
�
 +

�
�	
�
�
cos sin

= + = =
1

2

1

2

2

2
2

f π π π� � = + = − + = −cos sin 1 0 1

Hence, max. f x� � = 2

min. f (x) = –1

2. Find the maximum and minimum of the function

f x x x x� � � �= + ≤ ≤5 2 0
4

sin cos ,
π

.

Solution: f x x x� � � �= +5 2sin cos

⇒ ′ = −f x x x� � � �5 2 2cos sin

∴ ′ =f x� � 0

⇒  cos – 2 sin 2x = 0

⇒  cos x – 4 sin x cos x = 0

⇒  cos x (1 – 4 sin x) = 0

⇒ = =cos or sinx x0
1

4

⇒ = = �
�	
�
�


−x x
π
2

1

4
1or sin ; 0

1

4 2
1< �
�	
�
�
 <

−sin
π

Now, f 0 5 0 0� � � �= +sin cos

= + =5 0 1 5� �

x x= �
�	
�
�
 ⇒ =−sin sin1 1

4

1

4
 and cos 2x = 1 – 2

sin2 x

= − �
�	
�
�
 = − =1 2

1

4
1

1

8

7

8

2
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∴ �
�	

�
�
 = +��	

�
�
 = × =−f sin 1 1

4
5

1

4

7

8

9

8
5

9 5

8

 and f
π π π
2

5
2 2

�
�	
�
�
 =

�
�	
�
�
 +

�
�	
�
�


�
�	

�
�
sin cos

= − = + =5 1 1 5 0 0� �

Hence, max . f x� � = 9 5

8
min. f (x) = 0

3. Determine the maximum and minimum values of
the function in the stated domain. f (x) = 2 cos 2x –
cos 4x in 0 ≤ ≤x π .

Solution: f (x) = 2 cos 2x – cos 4x

⇒ ′f x� �  = –4 sin 2x + 4 sin 4x = 4 (sin 4x – sin 2x)

∴ ′ =f x� � 0

⇒  4 (sin 4x – sin 2x) = 0

⇒  4 (2 sin 2x cos 2x – sin 2x) = 0

⇒  4 sin 2x (2 cos 2x – 1) = 0

⇒  sin 2x = 0 or 2 cos 2x – 1 = 0

Now sin 2x = 0 and 0 ≤ ≤x π

⇒ = ⇒ =2 0 2 0
2

x x, , , ,π π
π

π

and 2 2 1 0 2
1

2
2

3

5

3
cos cosx x x− = ⇒ = ⇒ = π π

,

⇒ =x
π π
6

5

6
,  as 0 ≤ ≤x π

Now, f (0) = 2 cos 0 – cos 0 = 2 × 1 – 1 = 2 – 1 = 1

f
π π π
6

2
3

2

3
�
�	
�
�
 =

�
�	
�
�
 −

�
�	
�
�
cos cos

= �
�	
�
�
 − −��	

�
�
 = + =2

1

2

1

2
1

1

2

3

2

f
π

π π
2

2 2
�
�	
�
�
 = − −cos cos

= 2 (–1) – 1 = –2 – 1 = –3

f
5

6
2

5

3

10

3

π π π�
�	
�
�
 =

�
�	
�
�
 −

�
�	

�
�
cos cos

= × − −��	
�
�
 = + =2

1

2

1

2
1

1

2

3

2

f π π π� � � � � �= −2 2 4cos cos

= 2 (1) – 1 = 2 – 1 = 1

∴ max. f (x) =
3

2
min. f (x) = –3

Problems on mod functions and / other functions
whose derivatives have points of discontinuity as
critical points:

1. Find the maximum and / minimum values (value) of
the function f (x) = 2 + | x – 1 | in [–3, 2].

Solution: f x x x� � = + − ∀ ∈ −2 1 3 2, ,

⇒ ′ =
−
−

≠f x
x

x
x� � � �

1

1
1,

Also ′f x� �  is not differentiable at x = 1

∴ =x 1 is a critical point

Now, ′ = ≠f x x� � 0 1,

i.e., 
x

x
x

−
−

= ≠
1

1
0 1

� �
, ; has no solution

Hence, f (x) has only one critical point namely 1.
Now f (1) = 2 + | 1 – 1 | = 2 + | 0 | = 2
f (–3) = 2 + | –3 – 1 | = 2 + | –4 | = 2 + 4 = 6
f (2) = 2 + | 2 – 1 | = 2 + | 1 | = 2 + 1 = 3
Therefore, max. f (x) = 6
min. f (x) = 2

2. Find the absolute maximum and / minimum values
of the function f defined by f (x) = 3 + | x + 1 | in [–2, 3].

Solution: f x x x� � = + + − ≤ ≤3 1 2 3,

⇒ ′ = +
+
+

≠ −f x
x

x
x� � � �

0
1

1
1,

=
+
+

≠ −
x

x
x

1

1
1

� �
,



Maxima and Minima 931

Now, ′ = ≠ −f x x� � 0 1, ; i.e., x ≠ −1  and

⇒
+
+

=
x

x

1

1
0

� �
 has no solution.

Hence, the given function has only one critical
point x = –1 where the derivative of the function does
not exist.

Now, f (–1) = 3 + | –1 + 1 | = 3 + 0 = 3
f (–2) = 3 + | –2 + 1 | = 3 + | –1 | = 3 + 1 = 4
f (3) = 3 + | 4 | = 3 + 4 = 7

Therefore, max. f (x) = 7
min. f (x) = 3

3. Determine the maximum and minimum values
(value) if any, for the function f defined by f (x) = 1 –

x x
4
5 1 1, ,∀ ∈ − .

Solution: f (x) = 1 – x x
4
5 1 1, ,∀ ∈ −

⇒ ′ = − = − ≠−f x x
x

x� � 4

5

4

5
0

1
5

1
5

,

Also f (x) is not differentiable at x = 0

Now, ′ =f x� � 0 , i.e.,

− =−4

5
0

1
5x  has no solution.

Hence, the given function has only one critical
point namely 0,

And f 0 1 0 1� � = − =

f − = − − = − =1 1 1 1 1 0
4
5� � � �

f 1 1 1 1 1 0
4
5� � � �= − = − =

Therefore, max. f (x) = 1
min. f (x) = 0

The greatest and the least values of a continuous
function in a closed interval (recapitulation)

The rule to find out the greast and / the least values
(value) of a given continuous functions in a given
closed interval [a, b] is to use the following facts:

1. The greatest value of a given continuous functions
f in a given closed interval [a, b] = the greatest of the
numbers of the set {f (a), f (b), f (c1), f (c2), f (c3)} where

c1, c2 and c3 etc are critical points and a and b are end
points of the given closed interval [a, b] where the
given function y = f (x) is defined.
2. The least value of a given continuous function f in
a given closed interval [a, b] = the least of the numbers
of the set {f (a), f (b), f (c1), f (c2), f (c3)} where c1, c2
and c3 etc are critical points and a and b are end
points of the given closed interval [a, b] where the
given function y = f (x) is defined.

