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Foreword

Artificial intelligence (AI) provokes us to reimagine healthcare. The very sub-

strate of clinical practice is expertise, and the machinery that transforms that 

knowledge into care is decision-making. For decades, we have imagined 

ways of doing things better for our patients – better drugs, better surgeries, 

better procedures and, always, better decisions.

Computational methods that capture clinical knowledge and automate 

reasoning have been with us for decades. We are witnessing now a renais-

sance in the field of AI, driven in part by better methods for learning and 

making decisions by machine. This rebirth is also driven by the steady 

digitization of healthcare. The more we measure practice and make those 

measures machine readable, the more readily can we embed AI into clinical 

practice.

This embedding of AI into healthcare is the focus of this book. No matter 

how accurate or efficient a machine process is, if it cannot be well embed-

ded into real-world applications, then it will not achieve what we expect 

of it. The application of AI to real-world problems is sometimes considered 

mere ‘engineering’ work, but the task of application is actually a scientific 

 challenge at least as complex as that of creating reasoning machines.

Implementation science is the discipline that seeks to understand how we 

embed tools and practices into the complex network of people, processes 

and tools that come together to create our human systems. Healthcare is 

amongst the most complex of human industries, and we know that embed-

ding technology into healthcare is a complex process in of itself. What 

works well in one place may not work so well elsewhere. What is important 

in one place is not so in another.

The application of AI into healthcare then is not so much the  creation 

of a medicine driven by algorithms, but a medicine which is practised 

as a partnership between human and machine, each bringing their 
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complementary strengths. That partnership is then embedded in a complex 

network of relationships and constraints that profoundly shape how well 

they perform.

The challenge before us is to deeply understand what makes AI work in 

some healthcare settings and not others. We must understand which ele-

ments of application context shape the outcomes of application and how we 

design the partnership that will be formed between human and machine – 

each bringing unique strengths to the task of providing patient care. When 

we are finished, we will have profoundly reshaped healthcare and for the 

better.

Professor Enrico Coiera

Director, Centre for Health Informatics

Australian Institute of Health Innovation

Macquarie University



ix

Editor

Associate Professor Sandeep Reddy  is 

an  artificial intelligence (AI) in healthcare 

researcher based at the Deakin School of 

Medicine, Geelong, Australia, besides being 

the founder/chairman of Medi-AI, a globally 

focused AI company. He also functions as a 

 certified health informatician and is a Fellow of 

the Australasian Institute of Digital Health and 

a World Health Organisation-recognised digital 

health expert.

He has a medical and healthcare management background and has com-

pleted machine learning/health informatics training from various sources. He 

is currently engaged in research about the safety, quality and  explainability 

of the application of AI in healthcare delivery in addition to developing AI 

models to treat and manage chronic diseases. Also, he has authored sev-

eral articles and books about the use of AI in medicine. Further, he has set 

up local and international forums to promote the use of AI in healthcare 

in addition to sitting on various international committees focusing on AI in 

healthcare.



https://taylorandfrancis.com


xi

Technical Reviewers

Primary Technical Reviewer

Dr Bhushan Garware works as a senior data sci-

entist at Persistent Systems. He heads Deep Vision 

Group at Persistent Systems with special interest 

in medical imaging. He holds a Ph.D. degree and 

has three patents in his name. He has conducted 

many workshops and tutorial sessions on machine 

 learning in several industries, academia and 

research institutes. He has published his work on 

applications of deep learning for CT, MRI, X-ray 

and microscopic images in reputed international conferences. His current 

areas of research interest are explainable AI and assistive intelligence.

Secondary Technical Reviewer

Ravi Kiran Bhaskar is a software professional 

with over 20 years of experience, currently work-

ing as a Technical Architect at The Washington 

Post. He has an M.S. in Electrical Engineering 

from George Mason University, Fairfax, VA, 

USA, and B.E. in Electronics Engineering from 

Nagpur University, India. His career spanned 

across multiple disciplines ranging from satellite 

communications, mobile networking, security, 

web development, web services, system admin-

istration, search engineering and supervised/



xii ◾ Technical Reviewers

unsupervised learning. He specialises in natural language processing, search 

technologies and algorithm development, and is passionate about  disruptive 

technologies in the fields of machine learning, artificial intelligence and 

high-performance computing.



xiii

Contributors

Hamid Abdi

School of Engineering

Deakin University

Geelong, Australia

Uwe Aickelin

School of Computing and 

Information Technology

University of Melbourne

Melbourne, Australia

Arash Keshavarzi Arshadi

Computational Biotechnology

University of Central Florida

Orlando, Florida

Ramanath Bhandari

Department of Opthalmology

Springfield Clinic

Springfield, Illinois

Balaji Bikshandi

Faculty of Science & Technology

University of Canberra

Canberra, Australia

Uli K. Chettipally

Society of Physician Entrepreneurs, 

San Francisco Bay Area chapter

InnovatorMD

San Francisco, California

James Condon

University of Adelaide,

Adelaide, Australia

Ricardo Correa

Department of Endocrinology

University of Arizona College of 

Medicine, Phoenix and Phoenix 

VAMC

Tucson, Arizona

Fernando A. Crespo

DAiTA LAb, Facultad de Estudios 

Interdisciplinarios

Universidad Mayor

Santiago, Chile

Juan Luis Cruz

Hospital Universitario 12 de Octubre

Madrid, Spain



xiv ◾ Contributors

Jacek B. Cywinski

Anesthesiology Institute

Cleveland Clinic

Cleveland, Ohio

Neha Deo

Mayo Clinic Alix School of 

Medicine

Mayo Clinic

Rochester, Minnesota

Zobaida Edib

School of Computing and 

Information Technology

University of Melbourne

Melbourne, Australia

Daniel J. Fox

Department of Clinical Research

Springfield Clinic

Springfield, Illinois

Anna Fragkoudi

Outcome Health

Melbourne, Australia

Vishnu Vardhan Garla

Department of Endocrinology

University of Mississippi Medical 

Center

Jackson, Mississippi

Deepak Kumar Gopalakrishnan

School of Engineering

Deakin University

Geelong, Australia

Gonzalo Hernández

Centro Científico y Tecnológico 

de Valparaíso

Valparaíso, Chile

Rahul Kashyap

Department of Anesthesiology/

Critical Care Medicine

Mayo Clinic

Rochester, Minnesota

Hadi Akbarzadeh Khorshidi

School of Computing and 

Information Technology

University of Melbourne

Melbourne, Australia

Dinesh Kumar

Faculty of Science & Technology

University of Canberra

Canberra, Australia

Stefanie Lip

Institute of Cardiovascular and 

Medical Sciences

University of Glasgow

Glasgow, United Kingdom

Vidur Mahajan

Mahajan Imaging

New Delhi, India

Dwarikanath Mahapatra

Inception Institute of Artificial 

Intelligence

Abu Dhabi, United Arab Emirates



Contributors ◾ xv

Chaitanya Mamillapalli

Department of Endocrinology

Springfield Clinic

Springfield, Illinois

Piyush Mathur

Anesthesiology Institute

Cleveland Clinic

Cleveland, Ohio

Adam McLeod

Outcome Health

Melbourne, Australia

Ernestina Menasalvas

Universidad Politécnica de 

Madrid

Madrid, Spain

Sandosh Padmanabhan

Institute of Cardiovascular and 

Medical Sciences

University of Glasgow

Glasgow, United Kingdom

Lyle Palmer

University of Adelaide

Adelaide, Australia

Francis A. Papay

Cleveland Clinic Lerner College of 

Medicine

Case Western Reserve University

Cleveland, Ohio

and

Dermatology and Plastic Surgery 

Institute

Cleveland Clinic

Cleveland, Ohio

Christopher Pearce

Outcome Health

Melbourne, Australia

Michelle Peate

School of Computing and 

Information Technology

University of Melbourne

Melbourne, Australia

Mariano Provencio

Department of Oncology

Puerta de Hierro University 

Hospital and

Universidad Autónoma de Madrid

Madrid, Spain

Aditya Ravishankar

School of Engineering

Deakin University

Geelong, Australia

Natalie Rinehart

Outcome Health

Melbourne, Australia

and

Case Western Reserve University

Cleveland, Ohio

Milad Salem

Computational Biotechnology

University of Central Florida

Orlando, Florida

Dharmendra Sharma

Faculty of Science & Technology

University of Canberra

Canberra, Australia



xvi ◾ Contributors

Johnson Thomas

Department of Endocrinology

Mercy

Springfield, Missouri

Mark R. Traill

Metro Health

University of Michigan

Wyoming, Michigan

Vasanth Venugopal

Mahajan Imaging

New Delhi, India

Shyam Visweswaran

Department of Biomedical 

Informatics

University of Pittsburgh

Pittsburgh, Pennsylvania

Xuetong Wu

School of Computing and 

Information Technology

University of Melbourne

Melbourne, Australia



1

Chapter 1

Algorithmic Medicine

Sandeep Reddy
Deakin University
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1.1  Introduction

For long health services have faced several challenges, chief among them 

being rising expenditure and workforce shortages without clear solutions 

in sight (Topol, 2019). At the same time, there has been an unprecedented 

generation of medical data ranging from sources such as electronic health 

records, medical imaging and laboratory units (Sidey-Gibbons & Sidey-

Gibbons, 2019). Clinicians have for long relied on computers to analyse such 

data as the analysis of such complex, and large datasets exceed their human 

capacity. In this context, the emergence of artificial intelligence (AI) with 

its ability to significantly enhance the data analysis process has presented 

an opportunity for clinicians and healthcare administrators to gain better 
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insights (Reddy, 2018). An opportunity to optimise care delivery, reduce 

healthcare delivery costs and support a stretched workforce.

Of the various AI approaches, the most pertinent to analysing data is 

machine learning (ML), which comprises aspects of mathematics, statistics 

and computational science (Sidey-Gibbons & Sidey-Gibbons, 2019). ML is the 

core of changes occurring in medicine because of AI. Unlike non-AI meth-

ods and software, which rely mainly on traditional statistical approaches, ML 

software utilises pattern detection and probabilistic approaches to predict 

medical outcomes (Reddy, 2018). This utilisation of ML algorithms and other 

AI approaches to deliver medical care is what can be termed as algorithmic 

medicine. The ability to predict crucial medical outcomes through AI 

 algorithms can make healthcare more precise and efficient. Beyond medical 

care, AI can also support healthcare administration, drug discovery, popu-

lation health screening and social assistance (Reddy, 2018), thus expand-

ing the scope of algorithmic medicine beyond the confines of clinical care, 

i.e. direct clinician to patient care. This ability and promise have ignited 

the interest of governments and other healthcare stakeholders to consider 

incorporation of AI in healthcare administration and delivery seriously. 

This  chapter outlines what would be involved for this to occur and what the 

impact will be.

1.2  AI in Medicine – A History

Before we define AI and describe its techniques, it will be pertinent to 

review the history of AI in healthcare. The concept of intelligent machines 

is not new and in fact can be traced to Ramon Llull’s theory of reason-

ing machine in the 14th century (Reddy, 2018). However, modern AI can 

be tracked back to the past 70 years with the term originating from the 

 workshop organised by John McCarthy at Dartmouth College in 1956 

(AAIH, 2019). In the following decade, the availability of faster and cheaper 

 computers allowed experimentation with AI models particularly in the areas 

of problem-solving and interpretation of spoken language (Anyoha, 2017). 

However, as work progressed in these areas, the lack of requisite compu-

tational power and the limitations of the then algorithmic models came to 

fore. In the 1980s, there was a revival of interest in AI particularly so in 

expert systems, which were modelled to mimic the decision-making pro-

cess of a human expert (Figure 1.1). However, again these types of models 

fell short of expectations, and interest in AI in both academia and industry 
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waned. Commencing in the mid-2000s, the availability of suitable technical 

hardware and emergence of neural networks, an advanced form of ML, cou-

pled with their demonstrable performance in image and speech recognition 

once again brought AI back to the limelight. Since then, significant funding 

and interest has led to further advances in algorithms, hardware, infrastruc-

ture, and research.

Paralleling the general history of AI, its use in medicine formally com-

menced with the DENDRAL project in the 1960s, which was an early expert 

system with an objective to define organic compound structures by inves-

tigating their mass spectra (AAIH, 2019). The development of this system 

required new theories and programming. This was followed by MYCIN 

in the 1970s, which was aimed at identifying infections and recommend-

ing appropriate treatment. The learning from MYCIN was extrapolated to 

develop the CADUSEUS system in the 1980s. This system was then hyped 

as the most knowledgeable medical expert system in existence. In line with 

the general history of expert system, the application of expert systems in 

medicine fell short of expectations. The sophistication of neural networks 

and availability of hardware to run these algorithms presented a new oppor-

tunity for the use of AI in medicine (Naylor, 2018; Reddy, 2018). Since then, 

increasing evidence has been detailed of what AI models can do in terms of 

medical imaging interpretation, support for clinical diagnosis, drug discovery 

and clinical natural language processing. 

1.3  AI Types and Applications

Before we discuss the different types of AI and its applications, it is 

 important to define what AI is? There are numerous definitions of AI in the 

literature, but this one derived from computer science describes AI as “the 

study of intelligent agents and systems, exhibiting the ability to accomplish 

complex goals” (AAIH, 2019). However, this definition is oriented to an 

academic perspective. From an application and industry perspective, AI can 

be best described as “machines assuming intelligence”. Now that we have 

defined AI, it is pertinent to mention here two levels of AI: General and 

Narrow AI. General AI, also referred to as Artificial General Intelligence, is 

when AI exhibits “a full range of cognitive abilities or general intelligence 

actions by an intelligent agent or system” (AAIH, 2019), while Narrow AI, 

also referred to as Weak AI, is where AI is specified to address a singular or 

limited task. 
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Figure 1.2 AI types, learning approaches and applications.

The predominant approach of AI, currently, is ML (Figure 1.2). This 

approach involves performing tasks without explicit instructions relying 

mainly on patterns and relationships in the training data and environment 

(AAIH, 2019). To develop ML models, you will need to define the necessary 

features, i.e. dependent and independent or input and target variables, and 

develop datasets including the features. Further to this, you split up the data-

set into training and test datasets to allow for internal validation. Following 

this, the datasets are trained or tested with relevant ML algorithms. If the 

training dataset contains the input data and the appropriate output/target 

variable, then it is termed supervised learning (El Morr & Ali-Hassan, 2019). 

However, if there is no known output and the algorithm is left to detect 

hidden patterns or structures within the dataset, then this is unsupervised 

learning. In recent years, a hybrid form where the training set has a mix of 

labelled and unlabelled data and the expectation is that a function predict-

ing the target variable is arrived at, which is termed semi-supervised learning 

(El Morr & Ali-Hassan, 2019).

ML algorithm development does not necessarily have to adopt the train-

ing approach described above. Reinforcement learning, a relatively newer 

form of ML, involves a process of maximising reward function based on 

the actions taken by the agent (AAIH, 2019). A trial-and-error approach is 

adopted to eventually arrive at optimal decision-making by the agent. In 

generative learning, the model development involves creating new examples 

from the same distribution as the training set and in certain instances with a 

particular label. The evolutionary algorithm model builds on this approach 

where initially developed algorithms are tested for their fitness, similar to an 
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Figure 1.3 Representation of the neural network architecture (Creative Commons 
License).

evolutionary process, until peak performing algorithms are identified and no 

more progress in fitness of the group can be derived (AAIH, 2019).

While there are numerous ML algorithms in use, a couple of commonly 

used algorithms in medicine are linear regression, logistic regression, deci-

sion trees, random forest and support vector machines (SVMs). An advanced 

form of ML that excels at analysing complex patterns between variables in 

datasets is deep learning (DL) (Topol, 2019). This approach is inspired by 

the architecture and ability of human brains whereby learning and complex 

analysis is achieved through interconnected neurons and their synapses. 

This is computationally simulated through many layers of artificial neurons 

between the input and output variables. These artificial neurons through a 

hierarchical and interconnected process are programmed to detect complex 

features and the model depending on complexity of data adds necessary 

number of layers (auto-didactic quality) (Topol, 2019). Sandwiched between 

the input and output layers are the hidden layers (see Figure 1.3), which 

adds to the feature optimisation and model performance but also creates 

opacity about the decision-making process of the model.

While there are myriad ways as to how neural networks and AI are in 

use in healthcare, three applications where they are mostly used or have 

most promise are profiled: computer vision, natural language processing and 

robotics.

1.3.1  Computer Vision

Computer Vision (CV) is where computers assist in image and video rec-

ognition and interpretation (Howarth & Jaokar, 2019). Increasingly DL has 
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Figure 1.4 Architecture of a CNN (Creative Commons License).

become central to the operation of CV. This is due to DL’s many layers 

 useful for identifying and modelling the different aspects of an image. In 

particular, convolutional neural networks (CNNs), a form of DL, involve a 

series of convolutions and max-pooling layers (see Figure 1.4) as its under-

lying architecture has been found to be very useful in image classification 

(AAIH, 2019; Erickson, 2019). CNNs are credited for reviving interest in 

neural networks in recent years. The way the CNNs work is by commenc-

ing with low-level features in the image and progress to higher-level features 

that represent the more complex components of the image. For example, 

the first layers will identify points, lines and edges, and the latter layers will 

combine these to identify the target class. An early example of CNN was 

AlexNet, an image classification model (AAIH, 2019). More recent versions 

are CNNs with specialised layers including ResNet, ResNeXt and region-

based CNN (Erickson, 2019).

CNNs are increasingly being applied in medical image interpretation 

(Erickson, 2019): for example, to classify chest X-rays that have malignant 

nodules and those that haven’t. Here, a set of labelled or annotated chest 

X-rays are used to train the neural networks to compute features that are 

reliable indicators of malignancy or lack. CNNs can be used for segmenta-

tion too where the class of interest is delineated from the remaining area of 

non-interest. However, CNNs are not restricted to analysing chest X-rays and 

have also been used to interpret CT, MRI, fundoscopy, histopathology and 

other images (Erickson, 2019; Reddy, 2018; Reddy, Fox, & Purohit, 2019).

1.3.2  Natural Language Processing

Natural language processing (NLP) is a process of computationally represent-

ing, transforming and utilising different forms of human language, i.e. text 
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or speech (Wu et al., 2020). Unlike other data, computing human language 

is not straightforward as there is a lot of imprecision in human language 

(Chen, 2020). Also, the unit component of language is not necessarily con-

ducive to computation. To address this natural language must be initially 

reencoded into a logical construct before it can be administered for informa-

tion extraction or translation. For many years, NLP reliant on traditional ML 

approaches like SVM and logistic regression, which were trained on very 

high dimensional and sparse features, yielded shallow models (Friedman, 

Rindflesch, & Corn, 2013). However, the advent of DL and its use in NLP has 

resulted in better performing models. This is because DL enables multi-level 

automatic feature representational learning.

An important reason for the success of DL in NLP is because of distrib-

uted representation, which describes the similar data features athwart mul-

tiple scalable and interdependent layers (Young, Hazarika, Poria, & Cambria, 

2018). Examples of distributed representation include word embeddings, 

word2vec and character embeddings. These examples follow the distribu-

tional hypothesis, where it is assumed that words with similar meanings 

tend to occur in a similar context. Thus, the models aim to capture the char-

acteristics of the neighbours of a word to predict meaning. DL has also been 

useful in Automatic Speech Recognition (ASR), sometimes referred to as 

speech-to-text (Chen, 2020). Recurrent neural networks have been demon-

strated to work well for ASR by lending the algorithm tolerance to complex 

language conditions such as accents, speed and background noise.

Clinical use of NLP has extended to the vector representation of clini-

cal documents such as clinical guidelines, extracting clinical concepts from 

electronic medical records or discharge summaries through named entity 

recognition, mapping clinical ideas and diagnoses with codified guidelines, 

and developing human-to-machine instructions (Rangasamy, Nadenichek, 

Rayasam, & Sozdatelev, 2018). NLP can also be potentially used for non- 

clinical healthcare purposes such as efficient billing and accurate prior 

authorisation approval through the extraction of information from unstruc-

tured physician notes or electronic health records. Further uses of NLP 

include transcription and chatbot services (Reddy, Fox, et al., 2019).

1.3.3  Robotics

Robots are machines that can carry out complex action and can be 

 programmed by computers (Ben-Ari & Mondada, 2017). Not all robots 

are programmed by computers and are purely mechanical in nature. 
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However, for this chapter, we will review those robots that are programmable 

by a robot. Robots can be of two categories: fixed and mobile, depending 

on the environment they operate. Fixed robots like industrial robots oper-

ate in a well-defined environment, while mobile robots move and perform 

activities in poorly defined and uncertain environments. Algorithms work in 

robots through embedded computers that run on pseudocode utilising a mix 

of natural language, mathematics and programming structures.

In healthcare, robots are used in various ways, including in surgery, 

 hospitals and aged care (Pee, Pan, & Cui, 2019; Reddy, 2018). One such 

application that has become popular in recent years is robotic-assisted 

 surgery (Svoboda, 2019). In this format, surgeons control multiple robotic 

arms through a hand-operated console (Figure 1.5). This application enables 

surgeons’ greater vision and dexterity to operate in hard-to-reach areas.

Yet, this is not AI robotics which is about robots operating in an auto-

mated or semi-automated fashion. In this regard, trials are being held to 

allow for independent operation of surgical procedures (Svoboda, 2019). 

More straightforward or repetitive tasks like suturing and valve repair 

lend themselves to surgical automation, while complex surgical tasks may 

take many more years to be automated. Elsewhere, robotic assistants have 

been used either to support the elderly as social companions or to guide 

them with medications, appointments and in unfamiliar environments. As 

AI-enabled robots attain more autonomous functionality through intelli-

gent algorithms, their use in various areas of healthcare is only to increase 

(Reddy, 2018; Reddy, Fox, et al., 2019).

Figure 1.5 Robotic-assisted surgery (Creative Commons License).
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As AI algorithms and models evolve, there will be broader applicability 

of them in healthcare to drive efficiency and improved patient outcomes. 

Demonstrable evidence in the areas of CV, NLP, AI robotics and predic-

tor models will enable adoption and broader use of AI within healthcare 

broadly and specifically within clinical care models.

1.4  Challenges and Solutions

While AI has enabled unprecedented sophistication and performance in 

medicine that very few technologies can match, it has also presented sig-

nificant challenges in its implementation (Reddy, Allan, Coghlan, & Cooper, 

2019). While medical data are abundant, they all are not necessarily struc-

tured or standardised to train AI models (Wang, Casalino, & Khullar, 2018). 

While the human brain is capable of inferring patterns from heterogeneous 

and noisy data, AI models are less so. Utilisation of incorrect and non- 

representative data can have several implications in the context of healthcare 

delivery, including the introduction or affirmation of biases and exacerbation 

of health disparities. Also, in a clinical setting, reliance on a model trained 

on inaccurate data can have medico-legal repercussions (Reddy, Allan, 

et al., 2019). Another issue that has emerged specifically with the use of DL 

models is the opacity of decision-making that is intrinsic to these models. 

When trained on large datasets, DL models use their many layers to simulate 

complicated regularities in the data. However, the layered non-linear feature 

learning makes it impractical to interpret the learning process (Hinton, 2018). 

The inability to clearly explain the DL model’s conclusion basis presents an 

obstacle to its use in clinical medicine. For example, if a DL model were to 

make a clinical recommendation or diagnosis without a clear rationale, it 

will find little acceptance amongst clinicians. Further to this, the training of 

ML models involves several parameters (rules) (Beam, Manrai, & Ghassemi, 

2019). Because of the use of randomness in training many ML models, 

there are different possibility parameters arrived at each time the model is 

retrained, thus limiting reproducibility of the models. Finally, the mathemati-

cal accuracy of AI models means nothing if there is no impact on patient 

outcomes. Currently, very few studies have presented evidence of the down-

stream benefit of AI models in medicine.

While these are relatively significant challenges for the adoption and 

applicability of AI in medicine, they are not without solutions. Most medical 

DL models are relatively small and focused on medical image interpretation, 
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which has fewer issues in terms of structure and reproducibility (Beam et al., 

2019). Increasingly, medical researchers are utilising shared or open-source 

datasets to train their models and providing open access to the code used 

for the training. These measures allow for transparency and reproducibility 

of AI models. Also, academic and transdisciplinary collaborations present an 

opportunity to test and embed AI models in routine clinical care (Sendak, 

Gao, Nichols, Lin, & Balu, 2019). To address bias or safety and quality issues 

that may arise from the use of AI models, a governance model that incor-

porates fairness, transparency, trustworthiness and accountability has been 

proposed (Figure 1.6) (Reddy, Allan, et al., 2019).

Fairness requires representation from the community at which the AI 

medical application is aimed at in determining how the software developer 

uses data (Reddy, Allan, et al., 2019). The representation could be at a data 

governance panel that reviews datasets used for training such AI medical 

applications. While it is not feasible for all software developers to consti-

tute such panels, they could potentially draw advice from a government-

instituted committee. Information from the group can contribute to less 

discriminatory or less biased AI models being developed. Transparency 

stresses the explainability of medical AI models. Where possible, algorithms 

that lend themselves to explainability are to be utilised, and when DL types 

of algorithms are necessary, functional understanding of the model con-

veyed through interpretable frameworks. Also, in clinical practice, informed 

consent is obtained from patients before use of AI medical applications in 

the treatment and management of their medical conditions. These initiatives 

Figure 1.6 Components of an AI in healthcare governance framework. (Adapted 
from Reddy, Allan et al. (2019).)
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are also required to ensuring trustworthiness of AI medical applications in 

addition to educating clinicians and the general community about AI and 

its use and limitations. Through this education and subsequent understand-

ing, AI stands a better chance of being accepted by the medical and patient 

populations. Finally, accountability is about ensuring the safety and qual-

ity of AI medical application through appropriate regulatory and clinical 

governance processes. This requires input and involvement from a range of 

governmental and non-governmental bodies. Further to this, legal frame-

works and guidance need to be constituted as to who becomes responsible 

if there were AI-related medical errors or mishaps. In essence, accountability 

is extending beyond the AI medical application to cover a range of players 

(Reddy, Allan, et al., 2019). This is necessary to ensure the appropriate and 

safe use of AI in medicine.

1.5  The Future

As costs of running healthcare, the volume of medical data, the time 

required to train and deploy work-ready medical workforce and complex-

ity of medical delivery increase, it is inevitable for stakeholders to explore 

an increased role for AI. The rate and extent at which AI gets adopted in 

routine clinical care delivery are not guaranteed. However, based on current 

evidence, one can speculate where AI can contribute to and benefit clinical 

care. AI can replace some of the mundane or repetitive tasks that clinicians 

engage with leaving them more time to engage with patients in a meaning-

ful manner. Also, areas which require analysis of complex or voluminous 

data may benefit from AI’s ability to infer patterns from the data contribut-

ing to an augmented medicine model. Further, the progression of research 

and trials in AI robotic systems can eventuate in the automation of certain 

aspects of surgery, aged care and hospital logistics (Pee et al., 2019; Svoboda, 

2019). All these developments herald an era of algorithmic medicine.
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2.1  Introduction

Chronic health diseases are physical or mental conditions that last more than 

one year and cause functional restrictions that require monitoring and treat-

ment (Hajat and Stein, 2018). Patients with multiple chronic conditions expe-

rience frequent hospitalizations, die prematurely, require consultation with 

multiple specialists, and accrue high healthcare utilization rates (Navickas 

et al., 2016). They are also on multiple medications with complex drug 

interactions and have difficulty adhering to treatment that adversely impacts 

the quality of life and outcomes (Navickas et al., 2016). A significant propor-

tion of the aging population (patients >65 years of age) is at higher risks of 

these chronic health diseases, with incidence impacting almost one-third 

of the world’s population and rates of patients experiencing greater than 

four chronic diseases at a time expected to double between 2015 and 2035 

(Marengoni et al., 2011; Kingston et al., 2018).

As a result of its increasing prevalence, a 2015 Global Burden of Disease 

report correlates 70% of deaths to chronic disease complications (Global 

Burden of Disease Study 2015, 2016).

In addition to high morbidity and mortality, managing chronic dis-

ease complications results in high economic costs and significant pro-

ductivity losses to communities. In 2016, chronic diseases cost the United 

States 1.1 trillion dollars and placed substantial burdens on health sys-

tems nationwide (The Costs of Chronic Disease in the U.S., 2019). The 

World Health Organization (WHO) anticipates a shortage of approximately 

12.9  million healthcare providers globally by 2035 (Kingston et al., 2018). 
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The complexities of chronic disease management, coupled with primary 

care physician time limitations and worldwide healthcare provider short-

ages, contribute to suboptimal treatment for patients (approximately 46.3% 

of patients with chronic diseases do not receive care per the recommended 

guidelines) (McGlynn et al., 2003). Further, current chronic disease manage-

ment strategies are not equipped to address unique patient complexities.

The healthcare industry’s current infrastructure suffers from workforce 

shortages, underfunded systems, increases in demands, and an explosion 

of chronic disease prevalence and increased cost. Novel healthcare delivery 

models are urgently needed to address the complexities and multimorbidities 

that result from increasing chronic disease prevalence (Navickas et al., 2016). 

AI is a combination of promising technologies that may play a crucial role 

in future healthcare model success. This chapter will focus on AI’s potential 

role in successful healthcare delivery, its implications for three chronic health 

diseases (diabetes, cardiovascular disease or CVD, and dementia), the chal-

lenges and considerations for AI technologies in the healthcare environment, 

and its practical applications.

2.2  Role of Artificial Intelligence in Chronic Disease

Machine learning (ML) is a subset of AI that utilizes computer algorithms to 

analyze data and correlate relationships between risk factors (variates) and 

health conditions (result variables or covariates). ML models provide scalable 

solutions that may address the global burden of increased chronic disease 

prevalence. They may also be used to evaluate unstructured datasets and 

synthesize disease predictions to provide personalized and patient-specific 

healthcare recommendations. Contrary to traditional statistical modeling, 

ML processes potentially improve predictions and classifications because 

they are not dependent on preconceived variable assumptions. Healthcare 

systems already have key elements to enhance chronic healthcare delivery: 

electronic medical records (EMRs) with rich data, evidence-based guidelines, 

and infrastructures with computing power.

ML promises significant improvements to care compared to current risk 

score utilization. Physicians routinely use risk scores to make healthcare 

management decisions. However, these risk scores use limited numbers of 

clinical variables with modest predictive accuracy in individual subjects. 

ML leverages big data, recognizes complex patterns, and refines predictive 

accuracies via repetition and adjustment. Utilizing analytical data methods 
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with patient data and evidence-based guidelines may allow healthcare pro-

viders to instantaneously tailor patient-specific recommendations to promote 

appropriate preventative and therapeutic personalized medicine strategies.

Personalized medicine’s primary objective is to utilize patient insights 

and features to derive patient-specific risk factors and subsequently custom-

ize treatment options based on the individualized risk profile (Redekop 

and Mladsi, 2013). ML models may play a vital role in personalized medi-

cine by helping to merge diverse healthcare datasets, electronic health 

records (EHRs), imaging data, genetic data, biomarker analyses, and data 

from mobile sensors (Rumsfeld et al., 2016). Deploying ML systems may 

foster personalized medicine, predict the risk of disease/complications, and 

therefore recommend actionable interventions and prevent acute events. 

Technological advances offer healthcare providers with countless tools to 

fully understand their individual patients’ needs and provide the best possi-

ble care. The explosive use of digital health and mobile apps creates patient 

habit and activity datasets that can be merged with EMR data. Using these 

data sources, ML models may analyze real-time patient needs and guide 

healthcare providers to enhance the management of chronic diseases such 

as diabetes, CVD, and dementia.

2.3  Machine Learning in Diabetes

Diabetes is a glucoregulatory dysfunctional disease manifested by hypergly-

cemia and broadly categorized two subtypes (type 1 and type 2 diabetes). 

Type 1 diabetes has an absolute deficiency of insulin secretion, whereas 

type 2 diabetes is characterized by relative insulin deficiency and insulin 

resistance (Diagnosis and Classification of Diabetes Mellitus, 2009). Type 2 

diabetes is more common, accounts for 90% (~425 million) of diabetes cases 

worldwide, and is projected to increase exponentially in the upcoming years 

(IDF diabetes atlas, 2017). ML studies in diabetes can be categorized into the 

following four groups:

 1. Prediction and diagnosis of type 2 diabetes

 2. Blood glucose management

 3. Diabetes phenotyping

 4. Early detection of diabetic complications.
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2.3.1  Prediction and Diagnosis of Type 2 Diabetes

Currently recommended diabetes laboratory screening tests comprise fasting 

blood glucose, hemoglobin A1c, and oral glucose tolerance tests. A diabe-

tes diagnosis is confirmed by a 2-hour glucose tolerance test measuring 

>200 mg/dl or A1c ≥ 6.5% or fasting glucose levels >126 mg/dl. Prediabetes 

is a precursor for diabetes with glucose levels above normal levels but less 

than the defined thresholds for diabetes (2-hour glucose levels at 140–200 

mg/dl, A1c 5.7%–6.5%, and fasting glucose at 100–126 mg/dl) (Bowen et al., 

2018). Approximately 37%–70% of patients with prediabetes progress into 

type 2 diabetic status within four years of onset at an overall rate of 10%/year 

(Nathan et al., 2007).

Universal prediabetes and diabetes screening are not recommended due 

to the lack of mortality benefit. Rather, opportunistic/selective screening 

is recommended for patients with high-risk factors. The screening mod-

els encounter major practical limitations because they are time-consuming 

and require data that are not always readily available (Bowen et al., 2018). 

Diabetes screening rates in high-risk patients are continually below 50% in 

some series despite the availability of multiple guidelines and risk scores. 

Several factors contribute to low diabetes screening rates, including hetero-

geneity among screening recommendations, lack of familiarity with validated 

diabetes risk factors among healthcare providers, and limited access to risk 

factor data at the time of patient encounters (Bowen et al., 2018).

An alarming 90% (~77.4 million US patients) of the projected prediabetic 

population remains undiagnosed (ADA statistics about diabetes). Type 2 

diabetes may also be present 4–6 years prior to clinical diagnosis and con-

sequently exposing the patients to micro- and macrovascular complications 

(Porta et al., 2014). Accurate and timely identification of prediabetes and 

diabetes is critical for the effective implementation of diabetes prevention 

programs. ML models may provide scalable and sustainable solutions to 

evaluate diabetes risk at the population level to facilitate selective predia-

betes and diabetes screening and provide evidence-based prevention and 

treatments to high-risk subjects. Such models may be implemented at a 

population level without additional tests, screening, or chart reviews beyond 

what is freely available in health records and administrative data. Studies 

have already developed and demonstrated ML models as diabetes prediction 

tools in clinical settings (Figure 2.1; Table 2.1).
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Figure 2.1 Type 2 diabetes disease progression and latency between disease onset 
and diagnosis. ML models may be utilized to predict type 2 diabetes diagnoses years 
before their clinical discovery and well before patients lose half of their pancreatic 
function.

Table 2.1 Studies That Have Developed and Demonstrated ML Models as 
Diabetes Prediction Tools

Study Description ML Methods Results

Mani et al. 
Retrospective study
3,375 subjects
EMR-based diabetes 
forecasting study at 
Vanderbilt University 
medical center

17 attributes were 
studied

Gaussian Naïve 
Bayes

Logistic regression
K-nearest neighbor 
CART
Random Forests
Support vector 
machine (SVM)

Predicted diabetes 180 days and 
365 days prior to diagnosis

Random Forest was the best 
performing model with 

The area under the curve (AUC) 
0.803 

Sensitivity 0.759 
Specificity 0.731
Positive predictive value (PPV) 0.24

(Continued)
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Table 2.1 (Continued) Studies That Have Developed and Demonstrated ML 
Models as Diabetes Prediction Tools

Study Description ML Methods Results

Zou et al.
Retrospective study
68,994 healthy people 
and 68,994 diabetic 
patients

Hospital physical 
examination data from 
Luzhou, China

14 attributes 
(Demographic, Physical 
exam and lab data)

Decision tree
Random Forest 
Neural network 

Diabetes detection:
Random Forest 
Accuracy (ACC) 0.8084 
Sensitivity 0.84
Specificity 0.76
ACC fasting glucose: 0.76

Razavian et al.
Retrospective study
697,500 subjects 
Administrative claims 
cohort of 4.1 million 
individuals 
(Independence Blue 
Cross, Pennsylvania)

Dual Coordinate 
Descent

Two models 
Parsimonious model 
used 21 diabetes 
risk factors with 
traditional logistic 
regression 

ML-based Enhanced 
model used 538 
variables

Predicted diabetes 2 years in 
advance

Parsimonious model 
AUC 0.75 
Enhanced model 
AUC 0.800

Mamillapalli et al.
Retrospective study 
85,719 subjects 
EHR data from a large 
multi-specialty clinic 
in the United States

Nine attributes 
(demographic, physical 
exam and lab data)

Supervised Jungle 
binary classifier 

Diabetes detection:
PPV 0.686 
Negative predictive values
(NPV) 0.88 
AUC 0.72 
F-score 0.77

(Continued)
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Table 2.1 (Continued) Studies That Have Developed and Demonstrated ML 
Models as Diabetes Prediction Tools

Study Description ML Methods Results

Hall et al.
prospective study
CGM data on 57 
healthy volunteers

Complexity-
invariant dynamic 
time warping 
(CID-DTW)

Patients with normoglycemia and 
prediabetes were categorized into 
three glucotypes:
• Low variability (L) glucotype
• Moderate variability (M) 

glucotype
• Severe variability (S) glucotype

24% of the normoglycemic patients 
have glucose excursions similar to 
diabetics

Authors hypothesize glucose 
variability is the initial 
manifestation of dysglycemia and 
may represent an earlier stage of 
prediabetes

2.3.2  Blood Glucose Management

Approximately 30%–50% of the United States’ diabetic patient population 

does not meet the personalized target for blood pressure, glucose, and lipid 

parameters (Ali et al., 2013). The underlying reasons for uncontrolled diabe-

tes are multifactorial:

1. Patients on insulin treatment need adjustment based on blood glucose 

levels, carbohydrate counting, and activity level.

2. Non-adherence to the treatment regimens.

3. Treatment and regimen complexities.

4. Disease burden.

5. Hypoglycemia is a major rate-limiting issue in reaching glycemic targets, 

especially in patients with type 1 diabetes mellitus (T1DM).

Improvement in diabetes control is associated with a decrease in compli-

cations and healthcare cost burden (Lafeuille et al., 2014; UK Prospective 

Diabetes Study (UKPDS) Group, 1998). ML models and clinical decision sup-

port systems (DSSs) have successfully leveraged large datasets generated by 

continuous glucose monitor (CGM) devices and sensor-augmented insulin 

pumps and have improved glycemic outcomes (Table 2.2). The combina-

tion of glucose sensors and closed-loop control algorithm insulin infusion 
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devices is the foundation for hybrid closed-loop systems (artificial pancreas) 

which imitates islet physiology and auto-adjusts insulin delivery based on 

glucose levels (Weaver and Hirsch, 2018).

CGM and integrated insulin pump devices help to improve quality of 

life, glycemic control, and reduce comorbidities associated with diabetes. 

Healthcare organizations are however experiencing several challenges with 

these systems primarily because they require substantial patient and pro-

vider engagement and high-resource utilization (required for non-reimbursed 

healthcare provider time to interface with new technologies) (Weaver and 

Hirsch, 2018).

2.3.3  Diabetes Phenotyping

Type 2 diabetes is a heterogeneous disease with diverse phenotypes and 

varying risks of diabetes-related complications. Phenotype identification via 

ML models helps to target high-risk groups for intensive disease manage-

ment (Table 2.3).

2.3.4  Early Detection of Diabetes Complications

Uncontrolled diabetes is associated with the risk of micro- and macrovas-

cular complications (cardiovascular, renal, peripheral vascular, ophthalmic) 

(Chawla et al., 2016). Diabetic retinopathy (DR) is the most common micro-

vascular complication of diabetes. Early diagnosis and treatment of DR are 

important to prevent vision loss in diabetic patients. Despite the American 

Diabetes Association (ADA) recommendations for annual eye exams, com-

pliance rates for retinal screenings remain low near 50% even in developed 

countries (Liu et al., 2018). IDX-DR, an ML algorithm for detection of dia-

betic retinopathy, was evaluated in the primary care setting, demonstrated 

a sensitivity of 87.2%, specificity of 90.7%, and an imageability rate of 96.1% 

(Abràmoff et al., 2018). IDX-DR obtained FDA approval for the autonomous 

diagnostic system for detecting diabetic retinopathy. This technology’s imple-

mentation potentially improves DR screening rates and decreases the inci-

dence of diabetes-induced blindness.
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2.4  Machine Learning in Cardiovascular Disease

CVDs are diseases that affect the heart or blood vessels and include hyper-

tension, coronary heart disease, heart failure, atrial fibrillation, and stroke. 

CVD is one of the leading causes of mortality or morbidity and accounts for 

one-third of the deaths worldwide (Eckel et al., 2014; Alwan, 2011). About 

102 million (41.5%) US adults currently have at least one cardiovascular 

condition, and ~131 million (45%) are projected to suffer from CVD by 2035. 

CVD’s estimated annual 2014–2015 cost was 555 billion dollars in the United 

States, and it is projected to double by 2035 to 1.1 trillion dollars.

Age-adjusted cardiovascular mortalities have reduced significantly over 

the past 50 years. Despite its significant incidence decline, CVD remains to 

be the leading cause of death (McClellan et al., 2019). Contributing factors for 

recent flattening cardiovascular mortality rate reduction include (McClellan 

et al., 2019)

 1. Patients fail to make risk factors modifications.

 2. Patients do not adhere to recommended treatments.

 3. Failure to diagnose.

 4. Failure to use evidence-based medication regimens.

Additionally, significant cardiovascular mortality disparities are present across 

different groups by race, sex, and ethnicity. These may result from patient 

difficulties to comply with CVD risk factor modification treatments, socio-

economic variables, and behavioral factors (McClellan et al., 2019). AI may 

provide solutions to alleviate some of these CVD treatment challenges by 

personalizing treatment, targeting high-risk patients, and potentially decreas-

ing cardiovascular outcome disparities. Current cardiology ML studies are 

categorized in the following four groups:

 1. Cardiovascular risk prediction

 2. Phenotypic and prognostic studies

 3. ECG and diagnostic accuracy improvement

 4. Imaging and diagnostic accuracy improvement.

2.4.1  Cardiovascular Risk Prediction

Failure to diagnose and prevent CVD remains problematic. A significant pro-

portion of apparently healthy subjects without prior symptoms continue to 
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die suddenly (Naghavi et al., 2006). Traditional CVD risk prediction models 

such as the Framingham risk score assesses only at the population level with 

discriminatory accuracy at the individual level remaining suboptimal (75%). 

As a result, individual patients experience overtreatment or under treat-

ment with related morbidity and economic costs (Wilson Peter et al., 1998; 

Detrano et al., 2008).

Traditional CVD risk prediction models are limited in predictive per-

formance because they adopt restrictive modeling methods with limited 

numbers of variables. Identifying asymptomatic patients who are at high 

risk of CVD and starting on intense preventive treatment is a major ongo-

ing challenge, particularly with traditional CVD risk models (Franco et al., 

2011). Comprehensive tools with improved accuracy are needed to address 

these challenges. ML models may provide solutions to CVD risk prediction 

by identifying current and new CVD risk factors, evaluating patient variables 

comprehensively, and potentially discovering new CVD therapeutic strategies 

(Table 2.4).

2.4.2  Identification of Novel Cardiovascular Disease Phenotypes

ML models have helped to classify novel heart disease genotypes and phe-

notypes by identifying therapeutically homogeneous patient subgroups 

within heterogeneous diseases such as heart failure preserved ejection 

fraction (HFpEF), pulmonary hypertension, and coronary artery disease 

(Krittanawong et al., 2017). As a result, these models may assist patients and 

healthcare providers with prognostic and therapeutic decisions, active and 

informed decision-making about invasive procedures, and efficient resource 

utilization (Table 2.5).

2.4.3  ECG and Diagnostic Accuracy Improvement

ML methods may be utilized to improve ECG accuracy and, combined 

with sensors, instantaneously and automatically detect cardiac arrhythmias 

(Tables 2.6 and 2.7).
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2.5  Machine Learning in Dementia

Dementia is a neurodegenerative disorder that causes severe cognitive 

impairment and resultant severe disabilities (Hugo and Ganguli, 2014). About 

50 million people have dementia worldwide, and the WHO estimates 10 mil-

lion new cases occur each year. Alzheimer’s dementia (AD) is the most com-

mon type of cognitive impairment, accounting for 70% of new cases (https://

www.who.int/news-room/fact-sheets/detail/dementia). The total medical care 

and long-term care cost burden incurred due to dementia in 2015 were 818 

billion dollars, and costs are expected to spike to 2 trillion dollars by 2050 

(https://www.who.int/news-room/fact-sheets/detail/dementia). ML models 

may provide solutions to dementia-induced healthcare demands. Current 

studies using ML for dementia are broadly categorized as follows:

 1. Early dementia prediction

 2. Dementia phenotyping.

2.5.1  Early Dementia Prediction

Underdiagnosis of dementia remains a significant problem, with up to half 

of dementia patients remaining undiagnosed or with a delayed diagnosis 

for up to 2.5 years (Purandare, 2009). A dementia diagnosis is challenging 

due to the heterogeneous nature of the disease, and its clinical presentation 

often mimics other conditions such as depression.

Early dementia diagnosis ensures potential patients receive appropriate 

treatment and access to participating in clinical trials. They also offer better 

access to services that improve the quality of life and provide patient fami-

lies with sufficient time to plan for long-term care needs.

Dementia screening methods are critical to achieving early dementia 

diagnosis; however, screening for dementia in primary care settings is not 

routinely recommended because its effectiveness has not been validated 

(Recommendation against national dementia screening, 2015). Dementia 

risk scores require additional data collection from patients that are not clini-

cally routine, and even after additional data collection, they do not recognize 

patients who may have undiagnosed dementia (Walters et al., 2016, Barnes 

and Lee, 2011). Thus, dementia screening methods are not widely used 

because of their limited applicability in general practice. ML model develop-

ment and deployment may assist in screening large groups of people and 

identifying patients at high risk for dementia for targeted screening (Table 2.8).

https://www.who.int
https://www.who.int
https://www.who.int
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Table 2.9 Studies That Have Developed and Demonstrated ML Models to 
Dementia Phenotyping

a. Author
b.  Description of 

the Study
ML 

Methods Outcomes Clinical Application

Gamberger et al.
Prospective 
design. 

562 subjects with 
mild cognitive 
impairment 
(MCI).

Alzheimer’s 
Disease 
Neuroimaging 
Initiative (ADNI) 
study with 5-year 
longitudinal 
outcomes and 
biomarker data.

Multi-layer 
clustering 
algorithm.

Identified two 
homogenous 
clusters of slow 
decliners and 
rapid decliners.

The subgroup of 
rapid decliners 
compared to the 
slow decliners 
had

A.  Five times the 
rate of 
progression to 
dementia. 

B.  Two-fold 
atrophy in the 
brain.

Classification of dementia 
into homogenous MCI 
subgroups 
• Can help with a new 

understanding of 
dementia disease 
mechanisms and 
development of novel 
treatments.

• Accurate 
prognostication can 
help patients and 
clinicians; reassurance 
can be offered at very 
low risk for 
progression.

2.5.2  Dementia Phenotyping

Alzheimer’s dementia (AD) is a heterogeneous disease with varying degrees 

of symptoms, rates of decline, and ages of onset. Clinical drug trials have 

failed at a 99% rate over the past two decades. These negative results repre-

sent the research field’s incomplete understanding of dementia’s pathophysi-

ology and prognosis (Cummings et al., 2019).

ML models may assist researchers to identify patient subgroups with mild 

cognitive dysfunction and a high risk of dementia progression; this may help 

to develop novel disease-modifying dementia therapies (Table 2.9).

2.6  Challenges in the Implementation of AI 
in Chronic Disease Management

2.6.1  Methodical Challenges

AI’s capacity to enhance and improve healthcare is not without its challenges 

(Challen et al., 2019). ML model bias and clinical safety concerns specific to 

chronic healthcare management are referenced and addressed as follows:
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◾ Most AI models are based on retrospective studies, demonstrate associa-

tion, and do not prove causation (Thiese, 2014; Yu et al., 2018). Random 

data variations without a real biological basis may be erroneously clas-

sified as a phenotype (Ascent of machine learning in medicine, 2019). 

The solution for this is methods that incorporate causal discovery algo-

rithms or hybrid approaches which are combinations of probabilistic 

and causal discovery methods (Glymour et al., 2019). Further prospec-

tive controlled studies are needed to assess these ML models in a real-

world clinical setting (Yu and Kohane, 2019).

◾ Models are only as good as the data they are trained on. Even perfect 

models are restricted by training datasets, dataset quality, and degrees 

of the signal. Further, most ML studies are trained on databases that 

comprise a specific population, which harbors the potential for “distri-

bution shift” (Amodei et al., 2016) and may hamper a model’s general 

applicability to diverse population groups. “Out-of-sample inputs” is 

a mismatching condition between training and operational data that 

may result from either training data inadequacies or incorrect trained 

model application to an unanticipated patient situation (Amodei 

et al., 2016). Different outcome definitions are used during the ML 

model development, which may also cause additional reproducibility 

problems.

◾ Excessive learning by neural networks also creates models that are 

prone to overfitting, which reduces data applicability to real-world sce-

narios (Nagpal, 2017). Regularization is a process that is used to reduce 

over-fitting; however, its role remains to be tested and utilized for model 

applicability across a wider general population (Nagpal, 2017).

◾ Prediction drift is a mismatching phenomenon between training and 

operational data because of changes in disease patterns over time. 

It may affect a model’s accuracy (Davis et al., 2017). Dichotomization 

is performed in models to classify patients into discrete categories. 

Inappropriate dichotomization, however, may reduce a model’s predic-

tive precision (Johnson et al., 2018).

◾ Unsupervised ML models may perform as a “black box” with unex-

plained decision-making rationale that is opaque to interpretation (Yu 

et al., 2018). This lack of transparency in a new technology decreases 

healthcare providers’ and patients’ trust in such algorithms and may 

contribute to lower adoption rates.

◾ Reporting standardization is not yet established for ML model accuracy 

(Forman and Scholz, 2010; Lobo et al., 2008).
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◾ ML models adoption may lead to “automation bias”, which is a phenom-

enon of clinicians accepting the decision from the algorithms without 

confirmatory investigations (Parasuraman and Manzey, 2010; Tsai et al., 

2003).

◾ Concerns regarding the possibility of bias against minorities in underly-

ing datasets, which will be inadvertently learned by the ML models and 

will influence the output (Romei and Ruggieri, 2013).

2.6.2  Practical Challenges

AI technologies have successfully integrated themselves into healthcare fields 

such as fundus imaging, chest X-ray interpretation, histopathology, evalua-

tion of skin lesions, ECG monitoring, and hybrid closed-loop insulin pumps 

to name a few. AI use in chronic disease management is evolving; however, 

many challenges remain to be addressed prior to its industry-wide adoption:

◾ Data Quality – High-quality training dataset availability is currently lim-

ited. End-to-end ML model development needs large-scale data collec-

tion procedures that require data sharing. Sharing patient health records 

is highly regulated, and patient data privacy for ML method develop-

ment remains a point of contention (Yu et al., 2018).

◾ Cost – ML model research requires high development costs and exper-

tise. Significant resources are needed to extract and normalize data and 

customize models to suit organizational requirements. Further, short-

term financial investment benefits have not yet been realized, and only 

indirect society benefits via potential early diagnoses and improved 

patient quality of life have been demonstrated. AI researchers have not 

yet performed large outcome studies that demonstrate improved out-

comes and lower healthcare costs, and therefore have not established 

or determined a quantifiable value to chronic disease management 

(Rumsfeld et al., 2016).

◾ Clinical Integration – AI models require integration into clinical work-

flow to demonstrate their full beneficial potential. AI integration, how-

ever, is hampered by current EHR infrastructure limitations. Execution 

of the computational environment for collecting, storing, and sharing 

confidential health data has its challenges (Yu et al., 2018).