Notes: 1. “A maximum” means “not necessarily the
greatest value” whereas one should note that “the
maximum” means “necessarily the greatest value”.
2. “A minimum” means “not necessarily the least
value” whereas one should note that “the minimum”
means “necessarily the least”.
3. A continuous function f (x) has a single extremum
in its domain ⇒  the maximum (the minimum) is also
the greates (the least) value of the continuous
function f in its domain.
4. “The largest and the smalles values (value)” are
also in use instead of the terms “the greatest and the
least values (value)”
5. The greatest value of a function f on (in or over)

the interval [a, b] is designated as: 
max.

,

f x

x a b

� �
∈  and

the least value of a function f on (in or ove) the interval

[a, b] is designated as: 
min.

,

f x

x a b

� �
∈

6. (i) Maximum and greatest: A continuous
functions y = f (x) on a closed interval [a, b] has a
greatest value at an interior point or at an end point of
its domain which is the given closed interval. Further
the greatest value of a continuous function f in a
closed interval [a, b] is unique.

On the other hand, a continuous function y = f (x)
in a closed interval [a, b] may have local maxima (i) at
an interior point or more interior points (ii) at end
points of the closed interval but not at the end points
of the open interval used as the domain of the
continuous function. Moreover, a local maxima of a
continuous function in an open or in a closed interval
may not be unique, i.e., a continuous function may
have more than one local maxima in an open in a closed
interval.
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(ii) Minimum and least: A continuous function y =
f (x) in a closed interval [a, b] has a least value at an
interior point or at end point of the domain which is
the given closed interval. Further the least value of
continuous function f in a closed interval [a, b] is
unique. On the other hand, a continuous function y =
f (x) in a closed interval [a, b] has a local minima (i) at
an inter point or more interior points as well as (ii) at
end points of the closed interval but not at the end
points of the open interval used as the domain of the
continuous function. Moreover, a local minima of a
continuous function in an open or in a closed interval
may not be unique, i.e., a continuous function ,may
have more than one local minima in an open or in a
closed interval.

Lastly, one must note that the greatest value of a
function in a closed interval, when it occurs at an
interior point is also a local maximum and similarly,
the least value when it occurs at an interior point is
also a minimum where as the converse may not always
be true.
7. If a continuous function y = f (x) has single
extremum in its domain of definition, then if it is a
maximum (minimum), then it is also the greatest (the
least) value of the function y = f (x).
8. If a function is defined and continuous in some
interval, and if the interval is not a closed one, then it
can have neither the greatest nor the least value.

Examples worked out: (some more)

1. Find the greatest and the least values (value) of
the function f (x) = 12x5 – 45x4 + 40x3 + 6 on the
interval [0, 3].

Solution: f (x) = 12x5 – 45x4 + 40x3 + 6 ∀ ∈x 0 3,

⇒ ′ = − +f x x x x� � 60 180 1204 3 2

∴ ′ =f x� � 0

⇒  60x4 (x – 1) (x – 2) = 0

⇒  x = 0, 1, 2 which belong to [0, 3]

⇒  x = 0, 1, 2 are all the critical points
Now,

f (0) = 6
f (3) = 357
f (1) = 13
f (2) = –10

∴ max. f (x) = 357

x∈ 0 3,

min. f (x) = –10

x∈ 0 3,

2. Find the greatest and the least values (value) of

the function f x
x

x
� � = +

8

2
 on the interval [1, 6].

Solution: f x
x

x
x� � = + ∀ ∈

8

2
1 6, ,

⇒ ′ = − = −
f x

x

x

x
� � 1

8

2 16

82

2

2

∴ ′ =f x� � 0

⇒ − =x

x

2

2

16

8
0

⇒  x2 – 16 = 0

⇒ = ±x 4  but only x = ∈4 1 6,

⇒  x = 4 is the only critical point

Now, f f f4 1 1 2
1

8
6 1

1

12
� � � � � �= = =, ,

∴ = =max. f x f� � � �1 2
1

8

x∈ 1 6,

min. f (x) = f (4) = 1

x∈ 1 6,

3. Find the greatest and least values (value) of the
function f (x) = x3 – 3x2 + 6x –2 in the interval [–1, 1].

Solution: f (x) = x3 – 3x2 + 6x –2, ∀ ∈ −x 1 1,

⇒ ′ = − +f x x x� � 3 6 62

∴ ′ =f x� � 0

⇒ − + =3 6 6 02x x

⇒ =
− − ± − × ×

×
x

6 36 4 3 6

2 6

� �
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=
± −

= ± −6 36 72

12

6 36

12
 which are

imaginary
⇒  the given function f (x) = x3 – 3x2 + 6x – 2, has

no critical point.
⇒  it is required to find out only the values of the

function f (x) = x3 – 3x2 + 6x – 2, ∀ ∈ −x 1 1,  only at

the end points namely x = –1 and x = 1 of the closed
interval [–1, 1].

∴ − − ⋅ + ⋅ − =f 1 1 3 1 6 1 2 23 2� � � � � �

f − = − − ⋅ − + − − = −1 1 3 1 6 1 2 123 2� � � � � � � �
Hence, max. f (x) = 2

x∈ −1 1,

min. f (x) = –12

x∈ −1 1,

4. Find the greatest and the least value of the function

on the curve f (x) = 4x – x2, ∀ ∈x R .

Solution: f (x) = 4x – x2

⇒ ′ = −f x x� � 4 2

∴ ′ = ⇒ − = ⇒ =f x x x� � 0 4 2 0 2

Also, ′′ = −f x� � 2

⇒ ′′ = − <f 2 2 0� �
As f (x) has only one extremum (maximum) at x = 2
∴ max. f (x) = greatest value of f (x) (at x = 2) = 8 –

4 = 4

N.B.: One should note that the given function f (x) =
4 – x2 has not been defined only in a closed interval,
i.e. the domain of the given function is not closed
interval.

Example:

Question: Find the maximum and minimum of

f x
x

� � =
−

1

1 2
, –1 < x < 1.

Solution: f x
x

� � =
−

1

1 2
, –1 < x < 1

⇒ ′ =
−

f x
x

x
� �

� �1 2
3
2

⇒ ′′ =
⋅ − − − ⋅ ⋅

−
f x

x x x x

x
� �

� � � �

� �

1 1
3
2

1 2

1

2 2

2 3

3
2

1
2

Now, ′ =f x� � 0

⇒
−

= ⇒ =
x

x
x

1
0 0

2
3
2� �

Again, ′′ =
− − − ⋅

−
f 0

1 1 0
3
2

1 0 0

1 0

3
2

1
2

3
2

� �
� � � �

� �

= − = >
1 0

1
1 0

∴ The given function f has a minimum value at
x = 0.

Further, the function f is defined in an open interval
(–1, 1), this is why there is no need to look at the end
points namely –1 and 1.

Hence, max. f (x) = 1 since f (0) = 1

On the method to find the range of y = f (x) in [a, b]

Whenever the range of a given continuous function
y = f (x) defined in a closed interval [a, b] is required to
be found out, one must find its absolute maxima and
absolute minima in the closed interval [a, b].

Remarks: 1. When the domain of a function y = f (x)
is not given, its domain must be found out before
finding its range to examine whether its domain is a
closed interval or not.
2. The domain of composite functions defined by y =
g (f (x)) is the domain of the inner function namely f
provided that the range of the inner function f is a
subset of the domain of the outer function namely g.

e.g.: y x D y D x= − ⇒ = −
�

�
		

�

�


tan

π π2
2

2
2

9 9
� �

because 0
3

,
π�

�
�
��

 is ⊂ −∞ ∞,� �  where 0
3

,
π�

�
�
��

= range
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of π2
2

9
− x  and −∞ ∞,� � = domain of tan x.

Examples worked out:
1. Find the range of the function

y x x= + + −1 2 .

Solution: Let y = y1 + y2 where

y x1 1= +  and y x2 2= −

Now, 1 + x  is defined for

1 0 1 11+ ≥ ⇒ ≥ − ⇒ = − ∞x x D y� � �,

Also, 2 − x  is defined for

2 0 2 2 22− ≥ ⇒ − ≥ − ⇒ ≥ ⇒ = −∞x x x D y� � � ,

Hence, D y D y D y� � � � � �= ∩1 2

= [–1, 2]

Again to get the range, it is required to be found
out the absolute extrema of the function

y x x= + + −1 2  in [–1, 2].

′ =
+

−
−

�

�



�

�
�
�

f x
x x

� � 1

2

1

1

1

2

⇒ − = + ⇒ =2 1
1

2
x x x  when ′ =f x� � 0

Lastly, f
1

2

3

2

3

2
2

3

2
6

�
�	
�
�
 = + = =

f f− = =1 2 3� � � �

Therefore, R y� � = 3 6,

2. Find the range of the function y x= −3
16

2
2sin

π
.

Solution: y x= −3
16

2
2sin

π
 is defined for

π π2
2

2
2

16
0

16
0− ≥ ⇒ − ≥x x

⇒ = ≤ ⇒ − ≤ ≤x x2
2

16
0

4 4

π π π

⇒ = −�
�

�
��

D y� � π π
4 4

,

Now to get the range of y x= −3
16

2
2sin

π
, it is

required to find out its absolute extrema in −�
�

�
��

π π
4 4

, .

� f x x� � = −3
16

2
2sin

π

⇒ ′ = − × −

−

f x x
x

x

� � 3
16

2

2
16

2
2

2
2

cos
π

π

=
− −

−

3
16

16

2
2

2
2

x x

x

cos
π

π

and ′ =f x� � 0

⇒ − − =3
16

0
2

2x xcos
π

⇒ = − > <
�

�
		

�

�


x x0

16
0

2

2
2

�

π π
and

lastly, f 0 3
4

3

2
� � = �

�	
�
�
 =sin

π

f −��	
�
�
 = =

π
4

3 0 0sin

–2 –1 0 1 2 3
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f
π
4

3 0 0
�
�	
�
�
 = =sin

Therefore, R y� � = �
�

�
��

0
3

2
, .

Concavity, Convexity and Inflection
Points of a Curve

Before the definition of each term namely concavity,
convexity and inflection points of a curve y = f (x)
defined on its domain, one should know the following
facts.
1. If there are two points P1 and P2 such that P1 and
P2 have the same abscissa but the ordinate of P1 is
larger (smaller) than the ordinate of P2, then it is said
that P1 lies (is situated or simply is) above (below) P2.
2. It is said that the curve y = f (x) lies above (below)
the curve y = g (x) in the interval (a, b) if for every
point in this interval the point on the first curve lies
above (below) its corresponding point on the second
curve, i.e. if

f (x) > g (x) [or f (x) < g (x)]

On concavity of a curve: It is defined in various ways:

Definition (i): (In terms of functional values): A curve
y = f (x) is said to be concave upwards over the interval
(a, b) if at every point on this interval (a, b), the curve
y = f (x) lies above the tangent to the curve at that
point, i.e.,
(In terms of first derivative): A curve y = f (x) is said to

be concave upwards at the point (c, f (c), if ′f c� �
exists, and there is an open interval (a, b) containing
c such that for all x c≠ , in (a, b), the point (x, f (x) of

the curve y = f (x) is above the tangent to the curve at
(c, f (c)).
Definition (ii): (In terms of second derivative): If

′′ >f x� � 0 , then the curve y = f (x) is concave

upwards on the interval (a, b), i.e., the curve y = f (x) is
situated above any of its tangent lines drawn at any
point of this interval (a, b).

On convexity of the curve: It is defined in various
ways:
Definition (i): (In terms of functional values): A curve
y = f (x) is said to be convex upwards over the interval
(a, b), if at every point of this interval (a, b), the curve
y = f (x) if below the tangent to the curve at that point,
i.e.,
(In terms of first derivative): The curve y = f (x) is said
to be convex upwards at the point (c, f (c)), if ′f c� �
exists and there is an open interval (a, b) containing
c, such that for all x c≠ , in (a, b), the point (x, f (x))
of the curve y = f (x) is below the tangent to the curve
at (c, f (c)).
Definition (ii): (In terms of second derivative): If f "
(x) < 0 on an interval (a, b), then the curve y = f (x) is
convex upwards on the interval (a, b), i.e., the curve
y = f (x) is situated below any of its tangent lines
drawn at any point of the interval (a, b).

Definition (i): Points of inflection: (In terms of
concavity and convexity): A point P (c, f (c)) where
the curve y = f (x) has a tangent line and the curve
y = f (x) changes from being concave to convex or
vice versa as a point moving along the curve passes
through it, is called an inflection point on (or, of) the
curve.

x
o

(c, f c( ))

y

x  b= x  c=x  a=

A
P

B

x
o

(c, f c( ))

y

x  b= x  c=x  a=

A
P

B
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That is, a point P (c, f (c)) on the curve y = f (x) is a
point of inflection ⇔  on one side of P, the curve lies
below the tangent at P and on the other side of P, the
curve lies above the tangent at P, i.e. a point where
the curve crosses the tangent is a point of inflection
of the curve, i.e. a point in whose neigbourhood, the
graph of the function y = f (x) geometrically passes
from one side of the tangent line to the other and
‘bends or twists’ over it making a shape of English
alphabet ‘S’.

Illustrations:
1. A simple illustration of the curve with a point of
inflection is a road with an S bend (a shape of English
alphabet ‘S’) whose midpoint may be supposed to be
a point of inflection of the curve where there is a twist
or bending of the road.

2. The curve y = sin x, y = cos x and y = tan x have
inflection points (or, flex points or points of inflection)
where these curves cut the x-axis.
Definition (ii): (In terms of extrema): A point c where
f ' (c) = 0 and has neither a maximum nor a minimum is
called an inflection point on the curve y = f (x).
Definition (iv): (In terms of first derivative): If for
any value of the independent variable namely x = c,

′ =f c� � 0  and ′f x� �  does not change sign on (to,
or at) the left side of (i.e. just before) the point x = c or

on the right side of (i.e. just after) the point x = c, i.e.
′f x� �  does not change sign for the values of the

independent variable x lying in a neighbourhood of

the point x = c, i.e. ′f x� �  does not change sign at x =
c, i.e. ′f x� �  does not change sign while passing
through the point x = c, then the function y = f (x) is
said to have an inflection point (c, f (c)) at the abscissa
x = c or it is said that (c, f (c)) is an inflection point on
the curve (the graph of the function) y = f (x).