◾ Interoperability – Third-party application interoperation with EHR 

 systems is not often successful; however, there are some on the hori-

zon with the development of interoperability frameworks such as 
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FHIR (Fast Healthcare Interoperability Resources) that can help with AI 

integration in clinical DSSs (Yu et al., 2018). Framework design stan-

dards are also crucial for AI implementation in clinical practice; how-

ever, they are not yet available (Middleton et al., 2013).

◾ Leadership – Healthcare executives do not currently possess in-depth 

knowledge about ML model capabilities, challenges, and limitations for 

chronic disease management.

◾ Legal – Current legal and ethical frameworks do not address direct or 

indirect discrimination, liabilities, and responsibilities to regulate AI 

management for chronic disease (Romei and Ruggieri, 2013).

2.6.3  Solutions

AI models used for chronic disease management may have unintentional 

harmful consequences to patient care if their challenges and limitations are 

not addressed. To address these challenges, healthcare providers, devel-

opers, AI researchers, and administrators need to collaborate to develop 

high-impact AI applications and infrastructure required for successful utili-

zation. Successful AI model development will require correct study design 

determination, adequate sample sizes, appropriate variable use, and devel-

opment of complete data protocols. Models must also have abundant and 

easily accessible data to adequately serve diverse population demograph-

ics. AI model validation should be performed ideally through random-

ized clinical trials in diverse settings to ensure result reproducibility and 

model generalizability to various clinical settings and patient population. 

Researchers should ensure diversity in age, ethnicity, and gender in model 

validation and training datasets to develop widely applicable  models. 

Deployed models must also be continuously refined and trained with real-

time patient data.

Successful AI model utilization requires industry adoption and regulatory 

infrastructure development. Physicians should champion AI adoption, serve 

as subject medical experts to healthcare systems, and play leading roles in 

model development, validation, and implementation. Regulatory agencies 

should establish diagnostic standards and legal and ethical frameworks to 

ensure comprehensive model performance and security evaluation in real-

life clinical situations. ML model regulations have already initiated with the 

FDA’s “pre-certification” announcement in April 2018, which will intend to 

give certification to the technology developer rather than the product itself 

(Transforming FDA’s Approach to Digital Health, 2019).
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2.7  Real-Life Clinical Practice Applicability

AI-based systems have already made significant contributions to specific 

chronic disease management facets (e.g., management of diabetes with the 

use of insulin pump treatments). Significant potential already exists for clini-

cal DSSs that may be implemented in EMRs to assist with prescription medi-

cations and adhere to protocols and guidelines. ML models may also work 

in the background of EHRs to automatically collect variables and permit 

immediate risk score computations (Figure 2.2).

ML models integrated into EHR systems may serve as physician aids 

at the point of care. ML-based predictive tools can help immensely with 

chronic health disease evaluation, early diagnoses, and optimal treatment, 

thereby enabling access equality and democratization of health care. With 

future development, chronic disease management will become more effec-

tive, personalized, convenient, and efficient to pave the way for personalized 

medicine.

The healthcare industry is beginning to respond to AI’s promising busi-

ness potential. Multiple startup companies have claimed interests in the 

 business space:

◾ “Medial Early Sign” risk prediction algorithms were used in a 

645,000-prediabetes cohort and identified the top 20% high-risk popula-

tion. Of the subjects identified, 64% became diabetic within 12 months 

(Prediabetes to Diabetes Progression, 2017).

Figure 2.2 Diagrammatic representation of a diabetes prediction model that may be 
used with EHR systems to implement diabetes ML. These models may alert physicians 
to screen patients for diabetes based on individual risk probability.
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◾ “Base Health” is a population health software that analyzes at-risk 

population and identifies individuals at risk for chronic or acute medical 

conditions. The software claims to accurately predict the probability of 

42 common health conditions (Basehealth – Platform).

◾ Mayo Clinic has announced a 10-year partnership with Google with 

the aim of developing new healthcare delivery models using AI. Such 

collaboration between global leaders in healthcare and technology is a 

promising development and may accelerate the adoption of AI in solv-

ing the challenge of managing patients with chronic disease (Mayo 

Clinic selects Google as strategic partner for healthcare innovation, 

cloud computing – Mayo Clinic News Network).

2.8  Conclusions

AI technology in healthcare settings has made tremendous advancements to 

predict chronic health condition diagnosis and prognosis. They also have the 

potential to improve patient care by aiding physicians to rapidly understand 

large amounts of data for time-sensitive decisions. AI models will not replace 

physicians; however, they may improve physician performance for patients 

by augmenting accurate diagnosis, decreasing medical errors, saving fiscal 

and time resources, and improving the overall patient–doctor relationship. 

Despite the rapid pace of innovation and the hype of the benefits that AI 

technology offers, concerns remain regarding the ML system accuracy and 

reproducibility. Rigorous standards are required to address accuracy, bias, 

and safety concerns prior to ML’s industry-wide healthcare system imple-

mentation. Healthcare organizations, insurance providers, and government 

agencies should also maintain realistic perspectives about the risk-to-benefit 

ratios of ML system implementation. If authorities incentivize the develop-

ment and deployment of AI systems in the industry, its benefits may help 

immensely to improve patient outcomes, expand patient access, and reduce 

recurrent health expenditures
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3.1  Introduction

Drug discovery’s history goes back thousands of years (Ji, Li, and Zhang 

2009). Since the early civilizations, people learned to combat diseases with 

plants, animals or inorganic natural resources. Using Artemisia annua in 

old Chinese medicine for treating fever, using rose oil for aromatherapeutic 

treatments of heart conditions in traditional Persian medicine and leverag-

ing opium to relieve the pain in ancient Greece medicine are among the 

well-known examples of understanding miraculous power of natural-based 

resources (Willcox and Bodeker 2004; Mohebitabar et al. 2017; Norn, Kruse, 

and Kruse 2005). Through advances in chemistry, biology and physics, 
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people started to understand the real effective elements (small molecules 

and peptides) in those natural products which has been the basis of mod-

ern drug discovery (Eder, Sedrani, and Wiesmann 2014). Quinine extrac-

tion from the cinchona tree, penicillin extraction from Penicillium fungi, 

Artemisinin extraction from wormwood tree and morphine extraction 

from Poppy plants are some big discoveries of small molecules for medical 

 purposes (Gaynes 2017; Willcox and Bodeker 2004). However, the trial-an d-

error-based research for discovering these molecules has not satisfied the 

high demand for drug candidates.

3.2  High-Throughput Screening (HTS)

With advances in automation and new explorations in biotechnology and 

pharmaceutical sciences, drug discovery has entered a new era. Robots are 

able to screen thousands of compounds every day to find potent scaffolds 

(Li and Vederas 2009). Through more advances in chemical synthesis and 

high-throughput screening (HTS), synthetic compounds are being consid-

ered to replace natural product-based ones for many reasons; first, natural 

product-based compounds are very unfriendly to HTS. Second, their quan-

tities and concentrations do not reach the limit for automated screening. 

Third, they put animals and plants under extinction pressure. Moreover, 

synthesizing their structure is hard due to their high structural complexity. 

Lastly, they are cheaper to provide for early drug discovery. Therefore, 

companies and laboratories are switching to the screening of millions of 

 synthetic compounds instead (Amirkia and Heinrich 2015; Koehn and 

Carter 2005).

However, switching to synthetic HTS has adverse effects, which has led 

to transferring small molecule drug discovery to a non-profitable industry. 

Synthetic libraries lack diversity and complexity; consequently, their hit rates 

have been relatively low (hit is a candidate active compound). Second, the 

whole process is very time-consuming, labor-intensive and expensive (Li and 

Vederas 2009). Early-stage drug discovery would take up to 5 years which 

is frustrating and expensive (Strovel et al. 2004). Finally, there has been a 

real urge for new technologies to predict or generate new active molecules 

(Kennedy et al. 2008). Computer-aided drug discovery (CADD) has been a 

very popular area that has no need for actual cell or enzyme-based assays 

and is able to find potent hits using algorithm-based models. This method 
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decreases the time and money dedicated to potent hit discovery. The real 

challenge in this field would be the level of unfamiliarity that chemists and 

biologists have with computational sciences. Based on the size of the data 

generated in biomedical sciences every day, there will be a lot of unexplored 

potentials.

3.3  Virtual Screening (VS)

One important branch of CADD is virtual screening (VS). VS is a process 

to predict the potency of the compounds in inhibition of micro-organism 

or a molecule-based target like an enzyme (Rollinger, Stuppner, and Langer 

2008). Target-based (rational) VS and non-target-based (irrational) VS are 

two main fields of VS (Lionta et al. 2014; Ripphausen, Nisius, and Bajorath 

2011). Each of Target-based approach includes at least two main subsec-

tions: structural-based virtual screening (SBVS) and ligand-based virtual 

screening (LBVS) (Ripphausen et al. 2011). SBVS consists of any type of 

computer-aided prediction for compounds’ activity through inhibiting a 

molecular target with known 3D structure. Molecular docking is a popu-

lar example of SBVS (Huang, Shoichet, and Irwin 2006). It mostly consists 

of determining the binding affinity of the target and the ligand. The tar-

get would be any kind of biomolecule such as lipid, DNA and protein. 

The model can work with the simulation of interactions or complementary 

surface. On the other hand, LBVS mostly predicts compounds’ potency 

minimally by understanding the molecular patterns in the hits with mostly 

considering no information about the cell of interest. Cluster analysis (CA) 

would be a good example of the LBVS. Determining the similarity of the 

compounds is the basis of CA (Abramyan et al. 2016).

Both SBVS and LBVS have two important subsections: supervised and 

unsupervised approaches. If an approach needs specific labels with the 

data to use them for its simulation, it is supervised. On the other hand, 

some approaches do not need the data to be labeled. For instance, CA 

does not need any information regarding the target cell; instead, it works 

just with molecules structures and finds their level of similarity (Lo et al. 

2018).

At its core, VS uses a model to predict the interaction or properties of 

compounds. Similar to most of the predictive processes, two tasks need to 

be completed in order to make predictions from the input: feature extraction 
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and decision-making. At the feature extraction stage, the input is converted 

into feature vectors that can be high dimensional and/or large in size. The 

feature vectors are representatives of the input and describe the input within 

an n-dimensional domain. Having done so, a model learns to discriminate 

between the inputs based on their features to predict the desired proper-

ties and conclude the decision-making stage. While VS is often categorized 

into LVBS and SBVS groups based on the existence of targets, it is useful 

to study how different VS processes handle the feature extraction and deci-

sion-making stages. In the following sections, this comparison is shown by 

explaining two types of VS: fingerprint-based and deep feature-based VS.

3.4  Fingerprint-Based Virtual Screening

Molecular fingerprints are numeric arrays representing chemical compounds 

and structures. The first fingerprints were created to aid in searching chemi-

cal databases and were afterwards used in clustering and similarity search-

ing between molecules. They also proved useful in activity classification and 

VS; in fact, the predominant approach of extracting features from molecules 

is creating fingerprints. Fingerprints encode structural properties (such as 

connections and bond type), physical features (such as shape) and other 

expert-defined characteristics (such as electrostatics). Many variants of fin-

gerprints exist with a vast literature on how to define or modify them, with 

extended-connectivity fingerprint (ECFP) being one of the most commonly 

used fingerprints (Rogers and Hahn 2010). ECFP finds a sub-graph within 

the molecule and extracts features from the presence or absence of that 

sub-graph. The resulting fingerprint is easily interpretable as the existence 

of a specific section of the input molecule can be linked to its predicted activ-

ity, aiding in the identification of useful scaffolds. ECFP results in the same 

fingerprint for a given molecule regardless of the order of the atoms; this 

order invariance is a common characteristic of fingerprints. ECFP combines 

Morgan algorithm with a fast hashing scheme, resulting in a fingerprint that 

is rapidly computed in a short time, changing based on the given dataset, 

and contains a representation of sub-structures’ presence.

Using ECFP for VS, fingerprints of molecules are used as descriptors 

and then fed to a classifier. It is highly important to note that this results in 

dividing the feature extraction (creating fingerprints) and decision-making 

 (prediction bioactivity) stages. In the next section, the combination of two 

stages in deep learning is discussed.
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3.5  Automatic Feature Extraction via Deep Learning

For many years, artificial intelligence (AI) has been assisting with problem-

solving in the real world. The first generation of AI algorithms involved 

hard-coded instructions guiding the machine in making decisions. This was 

an attempt to force the machine to follow humans’ knowledge, resulting in 

an exponential increase in the number of needed instructions as the tasks 

became more complex. The following generation of AI tools abandoned 

instructing the machine and allowed the machine to learn to make deci-

sions. This era resulted in “machine learning” algorithms that excelled at 

being trained on featured datasets or structured data and learned to predict 

the outcome. However, the human was still in the loop with these algo-

rithms, extracting useful features from the data for the machine to learn 

from. Naturally, this involved human knowledge akin to human instructing 

the machine, controlling what the machine can learn from.

The latest generation of AI tools discards the featurization of the data and 

gives the task of feature extraction to the machine. This resulted in “deep 

learning” algorithms that simultaneously perform feature extraction and 

decision-making via training on raw data. Through learning, the machine is 

incentivized to learn features that are representations of the patterns existing 

in the data. While these features are similar to human-defined features in 

their descriptive form, they are more abstract and often harder to interpret. 

This complexity also comes with an advantage; the machine-leaned features 

often have a higher descriptive power. Evidently, given enough data, the 

machine can observe patterns within the data that humans are not able to 

identify, giving the machine an advantage in the given narrow task.

The changes in the AI algorithms and feature extraction affected the 

many fields that leveraged applied AI. The most noticeable change comes 

within the image domain, where the community collectively moved towards 

using deep learning’s autonomous feature extraction instead of hand-made 

features. The ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) 

has been an arena for the imaging community to illustrate the most accurate 

model in image recognition. In 2012, the first deep learning model submit-

ted to ILSVRC, AlexNet (Krizhevsky, Sutskever, and Hinton 2012), had the 

lowest error in identifying the image in its top-five predictions using deep 

learning, with a large gap in performance compared to the runner-up which 

used man-made features. This difference in performance gained the atten-

tion of the imaging community, resulting in nearly all the entries for the next 

year (2013) to be deep learning-based models.
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3.6  Deep Learning-Based Virtual Screening

While fingerprint-based VS is highly interpretable, it isolates feature extrac-

tion from classification. ECFP mimics the knowledge of human experts in 

the manner they view and describe the molecules: absence or existence of 

sub-graphs. This manner of feature extraction is similar to that of the imag-

ing community before adopting deep learning. On the other hand, deep 

learning has been used to automatically extract features from the input mol-

ecules (Figure 13.1).

In recent years, new architectures and methods have emerged that pro-

pose learning of molecule representations during training. These approaches 

use different deep learning models to automatically extract features from 

the input molecules, as seen in Figure 3.2. Deep learning approaches offer 

the privilege of highly non-linear features, i.e., “deep features”. These fea-

tures encode molecules different from the traditional fingerprint approaches, 

which are often not interpretable. Nevertheless, it has been shown that these 

features can result in better classification and generalization. Since molecules 

are inherently structured like graphs, graph convolutional neural networks 

(GCNNs) have been a dominant tool in that regard. A molecule is similar to 

a graph with atoms being nodes and bonds being the edges in the graph.

The authors in Duvenaud et al. (2015) trained a GCNN to learn finger-

prints similar to the ECFP concept during training. Kearnes et al. (2016) 

were able to extend graph convolutions via improving the input featurization 

stage. In the input featurization step, the molecules are converted to graphs, 

with two arrays recording the atoms and the bonds, respectively. Deep 

features might be perceived as a drastic step away from expert-defined fin-

gerprints; however, the subject matter expertise is still involved in the input 

Figure 3.1 Typical pipelines for VS using fingerprints versus using deep learning 
automatic feature extraction. (In deep learning models, feature representations and 
decision-making for classification are learned simultaneously during training.)
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Figure 3.2 Drug discovery – an expensive and tedious process. (Early drug discovery, 
excluding FDA approval, when companies, laboratories find hits and optimize them 
to the non-toxic, potent and stable leads. This process can cost up to $500 million. AI 
would decrease most of the costs including screening for potency, selectivity, micro-
somal stability, etc. Also, developing algorithms is way faster than wet lab screening.)

featurization stage and in creating the inputs for the deep learning model. 

One successful collection of deep learning tools would be the DeepChem 

repository (Ramsundar et al. 2019).

Allowing the deep learning models to derive information from the data 

also opens the possibility of using multiple datasets during training. One 

approach would be pretraining (Hu et al. 2019), using different datasets to 

train the network before the network is trained on a specific task. Pretraining 

allows the patterns and knowledge within the other dataset to be leveraged 

when learning from the main dataset. Another approach would be multitask 

learning, in which multiple tasks can be learnt at once. Since different tasks 

might rely on the same patterns within the molecules, multitask training can 

be helpful in finding those patterns simultaneously for a different task and 

may raise accuracy and generalization (Ramsundar et al. 2015).

3.7  Successful Examples

Since the last decade, many companies started using AI and many start-

ups have been founded based on related algorithms. The first example is 

Insilico Medicine, a newly founded company by developing drug discov-

ery engines. Their areas of interest are de novo drug design, AI applica-

tions in extending longevity, etc. (Zhavoronkov et al. 2019; Zhavoronkov 

and Mamoshina 2019). The second example is ReviveMed, a company that 

developed a machine learning-based algorithm to analyze the metabolomic 



62 ◾ Artificial Intelligence

data. They assert that uncovering the dysregulated metabolites is very 

important for understanding most of the diseases, and they develop their 

platform using AI and data from proteins, genes, drugs, etc. (Pirhaji et al. 

2016). Other companies like Cyclica and Atomwise are mostly focused 

on structure-based drug discovery. Cyclica has developed many AI-based 

platforms such as Ligand Express and Ligand Design to accelerate drug 

discovery at many levels (May 2019). The last example would be the model 

capable of predicting tuberculosis resistance to the ten first-line drugs. This 

model, which is developed in the Harvard University, is faster and more 

precise than old resistance detectors (Chen et al. 2019). AI applications in 

drug discovery would not be limited to biotech start-ups and companies. 

Academic laboratories would be the most suitable places for exploiting 

these tools. As it was asserted, the drug discovery process is very time-con-

suming and expensive. AI-based models would be the best alternative for 

those expensive approaches due to the financial restrictions in academia. 

These algorithms are cheap, rapid and easy to use. 

3.8  The Impact of AI in Drug Discovery, 
Future Perspective

Considering the efforts made in these areas, VS is not the first line for early 

drug discovery, and HTS is still the preferred approach to find the hits in 

spite of using VS as a helper. One reason would be the low accuracy of the 

mentioned models. Knowing that some of the revolutionary scaffolds would 

be missed using the computational approaches, few would put it in the 

first place. Therefore, new computational technologies and approaches are 

required to revolutionize the lagging field of CADD.

Based on many disciplines that have incorporated deep learning, it seems 

inevitable that drug discovery’s future will be influenced by deep learning 

too. One of the main challenges faced by deep learning in this field is the 

existence of a minimal number of publicly available datasets (Pérez-Sianes, 

Pérez-Sánchez, and Díaz 2016). The appearance of organized datasets for 

molecules such as MoleculeNet (Wu et al. 2018) provides hope this issue can 

be addressed. As we discussed, there are many known applications of AI in 

drug discovery such as target- or non-target-based VS, de novo drug design, 

metabolomics, and system biology. The pertinent aspect will be whether the 

actual question is solved by the use of AI. New and innovative approaches/
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algorithms such as transfer learning, unsupervised learning and GAN. 

Drug repurposing, drug interactions, the toxicity of molecules, microsomal 

activity, resistance emergence and target identification provide a good base 

for the appropriate questions to be addressed.

References

Abramyan, T. M., J. A. Snyder, A. A. Thyparambil, S. J. Stuart, and R. A. Latour. 
2016. “Cluster analysis of molecular simulation trajectories for systems 
where both conformation and orientation of the sampled states are impor-
tant.” Journal of Computational Chemistry 37 (21): 1973–1982. doi: 10.1002/
jcc.24416.

Amirkia, V., and M. Heinrich. 2015. “Natural products and drug discovery: a sur-
vey of stakeholders in industry and academia.” Frontiers in Pharmacology 6 
(October): 1–8. doi: 10.3389/fphar.2015.00237.

Chen, M. L., A. Doddi, J. Royer, L. Freschi, M. Schito, M. Ezewudo, I. S. Kohane, 
A. Beam, and M. Farhat. 2019. “Beyond multidrug resistance: leveraging rare 
variants with machine and statistical learning models in mycobacterium tuber-
culosis resistance prediction.” EBioMedicine 43 (May): 356–369. doi: 10.1016/j.
ebiom.2019.04.016.

Duvenaud, D., D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. 
Hirzel, A. Aspuru-Guzik, and R. P. Adams. 2015. “Convolutional networks on 
graphs for learning molecular fingerprints.” In NIPS’15 Proceedings of the 28th 
International Conference on Neural Information Processing Systems - Volume 2, 
2224–2232. 

Eder, J., R. Sedrani, and C. Wiesmann. 2014. “The discovery of first-in-class drugs: 
origins and evolution.” Nature Reviews Drug Discovery 13 (8): 577–587. 
doi: 10.1038/nrd4336.

Gaynes, R. 2017. “The discovery of penicillin—new insights after more than 
75 years of clinical use.” Emerging Infectious Diseases 23 (5): 849–853. 
doi: 10.3201/eid2305.161556.

Hu, W., B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec. 2019. 
 “Pre-training graph neural networks.” May. ArXiv, abs/1905.12265.

Huang, N., B. K. Shoichet, and J. J. Irwin. 2006. “Benchmarking sets for molecular 
docking.” doi: 10.1021/JM0608356.

Ji, H.-F., X.-J. Li, and H.-Y. Zhang. 2009. “Natural products and drug discovery. Can 
thousands of years of ancient medical knowledge lead us to new and pow-
erful drug combinations in the fight against cancer and dementia?” EMBO 
Reports 10 (3): 194–200. doi: 10.1038/embor.2009.12.

Kearnes, S., K. McCloskey, M. Berndl, V. Pande, and P. Riley. 2016. “Molecular 
graph convolutions: moving beyond fingerprints.” Journal of Computer-Aided 
Molecular Design 30 (8): 595–608. doi: 10.1007/s10822-016-9938-8.



64 ◾ Artificial Intelligence

Kennedy, J. P., L. Williams, T. M. Bridges, R. N. Daniels, D. Weaver, and C. W. 
Lindsley. 2008. “Application of combinatorial chemistry science on modern 
drug discovery.” Journal of Combinatorial Chemistry 10 (3): 345–54. doi: 
10.1021/cc700187t.

Koehn, F. E., and G. T. Carter. 2005. “The evolving role of natural products in 
drug discovery.” Nature Reviews Drug Discovery 4 (3): 206–220. doi: 10.1038/
nrd1657.

Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. “ImageNet classification with 
deep convolutional neural networks.”

Li, J. W.-H., and J. C. Vederas. 2009. “Drug discovery and natural products: end 
of an era or an endless frontier?” Science 325 (5937): 161–165. doi: 10.1126/
science.1168243.

Lionta, E., G. Spyrou, D. K. Vassilatis, and Z. Cournia. 2014. “Structure-based virtual 
screening for drug discovery: principles, applications and recent advances.” 
Current Topics in Medicinal Chemistry 14 (16): 1923–1938. doi: 10.2174/1568026
614666140929124445.

Lo, Y. C., S. E. Rensi, W. Torng, and R. B. Altman. 2018. “Machine learning in che-
moinformatics and drug discovery.” Drug Discovery Today 23 (8): 1538–1546. 
doi: 10.1016/j.drudis.2018.05.010.

May, M. 2019. “When there’s more than one way to target a cancer.” Nature 
Medicine 25 (8): 1181–1182. doi: 10.1038/d41591-019-00016-7.

Mohebitabar, S., M. Shirazi, S. Bioos, R. Rahimi, F. Malekshahi, and F. Nejatbakhsh. 
2017. “Therapeutic efficacy of rose oil: a comprehensive review of clinical evi-
dence.” Avicenna Journal of Phytomedicine 7 (3): 206–213. http://www.ncbi.
nlm.nih.gov/pubmed/28748167.

Norn, S., P. R. Kruse, and E. Kruse. 2005. “History of opium poppy and morphine.” 
Dansk Medicinhistorisk Arbog 33: 171–184. http://www.ncbi.nlm.nih.gov/
pubmed/17152761.

Pérez-Sianes, J., H. Pérez-Sánchez, and F. Díaz. 2016. “Virtual screening: a challenge for 
deep learning.” In, 13–22. Springer, Cham. doi: 10.1007/978-3-319-40126-3_2.

Pirhaji, L., P. Milani, M. Leidl, T. Curran, J. Avila-Pacheco, C. B. Clish, F. M. White, 
A. Saghatelian, and E. Fraenkel. 2016. “Revealing disease-associated pathways 
by network integration of untargeted metabolomics.” Nature Methods 13 (9): 
770–776. doi: 10.1038/nmeth.3940.

Ramsundar, B., P. Eastman, P. Walters, and V. Pande. n.d. Deep Learning for the Life 
Sciences: Applying Deep Learning to Genomics, Microscopy, Drug Discovery, 
and More. O’Reilly Media, Inc., Sebastopol, CA.

Ramsundar, B., S. Kearnes, P. Riley, D. Webster, D. Konerding, and V. Pande. 
2015. “Massively multitask networks for drug discovery.” February. ArXiv, 
abs/1502.02072.

Ripphausen, P., B. Nisius, and J. Bajorath. 2011. “State-of-the-art in ligand-based 
virtual screening.” Drug Discovery Today 16 (9–10): 372–376. doi: 10.1016/J.
DRUDIS.2011.02.011.

Rogers, D., and M. Hahn. 2010. “Extended-connectivity fingerprints.” Journal of 
Chemical Information and Modeling 50 (5): 742–754. doi: 10.1021/ci100050t.

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov


AI and Drug Discovery ◾ 65

Rollinger, J. M., H. Stuppner, and T. Langer. 2008. “Virtual screening for the discov-
ery of bioactive natural products.” In Natural Compounds as Drugs Volume I, 
211–249. Birkhäuser, Basel. doi: 10.1007/978-3-7643-8117-2_6.

Strovel, J., S. Sittampalam, N. P. Coussens, M. Hughes, J. Inglese, A. Kurtz, A. 
Andalibi, et al. 2004. Early Drug Discovery and Development Guidelines: 
For Academic Researchers, Collaborators, and Start-Up Companies. Assay 
Guidance Manual. Eli Lilly & Company and the National Center for Advancing 
Translational Sciences. http://www.ncbi.nlm.nih.gov/pubmed/22553881.

Willcox, M. L., and G. Bodeker. 2004. “Clinical review traditional herbal medicines 
for malaria.” doi: 10.1136/bmj.329.7475.1156.

Wu, Z., B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. 
Leswing, and V. Pande. 2018. “MoleculeNet: a benchmark for molecular 
machine learning.” Chemical Science 9 (2): 513–530. doi: 10.1039/C7SC02664A.

Zhavoronkov, A., Y. A. Ivanenkov, A. Aliper, M. S. Veselov, V. A. Aladinskiy, A. V. 
Aladinskaya, V. A. Terentiev, et al. 2019. “Deep learning enables rapid 
 identification of potent DDR1 kinase inhibitors.” Nature Biotechnology 37 (9): 
 1038–1040. doi: 10.1038/s41587-019-0224-x.

Zhavoronkov, A., and P. Mamoshina. 2019. “Deep aging clocks: the emergence 
of AI-based biomarkers of aging and longevity.” Trends in Pharmacological 
Sciences 40 (8): 546–549. doi: 10.1016/J.TIPS.2019.05.004.

http://www.ncbi.nlm.nih.gov


https://taylorandfrancis.com


67

Chapter 4

Mammographic Screening 
and Breast Cancer 
Management – Part 1

James Condon and Lyle Palmer
University of Adelaide

Contents

4.1  Introduction 68 ..............................................................................................

4.2  Breast Cancer 68 ...........................................................................................

4.3  Mammography and Population Screening 69 ..............................................

4.4  Artificial Intelligence and Mammography 73 ...............................................

4.5  History of Computer-Aided Mammographic Screening 74.........................

4.6  Deep Learning for Screening Mammography 76 .........................................

4.6.1  Current State of the Art 76 ................................................................

4.6.2  Triage 76............................................................................................

4.6.3  Cancer Detection 77 ..........................................................................

4.6.4  Density and Cancer Risk 82 ..............................................................

4.7  Challenges and Future Possibilities 82 .........................................................

4.8  Prognosis and Treatment Response 84.........................................................

4.8.1  Differentiating Ductal Carcinoma In Situ and Invasive 

Breast Cancer 84...............................................................................

4.9  AI for Breast Cancer Care 85 ........................................................................

4.10  Multi-Institutional Model Training 87 ...........................................................

4.11  Interpretability 88 ..........................................................................................

References 88 .........................................................................................................



68 ◾ Artificial Intelligence

4.1  Introduction

This chapter will introduce important epidemiology and principles of breast 

cancer and provide some background to screening mammography and its 

historical relationship with computation. Selected applications of artificial 

intelligence to screening mammography are then summarized before dis-

cussing challenges and possible future applications, including the improved 

assessment of prognosis and potential for robust predictive models.

4.2  Breast Cancer

‘Breast cancer’ denotes a common and important group of diseases 

which represent about one in four cancer deaths in women worldwide 

(BreastScreen Australia monitoring report, 2014–2015). Approximately one 

in eight women will be diagnosed with breast cancer at some point in their 

lives. The lifetime risk of developing breast cancer for a woman with a 

faulty BRCA1 or BRCA2 gene is approximately 70% (Cancer Australia, 2019). 

Comprehensive information on breast cancer risk factors (see Table 4.1) 

and their supporting evidence are available at Cancer Australia (2019). Early 

detection and treatment of breast cancer, when smaller and less likely to 

have spread to other parts of the body, is associated with longer survival 

(Saadatmand et al., n.d.). Delays in diagnosis and treatment are associated 

with worse outcomes (Rossi et al., 1990). More advanced cancers generally 

require more intensive treatments, and therapies for advanced cancer are 

associated with decreased quality of life (Paraskevi, 2012).

‘Breast cancer’ in fact represents a heterogeneous group of disorders. 

Not only can the breast cancer of one person be very different from that 

of another, but the cellular features and extent of one person’s cancer can 

vary over space and time (Pareja et al., 2017). There is a wide variation in 

patient age, comorbidities, overall general health, preferences, and priori-

ties. The treatment options and prognosis also vary considerably between 

patients. A multidisciplinary team of surgeons, medical oncologists, radiation 

oncologists, radiologists, cancer nurses, and others devise treatment options 

to offer a given patient after considering and discussing all factors known to 

affect prognosis and treatment. Specifically, the risk of metastases and local 

cancer recurrence are considered. In addition, hormonal status, evidence 

of cancer in axillary lymph nodes, and numerous histological features are 

examined to classify cancer and predict prognosis and treatment response. 
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Table 4.1 Risk Factors for Invasive Breast Cancer (Cancer Australia, 2019)

Age

Genetic factors (e.g., BRCA mutations)

Being overweight and obese

Alcohol

Smoking

Mammographically dense breasts

Higher socioeconomic status

Younger age of the first menstrual period

Later age when the first child was born

Not having had children

Later age menopause

Hormone replacement therapy

Ductal carcinoma in situ (DCIS)

Radiation therapy to the chest (for the previous cancer treatment)

Ultimately, patients choose combinations of treatment options based on the 

likely impact their cancer and the treatment will have on their quality of life 

and life expectancy, after advice from their treating team. For non-metastatic 

breast cancer, surgery remains the primary treatment for the majority of 

patients. Many patients choose to conserve as much healthy breast tissue 

as possible. Treatment must balance conserving healthy breast tissue and 

avoiding unnecessary intervention with removing all cancer and the associ-

ated risk of recurrence (Gradishar et al., 2018). ‘Adjuvant therapy’ refers to 

additional treatment(s) given after the removal of diseased tissue by surgery. 

Adjuvant therapies used to treat breast cancer include chemotherapy, radio-

therapy, and targeted therapy (e.g., Trastuzumab), and these are increasingly 

personalized (Chan et al., 2017).

4.3  Mammography and Population Screening

Mammography, from the Latin prefix ‘mamma-’ for female breasts and 

‘-graphy’ meaning something written or represented in a specific way, is 

the use of X-rays to image breasts and identify abnormalities, especially 
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cancer. It was first developed as a technique for mastectomy specimens in 

1913 (Gold et al., 1990). Today, mammography is used to screen asymptom-

atic women for breast cancer in many countries as well as to further assess 

screen-detected and symptomatic abnormalities. Typically, eligible women 

are invited to screen every 2 years. One examination consists of two differ-

ent views per breast (see Figure 4.1). The first trial of screening asymptom-

atic women for breast cancer with physical examination and mammography 

started in 1956 (Gershon-Cohen, 1961), detecting 92 benign lesions and 

23 malignancies (including six non-palpable cancers) after screening 1,312 

women. This demonstrated that screening could reveal asymptomatic can-

cers, allowing earlier treatment. At the time, some of these cancers were 

undetectable by any other method. Debate continues on the effectiveness 

of mammographic screening programs (Autier & Boniol, 2018). Largely cit-

ing observational and cohort studies, some authors examine the impact of 

screening programs on incidence and question whether reductions in rates 

of advanced breast cancer and rates of breast cancer deaths over time are 

more attributable to improvements in treatment and population demography 

(Møller et al., 2019). However, numerous randomized controlled trials have 

demonstrated significant reductions in breast cancer mortality for women 

aged 50–69 years (Strax et al., 1973; Tabár et al., 2011; Nyström et al., 2002; 

Bjurstam et al., 2003) and in women from age 40 (Moss et al., 2015). This 

Figure 4.1 Four images demonstrating mammography views and appearance of can-
cer. Images reproduced with permission from Ines Domingues. (a) Right craniocaudal 
(CC) view in a patient who went on to have further investigation and biopsy-proven 
cancer. (b) Left CC view in a separate patient assessed as normal, for routine follow-
up. (c) Right mediolateral oblique (MLO) view in another patient with biopsy-proven 
cancer. (d) Left MLO of normal breast (separate patient). (Images reproduced from the 
INbreast database with permission from Ines Domingues).
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relative reduction in the risk of dying from breast cancer is on the order of 

20%–30% over various follow-up periods ranging from 3 to 29 years (Tabár 

et al., 2011; Nyström et al., 2002; Bjurstam et al., 2003)). It is possible that 

longer studies may demonstrate a larger reduction over time. The World 

Health Organisation (WHO) has methodically examined the evidence of 

harms and benefits for organized population-based screening mammog-

raphy and made recommendations relative to the availability of resources 

and quality of the screening program, and by age group (WHO, 2019). For 

women aged 50–69 in well-resourced settings, WHO recommends popula-

tion-based screening (with conditions regarding cost, quality and assurance, 

shared decision-making, and respect for patient values and preferences, 

among others). Likewise, for women aged 40–49 and 70–75 with the proviso 

that the screening be in the context of rigorous research, monitoring and 

evaluation (WHO, 2019). The benefits of mammography screening pro-

grams include diagnosis of asymptomatic breast cancer, reduction in the risk 

of dying from breast cancer, and reduced risk of progressing to advanced 

breast cancer (Broeders et al., 2018; Moss et al., 2015). Benefits outweigh dis-

advantages including rates of overdiagnosis due to screening mammography 

and the anxiety of recall due to an abnormal examination (Moss et al., 2015). 

Estimates of number-needed-to-treat and relative risk reduction vary but can 

be approximated as follows. In women aged 50–74, eight deaths are pre-

vented for every 1,000 women screened every 2 years. Two to four episodes 

of screening in women aged 40–74 can reduce the risk of breast cancer 

death by 25%–31% (Tabár et al., 1985; Shapiro et al., 1985).

Abnormalities on mammograms often constitute a very small portion of 

the total image, approximately 2% of pixels. Around 0.5%–1% of asymptom-

atic women attending screening programs are found to have breast cancer 

(Lehman et al., 2017). The detection of cancer from screening mammogra-

phy therefore is a doubly imbalanced problem (rare in the cohort, rare in 

the image) and requires years of specialty training for human detection. The 

appearance of abnormalities representing cancer can be very subtle (see 

Figure 4.1a). Some cancers are mammographically occult, with no visible 

abnormalities at all. These can currently only be detected by other imaging 

modalities (e.g., ultrasound, magnetic resonance imaging) and comprised 

13.2% of all cancers in one study (Wu et al., 2019). The contour of masses 

found on mammography is highly correlated with the underlying pathol-

ogy, with clearly defined, well-circumscribed masses associated with benign 

abnormalities and indistinct or spiculated contours often representing cancer 

(Berment et al., 2014).
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Assessment of human radiologists’ performances for detecting signs of 

breast cancer varies widely in methodology and results (Carney et al., 2010) 

and is confounded by myriad variables. The experience of the radiologist 

likely affects performance metrics, with some data suggesting that sub-

specialist breast fellowship radiologists are more sensitive but less specific 

(Elmore et al., 2009). Barlow et al. (2004) in contrast found that neither a 

greater volume of examinations nor experience at interpreting mammograms 

was associated with improved performance. Studies assessing human per-

formance may exclude radiologists that do not meet an arbitrary threshold 

of volume of examinations (Lehman et al., 2017) and this, while necessary 

for adequate statistical power, may bias studies towards more experienced 

readers (when in actuality, other less experienced radiologists are assess-

ing mammograms). Other assessments have relied on participation of breast 

radiologists, which may also select for more confident, experienced radiolo-

gists (Carney et al., 2010). The number and qualifications of readers differs 

geographically (USA single reader, Europe double reader) and effects screen-

ing performance. The incidence of abnormalities in the given population 

affects the cancer detection rate (Evans et al., 2013).

The reported sensitivity of screening mammography for breast cancer 

detection ranges widely from 51.5% (Duijm et al., 2009) to 92.5% with speci-

ficity generally >88% up to 99.5% and significant interobserver variability 

(Elmore et al., 2009; Hofvind et al., 2012). The most comprehensive esti-

mated performance metrics are consistent with these ranges (see Table 4.2). 

Table 4.2 Estimates of Human Screening Performance

Abnormal interpretation rate (AIR) 11.6%

CDR (/1,000 exams) 5.1

Sensitivity 86.9%

Specificity 88.9%

False negative rate (/1,000 exams) 0.8

PPV (any abnormal interpretation, 
recommended for further evaluation)

4.4%

PPV (where findings were suspicious or 
highly suggestive of malignancy and 
biopsy recommended)

25.6%

PPV (biopsy performed) 28.6%

Examinations conducted 2007–2013 (Lehman et al., 2017).
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Table 4.3 Patient Characteristics Affecting Mammographic 
Appearance (Boyd et al., 2002; Stomper et al., 1996)

Age

Habitus

Hormone replacement therapy

Stage in menstrual cycle and menopausal status

Previous pregnancies

Past abnormalities and past surgery

Variability in cancer detection performance ultimately influences the ability 

of screening programs to reduce breast cancer mortality (Carney et al., 2010). 

Regarding image characteristics, the mammography system vendor and the 

specifications of the reading station introduce variability into the appearance 

of a mammogram. Patient characteristics bring a source of variation to the 

mammographic appearance of breasts (see Table 4.3). Variables such as the 

type, contrast, and lighting of the radiologists’ monitors and details of ambi-

ent light are stipulated in screening protocols.

4.4  Artificial Intelligence and Mammography

Artificial intelligence has significant applications to breast cancer screening 

for numerous reasons:

◾ Large total number of mammograms.

◾ Difficult, digitized visual detection task.

◾ Visual abnormalities can be classified based on their features.

◾ Variable human performance.

◾ Shortage of radiologists and breast radiologists.

◾ Early detection of breast cancer improves morbidity and mortality.

Many countries have national breast cancer screening programs that invite 

healthy middle-aged women without any breast symptoms to periodically 

undergo mammography. Mammograms, relative to other imaging modalities, 

therefore, constitute a large volume of images, and when developing classifiers 

with machine learning, the total number (n) of examples available for each 

given class is generally proportional to classifier performance. The technique 
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of acquiring mammograms transitioned from one requiring physical film to 

a digital technique around 2005, with about half of all images in the USA 

national screening program digitized by 2010 (Van Ravesteyn et al., 2015).

Considering mammograms and how they are acquired and interpreted, 

we have a task that:

◾ Is inherently digital.

◾ Consumes significant resources (financial, expertise, time, etc.).

◾ Has a large number of historical examples with ground truth 

supervision.

◾ Requires the identification of visual features.

◾ Ultimately requires a binary patient-wise decision to either

 a. Recall for further investigation.

 b. Continue screening at recommended interval.

◾ Is a classification decision and estimate of cancer probability signifi-

cantly based on visual features (like shape and contour) of any abnor-

malities present.

◾ Is subject to variable human performance.

◾ Contributes significantly to the timely diagnosis of breast cancer and 

therefore the associated morbidity and mortality.

It is therefore no surprise that screening mammography has been the subject 

of computational research for decades.

4.5  History of Computer-Aided 
Mammographic Screening

Winsberg was the first to take a computational approach to the detection 

of breast cancer in 1967 (see Figure 4.2) (Winsberg et al., 1967), and there 

have been hundreds of scientific studies since. Artificial neural networks 

have been utilized for this task since at least 1993 (Wu et al., 1993). While 

some suggest more than 20 layers to a CNN qualifies as ‘deep learning’ 

(Teare et al., 2017), there is not always a clear separation from older machine 

learning techniques. Studies relating to computer-aided diagnosis (CADx) 

and detection (CADe) in mammography and those using deep learning 

are heterogeneous in methodology and focus on different combinations 

of deep learning, fully automated and more traditional machine learning 

and hand-crafted approaches. As a result, the large volume of studies on 
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Figure 4.2 Three hundred and seventy kilogram Control Data Corporation (CDC) 
12-bit computer from the 160 series used in the early 1960s computational mam-
mography (Winsberg et al., 1967). (This image, which was originally posted to Flickr, 
was uploaded to commons using Flickr upload bot on 9 May 2012, 11:59 by Arnold 
Reinhold. On that date, it was confirmed to be licensed under the terms of the license 
indicated. This file is licensed under the Creative Commons Attribution 2.0 Generic 
license.)

computer-based methods for interpreting mammograms, either indepen-

dently or in conjunction with a human radiologist, cannot easily be sepa-

rated into traditional computer CADe/x and higher throughput machine and 

deep learning. It is clear, however, that DL methods are increasingly applied 

to the analysis of mammograms and have progressed computational mam-

mography significantly in recent years. There are a large volume of studies 

since 2017 alone. A comprehensive analysis of all applicable literature since 

1967 is beyond the scope of this chapter.

Computer-aided detection (CADe) refers to software designed to assist 

radiologists in identifying and locating abnormalities on medical images 

(Jalalian et al., 2013). In mammography, computer-assisted diagnosis (CADx) 

refers to systems that assist radiologists in assigning significance to either 

individual abnormalities or the whole image (Jalalian et al., 2013). These can 

be combined into a clinical workflow: mammographic images serve as input, 

abnormalities like masses and microcalcifications are detected, the likelihood 
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of malignancy is estimated, and areas of concern are visually flagged for the 

interpreter. Some systems serve as a whole-image checker, whereas others 

notate specific, abnormal areas. In the USA, the FDA-approved CAD in 1998 

and its use has been reimbursable since 2002. Seventy-four percent of US 

mammography interpretations involved CADx by 2010 (Kohli & Jha, 2018). 

These traditional CADe/x methods, which rely on a posteriori knowledge of 

appearance or combinations of features for the assessment of abnormality 

and estimation of malignancy, are largely regarded as unsuccessful (Kohli & 

Jha, 2018). This failure has been attributed to impractical computational cost, 

the large number of false positives (i.e., poor sensitivity) that cause the user 

to disregard all markings, and generally poor efficacy (Kohli & Jha, 2018), as 

well as negatively impacting radiologist reading time and introducing bias 

into their decision-making process.

...We believe CAD failed because of insufficient processing power 

and supervised learning.

Its widespread implementation unmasked the lack of its 

effectiveness.

(Kohli & Jha, 2018)

4.6  Deep Learning for Screening Mammography

4.6.1  Current State of the Art

Deep learning has been applied to screening mammography, with a rapidly 

growing body of scientific literature that suggests the field is on the cusp of 

prospective, clinical use. These applications can broadly be categorized into 

the following overlapping groups:

◾ Triage systems

◾ Cancer and abnormality detection

◾ Density and cancer risk assessment.

4.6.2  Triage

Around 99% of women who undergo screening mammography do not have 

malignant breast cancer. The vast majority of mammograms do not war-

rant any further investigation or change to the routine screening frequency 
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(2 – yearly in most countries) (Lehman et al., 2017). The following studies 

used deep learning to classify mammograms as effectively normal and can-

cer-free, and address the large total number and associated human workload 

of reviewing these mammograms. Importantly, any such triage system will 

have subsequent effects on the distribution of normal to abnormal images in 

the remaining mammograms and potentially on radiologists’ cancer detec-

tion rate, which warrant further study. Apart from reducing workload and 

burden on cancer screening services, a synthetically increased incidence of 

cancer in radiologist-reviewed datasets may increase the cancer detection 

rate (Evans et al., 2013).

Rodriguez-Ruiz et al. (2019b) used a proprietary deep learning model to 

assign a score from 1 to 10 representing risk of malignancy, iteratively test-

ing each score as a cut-off point for exclusion from human interpretation. 

They acknowledge that such a triage system requires further validation and 

balances reducing workload with risk of increasing false negatives relative to 

the chosen threshold for exclusion. Such a threshold could be chosen based 

on local practices and incidence of breast cancer, and could be integrated 

into a system where mammograms pre-screened as normal are single-read 

and others are double-read. The most feasible result was a cut-off score of 

two which resulted in a 17% workload reduction and exclusion of 1% of 

exams containing cancer (Rodriguez-Ruiz et al., 2019b).

Yala et al. (2019a) simulated the use of a deep learning model to tri-

age screening mammograms as cancer-free, also with a preset probabil-

ity threshold, and subsequent diversion from radiologist assessment. They 

demonstrated a human workload reduction of 19%, improved specificity, and 

non-inferior sensitivity. The authors recognized the limitations of their work, 

which included the use of data from a single institution and scanner manu-

facturer and the need for prospective external validation (Yala et al., 2019a).

4.6.3  Cancer Detection

A large number of studies have been published on the ability of deep learn-

ing models to classify mammograms into ‘cancer’ or ‘cancer-free’, although 

for some women, this is potentially an oversimplification of tumor biology 

(see the ‘Differentiating Ductal Carcinoma In Situ and Invasive Breast Cancer’ 

section). Regardless, diagnosis of cancer with a view to definitive treatment 

when suitable is obviously important. Broadly, deep learning approaches to 

cancer detection can be grouped into image-level classification (or classifying 

entire images) and object detection (or classifying abnormal image features 
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within an image) or a combination of the two (Wu et al., 2019; Bionetworks, 

2019). Some papers exclusively address ‘mass’ detection. Masses represent 

a subset of the mammograms of women with cancer, others having more 

subtle signs such as architectural distortion or clustered microcalcifications or 

no mammographically visible findings at all. Caution should be taken when 

comparing results across different datasets and given the variable attention 

to locating particular findings (like masses or architectural distortion). Also, 

stand-alone deep learning models are typically assessed with Area Under the 

Receiver Operating Characteristic Curve (AUROC), and human performance 

with sensitivity and specificity, which can be compared only by extrapolat-

ing one or more human metrics to a Receiver Operating Characteristic Curve 

(ROC) or selecting a specific  operating point for a deep learning model.

Wu et al. (2019), using a database of over 1 million mammography 

images, found that deep learning improves radiologists’ performance at 

breast cancer screening, when simulated retrospectively. They initially 

trained a fine-grained, auxiliary 256 × 256 patch-level classifier on pixel-

level annotations with ImageNet pre-trained weights and a DenseNet-121 

architecture. This model was then inferred on full images to create sepa-

rate heatmaps for benign and malignant lesions, then forming input chan-

nels on full image and patient-level classifiers. Image-level classifiers were 

based on a ResNet architecture variously combined into breast-level and 

patient-level models (see Wu et al. (2019) for further details). Tested on over 

14,000 screening episodes with an unadjusted incidence of abnormalities, 

their model was approximately as accurate as an experienced radiologist in 

detecting malignancy, with an AUC of 0.895. Importantly, they showed that 

the average of cancer probability of a human radiologist and of their deep 

learning model was superior to either method alone, the first research to 

demonstrate this. They extrapolate that radiologists and their deep learn-

ing model had learnt somewhat different aspects of mammographic cancer 

detection and that such a model could be used as a complementary second-

ary reader (Wu et al., 2019). Their model is available publicly (Nyukat, 2019).

Rodriguez-Ruiz et al. collected digital mammograms from nine datasets 

and seven countries across Europe and the USA, totaling 2,652 screening 

exams. Of these, 653 exams contained malignancies. The cumulative dataset 

consisted of mammography images, the assessment of a total of 101 radiolo-

gists, and the presence or absence of malignancy, as determined by either 

biopsy or at least 1 year of follow-up. For five of the nine datasets, radiolo-

gists’ assessments were a probability of malignancy (from 1 to 100), with 

the remainder as a Breast Imaging Reporting and Data System (BI-RADS) 
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score (American College of Radiology, 2013) (see Table 4.4). These were 

converted to a ROC by averaging each reader’s nonparametric curves along 

lines perpendicular to the chance line. For each dataset, sensitivity and 

specificity of radiologists assessment for malignant cancer were calculated 

with a recall threshold of BI-RADS score 3 (probably benign (American 

College of Radiology, 2013)) or higher. Radiologists and AI system sensitivi-

ties were compared with two-modality analysis of variance (ANOVA) at the 

same specificity level. With this methodology, demonstrating the challenges 

in comparing AI with human performance, the human AUC was 0.814, and 

proprietary AI system was 0.840 (Rodriguez-Ruiz et al., 2019).

Table 4.4 Breast Imaging Reporting and Data System (BI-RADS), American 
College of Radiology (Ribli et al., 2018)

Assessment Management Likelihood of Cancer

Category 0: Incomplete – 
need additional imaging 
evaluation and/or prior 
mammograms for 
comparison 

Recall for additional 
imaging and/or 
comparison with prior 
examination(s)

N/A

Category 1: Negative Routine mammography 
screening 

Essentially 0% likelihood 
of malignancy

Category 2: Benign 

Category 3: Probably 
benign

Category 4: Suspicious
Category 4A: Low 
suspicion for malignancy 

Category 4B: Moderate 
suspicion for malignancy 
Category 4C: High 
suspicion for malignancy 

Category 5: Highly 
suggestive of malignancy

Category 6: Known 
biopsy-proven 
malignancy 

 Essentially 0% likelihood 
of malignancy

>0% but ≤2% likelihood 
of malignancy

> 2% but < 95% likelihood 
of malignancy 

> 2% to ≤ 10% likelihood 
of malignancy 

> 10% to ≤ 50% likelihood 
of malignancy 

> 50% to < 95% likelihood 
of malignancy

≥95% likelihood of 
malignancy

N/A

Routine mammography 
screening

Short-interval (6-month) 
follow-up or continued 
surveillance 
mammography 

Tissue diagnosis (biopsy)

Tissue diagnosis

Surgical excision when 
clinically appropriate 
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Kim et al. (2018) aimed to develop an algorithm that could discriminate 

cancer from normal cases based on raw images without annotation. They 

analyzed a total of 29,107 digital screening episodes, each consisting of four 

standard views. Of these, 4,399 cases or 14.9% had pathology-confirmed 

cancers. There were 3,101 cancer cases versus 23,530 normal cases in the 

training set (13.2% cancer). Equal numbers of cancer and non-cancer cases 

were used for cross-validation and test sets. Women with mammograms 

assigned a BI-RADS score of 2 through five (including ‘probably benign’, 

‘suspicious’, and ‘highly suspicious for malignancy’), where pathology was 

non-cancerous, were excluded. The training, validation, and test datasets 

were evenly distributed in age, breast density, manufacturer, cancer type 

(invasive, non-invasive), feature, and mass size (≥ or < 20 mm) to control for 

selection bias. Cancerous features were mass (54%) and microcalcifications 

(45%), focal asymmetry (10.7% of cancers), and distortion (2.3% of cancers). 