This definition can be put in a tabular form as below:

On the left At the On the right Nature of the
of the point point of the point critical point
x = c x = c x = c x = c

′f c� �  = +ve ′f c� � ′f c� �  = +ve There is a point

′f c� �  = –ve ′f c� � ′f c� �  = –ve of inflection

namely (c, f (c)).

Definition (iv): (In terms of slope of a function at a
point): The points where the derivative ′f  of a
function f) is (or, has) the maximum or the minimum
are called inflexion points (or points of inflection, or
simply flex points).
Definition (v): (In terms of second derivative): If
′′ =f c� � 0  or does not exist but ′f c� �  does exists

and ′′f x� �  changes sign while passing through the
point x = c, i.e. ′′f x� �  changes sign at x = c, i.e.,
′′f x� �  changes sign for the values of the

independent variable x which belong to the
neighbourhood of the point x = c, i.e., ′′f x� �  has
different signs for the values of the independent
variable x which are little (just or slightly) less and
little greater than the value of the independent

x
o

y

(c ( )), f c

PTangent

x
o

y = f c( )

y

x  c=

(c ( )) = an inflection point, f c

P

x
o

y

(c ( )), f c

P

Tangent
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variable x = c, then the point (c, f (c)) is the point of
inflection (or, the inflection point or simply the flex
point) of the curve y = f (x) or it is common to say that
the curve y = f (x) has an inflection point (c, f (c)) at the
abscissa x = c on (or, of) the curve (the graph of the
function) y = f (x).

Notes: (i) Inflection points exist at points belonging
to the domain of the function y = f (x) where either the
second derivative ′′f x� �  is zero or ′′f x� �  is
undefined (i.e., ′′f x� �  does not exist).
(ii) If ′′f x� �  is continuous, an inflection point of
the curve y = f (x) exists between every pair of
consecutive maxima and minima of the function y = f
(x) as in the graphs of the function y = sin x, y = cos x
and y = tan x.
(iii) The general condition for a flex point:

If x = c is a critical point such that i.e., ′f c� �  exists
and ′f c� �= 0, x = c belonging to the domain of the
function and supposing that n > 2 is the smallest
positive integer such that ′′ =f c� �
′′′ = = =−f c f cn� � � �� �... 1 0 and f c f cn n� � � �≠ 0 ,

being continuous at x = c, then the curve y = f (x) has
an inflection point namely (c, f (c)) at x = c ⇔  n is
odd.

One should note that f c f cn n� � � �≠ 0 , ,i.e.  is

non zero ⇒ >f cn � � 0  or f cn � � < 0 .

Question: What is the criterion for a flex point?
Answer: A point P is a flex point of the curve y = f (x)
⇔  The curve y = f (x) has a point P at which ′′f x� �
= 0 or does not exist and ′′f x� �  is positive on one
side and ′′f x� �  is negative on the other side of the
point P.
To remember: A definition is always a criterion for a
mathematical quantity or entity. This is why a term to
be used in mathematics is firstly defined. Further,
whenever one is required to show whether a quantity
is a mathematical quantity or entity considered or
not, one must go by its definition.

How to find the inflection points of a given function
y = f (x):

To find the point of inflection of the given function
y = f (x), one should:
1. Find the second derivative ′′f x� � .
2. Set ′′f x� �  = 0 and find its real roots.
3. Find also those values of x (if any) for which f " (x)
is undefined but f ' (x) exist.
4. Test ′′f x� �  for values in the neighbourhood of
the real roots ′′f x� �  = 0 and those values of x where
′′f x� �  is undefined.

i.e., to find ′′ ±f c h� �  if x = c is a root of

′′f x� � = 0 or x = c is the value of x where ′′f x� �  is
undefined.

i.e., to be sure that x = c is a point of inflection, one
must see whether the second derivative ′′f x� �
changes sign at x = c or the third derivative ′′′f x� �
exists and is non zero at x = a (i.e. ′′′ ≠f a� � 0 )

i.e., ′′ +f c h� �  is positive and ′′ −f c h� �  is
negative ⇒  x = c is an inflection point

or, ′′ +f c h� �  is negative and ′′ −f c h� �  is
positive ⇒  x = c is an inflection point.

Examples worked out:

1. Find the point of inflection of the curve, if any,
y = x3 – 7x – 6.
Solution: y = x3 – 7x – 6

⇒ = −
dy

dx
x3 72

x
o

y

x  c=

Point of inflexion

′′ =+f c ve

′′ =f c 0

′′ =−f c ve

x
o

y

x  c=

Point of inflexion

′′ =+f c ve

′′ =f c 0

′′ =−f c ve



938 How to Learn Calculus of One Variable

⇒ =d y

dx
x

2

2
6

∴ =d y

dx

2

2
0

⇒  6x = 0

⇒  x = 0
Now, on putting x = 0 – h and x = 0 + h, (h > 0), in

d y

dx

2

2 , it is observed that

d y

dx
h h

x h

2

2
0

6 0 6
�
�


�
�
��

= − = − = −
= −

� � ve

and 
d y

dx
h h

x h

2

2
0

6 0 6
�
�


�
�
��

= + = = +
= +

� � ve

∴ d y

dx

2

2  changes sign at x = 0

∴  the point (0, –6) is point of inflection of the
curve y = x3 – 7x –6 (since, x = 0 ⇒  y = –6)

2. Find the point of inflection of the curve, if any, y =
2x3 – 6x2 – 18x + 19.
Solution: y = 2x3 – 6x2 – 18x + 19

⇒ = − − = − −
dy

dx
x x x x6 12 18 6 2 32 2� �

⇒ = −d y

dx
x

2

2
6 2 2� �

∴ =d y

dx

2

2
0

⇒ − =6 2 2 0x� �
⇒ =x 1
Now, on putting x = 1 – h and x = 1 + h (h > 0) in

d y

dx

2

2
, it is seen that

d y

dx
x

x h
x h

2

2
1

1
12 1

�
�


�
�
��

= −
= −

= −
� �

= − − = − = −12 1 1 12h h� � � � ve

and 
d y

dx
x

x h
x h

2

2
1

1
12 1

�
�


�
�
��

= −
= +

= +
� �

= + − = = +12 1 1 12h h� � � � ve

∴ d y

dx

2

2  changes sign at x = 1.