Results were a test-set AUC for cancer/non-cancer of 0.906 and F1 score of 

0.81. Sensitivity was not affected by density (with statistical significance – 

p = 0.3); however, specificity and accuracy decreased with increasing density 

(p < 0.06 and 0.02). Importantly, they demonstrate statistically differing model 

sensitivity and specificity per manufacturer (see Table 4.5), despite random 

perturbation of pixel intensity contrast and brightness (±10%) during train-

ing, indicating that the distribution of manufacturers in any training set may 

affect diagnostic performance.

As part of a DREAM challenge, Nikulin first trained a 224 × 224 patch-level 

model using five labels on Digital Database for Screening Mammography 

(DDSM (Lee et al., 2017)) data:

◾ 0 – healthy tissue, the patch is randomly selected from a healthy breast 

image.

◾ 1 – calcification benign.

◾ 2 – mass benign.

Table 4.5 Kim et al. (2018) Deep Learning Differentiation of Normal versus 
Cancerous Mammograms; Test Set Results by Vendor

Manufacturer Sensitivity (%) Specificity (%) Accuracy (%) AUC

GE 74.6 89.1 81.9 0.910

Hologic 67.0 92.1 82.4 0.880

Siemens 88.8 61.7 83.0 0.888
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◾ 3 – calcification malignant.

◾ 4 – mass malignant.

This model was then incorporated into an image-level classifier and fine-

tuned (additional training of parameters). With ground truth based on a 

tissue biopsy within 1 year of the given screening exam, their result in 

classifying exams into cancer or cancer-free in the challenge was an AUC 

of 0.874. Nikulin concludes that depth (or the number of layers of a neural 

network) is better than width (or the nodes per layer) and identifies that, 

compared to problems generating much of the theory and practice of com-

puter vision like ImageNet, objects for detection in screening mammography 

are much smaller and have less components (Bionetworks, 2019).

Ribli et al. published an independent model trained on both INBreast and 

DDSM, and achieved the second place in the DREAM mammography chal-

lenge. Their model was pre-trained on ImageNet and re-trained on DDSM 

and their own Semmelweis University dataset of 11,300 images. Results were 

an AUC on INBreast of 0.95 and an AUC of 0.85 on the dream dataset (Ribli 

et al., 2018). A demonstration version of this model is available at GitHub 

(https://github.com/riblidezso/frcnn_cad).

Kyono et al. (2019) present a model primarily for cancer detection, that is 

also capable of and tested as a triage system. They utilize multi-task learn-

ing, whereby additional labels (target variables or) were used in addition 

to the binary outcome of core biopsy or surgical specimen-proven cancer 

to assist network regularization and overall performance. There were five 

auxiliary labels: ‘sign’, ‘suspicion’, ‘conspicuity’, breast density (per radiologist-

assessed percent density), and age (where ‘sign’ was the abnormal finding, 

e.g.,  ‘spiculated’, ‘microcalcification’; suspicion was one of ‘normal’, ‘benign’, 

‘probably benign’, ‘suspicious’, and ‘malignant’; and ‘conspicuity’ was one of 

‘not visible’, ‘barely visible’, ‘visible, not clear’, and ‘clearly visible’). Using four 

views from 1,000 randomly held out test set, their model achieved an AUROC 

of 0.791 for cancer detection. They demonstrated that multi-task labels, test-

time augmentation, and multiview inputs all improved performance. As a 

triage system, their model was able to reduce radiologist examinations by 

42.8% while improving the overall diagnostic accuracy (Kyono et al., 2019).

All methodological issues and difficulties comparing human and machine 

performance considered, deep learning appears to currently achieve ret-

rospective results at least approximating human performance. For further 

overview of the use of artificial intelligence including deep learning for 

mammography, the reader is referred to reviews by Hamidinekoo et al. 

https://github.com
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(2018), Houssami et al. (2019), Abdelhafiz et al. (2019), Gao et al. (2019), 

Harvey et al. (2019), and Geras et al. (2019).

4.6.4  Density and Cancer Risk

Breast density is associated with higher risk of breast cancer, although 

the degree of relative risk increase varies across the literature. Assessment 

of density is variable across computational methods, human radiologist 

assessment, and its correlation with breast cancer (Destounis et al., 2017). 

Screening programs may or may not notify women with high density, with 

38 states in the USA recently legislating mandatory notification (Keating & 

Pace, 2019). Density is thought to confer increased risk via two mechanisms:

 1. Dense breast tissue can have the effect of masking cancerous lesions.

 2. Women with dense breasts have relatively more tissue from which 

 cancer can generate (Kerlikowske & Vachon, 2016).

There is currently limited evidence about the most appropriate screening 

interval or course of action given a Gaussian distribution of breast density 

(Keating & Pace, 2019).

Yala et al. (2019b) compared image-only and an image plus traditional risk 

factors (hybrid) deep learning models with logistic regression of traditional 

risk factors and the Tyrer-Cuzick (TC) model using 39,558 women. These 

risk factors included breast density, age, weight, height, age at first menstrual 

period, menopausal status, hormone replacement therapy, BRCA gene status, 

past history of ovarian cancer and breast biopsy, family history, and Ashkenazi 

inheritance. Data included 1,821 patients with a diagnosis of invasive breast 

cancer or DCIS within 5 years from baseline imaging. They found superior 

performance of the hybrid model with an AUC of 0.70 (95% CI 0.66–0.75). An 

image-only model resulted in an AUC of 0.68 (95% CI 0.64–0.73). Traditional 

risk factor logistic regression and the Tyrer-Cuzick model were performed at 

AUCs of 0.67 (95% CI 0.62–0.72) and 0.62 (95% CI 0.57–0.66), respectively.

4.7  Challenges and Future Possibilities

The direct comparison of different machine learning-based models for 

screening mammography is difficult due to heterogeneity in the datasets 

used to train the models, image sizes, architecture of the neural network, 
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and variation in ‘ground truths’ used to develop and test them, as well as 

variation in mammogram acquisition and the prior incidence of cancer. 

Some models attempt to classify at an image level and some at a patient 

level with or without methods to detect regions of interest for various abnor-

malities (e.g., masses or architectural distortion). Some studies apply these 

techniques to relatively small public datasets and others to large private data-

sets, all with variation in mammography system vendors, which contribute 

fundamentally to image acquisition. There is diversity in preprocessing meth-

ods, integration of the four views (and where in the model this occurs), and 

use of non-imaging demographic features. There is also variability in the use 

of screen film versus digital mammograms during training and validation 

although some studies successfully apply models trained on film mammo-

grams to full-field digital mammograms with fine-tuning (Bionetworks, 2019; 

Shen et al., 2019).

Currently, most published literature in the field relies on supervised 

methodologies, those with a definitive ‘label’ (‘target’ or ‘y’). These are 

 typically in the forms of human assessment of likelihood of malignancy 

from mammograms (BI-RADS score (American College of Radiology, 

2013) – see Table 4.4) or other images, or pathological examination 

 (macroscopic and microscopic). In practice, some cancerous tissue is 

required to confirm the presence of cancer with microscopy and staining 

and tissue processing techniques. This tissue may be obtained with various 

biopsy methods including a fine-needle aspiration, core biopsy, and open 

biopsy by a surgeon.

A biopsy specimen can be a subsample of the whole population of tumor 

cells and the tumor microenvironment which may be significantly different 

to non-biopsied tumor foci (Sinha & Piwnica-Worms, 2018). Non-invasive 

image-based analysis of tumor prognostic features would be especially 

useful for multifocal and heterogeneous tumors and metastases, which are 

only partly sampled with biopsy (Lubner, 2019). In addition to intratumoral 

heterogeneity, the accuracy and precision of hormone receptor assays may 

vary depending on the cancerous tissue specimen (core biopsy, open biopsy, 

mastectomy) and its preparation (Arber 2002; Goldstein et al., 2003; Wood 

et al., 2007; Mann et al., 2005

Given variability in both pathological and radiological assessments, 

‘ground truths’ incompletely capture the complexity of tumor features, some 

of which may be important for prognostication (e.g., differentiation of DCIS 

and IBC). Models that map inputs to these ‘ground truths’ may have a degree 

of dependency on local idiosyncratic data, features and their distributions, 
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and potentially, limited generalizability rather than comprehensive coverage 

of true biological signal.

Due to this heterogeneity, the field has struggled with replication. The 

effect that local variables have on generalizability to external validation data-

sets and the magnitude of accuracy increases with larger multi-institutional 

datasets are areas in need of further research.

4.8  Prognosis and Treatment Response

With accumulating retrospective data, AI has the potential to reduce the 

financial and clinician strain on screening programs, more accurately predict 

breast cancer prognosis and treatment response, and, in doing so, lead to 

better health outcomes and reduce healthcare costs. Accurately predicting 

risk of cancer recurrence, for example, is of great need. More accurate infor-

mation about prognosis enables better selection of therapies and avoidance 

of unwarranted treatment complications and toxicities. There is a growing 

body of literature around predicting prognosis or prognostically impor-

tant features with AI. Some authors suggest that the combination of patient 

genome and phenotypic data might be used for calculating risk of recur-

rence (Crivelli et al., 2018). Studies have examined the ability of machine 

learning to predict response to neoadjuvant chemotherapy and axillary 

lymph node metastases (Cain 2019, Dihge 2019, Wu 2014, Ha 2018).

4.8.1  Differentiating Ductal Carcinoma In 
Situ and Invasive Breast Cancer

There is considerable scientific literature addressing the potential for overdiag-

nosis in mammography screening (Autier et al., 2017 and Welch 2016). Since 

the advent of population-based screening, ductal carcinoma in situ (DCIS), a 

non-obligate precursor to invasive breast cancer, has comprised an increasing 

portion of screen-detected lesions (Sinha & Piwnica-Worms, 2018). Reflecting 

some uncertainty around potential for invasion, patients with screen-detected 

DCIS receive a wide range of primary and adjuvant treatments that vary 

according to the treating clinician and locality (Francis et al., 2015b). Estimates 

are that up to 85% of women with DCIS and no components of invasive 

breast cancer will never progress to an invasive form (Cowell et al., 2013; 

Elshof et al., 2015). There are several ongoing trials aiming to assess outcomes 

in women with DCIS treated with monitoring and adjuvant therapy versus 
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those treated surgically (Elshof et al., 2015; Francis et al., 2015a), (Youngwirth 

et al., 2017). Choosing no treatment for DCIS may be completely appropriate 

for a 90-year-old woman and entirely inappropriate for a 30-year-old woman. 

The ideal, therefore, is to accurately differentiate pure DCIS (which might 

be safely monitored) and invasive breast cancer, which needs treatment and 

can be potentially fatal (Toss et al., 2017). This is difficult for several reasons; 

the underlying lesion may have a complex distribution of invasive and in 

situ components (see Figure 4.3), and biopsies can be challenging (when the 

tumor cannot be palpated, relying on image guidance) and sample a finite 

amount of the tumor, which may not contain the invasive component. About 

25% of women with a biopsy showing DCIS go on to have a mastectomy that 

contains invasive breast cancer. There is a potential role for convolutional 

neural networks in predicting which patients have pure DCIS and which have 

DCIS with invasion (Mutasa et al., 2019). The diagnostic differentiation of pure 

DCIS from a tumor with any form of invasion is crucial for accurate progno-

sis. This differentiation already has significant impact on treatment decisions 

and may be even more significant, depending on the results of ongoing trials, 

(Youngwirth et al., 2017). If deep learning models can realize more accurate 

differentiation of pure DCIS compared to invasive breast cancer, in concert 

with longitudinal studies, this could help reduce any over-investigation and 

overdiagnosis associated with screening mammography.

4.9  AI for Breast Cancer Care

The holy grail in artificially intelligent breast cancer informatics is a hospital- 

or district-wide system that takes as preoperative input, for each patient, 

a variable length and mix of genotypic and phenotypic data (potentially 

including demographics, history, multiple imaging modalities, and histo-

pathological images and results) and outputs computed probabilities of 

hormone receptor status, histological subtype, axillary disease, recurrent 

surgery, long-term tumor recurrence, metastases, response to various treat-

ments, and overall and disease-free survival. The metrics of these risks could 

then be updated with intra- and post-treatment data. Such a system would 

be somewhat dependent on casemix and volume of retrospective patient 

data, based on current methodologies, and there are therefore challenges 

with the external validation of these models as well as the application of 

supervised machine learning techniques to brand-new therapies. The per-

formance of such a multimodal deep learning model, in terms of calibration 
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Figure 4.3 Schematic representation of potential spatial relationships between 
synchronous DCIS and invasive carcinoma. This information is reproduced with the 
permission of Cancer Australia.

with outcome predictions, could be monitored over time and re-trained as 

needed. The technical, human resource, and IT infrastructure requirements 

for such a persistent, multimodal model are considerable.
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4.10  Multi-Institutional Model Training

A large mammography dataset by current standards (e.g., 1 million uncom-

pressed, high-resolution full-field digital mammographic images) can require 

in the order of 50 TB of hard-drive storage. Previous work has demonstrated 

that best cancer classification results are achieved with full high-resolution 

images, in contrast to non-medical image classification where objects (‘dog’, 

‘cat’, ‘car’, etc.) are relatively coarse and images are routinely downscaled 

for computational efficiency (Geras et al., 2017). Therefore, computational 

capacity and data storage can become significant limitations, but potentially 

mean that better results are to come, with larger datasets at original reso-

lution. Any one institution has a finite population and number of annual 

mammographic examinations. There is a low incidence in screening popula-

tions, and large volumes of cancerous examples are required to train deep 

learning models. More data generally confers more accurate models. Given 

this, a single institution will have a finite number of cancerous examples 

and models may improve accuracy with larger effective training dataset 

sizes. With the advent of distributed or federated training platforms (Getting 

started with distributed data parallel, 2019), multiple institutions could syn-

chronously train a collective deep CNN, each using their own data, with 

periodic weight updates set every n epochs (Chang et al., 2018). In this way, 

institutions contribute data to model training, without data ever having to 

leave the institution (providing adequate computational resources). This 

leaves data in the hands of custodians and avoids issues around security 

and patient privacy. The technical challenges of such a project including the 

overhead and runtime impact of weight updates and the context of large 

images (20 million pixels) are significant. Sound planning and integration of 

distributed deep learning software could lay the path for future re-training 

and calibration. At the time of writing, the only example of this applied to 

mammography, in our knowledge, is a simulation study (Chang et al., 2018), 

rather than real-world, multi-institutional collaboration. Alternatively, images 

themselves could be collaboratively stored in some central data warehouse 

for subsequent model training. With such aggregation, the noise of idiosyn-

crasies like scanner manufacturer and subtle acquisition artifacts could be 

‘learnt’ better, theoretically enabling greater accuracy and detection of ‘true’ 

cancer biology signal. High vendor noise could be critical, for example, in 

the event that a screening service adopts predictions of a model sensitive to 

vendor noise and then changes vendors. Regardless, the asymptotic accuracy 

of deep learning cancer detection with mammography would be limited by 
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the absence of visual features in a significant portion of cancers (in the order 

of 13.2% in one reader study including DCIS (Wu et al., 2019)).

4.11  Interpretability

We do not wish to penalize the machine for its inability to shine 

in beauty competitions, nor to penalize a man for losing in a race 

against an aero plane.

Alan Turing, Computing Machinery and Intelligence (1950)

The black-box problem of deep learning is increasingly described and 

refers to the difficulty in rationalizing model output with human-readable 

explanations (Ribeiro et al., 2016). Some degree of interpretability may 

be important for trust and is important for adoption of deep learning 

models, but complete interpretability assumes no gap between what is 

human-readable and machine-readable. Having already developed models 

superior to humans in multiple tasks, we may continue to do so beyond 

human cognitive capacity and develop models not able to be completely 

interpreted by one human. Understanding and explanation are not binary. 

If AI models can safely improve sensitivity and specificity with transpar-

ent development and consideration for patient privacy and ethics, then our 

capacity to entirely introspect and comprehend their millions of param-

eters may be inconsequential. However, solutions and new approaches to 

the black-box problem continue to improve our ability to interpret models, 

and these have been useful in mammography. Various saliency maps and 

visualization techniques have been used to highlight areas of the image 

that are important for classification (Geras et al., 2019), some successfully 

incorporating region of interest-level heatmaps into model input. Some 

suggest that as interpretability improves, trained models may be used as 

knowledge discovery tools able to learn and potentially communicate 

(or ‘teach’) features correlated with diagnoses or prognoses to their human 

users (Geras et al., 2019).
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5.1  Introduction

The anatomy of the breast is relatively simple compared to other anatomic 

areas. Parenchyma and fat make up most of the image on a mammogram. 

Additional common findings are various types of calcifications, skin and 

lymph nodes. This relative simplicity makes the breast a great starting point 

for the emergence of artificial intelligence (AI) algorithms as a first-line 

diagnostic tool that can potentially completely answer the clinical question 

being asked by the physician ordering the screening mammogram. Other 

emerging clinical algorithms can also identify a significant finding such as 
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the presence of blood on a CT scan of the brain (Halon, 2015), but detecting 

that finding alone does not come close to a complete report for the CT brain 

scan. There are many other pathologies in the brain such as a stroke that 

would need to be commented upon for the study report to be complete. A 

breast cancer detection algorithm has the potential of producing essentially 

a complete report for the screening mammographic study, remembering, 

however, that the decision to proceed with a biopsy to prove cancer is made 

by a radiologist after additional diagnostic mammogram views and/or ultra-

sound are completed.

The question being asked by the clinician who orders a screening mam-

mogram is relatively straight forward: Is there cancer? While other processes 

may be present, such as a breast cyst, the point of doing the screening 

mammogram is to answer “MAYBE” or “NO” to the question of cancer 

presence on the images. Indeed, every screening mammogram dictation 

finishes with a very brief summary that is a BI-RADS code. For a screening 

exam, the final report summary is either a BI-RADS 0,1 or 2. A “MAYBE” 

answer results in a BI-RADS 0 summary score which means the evaluation 

of the breast is incomplete as there may be a malignancy present. This score 

leads to the patient being called back for additional diagnostic mammogram 

views and/or targeted ultrasound to determine if a biopsy is indicated. A 

BI-RADS 1 (negative findings) or 2 (benign findings) summary score means 

the patient needs no further workup as no areas suspicious for cancer 

are detected. If the design of the algorithm can be focused and limited to 

detecting the morphologic changes that it has been taught are associated 

with malignancy, then it can potentially satisfy the clinical mission of the 

screening mammogram study.

Humans do their best at trying to answer this “MAYBE” or “NO” ques-

tion when reading mammograms. Unfortunately, human performance is 

at times unacceptable. Recent retrospective studies have shown that up to 

35% of interval cancers (cancers that were newly discovered on a screen-

ing mammogram) were present on the prior screening mammograms but 

were missed by the prior human reader (Hofvind et al., 2005; Hoff et al., 

2012). This is a very high and unacceptable percentage. The radiologist who 

is looking at large volumes of mammograms every day needs to rely on 

their powers of recognition to see these cancers. This is an intuitive process 

that is also described as fast, type I thinking. They literally have seconds 

for this noncognitive function to happen or not happen. Being distracted 

or fatigued can contribute to human errors. These human errors can have 

fatal consequences. While the adoption of digital breast tomography (DBT) 
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has improved the cancer detection rate and reduced the recall rate, the 

extra time needed to view 300 images versus the 4 images from a 2D digital 

mammogram has added additional pressures on the busy radiologist working 

under time constraints.

Interestingly, radiologists in the USA have been looking at computers to 

help them find breast cancer on screening mammograms for some time. It 

has been estimated that over 83% of the mammograms read in the USA have 

had some form of non-AI computer-assisted diagnosis (CAD) program ret-

rospectively checking the images for cancer (Lehman et al., 2015). At these 

levels of usage, the practice is basically the standard of care. This adop-

tion occurred even though the benefit of non-AI CAD was far from clear 

with some studies actually showing the sensitivity for detecting cancer with 

non-AI CAD was significantly lower than the sensitivity for cancer detection 

without non-AI CAD (Fenton, 2015). So clearly the need for computer assis-

tance has been understood and sought for some time, even when the actual 

CAD performance was not functionally helpful.

5.2  AI-Enabled CAD

This brings us now to the current disruptive force of the new AI-based CAD 

algorithms being rapidly developed by multiple research teams. Companies 

such as Enlitic, Zebra Medical and Qure ai are releasing very focused algo-

rithms to detect multiple different pathologies. New breast cancer AI algo-

rithms are rapidly being developed for detecting breast cancer on screening 

mammography by companies such as iCAD and CureMetrix. These devel-

oping algorithms appear to be able to perform at a level equal to or above 

their human counterparts. One recent study showed the AI system for 

breast cancer detection had an AUC higher than 61.4% of the radiologists 

(Rodriquez-Ruiz et al., 2019). Another study showed improved radiologist 

performance for detecting breast cancer on mammograms when using an AI 

computer system for support (Rodriquez-Ruiz et al., 1918). In a recent litera-

ture review of 60 studies that compared the diagnostic performance of deep 

learning models to their human counterparts for detecting a wide range of 

pathologies, Liu et al. found little difference in the overall performance in 

the sensitivity and specificity between AI platforms and physicians (Liu et al., 

2019). The authors did note, however, that less than half of the studies had 

undergone out-of-sample external validation to see how performance would 

transfer to other patient populations or working environments.
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Again, these algorithms typically look for only one finding, such as a 

pulmonary nodule or intracranial hemorrhage. For a chest CT therefore, 

current algorithm performance does not come close to providing a complete 

clinical interpretation of the CT scan as it is looking for only one finding 

when many findings need to be excluded. In the case of screening mam-

mography, however, identifying the single finding of cancer is essentially all 

that is needed to answer the key clinical question being asked by the clini-

cian ordering the imaging study. This dramatic potential has resulted in the 

release of several first-line clinical AI tools that now have FDA approval for 

screening mammography. These breast cancer algorithms have performance 

metrics similar or superior to comparison human metrics.

5.3  ProFound AI

To illustrate the current status of what a radiologist can expect from com-

mercially available AI systems, we will look in detail at a recent FDA-

approved AI CAD called ProFound from iCAD. Interestingly, Forbes 

magazine called the release of ProFound one of the most significant AI 

events of 2018 (Tom, 2018). At the end of 2018, ProFound was granted FDA 

approval as the first commercially available AI CAD system for breast cancer 

detection and localization on screening DBT. This algorithm was approved 

for screening mammography use only. For clinical use by a radiologist, 

ProFound functions by placing a “mark” on any area that it recognizes as 

having features similar to the cancer cases that the algorithm was trained 

on (Figure 5.1). The identified area also receives a “confidence” score of 

between 0 and 100 that reflects the percentage of cancers in the training 

cases that had similar features to the identified and now marked finding on 

the screening mammogram.

A confidence score of over 60 is typically considered to be a significantly 

suspicious finding (Figure 5.2). However, cancer can still be present with a 

confidence score below that cut-off number. It is still up to the interpret-

ing radiologist to review the marked findings and make the final call as to 

whether or not the patient will need further study with diagnostic mammo-

grams. An overall case score is also generated by ProFound that reflects the 

likelihood that there is cancer included on the images as a whole. ProFound 

was also approved for “concurrent viewing” which means that unlike prior 

CAD systems, the marks are placed on the study when it is first opened. 

Prior CAD systems could only be used after the initial human review of the 
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Figure 5.1 Architectural distortion in breast detected by AI. (iCAD.)

Figure 5.2 Grouped calcification in breast detected by AI. (iCAD.)

images was completed. This adds a new dimension to the radiologist’s over-

all workflow that can potentially influence how a radiologist approaches the 

interpretation process.

ProFound was trained on over 12,000 DBT cases that equaled over 

3.5 million individual images. The training cohort was enriched with a total 

of 4,000 cancer cases. The validation reader study used for FDA approval 

was published in September 2019 (Conant et al., 2019). The reader study 

was a multi-reader, multi-case, cross-over design. Twenty-four experienced 

radiologists reviewed 260 cases with and without AI during two separate 

reading sessions that were separated by at least 4 weeks. The case dataset 

was cancer enriched and included 66 biopsy-proven malignancies and 65 

biopsy-proven benign lesions. Endpoints included an overall performance 
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for detecting cancers (AUC), sensitivity, specificity, recall rates in non-cancer 

cases and reading times.

Radiologist performance for the detection of malignant lesions, measured 

by mean AUC, increased from 0.795 without AI to 0.852 with AI. Sensitivity 

increased from 77% without AI to 85% with AI. Specificity increased from 

62.7% to 69.6%. And reading time decreased by a whopping 52%. And 

the recall rate for non-cancers decreased from 38% without to 30.9% with 

ProFound AI. The authors concluded, “this study suggests that both improved 

efficiency and accuracy could be achieved in clinical practice using an effec-

tive AI system”. Performance plots (Figures 5.3 and 5.4) graphically show 

the changes in the radiologist’s performance when interpreting mammo-

grams with and without ProFound. Note the more uniform performances 

with improved metrics causing a collective shift to the upper left corner of 

Figure 5.3 Performance of radiologists interpreting mammograms without AI. (RSNA.)
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Figure 5.4 Performance of radiologists interpreting mammograms with AI. (RSNA.)

the plot when using AI. Another very interesting observation was that the 

ProFound standalone performance had a sensitivity higher than 22 of the 

24 readers reading without AI. However, the standalone performance had a 

specificity lower than 20 of the 24 readers reading without AI. 

Based on these findings, one would be hard-pressed to argue strongly 

against the rapid adoption of this new clinical tool in the interpretation of 

screening mammograms. Fundamentally, finding just one cancer that would 

have been missed without AI would justify the additional expense and 

workflow adjustment involved with adopting. The reading time savings alone 

are a dramatic benefit. Given that a missed breast cancer on mammography 

is one of the most common reasons for a malpractice suit against a radiolo-

gist in the USA (Wang et al., 2013), one would also expect this algorithm to 

be further embraced.
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5.4  Other AI Applications

Another possible workflow integration of AI going forward is to use it in the 

context of an automated, retrospective quality assurance tool that is used to 

check a prior human reading. Double reading is required for facility certi-

fication in both the USA and the EU. Double reading, in general, has been 

shown to increase mammogram report accuracy (Lauren Sen, 2018; Taylor-

Phillips, 2018). From the radiologist’s point of view, while helpful, the double 

reading task itself is an unpopular activity. At our institution, we are cur-

rently testing the effectiveness of an AI-based QA review process that could 

not only catch cancer that was missed on prior reading but also potentially 

provide performance metrics for a specific radiologist. These metrics could 

then be used as feedback to improve the human reader’s performance going 

forward.

Another clinical application for AI that is now currently available with 

FDA approval is the triage product from CureMetrix called cmTriage. 

Released in 2019, this algorithm conducts an automated review of 2D mam-

mograms that are pending interpretation (Figure 5.5). The algorithm then pri-

oritizes those cases that have a potential cancer finding so they can be seen 

first and with more attention than other negative studies (Figure 5.6). This 

will be very useful in expediting the care of a patient with a true abnormal 

finding. 

Figure 5.5 Automated review of the 2D mammogram by AI. (CureMetrix.)
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Figure 5.6 Prioritization of suspicious cases by AI. (CureMetrix.)

In addition, CureMetrix offers solutions as a pay-per-use-software that is 

accessible through the cloud. This approach would offer the advantage of 

the flexibility of use and cost. However, many health systems in the USA 

are still reluctant to share patient health information outside of their closed 

systems.

5.5  Conclusion

Going forward, another very exciting use of AI in mammography will be 

focusing on risk assessment for the development of future breast cancers. 

One recent study has shown the potential of deep learning linked health 

records and screening mammograms as an effective future cancer risk pre-

dictor (Akselrod-Ballin et al., 2019). This will help focus screening resources 

on the patients who are most at risk. The next few years will see many new 

FDA-approved algorithms in medical imaging and specifically for breast 

cancer detection. Future functionality that includes AI comparison with find-

ings on prior studies will be very helpful by adding the rate of change to the 

cancer detection equation. Improved lesion morphology pattern recognition 

will improve lesion characterization and specificity. It should also become 

increasingly apparent that the improved precision of the reports obtained 
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with AI results in more lives saved and greatly reduced overall treatment 

costs. AI interpretation assistance in mammography will be a very disruptive 

force going forward.
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6.1  Introduction

The world is experiencing a technological revolution where people have 

begun to use digital technology in most facets of their life to make their 

work easier, for entertainment and education, to monitor their health con-

ditions and for assistive driving using self-driving cars, to name a few. Not 

only using such technologies make our work easier, but they also capable of 

collecting data on our activities, actions and conditions. This has led to the 

enormous growth of both structured and unstructured data in formats such 

as text, images and video for many domains of our life. This data explosion 

has challenged the research community into finding appropriate methods 

and algorithms to extract patterns and insights from this abundance of data.

In response, several traditional machine learning (ML) algorithms such 

as support vector machines (SVM), Bayesian models, decision trees and 

Artificial Neural Networks have been used to extract relevant knowledge 

and patterns from datasets (Agarwal et al., 2012; Li & Ma, 2010; Xie et al., 

2016). However, researchers using these traditional ML methods often faced 

hurdles in processing large datasets leading to model overfitting issues and 

the inability to process data in its original form (LeCun et al., 2015). Thus, 

in several instances pre-processing the data was essential prior to model 

training. These included transforming the data into suitable formats for the 

ML algorithm to operate on or manual extraction of features. In order to 

manually extract features required researchers to have considerable domain 

knowledge and spend considerable time to extract relevant features. With 

increasing volumes and dimensions of data has propelled the need for new 

approaches and algorithms to effectively mine such datasets preferable in its 

raw form. Thus, this has spawned the birth of new sets of artificial intelli-

gent (AI) models and algorithms referred to as deep learning (DL) algorithms 

or models (Kumar & Sharma, 2019) such as deep feed-forward networks 

(FFNs), convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs). Research in DL has provided breakthroughs in finding solutions for 

which traditional ML algorithms were not quite able to solve or provide opti-

mal solutions, thus overcoming their limitations. Large datasets act as fuel to 

DL algorithms and hence enable the extraction of meaningful patterns and 

inferences.
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More recently, DL models have been successfully applied in various fields 

such as image and video processing, text processing for sentiment analysis, 

object recognition, speech recognition and time series analysis. CNN is a 

popular DL algorithm that has achieved great success in various computer 

vision tasks such as image classification, object detection, visual concept dis-

covery, semantic segmentation and boundary detection. Algorithms purely 

based on CNNs or used as a basis of other complicated algorithms are 

applied in various practical domains such as in self-driving cars, defense and 

security, mobile devices, medical image processing and quality assurance in 

manufacturing industries. In this chapter, we focus on these CNN classes of 

algorithms applied on skin lesion datasets.

Although research is still ongoing in the development of new AI algo-

rithms, the focus has shifted in the application of AI into real-life problem 

domains for the betterment of people’s health and improvement in their life-

style. Several AI-based systems have been designed as an early warning or 

diagnostic tool for chronic illnesses, for example, diagnosing depression and 

diabetics (Sourla et al., 2012). The advancements in digital imaging technol-

ogy in medicine and through conventional devices such as smartphones are 

enabling medical practitioners and researchers alike to collect images and 

video data of various medical conditions. Such data includes, for example, 

retinal scan images, MRI images, CAT scans, X-ray and skin lesion images 

alongside natural images and videos such as facial expression recordings. 

These image- and video-based datasets are now a source of valuable infor-

mation for research into areas including skin lesion classification, depression 

analysis and MRI segmentation.

This chapter investigates DL and the application of CNN algorithms 

on image-based medical datasets particularly for the classification of skin 

lesion images. The aim of CNN is to classify skin lesion images as benign 

(non-cancerous) or malignant (cancerous). Arguably skin cancer is one of 

the deadliest forms of cancer with millions of reported cases around the 

world of which many cases become fatal (American Cancer Society, 2019; 

Esteva et al., 2017; Vesal et al., 2018). This problem is further escalated 

by a lack of access or availability of qualified dermatologists and equip-

ment in developing countries or in remote regions to diagnose skin cancer 

early. Furthermore, there is a lack of knowledge on understanding signs of 

skin cancer leading to delayed proactive action by patients. Hence, there 

is a great need to use technology for educating people on understand-

ing skin lesions as well as to develop AI systems that can be used as early 

warning diagnosis tools, prognosis and monitoring cancer treatment and 



112 ◾ Artificial Intelligence

detecting any resistance to therapeutic drugs. The aim of AI systems is not 

any replaced dermatologists but to focus on developing AI to assist in early 

detection of skin cancer and to alert patients to take immediate proactive 

actions.

The early detection and monitoring of skin cancer have attracted the 

attention of ML researchers in investigating possible AI methods that can be 

utilized as an early warning diagnosis tool for detecting melanoma using 

skin lesion images. Previous studies show promising and competitive results 

of using CNN-based algorithms that classify skin lesion images that are com-

parable to dermatologist-level diagnosis (Esteva et al., 2017). A key ingredi-

ent and driver for such research to be conducted is the publicly available 

skin lesion datasets such as International Skin Imaging Collaboration (ISIC) 

(Tschandl et al., 2018) dataset. CNN-based models can then be trained on 

these datasets and resultant models deployed as diagnosis apps on smart 

devices such as mobile phones. Using built-in camera hardware in smart-

phones, such apps can be used to focus on suspected lesion regions on the 

patient’s skin and determine if the lesion is possible benign or malignant. 

Immediate actions can be taken which can ultimately save people’s life. Such 

systems would prove extremely beneficial for the general public particularly 

in regions where availability of dermatologist services is limited. The contri-

butions of this chapter are therefore as follows:

 1. We investigate the application of DL algorithms on image-based medical 

datasets particularly on skin cancer images. Here, we discuss innovative 

CNN-based networks that have been applied on skin lesion datasets.

 2. We introduce the skin cancer classification problem and describe the 

skin lesion datasets available to the research community and their 

characteristics.

 3. We demonstrate how the CNN-based VGG network (Simonyan & 

Zisserman, 2014) can be applied on ISIC 2018 skin lesion dataset using 

transfer learning.

 4. We highlight ongoing research and efforts in the development of mobile 

applications using deep AI engines available to the community that can 

be used as an early warning system for the detection of skin cancer.

 5. We identify major research challenges and future directions.

Since this chapter focuses on applying DL on image-based skin lesion 

datasets using CNNs, we describe the basic architecture of CNNs and its 

physiological basis in Section 6.2. Section 6.3 describes the skin cancer 
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classification problem, introduces a common skin lesion dataset used 

by researchers, and provides a review of some of the current research 

 conducted on using innovative CNN-based networks on skin lesion images. 

Section 6.4 describes an experiment applying transfer learning on the ISIC 

dataset. The results are discussed in Section 6.5. Section 6.6 describes 

the deployment of trained CNN-based models on skin lesion datasets on 

 smartphones followed by a conclusion and future research directions in 

Section 6.7.

6.2  Convolutional Neural Networks

Pioneering studies such as Adelson et al. (1984), Hubel and Wiesel (1959, 

1968), and Riesenhuber and Poggio (1999) have attempted to describe how 

the visual system of primates performs the function of sight. They revealed 

that object detection and recognition in the brain are made based on 

 low-level features extracted in the lower or early part of the visual pathway. 

The low-level features are then assimilated into global features before being 

sent to the visual cortex for processing. Here, low-level features are classified 

as lines and curves, whereas shapes and color are labeled as global features. 

The visual cortex then performs the appropriate task of detection, recogni-

tion or classification. Zheng et al. (2018) defined computational models that 

use this above technique of feature extraction as local-to-global models. 

Figure 6.1 describes the conical structure of the cells in the visual pathway 

of cats in the studies of Hubel and Wiesel (1959, 1968). Simple cells in the 

earlier part of the visual pathway are fine-tuned to extract low-level features. 

Complex cells deeper in the visual pathway reconstruct object shapes from 

these low-level features. These high-level features are then processed in the 

cortex to perform the task of object detection or recognition. Hence, the 

basis of efficient object detection and recognition in the biological system is 

its ability to extract low-level features from visual scenes fed from receptors 

in the retina of eyes.

LeCun et al. (1998) formalized the modern framework of CNNs using 

Hubel’s descriptions of how the visual system recognizes objects based on 

low-level features. A generic CNN structure contains two major parts in 

order to mimic the functions of the visual system: (i) the feature extraction 

part and (ii) the fully connected neural network part. Feature extraction 

is enabled by several key sub-parts also called layers in a CNN, namely, 

the convolution, activation and pooling layers. Figure 6.2 illustrates the 
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Figure 6.1 The hierarchical structure of cells in the visual pathways of cats as 
described in the studies of (Hubel & Wiesel, 1959).

Figure 6.2 The architecture of a CNN. (Taken from Kumar and Sharma (2019).)

lateral view of a CNN architecture. They are described in the following 

sub-sections.

Convolutional layer: The key component of a convolution layer is the 

filers organized as a two-dimensional array of size (m × n). These filters 

(also called weights or kernels) are convolved across the input image (also 

a 2D array) performing a sum of the dot products of the filter and the input 

values within the receptive field of the filter. The receptive field of the  filter 

is the patch on the image where the filter is applied. In this fashion, the 
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input image is scanned with the filter starting from the top left to the bot-

tom right of the image. Every time the filter slides, it scans a small portion 

of the input image. In this fashion, a 2D feature map is formed as the filter 

 convolves the input image. Hence for each filter, a corresponding feature map 

is output. Within the convolution layer, several filters can be used, result-

ing in several feature maps as output. Since CNN is a special kind of ANN, 

several iterations via forwarding and back-propagation fine-tune the filters of 

the convolution layer to detect a particular feature from the input space. For 

example, filter f  1 is fine-tuned to detect a horizontal line, f  2 detects a vertical 

line while f  3 a top-left to the bottom-right oblique line. To extract higher-level 

features, further convolution layers are added to the CNN. Extracted features 

from previous convolution layers become an input to new convolution layers. 

Figure 6.3 describes the convolution process visually.

Activation layer: The purpose of the activation layer is to intro-

duce non-linearity in the model and to squash the feature map outputs 

within given thresholds. It also helps to detect non-linear features and is a 

 mechanism to avoid model overfitting on training data. A popular activation 

function used with CNNs is the rectifier linear units (ReLUs) (Glorot et al., 

2011).

Pooling layer: On a CNN, there can be several convolution layers, 

and each layer can have several filters in it. As a result, several 2D feature 

maps from each convolution layer are output. This increases computa-

tional time to process all the feature maps in subsequent layers. Pooling in 

CNN is a technique applied to downsample the feature map so that there 

Figure 6.3 The convolution process is shown with an input image of size 32 × 32, 
5 × 5 filter and stride of one (Taken from Kumar and Sharma (2019)). The value of 
stride controls the convolution step of the filter. Using these parameters, a feature 
map of size 27 × 27 is generated as output.
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Figure 6.4 Max pooling a feature map with a 3 × 3 pool window and stride of one. 
(Taken from Kumar and Sharma (2019).)

is less convolution operation required to be performed in the successive 

 convolution layer. This reduces computation time. Further pooling also 

avoids overfitting and introduces some translation invariance in the model 

(Xu et al., 2014). A popular pooling method is max pooling which takes the 

feature map as input and returns the max value of a local patch of units. 

The size of the local patch is governed by the pool size which defines the 

receptive field of the pool window. How the pool window is convolved 

across the feature map is controlled by the value of stride. Figure 6.4 shows 

an example of max pool operation on a feature map.

Since CNNs approximate the functioning of the visual system, they are 

best suited for data that are in the two-dimensional form (Kumar & Sharma, 

2019) such as images in grayscale (one-channel) or in color (three-channel) 

and audio spectrograms (LeCun et al., 2015). CNNs have been  successful in 

practical applications such as self-driving cars, facial recognition  authentication 

 systems such as mobile phones, medical image processing and quality 

 assurance in manufacturing industries. In addition, CNNs have also proven 

useful in processing video datasets where frames can be treated as 2D images. 

In the following section, we describe recent research where CNNs are applied 

to the diagnosis of skin cancer based on skin lesion image datasets.

6.3  Skin Lesion Classification Problem

Skin cancer is one of the deadliest forms of diseases affecting millions of 

people around the world (American Cancer Society, 2019; Hosny et al., 

2019). It is mostly triggered by extended and unprotected exposure to 
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harmful ultraviolet (UV) rays of the sun that damage the DNA of the skin 

and genes that control cell growth (Refianti et al., 2019). Increasing world 

 industrialization contributing to global warming and depleting the ozone 

layer has heightened the threat of more people being exposed to UV rays 

and developing cancerous skin cells. Several kinds of literature report 

 melanoma cancer as one of the most dangerous types of skin  cancer 

(Brinker et al., 2018; Hosny et al., 2019; Li & Shen, 2018; Mirunalini et al., 

2017; Qi et al., 2017; Refianti et al., 2019). If untreated, melanoma can spread 

on the skin on other parts of the body. A common first step to  diagnosing 

melanoma is through physical examination of the suspected area by a 

dermatologist usually by using dermoscopy images. Based on  experience 

and using results from dermoscopy examinations that are matched with 

prior confirmed melanoma cases, dermatologists produce conclusions on a 

case-by-case basis. They also utilize various methods such as the ABCDE 

(asymmetry, border irregularity, color patterns, diameter and evolving size) 

(Nachbar et al., 1994) and the seven-point rule (Argenziano et al., 1998) 

for this task. The problem with such approaches to diagnosing melanoma 

is that it is influenced by human subjectivity (Refianti et al., 2019) and 

thus  susceptible to inconsistent diagnosis at times. Furthermore, access 

to  qualified dermatologists is limited by their shortage and  availability 

 particularly in remote areas and developing countries. This usually leads 

to delayed diagnosis and follow-up treatment, thus making situations 

life-threatening.

6.3.1  The HAM10000 Image-Based Skin Cancer 
Dataset and Its Characteristics

The ISIC archive is a popular source of skin lesion dataset used by 

 researchers studying the application of DL on skin lesion classification and 

segmentation tasks. ISIC provides various images of skin lesions for early 

diagnosis. The archive contains multiple databases and currently contains 

over 13,000 dermatoscopic images collected from leading clinical cen-

ters and from a variety of devices. The database, however, contains many 

nevi or melanoma images (12,893 out of 13,786), making it biased towards 

 melanocytic lesions (Tschandl et al., 2018). One of the contributing data-

sets to the ISIC archive is the HAM10000 (Human Against Machine with 

10,000 training images) dataset by (Codella et al., 2015; Tschandl et al., 2018). 

The principle goal of this dataset was to boost the automated diagnosis of 

 dermatoscopic images. Ten thousand and fifteen dermatoscopic images were 
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Table 6.1 Composition of Images in HAM10000 Train and Test Dataset

Lesion Class Diagnosis Name Total Images Test Images Reserved

akiec Actinic keratose and 
intraepithelial carcinoma

 327  33

bcc Basal cell carcinoma 514  51

bkl Benign keratosis 1,099 110

df Dermatofibroma  115  12

nv Melanocytic nevi 6,705 671

mel Melanoma 1,113 111

vasc Vascular skin lesions 142 14

 

  

collected over a period of 20 years from the Medical University of Vienna, 

Austria, and Cliff Rosendahl’s skin cancer practice in Queensland, Australia. 

The images are categorized into seven diagnostic classes: apiece (actinic ker-

atose and intraepithelial carcinoma), bcc (Basal cell carcinoma), bkl (benign 

keratosis), df (dermatofibroma), nv (melanocytic nevi), mel (Melanoma) and 

vasc (Vascular skin lesions). The ground truth of 50% of the lesion images is 

validated by histopathology, while the rest are validated by follow-up, expert 

consensus or confirmation by in-vivo confocal microscopy (Tschandl et al., 

2018). Table 6.1 shows the number of images in each class in the HAM10000 

dataset. Metadata for each sample lesion image contains the person’s age, 

sex, localization of the image and the validation method of the case. The 

HAM10000 train dataset is also biased towards melanoma. In order to obtain 

a balanced dataset, one technique to use is data augmentation as explained 

in Section 6.4.1.2. Some sample class images from the HAM10000 dataset 

are given in Table 6.2. Other notable skin lesion datasets used by the ML 

research community are given in Table 6.3.

6.3.2  CNN Approaches to Skin Cancer Classification

The need to develop assistive technology for early skin cancer diagnosis 

coupled with access to publicly available skin lesion datasets such as the 

ISIC 2018 has propelled many researchers to develop state-of-the-art classifi-

ers based on CNN for skin lesion classification (Brinker et al., 2018). In addi-

tion to skin lesion classification, another area that is attracting the attention 

of computer vision scientists is on skin lesion segmentation. However, for 
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Table 6.2 Samples Class Images from HAM10000 Dataset

the purpose of this chapter, we concentrate on the skin lesion classification 

problem. Current approaches in skin lesion classification can be categorized 

in two ways as described in sub-sections 6.3.2.1 and 6.3.2.2.

6.3.2.1  Using Pre-Trained Model and Freezing Its Weights

In this approach, pre-trained weights of the feature extractor part of the CNN 

trained on another large dataset such as ImageNet 2014 Challenge are used. 
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Table 6.3 Other Notable Skin Lesion Data Repositories

Dataset Name Source Type URL

MED-NODE (Giotis 
et al., 2015)

Digital image http://www.cs.rug.nl/ imaging/
databases/melanoma naevi/

Dermofit Image Library 
(Ballerini et al., 2013)

Biopsy-proven https://licensing.edinburgh-
innovations.ed.ac.uk/i/software/
dermo_t-image-library.html

Dermatology IS 
(Amelard et al., 2012)

Standard cameras http://www.dermis.net

DermQuest (Amelard 
et al., 2012)

Standard cameras https://www.derm101.com/
dermquest/

Classification is performed by incorporating an alternate classifier such as 

the K-nearest, support vector machines (SVMs) or ANNs. During training, 

weights of convolution layers in feature extractor part of the CNN are fro-

zen. This means during training no updates to weights of convolution lay-

ers are made. End-to-end training is then performed on skin lesion images 

where the CNN relies on the feature extractor trained on natural images 

to identify useful features. The network learns features in the classification 

layer through back-propagation. It can be argued whether features from non-

medical image datasets generalize well on medical image datasets. However, 

Menegola et al. (2017) justify models trained on non-medical image data that 

can be used on lesion images as the learnt features have sufficient quality 

for lesion classification. An obvious advantage of this approach is it takes 

less training time. One such work that uses this procedure is reported in Qi 

et al. (2017). They used a VGG16 (Simonyan & Zisserman, 2014) network for 

dense segmentation tasks on lesion images. Prior to using the pre-trained 

network trained on the ImageNet dataset, the network was modified by 

discarding the last two classification layers and replacing the remaining clas-

sification layers with randomly initialized convolution layers. The rest of the 

network layers remained unchanged.

Using pre-trained AlexNet on lesion images taken from a standard camera 

is investigated in the work of Pomponiu et al. (2016) where the researchers 

combined a k-nearest neighbor classifier using cosine distance metrics with 

AlexNet and trained on 399 images. Though not tested on an independent 

dataset, their algorithm obtained an accuracy of 93.64%. A similar approach 

using AlexNet is studied in the work of Codella et al. (2015) where they used 

an SVM as the classifier, incorporated low-level handcrafted features and 

http://www.cs.rug.nl
https://licensing.edinburgh-innovations.ed.ac.uk
https://licensing.edinburgh-innovations.ed.ac.uk
https://licensing.edinburgh-innovations.ed.ac.uk
http://www.dermis.net
https://www.derm101.com
https://www.derm101.com
http://www.cs.rug.nl
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features from sparse coding and a convolutional U-network (Ronneberger 

et al., 2015). A pre-trained AlexNet is also used in the work of Kawahara 

et al. (2016). They investigate whether the networks trained on natural 

images generalized well to multi-class non-dermoscopy skin lesion images. 

In addition to findings that the features learnt by AlexNet on natural images 

generalized well, their experiments on Dermofit Image Library (Ballerini 

et al., 2013) skin lesion images achieved an accuracy of 81.8%, outperform-

ing previous results on the same dataset.

6.3.2.2  End-to-End Training Using Pre-Trained Model Weights

In this approach, CNN is trained end-to-end from scratch on the skin lesion 

dataset. This approach can be further adopted in two different ways.

First, a CNN network is trained from scratch for several iterations on the 

dermoscopy dataset. Li and Shen (2018) use this approach to propose two 

DL frameworks towards melanoma detection – Lesion Indexing Network 

(LIN) and Lesion Feature Network (LFN). Their experiments conducted on 

ISIC 2017 dataset show promising accuracies on melanoma, seborrheic kera-

tosis and nevus detection tasks. Other works but not limited to the use this 

approach are reported in Refianti et al. (2019) where they use a LeNet5 CNN 

architecture (LeCun et al., 1998), in Vesal et al. (2018) who use a U-network 

for lesion segmentation tasks and in Nasr-Esfahani et al. (2016) who use 

a CNN trained from scratch on non-dermoscopy images taken by digital 

 camera (Giotis et al., 2015).

Second, pre-trained weights of the feature extractor part of the CNN 

trained on another large dataset are used. However, instead of keeping the 

weights frozen (such as the weights of convolution layers in the feature 

extractor), the weights are fine-tuned during the training process to fit the 

new lesion image data. This technique is referred to as transfer learning and 

is useful in cases where datasets are small. Despite the availability of skin 

lesion datasets for research purposes, these datasets still suffer from limited 

samples. Hence, transfer learning is a common approach to mitigate this 

issue for lesion classification and segmentation tasks. In recent times, several 

works using transfer learning on skin lesion image datasets are reported. For 

example, Esteva et al. (2017) used Google’s Inception V3 CNN architecture 

pre-trained on the 2014 ImageNet Challenge dataset to train on ISIC and 

Stanford Hospital dermoscopic images. They stripped the final classification 

layer of the Inception V3 network to match the number of classes in their 

dataset and performed end-to-end training. Overall, their dataset contained 
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129,450 clinical images consisting of 2,032 different diseases. They com-

pared the classification results from their CNN model on two specific binary 

 classification use cases, namely, keratinocyte carcinomas versus benign 

seborrheic keratoses; and malignant melanomas versus benign nevi with 

21 board-certified dermatologists’ assessments on the same use cases. Their 

results show CNN-based classification performed on par with all certified 

dermatologists, demonstrating competitive comparability. Recent research 

by Hosny et al. (2019) for classification of skin lesions applied transfer learn-

ing using AlexNet CNN in different ways. These included data augmentation 

with fixed and random rotation angles and replacing the classification layer 

with softmax to output probabilities for two or three classes of skin lesions.

Other popular CNN-based models used on skin lesion classification such 

as those used in the ISIC 2019 challenge include variants of EfficientNet 

(Tan & Le, 2019), DenseNet, GoogleNet, MobileNet and ResNet (ISIC-2019-

LeaderBoard, 2019; Pacheco, 2019).

6.4  Transfer Learning on HAM10000 Dataset

In this section, we describe transfer learning using VGG16 CNN pre-trained 

on ImageNet 2014 dataset using the HAM10000 dataset from the ISIC 

archive. We use the approach described in Section 6.3.2.1 where we freeze 

the feature extraction part of the VGG16 network and replace the last clas-

sification layer with a softmax layer. Instead of training in a few classes, we 

train on all seven classes in the HAM10000 dataset. Hence, the new softmax 

layer predicts the probabilities of seven classes. Since the HAM10000 data-

set is imbalanced, we use data augmentation to make samples in all classes 

equal. We describe the data augmentation method used to balance the sam-

ples across all classes. Algorithms and sample codes are provided for repro-

ducibility and for readers to easily get started with research in this scope.

6.4.1  Pre-Processing HAM10000 Dataset

6.4.1.1  Establishing Train and Test Sets

There are no test images present in the HAM10000 dataset. Since in ML (and 

in DL) it is important to evaluate the performance of models on unseen data 

(images in our case), we reserve 10% of images from every class for test-

ing. This equates to a total of 1,002 images for testing. Table 6.1 shows the 

 number of images reserved from each class for testing.
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6.4.1.2  Data Augmentation

DL algorithms are data hungry, and CNNs are no exception. To learn dis-

criminative features, a large dataset of training samples is needed. In addi-

tion, to avoid the model overfitting to any specific class, a balanced dataset 

is generally desired. Table 6.1 identifies the HAM10000 dataset to be grossly 

imbalanced. For example, class NV has 6,705 samples, whereas class df only 

has 115 samples. This imbalance will cause the model to be biased towards 

predicting test cases as nv more than df.