∴ the point (1, –3) is a point of inflection of the
curve y = 2x3 – 6x2 – 18x + 19 (since x = 1⇒ y = –3)

3. Find the point of inflection of the curve, if any,
y = x5.
Solution: y = x5

⇒ =dy

dx
x5 4

⇒ =d y

dx
x

2

2
320

∴ =d y

dx

2

2
0

⇒ =20 03x

⇒ = ⇒ =x x3 0 0

Now, on putting x = 0 – h and x = 0 – h, (h > 0), it is
seen that

d y

dx
h h h

x h

2

2
0

3 3 320 0 20 20
�
�


�
�
��

= − = − = − = −
= −

� � � � ve

d y

dx
h h h

x h

2

2
0

3 3 320 0 20 20
�
�


�
�
��

= + = = = +
= +

� � � � ve

∴ d y

dx

2

2  changes sign at x = 0

∴ (0, 0) is the point of inflection of the curve y = x5

(since x = 0 ⇒ y = 0)

4. Find the point of inflection of the curve, if any, y =
x – sin x.
Solution: y = x – sin x
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⇒ = −
dy

dx
x1 cos

⇒ =d y

dx
x

2

2
sin

∴ = ⇒ =d y

dx
x

2

2
0 0sin

⇒ = ∀ ∈x n n Iπ ,

Now on putting x n h= −π  and x n h= +π
(h > 0), it is seen that

d y

dx
n h

x n h

2

2

�
�


�
�
��

= −
= −π

πsin � �

= − −
1 1� �n hsin

d y

dx
n h

x n h

2

2

�
�


�
�
��

= +
= +π

πsin � �

= −1� �n hsin

∴ d y

dx

2

2  changes sign at x n= π  for each n

⇒  for each n, n nπ π,� �  is a point of inflection of
the curve y = x – sin x � x n y n= ⇒ =π π� �
5. Find the points of inflection of the curve, if any,

f x
x

x
� � =

−2 4
.

Solution: f x
x

x
� � =

−2 4

�  f (x) is undefined at x = ± 2

∴  domain of f (x) is the set of all real numbers

excepting x = ± 2 .

′ =
⋅ − − ⋅

−
=
− −

−
f x

x x x

x

x

x
� �

� �

� �

� �

� �

1 4 2

4

4

4

2

2 2

2

2 2

⇒ ′′ =
− − ⋅ − + ⋅ − ⋅�
�

�
��

−
f x

x x x x x

x
� �

� � � � � �

� �

2 2 2 2

2 4

4 2 4 2 4 2

4

= −
− − +�

�
�
��

−
=

+

−

2 4 2 4

4

2 12

4

2 2 2

2 3

2

2 3

x x x

x

x x

x

� � � �

� �

� �

� �
⇒ ′′f x� �  is undefined at x = ± 2 . But x = ± 2

does not belong to the domain of the given function
f which means ′′f x� �  exists for each value of x in the
domain of the function f.

Now, ′′f x� �  = 0

⇒
+

−
=

2 12

4
0

2

2 2

x x

x

� �

� �

⇒ + =2 12 02x x� �
⇒ =x 0

⇒  x = 0 is the only real value which makes

′′ =f x� � 0

On putting x = 0 – h and x = 0 + h (h sufficiently

small and > 0) in ′′f x� � , it is seen that:

′′ − =
− − +

− −
f h

h h

h
0

2 0 0 12

0 4

2

2 3� �
� � � �

� �

= −

−
= +ve

ve
ve

� �3

and ′′ + =
+ + +

+ −
f h

h h

h
0

2 0 0 12

0 4

2

2 3� �
� � � �

� �

= +
−

= −ve

ve
ve

� �3

∴ ′′f x� �  changes sign at x = 0
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⇒  (0, 0) is the required inflection point of the

given curve f x
x

x
x f� � � �� �=

−
= ⇒ =

2 4
0 0 0�

6. Find the points of inflection of the curve, if any,

f x x� � � �= − 3
1
7 .

Solution: f x x� � � �= − 3
1
7

The domain of the given function f is the set of all
real numbers.

′ = − −
f x x� � � �1

7
3

6
7  and ′′ = − − −

f x x� � � �6

49
3

13
7

Again ′′ ≠f x� � 0  for any finite real value of x but

′′f x� �  is undefined at x = 3 which means x = 3 is the

probable point of inflection.
Now, on putting x = 3 – h and x = 3 + h (h > 0) in

′′f x� � , it is seen that:

′′ − = − ⋅
− −

f h
h

3
6

49

1

3 3
13
7

� �
� �

= − ⋅
−

= − ⋅
−

6

49

1 6

49

1
13
7h� � ve

= +ve

and ′′ + = − ⋅
+ −

f h
h

3
6

49

1

3 3
13
7

� �
� �

= − ⋅6

49

1
13
7h� �

 = –ve

∴ ′′f x� �  changes sign at x = 3.

⇒  f (x) has an inflection point at x = 3

⇒  (3, 0) is the required point of inflection of the

given curve f x x x f� � � � � �� �= − = ⇒ =3 3 3 0
1
7
�

7. Find the points of inflection of the graph of the

function f x x
x

� � = +
4

.

Solution: f x x
x

x

x
� � = + =

+4 42

⇒  domain of the given function f is the set of all
real numbers excepting x = 0

⇒  domain of f is the set of all non-zero real
numbers.

Now, ′ = −f x
x

� � 1
4
2

and ′′ = − − =−f x x
x

� � � �0 4 2
83
3

∴ ′′ ≠f x� � 0  for any finite value of x and ′′f x� �
is undefined at x = 0 which is not in the domain of the

given function f. This why, ′′f x� �  is defined at each

point of the domain of f.

Also, ′′ ≠f x� � 0 , for any value of x

Hence, the graph of the given function f has no
inflection point.

8. Find the points of inflection of the graph of the

function f x
x

x
� � = −

−
1

2
3 .

Solution: f x
x

x
x x� � � � � �=

−
−

= − − −1

2
1 23

1
3

1
3

⇒  the domain of the given function f is the set of
all real numbers excepting x = 2

′ = − − + −��	
�
�
 − −− − −

f x x x x x� � � � � � � � � �1

3
1 2

1

3
2 1

2
3

1
3

4
3

1
3

= − − − − −− −1

3
1 2 2 1

2
3

4
3x x x x� � � � � � � �

= − − −− −1

3
1 2

2
3

4
3x x� � � �

′′ =f x� �

− − − − − − −�
�

�
��

− − − −1

3

2

3
1 2

4

3
2 1

5
3

4
3

7
3

2
3x x x x� � � � � � � �

= − − − − −�
�

�
��

− − − −2

9
1 2 2 2 1

5
3

4
3

7
3

2
3x x x x� � � � � � � �
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= − − −− −2

9
1 2 3 4

5
3

7
3x x x� � � � � �

= ⋅
−

− ⋅ −

2

9

3 4

1 2
5
3

7
3

x

x x� � � �

Now ′′ = ⇒
−

− ⋅ −
=f x

x

x x
� �

� � � �
0

3 4

1 2
0

5
3

7
3

⇒  3x – 4 = 0

⇒ =x
4

3
Again, ′′f x� �  is undefined at x = 1 and x = 2 but

x = 2 does not belong to the domain of the given
function f.

This is why x = 2 is rejected while considering the
possible inflection points.