In order to balance the dataset, we use the ImageDataGenerator 

class in Python to applying augmentation. We used transformation 

techniques such as rotation, horizontal and vertical flips, translation, 

and zoom. The parameter values for the ImageDataGenerator class are 

described in Yu (2018). For the purpose of our study, we capped the 

number of images in each class to 6,000. The number of images in each 

class was boosted in this fashion except for class nv where we randomly 

removed 34 images to balance with other classes. All train images were 

saved in their respective class directories under a parent train_dir folder. 

No augmentation was applied on the test dataset. However, a similar 

folder structure was used where all test images were placed in their 

respective class directories. The algorithm to pre-process the HAM10000 

dataset is given in Algorithm 1, most of which are translated in Python 

code (Yu, 2018).

6.4.2  VGG16 Model for HAM10000 Dataset

Proposed by Simonyan and Zisserman (2014), VGG16 is a popular CNN 

model used by researchers in the computer vision field for image classifi-

cation and segmentation tasks. It was originally trained on the ImageNet 

dataset containing over 14 million images categorized into 1,000 classes. 

It achieved top-five test accuracy of 92.7% becoming the first runner-up 

in the ImageNet 2014 challenge classification task behind GoogLeNet. 

Several configurations of the VGG CNN exist, ranging from 11, 13, 16 

and 19 weight layers. These configurations are labeled A-E and differ 

only in the depth. In our work, we use configuration D that contains 

16 weight layers comprising of 13 convolutions and three hidden layers in 

the fully connected part of the network. All convolution layers are con-

figured with 3 × 3 filter sizes. The network also uses max-pooling  layers 

(Table 6.4).
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Table 6.4 VGG16 – Configuration D – CNN Architecture

VGG16 – Configuration D – 16 Weight Layers

Input Image Size: 224 × 224 RGB Image

Layer Layer Type No. of Filters/Neurons Filter/Pool Size

1 Convolution   64 3 × 3

2 Convolution   64 3 × 3

Max pool 2 × 2

3 Convolution  128 3 × 3

4 Convolution  128 3 × 3

Max pool 2 × 2

5 Convolution  256 3 × 3

6 Convolution  256 3 × 3

7 Convolution  256 3 × 3

Max pool 2 × 2

8 Convolution  512 3 × 3

9 Convolution  512 3 × 3

10 Convolution  512 3 × 3

Max pool 2 × 2

11 Convolution  512 3 × 3

12 Convolution  512 3 × 3

13 Convolution  512 3 × 3

Max pool 2 × 2

14 Fully connected 4,096

15 Fully connected 4,096

16 Fully connected 1,000

softmax

Algorithm 1 Data Augmentation Algorithm. 

Translated to Python Code (Yu, 2018)

Data: HAM10000 images (jpg format), HAM10000_metadata.csv



Deep Learning ◾ 125

Result:

train_dataset: 42000 images (6000 images in 7 classes) after augmentation, 

test_dataset: 10002 with no augmentation

Make train_dir folder and in it make directories for each class

Make val_dir folder and in it make directories for each class

Load HAM10000\_metadata.csv file

Set 'dx' column as class label - y

Split the metadata into training and test lists

Find the number of values in the train set (train-list) and test set (test-list)

For {each image name in train-list}

{

Transfer the actual train images into class directories in train_dir

}

For {each image name in test-list}

{

Transfer the actual test images into class directories in val_dir

}

Establish class-list = ['akiec', 'bcc', 'bkl', 'df', 'mel', 'vasc']

Set maximum number of images per class = 6000

For {each class in train_dir directory}

{

Define the ImageDataGenerator object

Determine the number of images already in class

Generate the remaining images using ImageDataGenerator object so that 

max images = 6000

}

6.4.3  Model Training

We perform end-to-end training of the VGG16 network on the HAM10000 

dataset. As described in Section 6.3.2.1, weights of the feature extraction 

part of VGG16 are frozen from updates via the back-propagation opera-

tion, while the classifier layer weights would be updatable. The last layer 

in the classier is replaced with a new layer containing seven neurons 

to match the number of classes in the HAM10000 dataset. The model is 

trained for 20 epochs with a fixed learning rate of 10−4. Stochastic gradi-

ent descent and cross-entropy are used as learning and loss function, 

respectively. We use a weight decay of 10−4 and a momentum of 0.9. For 

training, we use a batch size of four and one for testing. We implement 
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our models using PyTorch version 1.2.0 on a Dell Optiplex i5 48GB RAM 

computer with Cuda support using NVIDIA GeForce GTX 1050 Ti 4GB 

graphics card.

The HAM10000 dataset contains images of different sizes. Hence during 

training, all images are resized on-the-fly using PyTorch’s transforms func-

tion. The images are resized to 224 × 224 using a center-crop technique 

which is the same as the sizes of the ImageNet dataset images. This enables 

us to use the VGG16 feature extractor part without any modifications. 

The RGB pixel values are also normalized to be in the range [0–255]. The 

images are read using helper functions Imagefolder from library torchvi-

sion.dataset and Dataloader from torch.utils.data.datas. Listing 1 describes 

a complete Dataloader function that loads the HAM10000 train and test 

dataset.

Listing 1 PyTorch DataLoader Function

def LoadISIC_HAM10000():

# Python data loading code

traindir = 'data' + os.sep + 'HAM10000' + os.sep + 'base_dir' + os.

sep + 'train_dir'

valdir = 'data' + os.sep + 'HAM10000' + os.sep + 'base_dir' + os.

sep + 'val_dir'

train_transform = tv.transforms.Compose([

tv.transforms.Resize(225),

tv.transforms.CenterCrop(224),

tv.transforms.ToTensor()])

test_transform = tv.transforms.Compose([

tv.transforms.Resize(225),

tv.transforms.CenterCrop(224),

tv.transforms.ToTensor()])

trainset = torchvision.datasets.ImageFolder(root=traindir, 

transform=train_transform)

trainloader = datas.DataLoader(trainset, batch_size=4, shuffle=True, 

num_workers=4)

testset = torchvision.datasets.ImageFolder(root=valdir, 

transform=test_transform)

testloader = data.DataLoader(testset, batch_size=1, shuffle=True, 

num_workers=4)

return trainset, train loader, testset, test loader
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6.5  Preliminary Results

Table 6.5 shows the train and test results of the VGG16 network on the 

HAM10000 dataset. The network uses the learnt features from natural 

images of the ImageNet dataset to extract features from skin lesion images. 

Only the weights of the classifier are updated during training. Also, we trial 

our experiments on all classes of the HAM10000 database. Since we have 

an imbalanced class distribution in our test dataset, we use micro-average 

precision, recall and f1 to analyze our results. The model achieves a high 

train accuracy of 97.9% and a loss of 0.068. The results indicate features 

from natural images are beneficial in extracting features from lesion images. 

These results are reinforced by the test accuracy of 78.2 on unseen lesion 

images. Given the analysis of the accuracy metric, we conclude features from 

natural images are worthwhile to investigate to extract features from lesion 

images. Although the effectiveness of the model can be measured by other 

metrics, we do note the precision, recall and F1-score are below 50%. In 

the case of precision, this indicates a high false-positive rate meaning fewer 

images were classified as their true class. In the case of a recall, the results 

indicate a high false-negative rate. F1-score is the harmonic mean of preci-

sion and recall, and is generally used for imbalanced classes such as in our 

case, hence obtaining the same results as precision and recall. The learning 

curves (for accuracy and loss) in Figure 6.5 also indicate smoother adaptabil-

ity of natural image features on lesion images.

The confusion matrices for our experiment shown in Figure 6.6 further 

explain the reasons for the low F1-score. Considering the values in the 

leading diagonal (top left to bottom right), low accuracy is recorded on all 

classes except for class nv where accuracy is 66.0%. This is because class nv 

had the highest number of test images compared to the rest of the classes. 

Hence, accuracy on class nv is boosting the overall test accuracy. However, 

Table 6.5 Train and Test Statistics

Metric Train_statistics Test_statistics

Accuracy 97.9% 78.2%

Loss 0.068

Precision 0.467

Recall 0.467

F1-score 0.467
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Figure 6.5 Loss curve (a) and accuracy curve (b) generated during training 
(epochs = 20).

Figure 6.6 Un-normalized (a) and normalized (b) confusion matrices generated on 
test data.

the confusion matrix accurately shows the prediction on other classes 

needs improvement. One-way prediction accuracy of other classes can be 

improved by obtaining more real images of lesion classes where the sample 

size is low in order to obtain a balanced dataset. However, the challenge is 

finding patients who have those specific conditions. Data augmentation is 

an alternate method to boost the number of samples. Since the augmented 

images are copies of the same original images, the variability in the samples 

remains small. Hence, the model is not able to get enough different images 

of a class to be able to learn to distinguish it from other classes. Instead of 

applying standard transformation on the available images to generate aug-

mented images, techniques such as image overlaying, blending and mask-

ing can be used as alternate data augmentation methods. This, however, 

requires further investigation and to be validated through experiments. 
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6.6  Deployment on Smart Phones

Technologies to train DL models have improved tremendously over the last 

decade such as high-end GPU cards with thousands of floating-point pro-

cessing cores and DL libraries such as TensorFlow, PyTorch and Keras. There 

are also several types of devices that make use of DL models in the form of 

AI models. Examples, where AI models are embedded in hardware, include 

self-driving cars, AI-based autopilot systems in flight simulators, Apple’s 

iPhone X Face ID, and fault detection AI systems on assembly lines in facto-

ries using cameras such as in-car and food manufacturing. Uber’s rideshar-

ing app, Google Maps route planning and traffic jam plots, Google Translate 

and Apple’s Animoji, and personal digital assistants such as Cortana, Siri and 

Google Assistant are few examples of software-based AI applications.

Deploying AI-based systems to improve people’s health and well-being 

is attracting a lot of attention in the research community. For example, 

a system developed by scientists in CSIRO Lab, Australia, helps patients 

with diabetic retinopathy receive treatment faster. It works by taking high- 

resolution images of their eyes and analyzing them by the technology for 

signs of diabetic retinopathy. Similarly in the area of automatic skin lesion 

analysis, commercial applications such as SpotMole (Munteanu & Cooclea, 

2009), MelApp (Corporation, 2011), SkinScan (SkinVision, 2019), VisualDX 

and SPF have emerged, some of which are studied in the work of (Brewer 

et al., 2013).

Making health- and well-being-specific DL models accessible to the pub-

lic in the form of applications is a challenge. This is usually due to a huge 

number of parameters in the DL model causing the trained model size to be 

extremely large to be deployed on devices with less storage and memory 

capacity. There are two common ways that are currently being deployed. 

First, the trained models are hosted on the Cloud such as on Google, 

Amazon or Microsoft. Using web apps images can then be uploaded to the 

cloud to get predictions. Alternatively, a light version of the web app can be 

hosted on mobile phones. Using in-built cameras, images can be taken and 

uploaded to the Cloud to get predictions (Figure 6.7). A problem with this 

approach is the latency associated with sending information back and forth 

from the mobile phone and the Cloud. Second, advancements in internal 

storage capability, processor speed and memory in modern mobile devices 

provide a motivation to host DL models on the device itself. In this way, 

model predictions can be done locally to obtain quicker results. In order 

to provide a platform to support pre-trained DL models on mobile phones, 
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Figure 6.7 The model architecture of deploying DL trained models on the cloud and 
access via mobile phones.

special mobile ML APIs have been developed such as CoreML, TensorFlow 

Lite and Caffe2 for iOS and Android.

6.7  Conclusion and Future Directions

This chapter presents an insight into applications of AI algorithms from DL 

in the classification of skin lesion images. DL is a large neural network that 

uses multiple layers in its architecture to automatically extract features from 

raw data. The major advantage of DL is the ability to process large datasets 

and extract features automatically, hence eliminating the need to manually 

extract features for learning. For example, a class of DL called CNN uses 

lower layers to extract features such as lines and curves, whereas higher-

level features may identify shapes relevant to the dataset such as actual 
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digits, faces or natural objects. As such CNNs are widely used in image and 

video processing.

In recent times, several medical imaging datasets are now publicly avail-

able such as the HAM10000 skin lesion images studied in this chapter. These 

datasets provide unique opportunities to researchers to apply DL algorithms 

to extract patterns and insights and deploy them as applications for early 

detection or diagnosis of certain conditions.

In this chapter, we investigate the application of DL algorithms on 

 image-based medical datasets particularly on skin cancer images. We 

describe  publicly available ISIC HAM10000 dataset that is widely used to 

train DL models. The dataset contains a rich collection of 10,015 dermato-

scopic images divided into seven cancer classes. We further demonstrate 

how  CNN-based VGG16 network can be applied to this dataset using trans-

fer learning. In our approach, we first describe a simple data augmentation 

method to overcome the limitation of an imbalanced number of samples 

in each class in the HAM10000 dataset. Then, we train the VGG16 net-

work using weights pre-trained on the ImageNet dataset. The last layer 

of the VGG16 network is replaced to match the number of classes in the 

HAM10000 dataset. We freeze the weights of the feature extraction part of 

the VGG16 network but fine-tune the classifier weights during training.

Our results show transfer learning is an effective way to train DL models 

on skin lesion images and that features from natural images can be used to 

identify features from skin lesion images. Using this method, we obtain a 

training accuracy of 97.9% and a test accuracy of 78.2%. Here, our main goal 

was to demonstrate the promise of DL in the classification of lesion images. 

In order to make DL models useful to patients, we describe a method where 

models trained on skin lesion images (such as on the HAM10000 dataset) 

can be effectively deployed as apps on smartphones. Using built-in cameras 

patients can use the app to take images of skin lesions or moles to get pre-

dictions and take proactive steps. Such systems will prove beneficial particu-

larly in situations where there is a limited access to qualified dermatologists 

such as in remote areas.

Several challenges remain to be investigated. First, the HAM10000 dataset 

contains drastically imbalanced samples in each class. Using data augmenta-

tion, we can boost the number of samples. However, the variability in the 

samples remains small as most of the images are copies of the same origi-

nal images. This perhaps causes the model to overfit the class. It is evident 

in the confusion matrix results where poor classification performances 

are shown in classes where augmented samples are large. Therefore, how 
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much data augmentation to apply remains an interesting research question. 

Second, different data augmentation techniques may also play an impor-

tant role in improving the classification accuracies of the DL models. This 

requires investigation into finding optimal parameters for the transforma-

tions in the data augmentation function. Third, unlike in natural images 

where we usually find less variation in the orientation of the objects, skin 

lesion images, on the other hand, have no defined orientation, hence lead-

ing to the problem of spatial invariance that must be learnt by the DL 

model on skin lesion images. Finally, there is still research that needs to 

be done in order to explain how DL address ABCDE characteristics that 

are used to assess lesion images in order to diagnose them as benign or 

malignant.

References

Adelson, E. H., Anderson, C. H., Bergen, J. R., Burt, P. J., & Ogden, J. M. (1984). 
Pyramid methods in image processing. RCA Engineer, 29(6), 33–41.

Agarwal, S., Pandey, G. N., & Tiwari, M. D. (2012). Data mining in education: data 
classification and decision tree approach. International Journal of e-Education, 
e-Business, e-Management and e-Learning, 2(2), 140–140.

Amelard, R., Wong, A., & Clausi, D. A. (2012). Extracting morphological high-level 
intuitive features (HLIF) for enhancing skin lesion classification. Paper pre-
sented at the 2012 Annual International Conference of the IEEE Engineering in 
Medicine and Biology Society.

American Cancer Society. (2019). Cancer facts and figures 2019. Retrieved from 
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/
cancer-facts-figures-2019.html.

Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., & Delfino, 
M. (1998). Epiluminescence microscopy for the diagnosis of doubtful melano-
cytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 
7-point checklist based on pattern analysis. Archives of Dermatology, 134(12), 
1563–1570.

Ballerini, L., Fisher, R. B., Aldridge, B., & Rees, J. (2013). A color and texture 
based hierarchical K-NN approach to the classification of non-melanoma skin 
lesions. In Celebi, M. E., & Schaefer, G. (eds.), Color Medical Image Analysis 
(pp. 63–86): Springer, Dordrecht.

Brewer, A. C., Endly, D. C., Henley, J., Amir, M., Sampson, B. P., Moreau, J. F., & 
Dellavalle, R. P. (2013). Mobile applications in dermatology. JAMA Dermatology, 
149(11), 1300–1304.

Brinker, T. J., Hekler, A., Utikal, J. S., Grabe, N., Schadendorf, D., Klode, J., … von 
Kalle, C. (2018). Skin cancer classification using convolutional neural networks: 
systematic review. Journal of Medical Internet Research, 20(10), e11936–e11936.

https://www.cancer.org
https://www.cancer.org


Deep Learning ◾ 133

Codella, N., Cai, J., Abedini, M., Garnavi, R., Halpern, A., & Smith, J. R. (2015). Deep 
learning, sparse coding, and SVM for melanoma recognition in dermoscopy 
images. Paper presented at the International Workshop on Machine Learning 
in Medical Imaging.

Corporation, H. D. (2011). MelApp. Retrieved from https://www.healthdiscovery-
corp.com/.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. 
(2017). Dermatologist-level classification of skin cancer with deep neural net-
works. Nature, 542(7639), 115–115.

Giotis, I., Molders, N., Land, S., Biehl, M., Jonkman, M. F., & Petkov, N. (2015). 
MED-NODE: a computer-assisted melanoma diagnosis system using non-der-
moscopic images. Expert Systems with Applications, 42(19), 6578–6585.

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. 
Paper presented at the Proceedings of the Fourteenth International Conference 
on Artificial Intelligence and Statistics.

Hosny, K. M., Kassem, M. A., & Foaud, M. M. (2019). Classification of skin lesions 
using transfer learning and augmentation with Alex-net. PLoS One, 14(5), 
e0217293–e0217293.

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat’s 
striate cortex. The Journal of Physiology, 148, 574–591.

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of 
monkey striate cortex. The Journal of Physiology, 195, 215–243.

ISIC-2019-LeaderBoard. (2019). ISIC 2019 Leaderboard. Retrieved from https://chal-
lenge2019.isic-archive.com/leaderboard.html.

Kawahara, J., BenTaieb, A., & Hamarneh, G. (2016). Deep features to classify skin 
lesions. Paper presented at the 2016 IEEE 13th International Symposium on 
Biomedical Imaging (ISBI).

Kumar, D., & Sharma, D. (2019). Deep learning in gene expression modeling. In 
Balas, V., Roy, S., Sharma, D., Samui, P. (eds.), Handbook of Deep Learning 
Applications (pp. 363–383): Springer, Cham.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 
436–444.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning 
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Li, Y., & Ma, W. (2010). Applications of artificial neural networks in financial eco-
nomics: a survey. Paper presented at the 2010 International Symposium on 
Computational Intelligence and Design.

Li, Y., & Shen, L. (2018). Skin lesion analysis towards melanoma detection using 
deep learning network. Sensors, 18(2), 556–556.

Menegola, A., Fornaciali, M., Pires, R., Bittencourt, F. V., Avila, S., & Valle, E. (2017). 
Knowledge transfer for melanoma screening with deep learning. Paper pre-
sented at the 2017 IEEE 14th International Symposium on Biomedical Imaging 
(ISBI 2017).

Mirunalini, P., Chandrabose, A., Gokul, V., & Jaisakthi, S. M. (2017). Deep learning 
for skin lesion classification. arXiv preprint arXiv:1703.04364.

https://www.healthdiscovery-corp.com
https://www.healthdiscovery-corp.com
https://chal-lenge2019.isic-archive.com
https://chal-lenge2019.isic-archive.com


134 ◾ Artificial Intelligence

Munteanu, C., & Cooclea, S. (2009). Spotmole – melanoma control system. 
Retrieved from https://play.google.com/store/apps/details?id=com.
spotmole&hl=en_AU.

Nachbar, F., Stolz, W., Merkle, T., Cognetta, A. B., Vogt, T., Landthaler, M., … 
Plewig, G. (1994). The ABCD rule of dermatoscopy: high prospective value in 
the diagnosis of doubtful melanocytic skin lesions. Journal of the American 
Academy of Dermatology, 30(4), 551–559.

Nasr-Esfahani, E., Samavi, S., Karimi, N., Soroushmehr, S. M. R., Jafari, M. H., 
Ward, K., & Najarian, K. (2016). Melanoma detection by analysis of clinical 
images using convolutional neural network. Paper presented at the 2016 38th 
Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC).

Pacheco, A. G., Ali, A.-R., & Trappenberg, T. (2019). Skin cancer detection based 
on deep learning and entropy to detect outlier samples. arXiv preprint 
arXiv:1909.04525.

Pomponiu, V., Nejati, H., & Cheung, N. M. (2016, 2016). Deepmole: deep neural 
networks for skin mole lesion classification. Paper presented at the 2016 IEEE 
International Conference on Image Processing (ICIP).

Qi, J., Le, M., Li, C., & Zhou, P. (2017). Global and local information based deep 
network for skin lesion segmentation. arXiv preprint arXiv:1703.05467.

Refianti, R., Mutiara, A. B., & Priyandini, R. P. (2019). Classification of melanoma 
skin cancer using convolutional neural network. IJACSA, 10(3), 409–417.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in 
cortex. Nature Neuroscience, 2, 1019–1025.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: convolutional networks 
for biomedical image segmentation. Paper presented at the International 
Conference on Medical image computing and computer-assisted intervention.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556.

SkinVision. (2019). Skin scan. Retrieved from https://www.skinvision.
com/?locale=en.

Sourla, E., Sioutas, S., Syrimpeis, V., Tsakalidis, A., & Tzimas, G. (2012). 
CardioSmart365: artificial intelligence in the service of cardiologic patients. 
Advances in Artificial Intelligence, 2012, 2–2.

Tan, M., & Le, Q. V. (2019). EfficientNet: rethinking model scaling for convolutional 
neural networks. arXiv preprint arXiv:1905.11946.

Tschandl, P., Rosendahl, C., & Kittler, H. (2018). The HAM10000 dataset, a large 
collection of multi-source dermatoscopic images of common pigmented skin 
lesions. Scientific Data, 5, 180161–180161.

Vesal, S., Ravikumar, N., & Maier, A. (2018). SkinNet: a deep learning framework for 
skin lesion segmentation. arXiv preprint arXiv:1806.09522.

Xie, H., Shi, J., Lu, W., & Cui, W. (2016). Dynamic Bayesian networks in electronic 
equipment health diagnosis. Paper presented at the 2016 Prognostics and 
System Health Management Conference (PHM-Chengdu).

https://play.google.com
https://www.skinvision.com
https://www.skinvision.com


Deep Learning ◾ 135

Xu, Y., Xiao, T., Zhang, J., Yang, K., & Zhang, Z. (2014). Scale-invariant convolu-
tional neural networks. CoRR, abs/1411.6369. Retrieved from http://arxiv.org/
abs/1411.6369.

Yu, A. (2018). Skin-lesion-classifier. Retrieved from https://github.com/uyxela/
Skin-Lesion-Classifier.

Zheng, Y., Huang, J., Chen, T., Ou, Y., & Zhou, W. (2018). Processing global and 
local features in convolutional neural network (CNN) and primate visual sys-
tems. Paper presented at the Mobile Multimedia/Image Processing, Security, 
and Applications 2018.

http://arxiv.org
http://arxiv.org
https://github.com
https://github.com


https://taylorandfrancis.com


137

Chapter 7

A Simple and Replicable 
Framework for the 
Implementation of 
Clinical Data Science

Juan Luis Cruz
Puerta de Hierro University Hospital

Universidad Politécnica de Madrid

Mariano Provencio
Puerta de Hierro University Hospital

Universidad Autónoma de Madrid

Ernestina Menasalvas
Universidad Politécnica de Madrid

Contents

7.1  Background/Introduction 138......................................................................

7.1.1  What Is the Problem with Clinical Data Analysis in 

Oncology? 139....................................................................  ..............

7.1.1.1  Lack of a Framework in the Hospital Setting 140 .............

7.1.1.2  Nature and Governance of Oncological 

Clinical Data 141 .................................... .............................

7.2  Methods 144..................................................................................................

7.2.1  Selection of a Concrete and Relevant Clinical Problem 144 ............



138 ◾ Artificial Intelligence

7.2.2  Problem Understanding 145 .............................................................

7.2.3  Framework Proposal 145 ..................................................................

7.2.4  Framework Implementation 146 .......................................................

7.2.5  Framework Application 146 ..............................................................

7.3  Results 147 .....................................................................................................

7.3.1  Proposed Framework 150 .................................................................

7.3.2  Oncological Electronic Medical Record (OEMR) 152 .......................

7.3.3  Oncological Data Model (ODM) 152 ................................................

7.3.4  Clinical Data Analysis (CDA) 155 .....................................................

7.4  Outcomes/Impact on Healthcare Delivery 157...........................................

References 159 .......................................................................................................

7.1  Background/Introduction

A large amount of clinical data generated in the hospital environment allows 

us to imagine the possibilities that their analysis would offer. Different 

technologies such as Big Data, Data Science (DS), machine learning (ML) or 

artificial intelligence (AI) can be applied in order to improve prevention and 

early detection, diagnosis, treatment and monitoring, research and manage-

ment in multiple pathologies of high incidence and high human and eco-

nomic cost. Although these technologies promise to revolutionize medicine 

as we know it, the reality that we can currently observe in the hospitals 

of the Spanish National Health System (SNS) shows us that we are not yet 

able to implement these technologies in an effective and broad way. There 

are different reasons why their real implementation in the hospital environ-

ment is still scarce, among which are organizational reasons and availability 

of resources, the highly fragmented map of information systems at hospi-

tals and therefore of clinical data, problems of governance and related to 

the very nature of clinical data and the need to guarantee the protection of 

personal data. However, despite the importance of all these issues, we con-

sider that the key problem is the lack of a framework, understood as a set 

of concepts, procedures and tools, which facilitates the availability of ade-

quate data and the multidisciplinary analysis of clinically relevant problems. 

Without having this framework implemented in the hospital, the different 

techniques and algorithms (from linear regressions to deep learning) lack 

practical utility.

On the other hand, cancer continues to be a major health and economic 

problem. Specifically, lung cancer causes the most deaths and causes the 

greatest economic impact. Patients undergo acute and chronic care phases 
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in many cases, participating in a complex care process that necessarily 

involves the intervention of different professionals in different care settings, 

which causes communication and coordination issues among the different 

professionals involved, and a high fragmentation of the data generated in 

each of the health interventions performed on the patient. The possibility 

of predicting, for an individual patient, aspects such as the efficacy of the 

treatment and the probability of response or progression, the toxicity expe-

rienced by the patient, the possibility of a relapse in the disease, progres-

sion-free and overall survival, or consumption of healthcare resources is 

key to the management of cancer patients. In this context, new healthcare 

paradigms such as Personalized and Precision Medicine or Value-Based 

Healthcare (VBHC) offer the hope of better results for patients and greater 

efficiency for the healthcare system. However, they rely heavily on the data 

and their analysis.

Thus, in this chapter, we consider answering the following question: how 

could we effectively apply these data analysis technologies to obtain new 

knowledge of clinical and managerial interest, and to enable paradigms such 

as Personalized and Precision Medicine and Value-Based Medicine, with the 

ultimate goal of improving health outcomes in oncology? A full discussion 

on this topic can be found in the doctoral thesis work of the main author 

(Cruz-Bermúdez, 2019) and in its associated publications (Cruz-Bermúdez 

et al., 2019a, 2019b).

7.1.1  What Is the Problem with Clinical 
Data Analysis in Oncology?

First, it is necessary to establish an operational definition of the concept of 

clinical data analysis (CDA). Thus, we define it as the detailed study of data 

related to the physical condition and health of people in order to acquire or 

improve their knowledge.

Among the different possible applications of CDA in oncology, we will 

focus on these two:

◾ Prediction and planning of healthcare resources needed through the 

analysis of previously collected data on healthcare activity (USAID, 2019).

◾ Description of healthcare provided to patients based on their clinical 

characteristics, and characterization of its cost, to inform clinical and 

management decisions (Skinner et al., 2018; Reeve et al., 2018; Knust 

et al., 2017).
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7.1.1.1  Lack of a Framework in the Hospital Setting

CDA is a habitual activity in the hospitals of the SNS, consubstantial with 

their triple assistance, research and teaching mission. However, the analy-

sis of clinical data lacks a framework that facilitates its implementation and 

reproducibility in the hospital setting, establishing a set of concepts, and 

architecture of functions and data, and a method for performing CDA in a 

systematic way. On the contrary, we identify the following characteristics of 

CDA performed in our hospitals today:

◾ Local scope: An analysis is typically limited to a departmental envi-

ronment (medical, surgical or central service) and even to a specific 

pathology, which usually causes clinical professionals to deal with the 

problem individually, or at least not benefits from learning in the subject 

that has been obtained in other departments. Additionally, this gener-

ally prevents shared analysis between different departments involved in 

patient care that could provide a broader view centred on the patient, 

as well as the performance of multicentre analysis that increases the 

volume of data analysed.

◾ Low level of methodology documentation: Although the results are 

usually published in scientific journals or in conference communica-

tions, the methodological and technical aspects, especially with regard 

to obtaining and processing the data, are usually simplified for the 

benefit of the description of the results obtained and their implications 

(which is logical, since they have a greater clinical interest, at least in 

the short term). This again causes that the knowledge generated in the 

process is not fully available to other professionals who consider per-

forming CDA in their respective fields.

◾ Avoidable efforts: The realization of data analysis projects implies an 

important effort, especially in the initial phases of obtaining and pre-

paring data, which is typically approached as a complementary activity 

to the clinical activity of hospital professionals. The lack of a framework 

implies a sub-optimal project development that increases the efforts to 

be made every time, thus leading to a waste of valuable clinician time.

◾ Difficulty in applying data-based innovation in the clinical 

 environment: Beyond conducting observational clinical studies or clin-

ical trials, whose performance is well dominated by clinical profession-

als, other innovative applications of CDA that require multidisciplinary 
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teams tend not to contemplate the problem as a whole, facing additional 

difficulties that may end in failure. Thus, it is typical to find initiatives 

aimed at supporting decision-making (e.g., detection of patients at risk 

of sepsis) that do not focus the necessary efforts on having quality 

structured clinical data or on the appropriate integration with the clini-

cal workstation.

◾ Lack of participation of other professional profiles: The dynam-

ics established in CDA usually involve the participation of the physician 

generating the hypothesis and manually obtaining the data and the 

statistician doing all the data analysis alone, with a low level of interac-

tion between the two, in a client–provider model. The massive integra-

tion of data and the application of DS, ML or AI techniques will require 

the incorporation of other profiles (such as computer engineers). Again, 

having a framework such as the one indicated could facilitate their 

incorporation into these projects.

7.1.1.2  Nature and Governance of Oncological Clinical Data

The different phases in the cancer care process generate clinical data that 

can be analysed. Regardless of the time of its generation, clinical oncological 

data share a number of characteristics, which we list here based on inter-

national references in this area such as ICHOM (International Consortium 

for Health Outcomes Measurement, 2017) or the recent report prepared for 

EPFIA (European Federation of Pharmaceutical Industries and Associations) 

(Montouchet et al., 2018). Thus, the following are common characteristics of 

oncological clinical data:

◾ They are associated with different clinical entities:

– Patient: demographic data (including date of birth, sex or race), 

habits (especially smoking and alcohol consumption), clinical data 

associated with the patient (weight, comorbidities, personal and fam-

ily history, data collected on physical examination, results of comple-

mentary tests, including analytical and imaging tests, health status of 

the patient and functional capacity), data related to the care activity 

carried out with the patient (external consultations, administered 

outpatient treatments, complementary tests, emergency care, hospital 

admissions, surgical interventions), genetic sequencing data and data 

related to patient’s death.
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– Tumour: diagnosis date, histology, stage, evaluation of the response 

to treatment, genetic mutations (driver mutations) and genetic 

sequencing of the tumour (both from tissue and liquid biopsy).

– Treatment: types of treatment applied, dates of treatments, complica-

tions and adverse effects of treatments, and cost of treatments.

◾ They present temporary variations, and it is usual that their registration 

happens at different moments of clinical interest that are not always 

pre-specified by a protocol:

– At the initial moment, at diagnosis (baseline).

– In each of the care contacts (clinical events or episodes) of the 

patient.

– In the beginning, end or during events of interest of each applied 

treatment (treatment lines). For example, in the face of adverse 

effects.

– During patient follow-up (survival phase).

– In the last days of the patient’s life (end-of-life) and after his or her 

death.

◾ They are recorded both in a structured way (categorical or continuous 

data) and unstructured, that is, as text written in natural language (free 

text):

– As a free text, in the clinical notes and reports written by the doctors 

and nurses in the different care contacts (outpatient consultations 

and treatments, emergencies, inpatient admissions).

– As structured data, in automated records (appointments, inpatient 

admissions, analytical tests, genetic sequencing data) or in manual 

records through forms containing the variables to be recorded and 

their possible values.

◾ They are registered by different professionals (doctors of different spe-

cialties, nurses, pharmacists, geneticists, etc.) in different services, units 

and care settings (hospital, primary care) which generates data disper-

sion in multiple information systems, often not integrated.

◾ They present different problems related to the lack of adequate data 

governance, such as the following:

– Lack of standardization and the absence of shared standards. The 

same variables, even when registered in a categorical way, contain 

different values depending on the centre, service or unit and even 

the person making the registration. This lack of normalization has its 

origin in the absence of commonly used cancer data standards and 

in the lack of coordination between countries and regions in this 
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area (Montouchet et al., 2018) and generates significant problems for 

the integration of data from different centres for joint analysis and for 

effective interoperability, which would allow the implementation of 

work processes between centres.

– The disparity of criteria (definitions). Even beyond the lack of nor-

malization, the absence of common data dictionaries implies the 

appearance of different interpretations about the content of vari-

ables, according to the different interpretations of the concept that 

they intend to represent (e.g., is the date of diagnosis the date on 

which the first visit in oncology is carried out after the availability of 

the pathology report? Is it the date of completion of the pathology 

report? Is it the date of obtaining the sample that allows the report 

to be made?).

– Difficulty in establishing responsibilities regarding the registration 

and updating of data. Although the data recorded in the electronic 

medical record (EMR) have clear authorship (that of the user authen-

ticated in the EMR system) and a protocolized collection dynamics 

(typically coinciding with clinical acts, such as first visits or follow-up 

visits), the basis of clinical and research data that typically comple-

ment EMR information and that are often implemented through office 

tools, lack proper regulation in both aspects. Clinical and research 

databases (RDBs) constitute up to 75% of existing cancer data records 

(Montouchet et al., 2018), being usually filled in by different profes-

sionals at different time points. Their fulfilment depends in many 

cases on the workloads and individual will of each professional when 

registering clinical data of interest for the future, non-care uses, often 

not specified a priori by the protocol of a specific study.

– Low data quality. The above aspects have a significant impact on the 

quality of the recorded data, from both semantic and formal points 

of view. This materializes in an incorrect organization of the data 

(variables in columns, observations in rows and tables that represent 

a single concept, or, in other words, databases that do not meet the 

third normal form of Codd (1990)) as in variables with lost data, with 

equivalent values recorded differently or with extreme values derived 

from collection errors (Wickham, 2014). These quality problems 

have a substantial impact on the development of projects based on 

the analysis of the data since it has been estimated that 80% of the 

effort required in them is devoted to data cleaning (Dasu & Johnson, 

2003).
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In addition to these key problems, there are other circumstances that greatly 

complicate the analysis of oncological clinical data in hospitals, in particular, 

the lack of an organizational structure dedicated to these issues, the highly 

fragmented map of information systems at hospitals and therefore of clinical 

data, and the growing threats to cybersecurity and personal data protection, 

while a new regulatory framework (GDPR) is still being implemented in 

the EU.

7.2  Methods

We propose a five-phase methodology designed ad hoc to achieve our 

objectives, which is described next (Figure 7.1). 

7.2.1  Selection of a Concrete and Relevant Clinical Problem

One of the first decisions to be taken is to propose the development of the 

framework in a specific clinical setting, with the intention that the results be 

subsequently generalized to other clinical problems. This would allow us to 

deepen enough to demonstrate a clinical and managerial utility of the results 

that validate the framework, without sacrificing in return the generalization 

capacity of the framework. For this, it is necessary to select a specific pathol-

ogy with the following criteria:

◾ High-complexity and multidisciplinary treatment, so that it can benefit 

especially from the intensive application of CDA and new healthcare 

paradigms such as Precision Medicine and VBHC.

◾ High social impact, from both health and economic points of view.

◾ Availability of structured clinical data.

◾ Clinical leadership and availability to participate in the development, 

implementation and application of the framework.

1. SELECTION OF A 
CONCRETE AND 

RELEVANT CLINICAL 
PROBLEM

2. PROBLEM 
UNDERSTANDING

3. FRAMEWORK 
PROPOSAL

4. FRAMEWORK 
IMPLEMENTATION

5. FRAMEWORK 
APPLICATION

Figure 7.1 Phases of the methodology applied for the definition, implementation and 
application of the framework for the analysis of oncological clinical data.
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7.2.2  Problem Understanding

Although it may seem obvious, a proper detailed understanding of the 

local problem is an essential step towards achieving the objective. And yet, 

one of the main causes of the lack of adoption of innovative solutions in 

the healthcare field is the lack of connection between the different actors 

involved in the development of digital solutions, especially between users 

(healthcare professionals) and developers (Rudin et al., 2016). One of the 

main barriers in this regard is the lack of organizational structures that 

enable this approach. Having the real situation of the data, their processes 

of governance and the technology that supports them is key to developing 

a framework with real possibilities of implementation, which maximizes the 

probability of offering results of clinical utility.

7.2.3  Framework Proposal

As we stated at the beginning, we consider that it is necessary to have a 

framework, defined as a set of concepts, procedures and tools, which facili-

tates the availability of adequate data and the multidisciplinary analysis of 

relevant clinical problems.

Among the desired characteristics for the framework, we identify the 

following:

◾ Feasible: The framework should be implemented with reasonable effort, 

taking into account the lack of IT resources usually found in the SNS.

◾ Useful: The application of the framework must serve to obtain results 

that also provide added value for clinical professionals and for decision-

making in the healthcare field. The measure of utility will be obtained 

through the following mechanisms:

– The opinion of the clinical professionals themselves, both those 

involved in the work and those to whom different dissemination 

actions are directed during the development of the work.

– Publication of the concrete results obtained that validate the 

approach made, both through specialized conferences and in peer-

reviewed scientific journals.

◾ Replicable: The framework should be general enough so that it 

can be applied to other pathologies and medical specialties in other 

centres with minimal modifications that do not distort the global 

approach.
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◾ Open: The framework must allow different technologies to be accom-

modated, regardless of their manufacturer, thus facilitating its applica-

tion in different centres.

◾ Inclusive: In order to achieve the objectives set out, it is essential to 

address multiple tasks in different fields, which necessarily requires 

multidisciplinary collaboration between IT staff and clinical staff.

7.2.4  Framework Implementation

Since the framework we propose would require actions in our hospital 

(Puerta de Hierro University Hospital, HUPHM), it is essential to have the 

authorization and resources of the hospital management. Thus, for the 

implementation, we will need not only the IT department for the technical 

implementation but also the support from the successive Managing Directors 

of the HUPHM and from the Head of the Medical Oncology Department. 

For the development of some functions, such as those related to the EMR, it 

is also necessary to involve the Clinical Records and Clinical Documentation 

Commission in the HUPHM.

7.2.5  Framework Application

The application of the framework to a pathology, and to a specific clinical 

problem within this pathology, allows us to obtain and evaluate its results, 

both internally and especially externally. This application, in addition to spe-

cific results, would allow us to validate the framework as long as the results 

obtained are novel and have a clinical and management interest.

To carry out the application of the framework, it is necessary to have the 

approval of the Ethical Committee for Research on Medicines of the HUPHM 

for the secondary use of data from healthcare. The framework’s ability to 

generalize to other problems and pathologies and, in other national and 

international hospitals, should be demonstrated in the future. However, 

the validity in the HUPHM may be a valid indicator of its possible valid-

ity in other centres, given that the HUPHM has a relatively modern system 

map (implemented for its opening in 2008, which implies that it is relatively 

young in the hospital standard) and was recognized in 2013 with the stage 6 

in the EMRAM EMR maturity model, defined by the Healthcare Information 

and Management Systems Society (HIMSS). Thus, since the HUPHM had the 

EMRAM stage 6 during the development of this work, it can be considered 

that it had a high level of computerization that is homogeneous with the 
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rest of hospitals worldwide that follow this maturity model (in 2015, a 17.9% 

of the 5,467 hospitals that had been evaluated worldwide with the EMRAM 

standard had a stage 6, that is, 979 hospitals) (Hoyt, 2015).

7.3  Results

In accordance with the established criteria, we chose lung cancer as the 

pathology to study for the development of our framework. We did a detailed 

study of the local problem existing in the HUPHM with regard to CDA in 

lung cancer, and thus, it provided us with the following findings:

 1. The registration process of healthcare data in the EMR is separated from 

the process of data registration for the research and care improving 

purpose, thus duplicating the registration work, inducing differences in 

interpretation and errors.

 2. Beyond the EMR, there is no structured, unique and updated regis-

try that contains a unique reference for each patient belonging to the 

oncology service for purposes of care improvement or research. There 

is a database of new patients (first consultations) of manual completion, 

fragmented into different databases over time, and not always updated 

in a timely manner. Nor is there a structured longitudinal register with 

the clinical follow-up information of the patients.

 3. Activity data are available in those healthcare areas that are organized 

by the EMR (appointments in external consultations, inpatient admis-

sions, day hospital, emergency department attendances, tests and inter-

consultations requested). In the areas in which the activity is coded (as 

in hospitalization through the mandatory minimum data set defined by 

the Spanish Ministry of Health, called CMBD), there are also clinical data 

associated with that activity. In the rest of the areas, only clinical data 

are available in the EMR (usually in free text), and in many cases, it is 

difficult to get activity data (e.g., cancer patients seen in the emergency 

department can be counted only through the interconsultations from ED 

to the Medical Oncology Department that are registered in the EMR).

 4. The unstructured records of the EMR (in free text) require very inten-

sive manual work to obtain the variables of interest and thus feed the 

RDBs.

 5. There is no standard coding of structured values, nor a clear, written 

and shared definition by all users who enter data into the databases. 
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This affects the quality of the data and the possibilities to interoperate 

(integrate) with other records.

 6. RDBs are created with specific objectives and therefore with specific 

data models for their purposes. However, they contain general patient 

data and specific variables that may be duplicated (and thus being 

inconsistent) between different RDBs. These RDBs do not have a uni-

fied reference that brings together a minimum set of oncological data 

(demographic and clinical).

 7. We identify two main types of RDBs:

– RDBs created ad hoc for a specific research project. They are typi-

cally created after the definition of the project (hypothesis definition 

leads to necessary variables). They should contain a specific set of 

variables that were not available in other databases, but this is not 

always the case.

– RDBs contain care records that group patients with specific criteria 

for selection (patient cohorts), but without a closed definition a priori 

of the information that will be required for further research. They 

are created by the impossibility of locating these patients in the EMR 

by other means other than registering all the cases that meet criteria 

in a specific database. Sometimes, they are made with a core pur-

pose, but can be used for further research (secondary use of infor-

mation), serving as a list of patients to study (subsequently obtaining 

informed consent for this and also new variables once the research 

project has been fully determined).

– In both cases, the absence of common definitions of data and stan-

dardized values, of clear responsibilities regarding the creation and 

maintenance of subsequent data, together with a non-technical 

design, makes the data quality low in most cases. This requires addi-

tional efforts preparing data when it is decided to finally conduct an 

investigation.

 8. In most cases, having a sufficiently structured patient database (a case 

register) would avoid the need to prepare different care records by 

pathology. When an investigation had to be conducted, a case registry 

query would be done and those patients that met criteria would be 

selected. From there, new specific information fields could be added for 

the desired investigation.

 9. Although the function of the case registry could be assumed by the 

hospital’s EMR system, the reality is that the existing system (in the 

HUPHM and in many other Spanish hospitals, being also very similar 
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to other national and international solutions) does not have the facilities 

for the autonomous management of the variables to be collected and 

for the exploitation of data that this unified case register would require. 

Although it can be proposed as a future possibility, it is necessary to 

propose a short-term alternative that allows progress in this area.

 10. Although there are a large number of form templates in our EMR (846), 

up to 60% of them have been completed less than ten times. It is sig-

nificant how variations are observed in different historical periods (with 

different management teams governing the hospital). Analysing the 

volume of records made perform template, it was observed how only 

four forms accumulated 73% of the total structured records of the EMR. 

These data suggest the low effective volume of clinical data that are 

structured in the EMR by the users themselves, beyond the data that is 

generated in a structured way in an automatic or semi-automatic way 

and of those that are captured as an essential part of a process of estab-

lished work. In order to obtain better results in the structuring of the 

data by the users in the EMR, it is necessary that the users are willing 

to do so, either because they obtain a return of the additional effort that 

it entails against an unstructured registry, or because the structuring of 

data is an essential part of a work process established and enforced by 

the management team. In any case, the first option will always be the 

desirable one, since the second one can lead to situations of discontent 

and even burnout (Friedberg et al., 2013).

 11. Regarding the volume of data, we observe that the number of patients 

of a specific pathology such as lung cancer, in a single centre, may not 

have sufficient volume to perform CDA using ML techniques, especially 

in case of selecting specific subpopulations. However, the large number 

of related entities (consultations, treatments, admissions, emergencies, 

etc.) and of variables that describe each of them over time (date of real-

ization, performer, active principle, dose, discharge date, diagnosis date, 

etc.) does allow to have a high dimensionality and therefore a high vol-

ume of data for the application of advanced analysis techniques. In any 

case, the integration of information from different centres is essential for 

these technologies to offer their full potential.

 12. Regarding the variety of data, another characteristic usually evaluated 

in the field of Big Data and DS, we observe that we mainly deal with 

clinical data collected as text or image. However, we can integrate 

other sources of information. Recently, the development of personal-

ized medicine in oncology has promoted the incorporation of molecular 
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(genetic) information, with the near perspective of exponential growth, 

by having mechanisms of massive sequencing and analysis of proteins 

or microbiome that could be of interest to establish a unique profile of 

the patient at each time. At the same time, the integration in the future 

of other data of the individual, derived from its location in a popula-

tion context, such as cultural, socioeconomic and demographic, epide-

miological and public health data, habits and behaviours or values and 

preferences (the so-called social determinants of health or SDOH) is 

foreseeable.

 13. Finally, in relation to the speed of data generation or the generation 

of a response to them (whether generated knowledge, a prediction 

or an action), we observe a growing need. However, the bulk of the 

data identified in our work does not have special processing speed 

requirements.

7.3.1  Proposed Framework

We proposed a conceptual model and an associated functional architec-

ture (which includes functions and data) in order to facilitate the analysis 

of clinical data in oncology and specifically in the field of lung cancer. It 

is important to highlight that, although the architecture proposed contains 

functional blocks, data and their flows, it does not necessarily define which 

information systems must support those functional blocks. This definition 

of systems may be adapted to the characteristics of each hospital and the 

information systems available to it, thus making the proposed framework 

more flexible.

The proposed architecture is shown in Figure 7.2.

In the proposed architecture, we identify the following functional blocks 

(refer to Figure 7.2):

◾ Electronic medical record (EMR).

◾ Oncological data model (ODM).

◾ Clinical data analysis (CDA).

◾ Clinical decision support (CDS).

Functional blocks are grouped into two main types according to their main 

function: data repository (EMR and ODM) or data analysis (CDA, CDS). The 

blocks also have sub-functions (indicated as boxes of more intense colour 

within the boxes corresponding to the block).
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Figure 7.2 Proposed architecture for the analysis of clinical data in oncology.

Additionally, other functional blocks are identified that not being part of 

the architecture and interact with it (white boxes in the figure).

Finally, data exchange or data processing actions are identified between 

the different functional blocks (Figure 7.2). We distinguish between the 

exchange or processing of general clinical data (variables available to all 

patients) and specific clinical data (corresponding to specific cancer pathol-

ogy, such as lung cancer). Although we defined our own data model for 

simplicity and speed to obtain results, we recommend validating the use 

of reference models in this area, such as dual models based on the CEN/

ISO EN13606 standard (International Organization for Standardization (ISO), 

2008) or the OpenEHR open standard (https://www.openehr.org/) that 

make a distinction between clinical information (immutable) and associated 

clinical knowledge (set of concepts of a particular clinical domain and there-

fore may evolve over time) (Serrano et al., 2009). These models represent 

clinical knowledge through archetypes (metadata structures) linked to previ-

ously established terminologies (such as SNOMED-CT, (http://www.snomed.

org/)), thus facilitating semantic interoperability between systems and the 

homogeneous representation of the data, regardless of the institution that 

generates them.

According to the analysis performed, we found that there was no struc-

tured, unique and updated record that contained a unique reference for 

https://www.openehr.org
http://www.snomed.org
http://www.snomed.org
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each of the patients belonging to the oncology service for purposes of care 

improvement or research, but rather multiple unconnected databases and 

the EMR itself, all without a standard coding for the structured values, nor a 

clear, written and shared definition by all users who entered data in those 

databases. As we have seen, this impacted the quality of the data and the 

possibilities of interoperating (integrating) with other records. Therefore, 

having a sufficiently structured patient database (a case registry) would avoid 

the need to prepare different care records by pathology.

We will describe some of the main blocks of the proposed architecture in 

the following sections.

7.3.2  Oncological Electronic Medical Record (OEMR)

The EMR provides, regardless of its specific implementation, and among 

many other advantages, a set of structured data related to both the patient 

(demographic data) and the healthcare activity carried out. However, there is 

no definition of the minimum content of the EMR depending on the spe-

cialty of pathology. Thus, and based on the analysis of other reference mod-

els in this area (International Consortium for Health Outcomes Measurement 

(ICHOM), 2017) (Provencio et al., 2019), we propose an Oncological 

Electronic Medical Record (OEMR) integrated into the hospital’s general EMR 

system as a subset of it, which contains in a structured way a minimum 

number of key variables for subsequent analysis. Having a minimum number 

of structured variables would allow completing the OEMR in the time avail-

able in a typical consultation, without entailing a significant workload for the 

physician. Pretending a higher number of structured variables in the OEMR, 

although a priori would be very useful in the architecture proposed from a 

technical point of view, might not be a goal attainable as stated previously.

The OEMR should allow the registration of the most relevant variables for 

any cancer patient, corresponding to both the first consultation and the rest 

of the follow-up consultations. These variables should be previously defined 

in a data dictionary available to all users who would perform the registration 

of data in the OEMR, in order to unify criteria for their registration.

7.3.3  Oncological Data Model (ODM)

Since the EMR available in the HUPHM does not have the necessary facili-

ties for the autonomous management of the variables to be collected, nor 

for the exploitation of data that this unified case register would require, 
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Figure 7.3 Components of the proposed ODM.

we proposed a specific functional block to solve this problem, called the 

Oncological Data Model (ODM). We identified the following components of 

the ODM (Figure 7.3):

1. Register of Cases (REC): The REC compiles the longitudinal set of 

structured and non-anonymized care data that are considered of interest 

for patient care follow-up and for the location of cases that meet certain 

criteria. Likewise, it will have a secondary use to carry out activities for 

improving care, researching and teaching that is not specified a priori. 