Hence, the possible points of inflection are at x = 1

and x = 4

3
At x = 1: for h > 0 (small)

′′ − = ⋅
− −

− − ⋅ − −
f h

h

h h
1

2

9

3 1 4

1 1 1 2
5
3

7
3

� � � �
� � � �

= ��	
�
�


− +

− − +

�

�



�

�
�
�

2

9

1 3

1
5
3

7
3

h

h h

� �
� � � �

= ��	
�
�


−
− −
�
�


�
�
�
�
= −2

9

ve

ve ve
ve

� �
� � � �

′′ + =
+ −

+ − ⋅ + −

�

�



�

�
�
�f h

h

h h
1

2

9

3 1 4

1 1 1 2
5
3

7
3

� � � �
� � � �

= ��	
�
�


−

⋅ −

�

�



�

�
�
�

2

9

3 1

1
5
3

7
3

h

h h

� �
� � � �

= ��	
�
�


−
+ −
�
�


�
�
��
= +2

9

ve

ve ve
ve

� �
� � � �

∴ ′′f x� �  changes sign at x = 1

⇒  f (x) has an inflection point at x = 1
Also f (1) = 0
∴  the inflection point of the given curve f at x = 1

is (1, 0)

At x = 4

3
, for small h > 0,

′′ −��	
�
�
 =

−��	
�
�
 −

− −�
�	

�
�
 ⋅ − −�
�	

�
�


�

�







�

�

�
�
�
�
�

f h
h

h h
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2

9

3
4
3

4

4
3

1
4
3

2

5
3

7
3

=
− −
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�
�
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�	

�
�


�

�
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�
�
�
�
�
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5
3

7
3
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h h
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�
�
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7
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=
−
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� � � �
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�
�
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�
�
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�
�
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�
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�
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∴ ′′f x� �  changes sign at x =
4

3

⇒  f (x) has an inflection point at x = 4

3

Also f
4

3

4
3

1

4
3

2

1

3

�
�	
�
�
 =

−�
�	

�
�


−�
�	

�
�


�

�






�

�

�
�
�
�

= −��	
�
�
 = −1

2

1

2

1
3

1
3

∴ the inflection point of the given curve f at x = 4

3

is 
4

3

1

23
, −

�
�	

�
�


Type 1: Problems based on finding the maximum and
/ minimum point as well as maximum and / minimum
values of a function f (x).

(A) Problems based on algebraic functions

Exercise 22.1

1. Investigate the value of x for which the functions
have the maximum and / minimum values.
(i) 2x – x2 + 10
(ii) x2 + 2x + 11

(iii) 
1

3

1

2
173 2x x+ +

(iv) 9 1 33 2x x−� �

(v) 2 12 18 33 2x x x− + +
(vi) x3 – 3x + 10
(vii) x5 – 5x4 + 5x3 – 10
(viii) 3x4 + 16x3 + 16x2 – 72x + 13

(ix) 3 1
1
3

1
3x x −� �

(x) 12 (x + 2) (x2 – 4)2

2. Find the maximum and / minimum values (value) of
the following functions.

(i) x3 – 2x2 + x + 6
(ii) (x – 1) ( x – 2)2

(iii) 2x3 – 15x2 + 36x + 10

(iv) 
x x

x
3 2

3 2
6 8− − +

(v) 2x3 – 15x2 + 36x + 10

(vi) 
x x

x

2 7 6

10

− +
−

(vii) x
x

+ 1

(viii) xy where x + y = a
3. What, if any, is the maximum and / minimum values

(value) of y, where y x
x

= +2 250
.

4. What is the maximum slope of the curve y = –x3 +
3x2 – 9x – 27 and what point is it.

[Hint: Slope of the curve = = − + +dy

dx
x x3 6 92 .

Find the max. value of y]
Answers:
1. (i) Max at x = 1
(ii) Min at x = –1
(iii) Max at x = –1, Min at x = 0

(iv) Max at x = 5

5
, Min at x = − 5

5
(v) Max at x = 1, Min at x = 3
(vi) max at x = –1, Min at x = 1
(vii) Max at x = 1, Min at x = 3, Max or Min at x = 0
(viii) Min at x = –3 and at x = 3, Max at x = –2

(ix) Min at x =
1

8

(x) Max at x = 2

5
, Min at x = 2

2. (v) Max at x = 2, Min at x = 3
(vi) Max at x = 4, Min at x = 16
(vii) Max at x = –1, Min at x = 1

(viii) 
a2

4



Maxima and Minima 943

Type 1 continued
(B) Problems based on mod. of a function, i.e. | f (x) |.

Exercise 22.2

1. Find the maximum and / minimum values (values)
of the following functions f (x) given below.
(i) | x + 2 |
(ii) –| x + 1 | + 3
(iii) | sin 4x + 3 |
(iv) |x3 | + 1
Answers:
1. (i) The minimum value of f (x) = 0 and is obtained
when x + 2 = 0 and there is no maximum value of f (x)
when x = –2.
(ii) The maximum value of f (x) = 3 and is obtained
when x + 1 = 0 and there is no minimum value of f (x).
(iii) The minimum value of f (x) is 2 and is obtained

when sin 4x = –1; i.e. when x n n I
n= − − ⋅ ∈π π

1
4

� � , .

And the maximum value of f (x) is 4and is obtained

when sin 4x = 1; i.e. when x n n I
n= − − ⋅ ∈π

π
1

8
� � , .

(iv) The minimum value of f (x) = 1 and is obtained
when x3 = 0, i.e. when x = 0. There is no maximum
value of f (x).
Type 1 continued
(C) Problems based on trigonometric functions

Exercise 22.3

1. Investigate the value of x for which the following
functions have maximum or minimum value of y.
(i) y = sin x
(ii) y = cos x
(iii) y = sin x + cos x
(iv) y = sin x (1 + cos x)
(v) y = a sin x + b cos x
(vi) y = cos2 x
(vii) y = a sin2 x + b cos2 x
(viii) y = a tan x + b cot x
(ix) y = sin 2x – x
(x) y = 3 sin x + 4 cos x
(xi) y = sin x – x cos x

(xii) y = a sec x + b cosec x (0 < a < b)
(xiii) y = a2 cosec2 x + b2 sec2 x
(xiv) y = sin nx · sinn x

(xv) y = + + =sin sin where2 2θ φ θ φ α,

(xvi) y x
x= sin sin� �

(xvii) y e x ex x= + + −2cos

(xviii) y = sin x + cos 2x

(xix) y x x x= − + ≤ ≤2 0 2sin , π
(xx) y = 3 cos x + 4 sin x
(xxi) y = cos 2x – sin 2x
(xxii) y = 5 cos x + 12 sin x + 3

2. Prove that y x x= +sin cos3  has maximum

value at x = π
6

.

3. Find the maximum or minimum value of the function

y = x + sin 2x 0 2< <x π� � .
4. Does the function y = sin x (1 + cos x) has maximum
value at x = 0?
5. Does the function y = x – sin x have a maximum or
minimum?

Answers:

1. (i) Max at x =
π
2

, Min at x =
3

2

π

(ii) Max at x = 0, Min at x = π

(iii) Max at x n= +�
�	

�
�
2

1

4
π , Min at x n= +�

�	
�
�
2

5

4
π

(iv) Max at x = π
3

, Min at x = 5

3

π

(v) Max at sin x
a

a b
=

+2 2
 and cos x

b

a b
=

+2 2
 as

well as Min at sin x
a

a b
= −

+2 2
 and cos x

b

a b
= −

+2 2

(vi) Max at x n= π
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(vii) If a > b, Max at x n= +��	
�
�


1

2
π  and Min at

x n= π  if a < b, Min at x n= +��	
�
�


1

2
π  and Max at

x n= π .

(viii) If a and b are both positive: Min at tan x
a

b
=

Max at tan x
b

a
= −

If a and b are both negative: Max at tan x
b

a
=

Min at tan x
b

a
= −

(ix) Max = −3

2 6

π
; Min = − −3

2

5

6

π

(x) Max at x = tan− �
�	
�
�


1 3

4

(xi) Max at x = π ; Min at x = 2π

(xii) Min at tan x
b

a
= ��	

�
�


1
3

(xiii) Min at tan x = 
b

a
�
�	
�
�


1
2

(xiv) x
r

n
=

+
π

1� �  gives max or min

(xv) Max and min values respectively = ±1 cosα

(xvi) Max at x =
π
2

; Min at x
e

=
1

(xvii) Min for x = 0

(xx) y ymax min= = −5 5,

(xxi) y ymax min= = −2 2,

(xxii) y ymax min= = −16 10,

5. Neither the max or min.

Type 3: Problems based on finding the absolute
maximum or minimum values of a function in a given
closed interval.

Exercise 22.4

Find the points of maximum of minimum of each of the
following functions.

1. y x x x= − ⋅ − ≤ ≤1 2 1 9
1
3� � � � ,

2. f x x� � = −3 2 2in ,

3. f x x� � � �= − + −1 3 3 1
2

in ,

4. f x x x� � = −��	
�
�
 + −1

2
2 2 5

2
3 on , .

5. f x x x� � = − −4
1

2
2 4 52 in , .

6. f x x x x� � = − + ≤ ≤2 0 2sin in π

7. f x x x x x� � = − + + ≤ ≤3 26 9 15 0 6in

Answer:

1. y x y xmax minat at= =9
5

4
,

2. y x y xmax minat is at is= = − −2 8 2 8,

3. y x y xmax minat is at is= − =3 19 1 3,

4. y xmax at is= 6 29 19 625. .

5. y x y xmax minat is at is= = − −4 8 2 10,

Type 4: Problems based on finding the greatest and
least value of the function in a given closed interval;.

Exercise 22.5

1. Find the largest and smallest values of the function
f (x) = 3x4 – 2x3 – 6x2 + 6x + 1 in the interval [0, 2].
[Hint: Reject the value x = –1 since it does not belong
to the interval [0, 2]]
2. Find the greatest and the least values of the
following functions on the given intervals.
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(i) f x x x� � = + 2 0 4in ,

(ii) f x x x x� � = − + + −5 4 35 5 1 1 2in ,

(iii) f x x� � = − −100 6 82 in ,

(iv) f x
x x

x x
� � = − +

+ −
1

1
0 1

2

2
in ,

(v) f x x x� � = + in 0 4,

(vi) f x x x� � � � � �= − + −1 1 2 1 1
2 2 in ,

(vii) f x
x

x
� � = −

+
�
�	

�
�


−tan in1 1

1
0 1,

(viii) f x x� � � �= −
�
�

�
��

−cos in1 2 1

2

1

2
,

(ix) f x x x� � = ⋅ −∞ ∞sin sin in2 ,

(x) f x x ex� � = ⋅ ∞in 0 ,

(xi) f x x x ee� � = ⋅2 1log in ,

(xii) f x x x� � = ∞in 01. ,

(xiii) f x x x ee� � = − 2 1log in ,

(xiv) f x x xe� � = −
�
�

�
��

−tan log in1 1

2

1

3
3,

(xv) f x x x� � = + �
�

�
��

2 2 0
3

2
sin sin in ,

π

3. Find the rang of the function: y x= −tan
π2

2

9

Answers:
1. Greatest value = 2, smallest value = 1
(i) 8, 0
(ii) 2, –10
(iii) 10, 6

(iv) 1
3

5
,

(v) 6, 0

(vi)
3

8
0,

(vii)
π
4

0,

(viii)
3 3

2
2, −

(ix)
4

3 3

4

3 3
, −

(x)
1

0
e

,

(xi) e2, 0

(xii) Least value = ��	
�
�


1
1

e

e

; no greatest value

(xiii) 1 2 1 2, − loge� �

(xiv)
π π
6

0 25
3

0 253 3+ −. , .log loge e

(xv)
3 3

2
2, −

3. 0 3,

Type 5: Verbal problems on maxima and / minima.

(A) Problems on numbers

Exercise 22.6

1. Find the two numbers whose
(i) Sum is 12 and whose product is a maximum.
(ii) Product is 16 and whose sum is a minimum.
(iii) Sum is k and the product of one by the cube of
the other is a maximum.
(iv) Sum is k and the product of ‘one raised to the
power m’ by the ‘other raised to the power n’ is a
maximum.
2. Find the number whose sum with its reciprocal is a
minimum.
3. The sum of two number is 10. Find the numbers so
that the sum of their squares is minimum.
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4. Divide 64 into two parts such that the sum of the
cubes of two parts is minimum.
5. Split 15 into two numbers so that the product of
the square of the first and the second is minimum.
6. Divided 80 into two parts such that the product of
the cube of one and the fifth power of the other shall
be as great as possible.
7. Divide a number into two parts such that the square
of one part multiplied by the cube of the other shall
given the greatest possible product.
8. Find two positive numbers whose product is 64,
having minimum sum.
9. Determine two positive numbers whose sum is 15
and the sum of those squares is minimum.
10. Divided the number 4 into two positive numbers
such that the sum of the square of one and the cube
of the other is minimum.
11. Divide 50 into two parts such that their product
is maximum.
12. Divided 50 into two parts such that the product
of the square of one part and the cube of the other is
maximum.
13. Divide 20 into two parts such that the product of
the cube of one and the square of the other will be
maximum. Also find the greatest product.
14. Divide 20 into two parts so that the sum of the
squares of two parts may be maximum.
15. Divide 40 into two parts so that the product of
cube of one part and fifth power of the other may be
maximum.
16. Find the maximum value of the product of two
numbers if there is 12.
17. Prove that if the product of two numbers is
constant, their sum will be minimum when the two
numbers are equal.
18. Find the two positive numbers x and y such that
x + y = 60 and xy3 is maximum.
19. Find the two positive numbers x and y such that
their sum is 35 and the product x2 y5 is a maximum.
20. Find two positive numbers whose sum is 16 and
the sum of whose cubes is maximum.
21. Determine two positive numbers whose sum is
15 and the sum of squares is minimum.
22. Divide a number 15 into two parts such that the
square of one multiplied with cube of the other is
maximum.