In this case, its data will be the basis for the elaboration of RDBs, 

prior approval by the Ethical Committee, and has to be anonymized or 

pseudonymized. The REC is subdivided into the following components:

– Oncological Minimum Data Set (OMDS): Static data, created in 

the first healthcare contact of the patient in the outpatient setting 

(first medical oncology consultation) of the first oncological process 

diagnosed. These data are available in the EMR (demographic) and 

in the OEMR (through a form of first Medical Oncology consulta-

tion), which are common for all cancer patients and will be auto-

matically integrated into the OMDS. In this way, it is guaranteed 

that every patient followed in the Medical Oncology Department, 

 regardless of their specific pathology, has at least these data in the 

REC (Figure 7.4):

– Pathologies Bases: Each of the pathologies (organs or types of 

cancer, such as lung cancer, colon cancer and lymphoma) may 

have its own data model that is of specific interest for the disease, 

and that is not contemplated therefore in the OMDS. In any case, 
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Variable Type Origin
Hospital unique patient ID (NHC) Numerical EMR
Spanish National citizen ID (NIF) Text EMR
Patient name Text EMR
Birth date Fecha EMR
Sex Categorical EMR
Race Categorical OEMR 1st consultation
History of cancer in first grade relatives Categorical OEMR 1st consultation
Smoking habits Categorical OEMR 1st consultation
Smoking habits (quantification) Numerical OEMR 1st consultation
Organ (cancer type) Categorical OEMR 1st consultation
Initial cancer stage Categorical OEMR 1st consultation
Date of diagnosis Fecha OEMR 1st consultation
Date of first visit in Medical Oncology Fecha EMR
ECOG-PS at diagnosis Categorical OEMR 1st consultation
Histology Categorical OEMR 1st consultation
Histologic subtype Categorical OEMR 1st consultation
Histologic grade Categorical OEMR 1st consultation
Molecular biomarkers analyzed Categorical OEMR 1st consultation
Previous history of personal cancer  Categorical OEMR 1st consultation

Figure 7.4 Variables proposed for the OMDS.

referential integrity will be maintained with the patient’s medical his-

tory number contained in the OMDS (data from patients in a specific 

pathology that are not previously in OMDS should not be included) 

so that each patient in the OMDS may have one or several registered 

pathologies, with their respective variables.

– Follow-Up Events Base (FEB): A data model will be available to 

contain the evolutionary follow-up of patients that contains all the 

events of interest recorded for a patient in their care course: care 

contacts, procedures and complementary tests, response or progres-

sion, toxicities, etc. Since keeping this base up-to-date implies a high 

workload, integration with the data recorded in the EMR, such as 

care activity data, will be sought as much as possible. These follow-

up data are currently registered in an unstructured manner in the 

EMR, although the gradual introduction of a form in the EMR with 

the same content as the FEB for its integration is proposed, depend-

ing on the maturity of the organization for the structuring of the 

information in the EMR.

– Pharmacological Treatment Base (PTB): It will contain the tem-

poral record of all the cancer treatments administered to the patient 

that has been prescribed by the Medical Oncology Department. It 

excludes treatments administered inside the hospital (emergency, 

hospitalization), those prescribed for hospital pickup (outpatients) or 
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Figure 7.5 Relationship between the components of the case registry and the EMR.

those OTC meds prescribed in the hospital or in primary care. This 

information will be obtained from the hospital’s prescription and 

medication administration system.

The relationships between the different components of the REC and the 

EMR and OEMR functional block introduced in the previous chapter are 

shown in Figure 7.5.

 2. Research Databases (RDBs): They will be created exclusively for spe-

cific projects, once the study variables that are needed are known and 

verified that they are not already included in the REC. The variables 

they contain should be standardized and added to a single dictionary, 

and will necessarily have referential integrity with the OMDS during its 

preparation. Once prepared, anonymization or pseudonymization will 

be carried out to carry out the analysis corresponding to the approved 

research.

3. Clinical Trial Databases (CTDs): It will contain updated data of the 

clinical trials in the centre, in its different stages of development, as well 

as of the recruited patients, having referential integrity to the OMDS.

7.3.4  Clinical Data Analysis (CDA)

The functional block of CDA facilitates the detailed study of data related to 

the physical condition and health of people in order to acquire or improve 

their knowledge. To this end, existing technologies and analysis techniques 

will be applied (DS, ML and AI, according to their definition and state of the 

art), with the following means:
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◾ Data: The clinical data will be obtained through downloads, ETL pro-

cesses or other mechanisms of integration with the analysis tools, from 

the ODM, the EMR-OEMR and external data sources. These data will 

be pseudonymized in the process of obtaining so that the confidential-

ity of the information is protected to a greater extent and the possibility 

of participation of researchers not directly involved in patient care is 

enabled.

◾ Methodology: Although the usual approach from the point of view 

of clinical research is to propose a hypothesis and then obtain the 

data to validate it, we observed how in our approach we had assis-

tance data in the first place, and we considered how to obtain an 

additional value of them. Therefore, we started from the need to 

perform an analysis of clinical oncological data without specifying 

a previous hypothesis or a series of specific objectives, but multiple 

areas of interest to explore through a methodology that allowed us 

to perform this process in an optimal and systematic way. Therefore, 

to carry out the data analyses necessary to achieve the proposed 

objective, CRISP-DM has been used as a methodological framework 

(Chapman et al., 2000). We have applied this methodology adapting 

it to the needs of the healthcare environment and the problem of 

analysis, taking as reference previous studies that apply this method-

ology to the analysis of clinical and healthcare data (Rivo et al., 2012) 

(Pérez et al., 2015). Thus, we propose the adoption of CRISP-DM 

with phases adapted and developed in an iterative life cycle until the 

desired results are obtained. We propose an inhomogeneous distribu-

tion of the data analysis project efforts in the different iterations of 

the CRISP-DM cycle. Thus, the first iterations will be more focused on 

obtaining clear analysis objectives and understanding them properly 

to obtain the necessary data from the available sources. The follow-

ing iterations will focus more on the preparation of the data and the 

development of initial models for evaluation by clinical staff. Finally, 

the last iterations will try to focus their efforts on refining the models 

and evaluating them in detail, as well as obtaining results that can be 

exploited in the clinical setting (Figure 7.6).

◾ Tools: Our proposal allows complete freedom when selecting 

the most appropriate technological tools to achieve the proposed 

objectives.
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Figure 7.6 Succession of CRISP-DM cycles over time with an inhomogeneous distri-
bution of efforts in their different phases. (Adapted from https://es.wikipedia.org/wiki/
Cross_Industry_Standard_Process_for_Data_Mining.)

Thus, the final product of CDA will be the following:

◾ Knowledge: Regarding the analysed data (a piece of evidence) that in 

many cases could be the starting point for new research hypotheses or 

for supporting clinical decision-making.

◾ Mathematical models: Trained on the available data that could be 

deployed, after a proper validation, in the clinical environment (produc-

tion) to support clinical decision-making.

7.4  Outcomes/Impact on Healthcare Delivery

The proper management of the lung cancer patient during the continuum 

of care determines to a large extent the clinical results and the quality of 

life, and allows to generate economic savings for the health system. Based 

on the conviction that the management of patients with lung cancer can be 

improved through the analysis of data on healthcare use, available in the 

EMR, we implemented and applied our proposed framework to this issue.

To this end, we obtained from the OMD, built using REDCap (Research 

Electronic Data Capture) (Harris et al., 2009), a cohort of 522 patients diag-

nosed from January 1, 2009 to December 31, 2016, and therefore, we had all 

healthcare attendances registered in our EMR, which went life in September 

2008. Healthcare activity data from the EMR were obtained through Oracle 

Business Intelligence Discoverer 10g version 2 (10.1.2.1). For data prepara-

tion, crossing and depuration, Microsoft Excel 2016 was used as it is a simple 

tool that is widely available in the hospital environment.

https://es.wikipedia.org
https://es.wikipedia.org
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The analysis was performed using a classical statistical approach, through 

univariate and Poisson multivariate regression or binomial multivariate 

regression analyses, using common tools widely available in any hospi-

tal such as Stata 12.0, Joinpoint 4.5.0.1 for the analysis of tendencies (Kim 

et al., 2000) and the R language. The initial exploratory visual analyses were 

mainly performed through Tableau 10.3, a visual analysis tool that allows 

rapid identification of relations and tendencies between data.

Under these conditions, we obtained the following conclusions of clinical 

and managerial interest in improving healthcare for these patients:

 1. The total average cost per patient per year, excluding outpatient medi-

cation and radiotherapy, amounted to 16,406 euro, 10% attributable to 

outpatient care, 3% to emergency care and 87% to inpatient admissions.

 2. We observe an increasing trend in the incidence of lung cancer in 

women since 2003, of approximately 1.5% annually, so maintaining the 

trend it is estimated that in 2020, 35% of lung cancer cases will occur in 

women.

 3. The patients in our study have a median of 36 outpatient attendances 

per year of follow-up, being the attendances in the Medical Oncology 

Department and the day hospital a 50% of them.

 4. We observe an increasing trend in the number of successive consul-

tations for stage 4 patients, with an increase of 0.72 attendances per 

patient per year, which should serve to inform decisions regarding the 

sizing of the staff for the Medical Oncology Department.

 5. The consumption of outpatient care per year of patient follow-up is 

directly related to the patient’s stage at diagnosis, with the consump-

tion of emergency attendances of the patient, with the comorbidity of 

the patient, with the existence of a history of cancer in relatives of first 

grade and inversely with age at diagnosis.

 6. Seventy-four per cent of patients went to the emergency department 

(ED) at least once, with a median of 1.2 hospital emergencies per year 

of follow-up; 76.6% of the ED attendances had an urgent or very urgent 

triage (levels 1 to 3 of the Manchester scale), 22.6% had a less urgent 

triage (level 4) and only 0.8% had a non-urgent triage (level 5). We 

observed a relationship between the level of triage and the existence of 

subsequent inpatient admission. However, 30% of cases with less urgent 

triage ended up being admitted to hospitalization.

 7. The consumption of ED attendances per year of patient follow-up is 

directly related to the patient’s stage of diagnosis, the number of inpatient 
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admissions per follow-up period, the patient’s comorbidity, the value of 

the ECOG-PS at diagnosis, the age at diagnosis, the number of emergen-

cies in the 180 days prior to diagnosis and the number of prior outpatient 

care. These results are suggestive that the older population could be more 

targeted for proactive actions that would allow ED attendances to be 

avoided (with home follow-up, for example) and that frequent attendance 

in emergencies after diagnosis may depend to some extent on the previ-

ous history of the patient in his consumption of healthcare.

 8. Fifty-five per cent of the patients had some inpatient admission after 

their diagnosis of lung cancer in the period analysed, with a median of 

1.35 admissions per year of follow-up. The median days that pass from 

diagnosis to admission is 80 days, and 180 between discharge and death.

 9. Fifty-seven per cent of inpatient admissions are ordered from the ED, 

resulting in death in 8% of cases. For stage 4, the figures rise to 79% 

ordered from the ED and to 16% resulting in death.

 10. The number of inpatient admissions per year of patient follow-up is 

directly related to the patient’s comorbidity and the number of emergen-

cies in the 180 days prior to diagnosis. We also noted that patients who 

never smoked had 40% fewer inpatient admissions than ex-smokers.
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8.1  Introduction

The practice of medical care is changing and changing rapidly (Coiera, 2018, 

2019a; Topol, 2019). Health is not immune to the wide societal changes 

brought on by our increasingly digital existence (The Economist, 2017). It 

has, however, been late to realize these transformative changes, unlike 

banking and other industries (Brynjolfsson & McAfee, 2011). This is because 

health has always been heavily reliant on human interaction, which has 

delayed many aspects of adoption. Artificial intelligence (AI), in its various 

guises, is increasingly having an impact on the clinical world (Coiera, 2019b; 

Topol, 2019). With an initial emphasis on pattern recognition (radiology, 

dermatology), the usefulness of AI is broadening to other areas. Facing this 

clinical medicine is having to adjust how it creates and conceptualizes care. 

Indeed, as we will argue later, the changes wrought by digital health care 

are as fundamental to changing care delivery as the advent of the scientific 

method was in the 18th century.

To frame the conversation, we will examine our initial experiences with 

the development of an AI tool designed to inform decision-making at the 

consultation level in a primary care context, at this time best placed to have 

an impact on patient care. Essentially, we used machine learning to design 

a means of informing general practitioners (GPs – also known as family 

practitioners) and patients of the risk of attending an emergency department 

within the next 30 days. As part of that study, we researched practitioner atti-

tudes to the tool and, in doing so, developed some insights into the future 

needs of AI-enhanced health care.

A well-recognized area of concern in modern western medicine is reduc-

ing hospital emergency department visits. Whilst often these patients require 

the attention of a specialist facility (for myocardial infarction or serious 

trauma, for instance), there remain several categories that may be managed 

in primary care, to prevent and/or reduce costly emergency attendances. 

These include (but are not limited to) chronic diseases such as cardiac 

failure and diabetes, as well as low acuity problems such as infection. We 

chose to approach this problem using the availability of digital health, using 

big data approaches, by extracting and linking records of all those who 
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attended local emergency departments with their general practice data, and 

using machine learning to develop a prediction model.

The resultant tool, when tested on trial data, was able to accurately pre-

dict the risk of ED attendance within 30 days, based on the primary care 

data alone. In other words, at the time of the GP consultation, a screen 

popup will inform the GP (and the patient) of the risk (Pearce, McLeod, 

Rinehart, Patrick, et al., 2019). It is therefore designed to deliver the infor-

mation at the time best able to have actions taken to correct the problem. 

Because of this success, the tool is currently being deployed across 2,000 

practices in the east of Australia.

However, the deployment of the tool raised several issues in its delivery 

(Pearce, McLeod, Rinehart, Whyte, et al., 2019). Ranging from governance 

to clinical safety, we had to develop approaches to many new problems 

along the way. Whilst the tool is accurate 75% of the time, deployment of 

the program represents a new way of informing the clinical interaction, 

one that we believe requires a new clinical method, a new way of clinician 

to think about what it is to deliver care (Pearce, McLeod, Rinehart, Whyte, 

et al., 2019).

During the tool development, we tried to examine this in more detail. 

As part of the study, we engaged in a small qualitative assessment of the 

GP reactions, to further understand the impact on clinical thinking. The 

aim of this aspect of the project was to collect GP’s perceptions of the risk 

algorithm scores, the patient attributes and their potential treatment changes 

based on their own active patients. Implementing the risk scores in a live 

general practice environment and consequently acquiring feedback on the 

accuracy and utility of the report was considered an essential step to vali-

date the future use of the alert tool.

8.2  Methods

The tool was trialed in ten general practices in eastern Melbourne. We used 

historical data from within the practice. One hundred patients were identi-

fied at each practice, and a selection had the risk rating presented to their 

usual GP. Participants then rated the tool performance. Seven of the GPs 

participated in follow-up interviews. Participants were required to review 60 

patient records each (equaling to a total 420) with a spread of scores (high, 

medium and low risk) to ensure adequate evaluation across all score spec-

trums. Patient information shown for review, when available, included
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◾ Patient name

◾ Demographics: Age, gender, pensioner, DVA, Aboriginal or Torres Strait 

Islander status

◾ Risk Factors: Smoking

◾ Diagnoses.

– Current Diagnoses: Marked as active in GP software or identified in 

the last visit

– Historical Diagnoses: Up to ten years.

◾ Medications

– Current medications: Marked as current in GP software or used in 

the past eight months

– Historical medications: used in the last 9–24 months.

◾ Pathology Tests and Results

– Current pathology: Tests and results reviewed in the last visit

– Historical pathology: Tests and results reviewed in the last 12 months.

◾ GP Measurements (i.e. BMI, BP, Temperature, weight, etc.)

– Current Measurements: Tests and results reviewed in the last visit

– Historical Measurements: Tests and results reviewed in the last five 

years.

◾ Patient risk scores for the 0–30 day and 31–365 day

GP participants answered a range of questions concerning the

◾ Accuracy of the risk score

◾ Accuracy of the attributes presented for each patient

◾ Any changes they would make in patient treatment given the score.

8.3  Recruitment and Consent

GPs who participated in the study were employed by practices that had 

pre-existing contract agreements, in both urban and rural settings in Eastern 

Victoria. All practitioners were required to work a minimum of three ses-

sions per week (0.3 FTE), in order to ensure that participants had sufficient 

active patient counts in the last 12 months to evaluate the risk scores. Due to 

a technical issue with one practice and two GPs not completing the pro-

cess, the final sample consists of seven participants that completed both the 

patient record evaluation, final survey and the one-on-one semi-structured 

telephone interview.
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8.4  Data Collection Tools

The patient record evaluation application was developed for study purposes 

and was hosted on pre-existing software utilized by the practice’s data 

extraction and analytical system – POLAR GP (Pearce, Mcleod, Rinehart, 

Ferrigi, & Shearer, 2019). The survey presented demographic and clini-

cal attributes of patients’ medical history and allowed GPs to evaluate the 

efficacy of the risk scores based on the attributes included in each patient 

record.

The patient’s evaluation tool comprises 15 items containing clinical infor-

mation for each patient and nine questions, which allowed GPs to evaluate 

the accuracy of the risk score, the attributes presented and any treatment 

changes identified for the patients based on their clinical judgment, as 

shown in Figure 8.1.

A final survey was developed as an adjunct to the patient’s evalua-

tion form. This form used Likert scales over 11 questions, allowing GPs to 

evaluate the accuracy of the report overall, the usefulness and the inten-

tion of usage. The purpose was to acquire additional feedback, which 

would allow us to investigate whether the results from different approaches 

well class.

An interview guide was developed to support the one-on-one semi-

structured telephone interviews that occurred during the week after the 

completion of the patient evaluation records. The topics discussed during 

the interviews concerned the experience of GPs using the tool.

8.5  Data Collection Process

Data extracted from the participating practices included patients that have 

visited the GPs during the past year of the extraction commencement. 

Approximately 1,000 patient records were extracted from each practice. 

The records were run through the algorithm in order to identify patients 

at risk of an emergency presentation at the hospital. A list of patients’ de-

identified IDs was created to perform a randomized application, which 

ensured a spread of scores (high, medium and low risk) across the two 

time periods (0–30 days and 31–365 days). The randomly selected patients 

met the pre-determined alert criteria that have historically identified patients 

who are at risk of hospital presentation and provided to GPs for evaluation. 

The included attributes were specified in the report.
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After reading the explanatory statement and signing the consent form, the 

participating GPs were asked to log in to POLAR GP, already installed in the 

practice’s computing system. Each GP completed 60 patient reports total-

ing 420 unique patient records. Following the evaluation of the 60 patient 

records, practitioners completed a semi-structured survey with some free-

response items. GPs began reviewing patient records May–July 2017 and 

were given incentives for their time. The final data collection took place 

during the telephone interview during the week following the completion of 

the patient evaluations. The interview was held at a day and time that suited 

participants, with an expectation that most GPs would want to be inter-

viewed over the phone in between consultations.

8.6  Results

GPs were generally accepting of the technology as a support to their prac-

tice. They were more likely to agree with the tool when it predicted a low 

risk but less likely to agree when it predicted a high risk. This was particu-

larly evident in the pediatric age group. Comments revolved around the con-

cepts of usability and accuracy, and the GPs made many comments on ways 

to improve the tool deployment (Table 8.1).

As shown above, GPs generally found the format of the report easy to 

use and would likely use a report to provide additional support to higher-

risk patients. However, there was less agreement concerning the accuracy 

Table 8.1 Final GP Survey Responses

Question Likert M (SD)

The format of the report is easy to use. 3.00 (0.58)

In general, the report is accurate in targeting patients at risk of ED 
admission.

2.29 (0.49)

The report is a useful addition to clinical support strategies. 2.57 (0.79)

If the report was offered in real-time to my desktop, it would be 
useful.

2.71 (1.11)

I would likely use a real-time report as part of my practice. 2.86 (1.22)

I would be likely to use the report for high-risk patients to provide 
or access additional support (i.e., care coordinators, practice 
nurses etc.). 

3.14 (1.22)
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and if they would use it if it was delivered as a real-time report within their 

practice. GPs identified within their comments that some of these concerns 

related to those in the higher-risk categories, which was also suggested 

within the individual patient record evaluations.

8.6.1  GPs Evaluation of Risk Algorithm: Qualitative

All interviews were audio-recorded and transcribed and reviewed by two 

researchers. The interviews were coded using the NVivo 11.0 software. A 

qualitative phenomenological approach was applied in conducting the semi-

structured interviews and thematic analysis to analyze the transcripts.

The experience of using the tool was perceived as positive from most of 

the participants. The accuracy of the tool was an overarching theme in GP’s 

stories. Reflecting on their participation in the study and whilst evaluating 

the patient records, GPs said that a predictive tool constitutes an innovative 

idea that is useful and helpful to guide their thinking and decisions towards 

a patient’s care. However, although the idea of using a predictive tool as 

part of their practice is beneficial, there were some suggestions that the tool 

needs further refinement in order to ensure better accuracy.

During the thematic analysis of the interview transcripts, three themes 

emerged.

8.6.2  Accuracy

Responses appeared to be mixed when GPs evaluated the tool’s accu-

racy and whether the scores were realistic or not. Opinions seemed to be 

divided, expanding on the reasons that led them to form this decision.

Yes, generally, I would say they did [align with my clinical experi-

ence]. I think generally it’s a fairly good predictor

…The reports were reasonably realistic, but they are only as 

good as the data that the GP has put them into the program

I thought that the accuracy of the report was quite a long way 

off, of what my assessment of the preference is…I think it overes-

timated the risk in the 30 months {meaning days] significantly and I 

think it underestimated the risk in the 12 months period

Certain groups seemed to be more accurate than others, especially elderly 

people and low-risk patients.
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…the predictions …particularly I think for the lowest-risk patients 

were really accurate…

…Probably the older ones were more accurate when they had 

multiple risk factors…

Some participants stressed the need of having knowledge around the type 

of algorithm that was used, which calculated the risk score. Participants 

mentioned that this might have helped them to have a complete image and 

provide answers that are more accurate.

…if I knew the algorithm, I could then have suggested that the 

long-term risk score for this patient would be higher than the short-

term risk…

Well, since I don’t know how you do them [calculations], it is very 

difficult to kind of make a meaningful comment about…

Keeping this in mind, it might be that GP’s lack of knowledge concerning 

how the algorithm was calculating risk scores was frustrating for them and 

their evaluation of the tool. This concept of AI tools being a ‘black box’ is 

well recognized.

8.6.3  Usability

All of the GPs were in an agreement that a predictive tool consists of an 

innovative idea that is very useful and helpful for GPs’ daily practice. Having 

a predictive tool offers the opportunity to predict and potentially prevent 

a number of people presenting to emergency departments. Although some 

participants reported the tool needs further revising and improvement, most 

of them said that it constitutes a useful alerting tool. Reviewing a patient’s 

record in a single scan and the time efficiency this represented was also 

highlighted as valuable.

It might provide an early warning to people who I might not be 

considering as potential risk to go into hospital.

…that was easy to absorb and to read, it was quite well pre-

sented. It was a good summary.

It got quicker as you went along because I knew most of the 

patients, that was pretty quick, the ones that I didn’t know or 

hadn’t see for a long time, it took a bit longer.



172 ◾ Artificial Intelligence

8.6.4  Suggestions for Improvement

The third theme identified participants’ suggestions for inclusion of fur-

ther items, which might have provided better estimation around a patient’s 

health. The views of the participants were mostly personal preferences, all 

underpinned by the same needs, and the reason that a patient is flagged as 

high risk in the system. Suggestions offered by the GPs when applied to the 

tool might provide better accuracy and understanding and, as a result, create 

a more constructive tool.

Well, it would be helpful if the program flagged why it thought, 

that this risk was so high in that particular person…why was that 

person flagged as being as high risk…

8.7  Discussion

The findings from this limited study are not sufficient to be truly considered 

significant in its own right. However, in the context of the overall study, and 

the activities of our organization in implementing extensive tools in practice, 

the findings highlight the conditions that need to be dealt with for the use 

of AI in the primary care context. In deciding to develop and then deploy 

the tool, we sought to make decisions about several areas of ambiguity. In 

researching the options, we realized that in many areas, we were making 

decisions on issues about which, to date, there had been only theoretical 

discussions. We found limited literature in this regard. We found adopting a 

traditional, randomized controlled trial path non-pragmatic and not neces-

sarily suited for this model of care (Greenhalgh & Abimbola, 2019). The rest 

of this chapter summarizes some of these issues and frames them with the 

pragmatic decisions we made at the time. We hope this will inform future 

research in this area.

In many ways, we were surprised at the degree of acceptance of the 

tool by the GPs. However, on reflection, the tool represents not a wildly 

new concept, but an extension of an existing trend. Clinicians have always 

been information managers. And computers are par excellence, information 

managers. As the amount of available information increases exponentially, 

computers have long been an aid to manage this. In Australia, computers 

arrived as basically electronic prescription pads (Western, Dwan, Makkai, 

Del Mar, & Western, 2001). Australia has a complex system of drug pre-

scribing and subsidies, and computerization removed the need for GPs to 
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memorize the many variables of drug strength, pack size, repeats and sub-

sidies for specific conditions (Pearce, 2013). Each jurisdiction had its own 

drivers for computer adoption. In the USA, billing needs has overwhelmingly 

driven computerization, to the detriment of human relationships (Toll, 2012). 

However, whilst the drivers are unique, the overall effect is that computers 

in developed – and increasingly in developing (Pearce, 2018) – environments 

are moving from common to ubiquitous.

This change is not just about computerization, but about the fundamental 

changes in society due to the digital world, and the concomitant changes 

that are occurring in health.

We have first listed elsewhere some of the challenges to the future of 

medicine (Pearce, McLeod, Rinehart, Whyte, et al., 2019), and this article 

is an opportunity to expand on these. An important framing discussion is 

about computers/big data/AI sitting at an intersection that is arguably some-

where between human and true machine, with concepts such as ‘conver-

gence’ (Gill, 2019), or even ‘singularity’ (Kurzweil, 2005) blurring the lines 

where biological humanity ends and technologically enhanced humanity 

begins. Either way, there are many traditionally ‘human’ things that now can 

be done as well, if not better, by computers (Kuflik, 2007).

Seemingly, these concepts seem far-fetched, but indeed we need (as this 

discussion will show) to confront some of them sooner rather than later. 

Clearly, the GPs in our study viewed the decision support as a tool, similar 

to the stethoscope or the textbook. And, in keeping with the principles of 

technology adoption, which in part means at first humans relate the familiar 

to the unfamiliar (Latour, 1987), we have deliberately framed our program 

as such a tool. So, at the beginning of the 20th century, humans called cars 

‘horseless carriages’ because humans understood horses and carriages, even 

though these transport devices were much more. Even today, we still call 

some devices ‘phones’, although an old school telephone call is the least 

used function of these increasingly smart computers in our pockets. In the 

same light, AI-driven aids that are being developed are far more than a tool 

and will change the interactions we have in medicine. The discussion that 

follows uses our thoughts on several areas that arose during the develop-

ment of the risk prediction tool.

8.7.1  Decision Support

Decision support is generally described as providing clinicians, staff, patients 

or other individuals with knowledge and person-specific information, intel-

ligently filtered or presented at appropriate times, to enhance health and 
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health care (Osheroff et al., 2007), but is entering a new, AI-driven realm 

(Pollard & Whetton, 2005). In the past, decision support could be as simple 

as offering information about drug interactions, through to decision trees to 

support clinical decision-making (Neame, Chacko, Surace, Sinha, & Hawcutt, 

2019). However, the next generation of tools is going to significantly alter 

the interaction and the power balance between clinicians and consumers. 

Examples of this exist today with the potential to change the traditional roles 

of doctor, patient and computer: Propeller Health, a company that will track 

(and adjust) medication use on your smartphone (Merchant et al., 2018), 

or an Australian solution that can predict FEV1 (a measure of breathing 

capacity) and/or the presence of pneumonia, based on cough analysis on 

your smartphone (Moschovis et al., 2019), as examples. Patients themselves 

will have access not just to information, but diagnostic tools that change 

the power and information dynamic. No longer will it be ‘doctor I have a 

cough’, but ‘doctor, I have pneumonia’.

We believe it is important that these new tools provide decision support, 

not decision replacement. Whilst some areas might be more prone to human 

replacement (radiology is a commonly raised area), Decision Support Tools 

(DSTs) should, where appropriate, support clinicians at the time of interac-

tion and acknowledge the role of the existing human dyad (Pearce, Arnold, 

Phillips, Trumble, & Dwan, 2011). What these changes to clinical processes 

might entail should be the subject of the post-implementation study. Individual 

social circumstance, or subtler medical circumstance, cannot be known by ‘the 

machine’, and the relationship should always remain the authority, with the 

DST assisting the doctor–patient dyad to make a decision. We no longer talk of 

the algorithm but of the DST, with support being the operative word. Human 

interaction will be, and must always be, part of the healthcare experience.

In dealing with this issue in our context, we deliberately have designed 

the tool to provide general information rather than a recommendation – it 

is still up to the doctor–patient dyad to decide what to do. In other words, 

we aim for the computer to be part of the interaction, not a replacement. In 

the example used, whilst the doctor no longer needs to make the diagno-

sis, there is still a large scope for understanding the context of the illness to 

inform choices about care. Management of pneumonia in a homeless person 

in the inner city is vastly different from a middle-class grazier in a rural area.
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8.7.2  Regulation

Regulation for tools such as ours is currently absent in most jurisdictions 

(Coiera & Westbrook, 2006). In deciding to deploy our DST, there was no 

regulation or guideline to assist us, unlike if we were recommending a new 

treatment or procedure. In the absence of any other direction, we used 

our internal processes. Our own governance and clinical risk assessment 

framed any risk as low, as the recommendation is to the clinician, who must 

then decide using their usual skills on what to do (or not do). However, we 

acknowledge that this is not adequate for the future.

The question that then challenges us is how these tools should be regu-

lated? In health, largely there are three types of regulation: the profession 

themselves have the ability to self-regulate – indeed, this is one of the cate-

gorical features of a profession (Starr, 1982). In turn, the state offers an extra 

layer by regulating the registration of individual practitioners. The second 

type is accreditation, whereby individuals, institutions or programs must 

periodically comply with a set of standards. This model has been applied 

to electronic medical records, but not AI tools (De Clercq, 2007). The third 

model is the approval process for individual interventions, most commonly 

used for drugs (Whitstock, Eckermann, Marjoribanks, & Pearce, 2008) and 

surgical devices. In this model, manufacturers or providers must provide 

 evidence of benefits and cost-effectiveness, often through the previously 

mentioned randomized controlled trials.

The issue then becomes the method by which AI tools should be regu-

lated. Each method has pros and cons. These AI-driven supports are not 

pure tools, so they are not amenable to the latter category of trial effective-

ness and even cost-effectiveness analyses. Accreditation would work, but 

developing the criteria represents a difficult area in a new field. Training 

and standards-setting by the profession seem illogical, but understanding 

the training parameters and ensuring they are fit for purpose is important in 

ensuring safety and generalizability. The next sections cover areas beyond 

simply the effectiveness of such interventions.

8.7.3  Ethics

Ethics has long been a significant part of medical practice (Beauchamp & 

Childress, 2013) and underpins the very nature of the profession. Medical 

ethics are famously associated with the Hippocratic oath dating from 

ancient Greece – a statement that was designed to guide doctors in their 
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relationships with patients and colleagues. Modern ethics were first codified 

in 1803 (Armstrong, 2006) a document that described a set of principles for 

doctors dealing with each other. Now, most medical societies have some 

form of ethical code that is used to guide their inter-professional and pro-

fessional conduct. However, as medicine is more than just an individual 

doctor’s relationship with an individual patient, ethical codes need to take 

into account the conflicting issues that can occur in fields such as public 

health, for instance (Miettinen, 2005). Ethical thinking has been slowly mov-

ing to the concepts of the impacts of decisions, not just actions (Goodman, 

2005). Then, there are the ethical frameworks that may apply to institutions 

(McCrickerd, 2000). All of these have an impact on the clinical space.

And similarly, there has been considerable consideration of AI agents as 

moral and ethical actors (Sandvig, Karahalios, & Langbort, 2016). Mostly, this 

has been in the context of either ethical decisions regarding autonomous 

vehicles (Fleetwood, 2017) or robots (van der Plas, Smits, & Wehrmann, 

2010). Yet, these two concepts are only now beginning to be brought 

together. (Arnold & Pearce, 2008; Hand, 2018; Spriggs, Arnold, Pearce, & Fry, 

2012). Our solution was to frame it according to a human dyad. By providing 

advice to the clinician, we fell back on existing ethical frameworks and rely 

on doctor–patient relationships. However, this will not last without due con-

sideration of a new ethical framework. Ethics now needs to be seen as an 

end-to-end process, not segmented into the profession, the institution and 

research. Ethics is now about how we deal with patients, and the patient 

includes their data; these are not separate nor indivisible.

8.7.4  Legal

A brief word about legal issues is provided here, as they will be at the 

forefront of practitioner minds, especially in jurisdictions such as the USA. 

Again, as is a theme across most of this discussion, the use of intelligent 

supports to clinical practice blurs the boundary between humans and com-

puters (Cath, 2018; O’Sullivan et al., 2019). Most of the current work, and 

indeed our own project, assumes human oversight – but what that means 

in the context of a rapidly moving vehicle, or decision made on the basis of 

an algorithm in which the practitioner does not know how or why the DST 

came to a decision is unclear. From a medico-legal viewpoint, we need to 

consider who will be responsible for what. What are the implications of a 

clinician ignoring a DST recommendation, or when following the recom-

mendation and the patient experiencing a bad outcome? And if the DST is 
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wrong, is it the program or the programmer or the data that is held respon-

sible? And is it now a medico-legal requirement to provide good data for an 

advanced DST to do its work?

It would be better for these to be considered before a court has to make 

a call. These issues are starting to be considered, with the release of a 

recent EU report (Expert Group on Liability and New Technology, 2019). 

This report acknowledges the limitations of current liability law and makes 

several recommendations, many of which impose ultimate responsibility on 

the humans – which may or may not be appropriate as we move to more 

sophisticated approaches. Again, by providing only information to the con-

sultation, especially without recommendations, we side-stepped this issue. 

The ultimate responsibility fell to the GP along existing lines. This approach, 

however, also hobbles the DST from making significant recommendations to 

the clinicians.

8.7.5  Quality of Data

The existence of good quality data is vital to DST success. But good quality 

data cannot be mandated – they must be driven by providing clinical utility. 

Once it was enough for a ‘good’ doctor not to be held accountable to any 

standard or measure. This became inadequate in the last century, and moves 

to set standards, even for basic elements such as the keeping of records, 

became mandatory (Collings, 1950). Records have moved from a memory aid 

for an individual doctor to one that enhances communication and patient 

care within a practice (Murtagh, 2002) or any other institution. Our view is 

that this must now be extended to state that good quality data is now an 

essential part of good medical practice (Bainbridge, 2019), and clinicians 

who do not create good quality data are not providing good quality care, for 

a range of reasons such as denying patient access to tools such as DSTs. It 

is not enough to record blood pressure or smoking, and it must be recorded 

in such a way as to be useable for both the clinician, the patient and the 

computer.

This integrated governance approach (Liaw, Pearce, Liyanage, Liaw, & de 

Lusignan, 2014) underpins the POLAR program allowing the data be used 

for a variety of purposes, all of which benefit patient care – from individual 

consultation through population health initiative and AI applications (Pearce, 

Mcleod, Rinehart, Ferrigi, et al., 2019). A sideline of this is that clinicians 

must be careful about identifiable data – much of the cleaning work we 

had to do to make the data applicable for our purposes was to strip out 



178 ◾ Artificial Intelligence

identifiable data (patient names, etc.) from unlikely fields such as diagnosis, 

or even referral headings. A clinician who would shrink from mentioning 

a patient name in a public space is happy to write identifiable information 

throughout the record, in areas that are not germane to their use. Data in 

the clinical record should be considered as potentially public and always 

shareable.

This data should also come from multiple sources not just that gener-

ated in the EMR. Data should not be confined to a single institution but 

be brought from multiple sources to meet the need of the patient at the 

time. Thus, a ‘patient-centered’ view of data is required, rather than an 

‘ institutional’ view.

8.7.6  New Clinical Methods

Ultimately, clinicians need to change their viewpoint of the clinical process. 

The clinical method is ‘the means by which physicians discover facts about 

the sick or well patient and enter them into the diagnostic and therapeutic 

process in equal partnership with information about disease, pathophysiol-

ogy, and technology’ (Cassell, 1997). The dominant paradigm at the moment 

is that of the ‘person-centered’ clinical method (Stewart, 2003) – which cre-

ates a patient-centered view of the clinical problem for the clinician to work 

with. However, this method assumes a dyad, when increasingly the future is 

a triadic relationship.

Using DSTs is creating a new clinical method. Some DSTs will be better 

than humans at what they do. This does not mean that doctors are missing 

vital information, and it simply means that computing power can now pro-

cess data and make connections in ways that humans cannot. In some ways, 

it is analogous to other elements of the clinical interaction. The stethoscope 

provides information that cannot be obtained without it. However, AI will 

transform this process into something unrecognizable to today’s clinicians. 

This is not about new information, but about new ways of thinking. By the 

same token, computers lack intuition and the capacity for emotional connec-

tions (Dreyfus, Dreyfus, & Athanasiou, 1986). The clinical interaction of the 

future will acknowledge the strengths of each party (computer, clinician and 

patient). It will be the same process of negotiation, but with different players. 

And the patient will face new challenges. The process of doctors becoming 

guides rather than sources of knowledge will accelerate (Szasz & Hollander, 

1956).
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8.8  Conclusion

The current state of AI is not if, but when, AI will have a significant 

impact on clinical practice. Our tool (now called POLAR DIVERSION) is 

being retooled with a larger set of data (including hospital data) and being 

deployed across 2,000 practices (20% of the Australian total) in the east of 

Australia. And we are but one of many AI projects in play. AI is breaching 

the walls of the traditional doctor–patient relationship. Whilst the AI pro-

grams in radiology and dermatology raise the issues of the ongoing roles 

of specific specialty groups, so to do new ideas that change the role of the 

‘patient’ in health care. If a patient can diagnose their own pneumonia by 

coughing in the presence of their smartphone (Moschovis et al., 2019), or 

monitor and modify their medication use similarly (Merchant et al., 2018) 

with the same reliability and validity as being advised by a human clinician, 

it is time to rethink the role of the clinician in this new world. For just as the 

coming of autonomous vehicles is inevitable, so too will AI change the way 

we do medicine – we need to be ready for the largest change to healthcare 

delivery since the introduction of the scientific method.
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9.1  Introduction

Since adoption of value-based care in the USA and many other  countries, 

there has been an increasing emphasis on measuring quality and 

 performance. At the same time, there has been rapid increase in adoption 
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of electronic health records (EHRs), leading to ever-increasing availability 

of digitized data (big data). Harnessing this ever-expanding data coupled 

with the need for analysis and reporting has led to proliferation of machine 

learning (ML) applications in health care. Key focus of these applications 

has been in areas of generation of appropriate diagnosis, image analysis, 

 predictive analytics, clinical decision support and therapeutic guidance. 

Various perioperative patient cohorts (such as plastic surgery, neurosurgery, 

critical care patients) have been a focus of ML research and development 

over the last few years (Kanevsky et al., 2016; Mathur & Burns, 2019; Senders 

et al., 2018). Applications of ML for surgical patients have been helping with 

patient selection, measuring appropriateness of care and assessment of 

 clinical performance (Kwong & Asrani, 2018).

Various techniques of ML including supervised learning, unsupervised 

learning and lately reinforcement learning are being investigated for  different 

applications across the world with great deal of success. Neural networks 

have been developed and are increasingly being implemented for image 

analysis and waveform interpretation (Hatib et al., 2018; Liew, 2018). These 

algorithms are not just for clinical decision support but also to help  analyze 

data related to workflows and achieve operational efficiencies during 

 surgeries (Padoy, 2019). With FDA increasingly evaluating and approving ML 

algorithms, there is likely to be increasing adoption of these in clinical areas 

leading to improvements in quality and patient safety (Karnik, 2014).

9.2  Quality Measurement-Cohort and 
Performance Analysis

At an organizational level, with increasing application of quality 

 improvement metrics and measurement of performance for  continuous 

improvement, there has been an increasing need for rapid-cycle data 

 analysis. In order to make a meaningful change, the availability of real-

time, actionable data analysis is needed, and the standard methods have 

been found to be lacking. Also, with increasing emphasis on population 

health, the size of the data generated from large cohorts and plethora 

of variables required to be measured are both increasing exponentially. 

To replace manual chart abstractions and increase efficiencies in data 

 analysis,  various ML solutions are being applied. These include data 

abstraction using  natural language processing (NLP), protocol adherence 
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 measurement and cohort comparisons using supervised and/or unsuper-

vised ML methods (Vranas et al., 2017). Maheshwari et al. (2018) in their 

study of more than 1,700 patients undergoing colorectal surgery demon-

strated  application of unsupervised ML and topographical data analysis to 

rapidly discover  characteristics of nine different groups based on their risk 

and outcome  profile. Individual events including medication administra-

tion and  laboratory results amongst other interventions were analyzed to 

understand clinical variations which otherwise take many man-hours and is 

difficult to scale up onto larger cohorts. These abilities are critical for fol-

lowing surgical patient populations, rapidly discovering any non-adherence 

to pre-defined protocols and generating actionable reports valuable to qual-

ity management groups.

Risk prediction models and expected outcomes from surgeries are 

being derived leveraging ML solutions such as artificial neural networks 

and Bayesian algorithms which are likely to change current methods using 

standard registries (Aminsharifi et al., 2017; Ehlers et al., 2017). Ehlers et al. 

(2017) demonstrated significant superiority of Bayesian algorithm against 

Charleston comorbidity risk index used to predict risk of surgery for over 

400,000 patients. Charleston comorbidity index predicted 57% of adverse 

events and 59% of deaths, whereas the Naive Bayes algorithm predicted 79% 

of adverse events and 78% of deaths.

9.3  Predictive Analytics

The amount of health care data has been increasing exponentially in the 

past decade, and this trend will continue. Constant stream of information 

into EHRs, ever-increasing computational power and advances in ML all 

make possible to develop not only more precise but also more dynamic 

prediction models. Conventional approach in developing prediction models 

relies on regression analysis to identify important factors and weight their 

contribution to the overall prediction of different outcomes. These models 

however are rather static and usually work well for the same cohort they 

were developed on, which very often limits generalizability.

Systemic analyses comparing logistic regression models with ML 

( supervised and unsupervised) showed that ML has improved accuracy 

and diagnostic performance compared to logistic regression models. ML 

and AI on the other hand allow dynamic and real-time generation of 
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 prediction, based and adjusted as new data are fed into the model (Arvind, 

Kim, Oermann, Kaji, & Cho, 2018; Asadi, Dowling, Yan, & Mitchell, 2014; 

Chen et al., 2018; Jeon, Kim, Oh, Kim, & Kim, 2018; Kendale, Kulkarni, 

Rosenberg, & Wang, 2018; Lee, Yoon, Nam, et al., 2018; Lee, Yoon, Yang, 

et al., 2018; Meyer et al., 2018).

ML can easily analyze large amount of patient data across different 

domains (medical history, test results, monitors data, clinician notes, etc.) 

and recognize patterns, which are refined as more data becomes available. 

Big data analysis using ML techniques provides the means to move beyond 

group-level statistics into individual subject outcomes based on accuracy, 

sensitivity, specificity and area under the receiver operating characteristic 

(ROC) curve (AUC) with area under curve receiver operating characteristic 

(AUROC). Also, ML includes more features in the model development which 

may improve accuracy and taking into account heterogeneity of the popu-

lation. Unsupervised ML can recognize complex patterns that can identify 

relationships between large amounts of diverse data; incorporation of feature 

selection in the process can automatically select subgroups of predictors that 

are most relevant for a model, providing  simpler and more clinically useful 

results. These techniques have been already implemented into many aspects 

of clinical practice, most commonly to  predict probability of the outcomes of 

interest (Parthipan et al., 2019; Stonko et al., 2018; Yoon et al., 2018).

9.4  Diagnosis and Image Analysis

Various techniques, especially artificial neural networks and specifically 

 convolutional neural networks, have been developed to analyze  imaging 

data and provide diagnostic interpretations to the clinicians (Chudzik, 

Majumdar, Caliva, Al-Diri, & Hunter, 2018). These are not just restricted 

to radiology or pathology images but are also being applied for real-time 

 guidance during procedures such as colonoscopy (Hirasawa et al., 2018). 

Surgical decision to treat, evaluation of therapy and prognosis are all being 

guided by these enhanced radiomic techniques, which discover  patterns in 

not only the affected tissues but also those surrounding the lesion. (Peeken 

et al., 2018; Wang et al., 2018) Hepatic steatosis  assessment was demon-

strated by Moccia et al., using pictures of liver graft obtained by  smartphone 

cameras in the operating room. Prediction of the liver graft function 

achieved sensitivity, specificity and accuracy of 95%, 81% and 88% respec-

tively, using the ML model (Moccia et al., 2018). Use of semi-su pervised 
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models, such as these in the operating room, will make decision-making not 

only more accurate but also more efficient.

Support vector machine derived classification model, such as one 

 developed by Sengupta et al. (2018), has demonstrated ability to  differentiate 

between infiltrative tumor and surrounding vasogenic edema with 

 significant accuracy amongst high-grade glioma patients. Algorithms like 

these are likely to supplement traditional evaluation methods dependent on 

expert opinions from radiologist in both pre-operative, intraoperative and 

 postoperative patient management.

9.5  Decision Support

ML algorithms are not a substitute for clinician decision-making. These 

are being developed in most instances to provide a thorough analysis of 

data, provide pattern recognition in an efficient and detailed manner using 

 multimodal data and thus support and enhance clinician’s decision- making 

capacity (Shortliffe & Sepulveda, 2018). Taggart et al. demonstrated ability 

to identify  populations at risk of bleeding amongst critically ill patients by 

 analyzing clinical notes using NLP (Taggart et al., 2018). It is conceivable that 

 postoperative patients in the future will be triaged to intensive care units by 

using similar techniques in addition to the current scoring methods or based 

on clinical expertise alone.

Many examples of clinical decision support in perioperative areas 

 including critical care, ranging from diagnosis to prognosis, are being 

 developed using various ML techniques (Belard et al., 2017; Celtikci, 2018; 

Mendez et al., 2018). Prediction of hypotension using arterial  waveform 

 analysis has demonstrated effectiveness in both the operating room 

and  critical care units (Davies, Vistisen, Jian, Hatib, & Scheeren, 2019). 

Techniques such as feature engineering to develop such predictions map 

out features in millions which can then be refined to a few 1000 meaningful 

ones’ with map out millions of features (Hatib et al., 2018). These are replac-

ing traditional basic assessments such as heart rate, heart rate variability and 

stroke volume variability, amongst others. Complex analysis like these are 

predicting warning events in advance with interpretable guidance of the 

cause, preparing  clinicians in advance to prevent these harmful events and 

suggesting most effective treatment strategy.

Decision tree algorithm has been used by Parecco et al., to predict 

 prolonged mechanical ventilation and need for early tracheostomy with a 
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mean AUC of greater than 0.80 in critically ill patients, majority of which 

were admitted in surgical ICU. Prognostic classifications such as these are 

very valuable to patients and families in quality of life decision-making and 

application of advanced directives.

9.6  Therapeutics

From guiding medication delivery to assisting with procedures, ML is 

increasingly being researched and used in operating rooms and proce-

dural areas. Applications focused on assessment and delivery of intrave-

nous fluid status have been developed and are being evaluated by many. 

These  applications are likely to help with prevention of hypotension in 

the  operating room and ICU which has been associated with significant 

 morbidity and mortality (Maheshwari et al., 2019). Reljin et al. proposed 

a support vector ML model using photoplethysmography recordings to 

 discriminate between patients with hypovolemia and euvolemia with 88% 

accuracy amongst trauma patients with suspected hemorrhage (Reljin et al., 

2018). Similarly, Celi et al. developed a Bayesian network to predict a range 

of fluid therapy amongst critically ill patients with an accuracy of 77.8% (Celi, 

Hinske, Alterovitz, & Szolovits, 2008). Decision to prescribe fluids for patients 

with acute kidney injury and oliguria in a critical care unit is even more 

complex. Zhang et al. developed a XGBoost model which accurately makes 

distinction between patients who would benefit from and respond to fluid 

therapy. This model outperformed the traditional logistic  regression-based 

model, with an AUC of 0.86 vs. an AUC of 0.72, respectively (Zhang, Ho, & 

Hong, 2019).

Closed-loop therapies such as those used for glycemic control using arti-

ficial pancreas is another example of automated ML-based delivery of care 

(DeJournett & DeJournett, 2016; Piemonte, 2018). Based on evidence that 

perioperative glycemic control, especially in critically ill patients, impacts 

outcomes, applications like artificial pancreas are likely to positively impact 

outcomes.

Similar to blood glucose management, titration of medications with 

narrow therapeutic index is better guided by ML algorithms. Accurate 

Tacrolimus dosing is critical to graft survival and prevention of complications 

after kidney transplant. O’Neil and P. Bastard developed an artificial neural 

network which estimates tacrolimus in these patients with an AUC of 93% 

(Niel & Bastard, 2018). Such methods are also likely to decrease the need 
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for expensive blood testing for tacrolimus measurement and improve patient 

satisfaction.

Tighe et al. demonstrated ability of ML algorithms using various meth-

ods including Least Absolute Shrinkage and Selection Operator (LASSO), 
 decision tree, support vector machine, neural network and k-nearest neigh-

bor (k-NN) to predict postoperative pain. Using 796 variables collected from 

EHR, these ML models outperformed traditional logistic regression in accu-

racy of  prediction of postoperative pain (Tighe et al., 2015). Better predic-

tion of postoperative pain using ML can also help target resources and use 

of  multimodal analgesia in a more targeted manner, preventing overuse of 

 opioids and their associated side effects.

9.7  Future Prospects

To make a significant change in quality and delivery of care with ever-

expanding patient populations and availability of data, we need to adopt 

ML for automation of data abstraction, analysis and reporting. Change in 

patient management also requires processing of real-time data and avail-

ability of actionable guidance. ML techniques ranging from simple classifica-

tion  models, artificial neural networks to deep reinforcement learning will 

likely see applications in all areas of perioperative care of surgical patients. 

Techniques such as radiomics are likely to see routine application to robotic 

surgeries, stereotactic guidance for surgeries, evaluation of disease pro-

gression and response to therapy. Objective analysis of multimodal data 

including unstructured data using NLP will help identify risk such as limb 

ischemia and populations at risk in an enhanced manner (Afzal et al., 2018; 

Luo et al., 2018). Surgeons and perioperative clinicians will adopt the use of 

artificial intelligence selecting validated methods providing more accurate 

measurement and therapeutic guidance (Mirnezami & Ahmed, 2018; Wang & 

Majewicz Fey, 2018).
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10.1  Introduction

In Chile, the methods and techniques called “intelligent”, i.e., that come from 

Computational Intelligence, have been developed and implemented mainly to 

solve some operational problems (demand forecast per example), and sales 

and risk assessment in the finance and retail sectors. Up to date, there is a 

large deficit of this type of technological solution to date in the health and 

education sectors. In the Chilean Public and Private Health System, until now 

there are no intelligent solutions that can be applied to improve the service 

of transfer of critical patients due to chronic diseases,  emergencies or acci-

dents that occurred in the home or on public spaces. Currently,  emergency 

vehicles (ambulances) are located in the hospitals, with the  consequence 

of significantly longer travel times from and to the  corresponding medical 

center, which causes worsening in the condition of the patient and in some 

cases his death for lack of timely initial  para-medical treatment. For example, 

the SAMU – Sistema de Atención Médica Móvil de Urgencia (Urgent Mobile 

Health Care System) has an  availability of 53  ambulances in all the metropoli-

tan region that serve 24 hours a day to patients mainly of types P1, P2 and 

P3 (P1: the person needs immediate attention; P2: the person needs attention 

very urgently; P3: the person needs urgent attention) (see reference Ministerio 

(2019)). Although it is a significant number of ambulances, the geographical 

region they serve is extensive in area and densely populated, which causes 

delays in the arrival of ambulances to the place of events due to the high 

demand for emergencies and travel times.