23. Divide the number 4 into two positive numbers
such that the sum of the square of one and the cube
of the other is a maximum.

Answers:
1. (i) 6, 6 (ii) –4, –4

(iii)
k k

4

3

4
, (iv)

km

m n

kn

m n+ +
,

2. 1
3. 5, 5
4. 32, 32
5. 10, 6
6. 30, 50

7.
3

5

2

5

a a
,

8. 8, 8
9. Find
10. Find
11. Find
12. 20, 30
13. 12, 8
14. 10, 10
15. 25, 15
16. Find
17. Find
18. xy2 is maximum when x = 15 and y = 45.
19. x2 y5 is maximum when x = 10 and y = 25.
20. The required numbers are 8 and 8.

21. One part is 
15

2
 and the other part = 

15

2
.

22. One part is x = 6 and the other part y = 9.

23. One part is x = 8

3
 and the other part

y = − =4
8

3

4

3
.

Type 5: continued

(B) Problems based on perimeter and area.

Exercise 22.7

1. The perimeter of a rectangle is given
(i) What shape makes the area a minimum?
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(ii) What shape makes the diagonal a minimum?
2. The area of a rectangle is given. what shape makes
the perimeter a minimum?
3. Prove that the rectangle with maximum perimeter
inscribed in a circle is a square.
4. A circle with radius r is to be closed in a rhombus.
What shape of the rhombus makes (i) the perimeter a
minimum (ii) the area a minimum.
5. A sheet of paper is to contain 18 square inches of
printed matter. The margins at top and bottom are 2
inch each and the sides 1 inch each. Find the
dimensions of the sheet of smallest area.
6. The three sides of a trapezium are equal, each being
6´´ long. Find the area of the trapezium when it is
maximum.
7. Show that among all rectangles with given area,
square has least perimeter.
8. Prove that the area of the right angled triangle
drawn on a given side as hypotenuse is maximum
when the triangle is isosceles.
9. The sum of the perimeters of a square and a circle
is constant. If the sum of their areas is minimum, find
the ratio of the side of the square and the radius of
the circle.
10. Find the greatest area of a rectangle whose
perimeter is given (= 2p).
11. Show that the rectangle of least perimeter for a
given area is a square.
[Hint: Let the sides of the rectangle be ‘x’ and ‘y’, ‘p’
its perimeter and ‘A’ is its area, then

A xy y
A

x
p x

A

x

dp

dx

A

x
= ⇒ = ∴ = + ⇒ = − ⇒1

2

dp

dx

x A

x
x A= − = ⇒ =

2

2
0 . Then ⇒  and the

rectangle is a square.]
12. Find the length of the diagonal of rectangle with
minimum perimeter having area 100 square meter s.
13. Prove that the triangle of greatest area inscribed
in a circle is equilateral.
14. If in a right angled triangle, the sum of its
hypotenuse and one of the other sides is given, prove
that the area of the triangle will be maximum if the

angle between the two sides is 
π
3

.

15. Find the area of the greatest rectangle that can

be inscribed in the ellipse 
x

a

y

b

2

2

2

2
1+ = .

16. Prove that among all rectangles with given
perimeter k, the square is the one with maximum area.
Find the maximum area when k = 16.
17. The lengths of three sides of a trapezium are
equal, each being 6 cm. Find the maximum area of
such a trapezium.
18. An isosceles triangle is drawn with its vertex at
the origin, its base parallel to and above the x-axis
and the vertices of its base on the curve 12y = 36 – x2.
19. Prove that the least perimeter of an isosceles
triangle in which a circle of radius ‘r’ can be inscribed

is 6 3r .

20. Show that for a given perimeter, the area of a
triangle is maximum when it is equilateral.
21. A sheet of poster has its area 18 square meter.
The margin at the top and bottom are 75 cm and at
sides 50 cm. what are the dimensions of the area of
the printed space is maximum.
22. A wire of length 20 cm is cut into two parts. One
part is bent in to a circle and the other into a square.
Prove that the sum of the area of the circle and the
square is least if the radius of the circle is half the side
of the square.
23. A flower bed is to be in the shape of a circular
sector of radius ‘r’ and central angle θ . Find r and θ
if the area is fixed and the perimeter is minimum.
24. A window is of the shape of a rectangle
surmounted by a semicircle. What should the
proportions be for a given area and minimum perimeter.

25. A picture is in the shape of a rectangle
surmounted by a semicircle. If the perimeter is 20 cm,
then find the dimensions of the picture for the greatest
area.
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26. A window is in the form of a rectangle
surmounted by a semicircle. If the perimeter in 30
meters, find the dimensions so that the greatest
possible amount of light may be admitted.
27. A rectangle is inscribed in a semicircle so that a
side lies along the bounding diameter. If the area of
the rectangle is maximum, show that this area is to the

area of the semicircle as 1 : π .

Answers:
1. (i) Square (ii) Square
2. Square
4. Square
5. 10 inch by 5 inch

6. 27 3

15. 2 ab
16. 16
24. The length and the breadth are in the ratio:

2
2

4

1

2

4

2 2 2 4
⋅

+
�
��
��

�
��
��

+
−

+

�
��
��

�
��
��

A A A

π
π π

π
:

� �
� � ,

where A = area

25. x =
+
20

4 π

26. x y m= =
+
30

4π
Type 5: continued

(C) Problems based on volume

Exercise 22.8

1. Show that the height of a closed cylinder of a given
volume and least surface is equal to its diameter.

2. Find the altitude of the cylinder of maximum volume
that can be inscribed in a given sphere.
3. Show that the height and the radius of the base of
an open cylinder of given surface area and maximum
volume are equal.
4. A box of maximum volume with top open is to be
made out of square tin sheet of sides 6 ft length by
cutting out small equal squares from four corners of
the sheet. Find the height of the box.
5. Show that semi vertical angle of a right circular
cone of given surface and maximum volume is

sin− �
�	
�
�


1 1

3
.

6. Show that the curve surface of a right cone of a
given volume is least when its semi-vertical angle is

tan− �
�	
�
�


1 1

2
.

7. Prove that semi vertical angle of a cone with given

slant height whose volume is maximum is tan−1 2� � .
8. The sum of the surfaces of a cube and a sphere is
given. Show that when the sum of their volumes is
least, the diameter of the sphere is equal to the edge
of the cube.
9. The sum of the volumes of sphere and a cube is
given. show that when the sum of the surfaces is
greatest, the diameter of the sphere is equal to the
side of the cube.
10. Show that the height of an open cylinder of a
given surface and greatest volume is equal to the
radius of its base.
11. Show that the right circular cylinder of a given
surface and the maximum volume is such that its
height is equal to the diameter of the base.
12. Show that the height of the closed cylinder of
given volume and least surface is equal to its diameter.
13. Prove that the height and diameter of the base of
a right circular cylinder of maximum volume are equal
when the total surface area is given.
14. Show that a right circular conical tent of given
volume will require the least amount of convas of its
height is 2  times the radius of its base.

r r
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