In the Santiago Metropolitan Region (Chile), there are 18 public  hospitals 

up to date. The public hospitals attended during 2017 and 2018 between a 

number of 58,370 and 85,434 weekly emergencies,  according to “Ministerio 

de Salud de Chile” (MINSAL) report data (see reference Ahmadi-Javid 

et al. (2017)). This trend has been maintained during the course of 2019 

with small variations. It should be noted that only the Central Urgency 

Hospital (called “Poster Central”) attended during 2017 and 2019 between 

672 and 1,525 weekly emergencies. It is worth  mentioning that up to date, 

there is no intelligent system of location and assignment, neither in the 

public nor in the private system, and currently ambulances. The exis-

tence of a  stochastic  optimization model for  locating and assigning of 

ambulances in a  decentralized way will improve the service of transfer of 

chronic or  emergency patients, decreasing the arrival times of the ambu-

lances to the place of the event, that is, decreasing the waiting time of the 

patient; decreasing the travel times of ambulances to the attention centers; 
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 decreasing the fixed and variable costs of the patient transfer system; and 

therefore increasing the availability of emergency vehicles for the attention 

of new events. All of the above will generate a significant improvement in 

the quality of service to both public and private emergency patients.

For this reason, this chapter proposed a stochastic optimization model 

for the location and assignment that determines the location and an opti-

mum number of ambulances needed to improve the arrival times to medi-

cal emergencies, based on the prediction of the probable occurrence of this 

type of events in a city. That is, it is proposed to decentralize the location of 

ambulances, taking them out of hospitals and assigning them to “hot spots” 

in order to attend to the occurrence of medical emergencies. This chapter 

is organized as follows. Section 10.2 presents the stochastic optimization 

model, the methodology that was used to solve this problem and the results 

obtained. Finally, in Section 10.3 are presented our main conclusions.

10.2  Stochastic Optimization Models 
for Locating Ambulances

As we mentioned before, the models, methods and techniques called intel-

ligence, i.e., based on Computational Intelligence Methods, in Chile, have 

been developed and implemented mainly to solve different problems and 

improve the operation, sales and risk assessment in the finance and retail 

sectors. There is a large deficit of this type of technological solutions to date 

in the health and education sectors (Engelbrecht, 2007; Kruse, 2013; Bishop, 

1996, 2006; Theodoridis and Koutroumbas, 2008; Ripley, 2008). Currently, 

associated with the problem that is proposed to solve, there are only some 

tools for monitoring and routing of ambulances, which do not allow address-

ing the total solution of the problem of transfer of emergency patients to 

public and private hospitals (Ahmadi-Javid et al., 2017; Altan Ardogan, 2017; 

Dae et al., 2017; Fancello et al., 2017; Karaoglan et al., 2018; Leknes et al., 

2017; Khayal et al., 2015). It is worth mentioning that there is no intelligent 

technological solution up to date like the one that is studied in this chapter.

There are three main benefits for the users and clients of the proposed 

system, which are given in the following:

(B1) Reduction of the arrival times of the ambulances to the place of the 

event, that is, the waiting time of the patient and decrease of the travel 

times of the ambulances to care centers.
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(B2) Increase the availability of emergency vehicles for the attention of 

new emergency events.

(B3) Reduction of fixed and variable costs of the patient transfer system 

will imply a significant improvement in the quality of service to both 

public and private patients, as well as an increase in the effectiveness 

and efficiency of the transfer of emergency or chronic patients.

The main assumptions of the model studied are the following:

(Assumption 1) In order to reduce the data complexity, the geographical 

region under consideration will be modeled as a collection of 20 circu-

lar sectors for the data considered.

(Assumption 2) The emergency vehicles will be located at the center of 

each sector in order to decrease the dimensionality of the stochastic 

data.

(Assumption 3) The emergency calls in the sector I of some  medium-size 

city (less than 1.000.000 habitants) occur randomly according to a 

Poisson distribution with an average call rate per hour equal to λi.

(Assumption 4) The travel time from the location of the ambulances 

  (center of each sector) to the location of the emergency (event) follows 

a uniform distribution.

(Assumption 5) The travel time from the location of the emergency to the 

Medical Center follows a uniform distribution.

(Assumption 6) The service time in the location of the emergency follows 

an exponential distribution.

The definition of the model is the following (Figure 10.1):

Data:

λi [call/hour]: Number of average emergency calls generated per hour in 

sector i.

μi [call/hour]: Number of average emergency calls answered per hour in 

sector i.

ρi [call/hour]: Utilization/Service factor in sector i.

at [hour/call]: Average total attention time observed for emergency 

vehicles within sector i.

attvi [hour/call]: Average travel time per call observed for emergency 

vehicles within sector i.

mintti [hour/call]: Minimum travel time per observed call of emergency 

vehicles within sector i.

http://i.at
http://i.at
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Figure 10.1 Example of emergency events in a region (black- patients P1 and P2, 
grey- patient P3).

maxtti [hour/call]: Maximum travel time per observed call of emergency 

vehicles in sector i.

aosti [hour/call]: Average on-site service time per call in sector i.

tsti [hour/call]: Total attention time per call in the sector I, including 

travel and service times.

qosi [hour]: Quality of service defined in sector i.

Na: Number of total available ambulances considering all sectors fci 

[m$/(month × vehicle)]: Monthly fixed costs per emergency vehicle 

assigned to sector i.

vci [m$/call]: Variable costs per emergency call in sector i.

xi: Number of emergency vehicles assigned to sector i 

10.2.1  Stochastic Optimization Model
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This stochastic optimization model was implemented in @Risk© for 

20  sectors, its objective function corresponds to the total monthly operating 

cost and it has only three constraints:

◾ A total number of available ambulances for the 20 sectors.

◾ Upper bound for the utilization rate.

◾ Quality of service, QoS = 0.15, 0.05

In order to simplify the stochastic model, we considered only one kind of 

patient (not three as usual), and as we mentioned before a Poisson distribu-

tion for the emergency calls, a continuous uniform distribution for the travel 

times and an exponential distribution for the QoS. Despite the simplification 

made to the model, it corresponds to a nonlinear, stochastic optimization 

model with respect to the constraint of QoS (Hernández and Crespo, 2019).

Figure 10.2 shows the final solution found after 5,000 trial solutions and 

1,000 samples of the random numbers: λi (“lambda_i_alea”), travel times 

(“tt_i_alea”) and quality of service equals to 0.15.

Figure 10.3 shows the objective function of empirical and theoretical 

 distributions for the different samples corresponding to the best solution 

found (shown in Figure 10.2) for QoS = 0.15.

If the QoS is significantly increased to 0.05, the number of ambulances 

also increased, as it is shown in Figure 10.4.

Figure 10.5 shows the objective function of empirical and theoretical 

 distributions for the different samples corresponding to the best solution 

found (shown in Figure 10.4) for QoS = 0.05.

In Figure 10.6, we show the evolution of the @Risk iterations for the best 

QoS model.

It is observed from Figure 10.6 that only 1,500 trial solutions in the @Risk 

setting are sufficient to produce excellent results. This can be explained by 

the fact that the samples of the random variables were enough to reflect the 

difficulty of the model.

From these results, we can affirm that the model increasing the QoS in 

the sense service quality was improved and the availability of “idle” ambu-

lances that can handle new emergencies was increased. Additionally, the 

efficiency and effectiveness of the transfer system were increased. Moreover, 

Figures 10.3 and 10.5 can be affirmed that this model is consistent because 

the theoretical and empirical distributions are very similar.

The studied model produces interesting and validated solutions since the 

number of ambulances needed to meet the QoS constraint increases as the 
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Figure 10.3 Empirical and theoretical distributions of the objective function for QoS 
of 0.15.

Figure 10.4 Model (Equation 10.1) final solution found after 5,000 trial solutions and 
1,000 samples of the random numbers with better QoS of 0.15.

quality of service increases. Therefore, the model contributes to improv-

ing the QoS which has a significant impact on the efficiency of the system. 

Moreover, we believe that this simple model can be improved considering 

two different kinds of patients P1 and P2 together with a constraint for each 

kind of patient, and also a budget constraint.
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Figure 10.5 Empirical and theoretical distributions of the objective function for a 
QoS of 0.05.

Figure 10.6 Evolution of the @Risk iterations for the best optimal solution for a 
QoS = 0.05.
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10.3  Conclusions

In this work, an intelligent stochastic nonlinear optimization model for 

the decentralized location and assignment of ambulances was studied in 

order to determine the location and an optimal number of ambulances 

necessary to improve the arrival times of ambulances to medical emergen-

cies. The model was used two different quality of services. The model 

was  implemented and solve in Excel© + @Risk© for up to 5,000 initial 

trial solutions and 1,000 samples of the random data for each initial trial 

 solution. Only the feasible final solution, computed with a standard Genetic 

Algorithm, from an initial trial and all the samples are considered as a 

 probable solution of this problem, and the best of them is chosen as the best 

solution of the stochastic nonlinear optimization problem studied, under the 

validity of assumptions formulated for this model.

The results summarized in the last section allow us to affirm that this 

model can be applied to improve the service of transfer of chronic or 

 emergency patients, reducing the arrival times of ambulances to the place of 

the event, that is, the waiting time of the patient; decreasing the travel times 

of ambulances to the centers of attention; reducing the fixed and variable 

costs of the patient transfer system; and therefore increasing the  availability 

of emergency vehicles for the attention of new events. All of the above 

considers a significant improvement in the quality of service to emergency 

patients, achieving timely care that in some cases can save lives, as well as 

an increase in the effectiveness and efficiency of the transfer of emergency 

or chronic patients.

Acknowledgments

Research supported by grant FB0821 CONICYT PIA/Basal CCTVal: Centro 

Científico y Tecnológico de Valparaíso, Chile.

References

Ahmadi-Javid, A., et al., (2017). A survey of healthcare facility location, Computers & 
Operations Research 79, 223–263.

Altan Ardogan, M., (2017) Location analysis of emergency vehicles using an 
approximate queueing model, Transportation Research Procedia 22, 430–439.



Intelligent Stochastic Optimization Model ◾ 205

Bishop, C.M., (1996) Neural Networks for Pattern Recognition, Oxford University 
Press, Oxford, UK.

Bishop, C.M., (2006) Pattern Recognition and Machine Learning, Springer, 
New York.

Dae, Y., et al., (2016) Location, capacity and capability design of emergency 
medical centers with multiple emergency diseases, Computers & Industrial 
Engineering 101, 10–20.

Engelbrecht, A.P., (2007) Computational Intelligence: An Introduction, 2nd Edition, 
John Wiley & Sons, Chichester.

Fancello, G., et al., (2017) An emergency vehicles allocation model for major 
 industrial disasters, Transportation Research Procedia 25, 1164–1179.

Hernandez, G., F. Crespo, (2019) An intelligent stochastic optimization model for 
localization and assignment of ambulances.

Karaoglan, I., et al., (2018) The multi-vehicle probabilistic covering tour problem, 
European Journal of Operational Research 271, 278–287.

Khayal, D., et al., (2015) A model for planning locations of temporary  distribution 
facilities for emergency response, Socio-Economic Planning Sciences 52, 
22–30.

Kruse, R., et al., (2013) Computational Intelligence: A Methodological Introduction, 
Springer, London.

Leknes, H., et al., (2017) Strategic ambulance location for heterogeneous regions, 
European Journal of Operational Research 260, 122–133.

Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge: Cambridge 
University Press. doi:10.1017/CBO9780511812651.

Theodoridis, S., K. Koutroumbas, (2008) Pattern Recognition, 4th Edition, 
Academic Press, Orlando, FL..



https://taylorandfrancis.com


207

Chapter 11

Audit of Artificial Intelligence 
Algorithms and Its Impact 
in Relieving Shortage of 
Specialist Doctors

Vidur Mahajan and Vasanth Venugopal
Mahajan Imaging

Contents

11.1  Introduction 208 ............................................................................................

11.2  Radiology in India 208 ..................................................................................

11.3  Technological Advances in Radiology 209 ...................................................

11.4  Use-Cases 210...............................................................................................

11.4.1  Automated Chest X-Ray Reporting Using AI 210 .............................

11.4.2  Normal vs. Abnormal Chest X-Ray Classification 211......................

11.4.3  Automated Diagnosis of Tuberculosis on Chest X-Ray 211 .............

11.4.4  AI as a Quality Assessment Tool 212 ...............................................

11.4.5  Automated Head CT Reporting in Emergencies 212 .......................

11.4.6  Chest CT Screening Using AI 212 ....................................................

11.5  Audit 213.......................................................................................................

11.5.1  Algorithmic Audit 214 .......................................................................

11.5.2  Independent Validation 214 ..............................................................

11.5.3  Stratification of Data for Audit 215 ...................................................

11.5.4  The Far North and Far South Cases 216..........................................



208 ◾ Artificial Intelligence

11.5.5  Real-World Deployment and Testing 217 .........................................

11.5.6  Improving the Algorithm 218 ...........................................................

11.6  More Power to Clinicians 219 .......................................................................

References 220 .......................................................................................................

11.1  Introduction

The shortage of specialist doctors is one of the major challenges in 

 healthcare delivery in developing countries. Radiologists are one such 

 specialist cohort who play a crucial role in the diagnosis of diseases and 

the monitoring of disease progression. There is an emerging consensus 

among global leaders in public health to leverage the potential of artificial 

 intelligence in radiology. Audit of algorithms with the view of deploying 

them unsupervised by a specialist or under supervision of a non-specialist 

is a major area of research interest for academic groups, technological 

 companies and public health organizations alike. In this chapter, we try to 

present an overview of the potential impact of AI algorithms in rural  settings 

using India as a case study and a brief technical outline for performing 

audits of algorithms.

11.2  Radiology in India

In India, while no official data exists, conversations with health experts 

reveal that approximately 100–200 million radiology examinations are 

 possibly conducted every year. Out of these, the vast majority would 

 comprise of X-rays and ultrasounds, and only about 300,000–500,000 would 

be CT or MRI. With the announcement of the Prime Minister’s Jan Arogya 

Yojna (PMJAY) (NHA, 2019), the world’s largest insurance scheme through 

which 500 million individuals would come under Government-sponsored 

insurance, these radiology investigations are bound to increase exponen-

tially. Estimates state that 2,500 more hospitals of 100 beds each are needed 

to cater to this scheme of the Government.

Unfortunately, approximately 50%–60% of scans done in India, the major-

ity of these being X-rays, go unreported by radiologists. This is attributed 

to the shortage of radiologists – there are total 15,667 radiologists (Indian 

Radiology & Imaging Association Membership as of April 2019 – 13,120 

life members, 2,557 members-in-training) in India yielding a radiologist to 

population ratio of an abysmal 1 in 100,000, compared to 1 in 10,000 in the 
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United States (Fischer, 2017). The radiologist to population ratio may improve 

in future as there is an active intervention by the Government to increase 

the number of specialists in the country (Nagarajan, 2019). Another potential 

reason for unreported scans is the low reimbursement rates associated with 

performing and reporting these examinations.

Of these unreported examinations, the majority are performed in rural 

India. In fact, PMJAY is designed primarily to cater to patients residing in 

rural areas. Rural India is defined by the Reserve Bank of India, as any 

township having a population of less than 49,000 (tier 3–tier 6 cities), and 

constitutes about 70% of the population of the country (2016). It is also 

important to determine whether there are any adverse effects associated 

with these scans not being reported. In general, as is true in any part of 

the world, chest X-rays and musculoskeletal X-rays are the most frequently 

ordered scans across India usually by general physicians, pulmonologists 

or orthopedic surgeons, all of whom are trained to read X-rays (Guidelines, 

2019). That said, it is important to know that apart from physicians who are 

trained in allopathic medicine, a lot of care in rural India is provided by 

physicians whose exposure to allopathic medicine is limited (e.g., Bachelor 

of Ayurvedic Medicine & Surgery, traditional Indian medicine). Faster, 

cheaper and accurate radiology services in rural parts of the country can 

assist in improving the clinical outcomes and reduce overall healthcare costs.

11.3  Technological Advances in Radiology

Technology is playing a vital role in improving radiology services across the 

country. With 4G telecommunications penetrating rural India, teleradiology 

has gained traction in such parts of the country as a cost-effective replace-

ment for an on-site radiologist. Based on the expert assessment, there are 

at least 50 structured teleradiology companies in India, with about 1,000 

radiologists involved in teleradiology in one way or another. It has also 

attracted venture capital funding in the recent past with investors betting 

heavily on the growing radiology sector in India (Healthtech startup, 2019). 

Unfortunately, in cost-constrained environments, teleradiology reporting 

is either limited or delayed, both of which mean that the treating clinician 

might never actually get to use the radiologist’s report to treat.

Following teleradiology, the next technological advancement is touted to 

be artificial intelligence (AI). With globally about $448 million invested into 

start-ups as of June 2018 (Funding analysis, 2018), there is no denying that 
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AI will come into the medical imaging domain and transform it. Through 

this chapter, we take a deep dive into commercially available AI-based 

 technologies, those under research and those that, as far as published 

 literature goes, are not currently being developed. We examine the potential 

impact each can have in addressing the problem of radiologists’ shortage in 

rural India.

Typically, while examining the role that AI can play in radiology, it is 

wise to view the applications from a point of view of radiology workflow, 

that is,

◾ Pre-scanning – includes patient scheduling, preparation and other 

administrative activities

◾ Scanning – includes patient positioning, image acquisition and 

reconstruction

◾ Post-scanning – includes post-processing, segmentation, visualization 

and measurements

◾ Diagnosis – radiologists’ role – making a diagnosis by looking at 

images.

For the purposes of this chapter, we will focus on the diagnosis part of 

the radiology workflow, since the shortage of radiologists is addressed by 

the ability of AI to assist in diagnosis. Further, we divide this chapter into 

two parts – first, we examine some use-cases which are either published in 

literature or presented in conferences, and subsequently present a ‘Wishlist’ 

of applications which once developed could address the shortage of 

 radiologists in rural India.

11.4  Use-Cases

11.4.1  Automated Chest X-Ray Reporting Using AI

Automation of chest X-ray reporting is one of the most popular applications 

that engineers and deep learning scientists are working on primarily due 

to the easy availability of publicly available datasets ChestXRay14 by NIH 

(ChestX-ray8, 2019), CheXpert by Stanford University (Irvin et al., 2019) and 

MIMIC-CXR by Massachusetts Institute of Technology (Johnson et al., 2019). 

Additionally, since X-ray images are two-dimensional, they are easier to run 

through convolutional neural networks. Recently, there have been three 
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peer-reviewed publications, by Singh et al. (2018), Rajpurkar et al. (2018) 

and Hwang et al. (2019) demonstrating technical feasibility and the potential 

of AI in the field of chest X-ray. We discuss three published use-cases of 

automated chest X-ray reporting which can reduce the workload of overbur-

dened radiologists catering to rural India.

11.4.2  Normal vs. Abnormal Chest X-Ray Classification

At the European Congress of Radiology in 2019, we presented our work 

on retrospective validation of a high-sensitivity deep learning algorithm for 

normal/abnormal delineation of chest X-rays (Venugopal et al., 2019a). We 

evaluated the algorithm, trained on more than a million chest X-ray images, 

originally described by Singh et al., on a spectrum-biased dataset compris-

ing of 430 chest X-rays with 285 abnormal and 145 normal scans. The algo-

rithm delivered a sensitivity of >97%, with only five clinically significant false 

negatives (three pneumothorax, two rib fractures cases) which the algorithm 

was not trained to detect anyway. Since it is common knowledge that more 

than 50% of chest X-rays done in an outpatient setting are usually normal, 

such an algorithm can serve as a powerful tool not only by freeing up radi-

ologists’ time by automatically reading normal scans but also by empowering 

physicians in rural India to read their own X-rays possibly through a smart-

phone camera. It can also be powerful in a setting of teleradiology (since 

the volume in such a set-up is much higher than a routine outpatient prac-

tice) enabling radiologists to focus on the abnormal cases, thereby speeding 

up reporting and improving quality.

11.4.3  Automated Diagnosis of Tuberculosis on Chest X-Ray

Putha et al., from Qure.ai, presented their work on automated tuberculosis 

detection using deep learning at the European Congress of Radiology in 

2018 (Putha et al., 2018). Their algorithm at the time, trained on 400,000+ 

chest X-rays and their corresponding reports, gave an area under the curve 

of 0.91, 0.87 and 0.83 for the detection of tuberculosis on three exter-

nal datasets. The ground truth for such data is the report and opinion 

of the radiologist. Given that tuberculosis is endemic in India, especially 

in crowded rural areas, such algorithms can go a long way in ensur-

ing that patients’ chest X-rays are reported and can hence be acted upon 

in a more informed way. There are several organizations such as FIND 

Diagnostics, PATH and Tata Trusts which are actively working towards 
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the complete eradication of tuberculosis – an effort which is only made 

 possible if  everyone who has tuberculosis is treated. In fact, today, there are 

 unpublished efforts underway which aim to predict the GeneXpert status 

of sputum of patients, which is the gold standard for diagnosis of active 

 pulmonary tuberculosis, from chest X-ray images using deep learning.

11.4.4  AI as a Quality Assessment Tool

In a presentation made at the Radiological Society of North America (RSNA) 

annual conference in November 2018, Sahu et al. (2018) demonstrated a 

use-case where a deep learning algorithm was used to parse through 3,945 

randomly selected chest X-rays of adult patients scanned on an out-patient 

basis as part of a wellness check-up. Seven hundred and eighty-nine (20%) 

scans were discordant; that is, the AI-generated findings and clinical reports 

did not match. Subsequently, 405 of these discordant scans were re-read 

by three radiologists, and it turned out that in 263 (64.9%) scans, the initial 

clinical report was wrong. In rural India, where a primary clinical report 

itself is rare, such reviews performed by AI can not only help relieve the 

shortage of radiologists but also improve the overall quality of diagnostics 

and care delivery.

11.4.5  Automated Head CT Reporting in Emergencies

In a paper published in the Lancet, Chilamkurthy et al. describe their deep 

learning algorithm trained on more than 300,000 non-contrast CT scans and 

validated on an independent dataset from six imaging centers from across 

New Delhi, India (Chilamkurthy, 2018). The algorithm had an area under the 

curve of 0.94 for the detection of intracranial bleeds, 0.96 for the detection 

of skull fractures and 0.96 for the midline shift. Given that in rural India, the 

instantaneous availability of radiologists, and hence radiology reports, is lim-

ited, such an algorithm can play a very important role in guiding treatment 

by providing a provisional report with a high degree of confidence.

11.4.6  Chest CT Screening Using AI

In India, lung cancer constitutes 6.9% of all new cancer cases and 9.3% 

of all cancer-related deaths in both sexes (Malik and Raina, 2015). Also, 

it is the commonest cancer and cause of cancer-related mortality in men. 

In rural India, smoking of indigenous cigarettes (bidi) and water-pipes 
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(Hookah), combined with a lack of education about its harmful effects, 

leads to increased risk of developing tobacco lung cancer. Another reason 

for the high prevalence of respiratory diseases, not necessarily cancer, is the 

use of wood or coal for cooking inside small homes in the villages. This 

makes the case for using low-dose CT for lung cancer screening in high-

risk populations. Unfortunately, while multi-detector CT scanners with the 

capability to perform low-dose CT are generally available in rural India, 

radiologists with experience of picking up small nodules (<30 mm in size) 

are generally  lacking. Aberle et al., in the National Lung Cancer Screening 

Trial, have  demonstrated low-dose CT’s capability to reduce relative risk by 

20%, but with a false positivity of up to 95% (The National Lung Screening 

Trial Research Team, 2011). Algorithms can help significantly reduce this 

false positivity. In a poster at the European Congress of Radiology in 2019, 

we presented a validation study of a deep learning algorithm developed by 

Predible Health which automatically detects and characterizes lung nodules 

between the size of 3and 30 mm (Venugopal et al., 2019b). The algorithm 

proved superior to four radiologists with 2, 5, 8 and 15 years’ experience of 

reading chest CT on a validation dataset of 100 CT scans with their corre-

sponding biopsy results taken as ground truth. This work demonstrates the 

ability of deep learning algorithms to undertake the detection of abnormali-

ties in a screening setting, thereby reducing the workload on radiologists 

working in a rural setting and improving accuracy and hence outcomes for 

patients.

11.5  Audit

While the use-cases described above have the capability to affect the rural 

population to a certain degree, to truly address the problem of  radiologists’ 

shortage in rural India specific solutions that reduce the workload of 

 radiologists practicing in such settings need to be developed. It is safe to 

assume that radiologists in rural India spend much of their time doing 

ultrasound scans – a scanner that automatically performs obstetric and/

or abdominal ultrasound and gives a ‘normal’ vs. ‘abnormal’ reading could 

help scale up radiology practice in rural India by many folds. Of course, 

one must be cognizant of the Pre-Natal Diagnostic & Testing Act (PNDT 

Act) in India which governs ultrasound and other imaging modalities from 

point of view of being used for gender determination and hence selection 

while  performing obstetric ultrasound (Bhaktwani, 2012). Additionally, as 
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radiologists in rural India generally perform and read scans across multiple 

modalities, automation of normal vs. abnormal delineation of all possible 

scans should be the primary target for all developers of AI systems. As we 

envision a future where all ‘normal’ scans are ‘read’ by AI, it is mandatory 

to develop algorithms with a very high negative predictive value – initially, 

radiologists will be open to accepting false positives, but a false negative can 

be potentially catastrophic.

11.5.1  Algorithmic Audit

An ‘algorithmic audit’ methodology can be used by radiologists to evalu-

ate the performance of an AI algorithm, and share relevant feedback with 

 vendors in order to help them improve the performance of the algorithms. 

The method includes preparing datasets especially focused on validation 

of algorithms, examining failed cases post-testing of AI on these validation 

images and a series of other steps that are described further in more detail.

11.5.2  Independent Validation

Lack of generalizability of AI algorithms is a major hindrance to the 

 adoption of such tools in clinical practice. Kim et al. found that as of late 

August 2018, only 6% of the 516 studies published on radiology AI did 

 external or truly independent validation (Kim et al., 2019), an essential 

component of the algorithmic audit. To understand the nuances of true 

independent validation, one must understand how a deep learning algo-

rithm is developed and validated. We take the example of MRNet, an algo-

rithm to automatically detect anterior cruciate ligament tears on knee MRIs, 

developed by Rajpurkar et al. (Bien et al., 2018). The authors first obtained 

a dataset of 1,370 knee MRIs along with their corresponding reports. These 

1,370 MRIs were broken into three separate datasets – one training set of 

1,130 MRIs, one tuning set of 120 MRIs and one validation set of another 

120 MRIs. Note that all three sets are subsets of the larger dataset of 1,370 

MRIs all of which have been obtained from the same hospital – Stanford 

University Hospital. The training set was used to create the deep  learning 

algorithm, the tuning set used to fine-tune the parameters of the deep 

learning algorithm and finally the validation set used to determine the 

 performance of the algorithm. The algorithm was also tested on an external 

validation dataset from Stajduhar et al. (Dhanlaxmi Bank, 2019) of 917 MRIs, 
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from a different country altogether. MRNet gave an impressive area under 

curve (AUC) of 0.96 on the Stanford Hospital validation dataset, which 

dropped to 0.82 on the Stajduhar et al. dataset – the truly independent 

dataset, thereby demonstrating the problem of generalizability of AI algo-

rithms across  datasets. The problem of generalizability is well documented 

in research, but as such no concrete metric exists to measure both generaliz-

ability and the lack of it.

Another example of true independent validation comes from 

Chilamkurthy et al. (2018) where a deep learning algorithm that automati-

cally detects critical findings in head CT scans was validated on an exter-

nal dataset from multiple hospitals. This was one of the first peer-reviewed 

studies of an AI algorithm giving AUC of more than 0.90 for all its findings 

on an external test set, comprising of data obtained from clinical sites where 

the algorithm was not trained on. Such results make the case for true inde-

pendent external validation of AI algorithms before putting them to use in 

clinical environments. Since the performance of AI algorithms is typically 

much better on data it was trained on, as a radiologist or a radiology man-

ager wanting to work with vendors to develop or validate AI algorithms, it 

is important to think through whether one would like to contribute data for 

the development of algorithms, or would one like to use their data exclu-

sively for validation. Developing and validating an algorithm on data from 

the same clinical site may not provide the true picture of the performance of 

algorithms.

11.5.3  Stratification of Data for Audit

Once a test dataset with corresponding ground truth has been assembled, 

it is important to determine the mix of cases required to aptly validate the 

AI algorithm. Generally, there are two types of algorithmic errors one is 

 looking for – false positives and false negatives. False positives are cases that 

the AI calls out to be positive, but they in fact are negative (for the finding 

under question). To check for algorithms false-positive rate, it is important 

to have a dataset that comprises heavily of cases without many positives – 

this gives the validator a chance to see how frequently the AI calls a truly 

 negative case as positive and is only possible when there are a high number 

of negatives. The same is true for false negatives, which are cases where 

in fact there is a finding, but the algorithm misses it. For this, a dataset 

 comprising mainly of positive cases is required to determine whether (and to 
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what extent) AI misses’ positive cases. This is especially important in today’s 

scenario when AI is being pegged as a tool for either triaging (Johnson 

et al., 2019) or for automatically identifying normal cases (Irvin et al., 2019; 

Singh et al., 2018) with a high degree of confidence.

11.5.4  The Far North and Far South Cases

As a clinical group conducting an audit of AI algorithms, another  concept 

we describe is that of the far north and far south cases. Most often, the 

output of an AI algorithm is a probability or abnormality score using which 

the decision of whether an abnormality is present or not is taken. Such a 

score is a measure of the ‘certainty’ with which an AI algorithm is  giving an 

output. Typically, developers of algorithms determine a ‘threshold’ beyond 

which a finding is taken to be present, and below which a finding is 

 determined to be not present.

These concepts are best understood using an example – let us take the 

hypothetical case of a deep learning algorithm for the detection of  fractures 

in an X-ray. Assume that the algorithm gives a probability estimate of 

whether a fracture is present in an X-ray on a scale of 0%–100%, with a 

threshold of 50% – a probability of >50% implies the presence of a fracture, 

and less than 50% means no fracture. Let us further assume we have six test 

images (1–6) out of which images 1–3 are normal (no fracture), and images 

4–6 have fractures. The AI algorithm gives a probability estimate of 25% for 

image 1, 60% for image 2, 90% for image 3, 75% for image 4, 40% for image 

5 and 10% for image 6, implying that the algorithm is most ‘certain’ about 

the presence of a fracture in image 3, then image 4 and then image 2. Note 

that image 1 is hence a true negative and image 4 is a true positive, and the 

rest of the images are situations where the algorithm was wrong based on 

the threshold of 50% for positivity.

Now, while one would not be wrong in clubbing images 2 and 3 into 

false positives, and images 5 and 6 into false negatives, it would be wrong 

to equate the ‘extent of falseness’. The algorithm was 90% certain that 

image 3 has a fracture and 60% certain that image 2 has a fracture, whereas 

both do not have fractures. It is important to understand that the error 

made by the algorithm in image 3 was much ‘worse’ than image 2 since 

it is an error that cannot be fixed by simply adjusting the threshold of the 

 probability. Similarly, the algorithm was very certain that image 6 does not 

have a  fracture (10% estimate) and fairly certain that image 5 does not have 
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a  fracture (40%), whereas both in reality had fractures, but again the mis-

take made by the algorithm in image 6 is much worse than image 5. Such 

cases are dubbed as far north (high-probability false positives) and far south 

 (low-probability false negatives) by our group.

It is essential to monitor and test algorithms from point of view of 

 identifying far north and far south cases because they demonstrate 

 fundamental issues in algorithms’ ability to understand an image and make 

a prediction. A radiologist, in contrast, is able to state their uncertainty and 

hence seek appropriate guidance in cases where help is needed. For AI to 

be a reliable companion to radiologists, the probability estimates given by AI 

need to be less divergent in terms of correlating with the ground truth.

11.5.5  Real-World Deployment and Testing

The litmus test for any medical imaging AI algorithm is whether  radiologists 

use it or not, how frequently radiologists need to change the findings of 

the algorithm and how long they take to ‘trust’ it. Unfortunately, there 

is hardly any published literature around real-world deployments and 

 testing of  algorithms. From our experience of deploying AI algorithms 

that  automatically classify chest X-rays into normal or abnormal and that 

 automatically detect and characterize lung nodules on chest CT scans, we 

understood that it is important to present the findings of the AI algorithm in 

the most radiologist-friendly way possible. This insight comes from two main 

reasons – first, most radiologists use workstations which are ‘locked’; that is, 

additional software cannot be loaded on them, limiting the ways in which 

AI results can be displayed at them. Second, and possibly, more importantly, 

it is very difficult to toggle between viewers for specific cases, and such 

toggling negatively impacts the adoption of new software and solutions. To 

counter this, we suggest either HL7 integration with the radiology reporting 

software or, in situations where the AI generates an image/segmentation, 

simply ‘writing’ no raw DICOM (Digital Imaging and Communications in 

Medicine) images like a ‘screensaver’ image.

One successful implementation strategy for AI that automatically clas-

sifies chest X-rays into normal or abnormal, in the workflow, is the 

 following – first, chest X-rays are automatically extracted from PACS 

using DCM4CHEE16-based tools every 2 minutes to process them in real 

time; next, the AI algorithm is run on the chest X-ray, and if the AI is 

unable to find any abnormality in the image, a ‘normal’ report template is 
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 automatically sent to the reporting software using an HL7 message such 

that the radiologist simply has to approve the report after looking at the 

chest X-ray. The radiologist has full freedom to change the report, and such 

changes are measured in real time to determine the accuracy of the algo-

rithm, displayed through a real-time dashboard. Such prospective valida-

tion studies, akin to phase 4 clinical trials for drugs, will help in improving 

algorithms in the long term and are the only way to realistically measure the 

impact of such algorithms in real clinical practice.

Another real-world deployment strategy for AI algorithms is an 

AI-enabled retrospective quality audit. In this quality audit, several hun-

dred or thousands of chest X-rays that are deemed ‘normal’ based on 

their  previous radiology reports are read by an AI algorithm at once. 

Subsequently, abnormality scores (probability of each X-ray having an 

 abnormality) are determined, and images having high abnormalities are 

 re-read by a second arbitration radiologist. It is highly likely that the AI finds 

‘missed’ findings which the radiologists either did not pick up on or did not 

feel the need to comment on – either way, the AI algorithm gives a low-risk 

method to pick mistakes and improve the quality of radiology reporting in 

general.

11.5.6  Improving the Algorithm

The outcome of an algorithmic audit should ideally be solutions or sugges-

tions using which vendors can improve the functioning of the algorithm. 

There are two possible solutions, in our experience. The first possible solu-

tion may be to retrain the model using false positives and false negatives 

found during the audit, especially the far north and far south cases. Such 

retraining can also be done locally, i.e., at the deployment site using a 

technique called federated learning (Chilamkurthy et al., 2018) where data 

does not need to leave the premises of the hospital/healthcare provider. 

The second possible solution is to use ‘dynamic thresholds’. A dynamic 

threshold refers to a threshold value (for determining the presence or 

absence of an abnormality, as discussed earlier) that changes based on the 

given clinical context. Although not published in the literature, preliminary 

work done by our group demonstrates the ability of dynamic  thresholds 

to significantly reduce the error rate of algorithms by adding a layer of 

‘clinical sense’ into the output of AI algorithms. It is intuitive and can be 
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explained using an example – a patient who has come for a screening 

chest X-ray for a routine health check should have a very high threshold 

for detecting  pneumothorax, as opposed to one who is in the intensive 

care unit with falling oxygen  saturation. Adding a simple checkbox to 

determine the patient’s clinical  context (screening, trauma, fever, cough, 

intensive care, etc.) can aid in improving AI’s accuracy and making it more 

accessible.

11.6  More Power to Clinicians

The easiest, fastest and possibly most impactful way to address the short-

age of radiologists in rural India is by giving clinicians and surgeons the 

ability to read scans on their own using assistance provided by AI. General 

physicians and pulmonologists in rural India often order chest X-rays for 

their patients but seldom get reports for them – an app on their smart-

phone linked to a cloud-based AI system can help them read these scans 

faster and more accurately. Abdominal surgeons in India are already read-

ing CT scans – imagine a situation where AI directs them to the abnor-

mality and confirms the provisional diagnosis made by them. Clinicians 

often complain that they find it hard to read MRI scans because of the 

different ‘contrasts’ that MRI presents – AI can potentially combine all MRI 

sequences to make a ‘CT-like’ image which is easily readable by them. In 

such a scenario, one can assume that most routine, mundane, day-to-day 

reporting tasks would be handled by clinicians in conjunction with AI, and 

radiologists could instead focus on the more difficult rare cases, thereby 

optimally utilizing their time. That said, just as how chess amateurs team 

up with computers to beat experts (Centaur chess, 2019), could one envi-

sion a day when primary care clinicians team up with AI to become better 

than radiologists?

In summary, AI will surely address the shortage of radiologists in 

rural India in the short term but the extent to which it would affect 

impact  on-ground would depend on use-cases chosen by developers, the 

 accuracy of the algorithms and economics involved in development and 

deployment of such solutions. But for the successful deployment of algo-

rithms, we need a systematic methodology to validate and audit these 

algorithms.
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12.1  Introduction

Over the past few centuries, medical science has been growing steadily. 

The pace has accelerated in the last few decades. This new knowledge 

is slow to change the practice of medicine, although we have been using 

information technology tools for data collection, manipulation and analysis. 

Sample sizes have grown bigger over the years for clinical trials. Today, with 

the implementation of electronic health record (EHR), availability of clini-

cal data has increased. It is now possible to study the whole population 
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instead of a sample using machine learning and artificial  intelligence tools. 

The speed and capacity to manipulate and analyze data have increased 

 tremendously with the availability of larger capacity of hardware, faster 

 software and better algorithms. We are about to see a flurry of new 

 discoveries and new knowledge. This chapter will discuss the role of (i) 

knowledge curation, (ii) knowledge translation and (iii) new knowledge 

generation in medicine using machine learning and artificial intelligence in a 

learning health system.

12.2  History

Medical knowledge includes an understanding of all established and 

 evolving biomedical, clinical, epidemiological and social-behavioral sciences 

(NEJM, 2016). The process of creating medical knowledge started with the 

observation of humans many centuries ago. One would observe the  normal 

state and the diseased state. This exploration leads to the examination of the 

human body both outside and inside, through dissection of cadavers and 

sometimes operating on living humans. The modern science of observa-

tion and measurement did not start until the early 1600s. The observation of 

hygiene and its effect on the mortality of wounded soldiers, the incidence 

of cholera in a certain geographic area in London and the incidence of lung 

cancer in cigarette smokers are all great examples of how observational 

science started making its way into medical practice. The traditional use 

of clinical trials in medical treatment became popular with the birth of the 

pharmaceutical industry in the late 1800s. The study of populations and 

statistics became popular as tools in science and medicine in the late 19th 

century.

12.3  Current Practice

According to a paper by Peter Densen, there are several challenges facing 

medical education and medical knowledge today (Densen, 2011):

 1. The majority of medical education is focused on biology, but most of 

the disease is caused by non-biological factors, like behavioral choices 

and the environment.
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 2. The majority of medical education happens in a hospital setting, while 

the majority of the practice of medicine happens in the outpatient clinic 

setting.

 3. Major emphasis on basic science research, but a lot of it is not very 

applicable to the medical practice at the bedside.

There is a gap between what medical science has discovered as new 

 knowledge and the access and usability of that knowledge to  benefit 

patients. This is also called the bench-to-bedside gap (Mohyuddin, 

2015). There are several barriers to this process of transfer of knowledge. 

Factors that are contributing to this gap between evidence and practice of 

medicine are

 1. The exponential growth of knowledge and the number of studies, with 

the number of studies doubling every few months (Corish, 2018).

 2. An increasing population that is also having a growing number of older 

individuals with heart disease and cancer, which are still the leading 

causes of death (AHRQ, 2017).

 3. Increasing amounts of healthcare data from EHRs, imaging studies and 

genomic information (IDC, 2014).

 4. Physicians are unable to keep up with evidence-based care, resulting in 

less than half of the patients receiving it with resulting increased mor-

tality and morbidity (Holmes et al., 2004).

The importance of clinical trials and the scrutiny they get have been 

enhanced by the modern drug development practices and the rigorous 

 regulatory framework that has been established to protect the people 

from ineffective or dangerous drugs, devices or treatments getting into the 

 practice of medicine. The invention of new compounds, molecules and 

biologics has accelerated this process. Some of the challenges faced by the 

industry like the increasing cost of bringing treatment into the  market, the 

enormous failure rate of these treatments in the clinical trials and  sometimes 

the lacklustre performance of these treatments when they have been 

 disseminated into a population have all been documented. Once studies 

have confirmed that a treatment works, it is picked up by the  professional 

organizations that will include this evidence into clinical  practice  guidelines. 

These guidelines are disseminated widely to the practicing  physicians 

through publications. Physicians and healthcare institutions have to 
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 voluntarily include this guideline-based knowledge into their practices. This 

cost, time and quality inefficiency has been plaguing the medical world for 

quite some time and more so recently.

12.4  Cost of Generating New Knowledge

Clinical trials, the current gold standard of research, are expensive. The 

average cost to bring a new drug or treatment to market is estimated to cost 

1 billion dollars. This does not take into consideration the large amounts of 

basic science research that the government and research institutions spend 

in order to support these treatment explorations. This process of spending 

large amounts of money has some unintended consequences for certain 

conditions. Public money is mostly spent on what is trending as an impor-

tant problem in public discourse, which is a very subjective way of allocat-

ing resources. It also has many political and social implications. Research 

covering rare diseases or unpopular conditions has difficulty in getting 

funded. Conditions, where the life span is cut short by the disease itself, are 

also difficult to study as there is not enough time to do it. Disease areas that 

affect the affluent get more funding than the ones affecting the poor. Even 

after successful regulatory approval of drugs and treatments, they may fail 

in the post-market evaluations. There have been several examples of such 

failures. This capital inefficiency affects the number of successful treatments 

reaching the population in need of them.

12.5  Time Inefficiency of Generating New Knowledge

It takes an average of ten years for a particular treatment to start its jour-

ney from the bench and make its way to the patient. The rigorous testing, 

screening of compounds and recruiting for clinical trials is a long arduous 

process. Most of the work has to be done manually. Although this process 

is designed to decrease the risk of untoward problems caused by the new 

treatment, it adds to the length of time it takes to do it. The involvement 

of multiple stakeholders including researchers, patients, academic institu-

tions, clinical research organizations, institutional review boards and com-

pany staff is huge. A lot of times these studies have to be discontinued 

due to several difficulties such as non-availability of resources, inability to 

recruit enough patients and failure of the agent being evaluated to show a 
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positive response. All these costs add into the cost of the next treatment for 

the disease. Since the investors and shareholders of these private  entities 

expect a return on investment or the value of their shares to grow, there 

is  tremendous pressure on the companies to show positive results of their 

research on the products they are developing.

12.6  A Learning Healthcare System

A Learning Healthcare System was defined by the Institute of Medicine 

(IoM), as a system in which “science, informatics, incentives, and 

 culture are aligned for continuous improvement and innovation, with 

best  practices seamlessly embedded in the delivery process and new 

 knowledge captured as an integral by-product of the delivery experience.” 

(Olsen et al., 2007)

 1. The Learning Healthcare System was a product of the work done 

 starting in 2006 at IoM, at a workshop that started this movement. The 

three dimensions of the challenge were (Figure 12.1).

 2. “Fostering progress toward the long-term vision of a learning healthcare 

system, in which evidence is both applied and developed as a natural 

product of the care process.

 3. Advancing the discussion and activities necessary to meet the near-term 

need for expanded capacity to generate the evidence to support  medical 

care that is maximally effective and produces the greatest value.

Figure 12.1 AI- and machine learning-based Clinical Knowledge Management.
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 4. Improving public understanding of the nature of  evidence-based 

 medicine, the dynamic nature of the evidence development process, 

and the importance of supporting progress toward medical care that 

reflects the best evidence.” (Olsen et al., 2007) 

12.7  Clinical Knowledge Management

The current process of knowledge moving from bench to bedside has 

 several hurdles. Machine learning technology can be a solution to many 

of these problems. Here are areas where machine learning can be most 

useful:

 1. Knowledge curation: With the vast amounts of new knowledge that 

is being generated, it is humanly not possible to track and curate this 

knowledge for practical purposes. Companies are creating machine 

learning tools to be able to go through the vast number of papers 

and curate detailed summaries, validating existing hypotheses, reveal-

ing  hidden connections and creating new hypotheses. The use of 

these tools can help speed up the process of analyzing and assimilat-

ing  current knowledge on a topic and help researchers summarize 

the  findings into a current knowledge base. Although such tools are 

not widely in use right now, the path to that possibility is clear. This 

 knowledge can then be used to create clinical practice guidelines, 

where the current process of creating guidelines takes years to gather 

and analyze such data. In the meantime, the knowledge has grown or 

changed, and by the time the clinical practice guidelines are published 

and disseminated, some of it has already become obsolete (Extance, 

2018).

 2. Knowledge translation: Once we have access to new knowledge 

and the guidelines that are created from this knowledge, the next 

step is to make it available to the clinician at the point of care in real 

time where the decisions are being made. This process being able to 

access a patient’s current clinical information through various systems 

including EHRs and other streams of data is crucial. Machine  learning 

tools can extract data about the patient from the patient’s records and 

can be used for analysis. This analysis, in turn, can power clinical 
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 decision  support systems that can prompt and suggest treatments to the 

 physician or provider based on the patient’s risk profile or treatment 

category. Intelligent systems have been developed to be able to do this 

in real time and at the point of care (Menzies et al., 2015).

 3. Knowledge generation: With the advent of EHRs, large amounts of 

longitudinal clinical data are available on patients, which never existed 

before. There are structured and unstructured data like clinician notes 

in the EHRs. The availability of such data and the accessibility of 

machine learning and artificial intelligence tools make it possible to 

generate new knowledge. This knowledge is created from the obser-

vational study of this data. When clinical interventions are involved, 

this data can be used to create a synthetic control group and compare 

outcomes. Such real-world data is valuable in generating real-world 

evidence and new knowledge which was not possible in the past. This 

methodology can guide treatments in identifying responders to certain 

treatments and in the selection of patients for clinical trials. In certain 

complex conditions, machine learning can create a customized clinical 

pathway for individual patients where the condition is complex and the 

patient’s status is ever-changing. A good example of this is in the treat-

ment of sepsis (Komorowski et al., 2018).

12.8  Business Model of Healthcare

Most of the USA and some other parts of the world have established fee-for-

service as their healthcare business model. In this model, the healthcare pro-

vider generates revenue or income, based on the number of patients seen, 

the number of procedures performed or the number of hospitalizations. This 

business model depends on the patients getting sick and availing of the ser-

vices provided. Introduction of machine learning models which can predict 

outcomes and help in preventing a lot of downstream care and expense can 

be a detriment to the fee-for-service business model. It helps the value-based 

care model which is the opposite of the fee-for-service model. In value-

based care, the idea is to prevent patients from getting sick and requiring 

costly treatments. This caveat may help in selecting the institution or orga-

nization, where these models are most aligned with the incentives to health-

care providers.
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12.9  Conclusion

Healthcare has gone through a major transformation over the past 

few  centuries. The pace of change has increased with growth in new 

 knowledge. Current systems are not in a position to handle this tsunami 

of new knowledge in order to benefit patients. New tools like machine 

 learning have the potential to speed up the process of knowledge curation, 

knowledge translation and knowledge creation. This will have a positive 

impact on the work of scientists, the practice of medicine and ultimately the 

health of millions of people in the near future.
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13.1  Introduction

Collecting sufficient labelled training data for health and medical problems is 

difficult (Antropova et al., 2018). Also, missing values are unavoidable in health 

and medical datasets, and tackling the problem arising from the inadequate 

instances and missingness is not straightforward (Snell et al. 2017; Sterne et al. 

2009). However, machine learning algorithms have achieved significant suc-

cess in many real-world healthcare problems, such as regression and classifica-

tion, and these techniques could possibly be a way to resolve the issues.

Amenorrhoea status (i.e. a marker for infertility) prediction post-cancer 

treatment is crucial for women who wish to conceive in the future as this 

can guide fertility preservation decisions before they receive infertility- 

causing cancer treatment and post-treatment contraceptive choices (Peate 

et al. 2011). However, collecting substantial labelled data for amenorrhoea 

prediction after cancer is challenging and very often the relevant data will 

present vast amount of missing values (Peate & Edib, 2019).

Traditional machine learning algorithms start with the hypothesis that the 

training dataset and testing dataset have the same input space and distribu-

tion, which may not be practical in the real world. To address this issue, 

constructing a general learning model which can adapt to several similar 

domains quickly is necessary. Such a framework will reduce the cost of 

re-building and re-calibrating the learning models due to changes of dis-

tribution and input space features, which is known as ‘transfer learning’. 

Transfer learning is useful in many real-world applications, such as natu-

ral language processing (NLP) (Han & Eisenstein, 2019; Kim, Gao & Ney, 

2019), medical and clinical analysis (Christodoulidis et al. 2016; Uran et al. 

2019), E-commerce (Zhao, Li, Shuai, & Yang, 2018) and acoustic recognition 

(Gharib, Drossos, Çakir, Serdyuk, & Virtanen, 2018). In our study, we aim to 

address the distribution divergence in the large dataset consisting of several 

subsets by transfer learning. We first define the objective subset as target 

domain and impute missing values to align the feature spaces with another 

auxiliary subset, namely, the source domain. Second, we try to improve clas-

sification accuracy by leveraging the information across two subsets where a 

single target dataset may not be sufficiently expressed.
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The prepared dataset describes the relationship between the health status 

and amenorrhoea status at 12 months from the start of the chemotherapy, for 

breast cancer patients internationally. The dataset includes six sub-da tasets 

(the names of these datasets are masked due to confidentiality issues), 

and these sub-datasets were collected from different institutions/hospitals. 

Consequently, the data is not likely to be sampled from exactly the same 

distribution but shares some similarity; for example, there are many common 

features between two subsets. To better predict the amenorrhea status across 

different subsets, we need to first align features using cross-i mputation, 

then map the source and target to a common latent space to maximize 

correlation.

The flowchart of our method is shown in Figure 13.1, where the learning 

process is divided into training and testing phases. As transfer learning aims 

to maximize the correlation between the source and target, our imputation 

and classification methods are both distance-based. In the training phase, 

we use zero or k–nearest neighbour imputation (kNNI) to align the features, 

and we assume the source dataset will be more abundant, while target 

instances are more limited. Then, we perform the closest pairing considering 

Figure 13.1 Supervised pairing CCA method.
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the label before canonical correlation analysis (CCA), mapping vectors wT 

and wS are then learned to transform paired source and target to a common 

latent space, eventually distance-based classifier such as k-nearest neighbour 

(kNN) is learned in this common space. The contributions of this chapter are 

summarized as follows:

 1. The work explores the impact of imputation techniques on clinical 

datasets and provides an efficient way to deal with missing values for 

transfer learning.

 2. As a single dataset is insufficiently expressed, we leverage another  similar 

dataset and further improve the performance using linear CCA, kernel 

CCA and deep CCA regarding the classification tasks on  prediction of 

amenorrhoea 12 months after breast cancer diagnosis and treatment. The 

results show that the transfer with kernel CCA and deep CCA can boost 

the classification accuracy and yield promising improvements.

This chapter is structured as follows: Section 13.2 introduces related studies 

on amenorrhoea prediction to cancer status, missing values with imputation 

techniques and CCA-based transfer learning methods. Section 13.3 proposes 

our methods in detail. The experiments are conducted, and the results are 

portrayed and discussed in Section 13.4. Section 13.5 concludes the chapter.

13.2  Related Work

13.2.1  Amenorrhoea Status Prediction

Chemotherapy-related amenorrhoea (CRA) is usually caused by gonadotoxic 

chemotherapy; younger (pre-menopausal) patients should be informed of 

the possibility of amenorrhoea or recovery of menstruation and contracep-

tive choices (Peate et al. 2011) to plan for further pregnancy. Lee et al. (2009) 

pointed out that the occurrence of CRA is predicted by the age at diagnosis. 

For those who are older than 40 years, CRA is more likely to occur and be 

permanent. Also Liem et al. (2015) reported that the age at diagnosis is the 

main factor correlated to post-cancer infertility. Apart from age, CRA also 

hinges on personal factors (REF). Peate et al. (2011) found that low knowl-

edge can reduce the quality of decision-making. To conclude, prediction of 

chemotherapy-related infertility involves consideration of complex factors 

such as age, lifestyle factors, fertility history, ovulation, history of previous 
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medical and gynaecological diseases, cancer-related factors and type of treat-

ment. (Johnson et al. 2006). Decision support is critical in ensuring patients 

can make informed choices about fertility preservation in a timely manner, 

but in practice, women are making this decision without knowing their 

infertility risk, which has the potential for adverse effects. The key challenge 

with fertility prediction is that the data we use usually contains substantial 

missing elements which adversely impact the prediction results. Imputation 

methods can help to accommodate this issue.

13.2.2  Missing Value Imputation

Missing values are unavoidable in clinical datasets, and this lack of informa-

tion has serious drawback for data analysis. The reasons for missing data may 

differ, relevant knowledge cannot be acquired promptly, data will be absent 

due to unpredictable factors or the cost for accessing the data is unaffordably 

high. Types of missing data are defined by Little and Rubin (2019), who cate-

gorizes missing data into three types, which are missing completely at random 

(MCAR), missing at random (MAR) and missing not at random (MNAR).

MCAR cases happen when the missingness is independent of the vari-

able itself or any other related factors; for example, chemical data may be 

lost accidentally, some occasional collection is omitted for questionnaires, or 

a few medical records will present manual documenting errors. MAR is the 

case when the missing representation is independent of the variable itself 

but can be predicted from the observed entries. A typical case is that young 

breast cancer patients have more missingness in fertility, compared with 

older patients, which can be shown by leveraging the observed age informa-

tion. MNAR situations occur when the missingness is related to the variable 

itself, and this type of missing data cannot be predicted only from the pres-

ent data. For example, breast cancer patients will be more inclined to con-

ceal private information unrelated to the cancer such as education and salary 

levels, which are unlikely to be predictable. Handing this category of miss-

ing data is problematic, and there are no general methods that can resolve 

this issue properly.

In our case, as the MNAR type is rare in the mixture of different miss-

ing data types (Goeij et al., 2013), we may consider that the missing values 

are only under MCAR or MAR assumptions if a feature is not totally miss-

ing. When missing data are MCAR or MAR, they are termed ‘ignorable’ or 

 ‘learnable’, which implies that researchers can impute data with certain 

 procedures, e.g., by statistical analysis or machine learning approaches. 
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Machine learning has achieved great success in many fields, and the flexibil-

ity allows us to capture high-order interactions in the data (Jerez et al., 2010) 

and thus impute missing values.

Let us quickly revisit the kNNI routines-related machine learning con-

cepts. kNNI is a type of hot deck supervised learning method, providing a 

path to find the most similar cases for given instances, in which the near-

est neighbour is a useful algorithm that matches a case with its closest k 

neighbours in the multi-dimensional space. For missing data imputation, 

kNNI aims to find the nearest neighbours to minimize the heterogeneous 

Euclidean-overlap metric distance (Wilson & Martinez, 1997) between two 

samples, and missing items are further substituted with the values from k 

complete cases. The advantage of kNNI is that it is a simple and compre-

hensive method and it is suitable for large amount of missing data, but the 

disadvantage is that it has high computational complexity as it will compare 

all datasets and find the most similar cases.

13.2.3  Transfer Learning

Transfer learning resolves the issues that the training source and testing 

target are drawn from different distribution where a common classifier usu-

ally does not perform well. Formally, transfer learning is defined as follows 

(Pan & Yang, 2009).

Definition 1

(Transfer Learning) Two different domains, namely, source domain and 

target domain, are given. Given a source domain DS  and the source task 

TS, a target domain DT  and the target task TT , transfer learning aims to help 

improve the learning of the target task TT  using the knowledge in both 

source and target domains, where D DS T≠ , or T TS T≠ .

In the definition above, the domains are not equal that D DS T≠  implies 

that either XS T≠ X  or PS T( )X P≠ ( )X . Similarly, T TS T≠  implies that YS T≠ Y  

or PS T( ) ( )y X| |≠ P y X . In traditional machine learning methods, D DS T=  

and T TS T= . Weiss, Khoshgoftaar and Wang (2016) categorize the transfer 

learning into homogeneous and heterogeneous types. Homogeneous trans-

fer learning (HomoTL) assumes that the input instances are drawn from the 

same input space and distribution in both source and target, but the tasks 

are different. In heterogeneous transfer learning (HeteTL), features from 

source and target do not share the same feature space (X XS T≠ ), a typical 
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case is transferring the info from image to text (Zhao, Sun, Hong, Yao, & 

Wang, 2019) and it does not require that the inputs should have an identical 

space and distribution. Formally, homogeneous transfer learning and hetero-

geneous transfer learning are defined as follows.

Definition 2

(Homogeneous Transfer Learning) Given a source domain DS  and the source 

task TS, a target domain DT  and the target task TT , Homogeneous transfer 

learning is a type of transfer learning, where D DS T= , but T TS T≠ .

Definition 3

(Heterogeneous Transfer Learning) Given a source domain DS  and the 

source task TS, a target domain DT  and the target task TT , heterogeneous 

transfer learning is a type of transfer learning, where D DS T≠ , but TS can be 

either equal or not equal to the target task TT .

More specifically, the transfer learning hierarchy (Long, 2014) is illustrated 

in Figure 13.2. In our study, the prepared data consists of different sub-

datasets, which have different distributions and input spaces, implying that 

D DS T≠ . To tackle this problem, we will first appropriately transform the 

heterogeneous transfer learning problem into homogeneous learning prob-

lem and then utilize existing homogeneous learning methods (in the domain 

adaptation category) for better classification.

Figure 13.2 Types of transfer learning based on the feature space, label space, 
 feature marginal distribution and conditional distribution.
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13.2.3.1  CCA-Based Transfer Learning

CCA is a correlation-based multivariate data analysis tool that finds the 

maximum correlation between two sets of features in a specific subspace. 

In other words, CCA aims to learn a transformation that projects two data-

sets into a common subspace where transformed features are maximally 

correlated. CCA has been widely used in many fields such as software 

defect prediction (Jing, Wu, Dong, Qi, & Xu, 2015), computer vision and 

NLP (Hardoon, Szedmak and Shawe-Taylor, 2004), medical (Parkhomenko, 

Tritchler and Beyene, 2009) and acoustic processing (Sargin, Yemez, Erzin, & 

Tekalp, 2007). CCA is used for dimensionality reduction, feature mapping 

and learning and fusing multiple modalities for prediction. CCA methods 

require that both datasets are paired; that is, the number of instances should 

be identical. As the optimization problem is nonlinear, we can map the data-

sets to the reproducing kernel Hilbert space (RKHS), leading to the kernel 

version of CCA (KCCA) (Fukumizu, Bach, & Gretton, 2007). To accurately 

model complex datasets with mixed types, deep neural networks are intro-

duced to learn the corresponding representations, referring to deep CCA 

(DCCA) (Andrew, Arora, Bilmes, & Livescu, 2013). In this section, we will 

briefly revisit these three types of CCA.

13.2.3.1.1  Standard Linear CCA with Regularization

Given paired source and target datasets X Xˆ ∈ ∈R RF FU U× ×N N
S ,   ˆ

T , CCA 

finds pairs of linear projections w wS ∈ ∈R RF FU U× ×r ,   r
T  of the two views 

( )w XT ˆ ∈ ∈R Rr N× ×,  w XT ˆ r N
S S T T  that are maximally correlated, where ( )⋅ T  

denotes the transpose. The optimization problem can be described as follows:

(w * *
S T,  w ) = arg max corr ( )w XT ˆ

S S T,  w XT ˆ
T  

w wS T, 

 
w XT cov

=
( )ˆ ˆ

S S TXT wT
arg max

,  ( )
 (13.1)

w wS T w XT var ˆ T T
S ,  X̂T

S S w w Xvar ( ˆ
S T T T,  X wˆ ) T

where the cross-covariance cov ( )w XT ˆ
S S T,  w XT ˆ

T  and variance var ( )X Xˆ T
S S,   ˆ  

and var ( )X Xˆ T
T T,   ˆ  are defined as

 
1

var (X X ) = −∑
N

ˆ T ( )X Xi
S μ μ( )i −

T
∈RF FU U×

S S,   ˆ   : ˆ ˆ
S S S  

N
i=1



Amenorrhea Status Prediction  ◾ 241

 
1

var (X X ) = −∑
N

ˆ T ( )X Xi
T μ μ( )i −

T
∈RF FU U×

T T,   ˆ   : ˆ ˆ
T T T  

N
i=1

 
1

co ( )X X = −∑
N

(X Xi
S μ μ)( i − )T

v ˆ ∈RF FU U×
S T,   ˆ   : ˆ ˆ

S T T  
N

j=1

where X Rˆ i ∈ =F ,  for i 1,2,…,  N  and X Rˆ i ∈ =FU
S U T ,  for i 1,2,…,  M are the 

instances from the unified source and target dataset. And μ ∈ ∈RFU
S T,  μ  

denote the mean vector for unified source and target datasets as

FR U

 μ ∑
N

1
S := X̂ i

N
S  

i=1

 μ ∑
N

1
T := X̂ i

N
T  

i=1

By normalization, CCA finds the maximum canonical correlation as:

 Maximise w wT
S ΣST T  

 Subjectto w wT
S Σ ΣS S = =1,wT

T T Tw 1 (13.2)

The solution to this optimization problem is given by

 Σ Σ−1Σ w w= λ2
ST T TS s ΣS s 

 Σ Σ− −1 1Σ Σ w w= λ2
S ST T TS s s 

which can also be written as

 

⎛ Σ ⎞ ⎛
0 ST

⎛ wS 2 Σ ⎞⎞
S 0 ⎛⎜ w

⎜ = S
⎞⎜ ⎟ ⎟

Σ ⎟ λ ⎜ ⎟  (13.3)⎜ ⎟ w ⎜⎝ ⎜ ⎟ ⎝ w⎜ ⎠⎝ TS
⎟ T ⎟⎠0 ⎠ ⎝ 0 Σ ⎠

T
T

Equation (13.3) leaves an eigenvalue problem. Regularized CCA is intro-

duced to address the problem that if ΣS and ΣT  are singular, then CCA is 

ill-posed and the generalized eigenvalue problem cannot be solved properly. 

Imposing the L2 penalty maintains the convexity of the problem and the 

generalized formulation. The optimization object function is expressed by
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( )w * *
S T,  w = arg max corr ( )w XT ˆ

S S T,  w XT ˆ
T  

w wS T, 

 
ρ )+

w XT cov
=

( )ˆ ˆ
S S TXT wT

arg max
w wS T,  ( )w XT var ( )ˆ ˆ w

2
S ,  XT

S S S S+ ρ w (wT
T var ( X̂ ,  X̂ T

T T )w w
2

T T

 (13.4)

The eigenvalue problem is formulated by

⎛
w ρ

λ
Σ ⎞

0 Σ ⎞ ⎛
ST

⎛ ⎞
2 ⎜ +⎜ I 0 ⎛⎟ S ⎟ w

= S S
⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎝ w ⎠ ⎜ ⎟ ⎝ w ⎠  ⎟⎝ Σ 0 ⎠
T ρ⎝ 0 ΣT + I

T
TS ⎠

and the solution to the problem above is to find the largest r eigenvalues for 

the matrix:

 

⎛ 1

⎜ Σ ⎞ −
⎛ ⎞

S + ρI 0 ⎟ ⎜ 0 Σ ⎟
⎜

0 Σ ⎟ ⎜
⎜ ρ ⎟ ⎜⎠ ⎝ Σ

ST

⎟  
+ 0 ⎟⎝ T I TS ⎠

13.2.3.1.2  Kernel CCA

KCCA finds a pair of nonlinear projection of the two views. The functions in 

RKHS are denoted as H HS T, , and the associated positive definite kernels are 

denoted as Φ ΦS T,   . The optimal projections from low dimension FU  to high 

dimension F H
U  are any functions h hS S∈ ∈H H,   T T  to maximize the correla-

tion as

 )( )h h* *
S T,   = arg max corr

f fS S∈ ∈H H,  T T

(h ( )X̂ ,  h ( X̂S S T T )  

 
)

)
cov

= ax
(h XS S( )ˆ ,  hT ( X̂T

arg m
)

( )( ) ( ( )
 

h hS S∈ ∈H H,  T T var h X̂S S var hT X̂T

 
w K K w= S S T T  (13.5)

w KT 2 2
S S Sw w KT

T T Tw

whe ,   ∈
H

re w w RFU
S T , and we define the centralized kernel matrix 

K K ∈RF FH
U × H

U
S T,    as
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N
1

KS = Φ∑( )( )x uj − ( )Φ( )x uj −
T

: ˆ ˆ
N

S S ˆ ˆS S  

j =1

 

N
1

KT = Φ∑( )( )x uj − ( )Φ( )x uj −
T

: ˆ ˆ
N

T T ˆ ˆT T  

j =1

H

where Φ ∈( )x jˆ j R ...FU , for = 1,2, , N , and Φ ∈( ) H

x jˆ j F
S T R U , for = 1,2, , , ûS 

and ûT  are the mean values for transformed data matrix regarding each  feature. 

By normalization, KCCA finds the maximum canonical correlation with

... N

 Maximise w KT
S S TK wT  

 Subject to w KT 2 2
S S Sw = =1,w KT

T T Tw 1 (13.6)

which can be modified to the following generalized eigenvalue problems:

 
⎡ 0 K K ⎤ ⎡ 0
⎢

S T w
⎥ ⎢

S ⎤ ⎡ K 2 ⎤
λ S ⎡ w

⎥ = ⎢ ⎥ ⎢
S ⎤

⎥ 
⎢⎣ K KT S 0 ⎥⎦ ⎢⎣ wT ⎥⎦ ⎢ ⎥ ⎣ ⎦⎥⎣ 0 K 2

T ⎢ w⎦ T

13.2.3.1.3  Deep CCA

Instead of constructing standard CCA, deep CCA using two neural networks 

is illustrated as follows:

The deep neural network is used to learn a common latent space 

where the correlation between two views is as high as possible. The neu-

ral network shown in Figure 13.3 is defined as wS and wT  in both views. 

We denote the neural network models of source and target views as 

f fS T( )⋅ ⋅  and ( ),  and then, we aim to find the optimal w *
S and w *

T , where

 )(w w* *
S T,   ) = arg max corr ( fS S( )X̂ ; ,w  f

, 

( X̂S T T ;wT

( )w w

)  (13.7)
S T

Let H ∈Rr N×
S  and H ∈Rr N×

T  be the learned representations produced by 

the deep models on the two views. To make the matrices centred, we define 
1 1

H HS S= − HSIN , and the sample covariance is defined as Σ =ˆ H H T  
N

ST ,
N

S T

1
and the variance for source domain is given by Σ =ˆ

S SH H T

N
S + λS I  
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with regularization constant λS . The centred matrix and variance for tar-

get domain is defined similarly. The total correlation of the top r compo-

nents of HS and HT is the sum of the top r singular values of the matrix 

Σ =ˆ Σ̂− −1/2Σ̂ Σ̂ 1/2
r S ST T . Using the singular value decomposition of Σ =ˆ T

r UDV , 

then the gradient for the source data is computed by

 
∂corr ( )H HS T,   1= ∇( )2 H H+ ∇

∂H N
S S ST T  

S

where

 
− −

∇ Σ Σˆ ˆ1/2 1/2

ST = S UVT
T  

 
1 ˆ ˆ1/2 1/2

∇ = − UDU
2
Σ Σ− −

T
S S S  

The gradient for the target domain is symmetric

 )∂corr ( )H HS T,   1= ∇(2 H H+ ∇
∂H N

T T ST S  
T

Figure 13.3 Deep CCA network structure, left network corresponds to the source 
training, and right network is utilized for the target samples, and the correlation 
 coefficient of output layers of source and target are maximized.
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where

 
− −

∇ Σ Σˆ ˆ1/2 1/2

ST = S UVT
T  

 
1 ˆ ˆ1/2 1/2

∇ = − UDU
2
Σ Σ− −

T
T T T  

These gradients are back-propagated for training the neural network model.

13.3  Method

13.3.1  Unified Feature Representation with Imputation

In this section, we present our method with subspace embedding diagram as 

shown in Figure 13.4, where source and target datasets are projected in a com-

mon latent space and a generic classifier is learned to distinguish the labels. 

Given source and target datasets DS  and DT  with N and M (N ≠ M) samples, to 

apply CCA in both datasets, the number of instances should be identical, which 

is not likely for real-world scenarios. We propose a method for pairing, which 

is finding the nearest pair for the dataset with the smaller number of instances 

(target) in another one (source) by aligning the feature space first.

Assume we have two datasets with common binary label Y, namely, 

domain source and target source, which are denoted as DS  and DT , respec-

tively. As the two databases are not fully aligned, we split the feature space 

Figure 13.4 Subspace embedding learning representation.



246 ◾ Artificial Intelligence

into three components according to the missing rate, e.g. common features 

FC, target-specific features FT and source-specific features FS as shown in the 

Figure 13.5, where FC are the features that both DS  and DT  observe, and 

here, the term ‘observe’ entails that the observed instances are substantial 

enough for each feature (at least one observation). FT contains features that 

are only observed in the target and is totally missing in the source, and simi-

larly, FS consists of features observed in the source and is totally missing in 

the target.

More formally, given two datasets, namely, source domain DS  and target 

domain DT  regarding the same binary label Y ∈{ }0,1 . Input feature spaces 

for each domain are denoted as XS  and XT , and then, we define common 

feature space FC S= ∩X XT , target-specific feature space F FT T= X \ sw and 

source-specific feature space F FS S= X \ C.

The imputation involves two procedures, which are cross-transfer imputa-

tion and feature creation imputation. Cross-transfer imputation aims to fill 

the missing values in FC using existing imputation techniques, while feature 

creation imputation can be achieved in two ways: the first is to complete FT 

for the source set and FS for the target set by utilizing the data from target 

and source, respectively, and the second is to simply pad zeros for missing 

values in FT and FS.

Figure 13.5 Unified feature representation for two datasets DTT  and DSS . NAs in grid 
suggest data are missing, observed feature entries are left blank and two large NA 
indicate that FT and FS in DSS  and DSS  are totally missing. Cross-transfer and feature 
 creation imputation are performed on source- and target-specific features.
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13.3.2  Nearest Pairing Methods

For each sample in the target dataset, we desire to identify the most simi-

lar one from the source dataset. We propose a heuristic pairing algorithm 

in this section. First, the distance matrix (N × M) is created using Euclidean 

metrics. Each column represents source indices between all source instances 

and one specific target instance sorted by distance in ascending order. That 

is, the first row represents the target index where target instance and source 

instance have minimal distance and vice versa. Then, in the first row of the 

distance matrix, we find the largest number of non-replicated instances from 

the source and then delete these paired instances from source and target 

until all pairings are finished. The algorithm is shown below.

Algorithm 1: Nearest Pairing

Input: Source with N instances, target M instances, assume M ≤ N.

Output: Paired source and target datasets.

Step-1: Data normalization and pre-processing;

Step-2: while Instance ( )D _  S > 0 do

{

    Dist _ _Mtx ← Euclidean Distance ( )D DS T, ;

Find largest non-replicated pairs in the first row, which are denoted 

as D DS P, ,, T P ;

D DS S← \DS ,P;

D DT T← \DT ,P ;

}

Step-3: Return D DS T, .

13.3.3  CCA Transformation

Algorithm 2: Classification with Nearest Pairing

Input: Source: D ∈ Rn dS s×
S , target: D ∈ Rn dT T×

T , assume nS ≤ nT.

Output: Predict amenorrhea status after cancer treatments.

Step-1: FS ← observed_features ( )D ;S

Step-2: FT ← observed_features ( )D ;S

Step-3: FC T← ∩F FS ;

Step-4: Data normalization and pre-processing;

Step-5: Cross-transfer imputation with kNNI;
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Once we obtain the paired source and target datasets, we can apply the lin-

ear CCA with regularization (Equation 13.4), the kernel CCA (Equation 13.6) 

or the deep CCA (Equation 13.7) for finding a common latent space. A clas-

sifier is then employed in the common latent space. Details are shown in 

Algorithm 2.

13.4  Experiments and Result

13.4.1  Data Description

The full dataset is authorized by the Fertility after Cancer Predictor 

(FoRECAsT) Study, University of Melbourne (Peate & Edib, 2019). The 

dataset summary and five samples are described in Tables 13.1 and 13.2. 

The data contains 1,565 samples in total with six sub-datasets. From 

the view of features, most are categorical, and there are a few numeri-

cal ones. Each sub-dataset suffers from missingness more or less, 

from 8.6% to 23.6%. As the features are highly misaligned, the total 

 missingness reaches an excessive rate, at 72.5%. In this section, we will 

conduct the nearest paring algorithms for the FoRECAsT datasets and 

compare the performance with some benchmarks in terms of classifica-

tion accuracy.

13.4.2  Result

To investigate the effectiveness of the CCA-based methods for the infer-

tility classification task, three approaches are adopted, which include 

CCA, kernel CCA and deep CCA, where the benchmark is the accuracy 

based on a classifier using the original sub-dataset only. All modules are 

implemented in Python 3.7 (Van Rossum & Drake Jr, 1995) in the operat-

ing system Mac OS 10.14.3. For hyper-parameter tuning, cross-imputation 

uses 5 NN, the latent space dimensionality is set to be fixed half of the 
1

rank r = min (rank ( )D DS T; rank ( )) and the classifier is set to be 1 NN 
2

as suggested by many existing papers (Jing et al. 2015; Wang et al. 2017). 

The neural network model parameters for both source and target views 

are summarized in Table 13.3.
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Table 13.3 The Neural Network Model Parameters for Both Source and 
Target Views

p. Layers Dimension for Target q. Dimension for Source r. Activation Function

1 512 512 Sigmoid

2 512 512 Sigmoid

3 512 512 Sigmoid

4 r r Sigmoid

13.4.2.1  Distance Metrics Evaluation

13.4.2.1.1  Proxy-A-Distance

Ben-David et al. (2010) propose a distance metric to evaluate the distribution 

divergence, which is known as ‘A-distance’. Computing the A-distance can 

be approximated by learning a classifier; suppose we have two datasets DS  

and DT , then a classifier h is learned which achieves minimum error on the 

binary classification problem of discriminating between points generated by 

the two distributions.

To see this, suppose we have two samples U S and UT  sampled from the 

source and target datasets with the same length m, define the error of a clas-

sifier h on the task of discriminating between points sampled from different 

distributions as

 ( ) ∑
2m

1
err h = −h I( )x

m
i Ux

2
i S∈  

i=1

where I xi S∈U  is the binary indicator that where the sample xi lies in US or 

not, and the proxy-mathcalA distance is defined as

 ( )d UA S( ),  UT = −2 1 2min err ( )h  
h

It is important to note that it does not provide us with a valid upper bound 

on the target error, but gives some intuition on how different the source and 

target datasets are and also gives us some useful insights about the repre-

sentations for domain adaptation.
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13.4.2.1.2  Maximum Mean Discrepancy

Maximum mean discrepancy is a kernel evaluation metric proposed by 

Borgwardt et al. (2006), which is a relevant criterion for comparing distribu-

tions based on R. Let X x= 1 2,  x ,  ...,  xn and Y y= 1 2,  y ,  ...,  ym be random 

variables with distribution P and Q. Then, the empirical estimate of distance 

between P and Q is defined as

 ( ) ∑ ∑
n m

1 1
Dist X Y,   = −φ φ( )x y

n
i ( )

m
i  

i= =1 1i H

where H is a universal RKHS and φ (⋅) is a mapping function: X → H.

13.4.2.1.3  Coral Loss Function

The coral loss function is defined in the study by Sun & Saenko (2016). 

This metric evaluates the distance between the second-order statistics 

(covariances) of the source and target features:

 
1

lCORAL = −C C
2

4d 2 S T F
 

where ⋅ 2

F denotes the squared matrix Frobenius norm. And the covariance 

matrices of the source and target data are given by

 
1 ⎛= ⎜ −
− ⎝ ( )T ( )⎞CS D DT 1 T D DT

⎟n
S S 1 1

S 1 n
S S  

S ⎠

 
1 ⎛= ⎜ −
− ⎝ ( )T ( )⎞CT D DT 1 T D DT

⎟n
T T 1 1

T 1 n
T T  

S ⎠

where 1 is a column vector with all elements equal to 1. And d is the 

 number of features.

13.4.2.2  Prediction Accuracy

Transfer learning aims to extract the similarity between the source and 

target datasets and, and many studies use the divergence metrics to evalu-

ate how different two datasets are and try to learn a common latent space 
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to minimize the according loss function. We will evaluate these metrics 

on FoRECAsT datasets, and the losses will give us a useful insight on how 

well CCA transfer learning works. We transfer the knowledge from the 

dataset that contains more samples to that with fewer; for example, track 

5  transferring to track 1 is abbreviated as T 5 1→ T , leading to 15 sets of 

experiments. The distance metrics results and prediction accuracy are shown 

in Tables 13.4 and 13.5; each column is represented as a different baseline, 

given as follows:

◾ S T→ : Source dataset transfers to the target dataset.

◾ Original: Using the target only.

◾ ZPC: Closest pairing with zero padding for feature creation imputation.

◾ IMC: Closest pairing with kNNI for feature creation imputation.

◾ ZPCCA: Linear CCA based on the ZPC.

◾ IMCCA: Linear CCA based on the IMC.

◾ ZPKCCA: Kernel CCA based on the ZPC using linear kernel.

◾ IMKCCA: Kernel CCA based on the IMC using linear kernel.

◾ ZPDCCA: Deep CCA based on the ZPC.

◾ IMDCCA: Deep CCA based on the IMC.

In Table 13.5, the negative transfers are highlighted in dark grey cells, while 

positive cases are highlighted in grey cells. The highest accuracy is high-

lighted in bold for each row. We set the result from the original data as our 

benchmark. Zero padding and kNNI for feature creation imputation are both 

conducted and compared with and without CCA procedures.

13.4.3  Discussion

From the divergence results, we can observe that after CCA, both three dis-

tance metrics drop close to zero and this implies that CCA reduces the dis-

tribution differences as P ( )D PS T, CCA ≈ (D , CCA ). Comparing the zero padding 

approach with kNNI for FT and FS in the source and target datasets, the latter 

method reduces the domain divergence due to the introduction of interfer-

ence from the source domain, while the former maintains the structure of 

the data and increases the domain divergence by importing large number of 

zeros. However, as the algorithm does not take the conditional distribution 

P (Y DS S| , CCA ) into account, negative transfer will happen if    
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P ( )Y DS S| |, CCA ≠ P (YT DT , CCA ); that is, the accuracy drops after transferring, 

compared to the original results. For example, if the classification accuracy 

happens to be relatively low in the source domain, it may not be helpful 

in distinguishing the label in the target domain. To address this, we apply 

kernel CCA to provide stronger discriminant power, and this method gives 

promising accuracy improvements.

From the results of classification accuracy, kNNI for feature creation impu-

tation can help the target domain improve classification accuracy, except for 

subset T4. For linear CCA cases, negative transfer occurs regardless of the 

imputation techniques; despite the domain divergence being reduced, the 

conditional probability may still differ, which indicates that the elementary 

linear dimensionality reduction transformation cannot achieve promising 

results. When using kernel CCA, the classification becomes linearly separable 

in high dimensional space. Both zero-padding and kNNI yield good results. 

As for deep CCA, zero and cross-imputation can help classify the labels, 

although negative transfer happens for dataset T2. In conclusion, zero pad-

ding can achieve better results overall, while kNNI is more likely to produce 

the best results.

In general, whilst the standard CCA minimizes the distribution difference 

between the source and target datasets, it still cannot generalize the knowl-

edge efficiently from the source domain using linear transformation, except 

T T1 2→  and T 0 → T 3 with zero padding, while the kernel CCA with zero 

padding performs strongly with no negative transfers. Regarding the high-

est accuracy, cross-imputation with kernel CCA and zero padding with deep 

CCA show remarkably positive transfers. By observing the average accuracy, 

compared with the benchmark using the original datasets, transfer learn-

ing with kernel and deep methods achieves promising prediction results for 

amenorrhoea prediction accuracy improvements, while standard CCA cannot 

tackle the problem properly.

However, the algorithm requires that source instances should be larger 

than target, which is a limitation because the knowledge from the source 

dataset is not fully utilized and reverse transferring is not possible in our 

algorithm. In addition, finding appropriate mapping dimension is fixed to be 
1

min ( )rank ( )D DS T; rank ( )  in our case. We will investigate these issues in 
2
future work.
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13.5  Conclusion

This chapter proposes a CCA-based transfer learning classification for the 

amenorrhoea status prediction of breast cancer patients using the nearest 

pairing algorithm and missing values imputation methods. To address the 

domain divergence issues, CCA minimizes the domain difference by maxi-

mizing the correlation between the source and the target. Utilizing kernel or 

deep CCA achieves ideal results and boosts the classification performance. 

However, the pairing algorithm introduces limitations and may cause infor-

mation loss of the source. Developing efficient learning to take advantages 

of all source information is left to future work. In addition, the results show 

that the reduction in distribution divergence (measured by distance metrics) 

cannot guarantee increase in accuracy. There are other factors such as con-

ditional probabilities may cause the reduction in accuracy. More investiga-

tions on these factors and correlation between distance metrics and accuracy 

improvement are suggestions for the further research. This study provides 

a new roadmap for health researchers dealing with medical data with large 

amounts of missing values using the transfer learning framework.
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14.1  Introduction

Most approaches to deep learning (DL)-based medical image classification 

output a binary decision about the presence or absence of a disease without 

explicitly justifying decisions. Moreover, disease severity prediction in an 

unsupervised approach is not clearly defined since the absence of  disease 

labels prevents validation of decisions, as in diabetic retinopathy (Son et al., 

2020). Diseases such as age-related macular degeneration (AMD) do not 

have a standard clinical severity scale, and it is left to the observer’s exper-

tise to assess severity. While class activation maps (CAMs) (Zhou et al., 2016) 

highlight image regions that have high response to the trained classifier, they 

do not provide measurable parameters to explain the decision. Explainability 

of classifier decisions is an essential requirement of modern diagnosis 

systems.

In this chapter, we propose a convolutional neural network (CNN)-

based optical coherence tomography (OCT) image registration method that 

(i) predicts the disease class of a given image (e.g., normal, diabetic macu-

lar edema (DME) or dry AMD), (ii) uses registration output to grade dis-

ease severity on a normalized scale of [1, 10] where 1 indicates normal and 

10 indicates confirmed disease and (iii) provides explainability by outputting 

measurable parameters.

Previous approaches to DL-based image registration include regressors 

(de Vos et al., 2017; Sokooti et al., 2017) and generative adversarial networks 

(GANs) (Mahapatra et al., 2018). Balakrishnan et al. (2018) learn a parameter-

ized registration function from training data without the need for simulated 

deformations in Sokooti et al. (2017). Although there is considerable research 

in the field of interpretable machine learning, their application to medical 

image analysis problems is limited (Pereira et al., 2018; Graziani et al., 2018). 

The CAMs of (Zhou et al., 2016) serve as visualization aids rather than show-

ing quantitative parameters. We propose a novel approach to overcome the 

limitations of CAM, by providing quantitative measures and their visualiza-

tion for disease diagnosis based on image registration. Image registration 

makes the approach fast and enables projection of registration parameters 

to a linear scale for comparison against normal and diseased cases. It also 

provides localized and accurate quantitative output compared to CAMs. Our 

chapter makes the following contributions: (i) a novel approach for AMD 

severity estimation using registration parameters and clustering, and (ii) map-

ping registration output to a classification decision and output quantitative 

values explaining classification decision.
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14.2  Method

Our proposed method consists of (i) atlas construction for different classes; 

(ii) end-to-end training of a neural network to estimate registration param-

eters and assign severity labels; (iii) assign a test volume to a disease severity 

scale, output its registration parameters and provide quantitatively interpre-

table information.

14.2.1  Atlas Construction Using Groupwise Registration

All normal volumes are coarsely aligned using their point cloud cluster and 

the iterated closest point (ICP) algorithm. Groupwise registration using ITK 

(the insight segmentation and registration toolkit) on all volumes gives the 

atlas image AN. Each normal image is registered to AN using B-splines. The 

registration parameters are displacements of grid nodes. They are easier to 

store and predict than a dense 3D deformation field and can be used to gen-

erate the 3D deformation field. The above steps are used to obtain atlases 

for AMD (AAMD) and DME (ADME).

14.2.2  Deep Embedded Clustering Network

Deep embedded clustering (DEC) (Xie et al., 2016) is an unsupervised clus-

tering approach and gives superior results than traditional clustering algo-

rithms. To cluster n points x X n
i i∈ =1 into k clusters, each represented by a 

centroid μj, j = 1,…, k, DEC first transforms the data with a nonlinear map-

ping fθ: X → Z, where θ are learnable parameters and Z is the latent feature 

space with lower dimensionality than X.

Similarity between embedded point zi and cluster centroid μj is given by 

Student’s t-distribution as
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+ −
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( )−
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where α = 1 for all experiments. DEC simultaneously learns k cluster cen-

ters in feature space Z and the parameters θ. It involves: (i) parameter ini-

tialization with a deep autoencoder (Simonyan et al., 2014) and (ii) iterative 

parameter optimization by computing an auxiliary target distribution and 
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minimizing the Kullback–Leibler (KL) divergence. For further details, we 

refer the reader to Xie et al., 2016.

14.2.3  Estimation of Registration Parameters

Conventional registration methods output a deformation field from an input 

image pair, while we jointly estimate the grid displacements and severity 

label using end-to-end training. Figure 14.1 depicts our workflow. An input 

volume of dimension 512 × 1024 × N, N is number of slices, is converted to a 

stack of N convolution feature maps by downsampling to 256 × 512 × N and 

employing 1 × 1 convolution. The output is shown in Figure 14.1 as d256 fN 

k1, which indicates output maps of dimension (d) 256 × 512, N feature maps 

( f ) and kernel dimension (k) of 1 × 1. The next convolution layer uses 3 × 3 

kernels and outputs f = 32 feature maps. This is followed by a max pooling 

step that reduces the map dimensions to 128 × 128, and the next convolu-

tion layer outputs 64 feature maps using 3 × 3 kernels. After three further 

max pooling and convolution layers, the outputs of the “Encoder” stage are 

128 feature maps of dimension 16 × 16.

Figure 14.1 Architecture of our proposed network for AMD classification and 
severity estimation. A regression network for image registration and deep embedded 
clustering network are combined to achieve our objectives.
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The Encoder output is used in two ways. The first branch is the input to 

the DEC network (green boxes depicting fully connected (FC) layers) that 

outputs a cluster label indicating severity score. The second branch from 

the Encoder is connected, along with the input volume’s disease label, to a 

FC layer (orange boxes) having 4,096 neurons. It is followed by two more 

FC layers of 4,096 neurons each, and the final output is the set of registra-

tion parameters. The “Class Label id” (disease label of input volume) and the 

Encoder output are combined using a global pooling step. The motivation 

behind combining the two is as follows: We are interested to register, for 

example, a normal volume to the normal atlas. The ground truth registration 

parameters of a normal volume correspond to those obtained when register-

ing the input volume to the normal atlas, and we want the regression net-

work to predict these parameters. Feeding the input volume’s actual disease 

label guides the regression network to register the image to the correspond-

ing atlas.

14.2.4  Training Stage Implementation

The entire dataset is divided into training (70%), validation (10%) and test 

(20%) folds for each class. The DEC parameter initialization closely follows 

the steps outlined in Xie et al. (2016). The regression network is trained 

using the input images, their labels and the corresponding registration 

parameters. We augment the datasets 150 times by rotation and flipping, 

and obtain their registration parameters with the corresponding atlas. In 

the first phase of training, only the regression network is trained using 

mean squared error (MSE) loss for 50 epochs to get an initial set of weights. 

Subsequently, the DEC is trained using the output of the Encoder network. 

After training is complete, we cluster the different volumes and observe 

that 97.8% of the normal patients are assigned to clusters 1–3; 97.5% of DME 

cases are assigned to clusters 4–7, while 97.2% of AMD cases are assigned 

to clusters 8–10. Thus, the following mapping between image labels and 

cluster labels are obtained: normal ∈ {1, 2, 3}, DME ∈ {4, 5, 6, 7} and 

AMD ∈ {8, 9, 10}.

14.2.5  Predicting Severity of Test Image

When a test image comes in, we first use the trained DEC to predict the 

cluster label, which apart from providing disease severity on a scale of 

(Xie et al., 2016) also gives the image’s disease class. The disease label is 
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then used to predict the image’s registration parameters to the corresponding 

atlas. Depending upon the desired level of granularity of disease severity, 

the number of clusters can be varied to identify different cohorts that exhibit 

specific traits.

14.3  Experimental Results

We demonstrate the effectiveness of our algorithm on a public dataset (Rasti 

et al., 2018) consisting of OCT volumes from 50 normal, 48 dry AMD and 

50 DME patients. The axial resolution of the images is 3.5 μ-m with scan 

dimension of 512 × 1024 pixels. The number of B-scans varies among 19, 25, 

31 and 61 per volume in different patients. The dataset is publicly available 

at http://www.biosigdata.com. For all registration steps, we used a grid size 

of 16 × 16 × 16. The number of predicted grid parameters is 163 = 4,096. All 

reported results are based on 5-fold cross-validation.

14.3.1  Registration Results

The output registration parameters from our method are used to generate a 

deformation field using B-splines and compared with outputs of other regis-

tration methods. For the purpose of quantitative evaluation, we applied sim-

ulated deformation fields and use different registration methods to recover 

the registration field. Validation of accuracy is based on mean absolute 

distance (MAD) between applied and recovered deformation fields. We also 

manually annotate retinal layers and compute their 95% Hausdorff distance 

(HD 95) and dice metric (DM) before and after registration. Our method was 

implemented with Python and Keras, using SGD and Adam with β1 = 0.93 

and batch normalization. Training and test were performed on a NVIDIA 

Tesla K40 GPU with 12 GB RAM.

Table 14.1 compares results of the following methods: (i) Reg−DEC: our 

proposed method; (ii) RegNoDEC: Reg−DEC using only the registration with-

out additional clustering; (iii) VoxelMorph: the method of Balakrishnan et al. 

(2018); (iv) FlowNet: the registration method of Dosovitskiy et al. (2015); 

(v) DIRNet: the method of de Vos et al. (2017); and (vi) Reg−k-means: replac-

ing DEC with k-means clustering. Our method outperforms the state-of-the-

art DL-based registration methods.

http://www.biosigdata.com
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14.3.2  Classification Results

Table 14.2 summarizes the performance of different methods on the test set 

for classifying between normal, DME and AMD. Results are also shown for 

CNN-based classification networks such as VGG-16 (Simonyan et al., 2014), 

ResNet (He et al., 2016) and DenseNet (Huang et al., 2016), three of the most 

widely used classification CNNs and the multiscale CNN ensemble of (Vincent 

et al., 2010) that serves as the baseline for this dataset. Our proposed method 

outperforms standard CNN architectures, thus proving the efficacy of combin-

ing registration with clustering for classification tasks. It also shows Reg−DEC’s 

advantages of lower computing time and fewer training parameters.

14.3.3  Identification of Disease Subgroups and Explainability

Besides predicting a disease label and severity score, our method provides 

explainability behind the decision. For a given test image and its predicted 

registration parameters, we calculate its l2 distance from each of the ten clus-

ter centers to give us a single value quantifying the sample’s similarity with 

each disease cluster. Let the sample s be assigned to cluster i ∈ [1, 10], and 

let the corresponding l2 distances of s to each cluster be di. We calculate a 

normalized value:

 
d d

p
i − 1

d =  (14.2)
d d10 − i

where pd gives a probability of the test sample reaching the highest severity 

score. It is also a severity score on a normalized scale of [0, 1]. Scores from 

multiple visits help to build a patient severity profile for analyzing different 

Table 14.2 Classification Results for AMD, DME and Normal on the Test Set 
Using Different Networks

Reg−
DEC 

VGG 
16 

ResNet 
50 DenseNet DEC k-means 

MultCNN 
(Xie et al., 

2016) 

Sen 93.6 91.7 92.5 92.6 89.5 85.7 92.5

Spe 94.3 92.8 93.6 93.5 90.6 86.8 93.4

AUC 96.4 94.1 95.2 95.3 91.9 87.7 95.2

Time (h) 4.3 16.7 12.4 13.6  2.5  0.5 15.1

Time indicates training time in hours.
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factors behind increase or decrease of severity, as well as the corresponding 

rate of change. The rate of severity change is an important factor to deter-

mine a personalized diagnosis plan. pd is different from the class probability 

obtained from a CNN classifier. The classifier probability is its confidence 

in the decision, while pd gives the probability of transitioning to the most 

severe stage.

Tables 14.1 and 14.2 demonstrate Reg−DEC’s superior performance for 

classification and registration. To determine Reg−DEC’s effectiveness in 

predicting disease severity of classes not part of the training data, we train 

our severity prediction network on normal and AMD images only, leaving 

out the DME-affected images. We keep the same number of clusters (i.e., 

10) as before. Since there are no DME images and number of clusters is 

unchanged, assignment of images to clusters is different than before. In this 

case, 96.4% of AMD images are assigned to clusters 8–10 which is a drop 

of 0.8% than the previous assignment, while 96.5% of normal samples are 

assigned to clusters 1–3 which is a decrease of 1.3%.

We see fewer images in clusters 4–7 although the majority of original 

assignments of normal and AMD cases are unchanged. When we use this 

trained model on the DME images, we find that 96.9% of the images are 

assigned to clusters 4–7, a decrease of 0.9% from before. The above results 

lead to the following conclusions: (i) Reg−DEC’s performance reduces by 

0.9% for DME and maximum of 1.3% (for Normal images) when DME images 

were not part of the training data. This is not a significant drop indicating 

Reg−DEC’s capacity to identify sub-groups that were not part of the train-

ing data. (ii) Using k-means clustering does not give the same performance 

levels demonstrating that end-to-end feature learning combined with cluster-

ing gives much better results than performing the steps separately. Reg−DEC 

accurately predicts disease severity even though there is no standard severity 

grading scale. Severity scale also identifies sub-groups from the population 

with a specific disease activity.

Figure 14.2 first and second columns, respectively, show AMD images 

accurately classified by Reg−DEC and DenseNet. The arrows highlight 

regions of abnormality identified by clinicians. Ellipses (in first column) 

show the region of disease activity. The length of major axis quantifies 

magnitude of displacement of the corresponding grid point, and the ori-

entation indicates direction. The local displacement magnitude is pro-

portional to  disease severity, while the orientation identifies the exact 

location. The second column shows the corresponding CAMs obtained from 

DenseNet (region highlighted). Although the CAMs include the region of 
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Figure 14.2 Example of misclassified images. White arrows show positions of diseased 
activity in AMD images. (a) Predictions by Reg−DEC and quantification of disease 
activity; (b) CAMs by DenseNet; (c) normal images inaccurately classified as AMD by 
DenseNet with CAMs; (d) DME images correctly classified by Reg−DEC. The circles 
are proportional to disease severity.

disease activity, it does not localize it accurately and is spread out, nor does 

it output a measurable value. By dividing the displacement magnitude with 

the distance between the grid points, we get a value very close to pd. The 

advantages of our registration-based method are obvious since it pinpoints 

abnormality and quantifies it in terms of displacement magnitude and angle.

Figure 14.2 third column shows examples of normal images that were 

rightly classified by Reg−DEC but incorrectly classified as AMD by DenseNet. 

The shaded regions highlight disease activity as identified by DenseNet, 

which is erroneous since there are no abnormalities here. Reg−DEC does not 

show any localization of pathologies in these examples. The fourth column 

shows examples of DME that were rightly identified by Reg−DEC, despite 

not being part of the training data, along with ellipses showing localized 

regions of disease activity. They were assigned to clusters 4–7, respectively. 

The CNNs trained to classify AMD and normal would mostly classify the 

second and third image as diseased, while the first image was usually clas-

sified as normal because of its similar appearance to some normal images. 

Thus, our method identifies different patient cohorts despite those not being 

part of the training data.

14.4  Conclusion

We propose a method to predict disease severity from retinal OCT images 

despite there being no labels provided for the disease severity. CNN regres-

sor predicts registration parameters for a given test image which are undergo 
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clustering to output a disease severity scale and a disease probability score 

in addition to the classification label (diseased or normal). Experimental 

results show our proposed method achieves better registration and classifica-

tion performance compared to existing approaches. We are able to identify 

distinct patient cohorts not part of training data. Our approach also provides 

explainability behind the classification decision by quantifying disease activ-

ity from the registration parameters.
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15.1 Introduction

Thyroid dysfunction is one of the most common endocrine diseases. About 

4.7% of the United States population has undiagnosed thyroid disease 

(Garmendia Madariaga, Santos Palacios, Guillén-Grima, & Galofré, 2014). 

Thyroid nodules could be present in up to 67% of the population (Ezzat, 

Sarti, Cain, & Braunstein, 1994). Increased incidence of thyroid nodules has 

been attributed to increased use of imaging modalities and improvement in 

imaging technology (Singh, Singh, & Khanna, 2012). Technological improve-

ments in ultrasound including elastography, 3D ultrasound (Liang et al., 2019) 
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and quantitative ultrasound (Goundan et al., 2019) have been used to 

improve the diagnostic accuracy. Computer-aided diagnosis software that 

can automatically detect different features in the thyroid nodules and gener-

ate a report has been cleared by the FDA (Lu, Shi, Zhao, Song, & Li, 2019). 

Similarly, artificial intelligence (AI) algorithms have been used in the diag-

nosis and management of thyroid diseases. One of the first papers using AI 

in the diagnosis of thyroid disease was by Sharpe et al. in 1993. They used 

a multilayer perceptron trained by back-propagation and a learning vector 

quantization network to investigate the robustness of these models on noisy 

diagnostic data. In recent years, most of the AI research in thyroidology has 

been focused on the diagnosis and management of thyroid nodules. Initial 

approaches used texture analysis to classify thyroid ultrasound images. Later, 

AI techniques such as machine learning (ML) and an advanced form of ML, 

deep learning (DL) algorithms were used. In this chapter, we discuss the use 

of AI in thyroid imaging, cytopathological diagnosis of thyroid nodules and 

molecular markers. The use of wearable devices and generative adversarial 

networks in thyroidology is also discussed in this chapter.

15.2  Ultrasound Image Classification

At present, when a thyroid nodule is detected on ultrasound, either a radi-

ologist or endocrinologist reviews the images and assigns a probability of 

it being cancer based on one of the prevalent classification systems. Most 

popular classifications systems are ACR-TIRADS (Tessler et al., 2017) and the 

American Thyroid Association’s (ATA) classification (Haugen et al., 2016). For 

example, if the thyroid nodule appears to have irregular margins along with 

microcalcifications and increased blood flow, then based on ATA classifica-

tion, this nodule has a high probability of cancer. These are very subjective 

classification systems (Choi, Kim, Kwak, Kim, & Son, 2009). This subjectivity 

results in inter- and intraobserver variations. When different radiology and 

endocrinology groups applied these systems in their respective practices, 

they got widely varying results. These systems are also designed to capture 

most of the cancerous nodules, which in turn results in many non-cancerous 

nodules being labeled as suspicious for malignancy. Because of this, every 

year, millions of people around the world undergo thyroid biopsy.

To avoid subjectivity, we could use AI algorithms. Researchers have been 

using different techniques ranging from logistic regression to convolutional 

neural networks (CNNs) to classify thyroid nodules. In 2014, Zhang et al. 
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used a multivariate binary logistic regression model to classify subcentimeter 

thyroid nodules (Zhang, Zhang, Fu, Lv, & Tang, 2014). Their model had a 

negative predictive value of 85.6% and a positive predictive value of 66.4%. 

In another study, Chang et al. compared the performance of radiologists 

and the performance of a computer-aided diagnostic system for classifying 

thyroid nodules. They used support vector machines with parameters opti-

mized using a grid search to create a binary classification system (Chang 

et al., 2016). Their model had better accuracy when compared to radiolo-

gists. Radial basis function neural network created by Wu and colleagues 

used features extracted from the ultrasound images by radiologists to classify 

nodules (Wu, Deng, Zhang, Liu, & Chen, 2016). Their algorithm achieved a 

sensitivity of 92.31%. But all of these models used input variables that are 

subjective. Hence, these models did not resolve the issue of subjectivity.

Later generations of models used CNNs to classify thyroid nodules 

directly from ultrasound images. GoogLeNet model was used by Chi and 

colleagues from Canada to classify thyroid nodules from an open-access 

database (Chi et al., 2017). As the complexity of AI models increased so did 

the accuracy. An article published in Radiology journal in 2019 claimed that 

their deep learning model matched the performance of radiologists (Buda 

et al., 2019). Another study published in 2019 combined molecular markers 

and ultrasound images to classify thyroid nodules into nodules with high 

and low genetic risk (Daniels et al., 2019).

In the future, AI models will aid in the risk stratification of thyroid nod-

ules and eventually decrease the subjectivity in this field. An explainable AI 

image analysis model that can be incorporated into an existing workflow 

with a negative predictive value comparable to fine-needle aspiration is 

needed to achieve uptake by physicians.

15.3  Applications in Cytopathology

The first published use of AI in thyroid cytopathology was in 1996 and 

titled, “Potential of the backpropagation neural network in the mor-

phologic examination of thyroid lesions” (Karakitsos, Cochand-Priollet, 

Guillausseau, & Pouliakis, 1996). The authors used 26 features from thyroid 

cells to create the neural network. The accuracy of the system was 98%. 

Later, the same authors improved the algorithm and tested it on 198 patients 

to achieve an accuracy of 97.7% (Karakitsos, Cochand-Priollet, Pouliakis, 

Guillausseau, & Ioakim-Liossi, 1999). In 2004, Ippolito et al. (2004) combined 
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clinical and cytological data from 453 patients with intermediate cytology 

and used an artificial neural network (ANN) to distinguish between benign 

and malignant nodules. Of the 453 patients, 371 patients were included in 

the training set and 82 in the testing set. They concluded that ANN had 

higher sensitivity and specificity in discriminating between benign and 

malignant nodules when compared to standard criteria.

Differentiating follicular adenomas from follicular carcinomas is challeng-

ing. If one cell crosses the capsule of the nodule, it could be considered as 

cancer instead of a benign adenoma. Shapiro et al. used nuclear features and 

chromatin texture as input variables for an ANN (Shapiro et al., 2007). Their 

model was able to accurately differentiate adenoma from carcinoma with an 

accuracy of 87%. Ozolek et al. tried to tackle the same problem using opti-

mal transport-based linear embedding for segmented nuclei and showed that 

their method could outperform standard numerical feature-type methods 

(Ozolek et al., 2014). Recently, CNNs have been used to classify thyroid cyto-

pathology images. In a study conducted in India by Sanyal et al., CNNs were 

able to identify papillary thyroid cancer with high precision (Sanyal, Dr, 

Barui, Das, & Gangopadhyay, 2018). They used images from two different 

microscopes to account for real-life circumstances and cropped the area of 

interest. Later, these images were used to create a model in TensorFlow. In a 

study titled, “Deep convolutional neural network VGG-16 model for differen-

tial diagnosing of papillary thyroid carcinomas in cytological images: a pilot 

study”, Guan et al. used multiple patches to train the model (Guan et al., 

2019). When tested on 40 nodules, this VGG-16 model achieved an accuracy 

of 97.6%.

One of the challenges in cytopathology analysis is the need for manual 

segmentation of the area of interest. A huge portion of the slide may have 

non-relevant areas. To address these shortcomings, Dov et al. used a two-

step fully automated classification system using whole slide images (Dov 

et al., 2019). In the first step, the area of interest is automatically identified 

and cropped. In the second step, this cropped picture is fed into a CNN 

to classify the image. Seven hundred and ninety-nine slides were used for 

training. The trained model was tested on 109 slides. This system had an 

area under the curve comparable to human experts. AI algorithms could 

reduce the limitations of traditional cytopathology and histopathology tech-

niques. AI could flag areas of interest, like an area with capsular invasion for 

the pathologists to verify. An algorithm like this will decrease the chance of 

misdiagnosing a follicular carcinoma along with decreasing the workload for 
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the pathologist. There exists a need for prospective multicenter trials in the 

future to validate these algorithms before being used in clinical practice.

15.4  Molecular Diagnosis

Fine needle aspiration of thyroid nodule does not always yield a definitive 

diagnosis. If there are not enough thyroid follicular cells, it could come back 

as non-diagnostic. Other potential non-definitive results include atypia of 

undetermined significance, follicular lesion of unknown significance, fol-

licular neoplasm, suspicious for follicular neoplasm and suspicious for malig-

nancy (Cibas, Ali, & of the Science Conference, 2009). Before the advent of 

molecular markers, many of these nodules were sent for surgery. But now, 

aspirates from these nodules could be sent for molecular diagnosis. Afirma® 

thyroid FNA analysis uses an ensemble machine learning model to classify 

thyroid nodules from the molecular analysis information (Hao et al., 2019). 

Another test, Thyroseq, uses a tree-based classification algorithm for indeter-

minate thyroid nodule classification (Mallick & Harmer, 2018).

15.5  Wearables

Wearable devices are ubiquitous now, making it easy to capture real-time 

medically relevant data. Capturing heart rate variations from wearables have 

been very helpful in identifying atrial fibrillation. A recent study published 

in the New England Journal of Medicine described how 419,297 participants 

were recruited to monitor their heart rate using the Apple watch (Perez 

et al., 2019). According to this study, only a few percentages of the recruits 

received an alert regarding their heart rate, of which 34% of participants 

were diagnosed with atrial fibrillation.

Similar to the atrial fibrillation trial, Lee et al. (2018) used Fitbit to monitor 

the heart rate of patients with hyperthyroidism. Their study showed that the 

increase in heart rate by 11 beats per minute was positively correlated with 

a rise in free thyroxine level. The authors concluded that data from wear-

able could help in the management of patients with hyperthyroidism. In the 

future, data from wearables could be fed to AI algorithms to predict indi-

vidual patient’s responses to antithyroid medications. This could help in the 

early titration of medications.
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15.6  Generative Adversarial Networks

Generative adversarial networks (GANs) are AI algorithms that can produce 

synthetic data from a given distribution of data (Goodfellow et al., 2014). 

GANs have been used to create art (Elgammal, Liu, Elhoseiny, & Mazzone, 

2017), to mimic speech (Bińkowski et al., 2019) of a person and to create 

fake videos (Korshunov & Marcel, 2019). Given enough data from differ-

ent classes, GANs can generate artificial data that mimics the original data 

distribution in each class. In healthcare, GANs have been used to generate 

artificial medical records to boost predictions from electronic health records 

(Che, Cheng, Zhai, Sun, & Liu, 2017). GANs were used to generate synthetic 

medical records in the hope of protecting the patient’s privacy (Choi et al., 

2017). Noise reduction in a low-dose CT scan was also made possible by 

GANs (Wolterink, Leiner, Viergever, & Išgum, 2017).

Lack of large medical image datasets makes it harder to use super-

vised learning. Yang et al. used GANs to address this shortcoming by 

using dual-path semi-supervised conditional generative adversarial net-

works for classification of thyroid nodules in ultrasound (Yang et al., 2019). 

Another application of GAN is the virtual staining of histopathology slides. 

Traditionally, staining of medical tissue is a cumbersome and time-consum-

ing process. Rivenson et al. used GAN to create a label-free virtual staining 

method for tissues including thyroid (Rivenson et al., 2019). GANs can also 

be used to train label generating AI algorithms. For example, ultrasound 

images of thyroid nodules generated by GAN can be tagged with differ-

ent features likes microcalcification, irregular border and hypoechogenicity. 

These tagged pictures could be used to create an AI model to generate tags 

for unseen thyroid ultrasound images. Figure 15.1 depicts synthetic ultra-

sound thyroid nodule images created by the author.

15.7  Discussion

The art of medicine is not always precise or consistent. Hence, it is dif-

ficult to reproduce medical research. This is especially true for medical 

AI research. We need prospective trials to evaluate medical AI models. AI 

model created in one health system may not work well when used in a 

different setting. Hence, external validation is essential before deploying 

a model. Even though there is a lot of research articles on the application 

of AI algorithms in thyroidology, none of them are used widely in clinical 

practice other than the ones used in molecular markers. This could be due 
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Figure 15.1 Synthetic images of thyroid ultrasound images created using generative 
adversarial networks (GANs).

to difficulty in implementing AI software into the current clinical workflow. 

Another reason could be due to regulatory hurdles. Not every AI researcher 

can afford setting up clinical research that meets regulatory standards. Media 

hype regarding the promise of medical AI might also dissuade prospective 

physician users. Educating physicians and other stakeholders involved in the 

implementation of AI, ideal use case scenarios, realistic advantages and dis-

advantages of the AI and possible error mitigation strategies might improve 

the uptake of this technology into the day-to-day medical practice.

Most AI algorithms are black boxes. Black box algorithms do not allow 

physicians to understand the reason behind a particular output by an AI 

model. Decisions made by the AI model could be explained by demonstrat-

ing feature importance, Local Interpretable Model-Agnostic Explanations 

(LIME), layer-wise relevance propagation, class activation maps and similar 

image search. AIBx is an image similarity model created by the author with 

built-in explainability (Thomas & Haertling, 2020). Given a test ultrasound 

image, AIBx will output similar images with the corresponding diagnosis. 

Explainable AI models are needed to gain the trust of the physicians and 

regulators. AI tools in thyroidology can act as decision support tools for 

physicians. These tools can also be very valuable in resource-poor develop-

ing countries where medical experts are not readily available. Ultimately, AI 

tools in thyroidology could decrease the cost of healthcare, decrease subjec-

tivity and improve the quality of care. AI will become an integral part of the 

diagnosis and management of thyroid disease in the not so distant future.
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16.1  Background

In the United States, 750,000 people are diagnosed with sepsis every year 

(Bansal et al., 2018), accounting for 250,000 deaths (Harrison et al., 2015) 

and 51% of total ICU admissions (Bansal et al., 2018). Sepsis is a complex 

disease with an even more complex management and treatment process. 

Diagnosis of sepsis consists of suspected or proven infection and systemic 

inflammatory response syndrome (SIRS). Delay in diagnosis places a bur-

den on the healthcare system, costing close to 15.4 billion dollars annually 
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(Bansal et al., 2018). Advanced detection can help mitigate these challenges 

by allowing for earlier diagnosis (Harrison et al., 2015). Furthermore, initiat-

ing early treatment would have a significant impact on mortality rates and 

alleviate the strain on healthcare resources allocated to sepsis treatment 

(Bansal et al., 2018).

16.2  Sepsis Prediction

Sepsis and septic shock being complex disease entities require scanning 

through the large scale of data to make as a diagnosis. It often gets delayed 

which could be detrimental to patient outcomes. Machine learning algorithms 

(MLAs) could greatly benefit patient outcomes by detecting potential sepsis 

shock (Shimabukuro et al., 2017). MLAs can synthesize information from dif-

ferent variables and utilize patient data to predict specific outcomes (Nemati 

et al., 2018). Earlier diagnosis and utilization of sepsis bundles could lead 

to lower mortality rates and improve patient care (Bansal et al., 2018). MLA 

systems can improve the timeliness of treatment intervention by alerting the 

treatment team before the onset of sepsis symptoms (Bansal et al., 2018).

Most electronic health record (EHR) alert tools are score-based, relying 

on certain criteria to be met diagnosis (Barton et al., 2019). However, MLA 

is customizable. Providers can use the system to monitor specific patient 

measures such as lactate levels and blood pressure (Harrison et al., 2015). 

MLAs can provide an early diagnosis with high specificity and sensitiv-

ity which could be very beneficial in the critical care setting (Shimabukuro 

et al., 2017).

16.3  Sepsis Detection

Early detection of sepsis is integral to effective treatment and improved 

patient outcomes (Harrison et al., 2015). Compliance with bundled sepsis 

protocols can reduce patient mortality and improve care (Giannini et al., 

2019). MLAs have the potential to relieve the burden on healthcare resources 

via ongoing monitoring of the patients’ risk for sepsis (Nemati et al., 2018). 

With machine learning systems, clinicians can monitor patient outcomes 

without the need for constantly being at the bedside (Nemati et al., 2018). 

As MLAs function as an early alert system, many healthcare providers will 

be able to provide prompt care well in advance (Bansal et al., 2018). There 



Use of AI in Sepsis Detection & Management ◾ 287

is also evidence pointing to the utilization of MLA’s in the non-ICU setting 

that resulted in earlier and more frequent treatment interventions in septic 

patients (Harrison et al., 2015).

MLAs help streamlines patient care by providing notifications only when 

necessary. Most healthcare professionals are often burdened with more than 

50 notifications a day from EHR systems and emails (Giannini et al., 2019). 

This could inadvertently lead to individuals avoiding or ignoring their alerts 

(Giannini et al., 2019). However, MLAs can also decrease alarm fatigue by 

providing alerts only when necessary (Nemati et al., 2018). High sensitivity 

and specificity can be expected from most MLA systems that monitor key 

vital signs related to sepsis shock (e.g., high lactate levels, blood pressure) up 

to 48 hours in advance, so healthcare professionals can expect that alerts will 

only occur in exceptional circumstances.

A current challenge exists is that MLAs that monitor for sepsis may be 

alerting healthcare professionals too early (Bansal et al., 2018). A response 

that may occur hours in advance may result in the provider choosing not to 

provide treatment – especially if the patient is not exhibiting physical signs 

of sepsis. Furthermore, a single alert may not be enough to incur a response 

from the healthcare team (Giannini et al., 2019). It is unclear whether an alert 

system or a dynamic scoring system would be more effective in notifying 

healthcare professionals (Giannini et al., 2019).

16.4  Sepsis Treatment

Delayed treatment of sepsis can lead to higher mortality rates in patients 

(Harrison et al., 2015); however, early antibiotic therapy can improve patient 

outcomes (Nemati et al., 2018). The development of MLAs with high sensitiv-

ity and high specificity can improve timeliness in sepsis detection (Bansal 

et al., 2018). A recent study suggested that after every hour a patient is 

not administered appropriate antibiotic therapy, their chance of survival 

decreases by 7% (Shimabukuro et al., 2017). Furthermore, there is literature 

that suggests that timeliness of antibiotic therapy is a key determiner for 

sepsis outcomes (Nemati et al., 2018). Thus, early intervention is integral 

to mortality rates in patients undergoing septic shock. MLA systems can 

decrease the time between the onset of sepsis and treatment by providing 

alerting treatment providers promptly (Harrison et al., 2015). There is also an 

increase in the frequency of treatment interventions in the ICU setting when 

utilizing MLAs (Harrison et al., 2015).
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Noncompliance with sepsis bundles can lead to increases in patient 

mortality (Barton et al., 2019). However, a team-based approach to sep-

sis management, coupled with MLA systems to alert healthcare providers 

before the onset of septic shock, can mitigate this risk (Harrison et al., 2015). 

Interdisciplinary teams that provide patient care after being notified can lead 

to the more frequent implementation of compliance bundles (Bansal et al., 

2018). The utilization of MLAs also leads to decreases in time to ICU transfer 

(Giannini et al., 2019). Escalating care for patients suspected of having sepsis 

can occur sooner, leading to earlier treatment intervention (Giannini et al., 

2019). However, it is integral that healthcare providers are informed of the 

variables that lead to alerts; otherwise, there may be distrust in the effective-

ness of the system (Giannini et al., 2019).

16.5  Sepsis Outcome

Compliance with sepsis bundles is poor, even with training and educational 

intervention (Harrison et al., 2015). However, MLAs can encourage the utili-

zation of sepsis bundles by decreasing information overload and mitigating 

alert fatigue (Harrison et al., 2015). By implementing MLA monitoring in the 

critical care setting, there is the potential for improved compliance, as well 

as earlier triage (Bansal et al., 2018). High sensitivity and specificity are inte-

gral to more frequent utilization of MLA systems in sepsis care, as frequent 

false alarms can result in providers feeling hesitant in implementing this 

technology (Shimabukuro et al., 2017).

There is data suggesting that the utilization of MLA systems in sepsis 

care results in lower mortality rates (Bansal et al., 2018), earlier antibiotic 

therapy (Shimabukuro et al., 2017), and can shorten the length of stay in 

the ICU (Shimabukuro et al., 2017). A study found that in-hospital mortal-

ity decreased by 12% with patients who were monitored by MLAs for sep-

sis recognition (Shimabukuro et al., 2017). When pairing sepsis recognition 

systems with a sepsis response team, the in-hospital mortality rate (9.4%) 

was lower than the US average (28.6%) for patients with sepsis (Bansal 

et al., 2018). Patients that were monitored by MLAs received antibiotics up to 

2.76 hours earlier than their counterparts and were observed to have blood 

culture draws sooner (Shimabukuro et al., 2017). In-hospital length of stay 

was observed to be shorter in patients monitored by MLA systems (6.31 days) 

versus those monitored by healthcare professionals only (8.40 days) 

(Shimabukuro et al., 2017) (Table 16.1).
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16.6  Conclusion

Current EHR systems provide abundant information to providers; however, 

this can easily plague individuals with information overload and alert fatigue 

(Harrison et al., 2015). Sepsis MLA systems allow for earlier recognition of 

sepsis factors versus relying on human recognition via frequent monitor-

ing of the patient (Bansal et al., 2018). Furthermore, constant monitoring of 

patients puts a burden on bedside staff, and there is the potential for human 

error (Harrison et al., 2015). As machine learning systems become more 

sophisticated and are integrated into EHR, providers can streamline care for 

their patients. However, we must be careful about the data input for devel-

oping these algorithms as GIGO – “garbage in, garbage out” (Msmw, 1979) 

can leave us with false alerts and increased workload for no/harmful effects 

on patients and system in general.
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17.1  Introduction

Current treatment guidelines are implicitly based on an “average patient” 

which ignores the complexity of human pathophysiology that manifests with 

significant inter-individual differences in treatment response. (Mulder et al., 

2018) Randomized controlled trials (RCTs) have been utilized for many years 
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and are often heralded as the “gold standard” for determining the safety and 

efficacy of treatments. In a conventional RCT, the average effect of a drug 

is compared to the effect of placebo or other active treatment, by assigning 

patients to alternative treatment groups and recording outcomes. To prevent 

selection bias patients are randomized to different groups, which produces 

distinct trial arms that are made up of patients who are largely similar except 

for the intervention they receive. This balances any confounding factors, 

known and unknown, and means that any difference in effects between 

groups is likely to be true, unconfounded treatment difference. However, 

RCTs are by no means faultless and can induce a multitude of problems 

including but not limited to poor patient recruitment and high attrition rates, 

expensive trial designs and the ever-increasing costs of conducting trials 

which tend to be large, international multi-centre endeavours.

High-throughput screening, genomic technology revolution and digital 

innovation are examples where advances in basic science and technology 

work symbiotically to achieve better, faster and cheaper clinical outcomes. 

(Doroshow & Doroshow, 2020; Seyhan & Carini, 2019; Zeggini, Gloyn, 

Barton, & Wain, 2019) However, clinical trials have somehow remained 

detached from such technological advancements and continue to use archaic 

protocols. The realization of this lack of technological integration in the 

clinical trial process has become apparent, and stakeholders are investigating 

how best to adopt more innovative and dynamic technological programmes 

including artificial intelligence (AI). Furthermore, the results of an RCT pro-

vide no information about the response at an individual patient level; rather, 

they represent the “average treatment effect” which is calculated from the 

homogenous group of patients enrolled in the trial. In real clinical practice, 

significant inter-individual differences in treatment response are evident, 

and this variation in response to treatment between individuals has been 

termed “heterogeneity of treatment effects”. In addition to the heterogene-

ity of response, there is the heterogeneity of susceptibility to adverse effects 

between individuals. This implies that a drug found to be effective on aver-

age may display varying effects when prescribed more widely at a popula-

tion scale. According to the Food & Drug Administration (FDA), roughly 

only one of ten compounds entering a clinical trial reaches the market, and 

this along with the high pre-clinical development costs highlights the inef-

ficiencies of the drug development cycle.

Although AI has not yet had a significant impact on clinical trials, 

AI-based models are helping improve trial design, AI-based techniques 

are being used to increase patient recruitment and AI-based synthetic data 



Transforming Clinical Trials with AI ◾ 299

Figure 17.1 Enhancing and transforming clinical trials with artificial intelligence and 
machine learning.

generation are helping overcome privacy barriers to enable secondary analy-

ses and collaborative research. (Harrer, Shah, Antony, & Hu, 2019) Clinical 

trials are now moving into an era of continuous electronic data collection 

utilizing devices and techniques, such as wearable sensors, mobile phones, 

electronic journals and digital imaging. AI and machine learning will be 

required to efficiently utilize these data. Ongoing data collection and analy-

sis while the trial is being conducted will allow continuous modelling of 

projected trial results modified to adjust to the patient population actually 

being enrolled. In this chapter, we describe how AI and machine learning 

can help improve recruitment and predict dropout, obtain efficiencies in 

clinical trials execution, and help adapt and inform new clinical trial designs 

towards improving healthcare outcomes, improving trial success rates, lower-

ing the pharma research and development burden, and enabling precision 

medicine (Figure 17.1).

17.2  Patient Recruitment for Clinical Trials

Patient recruitment takes up one-third of the overall clinical trial duration 

and represents a major barrier to the successful completion of the trial with 

a 32% failure rate in Phase III trials attributed to challenges with patient 
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recruitment (Treweek et al., 2010). The adverse consequences and costs of 

failed clinical trials due to inadequate recruitment highlight the urgent need 

to identify strategies that could optimize and improve patient enrolment. 

The known predictors that impact the successful recruitment of patients for 

clinical trials include age, race, gender, financial and socioeconomic status 

(SES) and subjective attitudes towards research potentially influenced by 

family members and care providers (Fletcher et al., 2007; Murthy et al., 2012). 

Additionally, each clinical trial has unique characteristics that could impact 

a patient’s willingness to participate, including time demands and schedul-

ing, trial type (e.g., randomized trial), and financial incentives (Treweek 

et al., 2010). Few studies have explicitly attempted to predict the likelihood 

of patient participation in clinical trials using machine learning. One study, 

using a gold standard-based evaluation of real-world clinical data and trials, 

showed a logistic regression algorithm achieved 70.8% precision on 10-fold 

cross-validation on the training set and 71.5% precision on the test set, sig-

nificantly better than the baseline predictor that simulated current practice 

(Ni et al., 2016).

17.3  Patient Selection for Clinical Trials

The success of epidemiological studies and clinical trials depends on the 

selection of the right patients. Rapid and efficient patient selection for clini-

cal trials requires access and interrogation of large electronic medical records 

which are time-consuming because of the large number of patient records 

that have to be manually reviewed by investigators. This process is addition-

ally challenging because of variations due to a lack of standards in recording 

patient information, medical coding mistakes, sparse data or missing details, 

among other issues. Logical rules that encode trial inclusion and exclusion 

criteria are widely used to identify patients in electronic medical records; 

however, they have several limitations including lower accuracy, the need 

for extensive additional work involving experts and limited reuse in other 

clinical trials due to the rules being generally trial-specific (Kirby et al., 

2016). Automated natural language processing (NLP) methods can alleviate 

the manual review burden and improve accuracy, but their performance in 

clinical practice is unclear. Classical machine learning classifiers can auto-

matically learn patterns to identify these patients. However, they still require 

human expertise to define the most informative feature set for the task. 
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One example is the NLP- and machine learning-based system – Automated 

Clinical Trial Eligibility Screener (ACTES) (Ni, Bermudez, Kennebeck, Liddy-

Hicks, & Dexheimer, 2019) which automated subject identification for clini-

cal trials and improved the numbers of subjects screened, approached 

and enrolled by 14.7%, 11.1% and 11.1%, respectively. Although the ACTES 

achieved an overall performance of 90.3% (micro F-measure), known short-

comings of NLP in understanding language semantics (e.g., word sense dis-

ambiguation) and syntax (e.g., assertion detection) resulted in multiple types 

of false-positive recommendations (Ni et al., 2015).

Consequently, there is a need to explore novel methods that can iden-

tify the most suitable set of patients for any clinical trial, independently of 

the criteria used and with minimal human intervention. Newer deep learn-

ing methods promise to improve this process further. One of their great-

est advantages is that they can automatically identify the most appropriate 

features from the raw data and text directly, without the need for expensive 

manual guidance (Segura-Bedmar & Raez, 2019; Xiong et al., 2019). Non-

adherence and dropout in clinical trials can lower study power, reduce the 

magnitude of treatment effects, and increase trial cost and duration. Machine 

learning methods have shown promise in predicting treatment discontinu-

ation (Lutz et al., 2018) and in medication adherence (Lee, Kang, Kim, & 

Son, 2013; Lo-Ciganic et al., 2015). Similar approaches can be used to predict 

dropout in clinical trials.

17.4  Synthetic Data in Clinical Trials

“Synthetic controls” comes from methods developed for website analytics 

and economics research (Brodersen, Gallusser, Koehler, Remy, & Scott, 2015) 

where a number of time series that are unaffected by the intervention are 

optimally weighted according to their fit to the outcome of interest in the 

period before the intervention, then combined into a composite time series 

(Abadie, Diamond, & Hainmueller, 2010). Application of synthetic controls 

method to nationwide administrative databases in Brazil, Chile, Ecuador, 

Mexico and the United States to evaluate changes in the burden of hospital-

izations for all-cause pneumonia associated with the introduction of pneu-

mococcal conjugate vaccines (PCVs) did not detect a decline in all-cause 

pneumonia in older adults in any country (Bruhn et al., 2017) which had 

implications on healthcare policies on more widespread use of the vaccine. 
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Another potential use of synthetic data is in generating synthetic controls 

or placebo groups for trials. Although a placebo control arm is crucial in 

clinical trials to determine treatment effects, participants generally do not 

like the possibility of being placed in the placebo group. One option being 

explored is the use of synthetic control arms, which are in-silico placebo 

arms modelled using information that has previously been collected includ-

ing historical control data, real-world data or the generation of a compan-

ion data set from other sources to serve as a comparator. Indeed, the FDA 

recognizes clinical trials that use this form of hybrid design where real-world 

data can be used as a basis for external controls.

The second scenario where machine learning can help by generating 

synthetic data is to overcome the challenges of sharing individual-level 

data from clinical trials (El Emam, Rodgers, & Malin, 2015). Data  sharing 

requires formal collaboration and extensive data usage agreements 

between researchers that are time-consuming, with many ultimately 

resulting in failure. Generative adversarial networks (GANs) have been 

very successfully used to generate synthetic images in medical imaging, 

ophthalmology and dermatology (Chi, Bi, Kim, Feng, & Kumar, 2018; 

Yi, Walia, & Babyn, 2019; Yu et al., 2019) and subsequently extended to 

electronic health records (Baowaly, Lin, Liu, & Chen, 2019). GANs are 

deep neural net architectures comprised of two nets, pitting one against 

the other which in simple terms allows prediction of features given a 

label in contrast to discriminative algorithms which map features to 

labels (Goodfellow et al., 2014). A proof-of-concept application to gen-

erate synthetic trial data for sharing used GAN with differential privacy 

recognizing that traditional GAN could learn to create synthetic data that 

reveals actual participant data (Beaulieu-Jones et al., 2019). They achieved 

differential privacy by limiting the maximum influence of any single par-

ticipant during training and then adding a small amount of random noise 

(Abadi et al., 2016) on the SPRINT (Systolic Blood Pressure Trial) data 

set (Wright, Whelton, & Reboussin, 2016). The key advantage of using 

synthetic data from electronic medical records is that they are artificially 

created and hence do not correspond to real patients and thus do not 

pose any danger of re-identification. As synthetic data carry attributes 

similar to actual data, it has value in public use of the information with-

out the hassle of obtaining real data. This proof of concept is promising, 

and the next steps are resolving a known weakness of GAN’s inability 

to deal with discrete data and testing and validation to ensure accurate 

implementation.
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17.5  Trials for Precision Medicine

As noted above, despite the value of RCTs in demonstrating treatment effi-

cacy, in real life these treatments do not work for all similarly. The demand 

for more individualized interventions has caused researchers to question 

whether traditional RCTs are the best method to evaluate personalized 

medicine. One RCT design is the crossover trial design where, rather than 

randomization to a treatment arm, patients are randomized to a sequence of 

treatments. This is most commonly an AB/BA trial design whereby patients 

assigned to the AB group receive treatment A followed by treatment B, and 

vice versa for the BA group. The patient takes one treatment for a prespeci-

fied period, followed by the second treatment for the same amount of time. 

Appropriate measurable outcomes are recorded, allowing the treatment 

effects for the two interventions to be compared. Since each patient receives 

both interventions, each patient acts as their own control, which avoids 

the problems that arise from the analysis of groups of patients. Comparing 

treatment effects within each individual also means there is no opportunity 

for confounding due to patient differences. To ensure that the effects of one 

drug does not “carry over” to the following treatment period, which would 

confound treatment effects, there is often a “wash-out” period between treat-

ments. This is a period in which the patient is not exposed to any interven-

tion, to allow the effects of the first drug to wear off. Crossover trials use the 

comparison of two interventions within individuals to establish the effects of 

both interventions in the absence of confounding.

An extension of the crossover trial design is the “N-of-1” trial design, 

which incorporates the basic elements of a crossover study. Where crossover 

studies are used to assess the average treatment effect of a drug in a certain 

population, N-of-1 trials are used to assess the individual treatment effect 

in a single patient. N-of-1 trials are randomized, multiple crossover trials 

which are conducted in a single patient, and are used to determine the most 

effective treatment in an individual (Guyatt et al., 1986). N-of-1 studies are a 

promising way to advance individualized medicine and a method for gain-

ing insights into comparative treatment effectiveness among a wide variety 

of patients. Although N-of-1 trials have generated a lot of interest among 

both physicians and researchers over the last 30 years, it is well recognized 

that they are more time-consuming and costly than standard care. With 

ubiquitous mobile digital devices and advances in AI and machine learning, 

the potential of N-of-1 trials is now realizable for personalized medicine. 

N-of-1 trials are associated with more intensive data collection, and a large 
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number of observations collected on a patient require time-series analysis 

and accommodating serial correlation between measures and possible car-

ryover effects. Machine learning methods are essential for combining and 

evaluating multiple N-of-1 trials to make population-level estimates (Zucker, 

Ruthazer, & Schmid, 2010), identification of common characteristics among 

patients who are ultimately found to respond best to a particular interven-

tion, treatment repositioning and integration of wireless data with electronic 

medical records.

17.6  Conclusion

The application of AI and machine learning can improve clinical trial sub-

ject identification, recruitment and retention. Furthermore, they can enable 

enhanced trial designs for evaluating precision medicine therapies, uncover 

hidden structure in trial data and lead to novel therapeutic discoveries and 

treatment repositioning. Generation of synthetic data under differential pri-

vacy with deep neural networks offers a technical solution for data sharing 

and the use of controls without endangering patient privacy.
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18.1  Introduction

Artificial intelligence (AI) has seen growing inputs, research and investments 

in the last few years. It is believed that AI will enhance the productivity of 

the healthcare sector qualitatively and quantitatively. All this would be pos-

sible because of an AI chip. Chips or integrated circuits on one small board 

have been around for a while, but the concept of AI on chips is novel and 

fascinating. The availability of this hardware can accelerate the develop-

ment of autonomous clinical platforms. This chapter describes these AI chips 

based on an extensive review of various articles, journals, websites, newslet-

ters and mobile applications.

18.2  Overview of AI

AI has been inspired by the human ability to learn, retain the knowledge and 

use this knowledge later. AI devices are a combination of software and hard-

ware in order to learn and retain knowledge to use in the future. Researchers 

program devices in such a way that it can read images, texts, audios and 

videos and retain the knowledge in its database. Once the machine learns, 

that knowledge can be applied elsewhere. For example, if a system acquires 

the ability to recognize somebody’s face, it can then be used to find them on 

social media platforms. AI systems need this learning (training) phase which 

makes them stand out from other systems (Gershgorn, 2017).

The evolution of AI technologies has been taking place at variable speeds 

based on the medium or type of data to be processed. The ability of pattern 

recognitions which includes video and images is generally known as “com-

puter vision”. The field of natural language processing is known as narrow 

intelligence, whereas an agnostic approach towards general form of human 

intelligence is termed as “general intelligence”. The rapid advancement of AI 

technology in the forthcoming years will unveil various machine learning 

techniques to build a consortium of “general artificial intelligence” methods 

(Gershgorn, 2017).

18.3  AI-Chips

To perform tasks mimicking the human brain, complex calculations are 

required to be performed within milliseconds. Simulating one second of 

the human brain requires 82,944 processors. These calculations can be 
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performed efficiently with a proper combination of hardware and the 

software. The hardware is called AI chip. These are specifically made for 

machine learning purposes. There have been many start-ups and many 

giants working collaboratively on making such efficient AI chips.

18.3.1  IBM

The idea behind making these chips is to mimic the biological neural struc-

ture. So, AI chips are based on artificial neural networks. This can be done 

in two different manners such as designing a lightweight neural network 

that consumes less power for processing and others by developing cus-

tomary co-processors based on AI technology (Tarantola, 2015). IBM has 

been working on “neuromorphic” chips since 2008. Their chip the building 

program was named SyNAPSE (Systems on neuromorphic adaptive plas-

tic scalable electronics). In 2015, they unveiled the system called the “True 

North” system in a three-week training session for academic and government 

researchers. The chip was produced by IBM in nm collaboration with Global 

Foundries and Samsung. The chip is said to be 7 nm in size. It was the 

smallest chip until then. The system/chip was built to run “deep learning” 

algorithms (Tarantola, 2015). IBM’s True North consists of 5.4 billion transis-

tors but uses only 70 mW power. Its power consumption is considerably low 

as compared to an Intel processor that has 1.4 billion transistors but uses 

35–140 W of power (Tarantola, 2015) (Figure 18.1).

True North consists of silicon and germanium in its electricity-conducting 

channels. IBM has used the new lithography method to print finer circuits. 

The circuits are around 10,000 times thinner than a human hair. The circuits 

computing power is expected to double every 18 months. Their next step 

is to make 5 nm chips, which is even more challenging. Present generation 

von Neumann computers mimic the functions of the left brain such as the 

number and symbolic calculations, while the True North chip will perform 

the activities of the right brain such as sensory and pattern recognition 

(Modha, 2015).

18.3.2  Google

Google has been producing deep learning products since 2015. It published 

the description of its own deep-learning chip in 2016. The chip uses a TPU 

(tensor processing unit) (Feldman, 2017). Google’s TPU has been built to 

accelerate the inferencing of neural networks. It is aimed to speed up the 
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Figure 18.1 True North chip (Hayward, 2019).

production phase of the networks that have already been trained for deep-

learning applications. In the training phase, Google has been using GPUs. 

TPU can do a lot of its inferencing at 8 bit rather than 16 or 32 bit which 

would, in turn, consume less power (Feldman, 2017) (Figure 18.2).

The TPU can perform 8-bit matrix multiplications and can give up to 

92 teraops/s. It has 24MiB on-chip memory, 34 GB/s bandwidths. It oper-

ates at 700 MHz and uses 40 W of power. The chip is about 28 nm in size. 

It is estimated that TPU performs 15–30 times faster than NVIDIA’s K80 

and Haswell’s E5–2699 v3. Google estimates that the use of higher band-

width memory in the TPU would increase its performance by three times 

(Feldman, 2017).

Figure 18.2 Google’s TPU board (Novet, 2017).
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18.3.3  NVIDIA

The idea behind producing AI chips is faster calculations, performance and 

enhanced outputs. NVIDIA’s GPU (graphical processing unit) has been used 

for deep learning as it can do calculations better and faster compared to 

other processors (Archer, 2017). NVIDIA’s latest Volta series chips are being 

focused by all AI training data centres. GPUs differ from more traditional 

CPUs by having hundreds or even thousands of smaller “cores” that can 

perform small operations, compared to the typically much smaller number 

of more powerful cores (4–8 in many modern machines) found in CPUs. 

NVIDIA’s Volta series consists of tensor core units. NVDIA’s Tensor cores are 

specifically designed to be speedy AI system trainers and are 12 times faster 

than the company’s previous series of chips, according to NVIDIA (Archer, 

2017) (Figure 18.3).

Specifications of NVIDIA’s chips that can be used for high-level computa-

tional work and AI are specified in Table 18.1.

18.3.4  Google and Microsoft’s Collaboration with AI Chips

Google and Microsoft have had neural network exchanges between them 

to keep up with the AI chip race (Quach, 2017). Pixel 2 smartphone by 

Google had its own AI co-processor chip and its existence wasn’t declared 

publicly because of their incompatibility to any of the smartphone appli-

cations. The AI co-processor present in pixel 2 is named as Pixel Visual 

core which consists of eight image processing units (IPUs) where each IPU 

core consists of 512 ALUs (arithmetic logic units) with a capacity to process 

Figure 18.3 NVIDIA’s Volta (Hayward, 2019).



312 ◾ Artificial Intelligence
Ta

bl
e 

18
.1

 
Sp

ec
ifi

ca
ti

on
s 

of
 N

V
D

IA
’s

 C
hi

ps
 (

H
ay

w
ar

d,
 2

01
9)

G
PU

 E
n

gi
n

e 
Sp

ec
s

G
EF

O
R

C
E 

G
TX

10
80

10
90

 T
I/

10
80

G
EF

O
R

C
E

G
TX

10
70

10
70

 T
I/

10
70

G
EF

O
R

C
E 

G
TX

10
60

6/
3 

G
B

G
EF

O
R

C
E

G
TX

 1
05

0
10

50
 T

I/
10

50

C
U

D
A

 c
o

re
s

3,
58

4/
2,

56
0

2,
42

3/
1,

92
0

1,
28

0/
1,

15
2

76
8/

64
0

B
as

e 
cl

o
ck

 (M
H

z)
1,

48
0/

1,
60

7
1,

60
7/

1,
50

6
1,

50
6 

1,
29

0/
1,

35
4

B
as

e 
cl

o
ck

 (M
H

z)
1,

58
2/

1,
73

3
1,

68
3/

1,
68

3
1,

70
8

1,
39

2/
1,

45
5

M
em

or
y 

Sp
ec

M
em

o
ry

 s
p

ee
d

11
/1

0 
G

b
p

s
8.

0 
G

b
p

s
8.

0 
G

b
p

s
7.

0 
G

b
p

s

St
an

d
ar

d
 m

em
o

ry
 

co
n

fi
g.

11
/8

 G
B

 G
D

D
R

5X
8 

G
B

 G
D

D
R

5
6/

3 
G

B
 G

D
D

R
5 

4/
2 

G
B

 G
D

D
R

5

M
em

o
ry

 in
te

rf
ac

e 
w

id
th

35
2/

25
6-

b
it

25
6-

b
it

19
2-

b
it

12
8-

b
it

M
em

o
ry

 b
an

d
w

id
th

 
(G

B
/s

)
48

4/
32

0
25

6
19

2
11

2

A
dd

it
io

na
l I

nf
or

m
at

io
n

G
ra

p
h

ic
s 

ca
rd

 p
o

w
er

25
0/

18
0 

W
18

0/
15

0 
W

12
0 

W
75

 W

M
ax

im
u

m
 d

ig
it

al
 

re
so

lu
ti

o
n

7,
68

0 
× 

4,
32

0 
@

60
 H

z
7,

68
0 

× 
4,

32
0 

@
60

 H
z

7,
68

0 
× 

4,
32

0 
@

60
 H

z
7,

68
0 

× 
4,

32
0 

@
60

 H
z

M
ax

im
u

m
 V

G
A

 
re

so
lu

ti
o

n
 

2,
04

8 
× 

1,
53

6
2,

04
8 

× 
1,

53
6

2,
04

8 
× 

1,
53

6
2,

04
8 

× 
1,

53
6

St
an

d
ar

d
 d

is
p

la
y 

co
n

n
ec

to
rs

D
u

al
-L

in
k 

D
V

I-
I,

H
D

M
I 2

.0
B

,3
 ×

 D
is

p
la

y 
Po

rt
 1

.4

D
u

al
-L

in
k 

D
V

I-
I,

H
D

M
I 2

.0
B

,3
 ×

 D
is

p
la

y 
Po

rt
 1

.4

D
u

al
-L

in
k 

D
V

I-
I,

H
D

M
I 2

.0
B

,3
 ×

 D
is

p
la

y 
Po

rt
 1

.4

D
u

al
-L

in
k 

D
V

I-
I,

H
D

M
I 2

.0
B

,3
 ×

 D
is

p
la

y 
Po

rt
 1

.4

M
u

lt
i-

m
o

n
it

o
r

4 
d

is
p

la
ys

4 
d

is
p

la
ys

4 
d

is
p

la
ys

4 
d

is
p

la
ys



An Industry Review of Neuromorphic Chips ◾ 313

3 trillion operations/second, and we don’t have furthermore details on 

their technical specifications. The core function of the pixel co-processor 

chip is to execute machine learning software for image processing within 

the smartphone by working on the pictures taken by the smartphone’s 

camera (Quach, 2017).

18.3.5  Huawei

Huawei has made its own neural processing unit chip and included it in its 

new phone Mate 10 (Lifestyle, 2017). The Mate 10’s Kirin 970 chipset, which 

the company developed in-house, is the world’s first mobile SoC (systems on 

a chip) to have a dedicated NPU (neural processing unit). Right now, using 

voice assistants (such as Apple’s Siri or Google’s Assistant) on other devices 

requires an internet connection, because the AI is stored in the clouds. 

But with the Mate 10, the AI is inside the NPU. Huawei reports that it will 

improve efficiency and speed and will eliminate the need to be connected 

to the internet. The inclusion of NPU in Huawei Mate 10 has led its camera 

to identify objects in real-time. For example, if we are taking photos of a 

plate of food, the camera will know to punch up the contrast to make the 

colours pop (Sin, 2017).

18.3.6  Microsoft

Microsoft revealed its AI chip in a press conference in late July 2017 (Dent, 

2017). This comes after Google announced its own TPU chip for AI in 2016. 

The aim is to create chips for HoloLens-augmented goggles. Microsoft’s 

HoloLens consists of a co-processor on its HPU (holographic processing 

unit) which is powered by AI. The primary application of HoloLens is to 

help blind people to identify their family, friends and other lifestyle needs. 

The silicon part of the AI chip is manufactured in-house by Microsoft which 

will add power to the HoloLens battery. It will be fully programmable and 

compatible with different types of deep learning techniques. Tasks such as 

object and voice recognition can be done fast by flexible AI solution without 

an internet connection. Apple and Google had also started manufacturing AI 

processors on their own like Microsoft. Still, HoloLens seems to be the only 

wearable augmented reality device where AI co-processor forms the core 

part of the HoloLens which acts as mixed reality devices with its ability to 

think intelligently (Dent, 2017).
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18.3.7  Intel

Intel has developed its own neuromorphic chip called Loihi (Mayberry, 

2017). It includes digital circuits that mimic the brain’s mechanism, making 

machine learning faster and efficient. A neuromorphic chip mimics the com-

munication between neurons in the human body, using spikes and plastic 

synapses based on timing. The chip doesn’t have to wait for updates from 

the cloud; it can adapt in real-time. It is up to 1,000 energy efficient com-

pared to typical training systems. Loihi uses fewer resources to complete 

tasks in comparison with deep learning neural networks (Mayberry, 2017) 

(Figure 18.4).

18.3.8  Apple

Consumers can now use a new technology called “Face ID” to unlock the 

iPhone X. That’s made possible by a True Depth camera system on the 

front, along with a dual-core Neural Engine on the six-core A11 Bionic chip 

for real-time facial recognition that looks at 30,000 points on the human face 

(Ivankov, 2017). It’s built to recognize human face no matter whether they 

are wearing a hat, glasses or sporting a facial beard (Figure 18.5).

18.3.9  General Vision

General Vision has manufactured a neuromorphic chip CM1K (General 

Vision, 2018). Its architecture is inspired by the human brain’s architecture. 

The chip has 1,024 neurons working in parallel and has the capability to 

learn and recognize patterns in few microseconds. All the neurons receive 

Figure 18.4 Intel’s Loihi (Pratap, 2017).
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Figure 18.5 Apple’s A11 chip (Ivankov, 2017).

and execute the same instructions in parallel. All the neurons receive pat-

terns at once, either for learning or for recognition. The neurons are trained, 

and their built knowledge is used in various scenarios. The neurons autono-

mously decide their own firing threshold. It has a parallel architecture that 

has been patented and has no controller or supervisor. It works on a fre-

quency of 16–27 MHz and dissipates only 0.5 W. Even though all the neu-

rons work in parallel, they are interconnected to each other in order to 

make global decisions. All the neurons are connected via a bidirectional bus 

internally and externally. There are 15 registers on which the simple register-

level transfer is based on. There are an optional I2C port and optional digital 

input bus to broadcast patterns to a simple recognition stage. A daisy chain 

of CM1K chips is possible, and the neurons in the different chips would 

communicate with each other in the same manner as they communicate 

with other neurons on their own chip (General Vision, 2018) (Figure 18.6; 

Table 18.2). 

18.3.10  BrainScaleS

The BrainScaleS project was started in 2011 with an aim of understand-

ing the working of human neurons and generates a chip that works like a 

human brain (Meier, 2012). There were 13 research groups involved in the 

project headed by Heidelberg University in Germany. The neuromorphic 

processor was constructed by integrating silicon wafer scales. The silicon 

wafer scales consist of a number of chips tightly connected to each other 

and are only 20 cm in diameter. The circuitry contains both analogue and 

digital circuits. The neurons are analogue, while communication between 

the neurons and their synaptic weight is digital. One wafer has been built 
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Figure 18.6 CM1K chip (General Vision, 2018).

Table 18.2 Specifications of CM1K (General Vision, 2018)

Attributes CM1K

Neuron capacity 1,024

Neuron memory size 256 bytes

Categories 15 bits 

Distances 16 bits 

Contexts 7 bits 

Clock frequency 27 MHz for a single chip and 16 MHz for a chain of 
multiple chips

I/O Parallel Bus- 26 lines
Serial I2C- 100 and 400 kbit/s
Digital input bus – 11 lines for data and sync signals

Process and die-size 130 nm/64 mm2

Electrical 3.3V I/O Operation, 1.2V core, 260 mA

Power consumption <300 mW at Active mode

Package 100 pin TQFP 14 × 14 mm package

on 48 reticles. Each reticle contains 8 HICANN (High Input Count Analog 

Neural Network) chips. So, there are about 384 chips in a wafer. A HICANN 

chips size is 5 × 10 mm2. Each chip contains an ANC (Analog Neural Core) 

which is the central block along with the supporting circuitry. Each HICANN 
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Figure 18.7 Silicon wafer and aluminium back panel, hexagon silicon wafer (Meier, 
2012). The simulations for the chips were run on JUGENE computers and communica-
tion between on-wafer neurons was established (Meier, 2012).

implements 128,000 synapses and 512 membrane circuits. These are 

grouped to form simulated neurons. The number of neurons depends on 

the number of synapses configured per neuron. There can be about 196,608 

neurons per wafer if all the chips are flawless. The wafer is supported on 

an aluminium plate that also acts as a heat sink. A PCB board is placed on 

top of the wafer where all the I/O connections can be made. Several wafer 

modules can be connected together to make larger systems. The design was 

done in Heidelberg, and the chip was fabricated in Taiwan (Figure 18.7).

18.3.11  APT Group

The APT group in Manchester (four universities and three companies) are 

involved in the designing and fabrication of the SpiNNaker chip (APT, 2019). 

The chip consists of 18 ARM968 processors. It has an asynchronous com-

munication infrastructure. The chip has a SpiNNaker directory itself and a 

128 Mbyte SDRAM. The chip is globally asynchronous locally synchronous 

(ALS). It is a multicore system-on-chip. The SpiNNaker chip is 102 mm2 in 

diameter (Figure 18.8).

These developments of AI-specific hardware chips have widened the 

range of artificial intelligence applications across many sectors (APT, 2019).

18.4  Application in Healthcare

The availability of AI chips means that healthcare practitioners and research-

ers can manage interoperable data and accelerate personalized medicine 

and augmented healthcare delivery (Burt, 2019; IBM, 2019; NVIDIA, 2019). 
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Figure 18.8 SpiNNaker chip (Group, 2019).

Importantly, the prowess of AI chips will allow computing closer to the 

source of data, thus allowing processes such as federated learning, which 

allows greater protection and privacy of data, and earlier processing of 

data and detection of diseases (Burt, 2019; NVIDIA, 2019). These possibili-

ties have led to an increasing number of collaborative projects between the 

chip industry and healthcare institutions. The coming years will showcase 

the results of these collaborative projects and their impact on healthcare 

delivery.
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19.1  Introduction

Artificial intelligence (AI) allows machines to analyse and solve problems 

utilizing heuristic, stochastic, fuzzy and other computational paradigms 

including biological principles (Xu et al., 2019). AI can learn from experiential 

data to automatically model and solve complex problems that may exceed 

the capacity of humans. AI-based deep learning algorithms have been found 

in certain instances to be superior to human clinicians in diagnosis, for 

 example, pathologists in detecting the spread of breast cancer (Ehteshami 
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et al., 2017). The current generation of AI systems is widely used in appli-

cations that enhance daily human life and those that further sophisticated 

research. AI and AE researchers could make significant strides in healthcare 

if AI can generate empathy at appropriate levels to optimize the delivery and 

effectiveness of healthcare services. Care provision robotics, for instance (as 

opposed to surgical robots), could ease the current care crisis due to longer 

life expectancy, the burden of multi-morbidity and shortage of skilled care-

provision workforce. But a significant challenge for AI is the possession and 

deliverance of the human attribute of empathy. In this chapter, we strive to 

describe the trait of human empathy, analyse the possibility of implementing 

it using AI, explore the limitations in doing so and briefly discuss the perceiv-

able wide-ranging repercussions of ARTIFICIAL EMPATHY (AE) specifically 

in the healthcare context while projecting future directions.

19.2  Empathy

While we acknowledge empathy as a variably defined term in different 

domains and contexts, we opine empathy is the quintessentially subjective 

ability of an individual’s consciousness to experience the world of the other 

person, albeit briefly, and extend compassion. Notwithstanding the difficulty 

in defining this trait consistently, it is nevertheless, definitely discernible and 

deliverable by most humans. The deep analysis of this trait invariably leads 

to philosophy and phenomenology and has a myriad of other complexities – 

including cultural and religious ones. It is also not clear to us if this attribute 

is a learned one or is given at its full intensity at birth.

In theatrical and performance art, for example, empathy may mean an 

analogizing and/or a dialogical endeavour that makes an individual human 

subject feel the performer’s emotions/feelings and be able to reciprocate 

the same (Rousseau, 1754). In the philosopher Jean Jacques Rousseau’s 

words,

I perceive two principles antecedent to reason, of which one inter-

ests us intensely in our well-being and self-preservation, and the 

other inspires in us a natural repugnance at seeing any sentient 

being, particularly a fellow human, perish or suffer. It is from the 

collaboration and combination of the two principles of which our 

minds are capable…all the rules of natural law flow.

(Madumal et al., 2019)
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The trait he eludes to as “antecedent to reason” is perhaps empathy or its 

primordial source. We take that as the best available description of the con-

cept of empathy.

19.3  Enabling Empathy with AI

In our view, empathy is a superior manifestation of human intelligence and 

in that way could be accommodated by AI. Human intelligence is portrayed, 

in most circumstances, in an empathetic context. This being the case, it is 

easily deducible to the reader that such “context-sensitive” AI would be more 

human and, at least to a significant degree of plausibility, renders itself to be 

designed using the current Artificial AI tools and techniques.

AI systems could work like automatons, interacting with humans con-

stantly or between themselves. Explainable artificial intelligence (XAI) 

models could incorporate dynamic interactions to obtain data, respond 

appropriately and learn to model their future behaviour automatically and 

transparently (Howarth, 2017). For example, in the healthcare domain, sig-

nals/data are constantly generated by patients, and a reasoning system for 

modelling can draw data for insight analysis. Such systems can provide the 

fundamental framework to implement AE given the availability of a large 

amount of electronic medical data from real-time monitoring. XAI mod-

els could be designed to discern cognitive, emotional and compassionate 

parameters (pain, gestures, verbal/non-verbal cues, historical data, specific 

diagnoses, etc.), in addition to vital physiological data and laboratory data of 

patients to determine the empathy needed for in a particular care provision 

situation and deliver it appropriately with verbal and non-verbal methods.

A pioneering study done in Australia by one of the authors of this chap-

ter and a team of researchers, where the concept of acceptability of human-

oids in direct clinical care was explored, had garnered significant interest 

(ANZCTR, 2007; Schwartz, 2019). In this particular study, a commercially 

available programmable humanoid robot was trained to perform a limited 

clinical interaction with healthcare professionals in an acute hospital set-

ting. The emphasis being on the nature of clinical communication, the study 

explored the feasibility of delivering empathy, a clinically pertinent quality, 

to see if the health professionals (acting as patients) could indeed place trust 

in such a machine in the position of a healthcare professional (Howarth, 

2017; Madumal et al., 2019). While the results of the study are yet to be made 

publicly available, studies such as this attest to the feasibility of exploring 

this area further.
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19.4  Challenges

A fundamental problem is the lack of a universal definition of empathy. For 

the purposes of this chapter, we limited ourselves to pragmatism by explor-

ing the question of whether this trait could be modelled using machine intel-

ligence to be of use to humanity. “Instead of arguing interminably about the 

ultimate nature and essence of thinking,” as the Philosopher Daniel Dennett 

wrote to those arguing on the question that Alan Turing posed (“Can 

machines think?”), “why don’t we all agree that whatever that nature is, 

anything that could pass this (Turing) test would surely have it.” (Shanahan, 

2015). It was perhaps not necessary to understand the mechanism of think-

ing in extraordinary detail before designing applications for harnessing the 

machine thinking ability to human advantage. Resorting to this analogy, we 

adopted a similar attitude and foresee a parallel trajectory for the possession 

of empathy by intelligent machines.

The next question is one of the “Authenticity of Artificial Empathy” if 

exhibited by intelligent machines. There resides a fundamental fallacy in 

“emulating” a trait that appears to be the epitome of authenticity. Unless 

machines are “self-actualized,” the reader will understand that emulated 

empathy may not be authentic. And, we wish to steer clear of exploring the 

concept of machine “self-actualization” or “technological singularity” (Arrieta 

et al., 2019) in this discourse. Nevertheless, we see applications for artificial 

empathy which could be of significant benefit to the community and hence 

directed focus on that aspect more.

Trust in AI decision-making itself is brought to question given the “black 

box” insularity of many decisions made by intelligent machines. The resur-

gence of XAI and the design of AE based on such systems can help miti-

gate this issue, at least to a considerable degree (Stuber, 2019). The absence 

of validated metrics to quantify empathy exhibited by artificially intelligent 

machines is a significant deficiency that hinders research progress in this 

area. Quantifying a subjective parameter is an error-prone task. There had 

been attempts at devising an “empathy scale,” but such endeavours are still 

in their infancy (AMA, 2019).

19.5  Future Direction

Notwithstanding the challenges, artificial empathy could be of significant 

use to areas such as medicine where care provision requires empathy. Trust 
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levels in AI systems, which are increasing in applications in medicine, could 

increase with incorporation of AE. Data mining and machine learning algo-

rithms have been quite successful in extracting valuable insights, but little 

work on their application to model and optimize empathy has been taken 

so far. This area, no doubt, has enormous potential to develop, and the 

resulting technology has the potential to empower patients and practitioners 

alike.

19.6  Conclusion

There are only a few discussions that could trigger a deeper sense of curi-

osity in humans than AE, no doubt. We believe there needs to be a large 

body of research necessary in this area, urgently. It would amount to stating 

the obvious to say that a cross-disciplinary collaboration between medical 

professionals, robots/AI engineers, ethicists, psychologists, sociologists and a 

myriad of other specialists is a pressing need of the moment to further this 

research. We believe the future of technology and the societal perception of 

technology will be transformed forever if empathy can be exhibited by intel-

ligent machines effectively. Research into AE can potentially revolutionize 

the current computing methodologies as the deeper question of what con-

stitutes intelligence arises if empathy is construed as a form of intelligence. 

This may lead to a fundamental re-think of the design of computers and 

artificial intelligent systems to the benefit of mankind at large.
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